DEVELOPMENT OF A COMPREHENSIVE MOBILITY DISCHARGE ASSESSMENT FRAMEWORK FOR OLDER ADULTS TRANSITIONING FROM HOSPITAL-TO-HOME THROUGH EVIDENCE SYNTHESIS AND e-DELPHI PROCESS Development of a Comprehensive Mobility Discharge Assessment Framework for Older Adults Transitioning from Hospital-To-Home Through Evidence Synthesis and e-Delphi Process

Ву

Michael E Kalu, MSc, BMR.PT

A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

McMaster University © Copyright by Michael E Kalu, December 2022

DOCTOR OF PHILOSOPHY (2022) McMaster University

School of Rehabilitation Science Hamilton Ontario

TITLE: Development of a Comprehensive Mobility Discharge Assessment Framework for Older Adults Transitioning from Hospital-To-Home Through Evidence Synthesis and e-Delphi Process

AUTHOR: Michael E Kalu, MSc, BMR.PT

SUPERVISIOR: Vanina Dal Bello-Haas, PT, PhD

COMMITTEE: Meridith Griffin, PhD; Sheila A Boamah, RN, PhD; Jocelyn Harris, PhD, OT

NUMBER OF PAGES: 275 (Thesis without appendices) and 553 (Thesis with appendices)

Lay Abstract

Mobility problems lead to hospital readmission of older adults (60 years and older). However, healthcare workers often do not assess older adults' mobility prior to discharge home. This is why this research project was done. In Phase 1 of this PhD project, 84 factors that negatively or positively influenced mobility of older adults were identified by searching the literature. In Phase 2 of this PhD project, 60 people (seven older adults, nine family caregivers, 24 clinicians, and 20 researchers) rated and agreed upon the mobility factors critical to assess when older adults are being discharged home. They reached agreement on 43 factors; and provided their reasons for choosing these factors. Reasons included that each older adult is unique, and healthcare roles and practices differ. Identifying these 42 factors is the first step. Therefore, future research should determine the tools to measure the 43 factors and test how they can be used in clinical practice.

Abstract

Functional status independently predicts older adults' hospital readmission. Despite this, clinicians often do not complete mobility assessments during the hospital-to-home transition for older adults, mainly because factors within the seven mobility determinants have not been comprehensive represented in mobility measures.

Phase 1 of this PhD thesis (manuscripts 1, 2 and 3) comprised a series of scoping reviews that comprehensively described factors within each of the seven mobility determinants [cognitive, financial, environmental, personal, physical, psychological and social] and their association with self-report and performance-based mobility outcomes. A total of 772 largely cross-sectional articles published in 51 countries were reviewed which identified 84 factors: cognitive (n=8), psychological (n=18), social (n=9); personal (n=11), environmental (n=17), financial (n=3), and physical (n=18), and their association with mobility outcomes.

Phase 2 of this PhD thesis (manuscripts 4, 5 and 6) was an e-Delphi study aimed at prioritizing and achieving consensus on mobility factors across the seven determinants considered critical to include in the Comprehensive Mobility Discharge Assessment Framework (CMDAF) for older adults transitioning from hospital-to-home. Sixty international experts (seven older adults, nine family caregivers, 24 clinicians and 20 researchers) from nine countries prioritized 43 out of 91 factors across all the seven determinants to be included in the CMDAF, except for financial determinants. Experts provided reasons for their ratings. They conditionally placed importance on certain factors over other factors based on the uniqueness of each older adult; healthcare roles and practice-based approaches; and service availability and regional [context] meaning of some of the factors. The positive and negative role of factors influencing mobility was another reason experts rated the way they did.

v

This is the first step of developing CMDAF. Future research should examine how, and which measurement instruments best measure these 43 mobility factors to advance the CMDAF. Further examining the feasibility and practicality of using CMDAF in hospital-to-home clinical transition settings is recommended.

Acknowledgement

I am full of emotion as I write this acknowledgement section. It has been an incredible, fruitful journey filled with ups and downs, and I have reflectively learned and grown as a researcher and person through the help and mentorship of so many people. This thesis would not have been successful without the outstanding mentorship of my supervisor, Dr Vanina Dal Bello-Haas. I struggle to find the words that accurately reflect my deep appreciation for all you have done for me. Every minute of our meetings was loaded with words of wisdom, and an in-depth critique of my work in all aspects of this thesis, ranging from conceptualization to writing the thesis. You provided endless opportunities for my professional growth, created opportunities for my success and celebrated those successes with me. You offered me strategies to manage and handle roadblocks throughout my PhD journey. I sincerely appreciate it and do not take this impact experience for granted.

I would also like to thank my committee members at every stage of my PhD. For the members that started with me - Dr Amanda Greiner, Dr Jenny Ploeg and Dr Julie Richardson, before they retired or moved on to another journey in their career, I sincerely appreciate the feedback you provided to me at the early stages of my PhD thesis. To my current PhD committee members, Dr Meridith Griffin, Dr Sheila Boamah and Dr Joycelyn Harris, I appreciate the expertise and support you have provided me throughout my PhD journey. Your input and guidance challenged me to think critically and devise ways to make my PhD project conceptually sound. Thank you for encouraging me to pursue this research program.

Phase 2 of my PhD project, the international e-Delphi study, was a success because of the Steering Committee members, including Dr Taina Rantanen and Mr and Mrs John Fielding. Thank you for the feedback you provided throughout the steering committee meetings on documents that advanced the e-Delphi process. To

vii

all the international expert members, including older adults, family caregivers, researchers and clinicians that participated in the study, I thank you for providing your valuable opinions on factors influencing older adults' mobility based on your experiences. In addition, I want to thank several agencies that supported my PhD in different capacities. Thank you, McMaster Institute for Research in Aging (MIRA), for awarding me the Labarge Mobility Research Scholarship and travel awards, MITACS for a research experience at the Gerontology Research Center, Faculty of Sport and Health Science, University of Jyvaskyla, Jyvaskyla, Finland; the Gilbrea Center for student travel grants and the School of Rehabilitation Science for several awards including travel and publication awards.

I would also like to extend my appreciation to several research teams and networks, such as the Quality Optimal Living and Aging through Rehabilitation, MIRA trainee network, and Emerging Researchers and Professionals in Aging-African network. These networks have allowed me to discuss several aspects of my PhD work e.g., methods, research process, and findings. In addition, these networks have allowed me to practice several presentations, improving my presentation and academic discussion skills. To all McMaster University Science, Technology, Engineering and Mathematics and Master of Science (Physiotherapy) students that worked with me as reviewers in Phase 1 of my PhD thesis, thank you for the opportunity to work with you and learn different approaches to working with people.

I want to thank my friends, including but not limited to Derrick, David, Rick, Mike, Boris, Sam and colleagues - Janelle, Temi, Joshua, Linda, Monica, Maysa, Armaghan, Vanessa, Jill, Melody, and Daniel for your help, feedback and checking in with me throughout the PhD journey. To my family members, my mum -Ugo Kalu, Dad - Kalu Ebe, and siblings - Odunna, Precious, Anthony, Mercy, Sam, nephews, nieces, and cousins, thank you for your emotional support and prayers through this PhD journal. To the Ojembe family, thank you for your prayers,

viii

emotional support and willingness to hear about my research journeys and for ensuring I had the much-needed breaks throughout my PhD.

Table of Contents

TITLE PAGEI
DESCRIPTIVE NOTE
LAY ABSTRACTIV
ABSTRACTV
ACKNOWLEDGEMENTVII
LIST OF TABLES AND FIGURESXII
LIST OF ABBREVIATIONSXIV
DECLARATION OF ACADEMIC ACHIEVEMENTXVI

CHAPTER 1: THESIS INTRODUCTION	
MOBILITY DEFINITIONS	3
THE IMPACT OF MOBILITY LIMITATIONS ON OLDER ADULTS	5
THE OVERVIEW OF MOBILITY FRAMEWORKS	5
CONICAL MODEL OF THEORETICAL FRAMEWORK FOR MOBILITY IN OLDER ADULTS	1
HOSPITAL TO HOME TRANSITIONS	L
THESIS PURPOSE AND FORMAT	3
References	5

CHAPTER 2	:	Co	GN	ITI	E VE	Ξ,	P	SYC	СНС	DL	OGI	CZ	٩L	A	ND	s	oc	IA	T	FZ	AC:	roi	RS	A	SS	oc	IA	TE	D	WI	TH	C	ЪГI)E	R	AD	UI	LT	s′	M	101	BII	LI	TΥ	::	
A SCOPING	RE	VI	EW	OI	F S	SEI	F-	R	ΞPC	DR!	rec	2	ANI	c	PE	RF	OF	MA	NC	E-	-в	AS	ED	М	EA	SU	RE	s	•		•		•		•		•	•		•	•		•		2	0
PREFACE			• •			•			•				• •		•		•		•		•		•		•				•		•		•		•	• •	•				•		•		2	0
Abstract	••					•			•		• •		• •		•		•		•		•		•		•				•		•				•		•				•		•		2	3
INTRODUCT	ION	ι.	• •			•			•		• •		• •		•		•		•		•		•		•		•		•		•		•		•	• •	•	•		•	•		•		2	3
METHODS			• •			•			•		• •		• •		•		•		•		•		•		•				•		•				•		•				•		•		2	5
RESULTS			• •		•••	•			•		• •		• •		•		•		•		•		•		•		•		•		•		•		•	• •	•	•		•	•		•		2	6
DISCUSSIO	N		• •			•			•		• •		• •		•		•		•		•		•		•				•		•				•		•				•		•		3	4
CONCLUSION	N		• •		•••	•			•		• •		• •		•		•		•		•		•		•		•		•		•		•		•	• •	•	•		•	•		•		3	6
REFERENCE	s.		• •		•••	•			•		• •		• •		•		•		•		•		•		•		•		•		•		•		•	• •	•	•		•	•		•		3	7

CHAPTER 3	: 2	1 5	SCC	PI	NG	R	ΈV	ΊĒ	W	OE	' E	PE F	RSC)NZ	AL	,	FI	NA	NC	CIA	ΥL	Al	ND	El	NV	IR	ON	ME	NT	AL	D	ΕT	'EF	M	EN/	AN	тs	0	F	MC	BJ	[L]	ΓT	Y	
AMONG OLDE	R Z	ADU	JLT	s.	••		•		•	•••	•		•		•		•	••	•	••	•	••	•	••	•		•	••	•		• •	• •	• •	•	•	•••	•	•	•		•	••	, .	•	44
PREFACE .	• •	• •		•			•		•		•		•		•		•		•		•		•		•		•		•		• •	•	• •	•	•		•	•	•		•		•	•	44
ABSTRACT .	• •	• •		•			•		•		•		•		•		•		•		•		•		•		•		•		• •	•	• •	•	•		•	•	•		•	••	•	•	46
INTRODUCTI	ION			•			•		•		•		•		•		•		•		•		•		•		•		•		• •	•	• •	•	•		•	•	•		•		•	•	48
METHODS .	• •	• •		•			•		•		•		•		•		•		•		•		•		•		•		•		• •	•	• •	•	•		•	•	•		•	••	•	•	51
RESULTS .	• •	• •		•			•		•		•		•		•		•		•		•		•		•		•		•		• •	•	• •	•	•		•	•	•		•	••	•	•	55
DISCUSSION	1	• •		•			•		•		•		•		•		•		•		•		•		•		•		•		• •	• •	• •	•	•		•	• •	•		•		•	•	68
CONCLUSION	1	• •		•			•		•		•		•		•		•		•		•		•		•		•		•		• •	•	• •	•	•		•	•	•		•		•	•	75
References	5	• •	••	•	••		•		•	••	•		•		•	•••	•	••	•	••	•	••	•	••	•		•		•		• •	• •	• •	•	•		•	• •	•		•	••	•	•	77

CHAPTER 4	4:	PF	IYS	IC	AL	М	οв	ΙL	IТ	Y	DE	ΤE	RM	IIN	AN	TS	5 2	AMO	ONC	G (DLI	DEF	R Z	ADI	UL:	rs	:	А	sc	OP	IN	G	RE	VIE	W	OF	S	EL	F-	-RF	SPC	DR'	TED
AND PERFO	RM	ANC	CE-	BA	SE	D	ME	AS	UR	ES		•		•		•		•		• •			•	•••	•		•		•			•	•••	•••	•		• •	•		•		•	110
PREFACE	•		••		• •			•		•		•		•		•		•		• •	• •		•		•		•		•			•			•	••		•		•		•	110
Abstract	•		••		• •			•		•		•		•		•		•		• •	• •		•		•		•		•			•			•	••		•		•		•	114
INTRODUCT	r I O	N	••		• •			•		•		•		•		•		•		• •	• •		•		•		•		•						• •	••	• •	•				•	115
METHODS	•		••		• •			•		•		•		•		•		•		• •	• •		•		•		•		•			•			•	••		•		•		•	118
RESULTS	•		••		• •			•		•		•		•		•		•	••	• •	• •		•		•		•		•			•	••	•••	•	••		•		•		•	120
DISCUSSIO	лс	•	••		• •			•		•		•		•		•		•	••	• •	• •		•		•		•		•			•	••	•••	•	••		•		•		•	129
CONCLUSIO	ON																																										133

References	
------------	--

Chapter	5 :	A	• •	OM	1PI	RE	HE	N	SI	VE	5 1	MO	B	ΓL	I.	ΓY	D	IS	SC	HA	RG	ΞE	A	ss	ES	SSI	ME	NT	! 1	FR	AM	ŒV	101	RK	F	OF	٤ (ЪГ	DE	R	A	DÜ	IT.	тs							
TRANSITI	ON	ING	; E	RC	M	H	os	P	IT.	AI		тс) -	H	OM	Е	11	J	тн	E	С	ОМ	MU	JN I	ГΤ	Y	-	W	H	AT	M	1OE	BII	LI.	ΤY	E	'A(СТ	OF	١S	A	RF	: (CR	I.I	'I (CA	Ľ	тс)	
INCLUDE?	P	RO	то	co	L	FC	R	A	N	I	NJ	'El	RN	A'	ΓI	01	IA]	5	Е-	-D	EI	PI	HI	s	TU	JD	Y	•	• •		•	•	•	•		•	•		•	•		•	•	•	• •	•	•		•	. 1	157
PREFACE	•				•			•	•	•		•	•	•		•	•	•	•	•		•	• •		•	• •		•	• •		•	•	•	•			•		•	•		•	•	• •	••	•	•		•	. :	157
Abstract	•							•	•	•		•	•	• •		•	•		•	•			• •						• •		•	•	•	•			•			•			•	•	•					. 1	160
INTRODUC	TI	ON			•			•	•	•		•	•	•		•	•	•	•	•		•	• •		•		• •	•	• •		•	•	•	•			•		•	•		•	•	• •	••	•	•		•	. 1	161
METHODS								•	•	•		•	•	• •		•	•		•	•			• •						• •		•	•	•	•			•			•			•	•	•					. 1	163
DISCUSSI	ON							•	•	•		•	•	• •		•	•		•	•			• •						• •		•	•	•	•			•			•			•	•	•					. 1	169
REFERENC	ES												•				•			•													•	•																. 1	170

CHAPTER 6:	WHAT	MOBIL	ITY	FACTO	RS A	RE	CRI	TIC	AL :	то	INC	LUDE	IN	А	Сом	REH	ENS	IVE	Mc	BI	LIT	ΥĪ	Dis	CHA	RGE
ASSESSMENT]	FRAME	WORK 1	FOR	OLDER	ADU	LTS	TRA	NSI	TIO	NIN	IG :	FROM	HOS	SPI 2	CAL-	то-	HOM	EI	N TI	HE	CON	4MU	NIT	ry?	An
INTERNATION	AL E-	Delph	і зі	UDY		••		•••		••		• • •		••			••	••				••	••	••	. 174
PREFACE	• • • •	· • • • •				••		•••		••	•••			••			•••	••		•••	••	••	••	••	. 174
ABSTRACT						• •		•••		••				••			••	••			••	••	••	••	. 176
INTRODUCTION	м	· · · · ·				• •		•••		••	••	• • •		••			••	••		••	••	••	••	••	. 177
METHODS						• •		•••		••				••			••	••			••	••	••	••	. 178
RESULTS	• • • •	· • • • •				••		•••		••	•••			••			•••	• •		•••	••	••	••	••	. 187
DISCUSSION	• • • •	· · · · ·				• •		•••		••	••	• • •		••			••	••		••	••	••	••	••	. 190
CONCLUSION 2	AND F	UTURE	DIF	RECTIO	NS	• •		•••		•••	•••	• • •		••			•••	• •		•••	••	••	••	••	. 194
References	• • • •	• • • • •		• • • •	• • •	••	• • •	•••		••	••	• • •	•••	••		•••	••	••		••	••	••	••	••	. 197

CHAPTER 7: QU	ALITATI	/E ANALYS	SIS OF	EXPERTS'	RATIONALES	5 FOR RATIN	G MOBILITY	FACTORS DEEMED
CRITICAL TO AS	SESS AS	PART OF	A COM	PREHENSIVE	E MOBILITY	DISCHARGE	ASSESSMENT	FRAMEWORK FOR OLDER
ADULTS TRANSIT	IONING H	FROM HOSE	ITAL-	го-номе .				
PREFACE								
ABSTRACT								
INTRODUCTION .								
METHODS								
RESULTS								
DISCUSSION								
CONCLUSION								239
REFERENCES								

CRAFIER 0. INTEGRATED DISCUSSION AND CONCLUSION
BASIS FOR STUDYING OLDER ADULTS' MOBILITY DURING HOSPITAL-TO-HOME TRANSITION
Phase 1 Main Findings and Discussion
Phase 2 Main Findings and Discussion
Thesis Strengths
THESIS LIMITATIONS
Contributions and implications of thesis work
FUTURE DIRECTIONS
Conclusion
References

List of Tables, Figures, and Appendices

Chapter 1
FIGURE 1: CONICAL MODEL OF THE THEORETICAL FRAMEWORK FOR MOBILITY IN OLDER ADULTS
FIGURE 2. FIND THESIS FIRDES AND CORRESPONDING MANOSCRIFTS
CHAPTER 2
TABLE 1: SEARCH STRATEGY FOR EACH DETERMINANT
TABLE 2: CHARACTERISTICS OF THE INCLUDED ARTICLES
TABLE 3: FACTORS IDENTIFIED FOR EACH DETERMINANT AND THEIR DESCRIPTIONS
FIGHE 1. DEFENDED PEDDETING THEME FOR SYCHEMANTS DEVIEWS AND MERA-ANALYSES (DDTSMA) FIGH
20
CHART FOR SCOPING REVIEWS
FIGURE 2: VENN DIAGRAM SHOWING THE NUMBER AND DISTRIBUTION OF ARTICLES ACROSS THE THREE MOBILITY
DETERMINANTS
Снартев 3
INDEE I. REIWORDS ADAPIED FOR EACH DAIADASE
TABLE 2: FACTORS IDENTIFIED FOR EACH DETERMINANT AND THEIR DESCRIPTIONS
TABLE 3: CHARACTERISTICS OF THE INCLUDED ARTICLES107
FIGURE 1: PREFERRED REPORTING ITEMS FOR SYSTEMATIC REVIEWS AND META-ANALYSES (PRISMA) FLOW
CHART FOR SCOPING REVIEWS
FIGURE 2: VENN DIAGRAM SHOWING THE NUMBER AND DISTRIBUTION OF ARTICLES ACROSS THE THREE MOBILITY
DETENDINGNIS
Chapter 4
TABLE 1: CHARACTERISTICS OF THE INCLUDED ARTICLES
TABLE 2: PHYSICAL FACTORS FROM THE INCLUDED STUDIES AND THEIR DESCRIPTIONS
Box 1: INCLUSION AND EXCLUSION CRITERIA FOR THE STUDY SELECTION 156
TICHE 1. DESERVED DEDORTING THEME FOR SUCHEMANTS DEVICENC AND MERA-ANALYSES (DDTSMA) FOR
FIGURE 1. FREFERRED REFORTING TIERS FOR DISTEMATIC REVIEWS AND META ANALISES (FRIDMA) FIGURE
CHART FOR SCOPING REVIEWS
Chapter 5
FIGURE 1: E-DELPHI SURVEY PROCESS AND TIMELINE
TABLE 1: PARTICIPANTS CHARACTERISTICS
TABLE 2: FORTY-ONE FACTORS THAT REACHED CONSENSUS ACROSS ALL EXPERTS
TABLE 3: WILCOXON MATCHED-PAIRS SIGNED-RANK TEST FOR FACTORS REACHING CONSENSUS PER ROUND 202
TABLE 4: FINAL LIST OF FACTORS THAT REACHED CONSENSUS AND INCLUDED IN THE COMPREHENSIVE
MOBILITY DISCHARGE ASSESSMENT FRAMEWORK AND THEIR DESCRIPTIONS
FIGURE 1: E-DELEHT TIMELINE, PROCESS AND RESULTS 206
CHAPTER 7
TABLE 1: Example of the coding process 241
TABLE 2: PARTICIPANT CHARACTERISTICS 247
Box 1: DEFINITION OF EXPERTS
ADDENDICES
APPENDICES FOR CHAPTER Z (MANUSCRIPT I) ARE AVAILABLE AT:
HTTP://ONLINELIBRARY.WILEY.COM/DOI//SUPPINFO.
Appendix 2E: Permission to republish the manuscript in a thesis
APPENDIX 3A: DETAILS OF INCLUDED QUANTITATIVE STUDIES DETAILS FOR PERSONAL FACTORS AND MOBILITY
APPENDIX 38: DETAILS OF INCLUDED OUDNTITATIVE STUDIES DETAILS FOR ENVIRONMENTAL FACTORS AND
MADITITY STATES OF INCLOSED CONTINUES DETAILS FOR ENVIRONMENTAL FACIORS AND

Appendix 3C: Details of included quantitative studies with personal, environmental and
FINANCIAL FACTORS AND MOBILITY
Appendix 3D: Details of included qualitative studies for personal, environmental and financial
FACTORS
APPENDIX 3E: DETAILS OF INCLUDED MIXED-METHOD STUDIES FOR PERSONAL, ENVIRONMENTAL AND FINANCIAL
FACTORS
Appendix 4A: Details of the included articles
Appendix 6A: Feedback Summaries
APPENDIX 6B: THE 91 FACTORS, THEIR DEFINITIONS AND RATING PER ROUND
APPENDIX 7A: MOBILITY FACTORS, PLAIN LANGUAGE DEFINITION OF MOBILITY FACTORS, AND THE MEAN
(SD) AND MEDIAN (IQR) RATING FOR EACH FACTOR

List of Abbreviations and symbols

- 4MWT = Four-Meter Walk Test
- 6MWT = Six-Minute Walk Test
- 10MWT = Ten-Meter Walk Test
- ADL = Activities of Daily Living
- AMED = Allied and Complementary Medicine Database
- C = Clinicians
- CA = Family Caregiver
- CINHAL = Cumulative Index to Nursing and Allied Health Literature
- CMDAF = Comprehensive Mobility Discharge Assessment Framework
- CREDES = Conducting and Reporting of Delphi Studies
- CST = Chair Stand Test
- EMBASE = Excerpta Medica Database
- FEV1 = Force Expiratory Volume
- FVC = Forced Vital Capacity
- HIREB = Hamilton Integrated Research Ethics Board
- IQR = Interquartile Range
- LLFI = Late-Life Function Index
- LLFDI = Late-Life Function Disability Instrument
- LSA = Life-Space Assessment
- MESH = Medical Subject Heading
- MMSE = Mini-Mental State Exam
- OA = Older adults
- OSF = Open Science Framework

PRISMA-Scr = Preferred Reporting Items for Systematic Reviews and meta-Analyses Extension for Scoping Reviews

R = Researchers

SC = Steering Committee
SCT = Stair Climbing Test
SD = Standard Deviation
SPPB = Short Physical Performance Battery
STS = Sit-To-Stand
TUG = Time Up and Go

Symbols

- * Boolean/phrases
- > Greater than
- < less than
- \leq Less than or equal to
- \geq More than or equal to
- = Equal to
- © Copyright

Declaration of Academic Achievement

This thesis is a two-phased project, structured as a sandwich thesis and consists of six manuscripts (chapters 2-7). Each manuscript is presented according to the published format or the submission for the target peer-reviewed journals. I, Michael Kalu, made a significant original contribution to all the co-authored studies in this thesis, and I am the first author for all included manuscripts. I present the summary of the contributions of other authors to the published or submitted manuscripts below. Detailed contributions are presented as preface before each manuscript.

Phase 1 (chapters 2, 3 and 4) - Scoping reviews

I, Michael Kalu, with the supervision of Dr Vanina Dal Bello-Haas, conceptualized the purpose and research question for this study. I designed the scoping review protocol and recruited reviewers for the scoping reviews. I led and conducted the scoping reviews, including title, abstract, full-text screening, data extraction and analysis, interpretation and manuscript preparation, revisions and submission.

Other authors' contributions: Dr Vanina Dal Bello-Haas, Dr Meridith Griffin, Dr Sheila Boamah, and Dr Jocelyn Harris reviewed and helped refine the research questions and objectives and provided feedback on the manuscripts. Because of the extensive nature of the scoping review, reviewers vary. The following authors participated in the title, abstract, full-text screening and data extraction:

- Chapter 2 Mashal Zaide, Daniel Rayner, Nura Khattab, Salma Abrahim, Tristan Richardson, Nicholas Savateeri, Yimo Wang, Christain Tkachyk.
- 2. Chapter 3 Mashal Zaide, Daniel Rayner, Nura Khattab and Salma Abrahim.
- 3. Chapter 4 Mashal Zaide, Daniel Rayner, Nura Khattab, Vidhi Bhatt, Claire Goodin, Ji Won (Beth) Song, Justin Smal, and Natalie Budd

xvi

Phase 2 (chapters 5, 6 and 7) - International modified e-Delphi study.

I, Michael Kalu, under the supervision of Dr Vanina Dal Bello-Haas, conceptualized the study purpose and research question for this study. I designed the study protocol, including study materials, such as recruitment fliers; applied and obtained ethical approval; conducted the research from recruitment of participants to data collection, and managing of the data, organizing and leading Steering Committee Meetings at each round of the e-Delphi process; conducted data analysis; and prepared, revised and submitted the manuscript for publication.

Other authors' contributions: Dr Vanina Dal Bello-Haas, Dr Meridith Griffin, Dr Jenny Ploeg and Dr Richardson Julie reviewed and provided feedback on the e-Delphi study protocol (chapter 5). Dr Vanina Dal Bello-Haas, Dr Meridith Griffin, Dr Sheila Boamah, Dr Jocelyn Harris and Dr Taina Rantanen participated in the Steering Committee Meetings. They provided feedback on the e-Delphi questionnaire, feedback summaries sent to e-Delphi expert members after each round, and manuscripts (chapters 6 and 7). Daniel Rayner assisted in the content analysis of the qualitative comments sections (chapter 7), and Dr Vanina Dal Bello-Haas reviewed the content analysis of the qualitative data (chapter 7).

NOTE: Revisions have been made in the thesis document based on feedback received at the oral defense. Changes made may or may not appear in current or future published manuscripts.

xvii

CHAPTER 1: THESIS INTRODUCTION

Most people are living longer, well into their sixth decade and beyond. By 2030, one in six people in the world will be 60 years or older; and the population of older adults is expected to double by 2050, increasing from 1 billion in 2020 to 1.4 billion in 2050 [1]. As the population ages, healthy aging, the process of developing and maintaining the functional ability that enables well-being in older age, has become a priority for most public health organizations across the globe [2]. One critical component of healthy aging is mobility.

Mobility, defined as the ability to move from one place to another either by self, use of assistive devices, transportation, or driving [3], is essential and allows older adults meet their needs, such as getting to the shops or hospitals, seeing friends and family, or participating in community life [2]. Getting older is associated with changes in mobility, resulting in functional limitations and disability [2]. Approximately one-third of individuals 65 years and older reported difficulty walking a mile or climbing a flight of stairs [4], and 20% of older adults (65 years or older) do not drive a motor vehicle or have access to transportation [5], limiting their ability to be functionally independent. Older adults with limited mobility are more likely to experience loneliness, have poorer quality of life, and have higher rates of chronic and other health conditions, disability, hospitalization, and death [2,6,7]. Furthermore, older adults with mobility limitations have additional health care costs [6]. For instance, the total annual healthcare cost was \$2773 higher in older adults who reported difficulty walking one-quarter of a mile compared to those without difficulty [6]. This increase in healthcare cost, alongside the negative impact of mobility limitations experienced among older adults, has led to a worldwide increased focus on the determinants of mobility among older adults [8].

The Conical Model of the Theoretical Framework for Mobility in Older Adults [3], subsequently described as Webber's framework, represents the

complexity of mobility and how cognitive, environmental, financial, personal, physical, psychological, and social determinants act directly, indirectly, or interactively to influence the mobility of older adults [3]. While Webber et al. [3] have described the interrelatedness of mobility determinants, they did not systematically synthesize the literature to explore the relationships between different forms of mobility (e.g., by self, use of assistive devices, public transportation, and driving) and the factors within each mobility determinant. This gap limits the research and clinical use of this framework, as researchers and clinicians may not know the factors within each mobility determinant that have a significant role in mobility. A systematic literature synthesis to identify factors within each determinant associated with mobility achieved independently or with the use of assistive devices transportation or driving was warranted. Phase 1 of this thesis addressed this gap by conducting a comprehensive scoping review of the factors within each determinant and their association with self-reported and performance-based mobility measures in older adults.

Webber and colleagues [3] anticipated their mobility framework would drive new research to establish the relative importance of mobility determinants in a different mobility context, leading to the development of integrated mobility assessment instruments. Currently, a comprehensive mobility assessment tool or framework capturing the cognitive, environmental, financial, personal, physical, psychological, and social factors influencing mobility does not exist [9,10], even though functional decline is an independent predictor of hospital readmission among older adults [11,12]. With no comprehensive mobility assessment framework, clinicians often experience challenges in offering comprehensive examinations and recommendations on which factors could predict mobility decline in older adults after discharge from hospital. However, discharge from hospital occurs very quickly [8], and assessing all the factors within each mobility determinant is not feasible. Therefore, prioritizing

factors within each determinant critical to assess during an older adult's hospital-to-home transition is an important undertaking. Phase 2 of this thesis identified, through consensus, factors within each determinant critical to be included in a Comprehensive Mobility Discharge Assessment Framework to be used to assess older adults' mobility during hospital-to-home transition.

The purpose of this introductory thesis chapter is to define mobility and mobility measurement; describe older adults' perceptions of mobility; describe the impact of mobility limitations, describe mobility frameworks and the Webber's Conical Model of the theoretical framework for mobility in older adults and studies that have tested the model; discuss the importance of mobility assessment during hospital-to-home transitions; and state the thesis objectives and the structure of this thesis work.

Mobility definitions

Mobility definitions were initially focused more on measurements of walking independently or mobility-related activities, including climbing flights of stairs [13] or self-reported walking abilities [14]. However, scholars have advocated that mobility definitions should not be limited to walking abilities but should also incorporate transportation, driving, and walking-related activities beyond the home [3]. Patla and Shumway-Cook [15] conceptualized community mobility as locomotion in the environments outside the home or residence, similar to life-space mobility. May and colleagues [16] were the first to describe the specific spatial measure of life-space, defined as the area through which the subject moved every 24 hours spanning across five concentric zones, including the bedroom, the rest of the home dwelling, the garden, courtyard, or grounds surrounding the dwelling, the block around the home dwelling ,and the areas across a traffic bearing street.

Subsequently, Peel et al. [17] advanced the notion of life-space mobility to include the frequency of movement and any assistance needed, acknowledging

that mobility can be achieved using an assistive device. Despite the advancements made in defining mobility, definitions that encompass life-space mobility achieved via different ways, such as by self (walking), use of assistive device, transportation and driving was lacking. In 2010, Webber and colleagues provided a comprehensive definition of mobility that captures life-space mobility achieved by self, use of assistive device, transportation or driving [3]. Webber et al [3]^{p.444} defined mobility as the "ability to move oneself (either independently or by using assistive devices or transportation) within environments that expand from one's home to neighborhood and to regions beyond." Webber et al.'s mobility definition was used in this thesis because it comprehensively captures life-space mobility and different manners in which mobility can be achieved.

Mobility can be assessed using self-reported, performance-based, and objective measures. - Objective measures capture what individuals do in their natural environment - real-life and "actual" mobility performance $_{ au}$ using accelerometers, gyroscopes or modern technologies such as Global Navigation Satellite Systems [18, 19]. Performance-based mobility measures capture the physical ability to perform a specific mobility task or action and involve the direct observation by an assessor [20,21]. Performance-based measures are often completed in a lab [22], are time-consuming, and require space for assessment[22]. Self-reported mobility measures represent the person's perception of their mobility performance and can be used for older adults who, due to their illness, may not be able to complete performance-based testing [22]. Self-reported mobility measures are often not time consuming, but are prone to response bias, where an older adult over-reports or under-reports their mobility ability [22]. Although comparable, a combination of mobility measures is recommended as each capture different aspects of mobility and complement each other by providing critical information that one tool alone may not capture [22].

Older adults' description of mobility

Older adults have provided their perspectives on mobility. Goins et al. [23] conducted a meta-synthesis of qualitative studies to explore older adults' perceptions of mobility. They included 12 studies with varied quality and reported that older adults view mobility (independently or assisted) as: a part of self and whole being; fundamental to living; and the key to moving forward. Similarly, a recent study interviewed 15 older adults to explore the importance and experience of mobility [24]. The study described that older adults' experiences of (im)mobility are connected to people and places and that mobility is fluid, contextual, and changes over time [24]. These qualitative findings highlight that mobility changes are not only a physical event but also include changes in social relations and psychological and environmental influences experienced by older adults, underscoring the need to conceptualize factors influencing mobility in older age.

Impact of mobility limitations on older adults

Mobility limitation has been described as self-reported difficulties in walking, performance deficits in objective mobility, and lack of access to assistive mobility devices, transportation, or driving [25]. About 30% of older adults (range of 22.5%-46.7%) in various studies) have mobility limitations [26]. There is reputable evidence on the impact of mobility limitation on older adults' health, social and care outcomes. Older persons with mobility limitations experience multifaceted issues within physical, psychological, and social domains, which compromise their ability to perform and engage in daily living and social activities; in turn this negatively affects their supportive relationships, connectedness, autonomy, and independence [27]. Mobility limitations are considered the first sign of older adults' functional decline [28] and are linked to hospitalization, frequent falls, poor cognitive functioning, muscle atrophy, frailty, and overall decreased quality of life

[6].Older adults with mobility limitations often require assistance with their activities of daily living, leading to additional healthcare costs. For instance, Hardy et al. [6] reported that the total annual healthcare cost was \$2773 higher in older adults reporting difficulty walking one-quarter a mile as compared to those with no difficulty. This increase in healthcare costs associated with mobility limitations warrants the need to explore the factors associated with mobility among the ageing population.

The overview of mobility frameworks

Researchers have conceptualized mobility with the intent to highlight the complexity of mobility. Early frameworks, such as the ecological model of adaptation in older adults or the person-environment fit model have been applied to explore mobility [29]. Put simply, the person-environment model explores the interplay between individuals' capacity or competency and their environment in relations to mobility. This model evolved from the ecological model that stipulated that an individual capacity should match the environmental demand to enable the individual to perform function adequately [29]. This model was foundational in understanding that mobility limitations could result from environmental constraints and not entirely individual in/capacity.

In 1999, Patla and Shumway-Cook proposed a new conceptual framework for understanding community mobility [15]. Community mobility is characterized by several complex factors associated with different aspects of gait, including: changes in direction and speed, travelling on uneven grounds, and concurrent execution of several tasks, such as turning, talking and looking at something while walking [15]. Patla and Shumway-Cook [15] described the community mobility continuum concerning the environments a patient can safely navigate. Such environmental continuum included: (a) independent community ambulator – an individual meeting the demand of moving freely within their community; (b) limited community ambulator – an individual moving freely but does not perform

all associated tasks because of some environmental barriers; (c) household ambulator - an individual who performs mobility-related tasks in his home alone but could not perform ambulation in the community because of environmental barriers; and, (d) non-functional ambulator - an individual who cannot perform mobility at home or in the community.

summary, Patla and Shumway-Cook [15], conceptualized Τn eight environmental dimensions that influence the community mobility continuum ranging from non-function ambulators to independent ambulators. These eight dimensions include: minimum walking distance, time constraints, ambient conditions, terrain characteristics, external physical load, attention demands, postural transitions, and traffic levels, capturing the external demands that an individual needs to meet to be mobile in the community. Understanding how environmental factors influence mobility is critical to preventing and creating rehabilitation programs for mobility limitations in older adults. While these frameworks have provided information highlighting the critical role of the environment in older adults, a comprehensive mobility framework that encapsulates the factors influencing mobility using the biopsychosocial framework was lacking, leading to Webber's Conical Model of Theoretical Framework for Mobility in Older adults [3].

The Conical Model of Theoretical Framework for Mobility in Older Adults

Webber's framework described five determinants that influence older adults' mobility across varied environments within their homes and the community - cognitive, environmental, financial, physical, and psychosocial (see FIG 1). In addition, this framework described that other factors such as gender, culture, and biography indirectly influence older adults' mobility. For instance, culture influences mobility through its effect on social relationships and physical activity behaviors. Further, the five determinants and other person-related are all interrelatedly influencing mobility [3]. For instance,

an older adult with a peripheral sensory impairment due to a chronic condition (physical), with or without an accompanying cognitive impairment (cognition), could develop a fear of falling (psychological), which is further heightened if there are obstacles on the sidewalks (environmental factors), leading to a reduction in social activity participation that can further cause social isolation (social). This interrelatedness of mobility determinants often differs across race, gender, and socio-economic status [30]. Furthermore, factors within each determinant can interact to influence older adults' mobility. On one hand, evidence has found that older adults with reduced social networks often do not participate in social activities, resulting in loneliness and further decreasing mobility [25]. On the other hand, older adults experiencing loneliness often have associated depressive symptoms which decrease their interest in social activities that could take them outside, resulting to muscle loss due to none use of muscle [25]. Hence, there is a need to comprehensively describe how the factors within each determinant, individually or collectively, influence older adults' mobility.

Figure 1. Conical Model of the Theoretical Framework for Mobility in Older Adults illustrating seven life-space and five mobility determinants including gender, culture and biographical influences. Reprinted with permission from Webber et al. [3] Oxford University Press and The Gerontological Society of America.

The Conical Model of Theoretical Framework for Mobility in Older Adults, with modifications based on the literature, guided this Ph.D. thesis. The framework was modified in two areas. First, the psychosocial determinant was divided into two separate determinants: psychological and social determinants. The psychosocial determinant was split because each determinant individually can influence mobility differently [31]. Psychological factors are mostly individual-level factors that influence behaviors that promote or hinder mobility, while social factors are societal level factors rooted in the structures and processes influencing mobility [32]. Second, by labelling gender, culture and biographical influences and added other factors based on the literature as personal determinants. These personal factors are defined as the particular background of an individual's life, including features not part of health and social condition [33]. Therefore, this PhD thesis was guided by the seven determinants of mobility [cognitive, environmental, financial, personal, physical, psychological and social] instead of five determinants as described in Figure 1.

Studies testing Webber's Conical Model of Theoretical Framework for Mobility in Older Adults

Several studies have explored the interrelatedness of the mobility determinants as described in the Conical Model Theoretical Framework for Mobility in Older adults [3]. While two studies [34,35] have tested Webber's Framework, five studies [36-40] have used Webber's framework to identify all potential mobility determinants by predicting which of the factors within each determinants predicts older adults mobility.

Two studies [34,35] used structural equation modeling to test the model among older adults residing in the United States of America [34] and Iran [35]. While the factors selected for each determinant did not differ extensively across the two studies (e.g., both studies assessed psychosocial and physical

factors using depression/social activity) and physical activity participation, mobility was measured with self-reported measures. The findings in these studies differ. While Jafari et al. [35] reported that all mobility determinants significantly predicted mobility limitations, Meyer et al. [34] reported that all, except financial factors, were community and personal mobility predictors. These study findings' differences could be related to how self-reported mobility was measured, highlighting that factors predicting mobility could differ depending on how mobility was measured.

Five studies have used Webber's framework [3] to guide the selection of factors that could predict older adults' mobility using life-space measures among those residing in nursing homes [38], discharged from geriatric rehabilitation [39] or community dwellings [36,37,38,40]. The studies' findings differ. While Kuspinar et al. [37] reported that all determinants predicted life-space mobility, only personal and physical predicted life-space mobility in Jansen et al.'s study [39]. The remaining studies reported that only physical, personal, and psychosocial predicted life-space mobility [36,38,40]. The differences in the findings across these studies could be because most of the studies selected different factors within each determinant; for example, environmental factors were measured using residential location [37], weather temperature [40,41], and neighborhood walkability - a composite of the landuse mix, traffic-related safety, and sidewalk characteristics [37]. Where the same factors were selected for each determinant, each study measured it using a different measure; for example, Kuspinar et al. [37] and Dunlap et al. [36] measured executive functioning using the Mental Alternation Test [42] and Trail Making Test A and B [43], respectively. While these studies highlighted the determinants that influence and predict mobility, research to date also underscores the lack of clarity regarding what factors clinicians and researchers should evaluate for each mobility determinant. Therefore, there is a need to create a comprehensive list of factors within each determinant and

their associations with mobility outcomes, allowing further creation of a core outcome set defined as a recommended minimum set of outcomes or outcome measures for a particular health construct, condition, or population, which should be reported for all trials on that issue [44]. Having core outcome sets for mobility factors in a specific context, such as hospital-to-home transition, increases outcome consistency across studies, resulting in a reduction in selective reporting to ensure the potential of a study to contribute to meta-analyses of the key outcomes [44], ultimately increasing the utility of study findings in clinical and research practice.

Hospital-to-home transitions

Care transitions, the movement between one care setting and another (e.g., hospital-to-home), involve not only changes in the 'locus' [place], the 'nature' [features] and the 'people' involved but also entail changes in the living environment, the way of living, the family, and social relationships [45]. Older adults experiencing a hospital-to-home transition are at increased risk for poor health outcomes [46], and transitions are fraught with opportunities for adverse and serious events such as a decline in mobility and deterioration in other areas of function e.g., cognitive status and social functioning [47,48]. Based on the potential for complications during this phase, transitional care models, such as Naylor et al. [46] and Coleman et al. [45] were created to address potential issues associated with transitions. These models have focused on interventions to improve provider-to-provider or provider-to-patient/family caregiver communication, improve care coordination, and educate patients to self-monitor and manage their medical conditions [49].

None of the current hospital-to-home transition care models, such as Naylor et al. [46] and Coleman [45], have included mobility as a core component. Kalu et al.'s [9] scoping review of existing theories and conceptual models that inform care transitions found that the role of rehabilitation professionals

is not explicitly described and that theories upon which transitional care models were developed were primarily based on nursing and medicine paradigms versus rehabilitation paradigms.

Importance of focusing on mobility during the hospital-to-home transition

The ultimate aim of ensuring effective care transition to home is to reduce hospital readmission, broadly defined as a hospital admission within a specified time frame (e.g., 30 or 90 days) after discharge from the first admission [50] by decreasing the risk for anticipated health problems and functional decline following discharge. Risk factors for hospital readmission are multifactorial and include socio-demographic factors such as: age, social status, social network, race, gender; depressive symptoms; smoking; previous history of admission; functional ability; length of hospital stay; chronic conditions (morbidity); and a recent history of falls [51-55]. Among all these factors, mobility-related factors, such as functional disability and history of falls, have been found to be independent predictors of hospital readmission [51-55]. Shih et al. [56], in a readmission risk prediction model using a sample of 120,957 patients from a uniform data system for medical rehabilitation, reported that models targeting functional status consistently outperform models based on medical comorbidities. Similarly, another study reported that medical patients with low functional status had a higher readmission rate (Rate [95%Cl]: 29% [25%-32%]) compared to those with high functional status [11]. This evidence highlights the importance of mobility as an independent predictor of hospital readmission, yet mobility assessments or interventions areas are not widely recognized as core components of hospital-to-home care transitions.

Researchers have argued that the lack of a comprehensive mobility discharge assessment framework or tool consisting of the seven determinants of mobility [cognitive, environmental, financial, personal, physical, psychological and social factors] and the lack of involvement of rehabilitation professionals could be the reason why mobility has not been included in the

hospital-to-home care transitions [8-10]. This PhD thesis hopes to fill in one of these gaps by developing, through consensus, a Comprehensive Mobility Discharge Assessment Framework for older adults transitioning from hospital to home.

Thesis Purpose and Format

The overall purpose of this thesis is:

(a) To synthesize the available evidence for factors within each mobility determinant - cognitive, financial, environmental, personal, physical, psychological, and social, and their association with self-report and performance-based mobility outcomes - Phase 1

(b) To develop, through consensus, a Comprehensive Mobility Discharge Assessment Framework (CMDAF) for older adults transitioning from hospital-tohome in the community - Phase 2.

Figure 2 - PhD thesis phases and corresponding manuscripts

This thesis is a manuscript-style thesis comprised of eight chapters, including an introduction chapter, six manuscripts, and a conclusion chapter. An overview of the six manuscripts across the two thesis phases is provided in Figure 2. Each manuscript is formatted according to the journal's requirements for publication; as a result, reference styles may differ across manuscripts (chapters). Notably, there are some overlapping ideas, concepts, and discussions across the manuscripts because they are interrelated and build on each other. Chapter 2 (Manuscript 1) is a scoping review that synthesizes the available evidence for factors comprising the cognitive, psychological, and social mobility determinants and their associations with self-reported and performance-based mobility outcomes in older adults (60 years and older). This manuscript is published: Kalu ME, Dal Bello-Haas V, Griffin M, Boamah S, Harris J, Zaide M, Rayner D, Khattab N, Abrahim S, Richardson TK, Savatteri N. Yimo W, Tkachyk C. Cognitive, psychological and social factors associated with older adults' mobility: a scoping review of self-report and performance-based measures. Psychogeriatrics 2022; 22: 553-573. doi: 10.111/psyg.12848.

Chapter 3 (Manuscript 2) is a scoping review that synthesizes the available evidence for factors comprising the personal, financial, and environmental mobility determinants and their associations with self-reported and performance-based mobility outcomes in older adults (60 years and older). This manuscript is currently under review: Kalu ME, Dal Bello-Haas V, Griffin M, Boamah S, Harris J, Zaide M, Rayner D, Khattab N, Abrahim S. A scoping review of personal, financial and environmental determinants of mobility among older adults.

Chapter 4 (Manuscript 3) is a scoping review that synthesizes the available evidence for factors comprising the physical mobility determinant and their associations with self-reported and performance-based mobility outcomes in older adults (60 years and older). This manuscript is published online: Kalu ME, Dal Bello-Haas V, Griffin M, Boamah S, Harris J, Zaide M, Rayner D, Khattab N, Bhatt V, Goodin C, Song JW, Smal J, Budd N. Physical mobility determinants among older adults: a scoping review of self-reported and performance-based measures. European Journal of Physiotherapy. doi:10.1080/21679169.2022.2153303.

Chapter 5 (Manuscript 4) is a protocol paper for an international e-Delphi study that aimed to prioritize and reach consensus on the factors for each mobility determinant that are critical to assess as part of the Comprehensive Mobility Discharge Assessment Framework (CMDAF) when older adults

are discharged from hospital-to-home. This paper has been published: Kalu ME, Dal Bello-Haas V, Griffin M, Ploeg J, Richardson J. A comprehensive mobility discharge assessment framework for older adults transitioning from hospitalto-home in the community - What mobility factors are critical to include? Protocol for an international e-Delphi study. PLoS One 17 (9): e0267470. doi: 10.1371/journal.pone.0267470.

Chapter 6 (Manuscript 5) is an international e-Delphi study that aimed to prioritize and reach consensus on the factors for each mobility determinant that are critical to assess as part of the Comprehensive Mobility Discharge Assessment Framework (CMDAF) when older adults are discharged from hospitalto-home. This manuscript is currently under review: Kalu ME, Dal Bello-Haas, Griffin M, Boamah S, Harris J, Rantanen T. What mobility factors are critical to include in a Comprehensive Mobility Discharge Assessment Framework for older adults transitioning from hospital-to-home in the community? An International e-Delphi study.

Chapter 7 (Manuscript 6) is a qualitative content analysis of expert participants' rationales for how they rated mobility factors critical to be included in the CMDAF for older adults transitioning from hospital-to-home. This manuscript is under review: Kalu ME, Dal Bello-Haas, Griffin M, Boamah S, Harris J, Rayner D, Rantanen T. Qualitative analysis of experts' rationales for rating mobility factors deemed critical to assess as part of a Comprehensive Mobility Discharge Assessment Framework for older adults transitioning from hospital-to-home.

Chapter 8 is the discussion chapter that synthesizes the thesis work describe how the studies built on each other to bridge the gaps in the literature that were identified. This chapter also discusses the implications of the thesis as a whole, overall strengths and limitations, and future directions.

References

- [1] World bank. World Population Ageing 2019 [Internet]. World Population Ageing 2019. 2019 [cited 2022 May 27]. p. 64. Available from: http://link.springer.com/chapter/10.1007/978-94-007-5204-7 6
- [2] Beard JR, Officer A, De Carvalho IA, Sadana R, Pot AM, Michel JP, et al. The World report on ageing and health: A policy framework for healthy ageing. Lancet. 2016;387(10033):2145-54.
- [3] Webber SC, Porter MM, Menec VH. Mobility in older adults: A comprehensive framework. Gerontologist. 2010;50(4):443-50.
- [4] United Nations. Ageing and disability. [Internet]. Department of Economic and Social Affairs. United Nations - Disability. 2018. Available from: https://www.un.org/development/desa/disabilities/ disability-and-ageing.html
- [5] Helen K, John H. Better Options for Older Adults. Public roads. 2007;70(5):16-23.
- [6] Hardy SE, Kang Y, Studenski SA, Degenholtz HB. Ability to walk 1/4 mile predicts subsequent disability, mortality, and health care costs. J Gen Intern Med. 2011;26(2):130-5.
- [7] Freiberger E, Sieber CC, Kob R. Mobility in Older Community-Dwelling Persons: A Narrative Review. Front Physiol. 2020;11.
- [8] Wald HL, Ramaswamy R, Perskin MH, Roberts L, Bogaisky M, Suen W, et al. The Case for Mobility Assessment in Hospitalized Older Adults: American Geriatrics Society White Paper Executive Summary. J Am Geriatr Soc. 2019 Jan 1;67(1):11-6.
- [9] Kalu M, Maximos M, Sengiad S, Dal Bello-Haas V. The role of rehabilitation professionals in care transitions for older adults: A scoping review. Phys Occup Ther Geriatr. 2019;37(3):123-50.
- [10] Falvey JR, Burke RE, Ridgeway KJ, Malone DJ, Forster JE, Stevens-Lapsley JE. Involvement of acute care physical therapists in care transitions for older adults following acute hospitalization: A Cross-sectional national survey. J Geriatr Phys Ther. 2019;42(3):E73-80.
- [11] Hoyer EH, Needham DM, Atanelov L, Knox B, Friedman M, Brotman DJ. Association of impaired functional status at hospital discharge and subsequent rehospitalization. J Hosp Med. 2014;9(5):277-82.
- [12] Shih SL, Gerrard P, Goldstein R, Mix J, Ryan CM, Niewczyk P, et al. Functional status outperforms comorbidities in predicting acute care readmissions in medically complex patients. J Gen Intern Med. 2015;30(11):1688-95.
- [13] Simonsick EM, Newman AB, Visser M, Goodpaster B, Kritchevsky SB, Rubin S, et al. Mobility limitation in self-described well-functioning older adults: Importance of endurance walk testing. J Gerontol A Biol Sci Med Sci. 2008;63(8):841-7.
- [14] Melzer D, Gardener E, Guralnik JM. Mobility disability in the middleaged: Cross-sectional associations in the English Longitudinal Study of Ageing. Age Ageing. 2005;34(6):594-602.
- [15] Patla AE, Shumway-Cook A. Dimensions of mobility: Defining the complexity and difficulty associated with community mobility. J Aging Phys Act. 1999 Jan 1;7(1):7-19.
- [16] May D, Nayak USL, Isaacs B. The life-space diary: A measure of mobility in old people at home. Disabil Rehabil. 1985;7(4):182-6.
- [17] Peel C, Baker P, Bodner E, Roth D, RM A. Using "life-space" to measure mobility in older adults. J Geriatr Phys Ther. 2003 Nov;26(3):34.
- [18] Giannouli E, Bock O, Mellone S, Zijlstra W. Mobility in old age: Capacity is not performance. BioMed Res Int. 2016:3261567
- [19] World Health Organization, International Classification of Functioning, Disability and Health. 2005. Available at http://www.who.int/classifications/icf/en/

- [20] Nielsen LM, Kirkegaard H, Østergaard LG, Bovbjerg K, Breinholt K, Maribo T. Comparison of self-reported and performance-based measures of functional ability in elderly patients in an emergency department: Implications for selection of clinical outcome measures. BMC Geriatr. 2016 Nov 29;16(1)
- [21] Roedersheimer KM, Pereira GF, Jones CW, Braz VA, Mangipudi SA, Platts-Mills TF. Self-Reported Versus Performance-Based Assessments of a Simple Mobility Task among Older Adults in the Emergency Department. Ann Emerg Med. 2016;67(2):151-6.
- [22] Reuben DB, Seeman TE, Keeler E, Hayes RP, Bowman L, Sewall A, et al. Refining the categorization of physical functional status: The added value of combining self-reported and performance-based measures. Journals Gerontol - Ser A Biol Sci Med Sci. 2004;59(10):1056-61.
- [23] Goins RT, Jones J, Schure M, Rosenberg DE, Phelan EA, Dodson S, et al. Older adults' perceptions of mobility: A metasynthesis of qualitative studies. Gerontologist. 2015;55(6):929-42.
- [24] Grenier A, Griffin M, Andrews G, Wilton R, Burke E, Ojembe B, et al. Meanings and feelings of (Im)mobility in later life: Case study insights from a 'New Mobilities' perspective. J Aging Stud. 2019;51:100819.
- [25] Rantakokko M, Mänty M, Rantanen T. Mobility decline in old age. Exerc Sport Sci Rev. 2013;41(1):19-25.
- [26] Musich S, Wang SS, Ruiz J, Hawkins K, Wicker E. The impact of mobility limitations on health outcomes among older adults. Geriatric Nursing. 2017;39(2):162-169.
- [27] Shumway-Cook A, Ciol MA, Yorkston KM, Hoffman JM, Chan L. Mobility limitations in the Medicare population: prevalence and sociodemographic and clinical correlates. J Am Geriatr Soc. 2005;53(7):1217-21.
- [28] Simonsick EM, Newman AB, Nevitt MC, Kritchevsky SB, Ferrucci L, Guralnik JM, et al. Measuring higher level physical function in well-functioning older adults: expanding familiar approaches in the Health ABC study. J Gerontol A Biol Sci Med Sci. 2001;56(10):M644-9.
- [29] Lawton MP, Nahemow L. Ecology and the aging process. In: The psychology of adult development and aging. 2004, pp. 619-674.
- [30] Bergland A, Engedal K. Living arrangements, social networks, health, mobility, and balance of older women. Phys Occup Ther Geriatr. 2011;29(2):90-101.
- [31] Hirsch JA, Winters M, Sims-Gould J, Clarke PJ, Ste-Marie N, Ashe M, et al. Developing a comprehensive measure of mobility: Mobility over varied environments scale (MOVES). BMC Public Health. 2017;17(1):1-14.
- [32] Upton J. Psychological Factors and Health. Encycl Behav Med.2013;1556-8.
- [33] Mandich MB. International classification of functioning, disability and health. Phys Occup Ther Pediatr. 2007;27(2):1-4.
- [34] Meyer MRU, Janke MC, Beaujean AA. Predictors of older adults personal and community mobility: Using a comprehensive theoretical mobility framework. Gerontologist. 2014;54(3):398-408.
- [35] Jafari A, Aminisani N, Shamshirgaran SM, Rastgoo L, Gilani N. Predictors of mobility limitation in older adults: A structural equation modeling analysis. Balt J Heal Phys Act. 2020;12(1):20-31.
- [36] Dunlap PM, Rosso AL, Zhu X, Klatt BN, Brach JS. The Association of Mobility Determinants and Life Space Among Older Adults. Journals Gerontol Ser A. 2021;XX:1-9.
- [37] Kuspinar A, Verschoor CP, Beauchamp MK, Dushoff J, Ma J, Amster E, et al. Modifiable factors related to life-space mobility in communitydwelling older adults: Results from the Canadian Longitudinal Study on Aging. BMC Geriatr. 2020;20(1):1-10.
- [38] Giannouli E, Fillekes MP, Mellone S, Weibel R, Bock O, Zijlstra W.

Predictors of real-life mobility in community-dwelling older adults: An exploration based on a comprehensive framework for analyzing mobility. Eur Rev Aging Phys Act. 2019;16(1):19.

- [39] Jansen CP, Diegelmann M, Schnabel EL, Wahl HW, Hauer K. Life-space and movement behavior in nursing home residents: results of a new sensorbased assessment and associated factors. BMC Geriatr. 2017;17(1):1-9.
- [40] Ullrich P, Eckert T, Bongartz M, Werner C, Kiss R, Bauer JM, et al. Life-space mobility in older persons with cognitive impairment after discharge from geriatric rehabilitation. Arch Gerontol Geriatr. 2019;81:192-200.
- [41] Giannouli E, Bock O, Zijlstra W. Cognitive functioning is more closely related to real-life mobility than to laboratory-based mobility parameters. Eur J Ageing. 2018 Mar 1;15(1):57-65.
- [42] Teng E. The mental alternations test (MAT). Clin Neuropsychol. 1995;9:287.
- [43] Reitan RM. The relation of the trail making test to organic brain damage. Journal of Consulting Psychology. 1955;19(5):393.
- [44] Prinsen CAC, Vohra S, Rose MR, Boers M, Tugwell P, Clarke M, et al. How to select outcome measurement instruments for outcomes included in a "Core Outcome Set" - a practical guideline. Trials. 2016;17(1):1-10.
- [45] Coleman E. The Care Transitions Program [Internet]. Denver; Available from: https://caretransitions.org/
- [46] Naylor MD, Hirschman KB, Hanlon AL, Bowles KH, Bradway C, Mccauley KM, et al. Comparison of evidence-based interventions on outcomes of hospitalized, cognitively impaired older adults. J Comp Eff Res. 2014;3(3):245-57.
- [47] Falvey JR, Burke RE, Malone D, Ridgeway KJ, McManus BM, Stevens-Lapsley JE. Role of physical therapists in reducing hospital readmissions: Optimizing outcomes for older adults during care transitions from hospital to community. Phys Ther. 2016;96(8):1125-34.
- [48] Kalu M, Dal Bello-Haas V, Griffin M, Ploeg J, Richardson J. A Comprehensive Mobility Discharge Assessment Framework for older adults transitioning from hospital-to-home in the community - what mobility factors are critical to include? Protocol for an international e-Delphi study. PLoS One. 2022; Imprint.
- [49] Kalu ME, Maximos M, Seng-iad S DB-H V. The Role of Rehabilitation Professionals in Care Transitions for Older Adults: Evidence from a synthesis of interventions, conceptual frameworks, models and theories of care transition. In: The 46th Annual Conference of the British Society of Gerontology Conference, Manchester. 2018.
- [50] Guo L, Chung ES, Casey DE, Snow R. Redefining hospital readmissions to better reflect clinical course of care for heart failure patients. Am J Med Qual. 2007 Mar;22(2):98-102.
- [51] García-Pérez L, Linertová R, Lorenzo-Riera A, Vázquez-Díaz JR, Duque-González B, Sarría-Santamera A. Risk factors for hospital readmissions in elderly patients: A systematic review. QJM. 2011;104(8):639-51.
- [52] Bick I, Dowding D. Hospitalization risk factors of older cohorts of home health care patients: A systematic review. Home Health Care Serv Q. 2019 Jul 3;38(3):111-52.
- [53] Pedersen MK, Meyer G, Uhrenfeldt L. Risk factors for acute care hospital readmission in older persons in western countries: A systematic review. JBI Database Syst Rev Implement Reports. 2017 Feb 1;15(2):454-85.
- [54] Smith SL, Matthews EO, Moxon J V., Golledge J. A systematic review and meta-analysis of risk factors for and incidence of 30-day readmission after revascularization for peripheral artery disease. J Vasc Surg. 2019 Sep 1;70(3):996-1006.e7.
- [55] Preyde M, Brassard K. Evidence-based Risk Factors for Adverse Health

Outcomes in Older Patients after Discharge Home and Assessment Tools: A Systematic Review. J Evid Based Soc Work. 2011;8(5):445-68.

[56] Shih SL, Gerrard P, Goldstein R, Mix J, Ryan CM, Niewczyk P, et al. Functional Status Outperforms Comorbidities in Predicting Acute Care Readmissions in Medically Complex Patients. J Gen Intern Med. 2015 Nov;30(11):1688-95.
CHAPTER 2: Cognitive, psychological and social factors associated with older adults' mobility: a scoping review of self-reported and performance-based measures

As published in:

Psychogeriatrics

Preface

This chapter is one of the three manuscripts from Phase 1 of the PhD thesis that focused on identifying factors within cognitive, psychological and social mobility determinants and their association with self-reported and performancebased mobility outcomes in older adults. Under the supervision of Dr V Dal Bello-Haas, I conceptualized the study, designed the study, developed research questions and search strategy, conducted the search, and participated in the title/abstract and full-text screening, extracted the data, and interpreted the findings, wrote, revised and submitted the manuscript. Dr. M Griffin, Dr. S Boamah, and Dr. J Harris provided feedback on the research questions, study designs and the manuscript. The following authors participated in the title/abstract and full-text screening and data extraction of the included articles: C Tkachyk and Y Wang for psychological factors; TK Richardson and N Savatteri for social factors; N Khattab and S Abrahim for cognitive factors. M Zaide and D Rayner participated in the title/abstract and full-text screening and data extraction of update search. The first search was conducted in November 2019 and updated in December 2021. This chapter is the manuscript as published in Psychogeriatrics.

Citation:

Kalu ME, Dal Bello-Haas V, Griffin M, Boamah S, Harris J, Zaide M, Rayner D, Khattab N, Abrahim S, Richardson TK, Savatteri N, Wang Y, Tkachyk C. Cognitive, psychological and social factors associated with older adults' mobility: a scoping review of self-report and performance-based measures. Psychogeriatrics. 2022; 4(22): 553-573. doi:10.1111/psyg.12848

Ph.D. Thesis M. Kalu, McMaster University - School of Rehabilitation Science

We have received permission to publish the manuscript in my thesis (See Appendix 2E).

Cognitive, psychological and social factors among mobility of older adults: a scoping review of self-report and performance-based measures

Short title: Cognitive, Psychological and Social mobility determinants among older adults.

Authors: Michael E Kalu, Vanina Dal Bello-Haas, Meridith Griffin, Sheila Boamah, Jocelyn Harris, Mashal Zaide, Daniel Rayner, Nura Khattab, Salma Abrahim, Tristan K Richardson, Nicholas Savatteri, Yimo Wang, Christian Tkachyk

Affiliations:

- Michael E Kalu, PhD student, MSc, BMR. PT School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada kalum@mcmaster.ca
- Vanina Dal Bello-Haas, PT, PhD School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada vdalbel@mcmaster.ca
- Meridith Griffin, PhD Department of Health, Aging & Society, Faculty of Social Science, McMaster University Hamilton, Ontario, Canada griffmb@mcmaster.ca
- Sheila A Boamah, RN, PhD School of Nursing, Faculty of Health Sciences, McMaster University Hamilton, Ontario, Canada boamahs@mcmaster.ca
- Jocelyn Harris, PhD, OT School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada jharris@mcmaster.ca
- Mashal Zaide, BSc student Faculty of Health Sciences, McMaster University, Ontario, Canada. zaidem@mcmaster.ca
- Daniel Rayner, BHSc student

Department of Health Science, Faculty of Health Sciences, McMaster University, Ontario, Canada. rayned1@mcmaster.ca

- Nura Khattab, BScKin student Department of Kinesiology, Faculty of Sciences, McMaster University, Ontario, Canada. khattabn@mcmaster.ca
- Salma Abrahim, BScKin student Department of Kinesiology, Faculty of Sciences, McMaster University, Ontario, Canada. abrahims@mcmaster.ca
- Tristan K Richardson, MSc(PT), BHSc Hamilton General Hospital, Hamilton Health Science, Ontario, Canada Tristan.richardson@rocketmail.com
- Nicholas Savatteri, MSc(PT), BScKin Absolute Rehabilitation and Wellness Stoney Creek, Ontario, Canada nsavatteri@gmail.com
- Yimo Wang, MSc(PT), BMSc Myodetox Markham, Markham, Ontario Canada Yimo.wang@myodetox.com
- Christian Tkachyk, MSc(PT), BASc(Hon) Kin, Althon Physiotherapy & Sports Clinic, Burlington, Ontario Canada

Corresponding author: Michael E Kalu; kalum@mcmaster.ca

doi:10.1111/psyg.12848

PSYCHOGERIATRICS 2022; 22: 553-573

Check for updates

REVIEW ARTICLE

Cognitive, psychological and social factors associated with older adults' mobility: a scoping review of self-report and performance-based measures

Michael E. KALU ^(D),¹ Vanina Dal BELLO-HAAS ^(D),¹ Meridith GRIFFIN ^(D),² Sheila BOAMAH ^(D),³ Jocelyn HARRIS ^(D),¹ Mashal ZAIDE,⁴ Daniel RAYNER ^(D),⁵ Nura KHATTAB,⁶ Salma ABRAHIM ^(D),⁶ Tristan K. RICHARDSON,⁷ Nicholas SAVATTERI,⁸ Yimo WANG⁹ and Christian TKACHYK¹⁰

School of ¹Rehabilitation Science, Faculty of Health Sciences, ²Health, Aging & Society, Faculty of Social Science, ³Nursing, Faculty of Health Science, ⁴Faculty of Health Sciences, ⁵Health Science, Faculty of Health Sciences and ⁶Kinesiology, Faculty of Sciences, McMaster University and ⁷, Hamilton General Hospital, Hamilton Health Science, Hamilton, ⁸, Absolute Rehabilitation and Wellness, Stoney Creek, ⁹, Myodetox Markham, Markham, Ontario and ⁴⁰, Althon Physiotherapy & Sports Clinic, Burlington, Omatrio, Canada

Correspondence: Michael E. Kalu PhD (s), MSc, BMR. PT, School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada. Email: kalum@mcmaster.ca

Disclosure: The authors have no potential conflicts of interest to disclose.

Received 8 February 2022; revision received 21 April 2022; accepted 25 April 2022.

Abstract

Although many factors have been associated with mobility among older adults, there is paucity of research that explores the complexity of factors that influence mobility. This review aims to synthesise the available evidence for factors comprising the cognitive, psychological, and social mobility determinants and their associations with mobility self-reported and performance-based outcomes in older adults (60 years). We followed Arksey and O'Malley's five stages of a scoping review and searched PubMed, EMBASE, PsychINFO, Web of Science, AgeLine, Allied and Complementary Medicine Database, Cumulative Index to Nursing and Allied Health Literature and Sociological Abstract databases. Reviewers in pairs independently conducted title, abstract, full-text screening and data extraction. We reported associations by analyses rather than articles because articles reported multiple associations for factors and several mobility outcomes. Associations were categorised as significantly positive, negative, or not significant. We included 183 peer-reviewed articles published in 27 countries, most of which were cross-sectional studies and conducted among community-dwelling older adults. The 183 articles reported 630 analyses, of which 381 (60.5%) were significantly associated with mobility outcomes in the expected direction. For example, older adults with higher cognitive functioning such as better executive functioning had better mobility outcomes (e.g., faster gait speed), and those with poor psychological outcomes, such as depressive symptoms, or social outcomes such as reduced social network, had poorer mobility outcomes (e.g., slower galt speed) compared to their counterparts. Studies exploring the association between cognitive factors, personality (a psychological factor) and selfreported mobility outcomes (e.g., walking for transportation or driving), and social factors and performance-based mobility outcomes in older adults are limited. Understanding the additive relationships between cognitive, psychological, and social factors highlights the complexity of older adults' mobility across different forms of mobility, including independence, use of assistive devices, transportation, and driving.

Key words: cognitive factors, mobility, older adults, psychological factors, social factors.

INTRODUCTION

Mobility, defined as the ability to move oneself (independently or using assistive devices or transportation)

© 2022 Japanese Psychogeriatric Society.

within environments that expand from one's home to the neighbourhood and regions beyond, plays a fundamental role in maintaining active ageing.¹ Mobility decline often leads to loss of independence in

performing everyday tasks, such as running errands,² and leads to increased pain, morbidity, mortality, and institutionalisation among older adults.³ The prevalence of mobility-related disability among older adults (aged 65 years and older) increased from 22.6% in 2005 to 47.6% in 2015,⁴ highlighting the need to determine the factors that influence mobility.

Webber et al.1 provided a comprehensive framework explaining the link between mobility and primary predictors and modifiers of mobility and conceptualised mobility determinants into cognitive, environmental, financial, personal, physical, psychological, and social factors. While Webber et al.'s paper¹ highlights the interrelationship between mobility and these key determinants, they did not synthesise the relationships between different forms of mobility (by self, use of assistive devices, transportation and driving) and the inherent factors within each mobility determinant. This restricts the practical use of the framework in clinical and research practice, making it challenging to ascertain which factors within each determinant play an active role in mobility. Therefore, a systematic search of the literature to identify the inherent factors within each determinant is warranted. Based on this, we conducted a comprehensive review of the seven mobility determinants and grouped the review into three: contextual factors (environmental, financial, and personal); psychological, social and cognitive; and physical factors and their association with mobility outcomes. This review focuses on psychological, social and cognitive determinants of mobility.

Cognition refers to internal mental representations best characterised as thoughts and ideas involved in multiple mental processes and operations, including perception, reasoning memory, intuition, judgement, and decision making.5 Cognitive functions include but are not limited to executive function, attention, memory, visuospatial function.⁵ There is growing evidence of associations between cognition and mobility6-8 and works demonstrating that mobility and cognitive impairment dynamically unfold together across life.9-11 Because not all cognitive domains are affected similarly by the ageing process,12 the assoclations between cognitive functions and mobility outcomes among older adults may depend on the cognitive domain and mobility outcome measured. More so, given the complexity of each cognitive factor and different mobility measures, a comprehensive examination of the associations between different forms of cognitive functions and different kinds of mobility, including using assistive devices and walking for transportation, is needed.

Psychological factors are individual-level processes, including thoughts, feelings, and attitudes that influence mental states and behaviour.13 Psychological factors affecting mobility in older adults include fall-related psychological concerns, such as: self-efficacy14 and fear of falling;15 mental healthrelated factors, such as depression¹⁶ and anxiety;¹⁷ and personality.18,19 Some psychological factors, such as fear of falling, have been investigated for decades mostly on falls,²⁰ but recently in mobility,¹⁵ demonstrating a strong association between fear of falling and mobility decline.^{21,22} Psychological factors mediate mobility differently highlighting their complex associations within different older adults' mobility forms. Therefore, a comprehensive review of psychological factors and their association with mobility outcomes is warranted.

Social factors are general factors at the level of human society concerned with social structure and processes that impact individuals' physical and social activities.13 Social factors affecting older adults' mobility include but are not limited to social relations, social participation, social networks, and social isolation.23 Extensive social relations have increased older adults' community mobility.24 through their active participation in community/social activities,25 suggesting that a strong social network may prevent mobility decline in older adults. Social relations such as the frequency of personal contacts with significant others (i.e., children, grandchildren, siblings, relatives, and friends) suggests that diverse social network resources are vital in improving mobility in older adults.²⁶ A bidirectional relationship exists between social factors and mobility.²⁶ While it is plausible that lack of social participation may result in increased mobility limitation, it is also possible that mobility limitation may hinder older adults' active social participation.23 Thus, a comprehensive review is needed to clarify the dynamic interaction between social factors and mobility outcomes in older adults.

Systematic/scoping reviews exist that explore the relationships between cognitive, psychological and social factors and mobility; however, often only a singular aspect of mobility and/or the factor was examined. For instance, De Silva *et al.*'s review⁶ explored

the association between cognition and one selfreported mobility outcome, while other reviews focused on the association between one aspect of cognition such as global cognition and several performance-based mobility outcomes, such as gait speed only,⁷ and gait speed, balance and lower limb strength.8 Similarly, the associations between psychological and social factors and mobility outcomes have been explored: fear of falling and performance-based measures,15 or social isolation and transportation,23 but not comprehensively. While these reviews have highlighted the association between cognitive, psychological and social factors and specific mobility outcomes, not all factors were included. The relationship between various social factors such as loneliness, social networks, social support, or psychological factors such as anxiety, mood and depression and various forms of mobility including walking for transportation or driving, are lacking.

This paper aims to synthesise the available evidence for factors comprising the cognitive, psychological, and social mobility determinants and their associations with mobility self-reported and performance-based outcomes in older adults (60 years and older).

METHODS

We followed the five stages of scoping review according to Arksey and O'Malley's²⁷ framework and Levac *et al.*'s recommendation²⁸ for advancing the methodology of scoping reviews. We reported this scoping review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews (PRISMA-Scr).²⁹ The protocol was registered with Open Science Framework: https://doi.org/10.17605/OSF.IO/7Y5VG.

Identifying the research questions

Two questions were addressed explicitly in this review: (a) what is the available evidence for factors comprising the cognitive, psychological, and social mobility determinants in older adults (60 years and older); and (b) what are the associations between cognitive, psychological, and social factors and mobility self-reported and performance-based outcome in older adults (60 years and older)? We followed Webber *et al.*'s¹ definition of mobility in this review. Mobility is the ability to move oneself (either

© 2022 Japanese Psychogeriatric Society.

independently or by using assistive devices or transportation or driving) within environments that expand from one's home to the neighbourhood and regions beyond. Mobility either by self, use of assistive devices, driving, or transport can be assessed using self-reported or performance-based measures.

Identify relevant studies

The search strategy was developed and optimised in consultation with an expert health science librarian. Webber et al.'s paper1 was the seed article which highlighted the concepts to be searched in this scoping review. Search terms were developed using MeSH terms or keywords related to: (a) the study population, such as older adults; (b) exposure, including cognition, psychological and social factors; and (c) mobility outcomes, including gait speed, balance, self-reported mobility limitations. We adapted the MeSH terms and keywords for each database. Three different searches were conducted separately for cognitive, psychological, and social determinants in eight databases (PubMed, EMBASE, AMED, CINAHL, Psych INFO, AgeLine, Web of Science, Sociological Abstract databases) using the search strategy in Table 1. See Appendix 1 for an example of a search conducted in CINHAL for each determinant. We restricted our search from January 2000 to December 2021, as 2000 was the projected year that the impact of baby boomers on health outcomes would be most prominent across the developed countries in the world.30 We searched the reference lists of the included articles for additional articles that met our inclusion criteria.

Selecting studies

Inclusion and exclusion criteria

We included studies if: (a) the *study population* was older adults (60 years or older); (b) the *exposure* included cognition (attention, executive functioning, memory, processing speed, visuospatial function, and general cognition), psychological factors (affect, anxiety, apathy, depression, self-efficacy, motivation, fear of falling, emotional well-being, self-perceived fatigue, extraversion, openness, agreeableness, and conscientiousness), and/or social factors (loneliness, social isolation, social participation, social network, social support); (c) the *mobility outcomes* were assessed by self-reported and/or performance-based measures; (d) the *study setting* was in a hospital, community,

Population (older adults)		Exposure	Outcome (mobility)	
Elderly OR geriatric OR Aging OR Older people* OR Senior* OR Retirees OR Aged OR Older persons OR Gerontology OR Adult*	Cognition	Cognition OR Cognitive impairment OR Memory OR Perception OR Fluid cognition OR Executive function OR Processing speed OR Attention OR Visual spatial Memory OR Learning OR Pattern recognition OR Response inhibitions	Mobility limitations, OR Life spac measures OR Mobility OR Walking OR Ability level OR physical mobility OR Movemer OR Gait OR Balance OR Time up and Go OR Physical	
	Psychological	Depression OR Anxiety OR Psychological stress OR Emotional stress OR Self-efficacy OR Mental health OR Fear of falling OR Mood disorders OR Kinesiophobia Social support OR Social relationships OR Interpersonal relationships OR Social networks OR Social engagement OR Social oR Social behavio*r.	functioning OH, Six minutes' walk test OR Berg Scale OR Short physical performance battery OR	
	Social		Transportation OR Travel OR Driving OR Driving safety OR Crashes OR accident OR Road test OR	
			Walking aid OR Ambulation aids OR Assistive devices OR Wheelchair* OR Scoote* OR Cane* OR Crutche* OR Prosthetic devices OR Orthotic devices OR walker	

Population terms AND Exposure terms AND Outcome terms for each determinant were adapted and searched in seven databases including PubMed, EMBASE, AMED, CINAHL, Psych INFO, Web of Science, Sociological abstract. MeSH and keywords - headings were adapted for each database using Boolean/phrases.

assisted living or long-term care facilities; and (e) the article was peer-reviewed, conducted in a quantitative or mixed-method paradigm, and published in English between January 2000 to December 2021.

We excluded articles if they: (a) were opinion papers with no primary data; (b) used measures assessing the functional decline in activities of daily living or instrumental activities of daily living without any specific measure of mobility; and (c) described physical activity or exercise (except walking) as a form of mobility.

We exported citations from each database and imported them into Rayyan QCRI^{®31} separately for cognitive, psychological, and social determinants of mobility. Study selection was conducted separately for each determinant and in two stages: title/abstract and full-text screening for each factor using the above inclusion and exclusion criteria. Before the screening process at each stage, three author reviewers for each determinant (CT, YW, MK for psychological; and TR, NS, MK for social; and NK, SA, MK for cognition) conducted pilot testing of the first 50 articles to determine the inter-rater reliability. Raters' kappa scores for both title/abstract and fulltext screening ranged from 0.80 to 0.96, indicating strong agreement between raters.³² As a result, the remaining articles retrieved from the search were divided among each pair of author reviewers, and each individually performed title, abstract, and fulltext screening for their assigned determinant. Disagreements were resolved in research meetings and discussions with the senior authors.

Charting of data

Before data extraction, all included articles for each determinant after full-text screening were downloaded into Microsoft Excel sheets. One author reviewer (MK) identify the overlapping articles across the cognitive, psychological and social determinants. Four author reviewers (NK, SA, DR and MK) met to develop a data extraction form in Microsoft Excel following a template from a previous review.³³ Each author reviewer (CT, YW for psychological; TR, NS for social; NK, SA for cognition; and DR, MZ for overlapping articles) independently extracted 10 articles to pilot-test the data extraction sheet to ensure

consistency. Author reviewers met and compared the data extracted in each data extraction sheet. We resolved any disagreements by discussion and consulting with senior authors, leading to the final data extraction sheet. Articles were divided among author reviewers for each determinant to complete data extraction. The following data were extracted from the included articles: authors' names, the country in which the study was conducted, study aims, research questions or hypothesis, the setting from which participants were recruited, study type, study design, and population (older adults with no defined health conditions and those with defined health conditions, such as dementia), sample size, participants' age and gender distribution, cognitive, psychological and social factors studied, type of mobility outcome used. We extracted the mean (SD), median (interquartile range), P-values, odds ratios, hazard ratios, prevalence ratios, and correlations and their 95% confidence intervals of result findings related to our research questions.

Collating, summarising, and reporting the result

We reported the analyses by the association between factors within mobility determinants and mobility outcomes rather than by the articles themselves because most articles reported multiple associations for factors and several mobility outcomes. For example, one article may have reported the associations between multiple factors (e.g., depression, anxiety, social network, and attention) and multiple mobility outcomes (e.g., walking distance, walking speed, self-reported inability to walk one mile, and total walking distance per day). For the example above, 20 distinct associations were extracted from this article. We presented the result of this review in two parts: (1) studies and sample characteristics; and (2) the association between each factor within each determinant of mobility (assessed by both selfreported and performance-based mobility measures).

RESULTS

We retrieved 23 319 citations from the databases (cognition = 9926, psychological = 8825, social = 4568); 990 (cognition = 567, psychological = 290 and social = 133) underwent full-text screening and 183 were included (Fig. 1). The distribution of articles within each determinant is presented in a Venn diagram (Fig. 2).

© 2022 Japanese Psychogeriatric Society.

Characteristics of the included articles

The included 183 articles' characteristics are presented in Table 2. The articles were conducted in 27 countries on five continents, excluding Africa. A little over half of the articles (n = 99, 54.1%) were conducted in North America, primarily the USA (n = 87, 47.5%) and Canada (n = 12, 6.6%). All included articles were quantitative studies; 101 (55.2%) and 73 (39.9%) were cross-sectional and longitudinal studies, with nine articles (4.9%) reporting quasiexperimental studies or randomised controlled trials' findings.

The majority (n = 129, 70.5%) of the included studies' populations were older adults with no defined conditions. The remaining 54 articles (29.5%) included older adults with dementia or cognitive impairment,34-59 fragile X syndrome associated with tremor/ataxia, a condition resulting from a gene permutation,⁶⁰ stroke,^{61,62} chronic obstructive pulmonary disease,63 cancer,64,65 diabetes,66 Parkinson's disease,17,67-74 cardiovascular disease.^{14,75–80} lower back pain,⁸¹ multiple comorbidities⁸²⁻⁸⁴ and post-menopausal conditions.⁸⁵ Most studies recruited participants from the community (n = 164, 89.6%), and the remaining studies (n = 19, 10%)10.4%) recruited from the hospital and long-term care setting or both the long-term care and community setting, or did not report the setting from which the participants were recruited.

Reported mean ages ranged from $61.1^{73,76}$ to 91.1^{59} years. Sixty-nine per cent (n = 126) of the included articles had more women than men in their sample and sample sizes ranged from 13^{41} to $51338.^{86}$

Of the 183 articles, 121 (66.1%) articles assessed mobility using performance-based measures only, 55 (30.1%) articles assessed mobility using selfreported questionnaires only, and seven (3.8%) articles assessed mobility using both (see Table 2 for details, and Appendix 2A-2D for specific mobility outcome measures).

Factors within each determinant and its association with mobility outcomes

Factors within each determinant and their definitions are found in Table 3. The 183 articles reported 630 analyses, of which 381 (60.5%) were positively (295 analyses, 77.4%) or negatively (86 analyses, 22.6%) associated with mobility outcomes in older adults. Only significant associations are described in

```
M. E. Kalu et al.
```


Figure 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow chart of the scoping reviews.

this section. The non-significant associations, including *P*-values, odds ratios, hazard ratios, prevalence ratios, and correlations for each included article, are

Figure 2 Venn diagram showing the number and distribution of articles across the three mobility determinants (N = 183).

found in Appendix 2A (cognitive factors only), 2B (psychological factors only) and 2C (social factors only), 2D (more than one factor).

Association between cognitive factors and mobility

One hundred and twenty articles reported 421 analyses, of which 251 (59.6%) reported significantly positive (n = 176, 70.1%) and negative (n = 75, 29.9%) associations between cognitive factors and mobility outcomes. Analyses were reported using six cognition domains: attention, executive function, language, memory, processing speed, visuospatial, and global cognition.

Executive function

Performance-based

Studies reported that greater executive function (e.g., a higher score in Trail Making Test) was associated with improved walking time,⁸⁶⁻⁸⁹ faster gait speed,^{52,89-96} higher cadence,^{52,90,94} longer stride length,^{52,94} greater

Characteristics	Cognitive factors	Psychological factors	Social factors	>1 factor
	(n = 88)	(n = 37)	(n = 24)	(n = 34)
Gender	n (%)	n (%)	n (%)	n (%)
>Female	56 (63.7)	25 (67.6)	20 (83.3)	25 (73.6)
• <female< td=""><td>28 (31.8)</td><td>7 (18.9)</td><td>3 (12.5)</td><td>8 (23.5)</td></female<>	28 (31.8)	7 (18.9)	3 (12.5)	8 (23.5)
Female = Male	1 (1.1)	3 (8.1)	-	1 (2.9)
Not reported	3 (3.4)	2 (5.4)	1 (4.2)	- (2.0)
Geographical area: continent		- ()		
Africa	-	-	_	-
Asia	6 (6.8)	4 (10.8)	7 (29.1)	5 (14.7)
Europe	23 (26.1)	7 (18.9)	7 (29.1)	7 (20.6)
North America	49 (55.7)	21 (56.8)	9 (37.5)	20 (58.8)
Oceania	7 (8.0)	1 (2.7)	1 (4.3)	2 (5.9)
 South America 	3 (3.4)	3 (8.1)	_	-
 > 1 continent 	-	1 (2.7)	-	-
Study design				
Cross-sectional	60 (68.2)	16 (43.2)	4 (16.7)	21 (61.8)
Longitudinal	27 (30.7)	18 (48.7)	16 (66.7)	12 (35.3)
 Quasi-experimental 	-	2 (5.4)	2 (8.3)	-
 Randomised controlled trials 	1 (1.1)	1 (2.7)	2 (8.3)	1 (2.9)
Participants recruited from				
Community	82 (93.2)	28 (75.7)	20 (83.4)	31 (91.2)
Hospital	4 (4.6)	5 (13.5)	2 (8.3)	_
Long-term care	1 (1.1)	1 (2.7)	_	1 (2.9)
Laboratory	-	3 (8.1)	2 (8.3)	_
Mixed	_	-	-	2 (5.9)
 Not reported 	1 (1.1)	-	-	-
Population of study	00 (04 4)	10 (05 4)	4/40 7	0.000 0
 Defined health conditions (e.g., stroke, Alzbeimer's) 	30 (34.1)	13 (35.1)	4 (16.7)	8 (23.5)
No defined health conditions	58 (65.9)	24 (64.9)	20 (83.3)	26 (76.5)
Sample size in				
 ≤100 	27 (30.6)	6 (16.3)	2 (8.3)	7 (20.6)
• 101 - 300	22 (25.0)	10 (27.0)	2 (8.3)	4 (11.8)
• 301-500	7 (8.0)	3 (8.1)	_	2 (5.9)
• 501-1000	14 (16.0)	8 (21.6)	3 (12.5)	11 (32.3)
• 1001-2500	9 (10.2)	3 (8.1)	4 (16.7)	4 (11.8)
>2500	9 (10.2)	7 (18.9)	13 (54.2)	6 (17.6)
Total number of mobility outcomes used for	154	63	24	41
each determinant				
Performance-based outcome Walking outcomes				
Time	10 (7.4)	2 (3.9)	_	2 (8.7)
Distance	_	6 (11.8)	_	2 (8.7)
Speed	37 (27.2)	12 (23.6)	1 (25.0)	8 (34.8)
Stone	6 (4 4)	3 (5 0)	2 (50.0)	1 (4.9)
Other selt persentation	40 (96 0)	17 (00.0)	2 (00.0)	1 (4.5)
 Other dait barameters 	49 (30.0)	17 (33.3)	-	_
Observed driving related	0.01 40			0.00.0

© 2022 Japanese Psychogeriatric Society.

Table 2 Continued				
Physical functioning Short Physical Performance Battery scores 	6 (4.4)	2 (3.9)	-	1 (4.3)
 Timed Up-and-Go Test scores 	11 (8.1)	7 (13.7)	1 (25.0)	4 (17.4)
 Other physical functioning tests 	10 (7.4)	2 (3.9)	_	_
Self-reported outcome Community mobility • Walking	_	_	3 (15.0)	1 (5.6)
Life space mobility scores	6 (33.3)	2 (16.7)	_	12 (66.7)
 Other self-reported mobility questionnaires 	4 (22.2)	2 (16.7)	7 (35.0)	2 (11.0)
 Driving-related outcomes 	7 (38.9)	1 (8.3)	1 (5.0)	3 (16.7)
Mobility limitation Use/difficulty in using mobility assistive devices	1 (5.6)	6 (50.0) 1 (8.3)	9 (45.0)	_

Performance-based mobility outcome: walking time defined as the time taken to complete 3, 5, 6 or 30-metre walk tests; walking distance defined as distanced walked within 6 or 2-min walk tests; other gait parameters included stride length, cadence, single/double support time, walk ratio, gait variability; observed driving ability - participants were followed or observed while driving in the community; balance tests included Berg Balance Test, Tandem Tests, Stance Test, BEStest; other physical functioning tests included Sit-to-Stand Test, Stair Climbing Test. Self-reported mobility outcomes: self-reported mobility Disability Scale, and Late-Life Function and Disability Instrument; driving-related outcomes included driving performance (ability or inability) access to car, driving duration and frequency, driving distance, preference to be driver vs. passengers; mobility limitation defined as self-reported inability on a lace tither of the following: walking a mile (1600 m) or half a mile (800 m) or a quarter-mile or a block (400 m) or 100-300 m, or across the room and running/jogging for 20-30 min; the mobility assistive devices included scooter, powered and manual wheelchairs, walking aids (cane, walker, crutches).

percentage changes in stride variability,^{54,94,97} better balance scores,^{52,88,87,98} better Short Physical Performance Battery (SPPB) scores,^{52,99} completing Timed Up-and-Go (TUG)^{42,88,100} and Chair Stand Tests^{52,86} in a shorter time, better driving skills,^{34,101} longer driving distance and time,¹⁰² and driving safe.^{103,104} Poorer executive function was associated with slower gait speed,^{10,89,75,105-107} shorter step length,¹⁰⁵ longer stride time,¹⁰⁸ increased stride-to-stride variability,^{108,109} completing Chair Stand Test⁷⁵ and TUG¹¹⁰ in a longer time, and more likely to drive unsafely.^{43,111}

Self-reported

Three studies reported that better executive function was associated with greater Life-Space Assessment (LSA) scores, ¹¹²⁻¹¹⁵ and one study reported poorer executive function was associated with greater mobility disability.⁹¹

Attention

Performance-based

Studies reported that better attention (e.g., higher scores in Test for Attentional Performance) was associated with faster walking speed,^{72,95,116} longer stride length,^{116,117} decreased stride length variability,⁹⁰ better SPPB scores,⁹⁹ completing TUG⁴² and Chair Stand Tests¹¹⁷ in a shorter time, longer driving distance and time,^{102,117} better driving scores,³⁴ and faster breaking reaction time during driving.¹¹⁸ Poor attention was associated with slower gait speed,^{69,105,119,120} taking more time to complete a walking test,¹²¹ increased gait variability,⁶⁹ and worse road test scores.¹²²

Self-reported

One study reported that better attention was associated with a better Elderly Mobility Scale scores.⁵³

Visuospatial

Performance-based

Studies reported that better visuospatial function (e.g., higher scores in the Hooper Visual Organisation Test) was associated with faster gait speed,^{93,96} completing TUG in a shorter time,^{35,46} driving safely,¹¹¹ longer driving distance and time,¹⁰² better driving scores,³⁴ better road test scores,¹²² faster break reaction time during driving,¹¹⁸ fewer driving safety errors,^{123–125} and being less likely to fail a road test.⁷⁰ Three studies reported that a decline in

Factors	n (%)	Lay description	
Cognitive factors ($n = 264$)			
Attention	26(9.8)	The ability to focus on something while ignoring other things.	
Executive function	54(20.5)	A set of mental skills that allows people to plan, decide, find solutions to problems, and control themselves from acting without thinking.	
Global cognition	78(29.6)	Refers to the way people think, judge, learn, understand, remember, and se	
Language	17(6.4)	Refers to sounds, signs, symbols and gestures that can be used to commun ideas, thoughts and emotions from one person to another	
Memory	38(14.4)	The ability to remember things about past events or knowledge.	
Processing speed	23(8.7)	The time needed to take in information, make sense of it and begin to respond.	
Visuospatial function	28(10.6)	How people understand what they see and how it relates to where they are, e.g. using a map to get from one place to another, walking through doorways rather than bumping into the door frames, judging how far away a car is and how fast it is moving.	
Psychological factors (n = 109)			
Fall-related psychological concerns			
Fear of falling	13(11.9)	Worrying about falling so much that the person does not take part in activities	
Self-efficacy	3(2.8)	The belief someone has in the abilities to carry out and complete a task	
Mental health-related factors			
Depression	43 (39.5)	A feeling of sadness and loss of interest, which stops someone from doing normal activities	
Anxiety	11(10.1)	A feeling that causes people to worry and can cause their heart rate to increase or make them breathe faster	
Apathy Well-being related factors	2(1.8)	The lack of interest in life activities or interactions with others	
Affect	2(1.8)	How people feel and can be from good to bad	
Self-perceived fatigue	1(0.9)	How people view themselves as being tired, that affects how they function.	
Life purpose or motivation	2 (1.8)	The reasons people act or behave in a specific way	
Emotional well-being	3(2.8)	The state of being mentally healthy and happy	
Personality trait-related factors			
Agreeableness	4(3.7)	Personal feature that makes people more likely to agree with others	
Conscientiousness	5(4.6)	Personal feature that makes people more likely to be organised, responsible, an hardworking	
Extraversion	7(6.4)	Personal feature that makes people more likely to be with people than be by ourselves	
Neuroticism	8(7.4)	Personal feature that makes people more likely to be easily annoyed	
Openness	5(4.6)	Personal feature that makes people more likely to be open to new things	
Social factors (n = 38)			
Living situation	4(10.5)	Describes living alone or with whom the older adults live, e.g., roommates, famil members, or spouse/partner	
Loneliness	2(5.3)	An unpleasant feeling associated with having few or no friends or having lost connections with people, places, or things or when close relationships are not meeting needs.	
Social capital	1(2.6)	The connections, shared values and understandings in society that enable people to trust each other and work together	
Social cohesion	2(5.3)	How strong relationships are in the community that encourage people to pro- help and support to each other, e.g., if someone returns a lost item or give stranger direction	
Social isolation	2(5.3)	The feeling people have when they do not have contact with others	
Social network	7(18.4)	The type and number of social relationships that people have	
Social participation or engagement	15(39.5)	Activities that allow people to connect with others in the community	
Social support	4(10.5)	The help, comfort, concern and care people receive from family and friends to handle problems better	
Social well-being	1(2.6)	Peoples' judgement of their social relationships, how others react to them, and how they interact with social institutions and the community	

n, number of times it was reported in the included articles.

visuospatial function was associated with slower gait speed,¹²⁶ completing a walking test in a longer time,¹²¹ and failing road tests.⁷¹

Self-reported

Two studies reported that better visuospatial function was associated with fewer road accidents, ^{122,127} and one study reported that poor visuospatial function was associated with restricted driving.¹²⁸

Memory

Performance-based

Studies reported that better memory (e.g., better scores in word recall) was associated with faster gait speed,^{76,90,92,94,95,129} higher cadence,¹³⁰ longer stride length,¹¹⁶ better SPPB scores,^{99,131} completing TUG test in a shorter time,^{42,100} greater peak velocity during the Sit-to-Stand Test,¹³¹ longer driving distance and time,¹⁰² and better driving scores.³⁴ Poor memory was associated with slower gait speed,⁶⁹ increased double support time variability,¹²⁶ lower cadence,¹⁰ completing a walking test in a longer time,¹²¹ and driving errors.^{16,132}

Self-reported

One study reported that better memory was associated with a higher LSA scores.¹¹⁴

Language

Performance-based

Studies reported that better language skills (e.g., better verbal skill) were associated with completing walking tests, ³⁵ TUG⁴⁶ and Chair Stand Test⁵² in a shorter time, faster gait speed, ^{36,52,90} higher cadence, ⁵² increased number of steps taken, ⁴⁶ longer stride length, ⁵² greater changes in stride-to-stride variability, ⁵⁴ and better SPPB scores. ⁵² Poor language was associated with slower gait speed, ^{10,69} completing walking tests¹²¹ and TUG¹¹⁰ in a longer time, and fewer steps taken.⁴⁶

Self-reported

Only one study reported that better language skills were associated with better scores on the Elderly Mobility Scale.⁵³

Processing speed

Performance-based

Studies reported that higher processing speed was associated with faster gait speed, ^{52,96,105,129,133} higher cadence, ^{52,94} longer step length, ¹⁰⁵ longer stride length, ^{52,94} greater number of steps during a turn, ⁹⁴ reduced step time and base support distance, ¹⁰⁵ completing walking tests, ^{86–88,94} TUG⁸⁸ and Chair Stand Tests ^{52,86,87,133} in a shorter time, better balance scores, ^{52,60,67,133} higher SPPB scores, ⁵² better ability to drive at night, ¹³⁴ a fewer number of unsafe driving acts, ¹³⁵ and driving safely. ¹⁰³ Two studies reported that a decline in processing speed was associated with slower galt speed. ^{80,126}

Self-reported

Four studies reported that slower processing speed was associated with lower LSA scores, ^{50,114} restricted driving, ¹²⁸ and more accidents. ¹²²

Global cognition

Performance-based

Studies reported that better global cognition (e.g., high Mini-Mental State Exam (MMSE) scores) was associated with completing walking tests in a shorter time, 136 faster gait speed, 38,52,57-59,73,92,94,95,116,133,137-140 higher cadence,52,94 a fewer number of steps during a turn,^{73,141} greater percentage changes in stride variability,^{54,94} longer stride length,^{38,52,116} reduced double support time and reduced stride length and single support variability,48 better balance scores,52,68,98,133 better SPPB scores,^{52,99,136} completing TUG^{68,100,141,142} and Chair Stand Tests^{52,76,133,138,140} in shorter time, and fewer driving safety errors.^{123,124} In contrast, poor global cognition (e.g., cognitive impairment or dementia) was associated with longer time to complete a walking test,40 slower gait speed,10,37,40,55,50,05 fewer steps,7 shorter step length,^{bb} increased swing time variability,^{bb} poor SPPB scores^{40,45,65} or Physical Performance Test score,143 longer time to complete the TUG39,65,74,110 and Chair Stand Test,⁶⁵ more likely to fail a road test,¹⁴⁴ unsafe driving,^{43,67,145} difficulty accessing the community, avoidance of unfamiliar areas, avoidance of hightraffic roads, avoidance of left-hand turns during driving,47 and driving errors.16

Self-reported

Studies reported that better global cognition was associated with greater LSA scores,^{115,146,147} reduced risks of mobility disability,²⁴ better Motor Functional Independence Measure scores,¹⁴⁸ longer driving duration and distance.¹⁴⁶ Studies reported that poor global cognition was associated with a lower Late-Life Function Index (LLFI) score,^{40,45} lower LSA scores,^{149–153} increased reports of car crashes¹⁵⁴ and poor driving scores.^{43,155} One study reported that older adults with better LSA scores at baseline had reduced cognitive decline over 5 years.¹⁵⁶

Associations between psychological factors and mobility

Sixty-nine articles reported 163 analyses, of which 93 (57.0%) reported significantly positive (n = 88, 94.6%) and negative (n = 5, 5.4%) associations between psychological factors and mobility outcomes. Analyses were grouped into four groups: (a) fall-related psychological concerns¹⁵⁷ (fear of falling, fall-related self-efficacy, and balance confidence); (b) mental health-related factors (depression, anxiety, apathy); (c) well-being (emotional vitality/ well-being, life purpose and satisfaction, affect, self-perceived fatigue); and (d) personality trait (openness, conscientiousness, extraversion, agreeableness, and neuroticism).

Fall-related psychological concerns

Performance-based

Studies reported that *fear of falling* was associated with slower gait speed,^{66,158} lower cadence, delayed step time, delayed swing time,⁶⁶ faster stride velocity,¹⁵⁹ poor balance scores,¹⁵⁸ lower SPPB scores,^{160,161} completing a walking test,¹⁵⁸ TUG,^{66,158,161} and Chair Stand Tests⁶⁶ in a longer time. While low self-efficacy was associated with shorter distance walked,¹⁴ and better self-representational efficacy and high balance confidence (measured using the Activities-specific Balance Confidence Scale) were associated with completing the TUG test in a shorter time.¹⁶²

Self-reported

Five studies reported that fear of falling was associated with lower LSA scores, 21,50,151 mobility

© 2022 Japanese Psychogeriatric Society.

restriction, ¹⁶³ and the use of assistive walking devices. ¹⁵⁸

Mental health-related factors

Performance-based

Studies reported that depression was associated with shorter walking time,^{44,79,88,164} shorter distance walked,^{64,78,80,165,166} slower gait speed,^{17,110,129,139,167,168} reduced number of steps taken,¹⁶⁹ poor performance in other gait parameters (e.g., reduced step length/width, and slower stride velocity^{17,170}), completing TUG test in a longer time,^{85,110,166} poor balance scores,¹¹⁰ driving errors,¹⁶ and not driving at night.¹³⁴ Anxiety was associated with slower gait speed,^{17,110} shorter step length, and reduced stride velocity,¹⁷ completing 3-metre timed tandem walk⁸⁵ or TUG¹¹⁰ tests in a longer time, lower SPPB scores,¹⁷¹ and lower balance scores.¹¹⁰ The presence of apathy was associated with slower gait speed,¹⁷² and physical performance decline in older adults <80 years.¹⁷³

Self-reported

Studies reported that depression was associated with lower LSA score, ^{63,84,112-114,149,151,174} mobility disability, ^{24,82,83,171,175-177}car crashes¹⁵⁴ and restricted driving. ¹²⁸ Anxiety was associated with lower LSA scores, ¹⁵¹ mobility limitations, ¹⁷¹ walking onset disability, ¹⁷⁶ and driving errors and violations. ¹⁷⁸

Well-being

Performance-based

Few studies reported that good psychological wellbeing¹⁷⁹ and positive affect¹⁸⁰ were associated with better walking speed. One study reported that positive affect was associated with more walking distance.¹⁶⁴ Self-perceived fatigue was associated with slower gait speed and low SPPB scores.¹⁸¹

Self-reported

Three studies reported that lack of purpose in life was associated with the risk of mobility limitation;²⁴ higher purpose in life was associated with higher LSA scores;¹⁸² and poor well-being was associated with driving errors.¹⁷⁸ Two studies reported that perception of future happiness and life satisfaction¹⁸³ and emotional vitality¹⁸⁴ were associated with reduced onset of mobility limitations.

Personality trait

Performance-based

Studies reported that high extroversion (very sociable) was associated with faster gait speed, ¹⁹ walking longer distances, ¹⁸⁵ completing a walking test¹⁸⁶ and TUG test¹⁴¹ in a shorter time. Conscientiousness (being organised and practical) was associated with completing a dual-task TUG test in a shorter time, ¹⁴¹ and faster walking speed at baseline, ¹⁸ and a slower decline in walking speed.^{18,19}

Self-reported

Three studies reported that neuroticism (easily annoyed) was associated with increased risk of mobility disability;²⁴ high openness (being creative and open to new ideas) was associated with improved functional status;¹⁷⁷ and high extraversion was associated with high LSA scores.¹⁸²

Association between social factors and mobility

Thirty-four articles reported 46 analyses, of which 37 (80.4%) reported significantly positive (n = 31, 83.8%) or negative (n = 6, 16.2%) associations between social factors and mobility outcomes.

Performance-based

Studies reported that increased social activity,¹⁸⁶ increased social interaction,⁷⁷ and increased social integration and availability of emotional and tangible social support¹⁰⁷ were associated with better walking outcomes in older adults. Better social well-being¹⁷⁹ and increased social engagement⁴⁵ were associated with better physical functioning in older adults. Living alone and reduced social networks were associated with completing the TUG test in a longer time.¹⁸⁶

Self-reported

Studies reported that increased social activity,^{51,84,182,189} increased social engagement,^{45,190,191} better social support,^{61,112,192} and increased social networks^{24,182} were associated with community mobility such as self-reported walking, driving-related outcomes among older adults. Three studies reported that higher levels of social isolation^{153,182} and reduced social network¹⁹³ were associated with lower LSA scores. Living alone,^{194,195} low social activity participation^{196–198} or engagement,^{199,200} and, loneliness^{175,201,202} were associated with increased reporting of mobility limitations. High social capital,²⁰³ higher neighbourhood social cohesion (e.g., people in the neighbourhood helping each other),²⁰⁴ increased social engagement,²⁰⁵ and having a family member close by,²⁰⁶ were associated with fewer mobility limitations among older adults.

DISCUSSION

This review is the first to comprehensively summarise the available evidence about cognitive, psychological and social factors and their associations with performance-based and self-reported mobility outcomes among older adults. These relationships between cognitive, psychological, and social factors highlight mobility's complexity in older adults. Due to age-related changes, older adults present with cognitive decline, which often leads to psychological distress and depression, further leading to social isolation and social disengagement, inherently limiting mobility.¹¹ We included 183 studies conducted in 27 countries that examined a wide range of cognitive, psychological, and social factors and various selfreported and performance-based mobility outcomes, which contributes to the heterogeneity of the included studies. As reported in previous reviews,6-8,15,23 all the associations between cognitive, psychological and social factors and mobility outcomes were in the expected direction. Summarily, older adults with impaired cognition, depressive symptoms and poor social networks walked slower, had poor balance, mobility limitations, and poor driving outcomes.

Our review reveals that the association between cognitive, psychological and social factors and mobility focuses mainly on community-dwelling older adults, with limited studies conducted among hospitalised older adults or those residing in a nursing home. Cognitive impairment, depression and loneliness are predictors of mobility decline among hospitalised older adults^{60,62,64} or nursing home residents,^{81,150} highlighting the need for more studies to explore the association between cognitive, psychological and social factors and mobility, both on admission and discharge into hospital or a nursing home.

Across the three mobility determinants, more studies examined the association between mobility

outcomes and cognitive factors, followed by psychological and then social. This pattern is not surprising since several authors theoretically explained the complementary relationship between cognition and mobility. For instance, Ferrucci et al.11 argued that mobility and cognitive impairment dynamically unfold together across life, explaining why mobility decline is evident in older adults when tasks that challenge cognitive function such as dual tasks are introduced. While it is plausible that psychological factors such as depressive symptoms²⁰⁷ and social factors such as social isolation208 can be precursors for cognitive decline, it is also possible that cognitive decline can cause depressive symptoms and increased social isolation. Since mobility and cognitive decline unfold dynamically across the life course, studying if psychological factors such as depression and social factors such as reduced social networks and cognitive factors additively impact mobility will explain some of the unsolved complexity associated with mobility. Another way to explore this could include determining if any psychological and social factors moderate or change the direction/strength of the association between cognition and mobility across life courses.

Although the combined use of self-reported and performance-based mobility has been recommended,²⁰⁹ only seven studies (3.8%) included in our review used both to assess older adults' mobility. The performance-based mobility measures require physical space to set up, trained assessors for effective protocol administration, and are limited to assessing older adults' mobility in standardised conditions.²¹⁰ Self-reported measures capture an individual's perceptions of mobility, meaningful activities in older adults and can be used to capture mobility of older adults such as those unwell or injured, who may temporarily lack the ability to complete a walking assessment.209 Combining both measures have provided critical information regarding mobility in older adults that one tool may not capture. Reuben et al.209 used a dataset of 5138 older adults to explore physical functioning classification when selfreported and performance-based functional assessments were combined. They reported that combining self-reported and performance-based measurements can refine prognostic information, particularly among older persons with high self-reported functioning. However, if activities of daily living dependency is present, performance-based measures do not add

© 2022 Japanese Psychogeriatric Society.

predictive value regarding mortality.²⁰⁹ Therefore, we recommend that researchers combine self-reported and performance-based measures in assessing mobility as they complement each other and provide different information.

Consistent with the literature,15 fall-related psychological concerns, such as fear of falling, were negatively associated with older adults' mobility outcomes. Similarly, mental health issues including depression, were negatively associated with mobility outcomes in older adults. The mechanism through which these psychological factors leads to poor mobility outcomes is complex and not completely understood. Nevertheless, some explanations of this association have been discussed among scholars. For instance, depression can cause a reduction in psychomotor functions leading to unstable gait and antidepressants are known to cause postural hypertension and reduced postural control, leading to mobility restriction.²¹¹ These relationships are further reinforced as mobility restriction can lead to depressive symptoms²¹² Enhancing the emotional wellbeing of older adults improves mobility outcomes because higher levels of emotional well-being promote adherence to and participation in exercise,162 and exercise has been shown to improve mobility among older adults.²¹³ The combination of focused psychological strategies such as cognitive-based therapy such as motivational interviewing and exercise interventions have resulted in favourable shortand long-term effects in reducing fear of falling and improving mobility outcomes among communitydwelling older adults.²¹⁴

Studies on the association between the five-factor model of personality and mobility outcomes were limited.18,19,24,141,177,182,185,186 The findings that extraversion, defined as being bold and outgoing and high openness to experience are associated with better mobility outcomes are plausible. The relationship between personality traits and mobility are complex and could be explained via various mechanisms. First, an extroverted older adult tends to be friendly toward others and usually has positive emotions and attitudes characterised by social behaviours that promote better physical health.²¹⁵ Highly extroverted older adults completed the TUG test in a shorter time, but when an additional task such as subtraction by three or carrying a tray, was added, older adults took longer to complete the TUG test.¹⁴¹ Dual tasks

require older adults to simultaneously perform cognitive and motor tasks.²¹⁶ Typically, older adults perform poorly in a dual task situation since their motor functioning requires attentional resources. Older adults who are extroverted have active, busy and engaged lifestyles, which require additional attention. It is reasonable to argue that when such individuals perform dual tasks, they might struggle to finish on time because of several competing attentional resources. On the other hand, highly conscientious individuals completed the dual-task TUG in a shorter time.141 Because they are organised and practical, they effectively use their attentional resources to simultaneously perform motor and cognitive tasks. This finding is reasonable as previous studies reported that highly conscientious individuals are more likely to engage in physical activity,217 and most physical activity involves dual task-related activities. Therefore, assessing older adults' personalities when prescribing exercise or physical activity could be promising in providing targeted and personality-focused intervention to improve mobility outcomes. In addition, understanding the relationship of personality traits with mobility outcomes in older adults could assist clinicians/researchers to identify mobility outcomes that could be an indicator of intervention efficacy.

As expected, higher social engagement/participation/activity, better social support and higher social networks/interactions improve older adults' mobility, while loneliness is associated with mobility decline. Our review reiterated the vicious cycle between multiple social factors and mobility outcomes. For instance, older adults with increased social integration are more likely to engage or participate actively in social activities in the community, which invariably would increase their social network, further promoting more social participation. Older adults with more social and civic participation tend to walk or travel to participate; this civic and social participation, mainly those meaningful to older adults, has been positively associated with several outcomes such as gait speed.218 Most social factors such as a social network and participation relating to mobility are amenable to targeted interventions, since intervening in one of the social factors, such as increased social network, could lead to social participation and potentially increase mobility. Future studies should identify which social factors (when targeted) could lead to

566

increased mobility among older adults, allowing interventionists to allocate resources and manage target interventions.

Our scoping review has both strengths and weaknesses. Our review covered a broad range of cognitive, psychological and social factors and included performance-based and self-reported mobility outcomes among older adults. While we made considerable efforts to ensure the robustness of our search strategy, we may not have identified potentially relevant studies, especially if the article keywords were not the MeSH terms used in our search strategy. For instance, while we included common mobility outcomes related to our definitions, such as gait speed, balance, use of assistive devices, driving and transportation, using key terms related to other forms of mobility outcome measures, such as the 5-Time Sit-to-Stand Test measuring lower limb strength,²¹⁹ may have yielded more studies. Also, we may have missed articles published in other languages as we limited our search to only articles published in English. Although we did not limit our search by country, we found no studies conducted in Africa and only six studies from South American countries. Most included studies were cross-sectional, which do not explain the cause-effect relationship between cognition, psychological and social factors and mobility outcomes. More longitudinal studies are required to explore the additive effect of these factors, especially the modifiable factors, on mobility outcomes along the older adult life course.

CONCLUSION

This review found that cognitive, psychological and social factors were consistently associated with mobility outcomes in the expected direction. Summarily, older adults with impaired cognition, depressive symptoms and poor social networks walked slower, had poor balance, mobility limitations, and poor driving outcomes. Studies exploring the association between cognitive factors, personality (a psychological factor) and self-reported mobility outcomes such as walking for transportation or driving, were limited. Future studies should explore the association between social factors and performancebased mobility outcomes in older adults.

ACKNOWLEGDMENTS

We want to acknowledge Vanessa Wong, Angela Horyacheva, Marvin Yan, Aseesn Dhinsa who participated in some aspects of the scoping review. This work was conducted as part of Michael Kalu's PhD thesis (Rehabilitation Science Program. School of Rehabilitation Science, McMaster University, Hamilton, Ontario Canada). Michael Kalu received a Mobility Labarge Scholarship from McMaster Institute for Research in Aging, McMaster University, Hamilton, Ontario, Canada.

ETHICS STATEMENT

This article is a review; therefore does not require ethics approval.

DATA AVAILABILITY STATEMENT

The data that supports the findings of this study are available in the supplementary material of this article

REFERENCES

- Webber SC, Porter MM, Menec VH. Mobility in older adults: a comprehensive framework. *Gerontologist* 2010; 50: 443–450.
- 2 Rantanen T. Promoting mobility in older people. J Prev Med Public Health 2013; 46: S50–S54.
- 3 Rantakokko M, Mänty M, Rantanen T. Mobility decline in old age. Exerc Sport Sci Rev 2013; 41: 19–25.
- 4 Lafortune G, Balestat G. Trends in severe disability among elderly people. OECD heal work pap. 2007. https://doi.org/10. 1787/217072070078.
- 5 Allan J. Cognitions, In: Gellman M.D., Turner J.R. (eds), Encyclopedia of Behavioral Medicine. Springer, New York, NY. 2013. https://doi.org/10.1007/978-1-4419-1005-9_1114.
- 6 De Silva NA, Gregory MA, Venkateshan SS et al. Examining the association between life-space mobility and cognitive function in older adults: a systematic review. J Aging Res 2019; 2019: 1–9.
- 7 Peel NM, Alapatt LJ, Jones LV, Hubbard RE. The association between gait speed and cognitive status in communitydwelling older people: a systematic review and meta-analysis. *Journals Gerontol* Ser A 2019; 74: 943–948.
- 8 Demnitz N, Esser P, Dawes H et al. A systematic review and meta-analysis of cross-sectional studies examining the relationship between mobility and cognition in healthy older adults. Gait Posture 2016; 50: 164–174.
- 9 Montero-Odasso M, Speechley M, Muir-Hunter SW et al. Motor and cognitive trajectories before dementia: Results from gait and brain study. J Am Geriatr Soc 2018; 66: 1676–1683.
- Verghese J, Wang C, Lipton R et al. Quantitative gait dysfunction and risk of cognitive decline and dementia. J Neurol Neurosurg Psychiatry 2007; 78: 929–935.
- Ferrucci L, Cooper R, Shardell M, Simonsick EM, Schrack JA, Kuh D. Age-related change in mobility: perspectives from life

© 2022 Japanese Psychogeriatric Society.

course epidemiology and geroscience. J Gerontol - Ser A Biol Sci Med Sci 2016; 71: 1184–1194.

- 12 Salthouse TA. Trajectories of normal cognitive aging. Psychol Aging 2019; 34: 17–24.
- 13 Upton J. Psychological Factors and Health. In: Gellman M.D., Turner J.R. (eds), Encyclopedia of Behavioral Medicine Springer, New York, NY. 2013. https://doi.org/10.1007/978-1-4419-1005-9_156.
- 14 Collins TC, Lunos S, Ahluwalia JS et al. Self-efficacy is associated with walking ability in persons with diabetes mellitus and peripheral arterial disease. Vasc Med 2010; 15: 189–195.
- 15 Denkinger MD, Lukas A, Nikolaus T. Factors associated with fear of falling and associated activity restriction in communitydwelling older adults: a systematic review. Am J Geriatr Psychiatry 2015; 23: 72–86.
- 16 Baldock MRJ, Berndt A, Mathias JL. The functional correlates of older drivers' on-road driving test errors. *Top Geriatr Rehabil* 2008; 24: 204–223.
- 17 Nóbrega-Sousa P, Orcioli-Sitva D, Lirani-Sitva E, Beretta VS, Vitório R, Gobbi LTB. Usual walking and obstacle avoidance are influenced by depressive and anxiety symptoms in patients with Parkinson's disease. Geriatr Genoratol Int 2019; 19: 868–873.
- 18 Tolea MI, Costa PT, Terracciano A et al. Associations of openness and conscientiousness with walking speed decline: findings from the health, aging, and body composition study. J Gerontol - Ser B Psychol Sci Soc Sci 2012; 67 B: 705–711.
- 19 Stephan Y, Sutin AR, Bovier-Lapierre G, Terracciano A. Personality and walking speed across adulthood: prospective evidence from five samples. Soc Psychol Personal Sci 2018; 9: 773–780.
- 20 Freiberger E, Sieber CC, Kob R. Mobility in older communitydwelling persons: a narrative review. Front Physiol 2020; 11: 11. https://doi.org/10.3389/fphys.2020.00881.
- 21 Auais M, Alvarado B, Guerra R et al. Fear of falling and its association with life-space mobility of older adults: a crosssectional analysis using data from five international sites. Age Ageing 2017; 46: 459–465.
- 22 Auais M, Alvarado BE, Curcio CL, Garcia A, Ylli A, Deshpande N. Fear of falling as a risk factor of mobility disability in older people at five diverse sites of the IMIAS study. *Arch Gerontol Geniatr* 2016; 66: 147–153.
- 23 Lamanna M, Klinger CA, Liu A, Mirza RM. The association between public transportation and social isolation in older adults: a scoping review of the literature. *Can J Aging* 2020; 39: 393–405.
- 24 Boyle PA, Buchman AS, Bennett DA. Purpose in life is associated with a reduced risk of incident disability among community-dwelling older persons. Am J Geriatr Psychiatry 2010; 18: 1093–1102.
- 25 Levasseur M, Généreux M, Bruneau JF et al. Importance of proximity to resources, social support, transportation and neighborhood security for mobility and social participation in older adults: Results from a scoping study. BMC Public Health 2015; 15: 15. https://doi.org/10.1186/s12889-015-1824-0.
- 26 Yeom HA, Fleury J, Keller C. Risk factors for mobility limitation in community-dwelling older adults: a social ecological perspective. Geriatr Nurs (Minneap) 2008; 29: 133–140.
- 27 Arksey H, O'malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol 2005; 8: 19–32.
- 28 Levac D, Colquhoun H, O'Brien KK. Scoping studies: advancing the methodology. Implement Sci 2010; 5: 69.
- 29 Tricco AC, Lillie E, Zarin W et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 2018; 169: 467–473.

- 30 Dall TM, Gallo PD, Chakrabarti R, West T, Semilla AP, Storm MV. The care span: An aging population and growing disease burden will require a large and specialized health care workforce by 2025. *Health Aff* 2013; 32: 2013–2020.
- 31 Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev 2016: 5. https://doi.org/10.1186/s13643-016-0384-4.
- 32 Landis JR, Koch GG. The Measurement of Observer Agreement for Categorical Data. 1977.
- 33 Kalu ME, Maximos M, Sengiad S, Dal Bello-Haas V. The role of rehabilitation professionals in care transitions for older adults: a scoping review. *Phys Occup Ther Geriatr* 2019; 37: 123–150.
- 34 Whelihan WM, DiCarlo MA, Paul RH. The relationship of neuropsychological functioning to driving competence in older persons with early cognitive decline. Arch Clin Neuropsychol 2005; 20: 217–228.
- 35 Hotta Ansai J, de Andrade LP, Helissa Nakagawa T et al. Cognitive correlates of timed up and go subtasks in older people with preserved cognition, mild cognitive impairment, and Alzheimer's disease. Am J Phys Med Rehabil 2017; 96: 700–705.
- 36 Taylor ME, Lasschuit DA, Lord SR et al. Slow gait speed is associated with executive function decline in older people with mild to moderate dementia: a one year longitudinal study. Arch Gerontol Geriatr 2017; 73: 148–153.
- 37 Welmer A, Rizzuto D, Qiu C et al. Walking speed, processing speed, and dementia: a population-based longitudinal study. *Journals Gerontol Ser A Biol Sci Med Sci* 2014; 69: 1503–1510.
- 38 Taniguchi Y, Watanabe Y, Osuka Y et al. Characteristics for gait parameters of community-dwelling elderly Japanese with lower cognitive function. PLoS One 2019; 14: e0212646.
- 39 Rajtar-Zembaty A, Salakowski A, Rajtar-Zembaty J, Starowicz-Filip A, Skalska A. Slow gait as a motor marker of mild cognitive impairment? The relationships between functional mobility and mild cognitive impairment. Aging, europsychol Cogn 2019; 26: 521–530.
- 40 Pedersen MM, Holt NE, Grande L et al. Mild cognitive impairment status and mobility performance: An analysis from the Boston RISE study. J Gerontol Ser A Biol Sci Med Sci 2014; 69: 1511–1518.
- 41 Montero-Odasso M, Bergman H, Phillips NA, Wong CH, Sourial N, Chertkow H. Dual-tasking and gait in people with mild cognitive impairment. The effect of working memory. BMC Geriatr 2009; 9: 41.
- 42 Borges S de M, Radanovic M, Forlenza OV. Correlation between functional mobility and cognitive performance in older adults with cognitive impairment. Aging Neuropsychol Cogn 2018; 25: 23–32.
- 43 O'Connor MG, Kapust LR, Lin B, Hollis AM, Jones RN. The 4Cs (crash history, family concerns, clinical condition, and cognitive functions): a screening tool for the evaluation of the at-risk driver. J Am Geriatr Soc 2010; 58: 1104–1108.
- 44 Park HJ, Lee NG, Kang TW. Fall-related cognition, motor function, functional ability, and depression measures in older adults with dementia. *NeuroRehabilitation* 2020; 47: 487–494.
- 45 Steere HK, Quach L, Grande L, Bean JF. Evaluating the influence of social engagement on cognitive impairment and mobility outcomes within the Boston RISE cohort study. *Am J Phys Med Rehabil* 2019; 98: 685–691.
- 46 Mumic de Melo L, Hotta Ansai J, Giusti Rossi P, Carvalho Vale FA, Cristhine de Medeiros Takahashi A, Pires de Andrade L. Performance of an adapted version of the timed

up-and-go test in people with cognitive impairments. J Mot Behav 2019; 51: 647-654.

- 47 O'Connor ML, Edwards JD, Wadley VG, Crowe M. Changes in mobility among older adults with psychometrically defined mild cognitive impairment. J Gerontol - Ser B Psychol Sci oc Sci 2010; 65 B: 306–316.
- 48 Doi T, Shimada H, Makizako H et al. Mild cognitive impairment, slow gait, and risk of disability: a prospective study. J Am Med Dir Assoc 2015; 16: 1082–1086.
- 49 McGough EL, Kelly VE, Logsdon RG et al. Associations between physical performance and executive function in older adults with mild cognitive impairment: gait speed and the timed 'up & Go' test. Phys Ther 2011; 91: 1198–1207.
- 50 Uemura K, Shimada H, Makizako H et al. Factors associated with life-space in older adults with amnestic mild cognitive impairment. Geriatr Gerontol Int 2013; 13: 161–166.
- 51 Ullrich P, Eckert T, Bongartz M et al. Life-space mobility in older persons with cognitive impairment after discharge from geriatric rehabilitation. Arch Gerontol Geriatr 2019; 81: 192–200.
- 52 Bruce-Keller AJ, Brouillette RM, Tudor-Locke C et al. Relationship between cognitive domains, physical performance, and gait in elderly and demented subjects. J Alzheimers Dis 2012; 30: 899–908.
- 53 Domenech-Cebrian P, Martinez-Martinez M, Cauli O. Relationship between mobility and cognitive impairment in patients with Alzheimer's disease. *Clin Neurol Neurosurg* 2019; **179**: 23–29.
- 54 Sheridan PL, Solomont J, Kowall N, Hausdorff JM. Influence of executive function on locomotor function: divided attention increases gait variability in Alzheimer's disease. J Am Geriatr Soc 2003; 51: 1633–1637.
- 55 De Cock AM, Fransen E, Perkisas S et al. Gait characteristics under different walking conditions: association with the presence of cognitive impairment in community-dwelling older people. PLoS One 2017; 12: e0178566.
- 56 Callisaya ML, Launay CP, Srikanth VK, Verghese J, Allali G, Beauchet O. Cognitive status, fast walking speed and walking speed reserve-the gait and Alzheimer interactions tracking (GAIT) study. *GeroScience* 2017: **39**: 231–239.
- 57 Merchant RA, Goh J, Chan YH, Lim JY, Vellas B. Slow gait, subjective cognitive decline and motoric cognitive risk syndrome: prevalence and associated factors in community dwelling older adults. J Nutr Heal Aging 2021; 25: 48–56.
- 58 Johansson H, Lundin-Olsson L, Littbrand H, Gustafson Y, Rosendahl E, Toots A. Cognitive function and walking velocity in people with dementia; a comparison of backward and forward walking. *Gait Posture* 2017; **58**: 481–486.
- 59 Öhlin J, Ahlgren A, Folkesson R et al. The association between cognition and gait in a representative sample of very old people-the influence of dementia and walking aid use. BMC Geriatr 2020; 20: 1–10.
- 60 O'Keefe JA, Robertson EE, Ouyang B et al. Cognitive function impacts gait, functional mobility and falls in fragile Xassociated tremor/ataxia syndrome. Gait Posture 2018; 66: 288–293.
- 61 Maeshima S, Ueyoshi A, Osawa A et al. Mobility and muscle strength contralateral to hemiplegia from stroke: benefit from self-training with family support. Am J Phys Med Rehabil 2003; 82: 456–462.
- 62 Miller A, Pohlig RT, Reisman DS. Social and physical environmental factors in daily stepping activity in those with chronic stroke. *Top Stroke Rehabil* 2021; 28: 161–169.

- 63 Iyer AS, Wells JM, Bhatt SP et al. Life-space mobility and clinical outcomes in COPD. Int J COPD 2018; 13: 2731–2738.
- 64 Barrett-Bernstein M, Carli F, Gamsa A et al. Depression and functional status in colorectal cancer patients awaiting surgery: impact of a multimodal Prehabilitation program. *Health Psychol* 2019; **38**: 900–909.
- 65 Blackwood J, Rybicki K. Physical mobility and balance performance differs in older cancer survivors with impaired executive function. *Rehabil Oncol* 2021; 39: 31–37.
- 66 Moreira BDS, Dos Anjos DMDC, Pereira DS et al. The geriatric depression scale and the timed up and go test predict fear of falling in community-dwelling elderly women with type 2 diabetes mellitus: a cross-sectional study. BMC Geriatr 2016; 16: 1–10.
- 67 Crizzle AM, Myers AM, Roy EA, Almeida QJ. Drivers with Parkinson's disease: are the symptoms of PD associated with restricted driving practices? J Neurol 2013; 260: 2562–2568.
- 68 Figueiredo Sousa NM, Macedo RC. Relationship between cognitive performance and mobility in patients with parkinson's disease: a cross-sectional study. *Dement e Neuropsychol* 2019; **13**: 403–409.
- 69 Morris R, Martini DN, Smulders K et al. Cognitive associations with comprehensive gait and static balance measures in Parkinson's disease. Park Relat Disord 2019; 69: 104–110.
- 70 Classen S, Brumback B, Crawford K, Jenniex S. Visual attention cut points for driver fitness in Parkinson's disease. OTJR Occup Particip Heal 2019; 39: 257–265.
- 71 Classen S, McCarthy DP, Shechtman O et al. Useful field of view as a reliable screening measure of driving performance in people with parkinson's disease: Results of a pilot study. *Traffic Inj Prev* 2009; **10**: 593–598.
- 72 Lord S, Galna B, Coleman S, Yarnall A, Burn D, Rochester L. Cognition and gait show a selective pattern of association dominated by phenotype in incident Parkinson's disease. *Front Aging Neurosci* 2014; 6: 6. https://doi.org/10.3389/fnagi. 2014.00249.
- 73 Pal G, O'Keefe J, Robertson-Dick E et al. Global cognitive function and processing speed are associated with gait and balance dysfunction in Parkinson's disease. J Neuroeng Rehabil 2016; 13: 1–8.
- 74 Criminger C, Swank C. Impact of dual-tasking on mobility tasks in Parkinson's disease as described through 2D kinematic analysis. Aging Clin Exp Res 2020; 32: 835–840.
- 75 Blackwood J. Cognitive function is associated with mobility in community dwelling older adults with a history of cardiovascular disease. Cardiopulm Phys Ther J 2019; 30: 86–93.
- 76 Zuo M, Gan C, Liu T, Tang J, Dai J, Hu X. Physical predictors of cognitive function in individuals with hypertension: evidence from the CHARLS Basline survey. West J Nurs Res 2019; 41: 592–614.
- 77 Klinpudtan N, Kabayama M, Gondo Y et al. Association between heart diseases, social factors and physical frailty in community-dwelling older populations: the septuagenarians, octogenarians, nonagenarians investigation with centenarians study. Genatr Gerontol Int 2020; 20: 974–979.
- 78 Xiong GL, Fiuzat M, Kuchibhatla M et al. Health status and depression remission in patients with chronic heart failure. *Circ Hear Fail* 2012; 5: 688–692.
- 79 Gardner AW, Waldstein SR, Montgomery PS, Zhao YD. Effect of cognitive status on exercise performance and quality of life in patients with symptomatic peripheral artery disease. J Vasc Surg 2016; 63: 98–104.

- 80 Doering LV, Moser DK, Lemankiewicz W, Luper C, Khan S. Depression, healing, and recovery from coronary artery bypass surgery. Am J Crit Care 2005; 14: 316–324.
- 81 Ishak NA, Zahari Z, Justine M. Kinesiophobia, pain, muscle functions, and functional performances among older persons with low Back pain. *Pain Res Treat* 2017; 2017: 1–10. https:// doi.org/10.1155/2017/3489617.
- 82 Melzer D, Gardener E, Guralnik JM. Mobility disability in the middle-aged: cross-sectional associations in the English longitudinal study of ageing. Age Ageing 2005; 34: 594–602.
- 83 Hirvensalo M, Sakari-Rantala R, Kallinen M, Leinonen R, Lintunen T, Rantanen T. Underlying factors in the association between depressed mood and mobility limitation in older people. Gerontology 2007; 53: 173–178.
- 84 James BD, Boyle PA, Buchman AS, Bennett DA. Relation of late-life social activity with incident disability among community-dwelling older adults. *Jo Gerontol - Ser a biol Sci Med Sci* 2011; 66 A: 467–473.
- 85 Serrano-Checa R, Hita-Contreras F, Jiménez-Garcia JD, Achalandabaso-Ochoa A, Aibar-Almazán A, Martinez-Amat A. Sleep quality, anxiety, and depression are associated with fall risk factors in older women. Int J Environ Res Public Health 2020; 17: 1–11.
- 86 Demnitz N, Hogan DB, Dawes H et al. Cognition and mobility show a global association in middle- and late-adulthood: analyses from the Canadian longitudinal study on aging. Gait Posture 2018; 64: 238-243.
- 87 Demnitz N, Zsoldos E, Mahmood A et al. Associations between mobility, cognition, and brain structure in healthy older adults. Front Aging Neurosci 2017; 9: 155.
- 88 Berryman N, Bherer L, Nadeau S et al. Executive functions, physical fitness and mobility in well-functioning older adults. *Exp Gerontol* 2013; 48: 1402–1409.
- 89 Lowry KA, Brach JS, Nebes RD, Studenski SA, VanSwearingen JM. Contributions of cognitive function to straight- and curved-path walking in older adults. Arch Phys Med Rehabil 2012; 93: 802–807.
- 90 Holtzer R, Wang C, Verghese J. The relationship between attention and gait in aging: facts and fallacies. *Motor Control* 2012; 16: 64–80.
- 91 Kuo HK, Leveille SG, Yu YH, Milberg WP. Cognitive function, habitual gait speed, and late-life disability in the National Health and nutrition examination survey (NHANES) 1999-2002. Gerontology 2007; 53: 102–110.
- 92 Mielke MM, Roberts RO, Savica R et al. Assessing the temporal relationship between cognition and gait: slow gait predicts cognitive decline in the mayo clinic study of aging. J Gerontol - Ser A Biol Sci Med Sci 2013; 68: 929–937.
- 93 Soumaré A, Tavemier B, Alpérovitch A et al. A cross-sectional and longitudinal study of the relationship between walking speed and cognitive function in community-dwelling elderly people. J Gerontol - Ser A Biol Sci Med Sci 2009; 64: 1058–1065.
- 94 Verlinden VJA, Van Der Geest JN, Hofman A et al. Cognition and gait show a distinct pattern of association in the general population. Alzheimers Dement 2014; 10: 328–335.
- 95 Watson NL, Rosano C, Boudreau RM et al. Executive function, memory, and gait speed decline in well-functioning older adults. J Gerontol - Ser A Biol Sci Med Sci 2010; 65 A: 1093– 1100.
- 96 Holtzer R, Mahoney J, Verghese J. Intraindividual variability in executive functions but not speed of processing or conflict resolution predicts performance differences in gait speed in

older adults. J Gerontol - Ser A Biol Sci Med Sci 2014; 69: 980-986.

- 97 van lersel MB, Kessels RPC, Bloem BR et al. Executive functions are associated with gait and balance in community-living elderly people. Jo Gerontol Ser A Biol Sci Med Sci 2008; 63: 1344–1349.
- 98 Varalta V, Picelli A, Fonte C et al. Relationship between cognitive performance and motor dysfunction in patients with Parkinson's disease: a pilot cross-sectional study. Biomed Res Int 2015; 2015: 1–6. https://doi.org/10.1155/2015/365959.
- 99 Nieto ML, Albert SM, Morrow LA, Saxton J. Cognitive status and physical function in older African Americans. J Am Geriatr Soc 2008; 56: 2014–2019.
- 100 Katsumata Y, Todoriki H, Yasura S, Dodge HH. Timed up and go test predicts cognitive decline in healthy adults aged 80 and older in Okinawa: keys to optimal cognitive aging (KOCOA) project. J Am Geriatr Soc 2011; 59: 2188–2189.
- 101 Bédard M, Leonard E, McAuliffe J, Weaver B, Gibbons C, Dubois S. Visual attention and older drivers: the contribution of inhibition of return to safe driving. *Exp Aging Res* 2006; **32**: 119–135.
- 102 Seelye A, Mattek N, Sharma N et al. Passive assessment of routine driving with unobtrusive sensors: a new approach for identifying and monitoring functional level in normal aging and mild cognitive impairment. J Alzheimers Dis 2017; 59: 1427– 1437.
- 103 Wood JM, Anstey KJ, Kerr GK, Lacherez PF, Lord S. A multidomain approach for predicting older driver safety under intraffic road conditions. J Am Geriatr Soc 2008; 56: 986–993.
- 104 Staplin L, Gish KW, Sifrit KJ. Using cognitive status to predict crash risk: blazing new trails? J Safety Res 2014; 48: 19–25.
- 105 Martin J, Krc K, Mitchell E et al. Pedometer accuracy in slowwalking older adults. Int J Ther Rehabil 2012; 19: 387–393.
- 106 Tian Q, An Y, Resnick SM et al. The relative temporal sequence of decline in mobility and cognition among initially unimpaired older adults: Results from the Baltimore longitudinal study of aging. Age Ageing 2017; 46: 445–451.
- 107 Coppin AK, Ferrucci L, Lauretani F et al. Low socioeconomic status and disability in old age: evidence from the InChianti study for the mediating role of physiological impairments. J Gerontol Ser A Biol Sci Med Sci 2006; 61: 86–91.
- 108 Hausdorff JM, Yogev G, Springer S, Simon ES, Giladi N. Walking is more like catching than tapping: gait in the elderly as a complex cognitive task. *Exp Brain Res* 2005; 164: 541–548.
- 109 Beauchet O, Annweiler C, Montero-Odasso M, Fantino B, Herrmann FR, Allali G. Gait control: a specific subdomain of executive function? *J Neuroeng Rehabil* 2012; 9: 1–5.
- 110 Herman T, Giladi N, Hausdorff JM. Properties of the 'timed up and go' test: more than meets the eye. Gerontology 2011; 57: 203–210.
- 111 Anstey KJ, Horswill MS, Wood JM, Hatherly C. The role of cognitive and visual abilities as predictors in the multifactorial model of driving safety. Accid Anal Prev 2012; 45: 766–774.
- 112 Kuspinar A, Verschoor CP, Beauchamp MK et al. Modifiable factors related to life-space mobility in community-dwelling older adults: Results from the Canadian longitudinal study on aging. BMC Geriatr 2020; 20: 1–10.
- 113 Polku H, Mikkola TM, Portegijs E et al. Life-space mobility and dimensions of depressive symptoms among communitydwelling older adults. Aging Ment Heal 2015; 19: 781–789.
- 114 Sartori AC, Wadley VG, Clay OJ, Parisi JM, Rebok GW, Crowe M. The relationship between cognitive function and life

space: the potential role of personal control beliefs. Psychol Aging 2012; 27: 364–374.

- 115 Poranen-Clark T, Von Bonsdorff MB, Rantakokko M et al. The temporal association between executive function and lifespace mobility in old age. J Gerontol - Ser A Biol Sci Med Sci 2018; 73: 835–839.
- 116 de Bruin ED, Schmidt A. Walking behaviour of healthy elderly: attention should be paid. Behav Brain Funct 2010; 6: 1–8.
- 117 Giannouli E, Bock O, Zijlstra W. Cognitive functioning is more closely related to real-life mobility than to laboratory-based mobility parameters. *Eur J Ageing* 2018; **15**: 57–65.
- 118 Zhang L, Baldwin K, Munoz B et al. Visual and cognitive predictors of performance on brake reaction test: Salisbury eye evaluation driving study. Ophthalmic Epidemiol 2007; 14: 216–222.
- 119 Montero-Odasso M, Casas A, Hansen KT et al. Quantitative gait analysis under dual-task in older people with mild cognitive impairment: a reliability study. J Neuroeng Rehabil 2009; 6: 1–6.
- 120 Zukowski LA, Iyigün G, Giuliani CA, Plummer P. Effect of the environment on gait and gaze behavior in older adult fallers compared to older adult non-fallers. *PLoS One* 2020; 15: e0230479.
- 121 Duff K, Mold JW, Roberts MM. Walking speed and global cognition: Results from the OKLAHOMA study. *Aging,Neuropsychol Cogn* 2008; **15**: 31–39.
- 122 De Raedt R, Ponjaert-Kristoffersen I. The relationship between cognitive/neuropsychological factors and car driving performance in older adults. J Am Geriatr Soc 2000: 48: 1664–1668.
- 123 Dawson JD, Uc EY, Anderson SW, Johnson AM, Rizzo M. Neuropsychological predictors of driving errors in older adults. J Am Geriatr Soc 2010; 58: 1090–1096.
- 124 Aksan N, Dawson JD, Emerson JL et al. Naturalistic distraction and driving safety in older drivers. *Hum Factors* 2013; 55: 841–853.
- 125 Chevalier A, Coxon K, Rogers K et al. Predictors of older drivers' involvement in high-range speeding behavior. Traffic Inj Prev 2017; 18: 124–131.
- 126 Jayakody O, Breslin M, Srikanth VK, Callisaya ML. Gait characteristics and cognitive decline: a longitudinal populationbased study. J Alzheimers Dis 2019; 71: S5–S14.
- 127 De Raedt R, Ponjaert-Kristoffersen I. Predicting at-fault car accidents of older drivers. Accid Anal Prev 2001; 33: 809–819.
- 128 Keay L, Munoz B, Turano KA et al. Visual and cognitive deficits predict stopping or restricting driving: the Salisbury eye evaluation driving study (SEEDS). Investig Ophthalmol Vis Sci 2009; 50: 107–113.
- 129 Killane I, Donoghue OA, Savva GM, Cronin H, Kenny RA, Reilly RB. Relative association of processing speed, shortterm memory and sustained attention with task on gait speed: a study of community-dwelling people 50 years and older. J Gerontol - Ser A Biol Sci Med Sci 2014; 69: 1407–1414.
- 130 D'Orio VL, Foley FW, Armentano F, Picone MA, Kim S, Holtzer R. Cognitive and motor functioning in patients with multiple sclerosis: neuropsychological predictors of walking speed and falls. J Neurol Sci 2012; 316: 42–46.
- 131 Gray M, Gills JL, Glenn JM et al. Cognitive decline negatively impacts physical function. Exp Gerontol 2021; 143: 143. https://doi.org/10.1016/j.exger.2020.111164.
- 132 West SK, Hahn DV, Baldwin KC et al. Older drivers and failure to stop at red lights. J Gerontol - Ser A Biol Sci Med Sci 2010; 65: 179–183.
- 133 Rosano C, Simonsick EM, Harris TB et al. Association between physical and cognitive function in healthy elderly: the

health, aging and body composition study. Neuroepidemiology 2005; 24: 8–14.

- 134 Kaleem MA, Munoz BE, Munro CA, Gower EW, West SK. Visual characteristics of elderly night drivers in the Salisbury eye evaluation driving study. *Investig Ophthalmol Vis Sci* 2012; 53: 5161–5167.
- 135 Hotta R, Makizako H, Doi T et al. Cognitive function and unsafe driving acts during an on-road test among communitydwelling older adults with cognitive impairments. Geriatr Gerontol Int 2018; 18: 847–852.
- 136 Buchman AS, Boyle PA, Leurgans SE, Barnes LL, Bennett DA. Cognitive function is associated with the development of mobility impairments in community-dwelling elders. *Am J Geriatr Psychiatry* 2011; **19**: 571–580.
- 137 Garcia-Pinillos F, Cozar-Barba M, Munoz-Jimenez M, Soto-Hermoso V, Latorre-Roman P. Gait speed in older people: an easy test for detecting cognitive impairment, functional independence, and health state. *Psychogeriatrics* 2016; 16: 165–171.
- 138 Atkinson HH, Rapp SR, Williamson JD et al. The relationship between cognitive function and physical performance in older women: Results from the women's health initiative memory study. J - Ser A Biol Sci Med Sci 2010; 65 A: 300–306.
- 139 Fitzpatrick AL, Buchanan CK, Nahin RL et al. Associations of gait speed and other measures of physical function with cognition in a healthy cohort of elderly persons. J Gerontol - Ser A Biol Sci Med Sci 2007; 62: 1244–1251.
- 140 Lee JW, Park KD, Im JA, Kim MY, Lee DC. Mitochondrial DNA copy number in peripheral blood is associated with cognitive function in apparently healthy elderly women. *Clin Chim Acta* 2010; 411: 592–596.
- 141 Agmon M, Armon G. A cross-sectional study of the association between mobility test performance and personality among older adults. BMC Geriatr 2016; 16: 1–6.
- 142 Van Patten R, Lee EE, Graham SA et al. The utility of the timed up-and-go test in predicting cognitive performance: a crosssectional study of independent living adults in a retirement community. J Appl Gerontol 2020; 39: 1163–1168.
- 143 Tolea MI, Morris JC, Galvin JE. Longitudinal associations between physical and cognitive performance among communitydwelling older adults. *PLoS One* 2015; **10**: e0122878.
- 144 Hollis AM, Duncanson H, Kapust LR, Xi PM, O'Connor MG. Validity of the mini-mental state examination and the Montreal cognitive assessment in the prediction of driving test outcome. J Am Geriatr Soc 2015; 63: 988–992.
- 145 Keall MD, Woodbury E. An analysis of changes in mobility and safety of older drivers associated with a specific older driver on-road licensing test: a population study. *BMC Public Health* 2014; 14: 165.
- 146 Wood KM, Edwards JD, Clay OJ, Wadley VG, Roenker DL, Ball KK. Sensory and cognitive factors influencing functional ability in older adults. *Gerontology* 2005; 51: 131–141.
- 147 Crowe M, Andel R, Wadley VG, Okonkwo OC, Sawyer P, Allman RM. Life-space and cognitive decline in a communitybased sample of African American and Caucasian older adults. J Gerontol - Ser A Biol Sci Med Sci 2008; 63: 1241– 1245.
- 148 Pavol MA, Stein J, Kabir FM et al. Understanding the connection between cognitive impairment and mobility: what can be gained from neuropsychological assessment? *Rehabil Res Pract* 2017; 2017: 1–7.
- 149 Peel C, Baker PS, Roth DL, Brown CJ, Bodner EV, Allman RM. Assessing mobility in older adults: the UAB study

© 2022 Japanese Psychogeriatric Society.

of aging life-space assessment. Phys Ther 2005; 85: 1008-1019.

- 150 Sverdrup K, Bergh S, Selbæk G, Røen I, Kirkevold Ø, Tangen GG. Mobility and cognition at admission to the nursing home - a cross-sectional study. *BMC Geriatr* 2018; 18: 1–10.
- 151 Allman RM, Baker PS, Maisiak RM, Sims RV, Roseman JM. Racial similarities and differences in predictors of mobility change over eighteen months. J Gen Intern Med 2004; 19: 1118–1126.
- 152 Tung JY, Gage WH, Zabjek KF, Maki BE, McIlroy WE. Frontal plane standing balance with an ambulation aid: upper limb biomechanics. J Biomech 2011; 44: 1466–1470.
- 153 Shah RC, Maitra K, Barnes LL, James BD, Leurgans S, Bennett DA. Relation of driving status to incident life space constriction in community-dwelling older persons: a prospective cohort study. *Journals Gerontol - Ser a biol Sci. Med Sci* 2012; 67 A: 984–989.
- 154 Fraade-Blanar LA, Ebel BE, Larson EB et al. Cognitive decline and older driver crash risk. J Am Geriatr Soc 2018; 66: 1075– 1081.
- 155 O'Connor ML, Edwards JD, Bannon Y. Self-rated driving habits among older adults with clinically-defined mild cognitive impairment, clinically-defined dementia, and normal cognition. Accid Anal Prev 2013; 61: 197–202.
- 156 Silberschmidt S, Kumar A, Raji MM, Markides K, Ottenbacher KJ, al Snih S. Life-space mobility and cognitive decline among Mexican Americans aged 75 years and older. J Am Geriatr Soc 2017; 65: 1514–1520.
- 157 Moore DS, Ellis R. Measurement of fall-related psychological constructs among independent-living older adults: a review of the research literature. Aging Ment Health 2008; 12: 684–699.
- 158 Rivasi G, Kenny RA, Ungar A, Romero-Ortuno R. Predictors of incident fear of falling in community-dwelling older adults. J Am Med Dir Assoc 2020; 21: 615–620.
- 159 Holtzer R, Kraut R, Izzetoglu M, Ye K. The effect of fear of falling on prefrontal cortex activation and efficiency during walking in older adults. *GeroScience* 2019; 41: 89–100.
- 160 Deshpande N, Metter EJ, Lauretani F, Bandinelli S, Guralnik J, Ferrucci L. Activity restriction induced by fear of falling and objective and subjective measures of physical function: a prospective cohort study. J Am Geriatr Soc 2008; 56: 615–620.
- 161 Park JH, Cho H, Shin JH et al. Relationship among fear of falling, physical performance, and physical characteristics of the rural elderly. Am J Phys Med Rehabil 2014; 93: 379–386.
- 162 Lamarche L, Gammage KL, Klentrou P, Adkin AL. What will they think? The relationship between self-presentational concerns and balance and mobility outcomes in older women. *Exp Aging Res* 2014; 40: 426–435.
- 163 Delbaere K, Crombez G, Van Haastregt JCM et al. Falls and catastrophic thoughts about falls predict mobility restriction in community-dwelling older people: a structural equation modelling approach. Aging Ment Health 2009; 13: 587–592.
- 164 SE L, Menz H. Physiologic, psychologic, and health predictors of 6-minute walk performance in older people. Arch Phys Med Rehabil 2002; 83: 907–911.
- 165 Satchidanand N, Fox C, Brunton K et al. Exploring predictors of walking ability among community-dwelling older adults. Aging Health 2013; 9: 189–197.
- 166 Staples WH, Kays A, Richman R. Examination of the correlation between physical and psychological measures in community-dwelling older adults. *Clin Interv Aging* 2020; 15: 293–300.

- 167 Kyrdalen IL, Thingstad P, Sandvik L, Ormstad H. Associations between galt speed and well-known fall risk factors among community-dwelling older adults. *Physiother Res Int* 2019; 24: e1743.
- 168 LeMonda BC, Mahoney JR, Verghese J et al. The association between high neuroticism-low extraversion and dual-task performance during walking while talking in non-demented older adults. J Int Neuropsychol Soc 2015; 21: 519–530.
- 169 Almeida OP, Hankey GJ, Yeap BB, Golledge J, Hill KD, Flicker L. Depression among nonfrail old men is associated with reduced physical function and functional capacity after 9 years follow-up: the health in men cohort study. J Am Med Dir Assoc 2017: 18: 65–69.
- 170 Nagano H, Sarashina E, Sparrow W, Mizukami K, Begg R. General mental health is associated with gait asymmetry. Sensors 2019; 19: 4900.
- 171 Mehta K, Yaffe K, Brenes G et al. Anxiety symptoms and decline in physical function over 5 years in the health, aging and body composition study. J Am Geriatr Soc 2007; 55: 265–270.
- 172 Ayers E, Shapiro M, Holtzer R, Barzilai N, Milman S, Verghese J. Symptoms of apathy independently predict incident frailty and disability in community-dwelling older adults. *J Clin Psychiatry* 2017; **78**: e529–e536.
- 173 Henstra MJ, Rhebergen D, Stek ML et al. The association between apathy, decline in physical performance, and falls in older persons. Aging Clin Exp Res 2019; 31: 1491–1499.
- 174 Al Snih S, Peek KM, Sawyer P et al. Life-space mobility in Mexican Americans aged 75 and older. J Am Geriatr Soc 2012; 60: 532–537.
- 175 Domènech-Abella J, Switsers L, Mundó J, Dierckx E, Dury S, de Donder L. The association between perceived social and physical environment and mental health among older adults. mediating effects of loneliness. *Aging Ment Health* 2021; 25: 962–968.
- 176 Dong L, Freedman VA, Mendes de Leon CF. The association of comorbid depression and anxiety symptoms with disability onset in older adults. *Psychosom Med* 2020; 82: 158–164.
- 177 Duberstein PR, Sörensen S, Lyness JM et al. Personality is associated with perceived health and functional status in older primary care patients. *Psychol Aging* 2003; 18: 25–37.
- 178 Bernstein JPK, DeVito A, Calamia M. Associations between emotional symptoms and self-reported aberrant driving behaviors in older adults. Accid Anal Prev 2019; 127; 28–34.
- 179 Saadeh M, Welmer AK, Dekhtyar S, Fratiglioni L, Calderón-Larrañaga A. The role of psychological and social well-being on physical function trajectories in older adults. J Gerontol -Ser A Biol Sci Med Sci 2021; 75: 1579–1585.
- 180 Ostir GV, Markides KS, Black SA, Goodwin JS. Emotional well-being predicts subsequent functional independence and survival. J Am Geriatr Soc 2000; 48: 473–478.
- 181 Soares WJS, Lima CA, Bilton TL, Ferrioli E, Dias RC, Perracini MR. Association among measures of mobility-related disability and self-perceived fatigue among older people: a population-based study. *Brazil J Phys Ther* 2015; **19**: 194–200.
- 102 Dames LL, Wilson RS, Dienias JL et al. Correlates of life space in a volunteer cohort of older adults. Exp Aging Res 2007; 33: 77–93.
- 183 Collins AL, Goldman N, Rodriguez G. Is positive well-being protective of mobility limitations among older adults? J Gerontol - Ser B Psychol Sci Soc Sci 2008; 63: 321–327.
- 184 Penninx BWJH, Guralnik JM, Bandeen-Roche K et al. The protective effect of emotional vitality on adverse health

outcomes in disabled older women. J Am Geriatr Soc 2000; 48: 1359-1366.

- 185 Agmon M, Armon G, Denesh S, Doumas M. The role of gender in the association between personality and task priority in older adults' dual-tasking while walking. *BMC Geriatr* 2018; 18: 1.
- 186 Buchman AS, Boyle PA, Wilson RS, Leurgans SE, Arnold SE, Bennett DA. Neuroticism, extraversion, and motor function in community-dwelling older persons. Am J Geriatr Psychiatry 2013; 21: 145–154.
- 187 Schott N, Tietjens M. Exploring the mediating role of social support and fall efficacy on the association between falls and physical activity: a cross-sectional study in an assisted-living population. J Aging Phys Act 2019; 27: 53–60.
- 188 Bergland A, Meaas I, Debesay J et al. Associations of social networks with quality of life, health and physical functioning. Eur J Physiother 2016; 18: 78–88.
- 189 Katayama O, Lee S, Bae S et al. Participation in social activities and relationship between walking habits and disability incidence. J Clin Med 2021; 10: 1895.
- 190 Kubota A. Carver A. Sugiyama T. Associations of local social engagement and environmental attributes with walking and sitting among Japanese older adults. *J Aging Phys Act* 2020; 28: 187–193.
- 191 Mendes de Leon CF, Glass TA, Berkman LF. Social engagement and disability in a community population of older adults: the New Haven EPESE. Am J Epidemiol 2003; 157: 633–642.
- 192 Jones VC, Johnson RM, Borkoski C et al. Social support moderates the negative association between reduced driving and life satisfaction in older adults. J Appl Gerontol 2020; 39: 1258–1262.
- 193 James DD, Doyle PA, Duchman AS, Dames LL, Dennett DA. Life space and risk of alzheimer disease, mild cognitive impairment, and cognitive decline in old age. Am J Geriatr Psychiatry 2011; 19: 961–969.
- 194 Sun X, Lucas H, Meng Q, Zhang Y. Associations between living arrangements and health-related quality of life of urban elderly people: a study from China. *Qual Life Res* 2011; 20: 359–369.
- 195 Shaw BA, Fors S, Fritzell J, Lennartsoon C, Agahi N. Who lives alone during old age? Trends in the social and functional disadvantages of Sweden's solitary living older adults. *Res Aging* 2018; **40**: 815–838.
- 196 Corbett DB, Rejeski WJ, Tudor-Locke C et al. Social participation modifies the effect of a structured physical activity program on major mobility disability among older adults: Results from the LIFE study. J Gerontol - Ser B Psychol Sci Soc Sci 2018; 73: 1501–1513.
- 197 Nilsson CJ, Avlund K, Lund R. Onset of mobility limitations in old age: the combined effect of socioeconomic position and social relations. Age Ageing 2011; 40: 607–614.
- 198 Rantakokko M, Duncan R, Robinson L, Wilkie R. Natural history of social participation in the very old: findings from the Newcastle 85+ study. J Aging Health 2020; 32: 1552–1561.
- 109 Li L, Loo BPY. Mobility impairment, cocial ongagement, and life satisfaction among the older population in China: a structural equation modeling analysis. *Qual Life Res* 2017; 26: 1273–1282.
- 200 Seino S, Kitamura A, Nishi M et al. Individual- and community-level neighbor relationships and physical activity among older Japanese adults living in a metropolitan area: a cross-sectional multilevel analysis. Int J Behav Nutr Phys Act 2018: 15: 1–11.

- 201 Perissinotto CM, Stijacic Cenzer I, Covinsky KE. Loneliness in older persons: a predictor of functional decline and death. Arch Intern Med 2012; 172: 1078–1083.
- 202 Warner DF, Adams SA, Anderson RK. The good, the bad, and the indifferent: physical disability, social role configurations, and changes in loneliness among married and unmarried older adults. J Aging Health 2019; 31: 1423–1453.
- 203 Poulsen T, Siersma VD, Christensen U et al. Educational intervention and functional decline among older people: the modifying effects of social capital. Scand J Public Health 2014; 42: 295–303.
- 204 Vásquez E, Murillo R, Echeverria S. Neighborhood social cohesion and walking limitations in ethnically diverse older Latinos in the United States. *Ethn Dis* 2019; 29: 247–252.
- 205 Thomas PA. Trajectories of social engagement and limitations in late life. J Health Soc Behav 2011; 52: 430–443.
- 206 Giles LC, Metcalf PA, Glonek GFV, Luszcz MA, Andrews GR. The effects of social networks on disability in older Australians. J Aging Health 2004; 16: 517–538.
- 207 Wilson RS, Capuano AW, Boyle PA et al. Clinical-pathologic study of depressive symptoms and cognitive decline in old age. *Neurology* 2014; 83: 702–709.
- 208 Griffin SC, Mezuk B, Williams AB, Perrin PB, Rybarczyk BD. Isolation, not loneliness or cynical hostility, predicts cognitive decline in older Americans. J Aging Health 2020; 32: 52–60.
- 209 Reuben DB, Seeman TE, Keeler E et al. Refining the categorization of physical functional status: the added value of combining self-reported and performance-based measures. J Gerontol - Ser A Biol Sci Med Sci 2004; 59: 1056–1061.
- 210 Syddall HE, Westbury LD, Cooper C, Sayer AA. Self-reported walking speed: a useful marker of physical performance among community-dwelling older people? J Am Med Dir Assoc 2015; 16: 323–328.
- 211 Sakurai R, Okubo Y. Depression, Fear of Falling, Cognition and Falls. In: Montero-Odasso, M., Carnicioli R. (eds), Falls and Cognition in Older Persons. Springer, Cham. 2020. https://doi. org/10.1007/978-3-030-24233-6_4.
- 212 Milaneschi Y, Penninx B. Depression in older persons with mobility limitations. *Curr Pharm des* 2014; 20: 3114–3118.
- 213 Chase JAD, Phillips LJ, Brown M. Physical activity intervention effects on physical function among community-dwelling older adults: a systematic review and meta-analysis. J Aging Phys Act 2017; 25: 149–170.
- 214 Chua CHM, Jiang Y, Lim DS, Wu VX, Wang W. Effectiveness of cognitive behaviour therapy-based multicomponent interventions on fear of falling among community-dwelling older adults: a systematic review and meta-analysis. J Adv Nurs 2019; 75: 3299–3315.

- 215 Crowther RG, Spinks WL, Leicht AS, Quigley F, Golledge J. Relationship between temporal-spatial gait parameters, gait kinematics, walking performance, exercise capacity, and physical activity level in peripheral arterial disease. J Vasc Surg 2007; 45: 1172–1178.
- 216 Schaefer S. The interplay between cognitive and motor functioning in healthy older adults: findings from dual-task studies and suggestions for intervention. *Gerontology* 2011; 57: 239–246.
- 217 Rhodes RE, Smith NEI. Personality correlates of physical activity: a review and meta-analysis. Br J Sports Med 2006; 40: 958–965.
- 218 Warren M, Ganley KJ, Pohl PS. The association between social participation and lower extremity muscle strength, balance, and gait speed in US adults. *Prev Med Reports* 2016; 4: 142–147.
- 219 Soubra R, Chkeir A, Novella JL. A systematic review of thirtyone assessment tests to evaluate mobility in older adults. *Biomed Res Int* 2019; 1: 1–17.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article at the publisher's website: http://onlinelibrary.wiley.com/doi//suppinfo.

Appendix 1 Example of search strategy for cognition, psychological and social determinants conducted in CINHAL

Appendix 2A Quantitative studies that examined the association between cognitive factors and mobility outcomes (N = 88)

Appendix 2B Quantitative studies that examined the association between psychological factors and mobility outcomes (N = 37)

Appendix 2C Quantitative studies that examined the association between social factors and mobility outcomes (N = 24)

Appendix 2D Quantitative studies that examined the association between >1 factors and mobility outcomes (N = 34)

CHAPTER 3: A scoping review of personal, financial and environmental determinants of mobility among older adults.

As submitted to:

Archives of Physical Medicine and Rehabilitation

Status at time of thesis submission: revisions submitted and under review

Preface

This chapter is one of the three manuscripts from Phase 1 of the PhD thesis that focused on identifying factors within personal, financial and environmental mobility determinants and their association with self-reported and performancebased mobility outcomes in older adults. Under the supervision of Dr V Dal Bello-Haas, I conceptualized the study, designed the study, developed research questions and search strategy, conducted the search, and participated in the title/abstract and full-text screening, extracted the data, and interpreted the findings, and wrote, revised and submitted the manuscript. Dr. M Griffin M, Dr. S Boamah S, and Dr. J Harris provided feedback on the research questions and the manuscript. The following authors participated in the title/abstract and full-text screening and data extraction of the included articles: D Rayner, for personal factors and M Zaide for financial factors; N Khattab and S Abrahim for environmental factors. The first search was conducted in November 2019 and updated in December 2021.

Citation:

Kalu ME, Dal Bello-Haas V, Griffin M, Boamah S, Harris J, Zaide M, Rayner D, Khattab N, Abrahim S. A scoping review of personal, financial and environmental determinants of mobility among older adults.

A scoping review of personal, financial and environmental determinants of mobility among older adults.

Short title: Contextual determinants of mobility among older adults.

Authors: Michael E Kalu¹, Vanina Dal Bello-Haas¹, Meridith Griffin², Sheila A Boamah³, Jocelyn Harris¹, Mashal Zaide⁴, Daniel Rayner⁵, Nura Khattab⁶, Salma Abrahim⁶.

Affiliations:

¹School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada ²Department of Health, Aging & Society, Faculty of Social Science, McMaster University Hamilton, Ontario, Canada ³School of Nursing, Faculty of Health Sciences, McMaster University Hamilton, Ontario, Canada ⁴Faculty of Health Sciences, McMaster University, Ontario, Canada. ⁵Department of Health Science, Faculty of Health Sciences, McMaster University, Ontario, Canada. ⁶Department of Kinesiology, Faculty of Sciences, McMaster University, Ontario, Canada.

Corresponding author: Michael E Kalu; kalum@mcmaster.ca

Key words: Mobility, older adults, personal, financial and environmental factors

Abstract

Review objective

To synthesize available evidence of factors comprising the personal, financial, and environmental mobility determinants and their association with selfreported and performance-based mobility outcomes in older adults.

Methods

A scoping review of PubMed, EMBASE, PsychINFO, Web of Science, AgeLine, Allied and Complementary Medicine Database, and Cumulative Index to Nursing and Allied Health Literature databases, limiting to articles published in English, since 2000, was conducted. Using predefined inclusion and exclusion criteria, multiple reviewers independently conducted title, abstract, full-text screening and data extraction. We reported associations between factors and mobility outcomes by analyses conducted within each article rather than by article in order to account for multiple associations generated in one article. Associations were categorized as significantly positive or significantly negative.

Results

A total of 300 articles were included with 269 quantitative, 22 qualitative and 9 mixed-method articles representing personal (n = 80), and financial (n = 1), environmental (n = 98), more than 1 factor (n = 121). We identified multiple factors for each category, except financial which captured two factors: personal and household income. The 278 quantitative and mixed-method articles reported 1270 analyses; 596 (46.9%) were positively, and 220 (17.3%) were negatively associated with mobility outcomes among older adults. Personal (65.3%), financial (64.6%), and environmental factors (62.9%) were associated with mobility outcomes, mainly in the expected direction with few exceptions in environmental factors.

Conclusions

Most associations between personal, financial and environmental factors and mobility outcomes were in the expected direction. Older adults with better

Ph.D. Thesis M. Kalu, McMaster University - School of Rehabilitation Science

personal factors (e.g., advanced educational attainment) and higher income and environmental factors (e.g., better street connectivity) are more likely to have better mobility than their counterparts. Gaps exist in understanding the impact of some environmental factors (e.g., number and type of street connections) and the role of gender on older adults' walking outcomes. **Keywords:** mobility, environmental factors, financial factors, personal factors, older adults

Introduction

Being mobile is crucial to well-being and independence because it is directly related to accessing fundamental needs (e.g., food, clothing, healthcare) and maintaining social and recreational participation in older adults [1,2]. Mobility is defined as the movement across various environments (e.g., room, home, outdoors, neighborhood, community, and the world) independently, using assistive devices or via transportation or driving [3]. Approximately one-third of older adults (65 years and older) report difficulty walking or climbing stairs [4]. Older persons with mobility limitations experience multifaceted issues within physical, psychological, and social domains, which compromise their ability to perform and engage in daily living and social activities; in turn this negatively affects their supportive relationships, connectedness, autonomy, and independence [5]. Mobility limitations are considered the first sign of older adults' functional decline [4] and are linked to hospitalization, frequent falls, poor cognitive functioning, muscle atrophy, frailty, and overall decreased quality of life [6].

Mobility limitation has been described using self-report, performancebased and/or objective measures of mobility outcomes (e.g., use of accelroemeters) relating to walking by self, use of assistive device, transportation or driving. For example, Simonsick et al. [7] described mobility limitation as self-reported difficulty in walking one-quarter of a mile or climbing a flight of stairs while Saino et al. [8] described mobility limitation as gait speed less than 1.2m/s, the required speed to cross the street just before the light turns red. Levasseur et al. [9] described mobility limitation as limited or no access to public transportation or constrained driving. Summarily, Rantakokko, Mänty and Rantanen [10] describe mobility limitation as self-reported difficulties in walking, performance deficits in objective mobility in real-life or in a lab., and lack of access to assistive mobility devices, transportation, or driving.

While the role of cognitive, financial, environmental, personal, physical, psychological, and social factors on mobility has been explored extensively over the years, the factors are often examined individually [3]. Webber and colleagues [3] described a comprehensive Conical Model of Theoretical Framework for Mobility in older adults, henceforth referred as the Conical Model. This model conceptualizes cognitive, psychosocial, physical, environmental, financial, and personal histories/stories as determinants of mobility across seven life space locations (bedroom, home, outdoors, neighborhood, service community, surrounding area, and the world). Within each determinant, the authors describe factors, for example physical (physical activity levels, muscle strength, endurance and power), cognitive (memory and executive function), psychological (depression, fear of falling and anxiety) social (social networks and loneliness), environmental (street characteristics and social environment), personal (age, gender, sex, marital status, ethnicity and culture). The Conical Model [3] describes the interrelation between these mobility determinants, but what is not known is the associations amongst factors and mobility outcomes. The application of this model in research and clinical practice can be challenging, as researchers and clinicians do not know which factors within each determinant play a significant role in mobility outcomes. In order to support application, we are conducting a series of scoping reviews focused on describing the association between determinant factors and mobility outcomes. One of these reviews is on environmental, financial and personal determinants of mobility and self-reported and performance-based or objective mobility outcomes relating to walking by self, use of assistive devices, transportation and driving.

Personal factors are the particular background of an individual's life comprising features that are not part of health and social conditions [11], such as age, gender, education, income. The Conical Model states that gender, culture, and biography shape older adults' experiences and mobility behaviours,

serving as a crosscutting influence on other mobility determinants. However, personal factors, such as education, occupation, ethnicity, employment status, which are routinely used as indicators of older adults' health outcomes, were not emphasized in the Conical Model. Importantly, several studies reported associations between these personal factors and older adults' mobility - for instance, older adults with higher level of education have better mobility [12-21], but they have not been synthesized in a review.

The Conical Model considers financial factors distinct because of its association with mobility among older adults and its interaction with other determinants [3]. Income, typically a combination of personal income, pension, spousal, and household/family income assets, directly influence older adults' mobility [3]. Lower income in older adults is associated with decreased walking speed, increased risk of developing mobility limitations, and inability to purchase mobility aids or modes of transportation [22]. Income dictates the extent an older adult actively participates in activities away from home especially if mobility limitations related to body structure (e.g., muscle weakness) are present [3].

Environmental factors refer to all aspects of the external world of an individual's life that may impact his or her functioning [23]. They include physical characteristics [e.g., distance, temporal characteristics, light and weather conditions], and social or environmental policies and resultant services, and systems, and public attitudes. Reviews that focused on relationships between environmental factors and mobility amongst older adults exist; however, these reviews focused only on some environmental factors or mobility outcomes. For instance, Barnett et al.'s review [24] focused on the built environment and its correlates to older adults walking for transportation, while Levasseur et al.'s review [25] focused on the importance of proximity to resources, social support transport and neighbourhood security for mobility in older adults. Although Hanson et al.'s review [26] has explored the intersection

between built and social environments and older adults' mobility, their review was conducted almost 20 years ago and did not cover the comprehensive definition of mobility described in the Conical Model.

Although the Webber et al.'s paper [3] provided some examples for environmental, personal, and financial determinants of mobility the list is not exhaustive. Furthermore, the associations of each factor with each determinant and with several mobility outcomes have not been explored. To date, and to the best of our knowledge, no review has provided a comprehensive description of associations amongst environmental, personal and financial factors and various aspects of mobility such as walking by self, use of assistive devices, transportation and driving. Therefore, a systematic search of the literature to identify each mobility determinant's factors, as described in the Conical Model [3] is warranted.

The purpose of this paper is to present the results of a synthesis of the available evidence for factors comprising the financial, environmental, and personal mobility determinants and their association with mobility selfreported, and performance-based (including objective measures, such as accelerometer) outcomes in older adults. The subsequent reviews will focus on older adults' cognitive, physical, psychological, and social mobility determinants.

Methods

Study design

This study is a scoping review which was guided by the five stages described in Arksey and O'Malley's [27] framework, with recommendations from Levac et al. [28] for advancing this e methodology. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews (PRISMA-Scr) was used to report results [29]. The protocol was registered with Open Science Framework: https://doi.org/10.17605/OSF.IO/7Y5VG.

Stage 1: identifying the research question

The following questions guided this scoping review: (a) what factors comprise the financial, environmental, and personal mobility determinants in older adults 60 years and older? (b) What are the associations between financial, environmental, and personal factors and mobility self-reported and performancebased outcomes in older adults 60 years and older? We define an older adult as a person who is 60 years and older [30].

Stage 2: identifying relevant studies

The research team collaboratively developed the search strategy in consultation with an experienced health science librarian. We searched PubMed, EMBASE, AMED, CINAHL, Psych INFO, Web of Science, Ageline and Sociological Abstract databases to capture studies that identified factors for financial, environmental, and personal mobility determinants among older adults. We restricted our research from January, 2000 to December, 2021, as 2000 was the projected year the impact of baby boomers on health outcomes would be evident across the world's developed regions [31]. We also hand-searched the included articles' reference lists to identify any relevant studies to be included. We conducted three different searches for financial, environmental, and personal determinants using the search terms in Table 1. We adapted MeSH terms for each database, and Booleans were used when necessary.

Stage 3: Selecting studies

All citations from each database for financial, environmental, and personal determinants reviews were exported into Rayyan QCRI© [32] and saved separately. After removing duplicates for each factor, studies were selected for each mobility determinant in two stages: title/abstract and full-text screening. Four raters independently performed a "pilot test"- title/abstract and full-text screening of the first fifty articles for each determinant using the predefined inclusion and exclusion criteria to determine inter-rater reliability. Light's kappa for both title/abstract and full-text screening ranged from 0.84

to 0.97, indicating a high magnitude of agreement amongst raters [33]; thus, retrieved articles were divided among the four raters for each factor. Questions, concerns, and disagreements at any stage were discussed with senior authors.

Inclusion and exclusion

Articles were included if:

- (a) The study population was older adults (mean age of study sample, at least 60 years). we choose to include studies whose study mean age is at least 60 years because some longitudinal studies included participants 55+; and to accommodate the definition of older adults in developing regions (e.g., Africa - 55 years and older).
- (b) The factors were (not exhaustive): financial factors (e.g., income, employment status), environment factors (e.g., social, natural, or built environment), personal factors (e.g., age, gender, race, ethnicity, beliefs, mobility-related experiences, opinions).
- (c) The outcome was an indicator of mobility: (i) performance-based measure such as gait speed, the Timed Up and Go Test, Stair Climb Test, and 6-Minute Walk Test; or (ii) self-reported measure such as the Late-Life Function and Disability Instrument, the de Morton Mobility Index, Life-Space Mobility Assessment; or (iii) use of assistive mobility devices (e.g., walkers, wheelchairs, scooters); or (iv) driving or transportation.
- (d) The study setting was hospital (e.g., acute care, inpatient care), community, assisted living, or long-term care facilities.
- (e) The article was peer-reviewed, conducted in the quantitative, qualitative, or mixed-method paradigm, and published in English between January 2000 to December 2021.

Articles were excluded if it:

(a) was an opinion paper with no data.

- (b) measured the functional decline in activities of daily living or instrumental activities of daily living without any specific measure of mobility.
- (c) described physical activity or exercise (except walking) as a form of mobility. For instance, studies that used an accelerometer and reported a sum score of moderate to vigorous physical activities in minutes without reporting the activities, such as walking or stair climbing, that led to the sum score were excluded in this study.

Stage 4: Charting of data

We adopted a standardized data extraction sheet used in a previous scoping review [34] to extract data from the included studies. Reviewers that screened articles for financial, environmental, and personal factors met to discuss any overlapping articles included for each factor. A comprehensive list identifying the overlapping articles was generated. Reviewers met every two weeks to discuss and resolve any discrepancies arising during data extraction. We extracted study authors', country, purpose setting, type (qualitative, quantitative, mixedmethod), design, sample characteristics (older adults with no defined conditions vs those with health condition e.g., stroke, size, mean age, and sex), financial, environmental, and personal factors included, mobility outcome(s), and results related to our review purpose.

Stage 5: Collating, summarizing, and reporting the result

We collated the results in this review based on the type of study. For the quantitative studies and the mixed-methods quantitative component, we followed Barnett et al.'s [1] study protocol and reported associations between factors and mobility outcomes by analyses conducted within each article rather than by article in order to account for multiple associations generated in one article. For example, if one article reports the association between multiple factors (e.g., age, sex, residential density) and multiple mobility outcomes (e.g., walking speed, self-reported inability to walk one mile and total walking

Ph.D. Thesis M. Kalu, McMaster University - School of Rehabilitation Science

distance/day), six distinct findings were extracted. We considered a factor negatively or positive significantly associated with mobility outcome if the article reported such factor as significant based on their p-value. Environmental factors were grouped into built, natural and social environments ([3], see Table 2 for definitions).

For the qualitative studies and the qualitative components of the mixedmethod studies, we used deductive content analysis [35]. Two authors independently mapped the themes that emerged across the environmental, personal and financial factors. To support content analysis, frequent meetings occurred, and any discrepancies were discussed with the research group.

Ethical consideration

The research is a review and did not directly involve participants. Therefore, ethical approval and informed consent from participants were not needed.

Results

The results of this review are presented in three parts: study characteristics, factors within each determinant and their associations with mobility outcomes, and the qualitative findings. Of 27,293 retrieved citations we read 1422 (762 for environmental, 164 for financial and 496 for personal factors) and extracted data from 300 articles (Fig. 1). Included articles focused on personal factors only (n = 80, 27.0%), financial factors only (n = 1, 0.3%), environmental factors only (n = 98, 32.7%), and more than one factor (n = 121, 40.0%) (Fig 2).

Characteristics of the included studies

The study characteristics of the 300 articles are described in Table 3. Most of the studies were based in North American (n = 132, 44.0%), Europe (n = 89, 29.7%), and Asia (n = 42, 14.0%) with studies from the United States of America being prominent (n = 105, 35.0%).
Participants descriptions/sample size. Mean age ranged from 60.8 years [36] to 88.9 years [37] with 233 (77.7%) studies reporting more females than males and 51 studies (17.0%) more males than females. The sample size ranged from 6 [38] to 75862 [39], with 57 (19.0%) articles having more than 2500 participants.

Study Sample. The majority (n = 272, 90.7%) of the samples were older adults with no defined conditions. Twenty-eight studies (9.3%) included older adults with defined health conditions such as stroke [36,40-43], cancer [44-46], and multiple chronic conditions (e.g. osteoarthritis, diabetes, heart disease) [47-52].

Study designs. Of the 300, 269 (89.7%) were quantitative studies, 22 (7.3%) were qualitative and 9 (3.0%) were mixed-methods studies. The most frequent designs were cross-sectional (n = 175, 65.1%), longitudinal (n = 75, 27.9%), and randomized control trials (n = 12, 5.2%). For qualitative studies, the most frequent designs were descriptive (n = 8), phenomenology (n = 3), qualitative interpretative (n = 2), ethnography (n = 2), and grounded theory (n = 2). Only three of the nine mixed-method studies reported the designs (concurrent [53], explanatory [54] and integrated [55]).

Study recruitments. Most included studies recruited participants from the community (n = 278, 92.7%), with 11 (3.7%) from a hospital setting, and four from a nursing home [56-59]. Seven (2.3%) studies recruited participants from more than one setting: community and hospitals [45,60-62] or community and retirement homes [63,64] or community and lab [65].

Mobility outcomes used. Of the quantitative and mixed-method articles (n = 278), 171 (61.5%) articles assessed mobility using self-reported questionnaires only, 91 (32.7%) articles assessed mobility using performance-based measure(s) only, and 16 (5.8%) articles assessed mobility using both (see Table 2 for details).

Factors within each determinant and its association with mobility outcomes

Factors within each determinant and their definitions are found in Table 2. The 278 quantitative and mixed-method articles reported 1270 analyses; 596 (46.9%) were positively, and 220 (17.3%) were negatively associated with mobility outcomes among older adults. Only significant associations are described in this section. Non-significant associations for each included article are found in Appendix 3A (personal factors only), 3B (environmental factors only), and 3C (more than one factor). All the articles included in this section controlled some variables, depending on their analysis and study outcome. For variables controlled for each study, see Appendices 3A, 3B, and 3C.

Association between personal factors and mobility outcomes.

Two hundred articles reported 654 analyses comprising multiple personal factors; 248 (37.9%) were positively, and 179 (27.4%) were negatively associated with mobility outcomes among older adults.

Age

Of 207 analyses, 165 (79.7%) reported a significant association between performance-based (n = 82, 49.6%) and self-reported (n = 83, 50.3%) mobility measures and age.

Performance-based outcomes. Studies reported that age was negatively associated with gait speed [13,17,72-79,18,52,66-71], stride length [70,80], cadence [70], walking distances [50,81-83], number of steps/day or week [61,68,76,84-88], step height during stair climbing [89], balance [70,73,90-94], time taken to complete Sit-to-Stand test [68,73,78,79,83], and Short Physical Performance Battery (SPPB) scores [50,91,93,95-98]; and, positively associated with single or double support time [80,85], step length [16,80], and width [80], time taken to complete a walking test [19,45,104,105,81,84,91,99-103], Time Up and Go (TUG) scores [16,73,111,112,83,94,100,106-110], and gait stability ratio score [70].

Self-reported outcomes. Studies reported that age was negatively associated with the number of times walked/travelled [20,42,113-120], distance walked/travelled [39,77,78,115,117,121-125], desire to walk [39,126], driving outcomes [hours/week [63,114,127], miles driven [128,129], number of trips [114,119]], public transit use [39,114,126,130], Life Space Assessment (LSA) scores [43,73,138,105,131-137] or other self-reported mobility measures [139], - [113,140], [57], [37]), and mobility limitation [50,141,150-154,142-149]; and, positively associated with driving cessation [129], avoidance of driving at night or highway [155], recovery from mobility limitation [156,157], and increased mobility assistive device use [56,158-161].

Sex

Of 169 analyses, 107 (63.3%) reported a significant association between sex and performance-based (n = 35, 32.7%) and self-reported (n = 72, 67.3%) mobility measures.

Performance-based outcomes. Studies reported that compared to males, females had: slower gait speed [17,19,69,77,162], shorter stride length and step width/length, reduced single or double support time [80], reduced walking distances [36,50,99,103,163], increased time to complete a walking distance[44,91,104,110,164] or Chair Rise Test [45], and lower balance scores [70,91,93,165] and SPPB scores [91,93,95,166,167]. Women walked longer distances in walking tests [82,168], had higher gait stability ratios [70], and higher cadence [70,80], faster height-adjusted gait speed, longer step length and wider width [80], and faster sit-to-stand transition [84] than men.

Self-reported outcomes. Studies reported that compared to men, women had significantly reduced walking distance [115,169], time [115], and frequency [39,74,140,170-173,113,116,119,121-125], reduced use of stairs [174], and, lower driving performance score [58] and LSA scores [32,36,295,63,85,161,166,211,212,215,222]. Women were more likely than men to: be non-drivers [63] or passengers [175], never have owned a car, lack access to

a car [126], have ceased driving [129,176], avoid driving at night or on a highway, have lower public transit use [39,126]. Similarly, women are more likely to: report or develop mobility limitations [5,17,154,167,177-184,56,185-188,57,76,113,148-150,153] [156,157], feel tired [189] or require help during mobility [182,189], have lower LLFDI score [139], and use a cane, walker, or wheelchair [190].

Gender: Only one study explored gender, reporting that participants endorsing the feminine role or the undifferentiated role had a higher prevalence of poor physical performance than those endorsing the masculine role [167].

Education/occupation

Of 158 analyses, 89 (56.3%) reported a significant association between performance-based (n = 29, 32.6%) and self-reported (n = 60, 67.4%) mobility measures and levels of education or occupation.

Performance-based outcomes. Studies reported that compared to those with lower education, older adults with higher education had faster gait speed [12-21], took more steps [61], walked more [20,191], completed walking tests in a shorter time [100,102,104,110,111,192-194], had higher SPPB scores [12,92,95,195,196] and performed the Chair Rise Test in a shorter time ([15,21]. Compared to older adults with skilled and non-manual occupations, older adults with manual or unskilled occupations had slower walking times [21,193].

Self-reported outcomes. Studies reported that compared to those with lower education, older adults with higher education had higher LSA scores [130,133,134,136,138], were more likely to walk within the neighbourhood [197,198] or walk for transportation [121-124,199,200] and were more likely to drive [63,130,133,136,176]. Similarly, older adults with higher education were less likely to report mobility limitations [5,17,179,181,183,184,186,187,201-204,142,205-207,147,148,150,153,154,167,178], feel tired or require help during mobility [182,189,208]; and, had reduced prevalence of assistive mobility device usage [160,190]. One study reported that older adults with less than high school

had reduced mobility limitations compared to those with high school education [181]. Compared to older adults with skilled and non-manual occupations, those who had manual or unskilled occupations had slower walking time [193], lower life space scores [136,138], were more likely to report mobility limitations [148,156,178,180,184,205,209] or requiring help during mobility [189].

Ethnicity/Race/Nationality/Place of birth

Of 68 analyses, 40 (58.8%) reported a significant association between performance-based (n = 14, 35.0%) and self-reported (n = 26, 65.0%) measures and ethnicity or race.

Performance-based outcomes. Studies reported that compared to Caucasians, Native Japanese or Japanese Americans walked faster and performed the Chair Raise Test in a shorter time [210]. Mexican Americans [211] and Blacks [167] had slower gait speeds than European Americans. White older adults had greater steps per day [84], walked longer distances, completed a walking distance test in a shorter time [104,191,212], had better SPPB scores [95] and faster gait speed [18] than African Americans and Hispanics. Brazilians performed the Sitto-Stand Test in a shorter time than Italians [213]. Southern Europeans completed TUG test faster than Eastern Europeans [214]. Spanish men and women have slower gait speeds than Canadians [76].

Self-reported outcomes. Studies reported that compared to White older adults, Hispanics and Blacks: had a lesser number of walks/day/week [39,124,215], had lower LSA scores [138,216] or lower mobility self-efficacy scores [74,130]; are more likely to: cease driving or using transportation [39,176], to report mobility limitations [226,228,279,297,298,285], or use any mobility assistive devices [149,160,190]. One study reported that White women were more likely to report mobility limitations than Black women [207]. Among the Chinese population, the Mainlanders had the most reported mobility limitations compared to the Hakka ethnic group in one study [149]; but the

reverse is the case in another study - Hakka ethnic group reported more mobility limitations than the Mainlanders [142]. In another study [144], Asian older adults overall walked considerably more than White older adults; but Chinese Americans were more likely to be non-walkers compared to Japanese Americans [144]. Older adults born in Canada were more likely to report higher mobility efficacy [140] or no mobility limitation [185] than those not born in Canada. Older Israelis, compared to Arabs, reported better function [217].

Marital status

Of the 52 analyses, 26 (50.0%) reported a significant association between performance-based (n = 8, 30.8%) and self-reported mobility measures (n = 18, 69.2%) and marital status.

Performance-based outcomes. Studies reported that compared to being single, separated, or divorced, being married was associated with completing walking tests in a shorter time [101,195,196,218], higher balance scores [195,196] and higher SPPB scores [195]. One study reported that separated-divorced older adults had higher LSA scores than those married or cohabiting, or widowed [219].

Self-reported outcomes. Several studies reported that compared to being single, separated or divorced, married older adult were more likely to walk more [61,191] and report driving cessation [128,129,176,220].

Association between financial factors and mobility outcomes.

Seventy-eight articles reported 79 analyses, of which 51 (64.6%) reported a significantly positive association between mobility outcomes and income.

Performance-based outcomes. Studies reported that compared to older adults with low income, older adults with higher income had faster walking speed [14,17,18,221,222], walked more [82], completed walking test in a shorter time [104], and higher SPPB scores [91].

Self-reported outcomes. Studies reported that compared to older adults with low income, older adults with higher income were more likely to walk for

transport [20,39,117,121,130,198], had higher LSA scores [130,135,138,215,223], more likely to be unrestricted drivers [176]; and, were less likely to: report mobility limitations [5,17,56,142,145-148,151,156,167,178,180,184,185,204-206,223-228], report being tired or requiring help during mobility [189,208], cease driving [176] or use mobility devices [160].

Association between environmental factors and mobility outcomes.

Two hundred articles reported 537 analyses comprising multiple environmental factors; 229 (42.6%) were positively, and 109 (20.3%) were negatively associated with mobility outcomes among older adults.

Built environment.

Of 423 analyses, 278 (65.7%) reported a significant association between performance (n = 66, 23.7%) or self-reported (n = 212, 76.3%) mobility outcomes and built environment.

Performance-based outcomes. Studies reported that the presence of good street [86,229,230], residential [36,41,230,231] and sidewalk characteristics [50,88,232,233]; higher walkability [61,88,234]; perceived traffic-related safety [86,235]; and, good access to recreational facilities [230] were positively associated with better walking outcomes (e.g., faster gait speed, higher step counts) in older adults. Residence type was associated with poor performance with walking outcomes, specifically, older adults residing in a nursing home had fewer steps compared to community-dwelling older adults [236]. Poor sidewalk characteristics [66,237-240]; poor general neigbourhood safety [61]; and, poor traffic-related safety [229] were associated with poor performance with walking outcomes (e.g slower gait speed, longer time taken to complete walking test).

Studies reported that presence of good streets [158], residential [158,241], and sidewalk characteristics [241]; and, better land mix-use [241] were positively associated with increased cycling frequency and time in older adults. Long-distance to a central destination and many bus stops were

associated with reduced frequency and/or duration of cycling in older adults [241].

Another study reported that good streets and residential characteristics; and, availability to destinations were positively associated with better balance [242]. The residential type was associated with better physical functioning; specifically, older adults residing in a retirement village had better balance compared to community-dwelling older adults [139]; poor housing conditions were associated with lower SPPB scores [243].

Self-reported outcomes. Studies reported that the presence of good street [117,118,121,244-254], residential [113,115,123,125,172,245,246,251,255-260, and sidewalk characteristics [121,173,246,251,261-265]; higher walkability [39,118,170,185,198,266-274]; more accessible neigbourhood [271,274-277]; better land-use mix [115,118,121,123,134,172,198,200,244,248,250,253,255,278-280]; better perception of crime safety [117,173,250], traffic-related [47,117,121,173,245,254,256,258,261,264,265,281], and general safety [47,122, 124,263]; and, good access to recreational facilities [118,172,197,246,252, 261,263,280,282,283], destinations [113,116,123,172,197,261,279,283-286], rest areas [246,262,282], and public transit [172,197,199,244,250,282] were positively associated with better self-reported community walking in older adults. Shorter distance to destinations is associated with better self-reported community walking [115,122,173,198,249,253-255].

In contrast, some studies reported that good street (higher street connectivity [39,253] and density [125,247], residential (greater population density [115]) and sidewalk characteristics [200]; good access to destination (medical care services within 400m and 800m [279], the presence of bench [264]); access to public transportation [281]; many number of bike-sharing station [172] or higher bus stop density [125] or greater number of public transport stops [253] in the neighbourhood were associated with poor self-reported community walking (e.g reduced number of steps taken daily).

Poor street [256,287] and sidewalk characteristics [254,264,287]; poor perception of crime safety [200] and neighbourhood crime rates [288]; and, lack of benches [288] were associated with poor self-reported community mobility (e.g. poor LSA scores).

Compared to living in rural/semi-urban, living in metropolitan/urban areas is associated with better self-reported community walking [135,171,261,289,290]. Older adults residing in a rural area had lower LSA scores than those residing in the urban area [98]. Older adults residing in residential living had greater walking participation than those residing in the community [64], while those residing in retirement villages had lower LLFDI scores than those residing in the community [139].

Studies reported that better street and sidewalk characteristics [63]; higher walkability [291]; perceived traffic safety [63]; a greater number of services accessed by driving [289] were associated with more driving. Poor street characteristics (poor road conditions) were associated with less driving [292].

Poor street [152,223,293], and sidewalk characteristics [294]; poor land use diversity [295]; dangerous crossroads and lack of resting places [223] were associated with increased mobility limitations. Studies reported that the presence of home barriers (e.g. stairs) was associated with difficulty going outside [296,297] or increases the likelihood of walking modification [153].

Perceived neighbourhood safety was associated with the ability to walk, for instance, one block or several blocks [146], and increases the likelihood of using adaptive walking (e.g. use of walking aids or reducing gait speed) than maladaptive walking (reducing frequency of walking longer distances) [153]; and, presence of local recreational facilities [297] and access to transportation [294] was associated with less likely to develop or report walking difficulties.

High house density (residential characteristics) was associated more report of mobility limitation in one study [295] and less report of mobility limitation in another [298]. Older adults residing in rural settings are more likely to report mobility limitations than those in urban settings [178,207]. Older adults residing in a nursing home had more problems with walking [299,300] than those residing in the community [37].

Poor street [299] and sidewalk characteristics [299,300]; or store barriers [51] were barriers to use of assistive mobility devices. Good sidewalk characteristics [301] and general accessibility [302] were associated with better wheelchair skill use and/or confidence.

Older adults with environmental barriers at home [303], or lesser number of outdoor barriers [304], or residing in retirement living [160] are more likely to use mobility assistive devices compared to their counterparts. Older adults with a more challenging home environment [305] or living in crowded places [299] are less likely to use a mobility assistive device than their counterparts.

Natural environment

Of 50 analyses, 25 (50.0%) reported a significant association between performance (n = 6, 24.0%) or self-reported (n = 19, 76.0%) mobility outcomes and natural environment.

Performance-based outcomes. Studies reported that positive perception of green spaces [235] and pleasant environment [61,235]; pleasing aesthetics [273]; and warmer weather [168] was associated with better walking outcomes (e.g. better cadence, or more steps). Lack of green space [76] and higher wind speed and presence of rain [168] were associated with poor walking outcomes (e.g. reduced walking time).

Self-reported outcomes. Studies reported that the view of greenery [115,245,306]; presence of gardens [287] or parks [249,254,264,282]; aesthetically pleasing neighbourhood [117,121,123,252,261,262,281]; better-

perceived climate [77] were positively associated with self-reported community walking outcomes. Studies reported that the presence of parks and green strips [287]; the presence of snow, ice or rain [254,267] were associated with poor community walking outcomes.

Studies reported that the presence of local green areas [297,307] was associated with lower odds of developing walking difficulties. A study reported that older adults residing in neighbourhoods with the least green area were more likely to have walking difficulties [308].

Studies reported that winter was associated with less driving [292], and the presence of a hill is associated with unwillingness to use a mobility device [299].

Social environment

Of 64 analyses, 35 (54.7%) reported a significant association between performance (n = 4, 11.4%) or self-reported (n = 31, 88.6%) mobility outcomes and social environment.

Performance-based outcomes. A study reported that living in high deprivation socioeconomic areas was associated with shorter walking time [191]. Similarly, the lower proportion of older adults with gait speed impairment resides in the least deprived neighbourhoods [309]. Another study reported that older adults residing in an area with an employed population and those with medium household income were associated with reduced and increased cycling frequency, respectively [125].

Self-reported outcomes. Studies reported that seeing others while walking [261], more contact with neighbours, neighbours social support and community volunteering [310]; participation in social activities and presence of personal assistance [260]; having a dog [263]; people being active [252]; greater social network scores [43]; greater social ties [137]; high social cohesion [124,144,200,257,311]; high density of place of employment in the neighbourhood [245]; higher area of socioeconomic status [197,251]; and, high social capital

[288] were positively associated with better self-reported community walking outcomes. Two articles reported that social environment (unspecified) was positively associated with better self-reported community walking outcomes [252,271].

Living alone [133,136,138,312]; lower social engagement [312]; poor social diversity [137]; high level of neighbourhood poverty [39]; greater neighbourhood social disorder [273,311,313] were negatively associated with poor self-reported community outcomes.

Studies reported that lower network diversity [226], lower social participation and living alone [224,226] were associated with increased odds of mobility limitation. The presence of social support [150]; high social cohesion [314]; and living with others [315] were associated with decreased odds of mobility limitation. Another study reported that a lower proportion of older adults with mobility difficulties resides in the least deprived neighbourhoods [17].

A study reported that older adults living alone are more likely to use a cane than those living with someone [303].

Themes from qualitative studies and qualitative component of mixed method.

Articles included in the qualitative and mixed method analysis are presented in Appendix 3D and 3E. The themes from the 22 qualitative studies and qualitative components of the 9 mixed-methods studies were mapped across:(a) **built environment**: residential characteristics [316-319]; street characteristics [55,265,319-322]; side walk characteristics [38,53,54,115,317,320-324]; land use mix [319]; access to recreation services [325,326], destination [38,46,320,322,327,328], transportation [115,177,324,329,330], rest areas [320,323,331]; traffic safety [55,265,320-324,332] or general safety [38,46,53,115]; (b) **natural environment**: aesthetics [53,322,332]; the presence of green space [320,323,325,331]; and weather [265,322,332]; c) **social environment**: social contact [329,332]; social engagement [38,329]; social

capital [329] (Franke et al., 2019); social isolation [330,333]; social support [54]; public attitudes [321,324,330,334]; and, (d) **other themes** include loss of independence [177,324,329,330,333]; walking for wellbeing [335]; personal walking experiences [336-339]; lack of financial resources [321]; the impact of age [321], culture, gendered identity and personal biography [335] on mobility.

Discussion

The purpose of this paper was to provide a comprehensive list of factors comprising the financial, environmental, and personal mobility determinants and their association with mobility self-reported and performance-based outcomes in older adults. We noted multiple factors for each determinant, except financial that captured only two factors: personal and household income. Personal factors included age, sex, ethnicity/race, educational, occupation, and marital status; while environmental factors included several built, natural and social environments. Congruent with past study findings, evidence from our review suggests that personal, financial and environmental factors can positively and negatively impact mobility in older adults.

Personal factors and mobility outcomes

In general, females were more likely to report mobility limitations than males [57,113,142,178,189]). Differences in self-reported mobility limitation scores have been attributed to the ways males and females interpret subjective descriptors such as 'a little' versus 'great difficulty' [340]. Possible underlying reasons for the sex differences in self-reported mobility could be attributed to societal inequalities and biological factors. In most societies, males are considered the "strong" sex and they often under-report their health problems (e.g., mobility limitation) [341]. Research has found that females seek medical advice and medical attention more often than men, and thus are

more likely to report mobility limitations [342]. It is important to note, the included studies used the terms 'sex' and 'gender' interchangeably when referring to sex. We reported the terminology and findings as how the included studies reported the terminology and findings. Researchers are encouraged to state which constructs they intend to ask in their demographic questions: gender (men, women and other variations) versus sex (male or female). Only one study specifically focused on the relationship between gender and mobility (SPPB test) and found poor physical performance is more prevalent among those endorsing the feminine or androgynous roles [167]. Gender, "refers to the socially constructed roles, behaviors, expressions and identities of girls, women, boys and gender diverse people" [343], and influences how people perceive themselves, act or interact with each other. Because there is considerable diversity in how people understand, experience, or express gender through their roles, there is a need to examine further the association between gender and mobility in the literature.

While just over half of the analyses reported a significant association between race or ethnicity and mobility outcome(s), we observed a clear pattern. Whites and Caucasians had better mobility outcomes than Blacks and Hispanics in studies conducted in the USA. The differences in mobility, especially between older adult Blacks and Whites, could be due to the accumulated exposure to adverse health events and chronic stressors across the life course [344]. Race differences in social and environmental conditions resulting from several factors, including residential locations, could account for the residual race differences in mobility [18]. For instance, Blacks and Whites frequently reside in different environments, affecting the resources and opportunities pertinent to maintaining mobility, such as safe neigbourhoods, accessible and friendly walking routes, and better housing conditions. In terms of ethnicity, older adults of Asian origin performed better in mobility outcomes than Caucasians [210]. Asian households are more often multigenerational than Caucasian

households. In these multigenerational households, older Asian adults, many of whom are women, usually take up most grocery shopping and childcare responsibilities, which may entail different forms of mobility [144]. While these patterns exist, interpretation should be cautioned because the proportion of ethnic minorities is negligible in most samples included in the studies in our review. In the analyses of the included studies, many racial and ethnic groups are often lumped together and labeled as 'mixed' or 'other'. Although this form of data reduction may be beneficial for analyses of smaller groups, it undermines the examination of key differences related to diversity that may present when studying mobility differences in majority and minority racial and ethnic groups [345]. More so, researchers have continued to use race and ethnicities interchangeably. While we understand that the classification of race and ethnicity is often blurred, researchers should explicitly choose the construct to examine. Each is important in understanding health and social inequalities (differences) and inequities (disparities) related to mobility and will provide information that might be used to better the mobility needs of specific racial or ethnic minority groups [346].

Our findings support that marital status has a significant impact on mobility. Previous literature has highlighted that being married is protective against mobility limitations [347]. Marriage can provide companionship, and partners can motivate each other to engage in social and community activities that often include mobility; however, many older people are single and live alone [348], which could place them at greater risk for mobility restrictions. Therefore, asking questions about marital status when examining mobility related outcomes could help guide or direct mobility interventions. For instance, should a clinician recommend walking with spouse as a form of walking intervention or refer participation to a group walking intervention.

Socioeconomic status and mobility outcomes

Socioeconomic status (SES) is a multifactorial measure of economic status typically defined by income, education, and occupation [349]. Older adults with higher income, education, and non-manual skilled jobs had better mobility than those with lower income, education, and unskilled manual jobs. These associations may be explained by the cumulative effects of SES over the lifespan. Previous studies have reported lower childhood SES was associated with increased mobility limitations in later life [350,351]. Efforts to reduce childhood poverty are recommended to improve health outcomes, including mobility in later life. Economic resources can dictate activity options beyond the home due to cost of and access to transportation thereby restricting mobility for those with lower income [352].

Environmental factors and mobility outcomes

Consistent with existing reviews [24], better mixed land use, good street connectivity, high residential density, or a combination of these variables were positively associated with different forms of mobility, for instance, walking for transport [353], or the total amount of time older adults spend walking each day [248]. We noted in our review that when land use brings more services (e.g., more stores) and people to a neighborhood, it can either encourage older adults to walk [172] or not [354]. For instance, older adults may choose to go to a store if they have more options, while some may decide not to go because they perceive the stores will be crowded, and potentially high crime areas. This finding highlights the complexity of how land should be used in a geographical area and can depend on the preference of the older adults residing in that neighbourhood. Seeking older adults' opinions has been successful in implementing age-friendly communities [355], including how land will be used for residential, commercial and industrial purposes in a given neighbourhood. Therefore, policymakers should seek older adults' opinions residing in an area when deciding on how residential, commercial and industrial use of land are distributed in their neighbourhood.

The association between street connectivity and self-reported walking highlighted a unique finding. Older adults tend to walk less in an area with more than eight street connections or no street connectivity, but walk more in a neighbourhood with less than eight street connections [253]. It is possible that too many street connections might confuse older adults, especially those with cognitive impairment. Some older adults live with a pervasive sense of fear of not remembering the route back home [356], and this fear may be heightened when there are too many street connections resulting in less walking. Studies that evaluated the association between numbers of street connections and mobility outcomes are limited [253], highlighting a gap in the literature. Therefore, future studies should evaluate the associations between numbers of street connections and walking outcomes, [357].

Perceived crime-related and traffic-related safety were found to be positively associated with older adults' mobility. This finding is consistent with previous reviews [1,358,359]. Crime and traffic related safety has been described as a central mechanism that bridges other environmental factors such as connectivity and access to destination to older adults' mobility decisions [359]. Even though there may be well-connected streets with access to recreational facilities and other destinations, older adults are more likely to remain at home if they perceive the neighborhood as not safe. Older adults are more likely to walk for transport, walk for leisure and access destinations, including recreation facilities, if they perceive the neighborhood as safe [1]. The qualitative themes extracted from this scoping review, such as driver recklessness, too few traffic signs, fast timed pedestrian crossings provided a contextual experience and delineate the importance older adults place on traffic safety.

Of importance in our review was the inter-related relationship of access to the destination or recreational activities and transportation on older adults' mobility outcomes. For instance, access to a destination such as shops

is of great importance, as shopping is one of the most prevalent reasons for older adults to leave their homes [360]. When destinations are not within walking distance, having access to transportation will enable older adults to travel outside their homes, increasing life-space mobility protecting worse health outcomes, such as mortality, falls, frailty, and cognitive decline [361]. Overall, access to these recreational facilities will promote social connectedness and social participation, and in turn, allow older adults to maintain their mobility and reduce the risk of social isolation and loneliness [362]. Quantitative evidence that explores how many, how far and the cost to access destinations and services as they related to older adults' mobility is lacking; and, future quantitative studies should consider explicitly how accessibility issues from the older adults' perspective, e.g., not just 'what' but how many, how far, and cost influence mobility.

Natural environmental factors, including aesthetics (how appealing the environment is as related to green areas, water, and vegetation), weather, and air quality, were the least studied environmental factors, with less than half of the studies exploring these factors and older adults' mobility. This finding is not entirely surprising, as our review used a concise definition of aesthetics that focused on the natural environment and not artificial elements. Previous reviews reported positive correlations between perceived greenery and aesthetically pleasing scenery to older adults' mobility included aesthetics related to the built environment, such as the amount of litter and graffiti [359]. A clear distinction between natural environmental factors, such as access to green space and water versus artificial beautification of environment should be made when studying the impact on mobility, as findings may vary providing different information to inform policies. Future researchers are encouraged to make this distinction.

Although the number of studies that reported on the social environment and mobility has increased from 19 articles in the 2012 Hanson and colleagues'

review [26] to 62 articles included in this scoping review, just over half (54.5%) of the analyses reported a significant association in the expected direction. Previous reviews reported the positive role of social support from neighborhoods and families [26] and social participation [9] influencing walking among older adults. We found that most articles that reported a significant association between social environment on older adults' mobility focused on neighborhood walking, including walking for transportation, while those that reported no association focused on performance-based mobility outcomes (e.g., 3-Meter Walk Test). The plausible explanation for this finding could be because most performance-based measures are often administered in a supervised and controlled environment which may not reflect mobility performance in daily life [363]. Conversely, self-reported mobility measures reflect individuals' perceived difficulty in performing mobility-related activities [142]; evidence has shown that social interaction attenuates difficulty in performing mobilityrelated activities[9]. Besides, walking for transportation or recreation provides an opportunity for older adults to interact and connect with people in the community, enabling them to participate actively, which in turn, motivates them to get out of their homes maintaining mobility [329]. Since older adults might participate when activities are meaningful to them [364], the impact of engaging in social activities should not be underestimated. Continuous effort to encourage meaningful activities that promote socialization and interaction among older adults is needed to maintain their mobility.

Our review provided a comprehensive list of contextual factors (environmental, financial, and personal factors) described as determinants of mobility in the Conical model of the theoretical framework for mobility in older adults [3]. This comprehensive list has both research, clinical, and policy implications. Our review provided factors for each mobility determinant that clinician-researchers can use as a foundation to develop a comprehensive mobility-related assessments or interventions for specific older adult

populations (e.g., post-hip fracture) and specific clinical settings (e.g., hospital-to-home transitions). For instance, researchers can conduct a Delphi process to reach a consensus on critical factors to assess when older adults are discharged from hospital-to-home. Clinicians might use the comprehensive list of factors as a guide to asking older adults who were hip fracture survivors to describe which mobility factors are vital to evaluate during their hospital visits.

While this review aims to be comprehensive, there are some limitations. We may have missed some articles relevant to our study aim because we searched only peer-reviewed literature published in English. Synthesis of articles published in different languages could expand our understanding of the impact of culture and ethnicity on mobility outcomes. Moreover, about two-thirds of the quantitative studies included in this review were cross-sectional design which does not explain the cause-effect relationships between environmental, financial, and personal factors and mobility outcomes among older adults. There is need for more longitudinal studies that would allow systematic analysis of several studies to understand long-term variations of personal, environmental and financial factors in mobility. Examining quality is optional for scoping reviews [29]. Caution should be applied when interpreting the findings of this review since we did not examine the quality of the included studies.

Conclusion

From the review, we identify multiple factors for each category, except financial that captured only two factors: personal and household income. Personal factors included age, sex, gender, ethnicity, race, educational level, occupation, marital status and religion, while environmental factors included several built, natural and social environments. Personal (65.2%), financial (64.6%), and environmental factors (62.9%) were associated with mobility outcomes, mainly in the expected direction with few exceptions in environmental factors (street connectivity and access to bus stops and benches) and ethnic

groups (Japanese or Chinese Americans had better mobility outcomes than White Americans and African Americans).

Acknowledgement

We want to acknowledge Dana Abdel Hafeez, Vanessa Wong, Enola Ghobrial, Maria Samy, Sonya Batth, Iknoor Sidhu, Vidhi Bhatti, Nataly Balanovsky, Rachel Specht, Kayla Mateus, who participated in some aspects of the scoping review. This project is part of Michael Kalu's Ph.D. thesis, and he received Mobility Labarge Scholarship from McMaster Institute for Research in Ageing, McMaster University, Hamilton, Ontario, Canada.

Online supplementary Appendices are place at the end of the thesis.

Appendix 3A: Details of included quantitative studies details for personal factors and mobility

Appendix 3B: Details of included quantitative studies details for environmental factors and mobility

Appendix 3C: Details of included quantitative studies with personal, environmental and financial factors and mobility

Appendix 3D: Details of included qualitative studies for personal, environmental and financial factors

Appendix 3E: Details of included mixed-method studies for personal, environmental and financial factors

References

- [1] Barnett DW, Barnett A, Nathan A, Van Cauwenberg J, Cerin E. Built environmental correlates of older adults' total physical activity and walking: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2017; 14(1):103. https://doi.org/10.1186/s12966-017-0558-z PMID: 28784183
- [2] Brown CJ, Flood KL. Mobility limitation in the older patient: a clinical review. JAMA. 2013;310(11):1168-77.
- https://doi.org/10.1001/jama.2013.276566. PMID: 24045741
 [3] Webber SC, Porter MM, Menec VH. Mobility in older adults: a
 comprehensive framework. Gerontologist. 2010;50(4):443-50.
 https://doi.org/10.1093/geront/gnq013. Epub 2010 Feb 9. PMID: 20145017
- [4] Simonsick EM, Newman AB, Nevitt MC, Kritchevsky SB, Ferrucci L, Guralnik JM, et al. Measuring higher level physical function in well-functioning older adults: expanding familiar approaches in the Health ABC study. J Gerontol A Biol Sci Med Sci. 2001;56(10):M644-9. https://doi.org/10.1093/gerona/56.10.m644. PMID: 11584038
- [5] Shumway-Cook A, Ciol MA, Yorkston KM, Hoffman JM, Chan L. Mobility limitations in the Medicare population: prevalence and sociodemographic and clinical correlates. J Am Geriatr Soc. 2005;53(7):1217-21. https://doi.org/10.1111/j.1532-5415.2005.53372.x. PMID: 16108942
- [6] Stalvey BT, Owsley C, Sloane ME, Ball K. The Life Space Questionnaire: A Measure of the Extent of Mobility of Older Adults. J Appl Gerontol. 1999;18(4):460-78. https://doi.org/10.1177/073346489901800404
- [7] Simonsick EM, Newman AB, Visser M, Goodpaster B, Kritchevsky SB, Rubin S, et al. Mobility limitation in self-described well-functioning older adults: importance of endurance walk testing. J Gerontol A Biol Sci Med Sci. 2008;63(8):841-7. https://doi.org/10.1093/gerona/63.8.841. PMID: 18772472
- [8] Sainio P, Koskinen S, Heliövaara M, Martelin T, Härkänen T, Hurri H, et al. Self-reported and test-based mobility limitations in a representative sample of Finns aged 30+. Scand J Public Health. 2006;34(4):378-86. https://doi.org/10.1080/14034940500489859. PMID: 16861188
- [9] Levasseur M, Généreux M, Bruneau JF, Vanasse A, Chabot É, Beaulac C, et al. Importance of proximity to resources, social support, transportation and neighborhood security for mobility and social participation in older adults: results from a scoping study. BMC Public Health. 2015;15:503. https://doi.org/10.1186/s12889-015-1824-0. PMID: 26002342
- [10] Rantakokko M, Mänty M, Rantanen T. Mobility decline in old age. Exerc Sport Sci Rev. 2013;41(1):19-25.
- https://doi.org/10.1097/JES.0b013e3182556f1e. PMID: 23038241
- [11] World Health Organization. International Classification of Functioning, Disability and Health (ICF) [cited 2021 May 2]. In: World Health Organization [Internet]. 2001. Available from: https://www.who.int/standards/classifications/internationalclassification-of-functioning-disability-and-health
- [12] Coppin AK, Ferrucci L, Lauretani F, Phillips C, Chang M, Bandinelli S, et al. Low socioeconomic status and disability in old age: evidence from the InChianti study for the mediating role of physiological impairments. J Gerontol A Biol Sci Med Sci. 2006;61(1):86-91. https://doi.org/10.1093/gerona/61.1.86. PMID: 16456198
- [13] Manini TM, Everhart JE, Patel KV, Schoeller DA, Cummings S, Mackey DC, et al. Activity energy expenditure and mobility limitation in older adults: differential associations by sex. Am J Epidemiol. 2009;169(12):1507-16. https://doi.org/10.1093/aje/kwp069. PMID: 19383938
- [14] Bann D, Chen H, Bonell C, Glynn NW, Fielding RA, Manini T, et al.

Socioeconomic differences in the benefits of structured physical activity compared with health education on the prevention of major mobility disability in older adults: the LIFE study. J Epidemiol Community Health. 2016;70(9):930-3. https://doi.org/10.1136/jech-2016-207321. PMID: 27060177

- [15] Jancova-Vseteckova J, Bobak M, Kubinova R, Capkova N, Peasey A, Marmot MG, et al. Social patterning in grip strength, chair rise, and walk speed in an aging population: the Czech HAPIEE Study. J Aging Phys Act. 2015;23(2):264-71. https://doi.org/10.1123/japa.2013-0142. PMID: 24918496
- [16] Párraga-Montilla JA, Pozuelo-Carrascosa DP, Carmona-Torres JM, Laredo-Aguilera JA, Cobo-Cuenca AI, Latorre-Román PÁ. Gait Performance as an Indicator of Cognitive Deficit in Older People. Int J Environ Res Public Health. 2021;18(7):3428. https://doi.org/10.3390/ijerph18073428. PMID: 33806244
- [17] Lang IA, Llewellyn DJ, Langa KM, Wallace RB, Melzer D. Neighbourhood deprivation and incident mobility disability in older adults. Age Ageing. 2008;37(4):403-10. https://doi.org/10.1093/ageing/afn092. PMID: 18487260
- [18] Thorpe RJ Jr, Koster A, Kritchevsky SB, Newman AB, Harris T, Ayonayon HN, et al. Race, socioeconomic resources, and late-life mobility and decline: findings from the Health, Aging, and Body Composition study. J Gerontol A Biol Sci Med Sci. 2011;66(10):1114-23. https://doi.org/10.1093/gerona/glr102. PMID: 21743093
- [19] Dumurgier J, Crivello F, Mazoyer B, Ahmed I, Tavernier B, Grabli D, et al. MRI atrophy of the caudate nucleus and slower walking speed in the elderly. Neuroimage. 2012;60(2):871-8. https://doi.org/10.1016/j.neuroimage.2012.01.102. PMID: 22305950
- [20] Lynott J, McAuley WJ, McCutcheon M. Getting Out and About: The Relationship Between Urban Form and Senior Travel Patterns. J Hous Elderly. 2009; 23(4):390-402. https://doi.org/10.1080/02763890903327366.
- [21] Michael YL, Gold R, Perrin NA, Hillier TA. Built environment and lower extremity physical performance: prospective findings from the study of osteoporotic fractures in women. J Aging Health. 2011;23(8):1246-62. https://doi.org/10.1177/0898264311412597. PMID: 21724965
- [22] Kalu ME, Tang A, Nwankwo H, Dal Bello Hass V. Do socioeconomic positions of older adults affects their mobility: The State-of- art evidence". Proceedings of the Ontario Physiotherapy Association 2019 Conference; 2019; Toronto, Canada.
- [23] World Health Organization. Towards a Common Language for Functioning , Disability and Health ICF. Geneva: World Health Organization; 2002. 22 p.
- [24] Rosso AL, Auchincloss AH, Michael YL. The urban built environment and mobility in older adults: a comprehensive review. J Aging Res. 2011;2011:816106. https://doi.org/10.4061/2011/816106. PMID: 21766033
- [25] Levasseur M, Généreux M, Bruneau JF, Vanasse A, Chabot É, Beaulac C, et al. Importance of proximity to resources, social support, transportation and neighborhood security for mobility and social participation in older adults: results from a scoping study. BMC Public Health. 2015;15:503. https://doi.org/10.1186/s12889-015-1824-0. PMID: 26002342
- [26] Hanson HM, Ashe M, Mckay HA, Winters M. Intersection between the built and social environments and older Adult's mobility: an evidence review. National Collaborating Centre For Environmental Health. 2012. Available from:

http://www.ncceh.ca/sites/default/files/Built_and_Social_Environments_Ol
der_Adults_Nov_2012.pdf

[27] Arksey H, O'Malley L. Scoping studies: towards a methodological

framework. Int J Soc Res Methodol. 2005;8(1):19-32. https://doi.org/10.1080/1364557032000119616.

- [28] Levac D, Colquhoun H, O'Brien KK. Scoping studies: advancing the methodology. Implement Sci. 2010;5:69. https://doi.org/10.1186/1748-5908-5-69. PMID: 20854677
- [29] Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018;169(7):467-73. https://doi.org/10.7326/M18-0850. PMID: 30178033
- [30] United Nations. Older persons [cited 2021 Dec 21]. In: UNHCR Emergency Handbook [Internet]. 2021. Available from: https://emergency.unhcr.org/entry/43935/older-persons
- [31] Dall TM, Gallo PD, Chakrabarti R, West T, Semilla AP, Storm MV. An aging population and growing disease burden will require a large and specialized health care workforce by 2025. Health Aff (Millwood). 2013;32(11):2013-20. https://doi.org/10.1377/hlthaff.2013.0714. PMID: 24191094
- [32] Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):210. https://doi.org/10.1186/s13643-016-0384-4.
- [33] Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159-74. PMID: 843571.
- [34] Kalu ME, Maximos M, Seng-iad S DB-H V. The Role of Rehabilitation Professionals in Care Transitions for Older Adults: Evidence from a synthesis of interventions, conceptual frameworks, models and theories of care transition. Proceedings of the 46th Annual Conference of the British Society of Gerontology Conference; 2018; Manchester, UK.
- [35] Hsieh HF, Shannon SE. Three approaches to qualitative content analysis. Qual Health Res. 2005;15(9):1277-88. https://doi.org/10.1177/1049732305276687. PMID: 16204405
- [36] You YY, Her JG, Ko T, Ko J, Kim H, Woo J-H. The Effects of Measurement Environment on the Gait Velocity and Balance of Stroke Patients. J Phys Ther Sci. 2012;24(9):873-6. https://doi.org/10.1589/jpts.24.873.
- [37] König HH, Brettschneider C, Lühmann D, Kaduszkiewicz H, Oey A, Wiese B, et al. EQ-5D-3L health status and health state utilities of the oldestold (85 +) in Germany: results from the AgeCoDe-AgeQualiDe study. Qual Life Res. 2020;29(12):3223-32. https://doi.org/10.1007/s11136-020-02597-0. PMID: 32851600
- [38] Gardner P. The role of social engagement and identity in community mobility among older adults aging in place. Disabil Rehabil. 2014;36(15):1249-57. https://doi.org/10.3109/09638288.2013.837970. PMID: 24099580
- [39] Yang Y, Xu Y, Rodriguez DA, Michael Y, Zhang H. Active travel, public transportation use, and daily transport among older adults: The association of built environment. J Transp Heal. 2018 Jun 1;9:288-98. https://doi.org/10.1016/j.jth.2018.01.012.
- [40] Lord S, McPherson KM, McNaughton HK, Rochester L, Weatherall M. How feasible is the attainment of community ambulation after stroke? A pilot randomized controlled trial to evaluate community-based physiotherapy in subacute stroke. Clin Rehabil. 2008;22(3):215-25. https://doi.org/10.1177/0269215507081922. PMID: 18285431
- [41] Donovan K, Lord SE, McNaughton HK, Weatherall M. Mobility beyond the clinic: the effect of environment on gait and its measurement in community-ambulant stroke survivors. Clin Rehabil. 2008;22(6):556-63. https://doi.org/10.1177/0269215507085378. PMID: 18511535
- [42] Andersson J, Stålnacke BM, Sörlin A, Magaard G, Hu X. Long-term perceived disabilities up to 10 years after transient ischaemic attack.

J Rehabil Med. 2021;53(3):jrm00167. https://doi.org/10.2340/16501977-2808. PMID: 33656562

- [43] Nakao M, Izumi S, Yokoshima Y, Matsuba Y, Maeno Y. Prediction of lifespace mobility in patients with stroke 2 months after discharge from rehabilitation: a retrospective cohort study. Disabil Rehabil. 2020;42(14):2035-42. https://doi.org/10.1080/09638288.2018.1550533. PMID: 30676134.
- [44] Ha D, Ries AL, Lippman SM, Fuster MM. Effects of curative-intent lung cancer therapy on functional exercise capacity and patient-reported outcomes. Support Care Cancer. 2020;28(10):4707-4720. https://doi.org/10.1007/s00520-020-05294-3. PMID: 31965306
- [45] Yoo JS, Yang HC, Lee JM, Kim MS, Park EC, Chung SH. The association of physical function and quality of life on physical activity for non-small cell lung cancer survivors. Support Care Cancer. 2020;28(10):4847-56. https://doi.org/10.1007/s00520-020-05302-6. PMID: 31980896.
- [46] DeGuzman PB, Chu C, Keim-Malpass J. Built and Natural Environment Barriers and Facilitators to Physical Activity in Rural, Suburban, and Small Urban Neighborhoods. Oncol Nurs Forum. 2019;46(5):545-55. https://doi.org/10.1188/19.ONF.545-555. PMID: 31424449
- [47] Hand C. Associations between neighbourhood characteristics and community mobility in older adults with chronic health conditions. Disabil Rehabil. 2016;38(17):1664-71.
- https://doi.org/10.3109/09638288.2015.1107638. PMID: 26678067 [48] Ogawa M, Hayashi Y, Sawada T, Kobashi M, Tanimukai H. Psychological
- Effects of Hands-On Training Using Public Transportation among Inpatients with Physical Disabilities: Analysis of the Self-Efficacy and Perception of Occupational Enablement Using a Multimethod Design. Occup Ther Int. 2020;2020:1621595. https://doi.org/10.1155/2020/1621595. PMID: 33456405
- [49] Nordstrom CK, Diez Roux AV, Schulz R, Haan MN, Jackson SA, Balfour JL. Socioeconomic position and incident mobility impairment in the Cardiovascular Health Study. BMC Geriatr. 2007;7:11. https://doi.org/10.1186/1471-2318-7-11. PMID: 17493275
- [50] Xu Y, Richardson J, MacDermid J, Dal Bello-Haas V. Mobility in community-dwelling adults with chronic conditions: the contribution of age and sex. Eur J Physiother. 2018;22(3):124-33. https://doi.org/10.1080/21679169.2018.1503717.
- [51] Clarke P, Twardzik E, Meade MA, Peterson MD, Tate D. Social Participation Among Adults Aging With Long-Term Physical Disability: The Role of Socioenvironmental Factors. J Aging Health. 2019;31(10_suppl):145S-168S. https://doi.org/10.1177/0898264318822238. PMID: 31718412
- [52] Lee WJ, Peng LN, Lin CH, Lin SZ, Loh CH, Kao SL, et al. First insights on value-based healthcare of elders using ICHOM older person standard set reporting. BMC Geriatr. 2020;20(1):335. https://doi.org/10.1186/s12877-020-01734-1. PMID: 32907535
- [53] Zandieh R, Martinez J, Flacke J, Jones P, van Maarseveen M. Older Adults' Outdoor Walking: Inequalities in Neighbourhood Safety, Pedestrian Infrastructure and Aesthetics. Int J Environ Res Public Health. 2016;13(12):1179. https://doi.org/10.3390/ijerph13121179. PMID: 27898023
- [54] Tomsone S, Haak M, Löfqvist C. Experiences of mobility device use over time: A multiple case study among very old Latvian women. Scand J Occup Ther. 2016;23(1):67-78. https://doi.org/103109/1103812820151068850.
- [55] Marquez DX, Hunter RH, Griffith MH, Bryant LL, Janicek SJ, Atherly AJ. Older Adult Strategies for Community Wayfinding. J Appl Gerontol. 2017;36(2):213-33. https://doi.org/10.1177/0733464815581481. PMID:

- [56] Clark CR, Kawachi I, Ryan L, Ertel K, Fay ME, Berkman LF. Perceived neighborhood safety and incident mobility disability among elders: the hazards of poverty. BMC Public Health. 2009;9:162. https://doi.org/10.1186/1471-2458-9-162. PMID: 19476610
- [57] Dirik A, Cavlak U, Akdag B. Identifying the relationship among mental status, functional independence and mobility level in Turkish institutionalized elderly: gender differences. Arch Gerontol Geriatr. 2006;42(3):339-50. https://doi.org/10.1016/j.archger.2005.08.007. PMID: 16289366
- [58] Hall K, Partnoy J, Tenenbaum S, Dawson DR. Power mobility driving training for seniors: a pilot study. Assist Technol. 2005;17(1):47-56. https://doi.org/10.1080/10400435.2005.10132095. PMID: 16121645.
- [59] Zarzeczny R, Nawrat-Szołtysik A, Polak A, Maliszewski J, Kiełtyka A, Matyja B, et al. Aging effect on the instrumented Timed-Up-and-Go test variables in nursing home women aged 80-93 years. Biogerontology. 2017;18(4):651-63. https://doi.org/10.1007/s10522-017-9717-5. PMID: 28634926
- [60] Lord SE, Rochester L, Weatherall M, McPherson KM, McNaughton HK. The effect of environment and task on gait parameters after stroke: A randomized comparison of measurement conditions. Arch Phys Med Rehabil. 2006;87(7):967-73. https://doi.org/10.1016/j.apmr.2006.03.003.
- [61] Dollman J, Hull M, Lewis N, Carroll S, Zarnowiecki D. Regional Differences in Correlates of Daily Walking among Middle Age and Older Australian Rural Adults: Implications for Health Promotion. Int J Environ Res Public Health. 2016;13(1):116. https://doi.org/10.3390/ijerph13010116. PMID: 26761020
- [62] Palumbo AJ, Cannuscio C, De Roos AJ, Robinson L, Mossey J, Wallace R, et al. Women's Occupational Patterns and Later Life Physical Functioning. J Aging Health. 2020;32(5-6):410-21. https://doi.org/10.1177/0898264319826797. PMID: 30698490
- [63] Ding D, Sallis JF, Norman GJ, Frank LD, Saelens BE, Kerr J, et al. Neighborhood environment and physical activity among older adults: do the relationships differ by driving status? J Aging Phys Act. 2014;22(3):421-31. https://doi.org/10.1123/japa.2012-0332. PMID: 24084049
- [64] Miller E, Buys L. Predicting older australians leisure-time physical activity: Impact of residence, retirement village versus community, on walking, swimming, dancing and lawn bowling. Act Adapt Aging. 2007;31(3):13-30. https://doi.org/10.1300/J016v31n03 02.
- [65] Thies SB, Bates A, Costamagna E, Kenney L, Granat M, Webb J, et al. Are older people putting themselves at risk when using their walking frames? BMC Geriatr. 2020;20(1):90. https://doi.org/10.1186/s12877-020-1450-2. PMID: 32131743
- [66] Menant JC, Steele JR, Menz HB, Munro BJ, Lord SR. Rapid gait termination: effects of age, walking surfaces and footwear characteristics. Gait Posture. 2009;30(1):65-70. https://doi.org/10.1016/j.gaitpost.2009.03.003. PMID: 19359178.
- [67] Aoyagi K, Ross PD, Nevitt MC, Davis JW, Wasnich RD, Hayashi T, et al. Comparison of performance-based measures among native Japanese, Japanese-Americans in Hawaii and Caucasian women in the United States, ages 65 years and over: a cross-sectional study. BMC Geriatr. 2001;1:3. https://doi.org/10.1186/1471-2318-1-3. PMID: 11696243
- [68] de Melo LL, Menec V, Porter MM, Ready AE. Personal factors, perceived environment, and objectively measured walking in old age. J Aging Phys Act. 2010;18(3):280-92. https://doi.org/10.1123/japa.18.3.280. PMID: 20651415.

- [69] Fiser WM, Hays NP, Rogers SC, Kajkenova O, Williams AE, Evans CM, et al. Energetics of walking in elderly people: factors related to gait speed. J Gerontol A Biol Sci Med Sci. 2010;65(12):1332-7. https://doi.org/10.1093/gerona/glg137. PMID: 20679072.
- [70] Gouveia ÉR, Gouveia BR, Ihle A, Kliegel M, Marques A, Freitas DL. Balance and mobility relationships in older adults: A representative population-based cross-sectional study in Madeira, Portugal. Arch Gerontol Geriatr. 2019;80:65-69.
- https://doi.org/10.1016/j.archger.2018.10.009. PMID: 30388458
 [71] Trevisan C, Rizzuto D, Sergi G, Maggi S, Welmer AK, Vetrano DL. Peak
 expiratory flow, walking speed and survival in older adults: An 18-year
 longitudinal population-based study. Exp Gerontol. 2020;135:110941.
 https://doi.org/10.1016/j.exger.2020.110941. PMID: 32243991
- [72] Tuntland H, Kjeken I, Folkestad B, Førland O, Langeland E. Everyday occupations prioritised by older adults participating in reablement. A cross-sectional study. Scand J Occup Ther. 2020;27(4):248-58. https://doi.org/10.1080/11038128.2019.1604800. PMID: 31136214
- [73] Wu YZ, Liu HW, Liu PP, Peng LN, Lin SZ, Loh CH. Age-stratified differences of physical capacity in rural community-dwelling Taiwanese older women: A cross-sectional study. Arch Gerontol Geriatr. 2020;90:104123. https://doi.org/10.1016/j.archger.2020.104123. PMID: 32531646
- [74] Umstattd MR, McAuley E, Motl RW, Rosengren KS. Pessimism and physical functioning in older women: influence of self-efficacy. J Behav Med. 2007;30(2):107-14. https://doi.org/10.1007/s10865-006-9089-9. PMID: 17268878
- [75] Coppin AK, Ferrucci L, Lauretani F, Phillips C, Chang M, Bandinelli S, et al. Low socioeconomic status and disability in old age: evidence from the InChianti study for the mediating role of physiological impairments. J Gerontol A Biol Sci Med Sci. 2006;61(1):86-91. https://doi.org/10.1093/gerona/61.1.86. PMID: 16456198
- [76] Barbosa JP, Farah BQ, Chehuen M, Cucato GG, Farias Júnior JC, Wolosker N, et al. Barriers to physical activity in patients with intermittent claudication. Int J Behav Med. 2015;22(1):70-6. https://doi.org/10.1007/s12529-014-9408-4. PMID: 24715636
- [77] Brown SC, Huang S, Perrino T, Surio P, Borges-Garcia R, Flavin K, et al. The relationship of perceived neighborhood social climate to walking in Hispanic older adults: a longitudinal, cross-lagged panel analysis. J Aging Health. 2011;23(8):1325-51. https://doi.org/10.1177/0898264311418502. PMID: 21885705
- [78] Michael YL, Gold R, Perrin NA, Hillier TA. Built environment and lower extremity physical performance: prospective findings from the study of osteoporotic fractures in women. J Aging Health. 2011;23(8):1246-62. https://doi.org/10.1177/0898264311412597. PMID: 21724965
- [79] Shubert TE, Schrodt LA, Mercer VS, Busby-Whitehead J, Giuliani CA. Are scores on balance screening tests associated with mobility in older adults? J Geriatr Phys Ther. 2006;29(1):35-9. PMID: 16630375
- [80] Lau LK, Wee SL, Pang WJB, Chen KK, Abdul Jabbar K, Yap PLK, et al. Reference Values of Gait Speed and Gait Spatiotemporal Parameters for a South East Asian Population: The Yishun Study. Clin Interv Aging. 2020;15:1753-65. https://doi.org/10.2147/CIA.S270407. PMID: 33061327
- [81] Akima H, Yoshiko A, Ogawa M, Maeda H, Tomita A, Ando R, et al. Quadriceps echo intensity can be an index of muscle size regardless of age in 65 or more years old. Exp Gerontol. 2020;138:111015. https://doi.org/10.1016/j.exger.2020.111015. PMID: 32599146
- [82] Yeom HA, Baldwin CM, Lee MA, Kim SJ. Factors affecting mobility in community-dwelling older Koreans with chronic illnesses. Asian Nurs Res

(Korean Soc Nurs Sci). 2015;9(1):7-13. https://doi.org/10.1016/j.anr.2014.09.005. PMID: 25829204

- [83] Zarzeczny R, Nawrat-Szołtysik A, Polak A, Maliszewski J, Kiełtyka A, Matyja B, et al. Aging effect on the instrumented Timed-Up-and-Go test variables in nursing home women aged 80-93 years. Biogerontology. 2017;18(4):651-63. https://doi.org/10.1007/s10522-017-9717-5. PMID: 28634926
- [84] Rosenberg D, Walker R, Greenwood-Hickman MA, Bellettiere J, Xiang Y, Richmire K, et al. Device-assessed physical activity and sedentary behavior in a community-based cohort of older adults. BMC Public Health. 2020;20(1):1256. https://doi.org/10.1186/s12889-020-09330-z. PMID: 32811454
- [85] Demura S, Yamada T, Shin S. Age and sex differences in various stepping movements of the elderly. Geriatr Gerontol Int. 2008;8(3):180-7. https://doi.org/10.1111/j.1447-0594.2008.00468.x. PMID: 18822002
- [86] Hall KS, McAuley E. Individual, social environmental and physical environmental barriers to achieving 10 000 steps per day among older women. Health Educ Res. 2010;25(3):478-88. https://doi.org/10.1093/her/cyq019. PMID: 20348166
- [87] Chudyk AM, McKay HA, Winters M, Sims-Gould J, Ashe MC. Neighborhood walkability, physical activity, and walking for transportation: A crosssectional study of older adults living on low income. BMC Geriatr. 2017;17(1):82. https://doi.org/10.1186/s12877-017-0469-5. PMID: 28395672
- [88] De Greef K, Van Dyck D, Deforche B, De Bourdeaudhuij I. Physical environmental correlates of self-reported and objectively assessed physical activity in Belgian type 2 diabetes patients. Health Soc Care Community. 2011;19(2):178-88. https://doi.org/10.1111/j.1365-2524.2010.00958.x. PMID: 20880106
- [89] Bergland A, Sylliaas H, Jarnlo GB, Wyller TB. Health, balance, and walking as correlates of climbing steps. J Aging Phys Act. 2008;16(1):42-52. https://doi.org/10.1123/japa.16.1.42. PMID: 18212393
- [90] Herman T, Inbar-Borovsky N, Brozgol M, Giladi N, Hausdorff JM. The Dynamic Gait Index in healthy older adults: the role of stair climbing, fear of falling and gender. Gait Posture. 2009;29(2):237-41. https://doi.org/10.1016/j.gaitpost.2008.08.013. PMID: 18845439
- [91] Dong X, Chang ES, Simon MA. Physical function assessment in a communitydwelling population of U.S. Chinese older adults. J Gerontol A Biol Sci Med Sci. 2014;69 Suppl 2(Suppl 2):S31-8. https://doi.org/10.1093/gerona/glu205. PMID: 25378446
- [92] dos Santos VR, Christofaro DGD, Gomes IC, Freitas IF, Gobbo LA. Factors associated with mobility of the oldest old. Fisioter em Mov. 2017;30(1):69-76. https://doi.org/10.1590/1980-5918.030.001.A007.
- [93] Dong X, Bergren SM, Simon MA. The Decline of Directly Observed Physical Function Performance Among U.S. Chinese Older Adults. J Gerontol A Biol Sci Med Sci. 2017;72(suppl_1):S11-S15. https://doi.org/10.1093/gerona/glx046. PMID: 28575270
- [94] Anson E, Thompson E, Odle BL, Jeka J, Walls ZF, Panus PC. Influences of Age, Obesity, and Adverse Drug Effects on Balance and Mobility Testing Scores in Ambulatory Older Adults. J Geriatr Phys Ther. 2018;41(4):218-229. https://doi.org/10.1519/JPT.00000000000124. PMID: 28079635
- [95] Al Snih S, Kaushik V, Eschbach K, Markides K. Ethnic differences in physical performance in older Americans: data from the Third National Health and Nutrition Examination Survey (1988-1994). Aging Clin Exp Res. 2008;20(2):139-44. https://doi.org/10.1007/BF03324760. PMID: 18431081
- [96] Gladin A, Katzman WB, Fukuoka Y, Parimi N, Wong S, Lane NE. Secondary analysis of change in physical function after exercise intervention in older adults with hyperkyphosis and low physical function. BMC Geriatr.

2021;21(1):133. https://doi.org/10.1186/s12877-021-02062-8. PMID: 33618669

- [97] James EG, Hausdorff JM, Leveille SG, Travison T, Bean JF. Ankle control differentiation as a mechanism for mobility limitations. Neurosci Lett. 2020;732:135085. https://doi.org/10.1016/j.neulet.2020.135085. PMID: 32461108
- [98] Allman RM, Sawyer P, Roseman J. The UAB Study of Aging: Background and insights into life-space mobility among older Americans in rural and urban settings. Aging Health. 2006;2(3):417-29. https://doi.org/10.2217/1745509X.2.3.417.
- [99] Ignasiak Z, Sebastjan A, Sławińska T, Skrzek A, Czarny W, Król P, et al. Functional fitness normative values for elderly polish population. BMC Geriatr. 2020;20(1):384. https://doi.org/10.1186/s12877-020-01787-2. PMID: 33023485
- [100] Staples WH, Kays A, Richman R. Examination of the Correlation Between Physical and Psychological Measures in Community-Dwelling Older Adults. Clin Interv Aging. 2020;15:293-300. https://doi.org/10.2147/CIA.S239053. PMID: 32184578
- [101] Angel RJ, Frisco M, Angel JL, Chiriboga DA. Financial strain and health among elderly Mexican-origin individuals. J Health Soc Behav. 2003;44(4):536-51. PMID: 15038148
- [102] Alexandre Tda S, Corona LP, Nunes DP, Santos JL, Duarte YA, Lebrão ML. Similarities among factors associated with components of frailty in elderly: SABE Study. J Aging Health. 2014;26(3):441-57. https://doi.org/10.1177/0898264313519818. PMID: 24505067.
- [103] Enright PL, McBurnie MA, Bittner V, Tracy RP, McNamara R, Arnold A, et al. The 6-min walk test: a quick measure of functional status in elderly adults. Chest. 2003;123(2):387-98. https://doi.org/10.1378/chest.123.2.387. PMID: 12576356
- [104] Haas SA, Krueger PM, Rohlfsen L. Race/ethnic and nativity disparities in later life physical performance: the role of health and socioeconomic status over the life course. J Gerontol B Psychol Sci Soc Sci. 2012;67(2):238-48. https://doi.org/10.1093/geronb/gbr155. PMID: 22391749
- [105] Giannouli E, Fillekes MP, Mellone S, Weibel R, Bock O, Zijlstra W. Predictors of real-life mobility in community-dwelling older adults: an exploration based on a comprehensive framework for analyzing mobility. Eur Rev Aging Phys Act. 2019;16:19. https://doi.org/10.1186/s11556-019-0225-2. PMID: 31700551
- [106] Orr J, Kenny RA, McGarrigle CA. Longitudinal Associations of Religiosity and Physical Function in Older Irish Adults. J Am Geriatr Soc. 2020;68(9):1998-2005. https://doi.org/10.1111/jgs.16470. PMID: 32329903.
- [107] Otsuka H, Kobayashi H, Suzuki K, Hayashi Y, Ikeda J, Kushimoto M, et al. Mobility performance among healthy older adults eligible for long-term care in Japan: a prospective observational study. Aging Clin Exp Res. 2020;32(10):1931-7. https://doi.org/10.1007/s40520-019-01404-2. PMID: 31722093
- [108] Rodacki ALF, Boneti Moreira N, Pitta A, Wolf R, Melo Filho J, Rodacki CLN, et al. Is Handgrip Strength a Useful Measure to Evaluate Lower Limb Strength and Functional Performance in Older Women? Clin Interv Aging. 2020;15:1045-56. https://doi.org/10.2147/CIA.S253262. PMID: 32636619
- [109] Serrano-Checa R, Hita-Contreras F, Jiménez-García JD, Achalandabaso-Ochoa A, Aibar-Almazán A, Martínez-Amat A. Sleep Quality, Anxiety, and Depression Are Associated with Fall Risk Factors in Older Women. Int J Environ Res Public Health. 2020;17(11):4043. https://doi.org/10.3390/ijerph17114043. PMID: 32517112
- [110] Tanaka S, Tamari K, Amano T, Uchida S, Robbins SM, Miura Y. Do Sociodemographic Factors Relate to Walking Ability in Individuals Who

Underwent Total Knee Arthroplasty? J Geriatr Phys Ther. 2020;43(3):E11-5. https://doi.org/10.1519/JPT.00000000000229. PMID: 31274709

- [111] Nascimento CFD, Duarte YAO, Lebrão ML, Chiavegatto Filho ADP. Individual and Neighborhood Factors Associated With Functional Mobility and Falls in Elderly Residents of São Paulo, Brazil: A Multilevel Analysis. J Aging Health. 2018;30(1):118-39. https://doi.org/10.1177/0898264316669229. PMID: 27634837
- [112] Idland G, Rydwik E, Småstuen MC, Bergland A. Predictors of mobility in community-dwelling women aged 85 and older. Disabil Rehabil. 2013;35(11):881-7. https://doi.org/10.3109/09638288.2012.712195. PMID: 22931434.
- [113] Gallagher NA, Clarke PJ, Gretebeck KA. Gender differences in neighborhood walking in older adults. J Aging Health. 2014;26(8):1280-300. https://doi.org/10.1177/0898264314532686. PMID: 25502242
- [114] Olawole MO, Aloba O. Mobility characteristics of the elderly and their associated level of satisfaction with transport services in Osogbo, Southwestern Nigeria. Transp Policy. 2014;35:105-16. https://doi.org/10.1016/j.tranpol.2014.05.018
- [115] Zang P, Lu Y, Ma J, Xie B, Wang R, Liu Y. Disentangling residential self-selection from impacts of built environment characteristics on travel behaviors for older adults. Soc Sci Med. 2019;238:112515. https://doi.org/10.1016/j.socscimed.2019.112515. PMID: 31473573
- [116] Kato G, Arai T, Morita Y, Fujita H. Association of Built Environments With Frequency of Going Outdoors Among Older Community-Dwelling Adults in Japan. J Aging Phys Act. 2020:1-7. https://doi.org/10.1123/japa.2019-0343. PMID: 32302999
- [117] Maisel JL. Impact of Older Adults' Neighborhood Perceptions on Walking Behavior. J Aging Phys Act. 2016;24(2):247-55. https://doi.org/10.1123/japa.2014-0278. PMID: 26371520
- [118] Thornton CM, Kerr J, Conway TL, Saelens BE, Sallis JF, Ahn DK, et al. Physical Activity in Older Adults: an Ecological Approach. Ann Behav Med. 2017;51(2):159-69. https://doi.org/10.1007/s12160-016-9837-1. PMID: 27680568
- [119] Zang P, Xue CQL, Lu Y, Tu K. Neighbourhood adaptability for Hong Kong's ageing population. Urban Des Int. 2018;24(3):187-205. https://doi.org/10.1057/s41289-018-0074-z.
- [120] Zang P, Liu X, Zhao Y, Guo H, Lu Y, Xue CQL. Eye-Level Street Greenery and Walking Behaviors of Older Adults. Int J Environ Res Public Health. 2020;17(17):6130. https://doi.org/10.3390/ijerph17176130. PMID: 32846869
- [121] Brüchert T, Hasselder P, Quentin P, Bolte G. Walking for Transport among Older Adults: A Cross-Sectional Study on the Role of the Built Environment in Less Densely Populated Areas in Northern Germany. Int J Environ Res Public Health. 2020;17(24):9479. https://doi.org/10.3390/ijerph17249479. PMID: 33348881
- [122] Van Cauwenberg J, Clarys P, De Bourdeaudhuij I, Van Holle V, Verté D, De Witte N, et al. Physical environmental factors related to walking and cycling in older adults: the Belgian aging studies. BMC Public Health. 2012;12:142. https://doi.org/10.1186/1471-2458-12-142. PMID: 22361255
- [123] Nyunt MS, Shuvo FK, Eng JY, Yap KB, Scherer S, Hee LM, et al. Objective and subjective measures of neighborhood environment (NE): relationships with transportation physical activity among older persons. Int J Behav Nutr Phys Act. 2015;12:108. https://doi.org/10.1186/s12966-015-0276-3. PMID: 26373320
- [124] Ory MG, Towne SD Jr, Won J, Forjuoh SN, Lee C. Social and environmental predictors of walking among older adults. BMC Geriatr. 2016;16(1):155. https://doi.org/10.1186/s12877-016-0327-x. PMID: 27553668
- [125] Zhang Y, Li C, Ding C, Zhao C, Huang J. The Built Environment and the

Frequency of Cycling Trips by Urban Elderly: Insights from Zhongshan, China. J Asian Archit Build Eng. 2016;15(3):511-8. http://doi.org/10.3130/jaabe.15.511.

- [126] Hjorthol R. Transport resources, mobility and unmet transport needs in old age. Ageing Soc. 2013;33(7):1190-211. https://doi.org/10.1017/S0144686X12000517.
- [127] King AC, Salvo D, Banda JA, Ahn DK, Chapman JE, Gill TM, et al. Preserving older adults' routine outdoor activities in contrasting neighborhood environments through a physical activity intervention. Prev Med. 2017;96:87-93. https://doi.org/10.1016/j.ypmed.2016.12.049. PMID: 28039068
- [128] Adler G, Rottunda S, Bauer M, Kuskowski M. Older women drivers: The influence of age, marital status, health, and social support. Clin Gerontol. 2005;29(1):39-51. https://doi.org/10.1300/J018v29n01 04.
- [129] Braitman KA, Williams AF. Changes in self-regulatory driving among older drivers over time. Traffic Inj Prev. 2011;12(6):568-75. https://doi.org/10.1080/15389588.2011.616249. PMID: 22133332
- [130] Rosso AL, Taylor JA, Tabb LP, Michael YL. Mobility, disability, and social engagement in older adults. J Aging Health. 2013;25(4):617-37. https://doi.org/10.1177/0898264313482489. PMID: 23548944
- [131] Seinsche J, Zijlstra W, Giannouli E. Motility in Frail Older Adults: Operationalization of a New Framework and First Insights into Its Relationship with Physical Activity and Life-Space Mobility: An Exploratory Study. Int J Environ Res Public Health. 2020;17(23):8814. https://doi.org/10.3390/ijerph17238814. PMID: 33260952
- [132] Silberschmidt S, Kumar A, Raji MM, Markides K, Ottenbacher KJ, Al Snih S. Life-Space Mobility and Cognitive Decline Among Mexican Americans Aged 75 Years and Older. J Am Geriatr Soc. 2017;65(7):1514-1520. https://doi.org/10.1111/jgs.14829. PMID: 28276089
- [133] Viljanen A, Mikkola TM, Rantakokko M, Portegijs E, Rantanen T. The Association Between Transportation and Life-Space Mobility in Community-Dwelling Older People With or Without Walking Difficulties. J Aging Health. 2016;28(6):1038-54. https://doi.org/10.1177/0898264315618919. PMID: 26613926.
- [134] Rosso AL, Grubesic TH, Auchincloss AH, Tabb LP, Michael YL. Neighborhood amenities and mobility in older adults. Am J Epidemiol. 2013;178(5):761-9. https://doi.org/10.1093/aje/kwt032. PMID: 23666814
- [135] Peel C, Sawyer Baker P, Roth DL, Brown CJ, Brodner EV, Allman RM. Assessing mobility in older adults: the UAB Study of Aging Life-Space Assessment. Phys Ther. 2005;85(10):1008-119. PMID: 16180950
- [136] Eronen J, von Bonsdorff M, Rantakokko M, Portegijs E, Viljanen A, Rantanen T. Socioeconomic Status and Life-Space Mobility in Old Age. J Aging Phys Act. 2016;24(4):617-623. https://doi.org/10.1123/japa.2015-0196. PMID: 27051074
- [137] Suzuki T, Kitaike T, Ikezaki S. Life-space mobility and social support in elderly adults with orthopaedic disorders. Int J Nurs Pract. 2014;20 Suppl 1:32-8. https://doi.org/10.1111/ijn.12248. PMID: 24661281
- [138] Perracini MR, de Amorim JSC, Lima CA, da Silva A, Trombini-Souza F, Pereira DS, et al. Impact of COVID-19 Pandemic on Life-Space Mobility of Older Adults Living in Brazil: REMOBILIZE Study. Front Public Health. 2021;9:643640. https://doi.org/10.3389/fpubh.2021.643640. PMID: 33898378
- [139] Gibson K, Day L, Hill KD, Jolley D, Newstead S, Cicuttini F, et al. Screening for pre-clinical disability in different residential settings. BMC Geriatr. 2010;10:52. https://doi.org/10.1186/1471-2318-10-52. PMID: 20678235
- [140] Cousins SO, Tan Maria. Sources of Efficacy for Walking and Climbing Stairs Among Older Adults. Phys Occup Ther Geriatr. 2002;20(3-4):51-68.

https://doi.org/10.1080/J148v20n03 04.

- [141] Clarke PJ. The role of the built environment and assistive devices for outdoor mobility in later life. J Gerontol B Psychol Sci Soc Sci. 2014;69 Suppl 1(Suppl 1):S8-15. https://doi.org/10.1093/geronb/gbu121. PMID: 25342826
- [142] Cornman JC, Glei D, Rodríguez G, Goldman N, Hurng BS, Weinstein M. Demographic and socioeconomic status differences in perceptions of difficulty with mobility in late life. J Gerontol B Psychol Sci Soc Sci. 2011;66(2):237-48. https://doi.org/10.1093/geronb/gbq087. PMID: 21098041
- [143] Sun CY, Yeh CY, Zhao Y, Chiu CJ. Can Individual Attitudes toward Aging Predict Subsequent Physical Disabilities in Older Taiwanese Individuals? A Four-Year Retrospective Cohort Study. Int J Environ Res Public Health. 2020;18(1):98. https://doi.org/10.3390/ijerph18010098. PMID: 33375631
- [144] Li Y, Kao D, Dinh TQ. Correlates of neighborhood environment with walking among older Asian Americans. J Aging Health. 2015;27(1):17-34. https://doi.org/10.1177/0898264314535636. PMID: 24943112.
- [145] Hardy SE, McGurl DJ, Studenski SA, Degenholtz HB. Biopsychosocial characteristics of community-dwelling older adults with limited ability to walk one-quarter of a mile. J Am Geriatr Soc. 2010;58(3):539-44. https://doi.org/10.1111/j.1532-5415.2010.02727.x. PMID: 20210817
- [146] Umstattd Meyer MR, Janke MC, Beaujean AA. Predictors of older adults' personal and community mobility: using a comprehensive theoretical mobility framework. Gerontologist. 2014;54(3):398-408. https://doi.org/10.1093/geront/gnt054. PMID: 23749391.
- [147] Sharma A. A National Profile of Functional Limitations Among Asian Indians, Chinese, and Filipinos. J Gerontol B Psychol Sci Soc Sci. 2020;75(5):1021-29. https://doi.org/10.1093/geronb/gby092. PMID: 30124937
- [148] Bishop NJ, Eggum-Wilkens ND, Haas SA, Kronenfeld JJ. Estimating the Co-Development of Cognitive Decline and Physical Mobility Limitations in Older U.S. Adults. Demography. 2016;53(2):337-64. https://doi.org/10.1007/s13524-016-0458-x. PMID: 26936611
- [149] Cornman JC, Freedman VA. Racial and ethnic disparities in mobility device use in late life. J Gerontol B Psychol Sci Soc Sci. 2008;63(1):S34-41. https://doi.org/10.1093/geronb/63.1.s34. PMID: 18332200
- [150] Díaz-Venegas C, Reistetter TA, Wang CY, Wong R. The progression of disability among older adults in Mexico. Disabil Rehabil. 2016;38(20):2016-27. https://doi.org/10.3109/09638288.2015.1111435. PMID: 26729017
- [151] Friis RH, Nomura WL, Ma CX, Swan JH. Socioepidemiologic and Health-Related Correlates of Walking for Exercise Among the Elderly: Results from the Longitudinal Study of Aging. J Aging Phys Act. 2003;11(1):54-65. https://doi.org/10.1123/japa.11.1.54.
- [152] Shumway-Cook A, Patla A, Stewart A, Ferrucci L, Ciol MA, Guralnik JM. Environmental components of mobility disability in community-living older persons. J Am Geriatr Soc. 2003;51(3):393-8. https://doi.org/10.1046/j.1532-5415.2003.51114.x. PMID: 12588584
- [153] Skantz H, Rantanen T, Rantalainen T, Keskinen KE, Palmberg L, Portegijs E, et al. Associations between Perceived Outdoor Environment and Walking Modifications in Community-Dwelling Older People: A Two-Year Follow-Up Study. J Aging Health. 2020;32(10):1538-51. https://doi.org/10.1177/0898264320944289. PMID: 32720836
- [154] Yeager DM, Glei DA, Au M, Lin HS, Sloan RP, Weinstein M. Religious involvement and health outcomes among older persons in Taiwan. Soc Sci Med. 2006;63(8):2228-41. https://doi.org/10.1016/j.socscimed.2006.05.007. PMID: 16797809

- [155] Choi M, Adams KB, Kahana E. Self-regulatory driving behaviors: gender and transportation support effects. J Women Aging. 2013;25(2):104-18. https://doi.org/10.1080/08952841.2012.720212. PMID: 23488647
- [156] Latham-Mintus K. Exploring Racial and Ethnic Differences in Recovery Maintenance From Mobility Limitation. J Aging Health. 2020;32(5-6):384-393. https://doi.org/10.1177/0898264319826790. PMID: 30698483
- [157] Latham-Mintus K, Aman KM. Childhood Disadvantage, Psychosocial Resiliency, and Later Life Functioning: Linking Early-Life Circumstances to Recovery From Mobility Limitation. J Aging Health. 2019;31(3):463-83. https://doi.org/10.1177/0898264317733861. PMID: 29254410
- [158] Gell NM, Wallace RB, LaCroix AZ, Mroz TM, Patel KV. Mobility device use in older adults and incidence of falls and worry about falling: findings from the 2011-2012 national health and aging trends study. J Am Geriatr Soc. 2015;63(5):853-9. https://doi.org/10.1111/jgs.13393. PMID: 25953070
- [159] Harris F, Yang HY, Sanford J. Physical environmental barriers to community mobility in older and younger wheelchair users. Top Geriatr Rehabil. 2015;31(1):42-51. https://doi.org/10.1097/TGR.00000000000043.
- [160] Peterson LJ, Meng H, Dobbs D, Hyer K. Gender Differences in Mobility Device Use Among U.S. Older Adults. J Gerontol B Psychol Sci Soc Sci. 2017;72(5):827-35. https://doi.org/10.1093/geronb/gbw081. PMID: 27495837
- [161] Seplaki CL, Agree EM, Weiss CO, Szanton SL, Bandeen-Roche K, Fried LP. Assistive devices in context: cross-sectional association between challenges in the home environment and use of assistive devices for mobility. Gerontologist. 2014;54(4):651-60. https://doi.org/10.1093/geront/gnt030. PMID: 23616569
- [162] Thinuan P, Siviroj P, Lerttrakarnnon P, Lorga T. Prevalence and Potential Predictors of Frailty among Community-Dwelling Older Persons in Northern Thailand: A Cross-Sectional Study. Int J Environ Res Public Health. 2020;17(11):4077. https://doi.org/10.3390/ijerph17114077. PMID: 32521642
- [163] Chang M, Ramel A, Jonsson PV, Thorsdottir I, Geirsdottir OG. The effect of cognitive function on mobility improvement among community-living older adults: A 12-week resistance exercise intervention study. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2020;27(3):385-96. https://doi.org/10.1080/13825585.2019.1623167. PMID: 31156030
- [164] Bernard PL, Raffort N, Aliaga B, Gamon L, Faucanie M, Picot MC, et al. Analysis of the health profiles and prevalence of falls for patients over 65 years of age in a thermal environment. Aging Clin Exp Res. 2020;32(9):1713-21. https://doi.org/10.1007/s40520-019-01381-6. PMID: 31667797
- [165] Herman T, Inbar-Borovsky N, Brozgol M, Giladi N, Hausdorff JM. The Dynamic Gait Index in healthy older adults: the role of stair climbing, fear of falling and gender. Gait Posture. 2009;29(2):237-41. https://doi.org/10.1016/j.gaitpost.2008.08.013. PMID: 18845439
- [166] Caldas V, Fernandes J, Vafaei A, Gomes C, Costa J, Curcio C, et al. Life-Space and Cognitive Decline in Older Adults in Different Social and Economic Contexts: Longitudinal Results from the IMIAS Study. J Cross Cult Gerontol. 2020;35(3):237-254. https://doi.org/10.1007/s10823-020-09406-8. PMID: 32725292
- [167] Ahmed T, Vafaei A, Auais M, Guralnik J, Zunzunegui MV. Gender Roles and Physical Function in Older Adults: Cross-Sectional Analysis of the International Mobility in Aging Study (IMIAS). PLoS One. 2016;11(6):e0156828. https://doi.org/10.1371/journal.pone.0156828. PMID: 27258050
- [168] Prins RG, van Lenthe FJ. The hour-to-hour influence of weather conditions on walking and cycling among Dutch older adults. Age Ageing. 2015;44(5):886-90. https://doi.org/10.1093/ageing/afv103. PMID:

26259948.

[169] Brown SC, Huang S, Perrino T, Surio P, Borges-Garcia R, Flavin K, et al. The relationship of perceived neighborhood social climate to walking in Hispanic older adults: a longitudinal, cross-lagged panel analysis. J Aging Health. 2011;23(8):1325-51.

https://doi.org/10.1177/0898264311418502. PMID: 21885705

- [170] Kikuchi H, Nakaya T, Hanibuchi T, Fukushima N, Amagasa S, Oka K, et al. Objectively Measured Neighborhood Walkability and Change in Physical Activity in Older Japanese Adults: A Five-Year Cohort Study. Int J Environ Res Public Health. 2018;15(9):1814. https://doi.org/10.3390/ijerph15091814. PMID: 30135389
- [171] Lynott J, McAuley WJ, McCutcheon M. Getting out and about: The relationship between urban form and senior travel patterns. J Hous Elderly. 2009;23(4):390-402. https://doi.org/10.1080/02763890903327366.
- [172] Cheng L, Chen X, Yang S, Cao Z, De Vos J, Witlox F. Active travel for active ageing in China: The role of built environment. J Transp Geogr. 2019;76:142-52. https://doi.org/10.1016/j.jtrangeo.2019.03.010.
- [173] Oyeyemi AL, Kolo SM, Oyeyemi AY, Omotara BA. Neighborhood environmental factors are related to health-enhancing physical activity and walking among community dwelling older adults in Nigeria. Physiother Theory Pract. 2019;35(3):288-97. https://doi.org/10.1080/09593985.2018.1443187. PMID: 29474106
- [174] Hamel KA, Cavanagh PR. Stair performance in people aged 75 and older. J Am Geriatr Soc. 2004;52(4):563-7. https://doi.org/10.1111/j.1532-5415.2004.52162.x. PMID: 15066071
- [175] Kostyniuk LP, Shope JT. Driving and alternatives: older drivers in Michigan. J Safety Res. 2003;34(4):407-14. https://doi.org/10.1016/j.jsr.2003.09.001. PMID: 14636663
- [176] Vivoda JM, Walker RM, Cao J, Koumoutzis A. How Accumulated Wealth Affects Driving Reduction and Cessation. Gerontologist. 2020;60(7):1273-81. https://doi.org/10.1093/geront/gnaa039. PMID: 32346739.
- [177] Korotchenko A, Clarke LH. Power mobility and the built environment: the experiences of older Canadians. Disabil Soc. 2014;29(3):431-43. https://doi.org/10.1080/09687599.2013.816626.
- [178] Alvarado BE, Guerra RO, Zunzunegui MV. Gender differences in lower extremity function in Latin American elders: seeking explanations from a life-course perspective. J Aging Health. 2007;19(6):1004-24. https://doi.org/10.1177/0898264307308618. PMID: 18165293
- [179] Hardy SE, McGurl DJ, Studenski SA, Degenholtz HB. Biopsychosocial characteristics of community-dwelling older adults with limited ability to walk one-quarter of a mile. J Am Geriatr Soc. 2010;58(3):539-44. https://doi.org/10.1111/j.1532-5415.2010.02727.x. PMID: 20210817
- [180] Melzer D, Gardener E, Guralnik JM. Mobility disability in the middleaged: cross-sectional associations in the English Longitudinal Study of Ageing. Age Ageing. 2005;34(6):594-602. https://doi.org/10.1093/ageing/afi188. PMID: 16267185
- [181] Seeman TE, Merkin SS, Crimmins EM, Karlamangla AS. Disability trends among older Americans: National Health And Nutrition Examination Surveys, 1988-1994 and 1999-2004. Am J Public Health. 2010;100(1):100-7. https://doi.org/10.2105/AJPH.2008.157388. PMID: 19910350
- [182] Clares JWB, Freitas MC de, Borges CL. Social and clinical factors causing mobility limitations in the elderly. Acta Paul Enferm. 2014;27(3):237-42. https://doi.org/10.1590/1982-0194201400040.
- [183] Friis RH, Nomura WL, Ma CX, Swan JH. Socioepidemiologic and Health-Related Correlates of Walking for Exercise among the Elderly: Results from the Longitudinal Study of Aging. J Aging Phys Act . 2003;11(1):54-65. https://doi.org/10.1123/japa.11.1.54.

- [184] van Zon SK, Bültmann U, Reijneveld SA, de Leon CF. Functional health decline before and after retirement: A longitudinal analysis of the Health and Retirement Study. Soc Sci Med. 2016;170:26-34. https://doi.org/10.1016/j.socscimed.2016.10.002. PMID: 27741444
- [185] Winters M, Barnes R, Venners S, Ste-Marie N, McKay H, Sims-Gould J, et al. Older adults' outdoor walking and the built environment: does income matter? BMC Public Health. 2015;15:876. https://doi.org/10.1186/s12889-015-2224-1. PMID: 26359159
- [186] Ang S. Intersectional cohort change: Disparities in mobility limitations among older Singaporeans. Soc Sci Med. 2019;228:223-231. https://doi.org/10.1016/j.socscimed.2019.03.039. PMID: 30927616
- [187] Blazer DG, Hybels CF, Fillenbaum GG. Metabolic syndrome predicts mobility decline in a community-based sample of older adults. J Am Geriatr Soc. 2006;54(3):502-6. https://doi.org/10.1111/j.1532-5415.2005.00607.x. PMID: 16551320
- [188] Skantz H, Rantalainen T, Karavirta L, Rantakokko M, Palmberg L, Portegijs E, et al. Associations Between Accelerometer-Based Free-Living Walking and Self-Reported Walking Capability Among Community-Dwelling Older People. J Aging Phys Act. 2021;29(6):1018-25. https://doi.org/10.1123/japa.2020-0389. PMID: 33780907
- [189] Avlund K, Osler M, Damsgaard MT, Christensen U, Schroll M. The relations between musculoskeletal diseases and mobility among old people: are they influenced by socio-economic, psychosocial, and behavioral factors? Int J Behav Med 2000;7(4):322-39.
 - https://doi.org/10.1207/S15327558IJBM0704_04.
- [190] Gell NM, Wallace RB, LaCroix AZ, Mroz TM, Patel KV. Mobility device use in older adults and incidence of falls and worry about falling: findings from the 2011-2012 national health and aging trends study. J Am Geriatr Soc. 2015;63(5):853-9. https://doi.org/10.1111/jgs.13393. PMID: 25953070
- [191] Zandieh R, Martinez J, Flacke J, Maarseveen M van. The Associations Between Area Deprivation and Objectively Measured Older Adults' Outdoor Walking Levels. SAGE Open. 2017;7(4). https://doi.org/10.1177/2158244017740172.
- [192] Barrera G, Cases T, Bunout D, de la Maza MP, Leiva L, Rodriguez JM, et al. Associations between socioeconomic status, aging and functionality among older women. Geriatr Nurs. 2017;38(4):347-351. https://doi.org/10.1016/j.gerinurse.2014.08.012. PMID: 25288053
- [193] Birnie K, Martin RM, Gallacher J, Bayer A, Gunnell D, Ebrahim S, et al. Socio-economic disadvantage from childhood to adulthood and locomotor function in old age: a lifecourse analysis of the Boyd Orr and Caerphilly prospective studies. J Epidemiol Community Health. 2011;65(11):1014-23. https://doi.org/10.1136/jech.2009.103648. PMID: 20644236
- [194] Duff K, Mold JW, Roberts MM. Walking speed and global cognition: results from the OKLAHOMA Study. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2008;15(1):31-9. https://doi.org/10.1080/13825580701531904. PMID: 17882601
- [195] Dong X, Chang ES, Simon MA. Physical function assessment in a communitydwelling population of U.S. Chinese older adults. J Gerontol A Biol Sci Med Sci. 2014;69 Suppl 2(Suppl 2):S31-8. https://doi.org/10.1093/gerona/glu205. PMID: 25378446
- [196] Dong X, Bergren SM, Simon MA. The Decline of Directly Observed Physical Function Performance Among U.S. Chinese Older Adults. J Gerontol A Biol Sci Med Sci. 2017;72(suppl_1):S11-S15.
 - https://doi.org/10.1093/gerona/glx046. PMID: 28575270
- [197] Cerin E, Mellecker R, Macfarlane DJ, Barnett A, Cheung MC, Sit CH, et

al. Socioeconomic status, neighborhood characteristics, and walking within the neighborhood among older Hong Kong Chinese. J Aging Health. 2013;25(8):1425-44. https://doi.org/10.1177/0898264313510034. PMID: 24246302

- [198] Kerr J, Norman G, Millstein R, Adams MA, Morgan C, Langer RD, et al. Neighborhood environment and physical activity among older women: findings from the San Diego Cohort of the women's health initiative. J Phys Act Health. 2014;11(6):1070-7. https://doi.org/10.1123/jpah.2012-0159. PMID: 23963780
- [199] Barnes R, Winters M, Ste-Marie N, McKay H, Ashe MC. Age and retirement status differences in associations between the built environment and active travel behaviour. J Transp Heal. 2016;3(4):513-22. https://doi.org/10.1016/j.jth.2016.03.003.
- [200] Mertens L, Van Dyck D, Deforche B, De Bourdeaudhuij I, Brondeel R, Van Cauwenberg J. Individual, social, and physical environmental factors related to changes in walking and cycling for transport among older adults: A longitudinal study. Health Place. 2019 Jan; 55:120-127. https://doi.org/10.1016/j.healthplace.2018.12.001. PMID: 30551993
- [201] Keskinen KE, Rantakokko M, Suomi K, Rantanen T, Portegijs E. Hilliness and the Development of Walking Difficulties Among Community-Dwelling Older People. J Aging Health. 2020;32(5-6):278-84. https://doi.org/10.1177/0898264318820448. PMID: 30587067
- [202] Melzer D, Izmirlian G, Leveille SG, Guralnik JM. Educational differences in the prevalence of mobility disability in old age: the dynamics of incidence, mortality, and recovery. J Gerontol B Psychol Sci Soc Sci. 2001;56(5):S294-301. https://doi.org/10.1093/geronb/56.5.s294. PMID: 11522811
- [203] Avlund K, Damsgaard MT, Osler M. Social position and functional decline among non-disabled old men and women. Eur J Public Health. 2004;14(2):212-6. https://doi.org/10.1093/eurpub/14.2.212. PMID: 15230514
- [204] Collins AL, Goldman N. Perceived social position and health in older adults in Taiwan. Soc Sci Med. 2008;66(3):536-44. https://doi.org/10.1016/j.socscimed.2007.10.004. PMID: 18037202
- [205] Darin-Mattsson A, Fors S, Kåreholt I. Different indicators of socioeconomic status and their relative importance as determinants of health in old age. Int J Equity Health. 2017;16(1):173. https://doi.org/10.1186/s12939-017-0670-3. PMID: 28950875
- [206] Koster A, Penninx BWJH, Bosma H, Kempen GIJM, Harris TB, Newman AB, et al. Is There a Biomedical Explanation for Socioeconomic Differences in Incident Mobility Limitation? Journals Gerontol Ser A. 2005;60(8):1022-7. https://doi.org/10.1093/gerona/60.8.1022. PMID: 16127107
- [207] Melzer D, Parahyba MI. Socio-demographic correlates of mobility disability in older Brazilians: results of the first national survey. Age Ageing. 2004;33(3):253-9. https://doi.org/10.1093/ageing/afh075. PMID: 15082430
- [208] Avlund K, Holstein BE, Osler M, Damsgaard MT, Holm-Pedersen P, Rasmussen NK. Social position and health in old age: the relevance of different indicators of social position. Scand J Public Health. 2003;31(2):126-36. https://doi.org/10.1080/14034940210134130. PMID: 12745763.
- [209] Jørgensen TSH, Nilsson CJ, Lund R, Siersma V, Fors S. Intergenerational relations and social mobility: Social inequality in physical function in old age. Arch Gerontol Geriatr. 2019;80:58-64. https://doi.org/10.1016/j.archger.2018.10.006. PMID: 30368028.
- [210] Aoyagi K, Ross PD, Nevitt MC, Davis JW, Wasnich RD, Hayashi T, et al. Comparison of performance-based measures among native Japanese, Japanese-Americans in Hawaii and Caucasian women in the United States,
ages 65 years and over: a cross-sectional study. BMC Geriatr. 2001;1:3. https://doi.org/10.1186/1471-2318-1-3. PMID: 11696243

- [211] Gonzales MM, Wang CP, Quiben M, MacCarthy D, Seshadri S, Jacob M, et al. Joint trajectories of cognition and gait speed in Mexican American and European American older adults: The San Antonio longitudinal study of aging. Int J Geriatr Psychiatry. 2020;35(8):897-906. https://doi.org/10.1002/gps.5310. PMID: 32281153
- [212] Enright PL, McBurnie MA, Bittner V, Tracy RP, McNamara R, Arnold A, et al. The 6-min walk test: a quick measure of functional status in elderly adults. Chest. 2003;123(2):387-98. https://doi.org/10.1378/chest.123.2.387. PMID: 12576356
- [213] Coelho-Junior HJ, Calvani R, Picca A, Gonçalves IO, Landi F, Bernabei R, et al. Association between Dietary Habits and Physical Function in Brazilian and Italian Older Women. Nutrients. 2020;12(6):1635. https://doi.org/10.3390/nu12061635. PMID: 32492947
- [214] Cancela JM, Pereira K, Mollinedo I, Ferreira M, Bezerra P. Reasons Why Older Adults Engage in Physical Exercise. Comparative Study Eastern Europe Versus Southern Europe. J Aging Phys Act. 2020;29(1):43-50. https://doi.org/10.1123/japa.2019-0450. PMID: 32788420
- [215] Procter-Gray E, Leveille SG, Hannan MT, Cheng J, Kane K, Li W. Variations in Community Prevalence and Determinants of Recreational and Utilitarian Walking in Older Age. J Aging Res. 2015;2015:382703. https://doi.org/10.1155/2015/382703. PMID: 26339507
- [216] Allman RM, Sawyer P, Roseman J. The UAB Study of Aging: Background and insights into life-space mobility among older Americans in rural and urban settings. Aging Health. 2006;2(3):417-29. https://doi.org/10.2217/1745509X.2.3.417.
- [217] Spalter T, Brodsky J, Shnoor Y. Improvements and decline in the physical functioning of Israeli older adults. Gerontologist. 2014;54(6):919-29. https://doi.org/10.1093/geront/gnt084. PMID: 23969256.
- [218] Giesel F, Rahn C. Everyday life in the suburbs of Berlin: consequences for the social participation of aged men and women. J Women Aging. 2015;27(4):330-51. https://doi.org/10.1080/08952841.2014.951248. PMID: 25923586.
- [219] Plys E, Kluge MA. Life-Space Mobility in a Sample of Independent Living Residents within a Continuing Care Retirement Community with an Embedded Wellness Program. Clin Gerontol. 2016;39(3):210-21. https://doi.org/10.1080/07317115.2015.1120251.
- [220] Ding YY, Abisheganaden J, Chong WF, Heng BH, Lim TK. Effectiveness of acute geriatric units in the real world: the case of short-term mortality among seniors hospitalized for pneumonia. Geriatr Gerontol Int. 2013;13(1):55-62. https://doi.org/10.1111/j.1447-0594.2012.00858.x. PMID: 22489597.
- [221] Zaninotto P, Sacker A, Head J. Relationship between wealth and age trajectories of walking speed among older adults: evidence from the English Longitudinal Study of Ageing. J Gerontol A Biol Sci Med Sci. 2013;68(12):1525-31. https://doi.org/10.1093/gerona/glt058. PMID: 23682157
- [222] Pothisiri W, Prasitsiriphon O, Aekplakorn W. Extent of aging across education and income subgroups in Thailand: Application of a characteristic-based age approach. PLoS One. 2020;15(12):e0243081. https://doi.org/10.1371/journal.pone.0243081. PMID: 33290428
- [223] Rantakokko M, Iwarsson S, Mänty M, Leinonen R, Rantanen T. Perceived barriers in the outdoor environment and development of walking difficulties in older people. Age Ageing. 2012;41(1):118-21. https://doi.org/10.1093/ageing/afr136. PMID: 22086965
- [224] Nilsson CJ, Avlund K, Lund R. Onset of mobility limitations in old age:

the combined effect of socioeconomic position and social relations. Age Ageing. 2011;40(5):607-14. https://doi.org/10.1093/ageing/afr073. PMID: 21737461

- [225] Nilsson CJ, Siersma V, Mänty M, Avlund K, Vass M, Lund R. Mobility decline in old age: the combined effect of mobility-related fatigue and socioeconomic position. J Epidemiol Community Health. 2014;68(6):510-5. https://doi.org/10.1136/jech-2013-203060. PMID: 24430582
- [226] Nilsson CJ, Avlund K, Lund R. Social inequality in onset of mobility disability among older Danes: the mediation effect of social relations. J Aging Health. 2010;22(4):522-41. https://doi.org/10.1177/0898264309359684. PMID: 20231729
- [227] Melzer D, Parahyba MI. Socio-demographic correlates of mobility disability in older Brazilians: results of the first national survey. Age Ageing. 2004;33(3):253-9. https://doi.org/10.1093/ageing/afh075. PMID: 15082430.
- [228] Tanjani PT, Akbarpour S, Ainy E, Soori H. Socio-demographic risk factors of mobility dysfunction and limitations in physical functioning disability among the elderly in Iran: A nationwide cross sectional survey. J Pak Med Assoc. 2015;65(10):1060-4. PMID: 26440833.
- [229] Lachapelle U, Cloutier MS. On the complexity of finishing a crossing on time: Elderly pedestrians, timing and cycling infrastructure. Transp Res Part A Policy Pract. 2017;96:54-63.
 - https://doi.org/10.1016/j.tra.2016.12.005.
- [230] Leung KM, Chung PK, Wang D, Liu JD. Impact of physical and social environments on the walking behaviour of Hong Kong's older adults. J Transp Heal. 2018;9:299-308. https://doi.org/10.1016/j.jth.2018.03.002.
- [231] Zukowski LA, Iyigün G, Giuliani CA, Plummer P. Effect of the environment on gait and gaze behavior in older adult fallers compared to older adult non-fallers. PLoS One. 2020;15(3):e0230479. https://doi.org/10.1371/journal.pone.0230479. PMID: 32196529
- [232] Lindemann U, Schwenk M, Schmitt S, Weyrich M, Schlicht W, Becker C. Effect of uphill and downhill walking on walking performance in geriatric patients using a wheeled walker. Z Gerontol Geriatr. 2017;50(6):483-7. https://doi.org/10.1007/s00391-016-1156-4. PMID: 27878412
- [233] Menant JC, Steele JR, Menz HB, Munro BJ, Lord SR. Rapid gait termination: effects of age, walking surfaces and footwear characteristics. Gait Posture. 2009;30(1):65-70. https://doi.org/10.1016/j.gaitpost.2009.03.003. PMID: 19359178.
- [234] Portegijs E, Keskinen KE, Tsai LT, Rantanen T, Rantakokko M. Physical Limitations, Walkability, Perceived Environmental Facilitators and Physical Activity of Older Adults in Finland. Int J Environ Res Public Health. 2017;14(3):333. https://doi.org/10.3390/ijerph14030333. PMID: 28327543
- [235] Carrapatoso S, Silva P, Colaço P, Carvalho J. Perceptions of the Neighborhood Environment Associated With Walking at Recommended Intensity and Volume Levels in Recreational Senior Walkers. J Hous Elderly. 2017;32(1):26-38.
 - https://doi.org/10.1080/02763893.2017.1393485.
- [236] Cress ME, Orini S, Kinsler L. Living environment and mobility of older adults. Gerontology. 2011;57(3):287-94. https://doi.org/10.1159/000322195. PMID: 20980733
- [237] Hunter SW, Divine A. The effect of walking path configuration on gait in adults with Alzheimer's dementia. Gait Posture. 2018;64:226-229. https://doi.org/10.1016/j.gaitpost.2018.06.118. PMID: 29940482
- [238] Lindemann U, Schwenk M, Klenk J, Kessler M, Weyrich M, Kurz F, et al. Problems of older persons using a wheeled walker. Aging Clin Exp Res.

2016;28(2):215-20. https://doi.org/10.1007/s40520-015-0410-8. PMID: 26226859

- [239] Richardson JK, Thies SB, DeMott TK, Ashton-Miller JA. A comparison of gait characteristics between older women with and without peripheral neuropathy in standard and challenging environments. J Am Geriatr Soc. 2004;52(9):1532-7. https://doi.org/10.1111/j.1532-5415.2004.52418.x. PMID: 15341557
- [240] Richardson JK, Thies SB, DeMott TK, Ashton-Miller JA. Gait analysis in a challenging environment differentiates between fallers and nonfallers among older patients with peripheral neuropathy. Arch Phys Med Rehabil. 2005;86(8):1539-44. https://doi.org/10.1016/j.apmr.2004.12.032. PMID: 16084805.
- [241] Zhang Y, Li Y, Liu Q, Li C. The Built Environment and Walking Activity of the Elderly: An Empirical Analysis in the Zhongshan Metropolitan Area, China. Sustainability. 2014;6(2):1076-92. https://doi.org/10.3390/su6021076.
- [242] Koohsari MJ, McCormack GR, Nakaya T, Shibata A, Ishii K, Yasunaga A, et al. Walking-friendly built environments and objectively measured physical function in older adults. J Sport Health Sci. 2020;9(6):651-6. https://doi.org/10.1016/j.jshs.2020.02.002. PMID: 33308816
- [243] García-Esquinas E, Pérez-Hernández B, Guallar-Castillón P, Banegas JR, Ayuso-Mateos JL, Rodríguez-Artalejo F. Housing conditions and limitations in physical function among older adults. J Epidemiol Community Health. 2016;70(10):954-60. https://doi.org/10.1136/jech-2016-207183. PMID: 27225681
- [244] Li F, Harmer PA, Cardinal BJ, Bosworth M, Acock A, Johnson-Shelton D, et al. Built environment, adiposity, and physical activity in adults aged 50-75. Am J Prev Med. 2008;35(1):38-46.
 - https://doi.org/10.1016/j.amepre.2008.03.021. PMID: 18541175
- [245] Li F, Fisher KJ, Brownson RC, Bosworth M. Multilevel modelling of built environment characteristics related to neighbourhood walking activity in older adults. J Epidemiol Community Health. 2005;59(7):558-64. https://doi.org/10.1136/jech.2004.028399. PMID: 15965138
- [246] Laatikainen TE, Haybatollahi M, Kyttä M. Environmental, Individual and Personal Goal Influences on Older Adults' Walking in the Helsinki Metropolitan Area. Int J Environ Res Public Health. 2018;16(1):58. https://doi.org/10.3390/ijerph16010058. PMID: 30587821
- [247] Michael YL, Gold R, Perrin NA, Hillier TA. Built environment and lower extremity physical performance: prospective findings from the study of osteoporotic fractures in women. J Aging Health. 2011;23(8):1246-62. https://doi.org/10.1177/0898264311412597. PMID: 21724965
- [248] Nagel CL, Carlson NE, Bosworth M, Michael YL. The relation between neighborhood built environment and walking activity among older adults. Am J Epidemiol. 2008;168(4):461-8. https://doi.org/10.1093/aje/kwn158. PMID: 18567638
- [249] Hinrichs T, Keskinen KE, Pavelka B, Eronen J, Schmidt-Trucksäss A, Rantanen T, et al. Perception of parks and trails as mobility facilitators and transportation walking in older adults: a study using digital geographical maps. Aging Clin Exp Res. 2019;31(5):673-83. https://doi.org/10.1007/s40520-018-01115-0. PMID: 30666515
- [250] Van Cauwenberg J, Clarys P, De Bourdeaudhuij I, Van Holle V, Verté D, De Witte N, et al. Older adults' transportation walking: a cross-sectional study on the cumulative influence of physical environmental factors. Int J Health Geogr. 2013;12:37. https://doi.org/10.1186/1476-072X-12-37. PMID: 23945285
- [251] Giehl MWC, Hallal PC, Weber Corseuil C, Schneider IJ, d'Orsi E. Built Environment and Walking Behavior Among Brazilian Older Adults: A

Population-Based Study. J Phys Act Health. 2016;13(6):617-24. https://doi.org/10.1123/jpah.2015-0355. PMID: 26693941

- [252] Inoue S, Ohya Y, Odagiri Y, Takamiya T, Kamada M, Okada S, et al. Perceived neighborhood environment and walking for specific purposes among elderly Japanese. J Epidemiol. 2011;21(6):481-90. https://doi.org/10.2188/jea.je20110044. PMID: 22001543
- [253] Perchoux C, Brondeel R, Wasfi R, Klein O, Caruso G, Vallée J, et al. Walking, trip purpose, and exposure to multiple environments: A case study of older adults in Luxembourg. J Transp Heal. 2019;13:170-84. https://doi.org/10.1016/j.jth.2019.04.002.
- [254] Rantakokko M, Iwarsson S, Portegijs E, Viljanen A, Rantanen T. Associations between environmental characteristics and life-space mobility in community-dwelling older people. J Aging Health. 2015;27(4):606-21. https://doi.org/10.1177/0898264314555328. PMID: 25326130.
- [255] Berke EM, Koepsell TD, Moudon AV, Hoskins RE, Larson EB. Association of the built environment with physical activity and obesity in older persons. Am J Public Health. 2007;97(3):486-92. https://doi.org/10.2105/AJPH.2006.085837. PMID: 17267713
- [256] Gómez LF, Parra DC, Buchner D, Brownson RC, Sarmiento OL, Pinzón JD, et al. Built Environment Attributes and Walking Patterns Among the Elderly Population in Bogotá. Am J Prev Med. 2010;38(6):592-9. https://doi.org/10.1016/j.amepre.2010.02.005. PMID: 20494235
- [257] Towne SD Jr, Won J, Lee S, Ory MG, Forjuoh SN, Wang S, et al. Using Walk Score[™] and Neighborhood Perceptions to Assess Walking Among Middle-Aged and Older Adults. J Community Health. 2016;41(5):977-88. https://doi.org/10.1007/s10900-016-0180-z. PMID: 26994989
- [258] Herbolsheimer F, Mahmood A, Michael YL, Chaudhury H. Everyday Walking Among Older Adults and the Neighborhood Built Environment: A Comparison Between Two Cities in North America. Front Public Health. 2020;8:564533. https://doi.org/10.3389/fpubh.2020.564533. PMID: 33425829
- [259] Cerin E, Barnett A, Zhang CJP, Lai PC, Sit CHP, Lee RSY. How urban densification shapes walking behaviours in older community dwellers: a cross-sectional analysis of potential pathways of influence. Int J Health Geogr. 2020;19(1):14. https://doi.org/10.1186/s12942-020-00210-8. PMID: 32299439
- [260] Mifsud D, Attard M, Ison S. To drive or to use the bus? An exploratory study of older people in Malta. J Transp Geogr. 2017;64:23-32. https://doi.org/10.1016/j.jtrangeo.2017.08.002.
- [261] Liao Y, Huang PH, Hsiang CY, Huang JH, Hsueh MC, Park JH. Associations of Older Taiwanese Adults' Personal Attributes and Perceptions of the Neighborhood Environment Concerning Walking for Recreation and Transportation. Int J Environ Res Public Health. 2017;14(12):1594. https://doi.org/10.3390/ijerph14121594. PMID: 29258241
- [262] Etman A, Kamphuis CB, Prins RG, Burdorf A, Pierik FH, van Lenthe FJ. Characteristics of residential areas and transportational walking among frail and non-frail Dutch elderly: does the size of the area matter? Int J Health Geogr. 2014;13:7. https://doi.org/10.1186/1476-072X-13-7. PMID: 24588848
- [263] Corseuil Giehl MW, Hallal PC, Brownson RC, d'Orsi E. Exploring Associations Between Perceived Measures of the Environment and Walking Among Brazilian Older Adults. J Aging Health. 2017;29(1):45-67. https://doi.org/10.1177/0898264315624904. PMID: 26754197
- [264] Van Cauwenberg J, De Bourdeaudhuij I, Clarys P, Nasar J, Salmon J, Goubert L, et al. Street characteristics preferred for transportation walking among older adults: a choice-based conjoint analysis with manipulated photographs. Int J Behav Nutr Phys Act. 2016;13:6.

https://doi.org/10.1186/s12966-016-0331-8. PMID: 26775290

- [265] Van Cauwenberg J, De Bourdeaudhuij I, Clarys P, De Geus B, Deforche B. Older adults' environmental preferences for transportation cycling. J Transp Heal. 2019;13:185-99. https://doi.org/10.1016/j.jth.2019.03.014.
- [266] Todd M, Adams MA, Kurka J, Conway TL, Cain KL, Buman MP, et al. GISmeasured walkability, transit, and recreation environments in relation to older Adults' physical activity: A latent profile analysis. Prev Med. 2016;93:57-63. https://doi.org/10.1016/j.ypmed.2016.09.019. PMID: 27663428
- [267] Clarke P, Hirsch JA, Melendez R, Winters M, Sims Gould J, Ashe M, et al. Snow and Rain Modify Neighbourhood Walkability for Older Adults. Can J Aging. 2017;36(2):159-69. https://doi.org/10.1017/S071498081700006X. PMID: 28390449
- [268] Marquet O, Miralles-Guasch C. Neighbourhood vitality and physical activity among the elderly: The role of walkable environments on active ageing in Barcelona, Spain. Soc Sci Med. 2015;135:24-30. https://doi.org/10.1016/j.socscimed.2015.04.016. PMID: 25939073
- [269] Portegijs E, Rantakokko M, Viljanen A, Rantanen T, Iwarsson S. Perceived and objective entrance-related environmental barriers and daily out-ofhome mobility in community-dwelling older people. Arch Gerontol Geriatr. 2017;69:69-76. https://doi.org/10.1016/j.archger.2016.11.011. PMID: 27889590
- [270] Van Holle V, Van Cauwenberg J, Gheysen F, Van Dyck D, Deforche B, Van de Weghe N, et al. The Association between Belgian Older Adults' Physical Functioning and Physical Activity: What Is the Moderating Role of the Physical Environment? PLoS One. 2016;11(2):e0148398. https://doi.org/10.1371/journal.pone.0148398. PMID: 26872017
- [271] Leung KM, Chung PK. Associations Between Social and Physical Environments and Older Adults' Walking for Transportation and Recreation. J Aging Phys Act. 2020;28(1):24-33. https://doi.org/10.1123/japa.2018-0144. PMID: 31188695
- [272] Van Holle V, Van Cauwenberg J, Van Dyck D, Deforche B, Van de Weghe N, De Bourdeaudhuij I. Relationship between neighborhood walkability and older adults' physical activity: results from the Belgian Environmental Physical Activity Study in Seniors (BEPAS Seniors). Int J Behav Nutr Phys Act. 2014;11:110. https://doi.org/10.1186/s12966-014-0110-3. PMID: 25148845
- [273] Chudyk AM, McKay HA, Winters M, Sims-Gould J, Ashe MC. Neighborhood walkability, physical activity, and walking for transportation: A crosssectional study of older adults living on low income. BMC Geriatr. 2017;17(1):82. https://doi.org/10.1186/s12877-017-0469-5. PMID: 28395672
- [274] De Greef K, Van Dyck D, Deforche B, De Bourdeaudhuij I. Physical environmental correlates of self-reported and objectively assessed physical activity in Belgian type 2 diabetes patients. Health Soc Care Community. 2011;19(2):178-88. https://doi.org/10.1111/j.1365-2524.2010.00958.x. PMID: 20880106
- [275] Clarke P, Gallagher NA. Optimizing mobility in later life: the role of the urban built environment for older adults aging in place. J Urban Health. 2013;90(6):997-1009. https://doi.org/10.1007/s11524-013-9800-4. PMID: 23592019
- [276] White DK, Jette AM, Felson DT, Lavalley MP, Lewis CE, Torner JC, et al. Are features of the neighborhood environment associated with disability in older adults? Disabil Rehabil. 2010;32(8):639-45. https://doi.org/10.3109/09638280903254547. PMID: 20205576
- [277] Yang HY, Sanford JA. Home and Community Environmental Features, Activity Performance, and Community Participation among Older Adults with Functional Limitations. J Aging Res. 2012;2012:625758.

https://doi.org/10.1155/2012/625758. PMID: 22162808

- [278] Michael Y, Beard T, Choi D, Farquhar S, Carlson N. Measuring the influence of built neighborhood environments on walking in older adults. J Aging Phys Act. 2006;14(3):302-12.
 - https://doi.org/10.1123/japa.14.3.302. PMID: 17090807
- [279] Nathan A, Pereira G, Foster S, Hooper P, Saarloos D, Giles-Corti B. Access to commercial destinations within the neighbourhood and walking among Australian older adults. Int J Behav Nutr Phys Act. 2012;9:133. https://doi.org/10.1186/1479-5868-9-133. PMID: 23164357
- [280] Shigematsu R, Sallis JF, Conway TL, Saelens BE, Frank LD, Cain KL, et al. Age differences in the relation of perceived neighborhood environment to walking. Med Sci Sports Exerc. 2009;41(2):314-21. https://doi.org/10.1249/MSS.0b013e318185496c. PMID: 19127195
- [281] Tsunoda K, Tsuji T, Kitano N, Mitsuishi Y, Yoon JY, Yoon J, et al. Associations of physical activity with neighborhood environments and transportation modes in older Japanese adults. Prev Med. 2012;55(2):113-8. https://doi.org/10.1016/j.ypmed.2012.05.013. PMID: 22634110
- [282] Portegijs E, Timmermans EJ, Castell MV, Dennison EM, Herbolsheimer F, Limongi F, et al. Neighborhood Resources Associated With Active Travel in Older Adults-A Cohort Study in Six European Countries. J Aging Phys Act. 2020:1-14. https://doi.org/10.1123/japa.2019-0267. Epub ahead of print. PMID: 32580163.
- [283] Salvador EP, Reis RS, Florindo AA. Practice of walking and its association with perceived environment among elderly Brazilians living in a region of low socioeconomic level. Int J Behav Nutr Phys Act. 2010;7:67. https://doi.org/10.1186/1479-5868-7-67. PMID: 20846455
- [284] Procter-Gray E, Leveille SG, Hannan MT, Cheng J, Kane K, Li W. Variations in Community Prevalence and Determinants of Recreational and Utilitarian Walking in Older Age. J Aging Res. 2015;2015:382703. https://doi.org/10.1155/2015/382703. PMID: 26339507
- [285] Boakye-Dankwa E, Nathan A, Barnett A, Busija L, Lee RSY, Pachana N, et al. Walking behaviour and patterns of perceived access to neighbourhood destinations in older adults from a low-density (Brisbane, Australia) and an ultra-dense city (Hong Kong, China). Cities. 2019;84:23-33. https://doi.org/10.1016/j.cities.2018.07.002.
- [286] Boakye-Dankwa E, Barnett A, Pachana NA, Turrell G, Cerin E. Associations Between Latent Classes of Perceived Neighborhood Destination Accessibility and Walking Behaviors in Older Adults of a Low-Density and a High-Density City. J Aging Phys Act. 2019;27(4):553-64. https://doi.org/10.1123/japa.2018-0297. PMID: 30676201
- [287] Borst HC, de Vries SI, Graham JMA, van Dongen JEF, Bakker I, Miedema HME. Influence of environmental street characteristics on walking route choice of elderly people. J Environ Psychol. 2009;29(4):477-84. https://doi.org/10.1016/j.jenvp.2009.08.002.
- [288] Rosso AL, Tabb LP, Grubesic TH, Taylor JA, Michael YL. Neighborhood social capital and achieved mobility of older adults. J Aging Health. 2014;26(8):1301-19. https://doi.org/10.1177/0898264314523447. PMID: 25502243
- [289] Patterson PK, Chapman NJ. Urban form and older residents' service use, walking, driving, quality of life, and neighborhood satisfaction. Am J Health Promot. 2004;19(1):45-52. https://doi.org/10.4278/0890-1171-19.1.45. PMID: 15460101.
- [290] Van Cauwenberg J, Clarys P, De Bourdeaudhuij I, Ghekiere A, de Geus B, Owen N, et al. Environmental influences on older adults' transportation cycling experiences: A study using bike-along interviews. Landsc Urban Plan. 2018;169:37-46. https://doi.org/10.1016/j.landurbplan.2017.08.003.
- [291] Marquet O, Hipp JA, Miralles-Guasch C. Neighborhood walkability and

active ageing: A difference in differences assessment of active transportation over ten years. J Transp Heal. 2017;7:190-201. https://doi.org/10.1016/j.jth.2017.09.006.

- [292] Sabback F, Mann WC. The Influence of Climate and Road Conditions on Driving Patterns in the Elderly Population. Phys Occup Ther Geriatr. 2005;23(2-3):64-74. https://doi.org/10.1080/J148v23n02 04.
- [293] Keskinen KE, Rantakokko M, Suomi K, Rantanen T, Portegijs E. Hilliness and the Development of Walking Difficulties Among Community-Dwelling Older People. J Aging Health. 2020;32(5-6):278-284. https://doi.org/10.1177/0898264318820448. PMID: 30587067
- [294] Keysor JJ, Zhang B, Tomer JC, Lewis CE, Tolstykh I, Felson DT. Community mobility barriers predict the development of 30-month disability: The MOST study. Arthritis Rheum. 2010;62 (SUPPL. 10):686.
- [295] Clarke P, George LK. The role of the built environment in the disablement process. Am J Public Health. 2005;95(11):1933-9. https://doi.org/10.2105/AJPH.2004.054494. PMID: 16195520
- [296] Clarke PJ. The role of the built environment and assistive devices for outdoor mobility in later life. J Gerontol B Psychol Sci Soc Sci. 2014;69 Suppl 1(Suppl 1):S8-15. https://doi.org/10.1093/geronb/gbu121. PMID: 25342826
- [297] Eronen J, von Bonsdorff M, Rantakokko M, Rantanen T. Environmental facilitators for outdoor walking and development of walking difficulty in community-dwelling older adults. Eur J Ageing. 2013;11(1):67-75. https://doi.org/10.1007/s10433-013-0283-7. PMID: 28804315
- [298] Hand CL, Howrey BT. Associations Among Neighborhood Characteristics, Mobility Limitation, and Social Participation in Late Life. J Gerontol B Psychol Sci Soc Sci. 2019;74(3):546-55. https://doi.org/10.1093/geronb/gbw215. PMID: 28158866
- [299] Gitelman V, Pesahov F, Carmel R, Chen S. The Use of Mobility Scooters by the Elderly - A Feasibility Study in Israel. Transp Res Procedia. 2016;14:2324-33. https://doi.org/10.1016/j.trpro.2016.05.249.
- [300] Harris F, Yang H, Sanford J. Physical Environmental Barriers to Community Mobility in Older and Younger Wheelchair Users. Top Geriatr Rehabil . 2015;31(1):42-51. https://doi.org/10.1097/TGR.00000000000043.
- [301] Mortenson WB, Battalova A, Hurd L, Hobson S, Emery R, Kirby RL. Correlates of self-reported Wheelchair Skills Test Questionnaire scores of new users of mobility scooters: a cross-sectional study. Disabil Rehabil Assist Technol. 2021:1-8. https://doi.org/10.1080/17483107.2021.1874065. Epub ahead of print. PMID: 33503387
- [302] Slaug B, Schilling O, Iwarsson S, Carlsson G. Defining profiles of functional limitations in groups of older persons: how and why? J Aging Health. 2011;23(3):578-604. https://doi.org/10.1177/0898264310390681. PMID: 21169222
- [303] Hoenig H, Ganesh SP, Taylor DH Jr, Pieper C, Guralnik J, Fried LP. Lower extremity physical performance and use of compensatory strategies for mobility. J Am Geriatr Soc. 2006;54(2):262-9. https://doi.org/10.1111/j.1532-5415.2005.00588.x. PMID: 16460377
- [304] Kylberg M, Löfqvist C, Horstmann V, Iwarsson S. The use of assistive devices and change in use during the ageing process among very old Swedish people. Disabil Rehabil Assist Technol. 2013;8(1):58-66. https://doi.org/10.3109/17483107.2012.699585. PMID: 22762149
- [305] Seplaki CL, Agree EM, Weiss CO, Szanton SL, Bandeen-Roche K, Fried LP. Assistive devices in context: cross-sectional association between challenges in the home environment and use of assistive devices for mobility. Gerontologist. 2014;54(4):651-60.

https://doi.org/10.1093/geront/gnt030. PMID: 23616569

- [306] Ahrentzen S. On their own turf: community design and active aging in a naturally occurring retirement community. J Hous Elderly. 2010;24(3-4):267-290. https://doi.org/10.1080/02763893.2010.522453.
- [307] Gong Y, Gallacher J, Palmer S, Fone D. Neighbourhood green space, physical function and participation in physical activities among elderly men: the Caerphilly Prospective study. Int J Behav Nutr Phys Act. 2014;11(1):40. https://doi.org/10.1186/1479-5868-11-40. PMID: 24646136
- [308] Dalton AM, Wareham N, Griffin S, Jones AP. Neighbourhood greenspace is associated with a slower decline in physical activity in older adults: A prospective cohort study. SSM Popul Health. 2016;2:683-91. https://doi.org/10.1016/j.ssmph.2016.09.006. PMID: 28018960
- [309] Lang IA, Llewellyn DJ, Alexander K, Melzer D. Obesity, physical function, and mortality in older adults. J Am Geriatr Soc. 2008;56(8):1474-8. https://doi.org/10.1111/j.1532-5415.2008.01813.x. PMID: 18662211
- [310] Van Cauwenberg J, De Donder L, Clarys P, De Bourdeaudhuij I, Buffel T, De Witte N, et al. Relationships between the perceived neighborhood social environment and walking for transportation among older adults. Soc Sci Med. 2014;104:23-30.

https://doi.org/10.1016/j.socscimed.2013.12.016. PMID: 24581058

- [311] Mendes de Leon CF, Cagney KA, Bienias JL, Barnes LL, Skarupski KA, Scherr PA, et al. Neighborhood social cohesion and disorder in relation to walking in community-dwelling older adults: a multilevel analysis. J Aging Health. 2009;21(1):155-71.
- https://doi.org/10.1177/0898264308328650. PMID: 19144973
- [312] Rosso AL, Taylor JA, Tabb LP, Michael YL. Mobility, disability, and social engagement in older adults. J Aging Health. 2013;25(4):617-37. https://doi.org/10.1177/0898264313482489. PMID: 23548944
- [313] Michael Y, Beard T, Choi D, Farquhar S, Carlson N. Measuring the influence of built neighborhood environments on walking in older adults. J Aging Phys Act. 2006;14(3):302-12.
 - https://doi.org/10.1123/japa.14.3.302. PMID: 17090807
- [314] Vásquez E, Murillo R, Echeverria S. Neighborhood Social Cohesion and Walking Limitations in Ethnically Diverse Older Latinos in the United States. Ethn Dis. 2019;29(2):247-52. https://doi.org/10.18865/ed.29.2.247. PMID: 31057309
- [315] Shumway-Cook A, Ciol MA, Yorkston KM, Hoffman JM, Chan L. Mobility limitations in the Medicare population: prevalence and sociodemographic and clinical correlates. J Am Geriatr Soc. 2005;53(7):1217-21. https://doi.org/10.1111/j.1532-5415.2005.53372.x. PMID: 16108942
- [316] Brookfield K, Ward Thompson C, Scott I. The Uncommon Impact of Common Environmental Details on Walking in Older Adults. Int J Environ Res Public Health. 2017;14(2):190. https://doi.org/10.3390/ijerph14020190. PMID: 28216597
- [317] Gallagher NA, Gretebeck KA, Robinson JC, Torres ER, Murphy SL, Martyn KK. Neighborhood factors relevant for walking in older, urban, African American adults. J Aging Phys Act. 2010;18(1):99-115. https://doi.org/10.1123/japa.18.1.99. PMID: 20181997
- [318] Greysen SR, Hoi-Cheung D, Garcia V, Kessell E, Sarkar U, Goldman L, et al. "Missing pieces"--functional, social, and environmental barriers to recovery for vulnerable older adults transitioning from hospital to home. J Am Geriatr Soc. 2014;62(8):1556-61. https://doi.org/10.1111/jgs.12928. PMID: 24934494
- [319] Bödeker M. Walking and Walkability in Pre-Set and Self-Defined Neighborhoods: A Mental Mapping Study in Older Adults. Int J Environ Res Public Health. 2018;15(7):1363. https://doi.org/10.3390/ijerph15071363.

PMID: 29958469

- [320] Mitra R, Siva H, Kehler M. Walk-friendly suburbs for older adults? Exploring the enablers and barriers to walking in a large suburban municipality in Canada. J Aging Stud. 2015;35:10-9. https://doi.org/10.1016/j.jaging.2015.07.002. PMID: 26568210
- [321] Ramachandran M, Dsouza SA. Older Adults' Experiences of Community Mobility in an Indian Metropolis: A Qualitative Study. Phys Occup Ther Geriatr. 2018;36(2-3):315-29.

https://doi.org/10.1080/02703181.2018.1508170.

- [322] Rosenberg DE, Huang DL, Simonovich SD, Belza B. Outdoor built environment barriers and facilitators to activity among midlife and older adults with mobility disabilities. Gerontologist. 2013;53(2):268-79. https://doi.org/10.1093/geront/gns119. PMID: 23010096
- [323] Newton R, Ormerod M, Burton E, Mitchell L, Ward-Thompson C. Increasing Independence for Older People through Good Street Design. J Integr Care. 2010;18(3):24-9. https://doi.org/10.5042/jic.2010.0246.
- [324] Risser R, Haindl G, Ståhl A. Barriers to senior citizens' outdoor mobility in Europe. Eur J Ageing. 2010;7(2):69-80. https://doi.org/10.1007/s10433-010-0146-4. PMID: 28798619
- [325] Alidoust S, Bosman C, Holden G. Talking while walking: an investigation of perceived neighbourhood walkability and its implications for the social life of older people. J Hous Built Environ. 2018;33(1):133-50. https://doi.org/10.1007/s10901-017-9558-1.
- [326] Van Cauwenberg J, Clarys P, Bourdeaudhuij ID, Ghekiere A, de Geus B, Owen N, et al. Environmental influences on older adults' transportation cycling experiences: A study using bike-along interviews. Landsc Urban Plan. 2018;169:37-46. https://doi.org/10.1016/j.landurbplan.2017.08.003.
- [327] Brown CJ, Bradberry C, Howze SG, Hickman L, Ray H, Peel C. Defining community ambulation from the perspective of the older adult. J Geriatr Phys Ther. 2010;33(2):56-63. PMID: 20718384
- [328] Croxall L, Gifford W, Jutai J. First Nations Elders Who Use Wheeled Mobility: An Exploration of Culture and Health. Can J Aging. 2020;39(2):318-27. https://doi.org/10.1017/S0714980819000655.
- [329] Franke T, Sim-Gould J, Chaudhury H, Winters M, McKay H. 'It makes your life worthwhile. It gives you a purpose in living': mobility experiences among active older adults with low income. Ageing Soc. 2019;39(8):1639-66. https://doi.org/10.1017/S0144686X18000181.
- [330] Gallagher BA, Hart PM, O'Brien C, Stevenson MR, Jackson AJ. Mobility and access to transport issues as experienced by people with vision impairment living in urban and rural Ireland. Disabil Rehabil. 2011;33(12):979-88. https://doi.org/10.3109/09638288.2010.516786. PMID: 20846055.
- [331] Ottoni CA, Sims-Gould J, Winters M, Heijnen M, McKay HA. "Benches become like porches": Built and social environment influences on older adults' experiences of mobility and well-being. Soc Sci Med. 2016;169:33-41. https://doi.org/10.1016/j.socscimed.2016.08.044. PMID: 27669123.
- [332] Van Cauwenberg J, Van Holle V, Simons D, Deridder R, Clarys P, Goubert L, et al. Environmental factors influencing older adults' walking for transportation: a study using walk-along interviews. Int J Behav Nutr Phys Act. 2012;9:85. https://doi.org/10.1186/1479-5868-9-85. PMID: 22780948
- [333] Greysen SR, Hoi-Cheung D, Garcia V, Kessell E, Sarkar U, Goldman L, et al. "Missing pieces"--functional, social, and environmental barriers to recovery for vulnerable older adults transitioning from hospital to home. J Am Geriatr Soc. 2014;62(8):1556-61. https://doi.org/10.1111/jgs.12928. PMID: 24934494
- [334] Cassarino M, Bantry-White E, Setti A. Cognitive and Sensory Dimensions

of Older People's Preferences of Outdoor Spaces for Walking: A Survey Study in Ireland. Int J Environ Res Public Health. 2019;16(8):1340. https://doi.org/10.3390/ijerph16081340. PMID: 31013969

- [335] Tong CE, McKay HA, Martin-Matthews A, Mahmood A, Sims-Gould J. "These Few Blocks, These Are My Village": The Physical Activity and Mobility of Foreign-Born Older Adults. Gerontologist. 2020;60(4):638-650. https://doi.org/10.1093/geront/gnz005. PMID: 30794287
- [336] Grant TL, Edwards N, Sveistrup H, Andrew C, Egan M. Neighborhood walkability: older people's perspectives from four neighborhoods in Ottawa, Canada. J Aging Phys Act. 2010;18(3):293-312. https://doi.org/10.1123/japa.18.3.293. PMID: 20651416.
- [337] Jang S, Mortenson W Ben, Hurd L, Kirby RL. Caught in-between: tensions experienced by community mobility scooter users. Disabil Soc. 2019;35(10):1577-95. https://doi.org/101080/0968759920191696749
- [338] Lord S, Luxembourg L. The Mobility of Elderly Residents Living in Suburban Territories. J Hous Elderly. 2008;20(4):103-21. https://doi.org/10.1300/J081v20n04 07.
- [339] Thies SB, Bates A, Costamagna E, Kenney L, Granat M, Webb J, et al. Are older people putting themselves at risk when using their walking frames? BMC Geriatr. 2020;20(1):90. https://doi.org/10.1186/s12877-020-1450-2. PMID: 32131743
- [340] Spitzer S, Weber D. Reporting biases in self-assessed physical and cognitive health status of older Europeans. PLoS One. 2019;14(10):e0223526. https://doi.org/10.1371/journal.pone.0223526. PMID: 31593576
- [341] Hosseinpoor AR, Williams JS, Jann B, Kowal P, Officer A, Posarac A, et al. Social determinants of sex differences in disability among older adults: a multi-country decomposition analysis using the World Health Survey. Int J Equity Health. 2012;11:52. https://doi.org/10.1186/1475-9276-11-52. PMID: 22958712
- [342] Courtenay WH. Constructions of masculinity and their influence on men's well-being: a theory of gender and health. Soc Sci Med. 2000;50(10):1385-401. https://doi.org/10.1016/s0277-9536(99)00390-1. PMID: 10741575
- [343] Canadian Institutes of Health Research. What is gender? What is sex? [cited 2021 Aug 27]. In: CIHR [Internet]. 2020. Available from: https://cihr-irsc.gc.ca/e/48642.html
- [344] Kelley-Moore JA, Ferraro KF. The black/white disability gap: persistent inequality in later life? J Gerontol B Psychol Sci Soc Sci. 2004;59(1):S34-43. https://doi.org/10.1093/geronb/59.1.s34. PMID: 14722342
- [345] Babulal GM, Williams MM, Stout SH, Roe CM. Driving Outcomes among Older Adults: A Systematic Review on Racial and Ethnic Differences over 20 Years. Geriatrics (Basel). 2018;3(1):12.
 - https://doi.org/10.3390/geriatrics3010012. PMID: 29657944
- [346] Bhopal RJ. Migration, Ethnicity, Race, and Health in Multicultural Societies. 2nd ed. UK: Oxford University Press; 2014.
- [347] Franks M, Thomas PA, Rector JL, Friedman EM. His and Hers: Health Benefits of Marriage in the Context of Multimorbidity. Innov Aging. 2018;2(Suppl 1):583. https://doi.org/10.1093/geroni/igy023.2161. PMCID: PMC6228886
- [348] Statistics Canada. Living alone in Canada [cited 2021 Aug 27]. In: Insights on Canadian Society [Internet]. 2019. Available from: https://www150.statcan.gc.ca/n1/pub/75-006-x/2019001/article/00003-eng.htm
- [349] Adler NE, Boyce T, Chesney MA, Cohen S, Folkman S, Kahn RL, et al. Socioeconomic status and health. The challenge of the gradient. Am

Psychol. 1994;49(1):15-24. https://doi.org/10.1037//0003-066x.49.1.15. PMID: 8122813.

- [350] Haas S, Rohlfsen L. Life course determinants of racial and ethnic disparities in functional health trajectories. Soc Sci Med. 2010;70(2):240-50. https://doi.org/10.1016/j.socscimed.2009.10.003. PMID: 19857917
- [351] Luo Y, Waite LJ. The impact of childhood and adult SES on physical, mental, and cognitive well-being in later life. J Gerontol B Psychol Sci Soc Sci. 2005;60(2):S93-S101. https://doi.org/10.1093/geronb/60.2.s93. PMID: 15746030
- [352] Everson SA, Maty SC, Lynch JW, Kaplan GA. Epidemiologic evidence for the relation between socioeconomic status and depression, obesity, and diabetes. J Psychosom Res. 2002;53(4):891-5. https://doi.org/10.1016/s0022-3999(02)00303-3. PMID: 12377299.
- [353] Bentley R, Blakely T, Kavanagh A, Aitken Z, King T, McElwee P, et al. A Longitudinal Study Examining Changes in Street Connectivity, Land Use, and Density of Dwellings and Walking for Transport in Brisbane, Australia. Environ Health Perspect. 2018;126(5):057003. https://doi.org/10.1289/EHP2080. PMID: 29729661
- [354] Satariano WA, Ivey SL, Kurtovich E, Kealey M, Hubbard AE, Bayles CM, et al. Lower-body function, neighborhoods, and walking in an older population. Am J Prev Med. 2010;38(4):419-28. https://doi.org/10.1016/j.amepre.2009.12.031. PMID: 20307811
- [355] Kendig H, Elias AM, Matwijiw P, Anstey K. Developing age-friendly cities and communities in Australia. J Aging Health. 2014;26(8):1390-414. https://doi.org/10.1177/0898264314532687. PMID: 25502246.
- [356] Olsson A, Skovdahl K, Engström M. Strategies used by people with Alzheimer's disease for outdoor wayfinding: A repeated observational study. Dementia (London). 2021;20(2):505-517. https://doi.org/10.1177/1471301219896453. PMID: 31874572
- [357] Fritz S, Lusardi M. White paper: "walking speed: the sixth vital sign". J Geriatr Phys Ther. 2009;32(2):46-9. PMID: 20039582.
- [358] Moran M, Van Cauwenberg J, Hercky-Linnewiel R, Cerin E, Deforche B, Plaut P. Understanding the relationships between the physical environment and physical activity in older adults: a systematic review of qualitative studies. Int J Behav Nutr Phys Act. 2014;11:79. https://doi.org/10.1186/1479-5868-11-79. PMID: 25034246
- [359] Yen IH, Fandel Flood J, Thompson H, Anderson LA, Wong G. How design of places promotes or inhibits mobility of older adults: realist synthesis of 20 years of research. J Aging Health. 2014;26(8):1340-72. https://doi.org/10.1177/0898264314527610. PMID: 24788714
- [360] Davis MG, Fox KR, Hillsdon M, Coulson JC, Sharp DJ, Stathi A, et al. Getting out and about in older adults: the nature of daily trips and their association with objectively assessed physical activity. Int J Behav Nutr Phys Act. 2011;8:116. https://doi.org/10.1186/1479-5868-8-116. PMID: 22018626
- [361] Johnson J, Rodriguez MA, Al Snih S. Life-Space Mobility in the Elderly: Current Perspectives. Clin Interv Aging. 2020;15:1665-1674. https://doi.org/10.2147/CIA.S196944. PMID: 32982200
- [362] van den Berg P, Kemperman A, de Kleijn B, Borgers A. Ageing and loneliness: The role of mobility and the built environment. Travel Behav Soc. 2016;5:48-55. https://doi.org/10.1016/j.tbs.2015.03.001.
- [363] Baldwin JN, McKay MJ, Hiller CE, Moloney N, Nightingale EJ, Burns J. Relationship between physical performance and self-reported function in healthy individuals across the lifespan. Musculoskelet Sci Pract. 2017;30:10-17. https://doi.org/10.1016/j.msksp.2017.05.001. PMID: 28494261

[364] Ju H. The relationship between physical activity, meaning in life, and subjective vitality in community-dwelling older adults. Arch Gerontol Geriatr. 2017;73:120-124. https://doi.org/10.1016/j.archger.2017.08.001. PMID: 28802214.

Table 1: Keywords adapted for each database.

Determinants	Mobility	Older adults
Financial	mobility limitations, OR	Elderly OR
Income OR socioeconomic status OR	life space measures OR	geriatric OR aging
socioeconomic factors OR education OR	mobility OR walking OR	OR older people*
occupation OR employment status	ability level OR physical	OR older person*
Environmental	mobility OR movement OR	OR retiree OR aged
Physical characteristic* OR climate* OR	gait OR Time up and Go OR	OR gerontology OR
natural OR landscape OR settings OR	physical functioning OR,	older adult*
surrounding* OR geographic OR terrain OR	six minutes' walk test OR	
architectural barriers OR Social polic* OR	Berg Scale OR Short	
Accessibility issue* OR attitudinal barriers	physical performance	
OR environment design, built environment OR	battery	
social environment OR neighbo*rhoods OR		
residence characteristics OR parks OR	OR	
environment OR open space OR Safety OR		
aesthetics OR greenness OR walkability	Transportation OR travel	
Personal	OR driving OR safety OR	

crashes OR accident OR	
road test	
OR	
Walking aid OR ambulation	
aids OR assistive devices	
OR wheelchair* OR scooter*	
OR cane* OR crutches* OR	
prosthetic devices OR	
orthotic devices OR walker	
	crashes OR accident OR road test OR Walking aid OR ambulation aids OR assistive devices OR wheelchair* OR scooter* OR cane* OR crutches* OR prosthetic devices OR orthotic devices OR walker

Table 2: Factors identified for each determinant and their descriptions

Factors	n (%) of articles that studies each factor	Factor Description
	Envi	ronmental factors (n=743)
Built environments are	artificial	structures, features, facilities, and layouts of a
community where people	live and wo	ork
Street characteristics	77(10.4)	How streets look, how well the streets are connected
		to one another and where the streetlights are
		located
Residential	99(13.3)	The number of people, houses, public parks in an
characteristics		area, and the location of houses.
Land use mix	47(6.3)	How land is used within a community, for example,
		how much land is used for homes, shops, and offices.
Sidewalk	101(13.6)	How the sidewalks look, for example, are there any
characteristics		cracks or bumps; how big the sidewalks are, how
		close the sidewalks are to the road.
Crime-related safety	39(5.2)	How safe the community is based on the number of
		people around and how unfriendly or friendly people
		are.

Traffic-related safety	59(7.9)	How safe it is to cross the roads in the community, based on crosswalks, stop signs, stoplights and the
		timing of stoplights, and the speed limit for cars.
Access to recreational	36(4.8)	How many community fitness or recreation centers are
facilities		close by, how much does it cost to attend, and how
		easy it is to get there, such as how far it is to
		walk, take public transit, or drive.
Access to destination	71(9.6)	How many shops, services, senior centers that are
		close by, how much does it cost to attend the senior
		centers, how we can get there, and how far it is to
		walk, take public transit, or drive.
Access to rest areas	12(1.6)	How many rest areas such as benches or public
		washrooms are there in the community, and how much
		does it cost to use.
Access to public	30(4.0)	How easy it is to take public transit, including how
transit		many routes, how far away from bus stops are, and a
		ticket's cost.
Natural Environment is	defined as	open outdoor spaces that allow the individual to be
surrounded by the eleme	ents of natu	re (trees, plants, grass, mountains, water) and
environmental condition	is (weather	and air quality) (Calogiuri & Chroni, 2014).
Natural scopory	54(73)	Pofors to groop open props, water, trees, flowers
/Aesthetics	54(7.5)	and trails in the community
Woathor	15(20)	Pofore to tomporaturos, soasone (o g summor/winter
weacher	13(2.0)	conditions) and wind
Environmental quality	2(0,3)	Pefers to air quality (air pollution)
The social environments	z(0.3)	relationship and cultural milious within which
defined groups of peopl	e functions	and interactions
Social factors	51 (6 9)	The number of people we know and how we interact
	01(0.3)	with people in the community include but are not
		limited to social contacts, social ties, social
		limited to social contacts, social ties, social interactions, formal community engagement within
		limited to social contacts, social ties, social interactions, formal community engagement within your community.
Social cohesion	17 (2.3)	<pre>limited to social contacts, social ties, social interactions, formal community engagement within your community. How strong relationships are in the community that</pre>
Social cohesion	17(2.3)	<pre>limited to social contacts, social ties, social interactions, formal community engagement within your community. How strong relationships are in the community that makes them provide help and support to each other,</pre>
Social cohesion	17(2.3)	<pre>limited to social contacts, social ties, social interactions, formal community engagement within your community. How strong relationships are in the community that makes them provide help and support to each other, for example, if someone returns a lost item or gives</pre>
Social cohesion	17(2.3)	<pre>limited to social contacts, social ties, social interactions, formal community engagement within your community. How strong relationships are in the community that makes them provide help and support to each other, for example, if someone returns a lost item or gives a stranger direction.</pre>
Social cohesion	8(1.1)	<pre>limited to social contacts, social ties, social interactions, formal community engagement within your community. How strong relationships are in the community that makes them provide help and support to each other, for example, if someone returns a lost item or gives a stranger direction. Shared resources that allow people to act together.</pre>
Social cohesion Social capital Social disorder	17(2.3) 8(1.1) 5(0.7)	<pre>limited to social contacts, social ties, social interactions, formal community engagement within your community. How strong relationships are in the community that makes them provide help and support to each other, for example, if someone returns a lost item or gives a stranger direction. Shared resources that allow people to act together. Can include noise, loud music, and other minor</pre>
Social cohesion Social capital Social disorder	17(2.3) 8(1.1) 5(0.7)	<pre>limited to social contacts, social ties, social interactions, formal community engagement within your community. How strong relationships are in the community that makes them provide help and support to each other, for example, if someone returns a lost item or gives a stranger direction. Shared resources that allow people to act together. Can include noise, loud music, and other minor violations of "social norms" that may encourage</pre>
Social cohesion Social capital Social disorder	17(2.3) 8(1.1) 5(0.7)	<pre>limited to social contacts, social ties, social interactions, formal community engagement within your community. How strong relationships are in the community that makes them provide help and support to each other, for example, if someone returns a lost item or gives a stranger direction. Shared resources that allow people to act together. Can include noise, loud music, and other minor violations of "social norms" that may encourage people to socialize and/or become a nuisance to</pre>
Social cohesion Social capital Social disorder	17(2.3) 8(1.1) 5(0.7)	<pre>limited to social contacts, social ties, social interactions, formal community engagement within your community. How strong relationships are in the community that makes them provide help and support to each other, for example, if someone returns a lost item or gives a stranger direction. Shared resources that allow people to act together. Can include noise, loud music, and other minor violations of "social norms" that may encourage people to socialize and/or become a nuisance to others.</pre>
Social cohesion Social capital Social disorder	17(2.3) 8(1.1) 5(0.7)	<pre>limited to social contacts, social ties, social interactions, formal community engagement within your community. How strong relationships are in the community that makes them provide help and support to each other, for example, if someone returns a lost item or gives a stranger direction. Shared resources that allow people to act together. Can include noise, loud music, and other minor violations of "social norms" that may encourage people to socialize and/or become a nuisance to others. Financial factors</pre>
Social cohesion Social capital Social disorder Financial factors are t	17(2.3) 8(1.1) 5(0.7)	<pre>limited to social contacts, social ties, social interactions, formal community engagement within your community. How strong relationships are in the community that makes them provide help and support to each other, for example, if someone returns a lost item or gives a stranger direction. Shared resources that allow people to act together. Can include noise, loud music, and other minor violations of "social norms" that may encourage people to socialize and/or become a nuisance to others. Financial factors come and often the combination of personal, household</pre>
Social cohesion Social capital Social disorder Financial factors are t and family income (n=73	17(2.3) 8(1.1) 5(0.7)	<pre>limited to social contacts, social ties, social interactions, formal community engagement within your community. How strong relationships are in the community that makes them provide help and support to each other, for example, if someone returns a lost item or gives a stranger direction. Shared resources that allow people to act together. Can include noise, loud music, and other minor violations of "social norms" that may encourage people to socialize and/or become a nuisance to others. Financial factors come and often the combination of personal, household</pre>
Social cohesion Social capital Social disorder Financial factors are t and family income (n=73 Income	17(2.3) 8(1.1) 5(0.7) -ypically in) 73(100)	<pre>limited to social contacts, social ties, social interactions, formal community engagement within your community. How strong relationships are in the community that makes them provide help and support to each other, for example, if someone returns a lost item or gives a stranger direction. Shared resources that allow people to act together. Can include noise, loud music, and other minor violations of "social norms" that may encourage people to socialize and/or become a nuisance to others. Financial factors come and often the combination of personal, household Personal income is defined as the total amount of</pre>
Social cohesion Social capital Social disorder Financial factors are t and family income (n=73 Income	17(2.3) 8(1.1) 5(0.7) ypically in) 73(100)	<pre>limited to social contacts, social ties, social interactions, formal community engagement within your community. How strong relationships are in the community that makes them provide help and support to each other, for example, if someone returns a lost item or gives a stranger direction. Shared resources that allow people to act together. Can include noise, loud music, and other minor violations of "social norms" that may encourage people to socialize and/or become a nuisance to others. Financial factors come and often the combination of personal, household Personal income is defined as the total amount of money a person receives from all sources (e.g., work</pre>
Social cohesion Social capital Social disorder Financial factors are t and family income (n=73 Income	17(2.3) 8(1.1) 5(0.7) ypically in 3) 73(100)	<pre>limited to social contacts, social ties, social interactions, formal community engagement within your community. How strong relationships are in the community that makes them provide help and support to each other, for example, if someone returns a lost item or gives a stranger direction. Shared resources that allow people to act together. Can include noise, loud music, and other minor violations of "social norms" that may encourage people to socialize and/or become a nuisance to others. Financial factors come and often the combination of personal, household Personal income is defined as the total amount of money a person receives from all sources (e.g., work salary, government benefits, investments).</pre>
Social cohesion Social capital Social disorder Financial factors are t and family income (n=73 Income	17(2.3) 8(1.1) 5(0.7) 2. ypically in 3) 73(100)	<pre>limited to social contacts, social ties, social interactions, formal community engagement within your community. How strong relationships are in the community that makes them provide help and support to each other, for example, if someone returns a lost item or gives a stranger direction. Shared resources that allow people to act together. Can include noise, loud music, and other minor violations of "social norms" that may encourage people to socialize and/or become a nuisance to others. Financial factors come and often the combination of personal, household Personal income is defined as the total amount of money a person receives from all sources (e.g., work salary, government benefits, investments). Usuachold income is defined as the total amount of</pre>
Social cohesion Social capital Social disorder Financial factors are t and family income (n=73 Income	17(2.3) 8(1.1) 5(0.7) ypically in 73(100)	<pre>limited to social contacts, social ties, social interactions, formal community engagement within your community. How strong relationships are in the community that makes them provide help and support to each other, for example, if someone returns a lost item or gives a stranger direction. Shared resources that allow people to act together. Can include noise, loud music, and other minor violations of "social norms" that may encourage people to socialize and/or become a nuisance to others. Financial factors come and often the combination of personal, household Personal income is defined as the total amount of money a person receives from all sources (e.g., work salary, government benefits, investments). Household income is defined as the total amount of money all people who are related and unrelated who</pre>
Social cohesion Social capital Social disorder Financial factors are t and family income (n=73 Income	17(2.3) 8(1.1) 5(0.7) ypically in 73(100)	<pre>limited to social contacts, social ties, social interactions, formal community engagement within your community. How strong relationships are in the community that makes them provide help and support to each other, for example, if someone returns a lost item or gives a stranger direction. Shared resources that allow people to act together. Can include noise, loud music, and other minor violations of "social norms" that may encourage people to socialize and/or become a nuisance to others. Financial factors come and often the combination of personal, household Personal income is defined as the total amount of money a person receives from all sources (e.g., work salary, government benefits, investments). Household income is defined as the total amount of money all people who are related and unrelated, who are 16 years or older living in the same house</pre>
Social cohesion Social capital Social disorder Financial factors are t and family income (n=73 Income	17(2.3) 8(1.1) 5(0.7) 73(100)	<pre>limited to social contacts, social ties, social interactions, formal community engagement within your community. How strong relationships are in the community that makes them provide help and support to each other, for example, if someone returns a lost item or gives a stranger direction. Shared resources that allow people to act together. Can include noise, loud music, and other minor violations of "social norms" that may encourage people to socialize and/or become a nuisance to others. Financial factors come and often the combination of personal, household Personal income is defined as the total amount of money a person receives from all sources (e.g., work salary, government benefits, investments). Household income is defined as the total amount of money all people who are related and unrelated, who are 16 years or older, living in the same house receive</pre>
Social cohesion Social capital Social disorder Financial factors are t and family income (n=73) Income	17(2.3) 8(1.1) 5(0.7) 73(100)	<pre>limited to social contacts, social ties, social interactions, formal community engagement within your community. How strong relationships are in the community that makes them provide help and support to each other, for example, if someone returns a lost item or gives a stranger direction. Shared resources that allow people to act together. Can include noise, loud music, and other minor violations of "social norms" that may encourage people to socialize and/or become a nuisance to others. Financial factors come and often the combination of personal, household Personal income is defined as the total amount of money a person receives from all sources (e.g., work salary, government benefits, investments). Household income is defined as the total amount of money all people who are related and unrelated, who are 16 years or older, living in the same house receive. Family income is defined as the total amount of</pre>
Social cohesion Social capital Social disorder Financial factors are t and family income (n=73) Income	17(2.3) 8(1.1) 5(0.7) 73(100)	<pre>limited to social contacts, social ties, social interactions, formal community engagement within your community. How strong relationships are in the community that makes them provide help and support to each other, for example, if someone returns a lost item or gives a stranger direction. Shared resources that allow people to act together. Can include noise, loud music, and other minor violations of "social norms" that may encourage people to socialize and/or become a nuisance to others. Financial factors come and often the combination of personal, household Personal income is defined as the total amount of money a person receives from all sources (e.g., work salary, government benefits, investments). Household income is defined as the total amount of money all people who are related and unrelated, who are 16 years or older, living in the same house receive. Family income is defined as the total amount of money all people who are related by birth marriage.</pre>

		or adoption, who are 16 years or older, living in the same house receive.
		Personal factors
Personal determinants w	vere defined	as the particular background of an individual's life
and living and comprise	e features o	f the individual that are not part of health and
social conditions (n=53	8)	
Age	156(29.0)	The number of years a person has lived
Sex	137(25.4)	The sex (male or female) at birth and on the birth
		certificate.
Ethnicity	11(2.0)	How a group of people identify based on their family
		origins and their culture and cultural traditions
		such as Arab, French, Caribbean, African
Race	44(8.2)	How a group of people identify based on their skin
		color, facial shape, and hair (e.g.,
		White/Caucasian, Brown, Black).
Educational level	112(20.8)	The number of years of schooling one has had
Occupation	21(3.9)	This can be a job, business, profession, or
		employment that an individual manages to earn money
Marital status	48(8.9)	A person's state of being single, married,
		separated, divorced, or widowed.
Culture	2 (-)	The way of life of groups of people including their
		customs, activities, beliefs, and values
Gender	1 (-)	how society thinks men and women should act and what
		they should do.
Nationality/birthplace	3 (-)	
Religion	4 (-)	

n - number of times it was reported in the included articles Note: Some studies did not state specifically which environmental factors that they study, rather they asked question about environmental facilitators and barriers. The lay descriptions were derived from combinations of descriptions from the included studies.

non-specific environmental factors (n=20) included perceived or general environmental facilitators (n=3) or barriers (n=5), social environment facilitators/barriers (n=3), physical environment facilitators/barriers (n=8), and ageism (social attitude) (n=1).

Table 3 Characteristics of the included articles (n = 299)*

Characteristics	Environmental	Personal	>more than
	factors	factors	factors
	(n = 98)	(n = 80)	(n = 121)
	n (%)	n (%)	n (%)
Sex			
• >Female	74(75.5)	65(81.3)	95(78.5)
• <female< td=""><td>18(18.4)</td><td>10(12.5)</td><td>22(18.2)</td></female<>	18(18.4)	10(12.5)	22(18.2)
• Female = Male	2(2.0)	1(1.2)	-
 Not reported 	4(4.1)	4(5.0)	4(3.3)
Geographical area: Continent			
• Africa	-	1(1.2)	1(0.8)
• Asia	9(9.2)	13(16.2)	20(16.5)
• Europe	32 (32.7)	24(30.0)	33 (27.3)
• North America	46(46.9)	29(36.3)	56(46.3)
• Oceania	$\mathcal{I}(\mathcal{I},\mathcal{I})$	2(2.5) 5(6.3)	4(3.3)
• South America	2(2,0)	6(7.5)	1(0.8)
 > one continent 	_ (_ · · · /		_ (• • • •)
Study design			
 Cross-sectional 	63(64.3)	53(66.3)	58(47.9)
• Longitudinal	7(7.1)	21(26.2)	48(39.7)
• Case-Control	2(2.1)	-	-
• Quasi-experimental	1(1.0)	3(3.8)	
Randomized Control Trials	3(3.1) 16(16-3)	2(2.5) 1(1.2)	/ (J.8) / (J.3)
• Qualitative studies	5(5.1)	- (1·2)	4(3.3)
 Mixed method 	1(1.0)	-	-
 Not reported 			
Participants recruited from			
• Community	91(92.9)	68(85.0)	113(93.4)
• Hospital	1(1.0)	5(6.3)	5(4.1)
 Long term care 	-	4(5.0)	-
 Laboratory 	4(4.1)	1(1.2)	-
 Mixed 	2(2.0)	2(2.5)	3(2.5)
Population of study			
• Defined health conditions	12(12.2)	9(11.3)	7(5.8)
(e.g., stroke, Alzheimer's)			
• No defined health conditions	86(87.8)	71(88.7)	114(94.2)
Sample size (n)			
• ≤ 100	34(34.7)	22(27.5)	11(9.1)
• 101-300	13(13.3)	20(25.0)	21(17.4)
• 301-500	11(11.2)	6(7.5)	10(8.3)
• 501-1000	14(14.3) 18(18.4)	0(7.5) 17(21 3)	22(18.2) 17(14 0)
• 1001-2500	8(8.1)	9(11.2)	40 (33.0)
• >2500			
<pre>#Mobility outcome</pre>	(n=136)	(n=144)	(n=172)
Performance-based outcome			
Walking outcomes			
• Time	5(3.7)	13(9.0)	7(4.1)
• Distance	1(0.8)	8(5.5)	3(1.7)

• Speed	9(6.6)	22(15.3)	9(5.2)
• Steps	4(2.9)	3(2.1)	6(3.5)
• Other gait parameters	22(16.2)	11(7.6)	4(2.3)
General mobility	4(2.9)	1(0.7)	2(1.2)
Balance	2(1.5)	6 (4.2)	5 (2.9)
Physical functioning			
 Short Physical Performance Battery scores 	2(1.5)	10(6.9)	4(2.3)
• Time Up and Go Test scores	4(2.9)	13(9.0)	3(1.7)
• Other physical functioning	_	15(10.4)	5(2.9)
tests			
Self-reported outcome			
Community mobility			
• Walking	30(22.1)	4(2.8)	32(18.6)
• Active transport	28(20.6)	-	22(12.8)
• Non-active transport	2(1.5)	5(3.5)	2(1.2)
 Life Space Assessment scores 	-	3(2.1)	13(7.6)
 Other self-reported mobility questionnaires 	6(4.4)	4(2.8)	12(7.0)
• Driving related outcomes	4(2.9)	14(9.7)	5(2.9)
Mobility limitation	4(2.9)	7(4.9)	34(19.8)
<i>Use/difficulty in using mobility assistive devices</i>	9(6.6)	5(3.5)	4(2.3)

*We included 300 articles, the table shows only 299 articles, one qualitative article focused on a financial factor (Franke et al., 2019). *only quantitative or mixed method studies in which quantitative data could be

extracted. Some studies assessed older adults' mobility using more than one mobility measure.

Performance-based mobility outcome: Walking time defined as time taken to complete 3, 5, 6 or 30-Meter Walk Tests; **Walking distance** defined as distanced walked within 6 or 2- Minutes' Walk Tests; **Other gait parameters** included stride length, cadence, single/double support time, walk ratio, gait variability; **General mobility** included the number of trips in the community, cycling (frequency and time), observed driving ability; **Balance tests** included Berg Balance Test, Tandem Tests, Stance Test, BEStest; **Other physical functioning tests** included Sit-to-Stand Test, Stair Climbing Test.

Self-reported mobility outcomes: Self-reported walking included the distance walked, number of times walked (seconds or minutes, per week/month), neighbourhood walking, waking preference, self-reported walking speed, self-reported walking capabilities, number of days outdoors (unspecified of any means); Active transportation included self-reported walking/cycling for transportation or recreation; non-active transportation included self-reported use of transportation; Other self-reported mobility measures included Mobility Help and Tiredness Scale, mobility domain of the Stroke Impact Scale, Mobility Efficacy Scale, Rivermead Mobility Index, EuroQolfive-Dimension Scale - mobility domain, and Late Life Function and Disability Instrument; Driving related outcomes included driving performance (ability or inability), access to car, driving duration & frequency, driving distance, preference to be driver vs passengers; Mobility limitation defined as self-reported inability on all or either of the following: walking up and down a flight of stairs (10 steps) or several flights of stairs, walking a mile (1600meter) or half a mile (800meter) or a quarter mile or a block (400meter) or 100-300meter, or across the room and running/jogging for 20-30 minutes; The mobility assistive devices included scooter, powered and manual wheelchairs, walking aids (cane, walker, crutches).

Figure 1: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow chart of the scoping reviews

Figure 2: Venn diagram showing the articles distribution across the three mobility determinants (n = 300)

CHAPTER 4: Physical mobility determinants among older adults: a scoping review of self-reported and performance-based measures.

Published in:

European Journal of Physiotherapy

Note: The format differs from the published version.

Preface

This chapter is one of the three manuscripts from Phase 1 of the PhD thesis that focused on identifying factors within physical mobility determinants and their association with self-reported and performance-based mobility outcomes in older adults. Under the supervision of Dr. V Dal Bello-Haas, I conceptualized the study, designed the study, developed research questions and search strategy, conducted the search, and participated in the title/abstract and full-text screening, extracted the data, and interpreted the findings, wrote, revised and submitted the manuscript. Dr. M Griffin, Dr. S Boamah, and Dr. J Harris provided feedback on the research questions and the manuscript. C Goodin, JW Song, J Smal and N Budd, participated in the title/abstract and full-text screening and data extraction of the included articles for the first search conducted in the title/abstract and full-text screen and data extraction of the included articles for the included articles for the update search in December 2021.

Citation:

Kalu ME, Dal Bello-Haas V, Griffin M, Boamah S, Harris J, Zaide M, Rayner D, Khattab N, Bhatt V, Goodin C, Song JW, Smal J, Budd N (2022). Physical mobility determinants among older adults: a scoping review of self-reported and performance-based measures. Accepted for publication in the *European Journal of Physiotherapy*.

Physical mobility determinants among older adults: a scoping review of selfreported and performance-based measures.

Authors: Michael E Kalu, Vanina Dal Bello-Haas, Meridith Griffin, Sheila A Boamah, Jocelyn Harris, Mashal Zaide, Daniel Rayner, Nura Khattab, Vidhi Bhatt, Claire Goodin, Ji Won (Beth) Song, Justin Smal, Natalie Budd.

Affiliations:

- Michael E Kalu, PhD student, MSc, BMR. PT School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada kalum@mcmaster.ca
- Vanina Dal Bello-Haas, PT, PhD School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada vdalbel@mcmaster.ca
- Meridith Griffin, PhD Department of Health, Aging & Society, Faculty of Social Science, McMaster University Hamilton, Ontario, Canada griffmb@mcmaster.ca
- Sheila A Boamah, RN, PhD School of Nursing, Faculty of Health Sciences, McMaster University Hamilton, Ontario, Canada boamahs@mcmaster.ca
- Jocelyn Harris, PhD, OT School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada jharris@mcmaster.ca
- Mashal Zaide, BSc student Faculty of Health Sciences, McMaster University, Ontario, Canada. zaidem@mcmaster.ca
- Daniel Rayner, BHSc student Department of Health Science, Faculty of Health Sciences, McMaster University, Ontario, Canada. rayned1@mcmaster.ca
- Nura Khattab, BScKin student Department of Kinesiology, Faculty of Sciences, McMaster University, Ontario, Canada. khattabn@mcmaster.ca
- Vidhi Bhatt, BSc student Faculty of Health Sciences, McMaster University, Ontario, Canada. bhattv9@mcmaster.ca

- Claire Goodin, MSc(PT), BSc (Honours) Juravinski Hospital, 711 Concession St. Hamilton Ontario, L8V 1C3, Canada cgoodin4@gmail.com
- Ji Won (Beth) Song, MSc(PT), BSc(Honours) The Clinic at Christie Unit 106, 672 Dupont St. Toronto Ontario, M6G 1Z6, Canada beth.jiwon.song@gmail.com
- Justin Smal, MSc(PT), BSc Nursing Manitoulin Physio Centre, 415D Lakeshore Drive, M'Chigeeng Ontario, POP 1GO, Canada jsmal@personainternet.com
- Natalie Budd (maiden name Koehler), MSc(PT), BScKin (Honours) The Arthtitis and Sports Medicine Centre 49 Wilson Street, Unit 7 Ancaster Ontario L9G 1N1, Canada

Corresponding author: Michael E Kalu; kalum@mcmaster.ca

Abstract

Objective: To synthesize the available evidence on physical factors, such as muscle strength and power, body mass index and their association with older adults' self-reported and performance-based mobility outcomes.

Method: This review followed the Askey and O'Malley Framework. We systematically searched PubMed, EMBASE, PsychINFO, Web of Science, AgeLine, Allied and Complementary Medicine Database, and Cumulative Index to Nursing and Allied Health Literature databases, from Jan. 2000 to Jan. 2022. Teams of two reviewers independently conducted title, abstract, full-text screening, and data extraction using predefined inclusion and exclusion criteria.

Result: A total of 239 quantitative articles, mostly cross-sectional design, conducted in 32 countries were included in this review. We identified 18 physical factors significantly associated with mobility outcomes in the expected direction. Muscle strength, body composition, falls (number and history of), and chronic conditions (number of and type) were the most studied physical factors.

Conclusion: Older adults with muscle weakness, weight concerns, history of falls, and chronic conditions had poorer mobility outcomes, such as slower gait speed, poor balance, limited community mobility and poor driving outcomes compared to their counterparts. Studies exploring the role of physical factors on the use of an assisted device, transportation, or driving, are limited. **Keywords**: Mobility, Physical factors, Older Adults, Ageing, Movement

Data availability statement: The data associated with this study is presented in the paper and as Appendix (placed at the end of the thesis). Appendix 4A: Details of the included articles

INTRODUCTION

Mobility has been described as a hallmark of healthy ageing [1,2]. Mobility, defined as the ability to move from one place to another by one's self or with the use of assistive devices, or via transportation or driving, is fundamental for meaningful social interactions and community participation [3]. Ageing-associated changes in sensory, cognitive and various physical structures (e.g., muscle) can pose threats to older adults' mobility [4]. Mobility limitations have been described as self-reported difficulties in walking, performance deficits in objective mobility, and lack of access to assistive mobility devices, transportation, or driving [5]. Mobility limitations increase the risk of disability, falls, hospitalization, mortality and decreased quality of life [1]. Older adults with mobility limitations often require assistance with their activities of daily living, leading to additional healthcare costs. For instance, Hardy et al. [6] reported that the total annual healthcare cost was \$2773 higher in older adults reporting difficulty walking one-quarter a mile as compared to those with no difficulty. This increase in healthcare costs associated with mobility limitations warrants the need to explore the factors associated with mobility among the ageing population.

Factors influencing mobility are often multifactorial. Webber et al. [3], in the Conical Model of Theoretical Framework for Mobility in Older Adults (henceforth referred to as the Conical Model), described mobility determinants to include cognitive, environmental, financial, personal, physical, psychological, and social factors. The Conical Model provides a holistic perspective on the relationship between these mobility determinants and recognizes that these determinants will have different levels of relevance depending on the older individual's living situation and capacities to navigate the seven mobility zones - the room where one sleeps, the home, the outdoor areas surrounding the home, the neighbourhood, the area in the community, within one's country and the world. For instance, mobility becomes more complex as one

moves away from home and neighborhood, making it difficult for older adults to go out and visit with friends and family or continue doing their activities independently. The Conical Model describes the interrelationship between mobility determinants and how they compound the complexity of mobility but does not indicate how each factor within each determinant influences mobility, making it difficult for researchers and clinicians to use this model to improve mobility in older adults as they move away from their home. To assess the usefulness and increase the practical use of this model, we conducted a series of scoping reviews for each determinant to identify factors within each determinant and describe their associations with mobility outcomes. This paper focuses on the physical mobility determinants in older adults.

Physical factors, such as muscle strength and power, proprioception, range of motion, balance, and comorbidity, have been found to influence older adults' mobility [7]. Several studies have shown that age-related physical changes, such as reduced muscle strength and power, impact mobility [7,8]. For example, after age 40 years, people typically lose 8 percent or more of their muscle mass each decade, a process that accelerates significantly after age 70 [9]. Sensory impairments, such as visual or hearing impairment and a sedentary lifestyle in older adults, can contribute to the decline in mobility [10]. Further, the severity of the mobility decline is compounded when more than one physical determinant is impaired [11]. Age-related physical changes are early indicators of mobility limitations. Although the age-related physical changes can be easily identified and defined by clinicians and researchers, how these physical factors interact individually or in combination to influence mobility is complex and multifactorial, highlighting the need to describe the associations between physical factors and mobility in older adults.

Reviews exploring the associations between physical factors and mobility outcomes among older adults are limited; most reviews report the risk factors for self-reported mobility limitations in older adults. While Yeom and

colleagues [12] used the social-ecological model to describe risk factors for mobility limitations in older adults, Frieberger et al. [1] described physical age-related changes as risk factors for mobility decline. Both reviews reported some physical factors, including obesity, physical activity, muscle strength, and power, as risk factors for mobility decline, but their reviews are narrative rather than systematic. A systematic review of the literature has been published [13]; however, it focused on the association between self-reported risk factors and self-reported mobility limitations. While these reviews have highlighted the risk factors for self-reported mobility decline in older adults, not all physical factors or mobility outcomes (e.g., gait speed, balance, use of assistive devices, driving and transportation) were included.

The combined use of self-reported and performance-based mobility assessment has been recommended because each measure assesses different aspects of older adults' physical functioning [14], providing unique and critical information, and ultimately complementing each other. For instance, while selfreported measures capture an individual's perceptions of mobility, performancebased measures capture an individual's real-time mobility ability [15]. No systematic literature review has examined all physical factors on self-reported and performance-based mobility outcomes in older adults (60 years and older). Our review fills this gap by systematically and comprehensively describing the association between each physical factor and mobility outcomes in older adults. This review, alongside our previous reviews on the associations between selfreported and performance-based mobility outcomes, and environmental, personal, and financial factors [16]; and cognitive, psychological, and social factors [17], is needed to advance the use of the Conical Model [3] in clinical and research practice. This paper aims to synthesize the available evidence on physical determinants of the Conical Model and their association with selfreported and performance-based mobility outcomes in older adults.

METHODS

This scoping review was guided by the methodological framework proposed by Arksey and O'Malley [18] and Levac et al. [19]. This methodology is appropriate because physical factors influencing mobility are complex and heterogeneous; exploring the extent, range, and nature of available research on the associations between physical factors and self-reported and performance-based mobility outcomes in older adults will enable us to identify research gaps in the literature [20]. Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews (PRISMA-Scr) guided the reporting of this scoping review [21]. The protocol was registered with the Open Science Framework: https://doi.org/10.17605/OSF.IO/7Y5VG.

Step 1: Identifying the research questions

The two research questions of this scoping review are: (a) what is the available evidence for the physical factors related to mobility in older adults (60 years and older); and (b) what are the associations between physical factors and mobility self-reported and performance-based outcomes in older adults 60 years and older? We followed Webber et al.'s [3] definition of mobility: the ability to move from one place to another either independently or with assistance including mobility aids (e.g., cane, wheelchair, walkers) and use various modes of transportation (e.g., car, bus, bicycle). We defined an older adult as a person who is 60 years and older [22]. Based on the literature, we defined physical mobility determinants as those physiological functions of the body including musculoskeletal system, respiratory systems, the system, cardiovascular system, nervous and sensory system, as well as other physical factors (e.g., physical activity and exercise levels), and body composition.

Step 2: Identification of relevant studies

We developed the search strategy in consultation with a health science librarian. Broadly, our search concepts include physical factors (e.g., muscle

strength, muscle power, number of falls, physical activity levels), mobility outcomes (self-reported - e.g., mobility limitations, life-space mobility and performance-based - e.g., gait speed, balance, lower limb function test) and older adults (e.g., ag<u>*</u>ing, older people). See https://doi.org/10.17605/OSF.IO/7Y5VG for a complete search strategy. Seven databases (PubMed, EMBASE, AMED, CINAHL, Psych INFO, Web of Science, and AgeLine) were searched from January 2000 to January 2022; the year 2000 was chosen because the impact of baby boomers on health outcomes would be most prominent across the developed countries [23]. We hand searched the reference lists for additional articles that met our inclusion criteria were included.

Step 3: Study selection

Retrieved citations were exported from each database and imported into Rayyan QCRI© [24], and duplicates were removed. We selected studies in two stages: title/abstract and full-text screening, using the inclusion and exclusion criteria in Box 1. Four raters independently performed a pilot of the title and abstract screening of the first 100 articles to determine inter-rater reliability. The Kappa agreement was 0.74, indicating moderate agreement [25]; based on this, we conducted the title and abstract screening in pairs and resolved any conflicts during research meetings. Similarly, a pilot full-text screening was conducted independently by all four raters, and the Kappa agreement was 0.98, indicating a high magnitude of agreement [25]. Therefore, full-text screening was divided evenly between the four raters. Disagreements were resolved in research meetings and discussions with the senior authors.

Step 4: Charting the data

We adapted a data extraction sheet from a previous review [26], pilot-tested and refined it based on the feedback during a research meeting. We extracted the following information: authors' name, the country in which the study was conducted, study aim(s)/research question(s)/hypothesis or hypotheses, the

setting where participants were recruited, type of study (qualitative, quantitative, mixed-method), study design, study population (older adults with no defined conditions and those with a health condition, e.g., stroke), sample size, participants' mean age and sex distribution, physical factors being studied, type of mobility outcome used, and study findings related to our review questions.

Step 5: Collecting, summarizing and reporting the result

We first listed and described all the physical factors being studied from the included studies. Second, we reported the associations between each physical factor and the mobility outcomes. Specifically, we presented the associations per analysis rather than per article because it enabled us to describe the association distinctly, as one article may report multiple associations between different physical factors and outcomes. For instance, one article reported the association between multiple physical factors (Body Mass Index, number of chronic conditions and muscle strength) and multiple mobility outcomes (walking distance, walking speed, self-reported inability to walk quarter a mile); thus, nine distinct findings were extracted. This type of reporting allowed us to understand the distinct associations between physical factors and mobility outcomes at a granular level. We considered whether a factor negatively or positive significantly associated with mobility outcome if the article reported such factor as significant based on their p-value.

RESULT

A total of 12,679 citations were identified through the database searches. After removing duplicates, 9786 underwent title and abstract screening, excluding 9219. The remaining 567 articles underwent full-text screening, and 239 articles were included in this review (FIG 1).

Characteristics of the included studies.

Table 1 presents the main characteristics of the included studies. Studies were conducted in 32 countries on five continents, including Asia, Australia, Europe, North and South America. Close to half of the articles (n = 108, 45.2%) were conducted in North America, primarily in the United States of America (n = 97, 40.6%) and Canada (n = 11, 4.6%). All were quantitative studies; close to three-quarters (n = 175) were cross-sectional studies, and 207 (86.7%) recruited participants from the community. The mean age of the participants in the included articles ranged from 60 [27] to 93.1 [28] years. Sample sizes varied considerably, ranging from 13 [29] to 164,597 [30].

Of the 239 articles, 175 (73.2%) articles assessed mobility using performance-based measures only, 42 (17.6%) articles assessed mobility using self-reported measures, and 22 (9.2%) articles assessed mobility using both (See Table 1 for details).

Association between physical factors and mobility outcomes.

Eighteen physical factors were identified, and the most studied was muscle strength (n = 84, 19.4%), followed by body composition (e.g., Body Mass Index; n = 83, 19.2%), chronic conditions (number and type; n = 45 (10.4%) and falls (number and history of falls; n = 44, 10.2%) (See Table 2). Only significant associations are described in this section. The non-significant associations, including p-values, odds ratios, hazard ratios, prevalence ratios, and correlations for each included article, and specific physical factors are found in Appendix 4A.

Musculoskeletal System-related Factors.

Muscle strength. Performance-based: Studies reported that increased muscle strength (e.g., measured as lower limb strength using dynamometer) was associated with increased number of daily steps [31,32], faster gait speed [33-52], higher cadence [46], longer step [34], and stride lengths [49], longer

swing time [49], reduced double support time [53], higher Short Performance scores [33,54-57], better balance scores Physical Battery (SPPB) [33,40,46,53,57-60], walking longer distance in timed walk tests (e.g., Six-Minute Walk Test (6MWT) - [38,41,50,56,60-68] or distance walked as measured by Global Position System [32]); and, completing walking tests (e.g., 4meter Walk Test (4MWT) - [27,50,58,69-72]), the Time-Up and Go (TUG) test [27,50,78-80,60,67,71,73-77], the Stair Climbing Test (SCT) [33,39,74,81,82], and the Chair Stand Test (CST) [33,44,45,59,60,70,80,81,83,84] in less time. Muscle weakness was associated with slower gait speed [85-88], poor balance scores [86,89,90], lower SPPB scores [86,91], taking longer to complete walking tests [92] and the CST [86,93]. Self-reported: Studies reported that increased lower limb muscle strength was associated with better Late-Life Function and Disability Instrument (LLFDI) scores [33,56,94], better Life-Space Assessment (LSA) scores [95,96], better De Morton Mobility Index scores [97], and a lower incident of mobility limitation [43]. Muscle weakness was associated with lower LLFDI score [98], increased risk of mobility limitations [88,99-105], and the increased use of an assistive device [106].

Muscle power. Performance-based: Studies reported that increased lower limb muscle power (measured for example, using Nottingham Power Rig [107] or double leg press occurred between 56-78% of the one-repetition maximum [108]) was associated with an increased number of daily steps [109], faster gait speed [37,81,109-113], longer stride length [111], higher SPPB scores [54,56,110,113,114], walking longer distance on a 6MWT [56], completing walking tests (e.g., 4MWT - [112,114,115], the SCT [112,114,116,117], the TUG test [115], and the CST [33,81,112,117] in less time. Reduced muscle power was associated with taking longer time to complete the TUG test [118]. Selfreported: Two studies reported that increased muscle power was associated with better LLFDI scores [33] and reduced risk of mobility disability [119]; one

study reported that reduced muscle power predicted a greater likelihood of a decline in mobility function, as measured by LLFDI scores [98].

Muscle endurance. Performance-based: Studies reported that increased muscle endurance (e.g., Truck Muscle Endurance Test [120]) was associated with faster gait speed [59], better balance scores [57,59], higher SPPB scores [57], walking longer distance on a 6MWT [66], completing the CST [59] and the TUG test [78] in less time. Reduced muscle endurance was associated with taking longer to complete the TUG test [118]. **Self-reported**: Studies reported that increased muscle endurance was associated with better LLFDI scores [33,94] and better lower extremity function [59]. One study reported that reduced muscle endurance predicted a decline in mobility function as measured by LLFDI scores [118].

Muscle coordination. Performance-based: Studies reported that better muscle coordination test scores (e.g Heel-to-Shin Test [59]) were associated with faster gait speed [121] and completing the CST [59] in less time. Poor muscle coordinator test scores were associated with slower gait speed, lower SPPB scores, poor balance scores, and taking longer to complete the CST [122]. We found no study reporting the association between muscle coordination and self-reported mobility outcomes.

Range of Motion (ROM). Performance-based: Studies reported that lower limb joint ROM within the normal range (measured by goniometer) was associated with faster gait speed [59,123-125], better balance [46,59] and completing the CST [59] in less time. Abnormal joint ROM (hyper or hypo joint mobility) was associated with slower gait speed [35,50,126,127], poor balance scores [126] and taking longer to complete the 10-Meter Walk Test and the TUG test [50,127]. Self-reported: Studies reported that joint ROM within the normal range was associated with better LLFDI scores [33,94]. Abnormal joint ROM was associated with increased mobility difficulties [98,126,128].

Sensory and Nervous System-related Factors

Pain. Performance-based: Studies reported that increased or persistent pain was associated with fewer daily steps [129], shorter distance walked [41,130], slower gait speed [39,41,59,129,131-133], lower cadence [133], shorter step [132,134] and stride length [129,132,135], poor performance in other gait parameters (e.g., longer double stance times - [34,129,134,135]), lower SPPB scores [136-138], poor balance scores [131,139], taking longer to complete walking test [140], the TUG test [118,135,141], the SCT [39], and the CST [59]. Having lower pain scores were associated with faster gait speed [34], walking a longer distance in a timed walk test and completing walking tests in less time [142]. Self-reported: Studies reported that increased pain was associated with greater mobility difficulty [59,138,143-146], lower LSA scores [96], and incident use of assistive walking devices [106,147].

Vision. Performance-based: Studies reported that visual impairment was associated with shorter distance walked in timed walk test [92], slower gait speed [148-151], lower cadence [34], increased double support times [34], poor balance scores [149] and driving errors [152]. One study reported that better vision was associated with faster gait speed [35]. **Self-reported**: Studies reported that poor vision or visual impairment was associated with greater mobility difficulty [100,144,151,153-156], difficulty climbing stairs [153,156], lower LSA scores [96], and reduced driving [152,157]. One study reported that visual acuity was associated with higher scores in Independent Mobility Questionnaire [158].

Hearing. No studies examined the association between hearing and performance-based mobility outcomes. **Self-reported:** Five studies reported that poor hearing was associated with greater mobility difficulty [100,144,151,159] and reduced driving [160].

Proprioception. Performance-based: Studies reported that poor proprioception (defined as the inability to identify the lower limb in position)

was associated with poor balance scores [161] and taking longer to complete the TUG [75,161]. One study reported that the ability to identify lower limb in position was associated with completing the TUG in less time [27]. We found no studies reporting the association between proprioception and self-reported mobility outcomes.

Dizziness. Performance-based: Two studies reported that dizziness was associated with slower gait speed [162] and poor balance scores [161]. No studies reported the association between dizziness and self-reported mobility outcomes.

Respiratory and cardiovascular system-related factors

Respiratory parameters. Performance-based: Studies reported that better respiratory function parameters (e.g., increased Force Expiratory Volume (FEV1) or Forced Vital Capacity (FVC)) were associated with longer distance walked in a timed test [62,65,66,163-167], faster gait speed [168,169], and completing a walking test in less time [69]. A decrease in FEV1 was associated with walking shorter distances [170], slower gait speed [171,172], poor balance scores [171], lower SPPB scores [170] and taking longer to complete the TUG [118]. One study reported that dyspnea was associated with slower gait speed, and respiratory muscle weakness was associated with lower SPPB scores [172]. Another study reported that low breathing reserve, defined as the difference between the maximal voluntary ventilation and the maximum ventilation measured during the exercise test, was associated with completing a 400meter walk in a less time [173]. Self-reported: One study reported that a decrease in FEV1 was associated with mobility difficulty [170], and another study reported dyspnea severity was associated with lower LSA scores [95]. One study reported that older adults using a ventilator were more likely to use a walker compared to those not using ventilators [174].

Cardiovascular parameters/biomarkers. Performance-based. Studies reported that heart rate within the expected range was associated with faster gait speed, better balance scores, and completing the TUG test and the CST in less time [175]. One study reported that a high ankle-brachial index score was associated with faster gait speed and better balance scores [176]. Studies reported that a low ankle-brachial index score (indicative of peripheral arterial disease) was associated with slower gait speed, poor balance scores, taking longer time to complete the CST [177] and walking shorter distance on a 6MWT [178]. High blood pressure [179,180] and high levels of calcium in the coronary [181] were associated with slower gait speed. Self-reported: Studies reported that a high ankle-brachial index score was associated with reduced mobility limitations [176] and a faster self-reported walking pace [182]. One study reported that high blood pressure and abnormal heart rate were associated with self-reported walking speed [182].

Other factors

Exercise and Physical Activity (Type and frequency). Performancebased: Studies reported that increased physical activity was associated with an increased number of daily steps [183], greater likelihood of being able to walk 10 meters independently [184], faster gait speed [46,185], higher cadence [46,58], longer stride [46] and step length [186], and walking longer distance on a 6MWT [187], better balance scores [46,58,188], completing a walking test [58,183] in less time. Low levels of exercise were associated with slower gait speed [38,182]. Self-reported: Studies reported that being inactive or having lower levels of physical activity were associated with reduced mobility limitation [104,144,189], lower LSA scores [95], and incident use of assistive walking devices [106]. One study reported that increased physical activity levels were associated with high LSA scores [190].

Falls (number or history of falls). Performance-based: Studies reported that falls were associated with fewer daily steps [191,192], slower gait speed [40,180,193-200], lower cadence [40,193,201,202], poor performance in other gait parameters (e.g., wider stride width or shorter stride length -[193,196,199,202-206]), walking shorter distance on a 6MWT [207], poor balance scores [202,208-212], lower SPPB scores [213], and taking longer time to complete the TUG test [192,195,200,208,211,214-216], and the CST [210,214]. Compared to fallers, non-fallers had faster gait speed [217-219], performed better in gait parameters (e.g., longer stride length - [204,217,218,220]), and had better balance [193]. An increase in gait speed and distance walked was associated with a reduced no of falls [221]. **Self-reported:** Eight studies reported that an increased number of falls were associated with mobility limitation [30,141,189,216], lower LSA scores [148], use of walking aid [209,212] and reduced use of public transit [222].

Frailty. Performance-based: Higher frailty score was associated with lower balance scores [188]. **Self-reported:** Studies reported that frailty was associated with lower LSA scores [223], and increased incidents of mobility limitations [104].

Chronic condition (number of, type). Performance-based: Studies reported that having chronic conditions (one or more) was associated with fewer daily steps [95,129,224], slower gait speed [83,129,225-234] lower cadence [233,234], shorter stride [129,226,227] and step length [233], poor performance in other gait parameters (e.g., higher stride/step time - [129,225,227,232-235], a shorter distance walked in timed walk test [83,224,236-239], poor balance scores [89,131,139,188,238,240-242], lower SPPB scores [243], and completing the TUG test [83,230,238,241], the CST [237] and the SCT [83] in less time. Self-reported: Studies reported that having chronic conditions (one or more) were associated with mobility limitation [100,144,189,244] or reduced driving [157,160].
Non-chronic conditions (e.g., fracture) & non-specific symptoms (e.g., Fatigue). Performance-based: Studies reported that having a fracture was associated with a slower gait speed [53,245], increased double support time [53], poor balance score, taking longer to complete the CST [245]. One study reported that having a foot deformity was associated with poor balance scores [129]. Two studies reported that fatigue was associated with slower gait speed [246] or lower LSA scores [96]. Self-reported: One study reported that a history of fracture was associated with incident use of walking aid [106], and another reported that fatigue was associated with mobility limitations [104].

Body composition (e.g., BMI, waist circumference etc.). Performancebased: Studies reported that being underweight, overweight or obese (measured by BMI or waist circumference, etc.,) was associated with fewer daily steps [31,247], slower gait speed [38,47,180,182,195,234,248-251], poor performance in other gait parameters (e.g., increased double support time -[234,247,252,253]), a shorter distance walked in timed walk test [63,87,142,248], poor balance scores [76,139,248,250,253-255] and completing [64,248,249,253,254,256], distance the TUG walking test [63,75,118,249,250,257,258], the CST [64,258], and the SCT [63] in less time. Body composition (within normal range for BMI or higher lean mass) was associated with a greater number of daily steps [31], faster gait speed [37,38,44,195,259,260], walking longer distance on a 6MWT [63,239], completing the TUG test [258,261], and the CST [84,258], in less time. Self-reported: Studies reported that being underweight, overweight or obese (e.g., measured with BMI or waist circumference) was associated with mobility limitation [99,100,103,144,244,262-264] or lower LSA scores [96]. One study reported that higher lean mass was associated with fewer incident mobility limitations [265].

DISCUSSION

We systematically reviewed the literature for physical factors and their associations with performed-based and self-reported mobility outcomes in older adults. We included 239 articles from 32 countries, primarily cross-sectional studies recruiting participants from the community. Eighteen factors were found and were grouped into musculoskeletal system-related (e.g., muscle strength), sensory and nervous system-related (e.g., pain), respiratory (e.g., FEV1) and cardiovascular (e.g., cardiovascular biomarkers) system-related, and other factors including type and frequency of exercise, the number and types of chronic and non-chronic conditions, falls and body composition. Not surprisingly, associations between physical factors and mobility outcomes were in the expected direction. Older adults with muscle weakness, poor vision, reduced FEV1, low physical activity levels, abnormal body compositions (e.g., being underweight, overweight, or obese), and many chronic conditions walked slower and had poor balance scores, mobility limitations, and poor driving outcomes. Compared to other factors, including environmental, cognitive, psychological, social, personal, and financial, physical factors are consistently associated with older adults' mobility [32,96,189,190] and are easily identified by clinicians, older adults, and family members, highlighting the critical role that physical factors play in explaining the complexity associated with older adults' mobility.

Although the InCHIANTI study found that low power was associated with a 2-3-fold increase in mobility limitations than low strength [266], more studies in our review focused on muscle strength rather than muscle power. Arguments explaining why muscle strength has been consistently studied more muscle power include but are not limited to the lack of validation across popular muscle power tests [267] as well as frequent discrepancies across testing protocols between studies [268]. Even though studies validating these different muscle power tests are needed to encourage researchers further in exploring the role of muscle power on older adults' mobility, investigating the additive role of

muscle strength and muscle power on mobility outcomes is pertinent. Could exploring the additive role of muscle power and strength provide more insight into understanding the complexity of mobility and possible focused assessment and intervention? Future research should explore this since each independently predict mobility outcomes among older adults.

Poor physical health indicative of chronic conditions is a strong predictor of community mobility [189]. Approximately 85% of older adults have at least one chronic health condition, and 60% have at least two chronic conditions [269]. Our review revealed that chronic conditions are often not examined independently; they are often examined in association with other factors, indicating that multiple risk factors may significantly impact mobility. However, studies exploring the additive effect of multiple factors, including chronic conditions, was scarce, indicating the need for future research to explore these possible relationships. Future studies should highlight the additive-predictive power of chronic conditions relating to mobility outcomes.

Our review also highlighted the complexity in association between physical factors and mobility. For instance, obese or overweight older adults are at higher risk of developing chronic conditions such as hypertension, diabetes, etc. Subsequently, diabetes could lead to vision and sensory impairment, causing pain which further limits older adult mobility. Reciprocally, limited mobility may lead to muscle weakness, further limiting participation in physical and social activities, which could accelerate age-related changes in cognitive and affective domains; thus, facilitating the continuous cycle mobility decline in older adults. Since older adults often report multiple physical factors concurrently, combinations of multiple risk factors may have a more significant impact than the sum of their individual effects, and future studies should explore these compounding effects [13]. Future interventions targeting mobility

maintenance should be multidimensional, focusing on targeting modifiable risk factors concurrently.

Our review noted some gaps or areas to address regarding physical factors and mobility. First, the associations between physical factors and mobility focused mainly on community-dwelling older adults, with limited studies conducted among hospitalized older adults or those residing in nursing homes. Older adults experience a decline in several physical factors, including muscle mass, strength, function, and pulmonary functions during hospitalization, leading to difficulty in performing activities of daily living (ADL) and limitations in community mobility [270,271]. Reduced community mobility has been associated with other adverse health outcomes for older people after discharge, including loneliness, depression, and mortality [272], highlighting the need for studies to explore the association between physical factors and mobility, both on admission and discharge.

Understandably, assessing nursing home residents' mobility can be challenging as most residents might not be able to complete performance-based or self-reported mobility measures, especially nursing home residents with cognitive impairment or dementia. However, recent technology advancements, including wearable sensors (such as smartwatches and Fitbits), although currently used to explore activity levels of nursing home residents and track falls [273], measure several mobility outcomes, including gait parameters (e.g., gait speed) and balance [274]. Therefore, future studies should use routinely collected mobility data in nursing homes to explore the association between several mobility outcomes and physical factors; this is promising to inform care plans and interventions that could improve mobility for nursing home residents.

Second, despite the impact of the cardiovascular system on mobility in older adults, only eight included studies explored the association between the cardiovascular system and mobility among older adults. While five studies cross-

sectionally examined the association between high blood pressure [275] and cardiovascular biomarkers, such as ankle-brachial index [176,177,180,181] and mobility outcomes, three longitudinal studies [178,179,182] highlighted the impact of cardiovascular functions on older adults' mobility across the life course. These longitudinal studies provided cardiovascular cut-offs for clinicians to ascertain which older adults are at higher risk of mobility decline based on their cardiovascular parameters allowing early intervention to reduce the age-related cardiovascular decline [276]. However, these studies are from a USA sample population (primarily Caucasian), limiting the application of these findings in populations different from the USA population. Cardiovascular parameters, including blood pressure, have been correlated to genetic variations found within continental regions. For instance, compared to Europeans and white Americans, people of Sub-Saharan Africa and African descent in America and Europe have higher systolic and diastolic blood pressure, whereas South Asians have lower systolic blood pressure but similar diastolic blood pressure with Europeans and White Americans [277]. Therefore, it is plausible that the influence of cardiovascular parameters on mobility could differ across regions globally. Hence, studies exploring the longitudinal association between cardiovascular parameters and mobility outcomes among older adults in other regions, including Africa and Asia, are needed.

The findings from this review and our previous reviews on the associations between self-reported and performance-based mobility outcomes, and environmental, personal, and financial factors [16]; and cognitive, psychological, and social factors [17] provided information for advancing the use of Conical Model. Our study provided a comprehensive list of factors that can guide further development of core factors within each determinant that influences mobility in a different context. For instance, this may take the form of exploring which factors within each determinant are critical to assess when older adults are being discharged from hospital-to-home. With the

associations between each factor within each determinant synthesized, it can create a foundation for transdisciplinary collaborations to explore further the complexity of mobility and more effective ways to actively incorporate and assess the interrelationship effect of each determinant or combined effect on mobility across different settings.

Despite our effort to develop a comprehensive search strategy, some articles, specifically those focused on transportation and driving, may have been missed, especially of the article keywords were not in the MESH terms in our search strategy. Also, we may have missed some articles published in other languages than English. Although we did not limit our search by country, we found no studies conducted in Africa. Our study defined older adults as individuals 60 years and older, which could explain why studies in Africa did not meet our inclusion criteria. Most gerontological studies in Africa define older adults as individuals 50 years and above [278]. We argue that the association between most physical factors and mobility outcomes may not differ across regions, except for some physical factors, such as blood pressure cutoffs and chronic conditions, which have regional variations. About two-thirds of the studies included in this review were cross-sectional and were unable to determine cause-effect relationships between physical factors and mobility outcomes. There is a need for more longitudinal studies to allow a systematic analysis of either independent or additive physical factors in order to produce predictive models of mobility in older adults.

CONCLUSION

We found 18 physical factors and their association with older adults' mobility. Not surprisingly, associations between physical factors and mobility outcomes were in the expected direction. Older adults with poor physical health such as muscle weakness, poor vision, and many chronic conditions have poor mobility outcomes including poor gait speed, poor balance, and poor driving

outcomes. Longitudinal studies exploring the additive association of physical factors with mobility outcomes are recommended to highlight the complexity and enhanced intervention and prevent mobility decline.

Acknowledgement

This project is part of Michael Kalu's Ph.D. thesis Rehabilitation Science Program, School of Rehabilitation and he received Mobility Labarge Scholarship from McMaster Institute for Research in Ageing, McMaster University, Hamilton, Ontario, Canada.

Declaration of interest statement

We do not have any conflict of interest to declare.

References

- [1] Freiberger E, Sieber CC, Kob R. Mobility in Older Community-Dwelling Persons: A Narrative Review. Front Physiol. 2020;11.
- [2] Ferrucci L, Cooper R, Shardell M, Simonsick EM, Schrack JA, Kuh D. Agerelated change in mobility: Perspectives from life course epidemiology and geroscience. Journals Gerontol - Ser A Biol Sci Med Sci. 2016;71(9):1184-94.
- [3] Webber SC, Porter MM, Menec VH. Mobility in older adults: A comprehensive framework. Gerontologist. 2010;50(4):443-50.
- [4] Rantanen T. Promoting mobility in older people. J Prev Med Public Heal. 2013;46(SUPPL.1):S50.
- [5] Rantakokko M, Mänty M, Rantanen T. Mobility decline in old age. Exerc Sport Sci Rev. 2013;41(1):19-25.
- [6] Hardy SE, Kang Y, Studenski SA, Degenholtz HB. Ability to walk 1/4 mile predicts subsequent disability, mortality, and health care costs. J Gen Intern Med. 2011;26(2):130-5.
- [7] Brown CJ, Flood KL. Mobility limitation in the older patient: A clinical review. JAMA - J Am Med Assoc. 2013;310(11):1168-77.
- [8] Haynes EMK, Neubauer NA, Cornett KMD, O'connor BP, Jones GR, Jakobi JM. Age and sex-related decline of muscle strength across the adult lifespan: A scoping review of aggregated data. Appl Physiol Nutr Metab. 2020;45(11):1185-96.
- [9] Newman AB, Haggerty CL, Goodpaster B, Harris T, Kritchevsky S, Nevitt M, et al. Strength and muscle quality in a well-functioning cohort of older adults: The Health, Aging and Body Composition Study. J Am Geriatr Soc. 2003;51(3):323-30.
- [10] Frank JS, Patla AE. Balance and mobility challenges in older adults: implications for preserving community mobility. Am J Prev Med. 2003;25(3 Suppl 2):157-63.
- [11] Aartolahti E, Tolppanen A-M, Lonnroos E, Hartikainen S, Hakkinen A. Health condition and physical function as predictors of adherence in long-term strength and balance training among community-dwelling older adults. Arch Gerontol Geriatr. 2015;61(3):452-7.
- [12] Yeom HA, Fleury J, Keller C. Risk Factors for Mobility Limitation in

Community-Dwelling Older Adults: A Social Ecological Perspective. Geriatr Nurs (Minneap). 2008;29(2):133-40.

- [13] Nicolson PJA, Sanchez-Santos MT, Bruce J, Kirtley S, Ward L, Williamson E, et al. Risk Factors for Mobility Decline in Community-Dwelling Older Adults: A Systematic Literature Review. J Aging Phys Act. 2021;29(6):1053-66.
- [14] Bean JF, Olveczky DD, Kiely DK, LaRose SI, Jette AM. Performance-based versus patient-reported physical function: what are the underlying predictors? Phys Ther. 2011;91(12):1804-11.
- [15] Reuben DB, Seeman TE, Keeler E, Hayes RP, Bowman L, Sewall A, et al. Refining the categorization of physical functional status: The added value of combining self-reported and performance-based measures. Journals Gerontol - Ser A Biol Sci Med Sci. 2004;59(10):1056-61.
- [16] Kalu ME, Dal Bello-Haas V, Griffin M, Boamah S, Zaide M, Khattab N, et al. A scoping review of personal, financial, and environmental determinants of mobility among older adults. [Manuscript Under Review]. 2022.
- [17] Kalu ME, Dal Bello-Haas V, Griffin M, Boamah S, Zaide M, Khattab N, et al. Cognitive, psychological and social factors associated with older adults' mobility: a scoping review of self-report and performance-based measures. [Manuscript Under Review]. 2022.
- [18] Arksey H, O'malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19-32.
- [19] Levac D, Colquhoun H, O'Brien KK. Scoping studies: Advancing the methodology. Implement Sci. 2010;5(1):69.
- [20] Peters MDJ, Marnie C, Tricco AC, Pollock D, Munn Z, Alexander L, et al. Updated methodological guidance for the conduct of scoping reviews. JBI Evid Synth. 2020;18(10):2119-26.
- [21] Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann Intern Med. 2018;169(7):467-73.
- [22] United Nations. Older persons UNHCR|Emergency Handbook [Internet]. United Nations. 2021 [cited 2021 Dec 21]. Available from: https://emergency.unhcr.org/entry/43935/older-persons
- [23] Dall TM, Gallo PD, Chakrabarti R, West T, Semilla AP, Storm M V. The care span: An aging population and growing disease burden will require a large and specialized health care workforce by 2025. Health Aff. 2013;32(11):2013-20.
- [24] Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5(1).
- [25] Landis JR, Koch GG. The Measurement of Observer Agreement for Categorical Data. Biometrics. 1977;33(1):159.
- [26] Kalu ME, Maximos M, Sengiad S, Dal Bello-Haas V. The role of rehabilitation professionals in care transitions for older adults: A scoping review. Phys Occup Ther Geriatr. 2019;37(3):123-50.
- [27] Van Der Esch M, Steultjens M, Harlaar J, Knol D, Lems W, Dekker J. Joint proprioception, muscle strength, and functional ability in patients with osteoarthritis of the knee. Arthritis Care Res. 2007;57(5):787-93.
- [28] Martinikorena I, Martínez-Ramírez A, Gómez M, Lecumberri P, Casas-Herrero A, Cadore EL, et al. Gait Variability Related to Muscle Quality and Muscle Power Output in Frail Nonagenarian Older Adults. J Am Med Dir Assoc. 2016;17(2):162-7.
- [29] Protas EJ, Raines ML, Tissier S. Comparison of Spatiotemporal and Energy Cost of the Use of 3 Different Walkers and Unassisted Walking in Older Adults. Arch Phys Med Rehabil. 2007;88(6):768-73.
- [30] Jia H, Lubetkin EI, DeMichele K, Stark DS, Zack MM, Thompson WW. Prevalence, risk factors, and burden of disease for falls and balance or

walking problems among older adults in the U.S. Prev Med (Baltim). 2019;126.

- [31] Scott D, Blizzard L, Fell J, Jones G. Ambulatory activity, body composition, and lower-limb muscle strength in older adults. Med Sci Sports Exerc. 2009;41(2):383-9.
- [32] Giannouli E, Fillekes MP, Mellone S, Weibel R, Bock O, Zijlstra W. Predictors of real-life mobility in community-dwelling older adults: An exploration based on a comprehensive framework for analyzing mobility. Eur Rev Aging Phys Act. 2019;16(1):19.
- [33] Bean JF, Latham NK, Holt N, Kurlinksi L, Ni P, Leveille S, et al. Which neuromuscular attributes are most associated with mobility among older primary care patients? Arch Phys Med Rehabil. 2013;94(12):2381-8.
- [34] Demura T, Demura S, Uchiyama M, Sugiura H. Examination of factors affecting gait properties in healthy older adults: focusing on knee extension strength, visual acuity, and knee joint pain. J Geriatr Phys Ther. 2014;37(2):52-7.
- [35] Sakari R, Era P, Rantanen T, Leskinen E, Laukkanen P, Heikkinen E. Mobility performance and its sensory, psychomotor and musculoskeletal determinants from age 75 to age 80. Aging Clin Exp Res. 2010;22(1):47-53.
- [36] Menz HB, Lord SR, Fitzpatrick RC, H.B. M, S.R., Lord. Acceleration patterns of the head and pelvis when walking are associated with risk of falling in community-dwelling older people. J Gerontol A Biol Sci Med Sci. 2003;58(5):446-52.
- [37] Lindemann U, Mohr C, Machann J, Blatzonis K, Rapp K, Becker C. Association between Thigh Muscle Volume and Leg Muscle Power in Older Women. PLoS One. 2016;11(6):e0157885-e0157885.
- [38] Marques E, Carvalho J, Pizarro A, Wanderlay F, Mota J. The influence of physical activity, body composition, and lower extremity strength on walking ability. Motor Control. 2011;15(4):494-506.
- [39] Valtonen AM, Pöyhönen T, Manninen M, Heinonen A, Sipilä S. Knee extensor and flexor muscle power explains stair ascension time in patients with unilateral late-stage knee osteoarthritis: A cross-sectional study. Arch Phys Med Rehabil. 2015;96(2):253-9.
- [40] Shimada H, Kim H, Yoshida H, Suzukawa M, Makizako H, Yoshida Y, et al. Relationship between age-associated changes of gait and falls and lifespace in elderly people. J Phys Ther Sci. 2010;22(4):419-24.
- [41] Suh MJ, Kim BR, Kim SR, Han EY, Nam KW, Lee SY, et al. Bilateral Quadriceps Muscle Strength and Pain Correlate with Gait Speed and Gait Endurance Early after Unilateral Total Knee Arthroplasty: A Crosssectional Study. Am J Phys Med Rehabil. 2019;98(10):897-905.
- [42] Alexander NB, Hausdorff JM. Linking thinking, walking, and falling. Journals Gerontol Ser A Biol Sci Med Sci. 2008;63(12):1325-8.
- [43] Roshanravan B, Patel K V, Fried LF, Robinson-Cohen C, de Boer IH, Harris T, et al. Association of Muscle Endurance, Fatigability, and Strength With Functional Limitation and Mortality in the Health Aging and Body Composition Study. Journals Gerontol Ser A Biol Sci Med Sci. 2017;72(2):284-91.
- [44] Wages NP, Simon JE, Clark LA, Amano S, Russ DW, Manini TM, et al. Relative contribution of muscle strength, lean mass, and lower extremity motor function in explaining between-person variance in mobility in older adults. BMC Geriatr. 2020;20(1):1-11.
- [45] Francis P, McCormack W, Lyons M, Jakeman P. Age-Group Differences in the Performance of Selected Tests of Physical Function and Association with Lower Extremity Strength. J Geriatr Phys Ther. 2019;42(1):1-8.
- [46] Gouveia ÉR, Gouveia BR, Ihle A, Kliegel M, Marques A, Freitas DL. Balance and mobility relationships in older adults: A representative

population-based cross-sectional study in Madeira, Portugal. Arch Gerontol Geriatr. 2019;80:65-9.

- [47] Mantel A, Trapuzzano A, Chizmar S, Haffke L, Dawson N. An Investigation of the Predictors of Comfortable and Fast Gait Speed in Community-Dwelling Older Adults. J Geriatr Phys Ther. 2019;42(4):E62-8.
- [48] Manty M, Ekmann A, Thinggaard M, Christensen K. Fatigability in basic indoor mobility in nonagenarians. J Am Geriatr Soc. 2012;60(7):1279-85.
- [49] Misu S, Doi T, Asai T, Sawa R, Tsutsumimoto K, Nakakubo S, et al. Association between toe flexor strength and spatiotemporal gait parameters in community-dwelling older people. J Neuroeng Rehabil. 2014;11:143.
- [50] Miyazaki J, Murata S, Horie J, Uematsu A, Hortobágyi T, Suzuki S. Lumbar lordosis angle (LLA) and leg strength predict walking ability in elderly males. Arch Gerontol Geriatr. 2013;56(1):141-7.
- [51] Hayashida I, Tanimoto Y, Takahashi Y, Kusabiraki T, Tamaki J. Correlation between muscle strength and muscle mass, and their association with walking speed, in community-dwelling elderly Japanese individuals. PLoS One. 2014;9(11):e111810-e111810.
- [52] Ostchega Y, Dillon CF, Lindle R, Carroll M, Hurley BF. Isokinetic leg muscle strength in older Americans and its relationship to a standardized walk test: Data from the National Health and Nutrition Examination Survey 1999-2000. Vol. 52, Journal of the American Geriatrics Society. 2004. p. 977-82.
- [53] Thingstad P, Egerton T, Ihlen EF, Taraldsen K, Moe-Nilssen R, Helbostad JL. Identification of gait domains and key gait variables following hip fracture. BMC Geriatr. 2015;15(1).
- [54] Reid KF, Naumova EN, Carabello RJ, Phillips EM, Fielding RA. Lower extremity muscle mass predicts functional performance in mobilitylimited elders. J Nutr Health Aging. 2008;12(7):493-8.
- [55] Sayer AA, Syddall HE, Martin HJ, Dennison EM, Anderson FH, Cooper C. Falls, sarcopenia, and growth in early life: Findings from the hertfordshire cohort study. Am J Epidemiol. 2006;164(7):665-71.
- [56] Puthoff ML, Nielsen DH. Relationships among impairments in lowerextremity strength and power, functional limitations, and disability in older adults. Phys Ther. 2007;87(10):1334-47.
- [57] Suri P, Kiely DK, Leveille SG, Frontera WR, Bean JF. Trunk Muscle Attributes Are Associated With Balance and Mobility in Older Adults: A Pilot Study. PM R. 2009;1(10):916-24.
- [58] Hassinen M, Komulainen P, Lakka TA, Vaisanen SB, Rauramaa R. Associations of Body Composition and Physical Activity with Balance and Walking Ability in the Elderly. J Phys Act Health. 2005;2(3):298-306.
- [59] Makris UE, Paul TM, Holt NE, Latham NK, Ni P, Jette A, et al. The Relationship Among Neuromuscular Impairments, Chronic Back Pain, and Mobility in Older Adults. PM R. 2016;8(8):738-47.
- [60] Wiśniowska-Szurlej A, Ćwirlej-Sozańska A, Wołoszyn N, Sozański B, Wilmowska-Pietruszyńska A. Association between handgrip strength, mobility, leg strength, flexibility, and postural balance in older adults under long-term care facilities. Biomed Res Int. 2019;2019.
- [61] Walsh JR, Morris NR, McKeough ZJ, Yerkovich ST, Paratz JD. A simple clinical measure of quadriceps muscle strength identifies responders to pulmonary rehabilitation. Pulm Med. 2014;
- [62] Steiner MC, Singh SJ, Morgan MDL. The contribution of peripheral muscle function to shuttle walking performance in patients with chronic obstructive pulmonary disease. J Cardiopulm Rehabil. 2005;25(1):43-9.
- [63] Marcus RL, Addison O, Dibble LE, Foreman KB, Morrell G, Lastayo P. Intramuscular adipose tissue, sarcopenia, and mobility function in older individuals. J Aging Res. 2012;2012.

- [64] Assantachai P, Muangpaisan W, Intalapaporn S, Sitthichai K, Udompunturak S. Cut-off points of quadriceps strength, declines and relationships of sarcopenia-related variables among Thai community-dwelling older adults. Geriatr Gerontol Int. 2014;14(SUPPL.1):61-8.
- [65] Hillman CM, Heinecke EL, Hii JWS, Cecins NM, Jenkins SC, Eastwood PR. Relationship between body composition, peripheral muscle strength and functional exercise capacity in patients with severe chronic obstructive pulmonary disease. Intern Med J. 2012;42(5):578-81.
- [66] Nakamura Y, Tanaka K, Shigematsu R, Homma T, Sekizawa K. Determinants of cardiorespiratory fitness in patients with chronic obstructive pulmonary disease, focusing on activities parallel to daily living. Respirology. 2004;9(3):326-30.
- [67] Skoffer B, Dalgas U, Mechlenburg I, Søballe K, Maribo T. Functional performance is associated with both knee extensor and flexor muscle strength in patients scheduled for total knee arthroplasty: A crosssectional study. J Rehabil Med. 2015;47(5):454-9.
- [68] Nakao H, Yoshikawa T, Mimura T, Hara T, Nishimoto K, Fujimoto S. Influence of lower-extremity muscle force, muscle mass and asymmetry in knee extension force on gait ability in community-dwelling elderly women. J Phys Ther Sci. 2006;18(1):73-9.
- [69] Ingemarsson AH, Frändin K, Mellström D, Möller M. Walking ability and activity level after hip fracture in the elderly--a follow-up. J Rehabil Med. 2003;35(2):76-83.
- [70] Skoffer B, Maribo T, Mechlenburg I, Hansen P, Soballe K. Efficacy of Preoperative Progressive Resistance Training on Postoperative Outcomes in Patients Undergoing Total Knee Arthroplasty. Arthritis Care Res. 2016;68(9):1239-51.
- [71] Staples WH, Kays A, Richman R. Examination of the correlation between physical and psychological measures in community-dwelling older adults. Clin Interv Aging. 2020;15:293-300.
- [72] Van Der Esch M, Steultjens M, Knol DL, Dinant H, Dekker J. Joint laxity and the relationship between muscle strength and functional ability in patients with osteoarthritis of the knee. Arthritis Care Res. 2006;55(6):953-9.
- [73] Katzman WB, Wanek L, Shepherd JA, Sellmeyer DE. Age-related hyperkyphosis: its causes, consequences, and management. J Orthop Sport Phys Ther. 2010;40(6):352-60.
- [74] Marcus RL, Addison O, Dibble LE, Foreman KB, Morrell G, Lastayo P. Intramuscular adipose tissue, sarcopenia, and mobility function in older individuals. J Aging Res. 2012;2012:629637.
- [75] Ng TKW, Lo S kai, Cheing GLY. The association between physical characteristics of the ankle joint and the mobility performance in elderly people with type 2 diabetes mellitus. Arch Gerontol Geriatr. 2014;59(2):346-52.
- [76] Shimada H, Kim H, Yoshida H, Yoshida Y, Saito K, Suzukawa M, et al. Factors Associated with the Timed Up and Go Test Score in Elderly Women. J Phys Ther Sci. 2010;22(3):273-8.
- [77] Porta M, Pilloni G, Corona F, Fastame MC, Hitchott PK, Penna MP, et al. Relationships between objectively assessed functional mobility and handgrip strength in healthy older adults. Eur Geriatr Med. 2018;9(2):201-9.
- [78] Said AM, Manaf H, Bukry SA, Justine M. Mobility and Balance and Their Correlation with Physiological Factors in Elderly with Different Foot Postures. Biomed Res Int. 2015;2015:1-7.
- [79] Uritani D, Fukumoto T, Matsumoto D, Shima M. The Relationship Between Toe Grip Strength and Dynamic Balance or Functional Mobility Among Community-Dwelling Japanese Older Adults: A Cross-Sectional Study. J

Aging Phys Act. 2016;24(3):459-64.

- [80] Minematsu A, Hazaki K, Harano A, Okamoto N. Association between muscle strength and physical performance in japanese elderly: The fujiwara-kyo study. J Clin Gerontol Geriatr. 2018;9(2):44-51.
- [81] Cuoco A, Callahan DM, Sayers S, Frontera WR, Bean J, Fielding RA. Impact of muscle power and force on gait speed in disabled older men and women. Journals Gerontol - Ser A Biol Sci Med Sci. 2004;59(11):1200-6.
- [82] Valtonen A, Poyhonen T, Heinonen A, Sipila S. Muscle deficits persist after unilateral knee replacement and have implications for rehabilitation. Phys Ther. 2009;89(10):1072-9.
- [83] Roig M, Eng JJ, MacIntyre DL, Road JD, Reid DW. Associations of the Stair Climb Power Test with muscle strength and functional performance in people with chronic obstructive pulmonary disease: a cross-sectional study. Phys Ther. 2010;90(12):1774-82.
- [84] Shahtahmassebi B, Hebert JJ, Hecimovich MD, Fairchild TJ. Associations between trunk muscle morphology, strength and function in older adults. Sci Rep. 2017;7(1):1-10.
- [85] Fragala MS, Alley DE, Shardell MD, Harris TB, McLean RR, Kiel DP, et al. Comparison of Handgrip and Leg Extension Strength in Predicting Slow Gait Speed in Older Adults. J Am Geriatr Soc. 2016;64(1):144-50.
- [86] Yokoyama H, Shiraiwa T, Takahara M, Iwamoto M, Kuribayashi N, Nomura T, et al. Applications of physical performance measures to routine diabetes care for frailty prevention concept: Fundamental data with grip strength, gait speed, timed chair stand speed, standing balance, and knee extension strength. BMJ Open Diabetes Res Care. 2020;8(1).
- [87] Vilaã§a KHC, Alves NMCNMC, Carneiro JAOJAO, Ferriolli E, Lima NKC, Moriguti JC, et al. Body composition, muscle strength and quality of active elderly women according to the distance covered in the 6-minute walk test. Brazilian J Phys Ther / Rev Bras Fisioter. 2013;17(3):289-96.
- [88] Hicks GE, Shardell M, Alley DE, Miller RR, Bandinelli S, Guralnik J, et al. Absolute strength and loss of strength as predictors of mobility decline in older adults: The InCHIANTI study. Journals Gerontol - Ser A Biol Sci Med Sci. 2012;67 A(1):66-73.
- [89] Vongsirinavarat M, Mathiyakom W, Kraiwong R, Hiengkaew V. Fear of Falling, Lower Extremity Strength, and Physical and Balance Performance in Older Adults with Diabetes Mellitus. J Diabetes Res. 2020;2020.
- [90] Marsh AP, Jack Rejeski W, Lang W, Miller ME, Messier SP. Baseline balance and functional decline in older adults with knee pain: the Observational Arthritis Study in Seniors. J Am Geriatr Soc. 2003;51(3):331-9.
- [91] Bean JF, Kiely DK, LaRose S, Leveille SG, JF B, DK K, et al. Which impairments are most associated with high mobility performance in older adults? Implications for a rehabilitation prescription. Arch Phys Med Rehabil. 2008;89(12):2278-84.
- [92] Bootsma-Van Der Wiel A, Gussekloo J, De Craen AJM, Van Exel E, Bloem BR, Westendorp RGJ. Common chronic diseases and general impairments as determinants of walking disability in the oldest-old population. J Am Geriatr Soc. 2002;50(8):1405-10.
- [93] Assantachai P, Muangpaisan W, Intalapaporn S, Sitthichai K, Udompunturak S. Cut-off points of quadriceps strength, declines and relationships of sarcopenia-related variables among Thai community-dwelling older adults. Geriatr Gerontol Int. 2014;14(SUPPL.1):61-8.
- [94] Schmidt CT, Ward RE, Suri P, Kiely DK, Goldstein R, Pensheng N, et al. Which Neuromuscular Attributes Are Associated With Changes in Mobility Among Community-Dwelling Older Adults With Symptomatic Lumbar Spinal Stenosis? Arch Phys Med Rehabil. 2018;99(11):2190-7.
- [95] Garcia IFF, Tiuganji CT, Simoes M do SMP, Santoro IL, Lunardi AC.

Systemic effects of chronic obstructive pulmonary disease in young-old adults' life-space mobility. Int J Chron Obstruct Pulmon Dis. 2017;12:2777-85.

- [96] Kuspinar A, Verschoor CP, Beauchamp MK, Dushoff J, Ma J, Amster E, et al. Modifiable factors related to life-space mobility in communitydwelling older adults: Results from the Canadian Longitudinal Study on Aging. BMC Geriatr. 2020;20(1):1-10.
- [97] Aarden JJ, Van Der Schaaf M, Van Der Esch M, Reichardt LA, Van Seben R, Bosch JA, et al. Muscle strength is longitudinally associated with mobility among older adults after acute hospitalization: The Hospital-ADL study. PLoS One. 2019;14(7):e0219041.
- [98] Ward RE, Beauchamp MK, Latham NK, Leveille SG, Percac-Lima S, Kurlinski L, et al. Neuromuscular Impairments Contributing to Persistently Poor and Declining Lower-Extremity Mobility Among Older Adults: New Findings Informing Geriatric Rehabilitation. Arch Phys Med Rehabil. 2016;97(8):1316-22.
- [99] Bohannon RW, RW B. Knee extension strength and adiposity explain some of older adults' self-reported difficulty with mobility. J Geriatr Phys Ther. 2008;31(3):101-4.
- [100] Chaudhry SI, McAvay G, Ning Y, Allore HG, Newman AB, Gill TM. Geriatric impairments and disability: the Cardiovascular Health Study. J Am Geriatr Soc. 2010;58(9):1686-92.
- [101] Jung S, Yabushita N, Kim M, Seino S, Nemoto M, Osuka Y, et al. Obesity and muscle weakness as risk factors for mobility limitation in community-dwelling older Japanese women: A two-year follow-up investigation. J Nutr Heal Aging. 2016;20(1):28-34.
- [102] Rantanen T, JM G, Ferrucci L, BWJ P, Leveille S, Sipilä S, et al. Coimpairments as predictors of severe walking disability in older women. J Am Geriatr Soc. 2001;49(1):21-7.
- [103] Visser M, Goodpaster BH, Kritchevsky SB, Newman AB, Nevitt M, Rubin SM, et al. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci. 2005;60(3):324-33.
- [104] Papachristou E, Wannamethee SG, Lennon LT, Papacosta O, Whincup PH, Iliffe S, et al. Ability of Self-Reported Frailty Components to Predict Incident Disability, Falls, and All-Cause Mortality: Results From a Population-Based Study of Older British Men. J Am Med Dir Assoc. 2017;18(2):152-7.
- [105] Grosicki GJ, Travison TG, Zhu H, Magaziner J, Binder EF, Pahor M, et al. Application of Cut-Points for Low Muscle Strength and Lean Mass in Mobility-Limited Older Adults. J Am Geriatr Soc. 2020;68(7):1445-53.
- [106] Carbone LD, Satterfield S, Liu C, Kwoh KC, Neogi T, Tolley E, et al. Assistive walking device use and knee osteoarthritis: Results from the health, aging and body composition study (Health ABC Study). Arch Phys Med Rehabil. 2013;94(2):332-9.
- [107] Bassey EJ, Short AH. A new method for measuring power output in a single leg extension: feasibility, reliability and validity. Eur J Appl Physiol Occup Physiol. 1990;60(5):385-90.
- [108] Thomas M, Fiatarone MA, Fielding RA. Leg power in young women: Relationship to body composition, strength, and function. Med Sci Sports Exerc. 1996;28(10):1321-6.
- [109] Puthoff ML, Janz KF, Nielson D. The relationship between lower extremity strength and power to everday walking behaviors in older adults with functional limitations. J Geriatr Phys Ther. 2008;31(1):24-31.
- [110] Sayers SP, Guralnik JM, Thombs LA, Fielding RA. Effect of leg muscle contraction velocity on functional performance in older men and women. J Am Geriatr Soc. 2005;53(3):467-71.

- [111] Ko S, Stenholm S, Metter EJ, Ferrucci L. Age-associated gait patterns and the role of lower extremity strength - Results from the Baltimore Longitudinal Study of Aging. Arch Gerontol Geriatr. 2012;55(2):474-9.
- [112] LaRoche DP, Villa MR, Bond CW, Cook SB. Knee extensor power asymmetry is unrelated to functional mobility of older adults. Exp Gerontol. 2017;98:54-61.
- [113] Bean JF, Kiely DK, LaRose S, Goldstein R, Frontera WR, Leveille SG. Are changes in leg power responsible for clinically meaningful improvements in mobility in older adults?. J Am Geriatr Soc. 2010;58(12):2363-8.
- [114] Herman S, Kiely DK, Leveille S, O'Neill E, Cyberey S, Bean JF. Upper and Lower Limb Muscle Power Relationships in Mobility-Limited Older Adults. Journals Gerontol Ser A Biol Sci Med Sci. 2005;60(4):476-80.
- [115] Sillanpaa E, Stenroth L, Bijlsma AY, Rantanen T, McPhee JS, Maden-Wilkinson TM, et al. Associations between muscle strength, spirometric pulmonary function and mobility in healthy older adults. Age (Omaha). 2014;36(4):9667.
- [116] Pahor M, Group LS. Effects of a Physical Activity Intervention on Measures of Physical Performance: Results of the Lifestyle Interventions and Independence for Elders Pilot (LIFE-P) Study. Journals Gerontol Ser A Biol Sci Med Sci. 2006;61(11):1157-65.
- [117] Pojednic RM, Clark DJ, Patten C, Reid K, Phillips EM, Fielding RA. The specific contributions of force and velocity to muscle power in older adults. Exp Gerontol. 2012;47(8):608-13.
- [118] Cruz J, Marques A, Jácome C, Gabriel R, Figueiredo D. Global functioning of COPD patients with and without functional balance impairment: An exploratory analysis based on the ICF framework. COPD J Chronic Obstr Pulm Dis. 2015;12(2):207-16.
- [119] Kuo HK, Leveille SG, Yen CJ, Chai HM, Chang CH, Yeh YC, et al. Exploring how peak leg power and usual gait speed are linked to late-life disability: Data from the National Health and Nutrition Examination Survey (NHANES), 1999-2002. Am J Phys Med Rehabil. 2006;85(8):650-8.
- [120] McGill SM, Childs A, Liebenson C. Endurance times for low back stabilization exercises: Clinical targets for testing and training from a normal database. Arch Phys Med Rehabil. 1999;80(8):941-4.
- [121] Hollman JH, Conner MN, Goodman KA, Kremer KH, Petkus MT, Lanzino DJ. Timed limb coordination performance is associated with walking speed in healthy older adults: A cross-sectional exploratory study. Gait Posture. 2013;38(2):316-20.
- [122] James EG, Leveille SG, You T, Hausdorff JM, Travison T, Manor B, et al. Gait coordination impairment is associated with mobility in older adults. Exp Gerontol. 2016;80:12-6.
- [123] Kito N, Shinkoda K, Yamasaki T, Kanemura N, Anan M, Okanishi N, et al. Contribution of knee adduction moment impulse to pain and disability in Japanese women with medial knee osteoarthritis. Clin Biomech (Bristol, Avon). 2010;25(9):914-9.
- [124] McGibbon CA, Krebs DE. Age-related changes in lower trunk coordination and energy transfer during gait. J Neurophysiol. 2001;85(5):1923-31.
- [125] Fukaya T, Mutsuzaki H, Nakano W, Mori K. Characteristics of frontal plane lower limb movement during walking in patients with knee osteoarthritis of varying severity. J Orthop Surg. 2019;27(2).
- [126] Thakral M, Shi L, Shmerling RH, Bean JF, Leveille SG. A stiff price to pay: does joint stiffness predict disability in an older population?. J Am Geriatr Soc. 2014;62(10):1891-9.
- [127] Ziebart C, Gibbs JC, McArthur C, Papaioannou A, Mittmann N, Laprade J, et al. Are osteoporotic vertebral fractures or forward head posture associated with performance-based measures of balance and mobility? Arch Osteoporos. 2019;14(1).

- [128] Miyakoshi N, Kasukawa Y, Ishikawa Y, Nozaka K, Shimada Y. Spinal alignment and mobility in subjects with chronic low back pain with walking disturbance: A community-dwelling study. Tohoku J Exp Med. 2010;221(1):53-9.
- [129] Muchna A, Najafi B, Wendel CS, Schwenk M, Armstrong DG, Mohler J. Foot problems in older adults associations with incident falls, frailty syndrome, and sensor-derived gait, balance, and physical activity measures. J Am Podiatr Med Assoc. 2018;108(2):126-39.
- [130] Hajghanbari B, Jayne Garland S, Road JD, Darlene Reid W. Pain and physical performance in people with COPD. Respir Med. 2013 Nov;107(11):1692-9.
- [131] Liu-Ambrose T, Eng JJ, Khan KM, Mallinson A, Carter ND, McKay HA. The influence of back pain on balance and functional mobility in 65- to 75year-old women with osteoporosis. Osteoporos Int. 2002;13(11):868-73.
- [132] Mickle KJ, Munro BJ, Lord SR, Menz HB, Steele JR. Cross-sectional analysis of foot function, functional ability, and health-related quality of life in older people with disabling foot pain. Wiley Online Libr. 2011;63(11):1592-8.
- [133] Poole E, Treleaven J, Jull G. The influence of neck pain on balance and gait parameters in community-dwelling elders. Man Ther. 2008;13(4):317-24.
- [134] de Kruijf M, Verlinden VJA, Huygen FJPM, Hofman A, van der Geest JN, Uitterlinden AG, et al. Chronic joint pain in the lower body is associated with gait differences independent from radiographic osteoarthritis. Gait Posture. 2015;42(3):354-9.
- [135] Nagano Y, Takahashi T, Ishida K, Hirose D, Okumiya K, Matsubayashi K, et al. Knee pain in people aged 80 years and older is not associated with gait parameter and functional performance. Int J Rehabil Res. 2003;26(2):131-6.
- [136] Menz HB, Dufour AB, Casey VA, Riskowski JL, McLean RR, Katz P, et al. Foot pain and mobility limitations in older adults: The framingham foot study. Journals Gerontol - Ser A Biol Sci Med Sci. 2013;68(10):1281-5.
- [137] Weaver GD, Kuo YF, Raji MA, Al Snih S, Ray L, Torres E, et al. Pain and disability in older Mexican-American adults. J Am Geriatr Soc. 2009;57(6):992-9.
- [138] Eggermont LHP, Leveille SG, Shi L, Kiely DK, Shmerling RH, Jones RN, et al. Pain characteristics associated with the onset of disability in older adults: The maintenance of balance, independent living, intellect, and zest in the elderly boston study. J Am Geriatr Soc. 2014;62(6):1007-16.
- [139] Marsh AP, Jack Rejeski W, Lang W, Miller ME, Messier SP. Baseline balance and functional decline in older adults with knee pain: The Observational Arthritis Study in Seniors. J Am Geriatr Soc. 2003;51(3):331-9.
- [140] Poole E, Treleaven J, Jull G. The influence of neck pain on balance and gait parameters in community-dwelling elders. Man Ther. 2008;13(4):317-24.
- [141] Pirrie M, Saini G, Angeles R, Marzanek F, Parascandalo J, Agarwal G. Risk of falls and fear of falling in older adults residing in public housing in Ontario, Canada: Findings from a multisite observational study. BMC Geriatr. 2020;20(1).
- [142] Brisson NM, Gatti AA, Stratford PW, Maly MR. Self-efficacy, pain, and quadriceps capacity at baseline predict changes in mobility performance over 2 years in women with knee osteoarthritis. Clin Rheumatol. 2018;37(2):495-504.
- [143] Iversen MD, Katz JN. Examination findings and self-reported walking capacity in patients with lumbar spinal stenosis. Phys Ther.

2001;81(7):1296-306.

- [144] Raggi A, Corso B, De Torres L, Quintas R, Chatterji S, Sainio P, et al. Determinants of mobility in populations of older adults: Results from a cross-sectional study in Finland, Poland and Spain. Maturitas. 2018;115:84-91.
- [145] Simonsick EM, Aronson B, Schrack JA, Hicks GE, Jerome GJ, Patel K V, et al. Lumbopelvic Pain and Threats to Walking Ability in Well-Functioning Older Adults: Findings from the Baltimore Longitudinal Study of Aging. J Am Geriatr Soc. 2018;66(4):714-20.
- [146] Ilves OE, Hermsen LAH, van der Wouden JC, Holla JFM, van der Leeden M, Smalbrugge M, et al. Are changes in pain, cognitive appraisals and coping strategies associated with changes in physical functioning in older adults with joint pain and chronic diseases? Aging Clin Exp Res. 2019;31(3):377-83.
- [147] Suwannarat P, Thaweewannakij T, Kaewsanmung S, Mato L, Amatachaya S. Walking devices used by community-dwelling elderly: Proportion, types, and associated factors. Hong Kong Physiother J. 2015;33(1):34-41.
- [148] Lo AX, Brown CJ, Sawyer P, Kennedy RE, Allman RM. Life-space mobility declines associated with incident falls and fractures. J Am Geriatr Soc. 2014;62(5):919-23.
- [149] Kulmala J, Sipila S, Tiainen K, Parssinen O, Koskenvuo M, Kaprio J, et al. Vision in relation to lower extremity deficit in older women: crosssectional and longitudinal study. Aging Clin Exp Res. 2012;24(5):461-7.
- [150] Leat SJ, Lovie-Kitchin JE. Visual function, visual attention, and mobility performance in low vision. Optom Vis Sci. 2008;85(11):1049-56.
- [151] Fisher D, Ward M, Hoffman H, Li C. Impact of Sensory Impairments on Functional Disability in Adults with Arthritis. Am J Prev Med. 2016;50(4):454-62.
- [152] Cordes C, Heutink J, Tucha OM, Brookhuis KA, Brouwer WH, Melis-Dankers BJM. Vision-related fitness to drive mobility scooters: A practical driving test. J Rehabil Med. 2017;49(3):270-6.
- [153] Hairi NN, Bulgiba A, Peramalah D, Mudla I. Do older people with visual impairment and living alone in a rural developing country report greater difficulty in managing stairs? Prev Med (Baltim). 2013;56(1):8-11.
- [154] Péres K, Matharan F, Daien V, Nael V, Edjolo A, Isabelle Bourdel-Marchasson I, et al. Visual loss and subsequent activity limitations in the elderly: The French three-city cohort. Am J Public Health. 2017;107(4):564-9.
- [155] West SK, Munoz B, Rubin GS, Bandeen-Roche K, Broman AT, Turano KA. Compensatory strategy use identifies risk of incident disability for the visually impaired. Arch Ophthalmol. 2005;123(9):1242-7.
- [156] Swenor BK, Simonsick EM, Ferrucci L, Newman AB, Rubin S, Wilson V. Visual impairment and incident mobility limitations: The health, aging and body composition study. J Am Geriatr Soc. 2015;63(1):46-54.
- [157] Ross LA, Anstey KJ, Kiely KM, Windsor TD, Byles JE, Luszcz MA, et al. Older drivers in australia: Trends in driving status and cognitive and visual impairment. J Am Geriatr Soc. 2009;57 (10):1868-73.
- [158] Subhi H, Latham K, Myint J, Crossland M. Functional visual fields: a cross-sectional UK study to determine which visual field paradigms best reflect difficulty with mobility function. BMJ Open. 2017;7(11):e018831e018831.
- [159] Viljanen A, Kaprio J, Pyykkö I, Sorri M, Koskenvuo M, Rantanen T. Hearing acuity as a predictor of walking difficulties in older women. J Am Geriatr Soc. 2009;57(12):2282-6.
- [160] West CG, Gildengorin G, Haegerstrom-Portnoy G, Lott LA, Schneck ME, Brabyn JA. Vision and driving self-restriction in older adults. J Am Geriatr Soc. 2003;51(10):1348-55.

- [161] Cordeiro RC, Jardim JR, Perracini MR, Ramos LR. Factors associated with functional balance and mobility among elderly diabetic outpatients. Arq Bras Endocrinol Metabol. 2009;53(7):834-43.
- [162] Lindell E, Kollén L, Johansson M, Karlsson T, Rydén L, Zettergren A, et al. Dizziness and its association with walking speed and falls efficacy among older men and women in an urban population. Aging Clin Exp Res. 2020;32(6):1049-56.
- [163] Adachi D, Nishiguchi S, Fukutani N, Kayama H, Tanigawa T, Yukutake T, et al. Factors associating with shuttle walking test results in communitydwelling elderly people. Aging Clin Exp Res. 2015;27(6):829-34.
- [164] Chien H, Lu T. Control of the motion of the body's center of mass in relation to the center of pressure during high-heeled gait. Gait Posture. 2013;38(3):391-6.
- [165] Dyer CAE, Singh SJ, Stockley RA, Sinclair AJ, Hill SL. The incremental shuttle walking test in elderly people with chronic airflow limitation. Thorax. 2002;57(1):34-8.
- [166] Andersson EA, Lundahl G, Wecke L, Lindblom I, Nilsson J. Maximal aerobic power versus performance in two aerobic endurance tests among young and old adults. Gerontology. 2011;57(6):502-12.
- [167] Spruit MA, Watkins ML, Edwards LD, Vestbo J, Calverley PMA, Pinto-Plata V, et al. Determinants of poor 6-min walking distance in patients with COPD: The ECLIPSE cohort. Respir Med. 2010;104(6):849-57.
- [168] Watsford ML, Murphy AJ, Pine MJ. The effects of ageing on respiratory muscle function and performance in older adults. J Sci Med Sport. 2007;10(1):36-44.
- [169] Leone M, Duverge S, Kalinova E, Bui HT, Comtois AS. Comparison of bioenergetics of walking during a multistage incremental shuttle walk test and a 6-min walk test in active older adults. Aging Clin Exp Res. 2017;29(2):239-46.
- [170] Medina-Mirapeix F, Vivo-Fernandez I, Lopez-Canizares J. Five times sitto-stand test in subjects with total knee replacement: Reliability and relationship with functional mobility tests. Gait Posture. 2018;59:258-60.
- [171] Abe T, Suzuki T, Yoshida H, Shimada H, Inoue N. The Relationship Between Pulmonary Function and Physical Function and Mobility in Community-Dwelling Elderly Women Aged 75 Years or Older. J Phys Ther Sci. 2011;23(3):443-9.
- [172] Vaz Fragoso CA, Hsu F-C, Brinkley T, Church T, Liu CK, Manini T, et al. Combined Reduced Forced Expiratory Volume in 1 Second (FEV1) and Peripheral Artery Disease in Sedentary Elders With Functional Limitations. J Am Med Dir Assoc. 2014;15(9):665-70.
- [173] Opina MTD, Brinkley TE, Gordon M, Lyles MF, Nicklas BJ. Association of Breathing Reserve at Peak Exercise With Body Composition and Physical Function in Older Adults With Obesity. Journals Gerontol - Ser A Biol Sci Med Sci. 2019;74(12):1973-9.
- [174] Protas EJ, Raines ML, Tissier S. Comparison of spatiotemporal and energy cost of the use of 3 different walkers and unassisted walking in older adults. Arch Phys Med Rehabil. 2007;88(6):768-73.
- [175] Liao Y, Huang PH, Hsiang CY, Huang JH, Hsueh MC, Park JH. Associations of older Taiwanese adults' personal attributes and perceptions of the neighborhood environment concerning walking for recreation and transportation. Int J Environ Res Public Health. 2017;14(12):1594.
- [176] McDermott MM, Fried L, Simonsick E, Ling S, Guralnik JM. Asymptomatic peripheral arterial disease is independently associated with impaired lower extremity functioning: the women's health and aging study. Circulation. 2000;101(9):1007-12.
- [177] Matsushita K, Ballew SH, Sang Y, Kalbaugh C, Loehr LR, Hirsch AT, et al.

Ankle-brachial index and physical function in older individuals: The Atherosclerosis Risk in Communities (ARIC) study. Atherosclerosis. 2017;257:208-15.

- [178] McDermott MM, Ferrucci L, Guralnik JM, Dyer AR, Liu K, Pearce WH, et al. The ankle-brachial index is associated with the magnitude of impaired walking endurance among men and women with peripheral arterial disease. Vasc Med. 2010;15(4):251-7.
- [179] Rosano C, Longstreth WT, Boudreau R, Taylor CA, Du Y, Kuller LH, et al. High blood pressure accelerates gait slowing inwell-functioning older adults over 18-years of follow-up. J Am Geriatr Soc. 2011;59(3):390-7.
- [180] Elbaz A, Ripert M, Tavernier B, Février B, Zureik M, Gariépy J, et al. Common carotid artery intima-media thickness, carotid plaques, and walking speed. Stroke. 2005;36(10):2198-202.
- [181] Inzitari M, Naydeck BL, Newman AB. Coronary artery calcium and physical function in older adults: The cardiovascular health study. Journals Gerontol - Ser A Biol Sci Med Sci. 2008;63(10):1112-8.
- [182] Everson-Rose SA, Mendes de Leon CF, Roetker NS, Lutsey PL, Alonso A. Subclinical cardiovascular disease and changes in self-reported mobility: Multi-ethnic study of atherosclerosis. Journals Gerontol - Ser A Biol Sci Med Sci. 2018;73(2):218-24.
- [183] Mahendran N, Kuys SS, Brauer SG. Which impairments, activity limitations and personal factors at hospital discharge predict walking activity across the first 6 months poststroke? Disabil Rehabil. 2020;42(6):763-9.
- [184] Corna S, Arcolin I, Giardini M, Bellotti L, Godi M. Addition of aerobic training to conventional rehabilitation after hip fracture: a randomized, controlled, pilot feasibility study. Clin Rehabil. 2021;35(4):568-77.
- [185] Rouxel P, Webb E, Chandola T. Does public transport use prevent declines in walking speed among older adults living in England? A prospective cohort study. BMJ Open. 2017;7(9):e017702-e017702.
- [186] Pelosin E, Cerulli C, Ogliastro C, Lagravinese G, Mori L, Bonassi G, et al. A multimodal training modulates short afferent inhibition and improves complex walking in a cohort of faller older adults with an increased prevalence of Parkinson's disease. Journals Gerontol - Ser A Biol Sci Med Sci. 2020;75(4):722-8.
- [187] Sipilä S, Tirkkonen A, Savikangas T, Hänninen T, Laukkanen P, Alen M, et al. Effects of physical and cognitive training on gait speed and cognition in older adults: A randomized controlled trial. Scand J Med Sci Sport. 2021;31(7):1518-33.
- [188] Curcio F, Basile C, Liguori I, Della-Morte D, Gargiulo G, Galizia G, et al. Tinetti mobility test is related to muscle mass and strength in noninstitutionalized elderly people. Age (Omaha). 2016;38(5-6):525-33.
- [189] Meyer MRU, Janke MC, Beaujean AA. Predictors of older adults personal and community mobility: Using a comprehensive theoretical mobility framework. Gerontologist. 2014;54(3):398-408.
- [190] Ullrich P, Eckert T, Bongartz M, Werner C, Kiss R, Bauer JM, et al. Life-space mobility in older persons with cognitive impairment after discharge from geriatric rehabilitation. Arch Gerontol Geriatr. 2019;81:192-200.
- [191] Taylor K, Reginatto B, Patterson MR, Power D, Komaba Y, Maeda K, et al. Context focused older adult mobility and gait assessment. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. 2015. p. 6943-6.
- [192] Aranyavalai T, Jalayondeja C, Jalayondeja W, Pichaiyongwongdee S, Kaewkungwal J, Laskin JJ. Association between walking 5000 step/ day and fall incidence over six months in urban community-dwelling older people. BMC Geriatr. 2020;20(1).

- [193] Jeon M, Gu MO, Yim J. Comparison of Walking, Muscle Strength, Balance, and Fear of Falling Between Repeated Fall Group, One-time Fall Group, and Nonfall Group of the Elderly Receiving Home Care Service. Asian Nurs Res (Korean Soc Nurs Sci). 2017;11(4):290-6.
- [194] Kyrdalen IL, Thingstad P, Sandvik L, Ormstad H. Associations between gait speed and well-known fall risk factors among community-dwelling older adults. Physiother Res Int. 2019;24(1):e1743.
- [195] Lee EJ, Lee SA, Soh Y, Kim Y, Won CW, Chon J. Association between asymmetry in lower extremity lean mass and functional mobility in older adults living in the community: Results from the Korean Frailty and Aging Cohort Study. Medicine (Baltimore). 2019;98(45):e17882.
- [196] Macgilchrist C, Paul L, Ellis BM, Howe TE, Kennon B, Godwin J. Lowerlimb risk factors for falls in people with diabetes mellitus. Diabet Med. 2010;27(2):162-8.
- [197] Thaweewannakij T, Suwannarat P, Mato L, Amatachaya S. Functional ability and health status of community-dwelling late age elderly people with and without a history of falls. Hong Kong Physiother J. 2016;34:1-9.
- [198] Strotmeyer ES, Winger ME, Cauley JA, Boudreau RM, Cusick D, Collins RF, et al. Normative Values of Muscle Power using Force Plate Jump Tests in Men Aged 77-101 Years: The Osteoporotic Fractures in Men (MrOS) Study. J Nutr Health Aging. 2018;22(10):1167-75.
- [199] Zukowski LA, Tennant JE, Iyigun G, Giuliani CA, Plummer P. Dual-tasking impacts gait, cognitive performance, and gaze behavior during walking in a real-world environment in older adult fallers and non-fallers. Exp Gerontol. 2021;150.
- [200] Wang X, Ma Y, Wang J, Han P, Dong R, Kang L, et al. Mobility and Muscle Strength Together are More Strongly Correlated with Falls in Suburb-Dwelling Older Chinese. Sci Rep. 2016;6(1):1-7.
- [201] Baudendistel ST, Schmitt AC, Rodriguez A V., McFarland NR, Hass CJ. A turn for the worse: Turning performance in Parkinson's disease and Essential tremor. Clin Biomech. 2019;70:245-8.
- [202] McGough EL, Logsdon RG, Kelly VE, Teri L. Functional mobility limitations and falls in assisted living residents with dementia: physical performance assessment and quantitative gait analysis. J Geriatr Phys Ther. 2013;36(2):78-86.
- [203] Craig JJ, Bruetsch AP, Huisinga JM. Coordination of trunk and foot acceleration during gait is affected by walking velocity and fall history in elderly adults. Aging Clin Exp Res. 2019;31(7):943-50.
- [204] Gulley E, Ayers E, Verghese J. A comparison of turn and straight walking phases as predictors of incident falls. Gait Posture. 2020;79:239-43.
- [205] Rodríguez-Molinero A, Herrero-Larrea A, Miñarro A, Narvaiza L, Gálvez-Barrón C, Gonzalo León N, et al. The spatial parameters of gait and their association with falls, functional decline and death in older adults: a prospective study. Sci Rep. 2019;9(1).
- [206] Nikaido Y, Urakami H, Akisue T, Okada Y, Katsuta N, Kawami Y, et al. Associations among falls, gait variability, and balance function in idiopathic normal pressure hydrocephalus. Clin Neurol Neurosurg. 2019;183.
- [207] Suwannarat P, Thaweewannakij T, Kaewsanmung S, Mato L, Amatachaya S. Walking devices used by community-dwelling elderly: Proportion, types, and associated factors. Hong Kong Physiother J. 2015;33(1):34-41.
- [208] Bardin MG, Dourado VZ, M.G. B. Association between the occurrence of falls and the performance on the Incremental Shuttle Walk Test in elderly women. Brazilian J Phys Ther [Internet]. 2012;16(4):275-80. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed13&NEWS=N&A N=365505660

- [209] Zhou H, Peng K, Tiedemann A, Peng J, Sherrington C. Risk factors for falls among older community dwellers in Shenzhen, China. Inj Prev. 2019;25(1):31-5.
- [210] Orwoll ES, Fino NF, Gill TM, Cauley JA, Strotmeyer ES, Ensrud KE, et al. The Relationships between Physical Performance, Activity Levels, and Falls in Older Men. Journals Gerontol - Ser A Biol Sci Med Sci. 2019;74(9):1475-83.
- [211] Zukowski LA, Iyigün G, Giuliani CA, Plummer P. Effect of the environment on gait and gaze behavior in older adult fallers compared to older adult non-fallers. PLoS One. 2020;15(3).
- [212] Samuelsson CM, Hansson PO, Persson CU. Determinants of Recurrent Falls Poststroke: A 1-Year Follow-up of the Fall Study of Gothenburg. Arch Phys Med Rehabil. 2020;101(9):1541-8.
- [213] Kawabata K, Matsumoto T, Kasai T, Chang SH, Hirose J, Tanaka S. Association between fall history and performance-based physical function and postural sway in patients with rheumatoid arthritis. Mod Rheumatol. 2021;31(2):373-9.
- [214] Thaweewannakij T, Suwannarat P, Mato L, Amatachaya S. Functional ability and health status of community-dwelling late age elderly people with and without a history of falls. Hong Kong Physiother J. 2016;34:1-9.
- [215] Yamada M, Uemura K, Mori S, Nagai K, Uehara T, Arai H, et al. Faster decline of physical performance in older adults with higher levels of baseline locomotive function. Geriatr Gerontol Int. 2012;12(2):238-46.
- [216] Thrane G, Joakimsen RM, Thornquist E. The association between timed up and go test and history of falls: The Tromsø study. BMC Geriatr. 2007;7.
- [217] Auvinet B, Berrut G, Touzard C, Moutel L, Collet N, Chaleil D, et al. Gait abnormalities in elderly fallers. J Aging Phys Act. 2003;11(1):40-52.
- [218] Kwon MS, Kwon YR, Park YS, Kim JW. Comparison of gait patterns in elderly fallers and non-fallers. Technol Heal Care. 2018;26(S1 Supplement 1):S427-36.
- [219] Schootemeijer S, Weijer RHA, Hoozemans MJM, van Schooten KS, Delbaere K, Pijnappels M. Association between daily-life gait quality characteristics and physiological fall risk in older people. Sensors (Switzerland). 2020;20(19):1-8.
- [220] Yamagata M, Tateuchi H, Shimizu I, Ichihashi N. The effects of fall history on kinematic synergy during walking. J Biomech. 2019;82:204-10.
- [221] Shuman V, Coyle PC, Perera S, Van Swearingen JM, Albert SM, Brach JS. Association between Improved Mobility and Distal Health Outcomes. Journals Gerontol - Ser A Biol Sci Med Sci. 2020;75(12):2412-7.
- [222] McCluskey A, Thurtell A, Clemson L, Kendig H. A study investigating the travel habits and preferences of older Australian adults with a falls risk. Australas J Ageing. 2011;30(4):208-14.
- [223] Pek K, Chew J, Lim JP, Yew S, Tan CN, Yeo A, et al. Social frailty is independently associated with mood, nutrition, physical performance, and physical activity: Insights from a theory-guided approach. Int J Environ Res Public Health. 2020;17(12):1-15.
- [224] Winter CC, Brandes M, Müller C, Schubert T, Ringling M, Hillmann A, et al. Walking ability during daily life in patients with osteoarthritis of the knee or the hip and lumbar spinal stenosis: A cross sectional study. BMC Musculoskelet Disord. 2010;11.
- [225] Clermont CA, Barden JM. Accelerometer-based determination of gait variability in older adults with knee osteoarthritis. Gait Posture. 2016;50:126-30.
- [226] LD D, SJ J, JP C, AH M. Gait adaptations with aging in healthy participants and people with knee-joint osteoarthritis. Gait Posture. 2017;57:246-51.

- [227] Al-Zahrani KS, Bakheit AMO. A study of the gait characteristics of patients with chronic osteoarthritis of the knee. Disabil Rehabil. 2002;24(5):275-80.
- [228] Mahmoudian A, van Dieën JH, Baert IAC, Bruijn SM, Faber GS, Luyten FP, et al. Changes in gait characteristics of women with early and established medial knee osteoarthritis: Results from a 2-years longitudinal study. Clin Biomech. 2017;50:32-9.
- [229] Alexandre T da S, Corona LP, Nunes DP, Santos JLF, Duarte YAO, Lebrão ML. Similarities among factors associated with components of frailty in elderly: SABE Study. J Aging Health. 2014;26(3):441-57.
- [230] Champagne A, Prince F, Bouffard V, Lafond D. Balance, falls-related self-efficacy, and psychological factors amongst older women with chronic low back pain: a preliminary case-control study. Rehabil Res Pract. 2012;2012:430374.
- [231] Tanimoto Y, Watanabe M, Sun W, Sugiura Y, Tsuda Y, Kimura M, et al. Association between sarcopenia and higher-level functional capacity in daily living in community-dwelling elderly subjects in Japan. Arch Gerontol Geriatr. 2012;55(2).
- [232] Kang GE, Zhou H, Varghese V, Najafi B. Characteristics of the gait initiation phase in older adults with diabetic peripheral neuropathy compared to control older adults. Clin Biomech. 2020;72:155-60.
- [233] Menz HB, Lord SR, St George R, Fitzpatrick RC. Walking Stability and Sensorimotor Function in Older People with Diabetic Peripheral Neuropathy. Arch Phys Med Rehabil. 2004;85(2):245-52.
- [234] Ko S, Stenholm S, Ferrucci L. Characteristic gait patterns in older adults with obesity--results from the Baltimore Longitudinal Study of Aging. J Biomech. 2010;43(6):1104-10.
- [235] Del Din S, Galna B, Godfrey A, Bekkers EMJ, Pelosin E, Nieuwhof F, et al. Analysis of Free-Living Gait in Older Adults with and Without Parkinson's Disease and with and Without a History of Falls: Identifying Generic and Disease-Specific Characteristics. Journals Gerontol - Ser A Biol Sci Med Sci. 2019;74(4):500-6.
- [236] Chien JY, Ruan SY, Huang YCT, Yu CJ, Yang PC. Asynchronous thoracoabdominal motion contributes to decreased 6-minute walk test in patients with COPD. Respir Care. 2013;58(2):320-6.
- [237] Roig M, Eng JJ, MacIntyre DL, Road JD, Reid WD. Deficits in muscle strength, mass, quality, and mobility in people with chronic obstructive pulmonary disease. J Cardiopulm Rehabil Prev. 2011;31(2):120-4.
- [238] Tudorache E, Oancea C, Avram C, Fira-Mladinescu O, Petrescu L, Timar B. Balance impairment and systemic inflammation in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2015;10:1847-52.
- [239] Hillman CM, Heinecke EL, Hii JWS, Cecins NM, Jenkins SC, Eastwood PR. Relationship between body composition, peripheral muscle strength and functional exercise capacity in patients with severe chronic obstructive pulmonary disease. Intern Med J. 2012;42(5):578-81.
- [240] Deshpande N, Hewston P, Aldred A. Sensory functions, balance, and mobility in older adults with type 2 diabetes without overt diabetic peripheral neuropathy: A brief report. J Appl Gerontol. 2017;36(8):1032-44.
- [241] Gomes H de A, Moreira B de S, Sampaio RF, Furtado SRC, Cronemberger S, Gomes R de A, et al. Gait parameters, functional mobility and fall risk in individuals with early to moderate primary open angle glaucoma: a cross-sectional study. Brazilian J Phys Ther / Rev Bras Fisioter. 2018 Sep;22(5):376-82.
- [242] Cordeiro RC, Jardim JR, Perracini MR, Ramos LR. Factors associated with functional balance and mobility among elderly diabetic outpatients. Arq Bras Endocrinol Metabol. 2009;53(7):834-43.

- [243] Santos VR Dos, Gomes IC, Bueno DR, Christofaro DGD, Freitas IFJ, Gobbo LA. Obesity, sarcopenia, sarcopenic obesity and reduced mobility in Brazilian older people aged 80 years and over. Einstein (Sao Paulo). 2017;15(4):435-40.
- [244] Viljanen A, Kulmala J, Rantakokko M, Koskenvuo M, Kaprio J, Rantanen T. Fear of falling and coexisting sensory difficulties as predictors of mobility decline in older women. Journals Gerontol - Ser A Biol Sci Med Sci. 2012;67(11):1230-7.
- [245] Greendale GA, DeAmicis TA, Bucur A, Bretsky P, Rowe JW, Reuben DB, et al. A prospective study of the effect of fracture on measured physical performance: Results from the MacArthur Study - MAC. J Am Geriatr Soc. 2000;48(5):546-9.
- [246] Mänty M, CF M de L, Rantanen T, Era P, AN P, Ekmann A, et al. Mobilityrelated fatigue, walking speed, and muscle strength in older people. J Gerontol A Biol Sci Med Sci. 2012;67(5):523-9.
- [247] Vincent HK, Seay AN, Montero C, Conrad BP, Hurley RW, Vincent KR. Functional pain severity and mobility in overweight older men and women with chronic low-back pain--part I. Am J Phys Med Rehabil. 2013;92(5):430-8.
- [248] Estrada M, Kleppinger A, JO J, SJ W, GA K, M. E, et al. Functional impact of relative versus absolute sarcopenia in healthy older women. J Am Geriatr Soc. 2007;55(11):1712-9.
- [249] Serrano-Checa R, Hita-Contreras F, Jiménez-García JD, Achalandabaso-Ochoa A, Aibar-Almazán A, Martínez-Amat A. Sleep quality, anxiety, and depression are associated with fall risk factors in older women. Int J Environ Res Public Health. 2020;17(11):1-11.
- [250] Saito A, Wakasa M, Kimoto M, Ishikawa T, Tsugaruya M, Kume Y, et al. Age-related changes in muscle elasticity and thickness of the lower extremities are associated with physical functions among communitydwelling older women. Geriatr Gerontol Int. 2019;19(1):61-5.
- [251] Mendes J, Afonso C, Moreira P, Padrão P, Santos A, Borges N, et al. Association of Anthropometric and Nutrition Status Indicators with Hand Grip Strength and Gait Speed in Older Adults. J Parenter Enter Nutr. 2019;43(3):347-56.
- [252] Ogaya S, Iwata A, Higuchi Y, Fuchioka S. The association between intersegmental coordination in the lower limb and gait speed in elderly females. Gait Posture. 2016;48:1-5.
- [253] Minematsu A, Hazaki K, Harano A, Okamoto N, Kurumatani N. Differences in physical function by body mass index in elderly Japanese individuals: The Fujiwara-kyo Study. Obes Res Clin Pract. 2016;10(1):41-8.
- [254] Hassinen M, Komulainen P, Lakka TA, Väisänen SB, Rauramaa R. Associations of body composition and physical activity with balance and walking ability in the elderly. J Phys Act Heal. 2005;2(3):298-306.
- [255] Sertel M, Şimšek TT, Yümin ET. The Effects of Body Mass Index on Balance, Mobility, and Functional Capacity in Older Adults. Top Geriatr Rehabil. 2017;33(2):104-12.
- [256] Jerome GJ, Ko SU, Chiles Shaffer NS, Studenski SA, Ferrucci L, Simonsick EM. Cross-Sectional and Longitudinal Associations Between Adiposity and Walking Endurance in Adults Age 60-79. J Gerontol A Biol Sci Med Sci. 2016;71(12):1661-6.
- [257] Uritani D, Fukumoto T, Matsumoto D, Shima M. The relationship between toe grip strength and dynamic balance or functional mobility among community-dwelling Japanese older adults: A cross-sectional study. J Aging Phys Act. 2016;24(3):459-64.
- [258] Hill MW, Roberts M, Price MJ, Kay AD. Association between knee extensor and ankle plantarflexor muscle thickness and echo intensity with postural sway, mobility and physical function in older adults. Exp

Gerontol. 2021;150.

- [259] Masaki M, Ikezoe T, Fukumoto Y, Minami S, Aoyama J, Ibuki S, et al. Association of walking speed with sagittal spinal alignment, muscle thickness, and echo intensity of lumbar back muscles in middle-aged and elderly women. Aging Clin Exp Res. 2016;28(3):429-34.
- [260] Scott D, Seibel MJ, Cumming R, Naganathan V, Blyth F, Le Couteur DG, et al. Associations of Body Composition Trajectories with Bone Mineral Density, Muscle Function, Falls, and Fractures in Older Men: The Concord Health and Ageing in Men Project. Journals Gerontol - Ser A Biol Sci Med Sci. 2020;75(5):939-45.
- [261] Lu X, Chu H, Wang L, Yang R, Li Y, Sun W, et al. Age- and sex-related differences in muscle strength and physical performance in older Chinese. Aging Clin Exp Res. 2020;32(5):877-83.
- [262] King LK, Kendzerska T, Waugh EJ, Hawker GA. Impact of Osteoarthritis on Difficulty Walking: A Population-Based Study. Arthritis Care Res (Hoboken). 2018;70(1):71-9.
- [263] Zhu J, Xiang YB, Cai H, Li H, Gao YT, Zheng W, et al. Associations of obesity and weight change with physical and mental impairments in elderly Chinese people. Maturitas. 2018;108:77-83.
- [264] Lee JS, Kritchevsky SB, Tylavsky F, Harris T, Simonsick EM, Rubin SM, et al. Weight change, weight change intention, and the incidence of mobility limitation in well-functioning community-dwelling older adults. Journals Gerontol - Ser A Biol Sci Med Sci. 2005;60(8):1007-12.
- [265] Cawthon PM, Orwoll ES, Peters KE, Ensrud KE, Cauley JA, Kado DM, et al. Strong relation between muscle mass determined by d3-creatine dilution, physical performance, and incidence of falls and mobility limitations in a prospective cohort of older men. Journals Gerontol - Ser A Biol Sci Med Sci. 2019;74(6):844-52.
- [266] Bean JF, Leveille SG, Kiely DK, Bandinelli S, Guralnik JM, Ferrucci L. A comparison of leg power and leg strength within the inCHIANTI study: Which influences mobility more? Journals Gerontol - Ser A Biol Sci Med Sci. 2003;58(8):728-33.
- [267] Gray M, Paulson S. Developing a measure of muscular power during a functional task for older adults. BMC Geriatr. 2014;14(1).
- [268] Alcazar J, Guadalupe-Grau A, García-García FJ, Ara I, Alegre LM. Skeletal Muscle Power Measurement in Older People: A Systematic Review of Testing Protocols and Adverse Events. Vol. 73, Journals of Gerontology - Series A Biological Sciences and Medical Sciences. 2018. p. 914-24.
- [269] National Institute on Aging. Supporting Older Patients with Chronic Conditions | National Institute on Aging [Internet]. [cited 2022 Jan 21]. Available from: https://www.nia.nih.gov/health/supporting-olderpatients-chronic-conditions
- [270] Gill SD, de Morton NA, Mc Burney H. An investigation of the validity of six measures of physical function in people awaiting joint replacement surgery of the hip or knee. Clin Rehabil. 2012;26(10):945-51.
- [271] Suesada M, Martins M. Effect of short-term hospitalization on functional capacity in patients not restricted to bed. Am J Phys Med Rehabil. 2007;86(6):455-62.
- [272] Levasseur M, Généreux M, Bruneau JF, Vanasse A, Chabot É, Beaulac C, et al. Importance of proximity to resources, social support, transportation and neighborhood security for mobility and social participation in older adults: Results from a scoping study. BMC Public Health. 2015;15(1):1-19.
- [273] Wang Z, Yang Z, Dong T. A review of wearable technologies for elderly care that can accurately track indoor position, recognize physical activities and monitor vital signs in real time. Sensors (Switzerland).

2017;17(2).

- [274] Zijlstra W, Aminian K. Mobility assessment in older people: New possibilities and challenges. Vol. 4, European Journal of Ageing. Springer; 2007. p. 3-12.
- [275] Volpato S, Ble A, Metter EJ, Lauretani F, Bandinelli S, Zuliani G, et al. High-density lipoprotein cholesterol and objective measures of lower extremity performance in older nondisabled persons: The InChianti study. J Am Geriatr Soc. 2008;56(4):621-9.
- [276] Anton SD, Cruz-Almeida Y, Singh A, Alpert J, Bensadon B, Cabrera M, et al. Innovations in Geroscience to enhance mobility in older adults. Exp Gerontol. 2020;142:111123.
- [277] Modesti PA, Reboldi G, Cappuccio FP, Agyemang C, Remuzzi G, Rapi S, et al. Panethnic differences in blood pressure in Europe: A systematic review and meta-analysis. Vol. 11, PLoS ONE. Public Library of Science; 2016. p. e0147601.
- [278] Kalu ME, Ojembe BU, Akinrolie O, Okoh AC, Adandom II, Nwankwo HC, et al. Setting Priorities For Ageing Research In Africa: A Systematic Mapping Review Of 512 Studies From Sub-Saharan Africa. J Glob Health. 2021;11:1-14.

Table 1: Characteristics of the included articles	(n = 239)
Characteristics	n (%)
Sex	
• More Female	173(72.4)
• Fewer Female	47(19.7)
• Female = Male	9(3.8)
• Not reported	10(4.2)
Geographical area: Continent	
• Africa	0(0)
• Asia	42(17.6)
• Europe	68 (28.5)
• North America	108 (45.2)
• Oceania	(3.4)
• South America	2(0.8)
• More than one continent	
Study design	
• Cross-sectional	175(73.2)
• Longitudinal	60(25.1)
• Quasi-experimental	1(0.4)
Randomized Control Trials	3(1.3)
Participants recruited from	
• Community	209(87.4)
• Hospital	22 (9.2)
 Assisted living 	2(0.8)
• Community & hospital	5(2.1)
 Not reported 	1(0.4)
Population of study	
 Defined health conditions (e.g. stroke 	78 (32.6)
Alzheimer's)	161(67.4)
No defined health conditions	
Sample size (n)	
• <100	86(36.0)
• 101-300	55(23.0)
• 301-500	21(8.8)
• 501-1000	33 (13.8)
• 1001-2500	$\perp / (/. \perp)$
• >2500	27(11.3)
*Total number of mobility outcomes	561
Performance Based $(n = 496)$	
Walking outcomes	
• Time	32(5.7)
• Distance	34(6.1)
• Sneed	102 (18.2)
Number of store	10(1.8)
 Number of steps Other gait parameters 	153 (27 . 3)
• Utilet yait parameters	1(0, 2)
Balance	45(8,0)
Physical function	
• Chart Dhusical Danfarrance Dattaria second	23(4,1)
• SHOLL PHYSICAL PELLOLMANCE BALLERY SCORES	

• Time Up and Go Test scores	45(8.0)
• Other physical function tests	51(9.1)
Self-reported outcome $(n = 65)$	
Community mobility	
• Walking	10(1.8)
• Life Space Assessment scores	5(0.9)
• Other self-reported mobility questionnaire	10(1.8)
• Driving related outcomes	5(0.9)
• Use of transportation	1(0.2)
Mobility limitation	29(5.2)
Use of/difficulty in using mobility assistive devices	5(0.9)

NOTE: Some studies assessed older adults' mobility using more than one mobility outcome

Performance-based mobility outcomes: Walking time defined as time taken to complete 3, 5, 6 or 30-Meter Walk Tests; **Walking distance** defined as distanced walked within 6 or 2- Minutes' Walk Tests; **Other gait parameters** included stride length, cadence, single/double support time, walk ratio, gait variability; **observed driving related outcomes** - participants were followed or observed while driving in the community; **Balance tests** included Berg Balance Test, Tandem Tests, Stance Test, BEStest; **Other physical function tests** included Sit-to-Stand Test, Stair Climbing Test, Four Square Step Test (FSST), Shuttle Walking Test (Incremental and Endurance).

Self-reported mobility outcomes: Self-reported walking included the distance walked, number of times walked per day/week/month, amount of time walked (second or minutes), self-reported walking speed, self-reported walking capabilities, number of days outdoors; Other self-reported mobility questionnaire included Rivermead Mobility Index, Independent Mobility Questionnaire (IMQ), RAND-36 Physical Functioning Questionnaire, Walk 12-G Questionnaire, Functional Mobility Scale, EuroQol- five-Dimension Scale - mobility domain, and Late Life Function and Disability Instrument; Driving related outcomes included driving performance (ability or inability), access to car, driving duration & frequency, driving distance, preference to be driver vs passenger; Mobility limitation defined as self-reported inability on all or any of the following: walking up and down a flight of stairs (10 steps) or several flights of stairs, walking a mile (1600meter) or half a mile (800meter) or a quarter mile or a block (400meter) or 100-300meter, or across the room and running/jogging for 20-30 minutes; Mobility assistive devices included scooter, powered and manual wheelchairs, walking aids (cane, walker, crutches).

Table	2:	Physical	factors	from	the	included	studies	and	their	description	(n
= 433))										

Factors	n (%)	Definition
Mī	isculoskele	etal system (n = 129)
Muscle strength	84(19.4)	The amount of tension a muscle develops to move or lift object, for example. How strong or weak a muscle is.
Muscle power	18(4.2)	How fast the muscle can work, for example how fast can we stand up and sit down within a small timeframe.
Muscle endurance	9(2.1)	How long a muscle can work
Muscle coordination	3(0.7)	How the muscles work together to move
Range of motion	15(3.5)	The ability of a joint to move in all its directions
Ner	vous and s	ensory system (n = 69)
Proprioception	3(0.7)	The ability to sense the body in space, where it is located, the movement of the body
Pain	32(7.4)	The uncomfortable feeling that tells you something is wrong
Hearing	6(1.4)	The ability to perceive and understand sound
Vision	25(5.8)	The ability to see
Dizziness	3(0.7)	Describe a range of sensations, for example, feeling faint.
Cardiovas	scular and	respiratory system (n = 30)
Cardiovas Respiratory system	cular and 19(4.4)	<pre>respiratory system (n = 30) The lungs and tissues that help people breathe and how we breath.</pre>
Cardiovas Respiratory system Cardiovascular system	cular and 19(4.4) 11(2.5)	<pre>respiratory system (n = 30) The lungs and tissues that help people breathe and how we breath. The system that helps people deliver blood to the different regions of their body.</pre>
Cardiovas Respiratory system Cardiovascular system	19(4.4) 11(2.5)	<pre>respiratory system (n = 30) The lungs and tissues that help people breathe and how we breath. The system that helps people deliver blood to the different regions of their body. cal factors (n = 205)</pre>
Cardiovas Respiratory system Cardiovascular system Of Frequency of exercise/physical activity	Scular and 19(4.4) 11(2.5) Cher physic 22(5.1)	<pre>respiratory system (n = 30) The lungs and tissues that help people breathe and how we breath. The system that helps people deliver blood to the different regions of their body. cal factors (n = 205) The frequency of exercise or physical activity</pre>
Cardiovas Respiratory system Cardiovascular system Frequency of exercise/physical activity Falls (number and history of falls)	scular and 19(4.4) 11(2.5) ther physic 22(5.1) 44(10.2)	<pre>respiratory system (n = 30) The lungs and tissues that help people breathe and how we breath. The system that helps people deliver blood to the different regions of their body. cal factors (n = 205) The frequency of exercise or physical activity The number of times a person come to go down suddenly from a standing position</pre>
Cardiovas Respiratory system Cardiovascular system Frequency of exercise/physical activity Falls (number and history of falls) Chronic conditions (number and type)	<pre>scular and 19(4.4) 11(2.5) cher physic 22(5.1) 44(10.2) 45(10.4)</pre>	<pre>respiratory system (n = 30) The lungs and tissues that help people breathe and how we breath. The system that helps people deliver blood to the different regions of their body. cal factors (n = 205) The frequency of exercise or physical activity The number of times a person come to go down suddenly from a standing position The number and type of chronic conditions (e.g high blood pressure, diabetes, arthritis)</pre>
Cardiovas Respiratory system Cardiovascular system Frequency of exercise/physical activity Falls (number and history of falls) Chronic conditions (number and type) Non-chronic conditions (e.g	<pre>scular and 19(4.4) 11(2.5) Cher physic 22(5.1) 44(10.2) 45(10.4) 8(1.8)</pre>	<pre>respiratory system (n = 30) The lungs and tissues that help people breathe and how we breath. The system that helps people deliver blood to the different regions of their body. cal factors (n = 205) The frequency of exercise or physical activity The number of times a person come to go down suddenly from a standing position The number and type of chronic conditions (e.g high blood pressure, diabetes, arthritis) This includes other conditions, such as</pre>
Cardiovas Respiratory system Cardiovascular system Frequency of exercise/physical activity Falls (number and history of falls) Chronic conditions (number and type) Non-chronic conditions (e.g fracture and non-specific	<pre>scular and 19(4.4) 11(2.5) cher physic 22(5.1) 44(10.2) 45(10.4) 8(1.8)</pre>	<pre>respiratory system (n = 30) The lungs and tissues that help people breathe and how we breath. The system that helps people deliver blood to the different regions of their body. cal factors (n = 205) The frequency of exercise or physical activity The number of times a person come to go down suddenly from a standing position The number and type of chronic conditions (e.g high blood pressure, diabetes, arthritis) This includes other conditions, such as fracture and non-specific symptoms, such as</pre>
Cardiovas Respiratory system Cardiovascular system Frequency of exercise/physical activity Falls (number and history of falls) Chronic conditions (number and type) Non-chronic conditions (e.g fracture and non-specific symptoms (e.g Fatigue)	<pre>scular and 19(4.4) 11(2.5) cher physic 22(5.1) 44(10.2) 45(10.4) 8(1.8)</pre>	<pre>respiratory system (n = 30) The lungs and tissues that help people breathe and how we breath. The system that helps people deliver blood to the different regions of their body. cal factors (n = 205) The frequency of exercise or physical activity The number of times a person come to go down suddenly from a standing position The number and type of chronic conditions (e.g high blood pressure, diabetes, arthritis) This includes other conditions, such as fracture and non-specific symptoms, such as fatigue</pre>
Cardiovas Respiratory system Cardiovascular system Frequency of exercise/physical activity Falls (number and history of falls) Chronic conditions (number and type) Non-chronic conditions (e.g fracture and non-specific symptoms (e.g Fatigue) Body composition (e.g BMI,	<pre>scular and 19(4.4) 11(2.5) cher physic 22(5.1) 44(10.2) 45(10.4) 8(1.8) 83(19.2)</pre>	<pre>respiratory system (n = 30) The lungs and tissues that help people breathe and how we breath. The system that helps people deliver blood to the different regions of their body. cal factors (n = 205) The frequency of exercise or physical activity The number of times a person come to go down suddenly from a standing position The number and type of chronic conditions (e.g high blood pressure, diabetes, arthritis) This includes other conditions, such as fracture and non-specific symptoms, such as fatigue A description of how much of the body is muscle</pre>
Cardiovas Respiratory system Cardiovascular system	<pre>scular and 19(4.4) 11(2.5) cher physic 22(5.1) 44(10.2) 45(10.4) 8(1.8) 83(19.2)</pre>	<pre>respiratory system (n = 30) The lungs and tissues that help people breathe and how we breath. The system that helps people deliver blood to the different regions of their body. cal factors (n = 205) The frequency of exercise or physical activity The number of times a person come to go down suddenly from a standing position The number and type of chronic conditions (e.g high blood pressure, diabetes, arthritis) This includes other conditions, such as fracture and non-specific symptoms, such as fatigue A description of how much of the body is muscle or fat</pre>
Cardiovas Respiratory system Cardiovascular system Of Frequency of exercise/physical activity Falls (number and history of falls) Chronic conditions (number and type) Non-chronic conditions (e.g fracture and non-specific symptoms (e.g Fatigue) Body composition (e.g BMI, waist circumference) Frailty	<pre>scular and 19(4.4) 11(2.5) cher physic 22(5.1) 44(10.2) 45(10.4) 8(1.8) 83(19.2) 3(0.7)</pre>	<pre>respiratory system (n = 30) The lungs and tissues that help people breathe and how we breath. The system that helps people deliver blood to the different regions of their body. cal factors (n = 205) The frequency of exercise or physical activity The number of times a person come to go down suddenly from a standing position The number and type of chronic conditions (e.g high blood pressure, diabetes, arthritis) This includes other conditions, such as fracture and non-specific symptoms, such as fatigue A description of how much of the body is muscle or fat Medical condition of reduced function and</pre>
Cardiovas Respiratory system Cardiovascular system Of Frequency of exercise/physical activity Falls (number and history of falls) Chronic conditions (number and type) Non-chronic conditions (e.g fracture and non-specific symptoms (e.g Fatigue) Body composition (e.g BMI, waist circumference) Frailty	<pre>scular and 19(4.4) 11(2.5) cher physic 22(5.1) 44(10.2) 45(10.4) 8(1.8) 83(19.2) 3(0.7)</pre>	<pre>respiratory system (n = 30) The lungs and tissues that help people breathe and how we breath. The system that helps people deliver blood to the different regions of their body. cal factors (n = 205) The frequency of exercise or physical activity The number of times a person come to go down suddenly from a standing position The number and type of chronic conditions (e.g high blood pressure, diabetes, arthritis) This includes other conditions, such as fracture and non-specific symptoms, such as fatigue A description of how much of the body is muscle or fat Medical condition of reduced function and health in older individuals. People who are fracture field wing field wing</pre>
Cardiovas Respiratory system Cardiovascular system Frequency of exercise/physical activity Falls (number and history of falls) Chronic conditions (number and type) Non-chronic conditions (e.g fracture and non-specific symptoms (e.g Fatigue) Body composition (e.g BMI, waist circumference) Frailty	scular and 19(4.4) 11(2.5) cher physic 22(5.1) 44(10.2) 45(10.4) 8(1.8) 83(19.2) 3(0.7)	<pre>respiratory system (n = 30) The lungs and tissues that help people breathe and how we breath. The system that helps people deliver blood to the different regions of their body. cal factors (n = 205) The frequency of exercise or physical activity The number of times a person come to go down suddenly from a standing position The number and type of chronic conditions (e.g high blood pressure, diabetes, arthritis) This includes other conditions, such as fracture and non-specific symptoms, such as fatigue A description of how much of the body is muscle or fat Medical condition of reduced function and health in older individuals. People who are frail usually have 3 out of the following five automatical condition of the pressure of the following five automatical condition of the pressure of the following five automatical condition of the pressure of the following five automatical condition of the pressure of the following five automatical condition of the pressure of the following five automatical condition of the pressure o</pre>

n = number of articles that explored the association between the physical factors and mobility outcomes.

Box 1: Inclusion and Exclusion Criteria for Study Selection

Articles were included if:

(a) The study population was older adults (mean age of study sample, at least 60 years).

(b) The exposures were (not exhaustive): muscle strength, muscle power, muscle coordination, muscle endurance, range of motion, number of chronic conditions, physical activity and exercise levels, body composition, respiratory system parameters, vision, hearing etc.

(c) The outcome was any mobility measure including, but not limited to: (i) a performance-based test such as the gait speed, Timed Up and Go Test, Short Physical Performance Battery Test, Stair Climb Test, Balance Test, and walking tests (e.g., 6-Minute Walk Test, 2.4 Meter Walk); or (ii) a self-reported measure of mobility, such as the Late-Life Function and Disability Instrument, the de Morton Mobility Index, Life-Space Mobility Assessment; or (iii) the use of assistive mobility devices (e.g., walkers, wheelchairs,

scooters); or

(iv) driving or transportation.

(d) The study setting was hospital (e.g., acute care, inpatient care), community, assisted living, or long-term care facilities.

(e) They were peer-reviewed, conducted in the quantitative, qualitative, or mixed-method paradigm, and published in English between Jan. 2000 to Jan. 2022.

Articles were excluded if:

(a) They were opinion papers with no data.

(b) The outcome or self-reported measure was related to functional decline in activities of daily living or instrumental activities of daily living without any specific measure of mobility.

(c) They described physical activity or exercise (except walking) as a form of mobility

(d) They were exercise intervention studies that showed the effect of exercise intervention on mobility outcomes listed above; for instance, older adults in the exercise improved in their gait speed but those in the non-exercise group did not improve.

Figure 1- Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow chart of the scoping review

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

For more information, visit: http://www.prisma-statement.org/

CHAPTER 5: A comprehensive mobility discharge assessment framework for older adults transitioning from hospital-to-home in the community - What mobility factors are critical to include? Protocol for an international e-Delphi study.

As published in:

PLOS ONE

Preface

This chapter is a protocol manuscript of Phase 2 of the PhD thesis that focused on developing, through consensus, factors within mobility determinants that are critical to be part of a Comprehensive Mobility Discharge Assessment Framework for older adults transitioning from hospital-to-home. I, under the supervision of Dr Dal Bello-Haas, conceptualized the study purpose and research question for this study, designed the study protocol, wrote, revised and submitted the manuscripts. Dr. M Griffin, Dr. J Ploeg, and Dr. J Richardson reviewed and provided feedback on the e-Delphi study protocol. This chapter is a reprint of the manuscript as published in *PLoS ONE*. The conceptual thinking, design and writing of the protocol was completed between May 2020 to January 2021, and manuscript was submitted in February 2021

Citation:

Kalu ME, Dal Bello-Haas V, Griffin M, Ploeg J, Richardson J (2022) A comprehensive mobility discharge assessment framework for older adults transitioning from hospital-to-home in the community-What mobility factors are critical to include? Protocol for an international e-Delphi study. *PLoS ONE* 17(9): e0267470. https://doi.org/10.1371/journal.pone.0267470

The article is published in open access under the terms of Creative Commons Attribution Licenses, which permits unrestricted use, distribution and reproduction in any medium provided the original author and source are cited.

A Comprehensive Mobility Discharge Assessment Framework for older adults transitioning from hospital-to-home in the community - what mobility factors are critical to include? Protocol for an international e-Delphi study

Authors: Michael E Kalu¹, Vanina Dal Bello-Haas¹, Meridith Griffin ², Jenny Ploeg³, Julie Richardson^{1,4}

Affiliations:

¹School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada ²Department of Health, Aging & Society, Faculty of Social Science, McMaster University Hamilton, Ontario, Canada ³School of Nursing, Faculty of Health Sciences, McMaster University Hamilton, Ontario, Canada ⁴Department of Health Evaluation and Impact, Faculty of Health Sciences, McMaster University, Ontario, Canada.

Corresponding author: Michael E Kalu; kalum@mcmaster.ca

PLOS ONE

OPENACCESS

Citation: Kalu ME, Dal Bello-Haas V, Griffin M, Ploeg J, Richardson J (2022) A comprehensive mobility discharge assessment framework for older adults transitioning from hospital-to-home in the community—What mobility factors are critical to include? Protocol for an international e-Delphi study. PLoS ONE 17(9): e0267470. https://doi.org/ 10.1371/journal.pone.0267470

Editor: Andrea Martinuzzi, IRCCS E. Medea, ITALY

Received: July 31, 2021

Accepted: April 8, 2022

Published: September 22, 2022

Copyright: © 2022 Kalu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: This paper is a protocol paper, and therefore no data are available at this time. However, when completed, the minimal data set underlying the findings in our study data will be presented within the manuscripts, and in Appendix.

Funding: No - The authors received no specific funding for this work, and will not play any role in study design, data collection and analysis, decision to publish or preparation of the manuscript. STUDY PROTOCOL

A comprehensive mobility discharge assessment framework for older adults transitioning from hospital-to-home in the community—What mobility factors are critical to include? Protocol for an international e-Delphi study

Michael E. Kalu^{1*}, Vanina Dal Bello-Haas¹, Meridith Griffin², Jenny Ploeg³, Julie Richardson^{1,4}

1 School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada, 2 Department of Health, Aging & Society, Faculty of Social Science, McMaster University Hamilton, Ontario, Canada, 3 School of Nursing, Faculty of Health Sciences, McMaster University Hamilton, Ontario, Canada, 4 Department of Health Evaluation and Impact, Faculty of Health Sciences, McMaster University, Ontario, Canada

* kalum@mcmaster.ca

Abstract

Background

Mobility deficits have been identified as an independent risk factor for hospital readmission for adults ≥65 years. Despite evidence indicating how determinants additively influence and predict mobility, no hospital-to-home care transition models comprehensively assess all seven mobility determinants, cognitive, financial, environmental, personal, physical, psychological, and social. There is currently a lack of clarity regarding what factors clinicians and researchers should evaluate for each mobility determinant. The purpose of this e-Delphi study is to prioritize and reach consensus on the factors for each mobility determinant that are critical to assess as part of the Comprehensive Mobility Discharge Assessment Framework (CMDAF) when older adults are discharged from hospital-to-home.

Methods

This protocol paper is an international modified e-Delphi study following the Recommendations for the Conducting and Reporting of Delphi Studies. International researchers, clinicians, older adults and family caregivers residing in a country with universal or nearuniversal health coverage will be invited to participate as 'experts' in three e-Delphi rounds administered through *DelphiManager®*. The e-Delphi Round 1 questionnaire will be developed based on scoping review findings and will be pilot tested. For each round, experts will be asked to rate factors for each determinant that are critical to assess as part of the CMDAF using a 9-point scale: Not Important (1–3), Important but Not Critical (4–6), and

PLOS ONE

Developing The CMDAF through consensus

Competing interests: The authors have declared that no competing interests exist. Critical (7–9). The scale will include a selection option of "unable to score" and experts will also be asked to provide a rationale for their scoring and suggest missing factors. Experts will receive feedback summaries in Rounds 2 and 3 to guide them in reflecting on their initial responses and re-rating of factors that have not reached consensus. The criteria for reaching consensus will be if \geq 70% of experts rate a factor as "critical" (scores \geq 7) and \leq 15% of experts rate a factor as "not important" (scores \leq 3). Quantitative data will be analyzed using median values, frequencies, percentages, interquartile range, and bar graphs; Wilcoxon matched-pairs signed-rank test will be used to assess the stability of participants' responses. Rationale (qualitative data) provided in the open-ended comments section will be analyzed using content analysis.

Conclusion

This study is a first step in developing the CMDAF and will be used to guide a subsequent e-Delphi survey to decide on the tools that should be used to measure the examples of each factor included in our framework.

Introduction

Globally, about 250 million older adults (defined as \geq 65 years) have at least one disability [1], with about one-third of older adults reporting a mobility-related disability such as difficulty walking 400-meters or climbing a flight of stairs without assistance [2–4]. The worldwide prevalence of mobility-related disability among older adults living in high-income countries ranged from 22.6 to 47.6% between 2005–2015 [5–8]. According to the 2012 Canadian Survey on Disability, 20.6% of Canadians \geq 65 years and 27% of Canadians \geq 75 years have disabilities related to mobility [9]. Mobility-related disabilities often precede the onset of difficulties with activities of daily living and participation restrictions, often leading to social isolation, anxiety, and depression in older adults [2–4]. Mobility preservation among older Canadians is crucial in maintaining function and preventing further disability.

Mobility is defined as the ability to move between a variety of environments such as room, home, outdoors, neighborhood, community and the world either independently, with the use of assistive devices, or via transportation [10]. Historically, mobility has been viewed from a biomechanical or physiological perspective, which in turn has focused interventions on improving mobility-related physical outcomes such as gait, and muscle strength and power [11]. Over the years, the role of cognitive, financial, environmental, personal, psychological and social factors on mobility has been explored [10, 12, 13].

Webber and colleagues [10] in their Conical Model of Theoretical Framework for Mobility in older adults conceptualizes cognitive, psychosocial, physical, environmental, financial and personal histories/stories as determinants of mobility across seven life space locations—the room where the older adult sleeps, home, outdoors, neighborhood, service community and the surrounding area, and the world. Physical determinants of mobility include the number of chronic conditions, physical activity levels and muscle strength [12, 13]; while cognitive determinants include memory, executive functioning and mental status [12, 13]. Psychological determinants of mobility include depression, fear, anxiety, whereas social determinants include social networks and loneliness [12, 13]. Environmental factors are physical characteristics such as distance, temporal characteristics, light and weather conditions [13], and/or social, environmental policies such as public attitudes, social policies, services and systems, that hinder mobility [10]. Financial determinants of mobility may include personal income or household income, while personal determinants include age, gender, sex, marital status, race, ethnicity and culture [10].

Several studies have tested [12, 13] or expanded [14] the Conical Model of Theoretical Framework for Mobility in older adults. While Meyer et al. [12] and Giannouli [13] 's studies highlighted the additive influence of cognitive, environmental, financial, personal, physical, psychological, and social factors on older adults' mobility, Franke and colleagues reframed the Conical Model of Theoretical framework for Mobility into a sliding scale that reveals the dynamic, fluid and experiential nature of Mobility by analyzing physiological, subjective and contextual factors within and between people and their environment, over time [14]. Although Franke et al. [14] provided examples of how older adults and their caregivers can identify and rate each physiological, subjective, and contextual factor influencing their mobility across the sliding scale in a continuum scale of high to low, its application in a clinical setting is limited. For instance, this rating can be challenging for older adults with cognitive impairment. In addition, the reframed framework did not provide, for example, the specific physical factors, such as muscle strength, muscle power, range of motion, or built environment, such as street, residential and sideway characteristics, that the older adults or family members can identify as factors that influence their mobility.

Older adults experiencing a hospital-to-home transition are at increased risk for poor health outcomes such as mobility decline and deterioration in cognitive and functioning [15– 17]. Between 30% to 60% of older adults experience functional decline after hospitalization [15–17], and mobility difficulties have been identified as predictors of mortality and loss of independence among community-dwelling older adults [18]. Functional deficits have been identified as independent risk factors for hospital readmission for older adults [19]. Therefore, efforts to improve mobility for older adults transitioning from hospital-to-home in the community are important and may help reduce hospital readmission costs. For instance, in Canada, the total cost of hospital readmissions is considerable at \$1.8 billion per annum [20]. Older adults (65+ years) account for the largest proportion (60%) of total costs of hospital readmission in Canada [21], resulting in a significant economic burden to the Canadian health care system. Older adults readmitted to the hospital are at risk for hospital-acquired infections, deconditioning, and poor quality of life [20, 22]. Additionally, family caregivers are negatively affected and experience a sense of powerlessness, often resulting in anxiety and depression, when an older adult is readmitted to the hospital [23].

To date, hospital-to-home transition models such as Naylor [24] and Coleman [25] have typically focused on interventions to: improve provider-to-provider or provider-to-patient/ family caregiver communication; improve coordination of care; and educate patients to self-monitor and manage their medical conditions. However, there has been little or no emphasis on addressing mobility [26], even though readmission risk prediction models targeting functional status consistently out-perform models based on medical comorbidities [27, 28]. Currently, mobility is rarely assessed during hospital discharge. Polnaszek et al. [29] reported that mobility-related recommendations, including assessment, were omitted in 53% of discharge summaries of 163 high-risk patients when transferred from hospital to sub-acute care facilities. In addition, among 64 mobility determinants [30], even though the interrelationship of these seven mobility determinants explains the complexity associated with mobility and could highlight which factors clinicians should intervene when older adults are discharge from the hospital. Addressing older adults' mobility during hospital-to-home transitions is important because there is increasing recognition that a standardized, comprehensive functional

PLOS ONE | https://doi.org/10.1371/journal.pone.0267470 September 22, 2022

PLOS ONE

assessment tool is necessary to improve the complex discharge process during the hospital-tohome transition [26, 31]. The World Health Organization's Integrated Care for Older People Report recommended that every older person undergo continuous comprehensive assessments at services or system levels, including hospital discharge, to optimize their functional ability [26, 31].

To advance the use of the Conical Model of Theoretical Framework for Mobility [10], there is a need to develop specific factors for each determinant that are critical to assess when older adults are being discharged from hospital-to-home. This research will close this knowledge gap by developing a Comprehensive Mobility Discharge Assessment Framework (CMDAF) that clinicians can use during the hospital-to-home transition. The CMDAF will consist of factors within each mobility determinant and their corresponding outcome measures. The first phase of creating the CMDAF is to determine through consensus which factors within each determinant are critical to be assessed. The second phase is to identify the outcome measures for each of the factors within each determinant that reached consensus in the first phase. This protocol focuses only on the first phase. This e-Delphi study aims to prioritize and reach consensus on the factors for each mobility determinant [cognitive, financial, environmental, personal, physical, psychological, social] that are critical to assess as part of the CMDAF when older adults are discharged from hospital-to-home.

Methods

Study design

We will use modified Delphi methods to develop the CMDAF [32], following the Recommendations for the Conducting and Reporting of Delphi Studies (CREDES) to conduct the study and report our findings [33]. The Delphi method is a systematic approach to combining opinions to achieve consensus among individuals with a range of knowledge, experience and expertise through iterative, multi-stage completion of survey questionnaires (referred to as rounds) [32, 34]. Delphi methods are appropriate for this study because of the complexity of mobility, the need for group involvement and inclusion of a diversified and broad representation of expert opinions, including older adults and caregivers, to achieve the study aim [32].

We will use an e-Delphi method, online web-based survey questionnaires, for consensus building [32]. Participants worldwide (henceforth referred to as experts or expert participants) will be anonymous to each other to ensure one or more individuals do not dominate the process [32]. They will effectively connect with other experts without the need to be physically present, to identify, clarify, and refine their opinions and apply their expertise regarding older adult mobility during the hospital-to-home transition to reach consensus feasibly and costeffectively [35].

Sample-expert description and eligibility

Experts will include researchers, clinicians, older adults and family caregivers. Within the Delphi process, the definition of "experts" is fundamental to ensure the reliability of the Delphi findings. However, the definition of "experts" is highly debated in the Delphi research [36]. Baker and colleagues provided elements for defining "experts" for use within Delphi panel research, including specific qualifications, years of experience, and number of publications in the area of expertise [36]. We define each expert in our study following these elements. Researchers will be considered an "expert" if they have authored at least two peer-reviewed articles as either the first or senior author in at least one of the mobility determinants. Clinicians will be considered an "expert" if they have at least two years of clinical experience working with older adults with mobility difficulties in their field of professional expertise and
hospital-to-home transitions. Older adults (65 years and older) will be considered an "expert" with lived experience if they self-identify as having at least one year of mobility difficulties and have experienced a hospital-to-home transition. Family caregivers will be considered an "expert" if they have at least one year experience providing informal care for older adults with mobility limitations, specifically during hospital-to-home transitions. This heterogeneous sample is needed to ensure that a spectrum of opinions from different stakeholders is included [32].

Experts are eligible to participate if they: a) conform eligibility based on the description above; b) can read and write in the English language; c) have knowledge of and ability to use computers and have reliable internet access; d) indicate interest, willingness and availability for participation in the timeframe of the three rounds of e-Delphi [34, 37]; e) reside, practice or research in a country with universal (or near-universal) health coverage such as Australia, Canada, United Kingdom [38]. Universal (near-universal) health coverage countries offer all their citizens affordable access to a comprehensive health service package [39]. This inclusion criterion ensures we recruit experts from countries with a healthcare system similar to Canada.

Sampling strategies and recruitment. The Delphi method employs criterion-based purposive and snowball sampling techniques to recruit experts [34]. Experts will be recruited from an international community of researchers, health and social care professionals, older adults and family caregivers based on the criteria described above.

We will use the following strategies for recruiting experts. First, we will send email invitations to the first and senior authors of the included articles in our scoping reviews. We will also employ snowball recruitment techniques by encouraging the pool of potential experts to send us the name and email contact of other potential participants who meet our expert description/criteria [32]. We will leverage the extensive networks of our Steering Committee members (described below) [40], with each Steering Committee member providing a list of additional potential experts that will receive an invitation to participate in the study. As needed, clinician and research experts will also be recruited through interdisciplinary professional associations such as Australian Association of Gerontology, British Society of Gerontology, Canadian Association of Gerontology, International Association of Gerontology and Geriatrics. Older adults will be recruited through HelpAge International [41], which comprises a pool of older adults residing in the countries with universal (near-universal) healthcare systems; and family caregivers will be recruited through family caregivers' organizations such as IMAGINE Citizen Collaborating for Health [42], Caregivers Alberta [43]. We will approach these organizations to explain our study and aims and request they nominate potential experts to be invited to participate in our study. To ensure the required sample representation of experts, recruitment will be monitored, and all interested individuals will conform eligibility prior to participating.

Sample size. There is no set standard or accepted guidelines for the sample size for e-Delphi [32]; instead decision-making is guided by the scope and aims of the study and practicality [32]. A 2011 systematic review found that the median number of individuals invited to participate in Delphi studies was 17, with a range of 3 to 418 (Q1 = 11, Q3 = 31) [44]. Based on this, we will aim to include at least 20 experts (five per stakeholder group—researchers, clinicians, older adults and family members).

Data regarding specific recruitment efforts such as number of invitations sent for Delphi and e-Delphi studies and response rates for these efforts are sparse in the literature [33, 45], in particular for specific stakeholder groups. Often, recruitment response rate is calculated as the number of participants who complete the Delphi rounds (participation rates), and these rates and reporting of rates vary greatly. For instance, recruitment response ranged 46% to 65% for

participant groups not specified [46]; 96% for patients and caregivers and 81% for research experts [47]; and 100% for all participant groups [48]. Baldwin et al. [49] reported an overall response rate of 69.5% to expression of interest invitations across a broad range of experts, including patients, while Stewart et al. [50] reported a response rate of 67.9%. Using recruitment response rates of 65%, we will approach approximately 31 experts to achieve our sample size of 20, ensuring the equal number of experts across the four stakeholder groups: clinicians, researchers, older adults and family caregivers.

Steering committee

The Steering Committee, including team investigators, an older adult and a family caregiver, will provide overall study oversight. The Committee comprises members from various disciplines such as nursing, physiotherapy, gerontology, with clinical and research expertise related to older adults, mobility, hospital-to-home transitions, and qualitative, quantitative, and Delphi methods. The older adult will have lived experience with mobility limitation and transitioning from hospital-to-home, while the family caregiver will have lived experience providing care to an older adult with mobility limitation and hospital-to-home transition. The Steering Committee will meet at key stages throughout the study and will be responsible for identifying and responding to any issues arising, reviewing study conduct, and overseeing knowledge dissemination. The Steering Committee will conduct content and face validity of e-Delphi questionnaire to ensure accuracy, comprehensiveness, clarity of wording, and appropriateness of structure; review results at each round; and review feedback summaries to be provided to experts at subsequent rounds. The Steering Committee may also be required to decide on items should experts fail to reach consensus [40]. Any decisions made by the Steering Committee will be communicated to the expert participants throughout the study, and experts will be provided with opportunities to respond. This approach reduces the burden on the experts during the Delphi process [34].

General procedure

While the classical Delphi typically uses four rounds [34], two or three rounds have been used to achieve a consensus [33, 51]. Because of the topic's complexity, our experts' heterogeneity, and our aims, experts might not achieve consensus in two rounds. We anticipate that at least three rounds will be needed to achieve consensus, as prolonged Delphi process, for example four rounds, often leads to reduced response rate, which affects the Delphi process's validity (Fig 1).

The survey questionnaire for each e-Delphi round will include: background information containing study's purpose, aims, description of e-Delphi methods, and definitions of factors within each determinants; questions to collect demographic and participant information; and, the e-Delphi questionnaire consists of structured and open-ended questions. We will use a 9-point scale, divided into three categories, for importance rating: Not Important (1–3), Important but Not Critical (4–6), and Critical (7–9) [52]. As well, an "Unable to Score" response and instruction for its use will be provided should experts feel uncomfortable rating any particular question. A 9-point scale is preferred in a Delphi survey as it increases sensitivity and consensus can be achieved on more items compared to 3- or 5-point scale [53].

The survey will be administered through *DelphiManager* [54], a web-based system designed to facilitate the building of e-Delphi surveys that includes functionality that allows for easy and efficient data management. *DelphiManager* allows for secure data collection and integrity using multiple encryption layers, and "quasi anonymity". Quasi-anonymity refers to researchers knowing the experts' identity and their responses, but experts are anonymous to each other

Developing The CMDAF through consensus

e-Delphi Aim

To prioritize and reach consensus on the factors for each mobility determinant [cognitive, financial, environmental, personal, physical, psychological, social] that are critical to assess as part of a comprehensive mobility discharge assessment framework (CMDAF) when older adults are discharged from hospital-to-home.

*Steering committee meeting between rounds to review results and finalized survey for the subsequent round **Steering committee to decide on any factors that have not reach consensus at the end of round 3. #list of factors for each determinant developed from the scoping reviews

Fig 1. e-Delphi survey process and timeline

https://doi.org/10.1371/journal.pone.0267470.g001

and provide responses that are anonymous to each other [55]. For each round, experts will receive a link to an e-Delphi questionnaire in *DelphiManager*. Only experts who provide informed consent will have access to the questionnaire.

All experts, including older adults and family caregivers, will be asked to complete questions regarding each mobility determinant. As experts, their opinions and perspectives across all determinant domains lend trustworthiness and relevance to our study [37]. Research has demonstrated that older adults and their family caregivers can actively participate in an e-Delphi consensus, especially when plain language explanations of items for consensus are provided [56]. A description of each factor will be provided in each round of the e-Delphi.

Although there is no specific recommended duration for each round of an e-Delphi process [35], Junger et al. [33] noted that Delphi round durations could range from 10 days to 10 weeks. Based on previous international e-Delphi studies with multi-stakeholders [35, 40, 57], we estimate that each round will be open for four weeks to ensure experts have enough time to participate effectively, without losing interest [35]. There will be a minimum four-week time interval between rounds to allow for data analysis, review of results by the Steering Committee, revision of the questionnaire and development of the feedback document for subsequent rounds (see Fig 1). The feedback document will include a summary document of preceding rounds, including bar graphs showing experts' group ratings, distribution of ratings, and individual ratings on factors that reached consensus and did not reach consensus and a qualitative summary of the rationale for each rating. Providing a feedback document to experts for subsequent rounds is an important component of the process because it allows experts to consider the group rating compared to their response enabling them to reflect, revise or change their opinions while avoiding the effects of dominant individuals that could influence their decision

in direct communication (e.g. face-to-face communication) [32, 37]. We anticipate that the e-Delphi process will occur over approximately nine months, including the test round (see Fig 1).

Test round (pilot study). Prior to Round 1 of the e-Delphi, the survey questionnaire will be pilot tested (test round) to: ensure content and face validity [58]; receive feedback regarding format, comprehensiveness, clarity of instructions, descriptions/definitions and participation time [34]; and, test the online platform and its nuances [37]. We will recruit four experts (a clinician, a researcher, an older adult and a family caregiver) to pilot test the questionnaire. Experts involved in the test rounds will not participate in subsequent rounds.

e-Delphi round response rate. No agreed-upon guidelines exist for an acceptable response rate for each round of the e-Delphi process [32]. A 70% response rate has been suggested in the literature to maintain rigour in a Delphi technique [32].

Strategies to increase the response rate. We will incorporate Dillman's Tailored Design Method [59] suggestions and published recommendations [35, 45, 59], to encourage participation and engagement with each round, and to ensure the high retention of expert participants in the e-Delphi process to achieve our minimum 70% response rate [32]. Strategies we will employ to increase response rates and thus decrease potential attrition bias include: sending an initial personalized email to the potential experts requesting participation before sending the e-Delphi survey [35, 59]; emphasizing that each expert's perspective matters, and for the result to be meaningful, completing the whole e-Delphi process is important [59]; and sending thank you emails to experts who have participated [45]. For each round, we will send weekly personalized reminders for the first three weeks following the distribution of the survey [59].

Consensus level. Although there is no universally accepted threshold for defining consensus in an e-Delphi process, establishing an a priori consensus criteria is considered an indicator of a good quality Delphi process [33, 60]. Researchers have established consensus using a formal measure of agreement, a measure of central tendency, percentage agreement, a central tendency within a specific range (restricted or unrestricted), the proportion of range (restricted or unrestricted), decrease in variance, stability and rank [51]. While there is no agreement on the best approach, the percentage agreement and the proportion within a range are most often used in Delphi studies [51]. In this study, we define consensus as \geq 70% of experts rated a factor as "critical" (scores \geq 7) and \leq 15% of experts rated a factor as "not important" (scores \leq 3).

Questions regarding the e-Delphi process or rounds. Experts will be informed that they are welcome to contact the research team at any time with questions including clarification about the aims, instructions, e-Delphi process, descriptions or definitions, and technical support when completing the survey.

e-Delphi rounds. Evidence from scoping reviews will inform Round 1 of our e-Delphi study rather than using general, open-ended questions for idea generation as is typical of classical Delphi studies [32, 61]. Participants will be invited to rate 76 factors: cognitive (n = 5), environmental (n = 17), financial (n = 3), personal (n = 11), physical (n = 20), psychological (n = 15), and social factor (n = 5) identified through the scoping reviews. Experts will receive compiled lists and descriptions of factors for each determinant identified from the scoping reviews.

Round 1. e-Delphi Round 1 questionnaire will be developed based on the findings of the scoping reviews. Experts will be asked to: a) rate factors for each determinant that are critical to assess as a part of a CMDAF when older adults are discharged from hospital to home using a 9-point GRADE Scale of Not Important (1–3), Important but Not Critical (4–6), and Critical (7–9); with the option of selecting "unable to score" b) provide a rationale for their ratings in an open-ended comment section; and, c) suggest missing factors for each mobility determinant.

Developing The CMDAF through consensus

Round 2. We will provide a feedback summary based on the Round 1 responses, and the feedback summary will be included as part of Round 2's introductory message. The feedback document will contain a summary document of Round 1 including bar graphs showing experts' group ratings, distribution of ratings, and individual ratings on factors that reached consensus and did not reach consensus [48], suggested factors from Round 1 and any possible changes on factor descriptions based on experts' comments. In Round 2, experts will be asked to rate the factors suggested by experts in Round 1 and re-rate the factors that did not reach consensus while considering the feedback [32, 47, 50].

Round 3. Experts will receive a similar feedback document based on findings from Round 2. Experts will be asked to re-rate only items that did not reach consensus by reflecting on, verifying, or modifying their original choice, and provide rationale for their choices.

After Round 3, the Steering Committee group will review the results and make any decisions as necessary (e.g., whether to include or exclude any factor(s) that has not reached a consensus, but is close to reaching consensus) [40]. Any decision-making by the Steering Committee will be communicated back to the experts [34]. A final list of factors for each mobility determinant will be collated to form a part of the CMDAF.

Data analysis

While expert participants will be able to withdraw at any time, data will be included up to the point of round withdrawal. All quantitative analysis will be conducted using STATA,v16.1© [62]. Descriptive statistics will be used to analyze demographic data and quantitative items. Continuous data will be tested for normality before the use of parametric inferential statistics. The response rate for each round will be calculated by dividing the number of usable responses returned by the total number of invitations sent out multiplied by 100% at each round [57, 63]. Median values, frequencies and percentages will be used as indicators of agreement on the 9-point scale [32], and will be used to calculate consensus level. The interquartile range and bar graphs [49] will show the dispersion levels and individual ratings at each round for each factor [32]; this will enable experts to see where their responses stand in relation to the group's responses. Stability, defined as the consistency of responses between successive rounds [61], will be used to assess the shift in scores across rounds as a consequence of considering the anonymized feedback from other expert participants, and will be calculated using Wilcoxon matched-pairs signed-rank or interclass correlation coefficient, if the data is normally distributed [61]. The analysis will be completed for all experts as a group and separately for each expert [49].

Qualitative analyses will be managed using NVivo Software® [64]. Open-ended comments such as rationale for experts' choices or changes, will be analyzed using content analysis [65]. Two coders will read the responses independently to develop codes and themes for each round. Coders will meet to merge their themes. Any disagreement will be discussed during a Steering Committee meeting and resolved. A reflexive journal and audit trail will be kept to capture methodological decisions throughout the Delphi process [32].

Ethical considerations

This Research have been approved by Hamilton Integrated Research Ethics Board (HIREB Project no: 7212) on May-06-2021. Only invited experts who provide informed consent will be eligible to participate in the study. The privacy and identity of all experts will be protected during and after the study. We will de-identify any feedback or summary statements shared with the experts.

Discussion

Mobility deficits are often missed during the hospital-to-home transition for older adults [66]. Functional status is a better predictor of hospital readmission than medical comorbidities in a medically complex rehabilitation population [27, 28]. Empirical evidence has found that mobility-related recommendations were omitted entirely in 53% and partially omitted in 47% of discharge summaries of 163 high-risk patients transitioning from hospital to subacute care facilities [29]. No comprehensive assessment framework based on the Conical Model of Theoretical Framework for Mobility currently exists. Similarly, available assessment tools do not incorporate all seven determinants. For instance, the Activity Measure for Post-Acute Care Inpatient Mobility Short Form [67] was designed to assess three activity domains of post-acute care function: movement and physical such as body position and transfers, personal and instrumental such as personal care, home skills, and applied cognition such as speaking and understanding; but does not include domains related to social, psychological, financial, and environmental factors affecting mobility. With no comprehensive mobility discharge assessment framework consisting of the seven determinants of mobility, it is challenging for healthcare workers to implement an integrated, holistic approach to examination, decision-making and recommendations incorporating factors known to be associated with mobility decline in older adults after discharge. Therefore, the proposed CMDAF, which will be evidence and stakeholder informed, will address the complexity of mobility in older adults during the hospital-to-home transition. It will serve as a guide for an all-inclusive assessment of mobilityrelated issues at hospital discharge, thereby reducing the number of readmissions and their related economic and personal burden. This study is a first step in the development of the CMDAF and will be used to guide a subsequent e-Delphi survey to decide on the tools that should be used to measure the examples of each factor included in our framework.

Acknowledgments

This work will be conducted as part of Michael Kalu's PhD thesis [Rehabilitation Science Program. School of Rehabilitation Science, McMaster University, Hamilton, Ontario Canada]. Michael Kalu received Mobility Labarge Scholarship from McMaster Institute for Research in Ageing, McMaster University, Hamilton, Ontario, Canada.

Author Contributions

Conceptualization: Michael E. Kalu, Vanina Dal Bello-Haas.

Investigation: Vanina Dal Bello-Haas.

Methodology: Michael E. Kalu, Vanina Dal Bello-Haas, Meridith Griffin, Jenny Ploeg, Julie Richardson.

Project administration: Michael E. Kalu.

Resources: Michael E. Kalu.

Supervision: Vanina Dal Bello-Haas, Meridith Griffin, Jenny Ploeg, Julie Richardson.

- Writing original draft: Michael E. Kalu, Vanina Dal Bello-Haas, Meridith Griffin, Jenny Ploeg, Julie Richardson.
- Writing review & editing: Michael E. Kalu, Vanina Dal Bello-Haas, Meridith Griffin, Jenny Ploeg, Julie Richardson.

Developing The CMDAF through consensus

References

- United Nations. Ageing and disability. Department of Economic and Social Affairs. United Nations— Disability. 2018. Available from: <u>https://www.un.org/development/desa/disabilities/disability-and-ageing.html</u>
- Shumway-Cook A, Ciol MA, Yorkston KM, Hoffman JM, Chan L. Mobility limitations in the Medicare population: Prevalence and sociodemographic and clinical correlates. J Am Geriatr Soc. 2005; 53 (7):1217–21. https://doi.org/10.1111/j.1532-5415.2005.53372.x PMID: 16108942
- Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N Engl J Med. 1995; 332(9):556–62. https://doi.org/10.1056/NEJM199503023320902 PMID: 7838189
- Simonsick EM, Newman AB, Visser M, Goodpaster B, Kritchevsky SB, Rubin S, et al. Mobility limitation in self-described well-functioning older adults: Importance of endurance walk testing. Journals Gerontol —Ser A Biol Sci Med Sci. 2008; 63(8):841–7. https://doi.org/10.1093/gerona/63.8.841 PMID: 18772472
- Musich S, Wang SS, Ruiz J, Hawkins K, Wicker E. The impact of mobility limitations on health outcomes among older adults. Geriatr Nurs (Minneap). 2018; 39(2):162–9. https://doi.org/10.1016/j.gerinurse. 2017.08.002 PMID: 28866316
- Gardener EA, Huppert FA, Guralnik JM, Melzer D. Middle-aged and mobility-limited: Prevalence of disability and symptom attributions in a national survey. J Gen Intern Med. 2006; 21(10):1091–6. <u>https://</u> doi.org/10.1111/j.1525-1497.2006.00564.x PMID: 16970558
- Yong V, Saito Y, Chan A. Changes in the prevalence of mobility limitations and mobile life expectancy of older adults in Singapore, 1995–2005. J Aging Health. 2010; 22(1):120–40. <u>https://doi.org/10.1177/</u> 0898264309351932 PMID: 19934444
- Lafortune G, Balestat G. Trends in Severe Disability Among Elderly People. OECD Heal Work Pap. 2007:(26).
- Canada S. A profile of persons with disabilities among Canadians aged 15 years or older, 2012. 2015. Available from: <u>https://www150.statcan.gc.ca/n1/en/pub/89-654-x/89-474</u>
- Webber SC, Porter MM, Menec VH. Mobility in older adults: A comprehensive framework. Gerontologist. 2010; 50(4):443–50. https://doi.org/10.1093/geront/gnq013 PMID: 20145017
- Yeom HA, Keller C FJ. Interventions for promoting mobility in community-dwelling older adults. J Am Acad Nurses Pract. 2009; 21:95–100. <u>https://doi.org/10.1111/j.1745-7599.2008.00390.x</u> PMID: 19228247
- Meyer MRU, Janke MC, Beaujean AA. Predictors of older adults personal and community mobility: Using a comprehensive theoretical mobility framework. Gerontologist. 2014; 54(3):398–408. <u>https://doi.org/10.1093/geront/gnt054</u> PMID: 23749391
- Giannouli E, Fillekes MP, Mellone S, Weibel R, Bock O, Zijlstra W. Predictors of real-life mobility in community-dwelling older adults: An exploration based on a comprehensive framework for analyzing mobility. Eur Rev Aging Phys Act. 2019; 16(1):19. <u>https://doi.org/10.1186/s11556-019-0225-2</u> PMID: 31700551
- Franke T, Sims-Gould J, Chaudhury H, Winters M, McKay H. Re-framing mobility in older adults: an adapted comprehensive conceptual framework. Qual Res Sport Exerc Heal. 2020; 12(3):336–49.
- Hoogerduijn JG, Buurman BM, Korevaar JC, Grobbee DE, de Rooij SE SM. The prediction of functional decline in older hospitalised patients. Age Ageing. 2012; 42(3):381–387. https://doi.org/10.1093/ ageing/afs015 PMID: 22378613
- Boyd CM, Ricks M, Fried LP, Guralnik JM, Xue QL, Xia J, et al. Functional decline and recovery of activities of daily living in hospitalized, disabled older women: The women's health and aging study. J Am Geriatr Soc. 2009; 57(10):1757–66.
- Covinsky KE, Palmer RM, Fortinsky RH, Counsell SR, Stewart AL, Kresevic D, et al. Loss of independence in activities of daily living in older adults hospitalized with medical illnesses: Increased vulnerability with age. J Am Geriatr Soc. 2003; 51(4):451–8. https://doi.org/10.1046/j.1532-5415.2003.51152.x PMID: 12657063
- Hirvensalo M. Rantanen T, Heikkinen E. Mobility difficulties and physical activity as predictors of mortality and loss of independence in the community-living older population. J Am Geriatr Soc. 2000; 48(493– 498). https://doi.org/10.1111/j.1532-5415.2000.tb04994.x PMID: 10811541
- Falvey JR, Burke RE, Malone D, Ridgeway KJ, McManus BM, Stevens-Lapsley JE. Role of physical therapists in reducing hospital readmissions: Optimizing outcomes for older adults during care transitions from hospital to community. Phys Ther. 2016; 96(8):1125–34. <u>https://doi.org/10.2522/ptj.</u> 20150526 PMID: 26939601

PL	OS.	ONE	

Developing	The CMDAF	through	consensus
------------	-----------	---------	-----------

20.	Canadian Institute for Health Information. CI for HI, Canadian Electronic Library. Réadmission en soins de courte durée et retour au service d'urgence, toutes causes confondues. Institut canadien d'informa- tion sur la santé; 2012.
21.	Rais S, Nazerian A, Ardal S, Chechulin Y, Bains N, Malikov K. High-cost users of Ontario's healthcare services. Healthc Policy. 2013; 9(1):44–51. PMID: 23968673
22.	Felix HC, Seaberg B, Bursac Z, Thostenson J, Stewart MK. Why do patients keep coming back? Results of a readmitted patient survey. Soc Work Health Care. 2015; 54(1):1–15. https://doi.org/10. 1080/00981389.2014.966881 PMID: 25588093
23.	Bauer M, Fitzgerald L, Haesler E, Manfrin M. Hospital discharge planning for frail older people and their family. Are we delivering best practice? A review of the evidence. J Clin Nurs. 2009; 18(18):2539–46. https://doi.org/10.1111/j.1365-2702.2008.02685.x PMID: 19374695
24.	Coleman AI. The Care Transitions Program® The Care Transitions Measure (CTM®) Available from: https://caretransitions.org/
25.	Naylor MD, Brooten D, Campbell R, Jacobsen BS, Mezey MD, Pauly M V., et al. Comprehensive dis- charge planning and home follow-up of hospitalized elders: A randomized clinical trial. J Am Med Assoc. 1999; 281(7):613–20. https://doi.org/10.1001/jama.281.7.613 PMID: 10029122
26.	Kalu ME, Maximos M, Sengiad S, Dal Bello-Haas V. The role of rehabilitation Piprofessionals in care transitions for older adults: A scoping review. Phys Occup Ther Geriatr. 2019; 37(3):123–50.
27.	Shih SL, Gerrard P, Goldstein R, Mix J, Ryan CM, Niewczyk P, et al. Functional status outperforms comorbidities in predicting acute care readmissions in medically complex patients. J Gen Intern Med. 2015; 30(11):1688–95. https://doi.org/10.1007/s11606-015-3350-2 PMID: 25956826
28.	Hoyer EH, Needham DM, Atanelov L, Knox B, Friedman M, Brotman DJ. Association of impaired func- tional status at hospital discharge and subsequent rehospitalization. J Hosp Med. 2014; 9(5):277–82. https://doi.org/10.1002/jhm.2152 PMID: 24616216
29.	Polnaszek B, Mirr J, Roiland R, Gilmore-Bykovskyi A, Hovanes M, Kind A. Omission of physical therapy recommendations for high-risk patients transitioning from the hospital to subacute care facilities. Arch Phys Med Rehabil. 2015; 96(11):1966–1972.e3. https://doi.org/10.1016/j.apmr.2015.07.013 PMID: 26253350
30.	Moulton E, Wilson R, Silva AR, Kircher C, Petry S, Goldie C, et al. Measures of movement and mobility used in clinical practice and research: A scoping review. JBI Evid Synth. 2021; 19(2):341–403. https:// doi.org/10.11124/JBISRIR-D-19-00366 PMID: 33323776
31.	WHO-Global Consultation on integrated care for older people (ICOPE). Global consultation on inte- grated care for older people (ICOPE)-the path to universal health coverage. 2018. Available from: https://apps.who.int/iris/handle/10665/272863
32.	Keeney S, Hasson F, Mckenna H. The Delphi Technique in Nursing and Health Research. The Delphi Technique in Nursing and Health Research. UK: John Wiley & Sons Ltd; 2011.
33.	Jünger S, Payne SA, Brine J, Radbruch L, Brearley SG. Guidance on Conducting and REporting DElphi Studies (CREDES) in palliative care: Recommendations based on a methodological systematic review. Palliat Med. 2017; 31(8):684–706. https://doi.org/10.1177/0269216317690685 PMID: 28190381
34.	Hasson F, Keeney S, McKenna H. Research guidelines for the Delphi survey technique. J Adv Nurs. 2000; 32(4):1008–15. PMID: <u>11095242</u>
35.	Hall DA, Smith H, Heffernan E, Fackrell K. Recruiting and retaining participants in e-Delphi surveys for core outcome set development: Evaluating the COMITID study. PLoS One. 2018; 13(7). <u>https://doi.org/ 10.1371/journal.pone.0201378 PMID: 30059560</u>
36.	Baker J, Lovell K, Harris N. How expert are the experts? An exploration of the concept of "expert" within Delphi panel techniques. Nurse Res. 2006; 14(1):59–70. https://doi.org/10.7748/nr2006.10.14.1.59. c6010 PMID: 17100214
37.	Khodyakov D, Grant S, Denger B, Kinnett K, Martin A, Peay H, et al. Practical considerations in using online modified-Delphi approaches to engage patients and other stakeholders in clinical practice guide- line development. Patient. 2020; 13(1):11–21. https://doi.org/10.1007/s40271-019-00389-4 PMID: 31544219
38.	Barua B, Sazid H, Timmermans I. Comparing performance of universal healthcare countries. Fraser Inst. 2017;
39.	WHO Consultative Group on Equity and Universal Health Coverage. Making fair choices on the path to universal health coverage: Final report of the WHO Consultative Group on Equity and Universal Health Coverage. Health Econ Policy Law. 2014;1–7.
40.	Chiarotto A, Dayo RA, Terwee CB, Boers M, Buchbinder R, Corbin TP, et al. Core outcome domains for clinical trials in non-specific low back pain. Eur Spine J. 2015; 24(6):1127–42. https://doi.org/10.1007/ s00586-015-3892-3 PMID: 25841358

PLOS ONE | https://doi.org/10.1371/journal.pone.0267470 September 22, 2022

12/14

PLOS	ONE

Developing The CMDAF through consensus

41.	HelpAge. Helping older people live full and secure lives HelpAge International. 2020. Available from: https://www.helpage.org/
42.	Imagine Citizens Network. IMAGINE, a citizen-cantered health system. 2020. Available from: https:// imaginecitizens.ca
43.	Alberta Caregiver: Caregivers Alberta–Caring for Caregivers 2020. Available from: https://www. caregiversalberta.ca/
44.	Boulkedid R, Abdoul H, Loustau M, Sibony O, Alberti C. Using and reporting the Delphi method for selecting healthcare quality indicators: A systematic review. PLoS One. 2011; 6(6):e20476. https://doi. org/10.1371/journal.pone.0020476 PMID: 21694759
45.	Sinha IP, Smyth RL, Williamson PR. Using the Delphi technique to determine which outcomes to mea- sure in clinical trials: Recommendations for the future based on a systematic review of existing studies. PLoS Med. 2011; 8(1):1000393. https://doi.org/10.1371/journal.pmed.1000393 PMID: 21283604
46.	Boel A, Navarro-Compán V, Landewé R, van der Heijde D. Two different invitation approaches for con- secutive rounds of a Delphi survey led to comparable final outcome. J Clin Epidemiol. 2020 Sep; https:// doi.org/10.1016/j.jclinepi.2020.09.034 PMID: 32991995
47.	Beuscart JB, Knol W, Cullinan S, Schneider C, Dalleur O, Boland B, et al. International core outcome set for clinical trials of medication review in multi-morbid older patients with polypharmacy. BMC Med. 2018; 16(1):21. https://doi.org/10.1186/s12916-018-1007-9 PMID: 29433501
48.	Millar AN, Daffu-O'Reilly A, Hughes CM, Alldred DP, Barton G, Bond CM, et al. Development of a core outcome set for effectiveness trials aimed at optimising prescribing in older adults in care homes. Trials. 2017; 18(1):175. https://doi.org/10.1186/s13063-017-1915-6 PMID: 28403876
49.	Baldwin CE, Phillips AC, Edney SM, Lewis LK. Recommendations for older adults' physical activity and sedentary behaviour during hospitalisation for an acute medical illness: An international Delphi study. Int J Behav Nutr Phys Act. 2020; 17(1).
50.	Stewart D, Gibson-Smith K, MacLure K, Mair A, Alonso A, Codina C, et al. A modified Delphi study to determine the level of consensus across the European Union on the structures, processes and desired outcomes of the management of polypharmacy in older people. Leong C, editor. PLoS One. 2017; 12 (11):e0188348. https://doi.org/10.1371/journal.pone.0188348 PMID: 29155870
51.	Diamond IR, Grant RC, Feldman BM, Pencharz PB, Ling SC, Moore AM, et al. Defining consensus: A systematic review recommends methodologic criteria for reporting of Delphi studies. J Clin Epidemiol. 2014; 67(4):401–9. https://doi.org/10.1016/j.jclinepi.2013.12.002 PMID: 24581294
52.	Guyatt G, Oxman A, Kunz R, Vist G, Falck-Ytter Y, Schünemann HJ. What is "quality of evidence" and why is it important to clinicians? BMJ. 2008; 336:995–8. https://doi.org/10.1136/bmj.39490.551019.BE PMID: 18456631
53.	Lange T, Kopkow C, Lützner J, Günther KP, Gravius S, Scharf HP, et al. Comparison of different rating scales for the use in Delphi studies: Different scales lead to different consensus and show different test- retest reliability. BMC Med Res Methodol. 2020; 20(1):28. https://doi.org/10.1186/s12874-020-0912-8 PMID: 32041541
54.	Initiative C. COMET DelphiManager, 2017. Available from: http://www.comet-initiative.org/ delphimanager/
55.	McKenna HP. The Delphi technique: a worthwhile research approach for nursing? J Adv Nurs. 1994; 19 (6):1221-5. https://doi.org/10.1111/j.1365-2648.1994.tb01207.x PMID: 7930104
56.	Turnbull AE, Dinglas VD, Friedman LA, Chessare CM, Sepúlveda KA, Bingham CO, et al. A survey of Delphi panelists after core outcome set development revealed positive feedback and methods to facili- tate panel member participation. J Clin Epidemiol. 2018;102:99–106. https://doi.org/10.1016/j.jclinepi. 2018.06.007 PMID: 29966731
57.	Turnbull AE, Sepulveda KA, Dinglas VD, Chessare CM, Bingham CO, Needham DM. Core domains for clinical research in acute respiratory failure survivors: An international modified Delphi consensus study. Crit Care Med. 2017; 45(6):1001–10. https://doi.org/10.1097/CCM.0000000002435 PMID: 28375853
58.	Clibbens N, Walters S, Baird W. Delphi research: Issues raised by a pilot study. Nurse Res. 2012; 19 (2):37–43. https://doi.org/10.7748/cnp.v1.i7.pg21 PMID: 22338807
59.	Dillman DA, D SJ, Leah C. Internet, Phone, Mail, and Mixed mode Surveys- The Tailored Design Method. 4th ed. Canada: John Wiley & Sons Ltd; 2014.
60.	Williams PL, Webb C. The Delphi technique: a methodological discussion. J Adv Nurs. 1994; 19 (1):180–6. https://doi.org/10.1111/j.1365-2648.1994.tb01066.x PMID: 8138622
61.	Trevelyan EG, Robinson N. Delphi methodology in health research: How to do it? Eur J Integr Med. 2015; 7(4):423–8.

62. Corp S. Stata Statistical Software: Release 15. TX; USA: StataCorp LLC.; 2017. p. Release 15.

PLOS ONE | https://doi.org/10.1371/journal.pone.0267470 September 22, 2022

13/14

Developing The CMDAF through consensus

- Needham DM, Sepulveda KA, Dinglas VD, Chessare CM, Friedman LA, Bingham CO, et al. Core outcome measures for clinical research in acute respiratory failure survivors an international modified delphi consensus study. Am J Respir Crit Care Med. 2017; 196(9):1122–30.
- 64. Qualitative Data Analysis Software | NVivo. Available from: <u>https://www.qsrinternational.com/nvivo-</u> qualitative-data-analysis-software/home
- Hsieh HF, Shannon SE. Three approaches to qualitative content analysis. Qual Health Res. 2005; 15 (9):1277–88. https://doi.org/10.1177/1049732305276687 PMID: 16204405
- Falvey JR, Burke RE, Ridgeway KJ, Malone DJ, Forster JE, Stevens-Lapsley JE. Involvement of acute care physical therapists in care transitions for older adults following acute hospitalization: A Cross-sectional national survey. J Geriatr Phys Ther. 2019; 42(3):E73–80. https://doi.org/10.1519/JPT. 0000000000000187 PMID: 29533283
- 67. Activity Measure for Post Acute Care | RehabMeasures Database. Available from: https://www.sralab. org/rehabilitation-measures/activity-measure-post-acute-care

PLOS ONE https://doi.org/10.1371/journal.pone.0267470 September 22, 2022

CHAPTER 6: What mobility factors are critical to include in a Comprehensive Mobility Discharge Assessment Framework for older adults transitioning from hospital-to-home in the community? An International e-Delphi study.

As submitted to:

Disability and Rehabilitation

Status at time of thesis submission: Under review

Preface

This chapter is the quantitative manuscript of Phase 2 of the PhD thesis that focuses on developing, through consensus, factors within mobility determinants that are critical to be part of a Comprehensive Mobility Discharge Assessment Framework for older adults transitioning from hospital-to-home. I, under the supervision of Dr V Dal Bello-Haas, and following the published protocol in Chapter 5, developed the study materials, including recruitment fliers; applied and obtained ethical approvals; conducted the research ranging from the recruitment of participants to data collection, managing the data, organizing and leading Steering Committee Meetings at each round of the e-Delphi process; conducted data analysis; wrote, revised and submitted the manuscript for publication. Dr. M Griffin, Dr. S Boamah, Dr. J Harris and Dr. T Rantanen participated in the Steering Committee Meetings. They provided feedback on the e-Delphi questionnaire, feedback summaries sent to e-Delphi expert members after each round, and the manuscript. The project including recruitment, ethics submission and approval, e-Delphi data collection and writing of manuscript was completed between February 2021 to June 2022. The manuscript was submitted in July 2022.

Citation: Kalu ME, Dal Bello-Haas, Griffin M, Boamah S, Harris J, Rantanen T. What mobility factors are critical to include in a Comprehensive Mobility

Discharge Assessment Framework for older adults transitioning from hospitalto-home in the community? An International e-Delphi study.

Authors: Michael E Kalu, Vanina Dal Bello-Haas, Meridith Griffin, Sheila A

Boamah, Jocelyn Harris, Taina Rantanen

Affiliations:

- Michael E Kalu, PhD student, MSc, BMR. PT School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada kalum@mcmaster.ca
- Vanina Dal Bello-Haas, PT, PhD School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada vdalbel@mcmaster.ca
- Meridith Griffin, PhD Department of Health, Aging & Society, Faculty of Social Science, McMaster University Hamilton, Ontario, Canada griffmb@mcmaster.ca
- Sheila A Boamah, RN, PhD School of Nursing, Faculty of Health Sciences, McMaster University Hamilton, Ontario, Canada boamahs@mcmaster.ca
- Jocelyn Harris, PhD, OT School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada jharris@mcmaster.ca
- Taina Rantanen, PhD Gerontology Research Center, Faculty of Sport and Health Science, University of Jyvaskyla, Jyvaskyla, Finland taina.rantanen@jyu.fi

Corresponding author: kalu@mcmaster.ca

Abstract

Objectives

To prioritize and achieve consensus on mobility determinant factors [cognitive, financial, environmental, personal, physical, psychological, social] considered critical to include in the Comprehensive Mobility Discharge Assessment Framework (CMDAF) for older adults transitioning from hospital-to-home.

Methods

We conducted a three-round modified e-Delphi process with 60 international experts (seven older adults, nine family caregivers, 24 clinicians, and 20 researchers) from nine countries with universal or near-universal health coverage. Expert members rated 91 factors identified from scoping reviews using a 9-point scale: not important (1-3), important (4-6), and critical (7-9).

Result

A total of 41 of 91 factors (45.1%) met the a-priori consensus criterion after three rounds: five cognitive, five environmental, two personal, 19 physical, six psychological, and six social factors. No financial factors reached a consensus. Factors that reached consensus among older adults were grouped as "safety, accessibility, and availability" and "government/institutional support" and added to the final list of factors. Forty-three final factors comprise the CMADF.

Conclusions

We advanced a comprehensive mobility framework by developing, through consensus, 43 mobility factors to be assessed as part of a CMDAF. Future research will determine which measurement instruments best measure these factors. Keywords: Mobility, Ageing, Discharge, Hospital-to-home, e-Delphi process.

Introduction

Older adults' mobility has been described as the hallmark of ageing [1]. The inability to be mobile is associated with several adverse health outcomes, including mortality risk, social isolation, and poor quality of life [1]. Mobility decline is common during hospitalization [2]. About 30% to 60% of older adults experience functional decline during and after hospitalization, as most spend more time sitting or lying on their bed than performing mobility-related activity [3-5]. Mobility decline following discharge is associated with higher hospital costs in many countries, including Canada [6], the UK [7], Australia [8], and the USA [9]. Despite this, mobility decline is not yet widely recognized as an important hospital care outcome [10].

Mobility assessments are often not completed during the hospital-to-home transition for older adults [11], even though functional status is a better predictor of hospital readmission than medical comorbidities in a medically complex rehabilitation population [12,13]. Empirical evidence has found that mobility-related recommendations were omitted entirely in 53% and partially omitted in 47% of discharge summaries of high-risk patients transitioning from hospital-to-subacute care facilities [14]. Possible explanations for this omission or reduced attention to mobility during hospital discharge include the lack of active involvement of rehabilitation professionals during discharge processes [11,15], staffing constraints in some physiotherapy departments with well-established interdisciplinary mobility care [10], or the lack of a comprehensive mobility assessment framework for discharge planning [11,15].

Mobility is a complex phenomenon with related factors influencing it; hence the need for a comprehensive framework describing the interrelationships

between these factors and how they affect older adults' mobility. Webber and colleagues [10], in their Conical Model of Theoretical Framework for Mobility in Older Adults, conceptualize cognitive, psychosocial, physical, environmental, financial and personal histories/stories as determinants of mobility across seven life space locations - the room where the older adult sleeps, their home, the outdoors, their neighbourhood, their service community surrounding area, and the world. The authors highlighted the and interrelationships between the determinants and how they work together or individually to influence older adults' mobility. For example, older adults with reduced muscle strength (physical determinant) and lack of access to transportation or driving (environmental determinant) would likely have limitations in community mobility, leading to a reduction in social networks causing loneliness (social determinant) and often social exclusion from participating in social activities meaningful to older adults, decreasing their quality of life.

Franke et al. [17] expanded the Conical Model of Theoretical Framework for Mobility in Older Adults by reframing the model into a sliding scale that reveals the dynamic, fluid and experiential nature of mobility by analyzing physiological, subjective and contextual factors within and between people and their environment over time. They suggested that older adults and caregivers can identify and rate each physiological, subjective, and contextual factor influencing their mobility across the sliding scale ranging from high to low. While the Conical Model of the Theoretical Framework for Mobility in Older Adults [16] and the expanded version [17] have provided practical conceptual ideas to enhance mobility for older adults, their use has been limited in clinical practice, especially in specific settings, such as hospital-to-home transition. Within the expanded model, it may be challenging for older adults with cognitive impairment to rate which factors they believe could influence

their mobility, and the framework did not provide examples of physiological, subjective, and contextual factors.

In order to identify factors within each mobility determinant, our team conducted scoping reviews to describe the associations between different forms of mobility and factors within each determinant. The findings of these reviews are published [18] or are currently under review in peer-reviewed journals [19,20]. Together these reviews included 722 articles with 76 factors, including five cognitive factors, 17 environmental, three financial, 11 personal, 20 physical, 15 psychological, and five social factors associated with older adults' mobility.

Hospital discharge processes are fast; therefore, it would not be practical to include all the factors in a comprehensive mobility discharge assessment framework. There is a need to prioritize specific factors within each determinant that are critical to assess when older adults are being discharged from hospital-to-home, advancing the practical use of the Conical Model of Theoretical Framework for Mobility [16]. In addition, the Quality and Performance Measurement Committee of the American Geriatric Society, Recommendation #3 in their White Paper Executive Summary [10], suggested a need to develop a consensus on standard methods to assess mobility. Building on these, our team aimed to develop a Comprehensive Mobility Discharge Assessment Framework (CMDAF) that clinicians can use during hospital-to-home transitions. This e-Delphi study aimed to prioritize and reach consensus on the factors within each mobility determinant [cognitive, financial, environmental, personal, physical, psychological, social] to assess, as part of the CMDAF, when older adults are discharged from hospital-to-home.

Methods

Design

This modified e-Delphi survey was developed, implemented, and the findings were reported following the Conducting and Reporting of Delphi Studies (CREDES) framework [21]. The e-Delphi study protocol has been published elsewhere [22]. Briefly, the e-Delphi method, a systematic approach to combining opinions of individuals with knowledge and experience, was employed to achieve consensus regarding mobility factors critical to assess when older adults are being discharged from hospital-to-home. The e-Delphi method was appropriate for decision making because its flexible approach allowed us to administer threerounds of an online web-based survey questionnaire to reach a consensus without requiring participants to be physically present to participate.

Steering Committee

A Steering Committee (SC), comprised of five team investigators with expertise in mobility and e-Delphi process - two physiotherapy researchers, one occupational therapist researcher, one nurse researcher and social gerontology researcher focusing on movement; an external consultant with expertise in mobility, public health and gerontology; an older adult with mobility limitations; and a family caregiver with lived experience of receiving and providing care during hospital-to-home transition, provided overall study oversight. They met at different key stages throughout the study to ensure accuracy, comprehensiveness, and clarity of e-Delphi materials and questionnaire, review results and feedback summaries after each round, and review and make decisions about factors that were close to reaching consensus in the last round, see figure 1.

Experts' eligibility, sampling strategies, recruitment and sample

We employed criterion-based purposive sampling to recruit a heterogeneous group including researchers, clinicians, older adults, and family caregivers, henceforth referred to as experts.

Experts' eligibility

As per the protocol, we defined: (a) expert researchers as those who have authored at least two peer-reviewed articles on at least one of the mobility determinants; (b) expert clinicians as those who have at least two years of clinical experience working with older adults with mobility difficulties; (c) expert older adults as individuals, 65 years and older, who have at least one year of mobility difficulty and have experienced hospital-to-home transition; and, (d) expert family caregivers as individuals who have at least one year of providing care to older adults with mobility difficulties and have experienced hospital-to-home transition. We included older adults and family caregivers as experts because their involvement could ensure that the Delphi process findings are relevant to patients' needs and preferences, facilitate implementation of the intended CMDAF, increase compliance and ultimately improve care quality [23,24]. In addition, research has demonstrated that older adults and their family caregivers can actively participate in an e-Delphi consensus, especially when plain language explanations of items for consensus are provided [25].

Experts, regardless of their group, were recruited from a country with universal or near-universal health coverage, for example, the United Kingdom, Canada, and Australia, which offer all their citizens affordable access to comprehensive health services [26].

Recruitment

Experts were recruited via several methods including: email invitations to researchers identified through scoping reviews; email invitations to clinicians, older adults, and family members through steering committee networks; sending emails with our recruitment materials to local, national and international interdisciplinary professional associations and patient or caregiver focused organizations e.g., the British Society of Gerontology, the Canadian Association of Gerontology, HelpAge International, HelpAge Canada,

IMAGINE Citizen Collaborating for Health, Caregivers Alberta, McMaster Institute for Research in Aging, and the Hamilton Council on Aging for distribution and advertising in their newsletters.

Sample

There is no standard sample size for the e-Delphi process; rather the sample size is based on the study's aims, scope, and practical purposes [27]. Using recruitment response rates of 65% [27], we initially invited approximately 31 experts to achieve our minimum sample size of 20 (five per expert group - researchers, clinicians, older adults and family caregivers). All 31 experts indicated interest in participating and suggested an additional 47 experts.

Generating a list of factors within each mobility determinant to inform Round 1.

We modified the classical Delphi process that often starts with experts generating items in Round 1. Using evidence from scoping reviews [18-20], we identified factors within each mobility determinant to be rated in Round 1. The team investigators conducted seven scoping reviews of cognitive, environmental, financial, personal, physical, psychological and social mobility determinants to identify the initial list of factors. These scoping reviews aimed to synthesize the available evidence on factors within seven mobility determinants and their association with older adults' self-reported and performance-based mobility outcomes. The reviews were registered at the Open Science Framework https://doi.org/10.17605/OSF.IO/7Y5VG; and the findings of these reviews are published [18] or currently under review in peer-reviewed journals [19,20]. Summarily, we included 722 articles across these scoping reviews, and 76 factors, including five cognitive factors, 17 environmental, three financial, 11 personal, 20 physical, 15 psychological, and five social factors, were reported as factors associated with older adults' self-reported and performedbased mobility outcomes. The plain language descriptions for each factor within

each determinant was developed through an iterative process with the SC, which includes an older adult and a family caregiver; and with feedback from 15 individuals with varying education levels and knowledge of medical terminology. Details of all factors and their descriptions used in this e-Delphi study are included as an Appendix 6B.

Pilot study

Pilot testing of e-Delphi round(s) has been recommended to ensure content and face validity, receive feedback regarding formatting and plain language descriptions, determine participation time, test-run the online platform, and resolve any issues before launch [28]. We invited 18 participants with similar characteristics of the expert members to participate in the e-Delphi pilot study, and 13 participated - 7/7 for researchers, 3/4 for clinicians, 2/6 for older adults and 1/1 for the caregiver group. e-Delphi pilot study participants were asked to provide feedback regarding the structure, determine participation time, and identify issues with online platform. The areas of strength included: the survey's ease of navigation; the amount of time to complete the survey was approximately 20 minutes; the plain language definitions of factors encouraged them to complete the survey; wording which was considered appropriate; and clear instructions. Areas requiring improvement included: the consent form was deemed too long, especially for the older adults; participants experienced difficulty finding the comments section to provide rationale(s) for rating each factor; and participants had difficulty with getting back to the survey after logging out of the system.

The pilot study participants suggested eight additional factors to be included in the survey. The SC met, discussed the areas requiring improvement, and resolved concerns. For instance, the informed consent was revised and shortened to remove redundancy. We specifically highlighted and bolded the instructions on identifying the open-ended section where experts would provide a rationale(s) for rating each factor. We reminded participants to check their

email to retrieve their log-in details or send an email to the study coordinator if they could not return to the survey at any time. The SC added the eight suggested factors, resulting in 84 factors to be rated by expert members in Round 1 of the e-Delphi survey.

e-Delphi Procedure

Following the CREDES recommendation [21], the number of rounds to be completed was set *a priori* as three. We chose three rounds for two main reasons. Two rounds might not be adequate to reach a consensus on a complex subject, such as mobility, with a heterogeneous group of experts; and four rounds might lead to a decreased participation rates across the rounds, which affects the Delphi process validity [29]. Each factor within each determinant was rated using a 9-point scale divided into three categories for importance rating: Not Important (1-3), Important but Not Critical (4-6), and Critical (7-9) [30]. Additionally, an "unable to score" response and instruction for its use were provided in the case experts felt they could not rate a particular factor.

Consensus

Following the CREDES recommendation [21], consensus definition was set a priori. We defined consensus as \geq 70% of experts rating a factor as "Critical" (scores \geq 7) and \leq 15% of experts rating a factor as "Not Important" (scores \leq 3). This consensus definition has been used in previous e-Delphi studies to ensure that opinions of minority experts, such as older adults and family caregivers, are taken into account in reaching consensus [31-33].

Survey administration

Experts' demographic information was collected via LimeSurvey with a link to the e-Delphi questionnaire hosted in DelphiManager©, a web-based system designed to facilitate the building of e-Delphi surveys that allows easy and efficient data management while allowing anonymity of expert members to be maintained

throughout the study [34]. The three-round e-Delphi survey commenced on January 17, 2022, and ended on April 17, 2022, with each round open for three weeks at a time. Experts who had not responded after one week of each round launch received three personalized email reminders two weeks, a week, and three days before the end of the survey. Throughout the survey, expert members were encouraged to contact the research team for clarification regarding instructions, technical support, or additional time to complete the survey. Experts who completed Round 1 were invited to complete all rounds, even if they did not complete subsequent rounds, to ensure better representation of the opinions of the invited panel and reduce false consensus [35]. Items that reached consensus were removed in subsequent rounds. At each round, expert members were reminded of the study aim, and plain language descriptions were provided for all factors to be rated.

Round 1

Round 1 started on January 17, 2022. The Round 1 survey asked expert members to rate factors and provide rationale for rating for each determinant that are critical to assess as a part of a CMDAF when older adults are discharged from hospital-to-home. The survey asked an open-ended question about other potential factors for each mobility determinant.

Round 2

Before Round 2, the SC met and discussed the Round 1 analyses and the factors suggested by expert members in Round 1. We provided a feedback summary based on Round 1 responses as the introductory message in Round 2, see Appendix 6A. The feedback summary described the factors that reached consensus, factors suggested by expert members in Round 1, and the rationale for not adding any factors expert members suggested. The DelphiManager© has an inbuilt functionality to calculate the distribution of ratings for each factor aggregated from all Round 1 participants and stratified by each expert group. The rating distribution

(group and overall rating) automatically displayed to the experts in the next round, together with a reminder of their own rating [34]. Experts were asked to re-rate these factors, rate additional factors suggested in Round 1, and provide rationales for their ratings.

Round 3

Round 3 proceeded as per Round 2. Expert members were asked to provide any additional comments regarding the e-Delphi process at the end of the survey and were offered the option to indicate if they wanted to be acknowledged in the project or remain anonymous.

At the end of Round 3, the SC met and discussed factors close to reaching consensus, defined as factors that reached consensus by at least one expert group in Round 3 but did not reach consensus in the combined group rating [36].

Data analysis

As per the protocol [22], quantitative data were analyzed using STATA,v16.1© [37], with a p-value set at <0.05. Descriptive statistics, such as frequency counts and percentages, were used to analyze and report response rate and consensus level. Response rate was defined as the total number of participants that completed each round divided by the total number of participants that received the survey, and multiplied by 100 [21]. In addition, mean (standard deviation), median, and interquartile ranges, were calculated and used to report the consensus level. Analyses were completed for all expert groups combined, and separately for each expert group. Stability, defined as the consistency of responses between successive rounds, was calculated using the Wilcoxon matchedpairs signed-rank test.

Deviations from protocol and rationale

We did revise some methods from the original protocol. First, we collected e-Delphi demographics using LimeSurvey[®] instead of through the DelphiManager[®] to maintain anonymity, as the DelphiManager team manages data collected through DelphiManager[®], introducing a third party and requiring additional ethics approval. As a result, we increased the sample size for the pilot study from four participants to 13 to comprehensively understand the issues that could arise in using both Limesurvey[®] and DelphiManager[®] to conduct the e-Delphi process. Third, we planned to use histograms to provide feedback to expert members. However, because of the large number of factors (84 in Round 1 and 75 factors in Round 2), providing 84 histograms for each expert group rating alongside individual experts' ratings, would be unwieldy and visually complex. Therefore, we provided feedback to the expert members using only the overall group, specific group, and individual percentages.

Ethical consideration

This research was approved by Hamilton Integrated Research Ethics Board (HIREB Project no: 7212). Only invited experts who provided informed consent online participated in the study. The privacy and identity of all experts were protected during and after the study. We de-identified any feedback or summary statements shared with the experts.

Results

We invited 74 expert members to participate, and 60 [researchers (n=20), clinicians (n=24), family caregivers (n=9) and older adults (n=7)] participants completed Round 1 (81% response rate).

Participants demographics

Expert members' characteristics are shown in Table 1. The researchers' mean (SD) years of experience was 9.1 (6.8), ranging from 2 to 31 years. Eight (40.0%) had at least five first-author publications or published at least two

publications on mobility determinants as senior authors, and two-thirds (n=14, 70.0%) had co-authored at least two publications. Most clinicians (n=21, 87.5%) worked full time and included one (4.2%) general physician, two (8.3%)geriatricians, 12 (50.0%) physiotherapists, four (16.7%) occupational therapists, two (8.3%) nurses, two (8.3%) social workers and one (4.2%) exercise physiologist. Clinicians' mean (SD) years of experience was 12.8 (10.1), ranging from 2 to 43 years. The discharge practice setting of clinicians varied, with a little over half (54.2%) reporting working predominantly in a mixed setting, while the remaining reported working in critical care (n=2, 8.3%), emergency care (n=1, 4.2%), inpatient rehabilitation (n=2, 8.3%), and outpatient rehabilitation (n=6, 25.0%). More than half (58.3%) of clinicians reported that older adults (65 years and older) constitute more than 70% of the population of their clinical practice. While four (44.4%) family caregivers and five (71.4%) older adults had experienced hospital-to-home transition in the last six months, five (55%) family caregivers and one (28.5%) older adult had experienced hospital-to-home transition in the last one year at the time of this study.

Round results

Figure 1 shows the e-Delphi survey process, results, and timeline. In Round 1, 60 of 74 expert members (81%) responded; eight researchers, two clinicians, two older adults and two family/informal caregivers did not respond. Among the 84 factors to be rated, 16 (19%) factors met consensus criteria (See Table 2).

Details of the rating of all factors in **Round 1** are shown in Appendix 6B. Expert members suggested an additional 25 factors, and SC met and discussed them. The SC agreed that some factors were already captured in some of the factors rated. For instance, functional cognition, defined as "the ability to use and integrate thinking and performance skills to accomplish complete everyday activities" ([38] p. 1), was suggested. However, elements of functional cognition are captured within "executive function." Hence functional cognition

was not added in Round 2. Following discussion of each of the suggested 25 factors, only an additional seven factors were added in Round 2. These seven factors were governmental/institutional support, discharge goals and expectations, history of recent readmission to hospital, ability to walk 400m or a city block, ability to dual-task, ability to climb stairs, and baseline physical function before admission. See Appendix 6A for other suggested factors alongside the rationale for not adding them in Round 2.

In Round 2, 52 out of 60 expert members participated (87% response rate); one researcher, five clinicians, and two caregivers did not respond. Among the 75 factors rated in Round 2, 20 factors met consensus criteria (See Table 2). All consensus factors, except memory and muscle coordination, were stable between rounds 1 and 2 (Wilcoxon matched signed-rank test, p>0.05, see Table 3). Details of the rating of all factors in Round 2 are shown in Appendix 6B. The SC met and reviewed the factors that reached consensus in Round 2 and developed a feedback summary for Round 3.

In Round 3, 52 out of 60 expert members participated (87%); three researchers, four clinicians, and one family caregiver did not respond. Among the 55 factors in Round 3, 5 factors met consensus criteria (See Table 2). All consensus factors were stable between Rounds 2 and 3 (Wilcoxon matched signed-rank test, p>0.05, see Table 3). Details of the rating of all factors in Round 3 are shown in Appendix 6B.

Steering committee decision making post Round 3

At the end of Round 3, 41 out of 91 factors met consensus criteria. Thirteen factors that reached consensus in at least one expert group were discussed by the SC. After robust discussions (see Appendix 6A for meeting notes), the SC agreed that **governmental and institutional support systems** should be included in the CMDAF. To give voice to the older adults, the SC suggested that crimerelated safety, access to rest areas, and recreational facilities could be

merged as one factor to describe **safety**, **accessibility**, **and availability** and included in the CMDAF. Therefore, 43 factors were included as part of CMDAF; see Table 4 for the description of each factor.

Discussion

We used a three-round modified e-Delphi consensus methodology with an international panel of 60 expert members to identify critical factors to include in a Comprehensive Mobility Discharge Assessment Framework for older adults transitioning from hospital-to-home in the community. Forty-three factors reached consensus within six broader determinants: cognition, environmental, personal, physical, psychological and social. No factor under the financial determinant reached consensus. These findings advanced the Webbers' comprehensive mobility framework [16] by providing specific factors within each mobility determinant that are critical to assess during older adults' hospital discharge. The American Geriatric Society recommended consensus regarding a standard method to assess mobility in the hospital care, specifically in acute care, is needed [10]. Our study findings provided the first step to achieving this recommendation. Subsequent studies will focus on identifying how these mobility factors will be assessed or identifying, through consensus, an existing assessment that is validated, appropriate for hospital-to-home transition, and clinically meaningful to providers and patients [10].

Expert members identified at least two critical factors within each mobility determinant. Notably, no factor within the financial determinant achieved consensus. Although economic resources may dictate activities that could enhance mobility, such as access to fitness centers or transportation following discharge [16], financial factors may not be critical to assess as part of CMDAF amid other competing factors. This finding supports evidence from Meyer et al.'s study that reported that financial determinants were not strong predictors for mobility in the presence of other determinants [39].

Nevertheless, the countries from which we recruited our participants may have influenced why financial factors were not considered critical to be included in the CMDAF. Our expert participants were from countries with universal or nearuniversal health coverage, which offers all their citizens affordable access to a comprehensive health service package [40]. Another possible reason could be the fact that some experts that participated in our study do not worry about finances and are not necessarily aware of those who are not able to use transportation services due to financial challenges (e.g., taking a taxi to a medical appointment), which is not covered by universal healthcare in Canada. This reason is based on the experts' demographics, specifically older adults and family caregivers, who were highly educated and may have high incomes. With the ageing population, some of these countries have expanded their public funding to include, for instance, free or subsidized transportation for seniors [41]. Therefore, it is plausible that financial factors would be critical to include in the CMDAF in countries where citizens have private insurance or pay out-of-pocket.

Contrary to expectations, gait, the "sixth vital sign" [42], did not reach consensus in our study. This finding is surprising because gait speed has been shown to predict hospital readmission [43,44]. In previous e-Delphi studies, expert members have consistently chosen gait speed as the core outcome for the motor function domain of the National Institutes of Health Toolbox [45] and for interventional studies aiming to maintain or improve motor-cognitive function [46]. Previous studies have reported that older adults are often discharged from the hospital "quicker and sicker," as a result, they may be weak or unable to complete the gait speed walk at discharge [47,48]. Kuspinar et al. [49] reported that social support (~10%) contributed more than gait speed (~6%) to the variation in life space index scores of community-dwelling older adults in a multivariable model [49]; this finding could explain why gait speed did not

reach consensus in our study. We argue that some factors' relevance or importance in mobility assessment could change amid other competing factors.

All six social factors reached consensus in Round 2, highlighting that expert members place significant importance on the impact of social factors on older adults' mobility during discharge. The role of social factors on mobility is the least studied compared to physical, cognitive, psychological, and environmental factors [18]. Social issues, such as lack of social support, are a known risk factor for adverse health outcomes in older adults following discharge [50]. Studies have reported living alone and poor social network as independent risk factors for delayed discharge, defined as a patient being discharged more than 24 hours after his/her last recorded clinically fit date [51,52], and hospital readmission [53]. Using baseline data from a doubleblinded randomized, placebo-controlled trial, Ullrich et al. [54] investigated potential determinants of life-space mobility among older adults with mild to moderate cognitive impairment discharged from geriatric rehabilitation; and found that social activities were independently associated with higher lifespace mobility scores. Similarly, Greysen et al. [55] reported that patients with higher levels of social engagement following hospital discharge improved significantly in their mobility compared to those with lower levels of social engagement. These studies also highlight the importance of including social factors in the CMDAF.

Group stability is considered a necessary criterion for consensus [56]. In our study, stability was present for all factors that reached consensus, except for the memory and muscle coordination factors. Interestingly the older adults in our study initially considered memory not a critical factor in Round 1. Previous studies have demonstrated that memory was not associated with mobility [49,57,58], and that some older adults consider loss of memory as a natural occurring event [58]. The complexity in describing muscle coordination and its role in mobility-related activities, such as walking and balance in

older adults, could have influenced how experts rated each round [59]. In addition, evidence has shown that controlled feedback provided as comments or in statistics could impact the group stability [60]. Therefore, experts reviewing the feedback provided in each round may have influenced how they subsequently rated factors. Content analysis of the rationale for rating is currently underway and may provide insight [61].

There are several strengths in this study design and conduct. We conducted this study according to a published protocol [22], following the CREDES reporting guideline, and all deviations from this protocol were disclosed. The factors used in the Round 1 survey were identified from a comprehensive series of systematic scoping review for each of the seven determinants of mobility, highlighting several mobility-related factors that have been studied in the literature. We engaged several strategies to improve the validity and reliability of the e-Delphi process, such as pilot testing, stating a priori criteria for consensus, use of plain language in defining each factor to be rated, and feedback summaries. We used a SC, including an older adult, a family caregiver and content and methodological experts, to independently oversee the study conduct and analysis. Historically, expert members in an e-Delphi are often researchers, sometimes clinicians, and rarely older adults and family caregivers [27]. We included older adults and family caregivers as SC and expert members in our study. Involving older adults and caregivers is encouraged in the e-Delphi process as they may prioritize factors of importance that may not otherwise be prioritized in the published literature or by clinicians [62]. The relative importance placed on various factors can differ between older adults, family caregivers, clinicians and researchers [63]. Therefore, we intentionally included different expert groups to maximize relevance to these groups, especially older adults and caregivers, increasing the usability of this study's findings in clinical practice and future research.

This study is not without limitations. All experts are from countries with universal or near-universal health coverage. While attempting to ensure equal distribution of expert members across each group, experts were skewed towards researchers and clinicians, with all caregivers recruited from Canada and older adults recruited from Canada and the UK, despite multiple and a variety of recruitment attempts. Therefore, there might still be questions about the applicability of research findings in some countries with universal or nearuniversal health coverage and findings may also not be applicable in countries with private health insurance (e.g., United States of America) or out-of-pocket healthcare systems in most developing countries. Moreover, we removed factors that reached consensus in subsequent rounds to increase the response rate, as evidence shows that a lower number of items in e-Delphi increases the response rate [64], thereby improving the reliability of the e-Delphi result and process. Arguably, factors that reached consensus in Round 3 in our study might be different if expert members rated all 91 factors in all rounds. Therefore, future studies should explore the effect of retaining all items in all rounds versus only consensus or non-consensus items on response rate and consensus results in an e-Delphi study.

Conclusions and future directions

Our study has identified 43 factors across all mobility determinant that are critical to be assessed as part of a CMDAF. The feasibility of assessing 43 mobility factors during hospital-to-home transition is low and requires further evaluation. Further prioritizing the number of mobility factors that can be feasibly assessed within the hospital-to-home transition is required as next steps. Regardless, this study is timely as it partly provides findings to support the Quality and Performance Measurement Committee of the American Geriatric Society's recommendation to develop consensus on a standard method to assess mobility in the hospital care, specifically in hospital-to-home transition [10]. Several steps are needed for this CMDAF to be fully implemented

during hospital discharge. First, an e-Delphi consensus method recommended by the Quality and Performance Measurement Committee of the American Geriatric Society would be ideal for identifying when and how these 43 factors included in this CMDAF should be assessed [10]. The complete CMDAF would consist of factors and their corresponding measures, providing healthcare workers with a guide to comprehensively assess the factors that influence mobility postdischarge using an integrative and holistic approach. Second, feasibility testing in a hospital setting is necessary to determine the practicality of the CMDAF, focusing on feasibility outcomes while tackling barriers and leveraging facilitators to implement CMDAF. These future directions are recommended in the context of hospital discharge for countries with universal or near-universal health coverage.

Acknowledgment.

We want to acknowledge the older adult and family caregiver steering committee members: Mr. John Fielding, Mrs. Dianne Fielding, Daniel Rayner, and all the expert members who participated in this e-Delphi rounds. This work was conducted as part of Michael Kalu's PhD thesis [Rehabilitation Science Program. School of Rehabilitation Science, McMaster University, Hamilton, Ontario Canada]. Michael Kalu received Mobility Labarge Scholarship from McMaster Institute for Research in Ageing, McMaster University, Hamilton, Ontario, Canada.

Disclosure statement

The authors report there are no competing interest to declare

Data availability statement

Available data for this project are attached as Appendices.

Funding

Michael Kalu received Mobility Labarge Scholarship from McMaster Institute for Research in Ageing, McMaster University, Hamilton, Ontario, Canada.

Appendices

Appendix 6A - Feedback Summaries for Rounds 2 and 3 and Steering Committee meeting notes and decisions

Appendix 6B - The 91 factors, their definitions and rating per round.

References

- [1] Freiberger E, Sieber CC, Kob R. Mobility in Older Community-Dwelling Persons: A Narrative Review. Front Physiol. 2020;11:1-10.
- [2] Zisberg A, Shadmi E, Sinoff G, Gur-Yaish N, Srulovici E, Admi H. Low mobility during hospitalization and functional decline in older adults. J Am Geriatr Soc. 2011 Feb;59(2):266-73.
- [3] Hoogerduijn JG, Buurman BM, Korevaar JC, Grobbee DE, de Rooij SE SM. The prediction of functional decline in older hospitalised patients. Age Ageing. 2012;42(3):381-387.
- [4] Boyd CM, Ricks M, Fried LP, Guralnik JM, Xue QL, Xia J, et al. Functional decline and recovery of activities of daily living in hospitalized, disabled older women: The women's health and aging study. J Am Geriatr Soc. 2009;57(10):1757-66.
- [5] Covinsky KE, Palmer RM, Fortinsky RH, Counsell SR, Stewart AL, Kresevic D, et al. Loss of independence in activities of daily living in older adults hospitalized with medical illnesses: Increased vulnerability with age. J Am Geriatr Soc. 2003;51(4):451-8.
- [6] Rais S, Nazerian A, Ardal S, Chechulin Y, Bains N, Malikov K. High-cost users of Ontario's healthcare services. Healthc Policy. 2013;9(1):44-51.
- [7] Vernon D, Brown JE, Griffiths E, Nevill AM, Pinkney M. Reducing readmission rates through a discharge follow-up service. Futur Healthc J. 2019;6(2):114-7.
- [8] Considine J, Fox K, Plunkett D, Mecner M, O'Reilly M, Darzins P. Factors associated with unplanned readmissions in a major Australian health service. Aust Heal Rev. 2019;43(1):1-9.
- [9] Weiss AJ, Jiang HJ. Overview of Clinical Conditions With Frequent and Costly Hospital Readmissions by Payer, 2018 #278 [Internet]. Healthcare Cost and Utilization Project (HCUP). 2021 [cited 2022 Mar 23]. Available from: https://www.hcup-us.ahrq.gov/reports/statbriefs/sb278-Conditions-Frequent-Readmissions-By-Payer-2018.jsp
- [10] Wald HL, Ramaswamy R, Perskin MH, Roberts L, Bogaisky M, Suen W, et al. The Case for Mobility Assessment in Hospitalized Older Adults: American Geriatrics Society White Paper Executive Summary. J Am Geriatr Soc. 2019 Jan 1;67(1):11-6.
- [11] Falvey JR, Burke RE, Ridgeway KJ, Malone DJ, Forster JE, Stevens-Lapsley JE. Involvement of acute care physical therapists in care transitions for older adults following acute hospitalization: A Cross-sectional national survey. J Geriatr Phys Ther. 2019;42(3):E73-80.
- [12] Shih SL, Gerrard P, Goldstein R, Mix J, Ryan CM, Niewczyk P, et al. Functional status outperforms comorbidities in predicting acute care readmissions in medically complex patients. J Gen Intern Med. 2015;30(11):1688-95.
- [13] Hoyer EH, Needham DM, Atanelov L, Knox B, Friedman M, Brotman DJ. Association of impaired functional status at hospital discharge and subsequent rehospitalization. J Hosp Med. 2014;9(5):277-82.
- [14] Polnaszek B, Mirr J, Roiland R, Gilmore-Bykovskyi A, Hovanes M, Kind A. Omission of physical therapy recommendations for high-risk patients transitioning from the hospital to subacute care facilities. Arch Phys Med Rehabil. 2015;96(11):1966-1972.e3.
- [15] Kalu ME, Maximos M, Sengiad S, Dal Bello-Haas V. The role of rehabilitation professionals in care transitions for older adults: A scoping review. Phys Occup Ther Geriatr. 2019;37(3):123-50.
- [16] Webber SC, Porter MM, Menec VH. Mobility in older adults: A comprehensive framework. Gerontologist. 2010;50(4):443-50.
- [17] Franke T, Sims-Gould J, Chaudhury H, Winters M, McKay H. Re-framing mobility in older adults: an adapted comprehensive conceptual framework. Qual Res Sport Exerc Heal. 2020;12(3):336-49.

- [18] Kalu ME, Dal Bello-Haas V, Griffin M, Boamah S, Zaide M, Khattab N, et al. Cognitive, psychological and social factors associated with older adults' mobility: a scoping review of self-report and performance-based measures. Psychogeriatrics. 2022; Imprint.
- [19] Kalu ME, Dal Bello-Haas V, Griffin M, Boamah S, Zaide M, Khattab N, et al. A scoping review of personal, financial, and environmental determinants of mobility among older adults. Under Rev. 2022;
- [20] Kalu, Michael Ebe; Dal Bello-Haas, Vanina; Griffin, Meridith; Boamah, Sheila; Zaide, Mashal; Khattab, Nura; Rayned D. Physical mobility determinants among older adults: a scoping review of self-reported and performance-based measures. Under Rev. 2022;
- [21] Jünger S, Payne SA, Brine J, Radbruch L, Brearley SG. Guidance on Conducting and REporting DElphi Studies (CREDES) in palliative care: Recommendations based on a methodological systematic review. Palliat Med. 2017;31(8):684-706.
- [22] Kalu M, Dal Bello-Haas V, Griffin M, Ploeg J, Richardson J. A Comprehensive Mobility Discharge Assessment Framework for older adults transitioning from hospital-to-home in the community - what mobility factors are critical to include? Protocol for an international e-Delphi study. PLoS One. 2022; Imprint.
- [23] Young B, Bagley H. Including patients in core outcome set development: Issues to consider based on three workshops with around 100 international delegates. Res Involv Engagem [Internet]. 2016 Jul 8 [cited 2022 May 13];2(1):1-13. Available from: https://researchinvolvement.biomedcentral.com/articles/10.1186/s40900-016-0039-6
- [24] Khodyakov D, Grant S, Denger B, Kinnett K, Martin A, Peay H, et al. Practical considerations in using online modified-Delphi approaches to engage patients and other stakeholders in clinical practice guideline development. Patient. 2020;13(1):11-21.
- [25] Turnbull AE, Dinglas VD, Friedman LA, Chessare CM, Sepúlveda KA, Bingham CO, et al. A survey of Delphi panelists after core outcome set development revealed positive feedback and methods to facilitate panel member participation. J Clin Epidemiol. 2018;102:99-106.
- [26] Barua B, Hasan S, Timmermans I. COMPARING HEALTH CARE OF UNIVERSAL PERFORMANCE COUNTRIES, 2017 [Internet]. Fraser Institute. 2017. Available from: https://www.fraserinstitute.org/sites/default/files/comparingperformance-of-universal-health-care-countries-2017-execsum.pdf
- [27] Keeney S, Hasson F, Mckenna H. The Delphi Technique in Nursing and Health Research. The Delphi Technique in Nursing and Health Research. UK: John Wiley & Sons Ltd; 2011.
- [28] Clibbens N, Walters S, Baird W. Delphi research: Issues raised by a pilot study. Nurse Res. 2012;19(2):37-43.
- [29] Hasson F, Keeney S, McKenna H. Research guidelines for the Delphi survey technique. J Adv Nurs. 2000;32(4):1008-15.
- [30] Guyatt G, Oxman A, Kunz R, Vist G, Falck-Ytter Y, Schünemann HJ. What is "quality of evidence" and why is it important to clinicians? BMJ. 2008;336:995-8.
- [31] Turnbull AE, Sepulveda KA, Dinglas VD, Chessare CM, Bingham CO, Needham DM. Core domains for clinical research in acute respiratory failure survivors: An international modified Delphi consensus study. Crit Care Med. 2017;45(6):1001-10.
- [32] Hall DA, Smith H, Heffernan E, Fackrell K. Recruiting and retaining participants in e-Delphi surveys for core outcome set development: Evaluating the COMiT'ID study. PLoS One. 2018;13(7).
- [33] Chiarotto A, Deyo RA, Terwee CB, Boers M, Buchbinder R, Corbin TP, et

al. Core outcome domains for clinical trials in non-specific low back pain. Eur Spine J. 2015;24(6):1127-42.

- [34] Intiative C. COMET DelphiManager [Internet]. 2017. Available from: http://www.comet-initiative.org/delphimanager/
- [35] Boel A, Navarro-Compán V, Landewé R, van der Heijde D. Two different invitation approaches for consecutive rounds of a Delphi survey led to comparable final outcome. J Clin Epidemiol. 2020 Sep;
- [36] Thorlacius L, Ingram JR, Villumsen B, Esmann S, Kirby JS, Gottlieb AB, et al. A core domain set for hidradenitis suppurativa trial outcomes: an international Delphi process. Br J Dermatol. 2018;179(3):642-50.
- [37] Corp S. Stata Statistical Software: Release 15. TX; USA: StataCorp LLC.; 2017. p. Release 15.
- [38] Giles GM, Edwards DF, Morrison MT, Baum C, Wolf TJ. Screening for Functional Cognition in Postacute Care and the Improving Medicare Post-Acute Care Transformation (IMPACT) Act of 2014. Am J Occup Ther. 2017;71(5):p1-7105090010.
- [39] Meyer MRU, Janke MC, Beaujean AA. Predictors of older adults personal and community mobility: Using a comprehensive theoretical mobility framework. Gerontologist. 2014;54(3):398-408.
- [40] Voorhoeve A, Ottersen T, Norheim OF. Making fair choices on the path to universal health coverage: A précis. Heal Econ Policy Law. 2014;11(1):71-7.
- [41] Coronini-Cronberg S, Millett C, Laverty AA, Webb E. The impact of a free older persons' bus pass on active travel and regular walking in England. Am J Public Health. 2012;102(11):2141-8.
- [42] Fritz S, Lusardi M. White Paper: "Walking Speed: the Sixth Vital Sign."
 J Geriatr Phys Ther. 2009;32(2).
- [43] Hertzberg D, Luksha Y, Kus I, Eslampia P, Pickering JW, Holzmann MJ. Gait speed at discharge and risk for readmission or death: A prospective study of an emergency ward population. Open Access Emerg Med. 2020;12:127-35.
- [44] Peel NM, Navanathan S, Hubbard RE. Gait speed as a predictor of outcomes in post-acute transitional care for older people. Geriatr Gerontol Int. 2014;14(4):906-10.
- [45] Gershon RC, Cella D, Fox NA, Havlik RJ, Hendrie HC, Wagster M V. Assessment of neurological and behavioural function: the NIH Toolbox. Vol. 9, The Lancet Neurology. 2010. p. 138-9.
- [46] Montero-Odasso M, Almeida QJ, Bherer L, Burhan AM, Camicioli R, Doyon J, et al. Consensus on shared measures of mobility and cognition: From the Canadian Consortium on Neurodegeneration in Aging (CCNA). Journals Gerontol - Ser A Biol Sci Med Sci. 2019;74(6):897-909.
- [47] Kosecoff J, Kahn KL, Rogers WH, Reinisch EJ, Sherwood MJ, Rubenstein L V., et al. Prospective Payment System and Impairment at Discharge: The 'Quicker-and-Sicker' Story Revisited. JAMA J Am Med Assoc. 1990;264(15):1980-3.
- [48] Lilleheie I, Debesay J, Bye A, Bergland A. Experiences of elderly patients regarding participation in their hospital discharge: a qualitative metasummary. BMJ Open. 2019;9(11):e025789.
- [49] Kuspinar A, Verschoor CP, Beauchamp MK, Dushoff J, Ma J, Amster E, et al. Modifiable factors related to life-space mobility in communitydwelling older adults: Results from the Canadian Longitudinal Study on Aging. BMC Geriatr. 2020;20(1):1-10.
- [50] Preyde M, Brassard K. Evidence-based Risk Factors for Adverse Health Outcomes in Older Patients after Discharge Home and Assessment Tools: A Systematic Review. J Evid Based Soc Work. 2011;8(5):445-68.
- [51] Lim SC, Doshi V, Castasus B, Lim JKH, Mamun K. Factors causing delay in discharge of elderly patients in an acute care hospital. Ann Acad Med
Singapore. 2006;35(1):27-32.

- [52] Moore G, Hartley P, Romero-Ortuno R. Health and social factors associated with a delayed discharge amongst inpatients in acute geriatric wards: A retrospective observational study. Geriatr Gerontol Int. 2018 Apr 1;18(4):530-7.
- [53] Rodríguez-Artalejo F, Guallar-Castillón P, Herrera MC, Otero CM, Chiva MO, Ochoa CC, et al. Social Network as a Predictor of Hospital Readmission and Mortality Among Older Patients With Heart Failure. J Card Fail. 2006;12(8):621-7.
- [54] Ullrich P, Eckert T, Bongartz M, Werner C, Kiss R, Bauer JM, et al. Life-space mobility in older persons with cognitive impairment after discharge from geriatric rehabilitation. Arch Gerontol Geriatr. 2019;81:192-200.
- [55] Greysen SR, Changolkar S, Small DS, Reale C, Rareshide CAL, Mercede A, et al. Effect of Behaviorally Designed Gamification with a Social Support Partner to Increase Mobility after Hospital Discharge: A Randomized Clinical Trial. JAMA Netw Open. 2021;4(3).
- [56] Dajani JS, Sincoff MZ, Talley WK. Stability and agreement criteria for the termination of Delphi studies. Technol Forecast Soc Change. 1979;13(1):83-90.
- [57] Giannouli E, Fillekes MP, Mellone S, Weibel R, Bock O, Zijlstra W. Predictors of real-life mobility in community-dwelling older adults: An exploration based on a comprehensive framework for analyzing mobility. Eur Rev Aging Phys Act. 2019;16(1):19.
- [58] Rotenberg S, Sternberg S, Maeir A. Where did I put my glasses? The lived experience of older adults seeking medical help for perceived memory problems. Disabil Rehabil. 2020 Dec 3;42(25):3606-13.
- [59] Prilutsky BI. Muscle Coordination: The Discussion Continues. Motor Control [Internet]. 2000 Jan 1 [cited 2022 Jun 10];4(1):97-116. Available from:

https://journals.humankinetics.com/view/journals/mcj/4/1/article-p97.xml

- [60] Khodyakov D, Chen C. Response changes in Delphi processes: why is it important to provide high-quality feedback to Delphi participants? J Clin Epidemiol. 2020;125:160-1.
- [61] Kalu, Michael Ebe; Dal Bello-Haas, Vanina; Griffin, Meridith; Boamah, Sheila; Harris, J; Rantenan, Taina; Rayner D. "Who/Which", "How", and "When" mobility factors should be assessed? Experts' rationales for rating factors included in a Comprehensive Mobility Discharge Assessment Framework for older adults transitioning from hospital to home. Mcmaster University, Hamilton ON, Canada;
- [62] De Wit M, Abma T, Loon MK Van, Collins S, Kirwan J. Involving patient research partners has a significant impact on outcomes research: A responsive evaluation of the international OMERACT conferences. BMJ Open. 2013;3(5):2241.
- [63] Sinha IP, Smyth RL, Williamson PR. Using the Delphi technique to determine which outcomes to measure in clinical trials: Recommendations for the future based on a systematic review of existing studies. PLoS Med. 2011;8(1):1000393.
- [64] Gargon E, Crew R, Burnside G, Williamson PR. Higher number of items associated with significantly lower response rates in COS Delphi surveys. J Clin Epidemiol. 2019;108:110-20.

Table 1: Participant character	cistics *(n=60)			
	Researchers (n=20)	Clinicians (n=24)	Older adults (n=7)	Caregivers (n=9)
Age, Mean (Standard Deviation)	37.5 (8.6)	37.2 (10.8)	71.7 (7.2)	40.9 (11.9)
Female, n (%)	15 (75.0%)	10 (41.7%)	4 (57.1%)	9 (100응)
Education level, n (%)				
• PhD	13 (65.0%)	5 (20.8%)	0 (0응)	2 (22.2%)
• MSc	6 (30.0%)	15 (62.5%)	0 (응)	3 (33.3%)
• Bachelor's	1 (5.0%)	4 (16.7%)	2 (28.6%)	3 (33.3%)
• Diploma	0 (0응)	0 (응)	5 (71.4%)	1 (11.1%)
Country, n (%)				
• United Kingdom	3 (15.0%)	6 (25.0%)	2 (28.6%)	0 (0%)
• Canada	8 (40.0%)	10 (41.7%)	5 (71.4%)	7 (77.8%)
• Australia	2 (10.0%)	3 (12.5%)	0 (0응)	0 (0응)
• Finland	2 (10.0%)	1 (4.2%)	0 (0응)	0 (0응)
• Ireland	1 (5.0%)	3 (12.5%)	0 (0응)	0 (0응)
• Sweden	2 (10.0%)	0 (0%)	0 (0응)	2 (22.2%)
• Switzerland	1 (5.0%)	0 (0%)	0 (0응)	0 (0응)
• Hong Kong	1 (5.0%)	0 (0%)	0 (0응)	0 (0응)
• Singapore	0 (0응)	1 (4.2%)	0 (0응)	0 (0응)
How many times have you experienced/participated in a hospital-to-home transition? n (%)				
• Once	N/A	1 (4.2%)	3 (42.8%)	2 (22.2%)
• Twice	N/A	0 (0%)	2 (28.6%)	0 (0%)
• Three times	N/A	4 (16.7%)	0 (0응)	1 (11.1%)
• More than three times Which determinant(s) do you have expertise in (check as many as applicable), n (%)	N/A	19 (79.1%)	2 (28.6%)	6 (66.7%)
• Cognition	9 (45.0%)	17 (70.8%)	N/A	N/A
• Environmental	9 (45.0%)	16 (66.7%)	N/A	N/A
• Financial	7 (35.0%)	3 (12.5%)	N/A	N/A
• Personal	6 (30.0%)	10 (41.7%)	N/A	N/A
• Physical	17 (85.0%)	22 (91.7%)	N/A	N/A
• Psychological	10 (50.0%)	16 (66.7%)	N/A	N/A
 Social Notes: 	13 (65.0%)	12 (50.0%)	N/A	N/A

Table 1: Participant characteristics *(n=60)

*=the total number of participants who completed the Round 1 survey and were invited at every round. However, 52 completed Rounds 2 and 3, with different people missing Rounds 2 and 3. n = number of; % = percentage of; N/A = not applicable - participants were not asked that questions.

Factors	Round	All Experts				
	at	Moan	Median	Not	Important	Critical
	which	Mean (CD)	Median (TOD)	NOL		
		(SD)	(IQR)	Important	N (8)	N (ð)
	consens			N (8)		
	us was					
Qaanitiaa datamina	reached					
Cognitive determina	nts (n=5)			2 (5 5 0)	10 (01 00)	40 (20 20)
Visuospatial	T	/.⊥	/ (6-8)	3 (5.5%)	12 (21.8%)	40 (72.7%)
function		(1.5)				
	2	7.1				
Attention		(1.9)	7(6.5-9)	4 (7.7%)	9 (17.3%)	39 (75.0%)
	2	6.9				
Executive function		(1.7)	7 (7-8)	2 (3.9%)	10 (19.6%)	39 (76.5%)
	2	7.2				
Memory		(1.5)	7 (7-8)	1 (1.9%)	9 (17.3%)	42 (80.8%)
	3	6.9				
Global cognition		(1.8)	7 (6-8)	4 (7.8%)	11 (21.6%)	36 (70.6응)
Environmental deter	minants (1	n=3)			·	
Discharge	1	7.5	8 (7-9)	2 (3.6%)	8 (14.3%)	46 (82.1%)
environment		(1.7)				
(living						
environment)						
Access to public	2	6.6				
transit	-	$(1 \ 5)$	7 (6-7)	2 (3 9%)	13 (25 5%)	36 (70 6%)
	3	6 7	, (0 ,)	2 (0.00)	10 (20.00)	30 (,0.00)
destinations	5	$(1 \ 3)$	7 (6-7)	2 (3 92)	13 (25 58)	36 (70 68)
Borsonal determinan	+c (n-2)	(1.5)	7 (0 7)	2 (3.5%)	15 (25.5%)	30 (70.08)
Personal decerminan	$(\Pi - Z)$	7 1				
100	2	/ • ± (2 1)	7(6, 5-0)	5 (0, 6%)	0 (15 /1%)	20 (75 0%)
Age	2	(2.1)	7(0.5-9)	5 (9.03)	0 (13.4%)	39 (75.0%)
History of recent	3	7 1				
re-admission to		/.1	7 (()	1 (0 0 0)	10 (00 50)	
nospital		(1.5)	/ (6-8)	1 (2.0%)	13 (26.5%)	35 (/1.4%)
Physical determinan	ts (n=19)	1	T	Т	T	
	1	7.4				
Muscle strength		(1.7)	8 (7-9)	3 (5.2%)	7 (12.1%)	48 (82.8%)
	1	7.6				
Pain		(1.5)	8 (7-9)	1 (1.7%)	12 (20.7%)	45 (77.6%)
	1	8.0				
History of falls		(1.3)	8.5(7-9)	0 (0응)	6 (10.3%)	52 (89.7%)
	1	7.9				
Balance		(1.3)	8 (7-9)	1 (1.7%)	6 (10.3%)	51 (87.9%)
	1	7.6				
Vision		(1.4)	8 (7-9)	1 (1.7%)	7 (12.1%)	50 (86.2%)
	1	7.5				
Dizziness		(1.4)	8 (7-9)	1 (1.7%)	11 (19.0%)	46 (79.3%)
Self-care	1					
activities of		7.2				
daily living		(1.7)	7 (7-9)	3 (5.3%)	11 (19.3%)	43 (75.4%)
	1	7.5		. ,	. /	
Frailty		(1.4)	7.5(7-9)	1 (1.8%)	11 (19.6%)	44 (78.6%)
Use of mobility	1	7.7		, , , ,	(
aid	-	(1,4)	8 (7-9)	0 (0%)	10 (17 2%)	48 (82 8%)
	2	7 2	- ((_,)	
Muscle power		(1.6)	7 (6-9)	1 (1.9%)	13 (25.0%)	38 (73.1%)

Table 2 - Forty-one Factors that Reached Consensus across all experts

	2	C 0					
Muscle endurance	2	0.8	7 (6-8)	5	(9.62)	9 (17 32)	38 (73 18)
Muscle	2	7 2	/ (0-0)	5	(9.0%)	9 (17.5%)	30 (73.1%)
coordination	2	(1.5)	7(6.5-8.5)	1	(1.9%)	12 (23.1%)	39 (75.0%)
	2	7.2	, , , , , , , , , , , , , , , , , , ,		· /	, ,	
Fatigue		(1.2)	7 (7-8)	0	(0%)	7 (13.5%)	45 (86.5%)
Number and type of	2	7.4					
comorbidities		(1.4)	7 (7-9)	0	(0응)	11 (21.6%)	40 (78.4%)
Instrumental	2						
activities of		7.5	0 (5 0)	-	(1 0 0)	0 (15 00)	
daily living		(1.6)	8 (7-9)	1	(1.9%)	9 (17.3%)	42 (80.8%)
Ability to climb	2	1.3	7 (())	0	(0°)	12 (25 50)	20 (74 5%)
Stairs / steps	2	(1.3)	/ (6-9)	0	(0%)	13 (25.5%)	38 (/4.5%)
babitual physical	2	7 5					
function/mobility		$(1 \ 4)$	7 5 (6-9)	0	(೧%)	13 (26 0%)	37 (74 0%)
	3	6 6	1.5 (6 5)		(08)	15 (20.08)	37 (74.08)
Sensation	5	(1,2)	7 (6-7)	1	(1.9%)	14 (26,9%)	37 (71.2%)
	3	7.2	, (0 ,)	-	(2000)	11 (1000)	0, (, 1, 1, 2, 0,)
Respiratory system		(1.3)	7 (6-8)	0	(0%)	14 (26.9%)	38 (73.1%)
Psychological deter	minants (1	n=6)	I	1			I
	1	7.0					
Self-efficacy		(1.6)	7 (6-8)	2	(3.4%)	15 (25.9%)	41 (70.7%)
	1	7.9					
Fear of fall		(1.2)	8 (7-9)	0	(0응)	8 (13.8%)	50 (86.2%)
	2	7.4					
Depression		(1.5)	·/ (·/-9)	1	(1.9%)	8 (15.4%)	43 (82.7%)
	2	6.9			(00)	10 (10 00)	40 (00 00)
Motivation	2	(1.0)	/ (/-/)	0	(0%)	10 (19.2%)	42 (80.8%)
Foor of roiniury	2	1.5	7 (6 - 9)	0	$(0 \approx)$	15 (20 09)	27 (71 20)
Discharge goals	2	(1.0)	7 (0-9)	0	(0%)	13 (20.0%)	57 (71.20)
and expectations	2	(1 5)	7 (6-9)	0	(0%)	15 (30.0%)	35 (70 0%)
Social determinants	(n=6)	(1.0)	, (0))	Ū	(00)	10 (00.00)	33 (70.007
	1	8.0		1			
Living situation		(1.3)	9 (7-9)	0	(0%)	9 (16.1%)	47 (83.9%)
Social	1	7.1					
participation		(1.6)	7 (6-8)	2	(3.6%)	14 (25.0%)	40 (71.4%)
	1	7.7					
Social support		(1.3)	8 (7-9)	1	(1.8%)	9 (16.1%)	46 (82.1%)
Loneliness	2						
(emotional and		7.1					
social loneliness)		(1.6)	7 (6-9)	1	(1.9%)	14 (26.9%)	37 (71.2%)
	2	/.1	7 (7 0)	-	(1 0 0)	11 (01 00)	
Social isolation	2	(1.3)	/ (/-8)		(⊥.9%)	⊥⊥ (Z⊥.2%)	40 (/6.9종)
Social network	2	6.0					
(quarrey alla		(1 3)	7 (6-8)	1	(1 99)	13 (25 09)	38 (73 19)
Yuancicy/		(1.3)	, (0 0)	1 -	(1.1.2.0)	1J (2J.0 ⁻ 0)	JU (/J.10)

Notes: 1-3 = Not important; 4-6 = Important; 7-9 = Critical. Consensus is reached for each factor when $\geq 70\%$ of experts rated a factor as "Critical" (scores ≥ 7) and $\leq 15\%$ of experts rated a factor as "Not Important" (scores ≤ 3).

N = number of; % = percentages; SD = Standard Deviation; IQR = Interquartile Range

Factors	Prob >	Exact	Z Test	Interpretation
	z	Prob	Statistics	
Stability testing between Rounds 1 as	nd 2 for	16 factors*	that reached	l consensus in
Round 2				
Attention	0.0735	0.0796	-1.790	Stable
Executive function	0.2875	0.3059	-1.064	Stable
Memory	0.0114	0.0110	-2.531	Not stable
Access to public transit	0.5216	0.5651	0.641	Stable
Age	0.5472	0.5419	-0.602	Stable
Muscle power	0.0816	0.0933	-1.741	Stable
Muscle endurance	0.1719	0.1991	-1.366	Stable
Muscle coordination	0.037	0.0435	-2.086	Marginally stable
Fatigue	0.4287	0.5437	-0.791	Stable
Number and type of comorbidities	0.4673	0.5710	-0.727	Stable
Instrumental activities of daily living	0.0728	0.0728	-1.794	Stable
Depression	0.0450	0.0536	-2.004	Stable
Motivation	0.3690	0.3767	-0.898	Stable
Loneliness (emotional and social loneliness)	0.9168	0.9018	0.105	Stable
Social isolation	0.4581	0.4874	0.742	Stable
Social network (quality and quantity)	0.9700	0.9487	-0.038	Stable
Stability testing between Rounds 2 and 3 for 5 factors that reached consensus in				
Round 3				
Global cognition	0.9381	0.7969	-0.078	Stable
Access to destinations	0.0484	0.0566	1.974	Stable
History of recent admissions	0.6700	0.7800	-0.134	Stable
Sensation	0.1781	0.1980	1.347	Stable
Respiratory system	0.1744	0.1955	1.358	Stable

Table 3: Wilcoxon matched-pairs signed-rank test for factors reaching consensus per Round.

Notes: prob > |z| = normal approximation p value, while exact p value = the exact p value. Our interpretation is based on the exact p value.*Null hypothesis:*There will be no statistically significant difference between the ratings for each factor between rounds. We reject the null hypothesis if the p < 0.05. However, if the p > 0.05, we assume that there is no significant difference in the rating, indicating the rating of the factor was stable between rounds.

Factors *Descriptions Cognitive determinants How people understand what they see and how Visuospatial function it relates to where they are, for example, using a map to get from one place to another, walking through doorways rather than bumping into the door frames, judging how far away a car is and how fast it is moving The ability to focus on something while ignoring other things Attention A set of mental skills that allows people to plan, decide, find solutions to problems, and control themselves from Executive function acting without thinking The ability to remember things about past Memory events or knowledge. Refers to the way people think, judge, Global cognition learn, understand, remember, and see things Environmental determinants Discharge environment (living What kind of house is the person discharged environment) to, and could be home, apartment, retirement home? How easy it is to take public transit, Access to public transit including how many routes, how far away bus stops are and the cost of a ticket How many shops, services, senior centers Access to destinations are close by, how much does it cost to attend the senior centers, how easy it is to get there, and how far it is to walk, take public transit, or drive Safety, accessibility and How safe is the community based and how availability many community fitness or recreation centers or rest areas are close by, how much does it cost to attend, and how easy it is to get there, for example how far it is to walk, take public transit, or drive Governmental and institutional Entails services that provide benefits, structured programs and operations with support system systems at local, regional or national, or international levels governed and regulated by policies ensuring older adults' mobility in the community Personal determinants The number of years from birth Aqe History of recent readmission The reasons for being admitted to the to hospital hospital not long ago Physical determinants The amount of tension a muscle develops to move or lift an object, for example. How strong or weak a muscle is. Muscle strength The uncomfortable feeling that something is wrong, and it is usually caused by tissue damage Pain

Table 4: Final list of factors that reached consensus and included in the Comprehensive Mobility Discharge Assessment Framework and their descriptions Factors

	Includes number and history of falls,
	defined as any event that result in a
	person coming to rest on the floor or
History of falls	ground or other lower level.
	The ability to move or to remain in a
Balance	position without losing control or falling
Vision	The ability to see with the eyes
Dizziness	The feeling of faint, weak or unsteady
	Refers to bathing, dressing and undressing,
Self-care activities of daily	feeding self, using the toilet, and taking
living	medication
	People who are frail usually have 3 out of
	the following five symptoms: muscle loss,
	weakness a feeling of fatigue, slow walking
Frailty	speed, and low levels of physical activity.
	Using devices, such as wheelchair, walker,
	cane, crutch, that will help you walk or
Use of mobility aid	move from place to place on your own.
	How fast the muscle can work, for example
	how fast can we stand up and sit down
Muscle power	within a small timeframe
Muscle endurance	How long a muscle can work
Muscle coordination	How the muscles work together to move
Fatigue	Always feeling tired
Number and type of	Having more than one illness or disease
comorbidities	occurring in one person at the same time.
	Things you do every day to take care of
	yourself and your home, and they include
The through the location it is a set	managing finances (paying bills), driving
daily living	or planning other means of transport or do
Ability to alimb stairs (stops	The shility to glimb stairs
ADITICY to climb statis/steps	The ability to climb starts
Baseline or habitual physical	out of a chair and bathing oneself before
function/mobility	admission
	The ability to feel touch pain
Sensation	temperature vibration
	The lungs and tissues that help people
Respiratory system	breathe, and how we breath
Psychological determinants	
	The belief someone have in the abilities to
Self-efficacy	carry out and complete a task.
▲	Worrying about falling so much that the
Fear of fall	person do not take part in activities
	A feeling of sadness and loss of interest,
	which stops someone from doing normal
Depression	activities
	The reasons people act or behave in a
Motivation	specific way
Fear of reinjury	Worrying about getting hurt again
Discharge goals and	Things someone hopes to achieve or desire
expectations	to happen following discharge
Social determinants	-
	Describes with whom you live with, such as
	family members, roommates, as well as how
Living situation	many live with you.

	Activities that allow people to connect
Social participation	with others in the community.
	The help, comfort, concern and care people receive from family and friends to handle
Social support	problems better
	An unpleasant feeling associated with
	having few or no friends or having lost
Loneliness (emotional and	connections with people, places, or things
social loneliness)	or when
	The feeling people have when they do not
Social isolation	have contact with others
Social network (quality and	The type and number of social relationships
quantity)	that people have

Notes:

*= plain language description for each factor was developed via iterative process with members of the Steering Committee Members comprised of five team investigators with expertise in mobility and e-Delphi process - two physiotherapy researchers, one occupational therapist researcher, one nurse researcher and one kinesiology and social gerontology researcher; an external consultant with expertise in mobility, public health & gerontology; an older adult with mobility limitations and a family caregiver with lived experience of receiving and providing care during hospital-to-home transition; and 15 individuals with varying education levels and knowledge of medical terminology.

These descriptions were included in the DelphiManager© system, with an inbuilt functionality with a HelpText column that allows a more detailed explanation of each factor. Experts viewed the HelpText column by holding the mouse over the factor they sought for description, and a statement was displayed on the screen with the description of the factor.

-----e-Delphi timeline = 4 months------

Figure 1: e-Delphi timeline, process and results

*SC = Steering committee

CHAPTER 7: Qualitative analysis of experts' rationales for rating mobility factors deemed critical to assess as part of a Comprehensive Mobility Discharge Assessment Framework for older adults transitioning from hospital-to-home.

As submitted to:

Disability and Rehabilitation

Status at time of thesis submission: Under review

Preface

This chapter is a qualitative content analysis of experts' rationales for rating factors within mobility determinants that are critical to be part of a Comprehensive Mobility Discharge Assessment Framework for older adults transitioning from hospital-to-home. I, under the supervision of Dr Dal Bello-Haas, developed the research questions and managed and transferred the qualitative data from the online platform into an excel sheet for data analysis. I conducted data analysis with D Rayner and Dr V. Dal Bello-Haas reviewed the data analysis process and emerging themes. D Rayner assisted in the content analysis and provided feedback on the preliminary draft of the manuscripts. I revised and submitted the manuscript. Dr. M Griffin, Dr. S Boamah, Dr. J Harris and Dr. T Rantanen provided feedback the manuscript.

Citation:

Kalu ME, Dal Bello-Haas V, Griffin M, Boamah S, Harris J, Rayner D, Rantanen T. Qualitative analysis of experts' rationales for rating mobility factors deemed critical to assess as part of a Comprehensive Mobility Discharge Assessment Framework for older adults transitioning from hospital-to-home.

Authors: Michael E Kalu, Vanina Dal Bello-Haas, Meridith Griffin, Sheila A Boamah, Jocelyn Harris, Taina Rantanen

Affiliations:

- Michael E Kalu, PhD student, MSc, BMR. PT School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada kalum@mcmaster.ca
- Vanina Dal Bello-Haas, PT, PhD School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada vdalbel@mcmaster.ca
- Meridith Griffin, PhD Department of Health, Aging & Society, Faculty of Social Science, McMaster University Hamilton, Ontario, Canada griffmb@mcmaster.ca
- Sheila A Boamah, RN, PhD School of Nursing, Faculty of Health Sciences, McMaster University Hamilton, Ontario, Canada boamahs@mcmaster.ca
- Jocelyn Harris, PhD, OT School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada jharris@mcmaster.ca
- Taina Rantanen, PhD Gerontology Research Center, Faculty of Sport and Health Science, University of Jyvaskyla, Jyvaskyla, Finland taina.rantanen@jyu.fi
- Daniel Rayner, BHSc student Department of Health Science, Faculty of Health Sciences, McMaster University, Ontario, Canada. raynedl@mcmaster.ca

Corresponding author: kalu@mcmaster.ca

Abstract

Research question

What reasons did experts participating in a modified e-Delphi provide for rating factors to be included in a Comprehensive Mobility Discharge Assessment Framework (CMDAF) for older adults transitioning from hospital-to-home?

Method

This qualitative descriptive study was conducted as part of a three-round modified international e-Delphi study to prioritize factors critical to be included in a CMDAF. Experts were asked to provide their rationale(s) for their ratings at each round using an open-ended question. Qualitative comments were analyzed using inductive content analysis.

Result

Thirty-one experts (three older adults, six family caregivers, 12 clinicians, 10 researchers) from seven countries provided comments for their ratings. Experts conditionally placed importance on certain factors based on: the uniqueness of each older adult; health care roles and practice-based reasons; service availability and regional (context) meaning of mobility factors; the varying degrees of relevancy of mobility factors amidst competing older adult's needs; and the positive and negative role of the factor influencing mobility when older adults were discharged from hospital-to-home.

Conclusion

Findings highlight the importance of context when considering the application of mobility factors in practice.

Relevance

These findings highlight rationales for decision-making when considering mobility factors to assess when older adults are discharged from hospital-tohome

Key words: Content analysis, Mobility and Mobility factor, hospital-to-home transition

Introduction

Mobility limitation has been identified as an independent predictor of hospital readmission among adults aged 65 and older [1-3]. Hospital readmission costs account for about half of all healthcare expenses in most high-income countries [4,5]. Despite the negative consequences of mobility deficits following discharge, older adults' mobility is rarely assessed during hospital-to-home transition [6]. The lack of mobility assessment among older adults during the hospital-to-home transition could be because of the lack of involvement of rehabilitation professionals, such as physiotherapists, as active members of an interdisciplinary discharge team [7]. Further, comprehensive mobility assessment tools or frameworks that capture the seven determinants of mobility: cognitive, environmental, financial, personal, physical, psychological and social factors [8] do not currently exist. With no comprehensive mobility discharge assessment framework, it is challenging for healthcare workers to implement an integrated, holistic approach to examination, decision-making and recommendations incorporating factors known to be associated with mobility decline in older adults when discharged from the hospital. Through an e-Delphi process, our research team has developed an evidence-based and stakeholder informed comprehensive mobility discharge assessment framework that will serve as a quide for a more fulsome assessment of mobility at hospital discharge [9].

The Delphi technique, developed by the Research and Development Corporation [10], is a systematic multi-stage survey approach for achieving consensus among panel members on an important issue [11]. The original Delphi method has been used to address various topics, such as forecasting weather and the potential use of technology in military [10]. Several amended approaches from the original Delphi method have been documented and used, such as modified Delphi, decision Delphi, policy Delphi, real-time Delphi, and e-Delphi to tailor

the method to specific contexts [11]. The amended approaches have been commonly used for several primary purposes including setting research, practice, and policy priorities, developing clinical practice guidelines, or gaining consensus on a particular subject matter, such as core outcome domains to be included in an effectiveness trial [11]. For instance, research groups and networks such as the Outcome Measures in Rheumatology (OMERACT) group [12], the Core Outcome Measures in Effectiveness Trials (COMET) Initiative [13], and the Core Outcome Measures in Tinnitus (COMiT) Initiative [14] primarily use the Delphi methods in developing core outcome domains and measures.

Delphi processes often involve diverse groups of "experts" who have clinical, research, or lived experience in the subject area [15]. Experts may include clinicians, researchers, patients and clients, family caregivers, and the public. Due to the heterogeneous nature of the expert panel, decisions to reach a consensus are often challenging as each group may have different perspectives. For example, evidence has found items reaching consensus among patients often differ from those reaching consensus among clinicians [16] and that patients are more likely to change their responses in a mixed panel with clinicians and researchers than in a homogenous panel (i.e., a panel with only patients) [17]. This highlights the potential for clinicians' and researchers' to implicitly influence patients' responses and the need to garner an understanding of the rationales for rating items during an e-Delphi process.

Across e-Delphi studies, researchers are often invested in the outcome of the e-Delphi process, specifically the final rating of items that reach consensus, rather than the process, namely the reasons why participants rate as they do. Few studies report on experts members' explanation for their ratings [18]. Rather, Delphi studies typically collate explanations and use the information as part of the feedback summary between rounds [18]. No previous studies have comprehensively explored experts' rationales for rating items in an e-Delphi process. Understanding why experts rate items during an e-Delphi

process will provide information that would enable the users of the e-Delphi outcomes, specifically the factors that have reached consensus, an understanding of behaviours, actions, and perspectives guiding experts' rating, ultimately enhancing the practical use of such Delphi outcome.

Our research team conducted an e-Delphi process, in which experts (researchers, clinicians, older adults and family caregivers) rated mobility factors to be included as part of a Comprehensive Mobility Discharge Assessment Framework (CMDAF) to be used in assessing older adults' mobility during hospital-to-home transition [19]. In addition, we were also interested in understanding the process of the ratings (e.g., why experts rated the way they did). Therefore, the e-Delphi process was structured to capture both experts' ratings on mobility factors and their rationales for rating mobility factors, providing the opportunity to garner reasons informing their rating. This qualitative study aimed to answer the following research question: What reasons did international experts in a modified e-Delphi process provide for rating mobility factors that they considered to be critical to include in a Comprehensive Mobility Discharge Assessment Framework for older adults transitioning from hospital to home?

Methods

This study was conducted as part of a three-round modified international e-Delphi study [9,19]. The current study is a descriptive qualitative study [20] involving content analysis [21] of open-ended comments provided by experts highlighting their rationales for rating factors within each determinant in Round 1. Qualitative description design facilitates the description and exploration of phenomena that captured naturalistic perspective of the participants [20].

Brief overview of the three-round modified international e-Delphi study

A detailed description of experts' eligibility, sampling strategies, and recruitment are described and published elsewhere [9]. Researchers, clinicians, older adults, and family members who met the definition of experts as shown in Box 1 and reside or practice in countries with universal or near-universal health coverage, were invited via email or through local, national, or international organizations to participate in the study. We invited 74 experts and 60 participated in the e-Delphi survey. Experts completed three rounds of the e-Delphi survey hosted in DelphiManager© - a web-based system designed to facilitate consensus-building while allowing experts to remain anonymous [22]. Experts rated factors within each of the seven determinants that are critical to be included in a CMDAF in a three-round survey using a 9-point Likert Scale of 1-3 (not important), 4-5 (important), and 7-9 (critical) [9].

Data collection

For this study, we asked experts the following question in Round 1 for each factor they rated: what is the rationale(s) for your rating? For subsequent rounds, experts were asked to provide rationales for re-rating factors if their rating of such factors changed from previous rounds. We only used the rationales provided in Round 1 to answer the research question in this study. Because the rating of factors that reached consensus between rounds was stable [19], as a result experts provided limited comments. Also, rationales for re-rating in subsequent rounds did not align with the research aim. Out of the 60 experts (seven older adults, nine family caregivers, 24 clinicians and 20 researchers) that participated in the e-Delphi study, only 31 experts (three older adults, six caregivers, 12 clinicians and 10 researchers) provided reasons for rating factors in Round 1, as it was optional.

Data analysis

Data were analyzed using qualitative inductive content analysis as described by Kyngas et al. [21]. Qualitative content analysis is a method that entails

subjective interpretation of content or contextual meaning of text data through a systematic classification process of coding and identifying themes or patterns [21]. Content analysis is an approach for the researcher to understand the intentions, attitudes, and motives of what happened through reviewing the content of texts [21]. As no previous studies have comprehensively explored experts' rationales for rating items in an e-Delphi process, we chose inductive content analysis because such an approach allows data to emerge from the comments provided by the experts rather than using a set of predetermined codes to guide the themes that emerged from experts' comments.

Prior to the inductive content analysis, the principal researcher copied the experts' comments verbatim into seven excel sheets for each determinant (i.e., cognitive, environmental, financial, personal, physical, psychological, and social). Comments in the excel sheet for each determinant were further categorized by expert group (researchers, clinicians, older adults, and family caregivers). Following Kyngas et al.'s [21] unit of analysis definition - a chunk of text that answered researchers' questions - we focused on only statements that responded to our research question (i.e. why experts rated factors to be included in CMDAF). The inductive content analysis was conducted by two coders independently, following Kyngas et al.'s approach [21] which is comprised of data reduction, data grouping, and formation of themes. Data reduction is an open coding process in which coders read through the comments to determine which of the comments answer the research question, and codes are applied to these comments. First, two researchers (MK and DR) independently coded the transcripts containing reasons for rating environmental factors because there were more comments for the environmental factors than any other determinant. Second, the two coders met and triangulated their codes by comparing the similarities and differences between the open codes they had applied to each comment and determined which codes could be grouped to form categories (data grouping) and themes (formation of themes), creating a code

book for subsequent analysis. This process was instrumental in ensuring trustworthiness of the coding process [21]. Using the codebook, each researcher independently coded the remaining transcripts containing reasons for rating the remaining mobility determinant factors (cognitive, financial, personal, physical, psychological, and social) for each expert group. The two researchers met at least four times and iteratively developed the codes for each mobility determinant to create a final coding book. The two coders examined the data individually by expert group, as a whole within each mobility factor category. Any disagreement at each meeting was resolved through discussion, and the final code book was reviewed by the senior author (VDBH). The codes, categories, subthemes, and themes generated at the end of the coding process were reviewed several times by other research team members and two external qualitative researchers familiar with the research topic to ensure themes accurately represented the rationales the participants provided. This process enhanced credibility and conformability of the study findings [21]. See Table 1 for an example of the coding process.

Strategies to ensure rigor and trustworthiness

Strategies were employed to ensure rigor, as described by Lincoln and Guba [23]. The credibility of this study was maintained by involving two coders at each stage of the analysis, keeping reflective notes of their "Subjective I's" that would influence data analysis. Before data analysis, the two coders (MK and DR) identified their "Subjective I" - the values, assumptions, and beliefs that a qualitative researcher brings to the research [24]. For instance, the two coders independently wrote their assumptions based on mobility determinants and their knowledge of the hospital-to-home transition literature. This approach allowed the coders to reflectively ensure that the codes, categories, and themes identified from the experts' comments were not influenced entirely by their values and assumptions. Peer-member checking, where several researchers

familiar with the research topic read the themes and provided feedback to ensure that the themes represented the participants' perspectives, was also applied to ensure rigor. To ensure transferability of our findings, experts in our study were from countries with universal or near-universal healthcare system. Furthermore, a detailed description of the experts' characteristics is provided, including the number of peer-reviewed articles as either the first or senior author involving at least one of the mobility determinants, and the years of clinical experience working with older adults with mobility difficulties in their professional expertise. Detailed descriptions of the older adults' number of years living with mobility limitations, how often they have actively participated in hospital-to-home discharge processes, and family caregivers' experience providing informal care for older adults with mobility limitations, specifically during hospital-to-home transitions, were provided.

Ethical consideration

This research was approved by the Hamilton Integrated Research Ethics Board (HIREB Project no: 7212). Only invited experts who provided informed consent participated in the study. The privacy and identity of all experts were protected during and after the study. We de-identified all comments provided by the experts prior to analysis.

Results

The 31 experts (three older adults, six family caregivers, 12 clinicians and 10 researchers) provided 235 comments describing their rationale(s) for rating 84 mobility determinants factors (see Appendix 7A for mobility factors, plain language definition of mobility factors, and the mean (SD) and median (IQR) rating for each factor).

Participants description

The length of time that the older adults had mobility limitations ranged from 4 to 10 years. All older adults (n=3, 100%) had experienced hospital-to-home

transition in the last six months. Among family caregivers, four (66.7%) and two (33.3%) had experienced hospital-to-home transition in the last six months and one year at the time of this study, respectively. All clinicians were fulltime staff, including five physiotherapists, three occupational therapists, two geriatricians, one nurse, and one social worker. Clinicians' years of experience ranged from 2 to 43 years, with a mean (SD) of 9.6 (6.5) years. Eight (66.6%) clinicians worked in a mixed discharge practice setting, while the remaining worked in outpatient (n=2, 16.7%) or inpatient (n=2, 16.7%) rehabilitation settings. Most clinicians (n=10, 83.3%) reported that older adults (65 years and older) constituted more than 70% of the population in their practice. The years of research experience among researchers ranged from 2 to 31 years, with a mean (SD) of 7.7 (6.7) years. Almost three-quarters (n=7) of researchers had at least five first or senior author publications, with the remaining (n=3, 30%) having co-authored at least two publications on mobility determinants. See further demographic information in Table 2.

Reasons for rating factors to be included in a CMDAF

Two major themes emerged from the rationales for rating factors within each mobility determinant to be included in a CMDAF: The first theme was *conditional importance and the role of factors on mobility*. As conceptualized by expert members, the conditional importance theme emphasizes placing value on some mobility factors over others based on contextual circumstances, such as the uniqueness of an older adult circumstances and practice experiences. The second theme, the *role of factors on mobility*, highlights factors as enablers or barriers that positively or negatively, and directly or indirectly, influence mobility when older adults are discharged from hospital-to-home. Based on experts' varied experiences of engaging in a wide range of older adults' mobility assessments in their research or during their professional role or lived experiences with the hospital-to-home transition, the reasons for rating

mobility factors differed across expert groups (researchers (R), clinicians (C), older adults (OA), and family caregivers (CA)), as described below.

Theme 1: Conditional importance

This theme portrayed how experts conditionally placed importance on some factors over others, based on four reasons: the uniqueness of each older adult; health care roles and practice-based reasons; service availability and regional (context) meaning of mobility factors; and the varying degrees of relevancy of mobility factors amidst competing older adult's needs.

The uniqueness of each older adult

Older adults are a heterogeneous population and have variable health states embodied in different levels of health, wellness, functioning and chronic conditions and these elements may or may not affect their mobility in the same manner or to the same extent. The older adult's health and functional status uniqueness was one of the reasons that researcher and clinician experts, but not older adults and caregivers, provided as reasons for their ratings. For example, researcher and clinician experts rated the factor of 'access to rest areas and street characteristics' based on the potential specific circumstances and the interaction of these circumstances with the individual older adult's health conditions and ability or need to mobilize out of the home.

"Assessing access to rest areas will be patient-dependent. Do they mobilize outdoors? Do they have to mobilize longer distances? Do they have a respiratory or heart condition that may cause shortness of breath?" [R8, Canada]

"Street characteristics are applicable if outdoor mobility is feasible for this individual." [C24, Physiotherapist, Canada]

Further, researcher and clinician experts' ratings of some physical factors, such as respiratory status, muscle coordination, and sensation, were based on older adults' pre-existing chronic conditions before hospital admission. Experts noted that some physical factors, such as sensation, should

only be assessed as part of the CMDAF at discharge if there was a clinical indication to do so based on the older adult's medical or surgical history or reasons for being in the hospital.

"Muscle coordination is only important for patients with extremely poor coordination like ataxia. The average person with below-average coordination can probably still walk and take care of themselves." [C33, Nurse Finland]

"Sensation should only be assessed at discharge if it is clinically indicated, especially among older adults who have undergone surgery or have underlying neuropathy because of diabetes." [R26, Canada]

Researcher and clinician experts stated that understanding the older adult's mobility-related discharge goals and expectations would guide them in selecting which factors to include in CMDAF. Mobility-related discharge goals and expectations were conceptualized as mobility-related activities that someone hopes to achieve or desires to happen after discharge. Clinician experts highlighted that older adults are rarely asked about their mobility discharge goals in clinical practice, which often leads to an assessment of factors that would not promote an older adult's mobility upon discharge. Understanding what an older adult hopes to achieve as a mobility goal would help identify factors that could influence their mobility.

"Does the patient want to access recreational facilities for physical activity upon discharge, or is there another avenue to ensure that older adults maintain physical activity upon discharge?" [R8, Canada]

"Access to public transit is only critical if the individual do not desire to drive [upon discharge], and may not desire to walk to places, such as grocery stores." [C58, Social Worker, Canada]

Further analysis of researcher experts' rationales for including mobility factors alluded to the idea that personal determinants are better understood by exploring older adults' discharge goals and expectations, which aligns with the ideal patient-centered approach to assessment of mobility at discharge. An understanding of older adults' mobility discharge goals and expectations by clinicians and researchers would limit the risk of generalizing the impact of personal factors on mobility:

"I would be more inclined to focus on the patient's stated [mobilityrelated] discharge goals and preferences, rather than any of these specific personal determinant factors - otherwise [you] risk generalizing the impact of these personal factors on mobility." [R26, Canada].

This subtheme highlights that researcher and clinician experts' ratings were based on the uniqueness of each older adults based on their health status, and mobility-related discharge goals and expectations.

Health care roles and practice-based reasons

Researcher and clinician experts, but not older adults and family caregivers experts, broadly stated that before rating mobility factors, they reflected on the logistics and the feasibility of assessing some mobility factors in practice. In the context of this study, healthcare role and practice-based reasons were described by experts as reasons related to three questions: Who can assess these factors? How can these mobility factors be assessed? Is there time to assess these factors - especially when weighing other factors critical to assess? The underlying assumption for these healthcare role and practicebased questions was built on current discharge team members. Current interdisciplinary discharge coaches determine what is assessed in alignment with their professional scope.

The selection of mobility factors by researcher and clinician experts was guided by who could assess some mobility factors, such as land mass use, when older adults are discharged from hospital to home. The quotes below highlight the questions raised by experts regarding who will assess environmental factors for example:

"It won't be easy to see who will assess all these factors [environmental factors]; therefore, I often place the factors that can easily be assessed in the current clinical practice higher than others." [C39, Physiotherapist, Canada].

``I should have included factors like landmass use, but who can assess those?" [R17, Ireland]

"I thought of the professional who will assess each factor [environmental factors] before choosing them." [C15, Occupational Therapist, Canada]

How mobility factors, primarily psychological factors, could be assessed during discharge appeared to underpin how experts rated factors in the CMDAF. Experts believed that foreseeing how to evaluate each factor was foundational in deciding which factors to include in the CMDAF.

"Some of these psychological factors, such as openness, agreeableness may provide insight, but I'm not sure how they can be assessed; hence I rated them lower." [R26, Canada]

"While most of these factors [psychological factors] are great and sound good on paper, I am not sure how we can assess some of the factors." [C15, Occupational Therapist, Canada]

For clinicians who ultimately identify how these factors can be assessed during the discharge process, many referenced that current discharge teams lack professionals with targeted or specific expertise to assess certain factors, such as psychological factors (e.g., openness, extraversion) and environmental factors (e.g., street characteristics and sidewalk characteristics). Historically, hospital discharge processes are coordinated by nurses or physicians; occupational therapists and physical therapists, in some countries, are typically involved in discharge processes on a consultation basis. Other professionals, such as psychologists, with the professional competencies to assess psychological factors relating to mobility, are rarely involved in discharge processes [7], which makes the selection of psychological factors difficult for experts.

"Our current clinical practice discharge coaches are primarily nurses, sometimes occupational therapists or social workers, and rarely physical therapists, and these professionals are often not in an interdisciplinary team of discharge coaches. Therefore, depending on the discharge coaches' professional scope, some factors [environmental and psychological factors] may not be assessed" [C21, Occupational Therapist, Australia].

"I often place the factors [psychological, such as depression or delirium] that can easily be assessed in the current clinical practice higher than others" [C39, Physiotherapist, Canada]

The discharge process is complex and fraught with challenges, such as a lack of time to conduct comprehensive and accurate assessments of older adults' mobility problems, which underpinned clinician experts rationale for choosing the

mobility factors to be included in the CMDAF. Clinician experts revealed that navigating what factors that were possible to assess within the limited time during discharge influenced their ratings. While some physical factors, such as muscle strength, endurance and power, are specific and critical, navigating what to assess within the limited time during discharge and the need to complete several assessments before finishing their shift influenced how clinician experts rated the mobility factors. For instance, an occupational therapist stated that " a lot of this page [physical factors] is very specific, but in the context of hospital assessment, time is generally limited" [C59, Singapore]. Another reason was that although some factors, such as gait speed, can provide insight into older adult's independence upon discharge, the assessment of these physical factors may require more time. A physiotherapist practicing in Canada stated:

"Some factors such as the ability to walk 400m, dual-task, or even gait speed may not be possible while the patient is on admission, even though these parameters can provide insight into the patient's independence and the support they need upon discharge, but with limited time, it becomes challenging to assess gait speed upon discharge; therefore, I rated gait speed low to save time." [C39, Physiotherapist, Canada]

Appropriate health care practice is a function of clinicians' understanding of how the mobility factors should be assessed and by whom and determining if there is sufficient *time* to evaluate those mobility factors. These three reasons, taken together, offer guidelines for assessing mobility factors while considering the current interdisciplinary mobility discharge team members.

Service availability and regional (context) meaning of mobility factors

Clinician experts captured service availability as accessibility, and the quality and affordability of transport and recreational activities options available to older adults' following hospital-to-home transition. Clinician experts in some countries, such as the United Kingdom, Ireland, and Finland, stated that several government-funded services or programs increase accessibility and the availability of certain factors that could influence

mobility upon discharge, such as access to public transit and recreational facilities. For this reason, they rated some of these factors as not critical, which allowed them to prioritize other factors as essential to be assessed as part of CMDAF. However, clinician experts emphasized that prioritizing other factors over environmental factors related to accessibility, such as access to public transport, was based on the premise that older adults reside in the area without accessibility issues.

"The [Finnish] government has taken care of some factors like transportation; therefore, I rated those low, and others like social networks as critical." [C33, Nurse, Finland]

"Organizations like AgeUK have specialized services such as accessible transportation, although this depends on where you live. So, I would prefer the clinician to ask my mother or me where she lives rather than transport access, which would help them know if we can access other services." [C54, Physiotherapist, UK]

Even though experts received a plain language description of each of the factors as part of the e-Delphi survey, clinician and family caregiver experts narrated how their knowledge or understanding of the mobility factors influenced their ratings. The clinicians and family caregiver experts further expressed how different country-specific meanings of mobility factors underpinned their thought processes influencing how they rated mobility factors. The differences in the regional meaning of mobility factors were primarily evident in environmental factors, such as land mass use and rest areas, and could explain why these factors were rated low.

"Rest area probably means something in other places, for example, the US. In Ireland, rest areas relate to areas you can pull in when driving, and this is not a problem; hence I rated low." [C4, Geriatrician, Ireland]

"Some of these environmental factors, take for instance land mass use is not a typical term we use in this region [Sweden], and it may mean something else culturally here." [CA2, Sweden]

The varying degrees of relevancy of mobility factors amidst competing older adult's needs

The idea of 'trade-offs' was the underlying principle for considering the varying degrees of relevance of mobility factors amidst older adults' needs. This assertion guided how experts rated each factor. Older adult experts highlighted that some factors were essential but became less important when they considered other factors that should comprise a mobility assessment for older adults transitioning from hospital-to-home. Although two mobility factors may be critical to enhancing mobility, older adults tend to more highly rate the factors that cannot be modified or amended. For instance, a 72-year-old Canadian described that "she could still walk indoors, even if the weather were terrible (i.e., snowing or raining), but she could not do anything to improve her sight or hearing" [OA45]. For this reason, she rated vision and hearing as critical factors over the weather.

Family caregiver and clinician experts further described how they 'gave up' other factors such as personal and environmental factors to be part of CMDAF to include more social and physical factors. Social factors (e.g., social support) and physical factors (e.g., muscle strength) were consistently prioritized over personal factors (e.g., culture, ethnicity, and sex) and environmental factors (e.g., weather). As described by the experts, the underlying reasons for this prioritization were anchored on the explicit roles of social and physical factors in mobility enhancement. Family caregiver experts reiterated that when social and personal factor-related questions are asked, social factors questions are more informative and can better guide the understanding of factors influencing older adults' mobility than personal factors. For example, family caregiver experts described how asking questions about culture were less important than questions related to living arrangement, which could allow them to gather further information about whether their living arrangement fostered communal social support (culture). Ultimately, experts rated social factors as critical, over personal factors. For instance, a family caregiver rated "living arrangements over culture because when relatives [living with an older adult]

are around, they can help the older adults with daily chores and could motivate the [older adults] to walk after discharge" [CA11, Canada].

Similarly, another clinician expert shared the same rationale in rating physical factors (chronic conditions) higher than personal factors (sex). Experts recognized that "sex" is an important factor, probably building on the assertion that females are at a greater risk for fall related problems. Despite knowing this link, clinician experts rated medical conditions higher than sex building on the indirect relationship (risk factors) between sex and mobility.

"Sex will determine many risk factors (e.g., fracture after a fall); therefore, I would prioritize assessing medical conditions rather than personal factors." [C58, Social Worker, Canada]

Clinician and researcher experts highlighted some factors within physical, environmental, social, and psychological mobility determinants would be considered more critical than others because rating one (e.g., muscle strength) could achieve a more desired, universal or comparable outcome versus rating another (e.g., muscle endurance). They alluded that considering factors within each determinant against each other influenced their thought process and allowed them to critically reflect on their clinical practice or research to perceive rate mobility factors that would be very important to older adults during hospital discharge. For example, within the determinant of physical factors, muscle strength was rated over muscle power because experts believed muscle strength is more sensitive to change following intervention than muscle power and endurance.

"Even though muscle strength and endurance go hand in hand and are very vital to mobility during discharge, I rated muscle strength 9 [critical] and muscle endurance 6 [important but not critical] because I thought that when both are placed side by side, I will choose muscle strength, because it [can] provide valuable information and can help identify improvement." [R14, UK]

"Muscle power is essential but not as crucial as strength. You don't need a lot of power to transfer and mobilize independently, and you can use a mobility aid to supplement." [C33, Nurse, Finland]

Similarly, across the social determinants, social support was rated over social networks as researcher and clinician experts were of the opinion that having a social network does not automatically equate to receiving support. Hence, the asking of a question about social support (as compared to the social network) would be more helpful in mobility assessment after discharge.

"Social network is important but when compared to social support; social support is probably more important for mobility because having social network does not mean you will get support." [R41, Australia]

"Knowing many people (large network) does not always mean someone has support from these individuals; hence social support is more important." [C58, Social Worker, Canada]

An 83-year-old British older adult rated depression higher than other psychological factors because he believed that depression ultimately influenced the desire to walk even when other factors, such as the walkway, are free of obstacles. He noted, "depression should be rated 9 (very critical) over other psychological factors because if you are depressed, you may not even want to take a walk when you are discharged, even if the walking route is safe and free of obstacles" [OA28, UK]. Similar reasons were noted among clinician experts for environmental factors:

"I chose the discharge home environment over the residential characteristic because, as an occupational therapist, an older adult would want me to ask him questions regarding his home rather than the area he lives." [C21, Occupational Therapist, Australia]

Theme 2: The role of factors on mobility

All experts, including older adults, family caregivers, researchers and clinicians, highlighted the positive and negative roles of factors and the pathway (directly or indirectly) influence older adults' mobility as the reasons guiding how they rated factors within each mobility determinant.

The positive influence of factors on older adults' mobility

Experts rated factors within each determinant based on the role of the factor in positively influencing mobility of older adults. Factors were considered to

positively influence mobility if they facilitated or enabled safe and independent indoor and outdoor mobility, improved motivation to mobilize and participate in mobility-related activities (e.g., physical activities), improved mental wellbeing, or prevented falls. In other words, some mobility factors were rated as critical because they were deemed to be "protective" in terms of enhancing safety or guarding against mobility-related adverse events. All seven determinants were considered to influence mobility positively somehow, but to varying degrees. Experts agreed that social, physical, or environmental factors often directly influenced mobility, implying that, for example, increased social support, improved muscle strength or good street interconnectivity in an area would lead to increased mobility in older adults. The role of physical factors in preventing falls, facilitating older adults' mobility independence, and motivating physical activity participation following discharge were also identified as reasons experts rated physical factors as high importance and to be included in the CMDAF.

"Proprioception is critical in preventing falls; the history of falls predicts the tendency for falls to occur; muscle strength, balance, and vision are crucial to mobility." [R51, UK]

"Good balance and muscle coordination reduces the likelihood of frequent falls." [CA11, Canada]

"Proprioception, and sensation affect movement quality and safety; History of falls, balance, fatigue, vision, dizziness, and use of mobility aid are considerations for safety, confidence, fear of falling, and motivation to mobilize" [C15, Occupational Therapist, Canada]

Although most environmental factors were not rated highly in the e-Delphi process, their role in enabling safe and independent outdoor and indoor mobility, and physical activity participation guided the rating of environmental factors. Of note, discharge home environment was rated highly among all other environmental factors, building on its role in maintaining and facilitating home independence.

"Street, residential, and sidewalk characteristics directly dictate how safe (e.g., even sidewalks) the area is for me to walk or not walk." [OA28, UK]

"Access to rest areas, recreational facilities, sidewalk characteristics, and traffic-related safety facilitate community ambulation and outdoor activities." [R36, Sweden]

"Discharge home environment facilitates independence at home, and street characteristics enable safety for community ambulation." [C39, Physiotherapist, Canada]

Personal factors (e.g., race) indirectly influence older adults' mobility, implying that they provide insight into other factors, such as social and physical factors, that could influence mobility [25]. For example, older Black adults (personal factor) have a high prevalence of diabetes (physical factor), and because of this condition, older Black adults are more predisposed to mobility limitations than their white counterparts [25]. Older adult, clinician and researcher experts highlighted the role of marital status (personal factor) in providing insight into the potential social support (social factor) from the older adult's spouses, family members and community. The experts assumed that this social support could be a catalyst for improving mobility-related activities. Regardless, experts rated social factors higher than personal factors but emphasized the importance of understanding the personal factors, not necessarily including them as a critical factor to be assessed as part of CMDAF.

"Having someone at home (e.g., a spouse) to help each other plays a significant role to discharge. But I am not sure if they will surely help the older adults. Discharging a patient who lives alone is more challenging, especially with ADLs and IADLs." [C33, Nurse Finland]

"I had a partner at home who could take care of me; for instance, he could walk with me in our area upon discharge." [OA46, Canada]

"Marital status helps understand support at home following discharge." [R26, Canada]

Although the positive influence of psychological and cognitive factors on older adults' mobility was not cited as the reason for rating mobility factors, there were instances where experts considered these influences. Clinician experts

considered some psychological factors, such as self-efficacy and emotional wellbeing, to be vital to mobility because they facilitated an older adult's motivation to mobilize following discharge. The most common reason for highly rating cognitive factors, such as memory and attention, was their role in enhancing effective communication of mobility-related information and their importance in recalling instructions that could help improve ambulation.

"Self-efficacy [defined as the belief someone has in the ability to carry out and complete a task] affects motivation to attempt to mobilize." [C15, Occupational Therapist, Canada]

" Good memory and attention are needed to ensure that older adults or their relatives understand and recall instructions regarding ambulation following discharge." [C63, Geriatrician, UK]

In addition to maintaining mobility and participation in physical activity, experts emphasized the role of social factors in maintaining the psychological wellbeing of older adults after discharge as their reason for rating social factors as high. Older adults with good mental health are more likely to seek connections in the community, which by extension, can help to improve their mobility.

"Social support, reduced loneliness, living situation, and social participation are critical for improving older adults' psychosocial wellbeing following discharge." [R51, UK]

"It is crucial to interact with people and continue your social connection; after discharge, older adults often want to go into the community to connect, promoting mobility." [CA11, Canada]

Generally, experts highlighted the role of mobility factors, such as social, physical, and environmental, as enablers that directly and positively influence older adults' mobility. Experts mentioned the indirect influence of personal factors on older adults' mobility and the significant role of cognitive factors in enhancing effective communication of mobility-related information during discharge. Overall, the interrelatedness of these mobility factors further highlights the complexity of the role of factors as enablers of mobility-related outcomes.

The negative influence of factors on older adults' mobility

All experts also described the negative influence of factors on older adults' mobility as their reasons for rating factors within each determinant. Factors were considered to negatively influence mobility if they hindered safety and independence or increased the risk of developing mobility issues. All factors, except personal and financial factors, were deemed to negatively influence older adults' mobility.

"A very poor memory would create many challenges with discharge. It would also potentially cause a safety concern for the patient being home." [C33, Nurse Finland]

"Snow hinders mobility and has affected how I provide mobility-related care to my dad. During snow, we rarely work as we fear that he may fall." [CA49, Canada]

All experts considered psychological factors (as compared to physical, social, and environmental factors) as barriers to enhancing outdoor or indoor mobility and decreased physical activity. Across all physical, environmental, cognitive, and psychological factors, fear of falling, fear of re-injury, and depression were predominantly mentioned as barriers to older adults' physical activity participation, which can cause mobility decline. Experts described how older adults who fear falling will limit movement even in a familiar zone and they may further limit their mobility in an unfamiliar zone away from home, which could ultimately lead to activity restriction and further cause functional disability. As older adults are already confined in the hospital, their social activity participation may be affected by their hospital admission. Therefore, transition coaches should prioritize the assessment of factors such as fear of falling and depression that could further limit mobility. This line of reasoning guided how experts rated some of these psychological factors.

"Fear of falling can cause older adults to become inactive or decrease physical activity, which is a risk factor for various health conditions and declining mobility for that age group." [R52, Australia]

"Fear of falling can limit a person's functional ability indoors and outdoors - it can impact their participation in the activity of daily

life, community ambulation, and integration into their community." [C59, Occupational Therapist, Singapore]

"Depression can make you lazy when they discharge you at home, and because you also have mobility issues, it worsens." [CA49, Canada]

"Depression limits my ability/motivation to continue exercising or maintain activity levels." [OA46, Canada]

Discussion

Although Delphi management systems for e-Delphi studies, especially those using a web-based system, have built-in open-ended sections for expert members to provide comments or to answer questions posed, e-Delphi studies rarely report on the findings of these open-ended questions or comments. In this study, we purposely collected data about the reasons and rationales older adult, family caregiver, clinician, researcher experts who participated in an international e-Delphi provided for rating factors that are critical to be included in a CMDAF for older adults transitioning from hospital to home. The comments and answers provided offer researchers a rich and unique opportunity to garner an understanding of perspectives and what is valued - in other words a 'window' into thought processes and decision-making about what is deemed important and why.

We identified six patterns within the reasons experts provided for rating factors to be included in the CMDAF. However, the reasons differ across expert groups, highlighting the differences of opinion influencing the rating of items in the e-Delphi process. Older adult and caregiver experts highlighted that their reflections on the protective role and the negative influence of these factors on older adults' mobility guided their thought process in rating each factor. In addition, researcher and clinician experts reported that they conditionally placed importance on some mobility factors over others based on contextual circumstances including: the uniqueness of each older adults; healthcare and practice-based reasons; service availability, and regional (context) meaning of mobility factors. Previous e-Delphi studies have reported

differences in perception across stakeholders group quantitatively and not qualitatively [26,27]. Owens et al. [27] reported that clinicians prioritize research that focuses on providing physical healthcare, whereas care partners or service users prioritize research that promotes independence, self-esteem and recovery. The differences of opinion have value because collaborative planning that allows similarities and differences in opinion encourages different ways of thinking and creates innovation that tends to have greater impact when implemented [28].

Our study highlighted the notion of "trading off" as an important concept in an e-Delphi process. However, the rationale for the trade-off differs across experts. Older adult experts' ideas of "trade-offs" were based on rating factors with no alternatives (those they cannot control) higher than those with alternatives (those they can control). For instance, an older adult expert rated vision and hearing higher than the weather since she can work indoors even if the weather is terrible. Clinician and researcher experts' "trade-offs" of factors were based on rating factors with a universal comparable outcome in practice higher than those with a less universal comparable outcome. For instance, they rated muscle strength higher than muscle endurance because they believed that muscle strength assessment could be more universally compared across studies than muscle endurance assessment. These differences in opinion among experts in our study have been noted in a previous study that asked clinicians, individuals with atraumatic brain injury (ABI) and their caregivers to describe factors that influence mobility among individuals with ABI [29]. Overall, the differences in opinion among experts in our study provided insight into the thought processes of why experts rated the way they do in an e-Delphi process, emphasizing the need to specifically ask experts to provide the rationales for a rating in a study that aimed to reach consensus on items. Difference in rationale among experts gives credence to the assertion that older adults, family caregivers, researchers and clinicians might want different
things regarding mobility assessment of older adults during hospital-to-home transition.

The ratings of the family caregiver, clinician and researcher experts were based on the explicit roles of social and physical factors in mobility enhancement. They traded other factors to include social and physical factors because they believed that social and physical factors are foundational to the interrelatedness of mobility factors. High-quality evidence with a large effect size for the association between older adults' mobility decline has been found for several social factors, including poor social networks and engagement [30], and could explain why experts traded other factors to include social factors. Similarly, social factors, such as social participation, have been identified as protective against cognitive decline that often accompany mobility decline in older adults [31,32]. Generally, evidence has shown that most physical and social factors influencing mobility are modifiable determinants, readily amenable and sensitive to change with intervention [33]. However, this "tradeoff" notion of other factors, including social and physical factors, seem to be based on mobility as walking versus mobility achieved via transport, or driving that are often linked to other determinants such as environmental and cognition [34,35].

The questions of "who" should assess particular mobility factors and "how" mobility factors should be assessed that were raised as elements in reasons for researcher and clinician expert participants' ratings align with the discussion points raised in the Quality and Performance Measurement Committee of the American Geriatrics Society's White Paper Executive Summary [36]. The White Paper discussed the who, what, when, where, and how to assess and prevent mobility loss in the hospital [36]. The researcher and clinician experts in our study also reflected on the logistics and feasibility of assessing various/particular mobility factors during hospital-to-home. Specifically, the White Paper noted nurses, nurses' aides, and therapists ('who') are likely to

assess older adults' mobility in the acute care setting. Researcher and clinician experts in our study indicated the importance of a comprehensive, interdisciplinary team inclusive of team members beyond the more 'typical' HCPs e.g., psychologists. Current hospital-to-home transition models, e.g., Naylor [37] and Coleman [38]) are nurses or physician-led and focus on, but are not limited to, self-management of medical conditions and medications, with no mobility assessment component, even though functional status is a better predictor of hospital readmission than medical comorbidities. Rehabilitation professionals, such as physiotherapists' and occupational therapists' main scope of practice centers on mobility, as it is defined - moving via self, use of assistive devices and transportation/driving [8], but they are often consulted when and as deemed necessary. This consultation model limits their role in the identification of older adults who might be readmitted because of mobility limitations during hospital discharge. Therefore, and as suggested by researcher and clinician experts in our study, creating a comprehensive, interdisciplinary team, such as physiotherapists, occupational therapists, and psychologists, could be promising to improve health outcomes, such as functional status, which is a known independent predictor of readmission, possibly reducing the economic cost associated with hospital readmission.

Study limitations and strengths

The strength of this study lies in two areas: the expert population and employing strategies to ensure rigour and trustworthiness throughout the data collection and analysis approach. e-Delphi studies rarely include multiple expert groups, and we included older adults, family caregivers, researchers, and clinicians from nine countries. The inclusion of different expert groups allowed us to assess comprehensively the reasons for rating factors, which we noted differs between experts group. For instance, clinician and researcher experts' rationale for rating factors conceptually focused on the heterogeneous

nature of the older adults, i.e., focusing on the uniqueness of each older adult. Older adults and family caregivers stated that they rated each factor based on their role in promoting or limiting older adults' mobility.

We followed Lincoln and Guba's [23] processes as described above. Summarily, we used two coders; the two coders completed an initial content analysis of environmental factors and then meet to ensure both are coding comments that aligns with the research question. Before the start of the analysis, the two coders, reflectively identified their Subjective I's - the assumptions that they brought regarding the mobility and hospital-to-home transition. The two coders often refer back to the Subjective I statement to ensure integration of their knowledge while allowing the themes to emerge from the data. To increase the credibility of data analysis, the two coders actively searched for diverging themes to enable us to understand opposing views regarding why experts rated the way they did. For instance, researcher and clinician experts stated that muscle coordination is only important if the patient has extremely poor coordination; whereas family caregivers thought that regardless of the state of coordination of the older adult, good muscle coordination will likely reduce falls, hence should be considered critical. These discrepancies could explain why muscle coordination was moderately rated in Round 1 of the e-Delphi process [19]. We provided detailed descriptions of the experts' demographics, including their years of clinical, research, or experiences in participating during the hospital-to-home transition. The detailed experts' description allows readers to understand the significant and complex contextual meaning underpinning the themes that emerged from this study. Being one of the few qualitative studies to analyze experts' comments is a strength and have provided foundational knowledge to application of the CMDAF.

This study also has limitations. The original e-Delphi sample was 60, but only 31 experts provided comments. It is possible that the remaining 29 experts did not provide rationales for rating mobility factors because of the burden of

filling out a lengthy e-Delphi survey. Experts were asked to rate 84 factors in Round 1 of our e-Delphi survey. In addition, they were also asked to provide rationales for rating each. Because of this, it is plausible that experts may have experienced a burden in providing rationales for rating each factor in the comment section. Therefore, since it was not compulsory to provide reasons for rating factors in Round 1, most experts may have skipped providing rationales. It is, therefore, plausible that themes or subthemes would have changed if we had more experts provide comments for rating, highlighting the need to interpret the results with caution.

While we ensured that the voice of older adults and family caregivers were captured in the analysis, researchers and clinicians had a larger sample size and inherently provided more comments for rating factors. For instance, the 235 comments were distributed as follows: older adults (12), family caregivers (18), clinicians (100) and researchers (105). The make-up of comments across different experts group explains why there were differences in the reasons for rating factors. The differences in the reasons may not have been noted if older adults and family caregivers had provided more comments.

Qualitative comments in an open-ended section provided reasons for the rating. However, exit interviews or focus groups could provide additional insight into why the experts rated the way they did. Therefore, future research should consider integrating exit interviews with open-ended questions to explore in detail the rationale for a rating in an e-Delphi process and to understand the decision-making process influencing how items are rated in an e-Delphi process.

Conclusion

Experts' rationale for rating factors included in the CMDAF was based on two concepts: selective importance of mobility factors, and the role of mobility factors in influencing mobility-related outcomes after hospital discharge. All

experts reflected on factors as mobility enablers or barriers, guiding how they rated each factor. In addition, clinician and researcher experts conditionally placed importance on mobility factors based on: uniqueness of each older adult; health care and practice-based reasons; service availability and regional meaning of mobility factors; and the varying degree of relevancy of mobility factors amidst competing older adults' needs. This finding has offered a rich and unique opportunity to garner an understanding of perspectives and thought processes, and decision-making in an e-Delphi process. Furthermore, the reasons provided by experts in this study can inform guide the application of CMDAF in clinical practice to guide patient care, discharge planning and improve clinical outcomes.

Acknowledgment.

We want to acknowledge the older adult and family caregiver steering committee members: Mr. John Fielding, Mrs. Dianne Fielding, Daniel Rayner, and all the expert members who participated in this e-Delphi rounds. This work was conducted as part of Michael Kalu's PhD thesis [Rehabilitation Science Program. School of Rehabilitation Science, McMaster University, Hamilton, Ontario Canada]. Michael Kalu received Mobility Labarge Scholarship from McMaster Institute for Research in Ageing, McMaster University, Hamilton, Ontario, Canada.

Disclosure statement

The authors report there are no competing interest to declare

Data availability statement

Available data for this project are attached as Appendices, at the end of the thesis.

Funding

Michael Kalu received Mobility Labarge Scholarship from McMaster Institute for Research in Ageing, McMaster University, Hamilton, Ontario, Canada.

Ph.D. Thesis M. Kalu, McMaster University - School of Rehabilitation Science

Appendices

Appendix 7A - Mobility factors, plain language definition of mobility factors, and the mean (SD) and median (IQR) rating for each factor)

Ph.D. Thesis M. Kalu, McMaster University - School of Rehabilitation Science

References

- [1] Hoogerduijn JG, Buurman BM, Korevaar JC, Grobbee DE, de Rooij SE SM. The prediction of functional decline in older hospitalised patients. Age Ageing. 2012;42(3):381-387.
- [2] Boyd CM, Ricks M, Fried LP, Guralnik JM, Xue QL, Xia J, et al. Functional decline and recovery of activities of daily living in hospitalized, disabled older women: The women's health and aging study. J Am Geriatr Soc. 2009;57(10):1757-66.
- [3] Covinsky KE, Palmer RM, Fortinsky RH, Counsell SR, Stewart AL, Kresevic D, et al. Loss of independence in activities of daily living in older adults hospitalized with medical illnesses: Increased vulnerability with age. J Am Geriatr Soc. 2003;51(4):451-8.
- [4] Vernon D, Brown JE, Griffiths E, Nevill AM, Pinkney M. Reducing readmission rates through a discharge follow-up service. Futur Healthc J. 2019;6(2):114-7.
- [5] Weiss AJ, Jiang HJ. Overview of Clinical Conditions With Frequent and Costly Hospital Readmissions by Payer, 2018 #278 [Internet]. Healthcare Cost and Utilization Project (HCUP). 2021 [cited 2022 Mar 23]. Available from: https://www.hcup-us.ahrq.gov/reports/statbriefs/sb278-Conditions-Frequent-Readmissions-By-Payer-2018.jsp
- [6] Polnaszek B, Mirr J, Roiland R, Gilmore-Bykovskyi A, Hovanes M, Kind A. Omission of physical therapy recommendations for high-risk patients transitioning from the hospital to subacute care facilities. Arch Phys Med Rehabil. 2015;96(11):1966-1972.e3.
- [7] Kalu M, Maximos M, Sengiad S, Dal Bello-Haas V. The role of rehabilitation professionals in care transitions for older adults: A scoping review. Phys Occup Ther Geriatr. 2019;37(3):123-50.
- [8] Webber SC, Porter MM, Menec VH. Mobility in older adults: A comprehensive framework. Gerontologist. 2010;50(4):443-50.
- [9] Kalu M, Dal Bello-Haas V, Griffin M, Ploeg J, Richardson J. A Comprehensive Mobility Discharge Assessment Framework for older adults transitioning from hospital-to-home in the community - what mobility factors are critical to include? Protocol for an international e-Delphi study. PLoS One. 2022; Imprint.
- [10] Dalkey NC. Delphi [Internet]. Santa Monica; 1967. Available from: https://www.rand.org/pubs/papers/P3704.html.
- [11] Keeney S, Hasson F, Mckenna H. The Delphi Technique in Nursing and Health Research. The Delphi Technique in Nursing and Health Research. UK: John Wiley & Sons Ltd; 2011.
- [12] OMERACT. About Us OMERACT [Internet]. 2022. [cited 2022 May 13]. Available from: https://omeract.org/about-us/
- [13] COMET Initiative | Home [Internet]. [cited 2022 May 13]. Available from: https://www.comet-initiative.org/
- [14] Hall DA, Smith H, Heffernan E, Fackrell K. Recruiting and retaining participants in e-Delphi surveys for core outcome set development: Evaluating the COMiT'ID study. PLoS One. 2018;13(7).
- [15] Baker J, Lovell K, Harris N. How expert are the experts? An exploration of the concept of "expert" within Delphi panel techniques. Nurse Res. 2006;14(1):59-70.
- [16] Sinha IP, Smyth RL, Williamson PR. Using the Delphi technique to determine which outcomes to measure in clinical trials: Recommendations for the future based on a systematic review of existing studies. PLoS Med. 2011;8(1):1000393.
- [17] Khodyakov D, Park S, Hutcheon JA, Parisi SM, Bodnar LM. The impact of panel composition and topic on stakeholder perspectives: Generating hypotheses from online maternal and child health modified-Delphi panels. Heal Expect. 2022;25(2):732-43.

- [18] McMillan SS, King M, Tully MP. How to use the nominal group and Delphi techniques. Int J Clin Pharm. 2016 Jun; 38(3):655-62.
- [19] Kalu, Michael Ebe; Dal Bello-Haas, Vanina; Griffin, Meridith; Boamah, Sheila; Harris, J; Rantenan T. What mobility factors are critical to include in a Comprehensive Mobility Discharge Assessment Framework for older adults transitioning from hospital-to-home in the community? An international e-Delphi study. Under Rev.
- [20] Sandelowski M. What's in a name? Qualitative description revisited. Res Nurs Health. 2010;33(1):77-84.
- [21] Kyngäs H, Mikkonen K, Kääriäinen M. The Application of Content Analysis in Nursing Science Research. 1st ed. The Application of Content Analysis in Nursing Science Research. Switzerland: Springer Nature; 2020. 1-115 p.
- [22] Intiative C. COMET DelphiManager [Internet]. 2017. Available from: http://www.comet-initiative.org/delphimanager/
- [23] Lincoln YS, Guba EG. But is it rigorous? Trustworthiness and authenticity in naturalistic evaluation. New Dir Progr Eval. 1986;1986(30):73-84.
- [24] Peshkin A. In Search of Subjectivity-One's Own. Educ Res. 1988;17(7):17-21.
- [25] Hand CL, Howrey BT. Associations among neighborhood characteristics, mobility limitation, and social participation in late life. J Gerontol B Psychol Sci Soc Sci. 2019 Feb 15;74(3):546-55.
- [26] Campbell M, Stewart T, Brunkert T, Campbell-Enns H, Gruneir A, Halas G, et al. Prioritizing supports and services to help older adults age in place: A Delphi study comparing the perspectives of family/friend care partners and healthcare stakeholders. PloS One. 2021 Nov 9;16(11):e0259387.
- [27] Owens C, Ley A, Aitken P. Do different stakeholder groups share mental health research priorities? A four-arm Delphi study. Health Expect. 2008 Dec;11(4):418-31.
- [28] Sibbald SL, Kang H, Graham ID. Collaborative health research partnerships: a survey of researcher and knowledge-user attitudes and perceptions. Health Res Policy Syst. 2019 Dec;17(1):1-0.
- [29] Alhasani R, Radman D, Auger C, Lamontagne A, Ahmed S. Clinicians and individuals with acquired brain injury perspectives about factors that influence mobility: creating a core set of mobility domains among individuals with acquired brain injury. Ann Med. 2021 Jan 1;53(1):2365-79.
- [30] Nicolson PJA, Sanchez-Santos MT, Bruce J, Kirtley S, Ward L, Williamson E, et al. Risk Factors for Mobility Decline in Community-Dwelling Older Adults: A Systematic Literature Review. J Aging Phys Act. 2021;29(6):1053-66.
- [31] Levasseur M, Généreux M, Bruneau JF, Vanasse A, Chabot É, Beaulac C, et al. Importance of proximity to resources, social support, transportation and neighborhood security for mobility and social participation in older adults: Results from a scoping study. BMC Public Health. 2015;15(1):1-19.
- [32] Ferrucci L, Cooper R, Shardell M, Simonsick EM, Schrack JA, Kuh D. Agerelated change in mobility: Perspectives from life course epidemiology and geroscience. Journals Gerontol - Ser A Biol Sci Med Sci. 2016;71(9):1184-94.
- [33] Kuspinar A, Verschoor CP, Beauchamp MK, Dushoff J, Ma J, Amster E, et al. Modifiable factors related to life-space mobility in communitydwelling older adults: Results from the Canadian Longitudinal Study on Aging. BMC Geriatr. 2020;20(1):1-10.
- [34] Kalu ME, Dal Bello-Haas V, Griffin M, Boamah S, Zaide M, Khattab N, et

al. Cognitive, psychological and social factors associated with older adults' mobility: a scoping review of self-report and performance-based measures. Psychogeriatrics. 2022; Imprint.

- [35] Kalu ME, Dal Bello-Haas V, Griffin M, Boamah S, Zaide M, Khattab N, et al. A scoping review of personal, financial, and environmental determinants of mobility among older adults. Under Rev. 2022.
- [36] Wald HL, Ramaswamy R, Perskin MH, Roberts L, Bogaisky M, Suen W, et al. The Case for Mobility Assessment in Hospitalized Older Adults: American Geriatrics Society White Paper Executive Summary. J Am Geriatr Soc. 2019 Jan 1;67(1):11-6.
- [37] Naylor MD, Feldman PH, Keating S, Koren MJ, Kurtzman ET, Maccoy MC, et al. Translating research into practice: transitional care for older adults. J Eval Clin Pract. 2009;15(6):1164-70.
- [38] Coleman, Al. The Care Transitions Program® | The Care Transitions Measure (CTM®) [Internet]. [cited 2020 May 15]. Available from: https://caretransitions.org/

Table 1 - Example of the coding process for two themes

Sample unit of analysis (participant quote)	Codes (open coding)	Categories	Subthemes	Themes
Muscle coordination is only important for patients with extremely poor coordination like ataxia. The average person with below-average coordination can probably still walk and take care of themselves. (C33, Nurse, Finland)	Only important if the older adult has poor proprioception	It depends on the older adult health conditions		
Sidewalk characteristics will depend on the activities essential to the particular patient's discharge (R8, Canada)	Activities an older adult wants to do after discharge	It depends on the older adult discharge activity goals	The uniqueness of each older adult	
I would be more inclined to focus on the patient's stated [mobility-related] discharge goals and preferences, rather than any of these specific personal determinant factors - otherwise [you] risk generalizing the impact of these personal factors on mobility (R26, Canada)	The older adult mobility discharge goals	It depends on the older adult mobility discharge goals		
I should have included some factors like landmass use, but who can assess those (R17, Female, Ireland)	Who can assess some of the environmental factors			
Some of these psychological factors, such as openness, agreeableness may provide insight, but I'm not sure how it can be assessed, hence I rated them lower (R26, Canada)	How can you assess some of the psychological factors	The who, how, and time	Health care	
Some factors such as the ability to walk 400m, dual-task, or even gait speed may not be possible while the patient is on admission, even though these parameters can provide insight into the patient's independence and the support they need upon discharge, but with limited time, it becomes challenging to assess gait speed upon discharge; therefore, I rated gait speed low to save time (C39, Physiotherapist, Canada)	Can be assessed and provide insight, but no time to assess	and provide nsight, but no time to assess	practice- based reasons	
Our current clinical practice discharge coaches are primarily nurses, sometimes occupational therapists or	Current interdisciplinary	Current clinical		

social workers, and rarely physical therapists, and these professionals are often not in an interdisciplinary team of discharge coaches. Therefore, depending on the discharge coaches' professional scope, some factors [environmental and psychological factors] may not be assessed (C21, Occupational Therapist, Australia)	discharge coaches determine what is assessed in alignment with their professional scope	practice determines what is assessed?		Conditional importance
The [Finnish] government has taken care of some factors like transportation; therefore, I rated those low, and others like social networks as critical (C33, Nurse, Finland)	Government takes care of some factors, such as transport.	akes me Some factors h as are less . important to	Service availability and regional (context) meaning of mobility factors	
Organizations like AgeUK have specialized services such as accessible transportation, although this depends on where you live. So, I would prefer the clinician to ask my mother or me where she lives rather than transport access, which would help them know if we can access other services (C54, Physiotherapist, UK)	Transportation has been subsidized by the government	assess if subsidized or covered by the government		
Rest area probably means something in other places, for example, the US. In Ireland, rest areas relate to areas you can pull in when driving, and this is not a problem; hence I rated low." (C4, Geriatrician, Ireland) Some of these environmental factors, take for instance land mass use is not a typical term we use in this region [Sweden], and it may mean something else culturally here." (CA2, Sweden)	Environmental factors might mean different things in countries	Regional meaning of mobility factors		
The culture or ethnicity of the person matters; because in some cultures, for example, the Asian or African cultures, older adults live with relatives, and they are taken care of by relatives or loved ones; so, I rated living arrangement over culture because when relatives are around, they can help the older adults with daily chores while they recover. They can even help them walk sometimes (CA11, Canada)	Prioritizing living arrangements over culture and ethnicity	Prioritizing social factors over other factors, such as personal		
I (social worker) think the older adults may want me to ask about someone who will help them move around when they		and psychological factors	The varying degrees of	

			1	1
are discharged. This is one of the reasons I choose social-related factors over other factors like psychological factors (CA11, Canada)	Prioritizing social factors higher than psychological factors		relevancy of mobility factors amidst competing older adult's needs	
Sex will determine many risk factors (e.g., fracture after a fall); therefore, I would prioritize assessing medical conditions rather than personal factors (C58, Social Worker, Canada)	Prioritizing medical conditions over sex	Prioritizing physical		
Weather is important, but I cannot rate this critical because my ability to see and hear is critical because I can walk indoors when the weather is bad, raining or snow (OA45, Canada)	Prioritizing vision and hearing over weather	factors over environmental and personal factors		
Even though muscle strength and endurance go hand in hand and are very vital to mobility during discharge, I rated muscle strength 9 (critical) and muscle endurance 6 (important but not critical) because I thought that when both are placed side by side, I will choose muscle strength (R14, UK)	Prioritizing muscle strength over muscle endurance	Prioritizing		
Depression should be rated 9 (very critical) over other psychological factors because if you are depressed, you may not even want to take a walk when you are discharged, even if the walking route is safe and free of obstacles. (OA28, UK)	Prioritizing depression over other psychological factors	factors within mobility determinants		
I chose the discharge home environment over the residential characteristic because, as an occupational therapist, an older adult would want me to ask him questions regarding his home rather than the area he lives (C21, Occupational Therapist, Australia)	Prioritizing discharge home over residential characteristics			
Having someone at home (e.g., a spouse) to help each other plays a significant role to discharge. But I am not sure if they will surely help the older adults. Discharging a patient who lives alone is more challenging, especially with ADLs and IADLs (C33, Nurse, Finland)	p each other n not sure charging a specially Marital status provides insight into support at home enabling ADL and IADL Marital status factors (marital status) factors factors factors factors factors	Positive influence of factors on	The role of	
I had a partner at home who could take care of me; for instance, he could walk with me in our area upon discharge (OA46, Canada)	Marital status provides insight into support at	and positively influence	adults' mobility	mobility

If I did not have my wife as a caregiver at home; I could not have gone home (OA45, Canada)	home enabling care at home	older adults' mobility	
Proprioception is critical in preventing falls; the history of falls predicts the tendency for falls to occur; muscle strength, balance, and vision are crucial to mobility (R51, UK)	Proprioception and history of falls help prevent adverse mobility-related outcomes (falls)	Physical factors directly and positively	
Balance, muscle strength, power, endurance, coordination, range of motion, proprioception, sensation, pain, history of falls, balance vision, self-care activities of daily living, and instrumental activities of daily living are needed for safe independence in mobility (R36, Sweden)	Physical factors are needed for safe and independent mobility	influence older adults' mobility	
The discharge environment is critical to ensure that older adults can independently perform ADLs at home (R51, UK)	Discharge environment promotes independence at home		
Street, residential, and sidewalk characteristics directly dictate how safe (e.g., even sidewalks) the area is for me to walk or not walk (OA28, UK)	Environmental factors facilitate walking	Environmental factors directly and positively influence	
Street characteristics, traffic-related safety, access to recreational facilities, destinations, rest areas, public transit, and weather may affect motivation for outdoor mobility among the elderly in the community (C15, Occupational Therapist, Canada)	Environmental factors motivate older adults to mobilize outdoors	older adults' mobility and PA participation	
Street characteristics, access to the destination, and public transit could facilitate PA participation (R51, UK)	Environmental factors facilitate PA participation		
I rated openness as important because it is good to know if the patient is aware that she may need more assistance, such as a change in their environment that can promote mobility after discharge (C59, Occupational Therapist, Singapore)	Openness may make an older adult more willing to mobilize and accept assistance	Psychological factors directly and positively influence	
Self-efficacy [defined as the belief someone has in the ability to carry out and complete a task] affects	Self-efficacy affects	older adults' mobility and	

motivation to attempt to mobilize (C15, Occupational Therapist, Canada)	motivation to mobilize	motivation to mobilize		
Attention is needed to focus on ambulating properly and to recall precautions, and visuospatial function is required to enable older adults to be aware of their body in space to walk safely (C63, Geriatrician, UK)	Attention facilitates proper ambulation	Cognitive factors directly and positively		
Having good memory will enable me to follow instructions regarding mobility when discharged (OA45, 72 years, Canada)	Memory assesses one's ability to follow instructions	influence older adults' ability to follow instructions, influencing ambulation		
Social support, reduced loneliness, living situation, and social participation are critical for improving older adults' psychosocial wellbeing following discharge (R51, UK)	Social factors influence mental wellbeing	Social factors influence		
Loneliness may affect patient's motivation to mobilize; a patient's social participation status before mobility decline is likely to determine their desire to mobilize (C15, Occupational Therapist, Canada)	Social factors influence motivation to mobilize	wellbeing and motivation to mobilize		
Poor balance and dizziness can lead to falls; higher frailty puts patients at risk of injury and readmission (C33, Nurse, Finland)	Increase risk of adverse mobility- related outcomes (readmission, falls, reinjury)	Physical factors as barriers to mobility and		
Sedentary living and high BMI are often associated with musculoskeletal disorders and mobility decline (C15, Occupational Therapist, Canada)	High BMI and sedentary living are barriers to mobility	mobility- related outcomes	Negative influence of factors on older	
Language barriers affect the way we gather and dispense information relating to mobility. Also, language barriers may delay discharge due to the need to involve translators (C33, Nurse, Finland)	Language barriers can affect receiving and gathering information related to mobility	Reduced cognitive ability as barriers to communication and safety	adults' mobility	

A very poor memory would create many challenges with discharge. It would also potentially cause a safety concern for the patient being home (C33, Nurse, Finland)	Poor memory can lead to safety concerns	
Fear of falling, emotional well-being, self-perceived fatigue, anxiety, apathy, affect, and depression could be barriers to physical activity/mobility (R51, UK)	Psychological factors can act as barriers to PA and mobility	Physical
Fear of falling can limit a person's functional ability indoors and outdoors - it can impact their participation in the activity of daily life, community ambulation, and integration into their community (C59, Occupational Therapist, Singapore)	Psychological factors can limit indoor and outdoor mobility	barriers to mobility and PA
Snow hinders mobility and has affected how I provide mobility-related care to my dad. During snow, we rarely work as we fear that he may fall (CA49, Canada)	Weather can influence the provision of mobility-related care	Environmental factors as barriers to mobility-
If it is raining; I cannot go outside, and I like to walk out (OA46, Canada)	Weather can influence the ability to walk outdoors	related care and mobility

ADL - Activities of daily living; BMI - Body mass index; C - Clinician; CA - Caregiver, IADL - Instrumental activities of daily living; OA - Older adults; PA - Physical activity participation; R - Researcher

-	Older			_		
	Adults (n=3)	Caregivers (n=6)	Clinicians (n=12)	Researcher s (n=10)		
		38.7	37.2			
Age, Mean (Standard Deviation)	77.7 (5.6)	(10.5)	(10.8)	35.5 (8.4)		
Female, n (%)	1 (33.3%)	6 (100%)	5 (41.7%)	7 (70.0응)		
Education level, n (%)						
• PhD	0 (0%)	2 (33.3%)	2 (16.7%)	7 (70.0응)		
• MSc	0 (0%)	3 (50.0%)	8 (66.7%)	2 (20.0%)		
• Bachelor's	1 (33.3%)	1 (16.7%)	2 (16.7%)	1 (10.0%)		
• Diploma	2 (66.7%)	0 (0%)	0 (0%)	0 (0%)		
Country, n (%)						
• United Kingdom	1 (33.3%)	0 (0%)	2 (16.7%)	2 (10.0%)		
• Canada	2 (66.7%)	5 (83.3%)	5 (41.7%)	3 (30.0%)		
• Australia	0 (0응)	0 (0응)	2 (16.7%)	2 (20.0%)		
• Finland	0 (0응)	0 (0%)	1 (8.3%)	1 (10.0%)		
• Ireland	0 (0응)	0 (0응)	1 (8.3%)	1 (10.0%)		
• Sweden	0 (0응)	1 (16.7%)	0 (0응)	1 (10.0%)		
• Singapore	0 (0응)	0 (0응)	1 (8.3%)	0 (0%)		
How many times have you experienced/participated in a hospital-to-home transition? n (%)						
• Once	1 (33.3%)	0 (0%)	0 (0%)	N/A		
• Twice	1 (33.3%)	0 (0%)	0 (0%)	N/A		
• Three times	0 (0응)	0 (0%)	1 (8.3%)	N/A		
 More than three times Which determinant(s) do you have expertise in (check as many as applicable), n (%) 	1 (33.3%)	6 (100%)	11 (91.7%)	N/A		
• Cognition	N/A	N/A	9 (70.8응)	6 (60.0%)		
• Environmental	N/A	N/A	8 (66.7응)	2 (20.0%)		
• Financial	N/A	N/A	1 (12.5%)	5 (50.0%)		
• Personal	N/A	N/A	5 (41.7%)	6 (60.0%)		
• Physical	N/A	N/A	15 (91.7%)	12 (85.0%)		
 Psychological 	N/A	N/A	8 (66.7%)	6 (50.0%)		
• Social	N/A	N/A	6 (50.0%)	8 (65.0%)		
 n = number of; % = percentage of; N/A = not applicable - participants 						

Table 2: Participant characteristics (n=31)

were not asked that questions.

Box 1: Definition of experts

- **Researchers** were considered an "expert" if they have authored at least two peer-reviewed articles as either the first or senior author in at least one of the mobility determinants.
- Clinicians were considered an "expert" if they have at least two years of clinical experience working with older adults with mobility difficulties in their field of professional expertise and hospital-to-home transitions.
- Older adults (65 years and older) were considered an "expert" with lived experience if they self-identify as having at least one year of mobility difficulties and have experienced a hospital-to-home transition.
- Family caregivers were considered an "expert" if they have at least one year experience providing informal care for older adults with mobility limitations, specifically during hospitalto-home transitions.

CHAPTER 8: INTEGRATED DISCUSSION AND CONCLUSION

This PhD thesis consists of two Phases. Phase 1 aimed to synthesize the available evidence for factors within each mobility determinant (cognitive, financial, environmental, personal, physical, psychological, and social) and their association with self-reported and performance-based mobility outcomes; and generated three manuscripts. Phase 2 aimed to develop, through consensus, a Comprehensive Mobility Discharge Assessment Framework (CMDAF) for older adults transitioning from hospital-to-home in the community. Phase 2 generated a protocol paper and two manuscripts. This thesis advanced Webber's mobility comprehensive framework by summarizing factors within each mobility determinant, allowing other researchers to use these factors in clinical and research contexts. Further, this thesis project through an e-Delphi process, building on synthesized literature on mobility factors, developed a stakeholderand evidence-informed integrated mobility comprehensive discharge assessment framework for older adults during hospital-to-home transition. This discussion chapter will focus on 1) the basis and rationale for the work; 2) the key findings and their implications; and, 3) limitations, strengths, and suggestions for future research.

The basis for studying older adults' mobility during hospital-to-home transition Mobility is complex, as it depends on multiple factors that may change over time and requires the involvement of multidisciplinary teams for assessment and effective intervention. Webber et al. [1]^{p.444} defined *mobility* as the "ability to move oneself (either independently or by using assistive devices or transportation) within environments that expand from one's home to neighborhood and to regions beyond." The multiple factors that influence mobility discussed as mobility determinants in Webber's framework include cognitive, environmental, financial, personal, physical, psychological, and social [1]. Webber's framework describes the interactions of mobility determinants and how

these interactions change as older adults move from their familiar environment (e.g., home) to an unfamiliar environment (e.g., outside the neighborhood) [1]. Webber et al. [1] recommended developing a tool (or a set of inter-related tools) capable of measuring factors influencing mobility in different contexts, for example, in the community or hospital settings. The initial plan for this Ph.D. was to develop a comprehensive mobility tool for assessing older adults' mobility during their hospital-to-home transition. However, during a preliminary literature review, there was great variability in the literature with regard to the selection of factors within each mobility determinants. For instance, Kuspinar et al. [2] measured environmental factors using residential location [2], while Dunlap et al. [3] used neighborhood walkability - a composite of the land-use mix, traffic-related safety, and sidewalk characteristics to measure environmental factors. The selection of different factors within the same mobility determinant in these studies made it challenging to determine which factors might be ideal for a comprehensive mobility discharge assessment tool [4,5]. More so, Webber et al.'s [1] mobility framework did not provide a comprehensive list of factors within each determinant, and how each factor was associated with self-reported and performance-based mobility of older adults. As a result, researchers pick and choose factors within each determinant. A solution to this problem was to comprehensively identify factors within each mobility determinant, enabling researchers and clinicians to advance Webber's framework and develop an integrated mobility assessment tool for different contexts. A series of scoping reviews to comprehensively identify a list of factors with each determinant and their associations with self-reported and performance-based mobility outcomes among older adults were conducted, constituting Phase 1 of this thesis.

Mobility-related issues have been identified as an independent risk factor for hospital readmission [6]. However, mobility is rarely assessed during the hospital-to-home transition. Possible reasons include the lack of

rehabilitation professionals as members of care transition and the lack of a comprehensive mobility assessment tool comprising the factors within the seven mobility determinants [7]. It is logistically impossible to assess all the factors within all the determinants identified from the literature due to the limited time that surrounds discharging older adults from the hospital [8], highlighting the need to prioritize factors within the determinants that could influence mobility after hospital discharge and that should be assessed. Phase 2 of this thesis aimed to prioritize factors within each determinant to be included in the Comprehensive Mobility Discharge Assessment Framework for older adults transitioning from hospital-to-home.

Phase 1 Main findings and Discussion

Phase 1 consists of three manuscripts (Chapters 2, 3, and 4). Using the fivestage scoping review process by Arksey and O'Malley [9], the available evidence for factors within cognitive, psychological, and social (Chapter 2); personal, environmental, and financial (Chapter 3); and physical determinants (Chapter 4) and their associations with self-reported and performance-based mobility outcomes in older adults (60 years and older) were synthesized.

These reviews were conducted to advance Webber's framework by exploring factors within each mobility determinant and their associations with older adults' mobility, including those achieved independently or using assistive devices, transportation, or driving. Notably, Webber's framework described the psychosocial determinant as one, whereas in the scoping reviews, the psychosocial determinant was separated into two: psychological and social determinants, for two reasons. First, psychological factors are mostly individual-level factors that influence behaviors that promote or hinder mobility, while social factors are factors at the societal level guided by structures and processes influencing mobility [10]. Second, social factors, such as social networks, social support, and social participation, may be more

Ph.D. Thesis M. Kalu, McMaster University - School of Rehabilitation Science

amenable to intervention than psychological factors, such as depression and fall-related concerns [11]. Separating the psychosocial determinant into psychological and social determinants enabled the detailed and comprehensive report of how each factor influences older adults' mobility.

While previous reviews have explored the association between mobility and cognitive [12-14], psychological [15], social [16], environmental [17-20], and physical determinants [21,22], each review focused on a specific factor within each determinant without considering other factors. As well, most of the reviews on mobility focused on self-reported and performance-based walking outcomes, with very few attempts to include mobility as transportation and with assistive devices, such as walker and scooter. Further, no reviews have been completed describing the association between financial and personal factors and older adults' mobility outcomes. The reviews in this thesis are the only ones that have comprehensively synthesized the associations between different forms of mobility, including those achieved independently or using assistive devices, transportation, or driving, and capture different factors within each mobility determinant. Across the reviews, there are 772 articles published in 51 countries, of which most were cross-sectional studies. Eighty-four factors [cognitive (n=7), psychological (n=18), social (n=9); personal (n=11), environmental (n=17), financial (n=3), and physical (n=18)] and their associations with older adults' mobility were identified. The factors within each determinant were significantly associated with both self-reported and performance-based mobility outcomes in the expected direction. Compared to older adults with cognitive impairment, older adults with better cognitive functioning, such as better executive functioning, had better mobility outcomes (e.g., faster gait speed). Likewise, those with depressive symptoms or a reduced social network had poorer mobility outcomes (e.g., slower gait speed) compared to those with no psychological impairment or social issues. Similar trends were

noted in the association between older adults' mobility and personal, environmental, financial, and physical factors.

The scoping reviews identified two major gaps. First, regardless of the mobility determinants evaluated, most studies exploring the association of mobility determinants and self-reported and performance-based mobility outcomes, focused primarily on walking-related outcomes, such as: gait speed, balance, inability to walk a quarter, half, or a mile, or climb stairs, with very few attempts to explore driving, transportation and use of assistive devices. While some studies explored the role of cognitive factors on driving outcomes, e.g., braking reaction time during driving, most studies focused on walking-related concepts [7,23,24]. Together, this finding highlights the continued neglect of other forms of mobility, including transportation, driving, and the use of assistive devices. There is reputable evidence on the effect of driving cessation on several health outcomes among older adults [25,26]. A systematic review of 16 studies reported that driving cessation is associated with a decline in general health, physical, social, and cognitive function and greater risks of admission to long-term care and mortality [27]. Similarly, being able to drive can reduce social isolation and increase social participation in the community [25]. In a qualitative interview, non-driving older adults reported feeling hopeless when they could not access transportation because of their inability to drive [26]. To keep the rapidly increasing heterogeneous population of older adults actively involved in their daily activities, it is vital that public transportation is affordable, available, accessible, and acceptable to meet the mobility demands of older adults [28]. Therefore, further studies are needed to explore the association between mobility factors, transportation, and driving.

Second, across the articles included in the reviews, studies exploring simultaneous effects of two or more mobility factors and/or mobility factors in more than one determinant on mobility outcomes were limited. There is

considerable interest in studying interactions between mobility factors and their effects on mobility because it is anticipated that interactions can shed light on several mechanisms underlying the complexity of mobility. Furthermore, the interaction effect of these factors influencing mobility will allow researchers to identify which factors significantly interact with other variables to predict mobility outcomes, providing more explicit information on which factor to intervene with when there are competing demand for healthcare resources. The lack of power in most studies due to small sample sizes could explain why researchers did not test and include interacting variables in their regression models. Researchers are encouraged to use an extensive data set, such as the Canadian Longitudinal Study in Aging, with a large sample size that would allow for robust analysis of multiple interacting variables.

Phase 2 Main findings and Discussion

Phase 2 of this PhD thesis consists of one protocol paper (Chapter 5) and two manuscripts (Chapters 6 and 7). Building on the factors within each mobility determinant identified in the scoping reviews in Phase 1, 60 international experts (seven older adults, nine family caregivers, 24 clinicians, and 20 researchers) from nine countries participated in a three-round modified e-Delphi process to create a Comprehensive Mobility Discharge Assessment Framework (CMDAF) comprised of factors clinicians can assess to determine if they influence older adults' mobility during hospital-to-home transition. In addition to prioritising factors included in the CMDAF, experts were asked openended questions to provide rationales for rating factors during each round.

The findings of the three-round e-Delphi process was described in Chapter 6. The 60 international experts included 43 out of 91 mobility factors as part of the CMDAF. Chapter 7 is a qualitative content analysis describing why experts rated the factors in Round 1 the way they did. The content analysis yielded two major themes with six patterns highlighting reasons for rating factors to be

included in CMDAF. All experts, including older adults, family caregivers, clinicians and researchers stated that a) the positive and b) the negative role of the factor influencing mobility guided how they rated factors to be included in the CMDAF. Researcher and clinician experts conditionally placed importance on certain mobility factors based on: a) the uniqueness of each older adult, b) health care roles and practice-based reasons, c) service availability and meaning of mobility factors in different countries; and (d) the varying degrees of relevancy of mobility factors amidst competing older adults' needs.

Selecting critical factors influencing mobility is essential to planning assessment and intervention and monitoring mobility changes after discharge. Experts provided reasons why they rated the way they did, elucidating experts' thought processes and decision making regarding what is important and why. These studies are the first to identify mobility factors specific to hospital-to-home transition based on the consensus of international experts, and to identify experts' perspectives and the contextual and other reasons guiding their ratings.

Chapter 6 described the critical factors within each determinant to be included in CMDAF to assess older adults' mobility during hospital-to-home transitions. Current mobility assessment tools, such as Activity Measure for Post-Acute Care [29], do not capture all mobility determinants and are often designed to measure activity rather than mobility e.g., walking, transportation, driving, or with use of an assistive device following discharge. The Quality and Performance Measurement Committee of the American Geriatrics Society developed a research-based report supporting the greater focus on mobility as an outcome for hospitalized older adults [8]. The report recommended the need for consensus on developing a standard method to assess mobility during discharge [8]. Findings in Chapter 6 provided factors within each mobility determinant to be included in a CMDAF, further advancing Webber's framework and moving towards achieving an integrated assessment of mobility.

Similar to a study that developed a mobility assessment related to transportation [30], financial factors were not included in the CMDAF. A plausible explanation could be the context of the experts participating in our study. Experts were from countries with universal or near-universal health coverage, defined as countries that offer all citizens affordable access to comprehensive health services [31]. Some of these countries provide free social services, such as free access to recreational services, and transportation to their older adult population [32]. As a result, citizens are not expected to pay for healthcare services and may have sufficient and reliable secondary insurance for additional services related to mobility improvement after discharge, such as physiotherapy services or the purchase of mobility aids. This expectation may have influenced why financial factors were not included in the CMDAF. However, financial factors could be considered when evaluating mobility in older adults residing in countries with no universal health coverage; or in countries with universal or near-universal coverage where the coverage [despite the term "universal'] is not all inclusive for all aspects of health and social care. For example, evidence suggests the protective effects of financial factors on older adults' mobility in Iran, a country with limited universal health coverage [5]. Furthermore, income has been noted as a significant factor influencing older adults' choices in transportation [33] and was significant in determining walking as the mode choice in a situation where over 70% of older people lacked access to public transport [34]. Researchers residing in countries with no universal health coverage could use the comprehensive list of mobility factors provided in this thesis to explore which mobility factors could be considered when evaluating the mobility of older adults during the hospital-to-home transition in their particular context; as it could elucidate the influence of financial factors on mobility as noted in previous studies [5,33,33].

Chapter 7 of this thesis was the qualitative content analysis of the rationales that experts provided for rating factors to be included in the CMDAF. No previous studies have explored experts' rationale for rating items in an e-Delphi process. Most e-Delphi studies are more interested in the outcome of the e-Delphi process, specifically the final rating of items that have reached consensus rather than the process, e.g., why experts rated the way they did. The findings reported in Chapter 7 provided an understanding of behaviours, actions and perspectives guiding an expert's rating as well as information into the thought processes driving decision-making across a group of experts in an e-Delphi process, highlighting differences in reasons for rating different factors.

Stakeholders have unique ways of seeing things, as differences in personal and professional roles, experiences, or backgrounds lead to divergence in what is considered important and what individuals pay attention to regarding particular issues, which in turn could influence how they approach problems. The reasons for rating factors within each determinant differed across expert groups, as described in Chapter 7. Stated reasons highlighted what each expert participant viewed as important regarding mobility assessment of older adults during hospital-to-home. While researcher and clinician experts' reasons for rating mobility factors centrally focused on the uniqueness of each older adult, differences in healthcare roles and practice-based reasons, older adult and family caregiver experts rated factors were more grounded in the positive or negative influences of the factors on older adults' mobility. These findings align with existing quantitative evidence that items reaching consensus can differ across multiple stakeholders [35,36]. For instance, in prioritizing supports and services to help older adults age in place, Campbell et al. [37] reported that compared to healthcare stakeholders, care partners felt that more diverse community-based factors, such as access to affordable housing and having mental health programs are more important for ageing in place. Previous research

[37] and the findings in this thesis (Chapter 7) highlight the need to include expert groups that represent a variety of stakeholders in research; and for expert groups to consider each other's perspectives in developing consensus. Shared understanding of the subject matter or issue, for instance mobility factors of importance to each expert group, enables the identification and resolution of any "blind spots" surrounding the issue, and leads to more robust, well-rounded innovations with greater impact when implemented [38]. These findings support the need for co-development of interventions with other experts, including older adults and family caregivers, as their opinions provide a different perspective clinicians and researchers would not have considered. Furthermore, expert groups should learn to appreciate the limits of their perspectives and seek to adopt other lenses when developing solutions for complex problems such as older adult mobility.

Rehabilitation professionals, such as physiotherapists or occupational therapists, are not always part of a regular discharge team, but are typically invited on a consultation basis [8,39]. Our study findings highlighted the need to expand the hospital care transition team to include rehabilitation professionals, such as occupational therapists and physiotherapists. This would entail changing hospital culture. However modifying organizational and hospital culture can be challenging, as changes are influenced by multiple factors, including but not limited to the clinicians' workload, the management structure, and the organizational practice pattern [8,40]. As functional status is a stronger predictor of hospital readmission than medical comorbidities in the older adult population [41,42], physical and occupational therapists who are trained to be competent managers could lead the care transition team. Therefore, the success and sustainability of a mobility assessment completed at hospital discharge could depend on a practice culture that includes physiotherapist and occupational therapist as typical members of the hospital care transition team and emphasizes the importance of mobility assessment at admission [8].

Hospital discharges occur very quickly [8]; therefore, there might not be enough time to assess all the mobility factors included in the CMDAF. As experts in our study described, focusing on the older adults' mobility needed to live at home and engage in social activities and events that foster recovery would allow clinicians to assess mobility factors most relevant to the older adults within a limited timeframe. A previous study has recommended that asking older adults how they prefer to be mobilized when admitted could guide the assessment of mobility factors during the hospital-to-home transition [42]. Another solution to the limited time to assess factors influencing older adults' mobility during hospital-to-home transition is to use the CMDAF on admission and monitor if the factors influencing older adults' mobility identified on admission change. During hospital-to-home transition clinicians could then only assess the factors that negatively impacted older adults' mobility during the hospital stay, enabling them to focus on the most relevant factors within the limited hospital discharge time.

Although we recruited experts from countries with universal or nearuniversal healthcare systems and provided plain language definitions of mobility factors, researcher and clinician experts highlighted that there are regional meanings to various terms, such as access to transit stops or land use mass. Additionally, the relevance of some of environmental factors as described by our experts varies across countries. For instance, experts from Finland and the United Kingdom reported that the government pays for most of the social environmental factors, such as access to transport and access to recreational activities. As a result, they did not consider those relevant in their context. This may be why some of the environmental factors were rated low. Therefore, a universal, comprehensive mobility assessment framework that could be used across similar healthcare systems may not be feasible, and the CDMAF may need to be modified before use in different contexts.

Thesis Strengths

This thesis has several strengths, in particular the incorporation of various methodologies to advance Webber et al.'s framework. Extensive details of strengths have been reported in the individual studies in the thesis. This section will summarize the overall strengths of this thesis. Phase 1 was comprised of several scoping reviews to identify factors that influenced different forms of mobility, and these findings guided Phase 2, which was an international e-Delphi study to prioritize factors to be included in CMDAF to guide mobility assessment during older adults' hospital-to-home discharge. Each study was planned, executed, analyzed, and reported rigorously. The *a priori* publication of study protocols for Phases 1 and 2 reduced publication bias, helped solicit early feedback from peer-reviewers, as well as improved the reproducibility of study findings.

The Arksey and O'Malley five-step scoping review approach [9] guided the studies in Phase 1. The comprehensive search strategy developed in consultations with subject-specific librarians enabled the inclusion of many articles conducted in 51 countries. For example, I consulted more than one librarian with expertise in health sciences and social sciences. Based on the consultation with the librarians, I searched sociological abstract databases that I would have missed. Title, abstract and full-text screening and data extraction were pilot-tested and completed by pairs of researchers for each determinant to ensure consistency between reviewers regarding the inclusion and exclusion of articles. Another strength of the reviews is their scope, i.e., the range, extent and breath; the reviews comprehensively included many mobility factors and their association with self-reported and performance-based mobility outcomes. In addition, mobility achieved by self, with the use of assistive devices, transportation, and driving were included.

Phase 2 of this thesis is an e-Delphi study whose strength lies in the involvement of older adults and family caregivers as expert members and Steering Committee members overseeing the e-Delphi process. Through several cycles of reviews and revisions, members of the Steering Committee provided feedback on the plain language definitions for each mobility factor and feedback summaries; and advised on issues identified raised during the pilot study. Older adults and family caregivers were also recruited as expert participants in the e-Delphi process, allowing their voices to be heard regarding prioritization of factors of importance to them. For instance, crime-related safety, access to rest areas, and recreational facilities reached consensus among older adults and family caregivers but not among researchers and clinicians in the final round. To give voice to the older adults, the Steering Committee members merged these factors to create a factor called safety, accessibility and availability, which was included in the CMDAF. While e-Delphi studies have been criticized in the literature due to the lack of standardized approaches [43], we employed several strategies to improve the validity and reliability of the e-Delphi study. These strategies included: following CREDES reporting guidelines [44]; pilot-testing of the Round 1 e-Delphi; setting a priori consensus and number of rounds; calculating the stability of the ratings; providing summary feedback to experts at each round; and providing transparency in reporting during the Steering Committee meetings. Another strength of this e-Delphi study was the qualitative analysis of experts' comments to describe why they rated mobility factors to be included in the CMDAF, which provides context for assessing these factors in clinical practice.

Thesis Limitations

While each manuscript has a description of limitations, it is pertinent to acknowledge the broader limitations of this thesis. First, the year limit for the search from 2000 to 2021 and only articles published in English were included

in the scoping reviews. In addition, we may have missed some articles on transportation and driving because we did not explode the MESH term and keywords for driving, and transportation. Approximately two-thirds of the articles in our reviews were cross-sectional studies, and thus their results did not explain the cause-and-effect relationships between mobility factors and mobility outcomes among older adults. For our e-Delphi study, all experts were from countries with universal or near-universal health coverage, and the results may not apply to countries with limited health coverage. The findings also may not be applicable to countries with private health insurance (e.g., United States of America) or out-of-pocket payment healthcare systems that are typical of most developing countries. While attempting to ensure equal distribution of participants across each expert group, experts were skewed towards researchers and clinicians. As well, all caregivers were recruited from Canada and older adults recruited from Canada and the UK, despite multiple and various recruitment attempts through country specific organizations, such as HelpAge Australia. As a result, comments provided by caregivers and older adults are limited and might reflect practice and experience unique mainly to the Canadian and UK contexts.

Contributions and Implications of the Thesis Work

Collectively the studies comprising this thesis have made important contributions to older adult mobility research. Webber's framework was used as a foundation for the thesis work; and since its publication others have used the framework as a guide. As noted previously, a limitation of Webber's framework and other studies (e.g., Franke et al. [45)) specific examples of various factors were not provided. The comprehensive list of mobility factors developed through the process of conducting the scoping reviews advances Webber's framework and the utilization of the studies guided by Webber's framework and forms the basis for future research. For example, currently there is no core outcome set for mobility factors in the older adult population. The

Ph.D. Thesis M. Kalu, McMaster University - School of Rehabilitation Science

comprehensive list of mobility factors represents an essential first step towards greater standardization of mobility assessment and measurement. A core outcome set is a recommended minimum set of outcomes or outcome measures for a particular health construct, condition, or population, which should be reported in all research trials exploring or examining that construct in that population [46]. Indeed, a core outcome set of mobility factors that can be widely used across a range of contexts and settings would facilitate critical comparisons of study findings and interpretations, better informing clinical practice and research.

The comprehensive list of mobility factors could be used to guide clinical practice. For example, clinicians could use the list to identify factors they typically would not consider to promote or hinder older adults' mobility, allowing them to further focus interventions on specific factors to maximize therapeutic benefits. Previous research has determined older adults and their family caregivers can correctly rate physiological, subjective and contextual factors influencing their mobility from high to low [45]. However, the authors did not provide a detailed factors list. The comprehensive mobility list from our scoping reviews has provided the details of physiological (e.g., muscle strength and muscle power), contextual (e.g., street, residential and sidewalk characteristics) and other factors, which would allow older adults and family caregivers to identify the factors which they believe most influence their mobility, allowing for more targeted mobility-related goal setting and interventions.

Another significant contribution of this PhD thesis was the development of plain language definitions for all mobility factors identified from the scoping reviews. Through a process comprised of several cycles of review and revisions, older adults, caregivers, researchers, and clinicians provided feedback on the plain language definitions of all mobility factors developed from the included studies in the reviews. Plain language descriptions can

Ph.D. Thesis M. Kalu, McMaster University - School of Rehabilitation Science

increase the understanding of scientific information by making complex information more accessible to a broader audience, including researchers and healthcare professionals from other fields, patients, caregivers, organizations, policy-makers and the public [47]. Mobility is a complex phenomenon that requires interdisciplinary and intersectoral perspectives and partnerships to address effectively [1]. Lack of shared comprehension and divergent characterizations can hinder effective collaboration. The plain language definitions of mobility factors in this thesis helps create a 'common language' that can be used to foster an integrated understanding of the complexity of mobility across different disciplines and sectors, providing opportunities to foster and enhance collaborations with other professionals, such as engineers and transportation officers, who are not typically involved in older adult mobility and ageing research.

Future Directions

Findings within this thesis highlight additional gaps that could be explored in future studies. Additional longitudinal studies are needed to explain the causeand-effect relationships between mobility factors and mobility outcomes among older adults. Future studies should use large data sets with longitudinal data collection and comparable national longitudinal data sets to more fully understand the cause-and-effect relationship between mobility factors and mobility outcomes among older adults. For instance, the English Longitudinal Study of Aging, Health and Retirement Study, Mexican Health and Aging Study, Study on Global Ageing and Adult Health, Japanese Study on Aging and Retirement, and Longitudinal Aging Study in India are considered comparable [48].

As described previously, studies testing Webber's framework in its entirety, that is, exploring the possible interaction effects across different mobility factors and their relationship with mobility outcomes, is lacking in the literature. An interaction occurs when an independent variable, for example,

(muscle strength), has a different effect on the outcome (mobility outcome) depending on the values of another independent variable, such as depression [49]. The 'checking' of interaction effects would provide detailed interactions between mobility factors and their effect on mobility outcomes and provide more insight into the complexity of mobility. However, the general practical problem with all interactions is that they can be hard to detect in small or moderately sized data sets. Therefore, using large data sets like the Canadian Longitudinal data set (n=12,646) or combining the comparable national longitudinal data sets described above is recommended.

Webber [50] stated that one limitation associated with the development of the theoretical framework was the lack of empirical evidence to support the interrelatedness of mobility factors described. The reports of myriad factors and their association with mobility outcomes in older adults provided in the scoping reviews have provided empirical evidence to support Webber's framework. The scoping reviews provided details of how factors individually or collectively influence different performance or self-reported mobility outcomes. For example, physical determinants, such as leg strength and grip strength, were the most important predictors of performance-based reported life-space mobility in Giannouli et al. [51], while driving and social supports explain the most variation in self-reported life-space mobility in Kuspinar et al.'s study [2]. This finding is a typical example of information in the scoping review that researchers should use to revise Webber's framework to focus on specific selfreported and performance-based mobility outcomes. Research could also focus on expanding Webber's framework to specific types of mobility, e.g., mobility using assistive mobility devices, an area often ignored in older adults' mobility research. An expanded Webber framework could use evidence from our scoping reviews to describe the interrelatedness of cognitive, environmental, financial, personal, physical, psychological, and social factors in older adults' use of assistive mobility devices to move across the life-space.

Comprehensive measures to evaluate a myriad of factors influencing mobility have been recommended in the literature [1,8,45,52], and no study has addressed this recommendation. Our study is the first study to identify 43 factors across all mobility determinants that are critical to be assessed as part of a CMDAF, which is the first step. The next step is to identify which measures to use to assess each factor providing a CMDAF that would guide healthcare workers in assessing mobility in older adults transitioning from hospital-to-home. This evidence- and consensus-informed CMDAF would promote mobility assessment during the hospital-to-home transition, as it would comprise multiple factors influencing mobility. Further, the CMDAF could stimulate interest in developing interdisciplinary and intersectoral mobility discharge teams comprised of health and social care professionals best able to assess the included factors.

Another next step is the consideration of how to implement the CMDAF in the context of hospital discharge for countries with universal or near-universal health coverage. This step could include feasibility testing among an interdisciplinary mobility discharge team to determine the practicality of the CMDAF, focusing on feasibility outcomes while addressing barriers and leveraging facilitators to implement the CMDAF.

Conclusion

Mobility loss is common among hospitalized older adults, which persists after discharge [42], warranting the need to include mobility assessment as a core component of the hospital-to-home transition [8]. However, mobility is rarely assessed during hospital-to-home because rehabilitation professionals who are experts in mobility assessment are not actively involved [42]. In addition, mobility assessments are currently not comprehensive and do not evaluate the myriad of factors that can influence mobility after discharge [8,42]. This thesis first identified 91 factors across each mobility determinant and their

associations with mobility outcomes through scoping reviews. Subsequently, experts (i.e., researchers, clinicians, older adults, and family caregivers) prioritized 43 of these 91 factors to be included in a CMDAF and provided their rationales. Collectively, this thesis advanced Webber et al.'s framework [1] with the development of a comprehensive list of factors for each mobility determinant and their associations with mobility outcomes and identified factors within each determinant to be included in a CMDAF to assess older adults' mobility during hospital-to-home transition.

Mobility related assessment and interventions are typically conducted by rehabilitation professionals such as physiotherapists and occupational therapists. Current mobility assessments, for example, Activity Measure for Post-Acute Care 6-Clicks [29] used by physiotherapists or other rehabilitation professionals, are heavily focused on body positions, transfers, personal care, home skills, and applied cognition, such as speaking and understanding, with no components focused on other factors that may influence mobility e.g., social, and financial factors. A comprehensive set of mobility assessments comprising physical, environmental, personal, economic, cognition, psychological and social factors could create an opportunity for other professionals, such as nurses or psychologists, who typically are not involved in mobility assessment to understand factors influencing older adults' mobility, and possibly conduct some mobility assessment when rehabilitation professionals are not available. This proposed comprehensive mobility tool can guide as a screening to determine which healthcare professionals should be actively engaged as the transdisciplinary mobility assessment team enhancing interdisciplinary approach to older adults' mobility care.
Ph.D. Thesis M. Kalu, McMaster University - School of Rehabilitation Science

References

- [1] Webber SC, Porter MM, Menec VH. Mobility in older adults: A comprehensive framework. Gerontologist. 2010;50(4):443-50.
- [2] Kuspinar A, Verschoor CP, Beauchamp MK, Dushoff J, Ma J, Amster E, et al. Modifiable factors related to life-space mobility in communitydwelling older adults: Results from the Canadian Longitudinal Study on Aging. BMC Geriatr. 2020;20(1):1-10.
- [3] Dunlap PM, Rosso AL, Zhu X, Klatt BN, Brach JS. The Association of Mobility Determinants and Life Space Among Older Adults. Journals Gerontol Ser A. 2021;XX:1-9.
- [4] Meyer MRU, Janke MC, Beaujean AA. Predictors of older adults personal and community mobility: Using a comprehensive theoretical mobility framework. Gerontologist. 2014;54(3):398-408.
- [5] Jafari A, Aminisani N, Shamshirgaran SM, Rastgoo L, Gilani N. Predictors of mobility limitation in older adults: A structural equation modeling analysis. Balt J Heal Phys Act. 2020;12(1):20-31.
- [6] Hoyer EH, Needham DM, Atanelov L, Knox B, Friedman M, Brotman DJ. Association of impaired functional status at hospital discharge and subsequent rehospitalization. J Hosp Med. 2014;9(5):277-82.
- [7] Kalu, Michael Ebe; Dal Bello-Haas, Vanina; Griffin, Meridith; Boamah, Sheila; Zaide, Mashal; Khattab, Nura; Rayned D. Physical mobility determinants among older adults: a scoping review of self-reported and performance-based measures. Under Rev. 2022;
- [8] Wald HL, Ramaswamy R, Perskin MH, Roberts L, Bogaisky M, Suen W, et al. The Case for Mobility Assessment in Hospitalized Older Adults: American Geriatrics Society White Paper Executive Summary. J Am Geriatr Soc. 2019 Jan 1;67(1):11-6.
- [9] Arksey H, O'malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19-32.
- [10] Upton J. Psychological Factors and Health. Encycl Behav Med 2013;1556-1558.
- [11] Saadeh M, Welmer AK, Dekhtyar S, Fratiglioni L, Calderón-Larrañaga A. The role of psychological and social well-being on physical function trajectories in older adults. Journals Gerontol - Ser A Biol Sci Med Sci. 2020 Jul 13;75(8):1579-85.
- [12] De Silva NA, Gregory MA, Venkateshan SS, Verschoor CP, Kuspinar A. Examining the Association between Life-Space Mobility and Cognitive Function in Older Adults: A Systematic Review. J Aging Res. 2019;1-9.
- [13] Peel NM, Alapatt LJ, Jones LV, Hubbard RE. The association between gait speed and cognitive status in community-dwelling older people: A systematic review and meta-analysis. Journals Gerontol - Ser A Biol Sci Med Sci. 2019 May 16;74(6):943-8.
- [14] Demnitz N, Esser P, Dawes H, Valkanova V, Johansen-Berg H, Ebmeier KP, et al. A systematic review and meta-analysis of cross-sectional studies examining the relationship between mobility and cognition in healthy older adults. Gait Posture. 2016;50:164-74.
- [15] Denkinger MD, Lukas A, Nikolaus T. Factors associated with fear of falling and associated activity restriction in community-dwelling older adults: A systematic review. Am J Geriatr Psychiatry. 2015;23(1):72-86.
- [16] Lamanna M, Klinger CA, Liu A, Mirza RM. The Association between Public Transportation and Social Isolation in Older Adults: A Scoping Review of the Literature. Can J Aging. 2020;39(3):393-405.
- [17] Rosso AL, Auchincloss AH, Michael YL. The urban built environment and mobility in older adults: A comprehensive review. Vol. 2011, Journal of Aging Research. 2011.
- [18] Levasseur M, Généreux M, Bruneau JF, Vanasse A, Chabot É, Beaulac C, et al. Importance of proximity to resources, social support, transportation

and neighborhood security for mobility and social participation in older adults: Results from a scoping study. BMC Public Health. 2015;15(1).

- [19] Hanson H, Ashe M, McKay H, Winters M. Intersection between the built and social environments and older adults' mobility: an evidence review. Collab Cent Collab Cent Environ Heal. 2012;
- [20] Barnett DW, Barnett A, Nathan A, Van Cauwenberg J, Cerin E. Built environmental correlates of older adults' total physical activity and walking: A systematic review and meta-analysis. Vol. 14, International Journal of Behavioral Nutrition and Physical Activity. BioMed Central; 2017. p. 1-24.
- [21] Yeom HA, Fleury J, Keller C. Risk Factors for Mobility Limitation in Community-Dwelling Older Adults: A Social Ecological Perspective. Geriatr Nurs (Minneap). 2008;29(2):133-40.
- [22] Nicolson PJA, Sanchez-Santos MT, Bruce J, Kirtley S, Ward L, Williamson E, et al. Risk Factors for Mobility Decline in Community-Dwelling Older Adults: A Systematic Literature Review. J Aging Phys Act. 2021;29(6):1053-66.
- [23] Kalu ME, Dal Bello-Haas V, Griffin M, Boamah S, Zaide M, Khattab N, et al. A scoping review of personal, financial, and environmental determinants of mobility among older adults. Under Rev. 2022;
- [24] Kalu ME, Dal Bello-Haas V, Griffin M, Boamah S, Zaide M, Khattab N, et al. Cognitive, psychological and social factors associated with older adults' mobility: a scoping review of self-report and performance-based measures. Psychogeriatrics. 2022; Imprint.
- [25] Hansen S, Newbold KB, Scott DM, Vrkljan B, Grenier A. To drive or not to drive: Driving cessation amongst older adults in rural and small towns in Canada. J Transp Geogr. 2020 Jun 1;86:102773.
- [26] Choi NG, Dinitto DM. Depressive symptoms among older adults who do not drive: Association with mobility resources and perceived transportation barriers. Gerontologist. 2016;56(3):432-43.
- [27] Chihuri S, Mielenz TJ, Dimaggio CJ, Betz ME, Diguiseppi C, Jones VC, et al. Driving cessation and health outcomes in older adults. J Am Geriatr Soc. 2016;64(2):332-41.
- [28] Shrestha BP, Millonig A, Hounsell NB, McDonald M. Review of Public Transport Needs of Older People in European Context. J Popul Ageing. 2017 Dec;10(4):343-61.
- [29] Jette DU, Stilphen M, Ranganathan VK, Passek SD, Frost FS, Jette AM. Validity of the AM-PAC "6-Clicks" inpatient daily activity and basic mobility short forms. Phys Ther. 2014 Mar;94(3):379-91.
- [30] Hirsch JA, Winters M, Sims-Gould J, Clarke PJ, Ste-Marie N, Ashe M, et al. Developing a comprehensive measure of mobility: Mobility over varied environments scale (MOVES). BMC Public Health. 2017;17(1):1-14.
- [31] Voorhoeve A, Ottersen T, Norheim OF. Making fair choices on the path to universal health coverage: A précis. Heal Econ Policy Law. 2014;11(1):71-7.
- [32] Lin D, Cui J. Transport and Mobility Needs for an Ageing Society from a Policy Perspective: Review and Implications. International Journal of Environmental Research and Public Health. 2021 Nov 10;18(22):11802.
- [33] Gorman M, Jones S, Turner J. Older people, mobility and transport in low-and middle-income countries: A review of the research. Sustainability. 2019 Nov 4;11(21):6157.
- [34] Olawole MO. Analysis of Intra-Urban Mobility of the Elderly in a Medium-Size City in Southwestern Nigeria. Mediterr J Soc Sci. 2015; 6:90-104.
- [35] Sinha IP, Smyth RL, Williamson PR. Using the Delphi technique to determine which outcomes to measure in clinical trials: Recommendations for the future based on a systematic review of existing studies. PLoS Med. 2011;8(1):1000393.

- [36] Khodyakov D, Park S, Hutcheon JA, Parisi SM, Bodnar LM. The impact of panel composition and topic on stakeholder perspectives: Generating hypotheses from online maternal and child health modified-Delphi panels. Heal Expect. 2022;25(2):732-43.
- [37] Campbell M, Stewart T, Brunkert T, Campbell-Enns H, Gruneir A, Halas G, et al. Prioritizing supports and services to help older adults age in place: A Delphi study comparing the perspectives of family/friend care partners and healthcare stakeholders. PloS One. 2021 Nov 9;16(11):e0259387.
- [38] Sibbald SL, Kang H, Graham ID. Collaborative health research partnerships: a survey of researcher and knowledge-user attitudes and perceptions. Health Res Policy Syst. 2019 Dec;17(1):1-0.
- [39] Kalu M, Maximos M, Sengiad S, Dal Bello-Haas V. The role of rehabilitation professionals in care transitions for older adults: A scoping review. Phys Occup Ther Geriatr. 2019;37(3):123-50.
- [40] Hoyer EH, Needham DM, Atanelov L, Knox B, Friedman M, Brotman DJ. Association of impaired functional status at hospital discharge and subsequent rehospitalization. J Hosp Med. 2014;9(5):277-82.
- [41] Shih SL, Gerrard P, Goldstein R, et al. Functional Status Outperforms Comorbidities Predicting Acute Care Readmissions in Medically Complex Patients. J Gen Intern Med 2015; 30: 1688-1695.
- [42] Pavon JM, Fish LJ, Colón-Emeric CS, Hall KS, Morey MC, Pastva AM, et al. Towards "mobility is medicine": Socioecological factors and hospital mobility in older adults. J Am Geriatr Soc. 2021;69(7):1846-55.
- [43] Keeney S, Hasson F, Mckenna H. The Delphi Technique in Nursing and Health Research. The Delphi Technique in Nursing and Health Research. UK: John Wiley & Sons Ltd; 2011.
- [44] Jünger S, Payne SA, Brine J, Radbruch L, Brearley SG. Guidance on Conducting and REporting DElphi Studies (CREDES) in palliative care: Recommendations based on a methodological systematic review. Palliat Med. 2017;31(8):684-706
- [45] Franke T, Sims-Gould J, Chaudhury H, Winters M, McKay H. Re-framing mobility in older adults: an adapted comprehensive conceptual framework. Qual Res Sport Exerc Heal. 2020;12(3):336-49.
- [46] Prinsen CAC, Vohra S, Rose MR, Boers M, Tugwell P, Clarke M, et al. How to select outcome measurement instruments for outcomes included in a "Core Outcome Set" - a practical guideline. Trials. 2016;17(1):1-10.
- [47] Kerwer M, Chasiotis A, Stricker J, Günther A, Rosman T. Straight from the scientist's mouth-plain language summaries promote laypeople's comprehension and knowledge acquisition when reading about individual research findings in psychology. Collabra: Psychology. 2021 Jan 4;7(1).
- [48] Global Aging | National Institute on Aging [Internet]. [cited 2022 Aug 6]. Available from: https://www.nia.nih.gov/research/dbsr/global-aging
- [49] Field A. Discovering Statistics using IBM SPSS Statistics. 4th ed. SAGE Publications Inc. (2455 Teller Road, Thousand Oaks CA 91320, United States); 2013. 1-916 p.
- [50] Webber SC. Mobility in older adults. 2010 [cited 2022 Aug 11]; Available from: https://mspace.lib.umanitoba.ca/handle/1993/3976
- [51] Giannouli E, Fillekes MP, Mellone S, et al. Predictors of real-life mobility in community-dwelling older adults: An exploration based on a comprehensive framework for analyzing mobility. Eur Rev Aging Phys Act 2019; 16: 19
- [52] Alhasani R, Radman D, Auger C, Lamontagne A, Ahmed S. Clinicians and individuals with acquired brain injury perspectives about factors that influence mobility: creating a core set of mobility domains among individuals with acquired brain injury. Ann Med. 2021;53(1):2365-79.

Ph.D. Thesis M. Kalu, McMaster University - School of Rehabilitation Science

Appendix 2E: Permission to republish the manuscript in a thesis.

2022-09-28, 11:14 AM

RESPONSE REQUIRED for Your Request to John Wiley & Sons - Books

no-reply@copyright.com <no-reply@copyright.com> Mon 2022-08-15 11:02 AM To: Michael Kalu <kalum@mcmaster.ca>

Dear Mr. Michael Kalu,

John Wiley & Sons - Books has approved your recent request. Before you can use this content, you must accept the license fee and terms set by the publisher.

Use this link to accept (or decline) the publisher's fee and terms for this order.

Request Summary:

Submit date: 12-Aug-2022 Request ID: 600090913 Publication: Psychogeriatrics Title: Cognitive, psychological and social factors associated with older adults' mobility: a scoping review of self-report and performance-based measures Type of Use: Republish in a thesis/dissertation

Please do not reply to this message.

To speak with a Customer Service Representative, call +1-855-239-3415 toll free or +1-978-646-2600 (24 hours a day), or email your questions and comments to <u>support@copyright.com</u>.

Sincerely,

Copyright Clearance Center

Tel: 1-855-239-3415 / +1-978-646-2600 support@copyright.com Manage Account

https://outlook.office.com/mail/id/AAQkADA0NzBjYWRILTBkYTctNG...M2LWFIMGJIYWI5YTcxNwAQAEWWeAgw44pLtNaB96LUe6o%3D?actSwt=true Page 1 of 2

2022-09-28, 11:14 AM

This message (including attachments) is confidential, unless marked otherwise. It is intended for the addressee(s) only. If you are not an intended recipient, please delete it without further distribution and reply to the sender that you have received the message in error.

https://outlook.office.com/mail/id/AAQkADA0NzBjYWRILTBkYTctNG_M2LWFIMGJIYWI5YTcxNwAQAEWWeAgw44pLtNaB96LUe6o%3D?actSwt=true Page 2 of 2

37 PM Manage Account						
CCIMark	etplace					
Order Number: 1258 Order Date: 15 Aug 2	087 022					
Payment Informa	ation					
Michael Kalu kalum@mcmaster.ca Payment method: Invoi	Billing Addres Mr. Michael K 158 Bond Stre Hamilton, ON Canada +1 (289) 788-4 kalum@mcma	ss: alu eet South L8S1T2 4563 aster.ca	Customer Location: Mr. Michael Kalu 158 Bond Street South Hamilton, ON L8S1T2 Canada			
Order Details						
1. Psychogeriati Article: Cognitive, psych a scoping review of self-	riCS nological and social factors asso report and performance-based	ciated with olde	er adults' mobility:	Billing Status: Open		
Order License ID	1258087-1	Type of use	Reput	olish in a		
Order detail status	Completed		thesis	/dissertation		
ISSN	1479-8301	Publisher	BLACH PUBLI	WELL SHING		
		Portion	Chapt	er/article		
				0.00 CAI cation Permission		
LICENSED CONT	TENT					
Publication Title	Psychogeriatrics	Publication	Type e-Jour	nal		
Article Title	Cognitive, psychological	Start Page	553			
	and social factors associated with older	End Page	573			
	adults' mobility: a	Issue	4			
	scoping review of self-	Volume	22			
	performance-based measures	URL	http:// net.ne	www.yume- .jp/dome/rouner		
Author/Editor	Nihon Rõnen Seishin Igakkai.		/engli:	nvengiish.htm		
Date	01/01/2001					
Language	English					
Country	United Kingdom of Great Britain and Northern Ireland					

9/15/2	2, 2:07 PM		Manage Account	
	Rightsholder	John Wiley & Sons - Books		
	REQUEST DETAILS	5		
	Portion Type	Chapter/article	Rights Requested	Main product and any
	Page range(s)	553-573		product related to main product
	Total number of pages	20	Distribution	Canada
	Format (select all that apply)	Electronic	Translation	Original language of publication
	Who will republish the content?	Author of requested content	Copies for the disabled?	No
	Duration of Use	Life of current edition	Minor editing	No
	Lifetime Unit Quantity	Up to 499	privileges?	
			Incidental promotional use?	No
			Currency	CAD
	NEW WORK DETA	ILS		
	Title	MR	Institution name	McMaster University
	Instructor name	Michael Kalu	Expected presentation date	2022-10-08
	ADDITIONAL DET	AILS		
	The requesting person / organization to appear on the license	Michael Kalu		
	REUSE CONTENT	DETAILS		
	Title, description or numeric reference of the portion(s)	Mr	Title of the article/chapter the portion is from	Cognitive, psychological and social factors associated with older
	Editor of portion(s)	Kalu, Michael E.; Bello- Haas, Vanina Dal; Griffin, Meridith; Boamah, Sheila; Harris, Jocelyn; Zaide, Mashal;		adults' mobility: a scoping review of self- report and performance-based measures
		Rayner, Daniel; Khattab, Nura; Abrahim, Salma; Richardson, Tristan K.; Savatteri, Nicholas; Wang, Yimo; Tkachyk, Christian	Author of portion(s)	Kalu, Michael E.; Bello- Haas, Vanina Dal; Griffin, Meridith; Boamah, Sheila; Harris, Jocelyn; Zaide, Mashal; Rayner, Daniel; Khattab, Nura;
	Volume of serial or monograph	22		Abrahim, Salma; Richardson, Tristan K.; Savatteri, Nicholas:
	Page or page range of portion	553-573		Wang, Yimo; Tkachyk, Christian
			Publication date of	2022-07-01

https://marketplace.copyright.com/rs-ui-web/manage_account/orders/view-search/1258087

2/9

Manage Account

John Wiley & Sons - Books Terms and Conditions

No right, license or interest to any trademark, trade name, service mark or other branding ("Marks") of WILEY or its licensors is granted hereunder, and you agree that you shall not assert any such right, license or interest with respect thereto. You may not alter, remove or suppress in any manner any copyright, trademark or other notices displayed by the Wiley material. This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type was misrepresented during the licensing process. In no instance may the total amount of Wiley Materials used in any Main Product, Compilation or Collective work comprise more than 5% (if figures/tables) or 15% (if full articles/chapters) of the (entirety of the) Main Product, Compilation or Collective Work. Some titles may be available under an Open Access license. It is the Licensors' responsibility to identify the type of Open Access license on which the requested material was published, and comply fully with the terms of that license for the type of use specified Further details can be found on Wiley Online Library http://olabout.wiley.com/WileyCDA/Section/id-410895.html.

Total Items: 1

Subtotal: Order Total: 0.00 CAD

0.00 CAD

Marketplace Order General Terms and Conditions

The following terms and conditions ("General Terms"), together with any applicable Publisher Terms and Conditions, govern User's use of Works pursuant to the Licenses granted by Copyright Clearance Center, Inc. ("CCC") on behalf of the applicable Rightsholders of such Works through CCC's applicable Marketplace transactional licensing services (each, a "Service").

1) Definitions. For purposes of these General Terms, the following definitions apply:

"License" is the licensed use the User obtains via the Marketplace platform in a particular licensing transaction, as set forth in the Order Confirmation.

"Order Confirmation" is the confirmation CCC provides to the User at the conclusion of each Marketplace transaction. "Order Confirmation Terms" are additional terms set forth on specific Order Confirmations not set forth in the General Terms that can include terms applicable to a particular CCC transactional licensing service and/or any Rightsholder-specific terms.

"Rightsholder(s)" are the holders of copyright rights in the Works for which a User obtains licenses via the Marketplace platform, which are displayed on specific Order Confirmations.

"Terms" means the terms and conditions set forth in these General Terms and any additional Order Confirmation Terms collectively.

"User" or "you" is the person or entity making the use granted under the relevant License. Where the person accepting the Terms on behalf of a User is a freelancer or other third party who the User authorized to accept the General Terms on the User's behalf, such person shall be deemed jointly a User for purposes of such Terms.

"Work(s)" are the copyright protected works described in relevant Order Confirmations.

2) Description of Service. CCC's Marketplace enables Users to obtain Licenses to use one or more Works in accordance with all relevant Terms. CCC grants Licenses as an agent on behalf of the copyright rightsholder identified in the relevant Order Confirmation.

3) Applicability of Terms. The Terms govern User's use of Works in connection with the relevant License. In the event of any conflict between General Terms and Order Confirmation Terms, the latter shall govern. User acknowledges that Rightsholders have complete discretion whether to grant any permission, and whether to

Manage Account

place any limitations on any grant, and that CCC has no right to supersede or to modify any such discretionary act by a Rightsholder.

 Representations; Acceptance. By using the Service, User represents and warrants that User has been duly authorized by the User to accept, and hereby does accept, all Terms.

5) Scope of License; Limitations and Obligations. All Works and all rights therein, including copyright rights, remain the sole and exclusive property of the Rightsholder. The License provides only those rights expressly set forth in the terms and conveys no other rights in any Works

6) General Payment Terms. User may pay at time of checkout by credit card or choose to be invoiced. If the User chooses to be invoiced, the User shall: (i) remit payments in the manner identified on specific invoices, (ii) unless otherwise specifically stated in an Order Confirmation or separate written agreement, Users shall remit payments upon receipt of the relevant invoice from CCC, either by delivery or notification of availability of the invoice via the Marketplace platform, and (iii) if the User does not pay the invoice within 30 days of receipt, the User may incur a service charge of 1.5% per month or the maximum rate allowed by applicable law, whichever is less. While User may exercise the rights in the License immediately upon receiving the Order Confirmation, the License is automatically revoked and is null and void, as if it had never been issued, if CCC does not receive complete payment on a timely basis.

7) General Limits on Use. Unless otherwise provided in the Order Confirmation, any grant of rights to User (i) involves only the rights set forth in the Terms and does not include subsequent or additional uses, (ii) is non-exclusive and non-transferable, and (iii) is subject to any and all limitations and restrictions (such as, but not limited to, limitations on duration of use or circulation) included in the Terms. Upon completion of the licensed use as set forth in the Order Confirmation, User shall either secure a new permission for further use of the Work(s) or immediately cease any new use of the Work(s) and shall render inaccessible (such as by deleting or by removing or severing links or other locators) any further copies of the Work. User may only make alterations to the Work if and as expressly set forth in the Order Confirmation. No Work may be used in any way that is defamatory, violates the rights of third parties (including such third parties' rights of copyright, privacy, publicity, or other tangible or intangible property), or is otherwise illegal, sexually explicit, or obscene. In addition, User may not conjoin a Work with any other material that may result in damage to the reputation of the Rightsholder. User agrees to inform CCC if it becomes aware of any infringement of any rights in a Work and to cooperate with any reasonable request of CCC or the Rightsholder in connection therewith.

8) Third Party Materials. In the event that the material for which a License is sought includes third party materials (such as photographs, illustrations, graphs, inserts and similar materials) that are identified in such material as having been used by permission (or a similar indicator), User is responsible for identifying, and seeking separate licenses (under this Service, if available, or otherwise) for any of such third party materials; without a separate license, User may not use such third party materials via the License.

9) Copyright Notice. Use of proper copyright notice for a Work is required as a condition of any License granted under the Service. Unless otherwise provided in the Order Confirmation, a proper copyright notice will read substantially as follows: "Used with permission of [Rightsholder's name], from [Work's title, author, volume, edition number and year of copyright]; permission conveyed through Copyright Clearance Center, Inc." Such notice must be provided in a reasonably legible font size and must be placed either on a cover page or in another location that any person, upon gaining access to the material which is the subject of a permission, shall see, or in the case of republication Licenses, immediately adjacent to the Work as used (for example, as part of a by-line or footnote) or in the place where substantially all other credits or notices for the new work containing the republished Work are located. Failure to include the required notice results in loss to the Rightsholder and CCC, and the User shall be liable to pay liquidated damages for each such failure equal to twice the use fee specified in the Order Confirmation, in addition to the use fee itself and any other fees and charges specified.

10) Indemnity. User hereby indemnifies and agrees to defend the Rightsholder and CCC, and their respective employees and directors, against all claims, liability, damages, costs, and expenses, including legal fees and expenses, arising out of any use of a Work beyond the scope of the rights granted herein and in the Order

Manage Account

Confirmation, or any use of a Work which has been altered in any unauthorized way by User, including claims of defamation or infringement of rights of copyright, publicity, privacy, or other tangible or intangible property.

11) Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR THE RIGHTSHOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, OR INCIDENTAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES FOR LOSS OF BUSINESS PROFITS OR INFORMATION, OR FOR BUSINESS INTERRUPTION) ARISING OUT OF THE USE OR INABILITY TO USE A WORK, EVEN IF ONE OR BOTH OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In any event, the total liability of the Rightsholder and CCC (including their respective employees and directors) shall not exceed the total amount actually paid by User for the relevant License. User assumes full liability for the actions and omissions of its principals, employees, agents, affiliates, successors, and assigns.

12) Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED "AS IS." CCC HAS THE RIGHT TO GRANT TO USER THE RIGHTS GRANTED IN THE ORDER CONFIRMATION DOCUMENT. CCC AND THE RIGHTSHOLDER DISCLAIM ALL OTHER WARRANTIES RELATING TO THE WORK(S) AND RIGHT(S), EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. ADDITIONAL RIGHTS MAY BE REQUIRED TO USE ILLUSTRATIONS, GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS, OR OTHER PORTIONS OF THE WORK (AS OPPOSED TO THE ENTIRE WORK) IN A MANNER CONTEMPLATED BY USER; USER UNDERSTANDS AND AGREES THAT NEITHER CCC NOR THE RIGHTSHOLDER MAY HAVE SUCH ADDITIONAL RIGHTS TO GRANT.

13) Effect of Breach. Any failure by User to pay any amount when due, or any use by User of a Work beyond the scope of the License set forth in the Order Confirmation and/or the Terms, shall be a material breach of such License. Any breach not cured within 10 days of written notice thereof shall result in immediate termination of such License without further notice. Any unauthorized (but licensable) use of a Work that is terminated immediately upon notice thereof may be liquidated by payment of the Rightsholder's ordinary license price therefor; any unauthorized (and unlicensable) use that is not terminated immediately for any reason (including, for example, because materials containing the Work cannot reasonably be recalled) will be subject to all remedies available at law or in equity, but in no event to a payment of less than three times the Rightsholder's ordinary license price for the most closely analogous licensable use plus Rightsholder's and/or CCC's costs and expenses incurred in collecting such payment.

14) Additional Terms for Specific Products and Services. If a User is making one of the uses described in this Section 14, the additional terms and conditions apply:

 a) Print Uses of Academic Course Content and Materials (photocopies for academic coursepacks or classroom handouts). For photocopies for academic coursepacks or classroom handouts the following additional terms apply:

 The copies and anthologies created under this License may be made and assembled by faculty members individually or at their request by on-campus bookstores or copy centers, or by off-campus copy shops and other similar entities.

ii) No License granted shall in any way: (i) include any right by User to create a substantively non-identical copy of the Work or to edit or in any other way modify the Work (except by means of deleting material immediately preceding or following the entire portion of the Work copied) (ii) permit "publishing ventures" where any particular anthology would be systematically marketed at multiple institutions.

iii) Subject to any Publisher Terms (and notwithstanding any apparent contradiction in the Order Confirmation arising from data provided by User), any use authorized under the academic pay-per-use service is limited as follows:

A) any License granted shall apply to only one class (bearing a unique identifier as assigned by the institution, and thereby including all sections or other subparts of the class) at one institution;

B) use is limited to not more than 25% of the text of a book or of the items in a published collection of essays, poems or articles;

9/15/22, 2:07 PM	Manage Account
	C) use is limited to no more than the greater of (a) 25% of the text of an issue of a journal or other periodical or (b) two articles from such an issue;
	D) no User may sell or distribute any particular anthology, whether photocopied or electronic, at more than one institution of learning;
	E) in the case of a photocopy permission, no materials may be entered into electronic memory by User except in order to produce an identical copy of a Work before or during the academic term (or analogous period) as to which any particular permission is granted. In the event that User shall choose to retain materials that are the subject of a photocopy permission in electronic memory for purposes of producing identical copies more than one day after such retention (but still within the scope of any permission granted). User must notify CCC of such fact in the applicable permission request and such retention shall constitute one copy actually sold for purposes of calculating permission fees due; and
	F) any permission granted shall expire at the end of the class. No permission granted shall in any way include any right by User to create a substantively non-identical copy of the Work or to edit or in any other way modify the Work (except by means of deleting material immediately preceding or following the entire portion of the Work copied).
iv) Ser de ma bu: un be de tog du	Books and Records; Right to Audit. As to each permission granted under the academic pay-per-use rvice, User shall maintain for at least four full calendar years books and records sufficient for CCC to termine the numbers of copies made by User under such permission. CCC and any representatives it ay designate shall have the right to audit such books and records at any time during User's ordinary siness hours, upon two days' prior notice. If any such audit shall determine that User shall have derpaid for, or underreported, any photocopies sold or by three percent (3%) or more, then User shall ar all the costs of any such audit; otherwise, CCC shall bear the costs of any such audit. Any amount termined by such audit to have been underpaid by User shall immediately be paid to CCC by User, gether with interest thereon at the rate of 10% per annum from the date such amount was originally e. The provisions of this paragraph shall survive the termination of this License for any reason.
b) <i>Digi</i> <i>learnii</i> electro followi	ital Pay-Per-Uses of Academic Course Content and Materials (e-coursepacks, electronic reserves, ng management systems, academic institution intranets). For uses in e-coursepacks, posts in nic reserves, posts in learning management systems, or posts on academic institution intranets, the ng additional terms apply:
i) T	he pay-per-uses subject to this Section 14(b) include:
	A) Posting e-reserves, course management systems, e-coursepacks for text-based content, which grants authorizations to import requested material in electronic format, and allows electronic access to this material to members of a designated college or university class, under the direction of an instructor designated by the college or university, accessible only under appropriate electronic controls (e.g., password);
	B) Posting e-reserves, course management systems, e-coursepacks for material consisting of photographs or other still images not embedded in text, which grants not only the authorizations described in Section 14(b)(i)(A) above, but also the following authorization: to include the requested material in course materials for use consistent with Section 14(b)(i)(A) above, including any necessary resizing, reformatting or modification of the resolution of such requested material (provided that such modification does not alter the underlying editorial content or meaning of the requested material, and provided that the resulting modified content is used solely within the scope of, and in a manner consistent with, the particular authorization described in the Order Confirmation and the Terms), but not including any other form of manipulation, alteration or editing of the requested material;

Manage Account

C) Posting e-reserves, course management systems, e-coursepacks or other academic distribution for audiovisual content, which grants not only the authorizations described in Section 14(b)(i)(A) above, but also the following authorizations: (i) to include the requested material in course materials for use consistent with Section 14(b)(i)(A) above; (ii) to display and perform the requested material to such members of such class in the physical classroom or remotely by means of streaming media or other video formats; and (iii) to "clip" or reformat the requested material for purposes of time or content management or ease of delivery, provided that such "clipping" or reformatting does not alter the underlying editorial content or meaning of the requested material and that the resulting material is used solely within the scope of, and in a manner consistent with, the particular authorization described in the Order Confirmation and the Terms. Unless expressly set forth in the relevant Order Conformation, the License does not authorize any other form of manipulation, alteration or editing of the requested material.

ii) Unless expressly set forth in the relevant Order Confirmation, no License granted shall in any way: (i) include any right by User to create a substantively non-identical copy of the Work or to edit or in any other way modify the Work (except by means of deleting material immediately preceding or following the entire portion of the Work copied or, in the case of Works subject to Sections 14(b)(1)(B) or (C) above, as described in such Sections) (ii) permit "publishing ventures" where any particular course materials would be systematically marketed at multiple institutions.

iii) Subject to any further limitations determined in the Rightsholder Terms (and notwithstanding any apparent contradiction in the Order Confirmation arising from data provided by User), any use authorized under the electronic course content pay-per-use service is limited as follows:

A) any License granted shall apply to only one class (bearing a unique identifier as assigned by the institution, and thereby including all sections or other subparts of the class) at one institution;

B) use is limited to not more than 25% of the text of a book or of the items in a published collection of essays, poems or articles;

C) use is limited to not more than the greater of (a) 25% of the text of an issue of a journal or other periodical or (b) two articles from such an issue;

D) no User may sell or distribute any particular materials, whether photocopied or electronic, at more than one institution of learning;

E) electronic access to material which is the subject of an electronic-use permission must be limited by means of electronic password, student identification or other control permitting access solely to students and instructors in the class;

F) User must ensure (through use of an electronic cover page or other appropriate means) that any person, upon gaining electronic access to the material, which is the subject of a permission, shall see:

- a proper copyright notice, identifying the Rightsholder in whose name CCC has granted permission,
- · a statement to the effect that such copy was made pursuant to permission,
- a statement identifying the class to which the material applies and notifying the reader that the material has been made available electronically solely for use in the class, and
- a statement to the effect that the material may not be further distributed to any person outside the class, whether by copying or by transmission and whether electronically or in paper form, and User must also ensure that such cover page or other means will print out in the event that the person accessing the material chooses to print out the material or any part thereof.

Manage Account

G) any permission granted shall expire at the end of the class and, absent some other form of authorization, User is thereupon required to delete the applicable material from any electronic storage or to block electronic access to the applicable material.

iv) Uses of separate portions of a Work, even if they are to be included in the same course material or the same university or college class, require separate permissions under the electronic course content payper-use Service. Unless otherwise provided in the Order Confirmation, any grant of rights to User is limited to use completed no later than the end of the academic term (or analogous period) as to which any particular permission is granted.

v) Books and Records; Right to Audit. As to each permission granted under the electronic course content Service, User shall maintain for at least four full calendar years books and records sufficient for CCC to determine the numbers of copies made by User under such permission. CCC and any representatives it may designate shall have the right to audit such books and records at any time during User's ordinary business hours, upon two days' prior notice. If any such audit shall determine that User shall have underpaid for, or underreported, any electronic copies used by three percent (3%) or more, then User shall bear all the costs of any such audit; otherwise, CCC shall bear the costs of any such audit. Any amount determined by such audit to have been underpaid by User shall immediately be paid to CCC by User, together with interest thereon at the rate of 10% per annum from the date such amount was originally due. The provisions of this paragraph shall survive the termination of this license for any reason.

c) Pay-Per-Use Permissions for Certain Reproductions (Academic photocopies for library reserves and interlibrary loan reporting) (Non-academic internal/external business uses and commercial document delivery). The License expressly excludes the uses listed in Section (c)(i)-(v) below (which must be subject to separate license from the applicable Rightsholder) for: academic photocopies for library reserves and interlibrary loan reporting; and non-academic internal/external business uses and commercial document delivery.

 i) electronic storage of any reproduction (whether in plain-text, PDF, or any other format) other than on a transitory basis;

ii) the input of Works or reproductions thereof into any computerized database;

iii) reproduction of an entire Work (cover-to-cover copying) except where the Work is a single article;

iv) reproduction for resale to anyone other than a specific customer of User;

 v) republication in any different form. Please obtain authorizations for these uses through other CCC services or directly from the rightsholder.

Any license granted is further limited as set forth in any restrictions included in the Order Confirmation and/or in these Terms.

d) Electronic Reproductions in Online Environments (Non-Academic-email, intranet, internet and extranet). For "electronic reproductions", which generally includes e-mail use (including instant messaging or other electronic transmission to a defined group of recipients) or posting on an intranet, extranet or Intranet site (including any display or performance incidental thereto), the following additional terms apply:

i) Unless otherwise set forth in the Order Confirmation, the License is limited to use completed within 30 days for any use on the Internet, 60 days for any use on an intranet or extranet and one year for any other use, all as measured from the "republication date" as identified in the Order Confirmation, if any, and otherwise from the date of the Order Confirmation.

ii) User may not make or permit any alterations to the Work, unless expressly set forth in the Order Confirmation (after request by User and approval by Rightsholder); provided, however, that a Work consisting of photographs or other still images not embedded in text may, if necessary, be resized,

Manage Account

reformatted or have its resolution modified without additional express permission, and a Work consisting of audiovisual content may, if necessary, be "clipped" or reformatted for purposes of time or content management or ease of delivery (provided that any such resizing, reformatting, resolution modification or "clipping" does not alter the underlying editorial content or meaning of the Work used, and that the resulting material is used solely within the scope of, and in a manner consistent with, the particular License described in the Order Confirmation and the Terms.

15) Miscellaneous.

a) User acknowledges that CCC may, from time to time, make changes or additions to the Service or to the Terms, and that Rightsholder may make changes or additions to the Rightsholder Terms. Such updated Terms will replace the prior terms and conditions in the order workflow and shall be effective as to any subsequent Licenses but shall not apply to Licenses already granted and paid for under a prior set of terms.

b) Use of User-related information collected through the Service is governed by CCC's privacy policy, available online at www.copyright.com/about/privacy-policy/.

c) The License is personal to User. Therefore, User may not assign or transfer to any other person (whether a natural person or an organization of any kind) the License or any rights granted thereunder; provided, however, that, where applicable, User may assign such License in its entirety on written notice to CCC in the event of a transfer of all or substantially all of User's rights in any new material which includes the Work(s) licensed under this Service.

d) No amendment or waiver of any Terms is binding unless set forth in writing and signed by the appropriate parties, including, where applicable, the Rightsholder. The Rightsholder and CCC hereby object to any terms contained in any writing prepared by or on behalf of the User or its principals, employees, agents or affiliates and purporting to govern or otherwise relate to the License described in the Order Confirmation, which terms are in any way inconsistent with any Terms set forth in the Order Confirmation, and/or in CCC's standard operating procedures, whether such writing is prepared prior to, simultaneously with or subsequent to the Order Confirmation, and whether such writing appears on a copy of the Order Confirmation or in a separate instrument.

e) The License described in the Order Confirmation shall be governed by and construed under the law of the State of New York, USA, without regard to the principles thereof of conflicts of law. Any case, controversy, suit, action, or proceeding arising out of, in connection with, or related to such License shall be brought, at CCC's sole discretion, in any federal or state court located in the County of New York, State of New York, USA, or in any federal or state court whose geographical jurisdiction covers the location of the Rightsholder set forth in the Order Confirmation. The parties expressly submit to the personal jurisdiction and venue of each such federal or state court.

Author, year, country	Total Sample size include d in analysi s	Mean Age (SD)	Personal Factors	Mobility Outcome	Findings (Analysis type) Note: All variables in each study were analyzed using the same type of analysis unless otherwise stated.
	% Female				
		Performance	based and m	obility outcom	es and personal factors (n = 50)
*Akima et al., 2020, Japan	132 53.0%	69.3 (2.7), pre-old 79.0 (2.9), old	Age	Physical functioning (Sit to Stand Test) Walking time (5-Meter Maximal Walk) Walking distance (6-Minute Walk)	Age was not corelated with Sit to Stand Test performance (p > 0.05). Those considered "old" took more time during the 5-m maximal walk [Mean (95%CI) = 2.5s (1.6; 3.3)] than those considered "pre-old" [2.3s (1.7; 3.1)] (p < 0.01). Those considered "old" walked a short distance in 6 minutes [586.8m (456; 720)] than "pre-old" individuals [624.6m (462; 774)] (p < 0.01). (Unpaired samples Student's t-test)
Alexandre et al. 2014, Brazil	1413	68.9 (0.6), male 70.1 (0.2), female	Education Age Marital status	Walking time (3- Meter Walk Test)	<pre>Men with higher education were less likely to walk slower [OR (95%CI) = 0.88 (0.82; 0.95), p < 0.05] compared to men with lower education. Women with higher education were less likely to walk slower [0.94 (0.88; 0.99), p < 0.05] compared to women with lower education. Age was associated with slowness (walking) among women [0.94 (0.88; 0.99), p < 0.05] and [0.89 (0.82; 0.95), p < 0.05] Marital status was not associated with slowness (walking)</pre>

Appendix 3A: Details of included quantitative studies details for personal factors and mobility

					(Multiple logistic regression)
Al Snih et al. 2008,	4456	69.2 (0.3)	Education	Physical functioning	Education (\geq 8 years) [β (SE) = 0.50 (0.11), p < 0.0001], age [-0.10 (0.006), p < 0.0001], gender
USA	56.0%		Age	(SPPB)	(female) [-0.42 (0.07), p < 0.0001], Marital status (married) [0.25 (0.07), p < 0.05] and non-Hispanic
			Gender		black [-0.80 (0.08), p < 0.0001] and Mexican Americans [-0.44 (0.10), p < 0.0001] were significantly
			Marital		associated with SPPB score among the study
			Status		participants
			Race/ethni		
			city		
					(Regression analysis)
Anson et	57	79.0 (NR)	Age	Physical functioning	Age predicted Balance Evaluation Systems Test [β (SE)
USA	72 0%			(TIIG. BBS.	$\begin{bmatrix} - & 0.04 & (0.10), & p = 0.01 \end{bmatrix}, \text{BBS} \begin{bmatrix} 0.22 & (0.07), & p \\ 0.011 & \text{and} & \text{THC} \end{bmatrix}$
0.011	, 2.00			Balance	[0.001], and $[0.25 (0.00)$, $p < 0.001]$ scores.
				Evaluation	(Pegraggion analyzig)
				Sveteme	(regression analysis)
	1		1	IESU)	

Aovagi et	10247	70.6	Race	Gait speed	Walking speed was about 10% slower among Caucasians
al 2001		$(4 \ 9)$			than native Jananese, whereas Jananese Americans
Japan and	100 0%	Nativo	Ace	Physical	walked about 11% faster than native Japanese Banid
	100.08	Jananese	1190	functioning	walking speed was about 13% slower among pative
0.071		oupunese		(Chair Stand	Japapese and 17% slower among Caucasians than
		74 6		(Chair Stand	Japanese, And 178 Slower among caucastans chan
		/4.0		TTIME)	valking around between native Japanese and Caucagiana
		(4.0),			warking speed between native sapanese and caucastans
		Japanese			was round.
		Americans			Mean unadjusted usual walking speed use 1 01 m/s for
		71 (Mean unadjusted usual walking speed was 1.01 m/s for
		/1.0			Native Japanese women, 1.0/ m/s for Japanese American
		(J.J),			women and 0.9 m/s for caucasian women. Mean unadjusted
		Caucasians			rapid warking speed was 1.52 m/s for Native Japanese
					for Courseion women
					IOI Caucastan women.
					In each nonulation with ago, both yours and rapid
					ualking around were lower for these NO wears of are
					compared to these who were 65-60 wears of age (15.6 to
					26 3º difference)
					20.3% difference).
					For usual walking speed the percent difference was
					20 As in Tananaga woman 26 28 in Tananaga American
					20.4% in Japanese women, 20.5% in Japanese American
					women and 25.7% in Caucastan women. For Tapid Warking
					vomen 22.2% in Japanese American vomen and 21.2% in
					Courses in Japanese American women and 21.5% in
					interpreted with coutien on there were were for
					Interpreted with caution, as there were very rew
					Japanese women in the ordest age groups.
					The Caucasian women required about 40% more time to
					acomplete 5 abair stands than either group of Japanese
					The chair stand performance of native Japanese was
					aimilar to that of Japanese American were
					Similar to that of Japanese American women.
					(General linear models and Analysis of variance)

Barbosa et al., 2016, Canada, Brazil, and Albania	1995	69.1 (2.9), male 69.1 (2.6), female	Sex Nationalit Y Age	Gait speed	<pre>Tirana's men had slower gait [mean (SD) = 0.87 m/s (0.24)] than men from the two Canadian cities [Kingston, 1.03 m/s (0.19); Saint-Hyacinthe, 1.07 m/ s (0.22)] and were similar in gait speed to those from the Latin American cities [Manizales, 0.88 m/s (0.19); Natal, 0.85 m/s (0.19)]. Women living in the Canadian cities had a faster gait speed than those living in Manizales, Natal, or Tirana. Prevalence of slowness (gait speed < 0.8m/s) was higher among older adults 70-74 years compared to those 65-69 across the three cities. (t-test)</pre>
Barrera et al. 2017, Chile	86	73.0 (7.0)	Education	Walking time (3- Meter Walk Test) Walking distance (Distance Walked in 12 minutes)	<pre>Individuals with illiterate/primary level of education took the longer time (median score = 7.8) to complete a 3-meter walk test compared to the time individuals with secondary (6.4) and technical/higher education (6.1) took to complete 3-meter walk test (p < 0.05). Individuals with secondary education walked longer distances (median score = 968.0), compared to those with technical/higher school (878.3) or primary education/illiterate (855.7), but did not reach statistical difference. (Kruskal Wallis)</pre>
Bergland et al., 2008, Norway	307	80.8 (NR)	Age	Physical functioning (TUG, One Leg Stance, Walking Speed Tandem Stance and Stair Climbing)	There was a statistically significant negative relationship between age and step height (r = -0.29, p < 0.01). 85.6% of 75-79-year-olds were able to climb steps greater than 30 cm in height without support, compared to 77.8% of 80-84-year-olds and 52.2% of 85+ year- olds. Increase in age was associated low performance in all the physical functioning.

					(Correlation)
Bernard et	1471	72.5 (5.1)	Sex	Physical	There was no difference in TUG performance between men
al., 2020,				functioning	[mean (SD) = 11.45s (3.29)] and women $[11.81 (3.48)]$
France	67.0%			(TUG & 4-	(p = 0.07).
				Meter Walk	
				Test of SPPB	Men took shorter amounts of time to complete the SPPB
				test)	4m walking [4.56 (1.40)] than women [4.87 (1.76)] (p =
				,	0.0008).
					(Student's t-test)
Bimali and	100	17.6 (4.4)	Occupation	Physical	Occupation and sex were not associated with SPPB
Maharjan,				functioning	scores $(p = 0.139)$.
2017, Nepal	59.0%		Sex	(SPPB)	
					(t-test)
Birnie et	1601	70.7	Education	Walking time	For both cohorts, increased educational attainment and
al. 2011,		(4.3),		(3-Meter	duration were associated with 2-4% faster walk times
United	55.5%,	cohort 1	Occupation	Walk Test)	per extra year at school $(p = 0.003)$.
Kingdom	cohort				
	1	75.3			Slower walk times were observed for those in more
		(4.3),			"deprived" adult occupational categories (4-5% slower
	0.0%,	cohort 2			per occupational categories) $(p = 0.004)$.
	cohort				
	2				(Linear regression models)
*Björkman et	428	83.5	Sex	Physical	There was no difference between men and women for both
al., 2020,		(4.3),		functioning	SPPB and 2MWT.
Finland	67.0%	male		(SPPB)	
		83.4		Walking	
		(4.7),		distance	
		female		(2-Mintue	
				Walk Test)	(Student's t test)
*Borgmann et	85	66.0	Age	Walking	Age, sex and education were not correlated with 6MWT
al., 2020,		(10.0)		distance (6-	distance.
Switzerland	40.0%		Sex	Mintue Walk	
				Test)	
			Education		

					(Linear regression)
*Cancela, et	418	68.6	Ethnicity/	Walking	In both male and female subgroups, there was no
al., 2020,		(7.3),	sex	distance (6-	difference in the 6MWT between eastern and southern
Bulgaria,	59.3%	Eastern		Mintue Walk	Europeans, and in 30-s chair stand for men.
Hungary,		European		Test)	
Portugal,		60 G			In both male and female, there was a significant
Italy, and		69.6		Physical	difference in 8-foot up and go test between Southern
Spain		(9.0),		IUNCTIONING	European and Eastern European, and only in women for
		Southern		(30-5 Chair	than Eastern European
		European		8-Foot Up	chan Eastern European.
				and Go)	
					(Chi-square test)
*Chang et	205	73.5 (5.7)	Sex	Walking	Men performed significantly better on the 6MWT [mean
al., 2020,				distance (6-	(SD) = 499.18s (82.41)] compared to women [494.58s
Iceland	57.0%			Minute Walk	(66.89)] (p < 0.05).
				Test)	
					(Generalized linear model)
*Chen et	64	80.0 (5.4)	Education	Observed	There were no significant associations between
al., 2020,				driving	education level $(p = 0.53)$, gender, age (0.12) and
Canada	29.7%		Age	ability	driving ability (p = 0.53)
			Sov		
*Coolbo-	128	75.2	Jao	Physical	(ANOVA)
Junior et	120	(7.5)	Age	functioning	Age was not correlated with time taken to complete the
al . 2020.	100 0%	Brazilians	Ethnicity	(Sit to	Sit to Stand test among italians and Diazilians.
Brazil, and	100.00	Draziriano	Lennitorey	Stand Test)	(Pearson correlation)
Italv		77.6		,	
-		(5.5),			Brazilian performed the Sit to Stand test in a shorter
		Italians			time [mean (SD) = 11.9s (3.3)] than Italians [16.7s
					(6.0)] (p < 0.05).
					(Student t-test)
Coppin et	1025	75.5 (7.3)	Education	Gait speed	Individuals with ≥5years of education walk faster
al. 2006,		, -,		÷	(mean = 1.26m/s) than individuals with ≤5years of
Italy	56.2%			Physical	education (1.16m/s) (p < 0.0001).
				functioning	

				(SPPB)	<pre>Individuals with ≥5years of education higher SPPB score (mean = 10.11) compared to those with ≤5years of education (9.55) (p = 0.006). (General linear models)</pre>
de Melo et al., 2010, Canada	60 75.0%	77.0 (7.3)	Age Sex Marital status	Daily steps Physical functioning (Chair Stand Test)	The mean number of steps per day for those aged 65-74 years [mean (SD) = 7,169 (4,898)] was significantly different ($F = 5.147$) from those aged 75-84 [4,339 (2,762)] and 85 years and above [3,560 (2,766)] (p < 0.01). Physical function also varied significantly between the three age groups ($F = 11.14$, $p < 0.001$). The 65-to 74-year group had an average of 13.5 ± 4.4 chair stands, the 75- to 84-year group had an average of 9.7 ± 4.4, and the 85 years and above group had an average of 5.6 ± 5.5 chair stands. Tukey's test (a post hoc test) indicated that the number of chair stands for the 65- to 74-year group was significantly different from the 75- to 84- ($p < 0.05$) and the 85 years and above groups ($p < 0.001$).
					Sex was not associated with steps walked. Marital status (being married) was not associated with steps walked.
					(Analysis of variance)

Demura et	271	71.2	Age	Number of	Older adults >85 years had longer double support times
al., 2008,		(7.1),		steps and	[mean (SD) = 0.27 (0.11)] in the back/forth stepping
Japan	60.5%	males	Sex	double or	test compared to older adults aged 75- 79 [0.24
				single	(0.09)], $70-74$ [0.23 (0.10)], $65-69$ [0.20 (0.07)], and
		71.5		support	60-64 [0.20 (0.08)] (p < 0.05).
		(6.0),		times	
		females		(Back and	In the up/down stepping test, older adults >85 years
				forth & Up	had longer double support times [0.31 (0.19)] than
				and Down	older adults aged 70-74 [0.24 (0.09)], 65-69 [0.18
				Stepping Tests)	(0.06)], and $60-64$ [0.18 (0.09)] (p < 0.05).
					In terms of steps taken, older adults >85 years took
					less steps [31.19 (6.50)] in the back/forth stepping
					test compared to older adults aged 65-69 [36.11
					(6.58)], 60-64 [35.67 (5.70)], 75-79 [34.46 (5.76)],
					and $70-74$ [33.17 (6.51)] (p < 0.05).
					This was also seen in the up/down stepping test, with
					older adults >85 years taking less steps [31.98
					(7.30)] than older adults aged 65-69 [38.40 (8.12)],
					60-64 [37.92 (6.44)], and 70-74 [35.33 (6.55)] (p <
					0.05).
					No sex difference was found in evaluation parameters
					of all stepping tests.
					of all coopping cocce.
					(Two-way analysis of variance)
Duff et al.,	675	73.2 (5.8)	Age	Walking time	Participants were grouped by the time (in seconds) it
2007, USA			2	(50-Foot	took to complete the 50 ft walk. The groups were: <14s
	57.3%		Sex	Walk)	group, 14-1/ s group and >1/ s group.
			Education		There were significant differences between the walking
					speed tertile groups on age [F (2, 674) = 19.8, p <
					0.001], gender $[\chi^2(2) = 44.0, p < 0.001]$, and education
					$[\chi^2(12) = 32.0, p < 0.01].$
					(Chi-square test / Analysis of covariance)

Dumurgier et	1623	73.3 (4.1)	Age	Walking	Participants who walked slower were older than those
al., 2012, France	60.5%		Sex	speed	who walked faster (p < 0.001). The mean age decreased in faster walking speed tertiles (<1.50m/s = 73.7, 1.50-1.70m/s = 72.5, >1.70m/s = 70.9)
			Education		1.00 1.70m/0 72.07 71.70m/0 70.07
					Participants who walked slower were more often women than those who walked faster (p < 0.001). The percentage of female participants decreased in faster walking speed tertiles (<1.50m/s = 82.4%, 1.50-1.70m/s = 65.0%, >1.70m/s = 36.1%).
					Participants who walked slower had lower education than those who walked faster ($p < 0.001$). The percentage of those with low education decreased in faster walking speed tertiles (<1.50m/s = 45.4%, 1.50- 1.70m/s = 23.3%, >1.70m/s = 22.3%).
					(Analysis of covariance)
Enright et al., 2003, USA	2281 48.0%	77.0 (4.0), completed 6MWT 78.0 (5.0),	Age Race Education	Walking distance (6- Mintue Walk Test)	<pre>For men, age at year 9 visit [Coefficient (SE) = -2.0 (0.72), p = 0.006], black race [-25.4 (9.7), p= 0.009] predicted 6MWT, while education did not. For women, Age at year 9 visit [-3.4 (0.59), p < 0.001], while race and education did not (Linear regression model)</pre>
		6MWT completers			
Fiser et al., 2010,	49	72.5 (1.2)	Age	Gait speed	Compared with the fastest walkers, the slowest walkers were older (79.0 vs 68.4 years) (p < 0.001).
USA	49.0%		Sex	Physical functioning (SPPB)	Women had slower habitual walking speeds [mean (SD) = $1.04 (0.04)$] than men [1.21 (0.04)] (p = 0.006).
					Although women had lower SPPB scores [mean (SD) = 10.0 (0.3)] than men [10.8 (0.3)], the difference was not significant (p = 0.056).
					(Independent t-tests)

Gladin et al., 2021, USA	101 59.0%	69.7 (5.7)	Age Sex Race Education	Physical functioning (SPPB)	<pre>Those who scored ≥ 11 on the SPPB were younger [mean (SD) = 68.8(5.2)] than those who scored < 10 [72.4(6.6)] (p = 0.005). Sex, race, and education was not associated with SPPB performance. (t-tests)</pre>
Gonzales et al., 2020, USA	370 59.0%	69.3 (3.3)	Ethnicity	Gait speed	<pre>Mexican Americans had slower gait speeds [mean (SD) = 0.88 (0.20)] compared to European Americans [0.95 (40.19)] (p < 0.001). (Independent t-tests)</pre>
Gouveia et al., 2019, Portugal	802 50.0%	69.8 (5.6)	Age Sex	Balance (Fullerton Advanced Balance) Gait velocity Stride length Cadence Gait stability	Age was negatively associated with balance ($\beta = -0.17$, p < 0.001), gait velocity (0.11, p < 0.001), stride length (-0.07, p < 0.05), cadence (-0.10, p < 0.05), but positively associated with gait stability ratio (0.07, p < 0.05). Being female was negatively associated with balance (- 0.08, p < 0.05), and stride length (-0.15, p < 0.001), but was positively associated with cadence (0.24, p < 0.001) and gait stability ratio (0.12, p < 0.001). Sex was not associated with gait velocity (p > 0.05). (Multiple regression)
*Ha et al.,2020, USA	35 3.0%	68.6 (7.3)	Sex	Walking distance (6- Mintue Walk test)	Sex was associated with distance walked during 6MWT [β (95%CI) = 143.5 (101.1;185.9), p < 0.001]. (Paired sample t-tests and multivariable generalized estimating equations)

Herman et	278	76.3 (4.6)	Sex	Physical	Mean TUG test scores were similar amongst men [mean
al., 2009,	<u> </u>		7	functioning	(SD) = 9.3 (1.8) and women $[9.7 (1.7)] (p = 0.28)$.
Israel	60.0%		Age	(10G)	Mean test DDT scenes were similar amongst mon [54 2
				Palanco	Mean test BBI scores were similar amongst men [54.5 (2.3)] and women [54.0 (2.8)] $(n = 0.74)$
				(BBT)	(2.5) and women $[54.0 (2.0)] (p = 0.74)$.
					Scores on the DGI were near perfect in men [mean (SD)
				Dynamic Gait	= 23.3 (1.2)], but among women, there was a small, but
				Index (DGI)	significant decrease [22.5 (1.6)] (p < 0.001).
					(Student's t-test)
					The DGI was also modestly correlated with age (r = -
					0.21, p < 0.001).
					(Pearson correlation)
*Ignasiak et	5367	69.6 (7.1)	Age	Walking	An increase in age is associated with worse
al., 2020,	70.00		0	distance (6-	performance on the $6MWT$ (p < 0.0001).
Poland	18.0%		Sex	Mintue Walk	Malas norform better on the GMMM compared to females
				lest)	mates perform better on the 6MW1 compared to remates $(n < 0.0001)$
					(Two-factor ANOVA)
*James et	133	80.0 (4.7)	Age	Physical	Those with mobility limitations (SPPB \leq 9) were
al., 2020,				functioning	significantly older [mean (SD) = 81.16 (4.12)] than
USA	63.0%		Sex	(SPPB)	individuals without mobility limitations (SPPB > 9)
					$[79.44 \ (4.66)] \ (p = 0.041).$
			Education		
					Sex and education were not correlated with having mobility limitations (SDDP ≤ 0)
					mobility limitations (SPPB - 9).
					(Student's t-test)
*Lau et al.,	507	64.0 (NR),	Sex	Gait speed	
2020,		males	_		There was no difference in gait speed, stance time,
Singapore	56.0%		Age	Height-	height adjusted cadence between men and women.
		60.5 (NR),		adjusted	Companyed to some more had a lasses haight adjusted
		remares		yait speed	compared to women, men nad a tower neight-adjusted $(95\%CT) = 0.05(-0.07) - 0.03)$
				Step &	0.011, height adjusted step length [-0.01 (-0.01)
				stride	<0.01, p = 0.01], height adjusted step width [-0.01
				length	(-0.02; -0.010), p = 0.02], cadence [-5 (-6; -30), p <
					0.01]

				Step & stride width Height adjusted step length Cadence Height adjusted gait speed Single & double support time	<pre>Compared to women, men had higher step length [2.21 (0.73; 3.70), p < 0.01], step width [2.77 (1.42; 4.12). P < 0.01], stride width [1.37 (0.86; 1.87), p < 0.01], single [0.01 (0.01; 0.02), p < 0.01] and double [0.02 (0.01; 0.03), p < 0.010], support time. There was a significant difference in all the parameters excluding cadence, height adjusted cadence and stride width. (Independent t-test)</pre>
2020, Taiwan	59.0%	(6.3), males 73.3 (7.0), females	Sex	<pre>speed Slowness (walking speed <0.8m/s)</pre>	walking speed compared to those aged ≥ 75 [0.8 (0.3)] (p < 0.001). There was no difference in walking speed between males and females (p = 0.514) (Student t-test) There was a significant difference in slowness between those aged < 75 (n = 54 (29.4%)) and those aged ≥ 75 (n = 61 (53.0%)) (p < 0.001). There was no difference in slowness between males and females (p = 0.985)
					(chi-square)
Manini et al., 2009,	248	74.9 (3.5)	Sex	Gait speed	Among women, age [β (SE) = -0.036 (0.005), p < 0.001], high school education (vs no high school education)
USA	48.0%		Race		[0.158 (0.5050), p = 0.002] were predictors of longitudinal changes in gait speed.
			Education		

					Among men, age was a predictor of longitudinal changes in gait speed [-0.033 (0.006), p < 0.001] Race was not associated with gait speed in both men and women while education was not associated with gait speed in men.
					(Linear mixed models)
Orr et al., 2020.	6122	62.7 (9.0)	Age	Physical functioning	TUG scores increased by an average of 0.1 seconds with each year of age, which increased to 0.3 seconds by
Ireland	53.8%		Religion	(TUG)	age 72 years.
			Gender		Holding all other covariates constant, Catholic low- attendance women had TUG scores about one-third of a second slower than scores for high-attendance Catholic women with the same characteristics otherwise at age 62 (8.63 vs 8.29, a difference of .34 seconds). Religious affiliations were not a predictor of TUG scores.
					In TUG model- low-attendance Catholic women were slower, but this did not reach significance, although they did have a significantly faster rate of change. Other religion men had a slightly slower TUG rate of change.
Otsuka et	388	73 0 (NB)	Ade	Physical	(Linear mixed effects regression models) Age was correlated ($r = 0.468$, $p < 0.001$) with TUG
al., 2020,			1190	functioning	time.
Japan	78.0%			(TUG)	(Spearman's rank correlations)
Párraga- Montilla et	61	73.9 (9.6)	Age	Gait speed	Those aged 60-69 years had a faster gait speed [mean (SD) = 1.23 (0.53)] than those aged >79 years [0.70
al., 2021, Spain	66.0%		Sex	Step length	<pre>(0.22)] (p < 0.05). Those aged 70-79 years had a faster gait speed [1.30 (0.52)] than those aged > 79 years [0.70 (0.22)] (p< 0.01).</pre>
					Those aged 60-69 years had longer step length [mean (SD) = 67.61 (8.8)] than those aged > 79 years [50.15

						<pre>(7.95)] (p< 0.001). Those aged 70-79 years had a faster gait speed [64.30 (8.67)] than those aged >79 years [50.15 (7.95)] (p < 0.001). There was no significant difference in gait speed and step length between those 60-69 and 70-79 years. There was no difference in gait speed and step length between men and women (ANCOVA)</pre>
Rodacki et	199	70.3	(5.3)	Age	Physical	There was no difference in Sit to Stand test results
al., 2020,			, 0 /	-5-	functioning	between the OLD (aged 60-70 years) and VOD (aged 71-86
Brazil	100.0%				(Sit to	years) groups ($p = 0.47$). There was no difference in
					Stand Test)	time taken to complete 6m results between the OLD and VOD groups ($p = 0.08$).
					Walking time	
					(6-Meter	Those in the VOD group [mean (95%CI) = 9.97s (9.33;
					Walk Test)	10.65)] took longer in their TUG tests compared to
						those in the OLD group [8.63s (8.35; 8.89)] (p =
					Physical	0.02).
					functioning	
	1105		()		(TUG)	(Unpaired t-tests)
Rosenberg et	1135	0	(NR)	Age	Stepping	Increase in age was negatively associated with more
al., 2020,	56 0%			Sov	(ming (day)	stepping time, steps taken a day ($p < 0.001$), but was
USA	30.00			Sex	(mins/day)	not associated with the humber of sit-to-stand transitions per day $(n = 0.138)$
				Ethnicity	Steps	cransrerons per day (p = 0.150).
				CIIIII - C - C Y	(steps/dav)	Sex was not associated with stepping time ($p = 0.889$).
				Education	(steps taken per day ($p = 0.766$).
					Sit-to-stand	
					transition	Females had more sit-to-stand transitions [mean
					(number/day)	(95%CI) = 44 (43; 46)] than males [41 (40; 43)] (p =
						0.002).
						Non-Hispanic white individuals had more stepping time
						(p = 0.017) and steps per day $(p = 0.007)$ than people
						of colour.
						Race was not associated with number of sit-to-stand
						transitions ($p = 0.579$).

					Education was not associated with stepping time, steps/day and sit-to-stand transitions.
Santos et al. 2017, Brazil	120 63.3%	83.3 (3.0)	Age, Gender Education Marital status Race	Physical functioning (SPPB)	<pre>(Linear regression) Uneducated individuals were more likely [OR (95%CI) = 2.48 (1.04; 5.90), p = 0.040] to have a low SPPB score compared to educated individuals. Age was a predictor of SPPB scores [3.39 (1.18; 9.76), p = 0.023]. Gender, marital status, race were not predictors of SPPB scores (Binary logistic regression analysis)</pre>
Serrano- Checa et al., 2020, Spain	271 100.0%	69.2 (5.7)	Age	Walking time (3-Meter Timed Tandem Walk Test) Physical functioning (TUG) Gait speed	Age was associated with TUG time (β = 0.29, p < 0.001) and 3MTW time (0.21, p < 0.001). Age was not associated with gait speed. (<i>Multivariate linear regression</i>)
Shubert et al., 2006, USA	195 70.0%	80.9 (5.9)	Age Sex	Walking speed Physical functioning (Timed Chair Rise)	Age was a significant predictor of walking speed (> 1.0m/s) [OR (95%CI) = 0.86 (0.80; 0.92), p < 0.01] and Time Chair Rise (< 13.6s) [0.92 (0.87; 0.97), p = 0.01] Sex was not a significant predictor of walking speed or Time Chair Rise (Regression)

Staples et al., 2020, USA	111 78.4%	74.9 (7.2), males 77.1 (3.8), females	Education Age	Walking time (10-Meter Walk Test) Physical functioning (TUG)	Years of education (β = 0.194, p = 0.027) and age (β = -0.235, p = 0.010) were significant predictors of 10- meter walk test. Age was associated with Time up and Go test (β = 0.285, p = 0.002).
					(Multivariate Spearman's rho correlation)
Tanaka et al., 2020, Japan	388 78.0%	74.4 (7.4)	Age Sex Marital Status Education	Physical functioning (TUG)	Age was a significant predictor of TUG scores [β (95%CI) = 0.26 (0.14; 0.30), p < 0.01]. (Regression) Men performed better on the TUG test [mean (SD) = 12.8 (5.2)] compared to women [14.5 (6.5)] (p = 0.010). Those with a spouse [mean (SD) = 13.7 (5.8)] performed better on the TUG test than those without [15.1 (7.1)] (p = 0.019). (Mann-Whitney U tests) Participants with low education level took longer to complete the TUG (p < 0.001). (ANOVA)
Thinuan et al, 2020, Thailand	1806 70.5%	70.7 (7.5)	Gender	Walking speed	The prevalence (%) of slow walking was higher in female (30.6%) than in male (22.4%) (Chi-square)
Trevisan et al., 2020, Sweden	2656 61.5%	72.3 (9.9)	Age	Walking speed	There was a statistically significant difference in walking speed classifications between age groups (p < 0.001). Amongst those who could walk >1.2 m/s, 80.2% were aged 60-66, 50.5% were aged 72-78, 21.8% were aged 81-87 and 6.9% were aged 90+. Amongst those who could walk between 0.8 and 1.2 m/s, 15.6% were aged 60-66, 31.0% were aged 72-78, 33.0% were aged 81-87 and 21.8% were

					aged 90+. Amongst those who could walk <0.8 m/s, 4.2%
					were aged 60-66, 18.4% were aged 72-78, 45.2% were
					aged $81-87$ and 71.3% were aged $90+$.
					(Student's t-test)
Tuntland et	738	81.2 (6.9)	Age	Walking	Age was significantly associated with slower walking
al., 2020,			-	speed	speeds (p < 0.001).
Norway	70.1%			-	
-					(one-way ANOVA test)
Wu et al.,	137	74.6 (NR)	Age	Gait speed	Physical capacity differences across the four age
2020. Taiwan			5-		groups: $65-69$ years $(n = 37)$: $70-74$ years $(n = 40)$:
2020, Taiwan	100 0%			Physical	75-79 years (n = 29): and ≥ 80 years (n = 31) Compared
	100.00			functioning	with the age group $65-69$ wears, the age groups $75-79$
					vears and 280 years showed significantly slower gait
				Stand tost 6	speed scores and BBS scores and higher 5times Sit to
					Stand test and THC test scores (PC 05 for all)
				109)	There was no significant difference between the $65-60$
				Dalanco	and 70 74 are groups in all five physical tests. In
					and 70-74 age groups in all live physical tests. In
				(Berg	addition, for the Stimes Six to Stand test scores, the
				Balance	70-74 years old and older groups had mean values
				Scale)	greater than the cut-off point. The 75-79 years old
					and older groups had mean values greater than the cut-
					off points for TUG, and BBS, while for gait speed,
					only those 2 80 years had a mean value greater than
					the cut-off point.
					(Multilevel regression model)
Yoo et al	92	64 7 (8 6)	Age	Walking	Individuals aged <65 years walked further [mean
2020 South	52	01.7 (0.0)	1190	distance (2-	difference (SD) = 27.857 (6.596) $n < 0.0011$ on the
Korea	35 92		Sov	Mintute Walk	$2MWT$ than those aged ≥ 65 years
Rorea	55.50		DEX	minicule waik	ZMWI Chan chose aged = 05 years.
				IESL)	Age was not correlated with Chair Daigo test
				Dhugigal	Age was not correlated with chair Raise test $(n = 0, 202)$
				functioning	periormance $(p - 0.505)$.
					Remains wellback a showton distance (many differe
				(SU-S Chair	remaies walked a shorter distance [mean difference
				Kaise Test)	(5D) = -29.864 (10.809), p = 0.007 on the 2MWT (p = 0.007) and monformed variables (0.005 (0.000))
					(2.228), p = (0.002)
					on the chair Raise test than males.
					(Multiple linear regression)

Zarzeczny et al., 2017, Poland	26	85.8 (3.6)	Age	Physical functioning (TUG & 30-s Chair Stand Test) Walking distance (6- Mintues Walk	Age was significantly correlated with total TUG performance time (r = 0.484, p < 0.05). Age was inversely correlated with 6MWT distance in meters (r = -0.482 , p < 0.05) and 30s-Chair Stand Test (r = -0.422), p < 0.005). (Pearson's correlation)
				Test)	
		Self-repo	rted and mob	ility outcomes	and personal factors $(n = 25)$
Adler et	118	75.3 (5.6)	Age	Driving	Age was inversely correlated with the longest trip
al., 2005,	100.00			duration	made in the last year ($r = -0.37$, $p = 0.001$) and with
USA	100.0%		Marital	Driving	miles ariven $(-0.18, p = 0.05)$.
			Status	distance	Compared to single women, married women report driving
					more now than five years ago ($p = 0.024$) and are more
					likely to have someone depend on them for
					transportation $(p = 0.016)$
					(Pearson correlation)
Andersson et	299	72 (11 2)	Age	Mohility	(realson correlation)
al., 2021,	233	/2 (11.2)	1190	domain of	[mean (SD) = 90.6 (15.8)] compared to individuals aged
Sweden	43.8%		Sex	the Stroke	< 65 [97.2 (9.3)] (p = 0.001).
				Impact Scale	
					Sex was not correlated to mobility scores.
					(Chi amuzna taat and t taata)
Ang et al	9334	71 1 (7 7)	Education	Mohility	Individuals who were highly educated had a lower
2019,	5554	/ (/ . /)	Laucación	limitation	average number of mobility limitations [β (SE) = -0.59
Singapore	55.6%		Age		(0.09), p < 0.0001] and tended to develop mobility
					limitations at a slower pace [-0.07 (0.03), p <
			Gender/eth nicity		0.0001] than those with lower education.
			Mondat - 1		Being older was associated with reporting mobility
			Marital		Limitation $[0.047 (0.0006), p < 0.001]$ and tended to
			scacus		(0.002), p < 0.01]

					Being male was associated with lower odds of reporting
					mobility limitation and developing mobility limitation
					Malay females
					haray remares.
					Marital status was not associated with mobility
					limitation
					(Ageing vector models)
Auais et	1841	69 (2.8)	Sex	Life space	The average LSA total score was significantly higher
al., 2017,	F1 00			mobility	in men $(p < 0.001)$.
	51.9%				(Chi amara)
Plazor ot	1220	77 0 (5 0)	Education	Mohility	(CIII-Square)
al 2006	1229	//.0 (3.0)	Education	limitation	Lower education ($<9^{ch}$ grade) [p (SE) = 0.18 (0.06), p =
USA	63.7%		Age		(0, 06), $p < 0, 002$ were significantly associated with
			5-		mobility impairment after 4-years follow-up [0.18
			Sex		(0.06), p = 0.004].
			Race		Race was not associated with mobility impairment
				· · ·	(Linear regression)
Braitman &	2650	74.3 (6.3)	Age	Driving	Being older was associated increased likelihood to
Williams,	EQ 00.		Corr	cessation	cease driving t-statistics $(1,431) = -6.4$, p <
ZUII USA	50.03		Sex	Driving	0.001] and avoiding more driving situations [t
			Marital	duration	(1, 370) = -3, 9, p = 0, 00011
			status	aaracron	
					(Independent sample t-tests and chi-square tests)
				Driving	
				distance	Women are more likely to cease driving than men (p <
					0.05). 70% of the females in the study had stopped
				Driving	driving at least temporarily.
				periormance	
					Those who reported that they had stopped driving were
					more likely to be unmarried $[v^2(1)] = 4.9$ $p = 0.031$
					$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 $
					(Chi-square test)

Choi et al., 2013, USA	556	80.0 (NR)	Age Sex	Driving performance (Avoiding night and highway driving)	Age is significantly associated with increased likelihood of avoiding night driving [OR (95%CI) = 1.14 (1.08; 1.20), p < 0.001] and highway driving [1.06 (1.00; 1.12), p < 0.052]. Women were more likely to avoid night driving [OR (95%CI) = 5.81 (3.74; 9.04), p < 0.001] compared to men. Women were more likely to avoid highway driving [3.02 (1.81; 5.05), p < 0.001] compared to men (p < 0.001). (Multivariable logistic regression models)
Clarke et al., 2009, Canada	294 72.0%	84.8 (6.3)	Age Sex Marital Status Education	Use of walker or cane Use of wheelchair	<pre>(Intervaliable Toglette Tegression Medels) Compared to those aged 69-79, being aged 80-89 was not associated (OR 1.373, p > 0.05) with walker/cane use. However, being aged 90+ was associated with increased walker/cane use (26.031, p < 0.01). Compared to those aged 69-79, being 80-90 (1.085, p > 0.05) or 90+ (4.457, p > 0.05) was not associated with wheelchair use. Being female was not associated with walker/cane use (0.264, p > 0.05) or wheelchair use (0.999, p > 0.05). Being married was not associated with walker/cane use (1.026, p > 0.05) or wheelchair use (2.187, p > 0.05). Having less than a high school education (0.796, p > 0.05) was not associated with walker/cane use. Having less than a high school education (6.183, p < 0.05) was associated with increased wheelchair use. (Multinomial logistic regression).</pre>
Cornman et al., 2008, USA	1224	77.0 (7.3)	Age Sex Marital Status	Mobility limitations Likelihood to use AD	Older adults had significantly lower thresholds for reporting difficulty vs. no difficulty (more likely to report difficulty) for all activities except walking 200-300m (p < 0.05).

				(self-	Reported difficulty was worse for women than men.
			Race	reported)	Women are more likely than men to report difficulty lifting and carrying heavy objects $(p \leq 0, 05)$
			Ethnicity		iffering and carrying heavy objects (p < 0.00).
					Reported difficulty was worse for those not currently
					matried compared with currently matried $(p < 0.05)$.
					Difficulty running 20-30 m differed significantly by ethnicity (Mainlanders had the most difficulty; 48%-no difficulty, 25%-difficulty, 27%-unable) ($p < 0.05$). Hakka had higher thresholds for reporting difficulty (less likely to report) running a short distance than Mainlanders with the same underlying ability.
					Blacks were more likely than Whites to use any device vs. no device [OR (95%CI) = 1.83 (1.52; 2.21), p < 0.05]. Hispanics were more likely than Whites to use any device vs. no device [1.33 (1.03; 1.71), p < 0.05]. Blacks were more likely than Whites to use canes vs. no device [2.12 (1.74; 2.59), p < 0.01]. Blacks were more likely than Whites to use walkers and or wheelchairs vs. no device [1.58 (1.18; 2.12), p < 0.01]. Blacks were more likely than Whites to use devices only (vs. no devices or personal care) [1.77 (1.48;2.12), p < 0.01].
					<pre>Hispanics were more likely than Whites to use canes vs. no device [1.31 (0.94; 1.82), p > 0.05]. Hispanics were more likely than Whites to use walkers and or wheelchairs vs. no device [1.35 (1.00; 1.82), p > 0.05]. Hispanics were more likely than Whites to use devices only (vs. no devices or personal care) [1.25 (0.97; 1.61), p > 0.05].</pre>
					(Ordered probit model, Wald test with chi-square distribution)
Cousins et	389	69.7 (7.8)	Age	Mobility	Age was a significant predictor of stair-climbing
al., 2002, Canada	54.0%		Sex	efficacy	efficacy (β = -0.0175, p < 0.01), but not with walking efficacy.

			Birthplace		Gender was a significant predictor of efficacy to walk
					distances (β = 0.125, p < 0.05) and stair-climbing (β
			Education		= 0.154, $p < 0.01$), with higher efficacy related to
					males.
					Birthplace was a significant predictor for stair-
					alimbing officiency $(\mathbf{R} = 0.154)$ m ≤ 0.001 with these
					climbing efficacy ($p = 0.134$, $p < 0.001$), with those
					born in Canada more likely to report higher ellicacy.
					Birthplace was not a significant predictor for walking
					efficacy.
					Education was not a significant predictor for walking
					and stair climbing efficacy
					(Multiple regression analyses)
*Cruz et	50	75.0 (8.0)	Age	Ambulatory	Age was not correlated with use of ambulatory
al., 2020,				assistive	assistive devices $(p = 0.389)$.
Brazil	68.0%		Sex	device use	
					Sex was not correlated with use of ambulatory
					assistive devices $(p = 0.566)$.
					(Student's t-test)
Dirik et	331	75.3 (6.7)	Age	Rivermead	RMI scores showed a significant negative correlation
al., 2006,				Mobility	with age $(p = 0.0001)$.
Turkey	45.1%		Sex	Index (RMI)	
-					(Spearman correlation)
					Older women (mean score = 11.6) had less mobility
					level than men (13.6) (p = 0.0001).
					(Mann-Whitney U-test)
Gell et al.,	7609	NR (NR)	Age	Likelihood	Age (≥90) was significantly associated with increased
2015. USA				to use	prevalence of using any AD [prevalence $(95\%CI) = 70\%$
,	NR		Sex	assistive	(65 5: 75 2)]: cane [36 6% (32 3: 41 2)]: walker
				devices (AD)	[49 5% (45: 53 9)]: wheelchair [20 3% (16 9: 24 2)]
			Race/Ethni		and ≥ 2 Mobility AD [32.1% (27.6: 36.8)] (p < 0.001)
			city		
			0101		Females are more likely to use any AD [prevalence
			Education		(95%CT) = 28.1%(26.5, 29.8) cane [18.3% (17.1)
			Laucacion		195001, 20.10 (20.0, 20.0), $cane [10.00 (17.1)]$
1	1		1	1	19.5/], Warker [14.9% (15.0, 10.2/], Wheelchall [/.4%
					(6.7; 8.3)], and ≥ 2 Mobility AD [11.5% (10.5; 12.6)] (p < 0.001). Being from a race other than "White non-Hispanic", "Black non-Hispanic" or Hispanic was associated with increased likelihood of any AD usage [prevalence (95%CI) = 20.5 (16.7; 24.9)]; cane usage [16.3 (12.6; 20.7)]; walker usage [9.43 (6.8; 13)]; wheelchair usage [5.7 (3.8; 8.4)]; and using ≥ 2 mobility AD [7.9 (5.5; 11.2)] (p < 0.001). Compared to having "high school", "some college or vocational", or "college graduate", having an "advanced degree was associated with reduced prevalence of any AD usage [prevalence (95%CI) = 14.6 (12.6; 16.8)]; cane usage [10.7 (8.7; 1.31)]; walker usage [4.9 (3.6; 6.7)]; wheelchair [2.7 (1.7; 4.2)]; and using ≥ 2 mobility AD [3.6 (2.5; 5.1)] (p < 0.001).
-------------------------------------	---------------	--	----------------------------	---	--
Hall et al., 2005, Canada	12 42.0%	86.6 (9.5), Baycrest area 81.7 (5.9), Sunnybrook area	Age Gender Education	Driving performance (self- reported questionnair e)	Age was inversely correlated with motor function skills related to driving (r = -0.25, p = 0.267), but it was not significant. Gender was correlated with driving performance. Males with shorter duration of training had higher post training scores compared to females (r = 0.645, p = 0.012). Education was inversely correlated with motor function skills related to driving (r = -0.451, p = 0.78), but it was not significant. (correlation)
Hjorthol et al., 2013, Norway	4723 57.0%	67+	Age Sex	Walking tendencies/f requency Likelihood to experience	Problems with walking increases with age [21% for < 70 vs 80% for 90+] (p < 0.001). The desire to go for a walk generally increases with age [45% for < 70 vs 57% for 90+] (p < 0.01).

				difficulty with public transport Walking tendencies/f requency Driving cessation Dependence on public	<pre>Problems travelling by public transport [9% for < 70 vs 59% for 90+] and with driving [5% for < 70 vs. 21% for 85-89] increase with age (p < 0.05). Women walk more than males (47% for women vs 46% for men) but this was not significant (p > 0.05). Average age of giving up a driver's licence is for women is 76.5 years while it is 79.5 years for men (p < 0.01). Women are less likely to have access to a car (62% of women vs. 87% of men, p < 0.001), and more likely to have never owned a car (21% of women vs 6%</pre>
				transport. Problems with public transport	<pre>of men, p < 0.001) or experience problems travelling by public transport (26% of women vs. 12% of men, p < 0.001). (Chi-square test)</pre>
Jorgensen et al., 2019, Sweden	1186 57.2%	NR (NR)	Occupation	Mobility limitation	Older adults with offspring with manual occupation had poorer mobility performance [OR (95%CI) = 0.14 (0.00; 0.28)] than older adults with offspring with the non- manual occupation. (Linear regression analyses)
Keall & Woodbury, 2014, New Zealand	657 NR	NR (NR)	Age	Number of minutes spent walking per week	From 2007-2010, the walking frequency, measured by the number of minutes walked per week was higher for the younger age group of 65-74-year-olds (55 min/week) in comparison to the 75+ age group (50 min/week), but this did not reach statistical significance (p > 0.05). (Descriptive)
King et al., 2017, Australia	295 62.0%	NR (NR)	Age Sex	Driving duration Driving as the driver or passenger	Older adults aged 61-65 years drive longer hours/week (9.21 hours/week) compared to those aged 71+ (5.68 hours/week) (p < 0.01). There was no significant difference in hours driven/week between 61-65 and 66- 70 (6.94 hours/week) (p > 0.05). Males drive more days than females (4.59 vs 4.30 days per week, p < 0.05), though there is no difference in

					hours driven per week overall by males and females (8.08 vs 6.88). Males spend less time as a passenger than females (0.91 vs 2.21 hours/week, p<0.05) (ANOVA and post hoc comparison)
Kostyniuk &	1053	74.2 (5.9)	Age	Driving	Older adults did not plan on ceasing driving.
USA	58.0%		Sex	Cessation Driving cessation (Preference to be driver vs. passenger) Dependence on public transportati on	<pre>Men (33%) are more likely to continue driving without a license compared to women (14%). Women are 3-4 times more likely to be passengers than men. Older adults prefer their private automobile for both former drivers and drivers. No one relied primarily on public transit buses and only a small portion of the former drivers relied on a dial-a-ride (a form of special transit) for their primary mode of transportation. Riding as a passenger was a secondary mode of transportation. Very few relied on public transport. The remaining former drivers reported walking, using</pre>
					(Descriptive analysis)
Melzer et al., 2001, USA	8871 60.0%	NR (NR)	Education	Risk of developing mobility limitation	<pre>Men with 0-7 years of education had a greater risk [RR (95%CI) = 1.65 (1.37; 1.97), p < 0.05] of developing mobility limitations than men with 12 or more years of education. Women with 0-7 years of education had a greater risk [1.70 (1.15; 2.53), p < 0.05] of developing mobility limitations than women with 12 years or more of education.</pre>
					function)
Ogawa et al., 2020, Japan	21	67.4 (11.4)	Age	Train or bus usage	Age was not correlated with bus/train use post- discharge (p = 0.066).

					(Two-sided Mann-Whitney U test)
Olawole & Aloba 2014, Nigeria	250 49.0%	NR (NR)	Age	Driving frequency (Transport)	Number of trips generated decreases with age (r = - 0.309, p < 0.005). Satisfaction with transport service significantly increases with increasing age, as older participants tend to drive less and rely more on public transport (p < 0.05). (Correlation)
Seinsche et	28	78.7 (7.9)	Age	Life space	Age (r = -0.424) was demonstrated a significant
al., 2020, Germany	64.0%		Sex	mobility	did not.
			Education		(Spearman's correlations)
Skantz et	479	77.7	Age	Self-	Those with walking difficulties [mean (SD) = 79.6
al., 2021,		(3.1), no	0	reported	(3.7)] were significantly older than those with no
Finland	59.18	allIlculti	Sex	walking capabilities	Walking difficulties $[//./(3.1)]$ (p < 0.001). Those with walking difficulties $[10.8/(4.1)]$ had
		05	Education	capabilities	significantly fewer years of education than those
		78.4			without walking difficulties $[12.2 (4.2)]$ (p = 0.006).
		(3.3),			Those with walking difficulties were more likely to be
		waking modificati			female (71%) compared to those without difficulties (54.8%) (p = 0.003).
		ons			(ANOVA Chi-square test)
		79.6			
		(3.7),			
		walking			
		difficulti			
	Perfo	rmance based	and self-re	ported mobility	v outcomes and personal factors $(n = 4)$
Auais et	1506	69.1	Gender	Physical	Women have higher incidence rate of mobility
al., 2019,		(2.9),		functioning	disability than men (higher by 40%) [Incidence Rate
Albania,	52.0%	males		(SPPB)	Ratio (95%CI) = 1.40 (1.04; 1.88)]. Although there was
Brazil,		<u> </u>			a difference between women and men in the incidence of
Canada		(2 8)		limitation	poor physical performance, the different was not statistically significant after adjusting for baseline
Cunada		females			functional performance.
					(Poisson regression analyses)

Caladas et	1988	69.1	Sex	Life space	Women reported more restricted life space than men (p
al., 2020,		(2.9),		mobility	< 0.001). Women were more likely to have a SPPB score
Albania,	52.0%	males			<8 than men $(p < 0.001)$.
Brazil,				Physical	
Colombia,		69.0		functioning	(Chi-squared test)
and Canada		(2.8),		(SPPB)	
		females			
Hamel et	32	82.7 (NR),	Sex	Physical	There were no significant sex differences in the
al., 2004,		males		functioning	<pre>measured speeds of stair ascent [men average (SD) =</pre>
USA	50.0%			(Stair	0.51 m/s (0.09); women average (SD) = 0.49 m/s (0.13);
		82.2 (NR),		Climbing	p = 0.51] or stair descent [men = 0.56 m/s (0.16);
		females		Test)	women = 0.48 m/s (0.17); p = 0.16]. Non-significant
					differences were found regarding Activities-Specific
				Mobility	Balance Confidence scores between women (75.2; 22.7)
				efficacy	and men $(82.4; 14.1)$ $(p = 0.29)$.
					Formalize some found to demonstrate significantly laver
					tetal stair colf officers accres (50 1: 25 1) then men
					(72.6, 17.2) (n = 0.052)
					(73.0, 17.3) (p = 0.032).
					(Chi-square test)
Umstattd et	231	69.0 (NR)	Age	Mobility	More efficacious women were younger in age (φ = -0.22,
al., 2007,				self-	p < 0.05).
USA	100.0%		Race	efficacy	
					Age was significantly associated with physical
				Physical	function, as older women ($\gamma = 0.38$, p < 0.05) scored
				functioning	higher on physical function tests (lower performance).
				(Gait speed,	
				Stair	More efficacious women were more likely to be
				climbing,	Caucasian ($\phi = 0.17$, p < 0.05).
				TUG)	
					(Covariance modeling)

Notes: AD - Assistive device; ANOVA- Analysis of Variance; ANCOVA- Analysis of Covariance; BBS- Berg Balance Scale; m - Meter; mins - Minutes; NR- Not reported; LSA - Life Space Assessment; OR - Odds Ratio; RR - Relative Risk; r - Correlation; SPPB - Short Physical Performance Battery; S - Seconds SD - Standard Deviation; SE - Standard Error TUG - Time Up and Go Test; Vs- Versus; 2MWT- Two-Minute Walk Test; 6MWT -Six-Minute Walk Test; 95%CI - 95% Confidence Interval, β - Beta Coefficient; ϕ - Non-directional relationship of Standardized Coefficient **Mobility limitation includes** self-reported inability on all or either of the following: walking up and down a flight of stairs (10 steps) or several flights of stairs, walking a mile (1600meter) or half a mile (800meter) or a quarter mile or a block (400meter) or 100-300meter, or across the room and running/jogging for 20-30 minutes.

Result highlighted in gray indicates no significant association between personal factor(s) and mobility outcome.

Most findings in the table were reported verbatim as the authors reported them in their paper.

Author,	Total	Mean	Social	Built	Natural	Mobility	Findings
year,	Sample size	Age	Environment	Environment	Environment	Outcome(s)	(Analysis type)
country	included in	(SD)					
	analysis						Note: All variables in each study were
							analyzed using the same type of
	<pre>% Female</pre>						analysis unless otherwise stated.
		Perf	ormance-based	l mobility out	comes and env	rironmental fa	ctors (n=22)
Cress et	61	76.3	-	Community -	-	Steps per	Older adults residing in the
al., 2011,		(7.6),		dwelling		day	residential home settings took fewer
USA	61.3%	CD		setting		excluding	steps than those in the community-
	Community-			versus		intentional	dwelling settings $(p = 0.03)$.
	dwelling	82.7		residential		exercise	
	participant	(5.5),		- community			(ANOVA)
	s (CD)	RC		setting			
	60.0%						
	Residential						
	community						
	participant						
	s (RC)						
Donovan et	71	61.3	-	Locations:	-	Gait speed	Older adults walking in the street had
al., 2008,		(11.1)		clinic;			faster gait speed (m/mins) [mean (SD) =
New	30.0%			street;		Step length	41.1 (12.9)] and longer step length
Zealand				mall			[49.2 (8.7)] compared to those that
							walked in the mall [39.2 (11.2); 47.7
							(8.7)] and clinic [40.7 (11.1); 19.2
							(8.7)]. The only significant
							environmental difference in gait speed
							[mean difference (95%CI) = -2.1(-3.8; -
							0.5), p = 0.01] or step length
							(cm/step) [-2.1 (-3.9; -0.4), p < 0.01]
							was between the street walkers and mall
							walkers.
							(Mixed linear model)
García-	2012; 46.3%	71.7	-	Types of	-	Physical	In comparison to older adults who lived
Esquinas		(0.4)		poor		functioning	in homes without poor housing
et al.,				housing		(SPPB)	conditions, those with >2 poor housing
				conditions:			conditions showed lower scores in the

Appendix 3B: Details of included quantitative studies details for environmental factors and mobility

2016,			no			SPPB [β (95%CI) = -1.02 (-1.39; -
Spain			<pre>no elevator; no heating; frequently feeling cold. Categorized as: no poor condition, one poor condition, more than two poor conditions</pre>			<pre>SPPB [p (95%C1) = -1.02 (-1.39; - 0.66)]. Individuals who lacked heating at home had a lower score in the SPPB [-1.61 (- 2.00; -1.21)]. (Linear regression)</pre>
Gell et al., 2015, USA	28 67 (9	7 -	Street density; population density; crime rates; slope within the home neighborhoo d; neighbourho od length		Walking (active trips vs non-active trips - those using powered wheelchair for outdoor transportat ion or recreationa 1 wheeling), Global Positioning System (GPS)	There were significant differences between participants with active trips from home compared to those without for Walk Score (83.1 vs. 65.9, p = 0.03, effect size (d) = 1.0), population density (5230.7 vs. 2662.9, p = 0.01, d = 0.9), and street connectivity as estimated by street density (60.5 km vs. 42.6 km, p = 0.01, d = 1.2). Also, participants who used the home neighbourhood for active trips had less slope within 1 km of home, but the difference was not significant [mean (SD) = 73.5 m (\pm 22) vs. 100.8 m (\pm 38.1), p = 0.06, d = 0.8]. There were no statistically significant differences in mean scores for crime rates or street block length. (<i>t-test and the Wilcoxon rank sum test</i>)
Hunter et al., 2018, Canada	28 73 (9 57.1% pa	3.1 - 9.2) artic	Straight path versus curved path	-	Time to complete a 6-Meter	Gait was significantly slower in people with? Alzheimer's dementia (AD) for both the straight path [mean (SD) AD =

		<pre>ipants with Alzhei mer's 72.9 (9.5), contro l</pre>			straight path and a curved path (Figure of 8 Test) walking task	<pre>6.05 (1.26); Control = 5.09 (0.76), p = 0.02] and the curved path configuration [AD = 11.25 (4.87); Control = 8.28 (2.44), p = 0.05]. (Paired t-test analysis)</pre>
King et al., 2016, USA	530	63.1 - (NR)	The following were assessed between mall walker vs non-mall walkers: Parking available on site; close to entry; accessible, well lit, marked walkway to entrance; traffic control near walkways; places to rest near entrance	Aesthetical ly pleasing	Walking time	There was no significant difference between walkers in the mall and non- mall in relationship to parking available on site, close to entrance, accessible, well lit, marked walkway to entrance and traffic control near walkways, places to reset near entrance and aesthetically pleasing. (<i>Fishers exact test</i>)
Kooshari et al., 2019, Japan	314 36.9%	74.6 - (5.3)	Population density; availabilit y of destination s;	_	Maximum gait speed Physical functioning (TUG)	Maximum gait speed and TUG performance were not significantly associated with environmental attributes of walkability in both males and females.

			intersectio n density; access to public transport station	Balance (1- legged stance)	Among men, there were significant associations among population density within 1600 m [β (95%CI) = 3.11 (0.39;5.83), availability of destinations within 1600m [4.73 (1.99;7.47)], intersection density within 800 m [3.39 (0.32;6.47)], and 1- legged stance with eyes open. There was no significant difference between 1-legged stance with eyes open and environmental attributes among females. (Linear regression)
Lachapelle and Cloutier, 2016, Canada	1649 61.8%	NR (NR)	Presence of - cycling infrastruct ure; arterial road; traffic calming device; street median; no pedestrian- specific light; behavioral characteris tics of pedestrians (crossed in straight line, on sidewalk until crossing, hesitation, looking	Time taken to cross a pedestrian signal (Participan ts with Cane/crutch es/white cane, walker, 3- or 4-wheel scooter)	Older age groups crossed in location with a higher mean number of seconds for the numerical countdown pedestrian signals, the younger age group is significantly associated with a shorter time span (ANOVA: df = 2; F = 14.04: p<0.001) Compared to those age 20 to 64 years, those aged 65 to 79 were more likely to end up crossing on a red hand or on a phase where either red light or red hand were on. Using a cane, white cane or crutches made users nearly twice as likely to end a crossing late. The use of a walker increased the odds by 2.8 to 4.5 times, depending on the outcome used. As scooters reduced the odds of finishing late, but this variable was only significant in the last model. Presence of cycling infrastructure has the strongest odds of being associated with finishing a crossing late.

				towards			
				ground,			(ANOVA, multilevel mixed-effects logit
				waiting for			models)
				green			
				light, mid			
				crossing			
				tempo)			
Leung et	679	NR(NR)	Companionsh	Residential	Aesthetics	Walking	Land use mix $(\beta = 0.36)$, street
al., 2018.			ip	density:		behaviour	connectivity (0.59) , infrastructure
Hong Kong	80.1%		Encourageme	land use		(step	(0, 69), indoor facilities $(0, 41)$.
			nt	mix;		count)	presence of people $(0, 45)$, and entrance
			Social	access;		,	(0, 50) were predictive of an older
			Cohesion	street			adult's step count per day
				connectivit			addie 5 Step count per day.
				v:			
				infrastruct			Crowdedness Traffic bazards Crime
				ure for			Companionship oncouragement social
				walking:			cohesion Aesthetics were not
				indoor			predictive of an older adult's sten
				places for			count per day
				walking:			count per day.
				presence of			
				people:			(Structural modelling)
				fences			(Structurar moderring)
				separating			
				pavements			
				from the			
				traffic:			
				easy access			
				to			
				residential			
				entrances:			
				seating			
				facilities:			
				physical			
				barriers:			
				crowdedness			
				: traffic			
				hazards:			
				speed:			
				crime			

Levy et al., 2004, USA	11 27.0%	70.7 (7.8)	_	Wheeling - over a variety of terrains: level surface; a carpet; an incline	Time taken to complete walking task (Wheelchair (manual vs prototype- pushrim- activated power- assist wheelchair)	Of the 11 participants, 10 found the prototype to be "very easy" or "easy" to push on level and inclined surfaces; 9 gave that assessment on carpeted and inclined surfaces. Seven would "definitely" or "probably" trade their manual chairs for the power-assist chair if given the opportunity. Nine thought they would venture to new and different places in a power-assist wheelchair. Time and number of pushes to complete walking did not differ significantly between chairs. (Descriptive analysis)
Lindemann et al., 2015, Germany	22 50.0%	NR (NR) Median (IQR) = 82.0 (79 - 86.3)	-	Interferenc - e between door and wheeled walker.	Time taken to walk through the door [Wheeled walker (WW) vs non-WW users]	<pre>Walking through the door was faster without using the WW than with using the WW [Median (IQR) = 8.71s (7.81;10.19) versus 12.86 s (10.76;14.29), p < 0.001]. Interference between door and WW was documented in 93% cases. 59% of the older adults rated walking through the door without using the WW easier. (Median, IQR and non-parametric tests)</pre>
Lindemann et al., 2016, Germany	20 70.0%	NR (NR) Median (IQR) = 84.5 (78.3- 87.8)		Walking - level; uphill walking; downhill walking (All performed with or without wheeled	Gait speed Stride length Cadence Walk ratio	<pre>When using a wheeled walker while walking on a level, the walk ratio improved (0.58m/[steps/min] vs 0.57m/[steps/min], p = 0.023) but gait speed (1.07m/s vs 1.12m/s, p = 0.020) decreased when compared to not using a wheeled walker. With respect to the walk ratio, uphill and downhill walking with a wheeled walker decreased walking performance</pre>

				walker			when compared to level walking
				[WW])			(0.54m/[steps/min] vs
							0.58 m/[steps/min], p = 0.023 and
							0.55m/[steps/min] vs
							0.58 m/[steps/min], p = 0.001,
							respectively). At the same time, gait
							speed decreased (0.079m/s vs 1.07m/s,
							p < 0.0001) or was unaffected.
							When compared to walking on a level
							with a WW, uphill walking with a WW was
							slower (median values 0.79m/s vs
							1.07 m/s, p < 0.001) and had a worse
							walk-ratio of 0.54m/(steps/min) vs
							0.58 m/(steps/min) (p = 0.023) with
							decreased stride length (1.01m vs
							1.25m, p < 0.001) and cadence 94
							step/mins vs 108 steps/min (p < 0.001)
							(t-test)
Lord et	27	61.0	-	Environment	-	Gait speed	There was no significant difference in
al., 2006,		(11.6)		:			gait speed, step frequency and step
USA	26.0%			shopping		Step	length among older adults walking in
				mall;		frequency	the shopping mall, clinics or on the
				street		Sten length	Street.
				Street		beep rengen	(ANCOVA and ANOVA)
Portegijs	174	81.3	-	Perceived	-	Daily steps	Participants living in areas with
et al.,		(4.2),		environment			highest walkability index had higher
2017,	68.2% adult	APL		al			step counts than those living in an
Finland	with			facilitator			area with lowest walkability [eta (SE) =
	physical	80.2		S;			0.5 (0.2), p = 0.010].
	Limitation	(4.2),		walkability			
	(AFL)	ANFL		THUEX			Perceived environmental facilitators
	62.3% adult						were not associated with steps counts.
	with no						(GLM, logistic regression)
	physical						

	limitation						
	(ANPL)						
Dichendeen	2.4	C7 1		Ct and and		Chara	Demosted measures ANOVA should that
RIChardson	24	67.1	-	Standard	-	step-	Repeated measures ANOVA showed that
et al.,	100 00	(7.9),		environment		width/varia	environment had a significant effect on
2004, USA	100.03	women		(SE)-		ντιτα	all gall parameters. The CE was
		with ,		smooth			associated with increases in step
		periph		walking		Step-width	width, step-width variability, step-
		eral		surface,		range	width range, step width-to-step length
		neurop		normal			ratio, step time and step-time
		athy		lighting;		Step width-	variability, and decreases in step
				challenging		to-step	length and speed, compared to the SE (p
		70.2		environment		length	< 0.05).
		(4.3),		(CE) -		ratio	
		women		irregular			
		with		surface,		Step	
		no		low		time/variab	(ANOVA)
		periph		lighting		ility	
		eral				-	
		neurop				Step length	
		athv					
		4				Step speed	
Richardson	42	64.7	-	Standard	-	Step width	In the SE, gait parameters of subjects
et al.,		(9.8)		environment		variability	with and without a history of falls did
2005, USA	47.6%			(SE) -		-	not differ significantly.
				smooth		Step time	5 1
				walking		variability	In the CE, significant differences were
				surface,		-	noted in step time variability (p =
				normal		Step width-	0.001), step length (p = 0.013), speed
				lighting;		to-step	(p = 0.028), but not in step width
				challenging		length	variability, step width/step length and
				environment		ratio	step time of subjects with and without
				(CE) -			a history of falls.
				irregular		Step length	
				surface.		Soop Tongon	
				low		Step time	(t-test)
				lighting		and speed	
Shumway-	36	83.2	Travel	Temporal	Ambient	Community	The older adults without ambulation
Cook et		(5, 7)	companions.	factors	conditions	Mohility	problems made 95% of trips into the
al 2002	65 0% adul+	ΔΡΤ.	familiarity	(traffic	(temperatur	[Particinan	community unaccompanied Familiarity
1107 LOUZ	with	1111	·	huev		te had	with travel destination was comparable
USA	WILII		,	Dusy	e, outdoor	LS HAU	with traver destination was comparable

	physical	77.7	distraction	streets);	light	three field	for both groups. All the older adults
	limitation	(4.7),	S	terrain	level,	trips (one	chose to travel to familiar locations.
	(APL)	ANPL		(flights of	precipitati	per week)	
				stairs,	on)	with	Streets with traffic lights were
	58.0%			curbs,		research	crossed during only 4 (7%) of the 57
	adults with			<pre>slopes/ramp</pre>		assistant	trips observed in older adults without
	no physical			s, uneven		videoing	mobility problems and during only 5
	limitation			surfaces,		their	(10%) of the 51 trips observed in those
	(ANPL)			obstacles,		trips]	with disabilities.
				etc.);			
				density			Crossing busy streets without traffic
				(crowded			lights occurred more often than
				place)			crossing a street with a traffic light
							for both groups.
							Unexpected collisions or near
							collisions occurred in 6% of the total
							trips of the subjects without
							disabilities and in 0% of the total
							trips of the subjects with
							disabilities.
							Both groups were comparable with
							respect to the percentage of trips in
							which they encountered curbs (40% of
							trips), uneven surfaces (60% of trips),
							and slopes or ramps (65% of trips).
							There was no difference between the 2
							groups with respect to temperature,
							level of precipitation, or light levels
							during observed trips into the
							community.
							(Descriptive statistics)
Stemmons	27	78.2	-	Distracting	-	Physical	Among the older adults, there was no
et al.,	74 00	(6.2)		(busy		IUNCTIONING	Significant difference in scores on the
ZUUZ, USA	/4.∪≷			corridor)		(106)	TUG Lest between tests performed in
				versus non			aistracting and non-distracting
				aistracting			environments.
	1	1	1	COLLIGOT	1	1	

							(Paired t-tests)
Vu ot al	9	67 7	_	Pogular	_	Spood	Pooplo with PD showed significant
AU EL AI.,	9	(7 1)		terrain	_	speed	differences for several anatisterroral
2018, China	10 00	(/.⊥)		terrain		Codence	differences for several spatiotemporal
China	40.08			versus		Cadence	Variables when comparing the dual-task
				irregular			performance between regular terrain and
				terrain		Step length	irregular terrain. These variables
							included walking speed (t $(8) = 3.074$,
						Step width	p = 0.015; cadence (t (8) = 2.400, $p =$
							0.043); step length (t (8) = 2.615, p =
							0.031) and step width (t (8) = 3.074 , p
							= 0.023)
							(Paired t-test)
You et	27	60.7	-	Hospital	-	Walking	The results showed an improvement in
al., 2012,		(4.8)		environment		time (30-	time taken to complete 30-meter and
South	48.1%			versus		Meter	distance walked in six minutes after
Korea				outdoor		Walking	the treatment in the hospital
				environment		Distance	environment, but not in the outdoor
						Test)	environment.
						Walking	The Berg Balance Scale and TUG scores
						distance	improved after the treatment in both
						(Six-minute	environments but did not reach
						Walk Test)	significant difference.
						Physical	(paired t-test)
						functioning	
						(TUG)	
						Balance	
						(Berg	
						Balance	
						Scale)	
Zhang et	4308	65.3	Employed	Bike lane	_	Frequency	Employed population (coefficient = -
al., 2014.	1000	(5, 6)	population:	density:		of cycling	1.448, elderly population (-4.379).
China	29 08	(0.0)	household	land-use		and	medium income household (0 313), bike
			income	mixture:		duration of	lane density (0.052), population
				bus stop		cvcling	density (0.074) , land use mix (0.536) .
				density:		-13	bus stop density (-0.616) and distance
				euclidean			
				CuCITUEan			

			distance from the centroid of the neighborhoo d to the central business district; population		to central district (-0.132) were associated with frequency of cycling. Elderly population (-5.183), bike lane density (0.134), population density (0.131), land use mix (1.416), and bus stop density (-0.792) were associated with duration of cycling.
			density; elderly population		associated with frequency and duration of cycling. Bus stop density was not associated with duration of cycling.
					(Logit Regression Analysis and Zero- inflated Poisson regression)
Zukowski et al., 2020, USA	26 77.0% fallers 69.0% non- fallers	76.8 (9.4), faller s 78.3 (7.3), non- faller s	Real environment versus laboratory setting	Stride velocity Stride length variability Stride duration variability Gait speed	Environment has no significant effect on gait variability among fallers and non-fallers. The Group x Environment ANOVA exhibited only a significant main effect of Group on gait speed (F (1,24) = 5.45, p = 0.03, effect size (partial eta square = 0.185), such that, on average, non- fallers walked 0.2 m/s faster than fallers. The number of people present in the real-world environment, which includes both individuals in and outside of the participant's walking path, was related to the change between the lab and lobby in gait speed ($r_s = 0.56$, p = 0.003) and stride length variability (-0.56, p = 0.003), across fallers and non- fallers. The relationship between environmental busyness and environmental changes in unadjusted gait speed and stride length

							variability was driven by the number of people (bystanders) in the real-world environment who were outside the participant's walking path (21.65 \pm 7.47 people, $r_s = 0.58$, $p = 0.002$ and r_s = -0.54, $p = 0.005$ for gait speed and stride length variability, respectively) rather than by people within the participant's walking path (0.75 \pm 0.72 people, $r_s = -0.07$, p>0.05 and $r_s = -0.27$, p>0.05 for gait speed and stride length variability, respectively)
		Se	alf-reported mobility	outo	ome and envir	onmental fact	(ANCOVA and ANOVA)
Ahrentzen	719	70.8	- Paths w	th	Paths with	Walking	81 5% of participants reported paths
Anrentzen et al., 2010, USA	58.0%	(NR)	- Paths wi views of building homes; paths wh I can se other people	or nere	Paths with view of greenery and scenery	walking preferences	<pre>%1.5% of participants reported paths with a view of greenery were the most preferred walking path. 55.8% of participants reported paths with views of building or homes were the 2nd most preferred walking path. 60.2% of participants reported paths where they can see other people was the 3rd most preferred walking path. (Descriptive statistics)</pre>
Berke et al., 2007, USA	936 64.2%	78.5 (6.1)	- Shorter distance closest grocery store (- 440 m); more dwelling units pe acre of parcel where th residence is locat	e to		Walking for exercise	Shorter distance to closest grocery store (< 440 m) [OR (95%CI) = 2.26 (1.12; 4.56)], more dwelling units per acre of the parcel where the residence is located (> 21.7) [1.96 (1.15; 3.35)], more grocery store, restaurant, or retail clusters in 1-km buffer (> 1.8) [1.70 (1.11; 2.60)], fewer grocery stores or markets within 1-km buffer (< 3.7) [1.50 (1.02; 2.20)], smaller size of closest office complex (< 36 659 sq m) [1.28 (1.08; 1.53)], longer distance to closest office/mixed-use complex (> 544 m) [1.27 (1.04; 1.56], smaller

				(> 21 7):			size of block where residence is
				(> 21.///			located (≤ 23876 sg m) [1 19 (0 99)
				arocory			1 (3) were associated with walking
				glocely			averaine
				score,			exercise.
				restaurant,			
				or retail			(Regression)
				clusters in			
				1-km buller			
				(> 1.8);			
				iewer			
				grocery			
				stores or			
				markets			
				within 1-km			
				buffer (<			
				3.7);			
				smaller			
				size of			
				closest			
				office			
				complex (<			
				36 659 sq			
				m); longer			
				distance to			
				closest			
				office/mixe			
				d-use			
				complex (>			
				544 m);			
				smaller			
				size of			
				block where			
				residence			
				is located			
				(< 23876 so			
				(, <u>200</u> , 009 m)			
Boakve-	1277	NR	_	Perceived	_	Walking for	Hong Kong older adults accumulated
Dankwa et		(NR)		destination		transportat	significantly more minutes of walking
al 2019	60 08	(1)1()		accessibili		ion	than their Brishane counterparts and
Australia	Brishano			+17		T 011	reported higher accessibility to most
11UD CLALLA	sample			СY			destinations. The between-city
Boakye- Dankwa et al., 2018, Australia	1277 60.0% Brisbane sample	NR (NR)	_	<pre>markets within 1-km buffer (< 3.7); smaller size of closest office complex (< 36 659 sq m); longer distance to closest office/mixe d-use complex (> 544 m); smaller size of block where residence is located (< 23876 sq m) Perceived destination accessibili ty</pre>		Walking for transportat ion	Hong Kong older adults accumulated significantly more minutes of walking than their Brisbane counterparts and reported higher accessibility to most destinations. The between-city

and Hong Kong	58.5% Hong Kong sample						differences in the percentage of older adults with access to various destinations were considerable for shorter distances (5- and 10- minute walk from home). (Regression)
Boakye- Dankwa et al., 2019, Australia and Hong Kong	1277 60.0% Brisbane sample 58.5% Hong Kong sample	NR (NR)	_	Perceived access to destination s (good vs. limited) within 5/10/20 minutes' walk from home		Walking for Transport Walking for Recreation	Perceived good access to a destination 5 mins walk from home [OR (95%CI) = 0.56 (0.34; 0.92)], perceived limited access to a destination 10 mins walk from home [0.55 (0.36; 0.83)], and perceived good access to a destination 20 mins walk from home [0.70, (0.51; 0.97)] were associated with being a non-walker for transport. Perceived good access to a destination 20 mins walk from home [0.69 (0.49; 0.98)] was associated with being a non-walker for recreation. Perceived good access to a destination 10 or 5 minutes from home was not associated with being a non-walker for recreation. (Regression)
Borst et al., 2009, Netherland s	364 60.0%	68.0		<pre>Pavement separate walking route; ramps on/off pavement; slopes and/or stairs; quality of pavement; obstacles; zebra crossings; trees along route; waste terrain; blind walls; benches; bus</pre>	Green strips; front gardens	Walking route choice (destinatio n and no of trips)	The presence of slopes and/or stairs (β = 0.26), green strips (0.05), blind walls (0.09), litter on the street (0.08) and parks (0.43) increased resistance to walking. Significantly lower resistance to walking along links with pavements (- 0.11) and front gardens (-0.05). (Multivariate linear regression)

				<pre>or tram stops; litter on street; dog droppings; graffiti dwellings, ground level; dwellings, first floor; high-rise (>3 storeys); shops; business buildings; catering establishment s; vacant buildings; parks; city centre</pre>			
Cauwenberg et al., 2014, Belgium	50986 55.6%	74.3	Contacts with neighbors; satisfaction contacts with neighbors; neighbor' social support; neighborhood satisfaction; neighborhood involvement; participation ; volunteering		-	Daily walking for transportat ion	<pre>Weekly or more contact with neighbours [OR (95%CI) = 1.87 (1.61; 2.19)], neighbours social support [1.10 (1.04; 1.16)], neighborhood involvement [1.11 (1.05; 1.18)], participation [1.02 (1.01; 1.04)], volunteering [1.11 (1.03; 1.20)], were positively associated with daily walking for transportation. Neighbourhood satisfaction and satisfaction contacts with neighbours were not associated with walking for transportation. (Regression)</pre>
Cauwenberg et al., 2016, Belgium	1131 47.5%	71.9 (6.2)	-	Sidewalk presence; sidewalk evenness; separation from traffic sidewalk	Vegetation	Walking for transportat ion	In the total sample, sidewalk evenness was the most important street feature for walking for transportation [% of participants responded (95%CI) = 56.2 % (55.0; 57.4)], followed by traffic volume [9.1 % (8.6; 9.6)], and overall upkeep [7.7 % (7.5; 7.9)]. These were followed by speed limit [5.9 % (5.6;

					-
		separated			6.3)], separation from traffic [5.7 %
		from			(5.4; 6.0)], and vegetation [5.2 %
		cycling			(4.9; 5.5)] for which the importance
		path by a			did not significantly differ from each
		curb;			other. Consecutively, importance
		sidewalk			decreased significantly for the
		separated			presence of a bench $[4.5 \% (4.2; 4.8)]$,
		from			an obstacle on the sidewalk [3.3 %
		cycling			(3.2; 3.4)], and traffic calming [2.3 %
		path by			(2.2; 2.5)].
		color;			
		sidewalk			(Choice-based conjoint analyses)
		separated			(
		from			
		cycling			
		path by			
		real			
		separation			
		(parked			
		cars,			
		shrubs,			
		etc.);			
		obstacles;			
		traffic			
		volume;			
		speed			
		limit;			
		presence of			
		traffic			
		calming;			
		overall			
		upkeep;			
		presence of			
		bench			
Cauwenberg 895	71.8 -	Type of	-	Cycling for	Type of cycle path was the most
et al.,	(5.2)	cycle path;		transportat	important environmental attribute
2019, 47.8%		traffic		ion	determining older adults' preference
Belgium		density;			for cycling for transportation (OR =
		cycle path			40). The second most important
		evenness			attribute was traffic density (16.7),
					followed by cycle path evenness (11.8)

							and distance (10.6).
							(Hierarchical Bayes analyses)
Cerin et al., 2020, Australia	909	76.5 (6.0)	_	Densities of different categories of destination s (food outlets and retail; civic and institution al; entertainme nt; recreationa	_	Walking for transportat ion Walking for recreation	Neighbourhood residential density was positively associated with (a) both within (frequency [e ^b = 1.008] and amount of walking [1.015]) and outside neighbourhood walking (frequency [1.003] and amount of walking [0.997]) for transportation and (b) both within (frequency [1.002] and amount of walking [1.004]) and outside neighbourhood walking (frequency [1.014] and amount of walking [1.053]) for recreation. (Generalised additive mixed models)
Clarke et al., 2017, Canada	161 63.0%	74.3 (6.3)	_	Neighbourho od walkability	Precipitati on	Total number of different destination s participant s walked to in the past 30 days	Older adults living in more walkable neighbourhoods (greater intersection density, shorter block length, more amenities) walked to more destinations in the past month. Snow had a negative effect on mobility. At average levels of rain, a one per cent increase in the proportion of days with snow decreased the expected number of destinations older adults walked to in the past 30 days by a factor of 0.24 (p < 0.01). (Poisson regression)
Clarke et al., 2013, USA	1188 71.0%	78.7 (10.0)	_	Sidewalks in place on both sides of street; continuous unbroken sidewalks;	_	Number of days participant s goes outside in a typical week and	Older adults living in more accessible environments had 18% higher odds of being in the more mobile group [OR (95%CI) = 1.18 (1.01;1.41), p < 0.01].

				. 1		1 1 1 1 1	
				smooth		mobility	
				sidewalk		impairment	
				surfaces;		based on	
				sidewalks		client's	
				free from		difficulty	(A concertized growth minture model)
				obstruction		in walking	(A generalized growth mixture model)
				s;			
				sidewalks			
				wide enough			
				for two			
				neonle to			
				peopie co			
				public			
				tranait			
				stop on the			
				DLOCK;			
				urban			
				accessibili			
				ty score			
				(range, 0 -			
				6)			
Clarke et	4154	73.6	-	Housing	-	Mobility	Housing density modified the effect of
al., 2005,		(6.7)		density;		limitation	lower extremity functional limitations
USA	66.0%			land use			on activities of daily living
				diversity			disability ($\beta = -0.181$, p < 0.05).
							A significant interaction between
							A Significant interaction between
							iunctional limitations and decreasing
							land use diversity was noted (0.050, p
							< 0.05)
							(Hierarchical Poisson Regression
							Models)
Clarke et	1331	64.5	-	Barriers	-	Use of	For those using walking aids, or a
al., 2019,		(10.4)		getting		wheeled	combination of walking and wheel aids,
USA	65.0%			around		mobility	only other unspecified store barriers
				outdoors;		aids	significantly reduced participation (p
				barriers		(scooter,	< 0.01) but poor access to buildings
	1			aggagging		manual	was not accepted with participation
				accessing		manual	was not associated with participation.

				other unspecified barriers		<pre>power wheelchair) Walking aids (cane, walker, crutches, orthotics)</pre>	For those using mobility aids, there was no significant effect of inaccessible buildings on participation. For those using wheel aids only, there was no significant difference in participation among those reporting store access barriers, other store barriers, or no store barriers. There was no interaction effect between mobility aids and sidewalk accessibility.
							(Linear regression and interaction effects)
Dalton et al., 2016, England	15672 NR	62.2 (9.1)	-		Green space in home neighborhoo d (least or most)	Mobility limitation	Those living in neighbourhoods in the least green area were more likely to have difficulty walking half a mile than those living in the greenest area of neighbourhoods (10.2% in least vs 7.9% in greatest, p = 0.001).
Etman et al., 2014, Netherland s	408 52.9%	75.1 (6.6)	_	Number of observed streets; functional features; destination s; safety	Aesthetics	Self- reported walking for transportat ion	An increase in functional features (e.g., presence of sidewalks and benches) within a 400-meter buffer, in aesthetics (e.g., absence of litter and graffiti) within 800- and 1200-meter buffers, and an increase of one destination per buffer of 400 and 800 meters were associated with more walking for transportation, up to 2.89 minutes per two weeks (95%CI 1.07-7.32, p < 0.05). Safety was not associated with working for transportation (Linear regression analyses)

Giehl et	1705	70.4	Area income	Land use	Public open	Walking for	High street connectivity [OR (95%CI) =
al . 2016.		(8 0)		mix: street	spaces	transportat	1.85 (1.16: 2.94)], high population
Brazil	61 4%	(0.0)		density:	Spaces	ion	density [2 19 (1 40: 3 42)]. medium %
210211	01.10			street		2011	of paved streets $[1 \ 61 \ (1 \ 04: 2 \ 49)]$.
				connectivit		Walking for	high $%$ of paved streets [2 11 (1 36:
						leisure	3 27 bigh & of sidewalks [1 77
				y, population		ICIDUIC	(1 11. 2 83) were all associated with
				donsity.		Defined as.	(1.11, 2.00) were all associated with
				atroot		any walking	transportation
				lighting.		(> 10)	
				inglicing,		(2 ± 10)	Noighbourbood income street density
				saveu		k) or po	nergibournood income, street density,
				streets;		K) OF NO	min and public open spaces were not
				SIDEWAIKS		WAIKING (mix, and public open spaces were not
							associated with warking for
						Initinutes/wee	transportation.
						к)	Neighbourbood income [modium income
							1 40 (1 04, 2 12)] and street density
							[1.49 $(1.04, 2.12)$ $]$ and street density $[$ 1.47 (1.02)
							2 10) L ware accessibled with walking for
							2.10) were associated with warking for
							Tersure.
							All other environmental factors were
							not associated with walking for
							loisure
							reisure.
							(Regression)
Giehl et	1705	70.3	Social	Sidewalks;	Green	Walking for	Presence of sidewalks was related to
al., 2016,		(7.7)	support	sidewalk	areas;	transportat	walking for transportation.
Brazil	63.9%		from	steepness;	presence of	ion	
			friends/nei	presence of	hills		Existence of crosswalks in the
			ghbors;	garbage;			neighborhood (OR = 1.43), safety during
			social	open air			the day (1.43), presence of street
			support	sewers;			lighting (2.30), recreational
			from	traffic as			facilities (1.60), and having dog
			family;	barrier for			(2.23) were significant predictors of
			walking	walking/cyc			walking for transportation (p < 0.01).
			with the	ling;			
			dog	existence			(Multinomial logistic regression)
				of			
				crosswalk;			

			1		1		
	110	ND		<pre>smoke pollution by cars; street lighting; bikeways, trails; parks, recreationa l facilities; promoted sports and/or walking events; safe to walk during the day; safe to walk at night </pre>			
et al., 2016, Israel	60.0%	(NR)		paths/sidew alks; time of day; crowded places	(hill place)	mobility scooters (MS)	willingness to use MS decreases when the person beliefs that MS use in the city requires separated paths on the sidewalks or on the roads, that MS use during evening hours is dangerous due to a lack of conspicuity markers, that MS is not suitable for use in hilly areas and that using MS in crowded places is difficult [β (SE) = -1.634 (0.455), p < 0.0001]. (Binary logistic regression)
Gómez et	1966	70.7	-	Street	-	Walk for	Older adults who resided in areas in
al., 2010,		(7.7)		connectivit		60+ mins in	the highest tertile of the connectivity
Colombia	62.5%			y; public		typical	index (1.81-1.99) were significantly
				park		week, walk	less likely to walk for at least 60
				density;		for 150+	minutes during the week as compared to
				presence of		mins in	those in the lowest tertile [prevalence

				a Ciclovía		typical	OR $(95\%C1) = 0.64$, $(0.44; 0.93)$, p =
				corridor;		week (y/n)	0.021). Those who resided in areas
				presence of			within the middle tertile of public
				TransMileni			park density (4.53-7.98) were more
				o stations			likely to walk for at least 60 minutes
							than those who lived in areas within
							the lowest tertile [1.42 (1.02; 1.98),
							p = 0.039)]. Those participants who
							reported feeling safe or very safe from
							traffic when crossing the streets were
							more likely to walk for at least 60
							minutes than those who felt very
							unsafe, unsafe, or neither [1.50 (1.11;
							2.03, p = 0.007].
							Quality and maintenance of the
							sidewalks, presence of ciclovia
							wore not associated with walking for at
							least 60mins or 150mins per week
							Street connectivity, public park
							density, safety were not associated
							with walking for at least 150mins per
							week.
							(Regression)
Gong et	1225	73.3	-	-	Neighbourho	Mobility	The interaction between variations in
al., 2014,		(4.1)			od	limitation	neighbourhood vegetation and lower
Wales	0%				vegetation		extremity physical function was
							<pre>statistically significant [OR (95%Cl) =</pre>
							1.92 $(1.12; 3.28)$, p = 0.017].
							The interaction between amount of
							neighborhood green space and lower
							ovtromity physical function was not
							etatistically significant
							statistically significant.
							(Logistic regression)
Hand and	4283	74.5	Neighborhoo	Neighborhoo	-	Mobility	Older adults with no mobility
Howrey,		(6.9)	d social	d		limitation	limitation and living in a higher
2019, USA	58.0%		cohesion;				density area were more likely to

				population density			<pre>participate in social activities than those with mobility limitation and living in a less density area [OR (95%CI) = 1.64 (1.08; 2.51), p < 0.05]. The main effect of the interaction between physical mobility and neighborhood social cohesion was not significant for any outcome variable. (Logistic regression)</pre>
Hand et al., 2015, Canada	237 58.2%	72.0 (7.5)	Neighborhoo d cohesion	Public transportat ion within easy walking distance; stores within easy walking distance; neighbourho od safety; no traffic problems; no graffiti problems; no noise problems; no crime problems	No air quality problems	Community mobility (measured using on using a single item from the Keele Assessment of Participati on: 'During the past four weeks, I have moved around outside my home, as and when I have wanted')	Satisfaction with community mobility was associated with the perception of no traffic problems [adjusted OR (95%CI) = 3.0 (1.4; 6.2)] and neighbourhood safety [3.4 (1.2; 9.8)] among older adults (p < 0.05). Other environmental factors were not associated with community mobility. (Regression)
Herbolshei mer et al., 2020, Canada	434 64.7%	71.6 (8.1)	-	Presence of sidewalks; continuous sidewalks on both sides; public	Green open space	Walking for transportat ion	Building types [OR (95%C1) = 1.81 (1.05; 3.13), p = 0.034], safety (street crossing) [5.15(2.02; 13.15), p = 0.001] were significantly associated with walking for transport.

				spaces.		Mixed used houses undeveloped land
		1		spaces,		henches intersections and traffic
		1				penches, intersections, and trailic-
				Iltness/rec		calming were not associated with
				reation		walking for transport.
				area;		
				safety and		
				comfort;		(Linear regression)
				crossing		
				area with		
				ramps or		
				curb cuts;		
				grooves or		
				bumps;		
				intended		
				crossing		
				area for		
				pedestrians		
				: signs for		
				nedestrians		
				/children/·		
				signs for		
				school		
				sender		
				speed zone,		
				park/playgr		
TT	1000	70.0				
Hoenig et	1002	/8.0	-	Presence of -	Use oi	The likelihood that assistive device
al., 2006,	1.0.0.0	(8.0)		barriers vs	assistive	will be used during mobility (vs none)
USA	100%			no barriers	devices	was significantly higher in those with
				at the		environmental barriers at home [OR
				entry way		(95%CI) = 1.67 (1.04; 2.68)]. p-value
				or at		not reported.
				multilevel		
				living		(Regression)
				space		
Holle et	1269	74.0	-	Walkability -	Transport-	Findings showed a positive relationship
al., 2014,		(6.0)		index	related	between neighborhood walkability and
Netherland	62.0%				walking	weekly minutes of older adults' self-
						reported walking for transportation $[\beta]$
						$(95\%CT) = 4.625 (2.571: 6.679) \cdot n <$
		1			Transported	0 0011
					related	0.001
			1			

						cycling Recreationa l walking Recreationa	Walkability was not associated with weekly minutes of older adults' self- reported cycling for transportation and recreation and walking for recreation. (Multilevel linear regression)
Inoue et al., 2011, Japan	1921 48.1%	69.5 (2.9)	Seeing people being active	Residential density; access to shops; public transport; sidewalks; bicycle lanes; access to exercise facilities; traffic safety	Aesthetics	Transportat ion walking for daily activity (min/week) Recreationa l walking (min/week), Total neighborhoo d walking (min/week)	Good bicycle lanes [OR (95%Cl) = 1.26 (1.03; 1.55), p = 0.026], good access to exercise facilities [1.26 (1.03; 1.54), p = 0.027], seeing people being active [1.31 (1.06; 1.61), p = 0.011], and good aesthetics [1.31 (1.07; 1.61), p = 0.009] were positively associated with transportation walking. Seeing people being active [1.42 (1.16; 1.75), p = 0.001] and aesthetics [1.55 (1.26; 1.86), p < 0.001] were positively associated with recreational walking Access to exercise facilities [1.23 (1.00; 1.51), p = 0.047], social environment [1.39 (1.14; 1.71), p = 0.001], and aesthetics [1.48 (1.21; 1.81), p < 0.001] were associated with total neighborhood walking. (Multilevel logistic regression analyses)
Keskinen et al., 2020, Finland	848 62.0%	80.6		Resident location: city center; subcenter; dense area outside centers;	_	Walking difficultie s	There was no difference in walking difficulties between older adults residing in the city, subcenter, dense area outside centres and dispersed areas outside centres. (Chi-square)

				dispersed			
				areas			
				outside			
				oucside			
				centers			
Keysor et	438	70.0	-	Community	-	Mobility	Older adults who reported community
al., 2010,		(4.0)		horrier		limitation	mobility barriers had about twice the
USA	70.0%			items: uneven		(measured	odds of reporting high daily activity
				sidewalks or		by LLFDI)	limitation [OR (95% Cl) = 2.0, (1.2;
				other walking		,	3 1)] Older adults who reported high
				areas (some			transportation facilitators reported
				or a lot); no			
				parks and			Tess DAL [0.5 (0.30; 0.8)].
				walking areas			
				that are easy			Community mobility barriers or
				to get to and			transportation facilitators were not
				easy to use;			associated with daily activity
				no sale parks			frequency
				areas: no			rreducine i.
				places to sit			
				and rest at			
				bus stops, in			
				parks, or in			
				other places			
				where people			
				walk; no			
				curbs with			(Multimoniable legistic regression)
				curb cuts			(Mullivariable logistic regression)
				Transportatio			
				n			
				facilitators:			
				public			
				n that is			
				close to your			
				home (some or			
				a lot);			
				public			
				transportatio			
				n with			
				adaptations			
				for people			
				who are			
				limited in			
				their daily			
				activitles			
	l			(some or a			

				<pre>lot); handicap parking (some or a lot); have a car available to you at your home</pre>			
Kylberg et al., 2013, Sweden	154 77.0%	NR (NR)	-	Type of living area (urban, semi- urban/rural); type of dwelling (multi- dwelling block, one/two family house/other); number of barriers (entrance, indoor, outdoor)	-	Use of walking sticks, crutches, wheeled walking frame	Number of outdoor barriers was a statistically significant predictor for becoming a new user of assistive devices for mobility six years later (p < 0.05). OR data not reported in the study. (Logistic regression analyses)
Laatikaine n et al., 2018, Finland	844	64.3 (5.5)	_	Walkway density; residential density; public transit stop density; intersection density; share of sporting places	_	Total monthly walking	Walkway density (β = 0.278, p < 0.0001), residential density (0.720, p < 0.0001), public transit stop density (0.535, p < 0.0001), intersection density (0.092, p < 0.05), and share of sporting places (0.132, p < 0.001) were all positively associated with total monthly walking. (<i>Regression</i>)
Li et al., 2005, USA	577 64.0%	74.0(6.3)	Number of places of employment	Neighbourhood level: household; street intersection; area of green and open space for recreation Residential level:	-	Self- reported neighbourho od walking	Density of places of employment in the neighbourhood (β = 0.15), household density (0.27), number of street intersections (0.37), and area of green and open spaces (0.23), were all significantly related to walking activity at the neighbourhood level. At the residential level, number of recreational facilities (0.22) and

				access to recreational facilities; safe to walk; safe from traffic; number of recreational facilities; number of street intersections by safe from traffic; area of green and open space for recreation; area of green and open space by access			<pre>areas reported by the residents that were safe for walking (0.12) were significantly related to walking activity. Residents in neighbourhoods with more street intersections who reported being safer from traffic tended to report more neighbourhood walking activity. No significant interaction was observed between proximity of physical activity facilities and areas of green and open space. (Multi-level regression modelling)</pre>
Li et al., 2008, USA	1221 43.0%	62.0	Neighbourho od level	Land use mix; street connectivit y; public transit; stations	Green open spaces	Neighborhoo d walking Walking for transportat ion Walking for errands	Neighborhood walking was associated with land use mix [β (SE) = 1.403 (0.291), p < 0.000], and not associated with street connectivity, public transit stations, green and open space. Walking for transportation was associated with land use mix [1.752 (0.384), p < 0.001], street connectivity [0.180 (90.061), p = 0.004], public transit stations [0.137 (0.053), p = 0.011] and not green and open spaces. Walking for errands were associated with street connectivity [0.104 (0.046), p = 0.025], not associated with land use mix, public transit stations, green and open spaces

							(Multilevel poisson regression models)
Marquet et al., 2017, Spain	1300	79.1 (2.7)	_	Levels of population density; land use mix; measures of connectivit y and design	_	Total time walking, travelling, driving and number of trips	High walkability was associated with more minutes spent walking [OR (95%CI) = 1.83 (-0.8; 2.28), p < 0.01], total time travelling [1.05 (-6.8; 22.5), p < 0.05], total time driving [1.17 (-2.06; 10.3), p < 0.05], and not number of trips. (Regression model-Difference-in- difference models)
Mendes et al., 2009, USA	4317 61.0%	74.5 (6.7)	Neighbourho od level cohesion & disorder; Individual level cohesion & disorder		_	Total minutes of walking among persons, walking for exercise and walking for other things.	<pre>Individual level cohesion was associated with total mins of walking (coefficient = 2.05, p < 0.001), walking for exercise (1.75, p < 0.001) and other walking during the past 2 weeks (1.33. p < 0.001). Neighbourhood level disorder was associated with total mins of walking (-2.69, p < 0.05) and walking for others (-2.35, p < 0.05) and not with walking for exercise. Neighbourhood level social cohesion and individual level disorder were not associated with total mins walked or walking for exercise or other walking. (Regression)</pre>
Michael et al., 2006, USA	582; 67%	75.1 (6.3)	_	Sidewalk quality; presence of shopping malls; perception near home of shopping mall, public	Aesthetics; Presence of parks; Presence of trails;	Neighborhoo d walking (low walkers (no to moderate walking) vs high walkers (quite a bit & a	Neighborhood walking was associated with objective neighbor characteristics [the presence of a mall (OR = 4.12, p = 0.147) and the presence of graffiti and vandalism (0.57, p = 0.28)]. Neighborhood walking was associated with perceived neighborhood characteristics [presence of a mall (2.10, p = 0.108)], p-values were set at 0.25.

				park, or		great deal	
				trails for		walking))	No other perceived and objective
				walking,			neighborhood environment variables were
				hiking, or			associated with neighborhood walking
				running;			
				perception			(Regression)
				of issues			
				in			
				neighborhoo			
				d: "no			
				sidewalks			
				(or foot-			
				paths),"			
				"unsafe			
				sidewalks			
				(obstacles			
				to			
				walking);"			
				perception			
				of issues			
				in			
				neighborhoo			
				d:			
				"graffiti,"			
				and			
				"vandalism.			
				"			
Mifsud et	500	NR	Participati	Distance to	-	Self-	District of residence was a strong
al., 2017,		(NR)	on in	bus stop;		reported	predictor for how frequency the older
Malta	67.8%		social	district of		driving	adults use public transport. The odds
			activities;	residence;		(yes/no)	for those who participated in social
			Presence of	household		and use of	activities to use public transport
			personal	type		public	weekly rather than never were almost
			assistance	(single or		transport	three times more than for those who did
				multi		(dailv,	not participate in any social
				member)		weekly,	activity. The model showed that older
						monthly,	people with personal assistance used
						infrequentl	public transport less than those who
						y, never)	did not require any assistance ($\beta = -$
							1.357 when comparing weekly with never
					<pre>and -0.654 when comparing infrequently with never). None of the other environmental factors were predictors of driving among older adults. (Binary regression, multinomial regression)</pre>		
---	--------------	----------------	--	---------------------------------------	---		
Mortenson et al., 2021, Canada	22 68.0%	68.9 (13.9)	- Navigating - some environment s: maneuvers sidewalks, ascends or descends steps, side slopes, curbs	Wheelchair skills or confidence	Navigating environment (WheelCon scores) were positively significantly correlated with Wheelchair still test (WST-Q) capacity (r = 0.488), WST-Q confidence (r = 0.787) and not WST- performance. (Pearson's correlation)		
Nagel et al., 2008, USA	546 70.0%	74.0 (NR)	- Percentage - of high- volume streets; percentage of medium- volume streets; percentage of low- volume streets; percentage of sidewalk coverage; number of intersectio ns; number of bus lines; number of	Total walking time	Within a quarter- mile radius around participants' homes, a higher number of commercial establishments (β (SE) = 0.23 (0.07), p < 0.001), select establishments (0.60 (0.27), p = 0.024), and a greater percentage of high-volume streets (1.00 (0.50), p = 0.048) were all significantly associated with increased total walking time. A higher percentage of low-volume streets (-1.16 (0.40), p = 0.004) was associated with fewer minutes walked per week. At the half-mile buffer, total walking time was associated with number of commercial establishments (0.06 (0.02), p = 0.002), select establishments (0.31 (0.1), p = 0.002), and percentage of high-volume (1.50 (0.61), p = 0.015)		

				<pre>commercial establishme nts; number of select establishme nts</pre>			<pre>and low-volume (-1.69 (0.5), p < 0.001) streets. Number of intersections, percentage of medium-volume streets, percentage of sidewalk coverage, no of bus lines were not associated with total walking time within a quarter or half a mile radius around participants home.</pre>
Nathan et al., 2012, Australia	2918 55.9%	72.9 (5.4)		Access to commercial destination within 400m and 800m neighbourho od service areas; destination mix within 400m and 800 m service area	-	Prevalence of weekly walking (none vs some) and sufficient mins of walking per week (insufficie nt, <150 mins) vs sufficient (>150 mins)	<pre>(Multifievel regression analysis) Older adults with access to general services within 400m [OR (95%CI) = 1.33 (1.07; 1.66), p = 0.011] and 800m [1.20 (1.02; 1.42), p = 0.027], and social infrastructure within 800m [1.19 (1.01; 1.40), p = 0.043] were more likely to engage in some weekly walking. Access to medical care services within 400m [0.77 (0.63; 0.93), p = 0.008] and 800m [0.83 (0.70; 0.99), p = 0.044] reduced the odds of sufficient walking. Access to food retail, general retail, financial services and the mix of commercial destination mix within 400m and 800m service area were not association with walking among Australian older adults. (Logistic regression)</pre>
Patterson and Chapman, 2004, USA	372 100.0%	78.0 (5.7), urban 78.1 (4.2), suburb an	-	Estimated distance to grocery store; total number of services used within	-	Transportat ion (how do you usually get to places) Walkability assessed	New urbanism partially explained several differences in service use and activity: distance to a grocery store $(r^2 \text{ change } = 0.11, p = 0.001), \text{ number}$ of services used within 1 mile from home (0.06, p = 0.007), number of walking activities (0.08, p = 0.001), number of services accessed by walking

			<pre>1 mile of home; total number of walking activities; total number of services accessed by walking; total number of services accessed by driving Urban vs suburban</pre>		via walking activity, frequency, endurance, driving ability and purpose	<pre>(0.14, p = 0.000), and number of services accessed by driving (0.05, p = 0.001). (Multiple linear regression model)</pre>
Perchoux et al., 2019, Luxemburg	471 47.0%	NR (NR)	Number of amenities; diversity of amenities; number of public transports stops; street connectivit y; distance to activities	Greenness index	Utilitarian walking (mode of transport to reach regular destination)	The odds of walking were positively associated with the number of amenities [Coefficient (SE) = 0.006 (0.002)] and negatively associated with the number of public transport stops [-0.030 (0.013)]. Street connectivity ranging from 0 to 8 intersections was positively associated with the odds of walking [0.176 (0.059)] while intersections above 8 were negatively associated with utilitarian walking. An increase of 5-min in the walking distance from the place of residence is strongly negatively associated with walking [-0.189 (0.010)] Diversity in amenities and greenness were not associated with walking.

						(Regression model)
Portegijs et al., 2017, Finland	2550	80.6 (4.3)		Objectively - recorded and perceived environment al barriers	Moving out of home daily	The odds for moving out-of-home less than daily increased when participants perceived entrance-related barrier(s) (intermediate barriers OR = 1.9, multiple barriers OR = 3.5) or when they lived in homes with higher numbers of objectively recorded environmental barriers at entrances. Older adults living in homes with multiple objectively recorded environmental barriers at the entrance and those reporting perceived entrance related barrier(s) had increased odds ratios (OR = 3.5, p < 0.05) of not moving out of home daily. (Bivariable logistic regression)
Portegijs et al., 2020, Germany, the Netherland s, Spain, Sweden, United Kingdom, Italy	2455	74.1 (5.1)	_	<pre>Parks and - walking areas; places to sit and rest; public transportat ions; an additional, similarly formulated item on public facilities</pre>	Active travel time, daily walking and cycling related to transportat ion and activities (frequency and duration)	Overall, reporting a lot of public facilities [β (95%CI) = 0.24 (0.09; 0.38)] was associated with longer active travel times than reporting no such facilities at all. Similarly, reporting some [(0.18 (0.05;0.32)] or a lot [0.31 (0.17; 0.45)] of parks and walking areas was associated with longer active travel times than reporting no parks and walking areas at all. Reporting a lot of, not some, places to sit and rest [0.29 (0.15;0.43)] and public transportation stops [0.27 (0.12;0.42)] was associated with longer walking and cycling times than when no such places were reported. In terms of variety in perceived neighborhood resources, reporting "at least some" presence for all four of the neighborhood resources [0.26 (0.12;0.39)] was associated with longer

					active travel time than reporting "at least some" presence for two or fewer of the resources. Reporting the presence of "a lot" for one to two [0.16 (0.06;0.27)] or for three to four [0.36 (0.25;0.47)] of the perceived resources was associated with longer active travel time than not reporting "a lot" for any of the resources. All p < 0.05 (Mixed modeling approach)
Sabback et 40; 80% al., 2005, USA	73.3 (NR), New York 78.9 (NR), Florid a	Windy roads; very busy roads; roads less well maintained; bridges; narrow roads; constructio n; expressways or interstates /highways; dirt Roads	_	Driving	60% of participants from New York reported driving less during the winter, while 20% from Florida reported driving less in various sessions (one participant in spring, 3 in summer, 1 fall and 2 winter). 70% of participants from New YORK reported avoid driving at least one type of road condition while 80% of participants from Florida reported avoid driving at least one type of road condition. (Descriptive statistics)
Salvador 385 et al., 2010, 60.5% Brazil	NR (NR)	Good perception of safety during the night; presence of soccer fields in the district; walking time of not more than 10 minutes from home to soccer field; pharmacies; primary healthcare, bar; absence of open-air sewers;		Walking time (transport- related walking and leisure time walking)	Presence of soccer fields in the district [OR (95%CI) = 4.12 (1.41; 12.02), p = 0.011], and walking time of not more than 10 minutes from home to a soccer field [4.43 (1.46; 8.10), p = 0.006] were associated with the greater chance of walking in elderly men. Present of square [4.70 (1.43; 15.43), p = 0.012] and walking time of not more than 10 minutes from home to a primary healthcare [3.71 (1.19; 11.54), p =

				presence of places for walking in district; having a pet dog; presence of public lighting;			0.025] were associated with greater chance of walking among elderly women. Other factors (n=12) were not associated with chance of practicing walking
				presence of bar; square and absence of smoke pollution; perception that drivers respected pedestrian crossing the streets			(Multiple logistic regression)
Shigematsu et al., 2009, Japan	1623 56.5%	81.1 (4.5)	-	Residential density; land use mix- diversity; land use mix-access; street connectivit y; walking/cyc ling facilities; neighborhoo d esthetics; pedestrian/ traffic safety; recreationa l facilities near home; park near home; safety from crime	Neigborhood esthetics	Walking for transportat ion Walking for lesiure	<pre>Walking for transportation was correlated to land use mix- diversity and access, recreational facilities near home (p < 0.05), but not street connectivity, neighbourhood esthetics, pedestrian/traffic safety, safety from crime among older adults 66 years and older. Walking for leisure was correlated with land use mix diversity and access (p < 0.05), but not residential density, street connectivity, walking/cycling facilities, neighborhood esthetics, pedestrian/traffic safety, safety from crime, recreational facilities near home and park near home among older adults 66 years and older (p < 0.05) (Pearson correlation)</pre>

Slaur et	1542	NR	_	188		Use of	The top 20 environmental barriers
2011	1012	(ND)		onvironmont		walking	avparianced by the participants that
ar., 2011,	00 00	(111)		eliviionment		vaiking	bad limitations in meroment and use of
Latvia,	00.00			al Dalliers		alus,	Mehility devices were outdoor
Germany,						wheelchalls	Mobility devices were: outdoor
Sweden,				to the			environment [routes with steps (/),
Hungary				Housing			high kerbs (11), no resting surfaces or
				Enabler			too far between resting surfaces (8),
				Instrument			unstable walking surface in parking
							space (10), no/too few seating places
							(9), extremely low, high or narrow
							seating surfaces (3)], entrances [heavy
							doors without automatic opening (15),
							doors that do not stay in open
							position/close quickly (16), stairs the
							only route (12), no handrails (stairs)
							(4), steep gradients (17), long runs
							without level resting surface (18), no
							handrails (ramps) (19), heavy doors
							without automatic opening (20)1 and
							indoor environment [stairs to unstairs
							with necessary dwelling functions (13)
							ataing to becoment with personally
							dualling functions (14) no bonducile
							(attaine) (5) handwails along the
							(stairs) (5), nandralls placed too
							nign/low (6), wall-mounted cupboards
							and shelves placed extremely high (2),
							no grab bars at shower/bath and/or
							toilet (1)].
							(Simulated accessibility analysis)
Todd et	714	74.5	-	Walkability	-	Walking for	"Low walkability, low transit access,
al., 2016,		(6.3)		(residentia		errands and	low recreation access" (L-L-L) profile
USA	53.1%			l density,		exercise	walked the least for both errands &
				intersectio			exercise. "High walkability, high
				n density,			transit access, high recreation access"
				land use			(H-H-H) profile walked the most for
				mix, retail			both errands & exercise. Only the
				floor area			difference between the L-L-L profile
				ratio			and the H-H-H profile was statistically
				transit			significant (n=0.017) for walking for
				ston			evercise
1	1			scop	1	1	EVETCTRE.

				density, park density, recreation facility density); public transportat ion access; recreation environment access.			The "Medium walkability, transit and recreation access" profile did not differ significantly from either the L- L-L profile (p = 0.358) or the H-H-H profile (p = 0.064). (Latent profile analysis)
Travers et	832	75.6	-	Accessibili	_	Total	There was no significant association
al., 2018,	51 <u>0</u> 9	(NR),		ty; land		walking	between accessibility, land use mix,
USA	JI.0%	itv		safety from		CIME	and pleasantness with total walking
		partic		traffic;			time and total minutes spent walking.
		ipants		safety from		Occasions	
				crime;		of walking	(Correlation)
		79.5		pleasantnes			
		(NR), retire		S			
		ment					
		villag					
		е					
		partic					
		ipants					
Tsunoda et	421	/3.3	Seeing	Residential	Aesthetics;	Walking at	Older adults were more likely to walk
di., 2012, Japan	52 2%	(5.5)	people evercise:	access to	bills	mins per	perceived there were good traffic
oapan	52.20		household	shopping.	111115	week and	safety [OR $(95\%CI) = 1.64 (1.03; 2.60)$]
			car or	public		walking at	and pleasant aesthetics [2.12 (1.34;
			motor bike	transportat		least 150	3.36)]. There was also a positive
				ion, and		mins per	association between pleasant aesthetics
				recreationa		week	[2.00 (1.33; 3.02)] and walking at
				_ facilition.			least 150 mins per week. On the other
				presence of			transportation $[0, 64, (0, 42; 0, 98)]$ was
				sidewalks			negatively associated with walking at
				and bike			least 150 mins per week ($p < 0.05$).
				lanes;			

				crime safety; traffic safety		Residential density, access to shop, access to recreational facilities, presence of sidewalks, bike lanes, crime safety, presence of hills, seeing people, and household or motor bike were not associated with walking at least 60mins/week or at least 150ms/week. Traffic safety and access to transportation was not associated with walking at least 150mins/week or 60 mins/week, respectively. (Logistic regression)
Vasquez et al., 2019, USA	3716 55.2%	69.0 (0.2), Mexica ns 69.6 (0.3), Puerto Rican 72.6 (0.5), Cuban 70.8 (7.6), Domini can 69.3 (0.4), Centra 1 or South Americ an	Social cohesion		Walking difficulty	Those with high neighborhood social cohesion reported lower odds of walking limitations [OR (95%CI) = 0.90 (0.68; 1.2)], compared with those living in low social cohesion neighborhoods. (Logistic regression analysis)

White et	436	70.4	-	Uneven	-	Late Life	Older adults with 'no parks and walking
al 2009		(3 9)		sidewalks or		Disability	areas' reported less frequent
	69 08	(3.3)		other walking		Instrumont	areas reported ress requere
USA	09.05			and walking		THEFT	engagement in social accivities
				areas that are			compared to those with heighborhood
				easy to get to			parks and walking areas (OR = 0.5, $p <$
				and easy to			0.001).
				use; no sale			
				walking areas;			Older adults reporting adequate
				no places to			handican parking reported more frequent
				sit and rest at			nandicap parking reported more frequent
				bus stops, in parks or in			engagement visiting friends and
				other places			family' (1.8), going out with others to
				where people			public places' (1.8) and providing care
				walk; no curbs			and assistance to others (1.5), and
				with curb cuts;			'working at a volunteer job' (1.6)
				transportation			compared to those without adequate
				that is close			bandican parking (p(0,001)
				to your home;			nandicap parking (p<0.001).
				transportation			
				with			(Logistic regression)
				adaptations for			
				people who are			
				limited in their daily			
				activities;			
				adequate			
				handicap			
				parking; have a			
				to you at your			
				home			
Yang and	239	72.5	Social	Environmental	-	Community	When toilet space, toilet, tub/shower
Sanford,		(8.5)	support	included 17		participati	space, and tub/shower were perceived as
2012, USA	64.0%			features (e.g.,		on (how	barriers, the odds of infrequent travel
,				steps, toilets,		often do	were 46 7, 25 0, 29 0, and 8 0 times
				kitchen			higher respectively compared to when
				appliances, and bedroom		you move to	the same nerve in the first liter to when
				closets) in		various	they were perceived as facilitators.
				four areas of		destination	Among community features, the odds of
				the home (i.e.,)	infrequent community travel were 17.8
				bathroom,			times higher when sidewalks were
				kitchen, and			perceived as barriers and 21.3 times
				bedroom) and 7			higher when social environments at the
				features in the			destination were perceived as harriors
				(i.e., stores.			desermation were percerved as balliers.
				streets,			
				sidewalks,			(Stepwise regressions)
				visual appeal,			

	-		T.	1	r		
				public transit,			
				and destination)			
	Pe	rformance	hased and sel	f-reported mol	bility outcom	es and enviro	nmental factors (n=2)
Loung and	450	ND		Dhugi gal	billey outcom		
Leung and	450	NR	SOCIAL	Physical	-	IOLAL	Physical environment facilitators (β =
Chung,		(NR)	environment	environment		walking	15, p < 0.05) and social environment
2020,	79.7%		facilitator	facilitator		time	(0.16, p < 0.05) were found to predict
China			s and	s and			the total walking time. The effects of
			barriers	barriers		Walking for	the physical environment barriers were
						Transportat	not significant for total walking time.
						ion	
							Only the physical environment facilitators had a significant and positive effect on walking for transportation (0.15, p < 0.05). Social environment and physical environment barriers were not predictive of walking for transport
							tor cranspore.
							(Structural equation model)
Van Holle et al., 2016, Belgium	438 54.1%	74.3 (6.2)	-	Land use mix density; access to recreational facilities; access to services; connectivity; physical barriers to walkers; infrastructure for walking; safety from crime; safety from motorised traffic speeding	Aesthetics	Physical functioning (SPPB) Walking for transportat ion and recreation (self reported)	Objective neighborhood walkability moderated the association between older adults' physical functioning and weekly minutes of transport walking (β = 0.792, p = 0.003). None of the perceived environmental factors moderated the association between physical functioning and older adults' transport walking. (Multi linear regression)

Notes: ANOVA- Analysis of Variance; ANCOVA- Analysis of Covariance; e^b - Exponentiated Regression Coefficient; df - Degree of Freedom; IQR - Interquartile Range; m - Meter; mins - Minutes; NR- Not reported; OR-Odds Ratio; r - Correlation, r^s - Spearman Rho; SPPB - Short Physical Performance Battery; SD -Standard Deviation; SE - Standard Error TUG - Time Up and Go Test; 95%CI - 95% Confidence Interval, β - Beta Coefficient. Ph.D. Thesis M. Kalu, McMaster University - School of Rehabilitation Science

Mobility limitation includes self-reported inability on all or either of the following: walking up and down a flight of stairs (10 steps) or several flights of stairs, walking a mile (1600meter) or half a mile (800meter) or a quarter mile or a block (400meter) or 100-300meter, or across the room and running/jogging for 20-30 minutes.

Result highlighted in gray indicates no significant association between environmental factor(s) and mobility outcome. Most findings in the table were reported verbatim as the authors reported them in their paper. Appendix 3C: Quantitative studies that examined the association between multiple factors and mobility outcomes (n=113).

Author, year,	Total Sample	Mean age	Factors	Mobility outcome used	Findings (Analysis type)
country	size included in analysis	(SD)			Note: all variables in each study were analyzed using the same type of analysis unless otherwise stated
	% Female		Performance bas	sed mobility outcome	and >1 factors (n = 18)
Angel et al. 2003, USA	3050 58.0%	NR (NR)	<pre>F: Income P: age; sex; education; marital status</pre>	Walking time (4.5-Meter Walk Test)	Income between \$5,000-9,999 [β (SE) = 0.377 (0.203)] and 10,000-14,9999 [0.382 (0.170)] were associated with the time taken to walk 4.5-meter walk (p < 0.05) Older adults aged, between 75-84 [(0.231 (0.111)] and 85+ [1.15 (0.208)] were associated with more time taken to complete 4.5-meter walk (p < 0.05). Not married [-0.252 (0.108), p < 0.05] is associated with time taken to walk 4.5-meter walk. Education, and being female was not associated with the time taken to walk 4.5-meter walk. (Logistic regression)
Bann et al. 2016, United Kingdom	947	78.3 (5.3)	F: Income P: Education	Gait speed (grouped as major and persistent mobility disability)	The effects of reducing the incidence of mobility disability were more significant for individuals with post graduate degrees [HR (95%CI) = 0.72 (0.51; 1.03)] than individuals with lower education [0.93 (0.70; 1.24)] (p < 0.05). The reduction of incidence of mobility disability was larger for individuals with an income of \geq \$50 000 [0.82 (0.5; 1.16)] compared to individuals with an income \leq \$24 999 [0.86 (0.63; 1.17)] (p < 0.05). (Cox regression)

Barbosa et	158	64.0	E: Lack of	Steps per day	Steps per day was inversely associated with lack of
al., 2015,		(9.0)	green space		green areas (β = -1363.54, p < 0.001) and age (-81.13,
Brazil	37.0%		areas		p < 0.001)
			P: Age		(Multiple linear regression)
Carrapatoso	85	68.6	E: Types of	10,000 steps per	Older women who presented positive perceptions about
et al,		(5.0),	residences;	day	traffic safety [OR (95%CI) = 4.395 (1.024; 18.866)]
2018,	69.0%	male	distances to		and pleasant environment [8.718 (1.803; 42.149)] were
Portugal			facilities;	Peak 30 mins	more likely to achieve 10,000 steps per day. The
		68.4	walking or	cadence above 100	positive perception of nearby parks appeared to be a
		(4.8),	cycling		statistically significant predictor of the compliance
		female	infrastructu		with peak 30-minutes cadence above 100, but only in
			re; traffic		men [14.353 (1.321; 15.591)].
			safety;		
			neighborhood		There was no significant difference between peak 30-
			safety;		minute cadence and steps per day between men and
			pleasantness		women.
			; home		
			environment		(Logistic regressions)
			and		
			workplace or		
			study		
			environment		
			P: Sex		
Dollman et	157	73.3	E: Pleasant	Walking steps	Pleasant community [OR (95%CI) = 5.85 (2.01; 16.99)],
al., 2016,	67.00	(4.1)	neighbourhoo		safety [0.40 (0.21; 0.78)] and walkability [2.45
Australia	67.0%		d; safety;		(1.08; 5.55)] were predictors of steps by individuals
			walkability		in Riverland area ($p < 0.05$) and not in Yorke
					Peninsula.
			F: Income		
					Age [0.88 (0.82; 0.95), $p < 0.001$] and education [0.64
			P: Age; sex;		(0.45; 0.91), p < 0.05] were significant predictors of
			education;		steps in the Yorke region, but not the Riverland area.
			marital		
			status;		Being single (compared to being married), was a
			occupation		predictor of steps in the Riverland [U.16 (U.U4;
					[0.64), $p < 0.01$ and Yorke regions $[0.17]$ $(0.05; 0.52)$,
					p < 0.01].
		1			

					Being female, being unemployed (compared to working part or full-time), and income were not predictors of steps by individuals in both Riverland and Yorke regions. (Logistic regression)
Dong et al., 2014, USA	3159 58.9%	72.8 (8.4)	<pre>F: Income P: Age; sex; education; marital status</pre>	Physical functioning (SPPB)	<pre>Having a higher level of education was significantly correlated with better SPPB scores (r = 0.26, p < 0.0001). Younger age (r = -0.46), being male (r = -0.12), higher level of education (r = 0.26), being married (r = 0.24), had significant correlations with better SSPB scores. Income was not significantly correlated with SPPB scores. (Bivariate correlation)</pre>
Dong et al., 2017, USA	2713 58.4%	72.6 (NR)	<pre>F: Income P: Age; sex; education; marital status</pre>	Physical functioning (SPPB)	Older age ($\beta = -0.15$, p < 0.001), female sex (0.42, p < 0.001), lower education (0.11, p < 0.001), lower income (0.10, p < 0.05), were associated with lower level of physical function at baseline. On average, total physical performance is declining at an annual rate of 0.35 units. Older age significantly increased the rate of physical performance decline among the overall physical performance tests ($\beta = -$ 0.02, p < 0.001) and chair stand ($\beta = -0.01$, p < 0.01). Higher education was associated with physical performance decline in the walk test ($\beta = -0.04$, p < 0.001) and the overall physical performance measure (β = -0.03, p < 0.01). Income and marital status were not associated with physical performance decline. (<i>Mixed effects models</i>)

Haas et al. 2012, USA	14564 61.0%	67.4 (10.6)	<pre>F: Income P: Age; sex; education; race; occupation; marital status</pre>	Walking time (2.5- Meter Walk Test)	Education [β (SE) = -0.04 (0.01), p < 0.001], age [0.07 (000), p < 0.001], sex [-0.30 (0.05), p < 0.001], no of income sources [-0.09 (0.02), p < 0.001], race [US-born Black [0.64 (009), p < 0.001] vs Foreign Born Hispanic [0.28 (0.13), p < 0.05] were associated with time to complete 2.5 meter. Marital status, occupation, and household income were not associated with walking time. (<i>Linear regression</i>)
Hall and	153	69.8	E:	Step counts (steps	Individuals with more than 10,000 steps/day [mean (SD)
McAuley,	100 08	(5.9)	Residential	per day)	= 2.77 (0.66)] had higher street connectivity than
2010, 054	100.08		land use-		= 0.02).
			diversity;		
			land use-		Individuals with more than 10,000 steps/day [3.04
			street		those with less than 10,000 steps/day [2.77 (0.6)] (p
			connectivity		= 0.04).
			; walking/		
			cycling		There was no significant difference in means score of
			pedestrian/t		mix access, walking/cycling facilities, aesthetics.
			raffic		crime safety and neighbourhood satisfaction among
			safety;		individuals with more than 10,000 steps/day and those
			crime		with less than 10,000 steps/days.
			safety;		Those that took <10 000 steps/day were older [mean =
			neighborhood		70.5 (6.05)] than those who took >=10,000 steps/day
			satisfaction		[68.1 (5.16)] (p = 0.04).
			; aesthetics		
			T . T		Marital status, income, education, and race were not
			F: Income		those who took >=10,000 steps/day.
			P: Age;		
			race:		
			marital		
			status		

Idland et al. 2013, Norway	300	80.9 (4.1)	E: Living alone P: Age; education	Physical functioning (TUG)	Education and living alone were not associated with time taken to complete a 3-meter walk at baseline, and 9-year follow up among community-dwelling women Age was associated with time taken to complete a 3- meter walk at baseline, and 9-year follow up among community-dwelling women (β = 0.35, p < 0.001).
					(Univariate linear regression)
Jancova- Vseteckova et al., 2015, Czech	3205	67.1 (3.9)	F: Income P: Education	Gait speed Physical functioning (Chair Rise Test)	Men and women with a higher level of education were 0.10m/s and 0.12m/s faster than those with a lower level of education ($p < 0.001$). Men and women with a higher level of education were 1.8 seconds and 2 seconds faster in performing chair rise test faster than those at the lower level of education ($p < 0.001$).
					Income was not associated with gait speed and ability to perform the chair rise test.
					(Linear regression)
Menant et al., 2019, Australia	26 46.0%	78.5 (4.2)	<pre>E: Floor surface: control; irregular; wet P: Age</pre>	Walking velocity Stopping time Stopping distance	Subjects walked faster on the control surface than on the irregular and wet surfaces (p < 0.05). The wet surface impeded gait termination, as indicated by greater total stopping time and stopping distance (p < 0.05). Younger individuals had greater walking velocity (p < 0.001) and had smaller stopping distances (p = 0.019). Age was not associated with total stopping time. (Mixed method three-way repeated ANOVA)
Nascimento	1190	NR (NR)	E: Green	Physical (True)	Individuals with 1-3 years of education were more
et al.	60.1%		area	functioning (TUG)	likely [OR (95%CI) = 0.96 (0.59; 1.55)] to take a longer time to complete TUG compared to those with 4-7

2018,	F: Income	Walking time	years [0.65 (0.41; 1.0)] and 8 years or more of
Brazil		(3-Meter Walk	education $[0.36 (0.22; 0.61)]$ (p < 0.05).
	P: Age;	Test)	
	education;		Age was associated with TUG [5.02 (3.01; 8.38), p <
	sex; marital		0.05]
	status; race		
			Green area, sex, race, marital status was not
			associated with TUG
			Individuals' levels of income were not associated with
			time taken to complete 3 Meter Walk Test.
			(Multi-level logistic regression)

Pothisiri	7847	69.2	F: Income	Walking speed	The mean walking speed was similar between men and
et al.,		(NR),			women at approximately 1.0-1.1m/s for both sexes.
2020,	51.0%	male	P: Age; sex;		
Thailand			education		(Descriptive)
		69.1			
		(NR), female			Men with secondary education or higher walked, on average, 0.207 m/s faster than their counterparts with no education, whereas women with at least a secondary education walked, on average, 0.145 m/s faster than their counterparts with no education ($p < 0.05$).
					Men aged 60 years with no education walked at the same speed as those with some primary education who were 3.1 years older, those with primary education who were 6.3 years older, and those with at least a secondary education who were 16.7 years older. At age 85, men with no education had the same average walking speed as men with at least some education who were 2.2-12.5 years older. Uneducated women at age 60 walked at the same speed as educated women 2.8-11.4 years older, and the difference in α - ages was reduced to 2.0-8.4 years for educated women compared with uneducated women at age 85
					Older men in higher economic groups, particularly those in the highest income tercile, had significantly greater walking speed than those in the lower economic groups [β (SE) = 0.094 (0.012), p < 0.01]. A similar pattern was observed for walking speed among older women [0.056 (0.012)].
Prins and	4.3	NR (NR)	E:	Time walked	Higher temperature $[\beta (95\% \text{ CT}) = 0.06 (0.00 \cdot 0.12)]$
Van Lenthe,			Temperature;		higher wind speed $[0.05, (0.00; 0.09)]$ and the absence
2015,	52.5%		wind speed;	Cycling minutes	of rain $[-0.08 (-0.12; -0.04)]$ were associated with
Netherlands			rain time;		more walking $(p < 0.001)$.
			sun time	(Estimated from	
				GPS logger)	Sun hours was not associated with walking.
			P: Age; sex		
		1			

					with more cycling.
					<pre>Rain, wind speed and sun hours were not associated with cycling. Being female was associated with time walked [0.15 (0.05; 0.26)] and was not associated with time cycled.</pre>
					Age was not associated with time walked and minutes of cycling.
					(Multivariable linear regression)
Yeom et al., 2015, Korea	384 75.5%	72.0 (5.8)	<pre>F: Income P: Age; education; sex; naligien</pre>	Walking distance (6-Mintues Walk Test)	By age groups, the 6MWT distances were 246.68 meters for persons in their 60's, 212.32 meters for persons in their 70's, and 175.54 meters for persons in their 80s, showing a gradual decrease with advance in age (p < 0.001).
			religion		(Analysis of variance)
					The mean 6MWT distance was 217.85 meters in women and 192.66 meters in men, indicating that women showed a significantly higher walking mobility than men ($p = 0.023$).
					Individuals with higher income walked longer [mean distance (SD) = 253.29 (86.85)] compared to those with lower income [205.17 (92.74)]. (p = 0.001)
					No significant mean difference in 6WMT was noted across the older adults with religious affiliations and with levels of education
					(t-test)
Zandieh et	173	74.2	E:	Walking durations	Participants residing in high-deprivation areas are
United	57.0%	(3.9)	C	(GPS tracking	residing in low-deprivation areas $(R = -0.98)$ r
Kingdom	- • • • •		deprivation	unit)	0.001).
			(low		
			deprivation		

			areas vs		Educational attainment (0.77, p < 0.01), marital
			high		status (0.77, p < 0.01), and ethnicity (0.71, p <
			deprivation		0.05) were associated with walking duration. Age and
			areas)		sex were not associated with walking duration.
			<pre>P: Age; sex; education; marital</pre>		No factors were associated with walking frequencies.
			status; ethnicity		
Zaninotto et al., 2013, United Kingdom	7225 53.4%	71.2 (7.9)	F: Income P: Age	Gait speed	People in the richest wealth quintile had a mean gait speed 0.22 m/s higher than those in the poorest wealth quintile at baseline, which decreased by 0.03 m/s over each additional wave of the study, meaning that they had a faster decline in walking speed than those in the poorest quintile.
					The mean gait speed of men aged 71 years declined from 0.77m/s to 0.74m/s in 4 years.
					(Latent growth model)
	I		Self-reported	d mobility outcome an	nd >1 factors (n = 85)
Allman et al., 2006, USA	1000 45.0%	74.9 (NR), male	E: Rural residence	Life space mobility	Income (β = 0.143, p < 0.001), African American (- 0.084, p = 0.004), age (-0.197, p < 0.001), female (- 0.184, p < 0.001), and rural residence (0.156, p <
		75.7 (NR).	F: Income P: Age:		0.001) were independently associated with lower life space mobility (0.143, p < 0.001).
		female	<pre>education; sex; race; manital</pre>		Education and being married were not associated with life space mobility.
			status		(Multivariant model)
Alvarado et al., 2007, Canada	10661 NR	NR (NR)	E: Rural setting (yes or no)	Mobility limitation (number of lower extremity limitations)	Women had significantly greater odds [OR (95% CI) = 2.39 (2.04; 2.79), p < 0.05] of functional limitations than men.

			<pre>F: Income P: Sex; education; marital status; occupation</pre>		Odds of limitations in lower extremity function were higher among those living without a partner in all cities except Sao Paulo [City: Buenos Aires: 1.57 (1.10; 2.25), Havana: 1.18 (0.90; 1.55), Mexico City: 0.82 (0.61; 1.09), Montevideo: 0.94 (0.71; 1.25), Santiago de Chile: 1.51 (1.10; 2.07), São Paulo: 0.85 (0.67; 1.08)]. In Buenos Aires and Santiago, the absence of a partner was an important predictor of mobility limitations. Rural [1.05 (0.93; 1.81)], education [1.39 (1.17; 1.64)], occupation [manual vs non-manual [1.11(0.97; 1.27)] and housewives vs nonmanual [1.04 (0.84; 1.27)] and perception of income [1.54 (1.35; 1.74)], was an important predictor of mobility limitation (Logistic regression)
Avlund et al., 2000, Denmark	480 54.0%	NR (NR)	<pre>F: Income P: Sex; education; occupation</pre>	Mobility limitation (Mobility Help & Tiredness Scale)	<pre>More women (71%) than men (59%) felt tired (p = 0.007), and more women (22%) than men (14%) needed mobility help (p = 0.019). (Chi-square test) Individuals who had low education were more likely [OR (95%CI) = 1.8 (1.0; 3.1), p < 0.05] to report being tired during mobility compared to those with high education. Individuals whose longest-held jobs were manual were more likely [1.3 (0.7; 2.4), p < 0.05] to report being tired during mobility compared to those whose longest- held job was non-manual professional. Individuals with low income were times more likely to request for help during mobility [2.49 (1.3; 4.7), p < 0.05]. (Regression model)</pre>
Avlund et al., 2003, Denmark	748 55.0%	NR (NR)	F: Income	Mobility limitation	Among women, the need for help in mobility was significantly associated with education [OR (95%CI) = 2.5 (1.2; 5.1), p < 0.05].

			P: Sex; education; occupation	(Mobility Help & Tiredness Scale)	Among men, the need for help in mobility or being tired during mobility was not associated with education. Occupation was not associated with the need for help in mobility or being tired during mobility. The need for help in mobility was associated with income in both men [2.5 (1.3; 5.0), p < 0.05] and women [2.3 (1.3; 3.8), p < 0.05].
Avlund et al., 2004, Denmark	606 52.2%	NR (NR)	F: Income P: Sex; education	Mobility limitation (Mobility Help Scale)	<pre>(Logistic regression) Men [OR (95%CI) = 1.6 (0.8; 3.2)] and women [1.2 (0.6; 2.4)] with low education were more likely to require help during mobility compared to those with high education (p < 0.05). Men [1.1 (0.5; 2.4)] and women [1.4 (0.7; 2.6)] with low income were more likely to require help during mobility compared to men and women with high income (p < 0.05).</pre>
Barnes et al., 2016, Canada	30865 NR	NR (NR)	E: Transit score P: Sex; education	Self-reported transportation use	<pre>(Multiple logistic regression) Those in neighbourhoods with Excellent Transit/Rider's Paradise had over three-and-a-half times higher odds of walking for transport and three times higher odds of using transit than those in neighbourhoods with Minimal Transit/Some Transit. A 10-point higher Transit Score was associated with 37% higher odds of walking for transport (OR = 1.37) and 40% higher odds of transit use (1.40). Compared to being male, being female was not associated with walking for transport or general transit use. Compared to having less than secondary education, having secondary [OR (95%CI) = 2.40 (1.51; 3.82)] and post-secondary [2.38 (1.57; 3.59)] were associated</pre>

					<pre>with walking for transport. Having secondary [1.79 (1.06; 3.02)] and post-secondary [3.32 (2.18; 5.06)] were also associated with general transportation use. (Logistic regression)</pre>
Bishop et al., 2016, USA	17713 59.3%	66.2 (3.0)	<pre>F: Income P: Age; sex; education; occupation; race; marital status</pre>	Mobility limitation	Higher education (12 years and above years of education) was negatively associated with initial limitations [β (SE) = -0.23 (0.07); for WB ("War Babies"; 0.27 (0.04) for HRS ("Health and Retirement Study"); -0.14 (0.04) for AHEAD ("Asset and Health Dynamics among the Oldest Old cohort"], and individuals with higher education develop fewer initial mobility limitations than those who completed less than 12 years of education (p < 0.001). Another occupational tenure was associated with more initial mobility limitations relative to those reporting white collar occupation tenure in the HRS [0.34 (0.06)], and AHEAD [0.18 (0.05)] cohorts (p < 0.001). Both house income [-0.11 (0.01)], and household assets [-0.04 (0.00)] were negatively associated with initial mobility limitations (p < 0.001). Age was associated with mobility limitation for HRS [- 0.05 (0.01)]; for CODA ("Children of the Depression") [-0.06 (0.01)]; for AHEAD [-0.04 (0.01)] (p < 0.01), but not for WB . Female had more initial mobility limitations than did males, for WB [0.57 (0.06)], or HRS [0.49 (0.03)]; for CODA [0.40 (0.05)]; for AHEAD [0.30 (0.04)] (p < 0.01). Being married was associated with mobility limitation for WB [0.27 (0.08)], but not for HRS, CODA and AHEAD . Being black was associated with mobility limitation for CODA [-0.20 (0.08)], p < 0.01] but not for WB, HRS, AHEAD .

					Being Hispanic was associated with mobility for AHEAD
					[-0.21 (0.09), p < 0.01], but not for WB, HRS, CODA.
					(Multivariate growth model)
Brüchert et	2189	NR (NR)	E: Land use	Walking for	land use mix [OR (95%CI) = 1.82 (1.68; 2.13)], walking
al., 2020,			mix; walking	transport	infrastructure [1.36 (1.21; 1.53)], shared
Germany	45.5%		infrastructu		infrastructure [1.13 (1.03; 1.24)], street
			re; cycling	Frequency of	connectivity [1.67 (1.44; 1.95)], traffic safety [1.22
			infrastructu	walking for	(1.04; 1.43)], aesthetics [1.30 (1.13; 1.50)] were
			re; shared	transport	associated with walking for transportation
			infrastructu		
			re; street	Amount of walking	Age ($p = 0.0035$) and education ($p = 0.0005$) were
			connectivity	for transport	associated with walking for transport.
			; traffic	(mins/week)	Cycling infrastructure, partner status and income were
			safety;		not associated with walking for transportation.
			aesthetics		
					Land use mix [1.88 (1.67; 2.11)], walking
			F: Income		infrastructure [1.33 (1.19; 1.49)], street
					connectivity [1.64 (1.42; 1.89)], aesthetics [1.25
			P: Age; sex;		(1.09; 1.43)] were associated with frequency of
			education;		walking for transportation.
			partner		
			status,		Sex $(p = 0.036)$, age $(p = 0.035)$, education $(p = 0.035)$
					(0.0004), and income (p = (0.0033)) were associated with
					frequency of walking for transport.
					cycling infrastructure, snared infrastructure, trailic
					fraguency of welking for transportation
					rrequency of warking for transportation.
					Income $(n - 0.0155)$ was accorded with amount of
					walking for transport
					warking for cranspore.
					Land use mix, walking infrastructure, cycling
					infrastructure, shared infrastructure, street
					connectivity, traffic safety, aesthetics, education.
					partner status, age and sex were not associated with
					among of walking for transport.
					(Regression, chi-square, Wilcoxon test)

Cauwenberg	48879	74.4	E: Area of	Self-reported	Urban participants were more likely to walk daily for
et al.		(6.7)	residence:	walking and	transportation compared to rural and semi-urban
2012	55 7%	(0.7)	safety:	cycling for	participants $(n < 0.05)$
Belgium	00.70		satisfaction	transportation	
Dergrum			with public		Perceived short distances to services and satisfaction
			trancit.	Walking (oveling	with public transport were significantly positively
			diatonco to	for regreational	related to all walking/avaling behaviors (p. 6.0.05)
				IOI IECIEACIONAL	related to all warking/cycling behaviors ($p < 0.05$).
			Services		Ecolings of upopfoty upo pogstively related to uplying
			T . T		feetings of unsafety was negatively related to warking
			F: Income		for transportation and recreational walking/cycling (p
					< 0.05). In females, it was also negatively related to
			P: Age; sex;		cycling for transportation (p < 0.05).
			education		
					Area of residence was unrelated to weekly recreational
					walking/cycling.
					Age was associated with daily cycling for
					transportation [OR $(95\%CI) = 0.60 (0.57; 0.64), p <$
					0.05], but not daily walking for transport. Being
					female (compared to being male) was associated with
					daily cycling for transport [0.69 (0.66; 0.73), p <
					0.05] and daily walking for transport [0.79 (0.76;
					0.83), $p < 0.05$]. Compared to having no higher
					education, having higher education was associated with
					daily cycling for transport [0.68 (0.63; 0.75), p <
					0.05] and daily walking for transport [1.11 (1.03;
					1.19), p < 0.05].
					(Multilevel logistic regression)
Cauwenberg	67563	74.2	E: Absence	Self-reported	The following four environmental variables were
et al.,		(6.4)	of high	walking for	significantly positively related to walking for
2013,	55.0%		curbs;	transportation	transportation: presence of bus stops (OR = 1.29),
Belgium			presence of	-	street lighting (1.2), number of shops (1.2) and
			different		safety from crime (1.08) (p < 0.05).
			shops and		
			services;		Compared to being female, being male was associated
			benches;		with daily walking for transport $(\beta = 0.222)$ n <
			crossings:		0.05) Compared to being widowed being
			bus stops:		married/cohabiting (0.306 p < 0.05) or living
			street		matrice, conducting (0.500, $p < 0.05$) of trying
			lighting.		atome/atvorced (-0.103, $p < 0.05$) were predictors of
			LTAILTING,		warking for transport. Compared to having only primary

			safety from		education, having lower secondary education (0.067, p
			crime		< 0.05) was associated with walking for transport, but
					having higher secondary education or tertiary
			F: Income		education were not. Compared to having an income of
					500-999 euros, having an income of 1000-1499 euros
			P: Age; sex;		(0.115, p < 0.05) and 1500-1999 euros (0.128) were
			education;		associated with walking for transport, but not having
			marital		an income \geq 2000 euros.
			status		
					Age was not associated with walking for transport.
					(Multilevel logistic regression)
Cerin et	484	NR (NR)	E:	Walking for	The prevalence of public transit points ($e^b = 1.02$) and
al., 2013,			Environmenta	transportation	diversity of recreational destinations (0.99) were
Hong Kong	58.0%		1		positively related to overall walking for transport.
			(destination	Frequency and	
			prevalence;	duration (total	The presence of a health clinic/service (1.03) and
			destination	minutes per week)	place of worship (1.06), higher diversity in
			diversity;	of within	recreational destinations, and greater prevalence of
			infrastructu	neighborhood	non-food retails and services (1.01), food/grocery
			re; safety;	walking	stores (1.02), and restaurants (1.01) in the
			area	(neighborhood	neighborhood were predictive of more within-
			socioeconomi	defined as an area	neighborhood walking for transport.
			c variable)	approximately 15-	
				minutes' walk from	Neighborhood safety-related aspects moderated the
			P: Education	home).	relationship of overall walking for transport with the
					prevalence of public transit points (1.02), this being
					positive only in safe locations. Similar moderating
					effects of safety-related attributes were observed for
					the relationships of within-neighborhood walking for
					transport with diversity of recreational and
					entertainment destinations (1.16).
					Pedestrian-infrastructure attributes acted as
					moderators of associations of within-neighborhood
					walking for transport with prevalence of commercial
					destination categories.
					Area socioeconomic status (1.16) was associated with
					percentage within neighborhood walking.

					<pre>(Generalized linear models (GLMs)) Individuals with secondary or higher education are more likely to walk within the neighborhood than individuals with primary school education or no education [OR (95%CI) = 1.5 (1.26; 1.82), p < 0.001]. (Zero-inflated negative binomial (ZINB) regression models)</pre>
Cheng et al., 2019, China	702 45.7%	NR (NR)	<pre>E: Population density; land use mixture; distance to shopping mall; distance to convenience store; distance to market; distance to park/square; distance to chess/card room; distance to gym/sports center; arterial density; the number of parking lots; distance to metro station; the number of bus stops; the number of bike- sharing stations F: Income P: Sex; education</pre>	Self-reported walking for travel	<pre>Population density (coefficient = 0.116) and land use (1.283) distance to market (0.420), distance to park/square (0.139), distance to chess/card room (0.891), number of bus stops (0.026) and number of bike-sharing stations (-0.88) were significantly associated with active walking travel frequency among Chinese older adults. Compared to being female, being male was negatively associated with travel frequencies in the elderly (- 0.109, p < 0.05). Education and income were not associated with travel frequencies in the elderly (Ordinal regression)</pre>
Clares et	52	72.6	F: Income	Mobility	Education, marital status age was not associated with
al., 2014,		(8.6)		limitation	difficulties in moving, help with locomotion and/or to
Brazil	69.28		P: Age; sex;	(Questions	move
			equcation;	difficulties in	

			marital status	moving, help with locomotion or to move)	Education was associated with help to move (p < 0.001). Gender was associated with difficulties in moving (p = 0.018), help with locomotion (p < 0.001) and help to move (p = 0.046) There was no association between income and difficulties in moving, needing help with locomotion, or needing help to move ((Chi-square)
Clark et al., 2009, USA	1884 59.0%	NR (NR)	<pre>E: Living in highest crime neighbourhoo ds; perceived neighborhood safety F: Income P: Sex; race</pre>	Mobility disability	Perceiving neighbourhood safety hazards due to crime (compared to not perceiving safety hazards) and living in highest crime neighbourhoods (compared to lower crime neighbourhoods) were not associated with mobility disability incidence. Compared to males, females had greater mobility disability incidence [OR (95%Cl) = 1.33 (1.13; 1.55), p < 0.01]. Compared to having an income above poverty, having an income below poverty was associated with mobility disability incidence [1.31 (1.08; 1.59), p < 0.01]. Compared to being Non-Hispanic White, being Non-Hispanic Black was not associated with mobility incidence.
Clarke et al., 2014, USA	6578 56.6%	NR (NR)	E: Social disorder (e.g., litter or broken glass on sidewalks and streets); stairs or ramp leading to home.	Mobility limitation Use of assistive devices	Stairs at the entryway to the home are associated with a 50% higher odds of reporting some/lot of difficulty going outside independently (OR = 1.52, $p < 0.01$). Use of a wheeled mobility device was associated with a fivefold higher odd of some/a lot of difficulty going outside (5.36) but was attenuated when there was a ramp at the entrance to the home (1.97) ($p < 0.01$). Conversely, while use of a walker was associated with a twofold higher odds of reporting some/lot of difficulty going outside (1.92). This effect was even greater for older adults with stairs at the entry to their home (3.82) ($p < 0.01$).

		<pre>P: Age; sex; race; marital status</pre>		Older age is associated with some/lot of difficulty going outside (0.29), and women are more likely to report some/lot of difficulty than men (1.35) Hispanics have a higher odds of reporting some/lot of difficulty compared with whites (1.75) Widowed (1.40) and never married (1.72) older adults are more likely to report a little difficulty going outside than married respondents Respondents with less than a high school diploma have an odds of reporting some/lot of difficulty going
				outside that is 30% higher than those with a college degree (1.34) (Regression)
Collins and Goldman, 2008, Taiwan	1056 67.7 (8.1) 42.9%	F: Income P: Education; occupation	Mobility limitation	Higher education was negatively associated with mobility restriction across the three-year periods [β = -0.030 (year 1); -0.014 (year 2); -0.005 (year 3) (p < 0.05)]. Index of Occupational Prestige was not associated with
				<pre>mobility restriction across the three-year periods. Income was associated with mobility restriction across the three-year periods [-0.060 (year 1); -0.045 (year 2); -0.016 (year 3) (p < 0.01)]. (Ordered probit regression)</pre>
Cornman et al., 2011, Taiwan	1191 NR (NF 46.3%) F : Income P : Age; sex; education; marital status; ethnicity	Mobility limitation	A higher percentage (83.7% to 94.6%) of individuals with 13+ years of education reported having no mobility difficulty compared to those with lesser years of education (p < 0.05). A higher percentage (86.8% to 97.0%) of individuals with the highest income level reported having no mobility difficulty compared to those with a lower income level (p < 0.05).

					(Chi-square)
					Age was negatively associated with mobility limitation [OR (SE) = -0.93 (0.22), p < 0.01 for run 20-30m; [- 0.92 (0.26), p < 0.01)], expect difficulty walking 200-300m. Compared to Mainlander, being Hakka was associated with mobility limitation in running 20-30m [0.90 (0.34), p < 0.01] but not walking 200-300m or walking upstairs while being Fukienese was not with any mobility limitation. Marital status and sex were not associated with any
					<pre>mobility limitations. (Ordered probit model)</pre>
Darin- Mattson et al., 2017, Sweden	2036 41.7%	NR (NR)	F: Income P: Education; occupation	Mobility limitation	People who had low education (average marginal effects (AME) = 12.16), low occupation (10.15) and low income (13.05) had an increased risk of developing mobility limitations (p < 0.001). (Kruskal Wallis equality of population rank test)
Diaz- Venegas et al., 2016, Mexico	3283 64.3%	NR (NR)	E: Social support (help from neighbors and/or children); location size (no of	Mobility limitations	Social support was associated with progression of mobility in women (1.29, $p < 0.05$) and not in men. Location size was not associated with the progression of mobility limitation in both men and women. Women with 1-5 years of schooling were 1.3 times more likely to develop mobility limitations compared to those with 7 or more years of schooling (OR = 0.64, p
			inhabitants)		< 0.01).
			F: Income P: Age;		Compared to those aged 65-69 years, those aged 75+ had higher progression of mobility disability in both men (1.89, $p < 0.001$) and women (1.99, $p < 0.001$).
			Guicalton		There was no significant association between men with 1-5 years of education and 7 or more years of schooling in terms of developing mobility limitation.

					There was no significant association between men with lower income and higher income in terms of developing mobility limitation. A similar trend was noted for women as well. (Ordinal logistic regression)
Ding et al., 2013, USA	880	75.0 (NR)	<pre>E: Neighborhood walkability index; residential density; street connectivity; walking and cycling infrastructures ; neighborhood; traffic safety; pedestrian safety structures; transit access; land use mix:</pre>	Self-reported driving status	Several interactions with driving status were significant, including reported street connectivity (OR = 1.51), walking-bicycling infrastructure (1.65), traffic safety (1.20), pedestrian safety structures (2.29) (p < 0.0001). Driving older adults were significantly younger than non-driving older adults [OR (95%C1) = 78.8 (7.6), p < 0.001]. Drivers were less likely to be women (51.2% vs 81.2%, p < 0.001), and were more likely to be Non- Hispanic White (71.3% vs 63.6%, p < 0.05), to have completed college (49.5% vs 36.4%, p < 0.01), and to be married or living with a partner (57.4% vs 24.0% p
			<pre>and use mix, aesthetics P: Age; sex; race; education; marital status</pre>		<pre>< 0.001). (Linear regression, Descriptive statistics)</pre>
Eronen et al., 2014, Finland	1310 75.5%	77.4 (1.8), people living with difficu lty 78.0 (2.0), people with no difficu lty	E: Having outdoor recreational facilities within a walking distance from home; attractive features in the nearby environment for outdoor activities; perceiving the surrounding environment or facilities nearby as motivating for	Self-reported walking difficulty	Perceived environmental facilitators for outdoor walking decreases the risk for developing walking difficulty among older community-dwelling individuals. Having features in one's home which make it easy to access the outdoors (OR = 0.8). Having a park or other green area within a walking distance from home (0.43). Having outdoor recreational facilities within a walking distance from home (0.59). Attractive features in the nearby environment for outdoor activities (0.65). Perceiving the surrounding environment or facilities nearby as motivating for physical activity (0.75).

			<pre>physical activity; having features in one's home which make it easy to access the outdoors; having a park or other green area within a walking distance from home P: Age; sex;</pre>		Those without walking difficulty were likely to be younger [mean (SD) = 77.4 (1.8)] than those with walking difficulty [78.0 (2.0)] (p = 0.008). Education and sex were not associated with walking difficulty. (Logistic regression, Mann-Whitney U test, Chi-square test)
Eronen et al., 2016, Finland	848 62.0%	75+	<pre>education E: Living conditions P: Age; sex; education; occupation</pre>	Life space mobility	<pre>High-educated participants had higher life space mobility scores [mean (SD) = 70.0 (1.6)] compared with those with intermediate [64.8 (0.9)] and low education [63.5 (1.0)] (p < 0.001).</pre> Participants holding higher non-manual occupations had higher life space mobility scores [74.8 (2.3)] compared with those holding lower non-manual [71.0 (1.5)] and manual occupations [71.0 (1.7)] (p < 0.001). Adults who were older had restricted life space mobility compared to those who were younger (p < 0.001). Individuals who were living alone and are women had restricted life space mobility compared to those not living alone and are men (p < 0.001). (General linear model)
Friis et	7527	NR (NR)	F: Income	Mobility	Individuals with college or higher education are more
al., 2003, USA	62.0%		<pre>P: Age; sex; education; race; marital status</pre>	limitation	<pre>likely [OR (95%CI) = 1.30 (1.08; 1.57)] to walk 1 mile/week compared to those with high school education [1.12 (0.98; 1.50)] (p < 0.01). Individuals with income level of \$50000+ [1.93 (1.25; 2.99)] were more likely to walk 1 mile/week compared</pre>

					<pre>to those with income of \$5000-19,999 [1.21 (0.99; 1.50)] (p < 0.01). Male [1.70 (1.47; 1.95)], being married [0.70 (0.56; 0.87)] or widowed [0.77 (0.61; 0.97)], younger age (70-74 years - [1.97 (1.65; 2.36)]; 75-79- [1.58 (1.31; 1.90)] reported walking one mile per week. Race was not associated with walking one mile per week. (Logistic regression)</pre>
Gallagher et al., 2014, USA	326 66.3%	76.8 (8.1), male 75.8 (8.5), female	<pre>E: Neighborhood density; neighborhood destinations; neighborhood design P: Age; sex; education; race</pre>	Neighborhood walking (Total mins walked for transportation or recreation/ exercise in a week).	Neighborhood density [β (95%CI) = 0.22 (0.08; 0.83), p < 0.05] and design [0.21 (1.49; 103.02), p < 0.05] were significant predictors for neighborhood walking in men but not in women. Neighborhood destinations was significant predictor for neighborhood walking in women [0.15(1.46; 49.89), p < 0.005] but not in men. Age was a significant predictor for neighborhood walking in women only 0.22 (-4.88; -1.23), p < 0.01], but was not in men. Race, education was not a significant predictor for neighborhood walking in either women or men. (<i>Multiple linear regression</i>)
Hardy et al., 2010, USA	9563 59.0%	73.4 (0.1), People with no walking limitat ions 76.2 (0.2), people with	<pre>F: Income P: Age; sex; education; race; marital status</pre>	Mobility limitation	Being of older age was associated with increased difficulty walking one-quarter of a mile (p < 0.001). Being of female sex was associated with increased difficulty walking one-quarter of a mile (p < 0.001). The likelihood of reporting mobility limitation decreases across non-Hispanic Black individuals, non- White Hispanic individuals, other counterparts, and Hispanic individuals (p < 0.001).

		<pre>walking difficu lty 78.6 (0.2), people unable to walk</pre>			<pre>Participants who were married reported being more likely to have trouble walking than those who were not married (p < 0.001). Individuals with a low level of education are 1.4 [95%Cl = (1.1; 1.6)] times less likely to walk one- quarter a mile than those with a higher level of education (p < 0.001). Individuals with low income of <\$10,000 [OR (95%CI) = 1.4 (1.0; 1.7)] are less likely to walk one-quarter a mile compared to individuals with high income >\$25,000 [0.7 (0.5; 0.9)] (p < 0.001). (Regression)</pre>
Harris et al., 2015, USA	403 46.0%	66.2 (5.7)	<pre>E: Sidewalks; street intersection s; curbs cuts/ramps P: Age</pre>	Difficulties with wheelchair use	Age was significantly associated with increased difficulties using wheelchairs at street intersections (p = 0.002), curb cuts/ramps that are too steep (p = 0.047), ramps without protective railing (p = 0.005), and on sidewalks (p = 0.035). Sidewalk without adequate width for a wheelchair, Curbs/ramps not at any corner, and ramps without protective railing were significant barriers to wheelchair use among older adults (p-value ranged from 0.000 to 0.05). Street intersections with traffic that do not provide enough time for older adults to cross was not significant barriers to wheelchair use among older adults. (Chi-square test)
Hinrichs et al., 2019, Finland	179 56.4%	83.7 (4.1)	E: Distance to the grocery store; street connectivity ; perceived mobility	Self-reported walking for activities and transport	<pre>Higher street connectivity [OR (95%CI) = 2.68 (1.02; 7.0)], shop distance [29.93 (8.55; 104.73)], and perceived park or other green area [9.89 (3.11; 31.50)] significantly increased the odds of walking to the grocery store than their counterparts. Participants that perceived one of the facilitators [3.98 (1.33;11.84)] had higher odd of walking to the</pre>

			<pre>facilitators (park/green area and trails) F: Income P: Age; sex; education</pre>		<pre>stores than those with no perceived facilitator. There was no significant association between individuals that perceived both facilitators and those with no facilitator. The location of the park (in the area between the participant's home and the store vs. in another location) did not affect the mode of transportation. Reporting a trail as facilitator was not significantly associated with walking. Age, sex, perceived financial situation, and education were not associated with walking for transportation. (Multivariable logistic regression)</pre>
Kato et al., 2019, Japan	214 51.0%	73.8 (6.6)	<pre>E: Objective built environment: Retail shops; restaurants; supermarkets; department stores; city parks; general hospitals; clinics E: Subjective built environments: uneven sidewalks and other walking areas; parks easy to get to; safe parks and walking areas; curbs with curb cuts P: Age; sex</pre>	Frequency of going outdoors	Objective built environments at the local government were not associated with frequency of going outdoors. Parks easy to get to $[\beta$ (SE) = 2.05 (0.68), p = 0.003] and car availability [0.92 (0.44), p = 0.040] were associated with frequency of going outdoors. Other factors were not. Age [-0.08 (0.04), p = 0.033] and female sex (compared to male sex) [1.07 (0.45), p = 0.018] were associated with frequency of going outdoors. (Multivariate linear mixed effects model)
*Keskinen et al., 2020, USA	551 NR	80.0 (NR)	E: Hilliness as a barrier;	Walking difficulties	Road network slope showed 1.7- fold odds for incident difficulties in walking 500 m at the 2-year follow-up. Whereas perceiving hilliness as a barrier was not associated with incident walking
			<pre>road network slope P: Age; sex; education</pre>		Age showed 1.09-fold odds while being women showed 0.59-fold odds for incident difficulties in walking 500m at the 2-year follow up. Education was not associated with incident walking (Binary logistic regression)
-----------------------------------	--------------	---------------	--	--	--
Kerr et al., 2014, USA	5625	64.0 (7.7)	<pre>E: Neighborhood walkability index; recreation facilities density; distance to the coast; distance to the nearest park F: Income P: Age; education; race</pre>	Estimates of Walking (hrs/week, MET hrs/week and log-transformed MET hrs/week)	Total walking was significantly positively associated with the walkability index ($\beta = 0.050$: half-mile buffer), recreation facility density (0.036: 1-mile buffer), and distance to the coast (-0.064; half-mile, 1-mile, and 3-mile buffers, p < 0.001). Distance to nearest park was not associated with total walking. Walkability index was not associated with total walking at the 1-mile and 3-mile buffers. Recreation facilities density was most associated with total walking at the half-mile and 3-mile buffers. Age and race were not associated with walking at the half-mile, 1-mile, and 3-mile buffers. Education was associated with walking at the half-mile (0.048, p < 0.001), 1-mile (0.046, p = 0.002), and 3-mile (0.043, p = 0.004) buffers. Family income was associated with walking at the half-mile (0.037, p = 0.014), 1-mile (0.037, p = 0.013), and 3-mile (0.034, p = 0.023) buffers. (Regression)
Kikuchi et al., 2018, Japan	731 43.9%	69.3 (2.9)	E: Neighbourhoo d walkability P: Age; sex; education	Change of walking over the 5-year period (min/week) at 500m and 1000m network buffers.	Neighbourhood walkability was positively associated with change of walking over the 5-year period [β (95%CI) = 47.5 (1.6; 93.4), p = 0.042] at the 1000m network buffer. Neighborhood walkability was not associated with change of walking over the 5-year period at the 500m network buffer (p = 0.079).

					Being female (compared to being male), was negatively associated with change of walking at the 500m network buffer [-105.5 (-206.8; -4.1), p = 0.041], but not the 1000m network buffer (p = 0.051). Age was not associated at the 500m (p = 0.091) or 1000m (p = 0.082) network buffers. Compared to having a college degree or greater, having up to high school was not associated at the 500m (p = 0.971) and 1000m (p = 0.904) network buffers. (Regression)
König et al., 2020, Germany	761 67.4%	88.9 (2.9)	<pre>E: Living situation (institution vs community- dwelling) P: Age; sex; education; marital status E: Income</pre>	EuroQol- five- Dimension Scale - mobility domain	<pre>Living in institutionalised setting was associated with problems in mobility dimension [OR (95%Cl) = 1.59 (1.04; 2.34), p < 0.05)] Age [1.10 (1.04; 1.17), p < 0.001] and being single (compared to being married) [2.81 (1.26; 6.24), p < 0.01] were significantly associated with problems in the mobility dimension. Sex, education, and being divorced or widowed was not associated with problems in the mobility dimension (Logistic regression)</pre>
Latham-	NR 3104	71.2	<pre>P: Education F: Income</pre>	Recovery from	<pre>individuals with <12 years of education had an increased risk [HR (95%CI) = 1.47 (1.23; 1.77)] of mobility limitation compared to those with 12 years or more education [1.17 (1.00; 1.38)] (p < 0.001). Individuals with an income of <\$10,000 had an increased risk [2.64 (1.93; 3.61)] of mobility limitations compared to individuals with higher income of \$10,000-25,000 [1.61 (1.24; 2.09)] (p < 0.001). (Cox proportional hazard regional models) Individuals with lower income [OR (95%CI) = 1.54</pre>
Mintus and Aman, 2017, USA	67.0%	(9.8)	<pre>P: Age; sex; education; race;</pre>	mobility limitations	(1.11; 2.12)] were more likely not to recovery from mobility limitation compared with individuals with higher income [1.45 (0.95; 2.20)] (p < 0.001).

			marital status		<pre>Sex (female) [0.68 (0.53; 0.87)], age [0.97 (0.96; 0.98)], race (being black [1.63 (1.15; 2.31)], Hispanic [1.88 (1.24; 2.86)] were associated with recovery from mobility limitation. Education and marital status were not associated with recovery from mobility limitations. (Multinomial logit models)</pre>
Latham- Mintus et al., 2019, USA	9378	67.1 (9.7)	<pre>F: Income P: Age; sex; education; occupation; race/ethnici ty; marital status</pre>	Recovery from Mobility limitations	<pre>Working status (OR = 1.10), income (1.07), sex (female) (0.79), age (0.98), was positively associated with mobility recovery (p < 0.001). Education, race, and marital status was not associated with mobility recovery. (Multinomial logistic regression)</pre>
Li et al., 2015, USA	1045	NR (NR)	<pre>E: Social cohesion; nearby park/playgro und; safe neighborhood P: Age; ethnicity</pre>	Self-reported frequency of walking (min/week)	<pre>Social cohesion was associated with predicting minutes walked/week [OR (95%CI) = 1.14 (1.02; 1.26), p < 0.05] Chinese Americans are more likely [0.38 (0.17; 0.84), p < 0.05] not to be non-walkers when compared to Japanese Americans. Other ethnicities (Filipino, Korean, Vietnamese, and other Asians) were not significant predictors for non-walkers. Asian Americans between 65 and 74 years were more likely [0.52 (0.31; 0.85), p < 0.05] to be non-walkers compared to those ages 55 to 64 years. Ethnicity, age, nearby park/playground and safe neighborhood were not associated with predicting minutes walked/week or predicting non-walkers. (Zero-inflated negative binomial) On average, Asian adults reported walking 153.9 min per week, significantly more compared with their White counterparts (114.4 min/week) (p < 0.05).</pre>

					(Chi-square test)
Liao et al., 2017, Taiwan	1032 49.2%	72.3 (6.1)	<pre>E: Residential area; residential density; access to shops; access to public transportati on; presence of sidewalks; access to recreational facilities; traffic safety; connectivity of streets; presence of a destination; crime safety at night; seeing people being active; aesthetics; living status P: Age; sex; education; occupation; marital status</pre>	Self-reported walking for transportation Self-reported walking for leisure	<pre>Older adults living in metropolitan areas were [OR (95%C1) = 1.98 (1.45; 2.71)], having good access to shops [1.45 (1.04; 2.03)], sidewalks [1.50 (1.15; 1,96)] and recreational facilities [1.52 (1.12; 2.06)], walked towards a destination [1.56 (1.17; 2.07)], felt their neighborhoods were aesthetically placing [1.31 (1.01;1.69)], who saw people being active [1.52 (1.16; 1.99)] were more likely to walk 150 min/week for leisure than those who did not. All p-value were < 0.001. Older adults with presence of sidewalks [1.93 (1.37; 2.72)] and walked towards a destination [2.39 (1.60; 3.58)] were more likely to at least 150min/week as a mode of transportation compared to those who did not. Older adults who felt that traffic made their neighborhood less safe [0.72 (0.52; 0.98)] were less likely to walk 150min/week as a mode of transportation than those who did not. Residential density, access to shops and public transportation, crime safety at night, street connectivity and living status (alone) were not associated with walking for leisure or transportation. Access to shops and recreational facilities, seeing people being active were not associated with walking for transportation while traffic safety and residential area were not associated with traveling for leisure Older adults without a full-time job [3.40 (2.15; 5.35)] and with a tertiary degree [1.64 (1.22; 2.20)] were more likely to achieve 150 min or more of walking as a leisure-time activity than their peers. Age, sex, and marital status, living alone were not associated with self-reported walking for transport</pre>

					and leisure. Education and occupation were not
					associated with self-reported walking for transport.
					(Forced-entry adjusted logistic regression)
Lynott et	1636	NR (NR)	E:	Self-reported	Seniors residing in urban/town areas were
al., 2009,			Residential	number of times	significantly more likely to make additional trips in
USA	61.1%		area:	out yesterday and	the day prior [OR (95%CI) = 1.77 (1.23; 2.55), p <
			urban/town;	a week	0.01] and a week [2.19 (1.43; 3.39), p < 0.01] to
			suburban;		their interview.
			rural/exurba		
			n		Being male was associated with times out per week
					[1.61 (1.24; 2.09), p < 0.001], and times out the day
			F: Income		before the interview $[1.40 \ (1.10; 1.77), p < 0.01].$
					Being age >= 85 years was associated with times out
			P: Age; sex;		per week $[0.50 \ (0.39; \ 0.67), \ p < 0.01]$ and the day
			education;		before the interview $[0.65 (0.50; 0.85), p < 0.01]$.
			race		Education was associated with times out the week
					before $[1.17 (1.07; 1.27), p < 0.001]$ and the day
					before the interview $[1.08 (1.00; 1.17), p < 0.05].$
					Compared to having the highest guartile of income,
					having the lowest guartile was associated with less
					walking the week before $[0.41 \ (0.26; \ 0.64), \ p < 0.001]$
					and day before $[0.46 (0.31; 0.68), p < 0.001]$ the
					interview.
					Being white was not associated with times out per week
					or times out yesterday.
					(Logistic regression)
Maisel,	121	NR (NR)	E:	Job walking	Street connectivity had positive but low correlations
2016, USA			Residential	(min/week)	with various walking behaviors including total weekly
	75.0%		density;		walking (r = 0.25, $p < 0.01$). Perceptions of traffic
			land use	Transportation	safety weakly correlated with job walking (0.20, p <
			mix-	walking for daily	0.05) and total weekly walking (0.19, $p < 0.05$). Crime
			diversity;	activity	safety also weakly correlated with recreation walking
			land use	(min/week)	and total weekly walking (0.23, p < 0.05 and 0.23, p <
			mix-access;		0.05, respectively) while aesthetics only correlated
			street	Recreational	with recreation walking (0.23, $p < 0.05$).
			connectivity	walking (min/week)	
			;		Age was associated with job ($p = 0.047$), recreation (p
			walking/cycl		< 0.001), and total weekly walking (p = 0.008).

			<pre>ing facilities; traffic safety; crime safety; aesthetics F: Income P: Age; sex; education; marital status; race</pre>	Total weekly mins walking	<pre>Household income was associated with recreation (p = 0.007), and total weekly walking (p = 0.014). Age was not associated with walking for transportation. Household income was not associated with walking for job and transportation. Sex, education, marital status, and race were not associated with all four walking behaviour variables. (Spearman rank correlation)</pre>
Melzer and Parahyba, 2004, Brazil	28943	NR (NR)	E: Residential area; family size F: Income P: Education; race	Mobility limitation	<pre>White women [1.13 (1.03; 1.23)], women residing in rural area [0.65 (0.58; 0.74)] residing in rural area were more likely to report mobility limitation compared to black women and those residing in urban area. No association was noted in any of these among men.</pre> Family size was not associated with mobility in both sexes. Men [OR (95%CI) = 0.86 (0.76; 0.99)] and women [0.74 (0.67; 0.83)] who had 1-3 years of education were more likely to report mobility limitation compared to men [0.85 (0.69; 1.03)] and women [0.49 (0.42; 0.58)] with 8 years or more education (p < 0.0005). Men [0.69 (0.58; 0.81)] and women [0.89 (0.78; 1.01)] with lower income were more likely to report mobility limitations, respectively compared to men [0.43 (0.35; 0.53)] and women [0.72 (0.61; 0.84)] with higher income (p < 0.0005). (Logistic regression)
Melzer et al., 2005, UK	5424 55.4%	NR (NR)	F: Income	Mobility limitation	Individuals at the higher wealth quintile had lesser mobility disability compared to individuals at the intermediate (56%) and lowest wealth quintile (84%).

			P. Are: sex:		
			education; occupation		Similar percentages of females and males reported mobility disability in the younger two age groups (8 versus 9% for 50-64 years and 20 versus 17% for 65-79 years), but the percentage of females with mobility disability was higher than males in the \geq 80-year-old (47 versus 36%).
					Individuals with no education had more mobility disability (72%) compared with individuals with intermediate (47%) and degree education (44%).
					Individuals holding managerial and professional occupations (43%) had lesser mobility disability compared to those with intermediate (61%) and manual (69%)
					Similar percentages of females and males reported mobility disability in the younger two age groups (8 versus 9% for 50-64 years and 20 versus 17% for 65-79 years), but the percentage of females with mobility disability was higher than males in the \geq 80-year-old (47 versus 36%).
					(Descriptive analyses)
Mertens et al., 2018, Belgium	438 54.1%	74.3 (6.2)	E: Land use mix diversity; access to recreational facilities; connectivity of the street network; physical barriers to walking or cycling; infrastructure for walking;	Self-reported walking for transportation	<pre>Neighborhood social trust and cohesion [OR (95%CI) = 0.47 (0.27; 0.83)], land use mix diversity [3.42 (1.76; 6.64)], walking infrastructure, [0.29 (0.14; 0.60)] and crime safety [0.27 (0.11; 0.65)] were predictors of change in walking for transport (p < 0.05). Having higher education (compared to lower education), was a predictor of walking for transport [4.34 (1.96)]</pre>
			<pre>infrastructure for cycling; safety from speeding motorized traffic; safety from crime; talking to neighbors; social interactions with neighbors;</pre>		<pre>Neighbourhood social diversity and aesthetics were not predictors of change in walking for transport. Age was not a predictor of change in walking for transport.</pre>

			<pre>neighborhood social trust and cohesion; neighborhood social diversity; aesthetics P: Age; education</pre>		(Multilevel logistic regression)
Meyer et al., 2014 USA	6112 59.0%	74.7 (7.1)	<pre>E: Neighborhood safety; geographical location F: Income P: Age; education; marital status</pre>	Mobility limitation	Staying in the west (-0.30 p < 0.05) and northeast (- 0.04, p < 0.05) was associated with community mobility. Other geographical location- Midwest and southcentral were not associated with community mobility. Education had a weak relationship with personal and community mobility (values not reported) Age was significantly associated with personal (β = - 0.13, p < 0.05) and community mobility (-0.12, p < 0.05). Being married was significantly associated with personal (0.060, p < 0.05) and community mobility (0.13, p < 0.05) Neighbourhood safety was significantly associated with personal mobility (0.06, p < 0.05) and community mobility (0.10, p < 0.05) (Structural equation models) Income was significantly correlated with personal mobility (r = 0.07, p < 0.01) and community mobility (0.08, p < 0.01). (Bivariate correlations)
Miller and Buys, 2007, Australia	697 68.0%	NR (NR)	E: Residential location: Community vs retirement village	Self-reported participation in walking	There was a significant difference in participation in walking between older adults residing in a residential setting (64%) and in the community (54%) ($p < 0.001$). Sex, age, and marital status were not associated with participation in walking ($p > 0.05$).

Nakao et al., 2020, Japan	1023 33.9%	65.0 (NR)	<pre>P: Age; sex; marital status E: Social network score P: Age; sex</pre>	Life space mobility	(Chi-square, regression models) Social network score was associated with LSA score [β (95%CI) = 0.77 (0.5; 1.1), p < 0.0001]. Being older [-0.55 (-0.7; -0.4), p < 0.0001] and a female [-4.65 (-6.1; -3.2), p < 0.0001] were negatively associated with LSA scores.
Nilsson et al., 2010, Denmark	2825 55.0%	NR (NR)	<pre>E: Social participatio n; cohabitating ; network diversity F: Income</pre>	Mobility limitation (Mobility Help)	<pre>(Regression analysis) When descending from highest to lowest financial assets decile, the number of individuals who experienced onset of mobility disability increased (r = 0.11382). There was a significant gradient in the onset of mobility disability [OR (95%CI) = 1.11 (1.07; 1.15), p < 0.0001] for the onset of mobility disability per step down the deciles of financial assets. Having lower network diversity (e.g., very little [1.60 (1.03; 2.46)], living alone [1.41 (1.14; 1.74)], and low social participation [1.84 (1.31; 2.58)] increase the odds of developing mobility limitation. (Univariate logistic regression analyses)</pre>
Nilsson et al., 2011, Denmark	2839	NR (NR)	E: Cohabitating status; social participatio n F: Income	Mobility limitations (Mobility Help)	<pre>Men [OR (95%CI) = 1.97 (1.33; 2.92)] and women [1.38 (1.33; 2.92)] with low financial assets were more likely to develop mobility limitations and at 3-year follow-up, than those with high financial assets. Women with low financial assets and low social participation had 2-foldhigher odds [2.29 (1.22; 4.29)] of onset of mobility limitations compared with the non-exposed.</pre>

					Men with low financial assets and living alone had 3- fold higher odds [3.04 (1.41; 6.56)] of onset of mobility limitations, compared with the non-exposed Men with low financial assets and low social participation had 5-fold higher odds [5.36 (2.51; 11.47)] of onset of mobility imitations compared with non-exposed
Nilsson et al., 2014, Denmark	2874 55.0%	NR (NR)	F: Income P: Age	Mobility limitations (Mobility Help & Tiredness)	Low financial assets were significantly associated with more mobility limitations only at 10-year and 3-year follow-ups (p < 0.0001).
					Among the 80-year-olds, low financial assets (β = -0.34, p = 0.0422) were significantly associated with more mobility limitations at a 4.5-year follow-up.
					Among the 75-year-olds baseline mobility-related fatigue was significantly associated with more mobility limitations at all three follow-up assessments (-0.39, p < 0.001 at 4.5-year follow-up)
					(Multivariate linear regression models)
Nordstrom et al.,	3684	72.0 (5.0)	E: Neighborhood	Mobility limitations	Education and neighborhood income were not associated with incident mobility impairment.
2007, USA	54.0%		P: Education		(Regression analysis)
Nyunt et al., 2015, Singapore	402 60.7%	69.1(8. 5)	E: Resident density; street connectivity ; land use mix-access:	Self-reported walking for transportation	Resident density ($\beta = 0.95$, p < 0.001), land-use mix density (0.72, p = 0.009) and aesthetic environment (0.17, p < 0.001) and the Accessibility Index (1.59, p < 0.05) were significant in explaining the level of walking for transportation.
			land use mix- diversity; infra- structure		Age (-0.34, p < 0.001), sex (-3.34, p = 0.007), and education (2.59, p < 0.001) are associated with self- reported walking for transport. (Multiple regression models)

			<pre>for walking and cycling; crime safety; traffic safety; aesthetics P: Age; sex; education</pre>		
Ory et al., 2016, USA	272 50.4%	69.0 (NR)	<pre>E: Positive environmenta l perceptions of safety; neighbourhoo d cohesion P: Age; sex; education; race</pre>	<pre>Frequency of walking behavior (y/n individual walks at least 3 days in a 'typical' week) Frequency of walking behavior (y/n individual walks for at least 150 mins in a 'typical' week)</pre>	High neighbourhood cohesion (p < 0.0001) and high positive environmental perceptions of safety (p = 0.0126) were associated with walking for at least 3 days in a typical week. Frequent walkers were more likely to be 70+ years old (p = 0.0047), male (p = 0.0026), White (p = 0.0036), and have more than high school education (p = 0.0006) compared to non-frequent walkers. Low & moderate neighbourhood cohesion (p < 0.0001) and moderate (p = 0.0020) & high positive (p < 0.0001) environmental perceptions of safety associated with walking for at least 150 mins in a 'typical' week. Those that met the CDC recommend guidelines of at least 150 minutes of walking a week were less likely to be 70+ years old (p < 0.0001), male (p < 0.0001), White (p < 0.0001), and have more than high school education (p < 0.0001) compared to those who did not meet the guidelines. <i>(Regression)</i>
Oyeyemi et al., 2018, Nigeria	427 39.9%	68.9 (9.1)	E: Residential density and land use mix-diversity (proximity to non-residential destinations and ease of access to services and places); street/road connectivity;	Self-reported walking for transportation	Proximity of destinations ($\beta = 1.698$), walking infrastructure (1.660), safety (NR), traffic safety (1.591), and safety from crime (0.644) were related to higher weekly minutes of walking for transportation (p < 0.01).

			<pre>walking infrastructure; safety for walking; traffic safety; safety from crime; aesthetic P: Sex</pre>		<pre>Women had less transport walking per week [60 min/week (30-140)] than men [OR (95%Cl) = 105 (70-140)] (p = 0.027). (Multilevel linear regression model, descriptive statistics)</pre>
Palumbo et al., 2020, USA	89107	63.6 (NR)	<pre>F: Income P: Education; occupation; sex</pre>	Mobility limitation	<pre>Education is a significant confounder in determining the impact of occupation on physical function, especially on intermittent workers and early workers. Women who left the workforce early (Class 4) had an 8% [RR (95%CI) = 1.08 (1.03; 1.13), p < 0.05] increased risk of physical limitations compared with women who worked continuously throughout adulthood. Women who experienced intermittent workforce participation (Class 3) had a 5% [0.95 (0.92; 0.99), p < 0.05] reduced risk of mobility limitations after adjusting for confounders. In the final model. later life employment was not a significant relative risk for mobility limitation. Associations involving education and occupation against mobility limitations were no longer significant after controlling for mediating factors including household income. (Modified poisson regression))</pre>
Peel et al., 2005, USA	1000 49.9%	75.3 (6.7)	<pre>E: Residence location (rural/urban) F: Income P: Age; sex; race</pre>	Life space mobility	Income is significantly correlated with LSA scores (β = 0.137, p < 0.001). The LSA scores differed in subjects with varied incomes, with a 30-point difference between subjects in the lowest income level (\leq \$7,999) and subjects in the highest income category (\geq \$50,000). Age (-0.112, p < 0.001), sex (-0.151, p < 0.001) and residence (1.39, p < 0.001) were associated with LSA scores. Race was not associated with LSA scores.

					(Regression analysis)
Perracini et al., 2021, Brazil	1482 73.9%	70.0 (8.14)	<pre>E: Living alone F: Income P: Age; sex; education; occupation</pre>	Life space mobility	There were significant relationships between change in LSA and male sex [β (95%Cl) = 3.32 (0.33; 6.32)], living alone [-3.75 (-7.09; -0.41)], age between 70 and 79 years [-4.95 (-9.13; -0.78); ref = 80 years and over], black race/ethnicity [-7.76 (-13.14; -2.37)], having more than 4 years of schooling [7.94 (4.60; 11.28); ref = illiterate or 1-4 years], having an income of ≥4 minimum wage salaries [4.76 (1.77; 7.75); ref = <3 minimum wage salaries], and currently employed [0.57 (-2.23; 3.37); ref = inactive/unemployed].
	5500				(Regression analysis)
Peterson et al., 2017, USA	5503	76.1 (NR), male 76.3 (NR), female	<pre>E: Residential location; living alone F: Income P: Age; sex; education; race</pre>	Likelihood to use AD (cane or walker)	<pre>Age [OR (95%CI) = 0.73 (0.56; 0.96), p < 0.05], women [0.73 (0.57; 0.93), p < 0.01], education [1.16 (1.04; 1.31), p < 0.05], income [0.90 (0.84; 0.97), p < 0.01], being black [1.94 (1.49; 2.54)], retirement community [1.59 (1.14; 1.22), p < 0.01], living alone [1.28 (1.02; 1.61), p < 0.05] were associated with increased likelihood of cane usage. (Multivariate logistic regression)</pre>
Plys and Kluge, 2016, USA	96	82.0 (6.5)	E: Loneliness P: Age; sex; marital status	Life space mobility	<pre>Marital status was associated with total life space mobility (p = 0.027). Separated-divorced residents have higher life-space mobility than those who were married or cohabiting or widowed. Age, sex and loneliness were not associated with life space mobility. (Chi-square, t-tests)</pre>
Procter- Gray et	745 64.0%	78.1 (5.4)	E: Environmenta l	Life space mobility: walking ≥5days/week;	Income level was associated with "utilitarian walking" than walking ≥ 5 days/week and "recreational walking" (p < 0.001).

al., 2015,			(access to	recreational and	
USA			amenities)	utilitarian	Individuals with a median household income of \$10,000
				walking at least	or more were more likely [OR (95%CI) = 0.87 (0.77;
			F: Income	once a week	0.99)] to participate in "utilitarian walking"
					compared to those with lower median household income.
			P:		
			Education;		Being a minority (20-50% of the participants) was
			race		associated with walk at least five days per week [1.63
					(1.13; 2.36)], and utilitarian walk [3.98 (1.85;
					8.54)] at least once per week but not recreational
					walk at least once per week
					Individuals with access to amenities were more likely
					to participate in utilitarian walk at least once per
					week and walk at least 5 days per week than recreation
					walking at least once per week.
					Education was not associated with walking >5
					days/week. utilitarian, and recreational walking.
					(Logistic regression)
Rantakokko	632	77.7	E: Lack of	Self-reported	The cumulative incidence over 3.5-year follow-up for
et al.,		(1.7),	resting	mobility	difficulties in walking 2 km was 59% and for walking
2012,					difficulties in warking 2 km was 556 and 101 warking
	66.88	perceiv	places and	difficulty	0.5 km 45%. The rate of walking difficulty ranged from
Finland	66.8%	perceiv ed	places and long	difficulty	0.5 km 45%. The rate of walking difficulty ranged from 1.4 to 5.4 per 10 person years according to the
Finland	66.8%	perceiv ed walking	places and long distances	difficulty	0.5 km 45%. The rate of walking difficulty ranged from 1.4 to 5.4 per 10 person years according to the presence of barriers in the outdoor environment and
Finland	66.8%	perceiv ed walking difficu	<pre>places and long distances (distances); bill:</pre>	difficulty	0.5 km 45%. The rate of walking difficulty ranged from 1.4 to 5.4 per 10 person years according to the presence of barriers in the outdoor environment and the mobility task in question. Barriers in the outdoor
Finland	66.8%	perceiv ed walking difficu lty group	<pre>places and long distances (distances); hilly torrain and</pre>	difficulty	0.5 km 45%. The rate of walking difficulty ranged from 1.4 to 5.4 per 10 person years according to the presence of barriers in the outdoor environment and the mobility task in question. Barriers in the outdoor environment increased the risk of new walking difficulty up to almost threefold
Finland	66.8%	perceiv ed walking difficu lty group	<pre>places and long distances (distances); hilly terrain and poor streat</pre>	difficulty	0.5 km 45%. The rate of walking difficulty ranged from 1.4 to 5.4 per 10 person years according to the presence of barriers in the outdoor environment and the mobility task in question. Barriers in the outdoor environment increased the risk of new walking difficulty up to almost threefold.
Finland	66.8%	perceiv ed walking difficu lty group	places and long distances (distances); hilly terrain and poor street	difficulty	0.5 km 45%. The rate of walking difficulty ranged from 1.4 to 5.4 per 10 person years according to the presence of barriers in the outdoor environment and the mobility task in question. Barriers in the outdoor environment increased the risk of new walking difficulty up to almost threefold.
Finland	66.8%	perceiv ed walking difficu lty group 77.1 (2 0).	<pre>places and long distances (distances); hilly terrain and poor street condition (terrain);</pre>	difficulty	0.5 km 45%. The rate of walking difficulty ranged from 1.4 to 5.4 per 10 person years according to the presence of barriers in the outdoor environment and the mobility task in question. Barriers in the outdoor environment increased the risk of new walking difficulty up to almost threefold. Those with development of perceived difficulty in walking 2km were older (p = 0 019)
Finland	66.8%	<pre>perceiv ed walking difficu lty group 77.1 (2.0), no</pre>	<pre>places and long distances (distances); hilly terrain and poor street condition (terrain); noisy</pre>	difficulty	0.5 km 45%. The rate of walking difficulty ranged from 1.4 to 5.4 per 10 person years according to the presence of barriers in the outdoor environment and the mobility task in question. Barriers in the outdoor environment increased the risk of new walking difficulty up to almost threefold. Those with development of perceived difficulty in walking 2km were older (p = 0.019).
Finland	66.8%	<pre>perceiv ed walking difficu lty group 77.1 (2.0), no perceiv</pre>	<pre>places and long distances (distances); hilly terrain and poor street condition (terrain); noisy traffic and</pre>	difficulty	0.5 km 45%. The rate of walking 2 km was 55% and for walking 0.5 km 45%. The rate of walking difficulty ranged from 1.4 to 5.4 per 10 person years according to the presence of barriers in the outdoor environment and the mobility task in question. Barriers in the outdoor environment increased the risk of new walking difficulty up to almost threefold. Those with development of perceived difficulty in walking 2km were older (p = 0.019). Financial situation, education, and sex were not
Finland	66.8%	<pre>perceiv ed walking difficu lty group 77.1 (2.0), no perceiv ed</pre>	<pre>places and long distances (distances); hilly terrain and poor street condition (terrain); noisy traffic and dangerous</pre>	difficulty	<pre>0.5 km 45%. The rate of walking difficulty ranged from 1.4 to 5.4 per 10 person years according to the presence of barriers in the outdoor environment and the mobility task in question. Barriers in the outdoor environment increased the risk of new walking difficulty up to almost threefold. Those with development of perceived difficulty in walking 2km were older (p = 0.019). Financial situation, education, and sex were not associated with perceived difficulty walking in 2km.</pre>
Finland	66.8%	<pre>perceiv ed walking difficu lty group 77.1 (2.0), no perceiv ed walking</pre>	<pre>places and long distances (distances); hilly terrain and poor street condition (terrain); noisy traffic and dangerous crossroads</pre>	difficulty	<pre>0.5 km 45%. The rate of walking difficulty ranged from 1.4 to 5.4 per 10 person years according to the presence of barriers in the outdoor environment and the mobility task in question. Barriers in the outdoor environment increased the risk of new walking difficulty up to almost threefold. Those with development of perceived difficulty in walking 2km were older (p = 0.019). Financial situation, education, and sex were not associated with perceived difficulty walking in 2km.</pre>
Finland	66.8%	<pre>perceiv ed walking difficu lty group 77.1 (2.0), no perceiv ed walking difficu</pre>	<pre>places and long distances (distances); hilly terrain and poor street condition (terrain); noisy traffic and dangerous crossroads (traffic)</pre>	difficulty	<pre>0.5 km 45%. The rate of walking difficulty ranged from 1.4 to 5.4 per 10 person years according to the presence of barriers in the outdoor environment and the mobility task in question. Barriers in the outdoor environment increased the risk of new walking difficulty up to almost threefold. Those with development of perceived difficulty in walking 2km were older (p = 0.019). Financial situation, education, and sex were not associated with perceived difficulty walking in 2km. (Cox regression model)</pre>
Finland	66.8%	<pre>perceiv ed walking difficu lty group 77.1 (2.0), no perceiv ed walking difficu lty</pre>	<pre>places and long distances (distances); hilly terrain and poor street condition (terrain); noisy traffic and dangerous crossroads (traffic)</pre>	difficulty	<pre>0.5 km 45%. The rate of walking difficulty ranged from 1.4 to 5.4 per 10 person years according to the presence of barriers in the outdoor environment and the mobility task in question. Barriers in the outdoor environment increased the risk of new walking difficulty up to almost threefold. Those with development of perceived difficulty in walking 2km were older (p = 0.019). Financial situation, education, and sex were not associated with perceived difficulty walking in 2km. (Cox regression model)</pre>
Finland	66.8%	perceiv ed walking difficu lty group 77.1 (2.0), no perceiv ed walking difficu lty group	<pre>places and long distances (distances); hilly terrain and poor street condition (terrain); noisy traffic and dangerous crossroads (traffic)</pre>	difficulty	<pre>0.5 km 45%. The rate of walking difficulty ranged from 1.4 to 5.4 per 10 person years according to the presence of barriers in the outdoor environment and the mobility task in question. Barriers in the outdoor environment increased the risk of new walking difficulty up to almost threefold. Those with development of perceived difficulty in walking 2km were older (p = 0.019). Financial situation, education, and sex were not associated with perceived difficulty walking in 2km. (Cox regression model)</pre>

			P: Age;		
			education:		
			sex		
Rantakokko et al., 2015, Finland	848 62.0%	80.1 (NR)	<pre>P: Age; education; sex E: Environmenta l (perceived environmenta l barriers to outdoor mobility; facilitators for outdoor mobility) F: Income P: Age; sex; education</pre>	Life space mobility	<pre>Poor street conditions [OR (95%CI) = 1.5 (1.1; 2.3)], high curbs [5.4 (2.8; 10.7)], hills in nearby environment [2.0 (1.4; 2.8)], long distances to services [2.1 (1.3; 3.3)], lack of benches [1.8 (1.2; 2.8)], busy traffic [1.9 (1.1; 3.2)], dangerous crossroads [1.9 (1.1;3.1)], snow and ice [1.8 (1.3; 2.4)], vehicles on walkways [4.9 (1.4; 17.4)] were associated with outdoor mobility.</pre> Park or other green area [0.7 (0.5; 0.9)], walking trail & skiing track [0.4 (0.3; 0.6)], nature & lakeside [0.5 (0.4; 0.8)], good lighting [0.6 (0.5; 0.8)], safe crossings [0.7 (0.5; 0.9)] are the facilitators associated with outdoor mobility. (Regression) Individuals with low education have more restricted (LSA mean score = 10) life space compared to those with higher education (p < 0.001). Increased age is associated with restricted life space (p < 0.001) (t-test) Individuals with restricted life-space perceived their financial situation as moderate or poor (58.6%) compared to those with unrestricted life space (41.4%) (p < 0.001).
					A greater percentage (74.9%) of women had restricted life space compared to those with no restricted life space (53.0%) (Chi-square)

Rosso et	674	74.5	E:	Life space	Individuals with post high school degrees were more
al., 2014.	- / -	(7.1)	 Neighborhood	mobility	likely to travel beyond home zip code (49 7%), than
USA	72 8%	(' • ± /	social		stav in home zip code (40.8%) or stav at home (31.5%)
0.011	, 2 . 0 0		capital:		(31.3%) $(31.3%)$
			neighborhood		(p (0.001).
			crime		(Chi-square)
			F: Income		Individuals who reported that they were "below 200% of federal poverty level" were more likely to stays at
			P:		home (57.7%,) or stays in home zip code (49.43%) than
			Education;		travels beyond home zip code (31.9%) (p < 0.001).
			Tace		Being in a neighborhood with the highest social capital compared with the lowest was not associated with mobility for those in good health.
					Black participants who lived in neighborhoods with the highest social capital had greater mobility than those living in neighborhoods with the lowest social capital [mean difference (95%CI) = 7.4 (1.0; 13.7)].
					Whereas for Whites, there was no association [0.11 (-0.05; 0.27)]. There were no significant associations for mobility and living in neighborhoods with the highest social capital compared with the lowest for either those living with others [4.1 (-2.7; 10.8)] or those living alone [-1.7 (-7.8; 4.4)].
					(Analysis of variance)
					Neighborhood crime rates were significantly but weakly associated with mobility (personal crime: $r = -0.18$, p < 0.001; property crime: $r = -0.076$, $p = 0.05$).
					(Correlation)
Rosso et	680	75.1	E: Living	Life space	The odds of engaging in social activities outside the
al., 2013,		(6.9)	condition;	Mobility	home (participating in more social organizations [OR
USA	73.4%		social	_	(95%Cl) = 0.42 (0.26; 0.67)] and using senior centers
			engagement		[0.36 (0.19; 0.68)]) were lower for those with low
			F: Income		mobility compared to those with high mobility.

					(Regression)
			<pre>P: Age; sex; race; education</pre>		Individuals who reported that they were "below 200% of federal poverty level" were more likely to report low mobility with disability (67.1%) or no disability (53.2%) than high mobility (31.5%) ($p < 0.001$).
					Individuals with disability were older, more likely to be female, non-White, less educated and live alone than those who had no disability.
Rosso et al., 2013, USA	674 72.8%	74.5 (7.1)	<pre>E: Lives alone; amenity diversity F: Income P: Age; sex; education; race</pre>	Self-reported travel routine (stays at home, stays in home zip and travels beyond home zip)	<pre>Among individuals who spent most of their time within their home zip codes, the highest mobility was observed for those living in neighborhoods in the highest tertile of amenity diversity [Mean difference (95%Cl) = 8.3 (0.1; 16.6)] with approximately equal mobility for those in the middle tertile compared with the lowest tertile [-1.7 (-10.0; 6.6)]. Living alone was associated with stays in home zip - 8.4 (15.1; -1.7), p < 0.01] but not with stay at home or travel beyond home zip code In adjusted analyses, no association was observed between amenity diversity and mobility. No association was observed for those who did not regularly leave home or for those who routinely spent time outside their home zip codes. Age was associated with mobility for all group (stays at home [-0.9 (-1.3; -0.4)]; Stay in home zip [-0.7 (- 1.1; -0.2)]; travels beyond home zip [-1.1 (-1.6; - 0.6)], p < 0.01)). Being female was associated with stays at home [-7.8 (-15.7; -0.009), p < 0.05] but not with stays in home zip or travels beyond home zip code</pre>
					Other race as against black and white were associated with stays at home [-14.6 (-27.7; -1.4), $p < 0.05$],

					<pre>but not with stays in home zip or travels beyond home zip. Education (<high associated="" at<br="" school)="" stay="" was="" with="">home [-10.5 (-19.9; -1.2), p < 0.05] and travel beyond home zip code [-11.3 (19.5; -3.0), p < 0.01], but not stay in home zip code. High school graduate was not associated with mobility. income (below 200% poverty was associated with stay in home zip code [-12.9 (-20.5; -5.2), p < 0.01] and travels beyond home zip [-8.5 (-16.5; -0.6), p < 0.05], but not stays in home zip code. (Regression)</high></pre>
Seeman et al., 2010, USA	8927 58.4%	NR (NR)	<pre>F: Income P: Age; sex; ethnicity; education</pre>	Mobility limitations	Individuals with more than high school education had 60% odd of not reporting mobility limitations (p < 0.005). Only functional limitations differed significantly over time for respondents aged 80 years and older, with decreased odds of reporting functional limitations in 1999 to 2004 [OR (95%Cl) = 0.6 (0.4; 0.8)]. Among participants aged 70 to 79 years, the increase in prevalence of functional limitations was also significantly greater among non-Hispanic Blacks [1.3 (0.8; 1.9), $p = 0.04$] and marginally greater among Mexican Americans 1.6 (0.9; 3.0), $p = 0.07$]. Among respondents aged 80 years and older, women had a significantly greater reduction in functional limitations [0.4 (0.3; 0.7)] than did men [1.0 (0.7; 1.4), $p = 0.009$]. The reduction in functional limitations was significantly greater among respondents with less than high school education [0.4 (0.2; 0.6)] than among those with more than high school education [0.8 (0.5; 1.3), $p = 0.005$].

					The association between income and mobility limitation was not reported. (Logistic regression model)
Seplaki et al., 2014, USA	875	NR (NR)	<pre>E: Physical challenges in the home environment: having to step up/down to get into the house; not having bathroom/bedroom/ kitchen on the same floor; having more than four rooms in house; living alone vs with spouse or others P: Age; race; education</pre>	Self-reported use of assistive device (AD) for mobility (e.g., cane, walker, wheelchair)	<pre>Women living in more physically challenging home environments have 8% smaller odds of using a higher level of AD in the home [OR (95%CI) = 0.92 (0.85; 0.99), p < 0.05]. Age at baseline was associated with AD usage [1.03 (1.00; 1.05), p < 0.05]. Race, education and living alone were not associated with AD usage. (Generalized ordered logistic regression model)</pre>
Sharma et al., 2020, USA	6767 53.0%	60.3 (NR)	<pre>F: Income P: Age; sex; education; race; marital status</pre>	Functional mobility limitation	Relative to Asian Indians (i.e., reference group), Chinese [β = 0.57, p < 0.01) and Filipinos (0.74, p < 0.05) were associated with lower odds for functional limitations. Age was also a significant estimator with an odds ratio of 1.05, and, as such, each additional year was associated with a higher probability of having any functional limitations. Being Married was associated with decreased odds (0.69, p < 0.01). For educational attainment, the only advanced degree was significant (0.52, p < 0.01). Higher family income [between 35-49K (0.73, p < 0.05); 50- 74K (0.60, p < 0.01); 75-99K (0.60, p < 0.01) and 100K+ (0.64, p < 0.01) was also associated with lower odds across all levels relative to the less than \$35k reference group. Gender was not associated with functional limitations.

					(Regression analysis)
Shumway- Cook, et al., 2003, USA, Canada	54 50.0%	76 (5.5), elite older adults 77.7 (4.7), older adults with no disabil ity 83.2 (5.7), older adults with disabil ity	<pre>E: Temporal factors (traffic, busy streets); terrain (flights of stairs, curbs, slopes/ramps, uneven surfaces, obstacles, etc.); density (crowded place); distance (walking long distance, >10 blocks); attentional demands (travel companions, familiarity, distractions); ambient conditions (temperature, outdoor light level, precipitation) P: Age; sex</pre>	Mobility disability (able to work half a mile and climb stairs without assistance or requires assistance walking)	There was a significant difference between mobility groups in distance walked (p < 0.001) crossing busy road (p < 0.001), going out when it is icy (p = 0.003), climbing a single flight of stairs (p = 0.007) or two flights of stairs (p = 0.009), and travelling alone (p < 0.001) There was no significant difference between groups in the density dimension, noisy or busy places, unfamiliar places, uneven surface, escalator, curbs, going out in the dark, when it is snowing, very hot, very cold, or wet and the presence of a crossing traffic light. Those in the "disabled" group were significantly older than those in the "able" and "elite" groups (p < 0.001). There was no significant association between proportion of females in the "elite", "able" and "disabled" groups. (Analysis of variance, Fisher exact test)
Shumway- Cook et al., 2005, USA	12737	77.4 (NR)	<pre>E: Residential area (urban vs rural); living alone F: Income P: Age; sex; education; race</pre>	Mobility limitation	<pre>Individuals with less than high school education were more likely [OR (95%CI) = 1.25 (1.15; 1.36), p < 0.001] to report mobility limitations compared to those with >high school education. Individuals with income <\$25,000 were more likely [1.35 (1.23; 1.47)] to report mobility limitation compared to those with income >\$25,000 (p < 0.001). Older age [1.08(1.07; 1.08)], being female [0.60 (0.55; 0.66), being unmarried [0.71 (0.64; 0.80)], living with others [0.67 (0.60; 0.76)] were associated</pre>

					<pre>with a greater probability of being classified in a higher level of mobility. Race (being non-white), metropolitan area (rural vs urban) was not statistically associated with mobility limitations (Polytomous logistic regression)</pre>
Siberschmid t et al., 2017, USA	432	83.8 (3.9)	<pre>E: Have someone to count on or talk to about problems F: Income P: Age; sex; education; marital status</pre>	Life Space Mobility	Age (p = 0.0004) and sex (p < 0.001) was associated with Life space mobility No significant difference between education, income, having someone to count on or talk to about problems or marital status and levels of Life Space Mobility. (Chi-square)
Skantz et al., 2020, Finland	848	80.6 (NR)	<pre>E: Infrastructure (good/bad lighting, services close, even /uneven sidewalks, walkways without/with steep hills, resting places by the walking route, peaceful and good quality pedestrian routes, and safe crossings); safety (appealing landscape, familiar surroundings, own yard, other people outdoors, no car traffic, and no cyclists on walkways, noisy & busy traffic); nature</pre>	Self-reported modifications in walking 2 km (no walking modification, adaptative walking modification and maladaptive walking modification)	Older people reporting at least two nature - or infrastructure related environmental facilitators had two to threefold higher odds for using no walking modifications compared to those using maladaptive walking modifications. Similarly, at least two infrastructure [OR (95% CI) = 2.4 (1.6; 3.7)] or safety related [2.5 (1.4; 4.3)] facilitators for outdoor mobility were more likely to be reported by those using adaptive walking modifications than those using maladaptive walking modifications. Participants reporting at least two infrastructure- related environmental barriers had increased odds for using adaptive [2.5 (1.4; 4.2)] or maladaptive [2.3 (1.3; 4.2)] walking modifications. Those with "no walking modifications.

			<pre>(e.g., hills in the area, ice, and snow in winter) P: Age; sex; education</pre>		<pre>than those with "adaptive" or "maladaptive walking modifications" (p < 0.001). Women were more prevalent in those with "adaptive" or "maladaptive walking modifications" (p = 0.011). (Multinomial logistic regression analysis, descriptive statistics)</pre>
Spalter et al., 2014, Israel	982	70.9 (0.3)	<pre>F: Income P: Age; sex; education; ethnicity</pre>	Mobility limitation	Education, age, gender, and income were not correlated with change in mobility and difficulty to move. Being Jews/veteran immigrants was associated with change in movement difficulty, but not change in mobility difficulty (General Linear model)
Sun et al., 2020, Taiwan	1635 48.2%	65.3 (4.7)	<pre>E: Living alone F: Income P: Age; sex; education; marital status</pre>	Mobility limitation	<pre>Those who were older, [OR (95%CI) = 1.09 (1.06; 1.12), p < 0.0001], and female [1.96 (1.49; 2.57), p < 0.0001], had a higher risk of mobility limitations after controlling for baseline mobility status. Education, marital status, income and living alone were not associated with the risk of mobility limitation. (Logistic regression)</pre>
Suzuki et al. 2014, Japan	140 57.9%	76.0 (6.4)	E: Social network diversity; social ties P: Age; sex	Life space mobility	<pre>Increased age (β=-0.170, p < 0.05), women (0.342, p < 0.01) and poor social diversity (0.217, p < 0.01) were significant predictors of low LSA score. (Multiple regression analysis). Social ties (r=0.332) were correlated with LSA scores (Correlations)</pre>
Tanjani et al., 2015, Iran	1325 52.0%	69.1 (7.4)	E: Residential area (urban vs rural)	Mobility limitation	Men [OR (95%CI) = 1.76 (1.12;2.76), $p = 0.013$] and women [1.59 (1.04; 2.30), $p = 0.031$] that reported not satisfied with their financial situation were more likely to request help during mobility compared to

l
l
l
l
re
)t
_
e
a
9
5
2
د ۱
1
1
2]) <
< 1) <
4 > <
4 > <
s 1 > <
1) <
2]) <
2 1 > <
2 1
).

Towne et al., 2016, USA	344 53.8%	63.9 (8.0), online respond ents 70.0 (9.5), paper respond ents	<pre>E: Perceived neighbourhoo d cohesion; walkability F: Income P: Age; sex; race; marital status</pre>	Self-reported walking for any purpose	<pre>Environmental factors associated with walking for any purpose for at least 150 minutes per week included residing in an area perceived as having medium neighborhood cohesion/safety (OR = 1.862), residing in an area perceived as having high neighborhood cohesion/safety (2.671) and living in a walkable vs. car-dependent areas (3.171) (p < 0.05). Compared to being aged 50-64 years old, being 65+ was positive associated with walking for any purpose [1.763 (1.105; 2.813), p = 0.046]. Sex, race, household income, and marital status were not associated with walking for any purpose. (Multivariate logistic regression)</pre>
Van Zon et al., 2016, US	4020 49.3%	65.7 (4.6)	<pre>F: Income P: Age; education; race; occupation; marital status</pre>	Mobility limitation	Higher education [β (95%CI) = -0.19 (-0.218; -0.155), p < 0.001], White collar job [-0.203 (-0.023; 0.001), p < 0.001], Wealth [-0.148 (-0.171; -0.126), p < 0.001], older age [0.003 (0.010; -0.004), p < 0.001] were negatively associated with mobility limitations. limitations in mobility functions were more common in females [0.314(0.262; 0.366), p < 0.001], in African Americans [0.128 (0.046; 0.210), p < 0.001] and other races compared to non-Hispanic Whites, and in those who are not married/partnered [0.101 (0.051; 0.152), p < 0.001]. (Linear regression analysis)
Viljanen et al., 2016, Finland	848	80.6 (4.3)	<pre>E: Living situations F: Income P: Age; education</pre>	Life space mobility	Lower education was significantly associated with restricted life space (LSA mean score = 8.8) (p = 0.001). (<i>t-test</i>) Men [OR (95%CI) = 0.88 (0.41; 1.88)] and women [1.08 (0.65; 1.79)] with a perceived poor financial situation were more likely to report restricted life space compared to those with a perceived good financial situation (p < 0.000).

					<pre>Increased in age was associated with restricted life space among men [1.24 (1.15; 1.34)] and women [1.18(1,13; 1.24)] Living alone was associated with restricted life space among men [1.83 (1.00; 3.36)] and women [2.19 (1.43; 3.34)] (Multivariate logistic regression)</pre>
Vivoda et al., 2020, USA	6387 53.9%	NR (NR)	<pre>E: Household size F: Income P: Age; sex; education; race; marital status</pre>	Self-reported Driving status	Compared to full driving, older adults with a high school degree had about 23% lower odds of reducing their driving compared to those with less than a high school education. Respondents over age 75 had higher odds of both modifying and ceasing driving as compared to the youngest participants (65-69-year-olds). As compared to men, women had 2.7 and 3.5 times the odds of driving reduction and no longer drive, respectively, compared to full driving. Nonwhite respondents had almost 29% higher odds of driving reduction versus full driving, and 144% higher odds of driving cessation versus full driving, compared to white respondents Accumulated wealth was highest among the unrestricted drivers and lowest among those who had stopped driving (p < 0.05). In terms of relationship status, higher odds of driving reduction and cessation were observed for those who never married, and higher odds of driving cessation compared to full driving were noted for widowed respondents. Household size did not influence drove with
					modification (driving reduction) compared to full driving.

					(Logistic regression)
Winters et al., 2015, Canada	1309 55.0%	75.0 (8.3)	<pre>E: Walkability; street connectivity (using Street Smart Walk scores) F: Income P: Age; sex; education; country of birth</pre>	Mobility limitations Yes or no to meeting the Canadian PA guideline of ≥150 min PA/week (used walking)	<pre>Street Smart Walk Scores [somewhat walkable [OR (95%CI) = 1.83 (1.16; 2.88)], very walkable [1.95 (1.25; 3.07)], and walker's paradise [3.57 (1.62; 7.87)] were all associated with walking ≥150 min/week. The higher the walkability the higher the likelihood of walking ≥150 min/week. Having post-secondary education [1.75 (1.20; 2.56)] or secondary education [1.65 (1.10; 2.48)] is associated with walkability score (p < 0.05). Compared to individuals with higher incomes, those with lower income are most likely to have mobility level 2 (can be able to walk around the neighbourhood with difficulty but does not require waking aid or help of someone) or 3 (able to walk around in the neighbourhood with walking equipment but without the help of another person (p < 0.05). Age, sex and country of birth were not associated with walkability score. (Logistic regression)</pre>
Yang et al., 2018, USA	75862 57.0%	NR (NR)	<pre>E: Land use mix; street connectivity ; traffic conditions; proximity to destinations ; safety; aesthetic F: Income P: Age; sex; race</pre>	Self-reported transportation Active travel	Higher level of neighborhood poverty was associated with lower numbers of total trips and trip diversity (OR = 0.92, $p < 0.05$). A Higher level of street connectivity was associated with a lower total distance and lower maximum distance (1.12, $p < 0.05$), while a higher walk score was associated with higher numbers of total trips and trip diversity (1.08, $p < 0.05$). Compared to being aged 65-74 years, being aged 75-84 ($p < 0.001$) and aged >85 years was associated with lower public transportation use and lower active travel.

					Compared to being male, being female was associated with lower public transit use and lower active travel (p < 0.001). Compared to being White, being Black (1.19, p < 0.001), Asian (3.03, p < 0.001), Hispanic (1.53, p < 0.001), or Other (2.30, p < 0.001), was associated with higher public transit use. Compared to being White, being Black (0.61, p < 0.001), Asian (0.94, p < 0.001), Hispanic (1.00, p < 0.001), or Other (0.97, p < 0.001) was associated with active travel. Compared to earning <\$20,000, earning \$20,000 to
					\$40,000 (0.70, p < 0.001), \$40,000 to \$80,000 (0.54, p < 0.001), and >=\$80,000 (1.29, p < 0.001), was associated with public transit use. Compared to earning <\$20,000, all other income ranges were positively associated with active travel (p < 0.001). (Linear regression)
Yeager et al., 2006	3848	68.4 (8.8)	<pre>E: Social ties P: Age; sex; education; religious affiliation/ belief</pre>	Mobility limitations	Religious attendance (rarely: $\beta = -0.129$, p < 0.05; sometimes: -0.201, p < 0.01 often: -0.187, p < 0.01) and religious practices (0.009, p < 0.10), age (0.030, p < 0.01), Being female (0.245, p < 0.01), education (-0.027, p < 0.05) was associated with mobility limitation. Religious affiliations, religious belief, being married and social ties with friends and peighbors
					were not associated with mobility limitation. (Regression)
Zang et al., 2019, Hong Kong	3961 52.3%	74.5 (NR)	E: Land-use mix; number of retail shops; distance to mass transit rail; population density:	Self-reported Walking Total number of trips Total distance travelled	Urban greenness [OR (95%CI) = 1.14 (1.02; 1.27), p = 0.02], population density [1.14 (1.04; 1.24), p < 0.01] and number of retail shops [1.28 (1.15; 1.43), p < 0.01] predicts the odd of walking among elderly in private house. Land use mix [1.17 (1.4; 1.32), p = 0.01] number of retail shops [1.18 (1.04; 1.34), p = 0.01] predicts the odd of walking among elderly in public housing.

	urban	Walking times	The number of retail shops [β (95%CI) = -0.07 (-0.12;
	greenness		-0.01), p = 0.011 and Distance to mass transit rail [-
	2		0.06 (-0.11, -0.01) $n = 0.011$ negatively predicted
	F. Income		the total number of tring olderly people in public
			housing. Population density $[-0.03 (-0.07; 0.00), p =$
	P: Age; sex		0.05] and number of retails shops [-0.11 (-0.16; -
			0.07), $p < 0.01$] negatively predicted the total number
			of trips elderly people in public housing.
			Population density $[-0.09 (-0.14; -0.03), p < 0.01],$
			number of retail shops $[0, 09, (0, 02; 0, 16), p = 0, 01]$
			and distance to mass transit rail $[0.06 (0.01, 0.12)]$
			and distance to mass transit fair [0.00 (0.01, 0.12)]
			predicted the total travel distance among elderly in
			private housing.
			Number of retail shops $[0.08 (0.01; 0.17), p = 0.05]$
			and distance to mass transit rail [-0.10 (-0.19; -
			0.01), p = 0.02] predicted the total walking time
			among elderly in public housing.
			Urban greenness $[0.23 (0.06; 0.39), p = 0.01]$, number
			of retail shops $[0.11 (0.04; 0.17), p < 0.01]$, and
			distance to mass transit rail [-0.07 (-0.12; 0.01), p
			= 0.021 predicted the total walking time for elderly
			in private housing
			Compared to being male, being female positively
			predicted the odds of walking in private housing (n <
			0.01 but not in public housing Poing forale was
			period and the public housing. Being remate was
			negatively associated with total number of trips and
			total travel distance in both public and private
			housing (p < 0.01). Sex was not associated with total
			walking time in public and private housing.
			Age was negatively associated with odds of walking in
			private housing $(p = 0.04)$, but not public housing.
			Age was negatively associated with total number of
			trips and total travel distance in both public and
			private housing ($p < 0.01$). Age was negatively
			associated with total walking time in private housing
			associated with total warking time in private nousing $(n = 0.02)$ but not public brusing
			(p = 0.02), but not public nousing.

	1.0.0				In private housing, medium-high (p = 0.01) and high (p < 0.01) income were negatively associated, and medium- low was not (p = 0.17). In public housing, compared to low household income, medium-low, medium-high, and high income were not associated with odds of walking. In private housing, compared to low household income, medium-low, medium-high, and high income were not associated with total number of trips. In public housing, medium-low (p = 0.04) and high (p = 0.02) were negatively associated, medium-high was not. For total travel distance, only high income (p < 0.01) was positively associated in public housing. All other associations with total travel distance were not significant. For total walking time, income was not associated in public and private housing (<i>(Logistic regression model)</i>
Zang et al., 2020,	T80	NR (NR)	E: Land use mix; street	Total number of mins walked	Green view index (β = 0.137, p = 0.05), land use mix (0.09, p = 0.28), street connectivity (-0.09, p =
Hong Kong	43.0%		<pre>connectivity ; population density; green view index</pre>	(reported)	0.26), population density (0.14, $p = 0.10$) were not significantly related to total walking time. Age was negatively associated with walking time (- 0.20, $p = 0.01$). Sex (-0.09, $p = 0.22$), education (0.11, $p = 0.13$), and occupation ($p = 0.04$, $p = 0.63$)
			<pre>P: Age; sex; education;</pre>		were not associated with total walking time.
			occupation		(Regression)
Zhang et	1264	67.5	E:	Frequency of	Population density [Coefficient (z) = 0.0025 (1.43), p
al., 2016,		(6.6)	Population	cycling trips	< 0.1], intersection $[-0.091 (-2.39), p < 0.05]$ and
China	49.5%		density;		bus stop $[-0.112 (-3.71), p < 0.01]$ were significantly
			intersection		associated with frequency of cycling trips.
			land-use		Land mix use and commercial accessibility were not
			mix; bus-		associated with frequency of cycling trips.
			stop		
			density;		

			commercial		Compared to being female, being male [0.294 (1.83), p
			accessibilit		< 0.1] was associated with cycling trips. Age was
			У		negatively associated $[-0.035 (-2.53), p < 0.01]$ with
					cycling trips.
			P: Age; Sex		(Pinomial rograssion)
					(binomial regression)
	P	erformanc	e based and se	lf-reported mobility	outcomes and >1 factors $(n = 10)$
Ahmed et	1967	69.1	F: Income	Physical	The prevalence ratio for developing mobility
al., 2016,		(2.9),		functioning (SPPB)	limitations was higher for individuals who reported
Brazil,	52.0%	male	P: Age;		insufficient income [PR (95%CI) = 1.57 (1.30; 1.89)]
Colombia		6.0.1	gender; sex;	Mobility	compared to those with sufficient income [1.28 (1.07;
and Canada		69.1	education;	limitation	[1, 52] (p < 0.001).
		(2.8),	maritai		Lower education was accordented with mobility
		Telliate	Status		limitation [0.97 (0.96: 0.99), $p < 0.0011$
					There was a higher prevalence of poor physical
					performance among participants endorsing the feminine
					role [1.37 (1.01; 1.88), p < 0.05] or the
					undifferentiated role $[1.58 (1.18; 2.12), p < 0.01]$
					compared to those endorsing the masculine role.
					Sex (ref. men) was associated with self-reported
					mobility limitation $[1.61 (1.41; 1.83), p < 0.001]$ and
					poor physical performance [1.53 (1.19; 1.98), p <
					0.001].
					Married status (ref, married), being single was
					associated with sell reported mobility limitation $[1, 22, (1, 01), 1, 50)$ $p < 0, 051$ but not with poor
					[1.25 (1.01, 1.50), p < 0.05], but not with poor physical performance
					physical periormance.
					Age was not associated with self-reported mobility
					limitation and physical performance
					(Poisson regression)
Brown et	3322	78.5	E: Perceived	Gait speed	Perceived neighbourhood climate was associated with
al., 2011,		(6.3)	neighbourhoo		number of blocks walked (r = 0.154 , p < 0.05).
USA	59.0%		d climate	Blocks Walked	Perceived neighbourhood climate was not associated
				(iog-transformed)	with gait speed.

			<pre>F: Income P: Age; sex; education; marital status</pre>		Age was negatively associated with gait speed (-0.371, p < 0.01) and blocks walked (-0.207, p < 0.01). Female sex was negatively associated with gait speed (-0.279, p < 0.01) and blocks walked (-0.237, p < 0.01). Education was positively associated with gait speed (0.165, p < 0.05), but not blocks walked. Income and marital status were not associated with gait speed or blocks walked. (Correlation matrix)
Chudyk et al., 2017, Canada	161 63.3%	74.3 (6.2)	<pre>E: Walkability (Street Smart Walk score); safety (crime and traffic); broken glass or trash participants see in the neighbourhood; graffiti; neighborhood social cohesion; neighbourhood physical and social disorder; neighbourhood perception of aesthetics P: Age; sex</pre>	Steps per day Walking for transportation (trip/week)	Aesthetics was associated with steps taken by the older adults [β (95% CI) = 1.08 (0.94; 1.23)] but Street Smart Walk score was not associated. Street Smart Score [1.37 (1.18; 1.59)], neighbourhood physical and social disorder [0.36 (0.14; 0.89)] were associated with walking for transportation, but neighbourhood social cohesion, and aesthetics were not associated. Age was significantly associated with steps per day [- 903 (-1642; -164), p = 0.017). Age was not associated with walking for transportation. Sex was not associated with steps per day or walking for transport. (<i>Regression</i>)
De Greef et al., 2011, Belgium	307 31.6%	61.6 (8.4)	E: Residential density; land use mix diversity; land use mix access; street network connectivity; availability and quality of walking and cycling infrastructures; safety for	Step counts per day Self-reported active transportation Self-reported	For step counts per day, an additional 4% of the variance was explained by the physical environmental factors beyond the sociodemographic. For self-reported active transportation, 6% of the variance was explained by physical environmental perceptions. Higher walkability was associated with more self-reported active transportation (p < 0.05).

			cycling; perceived safety from crime and traffic; physical activity equipment in the home environment; convenience of physical activity facilities; satisfaction with neighbourhood services; emotional satisfaction with the neighbourhood; aesthetics P : Age: sey	recreational walking	For self-reported recreational walking, environmental perceptions explained 5% of the variance. A higher convenience of PA facilities was associated with more self reported recreational walking ($p < 0.05$). Age was negatively associated with steps per day ($\beta = -0.27$, $p < 0.01$), but not active transport or recreational walking. Sex was not associated with steps per day, active transport, or recreational walking. (<i>Hierarchical multiple regressions</i>)
Giannouli et al, 2019, Germany	157	72.4 (5.8), partici pants in wave 1 69.0 (4.9), partici pants in wave 2	E: Temperature; sociableness P: Age; sex; education	Gait time Gait step Life space mobility	For the pool data, Age (β = -0.287, p <0.05) was associated with active gait time but not gait steps. Age (-0.294, p < 0.05) and education (0.325, p < 0.01) was associated with active gait time on wave 2. Education (0.235, p < 0.01) was associated with steps taken on wave 2. Age (-0.241, p < 0.05) was associated with life space mobility, measured as the largest straight-line distance away from the home location to the study site. Temperature and sociableness were not associated with any mobility outcome measured. (<i>Regression</i>)
Gibson et al., 2010, Australia	471 65.3%	NR (NR)	<pre>E: Residential type (community dwelling vs. retirement dwelling) P: Age; sex</pre>	Physical functioning (TUG; Timed chair stands; 6MWT; postural sway open: total sway path (mm); postural sway closed: total sway path (mm); Berg balance score; Step test right	There was a significant difference between community and retirement village dwellers, favouring the community dwellers in single left leg stand (mean difference = -4.58, p = 0.022), single left leg stand scores (-4.18, p = 0.045) and LLFDI- function total scores (-2.27, p = 0.015). There were no significant differences between individuals in community dwelling or retirement dwelling in TUG scores, Time chair stands scores, 6MWT scores, Postural sway open and close scores, Berg balance scores, Step test right and left scores LLFDI disability frequency and limitation score.

				<pre>and left (steps); Single right and left leg stand (sec) LLFDI (total, disability frequency and limitation)</pre>	Being female was negatively associated with LLFDI scores [β (95%CI) = -4.75 (-6.73; -2.77), p < 0.001]. Being aged 75-79 was not associated with LLFDI scores. Being aged 80-84 [-1.88 (-3.65; -0.11), p = 0.038] and aged >85 [-2.46 (-4.76; -0.17), p = 0.036] were negatively associated with LLDFI scores. (Multivariable linear regression)
Lang et	4148	NR (NR)	E:	Gait speed	Individuals with 15 or younger years of completing of
al., 2008, UK	55.5%		Environmenta l (neighborhoo d deprivation	Mobility limitations	schooling had a higher risk [RR (95%CI) = 1.11 (0.81; 1.53)] of slower gait speed compared to those with 17 years of completing of schooling [0.93 (0.63; 1.36)] (p = 0.000).
depri (rank 5); popul densi area	<pre>(ranked 1- 5); population density; area type (urban vs</pre>		<pre>Individuals with 15 or younger years of completing of schooling had a higher risk [0.93 (0.68; 1.29)] of reporting mobility limitation compared to those with 17 years of completing of schooling [0.89 (0.61; 1.30)] (p = 0.000).</pre>		
			rural vs small town) F: Income		<pre>Individuals with the lowest income [1.84 (1.15; 2.94)] had a higher risk of slower walking speed compared to those with higher income [1.38 (0.90; 2.12)] (p < 0.000).</pre>
			<pre>P: Age; education; sex</pre>		<pre>Individuals with the lowest income [1.74 (1.09; 2.77)] had a higher risk of reporting mobility limitations compared to those with higher income [1.62 (1.07; 2.47)] (p < 0.000).</pre>
					Those living in the least deprived neighborhoods had greater proportions of individuals without mobility difficulties than those living in the most deprived neighborhoods (90.1% vs 76.2%, $p = 0.000$).
					Those living in the least deprived neighborhoods had greater proportions of individuals without gait speed impairment than those living in the most deprived neighborhoods (97.5% vs 90.8%, $p = 0.000$).

					<pre>Age [1.07 (1.05; 1.09)], sex (ref. Male), [1.39 (1.09; 1.78)] population density [1.01 (0.89; 1.14)], area type (ref. Rural) small town [1.18 (0.71; 1.97)] vs urban [1.00 (0.61; 1.61)] were associated with incident of self-reported mobility difficulties after a 2-year follow-up Age [1.10 (1.08; 1.12)], sex (ref. Male), [1.16 (0.90; 1.48)] population density [0.92 (0.81; 1.04)], area type (ref. Rural) small town [1.18 (0.70; 1.99)] vs urban [1.35 (0.85; 2.16)] were associated with incident of gait impairment after a 2-year follow-up. (Logistic regression)</pre>
Michael et al., 2011, USA	2421 100.0%	71.0 (5.0), partici pant with walking score at baselin e 72.0 (5.0), partici pants with no walking score at baselin e	<pre>E: Street connectivity ; street density P: Age; education; occupation</pre>	Timed walk (walk speed) Chair-stand tests (time taken) Self-reported block walked	Among women, street connectivity ($\beta = 9.63$) and density [β (95%CI) = -0.79 (1.47; -0.12)] were associated with self reported blocked walked ($p =$ 0.010), but not associated with chair stand, and walk speed. Among men, street connectivity and density were not associated with chair stand and walk speed. Age was negatively associated with blocks walked [- 0.36 (-0.52; -0.21), $p < 0.05$] and walk speed [-0.01 (-0.013; -0.009), $p < 0.05$], and positively associated with chair stand time [0.19 (0.13; 0.25), $p < 0.05$]. Education was negatively associated with chair stand time [-0.10 (-0.19; 0.00), $p < 0.05$], positively associated with walk speed [0.006 (0.002; 0.010), $p <$ 0.05], and not associated with blocks walked. Compared to none, working =<10 years of manual labour was negatively associated with chair stand time [-0.22 (-1.33; -0.21), $p < 0.05$], positively associated with walk speed [0.02 (0.01; 0.05), $p < 0.05$], and not associated with blocks walked. Compared to none, working >10 years of manual labour was not associated with blocks walked or chair stand time, but was

					positively associated with walking speed [0.03 (0.001;
					0.05), p < 0.05].
					(Multi level linear regression)
Thorpe et	2969	73.5	F: Income	Gait speed	For both men [β (SE) = -0.05 (0.015)] and women [-0.04
al., 2011,		(2.8),			(0.013)], reading below ninth grade level was
USA	51.5%	male,	P: Age; sex;	Mobility	negatively associated with walking speed ($p < 0.05$).
		black	education;	limitations	
		72.0	race		For men, not graduating from high school [-0.09
		/3.9			(0.019)] or college [-0.05 (0.015)] was negatively
		$(2\cdot 9),$			associated with walking speed (p < 0.05).
		white			Women who are at or below the "150% neverty level" had
					slower walking speed [-0 03 (0 013)] compared to that
		73.4			above "150% poverty level". Men who perceived their
		(2.9),			income as inadequate had slower walking speed [-0.07
		female,			(0.022)] compared to those that perceived their income
		black			as adequate.
		73.6			Among women, being black [-0.10 (0.013)] and age [-
		(2.8),			0.01 (0.002)] were negatively associated with gait
		Iemale,			speed.
		WIIICe			Among mon being black $\begin{bmatrix} 0 & 11 & (0 & 015) \end{bmatrix}$ and ago $\begin{bmatrix} -0 & 11 \end{bmatrix}$
					(0 002)] were negatively associated with gait speed
					Education, income, age, and race was not associated
					with difficultly walking ¼ mile.
					(Logistic regression)
Xu et al.,	271	64.4	F: Income	Walking distance	For LLFDI function component score, sex, and marital
2019,		(11.5),		(2MWT)	status (widowed) were significant predictors [F (4,
Canada	65./%	male	P: Age; sex;	Dhugingl	$(266) = 37.45, p < 0.0001, R^2 = 0.36];$ a significant (p
		63.8	education;	functioning (SDDD)	
		(11 5)	status	runceroning (SPPB)	Age category 74-100 years, sey income level (\$20k-
		female	Status	LLFDI	\$30k and 'do not know') and marital status (never
		101110110			married) were predictors for 2-minute walk distance [F
					$(7, 241) = 17.76, p < 0.0001, R^2 = 0.34].$
					Age category 74-100 years, and income level (\$10k-

		\$20k) were the variables that predicted SPPB total score $[R^2 = 0.19]$.
		Education was not a predictor for any of the outcomes used.
		(Multivariate regression analysis)

Notes: AD - Assistive device; ANOVA- Analysis of Variance; e^b - Exponentiated Regression Coefficient; E -Environmental Factors; F - F Ratio; F - Financial factors; HR - Hazard Ratio; m - Meter; mins - Minutes; MANOVAS - Multivariate Analysis of Variance; NR- Not reported; LLFDI - Late Life Function Disability Index; LSA - Life Space Assessment; OR - Odds Ratio; P - Personal Factors; PR - Prevalence Ratio; RR - Relative Risk; r - Correlation; R² - adjusted R-square; SPPB - Short Physical Performance Battery; S - Seconds; SD -Standard Deviation; SE - Standard Error; TUG - Time Up and Go Test; Vs- Versus; 2MWT - Two-Minute Walk Test; 6MWT - Six-Minute Walk Test; 95%CI - 95% Confidence Interval, β - Beta Coefficient.

Mobility limitation (unless otherwise stated in the table) includes self-reported inability on all or either of the following: walking up and down a flight of stairs (10 steps) or several flights of stairs, walking a mile (1600meter) or half a mile (800meter) or a quarter mile or a block (400meter) or 100-300meter, or across the room and running/jogging for 20-30 minutes.

Result highlighted in gray indicates no significant association between factor(s) and mobility outcome. Most findings in the table were reported verbatim as the authors reported them in their paper
Author, year, country	Total Sample size included in analysis % Female	Mean age (SD)	Factors	Mobility outcome	Themes reported in the studies
Alidoust et al., 2018, Australia	54 61.0%	76.4 (NR)	E: Proximity to service centers; perceived safety (from crime, risk of injury); existence and/or proximity to aesthetically attractive areas (natural green spaces, soft edges)	Frequency of mobility	 (1) Different neighborhood-built form patterns (conventional and master-planned communities and their subcategories) (2) Different types of social ties (strong, weak, and absent) (3) Walking behavior and its determinants.
Brookfield et al., 2017, Scotland	22 NR	NR (NR)	E: Residential preferences; social activities; past time	Outdoor mobility	Residential preferences, environment and physical activity, health, ageing and physical activity, environment and affect, important components of a home/neighborhood and activities/pastimes
Brown et al., 2010, USA	19 84.0%	76.6 (5.8)	E: Access to destination	General mobility	 (1) General living environment (2) Use of handicapped parking (3) Use of assistive devices (including motorized carts) (4) Transportation method (5) Any need for rest breaks when walking
Cauwenberg et al., 2012, Belgium	57	73.4 (5.4)	E: Access to facilities; traffic safety; safety from crime; social contact; aesthetics (natural elements and weather)	Walking for transportation Walking for recreation	Access to facilities (including shops and services, public transit, and connectivity), walking facilities (including sidewalk quality, crossings, legibility, and benches), traffic safety (including busy traffic and other road users), familiarity, safety from crime, (including physical factors and other persons), social contacts, aesthetics (including buildings, natural elements, noise and smell, openness and decay) and weather

				<i>c</i>	-		-		C .
Appendix 30. Details of	included o	$\Delta \tau \tau \tau + c + r + c + c + c + c$	CT11010C .	$t \cap r$	narcanal	antri ronmanta l	and	+1 n 2 n C 1 2	tactore
Appendix JD. Details of	THCTUGED O	JUAIILALIVE	SCUULES .	LOT	personar,	envirunencai	ana	TTHANCTAT	LACCULS
1 I									

Cauwenberg	40	73.4	E: Physical	Cycling for	Traffic safety, cycling infrastructure,
et al.,		(5.7)	environment	transport	road design & maintenance, connectivity,
2018,	42.5%				aesthetics, hilliness, weather
Belgium					
Chu et al.,	7	NR (NR)	E: Built and natural	Walking for	(1) Visual cues during walks provide
2019, USA			environment barriers	exercise	recovery motivation and goal achievement.
	100.0%		and facilitators		(2) Consistent activity is supported
					through access to a range of buildings and
					walking paths.
					(3) Concerns about safety are compounded
					by cancer-related physical limitations
Croxall et	18	72.0	P: Culture	Use of wheelchair	Inability to access the outdoors safely
al., 2019,		(NR)			and independently
Canada	66.0%				
Franke et	24	NR (NR)	F: Income	Maintaining high	Maintaining a sense of self, being
al., 2019,	ND			levels of mobility	resourceful, openness to engagement,
Canada	NR			including walking,	engaging in superficial contact,
				public	experiencing social capital, accessing
				and ongaging in	reading the immediate
				warious forms of	nergibornood and racing arrordability.
				physical activity	
Gallagher et	21	70 (8 7)	E: Environmental	Neighborhood	Presence of other people, neighborhood
al., 2010,		, , , , ,	factors	walking	surroundings, and safety from crime.
USA	90.0%				sidewalk and traffic conditions, animals,
					public walking tracks and trails, and
					weather.
Gallagher et	121	64.7	E: Rural and urban	Access to	Mobility, access to transport, loss of
al., 2011,		(NR)	areas	transport	independence, loneliness, social
Ireland	79.3%				isolation, coping strategies, public
					attitudes, disability awareness
Gardner et	6	82.5	E: Neighborhoods	Community mobility	Social engagement (loneliness), challenges
al., 2013,		(NR)	(physical and social	(amount of people	created by the build environment (poorly
Canada	50.0%		environments)	that got outside	maintained sidewalks, concern for personal
				on regular per	safety, assess to facilities)
				week)	
Grant et	53 in focus,	75.0	E: Safety; walking	Walking experience	Multidimensional personal meanings,
a⊥., 2010,	22 in	(NR)	conditions		navigating hostile walk environments,
Canada	interview				experiencing ambiguity, getting around

	82.0%				
Greysen et al., 2014, USA	24 34.0%	63.0 (NR)	<pre>E: Environmental and social barriers F: Income</pre>	Barriers to mobility	 (1) Traditional focuses of care transitions and "missing pieces" (2) Functional limitations and difficulty with mobility and self-care tasks (3) Social isolation and lack of support from family and friends (4) Challenges from poverty and the built environment at home
Jang et al., 2020, Canada	20 50.0%	NR (NR)	<pre>E: Environmental barriers P: Personal barriers</pre>	Use of mobility devices	 (1) Ambulatory status and perceived cognitive capacity (2) Difficulties fitting into the built environment (3) Experiences of negotiating the social environment
Korotchenko and Clarke, 2014, Canada	29 48.3%	67.0 (NR)	E: Built environment	Use of mobility devices	 (1) Technology: independence; autonomous mobility; battery life; device size and weight; breakdowns; and invisibility (2) Public space: environmental accessibility; transportation barriers; and social and emotional consequences of inaccessibility (3) Private space: accessible private spaces; and inaccessible private spaces.
Lord and Luxembourg, 2007, Canada and France	92 47.0%	NR (NR)	E: Physical environment	Daily mobility practices	 Mobility practices and automobile Daily mobility experiences and meaning Aging in Suburbs, inevitable adaptation strategies Aging in Suburb, a positive residential experience
Mitra et al., 2015, Canada	14 85.7%	70.7 (NR)	E: Environment and social enablers and barriers	Walking distance/frequency	Traffic conditions and street design, sidewalk quality, benches trees and areas to rest, personal safety, proximity to parks, proximity, and access to shops
Newton et al., 2010, United Kingdom	200 NR	NR (NR)	E: Environmental design features	Self-reported mobility, walking as main transportation	Footways, pedestrian and traffic segregation, changes in level, curbs at road crossing points, navigation, seating, street greenery, pedestrian crossings, bus stops, toilets, and wayfinding

Ottoni et	192	NR (NR)	E: Benches/seating	Mobility in the	Benches positively contributed to
al., 2016,				neighborhood	participant's experiences with mobility
Canada	58.0%			_	for those with physical mobility
					impairment, as well as in green and blue
					spaces, and the social environment.
Ramachandran	10	NR (NR)	E: Physical (poor	Community mobility	(1) Features of physical environment
and Dsouza,			road conditions;	(type of	(e.g., encroached footpaths, poor road
2018, India	60.0%		traffic; crowded	transportation	conditions, and disorderly traffic are
			roads; high step on	including walking)	sources of fear towards community mobility
			buses; insufficient		(2) Age, restrictions placed by family
			seating; poor		members, and unavailability of financial
			lighting and		resources restrict community mobility
			quality; footpaths)		(3) Inconsiderate attitudes of public
			and social		transport drivers deterred participation
			environment		
			(attitudes)		
			P: Age		
			F: Lack of financial		
			resources		
Rosenberg et	35	67.0	E: Built environment	Neighborhood-based	Curb ramps, parking, aesthetics, lighting,
al., 2013,		(NR)	facilitators and	activities	weather, street crossings, sidewalks,
USA	74.0%		barriers		amenities, traffic, walking paths/trails,
					safety, ground/geographical features,
					outdoor stairs, and ramps.
Tong et al.,	18	72.6	P: Gender; culture	Physical activity	(1) Walking for Wellbeing
2020, Canada		(4.8)		including walking	(2) A Supportive Social Environment
	11.8%		E: Walkability		(Psychosocial, Environment and Culture)
			(residential		(3) The impact of Gendered Identity and
			characteristics,		Personal Blography
			street		
			cnaracteristics,		
			land mix use);		
			access to transit		

Note: E - Environmental factors; F - financial factors; NR-Not reported; P - Personal factors

Author	Total	Mean	Factors	Mobility outcome	Quantitative Findings	Qualitative Themes
year, country	Sample size included in analysis	age (SD)		Mobility outcome	(Analysis type)	guaritative memes
Bödokor ot	65	72 2	F. Household	Habitual	Acc conder marital status and	Porcoived
al., 2018, Germany	57.8%	(8.6)	<pre>L: Household density; connectivity; land use mix; retail floor area ratio P: Age; gender; marital status; socioeconomic status</pre>	durations of neighborhood walking/total walking	Age, gender, marital status and socioeconomic status were not associated with neighborhood walking or total walking. Household density (p = 0.025), pedestrian connectivity (p < 0.001), land use mix (p < 0.001), and retail floor area ration (p < 0.001) were associated with walking.	neighborhoods
					(Regression analysis)	
Cassarino et al., 2019, Ireland	112 64.3%	70.6 (8.6)	<pre>E: Variety of things to see (complexity, quietness, green space, and presence of people); level of urbanity (inner city, city suburbs, town, village, countryside)</pre>	Walking preferences Walking destination	The presence of people was not associated with any of the other walking preferences. Participants living in the inner city assigned the lowest ratings of importance to this aspect of outdoor spaces [median (IQR) = 2.00 (2.00)] compared to the other groups [suburbs: 4.00 (2.00); towns: 4.0 (2.00); village: 4.00 (3.00); countryside: 3.00 (2.00)].	Diversity of walking purposes, Stimulation adjustment needs (preferences in environmental stimuli), Personal attitudes towards outdoor spaces, social dimensions of walking outdoors, Physical attributes of outdoor spaces
			P: Gender		Frequent walker rated green spaces as important aspects of the places where they walk (rho = -0.21, p = 0.04), but complexity,	

Appendix 3E: Deta	ils of	included	mixed-method	studies	for	personal.	environmental	and	financial	factors
Appendix JL. Dett	TTO OT	Included	mirkea meenoa	SCUULCS	TOT	personar,	CHVIIOIMCHCAI	ana	TTHANCTAT	LUCCOLD

				<pre>quietness and presence of people did not reach significance. Participants who walked in their neighborhoods for recreational reasons preferred more to walk places with green spaces (rho = 0.34, p = 0.008) and people (rho = 0.31, p = 0.02), but correlations, although positive, were not significant for variety or quietness. Walking destinations and types did not vary by urbanity level, Women reported recreational walking in their neighborhood more than men, although these differences showed only a trend towards significance (Z = -1.94, p = 0.05); there were no significant gender-based differences for other types of use. (Descriptive statistics, Spearman's correlation, Mann- Whitney test, Kruskal-Wallis test, ordinal logistic regression with proportional odds ratios)</pre>	
Giesel et al., 2015, Germany	2696 NR (NR) NR	<pre>E: Home environment (access to transport, facilities); suburban/urban P: Age; sex</pre>	Driving duration; Driving distance; Driving frequency	Age and sex were not significantly associated with decreased driving distance, decreased driving frequency (as measured by numbers of trips per day) (and decreased travel time: (Chi-square test)	No theme was derived. Participants quotes were used to support qualitative descriptions

					Residents in the suburban berlin drive more by car than residents in the city of Berlin, and public transport does not matter in suburbia at tall, but important in Berlin, especially among women. More women had limited satisfaction with places of entertainment, public transport, service facilities and shopping facilities than men	
Marquez et al., 2017, USA	35 57.1%	70.6 (5.6)	E: Neighborhood- specific landmark; universal landmark; street signs; land use items; transit stops; stores/busines ses; idiosyncratic; unsafe situations	Neighborhood mobility (way finding)	<pre>(Descriptive analyses) Most participants sought information from other people as a primary method of route planning. Street signs and landmarks were overwhelming favorites as helpful way of finding features. When asked to recall the route following the walk, only half of participants gave completely correct directions. (Descriptive analyses)</pre>	Lack of familiarity, difficulty in judging distance, knowing when the destination is reached and not yet knowing area landmarks. Places with no good landmarks or missing signs, distractions (e.g. ringing phones and noise of the train), pressure (impatient drivers), angled streets or intersections and dead ends, safety were barriers in navigating the neighborhood

Risser et	3309	NR	E: Toilets;	Walking barrier	Amongst the five highest ranked	Mobility barriers
al. 2010,		(NR)	traffic		barriers to mobility amongst the	among seniors
Austria,	64.0%		<pre>safety; ramps;</pre>		senior citizens, three were	were:
Germany,			vehicles on		related to the behavior of other	(1) Inconsiderate
Ireland,			foot path;		road users, or other persons more	car drivers
Czech			negative		generally: inconsiderate car	(2) Lacking
Republic,			social		drivers, vehicles on the pavement	toilets
Poland,			attitude		and a negative attitude towards	(3) Vehicles on
Italy,			towards aged		senior citizens. The other two	footpaths
Spain, and			people; stray		highly ranked barriers were	(4) Public
Sweden			animals		missing toilets in the public	transport vehicles
					space and overcrowded vehicles in	overcrowded
					public transport.	(5) Negative
						attitudes toward
					Two highly ranked barriers to	aged people
					older people's mobility according	(6) Loose animals
					to the experts were decreasing	(7) Drivers are
					senses and having to rely on	ruthless
					other people in connection with	(8) Public transit
					one's mobility. These were,	does not match
					however, not considered that	customer needs
					important by the senior citizens	(routes/frequencie
					themselves.	s)
						(9) Transfers
					The senior citizens also rank	badly designed
					loose animals high while this is	(10) Decreasing
					not at all considered as a	senses
					barrier to senior citizens	(11) Lacking
					mobility by the experts.	punctuality
						(12) Too few
					(Descriptive analyses)	traffic signs
						(13) Insecure when
						walking
						(14) Ramps
						(15) Roundabouts
		1				(16) Reliance on
		1				people
						(17) Badly adapted
		1				signals
		1				(18) Uncomfortably
						designed car

Thies et al., 2020, United Kingdom	17 89.4%	70.3 (4.8)	E: Home environments	Walking frame use	On average, participants used their front-wheeled walkers incorrectly at home during 16% of single support periods, and 30 of dual support periods. Upon video analysis of the environmental context, home environments were often tight for space and required moving over carpet edges and turning corners. Rooms were often cluttered with furniture or walking frames left by others. Confined spaces and clutter appeared resulting in maneuvers which often deviated from safety guidelines. Moreover, for the front-wheeled walker, which has both front wheels fixed, it appeared impossible for users to turn whilst keeping the wheels on the ground. Users were observed to either completely lift the frame off the ground and then step to turn whilst unsupported (in fact, whilst carrying the frame), or the frame was spun on a single pivot point (one of its legs), resulting in near collisions between the person's feet and the frame's	<pre>(1) Enabling mobility (2) Design issues (3) Training/guidance (4) Usability & acceptability of the Smart Walker system Associated key outcomes were that walking aid use was clearly part of participants' everyday life</pre>
					person's feet and the frame's rotating legs.	
Tomsone et	3	NR	F • 188	Cape rollator	Participant 1's accessibility	Barriers in the
al., 2014, Latvia	100.0%	(NR)	environmental barriers according to	crutches	score ranged changed from 55 (visit 1) to 313 (visit 2) to 262 (visit 3). Participant 2's	physical environment were complex to
			the Housing Enabler Instrument		accessibility score ranged from 327 (visit 1) to 363 (visit 2) to 261 (visit 3). Participant 3's	overcome, in combination with mobility device

			(higher score = more		accessibility score ranged from 38 (visit 1) to 34 (visit 2) to	use, for all participants.
			accessibility		242 (visit 3).	
			issues)			Barriers include:
						2) complicated
						passageways, and
						3) needing support
						from others.
						Support from
					(Descriptive analyses)	others was
						important to
						barriers.
						Other presticel
						aspects such as
						garage and parking
						locations for the
						mobility devices
						played a part for
						their use or non-
						since bringing the
						mobility devices
						indoors was
						impossible
Zandieh et	216	69.6	E: Safety;	Performance based	Safety [β (SE) = 1.33 (0.48), p <	Safety, pedestrian
al., 2010, United	67 39	(NK)	condition.	lowols	0.01], quietness [0.54 (0.17), p	and aosthotics
Kingdom	07.50		pavement	TEVET2	< 0.01 and destinetics [0.55 (0.22) $p < 0.05$ were predictors	and destnetits
mingaon			condition;		of outdoor walking levels while	
			presence of		traffic condition, pavement	
			amenities;		conditions, presence of amenities	
			quietness; air		and air quality were not.	
			quality;			
Zang ot	1.8.0	ND		Walking time	(kegression)	The five key words
al., 2019	TOO	(NR)	mix:	Waiking Line	Age $(p = -0.20, p < 0.01)$ and commercial density $(-0.28, p < 0.01)$	established as
Hong Kong	43.0%	()	residential			codes from the

density;	0.01) were associated with	random interview
street	walking.	dialogues were
connectivity;		`transportation',
commercial	Gender, education, occupation,	`sustainable',
density;	land use mix, street	<pre>`sociable', `safe'</pre>
intersections;	connectivity, residential	and `activity'.
72 audit items	density, intersections were not	The elderly
	correlated with walking time.	participants hoped
P: Age; sex;		that their
occupation;		neighborhoods
education	(Correlation)	could be well
		connected and
		provide them with
		the space needed
		to conduct social
		and physical
		activities,
		whereas the
		professionals were
		more focused on
		safety and
		sustainability.

Notes: E - Environmental factors; P - Personal factors; IQR - Interquartile Range; NR - Not Reported; SE - Standard Error; Rho - Correlation; β - Beta Coefficient. Result highlighted in gray indicates no significant association between factor(s) and quantitative mobility outcome.

Author, year, country	Total Sample size include d in analysi s	Mean Age (SD)	Physical Factors	Mobility Outcome	Findings (Analysis type)
	Female				
	2.2.1	Perform	ance-based mobil:	ity outcomes and phy	ysical factors (n = 175)
Aarden et al.,	391	79.6	Grip strength;	Physical	Grip strength (B = 0.35, $p < 0.01$) was associated
2019, Nathanlanda	10 C0	(6.7)	Comorbidities;	functioning (De	with De Morton Mobility Index scores, but not BMI,
Netherlands	40.03		BMI; Fatigue	Today)	comorbially, or laligue.
				Index)	(Linear mixed models)
Aranvavalai et	255	68.7	Falls	Physical	There was an association between fall incidence and
al., 2020,	200	(6.7)	14110	functioning (TUG)	walking < 5000 steps/day [HR (95%CI) = 3.6 (1.76;
Thailand	71.8%				7.31)] and low functional mobility by Timed Up and
				Walking steps (< 5000 steps/day)	Go ≥13.5 s [6.43 (2.65; 15.57)].
					(Cox's proportional hazard regression)
Abe et al.,	1022	78.7	Breathing	Gait speed	Compared to those with normal ventilatory capacity
2010, Japan		(2.7)	(Normal	(preferred,	and obstructive ventilatory impairment, those with
	100%		ventilatory	maximal)	restrictive ventilatory impairment and combined
			capacity;		ventilatory impairment had slower maximal and
			obstructive	Physical functioning (THIC	comfortable gait speeds ($p < 0.05$), took longer to
			ventilatory	Maximal THC)	complete the TOG and maximal TOG tests, and had lever one log standing time $(n < 0.05)$
			restrictive	Maximal 10G)	Tower one reg scanding time $(p < 0.05)$.
			ventilatory	Balance (one leg	(ANOVA, Bonferroni post hoc test)
			impairment;	standing time	
			combined	with eyes open)	
			ventilatory		
			impairment)		
Abe et al.,	53	73.0	Muscle	Gait speed	Maximum and preferred walking speeds were not
2014, Japan		(3.0)	thickness	(preferred &	significantly correlated with either forearm-radius
	39.6%		(forearm ulna and radius)	maximal)	or forearm-ulna MT in men and women ($p > 0.05$).

Appendix 4A: Details of the included articles

					(Pearson's correlations)
Adachi et al., 2015, Japan	149 51.0%	73.7 (4.6)	BMI; Hand grip strength; Skeletal muscle index; Lung function (FVC, FEV1, FEV1/FVC); Chronic conditions (arteriosclero sis & peripheral artery disease)	Walking time (SWT)	<pre>Men's performance on the shuttle walking test was predicted by FEV1 [12.80 (3.05; 53.70), p = 0.001], but not BMI, skeletal muscle index, FVC, having arteriosclerosis or peripheral artery disease. Women's performance on the shuttle test was not predicted by any physical factor. (Logistic regression)</pre>
Al-Zahrani et al., 2002, UK	83 71.1%	69.0 (7.3), healthy 71.0 (8.4), OA	Chronic conditions (OA)	Walking speed Gait parameters (stride length, mid-stance, mid- swing)	Compared to those with OA, those with OA had lower gait speed (0.55 m/s vs. 1.17 m/s, p < 0.000), shorter stride length (0.75m vs. 1.27m, p < 0.000), longer mid-stance (30.05% vs. 34.16%, p < 0.000), and longer mid-swing (84.03% vs. 80.06%, p < 0.000). (Mann-Whitney U test)
Alexander et al., 2014, USA	21 71.4%	82.7 (7.4), AMD 74.1 (6.6), no AMD	Vision impairment (low luminance questionnaire) ; Chronic conditions (AMD)	Gait speed	Compared to those with no AMD, the older adults with AMD walked significantly slower (p = 0.03) on the approach phase to the edge of the curb regardless of lighting condition. Lower low luminance questionnaire scores correlated with slower gait speed during curb ascent and descent in dim light (r = 0.64, p < 0.05) and following a sudden reduction of light (r = 0.80, p < 0.05). (Two tailed t-test, ANOVA)
Andersson et al., 2011, Switzerland	44 52.2%	68.9 (4.6), females	Breathing (VO2)	Walking distance (6MWT)	There was a significant correlation between VO2 and 6MWT distances ($r = 0.61$, $p < 0.05$). (Correlations)

		69.6			
		(4.4),			
		males			
Assantachai et	742	69.4	Quadriceps	Physical	Quadriceps strength (r = -0.21 to -0.39 , p < 0.001)
al., 2014,		(6.1),	strength; lean	functioning	and lean body mass $(r = -0.09 \text{ to } -0.19, p < 0.001)$
Thailand	74.9%	Men	body mass	(timed five-step	were associated with the five-step test.
			-	test, timed five-	
		66.8		chair stand test)	Ouadriceps strength (r = -0.19 to -0.40 , p < 0.001)
		(5.2),			and lean body mass (r = -0.07 to -0.19 , p < 0.01)
		Women		Walking distance	were associated with the five-chair stand test.
				(6MWT)	
					Ouadriceps strength (r = 0.45 to 0.52, $p < 0.001$)
					and lean body mass (r = 0.23 to 0.30, $p < 0.001$)
					were associated with the 6-minute walk test.
					(Pearson's correlations)
Auvinet et	53	77.2	History of	Gait speed	Compared to fallers, non-fallers had significantly
al., 2003,		(6.5),	falls		faster gait speed, stride frequency, stride length,
France	62.3%	non-		Gait parameters	stride symmetry, and regularity ($p < 0.01$).
		fallers		(stride	
				frequency, stride	(ANOVA)
		80.7		length, stride	
		(5.2),		symmetry, stride	
		fallers		regularity)	
Bardin et al.,	33	69.0	History of	Physical	Those who had a history of falls performed worse on
2012, Brazil		(7.0)	falls	functioning (TUG)	the Berg Balance test (51 vs 55, $p < 0.001$).
	100%				History of falls were associated with TUG
				Walking distance	performance [OR (95%CI) = 3.19 (1.10; 9.24), p =
				(ISWT)	0.03], but not ISWT performance ($p = 0.057$).
				Balance (Berg	(Multiple logistic regression; t-test)
				Balance Scale)	
Baudendistel	30	71.0	History of	Gait parameters	Increasing turning cadence ($\beta = 0.58$, p = .004) and
et al., 2019,		(6.0)	falls	(forward cadence,	decreasing forward cadence ($\beta = -0.56$, p = .005) were
UK	53.0%			turning cadence,	associated with a significant increase in falls.
				Number of steps	
				in turn, forward	No other gait parameters variables were associated
				velocity, time to	with history of falls.
				complete turn,	-
				forward step	(Linear regression)

				time, forward	
				step length)	
Bean et al., 2010, USA	117	(6.7)	Cardiovascular svstem (rate	Gait speed	Change in muscle power was associated with improvements in SPPB and gait speed following 16
•	68.0%	. ,	pressure	Physical	weeks of training ($p < 0.01$), but not changes in
			product);	functioning	muscle strength or rate pressure product.
			Muscle strongth:	(SPPB)	(Multivariate logistic regression)
			Muscle power		(Maitivallate logistic legiession)
Bean et al.,	138	75.4	Muscle	Physical	Balance [OR (95%CI) = 4.54 (1.11; 18.60)], leg
2008, USA	<u> </u>	(6.9)	strength	functioning (SPPB	strength [30.35 (5.48; 168.09)], leg velocity
	69.08		contraction	- Score > 9)	scores > 9.
			(leg		DWT was not accessional with CDDD accesso
			velocity); BMI		BMI was not associated with SPPB scores.
					(Multivariate logistic models)
Bean et al.,	839	74.2	Leg power; hip	Gait speed	Leg power, hip strength, and knee strength were
2003, USA		(6.6)	strength; knee		positively associated with SPPB scores, gait speed,
	54.0%		strength	functioning	and balance (all p < 0.001). Leg power, hip
				(SPPB stair	associated with time to complete a stair climb or
				climbing test.	chair rise test (all $p < 0.001$).
				chair rise time	
				test)	(Multivariate linear regression)
				Balance (tandem	
				stances test from	
				SPPB)	
Brisson et	37	62.2	BMI;	Walking distance	Two-year change in 6MWT scores were associated with
a1., 2018, Canada	100%	(5.5)	guadriceps strength;	(OMM.T.)	pain [B (95% CI) = 1.53 (0.59; 2.46), p = 0.002] and BMI [-3.61 (-7.16; -0.06), p = 0.046], but not
canada	2000		Ouadriceps	Physical	quadriceps strength ($p = 0.06$) and power ($p =$
			power; Pain	functioning	0.43).
				(stair ascent and	
				descent time)	Two-year change in stair ascent was associated with
					pain $[-0.0277 (-0.0472; -0.0081), p = 0.019], but$
					(p = 0.500), quadriceps strength ($p = 0.530$) and quadriceps power ($p = 0.540$).

					Neither pain (p = 0.52), quadriceps strength (p =
					0.24), or quadriceps power ($p = 0.89$) were
					associated with stair descent.
					(Multiple linear regression)
Champagne et	30	69.4	Chronic	Walking speed	Compared to those with no CLBP, those with CLBP
al., 2012,		(6.4),	condition		took longer to complete the TUG ($p = 0.012$), walked
Canada	100%	no CLBP	(CLBP)	Physical	slower ($p = 0.001$), and had lower composite
		68.9		functioning (TUG)	mobility scores ($p = 0.009$). One leg stance time did not differ between groups ($p = 0.740$).
		(6.6),		Balance (one leg	
		CLBP		stance)	(ANOVA)
				Composite	
				mobility	
				(0 - 12, 100 + 100)	
				walking speed)	
Chang et al.,	62	78.8	Muscle	Walking time	Muscle strength, BMI, and total number of diseases
2004, USA		(2.8)	strength	(400-meter walk	were not associated with being unable to complete
	71.0%		(grip, knee	test)	the 400m walk test $(p > 0.05)$.
			extension, hip		
			<pre>ilexion); total number</pre>		(Logistic regression)
			of diseases:		(LOGISCIC TEGLESSION)
			BMI		
Chien et al.,	102	62.9	Comorbidity	Walking distance	Compared to those with no COPD (496m), those with
2013, Taiwan		(2.2),	(COPD); FEV1;	(6MWT)	moderate COPD (405m) or severe COPD (330m) walked
	18.6%	no COPD	Rib cage		shorter distances on the 6MWT ($p < 0.001$).
		67.0	excursion at 3		
		67.9	mins; RV/TLC		Distance walked on the 6MWT was predicted by FEVI $[P_{1}, (95\%CT) = 0.90, (0.14, 1.45), p_{2} = 0.02]$ rib case
		(1.3), moderate			(55% CI) = 0.00 (0.14, 1.45), p = 0.02], IID cage excursion at 3 mins $[0, 25, (0, 12; 0, 38), p < 0, 001].$
		COPD			and RV/TLC [-2.78 (-3.91; -1.65), p < 0.001].
		69.4			(ANOVA; stepwise multiple linear regression)
		(1.8),			
		severe			
		COPD			

Clark et al., 2014, USA	44	NR (NR)	Muscle cross- sectional area (CSA); Intramuscular adipose tissue CSA; Subcutaneous adipose CSA; BMI	Gait speed	Among males and females, muscle CSA, intramuscular adipose CSA, and subcutaneous CSA were not associated with gait speed (p > 0.05). BMI was also not correlated with gait speed in males or females (p > 0.05). (Multiple regression; Univariate correlation)
Clermont et al., 2016, Canada	30	66.1 (10.0), no knee OA 64.6 (6.8), knee OA	Chronic conditions (OA)	Gait speed Gait parameters (step count; stride time; stride time SD; stride time FSI; step time; step time SD)	Compared to those without OA, those with OA had lower gait speed (1.29 vs 1.45, p = 0.032), higher stride time (1058ms vs 1001ms, p = 0.031), and higher step time (530ms vs 500ms, p = 0.024). Step count, stride time SD, stride time FSI, and step time SD were not significantly different between groups (p > 0.05). (<i>t-tests</i>)
Cordeiro et al., 2009, Brazil	91 65.9%	74.4 (5.9)	Proprioception (proprioceptiv e sensitivity); Chronic conditions (orthostatic hypertension); Pain; History of falls; Dizziness; Visual acuity; Hearing acuity; BMI; Chronic conditions	Physical functioning (TUG) Balance (Berg Balance Scale)	Proprioception was a predictor of TUG time [B (SE) = 13.711 (2.388), $p < 0.001$] and balance [-7.222 (2.388), $p = 0.003$]. Orthostatic hypertension was a predictor of balance [2.339 (1.078), $p = 0.033$]. Pain was not associated with balance ($p = 0.764$) or TUG performance ($p = 0.100$). Dizziness was associated with worse balance performance ($p = 0.005$), but not TUG performance (p = 0.504). History of falls, vision, hearing, BMI, and Chronic conditions were not associated with TUG or balance performance ($p > 0.05$). (ANOVA; t-tests; Pearson's correlations; linear regression)
Craig et al., 2019, USA	40 50.0%	74.0 (6.7), fallers 73.0 (5.3),	History of falls	Balance (gait stability index)	Elderly fallers had lower gait stability index values across all speeds compared to elderly non- fallers (p < 0.05). (ANOVA)

		non- fallers			
Criminger & Swank, 2019, USA	31 21.6%	69.0 (8.2)	Disease severity (Unified Parkinson's Disease Rating Scale Motor Section III)	Physical functioning (TUG)	Disease severity, measured using the Unified Parkinson's Disease Rating Scale Motor Section III, was not significantly correlated with turn strategy during the TUGalone (r = 0.122), TUGmotor (r = 0.027), and TUGcognitive (r = 0.027) tasks (p > 0.05). (Pearson's correlations, MANOVA)
Cruz et al., 2015, Portugal	134 36.0%	72.6 (8.3)	FEV1, BMI, Oxygen use, Pain, Respiration functions, muscle power, muscle endurance	Physical functioning (TUG)	Those with functional balance impairment had lower FEV1% (p = 0.013), higher BMI (p = 0.005), and were more likely to use oxygen (p = 0.015) compared to those without impairment. Those with functional balance impairment had greater problems in the International Classification of Functioning, Disability and Health domains: "pain in body part" (p = 0.009), "respiration function" (p = 0.011), "muscle power functions" (p = 0.001), and "muscle endurance functions" (p = 0.001) compared to those without impairment.
Cuoco et al., 2004, USA	48 85.4%	72.7 (0.8)	Lower extremity strength; Power (at 70% and 50% 1 repetition max)	Gait speed Physical functioning (stair climb test, chair rise test)	Lower extremity strength was associated with time taken to complete the stair climb [B (SE) = -0.001 (0.001), p = 0.03], chair rise [-0.004 (0.002), p = 0.04], but not habitual gait speed (p = 0.07). Leg power at 70% 1RM was associated with time taken to complete the stair climb [-0.006 (0.002), p = 0.004] and chair rise tests [-0.019 (0.008), p = 0.02], as well as gait speed [0.0008 (0.0001), p = 0.001]. Leg power at 40% 1RM was associated with time taken to complete the stair climb [-0.006 (0.002), p = 0.01] and chair rise tests [-0.025 (0.009), p = 0.01], as well as gait speed [0.001 (0.001), p = 0.001]. (Linear regression)

Curcio et al	337	77 1	Body	Physical	Among those who performed worse on the Tinetti
2016 ± 210	557	(6.9)	composition	functioning	mobility tost they had greater comorbidity scores
2010, italy	10 20	(0.9)	(DMT, upict	(Tipotti mobility	(n = 0, 01) loss physical activity $(n = 0, 001)$
	49.30		(BMI, Walst	(IIIIecci modilicy	(p = 0.01), less physical activity $(p = 0.001)$,
			CIfcumierence)	lest)	were fiditer $(p = 0.001)$, but were not
			; Physical		significantly different in terms of BMI ($p = 0.249$)
			activity;		or waist circumference $(p = 0.456)$.
			Comorbidities;		
			Frailty (Fried		(ANOVA)
			scale;		
			Rockwood		
			scale)		
de Alencar	67	68.4	Chronic	Gait speed	Chair rise test, gait speed, cadence, step length,
Gomes et al.,		(8.0),	condition/visi		base of support, swing time, stance time, and
2018, Brazil	73.1%	glaucoma	on (glaucoma)	Gait parameters	double support time were not significantly
				(cadence, step	different between cases and controls $(p > 0.05)$.
		69.3		length, base of	
		(7.9),		support, swing	Compared to those with no glaucoma, those with
		no		time, stance	glaucoma took significantly longer to complete the
		glaucoma		time, double	TUG (p=0.002) and scored lower on the Dynamic gait
				support time)	index balance scale ($p = 0.001$)
				Physical	(ANOVA)
				functioning	
				(chair rise test,	
				TUG)	
				Balance (dynamic	
				gait index)	
de Kruijf et	2304	63.5	Pain (lower	Gait parameters	Lower body pain was associated with decreased
al., 2015,		(7.5)	body pain; hip	(rhythm [single	rhvthm [β (95%CI) = -0.19 (-0.33; -0.06), p <
Netherlands	54.8%		pain; knee	support time],	0.0051, phases $[-0.20 (-0.34; -0.07), p < 0.005],$
			pain; foot	variability [step	pace $[-0.19 (-0.31; -0.07), p < 0.005], and$
			pain)	length SD],	increased variability $[0.16 (0.00; 0.31), p <$
			1	phases [single	0.051 Hip pain was associated with decreased gait
				support phasel,	phases $[-0.19 \ (-0.32; -0.06), p < 0.005]$ and page
				pace [step	[-0.16 (-0.28; -0.03), p < 0.05], Foot pain was
				length], tandem,	associated with decreased gait phases [-0.14 (-
				turning, base of	0.28: 0.00, $p < 0.051$
				support [stride	······································
				width SD1)	Knee pain was not associated with changes in gait
					domains.

					(Linear regression)
Del Din et al., 2019, UK	342	70.4 (6.9)	Chronic conditions (Parkinson's); History of falls	Walking time (volume of walking bouts) Gait parameters (step time; stance time, swing time, step length variability, step velocity variability)	Those with a history of falls walked with shorter and less variable walking bouts (p < 0.05). Volume of walking bouts (e.g., total walking time per day, % of walking time per day, total number of steps and bouts per day) was not related to fall history. Compared to controls, those with Parkinson's had lower step times, stance times, swing times, and greater step velocity variability (p < 0.0083). There was not a significant difference between controls and those with Parkinson's for step length variability. (Linear modelling)
Demura et al., 2014, USA	181 100%	76.1 (5.7)	<pre>Pain (knees - one, both, none); Vision acuity problems; Muscle strength (knee extension)</pre>	Gait speed Gait parameters (cadence; stance time; swing time; double support time; step length; step width)	Those with superior muscle strength had greater walking speeds (p = 0.01) and longer step lengths (p = 0.01) than those with middle or inferior muscle strength. Compared to those without vision acuity issues, those with vision issues had significantly lower cadence (p = 0.04), longer stance times (p = 0.02), and longer double support times (p = 0.04). Compared to those with pain in both knees, those with no pain had significantly higher gait speed (p = 0.03). Compared to those with no pain or pain in one knee, those with pain in both knees had longer stance times (p = 0.01) and longer double support times (p = 0.01). (ANCOVA; Tukey Honestly Significant Difference method)
Der Wiel et al., 2002, Netherlands	589 66.0%	85.0 (0.0)	Grip strength, Vision (visual acuity), Pain (in lower	Walking time (6- meter walking test - inability to complete is classified as	Poor grip strength [OR (95%CI) = 4.6 (2.4; 9.1)] and vision [1.8 (1.1; 2.9)] were associated with walking disability.

			extremity or back)	walking disability)	Pain in lower extremity or back was not associated with walking disability.
Dos Santos et al., 2017, Brazil	116	83.3 (2.7)	Obesity; Chronic conditions (Sarcopenia)	Physical functioning [SPPB - reduced mobility (score below 25 percentile) and no reduced mobility]	There was no difference in obesity (p = 0.627) or sarcopenic obesity (p = 0.394) between those with reduced mobility and those without. Those with sarcopenia were more likely to have reduced mobility than those without (33.3% vs 12.6%, p = 0.020). Sarcopenia was associated with reduced mobility [OR (95%CI) = 3.44 (1.12; 10.52), p = 0.031].
Duffell et al., 2017, UK	35 57.1%	66.8 (5.6), healthy 67.6 (3.6), OA	Chronic conditions (OA)	Gait speed Gait parameters (stride length; stance width)	(Chi-square; Logistic regression) Compared to healthy controls, those with OA had lower speed (1.02 m/s vs. 1.09m/s, p < 0.001) and stride length (1.22m vs 1.24m, p < 0.05). There was no significance in stance width (p > 0.05). (MANOVA)
Dyer et al., 2002, UK	73 63.0%	76.1 (NR), chronic airflow limitati on 75.8 (NR), controls	Breathing (FEV1, VC)	Walking distance (SWT)	<pre>FEV1 and SWT were weakly associated (r = 0.31, p = 0.05). Vital capacity and SWT were associated (r = 0.42, p = 0.01). (Pearson's correlations)</pre>
Elbaz et al., 2005, France	2572 65.6%	73.3 (4.7)	Cardiovascular system (Carotid atheroscleroti c plaques; common carotid artery intima- media thickness [CCA-IMT];	Gait speed (maximal)	CCA-IMT was negatively associated with maximal walking speed ($p < 0.0001$). Carotid atherosclerotic plaques were negatively associated with maximal walking speed ($p = 0.03$). Slower walkers were more likely to have hypertension ($p < 0.001$), higher BMIs ($p < 0.001$), have hypercholesterolemia ($p = 0.03$), and had a history of falls ($p = 0.007$). There was no significant difference in gait speed between those with and without diabetes ($p = 0.13$).

			hypertension); Comorbidities (diabetes; hypercholester olemia); Body composition (BMI); History of falls		(ANCOVA)
Estrada et al., 2007, USA	189 100%	67.5 (4.8)	<pre>Muscle mass (Appendicular skeletal muscle (ASM); Appendicular fat mass (AFM))</pre>	<pre>Walking time (time on treadmill; 8-foot walk test) Walking distance (6MWT) Gait speed Physical functioning (chair rise time) Balance (single leg stance)</pre>	Total ASM/Height ² ratio was correlated with time on the treadmill (r = 0.17, p < 0.05), but not any other mobility outcome (p > 0.05). Total ASM/Weight was correlated with time on the treadmill (r = 0.57, p < 0.01), 6MWT (r = 0.37, p < 0.01), gait speed (r = 0.34, p < 0.01), 8-foot walk time (r = - 0.28, p < 0.01), single leg stance (r = 0.26, p < 0.01), but not chair rises (p > 0.05). Total AFM/Height2 ratio was correlated with time on treadmill (r = -0.42, p < 0.01), 6MWT (r = -0.30, p < 0.01), gait speed (r = -0.25, p < 0.01), 8-foot walk time (r = 0.21, p < 0.05), single leg stance (r = -0.20, p < 0.01), but not chair rise time (p > 0.05). Total AFM/Weight ratio was correlated with time on treadmill (r = -0.40, p < 0.01), 6MWT (r = -0.26, p < 0.01), gait speed (r = -0.27, p < 0.01), 8-foot walk time (r = 0.19, p < 0.05), single leg stance (r = -0.18, p < 0.01), but not chair rise time (p > 0.05). (Univariate correlations)
Fragala et al., 2016, USA, Iceland	6766 56.0%	76.6 (5.4), Men-AGES cohort 78.4 (2.8), Men-ABC: cohort	Grip strength; Leg strength	Gait speed (gait speed <0.8m/s is considered slow)	<pre>In the AGES cohort, for men, weak grip strength [OR (95%CI) = 3.43 (2.68; 4.32)] and weak leg strength [3.59 (2.63; 4.89)] were associated with slow gait speed. For women, weak grip strength [3.08 (2.55; 3.73)] and weak leg strength [3.30 (2.64; 4.12)] were associated with slow gait speed. These findings were also replicated in the ABC cohort. (Logistic regression)</pre>

		76.4 (5.6), Women- AGES cohort 78.0 (2.8), Women- ABC cohort			
Fragoso et al., 2014, USA	1635 67.2%	78.9 (5.2)	<pre>Breathing (Reduced ventilatory capacity; Respiratory muscle weakness); Dyspnea severity (Borg >2 (moderate- to-severe); Borg 0.5-2 (mild))</pre>	Gait speed (gait speed of <0.8m/s, was considered slow) Physical functioning (SPPB score (≤7 is moderate-to- severe mobility impairment)	<pre>Reduced respiratory ventilatory capacity was associated with slow gait speed [OR (95%CI) = 1.41 (1.03; 1.92)], but not mobility impairment. Respiratory muscle weakness was associated with mobility impairment [1.42 (1.03; 1.95)], but not slow gait speed. Mild dyspnea was not associated with slow gait speed or mobility impairment. Moderate-to-severe dyspnea was associated with slow gait speed [1.70 (1.22; 2.38)], but not mobility impairment. (Logistic regression)</pre>
Francis et al., 2019, USA	159 84.5%	60.4 (5.3)	Lower extremity strength	Gait speed (habitual, maximal and extended gait speed (over 900m) Physical functioning (chair rise time test X 5, chair rise test in 30 seconds)	Lower extremity strength was correlated with habitual gait speed (r = 0.360, p = 0.003), maximal gait speed (r = 0.329, p = 0.008), chair rise time x5 (r = -0.297 , p < 0.001), extended gait speed (r = -0.537 , p < 0.001), and chair rise time (r = 0.226, p = 0.031). (Pearson's correlations)
Fukaya et al., 2019, UK	17 NR	73.4 (9.5)	Range of motion (hip, knee, ankle)	Gait parameters (initial contact, loading response, midstance	The hip joint was significantly abducted, and the knee joint was significantly in the varus position during the initial contact. Significantly greater knee joint varus was found during the loading

				terminal stance, & pre-swing)	response in the established KOA group. During the terminal stance, the hip joint was significantly in the abduction position, and the knee joint was significantly in the varus position in the established KOA group. In the established, KOA group, the knee abductor moment was observed significantly during the loading response, midstance, and terminal stance periods. (t-tests)
Giannouli et al., 2019, Germany	154 62.0%	72.3 (5.9), wave 1 69.5 (4.9), wave 2	Muscle strength (leg, grip strength)	Active- and Gait- time (AGT); Steps; Life-space area; Maximum area range	Among the pooled cohort, leg strength was associated with AGT (β = 0.201, p < 0.05) and number of steps (β = 0.232, p < 0.05). Grip strength was associated with life-space area (β = 0.297, p < 0.01) and maximum area range (β = 0.244, p < 0.05).
Gouveia et al., 2019, Portugal	802	69.8 (5.6)	BMI; Physical activity; Lower Body strength; Lower Body flexibility; Anerobic walking endurance	Gait velocity Gait parameters (cadence, stride length, gait stability ratio) Balance (Fullerton Advance balance scale)	Balance was associated with physical activity ($\beta = 0.09$, p < 0.05), lower body strength ($\beta = 0.20$, p < 0.001), lower body flexibility ($\beta = 0.10$, p < 0.01), and anerobic endurance ($\beta = 0.35$, p < 0.001), but not BMI. Gait velocity was associated with physical activity ($\beta = 0.13$, p < 0.001), lower body strength ($\beta = 0.10$, p < 0.01), and anerobic endurance ($\beta = 0.54$, p < 0.001), but not lower body flexibility or BMI. Cadence was associated with physical activity ($\beta = 0.10$, p < 0.01), but not lower body strength ($\beta = 0.16$, p < 0.01), and anerobic endurance ($\beta = 0.38$, p < 0.001), but not lower body flexibility or BMI. Stride length was associated with physical activity ($\beta = 0.11$, p < 0.001) and anerobic endurance ($\beta = 0.38$, p < 0.001), but not lower body flexibility or BMI.

					lower body strength or BMI.
					GSR was associated with physical activity ($\beta = -0.11$, p < 0.001), and anerobic endurance ($\beta = -0.55$, p < 0.001), but not lower body flexibility, lower body strength or BMI.
					(Hierarchical regression analyses)
Greendale et al., 2000, USA	762 52.6%	74.3 (NR)	Fracture status (no fracture, wrist fracture, combined fracture)	Gait speed (maximal) Physical functioning (chair stand test)	Compared to having a wrist fracture or no fracture, having a combined fracture was associated with greater reduction in balance ($p = 0.014$), worsened ability to turn 360 degrees ($p = 0.032$), worsened walking speed ($p < 0.001$), taking longer to complete chair stands ($p = 0.004$) tandem stands (p = 0.002), and timed taps ($p = 0.009$), but not single leg stands ($p = 0.180$).
				Balance (single leg stand, turning 360 degrees circle, timed taps, tandem stand)	(ANCOVA)
Grosicki et al., 2020, USA	925 53.1%	74.0 (6.0), men 72.0 (8.0), women	Grip strength; body composition (total body fat; arm lean mass; weight; BMI)	Gait speed (slow speed < 0.8 m/s)	Among men and women with mobility limitations, poor grip strength/BMI, maximal grip strength, and grip strength/weight were positive predictors of slow gait speed (p < 0.05). Among women only, poor grip strength/total body fat and grip strength/arm lean mass were positive predictors of slow gait speed (p < 0.05). (Logistic regression)
Gulley et al., 2020, USA	253 51.0%	78.5 (NR)	Falls	Gait parameters (stride length, stride length variability, stride velocity, swing phase (percent), swing time variability, and double	Participants had significantly slower stride velocity (57.81 vs 83.26 cm/s), shorter stride length (74.76 vs 101.81 cm,), lower swing (30.1 vs 32.41 %), higher double support (39.79 vs 35.19 %), and more swing (30.09 vs 32.41 %) and stride length variability (31.86 vs 6.35 %) during turns compared with straights. Higher swing percent in both turns [HR (95%Cl) = (0.92 (0.87; 0.97), p < 0.05] and straights [0.89 (0.84; 0.96), p < 0.05] was

				support phase (percent))	<pre>associated with reduced risk of falls. Higher double support percent during both turns [1.04 (1.01; 1.07), p < 0.05] and straights [1.06 (1.02; 1.09), p < 0.05] was associated with increased risk of falls. More swing variability during turns [1.03 (1.00; 1.06), p < 0.05] but not straights, was associated with increased risk of falls. (Cox proportional hazards models)</pre>
HajGhanbari et al., 2013, Canada	26 46.0%	70.4 (9.3)	Pain severity (McGill Pain Questionnaire)	Walking distance (6MWT)	The McGill Pain Questionnaire pain severity was negatively correlated with the 6MWT (r = -0.41, p < 0.05). Those with severe pain (based on the MPQ), walked a total shorter distance (- 115 +/- 57 m, p < 0.01). (Spearman's correlations)
Hassan et al., 2002, USA	32 56.3%	79.7 (5.3), AMD 77.1 (6.7), controls	Chronic conditions/vis ion (AMD)	Gait speed	The average preferred walking speed of the AMD group was not significantly different from that of the normally sighted group (p = 0.35). (Mann-Whitney U test)
Hassinen et al., 2005, Finland	146 45.9%	72.1 (1.3)	Waist circumference; BMI; Grip strength; Weekly exercise	<pre>Walking time (10-meter walk test) Walking steps (number of steps in 10-meter walk test) Balance (standing feet side by side, in tandem position, on the right foot and left foot).</pre>	Walking time was correlated with grip strength (r = -0.307 , p < 0.001), BMI (r = 0.330 , p < 0.001), waist circumference (r = 0.237 , p < 0.01), and weekly exercise (r = -0.252 , p < 0.01). Balance was correlated with grip strength (r = 0.244 , p < 0.01), BMI (r = -0.287 , p < 0.001), waist circumference (r = -0.260 , p < 0.01), and weekly exercise (r = 0.206 , p < 0.01), and weekly exercise (r = 0.206 , p < 0.05). Number of steps was correlated with grip strength (r = -0.609 , p < 0.001), BMI (r = 0.313 , p < 0.001), but not waist circumference or weekly exercise (p > 0.05).

Hayashida et	318	75.5	Knee extension	Gait speed	Knee extension strength was associated with maximum
al., 2014,		(5.5),	strength; leg	(maximal)	walking speed in men (r = 0.38 , p < 0.01) and women
Japan	65.0%	men	<pre>muscle mass;</pre>		(r = 0.45, p < 0.01). Leg muscle mass and
		74.8	Appendicular		appendicular muscle mass were not associated with
		(6.0),	muscle mass		gait speed.
		women			
					(Correlations)
Herman et al.,	37	76.0	Muscle power	Walking time	Stair climb time was associated with triceps power
2005, USA		(NR)	(triceps power	(4-meter walk	40% 1RM [B (SD) = -0.001 (0.004), p = 0.02],
	65.0%		40% 1RM;	test)	triceps power 70% 1RM [-0.001 (0.0005), p = 0.05],
			triceps power		and double leg press power 70% 1RM [-0.0005
			70% 1RM;	Physical	(0.0002), p = 0.03]. SPPB scores were associated
			double leg	functioning	with triceps power 40% 1RM [-0.0008 (0.0004), p =
			press power	(stair climb	0.04], triceps power 70% 1RM [-0.001 (0.0004), p =
			40% 1RM;	time, SPPB)	0.002], double leg press power 40% 1RM [-0.0006
			double leg		(0.0002), p = 0.004], and double leg press power
			press power		70% 1RM [-0.0005 (0.0002), $p = 0.007$]. 4m walk time
			70% 1RM)		was associated with triceps power 40% 1RM [B (SD) =
					-0.0006 (0.0002), p = 0.03], triceps power 70% 1RM
					[-0.001 (0.0004), p = 0.002], and double leg press
					power 70% 1RM $[-0.0003 (0.0001), p = 0.04]$.
					(Separate multivariate regression analyses)
Hill et al.,	21	69.9	Muscle	Physical	Muscle thickness of all measured muscles were
2021, UK		(4.3)	thickness	functioning (TUG,	correlated with time taken to complete five sit-to-
	43.0%		(right vastus	five times sit-	stand test (r = -0.473 to -0.596 , p < 0.05).
			lateralis	to-stand test)	
			[RVL], left		Muscle thickness of the RVL $(r = -0.492, p < 0.05),$
			vastus		LVL $(r = -0.480, p < 0.05)$, and RGM $(r = -0.432, p)$
			Lateralis		< 0.05), but not LGM (p > 0.05) were correlated
			[LVL], right		with TUG time.
			gastrocnemius		
			medialis		Muscle quality of all measured muscles were
			[RGM], leit		correlated with time taken to complete five STS
			gastrocnemius		transitions (r = 0.481 to 0.635 , p < 0.05) and TUG
			medialis		time $(r = 0.459 \text{ to } 0.518, p < 0.05)$.
			[LGM]); Muscle		
			quality (RVL,		(Pearson's correlations)
			LVL, RGM, LGM)		

Hillman et	26	71.0	Muscle	Walking distance	GOLD severity $(r = -0.6, p = 0.003)$, FEV1 $(r = 0.7, p = 0.003)$
al., 2012,		(8.0)	strength	(6MWT)	p = 0.0002, BODE index (r = -0.9, p = 0.0000),
Australia	50.0%		(quadriceps,		dyspnoea MMRC ($r = -0.7$, $p = 0.0001$), grip strength
			grip); BMI;		(r = 0.4, p = 0.03), total lean mass $(r = 0.4, p =$
			Total lean		(0.03), peripheral lean mass (r = 0.4, p = 0.02),
			mass;		leg lean mass $(r = 0.4, p = 0.03)$ and arm lean mass
			Peripheral		(r = 0.4, p = 0.02) were associated with 6MWD.
			lean mass;		
			Central lean		Quadriceps strength, BMI, central lean mass, total
			mass; Leg lean		fat mass, peripheral fat mass, and central fat mass
			mass; Arm lean		were not associated with $6MWT$ (p > 0.05).
			mass; Total		
			fat mass;		(Pearson's correlations)
			Peripheral fat		
			mass; Central		
			fat mass;		
			Disease		
			severity (GOLD		
			severity;		
			FEV1; BODE;		
			Dyspnoea MMRC)		
Hollman et	69	65.5	Coordination	Gait speed	Preferred walking speed was associated with
al., 2013, USA		(2.6)	(finger-to-	(preferred,	pronation-supination [β = -0.378, p = 0.001], but
	50.0%		nose; finger	maximum)	not height (p = 0.221). Fast waking speed was
			to opposition;		associated with finger-to-nose [β = -0.322, p =
			mass grasp;		0.003] and height [β = 0.431, p = 0.012]. No other
			pronation-		physical factors were included in the hierarchical
			supination;		regression.
			heel on shin);		
			BMI; Mass;		(Hierarchical regression)
			Height		
Ingemarsson et	167	80.9	Height; Grip	Walking time	Walking time at 1 year was correlated with grip
al., 2003		(9.5)	strength;	(10-meter walk	strength (r = -0.30 , p = 0.0007), and peak
Sweden	69.0%		Breathing	test at 1 year)	expiratory flow (r = -0.25 , p = 0.01), but not
			(peak		height $(p = 0.10)$, or bone mineral density $(p = 0.10)$
			expiratory		0.056).
			110w); Bone		
			mineral		(Spearman's correlations)
			density (BMD)		

Inzitari et al., 2008, USA	387 65.1%	78.7 (3.8)	Cardiovascular system (coronary artery calcium)	Gait speed Physical functioning (chair stands) Balance (standing tandem stance)	Greater coronary artery calcium was associated with lower gait speed in women (p = 0.001), but not chair stand time or standing balance in women (p > 0.05). Coronary artery calcium was not associated with gait speed, chair stand time, or balance in men (p > 0.05). (General linear models)
James et al., 2016, USA	164 73.0%	86.0 (4.7)	Coordination (Phase Coordination Index)	Gait speed Physical functioning (SPPB, repeated chair stands) Balance (standing with the feet touching side-by- side, semi-tandem stands, full tandem stands)	Coordination was significantly associated with SPPB score [B (SE) = -0.346 (0.078), p < 0.001], gait speed [-1.643 (0.572), p = 0.005], chair rise score [-0.159 (0.046), p = 0.001], and balance score [- 0.126 (0.038), p = 0.001]. (Multivariable linear regression)
Jeon et al., 2017, Korea	101 86.0%	81.2 (5.2), repeated falls 77.6 (5.6), one-time falls 71.9 (8.6), non- fallers	History of falls	Gait speed Gait parameters (cadence, gait cycle, step time, step length and stride length) Balance (static balance [single leg stance test], dynamic balance [TUG])	Compared to those in the non-fall group, those in the repeated fall group had shorter step lengths (p = 0.005), shorter stride (p = 0.030), longer step times (p = 0.038), longer gait cycles (p = 0.034), slower gait speed (p < 0.001), and lower cadence (p = 0.005). Compared to those in the repeated fall group and one-time fall group, those in the non- fall group had greater dynamic (p < 0.001), and static (p = 0.001) balance. (Chi-square, ANOVA)
Jerome et al., 2016, USA	406	68.4 (5.6)	Adiposity (% fat mass)	Walking time (400-meter walk at baseline, and change at 21-51 months)	For both those aged 60-69 and 70-79, percent fat mass was associated with walking endurance (both β = 2.0, p < 0.001). For those aged 60-69, percent fat mass was associated with change in walking endurance upon follow up (β = 0.5, p = 0.04),

					however, this association was not replicated in
					those aged $70-79$ (p = 0.74).
					(Regression)
Kang et al.,	41	72.6	Chronic	Gait speed	Compared to those with no diabetic peripheral
2020, USA		(5.6),	conditions		neuropathy, those with diabetic peripheral
	95.0%	diabetic	(diabetic	Gait parameters	neuropathy took a greater number of steps to reach
		S	peripheral	(number of steps	steady-state gait $(4.0 \text{ vs } 2.4, \text{ p} < 0.001),$
			neuropathy)	to steady-state	travelled a farther distance to reach steady-state
		77.9		gait, distance to	gait $(2.13m vs 1.25m, p = 0.008)$, had a lower gait
		(8.2),		steady-state	speed $(0.99m/s vs 1.11m/s, p = 0.018)$, and had a
		non-		gait,	greater mediolateral body sway (7.01 degrees vs
		diabetic		mediolateral body	4.46 degrees, $p = 0.001$).
		S		sway)	
					(ANCOVA)
Katzman et	3108	68.2	Grip strength	Physical	Grip strength (per SD) was associated with TUG
al., 2011, USA		(6.1)		functioning (TUG)	performance [β (95%CI) = -0.22 (-0.32; - 0.13), p <
	100%				0.0001].
					(Multiple linear regression)
Kawabata et	50	70.6	History of	Physical	Compared to non-fallers, fallers scored lower on
al., 2021, USA		(6.1)	falls	functioning	the SPPB $(p = 0.0002)$.
	88.0%			(SPPB)	
					(Student's t-test)
Kito et al.,	38	61.9	Knee adduction	Gait speed	Knee adduction moment impulse in stance duration
2010, Japan		(8.1),	moment impulse		was associated with gait speed (β = - 0.30, p =
	100%	mild			0.049)
		knee OA			
					(Forward stepwise regression)
		71.3			
		(6.8),			
		moderate			
		knee OA			
Ko et al.,	164	68.9	Body	Gait speed	During the preferred speed walking task, an
2010, USA		(1.4),	composition	(preferred,	increase in BMI was associated with a decrease in
	53.7%	normal	metrics (BMI)	maximal)	gait speed (p < 0.001) and an increase in stride
		BMI			width (p < 0.001). During the maximum speed walking
				Gait parameters	task, an increase in BMI was associated with a
		67.1		(stride width	decrease in gait speed ($p = 0.047$) and an increase
		(1.0),			in stride width $(p = 0.048)$.

		overweig		[preferred,	
		ht BMI		maximal])	(Generalized linear models)
				/	
		68.8			
		(1.5)			
		obese			
		BMT			
Ko et al	18	68 7	Chronic	Gait speed	Compared to non-diabetics, those who were diabetic
2010 1152	±0	(7, 5)	conditions	Sare Speca	had slower walking speeds (0.94 m/s vs 1.17 m/s)
2010, 0511	78 02	diabetic	(diabetes)	Cait narameters	lower cadences (103 16 steps/min vs 116 //
	10.00	urabetic	(diabeces)	Gait parameters	stong/min) and longer ston times $(0.59 \text{ s yz} - 0.52)$
		70 0		longth stop	(p < 0.05) There was no difference between
		12.5		tengen, step	s) $(p < 0.05)$. There was no difference between
		(10.9),		cime)	groups for step fength (p > 0.05).
		non-			
77 1 1	1.0.0	diabetic			(MANOVA)
KO ET AL.,	190	67.1	Muscle power	Gait speed	Gait speed (β = 0.103, p < 0.001) and stride length
2012, USA		(0.5),	(maximum knee		$(\beta = 0.046, p = 0.003)$ were associated with maximum
	48.9%	old-age	extensor	Gait parameters	knee extensor strength. Stride width was not
			strength)	(stride length,	associated with maximum knee extensor strength (p =
		84.2		stride width)	0.466).
		(0.9),			
		oldest-			(Linear regression)
		age			-
Kulmala et	434	69.2	Vision	Gait speed	Maximal walking speed [OR (95% CI) = 1.34 (1.13;
al., 2012,		(0.3),	impairment	(Maximal)	1.59), p = 0.001] and standing balance [1.16 (1.00;
Finland	100%	impaired			1.35), $p = 0.049$] were associated with vision
		vision		Balance (standing	impairment.
				[Good Balance	
		68.1		system])	(Logistic regression)
		(0.3),			
		good			
		vision			
Kwon et al.,	78	74.8	History of	Gait speed	Compared to fallers, non-fallers had greater gait
2018, Korea		(5.7),	falls	_	speed (p = 0.035), lower double support cycle (p =
	73.7%	faller		Gait parameters	0.003), lower variability of step time (p = 0.015),
				(step time, step	and greater step length $(p = 0.040)$. Single support
		74.5		length, single	cycle $(p = 0.186)$, step time $(p = 0.325)$, and
		(5.0),		support cycle,	variability of step length $(p = 0.918)$ were not
		non-		double support	associated with fall history.
		faller		cycle,	
				variability of	(t-tests)

Kyrdalen et al., 2019, USA	108 62.0%	NR (NR)	History of falls (one and multiple); Impaired vision; Chronic conditions; BMI (underweight; overweight);	<pre>step time, variability of step length) Gait speed (gait speed of <1.0m/s, was considered slow)</pre>	Low gait speed was significantly associated with a history of multiple falls [OR (95%CI) = 3.70 (1.18; 11.65)], but not one fall (p = 0.480). Impaired vision (p = 0.283), being underweight (p = 0.853), being overweight (p = 0.334) and Chronic conditions (p = 0.521) were not associated with low gait speed. (Logistic regression analyses)
LaRoche et al., 2017, USA	36 58.3%	76.0 (7.6)	Muscle power	Walking time (400-meter walk) Physical functioning (stair ascent time, chair raise time)	Knee extensor power asymmetry was unrelated to 400- m walk time (r = 0.16, p = 0.180), stair ascent time (r = 0.22, p = 0.094), or chair rise time (r = 0.03, p = 0.437), whereas weak and strong leg powers were equally associated with 400-m time (r = -0.62, p < 0.001; r = -0.62 , p < 0.001), stair ascent time (r = -0.55 , p < 0.001; r = -0.57 , p < 0.001), and chair rise time (r = -0.28 , p = 0.048 ; r = -0.31 , p = 0.032), respectively (Pearson's correlations)
Leat & Lovie- Kitchin, 2008, Australia	35 NR	NR (NR)	Vision (useful field of view [UFOV] conditions 1- 4)	Gait speed (standard, preferred, percent preferred (percent))	Percent preferred walking speed was not associated with any physical factors. Preferred walking speed was associated with UFV4 (β = -0.340, p = 0.01). Standard walking speed was associated with UFV3 (β = -0.512, p < 0.000). (Multiple linear regression)
Lee et al., 2013, USA	19 57.9%	70.7 (2.7), controls 72.1 (4.1), knee pain	Knee pain	Gait speed Gait parameters (stride time, stride length, stride width, stance phase rate)	Compared to those controls, those with knee pain had no significant differences in gait speed, stride length, stride times, stance phases, and stride widths (p > 0.05). (Independent t-test)

		72.1			
		(2.2),			
		uses			
		walker			
Lee et al., 2019, Korea	435	75.8 (4.0)	Limb Asymmetry Index (LASI): low,	Gait speed Physical	Limb asymmetry index (β = -0.104, p = 0.01) and lean mass of both legs (β = 0.099, p = 0.03) were associated with gait speed. BMI was not associated
			<pre>intermediate, and high asymmetric groups; bistory of</pre>	functioning (TUG, SPPB)	with gait speed ($p = 0.21$). Compared to non-fallers, fallers had lower gait speeds (1.07 m/s vs 1.13 m/s, $p = 0.04$), took
			falls; BMI; lean mass of		10 longer to complete the TUG (10.43s vs $9.84s$, p = 0.03), but did not differ in SPPB score (p = 0.07).
			regs		(Multiple linear regression; t-tests; Mann-Whitney U test)
Leone et al.,	22	70.4	Respiratory	Gait speed (6MWT,	VO2 peak was positively correlated to walking speed
2017, Canada		(5.8)	system (VO2)	10-meter SWT)	during both the 6MWT ($R2 = 0.83$, $p < 0.001$), and
	73.0%				the SWT ($R2 = 0.81$, $p < 0.001$).
					(Correlations)
Liao et al., 2017. Taiwan	461	65.5 (NR),	Cardiovascular system (heart	Gait speed	Among men, SDNN was associated with balance ($\beta = 0.045$ m ≤ 0.001) goit speed ($\beta = 0.29$ m \leq
· , · · ·	47.6%	men	rate	Balance (single-	(0.043) , $p < 0.001$, gait speed ($p = 0.33$, $p < 0.001$) and timed chair raises ($\beta = 0.67$ m c
		62.9	variability	leg stance)	0.001), and timed chait faises ($p = 0.07$, $p < 0.001$), rMSSD was associated with gait speed (β =
		(NR),	[standard		0.001, IMSSD was associated with gait speed (p = 0.26 n < 0.01) and HE was associated with balance
		women	deviation of	Physical	$(\beta = 0.61, p < 0.01)$, and in was associated with balance
			normal-to-	functioning (TUG,	(p = 0.01, p < 0.001), gait speed $(p = 0.03, p < 0.001)$
			normal	timed chair rise)	Among women SDNN was associated with balance $(\beta = 0.00)$.
			intervals		Among women, SDNN was associated with balance $(p = 0.68 \text{ p} < 0.001)$ and gait speed $(B = 0.34 \text{ p} < 0.001)$
			(SDNN), root		(0.00, p < 0.001), and galt speed $(p = 0.54, p < 0.05)$, rMSSD was associated with timed chair rises
			mean square or		$(\beta = 0.51, p < 0.05)$, and HE was associated with
			differences at		balance $(\beta = 0.93, p < 0.001)$, gait speed $(\beta =$
			rest (rMSSD),		0.32 , $p < 0.01$), TIIG ($\beta = -0.13$, $p < 0.05$), and
			and high-		timed chair rise ($\beta = 0.67$, $p < 0.05$).
			frequency (HF)		
			power])		(Stepwise linear regression)

Lindell et al., 2020, Sweden	662	79.0 (NR)	Dizziness	Gait speed (preferred, maximal)	Among women, those with dizziness had slower self- selected (1.02 m/s vs 1.13 m/s, p < 0.001) and maximal (1.34 m/s vs 1.52 m/s, p < 0.001) gait speeds than those without dizziness. Among men, those with dizziness had slower self-selected (1.04 m/s vs 1.14 m/s, p < 0.001) and maximal (1.49 m/s vs 1.65 m/s, p < 0.01) gait speeds than those without dizziness. (t-tests)
Lindemann et al., 2016, Germany	68 100%	77.6 (5.0)	Thigh muscle volume; Quadriceps strength; Muscle power; Handgrip strength	Gait speed (preferred, maximal)	Gait speed (habitual) was weakly correlated with thigh muscle volume ($r = 0.256$), muscle power ($r = 0.147$), quadriceps strength ($r = 0.172$), and handgrip strength ($r = 0.142$). Gait speed (maximum) was weakly correlated with thigh muscle volume ($r = 0.291$), quadriceps strength ($r = 0.370$), and handgrip strength ($r = 0.344$), and moderately correlated with muscle power ($r = 0.500$). (<i>Pearson's correlations</i>)
Liu-Ambrose et al., 2002, Canada	93 100%	69.4 (3.2)	Pain (back); Comorbidity (OA); Physical activity; Fracture	Gait speed (figure-of-eight test) Balance (Equitest computerized dynamic posturography platform)	Pain ($\beta = -0.43$) and having OA ($\beta = -0.23$) were predictors of balance. Pain was a predictor of mobility (gait speed) ($\beta = -0.38$). Physical activity and fracture were not correlated with balance or mobility (gait speed). (Forward stepwise regression models; Pearson correlations)
Lu et al., 2019, Germany	308	68.3 (6.1)	Body composition (Height; Weight; Waist circumference; BMI; hip circumference)	Physical functioning (TUG)	<pre>Among females, time to complete the TUG was correlated with height (r = - 0.19, p < 0.01), but not weight, waist circumference, hip circumference, or BMI (p > 0.05). Among males, time to complete the TUG was correlated with height (r = - 0.20, p < 0.05), but not weight, waist circumference, hip circumference, or BMI (p > 0.05). (Spearman's rank correlation)</pre>

MacGilchrist et al., 2010, UK	69 39.0%	67.0 (8.2)	History of falls	Gait speed Gait parameters (double support left, double support right, step length left, step length right, step time left, step time right)	<pre>Gait speed (p < 0.001), step length L (p < 0.001) and step length R (p < 0.001) were significantly lower among fallers compared to non-fallers. Double support L (p = 0.004), double support R (p = 0.004), step time L (p = 0.026), and step time R (p = 0.020) were significantly longer among fallers compared to non-fallers. (ANOVA; t-tests)</pre>
Mahendran et al., 2018, Australia	29 31.0%	71.0 (14.0)	Physical activity (measured through PASE - physical activity scale for the elderly); Fatigue (measured through the Fatigue severity scale)	<pre>Walking steps (average number of steps/day, walking intensity (defined as >80 steps/minute) Walking time (total time in minutes per day spent in >300 steps) Collectively called - Walking activity measured at at 1, 3, and 6-months post hospital discharge using accelerometer)</pre>	No physical factors were associated with walking activity at 1 month. At 3 months, physical activity was associated with frequency of walking ($\beta = 0.55$, $p = 0.004$), volume of walking ($\beta = 0.47$, $p = 0.007$), and intensity of walking ($\beta = 0.46$, $p = 0.002$). At 6 months, physical activity was associated with intensity of walking ($\beta = 0.53$, $p < 0.001$). (Step-wise multiple regression)
Mahmoudian et al., 2017, Belgium	66 100%	63.5 (8.2), control 67.6 (4.9), early OA	Chronic conditions (OA)	<pre>Gait speed (baseline, at 2 years) Gait parameters (stance time [baseline, at 2 years])</pre>	Walking speed was significantly lower after the 2- year follow up among those with early and established OA ($p = 0.028$). There was no significant difference in walking speed at baseline ($p = 0.656$) or stance time at baseline ($p = 0.747$) or after 2 years ($p = 0.939$). (ANOVA)

Mantel et al., 2019, USA	60 68.3%	67.0 (4.7), establis hed OA 75.2 (8.6)	BMI	Gait speed (preferred, maximum)	BMI was associated with comfortable gait speed (β = -0.27, p < 0.01) and fast gait speed (β = -0.25, p < 0.001). (Hierarchal linear regression)
Mänty et al., 2012, Denmark	292	75.0 (NR)	<pre>Fatigue, muscle strength (knee extension; body extension; grip)</pre>	Gait speed (baseline, and change at 5 years)	Among women, fatigue [β (SE) = -0.027 (0.008), p < 0.001], and body extension strength [0.115 (0.017), p < 0.001] were associated with baseline gait speed, while knee extension strength and grip strength were not (p > 0.05). Among men, fatigue [-0.039 (0.010), p < 0.001], and body extension strength [0.162 (0.027), p < 0.001] were associated with baseline gait speed, while knee extension strength and grip strength were not (p > 0.05). Among women, body extension strength [0.055 (0.023), p = 0.020] was associated change in gait speed upon follow up, while knee extension strength, fatigue, and grip strength were not (p > 0.05). Among men, fatigue [-0.035 (0.012), p = 0.005] was associated change in gait speed upon follow up, while knee extension strength, body extension strength, body extension strength, and grip strength were not (p > 0.05). (Linear regression)
Marcus et al., 2012, USA	70.6%	(6.8)	BM1; muscle strength; Intramuscular adipose tissue (IMAT); Quadriceps lean tissue	Walking distance (6MWT) Physical functioning (stair ascent, stair descent, TUG)	The 6MWT was associated with muscle strength [B $(95\%CI) = 0.27 \ (0.14; 0.76), p = 0.005], IMAT$ [- 0.31 (-9.1; -2.2), p = 0.002], and lean muscle mass [0.28 (0.44; 2.44), p = 0.005]. The ascending stair task was associated with muscle strength [-0.55 (-0.04; -0.02), p = 0.001], and IMAT [0.47 (0.16; 0.36), p = 0.001]. Stair descending was associated with muscle strength [-0.49 (-0.04; - 0.02), p = 0.001], and IMAT [0.47, 0.16; 0.001], and IMAT [0.45 (0.16; 0.39), p = 0.001]. TUG performance was associated with muscle strength
					$[-0.42 \ (-0.03; \ -0.01), \ p = 0.001], \ and \ IMAT \ [0.34]$
----------------	---------	-------	-----------------	-------------------	---
					(0.07; 0.28), p = 0.001]. BMI was not associated
					with any mobility outcome $(p > 0.05)$.
					(Hierarchical regression)
Marques et	126	69.3	Appendicular	Gait speed (<50th	aLMI (β = 0.416, p < 0.01), and BMI (β = -0.326, p
al., 2011,		(6.0)	lean mass	percentile	< 0.01) were predictors of 6MWT.
Portugal	72.0%		index (aLMI);	walkers vs >50th	
			appendicular	percentile	Compared to fast walkers, slow walkers exercised
			fat mass index	walkers)	less ($p < 0.001$). There were no differences in BMI
			(aFMI); BMI;		(p = 0.112), fat mass $(p = 0.213)$, aFMI $(p = 0.213)$
			exercise	Walking distance	(0.723), or aLMI (p = 0.907).
			(moderate to	(6MWT)	
			vigorous		(Multiple stepwise linear regression; t-test; Mann-
			physical		Whitney U tests)
			activity); fat		
			mass		
Marsh et al.,	480	71.8	Pain; BMI;	Balance (center	Those with lower quartiles of balance had greater
2003, USA		(5.0)	Chronic	of pressure data	prevalence of diabetes (p < 0.001), higher BMIs (p
	51.0%		conditions	when leaning	< 0.01), greater knee pain (p < 0.05), and lower
			(hypertension,	backwards and	knee muscle strength (p < 0.001. There was no
			CVD, diabetes,	forwards)	difference in hypertension, CVD or COPD prevalence
			COPD); Knee		between balance quartiles.
			strength		
					(Descriptive statistics)
Martinikorena	24	93.1	Muscle power	Gait speed	Muscle power was not associated with gait speed or
et al., 2016,		(3.6)	(30%; 60%; leg		gait symmetry $(p > 0.05)$.
Spain	75.0%		power 1RPM)	Gait parameters	
				(symmetry)	(Pearson's correlations)
Masaki et al.,	35	72.9	Muscle	Gait speed	Only the muscle thickness of the erector spinae was
2016, Japan	1.0.0.0	(7.4)	thickness of	(maximal)	associated with maximal walking speed [β (95%CI) =
	100%		lumbar erector		0.43 (0.09; 0.60), p < 0.01]. There were no
			spinae muscle		physical factors associated with usual walking
					speed in the stepwise regression.
					(Stopwise regression)
Matsushita ot	5262	75 3	Cardiovascular	Cait speed	Compared to baying a normal ABI baying a lower ABI
	JZUZ	(5.0)	Sustom (Anklo	Gart Speed	was associated with longer chair stand times (n <
a1., 2017, USA	57 18	(3.0)	Brachial Indox	Physical	was associated with tonger that stand times $(p < 0.05)$ shorter somi-tandom and tandom balance times
	J1.40		DIACHITAL THUCK	functioning	0.037, SHOLLEL SEMI-LAHGEM AND LAHGEM DATANCE LIMES
			[ADI] LU	ranceroning	

			capture peripheral artery disease)	(chair stand test) Balance (tandem stands; semi- tandem; side-by-	<pre>(p < 0.05), and slower gait speed (p < 0.05), but not side-by-side balance times (p > 0.05). (Multivariable logistic regression)</pre>
McGibbon et al., 2001, USA	93 64.5%	70.7 (8.7)	Trunk ROM	Gait speed	Low-back ROM and gait speed were correlated (r = 0.267, p = 0.010).
McGough et al., 2013, USA	31 93.0%	83.6 (7.0)	History of falls	Gait speed Gait parameters (cadence, stride velocity, swing time variability, stride length variability, cycle double support %, step width) Physical functioning (SPPB) Balance (modified Berg Balance scale)	<pre>Compared to non-fallers, those with a history of falls had lower scores on the BBS (p = 0.02), lower cadence (p = 0.047), and lower stride length variability (p = 0.035). There was no difference between fallers and non-fallers in SPPB scores, gait speed, stride velocity, swing time variability, cycle double support %, and step width (p > 0.05). (Bivariate correlations; Mann-Whitney Test)</pre>
Mendes et al., 2018, USA	1117	75.0 (11.0), females 73.0 (10.0), males	Height; Triceps skinfold thickness; Mid-arm muscle circumference; Waist circumference; Calf circumference	Gait speed (gait speed of <0.8m/s was considered slow)	Among women, being in the lowest tertile of height [OR (95%CI) = 2.04 (1.35; 3.05), $p < 0.001$], being in the highest tertile of waist circumference [2.72 (1.74; 4.24), $p < 0.001$], and being in the lowest tertile of calf circumference [1.87 (1.19; 2.97), p < 0.01] were predictors of low gait speed, but mid- arm muscle circumference and triceps skinfold thickness were unrelated ($p > 0.05$). Among men, being in the lowest tertile of height [1.99 (1.23; 3.23), $p < 0.01$], being in the lowest

					<pre>tertile of mid-arm muscle circumference [3.02 (1.76; 5.17), p < 0.001], being in the highest tertile of waist circumference [2.38 (1.39; 4.06), p < 0.01], and being in the lowest tertile of calf circumference [2.39 (1.30; 4.40), p < 0.01] were predictors of low gait speed, but triceps skinfold thickness was unrelated (p > 0.05). (Logistic regression)</pre>
Menz et al., 2003, Australia	30 73.3%	79.0 (3.0)	Lower limb strength (quadriceps; ankle dorsiflexion)	<pre>Gait speed (level, irregular) Gait parameters (step length [level, irregular])</pre>	Quadriceps strength was associated with level (r = 0.41, p < 0.05) and irregular velocity (r = 0.42, p < 0.05) and level (r =0.56, p < 0.01) and irregular step length (r = 0.55, p < 0.01). Ankle dorsiflexion strength was associated with level velocity (r = 0.39, p < 0.05) and level (r = 0.52, p < 0.01) and irregular (r = 0.51, p < 0.01) step length. Ankle dorsiflexion was not associated with irregular velocity (p > 0.05).
Menz et al., 2004, Australia	30 26.7%	73.9 (9.0)	Chronic condition (diabetic peripheral neuropathy)	Gait velocity Gait parameters (cadence, step length, step time variability)	<pre>(Pearson's correlations) Compared to those with no diabetic peripheral neuropathy, those with diabetic peripheral neuropathy had lower gait velocity (p < 0.01), smaller cadences (p < 0.01), and shorter step lengths (p < 0.01) on both level and irregular surfaces. Those with diabetic peripheral neuropathy had greater step time variability on the irregular surface (p < 0.05), but not on the level surface (p > 0.05). (ANOVA)</pre>
Menz et al., 2013, USA	1544 57.6%	71.0 (10.9), men 71.1 (11.9), women	Pain (in the foot); Obesity	Physical functioning (SPPB [mobility limitations defined as scores 0-9])	<pre>Among men, foot pain [OR (95%CI) = 2.00 (1.14; 3.50), p = 0.016] predicted mobility limitations, but not obesity (p = 0.447). Among women, foot pain [1.59 (1.03; 2.46), p = 0.037] predicted mobility limitations, but not obesity (p = 0.097). (Multivariable logistic regression)</pre>

Mickle et al., 2011, Australia	312 49.0%	71.7 (6.2), foot pain 71.1 (7.0), no pain	Foot pain	Gait speed Gait parameters (stride length, step length, step width, stance time, swing time, double support time, single support time) Balance (postural sway [on floor,	Compared to those without pain, those with foot pain had slower walking speeds, shorter stride lengths, and shorter step lengths (p < 0.05). Step width, stance time, swing time, double support time, single support time, and balance were not associated with foot pain (p > 0.05). (ANCOVA)
Minematsu et al., 2016, Japan	3549 50.6%	NR (NR)	BMI	<pre>on foam]) Walking time (10m walking test) Gait parameters (maximum one-step length to height ratio) Balance (one leg standing time with open eyes)</pre>	BMI was associated with 10m gait time (β = 0.072, p < 0.001), one leg standing time (β = -0.154, p < 0.001), and maximum one-step length to height ratio (β = - 0.078, p < 0.001). (<i>Linear regression</i>)
Minematsu et al., 2018, Japan	589 57.7%	73.7 (5.3), men 73.0 (5.2), women	Muscle strength (hand grip; knee extension; knee flexion)	Walking time (10m walk test) Physical functioning (TUG; chair raise time; floor stand up time) Balance (one-leg standing time)	Hand grip strength was negatively associated with time to walk 10m, time to complete the TUG, and time to complete the chair raise test ($p < 0.05$). Hand grip strength was positively associated with one-leg standing time ($p < 0.05$). Knee extension strength was negatively associated with time to complete the chair raise test ($p < 0.05$). Knee flexion strength was negatively associated with time to walk 10m, time to complete the TUG, and time to complete the chair raise test ($p < 0.05$). (Linear regression)
Misu et al., 2014, Japan	120 57.4%	73.2 (4.2)	Toe flexor strength	Gait speed (preferred, maximal)	Toe flexor strength was not associated with walking speed, cadence, swing time, or stride length (p > 0.05) during usual walking speed. During fast-paced walking, toe flexor strength was associated with

				Gait parameters	walking speed (β = 0.22, p = 0.049), swing time (β
				(preferred and	= 0.34, p = 0.009), stride length (β = 0.22, p =
				maximal -	0.011), but not cadence (p = 0.623).
				cadence, swing	
				time, stride	(Multivariable regression)
				length)	
Miyazaki et al., 2013, Japan	124 0%	73.0 (7.2)	Lumbar lordosis angle (LLA); knee extensor strength	Gait speed (maximal) Walking distance (6MWT) Walking time (10- meter obstacle walk) Physical	LLA (β = -0.53, p = 0.01) and knee strength (0.60, p = 0.01) were associated with maximal walking speed. LLA (0.40, p = 0.01) and knee strength (-0.55, p = 0.01) were associated with time to complete 10-m obstacle walking. LLA (0.31, p = 0.05) and muscle strength (-0.60, p = 0.01) were associated with time to complete the TUG. LLA (-0.35, p = 0.01) and muscle strength (0.61, p = 0.01) were associated with distance walked during the 6MWT.
				functioning (TUG)	(Multiple linear regression)
Muchna et al., 2018, USA	117 79.5%	79.1 (8.5)	<pre>Pain (in the foot); Chronic conditions (Peripheral neuropathy); Foot deformity; 2+ complications</pre>	Gait speed Gait parameters (stride length, double support) Walking steps (total per day) Balance (ankle sway eyes open)	Compared to those with no foot problems, those with foot pain, peripheral neuropathy, or 2+ foot problems had slower gait speeds (p < 0.05), shorter stride lengths (p < 0.05), longer double support cycles (p < 0.05), and walked fewer steps per day (p < 0.05). Balance was unimpacted by physical factors. Only ankle sway with eyes open was for those with foot deformity was significantly less than those without foot issues (p = 0.038). (t-tests)
Nagano et al., 2003, Japan	247 59.1%	80.0 (NR)	Knee pain	Gait speed Gait parameters (stride length, step length, step width, time of stride, time of single stance, time of swing,	Stride length was lower among those with knee pain compared to those without $(p = 0.018)$. Time of double stance $(p = 0.008)$ and time to complete the TUG test $(p = 0.0076)$ was longer in those with knee pain compared to those without. Step length, step width, time of stride, time of swingle stance, time of swing, and gait speed were not associated with knee pain $(p > 0.05)$.

				time of double	(t-tests)
				stance)	
				Scance,	
				Physical	
				functioning (TUC)	
27.1	2.0	60.0		Tunceroning (10G)	
Nakamura et	38	69.8	Respiratory	Walking distance	FVC ($r = 0.59$, $p < 0.05$), FEVI ($r = 0.58$, $p < 0.05$)
al., 2004,	0.0	(6./)	system (FVC,	(6MW'I')	(0.05), FEVI/FVC (r = 0.40, p < 0.05), MIP (r =
Japan	08		FEVI,		0.41, p < 0.05), MEP (r = 0.40, p < 0.05), grip
			FEV1/FVC;		strength (r = 0.52 , p < 0.05), arm curl (r = 0.37 ,
			Maximal		p < 0.05), and keeping in a half squat position (r
			inspiratory		= 0.46, $p < 0.05$) were all correlated with 6MWD.
			[MIP]: maximal		(Correlations)
			expiratory		
			pressure		
			[MEP]); Muscle		
			strength (grip		
			<pre>strength);</pre>		
			Muscle		
			endurance (arm		
			curl, time		
			kept in squat		
			position)		
Nakao et al.,	30	73.6	BMI;	Walking distance	BMI was associated with 6MWT distance (β = 0.38, p
2006, Japan		(5.5)	functional	(6MWT)	= 0.02), but not 10-m obstacle walking time. The
	100%		balance; knee		Kraus-Weber test was associated with 6MWT distance
			extension	Walking time (10-	(0.29, p = 0.03), but not 10-m obstacle walking.
			force,	meter obstacle	Functional balance was associated with 6MWT
			abdominal	walk)	distance $(-0.42, p = 0.01)$, but not $10-m$ obstacle
			muscle force		walking. Thigh muscle mass was not associated with
			(Kraus-Weber		6MWT or 10-m obstacle walking. Knee extension force
			test); thigh		was associated with 6MWT distance $(0.43, p = 0.01)$,
			muscle mass		but not 10-m obstacle walking.
Norrigingun of	16	60.9	Uistory of	Walking time	(Multiple regression) Palance (n = 0.11) = SCMC (n = 0.82) = 10m walk at a
	τo	(11 1)	falle	(10meter walk	parameter $(p = 0.11)$, JSIS $(p = 0.02)$, IUM walk at a comfortable page $(p = 0.81)$ and fast 10m walk $(p = 0.81)$
a1., 2019, USA	81 02	(• _ /	LALIS	test - preferred	(p = 0.97) were not significantly different between
	01.00			and maximal)	fallors and non-fallors
				and maximal)	LATTELS and NON-LATTELS.
		1			

				Balance (Berg	(Independent t-test)
				Balance scores)	
				Physical	
				functioning	
				(5STS)	
Ng et al., 2014, China	85 70.6%	72.5 (7.2)	Duration of diabetes, BMI, Muscle strength (peak torque of dorsiflexors, peak torque of plantar flexors), Stiffness of ankle dorsiflexion (through weight-bearing lunge test [WBLT]), Proprioception (of ankle joint using active ankle joint	Physical functioning (TUG)	Duration of diabetes (p = 0.366), peak torque of dorsiflexors (p = 0.233), and WLBT distance (p = 0.396) were not associated with TUG performance. BMI (β = 0.235, p = 0.009), peak torque of plantar flexors (β = -0.296, p = 0.027), and active ankle joint repositioning error (degree) (β = 0.252, p = 0.005) were associated with time to complete the TUG test. (Multivariate linear regression)
			repositioning		
Nikaido et al., 2019, Netherlands	63 35.0%	77.9 (5.5)	Number of falls	Gait velocity Gait parameters (step length, step time CV)	Number of falls was associated with step time CV (p = 0.004), but not gait velocity (p = 0.190) or step length (p = 0.102). (Multiple regression)
Ogaya et al.,	91	73.1	Weight	Gait parameters	Weight was associated with early stance foot-shank
2016, Japan		(6.0)		(mean continuous	mCRP (r = -0.26 , p < 0.05), but not mid-stance,
· -	100%			relative phase	late-stance, or swing foot-shank mCRP, or early
				(mCRP), stance,	stance, mid-stance, late-stance, or swing shank-
				swing)	thigh mCRP $(p > 0.05)$.
					(Pearson's correlations)

Opina et al.,	177	69.2	Breathing	Gait speed	Breathing reserve was associated with 400m walk
2019, USA		(3.5)	reserve (BR)		time (β = 1.03, p = 0.006) and usual gait speed (β
	73.0%			Walking time	= -0.002 , p = 0.05), but not SPPB performance (p =
				(400-meter walk	0.67).
				test)	
					(Linear regression)
				Physical	
				functioning	
	0741	70.0		(SPPB)	
Orwoll et al.,	2/41	/8.8	History of	Gait speed	Number of falls was associated with gait speed (p <
2018, USA	0.0	(5.0)	IALLS	Delence (nerrett	(0.001), having harrow walk (p = 0.002) and chair
	03			Balance (narrow	stands (p = 0.004).
				waik)	(Chi-square tests)
				Physical	(chi square cescs)
				functioning	
				(chair stands	
				test)	
Ostchega et	1499	NR (NR)	Muscle	Walking time (6-	Among men, mean peak torque was associated with
al., 2004, USA			strength (knee	meter timed walk)	timed walk performance [β (SE) = 0.0016 (0.0002), p
	49.4%		extensors)		< 0.001]. Among women, mean peak torque was also
					associated with timed walk performance [0.0033
					(0.0005), p < 0.001].
					(Weighted stepwise regression)
Pellicer-	213	78.0	History of	Balance	Recurrent falls ($p = 0.152$) and urinary
Garcia et al.,		(7.0)	falls; Chronic	(Tinetti's Gait	incontinence $(p = 0.172)$ were not significantly
2020, Spain	79.3%		condition	and Balance	difference between those who scored $>=25$ on the
			(urinary	Assessment Tool)	Tinetti scale, and those who scored =<24.
			incontinence)		
	5.4		~		(Chi-square and independent t-test)
Pojednic et	54	/3./	Contraction	Physical	Among older healthy adults, no physical factor was
al., 2012, USA	ND	(3.5),	velocity;	functioning	associated with chair raises or stair climbs (p >
	NK	older	Torque; Weight	(stair Climb,	U.US). Among mobility limited older adults,
		пеаттпу		multiple chair	contraction verocity was associated with multiple r_{1} abain rises [P (SP) = -5.12 (1.10) m < 0.051 and
		77 9		11262)	[-0.03] $(-0.001 (0.39)$ $n < 0.05]$ and $(-0.001 (0.39)$ $n < 0.05]$
		(4 3)			Scarr Crrmps [-0.304 (0.33), p < 0.03].
		older			(Linear regression)
		older			(Linear regression)

		mobility limited			
Poole et al., 2007, Australia	45 100%	71.4 (1.1)	Pain (neck pain)	Walking time (10- meter walk test) Gait parameters (cadence, stride length, gait cycle [with or without head turns])	Significant differences were found between groups for both the time it took to complete the test ($p = 0.02$) and the cadence (steps per second) ($p = 0.04$) when walking with head turns. The neck pain group took a longer time to complete the walk and used slower steps. The neck pain group also had a significantly longer gait cycle duration when walking both with ($p = 0.00$) and without head turns ($p = 0.04$).
Porta et al .	125	75 7	Handgrin	Physical	Handgrip strength was associated with time to
2018, Italy	57.6%	(13.9)	strength	functioning (TUG)	complete all components of the TUG (r = -0.216 to -4.64 , p < 0.05).
					(Pearson's correlations)
Puthoff et al., 2008, USA	30 83.0%	77.3 (7.0)	Muscle strength; muscle power (peak; at 40% 1-RM: at 90% 1-RM)	Gait speed (average per day) Walking steps (per day)	When stepwise multiple regression analysis was carried out, only one independent variable, peak power, was significant for the three models assessing total steps, distance walked, and gait speed.
				Walking distance (per day)	(Stepwise multiple regression)
Reid et al., 2008, USA	57	74.2 (7.0)	Leg strength; Bone mineral density; Total lean leg muscle mass; Total body fat; Weight	Physical functioning (SPPB [mobility disability defined as scores <8])	Total lean leg muscle mass [B (SE) = -0.75 (0.34), p = 0.02] and leg strength [-0.008 (0.004), p = 0.02] were associated with mobility disability (as assessed through the SPPB). Bone mineral density, body weight, and body fat were not associated (p > 0.05). (Multiple logistic regression)
Reid et al.	48	74.1	BMI; Muscle	Physical	There was no significant difference in BMI ($p =$
2014, USA	50.0%	(3.7), healthy 77.2 (4.4),	cross- sectional area; Peak power;	<pre>functioning (SPPB [mobility limitations defined as scores <8])</pre>	0.07), peak power ($p = 0.91$), contraction velocity ($p = 0.42$) or muscle cross sectional area ($p = 0.08$) between those with mobility limitations and those without.

		older	Contraction		(Linear regression)
		adults	velocity		
		with	-		
		limited			
		mobility			
Rodríguez-	205	75.8	History of	Gait parameters	Recurrent falls were associated with normalized
Molinero et		(7.0)	falls	(normalized	stride length ($B = -8.65$, $p = 0.001$) and ratio
al., 2019,	57.3%		(recurrent)	stride length,	width to length ($B = 0.93$, $p = 0.011$).
Spain				ratio width to	
				length)	(Poisson regression)
Roig et al.,	42	67.4	Comorbidity	Walking distance	Compared to the control group, those with COPD
2010, Canada		(8.6),	(COPD); Muscle	(6MWT)	performed worse on the Stair Climb Power Test
	47.6%	no COPD	strength (knee		(378.2 W vs 266.2 W, p < 0.001), TUG test (7.7s vs
			extensor,	Physical	9.5s, $p = 0.002$), and 6MWT (554.9m vs 394.6m, $p < 0.002$)
		71.2	concentric/ecc	functioning	0.001).
		(8.1),	entric/isometr	(stair climb	
		COPD	1C; Knee	power test, TUG)	The Stair Climb Power Test was associated with knee
			llexor		extensor muscle (concentric) torque ($r = 0.74$, p <
			concentric/ecc		-0.84 n < 0.01) know extensor muscle (eccentric) torque (r
			encric)		-0.04, $p < 0.01$, knee extension muscle (isometric)
					(concentric) torque ($r = 0.48$ n < 0.01) and knee
					(concentric) conque (i 0.40 , $p < 0.01$), and knee flexor muscle (eccentric) torque (r = 0.57, p <
					(Regression; Pearson's correlations)
Roig et al.,	42	67.4	Respiratory	Gait speed	In people with COPD, knee extensors intramuscular
2011, Canada		(8.6),	system (COPD);		fat showed non-significant trends suggestive of a
	47.6%	no COPD	intramuscular	Walking distance	moderate association between increased
		71 0	Iat	(6MWT)	intramuscular fat and lower gait speed ($r = -0.41$,
		/1.2		Dharainal	p = 0.07) and sit-to-stand tests (r = 0.43, p = 0.06). In contrast, the consistion of know
		(0.1),		functioning (cit	0.06). In contrast, the association of knee
		COPD		to-stand tosts)	extensors intramuscular fat and mobility in the
				to stalle tests)	nearchy group was not apparent.
					Compared to healthy controls, those with COPD took
					longer to complete the sit-to-stand test (p <
					0.001), had a slower gait speed (p < 0.001), and
					travelled shorter distances on the 6MWT (p <
					0.001).

					(Regression, Correlations)
Rosano et al., 2011, USA	643 57.0%	73.6 (NR)	Cardiovascular system (hypertension [recently diagnosed; previous or controlled; previous or uncontrolled])	Gait speed	Compared to having normal blood pressure, having recently diagnosed hypertension (B= -0.081 , p < 0.001), previous or controlled hypertension (B = -0.074 , p < 0.001), and previous or uncontrolled hypertension (B = -0.052 , p = 0.01) was associated with lower gait speed. (Longitudinal mixed-models)
Rouxel et al., 2017, UK	34675 54.1%	NR (NR)	Physical activity levels (low, mod, high)	Gait speed	Compared to being sedentary, having low ($\beta = 0.05$), moderate (0.10), or high (0.12) levels of physical activity were associated with gait speed (p < 0.05). (Growth curve models)
Said et al., 2015, Malaysia	44 100%	69.9 (5.6)	BMI, Lower limb strength, lower limb endurance	Physical functioning (TUG) Balance (FSST)	Among those with supinated foot posture, BMI, lower limb strength, and lower limb endurance, were not associated with balance or TUG time ($p > 0.05$). Among those with neutral foot postures, lower limb strength ($r = 0.804$, $p < 0.01$) and endurance ($r = -$ 0.573, $p < 0.05$), but not BMI ($p > 0.05$), were associated with TUG scores. No factor was associated with balance. Among those with pronated foot posture, lower limb strength ($r = 0.551$, $p <$ 0.05) and endurance ($r = -0.669$, $p < 0.01$), but not BMI ($p > 0.05$), were associated with TUG scores. No factor was associated with balance. (Spearman's correlations)
Saito et al., 2019, Japan	221	73.4 (6.0)	Muscle elasticity (gastrocnemius ; rectus femoris) and thickness (gastrocnemius	Gait speed (maximal) Physical functioning (TUG) Balance (single leg stands, FSST)	TUG was correlated with strain ratio of the medial head of the gastrocnemius (r = 0.481, p < 0.001) and rectus femoris (r = 0.471, p < 0.001). Maximum gait speed was correlated with strain ratio of the medial head of the gastrocnemius (r = -0.387 , p < 0.001) and rectus femoris (r = -0.489 , p < 0.001). The FSST was correlated with strain ratio of the medial head of the gastrocnemius (r = 0.401, p <

			; rectus femoris)		0.001) and rectus femoris (r = 0.422, p < 0.001). Single leg standing was not correlated with muscle strain of either muscle (p > 0.05). Muscle thickness was not correlated with any mobility outcome (p > 0.05).
Sakari et al., 2010, Finland	184	75.0 (NR)	Knee extension strength; visual acuity; range of motion limitation in knees and hips	Walking speed (maximal) Balance (step mounting test)	Among men, knee extension strength ($\beta = 0.60$), visual acuity (0.18), and range of motion limitation (-0.32) were related to mobility performance at baseline. Among women, knee extension strength (0.58), visual acuity (0.17), and range of motion limitation (-0.23) were related to mobility performance at baseline. (Linear regression)
Sayers et al., 2005, USA	67 61.2%	81.0 (0.5); women 80.4 (0.7), men	Contraction velocity; leg strength	Gait speed Physical functioning (SPPB)	Contraction velocity (β = 0.483, p < 0.001) and leg strength (β = 0.296, p = 0.005) were associated with gait speed. Contraction velocity (β = 0.312, p = 0.001) and leg strength (β = 0.405, p < 0.001) were associated with SPPB performance. (Forward-selection regression)
Schootemeijer et al., 2020, Netherlands	279 69.5%	70.1 (NR)	Fall risk	Walking speed Walking time (time spent walking measured by accelerometer) Gait parameter (gait quality - accelerations in the vertical, mediolateral and anteroposterior directions lasting for at least 10 seconds)	Those in the very-low fall risk group and the low fall risk group walked for longer periods of time each day than those in the moderate and high-risk groups (p < 0.008). Those in the very-low fall risk group and the low fall risk group had higher gait speeds than those in the high-risk group (p < 0.008). Gait quality did not significantly differ between fall risk groups. (Linear regression)

Schooten et	163	77.5	Falls	Gait speed	Falls were not associated with gait quality score
al., 2019,		(7.5)			(p = 0.64), walking speed $(p = 0.39)$ or stride
Netherlands	NR			Gait parameters	frequency $(p = 0.51)$.
				(stride	
				frequency, gait	(ANOVA)
				quality -	
				accelerations in	
				the vertical,	
				mediolateral and	
				anteroposterior	
				directions	
				lasting for at	
	0.00	60.0		least 10 seconds)	
Scott et al.,	982	62.0	Leg strength;	Walking steps	Walking steps were negatively associated with total
2009, Austrolio	E1 0º-	(7.0)	muscie muslitur total	(per day)	body fat ($\beta = -0.54$, p < 0.001) and trunk fat mass
AUSTIAIIA	51.0%		quality; total		$(\beta = -0.28, p < 0.001)$. In women only, a
			trupk fat mass		significant positive association between walking
			CLUIIK LAC MASS		steps and both leg strength (β = 0.71, p = 0.016)
					and leg muscle quality (β = 0.08, p = 0.001) was
					observed.
					(Correlations)
Scott et al.,	1326	75.8	Change in	Gait speed	Change in appendicular lean mass/fat mass ratio was
2020, USA		(NR)	appendicular		associated with change in gait speed (per SD ALM/LM
	08		lean mass		increase: B $(95\%C1) = 0.015 (0.001; 0.029), p < 0.05$
			(ALM) and		0.05).
			(TM) from moor		(Multimoniable linear nervession)
			(FM) from year		(Mullivariable linear regression)
Serrano-Checa	271	69.2	Z CO year J BMI: Waist	Cait speed	BMI was correlated with THC test time $(r = 0.202)$ p
et al 2020	211	(5, 7)	circumference	Gait Speed	≤ 0.01) and $3m$ tandem walk time (r = 0.178 p \leq
Spain	100%	(3.7)	CIICUMICICIC	Physical	(0.01), but not gait speed ($p > 0.05$) Waist
oparn	1000			functioning (TUG)	circumference was correlated with gait speed $(r = -$
					0.220, p < 0.01). TUG test time (r = 0.171 , p <
				Walking time (3-	0.01), and 3m tandem walk time (r = 0.179, $p <$
				meter tandem	0.01).
				walk)	
					(Pearson's correlations)

Shahtahmassebi	64	69.8	BMI; Muscle	Walking distance	6MWT was associated with rectus abdominus cross-
et al., 2017,		(7.5)	thickness	(6MWT)	sectional area (β = -0.27, p = 0.05). Sitting and
Australia	59.4%		(rectus		rising test performance was associated with rectus
			abdominis	Physical	abdominus cross-sectional area (eta = 0.33, p <
			cross-	functioning (30-	0.001) and composite trunk strength (eta = 0.34, p <
			sectional	second chair	0.001). 30-second chair stand test time, TUG time,
			area); Lumbar	stand test;	and BBS performance were not associated with any
			$I.5/S1 \cdot Muscle$	rising test. TUG)	physical factor.
			strength	115111g CCSC, 100)	
			(trunk	Balance (BBS)	(Multiple linear regression)
			extension;		
			trunk lateral		
			flexion;		
			composite)		
Shimada et	832	78.6	BMI; muscle	Gait speed	The TUG is significantly correlated with maximal
al., 2010,		(2.7)	strength		voluntary contraction of the knee (r = -0.399 , p <
Japan	100%		(Maximal	Physical	0.01) and ankle $(r = -0.228, p < 0.01)$ for all
			voluntary	functioning (TUG)	participants, but not BMI. Walking speed was
			the knoo	Palance (one	significantly correlated with maximal voluntary contraction of the knee $(r = 0.240 \text{ m} < 0.01)$ and
			extensor and	legged stance)	contraction of the knee $(1 - 0.349, p < 0.01)$ and angle $(r = 0.191, p < 0.01)$ but not BMT Balance
			ankle plantar	regged stance)	(one leaged stance) was significantly correlated
			flexor in		with maximal voluntary contraction of the knee (r =
			dominant		0.212, p < 0.01) and ankle (r = 0.164 , p < 0.01),
			(stronger) leg		and BMI $(r = -0.114, p < 0.01)$.
			measured via a		
			hand-held		(Correlations)
			dynamometer)		
Shimada et	848	80.0	History of	Gait speed	History of falls was associated with gait speed [OR
al., 2010,		(NR)	falls		(95%CI) = 0.97 (0.94; 1.00), p < 0.05] and cadence
Japan	76.8%			Gait parameters	[1.06 (1.02; 1.10), p < 0.01], but not stride
				(stride length,	length or stride width (p > 0.05).
				width)	(Multiple logistic regression)
Shuman et al	303	80.9	Falls	Gait speed	For every 0.05 m/s increase in gait speed from
2020, USA		(7.7)	- 4110	Care opeca	baseline to follow up, there was an 11% (p < .0001)
,	83.2%			Walking distance	reduction in falls in the following year, for every
				(6MWT)	0.05 m/s increase in gait speed from baseline to
					follow up, there was an 11% (p < .0001) reduction
					in falls in the following year,

Г

					For every 20 m increase in distance walked, there was an 11% (p = .0003) reduction in falls in the following year. There was a 51% (p < .0001) adjusted reduction in falls in those who increased 6MWD by at least 20 m compared to those whose 6MWD did not change or declined. (Generalized Estimating Equations)
Sillanpää et	135	75.0	Muscle	Walking distance	6MWT distance was only associated with muscle power
al., 2014, UK,	200	(3.6).	strength	(6MWT)	(B = 0.477, p = 0.001). TUG time was only
France.	54.8%	men	(handgrip);	(021112)	associated with muscle power ($B = -0.586$, p <
Netherlands,	01.00	74.4	Muscle power	Physical	0.001). Muscle strength or breathing were not
Estonia,		(3.1).	(lower	functioning (TUG)	associated with mobility outcomes.
Finland		women	extremity	(,	
			power);		(Path models)
			Respiratory		
			system (FVC;		
			FEV1; FEF50)		
Skoffer et	59	70.4	Concentric	Physical	In the affected leg, concentric extension peak
al., 2015,		(6.8)	extension peak	functioning (TUG,	torque was positively associated with number of
Denmark	61.0%		torque;	chair stand test)	repetitions on the chair stand test and negatively
			Concentric		associated with time taken on the TUG and 10m walk
			flexion peak	Walking time (10-	tests (p < 0.01). There was no association with
			torque;	meter walk test)	distance walked during the 6MWT ($p > 0.05$).
			Isometric		Concentric flexion peak torque was positively
			extension peak	Walking distance	associated with the chair stand repetitions and 6
			torque;	(6MWT)	min walk test, and negatively associated with time
			Isometric		taken on the TUG and 10m walk tests ($p < 0.01$).
			flexion peak		Isometric extension peak torque was positively
			torque		associated with chair stand reps and negatively
			(affected		associated with time taken to complete the 10m
			leg);		walking test. Isometric flexion peak torque was
			ISOMETRIC		associated with chair stand reps ($p < 0.01$).
			extension peak		To the unoffected long incretion of the standard
			icorque;		In the unallected leg, isometric extension peak
			flevion neak		time taken on the TC Isometric flexion neck torgue
			torque (non-		was associated with no performance measure
			affected lea		was associated with no periormance measure.
			arrected rey		(Linear regression)
					(Binear regression)

Spruit et al., 2010, Netherlands, USA, UK	1795 63.0%	63.0 (7.0)	Respiratory system (FEV1; inspiratory capacity)	Walking distance (6MWT)	Compared to those who walked <350m during the 6MWT, those who walked >=350m had higher FEV1 (p < 0.001), and greater inspiratory capacity (p < 0.001). (ANOVA)
Staples et al., 2020, USA	111 78.4%	77.1 (3.8), female 74.9 (7.2), male	Grip strength; History of falls	Physical functioning (TUG) Walking time (10- meter walk test)	Grip strength was a predictor of 10MWT time (β = 0.265, p = 0.004) and TUG average (β = -0.188, p = 0.038). History of falls over the past 6 months was not correlated with TUG or 10MWT performance. (Regression; Spearman's correlations)
Steiner et al., 2005, UK	85	68.0 (8.4)	<pre>BMI; Breathing (FEV1); Muscle strength (quadriceps; handgrip); whole body lean mass; whole body fat mass; lower limb lean mass</pre>	Walking distance (ISWT, ESWT)	<pre>ISWT was associated with FEV1 [B (95%CI) = 2.5 (1.1; 3.9), p = 0.001] and quadriceps strength [0.41 (0.21; 0.60), p < 0.001]. ESWT was associated with FEV1 [3.5 (1.6; 5.3), p < 0.001]. (Forward multivariable linear regression)</pre>
Suh et al., 2019, USA	195 84%	72.6 (6.1)	Pain; Muscle strength (peak torque of surgical knee and non surgical knee)	Gait speed Walking distance (6MWT)	Pain (β = -0.15, p = 0.03), peak torque of the surgical knee (β = 0.16, p = 0.04), and peak torque of the nonsurgical knee (β = 0.27, p < 0.001) were associated with gait speed. Pain (β = -0.13, p = 0.03), peak torque of the surgical knee (β = 0.15, p = 0.04), and peak torque of the nonsurgical knee (β = 0.38, p < 0.001) were associated with gait endurance (assessed using the 6MWT). (Linear regression)
Suri et al., 2009, USA	70	75.9 (7.3)	Muscle strength (trunk extension; trunk flexion;	Physical functioning (SPPB)	SPPB was associated with trunk extension strength $(B = 0.004, p = 0.01)$, trunk extension endurance $(B = 0.34, p = 0.02)$, and leg strength $(B = 0.001, p = 0.003)$, but not trunk flexion strength or flexion endurance.

			<pre>leg press strength); muscle endurance (trunk extension; trunk flexion)</pre>	Balance (BBS; Unipedal Stance Test)	<pre>BBS was associated with trunk extension strength (B = 0.01, p = 0.03), trunk extension endurance (B = 1.26, p = 0.007, and leg strength (B = 0.003, p = 0.01), but not trunk flexion strength or flexion endurance. The Unipedal Stance test was associated with trunk extension strength (B= 0.02, p = 0.03), but not trunk flexion strength, flexion endurance, extension endurance, or leg strength. (Multivariate linear models)</pre>
Tanimoto et al., 2012, Japan	1158 68.6%	74.4 (6.4), men 73.9 (6.3), women	Sarcopenia (classified as low muscle mass, plus low muscle strength or low physical performance)	Gait speed	Among men, those with sarcopenia had significantly lower gait speed than those classified as normal (1.18 vs 1.53, p < 0.001). Among women, those with sarcopenia had significantly lower gait speed than those classified as normal (1.08 vs 1.44, p < 0.001) (ANOVA)
Taylor et al., 2015, Ireland	20 NR	76.8 (4.4), fallers 70.9 (6.6), non- fallers	History of falls	Walking time Walking steps (both measured using accelerometer)	The faller group, on average, spent significantly less time walking (non-fallers; mean (sd) 78.13 (170.1) vs fallers 68.89 (94.7)). The faller group, on average, significantly spent a smaller number of steps (non-fallers 137.15 (325,0) vs fallers (117.06 (176.4)). (Descriptive statistics)
Thaweewannakij et al., 2016, Hong Kong	90	77.6 (2.2), non- faller 79.1 (4.1), single- faller	History of falls	Gait speed (10- meter walk test) Physical functioning (TUG, five times sit to stand transitions) Walking distance (6MWT)	Compared to non-fallers and single fallers, multiple-fallers had slower gait speeds on the 10MWT (p < 0.001), took longer to complete the TUG (p < 0.001), and took longer to complete five Sit- to-Stand transitions (p < 0.001). Compared to non- fallers, single-fallers and multiple-fallers travelled shorter distances on the 6MWT (p < 0.001). (ANOVA; Chi-Square)

		79.5 (4.2), multi- faller			
Thingstad et al., 2015, Norway	249	82.6 (6.0)	<pre>Fracture type (intra and extra-capsular fractures); grip strength; pain</pre>	Gait speed Gait parameters (double support, walk ratio, SD step velocity, single support asymmetry)	Extracapsular fractures were associated with double support (β = 0.160, p = 0.008), single support asymmetry (0.199, p = 0.002), and gait speed (- 0.190, p = 0.001), but not SD step velocity or walk ratio (p > 0.05). Grip strength was associated with double support (-0.267, p = 0.003), walk ratio (0.296, p = 0.001), and gait speed (0.374, p < 0.001), but not single support asymmetry or SD step velocity (p > 0.05). Pain level was not associated with any gait parameter. (Multiple linear regression)
Tsonga et al., 2015, Greece	68 83.8%	73.0 (5.3)	History of falls	Physical functioning (TUG)	History of falls was not associated with performance on the TUG test ($p = 0.603$). (t-tests)
Tudorache et al., 2017, Romania	62 0%	67.8 (0.8)	Respiratory system (FVC, FEV1, FEV1/FVC)	Walking distance (6MWT)	<pre>FVC (p = 0.930), FEV1 (p = 0.373), and FEV1/FVC (p = 0.792) were not correlated with 6MWD. (Correlations)</pre>
Tudorache et al., 2015, Romania	61 NR	63.0 (4.0), no COPD 63.0 (5.0), stable COPD 63.0 (3.0), acute exacerba ted COPD	Comorbidity (COPD)	Physical functioning (TUG) Walking distance (6MWT) Balance (single leg stance, Berg Balance test)	Compared to controls, stable and acute exacerbation COPD groups performed worse on the 6MWT (p < 0.001), single leg stand (p < 0.001), TUG (p < 0.001), and Berg Balance test (p < 0.001). (Kruskal-Wallis test)

Uritani et al., 2016, Japan	665 71.7%	67.2 (4.5)	Weight; Isometric knee extension strength; Toe grip strength	Physical functioning (TUG)	Among men, weight (β = 0.296, p < 0.001), knee strength (β = -0.357, p < 0.001), and toe grip strength (β = -0.166, p = 0.018) were associated with TUG time. Among women, weight (β = 0.188, p < 0.001), knee strength (β = -0.187, p < 0.001), and toe grip strength (β = -0.130, p = 0.004) were associated with TUG time. (Multiple regression)
Valtonen et al., 2015, Finland	56 50.0%	65.7 (6.2)	Muscle strength; pain	Gait speed (maximal) Physical functioning (stair ascension time)	Pain [β = -0.298, p = 0.020] and flexor power of the ipsilateral knee [0.811, p < 0.001] were associated with maximal gait speed. Asymmetrical extensor power deficit [0.235, p = 0.002], extensor power of the contralateral knee [-0.404, p = 0.027], extensor power of the ipsilateral knee [- 0.355, p = 0.044], flexor power of the contralateral knee [-0.337, p =0.045[, flexor power of the ipsilateral knee [-0.512, p = 0.010], and pain [0.295, p =0.006] were associated with stair ascension time. (Linear regression)
Valtonen et al., 2009, Finland	48	65.2 (6.2), men 67.7 (5.5), women	Muscle strength (extension power deficit; flexion power of non- operated knee)	Physical functioning (stair ascending and descending time)	Extension power deficit [β = 0.379, p = 0.006] and flexion power of the non-operated knee [-0.423, p = 0.021] were associated with stair-ascending time. Extension power deficit [β = 0.425, p = 0.003] and flexion power of the non-operated knee [-0.369, p = 0.043] were associated with stair-descending time. (Multivariate linear regression)
Van Andel et	106	71.4	History of	Physical	There was no significant difference in time to
al., 2019, USA	73.0%	(5.6)	falls	functioning (TUG)	<pre>complete the TUG between fallers and non-fallers (9.0s vs 9.3s). (Descriptive statistics)</pre>
Van der Esch	86	63.6	Muscle	Walking time	Muscle strength was associated with shorter times
et al., 2006, Netherlands	76.0%	(9.1)	strength; joint laxity	(100-meter walk test)	on the walking test [B (SE) = -72.73 (12.89), p = 0.000]. Laxity was not associated with walking time (p = 0.549). Muscle strength x laxity was

					associated with short walking times [-12.24 (3.79),
					p = 0.002].
					(Linear regression)
Van der Esch	63	60.0	Muscle	Walking time	Muscle strength was associated with shorter times
et al., 2007,		(7.5)	strength;	(100-meter walk	on the 100m walk test [B (SE) = -68.13 (8.90), p =
Netherlands	76.0%		proprioception	test)	0.000] and the GUG [-13.99 (1.70), p = 0.000).
					Proprioception was associated with shorter times on
				Physical	the GUG $[-0.513 (0.24), p = 0.039)$, but not the
				functioning (Get	100m walk test ($p = 0.225$). Muscle strength x
				Up & Go Test	proprioception was associated with reduced times on
				[GUG])	the walking test $[-11.61 (3.10), p = 0.000]$ and the
					GUG $[-3.05 (0.59), p = 0.000]$.
					(Linear regression)
Van Schooten	204	79.8	History of	Walking time (6-	A history of falls was not associated with walking
et al., 2019,		(5.0)	falls	meter walk test)	time [β (SE) = -0.08 (0.10), p = 0.433].
USA	56.4%				
					(Linear mixed model)
Vilaca et al.,	77	70.3	BMI; Fat mass,	Walking distance	Those who performed worse on the 6MWT had greater
2013, Brazil		(4.0),	percentage	(6MWT)	BMI $(p = 0.01)$, greater fat mass $(p = 0.01)$,
	100%	1st	fat; Muscle		greater $%$ fat (p = 0.01), lower hand grip strength
		tertile	mass; Lean		(p = 0.01), lower knee extension strength $(p = 0.01)$
		6MWT	mass; Right		(0.01), lower arm muscle quality (p = 0.01), and
		70.0	arm muscle		lower leg muscle quality $(p = 0.01)$. There were no
		/0.0	mass; Leg		differences in muscle mass, lean mass, right arm
		(4./),	muscle mass;		muscle mass, or leg muscle mass $(p > 0.05)$.
			Arm muscle		
		ENNT	quallty; Leg		(AIVOVA)
		OPIW I	muscie quality: Hand		
		68.6	grip strength:		
		$(4 \ 3)$	Knee extension		
		3rd	strength		
		tertile			
		6MWT			
Vincent et	55	7.0	Body	Gait speed	Those who were severely obese has significantly
al., 2013, USA		(6.6),	composition		less steps per day than those who were overweight
	65.5%	overweig	metrics	Walking steps	(p = 0.02). Walking time, chair raise time, stair
		ht	(Obesity)	(per day)	climb time, gait speed, cadence, and stride length

		67.7 (6.9), moderate ly obese 65.7 (6.4), severely obese		Walking time (graded treadmill walking exercise test) Gait parameters (cadence, stride length, base of support, single support time, double support time) Physical functioning (chair raises, stair climb)	<pre>were not associated with obesity (p > 0.05). Single support time was lower among those who were severely obese compared to those in the overweight group (p = 0.0001). Compared to those in the overweight group, those in the severely overweight group had significantly high double support time (p = 0.0001). (ANOVA)</pre>
Volpato et al., 2008,	836	(NR)	Cardiovascular system (HDL-C	Gait speed (normal; maximal)	Compared to the those with the lowest tertile of HDL-C levels, those with the middle or higher
Italy	55.6%		levels)		tertiles had no significant difference in normal or maximal gait speed $(p > 0.05)$.
Vongsirinavara	1.30	69.0	Chronic	Physical	(Multivariate linear regression) Those with diabetes had worse balance as measured
t et al.,	100	(6.5)	conditions	functioning (TUG)	by the mCTSIB ($p < 0.001$). There were no
2020, Thailand	NR	74.9	(diabetes); Lower extremity muscle strength	Balance (Modified Clinical Test of Sensory Interaction in Balance [mCTSIB])	<pre>differences in TUG performance between those with or without diabetes. However, those with diabetes who failed 3 conditions of the mCTSIB took longer to complete the TUG than non-diabetics without balance issues (14.84s vs 9.83s, p < 0.05). Compared to diabetics who had no issues with balance, diabetics who failed 2 or 3 conditions of the mCTSIB had significantly lower extremity muscle strength (p < 0.05). (ANOVA, ANCOVA) Rody composition was associated with stair climb</pre>
Wages et al.,	89	74.9	Body	Gait speed	Body composition was associated with stair climb power $(p < 0, 001)$ and time to complete a complex
2020, USA	67.4%	(0.7)	(appendicular	Physical	power ($p < 0.001$) and time to comprete a comprex functional task ($p = 0.018$) Muscle strength was
	0,.10		lean mass;	functioning	

			BMI); Muscle	(stair climb; 5x	associated with gait speed ($p < 0.001$) and time to
			strength	chair rise;	complete 5x chair rises ($p < 0.001$).
				complex	
				functional test)	(Multifactorial linear regression)
Walsh et al.,	85	68.0	Quadriceps	Walking distance	Quadriceps strength was associated with increasing
2014,		(8.6),	strength	(6MWT)	walking >= 61.9m on the 6MWD [OR (95%CI) = 0.958
Australia	42.0%	6MWD			(0.924; 0.992), p = 0.016]
		responde			
		rs			(Multivariate logistic regression)
		66.7			
		(9.7),			
		6MWD			
		non-			
		responde			
		rs			
Wang et al.,	1092	68.9	History of	Gait speed	Compared to non-fallers, those who had a history of
2016, China		(5.9),	falls		falls had slower gait speeds ($p < 0.05$) and took
	53.9%	faller		Physical	longer to complete the TUG ($p < 0.05$).
		67.0		functioning (TUG)	
		(5.9),			(ANOVA)
		non			
		faller			
Watsford et	72	NR (NR)	Breathing	Gait speed	Among males, maximum expiratory pressure ($r = 0.35$,
al., 2006,	F0 00		(maximum		p < 0.05) and PEND (r = 0.40, p < 0.05), but not
Australia	50.0%		inspiratory		maximum inspiratory pressure (p > 0.05), was
			pressure;		correlated with average walking speed. Among
			maximum		iemaies, PEND ($r = 0.35$, $p < 0.05$), but not maximum
			expiratory		Inspiratory pressure $(p > 0.05)$ or maximum
			pressure;		explicitly pressure $(p > 0.05)$, were correlated
			pressure for		with average walking speed.
			gempleted 2		(Partial correlation analysis)
			min stage of		(Faitiai colletation analysis)
			incremental		
			inspiratory		
			muscle		
			endurance test		
			(PEND))		

Weaver et al., 2006, USA	744 63.6%	82.1 (4.6), no pain 82.1 (4.5), mild pain 82.1 (4.2), moderate pain 80.6 (3.4), severe pain	Pain	Physical functioning (SPPB)	<pre>Increasing levels of pain were associated with lower SPPB scores (no pain: 7.4 (2.9); mild pain: 6.7 (2.9); moderate pain: 5.9 (2.9); severe pain: 5.5 (2.8), p < 0.001). (ANOVA)</pre>
Winter et al., 2010, Germany	120	NR (NR)	Chronic conditions (knee OA; hip OA; lumbar spinal stenosis); Height; Weight; BMI	Gait parameters (gait cycles - per day and per hour, minutes spent per day above 50 gait cycles per minute)	Compared to controls, those with knee OA walked fewer gait cycles per day (p = 0.001) and per hour (p = 0.007), and had fewer minutes spent above 50 gait cycles per minute (p = 0.001). Compared to controls, those with hip OA walked fewer gait cycles per day (p = 0.001) and per hour (p = 0.004), and had fewer minutes spent above 50 gait cycles per minute (p = 0.006). Compared to controls, those with lumbar spinal stenosis walked fewer gait cycles per day (p = 0.001) and per hour (p = 0.001), and had fewer minutes spent above 50 gait cycles per minute (p = 0.001). Height, weight, and BMI were not correlated with gait cycles (per day or per hour) or number of minutes spent above 50 gait cycles per minute (p > 0.05). (Mann-Whitney U-test; Spearman's correlations)
Wiśniowska-	209	74.6	Handgrip	Gait speed	Handgrip strength was associated with the time to
Szurlej et		(8.1)	strength; BMI		complete the TUG (β = -0.47, p < 0.001), time to
a1., 2019, Poland	55.0%			functioning (TUG,	complete the 10MWT (to assess gait speed) (β = -

				chair stands	0.45, $p = 0.001$), time to complete five chair
				test)	stands (β = -0.35, p = 0.010), and balance (β =
					0.53, $p = 0.002$). BMI was not associated with
				Balance (Berg	performance on the TUG ($p = 0.825$), 10MWT ($p =$
				Balance test)	0.482), chair stands ($p = 0.640$), or balance ($p =$
					0.734).
					(Linear regression)
Yalla et al.,	30	73.0	Ankle foot	Physical	The AFO did not significantly impact TUG completion
2014, USA		(6.5)	orthoses (AFO)	functioning (TUG)	times ($P = 0.359$, 95% CI = 0.121 to -0.779).
	/6./%				(Multiple linear regression)
Yamada et al .	231	78 3	History of	Physical	Height $(p = 0.620)$ and weight $(p = 0.492)$ were not
2012. Japan	201	(6.8)	falls: Height:	functioning (TUG)	associated with TUG performance at baseline.
Lord, oupan	76.6%	(0,0),	Weight	(100)	
			5		History of falls were predictive of worsening
					performance on the TUG at follow up in the lowest
					tertile TUG performers $(p = 0.04)$, but not the
					middle ($p = 0.11$) or highest ($p = 0.47$) tertiles.
					(ANOVA)
Yamagata et	24	76.6	History of	Gait speed	Non-fallers had longer step length [mean (SD)
al., 2019,		(4.1)	falls		55.9cm (5.0), p = 0.04] than fallers [51.60cm
Japan	NR			Gait parameters	(5.1)].
				(step length and	
				width, cadence,	There was no significant difference between fallers
				swing time and	and non-fallers in their walking speed, step width,
				stride length	cadence, swing time and stride length ratio
				facto)	(t-to st)
Yokovama et	947	75 9	Grin strength	Gait speed	Among males, as grip strength decreased gait speed
al . 2020.	511	(6, 6).	Grip Screngen	Gare Speed	decreased ($p < 0.001$), balance worsened ($p < 0.001$)
Japan	34.0%	males		Physical	0.001), 5STS time increased ($p < 0.001$), SPPB
T				functioning	scores decreased ($p < 0.001$), and overall
		77.2		(timed chair	proportion of low physical performance individuals
		(7.0),		stand speed,	increased $(p < 0.001)$.
		females		SPPB)	
					Among females, as grip strength decreased, 5STS
				Balance (feet	time increased ($p < 0.05$), however, gait speed,
				side-by-side,	balance, SPPB scores, and overall proportion of low

				semi-tandem, and tandem positions)	physical performance individuals did not change (p > 0.05).
					(Student's t-tests; Mann-Whitney U tests)
Ziebert et	158	75.9	Vertebral	Physical	OWD was independently associated with TUG [B
al., 2019, UK	100%	(0.5)	characteristic	five times sit to	(95%) = 0.25 (0.12; 0.38), p < 0.001], 11 ve times sit-to-stand [B (95%)] = 0.29 (0.07; 0.50), p = 0.29 (0.07; 0
	1000		s (number,	stand, step test)	0.01], four-meter walk [B (95%CI) = 0.08 (0.03;
			severity,		0.12), p < 0.001], and step test [B (95%CI) = -0.33
			location) or	Walking time (4-	(-0.47; -0.19), p < 0.001] in the adjusted model.
			occiput-to-	meter walk test)	OWD was significantly associated with physical
			(OWD)		(number, severity, location) were not
			(0112)		
					(Multivariate linear regression)
Zukowski et	29	77.0	History of	Gait speed	Compared to non-fallers, fallers had slower gait
al., 2021, USA	75 00	(8.4)	falls		speeds $(1.08 \text{ m/s vs } 1.30 \text{ m/s}, p = 0.01)$, took
	/5.9%			Physical porformanco (TUC)	longer to complete the TUG (U./s vs /.9s, $p = 0.003$) took longer to complete the four square
				periormance (103)	step test (12.8s vs 8.9s, $p = 0.01$), had worse
				Balance (FSST,	dynamic gait scores (19.5 vs 23, $p = 0.001$), and
				dynamic gait	had lower stride velocity (1.21m/s vs 1.25m/s, p <
				index)	0.05). There was no difference in stride length CV
				Gait narameters	or stride duration CV between fallers and non-
				(stride velocity.	
				stride length CV,	(t-tests)
				stride duration	
				CV)	
Deen et el	420	Self	-reported mobilit	y outcomes and phys	fical factors (n = 42)
2013. USA	430	(7 0)	Leg strengtn; Leg velocity:	ТТЕЛТ	Leg strength [B (SE) = 1.22 (0.28), $p < 0.001$], leg velocity [6 74 (2 72), $p = 0.01$], ankle ROM [2 70
2010, 0011	67.7%	(,)	Trunk extensor		(1.38), $p = 0.05$, and trunk extensor muscle
			endurance;		endurance $[2.71 (0.75), p < 0.001]$ were associated
			Ankle ROM; Leg		with basic LLFDI function. Leg strength [B (SE) =
			strength		2.04 (0.31), p < 0.001], leg velocity [5.91 (2.96), 0.04], but flowing $PGV = 0.041$
			asymmetry;		p = 0.04 , knee ilexion KOM [0.25 (0.006), $p < 0.001$] leg strength asymmetry [-4.51 (2.10) $p = 0.001$
			ROM		0.031 and trunk extensor muscle endurance [3 57
					(0.80), p < 0.001] were associated with advanced
					LLFDI function.

					(Multivariable regression)
Berlin et al., 2006, USA	1712 60.0%	78.9 (4.0)	Fall history	Walking (number of blocks walked outside the home in the past week)	History of falls in the last year (p = 0.185) was not associated with walking ability. (ANCOVA)
Bohannon et al., 2008, USA	687 50.5%	NR (NR)	Muscle strength (knee extension force); adiposity (BMI)	Mobility limitation (difficulty with 5 mobility activities [bed transfer, chair stand up, walking between rooms, climbing 10 steps, walking 1/4 mile])	<pre>Muscle strength [B (SE) = -0.004 (0.001), p = 0.000], and BMI [0.083 (0.013), p = 0.000] were associated with overall mobility difficulty. Muscle strength [-0.001 (0.000), p = 0.000] and BMI [0.023 (0.004), p = 0.000] were associated with any mobility difficulty. (Linear regression)</pre>
Brown et al., 2003, USA	902 69.0%	NR (NR)	<pre>Impaired muscular strength; limited cardiovascular endurance; decreased range of motion (ROM); dizziness; pain</pre>	Walking (walking and community ambulation ability)	45% of participants indicated that 'Inadequate cardiovascular endurance limits my ability walk.' 25% of all respondents indicated that pain interfered with ambulation. Reductions in strength; losses in range of motion; limitations due to pain, and balance problems increased in frequency with advancing age. (Descriptive statistics)
Carbone et al., 2013, USA	2639 53.1%	73.5 (2.8), no assistiv e walking device 74.7 (2.9), assistiv e	<pre>Pain (knee/hip); fracture history; number of falls; BMI; isokinetic quadriceps strength; Exercise (inactive vs</pre>	Mobility assistive device use	<pre>In the multivariate regression, incident use of an assistive walking device was predicted by poor quadriceps strength [OR (95%CI) = 2.50 (1.70; 3.66)], history of fracture [1.58 (1.10; 2.28)], being inactive [1.53 (1.08; 2.21)], having hip pain [1.53 (1.02; 2.31)], and having knee pain [1.98 (1.39; 2.82)]. (Univariate and multivariate logistic regression)</pre>

		walking	exerciser/acti		
		device	ve lifestyle)		
Cawthon et al., 2019, USA	1382 0%	84.2 (NR)	Body composition (muscle mass/body	Mobility limitation (difficulty walking 2-3	Incident mobility limitations were positively associated with lower muscle mass/body mass ratio ($p < 0.001$), and negatively associated with lower appendicular lean mass ($p = 0.022$).
			mass; appendicular lean mass)	blocks or climbing 10 steps)	(Logistic regression)
Chaudhry et al., 2010, USA	5888	NR (NR)	Muscle strength; physical capacity; vision; hearing, number of chronic diseases; BMI	Mobility limitation (difficulty walking 1/2 mile or unable to climb 10 stairs)	<pre>Having a BMI >= 30 kg/m2 was associated with greater incident mobility disability [HR (95%CI) = 1.59 (1.38; 1.82), p < 0.001]. Muscle strength [1.17 (1.02; 1.34), p = 0.03], physical capacity [2.24 (1.95; 2.57), p < 0.001], vision [1.23 (1.05; 1.46), p = 0.01], and hearing [1.26 (1.00; 1.58), p = 0.047] were associated with greater incident mobility disability. Compared to having no chronic conditions, having one [2.06 (1.76; 2.40)], two [2.80 (2.36; 3.31)], or three [4.20 (3.44; 5.14)] was associated with greater incident mobility disability. (Multivariable Cox hazards regressions)</pre>
Everson-Rose et al., 2017, USA	6484	62.0 (10.2)	<pre>Body composition (BMI); Physical activity; Cardiovascular system (SBP; DBP; cholesterol; heart rate; coronary artery calcium; carotid intima-medial thickness [IMT]; ABI);</pre>	Walking pace	At baseline, slower walkers were more likely to exercise less (p < 0.0001), have higher BMIs (p < 0.0001), have higher SBP (p < 0.0001), have diabetes (p < 0.0001), have higher heart rates (p < 0.0001), but had no differences in DBP (p = 0.17) or cholesterol (p = 0.34). IMT (p = 0.39) and coronary artery calcium (p = 0.52) were not associated with self-reported walking pace. ABI was associated with self-reported walking pace [B (95%CI) = 0.043 (0.027; 0.059), p < 0.001]. (Descriptive statistics; Linear GEE models)

			Comorbidities (diabetes)		
Hairi et al., 2013, Malaysia	765 NR	NR (NR)	Vision impairment	Mobility limitation (difficulty managing stairs)	Among those living alone, compared to those with normal vision, those with vision impairments were more likely to have difficulty managing stairs [OR (95%CI) = 5.04 (2.27; 10.62)]. A similar impact of vision impairment was found among those who lived with others [3.10 (1.52; 6.80)]. (Ordinal regression)
Houston et al., 2009, USA	2845	73.6 (NR)	BMI	Mobility limitation (difficulty walking 1/4 of a mile or climbing 10 steps)	<pre>Among men, compared to being normal weight, being overweight [HR (95%CI) = 1.24 (1.02; 1.52)] and obese [1.61 (1.28; 2.02)] is associated with incident mobility limitation. Among women, compared to being normal weight, being overweight [HR (95%CI) = 1.40 (1.16; 1.70)] and obese [2.14 (1.75; 2.62)] is associated with incident mobility limitation. (Cox proportional hazards regression)</pre>
Ilves et al., 2019, Germany	407 62.0%	76.9 (6.3)	Pain intensity (chronic pain grade)	RAND-36 physical functioning questionnaire (0 to 100)	<pre>Pain intensity was associated with change in physical functioning at the 18-month follow up [B (95%CI) = -0.08 (-0.14; -0.01)]. (Longitudinal generalized estimating equations)</pre>
Iversen et al., 2001, USA	43 65.0%	72.4 (10.3)	Pain	Walking (capacity to walk >2 blocks, >15.2m but <2 blocks, or <15.2m)	<pre>Increasing leg pain with prolonged standing (p = 0.0001), walking uphill (p = 0.004), and walking downhill (p = 0.0016) were all moderately correlated with scores on the self-reported walking capacity scale. (Logistic regression; Spearman rank correlations)</pre>
Jia et al., 2019, USA	164597 58.2%	76.3 (6.8)	History of falls	Mobility limitations (difficulty with balance or walking in the past 12 months)	Reporting a balance/walking problem [OR (95%CI) = 1.7 (1.6; 1.8)] and having difficulty with walking [1.2 (1.1; 1.2)] were independent predictors of falls among older adults. (Logistic regression)

Jung et al., 2016, Japan	283	72.2 (5.0)	BMI; muscle strength	Mobility limitations (difficulty walking 1/2 mile or climbing 10 stairs without rest)	Compared to having a normal BMI, having an obese BMI was not associated with mobility limitations [OR (95%CI) = 1.53 (0.86; 2.73), p > 0.05]. Compared to having high muscle strength, having low muscle strength was associated with mobility limitation [2.05 (1.08; 3.91), p < 0.05]. (Multivariate logistic regression)
King et al., 2018, USA	18490	68.0 (NR)	BMI	Mobility limitations (difficulty walking or standing in the past 3 months)	Compared to being normal weight, being underweight [OR (95%CI) = 1.53 (1.16-2.02), p < 0.01], overweight [1.24 (1.12-1.37), p < 0.01], Obesity class I [2.08 (1.82-2.39), p < 0.01], Obesity class II [2.93 (2.26-3.79), p < 0.01], and Obesity class III [5.32 (3.34-8.49), p < 0.01] was associated with greater self-reported walking difficulties. <i>(Logistic regression)</i>
Kuo et al., 2006, USA	1753 46.2%	70.2 (7.5)	Muscle power (knee extensor)	Mobility limitations (difficulty walking 1/4 mile or climbing 10 stairs)	<pre>Knee extensor power was associated with reduced lower limb mobility disability [OR (95%CI) = 0.66 (0.53; 0.83), p < 0.001]. (Logistic regression)</pre>
Kuspinar et al., 2020, Canada	12646 49.9%	73.1 (5.7)	Muscle strength (grip); BMI; Pain; Fatigue; Vision	Life space index	Life space index was associated with grip strength [1.08 (0.52; 1.64), p < 0.001], being underweight [-5.2 (-10.17; -0.23), p < 0.05], being overweight [0.96 (0.13; 1.78), p < 0.05], presence of pain [- 1.05 (-1.81; -0.29), p < 0.01], presence of fatigue [-1.99 (-3.68; -0.31), p < 0.05], and poor vision [-2.08 (-3.53; -0.63), p < 0.01]. Life space index was not associated with being obese (p > 0.05). (Multivariable regression)
Lee et al., 2005, USA	2932 NR	NR (NR)	Body composition (weight change)	Mobility limitations (difficulty walking 1/4 mile or walking 10 steps without rest)	For those with a BMI <25, compared to having a stable weight, experiencing weight loss during follow-up was associated with incident mobility limitations [HR (95%CI) = 2.03 (1.46;2.82)]. For those with a BMI between 25-29.9, compared to having a stable weight, experiencing weight loss [1.51 (1.13;2.01)] or weight fluctuation [1.49 (1.09; 2.02)] was associated with incident mobility

					difficulty. Among those with a BMI between 30-34.9
					or a BMI >35, weight changes were not associated
					with incident mobility limitations $(p > 0.05)$.
					(Cox proportional-hazards models)
Lindh-Rengifo	148	67.9	Postural	Walking (Walk-12G	Fatigue (p = 0.076), postural instability (p =
et al., 2021,		(8.9)	stability	questionnaire)	0.070), and being bothered by pain (p = 0.058) were
Sweden	33.1%		(measured		not associated with Walk-12G scores at the 3-year
			through the		follow up.
			Unified		
			Parkinson's		(Multivariate linear regression)
			Disease Rating		
			<pre>Scale III);</pre>		
			Bothered by		
			pain; Fatigue		
Lo et al.,	970	76.2	History of	LSA scores	Compared to no falls, having any falls was
2014, USA		(7.1),	falls		associated with reduced life space (B = -3.6, p <
	50.6%	incident			0.001).
		falls			
					(Multivariate linear regression)
		74.3			
		(6.2),			
		no Falls			
Mccluskey et	96	78.2	History of	Use of	Those with falls in the last month were less likely
al., 2011,		(5.3)	falls	transportation	to use a bus for outings $(p = 0.02)$.
Australia	77.1%				
					(Chi-square)
Meyer et al.,	6112	74.7	General poor	Personal mobility	Poor physical health was associated with community
2014, USA		(5.1)	physical	(a composite	mobility (β = -0.30, p < 0.05) and personal
	59.0%		health	score of ability	mobility (β = -0.85, p < 0.05).
			(History of	to walk one	
			falls; Chronic	blocks, several	(Correlations; structural equation models)
			conditions;	blocks, jog one	
			Physical	mile, sit for 2	
			activity)	hours, climb	
				stairs, etc)	
				Communitie	
				mobility (ability	
				to drive, drive	
				in the past	

				<pre>month, car availability and limiting driving to only nearby place or do not drive long distances)</pre>	
Miyakoshi et al., 2010, Japan	672 64.3%	69.4 (NR)	BMI; Upper lumbar kyphosis angle; Upper spinal inclination; Flexed lumbar kyphosis angle; Extended lumbar kyphosis angle; Extended spinal inclination	Walking (unable to walk >30 min due to LBP)	<pre>BMI (p = 0.2517), upper spinal inclination (p = 0.7373), flexed lumbar kyphosis angle (p = 0.5597), and extended lumbar kyphosis angle (p = 0.8192) were not associated with mobility disturbance. Upper lumbar kyphosis angle [OR (95%CI) = 1.044 (1.001; 1.088), p = 0.0442] and extended spinal inclination [1.064 (1.028; 1.101), p = 0.0005] were associated with mobility disturbance. (Multivariate Logistic regression)</pre>
Parc et al., 2012, France	20	75.0 (NR)	Vision (visual impairment, severity of glaucoma, binocular visual fields)	Driving habits (highways driving, night driving, meeting the French driving requirement)	The driving habits of glaucoma patients were analyzed, and visual acuity and binocular visual fields were compared to French and European legal driving criteria. Thirteen patients (65%) with glaucoma were still driving on highways, and five (25%) at night. Seven patients (35%) were below French legal minimum visual acuity or visual field criteria. Glaucoma patients appear to self-regulate their driving habits by avoiding potentially difficult driving situations. (Descriptive statistics)
Papachristou et al., 2017, UK	1198 0%	78.0 (4.4)	Frailty; Grip strength; Body composition (weight loss); Physical	Mobility limitations (difficulty walking 400 yards or going up and down stairs)	Being physically inactive or less active in comparison to other men, having difficulty or being unable to grip with hands, reporting low energy, and being frail or pre-frail were associated with greater incident mobility limitations (p < 0.05).

			activity;		Weight loss was not associated with mobility
			Fatique		limitations ($p > 0.05$).
					(Cox proportional hazard models)
Peres et al.,	8491	73.3	Vision (no	Rosow and Breslau	For the cross-sectional analyses, compared to
2017, France		(5.3)	impairment;	scale	having no vision impairment, having near visual
	68.7%		only distance;		impairment [OR (95%CI) = 1.7 (1.4; 2.1)] or both
			only near;		near and distance impairment [2.3 (1.5; 3.5)] were
			both)		associated with mobility limitations, but not
					distance impairment only.
					For the longitudinal analyses, compared to having
					no vision impairment, having only near, only
					distance, or both forms of impairment were not
					associated with mobility limitations.
					(Multivariate logistic regressions)
Protas et al.,	10	74.1	Breathing	Mobility	Those with Merry walkers and Wheeled walkers had
2007, USA		(3.7)	(VO2; minute	assistive device	greater VO2 (p < 0.016). Those with Merry walkers
	33.3%		ventilation)	use (self-	had greater minute ventilation ($p < 0.016$).
				reported)	
					(ANOVA)
Raggi et al.,	3902	65.1	Vision;	General mobility	Mobility scores was associated with waist
2018, Finland,		(9.8)	hearing; Pain;	(a composite	circumference (β = -2.37, p < 0.001), low
Poland, Spain	54.6%		Chronic	score of ability	physical activity (compared to high activity
			conditions	to stand for long	levels, -5.61, p < 0.001), arthritis (-3.80, p <
			(arthritis,	periods of time,	0.001), stroke (-7.44, p < 0.001), angina (-2.71, p
			stroke,	climb one flight	< 0.05, diabetes (-2.08, p < 0.01), asthma (-3.05,
			angina,	of stairs without	p < 0.01), pain (-1.69, $p < 0.05$), mild (-2.60, $p < 0.05$)
			dlabetes,	rest, vigorous	(-7.22, p < 0.001), and severe (-
			astnma), Waist	activities,	5.79, $p < 0.001$) vision problems, and moderate (-
			circumierence	situng for long	3.85, p < 0.001) nearing problems.
			LISK; PHYSICAL	perrous,	(Trienenshies] responsion)
			accivicy	kneeling or	(Hierarchical regression)
				crouching	
				picking up things	
				with fingers.	
				extending arms	
				above shoulder	
				level, walking	

				100m, walking a long distance, carrying things, moving around inside home, getting up from lying down, standing up from sitting down, getting where you want to go, using public or private transit, getting out of your home)	
Ross et al., 2009, Australia	5206 36.2%, Drivers 71.2%, Nondriv ers	74.1 (5.7), drivers 78.9 (6.9), Nondrive rs	Vision; Number of medical conditions	Driving status	Compared to not having impaired visual acuity, having visual impairment was associated with reduced driving [OR (95%CI) = 0.48 (0.39; 0.59), p < 0.001]. Total number of medical conditions was associated with reduced driving [0.87 (0.79; 0.96), p = 0.006]. (Logistic regression)
Schmidt et al., 2018, USA	430	76.9 (6.6), symptoma tic lumbar spinal stenosis (SLSS) 77.1(7.2), without SLSS	Leg strength; ankle ROM; Knee extension ROM; Knee flexion ROM; Trunk extensor muscle endurance	LLFDI	Among those with SLSS, trunk extensor muscle endurance (B = 0.06, p = 0.03) and leg strength (1.58, p = 0.01) are associated with basic mobility scores after 2 years of follow up. Trunk extensor muscle endurance (B = 0.09, p < 0.001) and knee flexion ROM (0.37, p < 0.001) are associated with advanced mobility scores after 2 years of follow up. Among those without SLSS, trunk extensor muscle endurance (0.05, p < 0.001), leg strength (1.21, p < 0.001), knee flexion ROM (0.12, p = 0.02), and ankle ROM (3.15, p = 0.04) are associated with basic mobility scores after 2 years of follow up. Trunk extensor muscle endurance (0.06, p < 0.001), leg strength (2.17, p < 0.001), and knee flexion ROM (0.23, p < 0.001) are associated with advanced mobility scores after 2 years of follow up.

					(Multivariable linear regression)
Skalicky et al., 2016, UK	200	70.4 (9.6), Glaucoma only 76.4 (8.5), Glaucoma and low- risk AMD 82.2 (7.1), Glaucoma and high- risk AMD	Vision (AMD)	Mobility limitations (vision-related activity limitation tasks - walking on uneven ground, walking after dark, walking on steps/stairs (from Glaucoma Activity Limitation - 9))	Those with age-related macular degeneration experienced more difficulty walking on uneven ground (differential item functioning = 0.88, p = 0.0022) and walking on stairs/steps (0.63, p = 0.0299). Age-related macular degeneration was not associated with walking after dark (-0.37, p = 0.1975). (Multivariate linear regression)
Subhi et al., 2017, UK	50 42.0%	NR (NR) Median (IQR) 64 (55-71)	Distance visual acuity	Mobility limitation (Independent Mobility Questionnaire (IMO))	The IMQ was correlated with distance visual acuity (R-squared = 0.31, p < 0.001). (Spearman's rho bivariate correlations)
Suwannarat et al., 2015, Thailand	343	73.1 (5.6)	Comorbidity; Pain (musculoskelet al); Physical activity (inactive vs active)	Mobility assistive device use	<pre>Musculoskeletal pain [B (SE) = 1.05 (1.21), p = 0.035] was a predictor of using a walking device, but lack of exercise (p = 0.481) and comorbidity (p = 0.620) were not. (Multivariate logistic regression)</pre>
Swenor et al., 2015, USA	1862 38.7%	NR (NR)	Vision (visual acuity)	Mobility limitation (walking limitation [difficulty walking 1/4 mile], stair climbing	After 1 year of follow-up, only visual acuity impairment was associated with incident persistent walking limitation (HR (95%Cl) = 1.8; (1.1; 3.0) and stair climbing limitation (2.0 (1.1; 3.6). However, this association was not observed at the 3- and 5-year follow-up points. (Cox proportional hazard models)

Talkowski et al., 2008, USA	2269 59.6%	79.2 (4.1)	History of falls	<pre>limitation [difficulty climbing 10 steps]) Walking (blocks walked over past week)</pre>	Having a fall within the last year (p = 0.28) was not associated with blocks walked. (Multivariate linear regression)
Ullrich et al., 2019, Germany	118 76.3%	82.3 (6.0)	Number of comorbidities; BMI; Physical activity (number of steps)	LSA	LSA scores were associated with number of steps (β = 0.265, p < 0.01), but not BMI or number of comorbidities. (Multivariable regression)
Viljanen et al., 2012, Finland	434 100%	<pre>68.2 (3.1), no incident walking difficul ty 68.6 (3.7), incident walking difficul ty</pre>	Comorbidities (number of chronic conditions; diabetes; rheumatoid arthritis); Body composition (BMI); Vision; Hearing; Cardiovascular system (CVD)	Mobility limitations (difficulty walking 2km)	<pre>Incident walking difficulty after 3 years of follow up was associated with number of chronic conditions (OR 1.43, p = 0.003), BMI (OR 1.17, p < 0.001), cardiovascular disease (OR 2.21, p = 0.013), diabetes (OR 9.18, p < 0.001), and rheumatoid arthritis (p = 0.026), but not vision (p = 0.051) or hearing (p = 0.260). (Logistic regression)</pre>
Visser et al., 2005, USA	2631 51.1%	73.9 (2.9), white men 73.4 (2.8), black men 73.5 (2.8), white women	Mid-Thigh Muscle Cross- Sectional Area; Knee Extensor Strength; Mid- Thigh Muscle Tissue Attenuation	Mobility limitations (difficulty walking 1/4 mile and climbing 10 steps without rest)	Among men (p trend = 0.006) and women (p trend = 0.002), having smaller mid-thigh muscle cross sectional area was associated with greater incident mobility limitations. Among men (p trend = 0.0002) and women (p trend = 0.0001), having smaller knee extensor strength was associated with greater incident mobility limitations. Among men (p trend = 0.0002) and women (p trend = 0.002), having smaller mid-thigh muscle tissue attenuation was associated with greater incident mobility limitations. (Cox's proportional hazards)

		73.3 (2.9), black women			
Ward et al., 2016, USA	391 66.8%	76.5 (7.1)	Leg strength; Leg velocity; Trunk extensor endurance; Knee flexion range of motion	LLFDI	Decline in basic function was not associated with any neuromuscular impairment (p > 0.05). Persistently poor basic function was associated with leg strength [OR (95%CI) = 2.13 (1.11; 4.10)], leg velocity [2.35 (1.21; 4.58)], trunk extensor endurance [1.83 (1.01; 3.32)], and knee flexion range of motion [2.07 (1.17; 3.66)]. Decline in advanced function was associated with leg strength [1.72 (1.10; 2.70)], trunk extensor endurance [1.83 (1.13; 2.95)], and knee flexion range of motion [2.03 (1.24; 3.35)]. Persistently poor advanced function was associated with leg strength [3.45 (1.72; 6.95)], trunk extensor endurance [2.98 (1.56; 5.70)], and knee flexion range of motion [2.10 (1.06; 3.81)].
West et al., 2005, USA	2143	NR (NR)	Vision (visual acuity impairment; contrast sensitivity impairment; visual field impairment)	Mobility limitations (difficulty walking 1 block or climbing 10 stairs)	Incident walking disability was associated with visual field impairment [1.67 (1.15-2.44)], but not contrast sensitivity impairment [1.11 (0.71-1.71)] and visual acuity impairment [1.50 (0.75-3.01)]. Incident stair climbing disability was associated with visual field impairment [1.91 (1.36-2.68)], but not visual acuity impairment [1.59 (0.79-3.19)] or contrast sensitivity impairment [0.80 (0.53- 1.28)]. (Multiple logistic regression)
West et al., 2003, USA	629 49.5%	72.6 (8.3), no driving restrict ion	Hearing; Comorbidity (arthritis; stroke); Vision (spatial vision; binocularity)	Driving restriction	Arthritis and stroke were more prevalent among those with driving restrictions (p < 0.05) than those without restrictions. Those with driving restrictions were more likely to have failing hearing than those without restrictions (p < 0.05). (Chi-square; logistic regression models)
r T T T T T T T T T T T T T	related restrict ion 75.1 (8.5), non vision- related restrict ion				
--	--	---	---	---	
28671 6 59.9% n	67.6 (4.1), men	BMI; Waist to hip ratio	Mobility limitations (self-reported walking	Compared to normal BMI, being overweight [OR (95%CI) = 1.36 (1.25; 1.47)] and obese [2.45 (2.14; 2.82)] at baseline was associated with self- reported independent walking difficulties. Compared	
E T	62.5 (4.2), women		independently)	to having a 1st quartile WHR, having a 2nd quartile [1.22 (1.08; 1.36)], 3rd quartile [1.36 (1.51; 1.86)], and 4th quartile [1.68 (1.51; 1.86)] was associated with being unable to walk independently.	
				(Logistic regression)	
Pe	erformance	-based and self-r	reported outcomes ar	nd physical factors (n = 22)	
46 6 37.0%	60.2 (7.7)	Vision (visually impaired)	Mobility scooter driving test (street crossing without zebra; zebra crossing; cycle lane; lateral position; safe choice of speed; fluency of driving; Keeping distance; head movement; anticipation; time; defensive	Compared to normal-sighted participants, those who were visually impaired had fewer years of driving experience (p < 0.001). Compared to controls, those with visual impairments performed worse on several driving test subscales (street crossing without zebra; cycle lane; lateral position; safe choice of speed; fluency of driving; keeping distance; head movement; anticipation; timing; confidence; general safety, p < 0.05), but not defensive driving (p = 0.109) or zebra crossing (p = 0.120). (Kruskal-Wallis test)	
228 59 16	671 .9% 1	related restrict ion 75.1 (8.5), non vision- related restrict ion 671 67.6 (4.1), .9% men 62.5 (4.2), women Performance 60.2 (7.7) .0%	related restrict ion 75.1 (8.5), non vision- related restrict ion 671 67.6 (4.1), men 62.5 (4.2), women Performance-based and self-r 60.2 (7.7) Vision (visually impaired)	related restrict ion 75.1 (8.5), non vision- related restrict ion 671 67.6 BMI; Waist to (4.1), men 62.5 (4.2), women BMI; Waist to hip ratio 62.5 (4.2), women	

				confidence;	
				general safety)	
				general bareey,	
				Desisting	
				DETATIG	
				experience	
				(years)	
Deshpande et	60	70.5	Comorbidity	Physical	There was no difference in mobility disability (p =
al., 2017,		(4.7),	(diabetes)	functioning (TUG)	0.778), TUG (p = 0.551) or functional balance (p =
Canada	41.7%	diabetes			0.512) between those with or without T2D. Those
				Balance	with T2D had worse standing balance (failed
		74.6		(functional	Condition 4, eves closed on compliant surface on
		(5 4).		balance [FISCIT-4	mCTSIB) than those without diabetes (51 4% vs 24 0%
		no		scorel standing	failed $p = 0.020$
		diabataa		balance [mCDCID])	iaiica, p 0.020).
		diabetes		Dalance [mcRSIB])	
					(ANCOVA)
				Mobility	
				limitations	
				(inability to	
				walk 1/4 mile	
				without rest or	
				walk up a flight	
				of stairs	
				unsupported)	
Eggermont et	634	78 0	Pain	SPPR	Compared to having no pain having multisite pain
	001	(5, 0)	(distribution:	011D	(RR 2 95) and widespread pain (RR 3 57) were
ai., 2014, 0011	61 08	(3.0)		Mobility	and with incident mobility difficulty
	04.00		Severicy,	MODIFICy	Composed to beging no point beging and point site
			interference)		compared to having no pain, having one pain site
				(difficulty	(RR 1.34) or widespread pain (RR 1.47) was
				walking 1/4 mile	associated with 1-point declines in SPPB scores.
				or climbing 10	
				steps)	Compared to having the lowest quartile of pain,
					having 3rd quartile pain (RR 2.0) was associated
					with mobility difficulty upon follow up. 1-point
					declines in SPPB scores were not associated with
					pain severity.
					Compared to having the lowest quartile of pain
					interforence scores baying 3rd quartile (DD 2 01)
					and the montile (DD 2 46) seems is secreted
					and 4th quartile (KK 2.46) scores is associated
					with incident mobility difficulty. Compared to
					having the lowest quartile pain interference score,

					only 4th quartile scores were associated with 1-
					point decline in SPPB scores (RR 1.32).
					(Poisson regression)
Fisher et al.,	6654	63.4	Sensory	Gait speed	Compared to having no sensory impairments, in
2016, USA		(NR)	impairment	(impaired \leq	individuals without arthritis, having 1-3 sensory
	53.7%		(vision,	0.8m/s)	impairments was associated with greater risk of
			hearing)		poor lower extremity mobility (ORs 2.07-8.72, p <
				Mobility	0.001). In those without arthritis, compared to
				limitation (self-	those with no sensory impairments, having 2-3
				reported	impairments was associated with impaired gait speed
				inability to walk	(ORs 1.91-3.06, $p < 0.001$). Compared to having no
				0.25 miles or	sensory impairments, in individuals with arthritis,
				walk up ten	having 1-3 sensory impairments was associated with
				steps)	greater risk of poor lower extremity mobility (ORs
					2.69-14.81, $p < 0.001$). In those with arthritis,
					compared to those with no sensory impairments,
					having 1-3 impairments was associated with impaired
					gait speed (ORS 1.84-5.07, $p < 0.001$).
					(Multivariate logistic regression)
Garcia et al.,	60	67.0	Chronic	Walking steps	Compared to controls, those with COPD had fewer
2017, Brazil		(5.9)	conditions	(per day)	daily steps ($p = 0.04$) and scored lower on the LSA
	50.0%		(COPD);		(p = 0.02).
			Peripheral		
			strength;	LSA scores	Among those with COPD, LSA scores were correlated
			Dyspnea		with dyspnea severity (r = 0.44, $p < 0.001$),
			severity;		peripheral strength (r = 0.42, $p < 0.001$), and
			Exercise		exercise $(r = 0.43, p = 0.01)$.
			(moderate-to-		
			vigorous		(Pearson's correlations; Mann-Whitney test; t-
			physical		tests)
		_	activity)		
Hicks et al.,	934	13.3	Knee strength;	Gait speed	Among men, those with incident mobility disability
2012, Italy		(6.4),	leg power;		during follow up had lower knee strength (p <
	33.1%	men	Grip strength	MUDILITY	(p < 0.001), lower leg power ($p < 0.001$), and lower grip
				reported	incident mobility disphility during follow up had
		14.4		difficulty in	1 lower know strength (n = 0.002) lower log never (n
		(0.0),		walking 1km or	$r_{1} = 0.001$ and lower grip strength (p = 0.02)
		women		Waiking Ikin OL	- 0.004,, and lower grip scrength (p = 0.02).

				climbing a flight of stairs)	Men with knee extension strength <19.2 kg and grip strength < 39.0 kg (the "high-risk" group) had declines in gait speed of 0.24 m/s, which was 0.20 m/s (SE = 0.03) worse than those with knee extension strength \geq 19.2 kg (p < 0.001). Women with Year 3 knee extension strength <18.0 kg had declines in gait speed of 0.06 m/s (Figure 2B), which was 0.08 m/s (SE = 0.04) worse than those with knee extension strength \geq 18.0 kg (p = 0.04). (Classification and regression tree (CART) analysis)
Makris et al., 43 2016, USA 68	30	76.8 (7.0)	<pre>Pain (back pain); trunk extensor muscle endurance (TEE); Leg strength; Coordination; ROM (knee; ankle)</pre>	Gait speed Balance (standing feet side-by- side, semi- tandem, and tandem) Physical functioning (chair stand test) LLFDI	Compared with participants without back pain, those with back pain had poorer performance in gait speed (p = 0.05) and chair stands (p < 0.01) and worse basic lower extremity function (p < 0.01), but no difference in balance (p = 0.49). Among those without back pain, gait speed was associated with TEE [B (SE) = 0.06 (0.01), p < 0.01] and ankle ROM [0.08 (0.03), p < 0.01]. Balance was associated with leg strength [0.07 (0.03), p = 0.01]. Chair stands were associated with leg strength [0.09 (0.03), p < 0.01], coordination [0.11 (0.03), p < 0.01] and knee ROM [0.03 (0.01), p = 0.01]. Basic lower extremity function was associated with TEE [2.87 (0.99), p < 0.01], leg strength [0.90 (0.35) p = 0.01] and coordination [0.65 (0.29), p = 0.03]. Among those with back pain, gait speed was not associated with TEE [0.28 (0.12), p = 0.02] and ankle ROM [0.62 (0.27), p = 0.02]. Chair stands were associated with TEE [0.31 (0.13), p = 0.02], leg strength [0.17 (0.05), p < 0.01], coordination [0.09 (0.04), p = 0.01], and knee ROM [0.04 (0.02), p = 0.04]. Basic lower extremity function was associated with leg strength [1.25 (0.46), p = 0.01].

					(Regression)
McDermott et al., 2000, USA	933 100%	77.4 (7.3), ABI <0.90 75.5 (6.9), ABI 0.90 to 1.50	Cardiovascular system (Ankle Brachial Index [ABI] to capture peripheral artery disease)	Gait speed (self- selected; maximal) Physical functioning (chair stands; Summary Performance Score)	Increased ABI was associated with reduced odds of having difficulty walking $1/4$ mile (p = 0.001), and higher number of city blocks walked per week (p = 0.026), but not difficulty walking up 10 steps without resting or number of stair flights climbed per week (p > 0.05). Increased ABI was associated with higher maximal gait speed (p = 0.016), faster chair stand tests (p = 0.024), better balance (p = 0.016), and better
				Balance (standing) Mobility limitations (difficulty walking quarter mile; difficulty walking up 10 steps; number city blocks walked per week; number flights of stairs climbed per week)	<pre>scores on the summary performance (p = 0.008), but not self-selected walking speed (p > 0.05). (Multiple regression analyses)</pre>
McDermott et al., 2010, USA	623 44.3%	71.8 (8.4), PAD 69.3 (8.1), non-PAD	Cardiovascular system (PAD [pain and exertion rest; atypical exertional leg pain; leg pain; sometimes asymptomatic; always asymptomatic;	Walking distance (6MWT) Mobility limitations (difficulty walking 2-3 blocks or climbing 10 steps)	Compared to those without PAD, those with PAD walked shorter distances on the 6MWT (p < 0.001). Compared to those without PAD, having PAD and pain on exertion and rest (p < 0.001) and having always asymptomatic PAD (p = 0.002) was associated with greater incident mobility difficulty. (General linear models; Cox regression)

			intermittent		
			claudication])		
Medina-	110	70.0	Breathing	Walking distance	Decreases in FEV1 were significantly associated
Mirapeix et		(5.7)	(FEV1; per 1 L	(6MWT)	with lower 6MWT distances [mean change (95%CI) = -
al., 2018,	10.0%		decrease)		82.86 (-116.62; -49.11), p = 0.000] and SPPB scores
Spain				Physical	[-1.11 (-1.98; -0.24), p = 0.01]. Decreases in FEV1
				functioning	were also associated with self-reported mobility
				(SPPB)	scores $[13.24 \ (0.15; 26.33), p = 0.047]$.
				Mobility	(Linear regression)
				limitations	
				(self-reported	
				mobility	
				questionnaire	
				assessing	
				stooping,	
				crouching, or	
				kneeling;	
				standing in place	
				for 15 min or	
				longer; getting	
				up from a	
				stooping,	
				crouching, or	
				kneeling	
				position; sitting	
				for long periods;	
				standing up after	
				sitting in a	
				chair; ushing	
				objects like a	
				living room	
				chair; moving or	
				carrying light	
				objects under 10	
				lb or 4.54 kg;	
				moving or	
				carrying heavy	
				objects over 10	
				lb; walking alone	

Pek et al., 2020, Singapore	229 72.6%	67.2 (7.4)	Physical frailty (Modified Fried scale)	up and down a flight of stairs; and walking two to three neighbourhood blocks) Physical functioning (SPPB) LSA scores	<pre>SPPB performance was not associated with physical frailty (p = 0.192). However, total LSA scores were associated with physical frailty [OR (95%CI) = 2.19 (1.26; 3.81), p = 0.005]. (Logistic regression)</pre>
Pirrie et al., 2020, Canada	595 81.3%	72.2 (9.2)	History of falls; Physical activity (daily); BMI; Chronic conditions (heart disease, hypertension, high cholesterol, diabetes, stroke history); Pain/discomfor t issues	Physical functioning (TUG [complete in =<14 seconds or >14 seconds]) EQ-5D-3L	<pre>Having self-reported mobility issues assessed via the EQ-5D-3L were associated with having a fall in the previous year [OR (95%CI) = 1.75 (1.11; 2.75), p < 0.05]. Being physically active daily, having heart disease, hypertension, high cholesterol, diabetes, stroke history, and BMI were not associated with completion of the TUG >14 seconds (p > 0.05). Having issues with pain/discomfort was associated with completion of the TUG >14 seconds [4.56 (1.31; 15.92), p < 0.05]. (Binary logistic regression)</pre>
Puthoff et al., 2007, USA	30 83.3%	77.3 (7.0)	Muscle strength; Muscle power	Walking distance (6MWT) Physical functioning (SPPB) LLFDI	Strength [B (SE) = 12.84 (3.08), $p = 0.000$] and peak power [21.39 (4.20), $p = 0.000$] were associated with the 6MWT distance. Strength [B (SE) = 0.91 (0.25), $p = 0.001$] and peak power [1.27 (0.33), $p = 0.001$] were associated with LLFDI functional limitation component scores. Strength [B (SE) = 0.32 (0.10), $p = 0.003$] and peak power [0.46 (0.15), $p = 0.004$] were associated with total SPPB scores. (Regression)

Rantanen et	758	79.5	Strength	Gait speed	Strength was a significant predictors of new
al., 2001, USA		(0.58),	(knee-	-	walking disability. The relative risk (RR) of onset
	100%	became	extension)	Mobility	of severe walking disability was more than five
		walking		limitations	times greater in the group with poorest balance and
		disabled		(inability to	strength (RR 5.12, 95% confidence limit [95% CI]
				walk 1/4 of a	2.68-9.80) compared with the group with best
		76.3		mile)	balance and strength. Among those who had poorest
		(0.34),			balance and best strength, the RR of severe walking
		survived			disability was 3.08 (95% CI 1.33-7.14). Among those
		without			with best balance and poorest strength, the RR was
		walking			0.97 (95% CI 0.49-1.93), as compared with the
		disabili			reference group.
		ty			
		7 0 0			(Cox proportional hazards)
		/9.3			
		(0.79),			
		without			
		willing			
		disabili			
		tv			
Roshanravan et	1963	75.5	Muscle	Gait speed	Usual 20-meter gait speed was strongly correlated
al., 2017, USA		(2.8)	strength	-	with muscle strength measurements [Isokinetic work
	49.0%		(measured as	Mobility	(r = 0.35, p < 0.001); Isometric torque $(r = 0.19);$
			Isokinetic	limitations	Isokinetic torque (r = 0.25) and fatigue index (p =
			work,	(difficulty or	-0.01)]
			Isometric	being unable to	
			torque,	walk 1/4 mile or	Restricting analyses to 1,610 participants who had
			fatigue index)	climb 10 steps	normal gait speed (>1 m/s), fully adjusted hazard
				without resting;	ratios for PSLL per 1-unit SD lower isokinetic work
				described as	were 1.24 (95% CI 1.06, 1.44) among men and 1.17
				persistent severe	(95% CI 0.95, 1.44) among women.
				limitation (PSLL)	
					Isokinetic work, and isometric torque were
					associated with PSSL, but isokinetic fatigue index
					was not.
					(Cox proportion hazards)

al., 2020, USA 1(DR) = 77 (IQR 68-84)49.0%Median (IQR) = 77 (IQR 68-84)Postural Assessment Scale for Stroke patients, tandem standing)measures posture), having a score between 25-30 [OR (95%CI) = 2.41 (1.21; 4.80), p = 0.0012] or a score associated with risk of recurrent falls. Having poor tandem stance/losing balance was associated with risk of recurrent falls [2.72 (1.57; 4.71), p e 0.0010]. Using a walking aid [2.51 (1.45; 4.36), p e 0.0010]. Dut not a wheelchair (p = 0.18) was associated with risk of recurrent falls.Sertel et al., 2017, Turkey149 60.0%71.6 (8.0)BMI (normal; overweight; obese)Balance (Berg Balance scale, tandem tests [left and right])BMI was not associated with balance (p = 0.06), the BMI was not associated with a higher BMI performed worse (n the right (p = 0.01) and left (p = 0.01) tandem tests.Simonsick et al., 2018, USA878 50.8%72.7 (1umbopelvic)Pain (1umbopelvic)Gait speed Walking time Walking timeCompared to those without lumbopelvic pain, those with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no with pain fill the pain fill		540	INE (INE)	Falls	Balance (Swedish	Compared to having a SwePASS score >=31 (which
49.0%Median (IQR) = 77 (IQR 68-84)Assessment Scale for Stroke patients, tanden standing)(55%C1) = 2.41 (1.21; 4.80), p = 0.0012) or a score =<24 [5.85 (2.84; 12.02), p < 0.0001] was associated with risk of recurrent falls. Having poor tandem stance/losing balance was associated with risk of recurrent falls [2.72 (1.57; 4.71), p = 0.004]. Using a walking aid [2.51 (1.45; 4.36), p = 0.0001], but not a wheelchair (p = 0.18) was associated with risk of recurrent falls.Sertel et al., 2017, Turkey14971.6 (8.0)BMI (normal; overweight; obese)Balance Scale, tandem tests [left and right])BMI vas not associated with balance (p = 0.06), the Rivermead Mobility Index (p = 0.01) and left (p = 0.01) tandem tests.Simonsick et al., 2018, USA878 (8.1), no pain72.7 (lumbopelvic)Pain (lumbopelvic)Gait speed walking time walking timeCompared to those without lumbopelvic pain, those with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no ability (p < 0.001) upon follow up. There were no ability (p < 0.001) upon follow up. There were no ability (p < 0.001) upon follow up. There were no ability (p < 0.001) upon follow up. There were no ability (p < 0.001) upon follow up. There were no ability (p < 0.001) upon follow up. There were no ability (p < 0.001) upon follow up. There were no ability (p < 0.001) upon follow up. There were no ability (p < 0.001) upon follow up. There were no ability (p < 0.001) upon follow up. There were no ability (p < 0.001) upon follow up. There were no ability (p < 0.001) upon follow up. There were no ability (p < 0.001) upon follow up. There were no ability (p < 0.001) upon follow up. There were no doubling ability (p < 0.001	al., 2020, USA				Postural	measures posture), having a score between 25-30 [OR
Image: Sime start(IQR) = 77 (IQR)(IQR) 68-84)for stroke patients, tandem standing)=<24 [5.85 (2.84; 12.02), p < 0.0001] was associated with risk of recurrent falls. Having poor tandem stance/losing balance was associated with risk of recurrent falls [2.72 (1.57; 4.71), p = 0.001], but not a wheelchair (p = 0.18) was associated with risk of recurrent falls.Sertel et al., 2017, Turkey149 (8.0)71.6 (8.0)BMI (normal; overweight; obese)Balance (Berg Balance (Berg Balance scale, tandem tests [left and right])BMI was not associated with balance (p = 0.06), the Rivermead Mobility Index (p = 0.07) or the TUG test (p = 0.55). Those with a higher BMI performed worse on the right (p = 0.01) and left (p = 0.01) tandem tests.Simonsick et al., 2018, USA878 (8.1), no pain72.7 (1umbopelvic)Pain (1umbopelvic)Gait speed Walking time Walking time Walking time Walking time Walking timeCompared to those without lumbopelvic pain, those with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no with risk of recurrent falls.		49.0%	Median		Assessment Scale	(95%CI) = 2.41 (1.21; 4.80), p = 0.0012] or a score
77 (IQR 68-84)77 (IQR 68-84)patients, tandem standing)associated with risk of recurrent falls. Having poor tandem stance/losing balance was associated with risk of recurrent falls [2.72 (1.57; 4.71), p = 0.004]. Using a walking aid [2.51 (1.45; 4.36), p = 0.0010], but not a wheelchair (p = 0.18) was associated with risk of recurrent falls.Sertel et al., 2017, Turkey14971.6 (8.0)BMI (normal; overweight; obese)Balance (Berg Balance scale, (left and right])BMI was not associated with balance (p = 0.06), the Rivermead Mobility Index (p = 0.01) and left (p = 0.01) tandem tests.Simonsick et al., 2018, USA878 (8.1), no pain72.7 (8.1), no painPain (lumbopelvic)Bain overweig time of the pain overweig time tandem tests (Ieft and right))Compared to those without lumbopelvic pain, those with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no uiter fain			(IQR) =		for Stroke	=<24 [5.85 (2.84; 12.02), p < 0.0001] was
Sertel et al., 2017, Turkey149 60.0%71.6 (8.0)BMI (normal; overweight; obese)BMI (normal; overweight; obese)Balance (Berg Balance scale, tandem tests (Ieft and right))BMI was not associated with risk of recurrent falls. (Multivariable logistic regression)Sertel et al., 2017, Turkey149 60.0%71.6 (8.0)BMI (normal; overweight; obese)Balance (Berg Balance scale, tandem tests (Ieft and right))BMI was not associated with balance (p = 0.06), the Rivermead Mobility Index (p = 0.01) and left (p = 0.01) tandem tests.Simonsick et al., 2018, USA878 50.8%72.7 (8.1), no painPain (Iumbopelvic)Bain overweight; obese)Compared to those without lumbopelvic pain, those with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no ability (p < 0.001) upon follow up. There were no ability (p < 0.001) upon follow up. There were no			77 (IQR		patients, tandem	associated with risk of recurrent falls. Having
Sertel et al., 2017, Turkey14971.6 (8.0)BMI (normal; overweight; obese)Balance (Berg Balance scale, tandem tests [left and right])Multivariable logistic regression; univariate logistic regression)Sertel et al., 2017, Turkey14971.6 (8.0)BMI (normal; overweight; obese)Balance (Berg Balance scale, tandem tests [left and right])BMI was not associated with balance (p = 0.06), the Rivermead Mobility Index (p = 0.01) and left (p = 0.01) tandem tests.Simonsick et al., 2018, USA87872.7 (8.1), no painPain (lumbopelvic)Compared to those without lumbopelvic pain, those with geristent pain had self-reported walking ability (p < 0.001) upon follow up. There were no of other provide to thom the provide to the provide			68-84)		standing)	poor tandem stance/losing balance was associated
Sertel et al., 2017, Turkey149 60.0%71.6 (8.0)BMI (normal; overweight; obse)Balance (Berg Balance scale, tandem tests [left and right])BMI was not associated with plance (p = 0.06), the Rivermead Mobility Index (p = 0.01) and left (p = 0.01) tandem tests.Simonsick et al., 2018, USA878 50.8%72.7 (8.1), no painPain (lumbopelvic)Bain Pain (lumbopelvic)Bain Gait speedCompared to those without lumbopelvic pain, those with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no						with risk of recurrent falls [2.72 (1.57; 4.71), p
Sertel et al., 2017, Turkey149 60.0%71.6 (8.0)BMI (normal; overweight; obese)Balance (Berg Balance scale, tandem tests [left and right])BMI was not associated with balance (p = 0.06), the Rivermead Mobility Index (p = 0.07) or the TUG test (p = 0.55). Those with a higher BMI performed worse on the right (p = 0.01) and left (p = 0.01) tandem tests.Simonsick et al., 2018, USA878 50.8%72.7 (8.1), no painPain (lumbopelvic) no painPain (lumbopelvic)Gait speed Walking time Walking timeCompared to those without lumbopelvic pain, those with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no test of the pain of th					Mobility	= 0.004]. Using a walking aid [2.51 (1.45; 4.36), p
Sertel et al., 2017, Turkey14971.6 (8.0)BMI (normal; overweight; obese)Balance (Berg Balance scale, tandem tests [left and right])BMI was not associated with balance (p = 0.06), the Rivermead Mobility Index (p = 0.01) and left (p = 0.01) tandem tests.Simonsick et al., 2018, USA87872.7 (8.1), no painPain (lumbopelvic)Pain Gait speedCompared to those without lumbopelvic pain, those with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no to fill the pain formed were noSimensick et al., 2018, USA87872.7 (8.1), no painPain (lumbopelvic)Gait speed Walking time Walking time the pain formed were no to fill the pain formed were no					assistive device	= 0.0010 j, but not a wheelchair (p = 0.18) was
Sertel et al., 2017, Turkey14971.6 (8.0)BMI (normal; overweight; obese)Balance (Berg Balance scale, tandem tests [left and right])BMI was not associated with balance (p = 0.06), the Rivermead Mobility Index (p = 0.07) or the TUG test (p = 0.01) and left (p = 0.01) tandem tests.Simonsick et al., 2018, USA87872.7 (8.1), no painPain (lumbopelvic)Gait speedCompared to those without lumbopelvic pain, those with grime ability (p < 0.001) upon follow up. There were no discrete to the top					use (wheelchair,	associated with risk of recurrent fails.
Sertel et al., 2017, Turkey14971.6 (8.0)BMI (normal; overweight; obese)Balance (Berg Balance scale, tandem tests [left and right])BMI was not associated with balance (p = 0.06), the Rivermead Mobility Index (p = 0.07) or the TUG test (p = 0.55). Those with a higher BMI performed worse on the right (p = 0.01) and left (p = 0.01) tandem tests.Simonsick et al., 2018, USA87872.7 (8.1), no painPain (lumbopelvic)Gait speedCompared to those without lumbopelvic pain, those with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no to the test pain had self-reported walking ability (p < 0.001) upon follow up. There were no test pain for the test pain fo					warking ald)	(Multivariable logistic regression, univariate
Sertel et al., 2017, Turkey14971.6 (8.0)BMI (normal; overweight; obese)Balance (Berg Balance scale, tandem tests [left and right])BMI was not associated with balance (p = 0.06), the Rivermead Mobility Index (p = 0.07) or the TUG test (p = 0.55). Those with a higher BMI performed worse on the right (p = 0.01) and left (p = 0.01) tandem tests.Simonsick et al., 2018, USA878 50.8%72.7 (8.1), no painPain (lumbopelvic)Gait speedCompared to those without lumbopelvic pain, those with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no						(Multivaliable logistic legiession, univaliate
2017, Turkey60.0%(8.0)overweight; obese)Balance scale, tandem tests [left and right])Rivermead Mobility Index (p = 0.07) or the TUG test (p = 0.55). Those with a higher BMI performed worse on the right (p = 0.01) and left (p = 0.01) tandem tests.2017, Turkey60.0%(8.0)overweight; obese)Balance scale, tandem tests [left and right])Rivermead Mobility Index (p = 0.07) or the TUG test (p = 0.01) and left (p = 0.01) tandem tests.Simonsick et al., 2018, USA87872.7 (8.1), no painPain (lumbopelvic)Gait speedCompared to those without lumbopelvic pain, those with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no	Sertel et al .	149	71 6	BMI (normal:	Balance (Berg	BMI was not associated with balance $(p = 0.06)$, the
60.0%obese)tandem tests [left and right])(p = 0.55). Those with a higher BMI performed worse on the right (p = 0.01) and left (p = 0.01) tandem tests.60.0%Nobese)tandem tests [left and right])(p = 0.55). Those with a higher BMI performed worse on the right (p = 0.01) and left (p = 0.01) tandem tests.Simonsick et al., 2018, USA878 50.8%72.7 (8.1), no painPain (lumbopelvic)Gait speedSimonsick et al., 2018, USA50.8%72.7 (8.1), no painPain (lumbopelvic)Gait speedCompared to those without lumbopelvic pain, those with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no (100)	2017, Turkev	115	(8.0)	overweight;	Balance scale,	Rivermead Mobility Index ($p = 0.07$) or the TUG test
Simonsick et al., 2018, USA878 50.8%72.7 (8.1), no painPain (lumbopelvic)Gait speed Walking time (100 continue)Compared to those without lumbopelvic pain, those with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no	, 1	60.0%		obese)	tandem tests	(p = 0.55). Those with a higher BMI performed worse
Simonsick et al., 2018, USA878 0 pain72.7 (8.1), no painPain (lumbopelvic)Pain Gait speed Walking time Compared to those without lumbopelvic pain, those with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no Distribution for the second					[left and right])	on the right $(p = 0.01)$ and left $(p = 0.01)$ tandem
Physical functioning (TUG)Physical functioning (TUG)(ANOVA)Simonsick et al., 2018, USA87872.7 (8.1), no painPain (lumbopelvic)Gait speedCompared to those without lumbopelvic pain, those with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no						tests.
Image: Simonsick et al., 2018, USA87872.7 (8.1), no painPain (lumbopelvic) no painGait speed Walking time (400 pt or 6 pt					Physical	
Simonsick et al., 2018, USA87872.7 (8.1), no painPain (lumbopelvic) no painGait speedCompared to those without lumbopelvic pain, those with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no					functioning (TUG)	(ANOVA)
Rivermead Mobility Index (RMI)Simonsick et al., 2018, USA87872.7 (8.1), no painPain (lumbopelvic)Gait speedCompared to those without lumbopelvic pain, those with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no						
Mobility Index (RMI) Mobility Index (RMI) Simonsick et al., 2018, USA 878 72.7 Pain (lumbopelvic) Gait speed Compared to those without lumbopelvic pain, those with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no					Rivermead	
Simonsick et al., 2018, USA 878 72.7 Pain (lumbopelvic) Gait speed Compared to those without lumbopelvic pain, those with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no					Mobility Index	
al., 2018, USA (8.1), (lumbopelvic) (lumbopelvic) no pain (lumbopelvic) no pain (100 model to those without lumbopelvic pain, those with persistent pain had self-reported walking ability (p < 0.001) upon follow up. There were no	Cimensial at	070	70 7	Dein	(RMI)	Companyed to these without lumbaneluis pain these
50.8% no pain Walking time ability (p < 0.001) upon follow up. There were no	SIMONSICK EL	878	/2./	Paln (lumbonoluria)	Gail Speed	with paraistant pain had solf-reported walking
watching time ability (p < 0.001) upon follow up. meter no	al., 2010, USA	50 88	(0.1),	(IUNDOPEIVIC)	Walking time	with persistent pain had self-reported walking p_{ij}
(4) (1)-meter tast (differences in lisual dait speed (n = (1.51)) or 4)		50.00	no pain		(400-meter fast	differences in usual gait speed ($n = 0.51$) or 400m
71.2 walk test) walk time $(p = 0.45)$.			71.2		walk test)	walk time ($p = 0.45$).
(8.2),			(8.2),			
mild Walking (self- (Linear models)			mild		Walking (self-	(Linear models)
pain reported			pain		reported	
capabilities					capabilities	
69.4 walking 1/4 of a			69.4		walking $1/4$ of a	
(7.2), mile and 1 mile			(7.2),		mile and 1 mile	
severe [scored 0-9])			severe		[scored 0-9])	
pain 72. A state of the state o		600	pain			
Thakral et 680 /8.0 Joint Gait speed Multisite muscle stiffness was associated with a	Thakral et	680	78.0	Joint	Gait speed	Multisite muscle stiffness was associated with a
al., 2014, USA (NK) Stillness (assessed using greater risk of developing new or worsening	ai., 2014, USA	C2 0°	(NK)	STITINESS	(assessed using	greater risk of developing new or worsening
(100) $(100$		03.08			LILE SFED)	$\begin{array}{c} \text{(y)} = 1.04 (1.01; \\ 2.67) \\ \end{array}$

				Physical function (SPPB, chair stands) Balance (assessed using the SPPB) Mobility limitations (difficulty walking 1/4 mile or climbing stairs without help)	<pre>composite SPPB score (p = 0.09) or chair stands (p = 0.51), however, those with stiffness had slower gait speeds (p = 0.05) and worse balance (p = 0.01). (Generalized linear models and longitudinal models)</pre>
Thrane et al., 2007, Norway	974 57.5%	77.5 (2.3)	History of falls	Physical functioning (TUG) Mobility limitations (number of health-related mobility problems [problems with indoor mobility, outdoor mobility, social activities, using public transport and shopping])	The odds ratios for fallers being in the upper quartile of TUG test times were 2.1 (95%CI 1.4; 3.3) in men and 1.0 (95%CI 0.7;1.4) in women. Among men, history of falls was related to number of health-related mobility problems [OR (95%CI) = 1.3 (1.1; 1.7)]. Among men, history of falls was also associated with health-related mobility problems [1.2 (1.0; 1.3)]. (Logistic regression)
Viljanen et al., 2009, Finland	434	68.0 (3.2), good hearing 69.5 (3.5), poor hearing	Hearing	Gait speed (maximal) Walking distance (6MWT) Walking (capabilities walking 2km without rest)	Those with good hearing had similar max gait speed than those with poor hearing (1.8 (0.3) vs 1.7 (0.3), $p = 0.07$) and were less likely to have major difficulties walking 2km ($p = 0.02$). Walking endurance (via 6MWT) was not associated with hearing ($p = 0.06$). During the follow-up, new major difficulties in walking 2 km developed for 33 participants: 19 (12.5%) of participants with and 14 (6.0%) without hearing impairment ($p = 0.04$). (Wald tests)

Zhou et al.,	1290	68.2	History of	Balance	Walking aid use [IRR (95%CI) = 2.29 (1.12; 4.69), p
2018, China		(6.5)	falls	(composite of	= 0.02] and impaired balance [1.05 (1.00; 1.10), p
	57.4%			static balance,	= 0.04] were associated with the number of falls
				postural control	over the past 12 months.
				ability, and	
				dynamic balance	(Multivariate negative binomial regression)
				tests)	
				Mobility	
				assistive device	
				use (walking	
				aids)	

Notes:

AMD - Age-related Macular Degeneration; ANOVA - Analysis of Variance; BMI - Body Mass Index; CLBP - Chronic Low Back Pain; COPD - Chronic Obstructive Pulmonary Disease; CV - Coefficient of Variation; ESWT - Endurance Shuttle Walk Test; EQ- 5D- 3L - EuroQoL-Five-Dimension Scale-Mobility Domain (3 Level version); FEV - Forced Expiratory Volume; FSST - Four Square Step Test; FVC - Force Vital Capacity; HR - Hazard Ratio; IRR - Incident Rate Ratio; ISWT - Incremental Shuttle Walk Test; LLFDI - Late Life Function and Disability Instrument; LSA - Life Space Assessment; MANOVA - Multivariate Analysis of Variance; OA - Osteoarthritis; OR - Odds Ratio; r - Correlation Coefficient; RV - Residual Volume; SD - Standard Deviation; SE - Standard Error; SPPB - Short Physical Performance Battery; SWT - Shuttle Walk Test; TLC - Total Lung Volume; TUG - Time Up and Go Test; UK - United Kingdom; USA - United Stated of America; VO2 - the amount of oxygen your body uses; 5MWT - Five-Minute Walk Test; 5STS - Five Sit-to-Stand Test; 6MWT - Six-Minute Walk Test; 10MWT - 10Meter Walk Test; 95%Cl - 95% Confidence Interval.

Findings were copied verbatim from each manuscript.

Result highlighted in gray indicates no significant association between physical factor(s) and mobility outcome.

Appendix 6A - Feedback Summaries and Steering Committee Decision Notes

A. ROUND 2 SUMMARY FEEDBACK

Dear Dr... (name of the participants).

Thank you for participating in the Round 1 of this modified e-Delphi survey that aims to prioritize and reach consensus on the factors for each mobility determinant [cognitive, financial, environmental, personal, physical, psychological, social] that are critical to assess as part of the Comprehensive Mobility Discharge Assessment Framework (CMDAF) when older adults are discharged from hospital-to-home.

We look forward to your participation in Round 2.

Summary of Round 1

- 16 out of 84 factors reached consensus in Round 1, thus you will not be rating these 16 factors in Round 2.
- Experts suggested 28 additional factors.
- The Steering Committee, comprised of an older adult, a family caregiver, and investigators with research and clinical background in physiotherapy, gerontology, occupational therapy, nursing met and discussed the additional factors.
- After extensive discussion and careful consideration:
 - o The following additional factors have been included in Round 2:
 - governmental/institutional support
 - discharge goals and expectations
 - history of recent readmission to hospital
 - ability to walk 400m or a city block
 - ability to dual-task
 - ability to climb stairs/steps
 - baseline physical function before admission
 - One physical factor frequency of exercise or physical activity has been modified to include current and previous physical activity levels across the life course in Round 2.

The table A below provides an overview of the suggested factors that were not included in Round 2 and a brief explanation(s). You have the opportunity to respond to the explanation(s) and the decisions at the end of the Round 2 survey.

Table A: Suggested factors and Steering Committee explanations for not adding in Round 2

Determinants	Suggested factor	Explanation(s) for not adding the suggested factor in Round 2.					
Cognitive	Functional cognition	Elements of Functional Cognition are captured within the					
factors		"Executive Function" factor, defined as a set of mental skills					
	Definition - "The ability to use	that allow people to plan, decide, find solutions to problems, and					
	and integrate thinking and performance skills to accomplish	control themselves from acting without thinking.					
	<pre>complex everyday activities" (Giles et al., 2017, p. 1)</pre>	It is understood that Executive Function as "the conductor of all cognitive skills" allows a person to do all types of daily and life tasks.					
Environmental factors	 Social amenities available to the patient Nature and design of the home - 	 Social amenities available to the patient are captured within the "access to recreational facilities and access to destination" factors. 					
	staircase, ramps, and railsSecurity situation around the neighborhood	• Access to recreational facilities is defined as how many communities fitness or recreation centers are close by, how much does it cost to attend, and how easy it is to get there, for example, how far it is to walk, take public transit, or drive					
		• Access to destination is defined as: how many shops, services, senior centers are close by, how much does it cost to attend the senior centers, how easy it is to get there, and how far it is to walk, take public transit, or drive					
		• Nature and design of home are captured in the "discharge living environment" factor, defined as what kind of house is the person discharged to and could be home, apartment, retirement home, and this includes the arrangement and design. <u>Discharge</u> <u>living environment reached consensus in Round 1.</u>					
		• Security situations around the neighborhood are captured in the "neighborhood crime safety" factor, defined as how safe is the community based on the number of people around and how unfriendly people are.					
Psychological factors	• Insight - Do they understand the risk (I believe risk associated with discharge)	• Insight is linked to various cognitive factors (e.g., executive functioning or global cognition) or psychological factors (e.g., fear of falling or re-injury). Clinicians can develop an					

	•	Spiritual well being	•	understanding of patients' insight during conversations, assessment and treatment sessions (clinician and patient interactions) of generic insight as it relates to the risk of discharge, as well as through assessment of cognitive and psychological factors. Spiritual well-being is important to the overall health and
				well-being of the older adult, but the critical relationship to mobility/discharge is not clear.
Social factor	•	Autonomy - can they make decisions for themselves (This may have been captured in social factors, interdependency, etc.)	•	Autonomy e.g., possession of freedom of choice, perception of independence is related to "Self-Efficacy", defined as the belief someone has in carrying out and completing a task. Self-efficicay is a core personal resource for the perception of autonomy. The Self-efficacy factor has reached a consensus in Round 1.
Physical	•	Heart conditions	٠	Heart conditions are captured under the "number and type of
factors	•	Access to a personal motor		chronic conditions" factor
		battery-powered wheelchair	•	Access to a personal motor vehicle is captured under the <u>"use</u> of mobility aid" factor, which has reached a consensus.
	•	Presence of disabilities and/or deformities challenging movement	•	Presence of disabilities and/or deformities challenging
	•	Ability to get to the bathroom		"hearing and visual impairment."
		independently	•	Ability to get to the bathroom independently and independence
		activities of daily living		in personal activities of daily living are captured in the "self-care activities of daily living" factor, which has
				reached a consensus in Round 1.

Instructions for Round 2.

- Your rating in Round 1 is highlighted in yellow for each factor, and the percentage of people rating is shown above each row. This information is provided for each factor within each determinant.
- You will re-rate factors from Round 1 and will rate additional included suggested factors within each determinant.
- For each factor, rate the factors that are critical to assess as a part of a CMDAF when older adults are discharged from hospital to home using a 9-point Scale: Not Important (1 3), Important but Not Critical (4 6), and Critical (7 9); with the option of selecting "unable to score."
- You will also provide your rationale(s) for your re-ratings factors within each determinant in the open-ended comment section(s).

This Round will be open for three weeks, and it will take approximately 30 mins to complete. However, you can save and return to complete the survey.

B. ROUND 3 SUMMARY FEEDBACK

Dear [name of the participants]

Thank you for participating in the Round 2 of this modified e-Delphi survey that aims to prioritize and reach consensus on the factors for each mobility determinant [cognitive, financial, environmental, personal, physical, psychological, social] that are critical to assess as part of the **C**omprehensive **M**obility **D**ischarge **A**ssessment **F**ramework (CMDAF) when older adults are discharged from hospital-to-home.

We look forward to your participation in Round 3.

Summary of Round 2

- 20 out of 75 factors reached consensus in Round 2 thus you will not be rating these 20 factors in Round 3.
- The Steering Committee, comprised of an older adult, a family caregiver, and investigators with research and clinical background in physiotherapy, gerontology, occupational therapy, nursing met and discussed factors that have reached consensus and those that have not.

Instructions for Round 3.

- Your rating in Round 2 is highlighted in yellow for each factor, and the percentage of people rating is shown above each row. This information is provided for each factor within each determinant.
- You will re-rate factors from Round 2.
- For each factor, rate the factors that are critical to assess as a part of a CMDAF when older adults are discharged from hospital to home using a 9-point Scale: Not Important (1 3), Important but Not Critical (4 6), and Critical (7 9); with the option of selecting "unable to score."
- You will also provide your rationale(s) for your re-ratings factors within each determinant in the open-ended comment section(s).

This Round will be open **for three weeks**, and it will take approximately 30 mins to complete. However, you can save and return to complete the survey.

Thank you for taking the time to complete the survey.

C. FINAL STEERING COMMITTEE MEETING SUMMARY

Dear [Name of the panel member]

Thank you for participating in the Round 3 of this modified e-Delphi survey that aims to prioritize and reach consensus on the factors for each mobility determinant [cognitive, financial, environmental,

personal, physical, psychological, social] that are critical to assess as part of

the **C**omprehensive **M**obility **D**ischarge **A**ssessment **F**ramework (CMDAF) when older adults are discharged from hospital-to-home.

Summary of Round 3 and Steering Committee Meeting Summary

- 5 out of 55 factors re-rated in Round 3 reached consensus
- A total of 41 out of 91 factors reached consensus at the end of Round 3.
- The Steering Committee Members (SCM) discussed 13 factors that reached consensus in at least one of the stakeholders' groups. Table B below shows the factors, their definitions and the stakeholders' group in which the factors reached a consensus.

Factors	Definitions	Stakeholders group in which the factor reached a consensus
Environmental factors (n=6)		
Crime related safety	How safe is the community based on the number of people around and how	Older adults and
	unfriendly people are	caregivers
Access to rest areas	How many rest areas such as benches, or public washrooms are there in	Older adults and
	the community, and how much does it cost to use	researchers
Access to recreational	How many community fitness or recreation centers are close by, how much	Older adults
facilities	does it cost to attend, and how easy it is to get there (how far it is	
	to walk, take public transit, or drive)	

Table B: 13 factors that reached consensus in at least one of the stakeholders' groups

Weather	Refers to temperatures, seasons (e.g summer/winter conditions), and others (e.g., wind, fog, rain)	Older adults
Government or institutional support	Government or institutional support system entails services that provide benefits, structured programs and operations with systems at local, regional or national, or international levels governed and regulated by policies ensuring older adults' mobility in the community	Clinicians
Social capital	The connections, shared values and understandings in society that enable people to trust each other and work together	Caregivers
Personal factors (n=1)		
Smoking and Alcohol consumption		Caregivers and clinicians
Physical factors (n=5)		
Ability to walk 400m or city block		Older adults
Ability to dual task	The ability to perform two tasks at the same time, for instance walking and having a conversation	Older adults
Range of motion	The ability of a joint to move in the expected directions	Caregivers and clinicians
Proprioception	The ability to sense the body in space, where it is located, and the movement of the body	Clinicians
Current and previous physical activity level across life course	Physical activity levels at younger ages and at old age	Clinicians
Psychological factors (n=1)		-
Anxiety	A feeling that causes people to worry and can cause their heart rate to increase or make them breathe faster.	Researchers

• See Table C for SCM comments and decisions regarding whether to include or exclude each factor,

Table C: 13 factors that reached consensus in at least one of the stakeholders' groups

Factors	Steering Committee Comments	Decision
Environmental factors (n	n=6)	
Crime related safety	• This factor could be important and "not critical" for clinicians and researchers because it is beyond their control during discharge. For instance, clinicians & researchers may be thinking about how they can solve this issue, even if it was noted as a critical factor to assess as part of a comprehensive mobility discharge assessment framework when discharging older adults' homes.	Consider
	 Older adults and caregivers stated that it was critical for them because they are the ones that experienced it. 	
Access to rest areas	• SCM believes that this is critical for outdoor mobility; however, it may not be critical to assess during hospital discharge amidst other competing demands of the discharge process.	Consider
	• It is critical for older adults because they may want to use the washroom or rest on a bench during walks after discharge from the hospital.	
	• Safety, as mentioned above, can be related to access to rest areas. If older adults feel unsafe walking around in the community, they will not even think of rest areas around the neighbourhood. Even if an older adult decides to walk, they may not feel safe resting while walking.	
Access to recreational facilities	• All SCM believe that this might be important but not critical to assess.	Consider
	 Older adults discharged from the hospitals are often fragile and have limited functional mobility. Therefore, clinicians, 	

	researchers and family caregivers rated it important but not critical.	
	 However, older adults believed it is critical for clinicians to assess this during discharge 	
Weather	• We do not have any power over the weather.	Do not include
	• SCM agree that weather is also linked to accessibility and safety. Older adults could walk indoors even if there is bad weather. There are walking programs in shopping malls during winter seasons but do older adults have access via transportation or subsidized rate to get to the shopping malls. Moreover, older adults have more pressing needs upon discharge when compared to how weather affects their mobility.	
Government or institutional support	• Should clinicians ask if government support (e.g., subsidized transport rate or home care) is available to enhance mobility upon discharge? Yes, however, it may be important but not critical during discharge.	Include
	 This factor is also linked to accessibility. 	
Social capital	 This factor is also linked to safety if we can trust each other in the community. 	Do not include
Personal factors (n=1)		-
Smoking and Alcohol consumption	 It is critical to talk about it but maybe not during discharge. It is generally a grey area. 	Do not include
	• It can easily be assessed if the person admitted often goes for a smoke.	
	 Personal factors are very individual and can vary from person to person. 	
	• The family caregivers and clinicians agreed it is critical to assess. Maybe they rated based on the safety of the older adults. However, the older adults themselves disagree with evaluating smoking and alcohol behaviour consumption as part of a comprehensive discharge assessment framework for older adults during hospital-to-home discharge.	

Physical factors (n=5)		
Ability to walk 400m or city block	• Not critical, maybe important for community mobility	Do not include
Ability to dual task	 May provide an insight on performance after acute illness state, but not critical during discharge 	Do not include
Range of motion	 This factor is not critical to assess as part of the comprehensive mobility discharge assessment framework because older adults can function with a limited range of motion. For instance, an older adult can use a walker to get around if his hip joint is restricted. Can we delay discharge if a range of motion is restricted? Maybe in some joints, range of motion could be important during discharge but may not be critical. 	Do not include
Proprioception	• There was no discussion, SCM unanimously agree that it is not critical.	Do not include
Current and previous physical activity level across life course	• It is important during discharge but not critical. It is more predictive or explanatory, as previous physical activity levels can predict mobility recovery if limited during discharge.	Do not include
Psychological factors (n=1)		
Anxiety	 There was no discussion, SCM unanimously agree that it is not critical. 	Do not include

• New emerging factor category

The SCM agreed that factors such as crime-related safety, access to rest areas, and recreational facilities should be considered to be include in the CMDAF. After several deliberation, and to give voice to the older adults, the SCM agreed that these three factors can be merged and called "<u>Safety, accessibility and</u> <u>availability.</u>"

• Conclusion

We added two environmental factors: "<u>Safety, Accessibility and Availability"</u> and "<u>Governmental and</u> <u>Institutional Support system</u>" in the final list of factors to be assessed as part of a comprehensive mobility discharge assessment framework when older adults are being discharged home from the hospital. We have a total of 43 factors at the end of the consensus and Steering Committee Meetings. Appendix 6B - The 91 factors, their definitions and rating per round.

Definition of mobility factors

Name	Plain definition	Domain Name
	The ability to focus on something	
Attention	while ignoring other things	Cognitive determinant factors
	A set of mental skills that allows	
	people to plan, decide, find	
	solutions to problems, and control	
	themselves from acting without	
Executive function	thinking	Cognitive determinant factors
	Refers to sound, signs, symbols	
	and gestures that can be used to	
	communicate ideas, thoughts and	
	emotions from one person to	
Language	another	Cognitive determinant factors
	The ability to remember things	
Memory	about past events or knowledge	Cognitive determinant factors
	How people understand what they	
	see and how it relates to where	
	they are, for example, using a map	
	to get from one place to another,	
	walking through doorways rather	
	than bumping into the door frames,	
	judging how far away a car is and	
Visuospatial function	how fast it is moving	Cognitive determinant factors
	The time needed to take in	
	information, make sense of it and	
Processing speed	begin to respond	Cognitive determinant factors
	Refers to the way people think,	
	judge, learn, understand,	
Global cognition	remember, and see things	Cognitive determinant factors

	How streets look, how well the	
	streets are connected to one	
	another and where the streetlights	
Street characteristics	are located	Environmental determinant factors
	What kind of house is the person	
Discharge environment (living	discharged to, and could be home,	
environment)	appartment, retirement home	Environmental determinant factors
	The number of people, houses,	
	public parks in an area, and the	
Residential characteristics	location of houses	Environmental determinant factors
	How land is used within a	
	community, for example how much	
	land is used for homes, shops, and	
Land use mix	offices	Environmental determinant factors
	How the sidewalks look, for	
	example, are there any cracks or	
	bumps; how big the sidewalks are,	
	how close the sidewalks are to the	
Sidewalk characteristics	road	Environmental determinant factors
	How safe is the community based on	
	the number of people around and	
Crime-related safety	how unfriendly people are	Environmental determinant factors
	How safe it is to cross the roads	
	in the community, based on	
	crosswalks, stop signs, stoplights	
	and the timing of stoplights, and	
Traffic-related safety	the speed limit for cars	Environmental determinant factors
	How many community fitness or	
	recreation centers are close by,	
	how much does it cost to attend,	
	and how easy it is to get there,	
	for example how far it is to walk,	
Access to recreational facilities	take public transit, or drive	Environmental determinant factors
	How many shops, services, senior	
	centers are close by, how much	
	does it cost to attend the senior	
	centers, how easy it is to get	
	there, and how far it is to walk,	
Access to destinations	take public transit, or drive	Environmental determinant factors

	How many rest areas such as	
	benches, or public washrooms are	
	there in the community, and how	
Access to rest areas	much does it cost to use	Environmental determinant factors
	How easy it is to take public	
	transit, including how many	
	routes, how far away bus stops are	
Access to public transit	and the cost of a ticket	Environmental determinant factors
	Refers to temperatures, seasons	
	(e.g summer/winter conditions),	
Weather	and others (e.g., wind, fog, rain)	Environmental determinant factors
	Refers to green open areas, water,	
	trees, flowers and trails in the	
Natural scenery	community	Environmental determinant factors
	Refers to air quality (air	
Environmental quality	pollution)	Environmental determinant factors
	The number of people and the	
	amount of interaction between	
Social factors	people in the community	Environmental determinant factors
	How people feel about older people	
	in our community and actions	
Social attitude	towards them	Environmental determinant factors
	The connections, shared values and	
	understandings in society that	
	enable people to trust each other	
Social capital	and work together	Environmental determinant factors
	How strong relationships are in	
	the community that encourage	
	people to provide help and support	
	to each other, for example, if	
	someone returns a lost item or	
Social cohesion	gives a stranger directions	Environmental determinant factors
	Entails services that provide	
	benefits, structured programs and	
	operations with systems at local,	
	regional or national, or	
	international levels governed and	
	regulated by policies ensuring	
Government and Institutional	older adults' mobility in the	
support	community	Environmental determinant factors

	The total amount of money a person	
	receives from all sources (e.g	
	work salary, government benefits,	
Personal income	investments)	Financial determinant factors
	The total amount of money all	
	people who are related and	
	unrelated, who are 16 years or	
	older, living in the same house	
Household income	receive	Financial determinant factors
	The total amount of money all	
	people who are related by birth,	
	marriage or adoption, who are 16	
	years or older, living in the same	
Family income	house receive	Financial determinant factors
Age		Personal determinant factors
	Societal norms and expectations	
	for how society thinks men and	
	women should act and what they	
Gender	should do	Personal determinant factors
	The sex (male or female) at birth	
Sex	and on your birth certificate	Personal determinant factors
	The way of life of groups of	
	people including their customs,	
Culture	activities, beliefs, and values	Personal determinant factors
	How a group of people identify	
	based on their family origins and	
	their culture and cultural	
	traditions such as Arab, French,	
Ethnicity	Caribbean, African	Personal determinant factors
	How a group of people identify	
	based on their skin colour, facial	
	shape and hair (e.g.,	
Race	White/Caucasian, Brown, Black)	Personal determinant factors
Educational level		Personal determinant factors
Occupation		Personal determinant factors
Marital status		Personal determinant factors
Religion		Personal determinant factors
History of recent readmission to		
hospital		Personal determinant factors
Smoking and alcohol consumption		Personal determinant factors

	The amount of tension a muscle	
	develops to move or lift an	
	object, for example. How strong or	
Muscle strength	weak a muscle is.	Physical determinant factors
	How fast the muscle can work, for	
	example how fast can we stand up	
	and sit down within a small	
Muscle power	timeframe	Physical determinant factors
Muscle endurance	How long a muscle can work	Physical determinant factors
	How the muscles work together to	
Muscle coordination	move	Physical determinant factors
	The ability of a joint to move in	
Range of motion	all its directions	Physical determinant factors
	A description of how much of the	
Body composition	body is muscle or fat	Physical determinant factors
	The ability to sense the body in	
	space, where it is located, the	
Proprioception	movement of the body	Physical determinant factors
	The ability to feel touch, pain,	
Sensation	temperature, vibration	Physical determinant factors
Pain		Physical determinant factors
History of falls		Physical determinant factors
Balance		Physical determinant factors
Fatigue	Always feeling tired	Physical determinant factors
Vision		Physical determinant factors
	The number and type of chronic	
Number and type of of	conditions (e.g., high blood	
comorbidities	pressure, diabetes, arthritis)	Physical determinant factors
	The time it takes to walk a	
Gait speed	distance	Physical determinant factors
	The lungs and tissues that help	
Respiratory system	people breathe, and how we breath	Physical determinant factors
Speech impairment	Cannot speak	Physical determinant factors
Hearing		Physical determinant factors
Dizziness	a feeling of faint	Physical determinant factors
Frequency of exercise/physical		
activity		Physical determinant factors
	Refers to bathing, dressing and	
Self care activities of daily	undressing, feeding self, using	
living	the toilet, and taking medication	Physical determinant factors

	Things you do everyday to take	
	care of vourself and vour home,	
	and they include managing finances	
	(paving bills), driving or	
	nlanning other means of transport	
Instrumental activities of daily	or do grocory sharping and propare	
listing	food	Dhuaiaal datarminant factors
		Physical determinant lactors
	People who are frail usually have	
	3 out of the following five	
	symptoms: muscle loss, weakness a	
	feeling of fatigue, slow walking	
	speed, and low levels of physical	
Frailty	activity.	Physical determinant factors
Baseline physical function before		
admission		Physical determinant factors
Ability to climb stairs		Physical determinant factors
	Performing two or more task while	
Ability to dual task	walking	Physical determinant factors
Ability to walk 400m or a city		
block		Physical determinant factors
	The mobility assistive devices	
	included scooter, powered and	
	manual wheelchairs, walking aids	
Use of mobility aid	(cane, walker, crutches).	Physical determinant factors
_	A feeling of sadness and loss of	1
	interest, which stops someone from	
Depression	doing normal activities	Psychological determinant factors
Depression	The belief comeene have in the	isychological decentinant factors
	shilition to community and	
	abilities to carry out and	Developering 1 determinent forten
Sell ellicacy	compiete a task.	Psychological determinant lactors
	The reasons people act or behave	
Motivation	in a specific way	Psychological determinant factors
	Worrying about falling so much	
	that the person do not take part	
Fear of fall	in activities	Psychological determinant factors
	The state of being mentally	
Emotional well being	healthy and happy	Psychological determinant factors
	How people view themselves as	
	being tired, that affects how they	
Self perceived fatigue	function.	Psychological determinant factors

	A feeling that causes people to	
	worry and can cause their heart	
	rate to increase or make them	
Anxiety	breathe faster	Psychological determinant factors
	The lack of interest in in life	
	activities or interactions with	
Apathy	others	Psychological determinant factors
Fear of reinjury		Psychological determinant factors
	How people feel and can be from	
Affect	good to bad	Psychological determinant factors
	Personal feature that makes people	
	more likely to be with people than	
Extraversion	be by ourselves	Psychological determinant factors
	Personal feature that makes people	
	more likely to be open to new	
Openness	things	Psychological determinant factors
	Personal feature that makes people	
Agreeableness	more likely to agree with others.	Psychological determinant factors
	Personal feature that makes people	
Neuroticism	more likely to get angry easily	Psychological determinant factors
	Personal feature that makes people	
	more likely to be organized,	
Conscientiousness	responsible, and hardworking	Psychological determinant factors
	Things someone hopes to achieve or	
	desire to happen following	
Discharge goals and expectations	discharge	Psychological determinant factors
	living alone or living with	
	someone, for example rommates,	
Living situation	family members, or spouse/partner	Social determinant factors
	An unpleasant feeling associated	
	with having few or no friends or	
Loneliness (emotional and social	having lost connections with	
loneliness)	people, places, or things or when	Social determinant factors
	The feeling people have when they	
Social isolation	do not have contact with others	Social determinant factors
	Activities that allow people to	
	connect with others in the	
Social participation	community.	Social determinant factors
Social network (quality and	The type and number of social	
quantity)	relationships that people have	Social determinant factors

	The help, comfort, concern and	
	care people receive from family	
	and friends to handle problems	
Social support	better	Social determinant factors
Name	Plain definition	DomainName
	The ability to focus on something	
Attention	while ignoring other things	Cognitive determinant factors
	A set of mental skills that allows	
	people to plan, decide, find	
	solutions to problems, and control	
	themselves from acting without	
Executive function	thinking	Cognitive determinant factors
	Refers to sound, signs, symbols	-
	and gestures that can be used to	
	communicate ideas, thoughts and	
	emotions from one person to	
Language	another	Cognitive determinant factors
	The ability to remember things	
Memory	about past events or knowledge	Cognitive determinant factors
	How people understand what they	
	see and how it relates to where	
	they are, for example, using a map	
	to get from one place to another,	
	walking through doorways rather	
	than bumping into the door frames,	
	judging how far away a car is and	
Visuospatial function	how fast it is moving	Cognitive determinant factors
	The time needed to take in	
	information, make sense of it and	
Processing speed	begin to respond	Cognitive determinant factors
	Refers to the way people think,	
	judge, learn, understand,	
Global cognition	remember, and see things	Cognitive determinant factors
	How streets look, how well the	
	streets are connected to one	
	another and where the streetlights	
Street characteristics	are located	Environmental determinant factors
	What kind of house is the person	
Discharge environment (living	discharged to, and could be home,	
environment)	appartment, retirement home	Environmental determinant factors

	The number of people, houses,	
	public parks in an area, and the	
Residential characteristics	location of houses	Environmental determinant factors
	How land is used within a	
	community, for example how much	
	land is used for homes, shops, and	
Land use mix	offices	Environmental determinant factors
	How the sidewalks look, for	
	example, are there any cracks or	
	bumps; how big the sidewalks are,	
	how close the sidewalks are to the	
Sidewalk characteristics	road	Environmental determinant factors
	How safe is the community based on	
	the number of people around and	
Crime-related safety	how unfriendly people are	Environmental determinant factors
	How safe it is to cross the roads	
	in the community, based on	
	crosswalks, stop signs, stoplights	
	and the timing of stoplights, and	
Traffic-related safety	the speed limit for cars	Environmental determinant factors
	How many community fitness or	
	recreation centers are close by,	
	how much does it cost to attend,	
	and how easy it is to get there,	
	for example how far it is to walk,	
Access to recreational facilities	take public transit, or drive	Environmental determinant factors
	How many shops, services, senior	
	centers are close by, how much	
	does it cost to attend the senior	
	centers, how easy it is to get	
	there, and how far it is to walk,	
Access to destinations	take public transit, or drive	Environmental determinant factors
	How many rest areas such as	
	benches, or public washrooms are	
	there in the community, and how	
Access to rest areas	much does it cost to use	Environmental determinant factors
	How easy it is to take public	
	transit, including how many	
	routes, how far away bus stops are	
Access to public transit	and the cost of a ticket	Environmental determinant factors

	Refers to temperatures, seasons	
	(e.g summer/winter conditions),	
Weather	and others (e.g., wind, fog, rain)	Environmental determinant factors
	Refers to green open areas, water,	
	trees, flowers and trails in the	
Natural scenery	community	Environmental determinant factors
	Refers to air quality (air	
Environmental quality	pollution)	Environmental determinant factors
	The number of people and the	
	amount of interaction between	
Social factors	people in the community	Environmental determinant factors
	How people feel about older people	
	in our community and actions	
Social attitude	towards them	Environmental determinant factors
	The connections, shared values and	
	understandings in society that	
	enable people to trust each other	
Social capital	and work together	Environmental determinant factors
	How strong relationships are in	
	the community that encourage	
	people to provide help and support	
	to each other, for example, if	
	someone returns a lost item or	
Social cohesion	gives a stranger directions	Environmental determinant factors
	Entails services that provide	
	benefits, structured programs and	
	operations with systems at local,	
	regional or national, or	
	international levels governed and	
	regulated by policies ensuring	
Government and Institutional	older adults' mobility in the	
support	community	Environmental determinant factors
	The total amount of money a person	
	receives from all sources (e.g	
	work salary, government benefits,	
Personal income	investments)	Financial determinant factors
	The total amount of money all	
	people who are related and	
Household income	unrelated, who are 16 years or	Financial determinant factors

	older, living in the same house	
	receive	
	The total amount of money all	
	people who are related by birth,	
	marriage or adoption, who are 16	
	years or older, living in the same	
Family income	house receive	Financial determinant factors
Age		Personal determinant factors
	Societal norms and expectations	
	for how society thinks men and	
	women should act and what they	
Gender	should do	Personal determinant factors
	The sex (male or female) at birth	
Sex	and on your birth certificate	Personal determinant factors
	The way of life of groups of	
	people including their customs,	
Culture	activities, beliefs, and values	Personal determinant factors
	How a group of people identify	
	based on their family origins and	
	their culture and cultural	
	traditions such as Arab. French.	
Ethnicity	Caribbean, African	Personal determinant factors
	How a group of people identify	
	based on their skin colour, facial	
	shape and hair (e.g.,	
Race	White/Caucasian, Brown, Black)	Personal determinant factors
Educational level	······································	Personal determinant factors
Occupation		Personal determinant factors
Marital status		Personal determinant factors
Religion		Personal determinant factors
History of recent readmission to		
hospital		Personal determinant factors
Smoking and alcohol consumption		Personal determinant factors
	The amount of tension a muscle	
	develops to move or lift an	
	object, for example How strong or	
Muscle strength	weak a muscle is	Physical determinant factors
	How fast the muscle can work for	mysicar accomminant factors
Muscle nower	evample how fast can we stand up	Physical determinant factors
Luracte hower	levambre now rase can we scand ub	INVELOAT GECETIMINANC TACCOIS

	and sit down within a small							
	timeframe							
Muscle endurance	How long a muscle can work	Physical determinant factors						
	How the muscles work together to							
Muscle coordination	move	Physical determinant factors						
	The ability of a joint to move in							
Range of motion	all its directions	Physical determinant factors						
	A description of how much of the							
Body composition	body is muscle or fat	Physical determinant factors						
	The ability to sense the body in							
	space, where it is located, the							
Proprioception	movement of the body	Physical determinant factors						
	The ability to feel touch, pain,							
Sensation	temperature, vibration	Physical determinant factors						
Pain		Physical determinant factors						
History of falls		Physical determinant factors						
Balance		Physical determinant factors						
Fatigue	Always feeling tired	Physical determinant factors						
Vision		Physical determinant factors						
	The number and type of chronic							
Number and type of of	conditions (e.g., high blood							
comorbidities	pressure, diabetes, arthritis)	Physical determinant factors						
	The time it takes to walk a							
Gait speed	distance	Physical determinant factors						
	The lungs and tissues that help							
Respiratory system	people breathe, and how we breath	Physical determinant factors						
Speech impairment	Cannot speak	Physical determinant factors						
Hearing		Physical determinant factors						
Dizziness	a feeling of faint	Physical determinant factors						
Frequency of exercise/physical								
activity		Physical determinant factors						
	Refers to bathing, dressing and							
Self care activities of daily	undressing, feeding self, using							
living	the toilet, and taking medication	Physical determinant factors						
	Things you do everyday to take							
	care of yourself and your home,							
	and they include managing finances							
Instrumental activities of daily	ly (paying bills), driving or							
living	planning other means of transport	Physical determinant factors						

	or do grocery shopping and prepare	
	food	
	People who are frail usually have	
	3 out of the following five	
	symptoms: muscle loss, weakness a	
	feeling of fatigue, slow walking	
	speed, and low levels of physical	
Frailty	activity.	Physical determinant factors
Baseline physical function before		
admission		Physical determinant factors
Ability to climb stairs		Physical determinant factors
	Performing two or more task while	
Ability to dual task	walking	Physical determinant factors
Ability to walk 400m or a city		
block		Physical determinant factors
	The mobility assistive devices	
	included scooter, powered and	
	manual wheelchairs, walking aids	
Use of mobility aid	(cane, walker, crutches).	Physical determinant factors
	A feeling of sadness and loss of	
	interest, which stops someone from	
Depression	doing normal activities	Psychological determinant factors
	The belief someone have in the	
	abilities to carry out and	
Self efficacy	complete a task.	Psychological determinant factors
	The reasons people act or behave	
Motivation	in a specific way	Psychological determinant factors
	Worrying about falling so much	
	that the person do not take part	
Fear of fall	in activities	Psychological determinant factors
	The state of being mentally	
Emotional well being	healthy and happy	Psychological determinant factors
	How people view themselves as	
	being tired, that affects how they	
Self perceived fatigue	function.	Psychological determinant factors
	A feeling that causes people to	
	worry and can cause their heart	
	rate to increase or make them	
Anxiety	breathe faster	Psychological determinant factors

	The lack of interest in in life	
	activities or interactions with	
Apathy	others	Psychological determinant factors
Fear of reinjury		Psychological determinant factors
	How people feel and can be from	
Affect	good to bad	Psychological determinant factors
	Personal feature that makes people	
	more likely to be with people than	
Extraversion	be by ourselves	Psychological determinant factors
	Personal feature that makes people	
	more likely to be open to new	
Openness	things	Psychological determinant factors
	Personal feature that makes people	
Agreeableness	more likely to agree with others.	Psychological determinant factors
	Personal feature that makes people	
Neuroticism	more likely to get angry easily	Psychological determinant factors
	Personal feature that makes people	
	more likely to be organized,	
Conscientiousness	responsible, and hardworking	Psychological determinant factors
	Things someone hopes to achieve or	
	desire to happen following	
Discharge goals and expectations	discharge	Psychological determinant factors
	living alone or living with	
	someone, for example rommates,	
Living situation	family members, or spouse/partner	Social determinant factors
	An unpleasant feeling associated	
	with having few or no friends or	
Loneliness (emotional and social	having lost connections with	
loneliness)	people, places, or things or when	Social determinant factors
	The feeling people have when they	
Social isolation	do not have contact with others	Social determinant factors
	Activities that allow people to	
	connect with others in the	
Social participation	community.	Social determinant factors
Social network (quality and	The type and number of social	
quantity)	relationships that people have	Social determinant factors
	The help, comfort, concern and	
	care people receive from family	
	and friends to handle problems	
Social support	better	Social determinant factors

Ph.D. Thesis M. Kalu, McMaster University - School of Rehabilitation Science

Round 1 Ratings

-	All Experts (n=60/78)				Older Adults (n= 7/9) Caregivers (n=		n=9/11) Researc			rchers (n=20/28)		Clinicians (n=24/26)					
Factors	Mean (SD)	Median (IQR)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)
Cognitive determinants (n=7)	-	-	1	•	1	•	-	-	•	-				1	-		
Attention	6.8 (1.9)	7 (5-8.5)	4 (7.1%)	18 (32.1%)	34 (60.7%)	1(16.7%)	3 (50.0%)	2 (33.3%)	2(22.2%)	2 (22.2%)	5 (55.6%)	1(5.3%)	7 (36.8%)	11(57.9%)	0 (0.0%)	6(27.3%)	16 (72.7%)
Executive function	6.7 (1.8)	7 (6-8)	3 (5.6%)	17 (31.5%)	34 (63.0%)	0(0.0%)	3 (50.0%)	3 (50.0%)	0 (0.0%)	3(37.5%)	5(62.5%)	1(5.3%)	6 (31.6%)	12 (63.2%)	2 (9.5%)	5(23.8%)	14 (66.7%)
Language	6.0 (2.1)	6 (5-7)	9 (16.1%)	21(37.5%)	26 (46.4%)	1(16.7%)	3 (50.0%)	2 (33.3%)	0 (0.0%)	4 (44.4%)	5(55.6%)	5 (26.3%)	6 (31.6%)	8 (42.1%)	3 (13.6%)	8 (36.4%)	11(50.0%)
Memory	6.8 (1.8)	7 (6-8)	2 (3.6%)	18 (32.1%)	36 (64.3%)	0(0.0%)	2 (33.3%)	4 (66.7%)	1(11.1%)	2 (22.2%)	6 (66.7%)	1(5.3%)	6 (31.6%)	12 (63.2%)	0 (0.0%)	8 (36.4%)	14 (63.6%)
Visuospatial function	R	7 (6-8)	3 (5.5%)	12 (21.8%)	40 (72.7%)	1(16.7%)	1(16.7%)	4 (66.7%)	0 (0.0%)	2 (25.0%)	6 (75.0%)	1(5.3%)	5(26.3%)	13 (68.4%)	1(4.5%)	4 (18.2%)	17 (77.3%)
Processing speed	6.1(1.8)	6 (5-7.5)	4 (7.1%)	29 (51.8%)	23 (41.1%)	0(0.0%)	2 (33.3%)	4 (66.7%)	1(11.1%)	5 (55.6%)	3 (33.3%)	3 (15.8%)	9(47.4%)	7 (36.8%)	0 (0.0%)	13 (59, 1%)	9 (40.9%)
Global cognition	7.0 (1.5)	7 (6-8)	1(1.8%)	18 (32.7%)	36 (65.5%)	0(0.0%)	2 (33.3%)	4 (66.7%)	1(12.5%)	2 (25.0%)	5(62.5%)	0 (0.0%)	7 (36.8%)	12 (63.2%)	0 (0.0%)	7(31.8%)	15 (68.2%)
Environmental determinants (n=18)		-															
Street characteristics	5.6 (2.1)	6 (4-7)	10 (18.2%)	25 (45.5%)	20 (36.4%)	1(16.7%)	3 (50.0%)	2 (33.3%)	2(22.2%)	4 (44.4%)	3(33.3%)	3 (15.8%)	9(47.4%)	7 (36.8%)	4 (19.0%)	9 (42.9%)	8 (38.1%)
Discharge environment (living environment)	7.5(1.7)	8(7-9)	2(3.6%)	8(14.3%)	46 (82.1%)	0(0.0%)	1(16.7%)	5(83.3%)	0(0.0%)	2(22.2%)	7(77.8%)	2 (10.5%)	3(15.8%)	14 (73.7%)	0(0.0%)	2 (9.1%)	20 (90.9%)
Residential characteristics	6.4 (2.3)	7 (5-9)	8(14.5%)	16 (29.1%)	31(56.4%)	1(16.7%)	1(16.7%)	4 (66.7%)	0 (0.0%)	2 (22.2%)	7(77.8%)	2 (11.1%)	9 (50.0%)	7(38.9%)	5(22.7%)	4 (18.2%)	13 (59.1%)
Land use mix	4.7 (2.4)	5 (3-6)	17 (34.7%)	20 (40.8%)	12 (24.5%)	0 (0.0%)	4 (66.7%)	2 (33.3%)	3(37.5%)	2 (25.0%)	3(37.5%)	4 (26.7%)	10 (66.7%)	1(6.7%)	10 (50.0%)	4 (20.0%)	6 (30.0%)
Sidewalk characteristics	6.2 (2.0)	6 (4-8)	5 (9.1%)	24 (43.6%)	26 (47.3%)	0(0.0%)	2 (33.3%)	4 (66.7%)	0 (0.0%)	5 (55.6%)	4 (44.4%)	2 (10.5%)	8 (42.1%)	9(47.4%)	3 (14.3%)	9(42.9%)	9(42.9%)
Crime-related safety	6.0 (2.0)	6 (4-7)	6 (10.9%)	25 (45.5%)	24 (43.6%)	0(0.0%)	2 (33.3%)	4 (66.7%)	0 (0.0%)	3 (33.3%)	6 (66.7%)	3 (15.8%)	8 (42.1%)	8 (42.1%)	3 (14.3%)	12 (57.1%)	6 (28.6%)
Traffic-related safety	6.2 (1.8)	6 (5-7)	5 (9.1%)	25 (45.5%)	25 (45.5%)	1(16.7%)	3 (50.0%)	2(33.3%)	0(0.0%)	3 (33.3%)	6 (66.7%)	1(5.3%)	9(47.4%)	9(47.4%)	3 (14.3%)	10 (47.6%)	8 (38.1%)
Access to recreational facilities	5.9 (2.0)	6 (5-7)	6 (10.9%)	28 (50.9%)	21(38.2%)	0(0.0%)	2 (33.3%)	4 (66.7%)	1(11.1%)	5 (55.6%)	3 (33.3%)	1(5.3%)	13 (68.4%)	5 (26.3%)	4 (19.0%)	8 (38.1%)	9(42.9%)
Access to destinations	6.4 (1.7)	7 (6-7)	4(7.5%)	18 (34.0%)	31(58.5%)	0(0.0%)	2 (33.3%)	4 (66.7%)	1(11.1%)	3 (33.3%)	5 (55.6%)	2(11.1%)	7 (38.9%)	9 (50.0%)	1(5.0%)	6(30.0%)	13 (65.0%)
Access to rest areas	6.1(2.1)	7 (5-8)	6(11.1%)	19 (35.2%)	29 (53.7%)	0(0.0%)	2 (33.3%)	4 (66.7%)	0 (0.0%)	4 (44.4%)	5 (55.6%)	3 (15.8%)	6 (31.6%)	10 (52.6%)	3 (15.0%)	7 (35.0%)	10 (50.0%)
Access to public transit	6.5 (2.0)	7 (5-8)	3 (5.5%)	19 (34.5%)	33 (60.0%)	0(0.0%)	2 (33.3%)	4 (66.7%)	0(0.0%)	4 (44.4%)	5 (55.6%)	2 (10.5%)	4 (21.1%)	13 (68.4%)	1(4.8%)	9 (42.9%)	11(52.4%)
Weather	5.2 (2.4)	5 (3-7)	16 (29.1%)	19 (34.5%)	20 (36.4%)	1(16.7%)	2 (33.3%)	3 (50.0%)	1(11.1%)	6 (66.7%)	2(22.2%)	6 (31.6%)	7 (36.8%)	6 (31.6%)	8 (38.1%)	4 (19.0%)	9(42.9%)
Natural scenery	4.8 (2.3)	5 (3-6)	20 (36.4%)	23 (41.8%)	12 (21.8%)	1(16.7%)	2 (33.3%)	3 (50.0%)	3 (33.3%)	3 (33.3%)	3 (33.3%)	7 (36.8%)	11(57.9%)	1(5.3%)	9(42.9%)	7 (33.3%)	5(23.8%)
Environmental quality	5.5 (2.2)	6 (4-7)	11(20.8%)	24 (45.3%)	18 (34.0%)	0(0.0%)	4 (66.7%)	2(33.3%)	1(11.1%)	5 (55.6%)	3 (33.3%)	4 (22.2%)	8(44.4%)	6 (33.3%)	6 (30.0%)	7(35.0%)	7 (35.0%)
Social factors	6.4 (2.0)	7 (5-8)	4(7.3%)	21(38.2%)	30 (54.5%)	0(0.0%)	3 (50.0%)	3 (50.0%)	0 (0.0%)	3 (33.3%)	6 (66.7%)	2 (10.5%)	7 (36.8%)	10 (52.6%)	2 (9.5%)	8 (38.1%)	11(52.4%)
Social attitude	5.8 (2.2)	6 (4-7)	8(14.5%)	25 (45.5%)	22 (40.0%)	1(16.7%)	3(50.0%)	2(33.3%)	0(0.0%)	4 (44.4%)	5(55.6%)	5 (26.3%)	7(36.8×)	7(36.8%)	2(9.5%)	11(52.4%)	8 (38.1%)
Social capital	5.9 (2.0)	6 (4.5-7.5)	6(10.7%)	26 (46.4%)	24 (42.9%)	0(0.0%)	3 (50.0%)	3 (50.0%)	0 (0.0%)	3(33.3%)	6 (66.7%)	5 (26.3%)	8(42.1%)	6 (31.6%)	1(4.5%)	12 (54.5%)	9(40.9%)
Social cohesion	5.5 (1.9)	5 (4-7)	9 (16.7%)	27 (50.0%)	18 (33.3%)	1(16.7%)	3 (50.0%)	2 (33.3%)	1(11.1%)	3 (33.3%)	5 (55.6%)	5 (27.8%)	10 (55.6%)	3 (16.7%)	2 (9.5%)	11(52.4%)	8 (38.1%)
_	All Experts (n=	60/78)				Older Adults (n=	7/9)		Caregivers (n	=9/11)		Researche	ers (n=20/28)	Clinicians	(n=24/26)	
---------------------------------	-----------------	-----------------	------------	------------	------------	------------------	------------	------------	---------------	------------	------------	------------	--------------	------------	------------	---------------	------------
Factors	Mean (SD)	Median (IQB)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)
Financial determinants (n=3)	-																
Personal income	5.6 (2.4)	5(4-7)	11(19.0%)	22 (37.9%)	25 (43.1%)	2 (28.6%)	1(14.3%)	4 (57.1%)	0 (0.0%)	4 (44.4%)	5 (55.6%)	6 (31.6%)	6(31.6%)	7 (36.8%)	3(13.0%)	11(47.8%)	9 (39.1%)
Household income	5.3 (2.3)	5 (4-7)	12 (20.7%)	27 (46.6%)	19 (32.8%)	2 (28.6%)	1(14.3%)	4 (57.1%)	0(0.0%)	6 (66.7%)	3(33.3%)	5 (26.3%)	8(42.1%)	6 (31.6%)	5(21.7%)	12 (52.2%)	6 (26.1%)
Family income	5.1(2.3)	5(4-7)	12 (21.8%)	27 (49.1%)	16 (29.1%)	2 (28.6%)	1(14.3%)	4 (57.1%)	0(0.0%)	6 (66.7%)	3(33.3%)	6 (35.3%)	8(47.1%)	3 (17.6%)	4 (18.2%)	12 (54.5%)	6(27.3%)
Personal determinants (n=11)					-			-	-	-	-	-	-	-			
Age	6.8 (2.3)	7 (6-9)	7(12.3%)	13 (22.8%)	37 (64.9%)	1(16.7%)	1(16.7%)	4 (66.7%)	1(11.1%)	2 (22.2%)	6 (66.7%)	1(5.3%)	3 (15.8%)	15 (78.9%)	4 (17.4%)	7 (30.4%)	12 (52.2%)
Gender	4.8 (2.4)	5 (3-7)	22 (38.6%)	18 (31.6%)	17 (29.8%)	3 (50.0%)	1(16.7%)	2 (33.3%)	3 (33.3%)	2 (22.2%)	4 (44.4%)	5 (26.3%)	11(57.9%)	3 (15.8%)	11(47.8%)	4 (17.4%)	8 (34.8%)
Sex	4.8 (2.4)	5 (3-7)	23 (40.4%)	17 (29.8%)	17 (29.8%)	3 (50.0%)	2 (33.3%)	1(16.7%)	3 (33.3%)	2 (22.2%)	4 (44.4%)	6 (31.6%)	9(47.4%)	4 (21.1%)	11(47.8%)	4 (17.4%)	8 (34.8%)
Culture	5.2 (2.1)	5 (3-6)	15 (26.3%)	28 (49.1%)	14 (24.6%)	3 (50.0%)	2 (33.3%)	1(16.7%)	0 (0.0%)	5 (55.6%)	4 (44.4%)	3 (15.8%)	12 (63.2%)	4 (21.1%)	9 (39.1%)	9 (39.1%)	5(21.7%)
Ethnicity	4.6 (2.3)	5 (3-6)	24 (42.1%)	20 (35.1%)	13 (22.8%)	3 (50.0%)	2 (33.3%)	1(16.7%)	2 (22.2%)	2 (22.2%)	5 (55.6%)	9(47.4%)	7 (36.8%)	3 (15.8%)	10 (43.5%)	9 (39.1%)	4 (17.4%)
Race	4.4 (2.4)	4 (3-6)	25(44.6%)	19 (33.9%)	12 (21.4%)	4 (66.7%)	1(16.7%)	1(16.7%)	2 (25.0%)	3 (37.5%)	3(37.5%)	9(47.4%)	7(36.8%)	3 (15.8%)	10 (43.5%)	8(34.8%)	5(21.7%)
Educational level	5.1(2.1)	5 (3-6)	16 (28.1%)	27(47.4%)	14 (24.6%)	3 (50.0%)	2 (33.3%)	1(16.7%)	2 (22.2%)	5 (55.6%)	2(22.2%)	3 (15.8%)	10 (52.6%)	6 (31.6%)	8(34.8%)	10 (43.5%)	5(21.7%)
Occupation	5.3 (2.3)	6(3-7)	15 (26.3%)	22 (38.6%)	20 (35.1%)	3 (50.0%)	2(33.3%)	1(16.7%)	4 (44.4%)	4 (44.4%)	1(11.1%)	3 (15.8%)	9(47.4%)	7 (36.8%)	5(21.7%)	7(30.4%)	11(47.8%)
Marital status	5.2 (2.2)	5(4-7)	13 (22.8%)	27 (47.4%)	17 (29.8%)	2 (33.3%)	2 (33.3%)	2 (33.3%)	0(0.0%)	7(77.8%)	2 (22.2%)	4 (21.1%)	9(47.4%)	6 (31.6%)	7 (30.4%)	9 (39.1%)	7 (30.4%)
Religion	3.4 (2.2)	3 (2-5)	36 (65.5%)	14 (25.5%)	5 (9.1%)	4 (66.7%)	1(16.7%)	1(16.7%)	5(62.5%)	3(37.5%)	0(0.0%)	13 (72.2%)	5(27.8%)	0(0.0%)	14 (60.9%)	5(21.7%)	4 (17.4%)
Smoking and alcohol consumption	6.5 (2.0)	7 (6-8)	5 (9.1%)	19 (34.5%)	31(56.4%)	1(16.7%)	4 (66.7%)	1(16.7%)	0 (0.0%)	1(12.5%)	7 (87.5%)	2 (11.1%)	6 (33.3%)	10 (55.6%)	2(8.7%)	8(34.8%)	13 (56.5%)
Physical determinants (n=24)					-			-	-	-		-		-			-
Muscle strength	7.4 (1.7)	8(7-9)	3(5.2%)	7 (12.1%)	48 (82.8%)	0 (0.0%)	1(14.3%)	6 (85.7%)	1(11.1%)	1(11.1%)	7(77.8%)	2 (10.0%)	4 (20.0%)	14 (70.0%)	0(0.0%)	1(4.5%)	21(95.5%)
Muscle power	7.0 (1.9)	7 (6-9)	3(5.2%)	17 (29.3%)	38 (65.5%)	0 (0.0%)	2 (28.6%)	5(71.4%)	2(22.2%)	1(11.1%)	6 (66.7%)	1(5.0%)	9(45.0%)	10 (50.0%)	0(0.0%)	5(22.7%)	17(77.3%)
Musole endurance	6.6 (1.8)	7 (6-8)	6 (10.5%)	18 (31.6%)	33 (57.9%)	0 (0.0%)	1(14.3%)	6 (85.7%)	2 (25.0%)	1(12.5%)	5(62.5%)	4 (20.0%)	5(25.0%)	11(55.0%)	0 (0.0%)	11(50.0%)	11(50.0%)
Muscle coordination	6.8 (2.0)	7 (6-8)	5(8.8%)	16 (28.1%)	36 (63.2%)	1(14.3%)	1(14.3%)	5(71.4%)	1(12.5%)	1(12.5%)	6 (75.0%)	3 (15.0%)	7(35.0%)	10 (50.0%)	0(0.0%)	7(31.8%)	15 (68.2%)
Range of motion	6.5 (1.7)	7 (5-8)	2(3.5%)	26 (45.6%)	29 (50.9%)	0 (0.0%)	3 (42.9%)	4 (57.1%)	0 (0.0%)	4 (50.0%)	4 (50.0%)	1(5.0%)	12 (60.0%)	7 (35.0%)	1(4.5%)	7(31.8%)	14 (63.6%)
Body composition	5.3 (2.2)	5 (4-7)	13 (23.2%)	28 (50.0%)	15 (26.8%)	0 (0.0%)	3(42.9%)	4 (57.1%)	3(37.5%)	2 (25.0%)	3(37.5%)	7 (36.8%)	11(57.9%)	1(5.3%)	3 (13.6%)	12 (54.5%)	7 (31.8%)
Proprioception	6.3 (1.9)	6 (5-8)	4 (7.1%)	26 (46.4%)	26 (46.4%)	0 (0.0%)	4 (66.7%)	2 (33.3%)	2 (25.0%)	2 (25.0%)	4 (50.0%)	2 (10.0%)	10 (50.0%)	8 (40.0%)	0 (0.0%)	10 (45.5%)	12 (54.5%)
Sensation	6.4 (1.7)	7 (5-7)	2(3.6%)	24 (42.9%)	30 (53.6%)	0 (0.0%)	2 (28.6%)	5(71.4%)	1(12.5%)	3(37.5%)	4 (50.0%)	1(5.3%)	11(57.9%)	7 (36.8%)	0(0.0%)	8 (36.4%)	14 (63.6%)
Pain	7.6 (1.5)	8 (7-9)	1(1.7%)	12 (20.7%)	45(77.6%)	0 (0.0%)	0 (0.0%)	7 (100.0%)	0(0.0%)	0 (0.0%)	9 (100.0%)	1(5.0%)	6 (30.0%)	13 (65.0%)	0(0.0%)	6(27.3%)	16 (72.7%)
History of falls	8.0 (1.3)	8.5 (7-9)	0(0.0%)	6 (10.3%)	52 (89.7%)	0 (0.0%)	0 (0.0%)	7 (100.0%)	0(0.0%)	0 (0.0%)	9(100.0%)	0 (0.0%)	3(15.0%)	17 (85.0%)	0(0.0%)	3 (13.6%)	19 (86.4%)
Balance	7.9 (1.3)	8(7-9)	1(1.7%)	6 (10.3%)	51(87.9%)	0(0.0%)	3(42.9%)	4 (57.1%)	0(0.0%)	0(0.0%)	9 (100.0%)	1(5.0%)	2(10.0%)	17 (85.0%)	0(0.0%)	1(4.5%)	21(95.5%)

_	All Experts (n=	60/78)				Older Adults (n=	7/9)		Caregivers (n	=9/11)		Researche	ers (n=20/28)	Clinicians	(n=24/26)	
Factors	Mean (SD)	Median (IQR)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)
Fatigue	6.9 (1.6)	7 (6-8)	1(1.7%)	20 (34.5%)	37(63.8%)	0(0.0%)	4 (57.1%)	3(42.9%)	0 (0.0%)	2 (22.2%)	7 (77.8%)	1(5.0%)	6 (30.0%)	13 (65.0%)	0 (0.0%)	8 (36.4%)	14 (63.6%)
Vision	7.6 (1.4)	8(7-9)	1(1.7%)	7 (12.1%)	50(86.2%)	0(0.0%)	0(0.0%)	7 (100.0%)	0(0.0%)	2(22.2%)	7(77.8%)	1(5.0%)	3 (15.0%)	16 (80.0%)	0(0.0%)	2 (9.1%)	20 (90.9%)
Number and type of comorbidities	7.2 (1.5)	7 (6-9)	0 (0.0%)	18 (31.6%)	39(68.4%)	0(0.0%)	2 (28.6%)	5(71.4%)	0 (0.0%)	1(12.5%)	7 (87.5%)	0 (0.0%)	8 (40.0%)	12 (60.0%)	0 (0.0%)	7 (31.8%)	15 (68.2%)
Gait speed	6.3 (1.9)	6 (5-8)	6 (10.5%)	27 (47.4%)	24 (42.1%)	0(0.0%)	4 (57.1%)	3(42.9%)	2 (25.0%)	4 (50.0%)	2 (25.0%)	2 (10.0%)	9 (45.0%)	9 (45.0%)	2 (9.1%)	10 (45.5%)	10 (45.5%)
Respiratory system	7.0 (1.5)	7 (6-8)	0 (0.0%)	21(36.8%)	36 (63.2%)	0(0.0%)	2 (28.6%)	5(71.4%)	0 (0.0%)	2 (25.0%)	6(75.0%)	0(0.0%)	10 (50.0%)	10 (50.0%)	0(0.0%)	7(31.8%)	15 (68.2%)
Speech impairment	5.4 (2.1)	6 (4-7)	11(19.3%)	27(47.4%)	19 (33.3%)	0(0.0%)	2 (28.6%)	5(71.4%)	0 (0.0%)	5 (55.6%)	4 (44.4%)	8(40.0%)	9 (45.0%)	3 (15.0%)	3 (14.3%)	11(52.4%)	7 (33.3%)
Hearing	6.0 (1.9)	6 (5-8)	7(12.1%)	27(46.6%)	24 (41.4%)	0(0.0%)	1(14.3%)	6 (85.7%)	0 (0.0%)	7(77.8%)	2(22.2%)	4 (20.0%)	9 (45.0%)	7 (35.0%)	3 (13.6%)	10 (45.5%)	9 (40.9%)
Dizziness	7.5 (1.4)	8(7-9)	1(1.7%)	11(19.0%)	46 (79.3%)	1(14.3%)	1(14.3%)	5(71.4%)	0 (0.0%)	1(11.1%)	8 (88.9%)	0(0.0%)	3 (15.0%)	17 (85.0%)	0 (0.0%)	6(27.3%)	16 (72.7%)
Frequency of exercise/physical activity	6.5 (1.7)	6 (5-8)	2(3.5%)	30 (52.6%)	25(43.9%)	0(0.0%)	4 (57.1%)	3(42.9%)	1(11.1%)	4 (44.4%)	4 (44.4%)	0(0.0%)	13 (68.4%)	6 (31.6%)	1(4.5%)	9 (40.9%)	12 (54.5%)
Self-care activities of daily living	7.2 (1.7)	7 (7-9)	3 (5.3%)	11(19.3%)	43(75.4%)	0(0.0%)	2 (28.6%)	5(71.4%)	1(11.1%)	2 (22.2%)	6 (66.7%)	2 (10.5%)	4 (21.1%)	13 (68.4%)	0(0.0%)	3 (13.6%)	19 (86.4%)
Instrumental activities of daily living	7.0 (1.8)	7 (6-9)	3 (5.3%)	15 (26.3%)	39 (68.4%)	0(0.0%)	2 (28.6%)	5(71.4%)	0 (0.0%)	3 (33.3%)	6 (66.7%)	3(15.8%)	4 (21.1%)	12 (63.2%)	0(0.0%)	6(27.3%)	16 (72.7%)
Frailty	7.5 (1.4)	7.5 (7-9)	1(1.8%)	11(19.6%)	44 (78.6%)	0(0.0%)	2 (28.6%)	5(71.4%)	0 (0.0%)	2 (25.0%)	6 (75.0%)	0 (0.0%)	4 (21.1%)	15 (78.9%)	1(4.5%)	3 (13.6%)	18 (81.8%)
Use of mobility aid	7.7(1.4)	8(7-9)	0 (0.0%)	10 (17.2%)	48 (82.8%)	0(0.0%)	1(14.3%)	6 (85.7%)	0 (0.0%)	3 (33.3%)	6 (66.7%)	0 (0.0%)	3 (15.0%)	17 (85.0%)	0(0.0%)	3 (13.6%)	19 (86.4%)
Psychological determinants (n=15)																	
Depression	7.1(1.7)	7 (6-9)	2(3.4%)	17 (29.3%)	39(67.2%)	1(14.3%)	5(71.4%)	1(14.3%)	0 (0.0%)	3 (33.3%)	6 (66.7%)	1(5.3%)	3 (15.8%)	15 (78.9%)	0(0.0%)	6 (26.1%)	17 (73.9%)
Self-efficacy	7.0 (1.6)	7 (6-8)	2(3.4%)	15 (25.9%)	41(70.7%)	0(0.0%)	4 (57.1%)	3(42.9%)	1(11.1%)	3 (33.3%)	5 (55.6%)	1(5.3%)	3 (15.8%)	15 (78.9%)	0 (0.0%)	5(21.7%)	18 (78.3%)
Motivation	6.5 (1.5)	7 (6-7)	3 (5.3%)	21(36.8%)	33 (57.9%)	1(14.3%)	3(42.9%)	3(42.9%)	0 (0.0%)	5 (62.5%)	3(37.5%)	2 (10.5%)	7 (36.8%)	10 (52.6%)	0 (0.0%)	6 (26.1%)	17 (73.9%)
Fearoffall	7.9 (1.2)	8(7-9)	0 (0.0%)	8 (13.8%)	50 (86.2%)	0(0.0%)	2 (28.6%)	5(71.4%)	0 (0.0%)	0 (0.0%)	9 (100.0%)	0 (0.0%)	2 (10.5%)	17 (89.5%)	0 (0.0%)	4 (17.4%)	19 (82.6%)
Emotional well being	6.7 (1.6)	7 (6-8)	1(1.7%)	27(46.6%)	30 (51.7%)	0(0.0%)	5(71.4%)	2 (28.6%)	0 (0.0%)	2 (22.2%)	7(77.8%)	1(5.3%)	7 (36.8%)	11(57.9%)	0(0.0%)	13 (56.5%)	10 (43.5%)
Self-perceived fatigue	6.6 (1.7)	6.5 (5.5-8)	3(5.4%)	25 (44.6%)	28 (50.0%)	0(0.0%)	4 (57.1%)	3(42.9%)	1(11.1%)	4 (44.4%)	4 (44.4%)	2 (10.5%)	8 (42.1%)	9(47.4%)	0 (0.0%)	9(42.9%)	12 (57.1%)
Anxiety	6.7 (1.5)	7 (6-8)	1(1.7%)	24 (41.4%)	33 (56.9%)	0(0.0%)	6 (85.7%)	1(14.3%)	0 (0.0%)	5 (55.6%)	4 (44.4%)	1(5.3%)	4 (21.1%)	14 (73.7%)	0(0.0%)	9 (39.1%)	14 (60.9%)
Apathy	6.2 (1.6)	6 (5-7)	3(5.4%)	29(51.8%)	24 (42.9%)	0(0.0%)	6 (85.7%)	1(14.3%)	0 (0.0%)	4 (57.1%)	3(42.9%)	2(10.5%)	10 (52.6%)	7 (36.8%)	1(4.3%)	9 (39.1%)	13 (56.5%)
Fear of reinjury	7.2 (1.7)	7 (6-9)	2(3.5%)	17 (29.8%)	38 (66.7%)	0(0.0%)	3(42.9%)	4 (57.1%)	0 (0.0%)	3(33.3%)	6 (66.7%)	2(10.5%)	3 (15.8%)	14 (73.7%)	0(0.0%)	8 (36.4%)	14 (63.6%)
Affect	5.7 (1.8)	6 (5-7)	7 (13.7%)	28 (54.9%)	16 (31.4%)	0(0.0%)	6 (85.7%)	1(14.3%)	1(14.3%)	4 (57.1%)	2(28.6%)	3(17.6%)	8 (47.1%)	6 (35.3%)	3(15.0%)	10 (50.0%)	7 (35.0%)
Extraversion	4.8 (2.0)	5 (3-6)	18 (34.6%)	25 (48.1%)	9(17.3%)	0(0.0%)	6 (85.7%)	1(14.3%)	3(42.9%)	1(14.3%)	3(42.9%)	5(29.4%)	10 (58.8%)	2(11.8%)	10 (47.6%)	8 (38.1%)	3 (14.3%)
Openness	5.0 (2.0)	5 (3-6)	17 (31.5%)	26 (48.1%)	11(20.4%)	1(14.3%)	5(71.4%)	1(14.3%)	2 (25.0%)	4 (50.0%)	2 (25.0%)	6 (35.3%)	10 (58.8%)	1(5.9%)	8 (36.4%)	7(31.8%)	7(31.8%)
Agreeableness	4.9 (1.8)	5 (3-6)	17(31.5%)	27 (50.0%)	10 (18.5%)	1(14.3%)	5(71.4%)	1(14.3%)	2 (25.0%)	5(62.5%)	1(12.5%)	8(47.1%)	7 (41.2%)	2(11.8%)	6(27.3%)	10 (45.5%)	6(27.3%)

	All Experts (n=	60/78)				Older Adults (n:	7/9)		Caregivers (n	=9/11)		Researche	ers (n=20/28)	Clinicians ((n=24/26)	
Factors	Mean (SD)	Median (IOR)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)
Affect	5.7 (1.8)	6 (5-7)	7 (13.7%)	28 (54.9%)	16 (31.4%)	0 (0.0%)	6 (85.7%)	1(14.3%)	1(14.3%)	4 (57.1%)	2 (28.6%)	3 (17.6%)	8(47.1%)	6 (35.3%)	3 (15.0%)	10 (50.0%)	7(35.0%)
Extraversion	4.8 (2.0)	5 (3-6)	18 (34.6%)	25 (48.1%)	9(17.3%)	0 (0.0%)	6 (85.7%)	1(14.3%)	3 (42.9%)	1(14.3%)	3(42.9%)	5 (29.4%)	10 (58.8%)	2(11.8%)	10 (47.6%)	8 (38.1%)	3 (14.3%)
Openness	5.0 (2.0)	5(3-6)	17 (31.5%)	26 (48.1%)	11(20.4%)	1(14.3%)	5(71.4%)	1(14.3%)	2 (25.0%)	4 (50.0%)	2 (25.0%)	6 (35.3%)	10 (58.8%)	1(5.9%)	8(36.4%)	7 (31.8%)	7(31.8%)
Agreeableness	4.9 (1.8)	5 (3-6)	17 (31.5%)	27 (50.0%)	10 (18.5%)	1(14.3%)	5(71.4%)	1(14.3%)	2 (25.0%)	5 (62.5%)	1(12.5%)	8 (47.1%)	7(41.2%)	2(11.8%)	6(27.3%)	10 (45.5%)	6(27.3%)
Neuroticism	5.1(2.1)	5 (3-6.5)	16 (30.8%)	23 (44.2%)	13 (25.0%)	2 (28.6%)	4 (57.1%)	1(14.3%)	3 (37.5%)	3(37.5%)	2 (25.0%)	6 (37.5%)	7(43.8%)	3 (18.8%)	5(23.8%)	9 (42.9%)	7(33.3%)
Conscientiousness	4.9 (2.0)	5(3-6)	18 (34.0%)	23 (43.4%)	12 (22.6%)	1(14.3%)	6 (85.7%)	0 (0.0%)	3(37.5%)	4 (50.0%)	1(12.5%)	8 (50.0%)	6(37.5%)	2(12.5%)	6(27.3%)	7 (31.8%)	9(40.9%)
Social determinants (n=6)																	
Living situation	8.0 (1.3)	9(7-9)	0(0.0%)	9 (16.1%)	47 (83.9%)	0 (0.0%)	2 (33.3%)	4 (66.7%)	0 (0.0%)	0(0.0%)	9 (100.0%)	0(0.0%)	3 (15.8%)	16 (84.2%)	0 (0.0%)	4 (18.2%)	18 (81.8%)
Loneliness (emotional and social loneliness)	7.2 (1.6)	7 (6-9)	1(1.8%)	18 (32.1%)	37 (66.1%)	0 (0.0%)	3 (50.0%)	3 (50.0%)	0 (0.0%)	2 (22.2%)	7 (77.8%)	1(5.3%)	4 (21.1%)	14 (73.7%)	0(0.0%)	9 (40.9%)	13 (59.1%)
Socialisolation	7.1(1.4)	7(6-8)	0(0.0%)	18 (32.7%)	37(67.3%)	0 (0.0%)	3 (50.0%)	3 (50.0%)	0 (0.0%)	3 (33.3%)	6 (66.7%)	0 (0.0%)	4 (21.1%)	15 (78.9%)	0(0.0%)	8 (38.1%)	13 (61.9%)
Social participation	7.1(1.6)	7 (6-8)	2(3.6%)	14 (25.0%)	40 (71.4%)	1(16.7%)	2 (33.3%)	3 (50.0%)	0 (0.0%)	3 (33.3%)	6 (66.7%)	1(5.3%)	3 (15.8%)	15 (78.9%)	0(0.0%)	6(27.3%)	16 (72.7%)
Social network (quality and quantity)	6.7 (1.6)	7(6-8)	3(5.4%)	17 (30.4%)	36 (64.3%)	1(16.7%)	2 (33.3%)	3 (50.0%)	0 (0.0%)	2 (22.2%)	7(77.8%)	0 (0.0%)	9(47.4%)	10 (52.6%)	2 (9.1%)	4 (18.2%)	16 (72.7%)
Social support	7.7(1.3)	8(7-9)	1(1.8%)	9 (16.1%)	46 (82.1%)	0 (0.0%)	2 (33.3%)	4 (66.7%)	0 (0.0%)	1(11.1%)	8 (88.9%)	1(5.3%)	3 (15.8%)	15 (78.9%)	0 (0.0%)	3 (13.6%)	19 (86.4%)
Notes:																	
1. 78 participants were invited to participate, 60 participated (77% response rate). Only the 60 participants were invited in the subsequent Rounds. Participants rated 84 factors, of which 16 factors reached consensus in Round 1.																	
 Cells highlighted in green indicate consensus was reached among that category. For instance, under 																	

2. Cents high great in great in layer in layer to have consent to was reached among that category. For instance, under cognitive determinants, visuospatial function reached consensus across all groups but only among category, and clinicians, but not among researchers or older adults. Attention only reached consensus among clinicians and not in any other group.

3. 1-3 = Not important; 4-6 = Important; 7-9 = Critical. Consensus is reached for each factor when≥70% of experts rated a factor as "Critical" (scores≥7) and≤15% of experts rated a factor as "Not Important" (scores≤3).

4. N = number of; % = percentages; SD = Standard Deviation; IQR = Interquartile Range

Round 2 Ratings

	All Experts (n=	52/60)				Older Adu	lts (n=7/7)		Caregiv	ers (n=7/9)		Research	ers (n=19/20)]	Clinicians	(n=19/24)	
Factors	Mean (SD)	Median (IQR)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)
Cognitive determinants (n=6)	-	•	-	•	-		-	•	1-				•	-	-	-	
Attention	7.1(1.9)	7 (6.5-9)	4 (7.7%)	9(17.3%)	39(75.0%)	1(14.3%)	3(42.9%)	3(42.9%)	2 (25.0%)	2 (25.0%)	4 (50.0%)	0 (0.0%)	2(10.5%)	17 (89.5%)	1(5.6%)	2 (11.1%)	15 (83.3%)
Executive function	6.9 (1.7)	7 (7-8)	2 (3.9%)	10 (19.6%)	39(76.5%)	0 (0.0%)	3(42.9%)	4 (57.1%)	0(0.0%)	2 (28.6%)	5(71.4%)	0 (0.0%)	2(11.1%)	16 (88.9%)	2 (11.1%)	2 (11.1%)	14 (77.8%)
Language	6.2 (1.9)	7 (6-7)	6 (11.5%)	19 (36.5%)	27 (51.9%)	2 (28.6%)	2 (28.6%)	3(42.9%)	0(0.0%)	3(37.5%)	5(62.5%)	2 (11.1%)	10 (55.6%)	6 (33.3%)	2 (11.1%)	4 (22.2%)	12 (66.7%)
Memory	7.2 (1.5)	7 (7-8)	1(1.9%)	9(17.3%)	42 (80.8%)	0 (0.0%)	2 (28.6%)	5(71.4%)	0(0.0%)	1(12.5%)	7 (87.5%)	0 (0.0%)	3 (16.7%)	15 (83.3%)	1(5.6%)	3 (16.7%)	14 (77.8%)
Processing speed	6.3 (1.7)	6 (6-7)	3 (5.8%)	29 (55.8%)	20 (38.5%)	0 (0.0%)	3(42.9%)	4 (57.1%)	1(12.5%)	3(37.5%)	4 (50.0%)	1(5.6%)	13 (72.2%)	4 (22.2%)	1(5.6%)	10 (55.6%)	7 (38.9%)
Global cognition	7.1(1.6)	7 (6-8)	2 (3.9%)	14 (27.5%)	35 (68.6%)	0 (0.0%)	3(42.9%)	4 (57.1%)	1(14.3%)	0 (0.0%)	6 (85.7%)	0 (0.0%)	5(27.8%)	13(72.2%)	1(5.6%)	5(27.8%)	12 (66.7%)
Environmental determinants (n=18)					1	1		•		•	1	1	1		-		
Street characteristics	5.8 (1.9)	6 (5-7)	6 (11.8%)	23 (45.1%)	22 (43.1%)	1(14.3%)	5(71.4%)	1(14.3%)	1(12.5%)	4 (50.0%)	3(37.5%)	1(5.6%)	8(44.4%)	9 (50.0%)	3 (17.6%)	6 (35.3%)	8 (47.1%)
Residential characteristics	6.3 (2.1)	7 (5-7.5)	6(11.5%)	19 (36.5%)	27 (51.9%)	1(14.3%)	2 (28.6%)	4 (57.1%)	0(0.0%)	1(12.5%)	7 (87.5%)	1(5.6%)	13 (72.2%)	4 (22.2%)	4 (22.2%)	3 (16.7%)	11(61,1%)
Land use mix	4.5 (2.3)	5 (3-6)	17 (36.2%)	21(44.7%)	9 (19.1%)	0 (0.0%)	5(71.4%)	2 (28.6%)	3 (42.9%)	1(14.3%)	3(42.9%)	4 (26.7%)	11(73.3%)	0 (0.0%)	10 (58.8%)	4 (23.5%)	3(17.6%)
Sidewalk characteristics	6.1(1.7)	6 (5-7)	3(6.0%)	23 (46.0%)	24 (48.0%)	0 (0.0%)	3(42.9%)	4 (57.1%)	0(0.0%)	5(62.5%)	3(37.5%)	0 (0.0%)	7 (41.2%)	10 (58.8%)	3(17.6%)	8(47.1%)	6 (35.3%)
Crime-related safety	5.8 (1.7)	6 (5-7)	5 (9.8%)	28 (54.9%)	18 (35.3%)	0 (0.0%)	2 (28.6%)	5(71.4%)	0(0.0%)	3(37.5%)	5(62.5%)	2 (11.1%)	12 (66.7%)	4 (22.2%)	3 (17.6%)	11(64.7%)	3(17.6%)
Traffic-related safety	6.2 (1.6)	6 (5-7)	3 (5.9%)	23 (45.1%)	25(49.0%)	1(14.3%)	4 (57.1%)	2 (28.6%)	0(0.0%)	3(37.5%)	5(62.5%)	0 (0.0%)	8(44.4%)	10 (55.6%)	2 (11.8%)	8(47.1%)	7 (41.2%)
Access to recreational facilities	5.8 (1.6)	6 (5-7)	4(7.8%)	31(60.8%)	16 (31.4%)	0 (0.0%)	3(42.9%)	4 (57.1%)	1(12.5%)	7(87.5%)	0 (0.0%)	1(5.6%)	16 (88.9%)	1(5.6%)	2 (11.8%)	5(29.4%)	10 (58.8%)
Access to destinations	6.5 (1.7)	7 (6-7)	4 (8.0%)	12 (24.0%)	34 (68.0%)	0 (0.0%)	3(42.9%)	4 (57.1%)	1(12.5%)	3(37.5%)	4 (50.0%)	1(5.9%)	4 (23.5%)	12 (70.6%)	2 (11.8%)	2 (11.8%)	13 (76.5%)
Access to rest areas	6.4 (1.7)	7 (6-7)	4 (8.0%)	14 (28.0%)	32 (64.0%)	0 (0.0%)	3(42.9%)	4 (57.1%)	1(12.5%)	3(37.5%)	4 (50.0%)	1(5.9%)	4 (23.5%)	12 (70.6%)	2 (11.8%)	4 (23.5%)	11(64.7%)
Access to public transit	6.6 (1.5)	7 (6-7)	2 (3.9%)	13 (25.5%)	36 (70.6%)	1(14.3%)	3(42.9%)	3(42.9%)	0(0.0%)	3(37.5%)	5(62.5%)	1(5.6%)	2 (11.1%)	15 (83.3%)	0 (0.0%)	5(29.4%)	12 (70.6%)
Weather	5.0 (2.2)	5(3-7)	16 (31.4%)	16 (31.4%)	19 (37.3%)	1(14.3%)	2 (28.6%)	4 (57.1%)	2 (25.0%)	4 (50.0%)	2 (25.0%)	6 (33.3%)	6 (33.3%)	6 (33.3%)	7 (41.2%)	3(17.6%)	7(41.2%)
Natural scenery	4.6 (2.1)	5 (3-6)	19 (37.3%)	25 (49.0%)	7 (13.7%)	1(14.3%)	3(42.9%)	3(42.9%)	3 (37.5%)	4 (50.0%)	1(12.5%)	7 (38.9%)	10 (55.6%)	1(5.6%)	8(47.1%)	7(41.2%)	2 (11.8%)
Environmental quality	5.4 (2.1)	6 (4-7)	9 (18.0%)	26 (52.0%)	15 (30.0%)	0 (0.0%)	4 (57.1%)	3(42.9%)	1(12.5%)	6(75.0%)	1(12.5%)	3(17.6%)	12 (70.6%)	2 (11.8%)	5 (29.4%)	4 (23.5%)	8(47.1%)
Social factors	6.2 (1.9)	7 (5-7)	4 (8.0%)	19 (38.0%)	27 (54.0%)	0 (0.0%)	3(42.9%)	4 (57.1%)	0(0.0%)	3(37.5%)	5(62.5%)	1(5.9%)	8(47.1%)	8(47.1%)	3(17.6%)	5(29.4%)	9 (52.9%)
Social attitude	5.5 (2.1)	5(4-7)	9(17.6%)	22 (43.1%)	20 (39.2%)	1(14.3%)	4 (57.1%)	2 (28.6%)	0(0.0%)	4 (50.0%)	4 (50.0%)	5(27.8%)	6 (33.3%)	7 (38.9%)	3(17.6%)	8(47.1%)	6 (35.3%)
Social capital	5.8 (1.9)	6 (4-7)	6 (11.5%)	24 (46.2%)	22 (42.3%)	0(0.0%)	4 (57.1%)	3 (42.9%)	0 (0.0%)	2 (25.0%)	6(75.0%)	4 (22.2%)	10 (55.6%)	4 (22.2%)	2 (11.1%)	8(44.4%)	8(44.4%)
Social cohesion	5.5 (1.9)	5(4-7)	8 (15.7%)	26 (51.0%)	17 (33.3%)	1(14.3%)	4 (57.1%)	2 (28.6%)	1(12.5%)	3(37.5%)	4 (50.0%)	4 (23.5%)	12 (70.6%)	1(5.9%)	2 (11.1%)	7 (38.9%)	9 (50.0%)
Government/institutional support systems	6.6 (1.6)	7 (6-7.5)	2(3.8%)	20 (38.5%)	30 (57.7%)	0(0.0%)	4 (57.1%)	3(42.9%)	0 (0.0%)	3(37.5%)	5(62.5%)	2(11.1%)	6(33.3%)	10 (55.6%)	0 (0.0%)	7(38.9%)	11(61.1%)

	All Experts (n=	52/60)				Older Adu	lts (n=7/7)		Caregiv	ers (n=7/9)		Research	ers (n=19/20))	Clinicians	(n=19/24)	
Factors	Mean (SD)	Median (IQR)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)
Financial determinants (n=3)		1	1		1		1		r –	1	1	1					
Personal income	6.0 (2.0)	7 (5-7)	8 (15.4%)	16 (30.8%)	28 (53.8%)	3(42.9%)	1(14.3%)	3(42.9%)	0(0.0%)	3(37.5%)	5(62.5%)	4 (22.2%)	6(33.3%)	8(44.4%)	1(5.6%)	6(33.3%)	11(61.1%)
Household income	5.5 (2.2)	5(4-7)	10 (19.2%)	23(44.2%)	19 (36.5%)	3(42.9%)	1(14.3%)	3(42.9%)	0(0.0%)	4 (50.0%)	4 (50.0%)	4 (22.2%)	11(61.1%)	3 (16.7%)	3 (16.7%)	7 (38.9%)	8(44.4%)
Family income	5.2 (2.2)	5 (4-7)	10 (19.6%)	26 (51.0%)	15 (29.4%)	3(42.9%)	1(14.3%)	3 (42.9%)	0(0.0%)	5(62.5%)	3(37.5%)	5 (29.4%)	11(64.7%)	1(5.9%)	2 (11.1%)	9(50.0%)	7 (38.9%)
Personal determinants (n=11)	1	1	1	1	•		•	1		1	1	1	1	-		1	-
Age	7.1(2.1)	7 (6.5-9)	5(9.6%)	8(15.4%)	39(75.0%)	1(14.3%)	2 (28.6%)	4 (57.1%)	1(12.5%)	2 (25.0%)	5(62.5%)	1(5.6%)	1(5.6%)	16 (88.9%)	2 (11.1%)	3 (16.7%)	13 (72.2%)
Gender	4.7 (2.1)	5 (3-6.5)	21(40.4%)	18 (34.6%)	13 (25.0%)	4 (57.1%)	1(14.3%)	2 (28.6%)	4 (50.0%)	0 (0.0%)	4 (50.0%)	3 (16.7%)	14 (77.8%)	1(5.6%)	10 (55.6%)	3 (16.7%)	5(27.8%)
Sex	4.5 (2.3)	5 (3-7)	24 (46.2%)	13 (25.0%)	15 (28.8%)	4 (57.1%)	1(14.3%)	2 (28.6%)	4 (50.0%)	0 (0.0%)	4 (50.0%)	6 (33.3%)	10 (55.6%)	2 (11.1%)	10 (55.6%)	2 (11.1%)	6 (33.3%)
Culture	4.9 (1.9)	5 (4-6)	12 (23.1%)	32 (61.5%)	8 (15.4%)	4 (57.1%)	1(14.3%)	2 (28.6%)	0 (0.0%)	6 (75.0%)	2 (25.0%)	1(5.6%)	16 (88.9%)	1(5.6%)	7 (38.9%)	9 (50.0%)	2 (11.1%)
Ethnicity	4.2 (2.1)	3 (3-5)	27 (51.9%)	18 (34.6%)	7 (13.5%)	4 (57.1%)	1(14.3%)	2 (28.6%)	2 (25.0%)	4 (50.0%)	2 (25.0%)	11(61.1%)	6 (33.3%)	1(5.6%)	10 (55.6%)	7 (38.9%)	1(5.6%)
Race	3.9 (2.0)	3 (3-5)	33 (63.5%)	11(21.2%)	8 (15.4%)	5(71.4%)	1(14.3%)	1(14.3%)	2 (25.0%)	4 (50.0%)	2 (25.0%)	13 (72.2%)	4 (22.2%)	1(5.6%)	13(72.2%)	2 (11.1%)	3 (16.7%)
Educational level	4.7 (2.0)	5 (3-6)	17 (32.7%)	27 (51.9%)	8 (15.4%)	4 (57.1%)	2 (28.6%)	1(14.3%)	3 (37.5%)	4 (50.0%)	1(12.5%)	2(11.1%)	14 (77.8%)	2 (11.1%)	8(44.4%)	6 (33.3%)	4 (22.2%)
Occupation	5.6 (1.7)	6 (5-7)	8 (15.4%)	28 (53.8%)	16 (30.8%)	3(42.9%)	3(42.9%)	1(14.3%)	2 (25.0%)	5 (62.5%)	1(12.5%)	0 (0.0%)	14 (77.8%)	4 (22.2%)	3 (16.7%)	6 (33.3%)	9(50.0%)
Marital status	5.3 (1.9)	5(4-7)	8 (15.4%)	29 (55.8%)	15 (28.8%)	2 (28.6%)	2 (28.6%)	3(42.9%)	0 (0.0%)	8 (100.0%)	0 (0.0%)	0 (0.0%)	14 (77.8%)	4 (22.2%)	6 (33.3%)	5(27.8%)	7(38.9%)
Religion	3.1(1.8)	3(2-4)	35(70.0%)	13 (26.0%)	2(4.0%)	5(71.4%)	1(14.3%)	1(14.3%)	3 (42.9%)	4 (57.1%)	0 (0.0%)	13 (76.5%)	4 (23.5%)	0(0.0%)	14 (77.8%)	3 (16.7%)	1(5.6%)
Smoking and alcohol consumption	6.6 (1.7)	7 (6-7)	3 (5.9%)	17 (33.3%)	31(60.8%)	1(14.3%)	4 (57.1%)	2 (28.6%)	0(0.0%)	3(37.5%)	5(62.5%)	1(5.9%)	4 (23.5%)	12 (70.6%)	1(5.6%)	6 (33.3%)	11(61.1%)
Physical determinants (n=19)		-	1		-	-	1	-		1	-		1		-		-
Muscle power	7.2 (1.6)	7 (6-9)	1(1.9%)	13 (25.0%)	38 (73.1%)	0 (0.0%)	2 (28.6%)	5(71.4%)	0(0.0%)	2 (25.0%)	6(75.0%)	1(5.6%)	6 (33.3%)	11(61.1%)	0 (0.0%)	3(16.7%)	15 (83.3%)
Muscle endurance	6.8 (1.8)	7 (6-8)	5 (9.6%)	9(17.3%)	38 (73.1%)	0 (0.0%)	2 (28.6%)	5(71.4%)	2 (25.0%)	0 (0.0%)	6(75.0%)	2(11.1%)	4 (22.2%)	12 (66.7%)	1(5.6%)	3(16.7%)	14 (77.8%)
Muscle coordination	7.2 (1.5)	7 (6.5-8.5)	1(1.9%)	12 (23.1%)	39(75.0%)	1(14.3%)	2 (28.6%)	4 (57.1%)	0(0.0%)	2 (25.0%)	6(75.0%)	0 (0.0%)	6 (33.3%)	12 (66.7%)	0 (0.0%)	2 (11.1%)	16 (88.9%)
Range of motion	6.5 (1.5)	7 (6-8)	2 (3.9%)	22 (43.1%)	27 (52.9%)	0 (0.0%)	2 (28.6%)	5(71.4%)	1(14.3%)	2 (28.6%)	4 (57.1%)	1(5.6%)	14 (77.8%)	3 (16.7%)	0 (0.0%)	4 (22.2%)	14 (77.8%)
Body composition	5.4 (2.0)	5 (4-7)	8 (15.7%)	30 (58.8%)	13 (25.5%)	0 (0.0%)	2 (28.6%)	5(71.4%)	2 (28.6%)	3(42.9%)	2 (28.6%)	5(27.8%)	12 (66.7%)	1(5.6%)	1(5.6%)	12 (66.7%)	5(27.8%)
Proprioception	6.5 (1.8)	7 (6-7)	2(4.0%)	22 (44.0%)	26 (52.0%)	0 (0.0%)	3 (50.0%)	3 (50.0%)	1(14.3%)	2 (28.6%)	4 (57.1%)	0 (0.0%)	12 (66.7%)	6 (33.3%)	1(5.6%)	5(27.8%)	12 (66.7%)
Sensation	6.4 (1.6)	7 (6-7)	2 (3.9%)	20 (39.2%)	29 (56.9%)	0 (0.0%)	3(42.9%)	4 (57.1%)	1(12.5%)	2 (25.0%)	5(62.5%)	0 (0.0%)	12 (70.6%)	5 (29.4%)	1(5.6%)	3 (16.7%)	14 (77.8%)
Fatigue	7.2 (1.2)	7 (7-8)	0 (0.0%)	7 (13.5%)	45 (86.5%)	0 (0.0%)	1(14.3%)	6 (85.7%)	0 (0.0%)	2 (25.0%)	6(75.0%)	0 (0.0%)	2 (11.1%)	16 (88.9%)	0 (0.0%)	2(11.1%)	16 (88.9%)
Number and type of comorbidities	7.4 (1.4)	7 (7-9)	0 (0.0%)	11(21.6%)	40 (78.4%)	0 (0.0%)	1(14.3%)	6 (85.7%)	0 (0.0%)	1(14.3%)	6 (85.7%)	0 (0.0%)	5(27.8%)	13 (72.2%)	0 (0.0%)	4 (22.2%)	14 (77.8%)
Gait speed	6.3 (2.0)	6 (5-8)	6(11.8%)	22 (43.1%)	23 (45.1%)	0 (0.0%)	4 (57.1%)	3(42.9%)	2 (28.6%)	3(42.9%)	2 (28.6%)	2 (11.1%)	7 (38.9%)	9 (50.0%)	2 (11.1%)	8(44.4%)	8(44.4%)
Respiratory system	7.1(1.5)	7 (6-8)	1(1.9%)	16 (30.8%)	35(67.3%)	0 (0.0%)	1(14.3%)	6 (85.7%)	0 (0.0%)	1(12.5%)	7(87.5%)	0 (0.0%)	11(61.1%)	7(38.9%)	1(5.6%)	3 (16.7%)	14 (77.8%)

	All Experts (n=	52/60)				Older Adu	ts (n=7/7)		Caregiv	ers (n=7/9)		Research	ers (n=19/20))	Clinicians	(n=19/24)	
Factors	Mean (SD)	Median (IQR)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)
Speech impairment	5.5 (1.8)	5 (4-6)	5 (9.6%)	35(67.3%)	12 (23.1%)	0 (0.0%)	3 (42.9%)	4 (57.1%)	0 (0.0%)	5(62.5%)	3(37.5%)	5(27.8%)	13 (72.2%)	0 (0.0%)	0 (0.0%)	13 (72.2%)	5(27.8%)
Hearing	6.2 (1.5)	6 (5-7)	2 (3.8%)	30 (57.7%)	20 (38.5%)	0 (0.0%)	1(14.3%)	6 (85.7%)	0(0.0%)	5 (62.5%)	3(37.5%)	2 (11.1%)	12 (66.7%)	4 (22.2%)	0 (0.0%)	11(61.1%)	7 (38.9%)
Current and previous physical activities level across life-course	6.6 (1.4)	6 (6-7)	1(1.9%)	27 (51.9%)	24 (46.2%)	0 (0.0%)	2 (28.6%)	5(71.4%)	1(12.5%)	4 (50.0%)	3(37.5%)	0 (0.0%)	16 (88.9%)	2 (11.1%)	0 (0.0%)	5(27.8%)	13 (72.2%)
Instrumental activities of daily living	7.5 (1.6)	8 (7-9)	1(1.9%)	9(17.3%)	42 (80.8%)	0 (0.0%)	1(14.3%)	6 (85.7%)	0 (0.0%)	3(37.5%)	5 (62.5%)	1(5.6%)	3 (16.7%)	14 (77.8%)	0 (0.0%)	2 (11.1%)	16 (88.9%)
Ability to climb stairs / steps	7.3 (1.3)	7 (6-9)	0 (0.0%)	13 (25.5%)	38 (74.5%)	0 (0.0%)	1(14.3%)	6 (85.7%)	0 (0.0%)	7 (87.5%)	1(12.5%)	0 (0.0%)	3 (16.7%)	15 (83.3%)	0 (0.0%)	2 (11.8%)	15 (88.2%)
Ability to walk 400m or city block	6.7 (1.6)	7 (6-8)	2 (3.9%)	18 (35.3%)	31(60.8%)	0 (0.0%)	0 (0.0%)	7 (100.0%)	2 (25.0%)	4 (50.0%)	2 (25.0%)	0 (0.0%)	6 (33.3%)	12 (66.7%)	0 (0.0%)	8 (47.1%)	9 (52.9%)
Ability to dual task	6.2 (1.8)	6 (5-7)	2 (3.9%)	28 (54.9%)	21(41.2%)	0 (0.0%)	1(14.3%)	6 (85.7%)	1(12.5%)	6(75.0%)	1(12.5%)	0 (0.0%)	10 (55.6%)	8(44.4%)	1(5.9%)	10 (58.8%)	6 (35.3%)
Baseline or habitual physical function/mobility	7.5 (1.4)	7.5 (6-9)	0 (0.0%)	13 (26.0%)	37(74.0%)	0 (0.0%)	2 (28.6%)	5(71.4%)	0 (0.0%)	2 (28.6%)	5(71.4%)	0 (0.0%)	6 (33.3%)	12 (66.7%)	0 (0.0%)	3(17.6%)	14 (82.4%)
Psychological determinants (n=14)				•				-			-	_	•				
Depression	7.4 (1.5)	7 (7-9)	1(1.9%)	8(15.4%)	43 (82.7%)	1(14.3%)	4 (57.1%)	2 (28.6%)	0 (0.0%)	2 (25.0%)	6(75.0%)	0 (0.0%)	1(5.6%)	17 (94.4%)	0 (0.0%)	1(5.6%)	17 (94.4%)
Motivation	6.9 (1.0)	7 (7-7)	0 (0.0%)	10 (19.2%)	42 (80.8%)	0 (0.0%)	3(42.9%)	4 (57.1%)	0(0.0%)	3 (37.5%)	5(62.5%)	0 (0.0%)	2 (11.1%)	16 (88.9%)	0 (0.0%)	2 (11.1%)	16 (88.9%)
Emotional well being	6.7 (1.5)	7 (6-7.5)	1(1.9%)	20 (38.5%)	31(59.6%)	0 (0.0%)	4 (57.1%)	3(42.9%)	0 (0.0%)	4 (50.0%)	4 (50.0%)	1(5.6%)	2 (11.1%)	15 (83.3%)	0 (0.0%)	10 (55.6%)	8(44.4%)
Self-perceived fatigue	6.7 (1.4)	6 (6-8)	0 (0.0%)	28 (53.8%)	24 (46.2%)	0 (0.0%)	5(71.4%)	2 (28.6%)	0 (0.0%)	6 (75.0%)	2 (25.0%)	0 (0.0%)	11(61.1%)	7 (38.9%)	0 (0.0%)	6 (33.3%)	12 (66.7%)
Anxiety	6.6 (1.2)	7 (6-7)	0 (0.0%)	20 (38.5%)	32 (61.5%)	0 (0.0%)	6 (85.7%)	1(14.3%)	0 (0.0%)	6(75.0%)	2 (25.0%)	0 (0.0%)	2 (11.1%)	16 (88.9%)	0 (0.0%)	6 (33.3%)	12 (66.7%)
Apathy	6.4 (1.3)	7 (6-7)	0 (0.0%)	25 (49.0%)	26 (51.0%)	0 (0.0%)	5(71.4%)	2 (28.6%)	0 (0.0%)	5(71.4%)	2 (28.6%)	0 (0.0%)	10 (55.6%)	8(44.4%)	0 (0.0%)	5(27.8%)	13 (72.2%)
Fear of reinjury	7.3 (1.6)	7 (6-9)	0 (0.0%)	15 (28.8%)	37(71.2%)	0 (0.0%)	5(71.4%)	2 (28.6%)	0 (0.0%)	4 (50.0%)	4 (50.0%)	0 (0.0%)	2 (11.1%)	16 (88.9%)	0 (0.0%)	4 (22.2%)	14 (77.8%)
Affect	5.8 (1.9)	6 (5-7)	6 (12.2%)	23 (46.9%)	20 (40.8%)	0 (0.0%)	6 (85.7%)	1(14.3%)	1(14.3%)	4 (57.1%)	2 (28.6%)	3(17.6%)	5(29.4%)	9 (52.9%)	2 (11.8%)	8 (47.1%)	7(41.2%)
Extraversion	4.7 (1.8)	5(3-6)	16 (32.0%)	29 (58.0%)	5(10.0%)	0 (0.0%)	6 (85.7%)	1(14.3%)	4 (57.1%)	2 (28.6%)	1(14.3%)	3 (16.7%)	15 (83.3%)	0 (0.0%)	9 (52.9%)	6 (35.3%)	2 (11.8%)
Openness	4.9 (1.8)	5(3-6)	16 (30.8%)	29 (55.8%)	7 (13.5%)	1(14.3%)	5(71.4%)	1(14.3%)	3 (37.5%)	4 (50.0%)	1(12.5%)	4 (22.2%)	14 (77.8%)	0 (0.0%)	8(44.4%)	6 (33.3%)	4 (22.2%)
Agreeableness	4.7 (1.7)	5(3-6)	17 (32.7%)	27 (51.9%)	8(15.4%)	1(14.3%)	5(71.4%)	1(14.3%)	3 (37.5%)	4 (50.0%)	1(12.5%)	7 (38.9%)	10 (55.6%)	1(5.6%)	6 (33.3%)	8(44.4%)	4 (22.2%)
Neuroticism	4.4 (1.9)	5 (3-5)	20 (40.8%)	23 (46.9%)	6(12.2%)	2 (28.6%)	4 (57.1%)	1(14.3%)	5 (62.5%)	2 (25.0%)	1(12.5%)	6 (37.5%)	10 (62.5%)	0 (0.0%)	7 (41.2%)	7 (41.2%)	3(17.6%)
Conscientiousness	4.7 (1.9)	5 (3-6)	20 (40.0%)	19 (38.0%)	11(22.0%)	1(14.3%)	5(71.4%)	1(14.3%)	4 (50.0%)	4 (50.0%)	0 (0.0%)	10 (62.5%)	6 (37.5%)	0(0.0%)	5(27.8%)	4 (22.2%)	9 (50.0%)
Discharge goals and expectations	7.2 (1.5)	7 (6-9)	0 (0.0%)	15 (30.0%)	35 (70.0%)	0 (0.0%)	3 (42.9%)	4 (57.1%)	0 (0.0%)	3(42.9%)	4 (57.1%)	0 (0.0%)	6 (35.3%)	11(64.7%)	0(0.0%)	3 (16.7%)	15 (83.3%)

	All Experts (n	=52/60)				Older Adu	ılts (n=7/7)		Caregiv	ers (n=7/9)		Research	ners (n=19/20))	Clinicians	(n=19/24)	
Factors	Mean (SD)	Median (IQR)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)
Social determinants (n=3)																	
Loneliness (emotional and social loneliness)	7.1(1.6)	7 (6-9)	1(1.9%)	14 (26.9%)	37 (71.2%)	0 (0.0%)	3 (42.9%)	4 (57.1%)	0 (0.0%)	2 (25.0%)	6 (75.0%)	1(5.6%)	2 (11.1%)	15 (83.3%)	0(0.0%)	7 (38.9%)	11(61.1%)
Socialisolation	7.1(1.3)	7 (7-8)	1(1.9%)	11(21.2%)	40(76.9%)	0 (0.0%)	3(42.9%)	4 (57.1%)	0 (0.0%)	3(37.5%)	5(62.5%)	1(5.6%)	2 (11.1%)	15 (83.3%)	0(0.0%)	3 (16.7%)	15 (83.3%)
Social network (quality and quantity)	6.9 (1.3)	7 (6-8)	1(1.9%)	13 (25.0%)	38(73.1%)	1(14.3%)	2 (28.6%)	4 (57.1%)	0 (0.0%)	2 (25.0%)	6 (75.0%)	0 (0.0%)	9 (50.0%)	9 (50.0%)	0 (0.0%)	0 (0.0%)	18 (100.0%)
Notes:																	
 Only 60 experts were invited in this Round because they were the experts that responded in Round 1. 																	
 Experts suggested additional 16 factors, of which Steering Committee Memebers agreed and decided to add seven factors, as others are replicated in the factors. See Appendix A for the explanations. 																	
3. Experts only re-rated 68 factors that did not reach consensus in Rounds 2.																	
4. Cells highlighted in green indicate consensus was reached among that category. For instance, under cognitive determinants, attention reached consensus across all groups and only among researchers and clinicians and not among older adults and categivers. Executive function reached consensus across all groups, and only among caregivers, researchers and clinicians.	3																
4. 1-3 = Not important; 4-6 = Important; 7-9 = Critical. Consensus is reached for each factor when ≥70% of experts rated a factor as "Critical" (soores≥7) and≤15% of experts rated a factor as "Not Important" (scores≤3).																	
5. N = number of; % = percentages; SD = Standard Deviation; IOR = Interguartile Range	F																

Round 3 Ratings

	All Expe	erts (n=5	2/60)			Older Adu	lts (n=7/7)		Caregivers	(n=8/9)		Researche	rs (n=17/20)		Clinician	s (n=20/24)	
Factors	Mean (SD)	Media n (IQR)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)
Cognitive determinants (n=3)			-	-	•	-	-	-	•	_					-	-	
Language	6.1(2.0)	7 (5-7)	8 (15.7%)	13 (25.5%)	30 (58.8%)	2 (28.6%)	1(14.3%)	4 (57.1%)	1(12.5%)	2 (25.0%)	5 (62.5%)	3 (18.8%)	5(31.3%)	8 (50.0%)	2 (10.0%)	5(25.0%)	13 (65.0%)
Processing speed	6.2 (1.8)	6(6-7)	4(7.7%)	27 (51.9%)	21(40.4%)	0 (0.0%)	3 (42.9%)	4 (57.1%)	1(12.5%)	3(37.5%)	4 (50.0%)	2 (11.8%)	10 (58.8%)	5 (29.4%)	1(5.0%)	11(55.0%)	8 (40.0%)
Global cognition	6.9 (1.8)	7 (6-8)	4 (7.8%)	11(21.6%)	36 (70.6%)	0 (0.0%)	2 (28.6%)	5(71.4%)	2(28.6%)	0 (0.0%)	5(71.4%)	1(5.9%)	5 (29.4%)	11(64.7%)	1(5.0%)	4 (20.0%)	15 (75.0%)
Environmental determinants (n=	=17)				•	-			•	-	•	•	1				
Street characteristics	5.9 (1.8)	6(4-7)	5(9.8%)	24 (47.1%)	22 (43.1%)	1(14.3%)	5(71.4%)	1(14.3%)	1(12.5%)	4 (50.0%)	3 (37.5%)	1(5.9%)	7 (41.2%)	9 (52.9%)	2 (10.5%)	8 (42.1%)	9(47.4%)
Residential characteristics	6.4 (2.0)	7 (5.5-7)	6(11.5%)	14 (26.9%)	32 (61.5%)	1(14.3%)	2 (28.6%)	4 (57.1%)	0 (0.0%)	1(12.5%)	7 (87.5%)	1(5.9%)	8(47.1%)	8(47.1%)	4 (20.0%)	3 (15.0%)	13 (65.0%)
Land use mix	4.3 (2.3)	4 (3-6)	18 (36.7%)	22 (44.9%)	9 (18.4%)	1(14.3%)	4 (57.1%)	2 (28.6%)	3(42.9%)	1(14.3%)	3 (42.9%)	3 (18.8%)	12 (75.0%)	1(6.3%)	11(57.9%)	5(26.3%)	3 (15.8%)
Sidewalk characteristics	6.0 (2.0)	6.5 (4-7)	5(10.0%)	20 (40.0%)	25 (50.0%)	0 (0.0%)	3(42.9%)	4 (57.1%)	0 (0.0%)	3(37.5%)	5 (62.5%)	0 (0.0%)	7 (43.8%)	9 (56.3%)	5 (26.3%)	7 (36.8%)	7 (36.8%)
Crime-related safety	5.8 (1.9)	6 (4-7)	7 (13.7%)	22 (43.1%)	22 (43.1%)	0 (0.0%)	2 (28.6%)	5(71.4%)	0 (0.0%)	2 (25.0%)	6(75.0%)	2 (11.8%)	12 (70.6%)	3(17.6%)	5(26.3%)	6 (31.6%)	8 (42.1%)
Traffic-related safety	6.1(1.9)	7 (5-7)	5(9.8%)	20 (39.2%)	26 (51.0%)	1(14.3%)	2 (28.6%)	4 (57.1%)	0(0.0%)	3(37.5%)	5 (62.5%)	0 (0.0%)	8(47.1%)	9 (52.9%)	4 (21.1%)	7 (36.8%)	8 (42.1%)
Access to recreational facilities	6.1(1.5)	6(6-7)	3 (5.9%)	29 (56.9%)	19 (37.3%)	0(0.0%)	2 (28.6%)	5(71.4%)	0 (0.0%)	8 (100.0%)	0 (0.0%)	1(5.9%)	13 (76.5%)	3(17.6%)	2 (10.5%)	6 (31.6%)	11(57.9%)
Access to destinations	6.7 (1.3)	7 (6-7)	2(3.9%)	13 (25.5%)	36 (70.6%)	0 (0.0%)	3(42.9%)	4 (57.1%)	0 (0.0%)	3(37.5%)	5 (62.5%)	1(5.9%)	4 (23.5%)	12(70.6%)	1(5.3%)	3 (15.8%)	15 (78.9%)
Access to rest areas	6.5(1.7)	7 (6-8)	4(7.8%)	13 (25.5%)	34 (66.7%)	0 (0.0%)	2 (28.6%)	5(71.4%)	1(12.5%)	2 (25.0%)	5 (62.5%)	0 (0.0%)	4 (23.5%)	13 (76.5%)	3 (15.8%)	5(26.3%)	11(57.9%)
Weather	5.2 (2.3)	5(3-7)	16 (31.4%)	12 (23.5%)	23 (45.1%)	1(14.3%)	1(14.3%)	5(71.4%)	3(37.5%)	2 (25.0%)	3(37.5%)	3 (17.6%)	7 (41.2%)	7 (41.2%)	9(47.4%)	2 (10.5%)	8 (42.1%)
Natural scenery	4.4 (2.0)	5 (3-5)	21(41.2%)	22 (43.1%)	8 (15.7%)	1(14.3%)	3 (42.9%)	3 (42.9%)	3(37.5%)	4 (50.0%)	1(12.5%)	7 (41.2%)	9 (52.9%)	1(5.9%)	10 (52.6%)	6 (31.6%)	3 (15.8%)
Environmental quality	5.3 (2.0)	6(4-7)	9(17.6%)	29 (56.9%)	13 (25.5%)	0 (0.0%)	5(71.4%)	2 (28.6%)	1(12.5%)	6(75.0%)	1(12.5%)	2 (11.8%)	12 (70.6%)	3(17.6%)	6 (31.6%)	6 (31.6%)	7 (36.8%)
Social factors	6.1(1.9)	6 (5-7)	3 (5.9%)	23 (45.1%)	25 (49.0%)	0 (0.0%)	4 (57.1%)	3 (42.9%)	0(0.0%)	4 (50.0%)	4 (50.0%)	0 (0.0%)	9 (52.9%)	8(47.1%)	3 (15.8%)	6 (31.6%)	10 (52.6%)
Social attitude	5.6 (2.0)	5(4-7)	6 (11.8%)	28 (54.9%)	17 (33.3%)	1(14.3%)	4 (57.1%)	2 (28.6%)	0 (0.0%)	4 (50.0%)	4 (50.0%)	2 (11.8%)	8 (47.1%)	7 (41.2%)	3 (15.8%)	12 (63.2%)	4 (21.1%)
Social capital	6.0 (1.9)	6 (5-8)	3 (5.8%)	28 (53.8%)	21(40.4%)	0 (0.0%)	4 (57.1%)	3 (42.9%)	0 (0.0%)	2 (25.0%)	6(75.0%)	1(5.9%)	11(64.7%)	5 (29.4%)	2 (10.0%)	11(55.0%)	7 (35.0%)
Social cohesion	5.7 (1.9)	5 (5-7)	5(9.8%)	28 (54.9%)	18 (35.3%)	1(14.3%)	3 (42.9%)	3 (42.9%)	1(12.5%)	3(37.5%)	4 (50.0%)	1(6.3%)	12 (75.0%)	3 (18.8%)	2 (10.0%)	10 (50.0%)	8 (40.0%)
Government/institutional support systems	6.9 (1.4)	7 (6-8)	0(0.0%)	17 (33.3%)	34 (66.7%)	0(0.0%)	4 (57.1%)	3(42.9%)	0 (0.0%)	3(37.5%)	5 (62.5%)	0 (0.0%)	5 (31.3%)	11(68.8%)	0 (0.0%)	5 (25.0%)	15 (75.0%)
Financial determinants (n=3)					•	-			•								
Personal income	5.8 (1.8)	7 (5-7)	7 (13.5%)	18 (34.6%)	27 (51.9%)	3(42.9%)	1(14.3%)	3(42.9%)	0 (0.0%)	3 (37.5%)	5 (62.5%)	3 (17.6%)	5(29.4%)	9(52.9%)	1(5.0%)	9 (45.0%)	10 (50.0%)
Household income	5.4 (2.0)	5 (4.5-7)	10 (19.2%)	23 (44.2%)	19 (36.5%)	3(42.9%)	1(14.3%)	3 (42.9%)	0(0.0%)	4 (50.0%)	4 (50.0%)	3 (17.6%)	10 (58.8%)	4 (23.5%)	4 (20.0%)	8(40.0%)	8(40.0%)
Family income	5.3 (2.0)	5 (4-7)	9(17.6%)	28 (54.9%)	14 (27.5%)	3(42.9%)	2 (28.6%)	2 (28.6%)	0 (0.0%)	5 (62.5%)	3 (37.5%)	4 (25.0%)	11(68.8%)	1(6.3%)	2 (10.0%)	10 (50.0%)	8 (40.0%)

	All Expe	erts (n=5	2/60)			Older Adu	ts (n=7/7)		Caregivers	(n=8/9)		Researche	rs (n=17/20)		Clinicians	s (n=20/24)	
Factors	Mean (SD)	Media n (IQR)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)
Personal determinants (n=11)																	
Gender	4.5 (2.2)	4 (3-7)	26 (50.0%)	11(21.2%)	15 (28.8%)	5(71.4%)	1(14.3%)	1(14.3%)	4 (50.0%)	0 (0.0%)	4 (50.0%)	7 (41.2%)	6 (35.3%)	4 (23.5%)	10 (50.0%)	4 (20.0%)	6 (30.0%)
Sex	4.3 (2.3)	3(3-7)	28 (53.8%)	10 (19.2%)	14 (26.9%)	5(71.4%)	1(14.3%)	1(14.3%)	4 (50.0%)	0 (0.0%)	4 (50.0%)	10 (58.8%)	5 (29.4%)	2 (11.8%)	9 (45.0%)	4 (20.0%)	7 (35.0%)
Culture	4.9 (1.9)	5(3-6)	13 (25.5%)	29 (56.9%)	9(17.6%)	4 (57.1%)	2 (28.6%)	1(14.3%)	0 (0.0%)	6(75.0%)	2 (25.0%)	2(11.8%)	12 (70.6%)	3(17.6%)	7(36.8%)	9(47.4%)	3 (15.8%)
Ethnicity	4.1(2.2)	3 (3-5)	27 (54.0%)	15 (30.0%)	8 (16.0%)	5(71.4%)	1(14.3%)	1(14.3%)	3(37.5%)	3(37.5%)	2 (25.0%)	9(56.3%)	4 (25.0%)	3 (18.8%)	10 (52.6%)	7 (36.8%)	2 (10.5%)
Race	3.9 (2.1)	3 (3-5)	31(60.8%)	11(21.6%)	9(17.6%)	5(71.4%)	1(14.3%)	1(14.3%)	3(37.5%)	4 (50.0%)	1(12.5%)	10 (62.5%)	3 (18.8%)	3 (18.8%)	13 (65.0%)	3 (15.0%)	4 (20.0%)
Educational level	4.9 (1.9)	5 (3.5-6)	13 (25.0%)	30 (57.7%)	9(17.3%)	4 (57.1%)	2 (28.6%)	1(14.3%)	2 (25.0%)	5(62.5%)	1(12.5%)	2(11.8%)	14 (82.4%)	1(5.9%)	5(25.0%)	9 (45.0%)	6 (30.0%)
Occupation	5.8 (1.7)	6(5-7)	7 (13.5%)	26 (50.0%)	19 (36.5%)	3(42.9%)	2 (28.6%)	2 (28.6%)	2 (25.0%)	5 (62.5%)	1(12.5%)	0 (0.0%)	11(64.7%)	6 (35.3%)	2 (10.0%)	8(40.0%)	10 (50.0%)
Marital status	5.4 (2.0)	5(4-7)	8 (15.4%)	28 (53.8%)	16 (30.8%)	2 (28.6%)	2 (28.6%)	3 (42.9%)	0 (0.0%)	8 (100.0%)	0 (0.0%)	0 (0.0%)	13 (76.5%)	4 (23.5%)	6 (30.0%)	5 (25.0%)	9(45.0%)
Religion	3.4 (2.2)	3(2-4)	32 (64.0%)	13 (26.0%)	5(10.0%)	6 (85.7%)	0 (0.0%)	1(14.3%)	3(42.9%)	4 (57.1%)	0 (0.0%)	10 (62.5%)	5(31.3%)	1(6.3%)	13 (65.0%)	4 (20.0%)	3 (15.0%)
Smoking and alcohol consumption	6.5(1.7)	7 (6-8)	3 (5.8%)	17 (32.7%)	32 (61.5%)	1(14.3%)	4 (57.1%)	2 (28.6%)	0 (0.0%)	2 (25.0%)	6(75.0%)	1(5.9%)	7 (41.2%)	9 (52.9%)	1(5.0%)	4 (20.0%)	15 (75.0%)
History of recent re-admission to hospital	7.1(1.5)	7 (6-8)	1(2.0%)	13 (26.5%)	35(71.4%)	1(14.3%)	3(42.9%)	3 (42.9%)	0 (0.0%)	3(42.9%)	4 (57.1%)	0 (0.0%)	4 (25.0%)	12(75.0%)	0 (0.0%)	3 (15.8%)	16 (84.2%)
Physical determinants (n=11)	1	•		1		-	-				-			-			
Range of motion	6.7 (1.6)	7 (6-8)	2 (3.9%)	14 (27.5%)	35 (68.6%)	1(14.3%)	2 (28.6%)	4 (57.1%)	1(14.3%)	1(14.3%)	5(71.4%)	0 (0.0%)	7 (41.2%)	10 (58.8%)	0 (0.0%)	4 (20.0%)	16 (80.0%)
Body composition	5.5 (2.0)	6(4-7)	8 (15.7%)	25 (49.0%)	18 (35.3%)	1(14.3%)	2 (28.6%)	4 (57.1%)	2 (28.6%)	3(42.9%)	2 (28.6%)	3 (17.6%)	10 (58.8%)	4 (23.5%)	2 (10.0%)	10 (50.0%)	8(40.0%)
Proprioception	6.4 (1.5)	6.5 (6-7)	1(2.0%)	24 (48.0%)	25 (50.0%)	0 (0.0%)	5 (83.3%)	1(16.7%)	1(14.3%)	2 (28.6%)	4 (57.1%)	0 (0.0%)	11(64.7%)	6 (35.3%)	0 (0.0%)	6 (30.0%)	14 (70.0%)
Sensation	6.6 (1.2)	7 (6-7)	1(1.9%)	14 (26.9%)	37 (71.2%)	0 (0.0%)	4 (57.1%)	3 (42.9%)	1(12.5%)	0 (0.0%)	7 (87.5%)	0 (0.0%)	6 (35.3%)	11(64.7%)	0 (0.0%)	4 (20.0%)	16 (80.0%)
Gait speed	6.3 (1.9)	6 (5-8)	6(11.8%)	20 (39.2%)	25 (49.0%)	0 (0.0%)	5(71.4%)	2 (28.6%)	2 (28.6%)	3(42.9%)	2 (28.6%)	1(5.9%)	8 (47.1%)	8(47.1%)	3 (15.0%)	4 (20.0%)	13 (65.0%)
Respiratory system	7.2 (1.3)	7 (6-8)	0(0.0%)	14 (26.9%)	38 (73.1%)	0 (0.0%)	1(14.3%)	6 (85.7%)	0 (0.0%)	1(12.5%)	7 (87.5%)	0 (0.0%)	7 (41.2%)	10 (58.8%)	0 (0.0%)	5(25.0%)	15 (75.0%)
Speech impairment	5.5 (1.8)	5.5 (4- 6.5)	4 (7.7%)	35 (67.3%)	13 (25.0%)	0 (0.0%)	4 (57.1%)	3 (42.9%)	0 (0.0%)	6(75.0%)	2 (25.0%)	3(17.6%)	13 (76.5%)	1(5.9%)	1(5.0%)	12 (60.0%)	7 (35.0%)
Hearing	6.3 (1.3)	6(6-7)	0(0.0%)	31(59.6%)	21(40.4%)	0 (0.0%)	3 (42.9%)	4 (57.1%)	0 (0.0%)	4 (50.0%)	4 (50.0%)	0 (0.0%)	13 (76.5%)	4 (23.5%)	0 (0.0%)	11(55.0%)	9(45.0%)
Current and previous physical activities level across life-course	6.6 (1.5)	6(6-7)	1(1.9%)	26 (50.0%)	25 (48.1%)	0 (0.0%)	3(42.9%)	4 (57.1%)	1(12.5%)	4 (50.0%)	3(37.5%)	0 (0.0%)	13 (76.5%)	4 (23.5%)	0 (0.0%)	6 (30.0%)	14 (70.0%)
Ability to walk 400m or city block	6.3 (1.7)	7 (5-7)	4(7.7%)	21(40.4%)	27 (51.9%)	0(0.0%)	1(14.3%)	6 (85.7%)	2 (25.0%)	4 (50.0%)	2 (25.0%)	0 (0.0%)	6 (35.3%)	11(64.7%)	2(10.0%)	10 (50.0%)	8(40.0%)
Ability to dual task	5.8 (1.7)	6(4-7)	4(7.7%)	32(61.5%)	16 (30.8%)	0(0.0%)	2 (28.6%)	5(71.4%)	1(12.5%)	6(75.0%)	1(12.5%)	0 (0.0%)	13 (76.5%)	4 (23.5%)	3(15.0%)	11(55.0%)	6 (30.0%)

	All Exp	erts (n=5	2/60)			Older Adu	lts (n=7/7)		Caregivers	5 (n=8/9)		Researche	rs (n=17/20)		Clinician	s (n=20/24)	
Factors	Mean (SD)	Media n (IQR)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)	1-3, N (%)	4-6, N (%)	7-9, N (%)
Psychological determinants (n=	:10)									•							
Emotional well being	6.8 (1.3)	7 (6-7)	1(1.9%)	23 (44.2%)	28 (53.8%)	0 (0.0%)	4 (57.1%)	3(42.9%)	0 (0.0%)	3(37.5%)	5 (62.5%)	1(5.9%)	5 (29.4%)	11(64.7%)	0 (0.0%)	11(55.0%)	9(45.0%)
Self-perceived fatigue	6.5 (1.4)	6 (6-8)	1(1.9%)	32 (61.5%)	19 (36.5%)	0 (0.0%)	5(71.4%)	2 (28.6%)	0 (0.0%)	7 (87.5%)	1(12.5%)	1(5.9%)	11(64.7%)	5(29.4%)	0 (0.0%)	9(45.0%)	11(55.0%)
Anxiety	6.5 (1.3)	7 (6-7)	1(1.9%)	22 (42.3%)	29 (55.8%)	0 (0.0%)	5(71.4%)	2 (28.6%)	0 (0.0%)	6(75.0%)	2 (25.0%)	1(5.9%)	3(17.6%)	13 (76.5%)	0 (0.0%)	8(40.0%)	12 (60.0%)
Apathy	6.1(1.5)	6 (5-7)	2 (3.9%)	25 (49.0%)	24 (47.1%)	0(0.0%)	4 (57.1%)	3(42.9%)	0 (0.0%)	6 (85.7%)	1(14.3%)	1(5.9%)	7 (41.2%)	9 (52.9%)	1(5.0%)	8(40.0%)	11(55.0%)
Affect	5.6 (1.7)	5 (5-7)	6(11.8%)	25 (49.0%)	20 (39.2%)	0 (0.0%)	6 (85.7%)	1(14.3%)	2 (28.6%)	4 (57.1%)	1(14.3%)	2 (11.8%)	6 (35.3%)	9 (52.9%)	2 (10.0%)	9(45.0%)	9(45.0%)
Extraversion	4.5 (1.7)	5(3-6)	19 (37.3%)	28 (54.9%)	4(7.8%)	0 (0.0%)	6 (85.7%)	1(14.3%)	5(71.4%)	2 (28.6%)	0 (0.0%)	4 (23.5%)	12 (70.6%)	1(5.9%)	10 (50.0%)	8 (40.0%)	2 (10.0%)
Openness	4.7 (1.7)	5(3-6)	17 (32.7%)	29 (55.8%)	6(11.5%)	2 (28.6%)	4 (57.1%)	1(14.3%)	3(37.5%)	5(62.5%)	0 (0.0%)	4 (23.5%)	12 (70.6%)	1(5.9%)	8(40.0%)	8(40.0%)	4 (20.0%)
Agreeableness	4.5 (1.5)	5 (3-5)	18 (34.6%)	29 (55.8%)	5 (9.6%)	2 (28.6%)	4 (57.1%)	1(14.3%)	1(12.5%)	6(75.0%)	1(12.5%)	8(47.1%)	8 (47.1%)	1(5.9%)	7(35.0%)	11(55.0%)	2 (10.0%)
Neuroticism	4.3 (1.7)	4 (3-5)	21(41.2%)	25 (49.0%)	5 (9.8%)	2 (28.6%)	4 (57.1%)	1(14.3%)	6(75.0%)	1(12.5%)	1(12.5%)	6 (37.5%)	9 (56.3%)	1(6.3%)	7(35.0%)	11(55.0%)	2 (10.0%)
Conscientiousness	4.7 (2.0)	5(3-6)	19 (37.3%)	21(41.2%)	11(21.6%)	2 (28.6%)	4 (57.1%)	1(14.3%)	4 (50.0%)	3(37.5%)	1(12.5%)	7 (43.8%)	8 (50.0%)	1(6.3%)	6 (30.0%)	6 (30.0%)	8(40.0%)
Notes: 1. Only 60 experts were invited in this Round because they were the experts that responded in Round 1. 2. Experts only re-rated 55 factors that did not reach consensus in Rounds 2. 3. Cells highlighted in green indicate consensus was reached among that category. For instance, under cognitive determinants, global cognition reached consensus across all groups but only among older adults, caregivers, and clinicians, but not among researchers. 4. 1-3 = Not important; 4-6 = Important; 7-9 = Critical. Consensus is reached for each factor when ≥70% of experts rated a factor as "Critical" (scores ≥7) and ≤15% of experts rated a factor as "Not Important" (scores ≤3). 5. N = number of; % = percentages; SD =																	
Standard Deviation; IQR = Interquartile Range																	

Appendix 7A - For mobility factors, plain language definition of mobility factors, and the mean (SD) and

median (IQR) rating for each factor)

Name	▼ Plain Language definition ▼	DomainName	Mean (SD)	Median (IQR)
Cognitive determinant factors				
Attention	The ability to focus on something while ignoring other things	Cognitive determinant factors	6.8 (1.9)	7 (5-8.5)
Executive function	A set of mental skills that allows people to plan, decide, find solutions to problems, and control themselves from acting without thinking	Cognitive determinant factors	6.7 (1.8)	7 (6-8)
Language	Refers to sound, signs, symbols and gestures that can be used to communicate ideas, thoughts and emotions from one person to anothe	r Cognitive determinant factors	6.0 (2.1)	6 (5-7)
Memory	The ability to remember things about past events or knowledge	Cognitive determinant factors	6.8 (1.8)	7 (6-8)
Visuospatial function	How people understand what they see and how it relates to where they are, for example, using a map to get from one place to another, wal	k Cognitive determinant factors	7.1(15)	7 (6-8)
Processing speed	The time needed to take in information, make sense of it and begin to respond	Cognitive determinant factors	6.1(1.8)	6 (5-7.5)
Global cognition	Refers to the way people think, judge, learn, understand, remember, and see things	Cognitive determinant factors	7.0 (1.5)	7 (6-8)
Environmental determinant factors				
Street characteristics	How streets look, how well the streets are connected to one another and where the streetlights are located	Environmental determinant factors	5.6 (2.1)	6 (4-7)
Discharge environment (living environment)	What kind of house is the person discharged to, and could be home, appartment, retirement home	Environmental determinant factors	7.5 (1.7)	8 (7-9)
Residential characteristics	The number of people, houses, public parks in an area, and the location of houses	Environmental determinant factors	6.4 (2.3)	7 (5-9)
Land use mix	How land is used within a community, for example how much land is used for homes, shops, and offices	Environmental determinant factors	4.7 (2.4)	5 (3-6)
Sidewalk characteristics	How the sidewalks look, for example, are there any cracks or bumps; how big the sidewalks are, how close the sidewalks are to the road	Environmental determinant factors	6.2 (2.0)	6 (4-8)
Crime-related safety	How safe is the community based on the number of people around and how unfriendly people are	Environmental determinant factors	6.0 (2.0)	6 (4-7)
Traffic-related safety	How safe it is to cross the roads in the community, based on crosswalks, stop signs, stoplights and the timing of stoplights, and the spee	Environmental determinant factors	6.2 (1.8)	6 (5-7)
Access to recreational facilities	How many community fitness or recreation centers are close by, how much does it cost to attend, and how easy it is to get there, for example	Environmental determinant factors	5.9 (2.0)	6 (5-7)
Access to destinations	How many shops, services, senior centers are close by, how much does it cost to attend the senior centers, how easy it is to get there, and	Environmental determinant factors	6.4 (1.7)	7 (6-7)
Access to rest areas	How many rest areas such as benches, or public washrooms are there in the community, and how much does it cost to use	Environmental determinant factors	6.1 (2.1)	7 (5-8)
Access to public transit	How easy it is to take public transit, including how many routes, how far away bus stops are and the cost of a ticket	Environmental determinant factors	6.5 (2.0)	7 (5-8)
Weather	Refers to temperatures, seasons (e.g summer/winter conditions), and others (e.g., wind, fog, rain)	Environmental determinant factors	5.2 (2.4)	5 (3-7)
Natural scenery	Refers to green open areas, water, trees, flowers and trails in the community	Environmental determinant factors	4.8 (2.3)	5 (3-6)
Environmental quality	Refers to air quality (air pollution)	Environmental determinant factors	5.5 (2.2)	6 (4-7)
Social factors	The number of people and the amount of interaction between people in the community	Environmental determinant factors	6.4 (2.0)	7 (5-8)
Social attitude	How people feel about older people in our community and actions towards them	Environmental determinant factors	5.8 (2.2)	6 (4-7)
Social capital	The connections, shared values and understandings in society that enable people to trust each other and work together	Environmental determinant factors	5.9 (2.0)	6 (4.5-7.5)
Social cohesion	How strong relationships are in the community that encourage people to provide help and support to each other, for example, if someone	r Environmental determinant factors	5.5 (1.9)	5 (4-7)
Financial determinant factors				
Personal income	The total amount of money a person receives from all sources (e.g work salary, government benefits, investments)	Financial determinant factors	5.6 (2.4)	5 (4-7)
Household income	The total amount of money all people who are related and unrelated, who are 16 years or older, living in the same house receive	Financial determinant factors	5.3 (2.3)	5 (4-7)
Family income	The total amount of money all people who are related by birth, marriage or adoption, who are 16 years or older, living in the same house re	Financial determinant factors	5.1(2.3)	5 (4-7)

Ph.D. Thesis M. Kalu, McMaster University - School of Rehabilitation Science

Name	Plain Language definition	DomainName	Mean (SD)	Median (IQR)
Personal determinant factors				
Age		Personal determinant factors	6.8 (2.3)	7 (6-9)
Gender	Societal norms and expectations for how society thinks men and women should act and what they should do	Personal determinant factors	4.8 (2.4)	5 (3-7)
Sex	The sex (male or female) at birth and on your birth certificate	Personal determinant factors	4.8 (2.4)	5 (3-7)
Culture	The way of life of groups of people including their customs, activities, beliefs, and values	Personal determinant factors	5.2 (2.1)	5 (3-6)
Ethnicity	How a group of people identify based on their family origins and their culture and cultural traditions such as Arab, French, D	Caribbean, Afr Personal determinant factors	4.6 (2.3)	5 (3-6)
Race	How a group of people identify based on their skin colour, facial shape and hair (e.g., White/Caucasian, Brown, Black)	Personal determinant factors	4.4 (2.4)	4 (3-6)
Educational level		Personal determinant factors	5.1 (2.1)	5 (3-6)
Occupation		Personal determinant factors	5.3 (2.3)	6 (3-7)
Marital status		Personal determinant factors	5.2 (2.2)	5 (4-7)
Religion		Personal determinant factors	3.4 (2.2)	3 (2-5)
Smoking and alcohol consumption		Personal determinant factors	6.5 (2.0)	7 (6-8)
Physical determinant factors				
Muscle strength	The amount of tension a muscle develops to move or lift an object, for example. How strong or weak a muscle is.	Physical determinant factors	7.4 (1.7)	8 (7-9)
Muscle power	How fast the muscle can work, for example how fast can we stand up and sit down within a small timeframe	Physical determinant factors	7.0 (1.9)	7 (6-9)
Muscle endurance	How long a muscle can work	Physical determinant factors	6.6 (1.8)	7 (6-8)
Muscle coordination	How the muscles work together to move	Physical determinant factors	6.8 (2.0)	7 (6-8)
Range of motion	The ability of a joint to move in all its directions	Physical determinant factors	6.5 (1.7)	7 (5-8)
Body composition	A description of how much of the body is muscle or fat	Physical determinant factors	5.3 (2.2)	5 (4-7)
Proprioception	The ability to sense the body in space, where it is located, the movement of the body	Physical determinant factors	6.3 (1.9)	6 (5-8)
Sensation	The ability to feel touch, pain, temperature, vibration	Physical determinant factors	6.4 (1.7)	7 (5-7)
Pain		Physical determinant factors	7.6 (1.5)	8 (7-9)
History of falls		Physical determinant factors	8.0 (1.3)	8.5 (7-9)
Balance		Physical determinant factors	7.9 (1.3)	8 (7-9)
Fatigue	Always feeling tired	Physical determinant factors	6.9 (1.6)	7 (6-8)
Vision		Physical determinant factors	7.6 (1.4)	8 (7-9)
Number and type of of comorbidities	The number and type of chronic conditions (e.g., high blood pressure, diabetes, arthritis)	Physical determinant factors	7.2 (1.5)	7 (6-9)
Gait speed	The time it takes to walk a distance	Physical determinant factors	6.3 (1.9)	6 (5-8)
Respiratory system	The lungs and tissues that help people breathe, and how we breath	Physical determinant factors	7.0 (1.5)	7 (6-8)
Speech impairment	Cannot speak	Physical determinant factors	5.4 (2.1)	6 (4-7)
Hearing		Physical determinant factors	6.0 (1.9)	6 (5-8)
Dizziness	a feeling of faint	Physical determinant factors	7.5 (1.4)	8 (7-9)
Frequency of exercise/physical activity		Physical determinant factors	6.5 (1.7)	6 (5-8)
Self care activities of daily living	Refers to bathing, dressing and undressing, feeding self, using the toilet, and taking medication	Physical determinant factors	7.2 (1.7)	7 (7-9)
Instrumental activities of daily living	Things you do everyday to take care of yourself and your home, and they include managing finances (paying bills), driving	or planning o Physical determinant factors	7.0 (1.8)	7 (6-9)
Frailty	People who are frail usually have 3 out of the following five symptoms: muscle loss, weakness a feeling of fatigue, slow walk	king speed, ar Physical determinant factors	7.5 (1.4)	7.5 (7-9)
	The mobility secietize devices included ecoster, powered and power all wheelphairs, walking side (one walker, or states)			
Use of mobility aid	The mountry assistive devices included scores, powered and heridation writerichans, warking alus (carle, warker, citalches).	Physical determinant factors	7.7 (1.4)	8 (7-9)

Name	✓ Plain Language definition	▼ DomainName	 Mean (SD) 	 Median (IQR)
Psychological determinant factors				
Depression	A feeling of sadness and loss of interest, which stops someone from doing normal activities	Psychological determinant factors	7.1(17)	7 (6-9)
Self efficacy	The belief someone have in the abilities to carry out and complete a task.	Psychological determinant factors	7.0 (1.6)	7 (6-8)
Motivation	The reasons people act or behave in a specific way	Psychological determinant factors	6.5 (1.5)	7 (6-7)
Fear of fall	Worrying about falling so much that the person do not take part in activities	Psychological determinant factors	7.9 (1.2)	8 (7-9)
Emotional well being	The state of being mentally healthy and happy	Psychological determinant factors	6.7 (1.6)	7 (6-8)
Self perceived fatigue	How people view themselves as being tired, that affects how they function.	Psychological determinant factors	6.6 (1.7)	6.5 (5.5-8)
Anxiety	A feeling that causes people to worry and can cause their heart rate to increase or make them breathe faster	Psychological determinant factors	6.7 (15)	7 (6-8)
Apathy	The lack of interest in in life activities or interactions with others	Psychological determinant factors	6.2 (1.6)	6 (5-7)
Fear of reinjury		Psychological determinant factors	7.2 (17)	7 (6-9)
Affect	How people feel and can be from good to bad	Psychological determinant factors	5.7 (1.8)	6 (5-7)
Extraversion	Personal feature that makes people more likely to be with people than be by ourselves	Psychological determinant factors	4.8 (2.0)	5 (3-6)
Openness	Personal feature that makes people more likely to be open to new things	Psychological determinant factors	5.0 (2.0)	5 (3-6)
Agreeableness	Personal feature that makes people more likely to agree with others.	Psychological determinant factors	4.9 (1.8)	5 (3-6)
Neuroticism	Personal feature that makes people more likely to get angry easily	Psychological determinant factors	5.1 (2.1)	5 (3-6.5)
Conscientiousness	Personal feature that makes people more likely to be organized, responsible, and hardworking	Psychological determinant factors	4.9 (2.0)	5 (3-6)
Social determinant factors				
Living situation	living alone or living with someone, for example rommates, family members, or spouse/partner	Social determinant factors	8.0 (1.3)	9 (7-9)
Loneliness (emotional and social loneliness)	An unpleasant feeling associated with having few or no friends or having lost connections with people, places, or things or when	Social determinant factors	7.2 (1.6)	7 (6-9)
Social isolation	The feeling people have when they do not have contact with others	Social determinant factors	7.1(14)	7 (6-8)
Social participation	Activities that allow people to connect with others in the community.	Social determinant factors	7.1(16)	7 (6-8)
Social network (quality and quantity)	The type and number of social relationships that people have	Social determinant factors	6.7 (1.6)	7 (6-8)
Social support	The help, comfort, concern and care people receive from family and friends to handle problems better	Social determinant factors	7.7 (1.3)	8 (7-9)

Notes:

Yellow highlighted factors are those that have a median >=7, which we described as being rated "high"

Red highlighted factors are those that have a median =<3, which we described as being rated "low" $% \left[1-\frac{1}{2}\right] =0$

Factors that are not highlighted had a median ranging 4 to 6.