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Abstract 

The present research involves the development of a computational framework for 

numerical analysis of large-scale masonry structures. The main challenges in the analysis 

of existing structures of historic or strategic importance are the lack of information on the 

macroscale behaviour of masonry and the high computational cost of mesoscale analysis. 

The former requires extensive experimental programs that are virtually impossible 

without significantly affecting the structural integrity of the existing buildings. The latter, 

i.e. the mesoscale approach, requires only information on the behaviour of masonry 

constituents; however, it cannot be applied to analysis of structures that span hundreds of 

meters due to the required computational effort. To address these challenges, first a 

simplified mesoscale framework was developed incorporating an embedded discontinuity 

approach to model discrete crack initiation and propagation through masonry 

constituents. The approach enables the use of a simple unstructured finite element mesh 

and is computationally accurate and efficient. The proposed framework was validated 

against various experimental investigations on small-scale masonry assemblages. The 

second part of the research involved the development of a macroscale formulation for 

modelling masonry as a continuum with an underlying microstructure that exhibits 

anisotropic deformation and orientation-dependent strength characteristics. The 

identification of the constitutive parameters for the macroscale model was accomplished 

by simulating a series of biaxial and uniaxial tension-compression tests on masonry 

panels at different orientation of bed joints. Since the macroscale strength properties are 

highly dependent on the arrangement of masonry constituents and their individual 
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strength properties, changing any of these parameters requires a repetition of the entire 

numerical procedure. To address this challenge, a series of artificial neural networks was 

developed that can predict the macroscale strength and deformation properties of masonry 

based on the mechanical properties of constituents. In addition, another neural network 

was developed to assess the average orientation of macrocracks at the onset of failure at 

the macroscale. The results of the developed macroscale framework were compared with 

the mesoscale approach for analysis of a large-scale masonry wall.  
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1. Introduction 

1.1. Motivation and Scope of Study 

One of the oldest structural materials that has become a part of the cultural and historical 

heritage of many countries is masonry. Over the past centuries, the engineers have 

constructed complex structures that withstand the test of time and natural hazards. For 

structures of high strategic importance or historical significance, an in-depth 

understanding of their mechanical behaviour is an imperative aspect of the maintenance 

and rehabilitation under potential natural or human-made hazards. However, as shown by 

years of research in this field, this is not a simple task due to the complexities that arise in 

predicting the mechanical response under the actual loading conditions. 

Even though the geometry of the structure and the arrangement of masonry units can have 

a significant effect on the mechanical behaviour, there are distinguishable and frequently 

occurring mechanisms that are predominantly present under typical loading conditions. 

Those include the onset and propagation of damage along the brick-mortar interfaces, 

which are the weakest link in the system. In some cases, the cracks may also form within 

the brick and penetrate through the mortar joints forming a fracture mechanism that 

triggers the collapse of the structure. 

Different deformation and strength properties of constituents and their interactions are the 

main reasons why the masonry, as a composite material, exhibits strongly anisotropic 

behaviour. At the macroscale, the masonry is stronger in compression than it is in tension, 

resulting in good performance in the presence of significant gravitational loads. This 
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characteristic, however, makes masonry structures susceptible to lateral loads which are 

usually present during seismic events or blast loads such as explosions. 

The variety of local fracture modes at the level of constituents, which include brick-

mortar bond sliding or separation, shear or tensile crack propagation inside the bricks, and 

fracture of mortar joints, render the accurate prediction of mechanical response of 

masonry at a structural level a complex and difficult challenge. A number of different 

methodologies for computational analysis of structural masonry have been pursued in the 

last few decades. The main factors in assessing the suitability of a given method are the 

amount of information available with regards to mechanical characteristics of the 

constituents, which can be difficult to obtain in case of existing structures, the 

dimensional scale of the problem which directly affects the computational cost, and the 

required input data which depends on the methodology of choice. 

Given the ever-increasing capability of computational resources, methods such as finite 

element analysis have proven to be an effective approach for predicting the nonlinear 

mechanical response of masonry structures. In order to capture the localization of 

deformation, which is the fons et origo of the complex nonlinear behaviour of masonry, 

different approaches such as fracture mechanics, damage mechanics, and plasticity theory 

have been implemented. They all have their own advantages and drawbacks that need to 

be taken into account considering the nature of the problem and the data available for a 

given project. 
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Computational approaches for analysis of masonry can also be categorized based on the 

scale of the problem. For small structures and masonry assemblages, mesoscale approach 

is usually taken in which the constituents and their interfaces are modeled individually. In 

order to yield accurate results, this approach requires the availability of mechanical 

properties of masonry components as well as the strength properties of the brick-mortar 

bond. Moreover, the localized deformation within the brick units, which is associated 

with strain-softening response, may be considered in a discrete or smeared sense 

depending on the method of choice.  

The drawback of mesoscale approach is the high computational cost which becomes a 

prohibitive factor as the size of the problem increases. In such cases, macroscale 

approaches are used where the masonry is considered as a homogenous anisotropic 

continuum. The macroscale approach is computationally efficient but is 

phenomenological in nature, requiring a significant amount of information on the stress-

strain response of masonry assemblages large enough (with respect to the size of 

constituents) to be considered a homogenized medium. Conventionally, this information 

is obtained through laboratory experiments on masonry panels with loading conditions 

involving a uniform stress applied at the boundaries of the specimen. The complete 

formulation of a macroscale constitutive law requires the anisotropic elastic and strength 

properties of masonry which are obtained through multiple experiments corresponding to 

different orientations of material axes. 

Besides the fact that laboratory experiments are expensive, time consuming, and prone to 

human errors, another challenging factor in case of existing structures is obtaining proper 
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samples for multiple experiments without affecting the integrity of the structure. This is 

an impossible task, especially for historic structures and buildings with strategically 

sensitive applications. In these cases, only small samples can be extracted which may be 

suitable to define the properties of constituents, but not the response at the macroscale. 

The apparent gap between the mesoscale and macroscale approaches can be bridged 

through different homogenization techniques, e.g. by considering masonry as a periodic 

medium or by considering a combination of constituents as a representative elementary 

volume (REV). Additionally, multiscale approaches may also be employed where the 

macroscale stress-strain response is obtained by solving the correspondent boundary 

value problem on a smaller scale. The latter approach is rigorous but computationally 

expensive in case of large-scale structures. 

Given the state-of-the-art methods and the present challenges, the purpose of this study is 

to develop a computational framework for numerical analysis of large masonry structures 

using limited input data incorporating the mechanical characteristics of masonry 

constituents. The main objectives of this task can be summarized as follows: 

• Development of a mesoscale approach where discrete crack formation and 

propagation in masonry constituents is captured by embedding the 

discontinuities of deformation gradient field in the constitutive laws 

implemented in finite element analysis. 
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• Development of a macroscale approach in which masonry is considered as a 

homogenous continuum with an underlying microstructure that describes the 

anisotropic elastoplastic behaviour. 

• Implementing Machine Learning methods that take the constituent properties 

as input and predict the required information for the description of 

homogenized anisotropic characteristics used in the macroscale approach. 

 

1.2. Organization of the thesis 

The present work is organized in the format of a “sandwich thesis” in accordance with 

McMaster University School of Graduate Studies regulations.  

Chapter 2 (Paper I) introduces both the meso and macroscale framework for analysis of 

masonry structures and addresses their implementation in finite element (FE) code. The 

mesoscale analysis includes discrete tracing of crack propagation through brick-mortar 

interfaces as well as the brick units. Laboratory experiments available in literature are 

used as a benchmark for verification of the methodology. The macroscale approach 

incorporates the notion of microstructure tensor to describe the orientation-dependent 

strength characteristics of masonry.  The material parameters/functions appearing in this 

approach are identified by conducting the mesoscale analysis of masonry panels subjected 

to biaxial tension-compression at different orientation of the bed joint. Thus, the 

mesoscale analysis serves as a bridge for upscaling to the macrolevel. 
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Chapter 3 (Paper II) presents the methodology for analyzing large scale masonry 

structures. The approach incorporates an inelastic macroscopic framework coupled with a 

series of artificial neural networks (ANNs). The latter serve the purpose of estimating the 

equivalent elastic properties of masonry from those of the constituents, the ultimate 

strength at different loading conditions and different orientation of material axes, as well 

as the average inclination of macrocracks that form at the onset of localization. The 

ANNs are trained using the data generated through a mesoscale FE analysis. A numerical 

example is provided involving analysis of a large masonry shear wall with openings. The 

results of macroscale approach are compared with those based on a detailed mesoscale 

model.  

Chapter 4 (Paper III) provides a comprehensive study on the process of fracture initiation 

and propagation in small scale masonry structures. A simplified approach is used 

whereby the brick-mortar interfaces are embedded in the adjacent intact material. The 

accuracy of this approximation is assessed by comparing the results of uniaxial tension 

and biaxial tension-compression on masonry panels with those conducted using a detailed 

FE model that includes discretization of bricks, mortar, and incorporates the interface 

elements. An extensive numerical study is then provided that involves simulation of 

various experimental tests conducted on small masonry assemblages as well as full-scale 

masonry walls, and the results are compared with experimental data. 
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A B S T R A C T   

In this study a computational framework is outlined for modeling the mechanical response of structural masonry 
at both meso and macroscale. The mesoscale approach accounts for the presence of distinct constituents (i.e., 
bricks and mortar joints) and their geometric arrangement. A constitutive law with embedded discontinuity, 
combined with the level-set approach, is used to model the onset and discrete propagation of localized damage in 
these constituents. The approach is verified against a range of experimental data published in the literature. It is 
shown that the proposed framework can adequately predict the load-deformation response, as well as the 
fracture pattern under combined loading conditions. The macroscale approach incorporates the notion of 
anisotropy parameter whose value depends on the orientation of the principal stress axes in relation to the axes of 
material symmetry. The material parameters/function appearing in this approach are identified from the ‘virtual 
data’ generated by a mesoscale analysis of masonry panels subjected to biaxial tension–compression at different 
orientations of the bed joint. Thus, the mesoscale considerations serve as a bridge for upscaling to the macrolevel.   

1. Introduction 

Numerical analysis of masonry structures can be conducted at either 
meso or macroscale. The former approach is suitable for smaller scale 
structures (e.g., shear walls, reduced scale models, etc.). For large 
structures (buildings, arch bridges, etc.), however, examining individual 
components (i.e., units/joints) and their interaction would be compu-
tationally very costly. Therefore, a more reasonable approach is that in 
which the masonry is considered as a continuum with a microstructure. 

In engineering practice, the design and retrofit of masonry structures 
follows a set of guidelines provided by different building codes. The 
methodologies employed in these codes, i.e. limit state design and/or 
empirical methods, are quite simplistic. They do not address the basic 
issues that govern the mechanical response of masonry at the macro-
scale, such as the anisotropy of strength and deformation properties, 
discrete propagation of damage, environmental degradation, etc. Thus, 
although the general guidelines are useful, they are primarily qualitative 
and cannot be perceived as a reliable mechanical assessment, particu-
larly when dealing with structures of a strategic importance that often 
have a complex geometry.  

A better representation of the behaviour of structural masonry may 
be obtained by conducting the finite element (FEM) analysis. In recent 
years this has become a standard in the engineering design process. For 
the mesoscale simulations, the constituents themselves (i.e. units and 
mortar joints) may be considered as isotropic (Minga et al., 2018). In this 
case, the primary difficulty is to deal with the notion of localized 
deformation. The latter involves the presence of discontinuities in the 
displacement field or its gradient, referred to as strong or weak discon-
tinuities (Simo et al., 1993), and is associated with the strain-softening 
response. In this case, the use of classical continuum approaches, 
which do not incorporate any measure of internal scale, results in a 
spurious mesh-dependency of the solution. In order to remedy the 
problem, the constitutive equations have been enhanced to incorporate 
non-local theories (Bažant & Jirásek, 2002; Jirásek, 2004) or visco-
plastic regularization (Needleman, 1988; Niazi et al., 2012). Both these 
approaches, however, have limitations that stem from ambiguity in 
specifying the characteristic length and/or the viscosity parameter, 
which are not uniquely defined. Moreover, such continuum enhance-
ments do not explicitly incorporate the rate form of traction– displace-
ment discontinuity relation for the fracture zone, which is intrinsic in 
describing the softening phenomenon. 

* Corresponding author. 
E-mail address: pietrusz@mcmaster.ca (S. Pietruszczak).  

Contents lists available at ScienceDirect 

International Journal of Solids and Structures 

journal homepage: www.elsevier.com/locate/ijsolstr 

https://doi.org/10.1016/j.ijsolstr.2021.111342 
Received 25 March 2021; Received in revised form 23 September 2021; Accepted 2 November 2021   

6

Ph.D. Thesis - K. Koocheki; McMaster University – Civil Engineering

7

mailto:pietrusz@mcmaster.ca
www.sciencedirect.com/science/journal/00207683
https://www.elsevier.com/locate/ijsolstr
https://doi.org/10.1016/j.ijsolstr.2021.111342
https://doi.org/10.1016/j.ijsolstr.2021.111342
https://doi.org/10.1016/j.ijsolstr.2021.111342
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2021.111342&domain=pdf


International Journal of Solids and Structures 236-237 (2022) 111342

2

An alternative way to deal with localized deformation is to invoke 
the embedded discontinuity approach (cf. Wells & Sluys, 2000, 2001; 
Jirasek and Zimmermann, 2001; Alfaiate et al., 2003; Benkemoun et al., 
2010). In this approach, the discontinuities are embedded directly 
within a finite element. Both weak and strong discontinuities can be dealt 
with by addition of discontinuous functions to either strain or 
displacement fields of standard finite elements. In case of strong dis-
continuities, additional global degrees of freedom, i.e. nodal displace-
ments associated with enhanced modes, are introduced and additional 
shape functions are added. There are different versions of the embedded 
discontinuity formulation including discrete approaches in which the 
crack path and the displacement jumps are continuous across element 
boundaries. The literature on this topic is very extensive and a 
comprehensive survey, which includes a comparison between various 
approaches, is provided in Jirásek (2000). Another enrichment tech-
nique, which has been developed in the context of partition of unity 
method, is the Extended Finite Element Method (XFEM) (Belytschko 
et al., 2001; Belytschko & Black, 1999; Moës & Belytschko, 2002). 
Again, a comparative study of this approach in relation to other FE 
techniques for capturing strong discontinuities is provided by Oliver 
et al. (2006). 

Both the above-mentioned approaches are rigorous and have been 
applied to a broad spectrum of engineering problems. Their main limi-
tation, particularly in case of XFEM, is a high computational cost that 
stems primarily from incorporation of additional degrees of freedom 
that account for the presence of discontinuities. The approach employed 
in this work is conceptually different in the sense that the velocity 
discontinuity is explicitly embedded in the constitutive law. The latter 
incorporates a length scale parameter, which is defined in an explicit 
manner. The approach was originally proposed in the early 1980′s 
(Pietruszczak and Mróz, 1981) and was later modified to redefine the 
internal length parameter (cf. Pietruszczak, 1999). Its implementation in 
the FEM platform is straightforward, as no enriched degrees of freedom 
are required. An enhanced version, which incorporates a discrete crack 
tracing scheme, is provided in Haghighat & Pietruszczak (2015, 2016). 
The last references also give a direct comparison of the numerical per-
formance of this approach in relation to XFEM methodology. 

The macroscale analysis requires the assessment of equivalent me-
chanical properties for a given type of masonry layout. This can be 
accomplished by application of the mathematical theories of homoge-
nization. The latter have been applied in the context of both periodic 
(Sacco, 2009; Anthoine, 1997; De Buhan & De Felice, 1997; Pande et al., 
1989) as well as non-periodic media (Cluni & Gusella, 2004) and a 
comprehensive review of different strategies is provided in Lourénço 
et al. (2007). The main difficulty in this approach is the assessment of 
properties in inelastic range, which requires a numerical homogeniza-
tion. In this case, the simulations are carried out using a representative 
elementary volume (REV) from which the equivalent (i.e., volume 
averaged) properties are acquired (e.g., Van der Sluis et al., 2000). The 
computational homogenization techniques have also been extensively 
used in the context of multiscale modeling of heterogeneous materials 
with complex microstructures. The literature on this topic is very 
extensive and a concise review is provided, for example, in Geers et al. 
(2010). The approach comprises a multi-level finite element analysis, 
referred to as FE2 scheme (cf. Smit et al., 1998; Feyel, 2003; Nguyen 
et al., 2011), which employs meshing at macro-level (entire structure) 
and micro-level (REVs). An application of this methodology to masonry, 
involving simulation of some material tests as well as a shear wall test, is 
provided by Massart et al. (2007). The approach is rigorous, but 
computationally very expensive and its application in the context of 
large-scale masonry structures is currently not feasible. 

In general, the key issues in modeling the mechanical response of 
masonry at the macroscale involve a proper description of inherent 
anisotropy and, once again, the localized nature of damage. The 
anisotropy manifests itself in the directional dependence of strength and 

deformation properties. This has been evidenced by testing scaled ma-
sonry panels under biaxial load at different orientations of the bed joints 
(c.f. Drysdale & Khattab, 1995; Page, 1981; Page, 1983). The results of 
these tests provided a valuable information that has been employed to 
specify the conditions at failure. The existing formulations defining the 
phenomenologically based failure criteria usually incorporate linear and 
quadratic terms in stress components referred to principal material axes 
(e.g. Tsai & Wu, 1971). Examples of application of this class of criteria to 
structural masonry include the work of Lourénço et al. (1997) and Berto 
et al. (2002). A more rigorous approach is associated with incorporating 
the notion of a fabric tensor and establishing its correlation with the 
strength properties (Boehler & Sawczuk, 1977; Cowin, 1986). The 
disadvantage of the latter approach, however, is the fact that the general 
framework incorporates numerous material functions whose identifi-
cation requires an elaborated experimental program which cannot be 
carried out for any practical engineering problem. A simplified and a 
more pragmatic methodology was introduced by Pietruszczak & Mroz 
(2001) whereby the classical isotropic criteria have been enhanced by 
incorporating the concept of a spatial distribution of strength parame-
ters. Two different approaches have been developed, viz. a critical plane 
and a microstructure tensor approach. In the former, the failure criterion 
is expressed in terms of traction components, while the orientation of the 
localization plane is defined as a constrained optimization problem. In 
the approach incorporating the microstructure tensor, a scalar anisot-
ropy parameter is introduced whose value is a function of relative 
orientation of the principal stress triad with respect to the eigenvectors 
of the microstructure tensor. The latter methodology has recently been 
applied by Pietruszczak and Mohammadi (2020) to define the macro-
scopic failure criterion using the experimental data reported by Page 
(1981, 1983). 

This paper is a continuation of the work reported by Pietruszczak and 
Mohammadi (2020). Its primary focus is the development of a reliable 
computational scheme for the mesoscale analysis of structural masonry. 
The approach incorporates a novel technique for dealing with the bed 
and head joints, whose presence is accounted for by employing a 
constitutive law with embedded discontinuity (Haghighat & 
Pietruszczak, 2015). This allows the use of a simple structured mesh 
which significantly reduces the computational cost of analysis. The 
procedure also accounts for the onset of new macrocracks forming 
within the masonry units and the discrete tracing of their propagation by 
means of the level set technique. The purpose of this mesoscale approach 
is two-fold. First, such an approach can be used for an independent 
analysis of smaller scale masonry structures. At the same time, it can 
serve the purpose of generating a ‘virtual data’ for masonry panels tested 
at different orientations relative to the direction of loading. The latter 
information can then be employed in the context of specification of 
material functions required for the analysis of large masonry structures. 
Thus, the mesoscale considerations serve as a bridge for upscaling to the 
macroscale. 

In the next section the mesoscale formulation and its numerical 
implementation are discussed. Subsequently, the framework is verified 
against some benchmark problems involving simulation of experimental 
tests on brick–mortar bond and masonry wallets. Later, a comprehensive 
study is provided investigating the fracture mechanism in masonry 
panels tested by Page (1981, 1983). Different loading conditions and 
different orientations of the panels are considered. Finally, the macro-
scale approach is outlined, and the results obtained from the mesoscale 
analysis are employed to identify the material functions appearing in the 
failure criterion incorporating the scalar anisotropy parameter. 

2. Mesoscale formulation and its implementation 

The mesoscale analysis of structural masonry requires the informa-
tion on properties of constituents (bricks, mortar joints) and their geo-
metric arrangement. The constituents themselves may be perceived as 
isotropic and, in the range of homogeneous deformation, their 
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mechanical properties can be described by standard continuum ap-
proaches. The weakest link in the structural masonry are the 
brick–mortar interfaces, which require a contact law relating the trac-
tion rate to velocity discontinuity. The failure of constituents is often 
linked with the onset and propagation of localized damage associated 
with unstable strain-softening response. The onset of localization is 
usually defined by invoking a stress or energy-based failure criterion or, 
in case of elastoplastic or damage-based idealization, it may be 
perceived as a bifurcation problem. The latter involves detection of 
singularity of the so-called acoustic tensor (Rudnicki & Rice, 1975) whose 
eigenvectors determine the orientation of fracture plane. In this work, 
the constituents themselves are considered as elastic-brittle. Note that 
there is no conceptual difficulty in considering the bricks/mortar as 
inelastic. However, in structural masonry the irreversible deformation at 
the macroscale is primarily due to sliding and separation along the in-
terfaces, so that the former effects seem negligible. In this section, the 
details on mesoscale modeling are provided. The focus is on the 
description of deformation process in a domain intercepted by discon-
tinuities, which is relevant for both brick units and interfaces, as the 
latter are treated as being embedded in the adjacent homogenous 
continuum. 

2.1. Mathematical formulation in the presence of discontinuities 

In the presence of localization, the average mechanical properties 
within a domain containing a fracture may be assessed by incorporating 
a constitutive law with embedded discontinuity (CLED, cf. Haghighat & 
Pietruszczak, 2015; Pietruszczak, 1999). For this purpose, consider a 
referential volume ΔΩ, which includes the intact parts ΔΩ+ and ΔΩ− , 
intercepted by a fractured region of surface area of ΔΓd and a negligible 
thickness (compared to other dimensions). In this case, the discontin-
uous velocity field v may be defined as a sum of two continuous func-
tions v̂ and ṽ, combined with a discontinuous Heaviside step function 
ℋΓd as 

v = v̂ +ℋΓd ṽ; EvF = v+ − v− = EℋΓd Fṽ (1)  

where EvF is the velocity jump across the localized zone. Using Eq. (1), 
the average velocity gradient in a referential volume ΔΩ can be defined 
as 

∇xv= 1
ΔΩ

∫

ΔΩ
∇xv dΩ

=
1

ΔΩ

∫

ΔΩ
∇x v̂ dΩ+

1
ΔΩ

∫

ΔΩ+

∇xṽ dΩ+
1

ΔΩ

∫

ΔΓdtd

(
ṽ⊗∇xℋΓd

)
dΩ (2)  

where 

∇xℋΓd = EℋΓd FδΓd n (3)  

Here, δΓd is the Dirac delta function and n is the outward normal to the 
discontinuity surface. Substituting Eq. (3) into Eq. (2) and using the 
second equation in (1) leads to 

∇xv =
1

ΔΩ

∫

ΔΩ
∇x v̂ dΩ +

1
ΔΩ

∫

ΔΩ+

∇xṽ dΩ

+
1

ΔΩ

∫

ΔΓd

EvF ⊗ n dΓd

(4)  

The first two terms appearing on the right-hand side of Eq. (4) represent 
the volume average of the velocity gradient in the intact material, while 
the last term is proportional to the average value of EvF ⊗ n over the 
crack surface area ΔΓd, i.e 

∇xv(1) =
1

ΔΩ

∫

ΔΩ
∇x v̂ dΩ +

1
ΔΩ

∫

ΔΩ+

∇xṽ dΩ;

ġ ⊗ n =
1

ΔΓd

∫

ΔΓd

EvF ⊗ n dΓd

(5)  

The symmetric parts of these operators define the corresponding average 
strain rates. Thus, the total strain rate can be expressed as 

ε̇ = ε̇(1) + χ(ġ ⊗ n)s (6)  

where ε̇(1) =
(
∇xv(1) )s is the average strain rate in the intact material, 

while the second term gives the contribution associated with the local-
ized deformation. Here, χ− 1 is a length scale parameter defined as the ratio 
of the referential volume to the surface area of the fractured region (i.e. 
χ− 1 = ΔΩ/ΔΓd). 

The velocity jump ġ is determined by imposing the traction conti-
nuity condition across the localized region. Thus, 

ṫ − n⋅σ̇ = K⋅ġ − n⋅D⋅ε̇(1) = 0 (7)  

where t is the traction vector, K is the second order stiffness operator for 
the fractured zone, σ̇ is the macroscopic stress rate and D is the fourth- 
order elasticity tensor which defines the properties in the intact region. 
Combining the above equations and rearranging leads to the localization 
law 

ġ =
[
(K + χn⋅D⋅n)− 1

⊗ n
]
: [D : ε̇] (8)  

Finally, using Eqs. (6) and (8), the constitutive relation is obtained as 

σ̇ = D : ε̇;

D =
{

D − χD :
[
n ⊗ (K + χn⋅D⋅n)− 1

⊗ n
]
: D

} (9)  

where D is the equivalent tangential stiffness operator which depends 
on the properties of both constituents and the scale parameter χ, the 
latter defined at the element level based on the orientation and location 
of the macrocrack. 

2.2. Modeling of constituents 

2.2.1. Embedded brick–mortar interfaces 
The approach advocated here for FEM analysis is to consider the 

interfaces as being embedded in the adjacent continuum. Thus, a simple 
structured mesh may be used, Fig. 1, in which the presence of joints is 
accounted for by employing standard FEM elements in which mechan-
ical properties are defined by the constitutive law with embedded 
discontinuity (9). In this case, the discontinuity surface ΔΓd is explicitly 
identified with the brick–mortar interface, which represents the weakest 

Fig. 1. FEM discretization of structural masonry (a) representation incorpo-
rating CLED (red line shows interfaces embedded within elements); (b) stan-
dard representation incorporating discretization of mortar joints together with 
interface elements (thick black lines). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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link in the masonry architecture. Fig. 1a show a schematic discretization 
of a periodic unit with running bond pattern using the proposed meth-
odology. At the same time, Fig. 1b depicts a typical mesh incorporating 
the physical presence of mortar joints. The latter requires a finer dis-
cretization employing a structured mesh together with a set of interface 
elements. Apparently, the advocated approach is bound to be compu-
tationally more efficient. In addition, the numerical problems inherent 
to the use of interface elements, such as ill-conditioning of the stiffness 
matrix, poor convergence of the solution and instability of the numerical 
integration of stress rate equations (cf. Villard, 1996), can be avoided. 

The implementation of the proposed methodology requires the 
specification of the stiffness operator K appearing in the constitutive 
relation (9). In the present study, the properties of brick–mortar inter-
face have been described using an elastic-strain softening idealization. 
In particular, the Coulomb failure function with tension cut-off zone has 
been employed, i.e. 

F =

{
τ − (c − μσ) , σ < σt
σ − σt , σ ≥ σt

(10)  

where μ = tanϕ, with ϕ being the friction angle, and σ, τ represent the 
magnitudes of normal and tangential components of the traction vector 
t. Here, F < 0 implies an elastic response, while in the plastic regime the 
degradation functions have been selected as 

σt = ftexp
(

−
ft

Gf
gn

)

; c = coexp( − αgt) ≥ μσt;

μ = μo + (μr − μo)

(
co − c

co

) (11)  

Here, the subscripts o and r refer to initial and residual values of c and μ, 
Gf the is tensile fracture energy release rate, α is a material parameter, 
while gn and gt are normal and shear components of accumulated plastic 
part of displacement jumps. 

The equivalent stiffness operator D is determined using Eq. (9), in 
which D defines the elastic properties of the adjacent continuum. Here, 
for F < 0 there is K = Ke, while for an active loading process K is 
established using functional forms (10) and (11). In the latter case, a 
standard plasticity procedure is followed, invoking additivity postulate 
together with the consistency condition. The framework employed here 
incorporated an associated flow rule in tension and non-associated 
(zero-dilatancy) rule in compression regime. 

2.2.2. Brick units 
The bricks have been also considered here as elastic prior to the onset 

of localization. The transition was defined via a standard Mohr-Coulomb 
criterion with Rankin’s cut-off, which stipulates that in compression 
regime the macrocracks form at ∓(45◦

+ ϕ/2) with respect to the di-
rection of minor principal stress, whereas in tension their direction is 
orthogonal to that of maximum tensile stress. The crack propagation 
process was simulated using the CLED framework, viz. Eq. (9). In the 
strain-softening regime, the representation analogous to that of eqs. 
(10)-(11) was employed. However, the degradation law for the friction 
coefficient was rephrased as 

μ = μo +(μr − μo)

(
co − c

co

)

; μo =
τ − co

σ (12)  

Thus, in this case the parameter μo is not a material constant but is 
defined explicitly from the condition that, at the onset of localization, 
the components of traction vector satisfy F = 0, Eq. (10). Again, given 
the functional form (12), the stiffness operator K, Eq. (9), can be 
determined following the standard plasticity procedure. 

As mentioned earlier, for structural masonry the failure mode typi-
cally involves fracture along the bed and head joints, whose orientation 
is defined a priori. However, for certain loading histories, the damage 
process may also involve the onset and propagation of fractures through 

the brick units. In such a case, a suitable algorithm for a discrete crack 
tracking is required. In this work, the geometry of propagating crack has 
been traced by employing the level-set method (Adalsteinsson & 
Sethian, 1999; Stolarska et al., 2001). The latter is a numerical technique 
used to represent the location of macrocracks, including the position of 
their tips. The approach provides information that is particularly useful 
when dealing with multiple fractures and/or intersecting cracks and 
allows to quickly locate the potential elements in the vicinity of crack 
tips, where the fracture is most likely to propagate. The benefits of level- 
set approach for tracing discrete discontinuities have been discussed 
extensively in several studies (cf. Stolarska et al., 2001, Belytschko et al., 
2001). 

According to this approach, a propagating discontinuity surface 
Γd can be defined as the zero level-set of a function ϕ(x, t), 
i.e., Γd = {x|ϕ(x, t) = 0}. Commonly, the signed distance function 
expressed as ϕ(x) = sign{n⋅(x − xΓ)}min‖x − xΓ‖ is used as a level set 
function, and it has been employed here for tracing the crack path. The 
gradient of ϕ(x, t) defines the direction normal to the fracture surface, 
which is required in implementation of CLED approach. A second 
level-set is often employed to trace crack tips (Stolarska et al., 2001). 
Combination of these two level-sets defines a potential zone for fracture 
propagation and permits tracking of the moving crack without 
numerical noise. 

A schematic example of crack initiation and propagation in a dis-
cretized domain is shown in Fig. 2. The initial crack is assumed to pass 
through the centroid of the element, Fig. 2a, and is shown by the solid 
red line. The level set function is constructed in the domain, with the 
zero level-set as depicted by the dashed red line. Elements along the 
crack path are highlighted in yellow and the crack tip neighbour ele-
ments are highlighted in green. An iterative algorithm is then started in 
which the crack propagates through the crack path elements until 
equilibrium is reached. Fig. 2b shows the cracked elements (blue) and 
location of the crack inside the elements. The exact location of the crack 
in each element is determined using the intercept with the element 
boundary and the given crack orientation. The level set is updated in the 
proceeding increment and if stress conditions at the tip elements result 
in a change in crack direction, the potential elements engaged in further 
propagation of the cracked zone are identified, as shown in Fig. 2b. 

3. Numerical implementation and verification of the mesoscale 
framework 

3.1. Simulation of tests on brick–mortar bond 

The first set of numerical examples pertains to simulation of the 
tensile and shear tests on brick–mortar bond as reported by 
Van der Pluijm (1997, 2000). The tests were displacement-controlled and 

Fig. 2. (a) Schematic crack initiation and (b) Crack propagation involving a 
change in orientation. Dashed line shows the location of zero level set, solid red 
line and blue elements show crack location, green elements indicate crack tip, 
yellow elements identify potential elements for crack propagation. (For inter-
pretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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were performed on specimens of two brick units, with dimensions 
200 × 100 × 50 mm (in shear) and 100 × 100 × 50 mm (in tension), 
separated by a bed joint. For shear tests, the specimens were subjected to 
normal stress of intensity between 0.1 and 1.0 MPa, and subsequently 
sheared by imposing the displacement parallel to the joint. The experi-
mental program was comprehensive, as approx. 50 tests were conducted; 
however, the scatter of experimental data was significant (i.e., coefficient 
of variation of 20–40%). 

The numerical analysis was conducted using a mesh incorporating 
880 and 600 eight-node cubic elements in shear and tension, 

respectively. The geometry of the problem and the FEM discretization 
are shown in Fig. 3. For axial tension, the bottom of the specimen was 
fixed, and a uniform vertical displacement was applied at the top. For 
simulations of shear test, the top and the bottom of the sample were 
fixed in horizontal and vertical directions, respectively. The loading 
process consisted of applying a vertical force, after which the horizontal 
displacement was imposed at the bottom surface. The material param-
eters employed in the analysis are provided in Table 1. The values of 
these parameters were selected based on the data reported by Van der 
Pluijm (1993, 1997). Note that the experimental results do not include 
any explicit information on the material constants that govern the strain 
softening characteristics, viz. Eq. (11). Therefore, some parametric 
studies have been conducted on assessing their impact on the numerical 
predictions. 

The main results of simulations are provided in Figs. 3-4. Fig. 3 de-
picts the evolution of damage along the brick–mortar interface super-
imposed on the displacement field. The corresponding mechanical 
characteristics, i.e. traction vs. displacement, are shown in Fig. 4. Here, 
Fig. 4a depicts the sensitivity of the post-peak response to the selected 
value of the tensile fracture energy release rate Gf , while Fig. 4b shows 
the shear characteristics at different values of the normal stress. For the 
latter case, the results correspond to α = 10,000 m− 1, μr = 0.85μo, which 
gives a fairly close approximation to the experimental data. 

Fig. 3. FEM discretization and evolution of fracture pattern (black) superimposed on (a) vertical displacement field in tension and (b) horizontal displacement field 
in shear. 

Table 1 
Material parameters employed in numerical simulations.   

Brick Brick-mortar bond 

Young’s Modulus, E (MPa) 15,000 N/A 
Poisson’s ratio, υ 0.15 N/A 
Tensile Strength, ft (MPa)  3.5 0.65 
Angle of internal friction, ϕ (◦) 30 36 
Cohesion, c (MPa) 19 0.85 
Bond normal stiffness, kn (N/m) N/A 1.7 × 108 

Bond shear stiffness, kt (N/m) N/A 7.6 × 108  

Fig. 4. Mechanical characteristics for the brick–mortar bond in (a) direct tension (influence of fracture energy release, Gf) and (b) shear (influence of normal stress).  
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3.2. Simulation of tensile tests on brick masonry wallets 

In order to provide an insight into the fracture propagation mecha-
nism through the masonry constituents, consider first an illustrative 
example which involves simulation of tensile tests performed by 
Backes (1985). The tests were conducted on square masonry wallets 
(490 × 490 × 113 mm) subjected to tension along the direction of bed 
joints. The analysis here is focused on simulation of two cases which 
involve two different sets of mechanical properties of constituents as 
shown in Table 2. Fig. 5a presents the 3D view and the FEM dis-
cretization of the wallets, while Figs. 5b-c show the evolution of fracture 
pattern. For both sets of properties, the tensile cracks initiate in the head 

joints. However, the further propagation pattern is affected by the 
relative values of the shear strength of bed joints and the tensile strength 
of bricks. A weaker shear strength of brick–mortar bond (e.g. 0.1 – 0.2 
MPa) results in a zigzag pattern, while stronger shear bond strength (e.g. 
0.2 – 0.9 MPa) leads to formation of tensile cracks inside the bricks. In 
the latter case, the fracture mode involves formation of a nearly vertical 
crack penetrating through the head joints and bricks. 

Fig. 6 shows the corresponding average stress–strain characteristics. 
The results correspond to the fracture energy release rates (Gf ) of 
50 N/m and 10 N/m for the bricks and interface, respectively, while 
α = 15,000 m− 1 for the bed joints. The predicted structural response at 
the macroscale is very consistent with the experimental data in terms of 
both the strength and the deformation response. 

3.3. Simulation of biaxial tension–compression tests on structural 
masonry panels 

In order to provide a comprehensive verification of the proposed 
methodology with respect to combined biaxial tension and compression 
loading, a set of experimental tests conducted by Dhanasekar et al. 
(1985) and Page (1983) has been simulated. The focus was on the 
prediction of fracture pattern and the ultimate load in a broad range of 
testing configurations. The experiments were conducted on square 
0.36 m solid brick masonry panels constructed using half-scale units 
with dimensions of 115 × 35 × 50 mm. To achieve a uniform stress 

Table 2 
Material parameters employed in simulations of tensile tests of Backes (1985).   

Brick Brick-mortar bond 

Case I Case II Case I Case II 

Young’s Modulus, E (MPa) 3500 2500 N/A N/A 
Poisson’s ratio, υ 0.13 0.13 N/A N/A 
Tensile Strength, ft (MPa)  0.9 1.44 0.12 0.19 
Angle of internal friction, ϕ (◦) 30 30 30 30 
Cohesion, c (MPa) 2.5 1.5 0.25 0.15 
Bond normal stiffness, kn (N/m) N/A N/A 0.7 × 108 1.1 × 108 

Bond shear stiffness, kt (N/m) N/A N/A 3.2 × 108 3.8 × 108  

Fig. 5. Uniaxial tension parallel to bed joints: (a) FEM mesh and 3D view; (b) Crack propagation for Case I; (c) Crack pattern for Case II.  

Fig. 6. Average stress–strain characteristics for (a) Case I; (b) Case II (experimental results after Backes (1985); recorded crack patterns are shown schematically).  
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distribution along the boundaries and to enable the application of tensile 
loading, a large number of closely stacked slender elements forming 
brush-like platens were glued individually to the boundaries of the 
panel, as illustrated in Fig. 7a. The loading program incorporated uni-
axial as well as biaxial tension/compression at different orientations of 
the bed joints, as shown schematically in Fig. 7b. In all tests, the prin-
cipal stress directions were fixed while the orientation of the masonry 
panel was varied. For the majority of tests, the fracture mode involved 
failure along the masonry joints; however, in some experiments incor-
porating biaxial loading conditions the onset and propagation of mac-
rocracks within the brick units was also observed. 

The geometry of the problem, the boundary conditions and the FEM 
mesh are shown in Fig. 8. A simple structured mesh, with a total of 
15,120 eight-noded cubic elements, was employed in which the pres-
ence of brick–mortar bonds has again been accounted for using the CLED 
formulation. For simulation of uniaxial tests along and normal to bed 
joints, a displacement-controlled scheme was employed (Fig. 8a); while 
for other tests, the load-controlled procedure was implemented. The 
tests on inclined specimens were simulated by transforming the 
boundary tractions to the principal material axes and applying them as a 
uniformly distributed load along the respective boundaries, Fig. 8b. 

The main challenge in validation of the present approach is a sig-
nificant variability in the experimental assessment of ultimate load. This 
stems primarily from a high variation of brick–mortar bond strength as 

reported in Dhanasekar et al. (1985) and Page (1983). The latter varied 
between 0.07 and 0.28 MPa with an average of 0.13 MPa. As a result, the 
bearing capacity of the panel under uniaxial tension perpendicular to 
bed joints also varied significantly, i.e. between 0.18 and 0.32 MPa with 
a mean value of 0.24 MPa. An additional issue is incomplete information 
on properties of constituents. For example, in terms of strength prop-
erties of brick units, the only information provided was that on the range 
of values of compressive strength. Also, no data has been provided on 
the deformation characteristics of the brick–mortar bond. Given these 
limitations, some additional parametric studies have been conducted 
throughout this work. The actual set of material parameters employed in 
the analysis is provided in Table 3. Here, the properties that were varied 
through parametric studies (i.e. tensile/shear strength of brick–mortar 
bond and tensile strength of brick) are displayed in boldface. 

Fig. 7. Experimental setup of Page (1983) and different testing configurations.  

Fig. 8. FEM discretization of the panel and the boundary conditions: (a) uniaxial tension; (b) inclined specimens (tractions applied uniformly along the boundaries).  

Table 3 
Material parameters employed in numerical simulations.  

Properties Brick Brick-mortar bond 

Young’s Modulus, E (MPa) 6750 N/A 
Poisson’s ratio, υ 0.17 N/A 
Tensile Strength, ft (MPa)  1.5 0.2 
Angle of internal friction, ϕ (◦) 30 39 
Cohesion, c (MPa) 4.35 0.3 
Interface normal stiffness, kn (N/m) N/A 1.3 × 108 

Interface shear stiffness, kt (N/m) N/A 6.2 × 108  
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3.3.1. Uniaxial tension tests 
The dominant fracture mode in uniaxial tension involves cracking 

along the brick–mortar interfaces. Depending on the direction of loading 
with respect to the orientation of bed joints, the tensile fracture in one 
family of joints may be followed by shear fracture in the perpendicular 
set of joints. Fig. 9 shows the evolution of damage in case of tension 
normal to the bedding planes, which are the weakest link within the 
domain. In this case, the only mode of fracture is a progressive damage 
along the bed joints, which triggers the failure at the macroscale. The 
strength of the panel is virtually the same as the tensile strength of the 
brick–mortar bond. This is shown in Fig. 10 that provides the average 

macroscopic stress–strain characteristics for the range of values recor-
ded in the experiment, i.e. 0.1–0.3 MPa. 

When the direction of uniaxial tension is parallel to the bedding 
planes, the tensile fractures start developing within the head joints. For 
the current set of material parameters, the fracture pattern also involves 
development of shear fractures in the adjacent bed joints. The combined 
mechanism of sliding along the bed joints and separation along the head 
joints causes the global failure at the macroscale. Fig. 11 depicts the 
evolution of the fracture pattern during the deformation process, while 
Fig. 12 shows the average stress–strain characteristics. It is evident that, 
in this case, the ultimate load is quite sensitive to the value of the tensile 
fracture energy Gf . At the same time, the parameter α which governs the 
degradation of cohesion, viz. Eq. (11), has no influence on the predicted 
ultimate stress and affects only the stiffness in the post-peak range. 

It should be mentioned that for all load-controlled simulations, the 
bearing capacity was assessed by monitoring a stability factor (SF) 
defined as the ratio of the second rate of internal work normalized with 
respect to that corresponding to the elastic solution (Pietruszczak & 
Oulapour, 1999). In general, the stability factor remains within the 
range 1 ≥ SF ≥ 0, and SF = 0 implies the singularity in the global 
stiffness operator, i.e. the loss of stability. Fig. 13 depicts the evolution of 
SF for the present case, i.e. uniaxial tension parallel to bed joints. The 
results presented here correspond to Gf = 1N/m, α = 6000m− 1 (cf. 
Fig. 12) and include the average stress–strain characteristics up to the 
ultimate load obtained for both load-controlled (LC) and displacement- 
controlled (DC) analyses. 

In the case of uniaxial tension at 45◦, the onset of fracture occurs in 
bed joints. Again, as the load increases further the cracks along the head 
joints develop leading eventually to a zig-zag pattern at the macroscale. 
This is depicted in Fig. 14, which show a progressive evolution of the 

Fig. 9. (a) Evolution of crack pattern and the resulting failure mechanism (bright red colour) for uniaxial tension perpendicular to bed joints (θ = 90◦); (b) schematic 
crack pattern from Page (1983). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Average stress–strain characteristics for different tensile strength of 
brick–mortar bond. 

Fig. 11. (a) Evolution of crack pattern and the resulting failure mechanism (bright red colour) for uniaxial tension along the bed joints (θ = 0◦); (b) schematic crack 
pattern from Page (1983). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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failure mechanism. The corresponding stress vs. average strain charac-
teristics are presented in Fig. 15. Note that in this case, a load-controlled 
scheme has been implemented, as described earlier. The ultimate load is 
significantly affected by the tensile strength of brick–mortar bond, 
which is evidenced through a parametric study reported in this figure. 

3.3.2. Uniaxial compression tests 
The primary mode of fracture initiation and propagation in this 

loading scenario is the tensile splitting of the masonry panel, which 
occurs not only along the brick–mortar interfaces but also, in some 
cases, within the brick units. When the direction of loading is parallel to 
bed joints, the joint interfaces undergo a tensile fracture, forming a set of 
fracture planes that run through the entire panel. For the compression 
perpendicular to bed joints, however, the tensile fractures develop in 
head joints, followed by cracking of the adjacent brick units. This results 

in a higher compressive strength of the panel as compared to other 
loading directions, as in this case the tensile strength of bricks needs to 
be attained to trigger a loss of stability. 

An important issue to consider in these fracture scenarios is that the 
failure mechanism does not involve a complete disintegration of the 
panel at the macroscale. In fact, after formation of tensile splitting 
planes, the separated parts of the panel act like independent load 
bearing columns, allowing the panel to sustain significantly higher 
compressive loads. This part of the mechanical response is not consid-
ered in assessing the ultimate bearing capacity in compression, and the 
formation of a continuous fracture that runs through the panel is 
perceived as failure. The latter effect is also described in Page (1983) 
and was used there as the definition of failure at the macroscale. It is 
noted that this scenario is unlikely to happen in large scale masonry 
structures, but it is useful for gaining insight into evaluation of the 
impact of tensile strength of bricks on the ultimate load bearing capacity 
of masonry panel. 

The evolution of fracture mode in uniaxial compression parallel and 
perpendicular to bed joints is shown in Figs. 16-17. As mentioned 
earlier, for compression parallel to bed joints, tensile cracks develop in 
bed joints without triggering the fracture in the bricks. On the other 
hand, compressive load perpendicular to bed joints causes tensile 
cracking in head joints followed by initiation of cracks in bricks at the 
vicinity of the head joints. 

3.3.3. Biaxial tension- compression tests 
The biaxial tension–compression in two perpendicular directions re-

sults in a failure mode that is a combination of those discussed previously. 
The specific mechanism depends on the actual stress ratio. The testing 
program reported in Dhanasekar et al. (1985) involved the ratios of 

Fig. 12. Average stress–strain characteristics for different values of the tensile 
fracture energy release Gf and the degradation parameter.α 

Fig. 13. Evolution of the stability factor (SF) in the panel subjected to uniaxial 
tension parallel to bed joints. 

Fig. 14. (a) Evolution of crack pattern and the resulting failure mechanism (bright red colour) for uniaxial tension on inclined panel (θ = 45◦); (b) schematic crack 
pattern from Page (1983). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 15. Average stress–strain characteristics for different values of tensile 
strength at the brick–mortar interface. 
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compressive to tensile load of 2, 5, 10 and 30, and similar values 
(i.e. 2, 10 and 30) were employed in the current numerical study. The 
main results of the numerical analysis are provided in Fig. 18, which 
shows the failure envelopes in the affined space of the major and minor 
principal stresses. The simulations presented here were carried out for 
two different values of tensile strength of brick (Ft), i.e. Ft = 1.0 and 
1.5 MPa, while preserving a constant ratio of 7.5 and 5 between Ft and the 

tensile and shear strength of brick–mortar bond (ft), respectively. Thus, 
for Ft = 1.0 MPa for example, there is ft = 0.13 MPa and c = 0.2 MPa. 

The first plot in Fig. 18 shows the case of compression perpendicular 
to bed joints and tension parallel to them (i.e., θ = 0◦). In this case, the 
presence of compressive traction increases the shear resistance in bed 
joints. As a result, after the onset of cracking along the head joints, the 
tensile cracks in bricks develop, leading to a higher tensile strength 

Fig. 16. (a) Evolution of crack pattern and the resulting failure mechanism (bright red colour) (a) for uniaxial compression along the bed joints; (b) schematic crack 
pattern from Page (1983). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 17. (a) Evolution of crack pattern and the resulting failure mechanism (bright red colour) (a) for uniaxial compression perpendicular to the bed joints; (b) 
schematic crack pattern from Page (1983). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 18. Failure envelopes for different orientations of the panel (θ) and different tensile strength of masonry units (Ft).  
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as compared to uniaxial case. As an example, at the stress ratio of 2 and 
Ft = 1.5 MPa, the ultimate tensile and compressive stress values of 0.6 
MPa and 1.6 MPa are attained, while the ultimate uniaxial tensile 
strength is approximately 0.5 MPa. 

In the case of compression parallel to bed joints and tension 
perpendicular to them (i.e., θ = 90◦), the response is influenced solely by 
the bed joints which form a set of continuous weakness planes within the 
panel. In this situation, an approximately linear transition from ultimate 
uniaxial compressive strength to ultimate uniaxial tensile strength oc-
curs as the load ratio decreases. The response for other panel orienta-
tions, i.e. θ = 22.5◦, 45◦, and 67.5◦, has also been simulated and a 
complete set of results is presented in Fig. 18. 

4. Macroscale formulation 

The mesoscale approach, as described in Sections 2 and 3, has two 
primary range of applications; it can be employed for analysis of small- 
scale masonry structures (e.g. brick walls/arches) and, what is of pri-
mary interest here, it can provide a set of ‘virtual data’ that is required to 
develop and verify a macroscale approach. 

In a macroscale framework, the masonry can be treated as a con-
tinuum with a microstructure. In this case, the anisotropic strength/ 
deformation characteristics may be described by adopting a general 
framework of microstructure tensor approach as outlined in 
Pietruszczak & Mroz (2001). The approach employs the notion of a 
scalar anisotropy parameter whose value is a function of relative 
orientation of the principal stress triad with respect to the preferred 
directions of microstructure. The macroscopic failure criterion is 
formulated here by preserving the functional form consistent with 
mesoscale representation and postulating that the respective strength 
parameters depend on the orientation of the sample relative to the 
loading direction. Thus, the mathematical representation incorporates 
Mohr-Coulomb criterion with Rankine’s cut-off in tensile regime, both 
expressed in terms of stress invariants and enhanced by the notion of 
directional dependence of strength. The identification of such frame-
work requires the specification of two material functions that describe 
the variation of friction coefficient and tensile strength with the orien-
tation of the sample relative to the loading direction. Here, an explicit 
procedure is employed for determination of coefficients of approxima-
tion of these functions based on the results of standard axial tension and 
axial compression tests performed at different orientations of bed joints. 
For a specific type of masonry, the ‘virtual’ results of such tests can be 
generated from the mesoscale simulations, as discussed in Section 3. 

Assume that the conditions at failure at the macroscale are governed 
by the strength criterion expressed in a general form as 

F = F(I1, J2, J3, ϑ) = 0 (13)  

Here, I1, J2, J3, are the basic invariants of stress tensor/deviator, while ϑ 
is a scalar anisotropy parameter. The latter describes the effect of 
orientation of principal stress axes in relation to preferred material di-
rections and is defined (after Pietruszczak & Mroz, 2001) as 

ϑ = ϑ0
(
1 + ξ + b1ξ2 + b2ξ3 + b3ξ4 + ⋯

)
;

ξ = ℓ ⋅A⋅ℓ
(14)  

In the above expression, ℓ is a unit vector, referred to as a ‘loading di-
rection’, whose components are the normalized magnitudes of stress 
vectors acting on planes normal to the material axes. For the structural 
masonry, the orientation of preferred material axes is defined a priori 
and is identified here with the eigenvectors of the operator A, which is a 
traceless second-order tensor. Furthermore, the approximation co-
efficients ϑ0, b1, b2, b3,⋯ are constants. 

As mentioned earlier, the form of F which is employed in this work, is 
the Mohr-Coulomb representation with Rankine’s cut-off in tensile 
regime, both incorporating the orientation-dependency of the strength 

parameters. Thus 

F = max(F1,F2) = 0;

F1 =
̅̅̅
3

√
σ − ηf g1(Θ)(σm + C) = 0;

F2 = g2(Θ)σ − (σm + σt) = 0

(15a)  

where σ= (J2)
1/2

, σm = I1/3, Θ =
1
3
sin− 1

(
− 3

̅̅̅
3

√

2
J3

σ3

)

and 

g1(Θ) =
3 − sinϕ

2
̅̅̅
3

√
cosΘ − 2sinΘ sinϕ

; ηf =
6sinϕ

3 − sinϕ
;

g2(Θ) =
2̅
̅̅
3

√ sin
(

Θ +
2π
3

)

; C = ccotϕ.

(15b)  

Here, Θ is the Lode’s angle, while ϕ and c represent the angle of friction 
and cohesion, respectively. For an isotropic medium ηf and σt are ma-
terial constants, while in case of anisotropy both are variables and are 
defined in the polynomial form (14), i.e. 

ηf = η̂f
(
1 + ξ + b1ξ2 + b2ξ3 + b3ξ4 + ⋯

)
;

σt = σ̂ t
(
1 + ξ + c1ξ2 + c2ξ3 + c3ξ4 + ⋯

) (16)  

where b’s and c’s are the approximation coefficients. 
For the purpose of identification of material functions (16), it is 

convenient to express the representation (15) in terms of principal stress 
values. Thus 

F1 =
1
2
(σ1 − σ2) +

1
2
(σ1 + σ2)sinϕ(ξ) − Csinϕ(ξ) = 0;

F2 = σ1 − σt(ξ) = 0; σ1 > σ3 > σ2

(17)  

where the tensile stresses are considered as positive. 
The preliminary step in the identification procedure is the assess-

ment of the value of parameter C appearing in the Mohr-Coulomb failure 
condition (15). Note that this parameter is associated with hydrostatic 
tension, and as such it is orientation independent. Furthermore, C has no 
direct physical significance as the strength in tension regime is governed 
by the cut-off criterion F2 = 0 in which max{σt} < C. Thus, an assess-
ment of C is required only to enable the specification of the material 
function ηf (ξ). Fig. 19 shows the linear best-fit approximations to the 
numerical data plotted in the affined space 12 (σ1 − σ2) vs. 1

2 (σ1 + σ2). An 
estimate of C was obtained by taking the maximum value over the set of 
configurations considered, which resulted in C = 0.95 MPa. 

Given the value of C, the next step is to identify the distribution of 
strength parameter ηf (ξ). Referring the problem to the coordinate sys-
tem in Fig. 7b, with x-axis along the horizontal, the components of 
loading vector l and unit loading vector ℓ , for a plane stress configura-
tion, become 

l2
1 = cos2θσ2

x + sin2θσ2
y ;

l2
2 = cos2θσ2

y + sin2θσ2
x ; l2

3 = 0;

ℓ2
1 =

l2
1

l2
1 + l2

2
=

cos2θσ2
x + sin2θσ2

y

σ2
x + σ2

y
;

ℓ2
2 =

l2
2

l2
1 + l2

2
=

cos2θσ2
y + sin2θσ2

x

σ2
x + σ2

y
.

(18)  

Assume, as a first approximation, that the material may be perceived as 
transversely isotropic. In this case, A1 = A3, which in view of the fact 
that A is a traceless operator, implies A2 = − 2A1. Thus, the dyadic 
product ξ = ℓ ⋅A⋅ℓ may be defined in an explicit form 

K. Koocheki et al.                                                                                                                                                                                                                               

16

Ph.D. Thesis - K. Koocheki; McMaster University – Civil Engineering

17



International Journal of Solids and Structures 236-237 (2022) 111342

12

ξ = ℓ ⋅A⋅ℓ = A1
(
l2
1 − 2l2

2

)

= A1

[
σ2

x

(
1 − 3sin2θ

)
+ σ2

y

(
1 − 3cos2θ

)

σ2
x + σ2

y

] (19)  

in which A1 is the only independent eigenvalue of A. It is evident that for 
the uniaxial load, the above expression simplifies to ξ = A1

(
1 − 3sin2θ

)
. 

Fig. 20a shows the best-fit approximation for the function ηf (ξ). The 
results are based on the numerical data for uniaxial compression at 
different orientations of bed joints. Note that in this case 

σ1 = fc

σ2 = 0

}

→sinϕ =
fc

fc + 2C
;

ηf =
6sinϕ

3 − sinϕ
=

3fc

fc + 3C

(20)  

where fc = fc(ξ) is the uniaxial compressive strength. The approxima-
tions are provided again for two different values of the tensile strength of 
brick units, viz. Ft = 1.0 and 1.5 MPa, which is similar to the parametric 
study in Section 3.1.3. The mathematical representation incorporates 
the terms up to the order of three in Eq. (16) and the respective values of 
coefficients of approximation are given in Table 3. 

Fig. 20b shows the best-fit approximation for the function σt(ξ), 
which describes the spatial variation of uniaxial tensile strength of the 
brickwork. Here, the approximations employ again the third-order terms 
in the dyadic product ℓ ⋅A⋅ℓ . The resulting approximation coefficients, 
for both sets of parameters associated with Ft = 1.0 and 1.5 MPa, are 
given in Table 4. 

Finally, Fig. 21 shows the numerical predictions of strength in biaxial 
tension–compression based on the failure criterion (15). Here, the values 
of best-fit approximation coefficients provided in Table 4 were 
employed and the results correspond to θ = 0◦, 22.5◦, and 90◦. 

Table 4 
The coefficients of best-fit approximation for material functions ηf (ξ) and σt(ξ).   

η̂f  A1  b1  b2  b3  σ̂ t  A1  c1  c2  c3  

Ft = 1.5MPa   2.11  0.089 − 10.67  56.56  639.10  0.20 − 0.387  5.83  2.34 − 10.67 
Ft = 1.0MPa   1.96  0.125 − 6.09  14.04  159.76  0.17 − 0.507  2.84  0.97 − 3.93  

Fig. 20. Best-fit approximations to spatial distribution of strength parameters ηf and σt .  

Fig.19. Failure envelopes in compression regime for θ = 90◦ and θ = 0◦ , respectively.  
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5. Final remarks 

The main focus in this work was the development of a computational 
framework for meso and macroscale analysis of structural masonry. The 
mesoscale approach incorporated a constitutive law with embedded 
discontinuity to deal with the localized deformation in bed/head joints 
as well as with the onset and propagation of damage in brick units. In 
this case, a simple structured FEM has been used in which the 
brick–mortar interface, which represents the weakest link in the ma-
sonry panel, is perceived as being embedded in the adjacent intact 
medium. For bricks, the level-set method has been employed for tracing 
the location and propagation of cracks. The proposed methodology 
yields the results that are not affected by the finite element discretiza-
tion, which is due to the presence of a length-scale parameter. In addi-
tion, the treatment of head/bed joints, as being embedded within a 
structured mesh, significantly improves the computational efficiency as 
compared to standard approach that explicitly incorporates all constit-
uents and their interfaces. 

The objectives of developing the mesoscale approach are two-fold. 
On one hand, the framework is suitable for the analysis of small-scale 
masonry structures. At the same time, it provides a bridging between 
the two scales, i.e. it serves the purpose of generating ‘virtual data’ that 
can be employed for identification of material functions appearing in the 
macroscale approach. Both these aspects have been illustrated by a 
number of numerical examples that included the simulations of the 
tensile and shear tests on brick–mortar bond as reported in Van der 
Pluijm (1997, 2000) as well as a comprehensive analysis of a set of 
experimental tests conducted by Dhanasekar et al. (1985) and Page 
(1983). The latter involved masonry panels subjected to biaxial loading 
at different orientations of bed joints. For all cases considered, the re-
sults have been compared with experimental data, thereby providing a 
proof-of-concept. 

For the macroscale approach, only some preliminary work has been 
reported here. In particular, a procedure for identification of material 
functions embedded in this framework has been outlined. The latter 
employed the results of axial compression and tension generated 
through the mesoscale analysis of panels at different orientation of bed 
joints. Obviously, a more accurate approximation of these functions may 
be obtained by also considering the biaxial tension–compression 
loading. 

For the macroscale simulations, an important issue is the specifica-
tion of the conditions for the onset of localization. In this case, the 
representation (15) may be phrased in the context of elastoplasticity, so 
that the localization is perceived as a bifurcation problem. Alternatively, 
if the conditions at failure are defined through Coulomb and/or Rankine 
type of criterion, the critical plane approach (Pietruszczak and Mroz, 
2001) may be employed whereby the orientation of the localization 
plane is defined as a constrained optimization problem. Finally, one can 
also use the ‘virtual’ data generated from the mesoscale analyses and 
construct a data-driven neural network that would predict the orienta-
tion of macro-fracture for a given stress state. Such an approach could 

potentially prove to be efficient in engineering applications and will be 
explored in the follow up studies. 
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Numerical analysis of large masonry structures:  bridging meso and macro 
scales via artificial neural networks 

 

K. Koocheki, S. Pietruszczak* 
McMaster University, Hamilton, ON, Canada 

 

Abstract 

This paper presents a methodology for analysis of large-scale masonry structures. The approach 
involves development of a series of artificial neural networks which enable the identification of 
main variables employed in the macroscopic formulation that incorporates an inelastic constitutive 
law with embedded discontinuity. The data required for training of neural networks is generated 
using ‘virtual experiments’, whereby the ‘equivalent’ anisotropic response of masonry is 
investigated through a mesoscale finite element analysis of masonry wallets.  The paper outlines 
the procedure for identification of approximation coefficients describing the orientation-
dependency of strength, and other relevant parameters. A numerical example is provided involving 
analysis of a large masonry wall with multiple openings. The results of macroscale approach are 
compared with those based on a detailed mesoscale model for the same geometry and boundary 
conditions. 

Keywords: brick masonry; anisotropic failure criterion; artificial neural network; macroscale 
modelling; homogenization 

 

1. Introduction 

For small scale masonry structures (e.g., shear walls, reduced scale models) the numerical analysis 

is typically conducted at the meso-level, i.e. by examining all constituents (i.e., brick units, mortar 

joints, and brick-mortar interface) and their interaction. Such an analysis is fairly accurate but 

cannot be employed in the context of long-span masonry construction. In the latter case, the 

masonry may be considered as an anisotropic continuum with a microstructure. Such an approach 

can significantly reduce the computational effort, it requires however a suitable methodology for 

assessing the averaged/homogenized properties based on properties of constituents and their 

geometric arrangement.  

______ 
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Over the last few decades intensive research has been conducted on estimating the anisotropic 

properties of masonry in the range of both elastic as well as nonlinear inelastic deformation, 

including the process of onset and propagation of macrocracks. Considering masonry as a periodic 

medium, Anthoine [1] and Urbanski et al. [2] employed the mathematical theory of 

homogenization to assess the elastic properties at the macroscale. A nonlinear homogenization 

procedure for masonry, based on the transformation field analysis, was proposed in [3] and was 

implemented in finite element simulations at the macroscale. A homogenization approach for 

predicting the ultimate strength of brick masonry was developed in [4]. In this approach, the 

masonry units were considered as rigid and were separated by joint interfaces that captured 

velocity jumps across the brick-mortar bond. In later work, Cluni and Gusella [5] derived the 

stiffness tensor for non-periodic masonry using the notion of representative elementary volume 

(REV). A comprehensive review of various homogenization methods has been provided in [6]. 

In terms of experimental work, most research has been focused on small scale tests on masonry 

components. There is a lack of extensive experimental campaigns on full-scale prototypes, 

although some experimental work in this respect has been carried out by several researchers [7–

11]. Those tests have been performed on a shaking table and involved an assessment of seismic 

response of unreinforced masonry buildings. In particular, the effectiveness of various 

strengthening interventions has been examined. Apparently, there are no experimental 

investigations on existing long-span masonry construction, which is due to the physical limitations 

of testing set-ups. This is actually the main challenge in verification of numerical approaches that 

are employed for analysis of large-scale structures. Therefore, the numerical investigations usually 

involve a comparison of the results obtained using different methodologies (cf. [12]). 

The methodologies themselves vary in terms of both description of deformation response and the 

assessment of ultimate strength. Over the last few decades several different continuum models 

have been proposed, such as [13–16] among others. Lourenço and his co-workers [13] developed 

plasticity models incorporating a modified Hill and Rankin failure criteria in compression and 

tension along the orthogonal material axes. Gambarotta and Lagomarsino [14] introduced the 

homogenized version of their microscale damage model by considering brick masonry as an 

equivalent stratified medium. Both these approaches have been applied in the context of 
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macroscale analysis. Brasile and co-workers [15,16] proposed a multi-level iterative formulation 

where mesoscale interactions between masonry constituents are considered at first at the ‘local’ 

level, followed by an equivalent continuum ‘global’ level iteration accounting for the structural 

arrangement of bricks. In addition, Cosserat structured continuum models, accounting for the 

mutual blocks rotations, have been proposed and their performance compared with that of Cauchy 

material (cf. [17]). 

In addition to continuum frameworks, various simplified engineering approaches have been 

employed. For example, Pietruszczak and Niu [18] used the concept of a superimposed medium. 

In this approach the brick matrix with head joints was considered as an orthotropic elastic–brittle 

material and its mechanical properties were determined from Eshelby’s solution to an ellipsoidal 

inclusion problem combined with Mori–Tanaka’s mean-field theory [19]. The masonry was then 

regarded as a continuum stratified with a family of bed joints, which formed the weakest link in 

the microstructure, and the average constitutive relation for the entire composite system was 

obtained from Hill’s averaging rule. Under simplified hypothesis about microstructure geometry 

and micro–macro quantities relationships, constitutive laws for the homogenized material were 

also proposed [20]. 

An alternative to a continuum approach, involves application of Artificial Neural Networks 

(ANNs). The latter were used, for example, for specification of the conditions at failure in masonry 

[21,22]. In general, ANNs have mostly been employed for predicting the load-displacement 

characteristics in selected type of problems, e.g. masonry walls under shear [23,24] or compressive 

loads [25–27]. The networks were trained using the collected experimental data, which limits their 

use to boundary conditions consistent with training. 

The aim and novelty of the present study lies in combining ANNs and FEM to provide a 

computationally efficient scheme for analysis of large-scale masonry structures. An overview of 

the proposed methodology is given in Section 2. Section 3 describes the development of neural 

networks for predicting orientation-dependent strength of masonry as well as the assessment of 

elastic properties at the macroscale. Here, the procedure for generation of a database using a 

mesoscale approach is outlined and the aspects of training of ANNs are addressed. Section 4 

reviews the continuum-level formulation for masonry incorporating a microstructure tensor 

approach [28,29] and its implementation in plasticity framework. Section 5 presents an example 
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of numerical analysis of a large masonry wall with multiple openings. Here, the results of 

macroscale approach are compared with those based on a mesoscale model for the same geometry 

and boundary conditions. The example clearly demonstrates that the continuum-level 

representation of structural masonry is not only very efficient but also fairly accurate in relation to 

its mesoscale counterpart. Final discussion and concluding remarks are presented in Section 6. 

 

2. Methodology for numerical analysis of large-scale structures 

As stated earlier, the work presented here is focused on development of a framework that enables 

modeling of mechanical behaviour of large masonry structures, with a horizontal span that might 

be of the order of hundreds of meters. In this case the masonry needs to be considered as a 

continuum with inherent anisotropy attributed to its internal structure. The anisotropy in 

mechanical response relates to deformation properties, in both elastic and inelastic range, the 

conditions at failure as well as the orientation of macrocracks at the onset of localization. All these 

depend on the orientation of material axes with respect to the principal stress directions.  

In order to provide a pragmatic approach which can be used for practical engineering applications, 

the framework is constructed in such a way that the key variables defining the anisotropy effects 

at the macroscale are established directly from the basic properties of constituents, the latter 

identifiable from simple mechanical tests. For that purpose, a series of artificial neural networks 

is developed. It is noted that ANNs are typically trained using a broad range of experimental data. 

In case of masonry, this entails a large number of tests on panels subjected to biaxial loading at 

different orientation of bed joints relative to loading direction (cf. [30–32]). Such an approach is 

not only expensive and time consuming but practically impossible in case of existing structures. 

Therefore, in the present study, the required data is generated using ‘virtual experiments’, whereby 

the macroscale response of masonry is obtained through finite element analysis of masonry 

wallets. The simulations are based on a mesoscale approach that employs a numerical scheme 

outlined in [33] which incorporates a constitutive law with embedded discontinuity (CLED, cf. 

[34,35]).  

Fig. 1 shows a schematic diagram of the proposed numerical scheme. Given the basic mechanical 

properties of constituents (viz. elastic constants for brick material and mortar, tensile and shear 

strength of bricks as well as brick-mortar bond) two types of ANNs are employed. The first one 
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provides the data for assessment of approximation coefficients which appear in the macroscopic 

failure criterion that incorporates a microstructure tensor approach [29]. At the same time, other 

trained networks are employed to predict the homogenized elastic properties of masonry and 

material parameters that appear in the macroscale plasticity formulation. Given this information, 

the structural analysis is carried out in the range of homogeneous deformation. Once the transition 

to localized deformation occurs, the average orientation of macrocrack is estimated using another 

auxiliary ANN trained, once more, through the mesoscale simulations. The subsequent analysis, 

which involves localized deformation associated with strain-softening, is carried out using the 

constitutive law with embedded discontinuity, analogous to that employed in mesoscale approach.  

Since the AANs are trained for a broad range of input, i.e. properties of constituents, the proposed 

scheme can be applied to a variety of large-scale masonry structures provided the architectural 

layout is consistent with that used for the training process. 

 

  

Fig. 1. Summary of the present computational framework for analysis of masonry structures 

 

3.  Development of neural networks 

Artificial neural networks are one of widely used classes of Machine Learning that were created 

based on the functioning mechanism of axons in nerve cells. The building-block of ANNs, called 

the perceptron [36], is in itself a simple one-layer neural network functioning as a linear classifier. 

Combining the perceptrons, so that the output of one is used as the input of another perceptron, 

gives multilayer perceptrons [37,38] which are categorized as feed-forward neural networks. The 
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information originates from the input layer and is transformed through different functions in 

‘hidden layers’ to finally form the output of the network, which is compared to the actual expected 

values. A single layer in a feed-forward neural network can be described as 

𝐲( ) = 𝑓( ) 𝐖( ) ∙ 𝐲( ) + 𝐛( ) , 𝑖 = 1, 2, … , 𝑛  (1) 

in which 𝐲 is the output vector of the 𝑖-th layer, 𝐖 and 𝐛 are weight and bias vectors, and 𝑓 is the 

activation function. In this approach which is called ‘supervised learning’, the error or loss function 

may be calculated using mean squared error defined as 

MSE =
1

𝑛
Y − Y∗  (2) 

where 𝑛 is the number of output nodes, Y is the network output and Y∗ is the actual expected value. 

The loss function is minimized using optimization algorithms. 

The ability of ANNs to predict complex nonlinear behaviour, combined with the increasing 

availability of open-source libraries such as Keras and Tensorflow, makes them an attractive 

option for computational solid mechanics [39–43]. A comprehensive review of Machine Learning 

approaches in mechanics of composite materials is presented in [44]. In these approaches, the 

neural networks were trained using either experimental data or numerical simulations and were 

used to explicitly predict the underlying constitutive relations. In addition, in several other studies 

[45–50], the averaged homogenized response of nonlinear elastic materials with complex 

microstructure was examined based on neural networks coupled with FEM.  

In the present study, the primary objective is to develop an ANN that serves as a surrogate model 

to predict the biaxial strength characteristics of masonry panels for different orientations of bed 

joints. This information is then employed to estimate the approximation coefficients that define 

the directional dependency of strength and deformation parameters for the macroscopic 

elastoplasticity framework, as well as the corresponding orientation of the localization plane. The 

ANNs were developed using SciANN [51], a Python package for scientific computing with 

Keras/Tensorflow backend. 
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3.1. Neural network for predicting orientation-dependent strength of masonry 

This neural network has been developed using a broad-spectrum of ‘virtual data’ generated through 

mesoscale simulations of running-bond masonry panels. The numerical analysis incorporated a 

constitutive law with embedded discontinuity (CLED). In this approach, the averaged properties 

of a referential volume intercepted by a discrete macro-fracture are established. The approach 

involves volume averaging of gradient of a discontinuous velocity field. The localization law, 

which relates the velocity jump to the averaged macroscopic strain rate, is obtained by imposing 

the traction continuity across the discontinuity surface. The constitutive relation, at the level of the 

referential volume, takes the form [34] 

�̇� = 𝔻: �̇�  (3) 

where the equivalent tangential stiffness operator 𝔻 is defined as 

𝔻 = 𝔻 − χ𝔻: 𝐧 ⊗ (𝐊 + χ𝐧 ∙ 𝔻 ∙ 𝐧)−𝟏 ⊗ 𝐧 : 𝔻. (4) 

Here, 𝔻 is the fourth-order stiffness tensor that defines the properties of the intact region, and 𝐊 is 

the second-order stiffness operator for the fractured zone. Moreover, 𝐧 is the normal to the 

discontinuity surface, while χ is a length scale parameter defined as the ratio of the surface area 

of the localization plane to the referential volume at the level of a finite element. 

In the mesoscale simulations conducted here, two primary constituents were considered, viz. brick 

material and the brick-mortar bond. The latter was perceived as being embedded in the adjacent 

continuum and its properties were described by constitutive law (3). This is a simple and pragmatic 

approach which is numerically very efficient, as the simulations may be carried out using a simple 

structured FE mesh [33]. The brick material itself was considered as elastic prior to onset of 

fracture. It is noted that in masonry the irreversible deformation comes primarily from 

sliding/separation along the brick-mortar interfaces, so that this simplification seems reasonable. 

In the range of homogenous deformation, the conditions at failure were described using Mohr-

Coulomb criterion with Rankine cut-off in tension regime. After the inception of a macrocrack, 

the response of the brick material was modeled using again the CLED formulation (4), in which 𝐧 

refers to the normal to the macrocrack. The crack propagation was traced using the level-set 

method. The behaviour along the localization plane, for both the pre-existing brick-mortar 

interface and the bricks, was described using a relation between the rate of traction and velocity 
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discontinuity. The latter employed strain-softening, and the stiffness operator 𝐊  was defined 

within the framework of plasticity.  

 

3.1.1. Mesoscale simulations 

Mesoscale simulations were carried out on 360×360 mm masonry panels made of half-scale bricks 

of the size 115×35×50 mm arranged in running bond pattern with mortar joints of thickness of 10 

mm. The structural arrangement was analogous to that used by Page in his comprehensive 

experimental testing program [31,32]. A uniform structured mesh of 8-noded cubic elements of 

size 10 mm was used. The original experiments employed biaxial loading imposed on the 

boundaries of specimens that were prepared at different orientation of bed joints relative to the 

direction of loading. The numerical simulations were carried out using the same FEM 

discretization and rotating the boundary traction to the desired orientation. In this way, the 

remeshing for each individual configuration could be avoided.  Fig. 2-a shows the loading 

conditions corresponding to the experimental setup used in [32], while Figs. 2-b and 2-c show the 

boundary conditions employed in the FEM simulations. It is noted that in the macroscopic 

framework, as described in the follow up section, the actual zig-zag failure pattern was 

approximated by an averaged inclination established with reference to the orientation of bed joints 

(cf. dashed red line in Fig. 2-b).  

The loading conditions consisted of uniaxial tension (UT), uniaxial compression (BC), and biaxial 

tension-compression (BTC). The ratios of the applied compressive to tensile stress magnitudes, 

𝑟 = 𝜎 /𝜎 , used in BTC cases were equal to 𝑟 = 2, 5, 10, 30, respectively, while the considered 

orientation of bed joints included 𝛽 = 0°, 22.5°, 45°, 67.5°, 90°. Note that according to this 

notation, 𝑟 = 0 and 𝑟 = ∞ correspond to UT and UC cases, respectively. 
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Fig. 2. (a) Biaxial tension-compression with variable orientation of bed joints β; (b) equivalent traction boundary 
conditions for horizontal bed joints. The zig-zag pattern is a schematic of a failure mechanism approximated by a 
plane with an average orientation α; (c) FEM mesh and boundary conditions. 

 

The simulations were carried out assuming an elastic strain-softening idealization for the brick-

mortar interface. In particular, the Coulomb failure function with tension cut-off has been 

employed in which the softening effects were attributed to tangential/normal components of 

irreversible part of velocity discontinuity. As mentioned earlier, the brick material was also 

considered as elastic prior to onset of localization and the crack propagation was described using 

representation analogous to that of Eqs. (3)-(4). In this case, exponential degradation functions 

were used in conjunction with mode I and II fracture energy release. The details pertaining to 

specification of these functions and the algorithm for a discrete crack tracing within the bricks are 

provided in [33].  

The analysis was focused on predicting the ultimate strength of masonry panels for a broad range 

of values of tensile and shear strength (cohesion) of brick-mortar interface (𝑓 , 𝑐 ) and the tensile 

strength of bricks (𝑓 ). The remaining auxiliary material parameters for constituents, viz. elastic 

properties and the internal friction angles for both the bricks and the bond were selected based on 

the experimental data [30,32]. The tensile strengths of brick-mortar bond and the brick material 

were varied within the range of 0.1-1.0 MPa and 0.5-2.0 MPa, respectively, with an interval of 0.1 

MPa. The summary of the actual values, which corresponded to a total 80 cases, is provided in 

Table 1.  

28

Ph.D. Thesis - K. Koocheki; McMaster University – Civil Engineering

29



The key results of numerical simulations are presented in Fig. 3 which shows the predicted failure 

envelopes of masonry in tension-compression regime for a number of selected cases. The effect of 

individual variables on the ultimate strength under biaxial load can be directly assessed by 

comparing the plots in each row. During the loading process, the increase in external agencies 

triggers a generation of macrocracks whose pattern depends on the direction of loading in relation 

to the orientation of bedding planes. The dominant mode is the tensile or shear fracture along the 

interfaces, however, in some cases (e.g. axial compression) the fracture may extend to bricks as 

well. The sample fails when the cracks coalescence and a continuous failure mechanism forms.  

Fig. 4 depicts the global failure patterns and their estimated average orientation under uniaxial 

loading conditions at different orientation of bed joints. 

 

Table 1. Summary of variable parameters for mesoscale FEM data generation 

𝑓  
(MPa) 

𝑐  
(MPa) 

𝑓  
(MPa) 

𝑓  
(MPa) 

𝑐  
(MPa) 

𝑓  
(MPa) 

0.1 
0.6 
0.8 
1.0 

0.5 
1.0 
1.5 
2.0 

0.6 

0.75 
1.0 
1.3 
1.5 

1.0 
1.5 
2.0 

0.2 
0.4 
1.0 

0.5 
1.0 
1.5 
2.0 

0.7 
1.0 
1.3 
1.5 

1.0 
1.5 
2.0 

0.3 
0.6 
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Fig. 3. Sample failure envelopes of masonry panels under biaxial tension-compression. Different colors represent the 
orientation of bed joints. 

 

 

Fig. 4. Average orientation of global failure mechanisms formed in uniaxial tension (UT) and uniaxial compression 
(UC) at different orientations of bed joints 

3.1.2. ANN training and validation 

Approximately 75% of the results of mesoscale FEM simulations (i.e. biaxial/uniaxial 

compression-tension) were randomly selected for training while the reminder was used for testing 
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the network performance. The input of the network consists of constituent strength properties as 

well as the bed joint orientation angle and the ratio of compressive to tensile load (𝑓 , 𝑐 , 𝑓 , 𝛽, 𝑟). 

The outputs are the compressive and tensile strength values at failure (𝜎 , 𝜎 ). Since neural 

networks are trained significantly better by invoking normalization, the data was normalized using 

the minimum and maximum values of the training set for each given variable. Different network 

architectures (number of hidden layer and number of neurons in each layer) as well as activation 

functions were tested in order to find the optimum combination. 

For most of the networks tested, the hyperbolic tangent activation function in hidden layers as well 

a linear activation function in the output layer was used. A case of sigmoid activation function was 

tested for the sake of comparison. The loss was calculated using the Mean Squared Error (MSE) 

function optimized using the Adaptive Moment Estimation (Adam) algorithm. Training was 

performed on roughly 1,700 data points using a batch size (number of samples per gradient update) 

of 35. Learning rate was reduced exponentially over the maximum number of 50,000 epochs with 

initial and final values of 10-3 and 10-5. The training was stopped before reaching the maximum 

number of epochs if loss values were below 10-8. Table 2 shows the summary of selected ANNs, 

while the evolution of their corresponding losses over the training epochs is illustrated in Fig. 5. 

The ANN predictions of macroscopic failure envelopes at different orientation of bed joints are 

presented in Fig. 6. The results pertain to a sample set of strength parameters not used for training 

purposes. The ANN numbers correspond to the network architectures listed in Table 2. It is evident 

that the results are fairly consistent with those based on mesoscale FEM simulations. 

 

Table 2. Summary of ANN architectures used for predicting strength of masonry 

ANN # Activation Function Layers Neurons 

ANN 1 Hyperbolic Tangent 3 12 

ANN 2 Hyperbolic Tangent 5 15 

ANN 3 Hyperbolic Tangent 8 20 

ANN 4 Hyperbolic Tangent 10 20 

ANN 5 Hyperbolic Tangent 12 36 

ANN 6 Sigmoid 5 15 
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Fig. 5. Evolution of MSE loss values over training epochs for different ANN architectures 

 

 

Fig. 6. Examples of ANN predictions of masonry strength compared to mesoscale FEM simulations 

 

3.2. ANN for estimating of average orientation of failure plane 

The results of mesoscale analysis were also used in training of another neural network for the 

assessment of average orientation of failure plane (c.f. Fig. 4). In this case the input consisted of 

the strength properties of brick-mortar bond, viz. (𝑓 , 𝑐 ), the tensile strength of bricks (𝑓 ) and 

the components of stress state at failure (𝝈 ). The output were the components of unit vector 
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normal to the discontinuity plane. Each input vector was normalized using the maximum value of 

the dataset, while the output vector did not require normalization. The network consisted of 5 

hidden layers with 15 neurons using Hyperbolic Tangent activation function. Fig. 7 shows an 

example of neural network predictions for a given set of constituent properties. The information 

provided by this ANN was explicitly employed in the macroscale framework discussed later in 

Section 4, in a scenario when the strain localization occurs. 

 

 
Fig. 7. Example of ANN prediction of average orientation of failure plane with respect to the bedding plane 

 

3.3. Neural network for predicting macroscale elastic properties of masonry 

In the present study, an independent neural network was developed to estimate the equivalent 

elastic properties of masonry based on elastic properties of constituents and their and geometric 

arrangement. For this purpose, a series of mesoscale uniaxial compression tests parallel and 

perpendicular to bed joint direction were simulated. The variables in the simulations were Young’s 

moduli of bricks (𝐸 ) and mortar (𝐸 ) and their and Poisson’s ratios (𝜈 , 𝜈 ). The former variables 

were chosen in the range of 1.0-10.0 GPa and 0.1-7.0 GPa, respectively, while the corresponding 

Poisson’s ratios were varied between 0.1-0.25 and 0.05-0.2. The geometric variables were the 

length and heigh of bricks as well as thickness of mortar. The constituents were arranged again in 

a running bond pattern. 

Given the combination of properties above, a total of 1,155 data points were generated. In order to 

prepare the data for a neural network, the Young’s moduli were normalized using their relevant 
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minimum and maximum values. Additionally, the geometric inputs were represented by ratio of 

brick height to brick length (𝑟 = 𝐻 /𝐿 ) and mortar thickness to brick height (𝑟 = 𝑡 /𝐻 ) and 

were used along with the Poisson’s ratios as inputs for a neural network with 5 layers including 10 

neurons each, with Hyperbolic Tangent activation function. Table 3 summarizes the dimensions 

of constituents and their respective ratios. Assuming a transversely isotropic behaviour for 

homogenized masonry, the output of the network consisted of equivalent Young’s moduli in the 

direction of bed joints (𝐸 ) and direction of head joints (𝐸 ) as well as the shear modulus 𝐺  and 

the two corresponding Poisson’s ratios. 

  

Table 3. Dimensions of constituents in elastic mesoscale simulations 

𝐿  (mm) 𝐻  (mm) 𝑡  (mm) 𝑟  𝑟  

115 35 10 0.30 0.29 

190 90 5 0.47 0.06 
200 110 15 0.55 0.14 

220 70 10 0.32 0.14 

250 120 20 0.48 0.17 

 

Approximately 70% of the datapoints were randomly selected for training the network while the 

remaining data was used for the verification purposes. Fig. 8 shows the ANN predictions of the 

equivalent Young’s moduli for the masonry for 346 testing data points. The maximum error among 

the predictions was approximately 10%. 

 

 

Fig. 8. ANN prediction of transversely isotropic elastic moduli based on elastic properties of bricks and mortar 

(running bond masonry pattern; x and y refer to direction of bed joints and head joints, respectively). 
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4. Macroscale approach 

In the macroscale approach, masonry is considered as an equivalent continuum with inherent 

anisotropy. Its mechanical properties are described by implementing the microstructure tensor 

approach [29], which incorporates scalar anisotropy parameters that are function of the orientation 

of principal stress axes in relation to the predefined material axes, the latter defined by the 

arrangement of material microstructure (i.e. orientation of bed/head joints). As mentioned earlier, 

the approximation coefficients embedded in this representation are identified using the ANN 

predictions of the ultimate strength in biaxial tests for a given set of properties of constituents. 

 

4.1. Overview of plasticity formulation 

In order to maintain the consistency with the underlying mesoscale model, the conditions at failure 

are defined by Mohr-Coulomb criterion with Rankine cut-off in tensile regime, both functions 

enhanced by the notion of orientation-dependency of strength parameters. Thus, the failure 

criterion 𝐹 = 0 assumes the form  

𝐹 = 𝑚𝑎𝑥 (𝐹 , 𝐹 ) = 0;   𝐹 = 𝑞 − 𝜂 𝑔 (𝜃)(𝑝 + 𝐶) = 0;    𝐹 = 𝑔 (𝜃)𝑞 − (𝑝 + 𝜎 ) = 0 (5) 

where  𝑞 =  (3 J ) /  , 𝑝 = −I /3 ,   𝜃 = 𝑠𝑖𝑛 𝟑   and 

𝑔 (𝜃) =  
3 − sin 𝜙

2√3 cos 𝜃 − 2 sin 𝜃 sin 𝜙
; 𝜂 =

6 sin 𝜙

3 − sin 𝜙
;   𝐶 =

𝑐

tan 𝜙
 ;      𝑔 (𝜃) =

2

3
sin 𝜃 +

2𝜋

3
 (6) 

where I, J  are the basic invariants of the stress tensor and its deviatoric part, respectively,  𝜃 is the 

Lode’s angle, 𝜙 is the friction angle, and c is the cohesion. For an anisotropic material, the 

parameter 𝐶, which is associated with hydrostatic pressure, is a constant while the scalar 

parameters 𝜂  and 𝜎  are defined in a polynomial form as 

𝜂 = �̂� (1 + 𝜉 + 𝑏 𝜉 + 𝑏 𝜉 + 𝑏 𝜉 + ⋯ ) ;      𝜎 = 𝜎 (1 + 𝜉 + 𝑏 𝜉 + 𝑏 𝜉 + 𝑏 𝜉 + ⋯ ) (7) 

Here, 𝑏  and 𝑏  (𝑖 = 1,2, …) are the approximation coefficients while 𝜉 = 𝓵 ∙ 𝑨 ∙ 𝓵 is the dyadic 

product of a symmetric traceless tensor 𝑨, whose principal directions are coaxial with material 

axes, and a unit ‘loading vector’ 𝓵. The latter is defined as 
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𝓵 =
𝑳

(𝑳 ∙ 𝑳) /
, 𝐿( ) = 𝒕( ) ∙ 𝒕( ) /

= 𝒆( ) ∙ 𝝈 ∙ 𝒆( ) ∙ 𝝈
/

 (8) 

where 𝑳 = 𝐿( )𝒆( ) and 𝒆( ) are the base vectors of the principal material system (𝑖 = 1,2,3). Thus, 

the components of 𝑳 define the magnitudes of traction vectors 𝒕( ) acting on planes perpendicular 

to the material axes. 

Plasticity formulation incorporates the notion of a yield/loading surface which is defined in a 

functional form similar to that of eq. (5), i.e. 

𝑓 = 𝑞 − 𝜂𝑔 (𝜃)(𝑝 + 𝐶) = 0;  𝜂 = 𝜂(𝜅) = 𝜂
𝜁𝜅

𝐵 + 𝜅
;         𝑓 = 𝐹 = 0  (9) 

where 𝐵 and 𝜁 are material constants, and 𝜅 is the hardening parameter identified with accumulated 

plastic distortion. The latter is defined in terms of the deviatoric part of plastic strain increment 

(�̇� ) as 

𝜅 =
2

3
�̇� : �̇�

/  

𝑑𝑡     (10) 

The hardening rule employed in representation (9) implies that 𝜂 → 𝜁𝜂  for 𝜅 → ∞. Here, the 

parameter 𝜁, defined as  𝜁 > 1, is used to determine the onset of localized deformation that is said 

to occur when 𝜂 = 𝜂 , so that the conditions of failure are consistent with Mohr-Coulomb criterion 

(i.e. 𝑓 = 𝐹 ). Apparently, other more general criteria may be employed in this respect.  In the 

tensile regime, the material is considered as elastic-brittle with the transition to brittle response 

occurring at 𝐹 = 0. 

The plastic flow is governed by a non-associated flow rule for which the plastic potential is defined 

as 

𝜓 = 𝑞 + 𝜂 𝑔 (𝜃)(𝑝 + 𝐶) ln = 0. (11) 

Here, 𝜂  is a parameter defining the transition from compaction to dilation and the auxiliary 

variable 𝑝 is determined from the condition that the current stress state satisfies 𝜓 = 0. Note that, 

in general, there is 𝜂 ~𝜂 , so that this parameter may also be perceived as orientation-dependent 

(cf. Eq. 7). 
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The constitutive relation, in the range of homogeneous deformation, is formulated following the 

standard plasticity procedure. The latter entails the use of consistency condition, additivity 

postulate and the Hooke’s law in the range of anisotropic deformation. At the onset of localization, 

the outward unit vector 𝐧 normal to the discontinuity surface is defined. For that purpose, the ANN 

described in Section 3.2 is used relating the average orientation of this plane to the stress state and 

the orientation of material axes. The analysis is then carried out using the CLED formulation 

analogous to that outlined in Section 3.1. 

 

4.2. Specification of orientation-dependent strength parameters 

In order to identify the material functions employed in failure criteria (5) it is convenient to express 

them in terms of principal stresses. Thus,  

𝐹 =
1

2
(𝜎 − 𝜎 ) +

1

2
(𝜎 + 𝜎 ) sin 𝜙(𝜉) − 𝐶 sin 𝜙(𝜉) = 0;  

𝐹 = 𝜎 − 𝜎 (𝜉) = 0;     𝜎 > 𝜎 > 𝜎  

(12) 

where the tensile stress is considered as positive. Referring now to Fig. 2, the components of 

loading vector 𝑳 for plane stress conditions are defined as  

𝐿 = cos 𝛽 𝜎 + sin 𝛽 𝜎  ;     𝐿 = cos 𝛽 𝜎 + sin 𝛽 𝜎  ;      𝐿 = 0 (13) 

and the corresponding components of the unit vector 𝓵 take the form 

ℓ =
cos 𝛽 𝜎 + sin 𝛽 𝜎

𝜎 + 𝜎
 ;       ℓ =

cos 𝛽 𝜎 + sin 𝛽 𝜎

𝜎 + 𝜎
 (14) 

Assume, for simplicity, that masonry under in-plane loading may be considered as a transversely 

isotropic material. In this case, the principal components of the second-order traceless tensor 𝑨 

satisfy 𝑡𝑟(𝑨) = 0, 𝐴 = 𝐴 , so that the dyadic product 𝜉 = 𝓵 ∙ 𝑨 ∙ 𝓵 reduces to 

𝜉 = 𝓵 ∙ 𝑨 ∙ 𝓵 = 𝐴 (ℓ − 2ℓ ) = 𝐴
𝜎 (1 − 3 sin 𝛽) + 𝜎 (1 − 3 cos 𝛽)

𝜎 + 𝜎
 (15) 

in which 𝐴  is the single independent eigenvalue of 𝑨. 
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The first step in identification procedure is the specification of material constant 𝐶, viz. Eq. (6). 

Note that 𝐶 has no direct physical significance as the strength in tension regime is governed by the 

cut-off criterion 𝐹 = 0 in which 𝑚𝑎𝑥𝐹2 < 𝐶. Thus, an assessment of 𝐶 is required only to enable 

the specification of material function 𝜂 (𝜉). Fig. 9 shows the linear best-fit approximations to a 

set of data generated through mesoscale simulations for some selected values of constituent 

properties at different orientation of bed joints. The data is plotted in the affined space 

(𝜎 − 𝜎 ) 𝑣𝑠.  |𝜎 + 𝜎 |. In each case, an estimate of 𝐶 was obtained by taking the maximum 

value over the set of orientations considered.   

 

 

Fig. 9. Examples of Mohr-Coulomb best fit approximations for different bed joint orientations 

   

Given the value of 𝐶 and the corresponding stress state at failure, the pairs of {𝜂 , (ℓ − 2ℓ )} can 

be evaluated for the purpose of identification of the function 𝜂 (𝜉). This is illustrated in Fig. 10, 

which shows the best-fit approximations to this function over the selected range of values of the 

constituent properties. 

38

Ph.D. Thesis - K. Koocheki; McMaster University – Civil Engineering

39



In order to complete the identification procedure, the spatial distribution of tensile strength of 

masonry 𝜎 (𝜉) needs to be determined. This is achieved by best fitting the results of uniaxial 

tension tests, generated again through mesoscale simulations, for masonry panels at different 

orientations of bed joints. It should be noted that for the uniaxial tension there is ℓ − 2ℓ = 1 −

3 cos 𝛽, so that the variation of tensile strength can be plotted explicitly against the orientation of 

bed joints, viz. the angle 𝛽, as shown in Fig. 11. The summary of the set of fourth order polynomial 

approximation coefficients for the selected examples is provided in Table 4. 

 

Fig. 10. Examples of best-fit approximations of function  𝜂 (𝜉) 

 

Table 4. Coefficients of best-fit approximation of material functions 𝜂 (𝜉) and 𝜎 (𝜉) for selected examples 

𝑓  
(MPa) 

𝑐  
(MPa) 

𝑓  
(MPa) 

�̂�  𝐴  𝑏   𝑏  𝑏  𝜎  
(MPa) 𝐴  𝑏  𝑏  𝑏  

0.1 0.6 1.5 2.122 0.135 -3.382 -41.952 -79.359 0.132 -0.533 3.041 2.325 -2.715 

0.3 0.6 1.5 1.952 0.091 -13.997 10.959 499.670 0.458 -0.518 0.492 -0.482 -0.387 

0.6 0.75 1.5 1.811 0.050 -27.789 469.803 6857.848 0.743 -0.196 -0.514 0.238 -12.960 

0.9 1.2 1.5 1.611 0.045 -58.687 1394.272 20727.191 1.178 -0.310 -1.181 -4.494 5.153 
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Fig. 11. Examples of best-fit approximations of 𝜎 (𝜉) function 

 

(i) Verification of predictions based on ANN 

In practical implementations, the same identification procedure may be followed using the ANN 

generated data, instead of mesoscale FEM simulations. In this way, the approximation coefficients 

appearing in both material functions 𝜂 (𝜉) and 𝜎 (𝜉) can be specified directly from a prescribed 

set of basic strength properties of bricks and brick-mortar bond. This is illustrated in Figs. 12-13, 

which compares the best-fit approximations generated using ANN predictions and those obtained 

from FEM simulations. Apparently, the degree of accuracy is fairly reasonable here. 
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Fig. 12. Best-fit approximations of function 𝜂 (𝜉) using the ultimate strength predictions of different ANN 
architectures 

 

 

Fig. 13. Best-fit approximations of function 𝜎 (𝜉) using the ultimate strength predictions of different ANN 

architectures 

 

4.3. Specification of parameters governing the deformation at macroscale 

Description of the deformation process at macroscale requires the specification of anisotropic 

elastic constants as well as the parameters governing the deformation in the elastoplastic range, 
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viz. Eqs. (9-11). The equivalent elastic properties of masonry are estimated using the trained neural 

network as described in Section 3.3, which estimates their values based on properties of bricks and 

mortar joints and their geometric arrangement. 

The definition of the plastic potential function, viz. Eq. (11), requires the identification of 

parameter 𝜂  which governs the onset of dilatancy. As mentioned earlier, the transition from 

compaction to dilatancy is strongly correlated with the conditions of global failure, implying that 

𝜂 → 𝜂 . Given this fact, it was assumed that 𝜂 = 𝜂 (𝜉) = 0.99 𝜂 (𝜉). 

The hardening parameter 𝐵, Eq. (9), may also exhibit a directional dependency. However, given 

the fact that the predominant effect of anisotropy is the orientation-dependence of strength 

properties, which in itself affects the deformation response, its value was assumed here to remain 

constant. It should be emphasized that this is a pragmatic simplification and there is no conceptual 

difficulty in considering this parameter as a spatial variable. For a given set of constituent 

properties, the value of 𝐵 has been assessed by finding the best-fit approximation to a set of virtual 

(mesoscale FEM) data plotted in the affine space  {𝜂, 𝜅}. Note that the latter requires the notion of 

additivity of the rates of elastic and plastic deviatoric strain for assessing the values of  𝜅, viz. Eq. 

(10). As an illustration, Fig. 14 shows the deviatoric stress-strain characteristics for UC tests 

obtained from mesoscale FEM analyses and macroscale point-integration scheme. The results 

correspond to constant values of parameter B and 𝜂 (𝜉) approximated using only UC load tests 

for each given combination of constituent properties.  

Finally, for the purpose of practical engineering applications, another auxiliary ANN has been 

developed which enables specification of the value of hardening parameter B for a given set of 

constituent properties. In this case, approximately 70% of the mesoscale FEM data was used for 

training purposes while the remaining set was utilized for the verification process. The network 

consisted of 3 layers with 10 neurons each, using the Hyperbolic Tangent activation function. The 

summary of all neural networks used for bridging meso and macroscale, including the one used 

for specification of the average orientation of discontinuity plane, is presented in Fig. 15. 
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Fig. 14. Comparison between mesoscale and macroscale simulations of uniaxial compression tests for 𝜂 (𝜉) 

approximated using UC tests only. From left to right, 𝐵 = 1.2 × 10 , 1.5 × 10 , 2.1 × 10 . 

 

 

Fig. 15. Overview of the proposed procedure for macroscale analysis of masonry structures. 
 

5. Numerical example 

In this section, the proposed computational framework has been applied to finite element analyses 

of a large masonry wall with multiple window openings. It is noted that the main limitation in 

terms of verification of the macroscale approach is the lack of relevant experimental data, which 

stems from the scale of the problem. Therefore, in this work the performance of the macroscale 
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approach was assessed by comparing the results with a detailed mesoscale analysis which was 

used as a benchmark.  

The analysis involved an unreinforced masonry wall with the span of 43.5 m, the height of 15m 

and the thickness of 0.3m. The structure incorporated two rows of large openings with dimensions 

of 1.5m x 1.9m, cf. Fig. 16. In the numerical analysis, the wall was fixed at the base and was 

initially subjected to a gravitational load corresponding to unit weight of 20 kN/m3, as well as a 

uniformly distributed vertical load of 60 kN/m applied at the top. In the second stage, a lateral load 

was applied at the top of the wall until the ultimate conditions were reached. The same geometry 

and boundary conditions were used for both the mesoscale and macroscale analysis. The analyses 

were performed in a load-controlled setting and the evolution of horizontal displacement at the 

point of lateral load application was recorded.  

 

(i) Mesoscale model 

The bricks had the dimensions of 200mm×100mm and were arranged in a running-bond pattern. 

The elastic and strength properties of constituents are reported in Table 5. The mesh for the finite 

element analyses was structured by progressively increasing the element size with the distance 

from mortar joints. The geometry of the wall and details of the FEM discretization are shown in 

Fig. 16. A total of 1,104,863 8-noded cubic elements were used in the analysis. 

 

Table 5. Constituent properties for mesoscale simulations 

 Bricks Brick-mortar bond 

Young’s Modulus, E (MPa) 6750 N/A 

Poisson’s ratio, υ 0.17 N/A 

Tensile Strength, 𝑓  (MPa) 2.0 0.2 

Angle of internal friction, ϕ (◦) 35 35 

Cohesion, c (MPa) 4.0 0.4 

Interface normal stiffness, kn (N/m) N/A 1.3×108 

Interface shear stiffness, kt (N/m) N/A 6.2×108 
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Fig. 16. Geometry of the wall and arrangement of bricks for mesoscale FEM simulations. A magnified sample of the 
FEM mesh is shown. 

Macroscale model 

The discretization of the macroscale finite element model of the wall incorporated an element size 

of 0.75m, which covers a similar number of bricks as that used in the mesoscale analyses of 

masonry panels (Fig. 17). A finer mesh consisting of cubic elements with the size of 0.5m was 

also used in order to investigate the sensitivity of the model to mesh size. The number of 8-node 

cubic elements for coarse and fine mesh configurations were 1,108 and 2,448, respectively. 

The elastic properties at the macroscale were assumed to be transversely isotropic and were 

obtained using the trained neural network described in Section 3.2. A complete set of material 

parameters, which includes the approximation coefficients for the strength variables, is reported 

in Table 6. 
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Fig. 17. Geometry of the wall and FEM mesh for macroscale simulations. 

 

Table 6. Model parameters used for macroscale FEM simulations 

Elastic Properties Mohr-Coulomb Tension cut-off Hardening 

𝐸  (MPa) 5090 �̂�  1.984 𝜎  (MPa) 0.269 𝜁 1.025 

𝐸  (MPa) 5370 𝐴  0.152 𝐴  -0.551 𝐵 1.2×10-6 

𝜈  0.12 𝑏  -5.684 𝑏  2.453   

𝜈  0.14 𝑏  2.251 𝑏  1.079   

𝐺  (MPa) 2270 𝑏  86.675 𝑏  -2.935   

 

Once the conditions of failure were met, the stress components were input into the ANN developed 

in Section 3.1.3 to estimate the orientation of the failure plane. In order to facilitate the online 

application of the trained network in macroscale FEM simulations, a Fortran-Keras Deep Learning 

Bridge [52] was employed to transfer data between the FEM and ANN. The post-localization 

behaviour was then modeled using CLED formulation (cf. Eqs. 3-4) with a smeared crack 

approach. The strength properties along the macrocrack were progressively reduced using an 

exponential degradation function defined in terms of opening/sliding along the discontinuity plane. 

The mathematical form of these functions was analogous to that employed in the mesoscale 

formulation (cf. [33]). 
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The results of numerical simulations are presented in Figs. 18-19 below. During the initial loading 

stages, the damaged zones started to form around the corners of the openings. These zones then 

expanded between the openings and bottom left corner of the wall. Finally, ultimate shear capacity 

was reached when damage regions propagated between the two rows of openings and the top and 

bottom section of the wall. The evolution of failure pattern obtained from meso and macroscale 

analyses is compared in Fig. 18. The relation between the displacement measured at the top of the 

wall and the lateral shear force applied is shown in Fig. 19. For the mesoscale model, the ultimate 

value of the shear force was 6400 kN. On the other hand, the values based on macroscale models 

with coarse and fine mesh were equal to 5750 kN and 5840 kN, respectively, which represents 

approximately 8-10% error.  

 

Fig. 18. (a) Comparison between mesoscale (right) and macroscale (left) progression of material failure (colored in 
red). (b) Magnified sections of the mesoscale model. 
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Fig. 19. Comparison between load-deformation characteristics of mesoscale and macroscale models. Coarse element 
size:0.75m, fine element size: 0.5m 

 

6. Summary and discussions 

In order to assist in an effective implementation of a continuum framework in analysis of large- 

scale masonry structures, a series of artificial neural networks were trained in which the material 

properties of constituents were used to predict the ‘equivalent’ macroscopic characteristics of 

masonry. The following steps summarize the present approach: 

i. Mesoscale finite element analyses of masonry panels under biaxial tension-compression 

were conducted, using variable constituent properties and bed joint orientations, in order 

to generate ‘virtual data’ comprising the load-displacement characteristics, ultimate 

strength, and the average orientation of macrocracks at the failure. 

ii. Artificial neural networks were trained and tested using this data set to predict the ultimate 

strength of masonry as well as the averaged orientation of global failure plane for a given 

a set of constituent properties and loading conditions. 

iii. Using the information on the ultimate strength, the approximation coefficients were 

identified for the polynomial functions that estimate the orientation-dependent strength 

parameters for macroscale constitutive model. 

iv. Mesoscale finite element analyses of masonry panels were conducted in elastic range to 

estimate the transversely isotropic properties for macroscale masonry model. 
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v. Using these results, an artificial neural network was trained and tested for predicting 

‘equivalent’ elastic properties for a given combination of elastic and geometric properties 

of constituents. 

vi. Hardening parameters of macroscopic plasticity formulation were estimated using the 

averaged deformation characteristics of mesoscale finite element simulations of step (i). 

vii. An artificial neural network was trained to predict the hardening parameter of macroscale 

model based on a given set of constituent properties. 

With the trained networks, all necessary parameters for macroscale model can be explicitly 

obtained from mechanical properties of constituents without the need for mesoscale analysis. The 

example provided in the last section showed a fairly good agreement between the results of macro 

and mesoscale analysis, the former requiring significantly less computational effort. The growth 

of fractured zones in mesoscale model may seem to be ahead of that in the macroscale model only 

because of the difference in scale between the relevant element sizes. However, the main 

characteristics of the fracture pattern, i.e. the formation of fractured zones in the corners of the 

wall, between the two rows of openings, and in the vicinity of the openings show quite a good 

agreement between the two models. The agreement is even more evident when comparing the 

load-displacement response; the stiffness and the ultimate load are very similar in both 

methodologies.  

In the present study, the primary function of the developed neural networks is the bridging between 

meso and macroscale masonry models. Apparently, more comprehensive ‘virtual data’ generation 

scheme may be incorporated, in which more variables and more complex geometrical 

arrangements of masonry are considered. Consequently, the architecture of the networks and input 

and output vectors can be changed to reflect the availability of data. 

One of the advantages of the present approach, compared to other hybrid FEM-ANN schemes, is 

that the neural networks are external to the macroscale simulations. The only ANN that is explicitly 

embedded in the analysis is that employed for the assessment of the orientation of localization 

plane. The latter, however, is used only once at a given integration point at the onset of failure. 

This is in contrast to other approaches where neural networks are called at every load increment 

during the numerical analysis. 
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Abstract 

This paper deals with mesoscale analysis of masonry structures, which involves fracture 

propagation in brick units as well as along the masonry joints. The brick-mortar interfaces are 

incorporated in standard finite elements by employing a constitutive law with embedded 

discontinuity. Macrocracks in bricks are modeled in a discrete way using the same methodology, 

without any a priori assumptions regarding their orientation. The proposed approach is 

computationally efficient as it does not explicitly require the discretization of joints. The accuracy 

of the approximation is first assessed by comparing the solution with a detailed mesoscale model 

incorporating interface elements. Later, a comprehensive numerical study is provided involving 

simulation of various experimental tests conducted on small masonry assemblages, as well as full-

scale masonry walls. The results clearly demonstrate the predictive abilities of the proposed 

simplified approach. 

Keywords: brick masonry; mesoscale modelling; embedded discontinuity 

 

1. Introduction 

Masonry systems are amongst the oldest types of engineering structures that include historical 

heritage and strategic buildings. The masonry assemblies have a significant compressive strength, 

however their shear and tensile resistance is limited, which is of particular concern in case of 

structures that are subjected to lateral loads induced by seismic events [1, 2]. Numerical 

investigations into the mechanical behaviour of existing masonry structures enable the detection 

of vulnerabilities and assist in the design of retrofitting techniques [3]. Computational models are 

generally developed either at meso or macroscale. The former approach considers the geometric 

arrangement of masonry units and mortar joints, and often incorporates the brick-mortar interfaces 

(cf. [4–7]). On the other hand, in macroscale approach the masonry is perceived as an equivalent 

homogenous and anisotropic continuum [8–11]. Homogenization procedures [12–14] or 

multiscale approaches [15–18] are typically considered as a bridging between the two scales. In 

general, despite the existing body of scientific research, the development of reliable and efficient 
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strategies for modelling mechanical behaviour of structural masonry still remains a challenge [19–

21]. 

The macroscale modeling of nonlinear behavior of masonry assemblies usually involves 

continuum approaches, such as as plasticity, damage mechanics, non-local damage plasticity [22–

27]. In this case, the relevant data comes from experimental investigations. The latter have been 

conducted in the past not only on brick masonry but also on concrete and stone panels (cf. [28–

30]). However, the tests at this scale are expensive and require a broad range of loading and 

boundary conditions. More importantly, in case of existing historical and strategic masonry 

buildings, acquiring specimens that are representative in terms of assessment of macroscopic 

behaviour is virtually impossible. On the other hand, the mesoscale models incorporate only the 

mechanical properties of individual constituents. This information can be acquired in-situ without 

affecting the integrity of existing structures, as it entails standard material tests. The main 

challenge in mesoscale models of masonry is incorporation of strain-softening response describing 

localized deformation associated either with sliding/separation along the brick-mortar interface or 

cracking of bricks/mortar. In general, the nonlinearity in mechanical behaviour of masonry is 

triggered by displacement discontinuities that develop at the interface between bricks and mortar 

[31] in either tensile or shear failure modes, i.e. Mode I and Mode II of crack propagation [32]. 

The latter has motivated the development of simplified mesoscale models that usually consider 

bricks as an elastic continuum [33], while accounting for the interface behaviour through plasticity 

[34–37] or combined damage-plasticity models [6, 38–40]. 

The current paper addresses the issue of modelling of damage propagation in structural 

masonry. The analysis employs a mesoscale approach in which the brick-mortar interfaces are 

considered as being embedded in the adjacent intact material and their mechanical properties are 

accounted for through a constitutive law with embedded discontinuity [41, 42]. The main objective 

here is the verification of the accuracy of this simplified approach against other methodologies, 

and its comprehensive validation against the existing experimental data. For this purpose, a series 

of numerical simulations are carried out involving various structural components of masonry, such 

as couplets/triplets, beams as well as masonry walls, subjected to different loading histories. The 

fracture patterns involving both the sliding/separation along brick-mortar interface as well as 

formation of discrete macrocraks in the brick units are investigated.  
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2. Mathematical formulation 

A detailed mesoscale analysis of masonry requires discretization of the mortar region to account 

for development of cracks within this domain, as well as modelling of the brick-mortar interfaces, 

cf. Fig. 1. The simulations typically employ a graded unstructured mesh together with a set of 

interface elements. This impairs the computational efficiency, especially for larger structures, and 

may lead to numerical instabilities.  

A simpler and pragmatic approach, which is advocated here, involves accounting for the 

presence of brick-mortar interfaces, which represent the weakest link in structural masonry, 

through a constitutive law with embedded discontinuity (CLED). Fig. 1a shows an example of FE 

mesh with a schematic representation of the discontinuities embedded in elements representing the 

joints. It is noted that the orientation of interfaces is known a-priori and their mechanical response 

is defined in terms of a rate form of a traction – displacement discontinuity relation (cf. [43]). 

Thus, in this case, for elements containing interfaces the discretization is the same as in the adjacent 

bricks, however the constitutive relation assigned is that based on the CLED formulation. For 

elements at the intersection of bed and head joints, the orientation of prevailing discontinuity will 

depend on the mode of failure. In this case, the components of traction along those two directions 

are used to check the failure criterion and the dominant mode is chosen. The orientation of the 

cracks in brick units can be assessed by specifying the orientation which maximizes the failure 

function or by employing the bifurcation criterion (cf. [44]). Their discrete propagation is then 

monitored via a level-set method.   

 

Fig. 1 Mesoscale finite element model of masonry: (a) elements with embedded brick-mortar interfaces 

(present approach); (b) discretized brick and mortar units bonded via interface elements (detailed 

approach) 
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In the present approach, the averaged mechanical properties of a referential volume containing 

a discontinuity are defined by a constitutive relation (cf. [41]) 

 ���� = �����	
��	 (1) 

where 

 �����	 = ����	 − ����� ����������	;       ��� = ���� + �����	���	���
 (2) 

Here, ����	 is the fourth-order stiffness tensor which defines the properties of the intact material, 

�� is the unit normal to the discontinuity surface, ��� is the interfacial stiffness operator, and � =
A/V is an internal length scale parameter for a finite element of volume V intercepted by a 

discontinuity with a surface area A.  

In the present study, the brick material is assumed as elastic-brittle and the onset of failure is 

determined by Mohr-Coulomb criterion with Rankine tension cut-off (cf. [43]). Thus, in this case, 

����	 = ����	�   prior to the onset of localization. The interfaces are also considered as elastic prior 

to the onset of irreversible deformation, and the transition is governed by a similar form of failure 

criterion, i.e. Coulomb with tension cut-off 

  � =  ! + "#� − �$,     � < '(
� − '( ,               � ≥ '(

 (3) 

Here, '( is the tensile strength, � and " are the shear strength parameters, while ! and � are the 

components of the shear and normal traction acting at the brick-mortar interface. Upon the crack 

activation in tension, the strength of the material is assumed to undergo exponential decay as a 

function of irreversible part of crack opening (*+,) and Mode I fracture energy release rate (-./), 

i.e. 

 '( = '(0 exp 4− .56
789

*+,: (4) 

where '(0 is the tensile strength prior to the onset of failure. By analogy to representation (4), the 

degradation of the strength parameter in shear failure mode is assumed to take the form 

  " = "� + #"0 − "�$ exp 4− ;
7899 *+<: (5) 
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where = = � "0 is the cohesion, "0 and "� are initial and residual internal friction coefficients, -.// 

is the fracture energy release rate in shear, and *+< is the irreversible part of tangential component 

of displacement jump. Note that both the separation and sliding modes are associated with 

irreversible parts of the respective components of displacement discontinuity. 

(i) Numerical integration scheme  

Given the state of stress at pseudo-time step n, i.e. ���
#>$

, and invoking the additivity postulate, 

the constitutive relation (1) may be expressed in an equivalent form 

  ���
#>?�$ = ���

#>$ + ����	#Δ
�	 − Δ
�̃	$ (6) 

Here,  Δ
�̃� = �
B �#��Δ*� + ��Δ*�$, where Δ*� is the displacement jump across the discontinuity. 

Apparently, if the intact material, within the referential volume, is elastic prior to localization then  

����	 = ����	� .   

The incremental form of the constitutive relation for the interfacial zone may be written as  

  C�
#>?�$ = C�

#>$ + ���� �Δ*� − Δ*+�� (7) 

where Δ*+� = ΔD EF
E(G

 and H = '#C�$ is the plastic potential function that defines the non-associated 

flow rule. Invoking the consistency condition and solving for the unknown interfacial stiffness 

operator results in   

  Δ� = EI
E(G

ΔC� + EI
EJ+G

Δ*+� = 0 ⇒ ��� = ���� − MGN O PQ
P5N MRSO  PT

P5S
MGR O PQ

P5G 
PT

P5R � PT
PU

 (8) 

where V is the strain softening parameter, which for the tensile and shear failure mode is identified 

with *+,=*+��� and *+< = |*+� − *+���|, respectively. The return-mapping algorithm for an active 

loading process associated with crack opening/sliding can be written in terms of the residuals of 

traction and strain as 

  X�
#�$ ≡ ���

#>?�,�$�� − C�
#>?�,�$

 (9a) 

  Z��
#�$ ≡ 
�̃�

#>$ − 
�̃�
#>?�,�$ + �

B �[��Δ*�
#>?�,�$ + ��Δ*�

#>?�,�$\ (9b) 

which can be linearized to the form 
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  X�
#�$ + E]G

#N$

E^GR
δ���

#>?�,�$ + E]G
#N$

EJR
δ*�

#>?�,�$ = 0 (10a) 

  Z��
#�$ + E`GR

#N$

E^NS
a��	

#>?�,�$ + E`GR
#N$

EJR
a*�

#>?�,�$ = 0 (10b) 

Substituting the derivatives of the residuals leads to 

  X�
#�$ + δ���

#>?�,�$�� − ���δ*�
#>?�,�$ = 0 (11a) 

  Z��
#�$ + b��	cδ�	c

#>?�,�$ + �
B �[��δ*�

#>?�,�$ + ��a*�
#>?�,�$\ = 0 (11b) 

where b���	 is the fourth-order compliance tensor. Solving Eq. (11) and neglecting the second-

order derivatives, the incremental corrections to stress and displacement discontinuity can be 

obtained as 

 ���
#>?�,�?�$ =  ���

#>?�,�$ + δ���
#>?�,�$

 (12a) 

 *�
#>?�,�?�$ =  *�

#>?�,�$ + δ*�
#>?�,�$

 (12b) 

where 

  δ���
#>?�,�$ = −���	c 4Z	c

#�$ + �
B �[�	a*c

#>?�,�$ + �ca*�
#>?�,�$\: (13a) 

  δ*�
#>?�,�$ = ���� + ������ ������#X�

#�$ − ��	��
#�$ Z��

#�$�	$ (13b)  

which completes the numerical implementation of this approach. 

3. Assessment of the level of approximation of simplified approach 

In order to assess the accuracy of the simplified mesoscale approach its performance was first 

verified against the solution based on a detailed model that incorporates interface elements. The 

examples presented here involve simulation of tension and biaxial compression-tension tests on 

half-scale masonry panels, similar to those used in experimental investigations reported in ref. 

[45]. The masonry arrangement consists of nine rows of bricks placed in a running-bond pattern 

to form a panel 360×360×50 mm in size. The bricks have dimensions of 115×35×50 mm with a 

mortar thickness of 5 mm.  
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In the simplified approach, the brick-mortar joints were considered as being embedded in the 

adjacent intact material and were modeled using the CLED approach, viz. Eqs.(1-2). The solution 

was then compared to a detailed model that incorporated all constituents, i.e. bricks, mortar, as 

well as the brick-mortar interfaces. In this case, the interfaces were modelled using the surface-

based cohesive contact algorithm [46]. The latter is primarily intended for describing the 

debonding process but can also incorporate the frictional behaviour. Here, the traction-

separation/sliding laws were adopted in the form that is analogous to that in Eqs. (4-5). This allows 

a direct comparison of both methodologies. 

The simulations were carried out for uniaxial tension parallel to the bed joints and biaxial 

compression-tension with a fixed ratio of compressive to tensile load of 2. In the former case, the 

analysis was displacement-controlled, while in the latter case a load-controlled scheme was 

employed. The geometry and the boundary conditions are shown in Fig. 2. For biaxial test, the 

load was applied to the top and right boundaries of the panel, while the opposing surfaces were 

fixed in the direction of the imposed load. Figs. 2a and 2b show the FE mesh for both the proposed 

embedded interface approach and the detailed model including the mortar and the cohesive 

interfaces. It is noted that in the simplified approach, there are no specific restrictions on the 

element size. Thus, in this case a coarser structured mesh can be employed, and the interfaces are 

embedded in elements which are at the location of mortar joints. The approach incorporates the 

internal length scale parameter, so that there is no systemic sensitivity to the mesh size/alignment. 

The material properties used in numerical analysis are summarized in Table 1. Note that for 

simulating biaxial compression-tension the tensile strength of bricks was reduced to 0.5 MPa so 

that to allow the failure mode which includes the onset and propagation of cracks in the brick units.  

Table 1. Material parameters for masonry panel simulations 

 Brick Mortar Interface 

Young’s modulus, E (MPa) 20000 15000 N/A 

Poisson’s ratio, υ 0.2 0.1 N/A 

Tensile strength, '(  (MPa) 3.5 0.6 0.5 

Internal friction coefficient, µ 0.8 0.7 0.6 

Cohesion, c (MPa) 4.0 0.8 0.8 

Normal stiffness, �, (MPa/mm) N/A N/A 100 

Shear stiffness, �< (MPa/mm) N/A N/A 50 

Tensile fracture energy release rate, -.d   (N/m) 100 15 15 

Shear fracture energy release rate, -.dd  (N/m) 500 80 80 
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The results for uniaxial tension along the bed joints are presented in Figs. 2c-2f. Fig. 2f shows 

the global characteristics in terms of average stress (i.e. magnitude of resultant reaction force over 

the area) and average strain. It is evident that the ultimate strength of the panel as predicted by the 

embedded interface approach is nearly the same as that obtained in the detailed model.  It is noted 

that in the former case, two sets of simulations were carried out in which the joints were assumed 

to be embedded either in the brick material or in the mortar. In both settings, the CLED 

approximation was used, viz. Eqs. (1-2). As expected, the elastic properties of the intact material 

(i.e. brick vs mortar) had only a marginal effect on the global stiffness, while the ultimate load 

remained the same. For all cases considered, the failure mode involved a zig-zag pattern, in which 

the head joint experienced the tensile debonding, while the bed joint underwent a shear induced 

failure. Fig. 2c shows the initial fracture pattern obtained in a detailed model, superimposed on the 

scaled displacement field. A similar picture showing the displacement field at the ultimate load is 

provided in Fig. 2d. Note that the deformation scales in both these figures and not equal. The crack 

pattern obtained from embedded interface approach, which was similar to that of the detailed 

model, is provided in Fig. 2e. 

As mentioned earlier, the simulations for biaxial tension-compression (BTC) were carried under 

load- controlled conditions. In this case, the ultimate strength of the panels was determined by 

examining the evolution of a stability parameter (SP) defined as the ratio of the second rate of 

internal work normalized with respect to the elastic solution 

  SP = g �̂ GRh� GRij
g �̂ GRO h� GRij  (14) 

In general, the stability parameter remains within the range 1≥ SP≥0, and SP =0 implies the 

singularity in the global stiffness operator, i.e. the loss of stability. 

The results of the numerical analysis are shown in Fig 3. In this case, the global fracture pattern 

involves the tensile failure in head joints combined with the onset and propagation of cracks 

through the brick units. The latter have been traced in a discrete way using the level-set method 

(cf. [43]). Since the ratio of compressive to tensile load is fixed here at a constant value of 2, only 

the load-displacement characteristics in tension are shown (Fig. 3d). The general conclusions are 

similar to those that stem from the previous example. It is evident that the ultimate load at failure 
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is similar in both the simplified and detailed models. Its assessment is not visibly affected by the 

elastic properties of intact material in which the joints are said to be embedded. The crack pattern, 

as shown in Figs, 3a-b and 3c, is also in a fairly good agreement for both approaches used.  

 

Fig. 2 Finite element mesh and boudnary conditions for (a) embedded interface approach and (b) detailed 

model with interfaces; (c) initial and (d) final crack pattern for detailed model, superimposed on 

displacement field [note that the deformation scales are not equal]; (e) crack pattern at the ultimate load 

for embedded interface approach; (f) average stress-strain response of the panel 
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Fig. 3 (a) initial and (b) final crack pattern in detailed model with interfaces [note that the deformation 

scales are not equal]; (c) crack pattern at the ultimate load for embedded interface approach; (d) average 

tensile stress-strain response of the panel; (e) evolution of stability parameter (SP), Eq. (14) 

 

4. Numerical analysis involving small-scale experimental set-ups 

In this section a series of numerical examples is provided involving simulation of shear tests 

on masonry triplets/couplets. The tests incorporate different loading conditions, including cyclic 

loading, and the prevailing failure mode involves the propagation of damage along the brick-

mortar bonds. The latter is modeled using the proposed embedded interface approach. 

4.1.  Simulation of shear tests on masonry triplets  

The tests simulated here were part of a comprehensive study on the mechanical characteristics 

of masonry conducted in ref. [47]. The tests employed a set up consisting of three bricks with 

dimensions of 170×120×55 mm that were arranged vertically and separated by two rows of 10 mm 
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thick mortar joints. The masonry triplets were loaded in vertical direction to reach normal 

compressive stress of 0.12 MPa, 0.4 MPa, 0.8 MPa, and 1.25 MPa, respectively, and subsequently 

sheared to induce shear failure in bed joints. The geometry of the finite element model and the 

respective boundary conditions are shown in Fig. 4a. The mesh consisted of a total of 726 eight-

noded cubic elements. The bottom brick was fixed in both horizontal and vertical directions and 

the normal stress was applied at the top of the assembly. After reaching the prescribed value of the 

normal stress, the top brick was also fixed in place while lateral displacement was applied 

incrementally to the middle brick. The simulations were carried out using material parameters 

consistent with those  reported in ref. [47]. In particular, the values of elastic constants for the brick 

material were taken as E = 2500 MPa and υ = 0.2. The components of the interfacial elastic 

stiffness moduli were assumed as �, = �< = 250 MPa/mm, while the shear strength parameters 

were co = 0.35 MPa and µo = 0.8, with µr = 0.7µo as the residual friction coefficient. Since the 

experimental observations suggest that Mode II fracture energy release rate is dependent on the 

normal compressive stress [48], this parameter was adjusted by trial and error within the range of 

50-200 N/m. 

In order to compare the numerical results to those of experiments, average shear stress and 

lateral strain were calculated based on the dimensions of the specimen. Fig. 4b shows the deformed 

mesh including the elements with embedded interface representing the two rows of bed joints in 

the assembly. The predicted mechanical characteristics, corresponding to different values of 

normal compressive stress, are shown in Fig. 4c. Here, the results of the simulations are compared 

with the upper and lower limits of the experimental data obtained for different pre-compression 

stress values. It is evident that the predictions, in terms of the ultimate shear stress at different 

compressive loads, as well as the post-peak degradation of strength, are fairly consistent with the 

experimental evidence. 
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Fig. 4 (a) Finite element mesh for masonry triplet under compressions and shear; (b) deformed mesh 

showing the cracked elements with embedded interface; (c) load-displacement response compared with 

experimental data 

 

4.2.   Simulation of shear test on a masonry couplet involving unloading-reloading cycles 

The next set of simulations was focused on finite element analysis of experiments conducted in 

ref. [49]. The tests involved brick couplets subjected to shear displacement unloading-reloading 

cycles under a prescribed normal stress. The specimens included two bricks with dimensions of 

230×51×110 mm separated by a layer of mortar with a thickness of 10 mm. The FE model 

consisted of 825 eight-noded cubic elements, as shown in Fig. 5a. To simulate the actual loading 

conditions, the bottom surface of the specimen was fixed in vertical direction and a vertical load 

was applied at the top to generate a normal compressive stress of 0.51 MPa. In the next step, the 

bottom surface of the specimen was fixed in lateral direction as well, and the shear displacement 

was applied at the top of the assembly. During the loading process, the shear displacement was 
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reversed multiple times to induce unloading-reloading cycles until the maximum lateral 

displacement of 1.95 mm was reached.  

The material parameters were again selected based on experimental data provided in ref. [49]. 

The elastic constants for the brick material were E = 14500 MPa and υ = 0.06, while the normal 

and tangential components of the interfacial elastic stiffness were 50.0 MPa/mm and 5.0 MPa/mm, 

respectively. Furthermore, the interfacial shear strength parameters were co = 0.3 MPa and µo = 

0.7, while the tensile strength of the joints was ft = 0.1 MPa. Mode II fracture energy release rate 

was chosen as -.dd = 70 N/m.  

The predicted shear stress versus lateral displacement characteristic is provided in Fig, 5b and 

the results are compared with the experimental data. The figure also shows the deformed finite 

element mesh. It is evident that both the ultimate and residual shear strengths are in a good 

agreement with the recorded experimental values. Also, the predicted post-peak deformation, for 

both an active process as well as the unloading-reloading cycles, is fairly consistent with the 

experimentally observed response.  

 

Fig. 5 (a) Finite element model for brick couplets; (b) load-displacement response compared with the 

experimental results 

 

4.3.  Cyclic shear test on a masonry couplet  

The laboratory experiments simulated here involved cyclic direct shear tests on two rows of 

bricks arranged in a running-bond pattern [50]. Two types of bricks, referred to as ‘old’ and ‘new’, 

were used with dimensions of 208×100×64 mm and 193×92×55 mm, respectively. Thickness of 
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mortar joints used for these two types of bricks was 13 mm and 7 mm. The pre-compression stress 

for the ‘old’ and ‘new’ brick specimens were 0.33 MPa and 1.34 MPa, respectively.  

The geometry and the boundary conditions are shown in Fig. 6a. The finite element model 

employed a total of 1925 elements. The bottom boundary was fixed and the compressive load was 

applied at the top of the assembly. This was followed by application of lateral displacement applied 

in one and a half cycles. The material parameters used for these simulations are summarized in 

Table 2. 

The results of the analysis are shown in Fig. 6b. The predicted initial ultimate strength as well 

as the strain-softening branch are very close to those recorded in the experiments. Once the residual 

shear strength is reached, the load-displacement curve follows the same path in both directions of 

the shear load. Overall, the basic trends, including the dependence of peak and residual shear 

strength on the value of the compressive stress, are consistent. 

 

Table 2. Material parameters for cyclic shear test simulations 

 Brick (‘new’) Brick (‘old’) Embedded interface 

Young’s modulus, E (MPa) 14700 8800 N/A 

Poisson’s ratio, υ 0.22 0.16 N/A 

Tensile strength, '(  (MPa) 3.0 3.0 0.7 

Internal friction coefficient, µ 0.8 0.8 0.65 

Cohesion, c (MPa) 2.5 2.5 1.2 

Normal stiffness, �, (MPa/mm) N/A N/A 80 

Shear stiffness, �< (MPa/mm) N/A N/A 40 

Tensile fracture energy release rate, -.d   (N/m) 100 100 50 

Shear fracture energy release rate, -.dd  (N/m) 500 500 100 
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Fig. 6 (a) Discretized model of the two-leaf masonry assembly; (b) load-displacement response for the 

cyclic shear loading compared with the experimental results for two different normal compressive loads 

 

4.4.  Simulation of a three-point bending test on a masonry beam  

This section provides the numerical analysis of a three-point bending test on a masonry beam 

consisting of four rows of bricks arranged in a running-bond pattern. The simulations were carried 

out on the basis of the experimental results reported in ref. [49]. The masonry beam consisted of 

bricks measuring 230×76×110 mm in size with mortar joint thickness of 10 mm. The total length 

of the beam was 1430 mm and the depth was 334 mm. 

The model was discretized into a total of 11,206 eight-noded cubic elements, as shown in Fig. 

7a. One row of nodes in the middle part of the bottom left brick was fixed in the horizontal and 

vertical directions while the opposing row of nodes, on the right side of the beam, was fixed only 

in the vertical direction. The displacements were applied incrementally to the two rows of nodes 

at the top of the brick located in the middle of the beam. The direction of applied displacement 

was reversed twice during the simulation to model the cyclic loading component of the experiment. 

The material parameters were again selected based on the information provided in the original 

reference and their values are summarized in Table 3. 

The main results of analysis are provided in Fig.7.  Fig. 7b shows the deformed mesh and the 

cracked region at the end of the simulation.  The latter is compared to the schematic (Fig. 7c) and 

the actual (Fig. 7d) crack pattern observed in the experiments. The crack mode includes tensile 

cracking of head joints in the bottom portion of the beam, as well as a combined tensile or 
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compressive shear cracking of bed joints and head joints. In order to obtain the crack propagation 

as observed in the experiment, an imperfection was introduced consisting of a minor reduction in 

the strength parameters of constituents in the right half of the beam. This was required since 

otherwise the cracks would propagate symmetrically through the beam, as the loading and 

boundary conditions are both symmetric.  

It is evident that the load-displacement response, shown in Fig. 7e, has been predicted quite 

well. There is a slight reduction in the slope of the curve prior to reaching the ultimate load, which 

can be attributed to the development of the tensile crack in the head joint located at the bottom of 

the beam. The post-peak strain softening response starts to form later as the cracks develop further 

through the depth of the beam towards the top.  

 

Table 3. Material parameters for three-point bending test simulation 

 Brick Embedded interface 

Young’s Modulus, E (MPa) 14500 N/A 

Poisson’s ratio, υ 0.06 N/A 

Tensile Strength, '(  (MPa) 2.8 0.1 

Internal friction coefficient, µ 0.8 0.7 

Cohesion, c (MPa) 2.0 0.45 

Normal stiffness, �, (MPa/mm) N/A 80 

Shear stiffness, �< (MPa/mm) N/A 40 

Tensile fracture energy release rate, -.d   (N/m) 250 15 

Shear fracture energy release rate, -.dd  (N/m) 900 80 
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Fig. 7 (a) Finite element model of the three-point bending test on masonry beam; (b) deformed mesh 

showing the final crack pattern; (c) schematic illustration of the experimentally observed crack pattern; 

(d) picture of the damage pattern; (e) load-displacement curve compared with experimental data 

 

5.  Numerical analysis involving tests on masonry walls 

5.1.  Masonry wall under monotonic shear and compressive load 

In this section the experimental tests on scaled masonry walls are simulated using the proposed 

simplified approach with interfaces embedded in the adjacent bricks. The first example deals with 

tests carried out in refs.  [51, 52]. The experiments were conducted on walls made of bricks with 
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dimensions of 210×52×100 mm and mortar joints with 10 mm thickness. The bricks were arranged 

in a running-bond pattern in 18 rows, with top and bottom rows being confined in the loading 

platens. The length of the wall was 1000 mm and its height, excluding the top and bottom rows, 

was 990 mm. 

The experiments were carried out on walls with and without an opening. In the first stage, a 

compressive load of intensity 0.4 MPa (for solid wall) and 0.3 MPa (wall with opening) was 

applied. After the normal load was in place, a lateral displacement was imposed through the top 

platen while the vertical displacement was prevented using the vertical loading jacks. Fig. 8a 

shows the experimental setup in which the loading frame and actuators induced the boundary 

conditions for the two steps mentioned earlier (cf. Fig. 8b-c). The roller support shown in Fig. 8c 

represents the active vertical loading through jacks 2-4 which prevented vertical movements of the 

top of the wall during the shear loading. 

The FE simulations presented in this section were performed using two structured meshes with 

different size of elements in order to investigate the mesh sensitivity of the solution incorporating 

the proposed methodology. The model with a fine mesh consisted of 33,822 eight-noded cubic 

elements, while the coarser mesh incorporated 8,272 elements. Fig. 8d-e show both models, i.e. 

with fine and coarse discretization, for the wall with an opening. A similar mesh was used for the 

solid wall as well. In the analysis, the bottom edge of the walls was fixed, and the normal 

compressive load was applied to the top boundary. After reaching the desired intensity, the vertical 

displacement at the top of the wall was constrained while lateral displacement was applied. At this 

stage, the evolution of shear force was recorded. The simulations were carried out using the 

material parameters listed in Table 4, which again were selected based on the data provided in the 

original reference.  

Fig. 9a shows the load-displacement response for the finite element model of the solid wall with 

two different mesh sizes. The results are compared with the experimental upper and lower bounds. 

The representative crack pattern of a solid wall in the experiment is reproduced in Fig. 9b and is 

compared with crack patterns obtained from finite element simulations shown in Fig. 9c-d for fine 

and coarse mesh, respectively. Fig. 10 shows the experimental and numerical results for the wall 

with an opening. Here again, the load-displacement curves and the fracture mode are compared. 

For the experimental part, the upper and lower bounds of the experimental results are included.  
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Table 4. Model parameters for simulating walls under shear 

 Brick Embedded interface 

Young’s Modulus, E (MPa) 16700 N/A 

Poisson’s ratio, υ 0.15 N/A 

Tensile Strength, '(  (MPa) 2.0 0.25 

Internal friction coefficient, µ 0.7 0.75 

Cohesion, c (MPa) 3.5 1.4 

Normal stiffness, �, (MPa/mm) N/A 100 

Shear stiffness, �< (MPa/mm) N/A 50 

Tensile fracture energy release rate, -.d   (N/m) 80 18 

Shear fracture energy release rate, -.dd  (N/m) 200 80 

 

The numerical predictions seem to be in agreement with the experimental data in all key factors 

that include the ultimate bearing capacity and the crack pattern which develops in both the brick-

mortar joints as well as the brick units. For the solid wall, the top right and bottom left sections 

show tensile horizontal cracks in bed joints. In the rest of the domain, the experimental data shows 

a zig-zag pattern of fracture involving cracking in the bricks as well as brick-mortar joints. This is 

particularly evident at the top left and bottom right as well as in the middle part of the wall.  The 

numerical results display a similar trend. 

For walls with an opening, the experimental results show more distinguishable zig-zag crack 

patterns in the top-left and bottom-right corners of the opening that propagate to the corners of the 

walls. Numerical simulations display a similar effect in terms of the overall orientation of the 

diagonal macrocracks. Cracking within the bricks takes place near the top-left and bottom-right 

corners of the walls which is consistent with the experimental observation.  

As expected, the ultimate bearing capacity for the walls with opening is significantly smaller 

compared to the solid walls (cf. Figs. 9a and 10a). The same conclusion applies to the initial 

stiffness. The mesh size appears to have a negligible effect on the solution, which stems primarily 

from incorporation of the internal length scale parameter. The models with finer mesh give a 

slightly lower assessment of the ultimate load while the stiffness degradation that stems from 

propagation of localized damage is very similar.  
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Fig. 8 (a) schematic diagram of the experimental set-up; (b-c) boundary conditions for the two loading 

steps; (d-e) fine and coarse mesh for the FE analysis 
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Fig. 9 (a) load-displacement curves compared with upper and lower bounds of the experiments; (b) 

schematics of fracture pattern as reported in experiments; (c-d) crack pattern obtained using fine and 

coarse mesh (cracks developed in bricks are shown in darker shade). 
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Fig. 10 (a) load-displacement curves compared with upper and lower bounds of the experiments; (b) 

schematics of fracture pattern as reported in experiments; (c-d) crack pattern obtained using fine and 

coarse mesh. 

 

5.2.  Full-scale masonry wall under shear and compressive load 

The last example provided here deals with simulation of tests on unreinforced masonry walls 

conducted in ref. [53]. The experiments were carried out on 3.07×2.70×0.10m walls that were 

glued to the bottom of a loading frame. The specimens were loaded via a steel beam that was 

attached to the top of the wall. The loading process consisted of applying the own weight of the 

material and a vertical stress of intensity 0.12 MPa, followed by a shear stage that involved 
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application of lateral displacements. The walls had an opening with an embedded concrete lintel 

at the top of the free span extending approximately 100 mm on each side. The dimensions of bricks 

were 210× 50 ×100 mm with mortar thickness of 10 mm.  

Fig. 11a shows the geometry and the finite element discretization of the wall. The mesh 

incorporated the total of 79,800 eight-noded cubic elements. The boundary nodes at the base of 

the model were fixed in horizontal and vertical directions. In order to simulate the boundary 

conditions associated with the presence of the top steel beam, the top boundary nodes were 

kinematically tied to a reference point [46] at which the monotonically increasing lateral 

displacement was applied. The material parameters, which are summarized in Table 5, were chosen 

in accordance with the information provided in ref. [53].  Since the experimental data did not show 

any crack development in the brick units, the bricks themselves were considered as elastic, with 

Young’s modulus of 4600 MPa and Poisson’s ratio of 0.14. Moreover, the elastic properties of the 

concrete lintel at the top of the opening were taken as E=30 GPa and υ=0.15. 

 

Table 5. Material parameters used in the finite element simulation of monotonic shear loading of masonry 

wall 

 Embedded bed joints Embedded head joints 

Tensile Strength, '(  (MPa) 0.09 0.05 

Internal friction coefficient, µ 0.85 0.85 

Cohesion, c (MPa) 0.14 0.14 

Normal stiffness, �, (MPa/mm) 70.0 50.0 

Shear stiffness, �< (MPa/mm) 35.0 25.0 

Tensile fracture energy release rate, -.d   (N/m) 8.0 5.0 

Shear fracture energy release rate, -.dd  (N/m) 60.0 40.0 

 

Fig. 11b shows the deformed finite element model together with the obtained crack pattern. 

Note that the finite element mesh is not shown here to improve the clarity of the results. The 

fracture mechanism appears to be in a good agreement with the experimental observation, the latter 

shown schematically in Fig. 11c. There are three major cracked domains that develop in the bottom 

left of the wall, as well as the top left and bottom right corners of the opening. The load-

displacement curve for the shear stage is shown in Fig. 11d. Here, in addition to experimental data, 

the results of numerical simulations conducted in ref. [53], which were based on meso and 

macroscale models, are also included. It is evident that the simplified methodology proposed in 
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this work, in which the presence of joints is accounted for via the constitutive law with embedded 

discontinuity, i.e. Eqs.(1-2), is fairly accurate and requires less computational effort as the 

interfaces are explicitly embedded in the adjacent referential volume.  

 

Fig. 11 (a) finite element model with an enlarged portion showing the details of the mesh; (b) crack 

pattern from the FE analysis; (c) schematic illustration of the crack pattern observed at the end of 

experiment on TUD-Comp 41 specimen; (d) load-displacement characteristics compared with the 

experimental data as well as numerical studies reported in ref. [53] 
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6. Concluding remarks 

In this work, the application of the constitutive law with embedded discontinuity for modelling 

the mechanical response of masonry at mesoscale was extensively studied. Since the interfaces 

between the brick units and mortar joints generally act as planes of weakness, their presence was 

accounted for through a homogenization procedure incorporating the volume averaging. This 

approach is pragmatic and efficient in implementation and adequately captures the complex 

behaviour of masonry in boundary value problems. Its primary advantage lies in the fact that the 

same formulation can be used for capturing the fracture propagation in brick units as well. The 

difference between the crack initiation process in bricks compared to elements with embedded 

interface is that the crack orientation in bricks is not known a priori and needs to be identified by 

means of a suitable criterion. 

The proposed approach is practical for analysis of existing small and medium-sized masonry 

structures since it requires a limited amount of information regarding the mechanical properties of 

the constituents. The required properties can be obtained from simple laboratory experiments (i.e., 

tensile and direct shear tests) on small samples acquired from parts of the existing structure.  

The numerical implementation of the framework incorporated an implicit integration scheme 

to attain the stress equilibrium and to assess the embedded crack opening/sliding at the element 

level. The use of the implicit integration scheme ensures the stability of the analysis and the 

numerical convergence. The proposed methodology employing embedded interfaces was first 

verified against a detailed analysis incorporating the mortar joints and the brick-mortar interface 

elements. It was demonstrated that the level of approximation in the proposed simplified approach 

does not markedly impair the accuracy and, at the same time, enhances its computational 

efficiency. 

The proposed formulation was validated through a comprehensive numerical study involving 

simulation of a series of monotonic and cyclic tests on masonry triplets and couplets under tensile 

and shear loading conditions. The results showed a good agreement with the experimental data 

published in literature. Later, a more complex examples involving masonry walls under 

compression and shear were considered and the results were again compared with those recorded 

in the experiments.  
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Various examples given in the present study showed that the most frequent mode of fracture 

involves failure along the brick-mortar interfaces, while for some problems the cracking took place 

also within the brick units. Cracks in bricks develop mainly in the tensile splitting mode, although 

in some cases they may also undergo a frictional failure. In general, in a typical masonry layout, 

the crack propagation process can transfer from bricks towards the brick-mortar interface but is 

less likely to follow the opposite path. The cracks also form at the junction between the bed and 

head joints. In this case, the assessment of the dominant crack direction can be assessed based on 

the values of the failure function along these two respective orientations. 
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5. Closure 

The conclusions to the present work as well as suggestions for potential future work are 

summarized in the present chapter. Given the nature of the sandwich thesis format, some 

overlap between the introductory sections (i.e. methodology, formulation, etc.) of the 

included papers is expectedly unavoidable. Since the presented papers also include 

detailed discussions and concluding remarks regarding the findings, advantages, and 

shortcomings of the proposed methodologies, the present chapter deals with a broader 

overview of the present work. 

5.1. Concluding remarks 

There are three major contributing components in the present work: mesoscale analysis, 

macroscale analysis, and the bridging of the two. The proposed methodology for 

mesoscale analysis of masonry using the constitutive law with embedded discontinuity 

has several advantages compared to other methodologies in masonry modelling such as 

the detailed models including brick-mortar interfaces. Treating the brick-mortar interface 

as a pre-defined plane of weakness embedded in the adjacent material, while including 

the ‘length scale’ parameter in the constitutive law with discontinuity, enables the use of 

an unstructured coarser mesh and allows for a reduction in the number of constituent 

properties needed for the mesoscale analysis. Using this approach proved to be an 

efficient tool for analysis of masonry assemblages and small-scale masonry walls, 

providing an accurate load-deformation response and detailed information regarding 

discrete location of cracked zones that are comparable to the experimental observations. 
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In contrast to other methodologies used for discrete fracture propagation, such as XFEM 

or strong discontinuity approach which require the introduction of additional degrees of 

freedom or changes to the shape function, the proposed formulation does not require any 

modifications to finite element formulation and can be implemented in commercial and 

open-source FEM codes via user-defined constitutive laws. Moreover, the introduction of 

the internal length scale parameter, which is defined based on the finite element mesh and 

the orientation of the crack, renders the formulation insensitive to discretization. 

The proposed framework for macroscale modelling of masonry was developed based on 

the notion of microstructure tensor approach, describing the orientation-dependent 

strength properties of masonry as a continuum while maintaining anisotropic mechanical 

response prior to the onset of failure. The main challenges in developing a suitable 

constitutive model for masonry at macroscale are the identification of material parameters 

and the development of macrocracks that extend beyond numerous individual constituents 

to form failure planes that are distinguishable at the scale of large structures. The former 

challenge requires experiments on masonry assemblages under various loading 

combinations that provide extensive information on the macroscopic mechanical 

behaviour of masonry. Since the experimental programs at this scale are very expensive, 

and virtually impossible to conduct without affecting the structural integrity of existing 

and historical masonry buildings, numerical simulations conducted at mesoscale were 

used to replace the experiments and provide the data needed to assess the macroscale 

strength parameters. 
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One of the major challenges in directly using mesoscale numerical simulations for 

extracting macroscale constitutive parameters is the sensitivity of the results to small 

changes in the constituent properties (e.g., constituent size and arrangement, strength 

characteristics, etc.). To address this challenge, and to further reduce the number of 

mesoscale simulations needed for adequate characterization of macroscale constitutive 

parameters, artificial neural networks were developed to predict the macroscopic 

anisotropic elastic properties and strength characteristics based on the properties of the 

constituents. These neural networks were used offline and only to predict the anisotropic 

elastic properties and biaxial ultimate strength of masonry panels using the elastic 

properties and strength parameters of constituents as input. Furthermore, a separate 

network was trained to predict the orientation of average failure plane at macroscale 

based on the constituent properties and the state of stress at the onset of failure at 

macroscale. The trained networks were used during the macroscale finite element 

analyses. To verify the procedure, the results of mesoscale and macroscale simulations of 

lateral loading on a large-scale masonry wall were compared and good agreement 

between the predictions was shown. 

5.2. Suggestions for future work 

The proposed framework for mesoscale analysis of masonry is general in nature and is 

not limited to a specific arrangement of masonry constituents. Despite these capabilities, 

the masonry assemblages investigated in the present work only consisted of a single layer 

of bricks along the thickness of masonry walls. The mesoscale framework could be 

utilized to model masonry panels consisting of several layers of bricks in the dimension 
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perpendicular to the face of the wall. Furthermore, more complex types of strength 

degradation factors may be explored, namely a combined chemo-mechanical formulation, 

to account for the effect of various chemical interactions on the strength of masonry 

constituents (e.g., alkali-aggregate reaction, salt crystallization, etc.). With regards to the 

mechanical behaviour of individual constituents, nonlinear response prior to onset of 

fracture may be used to replace the current linear elastic model. The proposed 

methodology for implementing artificial neural networks as a bridge between the meso 

and macro scales may be improved by including various out-of-plane arrangements of 

constituents. A similar point can be made with respect to prediction of orientation of the 

failure plane at macroscale, which may include the out-of-plane fracture mechanisms as 

well. The approach proposed herein provides a strong framework for future models to 

account for the additional factors mentioned above, while being practical for analysis of 

existing masonry structures using a streamlined approach. 

 

 


