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Lay Abstract

Chronic pain (CP) is a global burden and the primary cause for patients to seek

medical attention. Despite continuous efforts in this area, CP remains clinically

challenging to manage. The most effective method of treating CP is identifying the

underlying cause or mechanism, which is often unattainable. This thesis attempted

to identify the CP mechanisms existing in a patient while quantifying them from

patient-reported history and questionnaire data. Unsupervised Learning was used to

identify clinically meaningful clusters that revealed the three main CP mechanisms,

i.e., Nociceptive, Neuropathic, and Nociplastic, achieving acceptable hamming loss

(0.43) and average precision (0.5). The results exhibited that the CP mechanisms

co-exist and CP should be regarded as a continuum rather than distinct entities. The

algorithm successfully indicated the dominant CP mechanism, a goal for optimal CP

management and treatment. The results were also validated by a comparative analysis

with data from another cohort that demonstrated a similar trend.
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Abstract

Chronic pain (CP) is a personal and economic burden that affects more than 30% of

the world’s population. While being the leading cause of disability, it is complicated to

diagnose and manage. The optimal way to treat CP is to identify the pain mechanism or

the underlying cause. The substantial overlap of the pain mechanisms (i.e., Nociceptive,

Neuropathic, and Nociplastic) usually makes identification unreachable in a clinical

setting where finding the dominant mechanism is complicated. Additionally, many

specialists regard CP classification as a spectrum or continuum.

Despite the importance, a data-driven way to identify co-existing CP mechanisms

and quantification is still absent. This work successfully identified the co-existing CP

mechanisms within a patient using Unsupervised Learning while quantifying them

without the help of diagnosis established by the clinicians. Two different datasets

from different cohorts comprised of patient-reported history and questionnaires were

used in this work. Unsupervised Learning (k-prototypes) revealed notable overlaps in

the data. It was further emphasized by the outcomes of the Semi-supervised Learning

algorithms when the same trend was observed with some diagnosis or class information.

It became evident that the CP mechanisms overlap and cannot be classified as distinct

conditions. Additionally, mixed pain mechanisms do not make an individual cluster

or class, and CP should be considered as a continuum.
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To reduce data dimension and extract hidden features, Autoencoder was used.

Using an overlapping clustering technique, the pain mechanisms were identified. The

pain mechanisms were also quantified while elucidating overlaps, and the dominant

CP mechanism was successfully pointed out with explainable element. The hamming

loss of 0.43 and average precision of 0.5 were achieved when considered as a multi-label

classification problem.

This work is a data-driven validation that there are significant overlaps in CP

conditions, and CP should be considered a continuum where all CP mechanisms may

co-exist.
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Chapter 1

Introduction

The abundance of healthcare data and rapid progress in analysis techniques has caused

the healthcare sector to experience a paradigm shift [1]. However, this large amount

of available data is often difficult for clinicians to process and help guide clinical

decisions, thus, often left unutilized. Advances in techniques (e.g., Machine Learning)

allow efficient information extraction from an enormous amount of data and can

aid clinical decision-making. Different Machine Learning (ML) and Deep Learning

(DL) techniques are currently being applied in clinical diagnoses, prognosis, epidemic

outbreak prediction, drug discovery, and development [1–3].

This thesis explores the application of Unsupervised Learning and Semi-supervised

Learning on chronic pain (CP) data to identify clinically meaningful clusters of patients

identifying CP mechanisms. The following sections introduce the motivations for the

exploration, field and method overview, including the hypothesis, evaluation overview,

and thesis outline.
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1.1 Motivation

This section discusses the motivation behind this work from the perspectives of CP

and ML.

1.1.1 Chronic Pain

Pain is considered a major global healthcare problem and one of the most prevalent

causes for patients to seek medical attention [4–6]. Global estimates suggest that one

in five adults suffer from pain, and another one in 10 adults are diagnosed with CP

every year [5]. More than 1.5 billion people worldwide live with CP [7]. According

to the United States Pain Foundation, 50 million American adults live with CP,

and it is the leading cause of long-term disability [8]. It is also the main cause of

accessing the healthcare system affecting one in three Americans, and in the US

alone, US$560 to US$635 billion is spent each year on CP treatments, disability

payments, and loss of productivity, excluding the cost of care for military personnel,

institutionalized individuals (e.g., prisoners or nursing home patients), and children

[8, 9]. The Canadian Pain Task Force (CPTF) report of 2020 estimated that 7.63

million or one in four Canadians aged 15 or older live with CP, which contributed to

the total direct and indirect cost of $38.3 to $40.4 billion in 2019 [10]. Although CP

and its associated diseases are not immediately life-threatening, it is a leading cause

of disability, and suffering [4, 5, 11].

Any pain that lasts for 3 to 6 months or more is addressed as CPs by the physicians

[12, 13]. CP can be induced by injuries, surgeries, nerve damage, infections, migraines,

bad posture or improper sitting and working position, sleeping on a poor mattress,

ordinary aging, or it may not be associated with a physical cause [14].
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CP can be categorized into three major categories [15–19]:

1. Nociceptive (from tissue damage)

2. Nociplastic (from a sensitized nervous system without evidence of tissue or nerve

damage)

3. Neuropathic (from nerve disease or injury)

However, many specialists regard pain classification as a spectrum or continuum

as there is significant overlap in the types of pain mechanisms within and between

patients [15, 18, 19].

1.1.2 Impacts of Chronic Pain

CP has an immense personal and economic burden affecting 30% of the world’s

population. CP prevalence rates vary from 11% to more than 40% [15]. In 2016, the

United States Centers for Disease Control and Prevention (CDC) estimated prevalence

at 20.4% (50 million adults) [20]. A systematic review of studies done in the United

Kingdom estimated the CP prevalence rate to be 43.5% (pooled). It also indicated

that CP affects between one-third to half of the population (approximately 28 million

adults) in the United Kingdom. This prevalence is expected to increase further with

an aging population [21]. Research suggests that women report greater frequency,

intensity, and duration of pain while men and women are suffering from the same

painful condition. A study among the Brazilian population showed that the prevalence

of CP in women was close to 50%, nearly double what was observed in men (28.36%)

[22]. According to CDC, higher CP prevalence rates are found in women, individuals

from lower socioeconomic backgrounds, rural areas, and military veterans [21]. The
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prevalence and CP-associated disability in low-income countries are higher than in

high-income countries [23].

Additionally, CP can have severe effects on a person’s daily life, including his/her

mental health. It becomes very difficult to lead day-to-day life for an individual with

CP, and it may also lead to temporary or permanent disability [11]. Additionally, it

can have critical effects on a person’s daily life, including some severe consequences,

including depression, anxiety, inability to work, disruption in social relationships, and

suicidal thoughts [5, 10]. According to the CPTF report of 2019 [24], many Canadians

lack access to appropriate pain management services, leading to poor early treatment

and aggravating problems with time.

The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) estimates

disability-adjusted life-years (DALYs: Years lived with disability or YLDs + Years of

life lost or YLLs) due to 369 diseases and injuries for 204 countries and territories in

2019 [25]. Chronic low back pain (cLBP) is one of the 10 most important drivers for

increasing the causes that had the largest absolute increases in the number of DALYs

between 1990 and 2019 and is common from teenage to old age [25]. The GBD in 2013

revealed cLBP as the single most significant contributor to the YLDs globally [13].

While CP can cause depression, anxiety, inadequate sleep, and unfavorable social

conditions, these issues can also induce CP conditions. Psychological factors affecting

the development of CP include depression, anxiety, emotional distress, and other

negative emotions. Psychological and physical trauma, catastrophizing, pain-coping,

lack of family and social support, level of education, race, age, sex, and genetics

are associated factors with CP that can also cause increased pain intensity, and

psychological distress [26, 22]. However, psychological distress and sleep problems are
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associated with pain and have a bi-directional association [15]. Moreover, CP also

impacts relationships and self-esteem, which is associated with higher divorce and

suicide rates [15, 27]. Furthermore, CP is associated with increased mortality [28].

However, it is debatable if CP is a pathologic entity or not [29]. Considering

the importance of CP management, it was recently recognized by the World Health

Organization (WHO) as a disease in its own right and implemented in revisions to the

current version of the International Classification of Diseases (ICD-11) that will lead to

improved classification and diagnostic coding [13, 24]. The International Pain Society

and Global Health Community addressed the failure to treat pain as an abrogation of

fundamental human rights, and pain management has been considered a basic human

right in international law since 2004 [30].

Although pain clinics focus on diagnosing and managing CP, there is only one

board-certified pain specialist for every 10,000 patients with severe CP. Patients receive

only 30% pain reduction of various available treatments [8]. Therefore, introducing

new efficient techniques to optimize CP treatments is crucial to offer the best possible

treatments with limited resources.

1.2 Machine Learning

Artificial Intelligence (AI) or ML is gradually transforming research in the healthcare

and biomedical domain and has led to man-machine collaboration in the healthcare

sector [3]. AI can enhance the precision of diagnosis, enable early prognosis, and aid

clinical decision-making while reducing healthcare costs [31, 2, 32, 33]. ML [34, 35] and

DL [36–38] techniques have been successfully applied in clinical predictive modeling.

However, DL-based methods require large and high-quality datasets to be generalizable
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and learn the underlying semantics of the inputs [39, 40]. DL models can provide

comparable or even better performance than medical experts in diagnosing particular

diseases if quality training samples are available [41–43, 3].

ML is a technique that employs data to imitate the human learning process by

automatically identifying patterns in the data. The uncovered patterns are then

utilized to derive, extract, classify, cluster, or predict information for unseen or future

data unveiling meaningful insights. Based on the amount of information given and

the type of learning, the algorithms can be subdivided into four main groups:

1. Supervised Learning (data labels provided),

2. Semi-supervised Learning (data labels are provided for a small subset of the

data, and the rest of the data are unknown or not labeled),

3. Unsupervised Learning (no data labels provided),

4. Reinforcement Learning (develops patterns based on positive and negative

rewards) [44].

Another approach is DL which is a part of a broader family of ML algorithms

based on Artificial Neural Networks (ANN) that is inspired by the brain. Information

is processed like interconnected brain cells where the learning can be supervised,

semi-supervised or unsupervised [45]. A suitable algorithm is selected or developed

for application depending on the available data and the objective.

1.2.1 Unsupervised Learning

Unsupervised Learning technique, commonly known as clustering, is one of the most

significant and primitive human activities that is used to inspect unrevealed insights
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by unscrambling a finite dataset having little to no ground truth, into a finite and

discrete set of naturally hidden data patterns or structures [46, 47]. In clustering, data

samples are grouped together on the basis of some innate similarities [46]. They are

often divided into two main categories based on their inherent techniques; hierarchical

and partitioning [46].

Nowadays, large amounts of data are being generated, and clustering is becoming

increasingly popular as it is a good way to deal with this amount of unlabeled

data [47]. Clustering techniques have been used in different areas of study, such as

computer science, engineering, astronomy, biology, geology, sociology, and economics

[47]. Clustering techniques are evident in literature for biomedical applications [48].

In biomedical research, clustering algorithms are used ubiquitously [49], such as

biomedical document mining, gene expression and genome sequence analysis, and

magnetic resonance imaging (MRI) data analysis. As clustering works well to extract

knowledge and insights from a large volume of data, it can be utilized in disease

prevention, early diagnosis, prognosis, and treatment [47].

1.2.2 Semi-supervised Learning

In Semi-supervised Learning, a small amount of labeled data and a relatively larger

amount of unlabelled data are used to perform specific learning tasks. It allows

leveraging the large amount of unlabelled data available, combining the smaller set of

labeled information. It combines Supervised and Unsupervised Learning in an attempt

to improve performance. For example, in a classification problem, additional instances

for which the label is unknown might be utilized, unlike Supervised Learning to aid in

the classification process. On the other hand, for clustering approaches, the learning
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technique might benefit from the true knowledge that certain instances belong to a

specific group [50].

1.3 Overview of the CP Field

Usually, CP conditions are divided into subtypes based on criteria defined by clinical

examinations, which consider anatomical locations and relevant symptoms overlooking

etiology [51, 52]. Additionally, these empirical classification approaches are limited

in scope and often disregard known pathophysiological mechanisms, leading to sub-

optimal treatment outcomes [51]. These can also add cognitive bias [53] in the diagnosis

affecting patient outcomes. Pain categorization can influence prognosis, diagnosis, and

treatment with the provision of services implications [15]. Thus, there is a need for an

unbiased and strategic approach to identify the exact mechanisms driving the pain

phenotype for improving CP treatment and management [54].

The CP categories stated in Subsection 1.1.1 are elaborated here.

Nociceptive pain Nociceptive pain is the most common form of CP. It is caused

by activity in neural pathways and is secondary to stimuli that might cause tissue

damage [55].

Neuropathic pain According to the International Association for the Study of

Pain (IASP), Neuropathic pain is a term used for a group of conditions caused by a

lesion or disease affecting the somatosensory nervous system [56]. About 15-25% of

people with CP are estimated to have Neuropathic pain [57].
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Nociplastic pain Nociplastic pain can be described as pain arising from the altered

function of pain-related sensory pathways in the central and peripheral nervous

system without any evidence of tissue damage or discrete pathology concerning the

somatosensory nervous system. The mechanisms causing Nociplastic pain are not

fully understood, but it is considered that augmented central nervous system (CNS)

pain and sensory processing, and abnormal pain modulation play major roles. It

can emerge in isolation or as a comorbidity with CP conditions that are primarily

Neuropathic or Nociceptive.

There are overlapping conditions characterized by Nociplastic pain with other

pain conditions [58, 59]. Usual descriptors for Nociceptive pain include terms such as

aching and throbbing, whereas Neuropathic pain is commonly described as lancinating

and shooting [15].

1.3.1 Challenges in Understanding CP and Treatment

Identifying the underlying cause is considered the most effective mode of management

and treatment for CP [53]. CP management is challenging to manage clinically, even

with the increase in potential treatments and individualized pain therapy along with

mechanism-based approaches [54]. Mechanism-based pain treatment is optimal, but

identifying the mechanisms behind the pain in clinical practice can be very difficult

or unattainable [15, 17]. Therefore, treatments are generally symptom-based or

disease-based [15]. The anatomic or radiographic diagnoses are not sufficient to guide

rehabilitative care without considering the underlying pain mechanism(s). Evaluation

of pain mechanisms can help personalize care and is a step forward in providing
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precision medicine to pain patients. Pain mechanism evaluation is guided by patient-

reported history, questionnaires, and potentially quantitative sensory testing (QST),

which is a psychophysical test. Though QST is being used to infer the presence of

pain mechanisms, it lacks norms to aid in interpreting findings and established test

metric standards [60, 61, 17].

A patient’s description of pain should be accepted as true in the absence of other

contradictory evidence, as pain is mostly subjective [15]. This is especially true when

pain is complicated to convey, as seen in patients with Nociplastic pain. Sometimes

there are associated subjective symptoms, and missing biomarkers make it even more

difficult to diagnose. As a result, physicians are often unable to reach high certainty

about the diagnosis, and consequently, patients are aggrieved that their symptoms

are doubted [58, 62]. Physicians might rely on other means like facial expressions or

imaging to assess pain and to identify causes [15]. However, pain diagnosis heavily

relies on or is based on clinical judgment. Therefore, it relies heavily on the experience,

skills, and available resources for assessment [56, 18].

1.3.2 Pain as a Continuum

The concept of mixed pain is increasingly being acknowledged suggesting that many

pain conditions have a blended pain phenotype and do not fall into one particular

category, i.e., clinically substantial overlap of Nociceptive and Neuropathic symptoms.

For patients with CP in primary care and orthopedic settings, the prevalence of pain

with mixed pathophysiology was estimated to be 59.3% [63, 64, 17–19, 65].

There is evidence of overlap of Nociceptive, Neuropathic, and Nociplastic pain or

mixed pain, implying these pains are part of a CP continuum. For example, a patient’s
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chronic low back pain may be a mixed pain consisting of Nociceptive, Neuropathic,

and Nociplastic components [58, 17–19, 65].

1.3.3 Best Practices in CP Management

Proper CP management and treatment can reverse functional and structural brain

abnormalities [66]. Tailored therapy for the patients to improve their quality of life

should be the goal of the treatment. Pain treatment guidelines have recommended a

personalized approach that uses a shared-decision model, as pain is a dynamic conse-

quence of biological, psychological, and social factors [15, 67, 68]. The US Department

of Health and Human Services 2019 report on Pain Management Best Practices sug-

gested a multidisciplinary approach should be taken for CP across different disciplines

using one or more treatment modalities. The report emphasized an individualized,

patient-centered approach, and the care should be based on the biopsychosocial model

[69]. A multimodal approach should be employed, which includes self-care, a healthy

lifestyle including exercise, proper nutrition, maintained sleep hygiene, smoking cessa-

tion, and ergonomic changes if needed. This may also include other treatments like

psychological therapies, opioid and non-opioid pharmacological therapies, and other

complementary treatments [15, 67, 69].

In theory, mechanism-based pain treatment is considered superior to symptom

or disease-based treatments as it focuses on the underlying mechanism of the pain.

Personalized multimodal and interdisciplinary treatment approaches that might include

psychotherapy, pharmacotherapy, integrative treatments, and invasive procedures are

often advised by clinical trials and guidelines. With adequate pain management,

neuroplastic changes might also be reversible. Additionally, emotional support systems
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and well-being can boost healing and diminish pain chronification [15].

1.4 The Gaps

Several studies have been administered in this field where only a few studies tried to

identify pain archetypes using clustering techniques [70–73, 51, 52, 54, 74]. Additionally,

most of the works only focus on a particular pain disorder or a small set of pain disorders.

Although the concept of mixed pain is recognized by clinicians and researchers, and

the prevalence of co-existing CP conditions is very high [15, 18, 19], there is no study

that leverages ML to identify mixed pain in patients. Additionally, there is no study

that tried to employ clustering techniques to identify clinically meaningful clusters to

reveal CP mechanisms and indicate the dominant mechanism. Moreover, “CP as a

continuum” rather than being distinct clinical conditions is yet to be validated in a

data-driven way.

1.5 Objectives and Research Question

As previously stated, biological pain mechanisms can be categorized into three classes

or categories, i.e., Nociceptive, Nociplastic, and Neuropathic [15, 60, 17–19]. However,

the identification of the mechanisms is not directly measurable but instead is inferred

from indirect assessments, which makes it more challenging to discern [60, 17].

Identification of pain mechanisms can improve personalized treatment by helping

both clinicians and physical therapists. The efficiency of an intervention can be

maximized if multiple pain mechanisms can be addressed simultaneously [19]. This

allows for prioritizing specific treatments based on the mechanisms reasoned to be
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involved rather than a general diagnosis. After identifying the pain mechanisms, the

next step is to provide treatment(s) targeting the present mechanisms. Unfortunately,

there is currently no tool to discern the relative roles of the pain mechanisms [60, 75, 19].

Additionally, it is feasible to use questionnaires to distinguish the pain mechanisms

[17]. Therefore, there is a need for an unbiased and strategic approach that can

utilize patient-reported history, and questionnaire data [10] to identify existing pain

mechanisms while quantifying them.

ML is yet to be explored to identify CP mechanisms. This thesis tries to answer

the following question:

“Can ML (i.e., unsupervised or semi-supervised) identify existing pain

mechanisms (i.e., Nociceptive, Neuropathic, and Nociplastic) in a CP

patient without the help of diagnosis and treatment information?”

To answer this question, Unsupervised Learning was applied to the patient-reported

questionnaire data to identify pain mechanisms without any diagnosis or treatment

information. Therefore, the objective of this thesis will be to develop a technique that

can extract clinically meaningful information from CP patient data in order to provide

clinicians with better information about the pain mechanisms to allow for better pain

management and treatment.

This thesis also tries to validate the notion of pain as continuum in a data-driven

way. The data should make separable clusters if there is no overlap in the data. If

the clustering cannot reveal separable clusters, then Semi-supervised Learning will

be employed to see if a small amount of class information (mechanistic classes) can

help the algorithm to identify mechanisms. The failure of Semi-supervised Learning

will suggest that the data has overlaps indicating co-existing CP mechanisms are
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significant. In this case, if an overlapping clustering technique exhibits overlapping

clusters, then it indicates CPs are not distinct conditions but a spectrum or continuum.

If pain can be clustered in different groups or categories (mechanistic classification)

other than the classical anatomical approach, then that could lead to optimized

treatment and management of CP, including the development of personalized/tailored

rehabilitation programs [19, 65]. As a result, the expected outcomes can be maximized

with the available resources. In addition to that, it has the potential to increase

effectiveness and satisfaction among patients, which is an essential factor in pain

management. This may also improve AI algorithms across other pain groups/cohorts

resulting in better resource allocation for hospitals, pain clinics, and rehabilitation

centres.

1.6 Evaluation Overview

AI has emerged as a great asset in medical applications, and its potential in medical

sectors is rising. Its abilities are now far beyond merely assisting doctors in providing

simple diagnoses [1].

This work investigates CP patients’ data using Unsupervised Learning to re-

veal clinically meaningful groupings and tries to explore the clusters in the light of

mechanistic CP classes. Then semi-supervised approaches were examined where the

algorithm benefits from true class information. Finally, a DL approach was tried to

extract features from data, and overlapping clustering was applied to identify CP

mechanisms and validate the notion of pain as a continuum. These methods are tested

and validated using suitable metrics.

As only patient-reported history and questionnaire data are taken into account,
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it is free from cognitive bias that might come from doctors’ diagnoses. If similar

groups can be found, it could be beneficial to understanding the medical condition

better or from a new viewpoint. If the clusters are clinically meaningful, i.e., represent

mechanistic classes of CP, it would aid doctors in faster decision making leading to

faster treatment and improved pain management. The dependency on a diagnostic

test gets minimized as only the questionnaire is involved [10, 68]. It can also help

better manage or treat the medical condition/s, which is necessary given the minimum

resources. In addition, it would be interesting to observe the generalizability and

consistency of the model by applying it to another set of similar data. Domain experts’

help was sought to validate the result of the algorithms in the clinical context.

1.7 Organization and Scope

The thesis has 8 chapters and is structured as follows: Chapter 2 presents the literature

review in view of theoretical background, relevant works, and a scoping review with

gap analysis on the relevant research.

Chapter 3 gives a description of the data used in this thesis with analysis with

visualizations.

Chapter 4 gives an overview of the use of the ML algorithms used in this work.

Chapter 5 describes the model implementations and evaluations, whereas Chapter

6 presents the results.

Chapter 7 discusses the experimental validation, interprets the results, and expands

upon the potential of the interpreted results along with the limitations.

Finally, Chapter 8 presents conclusions and discusses directions for future work.

The author brings to the reader’s attention that part of this thesis was published
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in 2022 [76]. This publication is made by the author of this thesis, as the lead author,

in collaboration with his supervisor at McMaster University and co-authors at UHN.

The scoping review of the related literature and identifying the gaps in the areas of

CP with ML application in Chapter 2 and the following chapters are the contributions

that have only been published in this thesis.
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Chapter 2

Literature Review

This chapter is divided into three main parts. The first part presents the theoretical

backgrounds relevant to this thesis (Section 2.1). The second part presents a literature

review focused on the approach taken for this study (Section 2.2), and the last part is

a scoping review on the current state of AI in the field of CP following the guidelines

for scoping review [77]. The scoping literature review titled “AI in Chronic Pain”

tries to summarize the current trends in the use of AI in CP (diagnosis, prognosis,

clinical decision support, self-management, and rehabilitation) during the last 10 years

(2012-2022) while identifying gaps. The scoping review is summarized in four stages:

planning, screening protocol, conducting, and reporting the review. The scoping

review is presented in Section 2.3.

2.1 Theoretical Background

This section gives a theoretical overview of the used steps and techniques in this thesis.

17
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2.1.1 Data Preprocessing and Analysis

2.1.1.1 Data Preprocessing

Data preprocessing is a vital step in improving data quality and preparing data for

analysis. Unfortunately, real-world data are influenced by negative factors such the

inconsistent and superfluous data, the presence of noise or outliers, errors, discrepancies

in codes or names, and duplicates. Low-quality data leads to low-quality ML/DL

models. Data preprocessing includes data cleaning such as handling the removal of

noise and inconsistent data), missing data handling, data transformation into forms

that are appropriate for the ML models, feature selection and extraction, etc. [78].

Feature Scaling Independent features present in the data are standardized or

normalized in a range using feature scaling techniques. With few exceptions, ML

algorithms don’t perform well if numerical features have different scales. Feature

scaling is especially important for classifiers that calculate distances between data, such

as Support Vector Machines, k-nearest neighbors (k-NN). Without scaling, features

with larger numerical values have a more significant effect on the distance and dominate

other features when calculating distances.

There are two common ways to get all numerical features to have the same scale:

min-max normalization and standardization.

1. Min-max normalization: This technique re-scales feature values ranging from 0

to 1.

2. Standardization: It re-scales the feature values so that the resulting distribution

has a unit variance distribution with 0 mean value.
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Standardization is less affected by outliers than normalization. However, unlike

min-max normalization, standardization does not confine values in 0 to 1 range which

may create issues for some algorithms (e.g., ANNs often expect input values ranging

from 0 to 1) [44].

2.1.1.2 Descriptive Statistics

Descriptive statistics acts as an initial descriptor of the data and provides simple

summaries about the sample and the observations made. It is a summary statistic

that summarizes and describes features quantitatively from a dataset. It consists of

methods for organizing, visualizing, and describing data using tables, graphs, and

summary measures [79]. Here the central tendency (mean, median, or mode) of

datasets is reported. Three measures of dispersion or spread, i.e., range, standard

deviation, and interquartile range, have been reported as well [80].

2.1.1.3 Histogram and Barchart

A histogram gives an approximate representation of the frequency distribution of

numerical features or data. It is constructed using ‘bin’ with a range and putting the

values inside the range or intervals to make columns. The bins are adjacent without

any gap and are mostly of equal size [81]. In order to indicate the original variable is

continuous, the rectangles of a histogram touch each other [82].

While a histogram is used for continuous data, a bar chart plots a graphical

comparison of categorical variables. It is recommended that bar charts should have

gaps between the rectangles to clarify the distinction [82, 83].
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2.1.1.4 Correlation Heatmap

Correlation is the measure of how two features are correlated with each other. The

standard correlation coefficient or Pearson correlation coefficient is calculated and

plotted as a heatmap [84]. Pearson correlation coefficient is the ratio between the

covariance of two variables and the product of their standard deviations. For this, it

always has a value between −1 and 1 where the negative value indicates a negative

correlation and the positive value indicates positive correlation [85].

2.1.1.5 Outlier Detection and Removal

The data points that differ significantly from others within a given dataset are

considered outliers [86, 87]. Outlier detection is a fundamental issue in data mining

and ML [88]. Identifying outliers and eliminating them is vital for building stable

ML models. It is a standard practice in ML problems as it helps to make better

assumptions about the data to uncover the underlying pattern of the machine learning

algorithms [89, 88].

The anomalies or outliers may result from typos, i.e., misplaced decimal points,

transmission errors, or during exceptional cases or circumstances, e.g., health data

from a patient with a rare disease that can add irregularities in the measured data.

Sometimes, only a few outliers can distort the group results by altering the mean and

variance or by increasing the standard deviation of data. Studies have shown that

data analysis considerably depends on how outliers or missing values are handled [89].

This work uses a standard and widely used descriptive statistical method called

interquartile range (IQR) to identify any outliers from the density distribution of the

features. It is based on the mean and variance of each group of data and is defined as
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the difference between the 25th and 75th percentiles of the data. To calculate IQR,

the feature is divided into quartiles via linear interpolation. Plotting boxplots are

particularly helpful in visualizing the distribution of normal and outlier data points

[90, 89, 88].

Boxplot A boxplot or box-and-whisker plot shows quantitative data distribution to

facilitate comparisons between variables or across levels of a categorical variable. It

shows the quartiles of the variable while the whiskers show the rest of the distribution

while pointing out the ‘outliers’ using an inter-quartile range method [91].

2.1.1.6 Missing Data Handling

Missing data not only leads to significantly inconsistent results by the ML algorithms

but also to the scientific soundness of the study being compromised. It is also important

to know why the values are missing. In many cases, all the samples with missing

values are deleted, which causes information loss. Adding reasonable estimates of

missing data is better than removing the sample or leaving it untreated [92, 78].

To resolve this issue, imputation techniques are used. The goal of imputation is to

fill the missing points of the variables with intuitive data. Imputing missing values

with central tendency measures of features such as mean, median, or mode are simple

and widely used [92]. For a feature or column, the mean is the average of all values in

the column, where the median is the middle number (sorted by size), and mode is the

most frequent numerical value. However, imputing missing data with mean or median

values can only be done with numerical features, whereas mode imputation can be

done with numerical and categorical features. One issue with these techniques, they

ignore relationships with other variables [92]. However, it is not recommended to use
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the mean imputation if the distribution of the feature is skewed or contains outliers

[93].

2.1.2 Unsupervised Learning

Clustering approaches are usually divided into a few types, including hierarchical,

centroid-based, distribution-based, density-based, and self-organizing maps. However,

clustering techniques are highly dependent on the types of data in use [94]. The

clustering algorithms in the scope of this thesis are discussed below:

2.1.2.1 k-prototypes

k-prototypes is a partitioning-based clustering method. It is an improvement from

the k-means and k-modes clustering techniques to handle clustering with mixed data

type [95]. Like k-means, it measures the distance between numerical features using

Euclidean distance, but it measures the distance between categorical features using the

number of matching categories as well. The k-prototypes algorithm is more useful than

k-means and k-modes as real-world data mostly hold mixed-type objects [95]. The

features with categorical variables need to be filtered carefully for the implementation

of the algorithm. Besides that, the quality of the input data may affect cluster

initialization.

The k-prototypes algorithm defines k virtual points or prototypes as the centers

of the groups or clusters. For the numerical variables, these prototypes are repre-

sented by mean values, and for categorical variables, the prototypes are represented

by mode values. The dissimilarity between two mixed-type objects A and B can

be measured by d using equation 2.1.1. A and B are expressed by n number of
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features Xr
1 , X

r
2 , ..., X

r
p , X

c
p+1, ..., X

c
n where first p features are numeric and the rest

are categorical (n− p).

d(A,B) =

p∑
j=1

(ai − bi)2 + γ

n∑
i=p+1

δ(ai, bi) (2.1.1)

Here, the first term denotes the squared Euclidean distance (is useful for comparing

distances) measurement for the continuous variables, and the second term calculates

the simple matching dissimilarity measure on categorical features [96]. This measure

is defined by

ds(A,B) =
m∑
i=1

δ(ai, bi) (2.1.2)

where

δ(ai, bi) =

0 (ai = bi)

1 (ai 6= bi)
(2.1.3)

To avoid favoring any type of feature, i.e., numerical and categorical, the weight γ

is used. This can either be user-specified or estimated by a combined variance of the

data describing the influence of the categorical versus numerical features. Hence, the

distance measure is a linear combination of the Euclidean measure and the simple

matching coefficient.

The goal is to minimize the objective function, which is the total sum of distances

dT between the instances and the prototype of the belonging class ul:

dT =
k∑

l=1

∑
a∈Cl

(
p∑

i=1

(ai − ul,i)
2 + γ

n∑
i=p+1

δ(ai, ul,i)

)
(2.1.4)
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The initial k prototypes are selected as temporary centers of the clusters, then each

instance is assigned to the closest prototypes. After allocating all the instances, the

prototypes are updated to represent their optimal clusters. After that, the instances

are reallocated to the updated prototypes if necessary, and the process is repeated till

the partitions become stable [97].

The workflow of the algorithm can be described in a few steps [98]:

1. Randomly initializes k cluster prototypes (one for each cluster).

2. For each instance/data point in the dataset:

2.1 Allocate each instance to the cluster whose prototype is closest according

to equation 2.1.1.

2.2 Update cluster prototypes of the corresponding cluster after each allocation

to be the new center of the data points in the cluster.

3. If no data points are left to be assigned to a cluster:

3.1 Recalculate the similarity of all instances against the current prototypes.

3.2 If a data point is closer to another prototype than the clusters it belongs

to, reassign the data point to that cluster and update the prototypes of

both clusters.

4. Repeat steps 2-3 until no data points have changed clusters in step 3.2 or the

maximum number of iterations set by the user has been reached.
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2.1.2.2 Fuzzy C-Means Clustering

Lotfi A. Zadeh introduced fuzzy sets as an extension of the classical notion of set where

the set elements have degrees of membership [99]. Fuzzy C-Means is an extension of

the k-means algorithm [100], with the concept of fuzzy sets. Unlike k-means, clusters

are not considered mutually exclusive partitions, but flexible sets that can overlap

some of the other clusters. All the instances are assigned to all the clusters, but a

weight vector determines the membership level of belonging to the clusters. Partially

overlapped properties can be described by adjacent clusters where a given instance can

have a non-zero weight for multiple clusters. The degree of membership is determined

by the magnitude of the weight.

In clustering techniques like k-prototypes where a data point can only belong or

assigned to one cluster are referred to as hard or crisp clustering. This restriction is

relaxed for fuzzy clustering, and an instance can belong to all of the clusters with a

certain degree of membership [101, 94]. If the clusters are overlapping and ambiguous,

this is very useful. Additionally, the memberships may help uncover more sophisticated

relations between a given data point and the disclosed clusters [94].

The fuzzy c-means or FCM [102] is one of the most used fuzzy clustering algorithms

[103]. FCM attempts to find c fuzzy clusters for a set of data points aj ∈ <d, j = 1, ..., N

while minimizing the cost function

J(U,M) =
c∑

i=1

N∑
j=1

(ui,j)
mDij (2.1.5)

where U = [ui,j ]c×N is the fuzzy partition matrix and ui,j ∈ [0, 1] is the membership

coefficient of the jth object in the ith cluster; M = [m1,m2, ...,mc] is the cluster

prototype (mean or center) matrix; m ∈ [1,∞) is the fuzzification parameter and
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usually is set to 2 [129]; Dij = D(xj,mi) is the distance measure between xj and mi.

We summarize the standard FCM as follows, in which the Euclidean or L2 norm

distance function is used.

1. Select appropriate values for m, c, and a small positive number ε. Initialize the

prototype matrix M randomly. Set step variable t = 0.

2. Calculate (at t = 0) or update (at t ≥ 1) the membership matrix U by

ut+1
ij =

(
c∑

l=1

(
Dlj

Dij

)(1−m)−1)−1

(2.1.6)

for i = 1, 2, ..., c and j = 1, 2, ..., N .

3. Update the prototype matrix by

mt+1
i =

(
N∑
j=1

(
ut+1
ij

)m
xj

)/( N∑
j=1

(
ut+1
ij

)m)
(2.1.7)

for for i = 1, 2, ..., c.

4. Repeat steps 2–3 until ‖M t+1 −M t‖ < ε.

FCM suffers to produce good results in presence of outliers. Additionally, if

the initial cluster centers are not optimal it may also result in sub-optimal clusters.

Algorithm k-means++ can use for optimized center initialization [94, 104]. It is

developed by augmenting k-means with a randomized seeding technique to obtain a

faster algorithm (O(log k)) compared to k-means along with the optimal clustering.

In k-means++, the first center is randomly chosen from input data with uniform
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distribution. Then, the probability P of being center is calculated for each data point:

Pi =
D(xi)∑N
j=0D(xj)

(2.1.8)

where D(xi) is distance from point i to the closest center. Based on these proba-

bilities, the next center is chosen. This step is repeated till the required amount of

centers is initialized. k-means++ can be used for optimal center initialization for the

FCM algorithm [105].

2.1.3 Semi-supervised Learning

2.1.3.1 Self-training

Semi-supervised Learning has some popular models and one of them is self-training

[106]. Self-training performs Semi-supervised Learning using the model itself as a

pseudo labeler. It reinforces the understanding of the model by iterating through the

samples.

Self-training inspired by Yarowsky [107, 106], can help a supervised classifier to

function as a semi-supervised classifier and allow it to learn from unlabeled data

[108]. One of the main advantages of self-training is it is simple and not ambiguous.

Additionally, it is a wrapper method as the choice of learner method is left open for

the user [106].

Support Vector Machines Support Vector Machines (SVMs) are a set of popular

ML methods for classification, regression, and other learning tasks. SVM classifier or

Support Vector Classification (SVC) [109] is a much-prevailing classification algorithm

defined by a separating hyperplane. It produces support vectors and tries to maximize
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the Euclidean distance (margin) between the data points and the decision boundary.

It is a non-probabilistic classifier and it performs well in case of a small number of

samples [110, 109, 111]. SVMs are effective in high dimensional spaces, the number of

samples is smaller than the number of dimensions, and different kernel functions can

be used for the decision function, e.g, polynomial kernel. However, if the number of

samples is significantly smaller than the number of features, it is important to avoid

over-fitting by choosing proper kernel functions and regularization term [112].

As SVMs can only solve binary classification problems, in the case of multi-class

classification, it utilizes the one-versus-one scheme by fitting all binary sub-classifiers.

Then it assigns a class to samples by a voting mechanism [113].

Support Vector Machine (SVM) is a well-established classification algorithm,

defined by a separating hyperplane. It produces support vectors and tries to maximize

the Euclidean distance (margin) between the data points and the decision boundary.

It is a non-probabilistic classifier and has the hinge loss function which measures the

number of misclassified data examples. In this work, Support Vector Classification

(SVC) with polynomial kernel was used. It belongs to the SVM family and used for

two-class and multi-class problems. For a given training vector x, the polynomial

kernel is given by (γ 〈x, x′〉 + r)d where γ defines the influence of a single training

example, r is the correlation coefficient, and d denotes the degree [109, 112].

2.1.3.2 Label Propagation

Label Propagation is a semi-supervised graph inference algorithm that is used for

classification tasks. It works by constructing a similarity graph over all instances in

the input dataset.
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Zhu and Ghahramani [114] proposed a simple iterative label propagation algo-

rithm to learn from both labeled and unlabeled data. Labels are propagated with a

combination of random walk and clamping. Similar to other similar Semi-supervised

Learning algorithms, label propagation works as intended if labeled data reveals the

structure of the data distribution to fit the classification goal. It is known by Label

Propagation [115].

Zhou et al. [116] proposed another label propagation-based algorithm to learn from

labeled and unlabeled data. Often referred to as Label Spreading, is a Semi-supervised

Learning approach to design a classifying function, sufficiently smooth with respect to

the inherent structure revealed by labeled and unlabeled data points from the entire

dataset [117].

Both of these two algorithms work by constructing a similarity graph over all

items in the input dataset. But, they differ in modifications to the similarity matrix

that graph and the clamping effect on the label distributions. Clamping allows the

algorithm to change the weight of the true labeled data. Label Propagation algorithm

performs hard clamping (clamping factor α = 0) of input labels. This can be relaxed,

e.g., α = 0.3, 70% of the original label distribution will be retained where the algorithm

changes its confidence of the distribution within 30%.

Label Propagation employs the raw similarity matrix constructed from the input

data, whereas, Label Spreading minimizes a loss function with regularization properties

making it more robust to noise. Label Spreading utilizes affinity matrix based on the

normalized graph Laplacian and soft clamping across the labels [118].

Label Propagation computes a similarity matrix between samples with a k-nearest

neighbor (k-NN) kernel to propagate samples and produce a sparse matrix with
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significantly reduced running times. It can be expressed by 1[x′ ∈ kNN(x))] where k

is number of neighbours.

2.1.4 Dimension Reduction and Feature Extraction

Dimension reduction is a fundamental technique for visualizing high dimensional data

and pre-processing it for ML algorithms [119]. In high-dimension, data can have highly

correlated and redundant features, and all dimensions do not necessarily contain an

equal amount of useful information. The goal of dimension reduction is to retain

the most possible information about the data while representing the data with fewer

features in lower dimensional latent space or embedding space.

Feature selection (FS) and feature extraction (FE) are two major aspects of ML.

Feature selection keeps only the relevant or distinguishing features, while feature

extraction uses some transformations to generate novel and useful features from the

original ones. Both play significant roles to the effectiveness of clustering algorithms

[120, 94].

The right FS method or a combination of FS method/s and ML algorithm/s

including clustering can significantly improve the efficacy, reduce overfitting, and

enhance the computational efficiency of the overall system [121, 122]. FE can not only

help in dimensionality reduction but also help in data visualization. Overall, these

methods can decrease the computation time and simplify the ML process [94].

2.1.4.1 Uniform Manifold Approximation and Projection

Uniform Manifold Approximation and Projection (UMAP) is a manifold learning

technique for data visualization and non-linear dimension reduction for ML. It can
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preserve more of the global structure and faster than commonly used t-Distributed

Stochastic Neighbor Embedding (t-SNE). UMAP also ensures that the local structure

in the data is preserved in balance with global structure [119].

However, like t-SNE, the relative size of clusters and distances between the clusters

in lower dimension might not be meaningful due to using local distances when

constructing its high-dimensional graph representation [123].

2.1.4.2 Artificial Neural Network

There are several different types of neural networks, including convolutional neural

networks (CNN), and RNN [124]. A generalized workflow of an ANN is described

here. A typical ANN consists of different layers [124]:

1. input layer

2. one or more hidden layers

3. output layer

The nodes or neurons of each layer usually represent the number of features.

Similar to the human brain, the nodes are mapped through links called “synapses”

to the nodes of the hidden layers and finally to the output layer. These links are

associated with weights representing feature strength that help to decide which feature

should be passed to the subsequent layers. An ANN can adjust the weights by learning

through an optimization process, i.e., Adam is a computationally efficient optimization

algorithm which is a stochastic gradient descent method that is based on adaptive

estimation of moments [125].
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Activation functions such as sigmoid, tangent hyperbolic (tanh), Rectified Linear

Unit (ReLU), and leaky version of a ReLU (LeakyReLU) which allows a small gradient

when the unit is not active [85]. The nodes of the hidden layers utilize activation

functions on the weighted sum of inputs and then map them to the outputs holding

the predicted values. When the weights get adjusted, the output layer constructs a

vector of probabilities for the outputs, and the one with the minimum error rate is

chosen.

The training of an ANN is an iterative task where it tries to minimize the error,

e.g., mean squared error (MSE) which computes the mean of squares of errors between

labels and predictions to adjust the weights. In order to learn sparse features or

internal representations while reducing overfitting, regularizers are used. It also

improves the model’s generalizability to new observations. For example, there are layer

weight regularizers that allow to apply penalties on layer activity or parameters during

optimization. These penalties are summed into the loss function e.g., L2 regularizer

(the sum of the squared values) [126]. The errors are backpropagated into the network

from the output layer in order to find the most optimal values for errors, and the

weights are adjusted accordingly. This is repeated several times while the weights are

re-adjusted until there is an improvement in the predicted values or the cost. This

can be done efficiently by ‘Early Stopping’, which stops training when a monitored

metric has stopped improving [127]. When the cost function is minimized, the model

is trained.

Dimension Reduction for Clustering Most clustering algorithms are susceptible

to the data dimensions due to unreliable similarity metrics and suffer from the ‘curse

of dimensionality’ [94, 128, 129]. The term ‘curse of dimensionality’ denotes the
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complexity growth for multivariate function estimation under a high dimensional space

[130].

Especially, distance-based clustering algorithms may not be effective in a high

dimensional space as there is no difference between the distance of the nearest points

from other points when the dimension is high enough [94, 131]. Transforming the

data to a lower dimension is vital for clustering to make the high-dimensional data

manageable for the algorithms while being computationally less expensive. Unfor-

tunately, dimension reduction incurs information loss, may distort real clusters and

impairs interpretability [94, 128].

However, high-dimensional data usually have an inherent dimension considerably

lower than the original [94]. Considering the data have some low-dimensional latent

representation, autoencoder can be used to get such representations consisting of fewer

features compared to the high-dimensional feature space [129].

Autoencoder An autoencoder (AE) is a type of ANN that is designed to encode

the input into a compressed and meaningful representation and then reconstruct it

back by decoding in a way that the reconstructed input is as similar as possible to

the original input [129]. AE can be used as a generative model, data denoising, and

dimensionality reduction. While Principal Component Analysis (PCA) is a linear

projection of data points into a lower dimensional space, non-linear methods, such as

AE, can often achieve superior results. The encoded latent representation can be used

as features for classification, and clustering techniques as well [124, 132, 128, 129].

The goal of AE is to capture the most important features present in the data. AE

is composed of two parts:

Encoder The encoder part of the network transforms the inputs into a latent-space
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representation while keeping the most important features. It can be defined as

h = f(x) where f is a function that takes x as input and transforms or maps x

into the latent space representation h.

Decoder The decoder part uses the latent representation of the inputs with the aim

of reconstructing the inputs. It can be presented as x′ = g(h) where g is a

function that takes h as input to construct x′ with the objective of making x′ as

similar as possible to x.

The AE (encoder and decoder) can therefore be described by the function g(f(x)) =

x′. AE’s objective is not just copying the input into the output but generating the

h such that it holds the important properties of the dataset that can be utilized for

further analysis. To be able to extract only important features from the given data, a

set of constraints can be set on the function that generates h in order to achieve the

resulting form with smaller dimensions than x. As a result, the quality of representing

the most important features relies on the constraints defined on h. When h allows a

good reconstruction of x then it has retained most of the information present in the

input [124].

There are several variations of AEs. An illustration of an AE network architecture

is shown in Figure 2.1. However, a multi-layer under-complete AE is often used for

feature extraction to be utilized by classification or clustering algorithms [128, 129].

This type of AE has more than one hidden layer and has a smaller dimensional h

compared to the input layer (x). It is particularly helpful as additional internal hidden

layers can extract the hidden features better and smaller dimensional h force the AE

to capture the most salient features of the input data [128].

To use the low-dimensional latent feature representation as features for clustering
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Figure 2.1: Illustration of an AE network architecture. It has an encoder on the left
and a decoder on the right. Here h is the latent representation or the bottleneck.

or classification algorithms, the AE is trained similarly to ANN. Then, the decoder is

put aside, and the output from the encoder is used as the features for the clustering

or classification algorithms [124, 132, 128, 129].

2.1.5 Performance Evaluation

2.1.5.1 Performance Evaluation of Unsupervised Learning

Performance evaluation of a clustering algorithm is more complex than counting the

number of errors or the precision and recall of a supervised classification algorithm.

In particular, the absolute values of the cluster labels should not be considered by an

evaluation metric. The goal should be to check if the clustering defines separations

of similar data points to the ground truth set of classes (if available) or satisfies

assumptions according to the defined similarity metric/s, such as members of a class

being more similar than members of different classes. The evaluation metric used for
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clustering is presented here, separated into two types based on the availability of the

true class information.

Rand Index and Adjusted Rand Index Rand index (RI) is a similarity measure

between two clustering’s assignments [133]. A variation of RI is adjusted Rand index

(ARI) [134] corrects the RI for agreements due to chance. However, the RI remained

a popular clustering validity index as it has a simple and natural interpretation [135].

The knowledge of ground truth or true labels is necessary to compute these indexes.

Similar clusterings have a high RI and ARI, where 1.0 is the perfect score. The score

ranges are [0, 1] for the RI and [−1, 1] for the ARI. For RI, 0 indicates that the two

data clusterings do not agree. For ARI, a lower score means poor agreements like

RI, but a negative score the agreement is less than expected from a random result

[136, 137].

Adjusted Mutual Information Adjusted Mutual Information (AMI) originated

from information theory which measures the agreement of the two clusterings. It is

normalized against chance, similar to ARI [137, 138].

Ground truth or true labels are needed to compute AMI. The AMI is in [−1, 1]

where bad or independent labeling results in negative scores, random label assignments

score close to 0, and 1 indicates equal or perfect assignments [136]. Unlike ARI, when

the ground truth clustering has unbalanced clusters, including small clusters, AMI

provides a better comparison with a high AMI score representing pure clusters [139].

Homogeneity and Completeness Rosenberg [140] defined two objectives, i.e.,

homogeneity and completeness, which are two objectives of any cluster assignment.
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Homogeneity is satisfied when all clusters contain instances that are members of a

single class, and completeness is satisfied when all the instances that are members of

a given class are members of the same cluster.

Homogeneity and completeness also require knowledge of the ground truth classes.

Both can range from 0.0 to 1.0. A higher value indicates a better clustering result.

Increasing the homogeneity of a clustering assignment often results in decreasing its

completeness [140, 136].

Fowlkes-Mallows Index The Fowlkes-Mallows index (FMI) is expressed as the

geometric mean of the pairwise precision and recall. Though it was introduced as

a measure for comparing hierarchical clustering, it can be used for other clustering

methods.

To be able to calculate FMI, the true class assignments of the samples should be

known. FMI score can range from 0 to 1, where values close to 0 indicate largely

independent label assignments and values close to 1 indicate significant agreement.

However, this measure has an issue in the case of small numbers of clusters where the

value is very high, even where the clusterings are independent [140, 137, 136].

Silhouette Coefficient Score Silhouette coefficient score helps to interpret and

validate the consistency within clusters [141]. It is a measure of how similar an instance

is to its own cluster in comparison to other clusters. The silhouette coefficient is

defined for every sample in the data based on two scores:

1. Mean distance between a sample and all other samples in the same cluster.

2. Mean distance between a sample and all other samples in the next nearest

cluster.
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When the ground truths are not known, this measure helps to evaluate the clustering

model’s performance by applying it to the results of a cluster analysis. For a set of

samples, the silhouette coefficient is given as the average of the silhouette coefficients

for each sample [136, 141].

It ranges from [−1, 1] where a higher score indicates better-defined and dense

clusters. A negative score refers to incorrect clustering, and scores close to 0 indicate

overlapping clusters [136].

Davies-Bouldin Index Davies–Bouldin index (DBI) is a metric for evaluating

clustering algorithms defined as the average similarity measure between clusters. Here

the similarity measure is the ratio of within-cluster distances compared to between-

cluster distances. The validation of how well the clustering performed is made using

quantities and features of the dataset by computing only point-wise distances [142].

True class information is not needed to calculate DBI. It is applied to the results

of a cluster model where 0 is the lowest possible score. Scores closer to 0 indicate

better partitioning referring clusters are further apart [136].

Finding Optimal Number of Clusters Finding the optimal number of clusters is

a necessary step for an Unsupervised Learning or clustering algorithm. Two methods

in the scope of this thesis are discussed below.

Elbow Method The elbow method considers the percentage of explained vari-

ation or dispersion as a function of the number of clusters. If plotted against the

number of clusters, the variation changes rapidly at the beginning for a small number

of clusters. At some point, the change slows down (less variance), leading to an angle

38

https://orcid.org/0000-0001-8395-347X
http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – A. Khan; McMaster University – Electrical and Computer Engineering

or elbow formation in the graph. The optimal number of clusters is selected at this

point [143, 144].

This method usually uses the sum of squared errors (SSE) or within the sum of

squared errors (WSSE) as a performance metric, traverses the number of clusters (k

values), and finds the elbow point [143]. The inflection point should be evident for the

k value to be determined. For k-prototypes to find the optimal number of clusters,

the cost function (sum distance of all points to their respective cluster centroids) that

combines the calculation for numerical and categorical variables is used instead of

SSE or WSSE [145, 146].

Average Silhouette Score Another criterion for estimating the natural number

of clusters is the average silhouette score of the data [141]. To determine the optimal

number of clusters, the average silhouette coefficient is calculated for all the samples for

different numbers of clusters. As the silhouette score close to 1 indicates appropriate

clustering, the number of clusters that yields the largest average silhouette score is

considered as the optimal number of clusters [147].

2.1.5.2 Performance Evaluation of Semi-supervised Learning

Parameter Tuning The parameters which are not directly learned during training

by the classifiers are called hyper-parameters. It is often passed as arguments to the

constructor of the estimator or classifier classes, e.g., C, kernel, and gamma for SVC

[148].

It is recommended to search for the best set of hyper-parameters that gives the

best cross-validation score. Grid search is a commonly used way that exhaustively

considers all parameter combinations until a good combination of hyper-parameter
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values is found. Given a set of values for the hyper-parameters, it evaluates all the

possible combinations of hyper-parameter values using cross-validation [44, 149].

Accuracy and Balanced Accuracy Accuracy is the percentage of labels that a

classifier successfully predicted. It is defined by:

Accuracy =
TP + TN

TP + FN + TN + FP
(2.1.9)

Here, TP represents the number of true positives, FP is the number of false

positives, FN is the number of false negatives, and TN is the number of true negatives.

Therefore, accuracy is the ratio of the sum of TPs and TNs out of all the predictions

[150].

Accuracy is not a good measure if the dataset is imbalanced. Balanced accuracy is

used to deal with imbalanced datasets, both binary and multi-class classifications. It

is the average of recall obtained on each class [151].

Precision Precision is a measure of the classifier of not labeling a negative sample

as a positive prediction. It is defined by the following equation:

Precision =
TP

TP + FP
(2.1.10)

where TP represents the number of true positives and FP is the number of false

positives.

40

https://orcid.org/0000-0001-8395-347X
http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – A. Khan; McMaster University – Electrical and Computer Engineering

Recall Recall or Sensitivity measures the classifier’s ability to find all the positive

samples. It is given by:

Recall =
TP

TP + FN
(2.1.11)

where TP represents the number of true positives and FN is the number of false

negatives.

F1-Score F1-Score combines precision and recall and is described as the harmonic

mean of them. It is a single metric that weights the precision and recall in a balanced

way such that a higher value is required for both metrics to increase the value of the

F1-Score. It is defined by:

F1-Score =
Precision×Recall
Precision+Recall

(2.1.12)

For multi-class classification, F1-Score is calculated for each class in a one-vs-rest

approach as opposed to an overall F1-Score (binary classification). Additionally,

unlike binary classification, there are no positive or negative classes for multi-class

classification problems. The TP, TN, FP, and FN are considered for each class

separately to calculate the measures mentioned above.

Support Support depicts the number of occurrences of each class in ground truth

or true labels.

Weight Weight considers both TP and FN counts for each class which is ignored in

the regular one-vs-rest confusion matrix [152, 153].
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The following aggregated metrics are calculated for the aforementioned metrics

(Precision, Recall, F1-Score) in the case of multiclass/multilabel classification tasks:

Micro Metrics are calculated globally by counting the total TPs, FNs, and FPs.

Macro Metrics are calculated for each label along with their unweighted mean.

Weighted Metrics are calculated for each label that returns the average weighted

by support. Label imbalances are taken into account in this case which may result in

an F1-Score that is not between precision and recall.

Samples Metrics are calculated for each instance and return their average. It is only

meaningful for multi-label classification where this differs from the accuracy score.

Confusion Matrix A confusion matrix (CM) is a two-dimensional matrix that

allows visualization of a classifier’s performance by representing the true labels in the

rows and predicted labels by the classifier in the columns [154].

For multi-class classification tasks where each instance can belong to a single class,

the confusion matrix is an essential tool for performance evaluation [152].

2.1.5.3 Performance Evaluation of Multi-label Classification

Hamming Loss Traditional accuracy measures cannot evaluate the performance of

a multi-class multi-label classifier as a misclassification is no longer entirely wrong

or right. If a subset of the actual classes is predicted correctly, then it should be

considered better than a prediction that contains no actual class [155].
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Hamming loss is one of the most used metrics to evaluate performance for multi-

label classifiers [156]. It is the fraction of incorrectly predicted labels. Hamming loss

considers the prediction error and the missing error (a relevant label not predicted by

the classifier) and normalizes over the total number of classes and the total number

of instances [157]. In other words, hamming loss only penalizes individual incorrect

predictions.

Hamming loss value ranges from 0 to 1 where a lesser value indicates a better

classifier [157].

Multi-Label Confusion Matrix In a multi-label classification task, each instance

can have multiple labels belonging to multiple classes. Multi-Label Confusion Matrix

(MLCM) is a variation of regular CM that precisely calculates performance measures

such as precision, recall, and F1-score for multi-label problems by extracting the accu-

rate TP, TN, FP, and FN information of each class without ignoring the combination

of true and predicted labels together. It also handles the possibility of not predicting

any labels for some or all of the true labels and adds an extra column to the CM as

‘No Predicted Label (NPL)’ case. Additionally, it also tackles the possibility of not

assigning any label by the classifier for some instances, which is added as an additional

row to the CM as ‘No True Label (NTL)’ [152].

The summation of each row is used for calculating the weighted average of the

performance measures. Unlike ‘Support’, ‘Weight’ in MLCM considers both TP and

FN counts for each class which is ignored in the regular one-vs-rest confusion matrix

[152, 153].
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2.1.6 Explainable AI and Interpretable AI

Often the results of the ML or AI-based solution cannot be understood or communi-

cated properly. Especially if the application is related to medical systems, it is a serious

issue. Therefore, Explainable AI (XAI) [158] for transparency in the decision-making

process by the AI model will be introduced. It is also to inject trust into the system

with proper reasoning while making it communicable and easier to understand. There

are methods that might be introduced to enhance model explainability by addressing

why a subject has been assigned to a particular cluster or a certain pain archetype.

The relevance between the hypothesized method and the currently used approach may

also be assessed.

SHAP (Shapley Additive Explanations) was introduced by Lundberg and Lee

[159] and is a famous method for explaining individual predictions based on the

optimal Shapley values in game theory. The predictor values of a data sample

act as players in a coalition where the Shapley value is the average of marginal

contribution of the predictor values across all possible coalitions. Submodular Pick-

Local Interpretable Model-Agnostic Explanations or SP-LIME is another method

that provides a global view of the model to users by selecting a set of representative

instances with explanations to address the trusting issue of the models [160].

The explanations by XAI are necessary for algorithmic fairness and identifying

potential bias in the training data and address why the algorithm made the decision

it took, but it does not describe how it arrived at that decision [160]. However,

interpretability aims to describe the internals of a system in a way human understands.

A system is considered interpretable if it produces simple descriptions using meaningful

vocabulary to make the user understood [161]. Interpretable AI clarifies how it arrived
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at the decision whereas the answer of ‘why’ comes from XAI.

Local Interpretable Model-Agnostic Explanations (LIME) is an explanation tech-

nique that helps to explain the predictions of any classifier or regressor in an inter-

pretable way by approximating the predictions locally with an interpretable model

[160].

2.2 Literature Review: Focus on Approach

2.2.1 Clustering in CP

Clustering is common in pain research [71]. In [72], E. Bäckryd et al. indicate that

clustering clinically important subgroups and the comparison of their responses to

any interventions is a significant area of research. In terms of pain-related data, it

is difficult to know the true cluster structure, and this is necessary to evaluate the

correctness of the clustering methods [71]. Lötsch, J. and Malkusch, S. proposed an

approach using Explainable AI (XAI) methods to interpret cluster structures related

to pain [71]. A few supervised ML methods were used to interpret the clusters by

considering the meaning of cluster identification as a classification problem.

Pain can be stated as a subjective experience controlled by psychosocial and

contextual factors [72]. Anxiety disorder was found to be associated with 17-35.1% of

the cohorts [162, 163], and almost 35% of the CP patients have reported depression

[164]. However, it was observed in [70], not depression or anxiety, sleep is the most

important factor in CP.

Bruehl et al. [165] discussed approaches for evaluating validity and reliability related

to diagnostic criteria of CP and spotted the light on the challenges regarding the
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validation criteria when pathophysiologic mechanisms cannot be identified. However,

[51] suggests that the multidimensional diagnostic criteria of CP addressed in [166]

are encouraging to classify patients based on psychosocial factors, comorbidities, and

functional consequences along with core diagnostic features. It also suggests that the

phenotypic cluster profile might become more beneficial than the anatomical diagnoses

by considering fundamental pain processing mechanisms and psychological distress

[51, 54].

T. Miettinen et al. [70] used a data-driven approach in 320 patients with persistent

pain to find the most contributing factors related to different pain phenotypes. The

dataset used in this work contains 59 predictors that were grouped into 7 different

categories, including pain phenotype-related factors, demographic factors, pain etiology,

comorbidities, lifestyle factors, psychological variables, and treatment-related factors.

They considered comorbidities and lifestyle factors for their analyses that were missing

in the previous studies. The data was analyzed using a few simple unsupervised and

supervised machine learning methods. Surprisingly, not depression but they found

sleep problems to be the most prevalent factor associated with the extreme phenotypes

of pain. Though this work recognizes an important factor for the assignment of pain

phenotypes but their proposed algorithm did not perform very well in terms of the

non-pain phenotype variables, and the dataset is also considerably small. Additionally,

clustering analysis is vulnerable to outliers in the data, which was not considered.

In [72], the authors analyzed a dataset of 4665 patients using principal component

analysis, hierarchical clustering analysis, and partial least squares-discriminant anal-

ysis to subgroup CP patients for helping the development of tailored rehabilitation

programs. They proposed four subgroups using psychometric data and also identified
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the attributes most responsible for the subgroup discernment to better understand the

reason behind the discrimination. This work also addresses if there was any association

between the subgroups and ICD-10 diagnoses for consistency. Unlike [70], outliers

were identified and discarded. However, the data used in this study used inquiry form

as a replacement for systematic clinical examination of anxiety and depression, which

could be misleading. Additionally, this study design lacks the directions of causality.

The authors of [73] clustered low back pain patients into four clusters based on

their individual course of low back pain (LBP) over time with distinctly different

clinical courses and validated their results against clinical variables and outcomes. This

observational study considered 6-month clinical course of 176 patients with non-specific

LBP, along with measurements of bothersomeness collected from weekly text messages

from them. They used four derived parameters from the actual set of 26 parameters in

the dataset for cluster analysis using hierarchical clustering. K-means was used along

with Ward’s method to optimize the cluster allocation and the resultant clusters were

described according to the initial level of bothersomeness, rate of early improvement,

and the point of change. It is interesting how the data were collected using text

messages. However, they also proposed a 7-cluster solution, but they considered the

4-cluster solution to make the solution more describable and generalized.

Vardeh et al. in [54] also used chronic low back pain (cLBP) to indicate the current

knowledge of pathophysiological pain mechanisms in clinical practice and used this as

a driver of potential treatment choice. This work is an extension of the 5 dimensions

of pain mechanism that need to be considered during pain diagnostic classification

suggested by the Analgesic, Anesthetic, and Addiction Clinical Trial Translations,

Innovations, Opportunities, and Networks (ACTTION)- American Pain Society (APS)

47

https://orcid.org/0000-0001-8395-347X
http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – A. Khan; McMaster University – Electrical and Computer Engineering

Pain Taxonomy (AAPT). A 3-stage pain diagnostic ladder is proposed to specify

the treatment choice by narrowing down the pain mechanisms which is a complex

approach to put into clinical practice due to the absence of precise diagnostic tools for

mechanisms and lack of specific analgesic treatments for particular mechanisms.

In [74], the authors used UKBioBank data of 4,156 chronic back pain (CBP) and

14,927 pain-free controls and employed FCM clustering to derive CBP sub-groups. The

variables consisted of psychosocial, brain, and physical factors. From 1502 variables,

100 variables were selected after t-test. From the 100, according to feature weighting

tests, only 10 variables were considered for subsequent analysis. However, only two

dimensions (loneliness and depressive symptoms) were used for the clustering analysis,

which indicated five optimal clusters based on cluster validity measures, i.e., silhouette

value, Calinski-Harabasz, and Davies-Bouldin index. The cluster labels were then used

as class labels by SVM, Näıve Bayes, k-NN, and Random Forest classifiers to determine

classification accuracy. The best classification accuracy achieved was about 95% when

only CBP sub-groups were assessed, but when the healthy controls were added, the

misclassification in CBP sub-groups increased to 35-53% across the classifiers. The

authors indicated that there were overlaps in CP patients’ data, and the sub-grouping

accuracy might improve with the inclusion of pain processing mechanisms. Though

the authors claimed that this was the first study to develop and classify sub-groups of

CBP based on psychosocial, physical, and nervous system measures, they did not use

any physical or nervous system features for clustering.

The authors of [51, 52] developed an algorithm, namely Rapid OPPERA Algorithm,

to identify groups of individuals based on biopsychosocial risk factors for a limited set

of CP conditions. Study participants responded about bothersomeness by particular
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symptoms and the feature set of 4 variables was derived to address the generalizability

and reliability of the cluster model. The feature set to assign an individual to a

cluster were muscle pain sensitivity, somatic symptoms, anxiety, and depression. They

extended their work in [51] by using the clustering algorithm on two additional cohorts

to check the generalizability and stability of the clusters. This work considered cohorts

with temporomandibular disorder (TMD) and other CP conditions and is agnostic

to the anatomical location of the pain. But it lacks validation in terms of diverse

type of CPs and the cohort mainly consist of female and white patients. Additionally,

it did not address comorbidity or disability associated with the pain disorders. It

indicates the need to consider further tactics like mixed models to use large datasets

where the missingness in cluster features can be observed. In [51, 167], the authors

found pain amplification and psychosocial distress as contributing factors to CP. In

[52], the authors identified three subgroups by supervised cluster analysis clusters

using a comprehensive array of biopsychosocial measures. The cluster membership

was found to be highly associated with chronic TMD. The study of [51], suggests that

the distinguishing feature of the three clusters is consistent among cohorts.

Though the number of potential treatment targets has increased and mechanism-

based along with individualized pain therapy approach is introduced, CP management

is still very challenging to manage clinically [54]. Usually, CP conditions are classified

or divided into subtypes by criteria-defined clinical examinations based on their

anatomical location and relevant symptoms overlooking etiology, which might impede

optimal treatments [51, 52]. Additionally, these empirical classification approaches

are limited in scope and often disregard known pathophysiological mechanisms which

consequently leads to sub-optimal treatment outcomes [51]. Thus, there is a need for
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a strategic approach to identify the exact mechanisms driving the pain phenotype to

improve CP management [54].

A summary of relevant works, along with their approaches, is listed in Table 2.1.

Several studies [70–73, 51, 52, 54, 74] have been administered in this field, where only a

few studies tried to identify pain archetypes using clustering techniques. Additionally,

most of the works only focused on a particular pain disorder or a small set of pain

disorders. There is a lack of addressing all the pain mechanisms despite being the

most effective way to treat CP. A crucial detail of associating the explainability and

interpretability of the used models in those studies is still rare. Moreover, the use of

Principal Component Analysis (PCA) is very common when it comes to clustering

pain [70, 72, 71], which hampers the explainability and the interpretability of the

model. Therefore, there is a necessity for studies considering explainability while

identifying pain mechanisms using clustering techniques to minimize bias.
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Table 2.1: Summary of the related works

Reference Work Done Approaches

[70] Identification and Interpretation of the

pain phenotype cluster structure, most

contributing factors related to different

pain phenotypes

PCA, Ward’s k-means

[71] Cluster structures’ interpretation in

pain-related phenotype

PCA, k-means, ABC Analysis,

Tree-based methods (XAI)

[72] Sub-grouped CP patients into 4 groups PCA, hierarchical clustering

analysis, partial least squares-

discriminant analysis

[73] Clustered in 4 groups based on low back

pain

Ward’s Method, k-means

[74] Found 5 clusters in CBP patients with

loneliness and depressive symptoms

then checked classification performance

using cluster labels

FCM, SVM, Näıve Bayes, k-

NN, Random Forest

[51, 52] Identified groups of individuals with

pain conditions and used the clustering

algorithm on two additional cohorts to

check the generalizability

Rapid OPPERA Algorithm

[54] Introduced a 3-stage pain diagnostic

ladder to specify the treatment choice

of chronic low back pain

Mechanism-based approach to

diagnose cLBP
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2.2.2 Towards a Mechanism-based Approach in CP

There is a lack of gold standard in differentiating the underlying pain mechanisms,

i.e., Nociceptive, Neuropathic, and Nociplastic. Due to the absence of a gold standard,

the verification of discriminating features for the mechanisms in the clinical setting

depends on expert consensus [19].

In 2010, K.M. Smart and co-authors derived expert consensus lists of clinical indica-

tors of nociceptive, peripheral neuropathic, and central sensitization (CS) mechanisms

of musculoskeletal pain for clinicians’ use for mechanistic classification [168]. Through

a web-based 3-round Delphi survey method, 103 clinical experts were surveyed to set

the criteria for mechanistic inferences. Later, in a series of three articles [169–171],

the authors tried binary classification of the mechanisms for LBP patients using the

set criteria. In their work, they tried to identify feature sets contributing to each

pain mechanism, but the mixed pain or indeterminate pain state participants were

excluded from the studies.

In a study conducted in 2015, J. Nijs et al. [172], reviewed original research articles

and conducted a Delphi study to set classification criteria for peripheral Neuropathic,

Nociceptive, and CS in the LBP population. This also requires validation as the

conclusion is not based on LBP patients.

M. C. Kolski [173] aimed to validate the clinical application of a pain mechanism

classification system (PMCS) in clinical practice. Documented signs and symptoms for

musculoskeletal pain data from medical records were analyzed to find the agreement

between the PMCS determined by physical therapists and the category assigned by

statistical model using patients’ signs and symptoms. Unlike the other studies, five

pain mechanism categories were considered, such as inflammatory, ischemia, peripheral
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neurogenic, central, and other (multiple pain mechanisms). With unweighted pair-

group method with arithmetic mean (UPGMA) and k-means cluster analysis, the

assumed five groups were classified with sensitivity ranging from 15.7% to 83.1%.

The sensitivity was calculated as the number of patients assigned to a category by

the statistical model divided by the number of patients assigned to the category by

physical therapists. While the study provided empirical support that a PMCS could

be implemented in an outpatient pain clinical practice, it underscored the need for

further research on the mixed pain mechanisms (75.3% of patients were labeled as

other by the physical therapists).

In 2021, E. Kosek et al. tried to set clinical grading criteria and presented an

algorithm for diagnosing possible or probable Nociplastic pain [18]. As Nociplastic

pain can also co-occur with Neuropathic and especially Nociceptive pain, there remains

an open question of when a patient with nociceptive pain should be classified as also

having Nociplastic pain. Though Quantitative sensory testing, offset analgesia, and

functional neuroimaging are helpful in Nociplastic pain, they are not readily accessible.

So, the IASP recognized the need for clinical criteria for Nociplastic pain. The authors

used a consensus on 3 questions answered by 55 experts and leaders to define a set of

clinical and research-applicable criteria for Nociplastic pain.

Four criteria were set to be applied to reach a clinical diagnosis of possible or

probable Nociplastic pain where a possible diagnosis requires the presence of two

criteria (1-2), and all four should be present for a probable diagnosis. The criteria are

as follows:

1. Pain is present for 3 months, regional, and cannot be explained entirely by

Neuropathic or Nociceptive pain.
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2. Clinical elicited findings of evoked pain hypersensitivity in the region of pain.

3. History of pain sensitivity (i.e., to touch, pressure, movement, or temperature)

in the region.

4. Presence of comorbidities, i.e., hypersensitivity to sound/light/odor or all, sleep

disturbance, fatigue, or cognitive problems.

These criteria were set by consensus, which associated bias, and the authors

highlighted that these proposed criteria require further testing for validity. It is also

to be noted that, to identify Nociplastic pain, differentiation from Neuropathic and

Nociceptive mechanisms is also required. As these also depend on clinical judgments,

this becomes subjective.

M. A. Shraim et al. conducted a review of methods to discriminate the mechanism-

based categories of pain in the musculoskeletal system [17]. Using a framework

developed in [65] to cluster literature in terms of 3 CP mechanisms, 188 articles were

clustered into five themes that contributed to discrimination between mechanisms:

clinical examination, QST, pain-type questionnaires, diagnostic and laboratory testing,

and imaging [17]. These themes were discussed in 93%, 44%, 42%, 35%, and 31%

of the articles, respectively. However, these numbers do not indicate that a highly

used method is superior to others. The authors presented a summary of commonly

used methods to discriminate between pain mechanism categories. A combination of

features and methods was recommended to discriminate the CP mechanisms. Several

impedances were identified in the application of methods to discriminate between CP

mechanisms, such as lack of consensus on clear definitions and criteria for Nociceptive

and Nociplastic pain, claim to discriminate between specific pairs of pain mechanisms,

not all three or a mixed representation, poor validity, and reliability of the used
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methods. A need for an expert consensus method to guide the recommendation of

the combination of methods to aid the identification of CP mechanisms in clinical

and research grounds was raised until further advances in the identification of the

mechanisms.

As identified in [17], M. A. Shraim et al. ran a Delphi expert consensus study

and generated features to discriminate between mechanism-based categories of mus-

culoskeletal pain [19]. From the 196 features that reached consensus, 120 features

were shared between pairs of pain mechanism categories; from the 76 features, 17, 37,

and 22 were unique to Nociceptive, Neuropathic, and Nociplastic pain mechanisms,

respectively.

Unique features achieving the most significant consensus for the mechanisms are

as follows:

1. Nociceptive: Responsiveness to nonsteroidal anti-inflammatory drugs (NSAIDs),

inflammation signs, and predictable pain recovery established on expected time

of tissue recovery.

2. Neuropathic: Nerve damage-related features, e.g., diagnostic tests documenting

nerve damage.

3. Nociplastic: Diffuse, widespread, or poorly localized pain, generalized hypersen-

sitivity, and multiple somatic symptoms.

The pain mechanisms have significant overlaps in terms of features. The co-

existence of multiple mechanisms within an individual is likely to explain the overlaps.

Thus, discriminating between the mechanisms depends on a combination of features.

The authors underscore the need for the development of a tool or tools to identify
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pain mechanism categories in pain patients, where the aim should be to identify

which mechanism contributes most to an individual’s current presentation rather than

focusing on identifying only one.

The studies involving Delphi had conflicting views from the experts due to various

reasons such as experience, understanding of pain, personal bias, and language barrier.

These need further validation with computational techniques. Moreover, the number of

features or criteria to be considered to diagnose pain mechanisms are also challenging

to assess for practitioners, if attainable.
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2.3 Scoping Review: “AI in Chronic Pain”

Choosing the right type of review plays a key role in knowledge synthesis and acceler-

ating the research with evidence. In a study [174], 14 most common types of literature

reviews, especially in the health information domain, are listed. As the target is to

identify knowledge gaps and to assess the scope of use of AI in the context of CP,

scoping review is the suitable one in its own right [175].

The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA)

statement is a widely used tool by authors to improve the reporting of systematic

reviews while maintaining transparency in every step of conducting the review [176].

The PRISMA 2009 statement gets replaced by the PRISMA 2020 statement and

includes a new reporting guideline that reflects advances in methods to identify, select,

appraise, and synthesize articles [177].

In 2018, an extension of PRISMA was published for scoping reviews. The checklist

consists of 20 essential reporting items and two optional items to be included while

conducting and reporting a scoping review. Critical appraisal to include individual

sources of evidence was also done in this review accordingly [77].

While there are many tools to assess the methodological quality of studies [178–181],

there was a lack of a tool to assess the quality of ML algorithms’ reporting in studies.

To consistently assess the reporting quality and only include well-reported articles

in the review paper, a new tool (Screening Tool for Assessing Reporting of Machine

Learning; STAR-ML) was developed by the author that can be used to screen articles

for a systematic or scoping review focusing on the reporting of the ML algorithm [76].

PRISMA 2020 flow diagram [177] template has been followed for the review, while

STAR-ML was used as a component of the “Reports assessed for eligibility” step to
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include only well-reported research in the review.

2.3.1 Review type selection

The research question was “What is known from the existing literature about the

use and focus of ML/AI in the domain of Chronic Pain?”. Having some degree of

ambiguity in the question could gain benefits by capturing varying degrees of work,

the current state of ML/AI’s application in CP research, and its limitations. An

excellent balance of keywords should be maintained in the search to reduce the chances

of missing relevant articles while generating an efficient and manageable number of

references. Therefore, a comprehensive approach in order to generate relevant but

wider coverage was taken, which is recommended by Arksey et al. [182].

According to the goal, scoping review was chosen, and the guideline established by

Arksey et al. was followed, which is highly adapted for scoping reviews [182].

2.4 Search Terms and Research Databases

The search strategy was developed in Ovid MEDLINE and then adapted to the

other databases. The comprehensive search string was developed and finalized after

multiple reviews and iterations with the librarian (Ms. Leeanne Romane), Subject-

matter experts or SMEs (Dr. Samah Hassan and Dr. Kumbhare), and Dr. Doyle.

Searches were carried out across four electronic databases: MEDLINE, Web of Science

Core Collection, ACM Digital Library, and IEEE Xplore from 2012 to 2022. These

four databases were chosen to have a good combination of medical and engineering

databases. The final search was conducted on February 28, 2022. Keywords and
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Medical Subject Headings (MeSH) regarding CP and AI were used and are given in

section 2.4.1.

2.4.1 Search Strings

The search string used to search in MEDLINE is given below. The search strings for

the other databases were adapted from the MEDLINE search.

MEDLINE Figure 2.2 shows the search developed in Ovid MEDLINE.

Figure 2.2: MEDLINE search

Search strings for the other databases can be found in Appendix A.1.
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2.4.2 Inclusion and Exclusion Criteria

This review included all studies that used AI techniques in the CP domain. Separate

inclusion and exclusion criteria for first and second level screening were set before

conducting the review [183]. Articles were included if they satisfied the following

criteria:

1. Studies published in English

2. Studies involved only human participants/data

3. Original research article, i.e., not a review article or letter

4. Peer-reviewed

5. Studies focused on CP

6. Used AI or ML methods

7. Studies focused on physically adults (17+)

8. Studies excluding only healthy participants or synthetic data

9. Studies scored 6 or more in the STAR-ML

10. Studies cannot be duplicate

The detailed ‘Title and Abstract screening’ and ‘Full-text screening’ guidelines can

be found in Appendix A.
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2.4.3 Study Selection

The entire process, from duplicate removal to the final study selection, was organized

and conducted using Covidence systematic review software (Veritas Health Innovation,

Australia). Covidence is a web application that helps to collaborate and streamlines

the production of systematic and other literature reviews [184].

Duplicate Removal There were overlaps among the studies across the selected

databases. Among 691 total studies from the four databases, 207 were found to be

duplicates and excluded by Covidence.

Title and Abstract Screening During the first phase, all the articles were screened

independently by two researchers based on the title and abstract and were voted

as Yes, No, or Maybe. The discrepancies (voted as Maybe) were resolved by group

discussions and consensus. Articles meeting the inclusion criteria underwent a full-text

review by two researchers to determine final eligibility and confirm the accuracy of

the extracted data. Articles that passed the first screening were transferred to the

full-text review section in Covidence for full-text review.

Full-text Screening Based on the exclusion criteria, four independent reviewers

screened the full texts and excluded the articles.

Assessment of Reporting Quality With the other exclusion criteria, the

STAR-ML tool (version 2) was utilized to consistently score and include only the

articles which were well-reported in terms of data and ML/AI algorithm used. It

was used as a criterion where only the well-reported articles would be included. Four
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independent reviewers scored the articles using STAR-ML version 2 [76].

Data Charting Process Following the identification of the eligible publications,

all relevant data were gathered in a structured way using a Microsoft Excel file.

The extracted data contain pain context, focus on the mechanism, the number

of participants, if only female participants were present in the data, the focus of the

application, data source, type of AI/ML algorithm, AI/ML algorithm used, data

availability, and pain-related questionnaires or scales used.

The extracted relevant data also contains the rationale for the use of the AI/ML

algorithm, variables used, imbalanced data, imputation, feature selection, feature

scaling, training, hyperparameter tuning, and performance metrics. Altogether, these

data formed the basis of the analysis. A uniform approach was sought by two reviewers

on included 60 studies in the review. However, in practice, it was often challenging

(sometimes impossible) to extract relevant information for the listed fields either due

to the nature of the work (i.e., data, algorithm) or where research reports failed to

include relevant information. Though we used STAR-ML to consider only high-quality

reports, not all of them have perfect scores as data are not always presented in the

most accessible of formats in the reports [185].

The extracted data were grouped into five categories based on the focus of the

application, i.e., diagnosis, prognosis, clinical decision support, self-management,

and rehabilitation. They were reported accordingly in two separate tables from the

perspectives of the data and algorithm used.

Data Extraction The articles which passed the full-text screening step were passed

to the ‘Extraction’ step into Covidence. From a total of 691 articles, 60 met the
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inclusion criteria for data extraction for this scoping review.

2.5 Conducting the Review

Figure 2.3 shows the PRISMA diagram (based on PRISMA 2020) where all the data

of each step are recorded.

From the four databases, in total, 691 studies (MEDLINE n = 320, Web of Science

Core Collection n = 309, IEEE Xplore n = 55, ACM Digital Library n = 7) were

identified that were published in the past decade (2012 to February 2022). There were

overlaps in the search results, mostly between MEDLINE and Web of Science (197

duplicates). In total, 207 duplicates were identified by Covidence and discarded.

Before the full-text screening, 484 remaining articles after the duplicate removal

were screened based on the abstracts by two independent reviewers. A total of 195

studies were excluded based on the set exclusion criteria (language, topic, i.e., CP,

method, i.e., AI/ML, publication type, i.e., original articles, and population, i.e.,

human). Though these criteria existed for MEDLINE and Web of Science, they were

not perfect, and in the case of other databases, all these criteria were not present. The

conflicts between the two reviewers were resolved by consensus.
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Figure 2.3: PRISMA flow diagram depicting the data in every step taken for this
review. Out of 691 identified articles, 60 were included in the review.

The remaining 289 papers went into the second level or full-text screening, and

we were able to retrieve all of them. These 289 papers were assessed based on the

10 eligibility criteria that we set. During the screening process, the conflicts were

resolved by consensus and 60 papers were included in the final review. At this stage,

229 articles were excluded by the following criteria:

• Poor STAR-ML score (≤ 5): 118 papers
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• Wrong topic: 30 papers

• Not peer-reviewed: 29 papers

• Wrong method: 18 papers

• Wrong age group: 13 papers

• Wrong study population: 12 papers

• Duplicates (missed by Covidence or extended publications): 5

• Wrong publication type: 4 papers

Some of the articles had more than one reason to exclude, but the reason was

selected based on the sequence of the exclusion criteria (Appendix A).

2.6 Reporting the Review

This section provides a summary of the contributions from the selected papers according

to areas of interest, i.e., data and algorithm. Five focus of application was chosen

considering the overall CP field and application of AI, and they are listed below:

1. Diagnosis

2. Prognosis

3. Clinical Decision Support

4. Self-Management

5. Rehabilitation
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First, a few charts and figures are presented to give an overview of the field. Then

a summary table is presented containing relevant information focused on data and

categorized by the focus of the application (Table 2.2). Then, another table (Table 2.3)

is presented, focused on the ML/AI algorithms and their implementation, categorized

by the focus of the application.

2.6.1 Applications of AI/ML in CP Research

The most prevalent diagnosis of AI applications in CP research is for diagnosis.

The other major fields of application (i.e., clinical decision support, prognosis, self-

management, and rehabilitation) have not got enough attention. No publication

focused on Rehabilitation where ML/AI was used as a method. Figure 2.4 shows the

number of publications in each of the categories of focus.

Figure 2.4: Focus of AI/ML applications in CP research. Table 2.2 contains detailed
information categorized by the focus of applications.
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2.6.1.1 Data Used

Data from different sources were utilized in the articles. However, several articles

utilized multiple sources of data (Table 2.2). Though MRI and fMRI was the most

common choice, clinical and questionnaire data were also used by a significant number

of articles (Figure 2.5).

Figure 2.5: Column chart of the data sources used in CP research. The abbreviations
of the acronyms are provided as a footnote under Table 2.2.

Questionnaire has the potential as it considers important factors like perception,

fear, and anxiety, which are crucial in pain treatment. Sometimes left unused, 29 out

of 60 articles mentioned having pain-related questionnaire data in their datasets.
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2.6.1.2 CP Conditions

A column chart is given in Figure 2.6. Fibromyalgia (FM) and cLBP were considered

in most research. The number of research mentioned CP was 10, where they discussed

about CP in general and tried to distinguish CP from healthy controls (HCs). However,

the focus on the mechanism is rare.

Figure 2.6: Column chart of CP condition in focus in the publications. The
abbreviations of the acronyms are provided as a footnote under Table 2.2.

All data-relevant information, along with the type of ML used (i.e., supervised,

semi-supervised, unsupervised, and reinforcement), has been presented in Table

2.2. The supervised algorithms were more dominant than Unsupervised Learning

(60 supervised, 13 unsupervised). However, no application of Semi-supervised or

Reinforcement Learning was found.
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Table 2.2: Information of included studies (focused on data used)

Authors Year Pain Context Mech.

Focus

Participant

Number

Female

Only

Data Source Type of ML Data Avail-

ability

Clinical Decision Support

Almeida et al.

[186]

2019 CMP No 80 Yes PPS, Psychosocial Unsupervised No

Fodeh et al.

[187]

2017 PIR, MD No 184 No Clinical Supervised No

Kang et al.

[188]

2012 CNP No 121 No Demographical, Health Mea-

sures, QRE

Unsupervised No

Pancino et al.

[189]

2021 CP No 376 - Eye-Tracking Images Supervised,

Unsupervised

No

Rogachov et al.

[190]

2018 CP, AS No 133 No fMRI, Psychophysical Testing Supervised No

Santana et al.

[191]

2020 CP No 997 No QRE, QST Supervised No

Santana et al.

[192]

2019 FM, CBP No 158 No fMRI Supervised AURR

Diagnosis

Alge et al.

[193]

2020 FM No 26 - SQS Supervised No

Antonucci et al.

[194]

2020 CP No 204 - QRE Supervised AURR

Bagarinao et al.

[195]

2014 CPP No 66 Yes MRI Supervised No

Bair et al.

[196]

2016 TMD No 4678 No QRE, Health Measures, Clini-

cal

Supervised No
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Table 2.2 continued from the previous page

Authors Year Pain Context Mech.

Focus

Participant

Number

Female

Only

Data Source Type of ML Data Avail-

ability

Barroso et al.

[197]

2020 KOA, HOA Neuropathic 151 No MRI, QRE Supervised No

Behr et al.

[198]

2019 MPS No 69 No US Supervised No

Behr et al.

[199]

2020 FM No 128 - US Supervised No

Bianchi et al.

[200]

2020 OA No 92 No Blood, CT Supervised AURR

Callan et al.

[201]

2014 CBP No 26 No fMRI Supervised No

Caza-Szoka et

al. [202]

2016 cLBP No 24 - sEMG Supervised No

Chen et al.

[203]

2022 LBP No 10 - EEG Supervised No

Cheng et al.

[204]

2018 AS Neuropathic 133 No MRI Supervised No

Gaynor et al.

[205]

2021 TMD, FM, TN,

Headache

No 5585 No Demographical, Clinical Unsupervised No

Gudin et al.

[206]

2020 CP No 631 - Demographical, Clinical, Med-

ication

Supervised,

Unsupervised

AURR

Harte et al.

[207]

2016 FM No 62 Yes fMRI Supervised No

Holton et al.

[208]

2020 CWP No 40 No QRE Unsupervised No
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Table 2.2 continued from the previous page

Authors Year Pain Context Mech.

Focus

Participant

Number

Female

Only

Data Source Type of ML Data Avail-

ability

Ichesco et al.

[209]

2021 FM No 28 Yes fMRI Supervised AURR

Jimenez-

Grande et al.

[210]

2021 CNP No 40 - Kinematic Supervised No

Jimenez-

Grande et al.

[211]

2021 CNP No 40 No EMG Supervised Yes

Lamichhane et

al. [212]

2021 LBP No 51 No fMRI Supervised AURR

Lamichhane et

al. [213]

2021 LBP No 51 No fMRI, MRI Supervised No

Larsson et al.

[214]

2017 CP No 2457 No Demographical Unsupervised No

Lee et al. [215] 2019 cLBP No 53 No fMRI, Autonomic Supervised No

Levitt et al.

[216]

2020 CLR No 57 No EEGs Supervised No

Mano et al.

[217]

2018 cLBP No 97 - MRI Supervised,

Unsupervised

Yes

Mao et al.

[218]

2020 IBS No 68 - MRI Supervised AURR

Miettinen et al.

[219]

2021 CP Neuropathic 277 No Pain Records, Psychological,

Demographical, Lifestyle, Co-

morbidities

Supervised,

Unsupervised

No
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Table 2.2 continued from the previous page

Authors Year Pain Context Mech.

Focus

Participant

Number

Female

Only

Data Source Type of ML Data Avail-

ability

Minerbi et al.

[220]

2019 FM No 156 Yes DNA, RNA, Demographical,

Anthropometrics, Comorbidi-

ties, Medication, Lifestyle

Supervised Yes

Mo et al. [221] 2021 TN No 126 No MRI Supervised AURR

Morales et al.

[222]

2021 OA No 4796 - MRI Supervised Yes

Olesen et al.

[223]

2016 CPan No 60 No Demographical, Clinical Supervised No

Ozkan et al.

[224]

2016 FM No 86 - Blood, Physiological, SRS Supervised No

Pinedo-

Villanueva

et al. [225]

2018 KRS No 126064 No QRE Unsupervised No

Richter et al.

[226]

2021 cLBP No 4420 No Claims Data Supervised AURR

Russo et al.

[227]

2020 CRPS Neuropathic 29 No QRE, Lab Supervised No

Shen et al.

[228]

2019 cLBP No 197 - fMRI Supervised No

Shim et al.

[229]

2021 LBP No 6119 No Demographical, Clinical Supervised AURR

Ta Dinh et al.

[230]

2019 CBP, NP,

CWP, PHN,

PNP

Neuropathic 185 No EEG Supervised AURR
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Table 2.2 continued from the previous page

Authors Year Pain Context Mech.

Focus

Participant

Number

Female

Only

Data Source Type of ML Data Avail-

ability

Thieme et al.

[231]

2015 FM No 120 Yes Physiological Unsupervised No

Tu et al. [232] 2020 cLBP, FM,

MwA

No 230 No fMRI, MRI Supervised AURR

Tu et al. [233] 2019 cLBP No 50 No fMRI Supervised No

Tuechler et al.

[234]

2020 cLBP No 263 No QRE Supervised No

You et al. [235] 2021 CMP No 109 No fMRI, MRI Supervised No

Zhong et al.

[236]

2018 TN Neuropathic 46 No MRI Supervised No

Zhou et al.

[237]

2020 cLBP No 57 No MRI Supervised No

Prognosis

Lin et al. [238] 2021 CPP No 66 Yes MRI Supervised No

Lotsch et al.

[239]

2020 RA No 288 No Demographical, Clinical, Lab Supervised No

Ounajim et al.

[240]

2021 SCS No 103 No Demographical, Health Mea-

sures, QRE

Supervised No

Shih-Ping

Hung et al.

[241]

2022 TN, cLBP, OA No 959 No MRI Supervised Yes

Self-Management

Frostholm et al.

[242]

2018 CP No 424 No QRE Unsupervised No
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Table 2.2 continued from the previous page

Authors Year Pain Context Mech.

Focus

Participant

Number

Female

Only

Data Source Type of ML Data Avail-

ability

Rahman et al.

[243]

2018 FM, CBP, RA,

OA, Headache

Neuropathic 782 No Demographical, Clinical, App

Data

Supervised No

Rahman et al.

[244]

2019 CP No 879 No Pain Records Supervised,

Unsupervised

No

Wang et al.

[245]

2021 CP No 30 - IMU, sEMG Supervised Yes

Acronyms: Mech. Focus: Mechanism Focus, ‘-’: not reported

Pain Context AS: Ankylosing Spondylitis, CBP: Chronic Back Pain, cLBP: Chronic Lower Back Pain, CLR: Chronic Lumbar Radiculopathy, CMP: Chronic Musculoskeletal Pain,

CNP: Chronic Neck Pain, CP: Chronic Pain, CPan: Chronic Pancreatitis, CPP: Chronic Pelvic Pain, CRPS: Complex Regional Pain Syndrome, CWP: Chronic Widespread Pain,

FM: Fibromyalgia, IBS: Irritable Bowel Syndrome, KRS: Knee Replacement Surgery, LBP: Lower Back Pain, MD: Musculoskeletal Diagnosis, MPS: Myofascial Pain Syndrome, MwA:

Migraine without Aura, NP: Neuropathic Pain, OA: Osteoarthritis (KOA- Knee, HOA- Hip), PHN: Post-Herpetic Neuralgia, PIR: Pain Intensity Rating, PNP: Polyneuropathic Pain,

RA: Rheumatoid Arthritis, SCS: Spinal Cord Stimulation, TMD: Temporomandibular Disorders, TN: Trigeminal Neuralgia

Data Source App Data: Application Use Information CT: Computerized Tomography DNA: Deoxyribonucleic Acid EEG: Electroencephalogram EMG: Electromyography fMRI:

Functional Magnetic Resonance Imaging Health Measures: e.g., Quantitative Measures of Health & Scores IMU: Inertia Measurement Unit Lab: Laboratory Analysis Lifestyle: e.g.,

Dietary intake, smoking, alcohol consumption MRI: Magnetic Resonance Imaging PPS: Pressure Pain Sensitivity QRE: Questionnaire QST: Quantitative Sensory Testings RNA:

Ribonucleic Acid sEMG: Surface Electromyography SQS: Sleep Quality Scale SRS: Sympathetic Response Skin Measurements US: Ultrasound
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2.6.1.3 AI/ML Method Used

A total of 39 different ML algorithms were found to be used in the articles. SVM was

the first choice among the algorithms, where LR and RF hold the 2nd and 3rd spots.

In most cases, it was driven by the simplicity and recognition of these algorithms that

led the authors to use the algorithms.

Figure 2.7: Column chart of AI/ML algorithm used in the publications. The
abbreviations of the acronyms are provided as a footnote under Table 2.3.

All ML-relevant information, along with the context of CP and participant infor-

mation, has been presented in Table 2.3.
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Table 2.3: Information of included studies (focused on ML/AI algorithm used)

Authors ML Algorithm Reason

of Use

Variables

Used

Imbalanced

Data

Imputation Feature

Selection

Feature

Scaling

Training Tuning Metrics

Clinical Decision Support

Almeida et al.

[186]

CA 1 Numerical,

Categorical

Yes No Yes Yes 4 No Accuracy

Fodeh et al.

[187]

k-NN, DT, SVM,

RF

1, 3 Text Yes No No NA 1 No Accuracy, F1-

Score, Sensitivity,

AUC

Kang et al.

[188]

2-Step Clustering 3 Numerical,

Categorical

- No NA Yes NA No p-value

Pancino et al.

[189]

AE, k-NN 3 Numerical,

Images

Yes No No NA NA Yes Accuracy

Rogachov et

al. [190]

MR - Numerical Yes No Yes NA 4 Yes MSE, p-value

Santana et al.

[191]

CNN, SLR, SVM,

DTW, MSDL,

ABB

2 Numerical Yes Yes Yes Yes 4 Yes Balanced Ac-

curacy, AUC,

log-loss

Santana et al.

[192]

RC, LR, SVC, k-

NN, DT, RF, ETC,

ANN, XGBoost

3 Numerical,

Categorical

Yes Yes No NA 4 Yes Balanced Ac-

curacy, AUC,

log-loss, Precision,

Recall

Diagnosis

Alge et al.

[193]

SVM 1 Numerical Yes No Yes Yes 4 Yes Balanced Accu-

racy, Sensitivity,

Specificity, PPV,

NPV, AUC
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Table 2.3 continued from the previous page

Authors ML Algorithm Reason

of Use

Variables

Used

Imbalanced

Data

Imputation Feature

Selection

Feature

Scaling

Training Tuning Metrics

Antonucci et

al. [194]

SVM 1, 2 Numerical No No NA Yes 3 No Accuracy, Sensi-

tivity, Specificity,

PPV, NPV

Bagarinao et

al. [195]

SC - Numerical,

Categorical

Yes No Yes Yes 1 Yes Accuracy, Kaplan-

Meier plots

Bair et al.

[196]

LR - Numerical Yes No No - 4 Yes AUC

Barroso et al.

[197]

SVM 1, 2 Numerical Yes No NA NA 4 Yes Accuracy, Sensi-

tivity, Specificity,

MCC

Behr et al.

[198]

SVM, LR 1, 2, 3 Numerical Yes No No Yes 4 Yes Accuracy

Behr et al.

[199]

LR, RF, Light-

GBM, XGBoost

1 Numerical,

Categorical

No No Yes Yes 4 Yes Accuracy, F1-

score, AUC

Bianchi et al.

[200]

LR 1, 3 Numerical No No Yes Yes 3 No Accuracy, Sensitiv-

ity, Specificity

Callan et al.

[201]

ANN - Numerical No No Yes Yes 3 No -

Caza-Szoka et

al. [202]

CNN 1, 2 Time Series Yes No Yes Yes 3 Yes AUC

Chen et al.

[203]

LR - Numerical Yes No Yes No 4 Yes Spearman Correla-

tion Coefficient

Cheng et al.

[204]

ROPA Clustering,

k-means

6 Numerical,

Categorical

No No No Yes NA No -
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Table 2.3 continued from the previous page

Authors ML Algorithm Reason

of Use

Variables

Used

Imbalanced

Data

Imputation Feature

Selection

Feature

Scaling

Training Tuning Metrics

Gaynor et al.

[205]

k-prototypes,

SVR, RF

- - Yes Yes Yes Yes 1, 4 Yes AUC

Gudin et al.

[206]

SVM - Images Yes No No NA 4, 3 Yes Accuracy, Sensitiv-

ity, Specificity

Harte et al.

[207]

k-means - Numerical,

Categorical

Yes No No NA 3 No -

Holton et al.

[208]

SVM 4 Numerical Yes No No NA 3 No Accuracy

Ichesco et al.

[209]

k-NN, SVM, LDA - Numerical No No Yes NA 4 No Accuracy, Sensitiv-

ity, Specificity

Jimenez-

Grande et al.

[210]

SVM, k-NN, LDA 3 Numerical No No Yes Yes 4 Yes Accuracy, Sensitiv-

ity, Specificity

Jimenez-

Grande et al.

[211]

SVM 3 Numerical Yes No Yes Yes 1, 4 Yes Accuracy

Lamichhane

et al. [212]

SVM 3 Numerical Yes No Yes NA 3, 4 Yes Accuracy, Sensitiv-

ity, Specificity

Lamichhane

et al. [213]

2-Step Clustering 3 Numerical,

Categorical

- Yes No Yes NA No BIC

Larsson et al.

[214]

SVM, SVR - Numerical Yes No No Yes 1, 3 No Accuracy, Pearson

correlation, RMS

Lee et al.

[215]

SVM - Numerical Yes Yes Yes Yes 4 No Accuracy
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Table 2.3 continued from the previous page

Authors ML Algorithm Reason

of Use

Variables

Used

Imbalanced

Data

Imputation Feature

Selection

Feature

Scaling

Training Tuning Metrics

Levitt et al.

[216]

SVM, CVAE 1 Numerical Yes Yes Yes NA 5 No Accuracy, Sensitiv-

ity, Specificity

Mano et al.

[217]

SVM 1 Numerical No No Yes Yes 4 No Accuracy, Sensi-

tivity, Specificity,

AUC

Mao et al.

[218]

HierC, CART,

PART, RF, ANN

- Numerical,

Categorical

Yes Yes Yes NA 1 No Balanced Accu-

racy, F1-score,

Sensitivity, Speci-

ficity, PPV, NPV,

AUROC, Dis-

criminant power,

Youden’s index

Miettinen et

al. [219]

LR, SVM - Omics

Data

Yes No Yes Yes 3, 4 No ROC, AUC

Minerbi et al.

[220]

SVM, LR - Numerical Yes No Yes Yes 3, 4 No Sensitivity, Speci-

ficity, AUC

Mo et al.

[221]

CNN, LR 2, 3 Images Yes No Yes Yes 2 Yes Sensitivity, Speci-

ficity, AUC

Morales et al.

[222]

LUCCK, SVM - Numerical Yes No Yes Yes 4 No F1-score, Sensi-

tivity, Specificity,

AUC

Olesen et al.

[223]

SVM - Numerical,

Categorical

Yes No No NA 3 No Accuracy
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Table 2.3 continued from the previous page

Authors ML Algorithm Reason

of Use

Variables

Used

Imbalanced

Data

Imputation Feature

Selection

Feature

Scaling

Training Tuning Metrics

Ozkan et al.

[224]

ANN 1 Numerical Yes No No - 4 No Accuracy, Sensitiv-

ity, Specificity

Pinedo-

Villanueva et

al. [225]

HierC 1, 2, 5 Categorical Yes No NA NA NA No -

Richter et al.

[226]

BSS, SVM, RF 3 Categorical Yes Yes Yes NA 1 Yes AUC

Russo et al.

[227]

LR, DT, GBoost - Numerical,

Categorical

Yes No No Yes 1 No AUC

Shen et al.

[228]

SVM - Numerical Yes No No Yes 4 No Accuracy, Sensitiv-

ity, Specificity

Shim et al.

[229]

LR, k-NN, NB,

DT, RF, GBM,

SVM, ANN

1, 2 Numerical,

Categorical

Yes No Yes NA 1, 4 Yes Accuracy, Sensitiv-

ity, Specificity, AU-

ROC

Ta Dinh et al.

[230]

SVM 1 Numerical Yes No Yes Yes 4 No Accuracy, Sensitiv-

ity, Specificity

Thieme et al.

[231]

k-means - Numerical Yes No No Yes NA No -

Tu et al. [232] SVR - Numerical Yes No No NA 4 No R2

Tu et al. [233] SVM - Numerical Yes, No,

Yes, Yes

No Yes Yes 3 No Accuracy, Sensi-

tivity, Specificity,

AUC

Tuechler et al.

[234]

RF 3 Categorical Yes Yes No NA 1 Yes Accuracy
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Table 2.3 continued from the previous page

Authors ML Algorithm Reason

of Use

Variables

Used

Imbalanced

Data

Imputation Feature

Selection

Feature

Scaling

Training Tuning Metrics

You et al.

[235]

MKL 3 Numerical - - - - 3 Yes

Accuracy,

Specificity,

ROC

Zhong et al.

[236]

SVM - Numerical No No Yes Yes 3 No Balanced Accu-

racy, Sensitivity,

Specificity, AUC

Zhou et al.

[237]

U-Net 1, 2, 3,

4

Images Yes No NA NA 1 No IoU, Dice

Prognosis

Lin et al.

[238]

SVM - Numerical No No No Yes 3 Yes Accuracy, Sensitiv-

ity, Specificity

Lotsch et al.

[239]

CART, k-NN,

SVM, ANN, NB

4 Numerical,

Categorical

Yes No Yes Yes 1 No Balanced Accu-

racy, F1-score,

Sensitivity, Speci-

ficity, PPV, NPV

Ounajim et al.

[240]

LR, NB, ANN,

SVM, CART, RFs,

GBT

1 Numerical,

Categorical

Yes No Yes Yes 3, 4 Yes Accuracy, Sensitiv-

ity, Specificity

Shih-Ping

Hung et al.

[241]

GPR 2 Numerical Yes No No NA 4 No MAE, RMS

Self-Management

Frostholm et

al. [242]

HierC 3 Numerical,

Categorical

Yes Yes No NA NA No 1-way ANOVA
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Table 2.3 continued from the previous page

Authors ML Algorithm Reason

of Use

Variables

Used

Imbalanced

Data

Imputation Feature

Selection

Feature

Scaling

Training Tuning Metrics

Rahman et al.

[243]

k-NN, LR, RF,

SVM

1, 3 Numerical,

Categorical

Yes No No - 4 Yes Accuracy

Rahman et al.

[244]

k-means, LR, RF,

SVM

1 Numerical,

Categorical

Yes No Yes NA 4 No Accuracy

Wang et al.

[245]

RF, CNN, LSTM 6 Numerical,

Time Series

Yes Yes Yes NA 4, 5 Yes Accuracy, F1-

score, Precision,

Recall

Acronyms: ‘-’: not reported

ML Algorithm ABB: Ann4BrainsBatch, AE: Autoencoder, ANN: Artificial Neural Network, BSS: Best Subsets Selection, CA: Cluster Analysis, CART: Classification and Regression

Tree, CNN: Convolutional Neural Network, CVAE: Conditional Variational Autoencoder, DT: Decision Tree, DTW: Dynamic Time Warping, ETC: Extra Trees Classifer, GBM: Gradient

Boosting Machines, GBoost: Gradient Boosting, GBT: Gradient Boosted Tree, GPR: Gaussian Process Regression, HierC: Hierarchical Clustering, k-means: k-means Clustering, k-NN:

K-Nearest Neighbors, k-prototype: k-Prototypes Clustering, LDA: Linear Discriminant Analysis, LightGBM: Light Gradient-Boosting Machine, LR: Logistic Regression, LSTM: Long

Short-Term Memory Network, LUCCK: Learning Using Concave and Convex Kernels, MKL: Multiple Kernel Learning, MR: Multivariate Regression, MSDL: Marginal Space Deep

Learning, NB: Naive Bayes Classifier, PART: Partial Decision Tree, RC: Random Chance, RF: Random Forest, ROPA: Rapid OPPERA Algorithm, SC: Supervised Clustering, SLR:

Simple Linear Regression, SVC: Support Vector Classification, SVM: Support Vector Machine, SVR: Support Vector Regression, XGBoost: eXtreme Gradient Boosting

Reason of Use 1: ML used in same/similar field, 2: ML has shown good performance in this field, 3: Reasoning based on the nature of the algorithm and the data, 4: Increasing

popularity/novelty, 5: Explainability and Interpretability 6: Others.

Training 1: train/test, 2: train/valid/test, 3: leave-one-out, 4: k-fold, 5: other, 6: NA (Clustering)

Tuning Yes, No, NA: Not Applicable

Metrics MSE: Mean Squared Error, AUC: Area Under Curve, ROC: Receiver Operating Characteristic Curve, AUROC: Area Under ROC Curve, PPV: Positive Predictive Value,

NPV: Negative Predictive Value, IoU: Intersection over Union, DSC: Dice Similarity Coefficient, MAE: Mean Absolute Error, RMS: Root Mean Square Error, BIC: Bayesian Information

Criterion, MCC: Matthews Correlation Coefficient, R2: Squared Prediction-outcome Correlation

82

https://orcid.org/0000-0001-8395-347X
http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – A. Khan; McMaster University – Electrical and Computer Engineering

2.6.2 Gaps and Findings

In this section, the findings are presented, and the gaps are identified.

2.6.2.1 State of AI in CP Research

The application of AI in CP research has taken a significant leap over the past years.

Publications by years shows how the number of publications is increasing over the

years. The trend line in Figure 2.8 shows a rapid increase in the number of research in

CP using AI/ML techniques. This indicates the potential of AI in the domain of CP.

Figure 2.8: Line chart of the number of publications by years. For the year 2022, the
publications were considered till the month of February (day of search).

2.6.2.2 Rationale of Choice

The rationale for using an algorithm should be informed and driven by proper reason-

ing. The rationale for the choice of the algorithms was clustered into six categories
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(Figure 2.9). In many cases (23), the rationale was not reported. Also, the focus on

explainability and interpretability was found to be extremely rare.

Figure 2.9: Rationale of selecting the AI/ML algorithm in CP research. Here the
numbers are aggregated based on the six categories/rationales.

The spider or radar plot in Figure 2.10 depicts five important factors (handling

data imbalance, missing data imputation, feature selection, feature scaling, and hyper-

parameter tuning) in any AI/ML algorithm application. It has four axes representing

if the answer was Yes, No, not reported (NR), and not applicable (NA).

A significant number of articles (22) did not handle data imbalance that can add

bias and inconsistencies in algorithms performance. In this case, ‘NA’ was used where

the data was balanced or handled using the algorithm. In terms of missing value

imputation, only 10 articles mentioned it, others either did not use it or did not

report it. Feature selection was used in most cases (32), and in a few cases (5), it was

inherently done by the algorithm. Feature scaling is another very important aspect of
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AI/ML algorithms, and the majority (55) of the articles either did it explicitly or it

was handled by the AI/ML algorithm itself. However, hyperparameter tuning was not

reported in most articles (34), indicating more improved performance could have been

achieved.

Figure 2.10: Spider plot of different ML-related aspects. Here, NA is ‘Not Applicable’
and NR is ‘Not Reported’.

2.6.2.3 Future of AI in CP Research

Pain as a Continuum Though CP identification as a mechanism is being widely

acknowledged as the optimal way of CP treatment and management, there is a

significant gap of focus in work. Most of the works found focused on symptom-based

or anatomical location-based pain identification and classification.

Only 7 articles out of 60 focused on Neuropathic pain. The other types of pain

mechanisms (i.e., Nociceptive and Nociplastic) were not considered in any of the
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reviewed articles. More emphasis should be put on identifying the pain mechanisms

rather than anatomical location or symptoms-based pain classification.

Choice of Algorithms and Quality The choice of AI algorithm should be in-

formed and should have a strong reason for using an existing algorithm or developing

a new algorithm. As seen in Table 2.3, Figure 2.7 and 2.10, though varieties of

algorithms were used, the emphasis on reasoning and proper reporting is expected for

higher quality and transparency.

Focus on ML Algorithms The supervised algorithms were mostly used by re-

searchers in the area of CP research. The other types of ML algorithms can have

significant benefits and use cases. For example, Unsupervised Learning can reveal

inherent trends in the data, which can help to minimize human bias. Another good

candidate can be reinforcement learning, e.g., it can be used in a clinical setting to

train an algorithm (i.e., decision support system) every time the physician or medical

practitioner makes a decision which can get better with time.

Transparency and Reproducibilty In 57% of the publications, the model pa-

rameters and their tuning was not reported making the research irreproducible. The

model parameters and tuning should be reported, especially considering the clinical

application aspects.

2.6.2.4 Call for Open-sourced Pain Data

A lack of open-source data should not be overlooked. To get the best support from

the scientific community and advance CP research rapidly, the availability of the
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data is a major factor. Figure 2.11 demonstrates the status of data availability in

the publications. It is understandable (and mentioned in the article in some cases)

that the data might have sensitive information and/or have restrictions regarding

publication. Yet, de-identified risk-free data should be shared or should be made more

accessible by the researchers.

Figure 2.11: Dataset availability status in the articles. Here AURR stands for
‘Available Upon Reasonable Request’.

Not sharing data and relevant information may also raise questions about the

soundness and reproducibility of the work.

2.6.3 Limitations of the Scoping Review

The review presented aimed to survey a broad scope of studies to summarize the state of

AI/ML methods used in CP research during the last 10 years. Though a comprehensive

literature search developed through multiple iterations and by consulting with a
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librarian and SMEs was performed on four research databases (MEDLINE, Web of

Science Core Collection, IEEE Xplore, and ACM Digital Library), it is not possible to

develop a perfect search query that can retrieve all relevant articles. For additional

publications, reference lists were not checked, and this review did not consider the

articles not indexed in these databases, which might overlook some not peer-reviewed

conferences.

A strict set of criteria were determined before the review and used during the review.

Although at least two reviewers administered each step of the review, the chance of

discarding a relevant article was low, but the criteria might discard some applicable

articles without having a significant reason. Additionally, the use of STAR-ML to

include only high-quality publications were kept consistent by the agreement of at least

two reviewers, yet, it might not be perfect and relevant works might be disregarded

for achieving a low score in STAR-ML. Overall, the chances of human error were

particularly low as the review established upon consensus in case of disagreement.
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Chapter 3

Domain Data

This chapter discusses the datasets’ description with population, explanation of the

variables, data preprocessing, exploratory data analysis with descriptive statistics and

visualizations. Additionally, it also presents the ethics approval for the study, data

storage, and retention.

3.1 Data Description

3.1.1 Datasets and Study Population

Two datasets were obtained from University Health Network (UHN) [246] and processed

accordingly to be able to apply AI/ML algorithms. Both the datasets contain mixed-

type variables (numerical and categorical) and in a tabular format containing socio-

demographics, consumption habits, pain characteristics, the impact of pain on various

aspects of daily living, pain catastrophizing tendency, medical history, past and current

pain treatment, patients’ expectations, specific pain diagnosis established by pain
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clinicians, etc. (check Appendix B.4 for details).

The datasets are comprised of two different cohorts. The first dataset was collected

using DAta Driven Outcome System (DADOS) [247] platform and will be referred to

as DADOSDD dataset. The second dataset is called Toronto Rehabilitation Institute’s

Clinic Dataset (TRICD).

The DADOSDD has 738 instances, and the TRICD has 201 instances. The data

in the datasets were collected and prepared by UHN and de-identified by them as well.

All study participants signed written consent that they understood and were willing

to participate and share their data for research studies, which had been approved in

accordance with the Institutional Review Board (UHN). A data sharing agreement was

signed between UHN and McMaster University and an ethics application (MREB#:

5567) was approved at the McMaster Research Ethics Board (MREB) [248] for the

data and the study (Section B.1 contains details).

3.1.2 Definition of Variables

The datasets are in a tabular format (originally in Microsoft Excel files) containing

pain characteristics (duration, frequency, intensity, etc), impact on various aspects

of daily living including sleep, specific pain diagnosis established by pain clinicians,

psychological well-being (depression, anxiety) and pain catastrophizing tendency,

health-related quality of life, medical history, consumption habits, past and current pain

treatment, patient expectations, and socio-demographics [246]. However, the TRICD

dataset does not have mechanistic CP classification or true labels. A comparison

between the two datasets is provided in the Appendix (Table B.1).
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3.1.2.1 Questionnaires in the Datasets

The validated questionnaires that are part of these datasets are listed below.

DADOSD

• Brief Pain Inventory (Short Form) [249, 250]

TRICD

• Brief Pain Inventory (Short Form) [249, 250]

• Pain Stages of Change Questionnaire (PSOCQ) [251]

• Pain Patient Profile (P3) [252]

3.1.3 Study Population and Subject Selection Criteria

The datasets had the same subject selection and screening criteria though they were

not the same in terms of the parameters collected. The patients were screened by

UHN while collecting the data and based on the consent provided. In order to

be included in the study, the patient must be 18 (one exception in the DADOSD

dataset with an age of 17.62 years) or older, have had pain for three months or more

(CP), and accepted consecutive consultation request from referring doctors. Meeting

these criteria, the patients had to answer self-administered and nurse-administered

questionnaires (TRICD).

3.1.3.1 Population

The patients were referred to Tertiary Pain Clinics with different CP conditions. The

DADOSD dataset was collected between November 2017 to October 2019, and the
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TRICD dataset was collected between 2018 to 2020.

Age and Biological Sex The age range of the participants before and after data

preprocessing is provided in Table 3.1. In both datasets, the number of female

participants is higher than the number of males.

Table 3.1: Summary of age and sex information of the datasets

Before Preprocessing After Preprocessing

TRICD DADOSD TRICD DADOSD

Minimum Age 19 17.62 19 17.62

Maximum Age 102 91.78 89 91.78

# of Male 71 248 70 154

# of Female 130 481 125 297

Male-Female Ratio 0.55 0.52 0.56 0.52

3.1.4 Datatype

Both datasets consist of mixed-type variables, i.e., both of them have numerical and

categorical features.

3.2 Data Preprocessing

Both datasets have missing values, inconsistent and invalid inputs, and duplicate or

redundant entries. This section describes the steps taken to preprocess the datasets to

be able to apply the algorithms. Table 3.2 presents a summary of number of examples

(i.e., patients) and features before and after preprocessing. For the DADOSD dataset,
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patients’ data were not considered if the CP mechanism labels were unavailable (to

be able to measure the performance of the ML models).

Table 3.2: Number of instances and features

Before Preprocessing After Preprocessing

TRICD DADOSD TRICD DADOSD

Number of Instances 201 738 195 451

Number of Features 60 146 28 44

A list containing reasons for removing the rows and columns can be found in the

Appendix B.3.

3.2.1 Data Cleaning

The data cleaning was a series of steps led by the issues present in the data. Figure

3.1 shows the steps taken to clean the datasets. These steps were carefully chosen

after the initial analysis of the datasets.
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Figure 3.1: The steps to clean the data for analysis

3.2.1.1 Duplicate Removal

First, the features were renamed (i.e., spaces removed, readability enhancements) to

be able to load the datasets in the Python (programming language) environment [253].

TRICD dataset had duplicate entries, which were removed.
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DADOSD No duplicate rows were found.

TRICD 6 rows/instances were removed as they were duplicates.

3.2.1.2 Irrelevant Data Fixing

Unit Uniformity Check All the data fields were checked for irrelevant or incon-

sistent data units.

DADOSD The DADOSD data had multiple columns that had issues with units (e.g.,

percentages and decimals in a single column). These were fixed for every column

having inconsistent units.

TRICD The TRICD data also had multiple columns that had issues with units

(e.g., numbers to calculate percentage instead of the calculated percentage).

Inconsistencies in units were fixed for all the columns where applicable.

Consistency Check Every column for both datasets was checked for consistency

in terms of formatting.

DADOSD A few format fixes that were done are listed below:

• Pain Feel column was fixed for semicolon issues and was separated into 15

one-hot encoded columns

• Patients’ age was calculated from the date of birth and date of enrolment.

• Nicotine Smoking, Alcohol Consumption, Recreational Drugs,

Nicotine Smoking Amount columns were fixed for text formatting.

TRICD Format fixes that were done are listed below:

• Recalculated percentage for BPI Pain Severity, BPI Relief, BPI Pain Interference
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3.2.2 Encoding

The categorical columns have been coded by giving numerical values. LabelEnocoder is

used to do that [254]. It was used to normalize labels and to transform non-numerical

labels into numerical labels, e.g., no, yes, and unknown to 0, 1, and 2. The derived or

encoded columns are kept, and the old columns are removed. Manual fixing was also

done in some cases (e.g., ‘None’ and ‘N/A’ were coded to 0 for Recreational Drugs

column in DADOSD data).

3.2.3 Recoding

Some columns were recoded after consulting with the SMEs. It was done for three

reasons, i.e., data were missing and the possible reason was known (‘unknown’ was

introduced for Smoke Categorized column in TRICD data for the subjects where there

was no information), to address interpretability (Employment Status was recoded to

employed, unemployed, and retired in TRICD data), and coded inconsistently (‘No’

and ‘Yes’ were recoded to 0 and 1 for every columns where applicable).

3.2.4 Unstandardized Column Removal

The free-text answers were unstandardized, e.g., Pain Worse Reason, Pain Better Re-

ason was removed after consulting with SMEs (Dr. Kumbhare and Dr. Samah Hassan).

They were removed as there was no reasonable way to standardize them, i.e., these

answers were free text and could not be categorized without adding bias. Additionally,

the datasets are retrospective, and it is not possible to collect the data points again.

The features containing treatments were also removed to avoid chances of bias as

recommended by the SMEs.
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3.2.4.1 Missing Data Handling

Even after discarding the features with data quality issues, there were missing values

to be handled. Both datasets have missing values in them. However, the causes of

the missing data in the remaining fields in the datasets were unknown. The most

likely cause was that the patient did not answer the questions where the values were

missing.

Different approaches were taken to tackle missing data points for numerical and

categorical features. The categorical missing values were imputed by the majority class

of that specific feature. The missing values in the numerical features were imputed

by the mean value of the existing values of that feature [255]. On the numerical

columns, mean imputation was performed after the outliers had been removed, as

mean imputation is sensitive to outliers.

Figure 3.2 and Figure 3.3 show the state of missing values for the raw DADOSD

and TRICD datasets. This is a matrix visualization of the nullity of the datasets

showing the positional information of the missing values.

Figure 3.2: Missing values in raw DADOSD dataset. Every column represents a
feature where white places indicate missing values.

97

https://orcid.org/0000-0001-8395-347X
http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – A. Khan; McMaster University – Electrical and Computer Engineering

Figure 3.3: Missing values in raw TRICD dataset. Every column represents a feature
where white places indicate missing values.

Three consecutive steps were taken to handle the missing data points.

1. Manual Fixes

2. Removal of the features with ≥40% missing values

3. Imputation (This step was taken after the outlier removal step discussed in

Subsection 3.3.1)
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Figure 3.4: Missing values DADOSD dataset after outlier removal and before
imputation. Every column represents a feature where white places indicate missing

values.

Figure 3.5: Missing values TRICD dataset after outlier removal and before
imputation. Every column represents a feature where white places indicate missing

values.
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The first one was to fix the empty cells where they were intentionally left empty,

e.g., empty cells in Nicotine Smoking column in DADOSD data indicating the person

does not smoke nicotine. For these types of cases, the empty cells were filled with

appropriate values consulting with the responsible person at the UHN.

In the second step, features were dropped with ≥40% missing values after consulting

with the domain experts, as data imputation for these features will not be helpful.

The resulting datasets still had empty cells or missing values which were dealt

with after the outlier removal. Figure 3.4 and 3.5 show the state of missing values

before imputation. In the third step, measures were taken with proper reasoning to

impute the missing and removed data points (outliers).

3.3 Data Analysis

This section gives a summary of the raw and processed data. It also includes data

visualization, data imputation, and feature scaling steps. Figure 3.6 shows the steps

taken to explore and analyze the datasets after cleaning.
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Figure 3.6: Cleaned data to Model-Ready data. These steps were taken to analyze
the data and to make the cleaned datasets ready for AI/ML algorithms.
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3.3.1 Exploratory Data Analysis

3.3.1.1 Descriptive Statistics

DADOSD The descriptive statistics for DADOSD dataset are given separately for

numerical and categorical variables in Table 3.3 and Table 3.4 respectively.

Table 3.3: Descriptive statistics for numerical variables in DADOSD dataset (after
outlier removal and imputation). Here, Count is the total number of values in the

column and Std is standard deviation.

Variable Name Count Mean Std Min 25% 50% 75% Max

Age Calculated 451 50.89 15.38 17.62 39.86 50.74 61.32 91.78

BPI Score 451 58.8 17.31 6 49.5 58.8 71 90

Table 3.4: Descriptive statistics for categorical variables in DADOSD dataset (after
outlier removal and imputation). Here, Count is the total number of values in the

column and Top indicates the category with the highest frequency.

Variable Name Count Unique Top Frequency

Gender Coded 451 2 1 297

Pain Persistence Coded 451 2 1 340

Pain Time 451 2 1 291

PF Throbbing 451 2 1 262

PF Shooting 451 2 1 232

PF Stabbing 451 2 1 235

PF Sharp 451 2 1 287

PF Cramping 451 2 0 267

Continued on the next page
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Table 3.4 continued from the previous page

Variable Name Count Unique Top Frequency

PF Gnawing 451 2 0 308

PF Burning 451 2 0 253

PF Aching 451 2 1 347

PF Heavy 451 2 0 282

PF Tender 451 2 0 248

PF Splitting 451 2 0 375

PF Tiring 451 2 1 294

PF Sickening 451 2 0 334

PF Fearful 451 2 0 388

PF Punishing 451 2 0 322

Pain Improvement Coded 451 3 2 235

Pain Affected by Mood 451 2 1 229

Worst Pain Last 24hrs 451 11 8 114

Least Pain Last 24hrs 451 11 3 73

Average Pain 451 11 7 107

Pain Right Now 451 11 7 89

Pain Relief Pct 451 11 0 76

General Activity Interference 451 11 7 84

Mood Interference 451 11 8 79

Walking Ability Interference 451 11 10 67

Normal Work Interference 451 11 10 118

Continued on the next page
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Table 3.4 continued from the previous page

Variable Name Count Unique Top Frequency

Relationship Interference 451 11 8 68

Sleep Interference 451 11 10 85

Enjoy Life Interference 451 11 10 114

Concentration Ability Interference 451 11 8 84

Apetite Interference 451 11 0 94

Pain Med Qty Coded 451 8 1 113

Pain Med SideEffects 451 3 0 208

Med More Info Needed 451 2 0 288

Nicotine Smoking 451 2 0 357

Alcohol Consumption Weekly Categorized 451 4 0 252

Medical History Surgery Coded 451 2 0 273

WSIB Claim 451 2 0 432

Litigation 451 2 0 387

The descriptive statistics of the mechanistic classes or target variables are provided

in Table 3.5. It is evident that the dataset is imbalanced, while ‘Nociceptive (0)’ being

the majority and ‘Neuropathic (1)’ being the minority class.
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Table 3.5: Descriptive statistics for mechanistic classes in DADOSD dataset. Here,
Count is the total number of values in the column and Top indicates the category

with the highest frequency.

Variable Name Count Unique Top Frequency

Mechanistic Classes 451 4 0 180

Nociceptive 451 2 1 263

Neuropathic 451 2 0 318

Nociplastic 451 2 0 297

TRICD Similarly, the descriptive statistics for TRICD dataset are given separately

for numerical and categorical variables in Table 3.6 and Table 3.7 respectively.

Table 3.6: Descriptive statistics for numerical variables in TRICD dataset (after
outlier removal and imputation). Here, Count is the total number of values in the

column and Std is standard deviation.

Variable Name Count Mean Std Min 25% 50% 75% Max

Age 195 52.42 16.05 19 41 52 61 89

Body Diagram 195 15.8 9.78 1.25 8 15 21.75 47

BPI Pain Severity

Pct Gen
195 60.58 20.09 10 50 60.58 75 100

BPI Relief Pct

Gen
195 48.61 18.44 0 48.61 48.61 50 90

BPI Pain Inter-

ference Pct Gen
195 59.97 19.9 0 55.64 59.97 70.56 100

Med Analgesics 195 1.52 1.46 0 0 1 2 6

Continued on the next page
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Table 3.6 continued from the previous page

Variable Name Count Mean Std Min 25% 50% 75% Max

Med Opiods 195 0.6 0.72 0 0 0 1 2

PSCG Age 1 195 63.16 16.2 23 54 63.16 71 100

PSCG Mean 1 195 3.16 0.81 1.1 2.71 3.16 3.6 5

PSCG Age 2 195 68.37 11.5 32 62 68.37 75.5 98

PSCG Mean 2 195 3.41 0.57 1.6 3.1 3.41 3.7 4.9

PSCG Age 3 195 58.42 15.42 17 53 58.42 67 100

PSCG Mean 3 195 2.92 0.77 1 2.7 2.92 3.3 5

PSCG Age 4 195 58.61 15.11 17 51 58.61 69 100

PSCG Mean 4 195 2.94 0.76 0.9 2.65 2.94 3.43 5

P3 DEP T Score 195 48.08 8.98 31 41 48.08 54 70

P3 ANX T Score 195 45.08 8.87 31 38.5 45.08 51 70

P3 SOM T Score 195 46.84 8.85 25 42 46.84 53 67

Table 3.7: Descriptive statistics for categorical variables in TRICD dataset (after
outlier removal and imputation). Here, Count is the total number of values in the

column and Top indicates the category with the highest frequency.

Variable Name Count Unique Top Frequency

Sex Coded 195 2 1 125

Employment Status Categorized 195 4 3 54

Smoke Categorized 195 3 0 121

EtOH week Categorized 195 3 0 81

Continued on the next page
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Table 3.7 continued from the previous page

Variable Name Count Unique Top Frequency

WSIB Claim 195 2 0 187

Legal Case Active 195 2 0 178

Current Stage Coded 195 8 1 57

Dpn Interprofessional Therapy Binarized 195 2 0 152

Dpn Groups SM Mindfulness 195 2 0 139

Dpn Group Exercise Hydrotherapy 195 2 0 149

Dpn Meds Management 195 2 1 138

Dpn Psych Consult 195 2 0 188

Edu Videos 195 2 0 109

Edu Exercises 195 2 1 126

Unlike the DADOSD dataset, the mechanistic class or target variables are not

available in the TRICD dataset. Therefore, it remains undetermined if the dataset is

imbalanced or not.

3.3.1.2 Visualization and Analysis

Histogram and Barchart The histogram for the numerical features and the bar-

chart for the categorical features are provided together. The categorical features can

be distinguished from the gaps between the rectangles.

DADOSD Data The histogram and barchart of the cleaned DADOSD data

before outlier removal and missing data imputation is shown in Figure 3.7.
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Figure 3.8 shows the histogram and barchart of the DADOSD dataset after outlier

removal and missing value imputation. No significant changes in the distribution of

the variables were observed compared to Figure 3.7.
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Figure 3.7: Histogram and barchart of the cleaned DADOSD dataset before outlier
removal
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Figure 3.8: Histogram and barchart of the DADOSD dataset after outlier removal
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TRICD Data The histogram and barchart of the cleaned TRICD data before

outlier removal and missing value imputation is shown in Figure 3.9.

Figure 3.9: Histogram and barchart of the TRICD dataset before outlier removal

Figure 3.10 shows the histogram and barchart of the TRICD dataset after outlier

removal and missing value imputation. Similar to the DADOSD dataset, no significant

changes in the distribution of the variables were observed compared to Figure 3.9.
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Figure 3.10: Histogram and barchart of the TRICD dataset after outlier removal

3.3.1.3 Outlier Detection and Removal

As the numerical features present in the datasets are mostly normally distributed

(graphically assessed from the histograms), interquartile range (IQR) was used to

identify outliers from the density distribution of the numerical features, which is

visualized using Boxplot.
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DADOSD Data Figure 3.11 shows outliers in diamond-shaped dots. The

outliers or data points beyond interquartile range for ‘BPI Score’ were removed.

Figure 3.11: Boxplot to visualize outliers in DADOSD dataset. Here the outliers are
indicated by diamond-shaped dots.

TRICD Data Similarly, Figure 3.12 shows outliers in diamond-shaped dots for

TRICD Dataset. The outliers or data points beyond interquartile range were removed

for all the applicable features.
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Figure 3.12: Boxplot to visualize outliers in TRICD dataset. Here the outliers are
indicated by diamond-shaped dots.

3.3.1.4 Data Imputation

The missing values were imputed using mean and mode values for the numerical and

categorical columns, respectively. As both imputation techniques are sensitive to

outliers, they were performed after the outlier removal.
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Figure 3.13: Boxplot after outlier removal and imputation in DADOSD dataset.
Mean imputation was done for numerical variables.

DADOSD Data Figure 3.13 shows the distribution of the numerical features

after outlier removal and data imputation.
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Figure 3.14: Boxplot after outlier removal and imputation in TRICD dataset. Mean
imputation was done for numerical variables respectively.

TRICD Data Figure 3.13 shows the distribution of the numerical features after

outlier removal and data imputation. From the figures, it can be observed that new

outliers have appeared. It is because the distribution after removing outliers is not

exactly the same as before, and it renders its own outliers.

However, for the categorical variables, Mode imputation was performed for both

datasets.

Correlation Heatmap Pairwise correlations have been computed for the features

in the datasets to remove redundant features. The correlation between each pair of
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variables can be found in Appendix C.2 for both datasets.

DADOSD No strong correlation was found between the variables.

TRICD Highly correlated columns were removed (i.e., PSCG Mean 1, PSCG M-

ean 2, PSCG Mean 3, PSCG Mean 4).

3.3.1.5 Feature Scaling

Feature scaling was performed to reduce the chances of bias toward a particular

feature that had values higher in magnitude. The numerical features were scaled using

standard scalar as it is robust to outliers. Only for the AE, the min-max scalar was

used, as ANN tends to do well when the features are normalized.

3.3.2 Data Visualization

UMAP was used to reduce the dimension to 2 and 3 to show the datapoints. For the

DADOSD dataset, the datapoints were colored as per the true labels in the dataset.

As the TRICD dataset does not have true labels, the datapoints were not colored.
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(a) Two-dimensional scatterplot (b) Three-dimensional scatterplot

Figure 3.15: The datapoints in DADOSD dataset are visualized as a scatterplot using
UMAP. The datapoints are colored based on CP mechanism labels present in the

dataset.

(a) Two-dimensional scatterplot (b) Three-dimensional scatterplot

Figure 3.16: The datapoints in TRICD dataset are visualized as a scatterplot using
UMAP. The datapoints are single-colored, as CP mechanism labels are not present in

the dataset.
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In Figure 3.15, it can be observed that the datapoints are not discernible as per

their true classes based on their local and global structures. The axes in these figures

represent UMAP embedding dimensions.

3.4 Secondary Use of Data

This work only involved secondary use of data, and the data collection was not

originally intended for this thesis. The original purpose of the data collection was for

the use of clinical staff, i.e., medical doctors, nurses, chiropractors, physiotherapists,

and pharmacists. Details about the ethics approval, and data storage & retention can

be found in Appendix B.1.

3.5 Availability of the Datasets

The datasets are not publicly available. It might be available on request from UHN.
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Chapter 4

Machine Learning Model

This chapter focuses on the ML/AI methods and their developments. It also provides

relevant information about why the algorithm or the architecture was used for this

work. This is to be noted that Model-Ready datasets (Figure 3.6) were used in this

and the following sections.

4.1 k-prototypes

k-prototypes has demonstrated exemplary performance in clustering mixed-type or

heterogeneous data. For this reason, it has been used to cluster the datasets [97].

k-prototypes only accepts floating-point values for numerical data and integer

values for categorical data. After scaling the numerical features, the data were fed to

the k-prototypes algorithm. k-prototypes requires numerical and categorical data to

be provided in separated arrays. Thus, the indexes of the categorical variables were

given to the algorithm. The initialization of centroids was done using the centroid

initialization function proposed by ‘Huang’. The distance function used for numerical
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features was euclidean, and the similarity measure used for categorical features was

matching distance. The weighing factor ‘gamma’ determines the relative importance of

numerical vs. categorical variables cite Huang [1997]. It was automatically calculated

from the data.

To find the optimal number of clusters, elbow method was used. For cluster

numbers 2 to 10 the cost was calculated to identify the optimal number of clusters.

Additionally, average silhouette scores were calculated for the cluster numbers 2 to 10

to see where the highest value indicates optimal cluster numbers.

The model was trained using the entire dataset with all the features after prepro-

cessing and scaling (Model-Ready data). For a given number of clusters, k-prototypes

computed cluster centroids and predicted cluster index for each sample in the dataset.

4.2 Semi-supervised Learning (SVM)

As the datasets are relatively small in size, the Semi-supervised SVM (i.e., SVC) was

applied. The other two Semi-supervised models were used to compare the results with

the Semi-supervised SVM’s result.

Semi-supervised Learning was applied using the self-training mechanism. SVC was

used to function as a Semi-supervised classifier using self-training, allowing it to learn

from unlabeled data. It iteratively predicts pseudo-labels for the unlabeled data and

adds them to the training set. The classifier continues iterating until either maximum

iteration is reached or no pseudo-labels are added to the training set in the previous

iteration.

The dataset was split into a train and test set where 80% data were randomly

selected and put into training set, and the rest were put into test set (hold-out). The
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training set was again split into two parts where 30% were randomly selected, and true

labels were kept. For the rest 70% data, the true labels were removed and replaced

with −1 as an identifier of unlabeled examples. Therefore, unlabeled points along

with the labeled data were provided to train the model. The number of examples in

each subset can be found in Table 4.1.

Table 4.1: Model training and test split (DADOSD dataset)

Training Set Test Set Split

Total 360 91 80/20

Unlabeled 120
70/30

Labeled 240

In each iteration, the base classifier (SVC) predicts labels for the unlabeled examples

and adds a subset of these labels to the labeled dataset. The selection criterion

determines this subset. This selection is done by choosing the k = 10 best samples

from the prediction probabilities. The algorithm iterates and predicts labels until all

samples have labels or no new samples are selected in that iteration, or the maximum

number of iterations is reached.

For the DADOSD dataset, regular 4 classes (mechanistic classes, i.e., Neuropathic,

Nociceptive, and Nociplastic, including mixed CP as a separate class where two or

more conditions are present) were used for model training and testing. For the TRICD

dataset, Semi-supervised Learning could not be explored due to the absence of labels.
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4.3 FCM

Clustering algorithm performs better in lower dimensional space. Due to the ability

to bring down the high-dimensional data into a lower-dimensional space by extracting

latent features, AE was used as a feature extraction technique for the FCM algorithm.

To check the overlapping tendency of the clusters, FCM was used as it can handle

overlapping clusters by indicating the probability of cluster memberships for every

data point.

The FCM algorithm was implemented using the features extracted by AE.

4.3.1 Feature Extraction

The overall AE architecture had an encoder and a decoder component to it. The

bottleneck in the middle of the encoder and decoder ensured only the core structured

part of the information could go through from where the original data could be

reconstructed. In other words, the high-dimensional data were fed to a ANN with

a narrow bottleneck layer in the middle containing the latent representation of the

input features.

The encoder took the Model-Ready data as input and put it through a few hidden

layers with a LeakyReLU activation function. For the decoder, the architecture was

the same as the encoder but reversed. The decoder took the bottleneck as input and

output reconstructed inputs. In the first hidden layer of the encoder and the decoder,

L2 regularization was applied to the output of the activation function (LeakyRELU)

during optimization.

A sigmoid activation function was used at the bottleneck layers, where it outputs

another value between 0 and 1. Sigmoid is non-linear, continuously differentiable, and
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has a fixed output range. The goal was to search for an encoder and decoder that

minimizes the reconstruction error done by gradient descent over the parameters of

the network.

The Model-Ready data were split into a train and validation set (80/20 random

split). It was the same split used for the Semi-supervised Learning algorithms

(DADOSD dataset). However, the test set was used as validation data while training

the model. Similar to the DADOSD dataset, the TRICD dataset was also split into

training and validation set. Table 4.2 holds the information of the training and

validation set information for both datasets.

Table 4.2: AE training and validation split

Dataset Training Set Validation Set Split

DADOSD 360 91 80/20

TRICD 156 39 80/20

During training, at each iteration, the AE architecture (encoder followed by the

decoder) with batches of data and compared the encoded-decoded output with the

initial data and backpropagated the error through the architecture to update the

weights of the network.

No class information was provided as AE is unsupervised and does not need class

information to train its parameters. However, the model was fit using the Adam version

of stochastic gradient descent while it minimized the mean squared error (MSE), given

the reconstruction of the data, which was a type of multi-output regression problem.

Early stopping was used to stop training when MSE stopped improving.
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4.3.2 FCM Implementation

The FCM needs the apriori specification of the number of clusters. The number of

clusters (e.g., k = 3) was given to it as there are three mechanistic classes of CP. All

the latent representations of the features were fed to the FCM model. As FCM has

difficulties finding optimal cluster centers, k-Means++ was used to find the cluster

centers. FCM was then trained with k-Means++ center initialization. However, FCM

updated cluster membership and centers in each initialization while training.

With the fitted model, the same extracted features were given to predict the

membership probabilities for all the clusters for all the instances (soft clustering).

FCM outputs the cluster centers and can also provide us labels like the usual/regular

clustering methods by putting an instance in the cluster where it has the highest

probability of belonging (used for visualization: Figure 6.4).
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Chapter 5

Methodology

The focus of this chapter is the application of the ML/AI models discussed in the

previous chapter (Chapter 4). In this chapter, how the models were applied and

evaluated are presented.

5.1 Identifying Distinguishable Clusters

At first, clustering was performed to check if CP data reveal distinguishable and

clinically meaningful clusters. Therefore, k-prototypes algorithm was applied to the

Model-Ready data. Figure 5.1 shows how clusters were applied to Model-Ready data.

Figure 5.1: Applying k-prototypes to the Model-Ready data

5.1.1 Finding the Optimal Number of Clusters

To find the optimal number of clusters, elbow plot and silhouette score were calculated.
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(a) Elbow plot (b) Average silhouette score

Figure 5.2: Optimal number of clusters in DADOSD dataset using elbow method and
average silhouette score. A clear hinge or elbow is expected to elect the optimal

number of clusters using the elbow method. On the other hand, a prominent peak is
sought which indicates a high average silhouette score indicates better-defined

clusters.

For the DADOSD dataset, Figure 5.2a shows the elbow plot for 2 to 10 clusters,

and Figure 5.2b shows the average silhouette scores for clusters 2 to 10.

(a) Elbow plot (b) Average silhouette score

Figure 5.3: Optimal number of clusters in TRICD dataset using elbow method and
average silhouette score. A clear hinge or elbow is expected to elect the optimal

number of clusters using the elbow method. On the other hand, a prominent peak is
sought which indicates a high average silhouette score indicates better-defined

clusters.

For the TRICD dataset, Figure 5.3a shows the elbow plot for 2 to 10 clusters, and
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Figure 5.3b shows the average silhouette scores for clusters 2 to 10.

5.1.2 Cluster Validation

Though there is no indication of the optimum number of clusters from the elbow plot

or the silhouette score, cluster 3 and 4 are explored. The number of clusters 3 was

tried with the notion of 3 CP mechanisms or categories where 4 clusters were also

tried to see if mixed pain itself makes a cluster or not.

Performance Evaluation The clustering result was assessed using Rand Index

(RI), Adjusted Rand Index (ARI), (Adjusted Mutual Information (AMI), homogeneity

and completeness, Fowlkes-Mallows Index (FMI), silhouette coefficient, and Davies-

Bouldin Index (DBI). However, for the TRICD dataset, only the silhouette coefficient

and DBI could be calculated in the absence of true labels.

5.2 Semi-supervised Learning in Identifying CP

Mechanisms

Semi-supervised Learning was applied to the Model-Ready data after scaling (standard

scaler) the numerical features. It was performed to inspect if some information about

the true classes can help the algorithm to identify the CP mechanisms.

Two types of Semi-supervised methods were used. Figure 5.4 shows how the

algorithms were applied to the datasets to compare the results.

First, SVC was trained using the dataset to tune the model parameters. To do so,

the data was split into training set and test set (80-20 split, details were provided in
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Figure 5.4: Applying Semi-supervised Learning to the Model-Ready data

Table 4.1). The parameters were tuned using a grid search generating the best result.

After that, the tuned parameters were provided to the SVC for the training using the

self-training mechanism.

For the propagation techniques, Label Propagation and Label Spreading were

applied to the Model-Ready data after feature scaling (standard scalar). The same

train and test sets were used for these algorithms as well. Similarly, the same set

of unlabeled data was used for propagating the labels during the training of both

algorithms.
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(a) Training set (b) Hold-out test set

Figure 5.5: Class distribution in training and test set (DADOSD dataset)

For the DADOSD dataset, 4 classes were present where mixed pain was an

individual class. However, for the TRICD dataset, Semi-supervised algorithms could

not be applied due to the lack of true labels (mechanistic classes).

Performance Evaluation The models were tested by predicting the hold-out test

set separated at the first train-test split. The model performances were reported

as accuracy, precision, recall, and F1-score for all the classes along with aggregated

scores.

Though training accuracies are reported, they are not very useful other than

indicating model overfitting or underfitting, especially in this case of an imbalanced

multi-class classification problem. Figure 5.5 shows the distribution of the classes

in the training and test set. However, while calculating training accuracy, only the

unlabeled examples (70% of the training dataset) were considered.
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5.3 Unsupervised Learning in Identifying CP Mech-

anisms

AE was used for feature extraction, while FCM was used to cluster the features and

find the overlapping clusters. A generalized diagram of the approach is given in Figure

5.7.

AE was employed to extract the latent data features while preserving the ability

to reconstruct the data from the encoded latent features (bottleneck). Model-ready

data was scaled (min-max scaler) and split into training and validation sets to feed

the AE model (encoder-decoder). Details about the split were provided in Table 4.2.

However, the AE model was validated using the validation set while calculating the

reconstruction error in terms of MSE.

Figure 5.6. From the plot of the loss during training, it can be observed that the

model has comparable performance on both train and validation sets. Early stopping

was used to stop the training when no validation loss improvement in terms of MSE

was observed.

For the DADOSD data, the best training loss was found 0.957, and the validation

loss was 0.973. For the TRICD data, the best training loss was found 0.0892, and the

validation loss was 0.089.
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(a) AE training and validation on DADOSD
Dataset

(b) AE training and validation on TRICD
Dataset

Figure 5.6: AE model loss on the training and validation datasets over training epochs

Then the entire dataset was given to the Encoder of the trained AE to get the

latent representation of the input data or the encoded features. The extracted features

were then fed to the FCM algorithm. The number of clusters set for the FCM was 3

from the notion of 3 pain mechanisms. FCM then tries to put similar data points into

clusters while giving the ‘probability of belonging to’ for all the 3 clusters.

Figure 5.7: Applying AE and FCM to the Model-Ready data

As FCM is unsupervised, the cluster it generates does not have labels aligned with
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true labels. Additionally, the values in each cluster hold the probability of belonging

to that cluster for the instances. These probabilities were converted to binary based

on a threshold, i.e., a probability value above the threshold became 1 and 0 otherwise.

It was done to consider and evaluate the clustering result as a multi-label problem

and compare them with one-hot encoded true labels (DADOSD dataset).

As the alignment with the true classes is not known, hamming loss was utilized

to find the alignment. For all the six possible orders or combinations of the classes

(Appendix C.4), the hamming loss was calculated. The lowest hamming loss indicated

the best alignment indicating the cluster represents a particular pain type. Then the

clusters were renamed accordingly. In this way, the result was also evaluated using

MLCM by comparing them with the true labels using weighted average accuracy,

precision, recall, and F1-score.

5.3.1 DADOSD Dataset

For the DADOSD data, the AE has an input layer with a dimension of 44 matching

the Model-Ready dataset dimension. Figure 5.8 depicts the architecture of the AE. It

has three hidden layers with a dimension of 22, 11, and 6. The bottleneck layer has 3

dimensions. The decoder has the same architecture as the encoder but is reversed.

Figure 5.8: AE architecture for the DADOSD dataset

133

https://orcid.org/0000-0001-8395-347X
http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – A. Khan; McMaster University – Electrical and Computer Engineering

After training the dataset, the encoder was used to extract the features for use in

FCM. Then the extracted features were used in FCM to identify clusters.

5.3.2 TRICD Dataset

For the TRICD data, the AE has an input layer with a dimension of 28 matching

the Model-Ready dataset dimension. Figure 5.9 depicts the architecture of the AE.

It has two hidden layers with a dimension of 14, and 7. The bottleneck layer has

3 dimensions. Similar to the AE for DADOSD dataset, the decoder has the same

architecture as the encoder but is reversed.

Figure 5.9: AE architecture for the TRICD dataset

After training the dataset, the encoder was used to extract the features for using

in FCM. Then the extracted features were used in FCM to identify clusters.

5.3.3 Performance Evaluation

As FCM is unsupervised, the cluster it generates does not have labels aligned with

true labels. To evaluate the performance of the FCM model in terms of multiple

labels, the proper alignment of the clusters with true labels is necessary. However, the

probabilities need to be binarized to be able to evaluate the performance according to

the true labels (one-hot encoded) using hamming loss and MLCM.
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Aligning the FCM Clusters with True Labels For the DADOSD dataset, a

threshold of 0.3 was used on the probability given by FCM, i.e., a probability of

0.3 was converted to 1 and 0 if it was below 0.3. A threshold of 0.3 was chosen to

give equal importance to the 3 mechanistic classes. Then the proper alignment of

the clusters with the true pain classes was identified using hamming loss, which also

indicated overall multi-label classification performance.

Calculating Performance Measures The lowest hamming loss indicated the best

alignment indicating the cluster represents a particular pain type. Then MLCM was

used to evaluate performance in terms of precision, recall, F1-score for individual classes

in addition to micro, macro, and weighted scores. Weighted scores are particularly

useful for imbalanced datasets like DADOSD.

However, for the TRICD dataset, the true labels are not available, and thus

multi-label performance measures could not be computed.
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Chapter 6

Results

In this chapter, the experimental results of the methods used are presented. At first,

the result of the k-prototypes models for the two datasets is presented for the different

number of clusters (k = 3, 4). Then the results from the Semi-supervised Learning

approaches on the DADOSD dataset are demonstrated. In the end, AE training

information and the result from FCM are shown.

6.1 Unsupervised Learning

k-prototype was performed to inspect if the data have inherent clinically meaningful

clusters. As no indication of the optimal number of clusters was found from the

elbow plot and silhouette score, cluster 3 and 4 was tried with the notion of 3 CP

mechanisms, and if a 4th cluster exists representing the mixed type (as discussed in

Section 5.1).

The clustering result was assessed using Rand Index (RI), Adjusted Rand Index
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(ARI), (Adjusted Mutual Information (AMI), homogeneity and completeness, Fowlkes-

Mallows Index (FMI), silhouette coefficient, and Davies-Bouldin Index (DBI) where

applicable.

A list comprising of the range of values for the measures and interpretation is given

below (more could be found in Subsection 2.1.5.1. However, true class information or

label is not needed to calculate the silhouette score and DBI.

RI [0, 1]: 0 indicates that the two data clusterings do not agree, and 1 indicates

perfect agreement.

ARI [−1, 1]: Lower score refers to poor agreements, a negative score refers to the

agreement being less than expected from a random result, and 1 is perfect

agreement.

AMI [−1, 1]: Bad or independent labeling results in negative scores, random label

assignments score close to 0, and 1 indicates perfect assignments.

Homogeneity and Completeness [0, 1]: Higher value indicates a better clustering

result.

FMI [0, 1]: A value close to 0 indicates largely independent label assignments, whereas

a value close to 1 indicates significant agreement.

Silhouette Score [−1, 1]: A higher score indicates better defined and dense clusters.

A negative score refers to incorrect clustering, and a score close to 0 indicates

overlapping clusters.

DBI [0,R+] 0 is the lowest possible score. Scores closer to 0 indicate better parti-

tioning, referring to the clusters being further apart. Here R+ is a positive real
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number. A value larger than 0 denotes that the clusters are closer to each other

or overlapping.

6.1.1 k-prototypes

Table 6.1: k-prototypes on DADOSD Dataset (k = 4)

Number of Clusters Performance Measure Score

4

RI 0.618

ARI 0.023

AMI 0.032

Homogeneity 0.04

Completeness 0.038

FMI 0.282

Silhouette Score 0.018

Davies-Bouldin Index 4.52

Table 6.2: k-prototypes on DADOSD Dataset (k = 3)

Number of Clusters Performance Measure Score

3
Silhouette Score 0.065

Davies-Bouldin Index 3.318

Table 6.3: k-prototypes on TRICD Dataset (k = 4)

Number of Clusters Performance Measure Score

4
Silhouette Score 0.072

Davies-Bouldin Index 2.760
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Table 6.4: k-prototypes on TRICD Dataset (k = 3)

Number of Clusters Performance Measure Score

3
Silhouette Score 0.069

Davies-Bouldin Index 3.004

6.2 Semi-supervised Learning

Semi-supervised Learning was performed to inspect whether the algorithm could

identify the CP mechanisms with some information about the true classes. Failure to

identify the mechanisms/classes with good performance would refer that the classes

are not distinguishable, in other words, overlapping. It would also indicate whether

the mixed class should be considered a separate class.

All these performance evaluations were done for DADOSD dataset with respect to

the ‘Mechnistic Classes’ that has 4 classes, i.e., Nociceptive, Neuropathic, Nociplastic,

and Mixed (details could be found in Section 5.2). The performance measures were

described in Subsection 2.1.5.2.

The models’ training and testing accuracy are reported to indicate the model fit

(optimal, overfitting, and underfitting). An insignificant difference between training

and testing accuracy is considered optimal and expected.

6.2.1 Semi-supervised SVM

The training accuracy was 40.42%, and the testing accuracy was 38.46%. Table 6.5

contains scores of the performance measures, and Figure 6.1 shows the normalized

confusion matrix.
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Table 6.5: Report showing the classification metrics for Semi-supervised SVC

Precision Recall F1-score Support

0 0.4 0.83 0.54 35

1 0.38 0.14 0.2 22

2 1 0.05 0.09 21

3 0.2 0.15 0.17 13

Accuracy 0.38 91

Macro Average 0.49 0.29 0.25 91

Weighted Average 0.5 0.38 0.3 91

Figure 6.1: Confusion matrix of Semi-supervised SVC (DADOSD Dataset)
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6.2.2 Label Propagation

The Label Propagation model achieved a training accuracy of 37.92%, and a classifi-

cation accuracy of 36.26% on the hold-out test set.

Table 6.6: Report showing the classification metrics for Label Propagation

Precision Recall F1-score Support

0 0.43 0.66 0.52 35

1 0.00 0.00 0.00 22

2 0.27 0.48 0.34 21

3 0.00 0.00 0.00 13

Accuracy 0.36 91

Macro Average 0.17 0.28 0.22 91

Weighted Average 0.23 0.36 0.28 91

Figure 6.2: Confusion matrix of Label Propagation (DADOSD Dataset)
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Table 6.6 contains scores of the performance measures, and Figure 6.2 shows the

normalized confusion matrix.

6.2.3 Label Spreading

The Label Spreading model achieved a training accuracy of 35.42%, and a classification

accuracy of 35.16% on the hold-out test set.

Table 6.7: Report showing the classification metrics for Label Spreading

Precision Recall F1-score Support

0 0.51 0.54 0.53 35

1 0.00 0.00 0.00 22

2 0.28 0.52 0.36 21

3 0.14 0.15 0.15 13

Accuracy 0.35 91

Macro Average 0.23 0.31 0.26 91

Weighted Average 0.28 0.35 0.31 91
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Figure 6.3: Confusion matrix of Label Spreading (DADOSD Dataset)

Table 6.7 contains scores of the performance measures, and Figure 6.3 shows the

normalized confusion matrix.

6.3 Overlapping Clustering

Overlapping or Soft Clustering was tried to explain the overlapping tendency of the

data, identify and quantify the CP mechanisms, and investigate the performance of

multi-label classification in terms of the true labels in DADOSD dataset.

The features extracted by AE were used in FCM. The performance measures were

calculated by comparing with one-hot true labels for the DADOSD dataset.
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6.3.1 FCM

Regular clustering was done to compare the result with previous results, and soft

clustering was performed to identify and quantify co-existing CP mechanisms and

observe the performance of multi-label classification.

6.3.1.1 Regular Clustering

Table 6.8: FCM on AE extracted features DADOSD dataset (k = 3)

Number of Clusters Performance Measure Score

3
Silhouette Score 0.158

Davies-Bouldin Index 2.102

Table 6.9: FCM on AE extracted features TRICD dataset (k = 3)

Number of Clusters Performance Measure Score

3
Silhouette Score 0.276

Davies-Bouldin Index 1.474

Figure 6.4 shows the AE extracted features from the DADOSD dataset are visualized

as a scatterplot with FCM cluster labels (regular clustering). The dots are colored

based on FCM cluster labels before alignment with CP mechanisms. However, these

plots are only for visualizing FCM’s regular/hard clustering result.
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(a) Two-dimensional scatterplot (b) Three-dimensional scatterplot

Figure 6.4: The AE encoded features from DADOSD dataset visualized as a
scatterplot with FCM cluster labels (regular clustering). The dots are colored based

on FCM cluster labels before alignment with CP mechanisms.

6.3.1.2 Soft Clustering

Table 6.10 presents a few examples of FCM soft clustering result, which indicates the

probability of belonging to a cluster (i.e., CP mechanisms). The higher the probability,

the more dominant the CP mechanism.

Table 6.10: Example of FCM outputs

Example Nociplastic Nociceptive Neuropathic

1 0.03 0.68 0.29

2 0.58 0.04 0.38

3 0.02 0.00 0.97

4 0.05 0.48 0.46

5 0.36 0.02 0.63
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Hamming loss and Cluster Alignment In multi-label classification, hamming

loss penalizes only the individual labels which were predicted wrong. Lower hamming

loss states better classification (Subsection 2.1.5.3).

Therefore, hamming loss was used to evaluate multi-label classification performance

and also to find the proper alignment of the FCM-generated clusters with respect to

the true label. For all the combinations, hamming loss was computed and the lowest

hamming loss of 0.43 was found for combination E (Appendix C.4), i.e., Nociplastic,

Nociceptive, and Neuropathic.

Other Multi-label Classification Measures A multi-label classification was

performed after the probabilities resulted from FCM were converted to binary based

on a threshold, i.e., a probability of 0.3 or above was converted to 1 and 0 if it was

below 0.3 (Subsection 5.3.3).

Figure 6.5 illustrates the raw and normalized MLCM. Details about MLCM were

presented in Subsection 2.1.5.3.

Table 6.11 demonstrates the precision, recall, and F1-score based on the results

calculated from one-vs-rest confusion matrix. The scores of the performance measures

with respect to the individual classes increased compared to the Semi-supervised

Learning approaches.
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(a) Raw MLCM (b) Normalized MLCM

Figure 6.5: Multi-label confusion matrix of FCM using AE features. The normalized
matrix demonstrates the percentage of true and false predictions. In contrast, the raw

confusion matrix shows the actual number of counts of the true and the false
predictions and indicates the size of each class. Here, NTL is No True Label, and

NPL denotes No Predicted Label.

Table 6.11: Overall multi-label classification performance

Precision Recall F1-score Weight

0 0.42 0.54 0.47 171

1 0.65 0.34 0.44 296

2 0.31 0.38 0.34 146

Micro Average 0.40 0.40 0.40 613

Macro Average 0.46 0.42 0.42 613

Weighted Average 0.50 0.40 0.43 613
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Chapter 7

Discussion

In this chapter, the results from the experiments are analyzed. This chapter also

discusses how the results of Unsupervised and Semi-supervised Learning led toward

viewing CP as a continuum, which was validated by soft clustering. Additionally, the

generalizability of the results, explainability, possible implications, and limitations of

this work are discussed.

7.1 Interpreting the Results

In this section, the results are interpreted and discussed in detail. At first, the trends

of the datasets are discussed from the results of regular clustering. After that, if

mixed pain should be considered a separate pain mechanism is explained in the light

of the results from the Semi-supervised Learning models. Considering the outcome of

Unsupervised and Semi-supervised Learning, the result of soft clustering to identify

co-existing CPs is explained.
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7.1.1 The Trend in Clustering CP Data

To find the optimal number of clusters, the cost function (sum distance of all points

to their respective cluster centroids) that combines the calculation for numerical and

categorical variables was used and plotted for different numbers of clusters (k = 2

to 10). For DADOSD dataset, the elbow method did not show any inflection point

or elbow indicating the optimal number of clusters. Similarly, silhouette score was

calculated for different numbers of clusters (k = 2 to 10). The average silhouette

score did not clearly identify a number of clusters that is appropriate to interpret and

validate the consistency within the clusters.

The same trend was observed for the TRICD dataset. No clear indication for the

optimal number of clusters was found from the elbow plot and silhouette score plot.

However, for the number of clusters 3 and 4, clustering performance measures

were tested. 3 clusters were tried to investigate if they are relatable to the 3 pain

mechanisms, whereas 4 clusters were tested to see if the mixed-type itself constructs

another cluster. All the relevant performance measures (RI, ARI, AMI, Homogeneity,

Completeness, FMI, Silhouette Score, DBI) can only be calculated when true labels

are available. However, in the absence of true labels, only silhouette score and DBI

could be calculated.

For the DADOSD dataset, true labels were available for the mechanistic classes

where mixed-type was labeled as a separate class (0- Nociceptive, 1- Neuropathic, 2-

Nociplastic, 3- Mixed). Where RI indicated a good clustering similarity based on the

true labels, ARI of 0.023 indicated that showed poor agreements in clustering. AMI

was found to be close to 0 (0.032), which indicates the clusters are not pure or random

label assignments. Similarly, the FMI value of 0.282 indicates the label assignments
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were independent to some extent. Additionally, the clusters do not satisfy Homogeneity

and Completeness measures. The scores indicate that the clusters contain instances

that are members of multiple classes or all the instances that are members of a given

class are members of different clusters. The silhouette score indicates the clusters are

overlapping and not well-defined. Also, a DBI value of 4.52 refers that the clusters

are not further apart.

For 3 clusters, as true labels were not available, only silhouette score and DBI

could be calculated. The scores are similar to 4 clusters. Both silhouette score and

DBI slightly improved, referring marginally more defined than that of 4 clusters.

Silhouette score and DBI were also calculated for the TRICD data. For the number

of clusters 3 and 4, the differences were insignificant. Silhouette score indicated the

overlapping tendency of the clusters where the DBI resonated that the clusters were

not further apart.

7.1.2 Should Mixed-Pain be Considered Separately?

Semi-supervised algorithms could only be applied to DADOSD data where mechanistic

classes (4 classes) were used as true labels. The performance measures were evaluated

in terms of precision, recall, and F1-score, including their macro and weighted averages

as a multi-class classification problem.

In terms of training the models, none of the models was overfitted or underfitted

as the difference between the training and testing accuracy was insignificant.

In the case of Semi-supervised SVM, for Nociceptive, while F1-score was good where

a recall was observed. While the precision was perfect for Nociplastic but the recall

was not good as it misclassified Nociceptive as Nociplastic. However, Neuropathic and
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Mixed-type were often misclassified as Nociplastic. The macro and weighted F1-score

was fairly low (0.25 and 0.3).

In Label Propagation, it did not predict Neuropathic and Mixed at all. The

individual recall for Nociceptive and Nociplastic was good, where the precision was on

the lower side. Overall, the classifier performed similarly to the Semi-supervised SVM.

The same trend was demonstrated by the Label Spreading model as well. It could

not classify Neuropathic at all. However, Label Spreading achieved marginally better

macro and weighted F1-score (0.26 and 0.31), which is still not satisfactory with regard

to the true labels.

7.1.3 Identifying Co-existing CPs

The reconstruction loss or validation loss for AE was very good for both datasets.

For the DADOSD dataset, the validation loss or MSE was 0.983, and for the TRICD

dataset, the validation loss was 0.089. Both models were found to be good at

reconstructing the data from the encoded latent representation by the encoder.

Both hard/regular and soft/overlapping clustering were performed on features

extracted by AE using FCM. Hard or regular clustering was done to observe the

clustering ability and compare it with previous results. For 3 clusters, silhouette

scores slightly increased for both datasets (Subsection 6.3.1.1) compared to clustering

performed by k-prototypes using the Model-Ready data. DBI also decreased in both

cases. So, the clusters were slightly more defined and a little further from each other.

Overall, the trend is very similar, and the overlapping tendency is still present.

In overlapping clustering, FCM suggested the probability of belonging for each

of the 3 clusters for every instance. This empirically quantifies the pain mechanisms
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present in patients where the highest probability is the dominant pain mechanism in

that patient.

In order to find the best alignment or which cluster represents which mechanism

and to calculate the multi-label performance measures, a threshold of 0.3 was used to

binarize the probability. The 0.3 threshold was chosen to give the same gravity to

all three pain mechanisms. The hamming loss was significantly better than random

chance (0.43). It also indicated the clusters related to the pain mechanisms. The

other multi-label measures were also found to be better than the performance of

Semi-supervised Learning.

7.2 Why Were the Clusters Not Distinguishable?

For both datasets, the result from ARI and silhouette scores indicate that the clusters

are not separable and thus overlapping. With the aid of class information, the Semi-

supervised models also could not identify the classes where it had the most difficulty

with Mixed classes, i.e., Mixed class was often misclassified as Nociplastic. This result

is not surprising as the features might be shared among the pain mechanisms, which

makes it a Mixed type, and the model failed to find a distinguishable pattern. From

these observations, it can be stated that the CP patients’ data are not clusterable

while revealing distinct pain phenotypes. Additionally, the mixed type should not

be considered as a separate class or cluster. The literature also suggests that CP

mechanisms co-exist with a prevalence of about 60% or more. This work resonates

with the same information.

Overlapping clusters indicated that the pain mechanisms co-exist. The result of

hamming loss and the other multi-label performance measures showed that the clusters
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could reveal the pain mechanisms. Therefore, the probability score of belonging to

the clusters quantifies the pain mechanism present in a patient where the highest

probability indicates the dominant pain mechanism in that patient.

7.3 Chronic Pain is a Continuum

From the notion of pain as a continuum, it can be concluded that the pain mechanisms

are like a spectrum or continuum where all the mechanisms can be present while one

being more dominant than others.

As CP treatment is most effective if the underlying cause or mechanism can be

identified, the diagnosis should focus on the mechanism instead of anatomical location-

based or symptom-based treatments. Instead of looking at CP as a distinct entity, it

should be viewed as a continuum.

This work suggests that CP mechanisms co-exist in a patient, and it can be

indicated with a reasonable estimate of which mechanisms are present in a patient

and which is the dominant CP mechanism. This is a significant finding while having

the potential to aid clinicians in identifying the underlying cause of CP faster and

improve the diagnosis and treatment.

7.4 Generalizability

The generalizability of the results cannot be fully ascertained, in part, because of the

limited size of the available datasets for model development. However, the results

support using AE and FCM as a pipeline of methods to identify and quantify the pain

mechanisms present in a patient. It was encouraging that although the datasets were
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different, they produced similar results. The results also emphasize that 3 clusters

could, and did, represent the clinically meaningful 3 pain mechanisms.

The architecture of the AE was different in addressing the different dimensions

of the data. However, the same dimension of bottleneck, which reduced the data to

the salient features, suggests a commonality in the data supporting generalizability as

FCM takes the extracted features and does not require tuning.

7.5 Explainability

Explainability is a crucial aspect when it comes to medical applications. It is not

sufficient to only identify the CP mechanisms. It is also important to indicate the

dominant mechanism, so that it becomes more useful for treatment and management

purposes. This work quantifies the co-existing CP mechanism, which suggests the

dominant mechanism. It was done by indicating the probability of pain mechanisms

present.

Table 6.10 demonstrates the result by FCM. The probabilities quantify the CP

mechanisms where a higher number indicates the dominant mechanism. For in-

stance, for the patient in example 1, Nociceptive (0.68) is the dominant CP, whereas

Neuropathic is present with 0.29 magniture and Nociplastic (0.03) is close to 0.

Therefore, this method not only quantifies the CP mechanisms but also specifies

the dominance of one mechanism over the other. It resembles a vector having three

dimensions (each dimension representing a pain mechanism), where the magnitudes

quantify the mechanism.

Another aspect of explainability was presented by the data used. Patient-reported

data and medical history were utilized in this work. As input data can be reconstructed
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from the latent representation of the AE, it is possible to see what values were present

in the features that produced the result. This can also aid medical experts in

understanding the context.

7.6 Impact and Novelty

From the literature review (Chapter 2), it can be observed that when data in context

contain one or two CP conditions (not mechanisms) or one to two CP conditions with

healthy participants, they might be distinguishable from one another. In the case of

this research, the dataset contained all the pain mechanisms which have been used to

validate the clusters. No published literature has tried to identify clinically meaningful

clusters where it reveals CP mechanisms with quantification and a direction toward

the dominant mechanism (conceptually, a pain vector, where the magnitudes quantify

the co-existing CPs). A pain vector would be more useful from the perspective of

patients, and the healthcare system [19].

As there is a lack of gold standard in identifying CP mechanisms, a set of criteria

was nominated by Delphi study [19]. However, it is tough to consider and process

all the information/criteria together. In the case of overlapping conditions, it might

become more challenging for a physician. Moreover, the clinical decisions might not

always be consistent due to the presence of possible bias from the clinicians (e.g.,

different opinions, level of expertise, mental and physical state, etc.). As this method

is data-driven, it can possibly avoid bias, and it can help unify clinicians’ thoughts.
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7.7 Possible Implications

The number of CP patients is rising, and it increases the use of healthcare resources.

As a result, wait times increase, making CP more difficult to manage. Delays and

sub-optimal management of CP decrease the patient’s perception of getting better,

which is an important factor in CP management. Additionally, it takes a significant

amount of time for the physicians to be able to identify the underlying cause, which

makes it more resource-intensive.

This thesis suggests a way of identifying and quantifying the pain mechanisms

present in a patient with a justifiable success rate with only patient-reported history

and questionnaires data. It also avoids the cognitive bias that might be present in a

medical practitioner’s diagnosis which makes it fully data-driven.

As it could suggest the pain mechanism without any pathological or imaging test,

it arguably takes an hour or two to answer the questionnaires for the patients. The

acquired data can be utilized to fast-track the treatment by identifying and quantifying

CP, which can aid physicians in making rapid decisions and directing the patients’ to

the best possible treatments faster. As a consequence, this work can help in decreasing

the burden on the healthcare induced by CP patients while reducing the total cost.

7.8 Limitations

This work exhibits a few limitations. Both datasets had many missing points. In

most cases, the reasons were unknown, and they could not be fixed as the datasets

are retrospective. During the cleaning phase, data were lost due to several reasons.

Additionally, features were also removed where more than 40% values were missing.
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The impact of the removed features is not known; thus, working with datasets with

less or no missing information should be targeted in the future.

For some features, the missing data points were imputed. As Unsupervised Learning

was involved, the goal was to keep as much information as possible to minimize or avoid

bias. Though the impact of imputation was marginal according to the visualization,

the confidence would have been higher if the data points were not missing or the

pattern(s) or reason(s) for missing data were known.

Although questionnaires are found to be effective in CP diagnosis, treatment,

and management; the answers or the data collected from them are subjective. The

questions in the datasets are from several validated questionnaires, but the combination

of them was not validated. Validated questionnaires are tested for reliability and

validity, which is efficient in both research, and clinical settings [256]. As similar results

were observed from two different datasets, the models’ performances are expected to

remain unaffected. Yet, a set of validated questionnaires could reduce any effects due

to subjectivity.

Additionally, the dataset (DADOSD) is imbalanced in terms of the distribution of

patients with pain mechanisms. Though measures were taken to avoid the impact of

the dataset imbalance on the result, fewer variations were present from the underrep-

resented groups. From the algorithm’s perspective, the underrepresented or minority

class might affect the models negatively due to possible low variations or patterns to

learn.

The SME reviewed the doctor’s diagnosis established at the clinic while adding

the CP mechanism labels. Though relevant Delphi studies were taken into account

with clinical knowledge, the true labels might contain bias from the doctors and the
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SME who labeled the instances indicating CP mechanisms. Though the anticipated

influence on the true labels and ML model’s performance is minimal, it would have

been superior if multiple doctors or SMEs had reviewed the labelings and reached a

consensus.

Both datasets are relatively small in size. The datasets are different considering

the set of available features (e.g., body diagram is present in TRICD data but not in

DADOSD data). Though while analyzing the datasets, a similar trend was observed,

the aspect of generalizability depends largely on the availability of a similar dataset

from a different cohort.
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Chapter 8

Conclusion

In this chapter, the thesis contributions are summarized, and possible avenues for

future research are discussed.

8.1 Summary of Contributions

Chronic pain is a vast area of medical science, and it is complicated to diagnose and

manage. As it is one of the leading causes of accessing the healthcare system and

disability, it has become a global burden. Although the most effective way to treat

CP is to identify the underlying cause or mechanism, it is often unattainable in a

clinical setting. Most of the time, the pain mechanisms co-exist, making identification

more challenging.

Although several existing works attempted to cluster CP conditions, there is a

complete lack of work that helps identify co-existing CP mechanisms while quantifying

them. This work attempted to identify the existing CP mechanisms (i.e., Nociceptive,

Neuropathic, and Nociplastic) within a patient using Unsupervised Learning while
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quantifying it without the help of diagnosis and treatment information.

This work involved working with patient-reported history and questionnaire data.

Two datasets were used where the first dataset had labels indicating the mechanism(s)

present in each patient, and a relatively small dataset was used for observing the

trends compared to the first dataset. After preprocessing the datasets, Unsupervised

Learning or clustering technique (k-prototypes) was applied where no class information

was provided to the algorithm. Significant overlaps were observed where no optimal

number of clusters was revealed. The overlaps indicate that CP mechanisms cannot

be discerned or classified as distinct disorders. Additionally, it was shown that mixed

pain mechanisms do not make a separate cluster or class.

From the results of Semi-supervised Learning, the same characteristics were ob-

served. The classes or mechanisms were not classified with good performance even

though the algorithm had the privilege to leverage some true class information. It

was evident that the classes were overlapping. Therefore, from the results from

k-prototypes and Semi-supervised Learning models, it became clear that the CP

mechanisms co-exist, and rather than distinct entities, CP should be considered as a

continuum.

With the help of Autoencoder, hidden features were extracted, and dimension was

reduced. An overlapping clustering technique was employed, which revealed that 3

CP mechanisms could be identified with good performance (hamming loss of 0.43)

while explaining the overlaps. Additionally, the pain mechanisms were also quantified,

and the dominant CP mechanism was indicated in each patient in the data, which is

considered significant in CP treatment and management.

This work is data-driven proof that CP should be considered as a continuum. CP
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is a spectrum where all the CP mechanisms can also co-exist in a patient. Additionally,

one CP mechanism can be more dominant than the others. However, validation of

this work with data from a larger cohort, in addition to other clinical features, might

improve the performance of the current pipeline of the algorithms. Furthermore,

clinical validation is necessary before utilizing it in a real-world setting, though the

same trend as found in this work is expected to be observed. Therefore, rather than

trying to identify distinct CP phenotypes or mechanisms, CP should be considered a

continuum where all CP mechanisms co-exist.

8.2 Future Directions

In this section, future directions and recommendations for future works are discussed.

While emphasizing on minimizing the limitations (Section 7.8), other steps are docu-

mented here.

Firstly, the efficacy of the method of clustering and identifying CP mechanisms

can be further assessed and evaluated with patients in a clinical setting. It can be

done by testing the algorithm’s performance against clinically set standards.

Secondly, the focus will also be on improving the overall accuracy (hamming loss)

and extending the model presented in this thesis. This can be pursued from the

standpoints of data and ML models. Validated questionnaires could be beneficial for

the model in particular. This work can also be extended and tested for generalizability

with a larger dataset from a different cohort. From the algorithms’ point of view, the

categorical features could be converted into numerical/continuous, which could open

the window for other clustering algorithms.

Additionally, a validated set of questionnaires can be used with data governance
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for data gathering and storing. Steps should be taken toward having an ideal dataset

consisting of all the clinically important features. Data collected with the goal of pain

mechanism identification might help increase the model’s performance. Researchers

can focus on improving the algorithm’s performance by having clinical tests such

as QST along with data comprised of a set of validated questionnaires. As criteria

were suggested through Delphi study towards the establishment of a gold standard

to distinguish CP mechanisms [19], it might be the next reasonable step to see if

the criteria come out ahead in explaining the mechanisms and their overlaps or co-

existence. In addition to that, the true labels could be reviewed by multiple experts

while considering the suggested criteria to have more unified labeling and minimize

bias.

Moreover, variables could be prioritized by clinical importance, possibly derived

from a consensus of the SMEs. The ML model’s performance can be tested by

training it on the selected features. A focus could be on ranking the features based

on contribution or impact on the result, which can be helpful in the clinical setting.

However, bias could be present in this approach and should be carefully addressed.

Explainability is another significant aspect of ML in a clinical setting. Here, the

dominant CP mechanism was indicated with a magnitude, but the next step might

be to identify what are the driving factors behind the magnitude or the level of the

magnitude. In terms of the AE, even though the data can be reconstructed from the

AE-extracted features, it would be more intuitive if explainable components could

be added to the output of FCM. So, adding explainability with FCM’s output or

explaining the clusters could be the step towards explainability.

More research is needed in the field of CP especially focusing on CP mechanisms.
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Anonymized data should be open-sourced to give the researchers flexibility and attract

more researchers to work in this arena.

Finally, future research should be done to improve the efficiency of the ML models in

finding co-existing CP mechanisms while considering CP as a spectrum or continuum.
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Appendix A

Literature Review

A.1 Search Strings

Web of Science Core Collection (TS=((chronic OR persistent OR recurrent)

NEAR/3 Pain) AND TS=(“Machine Learning” OR “Artificial* Intelligen*” OR “Deep

Learning” OR (Unsupervised NEAR/2 Learning) OR “Artificial Neural Network” OR

“Convolutional Neural Network” OR “Natural Language Processing” OR “Cluster

Analysis” OR “Clustering”))

ACM Digital Library ((Chronic AND Pain) “chronic widespread pain” “persistent

pain” “recurrent pain”) AND (“Machine Learning” “Artificial Intelligence” “Deep

Learning” “Unsupervised Learning” “Unsupervised Machine Learning” “Artificial

Neural Network” “Convolutional Neural Network” “Natural Language Processing”

“Cluster Analysis” “Cluster*”)

164



M.A.Sc. Thesis – A. Khan; McMaster University – Electrical and Computer Engineering

IEEE Xplore (((chronic OR persistent OR recurrent) NEAR/3 Pain) AND (“Ma-

chine Learning” OR “Artificial* Intelligen*” OR “Deep Learning” OR (Unsupervised

NEAR/2 Learning) OR “Artificial Neural Network” OR “Convolutional Neural Net-

work” OR “Natural Language Processing” OR “Cluster Analysis” OR “Cluster*” “All

Metadata”:“Full Text & Metadata”:))

A.2 Screening the Articles

The Full-text Screening (after Title and Abstract Screening) guidelines are provided

here. A flowchart in Figure A.1 shows the series of steps that were involved.
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Figure A.1: Scoping review: Full-text screening
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Appendix B

Datasets

B.1 Ethical Approval and Data Retention

B.1.1 Research Ethics Board Approval

An ethics application (MREB#: 5567) was submitted to McMaster University Research

Ethics Board (MREB) for this research. The application was reviewed and cleared by

the MREB on December 08, 2021, to ensure compliance with the Tri-Council Policy

Statement and the McMaster Policies and Guidelines for Research Involving Human

Participants.

B.1.2 Storage and Use

UHN de-identified the data that minimizes privacy and confidentiality risks. Never-

theless, we recognize that privacy and security are still a concern. As participants’

privacy and confidentiality have been addressed by the collector of the data (UHN),

we do not believe that there is a high risk associated with this data. The data is
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stored on Dr. Doyle’s password-protected server behind the McMaster University’s

server, secured by the McMaster firewall, and physically resides in a locked room at

the university. This also addresses the issues regarding the storage and security of

research data mentioned in the MREB [248] Data Storage & Security Guide. The

research data will only be accessible to the research team comprised of the Faculty

Supervisor (Dr. Doyle), and the Student Principal Investigator (Md Asif Khan) using

passwords and controlled access to the server. The datasets were received from UHN

on 22nd February 2022, and the plan is to retain the data till December 2022 (the

expected graduation date for the Student Principal Investigator).

B.2 Comparison Between the Datasets

Table B.1: Comparison between TRICD and DADOSD datasets. This applies to the
raw datasets. Here, ‘Yes’ indicates the feature is present, and ‘No’ indicates the

feature is not available in that particular dataset.

Fields TRICD Dataset DADOSD Dataset

No. of Patients (rows) 201 738

No. of Variables (columns) 60 146

Sex Yes Yes

Age Yes Yes

Employment Status Yes No

Body Diagram (PSA) Yes No

Pain Persistence No Yes

Pain Time Gets Worse No Yes

Continued on the next page
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Table B.1 continued from the previous page

Fields TRICD Dataset DADOSD Dataset

Pain Description No Yes

Pain Worse No Yes

Pain Better No Yes

Pain Improvement No Yes

Pain Affected by Stress No Yes

Pain Worsen Time No Yes

Diagnosis Reported by Patient No Yes

Brief Pain Inventory (BPI) Yes Yes

No. of Medications Yes Yes

More Information No Yes

Side Effects No Yes

Medications Stopped No Yes

Medications Type No Yes

No. of Opioids Yes No

Smoking Yes Yes

Alcohol No Yes

Recreational No Yes

Comorbidities No Yes

Co-existing Pain Conditions Yes Yes

Continued on the next page
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Table B.1 continued from the previous page

Fields TRICD Dataset DADOSD Dataset

Approaches (Massage,

Acupuncture, Chiropractic,

Physio, Mental, osteopathy)

Yes Yes

Workplace Safety and Insurance

Board (WSIB) [257] Claim
Yes Yes

Patient Stages of Change

Questionnaire
Yes No

Pain Patient Profile Yes No

Disposition Yes No

Mechanistic Classification No Yes

Note: This comparison table was initially provided by UHN and later modified by Md

Asif Khan.

B.3 Reasons for Feature and Instance Removal

The reasons for features and subject removal are listed here. These steps were taken

after careful analysis and consulting with SMEs. The rows were removed before the

column/feature removal.

Reasons for instance (row) removal:

• Mechanistic classification labels missing (DADOSD data)

• More than 20% missing data points
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• Duplicates

Reasons for feature removal:

• Unformatted and unstandardized text

• Unstandardized inputs

• Treatment and diagnosis

• Not relevant (e.g., WSIB claim number)

• More than 40% missing values

• Duplicates

B.4 Data Variables

DADOSD Dataset The table below contains the DADOSD dataset (cleaned)

variables and their description.

Table B.2: DADOSD dataset variables and their description

Variables Description

Subject ID Pseudo Subject ID

Age Calculated Calcualted from DOB and DOE (years)

Gender Coded Male - 0, Female- 1

Pain Persistence Coded Comes and goes - 0, Always there - 1

Pain Time No - 0, Yes - 1

PF Throbbing No - 0, Yes - 1
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Table B.2 continued from the previous page

Variables Description

PF Shooting No - 0, Yes - 1

PF Stabbing No - 0, Yes - 1

PF Sharp No - 0, Yes - 1

PF Cramping No - 0, Yes - 1

PF Gnawing No - 0, Yes - 1

PF Burning No - 0, Yes - 1

PF Aching No - 0, Yes - 1

PF Heavy No - 0, Yes - 1

PF Tender No - 0, Yes - 1

PF Splitting No - 0, Yes - 1

PF Tiring No - 0, Yes - 1

PF Sickening No - 0, Yes - 1

PF Fearful No - 0, Yes - 1

PF Punishing No - 0, Yes - 1

Pain Improvement Coded
Getting worse - 0, Getting better - 1,

Staying about the same - 2

Pain Affected by Mood No - 0, Yes - 1

Worst Pain Last 24hrs

Scale (last 24 hours): 0 - No Pain, 1, 2, 3, 4,

5, 6, 7 , 8, 9, 10 - Worst Pain Imaginable

Least Pain Last 24hrs

Average Pain

Pain Right Now
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Table B.2 continued from the previous page

Variables Description

Pain Relief Pct

Percentage of relief from treatment or

medication provided 0% - No relief, 10% - 1,

20% - 2, 30% - 3, 40% - 4, 50% - 5, 60% - 6,

70% - 7, 80% - 8, 90% - 9, 100% - 10

(Complete relief)

General Activity Interference

Scale: 0 - Does not interfere, 1, 2, 3, 4,

5, 6, 7, 8, 9, 10- Completely interferes

Mood Interference

Walking Ability Interference

Normal Work Interference

Relationship Interference

Sleep Interference

Enjoy Life Interference

Concentra-

tion Ability Interference

Apetite Interference

BPI Score BPI from Raw Data

Pain Med Qty Coded Total count of medicine

Pain Med SideEffects No - 0, Yes - 1, Uncertain - 2

Med More Info Needed No - 0, Yes - 1

Nicotine Smoking No - 0, Yes - 1

Alcohol Consumption Weekly
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Table B.2 continued from the previous page

Variables Description

Categorized

0- None/quit, 1- Occasional, rarely, one/two

glass/es a week, 2- More than 1.5 litres, 3-

6+ drinks

Medical History Surgery Coded None - 0, Others- 1

WSIB Claim No - 0, Yes - 1

Litigation No - 0, Yes - 1

Mechanistic Classes
Nociceptive - 0, Neuropathic - 1, Nociplastic

- 2, Mixed - 3

Nociceptive No - 0, Yes - 1

Neuropathic No - 0, Yes - 1

Nociplastic No - 0, Yes - 1

TRICD Dataset The table below contains the TRICD dataset (cleaned) variables

and their description.

Table B.3: TRICD dataset variables and their description

Variables Description

Subject ID Pseudo Subject ID

Sex Coded Male - 0, Female - 1

Age Years

Employment Status Categorized
Employed - 0, Unemployed - 1, Retired - 2,

Unknown - 3
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Table B.3 continued from the previous page

Variables Description

Body Diagram Body diagram value

BPI Pain Severity Pct Gen Pain severity percentage

BPI Relief Pct Gen Pain relief percentage

BPI Pain Interference Pct Gen Pain interference percentage

Med Analgesics Number of analgesics

Med Opiods Number of opioids

Smoke Categorized No - 0, Yes - 1, Unknown - 2

EtOH week Categorized No - 0, Yes - 1, Unknown - 2

WSIB Claim No - 0, Yes - 1

Legal Case Active No - 0, Yes - 1

PSCG Age 1

From PSOCG questionnaire

PSCG Mean 1

PSCG Age 2

PSCG Mean 2

PSCG Age 3

PSCG Mean 3

PSCG Age 4

PSCG Mean 4
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Table B.3 continued from the previous page

Variables Description

Current Stage Coded

Unknown - 0, Precontemplation - 1,

Precontemplation/Contemplation - 1.5,

Contemplation - 2, Contemplation/Action -

2.5, Action - 3, Action/Maintenance - 3.5,

Maintenance - 4

P3 DEP T Score From P3 Questionnaire

P3 ANX T Score From P3 Questionnaire

P3 SOM T Score From P3 Questionnaire

Dpn Interprofessional Therapy

Binarized No - 0, Yes - 1

Dpn Groups SM Mindfulness No - 0, Yes - 1

Dpn Group Exercise Hydrotherapy
No - 0, Yes - 1

Dpn Meds Management No - 0, Yes - 1

Dpn Psych Consult No - 0, Yes - 1

Edu Videos No - 0, Yes - 1

Edu Exercises No - 0, Yes - 1
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Appendix C

Data and Model

This chapter focuses on data, and ML model parameters, including details about their

corresponding libraries used.
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C.1 Data Analysis

C.2 Correlation Heatmap

Figure C.1: Correlation heatmap of numerical variables of DADOSD dataset
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Figure C.2: Correlation heatmap of numerical variables of TRICD dataset

C.3 Model Hyper-parameters and Libraries

The ML model hyper-parameters and used libraries will be shared here. However, the

Python version used in this work was 3.9.9. The random state was set to 1024 for all

the models where applicable.
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C.3.1 Visualization

C.3.1.1 UMAP

For the implementation of UMAP, umap-learn library (version 0.5.3) was used [258].

For the 2D and 3D scatterplots, n components parameter was 2 and 3, respectively.

Additionally, the other relevant parameters were changed accordingly. An example is

provided below.

# n u m e r i c a l f e a t u r e s f i t

umap .UMAP( n ne ighbors =35, n components=2, metr ic=’ l 2 ’ ,

m in d i s t =0.3 , n epochs = 1000 , random state=seed ,

t rans fo rm seed=seed , verbose = 1 ) . f i t ( numerica l . va lue s )

# c a t e g o r i c a l f e a t u r e s f i t

umap .UMAP( n ne ighbors =35, n components=2, metr ic=’ d i c e ’ ,

m in d i s t =0.8 , n epochs = 1000 , random state=seed ,

t rans fo rm seed=seed , verbose = 1 ) . f i t ( c a t e g o r i c a l . va lue s )

C.3.2 Unsupervised Learning (Regular Clustering)

C.3.2.1 k-prototypes

The implementation of the k-prototypes algorithm was done using kmodes (version:

0.12.2) library in Python [145]. The library can be found here.

DADOSD Dataset k-prototypes model parameters:

# c l u s t e r = range (2 , 11)
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n c l u s t e r s = c l u s t e r , i n i t = ’Huang ’ , gamma = None ,

max iter = 200 , random state = seed

TRICD Dataset k-prototypes model parameters:

# c l u s t e r = range (2 , 11)

n c l u s t e r s = c l u s t e r , i n i t = ’Huang ’ , gamma = None ,

max iter = 200 , random state = seed

C.3.3 Semi-supervised Learning

Only applicable to the DADOSD dataset. The implementations of the Semi-supervised

Learning algorithms were done using Python libraries by scikit-learn project (version

1.0.2) [259]. The libraries can be explored here: Self-Training, Grid Search, SVC,

Label Propagation, Label Spreading.

C.3.3.1 SVC

Parameter Tuning The set of parameters selected for Grid Search to find the best

fit is given below.

params = {

’C ’ : [ 0 . 1 , 1 , 10 , 100 , 1000 ] ,

’gamma ’ : [ 1 , 0 . 1 , 0 . 01 , 0 . 001 , 0 . 0 0 0 1 ] ,

’ degree ’ : [ 3 , 4 , 5 , 6 , 7 , 8 ] ,

’ k e rne l ’ : [ ’ poly ’ , ’ r b f ’ ] ,

’ d e c i s i o n f u n c t i o n s h a p e ’ : [ ’ ovo ’ , ’ ovr ’ ]

}
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SVC tuned parameters Fitting 5 folds for each of 600 candidates, totaling

3000 fits:

{ ’C ’ : 1 , ’ d e c i s i o n f u n c t i o n s h a p e ’ : ’ ovo ’ , ’ degree ’ : 6 ,

’gamma ’ : 0 . 001 , ’ k e rne l ’ : ’ poly ’}

Final Model Parameters The final set of parameters for the Self-training

model and Semi-supervised SVC estimator model was:

{ ’ ba s e e s t imato r C ’ : 1 ,

’ b a s e e s t i m a t o r b r e a k t i e s ’ : False ,

’ b a s e e s t i m a t o r c a c h e s i z e ’ : 200 ,

’ b a s e e s t i m a t o r c l a s s w e i g h t ’ : ’ balanced ’ ,

’ b a s e e s t i m a t o r c o e f 0 ’ : 0 . 0 ,

’ b a s e e s t i m a t o r d e c i s i o n f u n c t i o n s h a p e ’ : ’ ovo ’ ,

’ b a s e e s t i m a t o r d e g r e e ’ : 6 ,

’ base est imator gamma ’ : 0 . 001 ,

’ b a s e e s t i m a t o r k e r n e l ’ : ’ poly ’ ,

’ b a s e e s t i m a t o r m a x i t e r ’ : −1,

’ b a s e e s t i m a t o r p r o b a b i l i t y ’ : True ,

’ ba s e e s t imato r random sta t e ’ : 1024 ,

’ b a s e e s t i m a t o r s h r i n k i n g ’ : True ,

’ b a s e e s t i m a t o r t o l ’ : 0 . 001 ,

’ b a s e e s t i m a t o r v e r b o s e ’ : False ,

’ ba s e e s t imato r ’ : SVC(C=1, c l a s s w e i g h t=’ balanced ’ ,

d e c i s i o n f u n c t i o n s h a p e=’ ovo ’ , degree =6,
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gamma=0.001 , k e rne l=’ poly ’ , p r o b a b i l i t y=True ,

random state =1024) ,

’ c r i t e r i o n ’ : ’ k be s t ’ ,

’ k be s t ’ : 10 ,

’ max i ter ’ : 100 ,

’ th r e sho ld ’ : 0 . 75 ,

’ verbose ’ : True}

C.3.3.2 Label Propagation

Label Propagation model parameters:

k e rne l = ’ knn ’ , n ne ighbors = 160 , max iter = 1000

C.3.3.3 Label Spreading

Label Spreading model parameters:

k e rne l = ’ knn ’ , n ne ighbors = 50 , alpha = 0 .85 ,

max iter = 1000 , t o l = 0.0001

C.3.4 Unsupervised Learning (AE and FCM)

C.3.4.1 Autoencoder

AE was implemented using tensorflow (version 2.5.0) [260]. The model summary for

the DADOSD is given below:
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Layer ( type ) Output Shape Param #

=========================================================

input 1 ( InputLayer ) [ ( None , 4 4 ) ] 0

encoder ( Funct iona l ) (None , 3) 1336

model ( Funct iona l ) (None , 44) 1377

=========================================================

Total params : 2 ,713

Tra inable params : 2 ,713

Non−t r a i n a b l e params : 0

The model summary for the TRICD is given below:

Layer ( type ) Output Shape Param #

=========================================================

input 1 ( InputLayer ) [ ( None , 2 8 ) ] 0

encoder ( Funct iona l ) (None , 3) 535

model ( Funct iona l ) (None , 28) 560

=========================================================

Total params : 1 ,095

Tra inable params : 1 ,095
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Non−t r a i n a b l e params : 0

C.3.4.2 FCM

FCM was implemented using pyclustering (version 0.10.1) and fuzzy-c-means(version

1.6.4) [105, 261].

FCM model parameters:

# i n i t i a l c e n t e r s

i n i t i a l c e n t e r s = k m e a n s p l u s p l u s i n i t i a l i z e r ( data ,

amount centers = 3 , k m e a n s p l u s p l u s i n i t i a l i z e r .

FARTHEST CENTER CANDIDATE) . i n i t i a l i z e ( )

# Fuzzy C−Means a l gor i thm

i n i t i a l c e n t e r s

C.4 Finding Alignment with FCM Clusters

Table C.1: List of orders of the CP categories

Combinations Order of the CP Categories

A Nociceptive Neuropathic Nociplastic

B Nociceptive Nociplastic Neuropathic

C Neuropathic Nociceptive Nociplastic

D Neuropathic Nociplastic Nociceptive
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E Nociplastic Nociceptive Neuropathic

F Nociplastic Neuropathic Nociceptive
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[11] M. Dueñas, B. Ojeda, A. Salazar, J. A. Mico, and I. Failde, “A review of chronic

pain impact on patients, their social environment and the health care system,”

Journal of pain research, vol. 9, p. 457, 2016.

[12] N. Ambardekar, “What is chronic pain management? symptoms and reasons

to control chronic pain.” https://www.webmd.com/pain-management/guide/

understanding-pain-management-chronic-pain, May 2021. Accessed on

2021-05-15.

188

https://orcid.org/0000-0001-8395-347X
http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.webmd.com/pain-management/pain-clinics-all-about
https://uspainfoundation.org/resources/
https://www.canada.ca/en/health-canada/corporate/about-health-canada/public-engagement/external-advisory-bodies/canadian-pain-task-force/report-2020.html
https://www.canada.ca/en/health-canada/corporate/about-health-canada/public-engagement/external-advisory-bodies/canadian-pain-task-force/report-2020.html
https://www.canada.ca/en/health-canada/corporate/about-health-canada/public-engagement/external-advisory-bodies/canadian-pain-task-force/report-2020.html
https://www.webmd.com/pain-management/guide/understanding-pain-management-chronic-pain
https://www.webmd.com/pain-management/guide/understanding-pain-management-chronic-pain


M.A.Sc. Thesis – A. Khan; McMaster University – Electrical and Computer Engineering

[13] R.-D. Treede, W. Rief, A. Barke, Q. Aziz, M. I. Bennett, R. Benoliel, M. Cohen,

S. Evers, N. B. Finnerup, M. B. First, et al., “Chronic pain as a symptom or a

disease: the iasp classification of chronic pain for the international classification

of diseases (icd-11),” Pain, vol. 160, no. 1, pp. 19–27, 2019.

[14] N. Ambardekar, “Pain management guide.”

https://www.webmd.com/pain-management/guide/

understanding-pain-management-chronic-pain#1, May 2021. Accessed on

2021-05-15.

[15] S. P. Cohen, L. Vase, and W. M. Hooten, “Chronic pain: an update on burden,

best practices, and new advances,” The Lancet, vol. 397, no. 10289, pp. 2082–

2097, 2021.

[16] R. L. Chimenti, L. A. Frey-Law, and K. A. Sluka, “A Mechanism-Based Approach

to Physical Therapist Management of Pain,” Physical Therapy, vol. 98, pp. 302–

314, 04 2018.

[17] M. A. Shraim, H. Masse-Alarie, and P. W. Hodges, “Methods to discriminate

between mechanism-based categories of pain experienced in the musculoskeletal

system: a systematic review,” Pain, vol. 162, no. 4, pp. 1007–1037, 2021.

[18] E. Kosek, D. Clauw, J. Nijs, R. Baron, I. Gilron, R. E. Harris, J.-A. Mico, A. S.

Rice, and M. Sterling, “Chronic nociplastic pain affecting the musculoskeletal

system: Clinical criteria and grading system,” Pain, vol. 162, no. 11, pp. 2629–

2634, 2021.

[19] M. A. Shraim, K. A. Sluka, M. Sterling, L. Arendt-Nielsen, C. Argoff, K. S.

189

https://orcid.org/0000-0001-8395-347X
http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.webmd.com/pain-management/guide/understanding-pain-management-chronic-pain#1
https://www.webmd.com/pain-management/guide/understanding-pain-management-chronic-pain#1


M.A.Sc. Thesis – A. Khan; McMaster University – Electrical and Computer Engineering

Bagraith, R. Baron, H. Brisby, D. B. Carr, R. L. Chimenti, et al., “Features and

methods to discriminate between mechanism-based categories of pain experienced

in the musculoskeletal system: a delphi expert consensus study,” Pain, pp. 10–

1097, 2022.

[20] J. Dahlhamer, J. Lucas, C. Zelaya, R. Nahin, S. Mackey, L. DeBar, R. Kerns,

M. Von Korff, L. Porter, and C. Helmick, “Prevalence of chronic pain and

high-impact chronic pain among adults—united states, 2016,” Morbidity and

Mortality Weekly Report, vol. 67, no. 36, p. 1001, 2018.

[21] A. Fayaz, P. Croft, R. Langford, L. Donaldson, and G. Jones, “Prevalence of

chronic pain in the uk: a systematic review and meta-analysis of population

studies,” BMJ open, vol. 6, no. 6, p. e010364, 2016.
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[88] J. Yang, S. Rahardja, and P. Fränti, “Outlier detection: How to threshold outlier

scores?,” in Proceedings of the International Conference on Artificial Intelligence,

Information Processing and Cloud Computing, AIIPCC ’19, (New York, NY,

USA), Association for Computing Machinery, 2019.

[89] H. Perez and J. H. M. Tah, “Improving the accuracy of convolutional neural

networks by identifying and removing outlier images in datasets using t-sne,”

Mathematics, vol. 8, no. 5, 2020.

[90] F. M. Dekking, C. Kraaikamp, H. P. Lopuhaä, and L. E. Meester, A Modern
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