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Abstract

In the last few years, convolutional neural network (CNN) models have provided

state-of-the-art results in visual recognition tasks. Similarly to CNNs, tree-based

methods, in particular, gradient tree boosting (XGBoost) provided superior results

in many applications. Taking into account the superiority of both methods, the goal

of this work is to implement the CNN+XGBoost combined model where learned

representations extracted from the CNN part will be used as input features for the

XGBoost part. It is of particular interest to investigate whether the XGBoost part

improves classification accuracy of the CNN part.

In this work, we use existing approaches — AlexNet, AllConvolutionalNet, WideRes-

Net, DenseNet and CaffeNet (in transfer learning mode) — to extract features from

the CNN part with different quality, which is defined by the classification accuracy of

the appropriate CNN model. Then XGBoost is trained on the extracted features and

the obtained final accuracy of AlexNet+XGBoost, AllConvolutionalNet+XGBoost,

WideResNet+XGBoost, DenseNet+XGBoost and CaffeNet+XGBoost models are as-

sessed. All experiments are fulfilled using the CIFAR10 image dataset. Our results

show that features extracted by CNNs, which provided more than 85–88% classifica-

tion accuracy, do not allow XGBoost to improve the final CNN+XGBoost classifica-

tion performance.
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Chapter 1

Introduction

In the last few years, deep learning has led to very good performance on a vari-

ety of problems, such as visual recognition, speech recognition and natural language

processing. Among different types of deep neural networks, convolutional neural net-

works (CNNs) have provided state-of-the-art results in visual recognition tasks and,

therefore, they have been extensively studied (e.g., Goodfellow et al., 2016; LeCun

et al., 2015, 1998; Krizhevsky et al., 2012; Springenberg et al., 2014; Zagoruyko and

Komodakis, 2016; Huang et al., 2016; Gu et al., 2018). In the field of computer vision,

CNNs were the winning architecture in all ImageNet Large Scale Visual Recognition

Competition (LSVRC) challenges from 2010 to 20171.

Similarly to CNNs, gradient tree boosting (Friedman, 2001), is another technique

that shines in many applications (Chen and Guestrin, 2016). Tree boosting has been

shown to give state-of-the-art results on many standard classification benchmarks

(Robust, 2010). LambdaMART (Burges, 2010) achieves state-of-the-art result for

1http://www.image-net.org/challenges/LSVRC/, accessed November 2020.
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ranking problems. A tree boosting technique was incorporated into real-world pro-

duction pipelines for ad click-through rate prediction (He et al., 2014). It is the

de-facto choice of ensemble method and has been successful in challenges such as the

Netflix prize (Bennett and Lanning, 2007). A very popular implementation of tree

boosting technique called XGBoost — extreme gradient boosting — is available as

an open source package2. The impact of the tree boosting techniques in general, and

XGBoost package in particular, has been widely recognized in a number of machine

learning and data mining challenges. For example, among the 29 challenge winning

solutions published at Kaggle’s blog3 during 2015, 17 solutions used XGBoost. Among

these solutions, eight solely used XGBoost to train the model, while most others com-

bined XGBoost with neural networks in ensembles. The success of XGBoost was also

witnessed in KDDCup 2015, where XGBoost was used by every winning team in the

top-10. Moreover, the winning teams reported that ensemble methods outperform a

well-configured XGBoost by only a small amount (Bekkerman, 2015).

Taking into account the excellence of both aforementioned approaches, CNN and

XGBoost, the goal of this work is to implement a CNN+XGBoost combined model

where learned representations extracted from the CNN part will be used as input

features for the XGBoost part. In particular, we investigate whether the XGBoost

part allows improved original classification accuracy of the CNN part. We choose the

CIFAR10 image dataset to be used in our experimental research.

This thesis is organized as follows. In Chapter 2, we introduce related work.

Chapter 3 overviews theoretical approaches behind all methods used in this work and

2https://xgboost.readthedocs.io/en/latest/index.html, accessed November 2020.
3https://www.kaggle.com/, accessed November 2020.
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consists of four paragraphs. Section 3.1 presents the basic principles of CNNs. Sec-

tion 3.2 considers the ADAboost algorithm as an example of a gradient tree boosting

method. Section 3.3 provides details of used filtering feature selection schemes based

on (i) redundancy removed correlated (<RRC>) features, (ii) Random Forest ranks

(<RFranks>), and (iii) minimum Redundancy Maximum Relevance (<mRMR>)

method. Section 3.4 describes t-Distributed Stochastic Neighbor Embedding (t-SNE)

as an unsupervised, non-linear technique used for visualizing high-dimensional data.

Chapter 4 presents experimental results. Section 4.1 shows the hardware and software

environments used in this work including details of the Caffe deep learning framework.

Section 4.2 provides details of creation of working original and augmented versions of

CIFAR10 image dataset. Sections 4.3–4.9 present experimental results for different

CNN architectures used as the CNN part in the CNN+XGBoost combination. Sec-

tion 4.10 provides analysis and summary of obtained experimental results. Finally,

Chapter 5 concludes the thesis and suggests future research directions.

3



Chapter 2

Related work

A summary of a performance of different methods on the CIFAR10 dataset is pre-

sented in Benenson’s website1. Because, methodically, CNNs provide better perfor-

mance on images, the majority of those results came from (i) supervised deep CNNs

which use images directly, (ii) useful features extracted from images by deep auto-

encoders in unsupervised way, and (iii) other techniques which also involve CNNs in

some ways. Classification accuracies given by Benenson1 vary from the 96.53% in the

best case (Graham, 2015) to 75.86% in the worst case (McDonnell and Vladusich,

2015).

The classification accuracy provided by XGBoost model in generally could be

much worse because XGBoost does not treat imaging information as spatial images,

when location of pixels plays a role and determines an image itself, but as a set of

“independent” features which are the values of appropriate pixels. For example, a

CIFAR10 image has 32 × 32 pixels and 3 RGB channels, and could be presented

1https://rodrigob.github.io/are_we_there_yet/build/classification_datasets_

results.html#43494641522d3130, accessed November 2020.
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to XGBoost as one dimensional vector of 3,072 elements. Ponomareva et al. (2017)

provided two improvements to the standard tree boosting algorithm by (i) changing

the boosting formalism from scalar-valued trees to vector-valued trees and (ii) intro-

ducing layer-by-layer boosting which leads to faster convergence and a more compact

ensemble. The authors implemented their improvements in the open-source Ten-

sorFlow Boosted Trees (TFBT) package and demonstrated the efficacy on a variety

of multiclass datasets. Their classification accuracies on the CIFAR10 dataset are:

40.50% by default; 41.94% by tuned XGBoost models from the standard Scikit-Learn

Python library; and 48.96% by their TFBT package when they used 100 trees and

depth=4 in each of experiments.

Ren et al. (2017) presented a combined deep CNN+XGBoost model, where a

deep CNN has performed feature extraction from images and XGBoost has performed

classification taking the extracted features from the fully-connected layer of the deep

CNN. The authors showed an improvement in classification accuracy from 76.28%

(for a standard deep CNN model) to 80.77% (for the combined deep CNN+XGBoost

model) for the CIFAR10 dataset. However, the authors did not specify exactly from

which of fully-connected layers of deep CNN they took the extracted features because

a classic deep CNN model for image recognition has at least two last fully-connected

layers (Krizhevsky et al., 2012).

Wan et al. (2020) presented neural-backed decision trees (NBDT) approach. They

use pre-trained CNN models to get features for a tree-based model. The authors

showed that their NBDT method can achieve accuracy: (i) within 1% of the base CNN

model on CIFAR10, CIFAR100 and TinyImageNet datasets using recently presented

state-of-the-art WideResNet CNN; and (ii) within 2% if using pre-trained EfficientNet

5
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on ImageNet dataset. However, the performance of the NBDT approach was slightly

deteriorated (see Table 2.1).

Table 2.1: Accuracy comparison of CNN and NBDT approach (Wan et al., 2020).

Method Backbone CIFAR10 CIFAR100
CNN WideResNet 28x10 97.62% 82.09%
NBDT WideResNet 28x10 97.57% 82.87%
CNN ResNet18 94.97% 75.92%
NBDT ResNet18 94.67% 74.92%

6



Chapter 3

Background

3.1 Convolutional Neural Networks

There are numerous variants of CNN architectures in the literature (e.g., Goodfellow

et al., 2016; LeCun et al., 2015, 1998; Krizhevsky et al., 2012; Springenberg et al., 2014;

Zagoruyko and Komodakis, 2016; Huang et al., 2016; Gu et al., 2018). However, their

basic components are very similar (Gu et al., 2018). Taking the famous LeNet-5 as an

example, it consists of three types of layers, namely: convolutional, pooling, and fully-

connected layers (LeCun et al., 1998). The convolutional layer is composed of several

convolution kernels which are used to compute different feature maps. Specifically,

each neuron of a feature map is connected to a region of neighbouring neurons in

the previous layer. Such a neighbourhood is referred to as the neuron’s receptive

field (input patch) in the previous layer. The new feature map can be obtained by

first convolving the input with a learned kernel and then applying an element-wise

nonlinear activation function on the convolved results. To generate each feature map,

the kernel is shared by all spatial locations of the input. The complete feature maps

7
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are obtained by using several different kernels.

Mathematically, the feature value at location (i, j) in the kth feature map of lth

layer, zli,j,k, is calculated by

zli,j,k = wlT

k xl−1
i,j + blk,

where wlk and blk are the weight vector and bias term of the kth filter of the lth

layer respectively, and xl−1
i,j is the input patch centred at location (i, j) of the lth−1

layer (see Figure 3.1). Note that the kernel wlk that generates the feature map zl:,:,k

is shared. Such a weight sharing mechanism has several advantages such as it can

reduce the model complexity and make the network easier to train.

Figure 3.1: Graphical representation of convolutional layer.

The activation function introduces nonlinearities to CNN, which are desirable

for multi-layer networks to detect nonlinear features. Let a(·) denote the nonlinear

activation function. The activation value ali,j,k of convolutional feature zli,j,k can be

8
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computed as

ali,j,k = a
(
zli,j,k

)
.

Typical activation functions are Sigmoid, Tanh (LeCun et al., 2012) and Rectified

linear unit (ReLU) (Nair and Hinton, 2010). ReLU is one of the most notable non-

saturated activation functions. The ReLU activation function is defined as

ai,j,k = max (zi,j,k, 0) ,

where zi,j,k is the input of the activation function at location (i, j) on the kth channel.

ReLU is a piecewise linear function which prunes the negative part to zero and retains

the positive part (see Figure 3.2a). The simple max(·) operation of ReLU allows it to

compute much faster than Sigmoid or Tanh activation functions, and it also induces

the sparsity in the hidden units and allows the network to easily obtain sparse rep-

resentations. It has been shown that deep networks can be trained efficiently using

ReLU even without pre-training (Russakovsky et al., 2015). Even though the dis-

continuity of ReLU at 0 may hurt the performance of back-propagation, many works

have shown that ReLU works better than Sigmoid and Tanh activation functions

empirically (Maas et al., 2013; Zeiler et al., 2013).

A potential disadvantage of ReLU unit is that it has zero gradient whenever the

unit is not active. This may cause units that do not active initially to never active as

the gradient-based optimization will not adjust their weights. Also, it may slow down

the training process due to the constant zero gradients. To alleviate this problem,

9



M.Sc. Thesis - Andrii Turchenko McMaster - Computational Science & Engineering

Maas et al. (2013) introduced Leaky ReLU which is defined as

ai,j,k = max (zi,j,k, 0) + λmin (zi,j,k, 0) ,

where λ ∈ (0, 1) is a predefined parameter. Compared with ReLU, Leaky ReLU

compresses the negative part rather than mapping it to constant zero, which makes

it allow for a small, non-zero gradient when the unit is not active (see Figure 3.2b).

Figure 3.2: Comparison between ReLU (a) and Leaky ReLU (b).

The pooling layer aims to achieve shift-invariance by reducing the resolution of

the feature maps. It is usually placed between two convolutional layers. Each feature

map of a pooling layer is connected to its corresponding feature map of the preceding

convolutional layer.

Denoting the pooling function as pool(al:,:,k), for each feature map al:,:,k, we have

yli,j,k = pool
(
alm,n,k

)
,∀(m,n) ∈ Rij,

10
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where Rij is a local neighbourhood around location (i, j). The typical pooling opera-

tions are max pooling (Boureau et al., 2010) and average pooling (Wang et al., 2012).

Pooling layer makes the features robust against noise and distortion. Figure 3.3 shows

an example, how a pooling layer fulfills the pooling function: the input has a size 4×4

elements, for 2× 2 pooling, 4× 4 image is divided into four non-overlapping matrices

of size 2× 2 (filled by different colors). In the case of max pooling, the output is the

maximum value of the four values in each 2 × 2 matrix. In case of average pooling,

the output is the average of the four values in each 2× 2 matrix (Hijazi et al., 2015).

Figure 3.3: Graphical representation of max and average pooling.

The kernels in the 1st convolutional layer of a CNN are designed to detect low-

level features such as edges and curves, while the kernels in higher layers are learned

to encode more abstract features. By stacking several convolutional and pooling

layers, we could gradually extract higher-level feature representations. After several

convolutional and pooling layers, there may be one or more fully-connected layers

11
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which aim to perform high-level reasoning (Simonyan and Zisserman, 2015; Zeiler

and Fergus, 2014; Hinton et al., 2012). They take all neurons in the previous layer

and connect them to every single neuron of current layer to generate global semantic

information. Also, a fully-connected layer is not always necessary as it can be replaced

by a 1 × 1 convolution layer (Lin et al., 2014). The last layer of CNNs is an output

layer. For classification tasks, the softmax loss is commonly used (Russakovsky et al.,

2015). It is essentially a combination of multinomial logistic loss and softmax. Given

a training set
{(
x(i), y(i)

)
; i ∈ 1, . . . , N, y(i) ∈ 1, . . . , K

}
, where x(i) is the ith input

image patch, and y(i) is its target class label among the K classes. The prediction of

jth class for ith input is transformed with the softmax function:

p
(i)
j =

ez
(i)
j∑K

l=1 e
z
(i)
l

,

where z
(i)
j is usually the activations of a densely connected layer, so z

(i)
j can be written

as z
(i)
j = wTj a

(i) + bj. Softmax turns the predictions into non-negative values and

normalizes them to get a probability distribution over classes. Such probabilistic

predictions are used to compute the multinomial logistic loss, i.e., the softmax loss,

as follows:

Lsoftmax = − 1

N

[
N∑
i=1

K∑
j=1

1
{
y(i) = j

}
log p

(i)
j

]
.

Training a CNN is a problem of global optimization. By minimizing the loss

function, we can find the best fitting set of parameters. Stochastic gradient descent

(SGD) is a common solution for optimizing CNNs (Wijnhoven and de With, 2010;

Zinkevich et al., 2010). The back-propagation algorithm is the standard training

method that uses gradient descent to update the parameters. Many gradient descent

12
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optimization algorithms have been proposed (Qian, 1999; Kingma and Ba, 2015).

Standard gradient descent algorithm update the parameters θ of the objective L(θ)

as

θt+1 = θt − η∇θE [L (θt)] ,

where E [L (θt)] is the expectation of L(θ) over the full training set and η is the

learning rate. Instead of computing E [L (θt)], SGD estimates the gradients on the

basis of a single randomly picked example (x(t), y(t)) from the training set

θt+1 = θt − ηt∇θL
(
θt;x

(t),y(t)
)

(Wijnhoven and de With, 2010).

In practice, each parameter update in SGD is computed with respect to a mini-

batch as opposed to a single example. This could help to reduce the variance in the

parameter update and can lead to more stable convergence. The convergence speed

is controlled by the learning rate ηt. However, mini-batch SGD does not guarantee

good convergence, and there are still some challenges that need to be addressed.

Firstly, it is not easy to choose a proper learning rate. One common method is to

use a constant learning rate that gives stable convergence in the initial stage, and

then reduce the learning rate as the convergence slows down. Additionally, learning

rate schedules have been proposed to adjust the learning rate during the training

(Loshchilov and Hutter, 2017; Schaul et al., 2013). To make the current gradient

update depend on historical batches and accelerate training, Qian (1999) proposed

momentum to accumulate a velocity vector in the relevant direction. The classical

13
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momentum update is given by

vt+1 = γvt − ηt∇θL
(
θt;x

(t),y(t)
)
,

θt+1 = θt + vt+1,

where vt+1 is the current velocity vector and γ is the momentum term which is

usually set to 0.9. Nesterov momentum (Sutskever et al., 2013) is another way of

using momentum in gradient descent optimization:

vt+1 = γvt − ηt∇θL |
(
θt + γvt;x

(t),y(t)
)
.

Compared with the classical momentum (Qian, 1999), which first computes the cur-

rent gradient and then moves in the direction of the updated accumulated gradient,

Nesterov momentum first moves in the direction of the previous accumulated gradient

γvt, calculates the gradient and then makes a gradient update. This anticipatory up-

date prevents the optimization from moving too fast and achieves better performance

(Zhang et al., 2015).

Over-fitting is a non-negligible problem in deep CNNs, which can be effectively

reduced by regularization. Several effective regularization techniques are available and

include lp-norm, Dropout, and DropConnect. The lp-norm regularization technique

modifies the objective function by adding additional terms that penalize the model

complexity. Formally, if the loss function is L(θ, x, y), then the regularized loss will

be

E(θ,x,y) = L(θ,x,y) + λR(θ),

14
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where R(θ) is the regularization term and λ is the regularization strength. The lp-

norm regularization function is usually employed as

R(θ) =
∑
j

‖θj‖pp .

When p ≥ 1, the lp-norm is convex, which makes the optimization easier and renders

this function attractive (Hinton et al., 2012). For p = 2, the l2-norm regularization

is commonly referred to as weight decay. Hinton et al. (2012) also apply Dropout to

fully-connected layers. The output of Dropout is

y = r ∗ a
(
WTx

)
,

where x = [x1, x2, . . . , xn]T is the input to fully-connected layer, W ∈ Rn×d is a weight

matrix, and r is a binary vector of size d whose elements are independently drawn from

a Bernoulli distribution with parameter p, i.e., ri ∼ Bernoulli(p) for i = 1, . . . , d, and

”∗” denotes element-wise product. Dropout can prevent the network from becoming

too dependent on any one (or any small combination of) neurons, and can force the

network to be accurate even in the absence of certain information.

Deep CNNs are particularly dependent on the availability of large quantities of

training data. An elegant solution to alleviate the relative scarcity of the data com-

pared to the number of parameters involved in CNNs is data augmentation (Rus-

sakovsky et al., 2015). Data augmentation consists in transforming the available data

into new data without altering their natures. Popular augmentation methods include

simple geometric transformations such as sampling, mirroring, rotating, shifting, and

various photometric transformations.
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Deep CNNs have a huge amount of parameters and their loss functions are non-

convex (Choromanska et al., 2015), which makes them very difficult to train. To

achieve a fast convergence in training and avoid the vanishing gradient problem, a

proper network initialization is one of the most important prerequisites (Mishkin and

Matas, 2016; Sutskever et al., 2013). The bias parameters can be initialized to zero,

while the weight parameters should be initialized carefully to break the symmetry

among hidden units of the same layer. If the network is not properly initialized,

e.g., each layer scales its input by k, the final output will scale the original input

by kL, where L is the number of layers. In this case, the value of k > 1 leads to

extremely large values of output layers while the value of k < 1 leads a diminishing

output value and gradients. Krizhevsky et al. (2012) initialize the weights of their

network from a zero-mean Gaussian distribution with standard deviation 0.01 and set

the bias terms of the second, fourth and fifth convolutional layers as well as all the

fully-connected layers to constant one. Another famous random initialization method

is “Xavier”, which is proposed by Glorot and Bengio (2010). They pick the weights

from a Gaussian distribution with mean 0 and a variance of

2

nin + nout

,

where nin is the number of neurons feeding into it and nout is the number of neurons the

result is fed to. Thus ”Xavier” can automatically determine the scale of initialization

based on the number of input and output neurons, and keep the signal in a reasonable

range of values through many layers. One of its variants in Caffe uses the nin-only

variant, which makes it easier to implement.

Data normalization is usually the first step of data preprocessing. Global data
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normalization transforms all the data to have mean 0 and variance 1. However, as

the data flows through a deep network, the distribution of input to internal layers

will be changed, which will lose the learning capacity and accuracy of the network.

Ioffe and Szegedy (2015) propose an efficient method called batch normalization (BN)

to partially alleviate this phenomenon. It accomplishes the so-called covariate shift

problem by a normalization step that fixes the means and variances of layer inputs

where the estimations of mean and variance are computed after each mini-batch rather

than the entire training set.

3.2 XGBoost

XGBoost is derived from a boosting method, which is one of the most powerful learn-

ing ideas introduced in the last twenty years (Hastie et al., 2008). The motivation for

boosting was a procedure that combines the outputs of many “weak” classifiers to pro-

duce a powerful “committee”. From this perspective boosting bears a resemblance to

bagging and other committee-based approaches; however, boosting is fundamentally

different (Hastie et al., 2008; McNicholas and Tait, 2019). Let us consider XGBoost

on the example of the most popular boosting algorithm called “AdaBoost.M1” (Fre-

und and Schapire, 1997). Consider a two-class problem, with the output variable

coded as Y ∈ {−1, 1}. Given a vector of predictor variables X, a classifier G(X)

produces a prediction taking one of the two values {−1, 1}. The error rate on the

training sample is

err =
1

N

N∑
i=1

I (yi 6= G (xi)) (3.1)

and the expected error rate on future predictions is EXY I(Y 6= G(X)).

17



M.Sc. Thesis - Andrii Turchenko McMaster - Computational Science & Engineering

A weak classifier is one whose error rate is only slightly better than random guess-

ing. The purpose of boosting is to sequentially apply the weak classification algorithm

to repeatedly modified versions of the data, thereby producing a sequence of weak

classifiers Gm(x),m = 1, . . . ,M .

The predictions from all of weak classifiers are then combined through a weighted

majority vote to produce the final prediction

G(x) = sign

(
M∑
m=1

αmGm(x)

)
,

where α1, . . . , αM are computed by the boosting algorithm, and weight the contribu-

tion of each respective Gm(x). Their effect is to give higher influence to the more

accurate classifiers in the sequence.

Algorithm 1 shows a pseudo-code of the AdaBoost algorithm. The data modifi-

cations at each boosting step consist of applying weights w1, . . . , wN to each of the

training observations (xi, yi), i = 1, . . . , N . Initially all of the weights are set to

wi = 1/N , so that the first step simply trains the classifier on the data in the usual

manner. For each successive iteration m = 2, . . . ,M , the observation weights are

individually modified and the classification algorithm is reapplied to the weighted

observations. At step m, those observations that were mis-classified by the clas-

sifier Gm−1(x) induced at the previous step have their weights increased, whereas

the weights are decreased for those that were classified correctly. Thus as iterations

proceed, observations that are difficult to classify correctly receive ever-increasing in-

fluence. Each successive classifier is thereby forced to concentrate on those training

observations that are missed by previous ones in the sequence.

The success of boosting idea lies in expression (3.1). Boosting is a way of fitting
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1. Initialize the observation weights wi = 1/N, i = 1, 2, . . . , N .

2. For m = 1 to M :

(a) Fit a classifier Gm(x) to the training data using weights wi.

(b) Compute

errm =

∑N
i=1 wiI (yi 6= Gm (xi))∑N

i=1 wi
.

(c) Compute αm = log ((1− errm) / errm).

(d) Set wi ← wi · exp [αm · I (yi 6= Gm (xi))] , i = 1, 2, . . . , N .

3. Output G(x) = sign
[∑M

m=1 αmGm(x)
]
.

Algorithm 1: The AdaBoost.M1 algorithm.

an additive expansion in a set of elementary “basis” functions. Here the basis func-

tions are the individual models of classifiers Gm(x) ∈ {−1, 1}. More generally, basis

function expansions take the form

f(x) =
M∑
m=1

βmb (x; γm) ,

where βm,m = 1, . . . ,M are the expansion coefficients and b(x; γ) ∈ R are usually

simple functions of the multivariate argument x, characterized by a set of parame-

ters γ. Typically these individual models are fit by minimizing a loss function averaged

over the training data, such as the squared-error or a likelihood-based loss function

min
{βm,γm}M1

N∑
i=1

L

(
yi,

M∑
m=1

βmb (xi; γm)

)
.

19



M.Sc. Thesis - Andrii Turchenko McMaster - Computational Science & Engineering

For many loss functions L(y, f(x)) and/or basis functions b(x; γ), this requires com-

putationally intensive numerical optimization techniques.

3.3 Feature selection schemes

Various feature selection methods (Zhao et al., 2019; Bolon-Canedo et al., 2013; Chan-

drashekar and Sahin, 2014; Tang et al., 2014) are available to reduce the entire feature

set to a more compact one. Such methods can be roughly divided into three cate-

gories: filter methods, wrapper methods, and embedded methods. The advantage of

the filter method is the computation efficiency and generalizability to different ma-

chine learning models. From the machine learning standpoint, the ideal filter method

can effectively reduce the redundant features while keeping the relevant features for

the model. It is known that the m best features could be not the best m features

(Cover, 1974) because many important features are correlated and redundant. In this

work we will be using three filtering feature selection schemes:

• <RRC> — “Redundancy Removed Correlated” features – is a scheme, when we

(i) calculate Pearson linear correlation James et al. (2017) of all features with

ground-truth labels; (ii) sort features according to increasing of their p-values

and remove features (from the end of the obtained list) which accept the null

hypothesis when their p-value is larger than 0.01, i.e., who meet the criterion

that there is no relationship between X and Y ,”; and (iii) calculate the mutual

pair-wise Pearson linear correlation among the remaining features and again

remove features, which mutual correlations is bigger than some threshold (we

will be using threshold 0.9 in this work).
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• <RFranks>— ”Random Forest ranks” — is a scheme, when (i) we take<RRC>

features from the previous step and (ii) we train RF model in a 5-fold cross-

validation fashion, on each fold RF gives us ranks of selected features used for

the classification for that fold, and (iii) for the final list, we select only the

features which are intersect in the three folds of five.

• <mRMR> — ”minimum Redundancy Maximum Relevance” — provides fea-

ture selection considering both the relevance for predicting the outcome variable

and the redundancy within the selected features. The optimal characterization

condition often means the minimal classification error. In an unsupervised sit-

uation where the classifiers are not specified, minimal error usually requires the

maximal statistical dependency of the target class c on the data distribution in

the subspace Rm (and vice versa). This scheme is maximal dependency (Max-

Dependency). One of the most popular approaches to realize Max-Dependency

is maximal relevance (Max-Relevance) feature selection: selecting the features

with the highest relevance to the target class c. Relevance is usually char-

acterized in terms of correlation or mutual information, of which the latter

is one of the widely used measures to define dependency of variables. The

<mRMR> method addresses mutual-information-based feature selection (Peng

et al., 2005).

Assuming there are in total m features, and for a given feature Xi, i ∈ {1, · · · ,m},

its feature importance based on the <mRMR> criterion can be expressed as

fmRMR (Xi) = I (Y,Xi)−
1

|S|
∑
Xs∈S

I (Xs, Xi) ,
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where Y is the response variable (class label), S is the set of selected features, |S|

is the size of the feature set (number of features), Xs ∈ S is one feature out of the

feature set S, Xi denotes a feature currently not selected: Xi /∈ S . The function

I(·, ·) is the mutual information

I(Y,X) =

∫
ΩY

∫
ΩX

p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy,

where ΩY and ΩX are the sample spaces corresponding to Y and X, p(x, y) is the joint

probability density, and p() is the marginal density function. For discrete variables

Y and X, the mutual information formula takes the form

I(Y,X) =
∑
y∈ΩY

∑
x∈ΩX

p(x, y) log

(
p(x, y)

p(x)p(y)

)
.

In the <mRMR> feature selection process, at each step, the feature with the

highest feature importance score maxXi /∈S f
mRMR (Xi) will be added to the selected

feature set S.

3.4 tSNE visualization algorithm

t-distributed stochastic neighbour embedding (t-SNE) is an unsupervised, non-linear

technique used for data exploration and visualizing high-dimensional data (Van der

Maaten and Hinton, 2008). It is based on the stochastic neighbour embedding (SNE)

method proposed by Hinton and Roweis (2002). It minimizes a single Kullback-Leibler

divergence between a joint probability distribution P in the high-dimensional space
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and a joint probability distribution Q in the low-dimensional space, i.e., it minimizes

KL(P‖Q) =
∑
i

∑
j

pij log
pij
qij
,

where pii and qii are set to zero. This approach is called symmetric SNE, because it

has the property that pij = pji and qij = qji for ∀i, j. In symmetric SNE, the pairwise

similarities in the low-dimensional map qij are given by

qij =
exp

(
−‖yi − yj‖2)∑

k 6=l exp
(
−‖yk − yl‖2) . (3.2)

The way to define the pairwise similarities in the high-dimensional space pij is

pij =
exp

(
−‖xi − xj‖2 /2σ2

)∑
k 6=l exp

(
−‖xk − xl‖2 /2σ2

) ,
but this causes problems when a high-dimensional datapoint xi is an outlier (i.e.,

all pairwise distances ‖xi − xj‖2 are large for xi). For such an outlier, the values of

pij are extremely small for all j, so the location of its low-dimensional map point yi

has very little effect on the cost function. As a result, the position of the map point

is not well determined by the positions of the other map points. This problem is

circumvented by defining the joint probabilities pij in the high-dimensional space to

be the symmetrized conditional probabilities, that is, we set

pij =
pj|i + pi|j

2n
.
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This ensures that ∑
j

pij >
1

2n

for all datapoints xi, as a result of which each datapoint xi makes a significant con-

tribution to the cost function. In the low-dimensional space, symmetric SNE simply

uses (3.2). The main advantage of the symmetric SNE is the simpler form of its

gradient, which is faster to compute. The gradient of symmetric SNE is given by

δC

δyi
= 4

∑
j

(pij − qij) (yi − yj) .

Today, the tSNE method is a standard de-facto approach in visualizing high dimen-

sional data (Silver et al., 2017).
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Chapter 4

Experimental results

4.1 Hardware and software environment

4.1.1 Hardware and software

A computational server used in the experimental work is rented on the Amazon AWS

EC2 services1. The server has 8-core Intel(R) Xeon(R) Platinum 8259CL @ 2.50GHz

processor and 32 GB of RAM. XGBoost models are trained in CPU mode on all 8

available cores. NVIDIA Tesla T4 GPU card2 is used for training of all deep CNN

models. Tesla T4 has NVIDIA Turing architecture, 2560 CUDA cores, 14 GB of

the on-board memory and provides 8.1 TFLOPS in single-precision operations. The

server is worked under Ubuntu 18.04 operating system.

The Matlab 2019b software3 is used for: (i) preparation of HDF5 version of the

1https://aws.amazon.com/, accessed November 2020.
2https://www.nvidia.com/en-us/data-center/tesla-t4/, accessed November 2020.
3https://www.mathworks.com/products/matlab.html, accessed November 2020.
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CIFAR10 dataset, (ii) implementation of <RRC>, <RFranks> and <mRMR> fea-

ture selection schemes, (iii) obtaining results from Caffe deep learning framework,

(iv) extracting features from last layers of each CNN model, (v) running the tSNE

visualization algorithm, and (vi) numerical calculation of classification results and

confusion matrices. The Python library <sklearn>4 is used for running XGBoost

classifier.

4.1.2 Caffe deep learning framework

State-of-the art deep learning frameworks nowadays include TensorFlow, PyTorch,

Caffe, Deeplearning4j and others5. Caffe (Jia et al., 2014) is chosen to implement

CNN models because this framework has the following advantages over others: (i)

it is simple since it allows to describe a model of a deep network and its training

parameters as text files (prototxt) and run models directly from a Linux operating

system, (ii) it is more universal since it has Python and Matlab wrappers allowing

to call trained Caffe models in these programming languages, and (iii) it is very fast

because implemented on C++.

Some examples of how to describe layers of a deep network in Caffe are shown in

Figure 4.1. The layer of the basic weighed sum operation entitled as INNER_PRODUCT

and is shown in Figure 4.1(a). Description starts with identifiers bottom and top,

which assign names of input and output variables encode1 and encode2 accord-

ingly. The next identifier name describes name of the layer used by Caffe interpreter

to connect layers among each other to build a deep network. The layer identifier

4https://xgboost.readthedocs.io/en/latest/python/python_api.html#module-xgboost.

sklearn, accessed November 2020.
5https://www.analyticsvidhya.com/blog/2019/03/deep-learning-frameworks-comparison,

accessed November 2020.
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type describes the type of the layer, and an identifier INNER_PRODUCT explains to

Caffe that this layer implements a weighed sum operation, i.e., input data located

in the variable, encode1 are multiplied by weights of neurons. Identifiers blobs_lr

and weight_decay describe the initialization values for a learning rate and addi-

tional updating parameters for weights, for example to exponentially decay to zero at

the training stage. Next, the weighted sum parameters are described in the section

inner_product_param: the identifier num_output describes how many neurons will

be in this layer, the identifiers type, std and sparse in the section weight_filler de-

scribe weights’ initialization type as gaussian with the standard deviation of weights’

distribution 1 and weights’ sparsification (sparseness) parameter 15. Similar param-

eters can also be chosen for biases at the end of the layer description. The activation

function layer in Figure 4.1(b) has identifiers bottom, top and name which describe

names of the input and output variables and name of the layer. An identifier type:

SIGMOID shows that this layer implements a sigmoid activation function of neurons.

The use of same input and output variable encode2 means that the layer takes values

from that variable, converts them by sigmoid and saves them back into the same vari-

able. The accuracy layer in Figure 4.1(c) calculates classification accuracy between

two input variables encode4 and label and saves the result into output variable

accuracy for both TRAIN and TEST phases. The softmax loss layer in Figure 4.1(d)

calculates the loss between two input variables encode4 and label and saves the

result into output variable loss.

The learning parameters of the CNN are defined in the solver <prototxt> file

(Figure 4.2). The solver file consists of three sections. The first section contains

a number of patterns on which the trained model will be tested (calculated as a
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Figure 4.1: Descriptive examples of layers in Caffe.

total number of testing patterns in dataset divided by size of a training batch), and a

number of training iterations at which that testing should be done. The second section

contains type of a solver to use, a base learning rate, momentum, and a weight decay

of the network as well as a policy to change a learning rate. Caffe supports several

solvers — methods to address the general optimization problem of loss minimization

— such as SGD, AdaDelta, adaptive gradient, Nesterov’s accelerated gradient and

others. Decreasing learning rate as an optimization/learning process normally helps

obtain better results. In our example in Figure 4.2 we have a “fixed” learning rate

policy, i.e., the learning rate does not change during training. Several policies are

allowable, including:
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• step (learning rate decreases by some step value every designated number of

training iterations),

• multistep (learning rate decreases by some step on some specific training iter-

ation(s)),

• inv (inverse decay - it changes inversely to a number of training iterations).

Momentum and weight-decay are other parameters to change during an optimization

process. The last section of the solver file contains the maximum number of training

iterations, the number of iterations when the model should save training and testing

results, and a solver mode which specifies what hardware CPU or GPU to use for

training. More information about Caffe deep learning framework is available at the

official page6.

4.2 CIFAR10 dataset

4.2.1 Original data

The CIFAR10 dataset consists of 60,000 32×32 colour images of 10 classes, with 6,000

images per class (Krizhevsky, 2009). Classes are: ”Airplane”, ”Automobile”, ”Bird”,

”Cat”, ”Deer”, ”Dog”, ”Frog”, ”Horse”, ”Ship” and ”Truck”. There are 50,000

training images and 10,000 test images. The dataset is divided into five training

batches and one test batch, each with 10,000 images. The test batch contains 1,000

randomly-selected images from each class. Training batches contain the remaining

images in random order, but some training batches may contain more images from one

6https://caffe.berkeleyvision.org, accessed November 2020.
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Figure 4.2: Example of the solver file in Caffe.

class than another. Classes are completely mutually exclusive. There is no overlap

between automobiles and trucks. Class ”Automobile” includes sedans, SUVs and

others, and class ”Truck” includes only big trucks. Data preparation stage included

datasets creation for the CNN and XGBoost parts.

Creation of the dataset for the CNN part. Caffe reads data through data layers7

which support LevelDB and LMDB databases, common image formats (.jpg, .png,

etc.) and HDF5 (hierarchical data format). All working datasets were created using

the HDF5 format because it provides efficient data storage and data organization

on logical level. Because original data are stored in a form of data entries, it was

7https://caffe.berkeleyvision.org/tutorial/layers.html#data-layers, accessed
November 2020.
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necessary to convert them properly into a form of 2D images. Each data entry was a

row of a matrix with 3,072 elements which stores a 32× 32-pixel colour RGB image.

The first 1,024 elements contain the red channel values, the next 1,024 the green,

and the final 1,024 entries contain the blue channel values. For the Caffe-compatible

HDF5-type dataset we form data as a matrix with a shape

< height > × < width > × < 3 > × < N >,

where < height > × < width > are numbers of pixels of an image, < 3 > is a

number of color channels (red, green, blue) and < N > is a number of images.

During the training set creation we also created the mean image to be used for data

normalization8. The normalization is done by (i) subtracting the mean image from

every image in the training set and (ii) by the following z-scoring every pixel within

each channel, so all pixel values within each color channel are centered to have mean

0 and scaled to have standard deviation 1. That normalization is an essential step

which allows all images to be in the same conditions. Training and testing datasets

were created independently by different scripts and saved into different files to avoid

any possible data contamination. During creation of datasets, a random check for the

image-label correspondence was done (Figure 4.3) ensuring their correctness as well

as final print of the obtained HDF5 structure (Table 4.1).

Creation of the dataset for the XGBoost part. In this work features learned by

the CNN part and available on the last output layer of CNN are used for training

the XGBoost model. For each of the experiments below, an appropriately trained

CNN model was run over original training and testing datasets. Then, obtained

8http://cs231n.github.io/linear-classify/, accessed November 2020.
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Table 4.1: Output HDF5 structures of CIFAR10 training and testing datasets.

Structure of HDF5 dataset for training Structure of HDF5 dataset for testing
HDF5 cifar10TR.h5 HDF5 cifar10TE.h5
Group ’/’ Group ’/’

Dataset ’data’ Dataset ’data’
Size: 32x32x3x50000 Size: 32x32x3x10000
MaxSize: 32x32x3x50000 MaxSize: 32x32x3x10000
Datatype: Datatype:

H5T IEEE F32LE (single) H5T IEEE F32LE (single)
ChunkSize: [] ChunkSize: []
Filters: none Filters: none
FillValue: 0.000000 FillValue: 0.000000
Dataset ’label’ Dataset ’label’
Size: 1x50000 Size: 1x10000
MaxSize: 1x50000 MaxSize: 1x10000
Datatype: Datatype:

H5T IEEE F32LE (single) H5T IEEE F32LE (single)
ChunkSize: [] ChunkSize: []
Filters: none Filters: none
FillValue: 0.000000 FillValue: 0.000000

features (different shapes of 2D and 1D matrices depending on CNN architecture in

different experiments) are taken from last or next-to-last layers of appropriate CNN

and converted into a 2D array of < n × p > form, where < n > is a number of

observations (images) and < p > is a number of learned features. Depending on

the experiment, it was done in a one-module fashion or 5-fold CV (cross-validation)

fashion (we actually trained 5 CNN models). Also, the extracted features from the

CNN part were saved as originally obtained values as well as normalized values. The

following normalization schemes are used:

(i) <submean>, vector of columns mean values was substituted from each feature

vector (feature-wise) to provide mean 0 for every feature column;

(ii) <zscore>, each feature column was centered to have mean 0 and scaled to have
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standard deviation 1 (Goodfellow et al., 2016).

For each experiment, some preliminary runs were fulfilled and the best normalization

scheme was used then to run XGBoost part of that experiment.

Figure 4.3: Random visual check of CIFAR10 classes while creating HDF5 training
and testing datasets.

4.2.2 Augmented data

Data augmentation is used to add some distortion to the original CIFAR10 dataset

with intention that this operation can improve the variance of output features ex-

tracted from the last layer of a CNN. Popular data augmentation approaches (Sprin-

genberg et al., 2014) normally include increasing image resolution as well; however, to

compare two exact CNN architectures (number of input CNN planes should be equal

as well), the original CIFAR10 resolution 32 × 32 was not changed. The example of

an original image of a horse and 8 added distortions are shown in Figure 4.4. For

each original image in the CIFAR10 dataset, such operations as shifting to left, right,

top and bottom by 4 pixels, two rotations to the left by 10 and 20 degrees and two

rotations to the right by 10 and 20 degrees are fulfilled. Only the training dataset was

augmented, 8 distortions per image were applied, a total of 400,000 new images were
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obtained. The size of a new data augmented training dataset of CIFAR10 was set to

450,000 images, 400000 distorted images plus 50,000 original images. The size and

shape of the testing dataset remains unchanged to provide an apples-to-apples com-

parison of the results. Creation of working HDF5 data augmented training dataset

for the CNN part as well as extracted features dataset for the XGBoost part were

fulfilled in a similar way as described in the Section 4.2.1 above.

Figure 4.4: Example of data augmentation.
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4.3 XGBoost results

Before experiments with combined CNN+XGBoost models, it is necessary to assess

the accuracy of the XGBoost model. The raw CIFAR10 image has 32×32 pixels with

3 color channels, which makes it 3,072 features in total. A normalized version of the

working HDF5 dataset with mean 0 and standard deviation 1 over all features (pixels)

was used in the experiment. From a total of 3,072, 1,713 and 250 best features were

selected by the < RRC > and < RFranks > feature selection schemes respectively.

The XGBoost algorithm trained 164, 85 and 12 minutes for 3,072, 1,713 and 250

features, respectively, on 8 cores of Intel(R) Xeon(R) Platinum 8259CL. We have

obtained 50.10% of accuracy for the model trained on all 3,072 features, 49.29% for

the model trained on 1713 < RRC > features, and 43.73% for the model trained on

250 < RFranks > features.

4.4 AlexNet+XGBoost results

The AlexNet Caffe implementation is obtained from examples of original Caffe pack-

age (Krizhevsky, 2009). AlexNet is a famous deep CNN approach (Krizhevsky et al.,

2012), it consists of 3 convolutional, 3 pooling, and 2 fully-connected layers (Ta-

ble 4.2). Its graphical representation is depicted in Figure 4.5.

Table 4.2: AlexNex summary.

Architecture 3 convolutional, 3 pooling (1 MAX pooling, 2 AVE pooling) and 2
fully-connected layers, ReLU activation

Solver type: SGD, base lr: 0.001, momentum: 0.9, weight decay: 0.004,
lr policy: ”fixed”
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Figure 4.5: Graphical representation of AlexNet CNN.

Blue elements in Figure 4.5 represent layers of neurons where information is pro-

cessing, yellow elements represent input and output matrices (blobs) associated with

layers of neurons, and green elements represent activation functions associated with

selected layers of neurons. The AlexNet architecture has 32 neurons (they are also

called planes) in the first convolutional layer, 32 neurons in the second convolu-

tional layer, 64 neurons in the third convolutional layer, 64 neurons in the fourth

fully-connected layer, and 10 output fully-connected neurons which correspond to 10
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labels of CIFAR-10 dataset. ReLU are used as an activation function. The loss values

for the training and testing stages and classification accuracy are calculated on the

“loss” and “accuracy” layers.

The declared accuracy of AlexNet on the CIFAR10 test set in the field is around

75% (Krizhevsky et al., 2012) and it has been effectively reached in our experiments

(74.71%). AlexNet was trained up to 80,000 iterations, which took about one hour

on GPU Tesla T4. A small modification in the architecture has been made: original

AlexNet CNN has 64 output neurons in the next-to-last fully-connected layer. It was

increased to 256 output neurons to extract more features from the CNN part to train

XGBoost part. Preliminary research showed that the < submean > extracted feature

normalization scheme given slightly better performance for the XGBoost part. From

a total of 256, 239 and 150 best features were selected by < RRC > and < RFranks >

feature selection schemes, respectively. The best XGBoost result was selected from

a set of experiments with changing a number of trees from 100 to 1800 within three

feature selection schemes: (i) all extracted 256 features, (ii) 239 features selected

by < RRC >, and (iii) 150 features selected by < RFranks >. The XGBoost part

experiment took from 1 to 47 minutes per run on 8 cores of Intel(R) Xeon(R) Platinum

8259CL. Results using all extracted 256 features are presented in Table 4.3.

Table 4.3: XGBoost accuracy using 256 < submean > AlexNet features.

NumTrees 100 200 300 600 900 1200 1500 1800
Accuracy, % 73.00 – 75.35 75.78 76.18 76.11 76.19 76.34

37



M.Sc. Thesis - Andrii Turchenko McMaster - Computational Science & Engineering

4.5 All Convolutional Net + XGBoost results

The All Convolutional Net (AllConvNet) Caffe implementation is obtained from

GitHub repository of Mateus Zbuda9. AllConvNet is a famous deep CNN model

proposed in Springenberg et al. (2014). It consists of 9 convolutional, 2 dropout and

1 pooling layers, and ReLU units are used as an activation function (Table 4.4).

Table 4.4: AllConvNet summary.

Architecture 9 convolutional, 2 dropout, 1 pooling (AVE), ReLU activation
Solver type: SGD, base lr: 0.05, momentum: 0.9, weight decay: 0.001,

lr policy: ”multistep”, gamma: 0.1

The declared accuracy of the used Caffe AllConvNet implementation on CIFAR10

test set is 90.25%9. This implementation does not deal with any augmentation ap-

proach. The original paper (Springenberg et al., 2014) declares 95.59% and this result

was obtained by using additional augmentation of the training data set, when each

image was enlarged to 224 × 224 pixels and slightly changed by left-right rotations

and shifting. The declared level of accuracy was not reached in our experiments

(83.54%). The AllConvNet model was trained up to 80,000 iterations, which took

about 7 hours on GPU Tesla T4. An accuracy of 90.25% was not reached and that

is probably because that was gained by applying global contrast normalization and

ZCA (zero-phase component analysis) whitening9. An accuracy of 95.59% was not

reached because the model was not trained on the augmented dataset.

In all, 64 CNN features were extracted from the last CNN layer to train the

XGBoost part. Preliminary research showed that the original features with no nor-

malization gives slightly better performance for the XGBoost part. We did not run

9https://github.com/mateuszbuda/ALL-CNN, accessed November 2020.
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< RRC > and < RFranks > feature selection schemes in this experiment because 64

features is already a small number and there is no room to decrease this number fur-

ther. The best XGBoost result was selected from a set of experiments with changing

the number of trees from 100 to 1,800, which took from 1 to 5 minutes per run on

8 cores of Intel(R) Xeon(R) Platinum 8259CL. The XGBoost part results using all

extracted 64 features are presented in Table 4.5.

Table 4.5: XGBoost accuracy using 64 <original> AllConvNet features.

NumTrees 100 200 300 600 900 1200 1500 1800
Accuracy, % 84.16 84.04 84.06 83.98 84.02 84.05 84.01 84.01

4.6 WideResNet + XGBoost results

WideResNet Caffe implementation is obtained from GitHub repository of user Re-

vilokeb10. WideResNet is a famous deep CNN model proposed in Zagoruyko and

Komodakis (2016). It is a huge network and it consists of 29 convolutional, 23 batch

normalization, 13 eltwise, 23 scaling, 1 pooling and 1 fully-connected layers. ReLU

units are used as an activation function (Table 4.6).

Table 4.6: WideResNet summary.

Architecture 29 convolutional, 23 batch normalization, 13 eltwise, 23 scaling and 1
pooling (AVE), 1 fully-connected, ReLU activation

Solver type: Nesterov, average loss: 400, base lr: 0.1, momentum: 0.9,
weight decay: 0.0005, lr policy: ”step”, gamma: 0.2

The declared accuracy of the used Caffe WideResNet implementation on CIFAR10

10https://github.com/revilokeb/wide_residual_nets_caffe, accessed November 2020.
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test set is 92.54%10 without applying global contrast normalization and ZCA whiten-

ing. The original paper (Zagoruyko and Komodakis, 2016) declares 95.83% with

padding and applying global contrast normalization and ZCA whitening. The de-

clared levels of accuracy have not been reached in our experiments (86.13%) due to

(i) less time the model was trained and (ii) padding and global contrast normaliza-

tion and ZCA whitening were not applied as in the original paper (i.e., Zagoruyko

and Komodakis, 2016). The WideResNet model was trained up to 80,000 iterations,

which took about 23 hours on GPU Tesla T4. WideResNet has 640 output neurons in

the last convolutional layer and 10 output neurons in the last fully-connected layer.

Therefore, 640 features from the CNN part were extracted to train the XGBoost

part. Preliminary research showed that the < zscore > extracted feature normaliza-

tion scheme gives slightly better performance for the XGBoost part. From a total

of 640, 618 and 250 best features were selected by < RRC > and < RFranks >

feature selection schemes, respectively. The best XGBoost result was selected from

a set of experiments with changing a number of trees from 100 to 1,800 within three

feature selection schemes: (i) all extracted 640 features, (ii) 618 features selected by

< RRC >, and (iii) 250 features selected by < RFranks >. The XGBoost part ex-

periment took from 4 to 20 minutes per run on 8 cores of Intel(R) Xeon(R) Platinum

8259CL. The XGBoost part results using all extracted 640 features are presented in

Table 4.7.

Table 4.7: XGBoost accuracy using 640 <original> WideResNet features.

NumTrees 100 200 300 600 900 1200 1500 1800
Accuracy, % 85.61 85.67 85.63 85.63 85.63 85.63 85.63 85.63
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4.7 DenseNet + XGBoost results on original data

DenseNet Caffe implementation is obtained from GitHub repository of user shen86506

979911. DenseNet is a famous deep CNN model proposed in Huang et al. (2016). It is

a huge network and it consists of 39 convolutional, 39 batch normalization, 39 scaling,

1 pooling and 1 fully-connected layers. ReLU units are used as an activation function

(Table 4.8).

Table 4.8: DenseNet summary.

Architecture 39 convolutional, 39 batch normalization, 39 scaling and 1 pooling
(AVE), 1 fully-connected, ReLU activation

Solver type: Nesterov, base lr: 0.1, momentum: 0.9, weight decay: 0.0001,
lr policy: ”multistep”, gamma: 0.1

The declared accuracy of the used Caffe DenseNet implementation on CIFAR10

test set is 92.91%11. The original paper (Huang et al., 2016) declares 94.81% within

the Torch deep learning framework implementation. The declared levels of accuracy

have not been reached in our experiments (90.23%) due to (i) less time we trained

the model and (ii) technical differences in Caffe and Torch deep learning frameworks.

The DenseNet model was trained up to 230,000 iterations, which took about 16 hours

on GPU Tesla T4. DenseNet has 448 output neurons in the last convolutional layer

and 10 output neurons in the last fully-connected layer. Therefore, 448 features

from the CNN part were extracted to train the XGBoost part. Preliminary research

showed that the < submean > feature normalization scheme given slightly better

performance for the XGBoost part. From total 448, 430 and 150 best features were

selected by < RRC > and < RFranks > feature selection schemes, respectively. The

best XGBoost result was selected from a set of experiments with changing a number

11https://github.com/shen865069799/DenseNetCaffe, accessed November 2020.
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of trees from 100 to 1,800 within three feature selection schemes: (i) all extracted

448 features, (ii) 430 features selected by < RRC >, and (iii) 150 features selected by

< RFranks >. The XGBoost part experiment took from 4 to 16 minutes per run on

8 cores of Intel(R) Xeon(R) Platinum 8259CL. The XGBoost part results using all

extracted 448 features are presented in Table 4.9.

Table 4.9: XGBoost accuracy using 448 <submean> DenseNet features.

NumTrees 100 200 300 600 900 1200 1500 1800
Accuracy, % 89.86 89.98 90.09 90.17 90.16 90.14 90.13 90.13

When the classification accuracy on the training set of 50,000 CIFAR10 images

was checked in previous experiments, it was noted that it equals to 100% due to the

obvious over-fitting of the CNN part to the training dataset. Therefore, it is expedi-

ent to run 5-fold CV experiment to check if non-overfitted models can provide better

feature extraction from the CNN part. The best CNN part model, the DenseNet,

was selected: each of 5-fold CV CNNs is trained on 40,000 examples of its own fold

of the training set and generated features both for (i) its own testing fold of 10000

images of the regular training set as well as (ii) for regular 10000 testing set of CI-

FAR10. Five DenseNet models were trained up to 200000 iterations each, which took

about 60 hours on GPU GTX Tesla T4. DenseNet trained in a 5-fold CV fashion

outperformed the one-module model and provided 91.31% classification accuracy in-

stead of 90.23%. Similarly, 448 CNN features from the CNN part were extracted to

train the XGBoost part. Preliminary research showed that the < zscore > extracted

feature normalization scheme gives slightly better performance for the XGBoost part.

Similarly, 430 and 150 best features were selected by < RRC > and < RFranks >

feature selection schemes, respectively. The best XGBoost result was selected from a
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set of experiments with changing a number of trees from 100 to 1,800 within all four

feature selection schemes: (i) all extracted 448 features, (ii) 338 features selected by

< RRC >, (iii) 150 features selected by < RFranks >, and (iv) 313 features selected

by < mRMR >. The XGBoost part experiment took from 2 to 46 minutes per run

on 8 cores of Intel(R) Xeon(R) Platinum 8259CL. The XGBoost part results using

all feature selection schemes are presented in Table 4.10. We provided results of all

XGBoost runs for this model, DenseNet, and for this 5-fold CV experiment only, since

XGBoost behaviour was similar to the presented in all other models and experiments.

Table 4.10: XGBoost accuracy using all feature selection schemes for DenseNet fea-
tures obtained in 5-fold CV fashion.

NumTrees 100 200 300 600 900 1200 1500 1800
448 all features 90.08 n/a 90.21 90.51 90.65 90.66 90.71 90.62
accuracy, %
338 <RRC> features 90.16 - 90.24 90.22 90.36 90.33 90.41 90.29
accuracy, %
150 <RFranks> features 90.23 90.19 90.15 90.22 90.29 90.36 90.42 90.39
accuracy, %
313 <mRMR> features 89.90 90.14 90.21 90.37 90.47 90.47 90.46 90.58
accuracy, %

4.8 DenseNet + XGBoost results on augmented

data

Exactly the same DenseNet model architecture, training parameters and feature selec-

tion schemes described in Section 4.7 were used to train DenseNet on the augmented

training data set and to test it on the regular CIFAR10 test set. Comparing with the

regular dataset, better classification results were obtained on the augmented dataset
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for the CNN part: 91.66% accuracy on the augmented versus 90.23% on the regular

for one-module fashion, and 92.64% accuracy on the augmented versus 91.31% on

the regular for the 5-fold CV fashion. Due to the 9-times increased data volume in

the augmented dataset (it was increased from 50000 to 450000 images), all training

times for both CNN and XGBoost parts were increased significantly. DenseNet model

was trained up to 230,000 iterations, which took about 21 hours on GPU Tesla T4

for one-module fashion and 90 hours for the 5-fold CV fashion. The XGBoost part

experiment took from 2 to 7 hours per run on 8 cores of Intel(R) Xeon(R) Platinum

8259CL. Therefore, Table 4.11 does not contain all cells filled. The best XGBoost

result was selected from a set of experiments with changing a number of trees from

100 to 1800 within three feature selection schemes: (i) all extracted 448 features, (ii)

430 features selected by < RRC >, and (iii) 150 features selected by <RFranks>.

The XGBoost part results for both one-module and 5-fold CV runs are presented in

Table 4.11.

Table 4.11: XGBoost accuracy using 448 <submean> features extracted by DenseNet
on augmented dataset in one-module and 5-fold CV fashions.

NumTrees 100 200 300 600 900 1200 1500 1800
One-module, all 448 features 90.98 – 91.55 91.54 91.54 91.53 – –
accuracy, %
5-fold CV, <RFranks> 150 91.03 - 91.44 91.48 – – – –
features accuracy, %
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4.9 Transfer Learning: CaffeNet pre-trained on

ImageNet dataset + XGBoost results

CaffeNet Caffe implementation is obtained from examples of original Caffe package12.

CaffeNet is a single-GPU version of AlexNet CNN which won the 2012 ILSVRC

challenge with the validation error rate of 18.2% (Krizhevsky et al., 2012). CaffeNet

consists of 5 convolutional, 3 pooling, 2 LRN, 2 dropout, and 3 fully-connected layers.

ReLU units are used as an activation function (Table 4.12). Within the competition,

CaffeNet was trained on ImageNet dataset with 1,000 classes, therefore its last fully-

connected layer contains 1,000 neurons. To apply it for our case of CIFAR10, a little

network “surgery” was done: 1,000 neurons of the last layer were substituted by new

248 neurons (their weight initialization started from 0) and it becomes the next to

last layer, and the last layer with 10 neurons corresponding to a number of CIFAR10

classes was added. CIFAR10 dataset images were enlarged from 32× 32 to 227× 227

pixels to provide proper fine-tuning. Weight coefficients for all layers except the two

last layers were copied from the original CaffeNet, and the new CaffeNet were fine-

tuned by training on the CIFAR10 dataset for up to 120,000 training iterations, which

took about 5 hours on GPU Tesla T4. During the fine-tuning process, the learning

rate for all layers was chosen really small (see Table 4.12), and it was multiplied by

10 for the last two new layers ensuring decreasing of the training loss function for the

new CaffeNet. We were able to achieve 86.63% of accuracy on the CIFAR10 test set

with this approach.

12https://caffe.berkeleyvision.org/gathered/examples/cifar10.html, accessed Novem-
ber 2020.
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Table 4.12: CaffeNet summary.

Architecture 5 convolutional, 3 pooling (MAX), 2 LRN, 2 dropout, 3 fully-
connected, ReLU activation

Solver type: type: Nesterov, base lr: 0.001, momentum: 0.9, weight decay:
0.0005, lr policy: ”multistep”, gamma: 0.5

New CaffeNet 248 features from the CNN part were extracted to train the XG-

Boost part. Preliminary research showed that the< submean > feature normalization

scheme given slightly better performance for the XGBoost part. From a total of 248,

200 and 150 best features were selected by < RRC > and < RFranks > feature

selection schemes, respectively. The best XGBoost result was selected from a set of

experiments with changing a number of trees from 100 to 1800 within three feature se-

lection schemes: (i) all extracted 248 features, (ii) 200 features selected by < RRC >,

and (iii) 150 features selected by < RFranks >. The XGBoost part experiment took

from 4 to 49 minutes per run on 8 cores of Intel(R) Xeon(R) Platinum 8259CL. The

XGBoost part results using 200 < RRC > features are presented in Table 4.13.

Table 4.13: XGBoost accuracy using 200 <submean> <RRC> CaffeNet features.

NumTrees 100 200 300 600 900 1200 1500 1800
Accuracy, % 85.64 85.79 85.79 85.79 85.79 85.79 85.79 85.79

4.10 Analysis and summary of results

All tSNE feature visualization results for the CIFAR10 training and testing sets are

collected in Table 4.14. All top classification accuracies for all experiments are col-

lected in Table 4.15. The cases where the XGBoost part outperforms the CNN part

are highlighted in bold, and the cases where the CNN part outperforms the XGBoost
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part are highlighted in italics. All confusion matrices for all experiments are collected

in Appendix A. As was mentioned before, tSNE visualizations (Van der Maaten and

Hinton, 2008) help to visually appraise a quality of features learned by the CNN part

and avoid possible mistakes. As we can see from both Tables 4.14 and 4.15, our visu-

alization results correspond to the values of classification accuracy, i.e., the CNN part

with better classification accuracy shows better arrangement of learned features into

10 clusters, we better see groups of data and those groups are better separated from

each other. In other words, a level of quality of features extracted by the CNN part

could numerically be described by a value of classification accuracy of the appropriate

CNN we extracted features from. Therefore, in the following conclusions, when we

say “feature extraction quality from the CNN part has the accuracy 85%”, we mean

that CNN with that learned features provides the classification accuracy of 85%. We

can derive the following conclusions from obtained results:

1. The single deep CNN model significantly outperforms single XGBoost model

for image classification tasks, i.e., 74.71% versus 50.1% on the CIFAR10 image

dataset.

2. In AlexNet+XGBoost and AllConvNet+XGBoost experiments, when feature

extraction quality from the CNN part has the accuracy less than 85%, the

XGBoost part provides an improvement over the CNN part. In WideRes-

Net+XGBoost, Densenet+XGBoost and CaffeNet+XGBoost experiments, when

feature extraction quality from the CNN part has the accuracy more than 85%,

the XGBoost part does not provide an improvement over the CNN part. That

might be explained by a hypothesis, that at the lower quality of CNN feature
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extraction, XGBoost model could train its weak learners better and their en-

sembling can find some missing information in the originally extracted CNN

features and improve the final classification result. However, this opportunity

vanishes, when a quality of CNN feature extraction is high enough.

3. CNN feature extraction fulfilled in 5-fold CV fashion provides better qual-

ity than one-module network: 91.31% versus 90.23% classification accuracy in

DenseNet+XGBoost experiment on the original CIFAR10 dataset and 92.64%

versus 91.66% classification accuracy in DenseNet+XGBoost experiment on the

augmented CIFAR10 dataset. It could be due to the lower degree of overfitting

of 5-fold CV models as well as due to the ensembling of the classification results

by 5-fold CV models at the feature extraction stage.

4. Data augmentation improved a quality of CNN feature extraction by 1.3% as

appropriate classification accuracies increased from 91.31% to 92.64% on the

example of the CIFAR10 image dataset.

5. Used filtering feature selection methods < RRC >, < RFranks >, and <

mRMR > do not help improving XGBoost performance in comparison with

originally generated number of features. It is probably due to the fact that

CNN still preserves some degree of spatial information between the extracted

features and removing some elements of that information deteriorates classifi-

cation performance of the XGBoost part.

6. Experimental results obtained in this work correspond to the results reported

by other researchers Ponomareva et al. (2017); Ren et al. (2017); Wan et al.

(2020).
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However, very interesting conclusion 2 about the 85% feature quality threshold

is drawn from results provided by different CNN models, which might influence the

threshold in different ways due to differences in their architectures and generalized

abilities. Therefore, it is expedient to confirm this conclusion by using exactly the

same CNN model at different values of classification accuracies, i.e., different qualities

of feature extraction. In this case, it will be a fair apples-to-apples comparison. To

fulfill this comparison, we have chosen Densenet+XGBoost one-module experiment

performed on original CIFAR10 data (50,000 images for training, 10,000 images for

testing). The network was re-trained with possibility to save more trained models

(snapshots with intermediate results) with smaller step to cover the range 60–90% of

feature extraction quality. We covered 60–80% with step 5% and 80–90% with step

1%. The real CNN accuracy was slightly different from feature extraction quality bin

value, for example for bin value 60%, the accuracy was 60.64% and so on. At each

step, features from the CNN part were extracted and XGBoost model was trained

and provided appropriate predictions. We run 3 scenarios when we changed number

of XGBoost trees as 50, 100, and 300. The results are presented in Figure 4.6 and

Figure 4.7.

As we can see, for the Densenet+XGBoost experiment that threshold is a bit

higher and equals 88%. Also Figure 4.6 shows how the improvement of feature quality

extraction from the CNN part degrades the XGBoost part accuracy improvement. For

example, for the XGBoost 50 trees scenario:

• at the CNN part accuracy 60.64%, XGBoost considerably improved classification

accuracy to 79.58% (18.94% improvement);

• at the CNN part accuracy 80.09%, XGBoost just slightly improved classification

49



M.Sc. Thesis - Andrii Turchenko McMaster - Computational Science & Engineering

accuracy to 84.50% (4.41% improvement);

• at the CNN part accuracy 88.03%, XGBoost did not improve the final classifi-

cation accuracy at all, its deteriorated to 87.80% (0.23% deterioration);

• at the CNN part accuracy 89% and more, XGBoost did not improve the final

classification accuracy anymore and the accuracy deterioration is about 2%.

This observation is also true for two other scenarios, i.e., XGBoost 100 trees and

XGBoost 300 trees (see Figure 4.6). Moreover, XGBoost spends much more time on

the training process when it is training on the lower quality of CNN feature extraction,

see XGBoost 300 trees scenario in Figure 4.7. It shows that a loss optimization process

for weak learners of the XGBoost model needs much more computational time in case

when CNN provided low quality features and it is much faster when the CNN features

are “well” prepared.

Therefore, experimental results in Figures 4.6 and 4.7 have confirmed our hypoth-

esis in the conclusion 2: “at the lower quality of CNN feature extraction, XGBoost

model could train its weak learners better and their ensembling can find some missing

information in the originally extracted CNN features and improve the final classifica-

tion result”.
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Table 4.14: tSNE visualizations of extracted features from CNN parts.

Model Training set Testing set

AlexNet

AllConv

Net

WideRes

Net

DenseNet,

one-

module,

original

data

51



M.Sc. Thesis - Andrii Turchenko McMaster - Computational Science & Engineering

Table 4.14 continued from previous page

Model Training set Testing set

DenseNet,

5-fold

CV,

original

data

DenseNet,

one-

module,

augmented

data

DenseNet,

5-fold CV,

augmented

data

CaffeNet,

transfer

learning
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Figure 4.6: DenseNet vs XGBoost classification accuracy at different feature extrac-
tion quality.

Figure 4.7: XGBoost training time at different feature extraction quality.
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Table 4.15: Summary of classification results.

Model Accuracy, %
CNN at feature XGBoost XGBoost using XGBoost using
extraction using <RRC> <RFranks>
(accur / feat all features features features
train time) (accur / feat) (accur / feat) (accur / feat)

AlexNet, one- 74.71 / 256 76.34 / 256 75.99 / 239 74.80 / 150
module, 1 hour
Appendix A.1
AllConvNet, 83.54 / 640 84.16 / 640 n/a n/a
one-module, 7 hours
Appendix A.2
WideResNet, 86.13 / 640 85.67 / 640 85.68 / 618 85.65 / 250
one-module, 23 hours
Appendix A.3
DenseNet, 90.23 / 448 90.17 / 448 90.11 / 430 90.17 / 150
one-module, 16 hours
Appendix A.4
DenseNet, 91.31 / 448 90.71 / 448 90.41 / 383 90.42 / 150
5-fold CV, 60 hours
Appendix A.5
DenseNet, one- 91.66 / 448 91.55 / 448 91.54 / 383 91.54 / 150
module, data 21 hours
augmented,
Appendix A.6
DenseNet, 5-fold 92.64 / 448 91.37 / 448 91.18 / 383 91.48 / 150
CV, data 90 hours
augmented,
Appendix A.7
CaffeNet transfer 86.63 / 248 85.65 / 248 85.79 / 200 85.65 / 150
learning, one- 5 hours
module,
Appendix A.8
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Chapter 5

Conclusions

The CNN+XGBoost combined model where learned representations extracted from

the CNN part are used as input features for the XGBoost part is implemented and re-

searched in this work. Obtained results of experimental research allow us to conclude

the following:

1. A single deep CNN model significantly outperforms single XGBoost model for

image classification tasks on the CIFAR10 image dataset (74.71% versus 50.1%

classification accuracy).

2. When the CNN part has classification accuracy less than around 85–88%, fea-

tures learned at this level of classification accuracy allow the XGBoost part to

provide an improvement over the CNN part. In the opposite situation, the XG-

Boost part does not provide an improvement over the CNN part. That might

be explained by the hypothesis that

at the lower quality of CNN feature extraction, the XGBoost

model could train its weak learners better and their ensembling can
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find some missing information in the originally extracted CNN fea-

tures and improve the final classification result.

However, this opportunity vanishes, when a quality of CNN feature extraction

is high enough.

3. CNN feature extraction fulfilled via 5-fold CV fashion provides better quality

than a one-module network — 91.31% versus 90.23% classification accuracy

in the DenseNet+XGBoost experiment on the original CIFAR10 dataset and

92.64% versus 91.66% of classification accuracy in the DenseNet+XGBoost ex-

periment on the augmented CIFAR10 dataset. It could be due to the lower

degree of overfitting of 5-fold CV models as well as due to the ensembling of

classification results over 5-fold CV models at the feature extraction stage.

4. Data augmentation improved the quality of CNN feature extraction by 1.3 per-

centage points as appropriate classification accuracies increased from 91.31% to

92.64% on the example of the CIFAR10 image dataset.

5. The filtering feature selection methods used, i.e., < RRC >, < RFranks >

and < mRMR > do not help improve XGBoost performance in comparison

with the originally generated number of features. It is probably due to the

fact that CNN still preserves some degree of spatial information between the

extracted features and removing some elements of that information deteriorates

classification performance of the XGBoost part.

Experimental results obtained in this work correspond to results reported by other

researchers (Ponomareva et al., 2017; Ren et al., 2017; Wan et al., 2020). However,
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these literature results are contradictory: Ren et al. (2017) report that XGBoost al-

lows to improve CNN accuracy and Wan et al. (2020) report the opposite conclusion

that tree-based models did not outperform CNN. Also, to the best of our knowl-

edge, there are not many similar research results published in the literature yet. The

contribution of this work consists in taking one more step towards answering the

question: could tree-based algorithms improve or outperform CNNs on image classi-

fication tasks? We answered that question by extensive experimental research using

different CNN architectures which provide different levels of classification accuracies

and, therefore, different qualities of features extracted by the CNN part. We found

a threshold of feature quality extraction experimentally, when an appropriate CNN

gives around 85–88% classification accuracy, to be a margin, after which a tree-based

method, in particularly XGBoost, does not improve the final CNN+XGBoost classi-

fication accuracy anymore. We draw this conclusion based on experimental results

obtained on the CIFAR10 image dataset.

Future research work could include two research directions at least: (i) instead

of XGBoost use another tree-based method, in particular random forests, and (ii)

instead of filtering feature selection approaches, used in this work, use wrapper and/or

embedded methods of feature selection for the tree-based part.
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Confusion matrices for all

classification results
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Figure A.1: Confusion matrices for AlexNet+XGBoost experiment.

Figure A.2: Confusion matrices for AllConvNet + XGBoost experiment.
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Figure A.3: Confusion matrices for WideResNet+XGBoost experiment.
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Figure A.4: Confusion matrices for DenseNet+XGBoost one-module experiment on
original data.
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Figure A.5: Confusion matrices for DenseNet+XGBoost 5-fold CV experiment on
original data.
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Figure A.6: Confusion matrices for DenseNet+XGBoost one-module experiment on
the augmented data.
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Figure A.7: Confusion matrices for DenseNet+XGBoost 5-fold CV experiment on the
augmented data.
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Figure A.8: Confusion matrices for CaffeNet+XGBoost transfer learning one-module
experiment.
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