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Abstract

Inertial Measurements Units (IMU) are widely used in robotics, such as navigation

and mapping tasks. Nowadays, many commercial off-the-shelf devices like smart-

phones and drones are mostly equipped with low-cost embedded IMU sensors. Nev-

ertheless, systematic errors affect low-cost IMUs due to imprecise scaling factors and

axes misalignments that decrease the accuracy in position and attitude estimation.

Therefore, a procedure to calibrate these IMUs at reasonable costs is essential in

many engineering applications. Traditionally the calibration of such IMUs has been

done by using special mechanical platforms such as a robotic manipulator. However,

such mechanical platforms used for calibration are usually costly. In this report, we

propose a method to calibrate IMUs with the help of a low-cost platform. The proce-

dure is based on a multi-position scheme, providing scale and misalignments factors

for both the accelerometers and gyroscopes triads, as well as estimating sensor biases.

The method only requires a sensor to be attached to the calibration platform. We

use an Arduino Due board to control the motor on the platform and set different

attitudes for the rotatable shaft. We design a data collection and calibration proto-

col that exploits an effective parameterless static filter to reliably detect the static

intervals in the sensor measurements, where local stability of the gravity’s magnitude

can be assumed. In the protocol, the accelerometers triad is first calibrated from

measurement samples in the static intervals. Next, these results are exploited to cal-

ibrate the gyroscopes through a robust numerical integration. The performances of

the proposed calibration technique have been evaluated via actual experiments with

a commercial high-precision IMU sensor.
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Chapter 1

Introduction

IMUs in today’s market, which are composed of an accelerometer, a gyroscope,

and sometimes a magnetometer in one sensor package, are usually based on the MEMS

(micro-electro-mechanical systems) technology. They have been used in navigation

systems, attitude estimation, and consumer electronics like smartphone devices[1].

Their low costs make them attractive, but the advantages come at the expense of

having high cross-sensitivity, significant offset biases, and drifts. In an ideal IMU, the

tri-axial clusters should share the same three orthogonal sensitivity axes, with fixed

and known scale factors that convert the digital quantities measured by each sensor

to actual physical quantities (acceleration and angular velocity). Unfortunately, low-

cost MEMS-based IMUs are usually affected by non-accurate scaling, sensor axis

misalignments, cross-axis sensitivities, and non-zero biases. IMU calibration refers to

the process of estimating and correcting these quantities.

2
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1.1 Motivation

Many commercial IMUs in the price range from $1000 to $2000 are factory cal-

ibrated, and often they are also temperature compensated. Each sensor is shipped

with its calibration parameters stored in the firmware or a non-volatile memory, pro-

viding accurate measurements off the shelf. Traditionally, calibrating such IMUs

has been done by using unique mechanical platforms such as a robotic manipulator.

However, the mechanical platforms used for calibration are usually costly, resulting

in a calibration cost that often exceeds the cost of the IMU’s hardware. On the

other hand, low-cost IMUs ($20 to $100) and the IMU sensors employed in current

smartphones are usually poorly calibrated[2]. They are affected by systematic errors

from imprecise scaling factors and axes misalignments that decrease accuracy in the

position and attitudes estimation. The ability to calibrate these low-cost IMUs at a

reasonable cost is essential for many engineering applications.

1.2 Related Work

Traditionally, calibrating an IMU requires a unique mechanical platform that

moves the IMU with known rotational velocities in a set of precisely controlled

orientations[3, 4]. At each orientation, the output of the accelerometers is com-

pared with the precomputed gravity vector, while during the rotations, the output

of gyroscopes is compared with the precomputed rotational velocity. However, such

mechanical platforms are usually costly.

In [5], a calibration procedure that exploits a marker-based optical tracking sys-

tem was presented, while in [6], GPS readings are used to calibrate initial biases and

3
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misalignments. The accuracy of these methods strongly depends on the accuracy

of the employed kinematic reference (i.e., the motion capture system or the GPS).

A multi-position method was firstly introduced by the authors[7]: they proposed to

calibrate the biases and the scale factor of the accelerometers using the fact that the

magnitude of the static acceleration must equal the gravity’s magnitude. This tech-

nique has been extended in [8] and [9] to correct accelerometer axis misalignment.

The error model proposed for gyroscopes is similar to the one used for accelerome-

ters, but the calibration procedure, in this case, requires a single axis turntable to

provide a strong rotation rate signal, for high calibration accuracy. Unfortunately,

these approaches not only require mechanical equipment, but since the two triads

are independently calibrated, the misalignment between them can not be detected.

In [10] and [11], two calibration schemes were presented that do not require any

external mechanical equipment. Similar to our approach, in [10], the authors cali-

brate accelerometers by exploiting the high local stability of the magnitude of gravity.

Then, gyroscope calibration is done by comparing the gravity vector measured by the

calibrated accelerometer with the gravity vector obtained by integrating the angular

velocities from the gyroscope. In [11], the authors also exploit the local stability of

the magnetic field.

1.3 Goals

We aim to determine calibration parameters for low-cost IMUs with a low-cost

calibration platform. We propose a practical and easy-to-implement calibration pro-

tocol that only requires collecting IMU data with the simple procedure described in

Fig.3.5. William Luders and Jiamin Zhou designed the initial calibration platform.
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The platform has 2-axis rotatable shafts, and we can attach IMU sensors on the

shafts. The shafts are driven by two motors which are powered by 4 AA batteries.

An Arduino board controls the rotation degrees. After an initialization period with

no motion, the rotatable shaft of the platform moves the IMU sensor in different

positions while the accelerometer and gyroscope can generate a set of readings. We

use mobile app to collect sensor data, and use the collected dataset to calibrate the

scale and misalignment factors for both the accelerometers and gyroscopes triads.

1.4 Organization of the Report

The rest of the report is organized as follows. Chapter 2 introduced the basic

mechanism of a MEMS-based IMU sensor, the problems of the uncalibrated state.

Then, the misalignment, non-orthogonality, scaling, and bias errors were described,

including mathematical models and cost functions derived from them. In chapter 3,

the hardware part of the calibration platform is illustrated at the beginning; then,

the calibration algorithm is described, including the theoretical background. A data

collection protocol that conforms to the calibration algorithm is also included. Finally,

in chapter 4, two experiments that test with real IMU sensors are described in detail;

all results are reported and lead to a positive conclusion. Future works are also

exposed.

5



Chapter 2

Sensor Error Model

An IMU sensor can measure the attitude of the body which it is attached to. It

consists of clusters of accelerometers and gyroscopes, sometimes also magnetometers[2].

It works by detecting the current rate of acceleration using the accelerometer cluster

and detects changes in rotational attributes like pitch, roll, and yaw using the gy-

roscope cluster. In this report, we only consider accelerometer and gyroscope. The

model used is shown in Fig.2.1

6
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Figure 2.1: A simplified model of an IMU

Sensor errors consist of the non-zero bias, non-unit scale factor, non-orthogonal

misalignment of the sensor axes, and the cross-axis sensitivity[7]. A calibration pro-

cess proceeds by defining sensor error models, deriving the cost functions for ac-

celerometer and gyroscope respectively, collecting raw sensor measurements, and fit-

ting model parameters based on non-linear optimization of the cost functions.

All MEMS-based sensors are subject to deterministic and stochastic errors[12]. I

summarized the classification of errors in Table 2.1. Stochastic errors can be identified

by Allan Variance[13], and the coefficients of noise sources are obtained by the fitted

curve to achieve the modeling process.

7
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Table 2.1: Error Classification in MEMS sensors

Sensor Error Classification
Deterministic Errors Stochastic Errors

System Drift Scale Factor Error Other Error
Quantization Noise

Angle Random Walk
Bias Instability

Rate Random Walk
Rate Ramp

Sinusoidal Noise

Zero Bias
Environmental

Sensitive
Drift

Nonlinear
Error

Temperature
Sensitive

Error

Cross
Coupling

Error

Axia
Misalignment

Error
Preheat

Instability

Equipment
Running

Instability

Temperture
Sensitive

Drift

There are many imperfections due to the sensors themselves, the soldering of the

sensors on the chip, and other reasons that cause data distortion so that the sensor’s

output becomes less accurate. In this work, we only deal with misalignment, non-

orthogonality, scaling, and bias errors.

2.1 Misalignment and Non-Orthogonality Errors

For an ideal IMU, the three axes of the accelerometers triad and the gyroscopes

triad define a single, shared, and orthogonal 3D frame[2]. Each accelerometer senses

the acceleration along a distinct axis, while each gyroscope measures the angular

velocity around one of the same axes. Unfortunately, in real IMUs, the two triads

may form two misaligned and non-orthogonal frames due to assembly inaccuracy.

Since both the accelerometers frame (AF) and the frame of the gyroscope (GF) are

usually non-orthogonal, we can define two associated orthogonal ideal frames (AOF

and GOF, respectively) as follows:

• The x-axis of the AOF and the one of the AF coincide

• the y-axis of the AOF lies in the plan spanned by the x and y axes of the AF.

For the gyroscopes, it is sufficient to substitute the AF and AOF with GF and GOF,

8
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respectively. Finally, we defined a body frame (BF), which is an orthogonal frame

that represents, for example, the coordinate frame of the IMU’s chassis. The body

frame usually differs from the AF and GF frames by small angles. However in general,

there is no direct relation between them. For small angles, measurements SS in a non-

orthogonal frame (AF or GF) can be transformed into the orthogonal body frame as:

sB = tsS, t =


1 −βyz βzy

βxz 1 −βzx

−βxy βyx 1

 , (2.1)

where sB and sS denote the (acceleration), or equivalently the (rotational velocity),

in the body frame coordinates and accelerometers ( gyroscopes) coordinates, respec-

tively. Here βij is the rotation of the i -th accelerometer (gyrocsope) axis around the

j -th BF axis as illustrated in Fig.2.2.

9
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Figure 2.2: Sensor sensitivity axes xS, yS, zS, and body frame coordinates axes xB,
yB, zB

On the other hand, the two orthogonal frames, BF and AOF (and, equivalently,

BF and GOF), are related by a pure rotation. In our calibration method, we assume

that the body frame BF coincides with the accelerometers orthogonal frame AOF. In

such a case, the angles βxz, βxy, βyx are zero, and in the case of the accelerometer

Eq.(2.1) becomes:

aO = taaS, ta =


1 −αyz αzy

0 1 −αzx

0 0 1

 , (2.2)

where letter β, referring to the general case, is changed to the letter α for accelerom-

eter, while aO and aS denote the specific acceleration in AOF and AF, respectively.

10
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We cannot apply the same simplification to the gyroscope coordinate frame be-

cause we want to obtain calibrated measurements coherent between the gyroscopes

and the accelerometers[2]. Thus, we have to orthogonalize the gyroscopes’ sensitivity

coordinate frame and rotate it. For the gyroscopes, we have:

ωO = tgωS, tg =


1 −γyz γzy

γxz 1 −γzx

−γxy γyx 1

 , (2.3)

where ωO and ωS denote the specific angular velocities in the orthogonal coordinate

frame and IMU’s gyroscopes sensitivity coordinate frame, respectively. tg is the

matrix that orthogonalizes the gyroscopes sensitivity axies and aligns them to these

of the accelerometers.

2.2 Scaling Error and Bias

Both the accelerometers and the gyroscopes are affected by biases and scale errors.

Two scaling matrices are introduced:

ka =


sax 0 0

0 say 0

0 0 saz

 , kg =


sgx 0 0

0 sgy 0

0 0 sgz

 . (2.4)

In the ideal case both ka and kg are identity matrix. Also, two bias vectors are

11
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introduced:

ba =


bax

bay

baz

 , bg =


bgx

bgy

bgz

 . (2.5)

2.3 Complete Sensor Error Model

We should also consider the measurement noise to complete the sensor error model.

Thus, the complete accelerometer error model is given by,

aO = taka
(
aS + ba + υa

)
, (2.6)

and the complete gyroscope error model is

ωO = tgkg
(
ωS + bg + υg

)
, (2.7)

where υa and υg are the accelerometer measurement noise and the gyroscope mea-

surement noise, respectively.

12
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2.4 Cost Function

In order to calibrate an accelerometer, nine unknown parameters of the error

model presented in Eq.(2.6) need to be estimated. That is

aO =


1 −αyz αzy

0 1 −αzx

0 0 1



sax 0 0

0 say 0

0 0 saz


(
aS +


bax

bay

baz


)
. (2.8)

Thus, the vectorized unknown parameters for the accelerometer (θacc) are

θacc =
[
αyz, αzy, αzx, s

a
x, s

a
y, s

a
z , b

a
x, b

a
y, b

a
z

]
. (2.9)

We can define the function

aO = h(aS,θacc) = T aKa(aS + ba). (2.10)

The cost function for accelerometer is

L(θacc) =
N∑
k=1

(‖ g ‖2 − ‖ h(aSk ,θ
acc) ‖2)2, (2.11)

where N is the number of measurement sets from which acceleration vectors aSk are

extracted, averaging the accelerometer readings in a temporal window inside each

static interval. ‖ g ‖ is defined as the actual magnitude of the local gravity vector.

In order to minimize Eq.(2.11), the Levenberg-Marquardt (LM) algorithm[14] is used

with initial guess θacc0 = [0, 0, 0, 1, 1, 1, 0, 0, 0].

13
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We use a new bias-free system for gyroscopes simply by averaging the static gy-

roscope signals (Allan Variance method, to be discussed in Chapter 3). The nine

unknown parameters are estimated in the same way as the accelerometer.

ωO =


1 −γyz γzy

γxz 1 −γzx

−γxy γyx 1



sgx 0 0

0 sgy 0

0 0 sgz


(
wS
)
. (2.12)

Thus, the unknown parameter vector for the gyroscope (θgyro) is

θgyro =
[
γyz, γzy, γxz, γzx, γxy, γyx, s

g
x, s

g
y, s

g
z

]
. (2.13)

Ψ can be any algorithm that converts a sequence of ωSi , from i = 0 to i = n, and the

initial gravity vector u0, to the gyroscope computed gravity vector ug

ug = Ψ
[
ωSi ,u0

]
. (2.14)

We adopt the Runge-Kutta integration algorithm[15] to compute the orientation by

integrating the angular velocity ωSi . Having all these definitions, we can define the

cost function as

L(θgyro) =
N∑
k=1

‖ ua,k − ug,k ‖2, (2.15)

where N is the number of measurement sets, ua,k and ug,k are the k-th acceleration

vector measured in the calibrated accelerometer frame and the k-th acceleration vector

computed using the gyroscope frame respectively. To minimize Eq.(2.15), the same

algorithm is used with initial guess θgyro0 = [0, 0, 0, 0, 0, 0, 1, 1, 1].

14



Chapter 3

Calibration Platform Design and

Algorithm Implementation

We use two fundamental properties to set up the calibration method [10]. They

put physical and mathematical constraints on the sensor outputs. In this way, we can

calibrate an IMU easily without using high-precision mechanical equipment.

• Property-1: the magnitude of the acceleration measured in static states must

equal the gravity.

• Property-2: the gravity vector measured using a triaxial accelerometer in

static state must equal the gravity vector computed using the IMU orientation

integration algorithm, which uses the angular velocities measured by the gyro-

scopes, and it starts the orientation integration from a direction given by the

triaxial accelerometer itself.

Before we dive into the calibration procedure, let’s first described the design of

the calibration platform.

15



M.Eng Report - Ge Chen McMaster - Computing and Software

3.1 Hardware

William Luders and Jiamin Zhou designed the initial calibration platform. The

mechanical design of the platform can be found in Fig. 3.1. They use a breadboard

to connect the wires to the Arduino board. The disadvantage is that the wires may

get loose and lose connection when the platform is moved. It is inconvenient when

the tests are conducted in different places due to the need to reconnect the wires each

time. To eliminate the need for reconnection, I design a circuit board and use sockets

to fix the wires and make the connection more stable.

The calibration platform has two 2-axis rotatable shafts, allowing to place IMU

sensors at different attitudes for raw sensor data collection. We require repeatable

motions across trials with some accuracy (±10◦ range) so that the sensors would be

subject to similar conditions during calibration. In fact, we do not need knowledge

of the motion from the calibration platform.

16
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Figure 3.1: Calibration platform CAD design

• Motors

We choose standard size servos with 270◦ range of motion. They have good

repeatability and controllability, and are easy to integrate with an Arduino Due

microcontroller. We use 4 AA batteries to power these motors.

• Controller

We select an Arduino Due as the microcontroller. It has enough hardware

timers and interrupt pins to run the servos. We can set multiple positions in a

position table and let the controller control the rotations of the 2-axis shafts on

17
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the platform to collect sensor data in all different attitudes.

Figure 3.2: Calibration platform material object

3.2 Calibration Algorithm

The calibration algorithm requires four inputs, namely, Tinit, twait, a
S and ωS.

Tinit is the time that IMU sensors need to be placed in static at the beginning of a

calibration. twait is the time that the rotatable shafts keep static before they start

rotating again. aS and ωS are raw sensor readings of a accelerometer and a gyro-

scope, respectively. Tinit can be computed by Allan Variance method(more on 3.2.1).

Our current implementation sets twait to 4 seconds. The outputs are the calibration

18
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parameters discussed in section 2.4. The calibration algorithm implements a motion

detector(more on 3.2.2) that can identify static and motion intervals. To calibrate a

accelerometer(gyroscope), raw sensor readings from static(motion) intervals are used.

Using Ceres Solver library[16], cost functions discussed in 2.4 can be built and get

minimized. A high level overview of the calibration algorithm can be described as:

Algorithm 1: IMU Calibration Algorithm

Input: Tinit, twait; a
S and ωS.

Output: Calibration parameters.

bg ← average gyroscope signals over Tinit;

ωSbiasfree ← ωS - bg;

Minf ← empty matrix;

ζinit ←
√

[vartw(atx)]
2 + [vartw(aty)]

2 + [vartw(atz)]
2, with tw = Tinit ;

for i = 1 : k do

threashold ← i * ζ2init;

static intervals ← motion detector computed using twait and threshold;[
Residual, Params

]
← optimize Eq.(2.11), using static intervals and aS

averaging with twait ;

Minf (i) ←
[
Residual, Params, threshold,static intervals

]
;

indexopt ← index of the minimum residual in Minf ;

Paramsacc ← from Minf using indexopt ;

static intervalsopt ← from Minf using indexopt ;

aO ← calibrate aS using Paramsacc;

Parametersgyro ← optimize Eq.(2.15), using static intervalsopt, ω
S
biasfree and

aO averaging with twait.

19
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3.2.1 Allan Variance

Since the algorithm requires Tinit as one of the inputs, it needs to be computed

first. The random gyroscope bias drifts are characterized by using the Allan Vari-

ance method[13], which measures the variance of the difference between consecutive

interval averages. The Allan Variance σ2
a is defined as:

σ2
α =

1

2

〈(
x(t̃, k)− x(t̃, k − 1)

)2〉
=

1

2K

K∑
k=1

(x(t̃, k)− x(t̃, k − 1))2, (3.1)

where x(t̃, k) is the average of the k-th interval of t̃ seconds, and K is the number of

segmented intervals. We compute the Allan Variance for each gyroscope axis, with

t0 ≤ t̃ ≤ tn. We fix t0 = 1s, tn = 225s. The time in which the Allan Variance of the

three axises converge to a small value represents a good choice for the initialization

period Tinit. In this Tinit period, we compute the average of the static gyroscope

signals to correctly determine the gyroscope biases used in the calibration. Fig. 3.3

shows that a good value for Tinit is about 50 seconds.

20
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Figure 3.3: Allan Variance computed for the gyroscopes triad

3.2.2 Motion Detector

The calibration accuracy strongly depends on correct identification of static and

motion intervals. Static intervals are used to calibrate the accelerometer, while the

motion intervals between two consecutive static intervals are used for gyroscopes cal-

ibration. The design of the motion detector is based on the accelerometer’s readings:

given a time interval of length twait seconds, for time t, the variance magnitude is

computed as:

ζinit =
√

[vartw(atx)]
2 + [vartw(aty)]

2 + [vartw(atz)]
2, (3.2)

where vartw(at) is the variance of a general signal at in a time interval of length tw

seconds centered in t. First, compute the variance of the data from the initial static

interval(Tinit), and its norm, denoted by norm th which can be used as a threshold.
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Next, use a sliding window of size 101 sample to find static intervals. If the variance

of the accelerometers data in the window is less than norm th, it is considered a static

interval. Fig3.4 shows the plots of the raw data. The orange border of a rectangle

represents a static interval and a motion interval lies in between two consecutive static

intervals.

Figure 3.4: Accelerometer static interval detector

3.2.3 Calibration Procedure

We need to put sensors to at least nine different attitudes to correctly estimate

the calibration parameters[9]. The higher number N of distinct attitudes we have,

the better calibration results we may get. With 36 ≤ N ≤ 50 and 1s ≤ twait ≤ 4s[2],

a good trade-off can be realized between calibration accuracy, biases stability and

noise reduction. The calibration procedure is summarized in flow chart Fig.3.5.
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Figure 3.5: Calibration procedure

Steps in detail are listed below:

1. Set twait = 4s, Tinit = 50s, the bias vector and scale vector as
[
0, 0, 0

]T
,
[
1, 1, 1

]T
,

respectively.

2. Extract data from the first Tinit time interval.

3. Compute the variance of the data from the initial static interval (step 2), and

its norm, denoted by norm th.
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4. Use a sliding window of 101 sample to find static intervals. If the variance of

the accelerometers data in the window is less than norm th, it is considered a

static interval. Next, extract the accelerometers data from the static intervals.

5. We use the actual gravity magnitude and the static interval data samples to

calculate the cost function defined in Eq.(2.11). If the IMU is in a static state,

the accelerometer’s reading should equal the gravity magnitude.

6. With the help of Google Ceres Solver library[16], we can minimize the cost

function and obtain the nine unknown parameters in the error model.

7. From the calibrated results of the accelerometer, we extract the static samples

for gyroscopes.

8. Compute the gyroscopes biases in the static initialization interval (Tinit).

9. Remove the biases from raw gyroscopes data samples.

10. Find the start and end indices for the motion intervals using the static interval

we extracted previously.

11. Build the cost function and minimize it to get the gyroscope calibration param-

eters.

3.3 Data Collection Protocol

To collect necessary data for calibration, we follow the calibration protocol defined

in Fig 3.5.

1. Place the target sensor on the inner shaft of the platform.

24



M.Eng Report - Ge Chen McMaster - Computing and Software

2. Run the Ardunio program to drive the rotatable shafts and start collecting

raw sensor data. Since we need an initial static interval (Tinit) to compute the

gyroscope’s bias and the variance of the accelerometers’ readings, the shafts will

keep static for Tinit = 50s.

3. After the first Tinit static interval, the Ardunio program controls the motors

to rotate the shafts. The rotation follows the position table defined in the

Ardunio program. After each rotation, the shafts remains static for Twait = 4s,

then rotate again. We can collect a series of static and motion intervals data.

4. When we rotated the IMU N = 36 times, stop collecting data.

Fig.3.6 Shows the examples of the platform when collecting raw sensor data.

25



M.Eng Report - Ge Chen McMaster - Computing and Software

Figure 3.6: Examples of the mbient IMU sensor attached to the platform, placed in
different attitudes

Some important aspects worth noting are:

• In the first Tinit period, one needs to make sure the platform is completely static

for a better estimation of the gyroscope’s bias.

• Since we use a sliding window with size 101 to detect static intervals, each static
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interval should at least have 100 frames data. If the sampling rate is 100Hz,

Twait should be at least 1 second.

• The motion interval cannot be too short. The current implementation of cali-

bration algorithm requires it to be at least 1 second to work. It is better to have

a noticeable accelerate or decelerate motion, otherwise the integration may be

hard to converge.

• The number of static intervals should be greater than 12. Otherwise, we do not

have enough data to perform calibration. 30 to 40 static intervals can lead to

optimized results[2].
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Chapter 4

Evaluation And Conclusions

With the help of Ceres Solver library[16], we can minimize the cost function and

compute the misalignment matrix, the scale matrix, and the bias vector for both the

accelerometer and gyroscope. Using Eq.(2.8) and Eq.(2.12) we can get the calibrated

sensor readings. For evaluation, use an iMeasureU high-precision IMU sensor[17] to

provide the ground truth, and the IMU sensors that being tested are MbientLab

MetaMotionR IMU[18] and the built-in IMU of Samsung Galaxy 9 smartphone.

There are two approaches to evaluate the calibration results:

Approach 1: Attach the iMeasureU IMU sensor and the IMU sensor being tested

to the same rotatable shaft. Collect raw sensor data for both sensors simultaneously.

Run the calibration program to get the calibration parameters. We first compare the

similarity between the raw data of the tested sensor and the ground truth. Next, we

apply the calibration parameters to get calibrated results and calculate the similar-

ity measure again. If the degree of similarity improves after the calibration, we can

conclude that the calibration algorithm and the platform are effective.

Approach 2: Some IMU sensors (e.g., the Xsens MTi IMU) provide factory-calibrated
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calibration parameters in their datasheets. It is sufficient to compare the computed

calibration parameters with the factory-calibrated parameters.

Since all the IMU sensors tested do not provide such factory-calibrated parameters,

we adopt approach 1 on the evaluation test. Before we dive into the test, we need

to first handle two problems, namely, defining similarity measures and aligning time

series data from multiple sensors.

4.1 Data Similarity Measures

To assess how close the data from the IMU sensor being tested to the ground truth

before and after the calibration, we choose the Pearson Correlation Coefficient[19] to

calculate the data similarity. Unlike the Euclidean Distance similarity score, PCC

measures how correlated two data sets is in the range from -1 to 1. A score of 1

indicates that the data sets are perfectly correlated, a score of -1 means that the data

sets are negatively correlated, and a score of 0 indicates that the two data sets are

not correlated at all.

The Pearson Correlation Coefficient is calculated as the ratio between the covari-

ance and the standard deviation of both data sets. In mathematical form, the score

is:

Pearson(x, y) =

∑n
i=1 (xi − x)(yi − y)√∑n

i=1 (xi − x)2
√∑n

i=1 (yi − y)2
, (4.1)

where n is sample size, xi, yi are the individual sample points indexed with i, x is the

sample mean (same for y).

The Pearson correlation is implemented in multiple Python packages, including

Numpy, Scipy, and Pandas, making it much easier to use.
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4.2 Aligning Time Series Data

To compute the Pearson Correlation Coefficient between the ground truth and

an IMU sensor being tested, we first need to align the time-series data from the two

sensors. Even though the data are collected simultaneously, due to different clock

crystals used in various sensors and the inability to start recording data for two

sensors at the same time, two time-series data can have some delay offsets.

Computing the cross-correlation function is useful for finding the time-delay offset

between two time-series data. Python has the numpy.correlate function, but a FFT-

based implementation which has much lower complexity with an O(nlogn) running

time complexity (compared to O(n2) running time of the naive implementation) is a

better choice.[20][21]

The cross-correlation function has two input parameters X and Y , which are the

two sensors readings. It gives us an integer output denoted as tshift. If tshift is less

than zero, indicates that Y is tshift frames ahead of X, and if tshift is greater than

zero, shows Y is tshift frames behind of X. Shifting one of the sensor data based on

tshift aligned two time-series data sets.

4.3 Calibrating a MetaMotionR IMU

Both the iMeasureU and MetaMotionR have a corresponding mobile app that can

configure data recording settings (Fig.4.1). We collect raw data for MetaMotionR

at a 100Hz sampling rate. The sensitivity for the accelerometer is ±16g, and the

sensitivity for the gyroscope is 2000◦/s. Since iMeasureU streams measurements at

500Hz, the data needs to be downsampled to 100Hz afterward.
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Figure 4.1: iMeasureU and MetaMotionR data recording setting

Before attaching IMU sensors to the platform, we need to know the three axises

direction for the iMeasureU and the MetaMotionR sensors. The direction of the x,

y, and z-axis for two IMU sensors should be the same during data collection. This

information can be retrieved from their datasheets. (Fig.4.2)
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Figure 4.2: X,Y,Z axis direction for iMeasureU (left) and MetaMotionR (right) sen-
sors

Following the data collection protocol in Chapter 3.3, we attach the two sensors to

the rotatable shaft and start collecting raw sensor data. The collected data is stored

on a mobile phone and can export to a computer for further processing. (Fig.4.3)

Figure 4.3: Data export options on mobile app
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The calibration program processes the raw data and calculates the calibration

parameters of a MetaMotionR sensor as follows:

tacc =

[
1 0 −0.01
0 1 −0.003
0 0 1

]
, kacc =

[
0.997 0 0
0 1.005 0
0 0 0.993

]
, bacc =

[
−0.07
−0.655
0.06

]
,

tgyro =

[
1 −0.02 −0.01
0 1 −0.001

0.01 0 1

]
, kgyro =

[
0.981 0 0
0 1.02 0
0 0 1.00

]
, bgyro =

[
0

−0.004
−0.005

]
.

Given a raw sensor reading x (e.g., the acceleration), the calibrated reading x′ is

obtained by x′ = t ∗ k ∗ (x + b) where t is the calculated misalignment matrix, k is

the scale matrix, and b is the bias vector.

These two time-series data need to be synchronized to measure their similarity.

After calculating the time delay offsets between them, we plot in Fig.4.4 the data for

x, y, and z-axis and can see the data is now aligned.
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Figure 4.4: Unaligned (left) and aligned (right) time-series data

After applying Eq.(4.1), the Pearson correlation score before and after the cali-

bration are summarized in Table 4.1.

Table 4.1: Pearson Correlation score before and after calibration

MMR Before After
acc x 0.830 0.851
acc y 0.843 0.905
acc z 0.866 0.892

gyro x 0.730 0.813
gyro y 0.803 0.840
gyro z 0.768 0.821
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From the table, we can see from the results that sensor readings are getting better

after the calibration.

4.4 Calibrating Galaxy S9 Built-in IMU

The calibration process for the Galaxy S9 built-in IMU follows the same steps.

Except for this time, we need to build a data collection app using Android’s motion

sensor API[22].

Figure 4.5: X,Y,Z axis direction for iMeasureU and Galaxy S9 built-in IMU

The collected data is stored on the mobile phone’s local storage. A HTTP server

is set up on a PC, so that the data can upload to server via the HTTP protocol.

(Need to make sure the mobile phone and the PC are connected to the same LAN)
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Figure 4.6: Galaxy S9 collected data flow

The calibration program processes the raw data and calculates the calibration

parameters as follows:

tacc =

[
1 0.13 −0.01
0 1 0.16
0 0 1

]
, kacc =

[
0.997 0 0
0 0.98 0
0 0 0.992

]
, bacc =

[
−0.02
0.018
−0.029

]
,

tgyro =

[
1 −0.08 −0.01
0 1 −0.021

0.01 0 1

]
, kgyro =

[
0.997 0 0
0 1.01 0
0 0 0.985

]
, bgyro =

[
−0.06
−0.018
−0.018

]
.

Given a raw sensor reading x (e.g., the acceleration), the calibrated reading x′ is

obtained by x′ = t ∗ k ∗ (x + b) where t is the misalignment matrix, k is the scale

matrix, and b is the bias vector.

After applying Eq.(4.1), the Pearson correlation score before and after the cali-

bration are:
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Table 4.2: Pearson Correlation score before and after calibration

S9 Before After
acc x 0.751 0.793
acc y 0.805 0.812
acc z 0.826 0.84

gyro x 0.730 0.752
gyro y 0.776 0.79
gyro z 0.741 0.772

We can see from the results that correlation has improved after the calibration.

Comparing the results from Tbl 4.3 and Tbl 4.4 shows MetaMotionR has a better

result. Because the built-in IMU sensor in Galaxy S9 has much lower sensitivity (±8g

for accelerometer, and 1000◦/s for gyroscope) than iMeasureU and MetaMotionR

(both support ±16g, 2000◦/s).

4.5 Future Works

From the experiments we conducted previously, the calibration platform and al-

gorithm are effective. But there are some rooms to improve.

1. On the hardware side, the platform is not stable. It needs to be fixed on a

flat surface using tapes. Otherwise, it may fall due to the inertial force when

rotating.

2. The rotation is not linearly accelerated/decelerated. When the shaft moves from

rotation to static, it has some slight vibration movements caused by inertial

force, which has a negative impact on the quality of the collected data. Fig.4.4

shows that even for static intervals, the plotted data has some glitches. Since

the calibration algorithm is highly dependent on the quality of the data, the
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calibration may fail due to poor quality data. The rotatable shafts need a better

driving mechanism which can support linear acceleration/deceleration.

3. Since smartphones are typically equipped with built-in thermometers, the cali-

bration parameters can be compensated using the temperature readings[11].
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