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Abstract

In this thesis, we aimed to overcome the limitations of organo-metallic halide per-

ovskites as materials for future optoelectronic applications. Despite having unique

optical and electrical properties that make them attractive for various fields, such as

energy conversion, photonics, and electronics, perovskites are known to be unstable in

the presence of moisture, oxygen, and UV light. To tackle this issue, we employed a

reverse micelle synthesis route using an amphiphilic diblock copolymer poly(styrene)-

block-poly(2vinylpyridine) (PS-b-P2VP) as a nanoreactor, which was dissolved in a

non-polar solvent. This approach allowed us to synthesize perovskite nanoparticles,

with various A, B, and X site ions, with tunable emission wavelengths between 475

nm and 850 nm. Additionally, exploiting the properties of reverse micelle templating,

novel properties were achieved including stable nanoparticles with two distinctly dif-

ferent emission spectra in a single solution, large induced Stokes shifts up to 660meV

and high stability in ambient conditions over 200 days. To further improve the sta-

bility and electrical conductivity of perovskite nanoparticles, we created a core-shell

structure by growing a suitable conductive shell around the perovskite nanoparti-

cles using a three-step loading mechanism. For this, we opted for metal oxides with

type-II band alignment with FAPbBr3, which allowed the separation of the exciton
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and improved the stability of the perovskite nanoparticles. We synthesized FAPbBr3-

TiO2, FAPbBr3-NiO, and FAPbBr3-ZnO core-shell nanostructures with various shell

thicknesses, which were able to withstand harsh conditions such as oxygen plasma

etching. The incorporation of various nanoparticles as optical filters and as electri-

cally active layers in organic solar cell devices resulted in an improvement in the

overall performance. To apply the nanoparticles on sensitive surfaces, such as organic

thin films, we also developed an indirect mechanical method using graphene transfer

printing. This technique allowed us to successfully transfer perovskite and iron oxide

nanoparticles without loss of properties.
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Chapter 1

Introduction

1.1 Thesis overview

The methodology employed in this study involves the utilization of diblock copoly-

mer reverse micelle deposition (RMD) to produce organo-metalic halide perovskite

(OMHP) nanoparticles. The emphasis is on tuning the properties of the perovskite

nanoparticles (PNPs), by exploiting the controlled reaction kinetics of RMD. The first

chapter of the thesis delves into the potential, accomplishments, and limitations of

OMHPs within the field of optoelectronics. Various techniques are being employed to

circumvent the challenges associated with perovskites, yet certain limitations remain

to be resolved. The utilization of RMD has demonstrated promise in addressing

certain issues of MHPs; dealing with the challenges for its practical application to

produce PNPs was the key focus of this thesis.

The second chapter examines how reverse micelle synthesis can be employed to

tune the bandgap of PNPs by varying the loading time, precursor ratio, and concen-

tration of reverse micelles. Through the use of only MAI and PbBr2, taking advantage
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of the slowed-down reaction kinetics of perovskite formation, we were able to tune

the bandgap and synthesize two different types of nanoparticles in a single solution,

achieving a large induced Stokes shift. The third chapter continues to discuss the

synthesis of PNPs extending to using a large five-membered pyrrolidinium ion as an

A-site cation for the synthesis of pyrrolidinium-based nanoparticles. A bathochromic

shift was observed when iodide was substituted by bromide in these PNPs nanopar-

ticles, generating a large Stokes shift of 660meV (182 nm). Due to their polymer

shielding, all of these nanoparticles were successfully used as optical down converters

for organic photovoltaic devices with absorption matching the emission wavelengths

of the PNPs, showing increased performance.

The fourth chapter focuses on stabilizing FA-based perovskite nanoparticles by

capping them with a conductive material. Following the successful synthesis of per-

ovskite nanoparticles, the nanoparticles were capped with TiO2 with variable shell

thickness. With increasing shell thickness, the core-shell structure was clearly visi-

ble and the emission spectrum of nanoparticles was quenched. Such capping allowed

the PNPs to withstand the harsh oxygen plasma conditions required to remove the

polymer templates, allowing them to be incorporated as electrically active layers in

solar cells. Used as an interlayer, the nanoparticles improved the efficiency of organic

solar cells. In the same way, NiO and ZnO shells were created around FAPbBr3

nanoparticles and they also enhanced the efficiency of solar cells.

The fifth chapter discusses an indirect mechanical method of transferring nanopar-

ticles to a sensitive substrate on which the nanoparticles cannot be applied directly,

using graphene-nanoparticle composites. Using this technique, we also showcased the

stability of polymer encapsulated perovskite nanoparticles in water, as this process
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involves floating in an aqueous etching solution to exfoliate the graphene.

The sixth chapter presents the conclusion of the thesis as well as the future ob-

jectives related to this thesis.

1.2 Background and motivation

Halide perovskites are a new generation of optically active materials that have gained

a lot of attention due to their potential optical and electrical properties. Since the first

research article on photoactive perovskites was published by Konjma et al. in 2009 [1],

this group of materials has gained interest and widespread attention. The capability

of halide perovskite was further revealed by Snaith et al. in 2013, who reported a

solid-state planar perovskite solar cell demonstrating a power conversion efficiency

(PCE) of over 15% [2]. In response to these studies, intensive research has been con-

ducted on this class of materials in order to improve their efficiency, tuneability, and

stability. [3–7]. These materials have a unique three-dimensional cage-like structure

with a chemical formula of ABX3, where A is a monovalent cation [e.g., methylam-

monium(MA) CH3NH3
+, cesium (Cs)+, formamidinium (FA) CH(NH2)

+, or boron

(B)], B is primarily a divalent transition metal [e.g., lead (Pb+2), or tin (Sn+2)], and

X is a halide anion [chlorine(Cl-1), bromine (Br-1), or iodine (I-1)] [8–11]. Due to the

cage-like structure and the selection of various candidates for various positions, per-

ovskites can be tuned for a wide range of properties. Perovskites have been found to

exhibit excellent optoelectronic properties, including high absorption coefficients [12],

long carrier lifetimes. [13], low recombination losses [14], and adjustable bandgap [15].

As a result of their unique properties, perovskites have displayed their potential for

various applications, such as solar cells [16], light-emitting diodes (LEDs) [17–19],
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photovoltaics [20,21], lasers [22], down converters [23,24], photodetectors, and single-

photon sources [25,26].

Perovskites cover a wide emission spectrum from 450 nm to 850 nm depending

on the halide ion used. As a general rule, chlorine-based perovskites emit ultraviolet

light, bromine-dominant perovskites emit green light while iodine-based perovskites

emit red light or in near-infrared region [27–29]. This bandgap tunability of per-

ovskites is among their most appealing features. Other qualities of perovskites in-

clude their cheap and easy fabrication which starts with mixing inexpensive salts

providing suitable conditions and a calculated amount of precursors. Once combined,

they crystallize very quickly forming the final product. [25, 30, 31]. They can also be

deposited using vapor deposition at very low temperatures [32–34].

Considering their unique properties, such as high absorption coefficients, high

power conversion efficiency (PCE), and low material costs, metal halide perovskites

(MHPs) are a strong candidate for green energy production [35]. The efficiency of

perovskite solar cells has been rapidly increasing in recent years. In 2009, the first

perovskite solar cell was reported with an efficiency of 3.8% [1]. Since then, the

efficiency of perovskite solar cells has continuously improved and achieved a record

efficiency of 25.7% [36] within only 13 years. The power conversion efficiency (PCE)

of perovskite solar cells (PSC) has surpassed those of silicon (non-crystalline) and

organic solar cells only after 13 years of research [36]. Currently, PCE of perovskite

solar cells has surpassed those of poly-crystalline silicon and is rivaling crystalline Si

single junction cells [37], as shown in figure 1.1.
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Figure 1.1: A chart depicting the highest confirmed conversion efficiencies of diverse
photovoltaic technologies, plotted over a span of time from 1976 to the present (source
NERL).

The framework structure of the perovskite provides a broad range of tunable

properties, but also imposes restrictions on the selection of ion sizes for the A, B, and

X sites due to its cage-like architecture. The stability of the BX6 octahedron that

encloses the A-site cation in a perovskite cage is linked to the octahedral factor (µ).

The octahedral factor (µ), expressed as the ratio of the radius of the B-site cation (rB)

and the halide counter ion (rX), shown in equation 1.2.1, can be used to approximate

the stability of the BX6 octahedra. The binding of the B-site cation is determined by
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the ionic size restrictions imposed by the X6 octahedra. When the octahedral factor

µ falls within the range of 0.442 to 0.895, the metal halide perovskite exhibits a stable

configuration [38–40].

µ =
rB
rX

(1.2.1)

The Goldschmidt tolerance factor (t) is a parameter determined using the ionic

radii of the constituent A, B, and X ions (rA, rB, and rX), as described by the equation

1.2.2 [41]. This factor is crucial in determining whether different combinations of A,

B, and X ions are capable of forming an optically active perovskite structure. The

stability and formation of the ABX3 perovskite structure rely on the dimensions of

the cations and anions involved. The literature reports that if the tolerance factor

falls between the range of 0.8 to 1.0, an optically active perovskite crystal structure

is formed. When the tolerance factor ranges from 0.9 to 1.0, an optically active

perovskite with a cubic structure is formed. On the other hand, when the tolerance

coefficient lies within the range of 0.80 to 0.89, a distorted perovskite structure with

an orthorhombic, tetragonal, or rhombohedral (in order of stability) crystal structure

is more likely to emerge. A tolerance factor less than 0.8 indicates that the A-site

cation is too small to form an optically active perovskite phase. Furthermore, if the

A-site ion is too large, it produces an optically inactive hexagonal perovskite phase

with a tolerance factor greater than 1.0. Hence, the size of the A-site ion must lie

within the range of approximately 155 pm to 260 pm, as illustrated in Figure 1.2,

imposing a constraint on the size of the A-site ion. [40,42,43].

t =
rA + rX√
2(rB + rX)

(1.2.2)
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Due to the versatility of ions substitutions possible for MHPs without disrupting

the perovskite crystal structure, fine-tuning of the properties of the perovskite ma-

terial is possible to suit a particular application [26]. Such substitutions of the A,

B and X site ions have been used to engineer the bandgap, improve material stabil-

ity, and improve photoluminescence quantum yields (PLQYs) [42–44].As a result of

intensive research, materials including Li, Na, K, Ca, Sr, Mg, Mn, Zn, Bi, and Ce

are being doped into various perovskites to engineer the most suitable material for a

given application [45–47].

The compositional engineering of perovskites has greatly improved their perfor-

mance, yet a few drawbacks still need to be addressed for widespread commercializa-

tion. The fast reaction kinetics involved in halide perovskite formation can limit the

stable tailored compositions [25, 30, 31] which leads to defects and phase instability.

Controlling the reaction kinetics of the formation of bulk perovskites is challenging,

and many groups used annealing after deposition to tune the structure [48,49]. How-

ever, after the bulk phase is formed, such modifications will introduce more defects

due to re-crystallization [50]. Therefore, for bulk halide perovskite synthesis, the ideal

method of obtaining the desired band gap is by adding the raw precursor in extremely

precise stoichiometric ratios, which is complicated by the fast kinetics.
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Figure 1.2: Effect of A-site cation on tolerance factor and perovskite phase.

On the other hand, low dimensional perovskites which include quantum dots

(QDs) and nanoparticles offer additional degrees of freedom over bulk to tune the

optoelectronic properties and control the synthesis process [51]. They also have en-

hanced perovskite capabilities in optics and electronics due to their large surface-

to-volume ratio, enhanced optical and electrical properties [52], improved stability,

and tuned chemical composition, which allows fine-bandgap tuning [53–55]. Based

on the synthesis conditions, a wide range of nanostructures can be obtained due to

controllable crystallization [56,57].

In general, the physical properties of semiconducting nanoparticles are not only

tuned by chemical stoichiometry [26] (the ratio of cations to anions yielding different
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bandgaps) and confined size growth on a dimensional scale [58] (smaller nanopar-

ticles tend to have higher absorption coefficients and larger bandgaps, while larger

nanoparticles tend to have lower absorption coefficients and smaller bandgaps) [59]

but also by other parameters such as crystallinity [60] (nanoparticles with higher crys-

tallinity tend to have better electronic and optical properties than those with lower

crystallinity), temperature and pressure of the formation [61] (high temperature and

pressure can improve the crystallinity of the nanoparticles and high pressure can af-

fect the bandgap), the synthesis route [51] (Different synthesis methods can produce

nanoparticles with different sizes, shapes, and chemical compositions, which can affect

their properties), and surface passivation [62] (surface passivation can improve the re-

combination lifetime of the carriers and can reduce the non-radiative recombination

rate).

All of the above-mentioned parameters vary with the fabrication technique. Re-

cently, a number of synthesis methods have been used to synthesize PNPs, includ-

ing solvent-induced re-precipitation, ligand-assisted re-precipitation (LARP), micro-

emulsion, hot injection, and template-assisted synthesis [62–69]. It is worth noting

that each synthesis method has its own advantages and drawbacks. For example,

without any shielding around them, nanoparticles degrade under ambient environ-

mental conditions such as UV light illumination, heat, and moisture, even faster than

bulk MHPs. Using the LARP technique, PNPs are obtained by regulating solvent

volumes and concentrations. A supersaturated solution is created by dissolving the

precursors in a suitable solvent and then transferring them to a poor solvent, where

ligands (oleic acid (OA) and oleylamine (OAm)) are used to precipitate PNPs. How-

ever, reprecipitation causes high polydispersity. Additionally, the proton exchange
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between OA and OAm can lead to the loss of ligands from PNP surfaces during the

purification process or storage period, reducing their stability [70].

Other processes require high temperatures, which lead to polydispersity and ag-

glomeration [51, 53, 62, 71, 72]. Therefore, a synthesis process that allows the con-

trollable size and emission wavelength, enables easy incorporation of the PNPs into

electronic devices, and prevents water-induced degradation and halide ion migration

would be highly advantageous to commercialize them. MHPs exhibit structural degra-

dation under ambient conditions and moisture, leading to a substantial decrease in

device performance and even device failure [73]. The sensitivity of perovskite materi-

als to moisture is due to the vulnerability of their ionic bonding, which renders them

susceptible to water penetration and ion migration [38].

E

CB

Type I
VB

E

CB

VB

Inverse-type II Type IIInverse-type I

Figure 1.3: The figure presents a schematic representation of the Type I, inverse-type
I, inverse-type II, and type II core-shell configurations

In recent years, efforts have been made to passivate perovskite NPs to overcome

their stability limitations. A well-established classical technique for tackling surface

defects and improving nanoparticle stability is encapsulating the nanoparticles with
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a strong and stable material with a band gap larger or smaller than that of the

nanoparticle. According to a photo-generated charge distribution, core-shell band

alignment can be designed [74]. The band alignments of core-shell semiconductors

can be divided into three types based on their characteristics: type-I, inverse type I,

type II, and inverse-type II [75, 76].The type-I band alignment refers to a situation

where the capping material possesses a larger energy bandgap than the optically active

core. As a consequence, the conduction band edge and valence band edge of the core

material lie within the shell band gap, thereby resulting in the confinement of electrons

and holes to the shell. This configuration leads to enhanced stability of NCs [77,78].

Conversely, in the inverse-type I band alignment, the band gap of the core material is

larger than that of the shell material [78]. The type-II band alignment is characterized

by either an overlapping or a small offset between the conduction bands of the core and

shell, while the valence band of the core and shell has a relatively large offset. In such

a heterostructure, electrons can be transferred over the heterostructure while holes

with low energies remain in the core. The type-II band alignment not only improves

the stability of nanoparticles but also enhances the efficiency of photonic devices by

improving charge extraction [79, 80]. In contrast, the inverse-type II band alignment

is characterized by a situation where the valence band edge of the shell either overlaps

with the valence band of the core material or has a small offset, while the conduction

band of the core and shell has a relatively large offset. As a result, holes are delocalized

over the core-shell heterojunction, whereas electrons with low energy remain in the

core. This type of band alignment also improves the stability of active material and

helps in efficient charge extraction [81,82]. schematic of core-shell heterostructures is

shown in Figure 1.3. Creating core-shell heterojunctions is an ideal way to overcome
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stability issues of perovskite nanoparticles. Various successful attempts have been

made to fabricate core-shell structures, mainly using cesium-based perovskites as

cores. Through various synthesis techniques, various shells, including metal oxides,

polymers, metal chalcogenides, perovskites, inorganic layers, and organic layers, have

been explored to improve stability and charge transport [78, 80]. During core-shell

synthesis, one of the major problems is the difficulty in controlling the thickness of the

shell due to the fast reaction kinetics of perovskites. By controlling the thickness of the

shell material, we will be able to partially delocalize the charge carriers over the shell,

allowing tuning of the emission spectrum and improving charge extraction. A further

concern observed during typical core-shell synthesis was that the perovskite NCs

were homogeneously incorporated into one shell, reducing optoelectronic efficiency.

Furthermore, efficient techniques that would allow growth of various types of shells

without changing experimental techniques and conditions would be highly desirable

for future up-scaling for mass production of devices. It is therefore necessary to

evaluate the reaction mechanisms and side reactions, as well as to carefully design

the surface engineering of the nanoparticles, for rational design of smart core-shell

structures.

To address the above-mentioned issue of perovskites, this research project uses

diblock copolymer reverse micelle template-assisted synthesis to fabricate perovskite

nanoparticles. The template-assisted synthesis of nanoparticles has had widespread

use in producing size-controlled, ordered nanoparticle arrays of a variety of nanopar-

ticles under ambient conditions with maximum control over the tuning parame-

ters [23, 67,83–91]
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Figure 1.4: This figure illustrates the process of creating perovskite nanoparticles
through reverse micelle synthesis
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The process begins with the dissolution of an amphiphilic diblock copolymer in a

selective polar solvent to form nanoreactors. Following the formation of the nanoreac-

tors, reactive precursors are added to the nanoreactor solution and stirred to facilitate

infiltration of the precursors into the core. This method has also been used to produce

well-dispersed perovskite nanoparticles with low polydispersity and fine control over

size as the nanoparticles are produced inside the nanoreactors [66, 68, 69, 92]. From

previous research conducted in the Turak group, it is known that in PS-b-P2VP di-

block copolymer systems, pyridine acts as a monodentate ligand for transition metals

and halogen ions [92, 93]. The diblock polymer comes in a variety of PS-to-P2VP

ratios that define different sizes of nanoreactors and provide varying levels of protec-

tion from the environment [94]. Diblock copolymers with heavier molecular weights

create stiffer nanoreactors that offer high levels of protection to the nanoparticles

formed inside, avoid aggregation, and exhibit uniform sizes, but only allow selective

salts to infiltrate. In contrast, PS-b-P2VP co-polymer with a lower molecular weight

forms crew-cut nanoreactors. The crew-cut nanoreactors enable the infiltration of

almost any salt but do not provide a high level of protection, which leads to poly-

dispersity and agglomeration [94]. This template-assisted synthesis route provides

the advantage of loading the precursors into the micelles step by step, slowing down

the reaction kinetics to achieve phases that are difficult to obtain by other synthe-

sis routes [23]. Although the micelle encapsulation provides shielding and external

stability, the insulating nature of polystyrene in corona prevents it from being used

directly in optoelectronic devices. Traditionally O2 plasma etching is used to remove

the PS-bP2VP diblock copolymer shielding from around the nanoparticles [83, 95].
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While plasma etching is effective at removing the polymer coating from nanopar-

ticles surfaces without affecting the particle size or distribution, the harsh plasma

atmosphere would also degrade the perovskite nanoparticles, decomposing it back

to PbI2 [67]. The development of a core-shell structure is the key to allowing these

particles to be used for applications that require electrical conduction.

1.3 General overview of the research project

1.3.1 Typical synthesis procedure to achieve perovskite nanopar-

ticles

The diblock copolymer reverse micelle templating process begins with the dissolu-

tion of the amphiphilic diblock copolymer polystyrene-b-poly(2-vinylpyridine) (PSb-

P2VP) in a selective non-polar solvent. That mixture is allowed to stir for 24 hours,

resulting in the formation of nanoreactors. When dispersed in a non-polar solvent,

the monomers of this diblock copolymer arrange themselves in a pattern in which

the hydrophobic polystyrene extends outward to form the corona of the nanoreactor

while the hydrophilic poly(2-vinylpyridine) forms its core. Following the formation

of the nanoreactors, perovskite precursors dissolved in DMF or IPA are added to the

nanoreactor solution with a 24-hour gap and allowed to stir for a further 24 hours to

facilitate infiltration of the precursors into the core to allow the formation of desired

perovskite nanoparticles. Finally, the solution is centrifuged to remove any unloaded

precursors. Such polymer shielded nanoparticles are utilized for their emission prop-

erties, either in solution or after deposition onto a planar substrate. Typically to
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examine the size of the nanoparticles, and to use them in applications where electri-

cal conduction is required, the polymer templates are removed after deposition using

O2 plasma etching for 30-40 mins.

1.3.2 Overview of research project

Initially, in the Turak lab, we were only capable of producing MAPbI3 and FAPbI3

nanoparticles in dense core PS-b-P2VP nanoreactors, as described in Hui et al. in

ACS Applied Nanomaterials [92]. Through the course of the project, to generate

perovskite nanoparticles of different compositions, and different emission properties

with tunable bandgaps, I conducted research on multiple parameters such as micelle

concentration, loading time, and precursor ratio. Figure 1.5 illustrates the emission

spectra of the diverse nanoparticles that were successfully synthesized throughout the

course of this project, covering an emission range from 475 nm to 860 nm.
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Figure 1.5: (a) Depiction of the emission spectrum of perovskite nanoparticles with
diverse band gaps synthesized via the reverse micelle synthesis method during my
research for this thesis.

Although the loading step facilitates tuning of the bandgap through control over

the reaction kinetics, the precursor could also dissociate the nanoreactor if it inter-

acts strongly with the core, leading to reverse micelle flipping [92]. This limits the

precursors that can be used and the sequence of loading. It is for this reason that

bromine and chlorine-based nanoparticles could not be produced using conventional

precursors such MABr + PbBr2 or MACl + PbCl2 in dense core nanoreactors, even

though these are desirable for perovskite NPs synthesis. To overcome these problems,

I explored various combinations of precursors, and developed new two and three step
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synthesis routes to achieve the various compositions of interest, as described in the

following chapters.
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Figure 1.6: The figure depicts the photoluminescence emission spectra of perovskite
nanoparticles under different conditions: (a) following immersion in water. (b) Com-
paring the spectra of freshly synthesized nanoparticles, those aged for 250 days, and
particles that underwent a two-minute oxygen plasma etching process. The nanopar-
ticles were synthesized via the reverse micelle synthesis route.

As the nanoparticles encapsulated in the micelle have a polymer shielding around

them, we have observed that they can survive when immersed in water for over 5

hours, as shown in Figure 1.6(a) and under ambient conditions for over 250 days

shown in Figure 1.6(b). We took advantage of this increased stability to incorporate

the perovskite nanoparticles into graphene composites, where the graphene was exfo-

liated from Cu using an immersion technique, without loss of emission properties, as

described in chapter 5.

Although the micelle encapsulation provides shielding and external stability, the

insulating nature of polystyrene in the corona prevents it from being used directly in

optoelectronic devices. By using plasma etching, the PS-bP2VP diblock copolymer

shielding is easily removed from RMD synthesized nanoparticles without affecting the
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size or distribution of nanoparticles [83, 95]. However, the harsh plasma atmosphere

also degrades the perovskite nanoparticles, rendering them optically inactive as shown

in figure 1.6(b).
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Figure 1.7: A schematic illustration of the three-step reverse micelle synthesis ap-
proach utilized to produce perovskite core-shell nanoparticles.

To stabilize perovskite nanoparticles for use as electrically conductive layers in

optoelectronic devices, I developed a three-step loading technique that allowed the

formation of core-shell nanoparticles, with a metal oxide shell formed surrounding a

perovskite core. Figure 1.7 demonstrates the three-step loading process for FAPbBr3-

metal oxide (Mo) nanoparticles. This approach enabled control over the shell thick-

ness surrounding the nanoparticles, by tuning the third precursor addition. By em-

ploying this method, we were able to develop a controllable shell of TiO2, NiO, and
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ZnO around FAPbBr3 nanoparticles as described further in chapter 4. These parti-

cles exhibited enhanced stability towards oxygen plasma, UV, and humidity and were

implemented as electrically conductive interlayers in optoelectronic devices.
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Chapter 2

Enhanced Stokes shift and phase

stability by co-synthesizing

perovskites nanoparticles

(MAPbI3/MAPbBr3) in a single

solution

The findings of this research were published in the

journal ”Advanced Photonics Research”.

Abstract

Herein, diblock-copolymer reverse micelle templating was used to control the reac-

tion kinetics of metal halide hybrid perovskites formation to fabricate systems showing
22



Ph.D. Thesis – M. Munir McMaster University – EP

dual phase emission. Through control of the reaction kinetics of perovskite formation

with micelle templating, desired compositions can be engineered which show high

phase stability of mixtures of perovskite nanoparticles through micellar shielding and

stabilizing of the cage structure. Additionally, a Stokes shift of around 150nm, one of

the largest reported for perovskite systems, can be obtained with careful control over

the synthesis kinetics. Using an unconventional approach i.e. mixing methylammo-

nium iodide (MAI) and lead bromide PbBr2, systems consisting of both green and red

emitting nanoparticles (NPs) were fabricated by a two-step reaction process using re-

verse micelle templating. By obtaining two stable phases in a single solution, the NP

system can absorb in the ultraviolet region and emit in the red region, making them

excellent candidates for down-conversion to improve solar cells efficiency, as shown for

two polymer active layers in organic bulk heretojunction solar cells. Exploiting the

phase stabilizing effect of the micelles, the reaction kinetics of perovskite formation

can be tuned for various halide substitutions, opening up new avenues for co-existing

perovskite phases for photovoltaic and light emitting applications.

2.1 Introduction

In recent decades, the family of metal halide hybrid perovskites have attracted at-

tention owing to record-breaking achievements in fields such as photovoltaics (PV),

light-emitting diodes (LEDs), lasers, sensors, and many other electronic devices [5–

7, 96–99]. Perovskites, with the generic chemical formula ABX3, owe these proper-

ties to their flexible cage crystal structure where the A-site is occupied by a mono-

valent cation which could either be an organic molecule such as methylammonium

(CH3NH3
+) (MA) or formamidinium (CH(NH2)2

+) (FA), or an inorganic atom, such

23



Ph.D. Thesis – M. Munir McMaster University – EP

as cesium (Cs+); the B-site accommodates a divalent inorganic cation such as lead

(Pb2+) or tin (Sn2+); and the X position is occupied by a halide group, which could

be chloride (Cl– ), bromide (Br– ), or iodide (I– ) [100].

A critical issue hindering the commercialization of perovskite based optoelec-

tronic devices is instability and phase degradation. The desirable α-phase perovskite

structure, which is ideal for photoelectric conversion, eventually degrades in ambi-

ent conditions into the δ-phase, which is a yellowish non-perovskite phase with an

unwanted large bandgap and poor charge transport [7, 19, 101–103]. Various ap-

proaches have been attempted to limit such degradation processes. Common is to

use encapsulation approaches, including copolymer micellar shielding [67, 69, 104],

core-shell formation [68,104], polymer co-precipitation [105], solid polymer composite

formation [83, 106–108], incorporation into metal-organic frameworks (MOFs) [109],

or in-situ stabilization in mesoporous templates [110]. Another approach is through

substitution of suitable ions which stabilize the cage symmetry of optically active

perovskites [6, 111, 112]. Importantly, the substitution of ions also induces changes

in the emission and absorption spectrum of the parent composition, resulting in a

tunable band gap by tailoring of the ionic composition [113]. Substitution of halides

in particular can be leveraged to tune the emission maxima of the perovskite between

400 ≤ λ ≤ 800 nm [114–116]. Therefore, halide substitution offers the best avenue for

improving the stability of ABX3 perovskites, while simultaneously allowing bandgap

tunability.

Phase purity or achieving a desired composition can be complicated, however, by

incomplete substitution and lack of control over the formation of the final product.

All such substitution attempts either involve the addition of a third or forth precursor
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in precise stoichiometric amounts or require extra steps after perovskite formation to

incorporate the desired halides in the already formed perovskite. It can be difficult

to achieve and maintain the desired synthesis, due the very fast reaction kinetics

of perovskite formation [25, 31, 117]. Chauhan et al. monitored the absorption and

emission spectra during the formation of MAPbI3 during a two-step synthesis process,

where they concluded that it took only 14 seconds (including the deposition time) for

the precursors to form the final perovskite product [118]. The fast reaction kinetics

using conventional approaches do not typically allow for the introduction of additional

ions once the reaction is started, making the precise tuning of composition very

challenging. Fast halide reaction kinetics inside the perovskite cage and its phase

instability leads to anionic substitution even in the absence of a parent halide source.

Nedelcu et al. demonstrated that for the first 30 seconds of mixing pre-fabricated

cesium lead iodide (CsPbI3) and cesium lead bromide (CsPbBr3), two distinct peaks

(one for iodide based perovskite and one for bromide based perovskite) were visible;

however, with further mixing, both the peaks merged into a single peak, resulting in

the formation a stable single mixed phase perovskite [103].

These issues are exacerbated for nanoparticle systems, where the large surface

area to volume ratio often leads to high phase instability. However, perovskite nanos-

tructures are highly desirable because of their high photoluminescence quantum yield

at room temperature, approaching almost 100% [119]; easy optical tunability [120];

long photoluminescence lifetime [121]; and a high tolerance for defects [7].

In this work, we have successfully controlled the reaction kinetics and slowed

down the rate of perovskite formation using diblock copolymer reverse micelle tem-

plating (RMD). The slowed reaction allows the use of an unconventional approach,
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mixing methylammonium iodide (MAI) and lead bromide (PbBr2) to produce pure

methylammonium lead bromide MAPbBr3 nanoparticles. This anionic exchange was

done without the engagement of any catalysts and at room temperature. This syn-

thesis route also allows for the simultaneous formation of stable and luminescent

MAPbI3-dominant and MAPbBr3-dominant nanoparticles coexisting within a sin-

gle solution. As our nanoparticles are fabricated within the core of diblock copoly-

mer micelles, they are shielded by the hydrophobic PS branch of the amphiphilic

diblock copolymer which forms the corona of the micelles. Phase degradation is

therefore prevented by the micelle, allowing for tuning of the relative abundance of

each nanoparticle within the solution. The presence of both iodine and bromine lead

to a more stable, non-degradable perovskite phase because the most suitable an-

ion occupies the available positions within the perovskite cage, limiting mixed phase

formation. The NPs are also sheltered from the external atmosphere (oxygen and

humidity), owing to the shielding offered by the hydrophobic corona. These give rise

to interesting properties for the nanoparticles such as a large Stokes shift, resulting

from self-trapped exciton state (STE) formation due to co-existence of two halide

ions. By tuning the emission characteristics, the nanoparticles synthesized from the

same precursors with slightly different deposition conditions can be effectively used to

down-convert UV light into useable photons, enhancing the device performance of or-

ganic bulk heterojunction solar cells based on both poly(3-hexylthiophene) (P3HT)

and poly [[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl][3-fluoro-

2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl ]] (PTB7) bulk heterojunction

blends with [6,6]-phenyl C61-butyric acid methylester (PCBM) as active layers, even

though they have different absorption regions.
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2.2 Results and discussion

Using diblock copolymer templates, we have been able to produce various perovskite

nanoparticles using a two-step RMD process [67]. Iodine based perovskite synthe-

sis was relatively straightforward utilizing MAI and PbI2 loaded sequentially to ob-

tain uniform, well-dispersed MAPbI3 nanoparticles, from PS-b-P2VP nanoreactors.

Infiltration of MAI was found to stabilize the micelle, preventing the destructive

interaction of Pb based precursors [67], as shown schematically in Figure 2.1(a).

Figure 2.1(b) shows the photoluminescence PL emission spectrum with inset AFM

micrograph from well dispersed MAPbI3 nanoparticles, fabricated using the two step

loading process. However, MABr did not produce the same stabilizing effect, and

upon adding PbBr2, no nanoparticles could be obtained as can be seen from Figure

2.1(c). Attempts at imaging micelles after addition of both precursors (MABr and

PbBr2) revealed non-micellar structures, similar to the structures observed when the

lead precursor was added first to the micelle solution. This suggests that the organic

ion failed to infiltrate the core; as a result the micelle core was not stabilized and

unraveled on the introduction of the lead salt due to the strong affinity between Pb

and 2VP units [67].

Typically for NP synthesis and size control, high molecular weight polymers are

chosen that form dense-core micelles, where the corona offers tight shielding against

the environment [83, 122, 123]. Using lower molecular weight polymers results in the

formation of a larger ballooning micelle structure with a looser corona of shorter

PS chains, allowing easier infiltration of precursor salts [122] (see supporting in-

formation SI-1). However, the downside of such a micellar structure is lowered

protection from hydration, as proven by Arbi et al. in the case of different iron oxide
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phases using different PS-b-P2VP diblock copolymer micelles [122]. The failure of

MABr loading in the higher molecular weight PS-b-P2VP micelles result from its

failure to infiltrate the densely packed polystyrene brushes in the corona. Using lower

molecular weight polymers led to successful synthesis of MAPbBr3 nanoparticles from

MABr and PbBr2 precursors; however, it also resulted in an uneven size and spatial

distribution, as can be seen in Figure 2.1(d).
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Figure 2.1: (a) Schematic of direct synthesis of MAPbI3/MAPbBr3 nanoparticles
using reverse micelle nanoreactor process. Numbers refer to the order of precur-
sor addition, with the organic cation added 24 hr prior to the halide. If there is
no organic cation inside the micelle, the addition of the lead halide leads to micelle
destruction and no nanoparticles are formed. Dense crewcut micelles with high molec-
ular weight polymers result in individual nanoparticles, large balloon type micelles
with low molecular weight polymers result in multiple particles forming inside the
nanoreactor. (b) PL emission spectrum and AFM image of MAPbI3 nanoparticles
synthesized with conventional precursors (MAI and PbI), (c) AFM image of unsuc-
cessful attempt to synthesize MAPbBr3 in dense core high molecular weight micelles
using direct synthesis route with conventional precursors (d) MAPbBr3 nanoparticles
with wide size distribution obtained using conventional precursors (MABr and PbBr2)
in balloon-like lower molecular weight micelles (e) PL emission spectrum showing a
bathochromic shift in pre-synthesized MAPbI3 nanoparticles after the addition of
PbBr and MABr to the micelle solution. (f) PL emission and UV-Vis absorption
spectra of MAPbBr3 nanoparticles synthesized by unconventional route using MAI
and PbBr2 after 24 hours of stirring at room temperature, inset AFM image shows
the well ordered nanoparticle formation. The density cloud (FFT) of the nanoparticle
dispersion shows strong hexagonal packing of the nanoparticles. (g) XRD spectrum
of MAPbBr3 nanoparticles synthesized with unconventional precursors.

Anionic substitution by adding bromide compounds to iodine based perovskites

has been previously successfully shown to convert perovskites from one phase to
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another [103, 124–128]. Therefore, we added MABr and PbBr individually to pre-

synthesized MAPbI3 nanoparticles solutions. After 24 hr stirring time, a slight hyp-

sochromic shift was observed in the emission spectra of the solution, which can be seen

in Figure 2.1(e). Both the spectra were blue shifted compared to pristine MAPbI3

spectrum, with a maxima at 735 nm for MABr addition and at 714 nm for PbBr2 addi-

tion. There was also a broad shoulder artifact with a peak around 550nm, suggesting

formation of some MAPbBr3. This suggests that only fractional anionic substitution

occurred inducing a slight blue shift, not forming pristine MAPbBr3 nanoparticles,

even though the solutions were left to stir for times substantially longer than the

complete conversion times observed by others [103,128]. Complete substitution is in-

hibited both by the micellar shielding and by the covalent character of iodine, which

is more than that of bromine; therefore, once a stable MAPbI3 nanoparticle is formed

inside a nanoreactor, all the iodine cannot be replaced fully by halide substitution.

As MAI has been shown to stabilize the PS-P-2VP nanoreactors, and as quat-

ernization with iodine is known to encourage salt interaction with diblock copoly-

mers [129,130], an unconventional route using mixed precursors MAI and PbBr2 were

used to synthesize MAPbBr3 nanoparticles, as shown in Figure 2.1(f). PL-emission

and UV absorption spectrum of the nanoparticles confirm formation of MAPbBr3,

with an emission peak at 521nm (FWHM of 30.03nm), and a bandgap of 2.28nm,

from a Tauc analysis of the absorption spectra (see supporting information Fig-

ure SI-3, green spectrum). The inset shows an AFM micrograph of the dispersion

of the synthesized nanoparticles with polydispersity index for the nanoparticle diam-

eters of 0.096 (i.e. ¡10% variation in size), nearest neighbour distance of roughly

78nm and a quasi-hexagonal array with lattice distortion [131] of only 8.56 (see
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supporting information Figure SI-4 for full spatial statistics). XRD results,

shown in Figure 2.1(g), further confirms the formation of MAPbBr3. Peaks at 2θ of

17.4, 24.7. 31.4, 35.3, 39.65, 43.62, 50.8, and 54.1correspond to reflection planes 100,

110, 111, 200, 210, 211, 220, and 300 of MAPbBr3. The XRD results confirm the

space group of Pm-3m and cubic symmetry of nanoparticles with lattice parameter

of 5.89Å [132]. Inset of Figure 2.1(g) also displays HRTEM images of the formed

MAPbBr3 nanoparticles. The nanoparticles were resolved to be approximately 6.1

nm.

The significant benefit of the reverse micelle route is the ability of the iodide salt to

penetrate the dense-core micelles, owing to the strong interaction between the P2VP

group of the micelles and the iodide ion. Iodine is well-known for preferentially stain-

ing pyridine over polystyrene, and has been utilized to improve contrast in electron

microscopy of the diblock copolymer [133]. The addition of the iodide stabilizes the

core by quaternization with the P2VP group of the diblock copolymer, while leaving

it unchanged in the presence of a more reactive ion [134]. The infiltration of the

iodine and the quaternization of the P2VP block of the diblock copolymer seems to

trigger a rearrangement of the PS chains in the corona, allowing for a more feasible

entry for the second added precursor, PbBr2.
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Figure 2.2: Schematic diagram of MAPbBr3 fabrication utilizing anionic exchange
phenomenon with both iodide and bromide precursors

When Pb+2 and Br– infiltrate into the core, they rearrange in the presence of

MA+ and a very stable and highly emissive MAPbBr3 nanoparticle is formed en-

capsulated by the di-block copolymer. We also saw similar behaviour using other

iodide precursors, such as formadinium iodide, showing the general applicability of

the organometallic iodide stabilizing the core (see supporting information Figure

SI-5). The schematic of MAPbBr3 creation inside the dense core diblock copolymer

is shown in Figure 2.2, which also illustrates the unraveling of the nanoreactor by

the Pb precursor alone. Interestingly despite the presence of both iodide and bromide

ions, pure MAPbBr3 nanoparticles were formed. There are two main justifications for
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this preferential formation. On the one hand, the formation rate constant and sta-

bility constant for iodine-pyridine complexes is higher than that of bromine-pyridine

complexes [134, 135]. Therefore, once complexated, it would not be easy to replace

iodine with bromine due to the overlap of the π∗ orbital of I2 with the pyridine

LUMO [134]. This suggests that the iodine would remain complexated to the poly-

mer preferentially over the bromine, leaving the bromine free to form the perovskite.

On the other hand, the formation of MAPbBr3 in the presence of both I– and Br– ions

can also be justified in terms of the Gibbs free energy of formation of MAPbBr3 and

MAPbI3. The calculated and extracted Gibbs free energy of MAPbBr3 reported by

different researchers, (-12.5, -3.5, and -17.0 kJ.mol-1) from MAX and PbX2 is always

lower than that for MAPbI3 (-11.3, 22.8 and -7.2 kJ.mol-1) which thermodynamically

validates the preferential formation of MAPbBr3 in such a situation [136–138]. Yet,

pure phase formation is typically not observed with mixed precursors due to the ex-

tremely fast reaction kinetics during perovskite formation, instead resulting in mixed

phases.

It is well understood that metal halide hybrid perovskites form quickly once the

precursors are mixed together [139–144]. Chauhan et al. saw final perovskite for-

mation within 14 seconds of adding the precursors [118]; Nedelcu et al. showed that

mixed phases form after only 30 seconds [103]. Such fast reaction kinetics using con-

ventional approaches do not allow for the introduction of additional ions once the

reaction is started. To examine the mechanisms of this reaction in the presence of the

micelles, PL emission spectroscopy as a function of time was performed and tracked

over 24 hr after the addition of precursors to observe the kinetics of this unconven-

tional approach. The formation of MAPbBr3 nanoparticles with stirring time can
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be observed from Figure 2.3(a), with increasing PL intensity with time of stirring.

After 2 min, we can observe conversion of the organic salt into MAPbBr3 with sharp

emission at 532 nm starting to emerge. This emission continues to sharpen with

time, becoming more and more intense, and becoming clearly visible as a sharp peak

approximately 10 min after the addition of the second precursor. A slight red shift

in emission suggests that the particles are also starting to grow in size over a short

time. The emission from unreacted MAI forming the background extending to be-

yond 750nm is still visible after 20 min reaction time. The intensity of the emission

peak steadily increases until a maximum was reached after stirring for 24 hr, with

no visible background emission and no further change observed. There is a slight

blue shift to 526nm after this stirring time, potentially suggesting that there maybe

a mixture of I/Br in the initially formed crystals, but they become more bromine

dominant (more MAPbBr3 like) after prolonged stirring.
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Figure 2.3: (a) PL of MAPbBr3 nanoparticles formation through unconventional
anionic exchange route with MAI and PbBr2 as a function of time. (b) PL emission
spectrum of MAI and PbBr2, mixed in o-xylene as a function of time (c) PL emission
spectrum of MAPBbr3 nanoparticles fabricated using LARP synthesis route with
conventional precursors (MAI and PbBr2) (Green) and unconventional precursors
(Maroon)) (d) PL emission spectra of nanoparticles after (green line) and before
(black line) interaction with water.

The micellar environment is critical to the formation of these nanoparticles, pro-

viding a stabilized environment for the reaction. To verify how MAI and PbBr2 in-

teract in the absence of the nanoreactors, both the precursors were added to o-xylene

directly in the same concentration as that added to the reverse micelle solution in

o-xylene. As soon as the second precursor was added (in milliseconds), a very broad
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peak of MAPbI3 appeared and the spectrum maxima kept shifting within a range of

20 to 25 nm, as shown in Figure 2.3(b). There was also significant crystallization

and visible precipitation of the precursors immediately, and when the supernatant

solution was characterized after 4 hr, no emission spectrum could be observed. This

illustrates the instability of the produced perovskite phase in the presence of o-xylene

and bromide ions without reverse micelles, where fast reaction kinetics prevent the

formation of MAPbBr3.

This was further compared to a standard method of nanoparticle growth, ligand-

assisted re-precipitation (LARP), using oleic acid and oleylamine. Unlike MABr and

PbBr2, which resulted in bright and luminescent nanoparticle films as shown in Fig-

ure 2.3(c) (green spectrum), MAI and PbBr2 showed almost no emission (Figure

2.3(c) (Maroon spectrum)). The inset optical micrographs show the contrast between

centrifugally cast samples of LARP-MAI+PbBr2 and MABr+PbBr2 under UV illumi-

nation. Unlike the reverse micelle templating approach, where the micelles provide a

shielded nanoreactor for uniform and luminescent MAPbBr3 nanoparticles, in LARP,

the ligands typically rapidly detach and reattach as precursor molecules encounter

the forming crystal, resulting in inhomogenous elongated crystals rather than true

0D nanoparticles [97,117,145,146]. The slower reaction kinetics from reverse micelle

templating and the interaction of the iodine with the P2VP in the micelle core allows

the formation of the thermodynamically stable MAPBr3 dominated nanoparticles

which were suppressed in the fast reaction kinetics of ligand assisted approaches.

The stabilizing environment provided by the micelle also enhances the stability of

the nanoparticles with exposure to other precursors or to humidity. To verify the sta-

bility of our synthesized nanoparticles in solution, we added PbI2 to the centrifuged
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solution of FAPbBr3 nanoparticles produced from FAI and PbBr2, and stirred them

for 24 hr (see supporting information Figure SI-5). No shift was noticed in the

emission spectrum suggesting that no anionic substitution occurs with additional pre-

cursor, making the nanoparticles more stable than conventional nanoparticles where

reversible mixed phases are formed [7,116,126,147].

Micellar environments are also known to increase the stability of perovskite nanopar-

ticles in the ambient environment [67, 68, 104, 148]. We also confirmed the stability

of our produced nanoparticles in the presence of moisture by letting a spin-coated

sample float over water in 100% humidity for 4 hr, followed by immersion in water

for 10 min. The PL emission spectra before and after water immersion can be seen

from Figure 2.3(d). A slight change in the intensity of the PL emission spectrum was

noticed, which could be attributed to characterization of two different spots for the

pre and post-treated sample. Strong emission despite the interaction of nanoparticles

with water validates that the micelle not only protects the nanoparticles from the

ambient atmosphere but also protects them from direct water interaction.

We can take advantage of the slower kinetics involved in this synthesis approach,

as well as the presence of both bromine and iodine, to engineer the nanoparticle

solution by controlling different factors throughout the synthesis process, such as the

infiltration time, amount of precursors or number of nanoreactors to achieve various

novel phases.

First, we increased the concentration of nanoreactors by increasing the amount of

PS-b-P2VP diblock copolymer dissolved in the solvent by a factor of 4, to 12 g/L.

This has been known to increase the density of particles as well as decrease the size

and spacing of particles [149]. As the concentration increases, residual solvent is
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excluded and the structure is more compact. To maintain the salt to P2VP ratio,

we increased the amount of precursor to 10 µl of MAI and PbBr2 to account for

the increasing diblock copolymer blocks per unit volume. The loading was then

performed, with a 24 hour loading time between precursor additions. By varying the

polymer concentration and the precursor amount, a different PL emission spectrum

emerged dominated by MAPbBr3, as expected, but with some intensity suggestive

of MAPbI3 centred at 725nm, as shown in Figure 2.4(a) (brown spectrum). The

Tauc plot derived from the UV absorption data ((see supporting information

Figure SI-3, brown spectrum), indicates a slight decrease in the band gap of

the bromide dominant nanoparticles. As expected with an increased concentration

of reverse micelle nanoreactors, the particles have a 3x higher density, with nearest

neighbour distance decreasing to 27.7nm ((see supporting information Figure

SI-4, (b)).There is also the emergence of some smaller particles, of an average size of

around 4.7±0.9nm; however, most of the particles have a size of 8.0±1.4nm. A slight

hypsochromic shift from 521 nm for pure MAPbBr3 phase to 518 nm is observed in

Figure 2.4(a) (brown spectrum) for the higher polymer concentration samples, which

might be attributed to the change of size of the nanoparticles due to the increased

density of the nanoreactors [150]. Note also that the iodide dominant emission peak

was broad (FWHM of 73.12 nm) compared to pure MAPbI3 (FWHM of 50.9 nm)

formation without PbBr2; possible reasons could also be a difference in nanoparticle

sizes, with some smaller particles emerging or the existence of mixed-halide structures

causing a blue-shift in the MAPbI3 emission [151,152].

The formation of both iodide and bromide perovskite simultaneously suggests an

uneven loading of the iodide ion into the micelles after 24hr for this larger amount
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of available nanoreactors. Cores where an excess of iodide was loaded resulted in

MAPbI3-dominant particles while those with a scarcity of iodide led to MAPbBr3-

dominant particles upon the introduction of the second precursor.

Therefore, we increased the infiltration time by a factor of 3 before the addition of

the second precursor to allow for maximum loading of MAI to the core. Previously, we

had established that infiltration can be quantified by an increasing Young’s modulus

as measured by quantitative nanomechanical mapping (QNM) across the micelle core

compared to an unloaded nanoreactor [67, 153]. As shown in supporting informa-

tion Figure SI-6, the infiltration increases with stirring time and plateaus after 50

hr. This plateau is thought to be due to the maximum salt infiltration and interaction

with the polymer [153]. To ensure maximum infiltration, the second precursor PbBr2,

slightly in excess of the MAI, was added after 72 hr stirring. As can be seen from

the PL emission spectrum in Figure 2.4(a) (red spectrum), the MAPbI3 emission

peak dominates the spectrum. The MAPbBr3 emission is almost not visible, with a

broad enhancement observed between 470 and 540 nm. This spectra is similar to that

observed in Figure 2.1(e) for conversion of fully formed MAPI with Br salt addition

(see supporting information Figure SI-7). This suggests a higher number of

MAPbI3 (iodide dominant) nanoparticles and a lower number of MAPbBr3 (bromide

dominant) nanoparticles were synthesized, or that formed MAPbI3 were incompletely

substituted with Br. This is likely due to an excess of iodide ions in the core, from the

longer loading time beyond the maximum infiltration. Due to the very strong affinity

between Pb and N in 2VP (0.17eV) [69], lead (Pb) would be expected to infiltrate

first, followed by the infiltration of Br– . In the excess of iodide, potentially free iodine
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is available in the core, not interacting with the polymer, resulting in the preferen-

tial formation of MAPbI3 with respect to MAPbBr3. As also seen in Figure 2.1(e)

for conventionally produced MAPbI3, once a stable MAPbI3 nanoparticle is formed

inside a nanoreactor, all the iodine cannot be replaced fully by halide substitution.

The loading results suggests that with a lower concentration of MAI, and shorter

loading times, a scarcity of iodide ions in the core result in a MAPbBr3-dominant

perovskite cage. The MAPbBr3 nanoparticles formed using the unconventional route

are not halide-substituted MAPbI3; they seem to be formed through the infiltration

of Br– ions which occupy the halide sites, causing perovskite (MAPbBr3) formation,

and stabilizing the symmetry of the perovskite cage. Subsequently, by changing

parameters that affects the amount of iodide in the core, we can synthesize stable

iodide or bromide dominant solutions.

The presence of both iodide and bromide dominant nanoparticles in a single so-

lution showcases the phase stability and shielding effect resulting from the use of

micelle templates. Neither nanoparticle degrades into an intermediate phase, unlike

that observed for ligand assisted systems [103]. Interestingly due to the mixture of

phases in the nanoparticles, our dual phase system shows an extremely large Stokes

shift, with over 150nm gap between the emission and absorption spectra.

In general, the Stokes shift is a spectral difference between the maximum peaks

of absorption and emission spectra in the same transition. In some materials such as

semiconductor quantum dots (QDs) [154] and perovskites [103], it is hard to deter-

mine the maximum absorption peak in the UV-Vis spectra. In addition, for broad

absorption such as observed for perovskites generally, the possibility of self-absorption
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Figure 2.4: (a) UV-Vis absorption and PL emission spectrum of solutions for
MAPbBr3 with 24 hr infiltration of MAI before addition of PbBr, and 3g/L di-
block copolymer micelle concentration (green spectrum), dual phase emission from a
mixture of particles with 24 hr infiltration and 12g/L micelle concentration (brown
spectrum), dominant red emission after 72 hr infiltration of MAI, with 12g/L micelle
concentration (red spectrum). Note the large Stokes shift for the iodide dominated
solution. (b) Schematic of self-trapped exciton state (STE) formation due to co-
existence of two halide ions. J-V characteristics of organic photovoltaic devices under
a high-intensity UV light source. (c) P3HT:PCBM and (d) PTB7:PCBM organic
solar cell before (black) and after (red) addition of bromine dominant nanoparticles
(emission maxima at 505 nm). (e) P3HT:PCBM and (f) PTB7:PCBM organic solar
cell before (black) and after (red) addition of iodine dominant nanoparticles (emis-
sion maxima at 706 nm). Each J-V image includes a reference performance without
perovskites nanoparticles and the best performance of devices with perovskite NPs.
Note that the device performance under the UV light has not been optimized.
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is high, and the pure absorption of a downconverter could be low even the univer-

sal Stokes shift is high. In this case, using the generalized concept of Stokes shift

can result in an error in determining the validity of the downconverter. Thus, it is

common to use the gap from the absorption edge to the highest peak of the photolu-

minescent region as the definition of the Stokes shift, as a criterion to judge whether

the downconverter would be efficient taking into account the pure absorption of the

downconverter [103,154,155].

In our case, the dual phase solution in which MAI was allowed for maximum

infiltration followed by PbBr2, the Stokes shift is caused by the formation of mixed

halide octahedrons due to both iodide and bromide incorporation. Merging of both

iodide and bromide creates self-trapped exciton state (STE) [156, 157], which is an

established mechanism for Stokes shifts in 0-dimensional (0D) perovskites. STE refers

to trapped bound exciton that acts as a polaron due to photoexcitation in an altered

lattice because of the presence of mixed halides [158]. Once this low energy state is

developed because with multiple halides, the electrons are first excited to the high

energy excited state and consequently, shifted to the lower excited energy state [159,

160], resulting in broad emission with a large Stokes shift. This is exactly the case

shown in Figure 2.4(a) where the red spectrum has a broad emission (FWHM of

73.12 nm) far from the absorption edge. A schematic diagram of the band splitting

indicating the states is shown in Figure2.4(b). This STE mechanism is also supported

by the slight bathochromic shift in the absorption spectrum edge, which is slightly

red-shifted (∆λ = 35nm) compared to the absorption edge of pure MAPbBr3 and

blue-shifted (∆λ = - 175 nm) compared to that of pure MAPbI3 with a bandgap of

2.14 eV, (see supporting information Figure SI-3, (red spectrum) for the Tauc
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plot). This behaviour was also observed for the emission maximas, which was higher

than pure MAPbBr3 but lower than pure MAPbI3, displayed in Figure 2.4(a) (red

spectrum). As shown schematically in Figure 2.4(b), a small amount of energy is

released when the excited electron is shifted from a higher energy excited state to a

lower energy state followed by a transition to the ground state, due to mixed halide

octahedrons, generating the observed Stokes shift.

Using this principle of establishing the Stokes shift from the absorption edge to the

highest emission peak, the synthesized nanoparticles were used for down-conversion

and UV filtering in organic bulk heterojunction solar cells. Though there has been

some interest in using metal halide perovskites for down-conversion [161, 162], typ-

ically perovskites have a small Stokes shift compared with other common down-

conversion materials such as organic dyes [163]. This typically results in significant

parasitic absorption (PA) by the perovskite down converter material. In such a case,

device performance may actually decrease as the emitted visible light could be ab-

sorbed by the down conversion materials before going into and being used in the

active layer [155]. As a rule of thumb, a Stokes shift of above 100 nm is required for

increased performance and zero re-absorption by downconverters. As we observed a

Stokes shift of 150nm with the iodine dominant nanoparticle system, we believed this

system could be a suitable downconverter. To show the efficacy of the nanoparticles,

different active materials were used to match the absorption of the device with the

emission of the nanoparticles. P3HT:PCBM shows an absorbance region between 350

and 620 nm [164] with optimal absorption (as defined by the highest absorption coef-

ficient or the highest measured external quantum efficiency as shown in supporting
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information table SI-3) between 500-620 nm would be expected to show enhance-

ment with bromine dominant (green emitting) nanoparticles under UV illumination,

but none with the iodine dominant (red emitting) nanoparticles. PTB7:PCBM, with

optimal absorbance between 600 and 700 nm [165], on the other hand should be en-

hanced with the iodine dominant (red emitting) nanoparticles. As seen in Figure

2.4(c)-(f), this was the behaviour observed for OPVs under UV illumination con-

ditions. Figure 2.4(c) shows the current density-voltage characterization curves of

the P3HT:PCBM device under UV illumination. The black and red curve shows the

results before and after the deposition of green emitting nanoparticles (brown curve

in Figure 2.4(c)) respectively. The increase in short circuit current indicates that the

bromide dominant (λmajor emission = 508 nm) nanoparticles acted as downconverters for

P3HT:PCBM devices. The same dual phase solution when used with PTB7:PCBM

showed only a minor increase in the short circuit current. This improvement could be

attributed to the presence of some red emission (λminor emission = 704 nm), which can

be seen in the emission spectrum as well, or due to the weaker absorption of PTB7

around 500nm (see supporting information Table SI-3). The improvement can

be seen in Figure 2.4(d), which is negligible when compared to the P3HT:PCBM

device with the same nanoparticles.

For the iodine dominant red-emitting dual-phase nanoparticles (λmajor emission =

710 nm, λminor emission = 515 nm), the P3HT:PCBM device showed no obvious changes

in the J-V characteristics (as shown in Figure 2.4(e)), demonstrating that there was

no significant down-conversion observed. This is likely a result of the absorption

region of the device (350nm to 620nm) not overlapping with the major emission
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wavelength of the red emitters (∼700nm). On the other hand, when the same red-

emitting nanoparticles were applied to the PTB7:PCBM device, a huge increase in the

short circuit was observed. This confirms that the red-emitting solution absorbs in the

UV region and emits mainly in the red wavelengths, making them excellent candidates

as active UV filters. The drastic difference between the improved short circuit current

shown in Figure 2.4(f) for PTB7 devices with the red emitting particles compared

to the more limited improvement for P3HT with the green emitting particles also

confirms the extremely large Stokes shift in the case of the red particles. In the green

emitting particles, where there is a negligible Stokes shift, parasitic absorption might

be limiting the efficiency of the down-conversion. Our dual phase red emitting system

generates one of the largest Stokes shifts so far reported for a perovskite system,

making them excellent candidates for down-converison for UV sensitive materials.

2.3 Conclusion

By taking advantage of the slower reaction kinetics resulting from the use of di-

block copolymer micelles, we have used an unconventional approach i.e. mixing

MAI and PbBr2 to produce monodispersed, uniform, stable, and highly luminescent

MAPbBr3 nanoparticles, as well as co-emitting solutions made up of both MAPbBr3

and MAPbI3 simultaneously. The unconventionally formed MAPbBr3 nanoparticles

are not halide-substituted MAPbI3; they are formed through the infiltration of Br–

ions which then occupy the halide sites, stabilizing the symmetry of the perovskite

cage. Varying the concentration of iodine, by increasing infiltration time, amount

of precursors and concentration of nanoreactors in the presence of both iodine and

bromine ions, we were also able to synthesize both perovskite nanoparticles in a single
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solution with different concentrations of MAPbI3 dominant and MAPbBr3 dominant

nanoparticles. It was even possible to extend this to other A site organic cations,

such as FAI, to form FAPbBr3 and FAPBI3 mixtures and pure phases. The micelle

environment provided shielding for the perovskite leading to phase stability, allowing

the coexistence of multiple simultaneously emitting perovskite phases, in addition to

providing environmental stability. The presence of both bromine and iodine dominant

particles resulted in the emergence of a large Stokes shift for the dual phase systems

due to self-trapped exciton formation. This allowed such particles to be used as ef-

ficient down-converters for OPVs without significant reabsorption. Down-conversion

for both P3HT:PCBM and PTB7:PCBM bulk heterojunction devices were obtained

from the same precursors purely by changing the synthesis conditions during nanopar-

ticle formation. Exploiting the phase stabilizing effect of the micelles, the reaction

kinectics of perovskite formation can be tuned to allow for the various halide sub-

stitutions, opening up new avenues for co-existing perovskite phases for photovoltaic

and light emitting applications.

2.4 Experimental

Perovskites precursor solution preparation

0.5M precursor solutions were made by adding organic salts (methylammonium iodide

(MAI), formadinium iodide (FAI), methylammonium bromide), Sigma-Aldrich) to

isopropanol (IPA) (Caledon, reagent grade) and the inorganic salts (lead(II) iodide

(PbI2, Alfa Aesar, 99.9985%) and lead(II) bromide (PbBr2, Sigma-Aldrich 99.99%))

to N,N-dimethylformamide (DMF) (Sigma Aldrich, 99.8%).
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Nanoparticles Synthesis

Reverse micelles were prepared by dissolving poly(styrene-b-2-vinyl pyridine) di-block

copolymers (Polymer Source) (Molecular weight 75.0-b-66.5, or 28.0-b-36.0 kDa), in

reagent grade non-polar solvent o-xylene, with concentration of 3 g/L under contin-

uous stirring. For some experiments the polymer to solvent ratio was changed to

12 g/L. After confirmation of reverse micelles formation by atomic force microscopy

(AFM), precursor salts and reactants were added to the reverse micelles solutions,

with a time interval of 24 hr to allow thorough infiltration of each precursor. Pure

methylammonium lead bromide (MAPbBr3) was formed by mixing 0.5M precursor

solutions of MAI in IPA and PbBr2 in DMF sequentially in the micelle solution. To

obtain mixed MAPbI3/MAPbBr3 phases, conditions and parameters were changed

slightly. For a mixed phase solution with more MAPbBr3 and less MAPbI3, 12

g/L of the diblock co-polymer was dissolved in o-xylene. After the formation of the

nanoreactors 10 µl of MAI was added to the solution to penetrate into the core of the

nanoreactor, followed by the addition of 10 µl of PbBr2. For a solution with more

MAPbI3 and less MAPbBr3, 10 µl of MAI in IPA was added to the 12 g/L reverse

micelle solution and was left to stir for 72 hr to allow maximum infiltration, followed

by the addition of PbBr2. The final loaded reverse micelles solutions were centrifuged

to clear out the unloaded excess salt and stirred further to prevent coagulation. 4 µl

of solution was spin coated on silicon (1x1) cm slab for AFM characterization.

For LARP synthesis, 12.5 mg (0.034 mmol, 1 equiv.) of PbBr2 was weighed

into a vial to which 6.0 mg (0.37 mmol, 1.1 equiv.) of MAI or MABr was added.

Furthermore, oleic acid (0.320 mmol, 9.4 equiv.) along with oleylamine (0.027 mmol,

0.8 equiv.) were added to the vial. DMF was added to the mixture of precursors to
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reach 1.25mL. In order to precipitate the nanoparticles, 12.5 mL of previously dried

toluene (molecular sieve, 3 Å) are cooled in an ice bath to approximately 5 while

stirring, and 75 µL from the mixed precursors vial was added to the chilled toluene,

and stirred for 2 minutes. To deposit the synthesized nanoparticles on a substrate,

a thoroughly cleaned glass slide (0.9x0.9 cm) was plasma treated and placed at the

bottom of a centrifugation tube. The colloidal solution along with 37 mL EtOAc was

gently added to the centrifugation tube, and centrifuged at 5000 rpm for 5 minutes,

resulting in the deposition of the NPs on the glass slide. Using a Pasteur pipette, the

supernatant was carefully removed, and the film was placed in a vial and dried under

a toluene atmosphere. After the nanoparticle thin film dried, it is placed on a hot

plate at 120 . As soon as the colour change is visible (approximately 10 seconds), the

film is removed and stored in a glass vial under ambient conditions.

Organic solar cell fabrication

The organic solar cells were based on a convention standard structure of ITO/PEDOT:PSS/bulk

heterojunction/aluminum (Al). Active layers consisted of poly(3-hexylthiophene)

(P3HT) or poly [[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl][3-

fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl ]] (PTB7) blended with [6,6]-

phenyl C61-butyric acid methylester (PCBM).

The ITO substrates were cleaned by acetone and 2-propanol (IPA) for 15 min re-

spectively in an ultrasonic cleaner to obtain a dust-free substrate and were etched for 5

min in oxygen plasma to remove residual chemicals. Then, poly(3,4-ethylenedioxythiophene)

polystyrene sulfonate (PEDOT:PSS) mixed with 50% of IPA was spin-coated on ITO

at 3000rpm for 30s and annealed at 150 for 10min in the glovebox (inert atmosphere).
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For PTB7:PCBM, 25mg/ml PTB7:PCBM (weight ratio: 1:1.5) in chlorobenzene

was deposited on the top of PEDOT:PSS subsequently at 2000rpm for 30s before

drying the substrate overnight. Regarding the P3HT:PCBM deposition, 15mg/ml

P3HT:PCBM(weight ratio: 1:1) in chlorobenzene was used, following by substrate

annealing at 120 for 10min. After that, Al electrodes were deposited by thermal

evaporation with a mask to limit the active area in 0.06 cm2 under low pressure of

10 –6 mbar. The encapsulated device was post annealed at 150 for 10min in ambient

environment to enhance the self-conjugation of the organic blend. To investigate the

UV conversion of perovskite nanoparticles, a small amount of perovskite layered on

the bottom of ITO-coated glass by spin coating at 2000rpm for 20s. The character-

ization of solar cells was under a UV light source with a strong intensity at around

395nm in ambient environment. Note that under UV illumination, the device with

perovskites was measured at first to highlight the UV blocking of perovskites, then the

perovskite nanoparticles were removed before the device was measured again under

the same illumination conditions.

Characterization

Atomic force microscopy (AFM) images were collected using an Asylum MFP-3D

instrument (Oxford Instruments Asylum Research) in the alternating current (AC)

mode under ambient environment. AFM probes (Nanotools, EBD-FMR) with spring

constant of 2.8 N/m and resonant frequency at 75 kHz was engaged in tapping mode

for topography scan. WSxM 5.0 was used for AFM image processing. All AFM

samples were prepared by spin coating 4 µl of solution at 2000 rpm for 45 seconds on

(1x1) cm silicon slab.
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PL measurements were performed using a 405 nm diode laser with laser power in

the range of 11 mW (spot diameter 1-2mm). The sample emission is collected with a

lens and guided to the detection unit with an optical fiber. A long-pass filter (550 nm)

removes the excitation light before the collected radiation is fed into a monochromator

(Andor, Shamrock 303i, grating 500 nm blaze, 150 lines/mm) and detected with an

intensified charge-coupled device (Andor, iStar A-DH320T-18U-73). The sample was

introduced to the laser with an exposure time of 0.0237 sec and a slit opening of 50

µm. The detection range is from 500 to 900 nm. The measurement was taken in a

darkened environment to prevent stray light.

UV-Vis spectra measurements were performed to characterize the optical proper-

ties of the materials using a Lambda 35 UV-Visible spectrometer (PerkinElmer). The

samples were prepared at concentrations 0.1 mg/mL, using o-xylene as dispersant,

measured in a 1x1 cm quartz cuvette.
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2.5 Supporting information figures

300 nm

(a) Higher MW

1 μm

(b) Lower MW
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(c) Higher MW
I stained

(d)
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2,2MAPI-sim

Figure 2.5: (SI-1 )Quantitative nanomechanical mapping of the polymer micelles
showing simultaneously collected topography and the corresponding elastic modulus
(a) AFM topography of the higher molecular weight micelles (b) AFM topography
of the lower molecular micelles (c) Young’s modulus micrograph of higher molecular
weight micelles (d) Young’s modulus micrograph of lower molecular micelles (e) Line
profiles for the higher molecular micelles (f) Line profiles for the lower molecular mi-
celles
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Figure 2.6: (SI-2 )Quantitative nanomechanical mapping of the polymer micelles
showing simultaneously collected topography and the corresponding elastic modulus
(a) AFM topography of the higher molecular weight micelles (b) AFM topography
of the lower molecular micelles (c) Young’s modulus micrograph of higher molecular
weight micelles (d) Young’s modulus micrograph of lower molecular micelles (e) Line
profiles for the higher molecular micelles (f) Line profiles for the lower molecular mi-
celles
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Figure 2.7: (SI-3 )Tauc plot of the UV-Vis absorption spectra data to extract the
optical band gap for MAPbBr3 nanoparticles with 24 hr infiltration of MAI before

addition of PbBr, and 3g/L diblock copolymer micelle concentration (green
spectrum), dual phase emission from a mixture of particles with 24 hr infiltration
and 12g/L micelle concentration (brown spectrum), dominant red emission after 72

hr infiltration of MAI, with 12g/L micelle concentration (red spectrum).
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Figure 2.8: (SI-4 )AFM micrographs of perovskite nanoparticles formed within
PS-b-P2VP micelles from (a) MAPbBr3 with 24 hr infiltration of MAI before

addition of PbBr, and 3g/L diblock copolymer micelle concentration (b) a mixture
of particles with 24 hr infiltration and 12g/L micelle concentration, (c) dominant
MAPbI2 with 72 hr infiltration of MAI, with 12g/L micelle concentration (d, e, f)
Pair correlation functions with the nearest fit hexatic lattice shown in grey. Nearest
neighbour distances and the lattice disorder parameter [131] are given in the graph.
(g, h, i) Voronoi tesselation of the particle distribution from AFM images arranged
by color corresponding to deviation from the expected hexagonal lattice Voronoi
area, as shown in (j, k, l) the histogram of the number of Voronoi cells against the
deviation from expected area. (m, n, o) Histogram of particle size distribution as

extracted from the AFM images, with average particle size and polydispersity index.
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Figure 2.9: (SI-5 )FAPbBr3 nanoparticles produced with unconventional route show
no change in emission spectrum in presence of competing iodide ion from PbI2, after

24hr stirring.
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Figure 2.10: (SI-6 )QNM characterization of loading of MAI into the nanoreactor
core with respect to time, inset are the Young’s modulus map of MAI loaded

micelles at different times
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Figure 2.11: (SI-7 )Normalized PL emission spectrum showing a bathochromic shift
in pre-synthesized MAPbI3 nanoparticles after the addition of PbBr and MABr to
the micelle solution, and with MAI + PbBr2 with excess of MAI loading. All three
show evidence of some conversion of iodide based perovskites into bromides, as well

as some bromine doping.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

adpr202100372-sup-0001-SuppData-S1.pdf
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Chapter 3

Anomalous behavior of

pyrrolidinium perovskite

nanoparticles induced by bromine

substitutions; bathochromic shift

with large Stokes shift

The findings of this study have been submitted to

the ”ACS Applied Nano Materials” journal.

Abstract

Using the reverse micelle synthesis route polystyrene-b-2vinylpyridine (PS-b-P2VP)

diblock copolymers are used to synthesize hybrid perovskite nanoparticles with re-

cently introduced organic 5-membered heterocycles of pyrrolidinium (C4H8NH). Uni-

form, well-dispersed, and highly luminescent nanoparticles were fabricated with high
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stability due to the presence of hydrophobic pyrrolidinium and polymer encapsulation.

By substituting bromine for iodine, a bathochromic shift was observed, resulting in a

Stokes shift of 660 meV (182 nm) for mixed halide phase nanoparticles rather than the

hypsochromic shift expected with the bromine doping. This feature of pyrrolidinium-

based perovskites is uncommon, making it a viable candidate for down-conversion

in low bandgap organic solar cells. With Py-based perovskites as down-conversion

layers, extensive improvements were observed in the short circuit current of bulk

heterojunction cells well matched to the nanoparticle emission spectrum.

3.1 Introduction

Since their emergence, hybrid organic-inorganic halide perovskites (MHP) have led

to record-breaking achievements in photovoltaics [6,98], light-emitting diodes [17,19],

lasers [7,166], and as down converters [23,24]. Among their interesting characteristics

are their high optical absorption coefficients, [98,167] tunable bandgaps [117], defect

tolerance [168], and long carrier lifetimes [169,170].

Perovskite nanoparticles have been reported to possess better photoluminescence

(PL) properties than bulk perovskites and other quantum dot materials including high

quantum yield, broad emission tunability, and the multi-dimensional structural flexi-

bility with the same chemical formulae [17,171,172]. Most defects act as shallow trap

states rather than non-radiative deep traps [168], yielding longer photoluminescence

lifetimes and higher efficiency.

Significant progress has been made with compositional tuning with respect to

efficiency, thermal stability, and band alignment [173], due to their compositional

and structural flexibility. However, organic cation-based perovskites are typically
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unstable when exposed to moisture or oxygen [73, 174]. One approach to combat

degradation is incorporating a large 5-membered heterocycle pyrrolidinium ring in

place of the methylammonium ion [175, 176]. The larger hydrophobic ring has suc-

cessfully stabilized single crystals in the presence of water for 4 months, [176] showing

that bulk PyPbI3 is stable compared to methylammonium and formamidinium-based

perovskites.

However, MHPs are very sensitive to the A-site cation size, which can lead to

reorganization of their cage structures. Due to their soft ionic nature, strain can

occur when different cations are added, which can be used to engineer the band gap

and cage stability [177, 178]. A compressive strain typically produces a red shift in

absorbance and emission with a narrower band gap, while a tensile strain results in

a blue-shift with a wider band gap [178]. Computationally the bandgap range of

CsPbI3 perovskite is shown to be tunable between 1.03 eV and 2.14 eV by adjusting

the strain from -5% to 5% [179].

The optical properties of 0D perovskites are determined by their isolated metal

halide octahedra, stemming from the lack of electronic coupling [180]. This gen-

erates broadband emission resulting in large Stokes shift in perovskites nanoparti-

cles, [157, 181] which are not observed in the bulk [156]. Stokes shift in this context

refers to a spectral difference between the emission and absorbance band maxima.

Materials with a large Stokes shift, typically <100 nm, are good candidates for opti-

cal applications due to the decreased possibility of photon self-absorption [182, 183].

Stokes shift in MHPs have been attributed to either the nanoparticle size or the cre-

ation of self-trapped exciton states [156, 180, 184]. Already well known for colloidal

quantum dots, [185] size dependent Stokes shifts in perovskites were observed by
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Brennan et al. [184] for 13 to 4 nm CsPbBr3 nanoparticles showing Stokes shifts of

20 to 82 meV, respectively. Introducing mixed halides also changes the cage struc-

ture and lattice parameters, affecting the optical properties [186]. Using mixed halides

(CsPbBrx I1 – x ), Zhao et al [187] reported larger Stokes shift compared to pure CsPbX3

(X=I, Br). Meinardi et al. [188] reported that a Stokes shift of approximately 200nm

could be achieved by doping 4% Mn2+, with the emission spectra broadened with a

slightly red-shifted maxima [188].

Here, we have investigated the properties of pyrrolidinium (Py) based perovskite

nanoparticles. We fabricated our nanoparticles by leveraging the properties of diblock-

copolymer reverse micelles to achieve nanoparticle structures that were not possible in

the bulk. Moreover, our nanoreactors slow down the reaction kinetics of nanoparticle

formation, resulting in high uniformity and thermodynamically stable stoichiometry.

In producing such nanoparticles, we have observed an anomalous bathochromic shift

in emission with bromine doping resulting in a large Stokes shift. Taking advantage

of the optical properties, we successfully incorporated Py-based perovskites as down

converters for low bandgap organic solar cells, improving short circuit currents.

3.2 Results and discussion

Using PS-b-P2VP copolymer micelles templates, we previously developed a recipe for

producing ordered MA and FA-based MHPs with a low polydispersity index (PDI) at

room temperature [23, 67]. Micelle templated nanoparticles had better surface cov-

erage and a longer photoluminescence lifetime than nanoparticles made by methods

such as ligand-assisted synthesis [23, 178]. Due to the separate loading step, we are

able to control the reaction kinetics allowing better tunability over doping or ionic
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substitution. Furthermore, in the presence of competing ions, a thermodynamically

stable phase forms preferentially due to the slowed-down reaction kinetics [23]. We

implemented this approach to produce pyrrolidinium based perovskite nanoparticles,

as shown schematically in Figure 3.1(a).
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Figure 3.1: (a) Schematic of the two step reverse micelle fabrication process of PyPbI3
nanoparticles. Numbers refer to the order of precursor addition. (b) PL emission and
UV-Vis absorption spectrum of PyPbI3 nanoparticles showing a 250 meV Stokes shift
(highlighted box). (c) XRD spectra of PS-b-P2VP encapsulated PyPbI3 nanoparti-
cles; inset displays a high resolution TEM image. (d) Predicted ideal hexagonal unit
cell of bulk PyPbI3.

The PL emission and absorption spectrum of the PyPbI3 nanoparticles is shown
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in Figure 3.1(b). The emission spectrum was broad with maxima at 540 nm, similar

to that of bulk PyPbI3. [176] The nanoparticles, however, had a blue shift in the

absorption edge when compared to bulk, from 750 nm down to 500nm. This results in

a change in the band gap from 1.8 eV in the bulk [176] to 2.4 eV for the nanoparticles.

This shift could be the result of quantum confinement, as the particles were ∼ 6nm

in size, which should increase exciton binding energy through band splitting [10,

171]. As the absorption threshold undergoes a blue shift, with emission spectrum

identical to the bulk, a larger Stokes shift is observed in the PyPbI3 nanoparticles

(with a large overlap in the emission and absorption characteristics). Previous studies

have also observed more pronounced Stokes shift in 0D perovskites compared to bulk

perovskites [23,189].

The formation of a hexagonal crystal structure was verified by X-ray diffrac-

tion (XRD) (Figure 3.1(c)) of nanoparticles encapsulated in the PS-b-P2VP di-block

copolymer. The inset shows a high resolution TEM image of a representative nanopar-

ticle. The data revealed hexagonal perovskites phase with a = b = 9.3117 and

c = 8.180nm lattice cell parameters, in good agreement with bulk measurements [175].

Peaks were also observed corresponding to the [005] and [105] planes of lead iodide,

indicating the presence of un-reacted precursor.

Though the structure was consistent with the unit cell of PyPbI3, extracted using

Vesta software shown in Figure 3.1(d), the peak centers were shifted to higher values

relative to the reference spectra, suggesting the development of compressive strain

[177]. Using the Scherrer and Cauchy approximation [190, 191], the nanoparticles

have a strain of -4.98% relative to a PyPbI3 single crystal.
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Typically, strain relief in MHPs can be achieved by introducing a smaller anion,

such as bromine, to the perovskite cage, which would result in relaxing the struc-

ture and altering the optical properties [192,193]. To introduce bromine, PbBr2 was
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added to PyI-loaded nanoreactors instead of PbI2 during the two-step process. En-

ergy dispersive spectroscopy (supplementary information Figure SI-1) confirms the

presence of both iodine and bromine in the resulting nanoparticles. However, though

the resultant XRD spectrum for the mixed-phase PyPbBr3 – x Ix again showed hexag-

onal phase formation (Figure SI-2), there was roughly twice the compressive strain

observed compared to the pure PyPbI3 nanoparticles. An induced strain of -11.3%

with respect to bulk PyPbI3 phase and -11.8% with respect to a theoretical bulk

PyPbBr3 structure was calculated using the Scherrer and Cauchy approximation. It

is important to note that there has not yet been reported formation of pure PyPbBr3

either as bulk or as nanoparticles.

The introduction of small ions into strained structures usually results in strain

relaxation [178,194], but we observed an increase in compressive strain for the mixed

halide perovskites. We have similarly observed unusual phase formation in other

MHPs produced using the reverse micelle templating approach. Hui et al. [67] showed

the room temperature synthesis of the orthorhombic MAPbI3 phase using reverse mi-

celles synthesis, even though this is usually only observed at very low temperatures

(around 160K) [195]. Likewise, FAPbI3 does not form a perovskite phase at room

temperature in the bulk, but was formed through reverse micelle templating [67].

Both the unusual phase formation and the strained nanoparticles likely results from

the restricted environment provided by reverse micelle shielding. In reverse micelle

synthesis, the nanoparticles are formed inside the core of the micelle, which exert an

external pressure on the perovskite cage due to micelle shielding. Figure SI-3 (sup-

plementary information) shows quantitative nanomechanical mapping (QNM) mea-

surements of a mono-layer of empty and loaded micelles show an increasing Young’s
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modulus with increased loading of the micelle core. Typically, when nanoparticle

formation is complete inside the micelle, the Young’s modulus plateaus at a value

higher than that of the empty micelle [153]. The stretching of the reverse micelle

caused by particle formation might result in induced strain in the perovskite cage.

Induced strain has also been observed for other types of ligated [196, 197] and core-

shell [198,199] nanoparticles.

In fact, the formation of the PyPbBr3 – x Ix nanoparticles themselves are unusual,

as these structures do not form in the bulk. A comparison of the emission spectrum

between PyPbBr3 – x Ix and PyPbI3 nanoparticles and bulk Py-based perovskites is

shown in Figure 3.2 (a). Precursor solutions were added to o-xylene in order to

precipitate bulk perovskites. The precipitates exhibited a broad emission spectrum

resembling the spectrum of PyPbI3 nanoparticles, but without a prominent emission

maxima. We have observed similar ambiguous emissions from unreacted perovskite

salts, which could also suggest that the precursors did not react fully. As the nanopar-

ticle emission spectra differs significantly from the bulk emission, we can establish that

the nanoreactors lead to the formation of nanophases that cannot be attained under

ambient conditions without PS-b-P2VP reverse micelles.

In hybrid perovskites, strain can be used to for bandgap engineering [200] as

induction and relaxation of strain will result in a slight change in ion positions and

shortening of lattice parameters [201]. This was already observed for the PyPBI3

nanoparticles, which showed a blue shift in absorption relative to the bulk perovskite

phase. Figure 3.2(b) shows the PL emission and UV-Vis absorption of PyPbBr3 – x Ix .

Even though bromine doping generally introduces a blue shift in absorption edges

[19,172], the addition of bromine here results in a red-shift in the absorption spectrum.
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In addition, PyPbBr3 – x Ix nanoparticles exhibited a strong red shift in the emission

spectrum with maximum emission at 700 nm. Both phenomena were unusual since

bromine doping typically causes a hypsochromic shift in both absorption and emission.

The anomalous optical behavior of Py-based perovskites is likely caused by strain

induced by the confined shielding environment of the micellar nanoreactor, in com-

bination with the size of the Py cation. In general, bromine dominant perovskites

emit green, while iodine dominant perovskites are red or near-infrared emitters [10].

In contrast, the maximum emission of PyPbI3 was observed at approximately 540

nm, whereas PyPbBr3 – x Ix had a maximum emission at around 700 nm. Zhang et al.

found that PyMnBr3 perovskites have maximum emission at 640 nm, suggesting that

perovskites with a larger Py cation differ from other MHPs. For PyMnBr3, however,

absorption edges appear at 620 nm, effectively nullifying any Stokes shift [202]. In

the case of our mixed phase Py-based perovskites, we were able to achieve a Stokes

shift of 660 meV, which is among the largest reported for MHP nanoparticles [171].

The PL properties of most 0D perovskites can be explained by their completely iso-

lated metal halide octahedra or clusters, resulting from a lack of electronic coupling.

As opposed to 3D perovskites, which typically show small Stokes shifts and narrow

band emission, low-dimensional metal halide perovskites generally show broadband

emission with large Stokes shifts, which we have also observed. As both particles

had roughly the same size (∼6 nm), this behaviour is more likely due to self-trapped

exciton states (STEs) [181] than any size related effects. The term STE refers to

excitons trapped in the excited state by transient local lattice deformations. This

phenomenon can easily occur in perovskites with soft lattices and strong electron-

phonon couplings. STEs lead to broad below-band-gap emission bands, and many
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researchers have applied STEs models in order to explain the Stokes-shifted broad-

band emission of 0D perovskites [23, 157]. Figure 3.2(c) shows a schematic of STEs

formation. This is also suggested by the Tauc plots of PyPbBr3 – x Ix and PyPbI3

extracted from the absorption data shown in Figure 3.2(d). The Tauc plots shows a

clear red shift in the absorption edge of mixed halide phase (PyPbBr3 – x Ix ) due to

strain manipulation. Furthermore, band alignment due to the incorporation of small

ions lowers the trapped states, resulting in large Stokes shifts.

AFM images of synthesized PyPbI3 and PyPbBr3 – x Ix nanoparticles after plasma

etching to remove the polymer shell are shown in Figure 3.3 (a) and (b). The nanopar-

ticles are uniform in size, dispersed evenly, and have almost equal spacing 39 nm

(PyPBI3) and 40.7 nm PyPbBr3 – x Ix between adjacent nanoparticles. Polydispersity

index for the nanoparticle diameters are 0.0132 (PyPbI3), and 0.0125 (PyPbBr3 – x Ix ),

in the range of monodispersity [203]. The quasi-hexagonal array only exhibits a lattice

distortion of 2.1 PyPbI3 for and 0.94 for PyPbBr3 – x Ix relative to a perfect hexago-

nal array, suggesting a high degree of order [131]. Such uniformity and control over

the spacing can only be achieved due to the PS-b-P2VP nanoreactors. All of these

characteristics are critical in optoelectronics as changes in size can result in changes

in emission spectrum and refractive index. Figure 3.3 (b, c, e, f) shows the spatial

statistics from Voronoi tessellation of particle positions, which are colored to show

the deviation in cell area relative to a perfect hexagonal lattice of similar particle

number density. In both cases, more than 70% of the Voronoi cells correspond to less

than 10% deviation from hexagonal packing.
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Figure 3.3: (a, d) AFM image of RMD PyPbI3 and PyPbBr3 – x Ix nanoparticles. (b,
e) Voronoi tessellation diagrams extracted from AFM images, displaying packing of
the nanoparticles, color indicating deviation from ideal hexagonal packing. (c, f)
Histogram of Voronoi cells volume deviation from hexagonal packing. (g, h) Cur-
rent density-voltage characteristics of OPVs incorporating Py-based nanoparticles as
downconverters under illumination.

As the Py-based nanoparticles exhibit large Stokes shifts, they could be used as
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UV downconversion filters in organic solar cells to prevent device degradation and

improve efficiency, absorbing UV light and re-emitting in the visible regime. To test

this, we deposited a layer of PyPbBr3 – x Ix and PyPbI3 nanoparticles on organic solar

cells using a PBTZT-stat-BDTT-8:PCBM bulk heterojunction absorber layer.

As evidenced by Figure 3.3 (g) and (h), the introduction of perovskite nanopar-

ticles improved the performance of OPVs under high-intensity illumination. The

presence of the PyPbI3 and the PyPbBr3 – x Ix nanoparticles resulted in a 39.8% and

6.6% increase in Jsc, respectively (shown in Figure 3.3 (g) and (h)). As shown in

Figure SI-4 (supplementary information), the emission spectrum of PyPbI3 extends

from 450 nm to 800 nm and the optimal absorption range of PBTZT-stat-BDTT-

8:PCBM lies between 550 nm to 670 nm. Accordingly, most of the absorption of the

organic blend overlaps with the emission of PyPbI3 nanoparticles, while only a very

small (≈50 nm) overlap occurring with PyPbBr3 – x Ix . Therefore, only minimal in-

crease in the Jsc for mixed phase nanoparticles was observed. These results show that

down-conversion using Py-based perovskites is a promising approach for improving

the performance of low-bandgap OPVs by matching emission and absorption profiles.

3.3 Conclusion

In summary, we synthesized PyPbI3 and PyPbBr3 – x Ix nanoparticles with 5-membered

heterocycles of pyrrolidinium using reverse micelle synthesis. Using the confined en-

vironment of the nanoreactor, we achieved phases that are not possible in the bulk.

In addition, we observed compressive strain in the synthesized nanoparticles. The

strain increased with bromine doping, indicating that it was caused by a confined

environment generated by the micellar coating. Synthesized nanoparticles exhibited
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a Stokes shift of approximately 250 meV for pristine PyPbI3 nanoparticles, and 660

meV for bromine doped nanoparticles, among the largest reported for MHP nanopar-

ticles. A significant down conversion was observed when synthesized nanoparticles

were applied on an OPV, resulting in an improvement in Jsc. Since the absorption

of the nanoparticles lies in the UV regime and their emission spectrum lies in green

and red, the nanoparticles acted as effective UV filters and down-converters.

3.4 Experimental

3.4.1 Perovskites precursor solution preparation

0.5M precursor solutions were made by adding organic salts (Pyrrolidinium iodide

(PYI, Sigma-Aldrich) to isopropanol (IPA) (Caledon, reagent grade) and the inorganic

salts (lead(II) iodide (PbI2, Alfa Aesar, 99.9985%) and lead(II) bromide (PbBr2,

Sigma-Aldrich 99.99%)) to N,N-dimethylformamide (DMF) (Sigma Aldrich, 99.8%).

3.4.2 Nanoparticles Synthesis

Poly(styrene-b-2-vinyl pyridine) diblock copolymer (Polymer Source), was dissolved

in reagent grade non-polar solvent o-xylene at a concentration of 3 g/L continuous

stirring to form reverse micelles. After confirmation of reverse micelles formation

by atomic force microscopy (AFM), precursor salts and reactants were added to the

reverse micelles solutions, with a time interval of 24 hours to allow thorough infil-

tration of each precursor. Pure pyrrolidinium lead iodide (PYPbI3) was formed by

sequentially adding the PYI precursor solution followed by the PbI solution into the

reverse micelle solution. To obtain mixed halide phase PYPbBr3 – x Ix nanoparticles,
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a stoichiometric amount of PbBr2 was added from the 0.5M master solution prepared

in DMF. The final loaded reverse micelles solutions were centrifuged to filter out the

excess salt and kept stirred to prevent coagulation. 4 µl of solution was spin coated

on silicon (1x1) cm slab for AFM characterization.

3.4.3 Organic solar cell fabrication

A conventional structure for the organic photovoltaic device (OPV) was used which in-

cluded ITO/lithium fluoride nanoparticles (LiF NPs)/poly(3,4-ethylenedioxythiophene)

polystyrene sulfonate (PEDOT:PSS)/PBTZT-stat-BDTT-8:PCBM/aluminum (Al).

The ITO substrates were ultrasonically cleaned in acetone and IPA for 15 minutes

each to obtain dust free substrates and etched in oxygen plasma for 5 minutes to

remove residual chemicals.A reverse micelle synthesis route was used to fabricate the

LiF nanoparticles as previously described. [204]. LiF nanoparticles were spin-coated

at 2000 rpm for 45 seconds on ITO and etched for 45 minutes to remove polymer

coatings. Afterwards, PEDOT:PSS purchased from Ossila was spin-coated at 5500

rpm for 30 seconds and annealed at 150◦C for 25 minutes in ambient conditions. A

30 mg/ml solution of PBTZT-stat-BDTT-8:PCBM (weight ratio: 1:2) was coated

over PEDOT:PSS via spin coating at 1000 rpm for 60 seconds, followed by post-

annealing at 70◦C for 10 minutes in an inert atmosphere. Thermal vapor deposition

was used to deposit aluminum over a specific area of 0.03 cm2 at low pressure utilizing

a mask. For enhanced self-conjugation of the organic blend, the encapsulated device

was post-annealed at 100◦C for 10 minutes in the ambient environment. To inves-

tigate the down-conversion of PY-based perovskites, 12 µl of PY-based perovskite

solution was deposited on the bottom of ITO-covered glass by spin coating at 2000

72



Ph.D. Thesis – M. Munir McMaster University – EP

rpm for 45 seconds. A xenon (Xe) light source with high intensity (90 W of output

power) was used to investigate the characteristics of the OPV.

3.4.4 Characterization

Atomic force microscopy (AFM)

Atomic force microscopy (AFM) images were collected using an Asylum MFP-3D

instrument (Oxford Instruments Asylum Research) in the alternating current (AC)

mode under ambient environment. AFM probes (Nanotools, EBD-FMR) with spring

constant of 2.8 N/m and resonant frequency at 75 kHz was engaged in tapping mode

for topography scan. WSxM 5.0 was used for AFM image processing. All AFM

samples were prepared by spin coating 4 µl of solution at 2000 rpm for 45 seconds on

(1x1) cm silicon slab.

Photoluminescence (PL)

PL measurements were performed using a 405 nm diode laser with laser power in the

range of 11 mW (spot diameter 1-2 mm). The sample emission is collected with a lens

and guided to the detection unit with an optical fiber. A long-pass filter (405 nm)

removes the excitation light before the collected radiation is fed into a monochromator

(Andor, Shamrock 303i, grating 500 nm blaze, 150 lines/mm) and detected with an

intensified charge-coupled device (Andor, iStar A-DH320T-18U-73). The sample was

exposed to the laser with an exposure time of 0.0237 sec and a slit opening of 50 µm.

The detection range is from 300 to 900 nm. Measurements were done in a darkened

environment to prevent stray light.
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UV-Vis Spectroscopy

UV-Vis spectra measurements were performed to characterize the optical properties

of the materials using a Lambda 35 UV-Visible spectrometer (PerkinElmer). The

samples were prepared at concentrations 0.1 mg/mL, using o-xylene as a dispersant,

measured in a 1x1 cm quartz cuvette.

3.5 Supporting information figures

Figure 3.4: (SI-1 ) An EDS spectrum of mixed halide phase perovskites synthesized
using the reverse micelles fabrication route.
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Chapter 4

Stabilized perovskite nanoparticles:

Optically active

FAPbBrxCl3–x -TiO2 core-shell

structures

The findings of this study have been submitted to

the ”Nano Energy” journal.

abstract

In recent years, hybrid halide perovskite nanostructures have gained interest for their

superior optoelectronic properties. Their application, however, is hindered by mois-

ture, oxygen, and UV radiation instability. In our study, we show formation of an
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perovskite-TiO2 core-shell nanoparticle to improve their stability upon exposure to an

oxygen plasma, allowing them to be used as an effective interlayer for optoelectronic

devices. Taking advantage of the properties of rdiblock copolymer everse micelle tem-

plating, core-shell particles with varying shell thickness was achieved. A maximum

of ≈ 7 nm TiO2 shell around a perovskite core was possible with monodispersed,

uniformly distributed nanoparticles. Increased shell thickness showed a quenching of

the emission properties, resulting in better charge carrier extraction when used as an

interlayer. It was found that the nanoparticles improved all aspects of organic solar

cells when they were practically incorporated in device. As compared to the standard

device with only TiO2 nanoparticles, Js c, Voc, and PCE showed 15%, 11.2%, and

23.56% improvements for FAPbBrxCl3 – x -TiO2 core-shell incorporated organic solar

cell.

4.1 Introduction

Metal organic lead halide perovskite nanoparticles (PNPs) have attracted significant

interest in recent years due to their unique optical properties, low cost, and ease

of processing. These PNPs have a range of potential applications, including photo-

voltaics [205], light-emitting diodes (LEDs) [206], display backlights [207], photode-

tectors [208], single-photon sources [209], solar cells [210], and down converters [23].

PNPs are a promising class of materials for many applications, but their inherent poor

structural stability in the presence of external factors presents a major challenge to

their widespread use [211, 212]. Among these external factors, moisture and oxygen

are particularly problematic for the stability of PNPs [213] in optoelectronic devices.
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The presence of water or other polar solvents can cause the PNPs to lose their struc-

tural integrity due to hydration or solvation leading to its decomposition [214]. The

fast degradation of PNPs when exposed to moisture, oxygen, high temperature, or UV

light [215–217] limits their usefulness in real-world applications such as photocatal-

ysis, photoelectric catalysis, and biological detection [218], which are often carried

out in aqueous environments. it also makes it difficult to scale-up manufacture for

commercial production. Moreover, due to the intrinsic ionic nature of perovskites,

halide PNPs easily undergo anionic halide exchange upon mixing, which can result in

a homogenized sample with less control over the composition [219, 220]. It is there-

fore beneficial for PNPs to achieve environmental stability before they can be used

in practical applications.

There have been significant efforts over the last decade to overcome limitations

associated with the synthesis and stabilization of colloidal nanocrystals [221]. Exam-

ples include post-synthesis modifications [222], the design of ligands [223], and doping

engineering [224] for enhanced stability and compositional control. Among all the ap-

proaches adopted to stabilize PNPs, creating core-shell nanostructures appears to be

the most promising [78]. Various approaches have used shells of water-proof organic

ligands [225,226], polymer matrices [227] or multidendate polymer micelles [23,67,68],

inorganic oxide coatings [228,228–231], and another similar perovskite material [232].

However, such shell materials typically have electrically insulating properties, inhibit-

ing charge transport into and out of PNPs, limiting their application. In our previous

studies, we have used PS-b-P2VP diblock copolymer micelles as nano-containers to

contain and shield perovskite nanoparticles from ambient and moisture based degra-

dation [23,92,233]. However, due to the polystyrene corona, PS-b-P2VP is insulating,
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which is an obstacle in the use of the formed nanoparticles in devices. Conventional

polymer removal techniques, such as oxygen plasma cannot be used with perovskites

as they will rapidly degrade under the harsh conditions [23, 92]. An ideal approach

to overcome the issue of instability and encourage charge transport would be to con-

struct a heterojunctions structure with a shell material with a suitable band gap

alignment with the core perovskite material. This would encourage charge separation

in the core, thus reducing the possibility of trapped carriers.

In contrast with the fabrication of traditional semiconductors (II−VI, III−V, and

IV−VI) [234, 235], the production of perovskite core-shell PNPs with uniform mor-

phologies, perovskite cores, and desirable conductive shells is difficult, as no one effi-

cient method is available to produce them uniformly or with consistent structures [80].

The soft ionic bonding and low crystal lattice energy of perovskite nanocrystals facili-

tate fast anionic exchange, causing rapid crystallization, which often leads to nonuni-

form undesirable structures [78, 80]. For example, using a wet chemical approach, Li

et al. [230] reported CsPbBr3-TiO2 core-shell PNPs using titanium butoxide (TBOT).

However, the shell thickness around the CsPbBr3 core was not the same on all sides.

Additionally, post-synthesis processing to remove excess water resulted in aggregation

in the synthesized CsPbBr3-TiO2 core-shell PNPs. Though there have been a variety

of core-shell structures reported for CsPbBr3 [68, 226, 228–230], there have also been

no reports of methylammonium (MA) and formamidinium (FA)-based perovskites

being capped with oxides or metal chalcogenides.

Herein, we present a facile room temperature method for growing conductive

TiO2 shells around formamidinium lead bromide (FAPbBr3) perovskites PNPs that

not only increases stability when exposed to oxygen plasma but also improves charge
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transport and charge extraction, allowing them to be used as an electrically active

interlayer for bulk-heterojunction polymer solar cells. The reverse micelle templating

synthesis route adopted in this study enables us to fabricate FAPbBr3 PNPs under

ambient conditions with controlled synthesis and uniform geometry , and subsequently

engineer TiO2 shells of various thicknesses. Importantly, all the synthesis steps were

carried out under ambient conditions at room temperature, without the need for any

additional post-processing.

4.2 Results and discussion

Previously, we reported the synthesis of uniform and well-dispersed perovskites PNPs

based on methylammonium (MA) and formamidinium (FA) using reverse micelle

synthesis with poly (styrene)-b-poly(2vinyl pyridine) (PS-b-P2VP) diblock copolymer

[23,92]. The polymer encapsulation enhanced the moisture resistance and structural

stability of the nanoparticles [233], but it negatively affected charge transport due to

the electrically insulating nature of PS-b-P2VP. To address this issue, we developed a

three step loading process to coat templated perovskite nanoparticles with a titanium

dioxide (TiO2) shell. TiO2 is well known as an electron transport layer (ETL) for

perovskite solar cells, and is resistant to UV, oxygen and humidity, all factors to

which metal hybrid perovskite are vulnerable [236].

As shown schematically Figure 4.1, first FAPbBr3 nanoparticles were synthesized

within diblock copolymer reverse micelle nanoreactors, then titanium tetrachloride

(TiCl4) was added in various concentrations to form a TiO2 capping layer. The fab-

rication steps were all completed in ambient atmosphere at room temperature except

for the addition of TiCl4, which was done in a N2 environment as it is hygroscopic
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and readily reacts with moisture in the air to form TiO2 and HCl vapour. Due to

its ability to absorb moisture, TiCl4 is an ideal precursor for the formation of TiO2

shells on perovskite nanoparticles. The formation of FAPbBr3 nanoparticles before

addition of TiCl4 was confirmed by photoluminesence spectroscopy.
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Figure 4.1: Schematic illustration of the reverse micelle synthesis route illustrating
the formation of reverse micelles using PS-b-P2VP diblock copolymer, the loading of
FAPbBr3 precursors to form nanoparticles, followed by the deposition of TiO2 shells
of varying thicknesses.

Reverse micelle synthesis offers control over size uniformity, dispersion and sto-

ichiometry by separately loading each precursor [23]. Therefore, by changing the

amount of precursor added and the infiltration time, we controlled the size and
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distribution of the core-shell nanoparticles. Figure 4.2(a) shows AFM images of a

monolayer of spin-coated FAPbBr3, TiO2, and core-shell nanoparticles with different

precursor additions. In all cases, uniform nanoparticles with a low polydispersity

index are formed. It can also be observed that there is little to no agglomeration of

nanostructures. The addition of greater amounts of precursors leads to larger NPs

from ≈ 11nm for the pristine FAPbBr3 particles to 35 nm with 3 mL addition of TiCl4,

roughly the same size as TiO2 nanoparticles produced by reverse micelle templating.

Figure 4.2(b) shows the nanoparticle density for two spin-coating and plasma etching

cycles, showing widely spaced particles, without significant agglomeration that might

be detrimental to particle performance. By repeated spin-coating and plasma etching

steps, it is possible to increase the particle density of micelle templated nanoparticles

without changing the particle dimensions [237,238].

The addition of precursor salt was correlated to the shell thickness, as confirmed

by TEM measurements. Figure 4.2(c) shows clearly the formation of a uniform shell,

≈ 7nm thick for 3 ml addition of TiCl4. At lower concentrations of TiCl4, the TiO2

shell was not readily visible, but it is clearly observable at precursor additions of

1 ml and higher. Utilizing the controlled addition of precursor salts, we were able

to create shells ranging from 1 nm to 7 nm thick, uniformly around the perovskite

core. Further addition of TiCl4 beyond 3 ml did not result in an increase in the shell

thickness, suggesting a maximum infiltration into the micelle. The formation of TiO2

as the predominant component of the shell around the perovskite was confirmed

using electron energy loss spectroscopy (EELS), shown in figure SI-1 (supporting

information).
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Figure 4.2: (a)(a) AFM images of a monolayer of spin-coated FAPbBr3, TiO2 and
FAPbBr3-TiO2 core-shell nanoparticles, after plasma etching. (b) SEM image of
two spin-coated layers of FAPbBrxCl3 – x - 3Ti core-shell nanoparticles, after plasma
etching. (c) High resolution TEM image of a single FAPbBrxCl3 – x - 3Ti core-shell
nanoparticle showing the measured shell thickness.
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To investigate the optical properties of the synthesized core-shell nanoparticles,

the photoluminesence emission spectra of the nanoparticles were examined, as shown

in Figure 4.3(a). Prior to the addition of TiCl4, FAPbBr3 nanoparticles exhibited a

strong single emission spectra, with a peak of FWHM of ≈ 40nm, and an emission

maxima at 508 nm, consistent with bromine based perovskites [23]. The addition of

TiCl4 resulted in a hypsochromic shift, suggesting the substitution of bromide with

chloride ions, as chloride based perovskites tend to emit in the blue region. By virtue

of the slowed reaction kinetics, reverse micelle templating allows for the formation of

the thermodynamically stable phase even in the presence of multiple halide ions [23].

Consequently, the emission maxima shifted to 430 nm with a subordinate hump ob-

served at 460 nm. This is consistent with chlorine doping of the perovskite, as was

also observed by Lingos et al. where 10% doping of Cl– in CsPbBr3 shifted the emis-

sion maxima to 425 nm, with a secondary emission observed around 475 nm [239]. It

is likely therefore that adding TiCl4 results in a doped FAPbBrxCl3 – x perovskite cage

structure. However, broadening of the emission spectrum suggests multiple doping

stoichiometries were achieved in the nanoparticles. With Cl– addition, the total emis-

sion intensity is similar up to 1 ml addition of TiCl4, where emission quenching starts

to be observed. This also coincides with the visible formation of a TiO2 shell around

the perovskite nanoparticle under TEM. It is likely therefore that with small amounts

of Ti-precursor, doping occurs until sufficient Ti is introduced to form a TiO2 shell.

Further additions of TiCl4 show further emission quenching, consistent with a thicker

shell formation. Such emission quenching typically results from the formation of a

junction between the core and the shell, preventing radiative recombination through

charge transfer to the shell from the photoexcited charge carriers in the core, if there
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is sufficient band alignment between the two components.
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Figure 4.3: (a) PL emission spectra of FAPbBr3, TiO2 nanoparticles and
FAPbBr3/TiO2 core/shell nanoparticles of varying shell thickness. (b) Schematic
of the core/shell junction, illustrating band overlap and a quasi-type-II band align-
ment of the core and the shell.

In a type-I band alignment, the conduction and valence band of the core material

is confined within the band gap of the shell material [240]. With a small offset with

the conduction band of the shell material, while the valence bands are well separated

from each other, however, such systems can exhibit quasi-type II behaviour where

the electrons can be delocalized over both the core and shell whereas the low-energy

holes are confined to the core [241]. As determined by electrochemical methods,

the conduction and valance band edges of mixed halide perovskites (FAPbBrxCl3 – x )

relative to a normal hydrogen electrode (NHE) were determined by Wang et al to be

≈ -1.1 and ≈ 1.3 V [242], respectively, whereas the conduction and valance band edges

of TiO2 nanoparticles versus NHE were ≈ -0.5 and ≈ 2.7 V respectively [243]. In

this case, the small offset (≈ 0.6 V) between the conduction bands of the perovskite

core and the TiO2 shell produces a quasi-type-II band alignment which leads to
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delocalization of the electron, whereas the larger offset (≈ 1.4 V) confines the low

energy hole to the perovskite core alone. This proposed band alignment explains the

quenching of emission for thicker shells, where radiative recombination is inhibited

due to electron transfer at the perovskite-metal oxide junction. Figure 4.3(b) shows

a schematic representation of the FAPbBrxCl3 – x -TiO2 core-shell nanoparticle with

energy levels and transitions indicated.

33.5 nm 
31.7 nm 

TiO2 nanoparticles
FAPbBr3@ 0.3ul TiCl⁴
FAPbBr3@ 1ul TiCl⁴
FAPbBr3@ 2ul TiCl⁴
FAPbBr3@ 3ul TiCl⁴

Cu
rre

nt
 D

en
si

ty
 (m

A/
cm

2 )

Voltage (V)
0 0.25 0.50 0.75

0

-5

-10

-15

-20

(a) (b)

(c) (d)

TiO2-NPs FAPbBr3-
0.3TiCl4NPs

FAPbBr3-
1TiCl4

FAPbBr3-
2TiCl4

FAPbBr3-
3TiCl4

8

7

6

Po
w

er
 c

on
ve

rs
io

n 
ef

fic
ie

nc
y(

%
)

ITO

PEDOT:PSS

Organic blend

Al

FAPbbr-TiO2 
nanoparticle

Figure 4.4: (a) Dispersion of FAPbBr3-TiO2 core-shell nanoparticles on an electrode
surface showing wide spacing between them. (b) Schematic diagram of the organic
photovoltaic device that incorporates FAPbBr3-TiO2 nano heterojunctions. (c) Mea-
sured J-V curves and (d) box plots of the power conversion efficiencies of six organic
solar cells constructed using TiO2 and FAPbBr3-TiO2 core-shell nanoparticles. Solar
cell IV measurements were done under AM1.5G illumination.

The practical application of FAPbBrxCl3 – x -TiO2 heterojunctions was explored

by incorporating them as charge extraction and transport interlayers in organic solar
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Table 4.1: Table showing comparison of the standard TiO2 device parameters with
various FAPbBrxCl3 – x -TiO2 nano-heterojunctions with various TiO2 shell
thicknesses. All measurements were done under AM1.5G illumination.

Nanoparticle type
Jsc

(mA/cm2)
Voc

(V)
PEC
(%)

FF
(%)

TiO2 -17.2 0.71 6.62 52.08
FAPbBrxCl3 – x -
0.3Ti

-17.5 0.73 6.50 51.00

FAPbBrxCl3 – x -
1Ti

-19.1 0.77 7.56 52.70

FAPbBrxCl3 – x -
2Ti

-18.9 0.79 7.60 52.51

FAPbBrxCl3 – x -
3Ti

-19.9 0.79 8.18 52.75

cells. As the particles are widely spaced, many deposition and etching cycles are

required to achieve full surface coverage [87]. The difficulty of achieving complete

surface coverage even after using multiple layers is highlighted by the dispersion of

FAPbBr3-TiO2 nanoparticles on an electrode surface, as shown in Figure 4.4(a). As

each etching step requires 45 mins of exposure to an oxygen plasma to eliminate

the PS-b-P2VP polymer shielding, deposition of multiple layers may cause harm or

destruction to the electrode surface and/or the nanoparticles. Therefore, only two

successive depositions of core-shell particles were deposited in device structures, as

shown in Figure 4.2(c). The particles were deposited on the ITO surface between

the electrode and a PEDOT:PSS charge transport layer in a PBTZT-stat-BDTT-

8:PCBM bulk heterojunction device, as shown in the device schematic illustrated in

Figure 4.4(b).

A control device with two layers of just TiO2 nanoparticles were also made to

provide a comparison with the perovskite-TiO2 core-shell nanoparticles. Figure 4.4(c)

90



Ph.D. Thesis – M. Munir McMaster University – EP

shows the JV characteristics of the BHJ device under AM 1.5G illumination with

various nanoparticle interlayers. With increasing shell thickness, the Js c gradually

increases, following the trend of quenched emission intensity described previously.

The control device with TiO2 nanoparticles had PCE of 6.62 with Js c of -17.2 mA/cm2

and Voc of 0.71 V, respectively, as shown in Table 4.1. No significant improvement

was observed for FAPbBrxCl3 – x with 0.3 and 0.5 of Ti. As there was also no emission

quenching for these samples, it is likely that there was not a sufficient shell to protect

the perovskite core from the oxygen plasma etching, rendering it optically inactive

and providing no benefit beyond a TiO2 interlayer. Thicker shell thickness, where

significant emission quenching was observed, resulted in both improved short circuit

currents and open circuit values, described in Table 4.1. Compared to the reference

device, Js c improved 15.23% and Voc improved 11.2% for a maximum TiO2 shell

thickness of ≈ 7nm. By improving Js c and Voc, FAPbBrxCl3 – x -3Ti-based solar cells

achieved a power conversion efficiency (PCE) of 8.18%, which was an improvement

of 23.56% over the control device. The box plot for power conversion efficiency for 6

devices is displayed in Figure 4.4(d).

4.3 Conclusion

In this study, we were able to demonstrate the passivation of formamidinium-based

perovskites with a TiO2 shell. Addition of TiC4 to micelle templated perovskites

resulted initially in Cl– doping, then the formation of a uniform shell of TiO2, re-

sulting in a hypschromic shift then quenching in the emission characteristics. The

conductive TiO2 shielding allowed the core-shell particles to be used as a charge

extracting interlayer in an organic solar cell due to its quasi-type-II band alignment
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with FAPbBrxCl3 – x .Using the core-shell structures results in improvements in the Js c,

Voc and PCE of 15.23%, 11.2%, and 23.56%, respectively, over a device with simi-

larly sized TiO2 nanoparticles. This suggests that the formation of a heterojunction

particle with efficient charge transfer between the core and the shell resulted in more

carriers than just found for TiO2 interlayers. This novel FAPbBrxCl3 – x -TiO2 nanos-

tructure provides an ideal route to construct stable perovskite nanoparticles with

excellent charge transport properties. This provides a new opportunity to enhance

the photovoltaic performance and long-term stability of perovskite nanoparticles.

4.4 Generalization to FAPbBr3-metal oxide core-

shell nanoparticles synthesis

Following the successful encapsulation of perovskite nanoparticles with TiO2 and

with control over the shell thickness, other stable charge transport materials were

attempted as capping agents. In general, the insolubility of most metal oxides in

organic solvents makes them compatible with solution-processing technology for the

fabrication of multilayer deviceswang2018influence. Nickel oxide (NiOx), known for its

high carrier mobility, physical and chemical stability, and resistance to humidity and

oxygen, is widely used as a hole transport layer in perovskite and organic solar cells

[244,245]. To confirm the generalizability of the reverse micelle templated approach,

zinc oxide (ZnO) capping was also attempted.

Using the reverse micelle templated synthesis route, FAPbBr3 nanoparticles were

fabricated as previously described. The loading step, which enables the tailoring of
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various shell thicknesses through the addition of different amounts of capping pre-

cursor, was utilized for shell thickness tailoring. Upon the addition of between 0.5

µl and, 4 µl of 0.5 M NiCl2 (referred to as FAPbBr3-0.5 Ni, -1 Ni, -2 Ni, -3 Ni, and

-4 Ni), quenching in the intensity at the emission maxima was observed without a

shift in the wavelength, in contrast to observed with TiCl4, as depicted in Figure

4.4(a). The consistency of the emission wavelength in the case of Ni encapsulation

is theorized to be a result of less Cl ion availability with the NiCl2 precursor, which

seems to form a passivation layer without altering the perovskite cage chemistry by

doping substitution on the halide sites. By contrast, TiCl4, an aggressive precursor

with 4 chloride ions associated with 1 titanium ion, may generate high osmotic pres-

sure leading to chlorine doping in the perovskite cage [246]. This seems plausible as

when titanium isopropoxide is used as a capping agent, similar intensity quenching

with no change in the emission maxima was observed, as shown in Figure 4.4(b).
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Figure 4.5: (a) Comparison of the emission spectrum of pristine FAPbBr3 nanoparti-
cles with that of Ni-capped nanoparticles displaying emission quenching. (b) Emission
spectrum comparison of FAPbBr3 with FAPbBr-Ti core-shell nanoparticles capped
using titanium isopropoxide precursors. (c) Life study of FAPbBr3-3Ni nanoparti-
cles, showing emission even after 10 minutes of plasma etching. (d) Comparison of
the current-voltage (J-V) characteristics of devices with and without the incorpora-
tion of FAPbBr-Ni core-shell nanoparticles.

During this study, it was observed that as the concentration of Ni increased, a

decrease in the emission spectrum was observed and the emission fully disappeared

at a concentration of 4 Ni. The decrease in emission increased as the concentration of

Ni precursor increased, correlated to increasing shell thickness, suggesting that as the

shell thickness was increased, the charge extraction was improved. This behaviour

seems to be a result of a inverse-Type II band alignment between FAPbBr3 and NiO,

as the valence and conduction band edges of FAPbBr3 are expected to be -5.5 eV and
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-3.5 eV, respectively, whereas those of NiO are -5.4 eV and -1.8 eV versus vacuum

electrodes [244]. Assuming an Anderson model of band alignment at semiconductor-

semiconductor interfaces, the core and shell band valence bands were approximately

at the same level with an offset of only 0.1 eV, while there was a 1.7 eV difference in the

conduction bands. In this scenario, when an exciton is generated by the absorption of

a photon, the hole is localized at the FAPbBr3-Ni heterojunction, whereas the electron

is confined to the conduction band of Ni [247]. Schematic illustration of the inverse-

type II band alignment formation is shown in figure 4.6. This band alignment enables

efficient hole extraction from the perovskite layer to the semiconductor shell, which

acts as a transport layer. Though this was not as effective as a Ti shell in quenching

emission, such a nanoparticle should also be expected to improve the performance of

organic solar cells. To confirm the practical applicability of the nanoparticles, they

were incorporated into organic solar cells, and an improvement in the short circuit

current from -15.4 mA/cm2 to 17.06 mA/cm2 of the device was observed, confirming

that the charge extraction was improved with using the core-shell particles compared

to RMD synthesized NiO nanoparticles. The J-V data is shown in Figure 4.4(d). As

RMD NiO particles are typically smaller than the core-shell particles, it is unclear

if this behaviour is related to the geometric dispersion of the nanoparticles or the

material properties and further studies are underway to confirm the mechanism of

improvement.
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Figure 4.6: Schematic of the FAPbBr3-NiO core/shell junction, illustrating band over-
lap and an inverse-type II band alignment of the core (FAPbBr3) and the shell(NiO)

However, the NiO shell was very effective at stabilizing the perovskite nanoparti-

cles. TheFAPbBr3-3Ni core-shell nanoparticles were stabilized to such an extent that

even after 10 minutes of oxygen plasma etching, the nanoparticles were still emitting,

whereas without Ni encapsulation, the nanoparticles were unable to withstand even

1 minute of etching. After 1 year of exposure to ambient, the emission intensity was

only reduced by≈2%, suggesting an extremely long shelf life for capped nanoparticles.

The emission spectrum of FAPbBr3-3Ni nanoparticles, after 10 minutes of etching, is

depicted in Figure 4.4(c). The inset of Figure 4.4(c) shows the glow of the nanopar-

ticles when exposed to a UV laser, as well as an AFM image of the nanoparticles.

To synthesize zinc oxide (ZnO) capped FAPbBr3 nanoparticles, 0.5 M ZnCl2 in

isopropanol was utilized as the precursor for Zn capping. It was noted that the emis-

sion quenched at a slower rate in comparison to TiO2 and NiO capping. During the
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experiment, a maximum of 8 µL of 0.5 M ZnCl2 solution was added, yet ≈50% of the

initial emission intensity was still observed. No shift in the emission maxima wave-

length was detected, except for FaPBBr3-1Zn which showed a ≈10 nm blue shift.

Figure 4.5(a) displays the emission spectrum of pristine FAPbBr3 and Zn-capped

FAPbBr3. Additionally, the impact of FAPbBr3-Zn core-shell nanostructures on so-

lar cell performance was analyzed by incorporating them into devices. The results

revealed that FAPbBr3 alone and with lower ratios of Zn addition (i.e. presumed

thin shell thickness), the device performance was worse than without ZnO nanopar-

ticles or did not show any improvement. This is consistent with the lack of emission

quenching observed, suggesting efficient transfer of electrons between the core and

shell were not observed. However, it is also possible that the shell thickness is insuf-

ficient to protect the perovskite materials at such thicknesses, as the exposure to O2

plasma results in degradation of the perovskite to PbBr2. However, at a higher Zn

shell thickness (lowest emission intensity), a slight improvement in Js c and Voc was

observed, indicating that the nanoparticles are contributing to the improvement of

the solar cell performance when the emission was quenched as expected. However, the

improvement does not seem to be consistent with the amount of emission quenching

observed in these devices as shown in Figure 4.5(b).
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Figure 4.7: (a) A comparison of the emission spectrum of pure FAPbBr3 nanopar-
ticles and Zn-encapsulated nanoparticles showing a reduction in emission. (b) An
evaluation of the current-voltage (J-V) characteristics of devices incorporating only
pure FAPbBr3, only ZnO, and various FAPbBr3-Zn core-shell nanoparticles.

The study of the effect of Ni and Zn capping on FAPbBr3 nanoparticles is ongoing,

and requires further investigation and understanding of the mechanisms of core-shell

interaction to understand their application in optoelectronic devices.

4.5 Experimental

4.5.1 Perovskite nanoparticles synthesis

0.5M precursor solutions of formamidinium iodide (FAI, Sigma-Aldrich) in isopropanol

(IPA) (Caledon, reagent grade) and lead(II) bromide (PbBr2, Sigma-Aldrich 99.99%)

in N,N-dimethylformamide (DMF) (Sigma Aldrich, 99.8%) were used as precursors

to produce perovskite nanoparticles through a two-step loading process into diblock

copolymer reverse micelles as described previously [23, 92]. Revere micelles were

formed from poly(styrene-b-2-vinyl pyridine) diblock copolymers (Polymer Source)
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dissolved in reagent grade o-xylene at a concentration of 3 g/L under continuous stir-

ring. Precursors were added to the reverse micelles solutions, with a time interval

of 24 hours to allow thorough infiltration of each precursor. Pristine formamidinium

lead bromide FAPbBr3 nanoparticles were formed by sequentially adding FAI precur-

sor solution followed by the PbBr2 halide solutions. The precursors were allowed to

stir for 24 hours together and then centrifuged to wash out the unloaded precursors.

4.5.2 Perovskite- metal oxide core-shell nanoparticles syn-

thesis

To produce core-shell nanoparticles, various volumes of TiCl4 (Sigma-Aldrich 97%),

Ti-iso-propoxide, 0.5 M nickel(II) chloride hexahydrate (NiCl2.6H2O) ) in ethanol or

0.5 M zinc chloride (ZnCl2) in isopropanol were added to already synthesized FAPbbr3

nanoparticles. Various shell thicknesses were obtained by varying the volume ratios

from 0.3 ml/L to 8 ml/L.The solution was centrifuged after 24 hours to eliminate

the excess unloaded precursor and obtain a clear nanoparticle solution of various

concentrations: named either FAPbBrxCl3 – x - 0.3Ti,to FAPbBrxCl3 – x - 3Ti for Ti

samples or FAPbBr3- 0.5 - 8 M, where M is Ni or Zn, depending on how many µL of

the precursor was added to the FAPbBr3 loaded micelle solution. Where indicated,

the polymer micelle was removed using O2 plasma etching (Harrick PDC-001, 29.6

W., 30 sccm) after spin coating the loaded micelle solutions onto various substrates.

The plasma chamber was held at a base pressure of 70 mTorr prior to target gas

filling.
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4.5.3 Device fabrication

A conventional structure for the OPV was used which included ITO/metal oxide or

perovskite core-shell nanoparticles/poly(3,4-ethylenedioxythiophene) polystyrene sul-

fonate (PEDOT:PSS)/PBTZT-stat-BDTT-8:PCBM/aluminum (Al). The ITO sub-

strates were ultrasonically cleaned in acetone and IPA for 15 minutes each to obtain

dust free substrates and etched in oxygen plasma for 5 minutes to remove residual

chemicals. A reverse micelle synthesis route was also used to fabricate the metal

oxide nanoparticles, as described previously by adding a specific loading ratio of the

precursor salt to reverse micelle solution [83, 153]. Using conditions of 2000 rpm for

45 seconds on ITO, two layers of the nanoparticles were spin-coated sequentially, and

each layer was etched for 45 minutes to remove the polymer micelles. Afterwards,

PEDOT:PSS (Ossila) was spin-coated at 5500 rpm for 30 seconds and annealed at

150◦C for 25 minutes in ambient conditions. A 30 g/L solution of PBTZT-stat-

BDTT-8:PCBM (weight ratio: 1:2) was coated over PEDOT:PSS via spin coating at

1000 rpm for 60 seconds, followed by post-annealing at 70◦C for 10 minutes in an

inert atmosphere. Thermal vapor deposition was used to deposit aluminum through

a mask to produce 0.03 cm2 pixels. The complete devices were encapsulated using

UV-cured adhesive with a glass coverslip. The encapsulated device was post-annealed

at 100◦C for 10 minutes. IV characteristics were measured by an Xtralien X100 SMU

attached to an Ossila push fit test board. Devices were illuminated using an AM

1.5G solar simulator.
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4.5.4 Characterization

Atomic force microscopy (Asylum MFP-3D instrument) was performed in the alter-

nating current (AC) mode under ambient environment, using AFM probes (Nan-

otools, EBD-FMR) with a spring constant of 2.8 N/m and resonant frequency at 75

kHz in tapping mode. WSxM 5.0 was used for AFM image processing. All AFM

samples were prepared by spin coating 4 µl of solution at 2000 rpm for 45 seconds on

1x1 cm silicon. PL measurements were performed using a 375 nm diode laser with

laser power in the range of 20 mW (spot diameter 1-2 mm). The sample emission

was collected with a lens and guided to the detection unit with an optical fiber. A

long-pass filter (375 nm) was used to remove the excitation light before the collected

radiation is fed into a spectrometer (Ocean optics, USB2000+, grating 31). The sam-

ples was exposed to the laser with an exposure time of 2 seconds and a slit opening of

200 nm. The detection range is from 200 to 1050 nm. Measurements were done in a

darkened environment to prevent stray light. TEM characterizations were done using

Talos 200X (Thermo Scientific) quipped with an X-FEG source and an adjustable

high tension between 80 and 200 kV, HRTEM resolution of 0.1 nm, and STEM with

a resolution of 0.16 nm.
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Chapter 5

Universal transfer printing of

micelle templated nanoparticles

using plasma functionalized

graphene

The findings of this research were published in ”ACS

Applied Materials & Interfaces” journal

abstract

Nanostructure incorporation into devices plays a key role in improving performance,

yet processes for preparing 2D arrays of colloidal nanoparticles tend not to be uni-

versally suitable, particularly for soft and oxygen sensitive substrates for organic
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and perovskite based electronics. Here, we show a method of transferring reverse

micelle deposited (RMD) nanoparticles (perovskite and metal oxide) on top of an

organic layer, using a functionalized graphene carrier layer for transfer printing. As

the technique can be applied universally to RMD nanoparticles, we used magnetic

(γ-Fe2O3) and luminescent (methylammonium lead bromide (MAPbBr3) nanoparti-

cles to validate the transfer printing methodology. The strong photoluminescence

from the MAPbBr3 under UV illumination and high intrinsic field of the γ-Fe2O3

as measured by magnetic force microscopy (MFM), coupled with Raman measure-

ments of the graphene layer, confirm that all components survive the transfer printing

process with little loss of properties. Such an approach to introducing uniform 2D

arrays of nanoparticles onto sensitive substrates opens up new avenues to tune device

interfacial properties.

5.1 Introduction

Incorporation of nanostructures into devices have been applied in a variety of ad-

vanced technological fields, including organic photovoltaics, displays, sensors, photon-

ics, micromechanical systems, microfluidics and microelectronics. [84,248–251] Nanos-

tructures for nanopatterning used to enhance device performance can be from a wide

variety of materials, including noble metals, metal alloys, metal oxides, and dielectric

salts. [84, 87,249,252,253]

Size monodispersity and control of two dimensional order are particularly impor-

tant when incorporating nanoparticles in optoelectronic devices, as heterogenity is a

key roadblock in the development of nanoparticle based applications [254]. Uniformity

is essential particularly in controlling electrical properties such as charge transport
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and interfacial work function. [84, 87, 249, 253] Reverse micelle templates formed by

diblock copolymers offer a high degree of nanoparticle size control with 2D disper-

sion tuning, for a wide variety of materials [67, 86, 131, 255]. However, processes for

preparing such arrays of colloidal nanoparticles tend not to be universally suitable

across the variety of substrates used in electronic devices. In particular, there is a

need to use an oxygen or inert gas plasma to remove the polymer shell from around

the nanoparticle. This poses a challenge for the integration of precise planar arrange-

ments of colloidal nanoparticles into the device fabrication process of organic and

perovskite electronics.

Nanotransfer printing methods using elastomer stamps have been successfully

applied to move nanoparticles from a donor substrate to an soft target substrate

[85, 248, 256–259]. Successful stamping transfer between substrates depends strongly

on the intrinsic surface energy differences between the stamp and the donor sub-

strates [260], surface roughness [261], peeling velocity [262, 263], stamp mechanical

properties [264], and temperature and humidity [85]. Many approaches suffer from

process-specific drawbacks, such as additional chemical treatments [265–268], elevated

temperatures [269–271], or functionalization [272] to successfully move nanoscale ob-

jects, hence no universal stamp method has yet been identified. Additionally, the

introduction of surface discontinuities and/or contamination that can greatly hin-

der the properties and functions of the transferred materials is common with soft

stamping [259]. A related approach is to use a sacrificial carrier layer with high

mechanical strength. As defect-free, monolayer graphene is considered to be among

the strongest materials tested [273–275], it could be the ideal material for such an

approach. Though transfer methods have been used to transfer large area chemical
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vapour deposition (CVD) grown graphene for graphene-based organic photovoltaics,

field-effect transistors and resonators, [276–282] these approaches also generally suffer

from polymer residue contamination from the stamp, as well as tears and wrinkles

in the graphene layer limiting their use. [278,281,282] Recently, Feng et al. reported

a direct transfer method for CVD graphene on Cu using the target organic layer as

the holder substrate, which avoids the process of having unnecessary organic contam-

inants. [283].

In this contribution, we discuss our modification of Feng’s approach to successfully

transfer RMD nanoparticles using functionalized graphene as a mechanical support.

By treating CVD graphene with low temperature annealing, we have created a uni-

versal carrier to transfer nanoparticles onto organic surfaces. The reduce graphene

oxide (rGO)-like layer that results from plasma etching provides a mechanical and

environmental barrier suitable to transfer a variety of nanoparticle types. To validate

our transfer printing methodology, two types of nanoparticles were used: magnetic

γ-Fe2O3 nanoparticles and luminescent perovskite nanoparticles of methylammonium

lead bromide (MAPbBr3). Raman spectroscopy, photoluminescence spectroscopy and

MFM confirmed the successful transfer and stabilization of nanoparticles on an or-

ganic surface using the modified graphene.

5.2 Results and discussion

Di-block copolymers, due to their amphiphilic nature, spontaneously form core-corona

micelles in selective solvents. Using these micelles as “nanoreactors” allows the for-

mation of highly size controllable nanoparticles, with less than 2% deviation in the
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average particle diameter [67, 83, 87, 249, 284]. The other advantage of reverse mi-

celle deposition (RMD) is the control over the 2D dispersion: highly ordered periodic

arrays with varying spacing and organization are achieved with simple tuning of de-

position parameters [67,131]. To produce RMD nanoparticles, poly(styrene-b-2-vinyl

pyridine) (PS-b-P2VP) diblock copolymer reverse micelles are formed in a non-polar

solvent. To introduce these nanoparticles on to the organic surface, we utilized a

transfer method based on a modified graphene layer acting as a mechanical support.

A schematic flow of the transfer-printing procedure, modified from Feng’s study

[283], is shown in Figure 5.1. After the CVD graphene on Cu is annealed at 180°C for

60 min, the reverse micelles loaded with precursors are spin-coated onto the graphene.

The micelles together with CVD graphene are plasma etched in oxygen to remove the

polymeric shell, with the graphene transformed into a reduced graphene oxide (rGO)-

like structure, as we have described previously [285–287]. For certain nanoparticles,

the plasma is also used to convert the precursor into the desired material (e.g., iron

chloride oxidizes to iron oxide). At this point, the target organic layer can be in-

troduced by spin-coating onto the composite layer, with thickness controlled by the

spin-coating speed and concentration of the cast polymer.
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i. Anneal graphene at 1800C 
for 60 min

ii. Spin-coat micelles
iii. O2 plasma etch

iv. Spin-coat polymer & cure

v. Float stack on Cu etchant 
    & sonicate

vi. Float rinse on DI H2O
vii. Scoop up stack by ITO

viii. Let dry in N2  environment

rGO/NPs/Polymer/ITO

Figure 5.1: Schematic flow of transfer printing process– direct graphene transfer with
nanoparticles using polymer holder. (i) Anneal CVD full graphene on Cu in air
at 180°C for 60 min. (ii) Spin-coat nanoparticles-loaded-micelles solutions on the
annealed CVD full graphene on Cu. (iii) Plasma etch the whole stack in oxygen for
25 min to expose the nanoparticles from the micelles. (iv) Spin-coat polymer (P3HT
or PMMA) on the stack and cure. (v) Float the stack on Cu etchant solution to etch
away the Cu layer, mildly agitated by sonication. (vi) Float the stack on DI water for
three times to rinse off any Cu etchant residue. Displace water carefully with syringe
to avoid tearing of the stack from water surface tension. (vii) Scoop up the stack
from the solution by lowering the substrate (ITO) on top of the stack. (viii) Flip the
stack up-side-down and let dry in N2 environment overnight. Final configuration of
stack: Reduced graphene oxide/nanoparticles/polymer/ITO.

107



Ph.D. Thesis – M. Munir McMaster University – EP

After the target organic layer is cured according to the manufacturer instructions,

the whole stack of material will be floated onto a Cu etchant solution of 5g/L ammo-

nium peroxydisulfate to dissolve the copper foil. As CVD deposits graphene on both

sides of the copper foil, the graphene layer grown at the bottom side of Cu needs to be

removed. This happens spontaneously with our process because the etchant will also

detach the graphene layer as Cu dissolves. Therefore, only the modified graphene is

in contact with the Cu etchant, protecting the rest of the stack, including the organic

deposit [283,288].

The process is followed by displacing the Cu etchant with deionized water so that

any Cu etchant residue can be washed away. The stack is subsequently retrieved, by

lowering an ITO-coated-glass substrate on top of the stack and allowing the organic

layer to attach. Finally, the stack is flipped to achieve the configuration of modified

graphene/nanoparticles/organic layer/ITO and is allowed to dry in a N2 filled glove-

box environment. In this way, the nanoparticles should be trapped under the modified

graphene layer, and the post-transferred condition of the graphene, nanoparticles and

target organic layers are gauged either optically or chemically. As our printing pro-

cess can be applied universally to nanoparticles produced by RMD, we were able to

transfer nanoparticles with properties that could be measured by various analytical

techniques to confirm that all components are able to survive.

The reverse micelle deposition (RMD) process requires sustained plasma etching

to produce monodisperse nanoparticles with a high degree of two dimensional or-

der, as shown in Figure 5.2. Here MAPbBr3 nanoparticles are shown, but RMD is

able to produce similar nanoparticle dispersions of a wide variety of materials under

similar etching conditions [67, 83, 87, 249, 284] (see Figure 5.6 for AFM of γ-Fe2O3
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nanoparticles produced under similar conditions as MAPbBr3)

However, this level of etching is typically destructive to organic surfaces (see sup-

porting information Figure 5.7), preventing direct deposition on the organic surface.

This same plasma dosage is also typically destructive to graphene [286,289,290].

We have recently shown that CVD graphene on Cu behaves very differently under

plasma compared to free standing graphene and graphene supported on other sub-

strates [286], forming rGO-like structures under direct oxygen plasma bombardment.

Due to the synergistic oxidation mechanism between graphene and the underlying

Cu, the degree of oxygen functionalization of the activated graphene can be tuned

with the oxygen plasma dose [286].

The high plasma dose required to fully etch the nanoparticles will also completely

etch as-deposited CVD graphene [286]. From our mechanistic insight on the inter-

action between plasma and graphene, we have found that it is possible to prevent

the complete destruction of CVD graphene under plasma by pre-annealing at low

temperature (180 °C) in order to eliminate volatile surface contaminants [285–287].

A minimum of 4min annealing is sufficient for a monolayer CVD graphene on Cu

to withstand 25 min of plasma etching (ET25) [287]. As prolonged low-temperature

annealing does not introduce defects on the graphene, but does help to preserve a

greater degree of intact sp2 hybridization upon plasma exposure [285, 286], we chose

an annealing time of 60 min (AT60), as shown in Figure 5.2(a).

Before exposure to plasma, our CVD graphene shows the characteristic G and 2D

peaks with the strong 2D signal roughly twice that of the G peak indicating high

quality defect free monolayer graphene [291] (see supporting information Table SI-1).

The G peak at 1580 cm-1 corresponds to the first order degenerate phonon energy,
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E2g mode, at the G point. The 2D mode at 2690 cm-1 comes from the G mode

overtone and is indicative of sp2 hybridization. After etching (dotted line bottom

row Figure 5.2(a)), a defect D mode (at 1354 cm-1) and a broadened G mode with

peak maxima at 1603 cm-1 can be identified. The D mode is the defect-activated

intervalley two-phonon mode for sp3 defects [291, 292]. The latter peak, also known

as the Gapp mode resulting from the merging of the G mode and D′ mode [293], can

be deconvoluted into G at 1590 cm-1 and D′ at 1606 cm-1. The D’ is a defect activated

intravalley one-phonon mode associated with the C–H sp3 hybridization defect and

the overtone of the D mode [292]. For defected graphene, the peak position difference

of D’ to Gapp can be used to determine the nature of the graphene layer [285,286]. The

peak position difference of 3cm-1 between Gapp and D′ mode indicates that the CVD

graphene is oxygen-doped by the plasma to become rGO-like [286] (see supporting

information Figure SI-4 for peak fitting). The 2D mode (at 2790 cm-1) is still visible

after this etching step, implying a good degree of sp2 hybridization [285, 286]. This

suggests that the rGO-like layer is quite intact and should be strong enough to transfer

nanoparticles onto the target organic layer.

110



Ph.D. Thesis – M. Munir McMaster University – EP

rGO/Fe2O3

P3HT:PCBM

9 µm

(f) SNOM 410

0.00
kcts/s

200 nm

NPs on Si(b)

0.10

-0.07
Δ

|ΔRMS| = 0.092

0.2

0.4

0.6

0.8

1.0

0.0

Distance (nm)

Pa
ir 

co
rre

le
at

io
n 

g(
r)

0 50 100 150 200 250

(c)

(d)

Monolayer loaded micelles on graphene
Monolayer loaded micelles

Graphene/monolayer loaded micelles/PMMA
PMMA

Graphene (annealed 60 min, AT60)
Graphene AT60 after 25min etching (AT60,ET25)

1400 1750 2100 2450 2800
Raman shift (cm-1)

R
am

an
 In

te
ns

ity
 (a

rb
. u

ni
ts

)
2D

G
D

(a)

50 µm

(e) Optical

rGO/
Fe2O3

PMMA

3

4

5

6

7

8

Figure 5.2: (a) Comparison of Raman spectra of annealed graphene, loaded micelles
on annealed graphene and transferred loaded micelles on PMMA, showing charac-
teristic peaks for graphene and complexated P2VP. Dotted green lines indicate the
expected peak positions for the complexated P2VP peaks. Note that the peaks of
graphene are offset from those of the complexated peaks by ∼10 wavenumbers. A
monolayer of FeCl3 loaded micelles on Al, the target PMMA substrate, and annealed
graphene exposed to etching (showing both a D and G peak) are also shown for com-
parison. (b) Atomic force microscopy of images of nanoparticle (MAPbBr3) dispersion
on silicon showing particle uniformity with inset showing the entropic force map of
the first neighbour (c) Pair correlation function (pcf) of the dispersion of AFM image
in (b) showing hexatic packing of the particles (grey indicates pcf of simulated hexatic
packing with lattice disorder parameter to match experimental results). Similar (d)
Voronoi of AFM image in (b) coloured to show the number of nearest neighbours.
The relatively few defects support the high degree of hexagonal packing.(e) Opti-
cal image of modified graphene flakes with γ-Fe2O3 nanoparticles transfer printed to
PMMA after etching (f) Transmission SNOM image of reduced graphene oxide-like
flakes with γ-Fe2O3 transfer printed to P3HT: PCBM layer after etching. In both
cases, the flake edges are clearly visible and intact.
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This can be seen in Figure 5.2(e) and (f) showing films transferred onto poly

(methyl methacrylate)(PMMA) and poly(3-hexylthiophene):[6,6]-phenyl C61-butyric

acid methylester blend (P3HT:PCBM). As a proof of concept, partially grown CVD

graphene on Cu (PG) was used with PMMA, as PG has a refractive index (n=2)

which can provide an optical contrast from the background PMMA (n= 1.49). [294,

295]. In such a way, one can optically identify spots where PG is transferred. In

Figure 5.2(e), the star shaped rGO-like flakes are clearly visible and intact against

the PMMA background. The annealing and plasma processing steps are able to form

activated graphene without producing all of the material amorphization associated

with conventional wet methods for GO and rGO synthesis.

Ideally nanoparticles should be sandwiched between the activated graphene layer

and the target organic using this transfer method; however, as nanoparticles formed

by RMD are small, roughly 5-10nm in size for the MAPbBr3 and γ-Fe2O3 discussed

here, and beneath the rGO-like structures, they are not optically resolvable. We

used SNOM to try to visualize the particles, as it has both spatial and sub-superficial

sensitivity [296]. In Figure 5.2(f), the edge of the intact activated graphene flake is also

observed in the SNOM micrograph for the transferred stack atop P3HT:PCBM. The

SNOM signal in the flake region is modulated by light scattered due to the presence

of clusters of nanoparticles beneath the rGO-like layer whereas an rGO layer would

be expected to be constant over the flake region, (see supporting information Figure

5.9).

Though the non-uniformity suggests the nanoparticles exist beneath the rGO, it

was not possible to spatially resolve the particles. Hence, it is still difficult to confirm

successful transfer using a direct imaging technique. As our transfer process can
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be applied universally to nanoparticles produced by RMD, we were able to transfer

nanoparticles with properties that could be measured by various techniques to confirm

that all components are able to survive the transfer process intact.

Raman spectroscopy is highly sensitive to graphene, but a monolayer (ML) of

nanoparticles or loaded micelles are normally not visible under Raman [285,297]. We

have recently observed that FeCl3 loaded micelles show three distinctive peaks due to

the complexation of Fe with the nitrogen in the vinyl pyridine moeities of 2VP [83].

On metal substrates, it is possible due to surface enhancement to observe a monolayer

of such micelles.

Figure 5.2(a) shows a ML of FeCl3 loaded micelles on annealed graphene, showing

the expected complexation peaks around 1306 cm-1, 1440 cm-1 and 1591 cm-1 (indi-

cated by the dotted vertical lines and the dotted green spectrum for loaded micelles

on Al) [83]. As there is only about a 10 cm-1 difference between the Fe-2VP peak and

the G peak of graphene, the graphene peak is buried as a shoulder in the spectrum due

to the surface enhancement from the Cu substrate of the complexated micelle peaks

(see supporting information Figure 5.8 for peak deconvolution). However, the 2D

peak from graphene is visible, showing the coexistence of both micelles and graphene

after spin coating.

In order to measure the Raman spectrum of the transferred stack, again PMMA

was used as the target organic surface as it contains very few spectral features between

900 and 3000 cm-1, as shown in Figure 5.2(a) (dotted black line), unlike P3HT:PCBM

(see supporting information Figure 5.10). Note that in this case, the micelles were not

etched prior to transfer printing in order to observe the features from Fe-complexation.

The Raman spectrum of the transferred stack (black curve Figure 5.2(a)) shows a
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clear G mode and a strong 2D mode of the intact graphene, with only a small possible

contribution from the FeCl3 loaded micelles. The broad peak around 1400 cm-1 is

likely a convolution of micelle related peaks and the PMMA background. The broad

band at the 1460 cm-1 Raman shift region for PMMA is attributed to the asymmetric

C-H stretching mode in the methyl group and methoxy group. [298–300] Though this

is clear evidence of the successful transfer of defect free high quality graphene, it is

still difficult to confirm the successful transfer of the micelles as the lack of signal

from the complexation peaks may be due either to unsuccessful transfer or the loss

of the surface enhanced spectrum achievable on a metal substrate. To prove that the

micelles are indeed transferred, it might be possible to produce a higher coverage of

nanoparticles that is above the Raman detection limit. However, as the thickness

of the FeCl3 reverse micelles is increased, the plasma etching required to completely

remove the micelles is also increased, beyond that allowing an intact rGO layer. We

have also observed that the etching action is escalated with increased micelles such

that the graphene is severely damaged even with annealing. [297] Therefore, to prove a

single monolayer of particles can be successfully transferred, we have used luminescent

organo-halide perovskite (MAPbBr3) nanoparticles to take advantage of their strong

photoluminescence (PL) response under UV illumination.
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Figure 5.3: (a) Comparison of normalized photoluminescence spectra of MAPbBr3
nanoparticles (black line) and MAPbBr3 nanoparticles transferred onto PMMA (green
line), measured with 405 nm laser excitation, showing the expected emission at 525
nm. (b) TEM image with EDX line scan showing evidence of nanoparticle formation,
displaying composition of carbon (red line), lead (blue line) and bromine (green line)
along the micelle diameter.

Figure 5.3(a) shows a comparison of the PL spectra of MAPbBr3 nanoparticles

deposited on Si and the transferred stack of MAPbBr3 micelles. There is clearly an

intense emission from MAPbBr3 at around 525nm, as expected. Figure 5.3(b) shows

a TEM image of MAPbBr3 nanoparticles, with the inset EDX line profile showing the

presence of C, Pb and Br, confirming the successful formation of MAPbBr3 nanopar-

ticles by RMD [67].

The transferred nanoparticles also show a strong emission, with a bathochromic

shift of 7 nm (from 521 nm to 528 nm). This shift could be due to a slight change in

particle size, or it could be the result of some interaction with water during the trans-

fer process. Hydration and dehydration of perovskite nanoparticles has been shown

to cause hypsochromic or bathochromic shifts. [301–304]. Lin et al. [288] recently
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predicted the water permeability of rGO as a function of the oxygen concentration.

They found that below 25at% oxygen content, the water permeability was diminished

due to the small pore size, with complete impermeability at around 17at% oxygen

concentration. [288] The rGO produced through annealing and plasma etching from

our earlier study has an oxygen content of 23.1at%, [286] so it is expected to act as

a mostly impermeable barrier to water in the ambient glovebox environment.

Though there was some evidence of an emission shift due to hydration and a

slight loss in intensity (∼20%, see supporting information Figure 5.11), the per-

ovskite particles were not destroyed by the exposure to water. This is also important

for the organic active layers such as P3HT:PCBM in organic devices. Figure 5.12

in the supporting information shows the stability of the rGO-nanoparticle stack on

P3HT:PCBM, with the topography and optical characteristics unchanged over four

months. Moisture is one of the key degradation factors for P3HT [305,306]; the rGO-

like layer being able to block the direct contact of P3HT:PCBM with water during

the Cu etching process is also an important criteria for its use in viable devices.

Photoluminescence provides strong evidence that the nanoparticles are sandwiched

between the rGO-like layer and the polymer, and are able to survive the many steps

needed for successful transfer onto an organic surface. However, to preserve the PL,

the MAPbBr3 nanoparticles were not etched prior to transfer (though the graphene

layer was etched). To show the coexistence of nanoparticles and modified graphene,

we took advantage of the fact that iron oxide nanoparticles formed from FeCl3 using

the RMD method can yield highly magnetic γ-Fe2O3 nanoparticles at room temper-

ature [83, 307] (see also supporting information Figure SI-9 for magnetization and
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structural information on the γ-Fe2O3 nanoparticles). Oxygen plasma etching simul-

taneously removes the polymer shell and converts the precursor into iron oxide.

Successful transfer of γ-Fe2O3 nanoparticles to the P3HT: PCBM active layer is

confirmed by two-pass tapping-mode MFM, which can be see in Figure 5.4. This

shows the amplitude and phase micrographs collected simultaneously at the edge of

the transfer printed rGO/Fe2O3 nanoparticle layer with and without an applied mag-

netic field. Before magnetization, there is a clear boundary between the P3HT:PCBM

layer and the transfer stack. The topography micrograph shows an intact rGO-like

layer on the organic surface, both in amplitude and phase shift, though again the

subsurface nanoparticles are not visible. Upon application of a magnetic field (Figure

5.4(c)), the amplitude map changes dramatically. The phase image (Figure 5.4(d))

confirms that there is no change in the real topography; therefore, the apparent

change in amplitude must be proportional to the sample magnetization. As P3HT:

PCBM and graphene are both non-magnetic, this effect can only be attributed to the

intrinsic magnetic field (Bo) of the γ-Fe2O3 nanoparticles as shown in the schematic.

Therefore, the particles, the rGO layer and the polymer are all able to actively survive

the transfer process.
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Figure 5.4: Magnetic force microscopy images at the edge of the transfer-printed
modified graphene/Fe2O3 nanoparticle composite stack. (a) Amplitude and (b) phase
images before magnetizing the AFM tip. (c) post magnetizing topographic image (d)
post magnetizing phase at the graphene edge, showing a dramatic amplitude shift
in correspondence with areas including γ-Fe2O3 nanoparticles, while no significant
phase shift occurs in the area that is not rGO-Fe2O3 coated. This indicates that
the nanoparticles have been magnetized, which is an important confirmation of their
distribution underneath the activated graphene layer.

5.3 Conclusion

In summary, we show the successful transfer of reverse micelle templated nanoparti-

cles using an rGO-like layer as a mechanical support onto organic surfaces (PMMA,

P3HT:PCBM). Though no one technique was able to confirm that all the compo-

nents of the stack survived the transfer process, various characterization showed the
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unaffected performance of the stack components. The transfer results of the acti-

vated graphene are demonstrated by the post-transfer optical images and Raman

measurements. The rGO-like structures transferred onto PMMA and P3HT:PCBM

show a high level of intactness, which highlights the importance of pre-conditioning of

graphene by low-temperature annealing. Evidence of transferred nanoparticles sand-

wiched between the modified graphene and the organic layer is provided by the emis-

sion PL spectrum of MAPbBr3 nanoparticles. Intact rGO and active nanoparticles

are proven by SNOM and MFM of magnetic iron oxide nanoparticles. By applying

our approach to various target organic layers, and using a variety of RMD produced

nanoparticles, we show the universality of this transfer approach to introduce uniform

nanoparticles onto oxygen sensitive substrates.

5.4 Experimental

5.4.1 Synthesis

Graphene was synthesized by CVD on commercially available 25µm copper foils (Alfa

Aesar). The foils were first chemically treated with acetic acid and annealed for 4

hours at 1078°C under a flow of 8 sccm hydrogen gas to clean the copper surface.

Growth temperature was maintained at 1078°C during a 4 minute CVD growth phase

where gas flows of 1.2 sccm methane were introduced. In order to ensure the same

aging of all samples, the graphene samples were taken from the same master, which

was stored in a desiccator in vacuum. Samples were annealed on a hotplate (Barnstead

Thermolye Super-Nuova) at 180°C for 60 mins. Samples were allowed to cool before

further processing.
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Reverse micelles were prepared by dissolving various poly(styrene-b-2-vinyl pyri-

dine) di-block copolymer (Polymer Source), in reagent grade non-polar solvents such

as toluene and o-xylene, with concentration of 3 g/L under continuous stirring. Af-

ter confirmation of reverse micelles formation by atomic force micrograph (AFM),

precursor salts and reactants were added to the reverse micelles solutions, with a

time interval of 24 hrs to allow thorough infiltration of each precursor. Methylam-

monium lead bromide (MAPbBr3) was formed by mixing 0.5M precursor solutions

of methylammonium bromide (MABr) in isopropanol (IPA) (Caledon, reagent grade)

and PbBr2 in to N,N-Dimethylformamide (DMF) (Sigma Aldrich, 99.8%) sequen-

tially in the micelle solution. Iron oxide was formed by loading anhydrous FeCl3

(sublimed grade, 99.9%; Sigma Aldrich) to the micelles, and oxygen plasma etching

to form γ-Fe2O3 [83]. The final loaded reverse micelles solution was centrifuged to

remove excess, non-infiltrated salt and stirred further to prevent coagulation. The

solution was spin coated onto annealed graphene samples or cleaned substrates for

characterization and transfer.

Poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM)

solution was prepared by dissolving 0.0281 g of P3HT and 0.0169 g of PCBM in 2.66

cm3 of chlorobenzene to achieve a 1:0.6 weight ratio of P3HT and PCBM. This solu-

tion was stirred for 6 hrs at 55°C to achieve a clear solution. 20 µl of the solution was

spin-coated on ITO and on top of the nanoparticles/modified graphene/Cu stack and

annealed on the hotplate at 120°C for 5 minutes to achieve a uniform P3HT:PCBM

spin-coated layer. For PMMA, a10 µl solution of polymethyl methacrylate (PMMA)

was spin-coated on the top of nanoparticles/modified graphene stack/Cu.
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Plasma etching was performed in a Harrick Plasma PDC-001 plasma cleaner sys-

tem with 13.56MHz R.F. generator at 29.6W. The plasma chamber was held at a

base pressure of 70mTorr prior to target gas filling. During etching, a gas flow rate

of 30 sccm was maintained.

5.4.2 Characterization

Raman spectroscopy was performed by a Renishaw inVia spectrometer at 514nm

laser excitation. The laser power was set to 1mW to minimize laser heating effects

(see supporting information Figure refFigSI41), and a 1800 lines per mm grating was

used. The surface was visualized using a 20x objective on the integrated microscope.

The baseline of the spectra was created and then subtracted to highlight the peaks

of interest if necessary. In addition, the spectra were smoothed by a Savitzky-Golay

function in Origin. The spectrum features were deconvoluted using Lorentzian line

shape profiles to highlight the characteristic peaks of interest.

Photoluminescence (PL) measurements were performed using a 405 nm diode

laser with laser power in the range of 11 mW (spot diameter 1-2mm). The sample

emission is collected with a lens and guided to the detection unit with an optical

fiber. A long-pass filter (420 nm) removes the excitation light before the collected

radiation is fed into a monochromator (Andor, Shamrock 303i, grating 500 nm blaze,

150 lines/mm) and detected with an intensified charge-coupled device (Andor, iStar

A-DH320T-18U-73). The sample was exposed to the laser with an exposure time of

0.0237 sec and a slit opening of 50 µm. The detection range is from 300 to 900 nm.

Measurements were done in a darkened environment to prevent stray light.

Scanning electron microscopy (SEM) micrographs were obtained with a FEI VERSA
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3D using an accelerating voltage of 5kV and a probe current of 12pA. Atomic force

microscopy (AFM) micrographs were collected using an Asylum MFP-3D instrument

(Oxford Instruments Asylum Research) in the alternating current (AC) mode un-

der ambient environment. AFM probes (Oxford Instruments Asylum Research) with

spring constant of 26N/m and resonant frequency at 300kHz was engaged in tapping

mode for topography scan. The dispersion of the nanoparticles were analyzed using

the disLocate package in Mathematica [131].

Aperture-type scanning near field optical microscopy (SNOM) measurements were

recorded using Witec Alpha 300S to acquire SNOM and AFM topography simulta-

neously at 532nm excitation. Hollow AFM cantilevers (SNOM-C, NT-MDT Inc.)

with 90 nm tip aperture diameter were utilized to scan the sample in transmission

mode, and topographical (AFM) and optical SNOM images were acquired simulta-

neously. The optical signal is collected by an inverted microscope and detected with

a photomultiplier tube (Hamamatsu U64000) in photon counting mode.

Two-pass tapping mode magnetic force microscopy (MFM) was acquired using

magnetic coated silicon cantilever (budget sensors Multi75M-G). The sample is first

scanned with the cantilever demagnetized at the interface of RGO: γ-Fe2O3 and bare

P3HT:PCBM. After the first scan, the tip is removed and exposed to a external

constant magnetic field and scanned over the same area on the sample tor acquire

amplitude and phase images for comparison.
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5.5 supporting information figures
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Figure 5.5: (SI-1 )Impact of laser irradiation on CVD graphene on Cu with a mono-
layer of unloaded micelles as a function of accumulation time. Laser power was limited
to 20mW to examine any heating effects that might distort the graphene layer. Both
the ratio of 2D to G mode peak intensities and the peak positions were unchanged
under the accumulation conditions for up to 180 mins of accumulation.
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Figure 5.6: (SI-2 )(a) Atomic force microscopy of images of nanoparticle (γ-Fe2O3)
dispersion on silicon after 25 mins etching showing particle uniformity with inset
showing the entropic force map of the first neighbour (c) Pair correlation function
(pcf) of the dispersion of AFM image in (b) showing hexatic packing of the particles
(grey indicates pcf of simulated hexatic packing with lattice disorder parameter to
match experimental results). Similar (d) Voronoi of AFM image in (b) coloured to
show the number of nearest neighbours. (d) histogram of the number of Voroni cells
with different nearest neighbours. The relatively few defects support the high degree
of hexagonal packing.
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Figure 5.7: (SI-3 )Comparison AFM micrographs of organic surface topography for
as-deposited 50nm organic thin films and after oxygen plasma etching for 25 mins
(a),(b) pentacene, (c),(d) copper(II) phthalocyanine (CuPc), (e),(f) fullerene (C60),
(g),(h) di-indenoperylene (DIP). The organic films are typically completely destroyed
after plasma etching.
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Figure 5.8: (SI-4 ) (a) Raman spectrum of a monolayer of FeCl3 loaded micelles spin-
coated on CVD graphene on Cu. The spectra consists of a convolution of the Fe-P2VP
compexation peaks and the G peak from graphene. Two Fe-P2VP complexation
peaks are visible at 1306 cm-1 and 1440 cm-1. The peak around 1600 cm-1 consists of
a contribution from Fe-P2VP at 1591 cm-1 and from the graphene G mode at 1580
cm cm-1 (b) Raman spectra of CVD full graphene on Cu annealed for AT60 mins
at 180°C and etched for 25 mins (ET25), with deconvolution of Gapp into G and D’
features. The peak position of D’ relative to a one peak fit of Gapp is used to determine
the nature of the functionalized graphene (rGO, GO or graphene).
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Figure 5.9: (SI-5 ) Atomic force microscopy (AFM) and transmission mode scanning
near-field optical microscopy (SNOM) images obtained simultaneously from 90-nm
aperture-type cantilevers coupled with a 532 nm laser source for SNOM. (a) AFM
and (b) SNOM at the edge between bare P3HT:PCBM and transfer-printed reduced
graphene oxide layer with Fe2O3 nanoparticles underneath, where (c) represents an
histogram of the SNOM signal. SNOM signal of a flat graphene or rGO layer is
expected to be uniform. AFM on graphene is flat. However, because transmission
SNOM has sub-superficial sensitivity, the SNOM signal is modulated by light scat-
tered due to the presence of clusters of Fe2O3 nanoparticles beneath graphene as
shown by the two peaks in the red curve. Variations in topography visible on the
rGO/np layer likely due to residual Cu.
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Figure 5.10: (SI-6 ) (a) Comparison of Raman spectra of P3HT:PCBM (black line);
partial graphene with nanoparticles transferred to P3HT:PCBM (red line); blank spot
next to the reduced graphene oxide like flakes on P3HT:PCBM (green line), and Cu on
P3HT:PCBM (blue line). Dotted vertical lines indicate the expected peak positions
of the G and D mode of graphene. Inset shows the optical image of the transferred
star-like flakes with nanoparticles on P3HT:PCBM for Raman measurements.
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Figure 5.11: (SI-7 )Pl emission spectrum of nanoparticles after (green line) and before
(black line) interaction with water
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Figure 5.12: (SI-8 )UV-vis spectra of (a) P3HT:PCBM acquired at different times
after the transfer printing process, with the sample preserved in inert atmosphere
except for short measurement times; (b) Contact mode AFM on P3HT: PCBM on
the same area immediately after transfer the printing process and (c) 4 months af-
ter the transfer process on the same area. The broad peak with a maximum at
520 nm demonstrates the preservation of the π − π∗ stacking of the P3HT:PCBM
complex. Contact mode AFM concur with UV-vis to show no significant changes in
surface morphology of P3HT:PCBM up to four months after the transfer printing
process. Significant changes in the sample’s UV-vis spectrum are noticeable only af-
ter 8 months. Except for the last UV-vis scan in panel (a) all measurements here
reported were performed in the first 4 months after sample preparation.
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Chapter 6

Conclusion

In this study, the versatility of the reverse micelle templated synthesis method for

organo-metallic halide perovskites was demonstrated by successfully producing nanopar-

ticles with emission covering the entire visible range (475 nm to 850 nm), from various

A, B, and X site precursors. Pure MAPbBr3 nanoparticles were synthesized using

unconventional precursors (MAI and PbBr2) by slowing down the reaction kinetics of

perovskite formation, and a solution containing both MAPbI3 and MAPbBr3 was cre-

ated with the ability to control their relative concentration by varying the precursor

ratio and micelle concentration. These dual-phase nanoparticles induced a 150 nm

Stokes shift and were applied as downconverters in devices sensitive to UV radiation.

By matching absorption of the organic to the emission of the nanoparticles, noticeable

improvement in short-circuit current was observed under UV illumination. The same

approach was also used to produce novel pyrrolidinium nanoparticles with an even

greater Stokes shift 660 meV (182 nm), which were used as down-converters and UV

filters under strong white illumination. A metal oxide shell was created around the
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perovskites to form a core-shell heterojunction that also allows them to be electri-

cally conductive. TiO2, NiO, and ZnO were used as shells due to their known use as

charge transport layers, and the thickness of the shells was controlled using the RMD

process. All shells were successfully achieved, confirmed spectroscopically by photolu-

minescence emission quenching due to charge extraction, and visually by TEM images

showing the core-shell structure. By incorporating a conductive metal oxide shell, the

core-shell nanoparticles could be used as charge transport layers in organic solar cells,

improving the efficiency by 23.56% compared to standard polymer bulk heterojunc-

tion solar cells with metal oxide nanoparticle interlayers. To further facilitate the

use of these nanoparticles on sensitive substrates, a transfer printing technique was

developed, allowing for their transfer to a desired sensitive substrate after etching and

treatment without affecting the substrate. In this study, the stability of perovskite

nanoparticles was established under ambient conditions, direct water exposure, and

oxygen plasma etching, using various shielding mechanisms. With polymer encap-

sulation, the nanoparticles are stable against ambient and moisture degradation, al-

lowing applications that take advantage of the emission properties without requiring

electrical conductivity. The addition of a metal oxide shell provided even greater

stabilization to the point that particles remained emissive even after 10 minutes of

oxygen plasma etching, and its emissivity was retained by 98% even after a year in

ambient conditions. With various shell thicknesses, the core-shell particles were able

to withstand harsh oxygen plasma etching conditions required to remove the polymer

shell, allowing them to be used in as electrically active layers in optoelectronic devices.

This enhanced stability positions perovskite nanoparticles towards practical commer-

cial viability even as the active layer if a layer of nanoparticles without insulating
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polymers and without pinholes can be produced. Additionally, the reverse micelle

templating synthesis method provides versatility in the selection of shell materials,

thereby offering a universal approach to encase the perovskite nanoparticles with the

desired material through minor modifications. Overall, throughout this thesis, I show

that the control over the reaction kinetics by splitting the precursor addition steps

using reverse micelle templating provides a new paradigm for producing size and

property-controlled organo-halide perovskite nanoparticles that are hard to obtain by

other methods. Systematically using the reverse micelle templating method allows us

to exploit the properties of these emerging materials while overcoming some of the

potential limitations to their widespread usage in modern devices.

6.1 Future study

The future objective coming out of this thesis is to further develop and understand

the formation of perovskite core-shell nanoparticles, such that they can function as

a stand-alone optically active medium in optoelectronic devices. To achieve this,

a uniform and pinhole-free layer is required that can serve as both an active layer

and a charge transport layer, or should contribute to light harvesting when used

with another optically active layers. Although previous attempts to verify the light-

harvesting properties of the nanoparticles themselves were inconclusive due to low

density, we are optimistic that these properties can be harnessed to make perovskite

light emitting and absorbing devices. To improve surface coverage, our group is ex-

ploring a range of deposition techniques, including spray coating, dip coating, slot-die

coating, and electro-spraying. These techniques offer greater flexibility in engineering

surface coverage and can be used in combination to achieve better coverage with fewer
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depositions. Reduced etching time is another key objective, as etching can damage

the substrate and diminish device efficiency and fewer layer deposition will reduce the

etching time. This thesis has already demonstrated the efficacy of using various ma-

terials to shell around FAPbBr3 nanoparticles, making the reverse micelle synthesis

route a universal approach to producing perovskite core-shell nano heterojunctions.

The future study now aims to encapsulate a wider variety of perovskite nanoparti-

cles, including MA/FAPbCl3, MAPbBr3,MAPbI3, FAPbI3, FASnI3, and FASnPbI3.

This will enable the creation of materials with various bandgaps, which can be paired

with a range of shell materials to optimize light-harvesting capabilities. With differ-

ent perovskite cores, the nanoparticles can also be used in combination with other

light-harvesting materials to produce optoelectronic devices with good band align-

ment. Additionally, a similar perovskite core-shell nanostructure can be used as an

active material in conjunction with the same perovskite bulk counterpart, leading to

improved band alignment and high efficiency.
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