
HUMAN-IN-THE-LOOP MODEL PREDICTIVE

TRAJECTORY GENERATION FOR FLOCKS

OF DRONES

HUMAN-IN-THE-LOOP MODEL PREDICTIVE TRAJECTORY

GENERATION FOR FLOCKS OF DRONES

BY

ALI GRIVANI, B.Sc.

a thesis

submitted to the department of Electrical & Computer Engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

© Copyright by Ali Grivani, February 2023

All Rights Reserved

Master of Applied Science (2023) McMaster University

(Electrical & Computer Engineering) Hamilton, Ontario, Canada

TITLE: Human-in-the-Loop Model Predictive Trajectory Gener-

ation for Flocks of Drones

AUTHOR: Ali Grivani

B.Sc. (Mechanical Engineering),

Sharif University, Tehran, Iran

SUPERVISOR: Shahin Sirouspour

NUMBER OF PAGES: xv, 100

ii

Lay Abstract

The rise of unmanned aerial vehicle technology and the increase in their accessibility

have made them viable solutions for serious missions such as search and rescue oper-

ations. Complex cooperative tasks can be conducted via a collection of drones which

can show higher levels of robustness and agility as a system. Although repetitive

and simple actions can be easily automated, real-world problems are unpredictable

in which complex decision-making is involved. Such scenarios can be tackled by the

presence of a human supervisor to empower the system with strong cognitive capa-

bilities. This thesis presents a multi-layer control framework for human-in-the-loop

operation of a flock of unmanned aerial vehicles. This method continuously opti-

mizes the drones trajectories to adhere as closely as possible to operator’s motion

commands while avoiding collisions among them and with obstacles in their task en-

vironment. This new control framework is successfully validated in both simulations

and experiments in a laboratory environment.

iii

Abstract

This thesis presents a novel architecture for human-in-the-loop control of multiple

drones. The design of such systems must address several challenges at the same time.

The drones must avoid collisions with each other and with obstacles in their task

environment while following operator’s command as closely as possible to navigate

their environment. To this end, they should be able to adjust their pre-defined desired

formation and, if needed, transition to alternative formations to ensure collision-free

operation in their task environment while following the operator’s commands.

The proposed control strategy is a central algorithm with multiple stages and

relies on formulating and solving convex optimization problems in real time to achieve

the control objectives. The operator provides reference velocity commands for the

flock of drones to move them in the task environment. The algorithm creates linear

collision avoidance constraints and distributes the operator’s commands among the

drones through a number of intermediate steps. It generates reference trajectories

for the drones motion by solving a model-based optimization problem over a receding

horizon. Conventional trajectory controllers generate the control inputs for individual

drones.

Prospective formation shapes are obtained for the drones by formulating and solv-

ing parallel convex optimizations, considering the operator’s reference command and

iv

the obstacle-free space. While keeping the convexity of the optimization problem,

the proposed algorithm allows for the presence of obstacles in the middle of the for-

mation. This is achieved by properly assigning obstacle-free regions to each agent

separately in the formation. In addition, safe convex regions in the form of linear

inequality constraints are generated in the direction of the operator’s commanded

velocity. Moreover, constraints are introduced to avoid inter-drone collisions at each

step. Trajectory optimization is formulated as a quadratic programming problem sim-

ilar to model predictive control schemes to minimize deviation from human operator’s

command.

The effectiveness of the proposed control algorithm is initially verified by simulat-

ing two different operational scenarios. Furthermore, the algorithm is implemented

on actual hardware to operate a flock of three drones in a laboratory setting. The

implementation of the algorithm in C++ utilizes high-performance computation tech-

niques to achieve sufficiently high real-time control update rates for smooth and stable

operation of the drones.

v

Acknowledgements

This research could not have progressed without direct moral support and technical

advice from my supervisor, Dr. Shahin Sirouspour. I would like to express my

gratitude for the opportunity to work under his supervision.

I would also like to express my appreciation toward my family, friends, and Cheryl

Gies for their support and encouragement throughout my graduate education at Mc-

Master University.

vi

Contents

Lay Abstract iii

Abstract iv

Acknowledgements vi

Notation, Definitions, and Abbreviations xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Thesis Contributions . 4

1.4 Thesis Organization . 6

1.5 Related Publication . 6

2 Literature Review 7

2.1 Unmanned Aerial Vehicles . 7

2.2 Multi-Drone Systems Motion Control 9

2.3 Formation Control . 13

2.4 Human-in-the-Loop Methods . 16

vii

2.5 Summary . 17

3 Algorithm Overview, Assumptions, and Modeling 19

3.1 Algorithm Overview . 19

3.2 Assumptions . 21

3.3 System Model . 21

4 Exploring Prospective Formations 26

4.1 Obstacle-Free Regions Assignment . 26

4.2 Optimal Formation . 30

5 Collision Avoidance 35

5.1 Path Finding . 35

5.2 Collision Avoidance Constraints . 39

6 Model-based Optimization 46

6.1 Dynamic Model-Related Constraints 47

6.2 Objective Function . 49

6.3 Constraints . 54

6.4 Convex Optimization Problem . 57

7 Simulation and Experimental Results 58

7.1 Controllers . 59

7.2 Simulations . 60

7.3 Experiments . 70

8 Conclusion 83

viii

8.1 Future Work . 84

A Matrix Operations and Constants 86

A.1 Matrix Operations . 86

A.2 Constant Matrices . 87

ix

List of Figures

3.1 Proposed framework and its components 20

4.1 Example output of Algorithm 1. Solid lines show the boundary of the

obstacle, and the color of the scatter dots indicates which side (hyper-

plane) of the pentagonal obstacle it has been assigned to. 29

4.2 Green area (Fi) is the concatenation of all half-spaces with Aw as a

result of Algorithm 1 for pointq̂t
i in between two obstacles (O1 and O2). 30

4.3 Three reference formations where Sr
1 has the highest priority and Sr

3

has the lowest priority. 34

4.4 The three reference formations in Figure 4.3 can be used to find optimal

formation in different scenarios. 34

5.1 Three sample outputs of Algorithm 2 in three-dimensional space. . . . 38

5.2 A simple 2-D demonstration of lines 4-12 in Algorithm 3. There are two

obstacles and with their dilated boundary also depicted. The left image

shows the initial bounding box and the stretched ellipsoid around the

green line (Ps
i). The right image depicts the detected colliding obstacle

(red), and the separating plane that modifies the bounding box. . . . 43

7.1 Trajectories of three drones moving towards a narrow passage in 2D

workspace. 64

x

7.2 Three reference formations used in Narrow Passage Scenario where Sr
1

has the highest priority and Sr
3 has the lowest priority. 65

7.3 Distance between each robot and the closest obstacle in the workspace

in Narrow Passage Scenario. 66

7.4 Inter-agent distance values while passing through the narrow passages

shown in Figure 7.1. 67

7.5 The reference velocity and the velocity of the center of the flock in the

simulation which is shown in Figure 7.1. 68

7.6 Non-Convex Formation Scenario. The trajectories are shown in solid

colored lines, intermediate formation shapes with dashed grey line, and

obstacles are painted in black color. 69

7.7 Distance between each robot and the closest obstacle in the workspace

in Non-Convex Formation Scenario. 70

7.8 Inter-agent distance values while passing through the narrow passages

shown in Figure 7.6. 71

7.9 The reference velocity and the velocity of the center of the flock in the

simulation shown in Figure 7.6. 72

7.10 Experimental Setup . 73

7.11 The drones trajectories in Narrow Passage Scenario experiment. This

scenario is a modified version of the simulation scenario presented in

Section 7.2.2. 74

7.12 The distance to obstacles for each robot in the experiment of Figure

7.11. 75

7.13 Inter-agent distances in the Narrow Passage Experiment. 76

xi

7.14 Velocity of the flock compared with operator’s reference command in

7.11 experiment. 77

7.15 Non-convex Formation scenario experiment. 79

7.16 The distance to obstacles for each robot in the experiment of Figure

7.15. 80

7.17 Inter-agent distances in the Non-Convex Formation Experiment. . . . 81

7.18 The flock velocity compared with against the operator’s reference ve-

locity in 7.15 experiment. 82

xii

List of Tables

3.1 Position, Velocity, and Control Input Definitions 23

7.1 Scalarization weights used in optimization (6.4.1) 62

xiii

Notation, Definitions, and

Abbreviations

Notation

s ∈ S s is an element of the set denoted by S.

d Dimension of the workspace, d = 2 or d = 3.

N The set of Natural Numbers.

R The set of Real Numbers.

Ra The set of all vectors with a ∈ N real elements.

Ra×b The set of all matrices with real elements, a rows, and b columns.

Am×n Matrices are denoted by upright bold letters and A ∈ Ra×b.

v Vectors are typed in a bold font.

A ≻ 0 Matrix is positive definite.

S1\S2 Elements of S1 which are not a part of S2

xiv

Abbreviations

GPS Global Positioning System

MAPF Multi-Agent Path Finding

MIP Mixed-Integer Programming

MILP Mixed-Integer Linear Programming

MIQP Mixed-Integer Quadratic Programming

MPC Model Predictive Control

RHS Right Hand Side

SVM Support Vector Machine

UAV Unmanned Aerial Vehicles

xv

Chapter 1

Introduction

1.1 Motivation

Unmanned Aerial Vehicles (UAVs) have become increasingly popular in applications

such as search and rescue, cargo transportation, aerial imagery, surveillance, and

inspection missions. The natural agility of aerial vehicles, along with modern naviga-

tion technologies, remote control, and electric batteries, have made UAVs indispens-

able when human presence is not achievable [1]. Widespread availability of simple

low-cost fully electric UAVs has further encouraged their use. Large investments in

low-emission UAV-based solutions have made them a viable platform for use in appli-

cations such as goods transportation. Increasing allocation of financial resources to

the growing UAV industry and market has spurred research in various relevant fields

such as aerial robotics and control engineering.

The performance of a UAV is constrained by the limits of its power source (e.g.,

battery) and its thrust power capability. These constraints significantly impact its

1

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

flight range and payload capacity. Increasing the battery size to address these limita-

tions would increase the vehicle size and could lead to other design compromises [2].

The flight time can be particularly restricted in cargo transportation, and alternative

designs may be needed to carry large payloads. Autonomous recharging methods

have been proposed to mitigate the battery-life problems [3]. Alternatively, multiple

smaller drones can be utilized to carry large payloads. This has motivated significant

research in multi-drone systems in the past decade [2, 4, 5, 6].

Multi-drone systems can effectively address some of the challenges of single-drone

systems. They are usually more fault tolerant and can reduce operational risks com-

pared to their single-drone counterparts. The arrangement of multiple drones in a

flock can be highly reconfigurable and flexible for cooperative tasks. In addition to

enhancing robustness and reliability of the system [7], they can also improve physical

capabilities, for example by increasing surveillance coverage or payload capacity in

transportation [5].

Autonomous robotics systems have been studied in depth during the past two

decades. The majority of the existing literature on aerial robotics research has focused

on designing frameworks and controllers for scenarios where no human intervention

takes place [4, 5, 6, 8]. Regular missions in controlled environments are ideal for

such applications. However, many real world tasks are prone to uncertainties and

unpredictability of the task environment. Surveillance, search and rescue, and many

inspection tasks are examples in which fully autonomous systems may be difficult

to build and may not be sufficiently reliable. Such applications could greatly benefit

from human intervention particularly for high-level decision-making tasks to overcome

challenges encountered due to the unpredictability of the task environment [9, 10, 11].

2

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

All things considered, the human operator can play an important role in the future

of many aerial robotic applications. Research is required to resolve the challenges of

human-drones interactions. This thesis focuses on the control and navigation of a

flock of quad-rotors operated by a human operator. The flock of drones is expected to

follow the operator’s high-level velocity commands, while avoiding collisions among

each other and with obstacles in their task environment. A control framework is

presented to relate the human reference commands with the collective navigation of

the drones as a group, and with their individual motion control objectives.

1.2 Problem Statement

The majority of the existing literature in the field is dedicated to solving the problems

around point-to-point motion planning of a group of robots without involving the

presence of a higher-level decision maker, such as a human operator in the procedure.

While control and operation of a single UAV is well-studied in the past [12, 13],

the particular problem of a single operator controlling multiple drones has received

very little attention. This thesis focuses on developing a control strategy for such

application scenarios.

Many drone motion planning and control methods pre-compute optimal trajec-

tories. Their main challenge is how to create suitable constraints to ensure the

safety of the navigation in the presence of obstacles. On-the-fly motion planning

is more challenging since the trajectories can no longer be computed offline as the

destination and environment may vary in real time. Optimization-based planning

and control approaches have been popular in this domain. However, these meth-

ods tend to be computationally expensive, making their real-time implementation

3

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

challenging. The advancements in computing technologies and convex formulation

of optimization problems, which guarantee deterministic convergence to the solution,

have helped reduce the computation time. Optimization-based approaches can ac-

commodate various constraints in the problem formulation, allow for consideration

of uncertainty, while obtaining the best control inputs for the system. This thesis

adopts an optimization-based framework for formulating and solving the problem of

human-in-the-loop control of a flock of drones. In particular, it seeks to formulate

the trajectory planning as a convex optimization problem.

Collision avoidance is one of the main aspects of robot motion planning. In group

navigation problems, group members must maintain a safe distance from obstacles

as well as from other group members while moving in the task environment. Thus,

the proposed framework in this thesis must assist the operator in maintaining a

minimum safe distance among drones, and between the drones and obstacles in the

task environment. Another objective of interest in multi-agent robotic systems and

applications is formation control, e.g. in aerial transportation [14], or surveillance

and reconnaissance [15]. This thesis seeks to incorporate a formation control strategy

in its proposed approach for human-in-the-loop control of a flock of drones.

1.3 Thesis Contributions

This thesis presents a novel framework for human-in-the-loop control of multiple

UAVs. There are two unique aspects that distinguish the proposed method from

current solutions in the literature. First, existing optimization-based frameworks are

mainly to solve the point-to-point trajectory planning problems, which are often car-

ried out offline. Second, human-supervised multi-agent systems are mostly designed

4

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

via potential fields, while this thesis approach is purely optimization-based. Potential

fields are mathematically simple to implement, but they are prone to local minima and

are not as flexible as optimization-based approaches. Optimization-based model pre-

dictive control schemes provide great flexibility in setting up the control objectives

and constraints. They are usually more computationally expensive than potential

fields. However, convex formulation of the optimization problem can reduce their

computations and yield globally optimal solutions.

In this thesis, the navigation problem is formulated as a convex quadratic opti-

mization with linear constraints. Unlike existing solutions, the proposed method in

this thesis does not need the formation shape to lie within a totally obstacle-free con-

vex area. A novel algorithm is presented that assigns suitable convex areas to each

agent individually. Infeasibility could happen due to the design of linear constraints.

To resolve this, multiple reference formations are considered and solved in parallel,

improving real-time computation efficiency.

To avoid collisions with obstacles, polyhedral convex regions aligned with the

desired direction of movement are generated. This is inspired by the work in [16,

17]. Linear inequality constraints are designed based on priority and direction of

movement to keep distance between drone pairs in the flock more than a minimum

safe distance. These constraints are incorporated in a model-based optimization to

compute the drones reference trajectories in a receding horizon manner. Deviation

from the optimal formation and reference human input velocity are both considered

in the trajectory design for each drone.

The proposed controller is centralized in the sense that all the computations are

carried out on a single computation unit. The optimization model is quite flexible

5

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

and can be easily modified for use with different robotic platforms. The effectiveness

of the proposed control strategy is demonstrated via numerical simulations as well as

real-time experiments in an indoor laboratory setting.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 is dedicated to reviewing

the existing literature where applications and state-of-the-art strategies in motion

control of multi-drone systems are explored. In Chapter 3, an overview of the pro-

posed algorithm is presented, and basic assumptions and definitions are introduced.

Chapter 4 is mainly concerned with the formulation of the optimal formation. Next,

a geometric path-finding method is presented in Chapter 5 along with the strategies

to obtain collision avoidance constraints along these paths. Further in Chapter 6,

the model predictive optimization is presented where the objective and constraints

are formulated. In Chapter 7, real-time controllers, numerical simulations, and ex-

perimental results are presented. Finally, this thesis will be concluded in Chapter 8

where potential future research topics have also been considered.

1.5 Related Publication

• A. Grivani, S. Sirouspour, “Human-in-the-loop Model Predictive Trajectory

Generation for Flocks of Drones”, to be submitted to IEEE Robotics and Au-

tomation Letters.

6

Chapter 2

Literature Review

2.1 Unmanned Aerial Vehicles

Recent advances in manufacturing, control, and communication technologies have led

to a vast range of designs for unmanned aerial vehicles (UAVs). The main idea of

having an aerial vehicle fly autonomously or being controlled remotely was formed

more than a century ago [18]. Aerial vehicles can occupy a space larger than a

plane [1], or they might easily fit inside the palm of a hand [19]. In addition to the

conventional fixed-wing and quad-copter designs, continuous developments are being

carried out worldwide, and novel structures are introduced every year [20, 21]. Wide

availability of UAVs in various form factors and price points has led to their increasing

use in many applications.

Their maneuverability, simplicity of use, and cost-effectiveness have made them

popular in civil applications, particularly multi-rotor designs such as quad-rotors.

Their use in cargo and parcel delivery has already been investigated in research and

industrial settings [22, 23]. Not requiring terrestrial infrastructure has also made them

7

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

a good candidate in medical supply delivery and rescue missions [24]. Furthermore,

various types of sensing equipment can be mounted on drones which facilitates their

usage in surveillance, search and rescue missions without humans being required to

be present on site [25, 26]. Their application in urban areas extends to monitoring

construction sites, buildings, and bridges where visual information can be accessed

with minimal delay and inspections can be carried out at low cost and high frequencies

[27].

Quad-rotors with electric propulsion have been particularly popular due to their

relatively small size, ease of manufacturing, low cost, and high agility. On the down-

side, their battery capacity and life can severely restrict their flight time. The flight

time may be extended by autonomous battery charging schemes or mechanisms that

facilitate battery replacements [28, 29, 30]. Limited payload capacity is another con-

cern for quad-rotors, especially in transportation applications. Multiple drones can

be used to cooperatively carry the payload to overcome this limitation in some ap-

plications [2]. Outside transportation applications, multi-drone systems can provide

the following advantages:

• Increased Sensing Capabilities: Surveillance, inspection, monitoring, and

mapping operations would benefit from an increase in the number of sensors

and coverage area afforded by having multiple drones [31, 32].

• Robustness and Safety: Single-drone operation is dependent on one agent’s

capabilities, and any failure would usually result in mission termination. Sys-

tems with multiple drones can be potentially more tolerant to faults in indi-

vidual drones [33]. Smaller drones working as part of larger groups can reduce

liability and risks associated with operating larger aerial vehicles.

8

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

• Enhanced Maneuverability: Multiple cooperating UAVs provide more de-

grees of freedom and allow for executing maneuvers that might be difficult to

carry out using only one vehicle [6, 34]. In aerial transportation, this would

allow for more control over payload orientation and can greatly help in coping

with external disturbances on the system.

Multi-rotor drones have been subject of very significant research in the last two

decades. They are agile and can freely move in three-dimensional space, whereas most

ground robots are confined to planar movements. Under-actuation is one of the well-

known limitations of the popular quad-copters and which significantly complicates

their motion planning and control [2, 35, 36]. Numerous methods of localization,

mapping, and trajectory planning have been proposed and deployed in both indoor

and outdoor environments for multi-rotor drones [4, 17, 37].

2.2 Multi-Drone Systems Motion Control

Significant research has focused on developing efficient quad-rotor trajectory con-

trollers [35, 38, 39, 40]. These controllers usually operate on one level higher than

the actual attitude controllers commonly implemented on embedded on-board flight

controllers. Motion control of a quad-rotor is generally complicated by its under-

actuated dynamics. At a higher level, collision avoidance adds to the complexities of

its control. These issues are also inherent in multi-drone systems using quad-rotors.

Motion control for multi-drone systems involves another higher-level hierarchy to plan

the trajectories and devise a strategy for safe and efficient navigation of the whole

group. Motion planning and control strategies for these systems are often proposed

9

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

in hierarchical algorithms that start with a high-level abstract goal and output the

individual control inputs.

A popular approach to the design of efficient and collision-free trajectories in

multi-agent systems is to formulate the problem as a Mixed-Integer Program (MIP).

In this type of problems, optimal trajectories are obtained by minimizing a quadratic

(Mixed-Integer Quadratic Programming - MIQP) or a linear (Mixed-Integer Linear

Programming - MILP) objective where some of the decision variables are integer

numbers. Mellinger, Kushleyev, and Kumar proposed a centralized MIQP approach

for trajectory generation in which collision avoidance was accomplished via having

integer-domain constraints [41]. Their approach accommodates quad-rotors with dif-

ferent sizes within the group and takes into account the differential flatness property of

their dynamics. Their method was tested in simple environments with a small number

of drones and obstacles and the time to find a solution was in the order of hundreds

of seconds. In 2013, they extended their approach to planning three-dimensional

trajectories for up to twenty drones where the computation time was reduced by

distributing the computation among smaller groups [5]. These approaches require

the starting point and the destination to be known. Their optimization problem is

non-convex, and their computational time increases exponentially with the number

of integer variables. Consequently, they are not suited for real-time applications.

Trajectories can be considered as optimized and smooth versions of crude road-

maps connecting two points in the space. This perspective relies on path-planning

methods and iterative trajectory refinement. Multi-Agent Path Finding (MAPF) is

a well-known and challenging problem in the robotics field and solutions have been

proposed to extend the existing methods for multi-agent scenarios [42, 43] without

10

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

optimizing trajectories for vehicle dynamics. This results in piece-wise linear paths

which are not optimal as they will require numerous stop-and-go along the way, or

otherwise, they will not be dynamically feasible. Hönig et al. introduced a novel

approach where by combining discrete planning methods, trajectory optimization,

and iterative improvements, safe and smooth trajectories were obtained [4]. They have

combined sampling-based road-map planning with graph search algorithms to achieve

the paths annotated with possible conflicts. The road-maps will be scheduled and time

steps will be assigned based on a MAPF solver to ensure the paths do not possess any

possible inter-agent collisions. In addition, obstacle avoidance is further guaranteed

by generating convex safe corridors by solving hard-margin support vector machine

(SVM) to generate separating hyper-planes. Safe corridors are shaped around the

discrete path, and trajectory optimization will be formulated such that it enforce the

results to be constrained with a certain convex hull of all the given control points.

Although the resulting trajectories will be smooth, safe, and the method can be

applied with large number of drones in a complex environment, this motion planning

is more suited for offline planning since the computation time is within a number of

seconds. Analogous approaches for obstacle-robot collision avoidance can be found

in [44, 45].

Collision avoidance is a significant problem in multi-robot systems. In such sys-

tems, strategies are needed to ensure that the robots would not collide with each

other or with obstacles in their environment. Artificial potential fields or barrier

functions are based on mathematically simple models that produce reactive repulsive

forces acting on the robots in order to prevent collisions [6, 46, 47]. While their low

11

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

computational cost is highly desirable, they are known to be vulnerable to local min-

ima, and need to be manually tuned to avoid undesirable movements. Alonso-Mora

et al. proposed optimization-based solutions that combine convex optimization with

potential force field for increased safety [8]. They incorporate the concept of velocity

obstacles to determine the velocities that culminate in a collision within a certain

horizon. The states are then constrained in convex cones to avoid collisions in the

optimal reference states. Their algorithm which can handle dynamic obstacles can

be implemented and used in real-time. However, it can not accommodate a human

operator in the loop.

Model Predictive Control (MPC) schemes have gained popularity in the realm of

optimization-based planning methods in the past decade. In these methods, the con-

trol inputs are the solution to an optimization problem solved repeatedly over a rolling

finite time horizon. Only the first (few) step(s) of the optimal control input sequence

is given to the system after solving each optimization problem. Onboard solutions

have been proposed in the literature for embedded trajectory control applications

[48, 49]. MPC as a higher-level off-board controller has also received considerable

attention in the literature [50]. Baca et al. proposed and deployed an MPC-based

trajectory tracking for a group of drones in an outdoor setting [51]. In contrast to

their previous work [48], the proposed MPC is not intended for controlling the aerial

vehicle directly; rather, it modifies a reference trajectory for an underlying non-linear

controller. Only altitude is adjusted to avoid collisions, which is sensible when drones

fly in open fields. Moreover, Luis and Schoellig proposed a point-to-point trajectory

generation framework that is built upon a distributed MPC [52]. They use a double

integrator to model the agents and to predict their future states. An on-demand

12

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

scheme is proposed for avoiding possible detected collisions in the future. The dis-

tribution of the algorithm along with linear estimated soft collision constraints are

key factors for its scalability. However, this method can not guarantee collision-free

trajectories and can result in deadlocks. The same research group extended their

work to an online trajectory generator which was tested on a group of 20 quad-rotors

in real-time [53].

2.3 Formation Control

Nature provides numerous examples of living creatures working cooperatively in for-

mations to achieve common objectives. Likewise, there are many advantages to driv-

ing autonomous robots in a certain spatial pattern. Maintaining a formation within

a group of payload-carrying robots can increase their overall efficiency and reduce

cost of operation through load sharing. Moreover, in reconnaissance and surveillance

missions, formation control can help maximize coverage area and minimize inter-

communication delays [54]. Formation control introduces a set of new challenges in

the control of multi-agent systems.

A group formation can be defined as an array of relative positions with respect

to a selected leader in the group. The idea is usually referred to as leader-follower

formation control, where while the leader is given a reference trajectory, the other

units are supposed to determine their location based on pre-defined spatial offsets from

the leader. Multiple variations of this concept have been proposed in the literature

[55, 56, 57]. While leader-follower methods are relatively simple to implement, they

have no explicit feedback on the formation and lack robustness due to dependency

on the leader. In applications such as search and rescue the formation may have to

13

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

split into multiple clusters each with their own leader. Hu et al. proposed a method

[58] that separates the clusters based on task priorities using a game-theory-based

approach.

Formations are defined as virtual rigid bodies in Virtual Structure-based ap-

proaches. The kinematic model of the virtual structure can be used to derive the

robots desired motion from the reference trajectory of the virtual rigid body. Every

agent then can be controlled with their custom reference trajectory using conventional

trajectory tracking controllers [59, 60]. These methods lack bilateral feedback and

require a central processing unit to carry out the computations. Behavioral methods

build on artificial potential fields to compute repulsive or attractive forces that would

drive each robot toward the ideal location in the formation. They are well suited

for real-time applications due to their simple computations. Additionally, their com-

putations can be distributed among the agents, eliminating the need for a central

computing unit. However, they result in complex and difficult mathematical analysis

or can yield undesirable outcomes if competing forces are averaged. Examples of be-

havioural implementation of formation control can be found in [61, 62]. The last two

approaches can be combined to provide reactive collision avoidance and formation

control as in [63] with pre-defined shape transitions and a formation library to allow

for switching between different arrangements.

While moving in a pre-defined rigid formation can be ideal in some applications,

many cooperative tasks require the group formation to be flexible and possibly de-

form whenever necessary. For instance, navigating through a narrow passage may

not be possible unless the agents arrange in a linear formation. It is also important

14

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

to maintain communication among the agents and minimize any delay in the com-

munication. Continuum deformation schemes can be applied to achieve such goals

where each agent is described as a point inside a body able to deform under homo-

geneous transformations [64]. Rastgoftar and Atkins used this approach in a system

of payload-carrying robots while passing through a narrow passage [11]. They used

kinematic relation to define the motion equations with respect to three leaders and the

payload and used linear convex approximation for obstacle-free spaces. Inter-agent

collisions were avoided by imposing constraints on the homogeneous transformation,

which was defined based on the leaders’ position. The concept has been evaluated

both in simulation [11], and real-time experiment [64]; however, the possibility of

obstacles passing through the middle of formation is not discussed in this approach.

Optimization-based methods for formation transition and planning have been pro-

posed in the past. Alonso-Mora, Baker, and Rus presented a method to obtain for-

mation with a centralized sequential convex programming [65]. In order to prevent

collisions with obstacles, the convex-shaped formation is constrained to a collision-free

convex area generated in the direction of movement; the formation shape is optimized

with respect to its outer vertices while the locations of the internal robot are not con-

sidered. Further down their hierarchical algorithm, inter-agent collision avoidance

is considered via a lower-level trajectory planner. This work was further extended

to a distributed formation control scheme in [66]. In both papers, the method was

designed to allow for multiple template formations and dynamic obstacles in the en-

vironment. Nevertheless, the interaction of humans was only at its highest level, and

the formations were restricted to have a convex shape.

15

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

2.4 Human-in-the-Loop Methods

In addition to fully autonomous multi-agent systems, semi-autonomous systems have

also been studied in the past. In the so-called Human-in-the-Loop systems, a hu-

man operator drives the whole system while tasks such as collision avoidance could

be performed autonomously. The operator can also facilitate high-level and cogni-

tive decision-making processes that are critical in dealing with unforeseen situations

in applications such as search and rescue. One of the main challenges of single-

operator/multi-robot human-in-the-loop systems is how to interpret a single opera-

tor’s commands for coordinating movement of multiple agents.

A rich set of solutions are available in the literature about how to interpret human

actions for a swarm of robots. Mastellone et al. demonstrated a case for ground robots

moving in formation where an operator commands the leader velocity [67]. Authors

in [68] designed an architecture that includes an interface for the human expert at

the highest level. Nagi and others reported a vision-based mechanism to interact

with a swarm of UAVs through human gestures [69]. Tracking fingertips to perform

a cooperative aerial manipulation is investigated in [70]. Applying an end-to-end

abstraction of human touch to rectangular bounding boxes for desired positions of

the robots was proposed in [71] as one possible solution. Researchers in [72] applied

an interface where human would draw a rough estimation of formation shape and the

flock will be brought to balance and stability complying with geodesic constraints.

Other architectures have been investigated with continuous human involvement

where strategies are presented to assist the operator in safe navigation of robots.

Application of direct human force input on the payload carried by a flock of UAVs has

been studied in [11] where the rigid-body dynamics is used to transmit the command

16

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

to leaders in the group. Franchi et al. proposed a bilateral teleoperation framework

in which the operator would be guiding the leader of the group via a velocity-based

damper model focusing on the energetic passivity of the system [73]. Inter-robot and

obstacle-robot interactions have been considered by designing proper potential fields,

and the possibility of splitting or merging has also been considered. In another idea

under the haptic teleoperation domain, Lee et al. devised a multi-layer architecture

where the user command is applied to equations of motions for a set of evolving

virtual points (VPs) [74]. Robots’ interactions with each other or the environment

are modeled with artificial potentials, which affects each VP’s dynamics and finally, a

trajectory controller will take care of following the trajectory evaluated by integrating

the VP dynamics. In contrast, Zhou, Wang, and Schwager proposed an idea where

the human input is interpreted as the orientation and the velocity of a flying virtual

structure, and the user will be assisted with artificial potential forces to account for

other motion constraints [63].

2.5 Summary

In this chapter, first an overview of applications of aerial robotics research was briefly

presented. Next, the importance of multi-drone systems was highlighted, followed

by a review of existing challenges and solutions for their motion control problem.

Continuing on multi-agent control challenges, some of the existing approaches for

formation control were reviewed. Finally, the state-of-the-art on the human-multi-

robot system was surveyed.

Human-in-the-loop approach for swarms of aerial vehicles is still in its early stages,

and existing works in literature are based on reactive methods and potential fields,

17

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

which are simple to implement and can be used in stability control theorems. How-

ever, they can be prone to local minima, not analytically tractable, and may result in

unwanted behaviors. Application of convex optimization for human-in-the-loop con-

trol of multi-agent systems has not been investigated in the past. Optimization-based

methods are usually more computationally expensive than reactive methods. Hence,

the existing literature is mostly developed around offline computations. A few exist-

ing online model-based optimization schemes have not considered agents moving in

formation or continuously receiving guidance from an operator’s command. Finally,

the current optimization-based approaches do not consider the possibility of allowing

the formation surrounding the obstacles, i.e., non-convex formation shapes.

18

Chapter 3

Algorithm Overview, Assumptions,

and Modeling

This chapter presents a high-level and general architecture of the proposed frame-

work for human-in-the-loop control of a flock of drones. Solving real-world problems

requires mathematical models justified by reasonable assumptions. The modeling as-

sumptions are stated and the scope of the thesis is defined. Mathematical models of

the environment, the robots, and the flock’s formation are outlined.

3.1 Algorithm Overview

A general block diagram of the proposed control algorithm is presented in Figure 3.1.

The human operator provides input to the system using a human-to-machine inter-

face. The user input is interpreted as a reference velocity for the entire group. The

agents are controlled by individual trajectory tracking controllers that move them

along a given reference trajectory. The middle components of the algorithm work

19

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

cooperatively to provide well-defined trajectories that comply with the objectives

mentioned in the problem statement (See Section 1.2).

The reference velocity is used as a guideline to find a section of the environment

where the whole flock of drones can pass safely without colliding with obstacles. It

also defines the desired speed and direction of movement for the flock. Obstacle-free

regions of the environment are assigned to each agent based on the projection of

reference formation. An optimization problem is formulated and solved to determine

the best shape for the formation that can be fitted in the obstacle-free regions. This

along with information on surrounding obstacles is used to generate convex linear

collision avoidance constraints.

Figure 3.1: Proposed framework and its components

In the last step, a Model Predictive Controller (MPC) is formulated and solved

as a convex quadratic optimization. The optimizer solves the problem based on the

constraints obtained from the previous step, and the reference velocity for the whole

multi-agent system’s navigation. The human’s input is regulated before passing it to

20

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

the optimization solver using a Proportional-Integral (PI) controller. This controller

compensates for the deviation between flocks velocity and the reference velocity com-

mand.

3.2 Assumptions

The following is assumed throughout the rest of this thesis:

• The environment and its map are known and given. Any process involving the

environmental perception is out of the scope of this work.

• The obstacles in the environment are static and not moving.

• The agents positions in global frame are known. In the indoor laboratory setting

of this thesis, the drone positions are measured in real time using a motion

capture system. Localization in outdoor environments can be achieved using

the global positioning systems (GPS) such as Real-Time Kinematic (RTK) [75]

technology.

• The control algorithm in Section 3.1 is implemented on a central computer

without peer-to-peer communication among the drones.

3.3 System Model

This section presents some of the key mathematical models and definitions that will

be used in the rest of the thesis.

21

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

3.3.1 Problem Statement

Having N ∈ N number of agents {Di|i ∈ I = {1, 2, 3, .., N}}, and No ∈ N static

convex-polygon-shaped obstacles {Oj|j ∈ J = {1, 2, ..., No}}, the goal is to find

optimal real-time trajectories for the agents with four main characteristics:

1. The collective motion of the agents follows the operator’s reference velocity

command vh ∈ Rd where d ∈ {2, 3} is the dimensions of the workspace.

2. Agents avoid collisions with each other and obstacles in the task environment.

3. The agents move within pre-defined desired formation.

4. The trajectory planning and control adhere to physical constraints of the sys-

tem.

3.3.2 Agents

Collision Avoidance Model

Each agent, a drone in this thesis, is modeled as a sphere and its position qi ∈ Rd is

defined as the center of the sphere. The space occupied by the ith drone (i ∈ I) is

denoted by Di which is dependent on sphere’s radius ri ∈ R+ and drones position qi:

Di(qi, ri) = {p + qi : ||p||2 ≤ ri, p ∈ Rd, d ∈ {2, 3}} (3.3.1)

This model has been widely-accepted and well-adapted across the UAV literature

[17, 52, 76]. More advanced models can be developed to consider aerodynamic effects

such as downwash force [4]. These forces can be reflected in the geometrical shape by

using a larger z-axis in the ellipsoid model.

22

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

Agent Dynamics

Each agent is considered to have the mass mi ∈ R+ concentrated at the center of Di.

A double integrator dynamics model is used to compute the evaluation of its states

over time (analogous to [52]). Having the vectors defined as in Table 3.1,

Parameter Notation d = 2 d = 3

Position qi [qxi
qyi]

T [qxi
qyi qzi]

T

Velocity q̇i [q̇xi
q̇yi]

T [q̇xi
q̇yi q̇zi]

T

Control Input ui [uxi
uyi]

T [uxi
uyi uzi]

T

Table 3.1: Position, Velocity, and Control Input Definitions

the dynamical model can be written as:

qi[k + 1] = qi[k] + ∆T q̇i[k] +
∆T 2

2mi

ui[k] (3.3.2)

q̇i[k + 1] = q̇i[k] +
∆T

mi

ui[k] (3.3.3)

where ∆T ∈ R+ is the discretization step and k shows the time step.

This model is simple and advantageous for use in computationally intensive ap-

proaches such as model predictive control problems. Although not originally in this

form, the dynamics of a quad-rotor can be effectively rendered into those of a double

integrator through low-level controllers.

3.3.3 Environment Model

As stated in Section 3.2, the task environment is assumed to be known. In fact, at

each time step, the information for a window of W [k] : lW [k] ≤ x ≤ uW [k] with

23

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

respect to the world frame is known, where x ∈ Rd and lW ,uW ∈ Rd are the window

boundaries. The obstacles {Oj} are assumed to be static and be represented as convex

polyhedra, i.e.,

Oj = {x ∈ Rd : Aojx ≤ boj , Aoj ∈ Rmj×d, boj ∈ Rmj} (3.3.4)

Note that obstacles of other shapes can be enclosed inside polyhedrons. For colli-

sion avoidance purposes, a dilated version of obstacles {Ōj} will be used. The dilation

is done by half of the volume of the largest robot as follows:

Ōj = {x ∈ Rd : if x /∈ Ōj =⇒ Di(x, rmax) ∩ Oj = ∅} (3.3.5)

where rmax = max{r1, r2, .., rN}. Consequently, the obstacle-free Wf [k] area can be

defined by subtracting the dilated obstacles from the surrounding environment as

follows:

Wf [k] =W [k]\{Ōj} (3.3.6)

3.3.4 Formation Definition

A formation is defined by a set of vectors S = (s1, s2, ..., sN) which denote the position

of each agent with respect to the leader’s position. If the team’s leader is located at

q1 ∈ Rd, the position of each members would be given by:

qi = q1 + si (3.3.7)

24

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

Ideally, s1 = 0 which is the relative position of the leader with respect to it-

self; however, the leader’s position may need adjustment due to collision avoidance

constraints as it will be illustrated in Section 4.2. A reference formation Sr =

(0, sr2, ..., s
r
N) is defined as a priori to the problem. Furthermore, multiple forma-

tions can be defined as a prioritized list Ls = {Sr
1 , ...,Sr

k} where the prospective

formation can be searched based on the highest priority to the lowest. Additionally,

the prospective formation is obtained through a convex optimization approach that

will be presented in the next chapter.

25

Chapter 4

Exploring Prospective Formations

4.1 Obstacle-Free Regions Assignment

Given a reference velocity from the operator vh, the reference future positions of

the agents can be projected in the direction of vh. However, these target positions

{q̂t
i} where q̂t

i ∈ Rd may not be always located in an obstacle-free space. A region

Fi is assigned to any point q̂t
i selected from W [k] that would satisfy the following

properties:

1. The region is free of obstacles and Fi ⊂ Wf .

2. It is a convex subset of Rd. In other words, for any two distinct points x1,x2 ∈

Rd inside Fi, all points on the line segment connecting the two y = τx1 + (1−

τ)x2 would also lie inside the region (y ∈ Fi) where 0 ≤ τ ≤ 1.

3. The region is a polyhedron represented by a set of linear inequalities, i.e.,

Fi = {x ∈ Rd : Asx ≤ bs, As ∈ Rns×d,bs ∈ Rns} (4.1.1)

26

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

where ns ∈ N is the number of hyperplanes defining the outer edges of the

polyhedral spatial set.

The first property is necessary to avoid collisions with obstacles; however, it is

not sufficient. To obtain an optimal formation using convex optimization techniques,

the regions must be convex so they can be used as constraints in the optimization

problem formulation.

The third property aims for polyhedral-shaped regions that are aligned with the

environment representation (see Equation 3.3.4). Each side of a polyhedral obstacle

is a part of a hyper-plane in the space where the obstacle would be located on one side

of it. These hyper-planes help define an obstacle-free space assigned to a given point

in the workspace. Algorithm 1 outlines the steps involved in assigning the regions.

For every given point q̂t
i, a convex region Fi is initialized by the boundaries of

the current workspace Aw. The point is projected on all the hyper-planes defining

the sides of an obstacle O. Not all the projections would lead to a point on the

O; hence, only the hyper-planes with such property are returned as the output of

GetSidesWithProjection function in Line 6. If such hyper-planes were found, the

one with the shortest distance to the point would be appended to Fi. Function

GetClosestHyperPlane returns the hyper-plane with the shortest distance to the point.

In addition, Line 9 highlights the fact that the hyper-plane must point towards the

right half-space that does not include the obstacle.

There could be cases where the simple projection of q̂t
i may not lead to a point

on O. In such scenarios, all half-spaces described by the sides of the obstacles but

pointing outward G would be considered as candidates to be appended to Fi (Line

11). Finally, among the members of G, which includes qt
i, the hyper-plane with the

27

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

Algorithm 1: Assigning Obstacle-free Regions

Data: Target Positions {qt
i}, Obstacles {Ōj}, Workspace Boundary Aw

Result: Convex Regions: {Fi}
1 for i ∈ I do
2 q← qt

i;
3 Fi ← Aw;
4 for O ∈ {Ōj} do
5 Ao ← GetConvexRepresentation(O) ;
6 {(an, bn)} ← GetSidesWithProjection(q, Ao);
7 if |{(an, bn)}| > 0 then
8 (a, b) ← GetClosestHyperPlane(q,{(an, nn)});
9 (a, b) ← (−a,−b) ;

10 else
11 G = {(an, bn)} ← ReverseAllHyperPlanes(Ao);
12 for (an, bn) ∈ G do
13 if aT

nq > bn then
14 G← RemoveFromSet(G, an, bn));
15 end

16 end
17 (a, b) ← GetFurthestHyperPlane(G, q);

18 end
19 Fi ← Concatenate(Fi, a, b);

20 end

21 end

furthest distance (Line 17) is selected to be appended to Fi.

Algorithm 1 iterates through all the agents and repeats the above-stated procedure

for all the obstacles in W [k]. This approach is deterministic, and would work regard-

less of whether the given point is inside an obstacle or not. For more illustration,

Figure 4.1 demonstrates an example where one pentagonal obstacle is considered in

a 2-dimensional workspace. Matching colors between the scatter points and the sides

of the obstacle are used to show which side (half-space) of the obstacle is assigned

to the point. Furthermore, Figure 4.2 depicts an instance where two obstacles are

28

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

present in the workspace, and the green shaded area is the result of concatenating

two half-spaces {x ∈ R2|aT
1 x ≤ b1} and {x ∈ R2|aT

2 x ≤ b2}, on top of the workspace

boundary Aw.

−6 −4 −2 0 2 4 6
X

−6

−4

−2

0

2

4

6

Y

Figure 4.1: Example output of Algorithm 1. Solid lines show the boundary of the
obstacle, and the color of the scatter dots indicates which side (hyper-plane) of the

pentagonal obstacle it has been assigned to.

29

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

O1

O2

Aw = {x ∈ R2|Awx ≤ bw}

q̂t
i

aT
1 x ≤ b1 aT

2 x ≤ b2

Fi

Figure 4.2: Green area (Fi) is the concatenation of all half-spaces with Aw as a
result of Algorithm 1 for pointq̂t

i in between two obstacles (O1 and O2).

4.2 Optimal Formation

Obstacle-free regions {Fi} defined as a linear inequality can be used to formulate a

convex optimization problem to achieve optimal formation in the next step. Main-

taining a reference formation becomes critical in applications where robots sensing

or communication capabilities are limited. There may be other application-related

reasons that necessitate the agents following a certain formation. In adhering to a

reference formation, the agents optimal formation must generally satisfy the following

30

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

criteria:

• The distance and the angle between the agents have a minimum deviation from

the reference shape.

• All the agents must be located in obstacle-free spaces.

• All agents must maintain a safe distance from each other.

The deviation between the optimal formation S and the reference formation Sr

can be denoted as ∆s(Sr,S) = (δs1, δs2, δs3, ..., δsN) where

δsi = sri − si, i ∈ I, sr1 = 0 (4.2.1)

The optimal formation is the solution to the following optimization problem:

minimize
δsi

∑
i∈I

δsTi δsi (4.2.2)

subject to qt
i = q̂t

1 + sri + δsi (4.2.3)

qt
i ∈ Wf (4.2.4)

||qt
i − qt

j|| ≥ ri + rj, i ̸= j ∈ I (4.2.5)

Constraint (4.2.4) defines the obstacle-free condition and (4.2.5) represents the

minimum distance requirements to avoid inter-agent collisions. Unfortunately, the

optimization problem defined through equations (4.2.2) to (4.2.5) is generally non-

convex making it unsuitable for real-time applications. A linear relaxation is intro-

duced to overcome this issue.

It should be noted that the leader’s initial position q̂t
1 is not necessarily in Wf

31

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

but the obstacle avoidance constraints would ensure that the eventual solution is in

the obstacle-free space.

The safe regions {Fi} constructed using Algorithm 1 are used to estimate the

obstacle-free workspace Wf in (4.2.4). The minimum distance constraint stated in

(4.2.5) is a mutual relation that must be satisfied between the positions of any pair

of agents in the flock. Having s1 defined as the leader’s position in the formation, the

distance between any two agents i ̸= j ∈ I can be preserved by the following linear

inequality:

eTij(qi − qj) ≥ dij (4.2.6)

where eij is the unit vector defined between the relative position of si and sj as follows:

eij =
sri − srj
||sri − srj ||

(4.2.7)

and dij ∈ R+ is the minimum safe distance between the two agents which must satisfy

dij ≥ ri + rj.

Using (4.1.1), (4.2.6), and (4.2.7), the optimization problem (4.2.2) can be re-

written as:

minimize
δsi

∑
i∈I

δsTi δsi (4.2.8)

subject to eTij
(
(sri + δsi)− (srj + δsj)

)
≥ dij (4.2.9)

qt
i = q̂t

1 + sri + δsi (4.2.10)

Asiq
t
i ≤ bsi (4.2.11)

The constraint in (4.2.9) would keep the agents at safe distances from each other

32

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

but it would impose strict boundaries on the domain of the problem. This could lead

to infeasible scenarios. In order to tackle this issue, we would be using a number of

reference formations as mentioned in Section 3.3.4. The convex optimization problem

(4.2.8) is solved for all these reference formations in Ls at the same time by taking

advantage of parallel computing. This approach would enable us to choose the next

available optimal solution based on a predefined priority in case the previous refer-

ence formation is infeasible. For instance, in the case of a flock with three agents,

with three reference formations defined as shown in Figure 4.3, the optimization for-

mulated in (4.2.8) can be solved in parallel with respect to each reference. They are

prioritized such that Sr
1 has the highest rank and Sr

3 has the lowest. Considering this

arrangement, Figure 4.4 depicts the result for three different scenarios. For instance,

in the middle scenario, the optimal formation can be obtained both based on Sr
2 and

Sr
3 , but Sr

2 is considered since it has a higher priority.

33

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
X

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Y

Sr
2

Sr
1

Sr
3

Figure 4.3: Three reference formations where Sr
1 has the highest priority and Sr

3 has
the lowest priority.

−1.0 −0.5 0.0 0.5 1.0
X

−1.0

−0.5

0.0

0.5

1.0

Y

−1.0 −0.5 0.0 0.5 1.0
X

−1.0

−0.5

0.0

0.5

1.0

Y

−1.0 −0.5 0.0 0.5 1.0
X

−1.0

−0.5

0.0

0.5

1.0

Y

Figure 4.4: The three reference formations in Figure 4.3 can be used to find optimal
formation in different scenarios.

34

Chapter 5

Collision Avoidance

5.1 Path Finding

The formation is defined with respect to the leader’s expected position q̂t
1 and is

optimized by solving the optimization problem in (4.2.8). At the beginning of each

iteration, q̂t
1 is determined based on the operator’s velocity command. The expected

position is obtained using:

q̂t
1 = q1 + Thvh (5.1.1)

where Th ∈ R+ is the time horizon used to predict and optimize the trajectories.

This relies upon the fact that the operator would want to move the agents in the

particular direction of vh for the purpose of achieving the task objectives. It is

reasonable to assume that the operator would guide the flock in a direction that is

more or less obstacle free or feasible to move through. Moreover, equation (5.1.1) is

used in optimization (4.2.8) and leader’s target position qt
1 is re-calculated through

35

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

(4.2.9).

After determining the optimal formation through (4.2.8 - 4.2.11), the target po-

sitions of each individual agent would be uniquely determined using (4.2.10). All

members of {qt
i} would be in an obstacle-free region and the goal is to find a trajec-

tory from current position qi to the expected position qt
i. However, since the direct

path between qi and qt
i, denoted by Pi, is not guaranteed to be collision-free, colli-

sion avoidance constraints cannot be directly derived based on these points. A path

projection method is required to account for possible obstacles in the area.

Algorithm 2 is introduced to obtain an obstacle-free path based on the geometrical

properties of obstacles in the environment. Initially, the direct line between qi and

qt
i is considered as a candidate, and if it does not intersect with any of the obstacles,

it would be selected as Pi.

If that is not the case, the boundaries of each obstacle bd(Ō) would be used to

adjust the path. Algorithm 2 finds the path in a plane aT
p x = bp passing through p1

and pn. The intersection of this plane and the colliding obstacle, would be a convex

polygon C which can be represented by its vertices Co = (c1, ..., coc). Algorithm 2

links p1 and pn by a feasible path based on a subset of Co. For any two points on

a polygon, there exist two paths consisting of its vertices (line 12). After connecting

the start and the destination points to these two paths, a refinement process is carried

out on the given paths to make them shorter and remove the unnecessary vertices

(line 15). For three-dimensional scenarios d = 3, this procedure is repeated across a

discrete set of planes {(ap, bp)} which all contain p1 and p2. Ultimately, the shortest

path is selected among all the paths in different intersecting planes.

As Algorithm 2 receives dilated versions of the obstacles, there would be a safe

36

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

Algorithm 2: Obstacle Boundary Guided Path Finding

Data: Start: qi, Goal: qt
i, Obstacles: {Ōj}

Result: Feasible path Pi = (qi,p2, ...,pn−1,q
t
i)

1 L(qi,q
t
i)← LineBetween2Points(qi,q

t
i);

2 if IsCollisionFree(L(qi,q
t
i)) then

3 Pi ← L(qi,q
t
i)

4 else
5 {Ōcj} ← FindCollidingObstacles(L(qi,q

t
i), {Ōj});

6 {(ap, bp)} ←FindPlanesPassingThrough(qi,q
t
i);

7 for (ak, bk) ∈ {(ap, bp)} do
8 Co ← Intersection((ak, bk), bd({Ōcj}));
9 cs ← ClosestVertex(Co, qi);

10 ce ← ClosestVertex(Co, qt
i);

11 P<1>,P<2> ← TwoPossiblePaths(Co, cs, ce) ;
12 P<1>,P<2> ← RefinePaths(P<1>,P<2>) ;
13 P<1> ←AddVertices(P<1>, qi, q

t
i);

14 P<2> ←AddVertices(P<2>, qi, q
t
i);

15 P<1>,P<2> ← RefinePaths(P<1>,P<2>) ;
16 Pik ← PickShortestPath(P<1>,P<2>);

17 end
18 Pi ← PickShortestPath({Pik});
19 end

distance between the computed path Pi and the original obstacles. Figure 5.1 demon-

strates three examples of pathfinding in R3. The direct line between q1 and qt
1 is

already inside Wf . However, the paths between (q2,q
t
2) and (q3,q

t
3) are more com-

plex due to the presence of obstacles which create a non-convex collision-free space

between the start and end points.

The geometric paths obtained at this stage do not guarantee collision-free solutions

since inter-agent collision was not considered during their computation. Moreover,

they may not be dynamically feasible and can only be used as an starting point

for what the future trajectory should be. The following section introduces suitable

collision avoidance constraints to ensure the resulting agent trajectories comply with

37

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

q2

qt
2

qt
1

q1

qt
3

q3

O1

O2

Figure 5.1: Three sample outputs of Algorithm 2 in three-dimensional space.

the goals outlined in the problem statement. Each path indicates the direction in

which the agent should move to reach its temporarily-set goal qt
i from its current

position qi. This helps us consider only a smaller convex section of the generally

non-convex Wf and enables us to optimize the trajectories using common practices

of convex optimization.

38

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

5.2 Collision Avoidance Constraints

In this section, a method is presented to create convex constraints for collision avoid-

ance around the results of the previous section. The general procedure is outlined in

Algorithm 3. This algorithm is inspired by the solutions provided in [16] and [17], in

which a convex polyhedral region Ai are generated along each path separately. Suit-

able inter-agent collision avoidance constraints would be generated for any two Ai

and Aj that have a non-empty intersection. Finally, the path is refined to determine

the next way-points position.

The paths generated by Algorithm 2 generally consist of multiple sections. This

would require solving a time allocation problem for each section which is not ideal for

real-time applications. Moreover, depending on the target position qt
i, Algorithm 2

may result in paths with non-reachable lengths within the time horizon. Consequently,

each path P = (p1,p2, ...,pNp) is truncated to its first segment as the next segments

are considered in the future iterations. Additionally, the first segment is pruned to

have a maximum length of lmaxi
∈ R+. This value accounts for the time horizon of

the problem and the commanded velocity by the operator. Equation (5.2.1) shows

how this value is computed.

lmaxi
=

Th||vh||2
|uT

i vh|
(5.2.1)

where ui is the unit vector in the direction of the first segment of the path (i.e.

p2 − p1). This line segment is annotated by Ps
i = (ps

1,p
s
2) as in Line 3 in Algorithm

3.

39

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

Algorithm 3: Collision Avoidance Constraints and Next Way-points Eval-
uation
Data: {Pi}, {Ōj}, {Di}
Result: Convex Regions: {Ai}, Linear Constraints: M, Next

way-points:{qni
}

1 Ai ← ∅, Oc
i ← {Ōj}, qni

← ps
i2

for all i ∈ I;
2 for i ∈ I do
3 Ps

i ← LineSegment(Pi, lmax);
4 (Abox,bbox)i ← CreateBoundingBox(Ps

i);
5 (C,d)← EllispoidAroundLine(Ps

i);
6 Ai ← Ai ∩ (Abox,bbox)i;
7 for ≀ ∈ {Ōj} do
8 if ≀ ∩ Ai = ∅ then
9 Oc

i ← Oc
i \ ≀

10 end

11 end
12 Ai ←AddSeparatingHyperPlanes(C,d,Oc

i);

13 end
14 {Āi} ← GetInflatedRegions({Ai}, {Di});
15 Gcoll ← CheckIntersections({Āi});
16 ({Ai},M)← InterAgentConstraints({Ai}, Gcoll, {Di}) ;
17 {qni

} ← EvaluateNextWayPoints({Ai}, {Ps
i });

5.2.1 Creating the Bounding Box

To reduce the search area and thus decrease the computation time, a bounding box is

initialized around each segment Ps
i . The idea is similar to [17] and helps concentate

the convex region around the reference path and exclude the non-colliding and irrele-

vant obstacles (Line 4 in Algorithm 3). The box is represented by a tuple (Abox,bbox)i

which is basically a rectangular cube around Ps
i :

(Abox,bbox)i ≡ {x ∈ Rd|Aboxi
x ≤ bboxi

} (5.2.2)

In case of d = 3, Abox = [a1| ... |a6]
T and bbox = [b1 ... b6]

T . To compute

40

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

each hyper-plane ak ∈ R3, k ∈ {1, 2, ..., 6}, a local Cartesian coordinate (u,w, v) is

assigned where ui is aligned with Ps
i . The resulting rectangular polyhedron has side

lengths lu, lw and lv. In this thesis, lu = ||Ps
i ||2 + ϵ, and lw = lv ≥ q̇2max

umax
[17]. ||Ps||2

denotes the Euclidean length of the line segment Ps, and ||Ps||2 ≫ ϵ ∈ R+ is used

to avoid numerical errors. Moreover, q̇max and umax refer to the maximum allowable

value of velocity and acceleration, respectively. For d = 2, the bounding boxes can

be computed by considering the same method over only two axes, which results in

Abox = [a1|a2|a3|a4]
T with ak ∈ R2, k ∈ {1, 2, 3, 4} and bbox = [b1 b2 b3 b4]

T .

5.2.2 Separating Hyper-Planes

The bounding box designed in the previous section may not be collision-free. A

method similar to IRIS [16] is employed to compute separating hyper-planes from the

obstacles. This approach requires an initial ellipsoid to find tangent planes onto the

obstacles. An ellipsoid can be generally defined as:

E = {x ∈ Rd|(x− d)TP−1(x− d) ≤ 1} (5.2.3)

where d ∈ Rd is the center of the ellipsoid and P ≻ 0 is a symmetric positive-definite

matrix. A second way to define E is by projecting the unit ball:

E = {Cx + d|x ∈ Rd, ||x||2 ≤ 1,C = P
1
2} (5.2.4)

The approach in [16] involves an iterating approach to maximize the volume of

the ellipsoid inscribed in the polyhedron followed by a quadratic optimization to find

the separating hyper-planes. The IRIS algorithm does not generate convex regions

41

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

in a certain predefined direction, produces a large overlap between multiple regions

in close proximity, and can be too slow for real-time computations because of its

iterative nature. However, in this thesis, computation efficiency and the ability to

generate convex regions in a specific direction (namely, Ps
i) are important features.

Therefore, the iterative procedure is skipped here and instead, a stretched ellipsoid is

fitted in the direction of Ps
i . Using this ellipsoid, the separating hyper-planes tend to

be parallel with the given line segment. Hence, the designed ellipsoid must cover Ps
i

along its longest axis. As a result, the center of the ellipsoid is placed in the middle

of the corresponding line segment, i.e., d = 1
2
(ps

1 + ps
2). The length of E ’s axes are

proportional to eigenvalues of P. In general, P can be decomposed as P = RTSR

where S is diagonal and R is a rotation matrix.

Without loss of generality, for d = 3, it is assumed S = diag(λ1, λ2, λ3) where

λ1 ≥ λ2 ≥ λ3 are real positive numbers. The length of each axis is 2
√
λk for k ∈

{1, 2, 3}. Therefore, λ1 =
(

||Ps
i ||
2

)2

is required to stretch the ellipsoid along the line

Ps
i . Moreover, the rotation matrix must satisfy the following condition:

ui = R[1 0 0]T (5.2.5)

where ui is the unit vector in the direction of Ps
i . To shape the ellipsoid in the desired

way, the second and third axes must be relatively small, i.e., λ1 ≫ λ2 ≥ λ3. Similar

approach can be used to compute the ellipsoid when d = 2 with less complexity. Lines

5 and 12 in Algorithm 3 define the ellipsoid and construct the separating hyper-planes.

Figure 5.2 shows an example of a bounding box (dashed line) around a line segment

(in green). After considering the colliding obstacle, a separating plane tangent to the

obstacle is calculated based on the stretched ellipsoid (in blue).

42

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

Figure 5.2: A simple 2-D demonstration of lines 4-12 in Algorithm 3. There are two
obstacles and with their dilated boundary also depicted. The left image shows the
initial bounding box and the stretched ellipsoid around the green line (Ps

i). The
right image depicts the detected colliding obstacle (red), and the separating plane

that modifies the bounding box.

5.2.3 Inter-Agent Collision Avoidance

The polyhedra generated based on the method in Sections 5.2.1 and 5.2.2 are in

obstacle-free space; nevertheless, inter-agent collisions are still possible. First, the

possibility of collision (intersection) between any two convex regions Ai and Ak where

i ̸= k ∈ I is investigated. Next, suitable constraints for collision avoidance associated

with each pair of agents are introduced.

Collision between a set of polyhedral regions {Ai} can be annotated by a undi-

rected graph Gcoll = (Vr, Ecoll) where each Ai is assigned to vi ∈ Vr and each edge

(vi, vk) ∈ Ecoll represents the collision between Ai and Aj. Considering Āi to be an

inflated version of Ai by the radius of Di similar to (3.3.5), if Āi ∩ Āk ̸= ∅, then a

collision is detected (Line 14). Line 15 in Algorithm 3 computes Gcoll based on the

following:

(vi, vk) ∈ Ecoll ⇐⇒ Āi ∩ Āk ̸= ∅ (5.2.6)

43

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

For any (vi, vk) ∈ Ecoll, where ||P s
i ||2 ≤ ||P s

k ||2, six different relaxations of the

minimum distance constraint can be considered.

• Priority 1:

uT
i (qi − qk) ≥ dik ∨ uT

i (qi − qk) ≤ −dik (5.2.7)

• Priority 2:

uT
k (qi − qk) ≥ dik ∨ uT

k (qi − qk) ≤ −dik (5.2.8)

• Priority 3: Considering aT
spx = bsp as the bisector hyper-plane between qi and

qk, two parallel hyper-planes forming a slab with thickness dik and its center-

plane on the bisector can be added to Ai and Ak, separately. This usually

is a more conservative constraint than equation (5.2.7) or (5.2.8), however, it

guarantees the minimum distance of dik between two polytopes Ai and Ak.

Depending on the current positions of the agents, only one of the constraints is ap-

plicable. Thus, based on feasibility and priority, one of the constraints is chosen to

help avoid inter-agent collision. It should be noted that the agents are assumed not

to be in collision at the beginning of the procedure (t = 0) and ||qi − qk|| ≥ dik.

The inter-agent constraints are divided into two categories. One is the splitting

planes which result in the updated version of {Ai}. The other is a set of linear

inequalities where each, for two agents i ̸= k ∈ I at time step κ can be represented

as follows: amt

amr

T qt[κ]

qr[κ]

 ≤ bmtr (5.2.9)

where ami
, amk

∈ Rd and bmik
∈ R obtained from either (5.2.7) or (5.2.8). Each of

these equations will be stored inM as a tuple m = (i, k, κ, ami
, amk

, bmik
) as per Line

44

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

16 in Algorithm 3.

5.2.4 Next Way-Points

The finalized convex regions calculated by adding necessary collision constraints (line

16) may result in infeasible way-points. In other words, for initially-set next way-

points, qni
= ps

i2
, qni

∈ Ai may not be true anymore due to the possibility of adding

bisector hyper-planes. By trimming the extra part of line Ps
i , the closest point on it to

ps
i2

which also satisfies qni
∈ Ai would be used as the next way-point. Mathematically,

minimize
x∈Rd

||x− ps
i2
||

subject to x ∈ Ai

x = αps
i1

+ (1− α)ps
i1

0 ≤ α ≤ 1

would provide the next way-point qni
. However, this can be computed geometrically

by obtaining the intersection between polyhedron hyper-planes of Ai and Ps
i . This is

computationally efficient and can be solved in linear time. Line 17 in Algorithm 3 is

the final step for computing the next way-points.

45

Chapter 6

Model-based Optimization

As stated in Section 1.2, the goal is to generate collision-free trajectories for each

agent. This can be expressed as an optimization problem. In this thesis, the problem

is formulated as a Model Predictive Controller (MPC) with a Receding Horizon. In

this approach at each time-step, a sequence of control inputs is obtained by solving

an optimization problem over a receding control horizon Th. The constraints of the

optimization problem include the vehicles’ dynamics, actuation limits, and collision-

related constraints due to obstacles and/or other agents in the task environment.

The computations are carried out centrally assuming all agents communicate their

data with a central computation unit. In the following sections, the optimization

formulation for a 3-dimensional case (d = 3) will be presented. The 2-dimensional

case can be derived similarly by disregarding the third dimension.

46

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

6.1 Dynamic Model-Related Constraints

Equations (3.3.2) and (3.3.3) yield the following discrete-time state-space equations

for each agent:

x̂[k + 1] = Adx̂[k] + Bdu[k] (6.1.1)

where the state vector is x̂ = [qx q̇x qy q̇y qz q̇z]
T and k is the time step. The system

dynamic matrices will be:

Ad =

Ads 02 02

02 Ads 02

02 02 Ads

 , Bd =

Bds 0̄2 0̄2

0̄2 Bds 0̄2

0̄2 0̄2 Bds

 (6.1.2)

where 0̄2 is a two-element zero vector and 02 is a square 2× 2 zero matrix. Matrices

Ads and Bds are also defined as follows:

Ads =

1 ∆T

0 1

 , Bds =
1

2mi

∆T 2

2∆T

 (6.1.3)

The number of steps in the prediction horizon is K ∈ N. For notation simplicity,

the initial state is denoted by x0 = x[0], and the agent subscript i ∈ I is dropped.

Using equation (6.1.1), the relation between the sequence of control inputs u and

state vectors x̂ can be defined as following:

x̂ = Adx0 + Bd u (6.1.4)

47

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

where

x̂ =

x̂[1]

x̂[2]

...

x̂[K]

, u =

u[0]

u[1]

...

u[K − 1]

, Ad =

Ad

A2
d

...

AK
d

(6.1.5)

Bd =

Bd 06×3 06×3 . . . 06×3

AdBd Bd 06×3 . . . 06×3

...
...

. . .
...

...

AK−1
d Bd AK−2

d Bd . . . AdBd Bd

(6.1.6)

where 06×3 defines a 6 × 3 dimensional zero matrix. An important early result of

equation (6.1.4) is that the predicted states x̂ can be expressed as an affine function

of control inputs. This enables us to re-write the constraints of states (i.e. positions

and velocities) in terms of a linear combination of control inputs u.

Finally, for a team of robots with individual dynamics represented by (6.1.1 -

6.1.4), the dynamics for the whole system can be written as:

X̂ = ΦX0 + ΘU (6.1.7)

where X̂ ∈ R6KN , X0 ∈ R6N , and U ∈ R3KN are obtained by stacking x̂i’s, x0i
’s,

and ui’s on top of each other, respectively. Furthermore, Φ = diag(Ad1
, ...,AdN

) and

similarly, Θ = diag(Bd1
, ...,BdN

) where diag is defined in Appendix Section A.1.

48

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

6.2 Objective Function

The optimization is a minimization problem with an objective function which is com-

posed of four parts: velocity error, control effort, final-state cost, and formation cost.

6.2.1 Velocity Error

This component aims to minimize the deviation of each robot’s velocity from the

reference command provided by the human operator. The error penalty is defined as

a quadratic function:

Jv =
∑
i∈I

k=K∑
k=1

(q̇i[k]− vh)T (q̇i[k]− vh) (6.2.1)

By defining Iv as in Appendix A.2, Iv = diag(Iv, ..., Iv) resulting in Iv ∈ R3KN×6KN ,

and by concatenating the reference velocity vectors Vh = [vT
h . . .vT

h]T ∈ R3KN , equa-

tion (6.2.1) can be reformulated as:

Jv(U) =
1

2
UTQvU + fTv U + rv (6.2.2)

where:

Qv = 2ΘT ITv IvΘ (6.2.3)

fv = 2ΘT ITv IvΦX0 − 2ΘT ITvVh (6.2.4)

rv = XT
0Φ

T ITv IvΦX0 − 2VT
h IvΦX0 + VT

hVh (6.2.5)

49

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

6.2.2 Control Effort Cost

The following quadratic cost term is added to lower the control effort:

Ju(U) =
1

2
UTQuU (6.2.6)

where Qu = diag(Ru, ...,Ru), 0 ≺ Qu ∈ R3KN×3KN , and Ru ∈ R3×3 is the penalty

weight matrix for control input vectors.

6.2.3 Final State Cost

Based on the information extracted from the environment in previous sections, the

agents can be guided using the desired final state at the end of the prediction horizon.

Letting xni
∈ R6 be the desired final state for the ith vehicle, a quadratic cost function

can be defined as follows:

Jf =
∑
i∈I

(x̂i[K]− xni
)T (x̂i[K]− xni

) (6.2.7)

Knowing that x̂[K] = If x̂ where If = [06×6(K−1) I6] and I6 is a 6× 6 identity matrix,

the objective function in (6.2.7) can be written in terms of the control inputs U:

Jf (U) =
1

2
UTQfU + fTf U + rf (6.2.8)

50

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

where Qf , ff , and rf are calculated as follows:

Qf = 2ΘT ITf IfΘ (6.2.9)

ff = 2ΘT ITf IfΦX0 − 2ΘT ITf Xn (6.2.10)

rf = XT
0Φ

T ITf IfΦX0 − 2XT
nIfΦX0 + XT

nXn (6.2.11)

where If = diag(If , If , ..., If) ∈ R6N×6KN is a block-diagonal matrix. In addition,

Xn ∈ R6N is the vertical concatenation of all xni
’s.

Desired Final State

The final state vector xni
is composed of position and velocity values. The position

variables can be determined according to the evaluated next way-points in Subsection

5.2.4. Each way-point qni
lies on Pi, and the direction of movement at qni

along its

associated path eni
∈ R3 is the desired direction for each agent. Thus, assuming the

desired velocity at this way-point q̇ni
to be:

q̇ni
= αi(v

T
h eni

)eni
(6.2.12)

where αi ∈ R, will lead to

xni
= ITp qni

+ ITv q̇ni
(6.2.13)

51

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

where the definition of Ip and Iv can be found in Appendix A.2. Moreover, the velocity

coefficients αi can be determined analytically by minimizing the following function:

f = (
∑

q̇i − nvh)T (
∑

q̇i − nvh) (6.2.14)

=
∑

q̇T
i q̇i + 2

∑
i ̸=j

q̇T
i q̇j − 2n(

∑
vT
h q̇i) + n2vT

hvh (6.2.15)

Minimizing f with respect to αi results the following system of equations:

Aα

α1

...

αn

 = bα =⇒
[
aij

]
ᾱ =

b1
...

bn

 (6.2.16)

where

aii = (vT
h eni

)2

aij = (vT
h eni

)(vT
h enj

)(eTni
enj

)

bi = n(vT
h eni

)2

(6.2.17)

Finally,

ᾱ = (AT
αAα)−1AT

αbα (6.2.18)

6.2.4 Formation Cost

Inasmuch as minimum deviation from the reference formation is desired, the following

term is introduced to control the shape of the flock over the prediction horizon.

Given a formation S = (s1, s2, s3, ..., sN) with s1 = 0, deviation can be expressed as∑
i ̸=j((qi − qj) − (si − sj))

2. In the same fashion, it can be re-written in terms of

52

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

control inputs as follows:

Js =
1

2
UTQsU + fTs U + rs (6.2.19)

where

Qs = ΘT ITpΛsIpΘ (6.2.20)

fs = ΘT ITpΛsIpΦX0 + ΘT ITp λs (6.2.21)

rs =
∑
k

∑
i

∑
j ̸=i

δsTijδsij +
1

2
XT

0Φ
T ITpΛsIpΦX0 + λT

s IpΦX0 (6.2.22)

in which Λs is a square matrix with (3×K ×N) rows as following:

Λs = 2×

2(N − 1)Is −2Is . . . −2Is

−2Is 2(N − 1)Is . . . −2Is
...

...
. . .

...

−2Is −2Is . . . 2(N − 1)Is

(6.2.23)

and

λs = −4×

∑
j δs1j
...∑

j δs1j∑
j δs2j
...∑

j δsNj

(3KN)×1

(6.2.24)

where δsij = si − sj and Is is the identity matrix with 3K rows.

53

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

6.3 Constraints

There are four categories of constraints that limit each vehicle’s movement: 1) actu-

ation limits, 2) continuity of control inputs, 3) obstacle-free convex regions of states,

and 4) inter-agent collision avoidance constraints. They all will be formulated as

linear convex inequality constraints in the subsequent sections.

6.3.1 Actuation Maximum Levels

Each vehicle’s input range must lie inside the actuator’s physical limitation which can

be considered as:

Umin ≤ U ≤ Umax (6.3.1)

where Umin,Umax ∈ R3KN are stacked vector of each vehicle’s actuation limits.

6.3.2 Continuity of Control Inputs

To preserve the continuity and smoothness of the control input signal, the variation

of consecutive values of u must not exceed a certain threshold. Therefore,

−

δux

δuy

δuz

 ≤ u[k + 1]− u[k] ≤

δux

δuy

δuz

 (6.3.2)

where δue ∈ R+, for e = {x, y, z}. The constraint in (6.3.2) can be written for all

the robots and for k = −1, 0, ..., K − 2 where k = −1 is reserved for the last time

step of the previous iteration. By concatenating all the equations together, the linear

54

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

inequality in the following form is derived:

AcontU ≤ bcont (6.3.3)

where Acont ∈ R6(K−1)N×3KN and bcont ∈ R6(K−1)N .

6.3.3 Convex Regions

Convex obstacle-free polyhedral regions generated by Algorithm 3 {Ai} can be rep-

resented by a linear inequality:

qi ∈ Ai ⇐⇒ Aciqi ≤ bci (6.3.4)

For each single agent at one step, RHS of (6.3.4) can be written as AciIpxi ≤ bci .

In terms of xi, the constraint will be Aci
xi ≤ bci

where Aci
= diag(AciIp, ...,AciIp)

and bT
ci

= [bT
ci
, ...,bT

ci
]. Similarly, in terms of X, all constraints can be concatenated

as ΨcX ≤ Γc where

Ψc =

Ac1
0 . . . 0

0 Ac2
. . . 0

...
...

. . .
...

0 AcN

, Γc =

bc1

bc2

...

bcN

(6.3.5)

As a result, using (6.1.7), we can write obstacle-free regions constraints in terms of

the decision vector U as follows:

HcU ≤ zc (6.3.6)

55

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

where Hc = ΨcΘ and zc = Γc −ΨcΦX0.

6.3.4 Inter-Agent Collision Avoidance

These constraints are generated from Algorithm 3 as explained in Subsection 5.2.3.

Without loss of generality, we can assume r > t, and thus, the inequality in (5.2.9)

can be written in a more general form as:

[
0i1 aT

mt
0i2 aT

mr
0i3

]

q1[1]

...

q1[K]

q2[1]

...

qN [K]

≤ bmtr (6.3.7)

where i1 = 1× (3K(t−1) + 3(k−1)), i2 = 1× (3K(r− t)−3), and i3 = 1× (3K(N −

r + 1) − 3k) are the dimensions of corresponding zero row-vectors. For all m ∈ M,

constraints can be re-written in the form of inequality in (6.3.7) and stacked together.

This in terms of all state vectors is formulated as:

AmIpX̂ ≤ bm (6.3.8)

where Ip = diag(Ip, ..., Ip), Am ∈ R|M|×3KN , and bm ∈ R|M|. Finally, using (6.1.7)

and (6.3.8), the inter-agent collision avoidance constraints can be expressed in terms

of the decision variables as:

HmU ≤ zm (6.3.9)

56

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

where Hm = AmIpΘ and zm = bm −AmIpΦX0.

6.4 Convex Optimization Problem

The optimal control inputs for the system stated in (6.1.7) is obtained by solving the

following quadratic programming optimization:

minimize
U

wvJv + wuJu + wfJf + wsJs

subject to Umin ≤ U ≤ Umax

AcontU ≤ bcont

HcU ≤ zc

HmU ≤ zm

(6.4.1)

where wv, wf , wu, ws ∈ R+ are scalarization parameters. The optimization problem

(6.4.1) has 3KN decision variables and the number of constraints is a variant of

convex regions and inter-agent collision detection algorithm.

57

Chapter 7

Simulation and Experimental

Results

The various components of the proposed control framework for human-in-the-loop

operation of a group of drones, seen in Figure 3.1, were described in the previous

chapters of this thesis. This chapter focuses on the implementation of the control

strategy and presents results from simulations and experiments in a laboratory en-

vironment. The first section describes the simulation setup and also explores two

operational scenarios. The second half of the chapter presents steps taken to imple-

ment the algorithm for real-time control, and presents the results of the experiments.

58

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

7.1 Controllers

7.1.1 Flock Velocity Controller

Although the length of the paths is bounded by a function of Th based on equation

(5.2.1), it does not necessarily result in an optimal path length due to other factors.

For instance, the way-points generated in Section 5.2.4 and their distance from the

initial position are impacted by several parameters, such as the geometrical shape of

the obstacles or the constraints generated in Section 6.3. Moreover, the time horizon

Th in the trajectory optimization stage is fixed. Along with the varying path length,

this might result in a deviation from the reference velocity while the time required to

traverse between the initial position and the next way-point depends on both of them

(path lengths and average velocity). This issue can be addressed by solving multiple

optimization problems with different time horizons or having a separate optimization

to find the best horizon time. Nevertheless, these approaches are computationally

expensive and not well-suited for real-time implementation.

In an alternative solution, the reference velocity used in velocity error cost (6.2.1)

can be modified in real-time. The reference velocity vh used in section 6.2 can be

regulated with a conventional PI (proportional integral) controller. Accordingly, it

can be formulated as follows:

vh := vref
h + KP

(
vref
h − vc

)
+ KI

∫ (
vref
h − vc

)
(7.1.1)

where vref
h ∈ Rd is the reference velocity received from the operator, vc ∈ Rd is the

velocity of center of the flock, and KI , KP ∈ Rd are positive definite matrices. In

addition, to avoid undesirable and sudden changes in the direction, KI , KP will be

59

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

tuned to result in an under-damped response.

7.1.2 Trajectory Controller

The control inputs ({ui}) computed by the result of optimization (6.4.1) can be

translated as trajectories based on the state equation in Equation (6.1.1). In a real-

time application, the first few steps of these optimal trajectories would be continuously

appended to the existing reference trajectories. A controller is needed to ensure the

quad-rotors follow the regularly-updated trajectories.

The controller used in this thesis is the same as the decentralized passivity-based

controller developed by Mohammadi, et al. [2]. This controller maps errors in position

and velocity to desired roll, pitch, and thrust force of the quad-rotor. The desired yaw

angle is also considered as an input to this controller, and is set to zero throughout

the experiments. The desired orientation and thrust values are translated into the

quad-rotor actuation commands via the onboard attitude controller embedded in the

drone’s onboard flight controllers. In this thesis, the cascaded PID attitude controller

embedded in the Crazyflie Nano Quad-copters is utilized for this purpose.

7.2 Simulations

The control code was implemented in C++ and executed on a laptop computer with

Intel(R) Core i7-8750H CPU running at 2.20 GHz with 16.0 GB of RAM. Mosek

optimization toolbox [77] was utilized for solving the quadratic optimization problems

across the whole algorithm during the simulations. C-programming library cddlib

was used for transformations between linear inequality definition to vertices of a

60

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

polyhedral convex region [78].

Two operational scenarios were explored in the simulations. The design of these

scenarios was informed by the constraints of the experimental task environment

to maintain consistency between the simulations and experiments. The proposed

method is applicable to both planar (i.e., d = 2), or spatial (d = 3) movements. How-

ever, limited by computation power, the aforementioned scenarios were developed in

a two-dimensional workspace (d = 2) with three drones (i.e., N = 3). In one scenario

the flock is flown through a narrow passage where the formation must contract to get

through. In another scenario, multiple obstacles were placed in front of the flock’s

heading direction. The group may be forced to allow obstacles to pass through the

formation in order to save the shape and follow the commanded operator’s velocity.

This will be referred to as Non-convex Formation Scenario since the presence of the

obstacles violates the convexity of the area covered by the formation.

7.2.1 Modeling Parameters Definition

The parameters used to define the models are as follows:

1. The drones are considered to have the same size with ri = 0.15m and a mass of

mi = 0.03kg.

2. The minimum safe inter-agent distance is set to dij = 2ri = 0.3m.

3. The safe distance from the drones to the obstacles is set to ri = 0.15m. Added

safety margin is put in place by dilating the obstacles boundaries:

(a) For prospective formation evaluation and pathfinding purposes, the obsta-

cle boundaries are inflated by 0.15m + ϵ where ϵ = 0.02m.

61

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

(b) In the computation of the convex region constraints in Algorithm 3, the

obstacles boundaries are inflated by 0.15m.

4. The control time horizon is set to Th = 1.0s. For the MPC optimization, this

horizon is unevenly divided into 30 steps as follows:

Th = [0.01, 0.02, ..., 0.1, 0.12, 0.14, ..., 0.2,

0.24, 0.28, ..., 0.60, 0.68, 0.76, ..., 1.0]

5. The dimensions of the bounding boxes discussed in Section 5.2.1 are given by

lw = lv = 0.2m and ϵ = 0.03m.

6. The ellipsoids inside the bounding boxes are initialized with λ2 = λ3 = 0.02m.

7. The scalarization parameters in the optimization problem are set to:

wv wu wf ws

1.0 0.5 1.0 0.1

Table 7.1: Scalarization weights used in optimization (6.4.1)

8. In the Narrow Passage scenario, KP = diag(0.5, 0.5) and KI = diag(0.4, 0.4).

In the Non-convex Formation case, the values were set to KP = diag(0.3, 0.3)

and KI = diag(0.2, 0.2).

9. After each iteration, ks = 5 steps of the optimal inputs obtained are applied to

update the trajectories for each agent.

62

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

7.2.2 Narrow Passage Scenario

In this scenario, three agents start from rest (q̇i = 0 for i ∈ {1, 2, 3}) and receive a

constant command velocity along −y direction with the magnitude of ||vh|| = 0.1m
s

.

A collection of six hexagonal overlapping obstacles were used to define a narrowing

passage. The workspace and the resulting trajectories are depicted in Figure 7.1 with

obstacles in black color. In addition to the trajectories, the formation has been drawn

at the beginning, the end, and five other intermediate stages of the whole simulation

time span. The passage can be categorized with three levels of space: 1) Narrow, 2)

Narrowest, and 3) Wide.

In the beginning, the flock passes through a moderately narrow entrance which

requires a moderate deviation from the given original reference formation Sr
1 . A total

number of three formations are considered. The optimal formation is computed in

parallel based on each, and the highest available priority is selected. Figure 7.2 shows

the three desired formation shapes. Moving along the passage, the middle section is

the narrowest part where the flock has to switch to another different formation shape

(S2) to avoid collisions. Finally, the agents enter the wide section where they can

switch back to the original formation Sr
1 .

The operation of the collision avoidance constraints is further verified by ana-

lyzing the obstacle-robot and robot-robot distance values. Figure 7.3 presents the

variations of distance to obstacles over the simulation period. It is evident that even

though Robot 1 and Robot 2 were moving in close proximity to the obstacles, their

trajectory never violated the safe distance constraint. Moreover, inter-robot distances

are plotted in Figure 7.4 and it can be observed that inter-agent collision avoidance

constraints were never violated. Even during the transition to the narrowest part

63

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

X (m)

−5

−4

−3

−2

−1

0

1

Y
(m

)

Robot 0

Robot 1

Robot 2

Formation

Figure 7.1: Trajectories of three drones moving towards a narrow passage in 2D
workspace.

64

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

Y

−1.0

−0.5

0.0

0.5

1.0

X

Sr
1 Sr

2

Sr
3

Figure 7.2: Three reference formations used in Narrow Passage Scenario where Sr
1

has the highest priority and Sr
3 has the lowest priority.

(around t = 26.6s), the distance between Robot 1 an Robot 2 remains above 0.3m.

One of the objectives of the proposed control approach is to follow the operator’s

reference velocity command as closely as possible. Figure 7.5 compares the flock’s

velocity with the operator’s commanded velocity. It can be observed that the flock

velocity is following this reference. Although small periods of transitions do occur due

to the change in formation, the flock velocity eventually converges to the commanded

velocity as expected.

65

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

0 10 20 30 40 50

0.2

0.4

0.6

D
is
ta
n
ce

(m
)

Robot 0

Minimum Dist. to Obstacles

Minimum Safe Distance

0 10 20 30 40 50

0.2

0.3

0.4

D
is
ta
n
ce

(m
)

Robot 1

Minimum Dist. to Obstacles

Minimum Safe Distance

0 10 20 30 40 50

Time (s)

0.2

0.3

D
is
ta
n
ce

(m
)

Robot 2

Minimum Dist. to Obstacles

Minimum Safe Distance

Distance to Obstacles

Figure 7.3: Distance between each robot and the closest obstacle in the workspace
in Narrow Passage Scenario.

7.2.3 Non-Convex Formation Scenario

The performance of the proposed control strategy was partially evaluated in the

previous scenario. However in that scenario, the entire flock formation could be fitted

in the obstacle-free convex area with the need for allowing obstacles to pass through

the formation. The next scenario explores a more challenging case where this may

not always be feasible.

The number of drones, workspace dimensions, and the operator’s reference velocity

are the same as those in the previous case. Three small-sized hexagonal obstacles are

66

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

0 10 20 30 40 50

0.4

0.6

0.8

1.0

D
is
ta
n
ce

(m
)

Robots 0 and 1, Minimum Distance is 0.5m

Measured Distance

Minimum Required Distance

0 10 20 30 40 50

0.4

0.6

0.8

1.0

D
is
ta
n
ce

(m
)

Robots 0 and 2, Minimum Distance is 0.86m

Measured Distance

Minimum Required Distance

0 10 20 30 40 50

Time (s)

0.4

0.6

0.8

1.0

D
is
ta
n
ce

(m
)

Robots 1 and 2, Minimum Distance is 0.32m

Measured Distance

Minimum Required Distance

Inter-Agent Distance

Figure 7.4: Inter-agent distance values while passing through the narrow passages
shown in Figure 7.1.

defined as depicted in Figure 7.6. Considering the reference command along −y

direction, and the initial positions as the only reference formation, the challenge is

to traverse around the obstacles and preserve the formation as much as possible. At

the beginning of the simulation, Robot 0 has to sway towards +x direction to avoid

collision withO1. Simultaneously, to minimize deviation from the reference formation,

the other members of the group change their direction similar to their leader (Robot

0). Further along the way, Robot 1 must avoid two obstacles (O1 and O2) which are

in close proximity. After successfully moving around the obstacles and leaving them

behind, the agents join together and resume their with the original formation at the

67

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

0 10 20 30 40 50
−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

V
el
o
ci
ty

(m
/
s)

vhx

vcx

0 10 20 30 40 50

Time (s)

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

V
el
o
ci
ty

(m
/
s)

vhy

vcy

Flock Velocity and Reference Velocity

Figure 7.5: The reference velocity and the velocity of the center of the flock in the
simulation which is shown in Figure 7.1.

beginning of the simulation.

The adherence to the collision avoidance constraints can be verified by reviewing

the data in Figure 7.7 and 7.8. All three robots had to traverse in short distance

from the obstacles and all the trajectories were obtained constrained insideWf which

0.15m away from the obstacles.

As the flock moves along the x direction to avoid collision and preserve formation,

its velocity is compromised since the reference command velocity is constant and in

the−y direction (See Figure 7.6). Figure 7.9 plots the components of the flock velocity

and it shows that the x component of the velocity becomes non-zero transiently and

68

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

X (m)

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

Y
(m

)

Robot 0

Robot 1

Robot 2

Formation

vh ⇓

O1

O2

O3

Figure 7.6: Non-Convex Formation Scenario. The trajectories are shown in solid
colored lines, intermediate formation shapes with dashed grey line, and obstacles are

painted in black color.

eventually returns to zero as requested by the reference vh. Similarly, it can be seen

how the velocity was controlled along the y axis, where despite the compromises the

flock had made to avoid the obstacles, it eventually converges to a velocity in the −y

direction with the desired magnitude.

69

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

0 5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

D
is
ta
n
ce

(m
)

Robot 0

Minimum Dist. to Obstacles

Minimum Safe Distance

0 5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

D
is
ta
n
ce

(m
)

Robot 1

Minimum Dist. to Obstacles

Minimum Safe Distance

0 5 10 15 20 25

Time (s)

0.2

0.4

0.6

0.8

1.0

D
is
ta
n
ce

(m
)

Robot 2

Minimum Dist. to Obstacles

Minimum Safe Distance

Distance to Obstacles

Figure 7.7: Distance between each robot and the closest obstacle in the workspace
in Non-Convex Formation Scenario.

7.3 Experiments

For the purposes of real-time implementation, the same setup and processor were

used similar to Section 7.2. To increase computation efficiency further, CUDA pro-

gramming [79] was applied for matrix calculations to prepare the constraints and

objective functions stated in Chapter 6. In addition, to solve the quadratic program-

ming stated in (6.4.1), OSQP solver [80] was used along with Mosek optimization

API [77] for solving smaller optimizations in parallel. It should be noted that to fully

70

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

0 5 10 15 20 25

0.4

0.6

0.8

1.0

1.2
D
is
ta
n
ce

(m
)

Robots 0 and 1, Minimum Distance is 0.55m

Measured Distance

Minimum Required Distance

0 5 10 15 20 25

0.4

0.6

0.8

1.0

D
is
ta
n
ce

(m
)

Robots 0 and 2, Minimum Distance is 0.78m

Measured Distance

Minimum Required Distance

0 5 10 15 20 25

Time (s)

0.5

1.0

1.5

D
is
ta
n
ce

(m
)

Robots 1 and 2, Minimum Distance is 1.2m

Measured Distance

Minimum Required Distance

Inter-Agent Distance

Figure 7.8: Inter-agent distance values while passing through the narrow passages
shown in Figure 7.6.

exploit the potential of OSQP solver, the size of constraints for quadratic program-

ming were fixed and the solver was initialized prior to the start of experiments in

order to take advantage of the warm-start options at each iteration.

Figure 7.10 shows the experimental setup used for validation in a lab environment.

The Host Computer is the same as the one mentioned in Section 7.2 and runs the

whole algorithm at the rate of 25Hz. This computation rate is bounded by the

hardware power and the efficiency of the implementation. Three Crazyflie Nano

Quad-Copters were used as agents in the experiments. Each drone weighs slightly

71

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

0 5 10 15 20 25

−0.050

−0.025

0.000

0.025

0.050

V
el
o
ci
ty

(m
/
s)

vhx

vcx

0 5 10 15 20 25

Time (s)

−0.125

−0.100

−0.075

−0.050

−0.025

V
el
o
ci
ty

(m
/
s)

vhy

vcy

Flock Velocity and Reference Velocity

Figure 7.9: The reference velocity and the velocity of the center of the flock in the
simulation shown in Figure 7.6.

less than 30g and its dimensions measure at 92mm × 92mm. The Host Computer

communicates with the drones via two Crazyradio Dongles. The drones positions

are measured by seven Optitrack Flex 13 cameras in the laboratory workspace. The

position data is streamed to the Host Computer at the rate of 120Hz. The trajectory

controller runs at 100Hz and computes the control commands based on the latest

position received. This is due to the fact that the trajectories accumulated in the

memory are calculated based on 10ms time steps.

The experiment scenarios are designed in a two-dimensional workspace. In the

experiments, the drones first fly vertically to reach a hovering altitude. Second, the

proposed algorithm runs for a certain period of time in the horizontal plane. Finally,

the drones land while maintaining their horizontal position. In the following sections,

only the horizontal portions of the trajectories are presented as they are relevant to

the performance of the proposed algorithm.

72

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

Optitrack Flex 13
Motion Capture System

Optical
Measurements

Positions
120 Hz

Crazyflie Nano Quad-copters

Radio
CommunicationCrazyradio

Dongle

Desired Attitude &
Thrust Commands

Host Computer

Figure 7.10: Experimental Setup

7.3.1 Narrow Passage Scenario

The scenario discussed in simulation 7.2.2 is simplified and adapted according to the

limits of the lab workspace. The arrangement of robots’ initial positions and obstacles

location are depicted in Figure 7.11. Four obstacles are defined such that they create

a three-level passage. The flock starts by entering a slightly narrow passage which

necessitates small deformation in the original shape of the flock. Further down the

path, the obstacles are located at a shorter distance from each other, leading to a

change of formation to prevent collisions. At the end, the flock enters an obstacle-free

73

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

area where it can switch back to its original formation.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

X (m)

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5
Y

(m
)

Robot 0

Robot 1

Robot 2

Reference Trajectory

Formation

vh ⇓

Figure 7.11: The drones trajectories in Narrow Passage Scenario experiment. This
scenario is a modified version of the simulation scenario presented in Section 7.2.2.

Following the logic stated in Section 7.2.1, two levels of inflation of obstacles were

used in this experiment. However, there is always a minimal amount of errors in the

real world control of quad-copters and in order to account for these uncertainties, the

inflation amount used in path finding and formation evaluation was set to 0.15m + ϵ

where ϵ = 0.08m. Figure 7.12 plots the measured distance of each drone from the

obstacles during the experiment. It shows the efficacy of the proposed algorithm

74

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

in the presence of static obstacles in the environment and how it can be tuned to

overcome uncertainties in controlling the position of the drones.

10 15 20 25 30 35 40

0.5

1.0

D
is
ta
n
ce

(m
)

Robot 0

Minimum Dist. to Obstacles

Minimum Safe Distance

10 15 20 25 30 35 40

0.2

0.4

0.6

D
is
ta
n
ce

(m
)

Robot 1

Minimum Dist. to Obstacles

Minimum Safe Distance

10 15 20 25 30 35 40

Time (s)

0.2

0.4

0.6

D
is
ta
n
ce

(m
)

Robot 2

Minimum Dist. to Obstacles

Minimum Safe Distance

Distance to Obstacles

Figure 7.12: The distance to obstacles for each robot in the experiment of Figure
7.11.

The errors in the trajectory tracking controller are slightly amplified from an

inter-agent distance perspective. Figure 7.13 compares the desired distance against

the measured distance between each pair of drones in the experiment. The most

critical moment happens around t = 27s where the flock experiences a formation

change as it enters the narrowest part of the passage. As it can be seen in Figure

7.13, the distance between Robots 1 and 2 reached the minimum value of 0.3m for a

second but never violated the minimum required distance between the agents.

The operator’s reference velocity command and the velocity of the centre of the

flock are compared in Figure 7.14. This confirms velocity tracking where possible

75

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

10 15 20 25 30 35 40

0.3

0.4

0.5

0.6

D
is
ta
n
ce

(m
)

Robots 0 and 1

Desired Distance

Measured Distance

Minimum Required Distance

10 15 20 25 30 35 40

0.4

0.6

0.8

1.0

1.2

D
is
ta
n
ce

(m
)

Robots 0 and 2

Desired Distance

Measured Distance

Minimum Required Distance

10 15 20 25 30 35 40

Time (s)

0.4

0.6

0.8

D
is
ta
n
ce

(m
)

Robots 1 and 2

Desired Distance

Measured Distance

Minimum Required Distance

Inter-Agent Distance

Figure 7.13: Inter-agent distances in the Narrow Passage Experiment.

with some transient behaviour due to the presence of the obstacles.

7.3.2 Non-convex Formation Scenario

The performance of the proposed control strategy was further evaluated by conducting

an experiment similar to the simulation in Section 7.2.3. The goal of this experiment

is to demonstrate the flexibility of solution which can be used in scenarios beyond

simple contracting and expanding of the formation to fit within a certain space. Figure

7.15 depicts the result of an experiment in such a scenario. Given the positions of the

76

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

10 15 20 25 30 35 40
−0.2

−0.1

0.0

0.1

V
el
o
ci
ty

(m
/
s)

vhx

vcx

10 15 20 25 30 35 40

Time (s)

−0.2

−0.1

0.0

0.1

V
el
o
ci
ty

(m
/
s)

vhy

vcy

Flock Velocity and Reference Velocity

Figure 7.14: Velocity of the flock compared with operator’s reference command in
7.11 experiment.

obstacles, the flock moves in the x direction while trying to maintain the formation

as much as possible.

The results in Figure 7.16 show that the algorithm is successful in maintaining

a safe distance between the drones and the obstacles throughout the experiment.

Analogous to the previous scenario, obstacles were inflated by an additional factor of

ϵ = 0.1 in this case. Furthermore, from Figure 7.17, it is also evident that the agents

maintained a safe distance from each other.

The deviations from reference velocities tend to be larger than those in the pre-

vious experiment. This is because the reference velocity was maintained constant

through the whole experiment in Figure 7.15, and the flock had to move in other di-

rections to avoid the obstacles while maintaining its formation. However, Figure 7.18

reveals that after any deviation, the velocity was controlled and eventually converged

77

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

to the reference velocity.

78

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

X (m)

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

Y
(m

)

Robot 0

Robot 1

Robot 2

Reference Trajectory

Formation

vh ⇓

Figure 7.15: Non-convex Formation scenario experiment.

79

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

10 15 20 25 30 35 40

0.5

1.0

D
is
ta
n
ce

(m
)

Robot 0

Minimum Dist. to Obstacles

Minimum Safe Distance

10 15 20 25 30 35 40

0.5

1.0

D
is
ta
n
ce

(m
)

Robot 1

Minimum Dist. to Obstacles

Minimum Safe Distance

10 15 20 25 30 35 40

Time (s)

0.5

1.0

D
is
ta
n
ce

(m
)

Robot 2

Minimum Dist. to Obstacles

Minimum Safe Distance

Distance to Obstacles

Figure 7.16: The distance to obstacles for each robot in the experiment of Figure
7.15.

80

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

10 15 20 25 30 35 40
0.25

0.50

0.75

1.00

1.25

D
is
ta
n
ce

(m
)

Robots 0 and 1

Desired Distance

Measured Distance

Minimum Required Distance

10 15 20 25 30 35 40
0.25

0.50

0.75

1.00

1.25

D
is
ta
n
ce

(m
)

Robots 0 and 2

Desired Distance

Measured Distance

Minimum Required Distance

10 15 20 25 30 35 40

Time (s)

0.5

1.0

1.5

2.0

D
is
ta
n
ce

(m
)

Robots 1 and 2

Desired Distance

Measured Distance

Minimum Required Distance

Inter-Agent Distance

Figure 7.17: Inter-agent distances in the Non-Convex Formation Experiment.

81

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

10 15 20 25 30 35 40
−0.2

−0.1

0.0

0.1

0.2

V
el
o
ci
ty

(m
/
s)

vhx

vcx

10 15 20 25 30 35 40

Time (s)

−0.2

−0.1

0.0

0.1

0.2

V
el
o
ci
ty

(m
/
s)

vhy

vcy

Flock Velocity and Reference Velocity

Figure 7.18: The flock velocity compared with against the operator’s reference
velocity in 7.15 experiment.

82

Chapter 8

Conclusion

This thesis presented a novel framework in which a human operator continuously

controls the general motion of a flock of drones while the system autonomously ad-

justs itself to avoid collisions and maintain a desired formation as faithfully as pos-

sible. Unlike most prior work in the literature, the proposed algorithm is completely

optimization-based, is designed for real-time applications, and incorporates the hu-

man reference velocity input in the process of finding the optimal trajectories for the

drones.

The proposed framework attempts to maintain a reference formation as closely

as possible while allowing for some adjustments to adapt to the task environment

as the need arises. The target formation is obtained by formulating and solving

a convex optimization problem. Multiple reference formations in a priority order

are considered in order to deal with possible infeasibility. Transitions between these

reference formations occur automatically considered. A method was proposed to

eliminate the requirement for convexity of the formation shape by a novel convex

region assignment algorithm.

83

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

An MPC-like optimization was formulated where linear collision-avoidance related

constraints were developed. These linear constraints were generated in the direction

of each agent’s motion and they account for both robot-obstacle and robot-robot

interactions. The trajectory of each agent was optimized to minimize the deviation

from the input reference command and the optimal formation. The proposed ap-

proach was tested in both simulation and experiment and the results demonstrated

the effectiveness of the algorithm for human-in-the-loop control of three drones.

8.1 Future Work

While the framework proposed in this thesis has addressed some of the challenges in

the realm of human-multi-robot systems, there are still a number of challenges and

avenues to extend the capabilities of this method in the future. In particular,

• Decentralization: Central algorithms such as the one in this thesis do not gen-

erally scale well with the number of agents when compared with decentralized

methods running on the individual agents. Decentralized implementations are

also more resilient and may tolerate failure in one or more agents. Therefore,

decentralizing the proposed algorithm could be a step toward more reliability,

efficiency, and scalability.

• Dynamic Environment: Many real-world applications include a mixture of

static and dynamic obstacles. Multi-agent systems should be able to avoid

moving objects as long as their motion can be predicted. Hence, extending

the proposed control strategy to scenarios involving dynamic environments is

another avenue for future research.

84

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

• Considering Uncertainty: Sensor measurements, robot and environment

models are subject to uncertainty and noise. Examples are uncertainty in the

position of the agents and shape and position of the obstacles. Moreover, envi-

ronmental disturbance forces such as winds can affect the motion of each robot

which is essential to consider in an unpredictable environment. Incorporating

these modeling uncertainties in the proposed control framework can enhance its

effectiveness in operating in more realistic task settings.

• More Realistic Experiment Scenarios: The experiments in this thesis were

carried out in an indoor laboratory setting where the drones positions were

measured with high accuracy using an optical motion tracking system. The

obstacles shapes and positions were also assumed known. In a more realistic

application scenario, the locations of the agents and the obstacles in the task

environment must be determined using a combination of on-board sensors such

RGB-Depth Cameras, IMU, LiDARs and GPS.

• Handling Faults and Failure in Agents: Extending the proposed control

strategy to adapt in real-time to failure in one or more agents is another inter-

esting area for future work.

85

Appendix A

Matrix Operations and Constants

A.1 Matrix Operations

A.1.1 Diagonally Concatenated Matrices

Assuming Mi ∈ Rmi×ni for i ∈ {1, 2, 3, .., k}, diag(M1,M2, ...,Mk) will be defined as

following:

O = diag(M1,M2, ...,Mk) =

M1 0m1×n2 . . . 0m1×nk

0m2×n1 M2 . . . 0m2×nk

...
...

. . .
...

0mk×n1 0mk×n2 . . . Mk

(A.1.1)

where results in O ∈ R
∑

mi×
∑

ni .

86

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

A.2 Constant Matrices

A.2.1 Velocity Extractor Matrix

1. If d = 3,

Iv =

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

 (A.2.1)

2. If d = 2,

Iv =

0 1 0 0

0 0 0 1

 (A.2.2)

A.2.2 Position Extractor Matrix

1. If d = 3,

Ip =

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

 (A.2.3)

2. If d = 2,

Ip =

1 0 0 0

0 0 1 0

 (A.2.4)

87

Bibliography

[1] Mostafa Hassanalian and Abdessattar Abdelkefi. Classifications, applications,

and design challenges of drones: A review. Progress in Aerospace Sciences, 91:

99–131, 2017.

[2] Keyvan Mohammadi, Mohammad Jafarinasab, Shahin Sirouspour, and Eric

Dyer. Decentralized motion control in a cabled-based multi-drone load trans-

port system. In 2018 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 4198–4203. IEEE, 2018.

[3] Yash Mulgaonkar. Automated recharging for persistence missions with multiple

micro aerial vehicles. PhD thesis, University of Pennsylvania, 2012.

[4] Wolfgang Hönig, James A Preiss, TK Satish Kumar, Gaurav S Sukhatme, and

Nora Ayanian. Trajectory planning for quadrotor swarms. IEEE Transactions

on Robotics, 34(4):856–869, 2018.

[5] Alex Kushleyev, Daniel Mellinger, Caitlin Powers, and Vijay Kumar. Towards a

swarm of agile micro quadrotors. Autonomous Robots, 35(4):287–300, 2013.

88

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

[6] Keyvan Mohammadi, Shahin Sirouspour, and Ali Grivani. Passivity-based con-

trol of multiple quad-rotors carrying a cable-suspended payload. IEEE/ASME

Transactions on Mechatronics, 2021.

[7] Soon-Jo Chung, Aditya Avinash Paranjape, Philip Dames, Shaojie Shen, and

Vijay Kumar. A survey on aerial swarm robotics. IEEE Transactions on Robotics,

34(4):837–855, 2018.

[8] Javier Alonso-Mora, Tobias Naegeli, Roland Siegwart, and Paul Beardsley. Col-

lision avoidance for aerial vehicles in multi-agent scenarios. Autonomous Robots,

39(1):101–121, 2015.

[9] Stefano Stramigioli, Robert Mahony, and Peter Corke. A novel approach to hap-

tic tele-operation of aerial robot vehicles. In 2010 IEEE International Conference

on Robotics and Automation, pages 5302–5308. IEEE, 2010.

[10] Antonio Franchi, Cristian Secchi, Markus Ryll, Heinrich H Bulthoff, and

Paolo Robuffo Giordano. Shared control: Balancing autonomy and human assis-

tance with a group of quadrotor uavs. IEEE Robotics & Automation Magazine,

19(3):57–68, 2012.

[11] Hossein Rastgoftar and Ella M Atkins. Cooperative aerial payload transport

guided by an in situ human supervisor. IEEE Transactions on Control Systems

Technology, 27(4):1452–1467, 2018.

[12] Morgan Quigley, Michael A Goodrich, and Randal W Beard. Semi-autonomous

89

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

human-uav interfaces for fixed-wing mini-uavs. In 2004 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.

04CH37566), volume 3, pages 2457–2462. IEEE, 2004.

[13] Sara Howitt and Dale Richards. The human machine interface for airborne

control of uavs. In 2nd AIAA” Unmanned Unlimited” Conf. and Workshop &

Exhibit, page 6593, 2003.

[14] Keyvan Mohammadi, Shahin Sirouspour, and Ali Grivani. Control of mul-

tiple quad-copters with a cable-suspended payload subject to disturbances.

IEEE/ASME Transactions on Mechatronics, 25(4):1709–1718, 2020.

[15] Thomas Kopfstedt, Masakazu Mukai, Masayuki Fujita, and Christoph Ament.

Control of formations of uavs for surveillance and reconnaissance missions. IFAC

Proceedings Volumes, 41(2):5161–5166, 2008.

[16] Robin Deits and Russ Tedrake. Computing large convex regions of obstacle-free

space through semidefinite programming. In Algorithmic foundations of robotics

XI, pages 109–124. Springer, 2015.

[17] Sikang Liu, Michael Watterson, Kartik Mohta, Ke Sun, Subhrajit Bhattacharya,

Camillo J Taylor, and Vijay Kumar. Planning dynamically feasible trajectories

for quadrotors using safe flight corridors in 3-d complex environments. IEEE

Robotics and Automation Letters, 2(3):1688–1695, 2017.

[18] Kimon P Valavanis and M Kontitsis. A historical perspective on unmanned aerial

vehicles. In Advances in Unmanned Aerial Vehicles, pages 15–46. Springer, 2007.

90

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

[19] Wojciech Giernacki, Mateusz Skwierczyński, Wojciech Witwicki, Pawe l Wroński,

and Piotr Kozierski. Crazyflie 2.0 quadrotor as a platform for research and educa-

tion in robotics and control engineering. In 2017 22nd International Conference

on Methods and Models in Automation and Robotics (MMAR), pages 37–42.

IEEE, 2017.

[20] Eric Dyer, Shahin Sirouspour, and Mohammad Jafarinasab. Energy optimal

control allocation in a redundantly actuated omnidirectional uav. In 2019 In-

ternational Conference on Robotics and Automation (ICRA), pages 5316–5322.

IEEE, 2019.

[21] Raphael Zufferey, Jesús Tormo-Barbero, M Mar Guzmán, Fco Javier Maldonado,

Ernesto Sanchez-Laulhe, Pedro Grau, Mart́ın Pérez, José Ángel Acosta, and

Anibal Ollero. Design of the high-payload flapping wing robot e-flap. IEEE

Robotics and Automation Letters, 6(2):3097–3104, 2021.

[22] Dane Bamburry. Drones: Designed for product delivery, revisited. Design Man-

agement Review, 33(3):34–43, 2022.

[23] Amazon Staff. Amazon prime air prepares for drone deliv-

eries. https://www.aboutamazon.com/news/transportation/

amazon-prime-air-prepares-for-drone-deliveries, 2022. Accessed:

June 13, 2022.

[24] Cornelius A. Thiels, Johnathon M. Aho, Scott P. Zietlow, and Donald H. Jenkins.

Use of unmanned aerial vehicles for medical product transport. Air Medical

Journal, 34(2):104–108, 2015. ISSN 1067-991X. doi: https://doi.org/10.1016/

91

https://www.aboutamazon.com/news/transportation/amazon-prime-air-prepares-for-drone-deliveries
https://www.aboutamazon.com/news/transportation/amazon-prime-air-prepares-for-drone-deliveries

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

j.amj.2014.10.011. URL https://www.sciencedirect.com/science/article/

pii/S1067991X14003332.

[25] Sonia Waharte and Niki Trigoni. Supporting search and rescue operations with

uavs. In 2010 international conference on emerging security technologies, pages

142–147. IEEE, 2010.

[26] Ebtehal Turki Alotaibi, Shahad Saleh Alqefari, and Anis Koubaa. Lsar: Multi-

uav collaboration for search and rescue missions. IEEE Access, 7:55817–55832,

2019.

[27] Youngjib Ham, Kevin K Han, Jacob J Lin, and Mani Golparvar-Fard. Visual

monitoring of civil infrastructure systems via camera-equipped unmanned aerial

vehicles (uavs): a review of related works. Visualization in Engineering, 4(1):

1–8, 2016.

[28] Danny Lee, Joe Zhou, and Wong Tze Lin. Autonomous battery swapping system

for quadcopter. In 2015 international conference on unmanned aircraft systems

(ICUAS), pages 118–124. IEEE, 2015.

[29] Yash Mulgaonkar and Vijay Kumar. Autonomous charging to enable long-

endurance missions for small aerial robots. In Micro-and Nanotechnology Sen-

sors, Systems, and Applications VI, volume 9083, pages 404–418. SPIE, 2014.

[30] Koji AO Suzuki, Paulo Kemper Filho, and James R Morrison. Automatic battery

replacement system for uavs: Analysis and design. Journal of Intelligent &

Robotic Systems, 65(1):563–586, 2012.

92

https://www.sciencedirect.com/science/article/pii/S1067991X14003332
https://www.sciencedirect.com/science/article/pii/S1067991X14003332

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

[31] Pietro Tosato, Daniele Facinelli, Maurizio Prada, Luca Gemma, Maurizio Rossi,

and Davide Brunelli. An autonomous swarm of drones for industrial gas sens-

ing applications. In 2019 IEEE 20th International Symposium on” A World

of Wireless, Mobile and Multimedia Networks”(WoWMoM), pages 1–6. IEEE,

2019.

[32] Dario Albani, Joris IJsselmuiden, Ramon Haken, and Vito Trianni. Monitor-

ing and mapping with robot swarms for agricultural applications. In 2017 14th

IEEE International Conference on Advanced Video and Signal Based Surveil-

lance (AVSS), pages 1–6. IEEE, 2017.

[33] Mauro S Innocente and Paolo Grasso. Self-organising swarms of firefighting

drones: Harnessing the power of collective intelligence in decentralised multi-

robot systems. Journal of Computational Science, 34:80–101, 2019.

[34] Carlo Masone, Heinrich H Bülthoff, and Paolo Stegagno. Cooperative trans-

portation of a payload using quadrotors: A reconfigurable cable-driven parallel

robot. In 2016 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 1623–1630. IEEE, 2016.

[35] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and

control for quadrotors. In 2011 IEEE international conference on robotics and

automation, pages 2520–2525. IEEE, 2011.

[36] Mohammad Jafarinasab and Shahin Sirouspour. Adaptive motion control of

aerial robotic manipulators based on virtual decomposition. In 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 1858–

1863. IEEE, 2015.

93

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

[37] Giuseppe Loianno, Justin Thomas, and Vijay Kumar. Cooperative localization

and mapping of mavs using rgb-d sensors. In 2015 IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 4021–4028. IEEE, 2015.

[38] Samir Bouabdallah, Pierpaolo Murrieri, and Roland Siegwart. Design and control

of an indoor micro quadrotor. In IEEE International Conference on Robotics

and Automation, 2004. Proceedings. ICRA’04. 2004, volume 5, pages 4393–4398.

IEEE, 2004.

[39] Daniel Mellinger, Nathan Michael, and Vijay Kumar. Trajectory generation

and control for precise aggressive maneuvers with quadrotors. The International

Journal of Robotics Research, 31(5):664–674, 2012.

[40] Matthias Faessler, Antonio Franchi, and Davide Scaramuzza. Differential flatness

of quadrotor dynamics subject to rotor drag for accurate tracking of high-speed

trajectories. IEEE Robotics and Automation Letters, 3(2):620–626, 2017.

[41] Daniel Mellinger, Alex Kushleyev, and Vijay Kumar. Mixed-integer quadratic

program trajectory generation for heterogeneous quadrotor teams. In 2012 IEEE

international conference on robotics and automation, pages 477–483. IEEE, 2012.

[42] Alexander Erokhin, Vladimir Erokhin, Sergey Sotnikov, and Anatoly

Gogolevsky. Optimal multi-robot path finding algorithm based on a. In Pro-

ceedings of the Computational Methods in Systems and Software, pages 172–182.

Springer, 2018.

[43] Glenn Wagner and Howie Choset. M*: A complete multirobot path planning

94

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

algorithm with performance bounds. In 2011 IEEE/RSJ international conference

on intelligent robots and systems, pages 3260–3267. IEEE, 2011.

[44] Hai Zhu, Bruno Brito, and Javier Alonso-Mora. Decentralized probabilistic

multi-robot collision avoidance using buffered uncertainty-aware voronoi cells.

Autonomous Robots, 46(2):401–420, 2022.

[45] Mark Debord, Wolfgang Hönig, and Nora Ayanian. Trajectory planning for

heterogeneous robot teams. In 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 7924–7931. IEEE, 2018.

[46] Li Wang, Aaron D Ames, and Magnus Egerstedt. Safety barrier certificates

for collisions-free multirobot systems. IEEE Transactions on Robotics, 33(3):

661–674, 2017.

[47] Dimitra Panagou, Dušan M Stipanović, and Petros G Voulgaris. Distributed co-

ordination control for multi-robot networks using lyapunov-like barrier functions.

IEEE Transactions on Automatic Control, 61(3):617–632, 2015.

[48] Tomas Baca, Giuseppe Loianno, and Martin Saska. Embedded model predictive

control of unmanned micro aerial vehicles. In 2016 21st international conference

on methods and models in automation and robotics (MMAR), pages 992–997.

IEEE, 2016.

[49] Moses Bangura and Robert Mahony. Real-time model predictive control for

quadrotors. IFAC Proceedings Volumes, 47(3):11773–11780, 2014.

[50] Melissa Greeff and Angela P Schoellig. Flatness-based model predictive control

95

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

for quadrotor trajectory tracking. In 2018 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 6740–6745. IEEE, 2018.

[51] Tomas Baca, Daniel Hert, Giuseppe Loianno, Martin Saska, and Vijay Kumar.

Model predictive trajectory tracking and collision avoidance for reliable outdoor

deployment of unmanned aerial vehicles. In 2018 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), pages 6753–6760. IEEE, 2018.

[52] Carlos E Luis and Angela P Schoellig. Trajectory generation for multiagent point-

to-point transitions via distributed model predictive control. IEEE Robotics and

Automation Letters, 4(2):375–382, 2019.

[53] Carlos E Luis, Marijan Vukosavljev, and Angela P Schoellig. Online trajec-

tory generation with distributed model predictive control for multi-robot motion

planning. IEEE Robotics and Automation Letters, 5(2):604–611, 2020.

[54] Yang Quan Chen and Zhongmin Wang. Formation control: a review and a new

consideration. In 2005 IEEE/RSJ International conference on intelligent robots

and systems, pages 3181–3186. IEEE, 2005.

[55] Zhiyun Lin, Wei Ding, Gangfeng Yan, Changbin Yu, and Alessandro Giua.

Leader–follower formation via complex laplacian. Automatica, 49(6):1900–1906,

2013.

[56] Jaydev P Desai, Jim Ostrowski, and Vijay Kumar. Controlling formations of

multiple mobile robots. In Proceedings. 1998 IEEE International Conference on

Robotics and Automation (Cat. No. 98CH36146), volume 4, pages 2864–2869.

IEEE, 1998.

96

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

[57] Noah Cowan, O Shakerina, Rene Vidal, and Shankar Sastry. Vision-based follow-

the-leader. In Proceedings 2003 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS 2003)(Cat. No. 03CH37453), volume 2, pages

1796–1801. IEEE, 2003.

[58] Junyan Hu, Parijat Bhowmick, Inmo Jang, Farshad Arvin, and Alexander Lan-

zon. A decentralized cluster formation containment framework for multirobot

systems. IEEE Transactions on Robotics, 37(6):1936–1955, 2021.

[59] M Anthony Lewis and Kar-Han Tan. High precision formation control of mobile

robots using virtual structures. Autonomous robots, 4(4):387–403, 1997.

[60] Wei Ren and Randal W Beard. Formation feedback control for multiple space-

craft via virtual structures. IEE Proceedings-Control Theory and Applications,

151(3):357–368, 2004.

[61] Jianan Wang and Ming Xin. Integrated optimal formation control of multiple

unmanned aerial vehicles. IEEE Transactions on Control Systems Technology,

21(5):1731–1744, 2012.

[62] Dongdong Xu, Xingnan Zhang, Zhangqing Zhu, Chunlin Chen, and Pei Yang.

Behavior-based formation control of swarm robots. mathematical Problems in

Engineering, 2014, 2014.

[63] Dingjiang Zhou, Zijian Wang, and Mac Schwager. Agile coordination and as-

sistive collision avoidance for quadrotor swarms using virtual structures. IEEE

Transactions on Robotics, 34(4):916–923, 2018.

97

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

[64] Matthew Romano, Prince Kuevor, Derek Lukacs, Owen Marshall, Mia Stevens,

Hossein Rastgoftar, James Cutler, and Ella Atkins. Experimental evaluation of

continuum deformation with a five quadrotor team. In 2019 American Control

Conference (ACC), pages 2023–2029. IEEE, 2019.

[65] Javier Alonso-Mora, Stuart Baker, and Daniela Rus. Multi-robot formation con-

trol and object transport in dynamic environments via constrained optimization.

The International Journal of Robotics Research, 36(9):1000–1021, 2017.

[66] Javier Alonso-Mora, Eduardo Montijano, Tobias Nägeli, Otmar Hilliges, Mac

Schwager, and Daniela Rus. Distributed multi-robot formation control in dy-

namic environments. Autonomous Robots, 43(5):1079–1100, 2019.

[67] Silvia Mastellone, Dušan M Stipanović, Christopher R Graunke, Koji A

Intlekofer, and Mark W Spong. Formation control and collision avoidance for

multi-agent non-holonomic systems: Theory and experiments. The International

Journal of Robotics Research, 27(1):107–126, 2008.

[68] Cristian Vasile, Ana Pavel, and Cătălin Buiu. Integrating human swarm in-

teraction in a distributed robotic control system. In 2011 IEEE international

conference on automation science and engineering, pages 743–748. IEEE, 2011.

[69] Jawad Nagi, Alessandro Giusti, Luca M Gambardella, and Gianni A Di Caro.

Human-swarm interaction using spatial gestures. In 2014 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, pages 3834–3841. IEEE,

2014.

[70] Guido Gioioso, Antonio Franchi, Gionata Salvietti, Stefano Scheggi, and

98

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

Domenico Prattichizzo. The flying hand: A formation of uavs for cooperative

aerial tele-manipulation. In 2014 IEEE International conference on robotics and

automation (ICRA), pages 4335–4341. IEEE, 2014.

[71] Nora Ayanian, Andrew Spielberg, Matthew Arbesfeld, Jason Strauss, and

Daniela Rus. Controlling a team of robots with a single input. In 2014 IEEE In-

ternational Conference on Robotics and Automation (ICRA), pages 1755–1762.

IEEE, 2014.

[72] Yuyi Liu, Jan Maximilian Montenbruck, Daniel Zelazo, Marcin Odelga, Sujit

Rajappa, Heinrich H Bülthoff, Frank Allgöwer, and Andreas Zell. A distributed

control approach to formation balancing and maneuvering of multiple multirotor

uavs. IEEE Transactions on Robotics, 34(4):870–882, 2018.

[73] Antonio Franchi, Cristian Secchi, Hyoung Il Son, Heinrich H Bulthoff, and

Paolo Robuffo Giordano. Bilateral teleoperation of groups of mobile robots with

time-varying topology. IEEE Transactions on Robotics, 28(5):1019–1033, 2012.

[74] Dongjun Lee, Antonio Franchi, Hyoung Il Son, ChangSu Ha, Heinrich H Bülthoff,

and Paolo Robuffo Giordano. Semiautonomous haptic teleoperation control ar-

chitecture of multiple unmanned aerial vehicles. IEEE/ASME transactions on

mechatronics, 18(4):1334–1345, 2013.

[75] Rob A Holman, Katherine L Brodie, and Nicholas J Spore. Surf zone char-

acterization using a small quadcopter: Technical issues and procedures. IEEE

Transactions on geoscience and remote sensing, 55(4), 2017.

[76] Robin Deits and Russ Tedrake. Efficient mixed-integer planning for uavs in

99

M.A.Sc. Thesis – A. Grivani McMaster – Electrical & Computer Engineering

cluttered environments. In 2015 IEEE international conference on robotics and

automation (ICRA), pages 42–49. IEEE, 2015.

[77] MOSEK ApS. MOSEK Optimizer API for C 10.0.26, 2022. URL https://

docs.mosek.com/10.0/capi/intro_info.html.

[78] Komei Fukuda. cddlib: C implementation of the double description method of

motzkin et al. https://github.com/cddlib/cddlib, 2016.

[79] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. Cuda, release: 8.0.61, 2017.

URL https://docs.nvidia.com/cuda/archive/8.0/.

[80] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: an

operator splitting solver for quadratic programs. Mathematical Programming

Computation, 12(4):637–672, 2020. doi: 10.1007/s12532-020-00179-2. URL

https://doi.org/10.1007/s12532-020-00179-2.

100

https://docs.mosek.com/10.0/capi/intro_info.html
https://docs.mosek.com/10.0/capi/intro_info.html
https://github.com/cddlib/cddlib
https://docs.nvidia.com/cuda/archive/8.0/
https://doi.org/10.1007/s12532-020-00179-2

	Lay Abstract
	Abstract
	Acknowledgements
	Notation, Definitions, and Abbreviations
	Introduction
	Motivation
	Problem Statement
	Thesis Contributions
	Thesis Organization
	Related Publication

	Literature Review
	Unmanned Aerial Vehicles
	Multi-Drone Systems Motion Control
	Formation Control
	Human-in-the-Loop Methods
	Summary

	Algorithm Overview, Assumptions, and Modeling
	Algorithm Overview
	Assumptions
	System Model

	Exploring Prospective Formations
	Obstacle-Free Regions Assignment
	Optimal Formation

	Collision Avoidance
	Path Finding
	Collision Avoidance Constraints

	Model-based Optimization
	Dynamic Model-Related Constraints
	Objective Function
	Constraints
	Convex Optimization Problem

	Simulation and Experimental Results
	Controllers
	Simulations
	Experiments

	Conclusion
	Future Work

	Matrix Operations and Constants
	Matrix Operations
	Constant Matrices

