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Lay Abstract 

Concussion is a form of traumatic brain injury that is associated with a variety of health 

effects. There is increasing evidence that individuals who are repeatedly exposed to head 

impacts, such as athletes in contact sports, may exhibit similar changes to brain function 

even without experiencing the symptoms of a concussion. EEG-based event-related 

potentials (ERPs) are a brain imaging technique that are useful in studying the effects of 

head impact exposure as they reflect brain function on the scale of milliseconds. One 

consideration of using ERPs is the amount of data required to obtain a reliable response. 

The present study investigated the minimum number of repetitions required for a reliable 

ERP. It found reliability to be consistent across histories of head impact exposure and 

with relatively few trials, providing preliminary evidence that ERPs may be a stable 

response that can serve as a reliable assessment tool for brain injured populations.  
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Abstract 

Concussive injuries are well documented as having a variety of acute and chronic health 

effects, and there is increasing evidence for cognitive health effects following repetitive 

head impact exposure even without the clinical presentation of injury. Event-related 

potentials (ERPs) recorded from electroencephalography (EEG) are uniquely suited to 

examine these effects due to their temporal resolution and specificity. ERP research 

requires a balance between collecting enough data to obtain a reliable response and 

optimizing the length of the experimental task so as not to be onerous for the participant; 

however, there is limited research addressing the stability of ERPs with an increasing 

number of trials. The present study investigated the stability of the mismatch negativity 

(MMN), an ERP associated with pre-attentive processing, in the context of head impact 

exposure history. Forty-one athletes with varying histories of head impact exposure and 

concussion completed EEG recording during a three-deviant auditory oddball paradigm. 

Data were analyzed with an increasing number of MMN trials using multiple indices of 

robustness and stability including Pearson’s correlation, Cronbach’s alpha and R2. Results 

indicated that head impact exposure did not influence the reliability of the MMN. A 

reliable response was obtained with a minimum of 40 trials for a duration deviant, 50 

trials for a frequency deviant, and 60 trials for an intensity deviant. Moreover, over 70% 

of the variance in total MMN amplitude was uniquely explained by the average of as few 

as 30 MMN trials in all three deviant types. The study was limited by a small sample size 

and varying quantifications of head impact exposure. The findings provide preliminary 

evidence that the MMN can be reliably observed with fewer trials than is currently the 
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norm and can be applied to shorten paradigms and reduce the burden placed on 

participants.  
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Introduction 

Electroencephalography and Event-Related Potentials 

 Electroencephalography (EEG), as a measure of brain function, is well known for 

its excellent temporal resolution, and its ability to represent activity on the scale of 

milliseconds. Event-related brain potentials (ERPs) are a technique derived from EEG in 

which activity is associated in time with a specific event, such as an environmental 

stimulus or individual response, and subsequently provide insight into cognitive processes 

such as attention, memory, or response inhibition (Duncan et al., 2009; Polich, 2007). 

ERPs are examined as components that represent the summed activity of numerous 

cortical neurons firing in concert, and can be distinguished based on a combination of 

polarity, scalp distribution, onset latency, and the cognitive process from which they arise 

(Duncan et al., 2009; Münte et al., 2000). For example, the P3b component is an 

attention-related ERP, being a positive going component maximal over the 

temporoparietal regions and associated with the allocation of attentional resources 

(Polich, 2007).  

 The mismatch negativity (MMN), another ERP component and the primary focus 

of the present investigation, is a brain response associated with automatic attention and 

predictive coding, arising when a detectable change in stimulation occurs even in the 

absence of active attention placed on the stimuli (Duncan et al., 2009; Näätänen et al., 

2004). The MMN was chosen as the focus of the present investigation for its frequency of 

application with various clinical populations, which is discussed further below. The 

MMN presents as negative activity recorded from the frontocentral region of the scalp 
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and typically peaks around 150 to 250 milliseconds after a stimulus has been presented 

(Näätänen et al., 1978; Näätänen & Kreegipuu, 2012). The MMN is often studied using 

an auditory so-called oddball paradigm. A series of frequently repeated tones are 

interspersed with infrequent tones that differ from the recurring tones on some 

characteristic. The frequent tones are referred to as standard tones and the infrequent ones 

as deviants. The MMN is elicited by the infrequent deviant tones when compared with the 

response to the standard tones. Common types of deviant stimuli used in auditory oddball 

paradigms include ones differing from the standard in intensity, frequency, duration, and 

location (Näätänen et al., 2004), with the resulting MMN distribution over the scalp 

electrode sites varying with the type of deviant (Giard et al., 1995). The MMN also varies 

based on the size of the difference between the standard and deviant tones, in that there is 

typically a larger electrophysiological response corresponding to a larger magnitude of 

difference (Pakarinen et al., 2007; Tiitinen et al., 1994).  

The MMN has been widely used with different clinical populations, such as 

psychiatric populations or patients with various disorders of consciousness. For example, 

studies involving patients with major depression (e.g. Chen et al., 2015), schizophrenia 

(e.g. Todd et al., 2008), and coma (e.g. Fischer et al., 1999) have all utilized the MMN, 

typically by examining the size of the response in patients compared to that of healthy 

controls. More recently, the MMN has been applied to the study of concussion patients, 

and mixed results have been observed. Following a history of remote concussion, studied 

in a sample of retired professional football players, smaller MMN amplitudes were 

observed compared to participants with no history of prior concussion (Ruiter et al., 
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2019). On the other hand, when looking at recent injury in a younger population, no 

MMN changes were observed in a sample of adolescents currently symptomatic of 

concussion (Ruiter et al., 2020). Thus, the MMN may be emerging as a useful tool in the 

assessment of automatic attention in populations with a history of numerous remote 

concussions. The MMN is but one ERP component that measures cognitive functioning, 

and others will be described with reference to their common characteristics when 

mentioned below.  

Concussion and Head Impact Exposure 

 Concussion has gained attention as a public health concern both generally and in 

sports specifically. Concussion is a form of traumatic brain injury (TBI) caused by an 

impact to the head, neck, or other part of the body that transmits a direct or indirect force 

to the head (Guskiewicz & Mihalik, 2011; McCrory et al., 2017). Similar injuries may be 

described with varying terminology, such as mild TBI (mTBI) rather than concussion, 

and while the distinction between these concepts is subject to debate, the terms are often 

used interchangeably (McKinlay et al., 2011). In the present thesis, the term “concussion” 

will be used for the sake of consistency; however, it will be considered synonymous to 

mTBI so as not to exclude relevant previous work that represented the same concept with 

differing terminology. Concussive injuries are variable in their presentation both within 

and across individuals, and currently are without a specific diagnostic biomarker. Often 

considered a primarily functional injury, acute concussion typically does not display 

abnormalities when standard structural imaging methods are used (Belanger et al., 2007; 

McCrory et al., 2017). Therefore, such injuries are typically characterized by the onset of 
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a variety of clinical symptoms, signs, and altered neurological function, such as headache, 

nausea, confusion, or memory impairment (McCrory et al., 2017; Meehan & Bachur, 

2009). In many cases, concussion symptoms resolve around 10 to 14 days postinjury; 

however, symptoms may persist beyond this timeframe (McCrea et al., 2009; McCrory et 

al., 2017; Williams et al., 2010).  The variability in concussions across cases and lack of 

clear diagnostic markers make these injuries difficult to diagnose and assess, especially 

when occurring in the context of sport.  

 While concussions are known to arise from a force transmitted directly or 

indirectly to the head, it is well documented that not all impacts producing such a force 

subsequently result in the clinical presentation of a concussive injury (Guskiewicz & 

Mihalik, 2011). Head impact exposure without concussion has become an increasing 

focus of research for its potential long-term and cumulative health effects. Of particular 

concern are high contact or collision sports such as football, in which individuals may be 

exposed to a high volume of head impacts during athletic participation, accumulating 

over years of a career. Research suggests that during a single season, football players may 

sustain around 650 sub-concussive impacts at the high school level (Broglio et al., 2011) 

and around 950 to over 1000 impacts at the college level (Guskiewicz & Mihalik, 2011; 

Gysland et al., 2012).  

One of the most prominent concerns of cumulative head impact exposure is the 

potential for long term effects that may later arise (Bailes et al., 2013). Among the most 

severe of these potential concerns is a condition called chronic traumatic encephalopathy 

(CTE). CTE refers to a specific form of neurodegeneration that has been observed in 
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individuals with a history of head trauma, including repetitive concussive or sub-

concussive trauma, with symptoms often arising years or decades after the occurrence of 

impact exposure (Baugh et al., 2012; Omalu et al., 2011). Symptoms of CTE vary in 

severity and can include deteriorated attention and memory, executive dysfunction (e.g. 

poor planning or judgement), depression, suicidal behaviour, and dementia (McKee et al., 

2009; Stern et al., 2011). CTE is diagnosed post-mortem based on a distinct accumulation 

of tau proteins in the brain. Historically, CTE has been diagnosed in individuals with an 

extensive history of concussion or other head injury, such as professional boxers or 

football players (Omalu et al., 2011); however, it has been suggested that head impact 

exposure without concussion also plays a significant role in the development and 

progression of the disease (Gavett et al., 2011; B. R. Huber et al., 2016). It is also widely 

regarded that, although necessary for the development of the disease, not all individuals 

with a history of head impact exposure will develop CTE, bringing into question its exact 

mechanism of development (Baugh et al., 2012; Stern et al., 2011).  

Consequently, there is an emphasis on understanding the acute effects of head 

impact exposure, focusing on changes occurring over the course of an athletic season. 

The results of such research have been mixed, with changes often being dependent on the 

type of assessment used. For example, uninjured college football players did not display 

changes on concussion assessments such as the Standardized Assessment of Concussion 

(a screening tool for symptoms and cognitive changes in suspected concussion) and the 

Postconcussion Syndrome Checklist (an evaluation of potential symptoms) when assessed 

prior to and following a season of play (Gysland et al., 2012; Killam et al., 2005; Miller et 
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al., 2007). On the other hand, the results of studies using neuropsychological assessments 

to examine the effects of head impact exposure are less unequivocal. McAllister et al. 

(2012) compared neuropsychological function in college athletes in contact and 

noncontact sports at preseason and postseason, and reported no group differences on the 

Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT), a widely used 

computerized neurocognitive test. Contact athletes did however display lower 

performance on a verbal learning test at the postseason compared to noncontact athletes 

(McAllister et al., 2012). In contrast, Talavage et al. (2014) examined high school football 

players with and without a concussion diagnosis over the course of a season. The authors 

found that a subset of players without a clinical concussion diagnosis exhibited decreased 

verbal and visual memory scores on the ImPACT, as well as reduced activation in the 

cerebellum and dorsolateral prefrontal cortex in a working memory task during functional 

magnetic resonance imaging (fMRI). The impairments observed on both ImPACT and 

fMRI measures were also stated to be at least as severe as those displayed by athletes with 

a diagnosed concussion, drawing similarity in the functional sequelae of head impact 

exposure and concussion (Talavage et al., 2014).  

Head Impact Exposure and ERPs 

As concussion is widely considered a primarily functional injury, it follows that 

functional assessment methods, such as those used by Talavage et al. (2014), might be 

most suitable for detecting subtle deficits following head impact exposure. As it stands, 

there is increasing support for the use of EEG in examining cognitive function following 

concussion, both in the acute and long-term stages following injury. Altered 
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neurophysiology has been observed for processes such as attention, inhibitory control, 

and working memory in concussed populations persisting after the resolution of clinical 

symptoms by months (Baillargeon et al., 2012), years (Broglio et al., 2009; Moore et al., 

2014; Parks et al., 2015; Thériault et al., 2011), and even decades (De Beaumont et al., 

2009; Ruiter et al., 2019).  

There is also emerging evidence to support the use of EEG to assess cognitive 

function following head impact exposure without concussion. A comparison of athletes 

with a history of diagnosed concussion, sub-concussive head impact exposure, and no 

history of head impact exposure revealed a reduction in P3b amplitude, a response related 

to the allocation of attentional resources, in both the concussion and sub-concussion 

groups in relation to controls (Moore et al., 2017). Another study, while failing to show 

ERP changes across a single season, found P3b alterations in third- and fourth-year 

college football players compared to first-year players despite a lack of behavioural 

differences, suggesting an effect of multiple season exposure to head impacts on 

neurophysiology (Wilson et al., 2015). Additionally, Ewers (2020) reported altered 

neurophysiology during attention and memory tasks after head impact exposure, wherein 

contact athletes displayed a reduced P3b amplitude when compared to noncontact 

athletes. The author also reported a smaller MMN amplitude in contact athletes at both 

the preseason and postseason in comparison to noncontact athletes, and a shorter MMN 

latency for contact athletes at the postseason compared to the preseason. Not only may 

EEG be ideal for detecting acute and chronic cognitive changes of diagnosed concussion, 
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but it may also be a useful tool for examining changes associated with head impact 

exposure in the absence of clinical concussion.  

Psychometric Properties  

When attempting to assess concussion with ERPs, to draw conclusions with any 

degree of certainty it is important to ensure that the measures being used do in fact reflect 

the processes they are intended to measure. Two central properties that contribute to the 

efficacy of any form of measurement are validity and reliability. Validity refers to the 

degree to which a measurement tool fulfils its purported use, meaning that it evaluates the 

specific construct to which it claims relevance (Clayson & Miller, 2017; Kimberlin & 

Winterstein, 2008). Reliability refers to the stability of the outcome of measurement 

scores over time (test-retest reliability), across evaluators (interrater reliability), or across 

items (internal consistency) (Henson, 2001; Kimberlin & Winterstein, 2008). Reliability 

is also context dependent, being specific to testing conditions, population of interest, and 

in ERP measures relying on factors such as raw signal quality and component 

quantification method (Thigpen et al., 2017). Although separate concepts, validity and 

reliability are interrelated in that a measurement cannot be valid without also being 

reliable; therefore, establishing the reliability of a measurement is an important 

component of the ability to draw meaningful conclusions from the results of said 

measurement, especially when being used for the assessment of clinical populations.  

Reliability of the Mismatch Negativity 

 Pertaining to the MMN, most reliability studies have investigated test-retest 

reliability, demonstrating the stability of this component and measurement replicability 
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across time. The terminology and thresholds used for reliability vary somewhat between 

studies, thus descriptions of prior studies presented here retain the authors’ original terms 

and values were applicable. Reliability criteria employed in the present study are outlined 

in the Methods and discussed further in the Limitations section. A previous study by Hall 

et al. (2006) reported high test-retest reliability  of the MMN component elicited from a 

duration deviant in an auditory oddball paradigm in which testing sessions occurred an 

average of 17.8 days apart. The intra-class correlation (ICC) for peak amplitude was 0.67 

and for mean amplitude 0.66. The authors also noted similar results when the MMN was 

quantified with the peak amplitude and the mean amplitude in a time window of 50 to 

200ms, suggesting that the amplitude quantification method may not exert a large impact 

on MMN reliability. However, the type of deviant stimulus may influence the test-retest 

reliability of the MMN, as a slightly higher correlation has been seen for responses to a 

tone duration deviant as opposed to tone frequency and intensity deviants (Tervaniemi et 

al., 1999).  

Internal Consistency 

Internal consistency provides an additional metric of robustness to test-retest 

reliability, indexing the degree to which test items combine to represent a singular 

concept and contribute to overall statistical power (Clayson & Miller, 2017; Henson, 

2001). Internal consistency values are often reported with the results of psychological 

self-report measures or questionnaires and tests with multiple items; however, this 

practice is less common when reporting on ERP data. To that extent, several studies have 

examined the internal consistency of ERP components as it relates to the stability of the 
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signal when including an increasing number of trials in the average waveform. In all 

cases, the stability of the signal increased as more trials were included; however, the point 

at which internal consistency was reached varied with the component of interest. For 

example, the P3 component has been recorded as stabilizing with a minimum of 20 trials 

when assessed by analysis of variance (Cohen & Polich, 1997), with others observing 

adequate reliability with as few as 14 trials when indexed by Pearson’s correlation and 

Cronbach’s alpha (r > 0.8, α > 0.6) (Rietdijk et al., 2014). Adequate internal consistency 

(α > 0.6) has also been reported as occurring with 20 trials for the N2 component 

(Rietdijk et al., 2014), a negative-going response related to inhibition and conflict 

management with a typical latency between 180 and 325ms (Patel & Azzam, 2005). The 

error-related negativity (ERN) is an ERP component related to the identification of errors 

in behavioural response, that typically presents as a frontocentral negativity peaking 

around 100ms following an error (Gehring et al., 2016). The ERN has been reported to 

require eight trials for adequate reliability (r > 0.8, α > 0.6) (Rietdijk et al., 2014), and 10 

trials for high internal consistency (α > 0.7) (Olvet & Hajcak, 2009). In the 

abovementioned studies, Pearson’s correlations were calculated between subset averages 

of trials and the average of all trials for a given component (i.e., the “typical” response), 

to determine the association between these smaller subset responses and the typical 

response, providing an additional representation of ERP stability. Such estimates provide 

an index of the minimum number of trials necessary to obtain adequate reliability of a 

measure, and thus suggest a potential threshold which may be used to determine if 

enough trials for a given paradigm were recorded for a given participant. To date, no 
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studies have been done to examine the internal consistency of the MMN with an 

increasing number of trials; however, some reports suggest a minimum of 150 trials to be 

included for a strong signal (Duncan et al., 2009). 

ERP Reliability in Clinical Populations  

Because the reliability of a test is context dependent, to fully represent its utility it 

should be examined in consideration of the population of interest. In ERP studies, it is 

common to evaluate cognitive function in patient populations by drawing comparison to 

healthy populations. Rightly so, if an ERP is intended for use with a specific patient 

population, the reliability of said component should be examined for healthy participants 

and patient participants independently. A small number of studies have examined the 

reliability of ERP components in clinical populations with the intent of discerning their 

stability as they are used for assessment purposes. A study of test-retest reliability using a 

dual modality (auditory and visual) oddball task revealed comparable reliabilities for 

individuals recovering from chronic alcoholism and healthy controls on 27 of 28 ERP 

measures investigated, focusing on amplitudes of the N1, N2, and P3 components (Sinha 

et al., 1992), suggesting that in some cases reliability remains consistent between patient 

populations and controls. 

While reliability is important to consider for the utility of a measurement, in the 

case of ERPs in clinical research a reduction in reliability can be indicative of pathology 

rather than a weakness of the test as such. Patient populations may display variability in 

responsiveness, resulting in an ERP not being consistently elicited by a stimulus. This can 

be due to a lack of consciousness, attention, or perception of the stimuli, reflected in an 
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attenuated waveform when responses are averaged and manifesting as a theoretically 

unreliable test. For example, in comatose patients an MMN response may occur in cycles 

with the response being both present and absent at different times within a single 

recording session. This may appear as an issue with test reliability although it is actually a 

result of pathology (Armanfard et al., 2019; Connolly et al., 2019). Therefore, variability 

in responsiveness of clinical populations further highlights the necessity of examining 

ERP reliability in the context of the population of interest, as this may allow for the 

identification of potential biomarkers. 

To our knowledge, only one ERP reliability study has included patients with a 

history of TBI. It examined test-retest reliability in healthy controls and patients recently 

recovered from moderate to severe injuries (Lew et al., 2007). The authors examined four 

ERP components: the P3, MMN, N1, which is an early sensory response presenting as an 

anterior negativity around 50 to 150ms post-stimulus (Näätänen & Picton, 1987), and N4, 

which is a centroparietal negativity related to semantic processing (Kutas & Hillyard, 

1983). Responses were recorded from an auditory oddball paradigm (single deviant: 

frequency) in which participants were required to make a button press following the 

presentation of the deviant stimulus. They found acceptable reliability (ICC ≥ 0.60) for all 

component amplitudes in the healthy control group, and acceptable reliability of latency 

for all components except the N4. In the TBI group, only the amplitude of the N1 had 

acceptable reliability across testing sessions, and the latencies of the N1 and MMN were 

relatively stable (ICC > 0.50) (Lew et al., 2007). Although it has been demonstrated that a 

history of moderate to severe TBI influences the reliability of ERP component measures, 
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it is presently not known how this may occur in concussion, a mild form of TBI. 

Furthermore, the internal consistency of ERP measures in this context, rather than their 

reliability across sessions, has not been studied. 

When considering internal consistency rather than test-retest reliability, some 

differences have been observed between patient populations and healthy controls. 

Participants with a history of schizophrenia spectrum disorder or other psychotic disorder 

required fewer trials than controls to obtain fair reliability (α > 0.70) in the ERN 

component from a flanker task; however, split-half reliability for the ERN was 

unacceptable for the patient group (r < 0.70) and good for the control group (r > 0.80) 

(Foti et al., 2013). Conversely, Baldwin et al. (2015) found that patients with major 

depression or anxiety disorders had lower internal consistency for the ERN than healthy 

controls when using both single and multiple electrode sites. Therefore, it has been seen 

that clinical diagnosis exerts an impact on ERP component internal consistency, although 

the specific effect may vary based on factors such as patient population and component of 

interest. Internal consistency, specifically targeting an increasing number of trials 

included in an ERP component average, could be a prudent characteristic of such 

measures as it would help to establish a minimum number of necessary trials for inclusion 

in analysis, and could potentially allow for paradigms to be shortened, decreasing the 

burden placed on patients.   

The Present Study 

 In an effort to better understand the potential effects of cumulative head impact 

exposure, increasing attention is being placed on the unique suitability of ERPs for 
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outcome assessment. In particular, the MMN has recently shown promise in unveiling 

neurophysiological alterations that may be attributable to head impact exposure (Ewers, 

2020; Ruiter et al., 2019). There is evidence that brain injury, such as moderate to severe 

TBI, can influence the reliability of ERP measures (Lew et al., 2007), which can serve as 

an indicator of potential pathology. With the lack of research on the internal consistency 

of the MMN in general, and following head impact exposure specifically, our objective 

was to examine the stability of the MMN in this context. The research questions we 

sought to address were: 1) Is the MMN stable as additional trials are included in the 

averaged response? 2) Is the MMN a stable response in individuals with a history of head 

impact exposure and concussion? Specifically, we aimed to examine the stability of the 

MMN to determine the minimum number of trials required to obtain a clear response that 

is both reliable and representative of the response resulting from a larger number of trials. 

Our secondary aim was to investigate how MMN reliability may be impacted by a history 

of head impact exposure, with the expectation that head impact exposure would be 

associated with a reduction in reliability. Finally, we also aimed to investigate the effects 

of acute head impact exposure by examining internal consistency of data obtained after a 

season of contact sport participation. The findings of the present study contribute to our 

understanding of the stability of the MMN ERP component, while also potentially 

strengthening the efficacy of its application as a clinical assessment tool in head impact 

exposure and concussion research.  
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Methods 

Participants 

 The participants in the present study were recruited as part of a larger research 

protocol, the results of which are reported by Ewers (2020) . Two groups of participants 

were recruited from the McMaster University athletics community: contact sport athletes 

(n = 58), to serve as a participant sample with a history of head impact exposure, and 

noncontact sport athletes (n = 21), to serve as a control group. All contact sport athletes 

were members of the McMaster University football team and self-identified as male, and 

noncontact sport athletes were gender matched and recruited from various sports 

including running (n = 9), rock climbing (n = 6), rowing (n = 2), squash (n = 2), 

swimming (n = 1), and volleyball (n = 1). Contact athletes participated in the study at 

two timepoints, a baseline session prior to the start of their sports season and a follow-up 

session occurring approximately two months after the culmination of their season (mean 

= 58.2 days, SD = 4.12). Noncontact athletes were tested only once throughout their 

season to allow for the recruitment of a sufficient sample size.  

Fourteen contact athletes did not return for postseason testing. Noncontact athletes 

were screened to ensure they had no previous history of diagnosed concussion, and one 

participant was excluded for failing to meet this criterion. Additionally, three contact and 

two noncontact athletes were excluded due to the use of medications that act on the 

central nervous system, such as those used to treat attention deficit hyperactivity disorder, 

and four contact athletes were excluded due to technical issues with the EEG recording. 

Participants with fewer than 100 trials available in any of the deviant types were excluded 
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from the present analysis. This included four noncontact sport participants and 10 contact 

sport participants, resulting in the final inclusion of 14 participants recruited from 

noncontact sports and 27 participants from contact sports at both preseason and 

postseason timepoints. The average number of trials available for each type of deviant 

and each group are presented in Table 1. No participants in either group reported any 

previous history of hearing or speech/language problems, and all were fluent English 

speakers with normal or corrected-to-normal vision. The present study was approved by 

the Hamilton Integrated Research Ethics Board. 

Table 1  

Average Number of Trials in Each Type of MMN Deviant by Group 

 

The mean ages of the contact and noncontact sport groups were 19.3 (SD = 1.4) 

and 20.5 (SD = 2.2) respectively. The average number of previously diagnosed 

concussions in the contact sport group was 0.85 (SD = 1.0, range = 0-4). Of the 

noncontact sport participants, 57.1% had previously participated in contact sports for less 

than one year, 14.3% one to two years, 7.1% four to six years, and 21.2% had eight or 

more years previous experience in contact sports. In comparison, 51.9% of the contact 

sport participants had spent more than 10 years participating in contact sports, 18.5% had 
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eight to 10 years of experience, and the remaining 29.6% had at least four years of 

experience participating in contact sports. To acknowledge various histories of previous 

participation in contact sports, participants recruited from noncontact sports will hereon 

be referred to as the “current noncontact” group, and those recruited from contact sports 

will be referred to as the “current contact” group or “preseason” and “postseason” groups 

depending on the timepoint in question.  

Materials 

 Participants completed four surveys and completed three cognitive tasks during 

EEG recording. The four questionnaires administered were the Beck Depression 

Inventory-II (BDI-II; Beck et al., 1996), the Short Form Health Survey version 2 (SF-36; 

McHorney et al., 1993), the Post-Concussion Symptom Scale (PCSS; Chen et al., 2007), 

and the Perceived Stress Scale (PSS; Cohen et al., 1983). The BDI-II is a 21-item self-

report questionnaire that assesses an individual’s experiences with depressive symptoms 

over the previous two-week period (Beck et al., 1996). The SF-36 is a health survey that 

measures an individual’s general and overall health over the previous four-week period, 

including physical health, emotional problems, and bodily pain and their impact on daily 

functioning and social interaction (McHorney et al., 1993). The PCSS assesses an 

individual’s current experience with common concussion symptoms, such as headache 

and irritability, by rating their severity. It is common for some symptoms to be 

experienced even without the presence of concussion, thus scores on the PCSS may be 

greater than zero even at baseline (Chen et al., 2007). The PSS is also a self-report 

measure, inquiring as to participants’ levels of stress (Cohen et al., 1983).  Additional 
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survey questions pertaining to athletic participation and concussion history were also 

included. All questionnaires were administered online via LimeSurvey, excluding the 

BDI-II which was administered in a paper format. The online survey is available in the 

Appendix.  

EEG Stimuli and Recordings 

  EEG was recorded during three cognitive tasks pertaining to attention and 

memory: an active auditory oddball task (multi-deviant: frequency, duration, and 

intensity), the Continuous Visual Memory Test (CVMT), and a passive auditory oddball 

task (multi-deviant: frequency, duration, and intensity). The paradigms were presented 

with Presentation software on a computer monitor positioned approximately 90 cm from 

the participant. EEG data were recorded during all three cognitive paradigms. To examine 

the MMN response, only data collected from the passive auditory oddball task are 

analyzed in the present study. 

 The passive auditory oddball task was adapted from Todd et al. (2008), and was 

comprised of a series of four kinds of tones: a standard tone occurring for 82% of trials 

(1968 total repetitions), and three deviant tones each occurring for 6% of trials (144 

repetitions each), for a total of 2400 trials. The standard tone was set at 1000 Hz, 80 dB 

Sound Pressure Level (SPL), and 50ms duration. The three deviant tones included a 

louder intensity deviant (1000 Hz, 90 dB SPL, 50ms), a higher pitch frequency deviant 

(1200 Hz, 80 dB SPL, 50ms), and a longer duration deviant (1000 Hz, 80 dB SPL, 

100ms). The interstimulus interval ranged from 627ms to 673.4ms over the course of the 

paradigm, varying consistently within and across participants. The task did not require a 
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participant response, but rather participants were instructed to watch a silent nature film 

and ignore the tones while the paradigm was completed.  

EEG was recorded from 64 Ag/AgCl electrodes placed according to the International 

10-20 system using a BioSemi ActiveTwo system. Recordings were collected with a 

0.01-100 Hz bandpass filter, 60 Hz notch filter, and 512 Hz sampling rate, with five 

external reference electrodes placed on the nose, left and right mastoids, and above and 

beside the outer canthus of the left eye. Electrodes above and beside the left eye were 

used for electrooculogram (EOG) recording. EEG recording was referenced online to the 

common mode sense (CMS) and driven-right leg (DRL), and reference voltage offsets 

were examined during setup to adhere to a threshold between -20 and +20 mV.   

Procedure 

 Participants provided written informed consent upon arrival at the first testing 

session, and all other testing procedures were the same across the first and second 

sessions, and for contact and noncontact sport participants. Prior to EEG testing, 

participants were seated in a comfortable chair and completed a series of questionnaires. 

Participants were then fit with the EEG equipment and provided with a brief explanation 

and demonstration of EEG recording. They were asked to remain relaxed and as still as 

possible throughout the session. EEG recording began with the active oddball task, 

followed by the CVMT, and ended with the passive oddball task. Participants were 

thanked for their participation and provided with $30 remuneration at the end of each 

session. All participants completed the study within a timeframe of two hours.  
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EEG Data Analysis 

 Raw EEG data were processed offline with Brain Vision Analyzer software 

(v2.01). Data were filtered with a bandpass of 0.1-30 Hz (24 dB/oct). Manual raw data 

inspection was conducted to remove artifacts, such as those arising from muscle 

movement. Eye-movement artifacts were removed using Ocular Independent Component 

Analysis (ICA), and data were re-referenced to the average mastoids (Luck, 2014). Data 

for one participant in the contact group at baseline were referenced to the nose due to a 

technical issue with the mastoid recordings. Data were segmented into epochs beginning 

200ms pre-stimulus onset and ending 1000ms post-stimulus. Data were averaged into 

bins with an increasing number of trials for each deviant type (i.e., 10 trials, 20 trials, 30 

trials…100 trials, all available trials) and automated peak detection (Barr et al., 1978) was 

performed on each bin. Binning procedures used here were based on previous methods 

used to examine ERP stability (e.g., Foti et al., 2013; Olvet & Hajcak, 2009). Peak 

detection was also performed on the unaveraged data to obtain single trial values as is 

necessary for calculating Cronbach’s alpha for internal consistency. The MMN peak 

amplitude was defined as the maximal negative-going electrophysiological response 

within the window of 150-250ms post-stimulus at electrode Fz.  

Statistical Analysis 

 We examined the stability of the MMN with multiple metrics using similar 

methods as those employed by Foti et al. (2013) and Olvet and Hajcak (2009). MMN 

stability was examined separately for the current noncontact group, preseason contact 

group, and postseason contact group. To determine the number of trials at which the 
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amplitude of the MMN stabilizes, a series of paired t-tests was calculated between each 

successive trial bin (i.e., 10 trials vs 20 trials, 20 trials vs 30 trials…100 trials vs all 

trials). In this analysis, stability would be indicated by a nonsignificant difference 

between pairs, therefore a series of paired t-tests was chosen as a more conservative test 

than other alternatives that correct for familywise error and thus make a significant result 

less likely. For t-tests with a significant result, Cohen’s d is reported as an index of effect 

size, where a value of 0.2 indicates a small effect, 0.5 a medium effect, and 0.8 a large 

effect (Cohen, 1988). To examine the association between each subset MMN and the 

typical total trial MMN, Pearson’s correlation coefficient was calculated between the 

average of all MMN trials and each subset trial bin. Finally, Cronbach’s alpha was 

calculated for a subset of 10 trials and for additional subsets increasing by 10 up to 100 

total trials. Identical analyses were conducted for each deviant type of the oddball task: 

frequency, duration, and intensity deviants. In accordance with past research, a strong 

correlation was indicated by a Pearson coefficient of at least 0.8 (Akoglu, 2018; Olvet & 

Hajcak, 2009; Rietdijk et al., 2014) and Cronbach’s alpha values were considered 

adequate at the minimum threshold of 0.7, good when reaching 0.8, and excellent at 0.9 

(Cicchetti, 1994; Foti et al., 2013).  

Results 

Frequency Deviant 

 Grand averaged waveforms of increasing trial bins for the frequency deviant are 

presented in Figure 1. Paired t-tests were conducted to compare the MMN amplitude from 

successive bins with increasing numbers of trials in the three participant groups. For the 
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current noncontact group, a significant difference was observed for 70 trials versus 80 

trials, t(13) = -2.99, p = 0.01, d = 0.16. For the preseason group, a significant difference 

was observed for 100 trials versus all trials, t(26) = -2.41, p = 0.02, d = 0.12. For the 

postseason group, significant differences were observed for 40 trials versus 50 trials 

(t(26) =  -2.96, p < 0.01, d = 0.14), 60 trials versus 70 trials (t(26) = -3.31, p < 0.01, d = 

0.07), 70 trials versus 80 trials (t(26) = -4.15, p < 0.01, d = 0.13), and 100 trials versus all 

trials (t(26) = -2.12, p = 0.04, d = 0.08). All other comparisons were nonsignificant (all ps 

> 0.05).  

Pearson’s correlation coefficients between different bin sizes and all trials for the 

MMN amplitude in the frequency deviant condition as a function of increasing trial bin 

size are presented in Figure 2. The correlation coefficient with 10 trials for the current 

noncontact group was not significant (p = 0.1), but all other correlation coefficients in all 

groups were significant. For the current noncontact group, a strong correlation (r > .8) to 

the amplitude of all trials was achieved with as few as 30 trials included in the average (r 

= 0.81, CI.95 = 0.50, 0.94), with a maximum correlation of 0.93 occurring with 100 trials.  
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For the preseason group, a strong correlation was obtained with as few as 50 trials (r = 

0.83, CI.95 = 0.67, 0.92), with a maximum correlation of 0.97 [CI.95 = 0.93, 0.99] 

occurring with 100 trials. A strong correlation was obtained for the postseason group with 

30 trials included in the average (r = 0.84, CI.95 = 0.68, 0.93) and the maximum 

correlation occurring with 100 trials was 0.98 [CI.95 = 0.95, 0.99].  

 Cronbach’s alpha as a function of increasing trial bin sizes in the frequency 

deviant condition are presented in Figure 3. Fair internal consistency (α > .7) was 

achieved in the current noncontact group when 50 trials were included (α = 0.72, CI.95 = 

0.52, 0.92), but dropped slightly below this threshold with an alpha coefficient of 0.68 

before rising again with 90 trials (α = 0.76, CI.95 = 0.59, 0.93). For the preseason group, 

fair internal consistency was achieved with as few as 40 trials (α = 0.79, CI.95 = 0.68, 

0.90) and good internal consistency (α > .8) was achieved with 50 trials (α = 0.81, CI.95 = 

0.71, 0.91). Fair internal consistency was achieved for the postseason group with 30 trials 

Figure 2 

Pearson’s Correlation Coefficient between Increasing Trial Bin Sizes and Total Trials for 

Amplitude in the Frequency Deviant Condition 

 

Figure 4Figure 5 

Pearson’s Correlation Coefficient for Increasing Trial Bins and Total Trial Amplitude in the 

Frequency Deviant 
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(α = 0.72, CI.95 = 0.57, 0.87) and good internal consistency was achieved with 60 trials (α 

= 0.82, CI.95 = 0.73, 0.92). 

Duration Deviant 

 Grand averaged waveforms of increasing trial bin sizes for the duration deviant 

condition are presented in Figure 4. No significant differences in amplitude were found 

between any successive bins for the current noncontact group (all ps > 0.05). For the 

preseason group, a significant difference was found in the amplitude of 50 trials versus 60 

trials, t(26) = -2.12, p = 0.04, d = 0.11; all other trial pairs were nonsignificant. No 

significant differences were found between any trial pairs for the postseason group (all ps 

> 0.05). 

Figure 3 

Cronbach’s Alpha as a Function of Increasing Trials for the Frequency Deviant 

Condition 

 

Figure 6 

Cronbach’s Alpha as a Function of Increasing Trials for the Frequency Deviant 
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 Pearson’s correlation coefficients with MMN amplitude from all trials as a 

function of increasing trial bin sizes for the duration deviant condition are presented in 

Figure 5. All correlation coefficients were significant (p < 0.05). A strong correlation (r > 

.8) to the amplitude of all trials was obtained for all three groups when as few as 40 trials 

were included in the average (current noncontact group: r = 0.90, CI.95 = 0.70, 0.97; 

preseason group: r=0.84, CI.95 = 0.67, 0.92; postseason group: r = 0.87, CI.95 = 0.73, 

0.94). The maximum correlation coefficients obtained for the current noncontact, 

preseason, and postseason groups were 0.92 [CI.95 = 0.75, 0.97], 0.98 [CI.95 = 0.95, 0.99], 

and 0.97 [CI.95 = 0.93, 0.99] respectively.  

 Cronbach’s alpha coefficients for the duration deviant are presented in Figure 6. 

The current noncontact group reached fair internal consistency (α > .7) for the amplitude 

of the MMN with as few as 40 trials included in the analysis (α = 0.72, CI.95 = 0.53, 0.91), 

and good internal consistency with as few as 50 trials (α = 0.80, CI.95 = 0.67, 0.94). The 

preseason group reached fair internal consistency with 70 trials (α = 0.70, CI.95 = 0.54, 

Figure 5 

Pearson’s Correlation Coefficient between Increasing Trial Bin Sizes and Total Trial 

Amplitude in the Duration Deviant Condition 

 

 

Figure 9Figure 10 

Pearson’s Correlation Coefficient for Increasing Trial Bins and Total Trial Amplitude 

in the Duration Deviant 
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0.86) and good internal consistency with 90 trials (α = 0.80, CI.95 = 0.70, 0.91), while the 

postseason group reached fair and good internal consistency at 20 trials (α = 0.71, CI.95 = 

0.56, 0.87) and 50 trials ( α = 0.81, CI.95 = 0.71, 0.91) respectively.   

Intensity Deviant 

 Grand averaged waveforms of increasing trial bin sizes for the intensity deviant 

condition are presented in Figure 7. Using paired t-tests, significant differences in 

amplitude between successive trial bin sizes were observed in the current noncontact 

group for 20 trials versus 30 trials (t(13) = -2.50, p = 0.03, d = 0.39) and 70 trials versus 

80 trials (t(13) = -2.53, p=0.03, d = 0.11). For the preseason group, a significant 

difference was observed for 50 trials versus 60 trials (t(26) = -2.07, p = 0.048, d = 0.14), 

and for the postseason group significant differences were found between 20 trials versus 

30 trials (t(26) = -2.37, p = 0.03, d = 0.20) and 50 trials versus 60 trials (t(26) = -2.51, p = 

0.02, d = 0.11). All other comparisons were nonsignificant (all ps > 0.05). 

 

Figure 6 

Cronbach’s Alpha as a Function of Increasing Trials for the Duration Deviant 

Condition 

 

 

Figure 11 

Cronbach’s Alpha as a Function of Increasing Trials for the Duration Deviant 
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Pearson’s correlation coefficients of MMN amplitude in all trials as a function of 

increasing trial number for the intensity deviant condition are presented in Figure 8. 

Correlation coefficients for 10 and 20 trial averages in the current noncontact group were 

not significant (10 trials p = 0.56; 20 trials p = 0.09); all other coefficients were 

significant. For the current noncontact group, a strong correlation to the average of all 

trials was obtained with as few as 50 trials (r = 0.87, CI.95 = 0.63, 0.96), with a maximum 

correlation of 0.94 [CI.95 = 0.80, 0.98] occurring with 100 trials. A strong correlation was 

achieved with the inclusion of 40 trials for both the preseason and the postseason groups 

(preseason: r = 0.82, CI.95 = 0.64, 0.92; postseason: r = 0.80, CI.95 = 0.61, 0.91), and 

maximum correlations of 0.94 [CI.95 = 0.88, 0.97] and 0.98 [CI.95 = 0.96, 0.99] 

respectively were obtained with 100 trials.  

 Cronbach’s alpha coefficients for the amplitude of the MMN as a function of 

increasing trials for the intensity deviant are presented in Figure 9. For the current 

Figure 8 

Pearson’s Correlation Coefficient for Increasing Trial Bin Sizes and Total Trial 

Amplitude in the Intensity Deviant Condition 

 

 

Figure 14Figure 15 

Pearson’s Correlation Coefficient for Increasing Trial Bins and Total Trial Amplitude 

in the Intensity Deviant 
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noncontact group, fair internal consistency (α > .7) was reached with the inclusion of 30 

trials (α = 0.72, CI.95 = 0.52, 0.91) and good internal consistency (α  > .8) was reached 

with as few as 60 trials (α = 0.82, CI.95 = 0.69, 0.95). The preseason group did not reach 

the threshold for fair internal consistency but was approaching this threshold with an 

alpha value of 0.69 (CI.95 = 0.52, 0.85) occurring with 50 trials included in the analysis. 

Fair internal consistency was reached for the postseason group with 30 trials (α = 0.74, 

CI.95 = 0.61, 0.88) and good internal consistency was reached with 50 trials ( α = 0.82, 

CI.95 = 0.73, 0.92). 

Regression Analyses 

As some participants in the current noncontact group reported having previously 

participated in contact sports, and thus are more likely to have a history of head impact 

exposure, additional analyses were conducted to examine the influence of previous 

contact sport participation on the MMN regardless of current sport. To do so, the current 

noncontact group and the preseason group were combined, which also helps to improve 

Figure 9 

Cronbach’s Alpha as a Function of Increasing Trials for the Intensity Deviant 

Condition 
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the sample size limitations that were present in the previous analyses. Participants’ 

previous involvement in contact sports is described in Table 2.  A series of linear 

regression analyses was calculated, the purpose of which was two-fold: 1) to examine the 

influence of previous contact sport participation on the MMN and 2) to examine the 

relationship between subset MMN and total trial MMN, focusing on the magnitude of the 

association. For each regression, the outcome variable was the amplitude of the total trial 

MMN, and the predictor variables were years of participation in contact sports and the 

amplitude of a subset MMN trial bin. Because the focus of this analysis was the 

magnitude of the association between the subset MMN and the total trial MMN, and to 

minimize issues stemming from the inclusion of highly related predictor variables within 

a single regression, each subset MMN was entered into a separate regression analysis, 

akin to the procedure used for the Pearson’s correlation analyses reported above. Separate 

analyses were also conducted for responses to each type of deviant tone.  

Table 2 

Sample Size for Previous Participation in Contact Sports by Group and Total 
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Overall model statistics and regression coefficients for all models in the frequency 

deviant condition are presented in Table 3. All overall models were significant, and in 

each bin size case, the average trial subset amplitude was significantly associated with the 

total trial amplitude. Previous participation in contact sports did not significantly predict 

total trial amplitude in any model (all ps > 0.05). As seen in Table 3, adjusted R2 ranges 

from 0.18 to 0.92, with the model explaining at least 50% of the variance in MMN 

amplitude when including at least 40 trials in the average, and over 70% of the variance 

when at least 50 trials were included. Independent of previous participation in contact 

sports, subset amplitude accounted for 46.9% to 95.9% of the variance in total MMN 

amplitude depending on the number of trials included in the subset, with over 70% of the 

variance explained when at least 30 trials were included. 

Overall model statistics and regression coefficients for all models in the duration 

deviant condition are presented in Table 4. In each in size case, the overall model was 

significant, as was the contribution of each subset of trials. Participation in contact sports 

was not significantly associated with MMN amplitude in any of the models (all ps > 

0.05). Adjusted R2 ranged from 0.34 to 0.94. At least 50% of the variance in MMN 

amplitude was explained by the model when including at least 30 trials in the average, 

with over 70% of the variance accounted for by the models including at least 40 trials. 

Independent of participation in contact sports, subset amplitude accounted for 52.1% to 

91.7% of the variance in total MMN amplitude depending on the number of trials 

included, with over 70% of the variance explained when at least 30 trials were included. 
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 Overall model statistics and regression coefficients for all models in the intensity 

deviant condition are presented in Table 5. All overall models were significant, and each 

bin size subset amplitude was significantly associated with the overall trial amplitude. 

Participation in contact sports was not significantly associated with MMN amplitude in 

any model (all ps > 0.05). Adjusted R2 ranged from 0.22 to 0.88. At least 50% of the 

variance in MMN amplitude was explained by the model when including at least 30 trials 

in the average, with over 70% of the variance accounted for by the models including at 

least 60 trials in the average. Subset bin amplitudes accounted for 48.8% to 93.0% of the 

variance in total MMN amplitude independent of participation in contact sports, with over 

70% of the variance explained when at least 30 trials were included in the average.  
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Discussion 

 The present study evaluated the robustness and the reliability of the MMN 

component of the ERP both in general and following repetitive head impact exposure and 

concussion by investigating the minimum number of trials necessary to clearly elicit this 

response. The stability of the MMN was not found to be related to varying histories of 

head impact exposure, remaining similar despite both prolonged and sporadic 

participation in contact sports. The amplitude of the MMN was most likely to be robust 

with fewer trials when elicited by a duration deviant as compared to frequency and 

intensity deviants. Based on the observed degree of similarity to the MMN response 

obtained from the inclusion of all trials in the paradigm, the MMN may be reliably 

elicited by a minimum of 40 to 60 trials depending on the type of deviant used, while 

maintaining a high degree of similarity to that obtained with a larger number of trials.    

 Comparing the stability of the three deviant types, the amplitude elicited by the 

duration deviant exhibited little to no difference in a series of paired t-tests between trial 

bin sizes when subsequent trials were added, whereas a greater number of differences 

between adjacent trial bin sizes were displayed by the responses to the other deviant 

types. This provides evidence that the duration deviant may be the most robust for 

eliciting a reliable MMN when compared to frequency and intensity deviants. Previous 

studies of MMN test-retest reliability (Tervaniemi et al., 1999) displayed a similar 

pattern, reporting higher reliability between testing sessions for a duration deviant when 

compared to frequency and intensity deviants. Furthermore, specifically in the current 

contact groups (both at preseason and postseason), stability was found with fewer trials 
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for the intensity deviant compared to the frequency deviant, for which differences in 

amplitude were found between bins with higher trial numbers. The postseason group in 

the frequency deviant condition displayed the most instability of any group/deviant 

combination, with significant amplitude differences seen in four trial bin pairs, suggesting 

the possibility of a reduction in stability of MMN amplitude for this deviant type after 

head impact exposure during a contact sports season. This also demonstrates the 

importance of using different types of deviants in the same protocol.  

 In contrast, in comparisons of participant groups, the minimum number of trials 

required to obtain a representative MMN amplitude was comparable across the three 

groups. It differed by 20 trials at the most, suggesting that a history of head impact 

exposure or concussion does not have a large influence on the reliability of the MMN. 

The postseason group did not require the highest number of trials to achieve reliability in 

any deviant type, but rather required an equal number or fewer trials, suggesting that 

acute exposure to repetitive head impacts may exert minimal influence on MMN 

reliability. Based on these similarities, although slight differences in amplitude may be 

found with the inclusion of additional trials, as demonstrated by the paired t-tests between 

adjacent trial bin sizes, this does not seem to impact the reliability of the response in 

terms of the strength of the association between a subset of responses and all available 

data. Therefore, smaller trial numbers may be used to reliably elicit the MMN. However, 

the average number of trials and range of accepted trials for each group should always be 

reported to account for any potential amplitude differences, such as a larger amplitude 

arising due to the inclusion of significantly fewer trials in one group. 
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Furthermore, when considering the Cronbach’s alpha internal consistency results, 

the reliability coefficients of the preseason group were lower than that of the postseason 

group in some cases, especially for the smaller trial numbers. The same pattern also 

emerged when examining the correlation between all trials and different bin size subsets 

of trials. This discrepancy could potentially be attributed to a difference in the strength of 

the memory trace developed for stimuli on the first versus second exposure to the 

paradigm. Näätänen et al. (1993) investigated the relationship between the strength of a 

memory trace and the associated MMN response using a single-deviant auditory oddball 

paradigm consisting of complex sound stimuli in which the standard and deviant stimuli 

were minimally discriminable. The authors found that the presence of an MMN response 

developed gradually over the course of the task as participants became more capable of 

discriminating the deviant tone from the standard, which the authors attributed to a 

strengthening of the sensory memory trace. A similar process could account for the 

differences in reliability between the preseason and postseason observed here because 

participants at the postseason timepoint were more familiar with the experiment and 

therefore may have had a stronger memory trace for the stimuli, resulting in higher 

reliability. 

 A further comparison between the results obtained with Pearson’s correlation 

coefficient and Cronbach’s alpha coefficient revealed discrepancies in the number of 

trials required for reliability. Although in some cases these discrepancies were minor 

(e.g., in the intensity deviant condition for the postseason group), there were multiple 

cases, particularly including the current noncontact group and the preseason group, in 
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which more trials were required for reliability when based on Cronbach’s alpha compared 

to robustness as reflected by Pearson’s correlation between trial bins of different sizes and 

total trials. For example, in the intensity deviant condition for the preseason group, a 

strong correlation to the amplitude of all MMN trials (r ≥ 0.8) was obtained with 40 trials, 

however adequate internal consistency (α ≥ 0.7) was not achieved with even 100 trials. 

These discrepancies may be attributable to differences in calculating each coefficient, and 

subsequent differences in how the ERP data is extracted from the EEG signal. Pearson’s 

correlation was calculated between the average of each trial bin subset and the average of 

all trials, where the amplitude is obtained from the averaged ERP data. On the other hand, 

Cronbach’s alpha examines the similarity of items, requiring each individual value, and 

thus required the amplitude value be obtained at the single trial level. Differences in 

results between these two analyses may be attributable to differences in formed 

waveforms compared to unextracted, unaveraged data. As the MMN is a relatively small 

response, there is more variability at the single trial level than occurs with the averaged 

responses, resulting in a larger amount of data being necessary to achieve reliability. 

Although Cronbach’s alpha has been used in the past to examine the internal consistency 

of ERPs (e.g., Foti et al., 2013; Olvet & Hajcak, 2009; Rietdijk et al., 2014), this has 

primarily been done with larger components such as the P3 and the ERN, which are 

typically obtained from far fewer repetitions. Indeed, recommendations for the use of the 

ERN are as low as eight trials (Olvet & Hajcak, 2009), which is a fraction of that 

typically recommended for the MMN, and suggests that these larger components may be 

better represented at the single trial level than is the MMN. Consequently, optimal 
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methods for ERPs could be determined in part by the size of the component. Although the 

Cronbach’s alpha and Pearson’s correlation methods address different questions 

regarding stability and internal consistency, previous studies have interpreted these results 

in concert when discussing the minimum trials required for a robust ERP response (e.g., 

Olvet & Hajcak, 2009; Rietdijk et al., 2014). Therefore, taking the size of the component 

into consideration, in the present context the Pearson’s correlation results should 

potentially be considered over Cronbach’s alpha as they share more similarity to typical 

research practices in its quantification of the MMN. 

 The results of the regression analyses reinforce the conclusions drawn from the 

group findings, providing additional evidence that a history of cumulative head impact 

exposure may not influence the MMN, and that this response is highly stable even with a 

small number of repetitions. Rather than operationalizing cumulative head impact 

exposure based on current sport participation as was done in the group analyses, for the 

regression analyses we investigated this variable based on lifetime participation in contact 

sports. This provides an additional approach to address potential confounds in our 

quantification of chronic head impact exposure by accounting for previous experience in 

high contact activity. The operationalization of head impact exposure is discussed further 

in the Limitations section. When including previous participation in contact sports in 

regressions predicting the results from all trials, over 70% of the variance in MMN 

amplitude was explained by a subset of at least 40, 50, and 60 trials for the duration, 

frequency, and intensity deviants, respectively. Furthermore, when controlling for 

participation in contact sports, this was achieved with as few as 30 trials for all three 
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deviant types. The explanatory power of subset MMN trial bins on total trial MMN was 

slightly higher when contact sport participation was controlled, which could indicate a 

potential influence of contact sport participation on MMN stability. However, contact 

sport participation alone did not significantly influence the amplitude of the MMN. 

Additionally, the minimum number of trials required to account for the majority of the 

variance in total trial MMN amplitude was comparable when contact sport participation 

was included (i.e., 40 to 60 trials) or controlled (i.e., 30 trials), suggesting that any 

potential influence of contact sport participation on MMN stability is likely minimal. Not 

only do these results support the assertion that the MMN may be obtained with relatively 

few trials, but they are also comparable to the Pearson’s correlation results obtained from 

the group analyses. In this way, accordant results were obtained when applying two 

methods of operationalizing head impact exposure, serving as concurrent evidence, and 

strengthening the conclusion that the MMN may be a robust assessment method 

regardless of head impact exposure history.  

 Although the results of the present study run contrary to the hypothesis that head 

impact exposure would impact the reliability of the MMN, there are a small number of 

previous studies reporting similar findings of comparable ERP reliability between clinical 

populations and healthy controls. For example, Sinha et al. (1992) investigated the test-

retest reliability of the N1, N2, and P3 components elicited by a dual-modality (auditory 

and visual) oddball paradigm in individuals recovering from chronic alcoholism and 

healthy controls. All patients in the study met the National Council on Alcoholism criteria 

for alcoholism, had an average of over 10 years of alcoholism, and had been detoxified 
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for three to six weeks prior to participating in the study. When comparing within-subjects 

ERP measures over a 14 month period, no differences in test-retest reliability were found 

between patients and controls for 27 of 28 measures, with differences only arising for the 

visual N2 recorded at electrode Oz. Male and female participants were also equally 

reliable on ERP measures (Sinha et al., 1992). Despite having comparable reliability, 

group ERP differences were observed for male participants such that patients exhibited 

lower visual N1 and P3 amplitudes than controls, but no differences were observed for 

female participants (Parsons et al., 1990; Sinha et al., 1992). In this way, there can in 

some cases be a separation between ERP reliability and pathology, such that altered 

neurophysiological function is observed without the loss of measurement reliability.  

In some cases, a seeming lack of reliability for a given ERP measurement in a 

clinical population may occur because a given response presents inconsistently over time. 

This looks like an unreliable manifestation of the ERP because of the typical averaging 

procedure that includes all trials of a stimulus type whether the person paid attention and 

perceived the stimulus or not. Variable participant brain responsiveness has been 

observed in comatose patients both across testing sessions, wherein an MMN response 

was absent in initial recording sessions but later appeared in others (Kane et al., 1996), 

and within a single session, as responsiveness has been observed to occur in cycles of 

presence and absence (Armanfard et al., 2019; Connolly et al., 2019). Although in such a 

case it would appear as though the reliability of the measurement is inadequate, this can 

serve as an indication of altered cognitive processing for the population in question. In the 

context of a single testing session, variability in responsiveness could manifest as an 
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attenuated waveform when responses are averaged and would subsequently impact the 

reliability of the measurement. In comparison, when the responses obtained from a 

clinical population are reliable, as was the case in Sinha et al. (1992) discussed above, this 

may suggest that observed ERP attenuations occur consistently, rather than resulting from 

variability in participant responsiveness. Such patterns may be more easily identified by 

examining responses across time in an experiment rather than for an increasing number of 

trials. This should be addressed by future research to further elucidate patterns of ERP 

reliability in clinical populations. 

 Although head impact exposure is becoming an increasing area of research focus, 

particularly pertaining to sports injuries, the mechanism of associated deficits and relation 

to clinical conditions such as concussion and CTE is not well understood. Deficits 

associated with head impact exposure without concussion appear to be situationally 

specific, depending on the method of assessment and the characteristics of the impact 

(Gysland et al., 2012; McAllister et al., 2012; Miller et al., 2007; Talavage et al., 2014). 

For example, in their cross-season study of high school football players, Talavage et al. 

(2014) reported that only a subset of athletes displayed impaired cognitive function in the 

absence of clinical injury, but this impairment was comparable to that of those athletes 

who did sustain a clinical injury. Impaired cognitive function was also associated with 

having sustained a greater number and magnitude of collision events at the top frontal 

location of the head as measured by an accelerometer. Incorporating additional specificity 

into the assessment and analysis of head impact exposure can thus be crucial in 

elucidating outcomes. To apply these findings to the present study, it is possible that 
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examining neurophysiological function, specifically ERP stability, based on the specific 

magnitude and location of sustained head impacts may provide additional insight into the 

manifestation of subsequent cognitive dysfunction.  

 As applied to the study of concussion and head impact exposure, the MMN is also 

an emerging technique that has yielded inconsistent results. Specifically, a reduction in 

amplitude of the MMN has been observed in a sample of retired professional football 

players (Ruiter et al., 2019); however, no differences were found in a sample of recently 

concussed adolescents compared to controls (Ruiter et al., 2020). The discrepancy in 

these findings may be attributable to differences in the recency of injury or in cumulative 

exposure to concussion and head impacts, as older individuals who have participated in 

sports at higher levels of competition are likely to have sustained a greater number and 

magnitude of such injuries (Boshra et al., 2020; Boshra, Ruiter, et al., 2019; Broglio, 

2017). Furthermore, Boshra et al. (2020) suggested that such a pattern of responses may 

be indicative of a progression of concussion wherein cognitive dysfunction in early ERP 

measures emerges with aging as a chronic stage of injury, while not being present in the 

short-term post-injury, signifying a dynamic nature of concussive symptoms. Although 

the results of the current study suggest that years of participation in contact sports do not 

influence the MMN, this was found with a relatively young, small sample. Therefore, 

future research should focus on older adults to address longer participation histories and a 

longer delays from injury to further elucidate the progression of concussion and 

determine if the present results remain consistent.   
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 Furthermore, there is currently limited research that compares concussion and 

repetitive head impact exposure independently. This in part may be attributable to the 

interdependent nature of these two concepts and the complexities of separating them.  In 

the present study, we examined head impact exposure in a sample including participants 

who also had a history of diagnosed concussion, thus the present results cannot be 

isolated purely to one concept. Previous investigations of the test-retest reliability of the 

MMN found that this component was not stable over time in a sample with a history of 

moderate to severe TBI (Lew et al., 2007), and as concussion is a form of TBI (McCrory 

et al., 2017), albeit more mild, future research would benefit from examining the 

reliability of the MMN in concussion specifically.  

 In addition to examining the reliability of the MMN in concussion specifically, 

future research would benefit from addressing the psychometric properties of other ERPs 

that may be affected by this type of injury. For example, the P3b, a centroparietal 

positivity associated with attentional resource allocation, has served as a robust 

assessment tool for cognitive function following concussion in a variety of contexts, 

including recent (Baillargeon et al., 2012) and remote (De Beaumont et al., 2009) 

concussion and repetitive head impact exposure (Moore et al., 2017; Wilson et al., 2015). 

The N2b, a frontocentral negativity associated with inhibitory executive function, is also a 

component of interest that would be beneficial to examine in terms of stability as its 

outcome in concussion is less consistent (Boshra et al., 2020; Boshra, Dhindsa, et al., 

2019; Krokhine et al., 2020; Ruiter et al., 2020). Previous studies have reported the N2b 

to be smaller in some cases (Broglio et al., 2009; Hudac et al., 2018; Ruiter et al., 2019) 
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and larger in others (Ledwidge & Molfese, 2016; Moore et al., 2015); therefore, 

understanding the consistency of this response both within and across testing sessions 

could contribute to unraveling these inconsistencies. 

 In the interpretation of the present findings, the specific features of the paradigm 

used to elicit the MMN should also be considered. We used a multi-deviant auditory 

oddball paradigm consisting of frequency, intensity, and duration deviants, which is one 

possible alternative used to study this response. The differences in reliability between 

deviant types reported here are minimal, and while this encompasses three types of 

deviants that are frequently used in the literature, it is not exhaustive of all possibilities. 

Other deviants including density, perceived sound-source location, gap, brightness, and 

noise level have also been used to elicit the MMN, and the amplitude of the response is 

reported to vary based on the type of deviant used (Näätänen et al., 2004; Pakarinen et al., 

2010). It is also well established that the magnitude of difference between the standard 

and deviant tones impacts the amplitude and latency of the observed response (Pakarinen 

et al., 2007; Tiitinen et al., 1994). The specific type of deviant presented can also 

influence the results observed for different clinical populations. For example, in patients 

with schizophrenia MMN amplitude is consistently reduced in the duration deviant, but 

not in the frequency deviant (Michie et al., 2000), whereas in individuals with dyslexia an 

opposite pattern is observed  (Baldeweg et al., 1999). Therefore, the observed MMN 

response can vary based on the context and the features of the stimuli presented, which 

should be accounted for when considering the reliability of the response. The results 

presented here suggest that the stability of the MMN is persistent across deviant types; 
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however, considering deviant-specific differences observed in clinical populations, 

widening our understanding of MMN reliability based on deviant type and population of 

interest would be beneficial.  

 The oddball paradigm, namely a stimulus presentation sequence consisting of the 

repetition of a frequent standard stimulus and infrequent deviant stimulus, has historically 

been the paradigm of choice for eliciting the MMN (Pakarinen et al., 2010); however, 

more recently multi-feature paradigms have been developed with the goal of optimizing 

MMN recording. These optimized multi-feature paradigms allow for the simultaneous 

presentation of numerous deviant stimuli, with up to eight deviant types being used 

without drastically increasing the length of the experiment (Näätänen et al., 2004; 

Pakarinen et al., 2010). This has been accomplished in two ways: 1) by reducing the 

occurrence of the standard stimulus to alternate between standard and deviant on each 

stimulus presentation (Näätänen et al., 2004) and 2) by eliminating the standard tone 

altogether and presenting a range of tones, each varying on one characteristic (Pakarinen 

et al., 2010). These multi-feature paradigms are reported to consistently elicit an MMN 

response, but these responses can vary in amplitude and latency to those elicited from a 

standard oddball paradigm, thus the stability of the MMN in these contexts may vary as 

well.  

 In addition to deviant type and paradigm structure, the MMN can also be elicited 

in different modalities. Though primarily recorded in the auditory modality, there is 

increasing support for a visual MMN elicited from stimuli presented in an oddball 

sequence varying in pattern or colour (Czigler et al., 2002; Winkler et al., 2005). The 
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visual MMN is described as a posterior negativity occurring around 100 to 250ms post-

stimulus and is believed to represent similar attention and memory processes of the 

auditory MMN, as it occurs following unattended infrequent stimuli (Czigler et al., 2002; 

Kimura et al., 2009; Winkler et al., 2005). As the MMN has not been studied as 

extensively in the visual domain as in the auditory, future research would benefit from 

examining the stability of the visual MMN. Moreover, the specificities of the paradigm in 

which this response is elicited should be considered when interpreting and applying the 

present results.  

Applications  

 The results of our study provide evidence supporting a strong relationship 

between the MMN as obtained from a large number of trials to that obtained from a 

relatively small subset, which can be applied to the use of the MMN as a cognitive 

assessment tool in future research. Overly long paradigms are undesirable in human 

research as participants may experience boredom, loss of focus, fatigue, or discomfort, all 

of which can reduce the quality of the data collected and make participants less willing or 

able to participate. The MMN has an advantage over other ERPs as it does not require 

active attention to be elicited, so loss of attention is not a critical factor for data collection 

in this case, but shorter paradigms are still preferable to promote the comfort of the 

participant. As previous recommendations for eliciting the MMN suggested the use of at 

least 150 trial repetitions (Duncan et al., 2009), the present results suggest that this 

number could be reduced while still allowing for a reliable MMN to be recorded, which 

would reduce the burden placed on participants.  
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Although some previous studies used randomized trial selection across the entire 

presentation period for subset ERP averages (e.g., Baldwin et al., 2015; Foti et al., 2013; 

Rietdijk et al., 2014), we analyzed subset averages based on consecutively occurring 

trials, to examine responses obtained with both relatively few trials and relatively few 

exposures to the target stimuli. It is possible that responses may vary over the course of 

an experiment, specifically as participants become more familiar with the deviant stimuli; 

thus, by examining a subset of early responses our results are more applicable to 

employing a shortened paradigm in which fewer exposures to the stimuli would occur. 

Furthermore, the present results revealed strong reliability of the MMN with a small 

number of trials using a single electrode, as is common for this type of analysis (e.g., Foti 

et al., 2013; Olvet & Hajcak, 2009; Rietdijk et al., 2014). Huffmeijer et al. (2014) 

reported that ERP reliability improves with the inclusion of additional electrode sites, 

specifically comparing a single electrode to a region of interest including seven 

electrodes, suggesting that the results presented here may also be improved when the 

MMN is analyzed as a region of interest.  

Limitations 

 One limitation of the present study stems from the application of somewhat 

arbitrary threshold criteria for Cronbach’s alpha and Pearson’s correlation coefficients for 

determining when adequate reliability has been achieved. Although these methods are 

common in previous literature for determining a minimum number of trials necessary for 

a given ERP, there is a lack of consistency in the criteria used to make these decisions. 

Regarding Cronbach’s alpha, the minimum threshold at which reliability is considered 
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acceptable ranges from 0.5 to 0.7 depending on the study (Baldwin et al., 2015; Foti et al., 

2013; Moran et al., 2013; Olvet & Hajcak, 2009; Rietdijk et al., 2014). The language with 

which these values are described also varies, with alpha of 0.7 being described as “fair” 

(Foti et al., 2013) or “high” (Moran et al., 2013). Thresholds for Pearson’s correlation 

coefficients have a similar range from 0.5 to 0.8 and are described as “acceptable” or 

“strong” depending on the context (Moran et al., 2013; Olvet & Hajcak, 2009; Rietdijk et 

al., 2014). Inconsistency in reliability criteria limits the generalizability of results across 

studies as the minimum number of trials stated by one study will vary compared to those 

employing a different criteria level. Therefore, it is important that studies reporting these 

coefficients explicitly state the criteria used, and future research would benefit from 

adhering to a more consistent standard.  

Inconsistency in the interpretation of Cronbach’s alpha and Pearson’s correlation 

coefficients is not specific to the field of ERP reliability, but is a common criticism of 

reporting internal consistency results (Akoglu, 2018; Mukaka, 2012). Moreover, the 

language used to describe these results (i.e., “fair” versus “strong”) has implications for 

how they are perceived. In some cases, this may result in overstating the strength of the 

relationship, so it has been recommended that authors exert caution when making such 

statements (Akoglu, 2018). The criteria applied in the present study were chosen based on 

recommendations from statistical literature for the use of such coefficients in research 

(Akoglu, 2018; Cicchetti, 1994) and on the criteria used in previous ERP reliability 

literature, so that the current interpretations would remain similar to those in the field 

without overstating the strength of the results. Furthermore, including R2 in the present 
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analysis provides a more concrete representation of the explanatory power of the 

independent variable beyond a descriptive association, which helps to strengthen the 

conclusions drawn from the other analyses. 

Another limitation of the present study arises from the quantification of head 

impact exposure. Contact sport athletes were tested at preseason and postseason 

timepoints to examine the influence of repetitive exposure to head impacts in the short 

term (i.e., over the course of a few months) based on the assumption that impacts would 

be obtained over the course of the season. Operationalizing head impact exposure in such 

a way limits the present results as impact exposure was not measured directly, so details 

such as the specific number of impacts sustained, their location, and their cumulative 

magnitude are unknown. Additionally, a subset of participants in the current noncontact 

group reported having previously participated in contact sports, which indicates a 

potential previous history of head impact exposure and limits the distinction between the 

two groups. We addressed this limitation by combining the current noncontact and 

preseason contact groups and conducting an analysis based on previous years 

participation in contact sports, which is discussed further below. Future research should 

include a direct measurement of head impacts, such as an accelerometer attached to 

athletes’ helmets, which would provide a more accurate representation of this concept 

while also allowing for a more in-depth analysis including the frequency, magnitude, and 

location of sustained impacts.  

We also quantified head impact exposure based on previous years participation in 

contact sports, which introduces additional considerations for the generalizability of our 
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findings. Like the comparison of preseason and postseason, years participating in contact 

sports is limited as it does not directly measure sustained head impacts; however, it does 

provide the advantage of examining participants on a continuum, based on the assumption 

that more years participating in contact sports would be associated with a higher number 

of sustained impacts. That being said, there are additional variables that influence the 

likelihood of sustaining an impact, such as type of sport and level of competition (Broglio 

et al., 2011; Guskiewicz & Mihalik, 2011; Gysland et al., 2012; Huber et al., 2021), 

which were not measured in the present study and thus reduce the robustness of present 

conclusions. For those participants not currently competing in contact sports, it is also not 

known when exactly this participation occurred, introducing an additional variable of 

time since exposure. However, because the present sample consisted of young adults, 

there is a smaller window in which participation could have occurred than in an older 

population, especially for those with a longer history (i.e., eight or more years), 

minimizing the potential impact of this confounder.  

Finally, the group analysis is also limited due to the absence of a second testing 

session for the current noncontact group. While current contact athletes were tested prior 

to the start of their season and following its culmination, noncontact athletes were only 

tested once to allow for the recruitment of a sufficient sample size, which limits the 

conclusions that can be drawn when comparing the preseason and postseason timepoints. 

Recruitment and testing of current noncontact athletes was severely limited by laboratory 

closures due to the COVID-19 pandemic. While particularly true for the current 
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noncontact group, the present study as a whole was also limited by the use of a small 

sample size, and thus the results provide a preliminary representation of MMN stability.  

Conclusion 

 There is increasing evidence of impaired cognitive health following repetitive 

head impact exposure and concussion, which are believed to be associated with possible 

longer term health effects such as CTE (Gavett et al., 2011; Huber et al., 2016; McAllister 

et al., 2012; Talavage et al., 2014). In the present study, we investigated the stability of 

the MMN, an electrophysiological response associated with pre-attentive processing and 

predictive coding, in the context of repetitive head impact exposure and concussion, with 

the goal of identifying the minimum amount of data required to observe this response. 

Although the current results are limited by a small sample size and the quantification of 

head impact exposure, MMN reliability was observed to be consistent regardless of acute 

or chronic head impact exposure, potentially suggesting that automatic attention may be a 

robust process as recorded in a single experiment and that any attenuations in this process 

may occur consistently across responses. While the amplitude of the MMN elicited by a 

duration deviant was most consistent with the inclusion of increasing trials, reliability was 

comparable across responses to duration, frequency, and intensity deviants, indicating 

that the MMN is robust with a variety of experimental features. Previous research has 

suggested that the MMN should be recorded from at least 150 trial repetitions for each 

deviant (Duncan et al., 2009). Our results provide preliminary evidence that this response 

can be observed with far fewer exposures, as low as 40 to 60 depending on the context, 

however these estimates are distinct from the total number of trials that would need to be 
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recorded, as they depend on the amount of data that is of insufficient quality to be 

included in analysis. These results can be applied to shorten paradigms used to elicit the 

MMN and consequently reduce the burden placed on participants, particularly patients. 

When making such applications, future research should consider the features of the 

paradigm used, such as stimulus modality and mode of presentation, as these features 

could impact the generalizability of results.  
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