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Lay Abstract

A remote multiterminal source coding network consists of L encoders and a decoder

is considered. Each encoder observes a source and sends a compressed version to

the decoder. The decoder produces a joint reconstruction of target signals with the

distortion below a given threshold. The minimum compression rate of this network

versus the distortion threshold is referred to as the rate-distortion function. This

thesis focuses the symmetric quadratic Gaussian case of the remote multiterminal

source coding problem, where the observed sources can be expressed as the sum

of target signals and corruptive noises which are independently generated from two

symmetric multivariate Gaussian distributions. For this special case, an explicit lower

bound on the rate-distortion function is established and is shown to partially coincide

with the well-known Berger-Tung upper bound. Moreover, it is proved that the

aforementioned lower bound is tighter than the centralized-encoding lower bound.

The asymptotic behaviors of these upper and lower bounds are analyzed in the large

L limit.
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Abstract

Due to the development of the Internet of Things (IoT), one frequently encounters

the scenarios where data collected at different sites need to be compressed and then

forwarded to a fusion center for joint processing. As such data are typically correlated

from one site to another, it is desirable to capitalize on the statistical dependencies

to improve the compression efficiency. The multiterminal source coding problem and

its variants aim to characterize the performance limits of this type of distributed

compression systems.

This thesis is divided into two major parts. The first part deals with so-called

remote multiterminal source coding, where L encoders compress their respective ob-

servations and send the compressed data to a central decoder for the joint recon-

struction of target signals. The fundamental limit of remote multiterminal source

coding is characterized by the rate-distortion function, which delineates the optimal

tradeoff between the compression rate and the reconstruction distortion. For simplic-

ity, it is assumed that the observed sources can be expressed as the sum of target

signals and corruptive noises which are independently generated from two symmetric

multivariate Gaussian distributions. For this special case, an explicit lower bound

on the rate-distortion function is established and is shown to match the well-known

Berger-Tung upper bound in some distortion regimes. The asymptotic gap between

iv



the upper and lower bounds is computed in the large L limit.

The second part considers the centralized encoding setting where the L sources

are jointly observed and compressed by a single encoder. The rate-distortion function

for this setting is completely characterized and is leveraged as a rate-distortion lower

bound for the symmetric remote Gaussian multiterminal source coding problem in

view of the fact that centralized encoding is more powerful than distributed encoding.

It is shown that this centralized-encoding lower bound is not as tight as the lower

bound established in the first part. The asymptotic analysis of this centralized-

encoding lower bound is also provided.
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Chapter 1

Introduction

1.1 Multiterminal Source Coding

The research on multiterminal source coding can be traced back to the seminal paper

by Slepian and Wolf [26]. They proved a counterintuitive result that distributed

compression of two correlated sources can be as efficient as joint compression in

terms of the minimum achievable sum rate. The problem of lossless source coding

with a helper was studied by Wyner [36] and Ahlswede and Korner [1] independently.

Kobayashi and Han [15] found a unified description of the rate region of a more

general class of multiterminal source coding systems, which subsumes the results

in [37, 1, 36, 24, 17] as special cases. Witsenhausen and Wyner [35] investigated

the property of a certain function arising from [36], which was later known as the

information bottleneck function. Their work together with [1] inspired the landmark

paper by Wyner and Ziv [37], which initiated the study of lossy compression in the

context of multiterminal source coding. Specifically, in [37], Wyner and Ziv considered

the problem of lossy source coding with side information only available at the decoder,

1
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which can be viewed as a generalization of the classical rate-distortion theory [25]

where side information is not available at all and should be distinguished from the case

[2] where side information is available at both the encoder and decoder. They provided

a complete characterization of the rate-distortion function for this problem, which

involves an auxiliary random variable with a certain Markov property. A concise

proof of this result can be found in the standard textbook on network information

theory by El Gamal and Kim [13]. The achievability part of the proof relies on the

idea of random binning originated in [26] and dcrystallized by Cover [10]. A direct

generalization of the Wyner-Ziv result to the two-terminal lossy source coding setting

was given by Berger [3] and Tung [27]. However, for that setting, they only established

an inner bound and an outer bound of the rate-distortion region. Characterizing

the exact rate-distortion region is a longstanding open problem. Berger et al. [5]

established an upper bound on the rate-distortion function for source coding with

partial side information at the decoder. Later Kapsi and Berger [16] considered a

general multiterminal source coding problem where the availability of partial side

information is optional. Berger and Yeung [4] tackled the problem of two-terminal

source coding with one of the sources required to be reconstructed perfectly. Using

the entropy power inequality, Oohama [19] solved the problem of quadratic Gaussian

source coding with a helper, which in turn provides a partial characterization of

the rate region of the quadratic Gaussian two-terminal source coding problem. This

result generalizes an intriguing observation made by Wyner and Ziv [38] that for the

quadratic Gaussian case, the rate-distortion function remains the same even if the

encoder has access to the decoder side information.

2
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1.2 The CEO Problem

Soon after the celebrated works of Slepian and Wolf [26] and Wyner and Ziv [37],

Berger [3] and Tung [27] launched the investigation of multiterminal lossy source

coding. They considered the case where the target sources are directly available

at the encoders. A variant of the Berger-Tung problem was studied by Flynn and

Gray [14], where the encoders can only observe noise corrupted versions of target

sources. We shall distinguish the above two classes of problems as direct and indirect

(or remote) multiterminal source coding problems, respectively. Note that the latter

problem is often referred to as the CEO problem [6, 28] when the noisy observations

at the encoders are conditionally independent given the target sources. The CEO

problem was first formulated in [6]. Its quadratic Gaussian version, first studied by

Viswanathan and Berger [28], has received particular attention. A major progress

on the quadratic Gaussian CEO problem was made by Oohama [20], who derived

an explicit expression of the rate-distortion function in the asymptotic regime where

the number of encoders tends to infinity. The rate-distortion region for this problem

was completely characterized by Prabhakaran et al. [23] and Oohama [21]. Their

success can be largely attributed to the use of Shannon’s entropy power inequality as

a bounding technique for establishing the converse coding theorem.

1.3 Remote Multiterminal Source Coding

As mentioned before, the direct multiterminal source coding problem was first studied

by Berger [3] and Tung [27], who established the best known achievable rate-distortion

3
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region, commonly known as the Berger-Tung inner bound. Later, the indirect mul-

titerminal source coding problem was investigated by Yamamoto and Itoh [40] and

Flynn and Gray [14]. Oohama [19] determined the rate region of a relaxed version

of the quadratic Gaussian two-terminal source coding problem, where the distortion

constraint is only imposed on one of the two sources. This result, together with the

Berger-Tung inner bound, yielded a partial characterization of the boundary of the

rate region of the original Gaussian two-terminal source coding problem. It remained

to show that the minimum sum rate of the Berger-Tung inner bound is tight for the

purpose of characterizing the whole rate region. This was accomplished by Wagner

et al. [29] via the construction of a composite lower bound. Specifically, they showed

that coupling the cooperative lower bound with the rate-distortion function of a suit-

ably defined Gaussian CEO problem yielded the desired converse. Wang et al. [32]

proposed a new method for determining the minimum sum rate of Gaussian two-

terminal source coding by exploiting the relationship between the semidefinite partial

order of the distortion covariance matrices associated with the MMSE estimation and

the optimal linear estimation. With this method, they further derived a general lower

bound on the sum rate of Gaussian multiterminal source coding and established a set

of sufficient conditions under which the lower bound is tight.

One key insight from the works by Wagner et al. [29] and Wang et al. [32] is that

one may create a conditional independence structure and exploit it in the converse

argument even if such a structure is not explicit in the problem formulation. This

suggests that it might be possible to go beyond the CEO problem to deal with more

general remote multiterminal source coding problems. In this thesis, we shall show

that this is indeed the case. In particular, we circumvent the technical difficulty

4
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(namely, a lack of conditional independence structures) caused by correlated noises

through a fictitious signal-noise decomposition and obtain some conclusive results

regarding the rate-distortion function of symmetric remote Gaussian multiterminal

source coding.

5
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Chapter 2

Symmetric Remote Gaussian

Multiterminal Source Coding

2.1 Abstract

A distributed lossy compression network with L encoders and a decoder is considered.

Each encoder observes a source and sends a compressed version to the decoder. The

decoder produces a joint reconstruction of target signals with the mean squared error

distortion below a given threshold. It is assumed that the observed sources can be

expressed as the sum of target signals and corruptive noises which are independently

generated from two symmetric multivariate Gaussian distributions. The minimum

compression rate of this network versus the distortion threshold is referred to as the

rate-distortion function, for which an explicit lower bound is established by solving a

convex program induced by a fictitious signal-noise decomposition. Our lower bound

matches the well-known Berger-Tung upper bound for some values of the distortion

threshold. The asymptotic gap between the upper and lower bounds is characterized

6
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in the large L limit.

2.2 Introduction

Recently, there has been an increase in the deployment of sensor applications in wire-

less networks as parts of the future Internet of Things (IoT), thanks to the decreasing

cost of sensors. One of the theoretical challenges that arises in these systems is to

reduce the amount of data that is transmitted in the network by processing it locally

at each sensor. A possible solution to this problem is to exploit the statistical depen-

dency among the data at different sensors to get an improved compression efficiency.

The multi-terminal source coding theory aims to develop suitable schemes for that

purpose and characterize the corresponding performance limits. There have been sig-

nificant amount of works over the past few decades in this area, e.g., Slepian-Wolf

source coding [26] for lossless compression, more recent works on Gaussian multi-

terminal source coding and its variants [19, 20, 23, 33, 8, 29, 32, 30, 31, 22, 9, 21].

An interesting regime that has received particular attention (see, e.g., [20]) is when

the number of encoders in the network approaches infinity. This asymptotic regime

reflects the typical scenarios in sensor fusion and is also relevant to some emerging

machine learning applications (esp., federated learning) that leverage distributed com-

pression to reduce the communication cost between the central server and a massive

number of edge devices for training a global model.

In the present chapter, we study a remote multiterminal source coding system with

L distributed encoders and a central decoder. Each encoder compresses its observed

source sequence and forwards the compressed version to the decoder. The decoder

is required to reconstruct the target signals with the mean squared error distortion

7
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below a given threshold. It is assumed that the observed sources can be expressed

as the sum of target signals and corruptive noises which are generated independently

according to two symmetric multivariate Gaussian distributions. We are interested in

characterizing the minimum required compression rate as a function of the distortion

threshold, which is known as the rate-distortion function. Our setup is different from

the Gaussian CEO problem [6] in two aspects. Firstly, the target signals are assumed

to form a vector process. Secondly, the noises across different encoders are allowed to

be correlated with each other. Notice that these two relaxations do not exist in the

original Gaussian CEO problem where the target signal is a scalar process and the

noises across different encoders are independent.

As a main contribution of this chapter, we establish an explicit lower bound on the

rate-distortion function of symmetric remote Gaussian multiterminal source coding

by solving a convex program induced by a fictitious signal-noise decomposition and

make a systematic comparison with the well-known Berger-Tung upper bound [13,

Thm 12.1]. It should be mentioned that the symmetry assumption adopted in our

setup is not critical for our analysis. It only helps us to present the rate-distortion

expressions in explicit forms. We also provide an asymptotic analysis of the upper

and lower bounds in the large L limit, extending Oohama’s celebrated result [20] for

the Gaussian CEO problem.

The rest of this chapter is organized as follows. The system model and some

preliminaries are presented in Chapter 2.3. The main results are stated in Chapter 2.4

while their proofs are given in Chapters 2.5.1, 2.5.2 and 2.5.3. Chapter 2.6 contains

some concluding remarks.

8
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2.3 System Model

Consider a multi-terminal source coding problem with L distributed encoders and a

centralized decoder. There are L sources (X1, . . . , XL) ∈ RL, which form a zero-mean

Gaussian vector. The encoders observe the noisy versions of these sources, denoted

by (Y1, . . . , YL) ∈ RL, which can be expressed as

Y` = X` + Z`, ` ∈ {1, . . . , L}, (2.3.1)

where (Z1, . . . , ZL) is a zero-mean Gaussian random vector independent of (X1, . . . , XL).

We define X := (X1, . . . , XL)T , Y := (Y1, . . . , YL)T , and Z := (Z1, . . . , ZL)T . The

distributions of X, Y and Z are determined by their covariance matrices ΣX , ΣY and

ΣZ , respectively.

The source vector X together with the noise vector Z and the corrupted ver-

sion Y generates an i.i.d. process {(Xi,Yi,Zi)}. Each encoder ` ∈ {1, . . . , L} as-

signs a message M` ∈ M` to its observed sequence Y n
` using an encoding function

φ
(n)
` : Rn → M` such that M` := φ

(n)
` (Y n

` ). Given (M1, . . . ,ML), the decoder pro-

duces a reconstruction (X̂n
1 , . . . , X̂

n
L) := g(n)(M1, . . . ,ML) using a decoding function

g(n) : M1 × . . .ML → RL×n.

Definition 1. A rate-distortion pair (R,D) is said to be achievable if for any ε > 0,

there exist encoding functions φ
(n)
` , ` ∈ {1, · · · , L}, and a decoding function g(n) such

that

1

n

L∑
`=1

log |M`| ≤ R + ε, (2.3.2)

9
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and

1

nL

L∑
`=1

n∑
i=1

E[(X`,i − X̂`,i)
2] ≤ D + ε. (2.3.3)

For every D, let R(D) denote the infimum of R such that (R,D) is achievable. We

shall refer to R(D) as the rate-distortion function.

2.3.1 Preliminaries

For a given L× L matrix

Γ :=


α β . . . β

β α . . . β
...

... . . .
...

β β . . . α

 , (2.3.4)

it follows by the eigenvalue decomposition that we can write

Γ = ΘΛΘT , (2.3.5)

where Θ is an arbitrary unitary matrix with the first column being 1√
L
1TL and

Λ := diag(L)(α + (L− 1)β, α− β, . . . , α− β).

10
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In this section, we assume that the covariance matrix Σ∗, ∗ ∈ {X, Y, Z}, can be

written as

Σ∗ :=


σ2
∗ ρ∗σ

2
∗ . . . ρ∗σ

2
∗

ρ∗σ
2
∗ σ2

∗ . . . ρ∗σ
2
∗

...
... . . .

...

ρ∗σ
2
∗ ρ∗σ

2
∗ . . . σ2

∗


, (2.3.6)

for some σ∗ and ρ∗. Therefore, we can write

Σ∗ = ΘΛ∗Θ
T , (2.3.7)

where

Λ∗ := diag(L)(λ∗, γ∗, . . . , γ∗) (2.3.8)

with

λ∗ : = (1 + (L− 1)ρ∗)σ
2
∗,

γ∗ : = (1− ρ∗)σ2
∗.

(2.3.9)

Note that it suffices to specify ΣX and ΣY since ΣY = ΣX + ΣZ (i.e., σ2
Y = σ2

X + σ2
Z

and ρY σ
2
Y = ρXσ

2
X +ρZσ

2
Z). It is also clear that λY = λX +λZ and γY = γX +γZ . To

ensure that the covariance matrices are positive semi-definite and the source vector X

is not deterministic, we assume σ2
X > 0, σ2

Z ≥ 0, ρX ∈ [− 1
L−1 , 1] and ρZ ∈ [− 1

L−1 , 1];

we further assume ΣY is positive definite, i.e., min(λY , γY ) > 0.

11
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2.4 Main Results

First, we review some results of [33]. The following theorem gives an upper bound

on the rate-distortion function R(D). Let

dmin :=
λXλZ
LλY

+
(L− 1)γXγZ

LγY
, (2.4.1)

and

R(D) :=
1

2
log

(
1 +

λY
λQ

)
+
L− 1

2
log

(
1 +

γY
λQ

)
, (2.4.2)

where λQ is a positive number satisfying

λX

(
1− λX

λY + λQ

)
+ (L− 1)γX

(
1− γX

γY + λQ

)
= LD. (2.4.3)

Theorem 1 (Upper bound of Thm 2 in [33]). For D ∈ (dmin, σ
2
X), we have

R(D) ≤ R(D). (2.4.4)

Proof of Theorem 1: See Appendix A.1.

Remark 1. It can be observed that R(D), given in (2.4.2), is expressed as the sum

of two terms. These two terms correspond to the compression rates required for the

larger eigenvalue λY and the smaller eigenvalue γY , respectively. The second term has

the coefficient L− 1, which is consistent with the fact that the eigenvalue γY appears

L − 1 times in the diagonal matrix ΛY . A similar observation can be made for the

distortion expression as given in (2.4.3).

12
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Next, we review a result of [33], which provides a lower bound on the rate-

distortion function R(D) in the form of a minimization program. Define

Ω(α, β, δ) : =
1

2
log

λ2Y
(λY − λW )α + λY λW

+
L− 1

2
log

γ2Y
(γY − λW )β + γY λW

+
L

2
log

λW
δ
,

(2.4.5)

where λW = min(λY , γY ). Let R(D) be the solution of the following optimization

problem:

R(D) := min
α,β,δ

Ω(α, β, δ), (2.4.6a)

s.t. 0 < α ≤ λY , (2.4.6b)

0 < β ≤ γY , (2.4.6c)

0 < δ, (2.4.6d)

δ ≤ (α−1 + λ−1W − λ
−1
Y )−1, (2.4.6e)

δ ≤ (β−1 + λ−1W − γ
−1
Y )−1, (2.4.6f)

λ2Xλ
−2
Y α + λX − λ2Xλ−1Y

+ (L− 1)(γ2Xγ
−2
Y β + γX − γ2Xγ−1Y ) ≤ LD.

(2.4.6g)

Theorem 2 (Lower bound of Thm 2 in [33]). For D ∈ (dmin, σ
2
X), we have

R(D) ≥ R(D). (2.4.7)

Proof of Theorem 2: See Appendix A.2.
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In the following, we derive the explicit solution of the above program. Define the

following rate-distortion expressions:

Rc(D) =

 R
c
1(D) if D ≤ Dc

th,

Rc
2(D) if D > Dc

th,
(2.4.8)

R̂c(D) :=

 R̂
c
1(D) if D ≤ D̂c

th,

R̂c
2(D) if D > D̂c

th,
(2.4.9)

where

Rc
1(D) :=

L+ 1

2
log(L+ 1)γ2Xγ

−1
Y

(
LD − λX − (L− 1)(γX − γ2Xγ−1Y )

+ λ2Xλ
−2
Y (λY + (γ−1Y − λ

−1
Y )−1)

)−1
+

1

2
log λ2Xγ

−2
X (λY γ

−1
Y − 1)−1 +

L

2
log

L− 1

L
,

(2.4.10)

R̂
c

1(D) :=
2L− 1

2
log(2L− 1)λ2Xλ

−1
Y

(
LD − λX − (L− 1)(γX − γ2Xγ−1Y )

+ λ2Xλ
−1
Y + (L− 1)γ2Xγ

−2
Y (λ−1Y − γ

−1
Y )−1

)−1
+
L− 1

2
log γ2Xλ

−2
X (γY λ

−1
Y − 1)−1 +

L

2
log

1

L
,

(2.4.11)

Rc
2(D) :=

L

2
log

(L− 1)γ2Xγ
−1
Y

LD − λX − (L− 1)(γX − γ2Xγ
−1
Y )

, (2.4.12)

R̂
c

2(D) :=
L

2
log

λ2Xλ
−1
Y

LD − λX − (L− 1)γX + λ2Xλ
−1
Y

, (2.4.13)
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and

Dc
th := λ2X(λY − γY )−1 +

1

L
((L− 1)γ2X(γ−1X − γ

−1
Y ) + λX), (2.4.14)

D̂c
th := γ2X(γY − λY )−1 +

1

L
((L− 1)γX + λ2X(λ−1X − λ

−1
Y )). (2.4.15)

Moreover, define the following parameters:

µ1 :=
1

2
− 1

2

√
1− 4L

L− 1
λ2Xλ

−2
Y γ−2X γ2Y , (2.4.16)

µ2 :=
1

2
+

1

2

√
1− 4L

L− 1
λ2Xλ

−2
Y γ−2X γ2Y , (2.4.17)

ν1 :=
1

2
− 1

2

√
1− 4Lγ2Xλ

2
Y λ
−2
X γ−2Y , (2.4.18)

ν2 :=
1

2
+

1

2

√
1− 4Lγ2Xλ

2
Y λ
−2
X γ−2Y , (2.4.19)

and

Dth,1 :=
1

L

(
λX + (L− 1)γX − λ2X(λY − γY )−1 + (L− 1)γ2X(λY − γY )−1

− µ2(L− 1)γ2Xγ
−1
Y (1− γY λ−1Y )−1 +

1

µ2

λ2Xλ
−1
Y (λY γ

−1
Y − 1)−1

)
,

(2.4.20)

Dth,2 :=
1

L

(
λX + (L− 1)γX − λ2X(λY − γY )−1 + (L− 1)γ2X(λY − γY )−1

− µ1(L− 1)γ2Xγ
−1
Y (1− γY λ−1Y )−1 +

1

µ1

λ2Xλ
−1
Y (λY γ

−1
Y − 1)−1

)
,

(2.4.21)
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D̂th,1 :=
1

L

(
λX + (L− 1)γX − λ2X(λY − γY )−1 + (L− 1)γ2X(λY − γY )−1

− 1

ν2
(L− 1)γ2Xγ

−1
Y (1− γY λ−1Y )−1 + ν2λ

2
Xλ
−1
Y (λY γ

−1
Y − 1)−1

)
,

(2.4.22)

D̂th,2 :=
1

L

(
λX + (L− 1)γX − λ2X(λY − γY )−1 + (L− 1)γ2X(λY − γY )−1

− 1

ν1
(L− 1)γ2Xγ

−1
Y (1− γY λ−1Y )−1 + ν1λ

2
Xλ
−1
Y (λY γ

−1
Y − 1)−1

)
.

(2.4.23)

Theorem 3 (Lower bound). The lower bound R(D) is completely characterized as

follows.

• λY ≥ γY :

1. If λ2Xγ
2
Y ≥ L−1

4L
γ2Xλ

2
Y or if λ2Xγ

2
Y < L−1

4L
γ2Xλ

2
Y and µ2 ≤ γY

λY
, then for

D ∈ (dmin, σ
2
X), we have

R(D) = R(D). (2.4.24)

2. If λ2Xγ
2
Y <

L−1
4L
γ2Xλ

2
Y , µ1 ≤ γY

λY
and γY

λY
< µ2 < 1 , then for D ∈ (dmin, σ

2
X),

we have

R(D) =

 R(D), D ≤ Dth,1,

Rc(D), D > Dth,1.
(2.4.25)

3. If λ2Xγ
2
Y < L−1

4L
γ2Xλ

2
Y , µ1 >

γY
λY

and µ2 < 1, then for D ∈ (dmin, σ
2
X), we
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have

R(D) =


R(D), D ≤ Dth,1,

Rc(D), Dth,1 < D < Dth,2,

R(D), D ≥ Dth,2.

(2.4.26)

4. If λ2Xγ
2
Y <

L−1
4L
γ2Xλ

2
Y , µ1 = 0 and µ2 = 1 (or equivalently, if λX = 0), then

for D ∈ (dmin, σ
2
X), we have

R(D) = Rc(D). (2.4.27)

• γY ≥ λY :

1. If γ2Xλ
2
Y ≥ 1

4L
λ2Xγ

2
Y or if γ2Xλ

2
Y < 1

4L
λ2Xγ

2
Y and ν2 ≤ λY

γY
, then for D ∈

(dmin, σ
2
X), we have

R(D) = R(D). (2.4.28)

2. If γ2Xλ
2
Y < 1

4L
λ2Xγ

2
Y , ν1 ≤ λY

γY
and λY

γY
< ν2 < 1, then for D ∈ (dmin, σ

2
X),

we have

R(D) =

 R(D), D ≤ D̂th,1,

R̂c(D), D > D̂th,1.
(2.4.29)

3. If γ2Xλ
2
Y <

1
4L
λ2Xγ

2
Y , ν1 >

λY
γY

and ν2 < 1, then for D ∈ (dmin, σ
2
X), we have

R(D) =


R(D), D ≤ D̂th,1,

R̂c(D), D̂th,1 < D < D̂th,2,

R(D), D ≥ D̂th,2.

(2.4.30)

4. If γ2Xλ
2
Y < 1

4L
λ2Xγ

2
Y , ν1 = 0 and ν2 = 1 (or equivalently, if γX = 0), then
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for D ∈ (dmin, σ
2
X), we have

R(D) = R̂c(D). (2.4.31)

Proof. See Chapter 2.5.1.

According to Theorem 3, under some conditions, the lower bound R(D) matches

the upper bound R(D). The gap between the lower and upper bounds will be inves-

tigated in the following example for some values of the parameters.

Example 1 : In this example, we compare the upper bound R(D) with the lower

bound R(D). We set L = 10. In Fig. 2.1a and Fig. 2.1b, we plot R(D) and R(D)

with D ∈ (dmin, σ
2
X) for the following three cases.

• Case 1: λX = 0.8, γX = 1, λY = 5, and γY = 4. In this case, we have

dmin = 0.7422 and σ2
X = 0.98. As can be seen from the figure, R(D) coincides

with R(D) for all D ∈ (dmin, σ
2
X), so R(D) is completely determined.

• Case 2: λX = 0.5, γX = 1, λY = 6, and γY = 3. In this case, we have dmin ≈

0.646, Dth,1 ≈ 0.691, Dc
th ≈ 0.733 and σ2

X = 0.95. As can be observed from both

figures, R(D) coincides with R(D) for D ∈ (dmin,Dth,1] and consequently R(D)

is determined over this interval (see the diamond-line portion of Fig. 2.1b).

For D ∈ (Dth,1,D
c
th], R(D) is characterized by Rc

1(D) (see the plus-line portion

of Fig. 2.1b). For D ∈ (Dc
th, σ

2
X), R(D) is characterized by Rc

2(D) (see the

cross-line portion of Fig. 2.1b).

• Case 3: λX = 1, γX = 0.45, λY = 12, and γY = 2.4. In this case, we have dmin =

0.4207, Dth,1 ≈ 0.453, Dth,2 ≈ 0.489 and σ2
X = 0.505. For D ∈ (dmin,Dth,1]
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Figure 2.1: (a) Upper bound R(D) with D ∈ (dmin, σ
2
X) for the three cases. (b)

Lower bound R(D) with D ∈ (dmin, σ
2
X) for the three cases. (c) ∆R(D) with

D ∈ (dmin, σ
2
X) for Case 2. (d) ∆R(D) with D ∈ (dmin, σ

2
X) for Case 3.

and D ∈ [Dth,2, σ
2
X), R(D) coincides with R(D) and consequently R(D) is

determined over these two intervals (see the cie-line portion of Fig. 2.1b). For

D ∈ (Dth,1,Dth,2), R(D) is characterized by Rc
1(D) (see the pentagonal-line

portion of Fig. 2.1b).

As can be observed from Fig. 2.1a and Fig. 2.1b, there exists a gap between R(D)

andR(D) in Cases 2 and 3. We plot this gap, denoted by ∆R(D), with D ∈ (dmin, σ
2
X)

for these two cases in Fig. 2.1c and Fig. 2.1d, respectively.

Now, we proceed to study the asymptotic behavior of the rate-distortion bounds

R(D) and R(D) when L tends to infinity. In the discussion below, it is necessary

to assume that ρX , ρZ ∈ [0, 1]. First, we perform the asymptotic analysis for R(D).
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Define

d∞min :=


σ2
Xσ

2
Z

σ2
X+σ2

Z
, ρXσ

2
X + ρZσ

2
Z = 0,

ρXρZσ
2
Xσ

2
Z

ρXσ
2
X+ρZσ

2
Z

+ γXγZγ
−1
Y , ρXσ

2
X + ρZσ

2
Z > 0,

(2.4.32)

D∞th,0 :=
ρXρZσ

2
Xσ

2
Z

ρXσ2
X + ρZσ2

Z

+ γX , (2.4.33)

ξ :=

(
ρX

1− ρX

)
·
(

1− ρY
ρY

)
, (2.4.34)

and

R∞(D) :=
L

2
log

σ4
X

(σ2
X + σ2

Z)D − σ2
Xσ

2
Z

, (2.4.35)

R∞1 (D) :=
L

2
log

γ2Xγ
−1
Y

D − d∞min

+
1

2
logL+

1

2
log

(ρXσ
2
X + ρZσ

2
Z)(D∞th,0 −D)

γ2X

+
(D∞th,0 − ξγ2Xγ−1Y −D)2

2(D∞th,0 −D)(D − d∞min)
+O

(
1

L

)
,

(2.4.36)

R∞2 (D) :=
1

2
ξ
√
L+

1

4
logL+

1

2
log(

ρX
1− ρX

)

− ξ(ρXγX − γZ + (1− ρ2X)σ2
Z)

4γX(ρ2Xσ
2
X + ρXρZσ2

Z)
+O

(
1√
L

)
,

(2.4.37)

R∞3 (D) :=
1

2
log

ρ2Xσ
4
X

(ρXσ2
X + ρZσ2

Z)(D − D∞th,0)
+

(1− ρY )(σ2
X −D)

2ρY (D − D∞th,0)
+O

(
1

L

)
. (2.4.38)
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Theorem 4 (Asymptotic Expression of Upper Bound). 1. If ρXσ
2
X + ρZσ

2
Z = 0,

then for D ∈ (d∞min, σ
2
X), we have

R(D) = R∞(D). (2.4.39)

2. If ρXσ
2
X + ρZσ

2
Z > 0, then for D ∈ (d∞min, σ

2
X), we have

R(D) =


R∞1 (D), D < D∞th,0,

R∞2 (D), D = D∞th,0,

R∞3 (D), D > D∞th,0.

(2.4.40)

Proof. See Chapter 2.5.2.

Next, we perform the asymptotic analysis for R(D). Define

D∞th,1 :=
ρXρZσ

2
Xσ

2
Z

ρXσ2
X + ρZσ2

Z

+ γX −
1 +

√
1− 4ξ2

2
γ2Xγ

−1
Y , (2.4.41)

D∞th,2 :=
ρXρZσ

2
Xσ

2
Z

ρXσ2
X + ρZσ2

Z

+ γX −
1−

√
1− 4ξ2

2
γ2Xγ

−1
Y , (2.4.42)

and

R∞1 (D) :=
L+ 1

2
log

γ2Xγ
−1
Y

D − d∞min

+
1

2
logL+

1

2

(1− 2ξ)γ2Xγ
−1
Y

D − d∞min

+
1

2
log

ρ2X(1− ρY )

(1− ρX)2ρY
+O

(
1

L

)
,

(2.4.43)

R∞2 (D) :=
L

2
log

σ4
X

γYD − σ2
XγZ

− 1

2

D − σ2
X

D − σ2
X + σ4

Xγ
−1
Y

+O

(
1

L

)
. (2.4.44)
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Theorem 5 (Asymptotic Expression of Lower Bound). 1. If ρXσ
2
X + ρZσ

2
Z = 0,

then for D ∈ (d∞min, σ
2
X), we have

R(D) = R∞(D). (2.4.45)

2. If ρXσ
2
X + ρZσ

2
Z > 0, ρX > 0 and ξ ≥ 1

2
, then for D ∈ (d∞min, σ

2
X), we have

R(D) =


R∞1 (D), D < D∞th,0,

R∞2 (D), D = D∞th,0,

R∞3 (D), D > D∞th,0.

(2.4.46)

3. If ρXσ
2
X + ρZσ

2
Z > 0, ρX > 0 and ξ < 1

2
, then for D ∈ (d∞min, σ

2
X), we have

R(D) =



R∞1 (D), D ≤ D∞th,1,

R∞1 (D), D∞th,1 < D < D∞th,2,

R∞1 (D), D∞th,2 ≤ D < D∞th,0,

R∞2 (D), D = D∞th,0,

R∞3 (D), D > D∞th,0.

(2.4.47)

4. If ρXσ
2
X + ρZσ

2
Z > 0 and ρX = 0, then for D ∈ (d∞min, σ

2
X), we have

R(D) = R∞2 (D). (2.4.48)

Proof. See Chapter 2.5.3.

The following corollary provides the (asymptotic) gap between R(D) and R(D).
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Figure 2.2: ∆∞R (D) with ρX = 0.3, σ2
X = 1, ρY = 0.5, σ2

Y = 5 and D ∈ (D∞th,1,D
∞
th,2),

where D∞th,1 ≈ 0.816 and D∞th,2 ≈ 0.917.

Define

∆
(∞)
R (D) :=

(D∞th,1 −D)(D∞th,2 −D)

2
(
D∞th,0 −D

)
(D − d∞min)

+
1

2
log

γ2Y
ξ2γ4X

(
D∞th,0 −D

)
(D − d∞min) . (2.4.49)

Corollary 1. The gap between R(D) and R(D) is given as follows.

1. If ρXσ
2
X + ρZσ

2
Z = 0, then for D ∈ (d∞min, σ

2
X), we have

R(D)−R(D) = 0. (2.4.50)

2. If ρXσ
2
X + ρZσ

2
Z > 0, ρX > 0 and ξ ≥ 1

2
, then for D ∈ (d∞min, σ

2
X), we have

R(D)−R(D) = 0. (2.4.51)

3. If ρXσ
2
X + ρZσ

2
Z > 0, ρX > 0 and ξ < 1

2
, then for D ∈ (d∞min, σ

2
X), we have

lim
L→∞

R(D)−R(D) =

 0, D ≤ D∞th,1 or D ≥ D∞th,2,

∆∞R (D), D∞th,1 < D < D∞th,2.
(2.4.52)
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4. If ρXσ
2
X + ρZσ

2
Z > 0 and ρX = 0, then for D ∈ (d∞min, σ

2
X), we have

R(D)−R(D) = O(logL). (2.4.53)

As can be seen from the above corollary, under the third condition, the lower and

upper bounds asymptotically match for all D except when D∞th,1 < D < D∞th,2. Fig. 2.2

plots the function ∆
(∞)
R (D), which characterizes the asymptotic gap between R(D)

and R(D) (as L tends to infinity) in the interval D∞th,1 < D < D∞th,2, for some values

of parameters.

2.5 Proof of Results

2.5.1 Proof of Theorem 3

Before starting the proof, we introduce another representation of R(D) (defined in

(2.4.2)–(2.4.3)) which will be repeatedly used in the sequel. Define

λ−1I := λ−1Y + λ−1Q , (2.5.1)

γ−1I := γ−1Y + λ−1Q . (2.5.2)

Corollary 2. R(D) can be alternatively expressed as

R(D) =
1

2
log(λ−1I λY ) +

L− 1

2
log
(
1 + γY (λ−1I − λ

−1
Y )
)
, (2.5.3)
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where

λ2Xλ
−2
Y λI + λX − λ2Xλ−1Y + (L− 1)(γ2Xγ

−2
Y (λ−1I + γ−1Y − λ

−1
Y )−1 + γX − γ2Xγ−1Y ) = LD,

or in the following form

R(D) =
1

2
log
(
1 + λY (γ−1I − γ

−1
Y )
)

+
L− 1

2
log(γ−1I γY ), (2.5.4)

where

λ2Xλ
−2
Y (γ−1I + λ−1Y − γ

−1
Y )−1 + λX − λ2Xλ−1Y + (L− 1)(γ2Xγ

−2
Y γI + γX − γ2Xγ−1Y ) = LD.

(2.5.5)

Now, consider the optimization problem in Theorem 2 as follows:

min
α,β,δ

Ω(α, β, δ), (2.5.6a)

s.t. constraints (2.4.6b)− (2.4.6g). (2.5.6b)

Based on the fact that λY ≥ γY or γY ≥ λY , we get two different cases.

First, consider the case λY ≥ γY > 0, where we have λW = γY . Thus, the

objective function reduces to

f(α, δ) :=
1

2
log

λ2Y
(λY − γY )α + λY γY

+
L

2
log

γY
δ
, (2.5.7)
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and the constraints (2.4.6b)-(2.4.6g) are simplified as follows:

0 < α ≤ λY , (2.5.8a)

0 < β ≤ γY , (2.5.8b)

0 < δ, (2.5.8c)

δ ≤ (α−1 + γ−1Y − λ
−1
Y )−1, (2.5.8d)

δ ≤ β, (2.5.8e)

λ2Xλ
−2
Y α + λX − λ2Xλ−1Y + (L− 1)(γ2Xγ

−2
Y β + γX − γ2Xγ−1Y ) ≤ LD. (2.5.8f)

Since the objective function does not depend on parameter β, we can eliminate β

from the constraints (2.5.8b), (2.5.8e) and (2.5.8f). Thus, we get the following new

constraints:

0 < α ≤ λY , (2.5.9a)

0 < δ, (2.5.9b)

δ ≤ (α−1 + γ−1Y − λ
−1
Y )−1, (2.5.9c)

δ ≤ γY , (2.5.9d)

λ2Xλ
−2
Y α + λX − λ2Xλ−1Y + (L− 1)(γ2Xγ

−2
Y δ + γX − γ2Xγ−1Y ) ≤ LD. (2.5.9e)

Given constraint (2.5.9a), the inequality (2.5.9c) is more restricting compared to
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(2.5.9d), so the above constraints reduce to

0 < α ≤ λY , (2.5.10a)

0 < δ ≤ (α−1 + γ−1Y − λ
−1
Y )−1, (2.5.10b)

λ2Xλ
−2
Y α + λX − λ2Xλ−1Y + (L− 1)(γ2Xγ

−2
Y δ + γX − γ2Xγ−1Y ) ≤ LD. (2.5.10c)

Then, the goal is to minimize f(α, δ) subject to the constraints (2.5.10), which is

a convex program. According to the KKT optimality conditions, there exist non-

negative Lagrange multipliers {ω1, ω2, ω3} and optimal solutions (α∗, δ∗) such that

γY − λY
2((λY − γY )α∗ + λY γY )

+ ω1 − ω2(1 + (γ−1Y − λ
−1
Y )α∗)−2 + ω3λ

2
Xλ
−2
Y = 0, (2.5.11a)

− L

2δ∗
+ ω2 + (L− 1)ω3γ

2
Xγ
−2
Y = 0, (2.5.11b)

ω1(α
∗ − λY ) = 0, (2.5.11c)

ω2(δ
∗ − ((α∗)−1 + γ−1Y − λ

−1
Y )−1) = 0, (2.5.11d)

ω3(λ
2
Xλ
−2
Y α∗ + λX − λ2Xλ−1Y + (L− 1)(γ2Xγ

−2
Y δ∗ + γX − γ2Xγ−1Y )− LD) = 0.

(2.5.11e)

In the following, we consider two different cases for the Lagrange multipliers.

Case 1 (ω2 > 0):
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In this case, the KKT conditions in (2.5.11) reduce to

γY − λY
2((λY − γY )α∗ + λY γY )

+ ω1 − ω2(1 + (γ−1Y − λ
−1
Y )α∗)−2 + ω3λ

2
Xλ
−2
Y = 0, (2.5.12a)

− L

2δ∗
+ ω2 + (L− 1)ω3γ

2
Xγ
−2
Y = 0, (2.5.12b)

ω1(α
∗ − λY ) = 0, (2.5.12c)

δ∗ − ((α∗)−1 + γ−1Y − λ
−1
Y )−1 = 0, (2.5.12d)

ω3(λ
2
Xλ
−2
Y α∗ + λX − λ2Xλ−1Y + (L− 1)(γ2Xγ

−2
Y δ∗ + γX − γ2Xγ−1Y )− LD) = 0.

(2.5.12e)

Assume that α∗ and δ∗ satisfy

λ2Xλ
−2
Y α∗ + λX − λ2Xλ−1Y + (L− 1)(γ2Xγ

−2
Y δ∗ + γX − γ2Xγ−1Y ) = LD. (2.5.13)

Solving the set of equations in (2.5.12) yields

ω1 = 0, (2.5.14a)

ω2 =
L

2δ∗
− (L− 1)ω3γ

2
Xγ
−2
Y , (2.5.14b)

ω3 =
L
2δ∗

(1 + (γ−1Y − λ
−1
Y )α∗)−2 + 1

2
(γ−1Y − λ

−1
Y )(1 + (γ−1Y − λ

−1
Y )α∗)−1

λ2Xλ
−2
Y + (L− 1)γ2Xγ

−2
Y (1 + (γ−1Y − λ

−1
Y )α∗)−2

. (2.5.14c)

Notice that ω3 ≥ 0 since λY ≥ γY . We should make sure that ω2 ≥ 0. This gives the

following inequality:

1

2L
(γ−1Y − λ

−1
Y )(1 + (γ−1Y − λ

−1
Y )α∗)−1 ≤ 1

2(L− 1)δ∗
λ2Xγ

−2
X λ−2Y γ2Y , (2.5.15)
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which can be equivalently written as

δ∗ ≤ L

L− 1
λ2Xγ

−2
X λ−2Y γ2Y

((
γ−1Y − λ

−1
Y

)−1
+ α∗

)
, (2.5.16)

combining the above inequality with (2.5.13), we can write

LD ≤ Lλ2X(λY −γY )−1+(L−1)γ2X(γ−1X −γ
−1
Y )+λX−(L+1)λ2Xλ

−1
Y +(L+1)α∗λ2Xλ

−2
Y .

(2.5.17)

Define

λI := α∗. (2.5.18)

Considering (2.5.16) with (2.5.12d) and re-arranging the terms yields the following

constraint:

(L− 1)γ2Xγ
−2
Y (λ−1I + γ−1Y − λ

−1
Y )−1 − LλIλ2Xλ−2Y ≤ Lλ2Xλ

−1
Y (λY γ

−1
Y − 1)−1. (2.5.19)

Re-arranging the terms in (2.5.17) and (2.5.13), we have

LD ≤ Lλ2Xλ
−1
Y (λY γ

−1
Y −1)−1 +(L−1)γ2X(γ−1X −γ

−1
Y )+λX−λ2Xλ−1Y +(L+1)λIλ

2
Xλ
−2
Y ,

(2.5.20)

LD = λX − λ2Xλ−1Y + (L− 1)(γ2Xγ
−2
Y (λ−1I + γ−1Y − λ

−1
Y )−1 + γX − γ2Xγ−1Y ) + λ2Xλ

−2
Y λI .

(2.5.21)
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Thus, we define the following set as the admissible distortion set:

D1(λI) :={D ∈ (dmin, σ
2
X) :

LD ≤ Lλ2Xλ
−1
Y (λY γ

−1
Y − 1)−1 + (L− 1)γ2X(γ−1X − γ

−1
Y )

+ λX − λ2Xλ−1Y + (L+ 1)λIλ
2
Xλ
−2
Y ,

LD = λX − λ2Xλ−1Y + (L− 1)(γ2Xγ
−2
Y (λ−1I + γ−1Y − λ

−1
Y )−1

+ γX − γ2Xγ−1Y ) + λ2Xλ
−2
Y λI}.

(2.5.22)

Plugging (2.5.12d) into (2.5.7) and considering (2.5.13) yields the rate-distortion ex-

pression R(D) defined in (2.5.3) subject to constraint (2.5.4).

Case 2 (ω2 = 0):

In this case, the KKT conditions in (2.5.11) reduce to

ω1 =
λY − γY

2((λY − γY )α∗ + λY γY )
− ω3λ

2
Xλ
−2
Y , (2.5.23a)

ω3 =
L

2δ∗(L− 1)
γ2Y γ

−2
X , (2.5.23b)

ω1(α
∗ − λY ) = 0, (2.5.23c)

λ2Xλ
−2
Y α∗ + λX − λ2Xλ−1Y + (L− 1)(γ2Xγ

−2
Y δ∗ + γX − γ2Xγ−1Y )− LD = 0. (2.5.23d)

To solve the above set of equations, we consider two different subcases: ω1 > 0 and

ω1 = 0.

Subcase a (ω1 = 0):
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Solving the set of equations in (2.5.23) with ω1 = 0 yields

α∗ =
1

2ω3

λ−2X λ2Y − (γ−1Y − λ
−1
Y )−1, (2.5.24a)

δ∗ =
L

2(L− 1)ω3

γ2Y γ
−2
X , (2.5.24b)

ω3 =
L+ 1

2
· 1

LD − λX − (L− 1)(γX − γ2Xγ
−1
Y ) + λ2Xλ

−2
Y (λY + (γ−1Y − λ

−1
Y )−1)

.

(2.5.24c)

Recalling the definition of λI in (2.5.18), considering (2.5.24a) with (2.5.24c) and

re-arranging the terms, we get the following equation:

LD = Lλ2Xλ
−1
Y (λY γ

−1
Y −1)−1 +(L−1)γ2X(γ−1X −γ

−1
Y )+λX−λ2Xλ−1Y +(L+1)λIλ

2
Xλ
−2
Y .

(2.5.25)

Notice that (2.5.11d) with ω2 = 0 implies that

δ∗ < ((α∗)−1 + γ−1Y − λ
−1
Y )−1. (2.5.26)

Moreover, (2.5.24a) with the fact that α∗ < λY gives

ω3 >
1

2
λ−2X (λY − γY ), (2.5.27)

which together with (2.5.24c) yields the following constraint on D:

LD < Lλ2X(λY − γY )−1 + (L− 1)γ2X(γ−1X − γ
−1
Y ) + λX . (2.5.28)

Plugging (2.5.24a) and (2.5.24b) into (2.5.26) and re-arranging the terms give the
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following condition:

Lλ2Xλ
−1
Y (λY γ

−1
Y − 1)−1 < (L− 1)γ2Xγ

−2
Y (λ−1I + γ−1Y − λ

−1
Y )−1 − LλIλ2Xλ−2Y , (2.5.29)

combining (2.5.29) with (2.5.25) yields

LD < λX − λ2Xλ−1Y + (L− 1)(γ2Xγ
−2
Y (λ−1I + γ−1Y − λ

−1
Y )−1 + γX − γ2Xγ−1Y ) + λ2Xλ

−2
Y λI .

(2.5.30)

The conditions (2.5.25) and (2.5.30) define the following distortion set:

Dc1(λI) :={D ∈ (dmin, σ
2
X) :

LD = Lλ2Xλ
−1
Y (λY γ

−1
Y − 1)−1 + (L− 1)γ2X(γ−1X − γ

−1
Y )

+ λX − λ2Xλ−1Y + (L+ 1)λIλ
2
Xλ
−2
Y ,

LD < λX − λ2Xλ−1Y + (L− 1)(γ2Xγ
−2
Y (λ−1I + γ−1Y − λ

−1
Y )−1

+ γX − γ2Xγ−1Y ) + λ2Xλ
−2
Y λI}.

(2.5.31)

In summary, for this subcase, D ∈ Dc1(λI) while the constraint (2.5.28) holds.

Plugging (2.5.24a)–(2.5.24c) into (2.5.7) gives the rate-distortion expression Rc
1(D)

defined in (2.4.10).

Subcase b (ω1 > 0):
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Here, we get the following solution to (2.5.23):

α∗ = λY , (2.5.32a)

δ∗ =
L

2(L− 1)ω3

γ2Y γ
−2
X , (2.5.32b)

ω1 =
λ−1Y − γY λ

−2
Y

2
− ω3λ

2
Xλ
−2
Y , (2.5.32c)

ω3 =
L

2(LD − λX − (L− 1)(γX − γ2Xγ
−1
Y ))

. (2.5.32d)

Considering the fact that ω1 ≥ 0 yields the following constraint:

ω3 ≤
1

2
λ−2X (λY − γY ). (2.5.33)

Combining the above inequality with (2.5.32d), we get

LD ≥ Lλ2X(λY − γY )−1 + (L− 1)γ2X(γ−1X − γ
−1
Y ) + λX . (2.5.34)

With a similar reason to the previous subcase (by considering distortion constraints

(2.5.25) and (2.5.30)), we also know that D ∈ Dc1(λI). In summary, for this sub-

case, the distortion set is restricted to Dc1(λI) while constraint (2.5.34) holds. Plug-

ging (2.5.32a) and (2.5.32b) into (2.5.7) while considering (2.5.32d) gives the rate-

distortion expression Rc
2(D) defined in (2.4.12).

To sum up all of the above cases, we have

R(D) =

 R(D), D ∈ D1(λI),

Rc(D), D ∈ Dc1(λI),
(2.5.35)
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where Rc(D) is defined in (2.4.8).

Next, consider the case γY ≥ λY > 0, where we have λW = λY . Thus, the

objective function (2.4.5) reduces to

f(β, δ) :=
L− 1

2
log

γ2Y
(γY − λY )β + λY γY

+
L

2
log

λY
δ
, (2.5.36)

subject to the following constraints:

0 < β ≤ γY , (2.5.37a)

0 < δ ≤ (β−1 + λ−1Y − γ
−1
Y )−1, (2.5.37b)

λ2Xλ
−2
Y δ + λX − λ2Xλ−1Y + (L− 1)(γ2Xγ

−2
Y β + γX − γ2Xγ−1Y ) ≤ LD. (2.5.37c)

Then, the goal is to minimize f(β, δ) subject to the constraints (2.5.36).

According to the KKT optimality conditions, there exist nonnegative Lagrange

multipliers {ω̂1, ω̂2, ω̂3} and optimal solutions (β∗, δ∗) such that

(L− 1)(λY − γY )

2((γY − λY )β∗ + λY γY )
+ ω̂1 − ω̂2(1 + (λ−1Y − γ

−1
Y )β∗)−2 + ω̂3(L− 1)γ2Xγ

−2
Y = 0,

(2.5.38a)

− L

2δ∗
+ ω̂2 + ω̂3λ

2
Xλ
−2
Y = 0, (2.5.38b)

ω̂1(β
∗ − γY ) = 0, (2.5.38c)

ω̂2(δ
∗ − ((β∗)−1 + λ−1Y − γ

−1
Y )−1) = 0, (2.5.38d)

ω̂3(λ
2
Xλ
−2
Y δ∗ + λX − λ2Xλ−1Y + (L− 1)(γ2Xγ

−2
Y β∗ + γX − γ2Xγ−1Y )− LD) = 0.

(2.5.38e)

In the following, we also consider two different cases for the Lagrange multipliers.
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Case 1 (ω̂2 > 0):

In this case, the KKT conditions in (2.5.38) reduce to the following:

(L− 1)(λY − γY )

2((γY − λY )β∗ + λY γY )
+ ω̂1 − ω̂2(1 + (λ−1Y − γ

−1
Y )β∗)−2 + ω̂3(L− 1)γ2Xγ

−2
Y = 0,

(2.5.39a)

− L

2δ∗
+ ω̂2 + ω̂3λ

2
Xλ
−2
Y = 0, (2.5.39b)

ω̂1(β
∗ − γY ) = 0, (2.5.39c)

δ∗ − ((β∗)−1 + λ−1Y − γ
−1
Y )−1 = 0, (2.5.39d)

ω̂3(λ
2
Xλ
−2
Y δ∗ + λX − λ2Xλ−1Y + (L− 1)(γ2Xγ

−2
Y β∗ + γX − γ2Xγ−1Y )− LD) = 0.

(2.5.39e)

Consider the case where β∗ and δ∗ satisfy the following:

λ2Xλ
−2
Y δ∗ + λX − λ2Xλ−1Y + (L− 1)(γ2Xγ

−2
Y β∗ + γX − γ2Xγ−1Y ) = LD. (2.5.40)

Solving the set of equations in (2.5.39) yields the following.

ω̂1 = 0, (2.5.41a)

ω̂2 =
L

2δ∗
− ω̂3λ

2
Xλ
−2
Y , (2.5.41b)

ω̂3 =
L
2δ∗

(1 + (λ−1Y − γ
−1
Y )β∗)−2 + L−1

2
(λ−1Y − γ

−1
Y )(1 + (λ−1Y − γ

−1
Y )β∗)−1

(L− 1)γ2Xγ
−2
Y + λ2Xλ

−2
Y (1 + (λ−1Y − γ

−1
Y )β∗)−2

. (2.5.41c)

Notice that ω̂3 ≥ 0 since λY ≤ γY . We should make sure that ω̂2 ≥ 0. This gives the

following inequality:

1

2
(λ−1Y − γ

−1
Y )(1 + (λ−1Y − γ

−1
Y )β∗)−1 ≤ L

2δ∗
λ−2X γ2Xλ

2
Y γ
−2
Y , (2.5.42)
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which can be equivalently written as

δ∗ ≤ Lλ−2X γ2Xλ
2
Y γ
−2
Y

((
λ−1Y − γ

−1
Y

)−1
+ β∗

)
(2.5.43)

Combining the above inequality with (2.5.40), we can write:

LD ≤ Lγ2X(γY−λY )−1+(L−1)γ2X(γ−1X −γ
−1
Y )+λX−λ2Xλ−1Y −Lγ

2
Xγ
−1
Y +(2L−1)β∗γ2Xγ

−2
Y .

Case 2 (ω̂2 = 0):

In this case, the KKT conditions in (2.5.38) reduce to the following:

ω̂1 =
(L− 1)(γY − λY )

2((γY − λY )β∗ + λY γY )
− ω̂3(L− 1)γ2Xγ

−2
Y , (2.5.44a)

ω̂3 =
L

2δ∗
λ2Y λ

−2
X , (2.5.44b)

ω̂1(β
∗ − γY ) = 0, (2.5.44c)

λ2Xλ
−2
Y δ∗ + λX − λ2Xλ−1Y + (L− 1)(γ2Xγ

−2
Y β∗ + γX − γ2Xγ−1Y )− LD = 0. (2.5.44d)

To solve the above set of equations, we consider two different subcases ω̂1 > 0 and

ω̂1 = 0 in the following.

Subcase a (ω̂1 > 0):
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Here, we get the following solution to (2.5.44):

β∗ = γY , (2.5.45a)

δ∗ =
L

2ω̂3

λ2Y λ
−2
X , (2.5.45b)

ω̂1 =
(L− 1)(γ−1Y − λY γ

−2
Y )

2
− ω̂3(L− 1)γ2Xγ

−2
Y , (2.5.45c)

ω̂3 =
L

2(LD − λX + λ2Xλ
−1
Y − (L− 1)γX)

. (2.5.45d)

Consider the fact that ω̂1 ≥ 0 which yields the following constraint

ω̂3 ≤
1

2
γ−2X (γY − λY ). (2.5.46)

Plugging (2.5.45a) and (2.5.45b) into (2.5.7) and considering inequality (2.5.46) yields

the RHS of equation (2.4.29). Equality (2.5.45d) together with (2.5.46) yields the

following:

Lγ2X(γY − λY )−1 + (L− 1)γX − λ2Xλ−1Y + λX ≤ LD. (2.5.47)

Subcase b (ω̂1 = 0):

Solving the set of equations in (2.5.44) with ω̂1 = 0 yields the following:

β∗ =
1

2ω̂3

γ−2X γ2Y − (λ−1Y − γ
−1
Y )−1, (2.5.48a)

δ∗ =
L

2ω̂3

λ2Y λ
−2
X , (2.5.48b)

ω̂3 =
2L− 1

2
(2.5.48c)

· 1

LD − λX − (L− 1)(γX − γ2Xγ
−1
Y ) + λ2Xλ

−1
Y + (L− 1)γ2Xγ

−2
Y (λ−1Y − γ

−1
Y )−1

.

(2.5.48d)
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Considering the fact that γY ≥ β∗ > 0, we get the following constraint:

1

2
γ−2X γ2Y (λ−1Y − γ

−1
Y ) ≥ ω̂3 ≥

1

2
γ−2X γ2Y ((λ−1Y − γ

−1
Y )−1 + γY )−1. (2.5.49)

Plugging (2.5.48a)–(2.5.48d) into (2.5.36) yields the rate-distortion function in (2.4.31).

The equality (2.5.48d) together with the condition (2.5.49) leads to the following con-

straint on distortion:

Lγ2X(γY − λY )−1 + (L− 1)γX − λ2Xλ−1Y + λX − (2L− 1)γ2Xγ
−1
Y ≤ LD ≤

Lγ2X(γY − λY )−1 + (L− 1)γ2X(γ−1X − γ
−1
Y ) + λX − λ2Xλ−1Y + (L− 1)γ2Xγ

−1
Y .

(2.5.50)

the expression can be simplified as

λ2Xλ
−2
Y (γ−1I + λ−1Y − γ

−1
Y )−1 − LγIγ2Xγ−2Y ≤ Lγ2Xγ

−1
Y (γY λ

−1
Y − 1)−1, (2.5.51)

the admissible distortion set is given by

D2(γI) := {D ∈ (dmin, σ
2
X) :

LD ≤ Lγ2Xγ
−1
Y (γY λ

−1
Y − 1)−1 + (L− 1)γ2X(γ−1X − γ

−1
Y )

+ λX − λ2Xλ−1Y + (2L− 1)γIγ
2
Xγ
−2
Y ,

LD = λX − λ2Xλ−1Y + (L− 1)(γ2Xγ
−2
Y γI + γX − γ2Xγ−1Y )

+ λ2Xλ
−2
Y (γ−1I + λ−1Y − γ

−1
Y )−1},

(2.5.52)

where we have R(D) = R(D). Moreover, under the condition

λ2Xλ
−2
Y (γ−1I + λ−1Y − γ

−1
Y )−1 − LγIγ2Xγ−2Y > Lγ2Xγ

−1
Y (γY λ

−1
Y − 1)−1, (2.5.53)
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the admissible distortion set is given by

Dc2(γI) := {D ∈ (dmin, σ
2
X) :

LD = Lγ2Xγ
−1
Y (γY λ

−1
Y − 1)−1 + (L− 1)γ2X(γ−1X − γ

−1
Y )

+ λX − λ2Xλ−1Y + (2L− 1)γIγ
2
Xγ
−2
Y ,

LD < λX − λ2Xλ−1Y + (L− 1)(γ2Xγ
−2
Y γI + γX − γ2Xγ−1Y )

+ λ2Xλ
−2
Y (γ−1I + λ−1Y − γ

−1
Y )−1},

(2.5.54)

where the lower bound takes the expression Rc(D) defined in (2.4.9). Thus, the case

of γY ≥ λY can be summarized as follows:

R(D) =

 R(D), D ∈ D2(γI),

R̂c(D), D ∈ Dc2(γI).
(2.5.55)

After characterizing the lower bound under two complement sets for each of the cases

λY ≥ γY and γY ≥ λY , it just remains to explicitly determine the sets D1(λI) and

D2(γI). According to the definition of the set D1(λI) in (2.5.22), the two conditions

inside the set can be recast as the non-negativity condition for a certain expression.

So, the proof is continued by investigating the sign of this expression over different

intervals. Similar analyses can be done for D2(γI) as well. Such steps have been taken
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in [33, Remark 3] and the result is summarized in the following.

D1(λI) =



{D ∈ (dmin, σ
2
X)} if λ2Xγ

−2
X γ2Y λ

−2
Y ≥ L−1

4L
,

{D ∈ (dmin, σ
2
X)} if λ2Xγ

−2
X γ2Y λ

−2
Y < L−1

4L
and µ2 ≤ γY

λY
,

{D ∈ (dmin,Dth,1)} if λ2Xγ
−2
X γ2Y λ

−2
Y < L−1

4L
, µ1 ≤ γY

λY
and γY

λY
< µ2 < 1,

{D ∈ (dmin,Dth,1) ∪ (Dth,2, σ
2
X)} if λ2Xγ

−2
X γ2Y λ

−2
Y < L−1

4L
, µ1 >

γY
λY

and µ2 < 1,

∅ if λ2Xγ
−2
X γ2Y λ

−2
Y < L−1

4L
, µ1 = 0 and µ2 = 1,

(2.5.56)

and

D2(γI) =



{D ∈ (dmin, σ
2
X)} if γ2Xλ

−2
X λ2Y γ

−2
Y ≥ 1

4L
,

{D ∈ (dmin, σ
2
X)} if γ2Xλ

−2
X λ2Y γ

−2
Y < 1

4L
and ν2 ≤ λY

γY
,

{D ∈ (dmin, D̂th,1)} if γ2Xλ
−2
X λ2Y γ

−2
Y < 1

4L
, ν1 ≤ λY

γY
and λY

γY
< ν2 < 1,

{D ∈ (dmin, D̂th,1) ∪ (D̂th,2, σ
2
X)} if γ2Xλ

−2
X λ2Y γ

−2
Y < 1

4L
, ν1 >

λY
γY

and ν2 < 1,

∅ if γ2Xλ
−2
X λ2Y γ

−2
Y < 1

4L
, ν1 = 0 and ν2 = 1.

(2.5.57)

This completes the proof.

2.5.2 Proof of Theorem 4

First, notice that the distortion constraint in (2.4.3) can be written as

(λX + (L− 1)γX − LD)λ2Q + (φ1γY + (L− 1)φ2λY − φ3(γY + λY ))λQ − φ3λY γY = 0,

(2.5.58)
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where φ1 := λ2Xλ
−1
Y , φ2 := γ2Xγ

−1
Y and φ3 := LD+φ1 + (L− 1)φ2− (λX + (L− 1)γX).

The equation in (2.5.58) can be equivalently written as

aλ2Q + bλQ + c = 0, (2.5.59)

where a := (σ2
X −D)L, b := g1L

2 + g2L and c := h1L
2 + h2L and

g1 :=ρXρZσ
2
Xσ

2
Z + (ρXσ

2
X + ρZσ

2
Z)(γX −D), (2.5.60a)

g2 :=σ2
X(γZ + γY )− ρXσ2

XγX − 2γYD, (2.5.60b)

h1 :=ρXρZσ
2
Xσ

2
ZγY + (ρXσ

2
X + ρZσ

2
Z)(γXγZ − γYD)

=γY (ρXσ
2
X + ρZσ

2
Z)(d∞min −D), (2.5.60c)

h2 :=ρXσ
2
Xγ

2
Z + ρZσ

2
Zγ

2
X + γXγZγY − γ2YD. (2.5.60d)

We consider three different cases based on the value of g1.

41

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – S. Zhou; McMaster University – Electrical and Computer Engineering

Case1 (g1 > 0): In this case, we have

λQ =
−b+

√
b2 − 4ac

2a
(2.5.61a)

=
−b+ b

√
1− 4ac

b2

2a
(2.5.61b)

=
−b+ b(1− 2ac

b2
− 2a2c2

b4
+O( 1

L3 ))

2a
(2.5.61c)

=− c

b
− ac2

b3
+O

(
1

L2

)
(2.5.61d)

=− h1L+ h2
g1L+ g2

− (σ2
X −D)(h1L+ h2)

2

(g1L+ g2)3
+O

(
1

L2

)
(2.5.61e)

=− h1L+ h2
g1L

(
1− g2

g1L
+O(

1

L2
)

)
− (σ2

X −D)h21
g31L

+O

(
1

L2

)
(2.5.61f)

=− h1
g1
−
(
h2
g1
− g2h1

g21
+

(σ2
X −D)h21
g31

)
1

L
+O

(
1

L2

)
(2.5.61g)

=η1 +
η2
L

+O

(
1

L2

)
, (2.5.61h)

where (2.5.61c) follows because
√

1 + x = 1 + 1
2
x− 1

8
x2 +O(x3) and (2.5.61f) follows
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because 1
1+x

= 1− x+O(x2). Now, plugging the above into (2.4.2) yields

1

2
log

λY + λQ
λQ

+
L− 1

2
log

γY + λQ
λQ

(2.5.62a)

=
1

2
log

λY + η1 + η2

L
+O( 1

L2 )

η1 + η2

L
+O( 1

L2 )

+
L− 1

2
log

γY + η1 + η2

L
+O( 1

L2 )

η1 + η2

L
+O( 1

L2 )
(2.5.62b)

=
1

2
log

(1 + (L− 1)ρY )σ2
Y + η1 + η2

L
+O( 1

L2 )

η1 + η2

L
+O( 1

L2 )

+
L− 1

2
log

γY + η1 + η2

L
+O( 1

L2 )

η1 + η2

L
+O( 1

L2 )
(2.5.62c)

=
1

2
log

(
LρY σ

2
Y

η1
+O(1)

)
+
L− 1

2
log

((
γY + η1
η1

+
η2
Lη1

+O

(
1

L2

))(
1− η2

Lη1
+O

(
1

L2

)))
(2.5.62d)

=
1

2
log

(
LρY σ

2
Y

η1
+O(1)

)
+
L− 1

2
log

(
γY + η1
η1

− η2γY
Lη21

+O

(
1

L2

))
(2.5.62e)

=
1

2
logL+

1

2
log

ρY σ
2
Y

η1 + γY
+
L

2
log

η1 + γY
η1

− η2γY
2η1(η1 + γY )

+O

(
1

L

)
(2.5.62f)

=
1

2
logL+

1

2
log

ρXσ
2
X + ρZσ

2
Z

η1 + γY
+
L

2
log

η1 + γY
η1

− η2γY
2η1(η1 + γY )

+O

(
1

L

)
,

(2.5.62g)

where (2.5.62d) follows because 1
1+x

= 1 − x + O(x2) and (2.5.62f) follows because

log(1 + x) = x + O(x2). With some straightforward calculations, we can show that
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each term of the above expression can be written as follows:

1

2
log

ρXσ
2
X + ρZσ

2
Z

η1 + γY
=

1

2
log

ρXρZσ
2
Xσ

2
Z + (ρXσ

2
X + ρZσ

2
Z)(γX −D)

γ2X
, (2.5.63a)

L

2
log

η1 + γY
η1

=
L

2
log

(ρXσ
2
X + ρZσ

2
Z)γ2X

(ρXσ2
X + ρZσ2

Z)(γYD − γXγZ)− ρXρZγY σ2
Xσ

2
Z

, (2.5.63b)

− γY η2
2η1(η1 + γY )

=
γY (σ2

XρZσ
2
Z − (ρXσ

2
X + ρZσ

2
Z)D)2

2(ρXρZσ2
Xσ

2
Z + (ρXσ2

X + ρZσ2
Z)(γX −D))(ρXσ2

X + ρZσ2
Z)γY (D − d∞min)

=
γY (σ2

XρZσ
2
Z − (ρXσ

2
X + ρZσ

2
Z)D)2

2(ρXρZσ2
Xσ

2
Z + (ρXσ2

X + ρZσ2
Z)(γX −D))((ρXσ2

X + ρZσ2
Z)(γYD − γXγZ)− ρXρZγY σ2

Xσ
2
Z)
.

(2.5.63c)

Moreover, notice that g1 > 0 and D > d∞min implies ρXσ
2
X + ρZσ

2
Z > 0 and η1 > 0

from (2.5.60b) and (2.5.60d). Considering these conditions, (2.5.62g)–(2.5.63) and

simplifying the terms, we get the first clause of (2.4.40).

Case 2 (g1 = 0): We consider two different subcases.

Subcase 1 (ρXσ
2
X + ρZσ

2
Z = 0): The distortion constraint in (2.4.3) simplifies to

Lσ2
X −

Lσ4
X

σ2
X + σ2

Z + λQ
= LD, (2.5.64)

or equivalently,

λQ =
σ4
X

σ2
X −D

− σ2
X − σ2

Z . (2.5.65)

Plugging the above solution in (2.4.2), we get the rate-distortion expression in (2.4.39).
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Subcase 2 (ρXσ
2
X + ρZσ

2
Z > 0): In this case, we have

λQ =
−g2L+ g2L

√
1− 4

(σ2
X−D)(h1L+h2)

g2
2

2L(σ2
X −D)

(2.5.66a)

=
−g2L+ L

3
2

√
−4(σ2

X −D)h1

√
1 +

g2
2−4(σ2

X−D)h2

−4(σ2
X−D)h1L

2L(σ2
X −D)

(2.5.66b)

=
−g2L+ L

3
2

√
−4(σ2

X −D)h1(1−
g2
2−4(σ2

X−D)h2

8(σ2
X−D)h1L

+O( 1
L2 ))

2L(σ2
X −D)

(2.5.66c)

=

√
− h1L

σ2
X −D

− g2
2(σ2

X −D)
+

g22 − 4(σ2
X −D)h2

8
√
−(σ2

X −D)3h1L
+O(

1

L
3
2

) (2.5.66d)

=α1

√
L+ α2 +O(

1√
L

). (2.5.66e)

Moreover, the condition ρXσ
2
X + ρZσ

2
Z > 0 together with σ2

X > D > d∞min and g1 = 0

implies ρX > 0, γX > 0 and α1 > 0. Then, we get the following:

D =
ρXρZσ

2
Xσ

2
Z

ρXσ2
X + ρZσ2

Z

+ γY , (2.5.67a)

σ2
X−D =

ρ2Xσ
4
X

ρXσ2
X + ρZσ2

Z

, (2.5.67b)

h1 =− (ρXσ
2
X + ρZσ

2
Z)γ2X , (2.5.67c)

g2 =
−ρZγXσ2

Xσ
2
Z − ρXγXγY σ2

X + ρ2Xσ
4
XγZ + ρXγZσ

4
X − ρXρZγXσ2

Xσ
2
Z

ρXσ2
X + ρZσ2

Z

, (2.5.67d)

α1 =
(ρXσ

2
X + ρXσ

2
Z)γX

ρXσ2
X

, , (2.5.67e)

α2 =
ρZγXσ

2
Xσ

2
Z + ρXγXγY σ

2
X − ρ2Xσ4

XγZ − ρXγZσ4
X + ρXρZγXσ

2
Xσ

2
Z

2ρ2Xσ
4
X

. (2.5.67f)

Now, we simplify each term of the rate in (2.4.2). Consider the first term of (2.4.2)
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as follows:

1

2
log

λY + λQ
λQ

=
1

2
log

λY
λQ

+
1

2
log

λY + λQ
λY

(2.5.68a)

=
1

2
log

L(ρXσ
2
X + ρZσ

2
Z) + γY

α1

√
L+O (1)

+
1

2
log

λY + λQ
λY

(2.5.68b)

=
1

2
log

L(ρXσ
2
X + ρZσ

2
Z) + γY

α1

√
L+O (1)

+O

(
1√
L

)
(2.5.68c)

=
1

4
logL+

1

2
log

ρXσ
2
X + ρZσ

2
Z

α1

+O

(
1√
L

)
(2.5.68d)

=
1

4
logL+

1

2
log ρXγ

−1
X σ2

X +O

(
1√
L

)
, (2.5.68e)

where (2.5.68b) follows from the definition of λY in (2.3.9) and the definition of λQ

in (2.5.66e), (2.5.68c) follows because
λQ
λY

= O( 1√
L

) and log(1 + x) = O(x), (2.5.68e)

follows from the definition of α1 in (2.5.67e).
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The second term of (2.4.2) can be simplified as follows:

L− 1

2
log

γY + λQ
λQ

(2.5.69a)

=
L− 1

2
log(1 +

γY
λQ

) (2.5.69b)

=
L− 1

2

(
γY
λQ
− γ2Y

2λ2Q
+O

(
1

L
3
2

))
(2.5.69c)

=
L− 1

2

(
γY

α1

√
L+ α2 +O( 1√

L
)
− γ2Y

2(α1

√
L+O(1))2

+O

(
1

L
3
2

))
(2.5.69d)

=
L− 1

2

( γY

α1

√
L

(
1− α2

α1

√
L

+O

(
1

L

))
− γ2Y

2α2
1L

(
1 +O

(
1√
L

))
+O

(
1

L
3
2

))
(2.5.69e)

=
γY
√
L

2α1

− γY (γY + 2α2)

4α2
1

+O

(
1√
L

)
(2.5.69f)

=
ρXγY σ

2
X

√
L

2γX(ρXσ2
X + ρZσ2

Z)
− γY (ρXσ

4
X(γX − ρXγZ) + (1 + ρX)ρZσ

2
Xσ

2
ZγX)

4(ρXσ2
X + ρZσ2

Z)2γ2X

+O

(
1√
L

)
, (2.5.69g)

where (2.5.69c) follows because γY
λQ

= O
(

1√
L

)
and log(1 + x) = x − 1

2
x2 + O(x3),

(2.5.69e) follows because 1
1+x

= 1−x+O(x2). Considering the fact that g1 = 0, using

approximations (2.5.68e) and (2.5.69g) and simplifying the terms, we get the second

clause of (2.4.40).
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Case 3 (g1 < 0): Here, we have

λQ =
−g1L2 − g2L+

√
(g1L2 + g2L)2 − 4L(σ2

X −D)(h1L2 + h2L)

2L(σ2
X −D)

(2.5.70a)

=
−g1L2 − g2L+

√
g21L

4 + (2g1g2 − 4(σ2
X −D)h1)L3 + (g22 − 4(σ2

X −D)h2)L2

2L(σ2
X −D)

(2.5.70b)

=
−g1L2 − g2L− g1L2(1 + (g1g2 − 2(σ2

X −D)h1)
1
g2
1L

+O( 1
L2 ))

2L(σ2
X −D)

(2.5.70c)

=− g1
σ2
X −D

L− g2 − (σ2
X −D)h1

σ2
X −D

+O

(
1

L

)
(2.5.70d)

=
(γX −D)(ρXσ

2
X + ρZσ

2
Z)− ρXρZσ2

Xσ
2
Z

σ2
X −D

+O(1) (2.5.70e)

=β1L+O(1), (2.5.70f)

where (2.5.70c) follows because
√

1 + x = 1 + 1
2
x + O(x2). We then use the above

approximation to calculate each term of the rate in (2.4.2) as follows:

1

2
log

λY + λQ
λQ

=
1

2
log

ρXσ
2
X + ρZσ

2
Z + β1

β1
+O

(
1

L

)
(2.5.71a)

=
1

2
log

ρ2Xσ
4
X

(ρXσ2
X + ρZσ2

Z)(D − γX)− ρXρZσ2
Xσ

2
Z

+O

(
1

L

)
, (2.5.71b)

48

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – S. Zhou; McMaster University – Electrical and Computer Engineering

and

L− 1

2
log

γY + λQ
λQ

=
L− 1

2

(
γY
λQ

+O(
1

L2
)

)
(2.5.72a)

=
γY
2β1

+O

(
1

L

)
(2.5.72b)

=
γY (σ2

X −D)

2(ρXσ2
X + ρZσ2

Z)(D − γX)− 2ρXρZσ2
Xσ

2
Z

+O

(
1

L

)
.

(2.5.72c)

Considering the fact that g1 < 0, using approximations (2.5.71b) and (2.5.72c) and

simplifying the terms, we get the third clause of (2.4.40). This concludes the proof.

2.5.3 Proof of Theorem 5

First, notice that ρX , ρZ ∈ [0, 1] implies λY ≥ γY . We consider four different cases.

Case 1 (ρXσ
2
X + ρZσ

2
Z = 0): In this case, the condition λ2Xγ

2
Y ≥ L−1

4L
γ2Xλ

2
Y is

satisfied trivially for all L. So, we are under the first condition of Theorem 3, and

consequently

R(D) = R(D) = R∞(D). (2.5.73)

This yields the first condition of Theorem (5), where the rate-distortion expression is

given by (2.4.45).

Case 2 (ρXσ
2
X + ρZσ

2
Z > 0, ρX > 0, ξ ≥ 1

2
): In this case, we are under the first

condition of Theorem 3. This can be readily verified when γX = 0. When γX > 0,
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we have

λ2Xλ
−2
Y γ−2X γ2Y =

(1 + (L− 1)ρX)2(1− ρY )2

(1 + (L− 1)ρY )2(1− ρX)2
(2.5.74a)

=ξ2 +
2ξ2(ρY − ρX)

ρXρYL
+O

(
1

L2

)
(2.5.74b)

≥1

4
for all sufficiently large L (2.5.74c)

≥L− 1

4L
, (2.5.74d)

where (2.5.74c) can be verified by considering ξ = 1
2

(which implies ρY > ρX) and

ξ > 1
2

separately. In summary, the analysis of this case yields (2.4.46).

Case 3 (ρXσ
2
X + ρZσ

2
Z > 0, ρX > 0, ξ < 1

2
): In this case, we are under the third

condition of Theorem 3. This is because of the fact that µ2 < 1,

λ2Xλ
−2
Y γ−2X γ2Y =ξ2 +O

(
1

L

)
(2.5.75a)

<
L− 1

4L
for all sufficiently large L, (2.5.75b)

and

µ1 =
1

2
− 1

2

√
1− 4L

L− 1
λ2Xλ

−2
Y γ−2X γ2Y (2.5.76a)

=
1

2
− 1

2

√
1− 4ξ2 +O

(
1

L

)
(2.5.76b)

>
γY
λY

for all sufficiently large L, (2.5.76c)

where the last inequality follows because γY
λY

= O
(
1
L

)
. Thus, we continue with ap-

proximating Dth,1, Dth,2 and the rate-distortion expressions. We approximate Dth,1
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and Dth,2 for large L as follows:

Dth,1 =
ρXρZσ

2
Xσ

2
Z

ρXσ2
X + ρZσ2

Z

+ γX −
1 +

√
1− 4ξ2

2
γ2Xγ

−1
Y +O

(
1

L

)
(2.5.77a)

=D∞th,1 +O

(
1

L

)
, (2.5.77b)

and

Dth,2 =
ρXρZσ

2
Xσ

2
Z

ρXσ2
X + ρZσ2

Z

+ γX −
1−

√
1− 4ξ2

2
γ2Xγ

−1
Y +O

(
1

L

)
(2.5.78a)

=D∞th,2 +O

(
1

L

)
. (2.5.78b)

Now, it remains to approximate the rate-distortion expressions. In the intervals

D < D∞th,1 and D > D∞th,2, R(D) can be approximated as in Theorem 4, which leads to

the expression in (2.4.40). In the interval D∞th,1 < D < D∞th,2, we need to approximate

Rc(D). For the rate-distortion expression Rc(D), notice that the second clause of

(2.4.8) is not active for large L since

Lλ2X(λY−γY )−1+(L−1)γ2X(γ−1X −γ
−1
Y )+λX = L2ρ2Xρ

−1
Y σ4

Xσ
−2
Y +O(L) > LD. (2.5.79)

Thus, we need to approximate Rc
1(D) defined in (2.4.10) for large L. Consider the
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following term in the first logarithm. We have

LD − λX − (L− 1)(γX − γ2Xγ−1Y ) + λ2Xλ
−2
Y (λY + (γ−1Y − λ

−1
Y )−1)

=L(D − ρXσ2
X − (γX − γ2Xγ−1Y ) + ρ2Xρ

−1
Y σ4

Xσ
−2
Y )+

(2ρXρ
−1
Y (1− ρX)σ4

Xσ
−2
Y − γ

2
Xγ
−1
Y ) +O

(
1

L

)
=LA+B +O

(
1

L

)
. (2.5.80a)

Thus, plugging the above into Rc
1(D) in (2.4.10), we can approximate the first loga-

rithm as follows:

L+ 1

2
log

(L+ 1)γ−1Y γ2X
LA+B +O

(
1
L

)
=
L+ 1

2
log

γ−1Y γ2X
A+ 1

L+1
(−A+B)

(2.5.81a)

=
L+ 1

2
log

γ−1Y γ2X
A

+
A−B

2A
+O

(
1

L

)
(2.5.81b)

=
L+ 1

2
log

γ−1Y γ2X
D − ρXσ2

X − (γX − γ2Xγ
−1
Y ) + ρ2Xρ

−1
Y σ4

Xσ
−2
Y

+
1

2

D + 2γ2Xγ
−1
Y − σ2

X + ρX(3ρX − 2)ρ−1Y σ4
Xσ
−2
Y

D − ρXσ2
X − (γX − γ2Xγ

−1
Y ) + ρ2Xρ

−1
Y σ4

Xσ
−2
Y

+O

(
1

L

)
(2.5.81c)

=
L+ 1

2
log

ρXσ
2
X + ρZσ

2
Zγ
−1
Y γ2X

(ρXσ2
X + ρZσ2

Z)(D − (γX − γ2Xγ
−1
Y ))− ρXρZσ2

Xσ
2
Z

+
1

2

(ρXσ
2
X + ρZσ

2
Z)(D + 2(1− ξ)γ2Xγ−1Y − γX)− ρXρZσ2

Xσ
2
Z

(ρXσ2
X + ρZσ2

Z)(D − (γX − γ2Xγ
−1
Y ))− ρXρZσ2

Xσ
2
Z

+O

(
1

L

)
.

(2.5.81d)
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The second logarithm of (2.4.10) can be approximated as follows:

1

2
log λ2Xγ

−2
X (λY γ

−1
Y − 1)−1 =

1

2
logL+

1

2
log

((
ρX

1− ρX

)2(
1− ρY
ρY

))
+O

(
1

L

)
.

(2.5.82)

The third logarithm of (2.4.10) can also be approximated as follows:

L

2
log

(
1− 1

L

)
= −1

2
+O

(
1

L2

)
. (2.5.83)

Plugging (2.5.81d) and (2.5.82) into (2.4.10) yields

Rc
1(D) =

L+ 1

2
log

γ−1Y γ2X
(ρXσ2

X + ρZσ2
Z)(D − (γX − γ2Xγ

−1
Y ))− ρXρZσ2

Xσ
2
Z

+
1

2
logL

+
1

2

(1− 2ξ)γ2Xγ
−1
Y

(ρXσ2
X + ρZσ2

Z)(D − (γX − γ2Xγ
−1
Y ))− ρXρZσ2

Xσ
2
Z

+
1

2
log

((
ρX

1− ρX

)2(
1− ρY
ρY

))
+O

(
1

L

)
= R∞1 (D). (2.5.84a)

The above expression can be further simplified to (2.4.43). Moreover, the two bound-

ary points D = D∞th,1 and D = D∞th,2 can be easily handled by considering the fact

that R∞1 (D∞th,1) = R∞1 (D∞th,1) and R∞1 (D∞th,2) = R∞1 (D∞th,2). In summary, the analysis

of this case yields (2.4.47).

Case 4 (ρXσ
2
X + ρZσ

2
Z > 0 and ρX = 0): In this case, we are under the second
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condition of Theorem 3 since

µ1 =
1

2
− 1

2

√
1− 4L

L− 1
λ−2Y γ2Y (2.5.85a)

=
1

2
− 1

2

√
1− 4L

L− 1

(
(1− ρY )2

L2ρ2Y
+O

(
1

L3

))
(2.5.85b)

=
(1− ρY )2

L2ρ2Y
+O

(
1

L3

)
(2.5.85c)

≤γY
λY

for all sufficiently large L, (2.5.85d)

and

1 >µ2 (2.5.86a)

=1− (1− ρY )2

L2ρ2Y
+O

(
1

L3

)
(2.5.86b)

>
γY
λY

for all sufficiently large L, (2.5.86c)

and

λ2Xλ
−2
Y γ−2X γ2Y =O(

1

L2
) (2.5.87a)

<
L− 1

4L
for all sufficiently large L, (2.5.87b)

where (2.5.85d) and (2.5.86c) are due to γY
λY

= 1−ρY
LρY

+O( 1
L2 ). Here, Dth,1 simplifies as

follows:

Dth,1 =σ2
X − σ4

Xγ
−1
Y +O

(
1

L

)
(2.5.88a)

=d∞min +O

(
1

L

)
. (2.5.88b)

54

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – S. Zhou; McMaster University – Electrical and Computer Engineering

So, for all D ∈ (d∞min, σ
2
X), the lower bound is given by Rc(D) when L is large enough.

It just remains to approximate Rc(D). Notice that the second clause of (2.4.8) is

active since

Lλ2X(λY − γY )−1 + (L− 1)γ2X(γ−1X − γ
−1
Y ) + λX =L(σ2

X − σ4
Xγ
−1
Y ) +O(1) (2.5.89a)

=Ld∞min +O(1) < LD. (2.5.89b)

The rate-distortion expression Rc
2(D) can be approximated as follows:

Rc
2(D) =

L

2
log

(L− 1)γ2Xγ
−1
Y

LD − λX − (L− 1)(γX − γ2Xγ
−1
Y )

(2.5.90a)

=
L

2
log

σ4
X

γYD − σ2
XγZ

− 1

2

D − σ2
X

D − σ2
X + σ4

Xγ
−1
Y

+O

(
1

L

)
(2.5.90b)

=R∞2 (D). (2.5.90c)

In summary, the analysis of this case yields (2.4.48). This concludes the proof.

2.6 Conclusion

We have studied the problem of distributed compression of symmetrically correlated

Gaussian sources. An explicit lower bound on the rate-distortion function is estab-

lished and is shown to partially coincide with the Berger-Tung upper bound. The

asymptotic expressions for the upper and lower bounds are derived in the large L

limit. It is of considerable theoretical interest to develop new bounding techniques to

close the gap between the two bounds.
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Chapter 3

Symmetric Remote Gaussian

Source Coding with a Centralized

Encoder

3.1 Abstract

The problem of symmetric remote Gaussian source coding with a centralized en-

coder is considered in this chapter. The rate-distortion function for this problem is

completely characterized and is leveraged as a rate-distortion lower bound for the

symmetric remote Gaussian multiterminal source coding problem. It is shown that

this centralized-encoding lower bound is not as tight as the lower bound established

via the fictitious signal-noise decomposition approach. The asymptotic analysis of

this centralized-encoding lower bound is also provided.
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3.2 Introduction

The Internet of Things(IoT) has witnessed growing popularity due to its diverse ap-

plications, one of the main challenges that arises when deploying the wireless sensors

network is to transmit and reconstruct the noise-corrupted data with the communi-

cation cost constraints. One possible way of balancing the trade-off between reducing

communication costs and promoting the reconstruction quality is to exploit the sta-

tistical dependency among the data at different sensors. Multiterminal source coding

theory provides a systematic guideline for the implementation of such pre-processing,

there has been a significant amount of works over the past decades in this area.

In their celebrated paper, Slepian and Wolf [26] showed that it is possible to encode

correlated information sources separately and decode them jointly with a vanishing

error, without paying more in rate relative to jointly encoding the sources. That

is, even though the encoders operate independently of one another, they can reduce

the sum rate to the joint entropy of the dependent sources. Then Wyner and Ziv

[37] extend rate-distortion theory to the case in which side information is present at

the decoder. Berger [3] and Tung [27] extend the Wyner-Ziv coding and generalize

the Slepian-Wolf problem by considering general distortion criteria on the source

reconstruction.

An interesting regime that has received particular attention is when the number

of encoders in the network tends to infinity [33]. This asymptotic regime reflects the

typical scenarios in various emerging machine learning applications where the number

of clients in the centralized sensor network is large, e.x. federated learning [18].

Another special attention has been paid to the setting known as generalized

quadratic Gaussian multiterminal source coding, where the unobserved source and
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additive noise are jointly Gaussian and the distortion measure is deployed as the

mean square error. For the centralized coding scheme, the rate-distortion function is

given by the celebrated reverse water-filling result [11]. However, for the distributed

coding case, the exact characterization of the rate-distortion function remains an open

problem, Wagner et al. [29] gave a complete solution for the case when L = 2, beyond

that the understanding is rather limited. Moreover, there is strong evidence that for

most generalized Gaussian multiterminal source coding systems, the rate-distortion

function might not be expressed in a closed form solution [39]. Indeed, the existing

conclusive results for the distributed coding case are typically given in the form of

convex programming [34, 33, 41]. Therefore, even if one manages to solve the gen-

eralized Gaussian multiterminal source coding problem completely, extracting useful

insights from such a solution can still be non-trivial.

In this part we consider an indirect lossy source coding system with centralized

encoder and decoder while L correlated sources and L correlated noises comprise

the corrupted observed source, the sources and noises are independent. This setting

enables the encoder to jointly compress the noise corrupted source and forwards the

compressed data to the decoder, the decoder is required to reconstruct the correspond-

ing target source within a prescribed mean squared error distortion threshold. It is

assumed that the observed sources can be expressed as the sum of the target sources

and the corruptive noises, which are generated independently from two symmetric

multivariate Gaussian distributions.

Our problem settings share some similarities with the afore-mentioned reverse

water-filling problem and Gaussian CEO problem [7, 20]. However, the major differ-

ence between our setting and the reverse water-filling problem is that in our setting we
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consider a more general scenario where additive noise could be correlated. Moreover,

previous work has shown that this type of theoretic difficulty caused by correlated

noises can be circumvented through a fictitious signal-noise decomposition of the ob-

served sources, such idea can be found in [29, 33]. The major difference between CEO

problem and our work is that the target signal for CEO problem is a scalar process,

while in our settings it is a vector process.

In Wang et al. [33] work, they considered a generalized version multiterminal

source coding problem with distributed encoding scheme and gave a closed form

solution of the upper bound of the rate-distortion function. Later in Zhou et al.

[41] work, they solved the lower bound of the rate-distortion function explicitly, the

noticeable find on the asymptotic gap between the upper bound and lower bound

makes people more curious about the characteristics of the rate-distortion function,

this discovery leads directly to the motivation to our work. Inspired by Wagner et

al. [29] and Wang et al. [29], where the formal work determines the rate region of

the quadratic Gaussian two-encoder source-coding problem by comparing two types

of lower bound on the sum rate, while the latter work also determined the rate region

of that problem, by bounding the rate-distortion function with the upper bound and

the lower bound, our intuition is to find a lower bound of the rate-distortion function

that would be better than that described in [41] settings.

Intuitively, the optimal rate-distortion performance of any generalized multiter-

minal source coding system must be no superior to that of its centralized counterpart

and no inferior to that of its distributed counterpart, then in this work, our questions

boil down to whether the asymptotic rate-distortion function of centralized setting is

greater than or equal to the lower bound of the rate-distortion function for distributed
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setting.

The rest of this chapter is organized as follows. The problem definitions and

the main results are presented in Section 3.3. The detailed proofs are provided in

Sections 3.5. The chapter is concluded in Section 3.6.

3.3 System Model

Consider a L terminal indirect distributed source coding system with centralized

encoding scheme and distributed encoding scheme. For centralized case, encoder

encodes ` ∈ {1, · · · , L} observed source sequences {X(n)
` } with a encoding function

φ(n) : RL×n → ML×n, producing a set of indexes {M (n)
` }, then the decoder recon-

structs target source sequences by implementing a mapping g(n) : ML×n → RL×n,

producing a set of estimation of source sequences X̂
(n)
` . Similarly setting for dis-

tributed case, where,encoding function φ
(n)
` : Rn → Mn and a decoding function

g
(n)
` :Mn → Rn.

Now we are in the position of giving the achievable definition of the rate-distortion

pair.

Definition 2 (Centralized encoding). A rate-distortion pair (R,D) is said to be

achievable with centralized encoding if, for any ε > 0, there exists an encoding function

φ(n) such that

1

n
log
∣∣M (n)

∣∣ ≤ R + ε,

1

Ln

L∑
`=1

n∑
i=1

E
[(
X`(i)− X̂`(i)

)2]
≤ D + ε,

(3.3.1)

where X̂`(i) , E
[
X`(t) |

(
φ(n) (Y n)

)]
. For a given D, the minimum R such that
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(R,D) is achievable with centralized encoding is denoted by R̂(D).

Definition 3 (Distributed encoding). A rate-distortion pair (R,D) is said to be

achievable with distributed encoding if, for any ε > 0, there exist encoding functions

φ
(n)
` , ` ∈ {1, · · · , L}, such that

1

n

L∑
`=1

log
∣∣∣M (n)

`

∣∣∣ ≤ R + ε,

1

Ln

L∑
`=1

n∑
i=1

E
[(
X`(i)− X̂`(i)

)2]
≤ D + ε,

(3.3.2)

where X̂`(i) , E
[
X`(i) |

(
φ
(n)
1 (Y n

1 ) , · · · , φ(n)
L (Y n

L )
)]

. For a given D, the minimum

R such that (R,D) is achievable with distributed encoding is denoted by R̃(D).

We have already defined R̂(D) as the rate-distortion function of symmetrically

correlated Gaussian source coding with centralized encoding and R̃(D) as the rate-

distortion function of symmetrically correlated Gaussian source coding with dis-

tributed encoding. One can know from [41] that an explicit lower bound for R̃(D)

is established and it matches the well-known Berger-Tung upper bound for some

values of the distortion threshold. We will define R(D) as the lower bound of the

rate-distortion function with distributed encoding.

3.3.1 Preliminary

Let Y , (Y1, · · · , YL)T be the sum of two mutually independent L-dimensional (L ≥

2) zero-mean Gaussian random vectors, source X , (X1, · · · , XL)T and noise Z ,

(Z1, · · · , ZL)T , which can be expressed as

Y` = X` + Z`, ` ∈ {1, . . . , L}. (3.3.3)
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The distributions of X, Y and Z are determined by their covariance matrices Σ∗,

∗ ∈ {X, Y, Z}, written as

Σ∗ ,



σ2
∗ ρ∗σ

2
∗ . . . ρ∗σ

2
∗

ρ∗σ
2
∗ σ2

∗ . . . ρ∗σ
2
∗

...
... . . .

...

ρ∗σ
2
∗ ρ∗σ

2
∗ . . . σ2

∗


, (3.3.4)

which satisfy ΣY = ΣX + ΣZ (i.e., σ2
Y = σ2

X + σ2
Z and ρY σ

2
Y = ρXσ

2
X + ρZσ

2
Z). To

ensure that the covariance matrices are positive semi-definite and the source vector X

is not deterministic, we assume σ2
X > 0, σ2

Z ≥ 0, ρX ∈ [− 1
L−1 , 1] and ρZ ∈ [− 1

L−1 , 1].

Moreover the source vector X together with the noise vector Z and the corrupted

version Y generates an i.i.d. process {(X(t), Y (t), Z(t))}∞t=1.

By the eigenvalue decomposition, a given L× L matrix

Γ ,



α β . . . β

β α . . . β

...
... . . .

...

β β . . . α


, (3.3.5)

can be written as

Γ = ΘΛΘT , (3.3.6)

where Θ is an arbitrary unitary matrix with the first column being 1√
L
1TL and

Λ , diag(L) (α + (L− 1)β, α− β, . . . , α− β) . (3.3.7)

62

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – S. Zhou; McMaster University – Electrical and Computer Engineering

Based on this, we can write

Σ∗ = ΘΛ∗Θ
T , ∗ ∈ {X, Y, Z}, (3.3.8)

where

Λ∗ , diag(L)(λ∗γ∗, . . . , γ∗), (3.3.9)

with

λ∗ , (1 + (L− 1)ρ∗)σ
2
∗, (3.3.10)

γ∗ , (1− ρ∗)σ2
∗. (3.3.11)

Note that λY = λX + λZ and γY = γX + γZ .

3.3.2 Remark

Let dmin be the minimum achievable distortion when {Y (t)}∞t=1 is directly available

at the decoder (R̂(D) = R̃(D) = ∞ for D ≤ dmin), where (detailed derivation is

provided in Chapter 3.5)

dmin ,



(L−1)σ2
XγZ

Lσ2
X+(L−1)γZ

, ρX = − 1
L−1 ,

σ2
X −

λ2
X

LλY
− (L−1)γ2

X

LγY
, ρX ∈

(
− 1
`−1 , 1

)
,

σ2
XλZ

Lσ2
X+λZ

, ρX = 1,

(3.3.12)

Moreover, it is easy to show that R̂(D) = R̃(D) = 0 for D ≥ σ2
X (since the distortion

constraint is trivially satisfied with the reconstruction set to be zero). Henceforth we
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shall focus on the case D ∈ (dmin, σ
2
X).

3.4 Main Results

Theorem 6. For D ∈ (dmin, σ
2
X),

R(D) ≥ R̂(D). (3.4.1)

Proof. See Chapter 3.5.1.

Theorem 7 (Centralized encoding). For D ∈ (dmin, σ
2
X),

R̂(D) =



L−1
2

log
Lσ4

X

(Lσ2
X+(L−1)γZ)D−(L−1)σ2

XγZ
, ρX = − 1

L−1 ,

1
2

log+ λ2
X

λY δ
+ L−1

2
log+ γ2

X

γY δ
, ρX ∈

(
− 1
`−1 , 1

)
,

1
2

log
Lσ4

X

(Lσ2
X+λZ)D−σ2

XλZ
, ρX = 1,

(3.4.2)

where

δ ,


D − dmin, D ≤ min

{
λ2
X

λY
,
γ2
X

γY

}
+ dmin,

L(D−dmin)
L−1 − λ2

X

(L−1)λY
, D >

λ2
X

λY
+ dmin

L (D − dmin)− (L−1)γ2
X

γY
, D >

γ2
X

γY
+ dmin.

(3.4.3)

Proof. See Chapter 3.5.2.

Example 1 : In this example, we compare the lower bound of rate-distortion func-

tion R(D) under distributed encoding with the rate-distortion function R̂(D) under

centralized encoding. In Fig. 3.1, we plot the difference between R(D) and R̂(D),
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Figure 3.1: ∆R(D) with D ∈ (dmin, σ
2
X) for Case 1 and Case 2.

denoted by ∆R(D), with D ∈ (dmin, σ
2
X) for the following two cases. According to

[41], in these two cases, there exists a gap between the lower bound R(D) and the

Berger-Tung upper bound for some values of the distortion threshold. We set L = 10.

• Case 1: λX = 0.5, γX = 1, λY = 6, and γY = 3. In this case, we have

dmin ≈ 0.646 and σ2
X = 0.95.

• Case 2: λX = 1, γX = 0.45, λY = 12, and γY = 2.4. In this case, we have

dmin = 0.4207 and σ2
X = 0.505.

As can be observed from the figure, the gap ∆R(D) is nonnegative, which verifies

R̂(D) will not be greater than R(D).

In the following, we proceed to study the asymptotic behavior of the two rate-

distortion bounds when L → ∞ . In the discussion below, it is necessary to restrict

attention to the case ρX , ρZ ∈ [0, 1]; moreover, without loss of generality, we assume
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D ∈
(
d
(∞)
min , σ

2
X

)
, where

d
(∞)
min , lim

`→∞
dmin =



ρXσ
2
XρZσ

2
Z

ρXσ
2
X+ρZσ

2
Z

+ γXγZ
γX+γZ

, ρX ∈ (0, 1),

σ2
XγZ

σ2
X+γZ

, ρX = 0,

σ2
XρZσ

2
Z

σ2
X+ρZσ

2
Z
, ρX = 1.

(3.4.4)

Theorem 8 (Centralized encoding for asymptotic regime). For D ∈
(
d
(∞)
min , σ

2
X

)
,

1. ρX = 0, ρXσ
2
X + ρZσ

2
Z > 0 (ρZ > 0, σ2

Z 6= 0),

R̂∞(D) =
L− 1

2
log

σ4
X

(σ2
X + γZ)D − σ2

XγZ
+

1

2

σ4
X

(σ2
X + γZ)D − σ2

XγZ
−1

2
+O

(
1

L

)
.

(3.4.5)

2. ρXσ
2
X + ρZσ

2
Z = 0 (ρX = 0, ρZ = 0 or σ2

Z = 0),

R̂∞(D) =
L

2
log

σ4
X

(σ2
X + σ2

Z)D − σ2
Xσ

2
Z

. (3.4.6)

3. ρX > 0, ρXσ
2
X + ρZσ

2
Z > 0,

R̂∞(D) =



L
2

log
γ2
X(ρXσ

2
X+ρZσ

2
Z)

(ρXσ
2
X+ρZσ

2
Z)((γX+γZ)D−γXγZ)−ρXσ2

XρZσ
2
Z(γX+γZ)

+1
2

logL+ α̂ +O
(
1
L

)
, D < D∞th,0,

1
2

logL+ 1
2

log
ρ2
Xσ

4
X(γX+γZ)

(ρXσ
2
X+ρZσ

2
Z)γ

2
X

+ 1
2

(γZρXσ
2
X−γXρZσ

2
Z)

2

γ2
X(ρXσ

2
X+ρZσ

2
Z)

2 +O
(
1
L

)
, D = D∞th,0,

1
2

log
ρ2
Xσ

4
X

(ρXσ
2
X+ρZσ

2
Z)(D−γX)−ρXσ2

XρZσ
2
Z

+O
(
1
L

)
, D > D∞th,0,

(3.4.7)
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Figure 3.2: ∆∞R (D) with σ2
X = 1, ρZ = 0.05 and σ2

Z = 0.1 for different ρX .

where

α̂ ,
1

2
log

ρ2Xσ
4
X (γX + γZ)

(ρXσ2
X + ρZσ2

Z)γ2X

+
1

2

(γZρXσ
2
X − γXρZσ2

Z)2

(ρXσ2
X + ρZσ2

Z)2 ((γX + γZ)D − γXγZ)− ρXσ2
XρZσ

2
Z(γX + γZ)(ρXσ2

X + ρZσ2
Z)

(3.4.8)

and

D∞th,0 ,
ρXρZσ

2
Xσ

2
Z

ρXσ2
X + ρZσ2

Z

+ γX . (3.4.9)

Proof. See Section 3.5.3.

Example 2 : In this example, we plot the function ∆∞R (D), which characterized

the asymptotic difference between R∞(D) and R̂∞(D) (as L tends to infinity). See

Fig. 3.2 and 3.3 for some graphical illustrations of ∆∞R (D) with different parameter

settings.
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Figure 3.3: ∆∞R (D) with ρX = 0, σ2
X = 1 and ρZ = 0.05 for different σ2

Z .

3.5 Proof of Results

3.5.1 Proof of Theorem 6

From [34] [12], we know that R̂(D) is given by the solution of the following optimiza-

tion problem:

R̂(D) = min
pX̂|Y

I(Y ; X̂)

s.t. E
[
(X − X̂)T (X − X̂)

]
≤ LD,

(3.5.1)

where

I(Y ; X̂) =
1

2
log

det(ΣY )

det(D)
=

1

2
log

λY
α

+
L− 1

2
log

γY
β

, Θ(α, β). (3.5.2)

It is known that a result of [33][41] provides a lower bound on the rate-distortion

function with distributed encoding by solving a minimization program, which defines

Ω(α, β, δ) =
1

2
log

λ2Y
(λY − λW )α + λY λW

+
L− 1

2
log

γ2Y
(γY − λW )β + γY λW

+
L

2
log

λW
δ
,

where λW = min(λY , γY ). Let R(D) be the solution of the following optimization
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problem:

R(D) = min
α,β,δ

Ω(α, β, δ),

s.t. 0 < α ≤ λY ,

0 < β ≤ γY ,

0 < δ,

δ ≤ (α−1 + λ−1W − λ
−1
Y )−1,

δ ≤ (β−1 + λ−1W − γ
−1
Y )−1,

λ2Xλ
−2
Y α + λX − λ2Xλ−1Y + (L− 1)(γ2Xγ

−2
Y β + γX − γ2Xγ−1Y ) ≤ LD.

(3.5.3)

One can readily prove the constraints under (α, β) for distributed case are same

as the centralized case. In the following, we compare Θ(α, β) and Ω(α, β, δ) under

the restriction of the given constraints (3.5.3).

Subcase 1: λY ≥ γY > 0. We can send λW = γY , then

δ ≤ (α−1 + γ−1Y − λ
−1
Y )−1,

δ ≤ β.

(3.5.4)

1. If (α−1 + γ−1Y − λ
−1
Y )−1 ≥ β, we have

Ω(α, β, δ) ≥ 1

2
log

λ2Y
(λY − γY )α + λY γY

+
L

2
log

γY
β

(3.5.5)

and

Θ(α, β) =
1

2
log

λY
α

+
L− 1

2
log

γY
β
. (3.5.6)
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Note that

1

2
log

λY
α
− 1

2
log

λ2Y
(λY − γY )α + λY γY

=
1

2
log

α + γY (1− α
λY

)

α
≥ 0 (3.5.7)

due to α ≤ λY and

L

2
log

γY
β
− L− 1

2
log

γY
β

=
1

2
log

γY
β
≥ 0, (3.5.8)

so that

1

2
log

γY
β
− 1

2
log

α + γY (1− α
λY

)

α
=

1

2
log

(α−1 + γ−1Y − λ
−1
Y )−1

β
(3.5.9)

is always non-negative since the assumption (α−1 + γ−1Y − λ
−1
Y )−1 ≥ β, which

means Ω(α, β, δ) ≥ Θ(α, β) under this case.

2. If (α−1 + γ−1Y − λ
−1
Y )−1 < β, we have

Ω(α, β, δ) ≥ 1

2
log

λ2Y
(λY − γY )α + λY γY

+
L

2
log

γY

(α−1 + γ−1Y − λ
−1
Y )−1

(3.5.10)

and

Θ(α, β) =
1

2
log

λY
α

+
L− 1

2
log

γY
β
. (3.5.11)

Note that

1

2
log

λY
α
− 1

2
log

λ2Y
(λY − γY )α + λY γY

=
1

2
log

α + γY (1− α
λY

)

α
≥ 0 (3.5.12)
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due to α ≤ λY . Since (α−1 + γ−1Y − λ
−1
Y )−1 < β, we have

L

2
log

γY

(α−1 + γ−1Y − λ
−1
Y )−1

− L− 1

2
log

γY
β
>

1

2

γY

(α−1 + γ−1Y − λ
−1
Y )−1

(3.5.13)

and it can be easily verified that

1

2

γY

(α−1 + γ−1Y − λ
−1
Y )−1

=
1

2
log

α + γY (1− α
λY

)

α
. (3.5.14)

Therefore, Ω(α, β, δ) ≥ Θ(α, β) under this case.

Subcase 2: γY ≥ λY > 0. We can send λW = λY , then

δ ≤ α,

δ ≤ (β−1 + λ−1Y − γ
−1
Y )−1.

(3.5.15)

1. If (β−1 + λ−1Y − γ
−1
Y )−1 ≥ α, we have

Ω(α, β, δ) ≥ L− 1

2
log

γ2Y
(γY − λY )β + γY λY

+
L

2
log

λY
α

(3.5.16)

and

Θ(α, β) =
L− 1

2
log

γY
β

+
1

2
log

λY
α
. (3.5.17)

Note that

L− 1

2
log

γY
β
− L− 1

2
log

γ2Y
(γY − λY )β + λY γY

=
L− 1

2
log

β + λY (1− β
γY

)

β
≥ 0

(3.5.18)
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due to β ≤ γY and

L

2
log

λY
α
− 1

2
log

λY
α

=
L− 1

2
log

λY
α
≥ 0, (3.5.19)

so that

L− 1

2
log

λY
α
− L− 1

2
log

β + λY (1− β
γY

)

β
=
L− 1

2
log

(β−1 + λ−1Y − γ
−1
Y )−1

α
(3.5.20)

is always non-negative since the assumption (β−1 + λ−1Y − γ
−1
Y )−1 ≥ α, which

means Ω(α, β, δ) ≥ Θ(α, β) under this case.

2. If (β−1 + λ−1Y − γ
−1
Y )−1 < α, we have

Ω(α, β, δ) ≥ L− 1

2
log

γ2Y
(γY − λY )β + γY λY

+
L

2
log

λY

(β−1 + λ−1Y − γ
−1
Y )−1

(3.5.21)

and

Θ(α, β) =
L− 1

2
log

γY
β

+
1

2
log

λY
α
. (3.5.22)

Note that

L− 1

2
log

γY
β
− L− 1

2
log

γ2Y
(γY − λY )β + λY γY

=
L− 1

2
log

β + λY (1− β
γY

)

β
≥ 0

(3.5.23)

due to β ≤ γY . Since (β−1 + λ−1Y − γ
−1
Y )−1 < α, we have

L

2
log

λY

(β−1 + λ−1Y − γ
−1
Y )−1

− 1

2
log

λY
α

>
L− 1

2

λY

(β−1 + λ−1Y − γ
−1
Y )−1

, (3.5.24)
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and it can be easily verified that

L− 1

2

λY

(β−1 + λ−1Y − γ
−1
Y )−1

=
L− 1

2
log

β + λY (1− β
γY

)

β
, (3.5.25)

which results Ω(α, β, δ) ≥ Θ(α, β) under this case.

In summary, it is always true that Ω(α, β, δ) ≥ Θ(α, β) under all conditions.

Together with the same constraints, it can be concluded that R(D) ≥ R̂(D). This

completes the proof of Theorem 6.

3.5.2 Proof of Theorem 7

R̂(D) is given by the solution of the following optimization problem:

min
pX̂|Y

I(Y ; X̂)

s.t. E
[
(X − X̂)T (X − X̂)

]
≤ LD,

X ↔ Y ↔ X̂ form a Markov chain.

(3.5.26)

It can be transferred equivalently to

min
pX̂|Ȳ

I(Ȳ ; X̂)

s.t. E
[
(X̄ − X̂)T (X̄ − X̂)

]
≤ LD,

X̄ ↔ Ȳ ↔ X̂ form a Markov chain.

(3.5.27)
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where X̄ , ΘTX, Z̄ , ΘTZ, and Ȳ , ΘTY . As defined in Chapter 3.3, ΘT is an

arbitrary unitary matrix with the first row being 1√
L

1L. Moreover, we can have

Ldmin = E
[
(X̄ − Ŷ )T (X̄ − Ŷ )

]
= E

[
(X̄ − E[X̄ | Ȳ ])T (X̄ − E[X̄ | Ȳ ])

]
. (3.5.28)

where Ŷ , E[X̄ | Ȳ ].

It can be verified that X̄ and Z̄ are two independent zero-mean Gaussian random

vectors with covariance matrices

Λ∗ , diag(L)(λ∗γ∗, . . . , γ∗), ∗ ∈ {X,Z}. (3.5.29)

Denote the `-th components of X̄, Z̄ and Ȳ by X̄`, Z̄` and Ȳ`, respectively, ` =

1, · · · , L. We have

E
[(
X̄1

)2]
= λX = LρXσ

2
X + γX ,

E
[(
X̄`

)2]
= γX , ` = 2, · · · , L,

E
[(
Z̄1

)2]
= λZ = LρZσ

2
Z + γZ ,

E
[(
Z̄`
)2]

= γZ , ` = 2, · · · , L.

(3.5.30)

Since Ȳ` = X̄` + Z̄`,

E
[(
Ȳ1
)2]

= λY = LρY σ
2
Y + γY = L(ρXσ

2
X + ρZσ

2
Z) + γX + γZ ,

E
[(
Ȳ`
)2]

= γY = γX + γZ , ` = 2, · · · , L.
(3.5.31)

Now denote the `-th component of Ŷ by Ŷ` , E[X̂` | Ŷ`], ` = 1, · · · , L. According to
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linear estimation, we have

E
[(
Ŷ1

)2]
=


0, ρX = − 1

L−1 ,

(LρXσ2
X+γX)

2

L(ρXσ
2
X+ρZσ

2
Z)+γX+γZ

, ρX ∈
(
− 1
L−1 , 1

]
,

E
[(
Ŷ`

)2]
=


γ2
X

γX+γZ
, ρX ∈

[
− 1
L−1 , 1

)
,

0, ρX = 1,

` = 2, · · · , L.

(3.5.32)

Note that

E
[
(X̄ − Ŷ )T (X̄ − Ŷ )

]
=

L∑
`=1

E
[(
X̄`

)2]− L∑
`=1

E
[(
Ŷ`

)2]
, (3.5.33)

this holds because Ŷ , E[X̄ | Ȳ ]. Therefore, together with equations (1)-(4), we

derive

dmin =
1

L
E
[
(X̄ − Ŷ )T (X̄ − Ŷ )

]
=

L∑
`=1

E
[(
X̄`

)2]− L∑
`=1

E
[(
Ŷ`

)2]

=



(L−1)σ2
XγZ

Lσ2
X+(L−1)γZ

, ρX = − 1
L−1 ,

σ2
X −

λ2
X

LλY
− (L−1)γ2

X

LγY
, ρX ∈

(
− 1
`−1 , 1

)
,

σ2
XλZ

Lσ2
X+λZ

, ρX = 1,

(3.5.34)

Since it is obvious that Ŷ is determined by Ȳ and from (3.5.27) we know X̄ ↔

Ȳ ↔ X̂ form a Markov chain, the distortion constraint can be written as

E
[
(X̄ − X̂)T (X̄ − X̂)

]
= E

[
(X̄ − Ŷ )T (X̄ − Ŷ )

]
+ E

[
(Ŷ − X̂)T (Ŷ − X̂)

]
= Ldmin + E

[
(Ŷ − X̂)T (Ŷ − X̂)

] (3.5.35)
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Therefore, (3.5.27) is equivalent to

min
pX̂|Ŷ

I(Ŷ ; X̂)

s.t. E
[
(Ŷ − X̂)T (Ŷ − X̂)

]
≤ L(D − dmin),

(3.5.36)

which is the well-known reverse water-filling problem. Consider the following three

subcases separately.

1. When ρX = − 1
L−1 , we have

R̂(D) =
L− 1

2
log

γ2X
(γX + γZ)δ1

, (3.5.37)

where δ1 = L
L−1(D − dmin), which is derived by

L(D − dmin) = (L− 1)δ1. (3.5.38)

In this case, γX = L
L−1σ

2
X and dmin =

(L−1)σ2
XγZ

Lσ2
X+(L−1)γZ

, then we get

R̂(D) =
L− 1

2
log

Lσ4
X

(Lσ2
X + (L− 1)γZ)D − (L− 1)σ2

XγZ
. (3.5.39)

2. When ρX = 1, we have

R̂(D) =
1

2
log

(LρXσ
2
X + γX)2

(L(ρXσ2
X + ρZσ2

Z) + γX + γZ) δ2
, (3.5.40)

where δ2 = L(D − dmin). In this case, γX = 0 and dmin =
σ2
XλZ

Lσ2
X+λZ

, thus

R̂(D) =
1

2
log

Lσ4
X

(Lσ2
X + λZ)D − σ2

XλZ
. (3.5.41)
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3. When ρX ∈ (− 1
L−1 , 1), according to [11] Theorem 10.3.3, one can readily get

the reverse water-filling solution as follows:

R̂(D) =
1

2
log+ λ2X

λY δ
+
L− 1

2
log+ γ2X

γY δ
. (3.5.42)

If D − dmin ≤ min{λ
2
X

λY
,
γ2
X

γY
}, then

δ = D − dmin. (3.5.43)

If D − dmin >
λ2
X

λY
, then

L(D − dmin) =
λ2X
λY

+ (L− 1)δ,

δ =
L (D − dmin)

L− 1
− λ2X

(L− 1)λY
.

(3.5.44)

If D − dmin >
γ2
X

γY
, then

L(D − dmin) = δ + (L− 1)
γ2X
γY
,

δ = L(D − dmin)− (L− 1)γ2X
γY

.

(3.5.45)

In summary, for D ∈ (dmin, σ
2
X),

R̂(D) =



L−1
2

log
Lσ4

X

(Lσ2
X+(L−1)γZ)D−(L−1)σ2

XγZ
, ρX = − 1

L−1 ,

1
2

log+ λ2
X

λY δ
+ L−1

2
log+ γ2

X

γY δ
, ρX ∈

(
− 1
`−1 , 1

)
,

1
2

log
Lσ4

X

(Lσ2
X+λZ)D−σ2

XλZ
, ρX = 1,

(3.5.46)
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where

δ ,


D − dmin, D ≤ min

{
λ2
X

λY
,
γ2
X

γY

}
+ dmin,

L(D−dmin)
L−1 − λ2

X

(L−1)λY
, D >

λ2
X

λY
+ dmin

L (D − dmin)− (L−1)γ2
X

γY
, D >

γ2
X

γY
+ dmin.

(3.5.47)

In particular, when ρX = 0 and ρZ ∈ (0, 1], we have

R̂(D) =
1

2
log+ σ4

X

(σ2
X + λZ)δ

+
L− 1

2
log+ σ4

X

(σ2
X + γZ)δ

, (3.5.48)

where

δ ,


D − dmin, D ≤ σ4

X

σ2
X+λZ

+ dmin,

L(D−dmin)
L−1 − σ4

X

(L−1)(σ2
X+λZ)

, D >
σ4
X

σ2
X+λZ

+ dmin.

(3.5.49)

This completes the proof of Theorem 7.
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3.5.3 Proof of Theorem 8

1. Setting ρX = 0 and ρZ ∈ (0, 1], first we have

dmin = σ2
X −

λ2X
LλY

− (L− 1)γ2X
LγY

(3.5.50a)

= σ2
X −

1

L

σ4
X

σ2
X + λZ

− L− 1

L

σ4
X

σ2
X + γZ

(3.5.50b)

=
σ2
XγZ

σ2
X + γZ

+
1

L

σ4
X(λZ − γZ)

(σ2
X + γZ)(σ2

X + λZ)
(3.5.50c)

=
σ2
XγZ

σ2
X + γZ

+
σ4
XρZσ

2
Z

(σ2
X + γZ)ρZσ2

ZL+ (σ2
X + γZ)2

(3.5.50d)

=
σ2
XγZ

σ2
X + γZ

+
σ4
X

σ2
X + γZ

1

L

 1

1 +
σ2
X+γZ
ρZσ

2
Z

1
L

 (3.5.50e)

=
σ2
XγZ

σ2
X + γZ

+
σ4
X

σ2
X + γZ

1

L

(
1− σ2

X + γZ
ρZσ2

Z

1

L
+O

(
1

L2

))
(3.5.50f)

=
σ2
XγZ

σ2
X + γZ

+
σ4
X

σ2
X + γZ

1

L
− σ4

X

ρZσ2
Z

1

L2
+O

(
1

L3

)
(3.5.50g)

, d
(∞)
min +

σ4
X

σ2
X + γZ

1

L
− σ4

X

ρZσ2
Z

1

L2
+O

(
1

L3

)
. (3.5.50h)

where (3.5.50f) holds because 1
1+x

= 1− x+O(x2). Moreover here and later we

assume σ2
Z 6= 0.

For the special case where σ2
Z = 0, we have dmin = 0 and

R̂(D) =
L

2
log

σ2
X

D
, for D ∈ (0, σ2

X), (3.5.51)

which can be generalized into the second case of Theorem 8.
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For this case, it can be deduced from Theorem 7 that

R̂(D) =


1
2

log
σ4
X

(σ2
X+λZ)(D−dmin)

+ L−1
2

log
σ4
X

(σ2
X+γZ)(D−dmin)

, D ∈ (dmin,
σ4
X

σ2
X+λZ

+ dmin],

L−1
2

log
(L−1)σ4

X(σ2
X+λZ)

(σ2
X+γZ)(L(D−dmin)(σ

2
X+λZ)−σ4

X)
, D ∈ (

σ4
X

σ2
X+λZ

+ dmin, σ
2
X),

(3.5.52)

We can also know when L→∞, only the second condition will be active, this

is because
σ4
X

σ2
X + λZ

+ dmin =
σ4
X

LρZσ2
Z + γZ + σ2

X

+ dmin

=
σ2
XγZ

σ2
X + γZ

+O

(
1

L

)
= d

(∞)
min +O

(
1

L

)
.

(3.5.53)

Therefore it follows that d ∈ (d
(∞)
min , σ

2
X) and consequently

R̂(D) =
L− 1

2
log

(L− 1)σ4
X(σ2

X + λZ)

(σ2
X + γZ) (L(D − dmin)(σ2

X + λZ)− σ4
X)

(3.5.54)

when L comes to sufficiently large. Note that

L(D − dmin)(σ2
X + λZ)

=L

(
D − σ2

XγZ
σ2
X + γZ

− σ4
X

σ2
X + γZ

1

L
+

σ4
X

ρZσ2
Z

1

L2
−O

(
1

L3

))
(LρZσ

2
Z + γZ + σ2

X)

=

(
D − σ2

XγZ
σ2
X + γZ

)
ρZσ

2
ZL

2 +

(
(σ2

X + γZ)D − σ2
XγZ −

σ4
XρZσ

2
Z

σ2
X + γZ

)
L+O

(
1

L

)
(3.5.55)
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where the first equality holds for (3.5.50g) and

(L− 1)σ4
X(σ2

X + λZ) = (L− 1)σ4
X(LρZσ

2
Z + γZ + σ2

X)

= σ4
XρZσ

2
ZL

2 + σ4
X(σ2

X + γZ − ρZσ2
Z)L− σ4

X(σ2
X + γZ).

(3.5.56)

Plugging (3.5.55) and (3.5.56) into (3.5.54) gives

R̂(D)

=
L− 1

2
log

σ4
XρZσ

2
ZL

2 + σ4
X(σ2

X + γZ − ρZσ2
Z)L− σ

4
X(σ2

X + γZ)

((σ2
X + γZ)D − σ2

XγZ)ρZσ
2
ZL

2 +
(
(σ2
X + γZ)((σ

2
X + γZ)D − σ2

XγZ)− σ
4
XρZσ

2
Z

)
L− σ4

X(σ2
X + γZ) +O

(
1
L

)
=
L− 1

2
log

σ4
XρZσ

2
ZL+ σ4

X(σ2
X + γZ − ρZσ2

Z)

((σ2
X + γZ)D − σ2

XγZ)ρZσ
2
ZL+

(
(σ2
X + γZ)((σ

2
X + γZ)D − σ2

XγZ)− σ
4
XρZσ

2
Z

) +O

(
1

L

)
=
L− 1

2
log

σ4
X

(σ2
X + γZ)D − σ2

XγZ
+
L− 1

2
log

ρZσ
2
ZL+ (σ2

X + γZ − ρZσ2
Z)

ρZσ
2
ZL+ (σ2

X + γZ)−
σ4
X
ρZσ

2
Z

(σ2
X

+γZ)D−σ2
X
γZ

+O

(
1

L

)

=
L− 1

2
log

σ4
X

(σ2
X + γZ)D − σ2

XγZ
+
L− 1

2
log

1 +

σ4
XρZσ

2
Z

(σ2
X

+γZ)D−σ2
X
γZ
− ρZσ2

Z

ρZσ
2
ZL+ (σ2

X + γZ)−
σ4
X
ρZσ

2
Z

(σ2
X

+γZ)D−σ2
X
γZ

+O

(
1

L

)

=
L− 1

2
log

σ4
X

(σ2
X + γZ)D − σ2

XγZ
+
L− 1

2


σ4
XρZσ

2
Z

(σ2
X

+γZ)D−σ2
X
γZ
− ρZσ2

Z

ρZσ
2
ZL+ (σ2

X + γZ)−
σ4
X
ρZσ

2
Z

(σ2
X

+γZ)D−σ2
X
γZ

+O

(
1

L2

)+O

(
1

L

)

=
L− 1

2
log

σ4
X(

σ2
X + γZ

)
D − σ2

XγZ
+

1

2

σ4
X(

σ2
X + γZ

)
D − σ2

XγZ
−

1

2
+O

(
1

L

)
(3.5.57)

where (3.5.57) is due to log(1+x) = x+O(x2). In particular, if ρZ = 1 (γZ = 0),

we have d
(∞)
min = 0 and

R̂(D) =
L− 1

2
log

σ2
X

D
+

1

2

σ2
X

D
− 1

2
+O

(
1

L

)
. (3.5.58)
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2. Setting ρX = 0 and ρZ = 0, we have

dmin = σ2
X −

σ4
X

(σ2
X + σ2

Z)L
− L− 1

L

σ4
X

σ2
X + σ2

Z

= σ2
X −

σ4
X

σ2
X + σ2

Z

=
σ2
Xσ

2
Z

σ2
X + σ2

Z

(3.5.59)

and

R̂(D) =
1

2
log

σ4
X

(σ2
X + σ2

Z)δ
+
L− 1

2
log

σ4
X

(σ2
X + σ2

Z)δ

=
L

2
log

σ4
X

(σ2
X + σ2

Z)δ

(3.5.60)

where δ = D − dmin since D − dmin = D − σ2
X +

σ4
X

σ2
X+σ2

Z
<

σ4
X

σ2
X+σ2

Z
, so

R̂(D) =
L

2
log

σ4
X

(σ2
X + σ2

Z)D − σ2
Xσ

2
Z

(3.5.61)

for D ∈ (
σ2
Xσ

2
Z

σ2
X+σ2

Z
, σ2

X).

3. Setting ρX = 1 and ρZ ∈ [0, 1], we have

dmin =
σ2
XλZ

Lσ2
X + λZ

=
Lσ2

XρZσ
2
Z + σ2

XγZ
L(σ2

X + ρZσ2
Z) + γZ

=
σ2
XρZσ

2
Z

σ2
X + ρZσ2

Z

+O

(
1

L

)
, d

(∞)
min +O

(
1

L

)
(3.5.62)
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and

R̂(D) =
1

2
log

Lσ4
X

(Lσ2
X + λZ)D − σ2

XλZ

=
1

2
log

Lσ4
X

(Lσ2
X + LρZσ2

Z + γZ)D − σ2
X(LρZσ2

Z + γZ)

=
1

2
log

σ4
X

(σ2
X + ρZσ2

Z)D − σ2
XρZσ

2
Z

+O

(
1

L

) (3.5.63)

for D ∈ (
σ2
XρZσ

2
Z

σ2
X+ρZσ

2
Z
, σ2

X).

4. Setting ρX ∈ (0, 1) and ρZ ∈ [0, 1], we have

dmin = σ2
X −

λ2X
LλY

− (L− 1)γ2X
LγY

= σ2
X −

(LρXσ
2
X + γX)2

L2(ρXσ2
X + ρZσ2

Z) + (γX + γZ)L
− L− 1

L

γ2X
γX + γZ

= σ2
X −

γ2X
γX + γZ

+
γ2X

L(γX + γZ)
− (LρXσ

2
X + γX)2

L2(ρXσ2
X + ρZσ2

Z) + (γX + γZ)L

= ρXσ
2
X +

γXγZ
γX + γZ

+
−(γX + γZ)ρ2Xσ

4
XL+ γX(γXρZσ

2
Z − (γX + 2γZ)ρXσ

2
X)

(γX + γZ)(L(ρXσ2
X + ρZσ2

Z) + γX + γZ)

= ρXσ
2
X −

ρ2Xσ
4
X

ρXσ2
X + ρZσ2

Z

+
γXγZ
γX + γZ

+
(γZρXσ

2
X − γXρZσ2

Z)2

(ρXσ2
X + ρZσ2

Z)2(γX + γZ)L
+O

(
1

L2

)
=

ρXσ
2
XρZσ

2
Z

ρXσ2
X + ρZσ2

Z

+
γXγZ
γX + γZ

+
(γZρXσ

2
X − γXρZσ2

Z)2

(ρXσ2
X + ρZσ2

Z)2(γX + γZ)L
+O

(
1

L2

)
, d

(∞)
min +

(γZρXσ
2
X − γXρZσ2

Z)2

(ρXσ2
X + ρZσ2

Z)2(γX + γZ)L
+O

(
1

L2

)
.

(3.5.64)

Moreover, it always holds that
λ2
X

λY
>

γ2
X

γY
when L → ∞, so it can be deduced
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from Theorem 7 that

R̂(D) =


1
2

log
(LρXσ

2
X+γX)2(γX+γZ)

γ2
X(L(ρXσ

2
X+ρZσ

2
Z)+γX+γZ)

+ L
2

log
γ2
X

(γX+γZ)(D−dmin)
, D ∈ (dmin,

γ2
X

γX+γZ
+ dmin],

1
2

log
(LρXσ

2
X+γX)2(γX+γZ)

(L(ρXσ
2
X+ρZσ

2
Z)+γX+γZ)(L(γX+γZ)(D−dmin)−(L−1)γ2

X)
, D ∈ (

γ2
X

γX+γZ
+ dmin, σ

2
X),

(3.5.65)

where
γ2
X

γX+γZ
+ dmin converges to

ρXσ
2
XρZσ

2
Z

ρXσ
2
X+ρZσ

2
Z

+ γX as L → ∞ due to (3.5.64).

Now consider the following two subcases separately.

• D ∈ (
ρXσ

2
XρZσ

2
Z

ρXσ
2
X+ρZσ

2
Z

+ γXγZ
γX+γZ

,
ρXσ

2
XρZσ

2
Z

ρXσ
2
X+ρZσ

2
Z

+ γX ]

In this case, we have D ∈ (dmin,
γ2
X

γX+γZ
+ dmin] and consequently

R̂(D) =
1

2
log

(LρXσ
2
X + γX)2(γX + γZ)

γ2X(L(ρXσ2
X + ρZσ2

Z) + γX + γZ)
+
L

2
log

γ2X
(γX + γZ)(D − dmin)

=
L

2
log

γ2X
γX + γZ

− L

2
log(D − dmin) +

1

2
log

γX + γZ
γ2X

+
1

2
log

(LρXσ
2
X + γX)2

L(ρXσ2
X + ρZσ2

Z) + γX + γZ
.

(3.5.66)

Note that

1

2
log

(LρXσ
2
X + γX)2

L(ρXσ2
X + ρZσ2

Z) + γX + γZ
=

1

2
logL+

1

2
log

ρ2Xσ
4
X

ρXσ2
X + ρZσ2

Z

+O

(
1

L

)
(3.5.67)
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and

1

2
log(D − dmin) (3.5.68a)

=
1

2
log

(
D − ρXσ

2
XρZσ

2
Z

ρXσ2
X + ρZσ2

Z

− γXγZ
γX + γZ

− (γZρXσ
2
X − γXρZσ2

Z)2

(ρXσ2
X + ρZσ2

Z)2(γX + γZ)L
−O

(
1

L2

))
(3.5.68b)

=
1

2
log

(
D − ρXσ

2
XρZσ

2
Z

ρXσ2
X + ρZσ2

Z

− γXγZ
γX + γZ

)
(3.5.68c)

−1

2

(γZρXσ
2
X − γXρZσ2

Z)2

(ρXσ2
X + ρZσ2

Z)2((γX + γZ)D − γXγZ)− ρXσ2
XρZσ

2
Z(γX + γZ)(ρXσ2

X + ρZσ2
Z)

1

L

(3.5.68d)

+O

(
1

L2

)
(3.5.68e)

where (3.5.68b) is due to (3.5.64) and (3.5.68e) holds for log(1 + x) = x+

O(x2). Substituting (3.5.67) and (3.5.68e) into (3.5.66) and re-arranging

the terms yield

R̂(D)

=
L

2
log

γ2X(ρXσ
2
X + ρZσ

2
Z)

(ρXσ2
X + ρZσ2

Z) ((γX + γZ)D − γXγZ)− ρXσ2
XρZσ

2
Z(γX + γZ)

+
1

2
logL+

1

2
log

ρ2Xσ
4
X (γX + γZ)

(ρXσ2
X + ρZσ2

Z)γ2X

+
1

2

(γZρXσ
2
X − γXρZσ2

Z)2

(ρXσ2
X + ρZσ2

Z)2 ((γX + γZ)D − γXγZ)− ρXσ2
XρZσ

2
Z(γX + γZ)(ρXσ2

X + ρZσ2
Z)

+O

(
1

L

)
.

(3.5.69)
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In particular, when D =
ρXσ

2
XρZσ

2
Z

ρXσ
2
X+ρZσ

2
Z

+ γX , we have

R̂(D) =
1

2
logL+

1

2
log

ρ2Xσ
4
X (γX + γZ)

(ρXσ2
X + ρZσ2

Z)γ2X
+

1

2

(γZρXσ
2
X − γXρZσ2

Z)2

γ2X(ρXσ2
X + ρZσ2

Z)2
+O

(
1

L

)
.

(3.5.70)

• D ∈ (
ρXσ

2
XρZσ

2
Z

ρXσ
2
X+ρZσ

2
Z

+ γX , σ
2
X)

This case falls into where D ∈ (
γ2
X

γX+γZ
+ dmin, σ

2
X), so we have

R̂(D) =
1

2
log

(LρXσ
2
X + γX)2(γX + γZ)

(L(ρXσ2
X + ρZσ2

Z) + γX + γZ)(L(γX + γZ)(D − dmin)− (L− 1)γ2X)

=
1

2
log

ρ2Xσ
4
X(γX + γZ)

(ρXσ2
X + ρZσ2

Z)((γX + γZ)(D − dmin)− γ2X)
+O

(
1

L

)
,

(3.5.71)

where

(γX + γZ)(D − dmin)− γ2X

=(γX + γZ)(D − ρXσ
2
XρZσ

2
Z

ρXσ2
X + ρZσ2

Z

− γXγZ
γX + γZ

)− γ2X

=
(ρXσ

2
X + ρZσ

2
Z)(γX + γZ)(D − γX)− ρXσ2

XρZσ
2
Z(γX + γZ)

ρXσ2
X + ρZσ2

Z

.

(3.5.72)

Substituting (3.5.72) into (3.5.71) yields

R̂(D) =
1

2
log

ρ2Xσ
4
X

(ρXσ2
X + ρZσ2

Z)(D − γX)− ρXσ2
XρZσ

2
Z

+O

(
1

L

)
(3.5.73)

which can cover the case 3 where ρX = 1 and ρZ ∈ [0, 1].
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In summary, we have

d
(∞)
min , lim

`→∞
dmin =



ρXσ
2
XρZσ

2
Z

ρXσ
2
X+ρZσ

2
Z

+ γXγZ
γX+γZ

, ρX ∈ (0, 1),

σ2
XγZ

σ2
X+γZ

, ρX = 0,

σ2
XρZσ

2
Z

σ2
X+ρZσ

2
Z
, ρX = 1,

(3.5.74)

and for D ∈
(
d
(∞)
min , σ

2
X

)
,

1. ρX = 0, ρZ ∈ (0, 1], σ2
Z 6= 0,

R̂∞(D) =
L− 1

2
log

σ4
X

(σ2
X + γZ)D − σ2

XγZ
+

1

2

σ4
X

(σ2
X + γZ)D − σ2

XγZ
−1

2
+O

(
1

L

)
.

(3.5.75)

2. ρX = 0, ρZ = 0 or σ2
Z = 0,

R̂∞(D) =
L

2
log

σ4
X

(σ2
X + σ2

Z)D − σ2
Xσ

2
Z

. (3.5.76)

3. ρX ∈ (0, 1], ρZ ∈ [0, 1],

R̂∞(D)

=



L
2

log
γ2
X(ρXσ

2
X+ρZσ

2
Z)

(ρXσ
2
X+ρZσ

2
Z)((γX+γZ)D−γXγZ)−ρXσ2

XρZσ
2
Z(γX+γZ)

+1
2

logL+ α̂ +O
(
1
L

)
, D < D∞th,0,

1
2

logL+ 1
2

log
ρ2
Xσ

4
X(γX+γZ)

(ρXσ
2
X+ρZσ

2
Z)γ

2
X

+ 1
2

(γZρXσ
2
X−γXρZσ

2
Z)

2

γ2
X(ρXσ

2
X+ρZσ

2
Z)

2 +O
(
1
L

)
, D = D∞th,0,

1
2

log
ρ2
Xσ

4
X

(ρXσ
2
X+ρZσ

2
Z)(D−γX)−ρXσ2

XρZσ
2
Z

+O
(
1
L

)
, D > D∞th,0,

(3.5.77)
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where

α̂ ,
1

2
log

ρ2Xσ
4
X (γX + γZ)

(ρXσ2
X + ρZσ2

Z)γ2X

+
1

2

(γZρXσ
2
X − γXρZσ2

Z)2

(ρXσ2
X + ρZσ2

Z)2 ((γX + γZ)D − γXγZ)− ρXσ2
XρZσ

2
Z(γX + γZ)(ρXσ2

X + ρZσ2
Z)
,

(3.5.78)

and

D∞th,0 ,
ρXρZσ

2
Xσ

2
Z

ρXσ2
X + ρZσ2

Z

+ γX . (3.5.79)

This completes the proof of Theorem 8.

3.6 Conclusions

We considered an indirect distributed lossy source coding system with a centralized

encoder and a centralized decoder. We provide the explicit rate-distortion function

for this setting under both non-asymptotic and asymptotic regimes. Furthermore,

we make the comparison between the asymptotic function for the centralized case

and the asymptotic distributed lower bound, results show that the asymptotic rate-

distortion function for the centralized case is smaller than the asymptotic distributed

lower bound, which gave us the hint that the former does not make a better lower

bound for the distributed case.
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Chapter 4

Conclusion

The problem of symmetric remote Gaussian multiterminal source coding is studied.

An explicit lower bound on the rate-distortion function for this problem is derived by

solving a convex program induced a fictitious signal-noise decomposition. It is further

shown that this lower bound partially coincides with the Berger-Tung upper bound,

yielding a complete characterization of the rate-distortion function in certain regimes.

The asymptotic expressions of the derived lower bound and the Berger-Tung upper

bound are computed when the number of encoders tends to infinity.

The rate-distortion function of symmetric remote Gaussian source coding with

a centralized encoder is completely characterized. It then serves as a second rate-

distortion lower bound for symmetric remote Gaussian multiterminal source coding.

It is shown that this lower bound is not as tight as the first one, demonstrating

the advantage of the fictitious signal-noise decomposition approach. The asymptotic

behavior of the second lower bound is also analyzed.

It is of considerable interest to fully characterize the rate-distortion function of

symmetric remote Gaussian multiterminal source coding. However, the existing
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bounding techniques appear to be inadequate for this purpose. For future work,

we attempt to first identify the looseness of our (first) lower bound and the Berger-

Tung upper bound, especially in the regime where the gap between the two diverges

asymptotically.
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Appendix A

Your Appendix

A.1 Proof of Theorem 1

The proof is built upon the so-called Berger-Tung upper bound [13, Thm 12.1] as

summarized in the following lemma.

Lemma 1. Let V := (V1, . . . , VL)T be an auxiliary random vector jointly distributed

with (X,Z,Y) such that (X,Z, {Y`}`∈A\`, {V`}`∈A\`)→ Y` → V` form a Markov chain

for ` ∈ A, A = {1, . . . , L}, and any (r, d) such that

r ∈ R(A), (A.1.1)

and

d ≥ 1

`

∑
`∈A

E[(X` − E[X`|(V`)`∈A])2], (A.1.2)
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where R denoted the set of (r`)`∈A satisfying

∑
`∈B

r` ≥ I((Y`)`∈B; (V`)`∈B|(V`)`∈A\`∈B) (A.1.3)

with φ ⊂ B ⊆ A, we have

(r, d) ∈ RD(A). (A.1.4)

Let Q := (Q1, . . . , QL)T be an L-dimensional zero-mean Gaussian random vector

with covariance matrix

ΛQ = diag(L)(λQ, . . . , λQ) � 0, (A.1.5)

where λQ > 0. We assume Q is independent of (X,Z,Y). Define the following

auxiliary random variables:

V` = Y` +Q`, ` ∈ {1, . . . , L}. (A.1.6)

Note that the resulting V satisfies the Markov chain constraints specified in Lemma 1.

Let

r =
1

L
I(Y1, · · · , YL;V1, · · · , VL), (A.1.7)

d =
1

L

∑
`∈A

E[(X` − E[X`|V1, · · · , VL])2], (A.1.8)
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we have

r =
1

L
(h (V1, · · · , VL)− h (V1, · · · , VL|Y1, · · · , YL))

=
1

L
(h (Y1 +Q1, · · · , YL +QL)− h (Q1, · · · , QL))

=
1

2L
log

det(ΓY + ΛQ)

det(ΛQ)

=
1

2L
log

det(ΛY + ΛQ)

det(ΛQ)

=
1

2L
log

(
1 +

λY
λQ

)
+
L− 1

2L
log

(
1 +

γY
λQ

)
,

(A.1.9)

and

d =
1

L
tr
(
ΓX − ΓX (ΓY + ΛQ)−1 ΓX

)
=

1

L
tr
(
ΛX − ΛX (ΛY + ΛQ)−1 ΛX

)
=

1

L
λX

(
1− λX

λY + λQ

)
+
L− 1

L
γX

(
1− γX

γY + λQ

)
,

(A.1.10)

which is a strictly increasing function of λQ, converging to dmin as λQ → 0 and to γX

as λQ → ∞. One can readily complete the proof of Theorem 1 by invoking Lemma

1 and the standard proof of Berger-Tung upper bound.

A.2 Proof of Theorem 2

Let

(Y1, . . . , YL)T = (U1, . . . , UL)T + (W1, . . . ,WL)T , (A.2.1)

where (U1, . . . , UL)T and (W1, . . . ,WL)T are two mutually independent L-dimensional

zero-mean Gaussian vectors with covariance matrices ΣU � 0 and

ΛW = diag(L)(λW , . . . , λW ) � 0. (A.2.2)
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Then, two auxiliary random processes {(U1,t, . . . , UL,t)
T}∞t=1 and {(W1,t, . . . , WL,t)

T}∞t=1

are constructed in an i.i.d. manner.

According to Definition 1, for any R ≥ R(D) and ε > 0, there exist encoding and

decoding functions such that

1

n

L∑
`=1

log |M`| ≤ R + ε, (A.2.3)

and

1

nL

L∑
`=1

n∑
t=1

E[(X`,t − X̂`,t)
2] ≤ D + ε. (A.2.4)

The proof is divided into several steps as follows.

Simplifying the Rate Constraint: Lower bounding
∑

` log(|C(n)
` |) we have

LR ≥
∑
`

log(|C(n)
` |)

≥ H(M
(n)
L )

= I(Un
L ;M

(n)
L ) +H(M

(n)
L |U

n
L)

= I(Un
L ;M

(n)
L ) + I(Y n

L ;M
(n)
L |U

n
L)

= h(Un
L)− h(Un

L |M
(n)
L ) + h(Y n

L |Un
L)− h(Y n

L |M
(n)
L , Un

L)

=
n

2
log((2πe)L det(Γ

(n)
U )) +

n

2
log((2πe)L det(Λ

(n)
W ))− h(Un

L |M
(n)
L )− h(Y n

L |M
(n)
L , Un

L),

(A.2.5)

we let

∆U |M :=
1

n

∑
t

E
[
(UL(t)− ÛL(t))T (UL(t)− ÛL(t))

]
, (A.2.6)

∆Y |U,M :=
1

n

∑
t

E
[
(YL(t)− ŶL(t)T (YL(t)− ŶL(t)))

]
, (A.2.7)
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where

ÛL(t) := E [UL(t)|ML(t)] , (A.2.8)

ŶL(t) := E [YL(t)|UL(t),ML(t)] . (A.2.9)

It then can be verified that

h(Un
L |M

(n)
L ) =

n∑
t=1

h(UL(t)|M (n)
L , U t−1

L )

≤
n∑
t=1

h(UL(t)|M (n)
L )

=
n∑
t=1

h(UL(t)− ÛL(t)|M (n)
L )

≤
n∑
t=1

h(UL(t)− ÛL(t))

≤
n∑
t=1

1

2
log((2πe)L det(∆U |M))

=
n

2
log((2πe)L det(∆U |M)),

(A.2.10)

which can be achieved by leveraging the maximum differential entropy lemma, and
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the concavity of the log-determinant function. Similarly, we have

h(Y n
L |M

(n)
L , Un

L)

=
n∑
t=1

h(YL(t)|M (n)
L , UL(t), Y t−1

L )

≤
n∑
t=1

h(YL(t)|M (n)
L , UL(t))

=
n∑
t=1

h(YL(t)− ŶL(t)|M (n)
L , UL(t))

≤
n∑
t=1

h(YL(t)− ŶL(t))

≤
n∑
t=1

1

2
log((2πe)L det(∆Y |U,M))

=
n

2
log((2πe)L det(∆Y |U,M)).

(A.2.11)

Combining the above results, we get

1

2L
log

det(ΣU) det(ΛW )

det(∆U |M) det(∆Y |U,M)
≤ R + ε. (A.2.12)

Simplifying the Distortion Constraint: We define

∆Y |M :=
1

n

n∑
t=1

E
[
(YL(t)− ȲL(t))T (YL(t)− ȲL(t))

]
, (A.2.13)

where

ȲL(t) := E
[
YL(t)|M (n)

L

]
, (A.2.14)

clearly, we have

0 ≺ ∆Y |M � ΣY . (A.2.15)

96

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – S. Zhou; McMaster University – Electrical and Computer Engineering

With some matrix calculations as in [33, Appendix B], one can show that

∆U |M = ΣUΣ−1Y ∆Y |MΣ−1Y ΣU + ΣU − ΣUΣ−1Y ΣU , (A.2.16)

∆Y |U,M � (∆−1Y |M + Λ−1W − Σ−1Y )−1. (A.2.17)

Similar to ∆U |M as in (A.2.16), one can show that

1

n

L∑
`=1

n∑
t=1

E[(X`,t − X̂`,t)
2] = tr(ΣXΣ−1Y ∆Y |MΣ−1Y ΣX + ΣX − ΣXΣ−1Y ΣX). (A.2.18)

Combining (A.2.18) and (A.2.4), we get

tr(ΣXΣ−1Y ∆Y |MΣ−1Y ΣX + ΣX − ΣXΣ−1Y ΣX) ≤ L(D + ε). (A.2.19)

Moreover, let

δ` :=
n∑
t=1

E
[
(Y`(t)− Ỹ`(t))2

]
, (A.2.20)

where

Ỹ`(t) := E [Y`(t)|Un
` ,M`] , (A.2.21)

it is clear that

δ` > 0, ` ∈ [1, L]. (A.2.22)

Furthermore, since Y n
` = Un

` +W n
` , ` ∈ [1, L], and (Un

1 , . . . , U
n
L) and (W n

1 , . . . ,W
n
L )

are mutually independent, we have

∆Y |U,W = diag(L)(δ1, . . . , δL). (A.2.23)
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Formulating the Optimization Problem: Considering (A.2.12), (A.2.22),

(A.2.23), (A.2.15), (A.2.17), (A.2.19) and letting ε → 0, one can show using sym-

metrization and convexity arguments that there exist ∆ with identical diagonal entries

as well as identical off-diagonal entries and δ such that

1

2
log

det(ΣU)

det(∆U |M)
+
L

2
log

λW
δ
≤ R, (A.2.24a)

0 ≺ ∆ � ΣY , (A.2.24b)

0 < δ, (A.2.24c)

diag(L)(δ, . . . , δ) � (∆−1 + Λ−1W − Σ−1Y )−1, (A.2.24d)

tr(ΣXΣ−1Y ∆Σ−1Y ΣX + ΣX − ΣXΣ−1Y ΣX) ≤ LD. (A.2.24e)

Using the eigenvalue decomposition, we have ∆ = Θ diag(α, β, . . . , β) ΘT for some

positive α and β. So, inequality (A.2.24a) can be equivalently written as

1

2
log

λ2Y
(λY − λW )α + λY λW

+
L− 1

2
log

γ2Y
(γY − λW )β + γY λW

+
L

2
log

λW
δ
≤ R,

(A.2.25)

and (A.2.24b)–(A.2.24e) reduce to the constraints (2.4.6b)-(2.4.6g). Thus, minimizing

the left-hand side of (A.2.25) over (α, β, δ) subject to the constraints (2.4.6b)-(2.4.6g)

and sending λW to min(λY , γY ) yields the desired lower bound.
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