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Lay abstract

This thesis aims to increase our understanding of music preference by help-
ing us more accurately describe differences in music. Previous research has
defined differences in music by genre categories, such as Classical or Dance
music. However, genres are often subjective, and even arbitrary, in their
descriptions. Instead of genre, this thesis proposes that a new method of
categorization is used: Music Acoustic Features. These features are not sub-
jectively defined, they can actually be measured within a piece of music.
Furthermore, these features can be modified and tested in experiments to
see how listeners respond. Such future experiments will provide us with a
better understanding of what kind of music people like and why.
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Abstract

Music preference research seeks to explain the relationship between music lis-
teners and their music. An important task of such research is to describe dif-
ferences between types of music. Musical genres are often chosen to address
this task. But they are inadequate as they require subjective interpretation
by both participants and researchers, making results difficult to decipher.
This thesis provides foundational work to establish Music acoustic features
(MAFs). MAFs are intended to provide a reliable method of music classifica-
tion and description for experimental research. First, a labelled set of 4800
musical stimuli representing six MAFs of varying levels were systematically
produced. A program tool, Essentia, was then used to identify low-level audio
features within the musical stimuli that correlate with MAF manipulations.
The Essentia features (EFs) that best represented MAFs were identified and
used to predict MAFs in 44 real-world music clips. An online study also col-
lected ratings from participants (N = 43) for each of the 44 real-world clips.
The results of MAFs predicted by EFs and MAFs rated by participants were
compared for consistency. The MAF Tempo correlated strongest between
predicted and rated MAFs in real-world music, followed by Dynamic, Tex-
ture, Articulation, Register, and Timbre. Based on the outlined process,
MAFs were to shown to be manipulable for experimental analysis, measur-
able within real-world stimuli, and readily perceivable by music listeners.
These three criteria firmly establish MAFs as a reliable method of music
classification and description for use in experimental research. Furthermore,
the process outlined here can easily be adapted to validate other potential
MAFs that may exist in music. MAFs will improve future research by in-
creasing the robustness and clarity of conclusions, and thus provide greater
insight into how and why people listen to certain types of music.
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I. Introduction

The scientific study of musical preference has long been hindered by a fun-
damental problem—we do not know how to describe music objectively. This
claim may sound controversial: we can, for example, describe music as being
of a certain genre, like Classical music; or as being appropriate for a specific
time and place, like dinner music. But each of these descriptors are of ab-
stract concepts that are subjectively interpreted by individuals. They often
cannot be reliably defined and measured. Furthermore, these descriptors are
difficult to manipulate, which is a basic requirement for experiments designed
to determine causal relationships (Chapter V: Jhangiani et al., 2019). This
thesis aims to address these problems by establishing a reliable method of
music categorization and description for use in experimental research. This
method has produced what we call Music Acoustic Features (MAFs). These
features each satisfy three criteria: they are objectively measurable within
music, they can be intentionally manipulated in laboratory experiments, and
they are readily perceivable by individual listeners. MAFs will better suit the
requirements of experimental research and allow for more robust, consistent,
and insightful conclusions about music preference.

Background

Psychologists have explored music preference relationships for several decades.
Broadly, explanatory models of music preference are broken into two fac-
tors: the listener, who might be categorized and described in a number of
ways, such as age, gender, personality, or mood; and the music itself, which
requires a categorization and description of some particular ‘type’ of music
(e.g., Rock, Classical, Dance, etc.). Theories suggest that variation within in-
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dividuals is related to listeners’ preference for certain types of music (Schäfer
& Sedlmeier, 2010). For example, extroverts might have a greater preference
for Dance music than introverted people. In this instance, personality cat-
egorizes and describes the listener, and genre categorizes and describes the
music.

Early research investigated music–listener relationships by designing ex-
periments related to the example described above. Litle & Zuckerman (1986)
analyzed participants’ sensation-seeking personality trait and their preference
for “established categories of music based on divisions in the recording indus-
try” (p. 1), or simply, musical genre. They found that individuals with a
high sensation-seeking trait preferred Rock music.

Studies continued to investigate personality–genre relationships in greater
detail, but problems with using musical genres to classify and describe music
quickly became apparent. Aucouturier & Pachet (2003) provided a detailed
critique of genre categorization methods, noting that genres are far too broad
and inconsistently defined, leading to “ungrounded projections of fantasies”
(p. 83). Such inconsistencies are easily found within typical genres: Baroque
and Classical music are both distinct musical genres defined by the year in
which they were composed (Baroque between approximately 1600–1750, and
Classical between 1750–1800). In contrast, Love songs are defined by their
lyrical content; and Electronic music is defined by its instrumentation and
method of production. With just these few examples, we can see that some
genres are primarily defined by time-period, some by lyrical content, and
some by sound characteristics. Musical genre, while well-known and rec-
ognizable by both musicians and nonmusicians, requires outside knowledge
and subjective interpretation to be fully understood. Such interpretations
provide acceptable utility for use in recording industries but are highly prob-
lematic in scientific research. Music must be operationalized (i.e., defined
in a way that can be practically measured) in research. More importantly,
without being properly operationalized, musical stimuli cannot be systemat-
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ically manipulated in experiments; and therefore, causal relationships cannot
be reliably inferred.

New methods of analysis have attempted to refine how musical genre
could be used in research. Music dimensions were proposed by Rentfrow &
Gosling (2003). They recorded self-reported music preference ratings of indi-
viduals, then performed a principal component analysis to determine broad
musical categories, which they originally called “Music dimensions”. The
number of such categories has varied though, and depends on individuals’
age, culture, geographic location, and the timing of any particular study
(Rentfrow et al., 2011, 2012; Zweigenhaft, 2008). Most recently, these music
dimensions have been labelled as: Mellow, Unpretentious, Sophisticated, In-
tense, and Contemporary (which form the acronym: MUSIC). Each of these
dimensions consists of a few genres and have some very general musical qual-
ities associated with them. For example, Mellow music consisted of Easy
listening, Soft rock, and Electronica genres, and was described as relaxed,
slow, and romantic. Unfortunately, these dimensions do little to provide a
more objective interpretation of music than genre—they rely on subjective
judgments that can vary widely between individuals. Furthermore, these
dimensions do not lend themselves to experimental manipulation. For ex-
ample, if ‘Mellowness’ is a subjective measure, then how can it be reliably
varied as stimuli in an experiment?

Other alternative methods have also been proposed. Psychological at-
tributes of music were introduced by Greenberg et al. (2016). They inves-
tigated 38 psychological attributes of music that reduced to three principal
components in their analysis. The perceived attributes were musical char-
acteristics such as aggressive, reflective, sad, and intelligent, and the three
components were depth, arousal, and valence. While these attributes pro-
vided more consistent descriptions of music, many are still highly subjective.
For instance, human judges must determine the “intelligence” of a piece of
music, a process which is likely influenced by culture, age, and musical train-
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ing. Subjective biases influence how psychological attributes describe music,
which in turn, also affects how reliably these attributes could be manipulated
in experiments.

One alternative stands out among these methods. A study by Eerola et al.
(2013) used musical cues to investigate perceived emotion in music. They
described musical cues as “properties inherent in the music itself” (p. 1),
which consisted of Mode, Tempo, Dynamics, Articulation, Timbre, Register,
and Musical structure. Moreover, they were able to manipulate these cues
in a study to see how they affected the perception of Scary, Happy, Sad, and
Peaceful music. Clear conclusions could be made from their investigation.
For example, slow tempi were associated with the perception of Sad music,
and fast tempi were associated with the perception of Happy music.

Later work, by Grimaud & Eerola (2022), described musical cues as being
structural and expressive cues used by composers and performers to encode
emotion in music. Their study used an ‘analysis-by-synthesis’ method where
participants varied the level of musical cues in real-time to express different
emotions. Their findings also showed clear relationships between musical
cues and emotion. For example, participants used fast tempo and bright
timbre to express Joy and Surprise in musical excerpts. The approach in
both of these studies showed that certain musical descriptors can be defined
and reliably manipulated. Viewing the problem from a music production
standpoint, that is, how composers and performers vary music to express
emotion, provides a promising solution for music preference research.

There is growing evidence that musical cues could be used in music
preference research. A study on listening behaviour supports this idea.
Barone et al. (2017) investigated acoustic features of listeners’ preferred and
non-preferred genres. Their analysis consisted of data from a large music-
download database (similar to Spotify). Users’ preferred genres were inferred
from their playlists. Acoustic features were computationally extracted from
tracks in the database and consisted of features like Loudness, Tempo, and
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Valence. Their results showed that tracks outside of a user’s preferred genre
were also preferred if they had similar acoustic features. This suggests that
listeners might prefer specific features within music rather than broad music
genre categories.

Another study, by Flannery & Woolhouse (2021), attempted to directly
explore this possibility. Building on both the musical cues used in emotion
research, and the acoustic features found in behavioural listening data, the
idea that MAFs related to music preference was tested. It was found that,
indeed, certain features in music were preferred over others (e.g., fast tempo
over slow tempo), and personality factors interacted with these preferences
(e.g., participants high in Extraversion preferred loud dynamic over soft dy-
namic, those low in Extraversion did not). While the results from this study
showed that MAFs are a viable method in music preference research, further
work is needed to formally establish how MAFs are defined and how they
should be used.

The above approaches have started to satisfy some of the limitations of
genre approaches: musical cues can be reliably manipulated and acoustic
features can be objectively measured. However, some limitations remain.
First, musical cues and acoustic features are only loosely connected. While
Tempo appears in both methods, it is measurable and manipulable, other
musical cues like Timbre do not have a clear objective measure. Likewise,
many acoustic features, like Danceability, are not easily manipulable. Ideal
features must be selected that have the advantage of being both objectively
measurable and manipulable. Second, ideal features must be confirmed to
be readily perceivable by participants to ensure the reliability of their effects.
Intended manipulations, objective measures, and perceived effects should all
correspond. The work that follows in this thesis addresses these limitations.
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Present Study

The present study was designed to formally define and determine a series of
features within music that can be used for experimental purposes. Based on
the limitations of musical genre classification and the potential benefits of
musical cue and acoustic features outlined above, we had determined that
such ideal features must possess the following qualities:

1. The feature must be manipulable. It must be possible to systematically
produce music that varies along a given measure.

2. The feature must be measurable. It must be possible to determine the
level of a feature by analysis of a digital audio input.

3. The feature must be readily perceivable. Manipulated levels and objec-
tively measured values must correspond with perceived differences in
musical stimuli.

These criteria will ensure that features are properly operationalized. Each
will be defined in how it is objectively measured, how it is to be manipulated
in experimental procedures, and how it is interpreted by listeners in musi-
cal and psychological contexts. Since these features are rooted in both the
acoustic properties of an audio signal and their musical interpretation, and
given the terminology established by Flannery & Woolhouse (2021), these
features are referred to as ‘Music Acoustic Features’ (MAFs).

The first requirement, that a MAF is manipulable, was used as the start-
ing point of the investigation. We chose candidate features from the exist-
ing studies that successfully used musical cues as manipulable features (i.e.,
Eerola et al., 2013; Flannery & Woolhouse, 2021). The potential features
were: Articulation, Dynamics, Mode, Register, Tempo, Timbre, and Musi-
cal structure. To facilitate the experiment’s design, we chose to use features
that could be manipulated in a continuous manner. For example, a stimulus’s
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Tempo could range from 60 to 120 beats per minute (bpm). Musical Mode
is usually either major or minor, but is often difficult to define (sometimes
the intended mode is not what is perceived by a listener). For this reason,
Mode was removed as a potential feature. Musical structure was removed as
well since it broadly captures many potential sub-features, such as phrasing
and repetition, and would drastically increase the scope of our analysis. We
identified one additional feature that had not been used previously, musical
Texture. The resulting features of interest, and a basic description of how
they sound, are a follows:

• Articulation: refers to how quickly a note is played. Staccato notes
are played quickly, their duration is very small, so the notes sound
short and disconnected from each other. In contrast, Legato notes are
held until the next note sounds, so notes sound like they are smoothly
connected1.

• Dynamic: refers to how soft or loud the music is played. The intensity,
or volume, of the music is affected, Soft dynamics contain notes that
are low volume, and Loud dynamics contain notes that are high volume.

• Register: refers to the pitch, or frequency, of the notes played (either
an average pitch, or pitch range). Low register contains low frequency
notes, High register contains high frequency notes.

• Tempo: refers to the speed of the music and is measured in beats per
minute (bpm). Slow tempi have few bpm, Fast tempi have many bpm.

• Texture: refers to the number of notes/instruments that are played.
Sparse texture consists of few notes/instruments, Dense texture con-
sists of many notes/instruments at once.

1A detailed description and musical examples of articulation can be found here: https:
//en.wikipedia.org/wiki/Articulation_(music).
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• Timbre: refers to the type of sound an instrument makes. It can be
described in many ways, but for the purpose of this experiment, timbre
is described as the music’s brightness. Some instruments sound Dark
while others sound Bright.

The next requirement was MAF measurement. The fields of audio en-
gineering and computer science have derived many features from the fun-
damental properties of sound waves. Furthermore, researchers have devel-
oped programming packages, libraries, and toolboxes to analyze digital audio
files and extract these features (e.g., The Essentia library, Bogdanov, Wack,
Gómez, et al., 2013; and MIR Toolbox, Lartillot & Toiviainen, 2007). In
general, features are divided into low-level features, like the frequency of a
sound; mid-level features, like the tempo of a musical excerpt; and high-level
features, like the sadness of an excerpt. It is important to note though,
that high-level features require advanced machine learning methods that po-
tentially reintroduce human biases into their decisions, and may not be in-
terpreted as completely objective (Alonso-Jiménez et al., 2020). Low- and
mid-level features are reliably measured with traditional algorithms, how-
ever, and thus remain objective. We chose to explore the capabilities of the
open source library Essentia. Essentia provides a collection of algorithms
that extract low to high level features from digital audio files.

A drawback of using these low-level features is they are often difficult to
interpret in a psychological context. To further complicate this problem, the
low-level extraction algorithm from Essentia produces close to 450 features
from a single audio stimulus. It is difficult to know which low- and mid-level
features might correspond to the MAFs of interest. Thus, we developed a
procedure to find Essentia features (EFs) that correlate with MAF manipula-
tion. This procedure involved: generating a training dataset of stimuli with
varying levels of each MAF, extracting low-level features using the Essentia
library, and analyzing correlations between low-level features and MAFs (the
procedure is detailed in the Methods section). The result of this procedure

8



M.Sc. Thesis – M. Flannery McMaster University – PNB

produced a predictive model for each MAF that could be used to analyze
other stimuli.

The final requirement was to show that each MAF is readily perceivable.
A listening experiment was designed where participants listened to short
musical clips and provided their subjective ratings of each MAF. To increase
the generalizability of the analysis, the stimuli used in this experiment were
musical clips taken from real-world recorded music.

Following on from the MAF criteria outlined above, this thesis consid-
ers the following hypothesis. MAFs are structurally similar to each other
by virtue of the fact that: 1) they are manipulable; 2) they are objectively
measurable; and 3) they are perceived in music by listeners (including non-
musicians). In order to test this tripartite hypothesis, a four stage process
was adopted:

1. Low-level EFs were identified that reliably covaried with manipulated
levels of each MAF;

2. For each identified EF, the level of the corresponding MAF was pre-
dicted from a given digital audio stimulus;

3. In a listening task, human participants were required to rate the level
of each MAF;

4. Using an identical stimulus set, MAFs predicted by EF models (from
Stage 2) and MAFs rated by participants (from Stage 3) were correlated
with one another.

9



II. Methods

The methods for this study are divided into four components: (1) Generate
training stimuli, (2) Essentia feature selection, (3) Real-world music analysis,
and (4) Listening task experiment.

Generate training stimuli

A collection of stimuli were generated containing each possible combination
of MAF–level manipulation. First a base stimulus was written in the open
source program, MuseScore (MuseScore Team, 2022). The base stimulus
(see Figure 1) is written in 4/4 time lasting seven measures. It contains four
separate voices, each with a monophonic melody (only one note per voice
was played at a time, the voices were played simultaneously). The notes
are written in the E mixolydian mode (closely related to the Major mode)
and centred around C4 (262Hz, also known as ‘middle C’) with a range
from E2 (41Hz) in the Bass voice to F#5 (740Hz) in the Soprano voice. A
program script performed manipulations to the instrumentation, tempo, and
dynamics.

Texture. The first manipulation was Texture because it had to be pro-
duced manually. Since Texture is related to the number of notes and in-
struments sounding in a section of music, these elements were manipulated
from the base stimulus. We created levels of sparse texture by removing
notes and/or entire voices from the stimulus. Dense texture was created by
adding notes. Figure 2 shows an example of resulting (A) sparse and (B)
dense stimuli. Four additional levels of Texture were created from the base
stimulus. To quantify the Texture of a piece, the total number of notes in the
stimulus were divided by the number of measures, giving an average number
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Figure 1: The base stimulus was written in the E mixolydian mode [indicated
by 3 sharps (#)] in 4/4 time and lasts 7 measures. There are four voices:
Soprano, Alto, Tenor, and Bass, which each indicate the general range of
notes (pitches) for the voice (Soprano contain high notes, Bass contain low
notes). While each voice only plays a single note at a time, all four play
together at the same time. Tempo, dynamic, articulation, or instrumentation
are not marked on the score as they are directly specified in subsequent steps.
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of notes per measure (npm). The five levels contained: 3.86npm (the sparsest
texture), 5.43npm, 7.14npm, 9.43npm, and 17.71npm (the densest texture).

Following the Texture manipulation, the five levels of texture were ex-
ported from MuseScore as Music Instrument Digital Interface (MIDI) files.
MIDI files hold the basic information of the stimuli, such as note onsets,
pitches, and tempo, and can be used as input to synthesized instruments to
create digital audio (either as live sound played from a speaker, or saved in
a file format). A python package, called Mido (MIDI Objects for Python,
Bjørndalen, 2022), can modify MIDI content and was used to perform the
remaining manipulations.

Articulation. Levels of articulation were created by modifying each
note’s start and stop commands in the MIDI files (as exported from the
Texture manipulation). By default, the MuseScore MIDI output is Legato,
so each note sounds until the next note begins. The note duration is 100%
of the distance between notes. Differing levels of Articulation were created
by multiplying the stop commands by a factor between 0.25 and 1 (which
created shorter notes). Four levels were produced: 0.25 (Staccato), 0.5, 0.75,
and 1.0 (Legato).

Dynamic. Levels of Dynamic were created by modifying the velocity
commands in the MIDI files. The velocity command informs a synthesized
instrument of how ‘hard’ an instrument is played (e.g., a low velocity piano
note will be soft and quiet, a high velocity piano note will be loud and harsh).
Velocity ranges between 0 (no sound) and 127 (as loud as possible). It was
explicitly set for each level of dynamic: 50 (soft), 80 (medium), and 120
(loud).

Register. Levels of register were created by modifying the pitch com-
mands in the MIDI files. In MIDI notation, each pitch is given a number
(e.g., E2 = 40, C4 = 60, F#5 = 78). Five levels of Register were created by
adding or subtracting from the values of each pitch: -12 (one octave below
the base stimulus), -7, +0, +7, and +12 (one octave above the base stimulus).

12
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Figure 2: Two Texture manipulations from the base stimulus are shown. Part
A is a sparse manipulation. The two inner voices and repeated notes were
removed, leaving this level with 3.86 notes per measure. Part B is a dense
manipulation. Several notes were added to all four voices, and produced a
level with 17.71 notes per measure.

13
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Tempo. Levels of Tempo were created by modifying the tempo command
in the MIDI files. The tempo command indicates how quickly notes are
played (expressed as microseconds per quarter note) in a section of music.
Four levels of Tempo were explicitly set (bpm values were automatically
converted to the MIDI time clock format): 70bpm (slow), 90bpm, 110bpm,
and 130bpm (fast).

Timbre. The Timbre manipulations were performed last. After the
MIDI commands were modified by the previous four MAF manipulations,
they were rendered to audio files (in .flac format). The rendering process used
the FluidSynth open source synthesizer (see https://github.com/FluidSy

nth/fluidsynth/wiki) with the General MIDI SoundFont2. The soundfont
includes approximately 193 sampled instruments. Four instruments were
selected based on perceived instrument brightness reported by McAdams
(2019). The four levels of Timbre were: Trombone (darkest), Piano, Guitar,
and Harpsichord (brightest).

The described procedure produced 4800 labelled stimuli (six factors with
3–5 levels each: 5 x 4 x 3 x 5 x 4 x 4) in audio (and MIDI) format that were
used to identify EFs.

Essentia feature selection

Essentia is an open source music information retrieval (MIR) tool (Bogdanov,
Wack, Gómez Gutiérrez, et al., 2013). It contains a collection of algorithms
for analyzing digital audio content. These algorithms perform basic input
and output of audio files, signal processing, filtering, and computation of
low-, mid-, and high-level audio descriptors. Although some algorithms are
capable of high-level descriptions of audio, such as genre and instrument iden-

2This synthesizer does not produce instrument sounds with the highest accuracy. It
was a convenient choice, though, as it could be run inside of a Python script, which was
necessary due to the quantity of stimuli.
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tification, the focus of this study was on low-level features, such as descriptors
that provide numeric values summarizing rhythmic, tonal, and spectral qual-
ities of audio. Essentia provides a general function, called ‘MusicExtractor’,
that can retrieve all low- and mid-level features from an audio file.

Using the provided MusicExtractor, each of the 4800 stimuli produced by
the generation process were analyzed. This resulted in a labelled data set
containing the unique MAF-levels of each stimulus, and the complete set of
extracted EFs.

The correlation between each MAF and each EF was then analyzed with
the linear model function in R (R Core Team, 2018). The R2 value was then
used to select correlated pairs for further analysis; if the R2 value was above
0.25, it was plotted and visually inspected to confirm there was a linear trend
between the values of the EF and the MAF.

The parameters of the optimal linear model for each MAF were then
recorded for use in the final two steps of the study.

Real-world music analysis

Clips of real-world music recordings were selected to be representative of the
possible variation within MAFs. For example, there should be a range of
Timbre from dark to bright, a range of Tempo from fast to slow, and so on.
Since these clips were intended to be analyzed with both the EF models and
in the listening task, they were selected to be relatively short and limited in
quantity. Forty-four clips, ranging from 7 to 25 seconds in duration, were
selected in total (listed in Appendix B: Tables 5 and 6). The stimuli were then
analyzed by the MusicExtractor algorithm described in the previous section.
Finally, the EF models were then used on the results of the MusicExtractor
to predict the MAF-levels.
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Listening task experiment

Participants

The listening portion of the study was conducted on the online platform,
Pavlovia. Participants were recruited through McMaster University’s Sona
system and were reimbursed with course credit (some additional participants
were recruited by email and word of mouth and were not reimbursed). In-
formed consent was obtained before participants started the experiment; and
a debrief was provided, consisting of contact information and details about
the study, when participants were finished. Ethics were approved by the
McMaster Research Ethics Board (MREB: #2524).

Apparatus

The experiment was presented entirely online in a web browser. The JavaScript
framework, JsPsych (De Leeuw, 2015), was used to code each portion of
the experiment: 1) welcome/consent form, 2) demographic questionnaire,
3) training session, 4) listening trials, and 5) follow-up questionnaire and
debrief. The questionnaires and stimulus response options are listed in Ap-
pendix A: Tables 2, 3, and 4. Participants were free to move through each
step of the experiment at their own pace. Instructions advised that par-
ticipants completed the listening tasks in a quiet area with either speakers
or headphones. Participants could freely adjust the volume of stimuli and
replay a stimulus unlimited times.

Procedure

Participants first answered a fifteen question demographic questionnaire (see
Appendix A: Table 2). A brief training session then introduced participants
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to each of the six MAFs. Each MAF was presented with a short description
and two audio examples of contrasting levels of the feature. For example, the
Register MAF included the text “This refers to your perception of the music’s
overall pitch height (i.e., frequency). Your responses can range from: very
low to very high.” Audio examples of very low register and very high register
were presented below the text. Participants could refer back to the MAF
terminology page and replay the examples, if needed, while completing the
rest of the experiment. The listening task followed the training section and
consisted of 44 trials. Each trial randomly presented one of the 44 real-world
stimuli described in the previous section along with a response questionnaire
(see Appendix A: Table 3). When the listening task was completed, a final
questionnaire (see Appendix A: Table 4) was presented to gather informa-
tion about the participant’s understanding of MAFs and their confidence in
responses.
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III. Results

Essentia feature selection

The MusicExtractor algorithm yielded 451 features for each of the 4800 gen-
erated stimuli. Analysis of linear models for each MAF–EF combination
returned 315 features with R2 greater than 0.25. Twenty-five features corre-
lated with Articulation, 7 with Dynamic, 33 with Register, 10 with Tempo,
27 with Texture, and 213 with Timbre.

Correlations for each MAF were plotted and visually inspected for linear
trends. An example of Tempo is shown in Figure 3. Even though several EFs
correlate with Tempo, only two demonstrated a clear relationship between
the MAF and the EF. In this example, the rhythm EFs onset rate (EFOR

3,
R2 = 0.27, p < 0.001) and bpm histogram first peak bpm (R2 = 0.53, p
< 0.001) were selected for further analysis. EFOR best showed a distinct
relationship with Tempo, low levels of EFOR corresponded with slow Tempo
and high levels of EFOR with fast Tempo.

The five remaining MAFs were analyzed with the following results: Ar-
ticulation negatively correlated with the low-level feature pitch salience

dvar (EFPSD, R2 = 0.43, p < 0.001), high levels of EFPSD corresponded
to staccato (spiky) Articulation and low levels of EFPSD to legato Artic-
ulation. Dynamic positively correlated with the low-level EF loudness

ebu128 integrated (EFLEI , R2 = 0.73, p < 0.001), low levels of EFLEI

corresponded to soft Dynamic and high levels of EFLEI to loud Dynamic.
Texture negatively correlated with the low-level EF spectral complexity

dmean2 (EFSCD, R2 = 0.33, p < 0.001), high levels of EFSCD corresponded
to dense Texture and low level of EFSCD to bright Texture. Timbre posi-

3The feature variable names relating Essentia output will be abbreviated throughout
the Results and Discussion sections
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Figure 3: Relationships are shown between the manipulated MAF Tempo
(X-axis) and the value of each EF (Y-axis). Colour indicates individual EFs.
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tively correlated with the low-level EF spectral spread median (EFSSM ,
R2 = 0.80, p < 0.001), low levels of EFSSM corresponded to dark Timbre
(e.g., Trombone) and high levels of EFSSM to bright Timbre (e.g., Harp-
sichord). Register required expanded analysis as the initial features per-
formed poorly in subsequent analyses. It was found that the low-level EF
spectral centroid mean (EFSCM , R2 = 0.14, p < 0.001), even though it
had a relatively weak positive correlation, produced reliable predictions when
analyzing the real-world stimuli. Low levels of EFSCM corresponded to low
Register, and high levels of EFSCM to high Register. The resulting model
coefficients are summarized in Table 1 and were used to predict features from
the real-world stimuli in the next step.

Table 1: EFs that best correlated with MAFs are listed below. The
parameter β0 is the model intercept and β1 is the EF coefficient. The listed
models were used to predict MAF levels from the real-world stimuli set.

MAF Essentia B0 B1

Tempo rhythm_onset_rate 72.776 17.783
Timbre log(lowlevel_spectral_spread_median) -27.080 2.014
Articulation lowlevel_pitch_salience_dvar 1.044 -158.305
Register lowlevel_spectral_centroid_mean -6.955 0.006
Texture lowlevel_spectral_complexity_dmean2 4.927 -0.829
Dynamic lowlevel_loudness_ebu128_integrated 197.736 3.309

Real-world music analysis

Each of the 44 external audio stimuli were analyzed by the Essentia MusicEx-
tractor used in the Section above (Essentia feature selection). The selected
Essentia models (listed in Table 1) were then used to predict levels of each
MAF according to Equation 1. In this notation, i refers to each of the six
MAFs, and j refers to each real-world music clip. The resulting MAFs were
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then normalized for each feature.

MAFij = β0i + β1i × EFij (1)

Listening task analysis

A total of 43 participants (ages ranged from 18 – 39 years, M = 21.95, SD
= 5.13) completed the entire experiment (there are no missing data) with a
median completion time of 29.06 minutes. There were no limitations on max-
imum experiment length and participants’ web browsers were not restricted
in any way, so some completion times were very high (1506 minutes). Other
completion times were very low (12.39 minutes), near the minimum amount
of time to listen to all stimuli (10.37 minutes). Four outliers were identified
and considered based on completion time. Additionally, other outliers were
considered based on reported confidence ratings. Participants were asked to
rate their understanding of each MAF and their confidence in MAF ratings
after completing the listening task (see Appendix A: Table 4). Two par-
ticipants (non-musicians) reported zero’s exclusively in both understanding
and confidence, and that the training section was not helpful. The complete
analyses were repeated on: the full data, completion time outliers (4 par-
ticipants) excluded, poor confidence outliers (2 participants) excluded, and
all outliers (5 participants) excluded. In all cases, the final results remained
stable (R2 did not change more than 0.07 in any condition). The following
analyses are reported on the full data, no participants were excluded.

Musicians were classified by participants’ self-reported years of musical
training4 which ranged from 0 to 12 years (M = 2.02). If participants had
more than two years of training they were classified as a musician (n = 15),
training under two years were classified as non-musician (n = 28). Aver-

4Participants were asked: “Have you ever had any formal music training? . . . if yes,
enter how many years of training.”
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age response patterns were identical between musicians and non-musicians
for 64% of ratings. The following analyses are reported on combined data.
However, differences between musicians and non-musicians are shown in Fig-
ures 4, 5, and 6.

Participants’ responses were analyzed by stimulus and MAF. For each
stimulus, the frequency of each selected MAF-level was counted, this accom-
modated multiple responses by a single participant for a single stimulus–MAF
combination (e.g., a participant could choose both ‘very low’ and ‘low’ Reg-
ister options for a stimulus). For each stimulus–MAF combination, the sum
of participant responses were calculated and the levels of each MAF with
the highest values were selected as the primary response for each stimulus.
For example, the Tempo response pattern of a single stimulus is shown in 4.
No participants chose ‘Very slow’ or ‘Slow’ for this stimulus, and the most
frequent response for both musicians and non-musicians was for the ‘Fast’
level of Tempo. Thus, the primary response (PR) rating was fast Tempo.

Comparison: EF predictions – MAF ratings

The final step of the analysis compared the primary response (PR) ratings
by participants to the predicted MAF levels by the EF models. A linear
regression of MAFEF predicted by MAFPR was used to examine each MAF
relationship. The resulting R2 values were used to determine how closely the
objective EF measure and the subjective PR measure aligned in predicting
levels of MAFs.

Articulation. The relationship between MAFPR and MAFEF (as pre-
dicted by the low_level EF pitch salience dvar) is shown in Figure 5.
This plot shows that when participants rated stimuli on the ‘Spiky’ end of
the response scale (X-axis), the stimuli were predicted to have low Articula-
tion values (Y-axis). The reverse was true when participants rated stimuli as
‘Smooth’, higher Articulation values were predicted. Articulation predicted
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Figure 4: Tempo responses for a single stimulus. The five possible responses
are shown on the X-axis, and the proportion of responses are shown along the
Y-axis. Proportions are shown by musician and nonmusician status in colour.
For this particular stimulus, no ‘Slow’ or ‘Very slow’ responses were recorded.
The maximum response was ‘Fast’ for both musicians and nonmusicians. The
maximum response for each MAF–stimulus were used in subsequent analyses.
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by participant rating was significant, F (4, 88) = 4.719, p = 0.002, with
adjusted R2 = 0.139.

Dynamic. The MAF–EF (the low_level EF predicted by loudness

ebu128 integrated) relationship for Dynamic is shown in Figure 5. Low
dynamic ratings corresponded to low dynamic predictions, and high ratings
with high predictions. Dynamic predicted by participant rating was signifi-
cant, F (4, 92) = 20.903, p < 0.001, with adjusted R2 = 0.453.

Register. The MAF–EF (the low_level EF predicted by spectral

centroid mean) relationship for Register is shown in Figure 5. Low register
ratings corresponded to low register predictions, and high ratings with high
predictions. Register predicted by participant rating was significant, F (4,
88) = 4.595, p = 0.002, with adjusted R2 = 0.135.

Tempo. The MAF–EF (the rhythm EF predicted by onset rate) rela-
tionship for Tempo is shown in Figure 6. Slow tempo ratings corresponded
with low tempo predictions, and fast tempo with high predictions. Tempo
predicted by participant rating was significant, F (4, 89) = 35.846, p < 0.001,
with adjusted R2 = 0.60.

Texture. The MAF–EF (the low_level EF predicted by spectral

complexity dmean2) relationship for Texture is shown in Figure 6. Sparse
texture ratings corresponded to low texture predictions, and dense ratings
with high predictions. Texture predicted by participant rating was signifi-
cant, F (4, 86) = 13.712, p < 0.001, with adjusted R2 = 0.361.

Timbre. The MAF–EF (the low_level EF predicted by spectral

spread median) relationship for Timbre is shown in Figure 6. Dark timbre
ratings corresponded with low timbre predictions, and bright timbre with
high predictions. Timbre predicted by participant rating was significant,
F (3, 93) = 5.016, p = 0.003, with adjusted R2 = 0.112.
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Figure 5: MAFs as predicted by EF models (Y-axis) compared to the most
commonly selected participant responses (X-axis) for Articulation, Dynamic,
and Register. The mean EF value is shown for musicians and nonmusicians
in colour.
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Figure 6: MAFs as predicted by EF models (Y-axis) compared to the most
commonly selected participant responses (X-axis) for Tempo, Texture, and
Timbre. The mean EF value is shown for musicians and nonmusicians in
colour.
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IV. Discussion

The purpose of this study was to establish MAFs for use in the experimental
study of music preference. The criteria for a MAF was to be objectively
measurable, manipulable, and readily perceivable by listeners. Six potential
MAFs were tested through this multi-step study. The first step systemati-
cally generated a labelled stimulus set. Each factor–level combination was
produced resulting in 4800 stimuli. The second step used the MIR tool set,
Essentia, to extract low-level features from the labelled stimulus set. Correla-
tions of these low-level features to each labelled stimulus were then analyzed
to determine which best-predicted the level of each MAF. In the third step,
EFs that best predicted MAFs in the example stimuli were used to predict
MAFs in forty-four real-world music clips. In the last step, participants in
an online study rated MAFs for the same forty-four stimuli. The results of
EF predictions and participant ratings on the real-world stimuli were then
compared for consistency.

The first step of the study showed that MAFs are manipulable. Articu-
lation was varied from ‘smooth’ to ‘spiky’ by modifying MIDI start and stop
messages. This manipulation is analogous to how composers indicate artic-
ulation in written music and how performers vary articulation while playing
instruments. Staccato is the musical term from short spiky notes. They are
played by quickly starting and stopping a note (e.g., picking a guitar string
and dampening the string so it does not ring until the next note is played).
Legato is the musical term for long smooth notes and are played by allowing
notes to sound until the next note is played (e.g., a guitar string rings until
the next note is sounded). Dynamic was varied from soft to loud by modi-
fying MIDI velocity messages. Composers mark musical notes, phrases, and
sections with dynamic markings, which are then read and performed appro-
priately. Piano means soft, notes are played gently at low volume (e.g., gently
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pressing a piano key produces a soft, low volume note). Forte means loud,
and are played by sharply producing notes at a loud volume (e.g., forcefully
hitting a piano key produces a sharp, loud volume note). Register was varied
by adding or subtracting from a base MIDI note value. MIDI note values
translate directly to musical note values. Tempo was varied by modifying
the MIDI tempo value. Composers usually describe the speed (e.g., Lento,
meaning slowly; or Allegro, meaning fast, quickly, and bright) or indicate
tempo in beats per minute (e.g., 50 beats per minute) at the beginning of
a piece and indicate when it should be changed throughout. Texture was
varied by changing the number of note onsets per measure, which approx-
imates how composers change texture in music5. Sparse texture in music
includes few instruments and few notes, while dense texture includes com-
paratively more notes and instruments. Timbre was varied by modifying the
synthesized instrument used to render MIDI output. Composers often write
with instrumentation in mind (e.g., solo flute with piano accompaniment),
and instruments have associated timbrel qualities (e.g., piano timbre is dark
compared to harpsichord, which is bright).

The second step of the study showed that MAFs are objectively measur-
able. Each MAF was correlated to a number of low-level EFs, and a single
EF could be identified as a best predictor: Articulation by pitch salience, Dy-
namic by EBU128 loudness, Register by spectral centroid, Tempo by rhythm
onset rate, Texture by spectral complexity, and Timbre by spectral spread.

The third step of the study showed that MAFs can be predicted in real-
world music using specific EFs. It also provides evidence that supports the
assumption made in the stimuli generating process: that MAFs naturally
fluctuate in music—composers and performers vary these features between
and within their music. While the variability of MAFs is captured, this
step by itself does not verify the accuracy of the EF predictions. Since the

5Texture is not being referred to here in the music technical sense (e.g., monophonic,
homophonic, polyphonic, etc.).
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real-world music clips were not systematically generated with corresponding
labels (as in step one), there is no ‘correct’ level for comparison. Instead, the
EF predictions are compared to the subjective ratings by listeners in step
four.

The fourth step of the study showed that MAFs are readily perceivable.
Listeners provided subjective ratings for MAFs within the external stimuli.
As noted in the third step, this provides evidence that MAFs vary between
and within music, but does not provide any accuracy relating to a ‘correct’
level for a particular stimulus. The accuracy of subjective ratings are com-
pared to the EF predictions in step three.

The final comparison of MAF ratings to EF predictions ties the three
criteria of MAFs together. Each MAF has an established method of pro-
duction relating to real-world music and performance techniques that can be
approximated by the manipulation methods described in this study. The EF
predictions, which are trained on a ground-truth of systematic MAF manip-
ulation; and the MAF ratings, which are the result of a perceptual process by
listeners; converge for the real-world music clips. This shows that both ob-
jective and subjective measures can be used to quantify MAFs in real-world
music.

Revisiting the hypothesis outlined in the Introduction, we conclude the
following:

1. Low-level EFs were identified that reliably covaried with manipulated
levels of each MAF;
This stage was supported, a subset of low-level features significantly
correlated with each manipulated MAF.

2. For each identified EF, the level of the corresponding MAF was pre-
dicted from a given digital audio stimulus;
This stage was supported, optimal EFs were chosen that produced a
model which predicted MAFs from real-world music.
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3. In a listening task, human participants were required to rate the level
of each MAF;
This stage was supported, participants were able to consistently rate
MAF levels in a listening task with real-world music.

4. Using an identical stimulus set, MAFs predicted by EF models (from
Stage 2) and MAFs rated by participants (from Stage 3) were correlated
with one another.
This final stage was also supported, MAFs predicted by EFs and MAFs
rated by participants significantly correlated in their analyses of real-
world music.

The criteria specified to establish MAFs are satisfied by the results of this
study. MAFs were successfully produced with varying levels in the stimulus
generation procedure. MAF levels were objectively measurable from these
stimuli and in real-world music. MAF levels were also perceivable by partic-
ipants who listened to real-world music. Lastly, each of these criteria were
shown to be linked together, when MAFs are manipulated in music, both
objective measures and perception consistently follow.

Limitations and future directions

There were a number of challenges to overcome in designing this study. First,
the number of stimuli required to represent the full range of levels within mul-
tiple MAFs increased exponentially as factors were added. In this case, six
factors, with just a few levels each, resulted in 4800 stimuli for a single ex-
ample. The stimulus generation process was automated for five of the six
features and helped make this process manageable. It did, however, take
considerable computational resources. It would be beneficial to further im-
prove the generation process to create a more varied ground-truth training
dataset. Additional levels of Timbre should be added. The four used in
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this study were chosen to represent a range of brightness, but Timbre varies
in many dimensions (e.g., descriptors other than bright/dark have been ex-
plored: warm/cold, full/thin, soft/hard, etc., Wallmark & Kendall, 2018)
and instruments regularly combine to produce unique Timbres in real-world
music.

The number of base stimuli should also be increased. The example used
in the study was a relatively simple two- to four-voice harmony. The use
of complex stimuli that vary dynamics and combine different instruments
would more accurately represent real-world music. Similar to improving the
generation process, increasing the number and variety of training stimuli
would also contribute to more robust predictive EF models.

A second challenge was in selecting models that predicted MAFs from
EFs. The models used in this study were simple linear regression models
that predicted a MAF from a single EF. More sophisticated algorithms exist
that likely produce better predictions than single parameter linear regres-
sions. For example, methods such as Convolutional Neural Networks, Deci-
sion Trees, and k-Nearest Neighbours have been trained on low-level features
of music, or even only the spectrogram of a piece of music, to predict musical
genre with classification accuracy above 90% in some cases (e.g., Bahuleyan,
2018; Ndou et al., 2021). These methods could be trained to, instead, pre-
dict MAFs in a similar manner. Increasing the accuracy in which MAFs
are identified in music by EFs would strengthen Step three of the methods
in the present study, and potentially improve the overall relationship with
participant ratings.

The training portion of the experiment procedure may not have been
adequate. While the majority of participants reported that the training
was “Very helpful” (n = 23), their understanding and confidence ratings
were relatively low (averages per MAF ranging from 1.42/5 to 3.02/5). The
listening task explicitly asked participants to rate each MAF and was likely
overwhelming for many participants. This may have caused participants to
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guess in some cases. In future experiments, it might be better to use a
dissimilarity rating task where participants only rate one MAF at a time. In
such a task, participants simply rate how similar or different two stimuli are.
Analyses of participants’ responses then determine how differing levels of the
stimuli were perceived. By simplifying the listening task, participants may
provide more reliable data that would strengthen Step four of our methods
and improve the overall relationship with EF predictions.

Despite the challenges listed above, this study has established a reliable
method to assess MAFs. Moreover, the methods described here were de-
signed to be modular, where each of the four steps can be improved upon
individually and their overall improvements compared. For example, if the
EF selection step was modified to include a new machine learning algorithm,
the entire analysis could be rerun to compare how the MAF–EF relationship
is affected. Furthermore, new potential MAFs, other than the original six
outlined here, can be easily tested using the present procedure.

The MAFs developed here, and the potential to identify more MAFs with
further investigation, provide a compelling tool for future research. Since
MAFs have been linked to objectively measurable features extracted by Es-
sentia, any existing audio can be analyzed. It might be possible to describe
abstract music concepts, such as genre, in a more objective way. For instance,
how are MAFs commonly used in Rock music compared to Classical music?
Are there certain MAFs that are similar and others that are drastically dif-
ferent? Perhaps this may explain why an individual only likes some Rock
music and some Classical music—they like the MAFs of specific songs.

MAFs can also be used to describe music in other ways. A large portion
of digital music has considerable data associated with it (e.g., release year,
sales, region, popularity, etc.) which can be included with MAF analyses.
What MAFs are present in the most, or least, popular songs? How have such
MAFs evolved over the years and decades? Answers to questions like these
can provide insight into how people have listened to music over time and
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place.
Lastly, since MAFs are manipulable, the insights gained through the type

of analyses described above can be empirically tested. If we hypothesize
that some factor(s) of individual people, for example personality traits, are
linked to preference for specific MAFs, we can test our predictions in a well-
controlled experimental setting.

Conclusion

This study focused on a long-standing issue in music preference research: the
inability to classify and describe music. Genre has typically been used for this
task, but interpretation of genre requires subjective and arbitrary decisions
that are problematic for operationalization in music research. Furthermore,
experimental manipulation of genre cannot be reliably performed, which lim-
its the strength of conclusions researchers can make about its effects. Music
acoustic features were proposed as a solution to these problems. They are ob-
jectively measurable from the information within digital audio stimuli (which
can include real-world music). They are manipulable, as individual MAFs
can be varied in level through compositional, performance, and digital audio
techniques. And they are readily perceivable, listeners can explicitly identify
and rate MAFs within real-world music. Furthermore, identification of per-
ceived MAFs and objectively measured MAFs converge when compared for
a single audio stimulus.

By establishing MAFs based on these criteria, we can design experiments
to determine causal effects of music. We can also be confident that the
musical stimuli we base our conclusions on are objectively described and
have musical and psychological meaning to listeners. By focusing on MAFs
as a foundational tool in research, we can gain new insight into how subtle
differences in music affect our listening experiences.
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VI. Appendix A

Table 2: Participants answered the following demographic questions before
beginning the experiment.

Item Question

00 What is your age?
01 What is your handedness?
02 Do you have colour blindness?
03 What is your gender?
04 Have you ever had any formal dance training?
05 Approximately how often do you dance?
06 What style(s) do you dance?
07 Have you ever had any formal music training?
08 Do you play a musical instrument and/or sing?
09 What is your principle instrument?
10 At what age did you start playing?
11 Including time spent rehearsing, approximately

how many hours a week do you play/sing?
12 What type of music do you usually play?
13 How many hours per week do you listen to music?
14 What types of music do you listen to?
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Table 3: Participants completed the following questionnaire while/after
listening to each musical clip. The instruction, “Please rate the musical clip
by selecting from the options below. Note: you may select more than one
response”, was displayed at the top of the page. A prompt and five options
were listed for each MAF. Participants could select more than one option.

Item MAF Prompt Options

00 Articulation The articulation is: Very smooth, Smooth, Medium,
Spiky, Very spiky

01 Dynamic The loudness is: Very soft, Soft, Medium,
Loud, Very loud

02 Register The register is: Very low, Low, Medium,
High, Very high

03 Tempo The speed is: Very slow, Slow, Medium,
Fast, Very fast

04 Texture The texture is: Very dense, Dense, Medium,
Sparse, Very sparse

05 Timbre The sound-colour is: Very dark, Dark, Medium,
Bright, Very bright
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Table 4: Following the training and listening portion of the experiment, par-
ticipants answered questions relating to their understanding and confidence
of ther responses.

Item Question Options

00 How difficult was the listening task? Very easy, Easy, Average,
Difficult, Very difficult

01 Did you find the musical term definitions Not at all helpful,
and examples helpful? Somewhat helpful,

Very helpful,
They made no difference,
I skipped the examples

02 How would you rate your understanding of Poor, Below average,
each of the musical terms? Average, Good, Excellent
Speed
Loudness
Register
Articulation
Texture
Timbre

03 How confident were you in the responses Not confident, Somewhat
you provided for: confident, Confident,
Speed Very confident
Loudness
Register
Articulation
Texture
Timbre
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Table 5: Real-world stimuli used in comparison analyses (continued in Table
6). Songs were clipped from the ‘Start’ to ‘End’ point (in seconds). For
each clip, MAFs were predicted by Essentia feature models and were rated
by participants in the listening task. Songs can be accessed online by the
provided links (append the link as: https://youtu.be/<link>).

ID Song Start End Link

01 Frozen Crown - Battles In The Night 5 22 kVHZ6yVOkUE
02 Ariana Grande - Positions 0 7 xuOOAQoDKN0
03 Erik Nielsen - Sketches III Staccato 5 15 9R9xRrXJRMQ
04 Blur - For Tomorrow 198 218 J77C9ODFflw
05 Lady Gaga - Alejandro 23 33 06MV87zoZaY
06 Abhi Mujh Mein Kahin - Sonu Nigam 97 109 3Iq3j3L06rQ
07 Lord Huron - The Night We Met 0 15 KtlgYxa6BMU
08 Jaco Pastorius - Full album 6 22 pvjHT8Lepz8
09 Jaco Pastorius - Full album 1049 1057 pvjHT8Lepz8
10 Jaco Pastorius - Full album 1605 1615 pvjHT8Lepz8
11 Bach - Organ Sonata No4 0 13 h3-rNMhIyuQ
12 Grandson - Blood Water 57 67 LsHYFQgQxpw
13 In Flames - The End 72 80 yafxUluB6DA
14 Interstellar - Cornfield Chase 0 16 mykUt3yhZWA
15 Interstellar - Cornfield Chase 32 40 mykUt3yhZWA
16 Iced Earth - Phantom Opera Ghost 344 353 9ZyE2V-BQqc
17 Iced Earth - Phantom Opera Ghost 363 373 9ZyE2V-BQqc
18 Dunwich Beach - Autumn 10 25 cznwjb859PE
19 Cannons - Hurricane 0 10 LZ2kSbSrDLs
20 Pacifica Quartet - Bartok String 13 25 aBs53SlEkso

Quartet No. 4
21 Sapna Jahan - Nigam, Mohan 342 362 iFq73v_cdTk
22 In Flames - Moonshield 0 16 AmcC9aJkBlw
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Table 6: Continuation of stimuli described in Table 5.
ID Song Start End Link

23 Cannons - Bad Dream 120 137 Fz4axHOyccQ
24 Yes - Relayer 9 24 quPoq2699Xo
25 Snarky Puppy - What About Me 15 30 fuhHU_BZXSk
26 Epic Low Brass - The Rains of 55 76 z9WAH0ZaKTw

Castamere GoT
27 Billie Eilish - bad guy 0 14 4-TbQnONe_w
28 Brian Eno - Thursday Afternoon 15 32 TTHF2Dfw1Dg
29 Agar Tum Saath Ho - Yagnik & Singh 75 87 OGI0fNvr4fo
30 Apocalyptica - Path 14 28 m9xqO9kKqyk
31 Yes - To Be Over 0 15 bf52nD8ELcc
32 System Of A Down - Atwa 0 15 nVZ8tRlcZhA
33 Jhene Aiko - The Worst 0 22 npB9gNLC2_g
34 Opeth - Prologue April Ethereal 30 55 _gVqVYeztDk
35 Rone - Bye Bye Macadam 141 161 kfoJUeyMsOE
36 Rone - Bye Bye Macadam 0 20 kfoJUeyMsOE
37 Robert Miles - Children 0 13 CC5ca6Hsb2Q
38 Robert Miles - Children 210 220 CC5ca6Hsb2Q
39 Mcbaise - Water Slide 0 11 n11j73OYqOY
40 Mcbaise - Water Slide 178 198 n11j73OYqOY
41 Rone - Origami 1 16 hVv331iLMXM
42 Rone - Origami 58 71 hVv331iLMXM
43 Lorn - Acid Rain 0 17 nxg4C365LbQ
44 Lorn - Acid Rain 50 59 nxg4C365LbQ
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