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Abstract 

Recently, an increasing number of researchers have attempted to overcome the constraints of 

size and scope in individual medical studies by estimating the overall treatment effects based on 

a combination of studies. A commonly used method is meta-analysis which combines results 

from multiple studies. The population standard deviation in primary studies is an essential 

quantitative value which is absent sometimes, especially when the outcome has a skewed 

distribution. Instead, the sample size and the sample range of the whole dataset is reported. 

There are several methods to estimate the standard deviation of the data based on the sample 

range if we assume the data are normally distributed. For example: Tippett Method2, Ramirez 

and Cox Method3, Hozo et al Method4, Rychtar and Taylor Method5, Mantel Method6, Sokal and 

Rohlf Method7 as well as Chen and Tyler Method8.  Only a few papers provide a solution for 

estimating the population standard deviation of non-normally distributed data. In this thesis, 

some other distributions, which are commonly used in clinical studies, will be simulated to 

estimate the population standard deviation by using the methods mentioned above. The 

performance and the robustness of those methods for different sample sizes and different 

distribution parameters will be presented. Also, these methods will be evaluated on real-world 

datasets. This article will provide guidelines describing which methods perform best with non-

normally distributed data. 
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Notation 

N : Population sample size 

n:  Group size 

σ: Population standard deviation 

𝜎2: Population variance 

SD: empirical standard deviation 

i.i.d. : identically and independently distributed 

RMSE: Root mean square error 

Pdf: Probability Density Function 

Cdf: Cumulative Distribution Function 
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1. Introduction 

In 1992, Guyatt1, a professor in the Department of Clinical Epidemiology and Biostatistics at McMaster 

University, first introduced the term “evidence-based machine” (EBM). EBM is “the conscientious, 

explicit and judicious use of current best evidence in making decisions about the care of individual 

patients”. The purpose of EBM is to combine the experience of clinicians, patient values, and the best 

available scientific information to guide clinical management decision-making. Meta- analysis is a 

statistical skill that Integrates the results from many different studies. Meta analysis is commonly used 

in EBM.  

 

In order to integrate the results from different studies, researchers need a consistent format. When the 

outcome variable in a meta-analysis is continuous, the population standard deviation is always required. 

However, from many studies, the population standard deviation (denoted as σ below) is not reported, 

and sometimes only the range and the sample size are described. In that case, researchers need to 

estimate the σ to avoid studies  from being excluded from the meta-analysis. It is quite necessary when 

there are not many studies available. Some effective methods have been proposed to estimate the σ 

based on the range and the sample size, but they assume the data is normally distributed. For example: 

Tippett Method2, Ramirez and Cox Method3, Hozo et al Method4, Rychtar and Taylor Method5, Mantel 

Method6, Sokal and Rohlf Method7 as well as Chen and Tyler Method8. The numerical details of all 

methods mentioned above will be shown in the methods section later in this thesis 

 

Although the above methods were designed for normally distributed data, it may be possible to apply 

them to certain data with non-normal distributions. Some bias will be introduced, but it may be 
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acceptable as long as the data has a similar probability density function as a normal distribution. For 

example, Weibull distribution, Gamma distribution, mixture distribution of normal distribution which 

mix two normally distributed samples with some mixing proportions. This thesis will discuss the 

performance and robustness of those methods when applied to non-normal data and provide a general 

guideline for using the methods in different situations. 

.  

 

This thesis is organized as follows. The “Methods” section includes all the numerical details of the 

methods to estimating σ. In the “Results” section, we use R to simulate a large amount of data with 

different distributions and compare the performance among those methods. In “Real data analysis”, we 

use real world data to test the performance among  previous methods. In “Discussion” section, we will 

conclude the result for the whole thesis and introduce the next steps of our future work. 
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2. Methods 

I. Existing Methods for Estimating σ 

The estimator of population standard deviation (denoted as σ) is 
𝑅

𝜉(𝑛)
, where R is the sample range of 

the dataset. 𝜉(𝑛) can be obtained by applying the following methods and n is the sample size of the 

dataset.  

a) Tippett Method2 

𝜉𝑇𝑖𝑝𝑝𝑒𝑡𝑡(𝑛) = 2𝑛 ∫ 𝑧[𝛷(𝑧)]𝑛−1𝜙(𝑧) 
∞

−∞

𝑑𝑧 

Where 𝜙(𝑧) =
1

√2𝜋
 𝑒−𝑧

2/2 and 𝛷(𝑧) =  ∫ 𝜙(𝑧)
𝑧

−∞
𝑑𝑧, z is defined as a real number. 

 

b) Ramirez and Cox Method3 (RC Method) 

𝜉𝑅𝐶(𝑛) = 3√𝑙𝑛 𝑛 − 1.5. 

 

c) Hozo et al Method4 (Hozo Method4) 

𝜉𝐻𝑜𝑧𝑜(𝑛) = {
√12  𝑓𝑜𝑟 𝑛 ≤ 15           
4 𝑓𝑜𝑟  15 < 𝑛 ≤ 70,
6 𝑓𝑜𝑟 70 < 𝑛.          

 

 

d) Rychtar and Taylor Method5 (RT Method) 

𝜉𝑅𝑇(𝑛) =
𝐸(𝑅)

𝐸(𝑆𝐷)
=

𝜉𝑇𝑖𝑝𝑝𝑒𝑡𝑡(𝑛)

√ 2
𝑛 − 1 

𝛤(𝑛/2)
𝛤((𝑛 − 1)/2)
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where  𝛤(𝑧) = ∫ 𝑡𝑧−1𝑒−𝑡𝑑𝑡
∞

0
 and t is defined as a real number. E(R) and E(SD) are defined as the 

expected value of the range and the empirical standard deviation.  

e) Mantel Method6 

𝜉𝑀𝑎𝑛𝑡𝑒𝑙(𝑛) =  √𝑛. 

 

f) Sokal and Rohlf Method7 (SR Method) 

𝜉𝑆𝑅(𝑛) =  

{
 
 

 
 
2, 𝑓𝑜𝑟 𝑛 ≤ 5                 
3, 𝑓𝑜𝑟 5 < 𝑛 ≤ 15        
4, 𝑓𝑜𝑟 15 < 𝑛 ≤ 50      
5, 𝑓𝑜𝑟 50 < 𝑛 ≤ 250   
6, 𝑓𝑜𝑟 250 < 𝑛 ≤ 800
6.5, 𝑓𝑜𝑟 800 < 𝑛.        

 

 

g) Chen and Tyler Method8 (CT Method) 

𝜉𝐶𝑇(𝑛) ≈ 2𝛷
−1(0.52641/𝑛) 

where 𝛷−1(𝑧) is the inverse function of 𝛷(𝑧). 

In 1925, Tippett2 first proposed an unbiased estimator of σ. Theoretically, it is the best method to 

estimate σ. However, the result requires complicated numerical calculation or tabulation. In order to 

solve that, in 1951, Mantel6 N provided a quick and simple way to estimate σ when the sample size is 

less than 15. As a general rule of thumb, this method sacrificed accuracy within an acceptable range for 

convenience. Later in 1987, Sokal RR & Rohlf FJ (denoted as Sokal & Rohlf7 below) provided a table for 

estimating σ. It improves  both accuracy and convenience compared to the Mantel Method6. In 1999, 

Chen and Tyler8 used the inverse cumulative distribution function to approximate the variance of the 

extreme values which can then be used to approximate the variance of the sample range. Researchers 
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can use the table created by Harter and Balakrishnan to obtain the first four moments of the sample 

range distribution, which can be used to derive the exact variance. It gives a quite accurate estimation. 

Even though Chen & Tyler method8 still requires some numerical calculation, it is much simpler than 

Tippett’s method2 especially when the sample size is large (n > 500). In 2005, Hozo SP, Djulbegovic and 

Hozo I4 (denoted as Hozo et al below) proposed a new table to estimate σ based on the Sokal & Rohlf 

method7. It is more designed for teachers’ common practical uses. Then, in 2005, Ramírez and Cox 

created a new simple formula to estimate σ. Recently in 2020, the Rychtar and Taylor Method5 provided 

an unbiased estimator of the sample standard deviation rather than the population standard deviation. 

However, there are some disadvantages of this method. First, it underestimates σ for small sample size.  

In addition to this, this method is  only suitable when researchers are only interested in a particular 

sample instead of the whole population. Therefore, this method will not be discussed later in this thesis, 

but it is still a suitable method in some specific situation. As mentioned by Walter9, researchers would 

like to estimate the SD for a particular tide during a particular super-moon. This phenomenon won’t 

happen again in the future. Therefore, they do not need the population standard deviation. In that case, 

Rychtar and Taylor Method5 would be the best choice. 
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II. Simulation Methods 

In order to conduct simulation studies and compare the performance of the existing methods  

estimating σ, we need a simulation algorithm. Let X1, X2, ……, Xn be identically and independently 

distributed (i.i.d.) random variables. Let X(1) ≤ X(2) …… ≤ X(n) be the order statistics obtained by arranging 

the proceeding random sample in increasing order of magnitude. X(1) denotes the minimum of the 

random sample whereas X(n) is the maximum.  

 

There are two parameters to evaluate the performance of the methods: proportional bias and root 

mean square error. The proportional bias measures the residuals relative to the true σ while the RMSE 

measures the square root of the variance of the residuals. In this thesis, proportional bias will be the 

most critical parameter to evaluate performance. The term “bias” in this thesis means proportional bias 

instead of regular bias. The following thresholds for proportional bias will be adopted for all simulation 

methods: below 0.1 is best; between 0.1 and 0.2, the method is acceptable. However, the simulation 

will reject the method if its bias is larger than 0.2. Other users might adopt their own thresholds based 

on the real situation. Unlike proportional bias which is always between 0 and 1, RMSE has an extensive 

fluctuation range. As a result, it is hard to set a specific threshold for RMSE, but we can still use RMSE to 

compare the performance among different methods. 

 

Three non-normal distributions will be considered: mixture distribution of normals, gamma distribution 

and Weibull distribution. Mixture distribution of normals is commonly used in the biology field when 

two species are mixed with some proportion. Gamma distribution is a two-parameter continuous 

probability distribution. Exponential distribution, Chi-square distribution and Erlang distribution are 

special cases of the Gamma distribution. The Weibull distribution has an almost bell- shape probability 
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distribution curve when the shape parameter is greater than 1. Its properties would be close to normal 

distribution’s properties. Therefore, the methods designed for normal distributions may have a good fit 

on Weibull distribution. 

 

Methods for Mixture Distribution of Normal 

Given a finite set of pdfs p1(x), p2(x), ……, pn(x) or corresponding cdfs P1(x), P2(x), ……, Pn(x) and weights 

w1, w2, ……, wn which satisfy wi >0 and ∑𝑤𝑖 = 1. The mixture distribution can be written as: 

𝐹(𝑥) =  ∑𝑤𝑖 𝑃𝑖(𝑥)

𝑛

𝑖=1

 

𝑓(𝑥) =  ∑𝑤𝑖 𝑝𝑖(𝑥)

𝑛

𝑖=1

 

 

In this thesis, we will only discuss the situation when n = 2 and p1(x), p2(x) follow the normal distribution. 

The mixture distribution of two normal distributions’ pdf is: 

𝑓(𝑥) =  𝑤1 𝑝1(𝑥) + (1 − 𝑤1)𝑝2(𝑥)  

where p1(x), p2(x)is distributed as  ~ N(μ1, σ1) and N(μ2, σ2), w1 = p. Based on this pdf, we can derive the 

first and second moments of mixture distribution of normal as 

𝐸[𝑋] = ∫𝑥 [𝑝 . 𝑝1(𝑥) + (1 − 𝑝) .  𝑝2(𝑥)] 𝑑𝑥 = 𝑝 ∫ 𝑥 .  𝑝1(𝑥) 𝑑𝑥 + (1 − 𝑝) ∫ 𝑥 . 𝑝2(𝑥) 𝑑𝑥  

          = 𝑝𝜇1 + (1 − 𝑝)𝜇2 

𝐸[𝑋2] = ∫𝑥2 [𝑝 . 𝑝1(𝑥) + (1 − 𝑝) .  𝑝2(𝑥)] 𝑑𝑥 = 𝑝 ∫𝑥
2 .  𝑝1(𝑥) 𝑑𝑥 + (1 − 𝑝) ∫𝑥

2 . 𝑝2(𝑥) 𝑑𝑥 



8 
 

            = 𝑝（𝜇1
2 + 𝜎1

2）+ (1 − 𝑝)(𝜇2
2 + 𝜎2

2) 

Therefore,  

𝜎2 = 𝑉𝑎𝑟[𝑥] = 𝐸[𝑋2] − 𝐸[𝑋]2 =  𝑝(𝜇1
2 + 𝜎1

2) + (1 − 𝑝)(𝜇2
2 + 𝜎2

2) − (𝑝𝜇1 + (1 − 𝑝)𝜇2)
2     [1] 

 

Normally, researchers test the performance by using bias which shows the difference between actual 

value and approximate value. However, unlike the simple normal distribution, the population standard 

deviation of mixed normal distribution keeps changing while we adjust its parameters.  The proportional 

bias is the regular bias divided by the true population standard deviation value. By using proportional 

bias, we can easily compare all methods while the parameters are set differently. The term “bias” refers 

to a proportional bias in the following thesis. 

Additionally, N (0,1) is the baseline distribution. The mixing proportion of the two distributions, the 

sample size of the simulated data as well as the μ and σ of the second normal distribution will be varied.   

 

Figure 1 Simulation Algorithm for the Mixture Distribution of Normal 

Figure1 shows an algorithm for mixture distribution of normal. First, we generate sample X1 = (X11, 

X12, ……, X1n) are i.i.d. as N(μ1, σ1) and X2 = (X21, X22, ……, X2n) are i.i.d. as N(μ2, σ2). Then we generate M1 = 

(M11, M12, ……, M1n) are i.i.d. as Uniform(0, 1). We can set yi = X1i if Mi < p and yi = X2i if Mi ≥ p. Based on 

the parameter μ1, σ1, μ2, σ2 and p, we can obtain the 𝜎2 from equation [1]. According to y = (y1, y2, ……, 

yn), we have R = y(n) - y(1) and the sample size n. By applying the methods in previous section, we can 
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easily derive the σ̂ for each method. Thus, we can have 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑏𝑖𝑎𝑠 =  
σ̂−σ

𝜎
  and 𝑅𝑀𝑆𝐸 =

 √
(σ̂−σ)2

𝑛
 for each method. In order to reduce sampling variation, this algorithm will be repeated 1000 

times and use the average value of proportional bias and RMSE. More repetition will significantly 

increase the running time of the algorithm while only bring slightly or even no improvement of accuracy. 

1000 repetition is enough to keep sampling variation within a low level. 

Methods for Weibull Distribution 

Two-parameter Weibull distribution is a continuous probability distribution with pdf: 

𝑓(𝑥) = {
𝑐

𝜆
(
𝑥

𝜆
)𝑐−1𝑒

−(
𝑥
𝜆
)
𝑐

,      𝑥 ≥ 0,

 0,                                  𝑥 < 0,
 

Where c > 0 is the shape parameter and λ > 0 is the scale parameter. The population standard deviation 

for Weibull distribution is calculated by: 

𝜎 =  𝜆√𝛤 (1 +
2

𝑐
) − 𝛤(1 +

1

𝑐
)2 

Algorithm 2 produces the proportional bias and RMSE for Weibull distributed data by using different 

methods 

1) generate sample X = (X1, X2, ……, Xn) are i.i.d. and follow Weibull (c, λ). 

2) derive the σ based on the parameter c, λ. 

3) applying the methods to drive the σ̂ based on R = X(n) - X(1) and the sample size n. 

4) calculating the proportional bias and RMSE for each method. 

5) repeat previous steps 1000 times and use the average value of proportional bias and RMSE. 
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Methods for Gamma Distribution 

Gamma distribution is a two-parameter family of continuous probability distributions with pdf: 

𝑓(𝑥) =  
1

𝛤(𝑘)𝜃𝑘
𝑥𝑘−1𝑒

−
𝑥
𝜃 

With a shape parameter k and a scale parameter θ. The population standard deviation for gamma 

distribution is calculated by: 

𝜎 = 𝜃√𝑘 

There are many special distributions contained in the gamma distribution such as exponential 

distribution, chi-square distribution, Erlang distribution, etc.  

In this thesis, we will only focus on the two most commonly used distributions: exponential distribution 

and chi-square distribution. 

 

Gamma distribution is exponential distribution when shape parameter k = 1. The reciprocal of scale 

parameter is the parameter for exponential distribution. In addition, gamma distribution is chi-square 

distribution when scale parameter θ is constant at 2. The degree of freedom of chi-square distribution is 

half of shape parameter  
𝑘

2
 . 

Algorithm 3 produces the proportional bias and RMSE for gamma distributed data by using different 

methods 

1) generate sample X = (X1, X2, ……, Xn) are i.i.d. and follow exponential (λ) or Chi-square (v). 

2) derive the σ based on the parameter λ (or v) 
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3) applying the methods to drive the σ̂ based on R = X(n) - X(1) and the sample size n. 

4) calculating the proportional bias and RMSE for each method. 

5) repeat previous steps 1000 times and use the average value of proportional bias and RMSE. 
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3. Results for σ 

1) Mixture Distribution of Normal 

Before we get into numerical results, we will set some rules for the parameter setting. In terms of the 

sample size, we will focus on the situation when the sample size is less or equal to 50. As the sample size 

is enlarged, the bias and RMSE will keep decreasing. A sample size of less or equal to 50 is sufficient for 

us to see the performance and trend of different methods. In real life applications, the difference of the 

means of two mixed normal distributions is less than 2. Therefore, in this thesis, we only consider the 

situation when the difference is less than 2. Similarly, we will focus on the situation when the difference 

of the standard deviations of two mixed normal distributions is less than 2. 

 

First of all, we equally mixed standard normal distribution N(0.1) and N(1,1) to form a mixed distribution 

of normals and investigate the effect on proportional bias and RMSE when we vary the sample size. 

According to figures 2 & 3, the mean and standard deviation of two normal distributions are fixed, as 

well as the mixing proportion (p = 0.5). After enlarging the sample size of the data, the bias of all the 

methods except Mantel6 and SR methods converge to 0. In terms of SR method, it is a piecewise 

function, and its proportional bias keeps fluctuating within the range of -0.2 to 0.2. As a result, this 

method is acceptable for use. Hozo4 shows a significant proportional bias for sample sizes  less than 10. 

In terms of the RMSE, all methods’ RMSE except the Mantel method6 converge to 0 as the sample size 

enlarges. Hozo4 and SR methods have slightly higher RMSE than other three methods. 

For the figure 4 & 5, in order to see how the bias varies with the mixing proportion, we chose N(0,1) and 

N(0,5) with the fixed simulated  sample size N = 50. The bias will always be symmetric around p = 0.5, so 

for extra clarity we plot values only between 0 and 0.5. As the proportion p goes towards 0 (or 1), the 

mixture distribution will converge to  the single  normal distribution. Correspondingly, as p converges  to 
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0.5, the pdf of the mixture distribution of normal will diverge away from the normal distribution. 

However, RMSE has a different situation with proportion bias. The mantel method6 still has a bad 

performance. Overall, RMSE for all methods have a small bump when the mixed proportion is between 0 

and 0.1 and starts getting large when mixed proportion approaches to 0.5. As a result, all the methods 

are getting worse when the mixed proportion approaches 0.5, which is the situation when two normal 

distributions are equally mixed. Tippett2 still shows the smallest bias for most of the cases whereas the 

Mantel method6 does not perform well. Generally, when p is less than 0.15, all the methods have a 

relatively small proportional bias which are less than 0.2. However, researchers should be careful with 

the situation when the mix proportion is around 0.05 where there is a local maximum for RMSE. 0.15 

would be the recommended mixed proportion for using those methods. Varying p will have a more 

significant effect on the bias and RMSE when the difference between the  two normal distribution 

means is larger. Thus, we will discuss how big the difference between two normal distribution means is 

acceptable.  

 

In the end, we take an analysis of varying the mean or variance of the second normal distribution. From 

the previous paragraph, it shows the largest bias at p = 0.5. So, we take the simulated sample size N = 

50, mixed proportion p =0.5 and vary the μ of the second normal distribution. Based on figures 6 & 7, 

when the difference of the mean is increasing, the absolute value of  bias keeps increasing 

simultaneously. Those methods shows a good performance when the difference of mean is less than 2 

with the proportional bias almost equal to zero. Additionally, except for  the Mantel method6, the RMSE 

is stable (approximately 0.2) when the μ of the second normal distribution is enlarged. Therefore, we 

highly recommend using those methods to estimate σ when the difference of mean is less than 2.  
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From figures 8 & 9, we can see that the difference of variance of two mixed normal distributions will not 

have much effect on the method’s performance if we keep their mean equal. The RMSE shows a linearly 

increasing trend as the difference of σ increases, which means the robustness of all the methods is 

getting worse. However, even though the difference of two σ arrives 2, its RMSE is still  very small. 

Therefore, we can confidently conclude that all methods except the Mantel method6 have a good 

performance when the difference of σ  is less than 2.  

 

In the end, we will consider the situation when both μ and σ are different for two normal distributions. 

In practice, people barely use the case when both μ and σ of mixture distribution of normal have a 

relatively large difference. Therefore, we will slightly increase the μ to 0.5 of the second normal 

distribution and vary its σ. Comparing figures 8.5 & 9.5 with figures 8 & 9, we can see they show a very 

similar situation. As a result, we can conclude that all methods have a good performance when the 

differences of both μ and σ are within 2. 

 

Overall, the Tippett2 method is the most appropriate method for a mixture of normal distribution, 

whereas the Mantel6 is the worst one. Even though Tippett2  requires tabulation and numerical 

integration, it gives the least error. If we don’t have the integration for Tippett2 method, Ramirez and 

Cox method3 is the second-best choice. We recommend using those methods when the difference of the 

mean of two mixed normal distributions is less than 2 while the values of two variance do not really 

matter. Also, smaller mixed proportions will bring a better performance. Larger differences of μ with 

smaller mixed proportion p may also have good performance and be acceptable to use, but it requires 

more investigation based on their own situation.  
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Figure 2 Figure 3 

 

  

Figure 4 Figure 5 

 

  

Figure 6  Figure 7 
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Figure 8 Figure 9 

 

  

Figure 8.5 Figure 9.5 
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2) Weibull Distribution 

There are two parameters – shape and scale parameters for Weibull Distribution. For the shape 

parameter k, the probability density function shows a curve similar to the exponential curve when k < 1 

and shows a bell curve when k > 1. From Johnson and Kotz10, when the shape parameter k = 3.6, the 

Weibull distribution is similar in shape to the normal and shows zero skewness. As a result, we will set 

Weibull with k = 3.6 as our baseline distribution. 

 

Figure 10: Probability Density Function for Weibull Distribution 

 

In terms of scale parameter, From Johnson and Kotz10, they obtain the order statistics  function for 

standard Weibull distribution (set scale parameter to 1)by using linear transformation ξ0 + λ 𝑋’  from 

Weibull distribution： 

𝐸[𝑋𝑟] =
𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
𝛤(1 +

1

𝑐
)∑

(−1)𝑖(𝑟−1
𝑖
)

(𝑛 − 𝑟 + 𝑖 + 1)1+
1
𝑐

𝑟−1

𝑖=0

 

where 𝛤(𝑥) = ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡.
∞

0
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By using the order statistics, the minimum and maximum is 

𝐸[𝑋(1)] = 𝑛 ∙ 𝛤 (1 +
1

𝑐
) ∙

1

𝑛(1+
1
𝑐
)
 

𝐸[𝑋(𝑛)] = 𝑛 ∙ 𝛤(1 +
1

𝑐
)∑

(−1)𝑖(𝑛−1
𝑖
)

(𝑖 + 1)1+
1
𝑐

𝑛−1

𝑖=0

 

𝐸[𝑅] = 𝑛 ∙ 𝛤 (1 +
1

𝑐
) ∙ [∑

(−1)𝑖(𝑛−1
𝑖
)

(𝑖 + 1)1+
1
𝑐

𝑛−1

𝑖=0

−
1

𝑛
(1+

1
𝑐
)
 ] 

 

From Johnson and Kotz10, the standard deviation of two-parameter Weibull distribution is: 

𝜎 =  𝜆√𝛤 (1 +
2

𝑐
) − 𝛤(1 +

1

𝑐
)2 

From the equation above, the range for transformed standard Weibull distribution is free of scale 

parameters which means the range for two-parameter Weibull distribution is proportional to the scale 

parameter. Then, the standard deviation of two-parameter Weibull distribution is also proportional to 

the scale parameter.  Additionally, ξ for all methods is only depends on the sample size. Based on those, 

the estimated population standard deviation 𝜎̂ and its proportional bias are calculated by: 

𝜎̂ =
𝑅

𝜉
 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝐵𝑖𝑎𝑠 =  
𝜎 − 𝜎̂

𝜎
=
𝜆√𝛤 (1 +

2
𝑐) − 𝛤(1 +

1
𝑐)
2 −

𝑅
𝜉

𝜆√𝛤 (1 +
2
𝑐) − 𝛤(1 +

1
𝑐)
2
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As a result, the proportional bias will be free of scale parameters, which means the scale parameter will 

not influence the performance of our methods. Therefore, we can easily set λ = 1 as the baseline 

distribution. 

 

Similar to the mixture distribution of normal, we will focus on the situation when the sample size is less 

or equal to 50. In practice, any scale and shape parameter is possible. Therefore, we will use scale and 

shape parameters less or equal to 50 to see the trend of the methods’ performance. 

 

From  Figures 11 & 12, only the bias of the Mantel method6 keeps increasing as the sample size 

increases. Thus, the Mantel method6 will not be recommended at any situation. In terms of the RC 

method and the Hozo method4, both are piecewise functions. The proportional bias becomes significant 

at the end of each segment and sharply drops after each breakpoint, and it goes to 0 around the mid-

point of each segment. For the remaining three methods – Tippett method2, the RC method and the CT 

method, all of them show the best performance. Within those three methods, RC method does not 

require numerical integration or tabulation to estimate. However, the proportional bias of those three 

methods starts slightly diverging away from zero as the sample size becomes large. In terms of the 

RMSE, all the methods except Mantel method6 show a decreasing trend as the sample size increases. SR 

and Hozo4 have relatively higher RMSE compared with Tippett2, RC and CT methods, but it is not a huge 

difference.  
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Figure 11 Figure 12 

Overall, we recommend using Tippett2 method when we have numerical integration or tabulation 

available to estimate. Otherwise, we recommend using the RC method. 

 
 

Figure 13  Figure 14 

 
 

Figure 15 Figure 16 
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From figures 13 - 16, we will discuss the situation when we are varying the parameter of the Weibull 

distribution – λ and k. Even though we found that the scale parameter will not influence the 

proportional bias, we still need to investigate how RMSE change based on the scale parameter. The 

proportional bias barely changes while we are varying the λ and k. It means the choice of different shape 

and scale parameters will not significantly influence the performance estimation methods which 

confirms our result above. However, the RMSE shows a linearly increasing trend when we vary the scale 

parameter which means the robustness will decrease. The shape parameter does not show a significant 

effect on the RMSE. The RMSE converges to 0 when we change the shape parameter. As a result, we can 

still use the result for Weibull (3.6, 1) as a reference for all the situations, but researchers should be 

careful when the scale parameter is too large ( λ  > 10). 
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3) Gamma Distribution 

We will discuss two special cases of gamma distribution in this chapter – exponential distribution and 

chi-square distribution.  

• Exponential distribution 

 

Figure 17: Probability Density Function for Exponential Distribution 

 

Similar to the previous distribution, we will focus on the sample size less than or equal to 50. In terms of 

the parameter of the exponential distribution , from figure 17, we can see the probability density curve 

is getting to x- axis more quickly as the parameter increases. The effect of changing parameter  become 

smaller when the parameter is enlarged. There are only four situation are included in this thesis: 

parameter equal to 0.5, 1, 3, 5. 

 

For exponential distribution with parameter equal to θ, we have 𝜎 =  𝜃. From Johnson and Kotz10, they 

obtain the order statistics  function for exponential distribution: 

𝐸[𝑋(1)] =  
θ

𝑛
 𝑎𝑛𝑑 𝐸[𝑋(𝑛)] =  θ(1 + 

1

2
+
1

3
… . . +

1

𝑛
) 
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𝐸[𝑅] = 𝐸[𝑋(𝑛)] − 𝐸[𝑋(1)] =  θ(1 + 
1

2
+
1

3
… . . +

1

𝑛 − 1
) 

Therefore, the proportional bias can be derived: 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝐵𝑖𝑎𝑠 =  
𝜎 − 𝜎̂

𝜎
=  
𝜃 −

θ(1 + 
1
2 +

1
3… . . +

1
𝑛 − 1)

𝜉

𝜃
 

= 1 −
(1 + 

1
2
+
1
3
… . . +

1
𝑛 − 1

)

𝜉
 

Which is free of parameter θ. Therefore, the change of parameter will not influence the proportional 

bias. However, we still need to investigate the RMSE for each method. 

 

According to figures 18 – 25, using different parameters in exponential distributions does not cause a 

massive difference in proportional bias which confirmed our result above. Tippett method2 still the best 

performance and its proportional bias converges to 0 as the sample size increase. RC and CT methods 

also have a convergent trend as the sample size increases. In terms of the Hozo4 and SR method, those 

two methods are piecewise functions instead of continuous functions. Therefore, the proportional bias 

of those two methods keeps bouncing within each segment and does not have a convergent trend from 

the plots. However, as the sample size is getting close to the mid-point of each segment, the 

proportional bias converges to 0. As a result, researchers can choose Hozo4 or SR methods when the 

sample size is close to the mid-point of the segment. Mantel method6 is not recommended in this 

situation. However, varying parameters does show a significant effect on RMSE. Overall, the RMSE 

descends as the parameter increases. For parameters greater than 3, the RMSE for all methods 

converges to 0.In terms of the exponential distribution with parameter 0.5, except Mantel method6, the 
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RMSE of all other methods converge to around 0.85 when the sample size increases. Researchers should 

be careful when the parameter is less than 1. 

  

Figure 18 Figure 19 

 

  

Figure 20 Figure 21 
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Figure 22 Figure 23 

 

  

Figure 24 Figure 25 

 

 

 

 

 

 

 



26 
 

• Chi-square distribution 

For the parameter chosen, we will focus on the sample size less or equal to 50 and choose 1, 5, 10 and 

20 as the parameter for Chi-square distribution. The pdf of the chi-square distribution has an 

exponential shape when the parameter is 1 whereas its pdf curve has a bell shape when the parameter 

is greater than 3. The difference in pdf shape causes a slightly different bias situation between when the 

parameter equals 1 and when the parameter equals other values. We will use𝜒2(𝑗) to denote chi-

squared distribution with a parameter equal to j and j denote as the parameter for chi-square 

distribution. When the sample size is less than 30, 𝜒2(1) has higher proportional bias than chi-square 

distribution with higher parameter. However, when the sample size is greater than 30, they show a 

similar situation.  

 

For j greater or equal to 5, its pdf curve is closer to the normal distribution pdf curve. As a result, it has a 

relatively low proportional bias compared with the other situation. The Mantel6 is the worst method as 

usual, and we will not consider this method. Except Hozo4 and SR method, the other three methods 

have an extraordinary performance with their proportional bias almost equal to 0 for all sample sizes. 

Hence, Tippett2, RC and the CT methods are the top choices.  

 

Then, we will look at the RMSE for chi-square distribution. From figures 28, 30, 32 and 34 , the RMSE 

slightly increases when j increases. All methods except the Mantel6 method show a similar situation. 

Mantel6 will be rejected due to the relatively high RMSE. When j is large (> 10), SR start to have slightly 

higher RMSE than other methods when the sample size increasing. Therefore, SR will not be 

recommended for Chi- square distribution when the j is larger than 10.  
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Overall, the Mantel method6 will not be considered. Tippett2, RC, and the CT methods' RMSE show an 

increasing trend as sample size increases. Combined with the result for proportional bias, these three 

methods are the top choices for estimating σ. SR method will not be recommended when the parameter 

is larger than 10. Even though the plots above do not show a huge difference among these three 

methods, Tippett2 method is more recommended because it is an unbiased estimator for normal 

situations. Researchers can still choose one of those three methods based on their own preferences and 

situation. 

 

Figure 26: Probability Density Function for Chi-square Distribution 

 

  

Figure 27 Figure 28 
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Figure 29 Figure 30 

 

  

Figure 31 Figure 32 

 

  

Figure 33 Figure 34 
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4. Result for 𝜎2 

This section will repeat the algorithm from previous section to simulate the 𝜎2 instead of σ. The 

parameter selection rule for 𝜎2 follows exactly same as the rule for σ. 

1) Mixture Distribution of Normal 

  

Figure 35 Figure 36 

According to the figure 35 & 36, the mean and standard deviation of two normal distributions are fixed, 

as well as the mixing proportion (p = 0.5). It shows a similar situation as a result for σ, but the 

proportional bias and RMSE are relatively larger. After enlarging the sample size of the data to 50, the 

bias and RMSE of all the methods except Mantel6 and SR methods show a similar result in that 

proportional bias converges to 0. 
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Figure 37 Figure 38 

Figures 37 & 38 show how the bias and RMSE vary with the mixing proportion for N(0,1) and N(0,5) with 

the fixed simulated  sample size N = 50. Same as the result for σ, the bias and RMSE will always be 

symmetric around p = 0.5, so for extra clarity we plot values only between 0 and 0.5. As the proportion p 

goes towards 0 (or 1), the mixture distribution will converge to  the single  normal distribution. 

Therefore, the proportional bias is approximately 0 at this point, but it has a small bump around p = 

0.03. Then the bias shows a decreasing trend as the proportion goes toward 0.5. The RMSE also have a 

bump at p = 0.03 and it have a local minimum when p = 0.15. After that point, the RMSE shows an 

increasing trend. As a result, all the methods have poor performance and robustness when the mixed 

proportion approaches 0.5, which is when two normal distributions are equally mixed. Tippett2 still 

shows the smallest bias for most of the cases whereas the Mantel method6 does not perform well. 

Generally, when p is less than 0.15, all the methods have a relatively small proportional bias which are 

less than 0.2. However, researchers should be careful with the situation when the mix proportion is 

around 0.03 where is the local maximum for bias and RMSE. 0.1 to 0.15 would be the recommended 

mixed proportion for using those methods.  

  

Figure 39 Figure 40 
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Figure 41 Figure 42 

 

  

Figure 41.5 Figure 42.5 

From figures 39 to 42, we take an analysis of varying the mean or variance of the second normal 

distribution. We set the simulated sample size N = 50, mixed proportion p =0.5 and vary the μ of the 

second normal distribution. According to figures 39 and 40, when the difference of the mean is 

increasing, the absolute value of proportional bias keeps increasing simultaneously. Except for the 

Mantel method6, all the methods’ absolute values of bias are less than 0.2 when the difference of mean 

is less than 1. Besides the proportional bias, all methods’ RMSE shows a significant increase when the 

difference of mean is larger than 1. Therefore, we recommend using those methods to estimate σ when 

the difference of mean is less than 1. From the figures 41 & 42, changing the variance of two mixed 

normal distributions has a slight effect on the method’s performance if we keep their mean equal. All 
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methods have a small proportional bias while we keep their mean equal. The RMSE shows a linearly 

increasing trend as the difference of σ increases which means the robustness of all the methods is 

getting worse. All methods shows a really similar situation.  From figures 41.5 & 42.5, we will discuss the 

situation when both μ and σ are different. Comparing those two figures with 41 & 42, we can see slight 

change of the mean will not influence the performance of all the methods.  

 

Overall, the result for 𝜎2 is similar at the result for σ. Tippett method2 is the most appropriate method 

for mixture normal distribution whereas the Mantel6 is the worst one. Ramirez and Cox method3 is the 

second-best choice. We recommend using those methods when the difference of the mean and the 

variance of two mixed normal distributions are both less than 1. Also, smaller mixed proportion will 

bring a better performance. Therefore, those methods are recommended when the mixing proportion is 

between 0.1 to 0.15. Larger difference of μ with smaller mixed proportion p may also have good 

performance and acceptable to use, but it requires more investigation based on their own situation.  
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2) Weibull Distribution 

  

Figure 43 Figure 44 

From the Figures 43 & 44, only the bias of Mantel method6 keeps increasing as the sample size 

increases. Thus, the Mantel method6 will not be recommended at any situation. In terms of RC method 

and Hozo4 method, both are piecewise functions. The proportional bias becomes large at the end of 

each segment and sharply drops after each breakpoint, and it goes to 0 around the mid-point of each 

segment. For the remaining three methods – Tippett method2, RC method and CT method, all of them 

show the best performance. Within those three methods, RC method does not require numerical 

integration or tabulation to estimate. However, the proportional bias of those three methods starts 

slightly diverging away from zero as the sample size becomes large. In terms of the RMSE, all the 

methods except Mantel method6 show a decreasing trend as the sample size increases. SR and Hozo4 

method have relatively higher RMSE compared with Tippett2, RC and CT methods, but it is not a huge 

difference.  

Overall, we recommend using Tippett method2 when we have numerical integration or tabulation 

available to estimate. Otherwise, we recommend using the RC method. 
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Figure 45 Figure 46 

 

  

Figure 47 Figure 48 

From figure 45 – 48, we will discuss the situation when we  vary the parameters of the Weibull 

distribution – λ and k. The proportional bias barely changes while we are varying the λ and k. It means 

the choice of different shape and scale parameters will not significantly influence the performance 

estimation methods. However, the RMSE shows a significantly increasing trend when we are varying the 

scale parameter which means the robustness will decrease. The shape parameter does not show a 

significant effect on the RMSE. The RMSE converges to 0 when we are changing the shape parameter. As 

a result, we can still use the result for Weibull (3.6, 1) as a reference for all the situations, but researcher 

should be careful when the scale parameter is too large ( ( k > 8 ).  
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3) Gamma Distribution 

• Exponential Distribution 

  

Figure 49 & 50 

 

  

Figure 51 Figure 52 
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Figure 53  Figure 54 

 

  

  

Figure 55 Figure 56 

First, we look at the proportional bias for the estimation of 𝜎2. Comparing figures 49, 51, 53, 55, the 

change of parameter barely influences the proportional bias of all methods. Among all methods, 

Tippett2, RC and CT methods are the best methods. Their proportional bias goes below 0.1 when the 

sample size is enlarged. Within those three methods at large sample size, Tippett method2 has the 

lowest proportional bias (approximately 0.05)  while RC and CT have a similar proportional bias 

(approximately 0.08). For Hozo4 and SR methods, because they are piecewise functions, we only 

recommend using them when the sample size is near the mid-point of each segment. Mantel6 will not 

be accepted at any situation. According to figures 50, 52, 54, 56, RMSE significantly decreases when we 
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enlarge the parameter. The RMSE dramatically increases when the parameter drops below 1 which 

means all methods have poor robustness at that situation. Overall, for the exponential distribution, we 

recommend Tippett method2 if integration or tabulation is available, otherwise RC and CT are also a 

good option. However, researchers should be careful and do more tests when the parameter is less than 

1. 
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• Chi-square Distribution 

  

Figure 57 Figure 58 

 

  

Figure 59  Figure 60 
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Figure 61 Figure 62 

 

  

Figure 63 Figure 64 

Chi-Squared distribution shows a different situation as exponential distribution. The proportional bias 

generally decreases, and the bias curve becomes smoother when we increase the parameter for chi-

squared distribution. However, the RMSE significantly increases when the parameter increases. 

Therefore, it is hard to keep low bias and good robustness at the same time. We recommend choosing a 

parameter less than 5. Even though we have a slightly higher bias, we significantly improve the 

robustness. However, researchers can still choose another parameter based on their own situation. 

Comparing the methods, Tippett method2 still has the lowest proportional bias and RMSE. Therefore, it 

is the best method for Chi- squared distribution if integration or tabulation is available. After that, RC 

and CT are the second-best options – their proportional bias and RMSE are slightly higher than Tippett2. 

Similar to exponential distribution, we only recommend using Hozo4 or SR method when the sample size 

near the mid-point of each segment and we do not recommend the Mantel method6 for any situation.  
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5. Real Data Analysis 

In the previous section, we randomly generated a set of data with known distribution. However, data 

does not always exactly follow a known distribution in real world. Therefore, in this section, we compare 

the performance of the different methods using real-life data. Two datasets are chosen from 

Macdonald’s website11 – Plasma glucose levels data13 and Pearson’s crab data12. There are several 

reasons why we chose these two datasets. Firstly, those two datasets can be fitted with either Weibull 

distribution, gamma distribution or mixture of normal distribution. Secondly, full details for those two 

datasets are missing for some reason. Only the range and the sample size are provided. It satisfied the 

situation why we need to use those methods to estimate σ or 𝜎2.  

Plasma Glucose Levels Data13 

This dataset contains the plasma glucose concentrations for the population in Western Samoa and 

Nauru respectively and was collected in August and September 1978 and January 1982.The original 

study found that the frequency distribution of plasma glucose concentration in certain population has 

two distinct sub-groups – a non-diabetic sub-group and a hyperglycaemic sub-group. These two groups 

show a double peak in the best-fit frequency distribution. The point where two curves intersects 

indicate a plasma glucose level at which diabetes could be diagnosed. Raper provided a bimodality 

situation and fit the data by using a bimodal log normal distribution. Then, McDonald11 worked on the 

sub-group Western Samoa females with ages between 45 – 54 with the sample size equal to 89. This 

thesis will use this sub-group data to test the performance of different methods for estimating the 

population standard deviation.  

 

There are two approaches will be used for the Plasma Glucose Levels dataset13.  For approach 1, we 

apply different methods for the whole dataset. we obtain the overall σ by using the overall range and 
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the whole sample size. For approach 2, we first estimate the σ for each subgroup by using the sample 

size and the range for each subgroup. Then, we calculate the overall σ based on the two subgroups’ σ. 

 

For  approach 1, the full dataset cannot be found online. Therefore, the exact range and population 

standard deviation is unknown , and only the histogram is given. However, we can still estimate the 

range of the data. First, from figure 66, we can roughly get the minimum is 50 while the maximum is 

430. We can take the range of the data to be 380.  

 

From McDonald’s result11, he used Mixture of N (102.1, 21.9) and N(262.6,56.4) with mixed proportion 

equal to 0.83 and 0.17 respectively to fit the dataset. This model fit assumes a constant coefficient of 

variation. He attempted to find an unconstrained fit, but it failed to converge. Therefore, based on this 

mixture of normal model, the population standard deviation for the whole dataset is approximate 

67.538. The estimated 𝜎 and 𝜎2by different method will be compared with this value and the 

proportional bias for different methods is shown in the table 1. Compare the result from table 1 with the 

previous section’s result, Mantel method6 is still the worst method. Hozo4 method shows the best 

performance with the least proportional bias for 𝜎 and 𝜎2. The rest of methods has similar situation that 

proportional bias is  around 1.4 for 𝜎 and around 0.3 for 𝜎2. 
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Figure 65: histograms for Female Plasma Glucose Levels 

Data13 

Figure 66: histogram the sub-group Western Samoa 

females with age between 45 – 54 

 

For approach 2, since we fit the data by mixture distribution of normals, we will use the estimation 

methods to estimate standard deviations for each normal distribution and use those two standard 

deviations to get the σ for the whole dataset. According to McDonald’s work11, he fit the dataset by 

using mixture of N (102.1, 21.9) and N(262.6,56.4) with mixed proportion equal to 0.83 and 0.17 

respectively and total sample size equal to 89. Therefore, we can approximate N1= 73.87 and N2= 15.13. 

For the accuracy, we will keep the decimals for the subgroup sample size. In terms of the ranges of the 

two subgroups, we can roughly estimate them according to figure 66 by eye with R1 = 200 – 50  = 150 

and R2 = 430 – 100 = 330. Therefore, the standard deviation for each subgroup can be estimated based 

on the subgroup’s range and sample size. Then, we use the two subgroups’ standard deviation to derive 
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the overall σ. The proportional bias for estimated overall 𝜎 and 𝜎2by different methods is shown in the 

table 1. In terms of the proportional bias result for approach 2, except for the Mantel method6, all 

methods shows a similar result as approach 1. The proportional bias for Mantel method6 dramatically 

decreased when we applied approach 2.  

 

In conclusion, except the Mantel method6, all other methods show close results with a proportional bias 

of around 0.14. According to the thresholds for simulation study in the previous section, the 

proportional bias is less than 0.2 which is acceptable for our research. Surprisingly, Hozo4 method has a 

very small proportional bias whereas Mantel method6 is still the worst. As a result, the robustness of 

those methods except Mantel6 is acceptable. Comparing two different approaches, both of them show a 

similar situation. It is hard to tell which method is better. In terms of approach 2, we applied the 

methods on two normal distribution  instead of mixture distribution of normals. Those methods have a 

best performance on normally distributed data. As a result, the proportional bias for approach 2 would 

be lower relative to approach 1. However, we can only estimate the range of each subgroup by eye 

when we are applying approach 2. It will cause a large bias when the division of  two subgroup is 

obscure. Therefore, we recommend using approach 1 when the divide of  two subgroup is obscure and 

using method 2 otherwise. 
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Table 1 Proportional Bias Result for Plasma Glucose Levels Data 

Methods 
approach 1 Bias approach 2 Bias 

𝝈 𝝈𝟐 𝝈 𝝈𝟐 

Tippett 0.141 0.302 0.143 -0.306 

Hozo -0.062 -0.120 0.077 -0.161 

Ramirez & Cox 0.159 0.343 0.148 -0.319 

Mantel -0.404 -0.645 0.057 -0.117 

Chen &Taylor 0.149 0.320 0.145 -0.312 

Sokal & Rohlf 0.125 0.266 0.100 -0.211 
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Karl Pearson’s Crab Data12 

This section will test the Karl Pearson crab data12 from 1894. The dataset gives the ratio of “forehead” 

breadth to body length for 1000 crabs sampled at Naples by Weldon. This dataset does not show 

individual values, but instead provides the number of crabs in terms of categorical frequency.  The 

abscissae of the dataset are the ratio of  “forehead” to the body-length with one unit of abscissa is 0.004 

of body-length. The first abscissa corresponds to 0.580 – 0.583 of the forehead to body-length ratio. The 

ordinates represent the number of individual crabs corresponding to each set of ratios of forehead to 

body-length. There are 29 set of abscissae, and we are using the mid-point method to estimate the 

range of the dataset. Therefore, the approximate range of this dataset is (29-1)*0.004-0.001 = 0.111. 

 

Figure 67: Histogram for Karl Pearson's Crab Data12 

 

For the population standard deviation of this dataset, Weldon did not have the precise value. However, 

Peter Macdonald11 provided two methods to fit the distribution of the crab dataset by using mixture 

distribution of normal and Weibull distribution. Based on his result, for mixture distribution of normal, 

we will be using N(0.63, 0.02) and N(0.65, 0.012) with mixing proportion equal 0.5. As a result, the 

estimated population standard deviation is 0.019022 for mixture distribution of normal. For the Weibull 

distribution, we will set mean equal to 0.6443 and the population standard deviation equal to 0.0207.  
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Figure 68: Fit the Data by Mixture Distribution of 

Normals 

Figure 69: Fit the Data by Weibull Distribution 

 

Table 2 provides the proportional bias of different methods. Similar to the Plasma glucose levels data13, 

all other methods show a relatively low proportional bias (less than 0.2) except Mantel method6 (around 

0.8). The Tippet method shows a very small proportional bias when we fit the data by mixture 

distribution of normal. When we fit the data by Weibull distribution, the Tippet method still has good 

performance (proportional bias around 0.1), but it does not have a considerable lead compared with the 

mixture distribution of normal  situation. Hozo method4 has the second smallest proportional bias for 

mixture distribution of normal and the smallest proportional bias for Weibull distribution. For Ramirez & 

Cox3, Chen &Taylor8 and Sokal & Rohlf method7, those three methods show a similar proportional bias 

for either mixture distribution of normal or Weibull distribution. 

 

From McDonald’s result11, Weibull model has a smaller p – value (0.012) than the p-value of mixture 

distribution of normal (0.57). P-value is an important parameter in statistics which indicate how well a 

model explains the data. Less p -value means this model has a better performance to explain the data. 

Therefore, Weibull distribution is a better fit for this data and the method’s performance for Weibull 
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distribution would be more critical. Overall, Tippet and Hozo methods4 will be the top choice whereas 

we will not consider the Mantel method6 for any situation.  

Table 2 Bias Results for Karl Pearson's Crab Data12 

Method Mixed Normal Weibull 

Tippett -0.013 -0.112 

Hozo -0.028 -0.106 

Ramirez & Cox -0.086 -0.160 

Mantel -0.816 -0.830 

Chen &Taylor -0.094 -0.167 

Sokal & Rohlf -0.102 -0.175 
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Real Data Analysis Discussion 

Tippett2 method still shows a good performance for either real data analysis or data simulation. It 

confirmed that Tippet would be the best choice for estimating σ. Hozo method4 has a quite small 

proportional bias in our two real data examples whereas it does not have such a dominant lead in data 

simulation. Only two real data examples are hard to reflect the exact performance of Hozo method4, but 

It would still be the second-best choice. For Ramirez & Cox3, Chen &Taylor8 and Sokal & Rohlf7 method,  

those three methods always show a similar performance for either situation. Therefore, researchers can 

decide which method to use based on their own preferences. In the end, Mantel method6 will not be 

considered in any situation. To be clear, this is just general guidance for estimating σ. We still suggest 

readers can do more research based on their own data if possible.  
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6. Discussion 

• Estimation of σ or 𝜎2 for non- normally distributed data 

Among all the methods, Tippett method2 is the best method to estimate σ or 𝜎2 for non-normally 

distributed data. It shows the smallest proportional bias and RMSE compared with other methods, but it 

requires numerical integration or tabulation to get the result. The Tippett method2 is complicated for 

the researcher to use especially when the sample size is larger than 500. As a result, Ramirez and Cox 

method3 and Chen & Tyler method8 are the second-best methods. These two methods slightly sacrifice 

precision for convenience. In terms of Hozo et al method4 and Sokal & Rohlf7 method, both are 

piecewise functions and their bias keeps fluctuating. Therefore, we only recommend using them when 

the sample size is close to the mid-point of each segment. Mantel method6 will not be taken in any 

situation. 

 

Unlike for normal distributions, those methods do not always have good performance for non-normal 

distributions. We recommend using those methods for the following circumstance: 

For the mixture distribution of normal,  if we want to estimate σ, the difference of the mean of two 

mixed normal distributions should less than 4 while the values of two variance do not really matter. 

Smaller mixing proportion will cause a better performance. If we would like to estimate 𝜎2, the 

difference of the mean and the variance of two mixed normal distributions are both less than 2. The 

recommended range for mixing proportion is from 0.1 to 0.15. 

For the Weibull distribution, the shape parameter and scale parameter barely influence the proportional 

bias, but the RMSE keeps increasing when the scale parameter is enlarged. Therefore, the scale 

parameter should be less than 10 for estimating σ and less than 8 for estimating 𝜎2. 
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For Exponential distribution, the parameter barely affects the proportional bias, but the RMSE becomes 

large when we have small parameters. Consequently, the parameter for exponential distribution should 

be larger than 1 for either estimating σ or 𝜎2. 

For chi-squared distribution, parameter do not have much effect on either proportional bias or RMSE 

when we are estimating σ. Any parameter of  chi-squared distribution can be taken for estimating σ. 

However, for estimating 𝜎2, its proportional bias slightly decreases and its RMSE significantly increases 

when the parameter is enlarged. As a result, the parameter should be less than for when we are 

estimating 𝜎2. 

 

Above are the general guidebooks for the estimation of σ and 𝜎2 based on my own threshold. However, 

researchers can still choose other method based on its own preference and situation. 
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• Future work 

In this thesis, we use the estimation methods designed for normal distribution to estimate σ and 𝜎2 for 

non-normal distributed data. Even though those methods still have a good performance with small 

proportional bias and RMSE, we still want an unbiased estimator for non-normal distributed data. Due 

to the lack of time, the unbiased estimator has not been found yet, but I will try to find it out in the 

future. Beside that, there are many challenges and uncharted things in statistical area await our 

exploration. I will make continuous effort to do more research in statistics area. 
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Appendix 

All numerical result summary from section 3 & 4 will be concluded in this section. 

• Mixture Distribution of Normal 

 

The numerical result of Estimation σ for N(1,1) and N(0,1) with p = 0.5 

 

 

The numerical result of Estimation σ for N(5,1) and N(0,1) with N = 50 
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The numerical result of Estimation σ for N(0,1) and N(μ2,1) with p = 0.5 and N = 50 

 

 

The numerical result of Estimation σ for N(0,1) and N(0,σ2) with p = 0.5 and N = 50 

 

 

 

The numerical result of Estimation 𝜎2 for N(1,1) and N(0,1) with p = 0.5 

 



56 
 

 

The numerical result of Estimation 𝜎2 for N(5,1) and N(0,1) with N = 50 

 

 

The numerical result of Estimation 𝜎2 for N(0,1) and N(μ2,1) with p = 0.5 and N = 50 

 

 

The numerical result of Estimation 𝜎2 for N(0,1) and N(0,σ2) with p = 0.5 and N = 50 
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• Weibull Distribution 

 

The numerical result of Estimation σ for Weibull(3.6,1) 

 

 

The numerical result of Estimation σ for Weibull Distribution with constant shape parameter 3.6 

 

 

The numerical result of Estimation σ for Weibull Distribution with constant scale parameter 1 
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The numerical result of Estimation 𝜎2  for Weibull(3.6,1) 

 

 

The numerical result of Estimation 𝜎2 for Weibull Distribution with constant shape parameter 3.6 

 

 

The numerical result of Estimation 𝜎2  for Weibull Distribution with constant scale parameter 1 
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• Exponential Distribution 

 

The numerical result of Estimation σ for Exp(0.5) 

 

 

The numerical result of Estimation σ for Exp(1) 

 

 

The numerical result of Estimation σ for Exp(3) 
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The numerical result of Estimation σ for Exp(5) 

 

 

The numerical result of Estimation 𝜎2 for Exp(0.5) 

 

 

The numerical result of Estimation 𝜎2 for Exp(1) 

 

 



61 
 

 

The numerical result of Estimation 𝜎2 for Exp(3) 

 

 

The numerical result of Estimation 𝜎2 for Exp(5) 
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• Chi- Square Distribution 

 

The numerical result of Estimation σ for 𝜒2(1) 

 

 

The numerical result of Estimation σ for 𝜒2(5) 

 

 

The numerical result of Estimation σ for 𝜒2(10) 
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The numerical result of Estimation σ for 𝜒2(20) 

 

 

The numerical result of Estimation 𝜎2 for 𝜒2(1) 

 

 

The numerical result of Estimation 𝜎2 for 𝜒2(5) 
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The numerical result of Estimation 𝜎2 for 𝜒2(10) 

 

 

The numerical result of Estimation 𝜎2 for 𝜒2(20) 

 


