
CreatingwithCode

An Introduction to Functional Programming,

User Interaction, and Design Thinking

Version 1

ChristopherKumarAnand
GurleenDulai

LunaYao
MariyamArief
OlishaD’Mello

SarathSajivMenon
ChristopherWilliamSchankula

Copyright © 2023 Christopher Kumar Anand, Gurleen Dulai, Luna Yao, Mariyam Arief,
Olisha D’Mello, Sarath Sajiv Menon, and Christopher William Schankula

Generated using XeLaTex, using template Legrand Orange Book

Published by Fondation STaBL Foundation, with a grant from the Paul R. MacPherson In-
stitute for Leadership, Innovation and Excellence in Teaching at McMaster University, and
support from McMaster Start Coding.

ISBN 13: 978-1-7388695-0-3

Licensedunder theCreativeCommonsAttribution-NonCommercial 4.0 License (the “License”).
You may not use this file except in compliance with the License. You may obtain a copy
of the License at https://creativecommons.org/licenses/by-nc-sa/4.0.
Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an “as is” basis, without warranties or conditions of any kind, ei-
ther express or implied. See the License for the specific language governing permissions
and limitations under the License.

https://www.latextemplates.com/template/legrand-orange-book
https://stablfoundation.org
https://mi.mcmaster.ca
https://mi.mcmaster.ca
http://outreach.mcmaster.ca
https://creativecommons.org/licenses/by-nc-sa/4.0

Contents

I Elm

1 Getting Started . 11

1.1 Drawing with Stencils . 11
1.2 Transformations . 16
1.3 Text . 19
1.4 Don’t lose that perfect colour! . 20
1.5 Make Your Own Functions . 21
1.5.1 Grouping Shapes . 22

1.6 Comments and Naming . 26

2 Let’s Get Moving . 27

3 Functions and Scope . 32

3.1 Foundations . 34
3.2 Types . 35
3.3 Partial Function Application . 37
3.4 Operators versus Functions . 39
3.5 Anonymous Functions . 40
3.6 let ... in ... 40
3.7 Modules . 41
3.8 Scope . 43

4 To be or not to be in the Basement . 48

4.1 State Diagrams . 49
4.2 Implementing in Elm . 51
4.2.1 Example: an Elevator . 51

4.3 The StateDiagrams Module . 55
4.4 SD Draw . 56
4.5 Model-View-Update with TEA . 67
4.6 Simulation . 69
4.7 Real-Time Interactive Games . 75
4.8 Clickable Ruler . 77
4.9 Mouse Over . 78
4.10 Slider . 80
4.11 Drag and Drop . 82
4.12 Composing Model-View-Update Modules . 85

5 More Useful Math . 91

5.1 Clipping and Shape Math . 93
5.2 Following A Path . 97
5.3 Animation via Interpolation . 100

5.4 Animation in Vector Spaces . 102

6 Core Packages . 106

6.1 Core Data Types, Math, etc. 106
6.1.1 Basics . 106
6.1.2 Tuple . 111

6.2 Strings . 112
6.2.1 String . 112
6.2.2 Char . 116
6.2.3 Higher-Order String functions . 116
6.2.4 Left versus Right . 119

6.3 Polymorphism and Standard Interfaces . 119
6.4 Containers . 121
6.4.1 List . 122
6.4.2 List Queries . 123
6.4.3 Result, Maybe . 136
6.4.4 Array, Dict, Set . 140
6.4.5 Bitwise . 147

6.5 Development . 148
6.5.1 Debug . 148

6.6 Elm Platform: Communicating with the outside world 150
6.6.1 Platform.Cmd . 150
6.6.2 Random Numbers: Let’s roll the die . 150
6.6.3 Task: Making the world go around . 153
6.6.4 Platform.Sub . 156

7 Tower of Hanoi . 158

7.1 Dividing and Conquering Map . 163

8 Composing Music in Elm . 164

8.1 Music Creator & Basics . 164
8.2 The ElmMusic Slot . 165
8.2.1 Validation & Tempo . 165
8.2.2 myMusic. 166
8.2.3 GraphicSVG Definitions & Lyrics . 168

8.3 Next Steps . 168

9 Algebraic Expressions . 169

9.1 Simplification . 171
9.2 Derivatives . 173

10 Switches to CPUs . 175

10.1 CPU . 176
10.2 Traces . 179

II Norman’s Principles

11 Knowledge in theWorld . 182

11.1 Memory . 183

12 The Principles . 186

12.1 Visibility . 186

12.2 Discoverability . 186

12.3 Mapping . 187
12.4 Signifiers . 188

12.5 Consistency . 189

12.6 Constraints . 189
12.7 Feedback . 190

III Design Thinking

13 History . 194

13.1 Herbert Simon and Design Science . 194
13.2 George Dantzig and Operations Research . 196
13.3 Theory + Practice . 199
13.4 The Double Diamond . 201

14 Example: This IS your Grandfather’s Gaming App 202

15 Design Thinking Templates . 290

15.1 Starting the First Phase of Divergence . 292

15.2 Researching Possible Project Areas . 293

15.3 Choosing a Focus . 293

15.4 Interview Preparation . 295
15.5 Practice Interview . 296

15.6 Evaluation of the Practice Interview . 298

15.7 Revising Interview Questions . 299

15.8 Interviews and Interview Evaluations . 300

15.9 Pivot or Not? . 301
15.10 Problem Definition . 302

15.11 Symptom or Disease? . 303

15.12 Solution Ideation . 305

15.13 Prototyping . 307

15.14 Feedback . 309

15.15 Creating an Action Plan . 310
15.16 Comparing Prototypes . 311
15.17 Assessing Technical Challenges . 312
15.18 Assessing Risks . 313
15.19 Peer Feedback . 314
15.20 Pitching Your Solution . 315

16 Example: Math Visualizer . 316

7

Bibliography . 367

Articles . 367

Books . 367

Index . 368

Preface

If you want to learn about software helping people, you have come to the right place! You
may already know some programming or be a complete beginner. Either way, this book is for
you.

It brings together three ingredients: programming, principles of user interface design,
and a step-by-step approach to turning an inkling of an idea into software which solves
someone’s problem.

Beyond the efforts of the authors, this work builds on over a decade of teaching com-
puter science to people from kindergarten to graduate school, both in official courses and
unofficial outreach programs. We thank the hundreds of teachers who have welcomed us
into their classrooms, the hundreds of McMaster students who have told us when educa-
tional theory translates into effective practice (and when it doesn’t), and the tens of thou-
sands of childrenwho have poured their energy into a new creative endeavour. Of themany
volunteers, we are especially grateful to the campers who volunteered to be mentors and
developers: Shireen, Alexandra, Cindy, Eshaan, Mariam, Arhona, Aditya, and the graduates
of “Design Like a Girl”. We also acknowledge the student leaders, Yumna, Rumsha, and
Alyssia, whose work led to McMaster Start Coding, and the earlier students who pioneered
evidence-based outreach activities which led us to Elm: Kevin, Curtis, Helen and Tiffany.

Throughout this early development, volunteers were often motivated by one of two
things: either they excelled at math which opened doors that they wanted to hold open,
or they struggled with it initially, and they wanted to build a better education pathway to
let more children through. We call our approach to integrating math and computer science
Algebraic Thinking. Math is the best tool for organizing ideas we have, and you will find it
threaded through Part I.

Part I is about Elm programming, written in a conversational style with very few as-
sumptions about what you already know, and lots of sample code. At the same time, we
plant the seeds for many ideas you will learn about if you pursue a degree in CS, and give
you pointers to further reading, to make it easy to dive deeper. If some sections are review
to you, take this opportunity to think about how the material is presented, and how you

9

could have presented it differently. Computer Science is a young field, but there is already
some interesting history. If something interests you, but you don’t have time during the
busy semester to follow up, make a plan to do so in the summer.

It startswith very concrete instructions for getting started, but in themiddle shifts gears
to talk more about the design of the language and gives tips for organizing your own soft-
ware. For example, Elm containers (lists, sets, arrays, and dictionaries) are a great example
of orthogonal design: following a mix-and-match pattern (pick any function, pick any con-
tainer) as much as possible. That allows us to give more attention to the non-orthogonal
parts which are what makes each container special.

When we discuss the Tower of Hanoi, we give you more than the three-line answers to
the twoobvious problems, wegive you theDivide andConquer strategy, which you can apply
to many problems. And if you follow a known strategy—and there are few better known—
and use the established vocabulary in discussing your solution, then other programmers
will be able to easily follow your design.

If Part I is held together by mathematical threads, Part II is built on a foundation of
memory. Part II is about communicating your app’s functionality to a memory-limited hu-
man user, following Norman’s Principles for interaction design. Some of them will seem
almost too simple, others may be confusing. Either way, if you reflect on these principles
when evaluating your own work, and other people’s apps, you will be able to crystallize
knowledge of the principles, allowing you to clearly communicate what you do and do not
like about a proposed design. Further practice will then embed that knowledge in “muscle
memory” making their application automatic.

Now that we’ve evaporated math phobias, and explained how to waterproof your app
against leaky memory, in Part III, we are ready to tackle poor communication! Many soft-
ware projects either fail to produce solutions, or solve the wrong problem. Either way, it
boils down to poor communication. As a developer, you have to understand your user, but
face a huge communication barrier. In some ways, the more you learn about programming,
the higher the barrier gets, as it gets harder to imagine how users conceptualize software
as black boxes within unknowable insides.

Part III is about understanding user needs, following as simple a template as we were
able tomake for a processwhich is necessarily open-ended. Communicatingwith your users
is nothing like writing essays. In fact, it is more about admitting what you don’t know, and
making your user comfortable enough to tell you. You will learn some of the pre-history of
Design Thinking, and the field which came to be known as Design Science, but mostly you
will see how that theory is turned into practical steps, each one boiled down to a slide, with
tables, graphs, and interview prompts. This is because it is something you can learn best by
doing.

Please send comments and bug-fixes to anandc@mcmaster.ca.

I
Elm

1 Getting Started 11

2 Let’s Get Moving 27

3 Functions and Scope 32

4 To be or not to be in the Basement
48

5 More Useful Math 91

6 Core Packages 106

7 Tower of Hanoi 158

8 Composing Music in Elm 164

9 Algebraic Expressions 169

10 Switches to CPUs 175

1. Getting Started

1.1 Drawing with Stencils to contents

In this book, we will build our knowledge of Computer Science the way we build houses.
Buildings need a foundation, usually made of concrete. When learning new ideas, we need
to start with what we know: things we can touch, feel, and hear. Concrete things! For most
of us, sight is ourmost information-dense sense, and why vision is the sense served bymost
of our information technology. In this chapter, we’ll learn how the GraphicSVG library was
built to take advantage of our early experiences with shapes and colour to teach Computer
Science. We realize that this is exclusionary to people with visual impairments.1

Think back to the first ruler you took to school. It was probably colourful plastic with
holes in the middle to help you draw basic shapes: circles, squares, triangles, etc. Those
holes are called stencils. We start the same way, with functions to create those “holes” you
can later fill in, or outline. But unlike the plastic stencil, our software stencils can be any size
you choose. To help you learn them, we’ve collected them together in the ShapeCreator2:

1We do have an alternate plan—to build a second path out of music supported by keyboard-only
tools—but this is a long-term project. In the meantime, see https://www.youtube.com/watch?v=
p2at4S8blGUwhat our first users accomplished with our prototype library for teaching Computer Science
through music.

2https://macoutreach.rocks/SC3.html

https://www.youtube.com/watch?v=p2at4S8blGU
https://www.youtube.com/watch?v=p2at4S8blGU
https://macoutreach.rocks/SC3.html

1.1 Drawing with Stencils 12

Reading Strategy: If you have access to the internet, you can open it now with the link in the last
footnote. Throughout the book, there will be links to sample code and related reading materials. You
can either play with the sample code right away, or keep tabs open to experiment with when you get
to the end of a section or paragraph.

There are stencils for circles, squares, rectangles, rectangles with rounded edges, ovals,
regular (equal-sided) polygons, triangles, wedges, text, curves, and polygons. Triangles are
a special type of polygon, so I mostly use the function
ngon 3 radius
instead of
triangle radius
but triangle is easier to remember for beginners.

Each of the functions has one or more inputs to control the size or sizes. For example,
circle has one input, which, you can probably guess must be the radius. When you click
on circle or use the arrow keys to move the focus there, a pair of buttons pop up labelled
“wider” and ”narrower”. You can experiment with any of the functions in the ShapeCreator
using these tweakers, and their names give away their purpose. For example, if you click on
rect or oval you see a second set of buttons for “taller” and “shorter”, because these sten-
cils are not necessarily as tall as they are wide, unlike circles and squares. If you remem-
ber (x,y) coordinates, width before height, horizontal before vertical position, you already
knowwhatmost of the inputs do. The exceptions are the third input for roundedRect (the
roundness) and the second input for wedgewhich you tweakwith “mouthier” and “mouthi-
less”. If you are at your computer, go ahead and try tweaking this parameter to see why its

1.1 Drawing with Stencils 13

technical name is “mouthiness.” While you’re at it, try all of the stencils so you are familiar
with their inputs.

Once you know what these functions do, you don’t need the ShapeCreator, since you
could type them straight into the code editor, but if you have worked to get a shape just
right, you can copy the code from the “Copiable Code” bubble which is always up-to-date
with your latest tweaks:

If you have picked a basic stencil like circle, you can follow the blue ribbon along to
the right where it swerves toward the function you pick to turn that stencil into a shape,
either filled or outlined.

Both of these functions take the stencil as one of their inputs, but first they require
the colour to use as an input, and in the case of outlined they also require a line type
to trace the outline of the stencil. To simplify the display, the line type is grouped with the

1.1 Drawing with Stencils 14

outlined function, so instead of two choices in the next column, there are six. The colours
are all lined up in the next column. You can click on as many colours as you want, but only
your latest choice will be accepted. Two of the colours may be hard for you to say, since
they lack vowels: rgb, hsl. That is because they are really acronyms, not colours, and every
colour your computer can make3 can be represented by these functions.

Let’s look at these representations! The rgb function has three inputs representing red,
green, and blue components.

This matches the way most electronic displays work, from antiquated cathode-ray tubes to
liquid crystal displays to organic light emitting diodes. This strategy closely matches the
sensitivity of the rods embedded in human retinas at the backs of our eyes.4

Thergb popup is displayed as a book, so you can think of it as flipping through the pages
of a book, where each of the pages corresponds to a different amount of blue. The page you
open to shows the variation of colour as the amount of green increases as youmove up, and
the amount of red increases as you go from the spine of the book to the edge of the pages.
(The colours are the same on both faces of the page, and you can click on either page to pick
a colour.) Notice that white is in one corner of the cube, and black in the opposite corner.
White is always visible, but black is only visible if you turn to the first page of the book.
Green is on the top of the cube, opposite white, which makes sense since it is what you get

3Actually, if you have a more expensive computer, your display may produce 1024 colour values rather
than the 256whichwas considered good enough a few years ago. You probably won’t notice a differencewhen
coding, but you definitely can with high-quality photographs and movies. Here is test video from Netflix, in
which you can see bars on the bottom of the gray bar, but not the top if you have a 10-bit (1024 = 210) colour
display: https://www.netflix.com/watch/80018593 .

4Interestingly, our retinas have two types of receptors, cones for colour and rods for seeing at night, and
the distribution of them varies from the centre of our vision to the periphery, and from person to person.
Most people have three types of cones sensitive to red, green, and blue, but people with colour blindness lack
one type of receptor, and interestingly, some women have an extra type of cone, giving them a whole new
dimension to their vision, and at twilight, both rods and cones are active, so most people have 4-dimensional
colour vision to some degree. Wikipedia has a lot more about it: https://en.wikipedia.org/wiki/
Photoreceptor_cell

https://www.netflix.com/watch/80018593
https://en.wikipedia.org/wiki/Photoreceptor_cell
https://en.wikipedia.org/wiki/Photoreceptor_cell

1.1 Drawing with Stencils 15

when you take away all the red and blue from white. The other corners, yellow and cyan,
are both secondary colour (mixtures of two primary colours). Around the bottom are two
primary colours, red and blue, at opposite corners, with red always visible, and blue only
visible when black is. The final corner, magenta, is what you get when you mix blue and
red.

Hue-Saturation-Lightness, hsl, is not how colours are displayed, but is probably closer to
how we think of them. In software, we have a few names for the idea of creating an alter-
native way of thinking about and interacting with data, including abstraction, wrapper, and
facade. An abstraction is the most abstract :) and generally means that we hide a lot of com-
plex details behind a simple idea. Rather than figuring out how to mix colours in the right
proportions (even though that is what happens), we call up colours by their position in the
rainbow. This both matches a universal experience people share, and the physical reality
of different wavelengths of light.5 When we call it a wrapper, we are focussing on the ac-
tual function that we write to give programmers a more convenient way of accessing core
functions. This idea is so useful, experts in object-oriented programming reinvented it as
facade.6

5If you don’t know how a rainbow is created, have a look at https://en.wikipedia.org/wiki/
Visible_spectrum.

6Facade (https://en.wikipedia.org/wiki/Facade_pattern) is an example of a “design pat-
tern” (https://en.wikipedia.org/wiki/Software_design_pattern). Functional program-
mers often say that design patterns translate as functions in languages where functions have more power,
like Elm. Their thinking is that rather than explaining patterns with sometimes complex rules, it is better to
create functions which can only be used the “right” way, eliminating the need for design patterns and their
many rules. This is notmagic. Instead of learning the rules for the design patterns and best practices for using
them, programmers have to remember the functions and sometimes complex types. On the one hand, you

https://en.wikipedia.org/wiki/Visible_spectrum
https://en.wikipedia.org/wiki/Visible_spectrum
https://en.wikipedia.org/wiki/Facade_pattern
https://en.wikipedia.org/wiki/Software_design_pattern

1.2 Transformations 16

Try it yourself! Find a picture or graphic with a few colours, or pick a few colours to
focus on. Try to represent those colours using the two different colour functions. The hsl
picker only works with mouse or touch, whereas the rgb picker also supports keyboard
input, which most people find to be more efficient. Set a timer, and see how long it takes
with each tool. Do you have to consciously think about how the colours are represented to
create your colours? Do your friends have the same experience?

1.2 Transformations to contents

After filling or outlining a Stencil, you have a Shape. Note the capital letters! In Elm,
types start with capital letters. Types help describe what functions do, and when the Elm
compiler processes your program, it can use these types to detect errors, like trying to fill
a Shape rather than a Stencil. We will talk more about types in Chapter 4.

If our library stopped here, all your pictures would be stacks of shapes in the middle
of the screen. Not too useful. Fortunately, we also included transformations which you may
remember from grade 2: translation, rotation, and scaling. We can stretch shapes in one
direction using scaleX or scaleY or in both directions using scale. We can rotate shapes
about the centre of the window or translate with move using Cartesian (x,y) coordinates.
Finally, we can even make shapes (more) transparent using makeTransparent.

You can activate these transformations by tapping/clicking on them or by navigating to
them and pressing return or enter (depending on your keyboard). The order of the trans-
formations matters if you have a move mixed in, and the ribbon shows you the order in
which they are applied, as does the Copiable Code box. If you turn a transformation off,
and then turn it back on, it will be moved to the end of the list of transformations. In the
ShapeCreator, you can only use one of each transformation, but once you copy your code
to the editor, or type it from memory, you can choose to stack up as many as you want in a
row. One type of transformation actually requires you to stack multiple moves: if you want

can kind of understand a design pattern and still write code, even though it will confuse other programmers
and will often fail in some cases. On the other hand, it may be a struggle to write code which will compile,
but if it does compile, it will very likely work, and since all uses of the pattern use the same function, they all
work the same way.

1.2 Transformations 17

to rotate a shape around a point which is not (0,0), the centre of the screen, you will need
to first move the desired pivot point to the centre, then rotate, and finally move back. For
example

|> move (-20,0)
|> rotate (degrees 45)
|> move (20,0)

will rotate by 45◦ about the point (20,0).
Now that you have learned how to make shapes, try creating an emoji in the WebIDE by

copying one shape at a time. Log in at https://cs1xd3.online with your username
and password. Click the +New button to open the list of activity types you have available,
and choose “Animation v.0” +Create. This will open a new module with the starter code
// Your shapes go here!
myShapes model =
[

]
Clicking the big blue play button—called the compile button—will send the code to the
server where it is compiled into JavaScript and sent back to your web browser to be dis-
played in the pane to the right of your code. Since there is nothing in your myShapes
function, you will get a blank output. Now copy the shape you created in the ShapeCreator
in between the square brackets, []. The square brackets define a list, and once you have a
shape in it, it is a list with one shape. If you make a mistake, you will get your first compiler
error. For example, if you had accidentally selected the closing bracket before pasting, it
will be missing in your code, and you will get an error like
-- UNFINISHED LIST --------------------------------- ID/←↩

Test.elm

I cannot find the end of this list:

3| [
4| circle 10
5| |> filled (hsl (degrees 0) 0.5 0.5)
6| |> move (-100,20)
7| |> scaleY 2

^
You can just add a closing] right here, and I will be all ←↩

set!

If you have not written programs in a textual language, this may come as a shock! For-
tunately, the Elm compiler has the most helpful error messages we have seen.

One more thing you need to know is that when you copy successive shapes, you need
to add commas to separate them, and, if not, the resulting error would not mention the
missing comma. If you had copied the above circle twice, without a comma, you would see:

https://cs1xd3.online

1.2 Transformations 18

-- TYPE MISMATCH ----------------------------------- ID/←↩
Test.elm

The 2nd argument to `scaleY` is not what I expect:

7| |> scaleY 2
8| circle 10

^^^^^^
This `circle` value is a:

Float -> Stencil

But `scaleY` needs the 2nd argument to be:

Shape userMsg

To understand why you get this error, you need to know what the |> does. I’m surprised
you haven’t asked! We call it a “forward pipe”, because the output of the code on the left
(lines above) is piped into the code on the right (lines below). The pipeline concept and the
use of the vertical bar are considered by programmers who care about our history to be one
of the biggest “little” things which make coding easier7. We will talk more about pipes in
Chapter 3.

Now you are probably happy to learn what the |> is doing in your code, but how does
that explain the error? Well, the compiler tries to make sense of the code just before and
just after the |> separately, before seeing if the right-hand side is a function which can
process the output of the left-hand side. In our case, it gets stuck on the right-hand side,
which, because we forgot the comma, includes the start of the next shape. The right-hand
side should be scaleY 2, which is a function turning one Shape into another one twice
as big. If we’d remembered the comma, the compiler would have then checked the left-
hand side and found that it was, in fact, a Shape, so all would be well. But because there
was no comma after the 2 it kept going, found the second circle, and tried it out as the
input of the function, but circle is not a Shape, it is a function, so it fails, and puts the
^^^^^^ under the circle to point out what it doesn’t like, and tells you that it has type
Float -> Stencil instead of Shape. If this explanation sounds a bit shaky at this point,
don’t worry, we will explain types in depth later, and for now, all you have to do is NOT
FORGET THE COMMAS IN YOUR LISTS. :)

One way to help remember the commas in your lists is to line up the brackets and com-
mas like this:
myShapes model =
[circle 10

|> filled (hsl (degrees 0) 0.5 0.5)
7See https://en.wikipedia.org/wiki/Pipeline_(Unix) for pointers to the history of its

invention in 1973.

https://en.wikipedia.org/wiki/Pipeline_(Unix)

1.3 Text 19

|> move (-100,20)
, circle 10

|> filled (hsl (degrees 0) 0.5 0.5)
|> move (100,20)

]
Elm is a language where indenting matters, so it is a good habit to indent your code so

you can see its structure like this. Most functional programmers do this.

1.3 Text to contents

There are a few advanced Stencils we will skip over in this edition, due to lack of time
(including curve, polygon, and openPolygon). You can find more about them in the
documentation8, but text is hard to live without, so let’s go over it now.

As you can see, when you select text from the list of Stencils, another list of transform-
ers appear. You may know transformers as alien robots caught in a struggle of good versus
evil, but transformer is also a nickname for automorphism (possibly related to autobots). Au-
tomorphisms are functionswhose inputs and outputs are of the same type. The fact that the
input and output sets are the samemeans that we can apply transformers one after another.
In Chapter 3, we will talk more about this property, but if you happen to be a Transformers
fan-fiction writer you can get started now on developing storylines for Unital Magma and
other concepts not yet mined by the scriptwriters.9

You may think we are just playing around with shapes, but we have already discovered
two sets of automorphisms! One to transform Shapes and one to transform Stencils.
If you are paying attention at home, you may have noticed a plot hole at this point. The
function bold makes sense as a transformer of text stencils, but if it is a transformer of
Stencils, that means it applies to circles and squares too! What does it mean to make
a circle italic?

The simple answer is that a functionwhich takes the input and gives it back as the output
is a transfomer10. In general, if we have a function defined on a subset of its output set, we
can extend it to a function from the whole set to itself by defining it to return the input for
any values not in the original subset.

8docs: https://package.elm-lang.org/packages/MacCASOutreach/graphicsvg/latest/GraphicSVG#notifyTapAt
9For example, the set of automorphisms forms a concrete category (see https://en.wikipedia.

org/wiki/Concrete_category of Monoids (see https://en.wikipedia.org/wiki/Monoid.
10We call this the identity function, which exists in the Basics package https://package.

elm-lang.org/packages/elm/core/latest/Basics#identity.

https://package.elm-lang.org/packages/MacCASOutreach/graphicsvg/latest/GraphicSVG##notifyTapAt
https://en.wikipedia.org/wiki/Concrete_category
https://en.wikipedia.org/wiki/Concrete_category
https://en.wikipedia.org/wiki/Monoid
https://package.elm-lang.org/packages/elm/core/latest/Basics#identity
https://package.elm-lang.org/packages/elm/core/latest/Basics#identity

1.4 Don’t lose that perfect colour! 20

The more complicated answer is that when we defined the library, we made a choice to
make text transformations work this way. Another valid choice would have been to define a
special TextStencil type with the text transformers acting on this type and not on other
stencils. We could then have created separate filledText and outlinedText functions
to turn these special stencils into Shapes. We did not do this, because we did not want to
create another two functions for beginners to learn, and errors they would inevitably make
in applying the wrong function to the wrong type of stencil. In other languages, we could
have used two types with a single function name filled accepting either stencil type as
an input. Note that we said a single function name and not a single function. This may seem
like a sleight of hand, a meaningless distinction, or fastidious use of the English language.

All of these are true!
And they represent a sweeping under the rug of implementation details. To be an object-

oriented programmer is to be used to tripping over the resulting bumps in the rug from
similar design choices. To be a functional programmer, using amore fully featured language,
is to accept thatwhat seems like straightforward functions likefilled exist in amultiverse
of type classes or generic types, and at any moment the compiler may spit out a type error
transporting you to a strange alternate universe.

If you think wemust be able to do better, then you are on your way to being a Computer
Scientist!

1.4 Don’t lose that perfect colour! to contents

I hope you are already having fun drawing with Elm and especially liking the flexibil-
ity of the colour pickers. You could draw a field with a hundred flowers, and each one can
have a subtly different shade of purple. For those of you fortunate enough to have visited
the Lilac Garden at the Royal Botanical Garden across thewater from our home atMcMaster
University, this is perfect! But if you are instead trying to draw the hundred thousand tulips
in Ottawa (originally donated by the Dutch royal family for protecting them during the Sec-
ondWorldWar), this will take a loooong time, and isn’t really necessary, because mass tulip
plantings are so impressive precisely because each tulip can have the same colour. In this
case, we can get the colours just perfect, and then create our own colour definitions:
tulipYellow = hsl (degrees 59) 0.975 0.551
tulipRed = hsl (degrees 351) 0.996 0.557

myShapes model =
[oval 4 7

|> filled tulipRed
|> move (-80,20)

, oval 4 7
|> filled tulipRed
|> move (-77,20)

, oval 4 7
|> filled tulipRed
|> move (-74,20)

, oval 4 7

1.5 Make Your Own Functions 21

|> filled tulipYellow
|> move (-80,30)

, oval 4 7
|> filled tulipYellow
|> move (-77,30)

, oval 4 7
|> filled tulipYellow
|> move (-74,30)

]
In programming, we call values likedegrees 59 abovemagic numbers. (That is bad, evil-

wizardmagic, not good-witchmagic.) Any time these numbers appear in your code, you are
just asking for a future contributor (including you!) to change some but not all of these val-
ues. In the case of colours, this will lead to visual inconsistency in your interface, or weird-
ness in your picture. More serious is when you compare these values anywhere in your code,
in which case changing some values will inevitably break things in ways which are hard to
find and hard to fix. So for the sake of your future self, create definitions like tulipYellow
in your code, and use those values. If your botanist cousin starts bugging you that you got
the colour slightly wrong, you only have to change the value in one place, and youwill know
that the right value will be used everywhere. And when your nosy younger cousin trying to
understand your code looks at it, theywon’t need to ask youwhat |>filledtulipYellow
does, because you’ve made it obvious.

1.5 Make Your Own Functions to contents

With a little help from your friend the ShapeCreator, you have started using several
functions, from circle to makeTransparent. They take inputs and turn them into out-
puts. In the case of circle, a single numerical input is turned into a Stencil. The great
thing about using a functional language is that it is easy to create your own functions. You
can literally create a function by adding a single letter to a definition. Let’s look at the tulip
example, because a single oval is not a great tulip! Let’s say we improved the tulip andmade
a definition:
tulip =
[rect 1 10

|> filled green
, oval 4 7

|> filled tulipRed
|> move (0,3)
|> rotate (degrees 15)

, oval 4 7
|> filled tulipRed
|> move (0,3)
|> rotate (degrees -15)

]
Rather than making a new definition for each colour of tulip, we can turn it into a function:

1.5 Make Your Own Functions 22

tulip c =
[rect 1 10

|> filled green
, oval 4 7

|> filled c
|> move (0,3)
|> rotate (degrees 15)

, oval 4 7
|> filled c
|> move (0,3)
|> rotate (degrees -15)

]
where just adding the c between the name of the function and the equal sign turns it into a
functionwith one input, and it lets us use that input in building the output using the variable
c. Of course, I would never use a single letter for a variable name in real life, and am only
doing it to make a point that a single additional letter can turn a simple value definition
into a function definition. Notice that everywhere we previously used tulipRed we now
use c.

We can use this function to define our shapes
myShapes model =
tulip tulipRed

but what we really want to do is use it to create multiple tulips, like this
myShapes model =
[tulip tulipRed
, tulip tulipYellow
, tulip tulipRed
]

but that won’t work, because tulip doesn’t create a Shape but a list of them, which would
give us a type error. Fortunately, we have a fix for this...

1.5.1 Grouping Shapes
Grouping solves our problem with multiple tulips:
tulip colour =
[rect 1 10

|> filled green
, oval 4 7

|> filled colour
|> move (0,3)
|> rotate (degrees 15)

, oval 4 7
|> filled colour
|> move (0,3)
|> rotate (degrees -15)

1.5 Make Your Own Functions 23

]
|> group

The group function takes a list of Shapes and creates a single Shape which is the sum of
the parts. And as a Shape, we can apply any of our transformations—just once, because the
transformation is applied to all of the component Shapes as a group. So the code
myShapes model =
[tulip tulipYellow
, tulip tulipRed

|> move (10,0)
, tulip tulipYellow

|> move (20,0)
, tulip tulipRed

|> move (30,0)
]

gives us four non-overlapping tulips.
And since groups are Shapes, we can group them together. To make a flower garden,

we can group the flowers into rows, then the rows into beds, and arrange the beds into a
flower garden:
tulipYellow = hsl (degrees 59) 0.975 0.551
tulipRed = hsl (degrees 351) 0.996 0.557

tulip colour =
[rect 1 10

|> filled green
, oval 4 7

|> filled colour
|> move (0,3)
|> rotate (degrees 15)

, oval 4 7
|> filled colour
|> move (0,3)
|> rotate (degrees -15)

]
|> group

row c1 c2 =
[tulip c1
, tulip c2

|> move (10,0)
, tulip c1

|> move (20,0)
, tulip c2

|> move (30,0)
]
|> group

1.5 Make Your Own Functions 24

flowerBed =
[row tulipYellow tulipRed
, row tulipRed tulipYellow

|> move (0,-10)
, row tulipYellow tulipRed

|> move (0,-20)
, row tulipRed tulipYellow

|> move (0,-30)
]
|> group

myShapes model =
[[flowerBed

|> move (-30,-30)
, flowerBed

|> move (30,-30)
, flowerBed

|> move (-30,30)
, flowerBed

|> move (30,30)
]
|> group
|> move (-10,10)

]
Note that therow functionhas two inputs, for the two interleaved colours, whereasflowerBed
is a simple definition (with no inputs), because every flower bed is arranged the same way,
but when it calls the row function, it alternates the order of the colour inputs in each row.
Finally, although it is natural for functions to return grouped shapes, we can create groups
on their own without creating a function. Look at the myShapes function. It returns a list
of Shapes, but that list is actually a single, grouped shape. We do this because the way the
flower beds are organized, the beds are not symmetrical about the centre of the screen, but
by putting them in a group, we can use a single move to move all of them.

1.5 Make Your Own Functions 25

On top of saving you from writing a lot of code—imagine moveing every part of every
tulip, one piece at a time—using group in this way is also an example of an important
problem-solving strategy. Problem Decomposition is when you break a bigger problem down
into parts you can solve, or at least break into smaller pieces of their own. If you want to
draw something complicated, break it into parts. A sunset needs a sun, sky, clouds, grass,
and a tree. You could start by making definitions for each of those and putting the text for
that shape there:

Now you know everything you need, and you can start working on the pieces one at a time.
You may think, “No big deal! I could have drawn that anyway.” Unfortunately, it is when
we are facing a really tough problem that we are most likely to forget our strategies. By
practicing them on simpler problems, we can try to make them a habit which comes to the
rescue when we most need it.

1.6 Comments and Naming 26

1.6 Comments and Naming to contents

Since we are talking about good habits, we should also talk about comments.
{- this is a long comment

just to say how much we
like tulips, and that
we made a function to draw them
-}

tulip : Color -> Shape msg
tulip petalColour =
[-- this is short comment

-- draw stem first so it is "under" the petals
rect 1 10
|> filled green

-- we want to rotate petals around their bottom...
, oval 4 7

|> filled petalColour
|> move (0,3) -- ...so move them up first
|> rotate (degrees 15)

, oval 4 7
|> filled petalColour
|> move (0,3)
|> rotate (degrees -15)

]
|> group

The first comment doesn’t really tell us anything that we need to know and couldn’t figure
out immediately, but sometimes we do need to write long comments. Sometimes there are
many ways of decomposing a problem, or there is no obvious way at all. That is the most
important time to write a long comment to save future contributors a lot of time trying to
figure out a global pattern by looking at your code line by line.

On the otherhand, giving the input variable thenamepetalColour ismoreuseful than
any comment we could write about it, because it is not just there at the point of declaration,
but is there everywhere you use it. In the early days of computer science when most pro-
grammers were one-thumb typists, it was common to use single-letter names. Now, even
if you are a one-thumb typist, most code editors auto-complete variable names for you, so
you hardly have to type at all.

Some things, however, don’t stand out from the code and variable names, like the reason
we put the stem earlier in the list of Shapes than the petals. This is where short comments
can be very useful. Many programmers write short comments for each of the parts of a
function before writing the function. The comments are like a to-do list, which you “check
off” by writing some code under them. When they finish, they already have useful short
comments in the code.

2. Let’s Get Moving

Creating pictures with GraphicSVG was easy. Even more fun is making animations. The
simplest way to think about animations is as a function which has the current time as its
input and a Shape as its output.

When you create a new Animationmodule in cs1xd3.online, you see
myShapes model =

[
]

You learned in the last chapter that the variablemodel is an input to the functionmyShapes.
The model variable has type { time : Float }which means that it is a record, a kind of
container, with one thing in it, called time which is a number (including fractions). We
will learn more about records in Chapter 4, but for now, all you need to know is that we can
access it like this1:
myShapes model =
[

circle model.time
|> filled red

]
When you compile it, at first you won’t see anything. Then you notice a tiny red circle
which grows. After 64 seconds, it touches to top and bottom of the output pane, and after
96 seconds, it touches the sides too. This is because the output pane is always 128× 192
units, whichmeans that half the height is 64 and half the width is 96. For this, you can work
out that the number in model.time is the time since the animation started, measured in
seconds.

Kind of cool, but what can we do with this? Anything! Well, anything which depends
on a number. Try doing the following things:

1. Make a shape move across the screen.
1grow: https://cs1xd3.online/ShowModulePublish?modulePublishId=5d44d8e7-a37c-454f-b505-e9e688fd800a.

https://cs1xd3.online/ShowModulePublish?modulePublishId=5d44d8e7-a37c-454f-b505-e9e688fd800a

28

2. Make a shape move back and forth.
3. Make a hand wave.
4. Make an eye blink.
5. Make a leaf turn from green to red.
6. Make stars twinkle (not all at the same time).

How many could you do? Could you do the first one? Does it look like this2? The problem
is that it goes off the screen in a few seconds. You could recompile it every time it goes off
the screen??? Ok, not a good answer, but keep reading.

For the second challenge, we can’t just use model.time but somehow need something
to go back and forth. Do you know functions which go back and forth? Well, probably not,
because to understand the behaviour ofmathematical functions we usually plot them going
up and down. Since a lot of what we do in animating is figuring out how to get functions to
go up and down just when we need them to, we have a function, plotGraph3 to plot them
so you can see them synchronized with your animation, like this:

With that hint, you should be able to move back and forth4.
If you had trouble with the third challenge, look back at the tulip. It has two petals

which are rotated the way a hand waves back and forth. Some cartoon alien hands have two
fingers, so you could even borrow the code from there! Do you get something like this5?

Before we go on to the next challenge, we should probably talk about the ()s. Let’s plot
fun1 t = 30 * sin t
fun2 t = 30 * sin 3 * t
fun3 t = 30 * sin (3 * t)
fun4 t = sin t
which gives us:

2(1) https://cs1xd3.online/ShowModulePublish?modulePublishId=3b339b67-062b-4e1d-8a91-3d420808a32d
3plotGraph: https://cs1xd3.online/ShowModulePublish?modulePublishId=09875ef2-1dda-4bca-bab2-0ebd6f3af394
4(2) https://cs1xd3.online/ShowModulePublish?modulePublishId=7df42b71-ebc8-4308-ad29-9aa091ae301c
5(3) https://cs1xd3.online/ShowModulePublish?modulePublishId=e4a6bc40-7340-4b8e-80e7-d6f949585a28

https://cs1xd3.online/ShowModulePublish?modulePublishId=3b339b67-062b-4e1d-8a91-3d420808a32d
https://cs1xd3.online/ShowModulePublish?modulePublishId=09875ef2-1dda-4bca-bab2-0ebd6f3af394
https://cs1xd3.online/ShowModulePublish?modulePublishId=7df42b71-ebc8-4308-ad29-9aa091ae301c
https://cs1xd3.online/ShowModulePublish?modulePublishId=e4a6bc40-7340-4b8e-80e7-d6f949585a28

29

To figure out which one is which, you need to know themathematical meaning of ()s, which
is “do insides first”, and you need to know that in Elm, we do functions next, beforemultipli-
cation and division, which come before addition and subtraction. What trips most people
up is that functions in Elm are separated from their inputs by spaces, without any other
types of symbols. This means that

sin 3 * t = (sin 3) * t
and not

sin (3 * t)
Ok, try to match them up now.

One of the curves in the plot is a straight line. How does that happen when they all have
a sin which we know wiggles up and down? Did you figure out that sin 3 is a constant, so

fun2 t = 30 * constant * t
and any constant multiplied by t is going to produce a line.

Now one of the curves is much flatter than the others. Among the remaining functions,
two are multiplied by 30, and one isn’t. That would be fun4 which is a squished down
version of fun1.

That leaves fun1 and fun3. The difference here is that we multiply the input t by
3 in one case. Multiplying the input has the effect of scaling in the horizontal direction.
Multiplying by 3 squishes it left, so fun3 has three times as many wiggles. Getting out my
wiggle meter, fun1 has 1.5 wiggles, and fun3 has 4.5. Checking that with my calculator, it
agrees with my trusty, rusty wiggle meter.

That brings us to the blinking eye. Does your eye look like this6? If so, I expect you have
a headache by the end of the day, because you are squeezing your iris. Youmight want to try
this approach7. The problem with this approach is that you need a flat background around
the eye, otherwise the rect would stick out. There is a better way to do this, in chapter...
Hold on a minute, if we tell you where all the good bits are, are you really going to read this
whole book? I didn’t think so!

How about the leaf? Would this be easier with rgb or hsl? This would be a good place
to use the ShapeCreator to try out the different colours. It’s pretty easy to see that hsl gives
us a pretty good transition as it goes from 120◦ to 0◦, which after darkening just a bit gives
this8. But if you wait long enough you will see the leaf go blue! How do we fix that? Well, if
you try shaking your sleeve, you might find out that if... then... else falls out of it.
At least that’s what happened to me. This expression

...
if condition then

trueValue
else

falseValue
6(4) https://cs1xd3.online/ShowModulePublish?modulePublishId=0dcdc28a-958b-4122-acbb-ea65944e0f04
7(4’) https://cs1xd3.online/ShowModulePublish?modulePublishId=bbc72775-3b85-45ef-a294-c70117d9a0f6
8(5) https://cs1xd3.online/ShowModulePublish?modulePublishId=d17ca177-b819-4c37-b66a-1f0550ebfeda

https://cs1xd3.online/ShowModulePublish?modulePublishId=0dcdc28a-958b-4122-acbb-ea65944e0f04
https://cs1xd3.online/ShowModulePublish?modulePublishId=bbc72775-3b85-45ef-a294-c70117d9a0f6
https://cs1xd3.online/ShowModulePublish?modulePublishId=d17ca177-b819-4c37-b66a-1f0550ebfeda

30

can be used with any combination of three expressions:
• an expression which is True or False, called the condition
• an expression to calculate in the case of True
• an expression to calculate in the case of False

The last two expressions have to have the type we need in this part of the code. Since we
are creating Shapes, we could do that:

if model.time < 12 then
oval 40 20

|> filled (hsl (degrees (120 - 10*model.time))
1
0.46

)
else
oval 40 20

|> filled (hsl 0 1 0.46)
but you have to look carefully to see that only the hue changes, so it would be clearer to
write9

oval 40 20
|> filled (hsl (if model.time < 12 then

degrees (120 - 10*model.time)
else

0
)
1
0.46

)
We can do a lot with if expressions, especially when we put them inside each other,

which we call nesting. For example, we often need to test a sequence of conditions, such as
for an animation which has multiple phases, each starting after another 2 seconds:

if model.time < 2 then
animation0

else if model.time < 4 then
animation1

else if model.time < 6 then
animation2

else if model.time < 8 then
animation3

else
animation4

Notice howwe canmake the code easier to read by lining the conditions up? Unfortunately,
for the last challenge, the twinkling stars, we cannot use this approach, because stars twin-

9(5’) https://cs1xd3.online/ShowModulePublish?modulePublishId=952eac1a-46fd-45cf-b517-df510a004ad5

https://cs1xd3.online/ShowModulePublish?modulePublishId=952eac1a-46fd-45cf-b517-df510a004ad5

31

kle forever. But if you think about a function which goes up and down forever, maybe you
can figure it out now if you couldn’t already do so.

Figured it out yet? Hint: combine sin and ifthenelse or use sin by itself. Here are
three ways10 of having a star twinkle. Did you think of all three? Did you think of other
ways? Now pick one of them and figure out how to have them twinkle independently. You
mayhavenoticed that the positions youpick for stars don’t look right. This could be because
you aren’t a good random number generator. You can get actual random numbers from
random.org. Later we will learn how to process a list, but for now, I’ve typed11 in the
numbers from random.org.

10(6) https://cs1xd3.online/ShowModulePublish?modulePublishId=413706ef-3e97-4161-9281-13a9dcb5a07b
11(6’) https://cs1xd3.online/ShowModulePublish?modulePublishId=a0b7f0c0-6cea-4885-a86a-0815d4a40982

random.org
random.org
https://cs1xd3.online/ShowModulePublish?modulePublishId=413706ef-3e97-4161-9281-13a9dcb5a07b
https://cs1xd3.online/ShowModulePublish?modulePublishId=a0b7f0c0-6cea-4885-a86a-0815d4a40982

3. Functions and Scope

Elm is a functional language. But every practical programming language depends on func-
tions. What makes it a functional language and not just a language with functions?

1. Elm functions are functions, meaning they return the same outputs every time you
call them with the same inputs. This is called purity—outputs depend purely on the
inputs. It is also called referential transparency.

2. Functions are much like other values. The number 2 is a value, but so is the function
which doubles its input. For now, you see this in the ease of turning a value defi-
nition into a function definition. Later you will learn the flexibility of higher-order
functions, which take other functions as inputs.

3. Defined values are defined values, they do not spontaneously change. It is tough
enough to remember all the definitions in a big program, but in most languages, you
have to learn multiple definitions for each variable, and try to keep track of which
one is in effect at the line of code you are trying to understand. This is called having
immutable data. If you think of a value definition as a function with zero inputs, then
immutability follows from purity, because a function with zero inputs can never have
different inputs, so must remain the same.

If you’ve made it to middle school, you should be surprised that we have to state the first
point, because that is what you learned a function does: takes inputs and returns outputs.
OnMonday, on Tuesday—any day of the week. You have amultiplication table tomemorize,
because multiplication always returns the same product when given the same two inputs.
Unfortunately, most non-functional languages don’t actually deliver real functions, and this
is a design choice that language developers are trying to undo because it has caused sooo
many bugs.

How did this happen? It’s important to know a few things. First, “computers” existed
before electronic computers, it’s just that they were people who shuffled numbers around.
Unlike our computers today, the people actually understood what they were doing and
could sometimes flag errors, and make suggestions for improving the way computations
were completed. Desks, paper, and chalk boards were pretty important to the first comput-

33

ers, so methods of calculating needed to take into account that desks were only so big, and
people could only keep track of so many papers at once.

Next, the evolution of computers happened for two slightly different reasons. One, peo-
ple needed to compute things faster than ever; and two, mathematicians wanted to know if
what they were doing made any sense (this breaks down into three parts:

1. did their definitions cover everything (completeness),
2. did they make sense (consistency), and
3. could you actually solve the problems being posed (computability)).

To solve the last part, they developed ways of describing computations, including Lambda
calculus and Turing machines. This fed the machine of human curiosity, which being in-
satiable, led to a whole branch of what we today call computer science. Turing machines
evolved intopractical blueprints for designing electronic computers. Lambda calculus evolved
into functional programming but, unfortunately, only aftermost people in the field thought
they knew how programming languages should work.

The big push to compute faster was driven by the urgency of defeating fascism during
World War II. Different machines were developed to solve specific computations, but one
person travelled around theUnited States trying to speed things upby connectingnewprob-
lems to existing solutions. Of the many problems, the largest was the simulation of nuclear
explosions, and this problemwas complicated enough that it demanded the development of
better methods. The history of this period is both incredibly sad, and also inspiring. It isn’t
well known because so much about the war was kept secret at the time. There is a podcast
about the first programmer1.

The difference between answering the theoretical questions and building working com-
puters is that the theoretical questions can be solved by individual mathematicians, and
in their papers and letters, we have a record of some of their thoughts; whereas the devel-
opment of computers required more people than we can recognize, and once we started
solving real problems, the number of people grew very fast.

The development of software is in a whole different category, because unlike math,
physics, and engineering, there were no professors of computer science—there weren’t
even words to describe it!

The person who travelled around trying to speed up calculations needed for the war
effort was already a famous mathematician, John von Neumann. It is his name that is now
attached to the basic design from which today’s computers evolved, the “von Neumann
Architecture.” His design was based on the Turing machine, and not surprisingly, given the
urgency of the war, it focussed on the low-level details of computation. It is not that people
did not think about abstract and incredibly important algorithms, but only a tiny number
of people were able to translate the high-level ideas into actual programs. As computer
applications in science and business grew, few people were interested in rethinking the
way people programmed. They only do it whenever there is a crisis2: when it becomes just

1If you are an adult and feeling emotionally invincible today, you can get a real insight into how Klára Dán
von Neumann, the first person to write working programs for machines, had to invent things as she went
along. If you are not yet an adult, ask one to decide for you. https://www.lostwomenofscience.
org/season-2

2A few select crises: The GOTO problem https://en.wikipedia.org/wiki/Goto. Note that this problem is im-

https://www.lostwomenofscience.org/season-2
https://www.lostwomenofscience.org/season-2
https://en.wikipedia.org/wiki/Goto

3.1 Foundations 34

too hard to organize people to write working programs. Crisis by crisis, we seem to keep
moving in the direction of functional programming.

What is the moral of the story? Software is not like math or physics. Since we are still
learning the best way to do things, and we should probably wait another 50 years before
trying to teach people. :) If you don’t have 50 years to wait, learn to love learning!

At some point, you will definitely be puzzling over a new software concept, and won-
der why you couldn’t just keep doing things the way you were doing them. To paraphrase
an idea I learned from Cynthia Solomon who attributed it to Seymour Papert (both pretty
amazing people in computer science education): Imagine if European scientists had said,
“You know what? Don’t fix what’s not broken. Let’s keep using Roman numerals.” (I, II, III,
IV, V, ...) Actually, I don’t really think you can imagine how hard your job as a student would
be today if we were still using that clunky system. You should be supremely grateful that
they decided to give Hindu numbers a chance. Of course, we can be somewhat thankful to
the Persian and Arab textbook writers, and the Jewish translators too. :)

You just don’t know what new concept is going to have that power until you learn it.

3.1 Foundations to contents

Some questions are valuable because of the thinking that goes into the answer, like
“What came first, the chicken or the egg?” which may lead to us discovering evolution.
Mathematicians had a similar question about a century ago: “What came first, the set or
the function?” Well, that is not how they state it, but mathematicians started seriously
asking, “Can mathematics be built out of a small number of building blocks?” This was a
philosophical question until digital computers were invented which, for practical reasons,
represent everything in terms of a small number of building blocks (true, false, and logi-
cal operations). It turns out that we can build mathematics up from building blocks, but
it has to be done in stages, with every stage building more complex objects from the ob-
jects of previous stages. Bertrand Russell and his teacher AlfredWhitehead became famous
a century ago for building up much of known mathematics from sets and logic, avoiding
contradictions in previous attempts to build mathematics up from sets alone.

But what did come first? Sets or functions? It turns out that there are alternative ways
of building mathematics, starting with sets, starting with logic, or starting with functions.
It is helpful to know that there are multiple starting points, meaning that we can define
one in terms of the other and vice versa. Since this can be done logically without creating
contradictions, it is ok to think about our programs in terms of functions, in terms of ob-
jects, or in terms of bits and bytes (groupings of the true and false values we know all our
digital3 computers are built upon). Complex problems are a lot easier to understand using

possible in functional programs. The “Mythical Man-Month” problem https://en.wikipedia.org/wiki/The_Mythical_

Man-Month. Note that this problem only arose after men took over programming from women. :) The painful-
ness of writing or using with user interfaces led to the development of Smalltalk. https://en.wikipedia.org/wiki/

Smalltalk This first successful Object-Oriented language meant everyone wanted to use OO design everywhere,
which precipitated a new crisis leading to Design Patterns https://en.wikipedia.org/wiki/Design_Patterns which es-
sentially tell you not to do things in OO languages, except for their short list of sensible patterns.

3We will omit analogue and quantum computers from this book, although they are both very interesting.

https://en.wikipedia.org/wiki/The_Mythical_Man-Month
https://en.wikipedia.org/wiki/The_Mythical_Man-Month
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/Design_Patterns

3.2 Types 35

the language of functions. Constructing the fastest possible solution to a problem, on the
other hand, is difficult to do without looking into the bits and bytes. One definition of a
good computer scientist is someone who can identify the right view to take to solve the cur-
rent problem efficiently, and even look at the same problem through different lenses when
required. Of course, it is human nature not to do this! Because of the difficulty we have in
accessing our long-term memories, we naturally prefer to keep reusing the same concepts
we used for our last problems.

Ok, the chickens are tired of us hanging out in their coop, and want us to get back to Elm
programming.

3.2 Types to contents

If you are thinking that Elm is a functional programming language, so surely functions
come first, you would be right! From our very first examples, we started using functions
without really talking about them. In Elm, we use notation to give functions a type, like
circle : Float -> Stencil
whichmeans that circle is a function which takes a Float (number) input and gives back
a Stencil. The types are vitally important to understandingmany problems, and knowing
what we do about Russell’s work, it is reassuring to know that types are there protecting us
from certain mistakes4. But if you think back to using the ShapeCreator, the focus was on
the functions and how they can be composed.

Embedded in the code created by the ShapeCreator was forward pipe |>, which we ex-
plained to mean that we take the value on the left and feed it to the function on the right.
We call it a pipe in analogy to a processing plant, like a water filtration plant, which takes in

4Russell’s Paradox: https://en.wikipedia.org/wiki/Russell's_paradox

https://en.wikipedia.org/wiki/Russell's_paradox

3.2 Types 36

dirty water, pumps it through pipes to filters and sedimentation tanks, and finally through
the city and into our homes. The pipe is itself a function,
(|>) : a -> (a -> b) -> b
which means that it takes a first input of some type a and a second input of type a -> b
(i.e., a function) and returns a value of type b. We can use it in the “normal” function order
by writing
(|>) (circle 5) (filled red)
This matches the type definition, but it is harder to read. We could eliminate it by writing
filled red (circle 5)
but this deemphasizes the flow, and gets harder to follow as parentheses are added:
move (-10,-10) (rotate (degrees 45) (move (10,10) (filled red ←↩

(circle 5))))
which is why the ShapeCreator generates it as
circle 5
|> filled red
|> move (10,10)
|> rotate (degrees 45)
|> move (-10,-10)

Elm also provides us with backward pipe
filled red <| circle 5
which does save the parentheses, does match the most common order for parentheses in
mathematics but, when written on multiple lines, puts the Stencil farther and farther
away fromwhere you start reading. You are free to use it, but then you are also free to walk
around on your hands instead of your feet. We like to do things the easy way.

You are probably pretty impressed by this leap forward in notation, almost as impres-
sive as switching from Roman to today’s Hindu-Arabic numbers. But functional languages
include even more powerful abstractions which allow us to combine functions, without
bothering with values. This is usually referred to as “point-free” notation because the idea
arose in the new geometry developed in the late 19th century, whichwe now call (algebraic)
topology5. Topology asks what we can know about spaces other than the 3D space we live
in. We will talk more about the subset of spaces called vector spaces when they ride in to
the rescue in Section 5.4. For now, it is enough to know that, to answer the question “How
many spaces are there?” they needed away of equating spaces, and functions which take an
input from one space and return an output in a second space are the natural way of compar-
ing spaces. If a second function exists which takes every output of the first function as its
input and returns the original input of the first function as its output, we say it is the (left)
inverse function. If we were naming it today, we would probably call it an “undo” function,

5See https://en.wikipedia.org/wiki/Algebraic_topology.

https://en.wikipedia.org/wiki/Algebraic_topology

3.3 Partial Function Application 37

but they didn’t have undo, or even control keys, back then. Before the invention of point-
free notation, functions were defined by algebraic expressions in terms of their coordinate
variables. Some computations need to be done with coordinate variables, but it took a long
time to figure out that some answers were independent of the choice of coordinate system.
Point-free notation made it much easier to see these things.

Point-free notation plays the same role in program synthesis. We often need to use
variables bound to input values to express our functions, but sometimes they just create
too many trees to see the forest. In mathematics, when we have two functions f : X → Y
and g : Y → Z, where X ,Y,Z are sets, g◦ f is defined to be the function

(g◦ f)(x) = g(f (x)). (3.1)

In Elm, we can do the same thing. If f : X -> Y and g : Y -> Z then we can define
g << f to be the function
gof x = g (f (x))
which is equivalent to the definitions
gof1 x = x |> f |> g
gof2 x = f x |> g
gof3 x = g <| f x
gof4 x = g <| f <| x
gof5 x = (g << f) x
gof6 x = (f >> g) x
Did you notice we snuck in (>>) which composes functions from left to right instead of
from right to left? There are a lot of ways to connect two functions together. You can see
that (<<) and (<|) match the order function names take when composed using nested
parentheses, but we prefer to use (>>) and (|>) which match the reading direction in
English.

3.3 Partial Function Application to contents

Functional languages like Elm give us a few more ways of making functions out of old
functions. Partial Function Application allows us to take a function with multiple inputs
and make a new function with fewer inputs. Most of our Shape transformations use this
approach. Let’s look again at
circle 5
|> filled red
|> move (10,10)
|> rotate (degrees 45)
|> move (-10,-10)

Here are the types of the transformers:
filled : Color -> Shape -> Shape
move : (Float,Float) -> Shape -> Shape
rotate : Float -> Shape -> Shape

3.3 Partial Function Application 38

In a case like this, where there are no parentheses in the type signatures, the implicit paren-
theses go right to left, i.e.,
filled : Color -> (Shape -> Shape)
move : (Float,Float) -> (Shape -> Shape)
rotate : Float -> (Shape -> Shape)
This is called associativity, and is the same reason that 4−5+7=(4−5)+7 andnot 4−(5+
7), which in this case don’t give the same answer! For arithmetic, we associate left to right,
meaning that we add the parentheses starting on the left and working outwards. Function
signatures, on the other hand, are right-associative, meaning that we add parentheses on
the right.

What this means is that filled can be thought of as a function which takes one Color
input and returns a function Shape -> Shape, e.g.,
(filled red) : Shape -> Shape
All of the transformations are designed this way, because if we have functions
fun1 : Shape -> Shape
fun2 : Shape -> Shape
fun3 : Shape -> Shape
then
(fun1 >> fun2) : Shape -> Shape
(fun2 >> fun3 >> fun1) : Shape -> Shape
(fun3 >> fun3 >> fun3 >> fun2 >> fun2 >> fun1)

: Shape -> Shape
Every composition of functions of this type makes sense! We call functions a -> a, with
one input of the same type as the output, endomorphisms6. Endomorphism combines Greek
rootswithin + shape. Early topologists discovered that a lot could be said aboutmathematical
objects just by knowing about the existence of functions between them, which spawned
a new branch of mathematics called Category Theory. Category Theory was picked up by
computer scientists7 as an alternative to set theory or logic as a tool for understanding (and
proving properties like correctness) about them.

How is this useful? Every year, a couple of students will ask something like “Why do we
have to bother with the insides, we can tell what functions do just from their type signa-
tures?” In fact, this is true in some cases, and this insight parallels the insights of the first
topologists. So Bravo! to those students.

To really appreciate this, you need to learn some of the core Elm packages, especially
List, but let’s look at a little example using what we know. Imagine you are creating a
paint-by-numbers app. You want to draw some shapes both as outlines and as filled-in
shapes, depending on the choices the user makes. We could draw our shape, and then copy
and paste the code so we can change the filleds into outlineds, but then if we ever
change the original drawing, the outlined version will not be in sync. This is a violation of a

6See https://en.wikipedia.org/wiki/Endomorphism
7Seehttps://mitpress.mit.edu/books/basic-category-theory-computer-scientists.

https://en.wikipedia.org/wiki/Endomorphism
https://mitpress.mit.edu/books/basic-category-theory-computer-scientists

3.4 Operators versus Functions 39

principle of information science called the Single Source of Truth8 (SSoT), which says that
you shouldn’t have the same information stored in multiple places, and is pretty important
for large systems. So, instead, we can define the parts which will not change:
myStencil = square 10
myColour = rgb 25 150 255
myTransfom = move (20,30) >> rotate (degrees 20)
and then we can use them in two ways
theOutline = myStencil

|> outlined (solid 0.5) myColour
|> myTransform

theColouring = myStencil
|> filled myColour
|> myTransform

But this still involves duplication of our definitions, so we could define
draw isFilled stncl clr trans =

stncl
|> (if isFilled then

filled
else

outlined (solid 0.5)
) clr

|> trans
which reduces some of that additional typing, and is useful if we are storing a Bool value
for the state of this element.

3.4 Operators versus Functions to contents

Another way that we know that functions are overwhelmingly important to mathemat-
ics is the number of different names for them. In programming, youwill run across functions,
operators, combinators, and lambda expressions. Operators are just anotherway ofwriting func-
tions, called infix notation. Since one of the first functions we learn is+, as in 1+1, we are
used to writing functions this way, but did you ever stop to think that it is only possible
to represent functions with two inputs this way?! In another universe where the most im-
portant functions have more than two inputs, we would probably write algebra in a totally
different way. When we don’t want to write these functions using infix order, Elm gives us
a way to refer to them as “normal” functions,
addTwo x y = (+) x y
Often we want to do this, because we want to partially apply a function to create a new one:
multByTwo = (*) 2
which of course is the same as

8See https://en.wikipedia.org/wiki/Single_source_of_truth.

https://en.wikipedia.org/wiki/Single_source_of_truth

3.5 Anonymous Functions 40

multByTwo x = (*) 2 x
but with less typing. Now, I personally do not recommend using this style everywhere, be-
cause it is not visually obvious that multByTwo is a function taking one argument, but we
will see many useful applications in later chapters.

3.5 Anonymous Functions to contents

To complete the list of ways in which we can define functions, we need to introduce the
method which cannot be named, because it is anonymous! We call these functions anony-
mous because they get defined without giving them a name.

You are used to defining
flower petal =

[oval 20 10 |> filled petal
, oval 10 20 |> filled petal
, circle 10 |> filled darkBrown
]
|> group

Although it seems silly, we could separate the naming of the function and the definition
flower =
\ petal ->

[oval 20 10 |> filled petal
, oval 10 20 |> filled petal
, circle 10 |> filled darkBrown
]
|> group

The notation \...->... means “a function maps input ... to ouput ...” Why do we use “\” for
this? We do this because most people don’t know how to type the Greek letter λ (lambda)
on their keyboards, and it looks a bit like that. Wewant to use λ because Alonzo Church used
it to represent the binding of a variable to an expression to define a function, which is the
basis for Lambda calculus. Although Lambda calculus and Turing machines are equivalent
ways of defining computation, nobody told Hollywood, because Turing has a movie9 but
Church doesn’t10.

3.6 let ... in ... to contents

Anonymous functions can be a handy way for defining functions which are only ever
used once, but even if you only use a function once, it is often helpful to name it, so that
other people know what it does. Generally, a function you can define in a fraction of a line
can be understood by others without breaking up the flow of reading the surrounding code,

9...with many inaccuracies https://en.wikipedia.org/wiki/The_Imitation_Game
10It’s not a movie, but Lambda calculus is more popular among programming language enthusiasts who

meet at a website called lambda-the-ultimate.org, which is a good place to find out what is cool in
programming languages.

https://en.wikipedia.org/wiki/The_Imitation_Game
lambda-the-ultimate.org

3.7 Modules 41

but anything longer will interrupt the flow of reading. So if other programmers could read
your code better knowing what the function does from its short but descriptive name, then
you should name it. How do we do that, without creating a function we don’t want other
parts of the code to use? This is one of the things let ... in ... is good for. For example
sortSpecial lst =

let
compareFun = ... -- really long and complicated

-- function to sort data structure
in

List.sortBy compareFun lst
lets us define a function only used in this one sort. The advantage here is that the line
List.sortBy compareFun lst is readable by itself, and you don’t have to give yourself
a headache parsing the complicated function to do the compare every time. Other great
properties of let ... in ... are that

• You can define multiple values and functions which depend on each other.
• You can use (main) function arguments here without having to add them as argu-
ments to every locally defined function, as you would if they were on the top level.

• You can hide these definitions from other parts of your code, even in the same func-
tion. This concept of restricting access is so important, we will now devote a whole
section to it...

3.7 Modules to contents

Lambda calculus and Turingmachines were great for defining what computation is, and
if programming languages were just about telling computers how to do computations, we
could skip the rest of the book! But aswehave said, programming languages are just asmuch
or even more about communicating with other programmers, and organizing our ideas so
we can remember them. This is why we keep developing new programming languages and
design principles. Let’s look at two principles first and how we implement them.

Information Hiding11 (IH) and Separation of Concerns12 (SoC) are closely related. Imagine
you are working with a group on a large application, bigger than what you can manage
alone. You are working on one part of the application andmaking good progress, when sud-
denly your code stops working, because one of the functions you are using disappears. You
investigate and find out that your friend “made it better” without telling anyone. Actually,
it was better for her use, but you didn’t expect it to work that way. Now you’ve lost half a
day figuring it out.

SoC is the principle that you should not try to solve whole systems at once, but instead
break themdown into pieces—wait aminute, isn’t that just a problem-solving strategy? Yes,
it is a great problem-solving strategy which we like to call Divide and Conquer, but it is not
enough for programmers. That is because, unlike a machine, which is finished when it is
all screwed together and delivered to the customer, we can just keep adding features to a

11https://en.wikipedia.org/wiki/Information_hiding
12https://en.wikipedia.org/wiki/Separation_of_concerns

https://en.wikipedia.org/wiki/Information_hiding
https://en.wikipedia.org/wiki/Separation_of_concerns

3.7 Modules 42

program, so it is never finished in the same way. Because programmers can innovate at the
speed of light, we need speed limits, and SoC adds a layer to D&C by requiring that each
piece of the software have a stated purpose and that changes be made to that particular
piece only if they maintain the purpose, or if everyone depending on that piece of software
agrees to change the stated purpose.

Other scientists and engineers have awesome-sounding names for the things they work
on, like “manifold”, “subassembly” and “warp coil”. So we call these pieces “modules”13
(when designed to support SoC). You will find on your journey that it is a lot easier to say
that “Of course, we are totallymodular,” than it is to figure out the bestway to divide up your
software into pieces. Modularizing is like putting up fences. They may make some things
slower—making youwalk a bit farther, or adapting to the given library interface rather than
just changing the library code—but done well they prevent a lot of headaches—like people
walking over your vegetables, or other programmers changing the name of the function you
were using.

One of the great advantages of more recent programming languages is built-in support
for modules. In fact, software modules have existed from the early days of programming,
but nothing was preventing you from violating their boundaries. Today, I think most pro-
grammers know that variable names created in onemodule should not be available in other
modules, even if they don’t know why14. Many would say that you should have to jump
through some hoops to make them available, so that you think twice about exposing the in-
ner workings of your module to other people, because as soon as you do that, someone will
find an unexpectedway of using those variables in a way you do not expect, therebymaking
it harder for you to improve how your module functions internally without breaking their
code. This process of hiding as many details of how your module works as opposed to what
your module does, is called Information Hiding.

End of story? Not quite. Just like stomping out a biological pandemic, or an epidemic
of malware, there is no single solution which will eliminate errors caused by adding new
features. The good news for software designers is that unlike our DNA, which is vast and
mostly a mystery, people do write all of our software, so we can define. We do not need
to rely solely on the module system. We can develop new languages and practices, and we
have. One of them is functional programming.

How does functional programming help protect us against unwanted side effects of
adding a new feature? Well, by eliminating side effects! Not the side effects of changes
to the software, but side effects of functions. As we have said many times, a function is
something which takes an input and produces an output. This is true of all languages, but
in languages without pure functions, the input is potentially all the data in the program and
the output is potentially all the data in the program. What?! How can anyone think about
all the data in the program and know if only the expected changes are being made? The
answer, as anyone who has had to face this type of debugging challenge in a large C, C++, or
Java program knows, is that you have to put on your detective hat and start experimenting.

13See https://en.wikipedia.org/wiki/Modular_programming.
14For example, see this thread https://stackoverflow.com/questions/10525582/

why-are-global-variables-considered-bad-practice

https://en.wikipedia.org/wiki/Modular_programming
https://stackoverflow.com/questions/10525582/why-are-global-variables-considered-bad-practice
https://stackoverflow.com/questions/10525582/why-are-global-variables-considered-bad-practice

3.8 Scope 43

“Once you eliminate the impossible, whatever remains, nomatter how improbable, must be
the truth15.” The unfortunate thing is that nobody writes novels about our detection, and
we never get movie royalties, although many of us end up solving more difficult problems
than Sherlock ever faced!

So it is much better to use what computer scientists call pure functions, and what math
teachers call functions, with clearly defined inputs and outputs. As great as the principles
of Separation of Concerns, Information Hiding, andModularization are, as long as our func-
tions are not pure, we keep building time bombs (technically called Single Points of Fail-
ure16) into our code, and rather than making our code safer, those other principles amount
to a bunch of paperwork weighing down developers.

Whoa! That was a lot of Wikipedia links. Since this is a free textbook, hopefully, some
of you will have money left over to donate to Wikipedia, which is a whale17 of a resource.
After that non-commercial break, we can move on to scope.

3.8 Scope to contents

Scope actually predates a lot of the deep thinking above, because it was needed to solve
a simpler problem: running out of variable names. Scope limits the parts of a program
where a variable can be used. Really big programs needmany definitions, and if all of those
definitions are usable in all parts of your program, then you will end up with very long vari-
able names, likenumCats, numCatsInFunctionF secondNumCatsInFunctionF, and so
on18

Scope is easy to see at a glance in Elm, because of indentation.
1. Definitions are in scope in all other definitions and expressionswhich start at the same

level of indentation, and parts of those definitions with deeper indentation.
2. Variables defined by binding the inputs of a function are in scope in the function.
3. Variables defined in a pattern of a case expression are in scope within the result of

that case.
What is a case expression? Let’s start withwhatwe know. It is amore general condition

than if-then-else. If you wrote:
15Arthur Conan Doyle’s Sherlock Holmes said this https://www.goodreads.com/quotes/

7471034-once-you-eliminate-the-impossible-whatever-remains-no-matter-how.
16See https://en.wikipedia.org/wiki/Single_point_of_failure.
17Read founder Jimmy Wales’ reasons for donating: https://donate.wikimedia.org/w/index.

php?title=Special:LandingPage&country=XX&uselang=en&utm_medium=sidebar&
utm_source=donate&utm_campaign=C13_en.wikipedia.org

18These are fun names, but not historically accurate, because the first computers were so short of memory
that we could not afford such long variable names, or we wouldn’t be able to run the compiler. As computers
gained memory, and we could afford decent compilers, the gender balance in computer science shifted, with
the majority of women “computers” left over from the war years when they had started out computing ar-
tillery tables and logistics using operations researchwere displaced bymen. Not only were themen paidmore
to do the same work—actually less work, because at that time typing was considered a lower-class skill suit-
able for women, but not for the male Engineers who replaced them—they also cemented a bad habit of using
short, inscrutable variable names like i and j, as they struggled to write programs with their one-finger typ-
ing. But, to be fair, since the inability of men to type did create an imperative to add scoping to programming
languages, it is perhaps a rare positive side effect of sexism.

https://www.goodreads.com/quotes/7471034-once-you-eliminate-the-impossible-whatever-remains-no-matter-how
https://www.goodreads.com/quotes/7471034-once-you-eliminate-the-impossible-whatever-remains-no-matter-how
https://en.wikipedia.org/wiki/Single_point_of_failure
https://donate.wikimedia.org/w/index.php?title=Special:LandingPage&country=XX&uselang=en&utm_medium=sidebar&utm_source=donate&utm_campaign=C13_en.wikipedia.org
https://donate.wikimedia.org/w/index.php?title=Special:LandingPage&country=XX&uselang=en&utm_medium=sidebar&utm_source=donate&utm_campaign=C13_en.wikipedia.org
https://donate.wikimedia.org/w/index.php?title=Special:LandingPage&country=XX&uselang=en&utm_medium=sidebar&utm_source=donate&utm_campaign=C13_en.wikipedia.org

3.8 Scope 44

if condition then
trueExpression

else
falseExpression

you could have written
case condition of
True -> trueExpression
False -> falseExpression

That is a special case of matching a Bool condition.
If your character can only count to three, you can use this snippet to generate their

dialogue from a num:Int:
case num of
0 -> "zero"
1 -> "one"
2 -> "two"
3 -> "three"
_ -> "more"

Note that the _ matches any value, and indicates that you won’t use the matched value.
Since you could use num, you didn’t need the matched value here anyway, but you can also
use it within patterns, as we will see.

If you define your own type:
type Residence
= House Int String -- number and street
| Appartment Int String Int -- ... and apartment number

Then you can build case expressions to match. Let’s say you live in a village with one
street, and you want to calculate delivery time, starting at your location, based on address
and possibly climbing stairs, knowing that the only apartment buildings use the 10s digit
for the floor.

case residence of
House streetNum _

-> 0.5 * toFloat (abs (streetNum - restaurantLoc))
Appartment streetNum _ aptNum

-> 0.5 * toFloat (abs (streetNum - restaurantLoc))
+ toFloat (aptNum // 10)

In this case expression, we see variable binding (streetNum and aptNum) and the use of
“don’t care” wildcard (_). The variables bound in the pattern to the left of a -> and only be
used in the expression on the right of it.

The use of case expressions is pretty important in Elm. For example, we couldn’t really
use result types without them, as you will see in Section 6.4.3.

One big difference between Elm and many other languages is that shadowing is not al-
lowed. Let’s look at an example:

3.8 Scope 45

fun x y =
let

x2 = x * x
sum =

let
y2 = y * y

in
x2 + y2

diff =
(x - y) * (x - y)

in
sqrt sum - diff

This is a bit convoluted, but just to make a point. The definition x2 is defined at the second
indent level, so we can use it in other definitions at the same level, namely sum, diff, and
sqrt sum - diff, but also in the definition of y2 and the expression x2 + y2, because
they are “inside” the definition of sum.

On the other hand, if we tried to change this to
fun x y =

let
x2 = x * x
sum =

let
y2 = y * y

in
x2 + y2

diff =
(x - y) * (x - y)

in
sqrt (x2 + y2) - diff

we would get an error
-- NAMING ERROR ------------------------------------ ←↩

SavvyUser/Test.elm

I cannot find a `y2` variable:

65| sqrt (x2 + y2) - diff
^^

These names seem close though:

x2
y
e
pi

3.8 Scope 46

which is reasonable, since y2 is not in scope, but not that reasonable, since it exists in the
same function, but not in scope. Admittedly, once you understand scope, you are unlikely
to make this error, since it is obviously at a higher indentation level.

This brings us to shadowing.
fun x y =

let
x2 = x * x
sum =

let
x = y * y -- save typing, change y2 -> x

in
x2 + x

diff =
(x - y) * (x - y)

in
sqrt (x2 + y2) - diff

The above code does save us from typing two letters, but is awfully confusing and rightly
results in an error:
-- NAMING ERROR ------------------------------------ ←↩

SavvyUser/Test.elm

The name `x` is first defined here:

54| fun x y =
^

But then it is defined AGAIN over here:

59| x = y * y -- save typing, change y2 -> x
^

Think of a more helpful name for one of them and you should←↩
be all set!

In a small piece of code like this, you are unlikely not to notice that there are two definitions
of x—and no good reason to have them! You’ll just have to trust me that in more complex
code, there are good reasons you might want to name two things index or shape, and it
takes some effort to come up with different names to explain that. Maybe the first index
is the one you are looking for, and the second index is the one in the data structure you
are currently trying to match it to. If you do get a shadowing error, you may feel grumpy
about having to think up different names for things which could be understood using the
same name. Well, whatever time it takes to invent names when the code is fresh is a tiny
fraction of what you would spend if you ever have to untangle the shadowed variables later,
when it is not fresh in your mind.

Ok, but what about other modules? Are their definitions at the same level? The answer
is...sometimes. It all depends on how you import them into the module you are writing. It

3.8 Scope 47

is recommended that you use
import List
or
import List exposing (List)
to import most modules. By default, it means that if you want to use a definition from the
imported module you need to specify the module name, as in
List.sort [3,2,1]

(to sort a list of numbers). Adding the exposing keyword means that you do not need to
use the module name as a prefix. In the example above, we expose the type constructor so
that we can type
type alias ListOfInts = List Int
rather than
type alias ListOfInts = List.List Int
not a big deal, but a nice convention. Using definition names with a module prefix are
called qualified names. On the other hand, for modules which are core to your work, and
whose definitions do not overlap the names of other definitions you use, you can expose all
definitions without need for the prefix like this
import GraphicSVG exposing (..)
Note that exposing all definitions does not prevent you from using the module name as
a prefix anyway, and sometimes that is necessary. If, for example, we exposed multiple
container modules, we would run into conflicts and need to use qualified names a lot, such
as
import Array exposing (..)
import Dict exposing (..)
import Set exposing (..)

type MishMash = MM (Array Int) (Dict Int Int) (Set Int)

emptyMish = MM Array.empty Dict.empty Set.empty
So we strongly recommend always importing the container modules this way
import Array exposing (Array)
import Dict exposing (Dict)
import Set exposing (Set)
even if you only use one. Yes, you need extra qualifications which would not be necessary,
but since we don’t have any containers in Elm with names like

ContainerWhereYouCanLookUpStuffBasedOnKeyThingy
the small number of extra characters improves readability with minimal wear-and-tear

on your keyboard.

4. To be or not to be in the Basement

Einstein used so-called thought-experiments, in which he imagined an experiment to eval-
uate the consequences of a theory. His elevator experiment led to the formulation of rela-
tivity, the most accurate theory we have of gravity.

We’re going to do our own elevator experiment, and from it, develop a theory for change
and a tool for modelling change, called a state diagram. With state diagrams, we can model
changes to physical systems unlucky enough to be connected to our computers and changes
to the graphical user interface through which we interact with our users.

You probably remember learning about states of matter in science class. And if you
don’t, just shake your head until the generated heat melts those frozen memories. The
states of matter look like

where each of the bubbles is a state, and the arrows are called phase transitions.
In general, when we see a diagram like this in computer science, we call it a graph, the

bubbles nodes, and the lines edges. If the edges have arrows for direction, it’s a directed
graph. Graphs are used to represent networks (from train and airplane networks, to the
internet, predator-prey networks, and friendship networks); flowcharts showing how to do
stuff (for both people and machines); trade flows and data flows; and so much more. One
of the most famous algorithms in computer science is Dijkstra’s shortest-path algorithm. It
operates on a network graph and can be represented by a flowchart graph.

4.1 State Diagrams 49

4.1 State Diagrams to contents

A State Diagram is a directed graph, with nodes we call states, and edges we call transi-
tions. Since keeping track of the state of mechanical devices, like elevators, subway trains,
etc., is rather important, Computer Scientists have developedmore complicated versions of
state diagrams called State Charts, which can include nesting (diagrams within diagrams)
and tools to create, visualize, and verify charts. Other tools can even create multiple pro-
grams to control the devices and react to outside events, so that the diagrams themselves
play the role of the program, and the programmer gets to draw pictures instead of write
code. Let’s look at the example shown in Figure 4.1. Take some time to click on the “call”
buttons outside the elevator and “go to” buttons inside the elevator. The first thing youwill
notice is that pressed buttons light up. Next, you will notice that the highlighted current
state of the car moves through several states each time you click a button. Some states hap-
pen so quickly you may not even see them happen, namely the three “Closed” states. We
need three “Closed” states because although the doors are closed and we cannot tell where
the car is from the outside or the inside of the elevator, the control software does need to
know which floor the elevator is on. Since this state diagram assumes the elevator is work-
ing and is not broken down, it does not allow for a state where the car is between floors and
not moving.�� ��Exercise 1 (Elevator):

Take 5 minutes to write down all of the things which cannot happen with this elevator,
because they are not represented in the state diagram. Now take 5 minutes to randomly
pick two states on the “.motion” diagram and figure out which button click(s) take you
from one state to the next, and write down the list of states you have to pass through.

A gamegraph is very similar to a StateDiagram, because there is always a place (state)we
are in, and for this to change, something has to happen. A single state diagram correspond-
ing to a game would also include any items you are carrying, and in some games whether
certainmonsters are dead or not. This extra informationwould significantly complicate the
state diagram, to the point where nobody could follow it. This is one case when it is better
to use a mixture of a state diagram and parametrized state (like an Int), and to decompose
the state into a product of states. Themost flexible option is a state diagram in which states
and transitions are labelled by a product of other state diagrams and parametrized states.

The only thing not normally allowed in a State Diagram is a bi-directional edge. If the
same transition can go in both directions, two arrows are drawn. While we sometimes do
not draw transitions which return to the same state in order to simplify our diagrams, it is
unusual in state diagrams that each transition only affects one state, as in the game graph.

4.1 State Diagrams 50

Figure 4.1: An elevator simulation with working buttons from https://www.cas.
mcmaster.ca/~anand/Elevator.html. On the left, you can see the doors open and
close and the elevator car go up and down in response to the buttons. On the right, you can
see that each button has a state diagram to record whether it is lit or unlit, and a single
diagram captures the state of the door (open, closed, opening, closing) as well as the move-
ment of the elevator car.

https://www.cas.mcmaster.ca/~anand/Elevator.html
https://www.cas.mcmaster.ca/~anand/Elevator.html

4.2 Implementing in Elm 51

State Diagrams are graphical representations of State Machines. Adding a “paper tape”
(an infinite row of boxes in which the machine can write or read a symbol—a flexible mem-
ory) gives you a Turing Machine. These are the usual ways of defining computation so we
can define and prove properties of programs, such as that some programs will go on forever
without stopping, that one algorithmwill take longer to solve a problem than another, that
the solution produced by an algorithm is correct, and that the running algorithm always
has certain properties (especially safety properties). So this is a pretty powerful tool, and
any theoretical property can always be understood by translating it into a statement about
a suitably complicated adventure game—so there is nothing to be afraid of in theoretical
computer science, except maybe zombies and trap doors!

State is always present if software does anything. When a user understands that state or
at least a simplified version thereof, theywill say your software “makes sense” or “is logical.”
Unless your software is a cryptic logic puzzle, you want your users to say these things, so it
is a good habit to sketch out your state as part of your design process.

4.2 Implementing in Elm to contents

How do we model state and transitions in Elm?

states= data

transitions= functions

Data is every piece of information we have, whether stored in a computer, carved into
stone, written on papyrus, or as transmitted from teacher to pupil in the Gāyatrī metre.

In Elm, we can always recognize data types by the type keyword, but forming lists and
tuples is another way of creating data. Be careful when using tuples that the meaning of
the data is clear. Although tuples are really convenient, you probably need a comment ex-
plaining what the different components of the tuple represent, because you do not have
descriptive names the way you do with constructors.
module StateDiagram where

4.2.1 Example: an Elevator
State captures everything we need to know about what is happening now, so we know what
can happen next, and what actions a user could request.

• doors, open and closed
• be on a floor or in between floors
• doing nothing, or going to a floor
• buttons on floors or in the elevator being lit up

Transitions capture both user requests and actions and processes coming to a completion.
• elevator can arrive at a floor
• doors can open
• doors can close
• people can press buttons

4.2 Implementing in Elm 52

• elevator arrives at a place where the button is lit, and the button goes dark
• door closes if no motion is detected (but we don’t have this level of detail)

Data recording the state of the elevator hasmultiple components. Let’s start small, with
recording the state of one door:
type Door
= Open
| Closed

Two transitions (each function is represented by arrows labelled by function name).
openDoor current =
case current of

Open -> Open -- self-loop, often omitted in diagram
Closed -> Open

closeDoor current =
case current of

Open -> Closed
Closed -> Closed

We can capture these two states and two transitions with a diagram

Open

Closed

openDoor

openDoor

closeDoor

closeDoor

Note again that when things get complicated, we often omit transition edges which come
back to the same state, but in this example, we do draw these self-loops.

Going back to tracking state, we obviously need to knowwhere the elevator is. There are
many ways of doing this, and we came up with different solutions, but decided to go with
recording the state as being at a floor or going to a floor. Amore complicated elevatormight
record the exact position between floors, and if you are going to support smartphones apps
which tell you when your elevator will arrive, you would need to keep track of the speed
of the elevator and the number of people getting on and off. If we only needed to record
where the elevator is, we could use the following states:

4.2 Implementing in Elm 53

type Floor = Basement
| ToBasement
| Ground
| ToGround
| First
| ToFirst

Finally, we need a state for one button:
data Button = LitUp | Dark

The state of the elevator is then a product of these states. If you are not used to the idea
of taking a product of sets, a product is what we get when we form pairs out of elements
from two different sets. For example, on the line we have an x coordinate, but on the plane
we have (x,y) coordinates—a pair of real numbers. We can even give our tuple a name:
type alias State = (Floor, (Button,Button,Button))
It is a type alias and not a type because we are not defining a constructor for it, but
using the built-in tuple constructor. Whenweuse the built-in tuple and record constructors,
the Elm compiler can infer types without us giving them names, but that means that the
resulting error messages and type signatures do not have meaningful names either. Aliases
are there for people.

Buttons being pressed are the simplest user-initiated transitions. Each transition must
have an implementing function of type State -> State:
callToBasement : State -> State
callToGround : State -> State
callToFirst : State -> State
arriveAtGround : State -> State
arriveAtBasement : State -> State
arriveAtFirst : State -> State

Some state transitions are initiated by the user, others by external events. In this case,
the user can call an elevator by pressing a button. Elevators do not have many external
events, but there are probably some elevators out therewhich detect earthquakes and come
to a stop. Let’s look at one:
callToGround state =
case state of

(Ground, (bb,gb,fb)) -> (Ground, (bb ,Dark ,fb))
(floor, (bb,gb,fb)) -> (floor, (bb ,LitUp,fb))

In this case, wewill light up the ground-floor buttonswhen called to the ground floor, except
whenwe are already there! We leave it as a homework problem to write the other functions.

There are also environment-initiated state transitions. When the elevator gets to the
ground, thenweneed to change theFloor state and also the buttons for ground. Otherwise,
we cannot get this transition, but we have to handle all the cases to avoid an error, so we
will return the same state.

4.2 Implementing in Elm 54

arriveAtGround state =
case state of

(ToGround, (bb,gb,fb)) -> (Ground, (bb ,Dark ,fb))
otherwise -> otherwise

Notice that we can use the name of the variable being bound to tell other programmers that
this is theotherwise case! We leave it as a homeworkproblem towrite thearriveAtBasement
and arriveAtFirst functions. In a real system, wewould want to check for getting illegal
transitions and go into an error state.

Our best hope of getting all of these cases right is to startwith a state diagram, or in this
case, we can simplify things by drawing separate diagrams for the position of the elevator:

First

toBasementBasement

Ground toGround

toFirst

callToBasement

callToBasement

callToGround

callTo
Groun

d

callToF
irst

call
ToF

irst

arriveBasement

arriveGround

arriveFirst

error

arriveFirst

arr
ive
Firs

t

and the lighting of the buttons:

LitUp

Dark

callToBasement

anything else

arriveAtBasement

anything else

LitUp

Dark

callToGround

anything else

arriveAtGround

anything else

LitUp

Dark

callToGround

anything else

arriveAtGround

anything else

Hey! Why is the state of the door not integrated into the other state? People are going
to get pretty upset when they find out the door doesn’t open! To do this we would need to
extend the state, by adding the door state to the tuple, or creating a new set of constructors.
This is left as a homework problem.

In the linked example, we couldn’t resist adding animations. This does make things
more complicated, and we’ll share the code now1, but we suggest you read on to Section 4.6
where we discuss the use of state for simulation.

1elevator: https://cs1xd3.online/ShowModulePublish?modulePublishId=59a439a5-a229-4945-8916-b85068511e60

https://cs1xd3.online/ShowModulePublish?modulePublishId=59a439a5-a229-4945-8916-b85068511e60

4.3 The StateDiagrams Module 55

4.3 The StateDiagrams Module to contents

Let’s return to basic science again, and the question that probably bugged you the most:
who drew that masterpiece of a diagram? Elm, of course! And for the right price, you can
draw your own neat diagrams, all you need is our StateDiagrams module which you im-
port2,
import StateDiagrams exposing (..)
then define a type with your favourite states,
type States = Solid | Liquid | Gas
define the transitions via functions (which in this case we define to leave all states alone,
other than the ones they change),
melt x = case x of

Solid -> Liquid
other -> other

freeze x = case x of
Liquid -> Solid
other -> other

sublimate x = case x of
Solid -> Gas
other -> other

deposit x = case x of
Gas -> Solid
other -> other

condense x = case x of
Gas -> Liquid
other -> other

vaporize x = case x of
Liquid -> Gas
other -> other

and use the viewStateDiagram function to draw it3:
myShapes model =
[ProfAnand.StateDiagrams.viewStateDiagram

stateToString
statePositions
transitionPositions
-- highlight 1 state with Just or none with Nothing
(Just Solid)
-- highlight 1 transition with Just or none with Nothing
(Just (Liquid,"vaporize"))

|> scale 0.5
]
2StateDiagrams: https://stabl.rocks/ShowModulePublish?modulePublishId=fef35223-bbcf-4a24-9cb3-849675ff36d5
3highlighted SD: https://stabl.rocks/ShowModulePublish?modulePublishId=a48130b8-bbf0-4681-801f-69e88b3526d5

https://stabl.rocks/ShowModulePublish?modulePublishId=fef35223-bbcf-4a24-9cb3-849675ff36d5
https://stabl.rocks/ShowModulePublish?modulePublishId=a48130b8-bbf0-4681-801f-69e88b3526d5

4.4 SD Draw 56

This is the hard part, because in addition to a list of the states you want to be drawn, you
need to figure out Cartesian coordinates to pin them to, and in addition to the transitions,
you need to decide fromwhich initial states to draw them and where to pin the labels. Note
that while the states are data types, and Elm just knows how to show them as strings of
characters, transitions are functions which Elm cannot show, so we need to provide a string
to display.

4.4 SD Draw to contents

Since the dawn of time, programmers have had to shuffle state diagrams around in their
heads, occasionally etching them on towide sticks or scratching them onto the beach at low
tide. The point is that they had to keep track of the states in their code, and if they were
using a language before the invention of enumerations, they had to maintain a consistent
numbering of their states, because their compiler only understood primitive types.

But these are modern times, and we have powerful computers, so why not get them to
manage the busy work of mapping the state diagram to the code? Actually, we can get them
to do a lot more if we adopt Model-Driven Engineering4 (MDE) and Model-Driven Develop-
ment (MDD):

Model-Driven Engineering (MDE) is the practice of raising models to first-class
artefacts of the software engineering process, using such models to analyse,
simulate, and reason about properties of the system under development, and
eventually, often auto-generate (a part of) its implementation.

There are different points of view on this, depending onwhether you are a user, a developer,
a manager, or other stakeholder. Also, not everyone is consistent with how they use these
words. In this book, we will use these definitions:
MDD is for developers who don’t type that fast, and want tools to take their ideas and au-

tomate a lot of the busy work involved in typing out the implementation.
MDE is for managers who want to know when a project will be “done” and have gone bald

pulling out their hair, waiting for bugs to be found; they want assurances that if built
to spec, the software will work.

One of the things most software developers have to think about is the perspectives of
different stakeholders, something you will learn more about in Part III, Design Thinking.
But while it is fine to examine other people’s suspect motives, it is a bit unusual to look at
our own. Take the chance!

Especially when applied to web development, these ideas are sometimes called “low
code/no code” development. To some, this means having less code to write, ideally the
repetitive bits. For others, it means saving a lot of money by not hiring any programmers.

Oops! I forgot to say what a “model” is in this context. Again, when you scratch the
surface, you find a lot of different things called “the model”. This is because of different
needs and perspectives. Most models include state diagrams. Some developers need dif-
ferential equations in their models, because they are monitoring or controlling physical

4MDE: https://codebots.com/app-development/what-is-model-driven-engineering

https://codebots.com/app-development/what-is-model-driven-engineering

4.4 SD Draw 57

devices or processes. Some developers need business processes or organizational charts.
Many of these models are contained in Universal Modeling Language5 (UML), but despite
the name, they don’t cover every useful model. (Although they are worth learning, never-
theless.) For example, UML does not include Petri Nets, which is weird, since Petri Nets6 can
model anything. Certainly, they are very effective at describing concurrency properties, i.e.,
communicating processes running at the same time (concurrently).

At their most ambitious, models capture the essential properties a system requires, so
that it is possible to prove that implementing the system will deliver the required results.
Although these requirements may barely scratch the surface of what a user-facing program
needs to do—delight the customer—it is great if the program can never crash, or be hacked
into sending our bank balance to an account in the British Virgin Islands. In fact, it is pos-
sible to prove safety properties of control systems for complex physical devices, and other
systems—if the mathematical modeling is good enough.

If it is not possible to prove properties of our more complex programs, it may still be
possible to simulate them in an abstract way, ideally, in a fraction of the time it would take
to implement and test the program. The resulting transcripts can be checked for unwanted
behaviour. In the case of expert users, who happen to be experts in something other than
computer science, we can even format the transcripts as stories which are easy for them to
read.

Maybe that sounds more idealistic to you than ambitious! You plan to get paid for writ-
ing programs, and if they don’t work, that’s the client’s fault for not knowing what they
want. You just want a tool that writes code for you after a bit of dragging and dropping, so
you can get paid, and move on to the next project. Whether you are an idealist or someone
who just wants to pay the bills, state diagrams should be part of the model.

Let’s look at a really simple concrete example: writing an adventure game. Really simple
will mean for us that we only need to track the whereabouts of a single player. No knapsack,
no health points. We can model this as a state diagram. Let’s do it! You can create your
own game map, if you don’t like ours. Just open https://www.cas.mcmaster.ca/
~anand/SD.html. You will see an empty state diagram:

5uml: https://en.wikipedia.org/wiki/UnifiedModelingLanguage
6PetriNet: https://en.wikipedia.org/wiki/Petri_net

https://www.cas.mcmaster.ca/~anand/SD.html
https://www.cas.mcmaster.ca/~anand/SD.html
https://en.wikipedia.org/wiki/Petri_net

4.4 SD Draw 58

You don’t have any states, so click and drag the green S+, let go, and where your mouse was
you will see

Use the delete key to get rid of State1 and type whatever you want the starting state of
the game to be:

Now press return:

4.4 SD Draw 59

You can continue adding states by dragging the S+ out, and if you make a mistake and drag
toomany, you can drag them into the trash. If you change yourmind about where to put the
states on the map, you can drag them with your mouse. You can also drag the background
to pan the whole diagram, or if you have good eyes, you can zoom out with the magnifying
glass buttons on the side.

Once you have enough states, you can start connecting them with transitions. There
are two ways to do this. You can hold the shift key and drag from one state to another.
Alternatively, when a state is selected, you can click on the little arrow-containing circle
and drag it to another state:

To edit the transition names, click, delete, and type. When you are finished, press return
or enter or click on the background. If you try to finish editing when the name is empty,
your screen will go red and tell you names cannot be empty (or include spaces, start with a
number or underscore, etc.). Just say “Sorry computer!” and click on the background to get
a second chance at creating a valid name. Since transitions are implemented as functions,
it will allow multiple transition arrows to have the same name, as long as they start from
different states. If yourmaphas a transition namewithout arrows originating in every state,
the transition function will be generated with patterns corresponding to self-loops which
return the same state.

Naming transitions is usually harder than naming states. If you are making an adven-
ture game set outside, with paths and roads, you could name them after the path and the
direction, such as McMasterWayN or WestobyLaneE.

4.4 SD Draw 60

Now that you’ve created an example, can we use it to “analyse, simulate, and reason
about properties of the system under development?” Let’s look at my map first:

Some analysis is probably already finished! Your brainwill immediately look at this diagram
and notice that all the places are connected. But are they all reachable? For that, you need
to look at the direction of the arrows, which start wide and end narrow. You can try to look
at this state by state, and you will notice that Meadow only has arrows leading away, so it
is not reachable. You can quickly fix this. But it is still possible to have unreachable states
even if all states have entering transition arrows. Try to draw one now!

If you are stuck, what about if you added a self-transition to Meadow? It could be
called PickFlowers. Well, that isn’t a fix! In general, your map will break down into self-
reachable components, and each of those components needs an inward transition.

This brings us naturally to simulation! You could print out your map and base a board
game on it, with players moving around the map after rolling a dice or answering a trivia
question. Technically, this is only a state diagram if there is one player, otherwise it is a
product of state diagrams, one for each player. This is a physical simulation, and it has
the advantage that you can see more than just the current state, you can see how the fu-
ture could play out. Obviously, this could be automated, and we could even enumerate all
possible paths through the state diagram. This is how we can check safety properties for
software-controlled devices before we start implementing the code.

Coming back to reachability. Can you invent an efficient algorithm for determining
which states are reachable? Hint, try using sets. In case of emergency, read the footnote7.

7Build the set of reachable states. Start with the start state (coloured green for us, but often drawn with
a solid dot) and at each iteration of the algorithm, add states which are not in the reachable state, but are
reachable from one of the reachable states. When you cannot add more states, you are finished.

4.4 SD Draw 61

I hope this gives you a feeling for how we can understand our designs better with the
right models, and why the state diagram is my favourite model. But we still need to code
all of this, right? Wrong!!! Try clicking on the cloud button, near the top-left corner:

You will see code to implement the diagram you’ve just drawn.
We’ll go through the code generated from the above diagram, section by section. All

the code produced by SD Draw is there, but we’ve changed the order to make explaining it
easier. As usual, what we see is determined by the function
myShapes model =
First up is a big case expression. At their most basic, case expressions are equivalent
to a sequence of if-then-else expressions, testing the result of the condition against a
sequence of values.

case model.state of
The case expression matches model.state to different patterns. You have already used
model.time to create animations. We updated the time for you, so you could start animat-
ing right away. In order to keep track of where we are in the game, however, we needed to
add another field to the model record. What’s a record? It’s like a bento box with multiple
tasty values, called fields, each of which is labelled by a field name. Field names are easy to
confuse with variables, but they are different.

Back to the patterns. For simple state diagrams, each pattern will match one state, and
for a game, states are the same as places.

Welcome ->
The syntax Welcome -> something is equivalent to

if model.state == Welcome then
something

else ...
In this case, we see that we display a “Welcome” sign:

[text "Welcome"
|> centered
|> filled black

under which we display buttons for BranchPath and WestobyTrailS.
, group

[

4.4 SD Draw 62

roundedRect 40 20 5
|> filled green

, text "BirchPath"
|> centered
|> size 8
|> filled black
|> move(0, -3)

]
|> move (-25, -25)

We know they are buttons, because we attach a notifyTap which means that the Elm sys-
tem will send us a message if anyone taps (or clicks) on this button shape:

|> notifyTap BirchPath
, group

[
roundedRect 40 20 5

|> filled green
, text "WestobyTrailS"

|> centered
|> size 8
|> filled black
|> move(0, -3)

]
|> move (25, -25)
|> notifyTap WestobyTrailS

]
All of the code for drawing the buttons is here so that you can customize the button, to
make it look like a signpost, or even a flashing red button in a state with an emergency eject
transition.

Every state gets its own pattern...
Fen ->

[text "Fen"
|> centered
|> filled black

but they don’t all get the same number of buttons. The number of buttons must match the
number of transition arrows leaving that state. Otherwise, there would be no way to leave.

, group
[

roundedRect 40 20 5
|> filled green

, text "WestobyTrailS"
|> centered
|> size 8
|> filled black
|> move(0, -3)

4.4 SD Draw 63

]
|> move (0, -25)
|> notifyTap WestobyTrailS

]
BirchForest ->

[text "BirchForest"
|> centered
|> filled black

]
Meadow ->

[text "Meadow"
|> centered
|> filled black

, group
[

roundedRect 40 20 5
|> filled green

, text "FenRoadE"
|> centered
|> size 8
|> filled black
|> move(0, -3)

]
|> move (-50, -25)
|> notifyTap FenRoadE

, group
[

roundedRect 40 20 5
|> filled green

, text "FenRoadW"
|> centered
|> size 8
|> filled black
|> move(0, -3)

]
|> move (0, -25)
|> notifyTap FenRoadW

, group
[

roundedRect 40 20 5
|> filled green

, text "PickFlowers"
|> centered
|> size 8
|> filled black
|> move(0, -3)

4.4 SD Draw 64

]
|> move (50, -25)
|> notifyTap PickFlowers

]
In case you were wondering how the Elm compiler knows that Welcome is a state and

BirchPath is a transition, no, it is not through mind reading! We define types for them.
The first type in the generated code enumerates all the messages we can receive. By con-
vention, we call it Msg, short for “message”, but we could call it anything, as long as we are
consistent. The Msg type has a message for each of the transition names, but it also has a
Tick message. This again could be called anything, but we use the name Tick to suggest
that it happens regularly—like clockwork! Thismessage has always been part of your anima-
tions, but was in hidden code. The vertical bar | can be pronounced as “or“ and separates
different possibilities for values of this type.
type Msg = Tick Float GetKeyState

| BirchPath
| FenRoadE
| FenRoadW
| GravelRoad
| WestobyTrailS
| PickFlowers

Every Elm program needs a message type, unless it is a picture without interaction or ani-
mation. Every program with non-trivial interaction also should have a state type, but it is
not technically a requirement. There are other ways to record the state of a program in the
Model, such as encoding the state as a number, but this is frowned upon now, since it is
confusing and makes mistakes too easy. Each line of the State type represents a different
state of the program. Being a simple adventure game, each state is a different place.
type State = Welcome

| Fen
| BirchForest
| Meadow

So far, we have seen that defining types in this way produces very readable code for
states and transitions. These are often called user-defined types, thinking of the program-
mer as the user of the programming language. We like to call them custom types, because
we create them specially for a particular program or application.

Our gamewould be pretty boring if you always stayed in the same state, since this would
mean staring at the same screen forever! For something to happen in the game, we need
to be able to change states. All of this is handled by one update function which is called
every time a message comes in. It takes that message (msg) and the current state of the
application (model), and calculates a new state.
update msg model =

case msg of
In this case expression, we see our first example of a non-simple pattern. The Tick mes-
sage has a variable attached to it (t). It also has a piece of data we ignore, indicated by the

4.4 SD Draw 65

_. We need that _ there, even if we do not use the data, so that the pattern will match the
message.

Tick t _ ->
{ model | time = t }

Hmm, that last line looks different, and it is. This notation mimics set notation, but it is
not set notation. It is record update notation, and not surprisingly, we mostly use it in the
update function. We could get by without it. We could have typed

{ time=t, state=model.state }
instead of { model | time=t }. In the first version, we are defining a record, which is a
collection of data organized by name (time and state). In the second case, we are saying
copy all of the data from the recordmodel, except for the bit namedtime, whichwe replace
with the value t. There is not much of a difference here, but when we build large records, it
does save a lot of typing. Evenmore importantly, we don’t have to say exactly what is in our
records. We only name the fields that we change. This is really convenient when we need
to add a new field later on, and the update syntax keeps working, but the name-everything
syntax breaks, because now it is missing the new field.

So now you know about records, but why was that code there when there is no Tick
transition in our state diagram? Well, we automatically add the Tick so that time stays
up-to-date in the model record, just in case you want to create an animation.

Now the rest of the patterns. In each case, after matching the message pattern, such as
BirchPath, we need to check if that path leads away from the current state.

BirchPath ->
case model.state of

Here we know that the user clicked on BirchPath. Since BirchPath only leads away from
Welcome, we test for that, and update the state if we find it. Looking back at the state
diagram, we see that it leads to BirchForest.

Welcome ->
{ model | state = BirchForest }

But what if we are not in Welcome? Well, first of all, this is impossible, the way myShapes
was generated, but since someone may add buttons to the code for myShapes, we need to
handle all cases. Since there are no other BirchPaths on the diagram, all other cases do
not change the state, so we return the model as it currently is. To do this, we use a variable
in the pattern otherwisewhichmatches anything. We didn’t need to call it otherwise, but
this helps make the code more readable.

otherwise ->
model

FenRoadE ->
case model.state of

Meadow ->
{ model | state = BirchForest }

4.4 SD Draw 66

otherwise ->
model

FenRoadW ->
case model.state of

Meadow ->
{ model | state = Fen }

otherwise ->
model

GravelRoad ->
case model.state of

otherwise ->
model

Most of the cases in this case expression handlemessages forwhich there is only one button.
TheGravelRoad andWestobyTrailSmessages are the exceptions. Since theGravelRoad
transition was deleted during editing of the diagram, it doesn’t have any buttons to gener-
ate it, sowe only have anotherwise pattern. We should really eliminate thismessage from
the type, and this pattern from the case expression. On the other hand, WestobyTrailS
appears twice in the diagram, so the inner case expression belowmatches for bothWelcome
and Fen. If you trace this path on the diagram, you see it goes right through the Fen with
two clicks of the buttons labelled WestobyTrailS. Can you follow how this works in your
code?

WestobyTrailS ->
case model.state of

Welcome ->
{ model | state = Fen }

Fen ->
{ model | state = BirchForest }

otherwise ->
model

PickFlowers ->
case model.state of

Meadow ->
{ model | state = Meadow }

otherwise ->
model

At the bottom of the generated code, we define Model, the type for the model variable:
type alias Model =

{ time : Float
, state : State
}

4.5 Model-View-Update with TEA 67

It is a record with two fields. If you never make mistakes, you don’t need it in your code,
because Elm can figure it out from how you use it. This is called type inference. As an
experiment, you could comment it out before compiling, and you will find an error on the
line below, which we need to comment out as well, and then everything will compile. But if
you make an error involving the Model type, the compiler will not be able to refer to it by
name.

Note that Model is not a type, but rather a type alias. This is because the notation
for a record defines the type, unlike the Msg and State types above, so all we are doing is
giving the type a nickname—an alias!
init : Model
init = { time = 0

, state = Welcome
}

4.5 Model-View-Update with TEA to contents

We now have the basic ingredients for understanding The Elm Architecture, which is the
preferred way of building Elm applications. There is no Interpol department assigned to
enforce this, but if you are going to read other people’s code, or want to share your own
apps and components, it is good to stick to conventions. In fact, the Elm Architecture is
really only making explicit the only sensible way to write user interfaces in Elm.

Why now? Because we needed the idea of state. The starting point for designing a UI
is to figure out what state the app must “remember” and to which actions the app must
respond. For really simple apps, the responses are uniform. Imagine, the Beep App has one
action, click its single button, and it responds by beeping. But most apps respond differ-
ently to external actions depending on what state they are in. For example, asking to close
a document when there are unsaved changes will—I hope—prompt for saving before losing
changes. Making separate tables of state and user actions is only part of the story, better to
use a state diagram to capture all allowed sequences of user interaction. For even moder-
ately interesting applications, this is not enough. Any app getting images from the internet,
posting high scores to a leader board, or including animations will also need to respond to
network or internally generated events for things like: completion of a download, passage
of time, or loss of network connectivity.

Before we explain the Elm Architecture, why does software have architecture? What is
the relationship to design? Both words are borrowed from art and building, with design
originating in the marking of the outlines of, e.g., a building, and architecture coming from
the Greek word for builder. In software, architecture means either a framework of rules to
be used in designing software, or it means the highest-level part of the design. For a begin-
ner, the existence of two words for this process should be evidence that software design is
not easy, but is important8.

8More information, and a wealth of references is available at https://en.wikipedia.org/wiki/
Software_architecture.

https://en.wikipedia.org/wiki/Software_architecture
https://en.wikipedia.org/wiki/Software_architecture

4.5 Model-View-Update with TEA 68

According toWikipedia, architectures are high-level designs for large systems. The Elm
Architecture or model-view-update is really an architectural pattern. It is related to an
older pattern, model-view-controller9 which was created to organize user interaction in
Smalltalk-7910. This was way before people started using the word software architecture,
back when object-oriented programming could legitimately be called modern.

But we don’t need Wikipedia to tell us that “architecture” is meant to sound important,
implying that we are solving some big problems when we talk about it. What is the big
problem that model-view-update solves? In addition to the already formidable task of or-
ganizing UI code so it can be understood by mere mortals, it also solves a puzzle: in a pure
language (without side effects, in which the same input always gives the same output) how
can an app do different things? Now you either see this as a fundamental problem, or a
non-issue. It all depends on what you think are the functions and what are the inputs. If
you think the app should do the same thing only if the user types the same input, then no
problem here, move along.

If you have used a UI library before, however, even as simple as
scanf("Type sutff!",&string_var);

in C, you see the same input ("Type stuff!") producing different outputs. So it is a big
problem to do this in a pure language. This is where Elm takes a page out of the mathe-
maticians’ book! Since we cannot write interactive programs within the confines of a pure
language, we create a bigger universe inside of which the pure language lives. That bigger
universe is the Elm run-time system:

The functions which you have been writing, called by myShapes, are all part of the View
box. The update function generated by SD Draw is the Update box. Those can both be
pure functions, because they are part of a bigger universe, with the green Elm Runtime box
mediating11 between the outside world (including user input, network access, etc.) and

9mvc: https://en.wikipedia.org/wiki/Model–view–controller
10See https://en.wikipedia.org/wiki/Smalltalk for a breif history of this influential lan-

guage, or even better, download https://pharo.org and test out a modern implementation
11See an animation as part of the slides: http://www.cas.mcmaster.ca/~anand/

TFPIE2019Slides.html

https://en.wikipedia.org/wiki/Model–view–controller
https://en.wikipedia.org/wiki/Smalltalk
https://pharo.org
http://www.cas.mcmaster.ca/~anand/TFPIE2019Slides.html
http://www.cas.mcmaster.ca/~anand/TFPIE2019Slides.html

4.6 Simulation 69

your Elm program. The Elm Runtime cannot be pure, but that’s ok, because we don’t have
to write it or debug it. Evan Czaplicki12 handles that for us!

A couple of things to note about this architecture. First, it is not the only way to ac-
commodate interaction with a pure functional language. Clean uses uniqueness types13,
which tells the compiler to enforce that values can only be used by one thread of execution.
Haskell borrows a concept from logic called monads14.

Second, the apparent inefficiency of this model can be overcome with cleverness. Call-
ing the view function every time something changes in the runtime’s model, and recalcu-
lating the display even though everything visible to the user could be the same seems like
a lot of wasted effort. For a 1980s game programmer—programming in machine code and
counting how many times a pixel gets overwritten—it is! But very few developers today
would be capable of writing that code. The reality is that everything about web program-
ming is pretty inefficient, which is accepted because computers are so much faster—until
they aren’t fast enough! If you are writing complex code, or you just hate inefficiency, the
Elm rendering pipeline is actually able to achieve best-in-class efficiency15 even without
the programmer doing optimization on the source code. Part of this is a better implemen-
tation of something called a virtual dom, whichmeans keeping track of what changedwhen
you recalculated, and only redrawing those parts. In theory, any language could do these
things, but when all functions are pure, we know that once we’ve seen these inputs before,
we already know what the outputs will be. If there are side effects, you cannot know this
without recalculating.

4.6 Simulation to contents

We have now learned about state, its representation as state diagrams, and how inter-
action in Elm is organized using the model-view-update pattern. This is also the principle
behind how we simulate physical states with a computer, whether to predict the weather,
or create fun game physics. We can even simulate phenomena which we cannot explain
in terms of basic physics, but whose observed behaviour follows mathematical models, like
the traffic on a highway, or ghosting on a social network.

Let’s start with something really simple—a rolling ball16:
myShapes model =
[

circle 5 |> filled red
12evancz: https://github.com/evancz
13uniqueness: https://en.wikipedia.org/wiki/Uniqueness_type
14monads: http://blog.sigfpe.com/2006/08/you-could-have-invented-monads-and.

html
15blazing: https://elm-lang.org/news/blazing-fast-html-round-two
16rolling: https://cs1xd3.online/ShowModulePublish?modulePublishId=ab38d344-5fae-466f-98fe-db08314d0818

https://github.com/evancz
https://en.wikipedia.org/wiki/Uniqueness_type
http://blog.sigfpe.com/2006/08/you-could-have-invented-monads-and.html
http://blog.sigfpe.com/2006/08/you-could-have-invented-monads-and.html
https://elm-lang.org/news/blazing-fast-html-round-two
https://cs1xd3.online/ShowModulePublish?modulePublishId=ab38d344-5fae-466f-98fe-db08314d0818

4.6 Simulation 70

|> move (model.x, model.y)
]

This is our view function. It takes the model as an input, and we see that we have added
two state variables x and y, and use them as coordinates for our ball. If we define a type of
our model, we must add them to it:
type alias Model = { time : Float

, x : Float
, y : Float
}

We didn’t need to define a state type, because this system we are simulating doesn’t have
discrete states, it has continuous states—the x and y positions of the ball on our imaginary
table—and Floats were meant for modelling them.

Before we can see how this state updates, we need to define our transitions. But there
is only one, the Tick message we will get every time the browser is ready to redraw the
screen—hopefully 60 frames per second (fps) to create a smooth animation.
type Msg = Tick Float GetKeyState
In a real-time simulation, we need to knowhowmuch time has elapsed, so that we can apply
rules for state changes. In the case of a ball rolling on a table, we can assume the table is
level and flat, so no applied forces will be acting on the ball. Therefore, the velocity will
remain constant, and the position will change proportional to the elapsed time.

∆x = vx∆t (4.1)
∆y = vy∆t (4.2)

The change in x (respectively y) equals the change in time multiplied by the component
of the velocity along the x axis (respectively y axis). We do this calculation, and apply the
result every time we get a Tick:
update msg model =
case msg of

Tick t _ ->
let

deltaT = t - model.time
in

{ model | time = t
, x = model.x + vx * deltaT
, y = model.y + vy * deltaT
}

That is the heart of the simulation, but for this first example, let’s go over thewholemodule.
We need to set the initial state, which includes the elapsed time, and the x and y positions:
init = { time = 0

, x = 0
, y = 0
}

4.6 Simulation 71

We also used variables for the velocity components, so we need to define them:
vx = 10
vy = 0
Go ahead and change them or the initial state, and see how the simulation changes!

We also define the main function, using gameApp in which you can change the title
of your app, to “Really Exciting Simulation!” or another title with an appropriate level of
enthusiasm.
main = gameApp Tick { model = init

, view = view
, update = update
, title = "Game Slot"
}

And we see that the view is not just myShapes, but also includes the size of the collage
on which we will draw:
view model = collage 192 128 (myShapes model)

At this point, you can confidently predict that if you roll a ball on a table, it will roll off
the end. What else can we do with a couple billion transistors? Let’s add forces acting on
the ball.

Force causes acceleration, which is the change in acceleration:

∆x = vx∆t

∆y = vy∆t

∆vx = ax∆t

∆vy = ay∆t

(4.3)

Since now the velocity can change, we have to take the definitions for velocity away, and
add velocity variables to our model.
type alias Model = { time : Float

, x : Float
, y : Float
, vx : Float
, vy : Float
}

and add velocity updates to our update function
{ model | time = t

, x = model.x + model.vx * deltaT
, y = model.y + model.vy * deltaT
, vx = model.vx + ax * deltaT
, vy = model.vy + ay * deltaT
}

4.6 Simulation 72

Does it look17 right? Now the problem isn’t physics somuch as plot. Once the ball exits stage
right, there is no action—other than your audience rising up and demanding their money
back. How about we add a wall for the ball to bounce into?

What is the physics of that? Youprobably never learned this, because it is actually pretty
complicated. When the ball hits the wall, both the ball and the wall change their shape. The
energy of motion is converted into stored energy in the bonds between the atoms within
the ball and within the wall.

We call the collision perfectly elastic if all of the energy is converted in this way, and then it
converts right back again. Tomake our lives easier, we can assume that the ball is rubber and
the wall is steel, so the wall isn’t going to do much deforming. The deformation of the ball
is now another state variable we have to keep track of. Since our ball is moving along the x
axis, we can start out modelling only the x squishiness. Fortunately, rubber balls, like many
materials, exert a force proportional to the amount of squish. Meaning that the acceleration
experienced because the ball pushes into the wall and the wall pushes back on the ball, will
follow18

amball = Fball|wall = kspringinessdsquish (4.4)

a lawwhich says that the acceleration, a, is equal to the product of a constant and the differ-
ence, d, between the normal shape of the ball and the squished shape. How you deal with
the constant depends on your programming purpose. If you want to find out how buildings
wobble (and hopefully not fall down) in an earthquake or strong wind, then you need to
buy a bunch of scientific equipment and do experiments to figure out realistic values for
the constants for the materials in your buildings. If you want to make a game, you try dif-
ferent constants and ask people which versions look “realistic,” or just fun. Let’s see how
translating this squishiness into code will work. Since we are in a 2D universe, it is easy to
maintain the same ball area, as we squish along one axis, we squash along the other:

, circle 5 |> filled red
|> scaleX model.squishX
|> scaleY (1/model.squishX)

whichwe can accomplish by adding the current squish to themodel. We can check themath
on area conservation. Since area is height times width, then

Aoriginal×σx× (1/σx) = Aoriginal (4.5)

where we use Greek “s” (σ) for squish/scaling.

17acceleration: https://cs1xd3.online/ShowModulePublish?modulePublishId=8f5dc790-2c9f-4850-9cf7-65dcd40ebbec
18Hooke’s law: https://en.wikipedia.org/wiki/Hooke's_law

https://cs1xd3.online/ShowModulePublish?modulePublishId=8f5dc790-2c9f-4850-9cf7-65dcd40ebbec
https://en.wikipedia.org/wiki/Hooke's_law

4.6 Simulation 73

Next, we’ll put the ball in a box:
rect 190 126 |> outlined (solid 2) black

which has its right boundary at 94 = (190− 2)/2, since the boundary is 2 units wide, half
inside the rectangle, but on both sides, so we subtract 2, then divide by 2 to find the distance
from (0,0) to the boundary. We update the update function to add in this bounce when
the ball is within its radius of the boundary:

if model.x + rBall > wallX then
... we calculate the amount by which the ball has deformed, and use the constant kSquish
to convert that deformation into acceleration

let
squish = wallX - rBall - model.x
totalAx = ax + kSquish * squish

in
{ model | ...

and we use the adjusted acceleration to adjust the velocity, as well as storing the the value
we need for scaleX and scaleY in the model, so that all of the squish calculations are in
the same place.

, vx = model.vx + totalAx * deltaT
, ...
, squishX = 0.2*(5+squish)
}

else
{ model | ... }

If I were better at timing screenshots, I’d post one here, but in this case, it is better for you
to try it yourself19. Now, if you run this demo for a while, you will notice that the bounce
does not just roll the ball back to where it started—it gives it a bit of extra kick each time!
Why does this happen?

Did we not faithfully follow Newton’s laws? Well, not quite. Newton’s laws work at
instants in time. Our time steps may be small enough to fool our eyes, but they are not
instantaneous. There are a few ways we could make them better:

1. We could make shorter steps and get closer to the instantaneous ideal.
2. We could follow in the footsteps of Madhava20 and the Kerala School of mathematics,

and apply calculus to create efficient and accurate polynomial series approximations.
3. We could follow in the footsteps of Lagrange21 and refocus on energy, and ensure that

our solutions have important properties like conservation of energy. And if we keep
walking in this direction, we will arrive at Noether’s Theorem22, which says that for
every conservation law, there is a corresponding symmetry, and vice versa—in this
case, energy.

19bounce: https://cs1xd3.online/ShowModulePublish?modulePublishId=ce050cc3-8903-4076-aada-beee0d82dc8b
20Madhava: https://en.wikipedia.org/wiki/Madhava_of_Sangamagrama
21Lagrange: https://en.wikipedia.org/wiki/Lagrangian_mechanics
22Noether’s Theorem: https://en.wikipedia.org/wiki/Noether%27s_theorem

https://cs1xd3.online/ShowModulePublish?modulePublishId=ce050cc3-8903-4076-aada-beee0d82dc8b
https://en.wikipedia.org/wiki/Madhava_of_Sangamagrama
https://en.wikipedia.org/wiki/Lagrangian_mechanics
https://en.wikipedia.org/wiki/Noether%27s_theorem

4.6 Simulation 74

4. We could “lose” some of the energy by adding “friction” to reduce the velocity:
, vx = 0.95 * (model.vx + totalAx * ←↩

deltaT)
, vy = 0.95 * (model.vy + ay * deltaT)

We’ll go with friction, which we put in quotes, because this is friction for the purpose of
looking “realistic”, not being a realistic simulation.

Althoughwehave a fix, a simple example illustrateswhere the problem comes from, and
how it is inherent to the kind of stepwise approximations we use in simple game physics.
Think about attaching a ball to a string this time and twirling it around your head. Your
YouTube influencer friend’s drone will capture the ball going in a circle, and you notice on
the video later that (1) your makeup guy should have used a comb, (2) that the string is
always tracing the radius of the circle, and (3) that the ball is always moving at right angles
to the radius.

Knowing this helps you draw a diagram23 for the video: You remember that sine and
cosine are defined to be the coordinates on a circle at a particular angle:
let

x = 50 * cos model.time
y = 50 * sin model.time

in
[circle 5 |> filled red
|> move (x, y)

, ...

Having expressed the position as (x,y), it is easy to draw the string usingopenPolygon, and
it is useful to remember that (−y,x) is the point rotated by 90◦ counterclockwise ((y,−x)
would be clockwise). Once you know this, you can draw line figures rotated to match the

23BallOnString: https://cs1xd3.online/ShowModulePublish?modulePublishId=9bff09eb-91d0-41c4-ad12-925bcbee3db9

https://cs1xd3.online/ShowModulePublish?modulePublishId=9bff09eb-91d0-41c4-ad12-925bcbee3db9

4.7 Real-Time Interactive Games 75

angle of (x,y). Just take the coordinates of a point in the unrotated polygon [...,(ui,vi), ...],
and convert to [...,ui× (x,y)+vi× (−y,x), ...]. If you follow the layout in the code example,
you will find it hard to make mistakes.

Ok, having absorbed that pro-tip, do you see the example where applying Newton’s laws
using steps really breaks down? Instead of calculating the position based on sine and cosine,
use the perpendicular rule for the direction of motion, and add in steps:

Tick t _ -> { model | time = t
, x = model.x + stepSize * (-model.y)
, y = model.y + stepSize * model.x
}

Since thedirectionof the step is always pointing outside the circle, youknow the circle along
which the ballmoveswill keep getting bigger. If you try it yourself24, youwon’t immediately
see a problem, but you knowwhat is going to happen, and pretty soon the ball starts floating
off the screen. If you are less patient, increase the stepSize to see how the problem gets
worse with increasing step size.

4.7 Real-Time Interactive Games to contents

Now that we can simulate motion, we can put the user back in the picture. You have
already seen how you can use buttons to modify state, and if you create some nifty flame
animations, you could add states for rockets firing, and replace your red ball with a rocket
ship. But if, instead, you are serious about recreating Asteroids25, you know you need key-
board controls. So we built that into gameApp, and it has been there26 under your nose all
this time, embedded in the Tickmessage

Tick t (_,accelR,accelL)
inside the piece we have always ignored. Both accelR and accelL are coordinate vectors
encoding the direction indicated by the arrow keys (accelR) and the AWSD keys (accelL),
all set up for a two -player game. The vectors even work on diagonals, so any of the values

(−1,1) (0,1) (1,1)
(−1,0) (0,0) (1,0)
(−1,−1) (0,−1) (1,−1)

are possible.
24Ball simulation: https://cs1xd3.online/ShowModulePublish?modulePublishId=cf66af3f-e973-480a-baca-be2a5fa1abd0
25which in 1979 was too computationally demanding to be drawn with bitmapped graphics, so they used

vector graphics in which they traced out the shapes by moving the electron gun at the heart of every Cathode
Ray Tube display https://en.wikipedia.org/wiki/Asteroids_(video_game)

26two ships: https://cs1xd3.online/ShowModulePublish?modulePublishId=735eb418-d43b-4015-8dca-56c746928e03

https://cs1xd3.online/ShowModulePublish?modulePublishId=cf66af3f-e973-480a-baca-be2a5fa1abd0
https://en.wikipedia.org/wiki/Asteroids_(video_game)
https://cs1xd3.online/ShowModulePublish?modulePublishId=735eb418-d43b-4015-8dca-56c746928e03

4.7 Real-Time Interactive Games 76

I know you are thinking “Finally, I can program a real game!” But before you begin, it
is worth pointing out that we had to organize things a bit better in order to accommodate
two ships in our code. Number One, we start using pairs (Float,Float) to represent
Cartesian coordinates and displacement vectors. This roughly cuts in half the number of
fields in our Model:
type alias Model =
{ time : Float
, posL : (Float,Float)
, posR : (Float,Float)
, velL : (Float,Float)
, velR : (Float,Float)
, winner : String
}

and other variables, and keeps data together which belongs together. This is an important
software design principle: “Don’t give bugs places to hide! Reduce lines of code and defini-
tions by grouping data together.”

But this would be only half the job, and in some ways counterproductive, if we didn’t
also make functions to act on these clumps of data together, which we have done with
timeStep (changeX,changeY) (x,y) = (x + s * changeX

, y + s * changeY)
and
isInCircleWithRCentre r (x,y) (u,v) = (x-u)^2 + (y-v)^2 < r^2
This really improves the readability of the update function:

...
, posL = timeStep model.velL model.posL
, posR = timeStep model.velR model.posR
, velL = timeStep accelL model.velL |> friction
, velR = timeStep accelR model.velR |> friction
...

4.8 Clickable Ruler 77

Ok, now you can go make a game! And if you prefer a ball game, start with the two-
paddles example27.

4.8 Clickable Ruler to contents

We have seen how notifyTap can be used to send messages whenever something is
tapped (or clicked) in your interface. But what if your stickers app needs to know where
you tapped, so you know where to put the stickers? Well, there are a few other notify*
functions. Use the </> button, or link28 to open the GraphicSVG documentation.

Notice the search box on the right-hand side? If you type in “notify” there, it will show you
16 functions. The *Tap* functions are safe for both touch and mouse devices. The one we
want now is
notifyTapAt : ((Float, Float) -> userMsg) -> Shape userMsg -> ←↩

Shape userMsg
Just like notifyTap, this is a Shape transformer, because its last input is Shape userMsg
and its output is Shape userMsg, so we can apply it to a shape—in this case the ruler:

27TwoPaddles: https://cs1xd3.online/ShowModulePublish?modulePublishId=1b4ccaa2-6641-4404-8105-2d5fbc785ab3
28graphicSVG: https://package.elm-lang.org/packages/MacCASOutreach/graphicsvg/latest/

https://cs1xd3.online/ShowModulePublish?modulePublishId=1b4ccaa2-6641-4404-8105-2d5fbc785ab3
https://package.elm-lang.org/packages/MacCASOutreach/graphicsvg/latest/

4.9 Mouse Over 78

just like we did before
myShapes model = [text (String.fromFloat model.size

|> String.left 5)
|> filled black

, ruler
|> notifyTapAt ClickRuler

]
But unlike notifyTap, its first input is a function (Float, Float)-> userMsg. Re-
member, we know it is a function because it is in ()s. If ClickRuler were a simple con-
structor like we used for previous messages, we would get an error, but it is not!
type Msg = Tick Float GetKeyState

| ClickRuler (Float,Float)
It is a constructor with data—(Float,Float)—attached. Any constructor with data at-
tached can also be used as a function, which takes that data as input, and returns a value of
the constructed type, which is Msg in this case.

It is true that using types in this way can create some confusing error messages, but
they pale in comparison to the weird run-time errors you get in untyped languages when
you make similar errors.

The final piece of the puzzle for capturing click/tap position is, well, capturing the po-
sition, which happens in the update function.

ClickRuler (x,y) -> { model | size = x /180 * 31 + 15.5}
In this case, we do a little computation, based on knowing where the mouse is within the
Collage.

If you were always jealous of kids with name-brand rulers, you can take our code29 and
create your own.

4.9 Mouse Over to contents

For information-rich apps, mousing over to reveal additional information or change the
context can be very helpful. It is also useful for simple tooltips. But be aware that touch
users will not be able to access this info.

Themost straightforward is offering a tooltip, but you can imaginemousing over a path
on a map to give you information on travel time and energy use, or mousing over a com-
ponent in an electrical diagram to highlight all of the directly connected components, or
even using a heatmap to indicate distance to the current component by reducing colour
saturation, or mousing over a waterway to highlight upstream and downstream sections of
its watershed in different colours.

29ruler: https://cs1xd3.online/ShowModulePublish?modulePublishId=498e9c1e-1e3a-4161-b14c-45a91c36a142

https://cs1xd3.online/ShowModulePublish?modulePublishId=498e9c1e-1e3a-4161-b14c-45a91c36a142

4.9 Mouse Over 79

Here is a simple example30 of a graph, with nodes and edges:

For this one we needed two new messages:
| Enter (Float,Float)
| Leave (Float,Float)

which also have coordinates attached to them, but this time we will not let the run-time
system attach the coordinates based on the mouse position. We will attach them ourselves,
when we attach the notification to the Shape:

|> notifyEnter (Enter pos)
|> notifyLeave (Leave pos)

Toavoidhaving to type out the code for eachnode, we are going to steal a functionList.map
from Section 6.4. For now, just focus on the fact that it applies the anonymous function

List.map (\pos -> circle 3 |> filled red |> move pos
|> notifyEnter (Enter pos)
|> notifyLeave (Leave pos)

)
nodes

to every node in nodes. When the message is sent by the run-time system, we will be able
to know which node the mouse is entering or leaving by its position which we attached in
the myShapes function. We then store that info in the Model

Enter pos -> { model | highlight = Just pos }
Leave pos -> { model | highlight = Nothing }

as a Maybe value, another thing we have to steal, this time from Section 6.4.3.
Unfortunately, this is not 100% reliable. Can you look back at the code and guess why

not?
30hover graph: https://cs1xd3.online/ShowModulePublish?modulePublishId=ed6324dd-20af-487c-bd4a-f19812b95aff

https://cs1xd3.online/ShowModulePublish?modulePublishId=ed6324dd-20af-487c-bd4a-f19812b95aff

4.10 Slider 80

It may surprise you that the Enter and Leavemessages can arrive in an unexpected or-
der. Well, you probably think we can only get one at a time, because we cannot be entering
and leaving at the same time. But you cannot count on that, especially if you have a very
sensitivemouse that picks up tiny vibrations as you drag themouse over the table. As a rule,
DO NOT ATTACHMULTIPLE MESSAGES to a single Shape if the order of those multiple mes-
sages matters. But, but, but, we need both messages, you may be thinking, but do you need
them both at the same time? Of course, you only need themessage which would change the
current state, so we can pattern match on that state and only attach the message we need:

\pos -> circle 3 |> filled red |> move pos |>
(case model.highlight of

Nothing -> notifyEnter (Enter pos)
Just _ -> notifyLeave (Leave pos)

)
Notice that the case expression evaluates to a function? Pretty nifty31!

4.10 Slider to contents

Let’s explore a few more mouse messages we can use to create a slider.

To have a slider, we need a value in the Model, in this case model.value, which we can
use to draw the rectangle:

rect model.value 10 |> filled (rgb 0 0 255)
but remember that rects and other shapes draw themselves centered, which would make
for a weird slider, so we have to left-align it:

|> move (-50 + 0.5 * model.value, 0)
Since the user can click on the filled as well as empty part of the slider, we cannot attach
our messages to the filling. Best we attach our messages to an invisible rect floating above
the filling— ghostmakes it invisible:

, rect 100 10 |> ghost
|> addOutline (solid 0.5) red
-- clicking on the slider starts the adjustment
|> notifyMouseDownAt StartSlider

The first notify ends in *At, so we know we will get a coordinate, so StartSlider will
need (Float,Float) as attached data.

-- moving over the slider sends a message, but the update ←↩
only accepts it if we are editing

|> notifyMouseMoveAt Slider
31fixed: https://cs1xd3.online/ShowModulePublish?modulePublishId=67e9ce85-3e5c-4cc0-9d06-61a13b26155f

https://cs1xd3.online/ShowModulePublish?modulePublishId=67e9ce85-3e5c-4cc0-9d06-61a13b26155f

4.10 Slider 81

We now violate the ***RULE*** we just made about not attaching multiple messages. In
this case, it is ok if we get these messages out of order. It would cause at most a tiny change
in the filled percentage.

-- both lifting the mouse, and mousing outside the slider ←↩
stops the adjustment

|> notifyMouseUp EndSlider
|> notifyLeave EndSlider

But nowwe do need to think about it. If we drag across the boundary of the slider, or unclick
the mouse, then dragging stops. Moving back will not change that.

We could have attached the last three messages only when dragging, but it won’t make
a difference in this case.
update msg model = case msg of

Tick t _ ->
{ model | time = t }

Slider (x,_) ->
Whatwe dodo in this case is validate theSlidermessage, by checking themodel.dragging
state. (Note that being a Bool we don’t need to write model.dragging==True, because
the (==True doesn’t do anything.) We then do a second validation on the position, to make
sure our value is always a valid percentage, and clamp values to 0 or 100 if outside the valid
range.

if model.dragging then
{ model | value = if x < -50

then 0
else if x > 50

then 100
else x + 50

}
else

model
The StartSlider message also needs to reset the value, with the same validation. (Ex-
ercise: improve this code by replacing the duplicate validation with a validation function.)
Did you notice that since we only use the x position, we don’t need to give the y position a
variable name in the pattern (x,_). By doing this, we get the compiler to ensure that we
do not use the y position.

StartSlider (x,_) ->
{ model | value = if x < -50

then 0
else if x > 50

then 100
else x + 50

, dragging = True
}

EndSlider -> { model | dragging = False }

4.11 Drag and Drop 82

Finally, we set the dragging state on StartSlider and EndSlider but we didn’t need
to on the Slidermessage above.

There we have a working slider32. We leave it to you to make it pretty.

4.11 Drag and Drop to contents

Now we can apply what we have learned to Drag and Drop, but we will have to take into
account both x and y coordinates this time, and we will also need to “remember” where
we “grab” the thing we are dragging, so that when we move it, the grabbed position on the
Shape stays the same.

Since this is a bit more complicated, we create a State type:
type State
= Waiting
| Dragging

(Float,Float)
inwhichwe are eitherWaiting or, if we areDragging, thenwe keep track of the difference
between the mouse pointer coordinate and circle centre. We could ignore this difference,
but the circle would jump to the click position when first clicked.

We store this information, along with the current position of the circle and the time (in
case we want to animate later).
type alias Model
= { time : Float

, pos : (Float,Float) -- circle centre if not dragging, or ←↩
the mouse click point if dragging

, state : State
}

init = { time = 0, pos = (0,0), state = Waiting }
32slider: https://cs1xd3.online/ShowModulePublish?modulePublishId=fa835fc3-536d-4e98-b034-a32bc3f7275b

https://cs1xd3.online/ShowModulePublish?modulePublishId=fa835fc3-536d-4e98-b034-a32bc3f7275b

4.11 Drag and Drop 83

To change states, we need to know if, when Waiting, themouse is clicked on the circle, and
when Dragging, if the mouse moves or they LetGo:
type Msg
= Tick Float GetKeyState
| NewPos (Float,Float)
| MovePos (Float,Float)
| LetGo

Now we attach these messages to two shapes
1. the circle, obviously! but only for the mouse down, not for moving;
2. a big invisible rectangle, formoving and letting go, because you could drag themouse

faster than your computer can move the circle.
myShapes model =
[

circle 20 |> filled red
|> move (case model.state of

Here we have to calculate the position differently if we are dragging, because we track the
mouse position, and need to add the offset between the click position and the circle centre.

Waiting -> model.pos
Dragging delta -> add delta model.pos

)
|> (case model.state of

We can only detect mouse clicks when we are Waiting.
Waiting ->

notifyMouseDownAt NewPos
Dragging _ ->

identity
The identity function has the same output as its input, i.e., it doesn’t do anything! Why do
we need it?

)
]
++
(case model.state of

Waiting -> []
Dragging _ ->

[rect 190 126 |> ghost
This ghost rectangle is only “drawn” when Dragging. We attach multiple messages to it,
and we have to be careful, because we could get two of them in an unexpected order. In this
case, we could get the LetGo first and then the MovePos, even though LetGo switches us to
Waiting, and this rectangle and these messages won’t exist. However, in between the time
when LetGo is sent, and update processes it, a MovePos message could be generated.

|> notifyMouseMoveAt MovePos

4.11 Drag and Drop 84

|> notifyMouseUp LetGo
|> notifyLeave LetGo

]
)
We define helpful functions for adding and subtracting coordinates. We will learn more

about “vectors” in the next chapter.
sub (x,y) (u,v) = (x-u,y-v)
add (x,y) (u,v) = (x+u,y+v)

Everything happens in the update function. It’s so exciting!
update msg model
= case msg of

Tick t _ -> { model | time = t }
When themouse button is pressed, wegetNewPoswith the coordinates of themousepointer.

NewPos pos ->
case model.state of

We ignore this message if we are not Waiting for it (see above). We subtract the mouse
position from the circle centre, and keep this in the Dragging state, so we can draw the
circle in the right place.

Waiting ->
{ model | pos = pos

, state = Dragging (sub model.pos pos)
}

_ ->
model

MovePos pos ->
case model.state of

When in the Dragging state, we get MovePoswhenever the mouse moves. Actually, it will
depend on how fast your computer is, it might only happen 30 times a second, not whenever
your mouse moves. Your computer is busy and can’t be checking the mouse continuously.
We update the position in the model.

Dragging _ ->
{ model | pos = pos }

_ ->
model

LetGo -> case model.state of
When we LetGo (or drag off the edge of the rectangle) we switch back to Waiting, and
calculate the new circle centre by adding the offset to the last position we have for the
mouse.

Dragging delta ->
{ model | pos = add model.pos delta

, state = Waiting

4.12 Composing Model-View-Update Modules 85

}
_ ->

model
Whew! That was a lot of code33. If you are not sure you understand it all, try changing
things which are still mysterious, and see what breaks!

If you are not too worried about violating causality in the time-space continuum, and
you read ahead in the Containers section to learn about List, then now would be a good
time to try to make a game where you have not one, but a whole bunch of red circles, each
of which is individually draggable, and where the goal is to put a target percentage on the
left side of the centre line. If you get stuck, have a peek34 at the code behind the screenshot
at the start of this section.

When your game goes viral, remember where the infection came from!

4.12 Composing Model-View-Update Modules to contents

What if your friend creates a mini-game, and you want to include it in your game? How
do you do that? Is there room enough in one app for two Models, views and updatess?
We canmanage any number of submodules by importing one ormoremodules into another
module.

We’ll start with a version of the two ships example from Section 4.7. The best thing
about building a GraphicSVG app out of multiple modules is that we can compile and test
each module individually as a stand-alone app. This makes development so much easier,
and allows teammates to work in parallel. But before we put them together, it is important
to make sure that

1. We define a Model type and use it in type signatures like
myShapes : Model -> List (Shape Msg)
and
update : Msg -> Model -> Model
Since our Model is usually a record, and record types can be inferred without a type
declaration, we don’t need to do this to get our module towork alone, but it will make
it much easier to get it working when imported.

2. We define functions for extracting, querying, or recreating our Model type.
In the two-ships case, we have

type alias Model =
{ time : Float
, playerL : String
, playerR : String
, posL : (Float,Float)
, posR : (Float,Float)
, velL : (Float,Float)
33DragAndDrop: https://cs1xd3.online/ShowModulePublish?modulePublishId=9cefba80-2c1f-4cdb-a9ad-2f042a6931d7
34multiple drag: https://cs1xd3.online/ShowModulePublish?modulePublishId=559ec2cc-e0c9-4d26-b097-46d10c08845b

https://cs1xd3.online/ShowModulePublish?modulePublishId=9cefba80-2c1f-4cdb-a9ad-2f042a6931d7
https://cs1xd3.online/ShowModulePublish?modulePublishId=559ec2cc-e0c9-4d26-b097-46d10c08845b

4.12 Composing Model-View-Update Modules 86

, velR : (Float,Float)
, angleL : Float
, angleR : Float
, win : Maybe String
}

and can access model.win any time model is in scope, but it is a good design practice not
to access record fields directly from other modules, but rather to use a function, such as
didWin : Model -> Maybe String
didWin model = model.win
to do so. Within the module, this might not be a big deal, but if we do the “easy” thing
in importing modules, then whenever we change that field in the record, we will need to
change all themoduleswhich access it. Better to create and use the helper function didWin
so that we can restrict changes to the single module. Let’s see how it works:

You remember the Publish link, we’ll need that, and to create a New (and new type of) share
link:

This time, we will publish for ourselves! But instead of choosing a fork or view link, we will
create an import link.

4.12 Composing Model-View-Update Modules 87

This will open a new page, which tells you it created a link, but that’s it. You can’t use it to
do the import. Instead, you need to find it from the import pane, which you open with the
button right next to the Publish button we just used. This will open

but if you try it now, you won’t have anything to import. Well, you may have too many
importable modules, but when you filter out by the one you are looking for it won’t be
there, because you haven’t created it yet, and we cannot publish our modules for importing
to everyone, only to specific users or specific groups. So you should either write your own
modules or try it out by forking mine35.

35two import: https://stabl.rocks/ShowModulePublish?modulePublishId=b2b0e80f-7d56-449b-92a4-d5f3259fae3e main: https:
//stabl.rocks/ShowModulePublish?modulePublishId=b80e90c8-a07e-4de5-b155-9ec9272b43fd

https://stabl.rocks/ShowModulePublish?modulePublishId=b2b0e80f-7d56-449b-92a4-d5f3259fae3e
https://stabl.rocks/ShowModulePublish?modulePublishId=b80e90c8-a07e-4de5-b155-9ec9272b43fd
https://stabl.rocks/ShowModulePublish?modulePublishId=b80e90c8-a07e-4de5-b155-9ec9272b43fd

4.12 Composing Model-View-Update Modules 88

Now, when you import ShipsWithGoal, you are telling theWebIDE to compile the two
modules together36 and implicitly placing an import above the first line of your module.
Since repeating imports is not an error, I’ll repeat it here:
import ProfAnand.ShipsWithGoal
We now have access to the type, value, and function definitions of the importedmodule. To
use them safely, I recommend the following steps:

1. In
myShapes model =
[

case model.state of
A ->

button 40 "To B" ToB
AWon winner ->

button 100 (winner++" won! Play Again?") ToB
when we get to the state where the mini-game will be played, we can use the myShapes
function from that module. The only difference is that we need to “qualify” the function,
by prepending YourUsername.ShipsWithGoal. in front of myShapes. Just like with a
local function, you can mix it in with other shapes—in this case a button.

B ->
[button 40 "To A" ToA

|> move (76,56)
, ProfAnand.ShipsWithGoal.myShapes model.shipsModel

|> group
In order to mix messages generated by the submodule from messages created by the main
module, you need to wrap them in a constructor which we will add to the main Msg type
below:

|> GraphicSVG.map ShipsMsg
]
|> group

]

type State = A | B | AWon String
2. To the existing message constructors, you need to add a wrapper constructor, which

we will call ShipsMsg
type Msg = Tick Float GetKeyState

| ToA
| ToB
| ShipsMsg ProfAnand.ShipsWithGoal.Msg

36If you install Elm on your computer, this corresponds to adding to the list of modules to compile in
elm.json.

4.12 Composing Model-View-Update Modules 89

The messages get wrapped, using GraphicSVG.map above, which finds all our notify*
functions, no matter how many groups they are nested inside.

3. Next, we need to includeall submodule states inside our Model type. This is because
everything about the state of the app has to be here! There are actually two ways of doing
this. We can include it directly in the Model
type alias Model = { time : Float

, state : State
, shipsModel : ProfAnand.ShipsWithGoal.Model
}

like we do here, or you can include it in some of the states in the State type. The latter
makes sense if the submodule is only active in some states, and we don’t need to save its
state in between times when it is active. Since we may want to allow pausing the game and
coming back to it, I have put it in the Model, but as written, we could have put it in the B
constructor.

4. In the update function,
update msg model =
case msg of

if the submodule uses animation or keyboard controls (or may in the future), we need to
update the submodule state when we get a tick message.

Tick t getKeyState
-> let

We need to use the submodule’s update function to do this, but the tricky thing is that we
cannot pass in the Tick message we just received because, although the constructors are
named the same, and have the same arguments, they have different types. One has the type
ShipsWithGoal.Msg and the other HasMiniGame.Msg. But since the arguments are the
same, we can construct the submodule’s version of Tick using the date we just received in
this module’s Tick:

newShipsModel = ProfAnand.ShipsWithGoal.update
(ProfAnand.ShipsWithGoal.Tick t ←↩

getKeyState)
model.shipsModel

in
In this case, we want to check whether a player has won, so we define a variable for the
new submodule’s state and then use the function didWin to test for a winner, and take the
appropriate action if so:

case ProfAnand.ShipsWithGoal.didWin newShipsModel of
Just wn -> { model | shipsModel = ProfAnand.←↩

ShipsWithGoal.initWithNames "Patatuj" "Inaqan"
, time = t
, state = AWon wn
}

Nothing -> { model | shipsModel = newShipsModel

4.12 Composing Model-View-Update Modules 90

, time = t
}

Note thatwe reinitialize the game as soon as a playerwins. We could have instead initialized
the game on the ToB transition, below. An important thing is that it happen once between
a player winning and restarting the game.

ToA -> { model | state = A }
ToB -> { model | state = B }

When you get a message generated by the submodule, unwrap it and call the submodule’s
update function to calculate the new submodule state, and store it in our new model value.
In this case, we use the access function didWin to test if one of the players won, and apply
a transformation to this module’s state.

ShipsMsg shipsMsg
-> let

newShipsModel = ProfAnand.ShipsWithGoal.update
shipsMsg
model.shipsModel

in
{ model | shipsModel = newShipsModel

, state = case ProfAnand.ShipsWithGoal.didWin ←↩
newShipsModel of

Just _ -> A
Nothing -> model.state

}
Note that this particular submodule doesn’t have any buttons or other controls to generate
messages, so the only message is the Tick message which we handled above, so this case
will never be evaluated. But it is still good practice to write this code so that if buttons are
added to the submodule in the future, they will just work, because the necessary code is
already in the main module.

5. Use the submodule’s init function to initialize the copy of the submodule’s Model
contained in this module’s Model:
init : Model
init = { time = 0

, state = A
, shipsModel = ProfAnand.ShipsWithGoal.initWithNames "←↩

Patatuj" "Inaqan"
}

5. More Useful Math

In this chapter, we capture two more bits of useful math. The first math is called a Boolean
Algebra1, which is a pattern that works like the Bool type, with values True and False
and operations not, and (&&), or (||), and xor. If you don’t know what these operations
do, try filling in these tables:

x y x && y x || y
False False
True False
False True
True True

x not x
False
True

These operations are really useful, and easy to learn and remember, which makes it
even easier to learn new concepts (sometimes complicated ones)when they follow the same
pattern. This pattern is called a Boolean Algebra. The nextmost complicated example is the
power set of a set X , written as 2X , because the number of subsets is equal to 2‖X‖ (two to
the power the size of the set X). Let’s compare

Abstract Notation Logic Elm Logic 2X subsets of bigSet
0 false False {} Set.empty
1 true True X bigSet

x∧ y and (&&) x
∩

y Set.intersect x y
x∨ y or (||) x

∪
y Set.union x y

¬x not not X \ x Set.diff bigSet x
If you know some of the notation, like the notation for an empty set {} (also ∅), good,

otherwise, don’t worry. Abstractly we have two special elements, 0 and 1. In basic logic,
those are all the elements, and in Elm, they are True and False. In set theory, however,
they are the empty set and the full set of which we are taking subsets. In Elm’s Setmodule
(which we have to import if we want to use it) they are Set.empty and whatever we call
the set we start with. In the table, we call the full set bigSet.

1See https://en.wikipedia.org/wiki/Boolean_algebra

https://en.wikipedia.org/wiki/Boolean_algebra

92

The operations in logic are and and or, also called conjunction and disjunction, which
you just have to remember are double-symbol operators && and ||. Fortunately, most pro-
gramming languages you are likely to use today use the same symbols for these operations,
so you only have to learn them once2.

Isn’t it confusing to use 0 and 1, because some of us know them as numbers already? Well, ac-
tually, there are many cases where symbols were reused in mathematics, especially after
printing was invented, because it was just easier to use one that already existed. This got
worse with early computers which had a tiny set of symbols. Today, we don’t have this prob-
lem, but still 0 and 1 make sense if you think of ∧ as multiplication. When you and False
with anything, you get False. When you intersect any set with the empty set, you get the
empty set. When you multiply 0 by anything you get 03. What about 1? Well, multiplying
by 1 does give back 1!

I hope this helps you remember these new meanings for 0 and 1. But another way to
think about it is to think about how we would store True and False in a computer. You
may have heard that everything in a computer is stored in terms of numbers. This is kind of
true, because that’s how peoplemade them, with a few exceptions like optical and quantum
computers. Computers store information in chunks, and we know how much information
is in a chunk by how many different values we can store. The smallest chunk can store
two values, because being able to store one value doesn’t count as information. It’s like a
weather forecast which is always sunny—you don’t need to store it. Since there are only two
logical values, we only need two numbers to count them. Why do we start with 0 instead of
1 in our counting? This is because a lot of calculations are simpler if we count this way, so
in the interest of saving electricity and getting things done faster so we can go home and
play on our computers4, computer scientists pretty much always count starting from 0.

Remembering ∧ and ∨ is easy if you think about organizing a diagram of all the subsets
of a set, with sets drawn below all sets they contain. Like this:

2Why do we use these, and why are they doubled??? Most programmers think this notation was invented
with the C language, but, in fact they go back to B and its progenitor BCPL, for which the 1967 manual is
available online, see https://www.bell-labs.com/usr/dmr/www/bcpl.html.

3Mostly true, unless your numbers have infinity. What is 0×∞? Computer implementations of arith-
metic have agreed this is not a number (NaN), see https://docs.oracle.com/cd/E19957-01/
806-3568/ncg_goldberg.html for an in-depth discussion of floating-point numbers, includingNaNs.

4This is not a good thing! Please go outside and think about how much information is stored in the struc-
ture of a single tree.

https://www.bell-labs.com/usr/dmr/www/bcpl.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

5.1 Clipping and Shape Math 93

In this diagram, {rock}∧{scissors} is the set that connects to {rock} and {scissors} in an
upward pointing∧. This particular diagrammay look like a cube to you. All power sets look
like cubes, but this set with three elements is a 3D cube, so you recognize it. Try drawing a
2D cube, or a 4D cube, and see if you recognize them.

This kind of diagram has another name, it is called a lattice5. We can define the lattice
of all subsets of a set with n elements to be an n-dimensional cube lattice. So if you draw the
diagram for 5 things, and your parent asks you to clean up your room, you can legitimately
say that you are too busy working in 5 dimensions to bother with 3-dimensional rooms.

5.1 Clipping and Shape Math to contents

Ok, that was a lot of theory! How can we use it for practical problems, like How do we
draw an apple with a bite out of it? It turns out that the set-theory analogy works. Think about
an apple shape as a set of points, which is a subset of all the points on your canvas. To have
a bite, we need to have amouth. So think about the set of points inside thatmouth. The bite
is the intersection of the set of points in the apple and the set of points inside the mouth.
And the apple without the bite is the set of points in the apple, minus the set of points in
the bite, but we could also say it is the subtraction of all the points in the mouth (whether
they are in the apple too, or not).

Let’s try it6! First, define Shapes for the apple and the bite. The colour of the bite doesn’t
matter. Try changing it to see.
apple = circle 20 |> filled red

bite = circle 10 |> filled black
|> move (20,0)

Nextwe take a bite out of the applewithclip, which is similar to∧,(&&),
∩
orSet.intersect:

biteOfApple = apple |> clip bite
Then we take a bite away from the apple with subtract, which is similar to ¬, not, X \ x
or Set.diff:

5See https://en.wikipedia.org/wiki/Lattice_(order) where, unfortunately, they draw
the lattices upside down (to us).

6apple: https://cs1xd3.online/ShowModulePublish?modulePublishId=d41b5773-2c23-4810-888d-6d658a9565df

https://en.wikipedia.org/wiki/Lattice_(order)
https://cs1xd3.online/ShowModulePublish?modulePublishId=d41b5773-2c23-4810-888d-6d658a9565df

5.1 Clipping and Shape Math 94

appleMinusBite = apple |> subtract bite
Now we can animate the bite being taken:
myShapes model =
[apple

|> move (-55,0)
, bittenApple

|> move (40,0)
, applePiece

|> move (60 + 20 * sin model.time,0)
, arrow |> move (-10,0)
]

Ok, that wasn’t exactly the apple we showed you, but if you are interested, you can have a
peek7 at the code which does it.

We have seen clip and subtract. In total there are five functions for image logic:
clip : Shape userMsg -> Shape userMsg -> Shape userMsg
union : Shape userMsg -> Shape userMsg -> Shape userMsg
subtract : Shape userMsg -> Shape userMsg -> Shape userMsg
outside : Shape userMsg -> Shape userMsg
ghost : Stencil -> Shape userMsg
Whereas clip colours in the intersection of two Shapes, union colours in the... union—
surprise!!!

When drawing something complicated, it is useful if we can visualize a Shape as the
union of simpler Shapes—a great example of Dividing and Conquering. For example, a t-
shirt is basically a rectangular body and two rectangular arms, with an optional cut-out for
people with heads.
-- we can make a t-shirt...
tshirt =
rect 20 30 |> filled white

-- ...by adding a sleeve...
|> union

(rect 20 8 |> filled white
|> move (-10,-4)
|> rotate (degrees 45)
|> move (-10,15)

)
-- ...and another sleeve...

|> union
(rect 20 8 |> filled white

|> move (10,-4)
|> rotate (degrees -45)
|> move (10,15)

)
7better: https://cs1xd3.online/ShowModulePublish?modulePublishId=0f2ae556-8168-4ce4-879f-fc684828a168

https://cs1xd3.online/ShowModulePublish?modulePublishId=0f2ae556-8168-4ce4-879f-fc684828a168

5.1 Clipping and Shape Math 95

-- ...and removing the neck hole
|> subtract

(circle 6 |> ghost |> move (0,17))

Beforewe go on, youmight bewonderingwhywehave twomoves for each sleeve, before
and after the rotate???

The following picture may help:

The rectangles outlined in pink show the sleeve rectangle after |>move(10,-4), which
moves the top-left corner of the rectangle to the middle point (0,0), so that when we do
the |>rotate(degrees -45) that corner stays where it is, giving us the second outlined
rectangle. Why move by (10,−4)? Because those are half the width and height of the rect-
angle we start with. We picked that corner, because we want to sew it on to the top right
corner of the main rectangle, so now we just have to move it there from the centre with
|>move(10,15).

Now, if you are the suspicious type, you may be suspecting that we didn’t really need
union, becausewehavegroup to putShapes together. If so, youhave a career in espionage,
because you are right! This is the code which drew the t-shirts on the right.
groupieShirt =
[rect 20 30 |> filled white
, rect 20 8 |> filled white

|> move (-10,-4)
|> rotate (degrees 45)
|> move (-10,15)

, rect 20 8 |> filled white
|> move (10,-4)
|> rotate (degrees -45)
|> move (10,15)

]
|> group
|> subtract

(circle 6 |> ghost |> move (0,17))

5.1 Clipping and Shape Math 96

But if youwant union and subtract to line up so you can see them being applied one after
another, you need to use union, because group doesn’t work the same way.

Did you go back to check that the t-shirts really all look the same? Well, we can fix that,
and this is really how clipping got famous. We can use it to “paint” another shape with a
pattern we’ve already drawn:

-- first we draw the tshirt
[tshirt
-- then we draw the pattern...
, pattern

-- but we only draw it on top of the tshirt!
|> clip tshirt

]
|> group

Pretty clever! You can use different patterns for each shirt, or just move them around:

Before you invest in a t-shirt factory, we should fix a problem which could bankrupt
your business. In the code for the patterned t-shirt, the variable tshirt is used twice. In
the rush to fill an order for 20 different t-shirts, you are bound to copy and paste a different
t-shirt shape in one place, but not the other, resulting in a pattern not matching the t-shirt.
But, don’t worry, we can fix this by creating a function
silkScreen rawShirt withPattern =

[rawShirt
, pattern

|> clip rawShirt
]
|> group

You can try it out8. Using functions to avoid repetitive code, especially when variables or
segments of code are repeated, is a good programming practice. It is pretty easy to do in a
functional language like Elm, even for complicated bits of code.

To finish off this section, we need to cover outside and ghost. In a way, we should
have covered outside before subtract, because outside is the more basic operation,
playing the role of not. A pixel is part of the outside of a Shape if it is not in the Shape.
That’s just the definition of outside in English. Notice that even in English, the definition of
“outside” uses “not”.

8t-shirts: https://cs1xd3.online/ShowModulePublish?modulePublishId=1e299922-0ba4-4f6b-b1fc-951a335da5ae

https://cs1xd3.online/ShowModulePublish?modulePublishId=1e299922-0ba4-4f6b-b1fc-951a335da5ae

5.2 Following A Path 97

If you’re scared to find out what ghost does, don’t be! We’ve already snuck it into the
definition of the t-shirt above! It is just a shortcut function, for when we want to define a
Shape which is only used for one of the other image operations, and never drawn itself. It
just saves us from having to pick a colour for the filling or outlining which we will never
see. It isn’t that much extra typing, but picking a colour nobody will ever see can be very
distressing to philosophy and physics students who worry about whether the colour can
exist without an observer.

Now it’s time to see where we stand in terms of logic and set theory? We’ll redraft the
table of operations, replacing the column for Elm Logic with a column for Shapemath:
Abstract Logic Shape Math 2X subsets of bigSet

0 false group[] {} Set.empty
1 true rect 192 128 |> filled red X bigSet

x∧ y and |>clip x
∩

y Set.intersect x y
x∨ y or |>union x

∪
y Set.union x y

¬x not |>outside X \ x Set.diff bigSet x
Not bad! The analogy helps make sense out of union, right away, and clip after you think
about it a bit. Just like logical not9, if you apply it twice, outside gets back the inside, where
you started. We decided not to have an empty function giving a Shape with nothing in it,
because group[] already does that, and doesn’t take long to type. You can argue whether
everything is rect 192 128, but in the Animation Activity, it definitely is. Why is it red, well
we picked it because it is short and easy to see!

There is a lot you can do with these simple operations by composing them together.
This is the sign of a good language design. We make a lot with a little, by stirring in a little
mathematical reasoning.

5.2 Following A Path to contents

Another useful mathematical concept is that of slope or derivative. Imagine you are
sitting on a point travelling on a curve defined by a function of time

f (t) ∈ R2 (5.1)

If we want to face forward, we need the direction of travel. We can figure that out by taking
the slope of a line tangent to the curve. If we know the curve f , then we may also know
the slope, but what if we are working on a library to draw the point and the passenger, and
we could be called with many different functions? In that case, we can approximate the
direction of the curve by looking at two points on the curve:

9In English it is frowned on to string “not”s together, because non-logicians find it confusing!

5.2 Following A Path 98

From this, we can calculate the slope as rise/run. In many cases, we want the angle of this
slope, and fortunately, we have a function atan2 which calculates this angle. Obviously,
we will get a better answer if the two points are closer together—as long as they aren’t so
close that the precision of Floats gets in the way. For graphics, picking a “small” value like
1/100 should work, but in Section 9.2 we show how we can calculate the exact slope using
derivatives.
angleOfMotion xyFun t =
let

(x0,y0) = xyFun t
(x1,y1) = xyFun (t+0.01)

in
atan2 (y1-y0) (x1-x0)

The function atan2 is related to the trigonometric function tan, which would tell you the
slope, given the angle, except that atan2works for slopes of ∞, and distinguishes between
the two directions represented by a line. We are used to our executable functions being
imperfect approximations of the mathematical functions, because our Float numbers are
only limited-precision versions of real numbers, but this time, the computer science func-
tion is actually better! Almost all programming languages have atan2 in their standard
libraries, so look for it at a theatre near you.

5.2 Following A Path 99

How much fun you have with it10 depends on how creative you can get with mathematical
functions!

Now, what if you don’t know how to write your path as a function, but you could write
pieces of it as a function? Good news we have
animationPieces : List (Float, Float -> a)

-> (Float, Float -> a)
-> Float
-> a

which puts together pieces of animation. It works by putting your animations in a list, along
with how long each of them should take.

Let’s say we want to trace out a square with corners (±50,±50):

We can do this with four segments, with a function Float -> (Float,Float) tracing
each segment. So in this case, the type a in the type signature for animationPieces is
(Float,Float):
path time =
animationPieces

[(5,\ t -> (-50 , -50 + 20 * t))
, (5,\ t -> (-50 + 20 * t, 50))
, (5,\ t -> (50 , 50 - 20 * t))
, (5,\ t -> (50 - 20 * t, -50))
]
(\ t -> (-50,-50))
time

Each segment takes 5 seconds, and after the four segments, the function \ t -> (-50,-50)
means that we stay where the last segment ends (and where the first segment began). This
shows the advantages of being able to workwith functions as values, putting them in tuples,
and of having polymorphism, so that animationPieces can be used to animate positions,
radii, colours, pretty much anything!

10rockets: https://cs1xd3.online/ShowModulePublish?modulePublishId=2b6bbad8-c608-4dd6-ada0-6bec72bbaa67

https://cs1xd3.online/ShowModulePublish?modulePublishId=2b6bbad8-c608-4dd6-ada0-6bec72bbaa67

5.3 Animation via Interpolation 100

If you are a bit rusty creating paths, and matching up segments, we created a helper
function which switches between animating and tracing out the whole path by plotting
100 time points on top of each other. In the code11 you change this variable to control this
behaviour:
wholePath = Just 20 -- trace out the whole path from 0s to 20s
-- wholePath == Nothing -- do animation

As a challenge, try to put what you’ve learned together to help the Celtic Space Agency
program their first rocket trajectory:

You will need to use the fact that t 7→ (cos t,sin t) traces out a circle in 2π seconds. So it
traces out half a circle in π seconds, and you can shift, scale and reflect in the x-axis to build
all the pieces needed. But if you get stuck, you can peek12 at the answer.

5.3 Animation via Interpolation to contents

Let’s look at the square path example again, because it is an example of a general process
called interpolation, but notwritten in away tomake that clear. We can rewrite the formula
for the y-coordinate of the first path as

−50+20t =−50 · (1− t/4)+50 · (t/4) (5.2)

In this case, we factor out t/4s because the path takes 4s, and we factor out −50 and 50,
because those are the starting and ending points for the animation.

In general, ifwewant to interpolate between twonumbers, a andb, as a variableu∈ [0,1]
goes between 0 and 1, we use

(1−u)a+ub (5.3)
11square: https://cs1xd3.online/ShowModulePublish?modulePublishId=2e1f9fc3-2bd0-45fd-a91d-44237ff62830
12Celtic: https://cs1xd3.online/ShowModulePublish?modulePublishId=0fd9bf70-9bb8-4d8d-9bbd-6c8ef95dea0e

https://cs1xd3.online/ShowModulePublish?modulePublishId=2e1f9fc3-2bd0-45fd-a91d-44237ff62830
https://cs1xd3.online/ShowModulePublish?modulePublishId=0fd9bf70-9bb8-4d8d-9bbd-6c8ef95dea0e

5.3 Animation via Interpolation 101

Notice that the two factors 1− u and u add up to 1. Two functions with this property are
called a partition of unity, and we can construct curved versions which lead to smooth in-
terpolations.

When we interpolate points, we interpolate both the x- and y-coordinates. But we can
interpolate a bunch of points. This is how you can create smooth animations of data like
the global temperature anomoly13:

Let’s look at simpler data. Say we want to animate sales data from year to year? A safe
version of our interpolation function,
interp : Float -> Float -> Float -> Float
interp u a b =
if u < 0 then

a
else if u < 1 then

(1-u)*a + u*b
else

b
can be mapped over two sets of data to map each month’s data separately:

List.map2 (interp model.time)
oldData
newData

Recall that supplying one argument makes (interp model.time) a function with two
variables instead of three—freezing the animation time for all months in the chart. This is
then used to combine the oldData and newData using List.map2 from Section 6.4. You
can try14 it with your own data. After you have readmore about Lists, why not trymaking
a bar chart version, or adding points to the line graph.

13anomoly: https://earthobservatory.nasa.gov/world-of-change/global-temperatures
14interp months: https://cs1xd3.online/ShowModulePublish?modulePublishId=e1f6b755-43b9-4260-9a75-b73ac697f598

https://earthobservatory.nasa.gov/world-of-change/global-temperatures
https://cs1xd3.online/ShowModulePublish?modulePublishId=e1f6b755-43b9-4260-9a75-b73ac697f598

5.4 Animation in Vector Spaces 102

5.4 Animation in Vector Spaces to contents

Let’s look at the formula for interplation again,

(1−u)a+ub (5.4)

and write it in terms of functions
add
(scale (1-u) a)
(scale u b)

We see that it requires two functions
add x u = x+u
scale s x = s*x
But we could equally well write functions to act on both coordinates of a 2D point:
add (x,y) (u,v) = (x+u,y+v)
scale s (x,y) = (s*x,s*y)

We can now interpolate between two points, but you will probably want to interpolate
a path along a list of points, so we are reaching into Chapter 7 this time to write a function
which takes a list of points and turns it into a list of interpolated paths of the type used by
animationPieces
mkAnimationPiece listOfPoints =
case listOfPoints of

p0 :: p1 :: rest -> (1, \ t -> interp t p0 p1)
:: (mkAnimationPiece (p1 :: rest))

_ -> []
Don’t worry if you cannot write this function on your own at this point. You can see the
heart of it,

(1, \ t -> interp t p0 p1)
makes an interpolated path. If you don’t believe it is that easy, try15 for yourself. As a
challenge, get the rocket ship to follow the path, and try to predict what will happen as it
goes around corners by drawing a diagram with chords.

It turns out that a set with operations add and scale satisfying some simple rules,
namely

add x (add y z) ≡ add (add x y) z
scale u (add x y) ≡ add (scale u x) (scale u y)

(which are satisfied for numbers and coordinate pairs) is called a vector space. So we can
interpolate in any vector space. We just have to figure out add and scale for that data
type.

For people who write graphics or scientific code, it is annoying that vector spaces are
not built into programming languages the way numbers are. It is not that hard for us to get
this functionality in Elm. For example, we can rewrite interp as

15points: https://cs1xd3.online/ShowModulePublish?modulePublishId=4428b3d5-b535-4f04-9691-294636ecb459

https://cs1xd3.online/ShowModulePublish?modulePublishId=4428b3d5-b535-4f04-9691-294636ecb459

5.4 Animation in Vector Spaces 103

interpVS addVS scaleVS u a b =
if u < 0 then

a
else if u < 1 then

addVS
(scaleVS (1-u) a)
(scaleVS u b)

else
b

and bymaking the vector-space operations arguments of the function, we can use the same
interpVS for any vector space We can even create complex functions for manipulating
points in vector spaces, and as long as the functions pass along the addVS and scaleVS
functions to each other, they can work together in complex ways, and continue to work on
any future vector spaces you dream up.

To avoid the passing around of the basic operations, other languages have mechanisms
to hide them. If you were writing in Haskell, you would make VectorSpace a class, and
if you were writing in Java, you would make it an abstract class. But whether you have
these mechanisms or not, a dark secret of programming with vector spaces, or many other
useful mathematical objects, is that we have to trust that the implementor checked that
the required properties hold. If vector spaces were baked into the language in general, or
at least for a few special cases, we could have the compiler enforce the properties.

If you don’t think this is a problem, take this version of the code16 and try adding a bug
to addVS or scaleVS and see what happens.

At this point, you can create animations where swarms of particles move through con-
figurations that spell out different words, or form ghostly visages, but you will also want to
try out curves, so here’s a crash course.

A curve goes through a list of points [p0,p1,p2,...,pN], but it doesn’t go in a
straight line. In between points p0 and p1 it is pulled towards q1, while between points
p1 and p2 it is pulled towards q2, and so on. We write it as
firstCurve =
curve p0

[Pull p1 q1
, Pull p2 p2
, ...
, Pull pN pN
]

For example, we can make a strand of kelp using
seaweed0 =
curve (-thickness ,-50)

[Pull (-thickness + 10,-25) (-thickness, 0)
,Pull (-thickness - 10, 25) (0, 50)
,Pull (0 , 50) (0, 50)

16interpVS: https://cs1xd3.online/ShowModulePublish?modulePublishId=e9c0c402-acb1-41cd-ab85-cb8d006dbc03

https://cs1xd3.online/ShowModulePublish?modulePublishId=e9c0c402-acb1-41cd-ab85-cb8d006dbc03

5.4 Animation in Vector Spaces 104

,Pull (thickness - 10, 25) (thickness, 0)
,Pull (thickness + 10,-25) (thickness,-50)
,Pull (0 ,-50) (-thickness,-50)
]

To help you figure out your curves, we have
curveHelper : Shape msg -> Shape msg
which draws all the points for the curve, and connects points on the curve to pulled points
with dotted lines, like the one on the right:

Unfortunately, it isn’t smart enough to avoid coordinates overlapping. If seeing the coordi-
nates is necessary, you may need to rotate by 90◦.

Since curves are a bunchof points, andweknowpoints formavector space, you shouldn’t
be surprised that seaweed also forms a vector space17!

To make the code more reusable, we’ll show that curves are vector spaces, starting by
creating a type for the curve data:
type MyCurve = MyCurve (Float,Float) (List Pull)
(The Pull is already defined in GraphicSVG.) Then we define the operations for Pulls:
addPull (Pull p0 p1) (Pull p2 p3) = Pull (add p0 p2) (add p1 p3)
scalePull s (Pull p2 p3) = Pull (scale s p2) (scale s p3)
which we can use to define the operations for MyCurves:
addCurve (MyCurve p0 pulls0) (MyCurve p1 pulls1) =

MyCurve (add p0 p1) (List.map2 addPull pulls0 pulls1)
scaleCurve s (MyCurve p1 pulls1) =

MyCurve (scale s p1) (List.map (scalePull s) pulls1)
Since real oceans are constantly in motion, instead of interpolating once between two

configurations, we can interpolate back and forth in a wavemotion using sinmodel.time:
17Technically, only seaweed with this number of Pull points, but that doesn’t sound as good.

5.4 Animation in Vector Spaces 105

myShapes model =
[interpVS addCurve

scaleCurve
(0.5+0.5*sin model.time)
seaweed0
seaweed1

|> drawCurve
]
If you think the one kelp18 is a bit lonely, it’s up to you to create a kelp forest!

18one kelp: https://cs1xd3.online/ShowModulePublish?modulePublishId=28666739-9362-478e-8b33-17aa8a40b83f

https://cs1xd3.online/ShowModulePublish?modulePublishId=28666739-9362-478e-8b33-17aa8a40b83f

6. Core Packages

Elm is a small language, and you can get most of your work done with a small core of
packages https://package.elm-lang.org/packages/elm/core. Let’s look at
what they do. In some sense, most of the packages are containers in the sense that they de-
scribe data types which contain other data, and all of Elm can be described asmathematical,
but we will differentiate by how they are used in programs.

6.1 Core Data Types, Math, etc. to contents

6.1.1 Basics to contents

Basics is the Math module, plus odds and ends. It defines types for numbers, Int and
Float, which store integers and fractional numbers, respectively. Since computer mem-
ories are finite, they cannot store the mathematical versions of these numbers, which are
infinite. Mathematical integers which go all the way from −∞ to ∞ can only be stored as
long as they fit in whatever storage type the Elm compiler uses on your computer. It is guar-
anteed to be at least −231,−231 + 1, ...,231− 1, but it could be more, which may surprise
you if you have used integer types in other languages where adding 1 to the largest repre-
sentable number “wraps around” to give you the most negative representable number. All
the usual arithmetic works, for example, but we use * for multiplication and for Ints only
we use // for divide.

1 - 1 -> 0
1 * 1 -> 1
1 + 1 -> 2

10 // 4 -> 2
11 // 4 -> 2
12 // 4 -> 3
13 // 4 -> 3
14 // 4 -> 3
-1 // 4 -> 0

https://package.elm-lang.org/packages/elm/core

6.1 Core Data Types, Math, etc. 107

-5 // 4 -> -1
3 ^ 2 -> 9
3 ^ 3 -> 27
abs 1 -> 1
abs -1 -> 1

negate 1 -> -1
negate -1 -> 1
Remember that any of these operators can be used in the prefix (normal) function form:
(+) 1 1 -> 2
Note that - is really two functions:
(-) : number -> number -> number
and
prefix - : number -> number
which the compiler tells apart by whether there is a space in between the - and the number
or variable, or not. Look carefully at the examples above.

Often, when we divide integers, we also want to take remainders. Elm provides
modBy 2 0 == 0
modBy 2 1 == 1
modBy 2 2 == 0
modBy 2 3 == 1

remainderBy 4 -5 -> -1
remainderBy 4 -4 -> 0
remainderBy 4 -3 -> -3
remainderBy 4 0 -> 0
remainderBy 4 1 -> 1
remainderBy 4 7 -> 3

Float numbers are also not all fractions, but only a subset, and one which is more com-
plicated to describe. If you are familiarwith scientific notation, i.e., a finite decimal fraction,
1≤ f < 10 together with an exponent of 10:

2.022×103 = 2022

then the concept is the same, except that base-two (binary) numbers are used. Numbers of
the form

s
f

2e

can be represented, where s ∈ {−1,1} is the sign (positive or negative), f is an integer
253 ≤ f < 254 and e is an integer −1022− 53 ≤ e ≤ 1023− 53. Why 53? It is part of the
standard for floating-point arithmetic1. Standards allow programmers to write programs

1See https://en.wikipedia.org/wiki/IEEE_754 for the standard agreed by the Institute of
Electrical and Electronics Engineers, and https://en.wikipedia.org/wiki/Floating-point_
arithmetic for the history of floating point numbers, and how the Second World War this time slowed
down progress on the first implementations by Konrad Zuse.

https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Floating-point_arithmetic

6.1 Core Data Types, Math, etc. 108

using floating-point numbers which give the same answers on computersmade by different
companies.

That is a lot of possible fractions, and in practice, it means that for most numbers which
come up in calculations, we can find an approximation good up to the 15th decimal digit.
That is more accurate than most people have the patience to calculate things, and before
digital computers, there were only a handful of numbers, other than repeating fractions,
with more digits—π being the most important—known by mathematicians and scientists
anywhere in history!

But it is still not all fractions, so you should be aware that you are using approximations,
and this can give surprising results. There is a whole subfield of study of the resulting errors
called numerical analysis.

As computers were made more and more complicated, their developers first standard-
ized how to store and process integers, which was pretty easy, then they standardized
floating-point approximations for fractional numbers. Unfortunately, they stopped short
of standardizing how to deal with more general numbers. So although we know how to
represent numbers like

√
2, have many ways of calculating floating-point approximations,

and using them in exact calculations, we do not have a standardization. In fact, very few lan-
guages have support for them, andwhen they do, they are part of support for amuch bigger
class of algebraic expressions2 and software for calculating with them is called a Computer
Algebra System. The oldest one with a definite start date is Maxima (originally called Mac-
syma), started in 1967, more than 50 years ago, and it is still available today, as open-source
software. So, although it is not a new concept, nobody has seen symbolic expressions as the
next step to standardize and incorporate into general-purpose programming languages. In
fact, you may be surprised to learn that recent work on computer arithmetic is going in
the other direction: standardizing lower-precision fractional numbers for use in machine
learning.

As far as basic operations, they all work the same as with Ints, except division is the
more expected /, and there is no division with remainder:
10 / 4 -> 2.5
11 / 4 -> 2.75
12 / 4 -> 3
13 / 4 -> 3.25
14 / 4 -> 3.5
-1 / 4 -> -0.25
-5 / 4 -> -1.25
An interesting While power (exponent) works equally well with Ints and Floats, it does
not work with
base : Float
base = 5

exponent : Int
exponent = 2

2See https://en.wikipedia.org/wiki/List_of_computer_algebra_systems.

https://en.wikipedia.org/wiki/List_of_computer_algebra_systems

6.1 Core Data Types, Math, etc. 109

base ^ exponent

-- TYPE MISMATCH --------------------------------

I need both sides of (^) to be the exact same type. Both ←↩
Int or both Float.

70| base ^ exponent
^^^^^^^^^^^^^^^

But I see a Float on the left and an Int on the right.

Use round on the left (or toFloat on the right) to make ←↩
both sides match!

We can fix this with a new function
base ^ (toFloat exponent) -- works!
Pay attention to order of operations with this function, because only one of these works!
halveA number = (toFloat number) / 2
halveB number = toFloat (number // 2)
Since 2 is both an Int and a Float, it is easy to think 2 will be interpreted as the other type,
so it is important to pay attention to the version of divide used.

Going the other way, we lose the fractional part. We can do this by returning the closest
whole number, round, the next higher, ceiling, lower, floor or closer to 0, truncate.
The documentation3 has many examples, but you can construct your own. Being fractional,
Floats allow formanyother types ofmathematical functions, including square root (sqrt),
logarithm (logBase), trig functions sin, cos, etc.

These functions are very useful for creating animations. If you have already studied
trig in a math class, you are probably familiar with most of the functions, but not aware of
atan2which takes a coordinate (x,y) and returns the angle between the line (0,0)→ (x,y)
and the x-axis. This is a lot more useful than the inverse tangent you are used to, because
atan2works for straight up and down, and it can tell the difference between left and right,
and therefore produces twice the range of angles as atan. One trick is that the inputs are
reversed from the normal coordinates, so you use atan2 y x. If you need both the angle,
and the distance from (0,0), this is called polar coordinates, and Elm provides functions for
this:
toPolar (3, 4) -> (5, 0.9272952180016122)

(1, 1) <- fromPolar (sqrt 2, degrees 45)
We have already used the degrees function to convert degrees into radians. One radian is
the angle around a circle you get if you take a string stretching from the centre to the edge of
a circle (i.e., the radius) andwrap it around the circle as tight as you can. Elm also provides a

3See https://package.elm-lang.org/packages/elm/core/latest/Basics.

https://package.elm-lang.org/packages/elm/core/latest/Basics

6.1 Core Data Types, Math, etc. 110

non-standard function turns, which converts a number of full turns into radians, which is
the same asmultiplying by 2π . Note that it is up to you to know if your numbers are already
in radians. For example
1 |> turns |> turns -> 4*pi^2
1 |> turns |> turns |> turns -> 8*pi^3
This is a choice in the design of Elm. We could have created a type for degrees
type Degrees = Deg Float
and made a function to convert
myDegrees : Degrees -> Float
myDegreees (Deg degs) -> pi / 180 * degs
in which case
anything |> myDegrees |> myDegrees
would produce an error, because the input and output of myDegrees are not the same. Elm
has an optional package elm-units4 which has lots of types and functions like this. It
definitely makes software safer if you are using physical qualtities.

Another nifty fact about Floats is that they have special values for infinity, and also for
invalid results. This is different from integer calculations which can crash your program if
you try to divide by 0. Floating point operations have many ways of failing, and often it is
easier not to check each possibility, but rather to do the full calculation and check the final
result. To check for this type of failure, we use isNaN:
isNaN (0/0) -> True
isNaN (sqrt -1) -> True
isNaN (1/0) -> False -- infinity is a number
isNaN 1 -> False
and to check for infinite numbers we have
isInfinite (0/0) -> False
isInfinite (sqrt -1) -> False
isInfinite (1/0) -> True
isInfinite 1 -> False
We can even compare infinities, and the sign of 0 matters for calculating infinities, but not
for comparing 0 against−0!
-1/0 == 1/(-0) -> True

0 == -0 -> True
0/0 == 0/0 -> False
0/0 == 7 -> False

4To keep angles, lengths, volumes, and any other physical units straight in your code and pre-
vent things like the crash of the Mars rover, use https://package.elm-lang.org/packages/
ianmackenzie/elm-units/latest/. Even if its not rocket science, do you want to make mistakes
the compiler could have saved you from? Ideally, physical units would be built into all languages, so that you
wouldn’t need to use special functions for arithmetic, like Quantity.times.

https://package.elm-lang.org/packages/ianmackenzie/elm-units/latest/
https://package.elm-lang.org/packages/ianmackenzie/elm-units/latest/

6.1 Core Data Types, Math, etc. 111

and the error code, “not a number”, NaN is not equal to anything, even itself!

There are two really important numbers to mathematicians, and they are both defined
in Elm
pi -> 3.141592653589793
e -> 2.718281828459045
And finally, Elm is a competitive language! We have
1 < 2 -> True
1 <= 2 -> True
1 >= 2 -> False
1 > 2 -> False
The type signature for these functions
(<) : comparable -> comparable -> Bool
involves not a type, but a type class comparable, just like number, which you probably
accepted as either an Int or a Float without thinking about it. Comparables are a bit
more complicated. The Elm documentation says that numbers, strings, booleans, tuples,
and lists of comparables are comparable. Functions are definitely not comparable, because
so many of the functions we use have infinite, or at least many billions of inputs. So testing
for equality or inequality would be really expensive. The Elm compiler should warn you if
you try to compare things for inequality which are not comparable, but it will not always
warn you when testing for equality, because the signatures are given as
(==) : a -> a -> Bool
(/=) : a -> a -> Bool
Meaning they work for any type, as long as both inputs (i.e., sides) are of the same type.
Currently, Elm will crash, which is arguably better than getting into an infinite or verrrry
long loop. Given that Elm does more than any language we know to detect problems before
you try to run a program, this is a bit disappointing.

6.1.2 Tuple to contents

We have already made extensive use of coordinate pairs, but sometimes we do not want
to deconstruct the tuple like this:
isOnRight point =

let
(x,y) = point

in
x > 0

and we’d rather use Tuple.first or Tuple.second:
isOnRight point = Tuple.first point > 0
Not only dowe save typing, butwe don’t need to define a variable for the y coordinatewhich
we won’t use.

6.2 Strings 112

6.2 Strings to contents

6.2.1 String to contents

Strings are for text data. Since your program is also text, we use double quotes (")
to separate them. A common mistake when using Strings is to miss a closing quote, but
if your editor has syntax highlighting, you should notice it right away. Even the listing
environment figures it out:
halfString = "Everything started off well, ...
anotherDefintion = 7
If you have a lot to say, then you will probably want to use triple double quotes:
longerStory = """It was a dark and stormy night,
and Cindy was worried about being home alone, when
suddenly---bzzzzzt---the power went out, and she
started to wish she had gone to her brothers boring
piano recital after all, but then again, she was..."""
Contrary to popular belief, you are allowed to divide your text intomultiple sentences inside
triple quotes. :) If you are going to do anything with the string, be aware that at the end of
each of your lines, Elm will introduce a ’
n’ (newline) character.

As we will see with Other Containers, Elm’s core packages are careful to use the same
function names for similar functionality across packages. Here are three:
String.isEmpty "" -> True
String.isEmpty "not empty" -> False
String.length "long" -> 4
String.length "short" -> 5
String.reverse "stressed" -> "desserts"
And we can convert toList and fromList, but we need to learn about Chars to be able to
do that.

But Strings are not just any containers, they contain the text from the most thrilling
screenplay to the most insipid text message ever sent, as well as every invoice and startup
business plan. There is so much we do with Strings that we need powerful functions to do
them.
String.repeat 3 "ho! " -> "ho! ho! ho!"
String.replace "broken" "fixed" "The bicycle is broken!"

-> "The bicycle is fixed!"
Wehave a special operator for joining strings (++), but this is just a nicerway of writing the
underlying function String.append. Although it is less easy to read, it is useful to have
when we are using >> and the higher-order functions we will learn about when we look at
the other containers.
"beginning" ++ "middle" ++ "end" -> "beginningmiddleend"

6.2 Strings 113

String.append (String.append "beginning" "middle") "end"
-> "beginningmiddleend"

String.append "beginning" (String.append "middle" "end")
-> "beginningmiddleend"

Sometimes we have a whole list of strings to put together, and String.concatmakes that
easy.
String.concat ["beginning", "middle", "end"] -> "beginnin←↩

gmiddleend"
Lots of data comes in parts joined by special characters. We can easily split them apart,

and put them back together:
String.split "/" "/var/www/html/" -> ["","var","www","html", ""]
String.join "/" ["","var","www","html", ""] -> "/var/www/html/"
"comma,separated,list" |> String.split "," |> String.join ":"

-> "comma:separated:list"
Exercise: If youwere strandedonadessert islandwithString.joinbutnotString.concat5,
could you make do? For convenience, we have some special versions of String.split de-
signed to help us handling text (at least in left-to-right languages):
String.words "To be or not to be" -> ["To","be","or","not","to","←↩

be"]
String.lines """Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;"""

-> ["I shall be telling this with a sigh"
, "Somewhere ages and ages hence:"
, "Two roads diverged in a wood, and —I"
, "I took the one less traveled by,"
, "And that has made all the difference."
]

There are some more functions which know about upper- and lower-case letters and
word spacing: You can be obnoxious and convert your text to shouting:
String.toUpper "I'm not shouting!" -> "I'M NOT SHOUTING!"
Or e e cummings-ify your writing:
String.toLower "I'm not shouting!" -> "i'm not shouting!"
You can remove extra whitespace (spaces, tabs and newline characters):
String.trim " I'm not \n shouting! " -> "i'm not shouting!"

Put spaces around something to line it up in a list:
String.pad 10 '~' "piglet" -> "~~piglet~~"

5Since you ask, String.concat was heavier and sunk with the ship!

6.2 Strings 114

If you are not concerned about niceties of language like word boundaries, you can also
slice Strings starting at any position and continuing as long as you like:
String.slice 2 5 "01234567" -> "234"
and if it is easier to count from the right, you can use negative numbers:
String.slice -5 -2 "01234567" -> "234"
This is a good example of insufficient test cases. If you think of test cases as being like
fences, with each fence preventing your pets from running off in a certain direction, then
these two examples are like putting up a single fence pole and wondering why your goats
are so excited, only to come back later and find out they ate all of your marigolds. What is
the simplest function which could satisfy those examples? How about
simpleSlice x y str = "234"
as a simple definition, which we know is totally undeserving of the name slice, but if you
are an automated testing environment, or if you are an automatic code generator trying
to generate efficient code from a specification, then you have to admit it is a pretty good
definition. I hope you will think about this example when you try to write test cases—or
examples for your own book—in the future!

A few more examples can help fence it in, and save your marigolds:
String.slice 0 -3 "01234567" -> "01234"
String.slice 0 5 "01234567" -> "01234"
String.slice 1 -4 "01234567" -> "123"
String.slice 2 20 "01234567" -> "234567"
These are not enough to prevent an obviously wrong function frommatching all these tests,
but they are probably enough for the “simplest” function to be the one we want, assuming
we can agree on what simple6 means. String.slice is pretty powerful, but you do have
to think about what different combinations of parameters do. In many cases, we can get by
with four special-case functions, which are more readable, because they are less powerful:
String.left 2 "01234567" -> "01"
String.right 2 "01234567" -> "67"
String.dropLeft 2 "01234567" -> "234567"
String.dropRight 2 "01234567" -> "012345"

Exercise: To prove that the above functions are all special cases of String.slice, im-
plement them using String.slice.

Sometimes, we don’t need to split or join our Strings, we just need to know what’s
in them. For example, we need to know if a file
filename = "topSecret.pdf"
is a pdf:
String.endsWith ".pdf" filename -> True
String.endsWith "topSecret" filename -> False

6Most Computer Scientists would probably use Kolmogorov Complexity, seehttps://en.wikipedia.
org/wiki/Kolmogorov_complexity.

https://en.wikipedia.org/wiki/Kolmogorov_complexity
https://en.wikipedia.org/wiki/Kolmogorov_complexity

6.2 Strings 115

or is topSecret,
String.beginsWith ".pdf" filename -> False
String.beginsWith "topSecret" filename -> True
or contains topSecret.
String.contains ".pdf" filename -> True
String.contains "topSecret" filename -> True
Of course, what we probably need to know is whether the file contains top-secret informa-
tion or not, and we might even need to look for encrypted information! There are highly
optimized libraries for this like Lucene7. The theory and algorithms for this are interesting,
and whether it is finding approximate matches in DNA sequences or potential plagiarism
in essay submissions, it is an active area of research and development in computer science.
One part of it is indexing, and we will bring together several of the standard packages to
create an indexing example which would be good enough for many smaller applications,
i.e., like a quick-search for this textbook! – TODO where is it?

We have already seen that we can easily split, process and join strings together, but
these operations can really add up if we are processing lots of strings. It might be more
efficient to keep track of where we find substrings so that we can eliminate a lot of false
matches before we actually start processing our Strings. For this, Elm gives us
String.indices "/" "/home/donald/documents/top_secret/stolen.doc"←↩

-> [0,5,12,22,33]
and since some people spell it indexes, the String library gives you that as a synonym.

Conversions to and from Strings are needed every time you want to display something
for the user, or process their typed input or a document. Turning a number into a String
is easy:
String.fromInt 123 -> "123"
String.fromInt -123 -> "-123"
String.fromFloat 123 -> "123"
String.fromFloat 3.9 -> "3.9"
But going the other way is complicated. What number should "cat" give you? Maybe 9 for
its nine lives? Instead, Elm gives you Nothing!
String.toInt "cat" -> Nothing
String.toFloat "cat" -> Nothing
However, if can just manage to type a valid number, then you will just get a number:
String.toInt "-42" -> Just -42
String.toFloat "3.1415" -> Just 3.1415
To understand the output, you will need to read ahead to Section 6.4.3.

7For some history see https://en.wikipedia.org/wiki/Apache_Lucene.

https://en.wikipedia.org/wiki/Apache_Lucene

6.2 Strings 116

6.2.2 Char to contents

Char defines the character type for Elm, which fortunately for us supports Unicode. Uni-
code is designed to support all human languages, and it includes all of the current and ex-
tinct languageswe know8. Single quotes (’) distinguish Chars from Strings (of characters),
but you can convert back and forth using
String.toList "wild" -> ['w','i','l','d']
String.fromList ['l','i','o','n'] -> "lion"
and if you only have one character, it is slightly more efficient to use
String.fromChar '1' -> "1"

These functions are mildly interesting, but we will have to come back to Char to see
what we can do with these and the rest of the library after we have learned about List.

6.2.3 Higher-Order String functions
Wehave alreadymentioned higher-order functions, which are functions with another func-
tion as an input, but having discovered Strings, we can really make use of them. Let’s first
look at their type signatures:
map : (Char -> Char) -> String -> String
filter : (Char -> Bool) -> String -> String
any : (Char -> Bool) -> String -> Bool
all : (Char -> Bool) -> String -> Bool
What they all have in common is that their first arguments are in parentheses, (). For
example (Char -> Char) means that, instead of having two Char inputs, String.map
has a single function as an input, and that function has one Char input and a Char output.

Knowing the type signatureprettymuchgives awaywhatString.map andString.filter
do. Think about it for a minute, what can you do with a function which turns a Char into
another Char and a String, which is a bunch of Chars stuck together?

Still thinking? I don’t see smoke coming out of your ears, so think a bit harder. At this
point, you are probably thinking, a String is a bunch of Chars and we have a function to
transform Chars so we should probably transform the Chars one at a time, and reassemble
them as a String.
map (\c -> '^') "a/b/c" -> "^^^^^"
map (\c -> if c == '\' then '/' else c)
"\home\cindy\documents\fluffy.doc" -> "/home/cindy/documents/←↩

fluffy.doc"
And we could use String.map to reimplement some functions we already have:
myStringToUpper = String.map Char.toUpper
myStringToLower = String.map Char.toLower

8The lack of future languages either indicates a dead end in our civilization coming up, or a lack of time
travel.

6.2 Strings 117

Here we see the advantage of partial evaluation, since we do not have to come up with a
name for the argument:
myStringToUpper picolo = String.map Char.toUpper picolo
When using standard functions like map, whose type signatures are known, there shouldn’t
be any confustion when using partial application to define a new function, but for new or
seldom-used functions, it can be helpful to write out the argument, because that makes it
obvious what is a function, since it has an input.

Similarly, what could String.filter do with the function Char -> Bool it takes as
an input? Here are some hints:
String.filter Char.isDigit "H0H 0H0" -> "000"
String.filter Char.isAlpha "H0H 0H0" -> "HHH"
String.filter (\ c -> Char.isAlpha c || Char.isDigit c)

"H0H 0H0" -> "H0H0H0"
String.filter Char.isAlphaNum "H0H 0H0" -> "H0H0H0"
Again, these are not enough examples to completely specify the function, but you should
be able to add enough examples.

String.any andString.all also have an inputChar -> Bool, function but instead
of returning a String, they return a Bool. Try to guess what they do. Exercise: write down
your definitions in English. Do your definitions match these examples?
String.any isDigit "H0H 0H0" -> True
String.any isDigit "1234576" -> True
String.any isDigit "Santa" -> False
String.all isDigit "H0H 0H0" -> False
String.all isDigit "1234576" -> True
String.all isDigit "Santa" -> False
They probably do, because the function calls can (almost) be completed into English sen-
tences: Are any of the characters isDigits in "H0H 0H0"? Are all of the characters
isDigits in "H0H 0H0"?

You are probably feeling pretty good now! You have learned to guess what functions do,
just based on their types. This is a taste of what is possible when thoughtful designers use
strong typing. The next two functions are a bit more complicated. Let’s look at their type
signatures.
foldl : (Char -> b -> b) -> b -> String -> b
foldr : (Char -> b -> b) -> b -> String -> b
This time, in addition to the String and Char types, there is a type variable b. Just like a
normal variable, a type variable can be anything, but in this case, it is a type. This means
that we can use one function with different types of inputs and outputs. We call this poly-
morphism, which is Greek for “many shaped”. Let’s look at some simple examples, where
b=Int.
foldl : (Char -> Int -> Int) -> Int -> String -> Int
The simplest example is

6.2 Strings 118

String.foldl (\ c i -> 7) 0 "any string" -> 7
String.foldl (\ c i -> 7) 0 "" -> 0
The first function ignores the characters in the string and always returns 7, as does the
invocation of foldl, unless the String is empty. Why?

On the other hand,
String.foldl (\ c i -> if c == '1' then 1 else 0) 2 "11b" -> 0
String.foldl (\ c i -> if c == '1' then 1 else 0) 2 "111" -> 1
String.foldl (\ c i -> if c == '1' then 1 else 0) 2 "b11" -> 0
String.foldl (\ c i -> if c == '1' then 1 else 0) 2 "" -> 2
ignores the i:Int input, and always returns 1 if the last character is a '1'. Why does only
the last character matter? This is where the “l” in String.foldl comes in. “L” stands for
left to right, and we can write out the application as follows:
String.foldl oneOrZero 2 "11b"

-> String.foldl oneOrZero (if '1'=='1' then 1 else 0) "1b"
-> String.foldl oneOrZero 1 "1b"
-> String.foldl oneOrZero (if '1'=='1' then 1 else 0) "b"
-> String.foldl oneOrZero 1 "b"
-> String.foldl oneOrZero (if 'b'=='1' then 1 else 0) ""
-> String.foldl oneOrZero 0 ""
-> 0

where
oneOrZero = \ c i -> if c == '1' then 1 else 0
In this example we have processed the String one Char at a time, starting from the left.
That explains the “l” what about the “fold”? This could be in analogy with folding nuts into
batter while making a nut cake.

Exercise: Write this in Elm.
Did you get

String.foldl spoon batter nuts
or
String.foldl batter nuts spoon

In case you are not a baker, think about the last time you prepared for a long trip. You
put on your felt hat. You lay out your blanket, put some nuts near the end, fold it over, add
some more nuts, folded again. Not how you prepare for long trips? You might have trouble
getting the hang of foldl, and need to use recursion instead!

6.3 Polymorphism and Standard Interfaces 119

Or maybe this picture would help.

map f

a0

a1

a2

...

an−1

an

b0

b1

b2

...

bn−1

bn

f
//

f
//

f
//

f
//

f
//

fold g binit

a0

a1

a2

...

an−1

an

binit

b0

b1

b2

...

bn−1

bn

g
&&

g
&&

g
&&

g
&&

g
&&

��

��

��

��

��

��

inputs

outputs

6.2.4 Left versus Right
To easily see the difference between foldl and foldr, consider these examples:
String.foldl (\ c soFar -> "("++String.fromChar c++soFar++")") ←↩

"" "abc"
-> "(c(b(a)))"

String.foldl (\ c soFar -> "("++soFar++String.fromChar c++")") ←↩
"" "abc"
-> "(((a)b)c)"

String.foldr (\ c soFar -> "("++String.fromChar c++soFar++")") ←↩
"" "abc"
-> "(a(b(c)))"

String.foldr (\ c soFar -> "("++soFar++String.fromChar c++")") ←↩
"" "abc"
-> "(((c)b)a)"

Ok, you may have to think about it a bit, stand on your head while looking in a mirror, then
ask yourself: What determines the inner-to-outer order with respect to parentheses? What
determines the left-right order in the output?

6.3 Polymorphism and Standard Interfaces to contents

We just saw that some functions like String.foldl are really a whole family of func-
tions because their type signatures contain type variables. This is called polymorphism, but it
is the most restricted type of polymorphism. Let’s look at how Elm supports it, and why we
like polymorphism. Ok, we’ll admit that we like polymorphism because we’re lazy. We don’t
want to remember two function names if we can get away with one, and polymorphism lets
us do this. The different types of polymorphism are

6.3 Polymorphism and Standard Interfaces 120

parametric The signature contains type variables, and the different versions of the
function are parametrized by the types assigned to those type variables.
This polymorphism is structural because it only depends on the structure
of how types are used. Any functions which are needed are supplied as ar-
guments, i.e., for foldl this was the combining function. Knowing that
however, we implemented a parametricly polymorphic function has to
work for every type, and therefore cannot rely on any of the operations
or properties of that type, allows us to deduce properties which are called
free theorems.9

ad hoc In this case we use the same symbol or function name for different func-
tions paternalistically. For example, many languages allow + to both add
numbers together and join strings, even though these are really different
functions. Notably 1+2 = 2+1 but "cat"++"dog" 6="dog"++"cat"!10
Computer scientistswhounderstandmathdon’t like adhocpolymorphism
for this reason. It creates a complicated type system and then hides it
from the user, which makes it easier to get the right answer without un-
derstanding why, but makes it harder to know your answer is right.

subtype If you think of all possible values as a set, then types are subsets. Elm’s
basic types are disjoint subsets, but record types can intersect each other
(but don’t have to). Let’s look at an example. If your model contains

{ time : Float, positions : List (Float,Float) }
And you have functions:

clock model = ... model.time ...
ships model = ... model.positions ...

Then what are the types for clock and ships? One uses .time and the
other .positions.

clock : { a | time : Float } -> Shape Msg
ships : { a | positions : List (Float,Float) }

-> Shape Msg
You should read these types as

“any record with a Float field labelled by time,”
or

“any recordwith a fieldpositionsof typeList (Float,Float).”
Both of these are subsets of

{ a | time : Float
, positions : List (Float,Float) }

But note that neither are subtypes of
9Originally freed byWadler [Wad89], but you can find the basic idea liberated from the discrete mathemat-

ical notation on Reddit https://www.reddit.com/r/haskellquestions/comments/6fkufo/
free_theorems/.

10This property is called commutativity, and string concatenation does not have it!

https://www.reddit.com/r/haskellquestions/comments/6fkufo/free_theorems/
https://www.reddit.com/r/haskellquestions/comments/6fkufo/free_theorems/

6.4 Containers 121

{ time : Float, positions : List (Float,Float) }
because that type doesn’t include records with a three or more fields.
This explains subsets and intersecting sets. How do we get disjoint sets?
Think about it for a while11. Now does it make sense that records in Elm
use set braces, {}?

duck typing In languageswithout types orwithweak enforcement, duck12 typing leaves
it up to the programmer to test the capabilities of each object. The prob-
lemwith duck typing is that, too often, theway you find out that your data
does not have the type you thought it did is when your program crashes
or produces an incorrect result.

6.4 Containers to contents

Containers are things for carrying and storing other things. In real life, we have boxes,
bags, baskets, envelopes, and so on. Each one has advantages and disadvantages. Elm has
these too, and just like we have English words which apply to many or all containers (big,
small, put in, take out, ...), we have similar Elm functions. If you just read the last section,
you are thinking, this sounds like polymorphism, and it is.

In many languages, there are built-in ways to capture this similarity via ad hoc poly-
morphism. In Haskell, type classes define sets of functions which types of a certain class
must have. In object-oriented languages, classes can inherit properties (including func-
tions) from super classes, and some languages allow virtual classes (which cannot be used
directly, but only via subclassing). Many languages also support generic programming13
which goes beyond defining common functions for a class, to creating common algorithms
which can then be specialized for each instance, leading to more efficient code.

In Elm, we don’t have these things. What we have are a compact set of standard libraries
which are pretty careful to use the same name for functions which do the same thing. This
makes it easier to learn to use multiple containers, and perhaps even easier than in other
languages, but it does not allow us to write functions once and use them with different
containers, which all of the above approaches would allow. Given the current uses of Elm as
a web programming language, this is not a very big barrier. Just like a kitchen gadget, if you
buy something with too many bells and whistles, you may never figure out how to use it
for basic cooking, or it may do something unexpected, spoiling your recipe. Elm is for basic
cooking.

We start with the container List, both because we can do a lot with Lists and because
it is an easy container to visualize.

11How about {a:Int} and {a:Float}?
12This is based on the saying “If it walks like a duck and it quacks like a duck, then it must be a duck.” See

https://en.wikipedia.org/wiki/Duck_typing for a complete definition.
13genericity: https://en.wikipedia.org/wiki/Generic_programming

https://en.wikipedia.org/wiki/Duck_typing
https://en.wikipedia.org/wiki/Generic_programming

6.4 Containers 122

6.4.1 List to contents

A container type must be a parametric type, sometimes called a constructor type. In
this case, if element is a type, then List element is also a type. It is the type of lists of
elmements. For example

[1,2,3] : List Int
["cat","dog"] : List String
[[1],[1,2],[1,2,3]] : List (List Int)

Yes, you can have a list of lists. Who would ever need that? You will be surprised how often
it is useful, and even necessary, to use nested lists. Some lists are much easier to build as a
list of lists, and then collapse together using
List.concat : List (List a) -> List a
We use this a lot when generating code, like in SD Draw, because some things take up one
line, and some more than one line. Tip: This is also an easy way of combining the output of
functions, some of which generate no elements. Just return [] an empty list in that case,
and List.concat effectively removes the empty lists when combining.

But beware of type errors when nesting multiple levels deep. It is easy to generate an
error like this where different elements of a list have different types. The underlying ele-
ment type is the same, but the level of nesting is different. It is easy to see here, but it can be
puzzling when all of the elements of the outermost list are returned by different functions.
-- TYPE MISMATCH -------------------------- ID/Animation1.←↩

elm

The 3rd element of this list does not match all the ←↩
previous elements:

4| [[1]
5| , [1,2]
6|> , 3
7|]

The 3rd element is a number of type:

number

But all the previous elements in the list are:

List number

Hint: Everything in a list must be the same type of value. ←↩
This way, we never

run into unexpected values partway through a \elm{List.map←↩
}, \elm{List.foldl}, etc. Read

6.4 Containers 123

to learn how to ``mix'' types.

6.4.2 List Queries
We can find out what is in the list with
member : a -> List a -> Bool
We have seen List.concat and List.member operating on any type of list. For joining
lists together, this makes sense, we don’t really need to know what is in two boxes to dump
one into the other. But for membership, actually we do. How will we know if something is
in a list, if the element type is not comparable? Fortunately, most types you will construct
are comparable, but one isn’t. If you try this
listOfFunctions =
[\ x -> 2*x
, \ x -> 3*x
]

badTest =
List.member sqrt listOfFunctions

you won’t get a compiler error, but you will get a run-time error
Error: Trying to use `(==)` on functions.
There is no way to know if functions are "the same" in the ←↩

Elm sense.
Read more about this at https://package.elm-lang.org/←↩

packages/elm/core/latest/Basics#== which describes why ←↩
it is this way and what the better version will look ←↩
like.

Unfortunately, you won’t even see this error unless you open the JavaScript console in your
browser window. Now we can easily see that sqrt is not in the listOfFunctions, but, in
general, it is a hard problem. In fact, it is undecidable, which we can take to mean there is
no method of deciding whether they are the same in a finite number of steps, for any given
pair of functions.

This is not great! It would be better if Elm didn’t let us get into this situation, but to
avoid it, it would need to restrict some of the list functions to comparable elements. We
could do this ourselves if Elm had type classes. But in practice, Elm programs just don’t
crash, so Elm programmers don’t seem to fall into the trap of comparing functions. If you
learn by trying to break things—which can be a great learning strategy—you can definitely
do so here.

Writing List.member in another way:
isAMember thing list = List.any (\ elem -> thing == elem) list
We can see exactly why List.member requires comparable elements. You may have no-
ticed that we haven’t learned List.any yet. This is a good example of effective ad hoc
polymorphism—our knowledge of String.any is transferable.

6.4 Containers 124

Let’s look at some more examples
List.any isBig [8, 9] -> False
List.any isBig [9,10] -> True
List.any isBig [12,13] -> True
Can you define isBig so that it works for all examples?
isBig x = x > 10

If one is not enough, we also have List.all:
List.all isBig [2, 3] -> False
List.all isBig [2,13] -> False
List.all isBig [12,13] -> True

Sometimes we need to check if a list is empty:
List.isEmpty [] -> True
List.isEmpty [7] -> False
List.isEmpty [[]] -> False
That last one was tricky! A List containing an empty List is not empty.

Of course, we have been using Lists since day 1, when we put our Shapes between []s.
There are a few more ways to create them:
List.singleton "Hello List" -> ["Hello List"]
which isn’t really needed, because we could type ["Hello List"] directly, but may be
helpful in defining other functions.

If nobody says Hello back, you can try repeating yourself:
List.repeat 3 "Hello List" -> ["Hello List","Hello List","←↩

Hello List"]
I use this a lot together with other List functions.

Another thing we need a lot of is creating a sequence of numbers in order:
List.range 1 10 -> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
List.range 10 1 -> []
List.range 99 99 -> [99]
Note that the numbers have to be in order, and they have to be Ints, not Floats, and defi-
nitely not Strings or Chars. If you need the alphabet, you need to use Char.fromCode
List.range 1 25 |> List.map Char.fromCode

-> ['A','B','C','D','E','F','G','H←↩
','I','J','K','L','M','N','O','←↩
P','Q','R','S','T','U','V','W←↩
','X','Y','Z']

Yes, I know, we haven’t learned about List.map yet, but List.map works very much like
String.map.

Let’s jump to more advanced mapping. List.indexedMap maps a function over two
Lists, but you only have to specify the second one! the first one is the index, or position
of the second input in the List starting with 0. If you want to put things in grid

6.4 Containers 125

you can use the index to change the x coordinate
List.indexedMap
(\ idx shape -> shape |> move (10 * toFloat idx,0))
[circle 4 |> filled red
, square 8 |> filled green
, oval 4 8 |> filled yellow
]

Which can be really useful if you mix it with text

List.indexedMap
(\ idx char -> char |> String.fromChar

|> text
|> fixedwidth
|> filled purple
|> move (0,20)
|> rotate (degrees -22 * toFloat idx))

(String.toList "Hello Circle!")
And if you need a 2d grid, you can nest List.indexedMaps:

List.indexedMap
(\ yIdx stencil ->

(List.indexedMap
(\ xIdx clr ->

stencil |> filled clr
|> move (10 * toFloat xIdx,10 * toFloat ←↩

yIdx)
)
[red, green, yellow]

)
)
[circle 4, square 8, oval 4 8]

|> List.concat

6.4 Containers 126

Notice that the variable yIdx has a larger scope. We could use it to change the colours, for
example by

[red, rgb 0 (75 + 75 * toFloat yIdx) 0, yellow]

If you have programmed with a language containing loops, you might be thinking that this
structure resembles a loop. A couple of things:

1. the loop structure looks simpler;
2. the {}s in other languages turn into ()s;
3. unlike the loop, we can easily move the “body” outside the loop by using a named

function, rather than the lambda function; and
4. unlike the loop, the map construction guarantees that the values in the list can be

computed in any order, which is really helpful if you have a multi-core processor—
something even today’s least-expensive smartphone has—and want the compiler to
automatically parallelize your code to take advantage of those multiple cores.

Whydoesn’t Elmhave a simplerwayof expressing this? It is a trade off. Having simplerways
of using features in special cases can save typing, and make some code more transparent,
but it always means more for the beginner to learn.

There are some other maps, List.map, List.map2, ... , List.map5. We have already
seen simplemaps. The numberedmaps differ in taking functions withmore than one input,
up to five, to be specific. They are good for combining multiple lists. It’s hard to come up
with an example with five lists. How about this?

List.map5
(\ size clr x y toShape ->

circle size
|> toShape clr
|> move (x,y)

6.4 Containers 127

)
[1, 2, 4, 8, 16, 32, 64]
[red, green, yellow, red, green, yellow, red, green]
[-90, -86, -80, -70, -50, -20, 65, 80]
[0, 5, -10, 15, -20, 25, -30, 35]
[filled, outlined (solid 1)
, filled, outlined (solid 2)
, filled, outlined (solid 3)
, filled, outlined (solid 4)
]

Can you see that this gives you

Probably not! It would definitely have been easier to write this without List.map5, but
after puzzling over it, you should have a very good idea what the numbered maps can do.
When are you going to need this? Putting two lists together happens all the time. Sticking
with graphics, we often need to make a “natural” scene, like a forest or stars in the night
sky. If we already have a list of tree Shapes, we can combine it together with a random
list of points. If we are talking about trees which grow at different rates, then we could use
List.map3 to add in a third list of random numbers to add a random scaling.

Hopefully, everyone lovesmapping. Themoreweuse it, themore likely compilerwriters
will figure out how to use the inherent parallelism to generate code to take advantage of
the tens of thousands of threads of execution possible on the Graphics Processing Unit on
even an old GTX card or recent iPhone14. But what about when your computations are not
independent of each other?

What if we want to visualize a list of areas: 10,37,28,12,2,19,19,14,4,28. We could of
course draw a bar chart, but a bar chart is really a way of showing (linear) numbers. It might

14Yes, even an old GPU needs to run tens of thousands of threads in parallel to use its power: https:

//stackoverflow.com/questions/6490572/cuda-how-many-concurrent-threads-in-total, and today the same is true of a fan-
less M1 MacBook, and soon it will be true for smartphones. For a comparison of M1 processors: https:

//en.wikipedia.org/wiki/Apple_A14, which doesn’t take into account that arithmetic units themselves need to run
multiple computations in parallel for top efficiency, as explained in the previous stackoverflow post.

https://stackoverflow.com/questions/6490572/cuda-how-many-concurrent-threads-in-total
https://stackoverflow.com/questions/6490572/cuda-how-many-concurrent-threads-in-total
https://en.wikipedia.org/wiki/Apple_A14
https://en.wikipedia.org/wiki/Apple_A14

6.4 Containers 128

be more useful for your readers to see the areas as squares or circles:

We can accomplish this with a function which keeps track of what has gone before. Like a
map with state. Remember the update : msg -> model -> model function? Replace
the msg typewith an input typewhich could be a number—as in the areas example—or any
other type. Now replace the modelwith amore general state. What we need is a function
which processes a whole list of inputs to this generalized
update : input -> state -> state
That function is a fold, and comes in two flavours:
List.foldl : (input -> state -> state) -> state -> List input

-> state
List.foldr : (input -> state -> state) -> state -> List input

-> state
Onewhichprocesses the inputs starting from the left andone starting fromthe right. Putting
squares shoulder to shoulder can be accomplished by either, if we have an update function,
which in this case we’ll call addArea:

List.foldl
addArea
((-90, red), [])
areas

|>
Tuple.second

This is a typical pattern for using either fold. The state type is a pair, with the first part
being what we need to remember from previous inputs—the state—and the second part
being a list which is almost a map of the input, except for the need for memory. We have to
start the fold off with an initial state, in this case

((-90, red), []) : ((Float, Color), List (Shape msg))
Often, we don’t need the state type except for the list, so we compose with Tuple.second.

Once we establish that the fold pattern works, we reduce the problem of processing the
whole list to processing one input at a time:
addArea newArea ((currentPosition, clr), shapesSoFar) =
let

We start with some advanced math to calculate the width of the square with the desired
area (ignoring negative inputs):

6.4 Containers 129

width = if newArea > 0 then
sqrt newArea

else
0

in
After this square is shouldered in, the next square will go width units to the right:

((currentPosition + width
To make things look nicer, we cycle through three colours, but in a real visualization, that
would be missing an opportunity to encode another aspect of the data into the colour, like
the per-capita avocado consumption.

, if clr == red then
green

else if clr == green then
yellow

else
red

)
Finally! we draw the square, and move it into place. Note that moving along by width
makes sense for the left-hand side of the squares. If were aligned by the middle of the
squares, we would need to increment by the current and future squares, which would make
the state more complicated. So let’s not do that! Since squares come centered on their
centres, we need to shift them by 0.5*width, both horizontally and vertically. As an exer-
cise, modify addArea so the squares are lined up on their right-hand sides. (Surprise! the
code is the same, but the explanation is different.)

, (square width
|> filled clr
|> move (0.5*width + currentPosition, 0.5*width

)
:: shapesSoFar

)
Let’s look at another example, compositing a collage, or, as you would have called it in
kindergarten, gluing shapes:

List.foldl glue blankPage [apple,banana,carrot]
means calling glue three times, once for each shape in the list:

blankPage
|> glue apple
|> glue banana
|> glue carrot

6.4 Containers 130

If you don’t like the order, you can start from the right:
List.foldr glue blankPage [apple,banana,carrot]

which gives
blankPage

|> glue carrot
|> glue banana
|> glue apple

Before we finish with folding, let’s think about those 10,000 cores again! Actually, let’s
think about millions of cores in the server farm of a pirate consortium. They really don’t
want to wait for a single core to fold their data. And they don’t! Because they ensure that
their update function has special properties.

Let’s say they want to add up their ill-gotten cash. They could use
List.foldr (+) 0 [ill,gotten,cash]

Starting with 0 and adding one amount after another. But(
xill+ xgotten

)
+ xcash = xill+

(
xgotten+ xcash

)
. (6.1)

This is called associativity, which practically means we can put the brackets anywhere. If
we did have a server farm, we could divide up the task, giving two numbers to each core

6.4 Containers 131

to add up until we run out. Then taking the new list, and doing the same thing again. And
repeating until we are down to a single number. This could use a lot of cores to reduce our
work, but it only works for functions which are associative, which, if you didn’t notice, also
requires that the input and state types be the same.

You could call this a multi-core fold, but most languages call it reduce. We don’t have
one in Elm. Browsers don’t allow us to access multiple cores anyway, but if you are thinking
about a career in data science, it might be something to look out for in your next program-
ming language.

Addition also has another property, called commutativity, i.e.,
1 + 1 = 1 + 1

oops, bad test case, I meant
1 + 2 = 2 + 1

I’m sure you knew what I meant. The order doesn’t matter. If you are running on a dis-
tributed cluster, where you really don’t knowwhich coreswill finish first and send their par-
tial sums back, it is handy to know that order doesn’t matter, so you can just add up partial
sums in whatever order they happen to arrive. It would be good to have a special reduceCom-
mutative which can take advantage of this property. And now that you have chopped your
computation time down by a factor of 10,000, notice that you can also save one operation,
since you don’t need to add 0 this way!

Finished with mapping? There is a special type of mapping which makes sense for lists.
Sometimes we need to map a function which turns elements into lists over a List, but we
don’t want a List of Lists! We have a function for that.
List.concatMap : (a -> List b) -> List a -> List b
which we could build out of two other functions
List.concatMap = List.map >> List.concat
This also works for mapping functions which may return empty Lists, like when people
stop paying attention to your lecture about Lists and you need to collect their cell phones.
Some people don’t have one, so cellPhones returns [], while others have several burner
phones—don’t ask why.

List.concatMap cellPhones audience
Similar to mapping, we also have filtering, which we saw previously for Strings. Say

we need to remove empty lists from a List of Lists.
List.filter (List.isEmpty >> not) [[apple],[],[apple,banana]]

-> [[apple],[apple,banana]]
But some functions, like String.toInt, don’t return Lists, they return Maybes, so we
have another version of this:
List.filterMap String.toInt ["1","2","3.14"] -> [1,2]

Why do we have so many ways of mapping and filtering? Because they are incredibly
useful.

6.4 Containers 132

But where do all these Lists come from? We have already seen that putting [stuff]
inside square brackets creates a list. Thisworks for any size, as long asweknow the elements
when we are writing the program. Definitely works for one element, but sometimes it is
convenient to have a function for that
List.singleton one -> [one]
Where arewe likely to use this? Whenwe need tomix a functionwhich returns one element
with functions which return Lists:

[drawStudents 7, drawTeacher >> List.singleton]
Yeah, it is pretty rare!

We can also put Lists together
[1,2,3] ++ [4,5,6] -> [1,2,3,4,5,6]
which if you prefer words to symbols can be accomplished with
List.append [1,2,3] [4,5,6] -> [1,2,3,4,5,6]
and if you only want to add one element to the beginning of a List:
1 :: [2,3,4] -> [1,2,3,4]
This last function is called “cons”, and has a long history in programming languages, going
back to Lisp15. It has a special role, because there is only one way of decomposing a List
into the first element (called the head) and the rest (called the tail). This is not true for (++)!
So if we cannot do what we need with a combination of mapping, folding, and filtering, and
we actually have to figure out a new function, we probably need to break it down by cases:
addUp listOfNubmers =
case listOfNumbers of

oneNumber :: restOfNumbers
-> oneNumber + (addUp restOfNumbers)

[]
-> 0

(Note that this function already exists, as
List.sum [1,10,100] = 111
as does
List.product [2,3,5] = 30
As a fun exercise, why don’t you modify addUp to make multiplyAcross?) Note that
addUp only needs to add one number! If you have two or more numbers, it calls in a friend
(conveniently also calledaddUp to handle the rest. Wewill talkmore about this in Chapter 7.

If we don’t want to use a case expression for this, for whatever reason, we also have
functions to get the head and tail of a list:
List.head [1,2,3] -> Just 1
List.head [] -> Nothing

15where list processing really took off https://en.wikipedia.org/wiki/Cons.

https://en.wikipedia.org/wiki/Cons

6.4 Containers 133

and
List.tail [1,2,3] -> Just [2,3]
List.tail [1] -> Nothing
List.tail [] -> Nothing
Note that both return Maybe wrappers around the element type. More about that in the
Results section, but why can we not just return the element type? Well, we have to do
something for empty lists. So just like converting a String into an Int, we cannot count
on List.head always working. Many other languages have functions to return the head of
a list which will crash on empty lists—including languages which have features like Maybe,
but inscrutably let you turn themoff. Of course, everyone is in ahurry, and youmaybedoing
a quick experiment which you knowwill succeed, or you don’t care if your program crashes.
But more often than you would think, those bits of experimental code end up in mission-
critical applications. Elm doesn’t let you do that. Since we do have case expressions which
safely deconstruct lists, why do we need these? Well, they are convenient for constructing
conditions in if expressions like this

if model.hasRainbow == True &&
List.head model.customers == Just "unicorn" then

...
It does often happen that youwant to take the tail and use it in some list processing, and

if it happens to be empty, no big deal. Except that you cannot do that because of the Maybe
wrapper. In that case, you can use List.drop 1. Notice the first argument. In general,
you can List.take or List.drop any number of elements.
List.take 5 [1,2,3,4,5,6,7,8] -> [1,2,3,4,5]
List.take 5 [1,2,3,4] -> [1,2,3,4]
List.drop 5 [1,2,3,4,5,6,7,8] -> [6,7,8]
List.drop 5 [1,2,3,4] -> []
This can be handy if you are running a contest, and want to take the top three:

scores
|> List.take 3

Those are the first three in the list. To avoid a lot of people shouting at you, you probably
want to List.sort the list first. :)

scores
|> List.sort
|> List.take 3

This works as long as your list elements are comparable, as we discussed above.
List.sort : List comparable -> List comparable
To keep the code simple, it is good to think ahead to how things should be compared.
scores = [("Abdul",7),("Betsy",6),("Crystal",8)]
will probably not give you the result youwant, because it will sort by the name, which comes
first in the pairs, whereas

6.4 Containers 134

scores = [(7,"Abdul"),(6,"Betsy"),(8,"Crystal")]
will give you what you want, since the judges’ score comes first.

In complicated cases, you can specify your own ordering mechanism with
sortWith : (a -> a -> Order) -> List a -> List a
which takes an additional input—the comparator—which returns a value of
type Order

= LT
| EQ
| GT

This could be useful if you have a weighted scoring system like
scores

|> List.sortWith
(\ (judge1A,judge2A,nameA) (judge1B,judge2B,nameB) ->

if judge1A + 2*judge2A < judge1B + 2*judge2B then
GT

else if judge1A + 2*judge2A > judge1B + 2*judge2B then
LT

else
EQ

)
|> List.take 3

But if you just want to sort on one value, even if it is in the wrong place in your pair or is
part of a record you can use
sortBy : (a -> comparable) -> List a -> List a
For example, to sort according to the .score field in a record, of type
scores : { name : String

, score : Float
, country : String
, grade : Int
}

you can use
scores

|> List.sortBy .score
|> List.take 3

The same thing would work with Tuple.second. And if you end up with the result in the
opposite order, we have the handy
List.reverse [1,2,3,4] == [4,3,2,1]
which would be useful if instead of a (positive) score, you recorded the times in time trials:

6.4 Containers 135

scores
|> List.sortBy .elapsedTime
|> List.reverse
|> List.take 3

This is a great example of howwe can do a lot by composing functions, once we get to know
the libraries. This is why pretty much all non-dead programming languages are picking up
functional functionality!

Sticking with our contest theme, if we only want one winner, we can use
List.maximum : List comparable -> Maybe comparable
or
List.minimum : List comparable -> Maybe comparable
depending on whether we are sorting by score or elapsed time. The interesting thing is
that we don’t need to sort a list to find the max or min, but we do to pick out the top 3! So
these functions will save you some electrons. But unlike List.take 3, they don’t return a
possibly empty List. Instead, they return a Maybe. So your codemay have to be a bit more
complex. Even if you are reporting the top 3, however, it is probably a good idea to announce
that nobody finished the race rather than just not announcing anything, otherwise people
may assume your app is broken. This is a special case of Norman’s principle of feedback.

case scores |> List.maximum of
Just (score,name) -> name ++ " wins!" |> text |> filled green
Nothing -> "Nobody finished :(" |> text |> filled ←↩

red
By now, you are probably thinking the list of List functions goes on and on. Well, it

doesn’t there are just a few odds and ends. Sometimes we need to know how big a list is
List.length [apple,banana,carrot] -> 3
Or we want to put our list together for display
List.intersperse ", " ["apple","banana","carrot"]

|> String.concat
-> "apple, banana, carrot"

Or to separate out two Lists from a List of pairs with List.unzip:
scores

|> List.sort
|> List.take 3
|> List.unzip -> ([8,7,6]

, ["Crystal","Abdul","Betsy"])
Or List.partition the records of students who completed their homework, from those
who didn’t:
(onTimeStudents, tardyStudents) =

studentRecords
|> List.partition .homeworkComplete

TODO TODO TODO - this should be inside containers

6.4 Containers 136

6.4.3 Result, Maybe to contents

It is daunting to design a complex new application, and usually, we are happy to get the
basic interactions to work. But what happens when things don’t go according to plan? How
do we handle bad data? How do we handle lost network connections?

Elm’s compiler helps us eliminate most of the cases of crashing apps, simply by making
sure that we handle all cases. A key part of how this works is the use of Maybe and Result
types.

It truly is annoyingwhenmuchor even themajority of our code is about handling errors,
but think about things from the user’s point of view. I’m sure you have tried to use a web
application and received something like this

Contrary to urbanmyth, government contracts do not require a quota of cryptic errors. This
is just a sign that even spending a billion dollars on software engineers doesn’t guarantee a
good job.

You probably think I’m going to say, well they didn’t have access to the best tools. Well,
it turns out, this unnamed corporation invented some very good tools you probably use
every day, and supported the development of multiple functional languages! Let’s see how
the free and open-source Elm handles it.

Elm has a carrot and stick approach to handling errors: the stick is the failure to compile
code which does not handle all cases, while the carrot is andThen, which we are going to
learn about now.

At this point, you may wonder why error handling is in the Containers section, right!
Well, that is the beauty of the Elm approach: thinking of the valid values as being wrapped
in a safety blanket—the blanket being the container.

Let’s look at these two types together:
type Maybe a

= Just a
| Nothing

and
type Result errTy ty

= Ok ty
| Err errTy

6.4 Containers 137

They each have two constructors, and act very similarly to Lists with at most one element:

List Maybe Result
[value] Just value Ok value

[] Nothing Err "Oops!"
In this example, the error type associatedwith Result is String. This is a common choice,
which makes it easy to report errors to the user, but if our goal is to fix things without
reporting or in addition to reporting to the user, using a Stringmeans that we cannot rely
on the compiler to tell us if we have accounted for all possible errors in a case expression.

We can easily transform back and forth from Maybe to List values, via the standard
function
List.head : List ty -> Maybe ty
and
fromMaybe : Maybe ty -> List ty
fromMaybe m =
case m of

Just value -> [value]
Nothing -> []

We could do the same for Result, or compose these functions with the library functions
Result.toMaybe : Result errTy ty -> Maybe ty
Result.fromMaybe : errTy -> Maybe ty -> Result ty errTy
Note that, here, we gain/lose information in the not-normal cases. A List with multiple
elements loses everything after the first element. An error Result loses the attached in-
formation about the error type (:errTy above). Since Maybe has the least information, it
cannot lose anything.

In many cases, we need a value, whether the computation to produce one works or not.
If it fails, we need to have a fall-back value. For this, both libraries provide withDefault:
Maybe.withDefault : ty -> Maybe ty -> ty
Result.withDefault : ty -> Result ty errTy -> ty
This is typically how you use it: Get a list of numbers from somewhere:
commaSeparatedFloats = "1,2,3.14,,5.25,six,7,6,5,4, 3 , 2 ,1"
Now, split the string at the commas, trim the extra spaces, convert each trimmed String
toFloats, then convert the resultingMaybe Floats intoFloats by taking the recognized
numbers and replacing the errors with the default value 0:
numbers =
commaSeparatedFloats

|> String.split ","
|> List.map String.trim
|> List.map String.toFloat
|> List.map (Maybe.withDefault 0)

6.4 Containers 138

That was a blizzard of functions, let’s take a graphics break, and show how to use some
to make a bar chart which grows.
myShapes model =
let

oneBar x = rect 4 x
|> filled green
|> move (0,0.5*x) -- align bottoms
|> scaleY (if model.time < 5 then

model.time
else

5
)

in
List.indexedMap
(\ idx x -> oneBar x |> move (-60 + 5 * toFloat idx, 0))
numbers

Do try this at home16!

How container-like are these? Can we put things in them? Check. Can we take things
out? Check. What aboutmapping? Yes, we can applymapping in order to operate on values
without unwrapping them. For example, we can calculate the area of a rectangle whose
length and width may be given as Strings?
Maybe.map2 (*)
(String.toFloat "4")
(String.toFloat "3") -> Just 12

Maybe.map2 (*)
(String.toFloat "four")
(String.toFloat "3") -> Nothing

The full set of mapping functions allows us to continue a computation using inputs which
may ormay not be available. Rather than checking each input, themapping functions oper-
ate on the values if available, and if all of them are available, the result is returned, wrapped
in a Just. Mapping functions are available from simple map
Maybe.map : (a -> b) -> Maybe a -> Maybe b
all the way to
Maybe.map5 :

(a -> b -> c -> d -> e -> value)
-> Maybe a
-> Maybe b
-> Maybe c
-> Maybe d
-> Maybe e
-> Maybe value

16floats: https://cs1xd3.online/ShowModulePublish?modulePublishId=20ce50ca-acd4-42c4-867e-912ca8438b88

https://cs1xd3.online/ShowModulePublish?modulePublishId=20ce50ca-acd4-42c4-867e-912ca8438b88

6.4 Containers 139

In each case, the first argument is the combining function with the right number of inputs.
The mapping functions for Resultwork similarly, but note that the Result.Err case

has an error code associated with it? What happens if there are multiple errors?
Result.map2 (*) (Result.Ok 3) (Result.Ok 2) ->Ok 6
Result.map2 (*) (Result.Err "Ruh") (Result.Ok 2) ->Err "Ruh"
Result.map2 (*) (Result.Ok 3) (Result.Err "Roh") ->Err "Roh"
Result.map2 (*) (Result.Err "Ruh") (Result.Err "Roh") ->Err "Ruh"
Now if you are wondering if, in the last case, could you get Result.Err "Ruh-Roh" as
the error—yes, you could, if you defined your own result type in which the error is always a
String. We cannot do that with the library function, becausewe don’t knowwhat typewill
be assigned to the Err case, so we don’t know how to combine values. This is the limitation
of defining containers so that any value can be put in the container.

Finally the carrot! Mapping allows you to perform computations in the case that the
inputs are successful, but what about composing a sequence of steps, each of which could
fail? For this, Elm provides
Maybe.andThen : (a -> Maybe b) -> Maybe a -> Maybe b
Result.andThen : (a -> Result x b) -> Result x a -> Result x b
Let’s say we need to decode a time of the form hours:minutes. We have seen that we
can use String.split ":" to chop the two pieces, and then trim away the extra spaces.
But then we have to convert both parts to Ints and check that they are in valid ranges. In
this case, we probably do want to check that there are exactly two valid numbers separated
by one colon. Otherwise, this data is probably meant to be something else! We need to do
the split before checking for two components, but we can save some typing by applying all
transformations which happen to both components in the same way, before checking that
we have exactly two components using a case expression:
timePair =
case favouriteClassTime |> String.split ":"

|> List.map String.trim
|> List.map String.toInt of

[str1,str2] -> (str1 |> Maybe.andThen (inRange 0 23)
,str2 |> Maybe.andThen (inRange 0 59)
)

otherwise -> (Nothing,Nothing)
To do this, we created our own range-testing function:
inRange low high x =
if x >= low && x <= high then

Just x
else

Nothing
If it works, we can display a clock, otherwise, we can display a broken clock17.

17clock: https://cs1xd3.online/ShowModulePublish?modulePublishId=90ccf3bb-5aa6-4be8-a45c-d5f19f22a128

https://cs1xd3.online/ShowModulePublish?modulePublishId=90ccf3bb-5aa6-4be8-a45c-d5f19f22a128

6.4 Containers 140

We won’t repeat this for the Result type. It is pretty much the same, but we’d need to
use functions which return Result.

There is one other thing we might need for Results. Since they do have the second
type, we can also map over that:
Result.mapError : (errTy1 -> errTy2) -> Result errTy1 a

-> Result errTy2 a
We could use this if we define our own internal error type to help us recover from some
errors. At the point where we cannot recover and need to report the error to the user, we
can map the errTy1 -> String.

6.4.4 Array, Dict, Set to contents

List’s play a special role in programming, and have a richer set of functions. The re-
maining containers are extremely powerful, but nevertheless have simpler interfaces. Let’s
do them together.

First, what are they good for? Well, Set is easiest to distinguish. It is like amathematical
set, in that things can be in or out, and that’s it. Order doesn’t matter—although internally
they do have to be stored in some order. Once something is in the Set, adding another
copy results in the same Set. This is very different from List. So when should we use
Set? When what we need to remember is the in-out relationship of a set, of course! The
implementer of the library now has opportunities to optimize the code for this situation.
They could implement Set as a List, but that is very unlikely to be efficient. Elm has one
implementation for each container type. Other languages, however, may provide several
implementations, and if performance is really important, it’s best to benchmark using a
test similar to your actual application.

Next, we have Dict which is essentially a labelled set. So things can be in or out, but
if they are in, then they have a label attached to them. We call this a dictionary because it
works like a paper dictionary, which is a set of words, each of which is labelled by a defini-
tion (or a translation to another language, etc., for specialized dictionaries). A long, long
time ago, people didn’t use dictionaries, because they were complicated to write and most
languages didn’t have good implementations. If it were up to you to build your own dictio-
nary, you would probably come up with a hack to use an array. Having been around for a
long, long time, I can tell you this led to a lot of bad performance. The sad thing is that
many people are still learning to program using arrays (and loops), when arrays are no eas-
ier to learn than dictionaries, and loops are no easier to learn than mapping and filtering.
Of course, you are free to reenact the bad old days when we only had arrays, just as you are
free to live in a drafty tent and haul water in a leaky wooden bucket.

Which brings us to Arrays! Never heard of them? Think of them as Dicts indexed by
Ints, or as Lists with some special access functions. The special case, Array Bool can
also imitate a Set Int. If you need to access the contents in a randomorder, Arrays can be
fast, but speed shouldn’t be the first, second or third thing you think about. First you should
pick the container whose access and creation functionsmake it easier to write code for your
use case. If after you finish writing your app, you determine that it is not performing well,
then you should look at the algorithms you use. Are there faster algorithms, because that

6.4 Containers 141

will almost give you a bigger bump than changing containers. Finally, if all those have been
done, you should try benchmarking the other containers. In software development, we talk
of “premature optimization” as a bad habit—especially among the best programmers—who
cannot resist implementing something efficiently, even though they don’t know if it will
have a noticable impact, and even though they know other programmers will find it harder
to understand and adapt their code.

If performance is a concern in your application, there are two parts to calculating time:

(number of operations)× (time per operation). (6.2)
Replacing the natural values in an algorithm with Int indices can be efficient, but it can
also make it confusing and hard to write safe programs. So using Arrays may reduce the
(timeper operation), but if itmakes it harder to understand the algorithmandmake changes
to the algorithm itself which reduce (number of operations), then wewill often end up with
worse performance, because changes in (time per operation) are very rarely more than a
factor of 2, but changes to the algorithm itself can be turn something which took 2n oper-
ations into something which takes 3n operations. When the problem size, n, is more than
10, this is already a hundred-fold difference, and the gap will grow, and fast!

One of the great things about Elm’s libraries is that they make it as easy as possible to
switch between containers if you suspect you could get better performance with another
one. The same common interface function names also make learning that much easier!

So what can you do with these containers? We will examine them together, noting sim-
ilarities and differences, starting with the types:
type Set keyTy
type Dict keyTy valTy
type Array valTy
You can name the type arguments anything you want18, but it is helpful to think of the
argument for Set as an index, and the argument for Array as a value. A Dict needs both,
which fits with the fact that we can easily adapt a Dict to any place we needed a Set or
Array.

We create an empty container the same way:
Set.empty : Set keyTy
Dict.empty : Dict keyTy valTy

Array.empty : Array valTy
whichmay cause you to think about the container as getting filled up. This is not quite right.
In fact, whenwe addor remove something froma container, we are creating anewcontainer,
and any references to the original still work. If this required copying the old container over
into a new region ofmemory, this would be slow. Fortunately, Elm and other languages with
immutable data structures lean on19 somepretty sophisticated data structures, inwhich the
ghosts of Christmas past, present, and future all share storage space efficiently.

18Actually, any type you want for valTy, but keyTys need to be comparable.
19The best place to start learning about these structures with a focus on immutability (purely functional

data structures) is Okasaki’s book, but there is an incredible thread on StackExchange with further info: https:
//cstheory.stackexchange.com/questions/1539/whats-new-in-purely-functional-data-structures-since-okasaki.

https://cstheory.stackexchange.com/questions/1539/whats-new-in-purely-functional-data-structures-since-okasaki
https://cstheory.stackexchange.com/questions/1539/whats-new-in-purely-functional-data-structures-since-okasaki

6.4 Containers 142

Starting from empty is especially useful for starting off folds. But most often, you will
probably create your containers from a List:
Set.fromList : List keyTy -> Set keyTy
Dict.fromList : List (keyTy, valTy) -> Dict keyTy valTy

Array.fromList : List valTy -> Array valTy
and for further processing you may need to convert back:

Set.toList : Set keyTy -> List keyTy
Dict.toList : Dict keyTy valTy -> List (keyTy, valTy)

Array.toList : Array valTy -> List valTy
Note that you can convert back-and-forth between the other container types and Lists
this way. If you want to convert between other container types themselves, you need to
create an intermediate List. If in processing the list, you need the index, you can use
List.indexedMap, but it may be convenient—and is necessary if converting to a Dict—
to use
toIndexedList : Array valTy -> List (Int, valTy)
to convert to a List (Int, valTy). Similarly, you may only need the values or the
indices (also called keys) from a Dict, one of the reasons for which is that you want to
convert to a Set or Array.
Dict.values : Dict keyTy valTy -> List valTy
Dict.keys : Dict keyTy valTy -> List keyTy
Converting back and forthmay seemwasteful, but in some cases, it is actually very efficient.
For example, if you need the set of unique values appearing in a Dict the fastest way is to
build a Set and then convert to whatever container most appropriate.

That said, Elm’s libraries make it easy to process data in-place, and avoid these conver-
sions, with processing for Set and Array looking identical, and the Dict functions being
just a little bit more complicated because there are both index and value types involved.
There is mapping:
Array.map : (a -> b) -> Array a -> Array b
Set.map : (a -> b) -> Set a -> Set b
Dict.map : (k -> a -> b) -> Dict k a -> Dict k b

Note that the key is provided to Dict.map and can be used to modify the value, but the
interface doesn’t give you a way of changing the key. To remap keys, you have to convert to
a List, remap there and convert back.

Filtering is similar:
Array.filter : (a -> Bool) -> Array a -> Array b
Set.filter : (a -> Bool) -> Set a -> Set b
Dict.filter : (k -> a -> Bool) -> Dict k a -> Dict k b

and again you can use the key to help filter the Dict entries.
Filtering both in and out at the same time, as we saw with Lists does not exist for

Arrays but works the same way for Sets:

6.4 Containers 143

(onTime, tardy) = studentRecords
|> Set.partition .homeworkComplete

and Dicts:
(onTime, tardy) = studentRecords

|> Dict.partition .homeworkComplete
Folding looks similar:

Array.foldl : (a -> b -> b) -> b -> Array a -> b
Array.foldr : (a -> b -> b) -> b -> Array a -> b
Set.foldl : (a -> b -> b) -> b -> Set a -> b
Set.foldr : (a -> b -> b) -> b -> Set a -> b
Dict.foldl : (k -> a -> b -> b) -> b -> Dict k a -> b
Dict.foldr : (k -> a -> b -> b) -> b -> Dict k a -> b

The fact that we have both left- and right-folds which process elements from lowest to high-
est, and highest to lowest respectively, gives away that part of the efficiency of Set and
Dict types is that their internal data structures encode the order.

Less exciting, but also important to have, are functions to test for emptiness:
Set.isEmpty : Set keyTy -> Bool
Dict.isEmpty : Dict keyTy valTy -> Bool

Array.isEmpty : Array valTy -> Bool
To find the size:

Set.size : Set keyTy -> Int
Dict.size : Dict keyTy valTy -> Int

Array.length : Array valTy -> Int
But only Set and Dict let us check for membership:

Set.member : keyTy -> Set keyTy -> Bool
Dict.member : keyTy -> Dict keyTy valTy -> Bool

And for the value-containing two, we can look up entries via
Dict.get : keyTy -> Dict keyTy valTy -> Maybe valTy

Array.get : Int -> Array valTy -> Maybe valTy
This doesn’t make sense for Set, because it only contains keys, so if we know the key there
is nothing to look up, other than membership. The get functions can do the job of looking
up and telling us about membership, if we used them in a case expression. For example, if
the value type is String, we could prepare it for display:

case Array.get key orders of
Just value ->

"The value at "++String.fromInt key++" is "++value++"."
Nothing ->

"There is entry for "++String.fromInt key++"!"

To add one thing into a container, we have

6.4 Containers 144

Set.insert : kTy -> Set kTy -> Set kTy
Dict.insert : kTy -> vTy -> Dict kTy vTy -> Dict kTy vTy

But what if the element is already in the container? The Set is not altered, but the new
Dict will contain the new value. Array.set works the same way for replacing a value at
an index already in an array:
Array.set : Int -> valTy -> Array valTy -> Array valTy
But beware! If the index is outside the range of the Array the returned Array is the same
as the input Array. Dict has the option to take the best of both worlds—the new and the
old—using a combining function, as the second argument:
Dict.update : keyTy -> (Maybe valTy -> Maybe valTy)

-> Dict keyTy valTy
-> Dict keyTy valTy

The combining function’s input Maybe indicates the presence of the entry in the Dict, and
the output Maybe allows you to set a new (or old) value, or have that entry removed by
returning Nothing.

Conversely, we can remove elements: To remove one thing from a container, we have
Set.remove : keyTy -> Set keyTy -> Set keyTy
Dict.remove : keyTy -> Dict keyTy valTy -> Dict keyTy valTy

and if the element is not present, we will get back the same container as we input. Maybe
it should be called makeSureItsReallyGone rather than remove.

The view that a Dict is a labelled set is reinforced by the language of set math, ∪
Set.union : Set kTy -> Set kTy -> Set kTy
Dict.union : Dict kTy vTy -> Dict kTy vTy -> Dict kTy vTy
∩
Set.intersect : Set kTy -> Set kTy -> Set kTy
Dict.intersect : Dict kTy vTy -> Dict kTy vTy -> Dict kTy vTy

and \
Set.diff : Set kTy -> Set kTy -> Set kTy
Dict.diff : Dict kTy vTy -> Dict kTy vTy -> Dict kTy vTy

But what about the values in the Dict? Well, the rule is that we keep the value from the
first Dict if there is a conflict. Don’t like it? You can get any behaviour you want with
Dict.merge :

(keyTy -> valATy -> foldTy -> foldTy)
-> (keyTy -> valATy -> valBTy -> foldTy -> foldTy)
-> (keyTy -> valBTy -> foldTy -> foldTy)
-> Dict keyTy valATy
-> Dict Ty valBTy
-> foldTy
-> foldTy

6.4 Containers 145

which does a fold over the union of the keys, ordered from lowest to highest. Wait a minute,
you’re thinking. How does a fold, which reduces a whole container of values to a single
value replace set math, which produces a new Dict? Well, a new Dict is a value! And
unlike Dict.union, which requires that the two input and one output Dict all have the
same value type, Dict.merge let’s us combine Dicts with different value types.

To understand it, let’s give the arguments names:
Dict.merge : foldA foldAB foldB dictA dictB init =
let

...
in

final
So, it is actually a triple fold. We fold differently depending on whether a particular key is
in dictA, dictB, or both. The types give away which is which. Let’s see if you are devel-
oping an imagination for creatively using APIs (Application Programmatic Interface—the
functions provided by a library)? Can you solve these challenges?

1. Given two Int dictionaries, how would you add up all values, including both values
when a key is in both dictionaries?

2. Given two Int dictionaries, how would you add up the maximum value for each key?
3. Given two Int dictionaries, how would you take the product of the minimum value

for each key?
4. Given two dictionaries, how would you return the Set of all keys?
5. Given two dictionaries, how would you return the Set of keys in exactly one of the

dictionaries?
6. Given two Int dictionaries, how would you return the dictionary with the union of

the keys, in which each value is the sum of all of the values for that key?

We finish the Dict and Set functions off with the least function—singleton. Making
containers with one element, as we had for List:

singletonDict = Dict.singleton key value
singletonSet = Set.singleton key

Note that there is no equivalent to [] for these containers, but if you really want to avoid
singleton you could use

singletonDict = Dict.fromList [(key,value)]
singletonSet = Set.fromList [key]

We also do not have an equivalent of (::). Where you will miss this, is if you want to
process elements of your container one element at a time, using a case expression. These
other containers do not expose a natural order to the programmer. You can easily convert
toList and process them as you would a List, but think twice about doing so, since in
most cases you will be better off using a fold.

Notice that Array was not invited to this festival of set math? Well, don’t worry, it has
it’s own set of functions suited to its linear nature. More flexible than List.range, we
have

6.4 Containers 146

Array.initialize : Int -> (Int -> valTy) -> Array valTy
which takes a size, and a generator function to create the values for the Array. If you just
want the List.range behaviour, you can use the identity function from the previous
footnote:
Array.initialize 7 identity

-> Array.fromList [0,1,2,3,4,5,6←↩
]

Array.initialize 4 (\ x -> 0.5 * toFloat x)
-> Array.fromList [0,0.5,1,1.5]

You may like this so much, you want to create one for List as an exercise.
If you need the same element repeated, you can do that too

Array.initialize 5 (\ x -> 5)
-> Array.fromList [5,5,5,5,5]

or use a shortcut
Array.repeat 5 5

-> Array.fromList [5,5,5,5,5]
Also like List we can join two Arrays together

[1,2,3] ++ [4,5,6] 7→ [1,2,3,4,5,6]
Array.append (Array.fromList [1,2]) (Array.fromList [3,4])

7→ Array.fromList [1,2,3,4]
But it is quite a bit more typing!

But whereas List really wants you to add and remove elements from the head, Array
is set up to add and remove from the end:
Array.push 3 (Array.fromList [1,2]) 7→ Array.fromList [1,2,3]
and if you know about the stack20 data type, you would expect to find a pop to take the last
element off the Array, but instead we have to use
Array.slice : Int -> Int -> Array valTy -> Array valTy
in a special case. Slicing21, in general, means taking a linear subset of an n-dimensional ar-
ray, which can include skipping odd elements, and collapsing some dimensions. Elm only
has one-dimensional arrays, and does not support skipping, but it does support extracting
arbitrary contiguous subarrays, specified by a first and last index. It even understands neg-
ative indexing, where negative numbers (which don’t make sense as normal indices) are
understood to mean counting backwards from the end of the Array.
Array.slice 0 3 (Array.fromList [0,1,2,3,4])

7→ Array.fromList [0,1,2]
20stack: https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
21Slicing goes back to 1957! https://en.wikipedia.org/wiki/Array_slicing, but make sure to try APL, https://tryapl.

org, a language almost built around slicing and dicing arrays—you’d think it were called Array Programming
Language.

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://en.wikipedia.org/wiki/Array_slicing
https://tryapl.org
https://tryapl.org

6.4 Containers 147

Array.slice 0 -2 (Array.fromList [0,1,2,3,4])
7→ Array.fromList [0,1,2]

Array.slice 3 -2 (Array.fromList [0,1,2,3,4])
7→ Array.fromList []

We’ve covered a lot in this section, but you can also do a lot with containers, if you learn
to use them.

6.4.5 Bitwise to contents

Opertions on Ints by mapping Bool operations over the individual bits:
Bitwise.and : Int -> Int -> Int
Bitwise.or : Int -> Int -> Int
Bitwise.xor : Int -> Int -> Int
Bitwise.complement : Int -> Int

And rotating those bits as if they are a list:
Bitwise.shiftLeftBy : Int -> Int -> Int
Bitwise.shiftRightBy : Int -> Int -> Int
Bitwise.shiftRightZfBy : Int -> Int -> Int
Shifting left multiplies by a power of 2, just like shifting a decimal number left by one digit
multiplies by 10. Shifting right divides by a power of 2.

The last function Bitwise.shiftRightZfBy depends on the number of bits in the
Int, and is therefore dangerous to use.

What do we need these operations for? The most likely native application in a web app
would be manipulating black-and-white pixel arrays packed into Ints. There are, however,
many storage formats which involve packed bit arrays, so if you need to access any of them,
these functions will help you unpack and repack such data. In either case, it’s probably best
to learn to use these functions as needed.

6.5 Development 148

6.5 Development to contents

6.5.1 Debug to contents

The Debugmodule is misnamed! The renaming reflects how other people develop code
in non-functional languages. I think it should have been called Develop, because it has
functions which are useful during development. Most obviously there is
Debug.todo : String -> a
which is for things on your to-do list. You don’t need this when you are just typing out your
code, but you do need something like it if you want to fix compiler errors as you go, or make
adjustments to the visual layout of your app piece by piece.

WhatDebug.tododoes is crashes yourprogramwith amessage sayingwhere it crashed.
This could be useful if you thought you were implementing a self-contained subset of your
code for this milestone, only to discover that it isn’t so self-contained, and there is no way
to try it out without completing another chunk of code. No foosball tournament for you!

When should you use it? Easy, in the “model” and “update” parts of model-view-update,
meaning in the init or update functions and functions called by them directly or indi-
rectly. What about “view”, i.e., myShapes? Well, it might work there, but if your unfinished
piece of work will produce a panel on your interface, and that panel is visible even if you
don’t interact with it, then you won’t get very far inspecting the panels which are finished,
because your app will crash before you get to see it. Instead, for functions which return
Shapes or Stencils (or later Html) you should just put in a simple message saying this
part is not finished.

If you know that the unfinished component is called Bob andwill be contained in a circle
of radius 20, then
bob model =
[circle 20 |> filled yellow
, text "Bob" |> centered |> filled black
]

|> group
will let you see how “Bob” fits into the rest of your interface—and won’t crash your app!

Wow, that seems really useful. Why not do that everywhere? Because not every func-
tion returns a shape you can see, and code in the update function may perform vital tasks
without any immediate change in what the user sees. So for those to-do’s, we need to use
Debug.todo.

Often it will be used as placeholder for cases you haven’t written yet:
makeDots n =
case n of

0 -> ""
1 -> "."
2 -> ".."
_ -> Debug.todo "Time for a nice cold glass of nimbu pani."

6.5 Development 149

What about showing things which are not Shapes? The simplest development function
turns any type into a String which you can display using text.
Debug.toString model -> "{ time = 3.1415 }"
Debug.toString (3,5) -> "(3,5)"
Since we already have String.fromInt, and String.fromFloat, why do we need this?
We don’t, we could write our own efficient toString functions, but this is convenient. To
reinforce that this expensive function is only for development, your code will not compile
with optimizations if it contains Debug functions, because it cannot easily be made fast in
a reliable way.

This stopwatch example22 shows how useful it can be for displaying records.

I personally like seeing the instrumented state information in the same view with the
output, and even have it stick to objects, but if you try displaying a complex Model type,
it won’t fit in a reasonable space. In that case, you can open up the JavaScript console and
watch for messages produced by
Debug.log : String -> a -> a
This is what old-timers call debug-printfs (if said old-timers programmed in C). There are
a lot of problems with debugging complex programs this way, not least of which is that the
timing of the print statements is often not what you expect, since even if your program
doesn’t use multiple threads23, the run-time system for your language may.

Having been warned, you can use this logging function to output the String argument
to the console whenever that computation happens. For example, we could replace this line
from the above example

22stopwatch: https://cs1xd3.online/ShowModulePublish?modulePublishId=86fce854-0217-4f3a-b3a9-dfd51b96c57c If you
don’t understand how the toggle button works, reread Chapter 4.

23Threads are like programs which run on their own timeline and send messages back and forth to each
other to synchronize their work. Great if you havemultiple processor cores to speed up the work, and actually
simpler for some types of applications, but generally confusing for beginners finding it hard to keep up with
a single billion-operation/second core.

https://cs1xd3.online/ShowModulePublish?modulePublishId=86fce854-0217-4f3a-b3a9-dfd51b96c57c

6.6 Elm Platform: Communicating with the outside world 150

, Debug.toString model
|> text
|> size 5
|> filled black
|> move (-93,-60)

with
, let debugString = Debug.toString model

in debugString
|> text
|> size 5
|> Debug.log debugString
|> filled black
|> move (-93,-60)

So that whenever the model is prepared for display on the screen, it will also be sent to
the JavaScript console. Why did I put it after size? Just to show I could put it anywhere,
because it doesn’t do anything with the second argument except return it.

6.6 ElmPlatform: Communicatingwith the outsideworldto contents

This module lets you communicate with the world outside the browser and with the
browser’s run-time system itself. It will be difficult for you to do this without more ad-
vanced knowledge, but you can give it a try using the documentationhttps://package.
elm-lang.org/packages/elm/core/latest/Platform.

6.6.1 Platform.Cmd to contents

So far, we have talked about pure interactive programs using model, view, and update
(see Section 4.5). This is great because we can write programs that do predictable things,
where an input always leads to the same output. But manymore interesting programs need
to be able to inject unpredictable data through communicationwith the outsideworld. Why
would we want to lose control of our program, you ask? Here are some good examples of
unpredictable data: data that changes depending on the time, the weather, or the position
of the planets. Random numbers! All of these things must come from outside the pure
functions update and view, which is what Platform.Cmd is for. Let’s start with an easy
example.

6.6.2 Random Numbers: Let’s roll the die to contents

In a computer, it is difficult to generate truly random numbers. This is because, at their
core, computers are very predictable beasts. They always give the same output for a given
input. As we’ve mentioned, this is called pureness. But, it is possible to generate pseudo-
random numbers. These are numbers which “appear” to be random to humans or even to
statisticians, but they are in fact not truly random. Instead, they use something like the
current time as a “seed” to generate a random number. For anyone who is a gamer, you’ll

https://package.elm-lang.org/packages/elm/core/latest/Platform
https://package.elm-lang.org/packages/elm/core/latest/Platform

6.6 Elm Platform: Communicating with the outside world 151

know that a seed is a unique number which always generates the same random Minecraft
world or random loot drop. This works very similarly!

Elm in particular is a pure programming language, meaningwe are forced to always give
the same output for a given input. Even pseudo-random numbers are hard for Elm. So, how
can we generate them? Well, instead of generating one directly in Elm, we can ask Elm’s
runtime nicely, “Please generate me a random number, and when you’re done, send me a
message telling me what you came up with.” This is the idea of commands. We simply ask
Elm to do something for us, and it will do it and send a message when it has the result. Just
like the types of messages we got when the user clicked a button earlier in the book.

Let’s make a program to roll a die24! We can easily represent a die as an integer number
from 1 to 6. Let’s make a program with three messages:
type Msg = Tick Float GetKeyState

| RollDie
| DieRolled Int

In addition to our regular Tick message which we could use for animation, we have
a message RollDie and one called DieRolled. Notice that RollDie has no inputs, and
DieRolled takes an integer as an input. The RollDiemessage will be used to tell Elm to
generate a random number for us. The DieRolledmessage will be the one Elm sends back
to us with its freshly generated random number. Neat!

But how can we tell Elm to do things, like generate a random number? This is done
through Commands. We need to use a modified update function. Remember, when we
started with animations, we didn’t even need to modify the update function, so it wasn’t
visible in the Animation activity. When we added interaction, we introduced the function:
update : Msg -> Model -> Model
It takes as input a message (of type Msg) and our current Model value and returns a new
value of type Model. To support Cmds, we need to add them to the output:
update : Msg -> Model -> (Model, Cmd Msg)
Noticewe are now returning aTuple of values. The first one is the updatedmodel, as before.
But the second one is a Cmd Msg. This means every time our update function is called, we
have the opportunity to send the Elm run-time system a command which will produce a
message later.

So how can we tell Elm to generate a random number? Luckily Elm’s elm/random pack-
age25 has just the thing, a function conveniently called Random.generate. Let’s take a
look at the type signature:
Random.generate : (a -> msg) -> Random.Generator a -> Cmd msg
Whoa! This one looks complicated! Let’s break it down. The first input is a function from
some value of type a to some msg type (the type of message we’d like Elm to produce). The
second input is of type Generator a, which is a recipe for generating something of some
type a. Finally, the output is of type Cmd msg, which is exactly what we were hoping for!

24die roll example: https://stabl.rocks/ShowModulePublish?modulePublishId=409bef9d-dd69-4f54-bb19-251dd94e575e
25elm/random: https://package.elm-lang.org/packages/elm/random/latest/

https://stabl.rocks/ShowModulePublish?modulePublishId=409bef9d-dd69-4f54-bb19-251dd94e575e
https://package.elm-lang.org/packages/elm/random/latest/

6.6 Elm Platform: Communicating with the outside world 152

So, what kinds of generators canwemake? Turns out, we can create a recipe to generate
just about anything you can think of! Let’s look at a few that elm/random provides for us:
Random.int : Int -> Int -> Generator Int
means generate an Int ranging between two given values;
Random.float : Float -> Float -> Generator Float
means generate a floating-point number between two values;
Random.uniform : a -> List a -> Generator a
means pick uniformly from one value and a list of values;
Random.weighted : (Float, a) -> List (Float, a) -> Generator a
means pick from one value and a list of values, but give each one a weight. Hmm, why
not just pick from a list of values? Because List can be empty, and it’s impossible to pick
something from nothing, so the Random library prevents us from trying. Clever!

Now let’s figure out which one we need to generate a die roll. The simplest way to rep-
resent a die is to use an integer where the numbers are constrained from 1 to 6:
dieGenerator : Random.Generator Int
dieGenerator =
Random.int 1 6
Let’s analyze this snippet a bit. Firstly, our function is called dieGenerator. It has as

its type Random.Generator Int, which means it is a generator that describes a recipe
for generating an integer. The body of the function calls the Random.int function with
the argments 1 and 6. This will generate us a number between one and six, inclusive, with
a uniform probability of each number appearing.

In order to actually call this function, as mentioned, we can use the Random.generate
function in our update function. Since we’re going to use this many times, we’ll store this
in its own definition:
getNewDie : Cmd Msg
getNewDie =
Random.generate DieRolled dieGenerator
As mentioned, the Random.generate function takes two arguments: a function de-

scribing how to convert our returned random value into a Msg and the generator itself,
where the type of generator matches the input type of the function. Recall that the data
constructor DieRolled can also be used as a function of type Int -> Msg, so the types
work out perfectly.

Now let’s take a look at howwe can actually use this in our update function. Our update
function has three cases, one for each of our messages (the Tickmessage has been omitted
for brevity here):
update msg m =
case msg of

...
RollDie ->

6.6 Elm Platform: Communicating with the outside world 153

(model, getNewDie)

DieRolled newSide ->
({ model | dieSide = newSide }
, Cmd.none)

The RollDie message can be sent from a button in our program. It will initiate the
command to generate our new die roll. Notice that the second element in the tuple is the
command we created just now. The DieRolled message actually contains the newly gen-
erated random number. We can store that random number in the model and then use that
to display the die face. Anytime we don’t want Elm to do any special commands, we can use
the Cmd.none function to say “please don’t perform any commands right now.”

6.6.3 Task: Making the world go around to contents

Our next examplewill highlight the use of the Task library. Tasks are commandswhich
could fail. One common way they are used in Elm is for sending HTTP requests. We will
create a nice interactivewallpaperwhichwill display the sun’s position in real time. For this,
wewill use anAPI provided byhttps://sunrise-sunset.org/. The final program26

will render this nicely for us.

Let’s go over the main things we need to get this working.
The server provides us data in JSON, an standardized, human-readable data format:
{
"results":
{

26sunset example: https://stabl.rocks/ShowModulePublish?modulePublishId=f7d1af67-9998-4ecc-a0c6-43fd57f6b87e

https://sunrise-sunset.org/
https://stabl.rocks/ShowModulePublish?modulePublishId=f7d1af67-9998-4ecc-a0c6-43fd57f6b87e

6.6 Elm Platform: Communicating with the outside world 154

"sunrise" :"2015-05-21T05:05:35+00:00",
"sunset" :"2015-05-21T19:22:59+00:00",
"nautical_twilight_begin":"2015-05-21T04:00:13+00:00",
"nautical_twilight_end" :"2015-05-21T20:28:21+00:00",

},
"status":"OK"

< ... values we don't need ... >
}

JSON is so widely used in web services because it is adaptable to any type of records, includ-
ing nested records.

Elm’s elm/json library27 does most of the work of converting JSON-formatted data
into Elm data types, but first, we need a type to store the response, with the fields we’re
interested in:
type alias SunTimes =
{

sunriseTime : Posix
, sunsetTime : Posix
, twilightBegin : Posix
, twilightEnd : Posix
}
Next, we will need a way to decode the Json response into our Elm type. For each field,

we can use the D.at function to “drill down” into the returned Json and extract the field
we need. Then, we will use the Iso8601 library28 to parse the time into a time value Elm
can understand. Finally, the D.map4 functionmaps all these fields into our SunTimes type
alias.
sunsetDecoder : Decoder SunTimes
sunsetDecoder =
D.map4

SunTimes
(D.at ["results","sunrise"] Iso8601.decoder)
(D.at ["results","sunset"] Iso8601.decoder)
(D.at ["results","nautical_twilight_begin"] Iso8601.decoder)
(D.at ["results","nautical_twilight_end"] Iso8601.decoder)

Now that we have our decoder, we need a message that will be received when the Http
request is completed. This is a message that can either tell us that the Http request suc-
ceeded, in which case we will get the information we want, otherwise it will tell us there
was an error. The SunsetResponse message thus takes a Result which can be an error
or SunTimes value.
type Msg = Tick Float GetKeyState

| SunsetResponse (Result Http.Error SunTimes)
27elm/json: https://package.elm-lang.org/packages/elm/json/latest/
28rtfeldman/elm-iso8601-date-strings: https://package.elm-lang.org/packages/rtfeldman/elm-iso8601-date-strings/

latest/

https://package.elm-lang.org/packages/elm/json/latest/
https://package.elm-lang.org/packages/rtfeldman/elm-iso8601-date-strings/latest/
https://package.elm-lang.org/packages/rtfeldman/elm-iso8601-date-strings/latest/

6.6 Elm Platform: Communicating with the outside world 155

...
Next, we need to create our request that will be used to fetch the data. We will use a

GET request, as this is what the API calls for. We provide two fields: the URL of the API
endpoint29 and another field called expect. The expect field describes the type of data to
expect as well as the message that should be sent when the request completes.
getSunsetTimes : Cmd Msg
getSunsetTimes =
Http.get

{
url = "https://api.sunrise-sunset.org/json?lat=43.6424728&←↩

lon=-79.3876551&formatted=0"
, expect = Http.expectJson SunsetResponse sunsetDecoder
}

In order to let our user know when loads are slow or there is a network error, we need
to store this state in the Model, for which we create a new algebraic data type:
type SunTimesLoadStatus
= NotLoaded
| ErrorLoading Http.Error
| Loaded SunTimes
The update function needs to be able to receive the message and store the data in the

model. In this case, we can pattern-match on the two possibilities, which are that the re-
quest either succeeded or failed:
update : Msg -> Model -> (Model, Cmd Msg)
update msg model =
case msg of

...
SunsetResponse (Ok sunsetTimes) ->
({ model | sunTimes = Loaded sunsetTimes, lastSunsetFetch ←↩

= model.now } , Cmd.none)
SunsetResponse (Err err) ->
({ model | sunTimes = ErrorLoading err, lastSunsetFetch = ←↩

model.now }, Cmd.none)
...

Finally, to actually issue theHttp request, we simply include ourgetSunsetTimes com-
mand in our initial function30:
main : EllieAppWithTick () Model Msg
main =
ellieAppWithTick Tick
29In the actual code, we add a modifier to the URL to help reduce the chance of fetching the wrong day due

to timezones.
30In the full program, , https://stabl.rocks/ShowModulePublish?modulePublishId=f7d1af67-9998-4ecc-a0c6-43fd57f6b87e

you will find additional commands, like getting the current time and time zone, which follow the simpler
pattern we’ve already seen for random numbers.

https://stabl.rocks/ShowModulePublish?modulePublishId=f7d1af67-9998-4ecc-a0c6-43fd57f6b87e

6.6 Elm Platform: Communicating with the outside world 156

{ init = \flags ->
(init
, Cmd.batch

[getSunsetTimes
...
]

...
}

Enjoy your new wallpaper31!

6.6.4 Platform.Sub to contents

Subscriptions are used to receivemessages about things that canhappen at anymoment.
For example, we can get messages every 5 seconds, get notified when a user moves their
mouse, or get notified when a user hides or shows the tab that the Elm program is running
in. For this example32, we will subscribe to the user changing the size of the screen, and use
this to adaptively change the size of a shape on the screen.

To do so, we will create a program which stores the current screen size:
type alias Model =
{ time : Float
, width: Int
, height: Int
}
Next, we will create a message to send when the screen updates. It takes two integers,

representing the width and height of the screen, respectively:
type Msg = Tick Float GetKeyState

| WindowResize Int Int
The elm/browser package provides us the necessary function to subscribe to window

size changes:
Browser.Events.onResize : (Int -> Int -> msg) -> Sub msg
This takes a function from two Int values to a msg value, and produces a subscription we
can use to subscribe. We can use this to create a new subscription with our message:
resizeSubscription : Sub Msg
resizeSubscription =
Browser.Events.onResize WindowResize
In the update function, we store the values in our model:

update : Msg -> Model -> (Model, Cmd Msg)
update msg model =
case msg of
31sunsetting: https://stabl.rocks/ShowModulePublish?modulePublishId=35f7604d-7bfd-45f6-8d2c-509889dda527&fullscreen=

true
32resizable oval example: https://stabl.rocks/ShowModulePublish?modulePublishId=1ecc2048-0ea9-4326-b461-5808388226a8

https://stabl.rocks/ShowModulePublish?modulePublishId=35f7604d-7bfd-45f6-8d2c-509889dda527&fullscreen=true
https://stabl.rocks/ShowModulePublish?modulePublishId=35f7604d-7bfd-45f6-8d2c-509889dda527&fullscreen=true
https://stabl.rocks/ShowModulePublish?modulePublishId=1ecc2048-0ea9-4326-b461-5808388226a8

6.6 Elm Platform: Communicating with the outside world 157

...
WindowResize w h -> ({ model | width = w, height = h }, Cmd.←↩

none)
Then, we can use these values in our myShapes function:

myShapes model =
[

oval (toFloat model.width) (toFloat model.height)
|> filled pink

]
There is one more thing we need to do: we need to get the current screen size when

we start the program. This is because if we don’t, we won’t get a resize message until the
user actually resizes the screen—whichmay never happen. To do so, we can use a command
using a Task provided by the elm/browser library33:
initScreenSize : Cmd Msg
initScreenSize = Task.perform

(\vp -> WindowResize
(round vp.viewport.width)
(round vp.viewport.height)

) Browser.Dom.getViewport
Since this needs to happen once, we put it in our init function.

Try it yourself34! Resize the screen and observe as the oval changes to match the size of
the screen.

33elm/browser’s getViewport: https://package.elm-lang.org/packages/elm/browser/latest/Browser-Dom#

getViewport
34resize: https://stabl.rocks/ShowModulePublish?modulePublishId=0def7b8c-3bf8-4804-a918-f8a4df8bbdd9&fullscreen=true

https://package.elm-lang.org/packages/elm/browser/latest/Browser-Dom##getViewport
https://package.elm-lang.org/packages/elm/browser/latest/Browser-Dom##getViewport
https://stabl.rocks/ShowModulePublish?modulePublishId=0def7b8c-3bf8-4804-a918-f8a4df8bbdd9&fullscreen=true

7. Tower of Hanoi

Let’s look at a simple children’s puzzle whose solution involves some really powerful ideas.

In the Tower of Hanoi, your task is to move a tower made by stacking blocks of diminishing
size, one on top of another. You can move one block at a time to one of three bases. At no
time can a larger block rest on a smaller block. All the blocks have different sizes.

When seeing this problem for the first time, what questions should you ask yourself?
For which sizes of tower, if any, can we solve the problem? How many moves are required
to move the tower with a given number of blocks?

Take some time to think about the problem, and solve it if you can. If your solution is
good, you should have no trouble explaining the solution to a friend.

How did you explain your solution to a friend? Did you use notation you have used
before in algebra or geometry? Did you make up your own symbolic language? Could you
explain your solution entirely in English? Did you need diagrams?

If yourmath teachers have done a good job, you started by writing downwhat you know
about the problem, and maybe even assigning variable names. Here’s what I came up with:

n = number of blocks

159

{A,B,C} = set of places
{1,2,...n} = the blocks

What is harder, moving the blocks, or counting how many moves are required to move
the whole tower? Counting may seem harder, but it is actually easier if you use the Divide
and Conquer principle to break the problem down. Start by assuming we know the answer,
and just need to figure out an efficient way of calculating it. Let mn be the number of moves
required to move a tower of size n from one place to another. That gives us simple notation.

Divide and Conquer is a method for people with lots of friends. The hard work is to
divide up the problem, then we call on our friends. After all, what is a smaller problem
among friends! In this case, if we are asked to move a tower of size n, we can assume our
friends have already figured out how to move a tower of sizes 1 through n− 1. The key is
the n−1 solution.

Take a fewminutes and try to describe a solution to the tower n problem, assuming that
you can call on friends to move a tower of size n−1.

Well, if friends are willing to move a tower of size n−1, you can wrap paper around the
bottom wrung of the tower, and call them over to move the visible n− 1 tower. After the
celebratorydanceparty, youneed tomove the oneon thebottom—admittedly theheaviest—
which we will call the nth block. Then you’ll need to disguise the big block again, and get
your friends to move the n−1 tower onto it. If they ask why they couldn’t have moved the
tower here in the first place, just tell them that it is the fault of your landscape designer,
who couldn’t make up their mind. How many total steps? We just take their work on the
first day, add our one move, and then their work on the second day.

mn = mn−1 +1+mn−1

Let’s apply this formula to a specific case:

m3 = m2 + 1 + m2
= (m1 +1+m1) + 1 + (m1 +1+m1)
= (1+1+1) + 1 + (1+1+1)
= 7

Now, to get 7, we have used the hopefully obvious fact that we can move a tower with 1
block in 1 move. But, remember, there are no obvious facts for computers! If we forget to
tell the computer about the special case m1 = 1, it will just keep going, like the sorcerer’s
apprentice:

m3 = m2 + 1 + m2
= (m1 +1+m1) + 1 + (m1 +1+m1)
= ((m0 +1+m0)+1+(m0 +1+m0)) + 1 + ((m0 +1+m0)+1+(m0 +1+m0))

= (((m−1 + 1 + m−1) + (m−1 + 1 +
m−1)) + 1 + ((m−1 + 1 + m−1) +
(m−1 +1+m−1)))

+ 1 + (((m−1 + 1 + m−1) + (m−1 + 1 +
m−1)) + 1 + ((m−1 + 1 + m−1) +
(m−1 +1+m−1)))

= ...

160

continuing until the end of time or it ran out of memory.
Here is another good lesson. No matter what silly thing a computer does, people have

to take the blame, because people are doing the thinking, coming up with a set of rules
which the computer faithfully carries out. Until we figure out rules for common sense—
and nobody is working on this, since nobody has a definition to work from—computers will
not have it, and while that may come sooner than many expect, you can bet it won’t come
before your next assignment is due—so you figure out the rules.

We could express our procedure as follows: Given an mn to calculate, use repeated sub-
stitutions to reduce mn to a number, where we replace

m1 with 1

and for any values of n bigger than 1, we replace

mn with mn−1 +1+mn−1.

There isn’t really any point in writing all of this out, since a person would probably figure
that out, but it happens to be very close to how we would use Elm to tell a computer the
same thing.
m n = case n of

1 -> 1
otherwise -> m (n-1) + 1 + m (n-1)

Note a few differences between standard algebraic notation and Elm. Instead of using
subscripts to differentiate different values m1,m2, ..., we use a function m depending on an
input n. The next difference is that we capture all of the substitution rules together using a
case expression. Finally, unlike in algebra, multiplication requires a symbol, *, and Elmwill
not accept a definition like (x+a)(x+b) in which writing expressions next to each other
indicates multiplication. Some programming languages do allow this, including TEX, the
language in which this book is written. But most, including Elm, do not.

At this point, we have pointed out the differences, but there are more similarities than
differences. For example, parentheses change the order of operations. The main difference
between how you learned them is that we defined our own functions in Elm on the first day—
not after years of school! Maybe it wouldn’t have taken as long if we had Elm functions to
play with, for example, to draw our mns:

161

Elm can be pretty useful for this type of visualization, and you can experiment1 with your
own functions. It is especially helpful before rushing a new algorithm into production to
know that the number of steps grows exponentially like this—just in case your boss asks
why you’re playing around.

To solve the full problem, wewill use the same Divide and Conquer strategy, so let’s spell
out the strategy explicitly—we need to take three steps:

Divide: Within the original problem, identify smaller subproblems of the same type, un-
less it is small enough to solve immediately.

Conquer: Solve the subproblems using the same strategy.
Combine: Combine the solutions to the subproblems into a solution to the original prob-

lem.
Sounds simple, but pay close attention to the requirement that the subproblems be of

the same type and be smaller, so as not to subdivide infinitely. In our first example, the
problem was to count the number of moves required to move a tower of size n. All of the
problems involve moving a tower, only the size changes, and the towers are readily ranked
by size.

Here’s an example which fails: Mow a field by dividing it into two equal pieces and get-
ting two friends to eachmowhalf. When they are finished, the field ismowed. The problem:
mowing a piece of a field is always the same problem, and if your friends are as lazy as you,
they will follow your lead and get two friends to mow halves of their halves. The problem
is that there is no smallest size of field, so nobody would ever get around to doing anymow-
ing. If we slightly change the problem, and start with a field of 32 hectares, and in the divide
step we specify that when the patch to bemowed is 1 hectare, the unlucky friend of a friend
will have to go buy a goat and supervise it to ensure even munching, then the Divide and
Conquer strategy would work.

Here’s another way it could fail: You sneak into the kitchen and steal a gingerbread per-
son, but after escaping detection for a day, you start to worry about potential incarceration,
and want to dispose of the body before any detectives come snooping. So you get some
friends and break off the arms, legs, and head, and give each friend a piece of anatomy to
disappear. It may be the perfect crime, but it is not Divide and Conquer, because the sub-
problems (arms, legs, head, torso) are not the same as the whole person. You cannot break
a leg off an arm, nor an arm off a head. So what we have is a strategy which disposes of
one body, but it won’t hide criminality at a large scale, involving, say, boxes of gingerbread
people.

Back to the Tower of size n:
Divide: The top n−1 blocks are a tower in their own right, but smaller by one. A tower

with 1 block cannot be divided, but it can be moved in one step.
Conquer: Calculate the number of steps to move the tower of size n−1, call it mn−1.
Combine: To move the tower of size n, we need to move the smaller tower, move the base

and move the smaller tower again, so we need mn−1 +1+mn−1 steps.
What about moving the tower? Youmay have devised your own notation for moves, but

some notation is required to avoid writing torturously long sentences in English.
1Steps: https://cs1xd3.online/ShowModulePublish?modulePublishId=f4b3adcd-7c00-47dc-8693-611975893cb2

https://cs1xd3.online/ShowModulePublish?modulePublishId=f4b3adcd-7c00-47dc-8693-611975893cb2

162

Move Tower of size n from x to y using additional place z.
Divide: If the tower has size 1, move that piece from x to y, which we will write as (x,y),

otherwise the top n−1 blocks are a smaller tower.
Conquer: Apply this procedure to produce a sequence of steps for moving the top tower

from x to z using y. Call that sequence s(x,z,y), and apply it again to find a
sequence s(z,y,x) to move a tower of size n−1 from z to y using x.

Combine: Join together the two sequences with one additional move: s(x,z,y) followed by
(x,y) followed by s(z,y,x).

To write this in Elm, we need to define our set of places, which is a distinct type of thing,
apart from numbers, letters, words, buffalos, and every other thingwe need in our program.
We define a new type of thing like this:
type Place = A | B | C

For two things together, we can use a pair, ie (A,B), in the same way that we use (7,3) for
Cartesian coordinates on the plane to group together the horizontal and vertical positions.
Since we needmanymoves, we can express our Tower programs as List (Place,Place).
Note that not all programs make sense. The program [(A,A)] doesn’t do anything! And
just because we write a command (A,B) doesn’t guarantee that when we get to this point
in the program, that there will be a block at position A or that the block at position B will
be wider than the one we are moving.

But ignoring these issues, we can solve our tower problem:
moveTower n x y z =
case n of

1 -> [(x,y)]
otherwise -> (moveTower (n-1) x z y) ++[(x,y)]++ (moveTower←↩

(n-1) z y x)
Woah! That was a long chapter, all to explain three lines of Elm! This is typical of the

Divide andConquer strategy. Once you figure out how todivide upyourproblem, it is usually
easy to write the code, especially in a language like Elm. The tricky part is that the divide
step is not always obvious. Let’s make sure we remember the three parts: in the code above,
underline the parts which correspond to dividing. On the code below, underline the parts
corresponding to conquering.
moveTower n x y z =
case n of

1 -> [(x,y)]
otherwise -> (moveTower (n-1) x z y) ++[(x,y)]++ (moveTower←↩

(n-1) z y x)
Now underline the parts corresponding to combining:

moveTower n x y z =
case n of

1 -> [(x,y)]
otherwise -> (moveTower (n-1) x z y) ++[(x,y)]++ (moveTower←↩

(n-1) z y x)

7.1 Dividing and Conquering Map 163

Now you get to play with it2!

7.1 Dividing and Conquering Map to contents

We’ve previously seen how simple using map is. But how simple is it to define? Can we
use Divide and Conquer? What are the subproblems? Try to write them out on your own.

Divide:

Conquer:

Combine:

How does your solution compare to ours?
Divide: Separate the first element from the rest of the input list. The rest of the list is

still a list, so that’s our subproblem. We can do this if the list is not empty.
Conquer: Apply this procedure to get a new list whose elements are the result of applying

the function argument to the rest of the list.
Combine: Take the solution to the subproblem, which is a list, and prepend the result of

applying the function argument to the first element.
When we implement this in Elm, we also need to take care of the base case, which here is
when the list is empty, and so has no first element.
map fun list = case list of

(x :: xs) -> (fun x) :: (map fun xs)
[] -> []

2Hanoi Sim: https://cs1xd3.online/ShowModulePublish?modulePublishId=c758ef3e-5e41-4c97-b392-70ed376abc91

https://cs1xd3.online/ShowModulePublish?modulePublishId=c758ef3e-5e41-4c97-b392-70ed376abc91

8. Composing Music in Elm

Because Elm compiles to JavaScript, it is possible to combine it with various JavaScript mod-
ules to create some interesting programs, from 3D scenes using WebGL, to much more. In
this chapter, we focus on ElmMusic, a project that usesWebAudioFont to allow users to com-
pose and play music, as well as add accompanying animations using GraphicSVG. ElmMusic
is available on cs1xd3.online.

An example composition created using ElmMusic.

8.1 Music Creator & Basics to contents

Much likeGraphicSVG’s ShapeCreator, we alsohave aMusic Creator for ElmMusic, which
allows you to easily write individual measures for a composition using a drag-and-drop in-
terface.

https://surikov.github.io/webaudiofont/
http://www.cas.mcmaster.ca/~anand/MC1.html

8.2 The Elm Music Slot 165

The interface for the Music Creator app.

To use the Music Creator, you first select your desired instrument, then drag notes and
rests to the staff as desired. Depending on the vertical position you drag notes to, it will
set the pitch accordingly. When writing code, you can also use the raiseOctave and
lowerOctave functions to adjust a note’s octave. You can also chain these functions to-
gether using pipe operators to adjust pitch by multiple octaves at once. It is also worth
noting that ElmMusic uses Solfège notation (do, re, mi, etc.) to represent pitch, but it is pos-
sible to write Elm functions to translate pitch between Solfège and your own custom letter
notation, for example.

After adding notes and rests, you are able to add note dynamics, accidentals, and artic-
ulations to individual notes. Dynamics added to a note will carry forward to subsequent
notes until another dynamic is specified. Accidentals will do the same, but only within the
same measure. Articulations, however, will only apply to individual notes, so if you want
several notes to be staccato, for instance, you will have to add the articulation separately to
each note.

8.2 The ElmMusic Slot to contents

As mentioned before, ElmMusic can be accessed on cs1xd3.online, using the ElmMusic
activity. When creating an ElmMusicmodule, youwill be presentedwith code that produces
a standard C Major scale if you compile the module. The following section will go through
and explain what the sample code means.

8.2.1 Validation & Tempo
Near the topof the code, youwill see threedefinitions grouped together: ifValidateBeaming,
ifValidateTimesigniture (sic), and tempoInBPM.

The first two are boolean values; the former enables validation for beaming and group-
ing rules (music has rules for how notes in a measure should be grouped, which depends on
the strong and weak beats determined by the time signature you choose), while the latter

8.2 The Elm Music Slot 166

enables time signature validation, which will warn you if the number of beats in a measure
doesn’t match the time signature you chose.

The last definition simply determines the speed of the music, in beats per minute (so
the default of 120 BPM means two beats are in each second).

8.2.2 myMusic
The next part of the sample code we will examine is
myMusic : ElmMusic.Music msg
myMusic =
Music Marimba ThreeFour

[[myMeasure
[quarter rest
, half rest
]

]
]

The type ElmMusic.Music has one constructor, also called ElmMusic.Music, but im-
ported so you can use it without the ElmMusic.* qualifier. It has three data types attached:

• ElmMusic.Instrument for the instrument which will play this music;
• ElmMusic.TimeSignature for the simple time signatureswe support, i.e., the num-
ber of beats per measure on top, and denominator of the note worth one beat;

• List (List (ElmMusic.Measure msg)) for the list of measures (notes between
vertical bars).

The Instrument part of the Music type determines what instrument will be played
when you compile your module and press the play button.

By default, the Instrument is set to Piano, but other instruments are available as well:
type Instrument

= Piano
| Recorder
| Flute
| Violin
| Trumpet
| Sitar
| ElectricGuitar
| Marimba
| Bass
| Cello
| Tuba
| Timpani
| Custom Int Clef

The last choice is Custom Int Clef. This allows you to select a custom instrument from
all of the ones supported by WebAudioFont. The Int parameter is the MIDI number which
can be obtained from the WebAudioFont instrument catalogue, while the Clef parameter

https://surikov.github.io/webaudiofont/

8.2 The Elm Music Slot 167

can be set to either TrebleClef or BassClef. So, for example, if you wanted a String En-
semble as your “instrument,” thatmight correspond to anInstrumentvalue ofCustom 517 TrebleClef.

The TimeSignature part of the Music type determines how many beats are in a mea-
sure, and which type of note is worth one beat. The most commonly used time signature in
music is 4/4 time, which corresponds to FourFour in the Elm code. There are a number of
different time signatures supported by ElmMusic, but the ones that work the best are 4/4
and 3/4, and the others should be considered experimental:
type TimeSignature

= FourFour
| ThreeFour
| ThreeEighths
| TwoFour
| FiveFour FiveFourGrouping
| SixFour -- 3 + 3
| SixEight
| FiveEight FiveEightGrouping
| ThreeTwo
| TwoTwo
| SevenEight SevenEightGrouping
| NineEight
| TwelveEighth -- 3+3+3+3, feels like 4-4 for stress, with ←↩

triplets
| OpenTwo -- half note gets a beat
| OpenFour -- quarter note has a beat (determines playback ←↩

and grouping)
| OpenEight -- eighth note gets a beat

The three open time signatures at the bottom have no limits on howmany beats are in a
measure; they merely define what type of note is worth one beat. You may also notice that
some time signatures have additional parameters; these parameters determine which beats
in a measure are stressed, which also affects how notes are grouped. The list of groupings
is as follows:
type FiveFourGrouping

= FF23
| FF32

type SevenEightGrouping
= SE223
| SE232
| SE322

type FiveEightGrouping
= FE23
| FE32

Lastly, the Music type requires a nested list of Measures, where each Measure con-
tains a list of notes as a type parameter. Both the provided sample code and the Music

8.3 Next Steps 168

Creator are good ways to learn how to write a measure in code, so we will not go into too
much detail here. Some useful information to know, however, is that there are functions
for notes from whole notes all the way to thirty-second (i.e. 32nd, not 30 seconds) notes,
and you can also “dot” notes to increase their duration to 1.5 times the original.

8.2.3 GraphicSVG Definitions & Lyrics
At the very top of the sample code in an ElmMusic module, you will notice three peculiar
functions: twi, nkle, and emptyVideo, each of which takes in a time. These are actually
lists of GraphicSVG shapes that can be used to add animations to your music composition.
twi and nkle (which combine into ”twinkle”) are two sample animations provided for you
to use, but you can also create your own; just keep in mind that any custom animations you
create should accept a parameter for time—not model.time—even if you don’t use it for
anything.

Animations can be added to yourmusic using the addVideo function on a note in one of
your measures (e.g. quarter do |>addVideo twi). Once an animation is added, it will
continue to play until the addVideo function is used again (so if youwant a sectionwithout
any animations playing, you can add addVideo emptyVideo to the desired note).

You can also add lyrics to your music using the sing function, e.g.
quarter do |> sing "text"

If you haven’t added lyrics to music before. It is best to attach one syllable to each note, and
use dashes to split words on syllables.

quarter do |> sing "wa-"
quarter do |> sing "ter-"
quarter do |> sing "mel-"
quarter do |> sing "lon"

8.3 Next Steps to contents

At this point, you should be ready to create simple compositions using ElmMusic. To
createmore advanced compositions, you can combine yourmusic knowledgewith Elm tech-
niques to help youwhen composing a piece. For example, since theMusic type is essentially
a list of measures with some additional parameters, and the Measure type is just a list of
notes, you can use list functions such as List.map or List.repeat to save some time
when composing, for example using map to apply a desired articulation to many notes at a
time, or using repeat to avoid having to copy and paste several identical measures.

There are lots of experiments you can do once you start writing your own functions.
You could write a function to add new articulation to an input measure, and then string
them together into an alien rhythm using List.concatMap. You could write a function to
repeat a melody line, increasing the volume (dynamics) each time, or changing the pitch.

You can also use cs1xd3.online’s module sharing functionalities to create libraries (for
instance, a library of functions to map pitch between Solfège and letter notation) that you
can then import into other ElmMusic modules if desired.

9. Algebraic Expressions

Every language needs nouns and verbs. Things, and what happens to them. In Computer
Science, we have data, and functions.

In this module, we define a language of the types of algebraic expressions used in Calcu-
lus.
type Exprs = Const Float

| Var String -- in math we often use Char
| Sqrt Exprs -- we can take sqrt(anything)
| IntPow Exprs Int -- the easy case of exponent
| Exp Exprs -- e^expr
| Ln Exprs
| Mult Exprs Exprs
| Add Exprs Exprs
| Neg Exprs

To save ourselves some headaches later, we do not allow expressions like xy, but restrict our
expressions to integer powers xn where n is an integer. In mathematics, we usually use a
single letter for a variable, but then we also end up using subscripts, superscripts, Greek
and other alphabets and accents. Since Elm Strings are made up of Unicode characters,
you can pretty much do any of those things, as long as you can remember the keyboard
tricks to type them all in. I’ll stick to English words, contracted and sometimes squished
together. We also need the Var constructor, which signals that this particular String is
the name of a variable. In pen-and-paper mathematics, we would never write something
like that. The same symbol can mean different things in different contexts. We just need to
remember which type of math we are doing. This is even more clear for constants, where
0 could be a number zero, but it could also be a function which is always zero, or a vector
which is zero.

Since this data type refers to itself in some of its constructors, it is a recursive data type.
This means that the size of values is unbounded, since each value is a tree structure.

Because we have alternative constructors, and multiple types associated with construc-

170

tors, this data type also has both sums and products of types. We call this an algebraic data
type. In some programming languages, this is harder to do, but it is so easy to do in Elm
that it hardly gets mentioned. This is the data-structure. It is, however, commonly called
an algebraic data type. Either way, is the mirror-image of the Divide & Conquer algorithms
and you can expect to see them here.

To make it easier to create examples, we predefine some variables
x = Var "x"
y = Var "y"
z = Var "z"
so you can refer to them without needing to repeatedly type Var. For example
xXy = Mult x y
You can now type in some of your favourite expressions that bring back fond memories of
High School math class. Here are some of our favourites:
example = Add (Const 7) (Mult (Const 4) (Add (Sqrt x) (Exp y)))
example2 = Add (Var "x") (Var "y")
example3 = Mult (Var "z") (Const 0)
example4 = Add (Sqrt (Mult (Var "x") (Const 0))) (Var "y")
example5 = (Sqrt ((Const 0)))
example4Again = Add (example5) (Var "y")

Once you’ve typed those in, I bet you have a hard time reading them. The Exprs lan-
guage is just not as easy to read as the mathematical expressions we are used to, but we can
partially fix that by adding a function to translate Exprs into a string of characters which
look a lot like pencil-and-paper expressions.

Expressions can get long and complicated, but we can always break them up into similar
pieces, and using Divide and Conquer means that we only have to figure out the simplest
possible expressions, and then let the function do all the work:
pretty : Exprs -> String
pretty e = case e of

(Var name) -> name
(Mult expr1 expr2) -> "(" ++ (pretty expr1) ++ ")" ++←↩

" * " ++ "(" ++ (pretty expr2) ++ ")"
(Sqrt expr) -> "sqrt(" ++ (pretty expr) ++ ")"
(Const c) -> show c
(IntPow expr exponent) -> "(" ++ (pretty expr) ++ ")←↩

^(" ++ (show exponent)++")"
(Exp expr) -> "e^("++ (pretty expr) ++ ")"
(Ln expr) -> "ln("++pretty expr++ ")"
(Add expr1 expr2) -> (pretty expr1) ++ " + " ++ (←↩

pretty expr2)
(Neg expr) -> "- (" ++ pretty expr ++ ")"

9.1 Simplification 171

9.1 Simplification to contents

simplify : Exprs -> Exprs
x ·0 7→ 0 (commutative)
simplify e = case e of

(Mult x (Const 0)) -> Const 0
(Mult (Const 0) x) -> Const 0

x1 7→ x

(IntPow x 1) -> x
x ·x 7→ x2 Since we cannot match the same value twice in the Divide step, we have to match
x*y and add a condition that they be equal (x == y).

(Mult x y) -> case x == y of
True -> IntPow x 2
False -> Mult (simplify x) (simpl←↩

ify y)
xn ∗ x 7→ xn+1 is complicated, because we cannot use x twice on the LHS

(Mult (IntPow x n) y)
-> case x == y of

True -> IntPow x (n+1)
False -> Mult (IntPow (simpl←↩

ify x) n) (simplify y)
x+0 7→ x(commutative)

(Add x (Const 0)) -> x
(Add (Const 0) x) -> x

x∗1 7→ x(commutative)

(Mult x (Const 1)) -> x
(Mult (Const 1) x) -> x

√
x2n 7→ xn√
x2n+1 7→ xn√x

(Sqrt (IntPow x exponent))
-> case exponent % 2 of -- remainder

0 -> IntPow x (exponent // 2)
_ -> Mult (IntPow x (exponent // 2)) (Sqrt←↩

x)
In the next rules, we check to see if an operation is applied to a constant, in which case we
can calculate the result right away, because there are no variables involved.

√
Constc 7→

Const
√

c

(Sqrt (Const c)) -> Const (sqrt c)
The same works for the other operations

9.1 Simplification 172

(Add (Const c1) (Const c2)) -> Const (c1 + c2)
(IntPow (Const c) n) -> Const (c^n)
(Exp (Const c)) -> Const (e^c)
(Ln (Const c)) -> Const (logBase e c)
(Neg (Const c)) -> Const (-c)

NaN+ x 7→ NaN (this one is tricky)
(Add (Const x) y)

-> case isNaN x of
True -> Const x
False -> Add (Const x) (simplify y)

If none of the above patterns is matched, we have to look deeper in the expression tree to
find something to simplify. This is theDivide step! Since there aremultiple data constructors
which contain subexpressions, we need multiple rules to implement the Divide step. All of
the rules are similar to e1 ∗ e2 7→ simplify(e1)∗ simplify(e2)

(Mult expr1 expr2) -> Mult (simplify expr1) (simpl←↩
ify expr2)

but each handles a different outermost operation:
(Add expr1 expr2) -> Add (simplify expr1) (simplif←↩

y expr2)
(Sqrt expr1) -> Sqrt (simplify expr1)
(IntPow expr1 n) -> IntPow (simplify expr1) n
(Exp expr1) -> Exp (simplify expr1)
(Ln expr1) -> Ln (simplify expr1)
(Neg expr1) -> Neg (simplify expr1)
(Const c) -> Const c
(Var name) -> Var name

Now each time we apply the simplify function, it searches the expression tree for a
pattern for which it has a rule, and applies that rule. Most expressions can be simplified
by more than one rule, and sometimes the second pattern we simplify is partially created
by applying the first rule. We need a way to keep applying rules until there are no more
rules which apply. The easy way to do this is to apply simplify and check to see if the new
expression is the same
simplifyUntilItStops x = let xNew = simplify x

in case xNew == x || isConstNaN x of
True -> x
False -> simplify xNew

where we use a helper function which checks for a NaN input, since NaN is defined to be
not equal to anything, including itself!
isConstNaN x = case x of

(Const x) -> isNaN x
y -> False

9.2 Derivatives 173

9.2 Derivatives to contents

Derivation is an operationwhich turns an expressiondefining a continuous function and
produces a new expression defining the slope of the tangent to the function at each point.
We call this the derivative. In Elm, everything we do is a function, and we can translate the
last sentence into this type
deriv : String {- variable with respect to which we take the ←↩

derivative -}
-> Exprs
-> Exprs

adding in the fact that we take the derivative with respect to a particular variable (which is
defined by a string)–this is something we may expect a person to assume.

We define the function by encoding all the basic rules about derivatives one case at a
time. If the function is constant, of course, the slope is zero:
deriv varName e
= case e of

(Const c) -> Const 0
A variable, on the other hand, has derivative 1 if it is the right variable:

(Var name) -> case varName == name of
True -> Const 1
False -> Const 0

and the derivative of a sum is the sum of the derivatives:
(Add e1 e2) -> Add (deriv varName e1) (deriv varName e2)

Did you notice Divide & Conquer being applied in the last rule? The remaining rules will
also implement D & C, but the combine steps get more complicated.

Let’s start with the product rule:
(Mult e1 e2) -> Add (Mult (deriv varName e1) e2)

(Mult e1 (deriv varName e2))
The remaining cases are rules which are familiar from Calculus, and some of them we call
the Chain Rule.

(Neg e1) -> Neg (deriv varName e1)
(Sqrt e1) -> Mult (Const 0.5) (Mult (IntPow (Sqrt e1) (-1))

(deriv varName e1)
)

where, to see the application of the chain rule, we could write f (x) for e1 and f ′(x) for
deriv varName e1:

∂
∂x

√
f (x) =

1
2

1√
f (x)

f ′(x).

9.2 Derivatives 174

(IntPow e1 n) -> Mult (Mult (Const (toFloat n)) (IntPow e1←↩
(n-1)))

(deriv varName e1)
(Exp e1) -> Mult (deriv varName e1) (Exp e1)
(Ln e1) -> Mult (IntPow e1 (-1))

(deriv varName e1)

10. Switches to CPUs

Do you remember a time when your parents thought you were sleeping, but you were really making
secret plans via flashlight signals with your accomplice? You were encoding information by turning
the flashlight ON and OFF (or maybe by using long and short flashes).

Inside every iPad or smartphone is a computer crammed with billions of wires, tiny
versions of the wires connecting a flashlight’s battery and light, and all the pictures, texts,
and numbers you put into that device are encoded into groups of ON and OFF states.

Every spelling mistake you fix or sketch you make happens by flipping switches.
How can we do all that with ON and OFF? Well, first of all, we have billions of switches in

here, and we are very organized!
To start, let’s agree that ON will mean 1 and OFF 0. Just as with normal decimal numbers,

we can group these bits (short for binary digits, bi meaning two) to make bigger numbers.
Counting in binary:

decimal 0 1 2 3 4 5 6 · · ·
binary 0 1 10 11 100 101 110 · · ·

You get the idea!
Starting with something as simple as on/off, we have built up a system of numbers. Let-

ters are easy, just number them 1 for A, 2 for B, and so on, and we can encode text. If you
write fancy text, you will need Unicode1, which is an agreed encoding of any symbol you
are likely to need—even symbols for the undeciphered Linear A script of Minoa (ancient
Greece), andmediaeval alchemical symbols. You can put them in Strings and access them
using Char.fromCode.

Images are also easy to encode. Chop them into little squares, and encode the intensity
of the primary colours in each square as a number. If you really are reading this on an iPad,
you can try this out with our free app Image 2 Bits, for black = 1 and white = 0 images.

1http://www.unicode.org

http://www.unicode.org

10.1 CPU 176

One thing I cannot explain iswhy all of our technology based on binary encoding is called
digital2!

10.1 CPU to contents

So encoding information as on/off choices is not hard, but how do we process that in-
formation? While decoding images and text can be an interesting mental exercise, the real
advantage of the information revolution is not just the better storage of information, but
the ability of computers to process it for us. Think about it, even looking something up on
the internet involves many computers processing that information. The computer at the
source needs to separate the information you want from all the other information, then it
needs to find a path through the web of the internet to send that information back to your
computer, then your computer needs to make the answer visible or audible to you. All so
you can ask the internet “Are there really butterflies in my stomach?”

Today, people who own a smartphone carry computers with billions of switches around
in their pockets! How do you organize a billion switches? Well, we follow the Divide and
Conquer principle. Break the process down into successively smaller chunks, solve small
problems, and then assemble those solutions together. A large chunk of those switches are
organized to store information. That information is organized into bits, 8-bit integers called
bytes, one or more bytes to store Chars, multiple Chars to store Strings, 64-bit groups to
store Floats, and so on.

Wires transmit electric currents to transfer this data from one part of the processor to
another. Specialized circuits of switches perform basic operations like adding, subtracting
and multiplying Ints and more complicated circuits to do the same for Floats. These
assemblies are called Arithmetic Logic Units or ALUs, Together with storage called registers,
and a control system to decidewhich operations to performonwhich data, the total is called
a Central Processing Unit or CPU.

Let’s try to model this in Elm. Early CPUs only supported integer values, so let’s follow
their lead, and define:
type alias RegisterValue = Int
CPUs todaymay have hundreds of registers, but for a long time, we could get by with amod-
est number. Our CPU will be a throw-back to a time with eight registers. Since everything
the CPU explicitly “remembers” is in those registers, this is the largest part of the state of
the CPU:
type CPUState = CPUState (RegisterValue, RegisterValue

, RegisterValue, RegisterValue
, RegisterValue, RegisterValue
, RegisterValue, RegisterValue)

But we know that a CPU must execute a program to do anything interesting, and in the
process of execution, it must implicitly remember its position in the program:

2Wikipedia blames it on the mathematician George Stibitz.

10.1 CPU 177

CurrentInstruction
which must be reduced to switches—something best done by encoding the position as an
Int.

To allow the program to execute instructions conditionally, so that we can implement
if-then-else and case expressions, we also need to remember a condition. A single
Bool value would suffice, but CPU designers have found it worthwhile to store the equiva-
lent of Order:

ComparisonResult
And, finally, assuming there is a finally for our program, we need

(Maybe HaltedBecause)
to indicate whether the CPU has reached the end of the program, stopped because there
was an error,
type HaltedBecause = ReachedHalt

| IllegalRegisterNum
| IllegalAddress
| IllegalInstrAddress

or, in the case of Nothing, is still running our program.
Our processor will only make simple numerical comparisons, which we can model with

Elm’s Order type
type alias ComparisonResult = Order

When a CPU adds a number, it is calculating a function. Since Elm is a functional lan-
guage, it is easy to create values of type function. Each basic-operation function would have
the type
basicOp : CPUState -> CPUState
Being able to do this actually requires some sophisticated programming in the Elm compiler.
At the hardware level in the CPU, we must content ourselves with simpler functions, which
we call instructions, and to store a program in a workable format, we need a simple encoding
of those instructions as 32-bit or 64-bit integers.

We can simulate this in Elm with a
type Instruction
With the following instructions:
= Load RegisterNumber RegisterNumber RegisterNumber

is an instruction to move a value from main memory to a register. By convention, the first
listed register number is the destination, and the address is the sum of the second two reg-
ister values. If the address does not exist, the processor must halt with an error.
| Store RegisterNumber RegisterNumber RegisterNumber

10.1 CPU 178

is an instruction to move a value from a register to main memory. By convention, the first
listed register number is the source register, and the destination address is the sum of the
second two register values. If the address does not exist, the processor must halt with an
error.
| LoadImmediate RegisterNumber RegisterValue

Sometimes, a value is always the same, sowedon’t need to bother putting it inmainmemory,
we have this special instruction to load the value contained in the instruction.

| Add RegisterNumber RegisterNumber RegisterNumber
This is the first instructionwhich calculates a new value, in this case, by adding two register
values. By convention, the first listed register number is the destination, and the values in
the second two registers are added.
| Multiply RegisterNumber RegisterNumber RegisterNumber

Similarly, the first listed register number is the destination, and the values in the second
two registers are multiplied.
| And RegisterNumber RegisterNumber RegisterNumber
| Or RegisterNumber RegisterNumber RegisterNumber

As with Add and Multiply, And and Or take two inputs and put an output back in the first
register, but instead of treating the bits in the register as a number, they treat them as a
bunch of bits and perform logical operations on each of the bits. For example

0 0 1 1
And 0 1 0 1

= 0 0 0 1
and

0 0 1 1
Or 0 1 0 1
= 0 1 1 1

shows the results of Anding and Oring 4-bit numbers, although our RegisterValues are
32-bits wide.
| Not RegisterNumber RegisterNumber

Not reverses the bits.
Not 0 1 0 1

= 1 0 1 0

| Rotate RegisterNumber RegisterNumber Int
while Rotate spins them around to the right,

00001000 rotate 1−→ 00000100, 11000000 rotate 6−→ 00000011, 00000001 rotate 1−→ 10000000,

putting them back in on the left when they fall off the end. (Again shownwith shorter 8-bit
numbers rather than the normal 32-bits.)

Doingdifferent things dependingon input data, or different user actions is accomplished
at the CPU level by being able to compare numbers and then jump to a different instruction
in the machine program rather than continuing, only if the conditions are true.

10.2 Traces 179

| Compare RegisterNumber RegisterNumber
does the comparisons of two register values, and puts the result of the compare into the
CPUState.
| Branch (List ComparisonResult) RegisterNumber

optionally jumps to an instruction number given by the specified register if the current
condition in the CPUState is in the List of ComparisonResults.

And finally, when our program is really finished, we can save electricity and turn our
CPU off with the Halt instruction.

| Halt
For safety, there should always be a Halt at the end of the list of instructions, even if the
CPU will never get there because of Branches. In particular, if all the conditions are listed,
the CPU will always jump to the indicated location in the program!

10.2 Traces to contents

Just like an accident investigator for the Transportation Safety Board, if something goes
wrongwith amachine program, we need to retrace the steps which led to the illegal instruc-
tion or incorrect result. For the simplified CPUwe are studying, all we need to know are the
initial CPU state and memory state and the program, because our CPU is deterministic—it
will always arrive at the same result when starting with the same inputs3.

Given the program,

number instruction
(0, LoadImmediate 7 2),
(1, LoadImmediate 2 1),
(2, LoadImmediate 3 3),
(3, LoadImmediate 4 (-1)),
(4, LoadImmediate 5 16),
(5, LoadImmediate 6 6),
(6, Multiply 2 7 2),
(7, Compare 2 5),
(8, Branch [LT] 6),
(9, Halt)

we can write out the state of the CPU at each instruction, and obtain a program trace:
3If you are an aficionado of computer games, you may be puzzled by the apparent random events which

happen in your games! Even on deterministic CPUs, we can fake randomness by using some data which
changes as an input. For a game, the start time of the game, measured in seconds from 1970, is generally
random enough, but for more serious matters, like choosing random seeds to encrypt our secret messages,
most CPUs have even better ways of generating random numbers.

10.2 Traces 180

clock
time

current
instructn

Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 Condition

1 0 0 0 0 0 0 0 0 0 EQ
2 1 0 0 0 0 0 0 2 0 EQ
3 2 0 1 0 0 0 0 2 0 EQ
4 3 0 1 3 0 0 0 2 0 EQ
5 4 0 1 3 -1 0 0 2 0 EQ
6 5 0 1 3 -1 16 0 2 0 EQ
7 6 0 1 3 -1 16 6 2 0 EQ
8 7 0 2 3 -1 16 6 2 0 EQ
9 8 0 2 3 -1 16 6 2 0 LT
10 6 0 2 3 -1 16 6 2 0 LT
11 7 0 4 3 -1 16 6 2 0 LT
12 8 0 4 3 -1 16 6 2 0 LT
13 6 0 4 3 -1 16 6 2 0 LT
14 7 0 8 3 -1 16 6 2 0 LT
15 8 0 8 3 -1 16 6 2 0 LT
16 6 0 8 3 -1 16 6 2 0 LT
17 7 0 16 3 -1 16 6 2 0 LT
18 8 0 16 3 -1 16 6 2 0 EQ
19 9 0 16 3 -1 16 6 2 0 EQ

10

Creating a trace is a good way of checking your intuition about what a program does.
It is also recommended, along with two sudokus and ten servings of vegetables and fruit
as part of your daily diet, and is a favourite question to put on tests and exams, because it
really tests your knowledge of the CPU state and transition functions—and it takes a while
to fill out, giving the teacher time for a nap.

II
Norman’s Principles

11 Knowledge in theWorld 182

12 The Principles 186

11. Knowledge in theWorld

Everyone knows that “the customer is always right.” And as a corollary, if software doesn’t
do what the customer needs, it is our fault. So we better do what the customer wants.
Right? Well, it’s a bit more complicated, because, unlike with physical products like hoes
or horseradish, the customer usually doesn’t know what they want software to do because
they haven’t seen it before. You haven’t invented it yet!

Even if you’d never heard of “human-centred design”, you would probably be in favour
of it, but what is it? The International Standards Organization have a standard for it (ISO
9241-210:2019(E)). It is advertised as

This document provides an overview of human-centred design activities. It
does not provide detailed coverage of the methods and techniques required for
human-centred design, nor does it address health or safety aspects in detail.

Translated into English, this means they are not there to help you do your job, they are
there to tell your manager how to tell you aren’t doing it.

This may sound hopeless, but fortunately, there are people with actual tips you can put
to use. The most important person in this field is Don Norman. When you have time, it is
well worth reading his book “The Design of Everyday Things.” He is an engineer, a cognitive
scientist, and an expert on design. He came up with much of the vocabulary we use to talk
about design, and he grounded it in cognitive science. What is that? Cognitive Science1 is
the study of intelligence and behaviour. Suppress your immediate objection to the lack of
definition for “intelligence” and focus on behaviour—what people do—andwork backwards
from there to why they do it. Or thinking glass half empty, why do people fail to use our
software the way we think they should?

1If youwant to knowmore about this Cognitive Science, I definitely recommend “Grasp: The Science Trans-
forming HowWe Learn” [SY21], because you will be able to relate to the applications, since you are a learner.

11.1 Memory 183

11.1 Memory to contents

The way we have designed our software puts demands on them beyond their abilities.
What are these abilities? Actually, the important ones mirror the capabilities of a Central
Processing Unit (CPU). In both human and electronic computers, we perform simple oper-
ations on data, and the access to that data limits the rate at which we can process it. By
the time you get to university, you have a truly astounding amount of information in your
head, but put you in a quiz show under the bright lights, and you can hardly remember any
of it. In fact, a lot of the information stored in your head is stored as procedural memory,
so you could only with a great deal of difficulty use it on the quiz show. The only way to
retrieve it is to start doing the task related to that memory, and suddenly it is like riding a
bike—perhaps literally—you can just do it again without being able to explain it.

It is easier to map tasks onto a computer program when we have learned them step-by-
step. A prototypical example is long2 multiplication.

a5 a4 a3 a1 a0

⇥ b4 b3 b2 b1 b0

a4 ⇥ b0 a3 ⇥ b0 a2 ⇥ b0 a1 ⇥ b0 a0 ⇥ b0

a4 ⇥ b1 a3 ⇥ b1 a2 ⇥ b1 a1 ⇥ b1 a0 ⇥ b1

a4 ⇥ b2 a3 ⇥ b2 a2 ⇥ b2 a1 ⇥ b2 a0 ⇥ b2

a4 ⇥ b3 a3 ⇥ b3 a2 ⇥ b3 a1 ⇥ b3 a0 ⇥ b3

a4 ⇥ b4 a3 ⇥ b4 a2 ⇥ b4 a1 ⇥ b4 a0 ⇥ b4

+ + + +

+ + + +

+ + + +

+ + + +

1

Generations of children are taught to memorize single-digit multiplication facts, but not
multi-digit multiplication. Instead, they have their first out-of-brain experience. Longmul-
tiplication is an algorithm designed to get around the limited working memory of the hu-
man brain bymoving primary and intermediate results from brain to paper. Norman called
this “putting knowledge in theworld,” andhemade it the organizing principle behind visual
user interface design.

How bad is the limitation of working memory? Well, a human is doing well if they can
keep seven things in their working memory, and how long you can keep it there depends
partly on what it is. It is probably not an accident that that One Time Passwords seem to all
be six digits long. If someone decides that six digits are still too easy to guess, they will have
to group them, andmake it easier to remember them in pieces. Youmight argue that phone
numbers are now over seven digits, depending on the country. Butmostly they aren’t really,
because most people use very few country and area codes, so remember them as units. You
could even argue that they become part of their procedural memory. That leaves us with
seven numbers, and even there, there used to be patterns by town or village.

2Computer Scientists call it “schoolbook” multiplication when they use it as a basis for binary multiplica-
tion circuits, and large-integer software multiplication subroutines.

11.1 Memory 184

In 2001, AlanBaddeleywas awarded for hiswork onworkingmemory, and in “IsWorking
Memory Still Working?” he evaluates the progress3. Not surprisingly, he finds that it holds
up pretty well. :) When Baddeley says that the theory holds up, he means that it continues
to be useful in explaining the results of experiments, not that we can explain what is going
on with the 1014 synapses4 in our brains.

The basic model which has held up, with a few improvements, can be summarized by
this diagram on the left5:

And on the right, we’ve added a slightly more abstracted view of a computer. The paral-
lel starts with the Central Executive, which decides what to focus on, and what to do with
that information, and the Control Unit, which interprets the instructions of a program and
controls which data goes where in the execution of those instructions. In the human brain,
we don’t know where the instructions are, or expect that they are stored in the simple and
uniform way they are stored in a digital computer, so we don’t show that aspect of the com-
puter. Next, the Register Store varies between architectures, but typically stores 32 values,
whereas the Phonological Loop stores about 7 words. To keep things in the Phonological
Loop, we need to keep repeating them, or doing something with them6.

In both diagrams, this is where the bottleneck occurs. Try to do something too compli-
cated, and we will fail. In the computer case, with its explicit machine instructions, we will
not be able to write a program, because we won’t be able to put the data in registers. In the
brain case, we may be able to describe what we need to do, but will get muddled when we
try to do it, because when we get to step 9 or 10, we just don’t remember the things we need
for that step, even if we just computed them or looked them up.

3Baddeley: https://journals-scholarsportal-info.libaccess.lib.mcmaster.ca/pdf/0003066x/v56i0011/851_iwmsw.xml Popu-
lar science version: https://www.psychmechanics.com/types-of-memory-in-psychology-explained/

4Compare 1014 to the (relatively) tiny number of pathways mapped in pictures of the connectome https:

//en.wikipedia.org/wiki/Connectome.
5make your own: https://cs1xd3.online/ShowModulePublish?modulePublishId=8897cec7-2172-4dc1-8e4c-36ad9a6525d5
6In digital memory, dynamic RAM (random-access memory) also needs to be refreshed, but we typically

use faster, but more expensive, staticmemory for the register store.

https://journals-scholarsportal-info.libaccess.lib.mcmaster.ca/pdf/0003066x/v56i0011/851_iwmsw.xml
https://www.psychmechanics.com/types-of-memory-in-psychology-explained/
https://en.wikipedia.org/wiki/Connectome
https://en.wikipedia.org/wiki/Connectome
https://cs1xd3.online/ShowModulePublish?modulePublishId=8897cec7-2172-4dc1-8e4c-36ad9a6525d5

11.1 Memory 185

The easiest way to handle this bottleneck is to break the process down hierarchically,
with “macro” steps composed of a manageable number of computational steps. We do not
attempt to remember or store the data between macro steps, but either store it in Main
Memory, or write it down on paper. You will notice that Paper does not appear in the dia-
gram on the left. In theory, we could have committed data to Long-Term Memory between
macro steps, but whereas storing data toMainMemory is expensive (typically taking 1000X
longer to store and retrieve) it is reliable. Storing to human Long-Term Memory is not un-
der our conscious control, and try as we might, we never7 remember all of the things that
we want to, so it is just a lot easier for us to write things down. If we use meaningful di-
agrams when we write things down on paper, we can also tap into our Long-Term Visual
Semantics Memory. Your teachers have been tapping into this ability for a long time. When
did you first start using a number line? multiplication table? As you progress in just about
any field, you will learn new diagrams, whether they are Entity-Relationship Diagrams for
databases or reaction diagrams in chemistry or predator-prey diagrams in ecology, you can
pretty reliably separate experts from novices by their use of diagrams.

This is far from a complete picture of what we know about human cognition, or the
complexity of a 30-billion transistormicroprocessor, which employs all kinds of tricks to get
around this basic bottleneck: we can get information fast, or we can get lots of information,
but it is very hard to have both at the same time.

Thatwas a pretty rough sketch, but hopefully enough to put “learnmore about cognitive
science” on your to-do list—another great example of putting “knowledge in the world”
where it won’t get forgotten. For now, you just need to remember our limited working-
memory capacity, and see how they largely explain Norman’s Principles.

7You can train yourself to be better at remembering things, just search for “memory palace” on the inter-
net. Other than Sherlock Holmes, I don’t know anyone who uses it.

12. The Principles

Now that we understand who we are designing for—people with seriously small working
memories—Norman’s principles are easy to explain.

12.1 Visibility to contents

Make actions visible. Ideally, have a button or control for every possible action, and
grey out the controls which are not active in the current state. For complex applications,
you cannot do this, but you can arrange controls on tabs which slide in from the side, or
pop over another control, or you can use menus, and the main menu will always be visible,
reminding the user that there is a tree of submenus waiting to jog their memory, or help
them discover additional actions.

Some applications take the view that “power users” prefer keyboard shortcuts, but that
brings us to...

12.2 Discoverability to contents

Even power users start out having to learn the shortcuts, so you need to make possible
actions discoverable. The best way to do this is to indicate keyboard shortcuts onmenus, or
by placing them in widgets, like

12.3 Mapping 187

In this example, the arrangement of the keycaps is not accidental, it is an example of ...

12.3 Mapping to contents

We can tap into the Spatial Semantics, making it easy to remember controls or figure
out new controls in analogy with older controls or physical objects. In the case of the arrow
keys, they are arranged according to the direction they point, and they are placed next to
the plane on which the spyglass moves to select the colour. Both the internal arrangement
and the positioning on the screen are examples of mapping. People expect similar things
to be grouped together. That’s how they are grouped in grocery stores, libraries, and that is
even how you knew who were friends when you started school. The word “map” has many
related meanings, and they all apply to “mapping”. So there are “mind maps” of concepts,
where proximity equals relationship. But we also use “map” to describe a mathematical
function, and this allows for powerful visual mapping relationships. You probably don’t
even think about the fact that every function plot assumes a linear (or logarithmic, ...) rela-
tionship between the x or y coordinate on the page and the numerical values of the inputs
and outputs of the function. If I had a favourite principle–which I don’t since I’m a totally
objective University Professor—it would be mapping. It is just a lot of fun to figure out new
relationships and to use them to explain things better, whether to our users, or even to
ourselves.

12.4 Signifiers 188

Since we included the RGB picker under discoverability, for balance, we need to include
the HSL picker. This second picker includes two types of numerical mapping. We have an
angular mapping for hue, and linear mappings for saturation and lightness. If you’ve never
seen a double or triple rainbow, and didn’t realize that the rainbow of colours are periodic,
mapping hues to the angles of a circle closes the loop for you. :)

12.4 Signifiers to contents

“Signify”means to be a sign of something. Your task as a designer is tomake things look
like what they do. I love this example from Apple:

which, thanks to Aesop, we all associate with the fable of the Tortoise and the Hare. There
are lots of fast animals and lots of slowones, but picking oneswith strong associationsworks
best, because those associations will be easy for your user to retrieve. Of course, these as-
sociations are culturally dependent, so you may not be able to use one set of signifiers for
everyone. They are also generationally dependent, largely because many of the physical
tools used by older generations have been replaced by software. On the other hand, newer
generations recognize signifiers, like datebooks and envelopes, without having seen them
non-virtually. Your grandchildren may well continue to click on a floppy disk icon to save
their document, even though they will never encounter one in real life, and given the short
span of time that floppy disks were used, and the relative lack of interesting material for
historical movies, they never see one on video either. But the one thing we can say about
the persistence of the floppy disk icon is that the visual designers are being consistent!

12.5 Consistency 189

12.5 Consistency to contents

You can be consistent in your use of signifiers, shortcuts, and gestures within your ap-
plication, but also across applications on the same platform. Without looking back, can you
guess which shortcuts were used in the Edit menu for “Undo Typing” and “Can’t Redo” (a
greyed-out version of “Redo Typing” since there were no undos to redo)? If you guessed
Control-Z, then you are probably a Windows or Linux user. If you guessed Command-Z,
then you are a MacOS user (or recognized the system font, and are familiar with MacOS). If
you guessed Control-Shift-Z or Command-Shift-Z for “redo” then you know more than the
basic shortcuts. If you know that Command-E means “Use selection for search”, then you
are a power user!

If you did know those keys, it is very unlikely that you just learned them from theVisibil-
ity example. You almost certainly have used them across multiple apps, and you saved a lot
of time by learning them once (maybe when you noticed they were consistent in the third
app...) and using them many times. It is likely that you don’t even say “Control-Z” to your-
self when undoing, because youhave created proceduralmemories for these actions—called
muscle memories, because it seems like your muscles can perform them without involving
your brain1.

Even more important than consistency with other apps is consistency within your app.
This means that a button to do X should be in the same position whenever it appears.

Here is the dialogue which appears when trying to close an unsaved document:

Notice that the “safe” option—save it first—appears at the right. This is actually part of Ap-
ple’s Human Interface Guidelines2. Apple’s guidelines not only ensure consistency across
applications, but many of them ensure consistency across devices from 1984 to today. Un-
fortunately, even Apple seems to have forgotten its own guidelines when developing for
web and mobile platforms.

12.6 Constraints to contents

The last example is also an example of a Constraint. In this case, it is not preventing you
from closing your unsaved document, but it won’t let you do it without a warning, and if
you don’t really read the dialogue and press return, the resulting default action is to save
the document. Constraints are about not letting the user make choices which cause data
loss, or waste their time. Vet the inputs on all dialogues and forms, and don’t accept inputs

1Actually, we know this is incorrect. Your brain is definitely involved, but not your consciousness. Don
Norman describes his theory for different levels of mental processing [Nor13], and explains that good designs
short-circuit higher-level executive function in order to speed up processing. You experience this as working
effortlessly.

2HIG button: https://developer.apple.com/design/human-interface-guidelines/components/menus-and-actions/buttons

https://developer.apple.com/design/human-interface-guidelines/components/menus-and-actions/buttons

12.7 Feedback 190

you know will cause an error later—especially if the only way to fix it is to undo until you
get back to the same dialogue.

Combining the principles of constraint and mapping, you should scale any controls so
that illegal values are out of reach. Sincewe all live in countries with seven days of theweek,
it is not surprising that we only get seven choices in our dialogues, but it takes a bit of work
tomake sure that you cannot enter February 29th into a date picker on leap years. Similarly,
if your air conditioner only cools down to -5◦C, then make that the bottom of your slider.

Combining constraint and visibility: grey out buttons for actions in states which do not
accept those actions. Going back to the first example, “redo” was greyed out because there
were no undos to backtrack. Since the greying out of buttons happens in response to an
action, this is also an example of feedback.

12.7 Feedback to contents

Let the user knowyouheard them! If you are building an editor, then hopefully feedback
is immediate as text appears and disappears as soon as the user types, or is highlighted as
they hold Shift and use the arrow keys, or drag with their mouse.

But sometimes it takes time to perform an action. You could be processing a gigabyte
of data, or waiting for an internet query to come back. In those cases, you need to do some-
thing to avoid the user banging on the keyboard or mouse, and we have a great convention:
the progress bar. Contrary to popular belief, most progress bars do not actually indicate
progress, they are programmed to move along according to some estimate of how long a
task will take. You are probably quite familiar with installations which seem to be zipping
along, and then stall, and then zip along again. No matter how suspect, you probably do
feel better with a progress bar than a spinning ball, and a spinning ball is a lot better than
no change in the interface.

Another feedback convention which has been created for web apps is colour change on
mouse-over of a button. Some people who used the original 7.8MHz Macintosh are a bit
puzzled about the need for this. If it was possible for a processor 500 times slower, and
without any graphics processor support, to provide adequate button feedback—for users
who had never seen a mouse before—why do we need it now?

Maybe those greybeard users complained to Google, because the wizards behind Mate-
rial Design 3.03 have decreed that this animation will result in an 8% change in opacity for
a black (really smoky) overlay. As you can see:

the result is a subtle colour variation which shouldn’t irk anyone old enough to have used
the original Macintosh—because they will barely see it (and evenmore elderly users—if you
can imagine that—will not be able to see at all, since our visual acuity declines with age). So
to sum up,

1. web designers create buttons people don’t recognize as buttons and laggy apps which
make people question whether they clicked on a button or not,

3material design: https://m3.material.io/foundations/interaction-states

https://m3.material.io/foundations/interaction-states

12.7 Feedback 191

2. they then add a feedback to let you know your mouse is over a button, and
3. they complicate the API to automate the new action contributing to bloated applica-

tions, and finally,
4. they make the new action invisible to the users most likely to be confused by new-

fangled interfaces.
Clearly, capitalism is working well, as evidenced by our billion-dollar companies wisely in-
vesting their monopoly-generated rents.

Since I know some of you will feel I’m picking on those underdog billion-dollar com-
panies, I should point out that the arrival of the web app did pose a challenge for visual
designers. Do you design your app using the conventions for pre-app web pages—knowing
that those conventions were designed for hyperlinked documents, and not apps? Or do you
design your app tomatch one of the desktopOSs, or attempt to detect theOS and thenmatch
that OS? But what about information appliances (devices with a browser, but no visible OS)?

No wonder they gave up and went for “fashionable”. Unfortunately, fashion meant
American fashion, and this was a particularly dark (well, actually beige) time in American
fashion4. Could anything be worse than beige? Well, constantly changing in order to seem
“modern” would rank pretty highly. There is another billion-dollar company who touts
their ability to update their cars’ software over the air. How do you think your 70-year-old
car owner is going to react to their car’s interface changing just when they need to drive to
the hospital?

Which brings us back to Apple, and their interface for saving notes:

To get here—noantiquated floppy-disk icon in sight—wehave to share (with ourself, I guess).
Notes can get lost, so it is helpful to be able to put them in folders. But how do you access
the folders? Folder icon? Something which predates the floppy disk, and everyone under-
stands? Nope. I still cannot come upwith an explanation for this interface, and I don’tmind
admitting that it took me years to figure out that Notes even supports folders!

4beige “design”: https://www.atlasobscura.com/articles/how-beige-took-over-american-homes

https://www.atlasobscura.com/articles/how-beige-took-over-american-homes

12.7 Feedback 192

At this point, youmay be saying, if trillions of dollars of capitalization cannot guarantee
good design, what hope do we have? Think instead of this as an opportunity for a new
startup!

III
Design Thinking

13 History . 194

14 Example: This IS your Grandfa-
ther’s Gaming App 202

15 Design Thinking Templates 290

16 Example: Math Visualizer 316

13. History

When you hear “design” you probably think about architecture and fashion‚ something re-
quiring genius or at least inspiration. In fact, design is just another skill. Some of us seem
better at it than others, but everyone can get better through practice and reflection.

You may have heard of people talk about something being “more art than science”.
What do they mean by that? And when people say “it just can’t be taught,” are they se-
rious? As with many sayings, there is some truth underlying them. In everyday language,
when people talk about something being a science versus an art, they are probably thinking
about the organized way in which science is taught in school: hypothesis, method, experi-
ment, and conclusions. So something that is more art than science is something which does
not fit this systematic approach. The funny thing is that if you think back to art class, you
will probably remember lots of systematic instructions on how to mix colour, apply glue
evenly, handle exacto knives safely, draw with hidden lines to get perspective right, or use
shading to convey 3D geometry.

Conversely, even a stack of neatly penned lab notebooks stretching from here to the
moon would have amounted to nothing without good hypotheses. How does good hypoth-
esis generation work? Was it even covered in your science classes? Well, you could say it is
more art than science!

We could chuckle about the contradictions in popular perceptions of art and science, but
it’s nothing to laugh at. Progress in science is slowing down1 just as we face the toughest
challenges in known history, including slowing and adapting to climate change and contain-
ing new diseases2.

13.1 Herbert Simon and Design Science to contents

Fortunately, there is a science to this, and even a Nobel prize winner (Herbert Simon in
1969). Simon’s focuswasmaking good decisions. Starting out in political science, he learned

1cf. “Are Ideas Getting Harder to Find?” [Blo+20] https://web.stanford.edu/~chadj/IdeaPF.pdf
2Just look up avian flu in birds, and drops in frog and pollinator populations.

https://web.stanford.edu/~chadj/IdeaPF.pdf

13.1 Herbert Simon and Design Science 195

behavioural economics, logic, cognitive science, and optimization, and helped establish the
field of artificial intelligence—all to understand decision making.

One of Simon’s big worries was the way in which “professional” engineering and man-
agement programs were throwing out practical doing in favour of knowledge and skills re-
lated to established scientific theories. Established theories made it easy to teach and to
test knowledge. Grading creative problem-solving is pretty hard, and very hard for inexpe-
rienced teachers to do fairly. When education was rapidly expanding, it was just easier to
abandon design, which is about defining problems and making decisions, rather than solv-
ing problems by following a recipe. This is not to say that Simon devalued basic skills and
knowledge, because he argued just as strenuously for improving their teaching.

Simon’s first contribution to decision making will probably seem obvious to you, but it
was not obvious to economists at the time: people make decisions based on limited infor-
mation. Even today, with the internet giving us access to more information than we could
digest in 100 lifetimes, we often cannot find the information we need to make decisions.
Polluters do everything they can to hide the impact of their pollution. Drug companies will
only fund studies which could turn a profit. The topics we most need information about
are often the ones we cannot even search for because we don’t know the right search terms,
and the search engines we rely on make money not by giving us the best answer, but by
advertising something people want to sell us. So is it surprising that people make decisions
without the needed information?

To counter this, Simon had a simple formula for good decision making,
1. Intelligence: identify the environment, where does the problem come from?
2. Design: invent possible solutions, and build prototypes.
3. Choice: pick the best choice after weighing all the results.

For a good summary of Simon’s ideas, see [Sim19].
While his concepts are credited as the start of modern design theory, we need to ac-

knowledge that much of the theory, and most of the practice, were developed by working
designers who probably did not know about Simon’s or anyone else’s theories of design.
Many teams also developed their own methods independently. Mechanical engineers, ar-
chitects, graphic designers, and user-interface designers all developed their own versions
of many of the techniques we will describe. This is natural when design practices grow over
time as people face harder and harder design problems. Even today, people often reinvent
ideas because they don’t even know the words for what they are inventing.

But while many creators of design culture didn’t know about Simon, it is worth under-
standing his ambition to apply scientific methods to this problem. In fact, before Simon
won the Nobel prize, he won the Turing Award3 (the top prize in Computer Science) to-
gether with Allen Newell4 for foundational work on artificial intelligence, the psychology
of human cognition, and list processing. It all comes back to how humans make decisions
with limited information. He reasoned that if they could develop a system of computation
with symbols which reached similar decisions to human decisionmakers, the theory behind
the system would be validated as an explanation of how humans think. Not only were they

3https://amturing.acm.org/award_winners/simon_1031467.cfm
4http://act-r.psy.cmu.edu/misc/newellclip.mpg

https://amturing.acm.org/award_winners/simon_1031467.cfm
http://act-r.psy.cmu.edu/misc/newellclip.mpg

13.2 George Dantzig and Operations Research 196

successful in creating such systems, they interested many other researchers at Carnegie
Mellon University to take up the problem, or to use computer simulations to answer new
questions. Some of them took things to the next level and developed cognitive tutors which
incorporate a computational model of thinking called ACT-R5. In this way, the tutor builds a
model of why a student makes amistake, so it is possible to correct the underlying problem,
just as an experienced human tutor would do. These models are too complex to explain in
this book, but you can get an idea of how this could work with a simple model for team-
based design. But to explain that model, we need to introduce another big discovery which
happened at that same time as Simon’s early work on models for cognition.

Simon was born in 1916, in the middle of World War I, grew up during the Great De-
pression, and finished his university education during World War II. It is hard for anyone
growing up today to understand how the richest countries in the world at the time faced
such extreme poverty and really struggled to do anything about it. Economics at the time
had little to offer in the way of solution. As a university student, Simon got involved in
the Cowles Commission for Research in Economics looking into the application of mathe-
matics to economics (called econometrics) which produced 11 Nobel prize winners. Simon,
however, did not stop with economics, he learned about another growing field: operations
research. Also called logistics, or industrial engineering, operations research is about mak-
ing the best plans for building, transporting, or sharing things, so you can see how this
connects to economics.

13.2 George Dantzig and Operations Research to contents

Operations researchwas oneof threemassive leaps forward inmathematicswhichhelped
defeat fascism in World War II, along with the digital computer and algorithms for making
and breaking codes (called cryptography and cryptanalysis). Computer science might have
been much slower to develop without these achievements. Operations research seeks to
maximize production given limited resources. During the war, another scientist, George
Dantzig, had the job of planning logistics for the US army, and was challenged by his team
to automate the massive number of calculations required. Before automating, he had to
figure out the right abstract form for the problem. This is a common problem in computer
science. Problems come in all kinds of forms, butweneed to see the link to the right abstract
problem so that we can solve them. The person we credit with introducing mathematical
modeling to operations research and developing the first efficient algorithm for solving
Linear Programming problems was George Dantzig. If you know about inequalities, a linear
program has the form

max f (x,y,z, ...) (13.1)
0≥ g(x,y,z, ...) (13.2)
0≥ h(x,y,z, ...) (13.3)

involving a set of variables x,y,z, ... and functions f ,g,h which are linear in the variables.
Linear comes from “line” and it means that the graphs of the functions are lines, and it

5http://act-r.psy.cmu.edu/about/

http://act-r.psy.cmu.edu/about/

13.2 George Dantzig and Operations Research 197

turns out that is exactly the case when the formula used to calculate each function is a
sum of products of a constant and a variable, and sometimes a final constant. If you know
about functions—great—otherwise, don’t worry, because we will explain functions and lin-
ear functions in this book. Now we’ll see how abstract optimization problems can simulate
the process of searching for solutions. If your design problem is simple, like designing a box,
you have a few things to change, like the height, width, and depth of the box. As ametaphor
for finding the best solution, think about trying to find the highest mountain. The height
of the land can be represented by a function, and the highest mountain will be at the point
with the greatest height. Each designer has limited knowledge, because every person on
earth has limited knowledge. In the mountain scenario, that is like walking around in the
fog where you can only see a few steps ahead, or in the dark where you can only see as far
as your flashlight.

In that situation, you start walking in the direction with the steepest slope. Eventually, you
will reach a peak.

But since you can only see what is around you, you don’t realize that your peak is actually
a lot lower than another peak.

13.2 George Dantzig and Operations Research 198

Hmm, we need a new strategy. We could ask our friends to help, but if your friends go to the
same school, live in the same neighbourhood, play on the same sports team, speak the same
language, etc., then you start out about the same place in the idea landscape, and chances
are, you will end up at the same peak. We could put another picture here, but since you are
all so alike, we won’t be able to tell how many people are standing with you on your peak.

Another approach is to build a diverse team, with people who were born and grew up
in different places and times, speak different languages, play different sports and musical
instruments, and read different books. With different backgrounds, you approach the prob-
lem from different starting points and will come up with different solutions.6

The difference between this optimization problem and the problems you tackle inside
your head is that most problems have discrete choices in addition to continuous choices. Dis-
crete variables require leaps. Instead of building with wood, you could build with bricks or
straw. We can count the possibilities. Continuous variables can be expressed by numbers,
including fractions. So we can make steps of any size. If building from straw, the amount
of straw we use is such a variable. Adding discrete choices into an optimization problem
makes it much harder to solve, and even more complicated to write down.

One detail missing from this description, but important in how the problem gets solved
in your head, or in a computer, is that the amount of information we can work with at one
time is limited in both cases. Simon introduced the idea of bounded rationality, recognizing
that people never have all the information they need to make perfect decisions. His col-
league at Carnegie Mellon University, John Anderson, built the concept of working memory
into his computer simulations of problem-solving, which is the level of detail he needed
to get real-world results in the form of cognitive tutors. Computers are more diverse than
people, who can juggle 7 pieces of information at a time. Early computers could handle 8 or
16 numbers, and some could only handle numbers from 0 to 15! Most computers today can
handle 32 numbers (of much larger size), and designers can change this number, but it is
a trade-off between speed and the size of their working memory, which we call the register
file or just registers.

Although we still recognize George Danzig for inventing the simplex algorithm for solv-
ing linear programming problems, which are still of immense importance to operations re-
search, it turns out that Leonid Kantorovich had formulated linear programs in 1939 while
working on the optimization of wood production in the Soviet Union. If not for the Second

6See for yourself: https://cs1xd3.online/ShowModulePublish?modulePublishId=
1d26d9d8-fea2-4825-8cee-2e8004fd3882.

https://cs1xd3.online/ShowModulePublish?modulePublishId=1d26d9d8-fea2-4825-8cee-2e8004fd3882
https://cs1xd3.online/ShowModulePublish?modulePublishId=1d26d9d8-fea2-4825-8cee-2e8004fd3882

13.3 Theory + Practice 199

World War, he may have continued to work on this problem and shared ideas with George
Danzig. Their parents were born in neighbouring regions of the eastern Baltic Sea, but the
Danzigs emigrated to the United States.

From this we can draw an important lesson: it is important to find out how other people
are approaching your problem, even though you will have to renew your search every time
you learn about new words to describe it. Today, a program is a description of steps a com-
puter can take to solve a problem. But this was not always the case, and a “Linear Program”
is really a problem description, not a recipe for solving it. It is one of the few times we use
the older meaning of Program.

13.3 Theory + Practice to contents

“In theory, there is no difference between theory and practice, but in practice there is.”
This quote was first used in 1882 by student Benjamin Brewster.7 It captures the frustration
many of us feel about elegant theories which we cannot see how to put into practice. Uni-
versities have struggled with the relative importance of theory and practical results, and
Simon’s interest in education was sparked by what he saw as an abandonment of theory
in the newly created engineering schools. Progress takes time, and it is hard to judge the
usefulness of a theory when it is created, but it is also easy to get carried away creating the-
ories without any hope of application. It is not surprising that a student came up with this
wry comment, because students are often left to navigate between the worlds of theory and
practice. University professors and researchers are secure in their positions and judged on
the advancement of theories. Practitioners have figured out a way of getting things done,
and are often not interested in “fixing” what works, and ignore long-term questions like
sustainability or the emergence of competing technologies. That leaves new graduates be-
tween a rock and a hard place.

Almost all universities now have separate divisions for Science and Engineering, who
often compete with each other for students, attention, and funding. Computer Science, the
relative newcomer, lives uncomfortably in this artificial landscape, because although it has
“science” in its name, the vast majority of its graduates are employed in practical develop-
ment projects. We would argue that there is room for both theory and practice, and it is
particularly exciting to live in the interface between them. Unlike most other sciences, the
cost and time commitment for doing a lot of computer science experiments is very low. So
it is possible to see the real-world impact of theory. In fact, every time we debug a program,
we are creating a theory of operation for the programand testing the actual programagainst
the theory. We can do that implicitly, by viewing programs as fun logic puzzles to figure
out, but for big programs, this approach breaks down, and we need more theory. That the-
ory is often borrowed frommathematics, like the optimization theory we just talked about.
Linear algebra (the theory of vectors) is the foundation for all image processing and medi-
cal imaging, as well as most newer developments in Artificial Intelligence. Number theory
is the foundation for cryptography, while logic underlies all of digital electronics, from the
button to call an elevator to the billions of switches inside a smartphone.

7According to Quote Investigator https://quoteinvestigator.com/2018/04/14/theory/

https://quoteinvestigator.com/2018/04/14/theory/

13.3 Theory + Practice 200

We will talk more about some of these applications, but what about Simon’s decision-
making questions? Those questions, and many more complex questions which followed,
have caused a real revolution in thinking about economics, cognitive science, and artificial
intelligence. Although we cannot connect our low-level understanding of neurons in the
brain to complex behaviours like choosing what music you will listen to while reading this
book, cognitive scientists (including Simon himself) have developed many models which
show how simpler circuits and processes can lead to more complex behaviour. These are
not full theories of the mind, but they create building blocks which later generations can
try to fit together to build such a model one day. These are questions of science: what are
the mechanisms of the mind, and how do malfunctions in these mechanisms lead to bad
decisions or even mental illness? It is an endless loop of theory, predictions, experiments,
and interpretations. Design Science has proven through successive insights into how we
make decisions, individually and collectively as part of a team, that it is a successful science.

And in practice? Have insights from Design Science led to recipes for designing better
products, better meeting end-user needs? Have they reduced the number of failed projects,
or reduced the cost of developing a new product? Have they created education pathways so
that anyone can be a successful designer? I’m sure you are expectingme to say “yes” at this
point! The answer is more complicated. We do not have a clear answer, in the way that we
know that the earth is round. Scientists have been trained to consider a question answered
when we have multiple controlled trials8 with statistically significant results. But we do
have evidence that cognitive science foundations do lead to practical innovation. ACT-R
is the best example. ACT-R was developed by John Anderson to show that symbolic com-
putation with limited resources can simulate observed behaviour[And07], but turned out
to have practical application as the heart of cognitive tutors. We can perform sufficiently
controlled experiments to measure the impact of this theory on learning, in this case, the
learning of high school algebra. But if exploration is a metaphor for design, then teaching
algebra is like exploring in a zoo. Algebra already abstracts away most of the complexity of
real-world problems. This is why it is so powerful, but also why it is not representative of
general decision making.

What about design in general, and Design Thinking in particular? We have strong evi-
dence that some of its underlying theories are sound. We do not have any evidence against
it. Should we use it to make decisions, or wait for better evidence? This is where a mis-
understanding of statistics and the scientific method can be a force for evil! In many ways,
our democratic societies are paralyzed by a nonsensical expectation that we can always per-
form these types of experiments beforemaking decisions. Ok, but did I really mean to write
“evil” in the sentence above? Yes, I did, because we have several examples where the sci-

8A controlled trial is a type of experiment where we decide in advance that some people get the test treat-
ment, and others get a fake treatment. It is “double-blinded” if both the doctor and patient wear “blindfolds”
and do not knowwhich treatment a patient is getting. Design Thinking could be studied in this way. Wewould
find two companies where nobody knows how it is supposed to work, teach one company DT and the other a
made-up look-alike, with lots of colourful sticky notes, but not used in any of the ways we think are helpful.
It would be a very expensive test, especially if we wanted it double-blinded, because we would have to teach
the teachers the fake method together with reasonably sounding justifications which would nevertheless be
total nonsense. Nobody is willing to pay for this.

13.4 The Double Diamond 201

entific method and normal scientific discourse have been used as a weapon for profit and
against human health. The first was the fight to protect people from cancer and lung dis-
ease caused by tobacco. The second is the fight to protect people from man-made climate
change.

As individuals, we make countless decisions every day without very much evidence.
How do we do it? When we do it well, it is because we never stop learning, or said another
way, we change our minds a lot! So in parallel with the evolving science, our practice of
design has also evolved through learning. Going back to the design as exploration analogy,
we talk to the adventurers who set out without amap, andmade it back alive: the architects,
fashion designers, engineers, business people, and computer scientists. Although they can-
not explain why their methods work, and will often take you on a roundabout rather than a
direct path, they have been successfully designing for thousands of years. Over the last 50
years, this process has been used to find common paths taken by different designers, often
describing the same landscape using different vocabulary. We can also learn from their hair-
raising tales of close escapes from projects which crashed and burned. We now have names
for some of the monster squids and dragons inhabiting unchartered waters at the edge of
the map: prematurely picking a solution; investing in fully baking a solution without proto-
typing every step of the way; assuming your user is like your friends; and groupthink. For
a business point of view on Design Thinking, see Jean Liedtka9, who explains why it is be-
ing adopted by the smallest startups, and the world’s most valuable company (as of August
2022),

13.4 The Double Diamond to contents

The map which has helped steer clear of these hazards and chart successful courses
through many small-scale software projects is the Double Diamond. It was created by the
British Design Council, borrowing from Béla Bánáthy’s work on designing social systems
[Ban13].

Before we start describing the Double Diamond, it is important to make it clear that ex-
periments are not exclusive to Design Science. They are just as important for Design Prac-
tice, but whereas scientific experiments aim to answer questions about the natural world
(which includes the humanmind), practical experiments aim to answer questions about the
artificial world we are creating. For software developers, these questions are often about
what our users really want, since they often give us confused or conflicting demands in the
face of infinite possibility. But design questions may also be about the limits of technology
or of social systems to adapt to change.

Practical experiments are called “prototypes”. Just as failures of scientific experiments
can raise doubts about accepted theories and force us to develop better ones, failures of
prototypes should tell us that we do not understand our users’ needs, andwe need to rethink
our goals.

9See https://jeanneliedtka.com including a very readable article at Harvard Business Review.

https://jeanneliedtka.com

14. Example: This IS your
Grandfather’s Gaming App

To guide learners through the Design Thinking process, we have created a sequence ofwork-
sheets which do three things:

1. broken the process down into steps, so that you can concentrate on learning one step
at a time;

2. created tables and graphs to indicate the level of detail recommended at each stage;
3. included a map in the top-right corner to remind you where you are in the process.

You will notice that these design choices have the effect of reducing pressure on working
memory! But there is still a lot to take in, so rather than jumping into the slides right away,
we present an example. This way, you can absorb some of the details, and see the overall
structure, which is definitely harder to see when you are wrapped up in your own problem.
The example is presented as if the slideswere filled in one at a time, and are, in fact, based on
the slides filled in by dozens of project teams all working on the problemof designing an app
to help detect and monitor treatment of Parkinson’s disease and other neurodegenerative
diseases. Their goal was to be able to say “This IS your grandfather’s gaming app!”

We encourage you to read through the entire chapter quickly to take in the landscape.
The discussion after each slide is focussed on this instance of using Design Thinking on
this problem. The interviews and some ideas were invented for this presentation, based on
real interviews and ideas from multiple teams, as well as our experience teaching Design
Thinking to hundreds of teams.

After your first read-through, we hope you will have the chance to learn from your own
mistakes by going through the slides with your own team and problem. You will have de-
tailed descriptions of each slide in the next chapter, but you can always come back and look
at that part of this worked example.

I hope we don’t need to say this, but we will anyway! This is not like a worked example
in Algebra—there really are no right answers. By seeing one path through to the end, we
hope you will be inspired to create your own.

203

DT Slide Worksheets

Winter 2022
TEAM CS1XD3

This completed slide template is motivated by the goal of helping people affected by
Parkinson’s disease. This idea is a general starting point for the project, and the template
helps to narrow down this idea by defining a problem and solution statement, and support-
ing the development of initial prototypes. The only other specification of the project is that
the solution will be software-based, as this is a computer science course.

204

Watch the DT video

TheDesignThinking Presentation video is designed to give you a general introduction to
the topic, and it can help contextualize the importance of this approach to problem-solving:
DT VIDEO

https://www.youtube.com/watch?v=AKZIZ_rOgtA&t=9s

205

The Double Diamond is a map of the process. This slide is here to remind you to not
forget the big picture, follow the map, and not get lost. In Chapter 15, we will explain its
history. For now, you need to know you need to think divergently about your problem, and
narrow down into a problem statement your team understands and agrees with, then you
do it again, thinking divergently about solutions, making multiple prototypes and, based
on what you learn, converging to a working solution.

206

Possible Project Areas

1. The development of Parkinson’s disease (PD) and early symptoms.

2. Managing exercise and PD.

3. Social awareness and access to educational resources regarding PD.

Parkinson’s disease (PD)was chosen to be the focus of this project, but this topic ismulti-
faceted. Here, three sub-areas of the topic were identified, which fall in the categories of
disease development, management, and awareness. Note that this is not a list of problem
statements, as reflected by the lack of an explicit target user and specific problem, but it
will guide your journey of creating a problem statement.

207

Option 1 Research
1. What could we find out about option 1? Early detection and monitoring are important for managing PD in the

growing population of the elderly

2. Is it something people find hard to learn? Measurement of PD severity is highly tedious and not a lot of

information on the monitoring of early symptoms are made widely accessible to everyone

3. Why do people need to know it? (Will they be motivated by applications?) People should be able to monitor

the early symptoms of PD and/or be able to measure the severity of PD

4. Is there a good visualization component? There are multiple ways to use smartphones to create a good

visualization component (game app)

5. How will we find people to interview? We can find people to interview by finding people who are in the

age range of being affected by PD and ask them how familiar they are with PD and how accessible it is

to them.

This is where you get started with your research. It is important to be thorough and an-
swer the 5 questions. This will help you learn more about your chosen topic. This will then
allow you to formulate better questions, and later will help you write a clear and focussed
problem statement.

• Question 1 should include all that you found about option 1 (motive behind
choosing that specific area).

• Question 2 should answer how difficult or easy it is for people to learn about
that specific topic. Add in why or why not it’s hard to learn.

• Question 3 should explain why it is important for people to know about the cho-
sen project area. It should also encapsulate whether people would bemotivated
by applications.

• Question 4 should show whether there is scope for a good visualization compo-
nent.

• Question 5 should elaborate on how you should find people to interview and
what connection they have to the specific project area.

208

1. What could we find out about option 1? Exercise can improve gait, balance, tremor, flexibility, grip strength and
motor coordination. Exercise such as treadmill training, biking, Tai Chi and yoga have been shown to benefit
Parkinson's symptoms. [1]

2. Is it something people find hard to learn? Learning how to exercise is something one could easily learn to do.
Either from watching videos and self learning or taking classes.

3. Why do people need to know it? (Will they be motivated by applications?) People need to know it so that they
can use the knowledge to improve the symptoms of PD.

4. Is there a good visualization component? There could be several ways to visualize it. We could have a video
which people follow or have a physical guide/mentor helping them or an app which is like a personal mentor for
exercise with specific goals.

5. How will we find people to interview? We can interview people who are affected by PD or are in the age range
of experiencing the symptoms of PD and see what helps them.

[1] https://www.parkinson.org/living-with-
parkinsons/treatment/exercise#:~:text=What%20Parkinson%27s%20symptoms%20can%20improve,with%20Tai%20Ch
i%20and%20yoga.

Option 2 Research

209

Option 3 Research
1. What could we find out about option 1? Not a lot of people know about most of the symptoms of PD and

educating people would be a great way to create awareness and let people know about PD and its

symptoms.

2. Is it something people find hard to learn? Depending on the age range, workshops could be difficult to

access for some or could be difficult to pay attention to for others. In general, people might not have access

to it.

3. Why do people need to know it? (Will they be motivated by applications?) People need to know it so they

are aware of PD and how the symptoms can show.

4. Is there a good visualization component? Visualization can be added through engaging presentations or

interactive videos

5. How will we find people to interview? We can find people to interview by finding people who are in the age

range of being affected by PD and ask them how familiar they are with PD and how accessible it is to them.

210

Our Focus

1. Target users: Adults that may be at risk of developing PD. Specifically, adults that
are of age 50 years or more [1]. Grandparents are likely to satisfy this criteria and be
accessible for interviews.

2. General problem area: There is insufficient data collected regarding the progression
of PD symptoms, which prevents the development of techniques and technology
that can detect the earliest presenting PD symptoms, necessary for the best possible
prognosis.

[1] https://www.hopkinsmedicine.org/health/conditions-and-diseases/parkinsons-disease/youngonset-parkinsons-disease

After exploring possible project options, your research should be used to justify which
area is likely to be the most successful if pursued. In this case, the research says that cen-
tering this project around the idea of inadequate collection of data for early symptoms of
PD is most likely to be a successful and impactful project focus. Explicitly stating your tar-
get users and general problem area at this point in the project will help with traceability
and ensuring that your group is on the same page in the critical first steps that will shape
the project. Defining the target users as adults that are of age 50 years or more will ensure
that all group members are interviewing the same target audience when they venture off
to perform interviews either individually, in partners, or in small groups.

Youmay need to do research into who your target audience should be, if it’s not obvious.
In this case, since we are focusing on the development of PD, we had to do some research
into who is at risk of developing PD. Remember that the general problem area is not a sub-
stitute for the problem statement. In contrast to this general problem area, the problem
statement should be more specific. For example, the problem statement may concern a
specific symptom of PD.

211

Intro Script

What would you say to a potential interviewee to explain why you’re excited to work in this
problem area and why you need their help?

Did you know that 100,000 Canadians live with PD and 25 Canadians are diagnosed with
the disease every day [1]? The quality of life of those living with the condition can be
drastically improved if early detection and intervention are involved. For these reasons, we
want to make it easier for people to get screened and diagnosed. Further, symptom
tracking would allow doctors to monitor symptoms of PD throughout treatment.

[1] https://www.parkinson.ca/about-parkinsons/

You should think about how youwill give your interviewees context prior to conducting
the interview. As seen in the slide, the background you give them should be concise, but
should facilitate the interviewee’s excitement or interest about the project. You can think
of this like an elevator pitch – what can you say that will convince the interviewee to want
to participate in the interview?

212

Questions to Ask
1. How are you?
2. What are some of your favourite hobbies? How often do you do these hobbies?
3. Do you like gardening?
4. What do you enjoy most about spending time with your grandchildren? (If interviewing a

grandparent.)
5. Do you use technology regularly? How often and which device?
6. What is the main device you use (e.g., laptop, TV, smartphone, etc.) and why (e.g.,

recreational, shopping, communication, etc.)?
7. When did you first learn to use a technological device? Which device was it?
8. What do you not like about technology?
9. What do you like about technology?
10. Do you have a favourite app? If yes, why is it your favourite?
11. Do you play any phone games? Why do you play the ones you play?
12. Would you play games on your phone if it meant you could help people with PD?

As discussed in the Design Thinking Template chapter, you should aim to make your in-
terviewee comfortable and the interview conversational. Remember that you will rely on
the same interviewee to gather feedback for later stages in your project, making a positive
relationshipwith themcrucial. You should ask themhow they are, as reflected in question 1,
and you should be sure to thank them at the end of the interview. In this initial brainstorm
of interview questions, write down all your ideas for possible interview questions. These
questions are there to ensure adequate topic coverage and fill in gaps in conversation, but
if the opportunity to ask impromptu follow-up questions arises, you should always take it.
This will help the interview flow more naturally, and it will ensure that you truly under-
stand what is important to the person you are interviewing. If possible, you should do the
interviews in person or through a video call. This way, you can pick up on non-verbal clues
like facial expressions and gestures.

213

Revised Questions
1. How are you?
2. What are some of your favourite hobbies? How often do you do these hobbies?
3. What are you passionate about?
4. What do you enjoy most about spending time with your grandchildren? (If interviewing a

grandparent.)
5. Do you use technology regularly? How often and which device?
6. What is the main device you use (e.g., laptop, TV, smartphone, etc.) and why (e.g.,

recreational, shopping, communication, etc.)?
7. When did you first learn to use a technological device? Which device was it?
8. What do you not like about technology?
9. What do you like about technology?
10. Do you have a favourite app? If yes, why is it your favourite?
11. Do you play any phone games? Why do you play the ones you play?
12. Can you describe your typical day? What do you do?

In this slide, you should think critically about the questions you generated in your initial
brainstorm. Ensure that your questions are specific, but not closed-ended. Additionally, try
to stay away from questions that necessitate a simple ‘yes or no’ answer. Question 3 in the
initial Questions to Ask (Do you like gardening?) is a considerably closed-ended question.
An interviewee might answer yes to this question, and that might lead you to believe that
this person really cares about gardening. However, they might have just said yes because
you asked them a specific question and they don’t hate gardening. If everyone said yes
to this question and your solution ended up relying on this fact to garner interest of your
target users, you might find that your target users are indifferent to your solution because
they were never really that interested in gardening.

Instead, you might ask revised question 3: what are you passionate about? Question 12
in the initial Questions to Ask brainstorm (Would you play games on your phone if it meant
you could help peoplewith PD?) should also be revised. In this case, the reason to revise this
question is 2-fold. First, it is closed-ended andmost people will be inclined to say yes due to
the nature of the question. Second, this question reveals that this stage in the project has
prematurely become solution oriented. Remember that these initial interviews are here to
help you familiarize yourself with the target user. You will get to know how they feel about

214

your solution later (in your prototype feedback interviews).
Further, by staying away from solution-oriented questions, you are more likely to pro-

duce a solution that the target users care about, as opposed to something that you care
about or something you guessed they care about. You should consider asking your inter-
viewee questions that make them describe something step-by-step, as done in the revised
question 12. They might reveal something that has a big impact on their life that you never
thought to ask about. Finally, make sure to consult the Empathy Map before you begin con-
ducting interviews to ensure that you are asking questions that will elicit responses for all
4 quadrants (say, think, feel, do).

Interview 1 Raw Notes – Team Member 1’s Grandfather
- I am good, have been enjoying the summer and the beautiful nature

- Has hobbies that aren’t related to technology or phones like those involving being close to nature – likes to
take walks in the park or walk to the local grocery store

- Do nature related activities almost everyday

- Likes cooking and watching local and international news, especially about politics and sports
- The most enjoyable time with grandchildren is telling them stories about their childhood

- No, they don’t use technology often. Has a phone which he shares with the grandmother, only to answer or
make phone calls

- Only technological device used is phone to make answer calls so can't say they have learnt how to use it

expertly
- They like how you can use technology to stay connected with people

- Sometimes use game apps that include puzzles or quizzes related to guessing words or famous quotes. Think
that it is engaging

- Typical day involves waking up, cooking if they can, watching news, calling family, spend time with

grandchildren during the summer and very rarely play some crossword games
- Said that he would love an app that tells him fun filled things about how to reduce and manage PD symptoms,

which medicines to take and when, and some lovely melodious songs in them (e.g., Pakistani-Punjabi folk
songs) to hold their attention and interest (when asked what app they would like)

Ideally, you will have three group members present during your interview: one to take
raw notes, one to take notes in the Empathy Map, and one to ask questions. People taking
notes may also ask follow-up questions if they see the opportunity to do so, but a conscious
effort should be made to not overwhelm the interviewee. For example, if the person taking
notes in the Empathy Map notices that one quadrant is lacking data, they may decide to
chime in with some questions. If a small group or pair approach is taken to perform inter-

215

views, don’t forget to rotate roles; some people may be naturally inclined to perform better
in certain roles, but everyone should get practice in every role.

Empathy Map:

Use to take notes when interviewing/shadowing
individual users, and again when creating a
fictional target user. Have one person do the
talking, and a second take notes, but steer the
conversation to cover all 4 areas.

say: What they say in response to questions or
volunteer.
think: Things you infer about their knowledge or
opinions, because they avoid a topic or direct
answers, are surprised by or do not understand
some questions.
do: Steps they take in doing a task, either
observed from shadowing, or noted when they
describe how they do their work.
feel: Things you infer about their feelings, such as
whether they would enjoy using a proposed
solution, or would prefer the way things work now.

That technology was not very easy to use
or incorporate into life (phones specifically)

Nature is healing

Cooking is very interesting and engaging

Storytelling and spending time with family
was very important and fun

New game apps would be interesting
especially if they had educational benefits

Hobbies are not related to technology
(except maybe songs and news)

Like to be close to nature (walking)

Likes cooking

Likes local and international news (politics
and sports)

Like to tell stories to grandchildren

Has a shared phone with grandmother
used for calling

Would love an app that told them more
about PD with medical advice and catchy
songs

Would like an app that would have puzzles
related to guessing quotes

Use phones for talking to family

Take walks in nature and enjoy it

Storytelling to stay connected with family

Cooking for fun

Watch news

Challenged by new technologies

Happy to be in nature

Interested in a new game which would tell
them about PD

1

Team

Interview 1

The empathy map is like a heart monitor for the interview process. An empty quadrant
is an alarm going off: your interview is not capturing the whole person. Some tips:

• Ensure that there are enoughpeople to ask questions andnote downpoints from
the interview.

• Every part of the interview should be noted down; from what they say to small
cues in expression or body language.

• Always ask follow-up questions and try to understand what the underlying feel-
ings and thoughts behind what they are saying are.

• Don’t make the interviewee feel uncomfortable by pushing when they don’t
want to answer a certain question

• Take note of the cues of discomfort as well. Nothing is insignificant!

216

Did you… circle one

set up interview, giving context? Somewhat Yes Definitely!

make them comfortable? Somewhat Yes Definitely!

ask open-ended questions? Never Sometimes Whenever appropriate

Ask follow-ups? Never Sometimes Whenever appropriate

Ask how they felt about things? Never Sometimes Whenever appropriate

Ask for stories, or to describe the steps of a job? Never Sometimes Whenever appropriate

React to non-verbal clues they were
uncomfortable, wanted to say more, etc?

Never Sometimes Always

Interview Skills: Fill this out after empathy map interview for your group. Highlight your choices.

Ask peers to give feedback and rate how you did. Peer review is great for improvement
and self-reflection. Use the feedback and what you got from the reflection to rate how well
you did.

217

Interview 2 Raw Notes
- I am doing alright

- My hobby is to cook and learn about new food recipes. I do these very often
- I am passionate about cooking and knowing about health
- Yes, use phone regularly for communication and finding recipes

- Learnt a few years ago to use a phone to stay connected with people
- She does not like apps with so many adverts or commercials,

- She likes that technology can keep me connected with people and let her find so many new recipes and know
about several things

- She likes Whatsapp and thinks it to be a reliable source of communications which does not distort the overall

aura of talking to relatives, friends, etc.
- Don’t really play games

- Typical day involves seeing new recipes, cooking and using phone to stay communicated with others. Also
use whatsapp for getting new information

- She would use healthcare apps since they are reliable and helpful, pointing out some illnesses or symptoms of

that particular illness

218

Empathy Map:

Use to take notes when interviewing/shadowing
individual users, and again when creating a
fictional target user. Have one person do the
talking, and a second take notes, but steer the
conversation to cover all 4 areas.

say: What they say in response to questions or
volunteer.
think: Things you infer about their knowledge or
opinions, because they avoid a topic or direct
answers, are surprised by or do not understand
some questions.
do: Steps they take in doing a task, either
observed from shadowing, or noted when they
describe how they do their work.
feel: Things you infer about their feelings, such as
whether they would enjoy using a proposed
solution, or would prefer the way things work now.

Technology is helpful to learn new things

Healthcare apps would be good to use
since they are reliable and helpful to give
medical advice

Apps with ads are not amiable

Whatsapp is reliable source of
communication

Use technology to learn food recipes and
the like

Would use healthcare apps since they are
reliable and helpful in pointing out
symptoms and illnesses

Don't like apps with a lot of ads

Whatsapp is a reliable source of
the communications which does not distort
the overall aura of talking to relatives,
friends, etc.

Used technology for cooking and learning
new stuff

Does not like to use apps with lots of ads

Uses whatsapp as a reliable source of
communication with loved ones

Glad to be able to use technology to learn
new things

Healthcare apps are reliable and helpful

Ads are a little annoying in apps

1

Team

Interview 2

219

Did you… circle one

set up interview, giving context? Somewhat Yes Definitely!

make them comfortable? Somewhat Yes Definitely!

ask open-ended questions? Never Sometimes Whenever appropriate

Ask follow-ups? Never Sometimes Whenever appropriate

Ask how they felt about things? Never Sometimes Whenever appropriate

Ask for stories, or to describe the steps of a job? Never Sometimes Whenever appropriate

React to non-verbal clues they were
uncomfortable, wanted to say more, etc?

Never Sometimes Always

Interview Skills: Fill this out after empathy map interview for your group. Highlight your choices.

220

Interview 3 Raw Notes
1. Very good – Had picnics, long walks, malls

2. Hobbies: playing badminton, long walks, yoga, meditation, cookin, playing board games – Uno, Carrom board
3. Most passionate about: Music Least: Gossiping during free time (using for wrong reasons)

4. Use phone regularly because its handy – Always with you and can be used without internet for information, connecting, games,

deliveries, weather, air tickets, google
5. Mainly use laptop because a lot of radiation hurts your eyes.

6. Have learnt to use technology a while ago
7. Don’t like small screens and exposure to radiation

8. Favourite apps: Youtube – Shows old things from 1960s etc Whatsapp – Information is faster

9. Likes games if it can connect my grandchildren and children together (has Alerts, Use of brain, Good logic, Leads to thinking)
10. Typical day involves listening to music, playing board games, going for a walk, watching youtube, check the news, talk with family and

surf the internet
11. Wants to stay fit: Can see heart rate, Blood sugar, Health parameters, Don’t need to go doctor

221

Empathy Map:

Use to take notes when interviewing/shadowing
individual users, and again when creating a
fictional target user. Have one person do the
talking, and a second take notes, but steer the
conversation to cover all 4 areas.

say: What they say in response to questions or
volunteer.
think: Things you infer about their knowledge or
opinions, because they avoid a topic or direct
answers, are surprised by or do not understand
some questions.
do: Steps they take in doing a task, either
observed from shadowing, or noted when they
describe how they do their work.
feel: Things you infer about their feelings, such as
whether they would enjoy using a proposed
solution, or would prefer the way things work now.

Laptop is better since a lot of radiation
hurts eyes

Playing games, meditating, cooking and
being in nature is fun

Phone is handy tool and helps for
multipurpose tasks

Gossiping during free time is not good
since it is used for wrong reasons

Music is favourite pass time

Staying fit is important

Summer was fun and that they had long
picnics, went on long walks and to malls

They enjoy playing badminton, long walks,
yoga, meditation, cooking, playing uno,
carrom board

Phone is handy and always with you and
can be used without internet

Use phone for information, connecting,
games, deliveries, weather, tickets and
google

Laptop is used since a lot of radiation hurts
eyes

Use youtube for watching shows and
whatsapp for connecting with family

Want to stay fit

Go on picnics, walks, to malls

Play badminton, uno and carrom board

Do yoga, meditation and cooking

Use phone for getting information, use
google, weather, deliveries, etc.

Whasapp is faster since it can connect
family

Apps with alerts, requiring brain usage,
good logic and which leads to thinking will
be good

An app which helps see heart rate, blood
sugar, health parameters and avoid Dr
visits would be great

Music is great

Phone is very useful

1

Team

Interview 3

222

Did you… circle one

set up interview, giving context? Somewhat Yes Definitely!

make them comfortable? Somewhat Yes Definitely!

ask open-ended questions? Never Sometimes Whenever appropriate

Ask follow-ups? Never Sometimes Whenever appropriate

Ask how they felt about things? Never Sometimes Whenever appropriate

Ask for stories, or to describe the steps of a job? Never Sometimes Whenever appropriate

React to non-verbal clues they were
uncomfortable, wanted to say more, etc?

Never Sometimes Always

Interview Skills: Fill this out after empathy map interview for your group. Highlight your choices.

223

Interview 4 Raw Notes
• Question 1 – I am doing well!

• Question 2 – puzzles and riddles, sudoku everyday 1 time, morning walks, reading books and yoga.

• Question 3 – Passionate about yoga and staying healthy along with soduko

• Question 5 – uses phone and Ipad, plays games like candy crush, bubble shooter, scrabble and tile matching (games that don’t require much thinking and

just for passing time)

• Question 6 – main device is Phone for contacting and entertainment

• Question 7 – started using technology when grandchildren starting growing. They help them learn how to use technology

• Question 8 – very difficult, knows phone by contacting and messaging and trial-error. New techniques on phones and tablets are bigger problems. When

problems occur, it becomes difficult to solve it alone

• Question 9 – Likes having a phone, like a companion, feel connected to others and relaxing

• Question 10 – whatsapp and youtube for contacting Staying connected and being entertained

• Question 11 – don't play phone games. If the app is too flashy then the information in the game might disturb you while you are trying to play it. It's good

to do one thing at a time.

• Question 12 – solve sudoku puzzle everyday, do yoga, play games on ipad, use phone for whtasapp and youtube entertainment

224

Empathy Map:

Use to take notes when interviewing/shadowing
individual users, and again when creating a
fictional target user. Have one person do the
talking, and a second take notes, but steer the
conversation to cover all 4 areas.

say: What they say in response to questions or
volunteer.
think: Things you infer about their knowledge or
opinions, because they avoid a topic or direct
answers, are surprised by or do not understand
some questions.
do: Steps they take in doing a task, either
observed from shadowing, or noted when they
describe how they do their work.
feel: Things you infer about their feelings, such as
whether they would enjoy using a proposed
solution, or would prefer the way things work now.

Games which don't require much thinking
are good for passing time

Phone is like a companion and helps to
stay connected with people and to relax

Grandchildren are helpful to learn
technology

New techniques on phone and tables are
big problems and are difficult to solve alone

Being health conscious is lifestyle; exercise
and eat healthy

People don't need app to maintain their
body

Likes doing puzzles, riddles, play sudoku,
go on morning walks, read books and do
yoga

Uses phone and ipad to play games like
candy crush, bubble shooter and other
games that don't require much thinking

Phone is like a companion, used to stay
connected and relaxing

Grandchildren help by making them learn
about technology

Difficult to learn to use technology, Had to
learn by trial and error

Health conscious; exercises and eats right
amounts of food

Grandson uses health monitoring on smart
watch and sometimes I use

People don't need apps to maintain their
bodyDoes puzzles, riddles, sudoku, reading
books and exercises like walking and yoga

Plays games on ipad which don't require
much effort to think

Uses phone to stay connected and relaxing

Does trial and error method to solve
issues with technology and figure out
new updates with tech

Stays fit by exercising regularly and
eating healthy

Glad to have games on ipad to pass time
without putting too much effort

Happy and relieved to have phone to stay
connected to people and to relax

Phone is like a companion

Feel that technology and new updates are
challenging to work through alone

Being health conscious is important

If a game is too flashy then it would be
disturbing to play

Good to do one thing at a time

1

Team

Interview 4

225

Did you… circle one

set up interview, giving context? Somewhat Yes Definitely!

make them comfortable? Somewhat Yes Definitely!

ask open-ended questions? Never Sometimes Whenever appropriate

Ask follow-ups? Never Sometimes Whenever appropriate

Ask how they felt about things? Never Sometimes Whenever appropriate

Ask for stories, or to describe the steps of a job? Never Sometimes Whenever appropriate

React to non-verbal clues they were
uncomfortable, wanted to say more, etc?

Never Sometimes Always

Interview Skills: Fill this out after empathy map interview for your group. Highlight your choices.

226

Pivot or Not?
1. Was it easy to find potential users?

Yes, all group members have access to adults that are of age 50 years or more. We will be able to return to our original interviewees upon
prototype feedback interviews.

2. Is there commonality among the user problems/themes/user interests?

Yes. For example, all interviewees expressed interest in fun, physically engaging tasks including cooking, gardening, and painting.

3. Were interviewees excited about it?

Yes, they seemed engaged throughout the interview and answered all questions thoroughly. Their body language (eye contact, nodding,
posture) indicated their interest in the topic and project.

4. Were we excited about it?

Yes! We learned a lot from the interviews and were able to extract commonalities among responses, which is promising in terms of developing
a solution that appeals to our target audience.

If you pivot to another idea, copy your Raw Notes and Empathy map slides and start catching up. ☺

The interview data and answers to the Pivot or Not questions justify the decision to
stick with the chosen project option. Remember that the answers to these questions should
follow a group discussion. The purpose of recording all-encompassing but concise answers
to these questions is to ensure traceability, so make sure your group doesn’t skip that part!

227

1 There are not enough PD researchers that are good at their jobs.

2 There are no low time commitment ways to participate in PD symptom data collection studies.

3 There is no method/technique/technology to detect PD symptoms as soon as they develop.

4 Many PD symptoms (e.g., inability to differentiate similar colours) go unnoticed when they are first developed.

5 Older adults do not have enough energy to participate in PD studies

6 The predictability of PD symptoms and progression/severity does not have a standard and easy process

7 Patients visit clinics for PD severity monitoring during their off time (immobility) making the understanding of on time (good motor function)
complicated

8 A tool for status pre-evaluation/continuous monitoring of PD symptoms is needed

9 Clinical visits have reduced to almost zero after covid, making it difficult to provide a way to help people tackle PD

10

11

12

13

14

15

How Might We?

1. As individuals in the group, write five to ten different ideas on a piece of paper,
for how we could make our users’ lives better by reducing a problem or giving
them a new opportunity.

2. As a group, take turns reading your ideas, and if they are very similar to other
ideas, merge them together and write down one version of the idea in the table.

3. Again as a group, discuss the ideas in reverse order, and assign them potential
Impact and Novelty scores by plotting the number on the scatter plot.

4. Pick the best overall statement or statements, and combine them into your goal,
in the box below.

need

being screened early, accurately, and continuously for symptoms of PD.

adults at risk of developing PD, specifically those of age 50 years or more,

user

We want to find a way to help

with

11 12

5

Problem Definition

13

3

2

6

1

9

4

10

Drag these tags to the correct spot

14

15

Impact

N
o

v
e
lty

8

7

In many cases, the problem statement is not as structured as simply as the template
might make it seem. In this example template, we have 2 stakeholders, older adults, and PD
researchers to consider in our process, and sometimes you might have even more. Remem-
ber, you should brainstorm as many problems as you can before you construct your final
How Might We statement.

Discuss amongst yourselves and rate the impact of the problem against its novelty. For
example, some problems for example can be impactful but have solutions that exist for it
already; try to avoid putting effort into those kinds of problems. After your discussion and
rating them, choose the problem which has the highest ranking.

228

Q&A
1. Write down questions raised by the HMW process. For example, if you identified fraction

arithmetic as an area your users find confusing, what grade is it covered in in Ontario’s
math curriculum? If PDEs cause your users trouble, what are they?

Can we further narrow down the group of people at risk of developing PD?

Roughly 10-15% of people with PD have a family history of the condition, but the genetic
factors are poorly understood; hereditary cases are rare [1,2]. In addition, it has been
found that men are slightly more likely to develop PD than women [3]

[1] “The Genetic Link to Parkinson’s Disease,” Apr. 10, 2022. https://www.hopkinsmedicine.org/health/conditions-and-
diseases/parkinsons-disease/the-genetic-link-to-parkinsons-disease (accessed Jan. 04, 2023).

[2] “Is Parkinson’s Hereditary?,” Healthline, Aug. 02, 2021. https://www.healthline.com/health/parkinsons/is-parkinsons-hereditary
(accessed Jan. 04, 2023).

[3] “Parkinson’s Disease Risk Factors and Causes,” Apr. 10, 2022. https://www.hopkinsmedicine.org/health/conditions-and-
diseases/parkinsons-disease/parkinsons-disease-risk-factors-and-causes (accessed Jan. 04, 2023).

Although some research was done in the possible project areas exploration, now that
there is a specific problem statement, more research should be done beyond the surface.
Here, we ask if we can further narrow down the group of people at risk of developing PD.
Unfortunately, it does not seem that there is a certain group in which PD is much more
prevalent than another group, so we cannot narrow down our target users in this respect.
Fortunately, we know that we are not leaving anything on the table in defining our target
users the way we did in the HMW statement.

229

Q&A
1. Write down questions raised by the HMW process. For example, if you identified fraction

arithmetic as an area your users find confusing, what grade is it covered in in Ontario’s
math curriculum? If PDEs cause your users trouble, what are they?

What are the most common, earliest presenting symptoms of PD?

The most common early symptoms are tremor, slowed movement, rigid muscles,
impaired posture and balance, loss of automatic movements, speech changes, and
writing changes [1]. These are all motor dysfunctions, and many of the aforementioned
symptoms are associated with other diseases. Recent literature presents the idea of using
colour discrimination, another symptom of PD, to differentiate between PD and other
conditions [2].

[1] “Parkinson’s disease - Symptoms and causes,” Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/parkinsons-
disease/symptoms-causes/syc-20376055 (accessed Jan. 04, 2023).

[2] L. Gray, “Color Discrimination May Be Sign of Parkinsons Disease,” Best Life, Dec. 29, 2021. https://bestlifeonline.com/vision-
parkinsons-news/ (accessed Jan. 04, 2023).

We might also ask what the most common, earliest presenting symptoms of PD are.
Again, we go beyond the surface level research that we did in the possible project areas
exploration.

230

Ideation:

1. As individuals in the group, write five to ten different solutions on a piece of paper.
2. Include an idea costing less than $1000 and one costing a million, include one using an app, and one without an app.

3. As a group, take turns reading your ideas, and if they are very similar to other ideas, merge them together and write down one version of the idea in the table.
4. Again as a group, discuss the ideas in reverse order, and assign then Desirability and Feasibility scores by plotting the number on the scatter plot.
5. Pick the best overall idea, and combine them into your goal, in the box below.

Create a colouring game app that helps detect the early symptoms of PD of not being
able to differentiate colours.

Solutions

11 12

5 7

13

3

8

6

1

9

4

10

Drag these tags to the correct spot

14

15

1 PD symptom detecting robot that follows people around.

2 Mobile colouring app that helps detect the early PD symptom of not being able to differentiate colours.

3 Watch that records movement and detects early onset tremors associated with PD.

4 Reaction game (Whack a mole)

5 Tracing musical notes

6 Cooking game ap

7 Walking game (similar to just dance)

8 Puzzle game

9 Maze game

10 Dance emulation

11 Memory card game

12 Crossword game where users pronounce instead of writing words

13

14

15

2

Similar to the problem definition slide, we should aim to brainstorm as many solutions
as possible. Notice that the solutions are diverse and are not considered for desirability and
feasibility until they are plotted; avoid premature selection and rejection of solutions by
brainstorming solutions and then assessing (plotting) them.

Once you have come up with solutions, as a team rate the solutions with desirability
against feasibility. For example, a PD symptom-detecting robot would be very desirable but
not very feasible. There are also many studies in this area that require participants who
must expend resources, notably time, to contribute to data collection. Take out solutions
that don’t satisfy the criteria of being easy to use. Once you have positioned everything,
choose the one with the highest rank.

231

(Idea 1)

Use any drawing tool you want to create a ”paper prototype”, including taking screen shots of
Elm programs or other apps. You will need to duplicate this slide for different pages/actions in
your app.

Prototype

1

What the user sees when they open the Garden Colouring game app:

Following the finalization of the statement on the previous slide, you should develop
a few prototypes that realize your solution statement. At minimum, you should develop
two paper prototypes at this stage. As discussed in the Design Thinking Template chapter,
these prototypes should require minimal effort while effectively conveying your solution
idea, since you will perform solution feedback interviews with your prototypes. In this
example, there are two paper prototypes; the first is drawn with pencil and paper and the
second is made using PowerPoint. Remember that you can duplicate the slides for each of
the prototypes to show different screens and app transitions. A paper prototype need not
be functioning. It is your first basic idea which will be either improved further or redone
based on feedback and demand. Choose something simple yet pleasing! In prototype 1, this
slide shows what the user sees when they first open the app.

232

(Idea 1)

Use any drawing tool you want to create a ”paper prototype”, including taking screen shots of
Elm programs or other apps. You will need to duplicate this slide for different pages/actions in
your app.

Prototype

1

What the user sees when they select one of the images on the previous slide:

This slide of the paper prototype shows what the user sees in prototype 1 once they
make a picture selection. Notice the use of labels to help depict how the app works.

233

(Idea 2)

Use any drawing tool you want to create a ”paper prototype”, including taking screen shots of
Elm programs or other apps. You will need to duplicate this slide for different pages/actions in
your app.

Prototype

2

Prototype2 made in PowerPoint, contains a lot of buttons and hovering options to see
previews of each button.

234

(Idea 2)

Prototype

2

The instructions set down the rules and provide additional privacy information

235

(Idea 2)

Prototype

2

Once the game is complete, the results will show up for prototype2.

236

(Idea 2)

Prototype

2

The results contain all the ”results” but do not expand on how they were reached and
how to improve said symptoms

237

(Idea 2)

Prototype

2

Settings include important ways to protect sensitive information and should be clearly
highlighted

238

5

Feedback Grid:

Use to take notes when getting feedback
from individual users. Have one person do
the talking, and a second take notes, but
steer the conversation to cover all 4 areas.

+ What did they like about it?

∆ What would they like changed?

? What questions did they ask?

What new ideas came out of the discussion?

Prototype

1The fact that they can choose a picture that
interests them

The game seems like it would be relaxing to
play

Like that there are “instructions” for what
colours to paint the picture with (the small
version of the picture), since they know the
final product will look good

Add a start page to give context to the game

Add instructions so people know how to play

How do you actually paint the picture in?
When they drag the cursor does it paint
everything in its path?

Can we share the completed painting in an
easy way? Like emailing?

We could include more topics than just
gardening, and each topic could include its
own subset of pictures

We should add an explicit instructions page
or menu

We should add a share button so that users
can send their work to contacts on their
device, their Facebook page, via email, etc.

You should aim to interview the same people that you interviewed initially. You should
observe the way the interviewee interacts with your prototype. You should ask them to
treat the prototype as if it is an actual app; how they walk-through the app may reveal
weaknesses like lack of instructions or missing transitions. You can ask your interviewee
questions to prompt discussion, but just like before, be careful to not ask closed-ended ques-
tions. Also, ensure you cover all quadrants of the feedback grid prior to completion of your
interview.

239

5

Feedback Grid:

Use to take notes when getting feedback
from individual users. Have one person do
the talking, and a second take notes, but
steer the conversation to cover all 4 areas.

+ What did they like about it?

∆ What would they like changed?

? What questions did they ask?

What new ideas came out of the discussion?

Prototype

1The game seems like it would be a good pass
time

Likes that the user can choose a picture that
they like to paint

Likes that there are a lot of pictures related to
plants and gardening

There should be more picture options beyond
the gardening theme

There should be a wider range of colours
available (in the prototype, only 6 are shown
and a set of colour navigation arrows are
shown)

What will prevent people from getting bored
of the game repetition?

Where can people access instructions?

Are all the pictures gardening themed?

Does progress get saved? Can you work on
multiple pictures at once?

We should have some locked, more intricate
pictures to colour in that are only accessible
when easier paintings are completed

We should include a “?” button that leads to
an instructions pop-up

As you conduct interviews, similar themesmay arise. For example, in the two interviews
for prototype 1, the interviewees note that there is a lack of instruction on how to play the
game. The re-occurrence of these themes becomes obvious in part because of the inherent
organization of the feedback grid. As a final note, you may find it useful to do practice
interviews and take raw notes, as was done in the initial interviews.

240

5

Feedback Grid:

Use to take notes when getting feedback
from individual users. Have one person do
the talking, and a second take notes, but
steer the conversation to cover all 4 areas.

+ What did they like about it?

∆ What would they like changed?

? What questions did they ask?

What new ideas came out of the discussion?

It seemed easy to use

The colour scheme wasn’t too bad and not
too distracting

Ways to contact the team and researchers

Privacy settings

The privacy option is only known if the
instructions are read (make mandatory maybe)

Setting the main setting option should be the
first thing one should get to choose

More levels to get more accurate and
dependable results

More graphics could be added to make the
game seem less monotonous and repetitive

How would one use the app to improve
symptoms?

How can one exit or go back to main
menu?

Can you pause a game and return to it
without the timer still ticking?

Can we know more information about the
research and how our report is given?

Adding exit and return buttons

More levels could be incorporated to get
more accurate results

Allowing users to set settings as soon as the
game is started

Showing the privacy notice separately

Add newer game methods to avoid
monotonoosity

Prototype

2

241

5

Feedback Grid:

Use to take notes when getting feedback
from individual users. Have one person do
the talking, and a second take notes, but
steer the conversation to cover all 4 areas.

+ What did they like about it?

∆ What would they like changed?

? What questions did they ask?

What new ideas came out of the discussion?

Overall game design was interesting
and engaging

Options to contact researchers

Ways to choose own settings (sound, theme,
etc)

Access to information about Parkinsons
disease

More can be added to make the game more
informative and helpful to deal with the
symptoms

An emergency button could be added if
something critical happens when playing

Could have group tournaments and challenges

The privacy option could be shown first

Can you find out what the actual colour of
the colours you get wrong are?

Can the app allow for creating guilds and
adding more game types like filling in
pictures or the like?

Can there be more options to choose
settings like level of difficulty?

Can you choose to go back and re read the
instructions or main menu?

Add more information on how to tackle
symptoms and how the results are reached

Option for joining teams can be added with
additional challenges

Add levels of difficulty

Exit and go back buttons

Emergency button could be added

Prototype

2

242

Pros and Cons

What did you learn from the two prototypes? Do you refine one or the other, synthesize them, or go in a new direction?

Prototype 1 Prototype 2

Pro: Users can choose a picture that interests them,

widening the target user audience who may play this game.

Pro: The game seems easy to use and engaging.

Pro: According to feedback interviews, the game seems like

it would be low-stress and relaxing to play.

Pro: The game uses the data of users and automatically

sends it to researchers. Users have the privacy setting and

control over changing that and protecting their data.

Con: There is no easy way to share completed work with

others.

Con: The game is limited by common colour names and

repetitive making it monotonous

Con: There is a lack of explicit instructions. Con: Data which is collected is likely not reliable and

not conclusive. It is irresponsible to lead users to believe that

the app is a diagnostic tool

This table will help you explicitly compare the pros and cons of the two prototypes and
determine whether one should be chosen over the other, or it may tell you what aspects
of each prototype should be conserved in the development of a new, combined prototype.
If both prototypes have significant cons compared to pros, you may opt to create a new
prototype, shaped by the feedback and questions that arose during the feedback interviews.
Based on this table, prototype 1 seems to be the more promising solution.

243

Prototype 1 Prototype 2 Prototype 3

Pros

Cons

What did you learn about the prototypes? Do you refine any, synthesize them, or go in a new direction?

Users can choose a picture

that interests them, widening

the target user audience who

may play this game.

According to feedback

interviews, the game seems

like it would be low-stress

and relaxing to play.

There is no easy way to

share completed work with

others.

There is a lack of explicit

instructions.

We only started

with 2
prototypes, so
we can ignore

this column.

The game uses the data of

users and users have control

over protecting their data

According to feedback

interviews, the game seems

easy to use and engaging

The game is limited by common

colour names and repetitive

making it monotonous

Data which is collected is likely

not reliable and not conclusive.

It is irresponsible to lead users

to believe that the app is a

diagnostic tool

Youmay choose to organize your table like a grid, as seen in this slide. This viewmay be
superior to the table view when the number of prototypes being compared is larger. Either
way you choose to visualize your feedback, the pros and cons should be traceable to the
feedback grids (and interviews).

244

Action Plan

Duplicate the Feedback and Action Plan slides for as many
iterations as you can fit in.

What they said: How we will improve:

Prototype 1 lacked clear game instructions. We will add a start page with a game introduction

and instructions, and a “?” button that will allow
users to access the instructions at any time.

Prototype 1 has no way to easily share completed

work with other people.

We will add a share button so that users can send

their work (possibly to to contacts on their device,
their Facebook page, via email, etc.).

The picture topics are limited. We will add more picture topics, each with a subset

of related picture options.

Since the pros and cons comparison of the two prototypes led to the decision to pursue
the design of prototype 1 further, this action plan pertains to prototype 1 only. This action
plan should be specific, and the “How we will improve” column should guide the develop-
ment of the next prototype.

245

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Prototype

3

What the user sees when they open the Colour Creation game app:

In the present slide and next three slides, we see the implementation of the action plan
seen in the previous slide. For example, the first item in the action plan (“Prototype 1 lacked
clear game instructions”) is addressed in this slide; there is now a simple, 3-step instruction
included on the first page of the app. All upcoming action plans should be as specific as this,
such that the changes made in the prototype can be linked directly to the plan.

246

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Prototype

3

What the user sees after they hit the ‘START’ button: What the user sees when they hit the ‘?’ button:

Remember to include some sort of indication of when the different app pages appear
for the user. In this slide, we have page labels to indicate which button was clicked to result
in that page.

247

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Prototype

3

What the user sees when they hit the ‘?’ button:What the user sees after they select a topic:

248

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Prototype

3

What the user sees after they select a picture: What the user sees when they hit the ‘?’ button:

249

Technical challenges
Challenge What you will do: search resources, ask TAs for

code example, build test program

Unsure of the mechanics required to share the

completed work. Also don’t know which platforms
we can share to (e.g., are there privacy issues
related to sharing work with device contacts?).

We will ask the TAs if they know who built the

sharing feature on the IDE, and we will consult them
if possible. We will do an online search and assign
one member to building a test program.

Unsure of where we can obtain copyright free

images to colour and reference.

We will do an online search to see if we can find a

bank of copyright-free colouring pages related to
our topics. If not, we will brainstorm an efficient way
to create our own.

Unsure of touch-to-paint mechanics. Touch-to-paint might be similar to the Among Us lab

mechanics, so we should attempt implementation
and consult the Among Us lab solution, related
textbook chapters, and TA coach if needed.

When addressing technical challenges, try to be as exhaustive as you can. That way,
you will limit the surprise road-blocks that you face. Further, ensure that your plan for
addressing the challenge is logical and clear. Having a specific plan is conducive to the
challenges being addressed efficiently. When formulating a plan, keep various resources in
mind, including but not limited to teaching assistants, past assignments/projects, and the
course textbook.

250

When you present your DT Slides to another group, you will mostly use the slides you have
already made for your own purposes, but you should add in a slide summarizing what you have
learned so far, and what your challenges will be for the rest of the project.

All throughout the process, we used the double diamond to assist us. We started off with
research on the specific project areas and then determined our project area. We found
that research was not just limited to the beginning of the project but complimentary with
the design process. We realized how important interviewing of users was for
understanding what users wanted, getting feedback on functionality, improving a product
by discarding unnecessary things and adding desirable properties. We learnt that
teamwork was essential since interviews, discussions, choosing our problems and
solutions and improving our prototype relied on those. We learnt that we had to
continuously improve our product and ourselves. The challenges we will face for the rest
of the project will be the logistics behind sharing and constraints in using materials found
online. Continuously improving our product and coming up with new prototypes will be
challenging as well.

DT Slides Presentation 1

We always teach Design Thinking to multiple teams, so there is always another team
going through similar issues who you can talk to.

We also include check points, when every team prepares a presentation of their project
so far, in order to get peer feedback—whether they think they are “ready” or not!

Add a summary of everything that you have learned so far and include challenges you
anticipate. Don’t hesitate to add all that comes tomind since it helps you learn and be ready
for future challenges. Include specifics about your project.

251

Peer Feedback
What did audience question, where did

explanations come out wrong, etc.

What will we do about it?

The audience questioned the use of the word ”topic” and

suggested that we prompt the user by asking something like

“What would you like to colour in?” rather than “choose a

topic”.

We will change the “choose a topic” prompt to “What would

you like to colour in?”.

The audience questioned the user’s motivation to keep

playing the game (i.e., motivation to keep colouring picture

after picture).

We will brainstorm ways to incorporate some sort of level

system like standard video games have. This came up in

our initial interviews and we had the idea to organize

images in terms of complexity and lock more complex

images until less complex images are complete.

The audience asked if users would be able to store their

completed work to look back at. They suggested that it

would be a good keepsake for their time spent on the app.

We will add a user gallery so that users can look back at

completed work.

Taking notes during a presentation is not always possible. If this is the case, you should
make notes immediately following your presentation, when the feedback from peers is still
fresh in your mind. Remember to be specific in the feedback you record; this is important
for project development and traceability.

252

5

Feedback Grid:

Use to take notes when getting feedback
from individual users. Have one person do
the talking, and a second take notes, but
steer the conversation to cover all 4 areas.

+ What did they like about it?

∆ What would they like changed?

? What questions did they ask?

What new ideas came out of the discussion?

Like that the instructions are always available
to the user

Like that the user can share their work

Like that the user can colour an image that
pertains to a topic they are interested in

Like the touch-to-paint game mechanic and
that the cursor appears upon touch

Like that the cursor is a paintbrush

Would like to see a more obvious share button
– suggested we change the send button to a
box that says “share”

Allow users to work on more than one picture at
a time

What platforms can the user share their
work on? Can they share to device
contacts?

How are we going to choose the image
topics available in the app? How many will
we have?

We need to do research on user interface
design

We should allow users to save progress and
work on multiple pictures at a time

We will consult the initial interview data to
choose image topics – we will aim to
implement at least 4 topics in the earliest
version of the solution

Prototype

3

This set of feedback interviews is just like the last set of interviews. Review optimal
interview strategies and approaches (outlined in the Design Thinking Template chapter and
previous interview slides in this example) prior to conducting your interviews in order to
get the most out of them. One quick check you should do before ending your interview
involves ensuring that all quadrants in the feedback grid have notes in them.

253

5

Feedback Grid:

Use to take notes when getting feedback
from individual users. Have one person do
the talking, and a second take notes, but
steer the conversation to cover all 4 areas.

+ What did they like about it?

∆ What would they like changed?

? What questions did they ask?

What new ideas came out of the discussion?

Like the touch-to-paint game mechanic

Like the variety of picture options available

Like the layout of the picture colouring page

Like the organization of choosing topics then
pictures

Would like to see the colour palette look more
like an actual palette upon app implementation

Would like to work on multiple projects
simultaneously without losing progress on
previous works

Asked if there was a back button to change
their mind about a chosen topic after seeing
the subset of pictures for it

Asked if the shared picture will have an app
watermark

We should add a back button so that users
can backtrack if required

We should ensure that the shared picture has
an app watermark so that shared images
advertise the app

Prototype

3

254

Action Plan

Duplicate the Feedback and Action Plan slides for as many
iterations as you can fit in.

What they said: How we will improve:

The game seems repetitive and there is nothing to

make people keep playing.

We will organize the pictures by level of complexity,

and more complex pictures will be locked until
easier pictures are painted. In all, this gives a
reason for players to want to come back to the

game.

The user might get bored of painting one picture at

a time.

We will allow users to save progress and store a

gallery of their completed and semi-completed
pictures.

The send button is not obvious and users may

overlook it.

We will include a pop-up that points to the share

button at the start of colouring and when the picture
is 90% complete.

The process of iterating the prototype, getting feedback (either from peers or inter-
views), making an action plan, then developing a new prototype is central to the project
development. Although the process is repetitive, try to reflect on each iteration to ensure
that the next one does not have any of the same downfalls as the previous cycle. For exam-
ple, if you noticed that your previous prototype cycle involved difficult-to-construct proto-
type because of an un-specific action plan, mostly due to the vague recording of interview
data, then you should discuss strategieswith your group to ensure that this does not happen
in the next prototype cycle.

255

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Prototype

4

What the user sees when they open the app: What the user sees when they click ‘gallery’:

256

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Prototype

4

What the user sees when they click the

’START’ button on the homepage: What the user sees when they hit the ‘?’ button:

257

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Prototype

4

What the user sees when they hit the ‘?’ button:What the user sees after they select a topic:

258

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Prototype

4

What the user sees after they select a picture: What the user sees when they hit the ‘?’ button:

259

Risks
Main things which could go wrong and prevent you

from completing a working app.

What you can do about it? (assign a second

person, find more users, etc.)

Picture sharing mechanics are a new topic to all group members,

including the person assigned to work on this feature.

After consulting a TA and learning more about how the share

feature was implemented in the IDE, one group member realized
that they had worked on something similar in the past. This group

member will take over the implementation of this feature.

We have yet to implement the feature that will check if users

have coloured in the picture correctly. Further, we have to
investigate what tolerance level should be allowed for correct

colour as people may colour slightly out of the lines.

The group member who was previously working on the share

feature will now devote time to working on this feature. This
group member will make a test program, which will be used to

determine a colouring in the lines tolerance.

There are not that many copyright-free colouring pages online. We will consult local artists to ask if they are willing to create

simple colouring pages to support the game and cause. If time
permits, we may build a program that creates line drawings out of

copyright-free images (of which there is an abundant supply

online).

At this point in the project, the solution is considerably developed. This slide is all about
taking pre-emptive action. If you realize that there are ambiguities in your app, you should
have a group discussion to resolve these obscurities, create an updated prototype, then ac-
cess the risks associated with the project.

260

5

Feedback Grid:

Use to take notes when getting feedback
from individual users. Have one person do
the talking, and a second take notes, but
steer the conversation to cover all 4 areas.

+ What did they like about it?

∆ What would they like changed?

? What questions did they ask?

What new ideas came out of the discussion?

They liked that there is a gallery to view
completed and current work

They liked that you could have multiple
projects on the go

They liked that some images were locked,
since this gives incentive for the users to keep
playing

They liked that the instructions are accessible
on every page

The users seemed to look around for too long
for the home button – the home buttons should
always be in the same corner

Would like an explicit explanation for the stars
in the gallery so that users don’t have to guess
what they mean

Add app context; mention that the app helps
with building a database for medical research

What do the stars in the gallery mean? How
is progress defined?

Where can users learn more about why the
app was made?

We could make the home button’s position
uniform throughout all pages – the
consistency will likely minimize user confusion

We should include a pop-up or some
equivalent to explain what the stars in the
gallery mean

Prototype

4

261

5

Feedback Grid:

Use to take notes when getting feedback
from individual users. Have one person do
the talking, and a second take notes, but
steer the conversation to cover all 4 areas.

+ What did they like about it?

∆ What would they like changed?

? What questions did they ask?

What new ideas came out of the discussion?

They liked that progress for all work was
saved and that you could work on multiple
things at once

Liked that some images are initially locked

Liked that the images range in complexity

Would like a re-sizing option so that users can
make the reference picture bigger or smaller

We should add more context to the start page –
this may also encourage people to tell their
friends about the app

They seemed to look around for too long when
looking for the home button, so it should be
altered such that its easier to find

Asked if they could blow up the reference
picture size to see it better, which would be
especially important for those using the app
on a small device like a phone

Do the stars in the gallery rate how good the
colouring is or how complete it is?

Will users get the results about if they have
PD symptoms or not?

We could add a vertical re-sizing line to make
the reference picture+palette and picture to
colour bigger or smaller

We need to provide some explicit explanation
about the meaning of the stars in the gallery

Adding game context to the home page

Prototype

4

Note that not all user feedbackwill lead to changes. In this interview, the user questions
whether or not they will receive feedback on if they present with PD symptoms or not. This
issue arose in prototype 2 – we can’t tell someone they have PD based on one symptom as
it would be an ill-informed diagnosis.

262

Action Plan

Duplicate the Feedback and Action Plan slides for as many
iterations as you can fit in.

What they said: How we will improve:

The app lacks visual appeal. We will do some research into user interface design. One quick

search reveals how rounded corners appear friendlier and more
welcoming. We may also make the palette colours look like paint.

The home button was not easily found on every page. We will make the home button in the same corner on every page.

It was unclear what the stars in the gallery meant. We will explain the stars progress tracker in a pop-up/instruction

page on the gallery page.

Would like a resizing option to control reference picture and

picture to colour size.

We will ad re-sizing bars to the colouring screen layout.

Would like more context for the game available to users. We will add some background information for the game to the

homepage.

263

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Prototype

5

The gallery shows stars based on how much is coloured in; not how much is correct

What the user sees when they open the app: What the user sees when they click ‘gallery’:

264

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Prototype

5

What the user sees when they click the

’START’ button on the homepage:
What the user sees when they hit the ‘?’

button:

265

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Prototype

5

What the user sees after they select

a topic:

What the user sees when they hit the ‘?’

button:

266

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Prototype

5

What the user sees when they hit the ‘?’

button:
What the user sees after they select a picture:

267

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Prototype

5

The windows on the colouring screen can be re-sized by dragging the circles:

268

When you present your DT Slides to another group, you will mostly use the slides you have
already made for your own purposes, but you should add in a slide summarizing what you have
learned so far, and what your challenges will be for the rest of the project.

We learnt that we not only had to keep users in mind but also calculate the risks that came

with the project. We learnt to weigh the pros and cons, assess the risks, feedback and use
that to decide on our action plan. We were challenged with improving our product again
and again but learnt to see things from a new angle and consider everything. We

anticipate more challenges as we come closer to finalizing our product. How can we
minimize risks and meet all requirements of our users? We also to make sure that our

prototype is as detailed as possible and contains more working components than just
paper prototypes.

DT Slides Presentation 1

Once again assess what you have learned and the challenges you anticipate.

269

Peer Feedback
What did audience question, where did

explanations come out wrong, etc.

What will we do about it?

Unclear how the users can unlock more complex

pictures to colour.

We will add text to explain that users must complete at

least 1/3 of an image before the next image is unlocked.

The final image will only be unlocked when all other

images are complete.

Unclear how the windows can be re-sized when the

user is painting a picture.

We will add some arrows on either side of the dragging

circles to indicate that they move.

Right now progress is based on how much of the

picture is painted. What if the user thinks they are done

though? How does the user “submit” their work to

signify that it is done?

We need to add a “complete” button to accommodate

for this case. Although the work is not complete, the

user thinking the work is complete still tells us

something in terms of their colour acuity. We will also

add a progress bar on the painting page to users can

self-monitor progress.

270

5

Feedback Grid:

Use to take notes when getting feedback
from individual users. Have one person do
the talking, and a second take notes, but
steer the conversation to cover all 4 areas.

+ What did they like about it?

∆ What would they like changed?

? What questions did they ask?

What new ideas came out of the discussion?

Like the appearance of the app

Like that the windows in the colouring page
can be re-sized

Like the instruction layout as it describes
which step of the overall process the user is
at

Like the context given on the homepage

Interviewee mentioned there was some
ambiguity in the colour selection process; the
app should be changed to include explicit
instructions for this feature

Do you unlock more pictures by paying a
fee?

Is there any way to track progress outside of
the gallery, during the picture painting?

We should add a pointing finger to indicate
that the user should touch the palette

We should add a progress bar to the image
colouring screen

Prototype

5

271

5

Feedback Grid:

Use to take notes when getting feedback
from individual users. Have one person do
the talking, and a second take notes, but
steer the conversation to cover all 4 areas.

+ What did they like about it?

∆ What would they like changed?

? What questions did they ask?

What new ideas came out of the discussion?

Like the palette for colours

Like the visual appeal of the app pages

Like the explanation about the game on the
homepage as it will promote use of the app

Like the star system used in the gallery page

Would like to see some explicit instructions to
support the re-sizing window function on the
image painting page

Is there a way to access the star system
progress rating for the present work, or can
it only be seen in the gallery page?

How can users unlock more pictures?

A star system or equivalent should be added
to the picture colouring page

We should add an explicit explanation for
how the users can unlock the locked images

Prototype

5

272

Action Plan

Duplicate the Feedback and Action Plan slides for as many
iterations as you can fit in.

What they said: How we will improve:

The way the user can go about re-sizing windows in the painting screen is

not clear.

We will add arrows to either side of the dragging circles, so that the user

understands that the circles can be dragged.

How the users can unlock pictures is unclear. We will add instructions to the picture choosing page so that users

understand why some pictures are locked, and how to unlock them.

Some users might believe they are done even if they technically aren’t

(i.e., if the picture isn’t entirely coloured in).

We will add a progress bar at the top of the painting screen so that users

can monitor progress. We will also add a “done” button for in case the

user believes the progress tracker is wrong and they are actually done.

This may be important in data analysis. Further, it will allow people to

keep playing the game despite decrease in colour acuity.

Initial interaction with the app may be confusing for users. How do they

start painting?

We will add instructions to the painting screen so that first time users

know how to start (i.e., how to select a colour and how to paint).

273

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Prototype

6

What the user sees when they open the app: What the user sees when they click ‘gallery’:

274

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Prototype

6

What the user sees when they click the

’START’ button on the homepage:

What the user sees when they hit the ‘?’

button:

275

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Prototype

6

What the user sees when they hit the ‘?’

button:

What the user sees after they select

a topic:

276

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Prototype

6

The windows on the colouring screen can be re-sized by dragging the circles:

277

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Prototype

6

What the user sees when they hit the ‘?’

button on the image colouring page:

278

5

Feedback Grid:

Use to take notes when getting feedback
from individual users. Have one person do
the talking, and a second take notes, but
steer the conversation to cover all 4 areas.

+ What did they like about it?

∆ What would they like changed?

? What questions did they ask?

What new ideas came out of the discussion?

Like the integration of instructions for re-sizing
the windows on the image painting page

Like the integration of instructions for the
paint palette and painting on the image
painting page

Like the integration of the instructions
regarding unlocking more pictures

For the prototype, they would like to see how
the shared work will look when sent to others

Would like to see at least 6 picture topics
available in version 1 of the app

How do you know your image themes will
appeal to everyone in your target audience
(given the size of the target audience?

We should do more interviews with different
people to observe which interests re-occur

We should do research to find topics that are
interesting to most of the target population;
our chosen topics are a reflection of the four
people we interviewed initially

Prototype

6

279

5

Feedback Grid:

Use to take notes when getting feedback
from individual users. Have one person do
the talking, and a second take notes, but
steer the conversation to cover all 4 areas.

+ What did they like about it?

∆ What would they like changed?

? What questions did they ask?

What new ideas came out of the discussion?

Like the progress tracking bar at the top of
the image painting page

Like the user interface – the design is friendly
and has a game-like appearance

Like the unlocking pictures premise and
associated details and presentation of
instructions

Would like to see more than 3 topics in the
picture topic section; recommended based on
appealing to a wider audience upon initial app
launch

Are there more details regarding the share
function?

We should focus on finalizing our share
feature implementation since the target users
seem to care a lot about it – the first version
of the app should include this feature

Prototype

6

280

Action Plan

Duplicate the Feedback and Action Plan slides for as many
iterations as you can fit in.

What they said: How we will improve:

The first version of the game should include at

least 6 picture topics.

We will consult our original interview data to find at

least 6 topics which appeal to the target audience.

If we cannot find 6 re-occurring themes, we will

consult online sources.

The share feature is important to target users We will focus efforts on completing the share

feature. We will follow the plan outlined previously

(in the Risks slide).

281

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Prototype

7

The windows on the colouring screen can be re-sized by dragging the circles:

In this prototype, only the pages with changes are shown. However, when performing
interviews, you should include all pages in your app to ensure that the viewer (and potential
user) is getting the full experience of your app.

282

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Prototype

7

What the user sees when they click the ’START’ button on the homepage (note the scroll bar):

In this example, we stopped prototyping at 7 iterations. Note that you are not limited
to the number of iterations the template outlines; you will probably have more iterations
than this example shows in your Math Visualizer project journey.

283

Pitch Component

The pitch component slides that follow prompt you to address certain topics in your pre-
sentation, but you are not limited to only these topics. You should include whatever you
deem important in your presentation. You might consider creating a separate PowerPoint
for your presentation, with neater graphics and more visual appeal. Your pitch should con-
vince the audience that the solution developedwill be successful in themarket – this means
that the audience should be convinced that your solution directly and effectively solves the
identified problem.

284

Meet Bob

Tell us about your protypical user.

Our protypical users are people that are most at risk of
developing Parkinson’s disease. According to our
research, this includes adults that are of age 50 years or
more.

285

Bob's Problem

Tell us their problem

There is insufficient data collected regarding the
progression of PD symptoms, which prevents the
development of techniques and technology that can
detect the earliest presenting PD symptoms, necessary
for the best possible prognosis.

286

We are...

Who are you and why do you think you care about solving Bob's problem

We are first year computer science students at McMaster
University. We have employed design thinking to understand the
problem noted on the previous slide, from the points of view of
potential app users and researchers. We are passionate about
this issue and believe that a solution is very desirable to all
stakeholders.

287

Solution

Show how you solve the problem, with a voiceover of the app being used,
but don't make it a walk-through of the app, or a tutorial, talk about how it
solves the problem.

The app allows users to play a fun colouring game, while
recording data relating to colour acuity. This data will contribute
to a medical database relating to the onset and progression of
PD symptoms in those who are at most risk of developing it.

As the slide mentions, it is important to explain how your app addresses the problem,
and not just how the app works. One effective method includes doing a screen recording of
your app, which would allow you to convey interactive features of your app, while doing a
voiceover.

288

What we learned from DT

Duplicate your actual DT slides which help you explain your
points, and talk over them.

To save some space in the textbook, wewon’t duplicate the DT slides. You should ensure
that you address the data collected in the initial interview. The audience is likely to lose
interest if you talk through every quadrant of all initial interviews, so consider presenting
a summary of the collected data, including re-occurring themes. You should address your
problem generation process and associated How Might We process, including justification
for how you decided on the final problem to focus on. You should speak to the solution
process and statement in a similar fashion. Finally, talk about your prototypes, the feedback
you received, and how that feedback resulted in prototype changes. The audience should
understand why changes were made, and they should agree that the changes you made are
justified.

289

Next steps

What we plan to do to improve the app we have
To begin, the plan to finish the implementation of our app; currently our minimum viable
prototype has working game mechanics, but they are not integrated with one another. We
plan to do an early release of the Elm app to the interviewees that we relied on to develop
this app and to at least 4 other people that align with our defined target users. Having
people use version 1 of the app, as they would use any other app, will provide us with
valuable insight as to how the app is perceived. We will allow users to have a few days
with the app, and will request that they complete colouring at least 2 pictures. Following
this, we will perform 8 interviews (one with each of the pilot users). We will examine the
interview data to extract themes, much like we did throughout this process so far.

Try to be as specific as possible as you outline the next steps for your product. Ask
yourself what stands in the way of your current app and market success.

15. Design Thinking Templates

You have learned a lot about decision-making, and the invention of Design Thinking. One
of the things you have learned is that human cognition has inherent limits, and processes
need to be designed to work within those limits. We have put this principle into practice
by creating slides with fillable tables and other editable elements to serve as templates for
following the DT process—at least our version of it.

As much as possible, we have collected all the information you need for one step of
the process on a single slide, so that you can focus on taking one step at a time. Through
experience, we have made many improvements to the templates, and we continue to make
modifications for particular camps, in-class workshops, and our own development. You can
copy (and modify) the slides1 in either Google or Microsoft format.

1See Avenue/Week3/Lab.

291

• The Double Diamond is a visual representation of the design thinking process
• It features two phases of divergence and two phases of convergence
• The first diamond focuses on problem definition (designing the right thing)

and the second focuses on the solution (designing the thing right)

Created by the British Design Council, the Double Diamond is a visual representation
of the design thinking process2. Although it oversimplifies the design process, it is a good
starting point for those who are new to design thinking. The Double Diamond features two
regions of divergence, and two regions of convergence. The divergence phases involve re-
search and explorationwhile the convergence phases involve narrowing down ideas and de-
termining which ideas aremost important to the problem being addressed. The divergence
and convergence phases are not a matter of climbing up and down a figurative mountain,
respectively, but rather players in a game going off in different directions then agreeing to
meet each other at some middle point.

In the divergence phase, different schools of ideas may be explored via things like an
online search, interviews, or reading books. Information being collected is not consistent
with a pre-defined goal. However, the broad question “How can I help people?” can be
used to guide your research. Although this phase involves exploring different avenues, the
researcher should remember that they won’t be able to solve every single problem encoun-
tered with one project. Attempting this would result in a solution that would likely not
help anyone, as the solution would be too complicated to address specific problems. There

2See “TheDoubleDiamond: A universally accepted depiction of the design process.” https://www.designcouncil.

org.uk/our-work/news-opinion/double-diamond-universally-accepted-depiction-design-process/ (accessed Jul. 1, 2022).

https://www.designcouncil.org.uk/our-work/news-opinion/double-diamond-universally-accepted-depiction-design-process/
https://www.designcouncil.org.uk/our-work/news-opinion/double-diamond-universally-accepted-depiction-design-process/

15.1 Starting the First Phase of Divergence 292

is no checklist that can indicate whether the researcher has diverged enough. In a course,
a deadline may influence how much time is spent diverging and converging. In most cases,
the researcher will have to decide when enough information has been collected to define
and solve a problem. The slides presented in this chapter may help you navigate the design
thinking process.

15.1 Starting the First Phase of Divergence to contents

• Narrow down the audience which you are trying to help
• Choose a group that you will have access to throughout the design thinking

process, as you will require their engagement to collect interview data and
solution feedback

• This step starts the initial divergence phase of the Double Diamond, where the
designer brainstorms potential groups, and associated problems

Although open-mindedness is the heart of design thinking, it is helpful to narrow down
the audience which you are trying to help. Examples of groups are third-year Computer Sci-
ence students at your university and Grade 3 teachers in your city or a region with the same
curriculum and students with the same background preparation. The template prompts
you with guiding questions. It is important to choose a group that you will have access to
throughout the Design Thinking process, as you will require their engagement to collect
interview data and solution feedback (which may involve multiple meetings since you will
have many solution iterations). This step in the design thinking process aligns with the

15.2 Researching Possible Project Areas 293

initial divergence phase of the Double Diamond, where you brainstorm potential groups,
and associated problems. Examples of problems could be “not understanding fractions” or
“Nash Equilibrium game theory”. Ensure that the problems you brainstorm are distinct;
rewording the same idea would be counterproductive to the design thinking process. Al-
though you will not pursue all brainstormed options, it is good to have a log for traceability.
In addition, having multiple ideas can facilitate meaningful discussion and findings.

15.2 Researching Possible Project Areas to contents

• Continue diverging by doing internet and library research
• Think about problems the identified groups may face

After identifying possible groups to empathize with, the initial divergence phase can be
continued by doing preliminary research. Before going off in many directions, and inter-
viewing many groups of people, you should think more about possible problems that the
identified groupsmay face. For each possible project area, answer the questions in the slide
above and then make an informed decision about which project area to pursue.

15.3 Choosing a Focus to contents

15.3 Choosing a Focus 294

• Choose a target group and a problem area
• Keep your team on the same page: explicitly state your focus

Following reflection of the possible project areas and preliminary research, you should
choose a group of target users and a general problem area. Although the previous slides are
highly related to finding a group to focus on, it is important to be explicit in stating your
group’s focus as it will ensure that you and your teammembers are on the same page, both
now and later in the project. It is very frustrating and hurts team morale when some work
must be discarded because it does not fit into thewhole, because not everyone had the same
understanding of your focus.

15.4 Interview Preparation 295

15.4 Interview Preparation to contents

• Prepare for the interview, so it doesn’t seem rehearsed!
• Brainstorm questions to use as icebreakers, and pauses
• Cover different angles and possible problem areas
• Include open and closed questions
• Include process questions

Now that a target user and general problem area have been identified, research in this
divergence phase should be furthered by conducting interviews with the target group. To
make themost of the interviews, you should comeupwith open-endedquestions to ask your
interviewees. While you should put a considerable amount of thought into the questions
you ask, the question list should not be treated as a checklist to get through in the interview.
This list of questions may help your interview get started or fill any awkward gaps in the
conversation. During the interview, you should aim to make the interviewee comfortable
by using a conversational tone. An advantage of a synchronous, person-to-person interview
is that you can extract information from the interviewee that something like a Google form
could not; take advantage of the fact that you can ask follow-up questions to clarify or learn
more about certain answers, or when you think the interviewee has more to say, but isn’t
sure youwant to hear it. In all, the interview should go in the direction that the interviewee
takes it.

Also, note that data extracted from the interview should not be limited towhat the inter-
viewee says. Body language, gaps in conversation, and tone of voice can be used to augment

15.5 Practice Interview 296

the spoken word. Implicit data can be as important as, or more important than, what is said
out loud, and the way you interview should account for that. If the interviewee pauses be-
fore answering a question, it might be because they are uncomfortable about something, or
maybe they think the question is too complicated to answer. Theymight tell you something
that you did not expect to hear, and that might lead your interview in a new direction, and
you might not get back to your question list, but that’s okay. In fact, this is good since it
means that you are learning about what the user is passionate about and what is important
to them.

Open and closed questions: Normal conversations have open and closed questions. Closed
questions have “yes” or “no” answers, while open questions are invitations for the intervie-
wee to elaborate and add their own ideas.

Process questions: If you cannot observe your interviewer perform a task or resolve a
problem, ask them to “walk you through the steps”. Asking questions in this way will cause
the interviewee to include details which explain the context of the problem.

15.5 Practice Interview to contents

• Practice to be a better interviewer
• Record only with permission
• Individual notetakers need raw notes or recordings
• Teams can fill in this Empathy Map live, guiding the interview to cover each

quadrant

15.5 Practice Interview 297

As you learned in the previous slide, interviewing isn’t as easy as asking the list of ques-
tions you brainstormed before the interview. Being a conversational and engaging inter-
viewer may come naturally to some, but it is important for all interviewers to practice in-
terviewing. A good interviewer is essential to a good interview. Youmay have permission to
record your interview and take notes after, or you might opt to take notes during the inter-
view. If the latter, it would be helpful to have one group member interview and the other
take notes. Above is one option that can be used for note-taking; it is called an Empathy
Map and it helps you empathize with the person you are interviewing. The empathymap is
split into quadrants which help you identify the interviewee’s pain points. The reason for
having four quadrants, “think”, “say”, “feel”, and “do”, is to prevent having an interview in
which you only extract technical details, neglecting the user’s feelings towards the topic be-
ing discussed. The danger of only recording technical details from the interview is that you
are at risk of creating a solution that people do not actually care about, even if a technical
problem is being solved for them.

The quadrants of the empathymap can also guide the style of the interview. In the “say”
quadrant, you put what the interviewee explicitly says. Sometimes people don’t say things
explicitly, which is where the “think” quadrant comes into play. Typically (and unfortu-
nately), the “do” quadrant is easily skipped. This quadrant can give insight into pain points
that the interviewee cannot vocalize themselves, perhaps because they did not realize that
it was a pain point or do not know how to describe the issue they are facing. To ensure that
this quadrant is accounted for, you may ask the interviewee to walk you through a process.
For example, you might ask them to walk you through how they approach a factoring prob-
lem. From their answer, you should aim to understand what they think they are supposed
to do andwhat they think is hard about it. You should notewhat they explain in detail, what
they skim over, their conversational tone, and, if applicable, where they make a mistake or
struggle, and why.

Although the Empathy Map is useful for obtaining a holistic understanding of the in-
terviewee, you may opt for a different method of note-taking. One such method involves
taking raw notes, where points are not sorted into quadrants as they are in the Empathy
Map. This method may be easier if you are alone in conducting the interview because you
must both ask questions and take notes. If this is the case, it would be useful for you to trans-
fer notes to an Empathy Map post-interview, to ensure that you are as close as possible to
having a complete understanding of the interviewee. The best of all cases would be to have
one group member ask questions during the interview, another take notes in the Empathy
Map, and another take raw notes.

15.6 Evaluation of the Practice Interview 298

15.6 Evaluation of the Practice Interview to contents

• Reflection accelerates learning
• Reflect on your team’s interviewing skills intentionally and constructively
• If group size permits, have one person focus solely on how the interview is

being conducted and how to improve

Evaluation of the practice interview allows you to reflect on an interviewer’s interview-
ing skills intentionally and constructively. The evaluation grid above should be used to cri-
tique and resolve any issues or shortcomings of theplanned interviewbefore real interviews
are conducted. The evaluation could be performed as a self-evaluation or a peer-evaluation.
If group size permits, having one person focus solely on how the interview is being con-
ducted would be ideal as they might notice things that someone who is multi-tasking may
not (i.e., you are more likely to miss conversational cues if you are both observing the inter-
view and taking notes). Commonly noted on practice interview evaluations is the absence
of a conversational tone in the interview. For example, perhaps there were multiple oppor-
tunities for follow-up questionswhichweremissed because the interviewerwas too focused
on asking the questions they prepared, in order.

15.7 Revising Interview Questions 299

15.7 Revising Interview Questions to contents

• Revise the interview questions after the practice interview

Upon reflecting on the practice interview, you might have noticed that some questions
were poorly worded or sounded awkward in actual conversation. You may also be missing
key points. Time should be allotted to revising the interview questions before conducting
real interviews.

15.8 Interviews and Interview Evaluations 300

15.8 Interviews and Interview Evaluations to contents

15.9 Pivot or Not? 301

• Interview confidently, you are prepared!
• Make the interviewee feel at ease
• Roles: raw note taker, empathy mapper, observer, interviewer
• Keep growing through reflection

Based on your successes and shortcomings from your practice interviews, perform your
first real interviewswithmembers of your target audience. Ideally, youwill have one person
to ask interview questions, one person to take notes in the EmpathyMap, one person to take
rawnotes, and another to observe the interview. Although these are not practice interviews,
you should do an interview evaluation after each interview, and improve anything you can
for every subsequent interview. In all, these interviews will serve as vehicles of data in
the initial divergence phase of the Double Diamond. You should aim to interview as many
people as you can, but this can be context dependant. In a course setting, you should aim
to have at least a one-to-one interviewee-to-group member ratio.

15.9 Pivot or Not? to contents

• First contact with reality
• Did the interviewees care?
• Or do you need to pivot?

Following interviews, you might discover that no one in the target audience is invested
in the problem area that they were interviewed about. If they do not care for the issue,

15.10 Problem Definition 302

they are not likely to care about and thoughtfully test solution prototypes, culminating in
a poorly designed solution and subsequently poor solution success. Pivoting may involve
slightly reformulating to completely reinventing theproject option that the design thinking
journey is centered about. The questions in the slide above can help you and your group
decide whether a pivot is necessary.

15.10 Problem Definition to contents

• Brainstorm problems without filtering
• All problems come from a pain point or need to be identified in the interviews
• The How Might We (HMW) statement is the point of convergence

Once a problem area has been chosen, and shows promise based on the Pivot or Not
analysis, specific problems should be extracted from the interview data. The importance
of a good notetaking system is emphasized in this stage; all brainstormed problems should
be linkable to a pain point or a need identified in the interviews, since we want to target a
problem that we know people care about, not something we think people might care about.
All problems should be written down, no matter what you believe the novelty or impact
would be if a solution was produced. It is important to not discount any brainstormed prob-
lems as they may lead to discussions and the generation of new problem ideas. After the
brainstorm, we move into the second part of the first diamond and begin converging to de-
fine one specific problem to tackle. We are explicit in this convergence by writing a How
Might We (HMW) statement, which takes on the form “we want to find a way to help [user]

15.11 Symptom or Disease? 303

with [need]”. To assist in choosing one of your brainstormed problems, or choosing a few to
combine, you may adopt a variety of methods. One such method involves plotting the vari-
ous problems on a graph, with impact and novelty on the axes. Novelty refers to how new
the problem is (and if the problem has been solved already) and impact refers to how the
target user is affected by the problem. There is no scale on the graph. As such all plotting is
relative, necessitating group discussion for plotting that reflects the thoughts of all group
members and interviewees. It is normal that new problems are generated at this stage, and
they should be added to the list and plotted like the others.

15.11 Symptom or Disease? to contents

• You have a problem
• Before you try to solve it, find out

– What other people know about it
– What science can tell us about it
– What other solutions may exist

• Are you addressing a root problem or a symptom

Before you continue with the design thinking process, you should take some time to re-
flect on the HMW statement generated by your group. Specifically, you should think about
any questions that arose during the process that led to the HMW statement. Use these ques-
tions to guide research so that you can learnmore about the chosen problem. This research
contrasts the research you did when generating ideas for possible project areas, because it

15.11 Symptom or Disease? 304

is specific to the chosen problem. For example, you may have chosen ‘math’ as a possible
project area, and subsequently ‘Ontario elementary school children struggling with frac-
tions’ as the specific problem. In this case, you might consider consulting the Ontario cur-
riculum to see what is said about fractions, and the grades that align with certain learning
outcomes regarding fractions. In all, your research should help you become well-informed
about the problem before a solution is developed. It is important to consider your problem
from different perspectives; you should think analytically, creatively, and comparatively,
and consult your group, target users, and experts in the area.

Keep a good log of your research. It is important to know where certain ideas came
from; being explicit can help make sure that you do not lose sight of why you make certain
choices, which is essential to designing a successful solution.

This research should help you make sure that the problem that you are tackling is actu-
ally the problem that users are struggling with or if there is an underlying problem that is
causing the pain point. This is analogous to thinking about if you are tackling the symptom
or disease. Sometimes you cannot solve the underlying problem. However, being informed
about it is essential to solution development.

To help in finding out if you are tackling the right problem, you could consider asking
yourself “Why?” five times: Why does your chosen problem exist? What causes that un-
derlying problem? Is there a problem that causes the problem that causes your underlying
problem?

An example of targeting the symptom rather than disease can be illustrated using a
story about a car manufacturing line. Say that a car manufacturing company is producing
cars that have mufflers that keep falling off. They could solve this problem by using tape
to secure the muffler, but it is likely that there is a deeper issue (disease) in the production
line causing this issue (symptom). Perhaps there is a bent piece of equipment which causes
a machine downstream to wiggle, and the wiggling causes misaligned screws, and those
misaligned screws cause the mufflers to be inadequately attached to the car. In this case,
it would be more efficient to fix the bent piece of equipment, since the intermediate prob-
lems could cause other problems later whichwould necessitate the development of another
solution, requiring time, money, and other resources.

This reflectionmay result in a pivot, entailing aminor rephrasing of theHMWstatement
or alteration of the entire statement. This might be frustrating, but it is important to make
these changes relatively early in the design thinking process since you do notwant to create
a solution that no one cares about.

15.12 Solution Ideation 305

15.12 Solution Ideation to contents

15.12 Solution Ideation 306

• Solutions answer the HMW statement
• Write down all solutions no matter how ’way out’ they seem
• Plot solutions on the Desirability/Feasibility graph
• Spirited discussion must lead to an agreed common problem statement

Solution ideation marks the start of the second diamond. The solutions brainstormed
should center around the HMW statement (i.e., all solutions should address the same prob-
lem). Different methods may be employed to support solution ideation. One such method
involves traditional brainstorming, in a list (see top slide above) or mind map form, or you
might opt for a more structured approach, which we call a solution generator (for example,
the “Game Generator” below it). The generator may be laid out like ours, where interests
and symptoms are aligned along the left and top of a table addressing data collection of
Parkinson’s disease using phone apps. In this generator, there is a solution for each inter-
est, symptom pair. Regardless of which method is used, you should be sure to come up with
as many solutions as you can. Write down all solutions no matter how ‘way out’ they might
seem. Through discussion, you might find that the idea is not as ’way out’ as you thought,
or maybe there is a component of the idea which you could take and use in your solution.
Even if you cannot use it, looking at the problem through the lens of the ‘way out’ idea may
help you understand the problem better.

Once solutions have been brainstormed, one specific and concise solution statement
should be written down. Like the HMW statement, being explicit about this statement will
help make sure that the group does not lose sight of what they aim to produce as a final
deliverable of the design thinking process. The solution statement can involve one brain-
stormed solution or a combination of a few brainstormed solutions.

To aid in producing the solution statement, a grid similar to that used in the problem
definition can be used. The axes are denoted by desirability, referring to how much the
target user would enjoy the solution, and feasibility, referring to how likely it is that the
solution can be developed and implemented.

15.13 Prototyping 307

15.13 Prototyping to contents

15.13 Prototyping 308

• Prototypes are experiments to learn about the user
• Paper prototypes are quickly constructed, tested, and improved
• The paper prototype should convey solution functionality, not be a solution
• Do not start coding until you have stopped learning from paper prototypes

Although a solution statement has been constructed, there will be many possible imple-
mentations of the solution. Paper prototypes should be developed to assess these possible
implementations. These may take on the form of drawings or sketches, or you might opt
to use PowerPoint slides with textboxes and shapes. The paper prototype should convey
solution functionality. For example, a software-based solution paper prototype might in-
volve many slides which show what happens when different buttons are clicked. Although
the paper prototype should convey the solution implementation idea, it should not require
copious amounts of time and effort to develop. The paper prototype exists as an alternative
to prototypes that are time and resource intensive for development. For example, coding
an entire app as a prototype might take months to develop, for a potentially small return
if major changes are required. In addition, the prototype developer might feel attached to
the prototype if they spent a lot of time and effort developing it, putting them in danger of
producing a final solution which does not solve user needs.

15.14 Feedback 309

15.14 Feedback to contents

• Prototypes are about learning
• Ask the user to pretend they are using your app
• Have them “think out loud”
• Use the grid to capture

– what they like
– what they want changed
– what confused them
– what new ideas were generated

You should seek feedback on your paper prototypes from your target users, ideally the
same ones that were interviewed initially. Here, the importance of having a prototype that
conveys functionality is emphasized. If possible, you should have the user interact with the
prototype while you observe. This can reveal things about the prototype which might not
be vocalized by the interviewee. For example, if they struggle to find where certain opera-
tions are in an app, that might indicate that the app buttons have poor visibility. Feedback
should be collected from many angles, like how multiple angles were considered in the ini-
tial interviews. To help with this you might use a feedback grid, similar to the Empathy
Map, as shown in the slide. There are four quadrants: what the user liked, what they would
like changed, what questions they asked, and what new ideas came out of the discussion.
Feedback should be collected for all developed papers and functional prototypes.

15.15 Creating an Action Plan 310

15.15 Creating an Action Plan to contents

• Make an Action Plan for each prototype
• Record why you are making your next changes

An action plan should be created to address the points in the feedback grid. In software,
this is called traceability, and it refers to why things are implemented. It is important to be
explicit in these steps (i.e., writing down exact changes and what prompted this change) so
that you remember why certain choices were made for the solution. An action plan should
be made for each paper prototype; this will give you insight into what different implemen-
tations have in store in terms of full development.

15.16 Comparing Prototypes 311

15.16 Comparing Prototypes to contents

• Reflect on what prototypes taught us
• Using a table helps guide group reflection
• Implementation is expensive: make sure you are acting on your best ideas

Finally, you should compare the various implementations of your solution. The feed-
back grids and action plans of each should be analyzed, and pros and cons of each solution
should be extracted to decide on a solution implementation. You might decide to use one
implementation or combine two or more. To guide group discussion, you could use a table
similar to that of our template.

15.17 Assessing Technical Challenges 312

15.17 Assessing Technical Challenges to contents

• Gather your tools
• Identify technical challenges that require new skills
• How will you get those skills?
• Do you need proofs of concept to test technical feasibility?

Your solution may take on a form that requires knowledge that you do not have yet.
For example, for a software-based solution, you might not have the technical knowledge
required to realize your solution. This does notmean that you have to change your solution!
It does mean that you need to catalogue the skills that you do not have yet, and where
you might obtain those skills. You might consult an online search, a teaching assistant, a
professor, or your peers.

15.18 Assessing Risks 313

15.18 Assessing Risks to contents

• Non-Technical challenges abound:
– legal
– regulatory
– human resource
– physical resource

• Another stakeholder (e.g., school boards) may block a solution your user (e.g.,
teachers) love

You should also reflect on project risks, which are more general than technical chal-
lenges as they involve things that are too complicated to do, no matter how much knowl-
edge or skill you acquire. For example, your solution may be illegal! It may be patented by
someone else. You may need approval of an ethics board or other regulator. You may need
a part which is in short supply. You may not be able to distribute work to your team, be-
cause only one teammember knows the frameworks you need. Youmay require a 1000 qbit
quantum computer which won’t exist for another ten years! The school board may refuse
to buy iPads to run your solution.

15.19 Peer Feedback 314

15.19 Peer Feedback to contents

• Peers have ears: tell them about your problems
• When you give feedback, ask

– why they made certain decisions
– can they trace them back to the user
– why did they reject certain solutions
– what surprised them in interviews and feedback sessions

• Giving constructive feedbackmay be themost important skill you learn in this
course

In a course setting, you should take advantage of the fact that your peers are experienc-
ing the same project process as you, and studying the same subjects, but have diverse back-
grounds and interests, and therefore different perspectives. Through their own projects,
they might have learned something that would be very applicable or helpful to you. You
should seek their feedback throughout the design thinking process, especially during pro-
totype development and iteration.

Conversely, you should give your feedback to your peers and guide them in any way
you can. To do this, you should be an attentive listener and ask questions where things are
unclear. You should ask them why they made certain decisions and aim to understand how
their interview data has led them to design the solution that they have designed. Being
able to give constructive and helpful feedback is both a technical and soft skill which can
be applied to a variety of professional settings.

15.20 Pitching Your Solution 315

15.20 Pitching Your Solution to contents

• A two-minute elevator pitch is an effective way to communicate your solution
• You should aim to be clear, concise, and interesting

Your presentation may take on the form of an elevator pitch. Elevator pitches are clear
and concise, so that the audience can understand your solution and maintain engagement
throughout your presentation. Your presentation should relay who the target user of your
solution is, the problemyou set out to solve, who you are (i.e., what credentials you have and
why you thought you could help), and how you actually solved the problem you identified.
You should aim to make your entire pitch interesting - think about word choice and flow of
ideas. Elevator pitches are short - about two minutes. The slide above lists the components
that should be included in your pitch. Your presentation should include multiple slides so
that you do not jampack all the information in one slide and overwhelm the audience. At
the same time, having too many slides can be hard to follow along with.

16. Example: Math Visualizer

This completed example is aimed at using design thinking and Elm to help students with
math. This is the starting point that was given to the students to work with and expand
on. The template helps in defining a problem, the solution, and gives you the starting steps
towards a functional prototype. Since this is also a part of a Computer Science course the
solution should be software based.

317

Possible Project Areas
What do they need to know? Who are they? How will you find them to interview?

1. Grade 7 Math, 7th Graders in CBSE (Central board of Secondary Education)
(https://www.schoolconnectonline.com/cbse/Class-7th/Maths), our younger siblings and their friends.

2. Grade 11 Math, Students of Grade 11,
(https://www.edu.gov.on.ca/eng/curriculum/secondary/math1112currb.pdf), Juniors from High School

To come up with the possible project areas, we discussed amongst our teammates and
came up with the two best options. We decided to go with the above options as the target
audience was more reachable. We researched and concluded that working on the above
curricula would both benefit the target audience and be feasible for us. it is important to
make sure to have reliable access to members of the target audience here as you will need
their input throughout this project.

318

Option 1 Research
1. What could we find out about option 1? - Grade 7 Math in CBSE has Algebra, Geometry,

Probability and Statistics.

2. Is it something people find hard to learn? – Grade 7 Geometry is something that the students find
a little hard to visualize.

3. Why do people need to know it? (Will they be motivated by applications?) To make math fun and
simpler, it will help them in their day-to-day math activities and assignments. Will be adding
animations and using interactions to keep the application interesting and easy to use.

4. Is there a good visualization component? Geometry, probability, and statistics

5. How will we find people to interview? We will be interviewing our younger siblings and their
friends

For the options research, youwill need to answer the questions. With these answers, you
and your teammates will be able to determine which topic is best suitable. To determine
the topic that we would focus on and our target audience, we explored the sub-topics that
most students found difficulty in. Tip: You don’t need interviewees at this stage, you can
answer these questions according to your knowledge.

• Question 1 is talking about all the research you can produce about the topic
• Question 2 is about assessing the difficulty of the topic and determining how the
target audience deal with the option

• Question 3 is finding out how important is it for people to know about it, and
applications related to the option

• Question 4 is figuring out if it is possible to visualise the topic in the form of
figures, charts, etc.

• Question 5 is about how easy is it to find people relevant to the target audience,
you can use sources like family, friends, your peers in class, the criteria is to have
reliability for the interviews to come.

319

Option 2 Research
1. What could we find out about option 2? Grade 11 Math has Calculus - derivatives, integrals,

and Algebra.

2. Is it something people find hard to learn? Depends on the person and their adaptability to
abstract math.

3. Why do people need to know it? (Will they be motivated by applications?) Cause it applies
to the real-life situations. We will apply animations, quizzes, and provide hints to keep the
application interactive.

4. Is there a good visualization component? Real-life questions where calculus is applied and
visualized using animations.

5. How will we find people to interview? Communicating with our juniors from high school

320

Our Focus

1. Target users: Grade 7 Students in CBSE (Central board of Secondary Education)

2. General problem area: 7th Grade Geometry : Angle measurement.

After looking at your options, you and your team should choose an area to focus on, from
the project areas that you have researched. To make the journey easier, you can choose the
option which has easy access to your target audience, ease of building a project with the
topic, etc.

321

Questions to Ask
- How old are you? What do you like to do for fun? Dream job? What subject do you struggle with the most? What’s your favorite

subject? Why is that ?

- What do you think about Math at school ? Why do you think so? Do you like Geometry? Do you like your teacher?

- Do you know anything that your teacher’s uses to help you understand Math better? The same about your textbook?

- Do you think Algebra is a useful subject in the Real-World?

- Do you practice problems in Math to learn the topic ?

- Do know anyway of teaching that you think is better, to learn about a topic?

- Could you describe your normal day after school ?

- What’s your favorite game and what do you like about it?

In this slide, you need to note down the questions, you will ask your interviewees. The
questions are meant to be open-ended and should not be leading to a conclusion that you
have previously determined. The questions should be specific and not close-ended. For
example, a question like “Do you like geometry?” is very specific and leading. An alternative
is “What topics in math are you interested in?” Leading questions would not lead to the
type of answers that help you to construct your project idea. As a rule of thumb, make the
questions without having any conclusions in mind. Another tip is to make sure that you are
starting with questions to get to know your interviewee, to make them comfortable, such
as - “What are your hobbies?” “What is your favorite subject?” etc.

322

Empathy Map:

Use to take notes when interviewing/shadowing
individual users, and again when creating a
fictional target user. Have one person do the
talking, and a second take notes, but steer the
conversation to cover all 4 areas.

say: What they say in response to questions or
volunteer.
think: Things you infer about their knowledge or
opinions, because they avoid a topic or direct
answers, are surprised by or do not understand
some questions.
do: Steps they take in doing a task, either
observed from shadowing, or noted when they
describe how they do their work.
feel: Things you infer about their feelings, such as
whether they would enjoy using a proposed
solution, or would prefer the way things work now.

1

Team

Interview 1

Practice slides will have blue

blue gradient backgrounds.

You can do a practice interview with your teammates! Have one of them be the target
audience. For example, we had our teammate act as a grade 7 student. You should ask
the questions that you and your teammates have prepared in the previous slide. You or
another teammate of yours can be the note-taker to ensure that you fill out the empathy
map. The Empathy map helps to understand your target audience better. These maps and
interviews help you to determine the problems and solutions, and it is a practice to improve
your communication and organizational skills. Tip: Create questions that can help you fill
all 4 sections on the empathy map and make sure to keep the points concise.

323

Did you… circle one

set up interview, giving context? Somewhat Yes Definitely!

make them comfortable? Somewhat Yes Definitely!

ask open-ended questions? Never Sometimes Whenever appropriate

Ask follow-ups? Never Sometimes Whenever appropriate

Ask how they felt about things? Never Sometimes Whenever appropriate

Ask for stories, or to describe the steps of a job? Never Sometimes Whenever appropriate

React to non-verbal clues they were
uncomfortable, wanted to say more, etc?

Never Sometimes Always

Interview Skills: Fill this out after empathy map interview for your group. Highlight your choices.

After the empathy map, mark the relevant interview skills that were portrayed in the
practice interview. This will help you create better questions for the interviews, and if you
miss any interview skills, you can always refer to and prepare better for the next interviews.
You can repeat this practice as many times in the week till you get satisfactory questions
for the interviews.

324

Revised Questions
- How old are you? What do you like to do for fun? Dream job? What subject do you struggle with the

most? What’s your favorite subject? Why is that ?

- What do you think about Math at school ? Why do you think so? What’s your most favorite and least

favorite topic in Math ? Is there anything about Math Classes that you like/dislike ?

- Do you know anything that your teacher’s uses to help you understand Math better? The same

about your textbook?

- Do find any topics that are very rarely used in the real-world?

- How do you study Math ?

- Do know anyway of teaching that you think is better, to learn about a topic?

- Could you describe your normal day after school ?

- What’s your favorite game and what do you like about it?

From the interview skills and practice interview, the questions that aremodified need to
be inserted here. The revised questions will help to guide your interviews with your target
audience from now on. Ensure that your questions are firstly open-ended, getting to know
your target users, then to understand what they would like in an application such as – the
best features, what they would like the app to have, etc. For example, instead of “do you
like your teacher”, you can ask ”Is there anything aboutMath Classes that you like/dislike?”
This is a much better question to ask as it doesn’t limit the answers just about the teachers,
but about hermath classes in general. Do not ask “Do you think Algebra is a useful subject in
the real world?” Do ask “Are there topics you find hard to imagine in real-world use?” The
idea is to widen the answer range for them and give them the freedom to think, and discuss.
Asking them to list topics will focus them on specifics and hopefully avoid statements too
general to be useful. If they are not confident aboutmaking an overall judgement, or finding
the most important topic, the formulation of the question takes the pressure off by asking
for any topics.

325

Empathy Map:

Use to take notes when interviewing/shadowing
individual users, and again when creating a
fictional target user. Have one person do the
talking, and a second take notes, but steer the
conversation to cover all 4 areas.

say: What they say in response to questions or
volunteer.
think: Things you infer about their knowledge or
opinions, because they avoid a topic or direct
answers, are surprised by or do not understand
some questions.
do: Steps they take in doing a task, either
observed from shadowing, or noted when they
describe how they do their work.
feel: Things you infer about their feelings, such as
whether they would enjoy using a proposed
solution, or would prefer the way things work now.

She likes easy problems because she
thinks "she’s weak at it"

Using alternate methods than usual to
understand

Making weird figures is not her liking

Words better than figures

Tutorial videos help

Does not prefer math, and considers
herself weak at it

Likes their textbook – easy to understand, but the
pictures aren't captivating

Math is boring and too much “thinking”

Dislikes calculations, likes algebra

Likes that algebra is straightforward

Doesn't like geometry - understanding takes time and a
mistake will result in "everything being wrong".

Does not see real life applications of math.

Likes verbal explanations

Likes pictorial examples

Likes the tutor's teaching style as it is straightforward,
and their tutor understands them better

Games might not make math fun

If she has a doubt, she asks teacher or
brother

She goes to YouTube for help apart from
her teachers

Dislikes math, bored of it and doesn’t like thinking

She isn’t very happy with math.

She doesn’t like "wasting too much time while
studying"

Group learning is something she likes

At times "repeat teaching" is also good

Maths is "mood dependant"

She dislikes her schoolteacher's teaching
methods, likes her tuition teacher's alternate and
“easier” methods.

1

Ms.M

Interview 1

Make your interviewees feel comfortable bymaking the interview less intimidating, ask-
ing easygoing questions, and getting to know your interviewees. As an interviewer, it im-
proves your social and communication skills, and as a note-taker, it helps you to be flexible
and adaptable. The goal of this interview is to get as many opinions and problems as pos-
sible as it helps us generate ideas for an application. The first interview would most likely
be a new experience for both sides with its fair share of minor inconveniences, but it will
give you all the confidence for future interviews. Tip: 4-6 interviewees are recommended
as you get different opinions and ideas.

326

Did you… circle one

set up interview, giving context? Somewhat Yes Definitely!

make them comfortable? Somewhat Yes Definitely!

ask open-ended questions? Never Sometimes Whenever appropriate

Ask follow-ups? Never Sometimes Whenever appropriate

Ask how they felt about things? Never Sometimes Whenever appropriate

Ask for stories, or to describe the steps of a job? Never Sometimes Whenever appropriate

React to non-verbal clues they were
uncomfortable, wanted to say more, etc?

Never Sometimes Always

Interview Skills: Fill this out after empathy map interview for your group. Highlight your choices.

Highlight, circle, or underline the appropriate choices, according to the interview held.
The note-taker or the interviewer should fill this out after the empathy map.

327

Empathy Map:

Use to take notes when
interviewing/shadowing individual
users, and again when creating a
fictional target user. Have one person
do the talking, and a second take
notes, but steer the conversation to
cover all 4 areas.

say: What they say in response to
questions or volunteer.
think: Things you infer about their
knowledge or opinions, because they
avoid a topic or direct answers, are
surprised by or do not understand
some questions.
do: Steps they take in doing a task,
either observed from shadowing, or
noted when they describe how they do
their work.
feel: Things you infer about their
feelings, such as whether they would
enjoy using a proposed solution, or
would prefer the way things work now.

Likes calculation and numbers

Likes doing activities

She unconsciously realizes that different teachers
have different teaching methods that may not
help all students but adapts to their method of
teaching

She is 11 years old, hobbies: watch tv, drawing,
Wants to be a doctor.

She struggles with social studies the most in school as it is hard.
Her favorite subject is Science .

She is fine with online learning .

She finds doing activities helpful (e.g. images). She likes the
number line

While she is good at math, she doesn't know its applications in
a broader perspective (She dislikes the use of instruments like
compass, protractor etc.)

She likes the math textbook as it explains the topic at hand
well and gives sample problems revolving around the topic.

She doesn't go for tuitions.

She prefers pictorial representations.

She said that math games are interesting and can help teach.

Learned integers through images

Studies through practice

Prefers doing a lot of questions

After school she studies by revising topics
talked about at home and then does her
homework

She mainly studies from textbook and does
the given practice problems .

She likes math as she like numbers and
calculations.
She likes fractions and does not like
perimeter
Ie: algebra> geometry

She like science cause of experiments and
practical applications shown
She doesn't like SST as she “hates” studying about
the past and its boring

1

Ms J

Interview 2

The note-taker should try to be fast, and accurate and capture as much information as
possible. Even if the interview went well, if the notes are not used it won’t be as effective
in the later stages. As a note-taker, try to fill out the 4 areas from the interview. Tip: To fill
the 4 areas, try asking specific questions that might answer each quadrant, for example –
for FEEL, ask: What about math do you dislike? Or for DO, ask: If you face a difficult maths
problem, what do you do to try solving it? Thewritten responses shouldn’t be toowordy, try
writing them as highlights or bullet points. Tip: Create a doc and type in the conversation
or replies of the interviewee, this way, you and your teammates can decide what/where
replies should be placed in the empathy map after the interview, when you have time to
discuss it.

328

Did you… circle one

set up interview, giving context? Somewhat Yes Definitely!

make them comfortable? Somewhat Yes Definitely!

ask open-ended questions? Never Sometimes Whenever appropriate

Ask follow-ups? Never Sometimes Whenever appropriate

Ask how they felt about things? Never Sometimes Whenever appropriate

Ask for stories, or to describe the steps of a job? Never Sometimes Whenever appropriate

React to non-verbal clues they were
uncomfortable, wanted to say more, etc?

Never Sometimes Always

Interview Skills: Fill this out after empathy map interview for your group. Highlight your choices.

329

Empathy Map:

Use to take notes when
interviewing/shadowing individual
users, and again when creating a
fictional target user. Have one person
do the talking, and a second take
notes, but steer the conversation to
cover all 4 areas.

say: What they say in response to
questions or volunteer.
think: Things you infer about their
knowledge or opinions, because they
avoid a topic or direct answers, are
surprised by or do not understand
some questions.
do: Steps they take in doing a task,
either observed from shadowing, or
noted when they describe how they do
their work.
feel: Things you infer about their
feelings, such as whether they would
enjoy using a proposed solution, or
would prefer the way things work now.

Math is useless everywhere else

Dislikes Memorizing , algebra

He doesn't like memorizing unnecessary things
like historical dates and similar things

Plays games for fun like cod and pubg . Wants to become an esports
player He struggles with SST the most. His favorite subject is math. He
dislikes memorizing and finds it difficult. His teachers don't teach
properly . Doesn't like doing worksheets.

Likes symmetry dislikes algebra.
He likes math because he does not need to byheart anything.

He learns through discussing better which his teacher disapproves of .
However, he likes the fact that his teacher jokes around at times.

Does not know real life applications of math

Does not like textbook as it does not have complex problems that
come in the exam.
Monster math - math games are fun. Finds it a bit interesting.
Would rather study than play math games
He does not like letters in math.

Finds easier methods in Guidebooks to complete math
problems

He uses solved example questions to practice as he can see his
faults right away

Once he gets back home, he finishes homework eats showers
goes to play and then studies again then he eats dinner and
sleeps.

Study Method: Uses Guidebooks which have easier methods,
and solves the example questions. (He likes to know whether
he is right or wrong immediately)

Fav Subject: Math

He doesn't like his teacher

He believes that he studies better after playing

Doesn’t like textbook as it doesn't prepare him for his
exams

He finds Math games a bit interesting

He dislikes memorizing and finds it difficult.

1

Mr N

Interview 3

The responses from the interviewee, sometimes, may not associate with the topic but
try to include them in the empathy map as it may be useful for brainstorming. Some inter-
views may not meet the expectation of replies, if the interviewee doesn’t answer the ques-
tions asked accordingly, you can try askingmore specific questions. If certain responses are
hard to paraphrase, you can then quote them. For example, instead of - He learns through
discussing better which his teacher disapproves of, use - He ”learns through discussing bet-
ter” which his teacher ”disapproves of”.

330

Did you… circle one

set up interview, giving context? Somewhat Yes Definitely!

make them comfortable? Somewhat Yes Definitely!

ask open-ended questions? Never Sometimes Whenever appropriate

Ask follow-ups? Never Sometimes Whenever appropriate

Ask how they felt about things? Never Sometimes Whenever appropriate

Ask for stories, or to describe the steps of a job? Never Sometimes Whenever appropriate

React to non-verbal clues they were
uncomfortable, wanted to say more, etc?

Never (Online
cant see
interviewee)

Sometimes Always

Interview Skills: Fill this out after empathy map interview for your group. Highlight your choices.

331

Pivot or Not?
1. Was it easy to find potential users? Yes

2. Is there commonality among the user problems? Yes

3. Were interviewees excited about it? Yes

4. Were we excited about it? Yes

5. If you pivot to another idea, copy your Questions and Empathy map slides and start
catching up. ☺

In this slide, you are re-evaluating your choices and checking if your initial idea allowed
for a viable answer. If you do not have enough people to interview, the problemsmentioned
are too diverse or face an unforeseen obstacle, it may be better to start over. This slide helps
you and your teammates to decide whether the topic you have chosen is good to go and if
the target users require help with the topic chosen. If you and your team want to go with
another idea, then you can do so! After this slide, you can copy the questions and empathy
map slides, and do another interview round regarding the new topic.

332

1 Maths is boring

2 They don’t find its application in real world

3 they don’t see the inner meaning in the math

4 They are embarrassed to ask their teacher to re-explain a topic

5 They don't like using mathematical instruments for geometrical constructions

6 Textbooks are boring

7 Textbooks don't prepare them for exams

8 They lack the confidence a lot of times to go after a difficult or a higher-level problem.

9 Most Questions lack solutions to them to compare answers.

10 Teachers’ teaching methods can be boring and stale

11 Teachers cater to a general audience and don’t produce unique methods to make
sure, each student has grasped the concepts

12 Difficulty in memorizing some formulas

How Might We?

1. As individuals in the group, write five to ten different ideas on a piece of paper,
for how we could make our users’ lives better by reducing a problem or giving
them a new opportunity.

2. As a group, take turns reading your ideas, and if they are very similar to other
ideas, merge them together and write down one version of the idea in the table.

3. Again as a group, discuss the ideas in reverse order, and assign them potential
Impact and Novelty scores by plotting the number on the scatter plot.

4. Pick the best overall statement or statements, and combine them into your goal,
in the box below.

need

us

Class 7 students of the CBSE curriculum.

user

We want to find a way to help

with

1112

5

Problem Definition

7

13

3

8

2
6

1

9

4 10

Drag these tags to the correct spot

14

15

Impact

N
o

ve
lty

How to use a Protractor.

Finding the issues that the interviewees have with the topic of concern should be eval-
uated and noted down here. In the above slide, the highlighted problems led to the con-
clusion mentioned. Try to find relations between problems and figure out a common root
problem. This step will determine the project you will work on. The graph is a visual aid
to represent the level of novelty and impact solving a problem will have. Highlight the
problems that you and your team want to create solutions for. Tip: To fill out the problem
definition slide, you and your teammates can each write down 5-10 different ideas on how
it could be beneficial for your target users. If the ideas are similar then you can merge the
ideas. Once you have 15 problems ready, you can write them in the table and place the num-
bered tags in the graph accordingly. Impact, in this context, means the influence that the
idea has on the users’ lives. Novelty, in this context, means the newness or freshness of the
idea. Note: Try to write down at least 10 ideas in this slide.

333

Q&A
1. Write down questions raised by the HMW process. For example, if you identified fraction

arithmetic as an area your users find confusing, what grade is it covered in in Ontario’s
math curriculum? If PDEs cause your users trouble, what are they?

How might we make the application fulfill the users' needs?

How might we help the user discover the inner meaning behind the math topic they are
learning?

How might we make a solution that helps every student understand the topic?

How might we keep the attention of a student to our application?

We found that our users, grade 7 students, had difficulty visualizing geometry. We decide to
produce tools to identify and measure angles and provide lessons to explain the concepts in
geometry.

This slide will help you figure out the right question you should ask yourselves when
you will group up to come up with a solution.The “HowMight We” or HMWmethod allows
you and your team to brainstorm and be able to resolve future problems that the users may
face. For example, we identified from the previous interviews that our interviewees were
facing difficulty in concentrating or enjoying math, thus we need to write down questions
associated with the problems such as – how might we bring real-life problems associated
with math into the application?

334

1 A virtual environment to draw and measure angles with a digital
protractor.

2 Digital Transparent protractor to experiment with.

3 Practice Exercises on measuring angle with a protractor with solutions .

4 Drawing polygons with specific angles using a protractor.

5 Tutorial on how to measure angles using a protractor.

6 How to measure the angle on both directions of a protractor.

7 Tutorial Videos on how to use a protractor

8

9

Ideation:

1. As individuals in the group, write five to ten different solutions on a piece of paper.
2. Include an idea costing less than $1000 and one costing a million, include one using an app, and one without an app.
3. As a group, take turns reading your ideas, and if they are very similar to other ideas, merge them together and write down one version of the idea in the table.
4. Again as a group, discuss the ideas in reverse order, and assign then Desirability and Feasibility scores by plotting the number on the scatter plot.
5. Pick the best overall idea, and combine them into your goal, in the box below.

A sandbox application that allows a user to look up tutorials on using a protractor,

provides a digital protractor for the user to get familiar with and provides a few

exercise problems where the user drags a digital protractor to measure a given angle

and select an option promoting a right/wrong response and providing the solution
after.

Solutions

11

5

7

3

8

2

6

1

9

4

10

Drag these tags to the correct spot

Discuss the various solutions with you and your team and note them down. Come up
with a solution imagining that you have a billion dollars, as impossible as it sounds, you
want it. Then come upwith a solution from the opposite end of the spectrum, one that costs
minimal to nothing. After figuring out these outliers, come upwithmore realistic solutions
and list as many as possible. Every idea counts here! Once you are out of ideas, roughly
rate the solutions based on feasibility (if it is possible within the scope of this course) and
desirability (howmuch the target audiencewants this solution). Discuss and figure out your
final solution that the team converges to and state it below.

335

(Idea 1)

Use any drawing tool you want to create a ”paper prototype”, including taking screen shots of
Elm programs or other apps. You will need to duplicate this slide for different pages/actions in
your app.

Prototype

1

Prototype 1 is the first and simplest idea of your application. Writing and drawing your
ideas out helps to visualize and solidify ideas. Start with something, like a line or a curve,
anything, if you are stuck with a rough idea but nothing visually intact then it becomes a
barrier for the final prototype/application. Tip: You and your teammates could each come
up with a paper prototype, if they are similar then you can combine the idea, else you can
insert the different ideas accordingly. There are different ways to create a prototype, you
could draw on a piece of paper (but that wouldn’t be environmentally friendly), draw on
MS Paint or other drawing apps and take screenshots, create a PowerPoint that takes you
through each page, etc.

336

The red circle indicates the button being clicked. In the previous slide, we see the ”Lets
go!” button being clicked which leads us to this page. The current slide is a levels page
where there are different stages of math problems. When we click on a level button, here
we chose level 1, it leads us to the slide below.

337

338

339

(Idea 2)

Use any drawing tool you want to create a ”paper prototype”, including taking screen shots of
Elm programs or other apps. You will need to duplicate this slide for different pages/actions in
your app.

Prototype

2

My team and I had a combined idea thus we decided to fill out only prototype 1/idea 1.
We do recommend to have more than one idea as your users will be able to pick and choose
the best features and ideas in each. By having at least 2 ideas or prototypes, you and your
team can come up with the better solutions/prototypes for the users.

340

5

Feedback Grid:

Use to take notes when getting feedback
from individual users. Have one person do
the talking, and a second take notes, but
steer the conversation to cover all 4 areas.

+ What did they like about it?

∆ What would they like changed?

? What questions did they ask?

What new ideas came out of the discussion?

Prototype

1

From this slide onwards, ensure to keep in contactwith your interviewees as they can do
the testing and provide the feedbacks that you require! If your previous interviewees aren’t
available at certain moments, then you can add another interviewee. Try to explain the
idea/prototype to your interviewees. The best tip that we could provide is to imagine you
are in ’Shark Tank’ (exactly like the TV show, but this is an idea pitch, not a business deal!)
and you are trying to pitch your idea! You have good reactions or not-so-great reactions
but the feedback from all is very important.

341

Action Plan

This is for practice. Act on feedback from real users!

What they said: How we will improve:

In your action plans, you may receive feedback that might change the solutions or that
might be almost impossible to solve. Write them down here, and note down how you can
improve or solve these problems. The action plans help you to create goals for the applica-
tion.

342

5

Feedback Grid:

Use to take notes when getting feedback
from individual users. Have one person do
the talking, and a second take notes, but
steer the conversation to cover all 4 areas.

+ What did they like about it?

∆ What would they like changed?

? What questions did they ask?

What new ideas came out of the discussion?

It is more entertaining.

Gives feedback and appreciates you

Custom backgrounds

Avatar and currency

Liked the drawings

Custom backgrounds,

Something to keep you motivated to keep
going

Make the smiley a lot less creepy

Everything is perfectly clear Adding currency to make it more interesting

Make multiple choice questions

Maybe ask what kind of angle it is rather than
only the measurements

Ms M

Prototype

1

The interviewee was prompted to ask

questions multiple times, but still did

not have any.

Explain the idea behind the prototype that you havemade, and show them amock demo.
Since these are paper prototyped it needs your help to convey your idea to the interviewees.
Once the prototype is clear to them, do the same as your first set of interviews, ask open-
ended questions about your prototypes. Be open to changes and note them down, even if
the changes might sound impossible, note them down. Feasibility is for you to figure out
later when you read these notes and come up with updates.

343

5

Feedback Grid:

Use to take notes when getting feedback
from individual users. Have one person do
the talking, and a second take notes, but
steer the conversation to cover all 4 areas.

+ What did they like about it?

∆ What would they like changed?

? What questions did they ask?

What new ideas came out of the discussion?

Homepage looks good

The black and white theme

The protractor looked cool and detailed

The menu system is done really well

Would add more colors

Get rid of the “useless comments” on the title

Get a back button on the levels page

The smiley face is creepy

Have multiple choice questions

Change the color scheme

Can the player choose any level they like
without completing the previous ones?

Are the questions fixed or randomised?

Maybe colored backgrounds

Change the smiley face

Add in MCQs

Mr. N

Prototype

1

When the same improvement is mentioned by multiple interviewees, it is a clear sign
that it needs to be addressed, just like the creepy smiley face. The solutions suggested by
interviewees need not be directly implemented. Maybe a different easier, and feasible solu-
tion would give the same improvement.

344

5

Feedback Grid:

Use to take notes when getting feedback
from individual users. Have one person do
the talking, and a second take notes, but
steer the conversation to cover all 4 areas.

+ What did they like about it?

∆ What would they like changed?

? What questions did they ask?

What new ideas came out of the discussion?

Buttons are obvious

Homepage drawing are attractive

Levels are well explained and obvious

Homepage could be more colorful

Font change on level Page

Level page could be colorful

No Questions... MCQ system instead of manual input

We could add sounds

Ms.J

Prototype

1

Try to fill as many sections as possible and fill out the tables. There may be situations
where the interviewee simply doesn’t have any questions, thoughts, changes, or ideas and
that is fine. In case of this, mention that the interviewee didn’t have anything to say. If
you face such interviews, try interviewing more than 2 users. The probability of getting
feedback will be higher. We had 3 interviewees therefore we were able to make changes
and come upwith solutions and ideas. After this slide, if you havemore than one prototype-
/idea, copy and paste the empathy maps after this slide, with the responses for the idea
accordingly.

345

Prototype 1 Prototype 2 Prototype 3

Pros

Cons

What did you learn about the prototypes? Do you refine any, synthesize them, or go in a new direction?

Here youwould be comparing the prototypes that you havemade before and learn from
them. We had created one prototype but don’t do what we did, create at least 2 in the
beginning! Use these thoughts and improve upon your prototypes. Note down the pros
and cons of each prototype here and collect the best features to evolve another prototype.

346

Action Plan

Duplicate the Feedback and Action Plan slides for as many
iterations as you can fit in.

What they said: How we will improve:

Backgrounds are a bit bland Better backgrounds

Need something to keep us motivated Maybe add a score/currency system

Add in MCQs Make questions MCQ

Did not like the smiley face Don’t add the smiley face

347

Elm share link: https://macoutreach.rocks/share/9ccb0fa0

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Protoype

3

You cannow start tomake an ELMprototype. A basic skeleton and ideawould be enough.
For example, if involves a level system, then a few examples of levels, a menu system and
any other sections thought of would do. It should give a starting step that reflects the final
products in some way.

348

Technical challenges

Challenge What you will do: search resources, ask

TAs for code example, build test program

How to include the protractor Ask TA for code and search internet

Variety of questions Research on 7th Geometry

Here you would discuss the technical challenges that could pop up when making your
application on Elm. Are there any concepts that you need to learn before you start making
the application? What kind of research is needed to make a factually accurate application?
What other issues do you anticipate? Your solutions can range from self-research to asking
your mentors for an extra tip regarding the programming language.

349

Peer Feedback
What did audience question, where did

explanations come out wrong, etc.

What will we do about it?

Do the levels have an increased difficulty? Yes we do plan on making the levels more

difficult as you go

Is there any content provided to do the

questions?

We will work on a tutorials page to make

sure that student have a resource to refer

to whenever needed

How many external applications are

provided to cover the content of angles?

We are planning on having questions that

ask you to figure out what kind of triangle it

is based on the angle of each corner.

Asking your peers other than your teammates would allow for a different perspective
on the idea that you have, helping to polish any and all details missed out or not perfected.

350

Risks
Main things which could go wrong and

prevent you from completing a working

app.

What you can do about it? (assign a

second person, find more users, etc.)

Not being able to include a Protractor New topic of geometry

It is time for risk assessment! Here you will find out the achilles heel (the biggest weak-
ness). This could range to anything from something that Elm can’t do to something you
you won’t be able to figure out. Even if you think you can figure something out, if you’ve
never done it before, you should probably acknowledge the risk, but do not worry, you will
be experts soon! To mitigate these risks raise them at group meetings with your mentors,
online research, and our good friends at StackOverflow.

351

Elm share link: https://macoutreach.rocks/share/9ccb0fa0

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Protoype

7

Time to start the prototype. Remember, the best prototype is the simplest prototype
which gives you more information about your user.

352

5

Feedback Grid:

Use to take notes when getting feedback
from individual users. Have one person do
the talking, and a second take notes, but
steer the conversation to cover all 4 areas.

+ What did they like about it?

∆ What would they like changed?

? What questions did they ask?

What new ideas came out of the discussion?

Liked the color scheme

The homepage is nice

Texts are easy to read

Linked the protractor

The levels are pretty straight-forward and you
know what to do

Nice fon for levels

Liked the format of the questions

Gdragging the protractor is cool

Add stuff to homepage background

Could mistake the 'angle management' title for
a button

The background in tutorial page

Tutorials should have names

Add circles to the angles

Font for tutorials

Make it so you can go from one level to the
next

Ask what type of angle that is

Do better to congratulate the students when
they get it correct

What does the 'help!!' Button do?

Can you go back to the level page without
completing the level?

Can I choose any level I want?

Is there a score system?

Do I get a prize after finishing the game?

Will you get a bonus level if you get
everything right?

Add background to the tutorial page

Add title to tutorials

Change the color scheme for tutorial 2

More visuals on the tutorials

Change the text and background of level
page

Change the distance of level buttons

Implement a score system

Mr. N

Prototype

7

The sharelink/prototype 7 is displayed to the interviewees and feedback is received.
These interview sessions finalize your final prototype.

353

5

Feedback Grid:

Use to take notes when getting feedback
from individual users. Have one person do
the talking, and a second take notes, but
steer the conversation to cover all 4 areas.

+ What did they like about it?

∆ What would they like changed?

? What questions did they ask?

What new ideas came out of the discussion?

Liked the colors

Homepage is attractive; wants to try the app
out

The question difficulty increase

The name can be better

Have an explanation on why the answer was
that and a hint when you get the answer wrong

Change the tile of button to concept review

Add angle indication in Tut1

How would you know that the protractor
isn't a bit off?

Can you change the font?

Add more commentary when the player
choose a choice

Add documentation on counter-clockwise
angle measuring

Maybe add more than 5 tutorials

Illustrations with text in tut2

Different backgrounds

Make incorrect part more friendly (reassuring)

Correct question should be motivating

Ms. N

Prototype

7

354

5

Feedback Grid:

Use to take notes when getting feedback
from individual users. Have one person do
the talking, and a second take notes, but
steer the conversation to cover all 4 areas.

+ What did they like about it?

∆ What would they like changed?

? What questions did they ask?

What new ideas came out of the discussion?

Finds the buttons perfect for their uses

The reflex angle catches everyone off guard..
It’s a new question for them

The game is very informative and slightly
challenging (good)

Believes it could replace teachers teaching
the topic and might be faster as well

Needs angle indicators on the tutorials

Update tutorial 1 as there is no specific
information of the angles (between 0 and 90)

Wants to add rotation to protractor

Wants a hint button

How do you turn the protractor? Maybe add a tutorial button for each level

Wants some sort of reward for completion

Ms. J

Prototype

7

355

Action Plan

Duplicate the Feedback and Action Plan slides for as many
iterations as you can fit in.

What they said: How we will improve:

Users had issues with the reflex angle

problem and The triangle problems

Add tutorial information on how to solve

such questions as well as a hint button.

They didn’t like backgrounds for tutorial

page and level page

Make custom backgrounds

The fonts for the tutorials were not good Change the font

Add a scoring system Make a scoring system

356

You should have a more detailed prototype now, but you may start including more screenshots
of Elm programs and may even include sharelinks to working examples of parts of the app.

Protoype

8

357

Protoype

8

358

Protoype

8

359

Protoype

8

360

Protoype

8

361

Pitch Component

You have finally come to the conclusion and have a release version ready! You are now
preparing a pitch to explain your idea. Next, you present your solution to a prototypical
user.

362

Meet Bob

Tell us about your prototypical user : Bob is a Grade 7 student
studying the CBSE Indian Syllabus.

Your hypothetical customer, Bob, describe their background (target audience), their en-
vironment, their daily routine, anything of the sort to give a good description of who they
are.

363

Bob's Problem

Tell us their problem: Bob is having a tough time studying the
Math taught by their teachers. Topics that need visualization is
especially tough. Asking for question is difficult for Bob due to
the online nature of classes. Bob also finds textbooks boring.

Now you’re going to talk about their problem in detail. You could explain circumstances
and any other factors that are important to the problem.

364

We are...

Who are you and why do you think you care about solving Bob's
problem: We are First-year University Students that are tasked
with fixing the problem that Bob and many others like Bob that
study math in CBSE face with a software-oriented solution.

Describe yourself, your reasoning and your motivations. Talk about your goal as a team,
and howmotivated you are to solve Bob’s problem. But try tomake it into a story, so it holds
Bob’s interest. Imagine you’re writing a story for Netflix, or Disney+!

365

Solution

Show how you solve the problem, with a voiceover of the app
being used, but don't make it a walk-through of the app, or a
tutorial, talk about how it solves the problem.

we created a fun game that students like Bob, and others in
Grade 7 in the CBSE syllabus, can use to visualize and practice
the use of a protractor aiding them in learning geometry, a
significant portion of their Math curriculum.

Explain how it helps rather than what each button does. In reaching this step, you will
have learned how to make the interface intuitive, so explaining the buttons and functional-
ity is not your aim. You should instead explain how it helps solve the problem. For example,
Bob had a problem: he found the textbook boring. The application solves this by making
it in the form of a game with bright and catchy colors so the chance of being bored of the
math is greatly reduced. Another example would be difficulty visualizing the problem. The
application solves this by making sure the protractor is a free tool that lets you experiment
visualize the protractor moving to where you need it.

366

What we learned from DT

Duplicate your actual DT slides which help you explain your
points and talk over them.

To avoid repetition, we have not copied the slides here, but you can talk about your
journey in brief herewith thehelp of your interviews charts andgraph that youhaveplotted.
Your explanation should convince the stakeholders that are listening to this pitch that there
was a genuine problem and your solution has fixed it.

Bibliography

Articles
[Blo+20] Nicholas Bloom et al. “Are ideas getting harder to find?” In: American Economic

Review 110.4 (2020), pages 1104–44 (cited on page 194).

Books
[And07] John R Anderson. How can the human mind occur in the physical universe? Oxford

University Press, 2007 (cited on page 200).
[Ban13] Bela H Banathy. Designing social systems in a changing world. Springer Science &

Business Media, 2013 (cited on page 201).
[Nor13] DonNorman.Thedesign of everyday things: Revised and expanded edition. Basic books,

2013 (cited on page 189).
[SY21] Sanjay Sarma and Luke Yoquinto. Grasp: The Science Transforming How We Learn.

Anchor, 2021 (cited on page 182).
[Sim19] Herbert A Simon. The sciences of the artificial. MIT press, 2019 (cited on page 195).

Index

containers, 121

duck typing, 121

free theorems, 120

polymorphism
ad hoc, 120
parametric, 120
subtype, 120

Simon, Herbert, 194
Stencil, 11

	I Elm
	1 Getting Started
	2 Let's Get Moving
	3 Functions and Scope
	4 To be or not to be in the Basement
	5 More Useful Math
	6 Core Packages
	7 Tower of Hanoi
	8 Composing Music in Elm
	9 Algebraic Expressions
	10 Switches to CPUs

	II Norman's Principles
	11 Knowledge in the World
	12 The Principles

	III Design Thinking
	13 History
	14 Example: This IS your Grandfather's Gaming App
	15 Design Thinking Templates
	16 Example: Math Visualizer
	Bibliography
	Index

