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Lay Abstract

The proliferation of smart phones and electronic devices has spurred explosive growth

in high-speed multimedia services over the next generation of wireless cellular net-

works. Indeed, high data rates and large-scale connectivity with seamless coverage are

the dominant themes of wireless communication system design. Moreover, beyond the

accurate representation and successful transmission of information, the interpretation

of its meaning is being paid more attention nowadays, which requires the development

of approaches to semantic communication.

The goal of this thesis is to contribute to the development of both conventional and

semantic communication systems. Two advanced transmission technologies, namely,

multiple access and relay-assisted communications are considered. By taking advan-

tage of the special structures of digital communication signals, new approaches to

multiple access and relay-assisted communications are developed. These designs en-

able high data rates, while simultaneously facilitating low-latency detection. Since

there has been very limited analysis of the source coding of a vector source subject

to semantic information constraints, we also study the rate distortion to trade-off for

vector sources in both the case of centralized encoding and the case of distributed

encoding, and we establish some insights that will guide the future development of

semantic communication systems.
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Abstract

The realization of high data rate wireless communication and large-scale connec-

tivity with seamless coverage has been enabled by the introduction of various ad-

vanced transmission technologies, such as multiple access (MAC) technology and

relay-assisted communications. However, beyond the accurate representation and

successful transmission of information, in many applications it is the semantic aspect

of that information that is really of interest.

This thesis makes contributions to both the technology of conventional wireless

communications and the theory of semantic communication. The main work is sum-

marized as follows:

• We first consider an uplink system with K single-antenna users and one base

station equipped with a single antenna, where each user utilizes a binary con-

stellation to carry data. By maximizing the minimum Euclidean distance of the

received sum constellation, the optimal user constellations and sum constella-

tion are obtained for K = 3 users. Using the principle of lattice coding, that

design is extended to the K-user case. In both settings, the sum constellation

belongs to additively uniquely decomposable constellation group (AUDCG).
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That property enables us to reduce the maximum likelihood multi-user detec-

tor to a single-user quantization based receiver. The symbol error probability

(SEP) formula is derived, showing that our proposed non-orthogonal multiple

access (NOMA) scheme outperforms the existing time division multiple access

(TDMA) designs for the same system. Our design also sheds light on the gen-

eral complex constellation designs for the MAC channel with arbitrary user

constellation size. Specifically, K-user constellations with any 2Mk size can be

obtained using combinations of the proposed binary constellations.

• Next we concentrate on a multi-hop relay network with two time slots, consisting

of single-antenna source and amplify-and-forward relay nodes and a destination

node with M antennas. We develop a novel uniquely-factorable constellation

set (UFCS) based on a PSK constellation for such system to allow the source

and relay nodes to transmit their own information concurrently at the symbol

level. By taking advantage of the uniquely-factorable property, the optimal

maximum likelihood (ML) detection was equivalently reduced to a symbol-by-

symbol detection based on phase quantization. In addition, the SEP formula

was given, while enable us to show that the diversity gain of the system is one.

• For semantic communication, a new source model is considered, which consists

of an intrinsic state part and an extrinsic observation part. The intrinsic state

corresponds to the semantic feature of the source. It is not observable, and can

only be inferred from the extrinsic observation. As an instance of the general

model, the case of Gaussian distributed extrinsic observations is studied, where

we assume a linear relationship between the intrinsic and extrinsic parts. We

derive the rate-distortion function (in both centralized encoding and distributed

v



encoding) of semantic-aware source coding under quadratic distortion structure

by converting the semantic distortion constraint of the source to a surrogate

distortion constraint on the observations.

With proposed AUDCG and UFCS-based designs, high data rates as well as low

detection latency can be achieved. Our modulation division method will be one of

the promising technologies for the next generation communication and the analysis of

the source coding with semantic information constraints also provides some insights

that will guide the future development of semantic communication systems.
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Chapter 1

Introduction

1.1 Conventional Wireless Communication

By using the characteristics of electromagnetic waves signal to transport informa-

tion through free space, wireless communications systems have fundamentally trans-

formed our daily lives and have created a connected society. Over the past decades,

high data rates and large-scale connectivity with seamless coverage have been the

dominant themes of wireless communication system design. The realization of these

objectives has been enabled by the introduction of various advanced transmission

technologies, including multiple-input multiple-output (MIMO), multi-carrier trans-

mission, channel-adaptive transmission, etc [19, 109]. In 2016, the expectations for

5G were established by the 3rd Generation Partnership Project (3GPP) [1, 2], where

three main usage scenarios are considered: enhanced mobile broadband (eMBB),

massive machine-type communication (mMTC), and ultra-reliable and low-latency

communication (URLLC). The distinguishing feature of the envisioned eMBB sce-

nario is a peak data rate of 20 Gb/s and the distinguishing features of mMTC and
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URLLC are a device density of 106/km2 and a latency less than 1 ms with a proba-

bility of outage of less than 10−5, respectively [63]. To meet these goals, several new

techniques, such as new frequency bands (e.g., millimeter-wave (mmWave) [75] and

optical spectra [15]), advanced spectrum usage/management, and the integration of

licensed and unlicensed bands, have been developed in the various “releases” of the

5G standard [37].

Compared with the 4G LTE system, the 5G communication systems have signif-

icant improvements. However, they will not be able to fulfill the demands of future

intelligent and automation systems. With the remarkably rapid development of vari-

ous emerging applications, such as artificial intelligence (AI), virtual reality (VR), and

three-dimensional (3D) media, the demands for extremely high-data-rate services and

mass-offering of mobile broadband (MBB) access are predicted to eventually exceed

the capabilities of the 5G systems. Therefore, innovative technologies will be needed

to address the challenges of the next generation (Beyond 5G or 6G), to effectively de-

liver ultra-high data rates, while providing massive connectivity and accommodating

dramatically different quality of service requirements [22, 50].

The goal of this thesis is to contribute to the development of such systems. This is

done in two phases. In the first phase, new approaches to multiple access and relay-

assisted communications are developed. These approaches take advantage of some

of the special structures of digital communication signals. In the second phase, we

reconsider the nature of the information that should be communicated and develop

insights into the fundamental limits on how the meaning conveyed by the information

can be represented.

2
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1.1.1 Multiple Access Technology

The development of effective wireless access technologies is a key step towards meet-

ing the requirements of future wireless communication system. Since the available

physical resources, such as bandwidth and time, are inherently limited, they must be

shared among the devices that are seeking to communicate. That sharing process is

known as multiple access.

At a fundamental level, multiple access schemes can be categorized as orthog-

onal multiple access (OMA) [3, 34, 35, 77, 78] and non-orthogonal multiple access

(NOMA) [76, 20, 98]. In OMA, each user is allocated to one dedicated orthogonal

radio resource block, such as a specific time slot, frequency band, or code. In this

way, the multiple access scheme explicitly avoids interference between the users. Do-

ing so enables the receiver to separate the signals from different users using simple

linear processing. Well-known conventional OMA techniques include frequency divi-

sion multiple access (FDMA), time division multiple access (TDMA), synchronous

code division multiple access (CDMA), and orthogonal frequency division multiple

access (OFDMA), which dominate 1G ∼ 4G wireless communication systems, re-

spectively. The principles that underlie the FDMA, TDMA, and CDMA techniques

are illustrated in Fig.1.1. For FDMA, the system bandwidth is divided into several

bands without overlapping frequencies, and all users can transmit simutaneously, but

in their own specific frequency band. For TDMA, the data frame is split into non-

overlapping time slots and all users can transmit in the same frequency band, but

in their own specific time slots. In synchronous CDMA, users can transmit simul-

taneously in the same frequency band via (orthogonal) spread-spectrum codes. The

3
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OFDMA system is an advanced version of FDMA, in which transmissions are syn-

chronized. That enables the use of fast Fourier transform (FFT) operations at both

the transmitter and the receiver to produce orthogonal signals that partially overlap

in frequency. (OFDMA can be viewed as a form of synchronous CDMA, in which the

codes are generated by the FFT; e.g., [92])

In contrast to OMA, in NOMA, users are allowed to utilize non-orthogonal re-

sources concurrently with the receiver mitigating the resulting interference, typically

using non-linear processing, and sometimes in coordination with the transmitter.

Although the users suffer from interference (due to simultaneous transmission) in

NOMA system, there is the potential for improved performance [94, 95]. Indeed, the

capacity achieving input distribution for the (Gaussian) multiple access channel in-

volves non-orthogonal transmission [18]. While the NOMA principle has been known

for decades, specific NOMA schemes have recently attracted significant attention

in both academia and industry. The recent NOMA schemes can be classified into

two categories: power-domain NOMA and code-domain NOMA. In power-domain

NOMA, each user is assigned a unique power level according to the channel gains

of all the users. All users use their assigned power to transmit signals and share

the same time-frequency-code resources. In particular, all signals are superimposed

and sent simultaneously from the transmitter. At the receiver, a successive inter-

ference cancellation (SIC) scheme with a particular detection order is employed to

detect the signals from each individual user [76]. For code-domain NOMA, multiple

access is achieved by employing a specific code or spreading sequence for each user,

which has sparse, low-density and low inter-correlation properties. This is somewhat

similar to orthogonal CDMA, but in this case the codes are not constrained to be

4
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Figure 1.1: Illustration of FDMA/TDMA/CDMA techniques.
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orthogonal. The common code-domain NOMA schemes are multiuser shared access

(MUSA) [107], low-density signature (LDS) [42, 84], and sparse code multiple access

(SCMA) [65, 81]. In the MUSA scheme, the data of each user are spread with a short

spreading sequence, and signals from multiple users are superposed at the receiver,

where SIC is used to cancel interference between users. Both LDS and SCMA are

motivated by multi-carrier code division multiple access (MC-CDMA) by introducing

sparse codebooks. Unlike SIC-based multiuser detection (MUD), message passing al-

gorithm (MPA) is used to detect the transmitted signals. The MPA takes advantage

of the sparse structure of the codewords. In addition, there are other NOMA schemes

such as pattern division multiple access (PDMA) [21] and spatial division multiple ac-

cess (SDMA) [44] schemes. PDMA can be realized in various domains, but SIC-based

MUD is always required. Rather than using specific spreading sequences, SDMA dis-

tinguishes different users by using specific channel impulse responses (CIRs), thus

there is a challenge of CIR estimation for a large number of users.

Compared with code-domain NOMA, power-domain NOMA has a simple im-

plementation and does not require additional bandwidth to improve spectral effi-

ciency [20]. Thus, the primary focus of Chapter 2 of this thesis is on the design of

a new approach to multiple access that fits within the framework of power-domain

NOMA. The proposed NOMA scheme is based around the notion of uniquely de-

composable sum constellations, and results in the maximum likelihood (ML) detector

having a simple structure. As a result, it can provide lower detection latency than

conventional SIC based PD-NOMA schemes.
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1.1.2 Relay-Assisted Technology

Improving the throughput and coverage of wireless networks is a key step in the evolu-

tion of future communication systems. Relay-assisted communication is a promising

approach to this problem, especially in non-line-of-sight or long-distance communica-

tion, where a set of relay nodes are placed between the base station (BS) and the end

terminal in order to facilitate a better received signal-to-noise ratio for end-to-end

transmission. In addition to extending the coverage of link services, the introduction

of relay nodes on existing transmission links can also mitigate signal attenuation and

end-user power consumption, and improve the performance of cellular edge users.

Two popular types of relaying strategy are decode and forward (DF) and amplify

and forward (AF). In DF systems, the relay first fully decodes the received signal

from the previous node, then re-encodes it and forwards the newly encoded signal to

the next node. In AF systems, the relay simply amplifies the signal that it receives

from the previous node, and then forwards it to the next node, without any kind of

decoding. Considerable comparative performance analysis has been presented for DF

and AF systems [43, 53, 106]. Although it is known that DF systems with one relay

outperform the corresponding AF system under Rayleigh fading conditions [30, 59],

DF may suffer from the error propagation caused by incorrectly decoding at relay,

resulting in inferior performance for multi-hop relays. Furthermore, DF systems are

more complicated to implement and incur greater latency due to the re-encoding and

decoding processes.

One particular application in which relay-assisted communication has attracted

attention is high-speed train (HST) communication with studies on, performance

analysis [48, 54, 108], relay selections [31, 36], and handover scheme [70, 73]. In

7
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particular, relay-assistance is a promising scheme for 5G HST communication with

mmWave band, because the path loss induced by train shell and the doppler shift are

more serious at mmWave frequencies [80]. In Chapter 3 of thesis, we propose a new

signalling scheme for a multi-hop relay-assisted HST system, in which AF relaying

model is applied. Different from the existing work, each relay can simultaneously

forward the previous signal and transmit its own signal, resulting in the potential for

high efficiency and low detection latency. While the multiple access system proposed

in Chapter 2 is based on the notion of additively uniquely decomposable constella-

tions, the relay system proposed in Chapter 3 is based on the notion of uniquely

factorizable constellations.

1.2 Semantic Communication

Semantic communication, the concept of which was introduced byWeaver in 1949 [93],

is regarded as a higher level of communication beyond the traditional technical level.

The traditional communication problems, categorized by Shannon and Weaver, are

mainly concerned with the accurate representation and successful transmission of in-

formation regardless of its meaning [79, 93]. In contrast, semantic communication

problems are concerned with the representation and successful transmission of se-

mantic information conveyed by the sender; that is, the information that is implicit

in the interpretation of meaning by the receiver.

Since the concerns are different, the system model for conventional communica-

tion cannot be simply applied to semantic communication. Thus, many efforts have

been made to extend the Shannon’s information theory to a semantic information

8
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theory [9, 32, 33] and explore a generic model [4, 45, 57]. In [9], rather than the sta-

tistical probabilities used in classic information theory, a logical probability measure

was introduced to analyze the semantic information carried by sentences in a given

language system. The authors in both [4] and [45] observed that background knowl-

edge as well as common understanding plays a key role in semantic communication,

which may lead to different truth evaluations and, hence, semantic mismatches.

The information source in [57] was modeled as a tuple of an extrinsic observa-

tion and an intrinsic state, in which the former is subject to lossy source coding and

the latter, corresponding to the semantic information feature, is not directly observ-

able. The task of (scalar) source coding in [57] is to efficiently encode the extrinsic

observation so that the decoder can infer both the intrinsic state and the extrinsic

observation, subject to their fidelity criteria, simultaneously. Two instances of this

model are video coding for machines (VCM) and coding of speech signals [58]. Based

on this intrinsic-state extrinsic-observation model, with or without side information,

there are several analyses of the information-theoretic characterization of the perfor-

mance of this system, i.e., the rate-distortion function [57, 58, 101]. However, as far

as we are aware, there has been very limited analysis of the source coding of a vec-

tor source subject to semantic information constraints. We study the rate-distortion

trade-off with semantic distortion constraints for vector sources in both the case of

centralized encoding and the case of distributed encoding.

1.3 Contributions and Thesis Organization

The thesis is organized in the format of a sandwich thesis as outlined in the terms

and regulations of McMaster University. It consists of three articles that address

9
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multiple access, multi-hop relay, and semantic source coding problems, respectively.

The contributions to each article are described in the abstract of each chapter and

are summarized below.

• Chapter 2 develops a new NOMA signalling scheme for the general K-user

(synchronous) multiple access channel (MAC). The scheme exploits the struc-

ture of practical digital communication signals, and is based on the notion of a

uniquely decomposable constellation. That constellation structure enables fast

detection to be applied rather than conventional SIC, and this results in low

detection latency. The free parameters of the design are optimized to maxi-

mize the minimum distance of the constellation, and that optimization reveals

lattice structures that enable efficient implementation. An analysis of sym-

bol error probability demonstrate that the proposed NOMA scheme performs

strictly better than OMA schemes.

Peiyao Chen, Jian-Kang Zhang, Timothy N. Davidson, and Jun Chen, “Con-

stellation design for uplink NOMA”, to be submitted to IEEE Transactions on

Communication.

• Chapter 3 develops a new signalling strategy for a multi-hop relay-assisted sys-

tem that has applications to high speed trains. In this system, each relay can

transmit its own information, as well as forwarding the signal that it receives.

By employing the notion of a uniquely factorizable constellation, we design a

system that enables fast multiuser detection by finding maximum eigenvalue of

received symbol matrix.

Peiyao Chen, Jian-Kang Zhang, Timothy N. Davidson, and Jun Chen, “Non-

coherent multiuser code design for multi-hop relay channels”, to be submitted

10



Ph.D. Thesis – P. Chen McMaster University – Electrical & Computer Engineering

to IEEE Transactions on Vehicular Technology.

• Chapter 4 provides the analysis of the rate-distortion function for semantic-

aware Gaussian source coding in both centralized and distributed scenarios.

This analysis sheds light on potential practical encoding and decoding strategies.

Peiyao Chen, Jun Chen, Yuxuan Shi, Shuo Shao, Yongpeng Wu, Timothy

N. Davidson, “Gaussian semantic source coding”, to be submitted to IEEE

Transactions on Information Theory.
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Chapter 2

Constellation Design for Uplink

NOMA

Abstract

This chapter develops a new approach to non-orthogonal multiple access (NOMA)

for the K-user single-antenna uplink channel. Using knowledge of the users’ chan-

nels, the access point jointly designs the constellation for each user so that the free

distance of the received sum constellation is maximized, subject to individual power

constraints. Beyond the inherent performance advantages, this has the additional

advantage that the received sum constellation is uniquely decomposable, and hence

that the maximum likelihood multiuser detector can be reduced to a simple single-

user quantization-based detector for the sum constellation. Closed form expressions

for the optimal constellations are obtained for the case of 3 users with binary sig-

nalling. Observations regarding the structure of the corresponding sum constellation

enable a lattice-based extension that generates good solution for the K-user case.
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A simplification of that extension leads to sum constellation carved from either the

ring of Gaussian integers or from the Eisenstein integer ring. These constellations

are analytically shown to be superior to the corresponding orthogonal multiple access

(OMA) systems, using closed-form expressions for the minimum distance and the

error probability. Finally, we develop a strategy to extend the design approach to

systems in which each user employs a high-order constellation.

2.1 Introduction

It has long been understood (e.g., [18]) that the implementation simplicity of orthog-

onal multiple access (OMA) schemes, such as time-division multiple access (TDMA)

and frequency-division multiple access (FDMA), comes at the cost of a reduction

of the achievable spectral efficiency and other measures of communication perfor-

mance. As a result there has been considerable interest in developing a variety of

non-orthogonal multiple access (NOMA) schemes that seek to provide better com-

munication performance than orthogonal schemes, while only incurring a modest in-

crease in implementation complexity [21, 23]. Several of these schemes have emerged

as promising candidates for 5G and subsequent generations of mobile/wireless com-

munication standards. The core principle of spectrally-efficient multiple access is to

allow superposition of the transmitted signals and to employ some form of multiple

user detection, often in the form of successive interference cancellation, at the re-

ceiver [18]. Some of the popular instantiations of this principle include power domain

NOMA, and sparse code multiple access (SCMA) [21], each of which explore different

trade-offs between achievable rates, bandwidth and implementation complexity.

In this chapter, we will develop a new approach to NOMA signalling in which the

13
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access point designs the constellations to be employed by each user. Our approach is

related to power-domain NOMA, in the sense that it acts on the transmitted symbols

themselves, without the bandwidth expansion of code-based NOMA schemes. How-

ever, the proposed approach has more degrees of design freedom because it adapts each

user’s constellation to the scenario, rather than simply adapting the power. (In the

case of binary signalling we design both the power and the rotation of each user’s con-

stellation.) Indeed, our approach can be viewed as an uplink “constellation-domain”

NOMA scheme. (A downlink constellation-domain NOMA scheme was developed in

[10].)

To provide more context for that characterization of our approach, we observe

that, up until now, many power domain NOMA designs have been developed under

the assumption that Gaussian input signals, based on insights from the fundamental

limits of multiple access channels [18]. However, in practical communication systems,

it is often unaffordable to directly implement accurate approximations of Gaussian

input signals, due to the prohibitively large storage capacity, high computational

complexity, the need to use power-efficient (non-linear) amplifiers, and long decod-

ing delay [27]. In practice, finite-alphabet constellations such as phase shift keying

(PSK), pulse amplitude modulation (PAM), and quadrature amplitude modulation

(QAM), are typically used to carry the information to be transmitted. It has been

demonstrated in [60] that a significant performance loss will be incurred if we directly

apply systems designed for Gaussian inputs to systems that employs finite-alphabet

inputs.

Motivated by this fact, the design of NOMA systems with finite-alphabet inputs

has attracted some attention [27, 40, 41, 55, 56, 64]. The underlying principle of

14



Ph.D. Thesis – P. Chen McMaster University – Electrical & Computer Engineering

these works was inspired by the work in [46], where the codebooks of the two users

are carefully designed to ensure that each codeword can be uniquely decoded from

the sum signal at the receiver. That principle has been extended to uniquely decom-

posable constellations for two-user multiple access systems [27, 40]. Design criteria

for optimizing such constellations for the two-user case have included the mutual in-

formation, (i.e., the constellation constrained capacity) [40, 41], and the minimum

distance between points of the sum constellation at the receiver [27, 55, 56, 64], with

the design variables being the rotation of each user’s constellation [40], the power

allocation to each user [41], or both [27, 55, 56, 64]. In related work, an explicit

two-user constellation for the two-way relay channel was developed in [49].

Since the previous work on finite constellation design for the Gaussian MAC has

been limited to the case of two users, in this chapter we develop finite constellation

design techniques for the K-user MAC.

• Our first key contribution is for the case of K = 3 users, each of which employs

binary signalling. We derive a closed-form expression for the set of user constel-

lations that maximizes the minimum distance between the points of the received

sum constellation under individual power constraints on each user. Along the

way we also derive also obtain a closed-form parameterization of the family of

optimal user constellations in the case of K = 2 users.

• Next, we develop an efficient design technique for an arbitrary number of users

K. This design is based on viewing a carefully rescaled version of the three-user

sum constellation as the generator for a two-dimensional lattice constellation.

• Beyond the inherent performance advantages, the proposed sum constellation is

uniquely decomposable. This enables fast detection, in the sense that maximum
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likelihood (ML) multiuser detection reduces to simple (single-user) quantization-

based detection over the sum constellation.

• A further simplification of our lattice-based constellation for K > 3 users yields

a sum constellation that can be viewed as being carved from the Eisenstein

integer ring and a different simplification results in the sum constellation being

carved from the Gaussian integer ring. Both rings have appealing geometric

structures that enables a simple representation of the decision regions employed

by the simplified ML detector. Furthermore, those simple decision regions en-

able analytic computation of the symbol error probability (SEP), which can be

represented by using the SEP expressions of M -ary PSK (M = 2, 3, 6) constel-

lations.

• We then analytically show that all of our proposed sum constellations provide

a larger minimum distance than the corresponding orthogonal scheme with the

same transmitted power that employs conventional QAM signaling.

• Finally, we develop a constellation construction technique that enables us to

extend the principles of our design approach to a system in which the k-th

user employs a constellation with 2Mk points. Numerical results show that the

resulting scheme provides better performance than the scheme in [27], which

was based on insights from Farey sequences.

16



Ph.D. Thesis – P. Chen McMaster University – Electrical & Computer Engineering

2.2 System Model and Problem Statement

Inspired by the previous work on finite constellation design for the two-user multiple

access channel [27, 40, 49, 74], our goal is to design an optimized constellation for the

K user case. We consider a narrow band, symbol synchronous system with a single

antenna at each node. At an arbitrary symbol instance, the baseband received signal

at the base station can be written as

y =
K∑
k=1

hkxk + ξ, (2.2.1)

where hk is the channel gain between user k and the base station, and the additive

noise ξ is modeled as being Gaussian and white; i.e., ξ ∼ CN (0, 2σ2). The term xk

denotes the symbol transmitted by user k, which is chosen in a random, independent

and equally likely manner from a constellation Xk. Our goal is to jointly design

these constellations. It is assumed that the base station operates coherently, and

hence has perfect channel state information (CSI). We will also assume that the base

station has a control channel over which it can inform each user of the constellation it

will employ. For equally-likely symbol transmission, the detector that minimizes the

symbol error probability (SEP) for jointly detecting the transmitted symbols {xk}Kk=1

is the maximum likelihood (ML) detector. In the case of the coherent multiple access

channel with white Gaussian noise, that receiver solves the following optimization

problem:

{x̂1, . . . , x̂K} = arg min
xk∈Xk

∣∣∣y − K∑
k=1

hkxk

∣∣∣. (2.2.2)

In the relatively high SNR regime, the error performance of the ML detector is dom-

inated by the free distance, dfree, which is the minimum distance between any two
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distinct received signal points, i.e.,

dfree = min
(x1,...,xK )̸=(x̃1,...,x̃K),xk,x̃k∈Xk

∣∣∣ K∑
k=1

hk(xk − x̃k)
∣∣∣.

The primary goal of this chapter is to seek for a solution to the following opti-

mization problem:

Problem 2.1 For given channel coefficients hk, k = 1, . . . , K, find K user constel-

lations Xk such that the minimum Euclidean distance of any two distinct received

constellation points is maximized, i.e.,

max
{Xk}

dfree

s.t. E[|xk|2] ≤ Qk, k = 1, . . . , K,

where Qk is the average transmitted power budget for user k.

In order to simplify the objective function of Problem 2.1, we define a scaled and

rotated version of the user constellation by absorbing the (complex-valued) channel

gain, i.e., Sk = hkXk for k = 1, . . . , K. Then, Problem 2.1 can be reformulated into

the following equivalent optimization problem:

Problem 2.2 Find K user constellations Sk such that the minimum Euclidean dis-

tance of any two distinct received signal constellation points is maximized, i.e.,

max
Sk

min
(s1,...,sK )̸=(s̃1,...,s̃K),sk,s̃k∈Sk

∣∣∣ K∑
k=1

(sk − s̃k)
∣∣∣

s.t. E[|sk|2] ≤ Pk, k = 1, . . . , K,

(2.2.3)
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where Pk = |hk|2Qk.

Without loss of generality, we will index the users so that P1 ≤ . . . ≤ PK . We

observe that if the user constellations {Sk}Kk=1 are such that the objective in (2.2.3)

is greater than zero, then the sum constellation {z =
∑K

k=1 sk, sk ∈ Sk} is uniquely

decomposable in the sense that we will define in the next section.

2.3 Uniquely Decomposable Sum Constellations

The methodology that underlies our approach to solving Problem 2.2 is based on

insights from the notion of an additively uniquely decomposable constellation group

(AUDCG); see [40, 46]. Such a group is defined as follows:

Definition 2.1 (AUDCG) Define a sum constellation S = {zm}Mm=1 formed from

group of constellations Sk as {zm =
∑K

k=1 sk,m, sk,m ∈ Sk} = S1
⊎
S2
⊎
. . .
⊎
SK =⊎K

k=1 Sk. We observe that M = |S| =
∏K

k=1 |Sk|. We will say that S is an additively

uniquely decomposable constellation group (AUDCG) if the assumption that there

exists two sets {sk ∈ Sk}Kk=1 and {s̃k ∈ Sk}Kk=1, such that
∑K

k=1 sk =
∑K

k=1 s̃k, implies

that we have sk = s̃k for all 1 ≤ k ≤ K.

In our application, the AUDCG S will be the sum constellation received by the

base station, and Sk will be the received constellation of the k-th user. The concept

of an AUDCG can be considered as an extension of uniquely decodable code (UDC)

over the binary field [14, 46, 47] to the complex number domain for K-users.

The first key contribution of this chapter will be to design a family of AUDCGs

for the case of binary signalling for each user, i.e., Sk = {sk1, sk2} with |Sk| = 2 for

each 1 ≤ k ≤ K. Then, in Sect 2.5, we will extend that design to a K-user multiple
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access system in which the K-th user employs a constellation of size |Sk| ≥ 2Mk with

Mk ≥ 1. A result on the case of binary signalling that will assist in our development

is as follows:

Lemma 2.1 Consider an AUDCG S̄ =
⊎K

k=1 S̄k with S̄k = {0, sk}, and also consider

the symmetrized user constellations Sk = {−sk/2, sk/2}. Then the sum constellation

S =
⊎K

k=1 Sk is also an AUDCG with the same minimum Euclidean distance, each

user constellation Sk has half the average energy of S̄k.

Proof Since S can be obtained by shifting S by
∑K

k=1 sk/2, and since the shifting

doesn’t change any relative distance, the sum constellation S is an AUDCG with

the same minimum Euclidean distance as S̄. Moreover, the average energy of Sk is

|sk|2/4, which is half of that of S̄k. □

2.4 Constellation Design for Multiple-access Chan-

nel with Binary Signalling

In this section, we will derive solutions to the constellation design in Problem 2. In

Sect 2.4.2, we state the solution for two user case when the users employ binary sig-

nalling and relate that result to previous designs. In Sect 2.4.3, we derive the first of

the key results in the chapter, namely, the family of optimal solutions to the case of

K = 3 users. In Sect 2.4.4, we extend that result to generate good designs for K-user

uplink system with K > 3. In Sect 2.4.7, we show that the proposed sum constel-

lation design achieves a larger minimum distance than the corresponding orthogonal

scheme with (square/rectangular/cross) QAM, resulting in a superior performance.
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In Sect 2.4.5, we define a fast ML detection method, in which the maximum likeli-

hood multiuser detection is reduced to a single-user quantization-based detection. In

Sect 2.4.6, sum constellation with a simplified lattice structure are introduced, and

the numerical results show that they can achieve similar performance to our original

design.

2.4.1 Problem Formulation

For the case of binary signalling, each user constellation1 takes the form Sk =

{−sk/2, sk/2} with sk = |sk|ejθk and |sk| ≤ 2
√
Pk for 1 ≤ k ≤ K. In order to

simplify some of the proofs, we will also consider its unipolar form, which is given by

S̄k = {0, sk}. It will also help to simplify the proofs if we define D to the smallest

subset of all the pairwise distances in the (unipolar) sum constellation S̄ =
⊎K

k=1 S̄k

that is guaranteed to include the minimum pairwise distance in (2.2.3). We will call

this set the simplest minimum Euclidean distance set. This definition enables us to

simplify the inner minimization in (2.2.3) to min
d∈D

d = minD, and hence the instance

of Problem 2.2 with binary signalling can be written as

max
sk,|sk|≤2

√
Pk,

k=1,...,K

minD (2.4.1)

Since we have assumed that P1 ≤ . . . ≤ PK , without loss of generality we can focus

on the case where |s1| ≤ . . . ≤ |sK |. Furthermore, since {θk} can be regarded as

the directions of basis vectors on which the constellations are constructed, there are

equivalence classes of constellations generated by (common) rotations of the basis

vectors. We will choose case of θ1 = 0 as the representative of the equivalence class.

1Given the nature of the constraints, each user constellation should be symmetric.
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Furthermore, given the symmetry of antipodal constellations, we can restrict attention

to 0 ≤ θ2 ≤ π
2
.

2.4.2 Optimal Constellation for Two-User MAC

To set the context for our key results, we first address the case of two users.

Theorem 2.1 A class of the optimal user constellations for the two-user case is


S1 = {−d/2, d/2},

S2 = {−d/2 exp(jθ2), d/2 exp(jθ2)}
(2.4.2)

where d = 2
√
P1 and π

3
≤ θ2 ≤ π

2
.

Proof Consider the unipolar form S̄k = {0, sk} with sk = |sk|ejθk (k = 1, 2) for

each user constellation. As discussed above, by symmetry it is sufficient to restrict

θ2 so that 0 ≤ θ2 ≤ π
2
. For such θ2, |s2 + s1| ≥ |s2 − s1| and hence, the simplest

minimum Euclidean distance set is D = {|s1|, |s2 − s1|}. According to (2.4.1), the

optimal constellation can be found by solving

max
|s1|≤|s2|,0≤θ2≤

π
2 ,

|sk|≤2
√

Pk(k=1,2)

minD = max
|s1|≤|s2|,0≤θ2≤

π
2 ,

|sk|≤2
√

Pk(k=1,2)

min{|s1|, |s2 − s1|}. (2.4.3)

An upper bound of (2.4.3) is max
|s1|≤2

√
Pk

|s1| = 2
√
Pk. Furthermore, this bound is tight

and can be achieved when |s2− s1| ≥ |s1|. As illustrated in Fig. 2.1, since |s2| ≥ |s1|,

this happens when π
3
≤ θ2 ≤ π

2
.

Therefore, we have max
|s1|≤|s2|,0≤θ2≤

π
2 ,

|sk|≤2
√

Pk(k=1,2)

minD = max
|s1|≤2

√
Pk

|s1| = 2
√
P1 with π

3
≤ θ2 ≤

π
2
. Since |s2| ≥ |s1|, and s2 must satisfy the constraint |s2| ≤ 2

√
P2, any |s2| ∈

22



Ph.D. Thesis – P. Chen McMaster University – Electrical & Computer Engineering

1
s

2
s

2 1
s s-

2
q

s

q

a

Figure 2.1: Illustration of |s2 − s1| ≥ |s1|.

[2
√
P1, 2
√
P2] would solve (2.4.1). In order to save energy, it is desirable to choose s2

so that |s2| = 2
√
P1. □

As outlined in the proof of Theorem 2.1, the optimal Euclidean distance can be

achieved, as long as the user with smaller power constraint uses its maximum allowable

power, and the other user uses at least that amount. If P2 > P1, that user still has

some transmitted power left, which can be used for the other communication purposes.

Note that although there is no difference among the solutions in Theorem 2.1 with

π
3
≤ θ2 ≤ π

2
in the sense of the minimum Euclidean distance, the kissing numbers may

be different, and the decision regions are different, and hence the constellation may

have different probability of error. In Fig. 2.2(b), we have provided three examples of

optimal two-user based sum constellations, one with θ2 =
π
3
(in blue), one with θ2 =

π
2

(in red), and one with θ2 = 5π
12

(in green), and Fig. 2.2(a) shows the corresponding

user constellations.
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(a) User constellations: S1(black circle) and three optimal choices for S2 with θ2 =
π
3 (blue

circle), θ2 =
π
2 (red triangle), and θ2 =

5π
12 (green square).
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(b) The three sum constellations S, corresponding to the choices of θ2 in part (a).

Figure 2.2: Three examples of optimal two-user constellations.
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2.4.3 Optimal Constellation for Three-User MAC

In this subsection, we derive the first key result of this chapter, a closed form expres-

sion for the optimal constellations for the three-user case with binary signalling.

For later notational convenience, let us once again consider the unipolar form

S̄k = {0, sk} with sk = |sk|ejθk and |sk| ≤ 2
√
Pk (1 ≤ k ≤ 3). Due to the fact that

ejθ = cos θ + j sin θ, e−j(θ+π) = e−jπe−jθ = − cos θ + j sin θ, it is sufficient for us to

focus on the case where θ1 = 0 and −π
2
≤ θ3 ≤ π

2
. We will find it convenient to

reparametrize the problem in terms of the relative angle of θ3 with respect to θ2,

α = θ2 − θ3, where 0 ≤ α ≤ π, as illustrated in Fig. 2.3. By comparing the distance

between any two points in the sum constellation S̄ = {0, s1, s2, s3, s1+s2, s1+s3, s2+

s3, s1 + s2 + s3}, the simplest minimum Euclidean distance set can be shown to be

D = {|s1|, |s2−s1|, |s3−s1|, |s3+s2|, |s3−s2|, |s1+s2−s3|, |s1+s3−s2|, |s2+s3−s1|}.

Therefore, for the three-user case with binary signalling, we can rewrite Problem 2.2

as max
Θ,A

minD, where the design variables are Θ = {(θ2, α) : 0 ≤ θ2 ≤ π
2
, 0 ≤ α ≤ π}

and A = {(|s1|, |s2|, |s3|) : |s1| ≤ |s2| ≤ |s3|, |s1| ≤
√
P̄1, |s2| ≤

√
P̄2, |s3| ≤

√
P̄3},

where P̄k = 4Pk. A closed-form expression for the optimal solution is provided in the

following theorem.

Theorem 2.2 A class of sum constellation and the corresponding user constellations

are:

S =
d

2

{
− 3,−1 + 2ej2θ2 ,−1,−1− 2ej2θ2 , 1 + 2ej2θ2 , 1, 1− 2ej2θ2 , 3

}
(2.4.4)
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Figure 2.3: Illustration of a generic arrangements of s1, s2 and s3, where |sk| ≤
√
P̄k

and P1 ≤ P2 ≤ P3.


S1 = {−d/2, d/2},

S2 = {−d cos θ2 exp(jθ2), d cos θ2 exp(jθ2)}

S3 = {−d sin θ2 exp(j(θ2 − π/2)), d sin θ2 exp(j(θ2 − π/2))}

, (2.4.5)

with the minimum Euclidean distance d = min{2
√
P1,

√
P2

cos θ2
} and

θ2 =


arctan

√
P3

P2
, if

√
P3

3
<
√
P2 ≤

√
P3,

π
3
, if

√
P2 ≤

√
P3

3
.

(2.4.6)

Some examples of the optimal constellations for P̄1 = 1 and different values of P̄2 and

P̄3 are given in Fig. 2.4.
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(a) User constellations: S1 (black circle), S2 (open symbols), S1 (filled symbols).
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(b) Sum constellation

Figure 2.4: Structure of 9 examples of optimal sum constellations in the three-user
case. Each different symbol corresponds to a different case of P̄1 = 1, P̄2 and P̄3.

The pairs (P̄2, P̄3) are (2, 2) (blue circle), (1.8744, 2.1256) (cyan plus),
(1.7493, 2.2507) (red star), (1.6252, 2.3748) (magenta rhombus), (1.5026, 2.4974)
(blue triangle), (1.382, 2.6180) (cyan square), (1.2638, 2.7362) (red multiple sign),
(1.1484, 2.8516) (magenta square), and (1.0365, 2.9635) (blue inverted triangle).
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Proof Guided by the results in Lemma 2.3 in Appendix 2.B, we first consider

the scenario in which
√
|s2|2 + |s3|2 < 2|s1|. Let

f(|s1|, |s2|, |s3|) =
2

3

(
|s1|2 −

√
|s1|4 + 9|s2|2|s̄3|2 cos γ

)
,

where

γ =
1

3
arccos

2|s1|6 + 27|s2|2|s3|4 + 27|s2|4|s3|2 − 81|s1|2|s2|2|s3|2

2(|s1|4 + 9|s̄2|2|s3|2)3/2
+

4π

3
.

By taking the derivative, we can show that f(|s1|, |s2|, |s3|) is an increasing function

of |s2| > 0 and |s3| > 0, and when |s1| >
√

|s2|2+|s3|2
2

, it is a decreasing function of

|s1|. Now, let us consider the following two cases, one in which P̄2 + P̄3 < 4P̄1 and

the other in which P̄2 + P̄3 ≥ 4P̄1.

• For the case where P̄2 + P̄3 < 4P̄1, the upper bound on f(|s1|, |s2|, |s3|) occurs

when |s1| =
√

P̄2+P̄3

2
, |s2| =

√
P̄2 and |s3| =

√
P̄3. The value of that upper

bound is

√
P̄2+P̄3

2
. Using that observation and the constellation structure illus-

trated in Fig. 2.3, it can be shown that the upper bound on f(|s1|, |s2|, |s3|) can

be achieved by setting α∗ = π
2
and θ∗2 = arctan

√
P̄3

P̄2
. We note that with these

definitions, the upper bound can be written as
√

P̄2+P̄3

2
=

√
P̄2

2 cos θ∗2
=

√
P̄3

2 sin θ∗2
. Fur-

thermore, we observe that since the users are ordered such that P̄3 ≥ P̄2 ≥ P̄1,

the fact that 4P̄1 > P̄2 + P̄3 implies that P̄2 > P̄3

3
, and then we have that

π
4
≤ θ∗2 = arctan

√
P̄3

P̄2
< π

3
.

• For the case where P̄2 + P̄3 ≥ 4P̄1, according to the lemmas in Appendices

2.A and 2.B, we note that an upper bound on f(|s1|, |s2|, |s3|) occurs when

|s1| =
√
P̄1, |s2| = 2 cos θ2

√
P̄1 and |s3| = 2 sin θ2

√
P̄1. The value of that upper
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bound is
√
P̄1 and it can be achieved by setting α∗ = π

2
and

θ∗2 =


arctan

√
P3

P2
, if

√
P3

3
<
√
P2 ≤

√
P3,

π
3
, if

√
P2 ≤

√
P3

3
.

(2.4.7)

Based on the above, we have that max
A,Θ

minD = min{
√
P̄1,

√
P̄2

2 cos θ∗2
}.

Now, we consider the remaining scenario, in which
√
|s2|2 + |s3|2 ≥ 2|s1|. In that

case, according to the lemma in Appendix 2.B, we know that max
A,Θ

minD = max
A,Θ
|s1|.

Since |s1| ≤ min{
√
P̄1,

√
P̄2+P̄3

2
}, we have max

A,Θ
minD = min{

√
P̄1,

√
P̄2+P̄3

2
}. As in

the first scenario, we can divide our analysis into two cases.

• For the case where P̄2 + P̄3 < 4P̄1, we know that max
A,Θ

minD =

√
P̄2+P̄3

2
, and it

can be achieved by letting |s1| =
√

P̄2+P̄3

2
, |s2| =

√
P̄2, |s3| =

√
P̄3, α

∗ = π
2
and

θ∗2 = arctan
√

P̄3

P̄2
. Moreover, we also have

√
P̄2+P̄3

2
=

√
P̄2

2 cos θ∗2
, i.e., max

A,Θ
minD =

√
P̄2

2 cos θ∗2
.

• For the case where P̄2 + P̄3 ≥ 4P̄1, we know that max
A,Θ

minD =
√
P̄1, and it

can be achieved by letting |s1| =
√
P̄1, |s2| = 2 cos θ2

√
P̄1, |s3| = 2 sin θ2

√
P̄1,

α∗ = π
2
and

θ∗2 =


arctan

√
P3

P2
, if

√
P3

3
<
√
P2 ≤

√
P3,

π
3
, if

√
P2 ≤

√
P3

3
.

(2.4.8)

By combining the analyses for the two scenario above, we have that max
A,Θ

minD =

min{
√
P̄1,

√
P̄2

2 cos θ∗2
}. Since P̄k = 4Pk, we let d = max

A,Θ
minD = min{2

√
P1,

√
P2

cos θ2
}. By

shifting S̄k = {0, sk} (|sk| ≤
√
P̄k) to Sk = {−sk/2, sk/2}, and observing that in both
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cases the optimal value α∗ = π
2
, we obtain the optimal user constellations in (2.4.5).

By using Euler’s formula, we obtain the optimal sum constellation in (2.4.4). □

2.4.4 Extension for the K-User MAC

Theorem 2.2 provides a closed-form expression for a globally optimal solution to the

problem of finding user constellations that maximize the minimum distance of the

received sum constellation at the base station for binary signalling with K = 3 users.

While a corresponding expression for the optimal user constellations K-user case with

binary signal appears to be beyond our grasp, in this section we will use the results

of Theorem 2.2 to develop an efficient technique for generating good constellations

for the K-user case.

The basic principle of our approach uses Theorem 2.2 to design optimal constel-

lations for a specially-selected subset of three users. We then use scaled versions of

those constellations for the other users. More specifically, given the power constraints

of the users, P̄1 ≤ P̄2 ≤ · · · ≤ P̄K , the subset of three users is chosen to be user 1,

a representative of the even indexed users and a representative of the odd indexed

users. (We will describe the selection of the representatives below.) Once Theorem

2.2 has been used to design the optimal constellations for that triple (with appropri-

ately scaled power constraints), those constellations are assigned to users 1, 2, and 3.

The remaining constellations for the even indexed users are obtained by iteratively

scaling the constellation assigned to user 2 by a factor of 2. Since we have binary

signalling, this ensures that the minimum distance of the (K-user) sum constellation

is the same as that of the underlying three-user design. The remaining constellations

for the odd indexed users are generated in an analogous way from the constellation
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for user 3. In order for this process to yield user constellations that satisfy the power

constraints, the representative users from the sets of even and odd indexed users must

be chosen so that the iterative doubling of the powers does not violate the constraint.

For the even indexed users, that means that we should choose the representative to be

the one that has the minimum value of
{

P̄2ℓ

4(ℓ−1)

}
ℓ≥1

. Analogously, the representative

for the odd indexed users should be the one that minimizes
{

P̄2ℓ+1

4(ℓ−1)

}
ℓ≥1

. With the

user constellations generated in this way, the sum constellation at the receiver takes

the form of an offset lattice constellation, where the lattice structure arises from the

scaling of the constellations for user 2 and 3 in the underlying three-user constellation,

and the offset comes from the constellation assigned to user 1.

Having outlined those principles, we now formally state the construction procedure

in Algorithm 1.

2.4.5 Efficient ML Detection

Given our channel model in (2.2.1) and the transformation Sk = hkXk that was used

to obtain Problem 2.2 from Problem 2.1, the maximum likelihood multiuser detector

can be written as

{ŝ1, · · · , ŝK} = arg min
{sk∈Sk}Kk=1

|y −
K∑
k=1

sk|. (2.4.9)

However, the way in which we have designed the user constellations {Sk}Kk=1 en-

sures that the sum constellation S is an additive uniquely decomposable constellation

group (AUDCG); see Section 2.3. That is, given a point ŝ ∈ S we can uniquely de-

termine the set {ŝk}Kk=1 such that ŝ =
∑K

k=1 ŝk. That means that for the purposes of

detection, we can treat the received signal as if it was generated by a transmission

from a single user that employs the sum constellation S. That is, for the purpose of
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Algorithm 1: Construction of a good solution to Problem 2 for K ≥ 3 users
with binary signalling

1: Input: K ≥ 3, P1 ≤ P2 ≤ . . . ≤ PK ;
2: Output: Sk (1 ≤ k ≤ K), S ;
3: if K is even then
4: Set P̃even ← min

{
P2ℓ

4(ℓ−1) , 1 ≤ ℓ ≤ K/2
}
, P̃odd ← min

{ P2ℓ+1

4(ℓ−1) , 1 ≤ ℓ ≤ K/2− 1
}
;

5: else
6: Set P̃even ← min

{
P2ℓ

4(ℓ−1) , 1 ≤ ℓ ≤ (K − 1)/2
}
,

P̃odd ← min
{ P2ℓ+1

4(ℓ−1) , 1 ≤ ℓ ≤ (K − 1)/2
}
;

7: end if

8: if
√
P̃even ≤

√
P̃odd

3
then

9: • Set θ2 ← π
3
;

10: else

11: • Set θ2 ← arctan
√

P̃odd

P̃even
;

12: end if
13: Set d← min{2

√
P1,

√
Peven

cos θ2
}, S1 ← {−d/2, d/2},

S2 ← {−d cos θ2 exp(jθ2), d cos θ2 exp(jθ2)},
S3 ← {−d sin θ2 exp(j(θ2 − π/2)), d sin θ2 exp(j(θ2 − π/2))};

14: if K is even then
15: for t = 2 to K/2 do
16: • Set λt ← 2t−1, µt ← 2t−1, S2t ← λtS2, S2t−1 ← µt−1S3,
17: end for
18: else
19: for t = 2 to (K − 1)/2 do
20: • Set λt ← 2t−1, µt ← 2t−1, S2t ← λtS2, S2t+1 ← µtS3,
21: end for
22: Set S ←

⊎K
k=1 Sk.

23: end if
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detection we can use the channel model

y = s+ ξ, (2.4.10)

where s ∈ S. With that model in mind we can develop an equivalent maximum

likelihood detector to that in (2.4.9) that consists of the following two steps:

1. Using the sum constellation S generated by Algorithm 1, determine

ŝ = argmin
s∈S
|y − s|. (2.4.11)

2. Given ŝ, determine {ŝk ∈ Sk}Kk=1 such that
∑K

k=1 ŝk = ŝ.

In this form, the (worst-case) computational cost of (2.4.11) is the same as that

of (2.4.9). However, the expression in (2.4.11) reveals that if we determine the de-

cision regions, or Voronoi cells, of the designed sum constellation S, then maximum

likelihood detection of the sum constellation point reduces to a simple quantization-

style detector for a single-user system; and hence can be efficiently implemented. Fig.

2.5(a) shows an example of the detection regions for a sum constellation carved from

the Eisenstein integer ring. If the received point is in the detection range Di, the user

points can be easily found by looking up the table in Fig. 2.5(b).

2.4.6 Structured sum constellations

For the case of K = 3 users the optimal value of the constellation parameter θ2

depends on the ratio of the power constraints for users 2 and 3 (recall P1 ≤ P2 ≤ P3).

Indeed θ2 ∈
[
π
4
, π
3

]
, with θ2 = π

4
when P3 = P2, and if P2 is fixed, θ2 increases as P3
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(a) Detection regions for quantization-based detection of sum constellation points.

(b) Decomposing the sum constellation

Figure 2.5: Example of fast detection for K = 3.
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increases, with θ2 =
π
3
for all P3 ≥ 3P2. For the case of K > 3 users, the value of θ2

used in the construction of good constellations in Algorithm 1 depends on a ratio of

power constraints in an analogous way.

While those designs are indeed good, the implementation can be simplified if the

constellation has more structure. Therefore, in this section we will consider a modified

version of Algorithm 1 in which θ2 is fixed to either π
4
or π

3
and the calculation of dmin

is adjusted so that the users’ power constraints are satisfied; see Algorithm 2 below.

When θ2 = π
4
, the sum constellation is carved from (a scaled version of) the

Gaussian integer ring, which is the set of complex numbers for which both the real

and imaginary parts are integers; i.e., S ⊂ {α(a+ jb)|a, b ∈ Z}. As such, when

θ2 = π
4
the points in the sum constellation are carved from a “square” lattice in

the complex plane. When θ2 = π
3
, the sum constellation is carved from (a scaled

version of) the Eisenstein integer ring, which is the set of complex numbers of the

form Z =
(
(2a− 1) + jb

√
3
)
/2 where a and b are integers. As a result, when θ2 =

π
3

the points in the sum constellation are carved from a “triangular” (or “hexagonal”)

lattice in the complex plane.

In the case that the number of users, K, is even, it can be shown that our con-

stellation based on the Eisenstein ring (θ2 = π
3
) always yields a larger minimum

distance than that based on the Gaussian ring. However, in the case that K is odd,

the relationships between the power constraints of the users will determine which

construction has the larger minimum distance.

The design procedure for theK user constellations is stated in Algorithm 2. Given

the values of dmin (i.e., d, dG or dE) obtained in the algorithm, the sum constellations

produced by those designs can be written as follows.
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Algorithm 2: Construction of a simplified solution to Problem 2 for K ≥ 3
users with binary signalling

1: Input: K ≥ 3, P1 ≤ P2 ≤ . . . ≤ PK ;
2: Output: Sk (1 ≤ k ≤ K), S ;
3: if K is even then

4: • Set θ2 ← π
3
, d← min{2

√
P1, 2
√
P2, 2

√
P3

3
};

5: for k = 4 to K do
6: • Set i← ⌊k/2⌋, t← k − 2(i− 1);

7: • Set d← min{d,
√

Pk

4i−23t−2};
8: end for
9: • Set S1 ← {−d/2, d/2}, S2 ← {− (1+

√
3j)d

2
, (1+

√
3j)d

2
},

S3 ← {− (3−
√
3j)d

2
, (3−

√
3j)d

2
};

10: else

11: • Set θG2 ← π
4
, θE2 ← π

3
, dG ← min{2

√
P1, 2

√
P2

2
, 2
√

P3

2
},

dE ← min{2
√
P1, 2
√
P2, 2

√
P3

3
};

12: for k = 4 to K do
13: • Set i← ⌊k/2⌋, t← k − 2(i− 1);

14: • Set dG ← min{dG,
√

PK

4i−22
}, dE ← min{dE,

√
PK

4i−23t−2};
15: end for
16: if dG ≥ dE then
17: • Set S1 ← {−dG/2, dG/2}, S2 ← {−(1 + j)dG, (1 + j)dG},

S3 ← {−(1− j)dG, (1− j)dG};
18: else
19: • Set S1 ← {−dE/2, dE/2}, S2 ← {− (1+

√
3j)dE

2
, (1+

√
3j)dE

2
},

S3 ← {− (3−
√
3j)dE

2
, (3−

√
3j)dE

2
};

20: end if
21: end if
22: for k = 4 to K do
23: • Set i← ⌊k/2⌋, t← k − 2(i− 1), Sk ← 2i−1St
24: end for
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If K ≥ 3 is even, the sum constellation is chosen from Eisenstein integers and

determined by

SE =
dmin

2


a+
√
3bj :

a ∈ {2n−m+ b+ 1, 0 ≤ n ≤ m− 1}, if 0 ≤ |b| ≤ m

4
;

a ∈ {2n−m+ b+ 1, 0 ≤ n ≤ 3m

2
− 2b− 1},

if
m

4
+ 1 ≤ b ≤ 3m

4
− 1;

a ∈ {−(2n−m+ b+ 1), 0 ≤ n ≤ 3m

2
− 2|b| − 1},

if − 3m

4
+ 1 ≤ b ≤ −m

4
− 1;


(2.4.12)

where m = 2K/2.

If K ≥ 3 is odd, the sum constellation is further determined as follows:

1. If Algorithm 2 yields dG > dE, the sum constellation is chosen from theGaussian

integers and is determined by

SG =
dmin

2

a+ 2bj :
a ∈ {2n−m+ 2|b|+ 1, 0 ≤ n ≤ m− 1− 2|b|},

0 ≤ |b| ≤ m

2
− 1


(2.4.13)

2. Otherwise, the sum constellation is chosen from the Eisenstein integers and is

determined by

SE =
dmin

2

a+√3bj :
a ∈ {2n−m+ |b|+ 1, 0 ≤ n ≤ m− 1− 2|b|},

0 ≤ |b| ≤ m

2
− 1


(2.4.14)

where m = 2(K+1)/2.
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Fig. 2.6 shows the sum constellation from Eisenstein integers for even K users.

Fig. 2.7 and Fig. 2.8 show the sum constellation from Gaussian and Eisenstein

integers for odd K users.
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Figure 2.6: Sum constellations from Eisenstein integers for even number of users, K.
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Figure 2.7: Sum constellations from Gaussian integers for odd numbers of users, K.
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Figure 2.8: Sum constellations from Eisenstein integers for odd numbers of users, K.
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2.4.7 The Superiority of Our Proposed NOMA Scheme over

TDMA

In this section, we will show, analytically, that the minimum distance of the proposed

NOMA schemes described in Algorithm 1 and Algorithm 2 achieve a larger minimum

distance than the corresponding TDMA scheme, respectively. In the proposed scheme,

each of the K users transmits one bit in each channel use, subject to a per-channel-

use power constraint Pk, k = 1, 2, . . . , K, that captures the physical limitation of the

amplifiers at each user. In the corresponding TDMA scheme, there are K channel

uses, and each user transmits K bits in its assigned channel use, subject to the same

per-channel-use power constraint. When K is even, the TDMA scheme will use a

square QAM constellation, and when K is odd, we will consider both rectangular

QAM and cross QAM constellations.

For the proposed NOMA scheme, the minimum distance is a function of the power

constraints of all the users. In particular, for the scheme proposed in Algorithm 1,

dmin,NOMA = min
1≤ℓ≤⌈(K−1)/2⌉

2
√
P1,

√
P2ℓ

4ℓ−1

cos θ2

 , (2.4.15)

where, as shown in steps 8–12 of Algorithm 1, θ2 is a function of {P2, P3, . . . , PK}.

Furthermore, dmin,NOMA is a non-decreasing function of each Pk, 1 ≤ k ≤ K. That

means that an increase in the available transmission power for one user may improve

the minimum distance of the whole system and hence may improve the error perfor-

mance of all users in the system. The minimum distance of the NOMA scheme is

related to the probability that the system as a whole makes no errors in detecting the

symbols sent by all the users. The corresponding notion of minimum distance in the
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TDMA scheme is

dmin,TDMA = min
1≤k≤K

{dmin,XQAM(Pk)}, (2.4.16)

where dmin,XQAM(P ) is the minimum distance of the QAM constellation that is used

and X ∈ {S,R,C} denotes whether a square, rectangular or cross constellation is used.

Since dmin,XQAM(P ) is an increasing function of P , and the users are indexed so that

P1 ≤ P2 ≤ . . . ≤ PK ,

dmin,TDMA = dmin,XQAM(P1). (2.4.17)

Expressions for dmin for square and cross QAM are derived in [16] and an expression

for rectangular QAM is derived in Appendix 2.E. These expressions are

dmin,SQAM(P1) =

√
6P1

2K − 1
, for even K,

dmin,RQAM(P1) =

√
6P1

5
4
2K − 1

, for odd K,

dmin,CQAM(P1) =

√
6P1

31
32
2K − 1

, for odd K.

(2.4.18)

In the case of K = 2, according to Theorem 2.1, it is straight forward to show that

the minimum distance of the proposed design 2
√
P1 > dmin,SQAM(P1) =

√
2P1. The

main result of this section concerns the case of K ≥ 3 and it is summarized in the

following theorem.

Theorem 2.3 The minimum Euclidean distance of the NOMA scheme proposed in

Algorithm 1 is strictly larger than that of the corresponding QAM-based TDMA scheme.

Proof The proof can be found in Appendix 2.C. □

For the structured sum constellation-based NOMA for K ≥ 3 users that was
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proposed in Algorithm 2, the minimum distance can be written as

dmin,NOMA = min
1≤ℓ≤K/2,1≤ℓ̃≤K/2−1

{
2
√
P1, 2

√
P2ℓ

4ℓ−1
, 2

√
P2ℓ̃

4ℓ̃−13

}
, (2.4.19)

when K is even, and

dmin,NOMA = max

{
min

1≤ℓ≤(K−1)/2

{
2
√
P1, 2

√
P2ℓ

4ℓ−12

}
, min
1≤ℓ≤(K−1)/2

{
2
√
P1, 2

√
P2ℓ

4ℓ−1
, 2

√
P2ℓ

4ℓ−13

}}
,

(2.4.20)

when K is odd. Then, we also have the following theorem.

Theorem 2.4 The minimum Euclidean distance of the structured sum constellation-

based NOMA scheme proposed in Algorithm 2 is also strictly larger than that of the

corresponding QAM-based TDMA scheme.

Proof The proof can be found in Appendix 2.D. □

Even though our constellation design approach was developed for the multiple

access channel, the sum constellation that we obtain is a candidate constellation for

the single-user channel. We now make some observations regarding that connection.

Remark 2.1 The relationship between the average energy of the proposed sum con-

stellation in Algorithm 1 and its minimum distance is derived in Appendix 2.E. That

enables us to show that when K is odd, it can provide larger minimum Euclidean dis-

tance dmin than the 2K-ary rectangular QAM constellation with same average energy.

Remark 2.2 For the structured sum constellation, when K is even, it can be shown

that Eeven(S) = (2K−1)+2K−1

12
d2min =

(7M−4)d2min

48
. When K ≥ 4, this is smaller than the
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energy of the corresponding square QAM constellation ESQAM =
d2min(M−1)

6
. Equiva-

lently, for the same energy, the structured sum constellation provides a larger min-

imum Euclidean distance than square QAM. Actually, in the single-user case, this

structured sum constellation is well-known as hexagonal QAM.

2.4.8 Symbol Error Probability for Structured Sum Constel-

lations

One of the advantages of the user constellations designed using Algorithm 2 is that

the sum constellation has a nice regular geometrical structure. Indeed, the sum

constellation is carved from either a square lattice (in the case of Gaussian integers)

or an equilateral triangular lattice (in the case of Eisenstein integers). As a result, the

decision regions for the ML detector also have a regular geometric structure, which

significantly reduces the storage requirements of the receiver. As we show in Theorem

2.5 below, this regular structure also enables us to obtain closed-form expressions for

the symbol error probability (SEP). There expressions are based on the closed-form

expressions for the SEP of the M -ary PSK constellations with M = 2, 3, 6.

Theorem 2.5 If we let dmin = d, the SEP for the sum constellations arising from

Algorithm 2 are given as follows
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• When K ≥ 3 is even, the SEP is

Pe =
(
2−K/2+1 − 3 · 2−K+1

)
P2PSK

(√3d
2σ

)
−
(
6 + 3 · 2−K+1 − 2−K/2+4

)
P2PSK

(d
σ

)
+ 6
(
1− 2−K/2+1 + 2−K

)
P3PSK

(√3d
3σ

)
−
(
2−K/2 − 2−K+1

)
P3PSK

(d
σ

)
+ 2−KP6PSK

(√3d
σ

)
+
(
2−K/2+1 − 2−K+2

)
P6PSK

(d
σ

)
(2.4.21)

• When K ≥ 3 is odd, and the sum constellation is carved from the Eisenstein

integer ring, the SEP is

Pe =
(
2−(K−1)/2 − 3 · 2−K

)
P2PSK

(√3d
2σ

)
−
(
6 + 2−K+1 − 2−(K−3)/2

)
P2PSK

(d
σ

)
+ 6
(
1− 3 · 2−(K+1)/2 + 2−K

)
P3PSK

(√3d
3σ

)
−
(
2−(K−1)/2 − 2−K+1

)
P3PSK

(d
σ

)
+ 2−KP6PSK

(√3d
σ

)
+
(
2−(K−3)/2 − 2−K+2

)
P6PSK

(d
σ

)
(2.4.22)

• When K ≥ 3 is odd and the sum constellation is carved from the Gaussian

integer ring, the SEP is

Pe =
(
4− 2−(K−5)/2 + 2−K+1

)
Q
( d
2σ

)
+
(
2−(K−3)/2 − 2−K+2

)
Q
(√2d

2σ

)
−
(
4− 2−(K−5)/2

)
Q2
( d
2σ

)
(2.4.23)

where PMPSK(u) = 1
π

∫ π(M−1)
M

0
exp(−u2 sin2 π

M

2 sin2 θ
)dθ and Q(u) = 1√

2π

∫∞
u

exp(− t2

2
)dt =

1
π

∫ π
2

0
exp(− x2

2 sin2 θ
)dθ with x ≥ 0.

Proof The proof is provided in Appendix 2.F. □

Fig. 2.9 shows the simulated and theoretical SEP performance comparison, where
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both the Eisenstein integer ring and the Gaussian integer ring are considered when

K is odd. As claimed in the theorem, the results match exactly.

2.4.9 Numerical Results

In this section, we carry out computer simulations to compare the error performance

of our proposed NOMA scheme with that of the corresponding TDMA scheme in

various channel conditions. Both three-user and six-user multi-access channels are

considered. We consider the scenario in which each user has the same power constraint

with Qk = 1, k ≥ 1, and the receiver noise variance is 2σ2. Hence we can define a

system wide (transmitted) signal to (receiver) noise ratio (SNR) as η = 1
2σ2 . The

channel coefficients hk are modelled using a Rayleigh distribution, hk ∼ CN (0, 2δ2k).

For simplicity, we denote a vector consisting of variances of channel coefficients δ2k by

∆. Recall that Pk = |hk|2Qk and hence for each channel realization we may need to

re-index the users during the constellation design process.

For the proposed NOMA schemes we consider both the design in Algorithm 1,

which is optimal in the three user case and will be called the “Proposed scheme”,

and the simplified designs in Algorithm 2, which we will call the “Proposed simplified

scheme”. In our comparisons, two cases are considered for the TDMA schemes, too.

In the first case, each user uses all of its available power. This is denoted by “full

power” in the figures. In the second case, the power for each user is constrained to

be the same as that used in the proposed scheme. This is denoted by “TDMA with

power allocation”. When K is even, each TDMA user employs a square constellation

of 2K points so that the data rates of the proposed NOMA scheme and TDMA are the

same. When K is odd, we consider both rectangular and cross QAM constellations
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(a) K is odd and constellation from Eisenstein integer ring.
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(b) K is odd and constellation from Gaussian integer ring.
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Figure 2.9: Simulated and theoretical SEP performance comparison.
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of size 2K . Figs. 2.10, 2.11 and 2.12 show the SEP performance with three users,

five users and six users, respectively, where in Fig. 2.10, RQAM is applied to TDMA

scheme, but in Fig. 2.11 both RQAM and cross-QAM are considered.
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Figure 2.10: Performance comparison between the proposed-NOMA and TDMA
schemes with K = 3 and ∆ = (1, 1, 1)

It can be seen that our proposed NOMA scheme outperforms the QAM based

TDMA schemes. In particular, our proposed scheme can provide up to 3 dB gain

for the three user-MAC and 8 dB gain for the six user-MAC with respect to the

TDMA with full power scheme at SEP=10−3. Moreover, we observe that the SEP

performance of our simplified lattice-based designs in Algorithm 2 is nearly indistin-

guishable from the performance of the original lattice-based design in Algorithm 1 at

the scale of the figures.
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Figure 2.11: Performance comparison between the proposed-NOMA and TDMA
schemes with K = 5 users and ∆ = (1, 1, 1, 1, 1)
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Figure 2.12: Performance comparison between the proposed-NOMA and TDMA
schemes with K = 6 users and ∆ = (1, 1, 1, 1, 1, 1).
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2.5 Extension for K-user-case with Any 2Mk Size

Constellation

In the previous sections, our goal has been to design constellations for the users of

a multiple access channel in such a way that the minimum Euclidean distance of

the received sum constellation is maximized. The design techniques (for our NOMA

scheme) take into account the different power constraints on the user’s transmission,

and their different channels to the receiver. However, all these design techniques are

restricted to the case in which each user transmits a binary signal.

In this section, we will use insights from the binary case to develop a technique for

designing effective constellation for the K-user case in which the k-th user transmits

Mk bits per channel use. The key principle is to observe that our previous approaches

were based on designing the user constellations. By construction, the resulting sum

constellation is an additive uniquely decomposable constellation (AUDC). An alter-

native approach would have been to design an AUDC and then decompose it into

binary constellations for each user. We will adapt the latter strategy to the case of

higher-order constellations for each user. In particular, for a system with K users, the

k-th of which seeks to transmit Mk bits per channel use subject to a (scaled) power

constraint Pk (cf., (2.2.3)), we first design a normalized AUDC sum constellation of

size 2M , where M =
∑K

k=1Mk, using the insights from the previous section. Then,

we decompose the sum constellation into the K user constellations of sizes {2Mk}Kk=1

based on the users’ power constraints. The decomposition is akin to a set partition-

ing process, but since the target partitions are of size {2Mk}, and the decomposition

metric is controlled by the users’ power constraints (which may be different), it is a
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somewhat different partitioning process from that used in coded-modulation [83]. For

simplicity, we will restrict attention to the sum constellations that are carved from

the Eisenstein and Gaussian integers, as outlined in Algorithm 2.

2.5.1 Constellation Decomposition

As outlined above, we consider a system with K users, the k-th of which seeks to

transmitMk bits per channel use, subject to a (scaled) power constraint Pk. The start-

ing point for the construction is a sum constellation of 2M points, M =
∑K

k=1Mk,

designed for M (virtual) users with binary signalling, normalized channels (cf., Prob-

lem 2.2) and a minimum distance dmin = 1. We will denote that (normalized) sum

constellation by S̄ and its constituent binary constellations for theM virtual users by

{S̄j}Mj=1. Based on the insights that led to Algorithm 2, ifM is even, S̄ will be carved

from the Eisenstein integers, and if M is odd, we will perform two constructions, one

based on S̄ = S̄E carved from Eisenstein integers, and one based on S̄ = S̄G carved

from Gaussian integers, and then we will select the design that leads to the larger

minimum distance. Explicit expressions for each S̄j are also available in Algorithm 2.

Given the constituent scaled binary constellations {S̄j}Mj=1, the number of ways

that they can be partitioned, in a non-overlapping manner, into K sets of sizes

{Mk}Mk=1 is T =
(
M
M1

)
×
(
M−M1

M2

)
· · · ×

(
M−

∑K−2
k=1 Mk

MK−1

)︸ ︷︷ ︸
K−1

= M !
M1!···MK !

. To index these parti-

tions, let {Ak}Kk=1 denote a (non-overlapping) partition of the index set {1, . . . ,M}

in which |Ak| =Mk. There are T such partitions, and we will index those partitions

by t, i.e., the t-th partition is {Ak,t}Kk=1. Our construction process involves examining

each partition of the normalized sum constellation and determining which are enables

the largest minimum distance subject to the users’ power constraints being satisfied.
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That is, for each t, we determine dt = min
1≤k≤K

{
√

Pk∑
j∈Ak,t

Esj
}, where Esj is the (aver-

age) energy of the binary constellation S̄j of the normalized sum constellation S̄. This

average energy can be explicitly computed from the expressions for S̄j in Algorithm

2. The final design problem is to find t∗ such that t∗ = arg max
1≤t≤T

dt. Once that has

been determined, the constellation to be employed by user k is Qk =
⊎

j∈Ak,t∗
dt∗S̄j

and the minimum distance of the sum constellation at the receiver is dt∗ . This result

is summarized in the following algorithm.

Algorithm 3: Construction processing for 2M -point sum constellation Q
and 2Mk-point user constellations Qk

1. If M is even, S̄ is carved from the Eisenstein integers with dmin = 1, see
(2.4.12). Let t∗ = arg max

1≤t≤T
dt. Then Qk =

⊎
j∈Ak,t∗

dt∗S̄j and Q = dt∗S̄.

2. If M is odd, let t∗G and t∗E represent arg max
1≤t≤T

dt when S̄ is the sum

constellation with dmin = 1 chosen from the Gaussian integers and the
Eisenstein integers, respectively.

• If dt∗G ≥ dt∗E , S̄ is carved from the Gaussian integers with dmin = 1, see
(2.4.13). Then Qk =

⊎
j∈Ak,t∗

G

dt∗GS̄
G
j and Q = dt∗GS̄

G.

• If dt∗G < dt∗E , S̄ is carved from the Eisenstein integers with dmin = 1, see
(2.4.14). Then Qk =

⊎
j∈Ak,t∗

E

dt∗E S̄
E
j and Q = dt∗E S̄

E.

Specifically, for a classical two-user MAC, the sum constellation and its corre-

sponding user constellations can be determined by Algorithm 4. In Algorithm 4, the

superscript E and G represents the constellation carved from Eisenstein integer ring

and Gaussian integer ring, respectively.
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Algorithm 4: Constellation Splitting for Two-user MAC

Input: M , M1, S̄1, . . . , S̄M , and S̄
Output: Q1,Q2 and Q

1 θ2 ← π
3
, dmin ← 0, dE ← 0, dG ← 0.

2 for i = 0 to 2M − 1 do
3 • Convert the integer i to an M -length binary sequence, i.e.,

bi = (bi,1, . . . , bi,M) with bi,j ∈ {0, 1}.
4 if

∑M
j=1 bi,j =M1 then

5 EE
1 ←

∑M
j=1 bi,jE

E
sj
, dE ← min{

√
P1

EE
1
,
√

P2

EE−EE
1
}.

6 if M mod 2 = 1 then

7 EG
1 ←

∑M
j=1 bi,jE

G
sj
, dG ← min{

√
P1

EG
1
,
√

P2

EG−EG
1
}

8 dmin ← max{dmin, dE, dG}.
9 if dmin = dE then

10 Q1 ←
⊎M

j=1 bi,jdminS̄E
j ,Q2 ←

⊎M
j=1(1− bi,j)dminS̄E

j ,Q ← dminS̄E

11 if dmin = dG then
12 θ2 ← π

4
.

13 Q1 ←
⊎M

j=1 bi,jdminS̄G
j ,Q2 ←

⊎M
j=1(1− bi,j)dminS̄G

j ,Q ← dminS̄G.

2.5.2 Numerical Results

In this subsection, we compare the performance of our proposed NOMA scheme with

the Farey-NOMA scheme proposed in [27] and TDMA.

It can be seen that our proposed NOMA scheme has a significant SNR gain over

both Farey-NOMA and TDMA schemes. Specifically, when SER is at the level of

10−3, our scheme has about 8 dB SNR gain over the TDMA scheme, and about 3 dB

SNR gain over the Farey-NOMA scheme.
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Figure 2.13: Performance comparison between the proposed-NOMA and TDMA
schemes with K = 2 users, with M1 = 2,M2 = 4, and channel parameters ∆ = (1, 1).

2.6 Conclusions

In this paper, we have considered an uplink system with K single-antenna users and

one base station equipped with a single antenna, in which each user utilizes a bi-

nary constellation to carry data. By maximizing the minimum Euclidean distance

of the received sum constellation, a closed-form optimal solution to the user constel-

lations and the corresponding optimal sum constellation were attained for K ≤ 3.

The insight from those designs was then combined with lattice coding principles to

extend the technique, so that it yields efficient designs for K ≥ 4. These constella-

tion designs have the advantage that the maximum likelihood receiver reduces to a

simple quantization-based detector. A further simplification of the technique yielded

designs that led to the sum constellation being carved from a square or equilateral

triangular (hexagonal) lattice. In those cases the storage requirement of the receiver
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is significantly reduced, and closed form expressions for the symbol error probability

were obtained. Furthermore, we were able to show, analytically, that the proposed

NOMA design yields a larger minimum distance than the corresponding TDMA-based

design. Computer simulations verified that this advantage results in a significant de-

crease with symbol error probability. We also showed how insights from our design

for the case of binary signalling could be expanded to the case of high-order constella-

tions by using (generalized) set partitioning techniques. The resulting “constellation

domain” NOMA systems provided significantly lower symbol error probability than

the TDMA counterparts, and also provided better performance than a related scheme

based on constellations designed using Farey sequences [26].

2.A Appendix: Lemma for fixed |s̄1|

Lemma 2.2 Given |s̄1|, minD = |s̄1| if and only if
√
|s2|2 + |s3|2 is no less than

2|s̄1|, and |s2| and |s3| are no less than 2|s̄1| cos θ2 and 2|s̄1| sin θ2, where π
4
≤ θ2 ≤ π

3
,

respectively.

Proof Sufficiency: Since minD = |s̄1|, then |s2 − s1| ≥ |s̄1|, resulting in

|s2| ≥ 2|s1| cos θ2. Let A∗ = {θ2, α, |s3| : |θ2 − α| ≤ π
2
, |s3| ≥ |s2|}.

• If π
3
≤ θ2 ≤ π

2
, then |s2| ≥ |s̄1| ≥ 2|s̄1| cos θ2. Let |s2| = |s̄1|. We’d like to find

the minimum |s3| to achieve minD = |s̄1|.

– If 0 ≤ α ≤ π
2
, then we know that |θ2−α| ≤ θ2, resulting in |s3| cos(θ2−α) ≥

|s2| cos θ2, |s1 + s3 − s2| ≥ |s1 + s2 − s3| and |s3 − s2| ≤ |s3 + s2|. Also, if

|s2−s1| ≥ |s̄1| and |s3−s1| ≥ |s̄1|, it is guaranteed that |s2+s3−s1| ≥ |s̄1|.

Thus, if minD = |s̄1|, we have |s̄1| ≤ min{|s3− s1|, |s3− s2|, |s1+ s2− s3|}.
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∗ If |s3−s2| ≤ |s1+s2−s3|, we have |s3| ≤ 1+2 cos θ2
2 cos(θ2−α)

|s̄1| with |s2| = |s̄1|.

Since minD = |s̄1| ≤ min{|s3 − s1|, |s3 − s2|}, we know that |s3| ≥

max{2 cos(θ2 − α)|s̄1|, 2 cosα|s̄1|}. Then, the optimal solution for

min
π
3
≤θ2≤π

2
,0≤α≤π

2
,A∗
|s3|

s.t.,
1 + 2 cos θ2
2 cos(θ2 − α)

≥ max{2 cos(θ2 − α), 2 cosα}
(2.A.1)

is that |s3| = 2 cos π
12
|s̄1| with θ2 = π

2
and α = π

12
, where |s̄1| =

|s3 − s1| < min{|s2 − s1|, |s3 − s2|}.

∗ If |s1+s2−s3| < |s3−s2|, we have |s3| > 1+2 cos θ2
2 cos(θ2−α)

|s̄1| with |s2| = |s̄1|.

Since minD = |s̄1| ≤ min{|s3− s1|, |s1 + s2− s3|}, then we know that

|s3| ≥ 2 cos(θ2− α)|s̄1| and |s3|2− 2(cos(θ2− α) + cosα)|s̄1||s3|+ (1+

2 cos θ2)|s̄1|2 ≥ 0. Then, the optimal solution for

min
π
3
≤θ2≤π

2
,0≤α≤π

2
,A∗
|s3| (2.A.2)

is that |s3| =
√
3|s̄1| with θ2 = π

3
and α = π

2
, where |s̄1| = |s3 − s1| =

|s2 − s1| < |s1 + s2 − s3|.

– If π
2
≤ α ≤ π, then we know that |s3 + s2| ≤ |s3 − s2|, |s1 + s2 − s3| ≥

|s3 − s1| and |s1 + s3 − s2| ≥ |s2 − s1|. Thus, if minD = |s̄1|, we have

|s̄1| ≤ min{|s3 − s1|, |s3 + s2|, |s2 + s3 − s1|}.

∗ If |s2+s3−s1| ≤ |s3+s2|, we have |s3| > 1+2 cos θ2
2 cos(θ2−α)

|s̄1| with |s2| = |s̄1|.

Since minD = |s̄1| ≤ min{|s3− s1|, |s2 + s3− s1|}, then we know that

|s3| ≥ 2 cos(θ2− α)|s̄1| and |s3|2 + 2(cosα− cos(θ2− α))|s̄1||s3|+ (1−
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2 cos θ2)|s̄1|2 ≥ 0. Then, the optimal solution for

min
π
3
≤θ2≤π

2
,π
2
≤α≤π,A∗

|s3| (2.A.3)

is that |s3| =
√
3|s̄1| with θ2 = π

3
and α = π

2
, where |s̄1| = |s3 − s1| =

|s2 − s1| = |s2 + s3 − s1| < |s3 + s2|.

∗ If |s3+s2| ≤ |s2+s3−s1|, we have |s3| ≤ 1−2 cos θ2
2 cos(θ2−α)

|s̄1| with |s2| = |s̄1|.

Since minD = |s̄1| ≤ min{|s3 − s1|, |s3 + s2|}, we know that |s3| ≥

min{2 cos(θ2 − α)|s̄1|,−2 cosα|s̄1|}. Then, the optimal solution for

min
π
3
≤θ2≤π

2
,π
2
≤α≤π,A∗

|s3|

s.t.,
1− 2 cos θ2
2 cos(θ2 − α)

≥ max{2 cos(θ2 − α),−2 cosα}
(2.A.4)

is that |s3| =
√
3|s̄1| with θ2 = π

3
and α = 5π

6
, where |s̄1| = |s2 − s1| =

|s3 + s2| = |s2 + s3 − s1| < |s3 − s1|.

• If 0 ≤ θ2 ≤ π
3
, then |s2| ≥ 2|s̄1| cos θ2 ≥ |s̄1|. Let |s2| = 2|s̄1| cos θ2. We’d like to

find the minimum |s3| and |s2| to achieve minD = |s̄1| (since |s2| = 2|s̄1| cos θ2,

the minimum |s2| corresponds to the largest θ2).

– If 0 ≤ α ≤ π
2
, then we know that |s3−s2| ≤ |s3+s2|. Also, if |s2−s1| ≥ |s̄1|

and |s3− s1| ≥ |s̄1|, we always have |s2 + s3− s1| ≥ |s̄1|. Moreover, due to

the fact that cos(θ2 − α) ≥ cos θ2 cosα, thus if |s1 + s3 − s2| ≤ |s3 − s2|,

we always have |s1 + s3 − s2| ≥ |s3 − s1| with |s2| = 2|s̄1| cos θ2 and

|s1 + s3 − s2| ≤ |s1 + s2 − s3|. Thus, if minD = |s̄1|, we have |s̄1| ≤

min{|s3 − s1|, |s3 − s2|, |s1 + s2 − s3|}.
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∗ If |s3 − s2| ≤ |s1 + s2 − s3|, we have |s3| ≤ 1+4 cos2 θ2
2 cos(θ2−α)

|s̄1| with |s2| =

2 cos θ2|s̄1|. Since minD = |s̄1| ≤ min{|s3−s1|, |s3−s2|}, we know that

|s3| ≥ max{2 cos(θ2 − α)|s̄1|, 2 cosα|s̄1|}. Then, the optimal solution

for

min
0≤θ2≤π

3
,0≤α≤π

2
,A∗
{|s3|, cos θ2} (2.A.5)

is that |s3| = 2 sin θ2|s̄1| with π
4
≤ θ2 ≤ ϕ∗ and α = π

2
, where |s̄1| =

|s3 − s1| = |s2 − s1| < |s3 − s2|, and ϕ∗ is the root of the equation

ϕ+ arccos

√
4 cos2 ϕ+1

2
− π

2
= 0. (We observe that ϕ∗ ≈ π

3.4457
.)

∗ If |s1 + s2 − s3| ≤ |s3 − s2|, we have |s3| ≥ 1+4 cos2 θ2
2 cos(θ2−α)

|s̄1| with |s2| =

2 cos θ2|s̄1|. Since minD = |s̄1| ≤ min{|s3 − s1|, |s1 + s2 − s3|}, then

we know that |s3| ≥ 2 cos(θ2 − α)|s̄1| and |s3| ≤ 2 cos θ2
cosα
|s̄1|. Then, the

optimal solution for

min
0≤θ2≤π

3
,0≤α≤π

2
,A∗
{|s3|, cos θ2}

s.t.,
2 cos θ2
cosα

≥ max{2 cos(θ2 − α),
1 + 4 cos2 θ2
2 cos(θ2 − α)

}
(2.A.6)

is that |s3| = 2 sin θ2|s̄1| with ϕ∗ ≤ θ2 ≤ π
3
and α = π

2
, where |s̄1| =

|s3 − s1| = |s2 − s1| < |s1 + s2 − s3|.

– If π
2
≤ α ≤ π, then we know that |s3+s2| ≤ |s3−s2|, |s1+s2−s3| ≥ |s3−s1|

and |s1+s3−s2| ≥ |s2−s1|. Since cos θ2 ≥ 1
2
, we have |s2+s3−s1| ≤ |s3+s2|

with |s2| = 2 cos θ2|s̄1|. Moreover, since minD = |s̄1| ≤ min{|s3− s1|, |s2+

s3 − s1|}, then we know that |s3| ≥ max{2 cos(θ2 − α)|s̄1|,−2 cos(θ2 +
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α)|s̄1|}. Then, the optimal solution for

min
0≤θ2≤π

3
,π
2
≤α≤π,A∗

|s3| (2.A.7)

is that |s3| = 2 sin θ2|s̄1| with π
4
≤ θ2 ≤ π

3
and α = π

2
, where |s̄1| =

|s3 − s1| = |s2 − s1| = |s2 + s3 − s1|.

Based on the above, we know that if minD = |s̄1|, the condition |s2| ≥ 2 cos θ2|s̄1| and

|s3| ≥ 2 sin θ2|s̄1|, i.e.,
√
|s2|2 + |s3|2 ≥ 2|s̄1| should be satisfied, where π

4
≤ θ2 ≤ π

3
.

Necessity: If |s2| ≥ 2 cos θ2|s̄1| and |s3| ≥ 2 sin θ2|s̄1|, i.e.,
√
|s2|2 + |s3|2 ≥ 2|s̄1|,

we know that {|s2 − s1|, |s3 − s1|, |s3 + s2|, |s3 − s2|, |s1 + s2 − s3|, |s1 + s3 − s2|, |s2 +

s3 − s1|} ≥ |s̄1|, then we have minD = |s̄1|.

Thus, the proof is completed. □

2.B Appendix: Lemma for fixed |s̄k|, 1 ≤ k ≤ 3

As in Sect. 2.4.3, we will define Θ = {(θ2, α).

Lemma 2.3 For fixed |s̄1|, |s̄2|, |s̄3| with |s̄1| ≤ |s̄2| ≤ |s̄3|, the optimal θ2 and α are

determined as follows:

• If
√
|s̄2|2 + |s̄3|2 < 2|s̄1|, we have

max
Θ

minD =

√
2

3

(
|s̄1|2 −

√
|s̄1|4 + 9|s̄2|2|s̄3|2 cos γ

)
, (2.B.1)

with θ2 = arccos
|s̄1|2+3|s̄2|2+2 cos γ

√
|s̄1|4+9|s̄2|2|s̄3|2

6|s̄1||s̄2| and α = arccos 2|s̄1| cos θ2−|s̄2|
2|s̄3| ,

where γ = 1
3
arccos 2|s̄1|6+27|s̄2|2|s̄3|4+27|s̄2|4|s̄3|2−81|s̄1|2|s̄2|2|s̄3|2

2(|s̄1|4+9|s̄2|2|s̄3|2)3/2
+ 4π

3
.
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• If
√
|s̄2|2 + |s̄3|2 ≥ 2|s̄1|, we have

max
Θ

minD = |s̄1|, (2.B.2)

with

θ2 =


arctan |s̄3|

|s̄2| , if π
4
≤ arctan |s̄3|

|s̄2| ≤
π
3
,

π
3
, if arctan |s̄3|

|s̄2| >
π
3
,

(2.B.3)

and α = π/2.

Proof We consider the following cases:

• For
√
|s̄2|2 + |s̄3|2 < 2|s̄1|, according to Lemma 4, we know that D < |s̄1|.

Also, if |s1 + s3 − s2| ≤ min{|s3 − s2|, |s1 + s2 − s3|}, it is guaranteed that

|s1+ s3− s2| ≥ |s̄1|. Thus, the minimum Euclidean distance set can be reduced

to D = {|s2 − s1|, |s3 − s1|, |s3 + s2|, |s3 − s2|, |s1 + s2 − s3|, |s2 + s3 − s1|}.

– if minD = |s1 + s2 − s3|, which implies that 0 ≤ α ≤ π
2
, we have that

|s3 + s2| ≥ |s3 − s2|, |s2 + s3 − s1| ≥ min{|s2 − s1|, |s3 − s1|, |s3 − s2|}, and

that |s2 − s1| ≥ min{|s3 − s1|, |s3 − s2|}. Then, by considering the sub-

cases with respect to the order of {|s3 − s1|, |s3 − s2|}, we have max
Θ
|s1 +

s2 − s3| = |s3 − s1| =
√
|s̄1|2 + |s̄3|2 − |s̄1|

√
4|s̄3|2 − |s̄2|2 with θ2 =

π
2
and

α = arccos |s̄2|
2|s̄3| .

– if minD = |s3−s2|, which implies that 0 ≤ α ≤ π
2
, we have that |s3+s2| ≥

|s3− s2|, and |s2 + s3− s1| ≥ |s1 + s2− s3|. Then, by considering the sub-

cases with respect to the order of {|s2 − s1|, |s3 − s1|, |s3 − s2|}, we have

max
Θ
|s3 − s2| = |s1 + s2 − s3| =

√
|s̄2|2 + |s̄3|2 − |s̄2|

√
4|s̄3|2 − |s̄1|2 with

θ2 =
π
2
and α = π

2
− arccos |s̄1|

2|s̄3| .
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– if minD = |s3+s2|, which implies that π
2
≤ α ≤ π, we have that |s3−s2| ≥

|s3+s2| and |s1+s2−s3| ≥ |s3−s1| ≥ |s2−s1|. Then, by considering the sub-

cases with respect to the order of {|s2−s1|, |s2+s3−s1|}, we have max
Θ
|s3+

s2| = |s2−s1| = |s1+s2−s3| =
√

2
3

(
|s̄2|2 −

√
|s̄2|4 + 9|s̄1|2|s̄3|2 cosω

)
with

θ2 = arccos
3|s̄1|2+|s̄2|2+2 cosω

√
|s̄2|4+9|s̄1|2|s̄3|2

6|s̄1||s̄2| and α = θ2+arccos |s̄1|−2|s̄2| cos θ2
2|s̄3| ,

where ω = 1
3
arccos 2|s̄2|6+27|s̄1|2|s̄3|4+27|s̄1|4|s̄3|2−81|s̄1|2|s̄2|2|s̄3|2

2(|s̄2|4+9|s̄1|2|s̄3|2)3/2
+ 4π

3
.

– if minD = |s2 − s1|, which implies that |s3 − s1| ≤ |s1 + s2 − s3|, then

by considering the sub-cases with respect to the order of {|s3 − s1|, |s3 −

s2|, |s3 + s2|, |s2 + s3 − s1|}, we have

max
Θ
|s2−s1| = |s3−s1| = |s2+s3−s1| =

√
2

3

(
|s̄1|2 −

√
|s̄1|4 + 9|s̄2|2|s̄3|2 cos γ

)

with θ2 = arccos
|s̄1|2+3|s̄2|2+2 cosω

√
|s̄1|4+9|s̄2|2|s̄3|2

6|s̄1||s̄2| and α = arccos 2|s̄1| cos θ2−|s̄2|
2|s̄3| ,

where γ = 1
3
arccos 2|s̄1|6+27|s̄2|2|s̄3|4+27|s̄2|4|s̄3|2−81|s̄1|2|s̄2|2|s̄3|2

2(|s̄1|4+9|s̄2|2|s̄3|2)3/2
+ 4π

3
.

– if minD = |s3− s1|, which implies that |s2− s1| ≤ min{|s3− s2|, |s3+ s2|},

then by considering the sub-cases with respect to the order of {|s2−s1|, |s2+

s3 − s1|, |s1 + s2 − s3|}, we have

max
Θ
|s3−s1| = |s2−s1| = |s2+s3−s1| =

√
2

3

(
|s̄1|2 −

√
|s̄1|4 + 9|s̄2|2|s̄3|2 cos γ

)

with θ2 = arccos
|s̄1|2+3|s̄2|2+2 cos γ

√
|s̄1|4+9|s̄2|2|s̄3|2

6|s̄1||s̄2| and α = arccos 2|s̄1| cos θ2−|s̄2|
2|s̄3| ,

where γ = 1
3
arccos 2|s̄1|6+27|s̄2|2|s̄3|4+27|s̄2|4|s̄3|2−81|s̄1|2|s̄2|2|s̄3|2

2(|s̄1|4+9|s̄2|2|s̄3|2)3/2
+ 4π

3
.

– if minD = |s2 + s3 − s1|, which implies that |s2 − s1| ≤ min{|s3 −

s2|, |s1 + s2 − s3|}, then by considering the sub-cases with respect to the
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order of {|s3 − s1|, |s3 + s2|, |s2 + s3 − s1|}, we have max
Θ
|s2 + s3 − s1| =

|s2 − s1| = |s3 − s1| =
√

2
3

(
|s̄1|2 −

√
|s̄1|4 + 9|s̄2|2|s̄3|2 cos γ

)
with θ2 =

arccos
|s̄1|2+3|s̄2|2+2 cos γ

√
|s̄1|4+9|s̄2|2|s̄3|2

6|s̄1||s̄2| and α = arccos 2|s̄1| cos θ2−|s̄2|
2|s̄3| , where

γ = 1
3
arccos 2|s̄1|6+27|s̄2|2|s̄3|4+27|s̄2|4|s̄3|2−81|s̄1|2|s̄2|2|s̄3|2

2(|s̄1|4+9|s̄2|2|s̄3|2)3/2
+ 4π

3
.

Based on the above, we have now determined

max
Θ

minD =max
{
max
Θ
|s1 + s2 − s3|,max

Θ
|s3 − s2|,max

Θ
|s3 + s2|,

max
Θ
|s2 − s1|,max

Θ
|s3 − s1|,max

Θ
|s3 + s2 − s1|

}
=max

Θ
|s2 − s1| = max

Θ
|s3 − s1| = max

Θ
|s3 + s2 − s1|

=

√
2

3

(
|s̄1|2 −

√
|s̄1|4 + 9|s̄2|2|s̄3|2 cos γ

)
,

(2.B.4)

where γ = 1
3
arccos 2|s̄1|6+27|s̄2|2|s̄3|4+27|s̄2|4|s̄3|2−81|s̄1|2|s̄2|2|s̄3|2

2(|s̄1|4+9|s̄2|2|s̄3|2)3/2
+ 4π

3
. Thus, we have

the claim.

• For
√
|s̄2|2 + |s̄3|2 > 2|s̄1|, we let

θ2 =


arctan |s̄3|

|s̄2| , if π
4
≤ arctan |s̄3|

|s̄2| ≤
π
3
,

π
3
, if arctan |s̄3|

|s̄2| >
π
3
.

(2.B.5)

Then, we know that if |s̄2| <
√
3
3
|s̄3|, we have θ2 = π

3
. Since |s̄2| ≥ |s̄1|, we

always have |s̄2| ≥ 2|s̄1| cos θ2 and |s̄3| ≥ 2|s̄1| sin θ2. Moreover, if
√
3
3
|s̄3| ≤

|s̄2| ≤ |s̄3|, we have 2|s̄1| cos θ2 = 2|s̄1|√
|s̄2|2+|s̄3|2

|s̄2| ≤ |s̄2|. Similarly, 2|s̄1| sin θ2 =

2|s̄1|√
|s̄2|2+|s̄3|2

|s̄3| ≤ |s̄3|. Then, according to Lemma 2.2, we know that minD = |s̄1|

can be achieved by s2 = |s̄2| exp(jθ2) and s3 = |s̄3| exp(j(θ2 − π/2)).
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□

2.C Appendix: Proof of Theorem 2.3

Proof The expression for the minimum distance of the corresponding QAM

scheme is dmin,XQAM(P1), where the expressions for that minimum distance are given

in (2.4.18). In order to compare these expressions with dmin,NOMA, we recall that

dmin,NOMA in (2.4.16) is a non-decreasing function of each Pk. Hence, we can obtain

a lower bound on dmin,NOMA by letting Pk, k = 2, 3, . . . , K equal to P1. In that case,

it can be shown from the expression in Algorithm 1 that θ2 =
π
4
, and hence that

dmin,NOMA ≥ min

{
2
√
P1,

√
8P1

4⌈(K−1)/2⌉

}
,

=

√
8P1

4⌈(K−1)/2⌉ ,

(2.C.1)

where ⌈(·)⌉ denotes rounding up to the nearest integer and K ≥ 3. To simplify our

comparisons, we can rewrite (2.C.1) as

dmin,NOMA ≥


√

16P1

2K
, if K ≥ 3 is odd√

8P1

2K
, if K ≥ 3 is even.

(2.C.2)

By comparing with the expression in (2.4.18), we obtain the follow results,

• when K ≥ 3 is even, dmin,TDMA =
√

6P1

2K−1
. In that case,

d2min,NOMA

d2min,TDMA

≥ 8P1

2K
(2K − 1)

6P1

=
4

3

(
1− 2−K

)
>

5

4
, (2.C.3)
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where the last bound arises from the case where K = 4. This establishes the

result when K ≥ 3 is even.

• when K ≥ 3 is odd and cross-QAM constellations are used, dmin,TDMA =√
6P1

31
32

2K−1
. In that case,

d2min,NOMA

d2min,TDMA

≥ 16P1

2K
(31
32
2K − 1)

6P1

=
8

3

(31
32
− 2−K

)
>

9

4
, (2.C.4)

where the last bound arises from the case where K = 3. This establishes the

result when K ≥ 3 is odd and the cross constellation is used. Since dmin,RQAM <

dmin,CQAM (cf, (2.4.18)), we have implicitly established the result for rectangular

QAM as well. To do that explicitly, we note that when K ≥ 3 is odd and

rectangular QAM constellations are used, dmin,TDMA =
√

6P1
5
4
2K−1

, and hence

that
d2min,NOMA

d2min,TDMA

≥ 16P1

2K
(5
4
2K − 1)

6P1

=
8

3

(5
4
− 2−K

)
> 3, (2.C.5)

which completes the proof.

□

2.D Appendix: Proof of Theorem 2.4

Proof Similar to the concept of the proof in Appendix 2.C, we can obtain a lower

bound on dmin,NOMA by letting Pk, k = 2, 3, . . . , K equal to P1. When K ≥ 3 is even,
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that is

dmin,NOMA ≥ min

{
2
√
P1, 2

√
P1

4K/2−1
, 2

√
P1

4(K−1)/2−13

}
,

= 2

√
8P1

2K3
,

(2.D.1)

and when K ≥ 3 is odd, we have

dmin,NOMA ≥ max

{
min

{
2
√
P1, 2

√
P1

4(K−1)/2−12

}
,min

{
2
√
P1, 2

√
P1

4(K−1)/2−1
, 2

√
P1

4(K−1)/2−13

}}
,

= max

{
min

{
2
√
P1, 2

√
4P1

2K

}
,min

{
2
√
P1, 2

√
8P1

2K
, 2

√
8P1

2K3

}}
,

≥ 2

√
8P1

2K3
.

(2.D.2)

Thus, we always have dmin,NOMA ≥ 2
√

8P1

2K3
.

By comparing with the expression in (2.4.18), we obtain the follow results:

• when K ≥ 3 is even, dmin,TDMA =
√

6P1

2K−1
. In that case,

d2min,NOMA

d2min,TDMA

≥ 32P1

2K3

(2K − 1)

6P1

=
16

9

(
1− 2−K

)
>

5

3
. (2.D.3)

This establishes the result when K ≥ 3 is even.

• when K ≥ 3 is odd and cross-QAM constellations are used, dmin,TDMA =√
6P1

31
32

2K−1
. In that case,

d2min,NOMA

d2min,TDMA

≥ 32P1

2K3

(31
32
2K − 1)

6P1

=
16

9

(31
32
− 2−K

)
>

3

2
, (2.D.4)

This establishes the result when K ≥ 3 is odd and the cross constellation

is used. When K ≥ 3 is odd and rectangular QAM constellations are used,
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dmin,TDMA =
√

6P1
5
4
2K−1

, and hence

d2min,NOMA

d2min,TDMA

≥ 32P1

2K3

(5
4
2K − 1)

6P1

=
16

9

(5
4
− 2−K

)
> 2, (2.D.5)

which completes the proof.

□

2.E Appendix: Property of Proposed Sum Con-

stellation

Lemma 2.4 If each user constellation Sk is central symmetric, the average energy of

the sum constellation
⊎K

k=1 Sk (K ≥ 1) equals the sum of the average energy of each

user constellation Sk.

Proof Since each user constellation is symmetric, any combination of user constel-

lations is centrally symmetric. Assume that at and −at (1 ≤ t ≤ 2K−2) is any pair of

points in
⊎K−1

k=1 Sk and SK = {−b, b}. Denote the average energy of
⊎K−1

k=1 Sk and SK

by ESK−1
and Esk , respectively, where ESK−1

= 1
2K−2

∑2K−2

t=1 |at|2 and Esk = |b|2. By

constructions, both a− b and a + b belong to
⊎K

k=1 Sk. Consider the average energy

67



Ph.D. Thesis – P. Chen McMaster University – Electrical & Computer Engineering

ESK
of
⊎K

k=1 Sk, we have

ES =
2

2K

2K−2∑
t=1

(
|at + b|2 + |at − b|2

)
=

2

2K

2K−2∑
t=1

2(|at|2 + |b|2)

=
1

2K−2

2K−2∑
t=1

|at|2 +
2

2K
× 2K−2|b|2

=
1

2K−2

2K−2∑
t=1

|at|2 + |b|2 = ESK−1
+ Esk .

(2.E.1)

Since SK−2 is also a centrally symmetric constellation, recursively, we have the claim.

□

According to Lemma 2.4, we have the following properties.

Property 2.1 When K is odd, the average energy of the proposed sum constellation

S equals

Eodd(S) = (1/4 + (4(K−1)/2 − 1)/3)d2 =
d2(2M − 1)

12
, (2.E.2)

and when K is even, the average energy equals

Eeven(S) = (1/4 + (4K/2−1 − 1)/3 + 4K/2−1 cos θ22)d
2 =

d2(M − 1)

12
+ 4K/2−1 cos θ22d

2,

(2.E.3)

where θ2 is given by (2.4.6) and M = 2K.

Property 2.2 When K is odd, the proposed sum constellation S can provide arger

minimum Euclidean distance dmin than M-ary RQAM with same average energy (M =

2K).

Proof According to Property 2.1, we know that Eodd(S) = d2min(2M−1)

12
. For M =

2K-ary RQAM, we know that 2(K+1)/2 points in one direction and 2(K−1)/2 points in
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the other. Therefore, the average energy is given by

ERQAM =
d2min

M

(
2K+1 − 1

12
× 2(K+1)/2 × 2(K−1)/2 +

2K−1 − 1

12
× 2(K−1)/2 × 2(K+1)/2

)
=
d2min(5M − 4)

24
.

(2.E.4)

Then, for constellations with the same minimum distance,

ERQAM − Eodd(SG) = ERQAM − Eodd(SE) =
(M − 2)

24
d2min > 0. (2.E.5)

which suggests that for same average energy, our proposed constellation can provide

larger minimum Euclidean distance. □

2.F Appendix: Proof of Theorem 2.5

Proof First, we notice that the condition probability density function (PDF) for

any given sum signal point s ∈ S is a Gaussian distribution with mean s and variance

2σ2, given by

fY (y|s) =
1

2πσ
exp

(
− |y − s|

2

2σ2

)
.

It is known that the relationship between the rectangular system and the polar system

is characterized by

yre = sre + ρ cos θ and yim = sim + ρ sin θ, (2.F.1)

where sre and sim are the respective real part and imaginary part of s, i.e., s =
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sre + jsim. Correspondingly, the PDF is transformed into

fρ,θ(sre + ρ cos θ, sim + ρ sin θ|s) = ρ

2πσ2
exp

(
− ρ2

2σ2

)
.

In order to prove Theorem 2.5, we need to consider sum constellation based on

the Eisenstein integers and the Gaussian integers separately.

1. The decision regions of constellation based on the Eisenstein integers can be

divided into seven types, namely, types A ∼ G in Fig. 2.14. For the outer

points there are three types (B, C, and D); for the inner points there are two

types (A and E) ; and for the edge points there are two types ( F and G). The

number of each decision region type is shown in Table 2.1.

5 53 1- 31

1

3

1-

3

5

d

d

A

B

C

D

EF

G

E

A

A

F

Figure 2.14: Decision region type of Eisenstein integers based sum constellation.

The correct decision probability of each type is calculated as follows, where the
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Table 2.1: Type numbers for Eisenstein integers based constellation

Type K is even Type K is odd

A 2K/2 − 2 A 2(K+1)/2 − 2
B 2 B 2
C 2 C 2
D 2 D 2

E (2K/2 − 2)2 E (2(K−1)/2 − 2)(2(K+1)/2 − 2)

F 2(2K/2 − 2) F 2(2(K−1)/2 − 2)

G 2K/2 − 4 G 2(K+1)/2 − 4

details are shown in Appendix 2.G.

PA = 1− 4
π

∫ π
6

0
e

(
− d2

8cos2θσ2

)
dθ − 1

π

∫ π
3

0
e

(
− d2

8cos2θσ2

)
dθ.

PB = 1− 2
π

∫ π
6

0
e

(
− d2

8cos2θσ2

)
dθ − 1

2π

∫ π
3

0
e

(
− d2

8cos2θσ2

)
dθ − 1

2π

∫ π
2

0
e

(
− d2

8cos2θσ2

)
dθ

− 1
2π

∫ π
3
π
6
e

(
− 3d2

8cos2θσ2

)
dθ.

PC = 1− 1
π

∫ π
6

0
e

(
− d2

8cos2θσ2

)
dθ − 1

2π

∫ π
3

0
e

(
− d2

8cos2θσ2

)
dθ − 1

2π

∫ π
2

0
e

(
− d2

8cos2θσ2

)
dθ

− 1
2π

∫ π
2
π
6
e

(
− 3d2

8cos2θσ2

)
dθ.

PD = 1− 2
π

∫ π
6

0
e

(
− d2

8cos2θσ2

)
dθ − 1

π

∫ π
2

0
e

(
− d2

8cos2θσ2

)
dθ.

PE = 1− 6
π

∫ π
6

0
e

(
− d2

8cos2θσ2

)
dθ.

PF = 1− 3
π

∫ π
6

0
e

(
− d2

8cos2θσ2

)
dθ − 1

π

∫ π
2

0
e

(
− d2

8cos2θσ2

)
dθ

PG = 1− 2
π

∫ π
6

0
e

(
− d2

8cos2θσ2

)
dθ − 1

π

∫ π
3

0
e

(
− d2

8cos2θσ2

)
dθ − 1

π

∫ π
2
π
6
e

(
− 3d2

8cos2θσ2

)
dθ

Therefore, the error probability is given as follows.
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• When K is even

Pe = 1−
(
(2K/2 − 2)PA + 2PB + 2PC + 2PD

+(2K/2 − 2)2PE + 2(2K/2 − 2)PF + (2K/2 − 4)PG

)
/2K

=
6(1− 2−K/2+1 + 2−K)

π

∫ π
6

0

e

(
− d2

8cos2θσ2

)
dθ +

2−K/2+1 − 2−K+2

π

∫ π
3

0

e

(
− d2

8cos2θσ2

)
dθ

+
2−K/2+1

π

∫ π
2

0

e

(
− d2

8cos2θσ2

)
dθ +

2−K

π

∫ π
3

π
6

e

(
− 3d2

8cos2θσ2

)
dθ

+
2−K/2 − 2−K3

π

∫ π
2

π
6

e

(
− 3d2

8cos2θσ2

)
dθ.

• When K is odd

Pe = 1−
(
(2(K+1)/2 − 2)PA + 2PB + 2PC + 2PD + (2(K−1)/2 − 2)(2(K+1)/2 − 2)PE

+2(2(K−1)/2 − 2)PF + (2(K+1)/2 − 4)PG

)
/2K

=
6(1− 2−(K−1)/2 − 2−(K+1)/2 + 2−K)

π

∫ π
6

0

e

(
− d2

8cos2θσ2

)
dθ

+
2−(K−3)/2 − 2−K+2

π

∫ π
3

0

e

(
− d2

8cos2θσ2

)
dθ +

2−(K−1)/2

π

∫ π
2

0

e

(
− d2

8cos2θσ2

)
dθ

+
2−K

π

∫ π
3

π
6

e

(
− 3d2

8cos2θσ2

)
dθ +

2−(K−1)/2 − 2−K3

π

∫ π
2

π
6

e

(
− 3d2

8cos2θσ2

)
dθ.

2. The decision region of sum constellations based on the Gaussian integers can be

divided into four types, namely types A ∼ D in Fig.2.15. For the corners there

are two types (B and C); for the inner points there is only one type (A); and for

the edge points, there is only one type (D). The number of each decision region

type is shown in Table 2.2.

The correct decision probability of each type is calculated as follows, where the
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A

B

C

D

D
A

A

Figure 2.15: Decision region type of Gaussian integers based sum constellation.

Table 2.2: Type numbers for Gaussian integers based constellation

Type K is odd

A 2K − 2(K+3)/2 + 2
B 2
C 4

D 2(K+3)/2 − 8

details are shown in Appendix 2.H.

PA = 1− 4
π

∫ π
4

0
e

(
− d2

8cos2θσ2

)
dθ.

PB = 1− 1
π

∫ π
2

0
e

(
− d2

4cos2θσ2

)
dθ − 1

π

∫ π
4

0
e

(
− d2

8cos2θσ2

)
dθ.

PC = 1− 1
2π

∫ π
2

0
e

(
− d2

4cos2θσ2

)
dθ − 3

2π

∫ π
4

0
e

(
− d2

8cos2θσ2

)
dθ − 1

2π

∫ π
2

0
e

(
− d2

8cos2θσ2

)
dθ.

PD = 1− 2
π

∫ π
4

0
e

(
− d2

8cos2θσ2

)
dθ − 1

π

∫ π
2

0
e

(
− d2

4cos2θσ2

)
dθ.
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Therefore, the error probability is given as follows.

Pe = 1−
(
(2K − 2(K+3)/2 + 2)PA + 2PB + 4PC + (2(K+3)/2 − 8)PD

)
/2K

=
4(1− 2−(K−1)/2)

π

∫ π
4

0

e

(
− d2

8cos2θσ2

)
dθ +

4(2−(K+1)/2 − 2−K)

π

∫ π
2

0

e

(
− d2

4cos2θσ2

)
dθ

+
2−(K−1)

π

∫ π
2

0

e

(
− d2

8cos2θσ2

)
dθ.

Representing the Pe by the combination of the SEP of M -ary PSK constellations

(M = 2, 3, 6), we have the claim. □

2.G Appendix: Correct decision probability of each

type for sum constellation based on Eisenstein

integers

For convenience, we let d = 1 in the following figures.

1. Type-A

For this type of region, as shown in Fig. 2.16, by the property of the polar

system, the correct decision probability PA can be calculated in two parts, i.e.,

PSa1 and PSa2 . The correct decision probability is given as follows.
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Figure 2.16: Decision region of type-A for Eisenstein integers based sum
constellation

PA = 6PSa1 + PSa2

= 6

∫ π
6

−π
6

∫ d
2 cos θ

0

ρ

2πσ2
e

(
− ρ2

2σ2

)
dρdθ +


∫ π

3

π
6

∫ d
2 cos θ

d
2 cos(θ−π

3 )

ρ

2πσ2
e

(
− ρ2

2σ2

)
dρdθ

+

∫ π
2

π
3

∫ d

2 cos(θ− 2π
3 )

d
2 cos(θ−π

3 )

ρ

2πσ2
e

(
− ρ2

2σ2

)
dρdθ


= 1− 4

π

∫ π
6

0

e

(
− d2

8cos2θσ2

)
dθ − 1

π

∫ π
3

0

e

(
− d2

8cos2θσ2

)
dθ.

2. Type-B

For this region type, as shown in Fig. 2.17, the correct decision probability PB

can be calculated in four parts. The correct decision probability is calculated

as follows.
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Figure 2.17: Decision region of type-B for Eisenstein integers based sum
constellation

PB = PSa1 + PSa2 + PSa3 + PSa4

=

∫ π
6

−π
2

∫ d
2 cos θ

0

ρ

2πσ2
e

(
− ρ2

2σ2

)
dρdθ +

∫ π
2

π
6

∫ d
2 cos(θ−π

3 )

0

ρ

2πσ2
e

(
− ρ2

2σ2

)
dρdθ

+

∫ π

π
2

∫ d

2 cos(θ− 2π
3 )

0

ρ

2πσ2
e

(
− ρ2

2σ2

)
dρdθ +

{∫ 7π
6

π

∫ √
3d

2 cos(θ− 5π
6 )

0

ρ

2πσ2
e

(
− ρ2

2σ2

)
dρdθ

+

∫ 3π
2

7π
6

∫ ∞

0

ρ

2πσ2
e

(
− ρ2

2σ2

)
dρdθ

}

= 1− 2

π

∫ π
6

0

e

(
− d2

8cos2θσ2

)
dθ − 1

2π

∫ π
3

0

e

(
− d2

8cos2θσ2

)
dθ − 1

2π

∫ π
2

0

e

(
− d2

8cos2θσ2

)
dθ

− 1

2π

∫ π
3

π
6

e

(
− 3d2

8cos2θσ2

)
dθ.

3. Type-C

For this type of region, as shown in Fig. 2.18, we first add the triangle area

Sa2 into the decision region to form a regular shape, denoted by Sa1. Then, the

correct decision probability PC can be calculated in these two parts.
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Figure 2.18: Decision region of type-C for Eisenstein integers based sum
constellation

For part Sa1,

PSa1 =

∫ π
3

−π
6

∫ ∞

0

ρ

2πσ2
e

(
− ρ2

2σ2

)
dρdθ +

∫ π

π
3

∫ √
3d

2 cos(θ− 5π
6 )

0

ρ

2πσ2
e

(
− ρ2

2σ2

)
dρdθ

+

∫ 11π
6

π

∫ d

2 cos(θ− 4π
3 )

0

ρ

2πσ2
e

(
− ρ2

2σ2

)
dρdθ.

Then, for part Sa2,

PSa2 =

∫ π

2π
3

∫ √
3d

2 cos(θ− 5π
6 )

d
2 cos(θ−π)

ρ

2πσ2
e

(
− ρ2

2σ2

)
dρdθ +

∫ 7π
6

π

∫ d

2 cos(θ− 4π
3 )

d
2 cos(θ−π)

ρ

2πσ2
e

(
− ρ2

2σ2

)
dρdθ.

Thus, the correct decision probability is shown as follows.

PC = PSa1 − PSa2

= 1− 1

π

∫ π
6

0

e

(
− d2

8cos2θσ2

)
dθ − 1

2π

∫ π
3

0

e

(
− d2

8cos2θσ2

)
dθ

− 1

2π

∫ π
2

0

e

(
− d2

8cos2θσ2

)
dθ − 1

2π

∫ π
2

π
6

e

(
− 3d2

8cos2θσ2

)
dθ.
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4. Type-D

For this type of region, as shown in Fig. 2.19, we similarly add a triangle area

Sa2 into the decision region to form a regular shape, denoted by Sa1. Then, the

correct decision probability PD can be calculated in these two parts. For part

r

1 3
4 4

S

x

r

3
(1, )

2
-

3
(1, )

6
-

1 3
( , )
2 3
-

3
(2, )

2
-

1aS

1
( ,0)
2

2aS

y

Figure 2.19: Decision region of type-D for Eisenstein integers based sum
constellation

Sa1,

PSa1 =

∫ 11π
6

3π
2

∫ ∞

0

ρ

2πσ2
e

(
− ρ2

2σ2

)
dρdθ +

∫ 2π
3

−π
6

∫ d
2 cos(θ−π

3 )

0

ρ

2πσ2
e

(
− ρ2

2σ2

)
dρdθ

+

∫ 3π
2

2π
3

∫ d
2 cos(θ−π)

0

ρ

2πσ2
e

(
− ρ2

2σ2

)
dρdθ

Then, for part Sa2,

PSa2 =

∫ 2π
3

π
2

∫ d
2 cos(θ−π

3 )

d

2 cos(θ− 2π
3 )

ρ

2πσ2
e

(
− ρ2

2σ2

)
dρdθ +

∫ 5π
6

2π
3

∫ d
2 cos(θ−π)

d

2 cos(θ− 2π
3 )

ρ

2πσ2
e

(
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)
dρdθ
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Thus, the correct decision probability is given as follows.

PD = PSa1 − PSa2 = 1− 2

π

∫ π
6

0

e

(
− d2

8cos2θσ2

)
dθ − 1

π

∫ π
2

0

e

(
− d2

8cos2θσ2

)
dθ.

5. Type-E

The correct decision probability for a type-E region, as shown in Fig. 2.20, is

given as follows.

x
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2 6
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Figure 2.20: Decision region of type-E for Eisenstein integers based sum
constellation

PE = 6

∫ π
6

−π
6

∫ d
2 cos θ

0

ρ

2πσ2
e

(
− ρ2

2σ2

)
dρdθ = 1− 6

π

∫ π
6

0

e

(
− d2

8cos2θσ2

)
dθ.

6. Type-F

The correct decision probability for a type-F region, as shown in Fig. 2.21, is

given as follows.
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Figure 2.21: Decision region of type-F for Eisenstein integers based sum
constellation
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7. Type-G

The correct decision probability for type-G, as shown in Fig. 2.22, is given as

follows.
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Figure 2.22: Decision region of type-G for Eisenstein integers based sum
constellation
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2.H Appendix: Correct decision probability of each

type for sum constellation based on Gaussian

integers

For convenience, we let d = 1 in the following figures.

1. Type-A

The decision region for a type-A region is shown in Fig. 2.23, and the correct

decision probability is given as follows.
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Figure 2.23: Decision region of type-A for Gaussian integers based sum constellation
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2. Type-B

For this region type, shown in Fig. 2.24, we add a triangle area Sa2 into the

decision region to form a regular shape, denoted by Sa1. Then, the correct

decision probability PB can be calculated in these two parts. For part Sa1,
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Figure 2.24: Decision region of type-B for Gaussian integers based sum constellation
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Thus, the correct decision probability is given as follows.
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3. Type-C

The correct decision probability for a type-C region, as shown in Fig. 2.25, is

given as follows.
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Figure 2.25: Decision region of type-C for Gaussian integers based sum constellation
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4. Type-D

The correct decision probability for a type-D region, as shown in Fig. 2.26, is

given as follows.
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Figure 2.26: Decision region of type-D for Gaussian integers based sum constellation
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Chapter 3

Non-coherent Multiuser

Constellation Design for Multi-hop

Relay Channels

Abstract

Inspired by a potential application in communication along high-speed trains, in

this chapter we design constellations that enable non-coherent communication over a

multi-hop amplify-and-forward relay channel in which both the source and the relays

have data to send to the destination. The constellations are designed in such a way

that the product constellation that arrives at the destination is uniquely facterizable

into its constituent components. This enables us to reduce the complexity of the

receiver to a simple phase-quantization receiver analogous to the coherent detector

for single-user M-ary PSK signalling. Closed-form expressions for the symbol error

probability are obtained.
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3.1 Introduction

Over recent years there has been a significant increase in the demand for high-speed

train(HST) communications, for applications such as handling safety-related messag-

ing, or passenger-facing services. Many of these applications require fast, high capac-

ity, low-latency connections [80]. To more towards these goals, mobile operators will

need to use a wider range of spectrum. Therefore, 5G millimeter wave (mmWave)

bands, ranging from 24 GHz to 40 GHz, are receiving increasing attention. However,

different from conventional sub-6GHz train radio systems, mmWave systems will in-

cur severe signal attenuation due to propagation loss, blockage, mobility sensitivity

and other effects, such as rain attenuation. This may result in significant performance

loss. A promising approach to efficiently mitigate these effects and increase coverage

and capacity in mmWave networks, is to employ multi-hop relay-assisted commu-

nication. The link quality is improved by dividing the data transmission between

a source and its destination over a large distance into several segments, where the

signal strength in each segment is enhanced by intermediate relay nodes.

The two most widely adopted enhancement strategies for the relays are decode-

and-forward (DF), and amplify-and-forward (AF). In this chapter we will adopt the

AF strategy, as it is much simpler to implement. However, the relays will not be

limited to simply relaying the signal from the source. They will have their own data

to send to the destination, too. One way in which the transmission of the data from

the relays could be incorporated would be by allocating orthogonal subchannels to

each relay, such as time slots or frequency bands. However, this strategy allocates

the resources inefficiently (due to the orthogonality requirement), and is not suitable

for a system with strictly low-latency requirements. Hence, in this paper, our design
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objective is to design a signalling scheme that will allow the source and the relays

to transmit information simultaneously at the symbol level. The primary idea that

underlies our approach is to properly extend the concept of a uniquely-factorable

constellation set (UFCS) proposed in [25, 26, 52, 99, 103], to a set of uniquely-

factorable constellations.

The main contributions of this chapter are summarized as follows:

• A set of uniquely factorable constellations is designed based on the multi-hop

relay-assisted system to allow the source and the relays to transmit their infor-

mation simultaneously at the symbol level. The uniquely-factorable constella-

tion set is based on phase-shift keying constellations.

• With such construction, We derive a maximum likelihood (ML) receiver that

enables the system to operate non-coherently with respect to the channel from

the source to the first relay. Furthermore, we show that this ML receiver can be

reduced to a symbol-by-symbol detector that only requires phase quantization.

That receiver is analogous to a coherent single-user detector for PSK signalling.

• A closed form expression for the symbol error probability (SEP) of the ML

detector is derived, showing that the diversity gain is proportional to SNR−1.

3.2 System Model

A motivating application for the communication scheme developed in this chapter

arises in communication along a high speed train, as illustrated in Fig. 3.1. A mobile

user (the source) in a carriage wishes to communicate with a destination node several

carriages away. To do so, the source communicates to the relay node in its carriage.
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The message is then passed over several hops to the destination. At each hop, the

relay may incorporate its own data for the destination.

Figure 3.1: Multi-hop communication model on a high-speed train.

Tx R1 RN...R2

X0t

X1t X2t XNt
t={1,2, ,T}

h1 h2

g1

g2

...

gM

Z1t

Z2t

ZMt

D

Figure 3.2: System model.

The development of the communication system that we will propose is based on

the abstract system model in Fig. 3.2. This model consists of a single antenna

transmitter, denoted by Tx that has data symbols s0,t, t = 1, 2, · · · , T , to send

to the M -antenna destination, denoted by D. The transmission is assisted by N

single antenna relays, each of which has its own data symbols, si,t, i = 1, 2, · · · , N ,

t = 1, 2, · · · , T , to send to the destination. Each relay operates by amplifying and

forwarding the signal that it receives, and it encodes its own data in the phase of

the amplification. That is, if we let yi denote the signal received by the i-th relay at

the t-th instant, then the signal transmitted by that relay is
√
βisi,tyi,t, where

√
βi

is the amplifier gain of the relay, and si,t, with |si,t| = 1, is the data symbol for the

i-th relay. Analogously, the signal transmitted by the source is
√
β0s0,t. We will

model the channel to the i-th relay as being narrow band with a baseband equivalent

(complex-valued) gain of hi, with zero-mean circular additive white Gaussian noise
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of variance σ2. Let

xi−1,t =
√
βi−1si−1,t, for i = 1, . . . , N. (3.2.1)

Hence, we can write

yi,t = hixi−1,tyi−1,t + ηi,t (3.2.2)

where ηi,t ∼ CN (0, σ2) and since we envision operating at mmWave frequencies,

where the attenuation due to path loss is high, we assume that any interference

from the previous relay falls significantly below the noise floor. We define y0,t = 1

for all t because the input of the channel to relay 1 depends only on the symbol

from the source. We will assume that all channel coefficients are subject to Rayleigh

distribution; i.e., hi ∼ CN (0, 1).

In the last hop, theN -th relay transmits to the destination, which hasM antennas.

The signal received by the m-th antenna at the destination can be written as

zm,t = gmxN,tyN,t + ξm,t, (3.2.3)

where gm is the (complex-valued) channel gain from the N -th relay to the m-th

antenna at the destination and ξm,t ∼ CN (0, σ2).

The destination seeks to detect the signals transmitted by the source and the

relays from its measurements {zm,t}M,T
m=1,t=1. We will consider a scenario in which the

relays and the destination are in fixed relative positions and hence we can assume that

the destination knows the (complex) channel gains h2, h3, · · · , hN and g1, g2, · · · , gM .

However, the source may be in motion relative to the first relay, and hence the detector

will operate in a non-coherent manner (e.g., [62, 110]) with respect to h1. That is, the

receiver will operate without knowledge of h1, but it does know that h1 is Rayleigh
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distributed.

The key result of this chapter is that we will show how the constellations employed

by the source and the relays at each time instant {Si,t}N,T
i=0,t=1 can be designed so that

using a block size of only T = 2, we can detect the source’s symbols {s0,t ∈ S0,t}2t=1,

and all the relay symbols {si,t ∈ Si,t}N,2
i=1,t=1. Furthermore, this detection problem

can be reduced to a scalar maximum phase alignment problem over the product

constellation formed by {si,t}N,2
i=0,t=1.

3.3 Uniquely-Factorable Constellation Design

The development of our signalling scheme will be based on the notion of a uniquely

factorable constellation set.

Definition 3.1 A set of constellations S1,S2, . . . ,Sr (r ≥ 2) is said to be a uniquely-

factorable constellation set (UFCS) if the existence of s1, s̃1 ∈ S1, s2, s̃2 ∈ S2, . . .,

sr, s̃r ∈ Sr which satisfy s1s2 · · · sr = s̃1s̃2 · · · s̃r, implies that s1 = s̃1, s2 = s̃2, . . .,

sr = s̃r.

In the following theorem we show how a set of carefully rotated M -ary phase shift

keying (M -PSK) constellations forms a UFCS.

Theorem 3.1 Consider a set of r constellations {Si, 1 ≤ i ≤ r} in which the car-

dinality of the i-th constellation is |Si| = 2qi and in which the constellations are

constructed as

S1 =
{
exp
(j2πn1

2q1

)}2q1−1

n1=0
, (3.3.1)
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and for any 2 ≤ i ≤ r

Si =
{
exp
(j2πni

∏i−1
k=1(2

qk − 1)

2
∑i

k=1 qk

)}2qi−1

ni=0
. (3.3.2)

Such a set of constellations constitutes a UFCS.

Proof The proof is provided in Appendix 3.A. □

In the following theorem, we will show how to decompose a standard uniform

PSK constellation with 2q points, where q =
∑r

k=1 qk into a UFCS containing r

constellations, the k-th of which is of size 2qk .

Theorem 3.2 Let S denote the standard uniform 2q-ary PSK constellation, i.e.,

S =
{
exp
(j2πn

2q

)}2q−1

n=0
. (3.3.3)

Given r and {qk}rk=1 such that q =
∑r

k=1 qk, construct the constellations

S1 =
{
exp
(j2πn1

2q1

)}2q1−1

n1=0
, (3.3.4)

and for 2 ≤ i ≤ r,

Si =
{
exp
(j2πni

∏i−1
k=1(2

qk − 1)

2
∑i

k=1 qk

)}2qi−1

ni=0
. (3.3.5)

Then, for any s ∈ S, there exists a set of si ∈ Si, 1 ≤ i ≤ r, such that s1s2 · · · sr = s.

Thus {Si}ri=1 constitutes a UFCS. In particular, given s = exp( j2πn
2q

) ∈ S, where

n ∈ {0, 1, . . . , 2q−1}, s1 and si (2 ≤ i ≤ r) are uniquely and explicitly determined by
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s1 = exp( j2πn1

2q1
) and si = exp(

j2πni
∏i−1

k=1(2
qk−1)

2
∑i

k=1
qk

), where

ni ≡
(n−

∑r
t=i+1 nt2

∑r
k=t+1 qk

∏t−1
k=1(2

qk − 1))
∏i−1

k=1(2
qk − 1)2

qi−1−1

2
∑r

k=i+1 qk
mod 2qi

and n1 ≡
n−
∑r

t=2 nt2
∑r

k=t+1 qk
∏t−1

k=1(2
qk−1)

2
∑r

k=2
qk

mod 2q1, for 0 ≤ n1 ≤ 2q1 − 1 and 0 ≤ ni ≤

2qi − 1.

Proof The proof is provided in Appendix 3.B. □

3.4 Signalling scheme and power allocation

The distinguishing feature of a uniquely factorable constellation set is that we can

uniquely determine the constituent symbols from their product. Since the relays in

our system introduce their data in a multiplicative manner, cf., (3.3.1) and (3.3.2),

such a set appears to be well suited to the problem at hand. We will consider a system

in which non-coherent detection will be performed on blocks of T = 2 transmissions

from each user. For reasons that will become soon apparent, the constellations used

by the source, {S0,t}2t=1, and those used by relays, {Si,t}N,2
i=0,t=1 will be selected so that

they form a UFCS. That is, {Si,t}N,2
i=0,t=1 forms a UFCS.

Given our model for the amplified symbols xi,t transmitted by source and the

relays (cf. (3.2.1)) and the signals transmitted by the relays (cf. (3.2.2)), we will

allocate power to the relay nodes according to the long-term average (i.e., over an

asymptotically large number of channel realizations.) Since the constellations are

normalized so that |Si,t| = 1 means that the transmitted power of the source is β0.

This must be less that the source’s average power constraint P0. We will let Pi denote
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the average power constraint for i-th relay (1 ≤ i ≤ N). Since our system performs

amplify and forward relaying, the transmitted average power for the i-th relay is

E[|yi,txi,t|2] = βiE[|yi,t|2]

= βiE[|hiyi−1,txi−1,t + ηi,t|2]

= βi(E[|hi|2]E[|yi−1,t|2]E[|xi−1,t|2] + E[|ηi,t|2])

= βi−1βiE[|yi−1,t|2] + βiE[|ηi,t|2]

= β0

i∏
k=1

βkE[|y0,t|2] +
i∑

j=1

i∏
k=j

βkσ
2

= β0

i∏
k=1

βk +
i∑

j=1

i∏
k=j

βkσ
2,

(3.4.1)

where we have used the normalization of the constellations, and the assumptions

of independent Rayleigh fading channels, and additive Gaussian noise. In order to

satisfy the power constraints, the amplifier gains must satisfy

β0

i∏
k=1

βk +
i∑

j=1

i∏
k=j

βkσ
2 ≤ Pi. (3.4.2)

In general, the link quality is proportional to the transmitted power. If the relays

have access to a continuous (inexpensive) power source, such as the power supplied

to an electric train, it is reasonable to operate each relay so that it transmits using its

maximum average power Pi. In that case, (3.4.2) holds with equality, and the relay

power gains βi can be recursively calculated as

βi =
Pi

β0
∏i−1

k=1 βk +
∑i−1

j=1

∏i−1
k=j βkσ

2 + σ2
. (3.4.3)
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We observe that (3.4.3) enables us to set the relay amplification gains without the

relays needing to know the channel realizations.

3.5 Maximum Likelihood Detector

In the scenarios that we envision, such as the relaying of messages between the car-

riages of a high speed train, the (relative) position of the relays and the destination

are essentially constant and it is reasonable to model the communication channels as

being quasi-static. Therefore, in detecting the symbols sent by the source and the

relays, it is reasonable to assume that the destination can obtain, through training, an

accurate model of the channels to each antenna in the last hop, {gm}Mm=1, and of the

product channels Hk =
∏N

i=k hi for k = 2, 3, · · · , N . However, in the scenarios that

we envision, it is likely that the source will be in an environment that changes on a

time scale at which the amount of training required to accurately identify H1 = h1H2

is significant. Therefore, the detector at the destination will operate in a non-coherent

manner with respect to h1; e.g., [62, 110]. That is, it will operate with knowledge

of the distribution of h1, but without the knowledge of the particular realization of

h1. As with many approaches to non-coherent communication (e.g., [62, 110]), we

will consider a block of symbols of length T and will seek to jointly detect all the

symbols transmitted by the source and all the relays in that interval, {si,t}N,T
i=0,t=1,

from the signals received at the destination {zt}Tt=1 given knowledge of the channels

{gm}Mm=1 and the product channels {Hk}Nk=2, but without knowledge of H1 = h1H2,

where zt = [z1,t, z2,t, . . . , zM,t]
T .

To simplify our notation, let us define the (amplified) product symbols Xk,t =∏N
i=k xi,t for k = 0, . . . , N , where xi,t was given in (3.2.1). According to (3.2.2) and
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(3.2.3), we can write yN,t as

yN,t = hNxN−1,tyN−1,t + ηN,t

= hNxN−1,t(hN−1xN−2,tyN−2,t) + hNxN−1,tηN−1,t + ηN,t

= H1

N−1∏
i=0

xi,t +
N∑
j=2

{Hjηj−1,t

N−1∏
i=j−1

xi,t}+ ηN,t.

(3.5.1)

Thus, we have xN,tyN,t = H1X0,t +
∑N

j=2{HjXj−1,tηj−1,t} + xN,tηN,t. For simplicity,

we will explicitly formulate the maximum likelihood detector for the case of T = 2,

but the extension to the general case is straightforward.

Now let us define z = [zT1 , z
T
2 ]

T , ξt = [ξ1,t, ξ2,t, . . . , ξM,t]
T ξ = [ξT1 , ξ

T
2 ]

T , and

g = [g1, g2, . . . , gM ]T . Then, if we let ⊗ denote the Kronecker product, we can write

z =

xN,1yN,1

xN,2yN,2

⊗ g + ξ

=H1

X0,1

X0,2

⊗ g +H2

η1,1X1,1

η1,2X1,2

⊗ g + · · ·

+HN

ηN−1,1XN−1,1

ηN−1,2XN−1,2

⊗ g +

ηN,1xN,1

ηN,2xN,2

⊗ g + ξ.

(3.5.2)

Let X0 =

X0,1

X0,2

 ⊗ IM , where IM is the identity matrix of size M , and let
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Dk =

ηk,1Xk,1

ηk,2Xk,2

⊗ IM for 1 ≤ k ≤ N − 1. Then, we can write

z = H1X0g +
N−1∑
k=1

Hk+1Dkg +DNg + ξ. (3.5.3)

Let x = [x1,t, x2,t, . . . , xN,t]
T , x = [xT1 , x

T
2 ] and G = ggH . Since {xi,t} are simply

amplified versions of the symbols {si,t}, we can formulate the maximum likelihood

detector in terms of the conditional distribution of z given {xi,t}, the channels to the

destination g, and the product channels Hi, 2 ≤ i ≤ N . Conditioned on those terms,

each component of z in (3.5.3) is an independent zero mean Gaussian random variable,

and hence the conditional distribution of z is a zero-mean Gaussian distribution. The

covariance of that distribution is

Σ = E[zzH |x, H2, . . . , HN ,g]

= |H2|2X0GXH
0 +

N−1∑
k=1

|Hk+1|2E[DkGDH
k ] + E[DNGDH

N ] +Ξ,
(3.5.4)

where Ξ = E
[
ξξH

]
=

σ2
N+1

σ2
N+1

⊗ IM , and x represents the all transmitted symbols.

For notational simplicity, let Ω = {H2, . . . , HN ,g}. Thus, the received signal has the

conditional probability density

f(z|x,Ω) =
1

π2M |Σ|
e−zHΣ−1z. (3.5.5)
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Therefore, the maximum likelihood detector becomes

x̂ = argmax
x

f(z|x,Ω)

= argmax
x

1

π2M |Σ|
e−zHΣ−1z

= argmax
x
−zHΣ−1z,

(3.5.6)

where the last equality results from the fact that |Σ| is a constant with respect to x

(see (3.C.9) in Appendix 3.C).

Although the ML detector in (3.5.6) has a simple form, if the source transmits q0

bits per channel use and the i-th relay transmits qi, then in the classic implementation,

we must construct and invert the matrix Σ a total of 2
∑N

i=0 qi times, resulting in a

high computational load.

3.6 Fast Detector

In this section, we will show how the structure of our signalling set and our trans-

mission scheme enable us to reduce the ML detection problem to a simple “phase

quantization” detector. As in Sect. 3.4, we let Si,t denote the constellation used by

node i at time slot t. This constellation has qi elements. The set {si,t}N,2
i=0,t=1 forms a

uniquely factorable constellation set and S denotes the corresponding “product con-

stellation” with 2
∑N

i=0 qi elements; see Theorem 3.2. Let S̃ denote the scaled version

of that constellation in which each element is scaled by
∏N

i=0 βi.

Theorem 3.3 The ML detector can be reduced to a symbol-by-symbol detector, that

seeks the maximum value of ℜ(BzH1 Gz2) with respect to the argument B, where B =

X0,1X
∗
0,2 ∈ S̃.
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Proof The proof is provided in Appendix 3.C. □

By making the mild approximation outlined below, the detector can be simplified

to

max
B∈S̃
ℜ(BzH1 z2). (3.6.1)

In particular, for t = 1, 2, let ỹt = xN,tyN,t, according to (3.2.3), we have zt = gỹt+ξt.

Then, we note that

zH1 Gz2 =
(
(gH ỹ∗1 + ξH1 )g

)(
gH(gỹ2 + ξ2)

)
= ∥g∥2

(
∥g∥2ỹ∗1 ỹ2 + ỹ2ξ

H
1 g + ỹ∗1g

Hξ2 + ξH1 u1u
H
1 ξ2

) (3.6.2)

where u1 = g/∥g∥, and

zH1 z2 = (gH ỹ∗1 + ξH1 )(gỹ2 + ξ2)

= ∥g∥2ỹ∗1 ỹ2 + ỹ2ξ
H
1 g + ỹ∗1g

Hξ2 + ξH1 ξ2.

(3.6.3)

These expressions only differ by a real-valued scaling and the last term, which is a

product of the noise components and is typically much smaller than the other compo-

nents. An alternative derivation of this simplified detector is provided in Appendices

3.D and 3.E.

An advantage of the simplified detector in (3.6.1) is that it only needs the received

signals (and
∏N

i=0 βi) and does not require explicit knowledge of any of the channels.
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3.7 Symbol Error Probability

In this section, we derive a closed-form expression for the symbol error probability of

the simplified detector in (3.6.1).

According to the system model and (3.5.5), we know that z|x,Ω ∼ CN (0,Σ).

Let Σij = E[zizHj |x,Ω] with 1 ≤ i, j ≤ 2. Then, the covariance matrix of z can be

rewritten as

Σ = E[zzH |x,Ω] =

Σ11 Σ12

Σ21 Σ22

 . (3.7.1)

Since I 0

−Σ21Σ
−1
11 I


Σ11 Σ12

Σ21 Σ22


I −Σ−1

11 Σ12

0 I

 =

Σ11 0

0 −Σ21Σ
−1
11 Σ12 +Σ22

 ,
(3.7.2)

we have

Σ−1 =

Σ11 Σ12

Σ21 Σ22


−1

=

I −Σ−1
11 Σ12

0 I


Σ11 0

0 −Σ21Σ
−1
11 Σ12 +Σ22


−1  I 0

−Σ21Σ
−1
11 I


=

Σ−1
11 +Σ−1

11 Σ12(−Σ21Σ
−1
11 Σ12 +Σ22)

−1Σ21Σ
−1
11 −Σ−1

11 Σ12(−Σ21Σ
−1
11 Σ12 +Σ22)

−1

−(−Σ21Σ
−1
11 Σ12 +Σ22)

−1Σ21Σ
−1
11 (−Σ21Σ

−1
11 Σ12 +Σ22)

−1

 .
(3.7.3)

Note that we also have z1|x,Ω ∼ CN (0,Σ11), thus, the conditional probability den-

sity functions (PDFs) of z and z1 are given by

f(z|x,Ω) =
1

π2M |Σ|
e−zHΣ−1z, (3.7.4)
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and

f(z1|x,Ω) =
1

πM |Σ11|
e−zH1 Σ−1

11 z1 . (3.7.5)

Since f(z|x,Ω) = f((zT1 , z
T
2 )

T |x,Ω) = f(z1|x)f(z2|z1,x,Ω), we have

f(z2|z1,x) =
f(z)

f(z1)
=

1

πM |Σ|
|Σ11|

e−(zHΣ−1z−zH1 Σ−1
11 z1). (3.7.6)

Furthermore, we have

zHΣ−1z− zH1 Σ
−1
11 z1 = (zH2 − zH1 Σ

−1
11 Σ12)(−Σ21Σ

−1
11 Σ12 +Σ22)

−1(z2 −Σ21Σ
−1
11 z1).

(3.7.7)

Due to the fact that Σ12 = ΣH
21 and Σ11 = ΣH

11, we have (Σ21Σ
−1
11 z1)

H = zH1 Σ
−1
11 Σ12.

Therefore, (3.7.7) can be rewritten as

zHΣ−1z− zH1 Σ
−1
11 z1 = (zH2 − (Σ21Σ

−1
11 z1)

H)(−Σ21Σ
−1
11 Σ12 +Σ22)

−1(z2 −Σ21Σ
−1
11 z1).

(3.7.8)

Moreover, according to (3.7.2), we know that the determinant

∣∣∣∣∣∣∣
I 0

−Σ21Σ
−1
11 I

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
Σ11 Σ12

Σ21 Σ22

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
I −Σ−1

11 Σ12

0 I

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
Σ11 0

0 Σ22 −Σ21Σ
−1
11 Σ12

∣∣∣∣∣∣∣ , (3.7.9)

i.e., |Σ| = |Σ11| × |Σ22 −Σ21Σ
−1
11 Σ12|. Therefore

|Σ|
|Σ11|

= |Σ22 −Σ21Σ
−1
11 Σ12|. (3.7.10)
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By combining (3.7.8) and (3.7.10), we have

f(z2|z1,x,Ω) =
1

πM |Σ22 −Σ21Σ
−1
11 Σ12|

e−(zH2 −(Σ21Σ
−1
11 z1)H)(Σ22−Σ21Σ

−1
11 Σ12)−1(z2−Σ21Σ

−1
11 z1),

(3.7.11)

i.e.,

z2|z1,x,Ω ∼ CN (Σ21Σ
−1
11 z1,−Σ21Σ

−1
11 Σ12 +Σ22). (3.7.12)

Now, let us consider the simplified detector in (3.6.1) and let U = zH1 z2. The

conditional distribution of U conditioned on z1 and x is

U |z1,x,Ω = zH1 z2|z1,x ∼ CN
(
zH1 Σ21Σ

−1
11 z1, z

H
1 (−Σ21Σ

−1
11 Σ12 +Σ22)z1

)
, (3.7.13)

Since

f(U |x,Ω) = f(zH1 z2|x,Ω)

= f(zH1 z2|z1,x,Ω)f(z1|x,Ω),

(3.7.14)

we have

f(U |x) =
∫
Ω

∫
z1

1

πMzH1 (−Σ21Σ
−1
11 Σ12 +Σ22)z1

e
−

|u−zH1 Σ21Σ
−1
11 z1|

2

zH1 (−Σ21Σ
−1
11 Σ12+Σ22)z1

1

πM |Σ11|

× e−zH1 Σ−1
11 z1f(Ω)dz1dΩ

=
1

π2M |Σ11|

∫
g,H2,...,HN

f(g)f(H2, . . . , HN)

∫
z1

1

zH1 (−Σ21Σ
−1
11 Σ12 +Σ22)z1

× e
−

|u−zH1 Σ21Σ
−1
11 z1|

2

zH1 (−Σ21Σ
−1
11 Σ12+Σ22)z1 e−zH1 Σ−1

11 z1dz1dgd(H2, . . . , HN)

(3.7.15)

According to (3.C.6) in Appendix 3.C, we know that

Σ11 = E[z1zH1 |x,Ω] = σ2
(
IM +

A

σ2
ggH

)
(3.7.16)
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and

Σ−1
11 = σ−2

(
IM −

|X0,1|2
σ2 +

∑N−1
k=1 |Hk+1|2|Xk,1|2 + |XN,1|2

1 + ( |X0,1|2
σ2 +

∑N−1
k=1 |Hk+1|2|Xk,1|2 + |XN,1|2)∥g∥2

ggH
)

= σ−2
(
IM −

ggH

( A
σ2 )−1 + ∥g∥2

)
,

(3.7.17)

with A = |H2|2E
∏N

i=1 βi + (
∑N−1

k=1 |Hk+1|2
∏N

i=k βi + βN)σ
2. Moreover, according to

B = X0,1X
∗
0,2, we have

Σ12 = E[z1zH2 |x,Ω] = B|H2|2ggH ,

Σ21 = E[z2zH1 |x,Ω] = B∗|H2|2ggH ,

(3.7.18)

and

Σ22 = E[z2zH2 |x,Ω] = σ2
(
IM +

A

σ2
ggH

)
. (3.7.19)

Since the matrix z1z
H
1 can be diagonalized by a matrix W, the columns of which

are the eigenvectors of z1z
H
1 , i.e., z1z

H
1 = W


∥z1∥2 . . . 0

...
. . .

...

0 . . . 0

WH , we have

zH1 gg
Hz1 = tr(zH1 gg

Hz1) = tr(gHz1z
H
1 g)

= ∥z1∥2|g̃1|2,
(3.7.20)

where g̃ = (g̃1, . . . , g̃M)T = WHg. Since WHW = WWH = I and g ∼ CN (0, IM),

we know that g̃ ∼ CN (0, IM). Let C = A
σ2 . Then, we have the following equations,

|Σ11| = |σ2(IM + CggH)| = σ2M(C∥g∥2 + 1), (3.7.21)
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zH1 Σ21Σ
−1
11 z1 = σ−2B∗(zH1 gg

Hz1 −
∥g∥2zH1 ggHz1
C−1 + ∥g∥2

)

= σ−2B∗(1− ∥g∥2

C−1 + ∥g∥2
)zH1 gg

Hz1

=
σ−2B∗

1 + C∥g̃∥2
∥z1∥2|g̃1|2,

(3.7.22)

zH1 (−Σ21Σ
−1
11 Σ12 +Σ22)z1

= −zH1 σ−2|B|2(∥g∥2ggH − ∥g∥4ggH

C−1 + ∥g∥2
)z1 + σ2zH1 z1 + σ2CzH1 gg

Hz1

= − σ−2|B|2

1 + C∥g∥2
∥g∥2∥z1∥2|gHw1|2 + σ2∥z1∥2 + σ2C∥z1∥2|gHw1|2

= (σ2C − σ−2E2
∏N

i=1 β
2
i ∥g̃∥2

1 + C∥g̃∥2
)∥z1∥2|g̃1|2 + σ2∥z1∥2,

(3.7.23)

and

zH1 Σ
−1
11 z1 = zH1 σ

−2(IM −
ggH

C−1 + ∥g∥2
)z1

=
−σ−2C

1 + C∥g̃∥2
∥z1∥2|g̃1|2 + σ−2∥z1∥2.

(3.7.24)

Therefore, the conditional PDF can be written as

f(U |x) =
∫
H2,...,HN ,g

1

π2M |Σ11|
f(g)f(H2, . . . , HN)

∫
z1

1

zH1 (−Σ21Σ
−1
11 Σ12 +Σ22)z1

× e
−

|u−zH1 Σ21Σ
−1
11 z1|

2

zH1 (−Σ21Σ
−1
11 Σ12+Σ22)z1 e−zH1 Σ−1

11 z1dz1dgd(H2, . . . , HN)

=

∫
(H2,...,HN ,g)

f(g)f(H2, . . . , HN)

π2Mσ2M(C∥g∥2 + 1)

∫
z1

1

((σ2C − σ−2E2
∏N

i=1 β
2
i ∥g̃∥2

1+C∥g̃∥2 )∥z1∥2|g̃1|2 + σ2∥z1∥2)

× e
−

|u− σ−2B∗
1+C∥g̃∥2

∥z1∥
2|g̃1|

2|2

(σ2C−σ−2|B|2∥g̃∥2
1+C∥g̃∥2

)∥z1∥2|g̃1|2+σ2∥z1∥2 e
−( −σ−2C

1+C∥g̃∥2
∥z1∥2|g̃1|2+σ−2∥z1∥2)dz1dgd(H2, . . . , HN)

(3.7.25)

For a point sk =
√
Ee

j2πk
Q of Q-PSK, we know that its corresponding symbol error

probability is Pe =
1
π

∫ π(Q−1)
Q

0 e−
E sin2 π

Q

2τ2 sin2 θ dθ with the PDF f(y|sk) = 1
2πτ2

e−
|y−sk|2

2τ2 . Thus,
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with letting
√
Em =

σ−2
∏N

i=0 βi

1+C∥g̃∥2 ∥z1∥
2|g̃1|2, we have

Pe(U |H2, . . . , HN ,g)

=

∫
z1

∫ π(Q−1)
Q

0

e
−

Em sin2 π
Q

zH1 (−Σ21Σ
−1
11 Σ12+Σ22)z1 sin2 θ dθ

1

π2M |Σ11|
e−zH1 Σ−1

11 z1dz1

=

∫
z1

1

π2M

∫ π(Q−1)
Q

0

e

−
σ−4 ∏N

i=0 β2i
(1+C∥g̃∥2)2

∥z1∥
4|g̃1|

4 sin2 π
Q

((σ2C−
σ−2 ∏N

i=0
β2
i
∥g̃∥2

1+C∥g̃∥2
)∥z1∥2|g̃1|2+σ2∥z1∥2) sin2 θ 1

σ2M(C∥g∥2 + 1)

× e−( −σ−2C

1+C∥g̃∥2
∥z1∥2|g̃1|2+σ−2∥z1∥2)dθdz1

(3.7.26)

Consider the polar system, and let r2 = ∥z1∥2, then (3.7.26) can be rewritten as

Pe(U |H2, . . . , HN ,g)

=

∫ π(Q−1)
Q

0

1

π2Mσ2M(C∥g∥2 + 1)

∫ ∞

0

e

−
σ−4 ∏N

i=0 β2i
(1+C∥g̃∥2)2

r4|g̃1|
4 sin2 π

Q

((σ2C−
σ−2 ∏N

i=0
β2
i
∥g̃∥2

1+C∥g̃∥2
)r2|g̃1|2+σ2r2) sin2 θ

× e−( −σ−2C

1+C∥g̃∥2
r2|g̃1|2+σ−2r2) 2πM

Γ(M)
r2M−1drdθ

=

∫ π(Q−1)
Q

0

2(C∥g∥2 + 1)−1

πMσ2MΓ(M)

∫ ∞

0

e
−

σ−6|B|2|g̃1|
4 sin2 π

Q
r2

(1+C∥g̃∥2)((C|g̃1|2+1)(1+C∥g̃∥2)−σ−4|B|2∥g̃∥2|g̃1|2) sin2 θ

× e−( −σ−2C

1+C∥g̃∥2
r2|g̃1|2+σ−2r2)

r2M−1drdθ

=

∫ π(Q−1)
Q

0

1

πMσ2MΓ(M)(C∥g∥2 + 1)

∫ ∞

0

tM−1

× e−
t
σ2

σ−4|B|2|g̃1|
4 sin2 π

Q
+(1+C∥g̃∥2−C|g̃1|

2)((C|g̃1|
2+1)(1+C∥g̃∥2)−σ−4|B|2∥g̃∥2|g̃1|

2) sin2 θ

(1+C∥g̃∥2)((C|g̃1|2+1)(1+C∥g̃∥2)−σ−4|B|2∥g̃∥2|g̃1|2) sin2 θ dtdθ

(3.7.27)
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Since
∫∞
0
xne−µxdx = n!µ−n−1, then we have

Pe(U |H2, . . . ,HN ,g) =

∫ π(Q−1)
Q

0

(C∥g∥2 + 1)−1

πM(
(1 + C∥g̃∥2)((C|g̃1|2 + 1)(1 + C∥g̃∥2)− σ−4|B|2∥g̃∥2|g̃1|2) sin2 θ

σ−4|B|2|g̃1|4 sin2 π
Q + (1 + C∥g̃∥2 − C|g̃1|2)((C|g̃1|2 + 1)(1 + C∥g̃∥2)− σ−4|B|2∥g̃∥2|g̃1|2) sin2 θ

)M

dθ

=

∫ π(Q−1)
Q

0

1

πM
×

(1 + C∥g̃∥2)M−1
(
((C|g̃1|2 + 1)(1 + C∥g̃∥2)− σ−4|B|2∥g̃∥2|g̃1|2) sin2 θ

)M(
σ−4|B|2|g̃1|4 sin2 π

Q + (1 + C∥g̃∥2 − C|g̃1|2)((C|g̃1|2 + 1)(1 + C∥g̃∥2)− σ−4|B|2∥g̃∥2|g̃1|2) sin2 θ
)M dθ,

(3.7.28)

with the fact that Γ(M) = (M − 1)!. Let SNR = β0

σ2 . Since C =
|H2|2

∏N
i=0 βi

σ2 +∑N−1
k=1 |Hk+1|2

∏N
i=k βi + βN , we know that the highest order of Pe(U |H2, . . . , HN ,g)

is SNR−1.

Theorem 3.4 If the channel coefficients are given, then the conditional symbol error

probability is given by

Pe(U |H2, . . . , HN)

=

∫ π(Q−1)
Q

0

∫ ∞

0

e−vRM−1
3

πM+1Γ(M − 1)


M−2∑
k=0

M−2∑
t=k

M−t−1∑
i=1

(−1)tk!

M
k


M − 2

t− k

Rk
1R

M−k−i−1
2 R−i

3

(M − t− i− 1)!

+
M∑
k=1

M−2+k∑
t=max{M−1,k}

M
k


M − 2

t− k

 (−1)tRk
1R

t−k
2

t−M+1∑
i=1

(−R3)
t−M−i+1(i− 1)!

Ri
2(t−M + 1)!

−
M∑
k=1

M−2+k∑
t=max{M−1,k}

M
k


M − 2

t− k

 (−1)tRk
1R

t−k
2

(−R3)
t−M+1

(t−M + 1)!
eR2R3Ei(−R2R3)

 dvdθ,

(3.7.29)
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where C =
|H2|2

∏N
i=0 βi

σ2 +
∑N−1

k=1 |Hk+1|2
∏N

i=k βi + βN , Ds = C2 − σ−4|B|2, R1 =

σ−4|B|2v2 sin2 π
Q

(CDsv2+Dsv) sin2 θ
, R2 =

(Dsv2+2Cv+1) sin2 θ+σ−4|B|2v2 sin2 π
Q

(CDsv2+Dsv) sin2 θ
, and R3 = Cv + 1.

Proof The proof is provided in Appendix 3.F. □

3.8 Numerical Results

Computer simulations are carried out in this section. The system SNR is defined

by η
△
= 1/2σ2. For simplicity, we denote a vector consisting of power coefficients by

∆ = (P0, . . . , PN).

Fig. 3.3 and Fig. 3.4 show the frame error performance (FER) comparison with

different constellation sizes and different relay numbers, respectively. (Here, by FER

we mean one minus probability that all symbols from all users in the block of T = 2

channel uses are received correctly.) Both the ML detector and simplified detector

are considered. In Fig. 3.3, ∆ = (5, 10, 15), N = 2, M = 2, |Si,t| = 2 for i = 0, 1

and t = 1, 2. The different curves arise from different choices for the size of the

constellation for the second relay. We make two choices, |S2,t| = 4, 2 for t = 1, 2,

which imply in these scenarios that 256-PSK and 64-PSK constellations are received

at the destination, respectively. In Fig. 3.4, we make three choices for the number

of relays, N = 3, 2, 1, along with M = 2, |Si,t| = 2 for 0 ≤ i ≤ N , t = 1, 2 and

∆ = (5, 10, 15, 20), ∆ = (5, 10, 15) and ∆ = (5, 10), respectively, which implies that

256-PSK, 64-PSK, and 16-PSK constellations are also received at the destination

in this experiment. From these two figures, it can be seen that, simplified detector

exhibits a similar performance with ML detector. Moreover, the frame error decreases

with SNR in a way that was predicted by the diversity gain result after (3.7.26). The
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differing rates of the transmission account for the offsets between the curves at high

SNRs.

30 35 40 45 50 55 60 65 70

SNR, dB
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-3

10
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0

F
E

R

256-PSK, Simplified Detector

256-PSK, ML Detector

64-PSK, Simplified Detector

64-PSK, ML Detector

Figure 3.3: Comparison among two-relay based system with different constellation
sizes.

Fig. 3.5 shows the performance comparison when the number of antennas M

increases, where ∆ = (5, 10, 15), N = 2, |Si,t| = 2 for 0 ≤ i ≤ N and t = 1, 2. It can

be seen that the performance cannot be significantly improved by increasing M .
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64-PSK with 2 relays, Simplified Detector

64-PSK with 2 relays, ML Detector

16-PSK with 1 relay, Simplified Detector

16-PSK with 1 relay, ML Detector

Figure 3.4: Comparison among the proposed scheme for different relay numbers.
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Figure 3.5: Comparison among the proposed scheme for different antenna numbers.
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3.9 Conclusions

In this chapter, we developed a novel approach to communicating non-coherently over

a multi-hop relay-assisted system that allows the source and the relay to transmit their

own information. By employing uniquely factorable constellations, we were able to

reduce the ML detector to a simple symbol-by-symbol detector that employs phase

quantization. In addition, the symbol error probability formula was given, showing

that the system achieves a diversity gain of 1.

3.A Appendix: Proof of Theorem 3.1

Let q =
∑r

k=1 qk, s1 = exp( j2πn1

2q1
) and s̃1 = exp( j2πñ1

2q1
), si = exp(

j2πni
∏i−1

k=1(2
qk−1)

2
∑i

k=1
qk

) and

s̃i = exp(
j2πñi

∏i−1
k=1(2

qk−1)

2
∑i

k=1
qk

), where 0 ≤ ni, ñi ≤ 2qi − 1 and 2 ≤ i ≤ r.

According to the property of the PSK constellation, the equation s1s2 · · · sr =

s̃1s̃2 · · · s̃r is equivalent to

n12
∑r

k=2 qk+
r∑

i=2

ni2
∑r

k=i+1 qk

i−1∏
k=1

(2qk−1) = ñ12
∑r

k=2 qk+
r∑

i=2

ñi2
∑r

k=i+1 qk

i−1∏
k=1

(2qk−1) mod 2q,

(3.A.1)

i.e.,

(n1 − ñ1)2
∑r

k=2 qk +
r∑

i=2

(ni − ñi)2
∑r

k=i+1 qk

i−1∏
k=1

(2qk − 1) ≡ 0 mod 2q, (3.A.2)

where the notation a ≡ b mod m means m|(a− b).

Since 2qr |2q, we have (nr−ñr)
∏r−1

k=1(2
qk−1) ≡ 0 mod 2qr . Moreover, due to the fact

that (
∏r−1

k=1(2
qk − 1), 2qr) = 1, then we have 2qr |(nr − ñr). Since 0 ≤ nr, ñr ≤ 2qr − 1,
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we can obtain nr = ñr, and as a result, (3.A.2) can be reduced to

(n1 − ñ1)2
∑r

k=2 qk +
r−1∑
i=2

(ni − ñi)2
∑r

k=i+1 qk

i−1∏
k=1

(2qk − 1) ≡ 0 mod 2q. (3.A.3)

Dividing both sides by 2qr yields

(n1−ñ1)2
∑r−1

k=2 qk+
r−1∑
i=2

(ni−ñi)2
∑r−1

k=i+1 qk

i−1∏
k=1

(2qk−1) ≡ 0 mod 2q−qr = 2
∑r−1

k=1 qk . (3.A.4)

Similarly, since 2qr−1|2
∑r−1

k=1 qk , we have (nr−1 − ñr−1)
∏r−2

k=1(2
qk − 1) ≡ 0 mod 2qr ,

and 2qr−1 |(nr−1 − ñr−1) based on the fact that (
∏r−2

k=1(2
qk − 1), 2qr−1) = 1. Since

0 ≤ nr, ñr ≤ 2qr − 1, we have nr−1 = ñr−1.

Repeatedly, we can obtain that ni = ñi for any i ≥ 2 and (3.A.2) can be reduced

to

(n1 − ñ1) ≡ 0 mod 2q1 , (3.A.5)

which suggests that 2q1|(n1 − ñ1). Since 0 ≤ n1, ñ1 ≤ 2q1 − 1, we have n1 = ñ1.

Therefore, si = s̃i for any 1 ≤ i ≤ r and such a set of {Si} constitutes a UFCS. The

proof is completed.

3.B Appendix: Proof of Theorem 3.2

Let s = exp( j2πn
2q

), s1 = exp( j2πn1

2q1
), and si = exp(

j2πni
∏i−1

k=1(2
qk−1)

2
∑i

k=1
qk

) for 2 ≤ i ≤ r.

Then, equation s1s2 · · · sr = s is equivalent to

n12
∑r

k=2 qk +
r∑

i=2

ni2
∑r

k=i+1 qk

i−1∏
k=1

(2qk − 1) ≡ n mod 2q. (3.B.1)
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Since 2qr |2q, we have

nr

r−1∏
k=1

(2qk − 1) ≡ n mod 2qr . (3.B.2)

Due to the fact that 2qr and any 2qk − 1 (1 ≤ k ≤ j − 1) are co-prime, with the help

of Euler theorem, we have

r−1∏
k=1

(2qk − 1)2
qr−1 ≡ 1 mod 2qr . (3.B.3)

By combining (3.B.2) and (3.B.3), we can obtain

nr ≡ n
r−1∏
k=1

(2qk − 1)2
qr−1−1 mod 2qr . (3.B.4)

There is only one solution to (3.B.4), such that 0 ≤ nr ≤ 2qr − 1. In other words,

the solution to nr is unique. On the other hand, according to (3.B.2), we have

2qr |(n− nr

∏r−1
k=1(2

qk − 1)). Therefore, (3.B.1) can be reduced to

n12
∑r−1

k=2 qk+
r−1∑
i=2

ni2
∑r−1

k=i+1 qk

i−1∏
k=1

(2qk−1) ≡ (n− nr

∏r−1
k=1(2

qk − 1))

2qr
mod 2q−qr = 2

∑r−1
k=1 qk .

(3.B.5)

Similarly, since 2qr−1|2
∑r−1

k=1 qk , we have

nr−1

r−2∏
k=1

(2qk − 1) ≡ (n− nr

∏r−1
k=1(2

qk − 1))

2qr
mod 2qr−1 . (3.B.6)
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Moreover, since 2qr−1 and any 2qk − 1 (1 ≤ k ≤ r − 2) are co-prime, with the help of

Euler theorem, we have,

r−2∏
k=1

(2qk − 1)2
qr−1−1

≡ 1 mod 2qr−1 . (3.B.7)

Then, by combining (3.B.6) and (3.B.7), we can arrive at

nr−1 ≡
(n− nr

∏r−1
k=1(2

qk − 1))
∏r−2

k=1(2
qk − 1)2

qr−1−1−1

2qr
mod 2qr−1 , (3.B.8)

which can also be uniquely determined for 0 ≤ nr−1 ≤ 2qr−1 − 1.

Repeatedly, we can obtain that for any i ≥ 2,

ni ≡
(n−

∑r
t=i+1 nt2

∑r
k=t+1 qk

∏t−1
k=1(2

qk − 1))
∏i−1

k=1(2
qk − 1)2

qi−1−1

2
∑r

k=i+1 qk
mod 2qi , (3.B.9)

which is also uniquely determined for 0 ≤ ni ≤ 2qi − 1. Then, according to (3.B.1),

we have

n1 ≡
n−

∑r
t=2 nt2

∑r
k=t+1 qk

∏t−1
k=1(2

qk − 1)

2
∑r

k=2 qk
mod 2q1 , (3.B.10)

where n1 can also be uniquely determined for 0 ≤ n1 ≤ 2q1 − 1. This complete the

proof of Theorem 3.2.

3.C Appendix: Proof for Theorem 3.3

Proof For ML detection, we have

x̂ = argmax
x
−zHΣ−1z, (3.C.1)
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where according to (3.5.4), we have that

Σ = |H2|2X0GXH
0 +

N−1∑
k=1

|Hk+1|2E[DkGDH
k ] + E[DNGDH

N ] +Ξ (3.C.2)

Since the matrix G = ggH is rank-1, it can be written as G = ∥g∥2u1u
H
1 , where

u1 = g/∥g∥. Hence

DkGDH
k = ∥g∥2

 |ηk,1|2|Xk+1,1|2u1u
H
1 ηk,1η

∗
k,2Xk+1,1X

∗
k+1,2u1u

H
1

ηk,2η
∗
k,1Xk+1,2X

∗
k+1,1u1u

H
1 |ηk,2|2|Xk+1,2|2u1u

H
1

 . (3.C.3)

Therefore, we have

E[DkGDH
k ] = ∥g∥2E

 |ηk,1|2|Xk+1,1|2u1u
H
1 ηk,1η

∗
k,2Xk+1,1X

∗
k+1,2u1u

H
1

ηk,2η
∗
k,1Xk+1,2X

∗
k+1,1u1u

H
1 |ηk,2|2|Xk+1,2|2u1u

H
1


= ∥g∥2

σ2|Xk+1,1|2u1u
H
1 0

0 σ2|Xk+1,2|2u1u
H
1 .

 .
(3.C.4)

Similarly, we have

X0GXH
0 = ∥g∥2

 |X0,1|2u1u
H
1 X0,1X

∗
0,2u1u

H
1

X0,2X
∗
0,1u1u

H
1 |X0,2|2u1u

H
1

 . (3.C.5)
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Now we can rewrite (3.C.2) as follows

Σ =|H2|2∥g∥2

 |X0,1|2u1u
H
1 X0,1X

∗
0,2u1u

H
1

X0,2X
∗
0,1u1u

H
1 |X0,2|2u1u

H
1

+
N−1∑
k=1

|Hk+1|2∥g∥2

σ2|Xk,1|2u1u
H
1 0

0 σ2|Xk,2|2u1u
H
1


+ ∥g∥2

σ2|XN,1|2u1u
H
1 0

0 σ2|XN,2|2u1u
H
1

+Ξ

= σ2

V 0

0 V




∥g∥2

σ2 A+1 ... 0
∥g∥2

σ2 B ... 0

...
. . .

...
...

. . .
...

0 ... 1 0 ... 0
∥g∥2

σ2 B∗ ... 0
∥g∥2

σ2 A+1 ... 0

...
. . .

...
...

. . .
...

0 ... 0 0 ... 1


VH 0

0 VH


(3.C.6)

where V = [u1,W] and the columns of W ∈ CM×(M−1) form an orthogonal basis for

the subspace that is the orthogonal complement of u1 in CM . Since |Xi,1| = |Xi,2| for

all i = 0, 1, . . . , N , we can define

A = |H2|2|X0,j|2 + σ2

N−1∑
k=1

|Hk+1|2|Xk,j|2 + σ2|XN,j|2

= |H2|2
N∏
i=0

βi + (
N−1∑
k=1

|Hk+1|2
N∏
i=k

βi + βN)σ
2.

(3.C.7)

Furthermore, as defined before, B ∈ S̃. Let

Φ =

∣∣∣∣∣∣∣
∥g∥2
σ2 A+ 1 ∥g∥2

σ2 B

∥g∥2
σ2 B

∗ ∥g∥2
σ2 A+ 1

∣∣∣∣∣∣∣ . (3.C.8)

Then, we know that

|Σ| = σ4MΦ. (3.C.9)
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By taking the block matrix inverse (see [71, section 9.1.3]), we have


∥g∥2

σ2 A+1 ... 0
∥g∥2

σ2 B ... 0

...
...

...
...

...
...

0 ... 1 0 ... 0
∥g∥2

σ2 B∗ ... 0
∥g∥2

σ2 A+1 ... 0

...
...

...
...

...
...

0 ... 0 0 ... 1


−1

=


(
∥g∥2

σ2 A+1)/Φ ... 0 − ∥g∥2

σ2 B/Φ ... 0

...
...

...
...

...
...

0 ... 1 0 ... 0

− ∥g∥2

σ2 B∗/Φ ... 0 (
∥g∥2

σ2 A+1)/Φ ... 0

...
...

...
...

...
...

0 ... 0 0 ... 1

 . (3.C.10)

Then, we have

Σ−1 = σ−2

V 0

0 V




(
∥g∥2

σ2 A+1)/Φ ... 0 − ∥g∥2

σ2 B/Φ ... 0

...
. . .

...
...

. . .
...

0 ... 1 0 ... 0

− ∥g∥2

σ2 B∗/Φ ... 0 (
∥g∥2

σ2 A+1)/Φ ... 0

...
. . .

...
...

. . .
...

0 ... 0 0 ... 1


VH 0

0 VH



=

( A
σ4Φ

+ 1−Φ
σ2∥g∥2T )gg

H − B
σ4Φ

ggH

− B∗

σ4Φ
ggH ( A

σ4Φ
+ 1−Φ

σ2∥g∥2Φ)gg
H

+
1

σ2

IM 0

0 IM


=

1

σ4T

A∥g∥2+σ2(1−Φ)
∥g∥2 IM −BIM

−B∗IM
A∥g∥2+σ2(1−Φ)

∥g∥2 IM

G 0

0 G

+
1

σ2

IM 0

0 IM

 .
(3.C.11)

Therefore,

zHΣ−1z =
1

σ4Φ

z1

z2


HA∥g∥2+σ2(1−Φ)

∥g∥2 IM −BIM

−B∗IM
A∥g∥2+σ2(1−Φ)

∥g∥2 IM

G 0

0 G


z1

z2


+

1

σ2

z1

z2


Hz1

z2

 .

(3.C.12)

Since the second term does not depend on the symbols, we can restrict attention to
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the first term. For that term we have

1

σ4Φ

z1

z2


HA∥g∥2+σ2(1−Φ)

∥g∥2 IM −BIM

−B∗IM
A∥g∥2+σ2(1−Φ)

∥g∥2 IM

G 0

0 G


z1

z2


=

1

σ4Φ

A∥g∥2 + σ2(1− Φ)

∥g∥2
(zH1 Gz1 + zH2 Gz2)−

1

σ4Φ
(B∗zH2 Gz1 +BzH1 Gz2)

(3.C.13)

Moreover, we also have B∗zH2 Gz1 +BzH1 Gz2 = ℜ(BzH1 Gz2). Since zH1 Gz1 + zH2 Gz2

is determined solely by z and G, and A and Φ are independent of the data symbols,

we have the claim. □

3.D Appendix: Lemma for ML detector with eigen-

values

Lemma 3.1 Let S =

[
z1 z2

] 0 B∗

B 0


zH1
zH2

 and S = UΛUH be its eigenvalue

decomposition and let ḡi denote the elements of ḡ. Then, the ML detection problem

can be reformulated as x̂ = argmaxλ1|ḡ1|2 + λ2|ḡ2|2. Note that ḡi = uHi g, where ui is

the i-th column of U.
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Proof The term ℜ(BzH1 Gz2) = B∗zH2 Gz1 +BzH1 Gz2 can be rewritten as follows,

B∗zH2 Gz1 +BzH1 Gz2

= tr(B∗zH2 Gz1) + tr(BzH1 Gz2)

= tr(B∗gHz1z
H
2 g) + tr(BgHz2z

H
1 g)

= gH

[
z1 z2

] 0 B∗

B 0


zH1
zH2

g.

(3.D.1)

Let S =

[
z1 z2

] 0 B∗

B 0


zH1
zH2

, where rank(S) ≤ 2. Then, we consider the eigen-

value decomposition (EVD) of S, i.e., S = UΛUH . Here, we assume that λ1 is the

largest in absolute value with the remaining nonzero eigenvalues are arranged in de-

scending order, the eigenvectors are reordered to correspond with the ordering of the

eigenvalues, resulting in U. Furthermore, let ḡ = UHg. Then, we have

B∗zH2 Gz1 +BzH1 Gz2 = ḡHΛḡ (3.D.2)

Since rank(S) ≤ 2, there are at most two nonzero eigenvalues λ1 and λ2. Thus,

(3.D.2) can be further written as

B∗zH2 Gz1 +BzH1 Gz2 = λ1|ḡ1|2 + λ2|ḡ2|2. (3.D.3)

Thus, we have the claim. □
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3.E Appendix: Proof of further simplified detec-

tor

We observed that, for different B ∈ S̃, the first two eigenvectors corresponding to

the non-zero eigenvalues of S are in a similar shape, resulting in |ḡ1| and |ḡ2| being

almost constant. Based on this result, we have the following lemma.

Lemma 3.2 Let g(λ1, λ2) = λ1|ḡ1|2 + λ2|ḡ2|2. Assume that λ∗1 = maxλ1 and λ∗2 =

maxλ2. The maximum value of g(λ1, λ2) is given by g(λ∗1, λ
∗
2), i.e., g(λ1, λ2) ≤

g(λ∗1, λ
∗
2) for any pair of λ1 and λ2 given in (3.E.3) and (3.E.4), respectively.

Proof Let ∆ = |B|2(∥z1∥2∥z2∥2 − |zH1 z2|2), and w = ℜ(BzH1 z2). Then we have

λ1 = w+
√
w2 +∆ and λ2 = w−

√
w2 +∆. According to Cauchy-Schwarz inequality,

we know that ∥z1∥2∥z2∥2 ≥ |zH1 z2|2, i.e., ∆ ≥ 0. Therefore,
√
w2 +∆ ≥ |w|, resulting

in −1 ≤ w√
w2+∆

≤ 1. Thus, dλ1

dw
= 1 + w√

w2+∆
≥ 0, which suggests that λ1 increases

with the increase of w. Furthermore, we have λ2 = w−
√
w2 +∆ = −∆

w+
√
w2+∆

= − ∆
λ1
,

which suggests that maximum λ2 can be obtained by maximizing λ1, i,e, λ
∗
2 = − ∆

λ∗
1
.

Since g(λ1, λ2) increases with the increase of λ1 and λ2, we have g(λ1, λ2) ≤ g(λ∗1, λ
∗
2).

The proof is completed. □

Based on the property that the matrix AB and BA have the same nonzero eigen-

values, then finding the nonzero eigenvalues of S can be transfered to find that of

S̃ =

 0 B∗

B 0


zH1
zH2

[z1 z2

]
=

B∗zH2 z1 B∗∥z2∥2

B∥z1∥2 BzH1 z2

 . (3.E.1)
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Consider the eigenvalues of (3.E.1), we have

det(λI− S̃) = (λ−B∗zH2 z1)(λ−BzH1 z2)− |B|2∥z1∥2∥z2∥2

= λ2 − 2ℜ(BzH1 z2)λ+ |B|2|zH1 z2|2 − |B|2∥z1∥2∥z2∥2.
(3.E.2)

Then, the eigenvalues are the roots of (3.E.2), i.e.,

λ1 =
2ℜ(BzH1 z2) +

√
4ℜ2(BzH1 z2)− 4|B|2(|zH1 z2|2 − ∥z1∥2∥z2∥2)

2

= ℜ(BzH1 z2) +
√
ℜ2(BzH1 z2) + |B|2(∥z1∥2∥z2∥2 − |zH1 z2|2)

(3.E.3)

(the largest one), and

λ2 = ℜ(BzH1 z2)−
√
ℜ2(BzH1 z2) + |B|2(∥z1∥2∥z2∥2 − |zH1 z2|2) (3.E.4)

According to proof of Lemma 3.2, we know that λ∗2 can be obtained by λ∗1 and

λ1 increases with the increase of ℜ(BzH1 z2). Then, we have the further simplified

detector max
B∈S̃
ℜ(BzH1 z2).

3.F Appendix: Symbol Error Probability

Let D =
∑N−1

k=1 |Hk+1|2
∏N

i=k βi + βN . Then, we have C = A
σ2 =

|H2|2
∏N

i=0 βi

σ2 +∑N−1
k=1 |Hk+1|2

∏N
i=k βi + βN = |H2|2|B|

σ2 + D. For simplicity, we denote, Ds = C2 −
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σ−4|B|2 = (|H2|2 − 1) |B|
σ2 + 2|H2|2|B|D

σ2 +D2. Then, we have

(C|g̃1|2 + 1)(1 + C∥g̃∥2)− σ−4|B|2∥g̃∥2|g̃1|2

= (1 + C|g̃1|2)(1 + C|g̃1|2 + C

M∑
k=2

|g̃k|2)− σ−4|B|2||g̃1|2 +
M∑
k=2

|g̃k|2)|g̃1|2

= Ds|g̃1|4 + (2C +Ds

M∑
k=2

|g̃k|2)|g̃1|2 + (1 + C

M∑
k=2

|g̃k|2)

(3.F.1)

and

σ−4|B|2|g̃1|4 sin2 π

Q
+ (1 + C∥g̃∥2 − C|g̃1|2)((C|g̃1|2 + 1)(1 + C∥g̃∥2)− σ−4|B|2∥g̃∥2|g̃1|2) sin2 θ

=

(
sin2 θ(1 + C

M∑
k=2

|g̃k|2)Ds + σ−4 sin2 π

Q
|B|2

)
|g̃1|4 + sin2 θ(1 + C

M∑
k=2

|g̃k|2)2

+ sin2 θ(1 + C
M∑
k=2

|g̃k|2)(2C +Ds

M∑
k=2

|g̃k|2)|g̃1|2.

(3.F.2)

Let g̃1 = r̃ejϕ, T1 = 1 + C
∑M

k=2 |g̃k|2, and T2 = 2C + Ds

∑M
k=2 |g̃k|2. Since f(g̃1) =

1
π
e−|g̃1|2 = 1

π
e−r̃2 , we have

Pe(U |sk, H2, . . . , HN , g̃2, . . . , g̃M)

=
2π

πM

∫ π(Q−1)
Q

0

∫ ∞

0

r̃

π
e−r̃2 (Cr̃2 + T1)

M−1
(
(Dsr̃

4 + T2r̃
2 + T1) sin

2 θ
)M(

(σ−4 sin2 π
Q
|B|2 + T1Ds sin

2 θ)r̃4 + T1T2 sin
2 θr̃2 + T 2

1 sin
2 θ
)M dr̃dθ

=
1

πM

∫ π(Q−1)
Q

0

∫ ∞

0

e−ω (Cx+ T1)
M−1

(
(Dsω

2 + T2ω + T1) sin
2 θ
)M(

(σ−4 sin2 π
Q
|B|2 + T1Ds sin

2 θ)ω2 + T1T2 sin
2 θω + T 2

1 sin
2 θ
)M dωdθ

(3.F.3)
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Moreover, if we let ω = T1v, then we have

Pe(U |sk, H2, . . . , HN , g̃2, . . . , g̃M)

=
1

πM

∫ π(Q−1)
Q

0

∫ ∞

0

e−T1v
(CT1v + T1)

M−1
(
(DsT

2
1 v

2 + T2T1v + T1) sin
2 θ
)M

T1(
(σ−4 sin2 π

Q
|B|2 + T1 sin

2 θDs)T 2
1 v

2 + T 2
1 T2 sin

2 θv + T 2
1 sin

2 θ
)M dvdθ

=
1

πM

∫ π(Q−1)
Q

0

∫ ∞

0

e−T1v
(Cv + 1)M−1

(
(DsT1v

2 + T2v + 1) sin2 θ
)M(

(σ−4 sin2 π
Q
|B|2 + T1Ds sin

2 θ)v2 + T2 sin
2 θv + sin2 θ

)M dvdθ

(3.F.4)

Consider the polar system and further let g̃s = (g̃2, . . . , g̃M) and r̃2s = ∥g̃s∥2 =∑M
k=2 |g̃k|2, then we have

Pe(U |H2, . . . , HN)

=
1

πM

∫ π(Q−1)
Q

0

∫ ∞

0

∫ ∞

0

1

πM
e−r̃2se−T1v

(Cv + 1)M−1
(
(DsT1v

2 + T2v + 1) sin2 θ
)M(

(σ−4 sin2 π
Q
|B|2 + T1Ds sin

2 θ)v2 + T2 sin
2 θv + sin2 θ

)M
× 2πM−1

Γ(M − 1)
r̃2(M−1)−1
s dvdr̃sdθ

(3.F.5)

Let y = r̃2s . Since T1 = 1 + C
∑M

k=2 |g̃k|2 = 1 + Cy, and T2 = 2C +Ds

∑M
k=2 |g̃k|2 =

2C +Dsy, the integrand of (3.F.15) can be rewritten as

e−ye−(1+Cy)v

πM+1Γ(M − 1)

(Cv + 1)M−1
(
(Ds(1 + Cy)v2 + (2C +Dsy)v + 1) sin2 θ

)M
yM−2(

(σ−4 sin2 π
Q
|B|2 + (1 + Cy)Ds sin

2 θ)v2 + (2C +Dsy) sin
2 θv + sin2 θ

)M
=

e−ve−(Cv+1)y

πM+1Γ(M − 1)

(Cv + 1)M−1
(
(CDsv

2 +Dsv) sin
2 θy + (Dsv

2 + 2Cv + 1) sin2 θ
)M

yM−2(
(CDsv2 +Dsv) sin

2 θy + (Dsv2 + 2Cv + 1) sin2 θ + σ−4|B|2v2 sin2 π
Q

)M
(3.F.6)
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Moreover, since (1− x)M =
∑M

k=0

M
k

 (−1)kxk, where

M
k

 = M !
k!(M−k)!

, we have

(Cv + 1)M−1
(
(CDsv

2 +Dsv) sin
2 θy + (Dsv

2 + 2Cv + 1) sin2 θ
)M(

(CDsv2 +Dsv) sin
2 θy + (Dsv2 + 2Cv + 1) sin2 θ + σ−4|B|2v2 sin2 π

Q

)M
= (Cv + 1)M−1

(
1−

σ−4|B|2v2 sin2 π
Q

(CDsv2 +Dsv) sin
2 θy + (Dsv2 + 2Cv + 1) sin2 θ + σ−4|B|2v2 sin2 π

Q

)M

= (Cv + 1)M−1

M∑
k=0

M
k

 (−1)k(σ−4|B|2v2 sin2 π
Q
)k

(
(CDsv2 +Dsv) sin

2 θy + (Dsv2 + 2Cv + 1) sin2 θ + σ−4|B|2v2 sin2 π
Q

)k .
(3.F.7)

Let R1 =
σ−4|B|2v2 sin2 π

Q

(CDsv2+Dsv) sin2 θ
, R2 =

(Dsv2+2Cv+1) sin2 θ+σ−4|B|2v2 sin2 π
Q

(CDsv2+Dsv) sin2 θ
, and R3 = Cv + 1.

Then, the integral in (3.F.15) can be rewritten as

1

πM+1

∫ π(Q−1)
Q

0

∫ ∞

0

e−v

Γ(M − 1)
RM−1

3

∫ ∞

0

e−R3yyM−2

M∑
k=0

M
k

 (−1)k
(

R1

y +R2

)k

dydvdθ.

(3.F.8)
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Consider the integral of y first, we have

∫ ∞

0

e−R3yyM−2

M∑
k=0

M
k

 (−1)k
(

R1

y +R2

)k

dy

=

∫ ∞

0

e−R3y

M∑
k=0

M
k

 (−1)k
(

R1

y +R2

)k

(y +R2 −R2)
M−2dy

=

∫ ∞

0

e−R3y

M∑
k=0

M
k

 (−1)k
(

R1

y +R2

)k M−2∑
j=0

M − 2

j

 (−1)j(y +R2)
M−2−jRj

2dy

=
M∑
k=0

M−2∑
j=0

M
k


M − 2

j

 (−1)k+jRk
1R

j
2

∫ ∞

0

e−R3y(y +R2)
M−2−j−kdy.

(3.F.9)

We use the following lemma to solve the integral in (3.F.9).

Lemma 3.3 For k ≥ 0

∫ ∞

0

(y + a)ke−bydy =
k+1∑
i=1

k!

(k + 1− i)!
ak+1−ib−i. (3.F.10)

Proof

∫ ∞

0

(y + a)ke−bydy =

∫ ∞

0

−1

b
(y + a)kde−by

= −1

b
(y + a)ke−by

∣∣∞
0
+

∫ ∞

0

k

b
(y + a)k−1e−bydy

=
ak

b
+

∫ ∞

0

k

b
(y + a)k−1e−bydy.
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Similarly, we have

∫ ∞

0

k

b
(y + a)k−1e−bydy =

∫ ∞

0

− k
b2
(y + a)k−1de−by

= − k
b2
(y + a)k−1e−by

∣∣∞
0
+

∫ ∞

0

k(k − 1)

b2
(y + a)k−2e−bydy

=
kak−1

b2
+

∫ ∞

0

k(k − 1)

b2
(y + a)k−2e−bydy.

Recursively, we know that

∫ ∞

0

(y + a)ke−bydy =
ak

b
+
kak−1

b2
+ · · ·+ k!a

bk
+

∫ ∞

0

k!

bk
e−bydy

=
ak

b
+

k!ak−1

(k − 1)!b2
+ · · ·+ k!a

bk
− k!

bk+1
e−by

∣∣∞
0

=
k+1∑
i=1

k!

(k + 1− i)!
ak−i+1b−i.

The proof is completed. □

Let Ei(x) represent the exponential integral function, i.e., Ei(x) =
∫ x

−∞
eu

u
du. Then,

we have the following lemma.

Lemma 3.4 ∫ ∞

0

e−by

y + a
dy = −eabEi(−ab)

Proof Since Ei(x) =
∫ x

−∞
eu

u
du, by substituting u = −t, we have

Ei(−x) =
∫ ∞

−x

−e
−t

t
dt, (3.F.11)
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Then, let t = b(y + a), according to (3.F.11), we have

Ei(−
x

b
− a) =

∫ ∞

−x
b
−a

− e
−b(y+a)

b(y + a)
d(b(y + a))

= −e−ab

∫ ∞

−x
b
−a

e−by

y + a
dy,

which suggests that
∫∞
−x

b
−a

e−by

y+a
dy = −eabEi(−x

b
− a).

By substituting x = −ab, we have
∫∞
0

e−by

y+a
dy = −eabEi(−ab). The proof is com-

pleted. □

Lemma 3.5 For k ≥ 1

∫ ∞

0

e−by

(y + a)k
dy =

k−1∑
i=1

(−b)k−i−1(i− 1)!

ai(k − 1)!
− (−b)k−1

(k − 1)!
eabEi(−ab). (3.F.12)

Proof

∫ ∞

0

e−by

(y + a)k
dy =

∫ ∞

0

− e−by

k − 1
d(y + a)−(k−1)

= − e−by

k − 1
(y + a)−(k−1)

∣∣∞
0
− b

∫ ∞

0

(y + a)−(k−1) e
−by

k − 1
dy

=
a−k+1

k − 1
− b

k − 1

∫ ∞

0

e−by

(y + a)k−1
dy.
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Similarly, we have

b

k − 1

∫ ∞

0

e−by

(y + a)k−1
dy =

b

k − 1

∫ ∞

0

− e−by

k − 2
d(y + a)−(k−2)

= − be−by

(k − 1)(k − 2)
(y + a)−(k−2)

∣∣∞
0
− b2

k − 1

∫ ∞

0

(y + a)−(k−2) e
−by

k − 2
dy

=
ba−k+2

(k − 1)(k − 2)
− b2

(k − 1)(k − 2)

∫ ∞

0

e−by

(y + a)k−2
dy.

Recursively, we know that

∫ ∞

0

e−by

(y + a)k
dy =

a−k+1

k − 1
− ba−k+2

(k − 1)(k − 2)
+ . . .+ (−1)k−1 bk−1

(k − 1)!

∫ ∞

0

e−by

y + a
dy

=
(k − 2)!

ak−1(k − 1)!
− b(k − 3)!

ak−2(k − 1)!
+ . . .+ (−1)k−1 bk−1

(k − 1)!

∫ ∞

0

e−by

y + a
dy

=
k−1∑
i=1

(−1)k−i−1 b
k−i−1(i− 1)!

ai(k − 1)!
+ (−1)k−1 bk−1

(k − 1)!

∫ ∞

0

e−by

y + a
dy.

According to Lemma 3.4, we have

∫ ∞

0

e−by

(y + a)k
dy =

k−1∑
i=1

(−1)k−i−1 b
k−i−1(i− 1)!

ai(k − 1)!
+ (−1)k−1 bk−1

(k − 1)!
(−eabEi(−ab))

=
k−1∑
i=1

(−b)k−i−1(i− 1)!

ai(k − 1)!
− (−b)k−1

(k − 1)!
eabEi(−ab).

Therefore, the proof is completed. □

According to the positive and negative properties of M − 2− (k + j), the (3.F.9)

can be divided into two parts, where one part is k + j ≤ M − 2 and another part is

k + j ≥M − 1. Let t = k + j.
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For the first part with t ≤M − 2, according to Lemma 3.3, we have

M−2∑
k=0

M−2∑
t=k

M
k


M − 2

t− k

 (−1)tRk
1R

t−k
2

∫ ∞

0

e−R3y(y +R2)
M−2−tdy

=
M−2∑
k=0

M−2∑
t=k

M
k


M − 2

t− k

 (−1)tRk
1R

t−k
2

M−t−1∑
i=1

k!

(M − t− i− 1)!
RM−t−i−1

2 R−i
3

=
M−2∑
k=0

M−2∑
t=k

M−t−1∑
i=1

M
k


M − 2

t− k

 (−1)tk!
(M − t− i− 1)!

Rk
1R

M−k−i−1
2 R−i

3

(3.F.13)

For the second part with t ≥M − 1, according to Lemma 3.5 we have

M∑
k=1

M−2+k∑
t=max{M−1,k}

M
k


M − 2

t− k

 (−1)tRk
1R

t−k
2

∫ ∞

0

e−R3y(y +R2)
−(t−M+2)dy

=
M∑
k=1

M−2+k∑
t=max{M−1,k}

M
k


M − 2

t− k

 (−1)tRk
1R

t−k
2

t−M+1∑
i=1

(−R3)
t−M−i+1(i− 1)!

Ri
2(t−M + 1)!

−
M∑
k=1

M−2+k∑
t=max{M−1,k}

M
k


M − 2

t− k

 (−1)tRk
1R

t−k
2

(−R3)
t−M+1

(t−M + 1)!
eR2R3Ei(−R2R3)

(3.F.14)
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Then, we know that

Pe(U |H2, . . . , HN)

=

∫ π(Q−1)
Q

0

∫ ∞

0

e−vRM−1
3

πM+1Γ(M − 1)


M−2∑
k=0

M−2∑
t=k

M−t−1∑
i=1

(−1)tk!

M
k


M − 2

t− k

Rk
1R

M−k−i−1
2 R−i

3

(M − t− i− 1)!

+
M∑
k=1

M−2+k∑
t=max{M−1,k}

M
k


M − 2

t− k

 (−1)tRk
1R

t−k
2

t−M+1∑
i=1

(−R3)
t−M−i+1(i− 1)!

Ri
2(t−M + 1)!

−
M∑
k=1

M−2+k∑
t=max{M−1,k}

M
k


M − 2

t− k

 (−1)tRk
1R

t−k
2

(−R3)
t−M+1

(t−M + 1)!
eR2R3Ei(−R2R3)

 dvdθ

(3.F.15)
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Chapter 4

Gaussian Semantic Source Coding

Abstract

Semantic source coding differs from conventional source coding in the sense that the

decoder is required to reconstruct, possibly in a lossy fashion, not only the observable

source realization but also an intrinsic source state that carries certain semantic infor-

mation. Centralized Gaussian semantic source coding and its distributed counterpart

are studied in this work. We explicitly characterize their respective rate-distortion

functions for the symmetric setting and the 2-component setting via the analysis

of the associated convex optimization problems. These characterizations generalize

several classical results in quadratic vector Gaussian source coding and Gaussian

multiterminal source coding.
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4.1 Introduction

Direct source coding [18] aims to find an efficient bit-sequence representation of an

observed source realization, from which that realization can be reconstructed exactly

or approximately. In contrast, indirect source coding [5, 24, 96, 97] deals with the

situation where the object of interest is not observed directly, but is some hidden

state. These two coding problems are closely related. In fact, if the observation is a

sufficient statistic for the hidden state, then indirect source coding can be reduced to

direct source coding under a suitably constructed surrogate distortion measure [5].

Semantic source coding [39, 58] couples the aforementioned two coding problems

by requiring the decoder to reconstruct, possibly in a lossy fashion, both the observ-

able source realization and the hidden source state. This unification is motivated by

task-oriented compression (e.g., MPEG Compact Descriptors for Video Analysis [29]

and Video Coding for Machines [28, 61, 104]), where the coded representation has

the dual responsibility of preserving the extrinsic aspects of the given data (which

corresponds to the observable source realization) and capturing its intrinsic semantic

features (which are assumed to be carried by the hidden source state). Note that the

two objectives of the decoder in semantic source coding are not necessarily aligned.

Indeed, with the coding rate fixed, there often exists a tension between faithfully

reproducing the extrinsic observation and accurately estimating the intrinsic state.

Characterizing this tension in the form of a quantitative tradeoff is a fundamental

problem from the information-theoretic perspective.

So far, research on semantic source coding has been exclusively focused on cen-

tralized systems with a single encoder having access to all source components, e.g.,
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[38, 57, 58]. However, in practice, there are many situations where the source compo-

nents are not co-located and have to be processed in a distributed manner. Even when

the source components are co-located, distributed processing might still be favored

due to implementation constraints (e.g., small receptive fields of neural networks)

or complexity considerations. This provides a strong incentive to study distributed

semantic source coding and investigate how it differs from its centralized counterpart

in terms of the performance limits.

In this work, we consider the quadratic Gaussian versions of both centralized se-

mantic source coding and distributed semantic source coding. The Gaussian version

is known to be analytically more tractable. In particular, we obtain several explicit

characterizations of the fundamental rate-distortion limits, while explicit characteri-

zation of the fundamental rate-distortion tradeoff remains elusive for general source

distributions, the external properties of the Gaussian distribution suggest that our

results can be used widely as baselines for non-Gaussian distributions.

The rest of this chapter is organized as follows. We introduce the problem def-

initions in Section 4.2. The rate-distortion function of centralized Gaussian seman-

tic source coding is explicitly characterized for the symmetric setting and the 2-

component setting in Section 4.3. The corresponding results for distributed Gaussian

semantic source coding are presented in Section 4.4. Section 4.5 contains some nu-

merical simulations and comparisons. We conclude the chapter in Section 4.6.

4.2 Problem Definitions

Let X := (X1, . . . , XL)
T be an observable vector source, and let S be a state variable

carrying certain semantic information. We assume Xi = S +Ni, i = 1, . . . , L, where
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S,N1, . . . , NL are mutually independent zero-mean Gaussian random variables with

variances σ2
S, σ

2
N1
, . . . , σ2

NL
, respectively. The covariance matrix of X, denoted by KX,

can be written as

KX =



σ2
S + σ2

N1
σ2
S . . . σ2

S

σ2
S σ2

S + σ2
N2

. . . σ2
S

...
...

. . .
...

σ2
S σ2

S . . . σ2
S + σ2

NL


.

According to linear minimum mean square error (MMSE) estimation, it is easy to

verify that

S = E[S|X] + Z = gTX+ Z,

where Z is a zero-mean Gaussian random variable, independent of X, with variance

σ2
Z = ( 1

σ2
S
+ 1

σ2
N1

+. . .+ 1
σ2
NL

)−1, and g = (
σ2
Z

σ2
N1

, . . . ,
σ2
Z

σ2
NL

)T . Let {(X1(t), . . . , XL(t), S(t), Z(t))}∞t=1

be a joint i.i.d. process induced by (X1, . . . , XL, S, Z).

To set the scene for the contribution of the paper, we define the achievability of

an encoding rate R in the cases of centralized and distributed coding in the following

ways.

Definition 4.1 Rate R is said to be achievable with respect to reproduction distortion

constraints D1, . . . , DL and semantic distortion constraint DS via centralized coding

if given any ϵ > 0, there exist encoding functions f (n) : RL×n → C(n) and decoding
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functions g(n) : C(n) → RL×n and g
(n)
S : C(n) → Rn for all sufficiently large n such that

1

n
log |C(n)| ≤ R + ϵ,

1

n

n∑
t=1

E[(Xi(t)− X̂i(t))
2] ≤ Di + ϵ, i = 1, . . . , L,

1

n

n∑
t=1

E[(S(t)− Ŝ(t))2] ≤ DS + ϵ,

where X̂n := g(n)(f (n)(Xn)) (with X(t) and X̂(t) standing for (X1(t), . . . , XL(t))
T

and (X̂1(t), . . . , X̂L(t))
T , respectively, t = 1, . . . , n) and Ŝn := g

(n)
S (f (n)(Xn)). The

infimum of such achievable R is denoted by Rc(D1, . . . , DL, DS).

Definition 4.2 Rate R is said to be achievable with respect to reproduction distortion

constraints D1, . . . , DL and semantic distortion constraint DS via distributed coding

if given any ϵ > 0, there exist encoding functions f
(n)
i : Rn → C(n)i , i = 1, . . . , L, and

decoding functions g(n) : C(n)1 × . . . × C
(n)
L → RL×n and g

(n)
S : C(n)1 × . . . × C

(n)
L → Rn

for all sufficiently large n such that

1

n

L∑
i=1

log |C(n)i | ≤ R + ϵ,

1

n

n∑
t=1

E[(Xi(t)− X̂i(t))
2] ≤ Di + ϵ, i = 1, . . . , L,

1

n

n∑
t=1

E[(S(t)− Ŝ(t))2] ≤ DS + ϵ,

where X̂n := g(n)(f
(n)
1 (Xn

1 ), . . . , f
(n)
L (Xn

L)) (with X̂(t) standing for (X̂1(t), . . . , X̂L(t))
T ,

t = 1, . . . , n) and Ŝn := g
(n)
S (f

(n)
1 (Xn

1 ), . . . , f
(n)
L (Xn

L)). The infimum of such achievable

R is denoted by Rd(D1, . . . , DL, DS).
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For a given set of distortion metrics, D1, . . . , DL, DS, the rate distortion problem

is to find the minimum achievable rate. In this work, we will consider distortions

Di ∈ (0, σ2
S+σ

2
Ni
], i = 1, . . . , L, and DS ∈ (σ2

Z , σ
2
S], as distortions that are larger result

in inactive constraints, and distortions that are smaller are inherently infeasible.

The centralized Gaussian semantic source coding problem considered in the present

work differs from that in [58] in two aspects. Firstly, we impose a reproduction dis-

tortion constraint on each source component while [58] adopts a trace distortion

constraint. Secondly, we consider a special correlation structure where the observable

source components are conditionally independent given the hidden state; in contrast,

[58] has no such a restriction. It is worth mentioning that the conditional indepen-

dence assumption is introduced mainly to ensure that the results derived for the

centralized Gaussian semantic source coding problem are comparable to those for

the distributed counterpart, as the latter problem is likely intractable without this

assumption.

To the best of our knowledge, the distributed Gaussian semantic source coding

problem formulated above is new. Nevertheless, it has rich connections with various

network source coding problems [11, 68, 72, 86, 89] in the literature. In particular,

it can be viewed as a coupling of the Gaussian multiterminal source coding problem

[6, 12, 66, 82, 86, 89, 102, 105] and the Gaussian CEO problem [7, 11, 67, 69, 72, 85].

In the multiterminal source coding system, many sources are separately encoded and

sent to a single destination, and the decoder wishes to reconstruct the original sources.

In [6, 82], the inner bound of this problem was given, and Wagner et al. [86] gave

a complete solution to this problem in the two terminal case of quadratic Gaussian

sources and quadratic distortion by proving such inner bound is optimal. Although
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the vector case [87, 88] and symmetric case [13] are considered, this problem remains

open in the general case. As a practical situation of the distributed source coding

system, the encoders can not directly access the source outputs but can access their

noisy observations, such remote source coding problem is often referred to as CEO

problem [7, 67, 68, 69, 90, 91] , where [69] showed the connection of these two source

coding problems and [91] gave a comparison with centralized coding in symmetric

case.

4.3 Centralized Gaussian Semantic Source Coding

In this section, we take the centralized version of the semantic source coding problem.

The coding model of L-symmetric-component setting and 2-component setting are

shown in Fig. 4.1 and Fig. 4.2, respectively. The following result is a simple variant

of [58, Theorem 2].
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Figure 4.1: Centralized semantic source coding: L-symmetric-component setting.
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Figure 4.2: Centralized semantic source coding: 2-component setting.

Theorem 4.1 We have

Rc(D1, . . . , DL, DS) =min
∆

1

2
log

det(KX)

det(∆)
(4.3.1)

s.t. 0 ≺∆ ⪯ KX, (4.3.2)

diag(∆) ⪯ D, (4.3.3)

gT∆g + σ2
Z ≤ DS, (4.3.4)

where D is a diagonal matrix with the i-th diagonal entry being Di, i = 1, . . . , L.

Lemma 4.1 ∆∗ is an optimal solution of the optimization problem in (4.3.1) if it

satisfies the constraints (4.3.2)–(4.3.4) and there exist positive semidefinite matrix U,

a positive semidefinite diagonal matrix Λ, and a nonnegative number ρ such that

−(∆∗)−1 +U+Λ+ ρggT = 0, (4.3.5)

U(∆∗ −KX) = 0, (4.3.6)

Λ(diag(∆∗)−D) = 0, (4.3.7)

ρ
(
gT∆∗g + σ2

Z −DS

)
= 0. (4.3.8)

Proof Since (4.3.1) is a convex optimization problem and it has interior points,

∆∗ is an optimal solution if it satisfies the constraints (4.3.2)–(4.3.4) as well as the
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following KKT conditions [8]:

∇∆L(∆;U,Λ, ρ)|∆=∆∗ = 0,

U(∆∗ −KX) = 0,

Λ(diag(∆∗)−D) = 0,

ρ
(
gT∆∗g + σ2

Z −DS

)
= 0,

where L(∆;U,Λ, ρ) is the Lagrangian defined as

L(∆;U,Λ, ρ) := − log det(∆)+tr (U(∆−KX))+tr (Λ(diag(∆)−D))+ρ(gT∆g+σ2
Z−DS)

withU, Λ, and ρ being a positive semidefinite matrix, a positive semidefinite diagonal

matrix, and a nonnegative number, respectively. The proof is complete in view of the

fact that ∇∆L(∆;U,Λ, ρ) = −∆−1 +U+Λ+ ρggT . □

Next we consider the symmetric setting with σ2
N1

= . . . = σ2
NL

= σ2
N and D1 =

. . . = DL = D. An explicit characterization of Rc(D1, . . . , DL, DS), abbreviated as

Rc(D,DS), is provided by the following result.

Theorem 4.2 An explicit expression for Rc(D,DS) is given as follows:

1. If D < σ2
N and D <

(DS−σ2
Z)σ4

N

Lσ4
Z

, then

Rc(D,DS) =
1

2
log

Lσ2
Sσ

2(L−1)
N + σ2L

N

DL
.
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2. If D < L−1
L
σ2
N +

(DS−σ2
Z)σ4

N

L2σ4
Z

and D ≥ (DS−σ2
Z)σ4

N

Lσ4
Z

, then

Rc(D,DS) =
1

2
log

Lσ4
Z(Lσ

2
Sσ

2(L−1)
N + σ2L

N )

(DS − σ2
Z)σ

4
N(

L
L−1

D − (DS−σ2
Z)σ4

N

L(L−1)σ4
Z
)L−1

.

3. If D ≥ σ2
N and D < L−1

L
σ2
N +

(DS−σ2
Z)σ4

N

L2σ4
Z

, then

Rc(D,DS) =
1

2
log

Lσ2
S + σ2

N

LD − (L− 1)σ2
N

.

4. If D ≥ L−1
L
σ2
N +

(DS−σ2
Z)σ4

N

L2σ4
Z

, then

Rc(D,DS) =
1

2
log

σ2
S − σ2

Z

DS − σ2
Z

.

The regions of the (D,DS) space in which each closed-form expression applies can be

visualized using the example in Fig. 4.3.

Proof For each of the four cases, we invoke Lemma 4.1 to verify the opti-

mality of a specific ∆∗ by explicitly constructing U, Λ, and ρ that satisfy the KKT

conditions.

1. Consider the following construction:

∆∗ := D, U := 0, Λ := D−1, ρ := 0.

It is clear that (4.3.3) and (4.3.5)–(4.3.8) are satisfied. Moreover, (4.3.4) is also
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1)

2)

3)

4)

Figure 4.3: Regions of each case of Theorem 4.2, when σ2
S = 0.5, σ2

N = 0.5, and
L = 7.

satisifed since

gT∆∗g + σ2
Z < DS ⇐⇒ D <

(DS − σ2
Z)σ

4
N

Lσ4
Z

.

Note that ∆∗ ≻ 0. Also, the eigenvalues of KX −∆∗ take two possible values

Lσ2
S +σ2

N −D and σ2
N −D; the former is nonnegative when D ≤ σ2

S +σ2
N while

the latter is positive when D < σ2
N . So (4.3.2) is satisfied as well. Therefore,

∆∗ is indeed an optimal solution and consequently

Rc(D,DS) =
1

2
log

det(KX)

det(∆∗)
=

1

2
log

Lσ2
Sσ

2(L−1)
N + σ2L

N

DL
.
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2. Consider the following construction:

∆∗ :=



D η . . . η

η D . . . η

...
...

. . .
...

η η . . . D


, U := 0, Λ :=



1
D−η

0 . . . 0

0 1
D−η

. . . 0

...
...

. . .
...

0 0 . . . 1
D−η


,

ρ := − ησ4
N

((L− 1)η +D)(D − η)σ4
Z

.

where η :=
(DS−σ2

Z)σ4
N

L(L−1)σ4
Z
− D

L−1
. Note that the eigenvalues of ∆∗ take two possible

values D + (L − 1)η and D − η; the former is positive when DS > σ2
Z while

the latter is positive when D ≥ (DS−σ2
Z)σ4

N

Lσ4
Z

. Also, the eigenvalues of KX −∆∗

take two possible values Lσ2
S + σ2

N −D− (L− 1)η and σ2
N −D+ η; the former

is nonnegative when DS ≤ σ2
S while the latter is positive when D < L−1

L
σ2
N +

(DS−σ2
Z)σ4

N

L2σ4
Z

. So (4.3.2) is satisfied. It is easy to verify that (4.3.3)–(4.3.8) are also

satisfied. Moreover, D ≥ (DS−σ2
Z)σ4

N

Lσ4
Z

is equivalent to η ≤ 0, which implies ρ ≥ 0

and Λ ≻ 0. Therefore, ∆∗ is indeed an optimal solution and consequently

Rc(D,DS) =
1

2
log

det(KX)

det(∆∗)
=

1

2
log

Lσ4
Z(Lσ

2
Sσ

2(L−1)
N + σ2L

N )

(DS − σ2
Z)σ

4
N(

L
L−1

D − (DS−σ2
Z)σ4

N

L(L−1)σ4
Z
)L−1

.
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3. Consider the following construction:

∆∗ :=



D D − σ2
N . . . D − σ2

N

D − σ2
N D . . . D − σ2

N

...
...

. . .
...

D − σ2
N D − σ2

N . . . D


,

U :=



(L−1)(D−σ2
N )

(LD−(L−1)σ2
N )σ2

N
− D−σ2

N

(LD−(L−1)σ2
N )σ2

N
. . . − D−σ2

N

(LD−(L−1)σ2
N )σ2

N

− D−σ2
N

(LD−(L−1)σ2
N )σ2

N

(L−1)(D−σ2
N )

(LD−(L−1)σ2
N )σ2

N
. . . − D−σ2

N

(LD−(L−1)σ2
N )σ2

N

...
...

. . .
...

− D−σ2
N

(LD−(L−1)σ2
N )σ2

N
− D−σ2

N

(LD−(L−1)σ2
N )σ2

N
. . .

(L−1)(D−σ2
N )

(LD−(L−1)σ2
N )σ2

N


,

Λ :=



1
LD−(L−1)σ2

N
0 . . . 0

0 1
LD−(L−1)σ2

N
. . . 0

...
...

. . .
...

0 0 . . . 1
LD−(L−1)σ2

N


, ρ := 0.

The eigenvalues of ∆∗ take two possible values LD−(L−1)σ2
N and σ2

N while the

eigenvalues ofKX−∆∗ take two possible values L(σ2
S+σ

2
N−D) and 0. So (4.3.2)

is satisfied since LD − (L− 1)σ2
N > 0 when D ≥ σ2

N and L(σ2
S + σ2

N −D) ≥ 0

when DS ≤ σ2
S. It can be verified that (4.3.3)–(4.3.8) are also satisfied. In

particular, (4.3.4) holds because

gT∆∗g + σ2
Z < DS ⇐⇒ D <

L− 1

L
σ2
N +

(DS − σ2
Z)σ

4
N

L2σ4
Z

.

Moreover, we have U ⪰ 0 since its eigenvalues take two possible values 0 and
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L(D−σ2
N )

(LD−(L−1)σ2
N )σ2

N
, the latter of which is nonnegative when D ≥ σ2

N . It is also clear

that Λ ≻ 0 when D ≥ σ2
N . Therefore, ∆∗ is indeed an optimal solution and

consequently

Rc(D,DS) =
1

2
log

det(KX)

det(∆∗)
=

1

2
log

Lσ2
S + σ2

N

LD − (L− 1)σ2
N

.

4. Consider the following construction:

∆∗ :=



L−1
L
σ2
N +

σ4
N (DS−σ2

Z)

L2σ4
Z

σ4
N (DS−σ2

Z)

L2σ4
Z
− σ2

N

L
. . .

σ4
N (DS−σ2

Z)

L2σ4
Z
− σ2

N

L

σ4
N (DS−σ2

Z)

L2σ4
Z
− σ2

N

L
L−1
L
σ2
N +

σ4
N (DS−σ2

Z)

L2σ4
Z

. . .
σ4
N (DS−σ2

Z)

L2σ4
Z
− σ2

N

L

...
...

. . .
...

σ4
N (DS−σ2

Z)

L2σ4
Z
− σ2

N

L

σ4
N (DS−σ2

Z)

L2σ4
Z
− σ2

N

L
. . . L−1

L
σ2
N +

σ4
N (DS−σ2

Z)

L2σ4
Z


,

U :=



L−1
Lσ2

N
− 1

Lσ2
N

. . . − 1
Lσ2

N

− 1
Lσ2

N

L−1
Lσ2

N
. . . − 1

Lσ2
N

...
...

. . .
...

− 1
Lσ2

N
− 1

Lσ2
N

. . . L−1
Lσ2

N


, Λ := 0, ρ :=

1

DS − σ2
Z

.

The eigenvalues of ∆∗ take two possible values
σ4
N (DS−σ2

Z)

Lσ4
Z

and σ2
N while the

eigenvalues of KX −∆∗ take two possible values Lσ2
S + σ2

N −
σ4
N (DS−σ2

Z)

Lσ4
Z

and

0. So (4.3.2) is satisfied since
σ4
N (DS−σ2

Z)

Lσ4
Z

> 0 when DS > σ2
Z and Lσ2

S + σ2
N −

σ4
N (DS−σ2

Z)

Lσ4
Z

≥ 0 when DS ≤ σ2
S. It can be verified that (4.3.3)–(4.3.8) are also

satisfied. In particular, (4.3.3) holds because it is equivalent to D ≥ L−1
L
σ2
N +

(DS−σ2
Z)σ4

N

L2σ4
Z

. Moreover, we have U ⪰ 0 since its eigenvalues take two possible

values 0 and 1
σ2
N
. It is also clear that ρ > 0 when DS > σ2

Z . Therefore, ∆∗ is
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indeed an optimal solution and consequently

Rc(D,DS) =
1

2
log

det(KX)

det(∆∗)
=

1

2
log

σ2
S − σ2

Z

DS − σ2
Z

.

This completes the proof of Theorem 4.2. □

The following result deals with the 2-component setting (shown in Fig. 4.2) and

provides an explicit characterization of Rc(D1, D2, DS).

Theorem 4.3 The closed-form expression for Rc(D1, D2, DS) is given as follows:

1. If D2 ≥ σ2
S + σ2

N2
−

σ4
S(σ

2
S+σ2

N1
−D1)

(σ2
S+σ2

N1
)2

and DS ≥ σ2
S −

σ4
S(σ

2
S+σ2

N1
−D1)

(σ2
S+σ2

N1
)2

, then

Rc(D1, D2, DS) =
1

2
log

σ2
S + σ2

N1

D1

.

2. If D1 ≥ σ2
S + σ2

N1
−

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

and DS ≥ σ2
S −

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

, then

Rc(D1, D2, DS) =
1

2
log

σ2
S + σ2

N2

D2

.

3. If Di ≥ σ2
S + σ2

Ni
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
, i = 1, 2, then

Rc(D1, D2, DS) =
1

2
log

σ2
S − σ2

Z

DS − σ2
Z

.

4. If (σ2
S + σ2

N1
−D1)(σ

2
S + σ2

N2
−D2) ≥ σ4

S and DS ≥
σ4
Z

σ2
N1

D1 +
σ4
Z

σ2
N2

D2 + σ2
Z, then

Rc(D1, D2, DS) =
1

2
log

(σ2
S + σ2

N1
)(σ2

S + σ2
N2
)− σ4

S

D1D2

.
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5. If (σ2
S + σ2

N1
−D1)(σ

2
S −DS) ≥ σ4

S and D2 ≥
σ4
N2

σ4
N1

D1 +
σ4
N2

σ4
Z
(DS − σ2

Z), then

Rc(D1, D2, DS) =
1

2
log

(σ2
S + σ2

N1
)(σ2

S − σ2
Z)− σ4

S

D1(DS − σ2
Z)

.

6. If (σ2
S + σ2

N2
−D2)(σ

2
S −DS) ≥ σ4

S and D1 ≥
σ4
N1

σ4
N2

D2 +
σ4
N1

σ4
Z
(DS − σ2

Z), then

Rc(D1, D2, DS) =
1

2
log

(σ2
S + σ2

N2
)(σ2

S − σ2
Z)− σ4

S

D2(DS − σ2
Z)

.

7. If (σ2
S+σ

2
N1
−D1)(σ

2
S+σ

2
N2
−D2) < σ4

S, D1 < σ2
S+σ

2
N1
−

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

, D2 < σ2
S+

σ2
N2
−

σ4
S(σ

2
S+σ2

N1
−D1)

(σ2
S+σ2

N1
)2

, and DS ≥
σ4
Z

σ4
N1

D1+
2σ4

Z

σ2
N1

σ2
N2

(σ2
S−
√
(σ2

S + σ2
N1
−D1)(σ2

S + σ2
N2
−D2))+

σ4
Z

σ4
N2

D2 + σ2
Z, then

Rc(D1, D2, DS) =
1

2
log

(σ2
S + σ2

N1
)(σ2

S + σ2
N2
)− σ4

S

D1D2 − (σ2
S −

√
(σ2

S + σ2
N1
−D1)(σ2

S + σ2
N2
−D2))2

.

8. If (σ2
S + σ2

N1
− D1)(σ

2
S − DS) < σ4

S, D1 < σ2
S + σ2

N1
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
, DS < σ2

S −
σ4
S(σ

2
S+σ2

N1
−D1)

(σ2
S+σ2

N1
)2

, and D2 ≥
σ4
N2

σ4
N1

D1 −
2σ4

N2

σ2
N1

σ2
Z
(σ2

S −
√

(σ2
S + σ2

N1
−D1)(σ2

S −DS)) +

σ4
N2

σ4
Z
(DS − σ2

Z), then

Rc(D1, D2, DS) =
1

2
log

(σ2
S + σ2

N1
)(σ2

S − σ2
Z)− σ4

S

D1(DS − σ2
Z)− (σ2

S −
√
(σ2

S + σ2
N1
−D1)(σ2

S −DS))2
.

9. If (σ2
S + σ2

N2
− D2)(σ

2
S − DS) < σ4

S, D2 < σ2
S + σ2

N2
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
, DS < σ2

S −
σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

, and D1 ≥
σ4
N1

σ4
N2

D2 −
2σ4

N1

σ2
N2

σ2
Z
(σ2

S −
√

(σ2
S + σ2

N2
−D2)(σ2

S −DS)) +
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σ4
N1

σ4
Z
(DS − σ2

Z), then

Rc(D1, D2, DS) =
1

2
log

(σ2
S + σ2

N2
)(σ2

S − σ2
Z)− σ4

S

D2(DS − σ2
Z)− (σ2

S −
√
(σ2

S + σ2
N2
−D2)(σ2

S −DS))2
.

10. Otherwise,

Rc(D1, D2, DS) =
1

2
log

(σ2
S + σ2

N1
)(σ2

S + σ2
N2
)− σ4

S

D1D2 −
σ4
N1

σ4
N2

4σ8
Z

(DS − σ2
Z −

σ4
Z

σ4
N1

D1 −
σ4
Z

σ4
N2

D2)2
.

Remark 4.1 One can specialize [100, Theorem 6] and [51, Theorem III.1] from The-

orem 4.3 by removing semantic distortion constraint DS, i.e., by considering only

Cases 1), 2), 4), and 7) where semantic distortion constraint DS is inactive.

The regions of the (D1, D2, DS) space in which each closed-form expression applies

can be visualized using the example in Fig. 4.4. For cases 1), 2), 4) and 7), the

distortion DS is inactive, thus the dominant terms are the combination of D1 and

D2.

Proof For each of the ten cases, we invoke Lemma 4.1 to verify the optimality of

a specific ∆∗ by explicitly constructing U, Λ, and ρ that satisfy the KKT conditions.

1. Consider the following construction:

∆∗ :=

 D1
σ2
S

σ2
S+σ2

N1

D1

σ2
S

σ2
S+σ2

N1

D1 σ2
S + σ2

N2
−

σ4
S(σ

2
S+σ2

N1
−D1)

(σ2
S+σ2

N1
)2

 ,
U :=

 σ4
S

((σ2
S+σ2

N1
)(σ2

S+σ2
N2

)−σ4
S)(σ

2
S+σ2

N1
)
− σ2

S

(σ2
S+σ2

N1
)(σ2

S+σ2
N2

)−σ4
S

− σ2
S

(σ2
S+σ2

N1
)(σ2

S+σ2
N2

)−σ4
S

σ2
S+σ2

N1

(σ2
S+σ2

N1
)(σ2

S+σ2
N2

)−σ4
S

 , Λ :=

 1
D1

0

0 0

 , ρ := 0.
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4)
1) 2)

3)

5)

6)

7)

8) 9)

10)

Figure 4.4: Regions of each case of Theorem 4.3, when σ2
S = 0.6, σ2

N1
= 0.3, and

σ2
N2

= 0.3.

Clearly, we have U ⪰ 0 and Λ ⪰ 0. It can be verified that (4.3.5)–(4.3.8) are

satisfied. Moreover, (4.3.3) is also satisfied since D2 ≥ σ2
S+σ

2
N2
−

σ4
S(σ

2
S+σ2

N1
−D1)

(σ2
S+σ2

N1
)2

.

In view of the fact that

gT∆∗g ≤ DS − σ2
Z ⇐⇒ DS ≥ σ2

S −
σ4
S(σ

2
S + σ2

N1
−D1)

(σ2
S + σ2

N1
)2

,

(4.3.4) is satisfied as well. Finally, (4.3.2) holds because ∆∗ ≻ 0 and

KX −∆∗ =

σ2
S + σ2

N1
−D1

σ2
S(σ

2
S+σ2

N1
−D1)

σ2
S+σ2

N1

σ2
S(σ

2
S+σ2

N1
−D1)

σ2
S+σ2

N1

σ4
S(σ

2
S+σ2

N1
−D1)

(σ2
S+σ2

N1
)2

 ⪰ 0.

Therefore, ∆∗ is indeed an optimal solution and consequently

Rc(D1, D2, DS) =
1

2
log

det(KX)

det(∆∗)
=

1

2
log

σ2
S + σ2

N1

D1

.
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2. This follows from Case 1) by symmetry.

3. Consider the following construction:

∆∗ :=

σ2
S + σ2

N1
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
σ2
S −

σ4
S(σ

2
S−DS)

(σ2
S−σ2

Z)2

σ2
S −

σ4
S(σ

2
S−DS)

(σ2
S−σ2

Z)2
σ2
S + σ2

N2
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2

 ,
U :=

 1
σ2
N1

+σ2
N2

− 1
σ2
N1

+σ2
N2

− 1
σ2
N1

+σ2
N2

1
σ2
N1

+σ2
N2

 , Λ := 0, ρ :=

(
(σ2

S + σ2
N1
)(σ2

S + σ2
N2
)− σ4

S

)
(σ2

S − σ2
Z)

σ4
S (DS − σ2

Z)
(
σ2
N1

+ σ2
N2

) .

Clearly, we have U ⪰ 0 and ρ ≥ 0. It can be verified that (4.3.4)–(4.3.8) are

satisfied. Moreover, (4.3.3) is also satisfied since Di ≥ σ2
S + σ2

Ni
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
,

i = 1, 2. Finally, (4.3.2) holds because ∆∗ ≻ 0 and

KX −∆∗ =

σ4
S(σ

2
S−DS)

(σ2
S−σ2

Z)2
σ4
S(σ

2
S−DS)

(σ2
S−σ2

Z)2

σ4
S(σ

2
S−DS)

(σ2
S−σ2

Z)2
σ4
S(σ

2
S−DS)

(σ2
S−σ2

Z)2

 ⪰ 0.

Therefore, ∆∗ is indeed an optimal solution and consequently

Rc(D1, D2, DS) =
1

2
log

det(KX)

det(∆∗)
=

1

2
log

σ2
S − σ2

Z

DS − σ2
Z

.

4. Consider the following construction:

∆∗ := D, U := 0, Λ := D−1, ρ := 0.
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It is clear that (4.3.3) and (4.3.5)–(4.3.8) are satisfied. In view of the fact that

gT∆∗g ≤ DS − σ2
Z ⇐⇒ DS ≥

σ4
Z

σ4
N1

D1 +
σ4
Z

σ4
N2

D2 + σ2
Z ,

(4.3.4) is satisfied as well. Finally, (4.3.2) holds because ∆∗ ≻ 0 and

KX −∆∗ =

σ2
S + σ2

N1
−D1 σ2

S

σ2
S σ2

S + σ2
N2
−D2

 ⪰ 0,

where the last step uses the condition (σ2
S + σ2

N1
− D1)(σ

2
S + σ2

N2
− D2) ≥ σ4

S.

Therefore, ∆∗ is indeed an optimal solution and consequently

Rc(D1, D2, DS) =
1

2
log

det(KX)

det(∆∗)
=

1

2
log

(σ2
S + σ2

N1
)(σ2

S + σ2
N2
)− σ4

S

D1D2

.

5. Consider the following construction:

∆∗ :=

 D1 −
σ2
N2

σ2
N1

D1

−
σ2
N2

σ2
N1

D1

σ4
N2

σ4
N1

D1 +
σ4
N2

σ4
Z
(DS − σ2

Z)

 , U := 0, Λ :=

 1
D1

0

0 0

 , ρ := 1

DS − σ2
Z

.

Clearly, we have Λ ⪰ 0 and ρ ≥ 0. It can be verified that (4.3.4)–(4.3.8) are

satisfied. Moreover, (4.3.3) is also satisfied since D2 ≥
σ4
N2

σ4
N1

D1 +
σ4
N2

σ4
Z
(DS − σ2

Z).

Finally, (4.3.2) holds because ∆∗ ≻ 0 and

KX −∆∗ =

σ2
S + σ2

N1
−D1 σ2

S +
σ2
N2

σ2
N1

D1

σ2
S +

σ2
N2

σ2
N1

D1 σ2
S + σ2

N2
− (

σ4
N2

σ4
N1

D1 +
σ4
N2

σ4
Z
(DS − σ2

Z))

 ⪰ 0,
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where the last step uses the condition
(
σ2
S + σ2

N1
−D1

)
(σ2

S −DS) > σ4
S. There-

fore, ∆∗ is indeed an optimal solution and consequently

Rc(D1, D2, DS) =
1

2
log

det(KX)

det(∆∗)
=

1

2
log

(σ2
S + σ2

N1
)(σ2

S − σ2
Z)− σ4

S

D1(DS − σ2
Z)

.

6. This follows from Case 5) by symmetry.

7. Consider the following construction:

∆∗ :=

 D1 σ2
S − µ

σ2
S − µ D2

 , U :=
σ2
S − µ

det(∆∗)


√

σ2
S+σ2

N2
−D2

σ2
S+σ2

N1
−D1

−1

−1
√

σ2
S+σ2

N1
−D1

σ2
S+σ2

N2
−D2

 ,

Λ :=
1

det(∆∗)

σ
2
S + σ2

N2
− σ2

S

√
σ2
S+σ2

N2
−D2

σ2
S+σ2

N1
−D1

0

0 σ2
S + σ2

N1
− σ2

S

√
σ2
S+σ2

N1
−D1

σ2
S+σ2

N2
−D2

 , ρ := 0,

where µ :=
√

(σ2
S + σ2

N1
−D1)(σ2

S + σ2
N2
−D2). SinceD1 < σ2

S+σ
2
N1
−

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

and D2 < σ2
S + σ2

N2
−

σ4
S(σ

2
S+σ2

N1
−D1)

(σ2
S+σ2

N1
)2

, it follows that

√
σ2
S + σ2

N1
−D1

σ2
S + σ2

N2
−D2

<
σ2
S + σ2

N1

σ2
S

, (4.3.9)√
σ2
S + σ2

N2
−D2

σ2
S + σ2

N1
−D1

<
σ2
S + σ2

N2

σ2
S

. (4.3.10)

Moreover, we have

KX −∆∗ =

σ2
S + σ2

N1
−D1 µ

µ σ2
S + σ2

N2
−D2

 ⪰ 0
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and

∆∗ = KX −

σ2
S + σ2

N1
−D1 µ

µ σ2
S + σ2

N2
−D2


⪰ KX −

σ2
S

µ

σ2
S + σ2

N1
−D1 µ

µ σ2
S + σ2

N2
−D2

 (4.3.11)

= KX −

σ
2
S

√
σ2
S+σ2

N1
−D1

σ2
S+σ2

N2
−D2

σ2
S

σ2
S σ2

S

√
σ2
S+σ2

N2
−D2

σ2
S+σ2

N1
−D1


≻ 0, (4.3.12)

where (4.3.11) is due to the condition (σ2
S + σ2

N1
− D1)(σ

2
S + σ2

N2
− D2) < σ4

S

while (4.3.12) is due to (4.3.9) and (4.3.10). So (4.3.2) is satisfied. Note that

∆∗ ≻ 0 implies D1D2 − (σ2
S − µ)2 > 0, which, together with (4.3.9), (4.3.10),

and the condition (σ2
S + σ2

N1
−D1)(σ

2
S + σ2

N2
−D2) ≤ σ4

S, further implies U ⪰ 0

and Λ ⪰ 0. It can also be verified that (4.3.3) and (4.3.5)–(4.3.8) are satisfied.

Finally, (4.3.4) holds because

gT∆∗g ≤ DS − σ2
Z ⇐⇒ DS ≥

σ4
Z

σ4
N1

D1 + 2
σ4
Z

σ2
N1
σ2
N2

(σ2
S − µ) +

σ4
Z

σ4
N2

D2 + σ2
Z .

Therefore, ∆∗ is indeed an optimal solution and consequently

Rc(D1, D2, DS) =
1

2
log

det(KX)

det(∆∗)

=
1

2
log

(σ2
S + σ2

N1
)(σ2

S + σ2
N2
)− σ4

S

D1D2 − (σ2
S −

√
(σ2

S + σ2
N1
−D1)(σ2

S + σ2
N2
−D2))2

.
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8. Consider the following construction:

∆∗ :=

 D1 σ2
S − ν

√
σ2
S + σ2

N1
−D1

σ2
S − ν

√
σ2
S + σ2

N1
−D1 σ2

S + σ2
N2
− ν2

,

U :=
1

det(∆∗)

 ξ1ν2

ξ2
√

σ2
S+σ2

N1
−D1

− ξ1ν
ξ2

− ξ1ν
ξ2

ξ1
√

σ2
S+σ2

N1
−D1

ξ2

 ,

Λ =
1

det(∆∗)

 ξ3√
σ2
S+σ2

N1
−D1

−
σ2
N2

ξ4

σ2
N1

√
σ2
S+σ2

N1
−D1

0

0 0

 ,
ρ =

σ2
N1
σ4
N2
ξ4

σ4
Zξ2 det(∆

∗)
,

where

ν :=
σ2
S(σ

2
N1

+ σ2
N2
)
√
σ2
S −DS

σ2
N1
(σ2

S − σ2
Z)

−
σ2
N2

√
σ2
S + σ2

N1
−D1

σ2
N1

,

ξ1 := σ2
N2
D1 + σ2

N1
(σ2

S − ν
√
σ2
S + σ2

N1
−D1),

ξ2 := σ2
N2

√
σ2
S + σ2

N1
−D1 + σ2

N2
ν,

ξ3 := (σ2
S + σ2

N2
)
√
σ2
S + σ2

N1
−D1 − σ2

Sν,

ξ4 := (σ2
S + σ2

N1
)ν − σ2

S

√
σ2
S + σ2

N1
−D1.
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It is shown in Appendix 4.A that

0 < σ2
S + σ2

N2
− ν2 ≤ D2, (4.3.13)

det(∆∗) > 0, (4.3.14)

ξ1 ≥ 0, (4.3.15)

ξ2 > 0, (4.3.16)

ξ3 ≥ σ2
N2

√
σ2
S + σ2

N1
−D1, (4.3.17)

0 ≤ ξ4 ≤ σ2
N1

√
σ2
S + σ2

N1
−D1. (4.3.18)

In view of (4.3.14)–(4.3.18), we have U ⪰ 0, Λ ⪰ 0, and ρ ≥ 0. It follows by

(4.3.13) and (4.3.14) that ∆∗ ≻ 0. Moreover,

KX −∆∗ =

 σ2
S + σ2

N1
−D1 ν

√
σ2
S + σ2

N1
−D1

ν
√
σ2
S + σ2

N1
−D1 ν2

 ⪰ 0.

So (4.3.2) is satisfied. Note that (4.3.13) implies (4.3.3). It can be verified that

(4.3.4)–(4.3.8) are satisfied as well. Therefore, ∆∗ is indeed an optimal solution

and consequently

Rc(D1, D2, DS) =
1

2
log

det(KX)

det(∆∗)

=
1

2
log

(σ2
S + σ2

N1
)(σ2

S − σ2
Z)− σ4

S

D1(DS − σ2
Z)− (σ2

S −
√
(σ2

S + σ2
N1
−D1)(σ2

S −DS))2
.

9. This follows from Case 8) by symmetry.
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10. Consider the following construction:

∆∗ :=

D1 −ζ1

−ζ1 D2

, U := 0, Λ :=
1

det(∆∗)

ζ2 0

0 ζ3

 , ρ :=
σ2
N1
σ2
N2
ζ1

σ4
Z det(∆∗)

,

where

ζ1 :=
σ2
N2

2σ2
N1

D1 +
σ2
N1

2σ2
N2

D2 −
σ2
N1
σ2
N2

2σ4
Z

(DS − σ2
Z),

ζ2 := −
σ4
N2

2σ4
N1

D1 +
1

2
D2 +

σ4
N2

2σ4
Z

(DS − σ2
Z),

ζ3 :=
1

2
D1 −

σ4
N1

2σ4
N2

D2 +
σ4
N1

2σ4
Z

(DS − σ2
Z).

It is shown in Appendix 4.B that

det(∆∗) > 0, (4.3.19)

det(KX −∆∗) ≥ 0, (4.3.20)

ζi ≥ 0, i = 1, 2, 3. (4.3.21)

In view of (4.3.19) and (4.3.21), we have Λ ⪰ 0 and ρ ≥ 0. It can be verified

that (4.3.3)–(4.3.8) are satisfied. Finally, (4.3.2) holds in light of (4.3.19) and

(4.3.20). Therefore, ∆∗ is indeed an optimal solution and consequently

Rc(D1, D2, DS) =
1

2
log

det(KX)

det(∆∗)

=
1

2
log

(σ2
S + σ2

N1
)(σ2

S + σ2
N2
)− σ4

S

D1D2 −
σ4
N1

σ4
N2

4σ8
Z

(DS − σ2
Z −

σ4
Z

σ4
N1

D1 −
σ4
Z

σ4
N2

D2)2
.
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This completes the proof of Theorem 4.3. □

4.4 Distributed Gaussian Semantic Source Coding

In this section, we take the decentralized version of the semantic source coding prob-

lem. The coding model of L-symmetric-component setting and 2-component setting

are shown in Fig. 4.5 and Fig. 4.6, respectively.
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Figure 4.5: Distributed semantic source coding: L-symmetric-component setting.
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Figure 4.6: Distributed semantic source coding: 2-component setting.

Let W := (W1, . . . ,WL)
T be a Gaussian random vector with mean zero and

covariance matrix KW, which is independent of X. Define that Yi = Xi +Wi, 1 ≤

i ≤ L, then we know that X is jointly Gaussian with Y := (Y1, . . . , YL)
T . Regarding

Y as a remote source, the distortion covariance matrix of the linear MMSE estimation

for X given Y is a diagonal matrix (K−1
X + K−1

W)−1. Let Ω(KX) denote the set of

positive definite matricesKW such thatK−1
X +K−1

W is a diagonal matrix. Furthermore,

we let U := (U1, . . . , UL)
T be L auxiliary random variables jointly distributed with
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X and Y such that Ui −Xi − (Y, Xj, Uj, j ̸= i) form a Markov chain for 1 ≤ i ≤ L.

According to [89] and the well-known Berger-Tung upper bound [6],[82], we know that

the rate is lower bounded and upper bounded by H(fi(X
n
i ), 1 ≤ i ≤ L) and I(X;U),

respectively, where fi(·) denotes the encoding function. Then, we have the following

two corresponding optimization problems, where Γ is the distortion covariance matrix

of the linear MMSE estimation for X given Y and U.

For any KW ∈ Ω(KX),

ψ(D1, . . . , DL, DS,KW) := min
∆,γ1,...,γL

1

2
log

det (KX +KW) det((K−1
X +K−1

W)−1)

det (∆+KW) det(Γ)

(4.4.1)

s.t. 0 ≺∆ ⪯ KX, (4.4.2)

0 ≺ Γ ⪯
(
∆−1 +K−1

W

)−1
, (4.4.3)

diag(∆) ⪯ D, (4.4.4)

gT∆g + σ2
Z ≤ DS, (4.4.5)

where Γ is a diagonal matrix with the i-th diagonal entry being γi, i = 1, . . . , L,

and D is a diagonal matrix with the i-th diagonal entry being Di, i = 1, . . . , L. We

define ψ(D1, . . . , DL, DS,KW) in a similar way except that the constraint in (4.4.3)

is replaced by

Γ = (∆−1 +K−1
W)−1. (4.4.6)
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Let

Rd(D1, . . . , DL, Ds) := sup
KW∈Ω(KX)

ψ(D1, . . . , DL, DS,KW),

Rd(D1, . . . , DL, Ds) := sup
KW∈Ω(KX)

ψ(D1, . . . , DL, DS,KW).

Theorem 4.4 We have

Rd(D1, . . . , DL, DS) ≤ Rd(D1, . . . , DL, DS) ≤ Rd(D1, . . . , DL, DS).

Proof The proof is similar to that of [89, Theorems 1 and 2] and is omitted. □

Lemma 4.2 Given KW ∈ Ω(KX), (∆∗, γ∗1 , . . . , γ
∗
L) is an optimal solution of the

optimization problem in (4.4.1) if it satisfies the constraints (4.4.2)–(4.4.5) and there

exist positive semidefinite matrices U and V, a positive semidefinite diagonal matrix

Λ, and a nonnegative number γ such that

− (∆∗ +KW)−1 +U− (∆∗)−1((∆∗)−1 +K−1
W)−1Λ((∆∗)−1 +K−1

W)−1(∆∗)−1 +Λ∗

+ ρggT = 0, (4.4.7)

− (Γ∗)−1 + diag(V) = 0, (4.4.8)

U(∆∗ −KX) = 0, (4.4.9)

V(Γ∗ − ((∆∗)−1 +K−1
W)−1) = 0, (4.4.10)

Λ(diag(∆∗)−D) = 0, (4.4.11)

ρ
(
gT∆∗g + σ2

Z −DS

)
= 0, (4.4.12)

where Γ∗ is a diagonal matrix with the i-th diagonal entry being γ∗i , i = 1, . . . , L.
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Moreover, if this (∆∗, γ∗1 , . . . , γ
∗
L) further satisfies (4.4.6), then

Rd(D1, . . . , DL, DS) = Rd(D1, . . . , DL, DS) =
1

2
log

det(KX)

det(∆∗)
.

Proof Since (4.4.1) is a convex optimization problem, (∆∗, γ∗1 , . . . , γ
∗
L) is an

optimal solution if it satisfies the constraints (4.4.2)–(4.4.5) as well as the following

KKT conditions [8]:

∇∆L(∆,Γ;U,V,Λ, ρ)|∆=∆∗ = 0,

∇ΓL(∆,Γ;U,V,Λ, ρ)|Γ=Γ∗ = 0,

U(∆∗ −KX) = 0,

V(Γ∗ − ((∆∗)−1 +K−1
W)−1) = 0,

Λ(diag(∆∗)−D) = 0,

ρ
(
gT∆∗g + σ2

Z −DS

)
= 0,

where L(∆,Γ;U,V,Λ, ρ) is the Lagrangian defined as

L(∆,Γ;U,V,Λ, ρ)

:= − log det(∆+KW)− log(det(Γ)) + tr(U(∆−KX)) + tr(V(Γ− (∆−1 +K−1
W)−1))

+ tr(Λ(diag(∆)−D)) + ρ(gT∆g + σ2
Z −DS)

with U and V being positive semidefinite matrices, Λ being a positive semidefinite

matrix, and ρ being a nonnegative number. This proves (4.4.7)–(4.4.12) in view of
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the fact that

∇∆L(∆,Γ;U,V,Λ, ρ) = −(∆+KW)−1 +U−∆−1(∆−1 +K−1
W)−1Λ(∆−1 +K−1

W)−1∆−1

+Λ+ ρggT ,

∇ΓL(∆,Γ;U,V,Λ, ρ) = −Γ−1 + diag(V).

It is clear that if this (∆∗, γ∗1 , . . . , γ
∗
L) further satisfies (4.4.6), then we must have

Rd(D1, . . . , DL, DS) = Rd(D1, . . . , DL, DS) =
1

2
log

det (KX +KW) det((K−1
X +K−1

W)−1)

det (∆∗ +KW) det(((∆∗)−1 +K−1
W)−1)

.

One can readily verify

1

2
log

det (KX +KW) det((K−1
X +K−1

W)−1)

det (∆∗ +KW) det(((∆∗)−1 +K−1
W)−1)

=
1

2
log

det(KX)

det(∆∗)
.

This completes the proof of Lemma 4.2. □

Next we consider the symmetric setting with σ2
N1

= . . . = σ2
NL

= σ2
N and D1 =

. . . = DL = D. Let

θ :=
σ2
S

(1 + βσ2
N)(1 + β(Lσ2

S + σ2
N))

,

where β is the unique nonnegative solution to

σ2
N

1 + βσ2
N

+
σ2
S

(1 + βσ2
N)(1 + β(Lσ2

S + σ2
N))

= D.

An explicit characterization of Rd(D1, . . . , DL, DS), abbreviated as Rd(D,DS), is pro-

vided by the following result.
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Theorem 4.5 An explicit expression for Rd(D,DS) is given as follows:

1. If DS ≥
Lσ4

Z

σ4
N
(D + (L− 1)θ) + σ2

Z, then

Rd(D,DS) =
1

2
log

Lσ2
Sσ

2(L−1)
N + σ2L

N

Lθ(D − θ)L−1 + (D − θ)L
.

2. If DS <
Lσ4

Z

σ4
N
(D + (L− 1)θ) + σ2

Z, then

Rd(D,DS) =
1

2
log

LLσ2
Sσ

2L
Z DL−1

S

σ2L
N (DS − σ2

Z)
L
.

The regions of the (D,DS) space in which each closed-form expression applies can be

visualized using the example in Fig. 4.7.

Figure 4.7: Regions of each case of Theorem 4.5, when σ2
S = 0.5, σ2

N = 0.5, and
L = 6.

Proof For Case 1), semantic distortion constraint DS is inactive and conse-

quently Rd(D,DS) can be deduced from the rate-distortion function of symmetric
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Gaussian multiterminal source coding [86, Theorem 3][89, Corollary 2]. For Case 2),

reproduction distortion constraint D is inactive and consequently Rd(D,DS) can be

deduced from the rate-distortion function of the Gaussian CEO problem [11, 68, 72].

□

The following result deals with the 2-component setting (shown in Fig. 4.6) and

provides an explicit characterization of Rd(D1, D2, DS).

Theorem 4.6 The closed-form expression for Rd(D1, D2, DS) is given as follows:

1. If D2 ≥ σ2
S + σ2

N2
−

σ4
S(σ

2
S+σ2

N1
−D1)

(σ2
S+σ2

N1
)2

and DS ≥ σ2
S −

σ4
S(σ

2
S+σ2

N1
−D1)

(σ2
S+σ2

N1
)2

, then

Rd(D1, D2, DS) =
1

2
log

σ2
S + σ2

N1

D1

.

2. If D1 ≥ σ2
S + σ2

N1
−

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

and DS ≥ σ2
S −

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

, then

Rd(D1, D2, DS) =
1

2
log

σ2
S + σ2

N2

D2

.

3. If DS ≥ ( 1
σ2
S
+ 1

σ2
N1

− 1
σ2
N2

)−1, D1 ≥
(σ2

S+σ2
N1

)((σ2
S+σ2

N1
)DS−σ2

Sσ
2
N1

)

σ4
S

, and D2 ≥ DS+σ
2
N2
,

then

Rd(D1, D2, DS) =
1

2
log

σ4
S

DSσ2
S − σ2

Sσ
2
N1

+DSσ2
N1

.

4. If DS < ( 1
σ2
S
+ 1

σ2
N1

− 1
σ2
N2

)−1, D1 ≥
(D2

S−σ4
Z)σ4

N1

4DSσ
4
Z

, and D2 ≥
(D2

S−σ4
Z)σ4

N2

4DSσ
4
Z

, then

Rd(D1, D2, DS) =
1

2
log

4σ2
Sσ

4
ZDS

σ2
N1
σ2
N2
(DS − σ2

Z)
2
.
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5. If D1 < σ2
S + σ2

N1
−

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

, D2 < σ2
S + σ2

N2
−

σ4
S(σ

2
S+σ2

N1
−D1)

(σ2
S+σ2

N1
)2

, and DS ≥

σ4
Z

σ4
N1

D1 + σ2
Z

√
1 +

4σ4
ZD1D2

σ4
N1

σ4
N2

+
σ4
Z

σ4
N2

D2, then

Rd(D1, D2, DS) =
1

2
log

2σ2
Sσ

2
Z√

σ4
N1
σ4
N2

+ 4σ4
ZD1D2 − σ2

N1
σ2
N2

.

6. If D1 <
(D2

S−σ4
Z)σ4

N1

4DSσ
4
Z

, DS < min{( 1
σ2
S
+ 1

σ2
N1

− 1
σ2
N2

)−1, σ2
S −

σ4
S(σ

2
S+σ2

N1
−D1)

(σ2
S+σ2

N1
)2
}, and

D2 ≥
σ4
N2

σ4
N1

D1 −
σ4
N2

σ2
Z

√
1 + 4D1DS

σ4
N1

+
σ4
N2

σ4
Z
DS, then

Rd(D1, D2, DS) =
1

2
log

2σ2
Sσ

2
Zσ

2
N1

σ2
N1
σ2
N2

√
σ4
N1

+ 4D1DS − 2σ2
Zσ

2
N2
D1 − σ4

N1
σ2
N2

.

7. If i) D2 < DS +σ2
N2
, ( 1

σ2
S
+ 1

σ2
N1

− 1
σ2
N2

)−1 ≤ DS < σ2
S −

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

, and D1 ≥
σ4
N1

σ4
N2

D2 −
σ4
N1

σ2
Z

√
1 + 4D2DS

σ4
N2

+
σ4
N1

σ4
Z
DS, or ii) D2 <

(D2
S−σ4

Z)σ4
N2

4DSσ
4
Z

, DS < min{( 1
σ2
S
+

1
σ2
N1

− 1
σ2
N2

)−1, σ2
S−

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2
}, and D1 ≥

σ4
N1

σ4
N2

D2−
σ4
N1

σ2
Z

√
1 + 4D2DS

σ4
N2

+
σ4
N1

σ4
Z
DS,

Rd(D1, D2, DS) =
1

2
log

2σ2
Sσ

2
Zσ

2
N2

σ2
N1
σ2
N2

√
σ4
N2

+ 4D2DS − 2σ2
Zσ

2
N1
D2 − σ2

N1
σ4
N2

.

The regions of the (D1, D2, DS) space in which each closed-form expression applies

can be visualized using the example in Fig. 4.8, where Fig. 4.8(b) is a rotation of

Fig. 4.8(a) along with D1 −D2 plane.

Proof For Cases 1), 2), and 5), semantic distortion constraint DS is inactive

and consequently Rd(D1, D2, DS) can be deduced from the rate-distortion function of

Gaussian two-terminal source coding [86, Theorem 1][89, Theorem 6]. For Cases 3)

and 4), reproduction distortion constraints D1 and D2 are inactive and consequently
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Figure 4.8: Regions of each case of Theorem 4.6, when σ2
S = 0.6, σ2

N1
= 0.5, and

σ2
N2

= 0.6.
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Rd(D1, D2, DS) can be deduced from the rate-distortion function of the Gaussian

CEO problem [11, 68, 72]. So it remains to analyze Cases 6) and 7).

For Case 6), consider the following construction:

∆∗ :=

 D1

σ2
N1

σ2
N2

2σ2
Z

(τ − 2σ2
Z

σ4
N1

D1 − 1)

σ2
N1

σ2
N2

2σ2
Z

(τ − 2σ2
Z

σ4
N1

D1 − 1)
σ4
N2

σ4
N1

D1 −
σ4
N2

σ2
Z
τ +

σ4
N2

σ4
Z
DS

 ,

Γ∗ :=


σ2
N1

σ2
N2

√
D1(τ−1)

2σ2
Zτ

√
σ4
N2

σ4
N1

D1−
σ4
N2
σ2
Z

τ+
σ4
N2
σ4
Z

DS

0

0
σ2
N1

σ2
N2

√
σ4
N2

σ4
N1

D1−
σ4
N2
σ2
Z

τ+
σ4
N2
σ4
Z

DS(τ−1)

2σ2
Zτ

√
D1

 ,

U := 0, V :=


2σ2

Zτ

√
σ4
N2

σ4
N1

D1−
σ4
N2
σ2
Z

τ+
σ4
N2
σ4
Z

DS

σ2
N1

σ2
N2

√
D1(τ−1)

2σ2
Zτ

σ2
N1

σ2
N2

(τ−1)

2σ2
Zτ

σ2
N1

σ2
N2

(τ−1)

2σ2
Zτ

√
D1

σ2
N1

σ2
N2

√
σ4
N2

σ4
N1

D1−
σ4
N2
σ2
Z

τ+
σ4
N2
σ4
Z

DS(τ−1)

 ,

Λ :=


2(DS−σ2

Zτ)

σ4
N1

τ(τ−
2σ2

Z
σ4
N1

D1−1)
0

0 0

 , ρ :=
2D1

σ4
N1
τ(τ − 2σ2

Z

σ4
N1

D1 − 1)
, KW :=

 ω1
σ2
Z

σ2
N1

σ2
N2

σ2
Z

σ2
N1

σ2
N2

ω2


−1

,

where

τ :=

√
1 +

4D1DS

σ4
N1

,

ω1 :=

τ

√
(τ − 2σ2

Z

σ4
N1

D1)2 − 1

(τ − 1)D1

−
(τ − 2σ2

Z

σ4
N1

D1)
2 − 1

2(τ − 2σ2
Z

σ4
N1

D1 − 1)D1

,

ω2 :=

τ

√
(τ − 2σ2

Z

σ4
N1

D1)2 − 1

(τ − 1)(
σ4
N2

σ4
N1

D1 −
σ4
N2

σ2
Z
τ +

σ4
N2

σ4
Z
DS)

−
(τ − 2σ2

Z

σ4
N1

D1)
2 − 1

2(τ − 2σ2
Z

σ4
N1

D1 − 1)(
σ4
N2

σ4
N1

D1 −
σ4
N2

σ2
Z
τ +

σ4
N2

σ4
Z
DS)

.
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Since D1 <
(D2

S−σ4
Z)σ4

N1

4DSσ
4
Z

, it follows that

DS − σ2
Zτ > 0. (4.4.13)

As a consequence,

σ4
N2

σ4
N1

D1 −
σ4
N2

σ2
Z

τ +
σ4
N2

σ4
Z

DS >
σ4
N2

σ4
N1

D1 > 0. (4.4.14)

Moreover,

τ − 2σ2
Z

σ4
N1

D1 − 1 > 0, (4.4.15)

because

τ 2 −
(
2σ2

Z

σ4
N1

D1 − 1

)2

=
4D1

σ4
N1

(
DS − σ2

Z −
σ4
Z

σ4
N1

D1

)
>

4D1

σ4
N1

(
D2

S − σ4
Z

2DS

− σ4
Z

σ4
N1

D1

)
(4.4.16)

> 0, (4.4.17)

where (4.4.16) is due to DS > σ2
Z , and (4.4.17) is due to D1 <

(D2
S−σ4

Z)σ4
N1

4DSσ
4
Z

. In view of

(4.4.13)–(4.4.15) and the fact that det(V) = 0, we have V ⪰ 0, Λ ⪰ 0, and ρ > 0.

One can readily verify that (4.4.4)–(4.4.12) are satisfied. In addition, it is shown in

Appendix 4.C.1 that KW ∈ Ω(KX) and 0 ≺∆∗ ⪯ KX (i.e., (4.4.2)), which, together
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with (4.4.6), further implies (4.4.3). Therefore, in light of Lemma 4.2,

Rd(D1, D2, DS) =
1

2
log

det(KX)

det(∆∗)
=

1

2
log

2σ2
Sσ

2
Zσ

2
N1

σ2
N1
σ2
N2

√
σ4
N1

+ 4D1DS − 2σ2
Zσ

2
N2
D1 − σ4

N1
σ2
N2

.

For Case 7), similar construction can be applied, and one can readily verify that

(4.4.4)–(4.4.12) and KW ∈ Ω(KX) are satisfied. It is shown in Appendix 4.C.2 that

0 ≺∆∗ ⪯ KX is satisfied, implying (4.4.3) with (4.4.6). □

Remark 4.2 It should be pointed out that the chosen of KW is not unique. In

different cases (regions), we actually know which constraints are active and which are

inactive. The Lagrange multipliers can be calculated by using that information, for

example, we let the corresponding multiplier be zero if the constraint is inactive.

4.5 Numerical Results

In this section, we carry out computer simulations to compare the performance be-

tween centralized encoding and distributed encoding methods, where both two ter-

minals case and symmetric model based L terminals case are considered.

4.5.1 Encoding for symmetric L Terminals

Fig. 4.9 shows the comparison between centralized/distributed source coding with

L = 2, 7, 20 terminals. It can be seen that with the increasing of L, the rate gap

between centralized and distributed model is increased. The asymptotic performance

is considered in Fig. 4.10 with L = 100 and L = 1000. The reflection point divides

the rate curve into two parts, and each of them is only dominated by DS and D,
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respectively.

0.1 0.2 0.3 0.4 0.5 0.6

Ds

1

2

3

4

5

6

7

8

9

10

R
a

te

R
c
, L=2

R
d
, L=2

R
c
, L=7

R
d
, L=7

R
c
, L=20

R
d
, L=20

Figure 4.9: Comparison between centralized/distributed source coding with
σ2
S = 0.5, σ2

N = 0.5 and D = 0.5.
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Figure 4.10: Comparison between centralized/distributed source coding with
σ2
S = 0.5, σ2

N = 0.5 and D = 0.5.
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4.5.2 Encoding for Two Terminals

Let ρ =
σ2
S√

(σ2
S+σ2

N1
)(σ2

S+σ2
N2

)
and ri =

Di

σ2
S+σ2

Ni

(i = 1, 2). Fig. 4.11 and Fig. 4.12 show

the rate comparison between the centralized source coding and distributed source

coding with two terminals, where σ2
N1

= 0.4, σ2
N2

= 0.6, and ρ = 0.5. From all these

figures, we can see that when DS is large, the rate of distributed system is matched

with that of centralized system, this is because at this time the condition of DS is

inactive.

In Fig. 4.11 and Fig. 4.12, r1 and r2 are fixed, respectively. It can be seen that

when DS is relatively high, the asymptotic rate decreases with the increasing of r2 or

r1.
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Figure 4.11: Comparison between centralized/distributed source coding with
r1 = 1/2.
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Figure 4.12: Comparison between centralized/distributed source coding with
r2 = 1/2.

4.6 Conclusion

We have studied centralized Gaussian semantic source coding and its distributed

counterpart in terms of their rate-distortion functions. There are several directions

worthy of pursuing for future work. For example, it is of great interest to investigate

more general correlation structures between the observable variables and the state

variable. The i.i.d. assumption adopted in our work also appears to be overly restric-

tive. This can be remedied by considering the one-shot formulation, which is better

justified from a practical perspective. One may further go beyond the quadratic

Gaussian setting to deal with more realistic source models and loss functions. Here

the notorious technical difficulties inherent in distributed source coding will likely be-

come a roadblock. Nevertheless, it remains promising to make good progress within

the log-loss framework [17] that is most relevant to machine learning applications.
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4.A Appendix: Proof of (4.3.13)–(4.3.18)

• Proof of (4.3.13): It can be verified that

σ2
S + σ2

N2
− ν2

=
σ4
N2

σ4
N1

D1 −
2σ4

N2

σ2
N1
σ2
Z

κ+
σ4
N2

σ4
Z

(DS − σ2
Z)

=

[
−

σ2
N2

σ2
N1

σ2
N2

σ2
Z

]D1 κ

κ DS − σ2
Z


−σ2

N2

σ2
N1

σ2
N2

σ2
Z

 ,

where κ := σ2
S −

√
(σ2

S + σ2
N1
−D1)(σ2

S −DS). As a consequence,

D2 ≥ σ2
S + σ2

N2
− ν2 ⇐⇒ D2 ≥

σ4
N2

σ4
N1

D1 −
2σ4

N2

σ2
N1
σ2
Z

κ+
σ4
N2

σ4
Z

(DS − σ2
Z).

Since D1 < σ2
S + σ2

N1
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
and DS < σ2

S −
σ4
S(σ

2
S+σ2

N1
−D1)

(σ2
S+σ2

N1
)2

, we have

√
σ2
S + σ2

N1
−D1

σ2
S −DS

<
σ2
S + σ2

N1

σ2
S

, (4.A.1)√
σ2
S −DS

σ2
S + σ2

N1
−D1

<
σ2
S − σ2

Z

σ2
S

. (4.A.2)
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Note thatD1 κ

κ DS − σ2
Z


=

σ2
S + σ2

N1
σ2
S

σ2
S σ2

S − σ2
Z

−
σ2

S + σ2
N1
−D1 σ2

S − κ

σ2
S − κ σ2

S −DS


⪰

σ2
S + σ2

N1
σ2
S

σ2
S σ2

S − σ2
Z

− σ2
S

σ2
S − κ

σ2
S + σ2

N1
−D1 σ2

S − κ

σ2
S − κ σ2

S −DS

 (4.A.3)

=

σ2
S + σ2

N1
σ2
S

σ2
S σ2

S − σ2
Z

−
σ2

S

√
σ2
S+σ2

N1
−D1

σ2
S−DS

σ2
S

σ2
S σ2

S

√
σ2
S−DS

σ2
S+σ2

N1
−D1


≻ 0, (4.A.4)

where (4.A.3) is due to the condition (σ2
S + σ2

N1
− D1)(σ

2
S − DS) < σ4

S while

(4.A.4) is due to (4.A.1) and (4.A.2). Therefore,

σ2
S + σ2

N2
− ν2 =

[
−

σ2
N2

σ2
N1

σ2
N2

σ2
Z

]D1 κ

κ DS − σ2
Z


−σ2

N2

σ2
N1

σ2
N2

σ2
Z

 > 0.

• Proof of (4.3.14): It can be verified that

det(∆∗) =
((σ2

S + σ2
N1
)(σ2

S + σ2
N2
)− σ4

S)
2

σ4
Sσ

4
N1

(D1(DS − σ2
Z)− κ2)

> 0, (4.A.5)

where (4.A.5) is due to (4.A.4).
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• Proof of (4.3.15): It can be verified that

ξ1 =
σ2
S(σ

2
N1

+ σ2
N2
)(σ2

S −
√

(σ2
S + σ2

N1
−D1)(σ2

S −DS))

σ2
S − σ2

Z

≥ 0,

where the inequality follows from the condition (σ2
S+σ

2
N1
−D1)(σ

2
S−DS) < σ4

S.

• Proof of (4.3.16): It can be verified that

ξ2 =
σ2
S(σ

2
N1

+ σ2
N2
)
√
σ2
S −DS

σ2
S − σ2

Z

> 0,

where the inequality is due to DS < σ2
S −

σ4
S(σ

2
S+σ2

N1
−D1)

(σ2
S+σ2

N1
)2
≤ σ2

S.

• Proof of (4.3.17): Since D1 < σ2
S+σ

2
N1
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
, it follows that

√
σ2
S −DS ≤

σ2
S−σ2

Z

σ2
S

√
σ2
S + σ2

N1
−D1 and consequently

ν ≤
(σ2

N1
+ σ2

N2
)
√
σ2
S + σ2

N1
−D1

σ2
N1

−
σ2
N2

√
σ2
S + σ2

N1
−D1

σ2
N1

=
√
σ2
S + σ2

N1
−D1. (4.A.6)

Therefore, we have

ξ3 ≥ (σ2
S + σ2

N2
)
√
σ2
S + σ2

N1
−D1 − σ2

S

√
σ2
S + σ2

N1
−D1

= σ2
N2

√
σ2
S + σ2

N1
−D1.
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• Proof of (4.3.18): Note that

ξ4 ≤ (σ2
S + σ2

N1
)
√
σ2
S + σ2

N1
−D1 − σ2

S

√
σ2
S + σ2

N1
−D1 (4.A.7)

= σ2
N1

√
σ2
S + σ2

N1
−D1,

where (4.A.7) is due to (4.A.6). Since DS < σ2
S −

σ4
S(σ

2
S+σ2

N1
−D1)

(σ2
S+σ2

N1
)2

, it follows that√
σ2
S −DS ≥

σ2
S

σ2
S+σ2

N1

√
σ2
S + σ2

N1
−D1 and consequently

ν ≥
(

σ4
S(σ

2
N1

+ σ2
N2
)

(σ2
S − σ2

Z)(σ
2
S + σ2

N1
)
− σ2

N2

) √σ2
S + σ2

N1
−D1

σ2
N1

=
σ2
S

σ2
S + σ2

N1

√
σ2
S + σ2

N1
−D1.

Therefore, we have

ξ4 ≥ (σ2
S + σ2

N1
)

σ2
S

σ2
S + σ2

N1

√
σ2
S + σ2

N1
−D1 − σ2

S

√
σ2
S + σ2

N1
−D1 (4.A.8)

= 0.

4.B Appendix: Proof of (4.3.19)–(4.3.21)

We start with some technical lemmas.

Lemma 4.3 (4.3.21) implies (4.3.19).

Proof Since DS ≤
σ4
Z

σ4
N1

D1 +
σ4
Z

σ4
N2

D2 + σ2
Z , it follows that DS − σ2

Z ≤ (
σ2
Z

σ2
N1

√
D1 +

σ2
Z

σ2
N2

√
D2)

2, which implies
√
DS − σ2

Z ≤
σ2
Z

σ2
N1

√
D1 +

σ2
Z

σ2
N2

√
D2. Consider the following

two cases separately.
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• 0 ≤
√
DS − σ2

Z −
σ2
Z

σ2
N2

√
D2 ≤

σ2
Z

σ2
N1

√
D1 or 0 ≤

√
DS − σ2

Z −
σ2
Z

σ2
N1

√
D1 ≤

σ2
Z

σ2
N2

√
D2:

We haveD1 ≥ (
σ2
N1

σ2
Z

√
DS − σ2
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√
D2)
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Z

√
DS − σ2

Z−
σ2
N2

σ2
N1

√
D1)

2.

•
√
DS − σ2

Z−
σ2
Z

σ2
N2

√
D2 ≤ 0 ≤ σ2

Z

σ2
N1

√
D1 and

√
DS − σ2

Z−
σ2
Z

σ2
N1

√
D1 ≤ 0 ≤ σ2

Z

σ2
N2

√
D2:

Without loss of generality, we assume that
√
D1

σ2
N1

≥
√
D2

σ2
N2

. It can be verified that

(
√
DS − σ2
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σ2
Z

σ2
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√
D2)

2 ≤ (
σ2
Z

σ2
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√
D2)

2 ≤ (
σ2
Z

σ2
N1

√
D1)

2, which implies D1 ≥
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σ2
Z

√
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σ2
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√
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Thus, we always have D1 ≥ (
σ2
N1

σ2
Z

√
DS − σ2
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N1

σ2
N2

√
D2)

2 or D2 ≥ (
σ2
N2

σ2
Z

√
DS − σ2

Z −
σ2
N2

σ2
N1

√
D1)

2, which, together with (4.3.21), yields

σ4
N1

σ4
N2

D2 +
(DS − σ2

Z)σ
4
N1

σ4
Z

≥ D1 ≥
(
σ2
N1

σ2
Z

√
DS − σ2

Z −
σ2
N1

σ2
N2

√
D2
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(4.B.1)

or

σ4
N2

σ4
N1

D1 +
(DS − σ2

Z)σ
4
N2

σ4
Z

≥ D2 ≥
(
σ2
N2

σ2
Z

√
DS − σ2

Z −
σ2
N2

σ2
N1

√
D1

)2

. (4.B.2)

Since

det(∆∗) = −
σ4
N2

4σ4
N1

D2
1 −

σ4
N1

4σ4
N2

D2
2 +

1

2
D1D2 +

(DS − σ2
Z)σ

4
N2

2σ4
Z

D1 +
(DS − σ2

Z)σ
4
N1

2σ4
Z

D2

−
(
(DS − σ2

Z)σ
2
N1
σ2
N2

2σ4
Z

)2

,

it follows that (4.3.19) holds when

∣∣∣∣D1 −
σ4
N1

σ4
N2

D2 −
(DS − σ2

Z)σ
4
N1

σ4
Z

∣∣∣∣ ≤ 2σ4
N1

σ2
Zσ

2
N2

√
(DS − σ2

Z)D2 (4.B.3)
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or

∣∣∣∣D2 −
σ4
N2

σ4
N1

D1 −
(DS − σ2

Z)σ
4
N2

σ4
Z

∣∣∣∣ ≤ 2σ4
N2

σ2
Zσ

2
N1

√
(DS − σ2

Z)D1. (4.B.4)

The proof is complete in view of the fact that (4.B.3) and (4.B.4) are implied by

(4.B.1) and (4.B.2), respectively. □

Lemma 4.4 ζ2 < 0 and ζ3 < 0 cannot hold simultaneously. Moreover, ζ1 < 0 implies

ζ2 ≥ 0 and ζ3 ≥ 0.

Proof Note that ζ2 < 0 and ζ3 < 0 are respectively equivalent to

D1 >
σ4
N1

σ4
N2

D2 +
(DS − σ2

Z)σ
4
N1

σ4
Z

,

D1 <
σ4
N1

σ4
N2

D2 −
(DS − σ2

Z)σ
4
N1

σ4
Z

,

which clearly cannot hold simultaneously.

Moreover, note that ζ1 < 0 is equivalent to

DS >
σ4
Z

σ4
N1

D1 +
σ4
Z

σ4
N2

D2 + σ2
Z (4.B.5)

while ζ2 ≥ 0 and ζ3 ≥ 0 are respectively equivalent to

DS ≥
σ4
Z

σ4
N1

D1 −
σ4
Z

σ4
N2

D2 + σ2
Z , (4.B.6)

DS ≥ −
σ4
Z

σ4
N1

D1 +
σ4
Z

σ4
N2

D2 + σ2
Z . (4.B.7)

Clearly, (4.B.5) implies (4.B.6) and (4.B.7). □
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Lemma 4.5 If DS <
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which leads to a contradiction. This proves Lemma 4.5. □

Lemma 4.6 The following conditions are equivalent:
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.
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Proof It can be verified that
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from which the desired result follows immediately. □
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)2
, then DS ≥ σ2

S −
σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

.

Proof Since D1 ≥ σ2
S+σ

2
N1
−

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

, i.e., σ2
S+σ

2
N1
−D1 ≤

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

, we

have (σ2
S + σ2

N1
−D1)(σ

2
S + σ2

N2
−D2) ≤

σ4
S(σ

2
S+σ2

N2
−D2)2

(σ2
S+σ2

N2
)2

, which, together with the fact

that (σ2
S + σ2

N1
−D1)(σ

2
S + σ2

N2
−D2) ≥

(
σ2
S +

σ2
N2

2σ2
N1

D1 +
σ2
N1

2σ2
N2

D2 −
(DS−σ2

Z)σ2
N1

σ2
N2

2σ4
Z

)2
,

implies

(
σ2
S +

σ2
N2

2σ2
N1

D1 +
σ2
N1

2σ2
N2

D2 −
(DS − σ2

Z)σ
2
N1
σ2
N2

2σ4
Z

)2

≤
σ4
S(σ

2
S + σ2

N2
−D2)

2

(σ2
S + σ2

N2
)2

. (4.B.8)

If σ2
S +

σ2
N2

2σ2
N1

D1 +
σ2
N1

2σ2
N2

D2−
(DS−σ2

Z)σ2
N1

σ2
N2

2σ4
Z

≥ 0, taking the square root on both sides of

the inequality in (4.B.8) gives σ2
S+

σ2
N2

2σ2
N1

D1+
σ2
N1

2σ2
N2

D2−
(DS−σ2

Z)σ2
N1

σ2
N2

2σ4
Z

≤
σ2
S(σ

2
S+σ2

N2
−D2)

σ2
S+σ2

N2

,

i.e.,

DS ≥
σ4
Z

σ4
N1

D1 +

(
σ4
Z

σ4
N2

+
2σ4

Zσ
2
S

σ2
N1
σ2
N2
(σ2

S + σ2
N2
)

)
D2 + σ2

Z . (4.B.9)

On the other hand, if σ2
S +

σ2
N2

2σ2
N1

D1 +
σ2
N1

2σ2
N2

D2−
(DS−σ2

Z)σ2
N1

σ2
N2

2σ4
Z

< 0, i.e. DS >
σ4
Z

σ4
N1

D1 +
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σ4
Z

σ4
N2

D2 + σ2
Z +

2σ4
Zσ2

S

σ2
N1

σ2
N2

, we still have (4.B.9) since σ2
S ≥

σ2
S

σ2
S+σ2

N2

D2. Combining (4.B.9)

with the fact that D1 ≥ σ2
S + σ2

N1
−

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

yields the desired inequality. □

In view of Lemma 4.3, it suffices to focus on (4.3.20) and (4.3.21). We shall show

that the complement of (4.3.20) and (4.3.21) is already covered by Cases 1)–9).

4.B.1 det(KX −∆∗) < 0 and ζ1 ≥ 0

According to Lemma 4.4, there is no need to consider the scenario ζ2 < 0 and ζ3 < 0.

So it remains to handle the following scenarios: 1) ζ2 < 0 and ζ3 ≥ 0, 2) ζ2 ≥ 0 and

ζ3 < 0, 3) ζ2 ≥ 0 and ζ3 ≥ 0.

ζ2 < 0 and ζ3 ≥ 0

We only need to consider the situation (σ2
S+σ

2
N2
−D2)(σ

2
S−DS) < σ4

S since otherwise

the condition of Case 6) is met.

• D1 < σ2
S + σ2

N1
− σ4

S(σ2
S−DS)

(σ2
S−σ2

Z)
2 and D2 < σ2

S + σ2
N2
− σ4

S(σ2
S−DS)

(σ2
S−σ2

Z)
2 : This is excluded

by Lemma 4.5 since det(KX − ∆∗) < 0 and ζ1 ≥ 0 imply DS <
σ4
Z

σ4
N1

D1 +

2σ4
Z

σ2
N1

σ2
N2

(σ2
S −

√
(σ2

S + σ2
N1
−D1)(σ2

S + σ2
N2
−D2)) +

σ4
Z

σ4
N2

D2 + σ2
Z .

• D1 ≥ σ2
S + σ2

N1
− σ4

S(σ2
S−DS)

(σ2
S−σ2

Z)
2 and D2 < σ2

S + σ2
N2
− σ4

S(σ2
S−DS)

(σ2
S−σ2

Z)
2 :

– DS < σ2
S −

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

: The condition of Case 9) is met.
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– DS ≥ σ2
S −

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

: Note that

D1 >
σ4
N1

σ4
N2

D2 +
(DS − σ2

Z)σ
4
N1

σ4
Z

(4.B.10)

≥
σ4
N1

σ4
N2

D2 +
σ4
N1

σ4
Z

(
σ2
S −

σ4
S(σ

2
S + σ2

N2
−D2)

(σ2
S + σ2

N2
)2

)
−
σ4
N1

σ4
Z

σ2
Z (4.B.11)

=
(σ2

S + σ2
N2
)σ2

N1
+ σ2

Sσ
2
N2

σ2
S + σ2

N2

+
σ4
N1

(
σ2
S + σ2

N2

)2
+
(
(σ2

S + σ2
N2
)σ2

N1
+ σ2

Sσ
2
N2

)2
(σ2

S + σ2
N2
)2σ4

N2

D2,

where (4.B.10) and (4.B.11) are due to ζ2 < 0 andDS ≥ σ2
S−

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

,

respectively. Therefore,

σ2
S + σ2

N1
−D1 < σ2

S + σ2
N1
−

(σ2
S + σ2

N2
)σ2

N1
+ σ2

Sσ
2
N2

σ2
S + σ2

N2

−
σ4
N1

(
σ2
S + σ2

N2

)2
+
(
(σ2

S + σ2
N2
)σ2

N1
+ σ2

Sσ
2
N2

)2
(σ2

S + σ2
N2
)2σ4

N2

D2

=
σ4
S

σ2
S + σ2

N2

−
σ4
N1

(
σ2
S + σ2

N2

)2
+
(
(σ2

S + σ2
N2
)σ2

N1
+ σ2

Sσ
2
N2

)2
(σ2

S + σ2
N2
)2σ4

N2

D2

<
σ4
S

σ2
S + σ2

N2

− σ4
S

(σ2
S + σ2

N2
)2
D2 (4.B.12)

=
σ4
S

(σ2
S + σ2

N2
)2
(
σ2
S + σ2

N2
−D2

)
,

where (4.B.12) is due to
σ4
N1
(σ2

S+σ2
N2
)
2
+((σ2

S+σ2
N2

)σ2
N1

+σ2
Sσ

2
N2
)
2

(σ2
S+σ2

N2
)2σ4

N2

≥ σ4
S

(σ2
S+σ2

N2
)2
.

Thus, we have D1 > σ2
S + σ2

N1
−

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

. Now one can readily

see that the condition of Case 2) is met.
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• D2 ≥ σ2
S + σ2

N2
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
: Note that

D1 >
σ4
N1

σ4
N2

D2 +
(DS − σ2

Z)σ
4
N1

σ4
Z

(4.B.13)

≥
σ4
N1

σ4
N2

(
σ2
S + σ2

N2
− σ4

S (σ
2
S −DS)

(σ2
S − σ2

Z)
2

)
+

(DS − σ2
Z)σ

4
N1

σ4
Z

(4.B.14)

=
σ4
N1

σ2
N1

+ σ2
N2

+

(
σ4
N1
σ4
S

σ4
N2

(σ2
S − σ2

Z)
2 +

σ4
N1

σ4
Z

)
(DS − σ2

Z),

where (4.B.13) and (4.B.14) are due to ζ2 < 0 and D2 ≥ σ2
S + σ2

N2
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
,

respectively. Therefore,

D1 −

(
σ2
S + σ2

N1
− σ4

S (σ
2
S −DS)

(σ2
S − σ2

Z)
2

)

>
σ4
N1

σ2
N1

+ σ2
N2

+

(
σ4
N1
σ4
S

σ4
N2

(σ2
S − σ2

Z)
2 +

σ4
N1

σ4
Z

)
(DS − σ2

Z)−

(
σ2
S + σ2

N1
− σ4

S (σ
2
S −DS)

(σ2
S − σ2

Z)
2

)

=

 σ4
N1
σ4
S

σ4
N2

(σ2
S − σ2

Z)
2 +

σ4
Sσ

4
N1

(
σ2
N1

σ2
Z

+
σ2
S

σ2
S−σ2

Z

)
σ2
Z(σ

2
S − σ2

Z)(σ
2
S + σ2

N2
)σ2

N1
+ σ2

Sσ
2
N2
)

 (DS − σ2
Z)

≥ 0.

Thus, we have D1 > σ2
S + σ2

N1
− σ4

S(σ2
S−DS)

(σ2
S−σ2

Z)
2 . Now one can readily see that the

condition of Case 3) is met.

ζ2 ≥ 0 and ζ3 < 0

This is symmetric to the scenario ζ2 < 0 and ζ3 ≥ 0, thus is covered by Cases 1), 3),

5), and 8).
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ζ2 ≥ 0 and ζ3 ≥ 0

We have

(σ2
S + σ2

N1
−D1)

(
σ2
S + σ2

N2
−
(
σ4
N2

σ4
N1

D1 +
(DS − σ2

Z)σ
4
N2

σ4
Z

))
≤ (σ2

S + σ2
N1
−D1)(σ

2
S + σ2

N2
−D2) (4.B.15)

<

(
σ2
S +

σ2
N2

2σ2
N1

D1 +
σ2
N1

2σ2
N2

D2 −
(DS − σ2

Z)σ
2
N1
σ2
N2

2σ4
Z

)2

(4.B.16)

≤
(
σ2
S +

σ2
N2

σ2
N1

D1

)2

, (4.B.17)

where (4.B.15) is due to ζ3 ≥ 0, (4.B.16) is due to det(KX −∆∗) < 0, and (4.B.17)

is due to ζ1 ≥ 0 and ζ3 ≥ 0. It can be verified that

(σ2
S + σ2

N1
−D1)

(
σ2
S + σ2

N2
−
(
σ4
N2

σ4
N1

D1 +
(DS − σ2

Z)σ
4
N2

σ4
Z

))
−
(
σ2
S +

σ2
N2

σ2
N1

D1

)2

=

(
(σ2

S + σ2
N1
)(σ2

S + σ2
N2
)− σ4

S

)2
σ4
Sσ

4
N1

(
(σ2

S + σ2
N1
−D1)(σ

2
S −DS)− σ4

S

)
. (4.B.18)

Therefore, (4.B.17) implies (σ2
S+σ

2
N1
−D1)(σ

2
S−DS) < σ4

S. Similarly, it can be shown

that (σ2
S + σ2

N2
−D2)(σ

2
S −DS) < σ4

S.

• D1 < σ2
S + σ2

N1
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
and D2 < σ2

S + σ2
N2
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
: This is excluded

by Lemma 4.5 since det(KX − ∆∗) < 0 and ζ1 ≥ 0 imply DS <
σ4
Z

σ4
N1

D1 +

2σ4
Z

σ2
N1

σ2
N2

(σ2
S −

√
(σ2

S + σ2
N1
−D1)(σ2

S + σ2
N2
−D2)) +

σ4
Z

σ4
N2

D2 + σ2
Z .

• D1 ≥ σ2
S + σ2

N1
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
and D2 < σ2

S + σ2
N2
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
:

– DS < σ2
S −

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

: According to Lemma 4.6, det(KX −∆∗) < 0 is
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equivalent to

(σ2
S + σ2

N2
−D2)(σ

2
S −DS) <

(
σ2
S +

σ2
Zσ

2
N2

2σ4
N1

D1 −
σ2
Z

2σ2
N2

D2 −
(DS − σ2

Z)σ
2
N2

2σ2
Z

)2

.

(4.B.19)

Moreover, we have

σ2
S +

σ2
Zσ

2
N2

2σ4
N1

D1 −
σ2
Z

2σ2
N2

D2 −
(DS − σ2

Z)σ
2
N2

2σ2
Z

≥ σ2
S −

σ2
Z

σ2
N2

D2 (4.B.20)

=
σ2
Sσ

2
N1
(σ2

S + σ2
N2
−D2) + σ2

Sσ
2
N2

σ2
N1
(σ2

S + σ2
N2
) + σ2

Sσ
2
N2

≥ 0,

where (4.B.20) is due to ζ1 ≥ 0. Therefore, (4.B.19) implies

√
(σ2

S + σ2
N2
−D2)(σ2

S −DS) < σ2
S+

σ2
Zσ

2
N2

2σ4
N1

D1−
σ2
Z

2σ2
N2

D2−
(DS − σ2

Z)σ
2
N2

2σ2
Z

,

i.e.,D1 >
σ4
N1

σ4
N2

D2−
2σ4

N1

σ2
Sσ

2
N2

(σ2
S−
√
(σ2

S + σ2
N2
−D2)(σ2

S −DS))+
σ4
N1

σ4
Z
(DS−σ2

Z).

Now one can readily see that the condition of Case 9) is met.
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– DS ≥ σ2
S −

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

: Note that

D1 ≥
σ4
N1

σ4
Z

(DS − σ2
Z)−

σ4
N1

σ4
N2

D2 (4.B.21)

≥
σ4
N1

σ4
Z

(
σ2
S −

σ4
S(σ

2
S + σ2

N2
−D2)

(σ2
S + σ2

N2
)2

− σ2
Z

)
−
σ4
N1

σ4
N2

D2 (4.B.22)

=
(σ2

S + σ2
N2
)σ2

N1
+ σ2

Sσ
2
N2

σ2
S + σ2

N2

+

(
((σ2

S + σ2
N2
)σ2

N1
+ σ2

Sσ
2
N2
)2 − σ4

N1
(σ2

S + σ2
N2
)2

σ4
N2
(σ2

S + σ2
N2
)2

)
D2

≥
(σ2

S + σ2
N2
)σ2

N1
+ σ2

Sσ
2
N2

σ2
S + σ2

N2

+
σ4
S

(σ2
S + σ2

N2
)2
D2, (4.B.23)

where (4.B.21) is due to ζ1 ≥ 0, (4.B.22) is due toDS ≥ σ2
S−

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

,

and (4.B.23) is due to
((σ2

S+σ2
N2

)σ2
N1

+σ2
Sσ

2
N2

)2−σ4
N1

(σ2
S+σ2

N2
)2

σ4
N2

(σ2
S+σ2

N2
)2

≥ σ4
S

(σ2
S+σ2

N2
)2
. There-

fore,

σ2
S + σ2

N1
−D1 (4.B.24)

≤ σ2
S + σ2

N1
−

(σ2
S + σ2

N2
)σ2

N1
+ σ2

Sσ
2
N2

σ2
S + σ2

N2

− σ4
S

(σ2
S + σ2

N2
)2
D2 (4.B.25)

=
σ4
S

(σ2
S + σ2

N2
)2
(σ2

S + σ2
N2
−D2), (4.B.26)

which implies D1 ≥ σ2
S + σ2

N1
−

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

. So the condition of Case 2)

is met.

• D1 < σ2
S + σ2

N1
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
and D2 ≥ σ2

S + σ2
N2
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
: This is symmetric

to D1 ≥ σ2
S + σ2

N1
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
and D2 < σ2

S + σ2
N2
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
, thus is covered

by Cases 1) and 8).

• D1 ≥ σ2
S + σ2

N1
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
and D2 ≥ σ2

S + σ2
N2
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
: The condition of

Case 3) is met.
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4.B.2 det(KX −∆∗) < 0 and ζ1 < 0

According to Lemma 4.4, ζ1 < 0 implies ζ2 ≥ 0 and ζ3 ≥ 0. Moreover, we only need

to consider the situation (σ2
S + σ2

N1
− D1)(σ

2
S + σ2

N2
− D2) < σ4

S since otherwise the

condition of Case 4) is met. Note that

(σ2
S + σ2

N1
−D1)

(
σ2
S + σ2

N2
−
(
σ4
N2

σ4
N1

D1 +
(DS − σ2

Z)σ
4
N2

σ4
Z

))
≤ (σ2

S + σ2
N1
−D1)(σ

2
S + σ2

N2
−D2) (4.B.27)

< σ4
S

<

(
σ2
S +

σ2
N2

σ2
N1

D1

)2

,

where (4.B.27) is due to ζ3 ≥ 0. Therefore, in view of (4.B.18), we must have

(σ2
S +σ

2
N1
−D1)(σ

2
S−DS) < σ4

S. Similarly, it can be shown that (σ2
S +σ

2
N2
−D2)(σ

2
S−

DS) < σ4
S.

• D1 ≥ σ2
S + σ2

N1
−

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

:

– DS ≥ σ2
S −

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

: The condition of Case 2) is met.

– DS < σ2
S −

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

:

i) D2 < σ2
S+σ

2
N2
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
: According to Lemma 4.6, det(KX−∆∗) < 0

is equivalent to

(σ2
S + σ2

N2
−D2)(σ

2
S −DS) <

(
σ2
S +

σ2
Zσ

2
N2

2σ4
N1

D1 −
σ2
Z

2σ2
N2

D2 −
(DS − σ2

Z)σ
2
N2

2σ2
Z

)2

.

(4.B.28)
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It can be verified that

σ2
S +

σ2
Zσ

2
N2

2σ4
N1

D1 −
σ2
Z

2σ2
N2

D2 −
(DS − σ2

Z)σ
2
N2

2σ2
Z

> σ2
S +

σ2
Zσ

2
N2

2σ4
N1

(
σ2
S + σ2

N1
−
σ4
S(σ

2
S + σ2

N2
−D2)

(σ2
S + σ2

N2
)2

)
− σ2

Z

2σ2
N2

D2 +
σ2
N2

2

−
σ2
N2

2σ2
Z

(
σ2
S −

σ4
S(σ

2
S + σ2

N2
−D2)

(σ2
S + σ2

N2
)2

)
= σ2

S

(
1− D2

σ2
S + σ2

N2

)
≥ 0.

So taking the square root on both sides of the inequality in (4.B.28) gives√
(σ2

S + σ2
N2
−D2)(σ2

S −DS) < σ2
S +

σ2
Zσ2

N2

2σ4
N1

D1 −
σ2
Z

2σ2
N2

D2 −
(DS−σ2

Z)σ2
N2

2σ2
Z

, i.e.,

D1 >
σ4
N1

σ4
N2

D2 −
2σ4

N1

σ2
Sσ

2
N2

(σ2
S −

√
(σ2

S + σ2
N2
−D2)(σ2

S −DS)) +
σ4
N1

σ4
Z
(DS − σ2

Z).

Now one can readily see that the condition of Case 9) is met.

ii) D2 ≥ σ2
S + σ2

N2
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
: It can be verified that

D1 ≥ σ2
S + σ2

N1
−
σ4
S(σ

2
S + σ2

N2
−D2)

(σ2
S + σ2

N2
)2

≥ σ2
S + σ2

N1
− σ8

S(σ
2
S −DS)

(σ2
S + σ2

N2
)2(σ2

S − σ2
Z)

2

≥ σ2
S + σ2

N1
− σ4

S(σ
2
S −DS)

(σ2
S − σ2

Z)
2
.

So the condition of Case 3) is met.

• D2 ≥ σ2
S + σ2

N2
−

σ4
S(σ

2
S+σ2

N1
−D1)

(σ2
S+σ2

N1
)2

: This is symmetric to D1 ≥ σ2
S + σ2

N1
−

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

, thus is covered by Cases 1), 3), and 8).

• D1 < σ2
S + σ2

N1
−

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

and D2 < σ2
S + σ2

N2
−

σ4
S(σ

2
S+σ2

N1
−D1)

(σ2
S+σ2

N1
)2

:
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– DS ≥
σ4
Z

σ4
N1

D1+
2σ4

Z

σ2
N1

σ2
N2

(σ2
S−
√
(σ2

S + σ2
N1
−D1)(σ2

S + σ2
N2
−D2))+

σ4
Z

σ4
N2

D2+

σ2
Z : The condition of Case 7) is met.

– DS <
σ4
Z

σ4
N1

D1+
2σ4

Z

σ2
N1

σ2
N2

(σ2
S−
√
(σ2

S + σ2
N1
−D1)(σ2

S + σ2
N2
−D2))+

σ4
Z

σ4
N2

D2+

σ2
Z : SinceD1 < σ2

S+σ
2
N1
−

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

, i.e., σ2
S+σ

2
N1
−D1 >

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

,

we have

√
(σ2

S + σ2
N1
−D1)(σ2

S + σ2
N2
−D2) ≥ σ2

S −
σ2
S

σ2
S + σ2

N2

D2. (4.B.29)

It can be verified that

DS <
σ4
Z

σ4
N1

D1 +
2σ4

Z

σ2
N1
σ2
N2

(σ2
S −

√
(σ2

S + σ2
N1
−D1)(σ2

S + σ2
N2
−D2)) +

σ4
Z

σ4
N2

D2 + σ2
Z

<
σ4
Z

σ4
N1

(
σ2
S + σ2

N1
−
σ4
S(σ

2
S + σ2

N2
−D2)

(σ2
S + σ2

N2
)2

)
+

2σ4
Zσ

2
S

σ2
N1
σ2
N2
(σ2

S + σ2
N2
)
D2

+
σ4
Z

σ4
N2

D2 + σ2
Z (4.B.30)

=
σ2
Sσ

2
N2

σ2
S + σ2

N2

+
σ4
S((σ

2
S + σ2

N1
)σ2

N2
+ σ2

Sσ
2
N1
)2 − 2σ8

Sσ
4
N2

(σ2
S + σ2

N2
)2((σ2

S + σ2
N1
)σ2

N2
+ σ2

Sσ
2
N1
)2
D2

<
σ2
Sσ

2
N2

σ2
S + σ2

N2

+
σ4
S((σ

2
S + σ2

N1
)σ2

N2
+ σ2

Sσ
2
N1
)2

(σ2
S + σ2

N2
)2((σ2

S + σ2
N1
)σ2

N2
+ σ2

Sσ
2
N1
)2
D2

= σ2
S −

σ4
S(σ

2
S + σ2

N2
−D2)

(σ2
S + σ2

N2
)2

,

where (4.B.30) is due to D1 < σ2
S + σ2

N1
−

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

and (4.B.29).

In light of Lemma 4.5, D1 < σ2
S + σ2

N1
− σ4

S(σ2
S−DS)

(σ2
S−σ2

Z)
2 and D2 < σ2

S + σ2
N2
−

σ4
S(σ2

S−DS)
(σ2

S−σ2
Z)

2 cannot hold simultaneously. So it suffices to consider the fol-

lowing possibilities.

i) D1 ≥ σ2
S + σ2

N1
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
and D2 < σ2

S + σ2
N2
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
: According
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to Lemma 4.6, det(KX −∆∗) < 0 is equivalent to

(σ2
S + σ2

N2
−D2)(σ

2
S −DS) <

(
σ2
S +

σ2
Zσ

2
N2

2σ4
N1

D1 −
σ2
Z

2σ2
N2

D2 −
(DS − σ2

Z)σ
2
N2

2σ2
Z

)2

.

(4.B.31)

It can be verified that

σ2
S +

σ2
Zσ

2
N2

2σ4
N1

D1 −
σ2
Z

2σ2
N2

D2 −
(DS − σ2

Z)σ
2
N2

2σ2
Z

> σ2
S +

σ2
Zσ

2
N2

2σ4
N1

D1 −
σ2
Z

2σ2
N2

D2

−
σ2
N2

2σ2
Z

(
σ4
Z

σ4
N1

D1 +
2σ4

Z

σ2
N1
σ2
N2

(σ2
S −

√
(σ2

S + σ2
N1
−D1)(σ2

S + σ2
N2
−D2)) +

σ4
Z

σ4
N2

D2

)
= σ2

S −
σ2
Z

σ2
N2

D2 −
σ2
Z

σ2
N1

(σ2
S −

√
(σ2

S + σ2
N1
−D1)(σ2

S + σ2
N2
−D2))

≥ σ2
S −

σ2
Z

σ2
N2

D2 −
σ2
Z

σ2
N1

(
σ2
S − σ2

S +
σ2
S

σ2
S + σ2

N2

D2

)
(4.B.32)

=
σ2
Sσ

2
N1
(σ2

S + σ2
N2
)(σ2

S + σ2
N2
−D2) + σ4

Sσ
2
N2
(σ2

S + σ2
N2
−D2)

(σ2
S + σ2

N2
)(σ2

N1
(σ2

S + σ2
N2
) + σ2

Sσ
2
N2
)

≥ 0,

where (4.B.32) is due to (4.B.29). So taking the square root on both

sides of the inequality in (4.B.31) gives
√

(σ2
S + σ2

N2
−D2)(σ2

S −DS) <

σ2
S +

σ2
Zσ2

N2

2σ4
N1

D1 −
σ2
Z

2σ2
N2

D2 −
(DS−σ2

Z)σ2
N2

2σ2
Z

, i.e., D1 >
σ4
N1

σ4
N2

D2 −
2σ4

N1

σ2
Sσ

2
N2

(σ2
S −√

(σ2
S + σ2

N2
−D2)(σ2

S −DS)) +
σ4
N1

σ4
Z
(DS − σ2

Z). Now one can readily see

that the condition of Case 9) is met.

ii) D1 < σ2
S + σ2

N1
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
and D2 ≥ σ2

S + σ2
N2
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
: This is

symmetric to D1 ≥ σ2
S + σ2

N1
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
and D2 < σ2

S + σ2
N2
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
,
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thus is covered by Case 8).

iii) D1 ≥ σ2
S + σ2

N1
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
and D2 ≥ σ2

S + σ2
N2
− σ4

S(σ
2
S−DS)

(σ2
S−σ2

Z)2
: The

condition of Case 3) is met.

4.B.3 det(KX −∆∗) ≥ 0 and ζ1 < 0

According to Lemma 4.4, ζ1 < 0 implies ζ2 ≥ 0 and ζ3 ≥ 0.

• (σ2
S + σ2

N1
−D1)(σ

2
S + σ2

N2
−D2) ≥ σ4

S: The condition of Case 4) is met.

• (σ2
S + σ2

N1
−D1)(σ

2
S + σ2

N2
−D2) < σ4

S:

– D1 ≥ σ2
S + σ2

N1
−

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

: It follows by Lemma 4.7 that DS ≥

σ2
S −

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

. So the condition of Case 2) is met.

– D2 ≥ σ2
S + σ2

N2
−

σ4
S(σ

2
S+σ2

N1
−D1)

(σ2
S+σ2

N1
)2

: This is symmetric to D1 ≥ σ2
S + σ2

N1
−

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

, thus is covered by Case 1).

– D1 < σ2
S+σ

2
N1
−

σ4
S(σ

2
S+σ2

N2
−D2)

(σ2
S+σ2

N2
)2

andD2 < σ2
S+σ

2
N2
−

σ4
S(σ

2
S+σ2

N1
−D1)

(σ2
S+σ2

N1
)2

: Note that

det(KX−∆∗) ≥ 0 impliesDS ≥
σ4
Z

σ4
N1

D1+
2σ4

Z

σ2
N1

σ2
N2

(σ2
S−
√
(σ2

S + σ2
N1
−D1)(σ2

S + σ2
N2
−D2))+

σ4
Z

σ4
N2

D2 + σ2
Z . So the condition of Case 7) is met.

4.B.4 det(KX −∆∗) ≥ 0 and ζ1 ≥ 0

According to Lemma 4.4, there is no need to consider the scenario ζ2 < 0 and ζ3 < 0.

So it remains to handle the following scenarios: 1) ζ2 ≥ 0 and ζ3 < 0 and 2) ζ2 < 0

and ζ3 ≥ 0. Note that the remaining scenario ζ2 ≥ 0 and ζ3 ≥ 0 is the desired one.
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ζ2 ≥ 0 and ζ3 < 0

We have

(σ2
S + σ2

N1
−D1)

(
σ2
S + σ2

N2
−
(
σ4
N2

σ4
N1

D1 +
(DS − σ2

Z)σ
4
N2

σ4
Z

))
≥ (σ2

S + σ2
N1
−D1)(σ

2
S + σ2

N2
−D2) (4.B.33)

≥
(
σ2
S +

σ2
N2

2σ2
N1

D1 +
σ2
N1

2σ2
N2

D2 −
(DS − σ2

Z)σ
2
N1
σ2
N2

2σ4
Z

)2

(4.B.34)

>

(
σ2
S +

σ2
N2

σ2
N1

D1

)2

, (4.B.35)

where (4.B.33) is due to ζ3 < 0, (4.B.34) is due to det(KX −∆∗) ≥ 0, and (4.B.35)

is due to ζ1 ≥ 0 and ζ3 < 0. In view of (4.B.18),

(σ2
S + σ2

N1
−D1)

(
σ2
S + σ2

N2
−
(
σ4
N2

σ4
N1

D1 +
(DS − σ2

Z)σ
4
N2

σ4
Z

))
>

(
σ2
S +

σ2
N2

σ2
N1

D1

)2

⇐⇒ (σ2
S + σ2

N1
−D1)(σ

2
S −DS) > σ4

S.

So the condition of Case 5) is met.

ζ2 < 0 and ζ3 ≥ 0

This is symmetric to ζ2 ≥ 0 and ζ3 < 0, thus is covered by Case 6).

4.C Appendix: Proof of (4.4.3)

4.C.1 KW ∈ Ω(KX) and 0 ≺∆∗ ⪯ KX for Case 6)

Note that we have the following equalities:
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1.

(
σ4
N2

σ4
N1

D1 −
σ4
N2

σ2
Z

√
1 + 4DSD1

σ4
N1

+
σ4
N2

σ4
Z
DS

)
D1 =

σ2
N1

σ2
N2

2σ2
Z

√(√
1 + 4DSD1

σ4
N1

− 2σ2
ZD1

σ4
N1

)2

− 1

2

2. det(K∗
∆) =

σ4
N1

σ4
N2

2σ4
Z

(√
1 + 4DSD1

σ4
N1

− 2σ2
ZD1

σ4
N1

− 1

)

3. Let θ =

√
1+

4DSD1
σ4
N1

− 2σ2
ZD1

σ4
N1

−1√√√√(√1+
4DSD1
σ4
N1

−
2σ2

Z
D1

σ4
N1

)2

−1

, then we have

(a) 1− θ2 ≥ 0:

(b) det(K∗
∆) = (1− θ2)

(
σ4
N2

σ4
N1

D1 −
σ4
N2

σ2
Z

√
1 + 4DSD1

σ4
N1

+
σ4
N2

σ4
Z
DS

)
D1.

(c)

θ

√√√√(σ4
N2

σ4
N1

D1−
σ4
N2
σ2
Z

√
1+

4DSD1
σ4
N1

+
σ4
N2
σ4
Z

DS

)
D1

(1−θ2)

(
σ4
N2

σ4
N1

D1−
σ4
N2
σ2
Z

√
1+

4DSD1
σ4
N1

+
σ4
N2
σ4
Z

DS

)
D1

=
σ2
Z

σ2
N1

σ2
N2

Now we’d like to show that K−1
W ⪰ 0, which implies that KW ⪰ 0. The ω1 and ω2

can be rewritten as

ω1 =

(1− θ2)
σ2
N1

σ2
N2

2σ2
Z

√(√
1 + 4DSD1

σ4
N1

− 2σ2
ZD1

σ4
N1

)2

− 1−
σ2
N1

σ2
N2

2σ2
Z

√
1+

4DSD1
σ4
N1

−1√
1+

4DSD1
σ4
N1

(1− θ2)
σ2
N1

σ2
N2

2σ2
Z

√
1+

4DSD1
σ4
N1

−1√
1+

4DSD1
σ4
N1

D1

(4.C.1)

and

ω2 =

(1− θ2)
σ2
N1

σ2
N2

2σ2
Z

√(√
1 + 4DSD1

σ4
N1

− 2σ2
ZD1

σ4
N1

)2

− 1−
σ2
N1

σ2
N2

2σ2
Z

√
1+

4DSD1
σ4
N1

−1√
1+

4DSD1
σ4
N1

(1− θ2)
σ2
N1

σ2
N2

2σ2
Z

√
1+

4DSD1
σ4
N1

−1√
1+

4DSD1
σ4
N1

(
σ4
N2

σ4
N1

D1 −
σ4
N2

σ2
Z

√
1 + 4DSD1

σ4
N1

+
σ4
N2

σ4
Z
DS

) . (4.C.2)
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According to (4.4.13), we have

(√
1 +

4DSD1

σ4
N1

− 2σ2
ZD1

σ4
N1

)2

− 1−

(√1 +
4DSD1

σ4
N1

− 2σ2
ZD1

σ4
N1

− 1

)
+


√

1 + 4DSD1

σ4
N1

− 1√
1 + 4DSD1

σ4
N1

2

(4.C.3)

=

(√
1 +

4DSD1

σ4
N1

− 2σ2
ZD1

σ4
N1

)2

− 1−

√1 +
4DSD1

σ4
N1

− 2σ2
ZD1

σ4
N1

− 1√
1 + 4DSD1

σ4
N1

2

(4.C.4)

= 2

(√
1 +

4DSD1

σ4
N1

− 2σ2
ZD1

σ4
N1

)
1√

1 + 4DSD1

σ4
N1

−

1 +
1

1 + 4DSD1

σ4
N1

 (4.C.5)

=

4DSD1

σ4
N1

− 4σ2
ZD1

σ4
N1

√
1 + 4DSD1

σ4
N1

1 + 4DSD1

σ4
N1

=

4D1

σ4
N1

(
DS − σ2

Z

√
1 + 4DSD1

σ4
N1

)
1 + 4DSD1

σ4
N1

> 0, (4.C.6)

which implies that

√√√√(√1 +
4DSD1

σ4
N1

− 2σ2
ZD1

σ4
N1

)2

− 1 >

(√
1 +

4DSD1

σ4
N1

− 2σ2
ZD1

σ4
N1

− 1

)
+


√
1 + 4DSD1

σ4
N1

− 1√
1 + 4DSD1

σ4
N1

 .

(4.C.7)

Since
√

1 + 4DSD1

σ4
N1

− 2σ2
ZD1

σ4
N1

− 1 = θ

√(√
1 + 4DSD1

σ4
N1

− 2σ2
ZD1

σ4
N1

)2

− 1, we have

(1− θ)

√√√√(√1 +
4DSD1

σ4
N1

− 2σ2
ZD1

σ4
N1

)2

− 1 >

√
1 + 4DSD1

σ4
N1

− 1√
1 + 4DSD1

σ4
N1

, (4.C.8)
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resulting in

(1− θ2)

√√√√(√1 +
4DSD1

σ4
N1

− 2σ2
ZD1

σ4
N1

)2

− 1 > (1 + θ)

√
1 + 4DSD1

σ4
N1

− 1√
1 + 4DSD1

σ4
N1

. (4.C.9)

Thus, we know that

(1− θ2)

√√√√(√1 +
4DSD1

σ4
N1

− 2σ2
ZD1

σ4
N1

)2

− 1−

√
1 + 4DSD1

σ4
N1

− 1√
1 + 4DSD1

σ4
N1

> 0, (4.C.10)

which implies that ω1 > 0 and ω2 > 0. Moreover, according to (3c), we know that

det(K−1
W ) = ω1ω2 −

(
σ2
Z

σ2
N1
σ2
N2

)2

(4.C.11)

=


(1− θ2)

σ2
N1

σ2
N2

2σ2
Z

√(√
1 + 4DSD1

σ4
N1

− 2σ2
ZD1

σ4
N1

)2

− 1−
σ2
N1

σ2
N2

2σ2
Z

√
1+

4DSD1
σ4
N1

−1√
1+

4DSD1
σ4
N1

(1− θ2)
σ2
N1

σ2
N2

2σ2
Z

√
1+

4DSD1
σ4
N1

−1√
1+

4DSD1
σ4
N1

D1


(4.C.12)

×


(1− θ2)

σ2
N1

σ2
N2

2σ2
Z

√(√
1 + 4DSD1

σ4
N1

− 2σ2
ZD1

σ4
N1

)2

− 1−
σ2
N1

σ2
N2

2σ2
Z

√
1+

4DSD1
σ4
N1

−1√
1+

4DSD1
σ4
N1

(1− θ2)
σ2
N1

σ2
N2

2σ2
Z

√
1+

4DSD1
σ4
N1

−1√
1+

4DSD1
σ4
N1

(
σ4
N2

σ4
N1

D1 −
σ4
N2

σ2
Z

√
1 + 4DSD1

σ4
N1

+
σ4
N2

σ4
Z
DS

)


(4.C.13)
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−


θ

√(
σ4
N2

σ4
N1

D1 −
σ4
N2

σ2
Z

√
1 + 4DSD1
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Z
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(
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Z
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)
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
2

(4.C.14)

=
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√(√
1 + 4DSD1
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− 2σ2
ZD1

σ4
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4DSD1
σ4
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2

−
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√
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1+

4DSD1
σ4
N1

2

(1− θ2)

√
1+

4DSD1
σ4
N1

−1√
1+

4DSD1
σ4
N1
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σ4
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Z

√
1 + 4DSD1

σ4
N1

+
σ4
N2

σ4
Z
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)
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> 0,

(4.C.15)

where the inequality holds according to (4.C.9).

It can be verified that (4.4.4)–(4.4.12) are satisfied. SinceDS < σ2
S−

σ4
S(σ

2
S+σ2

N1
−D1)

(σ2
S+σ2

N1
)2

,

we also have

((
σ4
N1

2
+ σ2

Sσ
2
N1

)√
1 +

4DSD1

σ4
N1

)2

−
(
σ2
SD1 +

σ4
N1

2
+ (σ2

S + σ2
N1
)DS

)2

(4.C.16)

= σ2
Sσ

4
N1

(
σ2
S + σ2

N1

)
+
(
2σ2

S(σ
2
S + σ2

N1
) + σ4

N1

)
D1DS − σ4

N1

(
σ2
S + σ2

N1

)
DS (4.C.17)

− σ4
SD

2
1 − (σ2

S + σ2
N1
)2D2

S − σ2
Sσ

4
N1
D1 (4.C.18)

= σ2
Sσ

4
N1

(
σ2
S + σ2

N1
−D1

)
−
(
σ2
S + σ2

N1
−D1

)
σ4
N1
DS (4.C.19)

+ 2σ2
S(σ

2
S + σ2

N1
)D1DS − σ4

SD
2
1 − (σ2

S + σ2
N1
)2D2

S (4.C.20)

= σ4
N1

(
σ2
S + σ2

N1
−D1

) (
σ2
S −DS

)
−
(
(σ2

S + σ2
N1
)DS − σ2

SD1

)2
(4.C.21)
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• if (σ2
S + σ2

N1
)DS ≥ σ2

SD1, we have

σ4
N1

(
σ2
S + σ2

N1
−D1

) (
σ2
S −DS

)
−
(
(σ2

S + σ2
N1
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(4.C.22)

≥
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Sσ

2
N1

σ2
S + σ2

N1
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(4.C.23)

≥
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−
(
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)

(
σ2
S −

σ4
S(σ

2
S + σ2

N1
−D1)

(σ2
S + σ2

N1
)2

)
− σ2

SD1

)2

(4.C.25)

=

(
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2
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σ2
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N1

(
σ2
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))2

−
(
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2
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σ2
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(
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))2

(4.C.26)

= 0. (4.C.27)

• if (σ2
S + σ2

N1
)DS < σ2

SD1, we also have

σ4
N1

(
σ2
S + σ2

N1
−D1

) (
σ2
S −DS

)
−
(
σ2
SD1 − (σ2

S + σ2
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(4.C.28)

=
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)
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−
(
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S
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S + σ2
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Then, we have

DS + σ2
N1
−

(D2
S − σ4

Z)σ
4
N1

4DSσ4
Z

(4.C.31)

=
4DSσ

4
Z(DS + σ2
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Z)σ

4
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4DSσ4
Z

(4.C.32)

=
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2
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2
N1
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4
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=
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2
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4
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4DSσ4
Z

. (4.C.34)

Since σ2
N2
≥ σ2

N1
and σ2

S ≥ DS, we also have

2σ2
ZDS + σ2
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2
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−DSσ

2
N1

(4.C.35)

=
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2
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4
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=
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=
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(σ2
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2
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(
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S(σ

2
N2
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N1
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S −DS)σ
2
N1
σ2
N2

)
≥ 0,

(4.C.38)

resulting in D1 < DS + σ2
N1
.

Then, we know that

σ2
N1

σ2
S + σ2

N1

(
σ2
S + σ2

N1
−D1

)
−
(

σ2
S

σ2
S + σ2
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D1 −DS

)
(4.C.39)

= σ2
N1

+DS −D1 > 0 (4.C.40)
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and

σ2
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(
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(
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)
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S

σ2
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Thus, we always have σ4
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(
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S + σ2

N1
−D1

)
(σ2

S −DS)−
(
(σ2

S + σ2
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Then, we know that
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=
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≥ 0. (4.C.52)

Thus, (4.4.3) holds because K∗
∆ ≻ 0, and
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=
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⪰ 0 (4.C.55)

Therefore, K∗
∆ is indeed an optimal solution and consequently

Rd(D1, D2, DS) =
1

2
log

2σ2
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2
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2
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N1
σ2
N2

√
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.

4.C.2 0 ≺∆∗ ⪯ KX for Case 7)

For Case 7), we’d like to show that, we always have D2 <
(D2

S−σ4
Z)σ4

N2

4DSσ
4
Z

, and D2 <

DS + σ2
N2
, thus the similar result from Case 6) can be applied.
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For i), since ( 1
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+ 1
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N1

− 1
σ2
N2

)−1 ≤ DS, we know that
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resulting in σ2
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≤
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. Then, we have
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Moreover, we also have
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which implies that
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Thus, we always have D2 <
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and
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resulting in DS + σ2
N2
≥
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Z)σ4
N2

4DSσ
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. Thus, we know that D2 < DS + σ2
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.

Based on the above, we always have D2 <
(D2

S−σ4
Z)σ4

N2

4DSσ
4
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and D2 < DS + σ2
N2
.

Thus, similar to (4.C.40) and (4.C.42), we have σ4
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∆ ≻ 0, and KX −K∗

∆ ⪰ 0.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we first concentrated on constellation design for multiple access wireless

communication and multi-hop relay-assisted networks.

For an uplink system with K single-antenna users and one base station equipped

with a single antenna, the design of sum constellations belonging to the additively

uniquely decomposable constellation group (AUDCG) was proposed by maximizing

the minimum Euclidean distance and lattice coding, where each user utilizes a binary

constellation to carry data. With such a design, the multi-access SISO channel with

K users can be equivalently transformed into a virtual standard ideal SISO channel

with a single user. Once the sum constellation point is determined by the detector,

each user’s constellation point can be directly obtained, resulting in a low latency

detection technique. It was shown that our proposed NOMA scheme outperforms the

existing TDMA designs for the same system in terms of the minimum distance, and a

symbol error probability formula was derived. Moreover, we also developed a splitting
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scheme that enables us to extend the principles of our design to a system in which

the k-th user employs a constellation with 2Mk points. Numerical results showed that

the resulting scheme provides better performance than an existing scheme based on

Farey sequences.

For a multi-hop relay-assisted network, we developed a novel uniquely-factorable

constellation set (UFCS) using PSK constellations to allow the source and relay nodes

to transmit their own information concurrently at the symbol level, while enabling

non-coherent detection. The system consists of a single-antenna source and single-

antenna, amplify-and-forward relay nodes, and the destination has M antennas. The

transmission was arranged in blocks of two time slots. By taking advantage of the

uniquely-factorable property, fast detection can be obtained, where the optimal ML

detector was equivalently reduced to a symbol-by-symbol detector. In addition, the

SEP formula was also given, showing the insights that the diversity gain cannot be

improved by increasing M .

Since there has been very limited analysis of the source coding subject to semantic

information constraints, we also studied the rate distortion trade-offs in the presence

of these constraints.

For semantic source coding, the model consists of two parts, i.e., the intrinsic state

part and the extrinsic observation part, in which the intrinsic state part corresponds

to the semantic feature of the source. This is not observable, and can only be inferred

from extrinsic observation part. In order to characterize the rate-distortion behavior

of the semantic source, we considered the case of Gaussian distributed extrinsic ob-

servation, with the assumption that there is a linear relationship between extrinsic

observation part and intrinsic state part. We derived the rate-distortion function (in
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both centralized encoding and distributed encoding) of semantic-aware source coding

under quadratic distortion structure by converting the semantic distortion constraint

of the source to a surrogate distortion constraint of the observations.

5.2 Future Work

There are still some future works that can be conducted to further improve the

proposed approaches.

Perfect channel state information (CSI) at the receiver, in practice, is not eas-

ily attainable. Regarding the CSI in a communication system, the receiver usually

estimates the channel using a training sequence (pilot symbols) and the transmitter

obtains it through a feedback channel or from previous received signals. For the ac-

curacy of the estimation, the outdated estimation due to the channel variability has

to be considered. Moreover, for the usage of the feedback channel, the quantization

of the estimation and the errors in the communication through the feedback channel

also should be taken into consideration. Thus, it is necessary for us to explore the

sensitivity of CSI (like the tolerance of phase error) in our constellation design in

Chapter 2, and to find robust designs that make it less sensitive to these errors by

Bayesian (or stochastic) and maxi-min (or worst case) approaches.

In case that the transmitter does not have any information about the channel,

the blind signal processing techniques can be applied to estimate the space-time

block coded channel for the MIMO systems. Blind channel estimation involves a

problem in which only observed signal is available at the receiver for processing in

the identification of a channel. In future, we would like to find the condition that

the signal can be uniquely distinguished from the channel in a noise-free case when
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only received signal is available. Moreover, based on this condition, we would like

to construct a full diversity blind linear space-time block code by using the co-prime

PSK constellations introduced in our second work.

In our semantic-aware source coding work, there is still space for further investigat-

ing the rate distortion for vector sources in both the case of centralized encoding and

that of distributed encoding by considering other source distributions (like Laplacian

distributions aiming at images and speech) and non-quadratic distortion structures.

Moreover, in practice, due to complexity and delay constraints, large block lengths

may not be feasible, and many communication systems benefit from designing the

source-channel codes jointly. Thus, there is a great need to develop joint source-

channel coding system by using machine learning and combining with typical codes,

like LDPC codes or polar codes.
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