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Lay Abstract
In parameter estimation, we are given a random sample generated from an unknown

parameterized distribution, and we are supposed to estimate the parameters of that
distribution. In many cases, this random sample may consist of sensitive information
belonging to individuals. This sensitive information could be leaked by parameter es-
timation results. Therefore, we have to estimate the parameters of that distribution
privately.

In this thesis, we study parameter estimation under the assumption that the data
is generated from Gaussian Mixture Models. We try to develop a sample-efficient and
computationally efficient algorithm to estimate the distribution parameters privately.
Moreover, to insure the privacy of the information, we consider approaches that maintain
privacy.
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Abstract
We develop a technique for privately estimating the parameters of a mixture distri-

bution by reducing the problem to its non-private counterpart. This technique allows us
to privatize existing non-private algorithms in a BlackBox manner while only incurring
a small overhead in sample complexity and running time.

As the main application of our framework, we develop an algorithm for privately
learning mixtures of Gaussians using the non-private algorithm of Moitra and Valiant
[MV10] as a BlackBox and incurs only a polynomial time overhead in the sample com-
plexity and computational complexity. As a result, this gives the first sample complexity
upper bound and the first polynomial time algorithm in d for learning the parameters of
the Gaussian Mixture Models privately without requiring any boundedness assumptions
on the parameters.

To prove the results we introduced Private Populous Estimator (PPE) which is a
generalized version of the one used in [AL22] to achieve (ϵ, δ)-differential privacy. We
also develop a new masking mechanism for a single Gaussian component. Then we
introduce a general recipe to turn a masking mechanism for a component into a masking
mechanism for mixtures.
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Chapter 1

Introduction

The main concern for distribution learning is to design an algorithm. If we give this
algorithm an independent and identically distributed samples generated from an un-
known distribution parameterized by Y , it will output an estimation of the parameters
Ỹ that is “close” to Y . One drawback is that this estimation could reveal sensitive infor-
mation which belongs to the given samples. Therefore, differential private distribution
learning algorithms are necessary.

To guarantee privacy for such estimation tasks, a widely accepted framework called
differential privacy was introduced by Dwork, McSherry, Nissim, and Smith [DMNS06].
It can hide the contribution of individual data points in the output (of the estimation).
Intuitively, the outputs of a differentially private algorithm on two data sets that differ
by only one data point have to be “statistically indistinguishable”. Compared to non-
private distribution learning, differentially private distribution learning needs a larger
amount of data to hide each data point’s contribution. Differentially private distribution
learning algorithms are evaluated based on the number of samples needed to guarantee
a small error which is defined by sample complexity and based on the running time of
the algorithm which is called computational complexity.

One of the most famous and widely studied statistical models is the Gaussian Mixture
Model. It is used in various applications mainly in social sciences. The problem of learn-
ing a Gaussian mixture model can be either density estimation or parameter estimation.
In density estimation, given a sequence of i.i.d. samples from a density f , the goal is to
output a density f̃ as an estimate of f . On the other hand, estimating the underlying dis-
tribution parameters is called parameter estimation. For instance, we can represent the
Gaussian Mixture Model by a set of k tuples (wi, µi, Σi)k

i=1, where each tuple represents
the mean, covariance matrix, and mixing weight of one of its components.

1
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As the main application of our framework, we develop an algorithm to privately learn
mixtures of Gaussians using the non-private algorithm of Moitra and Valiant [MV10] as
a BlackBox and incurs only a polynomial time overhead in the sample complexity and
computational complexity. As a result, this gives the first sample complexity upper
bound and the first polynomial time algorithm with respect to dimension d for learn-
ing the parameters of the Gaussian Mixture Models privately without requiring any
boundedness assumptions on the parameters.

1.1 Learning Unbounded Gaussian Mixture Model Pri-
vately

The problem of learning the parameters of an underlying Gaussian mixture model
(GMM) distribution is a fundamental problem in statistics. It dates back as early as
1894 with the work of the mathematician Karl Pearson. A GMM is a distribution where
each sample is drawn from one of a collection of fixed Gaussian distributions. Given only
the samples, the goal is to recover the unknown collection of Gaussians. For instance, a
GMM with k components in d dimensions can be represented with (wi, µi, Σi)k

i=1 where
wi ∈ [0, 1] and

∑
i∈[k] wi = 1, µi ∈ Rd, and Σi ∈ Rd×d. To draw a sample from this GMM,

one first sample a component by choosing index i with probability wi and then samples
from the Gaussian distribution N (µi, Σi). Given samples from this GMM, the goal is
to approximately recover all the tuples of parameters that represent the components of
the GMM.

The sample complexity and polynomial-time learnability for non-private learning
of GMMs is well understood in [Das99], [SK01], [VW04], [AM05], [BV08], [KMV10],
[FSO06], [BS09], [BS10], [BDJKKV22], [LM21], [LM22]. However, the estimated tuple
of parameters that represent the components of the GMM could reveal sensitive infor-
mation which belongs to the given samples. The goal of this thesis is to design a private
algorithm for learning GMMs.

In this thesis, we work in a widely accepted rigorous framework known as differential
privacy which was introduced by [DMNS06]. At high-level, differential privacy provides
privacy by ensuring that the contribution of any individual’s data has only a small
effect on the output. Therefore, differentially private distribution learning needs a larger
amount of data compared to a non-private settings, because it hides individual data
point contributions.

2
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[KSSU19] considered differentially private learning of the parameters of a GMM. They
guarantee the privacy in the worst case. However, they require additional assumptions
to guarantee utility such as strong separation1 or boundedness 2 of the components. It
is better not to rely on such assumptions on the underlying distribution. This raises a
question about the main problem that we are tackling.

Is there a polynomial time and differentially private algorithm for learning
unbounded components of GMMs?

Since the problem of learning the parameters of a GMM has been extensively studied,
it is natural to ask whether there is some reduction from private learning of GMMs to
non-private learning of GMMs. Our key insight is that there is. This would help to
avoid separation and boundedness assumptions on the parameters of the underlying
distribution. However, it will add a reasonable overhead over its sample complexity and
computational complexity. This paper will answer the following question.

Is there a polynomial time and polynomial sample overhead reduction from
private to non-private learning of mixtures?

The contribution of this work is unique because we prove that there is such a reduc-
tion.

Theorem 1.1.1 (Reduction Algorithm, Informal). There is a reduction from learn-
ing the parameters of a GMM in the approximate differential privacy model to its non-
private counterpart. Moreover, this reduction adds only polynomial time and sample
overhead in terms of the dimension and number of components.

Our reduction algorithm with the non-private learner of GMMs [MV10], gives the
first sample complexity upper bound and the first polynomial time algorithm in d for
learning the parameters of the Gaussian Mixture Models privately without requiring any
boundedness assumptions on the parameters.

1.2 Overview of used Techniques

Our developed reduction framework is an extension of the framework in [AL22] to the
1It is possible to learn the mixture components if the following separation condition is satisfied

∀i ̸= j ||µi −µj ||2 ≥ Ω̃
(√

k +
√

1
wi

+ 1
wj

)
·max

{
||Σ1/2

i ||, ||Σ1/2
j ||

}
, we can see that separation condition

depends on k
2Assuming that there are known quantities R, σmax, σmin such that ∀i ∈ [k] ∥µi∥2 ≤ R and σ2

min ≤
||Σi|| ≤ σ2

max

3
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mixture setting. Their reduction is simple and efficient for reduction from (ε, δ) differen-
tially private (DP) statistical estimation to its non-private counterpart. It is based on the
Propose-Test-Release framework [DL09] and the Subsample-And-Aggregate framework
[NRS07]. Our reduction algorithm for learning Gaussian mixture distributions has two
requirements. Firstly, we need a non-private algorithm. Secondly, a masking mechanism
for a single-component. At a high-level, neighbouring datasets D1, D2 and a masking
mechanism B is a mechanism such that B(D1), B(D2) are indistinguishable provided
D1, D2 are sufficiently close (γ close Definition 4.2.1). We showed in this thesis that we
can extend single-component masking to mixture masking.

At a very high level we follow [AL22], given a dataset that we split into t subsets
indexed by i. The reason is that we want to run the non-private algorithm A on each
subset to output Yi (implementing Subsample-And-Aggregate). We privately check if
most of the outcomes are close to each other (using Propose-Test-Release). After that
our framework will take a different direction from [AL22]. In [AL22], they release an
estimate by noising the computed average which is not applicable for mixtures, because
the non-private algorithm will output a different sequence of components every time we
run it on a different subset. Therefore, it is not possible to compute the average in
mixtures case using their method. Whereas in our framework, we take the solution that
is close to more than 60% to other solutions. If there are multiple answers, we will break
the tie by choosing the solution with the smallest index.

We also generalized the framework in [AL22] from the notion of a convex semimetric
to a weaker notion of semimetric space. They needed convexity and locality properties
to prove the privacy of their framework whereas we do not need such assumptions.

As mentioned earlier, our framework requires a masking mechanism. Masking mecha-
nism development steps start with introducing a masking mechanism for one component.
We noise each component parameters’ separately (We add noise to the mixing weight
of a single-component using the Gaussian mechanism. Also, we add noise to the mean
using empirically re-scaled Gaussian mechanism. In addition, we add noise to the co-
variance matrix using the noising mechanism described in [AL22]. They view the input
covariance matrix as a d2 vector then apply Gaussian mechanism that is scaled to the
input covariance matrix itself). The final step is to turn the produced masking mecha-
nism for one component into a masking mechanism for mixtures. Our main idea is to
add noise to each of the components and then permute the output to make the output
invariant to the original order of the components. For this task, we had to use advanced
composition and our proved fact that if we can mask every component in a mixture then

4
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we can mask the whole mixture for free without any additional privacy cost as shown in
Lemma 2.2.4.

Our reduction framework and the non-private algorithm in [MV10] consider the dis-
tance between the GMMs with respect to distGmm (The TV distance between the param-
eters of two GMMs which is defined in Definition 2.1.2 and Definition 2.1.3). Whereas
our developed masking mechanism is with respect to distParam (A distance between two
GMMs which is defined in Section 6.2). Thus, we had to translate distParam into TV
distance using the bound mentioned in [DMR18]. This translation is for a single Gaus-
sian so we extended that bound for mixtures. As a result, if two GMMs are close in
distGmm, then they will be close in distParam up to a constant factor.

1.3 Summary of Contributions

In the following, we will state a summary of our contributions.

1. We generalize the framework in [AL22] from the notion of a convex semimetric to
a weaker notion of semimetric space.

2. We translate the parameterized distance between GMMs into TV distance using
the bound mentioned in [DMR18]. This translation is for a single Gaussian so we
extended that bound for mixtures.

3. We develop a new masking mechanism for a Gaussian component. We add noise to
all component parameters’. Firstly, we add noise to the mixing weight of a single-
component using a Gaussian mechanism. Secondly, we add noise to the mean of
a single-component using an empirically re-scaled Gaussian mechanism where the
empirical covariance matrix is used to shape the noise that we add to the mean.
Finally, we add noise to the covariance matrix of a single-component using the
noising mechanism described in [AL22, §5].

4. We develop a general approach to extend the masking mechanism from components
to mixtures. The idea is simple, we add noise to each of the components and then
permute the output.

5. We develop a masking mechanism for GMMs. Intuitively, randomly shuffling the
components makes the outcome of masking insensitive to the order of components
in the input of the masking.

5
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6. We introduce a general private to non-private reduction framework for learning
GMMs.

7. We introduce the first sample complexity upper bound and the first polynomial
time algorithm in d for learning the parameters of the Gaussian Mixture Models
privately without requiring any boundedness assumptions on the parameters.

1.4 Thesis Organization

Chapter 2 provides basic preliminaries, notations, definitions, well-known results, and
facts that are used in this thesis classified by topic in probability, differential privacy,
TV distance of Gaussian distributions, and distribution learning.

In Chapter 3, we go over related work which is categorized into four topics, privately
estimating the parameters of mixtures, private density estimation of mixtures, learning
Gaussians privately and efficient algorithms for learning Gaussians.

We show our main algorithm “Private Populous Estimator” in Chapter 4. In Chapter
5, we show how to mask a single Gaussian component including noising the mixing
weights, mean, and covariance matrix.

In Section 6.1 we extend the masking from component to mixture, and we apply it
to Gaussian mixtures in Section 6.2.

We state our final reduction theorem to learn GMMs in Section 7.1, and we show
how it can be applied in Section 7.2.

In Chapter 8, we summarize the thesis and conclude with some open problems.

6
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Chapter 2

Background

This chapter provides basic preliminaries, notations, definitions, well-known results,
and facts that are used in this thesis classified by topic in probability, differential privacy,
TV distance of Gaussian distributions, and distribution learning.

2.1 Preliminaries

We use ∥v∥2 to denote the Euclidean norm of a vector v ∈ Rd and ∥A∥F (resp. ∥A∥)
to denote the Frobenius (resp. spectral) norm of a matrix A ∈ Rd×d.

In this thesis, we write Sd to denote the positive-definite cone in Rd×d. We will often
abuse terminology and refer to a distribution via its probability density function (p.d.f.).

Let G(d) = {N (µ, Σ) : µ ∈ Rd, Σ ∈ Sd} be the family of d-dimensional Gaussians.
We can now define the class G(d, k) of mixtures of Gaussians as following.

Definition 2.1.1 (Gaussian Mixtures). The class of Gaussian k-mixtures in Rd is

G(d, k) :=
{

k∑
i=1

wiGi : G1, . . . , Gk ∈ G(d), w1, . . . , wk > 0,
k∑

i=1
wi = 1

}
.

We can represent the Gaussian Mixture Model (GMM) by a set of k tuples (wi, µi, Σi)k
i=1,

where each tuple represents the mean, covariance matrix, and mixing weight of one of

7
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its components. Note that the order of components is important in our notation, since
it may affect the privacy in a subsequent analysis.

A distribution learning method is an algorithm if given a sequence of i.i.d. samples
from a distribution f , outputs a distribution f̃ as an estimate of f . The specific measure
of “closeness” between distributions that we use is the total variation (TV) distance.

Definition 2.1.2 (Total Variation Distance). Given two probability distributions f(x), g(x)
on Rd, we define the TV distance between f and g as dTV (f(x), g(x)) = 1

2
∫
Rd |f(x) −

g(x)| dx.

The standard way to define the distance between two GMMs is as following.

Definition 2.1.3 (The distance between two GMMs [MV10] Definition 2). The distance
between two GMMs is defined by

distGmm
(
(wi, µi, Σi)k

i=1 ,
(
w′

i, µ′
i, Σ′

i

)k
i=1

)
= min

π
max
i∈[k]

max
{
|wi − w

′

π(i)|, dTV
(
N (µi, Σi),N (µ′

π(i), Σ′

π(i))
)}

where π is chosen from the set of all permutations over [k].

The max in Definition 2.1.3 appears because we are looking for the furthest com-
ponent, and the min is required to make the distance invariant to the ordering of the
components.

If X (resp. Y ) is a random variable distributed according to f (resp. g), we write
dTV (X, Y ) = dTV (f, g). We drop the reference to the p.d.f. of the random variable
when it is clear or implicity from context.

Definition 2.1.4 (Distance between the means of two multidimensional Gaussians). To
calculate the maximum distance between the means of two multi-dimensional Gaussians
taking into account their covariance structure, we need to use the Mahalanobis distance.
As following

distMean((µ1, Σ1), (µ2, Σ2)) = max{∥µ1 − µ2∥Σ1 , ∥µ1 − µ2∥Σ2}

where
∥µ1 − µ2∥Σ2 =

√
(µ1 − µ2)T Σ−1

2 (µ1 − µ2)

8
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2.2 Differential Privacy

Roughly speaking, differential privacy requires a method/mechanism to have similar
output distributions given any two (ordered) neighboring data sets1.

Definition 2.2.1 (Neighbouring Datasets). Let X ,Y denote sets and n ∈ N. Two
datasets D = (X1, . . . , Xn), D′ = (X1, . . . , Xn) ∈ X n are said to be neighbouring if
dH(D, D′) ≤ 1 where dH denotes Hamming distance, i.e., dH(D, D′) = |{i ∈ [n] : Xi ̸=
X ′

i}|.

Definition 2.2.2 ((ε, δ)-indistinguishable). Let D, D′ be two distributions defined on a
set Y. Then D, D′ are said to be (ε, δ)-indistinguishable if for all measurable S ⊆ Y, we
have

PY ∼D [Y ∈ S] ≤ eεPY ∼D′ [Y ∈ S] + δ and PY ∼D′ [Y ∈ S] ≤ eεPY ∼D [Y ∈ S] + δ.

Definition 2.2.3 ((ε, δ)-differential privacy [DKMMN06; DMNS06]). A randomized
mechanism M : X n → Y is said to be (ε, δ)-differentially private if for all neighbouring
datasets D, D′ ∈ X n, M(D) and M(D′) are (ε, δ)-indistinguishable.

In this thesis, we use DP as shorthand for differentially private or differential privacy,
depending on context.

Definition 2.2.4 ([AL22] Definition 2.7). Let D1,D2 be two continuous distributions
defined on Rd and let f1, f2 be the respective density functions. We use LD1∥D2 : Rd → R
to denote the logarithm of the likelihood ratio, i.e. for any x ∈ Rd,

LD1∥D2(x) := ln f1(x)
f2(x) . (2.1)

Below definition has D, D′ which are different in single individual data and function
f can capture the change in magnitude at the worst case.

Definition 2.2.5 (L1-Sensitivity [DR+14], Definition 3.1). The L1-sensitivity of a func-
tion f : X n → Rk is defined as:

∆(f) = max
D,D′∈X n : dH(D,D′)≤1

||f(D)− f(D′)||1

1For sake of simplicity, we consider data sets to be ordered and therefore the neighboring data sets
are defined based on their Hamming distances. However, one can easily translate guarantees proven for
the ordered setting to the unordered one; see Proposition D.6 in [BGSUZ21].

9
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where dH is Hamming distance identified in Definition 2.2.1

The amount of noise necessary to ensure differential privacy for a given function
depends on the sensitivity of the function. In other words, we can guarantee privacy
using additive noise if the sensitivity of the function is bounded. The sensitivity of a
function reflects the amount the function’s output will change when its input changes.

Definition 2.2.6 (L2-Sensitivity [DR+14], Definition 3.8). The L2-sensitivity of a func-
tion f : X n → Rk is defined as:

∆2(f) = max
D,D′∈X n : dH(D,D′)≤1

||f(D)− f(D′)||2

where dH is Hamming distance identified in Definition 2.2.1

Theorem 2.2.1 (Gaussian Mechanism [DR+14], Theorem 3.22). Let ε ∈ (0, 1) be ar-
bitrary. For c2 > 2ln(1.25/δ), the Gaussian Mechanism with parameter σ ≥ c∆2f/ε is
(ε, δ)-differentially private.

Definition 2.2.7 (Truncated Laplace distribution). It is denoted by TLap(∆, ε, δ) whose
probability density function is given by

fTLap(∆,ε,δ)(x) :=

Be−|x|/λ x ∈ [−A, A]

0 x /∈ [−A, A]
,

where λ = ∆
ε , A = ∆

ε ln
(
1 + eε−1

2δ

)
, B = 1

2λ(1−e−A/λ) .

Theorem 2.2.2 ([GDGK18, Theorem 1]). Suppose that q : X → R is a function with
L1-sensitivity ∆. Then the mechanism q(x) + Y where Y ∼ TLap(∆, ε, δ) is (ε, δ)-DP.

Theorem 2.2.3 (Advanced Composition [DRV10]). Let D1, . . . ,Dk and D′
1, . . . ,D′

k be
probability densities such that Dj ,D′

j are (ε, δ)-indistinguishable for all j ∈ [k]. Let
D = (D1, . . . ,Dk) and D′ = (D′

1, . . . ,D′
k). Then for every δ′ > 0, D,D′ are (ε′, kδ + δ′)-

indistinguishable for
ε′ =

√
2k ln(1/δ′)ε + kε(eε − 1).

Lemma 2.2.4. Let D1, . . . ,Dk and D′
1, . . . ,D′

k denote probability distributions on a
space X . Suppose that for all j ∈ [k], Dj and D′

j are (ε, δ)-indistinguishable. Let
w = (w1, . . . , wk) be a probability vector, i.e. wj ≥ 0 for j ∈ [k] and ∑

j∈[k] wj = 1. Then
the probability distributions ∑

j∈[k] wjDj and ∑
j∈[k] wjD′

j are (ε, δ)-indistinguishable.

10
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Proof. Let D =
∑

j∈[k] wjDj and D′ =
∑

j∈[k] wjD′
j . Fix a set S ⊆ X . Then

Px∼D[x ∈ S] =
k∑

j=1
wjPx∼Dj [x ∈ S] ≤

k∑
j=1

wj

[
eε · Px∈D′

j
[x ∈ S] + δ

]
= eε·Px∼D′ [x ∈ S]+δ,

as required.

Lemma 2.2.5 ([AL22] Lemma 2.10). Let D1,D2 be continuous distributions defined on
Rd. If

PY ∼D1

[
LD1∥D2(Y ) ≥ ε

]
≤ δ and PY ∼D2

[
LD2∥D1(Y ) ≥ ε

]
≤ δ

then D1,D2 are (ε, δ)-indistinguishable.

2.3 Standard Probability Facts

Fact 2.3.1. Let X1, X2, Y1, Y2 be random variables such that X1, X2 (resp. Y1, Y2) are
independent. Then dTV ((X1, X2), (Y1, Y2)) ≤ dTV (X1, Y1) + dTV (X2, Y2).

Fact 2.3.2. Let X, Y be random variables. For any function f , dTV (f(X), f(Y )) ≤
dTV (X, Y ).

Fact 2.3.3. Let µ1, µ2 ∈ Rd and Σ1, Σ2 ≻ 0. Then

DKL (N (µ1, Σ1) ∥ N (µ2, Σ2)) = 1
2

[
tr(Σ−1

2 Σ1 − I) + (µ2 − µ1)⊤Σ−1
2 (µ2 − µ1)− ln det(Σ−1

2 Σ1)
]
.

Moreover, suppose that all the eigenvalues of Σ−1
2 Σ1 are at least 1

2 . Then

DKL (N (µ1, Σ1) ∥ N (µ2, Σ2)) ≤ 1
2

[
∥Σ−1/2

2 Σ1Σ−1/2
2 − I∥2F + (µ2 − µ1)⊤Σ−1

2 (µ2 − µ1)
]

Lemma 2.3.4 (Pinsker’s Inequality). Let P and Q be two distributions for which KL-
divergence is defined. Then dTV (P, Q) ≤

√
0.5DKL (P ∥ Q).

Lemma 2.3.5 ([LM00, Lemma 1]). Let g1, . . . , gk be i.i.d. N (0, 1) random variables.
Then

P
[

k∑
i=1

g2
i ≥ k + 2

√
kt + 2t

]
≤ e−t.
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Lemma 2.3.6 ([AL22, Lemma D.2]). Let µ1, µ2 ∈ Rd and let Σ1, Σ2 be full-rank d× d

PSD matrices. Let Y ∼ N (µ1, Σ1). Then

LN (µ1,Σ1)∥N (µ2,Σ2)(Y ) ≤ DKL (N (µ1, Σ1) ∥ N (µ2, Σ2))

+ 2∥Σ1/2
1 Σ−1

2 Σ1/2
1 − Id∥F ·

√
ln(2/δ) + 2∥Σ1/2

1 Σ−1
2 Σ1/2

1 − Id∥ · ln(2/δ)

+ ∥Σ1/2
1 Σ−1

2 Σ1/2
1 ∥ · ∥Σ

−1/2
1 · (µ2 − µ1)∥2 ·

√
2 ln(2/δ)

(2.2)
with probability at least 1− δ.

Fact 2.3.7. For x < ln(2), we have ex ≤ 1 + 2x

Proof. consider the function f(x) = 1 + 2x − ex. Then f ′′(x) = −ex so f is concave.
Note that f(0) = 0 and f(ln(2)) = 1 + 2 ln(2)− 2 > 0 so f(x) ≥ 0 for x ∈ [0, ln(2)] (by
concavity)

For following lemma, approximate triangle inequality terms are defined in Defini-
tion 4.1.1.

Lemma 2.3.8. Let Sd be the set of all d× d positive definite matrices. For A, B ∈ Sd

let dist(A, B) = max{∥A−1/2BA−1/2 − I∥, ∥B−1/2AB−1/2 − I∥}. Then (Sd, dist) is a
semimetric space which satisfies a (3/2)-approximate 1-restricted triangle inequality and
1-locality.

Proof. A stronger version for convex semimetric space was proved in [AL22, Lemma 3.2],
so what was applicable for convex semimetric space will be applicable for the weaker
version of semimetric space.

2.4 TV Distance of Gaussian Distributions

Theorem 2.4.1 ([DMR18, Theorem 1.1]). Let µ ∈ Rd, Σ1, Σ2 ∈ Sd, The total variation
distance between Gaussians with the same mean is bounded by

min
{

1, ∥Σ−1/2
1 Σ2Σ−1/2

1 − Id∥F
}

100 ≤ dTV (N (µ, Σ1),N (µ, Σ2))

12
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Theorem 2.4.2 ([DMR18, Theorem 1.3]). The total variation distance between one-
dimensional Gaussians is bounded by

1
200 min

{
1, max

{
|σ2

1 − σ2
2|

σ2
1

,
40|µ1 − µ2|

σ1

}}
≤ dTV

(
N (µ1, σ2

1),N (µ2, σ2
2)

)
≤ 3|σ2

1 − σ2
2|

2σ2
1

+ |µ1 − µ2|
2σ1

.

Lemma 2.4.3. dTV (N (0, Σ1),N (0, Σ2)) ≤ 2 · dTV (N (µ1, Σ1),N (µ2, Σ2)).

Proof. Let X1, X2, Y1, Y2 be independent random variables where X1, X2 ∼ N (µ1, Σ1)
and Y1, Y2 ∼ N (µ2, Σ2). Applying Fact 2.3.1 gives

dTV ((X1, X2), (Y1, Y2)) ≤ dTV (X1, Y1) + dTV (X2, Y2)

≤ dTV (N (µ1, Σ1),N (µ2, Σ2)) + dTV (N (µ1, Σ1),N (µ2, Σ2))

Now, let X = (X1, X2) and Y = (Y1, Y2), and define the function f(X) = f(X1, X2) =
(X1 −X2)/

√
2. Then by applying Fact 2.3.2 we have

dTV (f(X1, X2), f(Y1, Y2)) ≤ dTV ((X1, X2), (Y1, Y2)) ≤ 2 · dTV (N (µ1, Σ1),N (µ2, Σ2))

Note that if X1, X2 ∼ N (µ1, Σ1) then f(X) ∼ N (0, Σ1). Therefore we have

dTV (N (0, Σ1),N (0, Σ2)) ≤ 2 · dTV (N (µ1, Σ1),N (µ2, Σ2)) ,

as required.

Lemma 2.4.4. Let µ ∈ Rd. If dTV (N (0, Id),N (µ, Id)) ≤ 3α < 1/200 then ∥µ∥2 ≤ 15α.

Proof. Let g1 ∼ N (0, Id), g2 ∼ N (µ, Id) and v = µ/∥µ∥2. Note that v⊤g1 ∼ N (0, 1) and
v⊤g2 ∼ N (∥µ∥2, 1). Applying Fact 2.3.2 (with f(x) = v⊤x) we have

dTV (N (0, 1),N (∥µ∥2, 1)) ≤ dTV (N (0, Id),N (µ, Id)) ≤ 3α < 1/200

Applying Theorem 2.4.2 on the left side, we have

1
200 min {1, 40∥µ∥2} ≤ dTV (N (0, 1),N (∥µ∥2, 1)) ≤ dTV (N (0, Id),N (µ, Id)) ≤ 3α < 1/200.
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Note that this implies min {1, 40∥µ∥2} = 40∥µ∥2 < 1, therefore we conclude that ∥µ∥2 ≤
15α.

Lemma 2.4.5. Let µ1, µ2 ∈ Rd and Σ1, Σ2 be full-rank d×d PD matrices. Suppose that

dTV (N (µ1, Σ1),N (µ2, Σ2)) ≤ α <
1

600 .

Then (i) ∥Σ−1/2
1 Σ2Σ−1/2

1 − Id∥F ≤ 200α and (ii) ∥Σ−1
1 (µ1 − µ2)∥2 ≤ 15α.

Proof. (i) Starting from the assumption

dTV (N (µ1, Σ1),N (µ2, Σ2)) ≤ α <
1

600 ,

we apply Lemma 2.4.3 to obtain

dTV (N (0, Σ1),N (0, Σ2)) ≤ 2α <
1

300 .

Applying Theorem 2.4.1 gives

min
{

1, ∥Σ−1/2
1 Σ2Σ−1/2

1 − Id∥F
}
≤ 100 · dTV (N (0, Σ1),N (0, Σ2)) ≤ 200α <

1
3 .

Note that the inequality implies that min
{

1, ∥Σ−1/2
1 Σ2Σ−1/2

1 − Id∥F
}

= ∥Σ−1/2
1 Σ2Σ−1/2

1 −
Id∥F . We conclude that

∥Σ−1/2
1 Σ2Σ−1/2

1 − Id∥F ≤ 200α.

This proves the first assertion.

(ii) By the triangle inequality, we have

dTV (N (µ1, Σ1),N (µ2, Σ1)) ≤ dTV (N (µ1, Σ1),N (µ2, Σ2)) + dTV (N (µ2, Σ1),N (µ2, Σ2))

= dTV (N (µ1, Σ1),N (µ2, Σ2)) + dTV (N (0, Σ1),N (0, Σ2)) .

We know that
dTV (N (µ1, Σ1),N (µ2, Σ2)) ≤ α <

1
600 .
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Also, we know that
dTV (N (0, Σ1),N (0, Σ2)) ≤ 2α <

1
300 .

We conclude that
dTV (N (µ1, Σ1),N (µ2, Σ1)) ≤ 3α <

1
200 .

Therefore,

dTV (N (µ1, Σ1),N (µ2, Σ1)) = dTV
(
N (Σ−1

1 µ1, Id),N (Σ−1
1 µ2, Id)

)
= dTV

(
N (0, Id),N (Σ−1

1 (µ1 − µ2), Id)
)

.

Finally, applying Lemma 2.4.4 gives ∥Σ−1
1 (µ1 − µ2)∥2 ≤ 15α.
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Chapter 3

Related Work

We will discuss in this chapter all related work which is categorized into four topics,
privately estimating the parameters of mixtures, private density estimation of mixtures,
learning Gaussians privately, and efficient algorithms for learning Gaussians.

3.1 Privately Estimating the Parameters of Mixtures

We can represent the Gaussian Mixture Model (GMM) by a set of k tuples (wi, µi, Σi)k
i=1,

where each tuple represents the mean, covariance matrix, and mixing weight of one of
its components. Estimating these parameters is called parameter estimation.

There are a few works on designing private algorithms for estimating the parameters
of Gaussian mixtures. The work of Nissim, Raskhodnikova, and Smith [NRS07] was
the first differential private algorithm for learning GMMs. It is an application of the
Sample-and-Aggregate framework [NRS07]. They estimate the mean of each coordinate
for a uniform mixture of spherical Gaussian distributions with separable components.
However, they assume the variance of each coordinate is known.

In another related work that generalized to the unknown covariance, Kamath, Shef-
fet, Singhal, and Ullman [KSSU19] recovered the parameters of an unknown Gaussian
mixture provided that the components are sufficiently well separated. Their technique
is based on Principle Component Analysis PCA (to project the data into a low dimen-
sional space to eliminate directions that do not contain meaningful information) and
then clustering. They provided an algorithm that is efficient in sample complexity and
computational complexity. However, the boundedness (the domain of the samples to be
bounded) condition is still assumed for their technique.
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3.2 Private Density Estimation of Mixtures

Given a sequence of i.i.d. samples from a density f , outputs a density f̃ as an estimate
of f . The specific measure of “closeness” between distributions that we use is the total
variation (TV) distance. This estimation is called density estimation.

[BSKW19] studied the problem of differentially private density estimation. Under
pure ε-DP, they introduced a technique to learn a class of distributions when the class
admits a finite cover with respect to TV distance, which means that the entire class of
distributions can be well-approximated in TV distance by a finite number of represen-
tative distributions. They applied the technique to learn bounded spherical Gaussian
mixtures where each Gaussian component has a bounded mean and covariance matrix.
However, the algorithm they provide runs in time exponential in both the dimension
d and the number of components k. It also cannot provide sample complexity upper
bounds for distributions that do not possess a finite cover. They also studied the problem
under approximate differential privacy. Instead of requiring a finite cover, it requires a
locally small cover, which means that each distribution in the class is well approximated
by only a small number of elements within the cover.

In another related work by Acharya, Sun, and Zhang [ASZ21], they proved a sam-
ple complexity lower bound of Ω(kd/α2 + kd/αε) under pure differential privacy for
GMMs with bounded mean and identity covariance matrix with respect to total varia-
tion distance. It matches the upper bound of [BSKW19] up to logarithmic factor. In
their work, they developed and used differential private version techniques of Le Cam’s
method, Fano’s inequality, and Assouad’s lemma.

In a recent work of Aden-Ali, Ashtiani, and Liaw [AAL21], they developed a technique
to learn a mixture of an unbounded axis aligned Gaussians with respect to the total
variation distance. They reduced the problem of learning mixtures of distributions to
the problem of list-decodable learning of a single distribution. As an application they
prove that Õ(k2d log3/2(1/δ)/α2ε) samples are sufficient for mixture density estimation.

3.3 Learning Gaussians Privately

One of the main milestones for learning univariate Gaussians privately is Karwa and
Vadhan [KV17], who established a polynomial time and sample efficient method for
learning both known and unknown variance. Their pure (ε, 0)-DP algorithms assume
that the mean µ and variance σ2 lie in a bounded interval. Their approximate (ε, δ)-DP
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differentially private algorithms do not make any assumptions on mean µ and variance σ2

so they can remain unbounded. This method can be used to learn axis-aligned Gaussians,
by applying the learning to one-dimensional projection along each axis. In another work,
Kamath, Li, Singhal, and Ullman [KLSU19] considered learning multivariate Gaussians
privately for both pure DP and approximate DP. They provided a polynomial time
algorithm and the sample complexity for general Gaussian. They transform the Gaussian
to be nearly spherical. Making it possible to apply the methods of [KV17]. However,
the sample complexity still depends logarithmically on the condition number of the
covariance matrix, and requires a priori bounds on the range of the parameters.

Another approach introduced by Biswas, Dong, Kamath, and Ullman [BDKU20]
presented differentially private estimators for the mean and covariance of multivariate
Gaussians. It is empirically more accurate for small sample sizes compared to previous
estimators. The sample complexity matches [KLSU19] and depends logarithmically on
the condition number of the covariance matrix.

For the multivariate general Gaussian, Aden-Ali, Ashtiani, and Kamath [AAK21]
utilized the private hypothesis selection (PHS) framework proposed in [BSKW19] to
prove the first sample complexity bound that does not depend on the condition number
or the size of the parameters. However, this approach is theoretical and computationally
inefficient.

3.4 Efficient Algorithms for Learning Gaussians

In efficient algorithms for learning Gaussians. [KMV22] proposed an efficient algo-
rithm for robust and (ε, δ) differentially private estimation of the mean, covariance ma-
trix, and higher moments of distributions that satisfy either a certifiable subgaussianity
or certifiable hypercontractivity. Their algorithm privacy guarantees are obtained by
combining stability guarantees with noise injection mechanism in which noise scales
with the eigenvalues of the estimated covariance and is verified using the sum-of-squares
paradigm. They applied their algorithm to obtain an efficient robust and (ε, δ)-DP algo-
rithm for learning a Gaussian in Rd with sample complexity Ω(d8 ln4(1/δ)/α4ε4) where
α is the corruption parameter and the desired accuracy.

In another work, [KMSSU22] proposed a polynomial time algorithm for Gaussian
estimation which requires no prior knowledge about the distribution parameters. Their
algorithm technique is built on the private preconditioning framework introduced in
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[KLSU19]. However, they incurred additional cost on the sample complexity of order
O(d5/2/ε) rather than O(d2/ε) which is the best-known sample complexity of [AAK21].

In another work, [AL22] introduced a general framework for reducing (ε, δ) differen-
tially private statistical estimation to its non-private counterpart. They give a polyno-
mial time and (ε, δ)-DP algorithm for learning Gaussian distributions in Rd with sample
complexity Õ(d2/α2 + d2√

ln(1/δ)/αε + d ln(1/δ)/αε) which match the best theoretical
sample complexity of [AAK21]. Also, they provided a polynomial time (ε, δ)-DP algo-
rithm for robust learning of Gaussians with sample complexity Õ(d3.5). The aggregation
part of the FriendlyCore framework was applied in [AL22] with the only a small differ-
ence being that they compute a weighted average instead of computing a random core.
[TCKMS22] introduced the FriendlyCore framework which is a general framework for
preprocessing the data before the differentially private aggregation step. The target is
to certify “friendly” or well-behaved data so the differentially private aggregation can
be executed without unfriendly points. As a result, their algorithm allows for much less
noise to be added in the aggregation step.
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Chapter 4

Private Populous Estimator

In this chapter, we define our main reduction framework/algorithm which we call
“Private Populous Estimator(PPE)”. In addition, we define the PPE theorem which
establishes the privacy and utility of the framework. We also define the theorem space
which is a semimetric space, and we list its characteristics. Moreover, we define in
general the masking mechanism in semimetric space.

4.1 The Notion of a Semimetric Space

First, we define the notion of a semimetric space. The important thing is that we
relax the triangle inequality (from a regular metric space) to an approximate triangle
inequality which is only required to hold if the points are sufficiently close together.

Definition 4.1.1 (Semimetric Space). We say (F , dist) is a semimetric space if for
every F, F1, F2, F3 ∈ F , the following conditions hold.

1. Non Negativity. dist(F, F ) = 0 and dist(F1, F2) ≥ 0.

2. Symmetry. dist(F1, F2) = dist(F2, F1).

3. z-approximate r-restricted triangle inequality. If dist(F1, F2), dist(F2, F3) ≤
r then dist(F1, F3) ≤ z · (dist(F1, F2) + dist(F2, F3)).

Where z ≥ 1 and r > 0.

4.2 Masking Mechanism According to Semimetric Space

A masking mechanism B is a mechanism such that B(D1), B(D2) are indistinguishable
(Definition 2.2.2) provided D1, D2 are sufficiently close (γ close Definition 4.2.1). Note
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that a masking mechanism, in and of itself, is not a differentially private algorithm since
it does not necessarily ensure utility. Now we define the masking mechanism according
to the notion of a semimetric space.

Definition 4.2.1 (Masking mechanism). Let (F , dist) be a semimetric space. A random-
ized function B : F → F is a (γ, ε, δ)-masking mechanism for (F , dist) if for all F, F ′ ∈ F
satisfying dist(F, F ′) ≤ γ, we have that B(F ),B(F ′) are (ε, δ)-indistinguishable. Further,
B is said to be (α, β)-concentrated if P[dist(B(F ), F ) > α] ≤ β.

4.3 Private Populous Estimator Algorithm

Private Populous Estimator (PPE) is an efficient and general reduction algorithm
from private parameter estimation to the non-private counterpart. We represent the
non-private algorithm by A : X ∗ → Y which takes samples from dataset D as inputs
and outputs an element in Y. PPE requires two assumptions. Firstly, We assume that
(Y, dist) is a semimetric space. Secondly, we assume that we have access to an efficient
masking mechanism for (Y, dist).

The version of PPE we introduce in this section can be seen as a somewhat generalized
version of the one used in [AL22]. At a very high level we follow [AL22], given a
dataset that we split into t subsets with index i. The reason is that we want to run
the non-private algorithm A on each subset to output Yi (implementing Subsample-
And-Aggregate [DL09]). We privately check if most of the outcomes are close to each
other (using Propose-Test-Release [NRS07]). In other words, we consider each point Yj ’s
within distance r/2z from Yi with respect to dist 1. We calculate qi, the fraction of Yj ’s
that are within distance r/2z. We release the final estimate that is close to more than
60% to other solutions (qi > 0.6). If there are multiple answers, we will break the tie
by choosing the solution with the smallest index. Compared to [AL22], they release an
estimate by noising the computed average which is not applicable for mixtures, because
the non-private algorithm will output a different sequence of components every time we
run it on a different subset. Therefore, it is not possible to compute the average in
mixtures case using their method.

To release the estimate, it is important to check the stability of the non-private
algorithm A. Making sure the outputs Yi’s are close to each other and not scattered.

1r and z are selected properly such that (Y, dist) satisfies z-approximate r-restricted triangle inequal-
ity.
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Therefore, we calculate the average Q of distance weights (qi’s). It should be larger than
a threshold (0.8 + Truncated Laplace noise) otherwise we release a failure.

Algorithm 1 Private Populous Estimator
Input: Dataset D = (X1, . . . , Xm), any algorithm A : X ∗ → Y, parameters r, ε, δ >
0, z ≥ 1, t ∈ N≥1.

1: Let s← ⌊m/t⌋.
2: For i ∈ [t], let Yi ← A({Xℓ}isℓ=(i−1)s+1).
3: For i ∈ [t], let qi ← 1

t |{j ∈ [t] : dist(Yi, Yj) ≤ r/2z}|.
4: Let Q← 1

t

∑
i∈[t] qi.

5: Let Z ∼ TLap(2/t, ε, δ).
6: Let Q̃← Q + Z.
7: If Q̃ < 0.8 + 2

tε ln
(
1 + eε−1

2δ

)
, fail and return ⊥.

8: j = min{i : qi > 0.6}.
9: Return Ỹ = B(Yj).

The following theorem establishes the privacy and accuracy of Algorithm 1. The
error of the algorithm is measured by dist(Ỹ , Y ∗), where Ỹ is our noisy estimation while
Y ∗ is the truth.

Theorem 4.3.1. Suppose that (Y, dist) satisfies a z-approximate r-restricted triangle
inequality. Further, suppose that B is a (r, ε, δ)-masking mechanism.

• Privacy. For t > 5, Algorithm 1 is (2ε, 4eεδ)-DP.

• Utility. Suppose that α ≤ r/2z, and for t ≥ (20
ε ln

(
1 + eε−1

2δ

)
. Let B be (α/2z, β)-

concentrated. If there exists Y ∗ with the property that for all i ∈ [t], dist(Y ∗, Yi) <

α/2z, then P
[
dist(Ỹ , Y ∗) > α

]
≤ β.

Proof of Theorem 4.3.1. Proof of Privacy: Let D and D′ be two neighbouring datasets
and let A denote the non-private algorithm specified in Algorithm 1. Note that the Q

computed in Line 4 has sensitivity less than 2
t . Since we use the Truncated Laplace

mechanism in Line 7, we have (by Theorem 2.2.2)

P [A(D) =⊥] ≤ eεP
[
A(D′) =⊥

]
+ δ (4.1)

We now show that for any T ⊆ Y, we have

P [A(D) ∈ T ] ≤ e2εP
[
A(D′) ∈ T

]
+ 3eεδ and (4.2)

P [A(D) ∈ T ∪ {⊥}] ≤ e2εP
[
A(D′) ∈ T ∪ {⊥}

]
+ 4eεδ (4.3)
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which establishes that Algorithm 1 is (ε, δ)-DP. To this end, we consider two different
cases.

Case 1: Q < 0.8. In this case, Q̃ < 0.8 + 2
tε ln

(
1 + eε−1

2δ

)
with probability 1 so

P [A(D) =⊥] = 1. We now verify that Eq. (4.2) and Eq. (4.3) hold. For any T ⊆ Y, we
have P [A(D) ∈ T ] = 0 so Eq. (4.2) is trivially satisfied. To check Eq. (4.3) holds, we
apply Eq. (4.1) to see that

P [A(D) ∈ T ∪ {⊥}] = P [A(D) =⊥] ≤ eεP
[
A(D′) =⊥

]
+δ ≤ eεP

[
A(D′) ∈ T ∪ {⊥}

]
+δ.

Case 2: Q ≥ 0.8. Let Y1, . . . , Yt and Y ′
1 , . . . , Y ′

t be the outputs in Line 2 assuming the
dataset is D, D′, respectively. Let j, j′ be the output of Line 8 assuming the dataset is
D, D′, respectively. Next, we show that dist(Yj , Y ′

j ) ≤ r.

Let S = {ℓ ∈ [t] : dist(Yj , Yℓ) ≤ r/2z} and S′ = {ℓ ∈ [t] : dist(Y ′
j , Y ′

ℓ ) ≤ r/2z}. We
know that |S| > 0.6t and |S′| > 0.6t (by definition of j in Line 8). By the inclusion-
exclusion principle, we have |S ∩S′| = |S|+ |S′| − |S ∪S′| > 0.6t + 0.6t− t = 0.2t. Thus,
if t ≥ 5, we have |S ∩ S′| > 1 and since |S ∩ S′| is an integer, we must have |S ∩ S′| ≥ 2.
Since D, D′ differ only in a single datapoint, there is some ℓ ∈ S ∩S′ such that Yℓ = Y ′

ℓ .
Thus, we conclude that

dist(Yj , Y ′
j ) ≤ dist(Yj , Yℓ) + dist(Yℓ, Y ′

j ) ≤ z · (r/2z + r/2z) = r,

where in the final inequality, we used that dist is a z-approximate r-restricted triangle
inequality and that dist(Yj , Yℓ), dist(Yℓ, Y ′

j ) ≤ r.

We are now ready to verify that Eq. (4.2) and Eq. (4.3) hold. Let M denote the
mechanism described in Algorithm 1. Fix any T ⊆ Y. Then we have

P [M(D) ∈ T ] = P [M(D) ̸=⊥]P [B(Yj) ∈ T ]

≤ (eεP
[
M(D′) ̸=⊥

]
+ δ)(eεP

[
B(Y ′

j′) ∈ T
]

+ δ)

= (e2εP
[
M(D′) ̸=⊥

]
P

[
B(Y ′

j′) ∈ T
]

+ 2eεδ + δ2

≤ e2εP [M(D) ∈ T ] + 3eεδ
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where in first inequality we used the fact that B is a (r, ε, δ)-masking mechanism, which
satisfies Eq. (4.2). Next, we also have

P [M(D) ∈ {⊥} ∪ T ] = P [M(D) =⊥] + P [M(D) ∈ T ]

≤ eεP
[
M(D′) =⊥

]
+ δ + e2εP

[
M(D′) ∈ T

]
+ 3eεδ

≤ e2εP
[
M(D′) ∈ {⊥} ∪ T

]
+ 4eεδ.

This completes the proof.

Proof of Utility.

We divide the proof into two parts.

1. First, we show that Ỹ (the noisy output) concentrates around Y ∗.

2. Second, we show that Algorithm 1 does not fail in Line 7.

For the first part, We know that B is ( α
2z , β) concentrated. Furthermore, ∀i ∈ [t], Yi

satisfies dist(Y ∗, Yi) < α
2z . we have

P[dist(Ỹ , Y ∗) >
α

2 + α

2 ] ≤

P[z. dist(Ỹ , Yj) + z. dist(Yj , Y ∗) >
α

2 + α

2 ] ≤

P[dist(Ỹ , Yj) + dist(Yj , F ∗) >
α

2z
+ α

2z
] ≤

P[dist(Ỹ , Yj) >
α

2z
] + P[dist(Yj , Y ∗) >

α

2z
] ≤

β + 0 ≤ β

where the first inequality follows from the r-restricted z-approximate triangle inequality
3 (since α/2z < r/4z2 by assumption), and the first part of the last inequality follows
the concentration of the masking mechanism. We get P[dist(Ỹ , Yj) > α

2z ] = β, because
Ỹ is just a masked version of Yj . Also P[dist(Yj , Y ∗) > α

2z ] = 0, because Yj is selected
from Yi’s, and none of them located in a distance larger than α

2z from Y ∗ based on our
assumption.

For the second part, we start by guaranteeing that Q in Line 4 equals to 1. For
that we need to ensure that for all i, j ∈ [t], dist(Yi, Yj) ≤ r

2z . To see this by triangle
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inequality, we have

dist(Yi, Yj) ≤ z.(dist(Yi, Y ∗) + dist(Y ∗, Yj))

since dist(Yi, Y ∗), dist(Y ∗, Yj) ≤ r
4z2 . So we conclude that Q = 1.

Now we need to show that Q̃ ≤ 0.9. From Line 6 Q̃ = Q + Z. Therefore it is enough
to show |Z| ≤ 0.1. We know that from Definition 2.2.7 |Z| ≤ 2

tε ln
(
1 + eε−1

2δ

)
. By the

assumption that t ≥ 20
ε ln

(
1 + eε−1

2δ

)
we conclude that Q̃ ≤ 0.9, so the Algorithm 1 does

not fail in Line 7.

Remark 4.3.2. Note that Algorithm 1 is a poly-time reduction from non-private estima-
tion to private estimation. In particular, let TA be the running time of the algorithm A
in Line 2, Tdist be the time to compute dist(Yi, Yj) for any Yi, Yj ∈ Y in Line 3, and TB be
the time to compute Ỹ in Line 9. Then Algorithm 1 runs in time O(t·TA +t2 ·Tdist +TB).

Remark 4.3.3. L1-sensitivity for Algorithm 1 is bounded by 2
t

Proof. Consider qi and q′
i computed on D and D′ as per line 3 in Algorithm 1 while

recalling the following:

qi = 1
t
|{j ∈ [t] : dist(Yi, Yj) ≤ r/2z}|

and assume one point has been changed in first subset so

||q1 − q′
1||1 ≤

1
t
× (t− 1) ≤ 1

and for other points ∀i ̸= 1
||qi − q′

i||1 ≤
1
t

so
||Q−Q′||1 = ||1

t

∑
Qi −Q′

i||1 ≤
(t− 1)

t2 + 1
t
≤ 2

t

so the L1-sensitivity for Algorithm 1 is bounded by 2
t

To apply Algorithm 1 for private learning of GMMs, we need to introduce a masking
mechanism for them. In order to do that, we start by defining a masking mechanism
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for a single Gaussian component (presented in Section 5). We then show how one can
convert a masking mechanism for a component to one for mixtures (Section 6.1). Finally,
we apply this to come up with a masking mechanism for GMMs as shown in Section 6.2.
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Chapter 5

Masking a Single Gaussian
Component

In a high level, a masking mechanism B is a mechanism such that B(D1), B(D2)
are indistinguishable (Definition 2.2.2) provided D1, D2 are sufficiently close. In this
chapter, we develop a masking mechanism for a single Gaussian component FComp. To
do that we introduced a distance distComp which is the maximum distance between all
component parameters; weight w, mean µ, and covariance matrix Σ. Also, we make sure
that distComp satisfies the z-approximate r-restricted triangle inequality.

Let FComp = R×Rd×Rd×d (corresponding to the weight w, mean µ, and covariance
matrix Σ, respectively). Define distComp : FComp ×FComp → R≥0 as

distComp((w1, µ1, Σ1),(w2, µ2, Σ2))

= max{|w1 − w2|, distMean((µ1, Σ1), (µ2, Σ2)), distCov(Σ1, Σ2)},
(5.1)

where

distCov(Σ1, Σ2) = max{∥Σ1/2
1 Σ−1

2 Σ1/2
1 − Id∥F , ∥Σ1/2

2 Σ−1
1 Σ1/2

2 − Id∥F }

distMean((µ1, Σ1), (µ2, Σ2)) = max{∥µ1 − µ2∥Σ1 , ∥µ1 − µ2∥Σ2}.

Lemma 5.0.1. distComp satisfies a 1-restricted (3/2)-approximate triangle inequality.

Proof. The absolute value in ∥µ1 − µ2∥Σ1 and ∥µ1 − µ2∥Σ2 satisfies triangle inequality.
Also, distCov satisfies triangle inequality according to Lemma 2.3.8.
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Lemma 5.0.2. For γ ≤ εα

C2
√

d(d+ln(4/β))·ln(2/δ)
, there exists a (γ, 3ε, 3δ)-masking mecha-

nism for (FComp, distComp) that is (α, 3β)-concentrated, where C2 is a universal constant.

The rest of this chapter is dedicated to proving Lemma 5.0.2. In particular, we
will introduce the masking mechanism BComp(w, µ, Σ) that satisfies the conditions of
Lemma 5.0.2. In order to add noise to a Gaussian component (wi, µi, Σi) we perform a
number of steps:

1. In Subsection 5.1, we discuss how to noise the mixing weight of a single-component.
This is the most straightforward as we can simply use the Gaussian mechanism.

2. In Subsection 5.2, we discuss how to noise the mean of a single-component. To
do this, we use an empirically re-scaled Gaussian mechanism where the empirical
covariance matrix is used to shape the noise that we add to the mean. This is
somewhat similar to the empirically re-scaled Gaussian mechanism used by [BG-
SUZ21].

3. In Subsection 5.3, we discuss how to noise the covariance matrix of a single-
component. To do this, we use the noising mechanism described in [AL22, §5].

5.1 Noising the Mixing Weights

In this section, we prove that the mechanism Rw(w, η) = w + ηg where g ∼ N (0, 1)
and w, η ∈ R can privatize the weights, we simply use the Gaussian mechanism.

Lemma 5.1.1. Let α, β, δ > 0, η = α√
2+2 ln(1/β)

, and γ ≤ αε

2
√

2 ln(2/δ)
√

1+ln(1/β)
.

1. Let w1, w2 ∈ R. If |w1 − w2| ≤ γ then Rw(w1, η) and Rw(w2, η) are (ε, δ)-
indistinguishable.

2. Let w ∈ R. Then |Rw(w, η)− w| ≤ α with probability at least 1− β.

Proof. The first item is simply the guarantee of the Gaussian Mechanism Theorem 2.2.1
when substituting ∆2f, σ with γ, η respectively. The second item follows from standard
tail bounds on a Gaussian random variable (e.g., Lemma 2.3.5).

5.2 Noising the Mean

In this section, we prove that the mechanism RMean(µ, Σ, η) = µ + ηg where g ∼
N (0, Σ) effectively privatizes the mean.
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Lemma 5.2.1. Let α, β, δ > 0, η =
√

α2

3(d+ln(1/β)) and let γ ≤ min{1
2 , εα

24 ln(2/δ)
√

d+ln(1/β)
}.

Let µ1, µ2 ∈ Rd and let Σ1, Σ2 be d× d positive-definite matrices. Suppose that

1. max{∥Σ1/2
1 Σ−1

2 Σ1/2
1 − Id∥F , ∥Σ1/2

2 Σ−1
1 Σ1/2

2 − Id∥F } ≤ γ; and

2. max{∥µ1 − µ2∥Σ1 , ∥µ1 − µ2∥Σ2} ≤ γ.

Then RMean(µ1, Σ1, η) and RMean(µ2, Σ2, η) are (ε, δ)-indistinguishable. In addition, if
we let µ̃ = RMean(µ, Σ, η) then ∥µ̃− µ∥Σ ≤ α with probability at least 1− β.

First, we prove a bound on the privacy loss.

Lemma 5.2.2. Let η > 0 and γ ∈ (0, 1/2]. Let µ1, µ2 ∈ Rd and let Σ1, Σ2 be d × d

positive-definite matrices. Suppose that

1. max{∥Σ1/2
1 Σ−1

2 Σ1/2
1 − Id∥F , ∥Σ1/2

2 Σ−1
1 Σ1/2

2 − Id∥F } ≤ γ; and

2. max{∥µ1 − µ2∥Σ1 , ∥µ1 − µ2∥Σ2} ≤ γ.

Let Y ∼ N (µ1, η2Σ1) and define L := LN (µ1,η2Σ1)∥N (µ2,η2Σ2)(Y ). Then

L ≤ γ2

2 + γ2

2η2 + 2γ
√

ln(2/δ) + 2γ ln(2/δ) + 2γ
√

2 ln(2/δ)/η (5.2)

with probability at least 1− δ.

Proof. We directly utilize Lemma 2.3.6 and bound each term in Eq. (2.2). For the first
term, we have, using Fact 2.3.3 and that the eigenvalues of Σ−1

2 Σ1 are at least 1/2 by
assumption (since γ < 1/2), we have1

DKL (N (µ1, ηΣ1) ∥ N (µ2, ηΣ2)) ≤ 1
2

[
∥Σ−1/2

2 Σ1Σ−1/2
2 − Id∥2F + (µ2 − µ1)⊤(η2Σ2)−1(µ2 − µ1)

]
≤ 1

2

[
γ2 + γ2

η2

]

The second term in Eq. (2.2) is bounded by 2γ
√

ln(2/δ). The third term in Eq. (2.2)
is bounded by 2γ ln(2/δ). Finally, the fourth term in Eq. (2.2) is bounded by (1 +
γ)γ

η

√
2 ln(2/δ).

The next lemma shows that RMean(µ, Σ, η) concentrates tightly around µ w.r.t. Ma-
halanobis distance.

1Note that we use that Σ−1
2 Σ1, Σ−1/2

2 Σ1Σ−1/2
2 , Σ1/2

2 Σ−1
1 Σ1/2

2 all have the same spectrum.
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Lemma 5.2.3. Let µ̃ = RMean(µ, Σ, η). Then P
[
∥µ̃− µ∥2Σ ≥ 3η2(d + ln(1/β))

]
≤ β.

Proof. Recall that µ̃ = µ + ηΣ1/2g where g ∼ N (0, Id). Thus, ∥µ̃ − µ∥2Σ = η2∥g∥22.
Applying Lemma 2.3.5 gives that

P
[
∥µ̃− µ∥2Σ ≥ 3η2(d + ln(1/β))

]
= P

[
∥g∥22 ≥ 3(d + ln(1/β))

]
≤ P

[
∥g∥22 ≥ d + 2

√
d ln(1/β) + 2 ln(1/β)

]
≤ 1/β,

where in the first inequality, we used that 2
√

d ln(1/β) ≤ d + ln(1/β).

Proof of Lemma 5.2.1. Note that

γ ≤ εα

24 ln(2/δ)
√

d + ln(1/β)
≤ min

{√
ε

2 ,

√
εα2

6(d + ln(1/β)) ,
ε

8 ln(2/δ) ,
εα

24
√

ln(2/δ)(d + ln(1/β))

}

so the first claim follows by Lemma 2.2.5 and plugging γ and η into Lemma 5.2.2 to
make each term in Eq. (5.2) is at most ε/4. Accuracy follows from Lemma 5.2.3 using
our choice of η.

5.3 Noising the Covariance Matrix

In this section, we prove that the mechanism RCov(Σ, η) = Σ1/2(Id + ηG)(Id +
ηG)⊤Σ1/2 where G ∈ Rd×d is a matrix with independent N (0, 1) entries can privatizes
the covariance matrix.

Define RCov(Σ, η) = Σ1/2(Id + ηG)(Id + ηG)⊤Σ1/2 where G ∈ Rd×d is a matrix with
independent N (0, 1) entries. We require the following lemma which is paraphrased from
Lemma 5.1 and Lemma 5.2 in [AL22].

Lemma 5.3.1 ([AL22, Lemma 5.1, Lemma 5.2]). There are absolute constant C1, C2 > 0
such that the following holds. Let ε, δ, β ∈ (0, 1] and set η = α

C1(
√

d+
√

ln(4/β))
.

• Suppose that γ ≤ εα

C2
√

d(d+ln(4/β))·ln(2/δ)
. If Σ1, Σ2 are positive-definite d× d matri-

ces such that

max{∥Σ1/2
1 Σ−1

2 Σ1/2
1 − Id∥F , ∥Σ1/2

2 Σ−1
1 Σ1/2

2 − Id∥F } ≤ γ
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then RCov(Σ1, η) and RCov(Σ2, η) are (ε, δ)-indistinguishable.

• Let Σ̃ = RCov(Σ, η). Then

max
{
∥Σ−1/2Σ̃Σ−1/2 − Id∥F , ∥Σ̃−1/2ΣΣ̃−1/2 − Id∥F

}
≤ α

with probability at least 1− β.

To prove Lemma 5.3.1, we require the following two lemmas from [AL22]. Note that
Lemma 5.3.3 is slightly different than what is stated in [AL22] but follows easily from
the proof.

Lemma 5.3.2 ([AL22, Lemma 5.1]). Let d ∈ N, η > 0, ε ∈ (0, 1], δ ∈ (0, 1], γ > 0 and
suppose that

γ ≤ min
{√

ε

2d(d + 1/η2) ,
ε

8d
√

ln(2/δ)
,

ε

8 ln(2/δ) ,
εη

12
√

d
√

ln(2/δ)

}
. (5.3)

Let Σ1, Σ2 be two positive-definite d× d matrices. Suppose that

max{∥Σ1/2
1 Σ−1

2 Σ1/2
1 − Id∥F , ∥Σ1/2

2 Σ−1
1 Σ1/2

2 − Id∥F } ≤ γ.

Define RCov(Σ, η) = Σ1/2(I +ηG)(I +ηG)⊤Σ1/2 where G ∼ Rd×d is a matrix with inde-
pendent N (0, 1) entries. Then RCov(Σ1, η) and RCov(Σ2, η) are (ε, δ)-indistinguishable.

Lemma 5.3.3 ([AL22, Lemma 5.2]). There is a sufficiently large constant C > 0 such
that the following holds. Let β > 0 and Σ be a positive-definite d × d matrix and set
η = α

C(
√

d+
√

ln(4/β))
. If Σ̃ = RCov(Σ, η) then

max
{
∥Σ−1/2Σ̃Σ−1/2 − Id∥F , ∥Σ̃−1/2ΣΣ̃−1/2 − Id∥F

}
≤ α

with probability at least 1− β.

Proof of Lemma 5.3.1. For the first assertion, it suffices to show that the inequality in
Eq. (5.3) holds. Since

γ ≤ εα

C2
√

d(d + ln(4/β)) ln(2/δ)
, (5.4)

it is clear that γ is bounded above by the second and third terms of Eq. (5.3) provided
C2 is sufficiently large. Next, we prove that γ is bounded above by the first term in
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Eq. (5.3). Indeed, we have

η2 = α2

C2
1 (
√

d +
√

ln(4/β))2
≥ α2

2C2
1 (d + ln(4/β))

,

where in the last inequality we used the fact that (a + b)2 ≤ 2a2 + 2b2 for any real
numbers a, b. Plugging this bound of η2 into Eq. (5.3) and some calculations give that

√
ε

2d(d + 1/η2) ≥
√

εα2

C3d(d + ln(4/β)) , (5.5)

for some constant C3 > 0. Thus, if C2 is large enough then the right side of Eq. (5.4) is
upper bounded by the right side of Eq. (5.5).

Finally, it is straightforward to check that γ is at most the last term in Eq. (5.4) by
plugging in the value of η.

5.4 Masking a Single Gaussian Component

Now we use the previous three subsections to devise a masking mechanism for mask-
ing a single-component. Let ηW = α√

2+2 ln(1/β)
, ηMean = α√

3(d+ln(1/β))
and ηCov =

α

C1(
√

d+
√

ln(4/β)
for a sufficiently large constant C1. Consider the mechanism

BComp(w, µ, Σ) = (RW(w, ηW),RMean(µ, Σ, ηMean),RCov(Σ, ηCov)) (5.6)

Proof. of Lemma 5.0.2 The fact that BComp is a (γ, 3ε, 3δ)-masking follow from Lemma 5.1.1,
Lemma 5.2.1, and Lemma 5.3.1 along with basic composition. That BComp is (α, 3β)-
concentrated also follow from Lemma 5.1.1, Lemma 5.2.1, and Lemma 5.3.1 along with
a union bound.

We can conclude this section by stating that we develop a masking mechanism for a
single Gaussian component, which is a combination of masking all component parame-
ters; weight w, mean µ, and covariance matrix Σ. In the next chapter, we will turn this
masking mechanism into a masking mechanism for mixtures.
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Chapter 6

Turning a Masking Mechanism
for a Component to a Masking
Mechanism for Mixtures

The goal of this chapter is to show how to “lift” a masking mechanism for a single-
component to a masking mechanism for mixtures. Then we show how to mask a mixture
of k Gaussians.

6.1 A General Recipe

The goal of this section is to show how to “lift” a masking mechanism for a single-
component to a masking mechanism for mixtures. The idea is simple: we add noise to
each of the components and randomly permute the output components.

Formally, let F denote a space and let Fk = F × . . . × F (k times). The following
definition is useful in defining the distance between two mixtures, as it is invariant to
the order of components.

Definition 6.1.1. Let dist denote a distance function on F . The distance function
distk : Fk ×Fk → R≥0 is defined by

distk((F1, . . . , Fk), (F ′
1, . . . , F ′

k)) := min
π

max
i∈[k]

dist(Fi, F ′
π(i)),

where the minimization is taken over all permutations π.

The following definition is useful for extending a masking mechanism for a component
to a masking mechanism for a mixture. The important thing is that the components are
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shuffled randomly, therefore that the outcome is invariant to the original order of the
components.

Definition 6.1.2. Suppose that B is a (γ, ε, δ)-masking mechanism for F , and the
mechanism Bk as (B1, . . . ,Bk), then the mechanism Bk

σ is defined by Bk
σ(F1, . . . , Fk) =

(B(Fσ(1)), . . . ,B(Fσ(k))), where σ is one selected uniformly random permutation.

Suppose that B is an (α, β)-concentrated (γ, ε, δ)-masking mechanism for F . The
next lemma shows that Bk

σ is indeed a masking mechanism w.r.t. (Fk, distk).

Lemma 6.1.1. If B is an (α, β)-concentrated (γ, ε, δ)-masking mechanism for (F , dist)
then, for any δ′ > 0, Bk

σ is an (α, kβ)-concentrated (γ, ε′, kδ + δ′)-masking mechanism
for (Fk, distk) where

ε′ =
√

2k ln(1/δ′)ε + kε(eε − 1).

Proof. First, we prove privacy. Let F = (F1, . . . , Fk) ∈ Fk and F ′ = (F ′
1, . . . , F ′

k) ∈ Fk

be such that distk(F, F ′) ≤ γ. In other words, there exists a permutation π such
that dist(Fi, F ′

π(i)) ≤ γ for all i ∈ [k]. Since B is a (γ, ε, δ)-masking mechanism,
we now that B(Fi),B(F ′

π(i)) are (ε, δ)-indistinguishable. Thus, by advanced compo-
sition (Theorem 2.2.3), (B(F1), . . . ,B(Fk)) and (B(F ′

π(1)), . . . ,B(F ′
π(k))) are (ε′, kδ +

δ′)-indistinguishable with ε′ as stated in the lemma. Since Bk
σ((F ′

1, . . . , F ′
k)) has the

same distribution has Bk
σ((F ′

π(1), . . . , F ′
π(k))), we conclude, using the fact that permu-

tation preserves privacy (see Lemma 2.2.4), that Bk
σ(F ) and Bk

σ(F ′) are (ε′, kδ + δ′)-
indistinguishable.

Finally, it remains to prove accuracy (i.e. that Bk
σ is (α, kβ)-concentrated). Indeed,

given F = (F1, . . . , Fk) ∈ Fk, we know that dist(B(Fi), Fi) ≤ α with probability at least
1 − β. Thus, by a union bound dist(B(Fi), Fi) ≤ α for all i ∈ [k] with probability at
least 1− kβ. We conclude that dist(B(F ), F ) ≤ α with probability at least 1− kβ.

Recall that Theorem 4.3.1 requires that the distance function satisfies an r-restricted
z-approximate. The following lemma shows that distk indeed does satisfy this property
provided that dist does.

Lemma 6.1.2. If dist satisfies an r-restricted z-approximate triangle inequality then so
does distk.

Proof. Let F, F ′, F ′′ ∈ Fk. We need to show that if distk(F, F ′) ≤ r and distk(F ′, F ′′) ≤
r then distk(F, F ′′) ≤ z·(distk(F, F ′)+distk(F ′, F ′′)). To that end, let π∗

1 ∈ arg minπ maxi∈[k](Fi, F ′
π(i))
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and let π∗
2 ∈ arg minπ max∈[k](F ′

π∗
1(i), F ′′

π(i)). Since dist satisfies r-restricted z-approximate
triangle inequality and for any i, dist(Fi, F ′

π∗
1(i)), dist(F ′

π∗
1(i), F ′′

π∗
2(i)) ≤ r, we have

dist(Fi, F ′′
π∗

2(i)) ≤ z ·
(
dist(Fi, F ′

π∗
1(i)) + dist(F ′

π∗
1(i), F ′′

π∗
2(i))

)
≤ z ·

(
distk(F, F ′) + distk(F ′, F ′′)

)
.

In particular

distk(F, F ′′) ≤ max
i∈[k]

dist(Fi, F ′′
π∗

2(i)) ≤ z ·
(
distk(F, F ′) + distk(F ′, F ′′)

)
, (6.1)

as required.

The following two lemmas show that both Bk
σ and distk can be computed with poly-

nomial (in k) overhead.

Lemma 6.1.3. If BSingle is the running time of B then Bk
σ can be computed in time

TB = O(k · BSingle + k log k).

Proof. Computing Bk
σ only requires computing BSingle a total of k times and finding

permutation. The former takes time O(k · BSingle) and the latter takes time O(k log k)
(say by sampling k uniform random numbers in [0, 1] and then sorting).

Lemma 6.1.4. If distSingle is the running time to compute dist then distk can be com-
puted in time Tdist = O(k2 distSingle +k3 log k).

Proof. The plan is to reduce the problem of computing distk to binary search and check-
ing if a bipartite graph has a perfect matching.

First, we compute dist(Fi, Fj) for every i, j ∈ [k]. This takes time k2 distSingle. Note
that

distk((F1, . . . , Fk), (F ′
1, . . . , F ′

k))

must be one of these k2 values. In addition, observe that we can determine if

distk((F1, . . . , Fk), (F ′
1, . . . , F ′

k)) ≤ x

for any number x by consider the following bipartite graph. The disjoint node sets
are {F1, . . . , Fk} and {F ′

1, . . . , F ′
k} and there is an edge between Fi, F ′

j if and only if
dist(Fi, F ′

j) ≤ x. We then determine if there is a complete bipartite matching on
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this graph, which takes time at most O(k3) (e.g. by using the Hungarian algorithm).
Thus, we can simply combine this with a binary search on the sorted values given by
{dist(Fi, F ′

j)}i,j′ to compute distk.

6.2 A Masking Mechanism for GMMs

In this section, we show how to mask a mixture of k Gaussians. Let FGmm = FComp×
. . .×FComp (k times). Note we drop k from FGmm (and related notation below) since k

is fixed and implied from context. Let distComp be as defined in Eq. (5.1) and define the
distance

distParam({(wi, µi, Σi)}i∈[k], {(w′
i, µ′

i, Σ′
i)}i∈[k]) = min

π
max
i∈[k]

distComp((wπ(i), µπ(i), Σπ(i)), (w′
i, µ′

i, Σ′
i)).

where π is chosen from the set of all permutations over [k]. Now define the masking
mechanism

BGmm({(wi, µi, Σi)}i∈[k]) = {BComp(wσ(i), µσ(i), Σσ(i))}i∈[k]

where BComp is defined in Eq. 5.6, and σ is a permutation chosen uniformly at random
from the set of all permutations over [k]. Intuitively, randomly shuffling the components
makes the outcome of masking insensitive to the order of components in the input of the
masking.

Now we define the main Lemma for masking mechanism for GMMs.

Lemma 6.2.1. Let ε < ln(2)/3. There is a sufficiently large constant C2 such that
for γ ≤ εα

C2
√

k ln(2/δ)
√

d(d+ln(12k/β))·ln(12k/δ)
, BGmm is a (γ, ε, δ)-masking mechanism with

respect to (FGmm, distParam). Moreover, BGmm is (α, β)-concentrated.

Proof. Applying Lemma 6.1.1 for masking mixtures (with ε, δ in Lemma 6.1.1 replaced
by 3ε, 3δ, respectively), we have, for every δ′ > 0, that BGmm is a (γ, ε′, 3kδ +δ′)-masking
mechanism where

ε′ = 3
√

2k ln(1/δ′)ε + 3kε(e3ε − 1).

a (γ, 3
√

2k ln(1/δ′)ε + 3kε(e3ε − 1), 3kδ + δ′)-masking mechanism. As this is true for
any δ′, we can take δ′ = 3kδ and applying the numeric inequality ex ≤ 1 + 2x, valid for
x < ln(2) (see Fact 2.3.7) to get that

ε′ ≤ 3
√

2k ln(1/3kδ)ε + 18kε2,
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Finally, to prove the accuracy part (BGmm is (α, 3kβ)-concentrated), we apply the
accuracy part of Lemma 6.1.1 for masking mixtures which was proved by union bound
for all i ∈ [k]. Also defining the distance to be the maximum between all three component
parameters; weight w, mean µ, and covariance matrix Σ.

distParam({(wi, µi, Σi)}i∈[k], {(w′
i, µ′

i, Σ′
i)}i∈[k]) = min

π
max
i∈[k]

distComp((wπ(i), µπ(i), Σπ(i)), (w′
i, µ′

i, Σ′
i)).

We can conclude that

distParam(BGmm({(wi, µi, Σi)}i∈[k]), {(wi, µi, Σi)}i∈[k]) ≤ α

with probability at least 1− 3kβ.

Now we have BGmm is a (γ, 3
√

2k ln(1/3kδ)ε + 18kε2, 6kδ)-masking mechanism with
respect to (FGmm, distParam). Moreover, BGmm is (α, 3kβ)-concentrated.

To simplify it, let ε′ < ln(2)/3, δ′ < 1, α′ < 1, β′ < 1 be parameters. We set δ =
δ′/6k, β = β′/3k, α = α′ and ε = min

{
ε′

6
√

2k ln(1/3kδ)
,
√

ε′

36k

}
≥ ε′√

72k ln(2/δ′)
. Then for

sufficiently large constant C such that if γ ≤ ε′α′

C2
√

k ln(2/δ′)
√

d(d+ln(12k/β′))·ln(12k/δ′)
, BGmm

is a (γ, ε′, δ′)-masking mechanism that is (α′, β′)-concentrated. This proves the claim.

We can use the masking mechanism BGmm in Lemma 6.2.1, and apply it into PPE
Algorithm 1 saying that BGmm(Y1), BGmm(Y2) are indistinguishable (Definition 2.2.2)
provided Y1, Y2 (the output of non-private algorithm A) are γ close with respect to
distParam.

The distParam in Lemma 6.2.1 has to satisfy approximate triangle inequality. The
following lemma shows that distParam indeed does satisfy this property provided that
distComp and distk does.

Lemma 6.2.2. distParam satisfies a 1-restricted (3/2)-approximate triangle inequality.

Proof. Lemma 5.0.1 implies that distComp satisfies 1-restricted (3/2)-approximate tri-
angle inequality. Therfore, applying Lemma 6.1.2 distParam satisfies 1-restricted (3/2)-
approximate triangle inequality.
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Algorithm 2 GMM Masking Mechanism
Input: GMM defined by Yj = (FComp(w1, µ1, Σ1), . . . ,FComp(wk, µk, Σk)); Parameters
w ∈ (0, 1)

1: function RW(w, ηW)
2: Let g ∼ N (0, 1)
3: ηW ← α√

2+2 ln(1/β)
▷ Lemma 5.1.1

4: Return w + ηWg

5: function RMean(µ, Σ, ηMean)
6: Let g ∼ N (0, Σ)
7: ηMean ← α√

3(d+ln(1/β))
▷ Lemma 5.2.1

8: Return µ + ηMeang

9: function RCov(Σ, ηCov)
10: Let G ∈ Rd×d matrix with independent N (0, 1) entries; c1 is a sufficiently large

constant
11: ηCov ← α

C1(
√

d+
√

ln(4/β)
▷ Lemma 5.3.1

12: Return Σ1/2(Id + ηCovG)(Id + ηCovG)⊤Σ1/2

13: function BComp(w, µ, Σ)
14: Return (RW(w, ηW),RMean(µ, Σ, ηMean),RCov(Σ, ηCov))
15: function BGmm({(wi, µi, Σi)}i∈[k])
16: Return {BComp(wσ(i), µσ(i), Σσ(i))}i∈[k] ▷ where σ is a uniformly random

permutation
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Chapter 7

Private to Non-Private Reduction
for Learning GMMs and
Applications

In this chapter, we show and prove our main result which is a general theorem to
reduce the learning GMMs parameters’ from private to its non-private counterpart. After
that, we apply it to a non-private algorithm. We specifically pick [MV10] non-private
algorithm. As a result, we introduce the first sample complexity upper bound and the
first polynomial time algorithm in d for learning the parameters of the Gaussian Mixture
Models privately without requiring any boundedness assumptions on the parameters.

7.1 Private to Non-Private Reduction for Learning GMMs

In this section, we show and prove our main result which is a general theorem to
reduce the learning GMMs parameters’ from private to its non-private counterpart. This
theorem allows us to privatize existing non-private algorithms in a BlackBox manner
while only incurring a small overhead in sample complexity and running time.

Before we present the private to non-private reduction for learning GMMs. We need
to remark that our developed masking mechanism Lemma 6.2.1 considers the distance
between the GMMs with respect to distParam. Whereas our reduction framework and
the non-private algorithm in [MV10] consider the distance between the GMMs with
respect to distGmm. Thus, we had to translate distParam into TV distance using the
bound mentioned in [DMR18] as we show in Lemma 7.1.1. This translation is for a
single Gaussian so we extended that bound for mixtures as we show in Lemma 7.1.2. As

39



M.Sc. Thesis — Jamil Arbas; McMaster University– Computing and Software

a result, if two GMMs are close in distGmm, then they will be close in distParam up to a
constant factor.

First, we need to bound the total variation (TV) distance between Gaussians as
follows.

Lemma 7.1.1. Let µ1, µ2 ∈ Rd and Σ1, Σ2 be full-rank d×d PD matrices. Suppose that
dTV (N (µ1, Σ1),N (µ2, Σ2)) < 1

600 . Let

∆ = max
{
∥Σ−1/2

1 Σ2Σ−1/2
1 − Id∥F , ∥Σ−1

1 (µ1 − µ2)∥2
}

Then
1

200∆ ≤ dTV (N (µ1, Σ1),N (µ2, Σ2)) ≤ 1√
2

∆

Proof. The lower bound follows from Lemma 2.4.5.

Now we prove the upper bound. By Lemma 2.4.5(i) the eigenvalues of Σ−1
2 Σ1 are

strictly larger than 1/2. Therefore, using Fact 2.3.3 we know that

DKL (N (µ1, Σ1) ∥ N (µ2, Σ2)) ≤ 1
2

[
∥Σ−1/2

2 Σ1Σ−1/2
2 − I∥2F + (µ2 − µ1)⊤Σ−1

2 (µ2 − µ1)
]
.

Using Pinsker’s inequality (Lemma 2.3.4) we have

dTV (N (µ1, Σ1),N (µ2, Σ2)) ≤ 1
2

√[
∥Σ−1/2

2 Σ1Σ−1/2
2 − I∥2F + (µ2 − µ1)⊤Σ−1

2 (µ2 − µ1)
]
≤ ∆√

2

which concludes the proof.

Next step is to bound the total variation (TV) distance between GMMs with same
number of components as following.

Lemma 7.1.2. Let F = (wi, µi, Σi)k
i=1 and F ′ = (w′

i, µ′
i, Σ′

i)
k
i=1 be two d-dimensional

GMMs where Σi and Σ′
i are PD matrices. Suppose that distGmm (F, F ′) < 1

600 . Then

1
200 distParam(F, F ′) ≤ distGmm(F, F ′) ≤ 1√

2
distParam(F, F ′)

Proof. Recall from Definition 2.1.3 that distGmm is defined as distGmm
(
(wi, µi, Σi)k

i=1 , (w′
i, µ′

i, Σ′
i)

k
i=1

)
= min

π
max
i∈[k]

max
{
|wi − w

′

π(i)|, dTV
(
N (µi, Σi),N (µ′

π(i), Σ′

π(i))
)}

(7.1)
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where π is chosen from the set of all permutations over [k].

Mapping Lemma 7.1.1 for every component i ∈ k for F, F ′ will keep the same in-
equalities, so that

1
200∆k ≤ min

π
max
i∈[k]

max
{
|wi − w

′

π(i)|, dTV
(
N (µi, Σi),N (µ′

π(i), Σ′

π(i))
)}
≤ 1√

2
∆k (7.2)

where

∆k = min
π

max
i∈[k]

max{|wi − w
′

π(i)|, distMean((µi, Σi), (µ′

π(i), Σ′

π(i))), distCov(Σi, Σ′

π(i))}

which makes ∆k has the same definition of distParam(F, F ′) in Section 6.2 which
defined by

distParam(F, F ′) = min
π

max
i∈[k]

distComp((wπ(i), µπ(i), Σπ(i)), (w′
i, µ′

i, Σ′
i)).

where

distComp((wi, µi, Σi),(w′
i, µ′

i, Σ′
i))

= max{|wi − w′
i|, distMean((µi, Σi), (µ′

i, Σ′
i)), distCov(Σi, Σ′

i)}

So ∆k = distParam(F, F ′), applying that in Equation 7.2, we will have

1
200 distParam(F, F ′) ≤ distGmm(F, F ′) ≤ 1√

2
distParam(F, F ′)

which conclude the proof

Now we define the PAC learning of parameters of GMMs.

Definition 7.1.1 (PAC Learning of Parameters of GMMs). Let F =
{(

wj
i , µj

i , Σj
i

)k

i=1

}j

be any class of d-dimensional GMMs with k components1. Let A be function that receives
a sequences S of instances in Rd and outputs a mixture F̂ = (ŵi, µ̂i, Σ̂i)k

i=1. Let m :
(0, 1)2 → N. We say A learns F with m samples if for every α, β ∈ (0, 1) and every

1For examples, it is standard to pick F to be those GMMs that are separable/identifiable.
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F ∈ F , if S is an i.i.d. sample of size m(α, β) from F , then distGmm(F, F̂ ) < α with
probability at least 1− β.

Finally we introduce our general theorem to reduce the learning of GMMs parameters’
from private to its non-private counterpart.

Theorem 7.1.3 (Private to Non-Private Reduction). Let F be any subclass of GMMs
with k components in Rd. Let A be a non-private Algorithm that PAC learns F with
respect to distGmm using mnon-private(α, β, k, d) samples. Then for every ε < ln(2)/3,
δ ∈ (0, 1), γ ≤ εα

C2
√

k ln(2/δ)
√

d(d+ln(12k/β))·ln(12k/δ)
for a sufficiently large constant C and

t = max{5, ⌈20
ε ln(1 + eε−1

2δ )⌉}, there is a learner Aprivate with the following properties:

1. Aprivate is (2ε, 4eεδ)-DP.

2. Aprivate PAC learns F using O(mnon-private(γ, β/2t, k, d) log(1/δ)/ε) samples.

3. Aprivate runs in time O((log(1/δ)/ε) ·TA + (log(1/δ)/ε)2 · (k2d3 + k3 log k)), where
TA is the running time for the non-private algorithm.

Proof. In order to use Algorithm 1 we need to define a masking mechanism, so we use
the masking mechanism BGmm that defined in Lemma 6.2.1. However, α in Lemma 6.2.1
will be replaced with α/2z from Theorem 4.3.1, also β in Lemma 6.2.1 will be replaced
with β/2t, because probability is divided over subsets, and also divided between the
non-private algorithm and the concentration in masking mechanism BGmm.

1. The hypothesis of Theorem 4.3.1 holds so it is true.

2. mprivate ≥ max{5, ⌈20
ε ln(1 + eε−1

2δ )⌉} ·mnon-private(γ, β/2t, k, d) =

O(mnon-private(γ, β/2t, k, d) log(1/δ)/ε) (7.3)

3. Recall from Remark 4.3.2, Aprivate runs in time O(t · TA + t2 · Tdist + TB).

We start proving Tdist, running time to multiply two d × d matrices is O(d3),
this implies distSingle in Equation 5.1 is computed in time of O(d3), applying
Lemma 6.1.4 implies that we can compute distk in O(k2d3 + k3 log k).

Now we prove TB, masking each component takes time O(d3) because of ma-
trix multiplication in Algorithm 2, to compute the masking on GMM we apply
Lemma 6.1.3 so it takes time of O(k · d3 + k log k).
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Finally, t = max{5, ⌈20
ε ln(1 + eε−1

2δ )⌉} = O(log(1/δ)/ε) which is the number of
subsets.

which concludes the proof.

7.2 Applications in Private Learning of GMMs

In this section, we apply the general theorem to reduce the learning GMMs parame-
ters’ from private to its non-private counterpart. We specifically pick [MV10] non-private
algorithm. As a result, we introduce the first sample complexity upper bound and the
first polynomial time algorithm in d for learning the parameters of the Gaussian Mixture
Models privately without requiring any boundedness assumptions on the parameters.

Definition 7.2.1 (α-statistically learnable [MV10]). We say a GMM F = (wi, µi, Σi)k
i=1

is γ-statistically learnable if mini wi ≥ γ and mini ̸=j dTV (N (µi, Σi),N (µj , Σj)) ≥ γ.

If a GMM is γ-statistically learnable, means they are far from each other with certain
distance γ. We will be able to recover its components accurately.

Theorem 7.2.1 (Non-private learning of GMMs [MV10]). There exist an algorithm
A(D, α, β) that has the following property: for any fixed k ∈ N, given an i.i.d. sample
D of size mA(d, k, α, β) generated from F ∗, where F ∗ is any α-statistically learnable
d-dimensional GMM with k components, A returns F̂ such that with probability at least
1− β, F ∗ and F̂ are α-close with respect to distGmm. Moreover, for any fixed k ∈ N, the
sample complexity, mA(d, k, α, β), and the running time are polynomial in d, 1/α and
1/β.

Our reduction algorithm with non-private learner of GMMs [MV10], gives the first
sample complexity upper bound and the first polynomial time algorithm in d for learn-
ing the parameters of the Gaussian Mixture Models privately without requiring any
boundedness assumptions on the parameters.

Corollary 7.2.2. There exist an algorithm A(D, α, β, ε, δ) that if given an i.i.d sample
D of size mA(d, k, α, β, ε, δ) generated from F∗, where F∗ is any α-statistically learnable
subclass of GMMs with k components in Rd for any fixed k ∈ N, then A will privately
PAC learns F∗ and returns F̂ with respect to distGmm with propability at least 1−β such
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that F ∗ and F̂ are α-close with respect to distGmm. Moreover, for any fixed k ∈ N, the
sample complexity, mA(d, k, α, β, ε, δ), and the running time are polynomial in d, 1/α,
1/β, 1/ε, log(1/δ).

Proof. We could plug in non-private Theorem 7.2.1 into the reduction Theorem 7.1.3 to
make it private.

In conclusion, we showed a general theorem to reduce the learning of parameters of
GMMs from private to there non-private counterpart. And we applied on non-private
algorithm [MV10]. As a result, We could reach the first sample complexity upper bound
and the first polynomial time algorithm in d for learning the parameters of the Gaus-
sian Mixture Models privately without requiring any boundedness assumptions on the
parameters. We incurred a small overhead in sample complexity and running time over
the algorithm in [MV10].
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Chapter 8

Conclusion

8.1 Summary

In this thesis, we develop a technique that allows us to privatize existing non-private
algorithms in a BlackBox manner while only incurring a small overhead in sample com-
plexity and running time. We further show that we can learn the unbounded Gaussian
Mixture Model privately.

To prove the results we introduced a Private Populous Estimator (PPE) which is a
generalized version of the one used in [AL22]. We also simplified the notion from a convex
semimetric space to semimetric space and lessen convexity and locality properties.

We develop a new masking mechanism for a single Gaussian component, which re-
quires adding noise to all component parameters. Firstly, noise the mixing weight of a
single component using a Gaussian mechanism. Secondly, noise the mean of a single com-
ponent using empirically re-scaled Gaussian mechanism where the empirical covariance
matrix is used to shape the noise that we add to the mean. Finally, noise the covariance
matrix of a single component using the noising mechanism described in [AL22, §5].

As a major achievement, we introduced a general recipe to turn a masking mechanism
for a component into a masking mechanism for mixtures. The idea is simple, we add
noise to each of the components and then permute the output. Then we applied it to
mask a mixture of k Gaussians.

In the results, we introduced our Private to Non-Private Reduction theorem for learn-
ing GMMs. We also applied this reduction on [MV10] non-private algorithm, to get the
first sample complexity upper bound and the first polynomial time algorithm in d for
learning the parameters of the Gaussian Mixture Models privately without requiring any
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boundedness assumptions on the parameters. We incurred a small overhead in sample
complexity and running time over the algorithm in [MV10].

8.2 Future Work

More ambitiously, we can investigate if there is an efficient algorithm for learning un-
bounded GMMs robustly, where a small fraction of the samples are arbitrarily corrupted
by an adversary. First, we draw m i.i.d. samples from a GMM. Then, the adversary
chooses at most αm samples and modifies them arbitrarily. This raises the question
below.

Is there a polynomial time and polynomial sample reduction from private
and robust learning to non-private and robust learning of mixtures?

If so, it is possible to obtain the first polynomial time algorithm for private and robust
learning of unbounded GMMs.

Another possible work as an extension to this thesis is to extend the reduction from
GMMs to more general cases, such as mixtures of exponential distributions and laplacian
mixture modeling. The target would be to privately estimate the parameters of these
mixtures by reducing the problem to its non-private counterpart, and utilizing existing
non-private parameter estimation algorithms in a BlackBox manner while only incurring
a small overhead in sample complexity and running time. Our PPE framework could
work efficiently for all other types of mixtures. The only drawback is that we need a
new masking mechanism for each type.

46

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


Bibliography

[AAK21] Ishaq Aden-Ali, Hassan Ashtiani, and Gautam Kamath. “On the sample
complexity of privately learning unbounded high-dimensional gaussians”.
In: Algorithmic Learning Theory. PMLR. 2021, pp. 185–216.

[AAL21] Ishaq Aden-Ali, Hassan Ashtiani, and Christopher Liaw. “Privately learn-
ing mixtures of axis-aligned gaussians”. In: Advances in Neural Informa-
tion Processing Systems 34 (2021), pp. 3925–3938.

[AL22] Hassan Ashtiani and Christopher Liaw. “Private and polynomial time
algorithms for learning Gaussians and beyond”. In: Proceedings of Thirty
Fifth Conference on Learning Theory. Ed. by Po-Ling Loh and Maxim
Raginsky. Vol. 178. Proceedings of Machine Learning Research. PMLR,
Feb. 2022, pp. 1075–1076.

[AM05] Dimitris Achlioptas and Frank McSherry. “On spectral learning of mix-
tures of distributions”. In: International Conference on Computational
Learning Theory. Springer. 2005, pp. 458–469.

[ASZ21] Jayadev Acharya, Ziteng Sun, and Huanyu Zhang. “Differentially private
assouad, fano, and le cam”. In: Algorithmic Learning Theory. PMLR.
2021, pp. 48–78.

[BDJKKV22] Ainesh Bakshi, Ilias Diakonikolas, He Jia, Daniel M Kane, Pravesh K
Kothari, and Santosh S Vempala. “Robustly learning mixtures of k ar-
bitrary gaussians”. In: Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing. 2022, pp. 1234–1247.

[BDKU20] Sourav Biswas, Yihe Dong, Gautam Kamath, and Jonathan Ullman.
“Coinpress: Practical private mean and covariance estimation”. In: Ad-
vances in Neural Information Processing Systems 33 (2020), pp. 14475–
14485.

47



Bibliography

[BGSUZ21] Gavin Brown, Marco Gaboardi, Adam Smith, Jonathan Ullman, and
Lydia Zakynthinou. “Covariance-aware private mean estimation with-
out private covariance estimation”. In: Advances in Neural Information
Processing Systems 34 (2021), pp. 7950–7964.

[BS09] Mikhail Belkin and Kaushik Sinha. “Learning Gaussian mixtures with
arbitrary separation”. In: arXiv preprint arXiv:0907.1054 (2009).

[BS10] Mikhail Belkin and Kaushik Sinha. “Polynomial learning of distribu-
tion families”. In: 2010 IEEE 51st Annual Symposium on Foundations
of Computer Science. IEEE. 2010, pp. 103–112.

[BSKW19] Mark Bun, Thomas Steinke, Gautam Kamath, and Zhiwei Steven Wu.
“Private hypothesis selection”. In: Advances in Neural Information Pro-
cessing Systems 32 (2019).

[BV08] S Charles Brubaker and Santosh S Vempala. “Isotropic PCA and affine-
invariant clustering”. In: Building Bridges. Springer, 2008, pp. 241–281.

[Das99] Sanjoy Dasgupta. “Learning mixtures of Gaussians”. In: 40th Annual
Symposium on Foundations of Computer Science (Cat. No. 99CB37039).
IEEE. 1999, pp. 634–644.

[DKMMN06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov,
and Moni Naor. “Our data, ourselves: Privacy via distributed noise gen-
eration”. In: Annual international conference on the theory and applica-
tions of cryptographic techniques. Springer. 2006, pp. 486–503.

[DL09] Cynthia Dwork and Jing Lei. “Differential privacy and robust statistics”.
In: Proceedings of the forty-first annual ACM symposium on Theory of
computing. 2009, pp. 371–380.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. “Cal-
ibrating Noise to Sensitivity in Private Data Analysis”. In: vol. Vol. 3876.
Jan. 2006, pp. 265–284. isbn: 978-3-540-32731-8.

[DMR18] Luc Devroye, Abbas Mehrabian, and Tommy Reddad. “The total vari-
ation distance between high-dimensional Gaussians”. In: arXiv preprint
arXiv:1810.08693 (2018).

[DR+14] Cynthia Dwork, Aaron Roth, et al. “The algorithmic foundations of dif-
ferential privacy”. In: Foundations and Trends® in Theoretical Computer
Science 9.3–4 (2014), pp. 211–407.

48



Bibliography

[DRV10] Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. “Boosting and
Differential Privacy”. In: 2010 IEEE 51st Annual Symposium on Foun-
dations of Computer Science (2010), pp. 51–60.

[FSO06] Jon Feldman, Rocco A Servedio, and Ryan O’Donnell. “PAC learning
axis-aligned mixtures of Gaussians with no separation assumption”. In:
International Conference on Computational Learning Theory. Springer.
2006, pp. 20–34.

[GDGK18] Quan Geng, Wei Ding, Ruiqi Guo, and Sanjiv Kumar. “Truncated Lapla-
cian mechanism for approximate differential privacy”. In: arXiv preprint
arXiv:1810.00877 (2018).

[KLSU19] Gautam Kamath, Jerry Li, Vikrant Singhal, and Jonathan Ullman. “Pri-
vately learning high-dimensional distributions”. In: Conference on Learn-
ing Theory. PMLR. 2019, pp. 1853–1902.

[KMSSU22] Gautam Kamath, Argyris Mouzakis, Vikrant Singhal, Thomas Steinke,
and Jonathan Ullman. “A Private and Computationally-Efficient Esti-
mator for Unbounded Gaussians”. In: Proceedings of Thirty Fifth Con-
ference on Learning Theory. Ed. by Po-Ling Loh and Maxim Raginsky.
Vol. 178. Proceedings of Machine Learning Research. PMLR, Feb. 2022,
pp. 544–572.

[KMV10] Adam Tauman Kalai, Ankur Moitra, and Gregory Valiant. “Efficiently
learning mixtures of two Gaussians”. In: Proceedings of the forty-second
ACM symposium on Theory of computing. 2010, pp. 553–562.

[KMV22] Pravesh Kothari, Pasin Manurangsi, and Ameya Velingker. “Private ro-
bust estimation by stabilizing convex relaxations”. In: Conference on
Learning Theory. PMLR. 2022, pp. 723–777.

[KSSU19] Gautam Kamath, Or Sheffet, Vikrant Singhal, and Jonathan Ullman.
“Differentially private algorithms for learning mixtures of separated gaus-
sians”. In: Advances in Neural Information Processing Systems 32 (2019).

[KV17] Vishesh Karwa and Salil Vadhan. “Finite sample differentially private
confidence intervals”. In: arXiv preprint arXiv:1711.03908 (2017).

[LM00] Beatrice Laurent and Pascal Massart. “Adaptive estimation of a quadratic
functional by model selection”. In: Annals of Statistics (2000), pp. 1302–
1338.

49



Bibliography

[LM21] Allen Liu and Ankur Moitra. “Settling the robust learnability of mix-
tures of gaussians”. In: Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing. 2021, pp. 518–531.

[LM22] Allen Liu and Ankur Moitra. “Learning gmms with nearly optimal ro-
bustness guarantees”. In: Conference on Learning Theory. PMLR. 2022,
pp. 2815–2895.

[MV10] Ankur Moitra and Gregory Valiant. “Settling the polynomial learnability
of mixtures of gaussians”. In: 2010 IEEE 51st Annual Symposium on
Foundations of Computer Science. IEEE. 2010, pp. 93–102.

[NRS07] Kobbi Nissim, Sofya Raskhodnikova, and Adam D. Smith. “Smooth sen-
sitivity and sampling in private data analysis”. In: STOC ’07. 2007.

[SK01] Arora Sanjeev and Ravi Kannan. “Learning mixtures of arbitrary gaus-
sians”. In: Proceedings of the thirty-third annual ACM symposium on
Theory of computing. 2001, pp. 247–257.

[TCKMS22] Eliad Tsfadia, Edith Cohen, Haim Kaplan, Yishay Mansour, and Uri
Stemmer. “Friendlycore: Practical differentially private aggregation”. In:
International Conference on Machine Learning. PMLR. 2022, pp. 21828–
21863.

[VW04] Santosh Vempala and Grant Wang. “A spectral algorithm for learning
mixture models”. In: Journal of Computer and System Sciences 68.4
(2004), pp. 841–860.

50


	Declaration
	Lay Abstract
	Abstract
	Acknowledgements
	Introduction
	Learning Unbounded Gaussian Mixture Model Privately
	Overview of used Techniques
	Summary of Contributions
	Thesis Organization

	Background
	Preliminaries
	Differential Privacy
	Standard Probability Facts
	TV Distance of Gaussian Distributions

	Related Work
	Privately Estimating the Parameters of Mixtures
	Private Density Estimation of Mixtures
	Learning Gaussians Privately
	Efficient Algorithms for Learning Gaussians

	Private Populous Estimator
	The Notion of a Semimetric Space
	Masking Mechanism According to Semimetric Space
	Private Populous Estimator Algorithm

	Masking a Single Gaussian Component
	Noising the Mixing Weights
	Noising the Mean
	Noising the Covariance Matrix
	Masking a Single Gaussian Component

	Turning a Masking Mechanism for a Component to a Masking Mechanism for Mixtures
	A General Recipe
	A Masking Mechanism for GMMs

	Private to Non-Private Reduction for Learning GMMs and Applications
	Private to Non-Private Reduction for Learning GMMs
	Applications in Private Learning of GMMs

	Conclusion
	Summary
	Future Work

	Bibliography

