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Preface

This Ph.D. thesis is an integrated article thesis composed of five main chapters, all

dealing with the coupled hydromechanical analysis in the presence of discontinuities.

The thesis incorporates three distinct journal papers provided in chapters 2-4. In what

follows, a brief overview of the material that is covered in each chapter is provided,

followed by details of the cooperation between authors of each paper.

Chapter 1 presents a review on the hydromechanical analysis of deformable solids

in the presence of discontinuities and provides a discussion on the motivation, objec-

tives, and research plan of this thesis.

Chapter 2 presents an article on the development of a new constitutive law with

embedded discontinuity for the coupled hydromechanical analysis of fractured porous

media. The article is published in International Journal for Numerical and Analytical

Methods in Geomechanics. A.A. Jameei and Dr. S. Pietruszczak developed the for-

mulation used in this paper and A.A. Jameei implemented it in the FE simulations.

The article was drafted by A.A. Jameei and revised and finalized by Dr. Pietruszczak.

Chapter 3 presents an article on the evolution of flow characteristics during the

propagation of localized damages in rocks. The article is published inMinerals, Special

Issue: The Hydro-mechanics of Crystalline Rocks. A.A. Jameei derived the evolution

law for hydraulic conductivity and developed the FE code to perform the simulations.

The article was drafted by A.A. Jameei. The research developments were supervised
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by Dr. S. Pietruszczak who revised and submitted the final manuscript.

Chapter 4 presents an article on the development of a consistent CLED-FE

approach to study the hydromechanical coupling and shear band evolution of sparsely

fractured rocks. The article is submitted to a peer reviewed journal. A.A. Jameei

developed the FE framework and implemented it to perform the simulations. The

article was drafted by A.A. Jameei. The research developments were supervised by

Dr. S. Pietruszczak who revised and submitted the final manuscript.

Chapter 5 summarizes the main conclusions of the thesis, outlines the strength

and limitations of the proposed approach, and provides some suggestions for future

work.
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Abstract

In this thesis, a new continuum framework for the coupled hydromechanical analysis

of fractured porous media is proposed. This formulation represents an extension of

the constitutive law with embedded discontinuity (CLED) for the assessment of both

hydraulic and mechanical properties in the regions intercepted by discontinuities. The

constitutive relations governing the hydromechanical response are derived by averag-

ing the fluid pressure gradient and the discontinuous displacement fields over a selected

referential volume of the material, subject to some physical constraints. Within this

approach, an internal length scale parameter is employed in the definition of the equiv-

alent hydraulic conductivity as well as the tangential stiffness operators. An evolution

law is derived governing the variation of hydraulic conductivity with continuing defor-

mation in order to explicitly account for the hydromechanical coupling. The governing

field equations are formulated following the general form of balance equations in the

superimposed interacting continua. An enhanced mixed u-p finite element formula-

tion is presented which considers the effect of progressive evolution of the fracture

aperture in the weak statements of balance equations. Fully implicit temporal dis-

cretization is employed, and the finite element formulation is stabilized by invoking

the Polynomial-Pressure-Projection (PPP) technique. The proposed methodology is

verified by a comprehensive numerical study dealing with a steady-state flow through

fractured media, time-dependent consolidation in the presence of a discontinuity, 3D
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simulation of an axial splitting test carried out on a saturated sample under displace-

ment and fluid pressure-controlled conditions, and assessment of the evolution and

coalescence of localized damage zones in sparsely fractured crystalline rocks. Both

discrete and smeared damage tracing strategies have been employed. For the discrete

damage tracing in the compression regime, the bifurcation analysis has been carried

out. A comprehensive CLED-FE code based on the proposed approach, and an anal-

ogous IE-FE code, have been developed for the coupled hydromechanical analysis of

porous media.
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∫
Ω
De

ijklϵ̇ij ϵ̇kl dΩ . . . . . . 113

4.12 (a) Fracture pattern and the distribution of fluid pressure at the end

of undrained stage: (b) associated flow rule; (c) non-associated flow rule115

4.13 Fracture pattern(left) and the distribution of fluid pressure at the end

of consolidation stage: (a) associated flow rule; (b) non-associated flow

rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.14 Evolution of settlement (mm) during the drainage process at load in-

tensity 15% above the ultimate strength of the dry sample . . . . . . 116

4.15 Time-history of settlement (mm) during the drainage process at load

intensity 15% below the ultimate strength of the dry sample . . . . . 117

4.16 Pore-fluid pressure distribution (MPa) at the end of (a) undrained and

(b) consolidation stage . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.17 External and internal boundary surfaces of a dry domain . . . . . . . 120

xv



List of Tables

2.1 Comparison of results of the far-field characteristics of flow, i.e. the

out-flow discharge from the domain and the average discharge in the

fractured region (cm3/s) . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Material parameters for the splitting test simulation . . . . . . . . . . 75

4.1 Mechanical properties of the intact Lac du Bonnet granite . . . . . . 107

xvi



Chapter 1

Introduction

This Ph.D. thesis presents a new approach for dealing with discontinuities in the fluid-

infiltrated porous media. The thesis is prepared in an integrated-article format and

includes three distinct journal papers in support of developing the current approach.

In what follows, the motivation behind this research is provided followed by some

general comments on the scope of this work.

1.1 Background and motivation

Porous media including biological tissues, concrete, soils and rock masses are, in gen-

eral, multiphase materials consisting of solid skeleton infiltrated by fluid(s). Classi-

cal/rational mechanics, as named by Clifford Truesdell [1], is a branch of physics which

puts together the fundamental mathematical principles for the study of mechanical

behaviour of multiphase materials. In the classical mechanics, the multiphase ma-

terials are considered as superimposed interacting continua composed of immiscible

mixtures (phases). In this case, the field equations of the conservation of mass, lin-

ear momentum, and moment of linear momentum hold for every phase/constituent
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with explicit indication of the interaction of different phases with each other [2,3,4].

The notion of interacting continua in conjunction with the concept of volume fraction

(ref. [5,6]) creates the commonly known theory of porous media [7,8,9,10,11,12]. The

theory of porous media lays the foundation for the coupled hydromechanical analysis.

Despite its importance, the effect of discontinuities on the coupled hydromechani-

cal analysis has received little attention. In general, the hydraulic conductivity along

fractures or discontinuities is quite different from that in the intact region, which

affects not only the flow pattern but also the strength and deformability at the struc-

tural level. This is of importance in a broad range of practical engineering problems

which include those related to deep geological nuclear and hazardous waste reposi-

tories, enhancement of hydrocarbon recovery production, carbon sequestration and

methane extraction from soft soils/coal beds, geothermal energy applications, etc.

In general, classical continuum mechanics suffers from inability to deal with dis-

continuities and localized deformation in the context of a boundary value problem.

Discontinuities in the form of macrocracks exhibit strain softening response, and their

geometry as well as dimensions drastically affect the deformation characteristics at

the structural level. In this case, the numerical solution becomes systemically sen-

sitive to discretization. This is due to the fact that continuum mechanics does not

incorporate any internal length scale since the constitutive equations are formulated

based on Noll’s principle of local action [13]. In order to address the problem, the

nonlocal theories have been developed which incorporate a ‘characteristic dimension’.

Unfortunately, the definition of this parameter is rather ambiguous and has no ex-

plicit relation to the material properties [14,15,16]. An alternative way of dealing

with abrupt changes in the field variables is the use of Cosserat mechanics [17,18,19].

The Cosserat mechanics is an advanced micropolar framework of continuum mechan-

ics where the stress tensor is nonsymmetric due to the use of couple stresses. The

2
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primary difficulty in the use of Cosserat continuum is the identification of additional

material parameters that stem from the notion of non-symmetry of the stress tensor.

Another approach involves the use of interface elements, which require discretization

that conforms to the geometry of fractures/localized damage [20,21,22,23]. Confor-

mity of the finite element mesh to the geometry of discontinuity is a necessity in

this technique since discontinuities are positioned at edges which are shared between

two neighboring elements, and additional degrees of freedom are considered at the

nodal points of those edges. In this approach, the strain-softening behaviour along

discontinuities can be explicitly addressed; however, tracing the crack propagation

process is not accurate and requires progressive remeshing strategies or restricting

the propagation directions based on the mesh configuration. Other commonly used

approach is the extended finite element method (XFEM), which incorporates enriched

approximation functions based on the partition-of-unity property of finite elements

[24,25,26]. Although reliable, this approach is computationally not very efficient as it

employs additional degrees of freedom and requires special integration techniques.

An alternative strategy (for the single-phase solids), which does not require any

additional degrees of freedom, is the incorporation of a constitutive law with embedded

discontinuity (CLED) [27,28]. In this case, in a reference volume encompassing the

fracture zone, the discontinuous velocity gradient is averaged subject to the constraint

of continuity of traction vector. The formulation accounts for strain-softening response

in the fractured zone and the macroscopic fourth-order stiffness tensor is a function

of the properties of constituents as well as an internal length scale parameter, the

latter defined as the ratio of the considered referential volume to the surface area of

discontinuity.

The CLED methodology has been used so far in the context of the description of

propagation of localized damage in a single-phase solid [29,30,31]. In this thesis, this
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methodology is extended to describe the coupled hydromechanical interaction in fluid-

infiltrated porous media containing fractures/discontinuities. The proposed approach

is very efficient in terms of computational costs as well as implementation in finite

element analyses, as compared to other existing methodologies. For the description

of fluid flow in the presence of discontinuities, an enhanced Darcy’s law incorporating

an equivalent hydraulic conductivity is introduced, which also employs an internal

length scale. In addition, an evolution law is formulated which describes the variation

of equivalent hydraulic conductivity with the continuing deformation. Within the

current approach, a consistent finite element formulation is derived that considers

a progressive evolution of both the mechanical and hydraulic properties associated

with propagation of localized damage. This formulation does not require the use of

conformal meshes since the effect of discontinuity is embedded in the constitutive

relations. Moreover, the onset and propagation of new macrocracks/fractures can

be modeled without the need for either remeshing or refining the mesh (similar to

XFEM).

1.2 General scope

As mentioned earlier, this thesis contains three distinct journal papers integrated in

the body of this work and forming Chapters 2-4. In what follows, a brief overview of

each of these chapters is presented.

In chapter 2, the CLED approach for the coupled hydromechanical analysis of

fractured porous media is presented. This approach is developed in the context of

finite element analysis of saturated porous media. The proposed methodology is veri-

fied by a set of numerical examples dealing with a steady-state flow through fractured

media and a time-dependent consolidation in the presence of a discontinuity.
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In chapter 3, a mathematical formulation is presented which incorporates the hy-

dromechanical interactions associated with propagation of localized damages. The

framework is verified by a numerical study involving the 3D FE simulation of an axial

splitting test carried out on a saturated sample under displacement and fluid pressure-

controlled conditions. The finite element analysis incorporates the Polynomial-Pressure-

Projection (PPP) stabilization technique and a fully implicit time integration scheme.

In chapter 4, the evolution and coalescence of localized damage zones in sparsely

fractured crystalline rocks are studied by using the developed hydromechanical CLED

approach. In this study, an enhanced mixed u-p finite element formulation is devel-

oped which considers the effect of progressive evolution of the fracture aperture in

the weak statements of balance equations. The response of Luc du Bonnet granite is

studied using the current formulation. The analyzed sample contains a pre-existing

fracture network which evolves due to formation of new coalesced macrocracks. Initi-

ation of new macrocracks is detected by conducting bifurcation analysis. The current

numerical scheme is first verified on some benchmark problems that involve the pres-

ence of a dominant fracture. The results of simulations are compared with those

obtained using a very fine mesh incorporating interface elements. Later, a series

of coupled analyses are carried out examining the hydromechanical response in the

presence of multiple fractures.

Chapter 5 summarizes the main conclusions of this thesis and provides suggestions

for potential future work pivoted around the current subject.

It should be noted that the numerical examples presented in this thesis are solved by

using a CLED u-p finite element code that has been developed entirely in MATLAB

by the author of this thesis
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Summary: In this paper, a new continuum approach for the coupled hydromechan-

ical analysis of fractured porous media is proposed. The methodology for describing

the hydraulic characteristics invokes an enriched form of Darcy’s law formulated in

the presence of an embedded discontinuity. The constitutive relations governing the

hydromechanical response are derived by averaging the fluid pressure gradient and

the discontinuous displacement fields over a selected referential volume of the mate-

rial, subject to some physical constraints. The framework incorporates an internal

length scale which is explicitly embedded in the definition of gradient operators. The

respective field equations are derived following the general form of balance equations

in interacting continua. The conventional finite element method is then employed for

the spatial discretization, and the generalized Newmark scheme is used for the tempo-

ral discretization. The proposed methodology is verified by some numerical examples

dealing with a steady-state flow through fractured media as well as a time-dependent

consolidation in the presence of a discontinuity.

Keywords: constitutive law with embedded discontinuity, continuum approach, cou-

pled hydromechanical analysis, discontinuity, finite element
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2.1 Introduction

The mechanical and hydraulic behavior of a multiphase porous medium can be studied

within the realm of continuum physics by examining the interaction between different

constituents. As an example, the saturated geomaterials are two-phase media com-

prising the solid and liquid phases, whereas in unsaturated conditions the third phase,

i.e. the air, is also present. The analysis is often conducted at the mesoscale level and

incorporates a representative elementary volume (REV) with statistically distributed

and superimposed constituents. In this case, any volume space within the domain

may be considered as composed of interacting continua, and the physical response

can be efficiently modeled using established mathematical representations [1]. The

foundations of the theory of superimposed interacting continua, which is also called

the (immiscible) mixture theory, were established by Truesdell [2,3] in the context

of diffusion problems. The framework was then extensively used in various areas of

multiphase mechanics [4,5,6,7,8], for example, chemically reacting continua [9] and

electromagnetics [10]. For porous media, it was Fillunger [11] who first derived a sim-

plified form of balance equations incorporating the mixture theory in the context of

one-dimensional consolidation. The general framework developed by Truesdell stipu-

lates that each superimposed continuum satisfies the basic governing field equations,

i.e. equations representing laws of conservation of mass, momentum and spin mo-

mentum, and thermodynamic principles of balance of energy and entropy production

(i.e., Clausius-Duhem inequality) [3,12]. In later developments, the concept of volume

fraction was introduced (cf Morland [13] and Bowen [14]) in order to extend the appli-

cability of this framework to poromechanics. The description incorporated the effect

of porosity, which is an important parameter in the fluid(s)-infiltrated porous solids,

by replacing the constituents by continua of reduced densities [15,16,17]. Consistent
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continuum approaches for the study of porous media based on the mixture theory can

be found, for example, in de Boer [1,18], Ehlers [19], and Borja [20]. An alternative

approach to describe the hydromechanics of porous media was introduced by Biot

[21], who extended Terzaghi’s theory of one-dimensional consolidation [22]. The orig-

inal approach was limited to the linear elastic porous solid undergoing infinitesimal

deformation and Poiseuille type of fluid flow [21,23]. The theory was later extended to

problems associated with viscoelasticity, anisotropy, and finite deformations [24,25].

Although the continuum approach of Biot is conceptually different from the mixture

theory of Truesdell, the results obtained using both frameworks are quantitatively

fairly similar [26].

The permeability of porous media stems primarily from the presence of intercon-

nected void space. The coupling between the flow and deformation can be accounted

for using one of the continuum frameworks as mentioned above. However, the porous

skeleton may contain discontinuities in the form of fractures, preexisting faults, and so

forth, which will enhance the flow. An example of this is the localization of deforma-

tion into shear bands/macrocracks triggered by the local material instability [27,28].

In fact, the classical continuum mechanics can predict the onset of strain localization

by invoking the bifurcation analysis [28,29]. However, this approach suffers from in-

ability to describe the post-bifurcation behavior in the context of a boundary value

problem. This is due to the fact that classical continuum mechanics does not incorpo-

rate any internal length scale because the constitutive equations are formulated based

on Noll’s principle of local action [12]. The strain localization is associated with the

softening phenomenon. In this case, the lack of internal length scale leads to a change

in the nature of the governing differential equations and, as a result, the numerical so-

lution becomes pathologically sensitive to the discretization. Different regularization
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techniques have been proposed to remedy this problem, that is, to restore the well-

posedness of the governing equations. Those include the theories of micromorphic

[30,31], micropolar [32,33,34] continua, and the second gradient approaches [35,36]. A

more in-depth review dealing with the notion of localization can be found in some of

the references cited above. The present study is focused mainly on the description of

flow in the presence of existing fracture networks. Therefore, the remaining literature

review is limited to this specific topic. It should be pointed out, however, that the

approach is also suitable for dealing with a hydromechanical coupling in the context

of the onset and propagation of new fractures.

The hydraulic conductivity along preexisting discontinuities is quite different from

that in the intact region, which affects not only the flow pattern but also the strength

and the deformability at the structural level. This is of importance in a broad range

of practical engineering problems, which include those of slope stability, gas and oil

extractions from shales, construction of geological waste repositories, and aquifers

remediation. One of the first attempts to study the mechanics of fractured fluid-

infiltrated porous media was that by Aifantis et al [37,38] who used the concept of a

double porosity [39]. The cracked region was modeled as a homogenized equivalent

continuum whose interaction with the intact domain was described using the mixture

theory. This methodology was similar to that introduced earlier by Barenblatt [40]

for the analysis of transient flow in fissured rocks. In another study, Oda [41] ex-

amined the permeability of rock mass containing a fracture network. He introduced

a stereology-based tensorial measure of joints geometry accounting for the aperture,

size, and orientation of fractures. The eigenvectors of this second-order tensor were

assumed to coincide with the principal directions of permeability. Recently, Azizmo-

hammadi and Matthäi [42] conducted a study focused on the effect of scale on the

permeability of the naturally fractured rocks. The approach employed the upscaling
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technique developed by Durlofsky [43] for estimating the equivalent permeability ten-

sor. In general, the above-mentioned approaches are limited to the case when the

cracks are densely distributed over a scale which is large enough compared to the

dimensions of individual cracks and, at the same time, small enough to be considered

as a representative volume. However, in many practical problems, the cracks might

not be densely distributed within the domain and the existence of isolated discon-

tinuities needs to be considered. The study of hydromechanical interaction in the

presence of discrete discontinuities is a challenging task and, over the years, different

techniques have been proposed in the literature. For example, the fractures have been

modeled via an integral (weak) form of the governing equations, which incorporates

the discontinuity surfaces as additional physical boundaries with distinct mechanical

and hydraulic properties [44]. Alternatively, interface elements have been employed

along the discontinuity surfaces with appropriate kinematic constraints (e.g., discon-

tinuity of displacement field and continuity of the fluid mass-exchange between frac-

ture and intact regions) [45,46,47]. In both these techniques, spatial discretization

must conform to the geometry of discontinuities, and mesh regeneration is required

for the propagation problems as the direction of propagation is not known a priori

[48]. Dependency on the mesh size and alignment can be limited by employing XFEM

methodology. In XFEM, the approximation functions are enriched using the partition-

of-unity property of finite elements [49]. This approach has been extensively used in

modeling of hydromechanical interaction in fractured media as well as the problems

of hydraulic fracturing [50,51,52]. For instance, de Borst et al [50] studied the shear

band evolution in a fluid-saturated domain by enriching the fluid pressure field in a

similar way to the enrichment of the displacement field. They used the Heaviside

step function to impose the discontinuity in the fluid pressure and displacement fields

across the fracture. In a later work, Réthoré et al [51] assumed a discontinuity in
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the gradient of fluid pressure and used a two-scale micro-macro description. The up-

scaling involved introducing a jump in flux (i.e., out of the balance equations of the

viscous micro fluid in the cavity) into the macro-scale weak form equations. More

recently, Vahab et al [52] also presented an energy-based computational framework

using XFEM in the context of hydraulic fracturing. It should be pointed out that the

XFEM approach, although reliable, is computationally not very efficient as it employs

additional degrees of freedom and requires special integration techniques.

An alternative approach, which does not introduce any additional degrees of free-

dom, is the formulation of a constitutive relation which incorporates a “characteristic

dimension” associated with the presence of discontinuity [53,54]. This approach has

been referred to as a constitutive law with embedded discontinuity (CLED) [53]. The

CLED methodology has been used so far in the context of description of propagation

of localized damage in a single-phase solid [53,54,55,56,57]. In a reference volume

encompassing the fracture band, the discontinuous velocity gradient is averaged sub-

ject to the constraint of continuity of traction vector. The formulation accounts for

strain-softening response in the fracture zone, and the macroscopic fourth order stiff-

ness tensor is a function of properties of constituents as well as an internal length

scale parameter, the latter defined as the ratio of the considered referential volume to

the surface area of discontinuity. The CLED approach has been employed in the con-

text of discrete modeling of the damage propagation in brittle and frictional materials

[55]. In that case, rather than using the original smeared approach of Pietruszczak

and Mróz [53]. a level-set method was employed for discrete tracing of the propaga-

tion path. The same methodology has also been used in the study of the size effect

in concrete structures with account for chemo-mechanical interaction [56] and, more

recently, in the analysis of damage process in rocks with preexisting fractures [57].
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The main objective in this paper is to extend the CLED approach to describe the hy-

dromechanical interaction in fluid-infiltrated porous media. In order to achieve this,

a weak discontinuity in fluid pressure as well as a strong discontinuity in displace-

ment field is imposed across the region. Subject to admissible constraints in the flow

pattern and continuity of tractions in the fractured region, an equivalent hydraulic

conductivity and a macroscopic stiffness operator are defined, both incorporating a

“characteristic dimension”. The proposed methodology is verified by some numeri-

cal examples dealing with a steady-state flow through fractured media as well as a

time-dependent consolidation in the presence of a discontinuity.

2.2 Constitutive relations for hydromechanical

response in the presence of discontinuities

The approach incorporating a constitutive law with embedded discontinuity (CLED)

invokes a homogenization procedure whereby the post-localization response is defined

in terms of properties of constituents (i.e., the intact material and the fractured zone)

and their geometric arrangement. As mentioned earlier, the CLED approach has been

used so far for describing the mechanics of a single-phase (i.e., solid) medium. In this

work, the methodology is extended to address the hydromechanical coupling in two-

phase (i.e., fully saturated) porous media. In particular, an enriched form of Darcy’s

law is proposed governing the fluid flow in the presence of discontinuities (fractures)

within the domain. The approach incorporates the classical notions of mixture theory,

whereby the solid and fluid phases are assumed to be immiscible, and the governing

equations employ the concept of porosity/volume fraction.
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In order to formulate the problem, consider a referential volume ∆Ω, which in-

cludes the intact parts ∆Ω+ and ∆Ω−, intercepted by a fractured region of thickness

td and the surface area ∆Γd. The geometry of the problem is schematically illustrated

in Figure 2.1a, where s, t, and n are the standard local basis vectors. The origin of

the coordinate system is located in the center of the discontinuity region, whereas the

unit normal n is directed towards to positive side of the intact part ∆Ω+.

Figure 2.1: (a) Local Cartesian coordinate system attached to the discontinuity
surface, (b) position vector and unit normal to the discontinuity surface

Consider now the case when there is a weak discontinuity in the fluid pressure.

The latter involves an inhomogeneity in the pressure gradient such that its normal

component is different in the intact and the fractured regions, whereas the tangential

components remain the same. In this case, the gradient operator can be defined in

terms of two continuous functions ∇xp̂ and ∇xp̃, such that

∇xp = ∇xp̂+ Φ(x)(n ·∇xp̃)n (2.1)

where x is an arbitrary position vector (Figure 2.1b) and Φ(x) is a piecewise scalar

function defined as
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Φ(x) =


0 for x · n >

td
2

1 for − td
2

≤ x · n ≤ td
2

0 for x · n < −td
2

(2.2)

The significance of representation (2.1) is illustrated in Figure 2.1b. For points

located in the intact subdomains (i.e., x · n > td/2 or x · n < −td/2), the gradient

operator is ∇xp̂, whereas in the discontinuity region (i.e., −td/2 ≤ x · n ≤ td/2), it

assumes the value ∇xp̂ + (n ·∇xp̃)n. Thus, Equation (2.1) can be expressed in an

equivalent form

∇xp
(1) = ∇xp̂ for x · n > td/2 or x · n < −td/2 (2.3)

∇xp
(2) = ∇xp

(1) + (n ·∇xp̃)n for − td/2 ≤ x · n ≤ td/2 (2.4)

where ∇xp
(1) and ∇xp

(2) are the pressure gradients in the intact material (1) and

the fractured domain (2), respectively. Using the representation above, the average

value of the gradient of p in the referential volume ∆Ω is defined as

∇xp =
1

∆Ω

∫
∆Ω

∇xp dΩ =
1

∆Ω

∫
∆Ω+∪∆Ω−

∇xp
(1) dΩ (2.5)

+
1

∆Ω

∫
∆Γdtd

∇xp
(2) dΩ

Thus,

∇xp = (1− µ)∇xp
(1) + µ∇xp

(2); µ =
∆Γdtd
∆Ω

= χtd (2.6)

where ∇xp
(1) and ∇xp

(2) are the respective averages of ∇xp
(1) and ∇xp

(2), and χ−1

is an internal length scale parameter defined as the ratio of the referential volume over
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the surface area of the fractured region (i.e., χ−1 = ∆Ω/∆Γd). This scale parameter

also appears in the formulation governing the localized deformation, as discussed

later in this section. It should be noted that, using decomposition (2.4), the average

pressure gradient ∇xp
(2) in Equation (2.6) may be expressed as

∇xp
(2) = ∇xp

(1) + (n ·∇xp̃)n (2.7)

which upon contracting by the local base vectors (i.e., t and s) leads to the set of

constraints

t ·∇xp
(1) = t ·∇xp

(2) and s ·∇xp
(1) = s ·∇xp

(2) (2.8)

Assume now that the average superficial velocity of fluid flow in both constituents,

w(i) (i = 1,2), is governed by Darcy’s law, so that

w(i) =
1

ρfg
K(i)(−∇xp

(i) + ρfg) =
1

ρfg
K(i)h(i); i = 1, 2 (2.9)

Here, ρf is the fluid’s intrinsic density, g is the acceleration due to gravity, and K(1)

and K(2) are the hydraulic conductivity tensors in the intact and fractured regions,

respectively. By subtracting now the body force ρfg from both sides of Equation

(2.6), it is evident that the volume average of the operator h, which is proportional

to the hydraulic gradient, can be expressed in a functional form similar to that of

representation (2.6) supplemented by constraints (2.8), i.e.

h = (1− µ)h(1) + µh(2) (2.10)

subject to
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t · h(1) = t · h(2) and s · h(1) = s · h(2) (2.11)

The constraints as specified above imply that the normal component of the hydraulic

gradient, the latter being the driving force triggering the fluid movement, is discon-

tinuous across the interface whereas the tangential components remain continuous.

A similar approximation to that of Equation (2.10) may be obtained for the average

superficial flow velocity w. Thus,

w = (1− µ)w(1) + µw(2) (2.12)

subject to

n ·w(1) = n ·w(2) (2.13)

Equation (2.13) implies that there is a discontinuity in the tangential components

of velocity while the continuity of flow in the direction normal to the discontinuity

surface is preserved. It is noted that, in general, the constraints in Equations (2.11)

and (2.13) are similar to those used for describing the flow through a layered porous

medium.

Substituting Darcy’s law (2.9) in the kinematic constraint (2.13) gives

n ·K(1)h(1) = n ·K(2)h(2) (2.14)

Combining now Equations (2.11) and (2.14), the following relation is obtained

h(2) = Ch(1) (2.15)
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where the operator C, which defines the coefficients of constraints, can be expressed

in the matrix form as

[C] =


t

n ·K(2)

s


−1 

t

n ·K(1)

s

 (2.16)

Substituting Equation (2.15) in Equation (2.10) and performing some algebraic trans-

formations, an expression defining the hydraulic gradient in the intact region h(1) in

terms of the operator h may be obtained, namely,

h(1) = [1 + µ(C − 1 )]−1h (2.17)

where 1 is the second-order identity tensor. Finally, combining Equations (2.9),

(2.12), and (2.15) leads to an enriched form of Darcy’s law which incorporates the

internal length parameter, that is,

w =
1

ρfg
K̄h =

1

ρfg
K̄(−∇xp+ ρfg) (2.18)

where K̄ is an equivalent hydraulic conductivity tensor defined as

K̄ = [(1− µ)K(1) + µK(2)C][1 + µ(C − 1 )]−1; µ = χtd, χ =
∆Γd

∆Ω
(2.19)

It should be noted that for a typical geometry of the referential volume, there is

µ≪ 1, so that the above expression can be simplified to

K̄ = [K(1) + µK(2)C][1 + µ(C − 1 )]−1 (2.20)
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It is evident from Equation (2.18) that the proposed methodology allows for de-

scribing the flow through a fractured domain without invoking any additional degrees

of freedom. Thus, a standard FE analysis can be conducted employing the notion

of equivalent hydraulic conductivity. The latter, according to Equations (2.19) and

(2.20), depends not only on conductivities of intact and fractured regions but also

on the size of the considered referential volume (viz., parameter µ). It can also be

proven that the hydraulic conductivity K̄ is a symmetric tensor, which is of signifi-

cant advantage in terms of numerical implementation. The formal proof of symmetry

is provided in Appendix A (Section 2.6).

It should be mentioned that the fractured region may experience a turbulent flow

within its aperture. The most commonly used approximation, however, is the assump-

tion of a laminar flow with the fracture transmissivity assessed using Navier-Stokes,

Stokes, or Reynold lubrication equations with different levels of mathematical simpli-

fications [58]. The approximation employed in this work is based on a simplified local

cubic law [58,59], in which the longitudinal conductivity coefficient of the fractured

region is defined as

K
(2)
L =

g

12ϑ
t2d (2.21)

where g and ϑ are the gravitational acceleration and fluid’s kinematic viscosity, re-

spectively.

The description of mechanical response associated with localized deformation can

be formulated by defining the velocity of the solid as a sum of two continuous functions

υ̂ and υ̃ in the intact region, and a Heaviside step function HΓd
that accounts for the

presence of a strong discontinuity, i.e.
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υ = υ̂ +HΓd
υ̃ (2.22)

Here, the jump of the quantity υ across the localized zone is given by

JυK = JHΓd
Kυ̃ (2.23)

where J . K = [ . ]+ − [ . ]−. Using Equation (2.22), the average value of the gradient of

υ over the referential volume can be defined as

1

∆Ω

∫
∆Ω

∇xυ dΩ =
1

∆Ω

∫
∆Ω

∇xυ̂ dΩ +
1

∆Ω

∫
∆Ω+

∇xυ̃ dΩ (2.24)

+
1

∆Ω

∫
∆Γdtd

(υ̃ ⊗∇xHΓd
) dΩ

In the expression above

∇xHΓd
= JHΓd

KδΓd
n (2.25)

where δΓd
is the Dirac delta function and n is the outward normal to the discontinuity

surface. Substituting Equation (2.25) into Equation (2.24) and using Equation (2.23)

leads to

1

∆Ω

∫
∆Ω

∇xυ dΩ =
1

∆Ω

∫
∆Ω

∇xυ̂ dΩ +
1

∆Ω

∫
∆Ω+

∇xυ̃ dΩ + χJυK ⊗ n (2.26)

The symmetric part of Equation (2.26), in the context of infinitesimal deformation,

defines the volume averages of the respective strain rates. Thus [56],

ϵ̇ = ϵ̇(1) + (χJυK ⊗ n)s (2.27)
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where ϵ̇(1) is the average strain rate in the intact material while the second term gives

the contribution associated with the discontinuous localized deformation.

The constraint of the problem is the requirement of continuity of traction t across

the localized region. Thus,

ṫ′ = kJυK ∼= nσ̇′ = n ·D : ϵ̇ (2.28)

where k is the stiffness operator relating the velocity discontinuity to the effective

traction rate ṫ′, σ′ is the effective stress tensor and D the constitutive fourth-order

tensor which defines the properties in the intact region. Combining the above equa-

tions and rearranging leads to the localization law

JυK = [(k + χn ·D · n)−1 ⊗ n] : [D : ϵ̇] (2.29)

Thus, using Equations (2.27) and (2.29), the following constitutive equation is finally

obtained:

σ̇′ = D̄ : D : ϵ̇ (2.30)

where

D̄ = I − χD : [n⊗ (k + χn ·D · n)−1 ⊗ n] (2.31)

where I is an isotropic fourth-order identity tensor.

It is noted that the stiffness operator D̄ depends again on the properties of both

constituents and the parameter χ. The latter is independent of the thickness of

the fractured zone, which is formally eliminated from considerations. The initial
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boundary-value problems involving a hydromechanical coupling can now be solved

using the constitutive relations (2.18) and (2.30). For the sake of completeness, the

governing field equations of the coupled analysis and their numerical solution are

reviewed in the following sections.

2.3 Coupled hydromechanical formulation for

computational analysis

2.3.1 Balance equations

According to Truesdell’s principles [60] of mixture theory, the properties of con-

stituents must lead to a consistent mathematical representation for the mixture. The

latter should follow the same mechanical laws as a single-component continuum. The

motion of constituents should be studied by isolating it from the mixture and incor-

porating the effect of interaction with other constituents. Each phase (e.g., solid and

fluid phases in a biphasic porous media) is assumed to be present at every material

point and to satisfy the balance equations of mass, linear momentum, and moment

of linear momentum. In what follows, a brief review is provided of the governing field

equations for a biphasic (i.e., fully saturated) porous medium.

The local form of the mass balance equations of solid and fluid phases, with the

assumption of no mass exchange between the two phases, is given by the following

expressions [18,19,20]

dρs

dt
+ ρsdivv = 0 (2.32)

dρf

dt
+ ρfdivv + div(ρfw) = 0
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Here, div( . ) ≡ tr(
∂( . )

∂x
), and ρs and ρf stand for the partial densities of the solid

and fluid phases, respectively. Thus, the density of the mixture is defined as ρ =

ρs + ρf = (1 − n)ρs + nρf , where n is the porosity, and ρs and ρf are the relevant

intrinsic densities. Moreover, vf and v are the fluid and solid velocities, respectively,

so that w = n(vf − v) is the superficial velocity of fluid relative to the solid phase

(i.e., Darcy’s velocity). Expanding now the first term in Equation (2.32b), the mass

balance for the fluid can be written as

n
dρf
dt

+ ρf
dn

dt
+ nρfdivv + div(ρfw) = 0 (2.33)

Similarly, using Equation (2.32a), the mass balance of the solid phase reads

dn

dt
=

(1− n)

ρs

dρs
dt

+ (1− n)divv (2.34)

Substituting Equation (2.34) into Equation (2.33) gives the following expression for

the mass balance of the mixture

n
dρf
dt

+
ρf (1− n)

ρs

dρs
dt

+ ρfdivv + div(ρfw) = 0 (2.35)

The balance of linear momentum for each phase in the quasi-static condition (i.e.,

disregarding the inertia forces) is defined by the following set of equations

divσs + ρsg+ f s = 0 (2.36)

divσf + ρfg+ f f = 0

where σs and σf represent the partial Cauchy stress tensors in the solid and fluid

phases, respectively, and f s and f f are the forces of interaction satisfying f s+f f = 0.
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In the equations above, it has been assumed that both phases are subject to the same

body force per unit mass. In accordance with the mixture theory, the summation of

Equations (2.36a) and (2.36b) result in the following set of equations of equilibrium

for the mixture

divσ + ρg = 0 (2.37)

where σ is the total stress in the mixture, that is, σ = σs+σf . The energy conjugates

are obtained by the local form of the balance of energy. The balance of energy

generally states that the rate of change of internal and kinetic energies in the whole

domain is equal to the rate of work done by external agencies such as surface and

body forces, heat fluxes and supplies through surfaces and volumes, and so forth.

Disregarding the thermal and nonmechanical effects, the rate of stored internal energy

density (e) for the mixture can be stated in a local form as

ρė = σs : ϵ̇+ σf : ϵ̇f (2.38)

where ϵ̇ and ϵ̇f are the strain rates in the constituents.

2.3.2 Incorporation of constitutive relations

In isothermal conditions, when the intrinsic densities are a function of pressure only,

the statement of the mass balance of the mixture (Equation (2.34)) reduces to [20]

n

Sf

ṗ+

(
1− S

Ss

)
divv +

1

ρf
div (ρfw) = 0 (2.39)
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where S, Ss, and Sf are the bulk moduli of the porous matrix, the solid, and the fluid,

respectively. For fluids of low viscosity, which cannot resist any shear deformation,

the stress state is a spherical tensor σf = −np1 , where 1 is the second-order identity

operator and p is the fluid pressure. Under these conditions, it can be shown [20] that

the rate of internal energy may be defined in an alternative form to that of expression

(2.38), i.e.

ρė = σ′ : ϵ̇+

(
1

ρf
div(ρfw)− ndiv

(
1

n
w

)
+

n

Sf

ṗ

)
p ≡ ⟨σ′, ϵ̇⟩+ ⟨w, p⟩ (2.40)

Here, ⟨σ′, ϵ̇⟩ and ⟨w, p⟩ are two energy conjugates, σ′ is the effective Cauchy stress

tensor defined as

σ′ = σ +Bp1 (2.41)

and B = 1−S/Ss (Biot’s coefficient). Apparently, in case of soils there is S ≪ Ss, so

that Equation (2.41) reduces to Terzaghi’s effective stress decomposition.

Appropriate constitutive relations must now be added to define each energy-

conjugate term in Equation (2.40). For a laminar flow, the energy-conjugate pair

⟨w, p⟩ may be defined by the enriched form of Darcy’s law (2.18) as postulated in

the previous section. At the same time, for the energy-conjugate pair ⟨σ′, ϵ̇⟩, the

constitutive law takes the form (2.30). Restating both these relations

w =
1

ρfg
K̄(∇xp+ ρfg); σ̇′ = D̄ : D : ϵ̇ (2.42)

Obviously, in the absence of discontinuities there is K̄ = K, where the latter is

the hydraulic conductivity of the intact material. Also, in the absence of localized

deformation there is D̄ = I, where I is the fourth-order identity operator, so that
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D̄ : D = D with D defining the properties of the homogeneous continuum.

Equations (2.37) and (2.39) in conjunction with the constitutive equations (2.41)

and (2.42) form a system of partial differential equations that govern the coupled

hydromechanical interaction in the presence of discontinuities. It is evident that the

mathematical structure of these equations is analogous to that describing a homoge-

neous medium, which is advantageous from the computational point of view. In what

follows, the finite element approximation is given which employs a weak (variational)

form of these equations.

2.3.3 Weak form of the balance equations and their

discretization

Assume that Ω ∈ Rn is the configuration domain enclosed by the boundary ∂Ω and

denote the time interval of the problem as Θ := (0, T ] with T > 0. Let

Ø = ∂uΩ ∩ ∂tΩ = ∂pΩ ∩ ∂qΩ (2.43)

∂Ω = ∂uΩ ∪̄ ∂tΩ = ∂pΩ ∪̄ ∂qΩ

where ∂uΩ and ∂pΩ are the Dirichlet boundaries, and ∂tΩ and ∂qΩ are the Neumann

boundaries. Then, the boundary conditions of the problem can be stated as

u = u⋆ on ∂uΩ ×Θ (2.44)

σn = t⋆ on ∂tΩ ×Θ

p = p⋆ on ∂pΩ ×Θ

w · n = q⋆ on ∂qΩ ×Θ
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where n is the unit outward normal to the boundary. The governing equations (2.37)

and (2.39) in conjunction with the constitutive equations (2.41) and (2.42) represent

a system of nonlinear partial differential equations which, in general, cannot be solved

analytically. A common approach to obtain an approximate numerical solution is to

replace them by a weak (e.g., Galerkin) form, which lowers the degree of nonlinearity,

and then discretize them in order to obtain a system of algebraic equations. In order

to do so, the test (arbitrary virtual) functions δu, δp are introduced in an affined

space such that δu ∈ Tu and δp ∈ Tp. The test functions must be kinematically

admissible in terms of the Dirichlet boundary conditions. The space of test functions

is defined as

Tu = { δu | δu ∈ [C1(Ω)]3, δu = 0 on ∂uΩ} (2.45)

Tp = { δp | δp ∈ C1(Ω), δp = 0 on ∂pΩ}

where C1 stands for the Sobolev space of degree 1. Solution/trial functions (u ∈ Su

and p ∈ Sp) are assumed to belong to the sets

Su = {u |u ∈ [C1(Ω)]3, u = u⋆ on ∂uΩ} (2.46)

Sp = { p | p ∈ C1(Ω), p = p⋆ on ∂pΩ}

Equations (2.37) and (2.39) combined with Equation (2.42a) are multiplied by the

test functions δu ∈ Tu and δp ∈ Tp, respectively. The weak form is then obtained by

integrating these equations by parts over the entire domain. By applying the Green’s

theorem, together with the Neumann boundary conditions (Equations (2.44b) and
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(2.44d)), and substituting Equation (2.41), the following integral form is obtained:

∫
Ω

δϵ : σ′ dΩ −
∫
Ω

δϵ : Bp1 dΩ =

∫
∂tΩ

δu · t⋆ dΓ +

∫
Ω

δu · ρg dΩ (2.47)∫
Ω

δp
n

Sf

ṗ dΩ +

∫
Ω

δpBϵ̇ : 1 dΩ +

∫
Ω

1

ρfg
∇X(δp) · K̄∇Xp dΩ =

−
∫
∂qΩ

δpq⋆dΓ +

∫
Ω

1

g
∇X(δp) · K̄g dΩ

In the finite element approach, the considered domain is discretized by nonoverlap-

ping finite elements and the test and trial functions in each element are approximated

as [26]


{δu(X, t)} ≈ [Nu(X)]{δū(t)}

{δp(X, t)} ≈ [N (X)]{δp̄(t)}


{u(X, t)} ≈ [Nu(X)]{ū(t)}

{p(X, t)} ≈ [N (X)]{p̄(t)}
(2.48)

where {δū}, {δp̄}, {ū} and {p̄} are the nodal values of the variables defined in Equa-

tions (2.45) and (2.46), and [Nu(X)] and [N (X)] are the suitable interpolation (or

shape) functions. Here, the time derivative of a function is evaluated based on its

nodal values in view of the fact that the shape functions are time-independent. Sub-

stituting Equation (2.48) into Equation (2.47), the semidiscrete weak form equations

(as a nontrivial solution) are obtained which, using the Voigt (matrix) notation, can

be expressed as

∫
Ω

[LNu]
T{σ′} dΩ − [Q]{p̄} − {f1} = 0 (2.49)

[S̃]{ ˙̄p}+ [Q̃]{v̄} − [H ]{p̄} − {f2} = 0
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where

[S̃] =

∫
Ω

n

Sf

{N}T{N} dΩ;

[Q] =

∫
Ω

B[LNu]
T{m}{N} dΩ;

{Q̃} =

∫
Ω

B{N}T{m}T [LNu] dΩ;

[H ] =

∫
Ω

1

ρfg
{∇N}T [K̄]{∇N} dΩ;

{f1} =

∫
∂tΩ

[Nu]
T{t⋆} dΓ +

∫
Ω

ρ[Nu]
T{g} dΩ;

{f2} = −
∫
∂qΩ

q⋆{N}TdΓ +
1

g

∫
Ω

[∇N ]T [K̄]{g}dΩ

In the above equations, {v̄} = { ˙̄u}, {m}T = {1, 1, 1, 0, 0, 0}, [L] is a matrix of the

gradient operator specifying the kinematic strain-displacement relations and [∇N ]

is a matrix which defines the relation between the pressure gradient and the nodal

values of fluid pressure. The numerical integration is carried out using the Gaussian

quadrature method. The set of equations (2.49) is commonly solved using the Newton-

Raphson linearization procedure combined with the generalized Newmark scheme [61]

for the time integration. A brief overview of this approach is provided in Appendix

B (Section 2.7).

2.4 Numerical examples

In this section, two different numerical examples are provided. The first one in-

volves simulation of a 2D steady-state flow through a domain that contains a single

crack and/or a set of randomly oriented fractures. The case of impervious as well as

permeable fractures is considered. The former is particularly relevant to a class of

materials which undergo a fracture healing, cracks are sealed as a result of chemical
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interaction. The second example deals with a classical consolidation problem, i.e. hy-

dromechanical coupling, in the presence of a discontinuity. The results of simulations

are compared with those obtained using other available computational strategies. It

should be emphasized that there is no experimental data currently available which

could be used for a comprehensive verification of the proposed approach. Thus, the

simple examples given here serve primarily as an illustration of the main aspects of

the general methodology.

2.4.1 A steady-state flow in the presence of discrete fractures

In order to simulate the flow around impervious fractures, the principal values of

conductivity tensor in the fractured region, K(2), Equation (2.19), were assumed to

approach zero. Note that setting these values equal to zero leads to a singularity in the

specification of the equivalent conductivity tensor, Equation (2.19). This singularity

can be formally avoided by imposing a constraint of zero flux in the direction normal

to the interface. As demonstrated in Appendix C (Section 2.8), in such a case, the

equivalent conductivity becomes independent of the internal length scale and the

formulation reduces to that given by Haghighat and Pietruszczak [62]. The numerical

results presented in this section have been compared with those obtained using a

standard finite element approach. In the latter case, the fractured region is modeled

as a void with curved near-tip and zero flux boundaries (after Sheng et al [63]) and the

finite element mesh is progressively refined towards the crack-tip in order to provide

a more accurate response.

The geometry of the problem is shown in Figure 2.2. Two different configurations

of impervious cracks, including a single and randomly distributed fracture(s) with a

thickness of 3mm embedded in 10m × 10m porous matrix, have been considered.
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Figure 2.2: A sample 10m× 10m with (a) a single crack, (b) randomly distributed
cracks

The domain has been subjected to a steady-state flow under a prescribed hydraulic

gradient generated by imposing a constant fluid pressure of 10MPa and zero along

the top and bottom boundaries, respectively. The vertical left and right-hand side

boundaries were assumed to be impervious (zero flux). Hydraulic conductivity of

the intact material was assigned to be 9.8 × 10−6 m

s
. For the model with a single

discontinuity, a 2m long fracture inclined at an angle of 25◦ with respect to horizontal

axis was placed in the middle of domain (Figure 2.2a). The model with randomly

distributed discontinuities was generated using 10 fractures, all 2m long, oriented

from −25 to 25 degrees with respect to the horizontal direction (Figure 2.2b).

The finite element discretization employed is shown in Figure 2.3. For the proposed

approach, referred to as CLED (i.e., constitutive law with embedded discontinuity),

both fine and coarse 2D meshes were used incorporating quadrilateral isoparametric

elements with bilinear shape functions. The coarse mesh consisted of 637 and 1, 394

elements for a single and multiple fracture(s), respectively, whereas the fine mesh

incorporated 3, 946 and 8, 272 elements. For simulations based on standard finite

element methodology (SFEM), a very fine mesh was used. The latter employed 18, 898

elements for a single crack and 33, 658 elements for the case of multiple fractures.
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Figure 2.3: (a),(b) Coarse and fine mesh for a single crack; (c),(d) coarse and fine
mesh for multiple cracks; (e),(f) SFEM mesh for a single and multiple crack(s)

The key results of the simulations are presented in Figures 2.4–2.6. Figures 2.4

and 2.5 show the pore-fluid pressure distribution obtained using CLED and SFEM

approach. At the same time, Figure 2.6 gives the distribution of normalized fluid

pressure along the vertical line passing through the center of the domain. In general,

the results using CLED are fairly consistent with SFEM solution, even though the

former employs a significantly smaller number of elements. This is illustrated in

Figure 2.4d which presents the contour plots of the relative difference between the

fluid pressures obtained from both solutions, that is, SFEM versus CLED with coarse

mesh. As expected, the volume averaging gives less accurate predictions in the areas

adjacent to fractures; however, on the macroscale, the discrepancy is negligible. A

similar conclusion can be drawn by comparing the results for the coarse and fine

mesh in Figures 2.4–2.6. The predicted distribution of fluid pressure, and thus the

flow pattern, is very similar. Some differences appear again in the neighborhood of

the cracks, whereby the solution for the fine mesh is, in general, more accurate in
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relation to SFEM.

Figure 2.4: Pore-fluid pressure (MPa) distribution in the domain with a single
impervious fracture: (a) CLED-FEM coarse mesh, (b) CLED-FEM fine mesh, (c)
SFEM, (d) contours of relative difference (RD) between SFEM and CLED (coarse

mesh) solutions, RD(x) = 2× |p1(x)− p2(x)|/(p1(x) + p2(x));
1 ≡ CLED, 2 ≡ SFEM

Table 2.1 gives a comparison for the far-field characteristics. The latter include

the total out-flow discharge from the sample as well as an average discharge in the

vicinity of the fracture. The flux through the fractured region was evaluated in the

center of a single crack (Figure 2.2a) across an area of 1 cm × 1cm. The analytical

solution, which is referred to in this table, corresponds to flow through a homogeneous

domain (i.e., no fractures). As expected, the presence of impervious fractures results

in a reduction of the rate of discharge. The assessment of the volume of flow based

on CLED approach is quite reasonable as compared to that corresponding to SFEM.

Finally, in order to complete the analysis, the case of flow through a domain
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Figure 2.5: Pore-fluid pressure (MPa) distribution in the domain with multiple
impervious fractures: (a) CLED-FEM coarse mesh, (b) CLED-FEM fine mesh,

(c) SFEM

Figure 2.6: Normalized pressure distribution along a vertical line in the center of the
(a) single-crack domain, (b) multiple-crack domain (p0 = 10MPa, z0 = 10m)

containing randomly distributed permeable fractures has been considered. The simu-

lations were carried out assuming that the longitudinal conductivity in the fractured

region obeys the cubic law [58] (i.e., Equation (2.21)). The kinematic viscosity of

fluid (here, water at 20◦C) and the fracture aperture were taken as 1.0× 10−6m2

s
and

3mm, respectively. The normal component of hydraulic conductivity was assumed to

be the same as that in the intact domain (i.e., 9.8 × 10−6m
s
). The geometry of the

problem and the boundary conditions were kept identical to those shown in Figure

2.2b. The analyses were carried out using the coarse and fine meshes with 1, 394 and

8, 272 quadrilateral isoparametric elements (Figure 2.3c,d).

Figure 2.7 shows the fluid pressure distribution within the domain for both the
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Table 2.1: Comparison of results of the far-field characteristics of flow, i.e. the
out-flow discharge from the domain and the average discharge in the fractured

region (cm3/s)

Out-flow
discharge

(multiple-fractured
problem)

Out-flow
discharge

(single-fractured
problem)

Through-fracture
discharge

(single-fractured
problem)

CLED-FEM
(coarse)

71.73 96.89 0.42

CLED-FEM
(fine)

74.54 97.23 0.41

SFEM
(fine)

76.29 97.45 0.42

Analytical
solutiona 100 100 1

aHomogeneous domain (no fractures)

coarse and fine meshes. The predicted outflow discharge is 104.16 and 103.12 cm3/s for

the coarse and fine meshes, respectively. Comparing this to results in Table 2.1, it is

evident that volume of flow is now significantly higher than that in case of impervious

cracks. The results display only a marginal sensitivity to mesh size, which is intrinsic

to finite element methodology itself.

Figure 2.7: Pore-fluid pressure (MPa) distribution in the domain with permeable
fractures: CLED-FEM with (a) coarse mesh, (b) fine mesh (p0 = 10MPa, z0 = 10m)
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2.4.2 A coupled consolidation analysis involving a preexisting

fracture

The second example deals with a consolidation analysis of a porous sample intercepted

by a vertical crack, as shown in Figure 2.8. The geometry of the problem and the

material properties are taken from the work of Segura and Carol [46], who carried

out coupled HM simulations with interface elements (IE) representing the fracture.

The analysis is restricted to an elastic range; it incorporates Terzaghi’s effective stress

principle, and the fracture is considered as a zone with a very high longitudinal con-

ductivity obeying the local cubic law [58] (viz., Equation (2.21)). The intact region

is assumed to be isotropic with respect to both mechanical and hydraulic properties,

and the fluid is assumed to be incompressible. The values of material parameters

are provided in Figure 2.8, where kx and kz are the conductivity coefficients along

x and z axes, γf and ϑ are fluid’s unit weight and kinematic viscosity, respectively,

and kt, kn are the tangential and normal stiffness moduli of the fractured region. It

should be noted that in view of the presence of discontinuity, a closed-form solution

to this problem cannot be obtained, as the flow and deformation fields are no longer

one-dimensional.

The numerical analysis employed quadrilateral isoparametric elements with bilin-

ear and biquadratic shape functions for approximating the pore-fluid pressure and

displacement fields, respectively. The domain was discretized using four structured

finite element meshes with progressively reduced element size. The coarse meshes,

labeled as E1 and E2, incorporated 121 and 441 elements, whereas the finer meshes

(referred to as E3 and E4) contained 961 and 2, 601 elements, respectively. The geom-

etry of the FE mesh, together with the definition of associated internal length scale,

is shown in Figure 2.9. The number of elements in this figure corresponds to mesh
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E2.

Figure 2.8: Geometry, boundary conditions, and material properties for the
consolidation analysis of a porous sample with a vertical fracture

Figure 2.9: Finite element discretization; mesh E2 with the discontinuity embedded
in elements along the center line

The analysis was conducted in two stages. The first step involved an undrained

response leading to a build-up of the excess of pore water pressure. This was followed

by a transient flow coupled with an increasing settlement under the sustained vertical

load. Figure 2.10 shows the distribution of pore pressure at different time intervals.

It is evident that due to the presence of fracture the rate of flow is not uniform within

the domain. At the same time, the pore pressure profiles are very similar for both

coarse and fine meshes.
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Figure 2.10: Distribution of pore-fluid pressure (kPa) at different time steps for
(a) intact domain (Terzaghi’s solution), (b) fractured domain with coarse mesh (E1),

(c) the fractured domain with fine mesh (E4)

Figure 2.11 shows the evolution of pore pressure in the fractured region, that is,

along t-axis in Figure 2.8. Here, the dots represent the results of FEM analysis of

Segura and Carol [46], whereas the black solid line is the Terzaghi’s analytical solution

for a homogeneous domain (no fracture). It is noted that the results obtained using

CLED approach are not affected by the mesh size and are almost identical to those

generated using the interface elements [46]. The same conclusion applies to the time

history of surface settlement at the center of the domain, as presented in Figure 2.12.

The latter is also nearly the same for both methodologies employed.

Finally, Figure 2.13a depicts the time history of the total discharge from the upper

boundary for all meshes employed in the CLED analysis (i.e., E1-E4). At the same

time, Figure 2.13b shows the convergence of the solution as a function of number of

elements used. It can be seen that the results based on CLED approach display very

little sensitivity to the FEM discretization. This stems from the fact that both the
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Figure 2.11: Evolution of pore-fluid pressure in the fractured region
(a) the coarse mesh (E1), (b) the fine mesh (E4); both compared with IE-FEM

(Segura and Carol [46])

Figure 2.12: Variation of maximum settlement with time; CLED (coarse mesh E1
and fine mesh E4) and IE-FEM (Segura and Carol [46])

hydraulic and mechanical properties in the referential volume depend explicitly on

the mesh size. There is no direct comparison here with the results of IE-FEM as the

latter were not reported in the original reference. It should be noted, however, that

Segura and Carol [46] used interface elements embedded in a coarse mesh that was

similar to E1. Thus, although their solution in the interface zone may be sufficiently

accurate, outside this zone the results may display mesh sensitivity which will impact

the far field quantities, such as volume of discharge and/or the settlement profile.

2.5 Final remarks

In this work, a mathematical formulation for describing the flow in a domain con-

taining discontinuities has been proposed. The methodology involved an embedded

43



Ph.D. Thesis - A.A. Jameei McMaster - Civil Engineering

Figure 2.13: (a) Time history of the outflow discharge from the upper boundary,
(b) variation of the outflow discharge with the total number of elements

discontinuity approach whereby the averaged flow characteristics have been estab-

lished in a referential volume adjacent to a preexisting fracture. A weak discontinuity

in fluid pressure has been imposed across the region, subject to constraint of continu-

ity of tangential components of the pressure gradient. The proposed approach leads

to an enriched form of Darcy’s law that incorporates the notion of equivalent conduc-

tivity. The latter is defined as a symmetric second-order tensor whose components are

a function of hydraulic properties of constituents (viz., intact material and fractured

region) as well as the internal length. The suggested approach is computationally

very efficient as it does not require the use of any additional degrees of freedom and

can easily be implemented in existing commercial finite element packages.

The proposed framework has been combined with a constitutive law with an em-

bedded discontinuity dealing with the description of mechanical response. As a result,

a unified approach has been developed for modeling of the hydro-mechanical inter-

action in the presence of fractures. In the paper, the basic equations of the coupled

formulation have been outlined and the approach was illustrated by some numerical

examples. In particular, a steady-state flow through a domain containing preexisting

fractures as well as a coupled consolidation problem in the presence of a localized
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damage have been analyzed. It was demonstrated that the solution is fairly accu-

rate as compared to FE analysis that employs a very fine mesh for modeling the

near-crack-tip response (approx. 34, 000 elements) and/or uses interface elements for

hydromechanical coupling in the presence of a single fracture. It should be pointed out

that although the present study is focused on the preexisting fractures, the method-

ology is general and can also be incorporated to deal with the onset and propagation

of new fractures. The latter may involve the use of a level-set method for a discrete

tracing of the crack path [55].
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2.6 Appendix A: Proof of symmetry of the

homogenized conductivity tensor

In order to prove the symmetry of the equivalent hydraulic conductivity tensor, as de-

fined by Equation (2.19), it is convenient to refer the problem to the coordinate system

attached to the discontinuity surface (see Figure 2.1a). In this case, the conductivity

tensor in the fractured region (K(2)) has a diagonal form with the components K
(2)
t ,

K
(2)
n , and K

(2)
s . Recalling now Equation (2.16), the operator C, which defines the

constraints of the problem, viz. Equations (2.11) and (2.14), can be expressed in the

form

[C] =


1 0 0

0 K
(2)
n 0

0 0 1


−1 

1 0 0

K
(1)
tn K

(1)
nn K

(1)
ns

0 0 1

 (2.50)

=


1 0 0

0
(
K

(2)
n

)−1

0

0 0 1




1 0 0

K
(1)
tn K

(1)
nn K

(1)
ns

0 0 1

 =


1 0 0

K
(1)
tn

K
(2)
n

K
(1)
nn

K
(2)
n

K
(1)
ns

K
(2)
n

0 0 1


The term [1 + µ(C − 1 )] in Equation (2.19) reads

[1 + µ(C − 1 )] =


1 0 0

µ
K

(1)
tn

K
(2)
n

1 + µ

(
K

(1)
nn

K
(2)
n

− 1

)
µ
K

(1)
ns

K
(2)
n

0 0 1

 (2.51)

whereas the inverse of expression (2.51) becomes
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[1 + µ(C − 1 )]−1 = (2.52)
1 0 0

−µK(1)
tn

(1− µ)K
(2)
n + µK

(1)
nn

K
(2)
n

(1− µ)K
(2)
n + µK

(1)
nn

−µK(1)
ns

(1− µ)K
(2)
n + µK

(1)
nn

0 0 1


At the same time, the term [(1−µ)K(1)+µK(2)C] in Equation (2.19) can be written

as

[(1− µ)K(1) + µK(2)C] = (2.53)
(1− µ)K

(1)
tt + µK

(2)
t (1− µ)K

(1)
tn (1− µ)K

(1)
ts

K
(1)
tn K

(1)
nn K

(1)
ns

(1− µ)K
(1)
ts (1− µ)K

(1)
ns (1− µ)K

(1)
ss + µK

(2)
s


Now, multiplying the operators (2.53) by (2.52), the following expression is obtained:

K̄ =


K̄tt K̄tn K̄ts

K̄nt K̄nn K̄ns

K̄st K̄sn K̄ss

 (2.54)

where

K̄nn =
K

(1)
nnK

(2)
n

(1− µ)K
(2)
n + µK

(1)
nn

;

K̄tn = K̄nt =
(1− µ)K

(1)
tn K

(2)
n

(1− µ)K
(2)
n + µK

(1)
nn

;

K̄ns = K̄sn =
(1− µ)K

(1)
ns K

(2)
n

(1− µ)K
(2)
n + µK

(1)
nn

;
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K̄ts = K̄st = (1− µ)K
(1)
ts − µ(1− µ)K

(1)
tn K

(1)
ns

(1− µ)K
(2)
n + µK

(1)
nn

;

K̄tt = (1− µ)K
(1)
tt + µK

(2)
t −

µ(1− µ)
(
K

(1)
tn

)2
(1− µ)K

(2)
n + µK

(1)
nn

;

K̄ss = (1− µ)K(1)
ss + µK(2)

s −
µ(1− µ)

(
K

(1)
ns

)2
(1− µ)K

(2)
n + µK

(1)
nn

Thus, it is evident that the equivalent conductivity tensor K̄, as defined above, is a

symmetric operator.

2.7 Appendix B: Temporal discretization and

Newton-Raphson linearization procedures

Temporal discretization of the semidiscrete weak form of governing equation follows

the generalized Newmark scheme [61]. The time interval (Θ := (0, T ] with T > 0)

is divided into a number of incremental steps so that tn+1 = tn +∆t, and the nodal

velocities as well as the rates of fluid pressure are evaluated as

{v̄}n+1 =
1

β1∆t
({ū}n+1 − {ū}n) +

(
β1 − 1

β1

)
{v̄}n (2.55)

{ ˙̄p}n+1 =
1

β2∆t
({p̄}n+1 − {p̄}n) +

(
β2 − 1

β2

)
{ ˙̄p}n

For the solution to be unconditionally stable, there must be β1& β2 ≥ 1/2 [26].

Knowing the solution at time step n, the set of Equation (2.49) needs to be solved at

time step n + 1. Substituting Equation (2.55) into Equation (2.49) and performing

some algebraic transformations lead to
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{Ψ1}n+1 =

(∫
Ω

[LNu]
T{σ′} dΩ

)
n+1

− [Q]{p̄}n+1 − {f1}n+1 = 0 (2.56)

{Ψ2}n+1 =
1

β1∆t
[Q̃]{ū}n+1 +

(
1

β2∆t
[S̃] + [H ]

)
{p̄}n+1 − {f2}n+1 − {F2}n+1 = 0

where

{F2}n+1 = [Q̃]

(
1

β1∆t
{ū}n +

(
1− β1
β1

)
{v̄}n

)
+ [S̃]

(
1

β2∆t
{p̄}n +

(
1− β2
β2

)
{ ˙̄p}n

)

The stress-strain relation for the solid matrix, as defined by Equation (2.42b), is in

general nonlinear which results in nonlinearity of the algebraic expressions (2.56a) and

(2.56b). In this case, the Newton-Raphson iterative algorithm is utilized to linearize

the system by expanding Equations (2.56a) and (2.56b) using Taylor series expansion

with the first-order truncation, which gives

[J ]i

{dū}n

{dp̄}n


i

= −

{Ψ1}n+1

{Ψ2}n+1


i

(2.57)

where the Jacobian matrix [J ] is

[J ] =


∂Ψn+1

1

∂ūn+1

∂Ψn+1
1

∂p̄n+1

∂Ψn+1
2

∂ūn+1

∂Ψn+1
2

∂p̄n+1

 =

 [S] −[Q]

1

β1∆t
[Q̃]

1

β2∆t
[S̃] + [H ]



and [S] is the equivalent stiffness matrix given by

[S] =

∫
Ω

[LNu]
T [D][LNu] dΩ
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In the expression above, [D] is the Voigt notation of the fourth-order constitutive

tensor D̄ : D as defined in Equation (2.31). Apparently, in the absence of fracture

(i.e., in case of homogeneous deformation), there is D̄ = I where I is a fourth-order

identity tensor.

2.8 Appendix C: Equivalent conductivity tensor in

the domain containing impervious fractures

In what follows, the functional form of the equivalent hydraulic conductivity tensor

is derived for the case involving impermeable (sealed) fractures. If there is no flow

within the cracked region, the superficial fluid velocity in the referential volume follows

Darcy’s law of intact region, i.e.

w =
1

ρfg
K(1)(−∇xp

(1) + ρfg) =
1

ρfg
K(1)h(1) (2.58)

Since the velocity vanishes across the impervious discontinuity, we have

n ·K(1)h(1) = 0 (2.59)

Substituting Equation (2.10) in Equation (2.59) gives the following expression

µn ·K(1)h(2) = n ·K(1)h (2.60)

The constraints mentioned in Equation (2.11) imply that the tangential components of

the gradient operator h are continuous and are the same as those in the homogenized

referential volume. The latter, in conjunction with Equation (2.60), gives the following
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set of constraints

t · h(2) = t · h (2.61)

µn ·K(1)h(2) = n ·K(1)h

s · h(2) = s · h

It is convenient now to express Equation (2.61) in a matrix form

h(2) = Ah (2.62)

where the operator A, which specifies the coefficients of constraints, is defined as

[A] =


t

µn ·K(1)

s


−1 

t

n ·K(1)

s

 (2.63)

Referring the problem to the coordinates system attached to the discontinuity surface,

as shown in Figure 2.1a, the components of the operator A become

[A] =


1 0 0

µK
(1)
nt µK

(1)
nn µK

(1)
ns

0 0 1


−1 

1 0 0

K
(1)
nt K

(1)
nn K

(1)
ns

0 0 1

 (2.64)

=
1

µ


µ 0 0

K
(1)
nt

K
(1)
nn

(1− µ) 1
K

(1)
ns

K
(1)
nn

(1− µ)

0 0 µ
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Recalling Equation (2.10) and using Equation (2.62), the operator h(1) can then be

expressed as

h(1) =
1

1− µ
(1 − µA)h (2.65)

Substituting Equation (2.64) into Equation (2.65) gives

h(1) = Bh (2.66)

where

[B] =


1 0 0

−K
(1)
nt

K
(1)
nn

0 −K
(1)
ns

K
(1)
nn

0 0 1

 (2.67)

Now, substitution of Equation (2.66) into Equation (2.58) leads to the Darcy’s velocity

in the homogenized referential volume being defined as

w =
1

ρfg
K̄h =

1

ρfg
K̄(−∇xp+ ρfg) (2.68)

where K̄ is the equivalent conductivity tensor given by

K̄ = K(1)B (2.69)

The component form of this operator, using Equation (2.67), becomes
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[K̄] =


K

(1)
tt K

(1)
nt K

(1)
ts

K
(1)
nt K

(1)
nn K

(1)
ns

K
(1)
ts K

(1)
ns K
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ss




1 0 0

−K
(1)
nt

K
(1)
nn

0 −K
(1)
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K
(1)
nn

0 0 1

 (2.70)

=


K

(1)
tt − (K

(1)
nt )

2

K
(1)
nn

0 K
(1)
ts − K

(1)
nt K

(1)
ns

K
(1)
nn

0 0 0

K
(1)
ts − K

(1)
nt K

(1)
ns

K
(1)
nn

0 K
(1)
ss − (K

(1)
ns )2

K
(1)
nn


It is evident from Equation (2.70) that the equivalent hydraulic conductivity matrix

is now independent of the volume fraction µ.
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Abstract: This paper provides a mathematical description of hydromechanical cou-

pling associated with propagation of localized damage. The framework incorporates

an embedded discontinuity approach and addresses the assessment of both hydraulic

and mechanical properties in the region intercepted by a fracture. Within this ap-

proach, an internal length scale parameter is explicitly employed in the definition of

equivalent permeability as well as the tangential stiffness operators. The effect of the

progressive evolution of damage on the hydro-mechanical coupling is examined and

an evolution law is derived governing the variation of equivalent permeability with

the continuing deformation. The framework is verified by a numerical study involv-

ing 3D simulation of an axial splitting test carried out on a saturated sample under

displacement and fluid pressure-controlled conditions. The finite element analysis in-

corporates the Polynomial-Pressure-Projection (PPP) stabilization technique and a

fully implicit time integration scheme.

Keyword: hydromechanics, fracture propagation, localization, embedded disconti-

nuity, quasi-brittle rocks
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3.1 Introduction

The most widely advocated method for disposal of low and intermediate-level nuclear

waste is deep geological disposal. A geological repository is supposed to be con-

structed at a significant depth below the surface and the potential site should fulfill

several criteria, which include low permeability, adequate strength, and the long-term

stability of the host rock. The repository uses multiple natural and engineered bar-

riers that include the container, sealing materials, and the host rock. The repository

design concepts differ between different countries. The main host rocks considered are

igneous crystalline rocks, argillaceous clay rocks, and salts. The choice of host rock

is mainly governed by the availability of suitable geological formations of adequate

thickness and geological setting.

Deep geological storage is being considered in most countries with nuclear power

production. In Switzerland, an active site-selection process is currently underway.

The site selections for France and Sweden have already been made and, in Sweden, a

nuclear regulatory body is currently reviewing a license application for construction.

The first project to enter the construction phase is Finland’s Onkalo spent nuclear

fuel repository, which obtained regulatory approval in 2015.

In order to build confidence in deep geological disposal technologies, several Under-

ground Research Laboratories (URL) have been constructed. Those include generic

URLs built for research and testing purposes (e.g., Mount Terri URL in Switzerland,

Tournemire facility in France, Aspo Hard Rock Lab in Sweden) as well as site-specific

URLs (e.g., Meuse/Haute Marne URL in France, Onkalo URL in Finland, Gorleben

URL in Germany). The subsurface testing allows not only for an in-depth investi-

gation of the selected geological environment but also provides an opportunity for

verification of different methodologies for simulating the mechanical response of the
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host rock.

Canadian efforts are currently directed at two potential sites, i.e., Bruce County

and Ignace area in Ontario. The Bruce site has a sedimentary rock formation (Cobourg

limestone of the Michigan Basin), while the Ignace site includes a crystalline rock of

the Canadian Shield. In mechanical terms, these two types of rocks have high strength,

low permeability, and high sorption capacity, so that they would constitute an efficient

barrier to radionuclide migration.

Most sedimentary rocks are inherently anisotropic and often heterogeneous (e.g.,

[1,2]). Anisotropy is due to stratification resulting from the sedimentation process;

heterogeneity, on the other hand, originates from the interspersed fabric (cf. [3,4]).

For crystalline rocks, layering takes a less prominent role. Thus, the intact rock

may be perceived as isotropic in terms of both mechanical and hydraulic properties

(e.g., [2,5,6]). The deformation process is characterized by the onset of microcracks,

which progressively increase in density, ultimately coalescing and leading to strain

localization at the macroscale. As a result, in crystalline rocks fractures are ubiquitous

and the fracture systems exhibit a range of anti-clustered to clustered patterns. The

nature and evolution of fracture systems directly influence the strength, geophysical,

and fluid transport characteristics. Therefore, the main challenge in terms of modeling

the behavior of crystalline rocks is the assessment of hydromechanical properties in

the presence of pre-existing and newly forming discontinuities.

The onset of localization is typically considered as a bifurcation problem [7]. Al-

ternatively, in tension regime, some simple path-independent strength criteria are

invoked [8]. The localized zones exhibit strain-softening which, for classical contin-

uum representations, leads to ill-posedness of the initial boundary-value problem [9].

The latter results in a pathological mesh-dependency of the numerical solution. In
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order to remedy the problem, the classical framework needs to be enriched by incor-

porating an internal length scale parameter. Common approaches include non-local

theories [10,11] as well as Extended Finite Element Method (XFEM) (cf. [12,13]).

Both these approaches have limitations that stem either from ambiguity in defining

the notion of internal length or, like in the case of XFEM, computational inefficiency

resulting from the incorporation of additional degrees of freedom that account for the

presence of discontinuities.

The work presented here is focused on the description of hydromechanical coupling

associated with the onset and propagation of localized damage. The mathematical

framework incorporates an embedded discontinuity approach, which employs volume

averaging in order to define representative homogenized properties. The formulation

addresses both the assessment of equivalent permeability in the region intercepted

by a fracture and the associated interaction with the mechanical response in the

presence of discontinuities. In particular, the effect of the progressive evolution of

damage on the hydro-mechanical coupling is examined. The framework is verified by

a numerical example that involves 3D simulation of an axial splitting test carried out

on a saturated sample under external control of fluid pressure.

3.2 Governing equations of hydromechanical

coupling under homogeneous and localized

deformation

Consider an initial-boundary-value problem involving a saturated porous medium

undergoing deformation coupled with a transient flow. Denote the spatial domain

and its external boundary as B ∈ Rm and ∂B, respectively, where m stands for
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the spatial dimension of the problem. Furthermore, let T be the time interval, such

that T (0, T ], and let ∂B comprise of nonoverlapping Dirichlet (∂uB and ∂pB) and

Neumann boundaries (∂tB and ∂qB). Restricting the considerations to static regime

and assuming infinitesimal deformations, the field equations can be stated as (cf. [14])

∇ · (σ′ − βpI) + ρg = 0 in B× T (3.1)

αṗ+ β∇ · u̇+∇ · [ 1
µf

k · (−∇p+ ρfg)] = 0 in B× T (3.2)

subject to

u = ū on ∂uB× T (3.3)

(σ′ − βpI) · n = t̄ on ∂tB× T

p = p̄ on ∂pB× T

(1/µf )k · (−∇p+ ρfg) · n = q̄ on ∂qB× T

In equations above, n is the unit outward normal to ∂B, β is the Biot coefficient, α is

defined as α = n/Sf , where n and Sf are the porosity and the bulk modulus of fluid,

respectively, ρ represents the density of mixture, while g is gravitational acceleration.

Moreover, ∇ and ∇· denote the spatial gradient and divergence operators, k is the

permeability tensor, µf is the dynamic viscosity of the fluid, p is the pore–fluid pres-

sure, while σ′ and u are the effective Cauchy stress tensor and the solid’s displacement

vector, respectively.

It is noted that the balance equations explicitly incorporate Darcy’s law for the

superficial velocity as well as the effective stress principle. The validity of Equation

(3.2) is restricted to the case when the process is isothermal and there is no mass

exchange between the solid and fluid phases. For small deformations, the mechanical
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power conjugate pair includes the effective stress (σ′ = σ+βpI) and the infinitesimal

strain rate (ϵ̇ = sym∇u̇) tensors. Furthermore, the hydraulic power conjugate pair

is the pore–fluid pressure (p) and the Darcy’s velocity (k · [−∇p+ ρg]/µf ).

The homogenous deformation process may be described using a classical con-

tinuum representation. A common approach involves a standard rate-independent

elastoplastic idealization, i.e.,

σ̇′ = D : ϵ̇; D = De − De : ∇σ′ψ ⊗∇σ′f : De

∇σ′f : De : ∇σ′ψ + H
(3.4)

where f and ψ are the yield and potential functions, respectively, De and D are the

fourth- order elastic and elastoplastic tangent moduli, H represents the plastic hard-

ening modulus, ∇σ′ is the stress–space gradient operator, and ⊗ and “ : ” denote the

dyadic product and double contraction between two tensors, respectively. Apparently,

for an elastic material, there is D = De.

In geomaterials, in particular in sedimentary/crystalline rocks, the failure mode

involves localized deformation. The latter is heterogeneous at the macroscale as it

entails the development of high strain gradient zones, within which the mechanical

response typically exhibits strain-softening. In this case, the standard continuum rep-

resentation (3.4), which does not incorporate any internal length measure, leads to a

systemic dependence of the numerical solution on the discretization. As mentioned

earlier, in the last few decades different regularization techniques have been proposed

to alleviate this problem, i.e., to restore the well-posedness of the governing equa-

tions. In this work, the framework incorporating a constitutive law with embedded

discontinuity (CLED) is employed. The approach, which was originally developed in

the early 1980s (cf. [15]) and refined in the subsequent works [16,17], incorporates a

‘characteristic dimension’ associated with the presence of discontinuity. Most of the
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past developments dealt with the mechanical response of a single-phase solid and fo-

cused on modeling of discrete propagation of the damage in both brittle and frictional

materials. Recently, the framework has been extended to include the description of

hydro-mechanical interaction [18]. The approach involves imposing a weak discon-

tinuity in fluid pressure as well as a strong discontinuity in the displacement field

within the considered referential volume. By enforcing admissible constraints in the

flow regime and continuity of tractions in the fractured region, an equivalent perme-

ability and a macroscopic stiffness operator are defined, both incorporating an internal

length parameter. Within the CLED approach, the homogenized constitutive rela-

tions governing the hydromechanical response within the referential volume adjacent

to the localized region, take the form (cf. [18])

σ̇′ = D̄ : D : ϵ̇; v̄ =
1

µf

k̄ · (−∇p+ ρfg) (3.5)

where v̄ is the superficial (Darcy’s) velocity of the fluid and k̄ and D̄ : D denote the

equivalent permeability and stress–strain tangent modulus tensors. The operators D̄

and k̄ are defined as

D̄ = I − χD : [nd ⊗ (k + χnd ·D · nd)−1 ⊗ nd] (3.6)

k̄ = [(1− χtd)k
(1) + χtdk

(2) · C][I + χtd(C − I)]−1 (3.7)

Here, χ−1 is the characteristic length defined as the ratio of the referential volume

to the surface area of the discontinuity. Moreover, nd is the unit normal to the

discontinuity surface, k denotes the tangent modulus relating the rate of effective

traction to velocity jump across the fractured region, I is the fourth-order identity

tensor, td is the thickness of the localization zone, k(1) and k(2) denote the permeability
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tensors in the intact and localized domain, respectively, and C is an operator that

defines the coefficients of the hydraulic constrains, viz.

[C] =


td

nd · k(2)

sd


−1 

td

nd · k(1)

sd

 (3.8)

where td and sd are the unit vectors along the discontinuity surface.

3.2.1 Localization-induced permeability evolution

According to Equation (3.6), the changes in thickness of the localized region do not

directly affect the homogenized stress–strain tangent modulus since the expression

is independent of it. At the same time, however, the evolution of thickness directly

affects the homogenized permeability tensor Equation (3.7). Thus, there is an explicit

coupling between the hydraulic and mechanical terms.

The change in equivalent permeability during the ongoing deformation is defined

as

˙̄k =
∂k̄

∂td
ṫd (3.9)

where ṫd denotes the rate of the change of thickness, which represents the normal

component of the velocity jump, i.e.,

ṫd = nd · Ju̇K (3.10)

Given the requirement of continuity of traction across the interface (cf. [16]), there is
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Ju̇K = [(k + χnd ·D · nd)−1 ⊗ nd] : [D : ϵ̇] (3.11)

Substituting now Equation (3.11) into Equation (3.10) gives

ṫd = nd · [(k + χnd ·D · nd)−1 ⊗ nd] : [D : ϵ̇] (3.12)

Thus, by introducing Equation (3.12) in Equation (3.9), the following expression is

obtained

˙̄k = ζ : ϵ̇ (3.13)

where ζ is a fourth-order tensor relating the rates of permeability and strain, which

is defined as

ζ =
∂k̄

∂td
⊗
[(
nd · (k + χnd ·D · nd)−1

)
⊗ nd

]
: D (3.14)

The evolution law Equation (3.13) governs the variation of equivalent permeability

tensor during the deformation process associated with strain localization. It is evident

that there is a direct coupling here, i.e., the change in the deformation field affects

the permeability which, in turn, influences the velocity of flow and the generation of

pore-fluid pressure.

In order to evaluate the term ∂k̄/∂td, note that the permeability in the intact

region (k(1)) is independent of thickness td. Moreover, the normal component of

permeability in the fractured zone, i.e., nd · k(2), is also independent of thickness.

Thus, with reference to Equation (3.8), there is
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∂C
∂td

= 0 (3.15)

Therefore, differentiating Equation (3.7), one obtains

∂k̄

∂td
= [−χk(1) + χk(2) · C + χtd(∂k

(2)/∂td) · C][I + χtd(C − I)]−1 (3.16)

− χ[(1− χtd)k
(1) + χtdk

(2) · C][I + χtd(C − I)]−1[C − I][I + χtd(C − I)]−1

In numerical implementation, it is convenient to refer the operator ∂k̄/∂td to the local

coordinate system x⋆ attached to the discontinuity surface. In this case, the matrix

representation becomes

[
∂k̄

⋆

∂td

]
=


∂k̄tt
∂td

∂k̄tn
∂td

∂k̄ts
∂td

∂k̄nt
∂td

∂k̄nn
∂td

∂k̄ns
∂td

∂k̄st
∂td

∂k̄sn
∂td

∂k̄ss
∂td

 (3.17)

It can be shown that the above operator is symmetric in view of the symmetry of

k̄. The individual components of this matrix may be expressed, after some algebraic

transformations, in the form

∂k̄tt
∂td

= χ

(
k
(2)
t − k

(1)
tt + td

∂k
(2)
t

∂td

)
+
χ
(
k
(1)
tn

)2 (
(χtd)

2k(1)nn − (1− χtd)
2k(2)n

)
(
(1− χtd)k

(2)
n + χtdk

(1)
nn

)2 ; (3.18)

∂k̄nn
∂td

= −
χk(2)n k(1)nn

(
k(1)nn − k(2)n

)
(
(1− χtd)k

(2)
n + χtdk

(1)
nn

)2 ;
∂k̄ss
∂td

= χ

(
k(2)s − k(1)ss + td

∂k(2)s

∂td

)
+
χ
(
k(1)ns

)2 (
(χtd)

2k(1)nn − (1− χtd)
2k(2)n

)
(
(1− χtd)k

(2)
n + χtdk

(1)
nn

)2 ;
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∂k̄tn
∂td

=
∂k̄nt
∂td

= − χk
(1)
tn k

(2)
n k(1)nn(

(1− χtd)k
(2)
n + χtdk

(1)
nn

)2 ;
∂k̄ts
∂td

=
∂k̄st
∂td

= −χk(1)ts +
χk

(1)
tn k

(1)
ns

(
(χtd)

2k(1)nn − (1− χtd)
2k(2)n

)
(
(1− χtd)k

(2)
n + χtdk

(1)
nn

)2 ;

∂k̄ns
∂td

=
∂k̄sn
∂td

= − χk(1)ns k
(2)
n k(1)nn(

(1− χtd)k
(2)
n + χtdk

(1)
nn

)2
It should be noted that in the expressions above, k(2) is a diagonal operator, whose

tangential components k(2)s and k
(2)
t are assumed to follow the local cubic law (cf.

[19]), i.e., |k(2) · td| = |k(2) · sd| = t2d/12. Therefore, in Equation (3.18), there is

∂k
(2)
t /∂td = ∂k(2)s /∂td = td/6.

Apparently, given the component form of ∂k̄
⋆
/∂td, this operator can be trans-

formed into the global coordinate system by invoking the standard orthogonal trans-

formation, i.e.,

∂k̄

∂td
= Q · ∂k̄

⋆

∂td
·QT (3.19)

where Q is the transformation tensor whose components are the direction cosines of

the base vectors of the local coordinate system.
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3.3 Coupled hydromechanical analysis of an axial

splitting test

The numerical analysis presented here deals with the simulation of a tensile frac-

ture in a splitting test conducted under fully saturated conditions. The coupled hy-

dromechanical analysis is performed in 3D configuration and incorporates localization-

induced permeability evolution. The finite element mesh contains trilinear isopara-

metric hexahedral elements for both the displacement and pressure fields (Figure

3.1). The coupled FE formulation, which employs the embedded discontinuity ap-

proach, follows the framework outlined in Reference [18]. The approach is enhanced

by updating the permeability tensor in each loading step, cf. Equation (3.13), and

incorporating a stabilization technique of Polynomial-Pressure-Projection (PPP) de-

veloped in Reference [20]. The latter is required in the mixed u–p analysis of nearly

incompressible (or a very low-permeability) porous media to avoid the loss of stabil-

ity (cf. [21]) when equal order interpolation functions are used for the field variables.

The entire finite element code and the associated systems of linear algebraic equations

were developed and solved in MATLAB R2020b.

In the analysis conducted here, the intact material is idealized as elastic-brittle.

The onset of localization (tensile crack) is controlled by the maximum tensile strength

(ft) criterion, which stipulates that the macrocrack is perpendicular to the direction of

the maximum tensile stress. In the post-localized regime, the strain-softening response

along the discontinuity plane is described using a simple plasticity-based framework

incorporating a degradation law for the tensile strength that is assumed to depend on

the fracture energy (Gf ). In particular, the yield function (F ) in the localized region

is taken in the form
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Figure 3.1: Geometry of the problem and the finite element discretization

F (t′, JuK) = nd · σ′ · nd − ft exp

(
− ft
Gf

nd · JuK
)

= 0 (3.20)

where t′ is the effective traction vector. Following now the standard plasticity pro-

cedure, with F described by Equation (3.20), the tangent stiffness operator k can

be defined. The integration process employs the return-mapping scheme of Reference

[17], which is used for the stress update and the specification of the constitutive tensor

(cf. Equation (3.6)) in the referential volume encompassing the localized region. The

permeability tensor is then explicitly updated using representation (3.13).

The material properties, geometry, and boundary conditions are analogous to those

in Reference [22] and pertain to simulation of an axial splitting test conducted on

saturated concrete specimen [23]. The parameters used for the analysis are provided

in Table 3.1, where E, ν, ft, and Gf are Young’s modulus, Poisson’s ratio, tensile

strength, and the fracture energy, respectively.

It should be noted that the test simulated here is not a standard Brazilian test.

The experimental set-up and the testing protocol have been enhanced to examine

the hydro-mechanical coupling and the evolution of permeability associated with the

74



Ph.D. Thesis - A.A. Jameei McMaster - Civil Engineering

Table 3.1: Material parameters for the splitting test simulation

α
(GPa−1)

β
µf

(Pa · s)
k(1)

(m2)
E

(GPa)
ν

ft
(MPa)

Gf

(N/m)

0.01 0.3 10−3 10−21 47 0.2 3 15

onset and propagation of localized damage [23]. The cylindrical sample tested has a

diameter of 110mm and a thickness of 50mm and is placed between upper and lower

bearing plates. The lateral surface of the cylinder is assumed to be impermeable

(i.e., no-flux boundary condition). The analysis has been conducted in two stages.

In the first stage, a prescribed fluid pressure drop of 0.09MPa is applied between the

two faces of the cylinder. This pressure difference is maintained long enough until

a steady-state condition is attained. Then, a prescribed displacement rate in the

vertical y-direction is applied at the top of the cylinder (cf. Figure 3.1).

The main results of the analysis are presented in Figures 3.2-3.6. Figure 3.2a

shows the variation of the resultant force with the applied vertical displacement. The

ultimate load of 23.2 kN is reached at the vertical displacement of 49.7µm, after

which the predicted response is very brittle. Figure 3.2b shows the corresponding

evolution of lateral displacements, which was recorded experimentally. Note that two

sets of data are provided here (after [23]), which correspond to the same geometry and

material type so that the difference indicates the actual scatter of the results. It is seen

that both the predicted ultimate load, as well as the progressive increase in lateral

displacements in the softening regime, are fairly consistent with the experimental data.

Figures 3.3a,b depict the evolution of the horizontal displacement field at different load

steps. It is evident here that at the advanced stages of loading the specimen tends

to split into two halves, which is triggered by the localized nature of deformation.

The results for the displacement field are supplemented by the lateral displacement

profiles along the circumferential boundary of the specimen (Figure 3.3c). It should
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be noted that these values are indicative of the crack opening, as the letter is the

primary mechanism of deformation.

Figure 3.2: (a) Load-vertical displacement, (b) load-lateral displacement
characteristics for the hydromechanical axial splitting test

Figure 3.3: Lateral displacement field (mm) at (a) the vertical displacement of
49.7µm (ultimate load), (b) the vertical displacement of 50.5µm (final state),

(c) the lateral displacement profiles along the circumferential boundary (solid line:
front face; dash line: rear face)
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It should be mentioned that the analysis conducted here traced the crack prop-

agation in a ‘smeared’ rather than discrete way (cf. [8]). For the given boundary

conditions (i.e., concentrated load), the damage initiated in the region adjacent to

load application and the tensile damaged zone was fully developed in the final stages

of the analysis. The formation of this tensile crack, penetrating the entire sample,

affects the permeability of the specimen, as the latter depends on the crack opening.

This is evidenced in Figure 3.4a, which depicts the distribution of the outflow flux.

Clearly, the flow is contained to the fractured region and that through the intact

domain is negligible. The outflow flux reaches a maximum value of 3.2µm/s in the

middle of the specimen, and progressively decreases along the height of the crack due

to reduction of the aperture. The corresponding distribution of the pore-fluid pressure

at the end of the analysis is shown in Figure 3.4b.

Figure 3.4: Distribution of (a) outflow flux (mm/s), (b) pore-fluid pressure (MPa) at
the vertical displacement of 50.5µm (final stage)

Finally, Figures 3.5 and 3.6 present the evolution of the fluid pressure field in the

vertical cut through the middle of the specimen. The contours in Figure 3.5 depict the

pore pressure distribution at different stages of loading and are supplemented by the

profiles showing the variation along the center lines (Figure 3.6). A non-monotonic

rise in fluid pressure with time (i.e., the Mandel–Cryer effect) is captured here in the

early stages of analysis, which is due to a very low permeability in the intact region
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Figure 3.5: Distribution of the pore-fluid pressure (MPa) in a vertical cut through
the middle of the specimen, at axial displacement of (a) 16.8µm, (b) 44.8µm,

(c) 49.7µm, and (d) 50.5µm

(Figure 3.5a). As the deformation progresses and the tensile cracks develop, the pore-

fluid pressure decreases in the fractured regions due to the volume expansion (Figure

3.5b–d). Moreover, in the softening regime, the dissipation of pore-fluid pressure is

accelerated since the permeability in the cracked regions increases with the increase

in the crack opening (cf. Figures 3.5d and 3.6).

3.4 Discussion

Many types of rocks, especially crystalline rocks, are brittle and have very low perme-

ability. Thus, prior to the onset of localized damage, their behavior, in fully saturated

conditions, may be perceived as undrained. In the course of deformation, the microc-

racks develop and progressively increase in density, ultimately coalescing and leading
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Figure 3.6: Profiles of the pore-fluid pressure (MPa) along (a) vertical,
(b) horizontal axes at different vertical displacements

to formation of macrocracks at the continuum level. These fractures create a pre-

ferred pathway for the transport of fluid. The propagation of macrocracks within the

rock mass is associated with a strong coupling between the hydraulic and mechanical

properties in both intact and fractured zones. The present paper is focused on de-

scribing this hydromechanical interaction using a volume averaging in the referential

domain adjacent to the fracture. Such an approach for dealing with discontinuities

is of considerable interest since it is computationally very efficient as compared to

other commonly used techniques, like XFEM. Within the proposed framework, the

equivalent permeability as well as the tangential stiffness operators both incorporate

an internal length scale parameter. This ensures that the solution does not display a

pathological sensitivity to FE discretization.

Hydromechanical analysis involving the propagation of localized damage in sat-

urated porous media is a challenging task. In this case, the equivalent permeability

operator depends on the aperture (opening) of the fracture and, at the same time, the

crack opening evolves during the continuing deformation. In the research reported

here, an evolution law was derived governing the variation of equivalent permeability

with the macroscopic strain rates. The fully coupled formulation has been imple-

mented in a finite element code developed in MATLAB R2020b and an illustrative
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example was provided involving a 3D simulation of an axial splitting test carried out

on a saturated cylindrical sample. The results show that the load-vertical displace-

ment characteristic displays an abrupt transition to brittle response after reaching the

ultimate load, which is accompanied by the development of excessive lateral defor-

mation. In the softening regime, an intense outflow flux is captured in the proximity

of the localized regions triggered by the increase in permeability. Moreover, in the

softening range, the pore-fluid pressure is rapidly dissipated because of the volume

expansion of the solid matrix along with the evolving permeability in the cracked

regions. The results, in terms of assessment of ultimate load, the fracture pattern and

the fluid transmissivity are in fair agreement with the experimental data, thus provid-

ing a proof of concept in terms of the feasibility of the proposed approach. It should

be noted that in the numerical simulations presented here, no special algorithm for

the crack tracing was employed and, as a result, the cracks appear as smeared over a

narrow region. While this has no visible impact on the predicted ultimate load [24], it

does not give a very accurate representation of the crack pattern. The discrete tracing

can be incorporated into the present framework using a numerical scheme described

in Reference [8]. The latter, however, has only been employed for 2D applications so

far and would need to be extended for a 3D geometry.

Author contribution: Conceptualization, A.A.J. and S.P.; formal analysis, A.A.J.;

supervision, S.P.; writing—review & editing, A.A.J. and S.P. All authors have read

and agreed to the published version of the manuscript.

Funding: The research presented here was supported by the Natural Sciences and

Engineering Research Council of Canada (Discovery Grant) and the Canadian Nuclear

Safety Commission (CNSC).

80



Ph.D. Thesis - A.A. Jameei McMaster - Civil Engineering

References

[1] M. H. B. Nasseri, S. D. Goodfellow, T. Wanne, and R. P. Young, “Thermo-hydro-

mechanical properties of cobourg limestone,” International Journal of Rock Me-

chanics and Mining Sciences, vol. 61, pp. 212–222, 2013.

[2] E. Ghazvinian, M. S. Diederichs, D. Labrie, and C. D. Martin, “An investigation

on the fabric type dependency of the crack damage thresholds in brittle rocks,”

Geotechnical and Geological Engineering, vol. 33, no. 6, pp. 1409–1429, 2015.

[3] T. S. Nguyen, Z. Li, G. Su, M. H. B. Nasseri, and R. P. Young, “Hydro-mechanical

behavior of an argillaceous limestone considered as a potential host formation

for radioactive waste disposal,” Journal of Rock Mechanics and Geotechnical

Engineering, vol. 10, no. 6, pp. 1063–1081, 2018.

[4] A. P. S. Selvadurai and M. Najari, “Thermo-hydro-mechanical behaviour of the

argillaceous cobourg limestone,” Journal of Geophysical Research: Solid Earth,

vol. 122, no. 6, pp. 4157–4171, 2017.

[5] B. Duevel and B. Haimson, “Mechanical characterization of pink Lac du bonnet

granite: Evidence of nonlinearity and anisotropy,” International Journal of Rock

Mechanics and Mining Sciences, vol. 34, no. 3-4, p. 117, 1997.

[6] C. D. Martin, “Seventeenth Canadian Geotechnical Colloquium: The effect of

cohesion loss and stress path on brittle rock strength,” Canadian Geotechnical

Journal, vol. 34, no. 5, pp. 698–725, 1997.

[7] J. W. Rudnicki and J. R. Rice, “Conditions for the localization of deformation

in pressure-sensitive dilatant materials,” Journal of the Mechanics and Physics

of Solids, vol. 23, no. 6, pp. 371–394, 1975.

81



Ph.D. Thesis - A.A. Jameei McMaster - Civil Engineering

[8] E. Haghighat and S. Pietruszczak, “On modeling of discrete propagation of lo-

calized damage in cohesive-frictional materials,” International Journal for Nu-

merical and Analytical Methods in Geomechanics, vol. 39, no. 16, pp. 1774–1790,

2015.

[9] R. de Borst and C. V. Verhoosel, “Damage, material instabilities, and failure,”

Encyclopedia of Computational Mechanics, Second Edition, pp. 1–50, 2017.

[10] J. L. Mroginski, G. Etse, and S. M. Vrech, “A thermodynamical gradient theory

for deformation and strain localization of porous media,” International Journal

of Plasticity, vol. 27, no. 4, pp. 620–634, 2011.

[11] M. E. Mobasher, L. Berger-Vergiat, and H. Waisman, “Non-local formulation for

transport and damage in porous media,” Computer Methods in Applied Mechan-

ics and Engineering, vol. 324, pp. 654–688, 2017.

[12] M. Luege, J. Lucero, C. Torrijos, and A. Orlando, “Coupled mechanical and fluid

flow analysis in fractured saturated porous media using the XFEM,” Applied

Mathematical Modelling, vol. 40, no. 7-8, pp. 4480–4504, 2016.

[13] E. Mikaeili and B. Schrefler, “XFEM, strong discontinuities and second-order

work in shear band modeling of saturated porous media,” Acta Geotechnica,

vol. 13, no. 6, pp. 1249–1264, 2018.

[14] R. I. Borja, “On the mechanical energy and effective stress in saturated and

unsaturated porous continua,” International Journal of Solids and Structures,

vol. 43, no. 6, pp. 1764–1786, 2006.

82



Ph.D. Thesis - A.A. Jameei McMaster - Civil Engineering
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Abstract: This paper addresses the issue of evolution and coalescence of localized

damage zones in sparsely fractured crystalline rocks. The approach incorporates a

constitutive law with embedded discontinuity, which is phrased in terms of both the

hydraulic and mechanical response. The formulation takes into account the hydrome-

chanical interaction in regions intercepted by discontinuities. An internal length scale

parameter is employed in the definition of equivalent hydraulic conductivity and the

tangential stiffness operators, and the onset of newly developed macrocracks is de-

tected by the bifurcation analysis. An enhanced mixed u-p finite element formulation

is derived which considers the effect of progressive evolution of the fracture aperture

in the weak statements of balance equations. Fully implicit temporal discretization is

employed, and the finite element formulation is stabilized by invoking the Polynomial-

Pressure-Projection (PPP) technique. A coupled FE analysis is conducted examining

the response of Luc du Bonnet granite, with pre-existing fracture network, subjected

to plane strain compression that triggers the crack propagation and coalescence. The

approach is first verified on some benchmark problems that involve the presence of

a dominant fracture. The results of simulations are compared with those obtained

using a very fine mesh incorporating interface elements. Later, a series of coupled

analyses are carried out examining the hydromechanical response in the presence of

multiple fractures.

Keyword: constitutive law with embedded discontinuity, coupled hydromechanical

analysis, localized deformation, sparse fractures, crystalline rocks
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4.1 Introduction

Sparsely fractured igneous crystalline rocks constitute an effective barrier to radionu-

clide migration in deep geological repositories. An example of this type of rock is

the Lac du Bonnet granite, which is currently considered as a potential host rock for

geological repository of a low and intermediate level nuclear waste in Canada. The

Lac du Bonnet batholith is a late-tectonic granite in the western Superior Province

of the Canadian Shield, which comprises several lithotectonic regions in northwestern

Ontario and eastern Manitoba. The intact rock has a very low permeability and high

strength; however, it contains ubiquitous fractures that largely control the deforma-

tion and fluid transport characteristics [1,2]. In fact, in most crystalline rocks the

interconnected fractures are the main flow conduits for the transport of radionuclide

[3,4].

The pre-existing cracks, as well as the onset and progressive coalescence of new

macrocracks, directly influence the geophysical properties at the macroscale. In me-

chanical terms, the study of macrocracks propagation, which involves strain softening

behaviour, requires incorporation of some internal length scale parameter. Unfortu-

nately, classical continuum mechanics does not employ such a measure [5]. Conse-

quently, the numerical analysis associated with the presence of discontinuities often

suffers from a systemic sensitivity to spatial discretization [6]. There are several

remedies to address the problem. Those include non-local theories [7,8,9], as well as

the use of advanced micropolar continuum frameworks [10,11,12]. The non-local ap-

proach incorporates a characteristic dimension; its definition, however, is somewhat

ambiguous. For micropolar continua, the primary difficulty is the identification of

additional material parameters that stem from the notion of non-symmetry of the

stress tensor. Other techniques dealing with localized deformation involve the use
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of interface elements [13,14,15,16] and/or implementation of the extended finite el-

ement method (XFEM; [17,18,19]). In the former case, the analysis requires a fine

unstructured mesh and is not, in general, suitable for tracing the crack propagation

process. Furthermore, it often suffers from numerical instabilities since the geometric

and hydraulic properties of fractures and intact rock are significantly different. On

the other hand, the XFEM allows for modelling the discontinuous deformation by

partitioning the velocity fields at both sides of the discontinuity by a signed distance

function. Although the approach is accurate, it is computationally costly. The latter

stems from incorporation of additional degrees of freedom that account for the pres-

ence of discontinuities, as well the need for partitioning of the domain with triangular

sub-elements for the Gaussian integration scheme.

An alternative way to model the localized deformation is to explicitly incorpo-

rate an internal length scale parameter in the global form of macroscopic constitutive

relations. In this case, the mechanical properties are defined by employing volume

averaging of the gradient of a discontinuous velocity field [20,21,22]. This approach,

commonly referred to as the constitutive law with embedded discontinuity (CLED),

has recently been extended to describe the hydromechanical interaction in the fluid-

infiltrated porous media. In particular, an enhanced form of Darcy’s law was in-

troduced in which the equivalent hydraulic conductivity was defined as a symmetric

second-order tensor [23]. The components of this operator are function of hydraulic

properties of both constituents, i.e. intact material and the fracture zone, and the

definition incorporates the above mentioned internal scale parameter. The proposed

methodology was verified by some preliminary numerical examples which included a

hydro-mechanical analysis of an axial splitting test [24].

In this study, a new CLED finite element formulation is presented which considers

the coupling between evolution of hydraulic and mechanical properties in the weak
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statements of the governing field equations. This approach is then applied to examine

the crack propagation and coalescence in the fractured Lac du Bonnet granite. The in-

tact rock is considered as an elastoplastic-brittle material. The plasticity formulation

is derived by attributing the hardening effects to the deviatoric plastic strain and the

formation of macrocracks is described as a bifurcation problem. A series of coupled

analyses are carried out examining the hydro-mechanical response in the presence of

multiple fractures. In this case, the deformation process affects the fracture aperture

which, in turn, influences the generation of fluid pressure. The notion of the loss of

stability in a saturated porous medium is also addressed by examining the evolution

of the second rate of internal work.

4.2 Coupled formulation for crystalline rocks con-

taining discontinuities

4.2.1 Local balance equations governing homogeneous defor-

mation

The formulation of an initial boundary value problem involving a coupled hydrome-

chanical interaction incorporates the mass and linear momentum balance equations

supplemented by constitutive relations governing the deformation and the transient

flow processes. Denote the spatial domain and its external boundary as Ω ∈ Rm and

∂Ω respectively, where m stands for the spatial dimension of the problem. Let ñi

represent the outward normal to ∂Ω and Θ be the time interval, such that Θ := (0, t].

Furthermore, assume that ∂Ω comprises non-overlapping Dirichlet (∂uΩ and ∂pΩ)

and Neumann boundaries (∂tΩ and ∂qΩ). Restricting the considerations to static

regime, the field equations can be stated as [25]
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σ′
ij,j − βp,i + ρgi = 0 in Ω ×Θ (4.1)

αṗ+ βu̇i,i + (1/ρfg)(kij(−p,j + ρfgj)),i = 0 in Ω ×Θ (4.2)

subject to

ui = u⋆i on ∂uΩ ×Θ (4.3)

p = p⋆ on ∂pΩ ×Θ

(σ′
ij − βpδij)ñj = T ⋆

i on ∂tΩ ×Θ

(1/ρfg)kij(−p,j + ρfgj)ñi = q⋆ on ∂qΩ ×Θ

Here, ui and p denote the displacement vector and the pore-fluid pressure, respectively,

β is the Biot coefficient and σ′
ij represents the effective stress tensor (σ′

ij = σij +

βpδij). Furthermore, g is the gravitational acceleration while gi denotes its vectorial

representation, α is defined as the porosity divided by the bulk modulus of fluid,

ρ represents the density of mixture, ρf is the intrinsic fluid density, and kij is the

hydraulic conductivity tensor. It should be noted that the balance Equations (4.1)

and (4.2) explicitly incorporate the effective stress principle together with Darcy’s

law, and the validity of these equations is restricted to the case when the process is

isothermal and there is no mass exchange between the solid and fluid phases.

The above stated balance equations, together with the constitutive relations, rep-

resent a system of non-linear partial differential equations which, in general, cannot be

solved analytically. A common approach to obtain an approximate numerical solution

is to replace them by a weak (e.g., Galerkin) form, which lowers the degree of non-

linearity, and then discretize them in order to obtain a system of algebraic equations.

This approach is discussed in detail in Section 4.2.4.
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4.2.2 Description of deformation process prior to the onset

of localization

The experimental evidence on the mechanical properties of the Lac du Bonnet granite

comes primarily from tests conducted on samples collected at Underground Research

Laboratory (URL) located in south-eastern Manitoba. The experimental work in-

volved a number of standard tests, which included uniaxial compression, Brazilian

splitting tests as well as triaxial compression (cf. [26,27]). The existing evidence indi-

cates that the intact rock is isotropic. At the same time, the samples collected from

around URL galleries contain multiple fractures. Thus, the main challenge in terms

of modeling of the behaviour of Lac du Bonnet granite is the assessment of hydrome-

chanical properties in the presence of discontinuities. This topic will be explicitly

addressed in detail in Section 4.2.3.

The experimental data involving triaxial tests shows that the behaviour under

higher confinement is plastic-brittle. The results also indicate that the failure en-

velopes are non-linear in the meridional sections. Thus, the approximation based

on Mohr-Coulomb criterion is not, in general, accurate. This conclusion is evident

from the data reported by several investigators (e.g., [27,1,28]). In view of this, the

conditions at failure have been defined here using a quadratic form [29]

F = c1(

√
3σ̄

g(θ)f0
) + c2(

√
3σ̄

g(θ)f0
)2 − (c3 +

σm
f0

) = 0 (4.4)

where f0 is a normalizing constant, taken here as 1MPa, and c’s are dimensionless

material parameters. In addition, σm, σ̄, and θ are the invariants of the effective stress

tensor σ′
ij defined as
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σm = −1

3
σ′
ii; σ̄ =

√
J2; θ =

1

3
arcsin (

−3
√
3

2σ̄3
J3) (4.5)

where J2 and J3 are the basic invariants of the stress deviator, θ denotes the Lode’s

angle and g(θ) is specified in ref. [30].

Note that solving Equation (4.4) for σ̄, gives an equivalent form of the failure function,

viz.

F =
√
3σ̄ − g(θ)σ̄c = 0; σ̄c =

−c1 +
√
c21 + 4c2(c3 + σm/f0)

2c2
f0 (4.6)

The plasticity formulation can be derived by attributing the hardening effects to

the deviatoric plastic strain and assuming the yield surface in a functional form similar

to representation (4.6), i.e.

f =
√
3σ̄ − bg(θ)σ̄c = 0 (4.7)

Here, b ⊂ ⟨b0, 1] represents the hardening parameter, which is a function of the local

internal variable κ

b(κ) = b0 + (1− b0)
κ

B + κ
; κ =

2√
3

√
J2ϵp (4.8)

while b0 and B are material constants. It should be noted that in Equation (4.8)

J2ϵp represents the second invariant of the plastic strain deviator, so that the harden-

ing effects are attributed to irreversible distortions. The plastic potential surface is

assumed in the form

Ψ =
√
3σ̄ + ηcg(θ)σ̂m ln

σ̂m
σ̂0
m

= 0 (4.9)
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where σ̂m = c3f0 + σm, σ̂
0
m is defined from the condition Ψ = 0, and ηc represents

the value of
√
3σ̄/g(θ)σ̂m for which a transition from plastic compaction to dilatancy

occurs. Assuming that such a transition takes place along the locus

f̃ =
√
3σ̄ + ag(θ)σ̄c = 0 (4.10)

where a is a material constant, the variable ηc can be determined as (cf. [29])

ηc =
aef0
2c2σ̂0

m

(

√
c21 +

4c2
ef0

σ̂0
m − c1) (4.11)

where e denotes the Euler’s number. Equation (4.9) in conjunction with Equation

(4.11) can be solved for ηc by employing the Newton’s method. Given now Equa-

tions (4.7) and (4.9), the constitutive relation can be formulated using the standard

plasticity procedure, i.e. invoking the additivity of elastic and plastic strain rates as

well as the consistency condition ḟ = 0. The details in this respect are provided, for

example, in ref. [30].

In order to verify the performance of the approach described above, the experi-

mental data reported in ref. [26] has been employed. The Lac du Bonnet granite used

in that study was composed of approx. 30% potassium feldspar, 30% plagioclase,

30% quartz, and 10% mafic minerals. The samples were obtained from 420 Level

of AECL’s underground research lab in Manitoba. The testing program included

uniaxial compression, Brazilian indirect tensile tests as well as over thirty triaxial

compression tests.

The identification of material parameters requires, first of all, the specifications

of conditions at failure. Based on the information reported in ref. [26], the tensile

strength under slow loading rates can be estimated as being close to 7.9MPa. The
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latter, according to Equation (4.4), gives c3 = 7.9 for f0 = 1MPa. The remaining

strength parameters were then assessed using the best-fit approximation to the triaxial

data. Figure 4.1 presents the peak strength envelope incorporating the representation

(4.4). Note that in this case, some additional results from the tests conducted in ref.

[31] have also been included for the purpose of comparison. The obtained coefficients

of approximation are c1 = 0.35 and c2 = 1.64× 10−4.

Figure 4.1: The failure envelope, Equation (4.4), for the Lac du Bonnet granite
(Level 420 of URL)

The modeling of deformation characteristics entails the specification of elastic

constants (E, ν) as well as the parameters governing the hardening law (4.8), i.e.

(b0, B), and the transition to dilatancy a. Based on the results reported in ref. [26],

the following values were assumed

E = 60GPa, ν = 0.14, b0 = 0.8, a = 0.73, B = 1.12× 10−4

Note that the value of parameter B was assessed by trial and error to obtain a good

approximation to the deviatoric stress-strain characteristics.

The onset of localization may be considered as a bifurcation problem. Bifurcation
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refers to inception of a nonhomogeneous deformation mode which is typically asso-

ciated with formation of a discrete shear band. The most widely used criterion for

localization in geomaterials is that developed in ref. [32]. In the context of infinitesi-

mal deformation, the condition for strain localization takes the form

detAjk = detniDijklnl = 0 (4.12)

where Dijkl is the elastoplastic constitutive tensor [30] and ni is the unit normal to the

shear band. The onset of bifurcation is said to occur when Equation (4.12) has real

roots [33]. Complementary details regarding the bifurcation and shear band analysis

in triaxial and biaxial testing configurations are given in ref. [34].

The key results of the numerical analysis are presented in Figures 4.2 and 4.3.

Figure 4.2 shows the simulations of a series of triaxial tests reported in ref. [26]. It

should be noted that these tests were carried out on samples which were extracted

in-situ and thus have already been subjected to some stress paths that might have

induced initial damage. In simulating the triaxial tests, this past loading history was

not followed, and the early stage of deformation associated with closing of microcracks

and the build-up of stiffness was not considered. The analysis was stopped here

at the stage when the bifurcation criterion (4.12) was satisfied. At this point, the

inhomogeneous deformation associated with strain softening commences, which is

shown schematically by an arrow. Note that the post-bifurcation response needs

to be considered at the level of a boundary value problem, as addressed in Section

4.2.3. The results of simulations are, in general, in a fairly good agreement with

the experimental data. Finally, Figure 4.3 shows a set of bifurcation points obtained

for the considered triaxial tests. It should be noted that the bifurcation criterion

is, in general, path-dependent, which is in contrast to the functional form (4.4) that
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Figure 4.2: Numerical simulations of triaxial compression tests at different
confinements; deviatoric and volume change characteristics (exptl. results of ref. [26]

are shown using the square symbols)

specifies the conditions at failure. It is evident though that the bifurcation is predicted

to occur when the stress state is in close proximity to the postulated failure criterion

(4.4). In that sense, the results of bifurcation analysis are quite consistent with the

experimental data.
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Figure 4.3: The peak strength envelope for the Lac du Bonnet granite

4.2.3 Description of hydromechanical behaviour in the post-

localized regime

In the presence of localization, the average mechanical properties within a domain

containing macrocracks are assessed by incorporating a constitutive law with embed-

ded discontinuity (CLED, cf. [35]). For this purpose, a referential volume ∆Ω is

considered, which includes the intact parts ∆Ω+ and ∆Ω− intercepted by a frac-

tured region with the surface area ∆Γd and the unit normal ni. In this case, the

discontinuous velocity field vi may be defined as a sum of two continuous functions v̂i

and v̄i combined with a Heaviside step function. By calculating the velocity gradient

and averaging it over the entire referential volume ∆Ω, the total strain rate may be

expressed as [21]

ϵ̇ij = ϵ̇
(1)
ij + χ(JviKnj)

s (4.13)

Here, ϵ̇
(1)
ij is the average strain rate in the intact material (viz. subscript (1)), JviK is

the velocity jump across the localized zone and χ is a length scale parameter whose

inverse χ−1 is defined as the ratio of the referential volume to the surface area of the

fractured region (i.e. χ−1 = ∆Ω/∆Γd).
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The localization law, i.e. the relation between the velocity jump JviK and the

macroscopic strain rate ϵ̇ij may be established by imposing the continuity of traction

across the localized region. Thus,

Ṫi = σ̇
(1)
ij nj ≃ σ̇ijnj ⇒ SijJvjK = Dijklϵ̇

(1)
kl nj (4.14)

where Ṫi is the traction vector, Sij is the tangential stiffness operator for the fractured

zone, and Dijkl is the fourth-order stiffness tensor which defines the properties in the

intact region. Combining the above equations and rearranging leads to the localization

law in the form

JviK = EipDpqjknq ϵ̇jk; Eij = (Sij + χDipqjnpnq)
−1 (4.15)

Given now the representation above, the macroscopic stress rate can be defined as

σ̇ij = D̄ijklϵ̇kl; D̄ijkl = Dijpq (δpkδql − χnpEqrDrsklns) (4.16)

Here, D̄ijkl is the equivalent tangential stiffness operator which depends on the prop-

erties of both constituents and the scale parameter χ, the latter defined at the finite

element level based on the orientation and location of the macrocrack.

As mentioned earlier, the operator Dijkl is calculated using the standard plastic-

ity procedure that incorporates the consistency condition for the yield surface (4.7)

together with the strain rate additivity postulate and a non-associated flow rule em-

ploying the potential function (4.9). The tangential stiffness operator for the fracture

zone, Sij, is also established here within the framework of elasto-plasticity. The yield

as well as the potential function are both defined in the local coordinate system (ti,
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ni, si) attached to the crack. A simple linear form consistent with Coulomb crite-

rion is employed, while the softening (degradation) effects are attributed to tangential

component of velocity discontinuity, i.e.

f = |τ |+m(κ)σ′
n − c = 0; Ψ = |τ |+ ησ′

n; κ =

∫ t

0

√
(tiJvpi K)2 + (siJvpi K))2 dt (4.17)

m(κ) = mr + (m0 −mr) exp (−ω1κ); c(κ) = c0 exp (−ω2κ)

Here (τ, σ′
n) are the shear and normal components of the surface traction, Jvpi K is the

plastic part of velocity jump, η is the dilatancy coefficient, m0 and mr denote the

initial and residual values of the friction coefficient, respectively, c0 is the cohesion

intercept, while ω’s control the rate of strength degradation. It should be noted that

for newly formed macrocracks, m0 and c0 are calculated at the bifurcation point by

imposing the condition of f = 0.

A conceptually similar averaging procedure may be employed to define the equiv-

alent hydraulic properties within the intact domain intercepted by a fracture. The

approach involves imposing a weak discontinuity in fluid pressure within the consid-

ered referential volume. By enforcing admissible constraints in the flow regime an

average hydraulic conductivity operator can be established, which again incorporates

the length scale parameter χ. The homogenized constitutive relation governing the

fluid flow within the referential volume adjacent to the localized region takes the form

[23]

wi =
1

ρfg
k̄ij(−p,j + ρfgj) (4.18)

k̄ij = ((1− χtD)k
(1)
iq + χtDk

(2)
ip Cpq)[δqj + χtD(Cqj − δqj)]

−1

Here wi is average superficial velocity of fluid flow, k
(1)
ij and k

(2)
ij are the hydraulic
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conductivity tensors in the intact and fractured regions, respectively, and tD is the

fracture thickness. In addition, Cij is an operator which defines the coefficients of the

hydraulic constraints, viz.

Cij =


ti

k
(2)
qi nq

si


−1 

tj

k
(1)
pj np

sj

 (4.19)

where ti and si are the unit vectors along the discontinuity surface.

It has to be noted that the conductivity tensor for the fractured region, k
(2)
ij , is

a diagonal operator in the local coordinate system of (ti, ni, si), whose tangential

components of k
(2)
ij ti and k

(2)
ij si are assumed to obey the cubic law [36], i.e. k

(2)
ij ti =

g
12ϑ
t2Dti and k

(2)
ij si =

g
12ϑ
t2Dsi (where ϑ is the fluid’s kinematic viscosity). At the same

time, the normal components of the conductivity operators in the intact and fractured

regions are assumed to be identical, i.e. k
(2)
ij ni = k

(1)
ij ni.

The constitutive relations (4.16) and (4.18) form the basis for defining the problem

of hydro-mechanical interaction in the presence of discontinuous fractures. The onset

of new macrocracks and their orientation is assessed through the bifurcation analysis

(4.12). The methodology is applicable to various types of rocks but is particularly

relevant to in-situ crystalline formations, which are known to contain multiple joints

and/or major sparse fracture zones.

4.2.4 CLED finite element formulation for CLED approach

The time interval Θ in Equations (4.1) and (4.2) is divided into a number of incre-

mental steps so that t = t(n) + ∆t, and the backward Euler scheme is used for the

temporal discretization of the rate of ui and p in the balance of mass expression (4.2).
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Therefore,

α(p− p(n)) + β(ui,i − u
(n)
i,i ) + (∆t/ρfg)(kij(−p,j + ρfgj)),i ≈ 0 in Ω ×Θ (4.20)

In order to provide the finite element implementation based on the calculus of vari-

ations, the spaces of admissible solutions (Lu̇ and Lṗ) and their variations (Tu̇ and

Tṗ) are defined as

Lu̇ = {u̇i | u̇i ∈ [C1(Ω)]dim, u̇i = u̇⋆i on ∂uΩ} (4.21)

Lṗ = {ṗ | ṗ ∈ [C1(Ω)], ṗ = ṗ⋆ on ∂pΩ}

Tu̇ = {δu̇i | δu̇i ∈ [C1(Ω)]dim, δu̇i = 0 on ∂uΩ}

Tṗ = {δṗ | δṗ ∈ [C1(Ω)], δṗ = 0 on ∂pΩ}

where C1 stands for the Sobolev space of order 1.

The mixed field (u − p) finite element formulation originates from weak forms of

the local balance equations. In this case, multiplying Equations (4.1) and (4.20) by

δu̇i and δṗ, integrating over the entire domain Ω, and applying the Gauss theorem

together with the Neumann boundary conditions (Equations (4.3)c and (4.3)d), leads

to the following weak statements

∫
Ω

[
δϵ̇ijσ

′
ij − β(δu̇i,i)p− ρ(δu̇i)gi

]
dΩ −

∫
∂tΩ

(δu̇i)T
⋆
i dΓ = 0 (4.22)∫

Ω

[
α(δṗ)p(n) + β(δṗ)u

(n)
i,i − α(δṗ)p− β(δṗ)ui,i

]
dΩ (4.23)

+

∫
Ω

[
− ∆t

ρfg
(δṗ,i)k̄ijp,j +

∆t
g
(δṗ,i)k̄ijgj

]
dΩ −

∫
∂qΩ

∆t(δṗ)q⋆ dΓ

−
∫
Ω

[
1
2G

(δṗ−Πδṗ)(p−Πp)− 1
2G

(δṗ−Πδṗ)(p(n) −Πp(n))
]
dΩ ≈ 0
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Here, δϵ̇ij = (δu̇i,j)
s and k̄ij is the equivalent hydraulic conductivity tensor as defined

by Equation (4.18)b. Apparently, in the absence of discontinuities k̄ij reduces to k
(1)
ij ,

i.e the conductivity in the intact region. It is noted that the last integral in Equation

(4.23) is an additional term augmenting the balance of mass in order to stabilize

the FE formulation. This expression is based on the Polynomial-Pressure-Projection

(PPP) technique developed in ref. [37]. The latter is used to avoid the loss of stability

when equal-order interpolation functions are employed in the analysis of porous media

that have a very low compressibility and/or permeability (such as crystalline rocks).

In Equation (4.23), G is the shear modulus, and Π denotes a projection operator in

the PPP stabilization technique. The definition of this operator and the derivation of

the mathematical expressions used in the PPP technique are given in ref. [37].

In Equations (4.22) and (4.23), σ′
ij, ui, p, and k̄ij can be written as

σ′
ij = σ

′(i)
ij + D̄ijklϵ̇kldt (4.24)

ui = u
(i)
i + u̇idt

p = p(i) + ṗdt

k̄ij = k̄
(i)
ij + ˙̄kijdt

where σ′
ij := σ

′(i+1)
ij , ui := u

(i+1)
i , p := p(i+1), and k̄ij := k̄

(i+1)
ij , and the equivalent

stiffness operator D̄ijkl is defined in Equation (4.16). Furthermore, the change in

equivalent hydraulic conductivity during the ongoing deformation may be expressed

in the form [24],

˙̄kij = ζijklϵ̇kldt (4.25)

where ζijkl is a minor symmetric fourth-order tensor (ζijkl = ζjikl = ζjilk = ζijlk) which
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is defined as [24]

ζijkl =
∂k̄ij
∂tD

nm (Smn + χnoDomnpnp)
−1 nqDnqkl (4.26)

Thus, it is evident that the change in the deformation field affects the fluid transmis-

sivity which, in turn, influences the velocity of flow and the generation of pore-fluid

pressure. Substituting now Equation (4.24) into Equations (4.22) and (4.23), the

following statements are obtained

∫
Ω

[
δϵ̇ij D̄ijkl δϵ̇kldt+ δϵ̇ijσ

′(i)
ij

]
dΩ (4.27)

−
∫
Ω

[
βδu̇i,iṗdt+ βδu̇i,ip

(i) + ρδu̇igi

]
dΩ −

∫
∂tΩ

δu̇iT
⋆
i dΓ = 0∫

Ω

[
αδṗ(p(n) − p(i)) + βδṗ(u

(n)
i,i − u

(i)
i,i )− αδṗṗdt− βδṗu̇i,idt

]
dΩ (4.28)

+

∫
Ω

[
− ∆t

ρfg
(δṗ,ip

(i)
,j + δṗ,jp

(i)
,i )ζijklδϵ̇kldt− ∆t

ρfg
δṗ,ik̄

(i)
ij p

(i)
,j

]
dΩ

+

∫
Ω

[
− ∆t

ρfg
δṗ,ik̄

(i)
ij ṗ,jdt+

∆t
ρfg

(δṗ,igj + δṗ,jgi)ζijklδϵ̇kldt
]
dΩ

+

∫
Ω

∆t
g
δṗ,ik̄

(i)
ij gj dΩ −

∫
∂qΩ

∆tδṗq⋆ dΓ

−
∫
Ω

[
1
2G

(δṗ−Πδṗ)(ṗ−Πṗ)dt+ 1
2G

(δṗ−Πδṗ)(p(i) −Πp(i))
]
dΩ

+

∫
Ω

1
2G

(δṗ−Πδṗ)(p(n) −Πp(n)) dΩ ≈ 0

According to the calculus of variations, the weak forms of the governing equations

require finding u̇i ∈ Lu̇ and ṗ ∈ Lṗ such that

δFu̇ = δ

(∫
Ω

[
1
2
δϵ̇ij D̄ijkl δϵ̇kldt+ δϵ̇ijσ

′(i)
ij

]
dΩ (4.29)

−
∫
Ω

[
βu̇i,iṗdt+ βu̇i,ip

(i) + ρu̇igi

]
dΩ −

∫
∂tΩ

u̇iT
⋆
i dΓ

)
= 0
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δFṗ = δ

(∫
Ω

[
αṗ(p(n) − p(i)) + βṗ(u

(n)
i,i − u

(i)
i,i )− α

2
ṗṗdt− βṗu̇i,idt

]
dΩ (4.30)

+

∫
Ω

[
− ∆t

ρfg
(ṗ,ip

(i)
,j + ṗ,jp

(i)
,i )ζijklδϵ̇kldt− ∆t

ρfg
ṗ,ik̄

(i)
ij p

(i)
,j

]
dΩ

+

∫
Ω

[
− ∆t

2ρfg
ṗ,ik̄

(i)
ij ṗ,jdt+

∆t
ρfg

(ṗ,igj + ṗ,jgi)ζijklδϵ̇kldt
]
dΩ

+

∫
Ω

∆t
g
ṗ,ik̄

(i)
ij gj dΩ −

∫
∂qΩ

∆tṗq⋆ dΓ

−
∫
Ω

[
1
4G

(ṗ−Πṗ)(ṗ−Πṗ)dt+ 1
2G

(ṗ−Πṗ)(p(i) −Πp(i))
]
dΩ

+

∫
Ω

1
2G

(ṗ−Πṗ)(p(n) −Πp(n)) dΩ

)
≈ 0

Equations (4.27) and (4.28) can be transformed into a discrete linear system of equa-

tions by spatial discretization of the domain Ω, i.e. by employing non-overlapping

finite elements for partitioning this domain. In this case, the standard Galerkin ap-

proximation [38] is typically used which, in Voigt (matrix) notation, takes the form

{u} = [Nu]{ũ}; {du} = [Nu]{ ˙̃u}dt = [Nu]{d̃u} (4.31)

{p} = {Np}{p̃}; {dp} = {Np}{ ˙̃p}dt = {Np}{d̃p}

where {ũ}, {p̃}, {d̃u}, and {d̃p} denote the nodal values of the respective variables,

while [Nu] and {Np} are suitable interpolation (shape) functions. In the context

of Newton-Raphson scheme, for t : t(n) → t(n) + ∆t the following system of linear

algebraic equations at iteration (i) is obtained by substituting Equation (4.31) into

Equations (4.27) and (4.28)

K L

M N


(i)d̃u

d̃p

 =

R1

R2


(i)

;

ũ

p̃


(i+1)

=

ũ

p̃


(i)

+

d̃u

d̃p

 (4.32)
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where

R1 =

∫
∂tΩ

[Nu]
T{T ⋆} dΓ +

∫
Ω

ρ[Nu]
T{g} dΩ −

∫
Ω

[LNu]
T{σ′}(i) dΩ (4.33)

+

[∫
Ω

β[LNu]
T{m}{Np} dΩ

]
{p̃}(i)

R2 =

∫
∂qΩ

∆t{Np}T q⋆ dΓ +

[ ∫
Ω

β{Np}T{m}T [LNu] dΩ

] (
{ũ}(i) − {ũ}(n)

)
+

[ ∫
Ω

α{Np}T{Np} dΩ +

∫
Ω

1
2G

({Np}T −Π{Np}T )({Np} −Π{Np}) dΩ
]

(
{p̃}(i) − {p̃}(n)

)
+

[ ∫
Ω

∆t
ρfg

[∇Np]
T [k̄](i)[∇Np] dΩ

]
{p̃}(i)

−
∫
Ω

∆t
g
[∇Np]

T [k̄](i){g} dΩ

K =

∫
Ω

[LNu]
T [D̄][LNu] dΩ

L = −
∫
Ω

β[LNu]
T{m}{Np} dΩ

M = −
∫
Ω

β{Np}T{m}T [LNu] dΩ −
∫
Ω

∆t
ρfg

[Ξ∇p(i)][LNu]
T [Z](i)[LNu] dΩ

+

∫
Ω

∆t
g
[Ξg ][LNu]

T [Z](i)[LNu] dΩ

N = −
∫
Ω

α{Np}T{Np} dΩ −
∫
Ω

∆t
ρfg

[∇Np]
T [k̄](i)[∇Np] dΩ

−
∫
Ω

1
2G

({Np}T −Π{Np}T )({Np} −Π{Np}) dΩ

In the expressions above, [L] is a matrix of the gradient operator specifying the

kinematic strain-displacement relations, [∇Np] is a matrix which defines the relation

between the pressure gradient and the nodal values of fluid pressure, {m}T equals

{1, 1, 1, 0, 0, 0}. Moreover, Ξ is an operator which, when applied to an arbitrary

column vector v, generates a diagonal matrix whose elements are vT .

It should be noted that numerical integration in Equation (4.33) is carried out
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using Gaussian quadrature methods. The governing constitutive relations, viz. Equa-

tion (4.16), which incorporate a plasticity formulation, are integrated using an implicit

scheme incorporating the cutting-plane algorithm for return-mapping (cf. [39]). The

operators [Z] and [k̄], as well as the fracture thickness obtained at the iteration (i),

are all updated as

[Z](i) = { ∂k̄
∂tD

}(i−1){n}T
[
[S](i) + χ[n]T [D](i)[n]

]−1

[n]T [D](i) (4.34)

{k̄}(i) = {k̄}(i−1) + [Z](i){dϵ}

t
(i)
D = t

(i−1)
D + {n}T

[
[S](i) + χ[n]T [D](i)[n]

]−1

[n]T [D](i){dϵ}

Here {k̄} and {dϵ} are the vectors representing the hydraulic conductivity and the

strain increment, respectively, while [Z] is a 6 × 6 matrix (for a 3D configuration).

The components of { ∂k̄
∂tD

} appearing in the expression for [Z] are explicitly defined

in ref. [24].

4.3 Numerical examples

The numerical analysis presented here deals with uniaxial plane strain compression

of sparsely fractured dry and fully saturated samples of Lac du Bonnet granite. The

simulations take into account the pre-existing fractures and the onset and propagation

of new macrockraks, as well as the evolution of localization-induced changes in hy-

draulic conductivity. The analysis has been carried out using the formulation outlined

in Section 4.2.4. The finite element mesh incorporated bilinear quadrilateral elements

for both the displacement and pressure fields. The finite element code, including the

component for visualization of the results, was written in MATLAB R2020b.

The mechanical properties of intact Lac du Bonnet granite have been described
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using the plasticity framework provided in Section 4.2.2. The onset of localization was

considered as a bifurcation problem (cf. [32,34]) and in the post-localization regime,

the CLED formulation, viz. Section 4.2.3, was employed. The numerical simulations

discussed here were completed using the set of material parameters for intact Lac du

Bonnet granite that were identified earlier (cf. Section 4.2.2). For convenience, these

parameters are listed in Table 4.1. For the fracture zone, the following mechanical

properties have been assigned: m0 = 0.8, mr = 0.6m0, c0 = 0.01 MPa, ω1 = ω2 =

0.01 mm−1.

Table 4.1: Mechanical properties of the intact Lac du Bonnet granite

Parameter Value Unit
E 60 GPa
ν 0.14 -
f0 1 MPa
c1 0.35 -
c2 1.64E-4 -
c3 7.9 -
a 0.73 -
B 1.12E-4 -
b0 0.8 -

Figure 4.4: Sample geometry and the boundary conditions. The length of inclined
fracture: (a) L = 462 mm; (b) L = 439 mm; (c) L = 300 mm; (d) L = 254 mm
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Figure 4.5: Finite element discretization (a) Interface elements; (b) CLED

4.3.1 Plane strain compression in the presence of a dominant
fracture

The first example provided here involves simulations of a plane-strain uniaxial com-

pression test. The analyzed samples had the dimension of 20 cm×60 cm and contained

a pre-existing fracture of different length and the same orientation. All simulations

were conducted under displacement-controlled conditions. The geometry of the prob-

lem and boundary conditions are shown in Figure 4.4. One of the objectives of this

analysis was to validate the CLED approach against that employing zero-thickness

interface elements (IE). The latter study incorporated the formulation outlined in refs.

[13,14] was conducted for the case of fully developed fracture intercepting the vertical

boundaries (cf. Figure 4.4a). Note that all the remaining cases, viz. Figs. 4.4b-d,

involve propagation of the pre-existing crack prior to reaching the ultimate load. Such

a scenario cannot be efficiently modelled within the IE formulation, so that this part

of analysis was conducted based only on the CLED approach. The IE framework is

described in Appendix A (Section 4.6) using the format that is consistent with that

employed for CLED. The finite element discretization, for both the CLED and IE

methodologies, is shown in Figure 4.5. In the former case, a simple structured mesh
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was employed incorporating 1,200 elements. In this case, for the elements containing

the fracture, the length scale parameter χ, Equation (4.13), was assessed based on its

location and orientation within the element (cf. Figure 4.5b). For the IE approach, a

fine unstructured mesh with 2,588 elements was used (cf. Figure 4.5a).

Figure 4.6: Crack propagation and the deformation pattern: (a) CLED, L = 462
mm; (b) IE, L = 462 mm; (c) CLED, L = 300 mm; (d) CLED, L = 254 mm

The main results of numerical simulations are shown in Figures 4.6-4.9. The first

part of analysis involved examining the response of dry samples. Figure 4.6 shows the

fracture pattern and the deformed mesh at the ultimate load, while Figure 4.7 presents

the obtained load-displacement characteristics. The results correspond to η = m in

Equation (4.17), i.e. an associated flow rule, which leads to a dilative behaviour within

the fracture zone. It is evident that for the fully developed pre-existing crack (i.e. L =

462 mm), the solutions for IE and CLED are virtually identical in terms of assessment

of ultimate load as well as the deformation pattern. For shorter initial cracks (Figures

109



Ph.D. Thesis - A.A. Jameei McMaster - Civil Engineering

Figure 4.7: Vertical and horizontal deformation (mm) versus axial force (kN)

4.4b-d), further propagation takes place as the deformation progresses. In this case,

the strength significantly increases with the decrease in the length of pre-existing

fracture.

In the second part of this study, an undrained analysis for the same set of sample

geometries was conducted. The samples were assumed to be fully saturated, however

the external boundaries were considered as impervious, so that the outward drainage

was prevented. The simulations were carried out assuming that the hydraulic conduc-

tivity of the intact material was k
(1)
ij = 1×10−13δij (m/s), the initial fracture aperture

was tD = 0.1 mm, while the Biot coefficient and the parameter α, viz. Equation (4.2),

were equal to β = 0.3, and α = 0.01 GPa−1. The load-displacement characteristics

corresponding to different fracture lengths are provided in Figure 4.8, while Figure

4.9 shows the distribution of fluid pressure at the end of analysis. The simulations

employed again an associated flow rule, i.e. η = m in Equation (4.17), which led to a

generation of significant negative pore pressure within the fracture zone. As a result

of this, the mechanical load-displacement curves remained stable, with no indication

of the sample reaching the ultimate strength. This is consistent with the existing
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experimental evidence (cf. [40]) and indicates that in this case the most likely source

of sample failure is the cavitation. The latter is associated with formation of small

vapour-filled cavities in the liquid resulting in partial saturation that may trigger the

loss of mechanical stability.

Figure 4.8: Undrained analysis: vertical and horizontal deformation (mm) versus
axial force (kN)

Figure 4.9: Pore-fluid distribution (MPa) in undrained samples with different
fracture lengths: (a) L=254 mm; (b) L=300 mm; (c) L = 439 mm; (d) L = 462 mm
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4.3.2 Plane strain compression of sparsely fractured samples
of Lac du Bonnet granite

This study involved simulation of series of plane-strain uniaxial compression tests

conducted on samples of Lac du Bonnet granite containing a set of sparsely distributed

fractures. The first part of analysis was focused on both dry and undrained conditions.

The undrained tests involved again fully saturated samples subjected to axial load

under the constraint of zero flux at the outer boundaries. In this case, the effect of

dilatancy has been studied by considering both associated (η = m) and non-associated

flow rules for the fracture zone. For dry samples, the displacement as well as the load-

controlled simulations were conducted, and the results compared. The geometry of the

problem and the finite element mesh, which incorporated 1,200 bilinear quadrilateral

elements, are shown in Figure 4.10. Once again, the inception of new macrocracks,

which lead to coalescence of the initial set of fractures, was detected by the bifurcation

analysis.

Figure 4.10: (a) Geometry and (b) finite element mesh for a sample with a sparse
discrete fracture network

Figure 4.11a shows the load-displacement curves obtained for both the dry sample
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and the undrained conditions. For dry sample, the prediction of ultimate strength is

virtually identical for the load and displacement-controlled scenarios. It is evident,

however, that in the latter case, the simulations could continue into the post-peak

regime associated with a descending branch. In case of undrained deformation, the

mechanical characteristics are similar to those obtained for a single dominant crack

(viz. Figure 4.8), i.e. the response is stable with no indication of the sample reaching

the ultimate load. The stable response is again the result of a build up of nega-

tive excess of fluid pressure within the fractures undergoing irreversible deformation.

The simulations were conducted here using an associated flow rule as well as a non-

associated one with the angle of dilatancy ψ = 0.1ϕ, where ϕ is the friction angle.

The former case (i.e. associated flow) resulted in a higher stiffness which may be

attributed to more pronounced plastic dilatancy within the active fracture zones.

Figure 4.11: (a) Load-vertical displacement curves and (b) evolution of the second
rate of internal work normalized by ẅ0 =

∫
Ω
De

ijklϵ̇ij ϵ̇kl dΩ

It should be noted that the onset of physical instability in a boundary-value prob-

lem may be assessed by examining the second rate of internal work (cf. [41]). The

stability of the system is associated with a positive value, i.e. ẅ > 0, while the onset
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of instability corresponds to ẅ = 0. In a saturated porous medium, the rate of in-

ternal work, under a homogeneous distribution of porosity and fluid density, may be

expressed as [23]

ρė = σ′
ij ϵ̇ij + αṗp (4.35)

where e denotes the stored internal energy density and α is a constant appearing in

the balance equation (4.2). Taking the time derivative of Equation (4.35) under a

slow process (i.e. ϵ̈ij = 0, p̈ = 0) and integrating over the entire domain gives

ẅ =

∫
Ω

ρë dΩ =

∫
Ω

σ̇′
ij ϵ̇ij dΩ +

∫
Ω

αṗ2 dΩ (4.36)

In Figure 4.11b, the load-displacement curves are supplemented by the evolution of

the normalized value of the second rate of work. It is seen that for a dry sample, this

variable gradually decreases reaching zero as the ultimate load is attained. On the

other hand, for undrained tests the second rate of internal work approaches a positive

value, which is indicative of a stable response. In general, the tracing of evolution of

ẅ is particularly useful in a class of problems involving a spontaneous loss of stability,

like in the case of a load-controlled scheme.

Figure 4.12 shows the fracture pattern and the distribution of fluid pressure at the

end of undrained analysis. It is seen that the propagation of fractures, as indicated in

red colour, is quite limited at this stage. For the fluid pressure, the results for asso-

ciated flow rule are compared here with those corresponding to ψ = 0.1ϕ. Evidently,

the build-up of pore pressure is markedly different. While for the associated flow

rule a significant negative excess of pore pressure develops, for ψ = 0.1ϕ the average

values remain in the positive range. Once again, this stems from the difference in the

evolution of volumetric strain within the fracture zones, as implied by the type of flow

rule.
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Figure 4.12: (a) Fracture pattern and the distribution of fluid pressure at the end of
undrained stage: (b) associated flow rule; (c) non-associated flow rule

The undrained analysis was terminated at the stage when the external load was

15% above the ultimate strength of dry material. At this point, a second stage of

the test was simulated in which the drainage out of vertical boundaries of the sample

was permitted under a sustained load. This is similar to a consolidation test in

which the settlement is triggered by the dissipation of the excess of pore pressure.

Figure 4.13 shows the fracture pattern and the distribution of fluid pressure within

the domain. During this stage of the test, new macrocracks form coalescing with

the pre-existing fractures and the excess of pore pressure progressively reduces (cf.

Figure 4.12). This is the case for both associated and non-associated flow rule. As

the pore pressure dissipates the surface settlement takes place, as indicated in Figure

4.14. The settlement is significant in case of associated flow, while for non-associated

case, it remains at negligibly low level. Soon after the drainage initiates, a rapid

increase in the rate of settlement occurs, which is indicative of a spontaneous loss of

stability. The latter stems from the fact that the intensity of sustained load is above

the ultimate value corresponding to drained conditions. Note again that the loss of
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Figure 4.13: Fracture pattern(left) and the distribution of fluid pressure at the end
of consolidation stage: (a) associated flow rule; (b) non-associated flow rule

stability, for both associated and non-associated flow rule, occurs at quite early stages

of the pore-pressure dissipation process.

Figure 4.14: Evolution of settlement (mm) during the drainage process at load
intensity 15% above the ultimate strength of the dry sample

Finally, Figures 4.15 and 4.16 show similar results for the case when drainage oc-

curs at the load intensity which is 15% below that corresponding to ultimate strength

of the dry sample. In this case, the settlement increases with a progressively de-

creasing rate. The process continues until stationary conditions are reached. Note
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that at this stage of analysis the excess of pore pressure is close to zero. This is

evidenced in Figure 4.16 that shows the corresponding pore pressure evolution during

the consolidation stage.

Figure 4.15: Time-history of settlement (mm) during the drainage process at load
intensity 15% below the ultimate strength of the dry sample

4.4 Final remarks

In this paper, a finite element formulation was developed which incorporates a cou-

pling between the equivalent hydraulic conductivity and the continuing deformation.

Evidently, the latter affects the fracture aperture which, in turn, influences the gen-

eration of fluid pressure. The approach employed a constitutive law with embedded

discontinuity (CLED) for assessing both the hydraulic as well as mechanical prop-

erties of the material. The framework was implemented in an FE code developed

in MATLAB 2020b and applied to a numerical study involving axial plane strain

compression of samples of Lac du Bonnet granite containing discontinuities. The me-

chanical properties of intact rock were described using a plasticity formulation with

deviatoric hardening. The analysis examined the crack propagation and coalescence

in both dry and saturated rock.
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Figure 4.16: Pore-fluid pressure distribution (MPa) at the end of (a) undrained and
(b) consolidation stage

The approach was first validated on some benchmark problems that involved the

presence of a dominant fracture. The results of CLED approach were compared with

those generated using a very fine mesh incorporating interface elements (IE). It was

demonstrated that CLED formulation is computationally very efficient and quite ac-

curate in relation to IE approach. It also allows for tracing the crack propagation,

which cannot be efficiently done using interface elements. The numerical study in-

dicated that for the dry material the results, particularly in terms of ultimate load,

are very sensitive to the length of the dominant pre-existing crack. On the other

hand, in case of undrained conditions the response is affected by the flow rule, which

impacts the rate of generation of the excess pore pressure. In this case, the load-

deformation characteristic remains stable and the most likely source of sample failure

is the cavitation.

The analysis employing a dominant crack was supplemented by a comprehensive

numerical study involving coupled HM simulations for the case of sparsely distributed

fractures. Here, the notion of the loss of stability in a saturated porous medium was
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addressed by examining the second rate of internal work. The analysis demonstrated

that the propagation of macrocracks and their subsequent coalescence is more pro-

nounced under drained conditions. For undrained deformation, the results were again

sensitive to the type of flow rule, indicating a significant build-up of negative excess of

pore pressures in case of an associated flow. The simulations involving drainage under

a sustained load showed a progressive increase in settlement triggered by dissipation

of the pore pressure gradients. When the load intensity was above the ultimate value

corresponding to dry conditions, the lateral drainage resulted in a rapid increase in the

rate of settlement, which is indicative of a spontaneous loss of stability. In general, the

numerical studies conducted here clearly demonstrate the predictive abilities of the

CLED approach in assessing both the flow properties and the coupled HM response

of crystalline rocks in the presence of both pre-existing and propagating fractures.
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4.6 Appendix A: IE formulation

Refering to Figure 4.17, in a dry region containing a discrete fracture, the surface

boundaries (∂Ω) are defined as

Ø = ∂uΩ ∩ ∂tΩ = ∂uΩ ∩ ∂dtΩ = ∂tΩ ∩ ∂dtΩ; ∂Ω = ∂uΩ ∪̄ ∂tΩ ∪̄ ∂dtΩ (4.37)

Figure 4.17: External and internal boundary surfaces of a dry domain

Restricting the considerations to static regime, the balance of linear momentum is

written as

σij,j + ρgi = 0 in Ω (4.38)

subject to

ui = u⋆i on ∂uΩ (4.39)

σijñj = T ⋆
i on ∂tΩ

σ+
ijn

+
j = T+

i on ∂dtΩ

σ−
ijn

−
j = T−

i on ∂dtΩ

The space of admissible solution (Lu̇) and its variation (Tu̇) are defined in a way

similar to that in Equation (4.21). In this case, multiplying Equations (4.38) by δu̇i,

integrating over the entire domain Ω, and applying the Gauss theorem together with
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the Neumann boundary conditions (Equations (4.39)), leads to the following weak

statement∫
Ω

[
δϵ̇ijσij − ρ(δu̇i)gi

]
dΩ −

∫
∂tΩ

(δu̇i)T
⋆
i dΓ −

∫
∂d
t Ω

(δu̇i)
+T+

i dΓ (4.40)

−
∫
∂d
t Ω

(δu̇i)
−T−

i dΓ = 0

where T−
i = −T+

i because of the balance of linear momentum. Then,∫
Ω

[
δϵ̇ijσij − ρ(δu̇i)gi

]
dΩ −

∫
∂tΩ

(δu̇i)T
⋆
i dΓ +

∫
∂d
t Ω

Jδu̇iKTD
i dΓ = 0 (4.41)

where TD
i is the traction at the interface (T+

i := TD
i ) and Jδu̇iK = (δu̇i)

− − (δu̇i)
+

is the jump in the velocity variation. The operators σij, T
D
i , and ui appearing in

Equation (4.41), can be expressed as

σij = σ
(i)
ij +Dijklϵ̇kldt (4.42)

TD
i = T

D(i)
i + ṪD

i dt

ui = u
(i)
i + u̇idt

where σij := σ
(i+1)
ij , TD

i := T
D(i+1)
i , and ui := u

(i+1)
i . Furthermore, by analogy to

Equation (4.14), ṪD
i may be defined as

ṪD
i = SijJu̇jK (4.43)

where Ju̇jK = JvjK represents the velocity jump, and Sij denotes the tangential stiff-

ness of the macrocracks. Substituting now Equation (4.42) into Equation (4.41), the

following statement is obtained
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∫
Ω

[
δϵ̇ij Dijkl δϵ̇kldt+ δϵ̇ijσ

(i)
ij

]
dΩ (4.44)

+

∫
∂d
t Ω

[
Jδu̇iKSijJu̇jKdt+ Jδu̇iKT

D(i)
i

]
dΓ −

∫
Ω

ρδu̇igi dΩ −
∫
∂tΩ

δu̇iT
⋆
i dΓ = 0

According to the calculus of variations, the weak form of the Equation (4.38) requires

finding u̇i ∈ Lu̇ such that

δFu̇ = δ

(∫
Ω

[
1
2
δϵ̇ij D̄ijkl δϵ̇kldt+ δϵ̇ijσ

′(i)
ij

]
dΩ (4.45)

+

∫
∂d
t Ω

[
1
2
Ju̇iKSijJu̇jKdt+ Ju̇iKT

D(i)
i

]
dΓ −

∫
Ω

ρu̇igi dΩ −
∫
∂tΩ

u̇iT
⋆
i dΓ

)
= 0

Equation (4.44) can be transformed into a discrete linear system of equations by

spatial discretization of the domain Ω, i.e. by using non-overlapping finite elements for

partitioning the domain Ω. Non-overlapping finite elements conformal to the fracture

surfaces are used when the interfaces are at the edge of two adjacent elements [13]. In

this case, the standard Galerkin approximation [13,42] is typically employed, which

takes the form

{u} = [Nu]{ũ}; {du} = [Nu]{ ˙̃u}dt = [Nu]{d̃u} (4.46)

{JuK} = [B]{ũ}; {JduK} = [B]{ ˙̃u}dt = [B]{d̃u}

where {ũ} and {d̃u} denote the nodal values of the respective variables, while [Nu] is

an interpolation (shape) function, and [B] denotes a matrix relating the displacement

jump to the nodal displacement. In the context of Newton-Raphson scheme, for

t : t(n) → t(n) +∆t the following system of linear algebraic equations at iteration (i)

is obtained by substituting Equation (4.46) into Equation (4.44)

[
K
](i){

d̃u
}
=
{
RG

}(i)

;
{
ũ
}(i+1)

=
{
ũ
}(i)

+
{
d̃u
}

(4.47)
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where

{
RG

}(i)

= −
∫
∂d
t Ω

[B]T{TD}(i) dΓ +

∫
∂tΩ

[Nu]
T{T ⋆} dΓ (4.48)

+

∫
Ω

ρ[Nu]
T{g} dΩ −

∫
Ω

[LNu]
T{σ′}(i) dΩ[

K
](i)

=

∫
Ω

[LNu]
T [D][LNu] dΩ +

∫
∂d
t Ω

[B]T [S](i)[B] dΓ

In the expressions above, [L] is a matrix of the gradient operator specifying the kine-

matic strain-displacement relations. It should be noted that numerical integration

in Equation (4.48) was carried out using Gaussian quadrature methods. The gov-

erning constitutive relations, viz. Equation (4.42), which incorporate a plasticity

formulation, were integrated using an implicit scheme incorporating the cutting-plane

algorithm for return-mapping (cf. [39]).
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Chapter 5

Conclusions

The CLED methodology developed in this thesis for dealing with discontinuities in

saturated porous media is computationally efficient as it does not require the use

of any additional degrees of freedom. The CLED approach enables the tracing of

propagating cracks and also ensures that the solution does not display a pathological

sensitivity to FE discretization.

In Chapter 2, an extended version of CLED approach has been developed ap-

plicable to coupled hydromechanical analysis of saturated porous media containing

pre-existing and newly developing fractures. An equivalent hydraulic conductivity

tensor was introduced, and it was mathematically proved that this tensor is symmet-

ric. Implementation of this approach in the context of a finite element analysis was

then provided. The solution was compared to the standard FE analysis that employed

a very fine mesh together with interface elements (IE). It was demonstrated that the

developed methodology is accurate enough to study the response involving the ex-

istence of discontinuities in the steady-state flow as well as consolidation problems.

It was also shown that this approach is numerically efficient, and a relatively coarse

mesh can be used to explicitly model the fractures. In addition, no special integra-

tion technique, other than the commonly known Gaussian quadrature, is required to

calculate the stiffness operators.
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In Chapter 3, the applicability of the proposed CLED approach to modeling ten-

sion cracks in the saturated rock-type materials was examined. An evolution law was

introduced to describe the change in the equivalent hydraulic conductivity with con-

tinuing deformation in the localized regions. In order to verify the predictive abilities

of this framework, the simulations of an axial 3D splitting test carried out on a satu-

rated cylindrical sample were performed. The results showed an abrupt transition to

brittle response after reaching the ultimate load, which was accompanied by the devel-

opment of excessive lateral deformation. In the softening regime, an intense outflow

flux was captured in the proximity of the localized regions triggered by the increase

in permeability. In addition, in the softening range, a rapid dissipation of the excess

pore-fluid pressure took place due to the volume expansion of the solid matrix along

with the evolving permeability in the cracked regions. The results, in terms of the

assessment of ultimate load, the fracture pattern, and the fluid transmissivity were

in agreement with the experimental data, thus providing proof of concept in terms

of the feasibility of the proposed approach. It should be noted that in the numerical

simulations, no special algorithm for the discrete crack tracing was employed and, as

a result, the cracks appeared as smeared over a narrow region.

The discrete crack tracing was studied in Chapter 4 which dealt with cracks prop-

agation and coalescence in saturated crystalline rocks. A comprehensive CLED-FE

formulation was developed which considered the change in the crack aperture during

the ongoing localized damage in the weak statement of the problem. The numeri-

cal simulations in this chapter included uniaxial compression tests carried out on an

elastoplastic Lac du Bonnet granite. Both single and multiple fractures were con-

sidered and the analysis included a dry sample, undrained deformation as well as

the conditions of a progressive drainage. The results of the simulations were com-

pared with those generated using a very fine mesh incorporating interface elements
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(IE). It was demonstrated that the developed CLED-FE formulation is computation-

ally efficient and accurate in relation to the IE approach. Moreover, it enables the

tracing of a crack propagation, which cannot be efficiently done using the interface

elements. It was observed that the response under undrained conditions was signif-

icantly affected by the type of flow rule, which impacted the rate of generation of

the excess pore pressure. In this case, the load-deformation characteristic remained

stable, and the most likely source of sample failure was cavitation. The analyses

demonstrated that propagation of the macrocracks and their subsequent coalescence

was more pronounced under drained rather than undrained regime. The simulations

involving drainage under a sustained load showed a progressive increase in settlement

triggered by dissipation of the pore pressure gradients. When the load intensity was

above the ultimate value corresponding to the dry conditions, the drainage resulted

in a rapid increase in the rate of settlement, which was indicative of a spontaneous

loss of stability. In general, the numerical studies clearly demonstrated the predictive

abilities of the CLED approach in assessing both the flow properties and the coupled

HM response of crystalline rocks in the presence of both pre-existing and propagating

fractures.

The approach proposed in this thesis can be used to model the response in the

presence of discrete fracture networks and to study problems in which the flow char-

acteristics at both meso and macroscales are of importance, e.g., flow around the deep

geological repositories in fractured crystalline/sedimentary rocks. It should be noted

that the numerical examples provided in this work involved smeared and discrete

damage propagation in the 3D and 2D configurations, respectively. The 3D discrete

damage propagation in saturated porous media can also be addressed by incorporating

advanced tracing algorithms such as the level set methods. The current CLED frame-

work can be enhanced to cover the unsaturated conditions, especially in cases where
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fluid cavitation takes place during continuing deformation. In addition, the current

CLED formulation can be extended to deal with thermo-hydro-mechanical problems

involving the permafrost phenomena in the porous media, where the thawing-freezing

cycles affect the propagation of damage in the frozen rocks. The formulation can also

be extended to model the hydraulic fracturing. In this case, the traction exerted by the

pressurized fluid to the surrounding porous matrix, and the fluid mass transfer must

be considered in the extension of the present framework. The effect of the fracture

roughness on the hydraulic conductivity can also be considered. Finally, problems

such as calcification of salts in the fractured porous media during the transport of

saline fluids and sealing of the fractures, can also be studied by using an enhanced

form of the current approach.
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