
 

 

 

 

 

 

 

AN ANALYSIS OF COMPLEX TRAIT VARIATION USING DROSOPHILA 

MELANOGASTER 

 

 

 

 

 

 

 

 

 

 



 

 

 

AN ANALYSIS OF COMPLEX TRAIT VARIATION: WING MORPHOLOGY AND 

GENE EXPRESSION VARIATION IN DROSOPHILA MELANOGASTER 

 

By AMANDA BURKHARDT NEVES, B.H.Sc. 

 

A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the 

Requirements for the Degree Master of Science  

 

McMaster University ã Copyright by Amanda Burkhardt Neves, December 2022 

 

 

 

 

 

 

 



 

 ii 
 

 

 

 

 

 

 

McMaster University, Master of Science (2022), Hamilton, Ontario (Biology) 

 

Title: An Analysis of Complex Trait Variation: Wing Morphology and Gene 

Expression Variation in Drosophila melanogaster   

 

Author: Amanda Burkhardt Neves, B.H.Sc. Biomedical Science, University of 

Calgary 

 

 

Supervisor: Dr. Ian Dworkin 

Number of pages: 1- 135 

 

 



 

 iii 
 

LAY ABSTRACT 
 

Complex traits, like height for example, are difficult to study. Their variation is 

influenced by the small effects of many genes throughout the genome, by gene-

environment interactions, and by gene-gene interactions. In this thesis, I explore 

complex trait variation using Drosophila melanogaster. First, I examine the 

relationship between variation in gene expression in developing wing tissue and 

variation in adult wing shape, where the complex trait in question is wing 

morphology. I also examine gene expression itself as a complex trait and study 

how its variation is affected by gene-gene interactions and genetic perturbation. 

Overall, I present a novel way of modelling the relationship between gene 

expression variation and wing shape variation. I also show that global gene 

expression variation is in large part correlated not with genotype, as expected, 

but with genetic background, and that changes in cell size or shape may underlie 

background-dependent phenotypic effects.  
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ABSTRACT 
 

Complex traits are traits which vary quantitatively along a normal distribution. 

Their variation is influenced by many loci throughout the genome, each 

contributing a small fraction to trait heritability. Complex traits are also shaped 

by gene-gene interactions between focal alleles with genetic modifiers, as well 

as gene-environment interactions. In this thesis, I study complex traits from 

multiple angles using Drosophila melanogaster as a model system. First, the 

relationship between variation in gene expression in developing wing tissue and 

variation in adult wing shape is assessed, where the complex trait in question is 

wing shape. Using gene wise multivariate linear models, I show that at the level 

of natural variation, no single gene’s variation in expression has a “significant” 

effect on variation in wing shape. When genes are grouped into functional 

categories using Gene Ontology (GO) terms, I show that not only can the signal 

of effect be recovered, but also that genes from within a GO term group have 

similar effects on wing shape even when accounting for correlations in gene 

expression between genes. I also study gene expression and trait expressivity 

and penetrance under a complex trait framework. An sd/vg allelic series is used 

to study the joint effect of genetic background and the magnitude of allelic 
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perturbation on global gene expression in the developing wing tissue. I show 

that global transcriptional variation is largely correlated with wildtype genetic 

background, and not with strength of perturbation as might have been 

expected. Further, variation in cell shape or cell size are shown to be candidate 

mechanisms contributing to background-dependent phenotypic variation, and 

specific genes are suggested for follow-up functional analysis.  
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CHAPTER 1: The motivation underlying studying variation in complex traits and 

the connection between gene expression variation, complex trait variation, and 

variation in trait expressivity.   

 

A major interest for many biologists is understanding what makes 

individual organisms, as well as whole species, different from one another. 

Specifically, how does variation in genotype contribute to the morphological 

diversity that is essential for evolution by natural selection? To study this relation 

ship, the way in which variation in genotype translates to variation in phenotype 

through a black box of developmental processes is conceptualized in terms of 

what is called a genotype-phenotype (GP) map (Orgogozo et al. 2015). The 

simplest GP map one can imagine is a situation where a change in a focal allele 

results in a dramatic, qualitative change in a phenotype. An example of this 

scenario is the genetics of tiger coat colour. A single amino acid change in the 

transporter protein SLC45A2 results in Bengal tigers with white fur and black 

stripes. This missense mutation leads to blocked transporter channel activity, 

affecting pheomelanin production and inhibiting the synthesis of red and yellow 

pigments (Xu et al. 2013). While it makes for an appealing model system to 
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study the GP relationship, cases such as this one where a single mutation has a 

large, observable effect are rare (Hoekstra 2006). 

 

The genetic basis of trait variation can be thought of as a spectrum. On 

one end are traits affected by single large effect alleles, such as tiger coat 

colour. At the other end of the spectrum, trait variation is the result of thousands 

of loci of small effect spread out across the genome, each contributing a small 

proportion to heritable trait variance. To understand the full range of phenotypic 

diversity in nature, we need to also understand the genetic variation underlying 

the variation at this second extreme, where quantitative, complex traits are 

found. 

 

Complex traits are influenced by variants spread across the genome 

(Robinson et al. 2014). Not only are these traits affected by genomic changes, 

but also by the environment and by gene-gene interactions (epistasis) (Phillips 

2008). These traits are difficult to study because of the many factors that 

influence their variation, and genetic effects can be difficult to quantify using 

traditional genome-wide association study (GWAS) or expression quantitative 

trait loci (eQTL) methods because genetic effects are often too small to reach 
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significance thresholds unless extremely large sample sizes are used (Visscher et 

al. 2017). Complex traits have large mutational target sizes, meaning that there 

is a large portion of the genome for which mutations can lead to trait variation 

(Haygood 2006). A consequence of these factors is that studies of complex trait 

variation often fall very short of accounting for expected trait heritability. For 

example, over the past 10 years thousands of SNPs have been associated with 

human height variation (Yang et al. 2013; Yengo et al. 2018, 2022). Together 

these variants explain only a fraction (roughly 10%) of the heritable height 

variation that is predicted by twin studies (upwards of 80%) (Manolio et al. 2009). 

There is a need to develop methods that can utilize other levels of biological 

variation to understand the variation in complex traits. 

 

In the following chapter of this thesis, I use gene expression as an 

intermediate trait between genotype and phenotype and study the relationship 

between variation in gene expression in developing tissue and variation in adult 

phenotype. The wing of Drosophila melanogaster is used as a model complex 

trait. Wing shape has a large mutational target size, is the result of the combined 

effect of many developmental processes, and shape can be easily quantified to a 

high resolution (Carreira et al. 2011; Pitchers et al. 2019). Using gene expression 
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data from developing wing tissue and phenotyped adult wings, I relate variation 

in mean gene expression across 83 strains of flies to variation in mean wing 

shape using gene wise multivariate linear models. The sample of Drosophila 

used in this chapter come from 83 isogenic strains from the Drosophila Genetics 

Reference Panel (DGRP) (Mackay and Huang 2018). By grouping genes into 

functional categories using GO terms, I can leverage known functional 

information from these genes to assess the extent to which effects on wing 

shape of genes within GO term groups are correlated. This also shows how 

signal that could not be detected at the gene wise level due to small effect sizes 

can be recovered by grouping genes. Ultimately, this chapter represents the 

development of multivariate approaches aimed at understanding the 

relationship between variation in gene expression and variation in complex traits.  

 

In the chapter 3, I continue to explore complex trait variation but rather 

than using fly wing morphology as the trait of interest, gene expression and trait 

expressivity are the focal traits. Variation in gene expression can be studied in 

similar ways as variation in other “classic” complex traits such as height or wing. 

Like wing shape, gene expression variation is heritable, and genetic factors 

influence gene expression levels (Nica and Dermitzakis 2013). There is abundant 
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variation in gene expression levels within populations, and variation is affected 

by the environment and by gene-gene interactions (Oleksiak et al. 2002; Sackton 

and Hartl 2016; Fournier and Schacherer 2017). Many complex traits display 

variable penetrance and expressivity. The joint influence of gene-gene 

interactions and strength of allelic perturbation on gene expression variation and 

variable penetrance and expressivity is the focus of the third chapter.  

 

 To study the effects of genetic background and perturbation on variation 

in gene expression, I use an established model for studying genetic background 

effects (GBE) (Dworkin et al. 2009). In Drosophila melanogaster, perturbations to 

alleles of scalloped (sd) and vestigial (vg) show markedly different wing 

phenotypes depending on if the allele is introduced in the Samarkand (SAM)  or 

Oregon-R (ORE) wildtype genetic background, two commonly used laboratory 

strains (Dworkin et al. 2009; Chandler et al. 2017). Sd and vg are transcription 

factors which form a heterodimer necessary for the gene expression program 

that dictates wing development (Halder et al. 1998). Titration of the function of 

sd and vg across these two backgrounds has shown that the degree of 

background dependence is influenced by the severity of the perturbation 

(Chandler et al. 2017). I use developing wing tissue RNA sequencing data from 
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an allelic series of vg and sd, representing a spectrum of perturbation effect on 

wing size. For each gene, I model the effect of genetic background, perturbation 

strength, and their interaction on gene expression to study the response of 

global transcription to genetic background and perturbation. In doing so, I 

highlight the sources of global gene expression variation and suggest genes and 

mechanisms which may lead to the background-dependent phenotypes 

observed in this model system. 
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CHAPTER 2: Examining the relationship between natural variation in gene 
expression in the developing wing imaginal disc with variation in adult wing 
shape in Drosophila melanogaster 
 

2.1 INTRODUCTION 
 
The relationship between variation in genotype and variation in phenotype is of 

interest across multiple disciplines, including in the study of plant and animal 

genetics, human disease, and trait evolution. Many phenotypes of interest are 

complex traits. That is that they are highly polygenic, with individual allelic 

effects usually of small magnitude (Robinson et al. 2014). Untangling the sources 

of complex trait variation is tricky because complex traits can also be influenced 

by environmental effects, as well as gene-gene (epistatic effects) and genotype-

by-environment interactions, meaning that many of these small effects are 

context dependent (Koch and Sunyaev 2021). How variation in the genotype 

causes complex trait variation has been of interest since the use of the word 

genotype to conceptualize organismal variation unseen in the phenotype, and 

many methods have been developed to study this relationship (Johannsen 

1911). 
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The Advantages and Limitations of Genome-Wide Association Analysis 
 

Towards the goal of identifying segregating variants associated with 

complex trait variation, genome-wide association studies (GWAS) have been 

incredibly useful and successful over the past decade and a half (Visscher et al. 

2017). A major, and originally surprising, finding of early GWAS was that 

complex trait variation is associated with variation in many loci, spread 

throughout the genome, most often of very small phenotypic effect (Visscher et 

al. 2017). These associated variants have led to unprecedented insight into 

disease susceptibility, clinical care, and the genetic architecture of heritable traits 

(Tam et al. 2019). When performed on large cohorts, GWAS results tend to be 

robust, replicating across multiple studies with rates around ~40% (Marigorta et 

al. 2018), an especially important feature given the emphasis on reproducibility 

in science. Though originally expensive and laborious, sequencing costs have 

decreased over the years allowing for increasingly larger sample sizes. What has 

followed is a revolution not only in how trait variation is studied, but also in data 

collection and world-wide scientific collaboration.   
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As useful as they are, GWAS are not without their limitations. Though they 

are well suited to detect highly penetrant mutations as well as common variants 

with small effect, they struggle to detect rare variants with small or moderate 

effects, unless sample sizes are extremely large (Tam et al. 2019). Of the many 

variants detected by GWAS, the variants explaining most trait heritability in are 

individually very small effect, and in aggregate, still explain only a modest 

portion of trait heritability predicted by twin studies (Manolio et al. 2009). 

Furthermore, it is likely that many associated variants are not themselves causal, 

but in linkage disequilibrium with causal variants, resulting in many false 

positives (Marigorta et al. 2018; Tam et al. 2019). Due to the burden of multiple 

testing, GWAS require extremely large sample sizes, which can be prohibitive to 

the study of rare traits within small populations, or with traits which are 

expensive or complicated to quantify (Tam et al. 2019). GWAS are undoubtedly 

useful and important to the study of complex trait variation, but there is a need 

to investigate what makes organisms phenotypically diverse that looks to other 

levels of biological variation.  
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The genetics of gene expression, and variation in gene expression as an 
intermediate trait between genotype and phenotype 
 

 As early as 1975, it has been hypothesized that gene expression 

differences among species may account for substantial phenotypic differences 

that are left unaccounted for when examining gene sequence differences (King 

and Wilson 1975). King and Wilson (1975) reviewed the genetic differences 

between humans and chimpanzees and concluded that the incredibly high 

sequence similarity between the two species suggested that amino acid changes 

could not account for their phenotypic diversity. Thus, the authors suggested 

that changes to regulatory mechanisms underlying gene expression changes 

might account for the variation in physiology and behavior that span the two 

closely related species. Since then, variation in gene expression within and 

between species, and how this leads to phenotypic variation, has been of great 

interest (Wray 2007). Initial studies of how gene expression variation contributes 

to complex trait variation established that there is a heritable genetic basis to 

variation in gene expression. For example, it has been shown that two 

polymorphisms in the promoter-proximal transcriptional regulatory region of an 

allele in DQB1 alters expression of this gene. It was suggested that the presence 

of these polymorphisms in several species represent selection for alternate 
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regulatory mechanisms (Beaty et al. 1995). Studies have also shown that there is 

considerable variation in gene expression, within and among populations. For 

example 18% of 907 genes within a population of Fundulus fish vary significantly 

among individuals (Oleksiak et al. 2002). In a study of inter-individual variation in 

genes along human chromosome 21, many of which have been associated with 

Down syndrome phenotypes, 61% of genes of showed substantial differential 

expression between “normal” individuals (Deutsch et al. 2005). It is evident that 

there exists much genetic diversity within and between populations.  

 

 Importantly, the ample natural variation in gene expression that exists 

among individuals is heritable. Expression quantitative trait loci (eQTL) or 

eGWAS analyses operate under the same framework as GWAS, the difference 

being that the quantitative trait under investigation is gene expression itself. 

These studies demonstrate that global gene expression is subject to genetic 

control, and that gene expression can be considered a complex trait (Brem et al. 

2002; Schadt et al. 2003; Rockman and Kruglyak 2006). Just like with other 

complex traits, gene expression is influenced by many loci and interactions 

among loci and the environment, underlying a complex inheritance pattern 

(Brem et al. 2002; Rockman and Kruglyak 2006; Potokina et al. 2008). Given the 
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substantial variation of gene expression within and among populations, as well 

as its heritability, change to the regulatory structure underlying variation in gene 

expression has been suggested as a mechanism for rapid evolution among 

organisms. This is in part because this may be a way to overcome constraints to 

evolution posed by severe pleiotropic effects of deletions in vital genomic 

regions (Stamatoyannopoulos 2004; Romero et al. 2012; Hamann et al. 2021). 

For example, changes to the gene regulatory systems in mammalian tissues has 

accumulated more rapidly over time across lineages than changes to DNA 

sequences (Brawand et al. 2011). Further, a study of gene expression profiles of 

a population of Brassica rapa from 1997 to 2014 during a time of rapid climate 

change in Southern California shows differential gene expression across 

generations (Hamann et al. 2021). 

  

 Gene expression variation has also been shown to be correlated with 

phenotypic variation. Using a knock-down approach (via weak mutations in non-

coding regions of genes), gene expression variation of individual genes in 

Drosophila melanogaster was shown to be significantly (albeit weakly) correlated 

with changes in wing shape (Dworkin et al. 2011). In mice, changes in gene 

dosage of Fgf8 is associated with change in craniofacial shape, where shape 
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changes in response to dosage in a non-linear manner (Green et al. 2017). The 

Cockayne Syndrome complementation group B (CSB) protein is involved with 

transcription-coupled nucleotide excision repair, and it has been found to 

regulate the expression of thousands of neuronal genes (Wang et al. 2014). The 

majority of patients with Cockayne syndrome, a disorder with severe 

neurological symptoms, carry mutations in CSB. Gene expression changes have 

been found in the brains of patients with Cockayne Syndrome, suggesting that 

dysregulation within gene regulatory networks may be the main cause of the 

neurological symptoms of Cockayne Syndrome (Wang et al. 2014). Finally, eQTL 

analysis of GWAS hits reveal that most SNPs identified in GWAS are likely to be 

associated with the regulation of gene expression (Nicolae et al. 2010; Porcu et 

al. 2021). 

 

Gene expression variation is abundant, heritable, contributes to trait 

evolution, and has been correlated to phenotypic variation. Together this 

suggest that variation in gene expression may provide an alternative way of 

examining sources contributing to complex trait variation, that remain difficult to 

explain using standard GWAS. Given that current GWAS methods only explain a 

fraction of trait heritability predicted by twin studies, and that sample sizes are 
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largely prohibitive, it would be useful to develop alternate approaches to 

investigate the genetics of complex trait variation. Investigating the role of gene 

expression as an intermediate trait between variation in genotype and variation 

in phenotype may be a fruitful next step (Ritchie et al. 2015).  

 

To this end, a few studies have attempted to integrate gene expression 

information with GWAS approaches, with varying degrees of success. Jin et al. 

(2016) explored the relationship between extreme variation in gene expression 

and trait variation. By using information about gene expression across a panel of 

369 maize inbred lines as a quantitative phenotype to perform GWAS on, the 

authors searched for correlations among what they termed expression presence 

and absence variation (ePAV) and over 600 quantitative traits (Jin et al. 2016). 

The authors of this study used presence/absence of gene expression as their 

measure of gene expression variation. This approach, which treats gene 

expression as a polymorphism with an on or off state, is useful in increasing 

study power and understanding how large gene expression changes correlate to 

phenotypic changes. However, this method cannot get at the nuances of 

variation in gene expression, which is fundamentally quantitative, and thus is 

blind to the magnitude of differences in expression. 
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 Based on the evidence that GWAS signals are enriched near transcription 

factor (TF) binding sites, Lin et al. (2017) investigated the degree to which 

variation in the expression of TFs and other genes across genotypes contributes 

to phenotypic variation. Using variation in gene expression from 27 genetically 

diverse maize tissues as an explanatory variable in a GWAS of 13 quantitative 

traits in the same panel of 369 inbred maize lines, they found that phenotypes 

predicted by associations correlated highly with the empirically measured traits 

(Lin et al. 2017). In this study, gene expression was treated as a quantitative trait 

rather than as expressed or not as was the case in (Jin et al. 2016). This 

approach, while likely leading to more interpretable and accurate results than 

treating gene expression as binary, still cannot capture the effect of correlated 

expression among genes.  

 

Multivariate approaches to examine the relationship between variation in gene 
expression and trait variation  
 
 
 One important feature to recognize with regards to gene expression is 

that there is every expectation that many transcripts within and between genes 

will show a high degree of correlation in expression. Whether due to physical 
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proximity in a shared “operon” like feature, domains of open chromatin, or 

shared regulatory architecture (i.e. shared transcription factors), many genes will 

be co-expressed (Sabatti et al. 2002; Lercher et al. 2003). As such, examining co-

variation in expression remains essential (van Dam et al. 2018). Multivariate 

approaches that can account for such correlation structures, provide a promising 

avenue to evaluate changes. In addition to the consideration of co-variation, one 

can consider both the magnitude and direction of effect vectors – as opposed to 

treating gene expression as a binary trait or investigating only the magnitude of 

the effect. A way to do this utilizing multivariate statistics is to analyze the vector 

of the effect of change in gene expression on change in phenotype (Kuruvilla et 

al. 2002; Zinna et al. 2018). The magnitude of this vector gives information on 

the strength of this relationship on a continuum. Additionally, the directions of 

these vectors can be compared, and one can compute a vector correlation 

coefficient (or equivalently an angle between vectors) to determine similarity of 

effects based on the correlation in the direction of the effect (Kuruvilla et al. 

2002; Zinna et al. 2018). 

 

Analysis of these vectors, as well as the ability to detect associations 

between complex traits, greatly benefits from deeply detailed phenotyping 
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(Houle 2010). This can be accomplished through the analysis of multivariate traits 

(Shriner 2012; Topp et al. 2013; Pitchers et al. 2019). Natural selection, as an 

ultimate causation of variation in complex traits, takes place in a broad and 

multidimensional space. To get at a richer understanding of complex trait 

variation, studies can go beyond univariate, or over-simplified phenotypic 

descriptions, and embrace a phenomic approach, capturing multidimensional 

phenotype effects (Bilder et al. 2009; Houle 2010). Examining wing shape in 

multiple dimensions, rather than collapsing multiple dimensions of shape 

variation into the first few principal components (PCs), has been shown to 

increase the power to detect associations between polymorphisms and trait 

variation (Pitchers et al. 2019). Additionally, using a subset of PCs rather than all 

dimensions of shape variability limit interpretability as this removes the ability to 

meaningfully think about the directions of effect in relation to the actual 

phenotype. Characterizing a phenotype through many dimensions may be a 

more powerful approach for dissecting complex trait variation than relying on 

few key measures of a phenotype.   

 

In this chapter, I explore gene expression as an intermediate trait 

between genotype and phenotype using Drosophila melanogaster wing shape 
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as a model system. Drosophila melanogaster wing shape is a complex trait that 

is shaped by various genetic signalling pathways and through multiple cellular 

and developmental processes such as wing patterning and vein specification 

(Matamoro-Vidal et al. 2015), with a very large mutational target size (Birdsall et 

al. 2000; Zimmerman et al. 2000; Mezey and Houle 2005; Weber et al. 2005). 

The study sample is comprised of ~10,000 measured wings from 83 strains of 

flies and line-matched RNA sequencing data from 3rd instar wing imaginal discs 

(sacs of cells set aside in the embryo that ultimately go on to form the wing 

blade, and parts of the body wall). Using gene wise multivariate linear models to 

estimate the vector of the effect of variation in mean gene expression across 

strains on variation in mean wing shape across strains, I examined the individual 

impact gene expression has on wing shape variation. Using both biological and 

molecular gene ontology (GO) terms, I grouped genes into functional 

categories, and ask if the direction of the effect vectors for genes in a GO term 

group are more correlated with each other than expected if genes were grouped 

randomly, and if this effect holds true when correlation in gene expression is 

accounted for.  
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2.2 METHODS 
 

Drosophila strains 
 

The DGRP, a set of inbred lines derived from iso-female lines collected at a 

farmer's market in Raleigh, NC (Mackay et al. 2012) was used for this study. 83 

strains from the DGRP were used which contained both RNA sequencing data 

from imaginal wing disc tissue as well as morphometric data from the adult fly 

wings. The 83 different lines each represent a snapshot of the natural genetic 

variation in the population, and as such are an ideal tool for understanding how 

natural variation in gene expression affects natural variation in wing shape. 

 

Rearing, fly handling, wing imaging, and morphometric data 
 

For further details, see Pitchers et al. (2019) (from which all adult phenotypic data 

was derived). Flies from the Dworkin lab were reared at 24°C in bottles on a 

cornmeal-molasses-yeast-based medium, using carrageenan as a gelling agent 

and propionic acid and methyl paraben as preservatives. After adult flies eclosed 

and completed sclerotization, they were preserved in 70% ethanol prior to 

dissection, mounting, and image analysis.  
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As per Pitchers et al. (2019), a modified protocol from Houle et al. (2013) was 

used to landmark and semi landmark data. Nine cubic B-spline functions were fit 

to the wing veins and margins of the imaged wings using Wings 3.72 (Van der 

Linde 2004-2014) CPR (Marquez 2012-2014) was used to obtain 14 landmark 

and 34 semi landmark positions from fitted splines. Generalized Procrustes 

superimposition (Rohlf and Slice 1990) was performed on combined shape data 

from the Dworkin and Houle labs, validation, and replication data sets. This 

process scales wings to a common centroid size to minimize the effect of size, 

translates wings to the origin to remove the effect of location, and iteratively 

rotates wings to the orientation of a selected configuration until the sum of 

squared landmark distances is no longer significantly reduced. This is important 

to remove nuisance parameters from the data such that useful size and shape 

information remains. We are then left with 58 dimensions of shape to analyze. 

For each DGRP line, replicates were averaged. A male and female mean wing 

shape was calculated for each line, and the sex means were averaged (since 

RNAseq data was not sexed). 
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Wing Imaginal Disc RNA Sequencing Data 
 

Flies for RNA sequencing were reared in the lab of Dr. Jason Mezey at Cornell 

University. All data collection and submission of samples for sequencing was 

done by Yuxin Shi, in the lab of Dr. Mezey. Wing imaginal discs were dissected 

from late 3rd instar larvae, collected just prior to the initiation of pupation (i.e. 

wandering larval stage). Pools of about 20 wing imaginal discs from each DGRP 

line was used for sequencing for each sample. Tissue was sequenced to a depth 

of 10-12M single-end reads per samples.  Fastq files were trimmed using the 

BBduk tool from BBMap (ver. 38.90). To determine the quality of RNA from each 

sample, a transcript integrity number (TIN) was calculated for each transcript in 

each sample using RseQC (ver.4.0.0) on STAR (ver. 2.7.9a) aligned reads, and for 

each sample a median TIN was computed. Most samples had a median TIN 

above 74, and no sample had a TIN of below 65, where 60 can be considered a 

threshold for acceptable quality (Figure S1) (Wang et al. 2016). Therefore, all 

samples were kept in the study. Transcript counts were generated using Salmon 

(ver. 1.4.0) with the option to include a decoy. The decoy uses genomic 

sequences, as well as the transcriptome, to reduce spurious mapping of reads 

from unannotated genomic loci that are sequence-similar to an annotated 
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transcriptome. Transcript counts were collapsed to length-scaled transcript per 

million gene-level counts using tximport (ver. 1.20.0) in R. Where there were 

replicates for the same DGRP line, a line mean expression for each gene was 

calculated. However, for most samples there was only one sequence file (but 

note that each sequence file is pooled and represents RNA from upwards of 20 

imaginal discs). Genes with 0 expression across all samples were excluded from 

the analysis, resulting in a total of 12936 genes used for the linear models. See 

Table 1 for more parameter information for each tool.  

 

Multivariate Linear Models and Gene Expression Vectors 
 

To detect associations between variation in gene expression and variation in 

wing shape, a multivariate linear model was run for each of the 12936 genes. For 

a schematic of the workflow of analysis, see Figure 1. 

 

To account for the influence of size allometry on wing shape, log2 centroid size 

(strain means) was used as a predictor. Some pairs of lines in the DGRP are more 

closely related to each other than other DGRP lines (Huang et al. 2014). To 

account for this, two approaches were used. First, freeze 2 genotypes from 
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February 2013, publicly available from 

(ftp://ftp.hgsc.bcm.edu/DGRP/freeze2_Feb_2013/vcf_files/freeze2.vcf.gz) 

(Huang et al. 2014), were used to calculate group structure among the DGRP for 

use as a covariate in the linear models. PLINK 2.0 (ver. 2.0.a3) was used to prune 

variants in the freeze 2 genotypes in high linkage disequilibrium (LD). A PCA on 

the genotypes was run to analyze major axes of variation in allele frequencies, 

and the first two eigenvectors from this analysis was used in the linear models. 

Second, the three most common chromosomal inversions (In(2L)t, In(3R)K, and 

In(3R)K) were also accounted for, as there is evidence that they influence 

variation in wing shape (Pitchers et al. 2019). Although Wolbachia (a common 

intracellular bacteria) infection status has not been shown to affect wing shape, 

information on whether each strain of the DGRP was infected with Wolbachia or 

not was included as a variable in the models.  

 

Thus, the final multivariate linear model used for each gene was: 

𝒚! = 𝜷𝟎 + 𝜷#,%𝑥#,!% +'𝜷#,&𝑥!& + 𝝐#,!

'

&()

 

Where 𝒚! 	is the vector containing the mean shape for the ith DRGP strain. 𝜷*	is 

the model intercept, and 𝜷#,%is the vector of estimated effects for expression of 



M.Sc. – AB Neves; McMaster University - Biology 

 27 
 

geneh. All remaining model coefficients (𝜷),# − 𝜷',#) are associated with the 

effects of the 7 predictors common to all models as described above. These 

estimates are likely similar across models (gene-to-gene), except in the presence 

of strong correlations between gene expression for the hth gene, and one or 

more of these predictors. 𝝐!,#represents the vector of unmodeled (residual) 

variation. 

 

The vector of estimated coefficients associated with the predictor for gene 

expression, 𝛽,#,%, was extracted from each model. This vector represents the 

effect that a gene’s change in mean expression across DGRP strains has on 

mean wing shape across the strains. The magnitude of this vector (𝑙) norm) was 

computed for each gene, describing the overall magnitude of this effect across 

all landmarks. The correlation in direction of these vectors was also examined to 

assess how similar the effect of gene expression on wing shape is for genes of 

the same group (more about this below). Analyses based on these vectors are 

split into two parts: in the first part the gene wise effects of change in expression 

on change in wing shape are considered, and in the second part the correlation 

of effect across groups of genes is studied. 
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Detecting gene expression effects on wing shape at the single gene level 
 

To calculate the magnitude of the effect of the change of a gene’s expression on 

the change in wing shape, the 𝑙)	norm of each vector of model coefficients was 

calculated, where the magnitude is equal to square root of the sum of squared 

model coefficients, for each vector. 

 

To assess whether any gene had a “significantly” large magnitude of effect on 

wing shape, compared to what is expected under the null of no effect, a 

permutation test was done to calculate a null distribution, after (Churchill and 

Doerge 1994). Briefly, 1000 permutations were run, where for each iteration, the 

vector of gene expression measures for a given strain (𝒙!) were randomly 

assigned to different strains, while all other components (response 𝒚! and other 

predictors 𝒙) – 𝒙') were left unchanged. As such the correlation structure among 

genes was maintained, while gene expression would no longer have any 

association with shape (or other predictors). After trait values were re-assigned, 

new linear models were fit for all genes. For each permutation, the highest 

vector magnitude was recorded (across all genes from that iteration of the 

permutation). At the end of the 1000 permutations, the highest values from each 
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permutation are ordered, and the 95th percentile of these values is used as the 

threshold for significance (analogous to an alpha of 0.05, corrected for multiple 

comparisons, but accounting for correlational structure among genes). As the 

shuffling of the trait values retains the covariance structure among gene 

expression, this method was considered appropriate.  

 

Detecting gene expression effects on wing shape for groups of genes 
 

Genes do not act in isolation, and especially in the case of a sample without a 

pronounced genetic perturbation (i.e. a severe mutation, or RNAi), it is not 

expected that a single gene should exert a strong effect on a complex trait such 

as wing shape. Thus, genes were grouped based on GO terms extracted from 

FlyBase (ver. FB2022_05) to assess if effects among genes from this grouping 

were correlated, allowing for leveraging of existing knowledge of the functions 

of groups of genes to elucidate the causes of variation in wing shape at a more 

holistic level (Aponte et al. 2021). 

 

Groups were chosen to represent a variety of number of genes in each group 

(ranging from 11 to 107 genes) and both molecular and biological group 
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ontologies related to wing development were considered. The biological groups 

were chosen based on prior evidence of an effect on wing shape of their 

constituents. The groups considered were “cell elongation involved in imaginal 

disc-derived wing morphogenesis “ (cell_elong), “imaginal disc-derived wing 

vein morphogenesis” (wing_vein), “regulation of imaginal disc-derived wing 

size” (disc_size). The molecular groups considered were “BMP Signalling 

Pathway” (bmp), “Hedgehog Signalling Pathway” (hh), “Hippo Signalling 

Pathway” (hippo), “Insulin-Like Receptor Signalling Pathway” (insulin), “EGFR 

Signalling Pathway” (egfr), and “Wnt-TCF Signalling Pathway” (wnt). See Table 2 

for more information on each GO term group.  

 

To assess whether the effect on wing shape of genes in a group would be more 

correlated than expected for genes not grouped by GO terms, the pairwise 

correlations between vectors of effect of gene expression on wing shape for 

genes in a GO term group were calculated. A correlation matrix was computed 

for each group, and the absolute value of the off diagonals (upper diagonal), of 

this matrix were used to compute a mean correlation value for each group. 

Absolute values were chosen as genes were considered to have a correlated 

effect regardless of whether this correlation was negative or positive. 
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To compare the mean correlation values for each group to an appropriate 

control distribution, we took two approaches. The mean correlation values for 

each group were compared to two comparison distributions. The first was a 

random gene distribution, where for each GO term group, a group of random 

genes was constructed such that the new pathway had the same number of 

genes. The reason for this control group was to account for correlations that 

might occur due to a low number of genes in a group, as it is expected that 

higher correlations will be seen in the groups with fewer genes due only to this 

low number of genes rather than true correlations.  First, all genes involved in 

the GO term groups were removed from the pool of genes from which sampling 

was to occur. Where n is the number of genes in that GO term group, n random 

genes were selected 1000 times, so that for each GO term group there were 

1000 random gene comparison groups. For each of the 1000 permutations, a 

mean vector correlation value was calculated (as above), and the 97.5th and 2.5th 

percentile value of these 1000 permutations for each gene-length matched 

group was used as what we will refer to as the “random distribution”. 
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To account for patterns of gene co-expression (i.e. covariation in gene 

expression) among the GO term gene groups, which is expected to account for 

at least some of the correlations seen in the effect vectors, a “matched gene-

expression correlation group” distribution was also created for each GO term 

group. A mean gene expression correlation value was calculated for each GO 

term group, where pairwise correlations in gene expression for the genes in each 

GO term group were calculated and used to compute a correlation matrix. The 

absolute value of the upper diagonals from this matrix was considered the mean 

gene expression correlation value. For each GO term group, this mean gene 

expression correlation value was the seed value. A random gene (from the pool 

of genes excluding those genes in the GO term groups) was selected, and a 

correlation matrix of this gene’s expression with all other genes was computed. If 

there are multiple genes which are correlated at a value of the seed or higher, 

one was selected from random. This random gene becomes the next seed, and 

the process is repeated until the group is of length n genes. This was done 1000 

times for each GO term group. For each of the 1000 new groups, the mean 

vector correlation was calculated and the 97.5th and 2.5th percentile values were 

selected to create the distribution referred to as the “matched gene expression 

distribution”.  
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The magnitude of the effect of change in gene expression on change in wing 

shape (𝑙) norm of the effect vector) was calculated for each GO term group, and 

for each comparison distribution (where the 97.5th and 2.5th percentile values 

were chosen to form the distribution). 

 

To compare the directions of the effect of change in gene expression on change 

in wing shape to the directions of natural variation in shape change, a linear 

model was fit to the landmark data with log2 centroid size as the sole predictor. 

A principal components analysis (PCA) was conducted on the residuals of the 

model, which represent shape variation after accounting for the influence of 

shape~size allometry. The scores from PCs one through five were then 

correlated to the effect vector from each gene in each GO term group. The 

random gene group method described above was used to create a comparison 

distribution.  

 

2.3 Results 
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There is no evidence to suggest that the magnitude of the effect of variation in 
gene expression on variation in wing shape among the DGRP is significantly 
higher for any one gene  
 

 To assess the magnitude of the effect of variation in gene expression in 

developing wing tissue on variation in adult wing shape, gene wise linear models 

were performed and the 𝑙)	norm from these models was used as the magnitude. 

A Churchill and Doerge (1994) permutation test was run on the 𝑙) norm from all 

genes, and it was found that no gene passed the significance threshold 

determined from the permutation test. In fact, there was almost no overlap 

between the actual distribution of 𝑙) norms and the distribution of values from 

the permutation test (Figure 2). This is odd given that under a state of no 

significance, it is expected that these two distributions be the same. However, 

when assessing the outcomes of distributions from seven individual 

permutations, the highest 𝑙) norm computed gives the distributions an extreme 

right tail (Figure S2). As these are the values from which alpha is selected, the 

distributions in Figure 2 make sense. Regardless, this method of assessing for 

strong effects suggests that under natural variation the effect of any single gene 

on wing shape does not stand out as extreme.  
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Pairwise correlations in gene expression among genes in GO term groups are 
higher than that of genes in both the random gene group and matched 
correlation in gene expression group, this is partially accounted for by the latter 
distribution 
 

 Due to the reasoning that genes and gene products do not act in 

isolation, and therefore it is expected that correlations in effect exist among 

certain genes, biological and molecular GO terms were used to group genes 

into functional groups (Table 2). As the goal of this analysis was to determine if 

there was correlation in the direction of the effect of variation in gene expression 

on variation in wing shape for genes within a GO term group, two comparison 

distributions were also considered. The intention of the matched correlation in 

gene expression group was to account for some of the correlation seen in the 

GO term group that might be due to genes from these groups having correlated 

gene expression. In the Hippo pathway for example, it is expected that as hpo 

expression increases, wts expression increases as hpo activates wts.   

 

 Analysis of the distribution of pairwise correlation in gene expression 

among genes in the GO term groups, random gene groups, and matched 

correlation in gene expression group (Figure 3) shows that the distribution of 

these correlations in the GO term groups is varied (seen in the violin plots that 
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span almost the entirety of the Y-axis). As expected, the 97.5th and 2.5th 

percentile values for mean pairwise correlation in gene expression from 1000 

permutations shows that the magnitude of correlations in gene expression for 

the random gene groups is low. This distribution for the pairwise correlation in 

gene expression group spans the mean for the GO term groups, though does 

not capture the higher ends of this correlation. Therefore, the matched 

correlation in gene expression group accounts for most of the correlation in 

gene expression seen in the GO term group, but not all of it.  

 

 

Genes grouped by GO term have a high correlation in their direction of effect on 
wing shape when compared to genes grouped randomly or genes grouped by 
matched correlation in gene expression. This correlation is particularly high for 
hippo and hh signalling genes. 
 

 The mean pairwise correlation in direction of effect between genes within 

a GO term group is higher than the 95% of highest mean pairwise correlations 

from 1000 permutations of matched gene-length random gene groups (Figure 

4). When compared to the top 95% from 1000 permutations of the matched 

correlation in gene expression groups, the genes from GO term groups are 

consistently on the higher end of these distributions. The mean pairwise 
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correlation in direction of effect for genes within the hippo and hh GO term 

groups are particularly high, reaching the 97.5th percentile for their respective 

matched correlation in gene expression distributions.  

 

The magnitude of the effect of change in gene expression on change in wing 
shape is not necessarily higher among genes within GO term groups when 
compared to the comparison distributions. 
 

 To determine if the magnitudes of effect from genes within GO term 

groups were higher than of the two comparison groups, the 𝑙)	norms from genes 

within each group were calculated. There was no evidence to suggest that the 𝑙) 

norms from the GO term groups were high when compared to 95% highest 𝑙) 

norms from 1000 permutations of the comparison groups (Figure 5).  

 

There is a correlation between the direction of effect vectors in a GO term group 
and the axes of natural shape variation, but this correlation is not elevated when 
compared to random sets of genes 
 

The distribution of absolute pairwise correlations in direction of effect 

between genes in each GO term group with the first five PCs of shape among 

the DGRP reveals that there is modest correlation among the directions of effect 

and the directions of natural variation in shape (Figure 6). This correlation is the 
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highest among PC 3 for all GO term groups. However, when contrasting the 

distributions from the GO term groups to distributions made up of the 97.5th and 

2.5th percentile from 1000 matched-gene length random gene groups, the 

correlation among the GO term group genes is not higher than expected based 

on this comparison. 

 

 

 

 

2.4 DISCUSSION 
 

Given the abundance in variation in gene expression within and between 

populations, the documented correlations between gene expression and 

phenotypic variation, and the need to develop methods that look at levels other 

than amino acid sequence variation with high-dimensional phenotypes, the goal 

of this chapter was to use multivariate statistics to examine gene expression as 

an intermediate trait between genotype and phenotype.  

 
Though there was a lack of signal detected at the gene wise level, this result 
remains inconclusive 
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The permutation test done on the magnitudes of the effect vectors from 

the gene wise multivariate linear models found that no gene passed a 

significance threshold of 𝛼 = 0.05 (Figure 2). There are a few important things to 

note about this result. First, at face value, this suggests that at the level of 

natural variation, the effect of variation in gene expression on variation in wing 

shape is not concentrated to a few genes but is likely weakly spread out 

throughout the transcriptome. This interpretation is in line with the many 

findings from GWAS and QTL over the years that SNPs throughout the genome 

contribute small fractions to trait variation. For traits with a large mutational 

target size, like wing shape, this could mean that small expression changes in 

many genes contribute to shape variation.  

 

However, this finding should be tempered by the fact that although each 

individual RNA sequencing sample represents a pool of about ~20 individual 

wing discs per strain, there were replicate samples for only 4 of the 83 strains. 

Therefore, within line gene expression variation could not be accounted for 

meaningfully, confounding results and making associations more difficult to 

detect. The use of only 83 strains weakens power further. Though the use of 

geometric morphometrics allowed for wing shape to be measured 
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multidimensionally and at an extremely high resolution, the change in wing 

shape and gene expression being dealt with are at the level of natural variation, 

and thus any changes are expected to be very subtle. Genes within GO term 

groups did not show a higher magnitude of effect than of the comparison 

groups, a possible interpretation of this result is that the magnitudes are truly 

too small to detect anything easily, especially without sufficient replicates or 

strains.  

 

 Given the above limitations, it is difficult to say whether the finding that 

the magnitude of the effect of change in gene expression across strains on 

change in wing shape across strains is not significant for any one gene is due to 

biological reality or statistical artifact. Nevertheless, given evidence from GWAS 

of complex traits and studies of wing mutational target size, I do expect that the 

variation in wing shape at the level of natural variation is spread across the 

transcriptome rather than few genes with large effect, and this finding does not 

contradict this. Dworkin (2011) found that relatively low changes in gene 

expression were very weakly correlated with changes in wing shape, like the 

current findings. Therefore, even given hundreds more DGRP strains and 

plentiful strain RNA seq replicates, I expect similar magnitudes would have been 
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estimated. That being said, such a high sample size would lead to significance 

likely being observed due to smaller sampling uncertainty.  

 

The effect of variation in gene expression is highly correlated in genes grouped 
by functional categories, and this correlation is only partially explained by a 
correlation in gene expression 
 

 As discussed above, a likely explanation for the results at the single gene 

level was that the sampling variation was high given the limited sample sizes. 

Genes were grouped according to GO terms (and as such have related effect) to 

assess if signal could be recovered (i.e. in aggregate, sufficient signal could be 

recovered from the noise). Coordinated gene effects are important in gene 

regulatory and signalling networks. Grouping genes by known molecular and 

biological processes leverages a priori knowledge of functional genomics with 

the high dimensionality of multivariate and complex phenotypes (Aponte et al. 

2021). While this approach necessarily ignores genes which are not known to 

have obvious roles in these pathways, limiting the ability for novel gene 

discovery as is available in GWAS, the advantage is that the results are 

interpretable in terms of the developmental mechanisms and processes 

underlying complex trait variation (Aponte et al. 2021).  
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To this end, nine GO term groups were assigned based on molecular and 

biological GO terms (Table 2). The pairwise correlations in direction of effect 

vectors for each of these groups were assessed and compared to two 

comparison groups, with one accounting for spurious correlations due to a low 

number of genes in a group and the other accounting for some of the 

correlations due to correlated gene expression among genes in a GO term 

group (Figure 3).  

 

 The results from this analysis (Figure 4) show that the effects of variation in 

gene expression among genes in a GO term group are more correlated with 

each other than is the case for genes in random groups or genes grouped to 

have similar levels of correlation in gene expression. This finding underscores the 

utility of harnessing levels of information, in this case knowledge of gene 

function, gene expression, and a multivariate phenotype. This finding also 

suggests that genes sharing common signalling pathways or are a part of shared 

biological processes shape complex traits in similar ways, and that this is an 

effect that is not due only to having correlated patterns in gene expression.  
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This correlation might be high relative to the comparison groups because 

genes from these GO term groups are known to be important for development, 

and perhaps the functional redundancy in terms of direction of effect can 

contribute to phenotypic robustness. It could be that proteins encoded by these 

genes interact in ways that shape the wing similarly, as protein levels do not 

necessarily correlate highly with gene expression levels (Gry et al. 2009). It has 

been shown that protein variation among the DGRP is far lower than genetic 

variation, and protein levels are associated with wing size in Drosophila 

melanogaster (Okada et al. 2016), supporting this interpretation. 

 

 In an analysis of the effect of genomic variants from biological and 

molecular groups and multivariate mouse craniofacial shape, it was found that in 

some pathways, the variation in shape was loaded heavily on a few genes, while 

in others this variation was spread out more evenly(Aponte et al. 2021). It would 

be interesting to investigate the degree to which some genes may be driving 

high correlations within the GO term groups analyzed here through a process of 

removing a gene at a time and re-calculated the mean pairwise effect 

correlation.  
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Genes from the Hippo and Hedgehog signalling pathways are especially 
correlated in their effect on wing shape 
 

 The genes from the Hippo signalling pathway stood out as having very 

high mean pairwise effect vector correlation, an interesting result given that 

genes from the Hippo signalling pathway have been shown to have significant 

effects on wing shape variation through SNP analysis (Pitchers et al. 2019; 

Pelletier et al. 2022). Genes from this pathway were originally discovered for 

their roles as tumor suppressors, and have since been linked to control of organ 

size and cell fate (Misra and Irvine 2018). Hippo pathway regulation is complex, 

and multiple serine/threonine kinases along with Hippo can phosphorylate and 

activate Warts, leading to the cascade of effects upon which initiate 

transcriptional regulation of genes involved in proliferation and anti-apoptosis by 

the complex formed by Yorkie and Scalloped (Chen et al. 2020). Hippo pathway 

components have been conserved through animal evolutionary history, 

underscoring its importance (Chen et al. 2020). In the Drosophila melanogaster 

wing discs, Yorkie activity is associated with patterns of cell proliferation, where 

increased Yorkie activity has been shown to lead to wing overgrowth through 

increased cell proliferation (and a decrease in Yorkie activity leading to a 

decrease in wing growth) (Pan et al. 2018).  
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Like the Hippo pathway, the Hedgehog (Hh) signal transduction pathway 

is involved with cellular growth, division, lineage specification, and survival, and 

the pathway operates through a complex series of mechanisms (Sasai et al. 

2019). Mutations to genes involved in the Hh pathway can lead to 

developmental defects and cancer (Ogden et al. 2004). In Drosophila 

melanogaster, Hh signalling is necessary for proper patterning of the embryo 

and adult structures including the wing. An Hh morphogen gradient forms along 

the wing imaginal disc and patterns wing veins, intervein space, and wing 

bristles (Ingham and McMahon 2001; Cohen 2003; Ogden et al. 2004). 

Furthermore, Hedgehog produced by the wing imaginal disc has been shown to 

produce cell type-specific responses in other tissues, for example inducing signal 

transduction in myoblasts (Hatori and Kornberg 2020). 

 

 In terms of its effects on complex traits, the Hippo pathway has been 

involved in craniofacial and tooth development due to the crosstalk of Hippo 

members and cranial neural crest cells (Wang and Martin 2017; Dema et al. 

2020). The Hh pathway is also necessary for proper development in the 

vertebrate face, and aberrations in the pathway are involved with craniofacial 
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disorders such as cleft lip and palate (Cobourne and Green 2012; Xavier et al. 

2016). Hh signalling is also implicated in tooth development (Pan et al. 2013; 

Xavier et al. 2016). These findings show that both pathways are implicated in 

complex trait variation and that members of these pathways play a role in 

quantitative variation of shape and size in various organisms and tissues (Pelletier 

et al. 2022).  

 

 Given their evolutionarily conserved nature, importance in embryo 

patterning and control of organ growth, and contributions to complex trait 

variation, perhaps it is not surprising that genes from the Hippo and Hh 

pathways show up as having especially correlated effects in the current study. 

Both continue to show up in studies of craniofacial and Drosophila melanogaster 

wing shape (Pelletier et al. 2022). An interpretation of the finding of highly 

correlated direction of effect of variation in gene expression on variation in wing 

shape for genes within the Hippo and Hh pathways is that for these pathways to 

be able to exert their functions across a wide variety of traits properly, their 

functions must be similar. Otherwise, one might imagine that the trait will break 

down. This correlation might have been built up over evolutionary history in each 

of these pathways such that it is integral, and the correlated effect of gene 
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expression is a by-product of this. Investigating the role of Hh signalling with 

regards to wing shape will be an interesting follow up. Genetic screens of the 

members of this pathway could be conducted and assessed for their individual 

effects on wing shape. The direction of the effect of each mutant or RNAi 

knockdown on wing shape could be calculated relative to wildtype, and the 

correlation between these could be assessed to determine whether this 

recapitulates the result from the current study, adding a functional component to 

this work (directions of effect are a powerful way to assess study repeatability, as 

in Pelletier et al. (2022)). This might also reveal whether certain members are 

driving the observed variation or whether it is spread out throughout all 

members. This would also determine whether the direction of effect of mutant 

variation is correlated to the direction of the effect of natural variation, as has 

been reported by others (Aponte et al 2021). This would be an interesting 

approach to follow-up with the results from this study that the direction of the 

effect vectors from GO term groups were somewhat aligned with the first five 

PCs of natural variation in wing shape, but that this was not elevated with 

respect to random gene groups. 
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Study Limitations and considerations 
 

 As mentioned above, effect sizes dealt with in this study are small. A 

consequence of this is that vector directions are more difficult to estimate than if 

the effects were larger. This means that there might be many false negatives 

with respect to correlation in direction of effect vectors, but also that there is a 

good degree of confidence in the higher correlations found. This could also 

explain the inability to find meaningful effects when considering magnitude (via 

𝑙) norms of effect vectors), rather than direction of effects. There is also the fact 

that this study does not have enough within strain replicate RNA sequence data 

to meaningfully account for within strain variation, limiting the ability to estimate 

within strain gene expression variation relative to between strain variation. 

Finally, though this study provides interesting avenues for future exploration, 

such as investigation of the Hippo and Hh pathways, and of correlated effects in 

gene expression on complex traits broadly, it remains to be seen how these 

results hold up to functional analysis and what the mechanisms driving this 

correlated effect are. This will be a key future direction.  

 

Conclusion 
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 The goal of this chapter was to investigate the effect of variation in gene 

expression on variation in complex trait variation, and the extent to which gene 

expression serves as an intermediate trait between genotype and phenotype, 

using RNA sequencing data from developing wing tissue and phenotyped adult 

wings. Though it was found that the effect of variation in gene expression on 

variation in wing shape was not significant for any one gene (perhaps due to 

small effect magnitudes and limited sample size), when genes were grouped by 

GO terms it was found that the pairwise correlations in direction of effect vectors  

were higher for genes within GO term groups than compared to randomly 

grouped genes or genes grouped by correlation in gene expression. Genes from 

the Hippo and Hh signalling pathways were especially correlated and given the 

involvement of these pathways in complex trait expression including wing and 

craniofacial shape, these would be interesting future candidates for study from a 

gene group perspective.  
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2.4 TABLES AND FIGURES 
 

Software(version) Purpose  Parameters 

BBMap (38.90) Data-quality-related 

trimming (filtering, 

adapter trimming, and 

contaminant filtering via 

kmer matching)   

Settings: 

threads = 8, ktrim = r, k = 23, 

mink = 10, hdist = 1, qtrim = rl, 

trimq = 15, minlength = 36 

Salmon (1.4.0) Generate counts data for 

gene expression analysis 

D. melanogaster transcript 

version = r6.38, D. 

melanogaster genome version 

(for decoy) = r6.38 
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Settings: 

 -p = 16, --validateMappings, --

rangeFactorizationsBins = 4, --

seqBias, --gcBias, --

recoverOrphans 

STAR (2.7.9a) Align sequences for 

RseQC quality control 

Default  

RseQC (4.0.0) Compute transcript 

integrity number to 

assess RNA quality across 

samples  

Default  

Tximport(1.20.0) Collapse transcript counts 

to gene-level 

countsFromAbundance = 

lengthScaledTPM 

PLINK 2.0 

(2.00a3) 

Prune for variants in 

linkage disequilibrium, 

run principal components 

analysis to obtain 

eigenvectors of shared 

Pruning: 

--indep-pairwise 50 10 0.5 

PCA: 

Default with output of pruning 

step as the input for --extract 
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population stratification 

across DGRP 

R (4.1.0) Data analysis and 

creating figures  

 

Table 1. Additional information for tools used in data processing and analysis 

pipeline 

 

 

Gene Group  Shorthand Number 

 of genes  

Description  

Cell elongation 

involved in 

imaginal disc-

derived wing 

morphogenesis 

(biological 

process) 

cell_elong 11 The process in which a cell 

elongates and contributes to 

imaginal disc-derived wing 

morphogenesis 
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Regulation of 

imaginal disc-

derived wing size 

(biological 

process) 

disc_size 13 Any process that modulates the 

size of an imaginal disc-derived 

wing (Lee et al 2011) 

Imaginal disc-

derived wing vein 

morphogenesis 

(biological 

process)  

wing_vein 44 The process in which anatomical 

structures of the veins on an 

imaginal disc-derived wing are 

generated and organized  

Bone mineral 

protein (BMP) 

signalling pathway 

(molecular 

process) 

bmp 57 The series of molecular signals 

initiated by the binding of the 

BMP family to a receptor on the 

surface of a target cell, and 

ending with the regulation of a 

downstream cellular process 

(Cordero et al 2007); BMPs 

regulate cell shape and induce 
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multiple cell types at distinct 

positions which then go on to 

form the adult wing veins 

(Raftery and Umulis 2012) 

Hippo signalling 

pathway 

(molecular 

process) 

hippo 75 The series of molecular signals 

mediated by the 

serine/threonine kinase Hippo or 

one of its orthologs (Zeng & 

Hong 2008, Pan et al. 2018, Yu 

& Guan 2013) 

Insulin-like 

Receptor 

signalling pathway 

(molecular 

process) 

insulin 76 ILPs are important regulators of 

metabolism, growth, 

reproduction, and lifespan 

(Shingleton et al. 2005) 

Hedgehog 

signalling pathway  

hh 89 Initiated by hh ligand binding to 

the extracellular domain of 

pathed receptor, leading to the 
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depression of smoothened 

activity. Signalling is required for 

the survival of cells in the wing 

disc. (Ingham 2016, Chen & 

Jiang 2013, Hatori & Kornberg 

2020, Lu et al. 2017)  

Wnt-TCF 

signalling pathway 

wnt 107 Activation of the pathway leads 

to the inhibition of arm 

degradation and its subsequent 

accumulation in the nucleus, 

where it regulates the 

transcription of target genes. In 

wing imaginal discs, wingless 

signalling affects cell shape 

(Swarup & Verheyen 2012, 

Widmann & Dahmann 2009) 

Table 2. Table of GO term gene group information, including shorthand used in 

figures, number of genes in each group, and brief description. 
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Figure 1. Methods outline for examining the relationship between variation in 

gene expression in developing wing tissue and variation in adult wing shape.  
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Figure 2. No individual gene's magnitude of effect on wing shape reaches 

significance. Density plot depicting the density of the magnitude of the effect 

size vector from the multiple multivariate linear models (blue) and the highest 

values from the C&D permutations (grey). The dashed line represents 

significance (⍺ = 0.05). Note the minimal overlap between the blue and grey 

densities, as well as no blue values reaching the dashed line.  
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Figure 3. Pairwise correlation of gene expression among genes in GO term 

groups is varied. Violin plots show the distributions of pairwise gene expression 

correlations among the genes in each GO term group, with the number of genes 

in brackets. The black crossbar represents the mean of the pairwise correlation in 

gene expression for each GO term group. The blue and red shaded boxes 

represent the spread of mean pairwise absolute correlation in gene expression 

for the matched gene expression correlation and random gene groups, 

respectively. The bottom of each box marks the 2.5% percentile value from 1000 

permutations and the top of each box marks the 97.5% percentile value.   

 



M.Sc. – AB Neves; McMaster University - Biology 

 59 
 

 

Figure 4. The mean group vector correlation of the GO term groups is higher 

than expected based on the distribution of random gene groups and matched 

gene expression groups of the same length. The black crossbar represents the 

mean of the pairwise correlation in direction of effect. The blue and red shaded 

boxes represent the spread of mean pairwise absolute correlation in direction of 

effect for the matched gene expression correlation and random gene groups, 

respectively. The bottom of each box marks the 2.5% percentile value from 1000 

permutations and the top of each box marks the 97.5% percentile value.   
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Figure 5. Magnitude of effect of genes in GO term groups not elevated in 

comparison genes in the random gene group or matched gene expression 

correlation group. The black crossbar represents the group mean magnitude of 

effect. The blue and red shaded boxes represent the spread of mean 

magnitudes for the matched gene expression correlation and random gene 

groups, respectively. The bottom of each box marks the 2.5% percentile value 

from 1000 permutations and the top of each box marks the 97.5% percentile 

value.   
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Figure 6. The correlation between major axes of natural shape variation and the 

direction of effect vectors is not elevated when compared to the random gene 

group.  
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2.6 SUPPLEMENTAL FIGURES 
 

 

Figure S1. Median TIN values of samples 
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Figure S2. Densities from 7 runs of C&D permutation show strong right tail. 

Black lines represent individual runs while the blue density is the mean of runs.  
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CHAPTER 3: The joint influence of genetic background and severity of genetic 
perturbation on gene expression differences in the Drosophila wing 
 

3.1 INTRODUCTION 
  
 In this chapter, gene expression variation and its relationship to the 

expressivity of mutational effects is studied in the context of complex trait 

variation. As established in the last chapter, gene expression itself can be viewed 

as a complex trait. It varies quantitatively, has a genetic component for which 

loci contributing fractionally to its variation are spread across the genome, and it 

is influenced by gene-gene interactions. In the Drosophila melanogaster wing, 

genetic perturbation of scalloped (sd) and vestigial (vg) (two crucial genes in the 

gene expression program governing wing development) leads to varying 

background-dependent phenotypic effects in the wing. Titration of sd and vg 

function in the Samarkand (SAM) and Oregon-R (ORE) backgrounds has shown 

that the phenotypic effect is also dependant on the strength of the genetic 

perturbation. Here, I use this as a model system to study how genetic 

background (gene-gene interactions) and the magnitude of genotypic 

perturbation interact and affect global gene expression differences in 

developing wing tissue. 
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Genetic background effects and the context dependence of mutant alleles 
 

Phenotypic effects mediated by a focal (mutant) allele can vary 

substantially depending on the wild-type background that the focal allele is 

imbedded within. Such effects are described as genetic background effects 

(GBE). The effect of wild-type genetic background on phenotypic expressivity 

was first documented over 100 years ago (Altenburg and Muller 1920), and is 

mostly observed in model genetic systems which allow for introduction of the 

same mutant alleles across multiple wild type strains. GBE can influence 

dominance patterns among alleles (Noben-Trauth et al. 1997; Johnson et al. 

2006) as well as pleiotropic effects (de Belle and Heisenberg 1996). 

 

  In human disease, background effects are studied in the context of 

variable penetrance and expressivity. Incomplete penetrance occurs when an 

individual possesses a mutation, but they do not express the expected 

phenotype. For example, not all individuals with the same mutation in the 

BRCA1 gene will develop breast or ovarian cancer. About 80% of people who 

have this mutation will develop the disease phenotype (Zlotogora 2003). In a 

study of 589,306 individuals with fully sequenced genomes, thirteen people 
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were found with mutations for eight different severe conditions, yet none of 

these thirteen had ever been reported to have the implicated disease. This 

finding suggests that incomplete penetrance is relatively common among human 

populations (Chen et al. 2016).  

 

Regardless of the level of penetrance of a mutation, it can be the case 

that individuals with a given mutation display heterogenous expression of the 

expected trait. Examples of variable expressivity in human disease include 

different ages of onset, progression rates, or disease severity. Variable 

phenotypic expressivity is the case with many so-called Mendelian diseases 

(Fournier and Schacherer 2017). For example, even though Huntington’s Disease 

is caused by a single mutation in the HTT gene, individual age of onset varies 

from juvenile to over 40 years of age (Arning 2016). Some of the variation in age 

of onset can be explained by length of CAG repeats induced by this mutation, 

but not all, suggesting that there are other heritable factors interacting with the 

HTT gene deletion to influence Huntington’s Disease expressivity (Di Tella et al. 

2022). 
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Studying gene function in invariant genetic backgrounds has had severe 
consequences  

 
Even though background dependence of mutant alleles and variable trait 

penetrance and expressivity are common in model systems and humans alike, 

GBE are often treated as a nuisance variable rather than an effect deserving 

study on its own. The current status quo in developmental biology is that to 

understanding a gene’s functional consequences, one must perturb normal 

function of that gene while controlling for all other variables such as 

environment, rearing conditions, and between-sample genetic diversity (Little 

and Colegrave 2016). With variables not of interest controlled for, that gene’s 

function in specific developmental processes can then be inferred through 

comparing the mutant phenotype to that of the wildtype. Gene knockout 

experiments are typically conducted on a single wildtype genetic background. 

The assumption in medical research is that the genetic effects seen in a single 

genetic background of a model organism will be the same in humans, which 

presupposes that the result will be generalizable to at least other inbred strains 

of that model organism as well as potentially to gene orthologues. 

Problematically, this generalization is carried through without experimental 

evidence.  
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This assumption has been shown to be wrong on several occasions. For 

example, the function of the Indy gene in Drosophila melanogaster was 

originally investigated in the Canton-S wild type genetic background (a standard 

lab strain). Flies heterozygous for an Indy knockout were reported to have a 

longer lifespan than those without it (but who were otherwise co-isogenic) 

(Rogina et al 2000). The authors of this study proposed a mechanism by which 

the Indy gene knockout leads to a higher mitochondrial density, but each 

individual mitochondrion works at a lower rate, thus inducing a state mimicking 

that of calorie restriction leading to increased lifespan (Rogina et al 2000). 

However, when this mutation was introduced into two other wildtype 

backgrounds, increased longevity was not observed (Toivonen et al 2007). It was 

also found that only males heterozygous for the Indy knockout from the original 

Canton-S background were long-lived. Females did not have an increased 

lifespan (Toivonen et al 2007). 

 

The authors from the second study concluded that the increase in lifespan 

observed was not due to Indy itself, but likely to interactions between Indy and 

unidentified loci, as well as Wolbachia infection in the Canton-S flies (Toivonen 
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et al. 2009). In another example, when null CACNA1C and TCF7L2 genes were 

crossed into one of thirty mouse strains, it was found that most null phenotypes 

observed in these mice were not generalizable. In some backgrounds the mice 

were completely unaffected. There were several cases of completely 

directionally opposite allelic effects in other backgrounds (Sittig et al. 2016). 

These studies demonstrate that different conclusions (and sometimes opposite 

conclusions) can be drawn from the same experimental set-up, depending on 

which wildtype genetic background is used.  

 

The polygenic nature of genetic background effects 
 

Given the consequentiality of background effects, much work has been 

put into understanding their causes. Fundamentally, GBE are a result of 

interactions between a focal allele and other segregating alleles from within a 

genetic background. This phenomenon is referred to as epistasis. The term 

“epistasis” was first used over a century ago to describe the discrepancy 

between outcomes of dihybrid crosses and the predicted segregation ratios 

based on individual genes. Some expected phenotypes were not observed, or 

allelic combinations led to unexpected phenotypes (Phillips 2008; Bateson and 
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Mendel 2013). Epistatic interactions can lead to changes in both the magnitude 

and direction of allelic effects, and these effects have been shown to contribute 

to additive variation in quantitative traits (Mackay 2014).  

 

In the context of GBE, researchers often attempt to locate “modifier 

genes”, which are genes that interact with a focal allele to produce background 

effects (Nadeau 2001). Modifier genes can lead to phenotypic variation through 

mechanisms such as modifier protein products directly interacting with the 

mutant protein, alleles in modifier genes may produce factors that alter the 

timing and rate of transcription of the mutant gene, or modifier genes can 

produce factors that affect the degradation of mutant protein (Johnson et al. 

2006). Often, GBE are highly polygenic, and many modifier genes spread out 

across the genome contribute to context-dependant phenotypic variation 

through epistatic effects. In Drosophila melanogaster, it has been shown that the 

phenotypic effect of an allele of scalloped (sdE3) is profoundly different among 

two wildtype genetic backgrounds, SAM and ORE, and that this loss of function 

allele has downstream effects on gene expression (Dworkin et al. 2009). The 

epistatic relationship between sdE3 and omb/bi was also shown to be 

background dependent, where in one background the double mutant appeared 



M.Sc. – AB Neves; McMaster University - Biology 

 79 
 

similar to the sdE3 only mutant while in the other omb/bi enhanced the severity 

of the wing phenotype (Dworkin et al. 2009). Later, it was shown that context-

dependant effects of genetic modifiers are wide-spread. A genome-wide screen 

of modifiers of the sdE3 allele in these two genetic backgrounds revealed that 

74% of modifiers were background-dependent (Chari and Dworkin 2013). 

Background-dependant modifiers also contribute to human disease penetrance 

and expressivity. In a study of 80,928 individuals, the polygenic background of 

each person was shown to modify the probability of disease by age 75 from 11% 

to 80% for colon cancer (Fahed et al. 2020). Finally, genetic background also 

affects the magnitude of epistatic effects. Through crossing an allelic series of sd 

to mutants with subsets of deletions, it was shown that in general the magnitude 

of epistasis depended on the severity of the deletion, but also that the genetic 

background of individuals created variation within this trend (Henderson, 2021).  

 

Studying global transcriptional response to the joint effect of background and 
perturbation strength 
 

 The Drosophila melanogaster wing has been used extensively as a model 

system for which to study genetic background effects. As mentioned above, the 

sdE3 allele has been found to affect wing shape differently depending on 
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whether it is within the ORE or SAM wildtype genetic background (Dworkin et al. 

2009). Further work in this system revealed that there are many background 

dependent modifier loci which modulate the wing phenotype (Chari and 

Dworkin 2013). Using this model system and expanding it to include an allelic 

series of sd and functionally related vg, it was shown that the background 

dependence of a mutation was related to the magnitude of its effect. The 

moderate alleles showed the most variability in effect while the weakest and 

strongest alleles produced similar wing phenotypes across both backgrounds 

(Chandler et al. 2017). This finding has been recapitulated through expansion of 

the sd alleles into many more wildtype backgrounds (Daley 2019). Additionally, 

the rank order of allelic effects in the series remained constant across both 

backgrounds. This trend remained even when a subset of the alleles was crossed 

into 16 additional backgrounds (Chandler et al. 2017).  

 

 Sd  is a transcription factor that is a master regulator of many of the genes 

involved in the wing development program (Campbell et al. 1992). It encodes a 

TEA domain with a DNA binding region that forms a heterodimer with yki to 

regulate wing growth through the Hippo signalling pathway (Bandura and Edgar 

2008). Independent of this interaction, sd also forms a heterodimer with the 
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product of vg. Together, these genes are critically important for wing 

development through recruitment of additional transcription factors in the wing 

imaginal disc, modulating the expression of a large set of genes involved with 

wing determination, proper patterning, and growth (Halder et al. 1998). Loss of 

function mutations and RNAi knockdown of both sd and vg show a dose 

dependent response in loss of adult wing tissue that requires some level of 

stochiometric balance between Sd and Vg. The total loss of this gene expression 

program causes the almost complete loss of formation of wing tissue. 

Furthermore, ectopic expression of vg in non-wing tissues leads to ectopic 

development of wing tissue (Delanoue et al. 2004). Importantly, this only occurs 

in tissues where sd is already natively expressed (Halder et al. 1998; Simmonds 

et al. 1998). The results from many genetic and developmental studies of the 

role of vg and sd in wing development thus suggest they are necessary and 

sufficient to drive the wing development gene expression “program”. 

 

It remains an open question as to how global gene expression responds 

to changes in sd and vg, the extent to which this response is dependent on the 

joint effect of genetic background and the magnitude of allelic perturbation, and 

what mechanisms cause underlying background-dependant phenotypic changes 
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in the wing. The sd-vg complex is crucial in regulating the gene expression 

changes that drive formation of the wing, and previous work has demonstrated 

the phenotypic consequences of knocking down sd gene expression levels. As 

such, in the current chapter the RNA sequencing data from Chandler et al. 

(2017) is used to study the joint effect of genetic background and the magnitude 

of perturbation effects on gene expression and phenotypic expressivity (Figure 

1). 

 

3.2 METHODS 
 
 

Fly rearing and handling 
 
 
For detailed information on fly rearing and introgression of alleles, see Chandler 

et al. (2017). Briefly, the two wildtype strains used for this study were ORE and 

SAM, which are both maintained as inbred lines. Both strains have been marked 

with a white mutation (w-) that causes a loss of normal eye pigmentation, and 

was used to facilitate introgression of several mutant alleles caused by the 

insertion of a transgene (with a mini-w+ rescue construct).  These alleles are 

almost all regulatory and not expected to alter protein sequence and function, 

but instead reduce expression of the native transcripts of either sd or vg. 
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Wing size quantification 
 

 For each mutant and wildtype fly, a single wing was dissected from a minimum 

of 5 individuals per genotype per sex for each of 2 replicates. There was a total 

of at least 10 observations per genotype. Wings were imaged using an Olympus 

DP30BW camera mounted on an Olympus BW51 microscope using DP 

controller image capture software (ver. 1.43u). Measures of wing area can be 

confounded by variation in body size, and some of the weaker hypomorphic 

alleles cause loss of bristles at the wing margins without a change in wing area. 

Both factors can make modest changes in wing size due to a mutation 

challenging to quantify. As such, a semi-quantitative ordinal scale (1-10), which 

has been previously shown to be linearly correlated with wing size (Halder et al. 

1998), was used to measure severity of phenotypic effects on adult wings. The 

advantage of the semi-quantitative measure is that the effects of weak 

perturbations on wing morphology can be identified in a clear manner.  While 

considerable effort was made to make the differences between ordinal values 

correspond to those of direct measures on wing size (see Chari and Dworkin 

(2013) for details), as with any ordinal scaled measure, such comparability is at 
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best only approximate. In Chandler et al. (2017), all wings were both measured 

quantitatively (wing area) and using the semi-quantitative scale. It was shown 

that besides the weakest perturbations, which were captured better by the semi-

quantitative scale, both methods provided very similar inferences. As such, it is 

expected that the only meaningful difference (and the reason the semi-

quantitative measure is used) is to better account for the background 

dependence for the weakest alleles (i.e. those with the smallest severity of 

perturbation). The semi-quantitative values were regressed onto the interaction 

between maternal allele and F1 background, and the marginal mean for the 

interaction term was used as a continuous measure for perturbation when 

modelling the effect of perturbation and background on gene expression (this 

regression was done by Katie Pelletier). 

 

Wing Imaginal Disc RNA sequencing and Expression Data 
 

Imaginal wing discs were dissected from mature 3rd instar larvae. Each RNA 

sequencing sample represents the combined imaginal disc tissue of 

approximately 30 individuals. Reads were trimmed using bbduk. Transcript-level 

counts were estimated using Salmon (ver. 1.4.0). Salmon is a mapper which is a 
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pseudo-aligner and can use a decoy to prevent spurious alignment to similar 

genomic sequences, and quantifies transcripts based on mapping rather than 

alignment. Reads were mapped onto version 6.38 of the Drosophila 

melanogaster transcriptome. Transcript-level counts were collapsed onto gene-

level counts using tximport (ver. 1.20.0) using the UCSC dm6 ensemble (ver. 

3.12.0). In total, 13,701 genes were reported. The function filterByExpr() from the 

edgeR (ver. 3.34.1) library was used to filter out genes without a minimum total 

count of at least 15 reads. After filtering, a value of 1 was added to the 

expression vector for each gene to avoid complete separation in the cases 

where a gene was expressed in one background but not at all in the other. . 

Without adding 1 to every sample, the fit models for these genes would produce 

nonsensical estimates, and adding a consistent value to all samples avoids this 

problem. The normalizationFactors() function from DESeq2 (ver. 1.32.0) was used 

to estimate gene by sample normalization factors, where counts are divided by 

sample-specific size factors which are the median ratio of gene counts relative to 

the geometric mean per gene. The normalization factors were then log 

transformed used as the offsets in the linear models.  
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Principal component analysis of gene expression 
 

To detect the major sources of gene expression variation in the transcriptome, a 

principal component analysis (PCA) was conducted using DESeq2 and 

RNAseqQC (ver. 0.1.4). Genes without a minimum count of at least 5 were 

removed. A variance stabilizing transformation was applied to the remaining set 

of genes, normalizing with respect to library size. This analysis was also done 

with a regularized log transformation, but the results were similar (not shown), 

suggesting that the size factors in the sample do not vary widely. The 500 most 

variable genes were plotted and shown here, but plotting the 5000 most 

variable genes (not shown) led to the same results. 

 

Modelling genetic background and perturbation effects 
 

All statistical analyses were conducted in R (ver. 4.1.3). Using glmmTMB (ver. 

1.1.4), models were fit for each gene, h (gene specific subscripts not included). A 

generalized linear model with a negative binomial distribution where for the ith 

sample was fit as below: 

𝑦! = 𝑢! + 𝜖! 

                                 Where, 
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log(𝑢!) = 𝛽,* +𝛽,%𝑥!,% + 𝛽,)𝑥!,) + 𝛽,+𝑥!,%𝑥!,) 

and the random effect of lane, 

𝛽*~𝑁(0, 𝜎@,)) 

 

Where 𝑦! is expression of gene ℎ for the ith sample, 𝛽* is the model intercept, 

𝛽%is the coefficient for genetic background (SAM or ORE), 𝛽) is the coefficient 

(slope) for semi-quantitative measure of the perturbation effect on wing 

morphology, 𝛽+	is the interaction term for background and perturbation. 𝜎,)is the 

variance for the random effect for lane of sequencing and 𝜖! is the residual (unfit) 

variation. In glmmTMB we used the “nb2” (negative binomial 2) quadratic 

parameterization (Brooks et al. 2017).  

 

The primary focus was on the magnitude of effects within and between 

backgrounds. To estimate this magnitude, for each gene model coefficients and 

the estimated slope (amount of change in gene expression per “unit” 

perturbation) for each of the two backgrounds was extracted, along with 

associated 95% confidence intervals. However, I also used type II analysis of 

variance using the Anova function from the car package (v3.1.0), and a false-

discovery rate adjusted p-values (Benjamini & Hochberg 1995) at a cut-off of 0.1 
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to help in filtering genes for additional examination, and to assess whether the 

contribution of genetic background, perturbation, or their interaction was 

“significant”. Genes were considered to have a perturbation effect (i.e. a general 

increase or decrease in expression related to severity of perturbation) if 1) there 

was a significant perturbation term, an insignificant background term, and an 

insignificant interaction term, or 2) there was a significant perturbation term, a 

significant background term, and an insignificant interaction term. Genes were 

considered to have an interaction effect if 1) there was an insignificant 

perturbation term, an insignificant background term, and a significant interaction 

term, or 2) an insignificant perturbation term, a significant background term, and 

a significant interaction term.  Genes were considered to have a perturbation 

and interaction effect if 1) there was a significant perturbation effect, an 

insignificant background effect, and a significant interaction effect, or 2) there 

was a significant perturbation effect, a significant background effect, and 

significant interaction term (Table 1). 
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Vector Correlations 
 

To elucidate potential mechanisms underlying the observed GBE in wings 

between SAM and ORE, the difference in the rates of change of gene expression 

by unit perturbation for genes from key biological processes were compared 

using vector correlations. GO terms from FlyBase (ver. FB2022_05) were used to 

group genes according to the following biological processes, chosen for a 

variety in number of genes and relevance to wing patterning: regulation of 

intracellular mRNA organization (28 genes), apoptotic signalling pathway (47 

genes), regulation of cellular response to growth factor stimulus (61 genes), 

positive regulation of cell cycle (67 genes), hippo pathway regulators (78 genes), 

regulation of cell population proliferation (151 genes), regulation of cell 

differentiation (179 genes), and regulation of cell death (208 genes). For each 

group, the absolute correlation between the vector of slopes was calculated and 

compared to the 95% highest absolute correlations from 1000 permutations of 

correlations between two vectors of random genes of the same length as that 

group. In each of these cases, the genes from the GO term groups were 

removed from the pool from which the random gene vectors were selected. As a 

positive control, this analysis was also conducted with the genes which had a 
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significant perturbation term (1124 genes), as these genes are expected to have 

a high correlation in their slopes between the two wild type backgrounds. The 

densities of the slopes of each of these backgrounds are shown in Figure S3. 

 

Selecting genes of interest for follow-up 
 

One of the goals of this study is to identify genes for which to follow up with 

functional genetic work. First, all genes with an FDR adjusted p-value of less than 

0.1 from the interaction only and perturbation plus interaction categories were 

considered. A plot of gene expression by perturbation for each of these genes 

was used to visually inspect the relationship, magnitude of effect, and level of 

noise. Additionally, the FlyBase entry for each gene was considered, where it 

was assessed whether expression of the gene was expected at the time and 

location of sampling (with the caveat that the FlyBase entries might have been 

sourced from only one genetic background and as such may not be accurate for 

all genes in both backgrounds used in this study). The FlyBase entries also 

contain phenotypes associated with mutations in genes, which were inspected, 

but with the caveat that a wing phenotype not being listed does not mean that 

there is no wing phenotype, it might mean that this was not the phenotype of 
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interest of the research that the entry was pulled from. Genes that showed 

narrow confidence bands and, in most cases, noted wing shape or size 

phenotypes, were selected as genes of interest.  

 

3.3 RESULTS 
 

Global transcription among samples correlates highly with wildtype genetic 
background and less so with the strength of allelic perturbation 
 

In a PCA of the 500 most variable genes across the sample, samples group 

distinctly by wildtype genetic background (either SAM, ORE, or F1 hybrid of the 

two background) along PC1, which accounts for 36.9% of variation in gene 

expression (Figure 2). Within PC1, there is also subtle grouping by perturbation 

within the genetic background groups (from top to bottom). PC1 explains the 

largest proportion of the total variation in gene expression of the 500 most 

variable genes (Figure 3). Along PC3 (8.07%) and PC5 (4.98%) (accounting for a 

total of 13.05% of the total variation) there is subtle grouping by severity of 

perturbation, in particular for the most severe perturbations to wing 

development (in yellow).  
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The correlation in change in gene expression in response to perturbation 
between genes involved with positive regulation of the cell cycle, hippo pathway 
regulators, regulation of cell population proliferation, and regulation of cell 
death is very low across backgrounds 
 

To determine possible biological mechanisms underlying the different wing 

phenotypes in response to the allelic series between the SAM and ORE 

backgrounds, for each gene the model slope (representing the of change in 

gene expression in response to perturbation) was calculated for each 

background. Genes were grouped according to biological GO terms such that 

for each background, a vector of gene slopes was assigned for each GO term 

group. The GO term groups were chosen as to elucidate possible biological 

mechanisms for the change in phenotype. A low vector correlation suggests that 

the genes within this group are responding differently between the two 

backgrounds.  

 

The absolute correlation between these vectors was calculated for each GO term 

group. As a comparison distribution, 1000 permutations of the vector 

correlations were calculated with slope vectors for random genes of matched 

length to the respective GO term group. The top 95% of absolute correlations 

was used to create the comparison null distribution (Figure 4). The perturbation 
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significant genes were also included as a positive control because it is expected 

that this group will have a high vector correlation, since the slopes should be in 

the same direction and not cross (otherwise they would then also have a 

significant interaction term and would not be included in the perturbation only 

group). The perturbation significant genes do indeed have a high vector 

correlation relative to the biological GO term groups, suggesting that the vector 

correlations are identifying slope correlations as intended. 

 

All eight of the assessed groups have a lower absolute value of correlation of 

vector of slopes between SAM and ORE relative to the positive control. The 

lowest of which are the positive regulation of cell cycle group, the Hippo 

pathway regulators, the regulation of cell population proliferation group, and the 

regulation of cell death group (Figure 4).  

 

Because low correlations would be guaranteed if the slopes of the genes were 

flat (ie. A value of 0), scatter plots of the ORE slope vs. the SAM slope for each 

assessed group were plotted to assess the degree to which zero value slopes are 

present (Figure 5 and alternatively shown in Figure S3). Overall, the slopes from 

many genes across the eight groups are of a low value, so this should temper 
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the results from (Figure 4) to an extent, but the low correlations are not driven 

primarily by zero value slopes. “Outlier” genes for which the ORE slope > 0.1 

and SAM slope < 0.1 or ORE slope < - 0.1 and SAM slope < 0.1 have been 

labeled on these plots (Figure S2), and these are the genes for which the 

magnitude of the change between backgrounds is largest and so might 

represent interesting follow-up genes.  

 

Model estimates across SAM and ORE backgrounds reveals set of candidate 
genes for functional validation 
 

Using a combination of the slopes, FDR-adjusted p-values from the linear 

models of gene expression, as well as FlyBase GO terms and temporal and 

spatial gene expression information plus associated phenotypes, effect slopes 

(Figure 6) and plots of gene expression by perturbation, twelve genes were 

identified as candidates for future functional work (Table 2, Figure 7). These are 

genes whose expression shows either an interaction effect or main effect of 

perturbation plus interaction effect. 

 

The ORE slope and SAM slope for all genes are plotted in Figure 6, with the 

genes of interest from the interaction only and perturbation and interaction 
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groups labeled. Vajk2 has a noted wing phenotype and narrow confidence 

bands (Hevia et al. 2017), and is also a binding partner with apolpp, for both of 

these genes, RNAi expression has been noted to lead to a blistered wing 

phenotype and smaller wing disc (Panáková et al. 2005), respectively. Apolpp is 

a direct binding partner and is necessary for signalling of critical wing 

development genes such as wg and hh. Orct2 RNAi expression also leads to a 

smaller wing phenotype (Herranz et al. 2006) with the note that this is due to cell 

size and not cell number, and Orct2 is a target of the insulin receptor pathway 

which is a critical pathway in determining wing size. P5CS directly interacts with a 

downstream target of Myc which is implicated in cell size control with a noted 

smaller wing phenotype (Johnston et al. 1999). Ranshi is a direct binding partner 

of Mad, which regulates expression of BMP response in wing development to 

modulate wing size through increasing cell size, and Mad mutants show an 

altered wing shape (Dworkin and Gibson 2006) and decreased wing size through 

non-cell autonomous apoptosis of wing disc cells (Umemori et al. 2009). 

 

The vector correlation results, and the genes of interest listed here implicate 

differences in cell size and cell density in the wing disc across backgrounds as 

mechanisms to follow-up on.  
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3.4 DISCUSSION 
 

Global gene expression is influenced to a higher degree by wildtype genetic 
background than by genotype 
 

RNA seq samples from the sd/vg allelic series grouped distinctly along PC1 by 

wildtype genetic background, accounting for 36.9% of variation in gene 

expression (Figure 2, Figure 3). This finding was surprising given that as the 

phenotypes of the wings from the most severe perturbations were similar in both 

backgrounds, the expectation was that the severely perturbed gene expression 

profiles might group together and that this would account for most of the 

variation in gene expression profiles. However, separation according to 

perturbation severity is only somewhat apparent in PC3, and slightly more so in 

PC5. This finding suggests that variation in global gene expression in the wing 

imaginal disc largely reflects the genetic background of origin rather than the 

severity of perturbation state.  

 

Another explanation for this finding could be that there are a couple of 

genes for which variation greatly affects phenotype, and although the variation 

in gene expression of only these genes is sufficient to cause a highly deformed 



M.Sc. – AB Neves; McMaster University - Biology 

 97 
 

wing, this variation is masked in the PCA by the variation of other genes which 

wing shape may be robust to. The magnitude of the strong alleles could be such 

that it swamps out the effect of any modifier genes, as has been shown before, 

where the strongest alleles are also the least sensitive to genetic background 

((Chandler et al. 2017, Daley 2019, Henderson 2021). This robustness is apparent 

when looking at the phenotypes (Figure 1), but the gene expression profiles of 

these samples show much more variation. 

 

In studies of developmental biology, researchers will compare the 

phenotype of a knockout of gene function to a co-isogenic “wild type”. This is 

usually examined in a single wildtype background, to elucidate the gene’s 

function, and then these findings are generalized to be broadly representative of 

the species (and as such, across many wild type backgrounds). Furthermore, the 

magnitude of gene expression differences observed between the mutant and 

wild type are used, in part to infer aspects of the causal relationship between 

genotype and phenotype. The finding that global gene expression does not 

group primarily by perturbation but by wildtype genetic background calls to 

question the generalizability of this classic approach, which assumes that 

phenotypic changes are mediated by gene expression changes caused by 
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mutant alleles. Though variation in gene expression can indeed lead to 

phenotypic variation, it is apparent that there is much variation in gene 

expression between wildtype organisms of different genetic backgrounds, 

including for many key developmental genes. That is in some genetic contexts, 

perturbing key gene function (with an associated reduction in gene expression) 

can have a severe impact on phenotype, suggesting a clear causal relationship. 

Yet in other contexts (such as across two or more distinct wild type backgrounds) 

variation in the expression of such genes can vary to a much larger degree with 

little impact on phenotype (Dworkin et al. 2009). This study adds to the growing 

body of evidence that genetic background is not trivial, and it is well worth 

controlling for wildtype genetic background in developmental biology studies. 

For example, had only the SAM background been used in the current study, one 

might conclude that Orct2 does not at all play a role in the altered phenotype 

due to the perturbation of sd or vg (Figure 7B), as the expression of this gene 

remains stable through the allelic series. However, had one conducted this study 

in only ORE, one might conclude that Orct2 was indeed important as in this 

background expression drops through the allelic series.  
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An interesting question to arise from this finding is that of when gene 

expression variation does not cause variation in phenotype. The wildtype wings 

of both the SAM and ORE backgrounds look nearly identical, yet gene 

expression from these individuals does not group together clearly along the first 

few PCs. Similarly, several of the mutant genotypes (i.e. sdE3 in ORE and the vg1 

allele in both backgrounds) have very severely reduced wing sizes, presumably 

through the same mechanism. Despite this, the ordination plot of the PCA 

suggests that most of the variation in gene expression does not relate to the 

effect of perturbation, nor do those genotypic-background combinations seem 

to be in proximity to one another in this space. An explanation for why the 

phenotype is robust to variation in gene expression in wildtype individuals is that 

this variation is still within the range of what is tolerable in the organism. This is 

supported by findings that variation in gene expression among wildtypes is high 

(Cowley et al. 2009; Vu et al. 2015). Although less variation in gene expression is 

due to the mutant alleles, it might be that there is enough variation in key 

modifier genes to cause the phenotypic outcomes and variation throughout 

peripheral genes is tolerated well enough (Dworkin et al. 2009; Mathieson 2021).  
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Differences in the regulation of cell death and regulation of cell population 
proliferation are candidate mechanisms underlying phenotypic differences in the 
wings of SAM and ORE individuals.  
 

To understand how patterns of gene expression change with genetic 

background and perturbation effect in pathways rather than single genes, 

vectors of the slopes calculated from the linear models from genes grouped by 

GO biological terms were assessed for their correlation between the SAM and 

ORE backgrounds (Figure 4). The absolute value of these correlations was 

compared to the 95% highest absolute correlations from 1000 permutations of 

vectors of random gene slopes of lengths matching the corresponding GO term 

groups. This analysis revealed that there is relatively low correlation between the 

change in gene expression in response to perturbation strength between SAM 

and ORE for genes involved in the regulation of cell death, regulation of cell 

population proliferation, hippo signalling genes, and genes involved with 

positive regulation of the cell cycle. The low correlation in the expression of 

these genes across perturbation suggests that they are, as a group, responding 

very differently to genetic perturbation in both backgrounds. The ORE and SAM 

slopes were also plotted for each gene in each pathway to assess the degree to 

which slopes are equal to zero, as zero value slopes will show low correlation 
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(Figure 5, Figure S3). Though the slopes are lower than those in the perturbation 

significant genes group, they are non-zero. However, the low slopes do 

represent a lower magnitude of effect, and while this does not necessarily mean 

the genes have no effect it is worth noting, and the conclusions drawn from this 

result need functional validation. Genes with a higher magnitude of effect (where 

ORE slope < - 0.1 and SAM slope < 0.1 or ORE slope > 0.1 and SAM slope < 

0.1) have been labeled in Figure S2. 

 

Nevertheless, this finding suggests that variability in cell number (through 

regulation of cell death, regulation of cell population proliferation, or regulation 

of the cell cycle) or cell size (through the action of hippo signalling genes) across 

both backgrounds might influence their tolerance to genetic perturbation. The 

genes labeled in Figure S2, which have a higher magnitude of effect compared 

to the others in each pathway, might be logical starting places for functional 

analyses. 

 

Vajk2, Ortc2, ranshi, apolpp, and P5CS have been identified as priority genes of 
interest for functional testing 
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One of the goals of this study was to identify prospective candidate genes 

implicated in the GBE observed across the allelic series. To do this, gene wise 

linear models were run where change in gene expression was modeled as a 

function of genetic background, perturbation, and the interaction between 

genetic background and perturbation. FDR-adjusted p-values were considered 

significant at a = 0.1, and the slope representing the rate of change of gene 

expression by perturbation strength was calculated for all genes (Figure 6). Using 

model significance, these slopes, inspection of the plot of gene expression by 

perturbation, information about known temporal and spatial gene expression, 

protein-protein interactions, and known phenotypes associated with altered 

expression or gene mutants, candidate genes were selected (Table 2). 

Interestingly, and in accordance with the results from the vector correlation 

analysis (Figure 4), the candidate genes reflect changes in cell size and density as 

possible mechanisms underlying the observed joint effect of background and 

perturbation on gene expression (Table 2, Figure 7). 

 

First, Vajk2  has been previously implicated with wing development, 

expression of Vajk2 RNAi leads to smaller and blistered wings (Hevia et al. 2017). 

The gene expression by perturbation plot for this gene has narrow confidence 
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bands, and it can be observed that while wildtype individuals of both 

backgrounds have similar levels of gene expression, Vajk2 expression in ORE 

wings drops off at a faster rate after the first mutant in the allelic series while 

expression in SAM remains constant (Figure 7A). This mimics the observed 

phenotypic changes of the wings, where SAM sd1 wings appear similar to 

wildtype wings, but OREsd1 and OREvg2a3 wings have marked phenotypic changes.  

 

The protein produced by Apolpp interacts directly with that of Vajk2, and 

Apolpp is a gene in which gene expression is affected by the interaction 

between background and perturbation, where wildtype expression level is 

similar between ORE and SAM and expression remains steady in SAM, but there 

appears to potentially be a “threshold” response (which would have to be 

investigated further) where in ORE expression increases only at the level of the 

vg1 allele (Figure 7E). Apolpp is also a binding partner of other genes involved 

with wing development, such as hh and wg (Panáková et al 2005). Flies with a 

mutation in apolpp have been noted to have smaller wing discs than wildtype 

flies, though it is unclear whether this is due to a smaller cell size or fewer cells.  
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Another candidate where expression in ORE decreases faster than that of 

SAM (per unit change of perturbation), and where model confidence bands are 

narrow (Figure 7B), is Orct2. Interestingly, expression of Orct2 RNAi has been 

shown to lead to smaller wings because of smaller cell size, but independent of 

cell number (Herranz et al. 2006). Furthermore, Orct2 is a transcriptional target 

of the insulin receptor pathway, which is critical for regulating wing size during 

development and alterations to cell size (Shingleton et al. 2005).  

 

Ranshi was also identified as a gene of interest, where a decrease in 

expression in SAM is observed with an increase in expression in ORE (Figure 7D). 

A direct binding partner of ranshi is Mad, mutants of which have been associated 

with altered wing shape (Dworking and Gibson 2006) and smaller wings due to a 

reduction in cell density (Umemori et al. 2016).  

 

The implication of Ranshi, Vajk2, Orct2, and apolpp suggests that 

investigating the background dependence and effect of perturbation strength 

on genes involved with cell size regulation may elucidate a mechanism 

underlying the observed GBE in this model system. That is, the regulation of cell 
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size and number, and their joint influences on wing size may mediate the extent 

of genetic background effects. 

 

Decreased cell size, but not cell number, in wing discs leading to smaller 

wings is also associated with P5CS, which interacts directly with CTPsyn, which is 

a downstream target of Myc. The gene expression by perturbation plot of P5CS, 

(significant B:P interaction), indicates an increase in expression in ORE with a 

slight decrease in expression in SAM (Figure 7C). P5CS is associated with dMyc 

(also known as diminutive, dm) expression, which regulates cell size. Expression 

of Myc RNAi has been associated with smaller wing discs due to reduced cell 

size (Johnston et al. 1999). A wing phenotype has not yet been noted for P5CS, 

though it is not clear if this has been investigated yet.  

 

The findings from the current study suggest that perhaps in the ORE 

background cell size is affected as a downstream consequence of the vg/sd 

allelic series, but this is not the case in the SAM background (or it is but to a 

lesser degree). This could potentially be because cells in the wings of ORE flies 

are larger to begin with, and as such are impacted by the influence of genes 

such as PC5S or Orct2 more-so than wings of SAM flies. To examine this 
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relationship, one could use many more genetic backgrounds, such as strains of 

the DGRP, and measure initial cell sizes and wing phenotypes in response to an 

allelic series of sd. For example, it could be observed that DGRP with a larger 

cell size are tolerant to perturbation. To assess this correlation, the cell sizes of 

the smaller DGRP could be increased through temperature manipulations, and if 

there is a connection then these manipulated lines should show similar response 

to perturbation as the wildtype lines with the naturally larger cells.  

 

The role of cell size and density in shaping the Drosophila melanogaster wing  
 

The results of this study have pointed towards changes in cell size and 

number as possible mechanisms underlying the background and perturbation-

specific wing shape changes. Change in the size of the Drosophila melanogaster 

wing along latitudinal clines has been associated with changes in cell size (James 

et al. 1995), which is correlated with temperature effects. Flies reared in lower 

temperatures grow larger body sizes and wing areas due to an increase in cell 

size but not number (Partridge et al. 1994). Changes in cell proliferation due to 

the impact of sd and vg mutant alleles has been shown to not strongly influence 

context-dependence of mutational expressivity of the adult wing in this system 
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(Chandler et al. 2017), so perhaps cell size would be an interesting avenue for 

future investigation.  

 

It is clear from the various gene expression by perturbation plots presented 

here, as well as the cell proliferation results from Chandler et al. (2017), that 

gene expression effects are not necessarily correlated directly with the 

developmental processes underlying phenotypic expressivity, so I do not think it 

is the case that a single developmental mechanism or single mediator gene of 

large effect will explain the background effects observed on phenotype. 

Combining several levels of biological data, such as gene expression data, 

sequence binding predictions, and mapping and modifier datasets can lead to a 

holistic understanding of the causes of GBE as well as identify strong candidate 

genes (Chandler 2014). It is likely that utilizing multiple datasets and integrating 

information from many levels of biological organization (such as proteomic or 

metabolomic), as well as the current approach, will show the complexity of the 

underpinnings of GBE and reveal it to be a system-wide phenomenon that 

evades simple explanations (except in the rare and notable instances of large-

effect modifier genes). 
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Conclusions, limitations, and future directions 
 

This chapter has shown the importance of wildtype genetic background and its 

joint influence with magnitude of genetic perturbation on global gene 

expression. Most surprisingly, this study has revealed that a large source of 

variation in gene expression among all samples, including those with the most 

perturbed wings, is wildtype genetic background. This finding shows that 

variation in gene expression due to wildtype genetic background is plentiful, yet 

most of this variation is buffered in wildtype organisms. Gene expression 

variation underlying trait expression is complex, and gene expression changes 

do not necessarily correlate to phenotypic changes. Further, this study has 

implicated changes in cell size and density as possible mechanisms modulating 

genetic background effects. The genes of interest identified in this study have 

been shown to interact with either cell size or density in some way, and their 

RNAi expression across more backgrounds should be a priority future 

experiment. 

 

This study is not without limitations. The two wildtype genetic backgrounds used 

here, while illuminating, represent only a fraction of the genetic variation due to 
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genetic background. The inclusion of others (such as DGRP strains) would help 

to identify trends that only two backgrounds cannot capture. Additionally, the 

number of samples used in this study were not sufficient to estimate any non-

linear effects with sufficient precision. The way that the models are set up, the 

effect of stronger alleles may mask that of the weaker ones, making it appear as 

if gene expression levels are not correlated to the magnitude of phenotypic 

effects. Though this might be the case, models for each allele, where gene 

expression is modeled as a function of the genotype (wildtype or allele) and 

background (SAM or ORE) will be needed to understand how individual alleles 

respond to genetic background and influence gene expression. 
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3.5 TABLES AND FIGURES 
 

Effect of Interest Coefficients Used Rationale 

Main effect of 

perturbation 

only 

1. P < 0.1 & B > 

0.1 & P:B > 

0.1 

2. P < 0.1 & B < 

0.1 & P:B > 

0.1 

Interaction effects need to be ruled 

out, so in both cases a significant 

interaction term is excluded. 

Background effects are not of 

interest here so they may be 

significant or not – both cases are 

included.  

Main effect of 

interaction only 

1. P > 0.1 & B > 

0.1 & P:B < 

0.1 

2. P > 0.1 & B < 

0.1 & P:B < 

0.1 

Perturbation effects need to be ruled 

out, so in both cases a significant 

perturbation term is excluded. 

Background effects are not of 

interest here so they may be 

significant or not – both cases are 

included. 
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Main effect of 

perturbation and 

interaction 

between 

background and 

perturbation 

1. P < 0.1 & B > 

0.1 & P:B < 

0.1 

2. P < 0.1 & B > 

0.1 & P:B < 

0.1 

In both cases there needs to be a 

significant interaction and 

perturbation term, however the 

background term can be either 

significant or not since it is not of 

interest.  

 

Table 1. Categorizing gene responses to perturbation based on model 

coefficients and FDR adjusted p-values. P = perturbation, P:B = interaction 

between perturbation and background, B = background.  
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Gene 

name 

Reason for interest Category 

Vajk2 Gene expression plot has very narrow confidence 

bands suggesting a sharp decrease in ORE 

expression as perturbation increases with a 

comparatively slower SAM decrease; Vajk2 RNAi 

expression leads to small and blistered wing 

phenotype (Hevia et al. 2017); is a direct binding 

partner with apolpp 

Perturbation 

and 

Interaction* 

Orct2 Gene by expression plot has narrow confidence 

band where SAM expression stays consistent but 

ORE expression decreases steadily; Orct2 RNAi 

expression leads to smaller wings where cell size 

but not number is affected (Herranz et al. 2006); is 

a transcriptional target of the insulin receptor 

pathway 

Perturbation 

and 

Interaction* 

P5CS Gene expression by perturbation plot indicates 

that in SAM expression is stable while in ORE 

Interaction 

only* 
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expression increases, directly interacts with 

CTPsyn which acts downstream of Myc and is 

required for Myc-mediated cell size control (Myc 

RNAi expression leads to reduced wing size 

mediated by smaller wing disc cell size) (Johnston 

et al. 1999); wing phenotype has not yet been 

noted for this gene 

ranshi Gene expression by perturbation plot indicates 

higher wildtype expression in SAM that decreases 

with perturbation while expression in ORE slightly 

increases, ranshi is a direct binding partner with 

Mad, which regulates expression of BMP response 

target genes in wing development and 

overexpression of Mad has been found to lead to 

altered wing shape and (Dworkin and Gibson 

2006) and a reduction in wing size through non-

cell autonomous apoptosis in the wing disc 

(Umemori et al. 2009) 

Interaction 

only* 
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apolpp Gene expression by perturbation plot indicates 

that in ORE expression increases while in SAM it 

slightly decreases; is a direct binding partner with 

Vajk2, a smaller wing disc phenotype has been 

noted in apolpp mutants (Panáková et al 2005); is 

also a direct binding partner of many genes 

involved in wing development including wg and 

hh and is required for signalling of these genes 

(Panáková et al. 2005) 

Interaction 

only* 

 

Table 2. Genes of interest identified by comparing change in gene expression 

by perturbation strength in the SAM and ORE wildtype genetic backgrounds. 
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Figure 1. Wing phenotypes associated with each allele from the allelic series in 

both the SAM and ORE backgrounds. Adapted from (Chandler et al. 2017) 
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Figure 2. PCA of gene expression of 500 most variable genes suggests that 

global transcription correlates highly with genetic background. Plots of pairwise 

comparisons of principal components 1 through 5. Samples separate by wildtype 

genetic background and not by perturbation along PC1. Some variation from 

perturbation separates along PC3 and PC5, but not as distinctly as separation by 

genetic background. Counts are variance stabilized and represent the 500 most 

variable genes. Darker (blue) points represent the weakest perturbations, lighter 



M.Sc. – AB Neves; McMaster University - Biology 

 117 
 

(yellow) represent the strongest, and shapes represent each genetic background 

and the hybrid background. 
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Figure 3. PC1, for which samples group along by genetic background, explains 

36.9% of the variation in gene expression. The variance explained by each of the 

first 10 PCs. PC3 and PC5, for which samples group along by perturbation (to a 

weak extent) explain 8.07% and 4.99% of the variation in gene expression, 

respectively.  
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Figure 4. Genes involved with positive regulation of cell cycle, hippo signalling, 

regulation of cell population proliferation, and regulation of cell death respond 

differently to background and perturbation effect in SAM and ORE when 

compared to groups of random genes.  

Solid black lines represent the absolute value of the correlation between the 

vectors of slopes of the genes for each of the indicated gene groups for the 

SAM and ORE backgrounds. A high absolute correlation indicates that the effect 

of genetic perturbation on the expression of genes in that group are similar for 

both backgrounds, with a low correlation indicating little similarity between 

effects. The coloured boxes represent the distribution of the top 95% absolute 

values of correlations from groups of 1000 genes, each group matched to the 

number of genes in the groups listed above. The grey “Perturbation significant 



M.Sc. – AB Neves; McMaster University - Biology 

 120 
 

genes” category is used as a positive control, and represents genes with 

significant perturbation values from the linear models at an FDR adjusted alpha 

of 0.1 
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Figure 5. Scatter plot of gene slopes for each of the eight investigated biological 

pathways (plus the perturbation significant genes). The dashed line represents a 

correlation of 1 between the effect of change in expression with change in 

perturbation for a gene (in which case the effect between ORE and SAM will be 

identical). 
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Figure 6. Scatter plot of the model estimates for both backgrounds of each 

gene. Points are coloured according to the significance of model terms (See 

table X). Dashed line represents perfect correlation between the SAM and ORE 

effects. Labels represent genes of interest for future functional analyses, based 
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on their individual gene expression by perturbation plots (Figure 7) and FlyBase 

entries. 
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Figure 7. Gene expression by perturbation plots for genes of interest. Each plot 

has gene expression (log2(CPM)) on the y-axis and perturbation on the x-axis. 

Model regression estimates are shown by the solid lines with confidence bands 
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shaded. Shapes represent estimated gene expression. Colours represent the two 

wildtype genetic backgrounds for each gene. 
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3.6 SUPPLEMENTAL FIGURES  
 

 

Figure S1. Scalloped and vestigial expression decrease with increase in 

perturbation. Gene expression by perturbation plots for sd and vg. Note that 

each plot contains expression for only the corresponding alleles rather than the 

full allelic series.   
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Figure S2. Plots of ORE slopes by SAM slopes for genes from each of the 

biological pathways investigated with “outlier” genes of interest highlighted. 

Genes labeled are genes for which either the ORE slope < 0.1 and SAM slope < 

0.1 or ORE slope < -0.1 and SAM slope < 0.1 
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Figure S3. Density plots of slopes for genes from each of the biological 

pathways assessed.  
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CHAPTER 4: ONE MIGHT SAY THAT COMPLEX TRAITS ARE INDEED 
COMPLEX  
 

 In the first portion of this thesis, wing shape was used as a model complex 

trait to understand the relationship between gene expression variation in 

developing tissue and adult wing shape. The major finding of which was that the 

variation in gene expression among genes grouped by function has similar 

effects on the direction of variation in wing shape, even when correlated effects 

of gene expression were accounted for.  

 

In the second portion, gene expression variation and its relationship to 

trait expressivity was studied using a model system for studying the joint effect 

of genetic background and magnitude of allelic perturbation on global gene 

expression variation. The takeaway was that wildtype genetic background has a 

profound effect on gene expression variability from across an allelic spectrum 

ranging from wildtype individuals to those with severe genetic perturbation. 

Additionally, genes to follow-up on with regards to the effect of variation in cell 

size and cell shape on background dependence have been suggested. In both 

chapters, the Hippo signalling pathway stood out as implicated with wing shape 

variation and context dependence.  
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Overall, complex traits are complex. I started this work with an interest 

biological diversity and the relationship between genotype and phenotype, and 

what I hope to have shown with this work is that understanding complex trait 

variation requires a holistic understanding of the systems of biological 

organization that contribute to phenotypic variation. Gene expression variation 

plays a role in complex trait variation and expressivity, and these effects are 

modified by the genetic background of an individual and the magnitude of 

genetic perturbation. As was shown in this thesis, developing ways to 

understand large, multivariate datasets such as gene expression and multivariate 

shape are crucial for understanding the effects of gene expression variation on 

complex trait variation. Vector correlations are a useful method to recover signal 

from datasets with few replicates that capture subtle effects. The Hippo 

signalling pathway was identified in both chapters presented here through gene 

expression variation, and it has been previously implicated for its role in wing 

shape development using GWAS. These results should point towards this 

pathway as a priority candidate for future research.   

  


