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Lay Abstract 

Climate change poses the most pressing global challenge in recent history, with a 

vast impact on the functionality of the established communities in a multitude of 

ways, increasingly causing cascading infrastructure failures. This is aggravated by 

the expansive development of urban areas into exposed, hazard-prone areas, one of 

the costliest hazards being floods, with its increasing severity and frequency. This 

thesis aims at enhancing the climate-resilience of communities exposed to climate 

change-induced hazards, with a focus on flood risk, to develop realistic, proactive, 

resilience-informed risk management strategies. The thesis applies i) machine 

learning and data analytics to understand, quantify, and eventually predict the 

impact of climate change-induced flood risk, ii) descriptive analytics techniques to 

identify community and infrastructure vulnerabilities and exposure, iii) predictive 

analytics to predict future changes of community resilience until the year 2050. To 

operationalize its findings, the thesis also investigates and enhance the climate 

resilience of individual critical infrastructure systems and improve its risk 

management plans.  
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Abstract 

Climate change poses the most pressing global challenge in recent history. The risks 

associated with climate change do not only pertain to the rise in temperature, but 

the accompanying changes in the meteorological and hydrological properties of the 

planet. Climate change’s impact on the established communities is vast and visible, 

affecting the functionality of societies on a multitude of ways, and increasingly 

causing cascading failures and systemic risks (i.e., failures resulting from the 

interdependent nature of our society systems). This is aggravated by the expansive 

development of urban areas into exposed, hazard-prone regions. One of the costliest 

and most frequent hazards resulting from climate change is flood hazard, with its 

increasing severity and frequency due to the coupling of the aforementioned 

reasons. This thesis aims at enhancing the resilience of the exposed communities to 

climate change-induced hazards, with a focus on flood risk, to develop pertinent 

realistic, proactive, resilience-informed risk management plans. The thesis applies 

machine learning and data analytics to understand, quantify, and eventually predict 

climate change-induced flood risk. Descriptive analytics techniques were employed 

to understand the extent of flood risk on urban communities, resulting in a 

categorization of the different community responses to flood risk. This 

categorization is subsequently employed in developing predictive analysis, where 

global climate models are utilized to predict the changes of the resilience of the 
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exposed communities until the year 2050. Said studies, while revolutionary in 

nature, serve as a steppingstone in developing a comprehensive, proactive, global 

disaster management plan. Finally, the thesis narrows its scope by focusing on 

operationalizing the developed climate resilience methodology considering a single 

critical infrastructure network and enhances the climate resilience of its risk 

management plan, set, and operated by its asset owners and decision makers. The 

approaches developed herein were applied on different datasets for vulnerability 

identification, loss and resilience prediction, and policy improvement resulting in 

an overall climate resilience-informed enhancement of the current risk management 

practices.  
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Chapter 1 Introduction 

1.1. MOTIVATION 

In recent decades, flood events have increased to become (one of) the most frequent 

hydrological hazard  (Lian et al. 2017; Wilby et al. 2007), causing the most damage 

to the livelihood of the residents of the exposed communities. As urbanization now 

increases towards flood-prone areas, it is also expected to increase the exposed 

communities by the year 2050, where 70% of the world’s population will live in 

urban environments by then (NOAA 2019; da Silva et al. 2012). This increased 

flood exposure has steered the research community to adopt a more proactive 

approach to flood risk management. Over the span of the past three decades, the 

United States of America and Canada have witnessed a continuous increase in the 

frequency and magnitude of climate change-induced natural disasters. In 2016, the 

induced damage was estimated to be $8.6B in Canada, while the United States of 

America have suffered from flood events, as it is becoming one of the costliest and 

highest in occurrence of all climate change induced hazards, reaching an annual 

average of $8B (Gillet et al. 2019; Natural Resources Canada 2017; NOAA 2017, 

2019). It is now evident that the effect of climate change is rapidly increasing, and 

costing billions of dollars annually, at an increasing rate (National Working Group 
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on Financial Risk of Flooding 2019). However, most physics-based categorization 

and analysis efforts have been focused on the hydraulic features of the flood hazard, 

considering aspects such as inundation depth, event duration, flow rate, and peak 

flow duration. These efforts tend to overlook the exposed community’s natural 

response to these hazards, and its resilience when exposed to systemic system-

level/interdependent climate-change induced risk.  

To that end, understanding how different communities react to the imposed flood 

risk is imperative, leading to the development of tools to assess, quantify, and 

predict the changes of the communities’ response to flood risk. In this chapter, a 

brief introduction on the concept of community resilience is presented, and how it 

ties with critical infrastructure climate resilience, and the applicability of data-

driven methods within community resilience studies. 

1.2. COMMUNITY RESILIENCE 

The resilience of communities facing climatological hazards has been gaining a lot 

of attention in the research community over the past years. Since the gradual 

increase in the rate and magnitude of climate-change induced hazard, traditional 

risk management studies have been falling short in dealing with the increased 

impact, losses, and disruption to livelihoods of nations, ultimately driving the 

research community towards resilience-informed risk management studies, and the 

birth of what is now known as the field of “Community Resilience” (National 
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Institute of Standards and Technology 2020).  While there has been numerous 

definitions of resilience in different fields, within the context of this thesis, 

Community Resilience defines the capacity of the system (i.e., community) to adapt 

to future hazards, quickly recover from disturbances back to a predefined state, 

albeit its original state, or a state of higher functionality (National Institute of 

Standards and Technology 2020). Resilience is also defined as the ability of a 

certain system to absorb external shock while maintaining functionality (i.e., avoid 

global failure) (Cimellaro et al. 2009; Murdock 2017). To understand, and therefore 

be able to quantify resilience, this thesis will look at resilience by its two 

characteristics; Robustness and Rapidity, enabled by its two means; Redundancy, 

and Resourcefulness (Bruneau et al. 2003). To that end, Robustness is the capacity 

of a system to absorb external shock while maintaining functionality. Rapidity is a 

measure of the system’s ability to quickly recover to the predefined functionality 

state. These two characteristics are achieved through the system’s tools to handle 

external disturbance (i.e., the two means of resilience), where: Redundancy is the 

system’s inherent capacity to function by having replacement components to 

replace the failed ones, or components that are multi-functional and act as 

temporary replacement. Finally, Resourcefulness is the availability of different 

resource that aid in detecting disruptions and failures, and quickly acquire the 

necessary replacements to maintain functionality (Bruneau et al. 2003; Minsker et 

al. 2015; Murdock 2017). 
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To understand how these components act together to quantify resilience, Bruneau 

et al. and Holmes (Bruneau et al. 2003; Holmes 2011) introduced the concept shown 

in Figure 1-1. In this concept, a relationship between performance and functionality 

loss is introduced, where the area within the graph is inversely proportionate to the 

overall resilience of the system under investigation. The operationalization of this 

concept, and its utility in quantifying and understanding the resilience given 

different variables, is explained in more detail in chapters 2 and 3, where this 

concept was the steppingstone to the development of the resilience categories in 

face of flood hazard.  

 

Figure 1-1: Simplified Resilience Graph. 
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1.3. DATA-DRIVEN RESILIENCE  

Data-driven modelling is the utilization and analysis of real-life recorded data to 

develop meaningful insights. This can be done through numerous techniques 

through Descriptive analytics, or Predictive analytics (Abdel-mooty et al. 2022; 

Abdel-Mooty et al. 2021). While there have been numerous efforts in achieving the 

same objective with physics-based methods, the computational cost is too 

expensive that it renders said modeling almost impossible to achieve with the same 

output accuracy given the current computational capabilities. As such, in this thesis, 

data-driven methods have been adopted to bypass the complexity of physics-based 

methods to quantify and predict the different communities’ resilience in face of 

climate change-induced risks. Over the years, numerous industries have been 

changing their strategies to incorporate data-driven methodologies into their 

decision-making, leveraging on data analytics to achieve said goals (Goforth et al. 

2022b; a). 

Machine Learning is a powerful tool that learns autonomously from the dataset 

presented to it, mimicking the human-based learning process, thus its name 

(Rodrigues and De la Riva 2014). Machine learning is usually divided into two 

types of learning: Supervised, and Unsupervised learning. While unsupervised 

learning deals with unlabelled data to discover and identify inherent patterns and 

features in the dataset (e.g., clustering algorithms) (Otterbach et al. 2017), 
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Supervised learning on the other hand, deals with the labeled dataset to develop 

patterns to classify and predict new input data (e.g., prediction algorithms) (Khalaf 

et al. 2018; Mosavi et al. 2018). Further details on the methodology, development, 

and utilization of both algorithms are provided in later chapters within this thesis.  

1.4. THESIS ORGANIZATION 

The thesis is written in the form of a “sandwich” thesis. As such, each chapter 

represents a stand-alone research article, with its own components (i.e., literature 

review, methodology, modelling, and references). To that end, it should be expected 

that chapters would share some of the references and literature background, since 

some articles complement each other to achieve an overarching research objective. 

As presented in later sections, Chapter 2 paves the way, and provides the 

cornerstone component to be used in the development of the framework presented 

in Chapter 3. While Chapter 4 builds on its predecessors by adding multiple layers 

to the frameworks, it acts as the culmination (i.e., complete picture) of the work 

presented in Chapters 2 and 3. Naturally, Chapters 2 and 3 share close discussions 

on solving a common challenge, which is predicting the effect of climate change 

on the exposed community’s resilience. This discussion is further built upon in 

Chapter 4, where the employed methodology provides a solution for the problem, 

and multiple insights and discussions were presented.  
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Furthermore, all chapters fall under the general umbrella of evaluating climate 

change impact on community resilience. As presented in detail in upcoming 

sections, communities are formed by the operationalized interconnected, and 

interdependent, critical infrastructure networks. Hence, to operationalize the 

framework and methodology developed to achieve the research objective, the same 

train-of-thought was applied on individual critical infrastructure network to 

investigate, and enhance, its climate resilience. Specifically, this framework was 

applied on Railway Bridges on the Southeast of England, and the developed 

methodology and findings are presented in Chapter 5.   

This section gives an overview of the content of the six chapters of the dissertation, 

and how the research objectives were achieved sequentially through each chapter. 

Chapter 1 

The Introduction chapter identifies the research scope, general background on the 

topic, and identifies the real-life challenges this dissertation is tackling through 

achieving the research objectives. It also provides an overview of the thesis 

organization. 

Chapter 2 

Chapter 2 presents an overview community flood resilience. It starts by identifying 

resilience, flood risk, and present a background on the current research trajectory.  
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The chapter attempts to understand and quantify the communities’ response to flood 

risk, in an effort to realize the resilience of the built-environment in face of climate-

change induced flood risk. This chapter introduces the necessary background on 

flood hazard, community resilience, and how to quantify it using data-driven and 

physics-based methods. The chapter then introduces a data-driven framework using 

multiple unsupervised Machine Learning models to capture the communities’ 

response to flood hazard and enable the identification of vulnerabilities within the 

built environment, utilizing the different resilience means and goals to achieve the 

objective. The framework presented in this chapter was then applied to the disaster 

records provided by the National Weather Service for all recorded flood events in 

the United States, ultimately developing a 5-category based categorization that 

explains the different aspects of the communities’ response to flood risk. These 

categories were then applied to develop a comparative spatial analysis for 

vulnerability identification, to aid the stakeholders in making resource allocation 

decisions.  

Chapter 3 

While understanding flood risk and its impact on community resilience is of pivotal 

importance, there has yet to be a methodology to enable a proactive disaster 

management plan by predicting the impact of climate-change induced flood hazard. 

To that end, this chapter introduces a step towards that goal. The chapter introduces 
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a multi-stage prediction framework that links the developed categories in Chapter 

2 with climate information (i.e., Maximum Temperature, Minimum Temperature, 

Precipitation, etc.) to facilitate the understanding of how climate-related 

information, and subsequently climate change, affect the community’s response to 

flood risk. This developed multi-stage framework uses supervised Machine 

Learning techniques (e.g., Naïve Bayes’ classification, Decision Trees, and 

Random Forest). To demonstrate the utility of the proposed framework in flood 

resilience management studies, and test its applicability, it was deployed using the 

historical disaster records used in the development of the categorization, 

synchronized with the corresponding climate information at the time and location 

of the flood events. The applicability was confirmed by producing acceptable 

prediction accuracy, and the ability to predict future spatial and temporal changes 

in the flood resilience categories of the study area.  

Chapter 4 

This chapter serves as the culmination of the previous two chapters, where both 

frameworks were used as cornerstones for a comprehensive methodology that fully 

incorporates the effect of climate change on community flood resilience. In this 

chapter, different global climate models were explored for different emission 

scenarios set by the Intergovernmental Panel on Climate Change, where each 

scenario is dictated by the volume of greenhouse gas emissions, and the global 
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intervention measures to steer the global emissions. For this chapter, the state of 

Texas was used as a case study, on a county-based spatial resolution. Climate 

indicators for future projections until the year 2050 resulting from the global 

climate models were used to predict the change in the flood resilience categories 

developed in Chapter 2 for the study area. The predicted categories were then used 

to develop a Spatio-temporal analysis, investigating the change in categories in 

different locations across the years. The predicted categories were then reverted to 

its original components (i.e., monetary damage, injuries, fatalities, duration, etc.) to 

quantify the climate-change impact on the study area. Multiple interpretability 

techniques were employed in this chapter to investigate and understand how 

changes in the climatological information can influence the resilience of the 

exposed communities, ultimately nullifying the black-box nature of Machine 

Learning models, transforming it into a fully interpretable model. This data-driven 

methodology, given appropriate data, variability and quantity, can be applicable 

globally, on different spatial resolutions. This potentially paves the way for a 

climate-change ready nation, where the climate indicators can be automatically 

updated and synchronized, acting as an early-warning system, and a decision 

support tool for decision makers, and can be applicable within flood resilience 

management studies for climate-proofing our communities.    
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Chapter 5 

As climate change-induced flood hazards is the focus of this thesis, along with its 

impact on community resilience, the compound effect of this hazard on individual 

critical infrastructure is yet to be addressed. This chapter serves as the 

operationalization of the methodology presented in the thesis, starting by enhancing 

the climate resilience at the infrastructure networks-scale, in an effort to the 

eventual betterment of the overall community resilience.  

As the frequency of flood events increase due to climate change, regardless of the 

magnitude of said flood events, it still causes a multitude of problems to existing 

infrastructure. This study focuses on the scour risk on transport infrastructure 

networks, specifically railway bridges, associated with increased flood events’ 

frequency. The chapter introduces a high-order multi-layer framework for 

resilience-informed scour risk management that accounts for the interactions 

between the different components of environment, the structure, and the impact of 

climate change. The framework presented in this chapter was applied on all railway 

bridges in Southeast England to assess its utilization and compare it to the 

established methodologies that authorities use to assess the risk on their 

infrastructure assets. The application proved that incorporating such information 

impacted the way assets were prioritized in their maintenance, ultimately 

prioritizing the elements more at risk of climate-induced scour risk. 
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Chapter 6 

This chapter includes a summary of this research, overall contributions, concluding 

remarks, research limitations, as well as suggested future research directions and 

recommendations of areas to explore further.  
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Chapter 2  

COMMUNITY FLOOD-RESILIENCE 

CATEGORIZATION FRAMEWORK 
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ABSTRACT 

Coupled with climate change, the expansive developments of urban areas are 

causing a significant increase in flood-related disasters worldwide. However, most 

flood risk analysis and categorization efforts have been focused on the hydrologic 

features of flood hazards (e.g., inundation depth, extent, and duration), rarely 

considering the resulting long-term losses and recovery time (i.e., the community’s 

flood resilience). This paper aims at developing a data-driven community flood 

resilience categorization framework that can be utilized for the development of 

realistic disaster management strategies and proactive risk mitigation measures to 

better protect urban centers from future catastrophic flood events. This approach 

considers key resilience metrics such as the robustness of the exposed community 

and its recovery rapidity. Such categorization that focuses on two resilience goals, 

namely resourcefulness and redundancy, can empower decision makers to learn 

from past events and guide future resilience strategies. To demonstrate the 

applicability of the developed framework, a data-driven framework was applied on 

historical mainland flood disaster records collected by the US National Weather 

Services between 1996 and 2019. Descriptive analysis was conducted to identify 

the features of this dataset as well as the interdependence between the different 

variables considered. To further demonstrate the utilization of the developed 

framework, a spatial analysis was conducted to quantify community flood 

resilience across different counties within the affected states. Beyond the work 
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presented in this study, the developed framework lays the foundation to adopt data 

driven approaches for disasters prediction to guide proactive risk mitigation 

measures and develop community resilience management insights. 

 

KEYWORDS: Resilience; Robustness; Risk Classification; Unsupervised Machine 

Learning; Cluster Analysis; Flood Hazard; Flood Risk. 
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2.1. INTRODUCTION 

Flood events have been the most frequent hydrological hazards over the past 

three decades (Lian et al. 2017; Wilby et al. 2007), and are among the most 

impactful disasters affecting the livelihood and society (Dawod et al. 2014). 

Historical disaster records since 1996 indicate that, similar to other regions across 

the globe, North America has been experiencing extreme rainfall (i.e., rainfall 

exceeding 100 mm in 24 hours) and increased flood frequency in urban areas 

(Bertilsson et al. 2019). In 2017, floods caused a total damage of approximately 

$60 billion in the United States, which dwarfs the recorded flood-related damages 

since 1980 (NOAA 2017). This increase in flood-related losses is in part due to the 

expansive urbanization into flood-prone areas, that were previously deserted, 

leading to an increase in flood-related disasters (NOAA 2019). Urban environments 

nowadays host about half of the world’s population and are expected to host 70% 

of the global population by 2050 (da Silva et al. 2012). The aforementioned increase 

in flood-related losses led the flood management stakeholders to shift their 

strategies towards proactive risk-mitigation rather than reactive disaster-response 

approaches (de Moel and Aerts 2011; World Economic Forum 2019a). Monetary 

flood-related losses can be divided into (Baird 2007) direct losses that include the 

structural and physical damage caused by the physical contact with the flooding 

water; and indirect losses which include the lost opportunity of profit as well as 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

22 

 

 

evacuation, unemployment, and administrative costs (Natural Resources Canada 

2017).  

To efficiently assess flood damage and enhance the resilience of exposed 

communities, flood risk needs to be evaluated first. In this respect, flood risk can 

be defined as the expected damages from a hazard’s probabilities of occurrence, 

combined with the characteristics of the vulnerable and exposed elements at risk 

(Kron 2005; Nofal and van de Lindt 2020), considering different sources of 

uncertainties (Salem et al. 2020a). Flood hazard reflects potential flood events with 

specific characteristics (e.g., magnitude, frequency, depth, duration, and degree of 

severity) at a given location, and is typically characterized by its probability of 

occurrence. Flood vulnerability on the other hand is a measure of the community’s 

susceptibility, and ability to adapt, to a specific flood hazard (Jabareen 2012). 

Community exposure refers to people and/or infrastructure located within areas 

prone to flood hazards (Nofal and van de Lindt, 2020). It should be noted that severe 

flood hazard events may not necessarily result in high risks. For example, a severe 

flood might occur in an uninhabited region. The flood hazard is thus high, while the 

potential impacts is essentially insignificant. Risk analysis is generally concerned 

with assessing the exposed system’s vulnerability and susceptibility to damage, and 

its expected consequences when exposed to a hazard (ElSayed et al. 2015; 

Netherton and Stewart 2016; Salem et al. 2020a). While on the other end, Resilience 

analysis focuses more on the extended functionality reduction and recovery 
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trajectory of the exposed system as a function of time, while studying the system’s 

pre-hazard history and previous restoration costs (Linkov et al. 2014; Salem et al. 

2020a).  

The notion of community resilience has been gaining researchers’ attention in 

recent years attributed to the increase of climate-induced hazards. Within the 

context of this study, a community is defined by NIST as “A place designated by 

geographical boundaries that function under the jurisdiction of a governance 

structure (e.g. town, city, or county)” (National Institute of Standards and 

Technology 2020). Community Resilience as a concept is defined as the capacity 

of a community to predict, and adapt to future hazards, and rapidly recover from 

disruptions back to their original state in a timely manner (National Institute of 

Standards and Technology 2020). Resilience can be defined as: “the ability to 

recover from, or resist being affected by, some shock or disturbance” (Cimellaro et 

al. 2009), or the degree to which a system absorbs disturbances while continuing to 

function (Murdock 2017). Resilience in the context of the current study can be 

characterized by its two goals: Robustness and Rapidity, enabled by the two means: 

Resourcefulness and Redundancy (Bruneau et al. 2003). In this respect, Robustness 

can be defined as the ability of a system to withstand a certain level of demand or 

stress; Redundancy as a measure of the built-in sustainability of the system, or the 

availability of replacements within the system; Resourcefulness as the availability 

of resources that aid in detecting, measuring, and surviving the hazard; and finally, 
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Rapidity as a measure of the time needed for the system to go back to the state 

before the disruption takes place, taking into account the duration of the hazard’s 

realization (Minsker et al. 2015). To facilitate resilience quantification, researchers 

(Bruneau et al. 2003; Holmes 2011) have introduced  the concept  shown in Figure 

2-1, relating performance/functionality-loss, as a result of the disruption that took 

place, to the time needed for full recovery (Holmes 2011). The time needed for full 

recovery include both the hazard duration, where a flood event may take a few days, 

as well as the recovery and repair time. As such, the more the time the hazard takes, 

the longer the total rapidity (i.e., the larger the shaded area in Figure 2-1) resulting 

in a lower overall resilience. 

 

Figure 2-1: Resilience triangle and loss-time function 
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As such, it is imperative to categorize communities in a way that comprehensively 

capture the impacts of flood disasters on said communities rather than only the 

hazard characteristics. However, reliable information and data are key to 

incorporate such impacts within a resilience-based flood categorization (Downton 

and Pielke 2005). Integrating flood hazard, system vulnerability and flood exposure 

yields both short-term potential direct and indirect impacts (risk) of the flood event 

(i.e., through robustness assessment) as well as long-term ones (i.e., through 

rapidity evaluation). Numerous flood categorizations have been suggested 

(Australian Institute for Disaster Resilience, 2017; FEMA, 2012; Ragini, Anand, & 

Bhaskar, 2018; Turkington, Breinl, Ettema, Alkema, & Jetten, 2016), most notably 

that by the Federal Emergency Management Agency (FEMA), to facilitate the 

assessment of flood damages. However, all such categorizations focused on the 

hazard properties (i.e., categorizing floods based on magnitude, duration, and 

degree of severity), and to a much lesser extent, on the consequence/risk, without 

considering a key community resilience goal— rapidity (i.e., the time taken to 

recovery from both short- and long-term impacts). 

2.2. COMMUNITY FLOOD-RESILIENCE CATEGORIZATION 

2.2.1. CATEGORIZATION FRAMEWORK LAYOUT 

The objective of the present study is to introduce a flood resilience 

community categorization framework that accounts for the potential/resulting 
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impacts of floods on exposed community. Such categorization serves as a step 

towards developing a fully data-driven approach for future disasters impact 

predictions, which will subsequently aid in developing resilience-guided flood risk 

management strategies considering the four resilience attributes. Data-driven 

models usually necessitate the availability of a large quantity of diverse data of 

good quality, which is often very challenging. To address this, numerous 

alternatives are available to account for missing data within datasets including: i) 

removing data points with missing variables from the dataset, ii) taking the average 

readings from alternate, nearby, sources and stations and take their average, and 

iii) utilizing unsupervised machine learning models to create clusters and generate 

the missing values for said datapoints (Haggag et al. 2021b; Patil et al. 2010; Yagci 

et al. 2018).  

As can be seen in Figure 2-2, the framework can be divided into three main 

stages:  

Stage i) Data Preprocessing and visualization: The developed data-driven 

approach starts by compiling a comprehensive dataset which includes the variables 

needed to quantify the resilience attributes. After dataset selection, data 

preprocessing and cleaning commences for ensuring that it is comprehensive 

enough for an insightful analysis. The subsequent step involves data visualization 

where the attributes and correlation of the variables within the dataset is assessed, 
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this will aid in choosing the appropriate technique for the next stage in the 

framework.  

Stage ii) Machine Learning Model Selection: Machine Learning (ML) 

tools may be considered as the evolution of Statistical Learning models (Witten et 

al. 2017) and have thus become indispensable in applications such as image 

recognition, social networks, targeted advertisement, as well as engineering, 

biology, and medicine in general (Bose and Mahapatra 2001; Goos et al. 2006; 

King et al. 1992; Mckinney et al. 2006). In such applications, ML identifies 

patterns, discovers trends and behaviors from large datasets and have the ability to 

continuously learn from adapt to new data to improve its performance. ML models 

are also able to deal with large datasets with complex interdependent attributes and 

identify the hidden behaviors (Hastie et al. 2009).  ML is broadly divided into 

Supervised (Classification), and Unsupervised (Clustering) algorithms, with the 

latter being the one adopted in the current study. However, both types of algorithms 

are used in analyzing large datasets with multiple variables (Gentleman et al. 2008; 

Hastie et al. 2009).  

Stage iii) Clusters’ features analysis: In this stage, the output of the ML 

algorithm is analyzed to develop the features of each category (cluster). 

Subsequently, guided by the developed categories, a spatial analysis is conducted 

to identify relative vulnerable communities. This way, unbiased insights can be 

drawn, facilitating the decision-making process for how to employ, or introduce, 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

28 

 

 

resilience means (i.e., Resourcefulness and Redundancies) to the most vulnerable 

communities, maximizing use of the available resources. Such categorization 

framework can also enable decision makers to translate predicted flood hazards 

and risks into actionable plans, minimize the expected damages due to flood events 

(increase robustness), and develop effective policies and resilience-focused 

disaster mitigation strategies. 
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Figure 2-2: Resilience-based flood categorization proposed framework
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2.2.1. METHODOLOGY 

Cluster analysis uses partitioning algorithms to group observations based on 

similarity in an unsupervised learning fashion. Observations are assigned labels, 

and those with common features (i.e., similar or nearly similar) are allocated to the 

same cluster (Otterbach et al. 2017). This process is unguided, with observations 

grouped based on inherent characteristics without any specific end goal in mind, 

hence the term “Unsupervised”. Similarity is assessed through measuring the 

distance between the different observations. Two observations are considered 

similar when the distance between them is significantly negligible. Observations 

allocated to the same cluster should be closer to each other than to observations in 

other clusters. Different similarity and distance measures have been proposed 

including: Euclidean distance, Hamming distance, Cosine similarity, Manhattan 

distance, and Gower Distance (Jain et al. 2000). Gower distance within a 

Partitioning Around Medoids (PAM) algorithm was explored in this study to check 

its applicability with the available mixed type data. However, the dissimilarity 

matrix developed from the dataset presented a skewness in the model, resulting in 

a clustering based on seasons, instead of the resilience metrics. This issue was later 

rectified using the alternative distance measures explored in this study (Budiaji and 

Leisch 2019). Euclidean distance therefore is preferred over other similarity 

measures as it evaluates the weighted proximity (Jain et al. 2000) of different 

objects in a three-dimensional space, and is thus employed in the present study (Jain 
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et al. 2000; Seyed Shirkhorshidi et al. 2015). However, it should be noted that other 

approaches can also be adopted (e.g., creating binary indicator variables for each 

category in a categorical data variable). In this study, three clustering algorithms 

were employed for the development of the new flood risk categorization and the 

best algorithm was chosen based on the performance of the corresponding model. 

The algorithms considered are: Model-based clustering, K-means clustering, and 

Self-Organizing Maps neural network (SOM-ANN). 

MODEL-BASED CLUSTERING 

Model-Based clustering depends on grouping observations based on a finite 

mixture model, in which each cluster is a unimodal component (Mcnicholas 2016). 

In this model, a random variable X follows a parametric mixture distribution with 

a density 𝑓(𝑥|𝜗) expressed as (Mcnicholas 2016): 

𝑓(𝑥|𝜗) = ∑ 𝜋𝑔𝑓𝑔(𝑥|𝜃𝑔)

𝐺

𝑔=1

 (2-1) 

where 𝜗 = (𝜋, 𝜃1,…, 𝜃𝐺) is the vector of parameters characterizing the model, G is 

number of components mixed, 𝜋𝑔 = (𝜋1,…, 𝜋𝐺) is the mixing proportions, and 

𝑓𝑔(𝑥|𝜃𝑔) is the density of the gth component of the mixture. It is noteworthy that in 

model-based clustering, 𝑓𝑔(𝑥|𝜃𝑔) is typically assumed to be the same for all 

components (g = 1,…, G). In the present study, a Gaussian Parsimonious Clustering 
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Model (GPCM) with up to 14 components was employed (Celeux and Govaert 

1995), and the model parameters were determined using an expectation-

maximization algorithm (Vrbik and McNicholas 2014). Gaussian Mixture models 

are probabilistic models in which the data points are assumed to be generated from 

a mixture of a finite number of gaussian distributions (Mcnicholas 2016). To 

estimate how well a model fits a dataset, and to determine the complexity of such 

model, statistical approaches can be used. Among the most widely used approaches 

are the Akaike Information Criterion (AIC), and the Bayesian Information Criterion 

(BIC) (Bishop 2006). The AIC model measures the likelihood of a model, which 

measures the fitness of a model, using a penalty function that penalizes the model 

based on its size. The smaller the value of the AIC, the better the fitness of the 

model. Similarly, the BIC also uses the same approach, however, BIC differs from 

the AIC on the definition of the penalty. While the AIC’s penalty function is a linear 

function, the BIC’s penalty function is a logarithmic function (penalty function = 

k.p; k in AIC is 2, while k in BIC is log(n)). As such, AIC penalty is lower when 

the model is more complex, compared to BIC, indicating that BIC will prefer a less 

complex model in the analysis than the AIC (Hastie et al. 2009). For the study 

presented herein, the BIC was chosen as a sufficient method for determining the 

better model to be used, as the data is already complex with multiple interdependent 

variables (Bishop 2006; Hastie et al. 2009). The reader is referred to the study by 
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Mcnicholas (2016) for a detailed description of the model-based clustering and 

related applications. 

K-MEANS CLUSTERING 

K-means clustering is one of the most widely used clustering algorithms 

(MacQueen 1967) through which observations are partitioned into a predefined 

number of clusters (K). Multiple K values are assumed, and the optimal value 

corresponds to the minimum intra-cluster variation (defined herein as the total 

within-cluster variation (WSS)). In the present study, WSS is estimated as the 

summation of the squared Euclidean distance between observations and the 

respective cluster centroid (Alsabti et al. 1997; Hartigan and Wong 1979; Wagstaff 

et al. 2001): 

𝑊𝑆𝑆 = ∑ ∑ (𝑋𝑖 − 𝜇𝑘)2

𝑥𝑖∈𝐶𝐾

𝐾

𝑘=1

 (2-2) 

where 𝑋𝑖 is an observation belonging to the cluster k, and 𝜇𝑘 is the mean of the 

observations allocated to the same cluster. Several methods have been developed 

to estimate the optimum K value based on WSS, including: i) the elbow method, in 

which WSS is estimated for multiple models (each with a different K value) and the 

optimum K value corresponds to the point where the slope of the K-WSS 

relationship decreases without a significant change in WSS; and, ii) the silhouette 

method, in which each observation is assigned a score based in its distance to the 
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neighboring clusters (Zumel and Mount 2020) and the optimum K value is at the 

maximum average silhouette score. It is important to note that the silhouette score 

ranges between -1 and 1, where: a value closer to 1 indicate that the observation is 

too far from the neighboring clusters and is thus allocated to the right cluster, a 

value of zero shows that the observation is on the boundary of two neighboring 

clusters, and negative values indicate that the observation is allocated to the wrong 

cluster. 

SELF-ORGANIZING MAPS (SOM) NEURAL NETWORKS 

ANN is an artificial intelligence-based technique that can be used to 

uncover complex interrelationships through automatic learning based on patterns in 

the data (Mitra et al. 2016; Park 2000). This is similar to a human brain translating 

signals, albeit in a simpler way and with artificial neurons. Several types of ANN 

have been developed to date (e.g., feed-forward back-propagation neural network, 

recurrent neural network, convolution neural network, and self-organizing map), 

each of which is suitable for specific applications. ANN has been widely employed 

to develop predictive models (e.g., Khajwal & Noshadravan, 2020; Kwayu, 

Kwigizile, Zhang, & Oh, 2020; Mitra et al., 2016) and to solve complex pattern 

recognition problems (e.g., (Gnanaprakkasam and Ganapathy 2019; King et al. 

1992; Park 2000; Turkington et al. 2016). It is noteworthy that pattern recognition 

(e.g., cluster analysis) problems are most often challenging due to the unstructured 
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nature of the data employed, and particularly when the variables associated with 

the data are interdependent. As such, ANN-based clustering is preferred over other 

techniques (e.g., model-based and K-means clustering) as it typically converges to 

a global, rather than a local, optimal solution (Li 2011; Mitra et al. 2016; Park 2000)  

A self-organizing map (SOM) is a type of ANN that is trained in an 

unsupervised manner to discretize data into groups (i.e., cluster analysis). Input data 

are thus organized according to a pre-set topology of neurons (the number of 

neurons and inputs are not necessarily the same), each of which is connected to a 

certain number of inputs (i.e., observations). Initial weights are assigned to each 

neuron, and the whole weight space is adjusted iteratively to match the correlation 

and patterns present in the input space. In the present study, SOM was applied using 

the Deep Learning toolbox in MATLAB based on the Kohonen rule (Park 2000). 

According to this rule, a winning neuron (i*) is identified based on the degree of 

similarity between the associated weights and connected inputs. Weights associated 

with i* are adjusted iteratively such that i* is most likely to win in the following 

iterations. As such, if the weights associated with i* are close to the optimum 

values, they will become closer during the following iterations. The reader is 

referred to the study by Park (2000) for more details about the application of 

Kohonen rule.  
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To demonstrate its applicability, the developed categorization framework 

was applied on a dataset from the National Weather Service (NWS) database to: i) 

identify the different factors controlling the at-risk communities’ vulnerability to 

floods using descriptive data analysis; ii) identify the key features of the variables 

included in the dataset as well as possible interdependence between them using 

descriptive and correlation analyses; and, iii) categorize the community’s 

resilience to flood by using events in the dataset that are based on the flood 

characteristics (i.e., duration) and impacts (i.e., damages, number of people 

affected and duration of flood event) and resilience metrics (i.e. robustness and 

rapidity). 

2.3. DEMONSTRATION APPLICATION 

2.3.1. DATASET 

The dataset provided by the NWS—one of the longest run organizations to 

record annual flood damages in the United States (Downton et al. 2005), is 

employed in the present study. The data in the dataset is gathered by third party 

organizations and subsequently compiled into the NWS database. The data 

gathering agencies follow the guidelines set by the NWS, however the quality, 

quantity and diversity of the data is highly dependent on the available resources and 

time constraints of said agencies (Murphy 2018). This dataset contains records of 

the flood events occurred across the United States between 1996 and 2019, with a 
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total of 49,775 records. For each event, start and end time, geographical center of 

the affected area, month, year, and related damages are recorded. The start and end 

time were used to estimate the event duration, which was subsequently used as an 

additional event attribute. The season when an event occurred was inferred from 

the corresponding month and was also included in the analysis. Seasons were 

defined as: winter commencing in December, spring commencing in March, 

summer commencing in June, and fall commencing in September (Jaagus and Ahas 

2000). Event-related losses include: property and crop damages due to the physical 

contact with the flooding water as well as direct/indirect injuries and fatalities. In 

the present dataset, the term “Flood event” refers to the flood component of any 

natural disaster. For example, a Hurricane’s impact is a result of multiple 

components (e.g., wind pressure, debris (airborne and otherwise), or inland 

flooding), only the impacts (monetary and otherwise) resulting from the “Flood” 

component of the event were recorded in this dataset (Murphy 2018). Despite the 

limitations of the NWS dataset (i.e., not incorporating the indirect economic 

damage resulting from the flood events, the people displaced, or the time taken to 

full recovery), it is generally accepted that this dataset represents the best available 

alternative that can be used for flood damage assessment in the United States 

(Downton et al. 2005).  

Direct and indirect injuries/fatalities, as well as property and crop damages, 

were summed up in the present study to investigate the total impact of the 
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corresponding flood event. Property and crop damages were adjusted using the 

Customer Price Index from the Bureau of Labor Statistics to accommodate the 

inflation over the years (FRED 2020). Seasons were converted into numerical 

values to have consistent numerical, rather than categorical, attributes (Zumel and 

Mount 2020). As the objective of this study is to develop a new flood categorization 

based on flood characteristics and impacts, only the events that posed an actual risk 

were considered. As such, flood events causing no damage, injuries, and fatalities 

were excluded from the dataset since it will induce bias within the dataset, and it 

will produce no resilience metrics to be measured. Although the developed 

framework presented herein can be applied to different communities, and similar to 

other data-driven models, the numerical results are influenced by the input data 

quality and diversity. As such, to draw reliable managerial insights from the results 

of the proposed framework, the pertinent dataset needs to be comprehensive 

enough— including most/all relevant variables (e.g., flood type, type of area, flood 

impact, flood cause, recovery time, monetary losses, evacuated people, injuries, 

fatalities, etc.) and enough data points (observations) over many years to avoid 

biases. However, within the dataset used herein, although flood type is not 

explicitly listed for each affected community, such information is implicitly 

considered as the common spatio-temporal flood type affecting different 

communities. Since event attributes (i.e., duration, season, related damages, 

injuries, and fatalities) are measured in different units, these quantities were scaled 
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such that each has a mean of zero and a standard deviation of 1.0 (Zumel and Mount 

2020). A state-based descriptive analysis was subsequently adopted, where the 

variables considered include: i) event duration, related damages, injuries, and 

fatalities as risk indicators (referred to herein as risk variables); ii) the season 

(instead of the month and year) to indicate when the event occurred; and, iii) states 

containing the geographical center of the affected area. However, for the 

Unsupervised ML algorithm, only the Risk variables (i.e., Event duration, Related 

Damages, injuries, and fatalities) and the season are included in the clustering 

algorithm, omitting the state variables to avoid geographical clustering of the data. 

This way the algorithm would implicitly account for the respective prevailing 

natural hazards of each community  

2.3.2. DESCRIPTIVE ANALYSIS 

The analysis shows that most of the flood events occurred during the summer 

(41%), followed by the spring (28%), the fall (17.5%), and the winter (13.2%), as 

shown in Figure 2-3(a).  This is also supported by the temporal distribution of floods 

between 1996 and 2019 shown in Figure 2-3(b). The higher number of floods 

occurring in the summer is because most of the regions across the United States 

experience high precipitation during the summer followed by the spring. In urban 

environments, this high precipitation might increase the water level in the rivers 

which can lead to significant losses (NOAA 2019). Figure 2-3(c) shows the total 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

40 

 

 

damage caused by floods in the different states, where colors were used to indicate 

the number of flood events causing that damage. The largest number of events and 

the largest damage occurred in Texas. This might be attributed to the increased heat 

content over the western Gulf of Mexico, which can result in a higher temperature 

and humidity. The heat increase is directly proportional to the amount of 

precipitation that a storm can produce (Trenberth et al. 2018). In addition, Texas 

falls within a tropical weather region where a large number of hurricanes and 

extreme rainfall events are likely to occur, and an increasing urbanization rate 

(FEMA 2012). Example of such events include a record of 60.6 inch of precipitation 

during Hurricane Harvey in 2017, and 43.39 inch of precipitation during the 

Tropical Storm Imelda in 2019 (Hayhoe et al. 2018; Trenberth et al. 2018). Such 

events have significantly impacted the infrastructures and properties in Texas, 

causing a damage of approximately $52 Billion. 
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Figure 2-3: Descriptive analysis where (a) is the percentage of flood events 

occurred in each season, (b) is the annual number of flood events occurred 

between 1996 and 2019, and (c) is the total damage over the different states in 

Billion USD due to floods 

An exploratory data analysis was conducted to investigate the properties of 

the different variables within the dataset and the correlation between them, as 

shown in Figure 2-4. This figure can be treated as a 7 × 7 matrix, in which variables 

were labeled on both the rows and columns. This matrix represents 4 distinct 

information groups: i) frequency curves, where the first column is the frequency 

curves distinguished by seasons and the diagonal is the smoothed frequency curves 
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(or histograms); ii) the frequency scatter plots located at the lower triangle of the 

matrix, excluding the first column; iii) the correlation coefficient between each 

variable pair at the upper triangle of the matrix, excluding the top row; iv) the box 

plots of the different variables at the top row of the matrix. It should be noted that 

events were divided into four groups depending on the season in which they 

occurred. Figure 2-4 can therefore be used to investigate the statistical behavior and 

seasonality of each individual variables, as well as the interdependence between the 

different variables.  

The box plots in Figure 2-4 show that, for all variables, the distributions 

overlap over the different seasons. This indicates that these variables are extremely 

interdependent and cannot be clustered based on the season. The risk variables (i.e., 

duration, related damage, injuries, and fatalities) are characterized by heavy-tailed 

distributions with a significant number of outliers in all seasons. This is attributed 

to that a small portion of the flood events caused a significant impact (damages, 

injuries, fatalities) compared to that caused by majority of the events. In contrast, 

event duration has a more prominent range with more outliers in the spring followed 

by the winter. This can be attributed to the spring floods which typically occur when 

the warmer weather following the winter causes heavy rain, spring thaw, and flash 

floods that remain for longer periods of time and can cause additional damages 

(FEMA 2018a). Values of the correlation coefficient shown in Figure 2-4 support 

the interdependence between multiple variables rather than the direct interrelation 
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between variable pairs, as all values are significantly low. As such, Machine 

Learning, as discussed earlier, presents a powerful tool to represent the variability, 

and handle complexity and interdependence, in this dataset. 

 

Figure 2-4: Results of the exploratory and sensitivity data analysis of the Season, 

State, and the risk variables as defined in this study 

2.3.1. MODEL-BASED CLUSTERING  

Model-based clustering was applied for several clusters (i.e., K) ranging 

between one and nine, and the corresponding BIC values were estimated (Figure 2-

5). Based on BIC values, the recommended model was VII (a spherical model with 

variable volume) with nine clusters. This number of clusters is, in fact, very large 

considering the purpose of this study. Therefore, further investigations of the 
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recommended model, a classification plot was developed (Figure 2-6), where the 

relationships between variable pairs are investigated within each cluster. This 

classification plot indicates that the model-based clustering is not suitable for the 

purpose of the present study due to lack of separation between the clusters, 

inexistence of density centers, the high dimensionality, and its inability to capture 

the interdependence between the variables existing in the dataset. 

 
Figure 2-5: BIC Values for different GPCM Models 
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Figure 2-6: Classification plot for the VII model with nine clusters, where 

observations allocated to each cluster are represented by color and symbol 

2.3.2. K-MEANS CLUSTERING ALGORITHM 

As explained earlier, the application of K-means clustering requires a 

suggestion of the K value prior to the analysis. Therefore, K was varied between 

one and eight, and both the elbow and silhouette methods were used to estimate the 

optimum K value. Figure 2-7(a) shows the K-WSS relationship that was used to 

determine the optimum K value using the elbow method. It can be observed that six 

clusters correspond to the point where the slope of the relationship decreases 
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without a significant decrease in WSS (i.e., the optimum number of clusters is six). 

On the other hand, Figure 2-7(b) indicates that nine clusters are needed based on 

the silhouette method. However, Figure 2-7(b) also shows that: i) the average 

silhouette score increased significantly between two and six clusters compared to 

that beyond six clusters; and ii) the average silhouette score at six clusters is 0.73 

which represents 91% of the corresponding maximum obtained (i.e., 0.8). As such, 

a K value of six was chosen as the optimum number of clusters based on the K-

means clustering. 

 

Figure 2-7: Evaluation of K where (a) is the K-WSS relationship and (b) is the 

average silhouette score at different K values 

To effectively visualize the results of the K-means clustering, two variables 

are introduced. These variables are scaled and centered so that the mean of all 

variables is zero, and the standard deviation is one (Zumel and Mount 2020). These 
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variables are the: i) scaled affected people, which is the centered and scaled 

summation of fatalities and injuries; and ii) scaled event impact, which is the 

centered and scaled summation of damages, injuries, and fatalities. These variables 

were developed to relate to the resilience goals, namely robustness and rapidity, 

where the affected people and the damage variables represent the robustness, while 

the duration of event represent the rapidity. Figures 2-8(a) through 2-8(c) show the 

scaled and centered affected people-event duration-damage, affected people-

season-damage, and season-event duration-event impact relationships, 

respectively. It should be noted that different colors were assigned to each cluster 

for visual distinction. Figure 2-8 shows six distinct clusters based on the different 

visualization variables. From Figure 2-8(a), it can be noticed that events resulting 

in larger damages and higher number of affected people were separated from other 

events in a single cluster, and those with higher down time values, and hence 

rapidity, were also separated in another cluster. However, most of the events were 

entangled, due to the high degree of interdependence between the different 

variables in the dataset. The three plots in figure 8 needs to be examined together 

to capture the different attributes the separates the categories from one another. 
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Figure 2-8: Cluster visualization for the k-means clustered data, (a) the 

relationship between the scaled duration of event, damage, and affected people, 

(b) the relationship between the Season, and the scaled affected people, and 

damage, and (c) the relationship between the scaled duration of event, impact of 

event, and season based on the results of the K-means clustering 

2.3.3. SELF-ORGANIZING MAPS (SOM) NEURAL NETWORK MODEL 

As discussed above, the application of ANN for cluster analysis requires 

predetermining the value of K and the number of neurons. The value of K was 

therefore varied between two and eight, and the corresponding WSS was calculated 

according to Equation 5. The WSS for multiple number of clusters were investigated 

(ranging between K=1 and K=9), and the minimum WSS value encountered when 

using four and six clusters; therefore, both models were further investigated. Figure 

2-9 show the relative contribution of the different variables to each neuron/cluster 

within the SOM, where: negative contribution is shown as black, zero contribution 

is represented as red, contribution increases as the color gets lighter, and 

contribution decreases as the color becomes darker. Figure 2-9 supports that certain 
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variables heavily affect some clusters, which indicates a good separation between 

the different clusters within the model.  

 

Figure 2-9: The contribution of the different variables to the different neurons 

(clusters) of the SOM for a (a) four-clusters model, and (b) six-clusters model 

Similar to Figure 2-8, Figures 2-10(a) through 10(c) show the following 

relationships: affected people-event duration-damage, affected people-season-

damage, and season-event duration-event impact. Similar to the results of the K-

means clustering, it can be observed that the clusters are distinguishable based on 

the different variables. Observations with high damage and large number of 

affected people are included in the same cluster whereas events with high duration 

were clustered together. This highlights that the flood risk does not depend on the 

hazard’s characteristics only, but also on the robustness and vulnerability of the 

exposed community. Therefore, categorizing flood events based on the exposed 

components rather than event characteristics is essential.  
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Figure 2-10: Cluster visualization for SOM clustered data, (a) the relationship 

between the scaled duration of event, damage, and affected people, (b) the 

relationship between the Season, and the scaled affected people, and damage, and 

(c) the relationship between the scaled duration of event, impact of event, and 

season based on the results of the SOM. 

2.3.1. RESULTS ANALYSIS AND INSIGHTS 

An appropriate number of clusters is that which strikes a balance between 

explaining the variance within the dataset and maximizing the distance between 

different clusters (Patil and Baidari 2019). The number of categories is then adopted 

from the number of clusters, while ensuring that the resulting number of categories 

is employable in practical Resilience guided studies. The choice of the number of 

clusters depends on the dataset and the distribution of the data withing its space. If 

left uncontrolled, without a penalty, the clustering algorithm will reduce the 

clustering error to the maximum by having the greatest number of clusters possible, 

ultimately reaching the total number of observations of the dataset (Patil and 

Baidari 2019). As such, BIC was employed in Model Based Clustering, while WSS 
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and Silhouette methods were employed in k-means and the SOM ANN model. The 

results from the three clustering algorithms employed in the present demonstration 

study show that: i) the model-based clustering did not provide a viable model due 

to the high complexity of the dataset used in this study; ii) K-means and ANN-

based clustering algorithms have nearly similar performances; and, iii) a model with 

six clusters is suitable to meet the objective of the current study. Further 

investigations showed that two clusters exhibit similar features, albeit only 

distinguished based on the season. These two clusters were therefore merged, which 

resulted in having a total of only five clusters (categories), which is compatible with 

the goal of the framework presented herein. It is noteworthy that: i) most of the 

flood events occurring in the spring were divided into two groups, one contains the 

events of a greater impact and the other contains those of a lesser impact; ii) flood 

events that lasted for more than 11 days were clustered together, indicating a 

correlation between the impact of the flood event on the exposed environment and 

duration of the event; and, iii) all events that resulted in loss of human lives were 

separated together in a single cluster. Figure 2-11 show the characteristics of each 

category in terms of the number of records together with the average number of 

affected people, duration, and damage. Events falling in Categories 1, 2 and 4 are 

more common than those in Category 3 and 5, as shown in Figure 2-11(a). 

However, events designated as Category 5 are of more impact in terms of the 

average number of people affected and average damage (Figures 2-11(b) and 2-
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11(c), respectively). Resilience is multidimensional, and within this categorization 

framework more emphasis was put on human lives than on monetary damage. 

Henceforth, even though Category 3 follows Category 5 in terms of the average 

damage, Category 4 follows Category 5 in terms of the average number of people 

affected which is why it was assigned to a higher Category. It is noteworthy that 

there is no significant correlation between event duration and impact, highlighting 

the importance of including both the event characteristics and the expected 

consequences for the development of an effective categorization. It should be 

recalled that the event’s duration considered herein refers to the hazard’s duration, 

from the moment of the flood starts, until the water level goes back to its original 

state before the start of recovery. Hence, larger flood duration translates to a less 

robust infrastructure (drainage) system to accommodate for such flood and 

effectively drain it in a timely manner. Subsequently, the longer the flood duration, 

the longer the total time until full recovery (rapidity), resulting in a lower overall 

community flood resilience. 
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Figure 2-11: Frequency curves where (a) is the number of records per cluster, (b) 

is the average number of affected people per cluster, (c) is the average duration 

per cluster, and (d) is the average damage per cluster 

In the context of this study, performance characteristics attributed to each 

of the developed categories were drawn by adopting the data-driven approach. In 

contrast to performance based seismic design, where performance measures are 

concluded by surveys and interviews with stakeholders (FEMA 2018b; National 

Research Council 1996). Based on the previous discussion, the categories presented 

in table 2-1 were developed. Each of these categories was assigned a flood 

resilience index (FRI) that increases as the functionality loss of the exposed 
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community increases. As such, communities exposed to flood events with impacts 

falling under Category j are more resilient than those falling under Category j+1, 

with j ranging between 1 and 4. Category 1 includes flood events that cause 

disturbance for an average of 10.6 hours (and less than 11 days) in the summer, 

cause an average damage of $1.36M (and less than $2.5B), with an average of 5 

(and less than 250) injuries, and no fatalities. Category 2 contains flood events the 

cause disturbance for an average of 30 hours in the spring and cause an average 

damage of $1.3M (and less than $1.5B), an average of 3 injuries (and less than 20), 

and no fatalities. It is noteworthy that events occurring in spring are allocated to a 

separate category of a lower impact due to the frequency of spring floods (spring 

floods usually take up more time, on average, compared to those occur in other 

seasons (FEMA 2018a). Statistically, most flood events occurring in the spring are 

caused by spring floods, and those occurring in the summer are due to flash floods 

caused by extreme rainfall (FEMA 2018a). Category 3 encompasses flood events 

that cause disturbance for an average of 514 hours (and more than 11 days) during 

any season, regardless of the monetary damage, and an average of 7 injuries (and 

less than 250), and no fatalities. The last two categories are those of higher 

resilience loss, as shown in Figures 2-11(b) and 2-11(d). Category 4 include flood 

events that cause disturbance for an average of 18 hours (less than 11 days) in the 

fall or winter, cause an average damage of $1.51M (and less than $2.5B), with an 

average of 11 injuries (and less than 250), and no fatalities. Category 5 entails any 
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event that cause the loss of human life and/or damage more than $2.5B with an 

average damage of $101M. 

Table 2-1: The developed community flood resilience categorization 

Community 

Flood 

Resilience 

Category 

Category description 

1 

Communities exposed to events that that occur in the summer, 

causing disturbance less than 264 hours (11 days) and/or causes 

up to 250 injuries, and damage less than $2.5B without fatalities 

2 

Communities exposed to events that occur in the spring, 

causing any disturbance duration, causes up to 20 injuries, and 

damage up to $1.5B without fatalities 

3 

Communities exposed to events occurring in any season, 

causing disturbance more than 264 hours (11 days), and causing 

up to 250 injuries with any damage value, and without fatalities 

4 

Communities exposed to events that occur in winter or fall, 

causing disturbance less than 264 hours (11 days) causes up to 

250 injuries and damage up to $2.5B without fatalities 

5 

Communities exposed to events occurring in any season, 

causing any disturbance duration that results in more than 250 

injuries, causing damage more than $2.5B, with fatalities. And 

Communities exposed to events occurring in the spring that are 

not under Category 2. 

 

Within the context of the manuscript, the clusters are related to the 

community resilience metrics in response to flood disasters. Hence, a community 

can be placed in different category each time a disaster befalls it. However, by 

taking the average of the resilience indices corresponding to all recorded flood 

disasters, an average index can place a community in a certain category, 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

56 

 

 

representing the resilience of said community in a comprehensive way that accounts 

for all previous disasters. A comparative spatial analysis is conducted where the 

average FRI can be calculated nation-wide on a state level— as per our dataset, as 

shown in Figure 2-12. The average FRI of a state was calculated by identifying the 

FRI of each individual event (according to Table 2-1). High average FRI values 

indicate that the corresponding state is relatively less resilient to flood events, 

indicating the need of measures to increase the state’s resilience. It is noteworthy 

that when the average FRI of a state is between two categories, a roundup would be 

more appropriate as a conservative approach.  

It is concluded from the spatial analysis that the state of Oregon has the 

highest Flood Resilience Index of all the states. Most of the state of Oregon falls 

within the Pacific Northwest region, where excessive precipitation is typically 

expected (Oregon Instute for Water and Watersheds 2012). This region is also 

characterized by a maritime climate with majority of the annual precipitation 

occurring between October and March (Cooley and Chang 2017). Oregon state is 

also known for some catastrophic flood events (e.g., the Williamette River Flooding 

of 1996 that disrupted the livelihood of the population of Portland and had a huge 

impact on the city’s infrastructure, frequent flash floods due to intensive rainfall) 

(Michelson and Chang 2019; US Department of Commerce, NOAA 2019).  
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Figure 2-12: The spatial distribution of the average FRI over the different states 

2.4. CONCLUSION 

As the reports by the Insurance Information Institute and the World 

Economic Forum indicate, the damaging effect of flood events seem to increase 

over time, with no sign of a decreasing rate (Insurance Information Institute 2019; 

World Economic Forum 2019a). As such, flood damage assessment has been 

gaining more attention over the past decades. Several flood categorizations have 

therefore been developed in an effort to design effective preparedness plans under 

flood events. However, such categorizations incorporate the features of the flood 

hazard without considering the nature or resilience of the exposed 

system/community. In the current work, a new community flood resilience-based 

categorization framework was developed using an unsupervised machine learning 
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technique based on the different resilience metrics (i.e., the robustness and potential 

impacts on the exposed environment, and rapidity). The framework developed 

herein using unsupervised Machine Learning (ML) techniques, and is developed 

into three stages: i) Data Preprocessing and visualization where the available 

dataset is inspected and studied to determine its applicability within the proposed 

framework, ii) ML Model Selection where the appropriate ML model is selected 

that would yield the most applicability in this study, and finally iii) Clusters’ 

features analysis to analyze the developed clusters, and define the features of the 

categories, upon which, actionable guidelines can be developed. To demonstrate 

the applicability of the proposed framework, it was applied on Flood disaster 

records collected by the NWS across the United States between 1996 and 2019 were 

adopted in the demonstration of the applicability of the proposed framework. The 

dataset includes direct property and crop damages, direct/indirect injuries and 

fatalities, duration of the flood event, and time of occurrence. A descriptive analysis 

was conducted and showed that the risk variables (i.e., duration, related damage, 

injuries, and fatalities) are highly interdependent. These risk variables are also 

characterized by heavy-tailed distributions with a significant number of extremes 

in all seasons. In contrast, event duration has a more prominent range with more 

extremes in the spring followed by the winter. Texas was found to sustain the most 
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damage, since it falls under a tropical weather region where numerous hurricanes 

and extreme rainfall events are likely to occur.  

Three unsupervised machine learning techniques were subsequently utilized 

to develop the resilience-based flood risk categorization, including: Model-Based 

clustering, K-Means clustering, and SOM-ANN. Only the K-means and SOM-

ANN-based clustering techniques were able to capture the variability within the 

dataset, enabling the development of a clear separation between different clusters. 

Accordingly, five community resilience-based flood categories were identified. 

The developed approach integrates the different components of resilience instead 

of the flood hazard characteristics as considered in earlier studies and regulations. 

A comparative spatial analysis was further conducted to assess the robustness of 

the different states to flood events. An average FRI was calculated for each state, 

Oregon was found to have the highest index, indicating its high susceptibility to 

damaging floods.  

Overall, the framework developed in this study paves the way for a data-

driven resilience based-categorization. It is worth noting that data-driven models 

typically cannot explain the physics and reasoning behind the results. Instead, data-

driven models may generate more realistic and accurate and time-efficient 

predictions compared to physics-based models. To achieve the same level of 

accuracy using physics-based models, the modeling should account for different 

levels of complexity, especially those pertaining to interdependence, while also 
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accounting for the probabilistic nature of the hazard and the built community. As 

such, Machine Learning and Data-driven models have been gradually gaining more 

traction in resilience research (Haggag et al. 2020, 2021b). The data-driven 

categorization framework developed herein is expected to aid decision makers 

develop preparedness plans by identifying the most vulnerable communities 

through conduction a spatio-temporal comparative analysis and develop strategies 

to increase their resilience given available resources. The categorization can also 

facilitate the development of a prediction framework where, for example, climate 

indices act as predictors, ultimately aiding in the development of preparedness plans 

and policies to mitigate the risk of future hazards. This way, a model classifying the 

resilience of a community, based on its resilience metrics, can be developed, and 

validated. Further research can be implemented to advance this framework through 

1) Incorporating more comprehensive variables within the dataset, giving more 

details to the type of flood, or vulnerable area. 2) Utilizing other Clustering 

techniques to account for mixed type data, and 3) Applying the framework while 

incorporating future flood projections to predict the expected change in the 

resilience of a certain community.  
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ABSTRACT 

Climate change and the development of urban centers within flood prone areas have 

significantly increased in flood-related disasters worldwide. However, most flood 

risk categorization and prediction efforts have been focused on the hydrologic 

features of flood hazards, often not considering subsequent long-term losses and 

recovery trajectories (i.e., community’s flood resilience). In this study, a two-stage 

Machine Learning (ML) based framework was proposed to accurately categorize 

and predict communities’ flood resilience, and their response to future flood 

hazards. This framework is a step towards developing a comprehensive proactive 

flood disaster management plan to further ensure functioning urban centers and 

mitigate the risk of future catastrophic flood events. In this framework, resilience 

indices are developed considering resilience goals (i.e., Robustness and Rapidity) 

using unsupervised ML, coupled with climate indices to develop a supervised ML 

prediction algorithm. To showcase the utility of the framework, the data-driven 

approach was applied on historical flood disaster records collected by the US 

National Weather Services. These disaster records were subsequently used to 

develop the resilience indices, which were then coupled with associated historical 

climate data resulting in high accuracy predictions, and thus utility in flood 

resilience management studies. To further demonstrate the utilization of the 

framework, a spatial analysis was developed to quantify community’s flood 

resilience and vulnerability across the selected spatial domain. The framework 
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presented in this study is employable in climate studies and Spatio-temporal 

vulnerability identification, Such a framework can empower decision makers to 

develop effective data-driven climate resilience strategies. 

 

KEYWORDS: Community Resilience; Data-driven Methods; Machine Learning; 

Resilience; Flood Hazard. 
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3.1. INTRODUCTION 

The severity of climatological and hydrological hazards has been increasing 

over the past decades, with especially higher frequency of flood hazard over the 

past three decades, heavily impacting the livelihood of exposed communities 

(Dawod et al. 2014; Lian et al. 2017; Wilby et al. 2007). The changing climate has 

been significantly affecting the weather conditions and climatological factors (i.e., 

mean temperature, humidity, and precipitation) (Linkov et al. 2014; Stocker et al. 

2013). Data records since 1996 show that in North America, and similarly around 

the world, the rate of extreme weather events and rainfall (i.e., more than 100 mm 

of rainfall in 24 hours) is alarmingly increasing, accompanied by an increased 

frequency of floods (Bertilsson et al. 2019). This is attributed to the higher rate of 

urbanization into flood-prone areas, where the urban environment now hosts over 

50% of the world’s population, with an expected increase to 70% by the year 2050, 

boosting the probability of flood related disasters through the vulnerable 

community’s exposure (NOAA 2019; da Silva et al. 2012).  

As a direct consequence of such increase in flood exposure and related losses, 

flood disaster management stakeholders have been moving to adopt a proactive 

risk-mitigation response, rather than a reactive post-disaster response approach(de 

Moel and Aerts 2011; World Economic Forum 2019). However, flood risk needs 

first to be quantified in order to efficiently develop better mitigation strategies and 

eventually enhance the resilience. In this respect, flood risk is identified as the 
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expected damage (i.e., consequence), resulting from a hazard’s probability of 

occurrence, coupled with the at-risk-community’s exposure and vulnerabilities, 

considering the levels of different uncertainties (Kron 2005; Nofal and van de Lindt 

2020; Salem et al. 2020a). 

With the increasing climatological disasters and flood risk, community 

resilience research is steadily gaining more traction worldwide. While a community 

is defined as “Place designated by geographical boundaries that function under the 

jurisdiction of a governance structure (e.g., town, city, or county)” (National 

Institute of Standards and Technology 2020), community resilience is the ability of 

a community to adapt to, predict, and rapidly recover from future disruptions back 

to a predefined target state (National Institute of Standards and Technology 2020). 

Flood risk is a result from the simultaneous realization of three aspects; i) flood 

hazard: the potential, or probability, of a flood event of certain characteristics 

occurring at a given location, ii) flood vulnerability: a measure of the susceptibility, 

and the adaptability, of the exposed community to the flood hazard, and finally iii) 

flood exposure: the assets, humans and otherwise (i.e., infrastructure systems), that 

are located in a flood-prone area (Jabareen 2012; Kron 2005; Nofal and van de 

Lindt 2020). This indicates that a severe flood hazard does not necessarily yield a 

high-risk flood, as it can occur in an area with a low number of exposed elements, 

but flood risk can be quantified only when the exposed and vulnerable community 

prone to said hazard are coupled with the hazard realization (Netherton and Stewart 
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2016; Salem et al. 2020a). As an extension, resilience analysis evaluates the 

extended functionality loss and recovery trajectory of communities prone to flood 

hazard, taking into account the direct and indirect losses, as well as restoration costs 

(Linkov et al. 2014; Salem et al. 2020a).  

Previously, resilience has been defined differently across different fields, 

however in the context of this study, resilience is defined as the ability to resist 

being affected by, and rapidly recover from some external disturbance (Cimellaro 

et al. 2009). Resilience is quantified through the four attributes including: two 

objectives (i.e., goals) of resilience: Robustness and Rapidity, enabled by two 

means: Resourcefulness and Redundancies (Bruneau et al. 2003; Murdock 2017). 

Robustness is the inherent ability of the system to retain its functionality level when 

exposed to stress or extreme demand; Rapidity is the time needed for the system to 

bounce back to a certain predefined target functionality level; Resourcefulness is 

the availability of adequate resources within the system to maintain its functionality 

under extreme demand levels, and finally; Redundancy is the availability of 

alternate components to maintain functionality during the external hazard (Bruneau 

et al. 2003; Minsker et al. 2015). It is worth noting that the rapidity measures the 

total time needed for the system to bounce back to its target functionality, including 

the downtime of the system (i.e., the duration of the hazard itself). 

Over the years, numerous researchers have embarked on flood categorization 

and prediction studies (Australian Institute for Disaster Resilience 2017; FEMA 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

88 

 

 

2012; Ragini et al. 2018; Turkington et al. 2016). However, most of such studies 

focused on the hazard’s features, and to a lesser extent on the direct impact and 

losses due to the flood hazard, or long-term recovery cost and time (Ganguli et al. 

2020; Ganguly et al. 2019; Hemmati et al. 2020; Murnane et al. 2017; Rözer et al. 

2021; Swain et al. 2020). In this respect, this study aims at developing a prediction 

framework that classifies the long-term potential impacts, recovery, and resilience 

of the exposed community, a categorization that captures the resilience of the 

exposed communities rather than simply the hazard’s characteristics. To achieve 

that, reliable data is imperative to accurately incorporate said damage and 

characteristics within an objective data-driven resilience prediction framework 

(Downton and Pielke 2005).The incorporation of the hazard, system vulnerability, 

and exposure employed in this framework would result in a comprehensive capture 

of the short-term potential impacts, direct and otherwise, of the flood event through 

robustness assessment (i.e., flood risk), as well as the long-term impact on the 

exposed community through rapidity evaluation (i.e., resilience assessment). The 

study presented herein is employable in vulnerability identification and flood 

prediction studies, providing an imperative decision support tool for stakeholders 

and policymakers to allocate resources and potentially save billions of dollars. 
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3.2. FLOOD RESILIENCE PREDICTION FRAMEWORK  

3.2.1. FRAMEWORK DESIGN AND LAYOUT 

The aim of this research is to develop a flood resilience prediction framework 

that captures the probable and resulting impacts of floods on respective exposed 

communities. Such framework would serve as a practical data-driven tool for quick 

and actionable early warning system. Such system will aid policy and 

decisionmakers in developing resilience-guided risk management strategies 

accounting for the four attributes of resilience. Classification and data driven 

models require a sufficient number of observations in a dataset to allow for 

meaningful classification and clustering (Turkington et al. 2016). While this 

necessitates the accessibility to a large volume of high-quality data, there are also 

alternative ways to account for missing data within an employable dataset.  

As can be seen in Figure 3-1, the framework presented herein is comprised of two 

main parts: a) Resilience-based categorization, and b) Resilience-based prediction, 

and each part of the framework is comprised of different stages. 
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Figure 3-1: Multi-stage framework layout for resilience-based flood 

categorization and prediction 

Part (a): Resilience-based categorization framework: this part is divided into 

three main stages: Stage i) Data Compilation, Cleaning and Visualization: The first 

step is to compile a comprehensive dataset, with enough variables to capture the 

resilience attributes, as well as the features of the flood events (e.g., flood depth and 
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duration). Following data gathering, data preprocessing starts to ensure its 

suitability for a reliable analysis, and data imputation for missing values. Datasets 

are investigated for the identification of any biases or skewness within the dataset, 

as well as the accommodation for missing data. Missing data can induce disruptions 

in the ML algorithm, rendering it essential to replace or remove observation with 

missing variables. Accounting for missing variables can be done through multiple 

approaches, 1] by removing observations with missing variables altogether, 2] 

averaging the readings from other nearby observations with similar conditions to 

the observation with missing variables, or 3] using unsupervised learning to cluster 

the dataset and take the average of the cluster variables as the reading for the 

missing variables. In this study, a combination between approach 1 and 2 were 

employed (Haggag et al. 2021b; Patil et al. 2010; Yagci et al. 2018).  

Finally, data visualization is conducted to identify inherent characteristics and 

interdependencies within the dataset, which is pivotal in choosing an appropriate 

model for the following stage.  

Stage ii) Selection of Machine Learning (ML) Model: ML models are designed 

to analyze high-dimensional data. It has been utilized across different fields such as 

engineering, biology and medicine, and in different applications such as banking, 

targeted advertisement, social networks, and image and pattern recognition (Bose 

and Mahapatra 2001; Goos et al. 2006; King et al. 1992; Mckinney et al. 2006). ML 

models are used to identify pattens and discover behaviors in large datasets, while 
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continuously adapting to new data features to enhance model performance. ML are 

expected to handle large datasets with complex interdependent features, and 

identify hidden patterns (Hastie et al. 2009). ML models are divided into supervised 

and unsupervised algorithms (also named classification and clustering algorithms, 

respectively), and will be discussed in more detail in the following section. In the 

proposed framework, the categorization in  part (a) employs unsupervised 

(clustering) techniques, while part (b) employs supervised (classification) 

algorithms (Gentleman et al. 2008; Hastie et al. 2009). 

Stage iii) Features and Clusters Analysis: The results of stage ii in part (a) are 

used in developing the features of each category (cluster). By conducting a feature 

analysis, the developed clusters can be used in developing a spatial analysis to 

identify vulnerable communities based on the considered resilience metrics. The 

deployment of the clustering algorithm results ensures the development of unbiased 

managerial insights, facilitating the decision-making process for utilizing the 

resilience means (i.e., Redundancies, and Resourcefulness) to better enhance the 

resilience of the more vulnerable communities. The developed clusters in Part (a) 

are vital in the development of the predictive analysis in Part (b), where this 

categorization framework can aid decision makers in translating predicted flood 

hazards and risks into actionable plans, increasing the robustness by reducing the 

loss of functionality, and ensuring a quick recovery to the target state. 
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Part (b): Resilience-based Prediction Framework: Similar to Part (a), Part (b) 

is also comprised of different stages, while these stages are similar in concept with 

their counterparts in Part (a), the details and the nature of the algorithms differ 

greatly.  

Stage (i) Data Compilation: The first step is compiling the dependent and 

independent variables of the dataset. In this stage, the study area is identified for 

the development of the predictive model where the features, characteristics, and 

exposure are fairly similar. The dependent variables selected for this framework are 

climate information corresponding to recorded flood events (e.g., maximum 

temperature, minimum temperature, precipitation, wind speed, air pressure, 

humidity, etc. …) whereas the independent variable would be the resilience-based 

categories developed in part (a) of the proposed framework. Similar to most ML 

algorithms, the dataset should be comprehensive and of good quality and diversity 

to produce actionable results. Data imputation and cleaning are conducted to ensure 

the reliability of the data and avoid skewness and imbalances in the dataset.  

Stage (ii) Data preprocessing and analysis: For this stage, the gathered dataset 

is studied to identify the interrelationship between the different variables, and 

thoroughly examine which variables to be included in the analysis to reduce the 

noise in the data while ensuring that all the resilience metrics and the hazard 

features are comprehensively represented. This feature selection can be achieved 

through exploratory and sensitivity data analysis, feature selection, or correlation 
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analysis between different variables of the available data. Following that step, data 

cleaning and preprocessing commences. The performance of data-driven models 

are strictly tied to the quality and quantity of the dataset involved in the 

development of the model, as finding a readily available dataset that matches all the 

required criteria for analysis is typically very challenging. Therefore, numerous 

methods have been developed to deal with missing data, unbalanced data, and 

skewed data (e.g., Data imputation, removing datapoints with missing variables, 

take average readings from nearby sources, etc. …) (Patil et al. 2010; Patil and 

Baidari 2019; Yagci et al. 2018). 

Stage (iii) Development and testing of Machine Learning Models: In this stage, 

a supervised ML model is developed to predict flood resilience categories based on 

climate data corresponding to the recorded flood events. Supervised ML models 

can be used in predicting discreet, continuous, or categorical data. The classification 

required for the analysis herein falls under the multi-class classification category, 

where the dependent variables are used to predict a categorical independent 

variable, of more than 2 classes (Wu et al., 2004). For this classification, different 

algorithms were validated and tested to determine the most suitable algorithm for 

the current dataset (e.g., Naïve Bayes Classifier, Support Vector Machine, Decision 

Trees, Artificial Neural Networks, Ensemble techniques, etc. …), where they were 

assessed based on a common performance criteria, to be explored further in the 
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Methodology section (Haggag et al. 2021b; Mojaddadi et al. 2017; Mosavi et al. 

2018; Shafizadeh-Moghadam et al. 2018). 

3.2.2. METHODOLOGY 

Machine Learning is an artificial intelligence tool designed to learn 

autonomously from a training dataset, mimicking the behavior of the human brain 

through the learning process. By deploying ML models on appropriate datasets, the 

model extract the dataset’s inherent features, and adjust itself to better enhance its 

performance(Rodrigues and De la Riva 2014). As mentioned, ML models are 

broadly divided into two types, supervised and unsupervised learning models, 

where they use labelled and unlabeled data, respectively, for training and validation. 

In the field of natural hazard and community resilience, ML and data-driven models 

have been recently employed in achieving the overarching goal of increasing 

community resilience in face of natural and anthropic hazards (Ganguly et al. 2019; 

Haggag et al. 2021a; Hanewinkel et al. 2004; Rodrigues and De la Riva 2014; 

Shafizadeh-Moghadam et al. 2018). For the framework developed herein, both ML 

model types are utilized, where the unsupervised learning is utilized in the 

development of the community resilience categories, and supervised ML 

techniques are employed to predict the community resilience metrics under future 

flood hazards. 
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UNSUPERVISED LEARNING: CLUSTERING 

Unsupervised ML models use partitioning algorithms to cluster observations 

based on a predefined similarity measure, such that observations with common 

features are placed in the same cluster (Otterbach et al. 2017). This is an unguided 

process that does not require a predefined objective, ensuring that the clustering is 

based on inherent features of the dataset. This similarity measure is assessed by 

measuring the distance between different observations, where two, or more, 

observations are considered similar when the distance between them is minimal. 

Henceforth, observations within a cluster should be closer to one another than that 

of other clusters.  

Choosing the similarity measure depends heavily on the type of data, and 

objective of the study, such measures include: Euclidean, Cosine similarity, 

Manhattan, and Gower distances (Jain et al. 2000). For this study, multiple 

similarity measures were explored to determine their applicability with the 

available mixed-type dataset (i.e., dataset containing both categorical and numerical 

data). For Gower distance within Partitioning Around Medoids algorithm, the 

developed dissimilarity matrix from the dataset was skewed, which results in a 

biased algorithm favoring seasonal clustering instead of resilience-based clustering. 

Eventually, weighted Euclidean distance was adopted in this study as it measures 

the weighted proximity of the observations within a three-dimensional space (Jain 
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et al. 2000; Seyed Shirkhorshidi et al. 2015). It is important to note that other 

approaches could also be employed in the current study. 

For the framework presented herein, two clustering algorithms were employed 

to develop the resilience-based flood categories. Namely: K-means clustering, and 

Self Organizing Maps. K-means clustering technique, and its variations, are the 

most heavily used partitioning (clustering) algorithm (MacQueen 1967), where 

observations are divided into a predefined number of clusters (K). Prior to the 

partitioning algorithm, multiple values are assumed for K, and the optimal value is 

that with the minimum intra-cluster variation (i.e., the total within-cluster sum of 

squares (WSS)). For the current study, the WSS utilized the squared Euclidean 

distance between the observations and their respective cluster’s centroid (Alsabti et 

al. 1997; Hartigan and Wong 1979; Wagstaff et al. 2001).  

SOM is a type of Artificial Neural Networks (ANN) algorithm that is trained 

to cluster data into groups in an unsupervised approach. The input space is 

organized according to a predefined topology of neurons, where each neuron is 

assigned a number of observations. ANN is an artificial intelligence techniques by 

which complex relationships, and interrelationships, within a dataset are uncovered 

automatically based on inherent patterns in the dataset (Mitra et al. 2016; Park 

2000), by mimicking the behavior of the human brain when transmitting signals 

through neurons, albeit through artificial neurons. There have been numerous ANN 

techniques developed to date, each of which may befit a specific application (e.g., 
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self-organizing maps, recurrent neural networks, and feed-forward back-

propagation neural networks). However, ANN is more commonly employed in 

predictive algorithms (Khajwal and Noshadravan 2020; Kwayu et al. 2020; Mitra 

et al. 2016) and pattern recognition applications (Gnanaprakkasam and Ganapathy 

2019; King et al. 1992; Park 2000; Turkington et al. 2016). For the study presented 

herein, SOM was utilized using the Deep Learning Toolbox in MATLAB, where 

the Kohonen rule was adopted (Abdel-Mooty et al. 2021; Park 2000).  

SUPERVISED LEARNING: CLASSIFICATION 

Classification is a supervised ML technique that learns and utilizes features of 

a dataset to derive patterns and classify new input data. Supervised ML models 

learn from a training dataset, which is comprised of dependent (i.e., predictor 

variables) and independent variables (i.e., predictand variable), and applies the 

identified patterns on a testing dataset, while applying optimization techniques to 

increase the model’s performance (Khalaf et al. 2018; Mosavi et al. 2018; Zumel 

and Mount 2020). Numerous classification techniques have been developed to date 

(e.g., continuous, discreet, numerical, or categorical). In the present study, the 

independent variable is class-based, therefore multiclass classification techniques 

will be employed in the current study (e.g., Naïve Bayes classifier, Classification 

Trees, Support Vector Machine, ANN, etc.). To improve the performance of said 
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models, classification models employ ensemble techniques— bagging, random 

forest, boosting (Boehmke and Greenwell 2019; Nagpal 2017; Singh 2018). 

Naïve Bayes Classification 

Naïve Bayes Classifier algorithm employs Bayes’ theorem with the assumption 

that the variables are conditionally independent given the value of the class variable 

(i.e., Naïve). The algorithm employs joint conditional probabilities of the dependent 

variable of the training dataset given their respective independent variable (Gondia 

et al. 2020; Gong et al. 2011; Wu et al. 2004). The output of said model is the 

conditional probabilities of the class labels assigned based on the highest class-

label’s joint probability for each observation in the dataset. The theorem employed 

in this algorithm calculates the conditional probability for class variable y using 

equation (3-1), where (𝑥1, …, 𝑥𝑛) are the n dependent variables.  

 

𝑃(𝑦|𝑥1, … , 𝑥𝑛) =
𝑃(𝑦)𝑃(𝑥1, … , 𝑥𝑛|𝑦)

𝑃(𝑥1, … , 𝑥𝑛)
 (3-1) 

 

By applying the naïve assumption for all i, and substituting with 𝑃(𝑥1, … , 𝑥𝑛) 

as a constant, the resulting conditional probabilities can be expressed as equation 

(3-2): 

𝑃(𝑦|𝑥1, … , 𝑥𝑛) ∝ 𝑃(𝑦)Π𝑖=1
𝑛 𝑃(𝑥𝑖  |𝑦) (3-2) 
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Where i=1, …, n. This theorem can be interpreted such that a data record 

belongs to a certain class (M) when the conditional probability 𝑃( 𝑀𝑖|𝑥1, … , 𝑥𝑛) 

returns the highest value of all classes. The reader is referred to the studies by 

Mccallum & Nigam (1998) and Zhang (2004) for further details on Naïve bayes 

classification. 

Decision Trees 

Within the Classification and Regression Trees (CART) algorithm, 

classification trees are utilized to predict categorical (discriminate) data, unlike 

regression trees which deal with predicting continuous independent variables 

(Mosavi et al. 2018).  

Decision Trees (DT) utilize a binary recursive partitioning algorithm, since 

each split (i.e., rule or partitioning step) depends on the prior splitting step. The data 

is partitioned into homogenous subgroups (i.e., nodes) using binary Yes-or-No 

questions about each feature of the sub-group, where this process is repeated until 

a suitable stoppage criterion is reached (e.g., maximum number of splits). For each 

split, the objective is to identify the optimum feature upon which the data can be 

split, where the overall error between the actual response and the predicted response 

is minimal. The analysis presented herein is concerned with classification trees, 

where the partitioning is set to maximize the cross-entropy or the Gini index 

(Breiman et al. 1984; Hastie et al. 2009). The Gini index is a measure of purity (or 

impurity) in the classification model, where a small value indicates that a subgroup 
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(i.e., node) contains predominantly observations from a similar class. High values 

of mean decrease in Gini index correspond to a more important variable (i.e., 

feature) within the classification model (Hastie et al. 2009). The Gini index is relied 

upon given the type of data utilized in the demonstration application presented later 

in this study. 

For model accuracy and performance enhancement, there exist numerous 

employable ensemble techniques (e.g., bagging, boosting, and random forest) 

(Boehmke and Greenwell 2019; Nagpal 2017). Bagging is a bootstrap aggregating 

technique used for fitting multiple versions of the model drawn from the training 

dataset. Bootstrapping is a random sampling technique of the data, taken by 

replacement, such that a datapoint can still be available for selection in subsequent 

models, while using all the predictors for the sampling technique (Efron and 

Tibshirani 1986). Each model is then used to generate training for the Decision Tree 

model, and the averaging of all the predictions is subsequently used, resulting in a 

more robust model than a single tree (Breiman 1996; Breiman et al. 1984; Nagpal 

2017).  

Random forest further improves over bagging techniques to enhance model 

performance, where the selection of the predictors is also randomized at each split 

at the node within the tree rather than using all the predictors. The size of the tree 

is maximized by repeating the aforementioned process iteratively, and the 

prediction is based on the aggregation of the prediction from the total number of 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

102 

 

 

trees (Brownlee 2016; Feofilovs and Romagnoli 2017; Fielding 2006; Liaw and 

Wiener 2002; Nagpal 2017).  

 

Prediction Model Performance 

For classification models, the overall model accuracy and misclassification 

errors are widely used. However, this criterion is not always suitable for asymmetric 

or skewed datasets where the majority of the data falls within a single category. To 

introduce a more accurate measure of the predictive performance, the Precision, 

Recall, and F1-score for each category in the testing and training datasets were 

calculated. In this respect, Precision is the number of correct predictions per class 

within multiclass classification, which is a measure of how accurate each class 

prediction is. Recall (i.e., sensitivity) on the other hand is the number of correct 

class predictions out of all correct examples in the dataset, it captures the ratio 

between the correct classifications and the actual classification for the dataset. 

Finally, the F1-score is considered an integration between the Precision and Recall 

of the model, where it balances the concerns of both performance measures 

(Brownlee 2020). Precision, Recall, and the F1-score are evaluated according to 

equations (3-3), (3-4), and (3-5) respectively, where the information can be 

extracted from the confusion matrix of each model. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3-3) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3-4) 

𝐹1– 𝑠𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3-5) 

 

In the equations above, TP refers to True Positive, which is the number of 

correctly predicted observations, and FP refers to False Positive which is the 

number of predictions incorrectly assigned to a class, whereas FN refers to False 

Negative which is the number of observations incorrectly assigned to a wrong class 

(Khalaf et al. 2018). 

3.3. FRAMEWORK APPLICATION DEMONSTRATION  

To showcase the employability of the developed framework, the data from the 

National Weather Service (NWS) was adopted for the derivation of the resilience-

based categories. Subsequently these categories were then coupled with climate 

data extracted from the National Oceanic and Atmospheric Administration’s 

(NOAA) National Centers for Environmental Information. The framework was thus 

applied to: i) identify the features of the exposed communities along with their 

vulnerability using descriptive data analysis, ii) identify interdependence between 

different features of the adopted dataset to appropriately choose a suitable ML 

model, iii) categorize the communities’ flood resilience by combining flood 

features with resilience metrics within the dataset (i.e., Robustness and Rapidity), 
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iv) test the model performance in terms of accurately predicting the communities’ 

resilience when exposed to flood hazard, using climate data as predictand.  

The earlier work presented in the study by Abdel-Mooty et al. (2021) serves as 

a foundation for the categorization stage of the prediction framework developed 

herein. In their study, Abdel-Mooty et al. (2021) developed a  flood resilience 

categorization, resulting in 5 community flood resilience categories. These 

categories are thus employed through the second stage of the framework developed 

in the current study. In the following section, a brief summary of their findings is 

presented, followed by a description of the flood prediction demonstration.  

3.3.1. PART (A): RESILIENCE-BASED CATEGORIZATION 

In the first stage, the dataset compiled by the NWS was employed. This dataset 

is one of the longest-run annual flood damage recorded in the United States 

(Murphy 2018). The data are gathered through third party organizations, and 

directly reported to the NWS database according to the predefined guidelines. As 

such, the quantity and quality of the gathered data is governed by the available 

resources (e.g., time and funding availability) of said agencies (Murphy 2018). The 

dataset contains records of flood events occurring across the United States between 

1996 and 2019. The related damages, time, geographical center, month, and year 

for each recorded flood event are compiled within this database (Downton et al. 

2005; Murphy 2018). Within the dataset, the recorded damage was divided into 

property and crop damages, which were subsequently combined into a single 
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variable within the analysis named Monetary Damages. It is worth noting that the 

damages recorded in this dataset pertains to only the direct damage resulting from 

the flooding water on the exposed assets and does not considering the indirect 

(cascade) damages (e.g., opportunity loss). Within the present dataset the term 

“flood event” refers to only the flooding aspect of any natural disaster. Despite the 

aforementioned limitations, this dataset is still considered one of the best resources 

for flood damage records in the United States (Downton et al. 2005; Downton and 

Pielke 2005). Figure 3-2(a) shows a temporal analysis, while Figure 3-2(b) shows 

a spatial analysis of the flood events occurring within the same period, where the 

numbers on each state are the number of recorded floods, and the colors are used to 

indicate the relative total monetary damage of each state. This analysis shows that 

the largest number of records and the largest monetary damage are within the state 

of Texas. This is attributed to the increased heat content over the western Gulf of 

Mexico, as it produces higher humidity and temperature. This heat content is 

directly proportional to the precipitation resulting from different storms (Trenberth 

et al. 2018), and can also be attributed to the tropical weather region that Texas falls 

within, given that this region is susceptible to a large number of devastating 

hurricanes and extreme rainfall, coupled with the increased exposure caused by the 

increased urbanization rate (FEMA 2012).  
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Figure 3-2: Descriptive Spatio-temporal Analysis of the employed dataset where 

(a) the annual number of floods between 1996 and 2019 indicated by season, and 

(b) a multilayer spatial analysis of the dataset with the total number of records and 

the total damage in US$ per state indicated by color. 

Considering the objective of the current study, incorporating resilience metrics 

is key in identifying resilience-based categories. As such: i) the flood records that 

did not cause any monetary damage, injuries, or fatalities were excluded from the 

dataset, as they will not produce any resilience metrics to measure, and will induce 

bias within the categorization model, ii) the property and crop damage were 

summed up into a total monetary damage, and as mentioned earlier was adjusted to 
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accommodate the inflation rate over the years using the Customer Price Index from 

the Bureau of Labor Statistics (FRED 2020). This monetary damage, along with the 

injured people and fatalities represent the Robustness of the exposed community, 

while the duration of the flood event represents downtime of the exposed 

community, which is a component of the Rapidity metric.  

The analysis showed that: i) flood events that occurred during the spring were 

split into two categories based on their impacts, ii) flood events causing longer 

disruptions were separated in a separate cluster, identifying a correlation between 

event duration and the impact of the flood event on the exposed community (i.e., 

relating robustness with rapidity and overall resilience), iii) flood events that 

resulted in loss of human lives were clustered together. Events falling in Categories 

1,2, and 4 are more common than categories 3 and 5 in terms of annual number of 

events. Given the multidimensional nature of resilience, more emphasis in the 

analysis was places on the value of human injuries and fatalities than monetary loss. 

As such, although events in Category 3 follow those of Category 5 in terms of 

average damage per event, events falling in Category 4 follow that of category 5 in 

terms of average affected people per event, hence it was assigned a higher Category 

than Category 3. It should be recalled that the event duration mentioned herein is 

the hazard’s duration, which represents the down time of the community before the 

initiation of recovery efforts, representing a part of the total Rapidity of the 

community. It is also worth noting that longer flood duration corresponds to a less 
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robust infrastructure system (e.g., drainage networks) to accommodate the hazard’s 

capacity effectively, resulting in a lower overall resilience of the exposed 

community. The results were analyzed for the inherent features of each cluster, and 

each category was assigned a Flood Resilience Index (FRI) that increases gradually 

as the robustness decreases (i.e., functionality loss increases). As such, 

communities that are exposed to flood disasters with impacts falling in Category Ɱ 

are more resilient than those of Category Ɱ+1, with Ɱ having values between 1 

and 4. A detailed description of the categories can be found in Table 3-1. It is worth 

noting that a community can be placed in a different category each time it is exposed 

to a flood disaster, however, by averaging all the resilience indices subsequent to 

the corresponding recorded flood disasters, an average index can be assigned to that 

community, comprehensively representing its overall resilience while accounting 

for all the previous disasters. The reader is referred to the study by Abdel-Mooty et 

al. (2021) for more details on the resilience-based categories employed herein. 
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Table 3-1: The Community Flood Resilience-Based Categories 

Community Flood 

Resilience 

Category 

Category Description 

1 

Communities exposed to events that occur in the summer, 

causing disturbance less than 264 hours (11 days) and/or 

causes up to 250 injuries, and damage less than $2.5B 

without fatalities 

2 

Communities exposed to events that occur in the spring, 

causing any disturbance duration, causes up to 20 injuries, 

and damage up to $1.5B without fatalities 

3 

Communities exposed to events occurring in any season, 

causing disturbance more than 264 hours (11 days), and 

causing up to 250 injuries with any damage value, and 

without fatalities 

4 

Communities exposed to events that occur in winter or fall, 

causing disturbance less than 264 hours (11 days) causes up 

to 250 injuries and damage up to $2.5B without fatalities 

5 

Communities exposed to events occurring in any season, 

causing any disturbance duration that results in more than 

250 injuries, causing damage more than $2.5B, with 

fatalities. And Communities exposed to events occurring in 

the spring that are not under class 2. 

 

3.3.1. PART (B): RESILIENCE-BASED PREDICTION 

For this stage of the framework, a smaller geographical location needed to be 

identified such that the meteorological features of the dataset would be comparable, 

comprehensively representing the seasons and their respective hazard for said 

communities. This was also needed such that the built environment would match 

its respective hazard, given that different seasons (and subsequently the 

characteristics of the natural hazard) differ drastically across the United States (e.g., 
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the winter in Michigan is drastically different than that of Florida and Texas). 

However, the framework is applicable on any test location within the United States 

mainland as long as it is included in the development of the indices in Part (a) of 

the framework. By inspecting Figure 3-2, as mentioned earlier, the state of Texas 

had the most recorded number of flood disasters between 1996 and 2019, and the 

most recorded damage as well. The high number of records is suitable for the 

development of the prediction model, as the model will need a large dataset for 

development, training, and testing. As such, the state of Texas was selected for the 

development of the prediction stage of the framework. The disaster database 

recorded between 1996 and 2019 in the state of Texas was paired with the 

developed categories in Table 3-1 on a county level, where each event was assigned 

an index across the different counties, and the average index is calculated and 

assigned for each county. Figure 3-3 shows the spatial distribution of the total 

number of recorded disasters and average FRI across the counties. The spatial 

analysis shows a low correlation between the number of events and the FRI of a 

community, given that the more common flood events are those of low severity 

(Kron 2005). It is also worth mentioning that the spatial analysis shows a 

concentration of high FRI across the coastal area around the Gulf of Mexico. This 

can be attributed to High-Tide flooding, which is becoming increasingly common 

in the past years as a result of relative increase in sea level (Sweet et al. 2020). 

According to NOAA, coastal communities are witnessing an increase in high-tide 
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flooding, with some areas reporting a rapidly increasing rate (NOAA 2020; Sweet 

et al. 2020). This can also be attributed to nature of the natural hazards affecting the 

area, where a damage of $6B was recorded in 2018, and the devastating Hurricane 

Harvey which affected the entire state, in 2017 causing an extreme rainfall event 

resulting in a widespread devastation across different counties. The total damage 

from hurricane Harvey reached $128.8B, leading to one of the most expensive 

natural disasters in modern history (NOAA 2020; NOAA Office for Coastal 

Management 2021; Sweet et al. 2020). The spatial Analysis presented in Figure 3 

is also in line with the Cartographic Maps of Precipitation Frequency Estimates 

published by NOAA in Atlas 14 Volume 11 of Texas in 2018, showing an increased 

precipitation frequency and magnitude over the coastal area with the gulf of Mexico 

(Perica et al. 2018). 
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Figure 3-3: Spatial distribution of the number of records and the average FRI over 

different counties in the state of Texas 

3.3.2. MANAGERIAL INSIGHTS AND RESULTS 

To complete the dataset for the prediction framework, climate information 

corresponding to each recorded flood event in each county was then extracted from 

the Global Historical Climatology Network (GHCN-Daily) under the National 

Center for Environmental Information (Menne et al. 2012, 2021). To draw reliable 

insights from the proposed methodology, a comprehensive dataset must be present 

that includes all the pertinent variables with enough observations over the years to 
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avoid biases. However, the present dataset implicitly presents this information 

through the spatio-temporal characteristics of the flood events when exposed to 

their relative communities. 

The extracted climate data, as available, contained four variables for each 

recorded flood event: Maximum Daily Temperature, Minimum Daily Temperature, 

Average Daily Temperature, and Maximum Recorded Precipitation. These 

variables were then employed as predictors (dependent variables) for the FRI 

resulting from the recorded flood events (Independent variable) to be used in the 

development of the prediction model. The dataset is subsequently divided into two 

subsets— Training and Testing (70% and 30% respectively). The training subset 

was used in the development and training of the ML model, where the FRI 

implicitly contains information about the resilience (i.e., robustness and rapidity) 

of the exposed communities, and the climate variables contain information on the 

climatological features of the location, weather extremes, and different attributes, 

and causes, of the flood hazard. This comprehensive dataset is then inspected using 

exploratory data analysis and correlation plots as shown in Figure 3-4. This figure 

presents a 5 × 5 matrix, in which the variables are labelled on the columns and rows. 

The matrix contains 4 information groups: i) Frequency scatter plots located at the 

lower triangle of the matrix, excluding the last column; ii) Smoothed frequency 

curves located at the diagonal of the matrix, where the last cell at the bottom right 

is a histogram for the categorical variable; iii) The correlation coefficients located 
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at the upper triangle of the matrix, excluding the last column; and finally iv) The 

box plots located at the last column of the matrix. It is worth noting that this figure 

also presents statistical data analyses, as it shows the statistical distribution of the 

dataset within its variable space, as well as the correlation between different 

variables. The box plots in Figure 3-4 show that the maximum, minimum, and 

average temperature variables are overlapping, evenly distributed and with a low 

range of outliers. This indicates that these variables are interdependent, which 

shows a consistency in the climatological features of the selected geographical 

study area. This is also supported by the correlation coefficients as the correlation 

between these variables is high across all the FRI categories. However, the 

precipitation variables contain heavy-tailed distribution with a larger range for the 

outliers, indicating an exceptionally large surge in the value of precipitation, which 

leads to the recorded flood events. This is supported by the correlation coefficient 

values between precipitation and other indices, especially at FRI-1, where the 

severity of the flood event is low, yet the frequency of occurrence is high (Abdel-

Mooty et al. 2021). This analysis supports the need of using ML models over 

traditional statistical learning models, as ML models are better equipped to deal 

with complex interdependent data for numerous applications (Abdel-Mooty et al. 

2021; Witten et al. 2017). 
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Figure 3-4: Exploratory and sensitivity data analysis of the climate information, 

and the FRI variables used in the prediction framework. 

3.3.3. MODEL PERFORMANCE AND DISCUSSION 

For this analysis, multiple ML classification models were tested; namely, 

Bagged Decision Trees (DT), and Random Forest (RF)Techniques as ensemble-

type models. The dataset was split as mentioned earlier to training and testing 

dataset, where the split was done randomly to ensure a homogenous distribution of 

the data in both subsets since the dataset is not evenly distributed along all FRI 

categories. In this analysis, (i) Bagging with 1000 bootstrap replications was used 

in as an ensemble method, with a minimum split of four, (ii) Random Forest (RF) 
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models with a wide range of trees up to 6000 was tested, while all of them had 

similar performances, two models were highlighted in this study— RF with 300 

trees, and RF with 1000 trees, both with four variables randomly sampled at each 

split, and a shrinkage parameter of 0.01 (referred to herein as RF 300 and RF 1000, 

respectively), and finally (iii) Naïve Bayes Classification as discussed earlier with 

a 70-30% split between training and testing data subsets. Each of the 

aforementioned models have their own assessment measures for model 

performance (e.g., Gini Impurity, Entropy measure for DT, Mean Square Error, 

etc.). As such, other performance evaluation indices were utilized in this analysis 

to objectively compare the predictive performance in replicating the testing data 

subset of the employed algorithms. To that end, the Precision, Recall, and F10-

score have been employed per [Eq(3-3), Eq(3-4), and Eq(3-5), respectively]. The 

performance indices can be seen in Figure 3-5, the accuracy and misclassification 

for all the models are compared where it can be seen that the models perform 

adequately (for training subset: 53.8%, 97.8%, 98.2%, and 98.2% for NB, RF 300, 

RF 1000, and Bagged DT respectively, and for the testing subset: 50.9%, 57.9. 

57.8%, and 57.3% for the NB, RF 300, RF 1000, and Bagged DT respectively). It 

can be concluded that the DT ensemble models are over-trained in the training 

dataset but perform better than the NB classifier in the testing dataset even if the 

results are comparable. This proves the need for a better performance measure for 

class in each model, the Precision, Recall, F1-score for the training and testing 
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subsets across all the classes. Figure 3-5, shows an enhanced visual inspection of 

the performance indices of the four models, where it can be concluded that the 

performance of the NB classification model is inferior to the ensemble techniques 

in terms of correctly classifying the data, this can be attributed to the fact that NB 

models perform better with smaller datasets, as they follow the laws of independent 

probabilities, indicating it does not perform well with correlated data (Ashari 2013). 

In the training subset, the Precision, Recall, and F1-score for the ensemble models 

(i.e., Bagged DT, RF 300, and RF 1000) do not fall below 85% for all classes, which 

indicates a very good fit for the employed dataset. However, in the testing subset, 

the results vary for each category. While the results are overall satisfactory for all 

the ensemble models, the Bagged DT model had better performance when it comes 

to category 5 (RF models resembled 23% of the precision of the Bagged DT) where 

the data point falling in this category are scarce compared to the other categories. 

However, the RF models outperformed the Bagged DT in the precision of Category 

3 (65% for the RF models compared to 20% for the Bagged DT model), indicating 

that random sampling for the variables in addition to the observations in the training 

algorithm yielded favorable results than the Bagged DT. The results displayed in 

Figure 3-5 show that even though the models are comparable, given the importance 

of correctly classifying flood events falling in Category 5 due to its severity and 

impact, the Bagged DT is thus preferred over the RF models. 
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Figure 3-5: Prediction performance indices for the four utilized models where: (a) 

is the training subset performance, and (b) is the testing subset performance. 

Further investigation of the RF and Bagged DT models shows that the variables 

used as predictors in the current study influence the behavior of the predictive 

analysis at each class. This indicates the need for a more comprehensive, and 

climatological representative variables to be used as predictors. In data-driven 

studies, model performance depends heavily on the available dataset, as such, the 

authors were constrained by the available data to use in the validation of the 

developed methodology. A comprehensive dataset would include as much 
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observations as possible over a wider time span, with numerous variables (e.g., 

atmospheric pressure, wind speed, wind direction, humidity, topology exposure, 

etc.). To assess the importance of the individual variables in the analysis, the Mean 

Decrease Gini (MDG) is employed in the Random Forest ensemble models. Figure 

3-6 shows the MDG and the Mean decrease accuracy for the RF with 300 and 1000 

tree models, the MDG indicates that the average temperature is the most important 

variable in both models, followed by the precipitation in the RF 1000 models, and 

the minimum temperature in the RF 300 model, albeit with a very small difference 

with the precipitation in the RF 300 model. This supports that the Average 

temperature (correlated with the minimum temperature) and the precipitation are 

key variables when predicting the community-flood resilience in exposed 

communities. 
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Figure 3-6: Mean Decrease Gini and Mean Decrease Accuracy in (a) Random 

Forest Model with 300 trees, and (b) Random Forest Model with 1000 trees. 

The results of the analysis displayed in the current study show that the 

framework and methodology presented herein are applicable in resilience-focused 

flood prediction studies. This framework informs decision-making process through 

developing an early warning system that can be continuously updated by including 

new, and more accurate, climate data. The framework presented herein can also be 

coupled with global climate models to study the temporal changes in flood 
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resilience, and the climate impact on infrastructure resilience. This coupling would 

enable informed decisions and policies for a better utilization of resilience means 

(i.e., resourcefulness and redundancy) to enhance the community’s climate 

resilience. It’s worth noting that these predictions and projections will be subject to 

the uncertainty associated with the climate models, as such, a reliable ensemble 

from multiple models needs to be used in order to reduce the effect of this 

uncertainty and reduce the variability between these different models.  

The framework presented herein can also be applicable in different data-driven 

studies, where the purpose is to investigate the spatio-temporal vulnerability of a 

system facing an external disruption (e.g., vulnerability-based evacuations). 

3.4. DISCUSSION AND CONCLUSION 

As the IPCC 2021 report stated, extreme rainfall events are expected to 

increase in frequency and intensity over the next decade, with an increase of over 

2.0 m in the average sea level by the end of the current century. Numerous studies 

were developed to assess community resilience, mostly considering the feature of 

the hazard rather than the features of the exposed system at risk. The current work 

aims to: 1) identify specific variables to represent Resilience means across a 

specific time-span to develop an comprehensive dataset for data-driven models, 2) 

develop resilience indices using unbiased data-driven methods under different 

weather conditions across a specific region, 3) develop a comparative spatial 
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analysis to identify at-risk communities and assess their vulnerabilities to further 

enhance their resilience (Abdel-Mooty et al. 2021) 4) couple the indices with 

climate information to develop a well synchronized dataset to be used with future 

climate models for accurate resilience prediction, and finally 5) test the framework 

using the NWS disaster records to develop flood resilience indices. The output of 

said categorization is then coupled with the historic climate information from 

NOAA corresponding to the disaster records from 1996 to 2019. The resulting 

dataset is used to develop, train, and test the prediction ML model. 

The demonstration application of the framework was developed using 

Unsupervised ML techniques in part (a), and Supervised ML in part (b). In part (a), 

the model was applied to the NWS’s historical disaster database, collected across 

the United States from 1996 to 2019. This dataset included variables with 

information regarding the damage, duration, indirect/direct injuries and fatalities, 

these variables were used to extract resilience information correspondence to each 

recorded disaster (i.e., Robustness and Rapidity), so that the developed 

categorization would capture the resilience of the exposed community, resulting in 

five categories (i.e., indices). For the second part of the framework, the State of 

Texas was chosen as a test location, given the uniformity of the meteorological 

conditions over the state, and the uniformity of the built environment (with few 

acceptable exceptions). A county-based spatial analysis within the state of Texas 

was conducted using the developed indices in part (a), highlighting the more 
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vulnerable counties within the state. This spatial analysis concluded that the coastal 

areas around the Gulf of Mexico are subjected to flood events that result in a higher 

index than other counties, resulting in a larger impact on the robustness of said 

communities. This highlights the need for a methodology to accurately predict 

future impact on said communities, to be able to develop proactive flood risk 

management strategies and enhance their overall resilience.  

The second part of the application utilized numerous ensemble prediction 

techniques (i.e., Random Forest with 300 and 1000 trees, bagged Decision Trees, 

and Naïve Bayes classification). The output of this stage demonstrated the 

applicability of the developed framework, with comparable results across the 

different models. While the bagged DT outperformed the RF models in categories 

where the data is scarce, they performed similarly in other categories. To 

objectively assess the performance of all the models, Precision, Recall, and F-1 

Score were employed across different categories, in training and testing datasets, 

resulting in a comprehensive conclusion that the prediction framework is 

employable in resilience-guided studies. However, to objectively develop a data-

driven method, a comprehensive enough dataset with variable across different 

regions and across the years, with enough variables should be employed. In the 

current study, the authors were limited by the available data, however, the 

prediction performance of the framework can be improved given more climate 

information (i.e., wind speed, humidity, and air pressure, etc.). These variables 
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would increase the correlation with the developed resilience indices, resulting in a 

more robust dataset for the training and testing of the prediction model. A limitation 

of the work presented herein is that future climate projections is not considered in 

the demonstration application. Provided the availability of said projections, the 

trajectory of the resilience of the exposed community can be determined, and the 

vulnerability and resilience can be evaluated ahead of projected extreme events, 

giving policy makers the opportunity to develop mitigation and resilience 

enhancement plans to avoid future disasters. The framework can be adapted to 

account for the uncertainty induced by the climate projections’ nature, and the 

probabilistic nature of the hazard as well as the response of the community and the 

resulting resilience (Hasan et al. 2002; Nofal et al. 2020; Priestley 2000; Salem et 

al. 2020b). This can be carried out through accumulating probabilities resulting 

from Monte Carlo simulations on to determine the response to the hazard itself and 

including it in the prediction framework.  

To that end, further research can be implemented to advance this framework 

through 1) Incorporating more variables within the utilized datasets. 2) Combining 

the results of the different ensemble ML models used in this study to further 

enhance the prediction performance, and 3) Applying the framework on future 

climate projections to predict the expected change in the resilience of the exposed 

communities 
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3.5. DATA AVAILABILITY STATEMENT 

The datasets used in this article are publicly available. The meteorological disaster 

database used to generate the resilience-based categories is provided by the NWS a 

sub-agency under the National Oceanic and Atmospheric Administration (NOAA), 

available at  (https://www.ncei.noaa.gov/pub/data/swdi/stormevents/csvfiles/). The 

historical climate data used as dependent variables in the ML model is provided by 

Global Historical Climatology Network, a sub-agency under NOAA, and is 

available at (https://www.ncdc.noaa.gov/cdo-web/search?datasetid=GHCND). 
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ABSTRACT 

Current flood risk mapping studies have been heavily relying on historical events, 

implicitly assuming they are a reliable source of information for future flood 

projections. Subsequently, such studies may not explicitly account for different 

climate change trajectories and their impact on flood risk, and by extension, climate 

change impact on the affected communities’ resilience. While there have been 

numerous efforts to study the impact of flood hazard on urban communities, only 

very few have considered specific aspects of the resilience of the exposed 

community. However, none have been comprehensive enough to capture the 

resilience features of the community, as well as the features of hazard and climate 

change. By incorporating the recent Bias Corrected Spatial Disaggregation Coupled 

Model Intercomparison Project 5 (BCSD CMIP 5) global climate simulations, the 

impact of climate change on community flood resilience under multiple emission 

scenarios is investigated. Specifically, this study develops accurate data-driven 

prediction model to strategize climate resilience planning. The modelling herein 

identifies a 15.5% and 28% increase in the resilience index for RCP 6.0 and RCP 

8.5, accounting for a disproportionate increase in damage and monetary losses of 

$900M and $1.8B per decade until 2050 for the selected locations, respectively, 

with the potential to be applicable on a global scale. The study also identifies an 

equivalent increase in disruption to livelihood, whether through evacuations, 

displacement, or injuries throughout the projected flood events. This modeling 
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approach identifies the most influential climatological information and their 

influence on community resilience projection, reaffirming the need for immediate 

global intervention to steer the climate trajectory away from extreme scenarios, and 

the development of resilience-informed mitigation strategies to halt the evolving 

climate risks. 

 

KEYWORDS: Interpretability; Climate Impact; Flood Hazard; Flood Risk; Machine 

Learning; Resilience; Risk Classification; Robustness. 
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4.1. INTRODUCTION 

4.1.1. FLOOD RISK AND RESILIENCE 

Over the past three decades, the magnitude and frequency of climate-induced 

(e.g., climatological and hydrological) disasters have been increasing at an alarming 

rate, jeopardizing the livelihood of millions living in at-risk communities (Dawod 

et al. 2014; Lian et al. 2017; Wilby et al. 2007). However, most current 

methodologies adopted for flood risk management assume that historical data 

serves as a good predictor for future projections in its current trajectory(Wing et al. 

2022).The weather conditions have been heavily impacted by the changing 

climatological conditions (i.e., air humidity, precipitation, and temperature). The 

data recorded by the National Weather Service (NWS) shows that north America is 

suffering from an increased rate of extreme rainfall events (i.e., rainfall of at least 

100 mm in 24 hours), coupled with an increased rate of urban flooding events 

(Bertilsson et al. 2019; Stocker et al. 2013; Thomas et al. 2014). This is also 

exasperated  by the increased urbanization and population growth into flood prone 

areas, where it is expected that by the year 2050, 70% of the world population will 

be inhabiting urban environments, in contrast to the 2020 figure of 50%(NOAA 

2019; da Silva et al. 2012). This increased flood risk, exposure, and losses call for 

the adoption of more aggressive proactive resilience-guided risk-mitigation 
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response and planning, rather than a reactive response to disasters (de Moel and 

Aerts 2011; World Economic Forum 2019). 

To that end, community resilience is gaining traction in the research 

community worldwide, and has been defined as the ability of a community, 

regardless of the size of said community, to predict, withstand, adapt to, and rapidly 

recover from external disruptive events befalling it, back to its pre-hazard state, or 

at a higher functionality levels (Abdel-Mooty et al. 2023; National Institute of 

Standards and Technology 2020). Flood resilience evaluation is the necessary and 

natural extension of traditional flood risk studies. While flood risk considers the 

coupling of community exposure, its elements at-risk, flood hazard, and 

vulnerability, flood resilience deals with the extended loss in functionality, and 

recoverability trajectory of the exposed communities, considering both the direct 

and indirect impacts of said disasters (Abdel-Mooty et al. 2021; Salem et al. 2020). 

Although there have been numerous definitions of resilience to date, and across 

many fields (i.e., physics, medical sciences, socio-economic fields, etc.), in this 

manuscript, resilience is defined as the ability of a community to resist the effects 

of a realized flood risk, and rapidly recover from the former to its pre-event, or 

other target, functionality(Bruneau et al. 2003). Resilience is thus identified by its 

two goals: Robustness, the inherent capacity of the system to withstand the effect 

of an external disruptive event without a loss in functionality, and, Rapidity, the 

ability of a system to recover back to its pre-event levels in a timely manner. These 
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goals are enabled by the resilience means: Resourcefulness, the available resources 

at the system’s disposal to allocate for a rapid recovery, and Redundancies, the 

inherent system’s replacements (i.e., alternative resources) for adaptive behavior 

for functionality retention during a disruptive event(Bruneau et al. 2003).  

4.1.2. METHODOLOGY LAYOUT 

While there has been an extensive work in the field of flood risk management 

(Auerbach et al. 2015; Nofal and van de Lindt 2020a; Rufat et al. 2015; Sen et al. 

2020), most of these efforts have been to mitigate the effects of flood hazards on 

the exposed community and built environment, developing strategies without 

accounting for the trajectory of climate change, and its effect on the flooding 

scenarios, frequency, or magnitude (Nofal et al. 2020; Nofal and van de Lindt 

2020b; de Paor et al. 2019).  Progress has been made to employ physics-based 

(hydrological-hydraulic) models to map flood plains and generate future 

projections for damage quantification (Hosseiny et al. 2020; Li et al. 2022; Mosavi 

et al. 2018; Wing et al. 2022). However, such efforts proved to be extremely 

computationally expensive, resulting in high degree of complexity hindering 

accurate modelling (Hosseiny et al. 2020; Mosavi et al. 2018; Shafizadeh-

Moghadam et al. 2018). Notwithstanding its complexity, said work however fails 

in capturing the effect of different climate change emission scenarios in the 

development of such standards and regulations. The work presented herein employs 
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multiple Machine Learning (ML) algorithms to capture the effect of climate change 

projections on future community resilience. Specifically, this work employs a 

framework that seeks to broaden the understanding of resilience-guided flood risk 

management, integrating the effect of climate change into community resilience 

studies by: (1) bypassing the complexity and uncertainty of physics-based 

modelling through employing direct data-driven techniques; (2) projecting the 

effect of climate-impacts on community resilience considering multiple climate 

change emission scenarios; (3) Incorporating, explicitly and implicitly, the different 

attributes of resilience (i.e., Robustness and Rapidity) and information about the 

vulnerability of the exposed community, as well as the nature of the induced hazard 

under investigation. These steps would ensure the inclusion of multiple 

interdependent subcomponents of the community, enabling drawing a clear picture 

of future climate projection impacts on resilience trajectory. 

The adopted methodology layout presented in Figure 4-1 summarizes a three-

step data-centric procedure for achieving the objective of this study. This 

methodology acts as a tool for enabling informed decision-making processes for 

vulnerability identification and resource allocation by stakeholders, essentially an 

early warning system. This tool will also enable governing bodies and decision 

makers to develop climate resilience-guided management plans that account for 

climate-change impact as well as the different attributes of resilience, and the nature 

of the exposed environment, whether in terms of the physical infrastructure or the 
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socioeconomic attributes of the community. The methodology is divided into 3 

steps: Step (a) Development of Resilience-based Community Classification: this 

part employs unsupervised ML algorithms (i.e., clustering techniques) to develop 

the resilience-guided indices (i.e., categories) that would be built on in later stages 

of the methodology. This step is adopted from the study conducted by Abdel-Mooty 

et. al (2021)(Abdel-Mooty et al. 2021) through preprocessing and compiling a 

comprehensive enough dataset, with enough variability, observations and 

attributes, and different variables to capture the state of the community and its 

resilience features, and the features of the flood hazard most common and bound to 

that area (i.e., flood duration, down time following the flood, flood depth, and 

frequency). Post data gathering and preprocessing, different unsupervised ML 

models were employed to categorize the available dataset, and the model with the 

most explained variability, and least within cluster variation is employed. 

Prior to commencing Step (b) of the framework, the resulting Classes are 

employed to develop a spatial analysis, identifying the most-vulnerable and 

exposed communities (aggregated to a regional-level analysis), which provides 

insights for climate informed resilience-guided strategies, and aids in the selection 

of a suitable testbed for Step (b) of the methodology applied herein.  

Step (b) of the methodology integrates and couples the categories developed 

in Step (a) with climate information; this integration contains information on the 

resilience of the community under investigation, where the categories contain 
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information on the vulnerability and exposure, as well as resilience attributes, and 

the climate data provides information on the climatological condition of the area 

under investigation. This step allows for the integration of multiple Global Climate 

Models (GCMs), exploring the impact of climate change on the resilience of the 

study area and its future trajectory. It also allows for the incorporation of different 

climate emission scenarios to assess the impact of the employed strategies on the 

future of the global resilience, and the effect of global intervention measures.  

Step (c) is the analysis of the output of the Supervised ML models by 

employing interpretability techniques, identifying the important features and their 

influence over the predicted categories, and accurately capture the spatio-temporal 

change for future resilience under multiple emission scenarios. This step would then 

allow for an employable spatio-temporal analysis at any desired scale, for decision 

makers and community leaders to rely on for the development of climate and 

resilience strategies. Details on each step and the used algorithms are provided in 

the upcoming sections.
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Figure 4-1: Framework for developing the Machine Learning-based prediction of community resilience under climate change



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

153 

 

 

In this study, the developed categories for step (a) adopted from Abdel-Mooty 

et. al. (2021)(Abdel-Mooty et al. 2021) were applied on the data provided for the 

United States mainland states, and using the disaster database records for at a 

county level (aggregated to a state level in the spatial analysis). These categories 

were then coupled with climate data provided by the National Oceanic and 

Atmospheric Administration (NOAA), coupling it with numerous GCMs for future 

projection of climate change under different emission scenarios. For this step, the 

State of Texas was chosen as a case study location, and future trajectories were 

developed until the year 2050. 

4.2. DATA AND METHODS 

4.2.1. DATASETS  

Developing the Resilience based Categories: For part (a) adopted in this 

study, the historical disaster data records from the National Weather service (NWS) 

were adopted. This dataset is used for the derivation of the resilience-based 

categories employed in this study. The NWS is considered one of the longest-run 

organizations concerned with recording annual flood damage in the United 

States(Downton et al. 2005). The dataset employed here while compiled into the 

database of the NWS, was nonetheless gathered by third-party organizations and 

data-collection agencies. Although these agencies followed the standards and 

guidelines provided by the NWS, the diversity, quality and quantity of the collected 
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data are highly dependent on the resources of these organizations, and their 

constraints, financial and otherwise(Murphy 2018). This dataset of historical 

disasters contains a total of 49,775 records between 1996 and 2020 for the United 

States mainland. For each data record, there are multiple variables – start time, end 

time, geographical location, year, month, duration, and related damages. The 

recorded damages in this dataset include the direct and indirect injuries and 

fatalities, crop damages and property damages. The start and end data of the flood 

event were used to calculate the total event duration, representing a portion of the 

down time (i.e., Rapidity), and the month was used to represent the seasonality of 

the flood event. The damages recorded in the flood database were summed up to 

represent the total impact of the flood event, and was adjusted using the Customer 

Price Index from the Bureau of Labor Statistics to account for the corresponding 

inflation over the years (Downton and Pielke 2005; FRED 2020; Jaagus and Ahas 

2000; Murphy 2018). For reliable resilience-guided insights to be drawn from this 

analysis, the features of the flood hazard need to be considered, this information is 

implicitly stated through the typical spatial and temporal attributes of the hazards 

in the dataset, where each community is defined by its inherent characteristics. It is 

essential to identify that the damages (monetary and otherwise) recorded in this 

dataset are all direct damages, resulting from the direct contact of the flooding water 

with the structures or the components of the community, not accounting for the 

opportunity loss or the indirect damages of resulting from this event. To that end, 
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the term “Flood Event” mentioned in this dataset refers to the flooding component 

of any multi-hazard event; such that if a flood is a result of a cyclone or a tornado, 

the recorded damages in this dataset only relate to the flooding component of this 

multi-hazard environment (Downton et al. 2005; Downton and Pielke 2005; Morss 

et al. 2005).  

Climate information corresponding to historical Disaster records: The 

previous dataset provided by the NWS was used to develop resilience-based 

categories. These categories were then coupled with climate information 

corresponding to the date and location of these flood events. This data was extracted 

from the Global Historical Climatology Network (GHCN-Daily) of the National 

Center for Environmental Information (Menne et al. 2021). For a comprehensive 

analysis with reliable information and insights, a diverse and comprehensive dataset 

that includes all the relative variables with enough observations over the years to 

avoid bias needs to be utilized. To that end, the purpose of this study is to develop 

a methodology that can employ global climate models to predict future changes in 

the inherent resi 

lience of the built environment. Using historical data, as proposed in the study 

by Abdel-Mooty et. al. (2022)(Abdel-mooty et al. 2022) although beneficial and 

critical to the accurate synchronization of the dataset, will not aid in the 

development of an accurate prediction algorithm. As such, the Bias Correction with 

Spatial Disaggregation (BCSD) Downscaled Coupled Model Intercomparison 
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Project – Phase 5 (CMIP5) is employed in this study as the most complete and 

tested GCMs (Reclamation 2013, 2014). This dataset employs a large ensemble of 

GCMs based on multiple Green House Gas (GHG) emission scenarios. Upon 

comparing the GCM simulation results with historical observations it was evident 

that the models required bias-correction, accounting for seasonal and location 

variability. The gridding of the dataset is accordingly adjusted to a course 1o 

resolution, with a downscaled spatial resolution of 1/8o. The bias identification was 

based on the overlapping period in the historical observations and the modeled 

GCMs from the years 1950-1999 and was carried on a temporal and spatial basis 

(i.e., for common months and basins) with the location provided at a grid-cell 

resolution. The correction of the bias was made by looking at the associated rank 

probability (p) at a certain timestep from the GCMs historical quantile map and 

comparing it to that of the historical dataset. This results in all the bias corrected 

GCM results being associated with monthly Cumulative Distribution Functions 

(CDF). The results are then linked and used in correcting the bias of the future 

projections from those GCMs in the CIMP5 dataset(Reclamation 2013, 2014; Vano 

et al. 2020). However, this assumes that the GCM bias structure is the same during 

both the 20th and the 21st century. For hydrological projection, the Variable 

Infiltration Capacity (VIC) hydrologic model is adopted for the GCMs, this method 

is based on the study by Wood et al. (2004)(Wood et al. 2004), where the grid-

based hydrological model parameterized the dominant hydrometeorological 
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process at the interface between land surface and the atmosphere. The climate input 

for those VIC models are daily precipitation, temperature (maximum and 

minimum) and average wind speed for each of the (1/8)o resolution grid 

cell(Heidbach et al. 2007; Vano et al. 2020; Wood et al. 2004).  

The Intergovernmental Panel on Climate Change (IPCC) identified multiple 

benchmark GHG emission scenarios as the Representative Concentration Pathway 

(RCPs) where each RCP represents a scenario of a total radiative forcing until the 

year 2100 relative to the year 1750 (with a unit of W m-2)(IPCC 2014). These 

“benchmark” scenarios are: RCP 2.6, RC P4.5, RCP 6.0, and RCP 8.5 (equivalent 

to greenhouse gas concentration of 450, 650, 850, and 1370 ppm CO2 eq), such that 

the number represents the ratio of total radiative forcing (i.e., 2.6 W m-2 for RCP 

2.6, and 4.5 W m-2 for RCP 4.5, etc.) (IPCC 2014). These scenarios were developed 

to cover a wide range of key factors of the human development that influence the 

GHG emissions and the mitigation of climate change in different policies. The RCP 

2.6 scenario assumes that the peak CO2 is to be reached in 2020 followed by a 

decrease in emissions, while RCP 4.5 is an intermediate scenario where it assumes 

that the emissions will peak at the year 2040 before declining, RCP 6.0 assumes the 

peak is at 2080, and RCP 8.5 assumes the GHG emissions to increase beyond 2100 

before the start of the decline (IPCC 2014; Reclamation 2014). The research 

community has now reached a consensus that the trajectory of GHG emissions is 

past the threshold for scenarios RCP 2.6 and on the verge of passing RCP 4.5(Lyon 
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et al. 2022). To that end, the more realistic scenario for investigation is RCP 6.0, 

and assuming no intervention or improvement in climate change mitigation, RCP 

8.5 should also be considered (IPCC 2014; Lyon et al. 2022). The extracted climate 

data, as available, contained five hydrologic variables for each recorded flood 

event: maximum surface air temperature (oC), minimum surface air temperature 

(oC), mean wind speed (m/s), and total runoff (sum of surface runoff and baseflow, 

mm), and precipitation (mm).  In this study, the employed BCSD CMIP5 modelling 

has 16 GCMs for RCP 6.0 and 36 GCMs for RCP 8.5. However, only 16 models 

were adopted in each of the emission scenarios, as shown in Table 4-1 for RCP 6.0, 

and Table 4-2 for RCP 8.5. 
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Table 4-1: The 16 Global Climate Models for RCP 6.0 

 Model Name Institution Modeling Center 

1 BCC-CSM 1.1 
Beijing Climate Center, China 

Meteorological Administration 
BCC 

2 CCSM 4 
National Center for Atmospheric 

Research 
NCAR 

3 CESM1 (CAM5) 

National Science Foundation, 

Department of Energy, National 

Center for Atmospheric Research 

NSF-DOE-

NCAR 

4 CSIRO-MK3.6.0 

Commonwealth Scientific and 

Industrial Research Organization in 

collaboration with the Queensland 

Climate Change Centre of 

Excellence 

CSIRO-QCCCE 

5 FIO-ESM 
The First Institute of 

Oceanography, SOA, China 
FIO 

6 GFDL-CM3 
Geophysical Fluid Dynamics 

Laboratory 
NOAA-GFDL 7 GFDL-ESM2G 

8 GFDL-ESM2M 

9 GISS-E2-R 
NASA Goddard Institute for Space 

Studies 
NASA GISS 

10 HadGEM2-AO 

National Institute of Meteorological 

Research/Korea Meteorological 

Administration 

NIMR/KMA 

11 HadGEM2-ES 

Met Office Hadley Centre 

(additional HadGEM2-ES 

realizations contributed by Instituto 

Nacional de Pesquisas Espaciais) 

MOHC 

(additional 

realizations by 

INPE) 

12 IPSL-CM5A-MR Institute Pierre-Simon Laplace IPSL 

13 MIROC-ESM 
Japan Agency for Marine-Earth 

Science and Technology, 

Atmosphere and Ocean Research 

Institute (The University of Tokyo), 

and National Institute for 

Environmental Studies 

MIROC 
14 

MIROC-ESM-

CHEM 

15 MIROC5 

16 NorESM1-M Norwegian Climate Centre NCC 
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Table 4-2: The lobal Climate Models for RCP 8.5 

 Model Name Institution Modeling Center 

1 ACCESS1.0 

CSIRO (Commonwealth Scientific 

and Industrial Research 

Organization, Australia), and BOM 

(Bureau of Meteorology, Australia) 

CSIRO-BOM 

2 BCC-CSM1.1 Beijing Climate Center, China 

Meteorological Administration 
BCC 

3 BCC-CSM1.1(m) 

4 
CanESM2 

Canadian Centre for Climate 

Modelling and Analysis 
CCCma 

5 
CCSM 4 

National Center for Atmospheric 

Research 
NCAR 

6 CESM1(BGC) National Science Foundation, 

Department of Energy, National 

Center for Atmospheric Research 

NSF-DOE-

NCAR 
7 

CESM1(CAM5) 

8 
CMCC-CM 

Centro Euro-Mediterraneo per I 

Cambiamenti Climatici 
CMCC 

9 CNRM-CM5 

Centre National de Recherches 

Meteorologiques / Centre Europeen 

de Recherche et Formation 

Avancees en Calcul Scientifique 

CNRM-

CERFACS 

10 CSIRO-MK3.6.0 

Commonwealth Scientific and 

Industrial Research Organization in 

collaboration with the Queensland 

Climate Change Centre of 

Excellence 

CSIRO-QCCCE 

11 

FGOALS-g2 

LASG, Institute of Atmospheric 

Physics, Chinese Academy of 

Sciences; and CESS, Tsinghua 

University 

LASG-CESS 

12 
FIO-ESM 

The First Institute of 

Oceanography, SOA, China 
FIO 

13 GFDL-CM3 
Geophysical Fluid Dynamics 

Laboratory 
NOAA-GFDL 14 GFDL-ESM2G 

15 GFDL-ESM2M 

16 
GISS-E2-R 

NASA Goddard Institute for Space 

Studies 
NASA GISS 
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For this stage in the methodology, the historical data from the GCMs were 

compared to the recorded data, and the models with the least bias were selected to 

create an ensemble for the ML prediction algorithm.  

4.2.2. MACHINE LEARNING MODEL ARCHITECTURE  

ML Model selection and interpretation: Machine Learning (ML) algorithms 

are an extension to advanced statistical learning, where the former compliments the 

latter by autonomously learning through different exposure techniques to the 

training datasets. ML models mimic the sentient behavior of human brains by 

learning from new experiences and datasets. By exposing the ML models to 

appropriate datasets, it extracts inherent features from the dataset and self-adjust to 

enhance its performance for the intended purpose, as defined by the user (Brownlee 

2020; Rodrigues and De la Riva 2014). ML models have been gaining increased 

traction in the field of community resilience and anthropic and natural 

hazards(Abdel-mooty et al. 2022; Ganguly et al. 2019; Haggag et al. 2021; 

Hanewinkel et al. 2004; Rodrigues and De la Riva 2014; Shafizadeh-Moghadam et 

al. 2018). For the study presented herein, supervised ML models were employed to 

predict the future trajectory of community flood resilience categories using the 

hydrological information resulting from the employed GCMs. This multiclass 

classification heavily depends on the variables included in the development of the 

algorithm(Wu et al. 2004). As such, different techniques were deployed on this 
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dataset to develop the most accurate interpretable results for the development of 

reliable managerial insights for decision makers and policy developers.  

ML models are typically referred to as “Black Box” models, while this 

definition is accurate in most cases. However, some ML algorithms are termed 

“Glass Box” algorithm (e.g., Decision Trees (DT), Random Forest (RF)) by 

introducing means of interpretability techniques and rules that can be set to enhance 

the interrelation between the model output and input variables, allowing the users 

to draw the required insights (Davoudi Kakhki et al. 2019; Li et al. 2012; Liu et al. 

2018). Random Forests is an ensemble technique, adopting multiple DTs by 

aggregating their results and likelihood predictions, which improves the 

performance metrics of the model, but imposes a challenge for interpretability(Chi 

et al. 2012). This study adopts these ML algorithms to develop an empirical 

framework for resilience prediction (Figure 4-1) for identification of vulnerabilities 

in the trajectory of the current built environment. However, as all data-driven 

techniques, the quality of the work is tied directly to the quality and diversity of 

available data, highlighting the need for a comprehensive dataset with enough 

variables and time range spanning multiple years(Abdel-Mooty et al. 2021). This 

necessitates the need for data preprocessing, identifying the interdependencies 

within a dataset, and addressing missing results through data cleaning and 

imputation, ensuring the reliability of the data and eliminating the skewness and 

any induced biases(Patil and Baidari 2019; Yagci et al. 2018). In the study herein, 
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the independent variable is class-based, as such, multiclass classification techniques 

will be adopted. Additionally, for performance  enhancement, ensemble techniques 

will be employed to complement the adopted algorithm (i.e., bagging, random 

forest, boosting) (Boehmke and Greenwell 2019; Nagpal 2017; Singh 2018). 

Within the supervised ML techniques, there are the Classification and 

Regression Trees (CART) algorithms, where the classification trees are most 

suitable for the prediction of categorical (discriminate) independent variables, as 

opposed to regression trees that are more suitable to continuous variables (Mosavi 

et al. 2018). DT are based on a binary recursive partitioning algorithm with a set of 

rules (i.e., partitioning steps) that depend on their preceding steps. The partitioning 

is carried out such that the data is partitioned homogenously into nodes (i.e., 

subgroups) using binary questions with Yes-or-No answers about the features of 

each subgroup, repeating this process until a suitable stoppage criterion is achieved 

(e.g., maximum splitting). If all the subsets of the training dataset is correctly 

classified then a leaf node is created, and this process is recursively repeated until 

either all the training dataset is correctly classified, or the features are entirely 

exhausted (Hastie et al. 2009; Mosavi et al. 2018). In the classification tree 

algorithm, this feature selection process is based on information gain (i.e., decrease 

in entropy) or Gini index (Breiman et al. 1984; Hastie et al. 2009). Where Entropy 

(E) is the measure of purity of the sample, the Information gain (g) is the decrease 
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in Entropy (E) after a split based on a feature or attribute (A) in the training dataset 

(T), and is expressed in [Eq. (4-1)] through [Eq. (4-3)] (Ashari 2013): 

𝑔(𝑇, 𝐴) = 𝐸(𝑇) − 𝐸(𝑇|𝐴)   (4-1) 

Such that: 

𝐸(𝑇) = − ∑
|𝐶𝑘|

|𝑇|
log2

|𝐶𝑘|

|𝑇|
𝑘
𝑘=1       (4-2) 

𝐸(𝑇|𝐴) = ∑
|𝑇𝑗|

|𝑇|

|𝐴|
𝑗=1 ∑

|𝑇𝑗𝑘|

|𝑇𝑗|
log2

|𝑇𝑗𝑘|

|𝑇𝑗|
𝐾
𝑘=1  =  ∑

|𝑇𝑗|

|𝑇|

|𝐴|
𝑗=1 𝐸(𝑇𝑗|𝐴)    (4-3) 

Where k is the number of class (with a total of K classes); Ck is the sample 

assigned to class k, Tj is the sample in the T dataset corresponding to jth value of 

attribute A; Tjk is the jth sample in attribute A that is assigned to class K; and |A| is 

the number of values of attribute A. Higher values of the Gini Index and higher 

information gain (g) denotes to a more important feature within the CART 

classification algorithm(Hastie et al. 2009). However, to enhance the performance 

of the model, numerous ensemble techniques were adopted in this study, including 

bagging, boosting, and random forest (Boehmke and Greenwell 2019; Nagpal 

2017).  

Bagging is a form of bootstrapping technique, which is a random sampling 

process of the data, taken by replacement, where each datapoint can be available 

for selection in multiple subsequent models, while still using all the predictors in 

the sampling process (Efron and Tibshirani 1986). In bagging however, the 
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aggregating technique is used for fitting multiple versions of the model within the 

training dataset, where each model is then used in the training of the DT model, 

followed by averaging all the predictions, providing a more reliable and robust 

model than a single DT (Breiman 1996; Breiman et al. 1984; Nagpal 2017). On the 

other hand, Random Forest (RF) models are considered a step further and an 

extension to Bagging techniques for model performance enhancement. In RF, the 

predictors are also randomized at each node at a split within the DT rather than 

doing so iteratively. Subsequently, the results are the aggregation of the prediction 

from the entire set of trees(Brownlee 2016; Feofilovs and Romagnoli 2017; 

Fielding 2006; Liaw and Wiener 2002; Nagpal 2017).  

Model Performance Measures: The models employed for the analysis herein 

are: i) Decision trees with 100-fold cross validation, ii) Bagged decision trees, 

tested with up to 15,000 bootstrap replications as an ensemble method, with a 

minimum split of 4, iii) RF models with the Out-of-Bag Error tested for up to 3000 

trees, showing a uniform plateau after 500 trees, indicating the unnecessity of 

increasing the number of trees in the forest more than 500, with four randomly 

sampled variables at each split, and a shrinkage parameter of 0.01(Brownlee 2016).  

With such models, finding universal performance measure can be challenging to 

compare the results of the models, as such, other performance indices were adopted 

for this study. The overall model misclassification error was utilized to identify the 

highest performing models [Eq. (4-4)]. However, with the skewness of the data, the 
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multiclass nature of the independent variable, and for further interpretability for the 

models, more in-depth measures needed to be utilized. As such, the Precision, 

Sensitivity (i.e., Recall), and F1-score for each category were utilized in both 

datasets, namely training and testing. Precision is the measure of accuracy of each 

class in the prediction algorithm, denoted by the number of accurately predicted 

datapoints in that class as shown in [Eq. (4-5)]. Recall on the other hand is the ratio 

between the accurate predictions to all correct examples in the dataset, it represents 

the correctness of the classification results of the ML model [Eq. (4-6)]. Finally, the 

F1-score, is the integration of both the Precision and Recall for the classification 

algorithm, where the concerns of both measures is balanced out [Eq. (4-

7)](Brownlee 2016, 2020). 

𝑇𝑜𝑡𝑎𝑙 𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =  
∑ ∑ 𝑁𝑟𝑐

𝐾
𝑐=1

𝐾
𝑟=1 −∑ 𝑇𝑃𝑖

𝐾
𝑖=1

∑ ∑ 𝑁𝑟𝑐
𝐾
𝑐=1

𝐾
𝑟=1

           (4-4) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                  (4-5) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (4-6) 

𝐹1– 𝑠𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
             (4-7) 

 

Where: K = number of Classes in the independent variable; N is the count 

number of observations allocated in each cell of the confusion matrix; TP= True 

Positive, which is the number of accurately predicted observations in a given class; 

FP= False Positive is the count number of predictions incorrectly assigned to a 

category; FN= False Negative is the count number of observations incorrectly 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

167 

 

 

assigned to a wrong class(Khalaf et al. 2018). These values can be drawn from the 

Confusion Matrix, where the diagonal represents the accurately predicted 

observations, and the off diagonal depicts the incorrect predictions. In Figure 4-2, 

the example is based on a 3-class prediction model, where it shows the annotation 

of the TP, TN, FP, and FN of each category, such that (a) shows the annotated 

confusion matrix for Category 1, (b) for Category 2, and (c) for Category 3. 

 

Figure 4-2: Confusion Matrix example showing the annotation for TP, TN, FP, 

and FN for each category, where (a) is for Category 1, (b) for Category 2, and (c) 

for Category 3 

Model Interpretability Techniques. The ambiguity associated with these ML 

algorithms hindered the progressive utilization of such models in fields such as 

structural and civil engineering and community resilience planning(Doshi-Velez 

and Kim 2017; Murdoch et al. 2019). This phase of the methodology employs 

Partial Dependence Plots (PDP) as a tool for interpretability, where the input-output 

relationship between most variables is explored, and depicted into complex-linear 

relationships(Murdoch et al. 2019). The PDPs the impact of the input features— 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

168 

 

 

whether single input or group of variables (e.g., Temperature or Temperature and 

Precipitation) is explored as the average prediction corresponding to the range of 

values for the other unused input features (Du et al. 2020; Feng et al. 2021). Other 

method for interpretability employed in this study is the Variable Importance (VI) 

algorithm. VI is used to infer the influence of a variable (e.g., Maximum 

Temperature of Model ACCESS1.0) on the prediction process, and the output of 

the model. Such method quantifies the extent upon which the model relies on each 

of the involved feature, identifying the most influential variables within the dataset 

for further investigation. This is done by evaluating the corresponding increase in 

model performance measure (e.g., information gain)(Doshi-Velez and Kim 2017; 

Du et al. 2020; Feng et al. 2021; Murdoch et al. 2019; Rözer et al. 2021). 

4.3. MODEL DEPLOYMENT, RESULTS AND DISCUSSION  

4.3.1. CATEGORIZATION AND SPATIAL ANALYSIS 

For the categorization stage of this model, the categories present in the study 

by Abdel-Mooty et. al., (2021)(Abdel-Mooty et al. 2021) were employed. In that 

study, the historical disaster dataset by the NWS was employed, as mentioned in 

previous sections, this dataset is considered the longest run flood disaster damage 

recorded in the United States(Murphy 2018). The categorization process presented 

in that study resulted in a total of 5 categories. However, further investigation of 

the employable dataset in the current study with respect to the developed categories 
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revealed clear skewness in the categories, with just 20 observed events falling in 

category 3, and 102 falling in category 5, representing less than 2% of the dataset, 

making the inclusion of these categories in developing and training the ML 

algorithm next to impossible. As such, due to the proximity of the clusters in the 

unsupervised ML results displayed in Abdel-Mooty et. al. (2021), the Categories 

3,4, and 5 were merged together, resulting in 3 Categories for deployment in the 

Current study. The resulting categories were used in the development of spatial and 

descriptive analyses of the disaster database, as shown in Figure 4-3, the state of 

Texas suffered the most damage resulting from flood disaster since the year 1996 

and exposed to the highest number of recorded observations, making it appropriate 

as a testbed for the current study.  

Table 4-3: The Employed Community Flood Resilience Cateories 

Community Flood 

Resilience 

Category 
Class description 

1 

Communities exposed to events that occur in the summer, causing 

disturbance less than 264 hours (11 days) and/or causes up to 250 

injuries, and damage less than $2.5B without fatalities 

2 

Communities exposed to events that occur in the spring, causing any 

disturbance duration, causes up to 20 injuries, and damage up to $1.5B 

without fatalities 

3 

Communities exposed to events occurring in any season, causing any 

disturbance duration that results in more than 250 injuries, causing 

damage more than $2.5B, with fatalities, Communities exposed to events 

that occur in winter or fall, causing disturbance less than 264 hours (11 

days) causes up to 250 injuries and damage up to $2.5B without 

fatalities, and Communities exposed to events occurring in the spring that 

are not under class 2. 
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Although Texas does not have the highest historical average Flood Resilience 

Index, it still suffered the highest damage at $46B, and a total of 12,834 recorded 

events. The clear difference between the state of Texas and other states in terms of 

vulnerability to flood hazard is attributed to the higher heat content associated with 

the western Gulf of Mexico, where it facilitates the increase of humidity and mean 

temperature over other places in the United States(Trenberth et al. 2018). This 

increased heat content is also proportional to the precipitation resulting from 

different storms, and causes the tropical weather region engulfing the state of Texas, 

resulting in an alarmingly increasing number of hurricanes and other extreme 

weather events(FEMA 2012). This phenomenon is only exacerbated by the 

increasing urbanization rate, increasing the vulnerable and exposed areas to such 

extreme weather events (FEMA 2012, 2018; Trenberth et al. 2018). 

Figure 4-3a shows the spatial analysis conducted on the historical dataset, 

showing the monetary damage, and flood resilience category per state as identified 

in table 4-3; Figure 4-3b shows a spatial analysis of the state of Texas at a county 

level, showing a distribution of higher resilience categories along the eastern coast 

and the Gulf of Mexico. That is attributed to the high-tide flooding and increased 

sea level which is becoming increasingly common over the past decades (Sweet et 

al. 2020). The spatial distribution presented in Figure 4-3b aligns with the 

“Cartographic Maps of Precipitation Frequency Estimates” published by NOAA in 

the report Atlas 14 Volume 11 of Texas(Perica et al. 2018), showing an increase in 
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the severity of natural hazards befalling this area (e.g., Hurricane Harvey, with it’s 

gigantic $128.8B tally on the coastal communities, identified as one of the most 

expensive natural disasters in recorded history)(NOAA 2020; NOAA Office for 

Coastal Management 2021; Sweet et al. 2020). Figure 4-3c, shows the identified 

locations where the GCM simulations were run, where 45 counties (listed in table 

4-4) were selected for the collection of the CMIP5 simulation results, synchronizing 

them with the historical disaster dataset in these counties. 

 

Figure 4-3: Spatial analysis of the United States showing Monetary Losses and 

the 3 Categories Flood resilience index, a) Country wide Spatial analysis at a state 

level; b) Spatial analysis for the state of Texas at a county level; c) location of 

collection stations for the climate projections and the employed GCMs. 
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Table 4-4: List of Counties for CMIP5 GCM Simulations 

List of Counties were the CMIP5 GCMs Simulation results were 

extracted 

Bexar Williamson Lavaca Johnson Bastrop 

Tarrant Val Verde Brazoria Ellis Medina 

Travis Bell Liberty Gaines Tom Green 

Dallas Denton Angelina Pecos Kerr 

Nueces Ector Montgomery Austin McLennan 

Midland San Patricio Smith Waller Gonzales 

Uvalde DeWitt Gregg San Jacinto Gillespie 

Bowie Victoria Real Caldwell Webb 

Hunt Collin Fayette Wise  

 

4.3.2. ML MODEL PERFORMANCE AND INTERPRETABILITY 

The dataset employed in the development of the prediction algorithm is: 

Monthly Average Flood Resilience Category, collecting by calculating the average 

category of all recorded flood events occurring in the same geographical location 

(i.e., county), at the same month, from the year 1996 to the year 2020, this average 

monthly category is considered the independent variable in this analysis. The 

dependent variables were the hydrological data resulting from the CMIP5 simulated 

GCMs at each of the 45 selected locations. These variables are: Monthly average 

maximum surface air temperature (oC), monthly average minimum surface air 

temperature (oC), monthly mean wind speed (m/s), and average monthly runoff 

(mm), for each of the 16 selected GCM for each climate scenario (i.e., RCP 6.0, 

and RCP 8.5) as mentioned earlier, with a total of (4,324 observations) for model 
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development Dataset. This dataset was split into training and testing dataset at a 

ratio of 70% and 30% respectively (3,028 observations in training dataset, and 

1,296 observations in testing dataset). With the results of all GCMs, the total 

number of variables is 80 (5 hydrological variables for each of the 16 models), 

proving it to be computationally expensive to develop interpretable results across 

the future projections. As such, the Brute-Force feature selection method was 

adopted in this study, instead of an ensemble of the GCMs to avoid any biases and 

include the benefits of all models.  

The Brute-Force method relies on the computational capabilities to conduct an 

exhaustive search throughout all possible combinations of a certain set of 

variables(Jafarnezhad et al. 2016). As such, a list of all possible combinations of 

the 16 GCMs was developed into a binary variable, identifying at each step which 

GCM to include in the analysis. The total number of models resulted from all 

possible combinations for the 16 GCMs for testing were 65,535 models. The 

following step is to identify a performance measure to use for evaluation of the 

results of a ML model developed for each possible combination. In this step, a 

Bagged DT model was used for all combinations, and the total Misclassification 

error was selected as the appropriate performance measure per [Eq. (4-4)]. Figure 

4-4 shows the results of all possible combinations for GHG emission scenario RCP 

6.0, identifying the model number 32,517 as the one with least Misclassification 

error (3.05%) at only 8 GCMs included in the analysis (GCMs: 1, 6, 7, 9, 10, 11, 
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15, and 16, with their details in Table 4-1). Figure 4-5, shows the misclassification 

error for all possible combinations for GHG emission scenario RCP 8.5, identifying 

the model number 59,643 with 11 GCMs included in the analysis (3.1%) (GCMs: 

1, 2, 3, 5, 6, 9, 11, 12, 14, 15, 16, with their details in Table 4-2). 

 

Figure 4-4: Total Misclassification error for all possible GCM combinations for 

RCP 6.0 
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Figure 4-5: Total misclassification error for all possible GCM combinations for 

RCP 8.5 

After model selection and variable identification, multiple ML models were 

developed for predicting the future projection of resilience category across the 

identified geographical locations within the state of Texas. The first model is a 

gradient boosted RF model, with a splitting of 70% to 30% of the data as mentioned 

earlier for training and testing, respectively. The model’s performance was 

optimized with the average Out-of-Bag error (OOB) as shown in figure 4-5, where 

the number of trees is set between 1 and 3000 (only showing the first 1000 in Figure 

4-5a), a step size of 1, and values of error calculated for each category separately to 

identify outlying behavior in the model’s performance. The model shows no clear 
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improvement in performance beyond ntree of 500 in RCP 6.0, and slight fluctuations 

in RCP 8.5 till ntree = 1000. The optimal number of trees in both models was taken 

at 500 and 1000 for RCP 6.0 and RCP 8.5, respectively. 

 

Figure 4-6: Out of Bag error for Random Forest prediction model where: a) for 

RCP 6.0, and b) for RCP 8.5 
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The second Model is DT with bagging performance enhancement, with 15,000 

bootstrap replication, and 4 random splitting for variables at each split, and a 

shrinkage parameter of 0.01 for both emission scenarios. The model’s results were 

further analyzed with model performance measures and interpretability techniques 

to choose the optimum model for future projections. Figures 4-7 and 4-8 show the 

visualization for the performance measures based on the performance indicators 

mentioned earlier; Namely F1-Score, Precision, and Recall (Sensitivity), with their 

calculations using [Eq. (4-5)] through [Eq. (4-7)]. This analysis shows us that 

although the prediction performance of the models are comparable in both, training 

and testing datasets, the Bagged Decision Tree model slightly outperforms the 

Random Forest model, however the performance of both models are achieving high 

efficacy with almost all measures above the 90% mark. Figure 4-7 shows the 

performance measures for the emission scenario RCP 6.0 for the training and 

testing datasets, where the Sensitivity, Precision, and F1-Score shown for all 

categories. Looking at the results of these performance measures, it is clear that the 

validation of the model performance and prediction objective are high, ensuring 

that the features included in the analysis yield favorable results in both training and 

testing datasets. By looking at the training dataset on its own, it can be assumed that 

the model is overtrained, however, the testing and cross-validation conducted on 

the dataset also yielded over 90% accuracy and efficacy, ensuring that the model 

does perform well for future projections. Figure 4-8, on the other hand, show that 
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the performance measures for the emission scenario RCP 8.5 where the Sensitivity, 

Precision, and F1-Score are shown for all categories. Similar to RCP 6.0, the RCP 

8.5 model’s performance measures are high with accuracy and efficacy above 90% 

in all categories, showing similar behavior in the testing category, showing that the 

prediction threshold is met in both models, albeit with a slight advantage to the 

performance of the Bagged DT model over the Boosted RF model in both emission 

scenarios. As such, moving forward, the bagged DT model is chosen for further 

analysis, interpretability, and future climate projections throughout this study.  
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Figure 4-7: Model performance indicators for RCP 6.0 
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Figure 4-8: Model performance for RCP 8.5 

Figures 4-9 and 4-10 give deeper insight into the performance of the bagged 

DT model by showing the confusion matrices for the RCP 6.0 and RCP 8.5 

respectively. Where (a) is for the training dataset and (b) is for the testing dataset 

in both figures. From Figure 4-9 we can see that the accuracy of the model is 
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(99.2%) for training dataset, and (95.2%) for testing dataset, showing a 

misclassification error of (4.7%) for the testing dataset based on [Eq. (4-4)]. While 

Figure 4-10 shows that the accuracy of the training dataset is (98.8%), and (96.3%) 

for the testing dataset, showing a misclassification error of just (3.6%) based on 

[Eq. (4-4)], proving to provide reliable projections for future resilience analysis and 

planning. 

 

Figure 4-9: Confusion matrix for bagged DT model RCP 6.0 where (a) is training 

dataset, and(b) is the testing dataset 

 

Figure 4-10: Confusion matrix for bagged DT model RCP 8.5 where (a) is 

training dataset, and (b) is the testing dataset 
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Interpretability: further inspection on all included variables in the bagged DT 

model for both emission scenarios was conducted. Figure 4-11 shows the 

correlation matrix for the bagged DT model for both emission scenarios where 

Fig.11 a) is correlation matrix for variables in bagged DT model for RCP 6.0, and 

b) is that for RCP 8.5. The correlation matrices include the correlation value 

between the input pairs considered in this study. It can be observed that the 

Temperature variables are highly correlated across different GCMs, however, it can 

also be observed that the temperature is inversely correlated to wind speed and 

runoff, but slightly correlated with precipitation. It can be concluded that the wind 

variables are not correlated with the precipitation and runoff, neither positively or 

inversely correlated, however, the precipitation and runoff variables are positively 

correlated for each GCM simulation, but not across different models, highlighting 

the need for an ensemble technique for including as many GCMs as possible to 

expand the range of variables in the analysis and their impact on the prediction 

models.  
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Figure 4-11: Correlation Matrix for included variables in bagged DT where; a) 

RCP 6.0, and b) RCP 8.5 

The following analysis is the identifying the Variable Importance in the 

developed algorithm for both emission scenarios. Figure 4-12 shows the variable 

importance (VI) bar chart where Figure 4-12 a) for the RCP 6.0 scenario, and b) for 

the RCP 8.5 emission scenario. The VI included in this analysis is based on the 

Receiver Operating Characteristics (ROC) curve analysis conducted on each 

predictor. The ROC demonstrates the model’s susceptibility to incorrectly classify 

the observations in the dataset, where a series of cutoff methods are applied to the 

predictors for the prediction to take place. The area of the ROC curve is then 

calculated for each class pair (i.e., Category 1 vs Category2, Category 2 vs Category 

3, etc.) using the trapezoidal rule, then  the maximum area under the curve across 

the relevant pair-wise curves is considered the VI in the model(Kuhn 2019). From 
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Figure 4-12 we can conclude that the temperature variables are most influential in 

the model’s performance, having the first 11 variables based on their VI metric are 

maximum and minimum temperatures for the included ensemble of GCMs, which 

is confirmed by the high correlation of temperature variable with other variables in 

the dataset. For the RCP 8.5 scenario, the same pattern is identified, having the first 

15 variables based on their VI as temperature outputs of the different GCMs. It is 

also clear that after a certain threshold, the VI drops significantly, indicating that 

some GCMs have a bigger influence on the probability of correctly classifying a 

class, however an ensemble of multiple GCMs is needed to increase the overall 

total performance and include as much variability and bias elimination in the 

prediction algorithm.  
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Figure 4-12: Variable Importance for included variable in bagged DT model 

where; a) RCP 6.0, and b) RCP 8.5 

The last and essential interpretability technique included in this study is the 

Partial Dependence Plots (PDP) as shown in Figure 4-13 for RCP 6.0 and Figure 4-

14 for RCP 8.5. PDPs help visualize the complex interrelationships between the 

predicted categories and the ML model inputs from the various GCMs, where the 

effect of change is represented in a single-variable plot. The PDP in Figures 4-13 

and 4-14 shows the first four maximum temperature variables, the first two 

minimum temperatures, the first two precipitation variables, the first two wind 

speed variables, and the first two runoff variables based on their importance 

according to the VI plots as shown in Figures 4-12a and 4-12b. The values of the 
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variables in the model are normalized and scaled for an optimum homogeneity in 

the ML model, to avoid skewness in the model and account for the multiple 

different units of measurement for all variables, it was unscaled back to its original 

range for the development of the PDPs, to draw interpretability insights. While it is 

expected that the results will vary depending on the GCM model results being 

inspected within the input space of the ML model and the emission scenario under 

investigation, the overall behavior of these variables is expected to remain the same. 

For the RCP 6.0, the PDPs for the maximum temperatures all indicate a clear jump 

in the influence of the resilience category when the maximum temperatures are 

between 30 to 40 oC, showing that the risk of flooding disasters increase as the 

temperatures rise, the same applies for all GCMs included in the development of 

the predictive model. The minimum temperatures do not have an equivalent 

increase in predicted flood risk impact, but it shows a slight rise when monthly 

minimum temperature is between 15 to 30 oC. this can be attributed to the increased 

heat content over the gulf of Mexico, transforming the weather into a tropical 

atmosphere, positively correlated to increased rainfall and a suitable climate for the 

development of hurricanes (NOAA Office for Coastal Management 2021; Perica et 

al. 2018). The runoff doesn’t have much impact on the predictive capability of the 

model beyond the 100 mm, however, the impact is slightly different from one GCM 

to another from 0 to 100 mm. The resilience category is higher at lower runoffs, 

then gradually fluctuates and falls until it reaches 100 mm. The precipitation 
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patterns heavily vary from one GCM to another, however at low values (below the 

200 mm), their influence is similar to one another where it keeps fluctuating at 

lower values. The windspeed’s influence over the resilience category is very high 

for values up to 6 (m/s), with a severe drop in influence over predicted resilience 

category increase once the speed goes beyond the 6 m/s threshold. For the RCP 8.5 

PDPs, the behavior of maximum temperature, minimum temperature, and wind 

speed are almost the same as the RCP 6.0 simulations. However, the precipitation 

for RCP 8.0 shows a different behavior, where the influence partial dependence is 

much higher with a wider range at precipitations below 300 mm, and the runoff 

exhibits similar behavior, with a wide range of variability from different GCMs, 

however, they all show that their influence on the resilience category predictions 

stops right before the 100 mm total runoff.  
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Figure 4-13: Partial Dependence Plots for RCP 6.0 
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Figure 4-14: Partial Dependence Plot for RCP 8.5 

Using such interpretability methods as shown in Figures 4-11 to 4-14 proves 

its employability in better understanding the behavior of the different variables 

within the ML algorithm, their influence on the prediction output, and the 

interrelationship and interdependencies between these variables. This 
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interpretability feature of ensures that the output of the ML prediction algorithm 

can be investigated more thoroughly, and the behavior of the input-output variables 

can be explained.  

4.3.3. MODEL RESULTS AND DISCUSSION 

By running the prediction algorithm on the GCMs projections till the year 

2050, this study captures the change in resilience of the chosen 45 counties 

presented in table 4-4. A Spatio-temporal analysis was conducted to visualize the 

effect of climate change on the built environment and identify the vulnerabilities 

and climate change’s impact on the flood exposure and resilience. Figure 4-15 a) is 

a temporal distribution of the yearly average resilience category per county per year 

between the years 2020 and 2050, b) is the spatial distribution of the counties 

involved in the analysis, i) is a multi-layer spatial distribution of the year 2020 

where the location of each county is identified by a circle, the size and color of the 

circle represents the running cumulative average resilience category, ii) a multi-

layer spatial distribution of the running cumulative average till the year 2030, iii) a 

multi-layer spatial distribution of the running cumulative average until the year 

2040, iv) a multi-layer spatial distribution of the running cumulative average until 

the year 2050, also differentiated by size and color for visualization. This analysis 

shows that there is an increase in the yearly average flood resilience index for 

almost all counties involved in the analysis, amounting to an increase in the yearly 
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average across the years, albeit a small increase. The average category between the 

years 2020 and 2030 is 2.1, between the years 2030 and 2040 the average is 2.17, 

and 2.21 between the years 2040 and 2050. The historical recorded damage between 

the years 1996 and 2020 is $13,686M, amounting to an average of $5,702M per 

decade. Assuming the historical category is the same as that at the start of 2020, the 

projected damage based on the RCP 6.0 scenario between the years 2020 and 2030 

is $6,260M, at an increase of 9.7% in monetary damage, between the years 2030 

and 2040 the projected monetary loss is $6,498M at an increase of 13.9%, and 

between the years 2040 and 2050, the projected monetary loss is at $6,587M at an 

increase of 15.5%. Notwithstanding this monetary damage, the resilience category 

is also an indicator for other socio-economic components, like injuries, fatalities, 

evacuations, and the downtime of the community following the flood event. The 

indicator shows an increase of 15.5% per decade in these components leading up to 

the year 2050, showing the immediate need for intervention and mitigation 

measures and the development of a resilience-guided flood risk policies. These 

numbers, while alarming, they only amount for the counties and geographical 

locations included in the analysis presented herein, not the entirety of the state of 

Texas, which would amount to a much larger overall increase.  

Figure 4-16 on the other hand shows, similar to figure 4-15, a) is a temporal 

distribution of the yearly average resilience category per county per year between 

the years 2020 and 2050, b) is the spatial distribution of the counties involved in 
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the analysis, i) is a multi-layer spatial distribution of the year 2020 where the 

location of each county is identified by a circle, the size and color of the circle 

represents the running cumulative average resilience category, ii) a multi-layer 

spatial distribution of the running cumulative average until the year 2030, iii) a 

multi-layer spatial distribution of the running cumulative average until the year 

2040, iv) a multi-layer spatial distribution of the running cumulative average until 

the year 2050, also differentiated by size and color for visualization.  

This analysis shows similar results to that of RCP 6.0, albeit at a more increase 

in average resilience index, and a more severe climate change scenario. The average 

category between the years 2020 and 2030 is 2.2, between the years 2030 and 2040 

the average is 2.3, and 2.52 between the years 2040 and 2050. The historical 

recorded average damage per decade between the years 1996 and 2020 is $5,702M, 

with the same assumptions conducted for the RCP 6.0, the projected damage based 

on the RCP 8.5 scenario between the years 2020 and 2030 is $6,400M, at an 

increase of 12.2% in monetary damage, between the years 2030 and 2040 the 

projected monetary loss is $6,692M at an increase of 17.4%, and between the years 

2040 and 2050, the projected monetary loss is at $7,331M at an increase of 28%. 

Similarly, the resilience category is also an indicator for other socio-economic 

components, like injuries, fatalities, evacuations, and the downtime of the 

community following the flood event. The indicator shows an increase of 28% per 

decade in these components leading up to the year 2050, an increase almost twice 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

193 

 

 

as much damage as the RCP 6.0 scenario. This increase doesn’t only show the need 

for intervention measures as mentioned earlier, but also the need for global effort 

to reduce carbon emissions and GHG into the atmosphere, in a desperate attempt to 

evade the RCP 8.5 scenario, since it is now almost inevitable to actualize the RCP 

6.5 with the current global efforts. This global effort, coupled with multiple 

resilience-guided flood risk analysis could potentially save billions of dollars from 

tax-payers money.  

The analysis conducted in this study can provide a large-scale data-driven 

study into climate change’s impact over the United States at multiple spatial 

resolutions. Applying the methodology provided herein and adding more variables 

into the development of the ML model could potentially provide decision makers 

with a very powerful tool for resilience prediction and prevention, employing the 

spatial analyses provided herein for vulnerability identification and resource 

allocation. By increasing the resolution of the data, to a daily resolution instead of 

a monthly one, could be utilized as an early-warning-system to alert municipalities 

to increasing predicted flood disasters for preparedness measures to be employed. 

In addition, this framework could be integrated with the cloud system to develop a 

real life-engine for disaster prediction, expanding the types of dependent and 

independent variables to include more types of disasters and climate induced 

systemic risks. 
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Figure 4-15: Spatio-temporal Model Output visualization for RCP 6.0, where; a) yearly average per county per year, with a 

running average for all included counties, b) spatial distribution of included counties and their GCM's stations, i) the spatial 

distribution of average Resilience index per county in the year 2020, ii) spatial distribution of average Resilience index per county 

till the year 2030, iii) spatial distribution of average Resilience index per county till the year 2040, iv) spatial distribution of 

average Resilience index per county till the year 2050 
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Figure 4-16: Spatio-temporal Model Output visualization for RCP 8.5, where; a) yearly average per county per year, with a 

running average for all included counties, b) spatial distribution of included counties and their GCM's stations, i) the spatial 

distribution of average Resilience index per county in the year 2020, ii) spatial distribution of average Resilience index per county 

till the year 2030, iii) spatial distribution of average Resilience index per county till the year 2040, iv) spatial distribution of 

average Resilience index per county till the year 2050. 
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4.4. CONCLUSION  

Flood risk remains one of the costliest and most disruptive natural hazards 

worldwide. The IPCC 2021 report states that extreme rainfall events are increasing 

in severity and frequency over the next decade, with an expected rise of average sea 

water level by 2.0 m by the year 2100. This change is also governed by the global 

climate policies in place, and how the world abides by them on a global scale, 

dictating the direction upon which GHG emissions would determine which RCP 

scenario the climate would follow. These findings ascertain the need for a 

comprehensive flood-risk prediction methodology that is resilience-centric, 

employable in multiple scenarios and across a wide range of urban, geographical, 

and climatological conditions.  

The work presented herein provides a comprehensive methodology for 

incorporating climate change impact with numerous community resilience features. 

This work aims at: i) identifying variables that comprehensively represent the 

resilience goals for incorporation within a data-driven multi-stage model, ii) 

employing the developed dataset to produce resilience indices appropriately 

representing the features of the community under investigation, ranging from the 

quality of the complex infrastructure system forming the functionality of the 

society, to the expected damages and the impact on the livelihood of the inhabitants, 
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iii) coupling the employed indices with climate change scenarios to develop a 

prediction model to investigate the impact of climate change on future resilience 

trajectory of the built environment, and iv) employing the developed models into 

developing a spatiotemporal analysis of the area under investigation, identifying 

future trends in community resilience, and the potential vulnerabilities in the built 

environment. 

In this study, the BCSD CMIP5 models were employed for climate modeling 

under multiple emission scenarios (Namely RCP 6.0 and RCP 8.5), with 16 Global 

Climate Models employed for multiple scenarios. The Study also employs the 

disaster data records developed by the National Weather Service (NWS) from the 

years 1996 to 2020. Spatial analysis was conducted using the employed resilience 

categories, identifying the State of Texas as the one befalling the most monetary 

damage, and the most recorded flood disasters. Henceforth, 45 test locations (i.e., 

counties) were identified within the state of Texas for the CMIP5 GCMs 

simulations for the climate modelling, and the resulting models were coupled with 

the resilience index on each of the recorded disaster dataset observation.  

Multiple Interpretability techniques were employed to interpret the results of 

the ML model to transform the model from its Black-box nature to a more readable 

model, enabling decision and policy makers to draw reliable managerial insights 

and information for the development of the much-needed mitigation plans. The 
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interpretability methods employed in this study identified the following insights: 

(1) the behavior and relative influence of the features across the multiple ensemble 

GCMs employed in the development of the algorithm is similar, identifying that 

some assumptions in the simulation of the different GCMs do not impact the 

behavior of the features, but rather varies in term of accuracy and prediction 

trajectory it provides, (2) the maximum and minimum temperatures are the most 

influential climate information in all models, correlating (whether directly or 

inversely) with most of the included features (i.e., precipitation, runoff, and 

windspeed), (3) the impact of the temperature on the community resilience 

increases exponentially between 30-40 oC for average maximum daily 

temperatures, and 15-30 oC for average minimum temperature in the region where 

the tests were conducted, (4) the influence of windspeed on the resilience categories 

is increasing up to 6 m/s, then starts slowing down significantly, and (5) the 

influence of the total precipitation comes to a halt beyond the 200 mm threshold, 

indicating a maximum damage reached in the case of extreme event, or that the 

infrastructure (i.e., drainage network) running at full capacity. Notwithstanding the 

interpretability of the ML model, the prediction results also provided key insights 

into the inherent resilience of the built environment. Showing an expected 15.5% 

increase in expected damage (monetary and otherwise) till the year 2050, 

amounting to a total of almost an extra $900M in damage per decade for RCP 6.0 
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scenario, and $1.8B in damage per decade for RCP 8.5 scenario. However, this 

damage is only in the 45 counties included in this study, with a much larger 

expected increase in flood damage for the entire state of Texas.  

Future recommendation: The methodology adopted herein can be further 

developed into a global prediction algorithm, acting as an early warning system, 

and a corner stone for a comprehensive management system for the built 

environment. The analysis also calls for immediate global intervention to steer the 

global trajectory to a less severe emission scenario, since the expected impact on 

the built environment increases two-fold from one scenario to another in the next 

30 years.  
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4.6. DATA AVAILABILITY 

The datasets used in this article are publicly available. The meteorological 

disaster database used in the generation of the resilience categories is provided by 

the NWS, a sub-agency under the National Oceanic and Atmospheric 

Administration (NOAA), available at  

(https://www.ncei.noaa.gov/pub/data/swdi/stormevents/csvfiles/). The historical 

climate data used is provided by Global Historical Climatology Network, a sub-

agency under NOAA, and is available at (https://www.ncdc.noaa.gov/cdo-

web/search?datasetid=GHCND), and the BCSD CMIP5 projections and 

simulations can be conducted and accessed through (https://gdo-

dcp.ucllnl.org/downscaled_cmip_projections/). All models, or codes, that support 

the findings of this study are available from the corresponding author upon request.  
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https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/


Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

 

201 

 

 

4.7. CONFLICT OF INTEREST 

The authors declare that they have no known competing financial interests or 

personal relationships that could have appeared to influence the work reported in 

this paper. 

4.8. REFERENCES 

Abdel-mooty, M. N., W. El-dakhakhni, and P. Coulibaly. 2022. “Data-Driven 

Community Flood Resilience Prediction.” Water (Switzerland), 14 (13): 2120. 

https://doi.org/10.3390/w14132120. 

Abdel-Mooty, M. N., W. El-Dakhakhni, and P. Coulibaly. 2023. “Community 

Resilience Classification Under Climate Change Challenges.” 227–237. 

Springer, Singapore. https://doi.org/10.1007/978-981-19-0507-0_21. 

Abdel-Mooty, M. N., A. Yosri, W. El-Dakhakhni, and P. Coulibaly. 2021. 

“Community Flood Resilience Categorization Framework.” Int. J. Disaster 

Risk Reduct., 61 (November 2020): 102349. Elsevier Ltd. 

https://doi.org/10.1016/j.ijdrr.2021.102349. 

Ashari, A. 2013. “Performance Comparison between Naïve Bayes, Decision Tree 

and k-Nearest Neighbor in Searching Alternative Design in an Energy 

Simulation Tool.” Int. J. Adv. Comput. Sci. Appl., 4 (11): 33–39. 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

 

202 

 

 

Auerbach, L. W., S. L. Goodbred, D. R. Mondal, C. A. Wilson, K. R. Ahmed, K. 

Roy, M. S. Steckler, C. Small, J. M. Gilligan, and B. A. Ackerly. 2015. “Flood 

risk of natural and embanked landscapes on the Ganges-Brahmaputra tidal 

delta plain.” Nat. Clim. Chang., 5 (2): 153–157. 

https://doi.org/10.1038/nclimate2472. 

Bertilsson, L., K. Wiklund, I. de Moura Tebaldi, O. M. Rezende, A. P. Veról, and 

M. G. Miguez. 2019. “Urban flood resilience – A multi-criteria index to 

integrate flood resilience into urban planning.” J. Hydrol., 573 (February 

2016): 970–982. Elsevier. https://doi.org/10.1016/j.jhydrol.2018.06.052. 

Boehmke, B., and B. M. Greenwell. 2019. Hands-On Machine Learning with R. 

Taylor & Francis. 

Breiman, L. 1996. Bagging Predictors. 

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification 

And Regression Trees. Routledge. 

Brownlee, J. 2016. “Bagging and Random Forest Ensemble Algorithms for 

Machine Learning.” Accessed May 12, 2021. 

https://machinelearningmastery.com/bagging-and-random-forest-ensemble-

algorithms-for-machine-learning/. 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

 

203 

 

 

Brownlee, J. 2020. “How to Calculate Precision, Recall, and F-Measure for 

Imbalanced Classification.” Accessed June 16, 2021. 

https://machinelearningmastery.com/precision-recall-and-f-measure-for-

imbalanced-classification/. 

Bruneau, M., S. E. Chang, R. T. Eguchi, G. C. Lee, T. D. O’Rourke, A. M. 

Reinhorn, M. Shinozuka, K. Tierney, W. A. Wallace, and D. Von Winterfeldt. 

2003. “A Framework to Quantitatively Assess and Enhance the Seismic 

Resilience of Communities.” Earthq. Spectra, 19 (4): 733–752. 

https://doi.org/10.1193/1.1623497. 

Chi, S., S. J. Suk, Y. Kang, and S. P. Mulva. 2012. “Development of a data mining-

based analysis framework for multi-attribute construction project 

information.” Adv. Eng. Informatics, 26 (3): 574–581. Elsevier Ltd. 

https://doi.org/10.1016/j.aei.2012.03.005. 

Davoudi Kakhki, F., S. A. Freeman, and G. A. Mosher. 2019. “Evaluating machine 

learning performance in predicting injury severity in agribusiness industries.” 

Saf. Sci., 117 (April): 257–262. Elsevier. 

https://doi.org/10.1016/j.ssci.2019.04.026. 

Dawod, G. M., M. N. Mirza, K. A. Al-Ghamdi, and R. A. Elzahrany. 2014. 

“Projected impacts of land use and road network changes on increasing flood 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

 

204 

 

 

hazards using a 4D GIS: A case study in Makkah metropolitan area, Saudi 

Arabia.” Arab. J. Geosci., 7 (3): 1139–1156. https://doi.org/10.1007/s12517-

013-0876-7. 

Doshi-Velez, F., and B. Kim. 2017. “Towards A Rigorous Science of Interpretable 

Machine Learning.” (Ml): 1–13. 

Downton, M. W., J. Z. B. Miller, and R. A. Pielke. 2005. “Reanalysis of U.S. 

National Weather Service flood loss database.” Nat. Hazards Rev., 6 (1): 13–

22. https://doi.org/10.1061/(ASCE)1527-6988(2005)6:1(13). 

Downton, M. W., and R. A. Pielke. 2005. “How accurate are disaster loss data? The 

case of U.S. flood damage.” Nat. Hazards, 35 (2): 211–228. 

https://doi.org/10.1007/s11069-004-4808-4. 

Du, M., N. Liu, and X. Hu. 2020. “Techniques for interpretable machine learning.” 

Commun. ACM, 63 (1): 68–77. https://doi.org/10.1145/3359786. 

Efron, B., and R. Tibshirani. 1986. “Bootstrap Methods for Standard Errors, 

Confidence Intervals, and Other Measures of Statistical Accuracy.” Stat. Sci., 

1 (1): 54–75. 

FEMA. 2012. “Definitions of FEMA Flood Zone Designations.” 1–2. 

FEMA. 2018. Spring Flooding: Risks and Protection. 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

 

205 

 

 

Feng, D.-C., W.-J. Wang, S. Mangalathu, and E. Taciroglu. 2021. “Interpretable 

XGBoost-SHAP Machine-Learning Model for Shear Strength Prediction of 

Squat RC Walls.” J. Struct. Eng., 147 (11): 04021173. 

https://doi.org/10.1061/(asce)st.1943-541x.0003115. 

Feofilovs, M., and F. Romagnoli. 2017. “Resilience of critical infrastructures: 

Probabilistic case study of a district heating pipeline network in municipality 

of Latvia.” Energy Procedia, 128: 17–23. Elsevier B.V. 

https://doi.org/10.1016/j.egypro.2017.09.007. 

Fielding, A. H. 2006. “Introduction to classification.” Clust. Classif. Tech. Biosci., 

78–96. Cambridge: Cambridge University Press. 

FRED, F. R. B. of S. L. 2020. “U. S. Bureau of Labor Statistics, Consumer Price 

Index for All Urban Consumers: All Items in U.S. City Average 

(CPIAUCSL).” Accessed May 5, 2020. 

https://fred.stlouisfed.org/series/CPIAUCSL. 

Ganguly, K. K., N. Nahar, and B. M. Hossain. 2019. “A machine learning-based 

prediction and analysis of flood affected households: A case study of floods in 

Bangladesh.” Int. J. Disaster Risk Reduct., 34 (March 2018): 283–294. 

Elsevier Ltd. https://doi.org/10.1016/j.ijdrr.2018.12.002. 

Haggag, M., A. S. Siam, W. El-Dakhakhni, P. Coulibaly, and E. Hassini. 2021. “A 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

 

206 

 

 

deep learning model for predicting climate-induced disasters.” Nat. Hazards, 

(0123456789). Springer Netherlands. https://doi.org/10.1007/s11069-021-

04620-0. 

Hanewinkel, M., W. Zhou, and C. Schill. 2004. “A neural network approach to 

identify forest stands susceptible to wind damage.” For. Ecol. Manage., 196 

(2–3): 227–243. https://doi.org/10.1016/j.foreco.2004.02.056. 

Hastie, T., R. Tibshirani, and J. Friedman. 2009. The Elements of Statistical 

Learning: Data Mining, Inference, and Prediction. Springer Ser. Stat. Springer 

US. 

Heidbach, O., B. Müller, K. Fuchs, F. Wenzel, J. Reinecker, M. Tingay, B. Sperner, 

J.-P. Cadet, and P. Rossi. 2007. “World stress map published.” Eos, Trans. 

Am. Geophys. Union, 88 (47): 504–504. 

https://doi.org/10.1029/2007eo470005. 

Hosseiny, H., F. Nazari, V. Smith, and C. Nataraj. 2020. “A Framework for 

Modeling Flood Depth Using a Hybrid of Hydraulics and Machine Learning.” 

Sci. Rep., 10 (1): 1–14. Springer US. https://doi.org/10.1038/s41598-020-

65232-5. 

IPCC. 2014. WG III Assessment Report 5. Zhurnal Eksp. i Teor. Fiz. 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

 

207 

 

 

Jaagus, J., and R. Ahas. 2000. “Space-time variations of climatic seasons and their 

correlation with the phenological development of nature in Estonia.” Clim. 

Res., 15 (3): 207–219. https://doi.org/10.3354/cr015207. 

Jafarnezhad, J., A. Salmanmahiny, and Y. Sakieh. 2016. “Subjectivity versus 

Objectivity: Comparative Study between Brute Force Method and Genetic 

Algorithm for Calibrating the SLEUTH Urban Growth Model.” J. Urban Plan. 

Dev., 142 (3): 05015015. https://doi.org/10.1061/(asce)up.1943-

5444.0000307. 

Khalaf, M., A. J. Hussain, D. Al-Jumeily, T. Baker, R. Keight, P. Lisboa, P. Fergus, 

and A. S. Al Kafri. 2018. “A Data Science Methodology Based on Machine 

Learning Algorithms for Flood Severity Prediction.” 2018 IEEE Congr. Evol. 

Comput. CEC 2018 - Proc., 1–8. IEEE. 

https://doi.org/10.1109/CEC.2018.8477904. 

Kuhn, M. 2019. “The caret Package.” Accessed May 19, 2022. 

https://topepo.github.io/caret/index.html. 

Li, C., J. Dash, M. Asamoah, J. Sheffield, M. Dzodzomenyo, S. H. Gebrechorkos, 

D. Anghileri, and J. Wright. 2022. “Increased flooded area and exposure in the 

White Volta river basin in Western Africa, identified from multi-source 

remote sensing data.” Sci. Rep., 12 (1): 1–13. Nature Publishing Group UK. 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

 

208 

 

 

https://doi.org/10.1038/s41598-022-07720-4. 

Li, Z., P. Liu, W. Wang, and C. Xu. 2012. “Using support vector machine models 

for crash injury severity analysis.” Accid. Anal. Prev., 45: 478–486. Elsevier 

Ltd. https://doi.org/10.1016/j.aap.2011.08.016. 

Lian, J., H. Xu, K. Xu, and C. Ma. 2017. “Optimal management of the flooding risk 

caused by the joint occurrence of extreme rainfall and high tide level in a 

coastal city.” Nat. Hazards, 89 (1): 183–200. Springer Netherlands. 

https://doi.org/10.1007/s11069-017-2958-4. 

Liaw, A., and M. Wiener. 2002. Classification and Regression by RandomForest. 

Liu, X., Y. Song, W. Yi, X. Wang, and J. Zhu. 2018. “Comparing the Random 

Forest with the Generalized Additive Model to Evaluate the Impacts of 

Outdoor Ambient Environmental Factors on Scaffolding Construction 

Productivity.” J. Constr. Eng. Manag., 144 (6): 04018037. 

https://doi.org/10.1061/(asce)co.1943-7862.0001495. 

Lyon, C., E. E. Saupe, C. J. Smith, D. J. Hill, A. P. Beckerman, L. C. Stringer, R. 

Marchant, J. McKay, A. Burke, P. O’Higgins, A. M. Dunhill, B. J. Allen, J. 

Riel-Salvatore, and T. Aze. 2022. “Climate change research and action must 

look beyond 2100.” Glob. Chang. Biol., 28 (2): 349–361. 

https://doi.org/10.1111/gcb.15871. 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

 

209 

 

 

Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston. 2021. “Global 

Historical Climatology Network - Daily (GHCN-Daily), Version 3.” NOAA 

Natl. Clim. Data Cent. Accessed June 10, 2021. 

https://www.ncei.noaa.gov/access/metadata/landing-

page/bin/iso?id=gov.noaa.ncdc:C00861. 

de Moel, H., and J. C. J. H. Aerts. 2011. “Effect of uncertainty in land use, damage 

models and inundation depth on flood damage estimates.” Nat. Hazards, 58 

(1): 407–425. https://doi.org/10.1007/s11069-010-9675-6. 

Morss, R. E., O. V. Wilhelmi, M. W. Downton, and E. Gruntfest. 2005. “Flood risk, 

uncertainty, and scientific information for decision making: Lessons from an 

interdisciplinary project.” Bull. Am. Meteorol. Soc., 86 (11): 1593–1601. 

https://doi.org/10.1175/BAMS-86-11-1593. 

Mosavi, A., P. Ozturk, and K. W. Chau. 2018. “Flood prediction using machine 

learning models: Literature review.” Water (Switzerland), 10 (11): 1–40. 

https://doi.org/10.3390/w10111536. 

Murdoch, W. J., C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu. 2019. 

“Definitions, methods, and applications in interpretable machine learning.” 

Proc. Natl. Acad. Sci. U. S. A., 116 (44): 22071–22080. 

https://doi.org/10.1073/pnas.1900654116. 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

 

210 

 

 

Murphy, J. D. 2018. NWSI 10-1605, Storm Data Preparation. 

Nagpal, A. 2017. “Decision Tree Ensembles- Bagging and Boosting | by Anuja 

Nagpal | Towards Data Science.” Accessed May 12, 2021. 

https://towardsdatascience.com/decision-tree-ensembles-bagging-and-

boosting-266a8ba60fd9. 

National Institute of Standards and Technology. 2020. COMMUNITY 

RESILIENCE PLANNING GUIDE FOR BUILDINGS AND 

INFRASTRUCTURE SYSTEMS: A Playbook. Gaithersburg, MD. 

NOAA. 2019. “National Climate Report - Annual 2018 | State of the Climate | 

National Centers for Environmental Information (NCEI).” Accessed May 5, 

2020. https://www.ncdc.noaa.gov/sotc/national/201813#over. 

NOAA. 2020. “U.S. high-tide flooding continues to increase | National Oceanic and 

Atmospheric Administration.” Accessed June 10, 2021. 

https://www.noaa.gov/media-release/us-high-tide-flooding-continues-to-

increase. 

NOAA Office for Coastal Management. 2021. “Texas.” Accessed June 10, 2021. 

https://coast.noaa.gov/states/texas.html. 

Nofal, O. M., and J. W. van de Lindt. 2020a. “Understanding flood risk in the 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

 

211 

 

 

context of community resilience modeling for the built environment: research 

needs and trends.” Sustain. Resilient Infrastruct., 00 (00): 1–17. Taylor & 

Francis. https://doi.org/10.1080/23789689.2020.1722546. 

Nofal, O. M., and J. W. van de Lindt. 2020b. “High-resolution approach to quantify 

the impact of building-level flood risk mitigation and adaptation measures on 

flood losses at the community-level.” Int. J. Disaster Risk Reduct. 

Nofal, O. M., J. W. van de Lindt, and T. Q. Do. 2020. “Multi-variate and single-

variable flood fragility and loss approaches for buildings.” Reliab. Eng. Syst. 

Saf., 202 (March): 106971. Elsevier Ltd. 

https://doi.org/10.1016/j.ress.2020.106971. 

de Paor, C., L. Connolly, and A. O’Connor. 2019. “Probabilistic resilience 

assessment of infrastructure—a review.” Life-Cycle Anal. Assess. Civ. Eng. 

Towar. an Integr. Vis. - Proc. 6th Int. Symp. Life-Cycle Civ. Eng. IALCCE 

2018, (October): 947–954. 

Patil, C., and I. Baidari. 2019. “Estimating the Optimal Number of Clusters k in a 

Dataset Using Data Depth.” Data Sci. Eng., 4 (2): 132–140. Springer Berlin 

Heidelberg. https://doi.org/10.1007/s41019-019-0091-y. 

Perica, S., S. Pavlovic, M. S. Laurent, C. Trypaluk, D. Unruh, and O. Wilhite. 2018. 

Precipitation-Frequency Atlas of the United States Volume 11 Version 2.0: 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

 

212 

 

 

Texas. 

Reclamation. 2013. “Downscaled CMIP3 and CMIP5 Climate Projections.” Tech. 

Serv. Center, Bur. Reclamation, US Dep. Inter. Denver, CO, 1 (May): 1–47. 

Reclamation. 2014. “Downscaled CMIP3 and CMIP5 Hydrology Climate 

Projections: Release of Hydrology Projections, Comparison with Preceding 

Information, and Summary of User Needs.” US Bur. Reclam., (July): 111. 

Rodrigues, M., and J. De la Riva. 2014. “An insight into machine-learning 

algorithms to model human-caused wildfire occurrence.” Environ. Model. 

Softw., 57: 192–201. Elsevier Ltd. 

https://doi.org/10.1016/j.envsoft.2014.03.003. 

Rözer, V., A. Peche, S. Berkhahn, Y. Feng, L. Fuchs, T. Graf, U. Haberlandt, H. 

Kreibich, R. Sämann, M. Sester, B. Shehu, J. Wahl, and I. Neuweiler. 2021. 

“Impact-Based Forecasting for Pluvial Floods.” Earth’s Futur., 9 (2). 

https://doi.org/10.1029/2020EF001851. 

Rufat, S., E. Tate, C. G. Burton, and A. S. Maroof. 2015. “Social vulnerability to 

floods: Review of case studies and implications for measurement.” Int. J. 

Disaster Risk Reduct., 14: 470–486. Elsevier Ltd. 

https://doi.org/10.1016/j.ijdrr.2015.09.013. 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

 

213 

 

 

Salem, S., A. Siam, W. El-Dakhakhni, and M. Tait. 2020. “Probabilistic Resilience-

Guided Infrastructure Risk Management.” J. Manag. Eng., 36 (6): 04020073. 

https://doi.org/10.1061/(asce)me.1943-5479.0000818. 

Sen, M. K., S. Dutta, and G. Kabir. 2020. “Housing Infrastructure Resilience 

Framework Development for Sustainable Future.” 2020 Int. Conf. Decis. Aid 

Sci. Appl. DASA 2020, (January): 519–525. 

https://doi.org/10.1109/DASA51403.2020.9317137. 

Shafizadeh-Moghadam, H., R. Valavi, H. Shahabi, K. Chapi, and A. Shirzadi. 2018. 

“Novel forecasting approaches using combination of machine learning and 

statistical models for flood susceptibility mapping.” J. Environ. Manage., 217: 

1–11. https://doi.org/10.1016/j.jenvman.2018.03.089. 

da Silva, J., S. Kernaghan, and A. Luque. 2012. “A systems approach to meeting 

the challenges of urban climate change.” Int. J. Urban Sustain. Dev., 4 (2): 

125–145. https://doi.org/10.1080/19463138.2012.718279. 

Singh, H. 2018. “Understanding Gradient Boosting Machines | by Harshdeep Singh 

| Towards Data Science.” Accessed May 12, 2021. 

https://towardsdatascience.com/understanding-gradient-boosting-machines-

9be756fe76ab. 

Stocker, T. F., Q. Dahe, G.-K. Plattner, M. M. B. Tignor, S. K. Allen, J. Boschung, 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

 

214 

 

 

A. Nauels, Y. Xia, V. Bex, and P. M. Vincent. 2013. Climate change 2013: 

The Physical Science Basis. 

Sweet, W. V, G. Dusek, G. Carbin, J. Marra, D. Marcy, and S. Simon. 2020. “2019 

State of U.S. High Tide Flooding and a 2020 Outlook.” NOAA Tech. Rep., 

NOS CO-OPS (July): 1–12. 

Thomas, V., J. R. G. Albert, and C. Hepburn. 2014. “Contributors to the frequency 

of intense climate disasters in Asia-Pacific countries.” Clim. Change, 126 (3–

4): 381–398. https://doi.org/10.1007/s10584-014-1232-y. 

Trenberth, K. E., L. Cheng, P. Jacobs, Y. Zhang, and J. Fasullo. 2018. “Hurricane 

Harvey Links to Ocean Heat Content and Climate Change Adaptation.” 

Earth’s Futur., 6 (5): 730–744. https://doi.org/10.1029/2018EF000825. 

Vano, J., J. Hamman, E. Gutmann, A. Wood, N. Mizukami, M. Clark, D. W. Pierce, 

D. R. Cayan, C. Wobus, K. Nowak, and J. Arnold. 2020. “Comparing 

Downscaled LOCA and BCSD CMIP5 Climate and Hydrology Projections - 

Release of Downscaled LOCA CMIP5 Hydrology.” 96. 

Wilby, R. L., K. J. Beven, and N. S. Reynard. 2007. “Climate change and fluvial 

flood risk in the UK: more of the same?” Hydrol. Process., 2309 (December 

2007): 2300–2309. https://doi.org/10.1002/hyp. 



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

 

215 

 

 

Wing, O. E. J., W. Lehman, P. D. Bates, C. C. Sampson, N. Quinn, A. M. Smith, J. 

C. Neal, J. R. Porter, and C. Kousky. 2022. “Inequitable patterns of US flood 

risk in the Anthropocene.” Nat. Clim. Chang., 12 (2): 156–162. Springer US. 

https://doi.org/10.1038/s41558-021-01265-6. 

Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier. 2004. “Hydrologic 

implications of dynamical and statistical approaches to downscaling climate 

model outputs.” Clim. Change, 62 (1–3): 189–216. 

https://doi.org/10.1023/B:CLIM.0000013685.99609.9e. 

World Economic Forum. 2019. The Global Risks Report 2019 14th Edition. 

Wu, T. F., C. J. Lin, and R. C. Weng. 2004. “Probability estimates for multi-class 

classification by pairwise coupling.” J. Mach. Learn. Res., 5: 975–1005. 

Yagci, K., I. S. Dolinskaya, K. Smilowitz, and R. Bank. 2018. “Incomplete 

information imputation in limited data environments with application to 

disaster response.” Eur. J. Oper. Res., 269 (2): 466–485. Elsevier B.V. 

https://doi.org/10.1016/j.ejor.2018.02.016. 

  



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

 

216 

 

 

 

 

 

 

 

 

 

 

Chapter 5  

MULTI-LEVEL ANALYSIS FOR BRIDGE 

MANAGEMENT SYSTEM UNDER CLIMATE-

INDUCED SCOUR RISK 

  



Ph.D. Thesis – M. N. Abdel-Mooty  McMaster University – Civil Engineering 

 

 

 

217 

 

 

ABSTRACT 

As scour risk remain one of the main contributors to bridge failures, the associated 

impacts, and losses, whether direct or indirect macro-economic, remain a 

significant expense for infrastructure asset owners, and impacts the functionality of 

the interdependent critical infrastructure networks. Given the current need to 

increase the resilience of our communities to the climate change and the associated 

hazards, and there is yet to be a framework, of proper utilization, for effective 

resilience-informed risk management strategies that implement cost-effective 

periodic monitoring and maintenance. As such, this study introduces a high-order 

multi-layer framework for scour risk management, aiming at calculating a scour 

risk score that prioritizes individual bridges within the transport network given their 

scour risk susceptibility, and overall criticality in the whole network. This approach 

accounts for different layers of interdependent factors contributing to the formation 

of scour, such as Structural soundness, water action, peak flow, flood risk, 

geological riverbed properties, and climate change impact. To showcase the 

utilization of the novel framework presented herein, the multi-layer framework was 

applied on different GIS datasets collected from multiple sources on the railway 

bridges in southeast England to calculate the new comprehensive scour risk score. 

The updated score showed that the criticality of scour-susceptible bridges has 

changed, increasing the priorities of some bridges compared to their existing scores, 
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ultimately improving the decision making for resources allocation, and identifying 

the more critical assets for detailed inspection and monitoring at later stages. 

 

KEYWORDS: Transport Networks; Climate Resilience; Asset Management; 

Bridges; Scour Risk; Infrastructure; Decision Making. 
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5.1. INTRODUCTION 

Bridges are strategic connections within the transport network which are 

interconnected with other infrastructure networks. The loss of functionality of a 

bridge can significantly impact businesses and society's functioning. Bridge 

restoration is costly and often much more complicated than that for other transport 

infrastructure assets. They are exposed to numerous natural and artificial hazards 

during their life cycle. Flooding is a significant natural hazard that may cause 

considerable damage due to scour; identified as one of the most significant hazards 

for bridges worldwide. Damage usually occurs when the flowing water removes the 

material around the piers and abutments causing loss of foundation support 

(Kerenyi and Flora 2019). The increasing urbanization of watersheds has also led 

to a growing number of scour-related failures of bridges throughout the UK, Europe 

and the United States (Argyroudis and Mitoulis 2021). For instance, Storm 

Desmond (2015) caused widespread damage to masonry bridges in Cumbria (UK) 

and Storm Irene (2011) resulted in Vermont (USA) losing 26 bridges.  While a 

significant variability exists between different asset owners on the approaches 

adopted for managing bridge scour (Pregnolato et al. 2020) there is a general 

consensus that risk-based methods are appropriate. This has been supported by 

academic research that has developed conceptual frameworks and approaches for 

risk-based bridge management (Bento et al. 2020; Mondoro et al. 2018; Sasidharan 
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et al. 2021; Yang and Frangopol 2020a). Studies have also developed approaches 

to assess how flood conditions might affect bridge performance due to the resulting 

increase in scour risks (Devendiran et al. 2021; Dikanski et al. 2017; Kallias and 

Imam 2016; Yang and Frangopol 2020b). The probability of scour formation is 

linked to structural, hydraulic, geological, environmental, and human-induced 

factors. A significant body of academic literature has also focused on predicting 

scour formation (Froehlich 1988; Link et al. 2017, 2020; Melville 1997; Richardson 

and Davis 2001; Roca et al. 2021a) and assessing the risk of scour-related bridge 

failures (Argyroudis and Mitoulis 2020; Bento et al. 2020; Panici et al. 2020; Wang 

et al. 2020; Zhu and Frangopol 2016). 

Infrastructure authorities are required to understand and manage a variety of risks 

to enable efficient bridge scour management. Bridges deteriorate with time and 

need intermittent inspections to ensure that they can carry traffic without excessive 

risks. Asset owners and operators use various approaches to rank and prioritize 

structures using the available data (e.g., UK's BD97/12 and EX2502 standards for 

road and railway bridges respectively; USA's HEC-18 standard). They often 

employ risk assessment methodologies based on empirical relationships that 

estimate the maximum scour depths based on various parameters including flow 

velocity, river geometry, bed material and component shape. Infrequent inspections 

and unavailability of data on the foundation depth often result in uncertainties 
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within the scour risk assessments. Divers are often employed to inspect the 

condition of the underwater structures and to measure the scour depth using basic 

instrumentation. Such an approach is particularly at disadvantage for bridge piers 

as the water around them is often turbulent and murky such that little can be seen.  

Current design standards assume that bridges must be designed to cope with a 

prefixed flood return period, typically within 100 to 200 years. But such an 

approach does not consider the variability in the frequency of floods induced by 

climate change (Briaud et al. 2014). The recent allowance of 20% applied to the 

design peak flow to account for climate change effects (Maroni et al. 2019) does 

not account for any particular time horizon or regional differences. To this end, 

technical changes have also been introduced to bridge design and management 

manuals to provide climate change allowances and guidelines to scour risk 

assessment and protection (Takano and Pooley 2021). Such efforts also need to 

jointly consider the revamping of strategic and operational practices within the 

network (Sasidharan et al. 2022b). While the strategic practices might involve 

prioritizing bridges for monitoring, maintenance and installation of flood defenses 

and scour protection measures, the operational practices could inform bridge 

closures and traffic rerouting. Setting priorities for maintenance and rehabilitation 

consumes most of the available funding for bridges and requires evaluation at both 

the network level (i.e. which bridge within the network to maintain) and the bridge 
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level (i.e. identifying how to manage a given bridge). These decisions are largely 

governed by multiple performance indicators such as the structural health of the 

bridge, the safety of users and workers, and the environmental impact (Allah 

Bukhsh et al. 2019; Yavuz et al. 2017). Infrastructure owners are increasingly 

considering river level monitoring to provide early warning decision support of 

potential scour incidents (Roca et al. 2021b). Hitherto, the trigger levels for 

operational interventions such as bridge closures or weight restrictions are based on 

weather/flood alerts for the region and do not consider the local situation at the 

individual bridge sites (Azhari and Loh 2020). Recent research into event-based 

classification (Maroni et al. 2019) offers a promising direction for scour 

management by predicting the risk of scour formation at unmonitored bridges based 

on information from the monitored ones on the same watercourse. An early warning 

of scour formation could be beneficial to intervene before it presents itself at a 

significant level that can cause severe damage. The most cost-efficient intervention 

point needs to be determined and a decision made on whether it is worthwhile 

proactively monitoring and repairing vulnerable bridges before they reach a point 

where extensive repairs or reactive interventions are necessitated. The real-time 

monitoring of every bridge with sensors remains unachievable due to the large 

associated costs and budget constraints. Moreover, inspecting a network of bridges 

at regular intervals without considering issues related to bridge characteristics, 
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functionality and significance is not advisable since this can result in unnecessary 

spending on more reliable bridges, while some bridges are potentially at higher risk 

levels. Whilst the current asset management plans employed by the infrastructure 

authorities provide great insight into the condition of bridges, it presents a list of 

tasks that are challenging to deliver with budget crunches, timescales and resource 

constraints. Critical to this will be prioritizing structures for investments and 

identifying maintenance strategies that can avoid the risk and cost of repeated work 

while considering the internal and external factors that make the structures 

vulnerable, the motivation of this study. Enhancing the resilience of transport 

bridges, this framework can also add value to the current scour risk assessment 

processes that dictate bridge management. The developed approach is applied to a 

case study of railway bridges in the Southeastern England. The results are discussed 

in Section 5.3, and conclusions are drawn in Section 5.4. 

5.2. STRATEGIC RISK ASSESSMENT FOR CLIMATE INDUCED SCOUR 

RISK 

Given the value of railway bridges as critical infrastructure, there has been 

great effort in the development of comprehensive asset management frameworks 

that integrate risk assessment practices. While such efforts are characterized by a 

great disparity, most of which have enough maturity for utilization, but none has 
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been comprehensive enough for a holistic high-level analysis and consideration of 

multi-layer factors affecting the imposed risk. Infrastructure asset management is a 

set of sequential activities that are set to maintain and manage the performance of 

the assets according to levels set by authorities (i.e., budget, service levels, risk) 

over its lifecycle (Sasidharan et al. 2022a; Usman et al. 2021). These constraints 

impose the need for targeted resourcing for managing different assets, or a network 

of infrastructure assets like railway bridges. As such, identifying the most critical 

bridges is key in effective asset management planning. While this criticality comes 

from the condition of the assets themselves, it is also dictated by the imposed risks 

at different levels to this interdependent network of assets. This requires a clear 

understanding of the different risks the assets are exposed to, and the potential 

impact (cascading or otherwise) this risk may cause on them. This understanding is 

also imperative in the development of resilience-informed risk management plans. 

Risk assessment studies, and the general concept of risk and risk management, 

have now been applied in many fields (e.g., technical applications, finance industry, 

project management, civil protection, and urban planning) (Zebisch et al. 2017). 

While in infrastructure asset management literature, the widely accepted definition 

of Risk is that of the ISO Norm 31,000 (ISO 2009), however, the IPCC 2014 report 

defines climate risk as a combination of hazard, vulnerability, and is generally 

defined by the multiplication of the probability of occurrence by the consequence 
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of event (IPCC 2014). While it is imperative that the macroeconomic cost of bridge 

failures or operation disruptions are considered, including them in the risk-informed 

asset management is challenging. To that end, this paper introduces a climate-

guided high-level Resilience-informed risk assessment conceptual framework (See 

Figure 5-1). 
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Figure 5-1: High-Level bridge scour risk-informed asset management framework
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This framework introduces a novel multi-level approach for how risk 

management and climate change, along with multiple information layers, can affect 

the existing scour risk management methodologies in literature.  This framework 

focuses on the strategic risk assessment step of Risk-Informed asset management 

cycle, where strategy sets the standards for how the policies are translated into 

actionable items, operations, and lead to decisions which align with the policies set 

by the stakeholders, given different constraints. This strategic risk assessment is 

employable on both, network level, and individual asset level (i.e., bridge). The 

strategic risk assessment is usually employed to determine the level of scour risk, 

where high scour risk translate to immediate need for scour monitoring, protection, 

and mitigation as necessary. While medium or lower risk assets might only need 

monitoring for changes at that level for any changes in the conditions affecting 

scour risk. 

This scour risk is determined by multiplying the severity (consequence) of 

scour risk by the probability of occurrence (likelihood). While the consequence is 

determined based on the post-effect of scour failure, it is dependent on multitude of 

factors, albeit safety (i.e., injuries, fatalities, damage) or loss of functionality, 

whether partial or complete. It also depends on the needed interventions to remedy 

these consequences, such that if the failure is local, the recovery can be less 

disruptive than if the asset was central or critical, such that the entire network is 
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disrupted. This would depend on the criticality of each asset within its network, and 

the interconnection of the infrastructure network of networks. The severity in this 

case would be dependent on level of failure cascading through the networks, and 

the costs of recovery, whether directly (i.e., cost of repair, etc.) or indirect (i.e., 

pollution, opportunity cost, disruption to livelihood, increased travel time, etc.). On 

the other hand, the probability of occurrence (likelihood) of scour risk, depend on 

multiple factors such as: Structural information, Environmental factors, Natural and 

manmade components around assets, geotechnical information about the asset, etc. 

The resulting scour risk influences the strategic direction of stakeholders when 

choosing a risk management plan, where with the quantification of the scour risk 

of individual assets, the allocation of resources (i.e., investment) can be targeted to 

the assets at highest risk - failure probability and collective severity of failure at 

component or network level - such that the stakeholders’ spending would remain 

within the available resources. To that end, numerous works have been done to 

assess the likelihood of scour risk, summarizing the contributing factors affecting 

it to 5 different factors: Bridge age and geometry, Bridge location, Foundation type 

and level, type of bed material, changes to river flow, with multiple contributors 

within each factor (Barbetta et al. 2017; Bridge et al. 2017; Lamb et al. 2017; 

Pizarro et al. 2020; Sasidharan et al. 2021). 
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While scour risk has been studied extensively in literature, with numerous 

frameworks and methodologies developed to accurately quantify it, none have 

included different information layers in a way that could comprehensively capture 

the effect of geological attributes of the river, and the effect of climate change on 

different layers of the strategic risk assessment process. Different asset owners and 

authorities have developed their methodologies for calculating scour risk score 

(e.g., Highways England in the UK(DMRB 2012), FHWA in the USA 

(Govindasamy et al. 2008), and Network Rail Britain for railway bridges (Dikanski 

et al. 2018), with more details on different practices found in the study by 

Sasidharan et al, 2021 (Sasidharan et al. 2021)). To that end, the objective of the 

framework proposed herein is the development of a high order scour risk 

assessment methodology that factors in the effect of in-depth geological 

information, as well as the effect of climate change on the different layers (i.e., how 

climate change affects the behavior of river hydrology, flood risk, and future 

changes in all factors contributing to the formation of scour) to calculate a 

Comprehensive Scour Risk Score (CSRS), by factoring the initial scour score (ISS), 

and adding factored scores for river characteristics score (RCS), the flood risk (CCI) 

and the Criticality score (CS) of the individual bridge within the overall network, 

in terms of flow and centrality, as seen in Eq(5-1). 

𝐶𝑆𝑅𝑆 = (𝐼𝑆𝑆 × 𝐹1) + (𝑅𝐶𝑆 × 𝐹2) + (𝐶𝐶𝐼 × 𝐹3) + (𝐶𝑆 × 𝐹4)   Eq. (5-1) 
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The framework introduced in Figure 5-1 shows the Risk-Informed asset 

management cycle that starts by the objective identification, followed by data 

collection and assets inspection to facilitate the development of databases and 

inventory necessary for the completion of the strategic risk assessment. Said 

assessment is then used for the development of detailed comprehensive assessment 

at a detailed level for the prioritized assets, facilitating the development of cost-

benefit analyses necessary for strategy and policy implementation. The focus of this 

framework is the assessment of the hazard likelihood on both, the component and 

network levels, while considering the information pertaining to the Asset 

characteristics, River characteristics (geological information), and Climate Change 

Impact. For the transport infrastructure asset characteristics, the network level 

assessment starts by identifying the bridges subjected to water action, followed by 

identifying the bridges at risk of flooding if overtopped, and the bridges in location 

of increasing flood risk, and high precipitation rates. This can be done at “current 

situation” scenario, or “future scenario” accounting for the effect of climate change 

on the precipitation rates, and projected flood risk given different climate emission 

scenarios. On the component level, it starts by the assessment of river flow rate, 

flow depth, and velocity at the location of the selected bridges, followed by the 

estimation of the projected future values of river flow and flow depth given different 
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climate emission scenarios, and the estimation of riverbed stability. Using this 

information, the initial scour score (ISS) is calculated. 

As for the River Characteristics score, the proposed process starts by creating 

a database for all riverbed material for the selected location, assess the catchment 

characteristics and evolution of geomorphology of the area, the river fall and 

accommodation space, flow velocity, and potential runoff. Once the individual 

assets befalling this area are identified, a detailed analysis starts by assessing the 

extent and percentage of bedrock across different river reaches, identify location of 

levees on the rivers, and assess the density, strength, and mineralogy of the riverbed 

material. This information would then be used to develop the scour susceptibility 

given the river characteristics and can be used to assess the River Characteristics 

Score (RCS). The final layer of information is the effect of climate change, where 

it starts by the estimating the river flow for multiple climate change emission 

scenarios, followed by estimating the flow velocity for said scenarios, and 

ultimately assessing the projected flood risk for the entire catchment under 

consideration to determine the network vulnerability to flood risk. Once the 

individual bridges are identified, the flow is calculated at each bridge pier or 

abutment, identifying the locations with higher flood risk, and calculating the scour 

score based on projected flood risk (CCI). 
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However, for effective employability of the proposed framework, the quality 

of information used in its adoption is paramount, highlighting the need for data 

quality management, and the alignment with international standards for data 

acquisition and usage. Numerous standards have been set to achieve such a goal, 

most notably the concept of Information Quality levels set by The world Bank, 

where different data requirements were set for different levels of strategic 

importance (Paterson and Scullion 1990) that has been applied to managing bridges, 

roads and railways assets. This concept ensures the reduction of irrelevant data with 

its associated costs and increases the overall quality of the infrastructure asset 

management process. Among the challenges associated with data quality is the 

probabilistic nature of some of the factors affecting the risk of scour. Some of the 

factors include, but not limited to: i) the lack of frequent inspections, there is 

uncertainty in the scour related information (e.g., foundation depth, structural 

conditions, hydrogeologic factors affecting scour formation, etc.), ii) Climate 

change induced uncertainty, where its effect on flood risk and river flow is 

probabilistic by nature, and heavily dependent on the global intervention towards a 

certain emission scenario (Abdel-mooty et al. 2022). While these sources of 

uncertainty have been gaining the traction of the academic community in recent 

years (Abdel-Mooty et al. 2021; Dikanski et al. 2017; Dong and Frangopol 2016; 

Yang and Frangopol 2020a), it is yet to remain a challenge for accurate prediction 
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of scour risk (Sasidharan et al. 2022b). The framework presented herein is adaptable 

to the uncertainty associated with scour risk prediction, where the probabilistic 

nature of the layer-specific risk scores can be considered in its probabilistic nature 

to calculate the final risk score, and the scour risk score associated with different 

emission scenarios’ effect on flood risk and other relevant information can also be 

considered. While this framework focuses on calculating the likelihood of scour 

failure, the methodologies upon which each factor is calculated can differ from one 

infrastructure to another, depending on the standards set for calculating certain 

factors, and the quality and sparsity of information for the calculation of said 

factors. However, this can still be accommodated within the framework by adopting 

different methodology for each of the individual layers of information factoring in 

the CSRS. 

To demonstrate the applicability of the proposed framework, the following 

case study was applied to develop a comprehensive Scour Risk Score for railway 

bridges in Southeast England region (counties of Kent, Wessex and Essex), that are 

owned are managed by Network Rail (NR).  The region consists of the counties of 

Kent, Wessex and Essex utilizing different datasets and information provided by 

different authorities in England, namely: Network Rail Britain (NR), British 

Geological Survey (BGS), and United Kingdom Climate Projections (UKCP 18). 

The application presented herein utilizes geospatial information for layering 
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different datasets and data sources for the development of the CSRS and conduct a 

comparative analysis on the resulting scour ratings for asset prioritization. 

5.3. CASE STUDY  

With the large number of railway bridges, where over 8,800 of which are built 

across rivers, the exposure to scour risk becomes more prominent (Lamb et al. 2019; 

Sasidharan et al. 2022b). Over the past years, there has been a significant increase 

in precipitation rates across England, and more specifically in the Southeast (Met 

Office 2022). To that end, the three counties of Essex, Wessex, and Kent were 

chosen to employ the multilayer framework proposed earlier in this study. Figure 

5-2 presents the methodology of applying the framework, where the information 

layers were converted to spatial datasets, all used to create a multilayer map of the 

different information layers used to create the final comprehensive scour risk score. 

It is worth noting that the authors were restricted by the quality and quantity of 

available data, where for a complete application to the framework presented in 

earlier section, the authors would need data pertaining to a wide range of datasets 

(e.g., all railway assets and their information, hydrologic and hydraulic information 

for the rivers, precipitation patters, flood risk information, future flood risk 

projections, etc.). 
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Figure 5-2: Multi-layer information mapping for high-order scour risk assessment 

5.3.1. LAYER 1: RAILWAY BRIDGES’ SCOUR INFORMATION – 

NETWORK RAIL BRITAIN 

Network Rail (NR) is Britain’s railway infrastructure owners, responsible for 

all asset management plans, creating and maintain the databases, and develop all 

policies and protocols for sour risk management and maintenance(Lamb et al. 

2019). The scour risk assessment policy for Network Rail is comprised of two 
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stages. Stage 1 is the preliminary analysis, where all railway bridges are assigned a 

scour score, translated to priority rating, as shown in table 5-1, dictating which 

assets are at low risk, which at medium risk, and which are at high risk. This scoring 

scheme is then used to initiate stage 2 analysis, which includes a more rigorous and 

detailed assessment, including hydrological and hydraulic assessments (Dikanski 

et al. 2018; Sasidharan et al. 2022a). For stage 1 of Network Rail’s approach, the 

priority rating is assigned as a ratio between the foundation depth, and the predicted 

scour depth, making this stage pivotal in identifying the critical assets, and 

accordingly assign resources or priorities maintenance, to commence stage 2. Given 

the high importance of stage 1 for resource allocation, the information used to 

develop this priority score needs to be accurate, of quality, and comprehensive 

enough by including all aspects contributing to the formation of scour. However, in 

the established methodology, this analysis is done at a base-level, taking into 

account information only pertaining to the asset under investigation, such as: i) 

Angle of attack for piers subjected to water action, ii) Foundation depth, iii) Shape 

of pier, iv) velocity of water flow, v) potential debris in the river, and vi) channel 

geometry (Sasidharan et al. 2022a). 
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Table 5-1: Scour Scores and Priority Ratings by Network Rail 

Scour rating Priority Score Category 

17.00 – 21.00 Priority 1 
High 

16.00 – 16.99 Priority 2 

15.00 – 15.99 Priority 3 
Medium 

14.00 – 14.99 Priority 4 

13.00 – 13.99 Priority 5 
Low 

10.00 – 12.99 Priority 6 

 

The dataset used in this study was provided by Network Rail offers the location 

of all railway bridges located within the three counties in the southeast of England, 

as shown in Figure 5-3. There are 262 railway bridges included in this dataset, with 

scour rating for each pier or abutment facing water action. However, if one 

component failed (i.e., pier or abutment), the entire asset is considered at a failed 

state, hence, the maximum scour rating and category for all piers of each railway 

bridge was taken as the score for that particular bridge. Figure 5-3 shows the 

location of the railway bridges, and the scour score associated with each bridge, 

indicated as the size of the marker for that bridge, with the colour showing the 

priority category. 
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Figure 5-3: Network Rail Dataset, showing the Scour Ratings and Priority 

Category of Each railway bridge in Southeast England. 

 

5.3.2. LAYER 2: GEOLOGICAL PROPERTIES CONTRIBUTING TO SCOUR 

RISK – BRITISH GEOLOGICAL SURVEY DATA 

The licensed data provided by the British Geological Survey(Lee et al. 2021) 

provided information on three different tiers, intended for different uses by different 

stakeholders. The motivation behind the development of this dataset was to track, 

model, and document the properties of the catchments of the rivers along Great 

Britain. Scour risk is dependent on the landscape morphology and topology, which 

are geological features in nature, and often ignore by other scour risk assessment 
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methodologies. The river processes are intrinsically influencing the susceptibility 

of the riverbed and banks to erosion and influences the amount of water going 

through a stream, and the power of that water streams’ flow. In our analysis, Tier 3 

dataset was used, where the data provide detailed information on the riverine, with 

a baseline geological context for river scour development based on common 

information to be incorporated into comprehensive scour modelling. This tier 

provides information on the material mineralogy, strength, density of riverbed 

material, as well as river fall sinuosity and flood accommodation space for each 

catchment. 

The dataset provided by the British Geological Survey developed 3 different 

scenarios for scour susceptibility throughout all the river reaches, namely: Best-

case scenario, average-case scenario, and worst-case scenario. These layers identify 

the main properties that influence the potential formation of scour, and they include 

the following variables: Riverbed material density, strength, and mineralogy, as 

defined by the technical engineering terminology report BS5930:2015 (BSI 

Standards Publication 2015; Lee et al. 2021). 

In the study presented herein, the final scour susceptibility score was utilized 

using the three provided scenarios. In the best-case scenario, only the materials 

strength values were used in the calculation of river scour susceptibility score, 

without adding the information pertaining to the density of the riverbed materials. 
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For the average-case scenario, the average between the density and strength values 

were used in the development of the scour susceptibility score. While for the worst-

case scenario, only the density values of the riverbed materials were used in 

calculating the scores to be incorporated in the dataset. This is to indicate that the 

strength of the materials dictates the behavior of the river reach towards scouring, 

where the materials which are classified as “Strong” are well consolidated, with 

greater resistance to scouring. While in catchments with low durability rocks, the 

river valleys tend to form on a wider area, broadening the flood plains. With that, 

transient flow would occur through the river flow, and scouring would be highly 

variable, temporally, and spatially (Lee et al. 2021). 

5.3.3. LAYER 3: FLOOD RISK – UNITED KINGDOM ENVIRONMENT 

AGENCY 

The dataset used to determine the flood risk for the area under investigation 

was obtained from Environment Agency of the United Kingdom. In this dataset, 

the flood risk is the probability of flooding for all rivers and seas presented at 4 

different likelihood categories, accounting for the condition of flood defense 

measures put in place (EA - Environment Agency 2020; Environment Agency 

2022). The modelling was done by using local ground levels, water levels, and flood 

defense information to ascertain the flood risk based on a 40-levels likelihood 
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spectrum. The results are then grouped into the final 4 categories and validated by 

using expert opinion for the development of the final dataset based on the 

modeling’s findings. The dataset is in the form of geospatial data, where in the 

analysis presented herein, the flood risk categories were first mapped for the area 

under investigation, then mapped on top of the base geographical data, as shown in 

Figure 5-4. The geospatial data is of a 50 x 50 m resolution, showing the flood risk 

for all floodplains in rivers and river reaches, and extending to the surrounding 

areas, and the coastal areas by the seashores. The 4 categories of flood risk in this 

analysis are: i) High: There is a yearly chance of flooding greater than 3.3%, ii) 

Medium: There is a yearly chance of flooding between 1% and 3.3%, iii) Low: 

There is a yearly chance of flooding between 0.1% and 1%, and finally, iv) Very 

low: There is a yearly chance of flooding less than 0.1%.  

This data is considered reliable and suitable for use in bridge flood risk studies, 

given its high resolution, quality of information, and validation with local experts 

and authorities. Further information on the development of this dataset can be found 

on United Kingdom Environment Agency’s website (EA - Environment Agency 

2020; Environment Agency 2019, 2022). 
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Figure 5-4: Flood Risk Map for the area under investigation showing the 

likelihood of flooding based on the 4-category-based system 

5.3.4. RESULTS 

For the high-order strategic risk assessment framework application presented 

herein, the aforementioned information layers were mapped to assess the following: 

• Location of all river-crossing railway bridges for the area under 

investigation (i.e., Kent, Essex, and Wessex in southeast of England. 

• Determine the scour risk score provided by Network Rail for each of the 

railway bridges, and its subsequent priority category, and map it over the 

locations of the identified assets. 
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• Map the geological scour data provided by the British Geological Survey to 

determine the risk of scouring at the locations of each of the identified 

railway bridges. 

• Mapping the flood risk for the area under investigation to determine the 

Flood risk category as identified by the Environment Agency. 

Figure 5-5 shows the final analysis, where Figure 5-5(a) is the location of the 

study under investigation where all the layers overlap with one another, 5-5(i) is the 

layered information where the best-case scour susceptibility score of the BGS 

dataset is used, 5-5(ii) is the average-case scour susceptibility score, and 5-5(iii) is 

the worst-case scour susceptibility score. In this case study, the worst-case 

susceptibility score for the BGS dataset will be utilized for more meaningful and 

impactful results. It is also worth noting that climate projections for the flood risk 

maps are yet to be developed for the next decades. These projections were to be 

used for predicting future changes in scour risk given multiple climate change 

emission scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) and would help 

identifying the climate-vulnerability of these railway assets, and the subsequent 

scour protection investment needs. 

Figure 5-6 shows the focus of the analysis in this study, where the worst-case 

BGS scenario is mapped over flood risk, and multiple NR scour information to be 
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used in the application of [Eq (5-1)] in this manuscript. For the factors in Eq(5-2), 

the Initial Scour Score (ISS), the scour risk score provided by Network Rail would 

suffice, where it contains all information pertaining to the structural properties of 

the bridge, the hydraulic properties of the water action associated with this bridge, 

and the maintenance condition of the bridge, along with information on the 

criticality of the route of the bridge, which can compensate for the criticality score 

(CS) factor in the equation. For the River Characteristics Score (RCS), the scour 

susceptibility score provided by BGS is to be used, since it already has all the flow 

information of the river reach, and the detailed properties of the riverbed materials 

(e.g., sinuosity, mineralogy, density, and strength) associated with the locations of 

the brides under investigation. The information provided by Environment Agency 

is sufficient to be used to calculate the flood risk score in the calculation of the 

comprehensive scour risk score, while this dataset has information pertaining to the 

current state of flood risk, it is lacking the future changes on the risk categories. To 

that end, the final equation to be used in the case study herein to:  

𝐶𝑆𝑅𝑆 = (𝐼𝑆𝑆 × 𝐹1) + (𝑅𝐶𝑆 × 𝐹2) + (𝐹𝑅𝑆 × 𝐹3)    Eq. (5-2) 

Where: ISS: Initial scour score, RCS: river characteristics score, and FRS: 

flood risk score, where F1, F2, and F3, are the factors to be calculated for the ISS, 

RCS, and FRS, respectively. For the Calculation of the factors for the final 

calculation of CSRS, Analytical Hierarchical Process was used, where the factors 
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are determined based on the relative importance of each factor in influencing the 

final score. 

 

Figure 5-5: Final layered results of the multi-layer analysis where: a) overlap 

location of the case study, i) layered information with BGS best-case scenario, ii) 
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layered information with BGS average-case scenario, iii) layered information with 

BGS worst-case scenario 

 

Figure 5-6: Final multilayer analysis for final scour score calculation. 

 

Analytical Hierarchical Process (AHP): AHP is a decision analysis approach that 

is flexible, robust, and can operate within a multi-criteria space. Formulating the 

decision hierarchy is a first step in evaluating the different alternatives and goals 

that are part of a decision variable (Mustafa and Al-Bahar 1991). Due to its flexible 

nature, it has been adopted in numerous studies, and mostly in risk analysis studies 

(Lamb et al. 2017; Mustafa and Al-Bahar 1991; Tee et al. 2017; Vargas 2010). In 

the study presented herein, AHP will be applied to determine the weightage factors 

in Eq (2) to calculate the final comprehensive score. The process starts by 
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conducting a quantitative pairwise comparison that uses a scale of importance 

between the different criteria involved in the decision. The linear scale proposed by 

Saaty (Saaty 2008) is adopted in this study, and shown in Table 5-2. 

Table 5-2: Relative Importance of scale factors involved in AHP 

Scale of Importance Meaning 

1 Equally Preferred 

3 Mildly Preferred 

5 Moderately Preferred 

7 Greatly Preferred 

9 Always Preferred 

 

For the determination of the scale of importance in the pairwise comparison, 

the field study survey conducted by Lamb et al. 2017 was adopted as a guide, where 

a workshop with a wide and diverse group of experts in scour risk determination 

and analysis was conducted, and a weightages of different factors affecting scour 

risk was developed (Lamb et al. 2017). The resulting weightages were then 

validated with a group of scour risk management expert in Network Rail Britain 

authority. The resulting pairwise comparison were qualitatively determined as 

shown in Table 5-3. 
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Table 5-3: Pairwise comparison Matrix 

 NR Score BGS Score 
Flood Risk 

Score 

NR Score 1 5 7 

BGS Score 1/5 1 3 

Flood Risk Score 1/7 1/3 1 

 

The pairwise matrix is then used to calculate the total comparison score for 

each column, then all the elements of that column are divided by the total of that 

column, then adding the resulting rows to calculate the final factors. The 

eigenvectors of the pairwise matrix was used in calculating the consistency score 

and compare it with the random consistency index for 3 variables to get the 

consistency ratio, which was 6.3%, less than the desired 10%, thus falling within 

an acceptable range. The resulting factors, as shown in table 5-4, reflect the true 

intrinsic behavior of scour formation, where the structural parameters and the 

information included in the calculation of the network rail scour score is of most 

importance, followed by the information pertaining to the geological information 

and their contribution in the formation of scour, followed by that of flood risk. 
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Table 5-4: Final factors in each variable 

Factors Weights 

NR Scour Score 0.72 

BGS Score 0.19 

Flood Risk 0.09 

 

The Final equation to be used in the determination of the comprehensive scour 

score is now shown in Eq. (5-3). 

𝐶𝑆𝑅𝑆 = (𝐼𝑆𝑆 × 0.72) + (𝑅𝐶𝑆 × 0.19) + (𝐹𝑅𝑆 × 0.09)    Eq. (5-3) 

To calculate the final CSRS for all bridges, all factors in the equation were 

normalized to have a maximum of 1. As such, in the ISS, the Network Rail priority 

category was used, from 1 being least risk, to 6 being of most risk, and normalized 

to have a maximum of 1. For the RCS, the BGS susceptibility score was used, which 

has a maximum of 0.85, and was accordingly adjusted to have a maximum of 1, 

and the FRS was already normalized as given. These normalized factors were all 

used in the calculation of the final CSRS, which is also at a scale of 0-1, with 1 

being at most risk of scour given all the contributing factors included in this study. 

Figure 5-7 shows the results of the new CSRS for all railway bridges in the 

study area, where a) is the normalized initial scour score provided by network rail, 

and b) is the final CRSC calculated using Eq (5-3). As can be seen in Figure 5-7, 

the scour risk increased for 62% of the bridges in the case study, with an average 
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of 9% increase than the initial NR Score used in their asset prioritization, and a 

maximum of 19% increase, completely changing the landscape of the critical assets 

within the study area. Figure 5-8 shows the difference between the CSRS and the 

ISS for all railway bridges in this study, identified by their element’s ID, and it 

shows that while the majority of the bridges increase in the CSRS, the average 

decrease is 3.8%, and the maximum change is 8%. This decrease was attributed to 

the structural condition of the bridge, and the stronger geological properties of the 

riverbed that had more weight in the final score than when the initial score was 

calculated by NR. However, the majority of increase in the final CSRS was 

associated to the structural material of the bridges, where the 70% of the bridges 

with increased scour risk were Masonry bridges. In addition, over 78% of the 

bridges with higher scour risk were associated with a BGS score higher than 0.5, 

indicating that detailed geological information increased the overall scour risk of 

the bridges. These two factors would ultimately change the critical bridges 

identified in preliminary analysis in scour prediction practice by Network Rail 

Authorities, and hence impacting the allocation of resources in later stages of scour 

risk asset management. 
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Figure 5-7: Comparative analysis for Scour risk of Railway bridges, such that: a) 

is the normalized Network Rail initial scour risk score, and b) is the 

comprehensive scour risk score developed in this study. 
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Figure 5-8: Difference between normalized network rail initial score and final 

comprehensive scour risk score for each railway bridge identified by its element 

ID. 
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Figure 5-9: Comparative analysis for Scour risk Priorities of Railway bridges, 

such that: a) is the Initial Scour Score Priorities employed by Network Rail, and 

b) is the Priority based on Final Scour Risk Score 

5.4. DISCUSSION AND CONCLUSION 

As the demand on transport networks increase, so does the need for resilience-

informed infrastructure risk management strategies. Among the different elements 

of transport networks, bridges hold a place of high criticality, demanding the need 
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for more comprehensive, and proactive, management strategies. As authorities and 

stakeholders are restricted by the available resources (i.e., budgets and manpower) 

for their asset expenses, it becomes quite challenging to maintain the safety and 

performance of transport networks through maintenance and other work, let alone 

improve it. As such, innovative methods become paramount to asset owners and 

authorities to reduce cost, by automating the monitoring process of asset 

performance, and selecting high priority assets for intervention and prioritized 

inspections, facilitating the decision-making process for decisionmakers. This 

approach would need to be comprehensive enough to capture and incorporate data 

from various resources, highlighting the need for accurate data gathering and 

reliable monitoring, to help reach holistic, high-level, resilience-informed 

decisions. More often than not, the ownership and decision-making process is 

distributed among different authorities in the UK, resulting in incomplete-

knowledge facing the decision makers, forcing them to act upon sub-optimal 

decisions, compromising the performance of the asset, and the available, already 

limited, budgets, and the various types of transport assets within the domain of the 

decision making body (Sasidharan et al. 2021). 

While scouring is responsible for the majority of bridge failures, it is extremely 

important that robust and resilience-informed risk management and monitoring 

strategies are adopted to predict scour risk and its interdependent implications, 
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especially that scour risk has higher repair cost, aside from the indirect cost 

associated with scour failure (i.e., macroeconomic impacts of structure failure, 

closures, and rerouting). While there exists different guidelines and standards for 

the risk assessment of scour risk, none has been comprehensive enough to account 

for high-level multi-layer factors contributing to scour formation, resulting in a 

continuous scour-related failures within the transport networks, with no mean to 

change the rate of failure and increase the overall resilience of the network. 

Additionally, scour formation and related failures are occurring at an increasing 

rate, attributing that fact to climate-change related hazards (e.g., extreme rainfall, 

increased frequency and magnitude of floods), and its impact on the different 

aspects of environment that interacts with the network, and influences the formation 

of scour (e.g., geological properties of riverbed). To that end, developing 

frameworks and practices that evaluates the formation of scour given such disparity 

between different information sources, the manner in which this information is 

gathered and stored, and the authorities gathering the data, is gaining more traction 

in the research community, resulting in numerous works in that area. While these 

different methodologies are of different maturity and utilization levels, there is still 

a need for resilience-informed proactive risk management approach that predicts 

the scour formation. This approach would need to take into account the compound 

effect of climate change, whether on the existing environment by changing the 
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geological and hydrological properties of rivers and their catchments, or the 

resulting natural hazards that exacerbate the formation of scour and its associated 

failures.  

Climate change has seemingly limited impact on the scour design dept, since 

variations in temperature and precipitation does not always lead to an equivalent 

increase in river flow, however, it develops more frequent flood events with more 

frequent peak flow events, the main contributor in the formation scour. Thus, 

incorporating individual catchment’s changes in peak flow given different climate 

change scenarios (i.e., different Greenhouse gas emission scenarios; RCP 4.5, RCP 

6.0, RCP 8.5) is paramount in enhancing the overall resilience of the transport 

network, both on the individual asset level, and the network level. Despite the 

disparity in existing methodologies, however, very few studies have addressed the 

climate-change impact on bridge infrastructure, highlighting the need for the study 

and framework presented herein. 

To that end, this manuscript lays the foundation for a high-order multi-layer 

framework that accounts for the different layers contributing to the formation of 

scour into the strategic risk assessment step of the resilience-informed transport 

infrastructure risk management plan. It also accounts for the different 

interdependent effect of the environmental impacts, along with hydrological, 

geological, and meteorological properties contributing to the formation of scour. 
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This process is used to determine the scour risk of individual bridges, aiding in 

optimizing the resource allocation for detailed inspection and maintenance for 

assets at most risk. As such, accurate determination of risk level of individual assets 

would set the criticality levels within a network, and the criticality of the different 

networks with one another, which highlights the need for this process to be 

conducted with high degree of accuracy and confidence.   

The current work aims to: 1) develop a comprehensive scour risk score that 

takes into account the effect of  detailed geological information, and their associated 

influence  over  different factors contributing to the formation of scour, 2)   account 

for  climate change impact on the formation of scour in different aspects 

contributing to the increase in scour risk, whether through water action, 

hydrological properties, changes in geological properties, or otherwise, 3)  enhance 

the climate resilience of the existing strategic risk management  methodologies 

without having to disrupt the pre-existing methodologies followed by asset owners 

and authorities for maximum utilization and impact, 4) lay the foundation for a 

more proactive predictive capability to identify the high priority bridges within the 

network before failures occur, whether local (i.e., on the asset level), or global (i.e., 

on the whole transport network) to help optimize the allocation of resources in the 

asset management cycle, and finally  5) test the applicability of the proposed 

framework using different datasets gathered to determine the current prioritization 
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scores for bridge transport network, and apply the framework to investigate the 

impact on the changed prioritization scheme to ascertain the utility of the 

framework presented herein. 

In the study, different datasets representing the different information layers as 

indicated in the framework were utilized: i) The dataset from Network Rail Britain: 

this dataset included all locations, structural condition, and scour risk prioritization. 

This dataset was also used to determine the initial scour risk score by quantifying 

the scour risk imposed at all piers and abutments at all railway bridges, and 

assigning the maximum risk score as the score determining the prioritization of the 

individual bridge, ii) The dataset from British Geological  Survey: this dataset had 

information on the geological factors of the riverbed in all catchments in southeast 

England, including the information contributing to the formation  scour.   The 

dataset also includes a scour susceptibility score, that was used to calculate the 

scour risk component score pertaining to the geological information surrounding 

the bridges under investigation, and finally iii) The Flood Risk Maps, as provided 

by the United Kingdom Environment Agency, sets the flood risk for all river 

reaches, and all river catchments.  These datasets were used in the calculation of 

the updated comprehensive scour risk score, based on the aforementioned risk 

scores using Analytical Hierarchical Process to determine the weightages of each 

factor in the final score. The results were mapped in a multi-layer visualization to 
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identify the changes in the prioritization landscape, and aid in the identification of 

the critical bridges within the transport network with the factors contributing to that 

change. The study identified the following insights: (1) Most risk scores were 

changed, resulting in a changed landscape for prioritization of assets and dictating 

the update of the current methodology, (2) 62% of the bridges had increased scour 

risk factor, with a maximum of 19% increase, while the maximum decrease for the 

bridges included was of only 8%, (3) The increased scour risk was related to the 

structural material of the bridges included in the study, where  over 70% of the 

bridges with increased score were Masonry bridges, (4) The newly added 

geological information in the calculation of the comprehensive risk score had the 

most influence over the increasing scour risk  of the investigated bridges, 

highlighting the importance and impact of this information, necessitating its 

inclusion in scour risk management, and its pivotal importance in increasing the 

climate resilience of bridges, and ultimately, the entirety of transport infrastructure 

network. 

Future recommendation: The framework presented herein is a steppingstone 

towards a more comprehensive scour rating for infrastructure asset owners. As 

such, while the framework is adaptable to include more information layers, the 

authors were restricted with the available data presented herein. Future work can 

include: (a) the effect of different climate change scenarios by running a 
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probabilistic analysis on the formation of scour given more bridge-related 

information, should they become accessible, (b) the updated future flood risk maps 

given different GHG climate change emission scenarios to assess the temporal 

change in the comprehensive scour score, (c) automate the process with geospatial 

data to be fed the update precipitation and flood peak flow information, to act as a 

decision support tool for infrastructure asset owners, as a step towards a more 

complete digital twin platform for decision making and resource allocation. 
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Chapter 6  

CONCLUSION 
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6.1. SUMMARY 

Climate change is the main drive for all extreme weather events occurring in 

the last decades, at an increasing frequency and magnitude. The report published 

by the IPCC in 2021 states that extreme rainfall events are expected to increase 

even further over the span of the upcoming decade  (Herrmann et al. 2020). This 

thesis investigates the climate change impact on established communities and 

critical infrastructure networks in an effort to understand, quantify and predict their 

climate resilience. The thesis also attempts to enhance said climate resilience, by 

developing policies and resilience-informed risk management plans, especially in 

the face of the most prevalent risk caused directly by climate change— Flood risk.  

For most of this thesis, data science and Machine Learning were utilized and 

developed to achieve the research goals and objective. In Chapter 2, the 

quantification of the communities’ resilience was achieved by developing an 

unsupervised machine learning algorithm on a historical dataset containing features 

of the resilience goals (i.e., robustness and rapidity) and the overall impact of the 

hazard on the community, along with the community’s response. These 

unsupervised machine learning models were developed and compared for the best-

fit-model to decrease disparity between observations grouped into a single cluster. 

The resulting clusters were then investigated to draw their common features, 
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resulting in 5-categories system containing all the necessary information on how 

the different communities respond to their respective hazards. For Chapter 3, 

numerous supervised machine learning models were developed (i.e., predictive 

analytics) to introduce climate information onto the developed categories. The 

different models were tested with historical dataset, and their validity confirmed, 

paving the way for Chapter 4. In Chapter 4, global climate models were introduced 

to the prediction algorithm, this step successfully predicts the change in the 

resilience of the communities’ features and responses to climate change induced 

hazard into the year 2050, acting as a vital step in the development of resilience-

informed management plans and policies. To continue the investigation of the 

impact of climate change induced flood hazard onto the critical infrastructure 

systems and the established communities, Chapter 5 takes a closer look at the 

climate resilience of individual critical infrastructure networks to assess its climate 

resilience. The chapter investigates and evaluates the current practice and 

methodologies for evaluating the scour risk resulting from the increased climate-

change related flood hazards. Specific conclusions, results, and recommendations 

for future work are presented in the following sections.  
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6.2. CONTRIBUTIONS AND CONCLUSION 

Chapter 2 

This chapter provides a summary on community resilience, starting by 

defining resilience within the context of this thesis, identifying it by the two 

resilience goals (i.e., Robustness and Rapidity), and the two means of resilience to 

achieve said goals (i.e., Rapidity and Redundancy). The chapter then aims at 

achieving the following: 1) quantify the resilience of the exposed communities by 

developing a categorization framework, using unbiased unsupervised Machine 

Learning algorithms that explain different aspects of resilience of the community, 

2) utilize this categorization to identify vulnerabilities by developing a comparative 

spatial analysis, 3) identify the validity of the framework by testing it using real-

life data in the development of the indices. The framework developed in Chapter 2 

is then applied on the historical disaster dataset developed by the National Weather 

Service (NWS), a subagency under National Oceanic and Atmospheric Association 

(NOAA). Three unsupervised ML models were developed, namely: K-means 

clustering, Self Organizing Maps – Artificial Neural Networks, and Model-Based 

Clustering technique, where their results compared, and the model with the best 

variability and diversity was selected. 
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The model resulted in a 5-category system, identifying the unique features of 

how each community responds to its corresponding respective hazards, enabling 

the identification of vulnerabilities within specific communities by applying a 

comparative spatial analysis. This analysis was applied at the United States 

mainland states, aggregated to a state-level resolution by calculating the cumulative 

average index (i.e., category) for each state. Depending on the scale and resolution 

of the study, the users can identify the vulnerabilities at all scales now that an 

unbiased categorization framework is developed, acting as a decision support tool 

for stakeholders to allocate their resources. In this study, the comparative analysis 

identified the state of Oregon as the state with the highest resilience index value 

(translating to a lower resilience), identifying it as the most vulnerable state in terms 

of flood impact on their established community, and how they respond to said 

hazards. 

Chapter 3 

In Chapter 3, we introduced the concept of introducing climate information to 

the developed indices for the development of a prediction framework. This study 

builds on the results of the categorization used in Chapter 2, where these indices 

were used and coupled with historical climate information from the year 1996 to 

the end of 2019. The climate information dataset was synchronized with the 
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historical disaster dataset, such that each data point would contain the resilience 

category as the independent variable, and the climate information as the 

independent variables for this datapoint. The state of Texas was chosen as the test 

location for the application of the developed framework, where Texas had the 

largest number of recorded flood events (datapoints) and suffered the most 

cumulative monetary damage compared to the other states, making it a better choice 

for the application of the data-driven framework than the state of Oregon, given its 

much larger number of recorded flood events, despite its relative higher flood 

resilience.  

Numerous supervised ML models were developed in this study in order to 

compare their predictive output, namely: Random Forest with 300 trees, Random 

Forest with 1000 trees, Bagged Decision trees, and Naïve Bayes Classification. The 

predictive capability of these developed algorithms, while varying in their 

capabilities, all resulted in comparable predictive accuracy, and to objectively 

assess their performances, the Precision, Recall, and F1-score were used to test the 

performance of all the employed models. To that end, the Bagged Decision trees 

were the model with highest overall performance. 
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Chapter 4 

Chapter 4 builds on the frameworks presented in Chapters 2 and 3, by 

incorporating climate change impact with the developed resilience indices. The 

study presented in chapter 4 employs GCMs for different emission scenarios in 45 

different locations within the state of Texas. The chosen spatial resolution was 

county based, where 16 GCMs were used for each emission scenario, for each of 

the test locations selected in the study.  The GCMs are a result of the CMIP 5 

project, where the scenarios under consideration are RCP 6.0 and RCP 8.5. The 

study also used multiple interpretability techniques to draw relations between the 

input-outputs of the ML models, in an effort to understand how each variables 

interact and influence one another. The study concluded that the Temperature 

(whether daily maximum or minimum) are the most influential over the increase in 

resilience index (i.e., increase vulnerability), that the windspeed is most impactful 

around the 6 m/s speed, while its impact on the resilience decreases as the speed 

increases, and finally, that beyond the 200 mm threshold, precipitation ceases to 

have an impact on the overall increase of resilience index of the community under 

consideration.  

The prediction algorithm developed a spatiotemporal analysis into the 

resilience (represented by the index of each location) up until the year 2050, 
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identifying the expected losses (monetary and otherwise) from climate change-

induced flood hazards, and the current state of the community under consideration. 

These results act as an employable decision support tool for policy holders and 

decision makers, where it aids in the allocation of resources within their areas of 

increased predicted vulnerability, ultimately mitigating the effect of climate change 

on their assets, saving millions of dollars of taxpayers’ money, and improve the 

quality of life for their residents.  

Chapter 5 

Chapter 5 takes the concept of climate resilience a step further, by focusing its 

lens on a single critical infrastructure network. In this case, that network is transport 

network, with a focus on Railway Bridges subjected to climate-induced scour risk. 

This chapter introduces a high-order multi-layer framework that accounts for 

different factors, albeit interdependent factors, that contribute to the formation of 

scour. This chapter works at enhancing the asset management process for 

infrastructure asset owners and decision makers by developing a resilience-

informed strategic risk assessment step within the asset management cycle. In this 

step, a comprehensive scour risk score for prioritization of assets is developed, but 

instead of revamping the whole process, the proposed approach builds upon the 

existing methodologies and strategies set in place by adding more layers to it. The 
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study introduces more factors into calculating the scour risk score that account for: 

Geological information, Climate Change and the subsequent flood risk, 

Hydrological features of water action, and Structural properties of the asset. The 

study also tests the proposed framework by applying it on all railway bridges in 

southeast England, in particular, in the counties of Essex, Wessex, and Kent.  

The study herein identifies that 62% of the bridges in that area are actually in 

higher risk than originally determined, with a maximum increase of 19% in risk 

score, while most of these bridges changed priority from Medium to High priority. 

This study highlights the importance of the proposed framework, highlighting the 

need for incorporating climate-resilience within the asset management cycles, along 

with more information pertaining to the geological properties of riverbed materials, 

and how they are affected by climate change. 

6.3. RECOMMENDATIONS FOR FUTURE RESEARCH 

The different chapters in this thesis fall under the umbrella of enhancing community 

climate resilience, whether through the community as a whole with all its 

components, or by focusing on the individual critical infrastructure networks. To 

that end, the study developed, tested, and operationalized multiple frameworks for 

enhancing communities at multiple levels, quantifying and predicting the 

community’s response to the imposed hazards, and enhance the strategic 
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management and decision making of the stakeholders and asset owners. However, 

the following are the limitations, and recommendations for future work to take this 

research a step further:  

• More variables are desirable to be included in the categorization application 

presented in Chapter 2, where the authors were limited with the available 

datasets. Should the research community take this framework a step further 

towards realizing the overarching goal of developing a decision making 

tool, the dataset used in the development of the unsupervised learning 

process needs to be comprehensive enough, with more variables pertaining 

to the socio-economic features of the community (i.e., demographic features 

of the residents of each community, a more comprehensive recovery time 

from the moment of failure, more socio-economic information on the 

indirect losses and impact of the imposed hazard) 

• The unsupervised models developed in Chapter 2 can also be further built 

upon by investigating the use of other data-transformation techniques to 

unify the data types used in the study, or explore more unsupervised ML 

models that have better capabilities to deal with mixed-type datasets. 

• In Chapter 3, the study was limited to the available climate information, and 

it is recommended that more variables are to be included in the application 
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of the developed framework. These variables may include: wind speed, 

humidity, air pressure, etc.  

• The supervised models developed in Chapter 3 can also be further improved 

by exploring the employability of different ML models on mixed type 

datasets, and creating larger ensemble models to enhance the overall 

accuracy of the predictive model.  

• The methodology adopted in Chapter 4 can be further developed into a 

global prediction algorithm, gathering data from all possible locations 

within a specific test area, whether a full state or a full country, and acts as 

an early warning system, and ultimately, can be developed into a 

comprehensive management system for the built environment. 

• In Chapter 5, the framework can be adjusted to account for a probabilistic 

analysis on the formation of scour by utilizing flood fragilities, along with 

different bridge-related information.  

• The study in Chapter 5 can also be further developed with future flood 

projections (i.e., projected flood risk maps) when such data become 

available. 
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6.5. ACRONYMS 

CMIP Coupled Model Intercomparison Project 

GCMs Global Climate Models 

ML Machine Learning 

NOAA National Oceanic and Atmospheric Administration 

NWS National Weather Service 

RF Random Forest 

 


