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Lay Abstract  

The heart is a vital part of the cardiovascular system, which helps deliver and regulate blood flow 

through the entire human body. The coronary arteries are a crucial part of this system since they 

deliver blood directly to heart muscles. For numerous reasons, the cardiovascular system can 

become diseased over time and require clinical treatment. Coronary artery disease and aortic valve 

stenosis are among the most prevalent cardiovascular diseases globally. While medical imaging 

on its own is a crucial part of the disease management and treatment process, advanced 

computational models can further enhance the process and provide clinics with data and 

predictions they might otherwise miss. In this thesis, a patient specific computational framework 

capable of simulating blood flow waveforms and cardiovascular data in the heart and coronary 

arteries using only non-invasive clinical data and images was developed and validated. The novel 

model was applied to a series of patients with aortic stenosis who underwent heart valve 

replacement with the aim of studying the impact on coronary blood flow and global cardiovascular 

metrics.  

Abstract  

Cardiovascular disease, including coronary artery disease and aortic valve stenosis, impacts tens 

of millions of people annually and carries a massive global economic burden. Advances in medical 

imaging, hardware and software are leading to an increased interest in the field of cardiovascular 

computational modelling to help combat the devastating impact of cardiovascular disease. Lumped 

parameter modelling (a branch of computational modelling) holds the potential of aiding in the 

early diagnosis of these diseases, assisting clinicians in determining personalized and optimal 

treatments and offering a unique in-silico setting to study cardiac and circulatory diseases due to 

its rapid computation time, ease of automation and relative simplicity. 

In this thesis, cardiovascular lumped parameter modelling is presented in detail and a patient-

specific framework capable of simulating blood flow waveforms and hemodynamic data in the 

heart and coronary arteries was developed. The framework used only non-invasive clinical data 

and images (Computed Tomography images, echocardiography data and cuff blood pressure) as 

inputs. The novel model was then applied to 19 patients with aortic stenosis who underwent 

transcatheter aortic valve replacement. The diastolic coronary flow waveforms in the left anterior 

descending artery, left circumflex artery and right coronary artery were validated against a 
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previously developed patient-specific 3D fluid-structure interaction model for all 19 subjects (pre 

and post intervention). There were strong qualitative and quantitative agreements between the two 

models.  

After the procedure, aortic valve area and net pressure gradient across the aortic valve improved 

for almost all the subjects. As for the hemodynamic data, according to the model, there was 

substantial variability in terms of the increase or decrease post intervention. On average, left 

ventricle workload and maximum left ventricle pressure decreased by 4.5% and 13.0% while 

cardiac output, mean arterial pressure and resting heart rate increased by 9.9%, 6.9% and 1.9% 

respectively. There were also subject specific changes in coronary blood flow (37% had increased 

flow in all three coronary arteries, 32% had decreased flow in all coronary arteries, and 31% had 

both increased and decreased flow in different coronary arteries). All in all, a proof-of-concept 

cardiac and coronary lumped parameter framework was developed, validated, and applied in this 

thesis.  
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Chapter 1: Introduction and Background 

1.1 Thesis Structure  

Chapter 1 will set the stage for the research presented and provide the reader with the needed 

background to understand the chapters to come. The main aim of this section is to illustrate the 

global impact of cardiovascular disease and highlight two diseases in particular: aortic valve 

stenosis and coronary artery disease. Furthermore, this section aims to give a brief background of 

the medical imaging modalities commonly used to diagnose, plan, and treat cardiovascular 

diseases. Finally, the pairing of medical imaging and computational methods to enhance diagnosis, 

treatment and management will be presented.  

Chapter 2 will provider the reader with an in-depth dive into the mathematical theory, 

motivations, recent innovations, and limitations of lumped parameter modelling (LPM) related to 

patient-specific cardiovascular modelling. Furthermore, it compares and contrasts LPM with other 

commonly used modelling methods. This chapter highlights the value of patient-specific LPMs in 

cardiovascular medicine.  

Chapter 3 presents the development, validation, and application of a non-invasive, patient specific 

lumped parameter framework capable of simulating blood flow waveforms and global 

hemodynamic metrics in the major cardiac compartments and the coronary arteries. The novel 

model was applied to 19 subjects undergoing transcatheter aortic valve replacement (TAVR) to 

study the impact of the procedure on coronary blood flow and cardiac metrics. The model was 

validated against the results from a previously developed 3D fluid-structure interaction model for 

all the subjects and a sensitivity analysis was conducted. In-depth pre- and post-TAVR results are 

presented for the subjects. 

Chapter 4 outlines the key findings from the previous chapters and brings all the presented ideas 

about cardiovascular disease, TAVR, coronary blood flow and LPMs together. Finally, future 

research ideas and directions are presented. 

1.2 Introduction to the Heart 

The heart is a muscular organ that pumps blood throughout the body and is the driving force for 

the cardiovascular system. It is divided into four chambers: the right atrium, which receives blood 

from the body; the left atrium, which receives blood from the lungs; the right ventricle, which 
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pumps blood to the lungs; and the left ventricle, which pumps blood to the rest of the body. The 

blood flow into these chambers is controlled by the heart valves (tricuspid, mitral, pulmonary, and 

aortic valves) which are constructed of either two or three leaflets 1.  

The heart is surrounded by a network of blood vessels, including the coronary arteries, which 

supply oxygen and nutrients to the heart muscle (myocardium). These vessels branch off from the 

aorta, which is the main blood vessel that carries oxygenated blood from the left ventricle to the 

rest of the body. The right coronary artery (RCA) supplies blood to the right side of the heart, 

while the left main coronary artery (LMCA), which splits into the left anterior descending (LAD) 

artery and the left circumflex artery (LCX), supplies the left side 1. The coronary arteries are critical 

to the heart's function, as they ensure that the heart receives the necessary blood flow to keep it 

functioning properly in all kinds of difference scenarios.  

1.3 Cardiovascular Diseases   

Cardiovascular diseases (CVDs) are a widespread issue that impacts the health and wellbeing of 

millions of people across the globe. Globally, CVDs are the leading cause of mortality and were 

responsible for an estimated 17.9 million deaths in 2019, three quarters of which took place in low 

and middle income countries 2. CVDs are a grouping of diseases that impact the cardiovascular 

system including coronary artery disease (CAD), peripheral heart disease, stroke, heart failure, 

valvular disease and others 3. Common risk factors for CVDs include high blood pressure 

(hypertension), high cholesterol levels, diabetes, smoking, obesity and physical inactivity 4. 

Depending on the nature and severity of the disease, treatment and management options include 

medications (anticoagulants and angiotensin-converting-enzyme (ACE) inhibitors for example) 

and surgeries such as coronary angioplasty, coronary bypass grafting, transcatheter aortic valve 

replacement and more 5. In particular, this thesis will focus on both aortic valve stenosis and 

coronary artery disease since they are common diseases and have a high rate of co-occurrence 

(roughly 40-80% of patients who underwent treatment for aortic stenosis had CAD) 6.  

1.4 Aortic Valve Stenosis  

Aortic valve stenosis (AS) is a heart disease that limits the opening of the aortic valve due to the 

long term build up of calcification on the valve leaflets (Figure 1). The impaired valve leads to an 

obstruction (or reduction) in blood flow from the left ventricle (LV) and causes the ventricle to 

work harder in an attempt to maintain the needed cardiac output. Not only does this impact the 
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systemic cardiovascular system, but the extended effort by the ventricle often leads to LV diastolic 

disfunction or various types of ventricle remodelling over time 7. As with many cardiovascular 

diseases, AS diagnoses range from mild to severe depending on a variety of scoring criteria.  

 

Figure 1: Healthy and Diseased (Stenotic) Aortic Valve 8 

AS is the third most common heart disease and primarily impacts the elderly population 9. The 

prevalence of AS increases from ~1% in individuals less than 60 years old to greater than 10% 

after the age of 75 9. Unfortunately, AS has a bleak prognosis if left untreated (50% rate of morality 

after 2 years)7 and currently the only treatment options for severe AS are minimally invasive 

transcatheter aortic valve replacement (TAVR) or open heart surgical aortic valve replacement 

(SAVR).  

In recent years TAVR has become the more common treatment option due to the minimally 

invasive nature and rapid recovery time for patients 10. Furthermore, TAVR is now being applied 

to younger and higher risk patients due to advancements in both the valve technology and surgical 

procedures. While TAVR has advanced significantly in the past decade and the overall risk has 

decreased considerably, some post procedure complications such as paravalvular leakage, vascular 

and bleeding complication, stroke, coronary obstruction, acute coronary syndrome and kidney 

injury still exist 11.  
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1.5 Coronary Artery Disease 

CAD is caused by the build up of plaque in the coronary blood vessels, which supply blood to the 

myocardium (Figure 2). The narrowing of these crucial vessels leads to a reduction the blood flow 

to the heart muscles and can ultimately lead to a heart attack, heart failure or arrhythmias 12. CAD 

is also the most common heart disease and is responsible for roughly 382,000 deaths in the United 

States in 2020 13. It is projected to result in over $215 billion USD in medical costs and $151 

billion USD in indirect costs in the United States by 2035 (by far the most costly heart disease) 12. 

While there are a variety of risk factors for CAD, the primary ones are similar to most heart 

diseases and include: high cholesterol consumption, hypertension, smoking, diabetes and obesity 

4. 

Depending on the severity of CAD, there exist a range of pharmaceutical management options and 

surgical procedures; primarily percutaneous coronary intervention (PCI) and coronary artery 

bypass graft surgery (CABG). PCI is a minimally invasive procedure in which a catheter is used 

to deploy a stent in the narrowed coronary vessel. Conversely, CABG is an open-heart procedure 

where a healthy blood vessel is harvested from another part of the patient (often their leg) and is 

attached to the aorta to bypass the narrowed or blocked section of the vessel. While PCI is less 

invasive and has a quicker recovery time for patients, some studies have shown that CABG resulted 

in fewer major adverse cardiac or cerebrovascular events post surgery 14.  

 

 

Figure 2: Comparison between healthy coronary arteries and narrowed coronary arteries (the cause of CAD) 15 
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Currently, there is a debate about whether the coronary arteries or the aortic valve should be treated 

first (or simultaneously) when patients suffer from both severe CAD and AS. There are a few 

large-scale clinical studies underway at the moment to investigate the optimal treatment and 

management of both diseases 16, 17.  

1.6 Cardiovascular Imaging Modalities 

The aim of this section is to introduce a few of the medical imaging modalities used in the diagnosis 

and treatment of cardiovascular diseases. While this is not an all-encompassing list, it highlights 

the main modalities related to AS and CAD and focuses primarily on non-invasive modalities as 

that is one of the focuses of this thesis. Catheterization, although minimally invasive, was included 

since it currently plays an import role in the collection of hemodynamic data from the coronary 

arteries. 

1.6.1 Echocardiography 

Echocardiography (echo) is the most common cardiovascular imaging modality and is often used 

as the “first line of defense” when initially screening for possible CVDs due to its rapid results, 

portability and low cost 18. Echo uses the reflection of sound waves emitted from an ultrasonic 

probe to construct images of different regions the cardiovascular systems. Doppler echo exploits 

the Doppler effect to estimate blood flow velocity in major cardiovascular structures (aorta, 

ventricle, valves, large arteries, etc.).  

One of the major advantages of echo is that it is completely non-invasive and does not emit 

ionizing radiation, meaning it is very safe and patients can undergo multiple scans without any 

elevated risk. Additionally, it has high temporal resolution and the images from the scan can be 

visualized in almost real-time. The trade off thought, is that the resulting images have low spatial 

resolution and can only focus on a narrow region of the body. Additionally, it is difficult to reliably 

image smaller blood vessels including the coronary arteries.  

 



M.A.Sc. Thesis, Louis Garber             McMaster University, School of Biomedical Engineering 

6 

 

 

Figure 3: (A) Doppler echo scan of a patient with aortic stenosis - suprasternal view; (B) corresponding Doppler waveform 19 

 

In the case of patients with AS, echo is crucial in the diagnosis, assessment and management of 

the disease 19. From continuous wave Doppler echo data (Figure 3 for example), clinicians can 

estimate the aortic valve area, maximal blood velocity and mean pressure gradient across the valve, 

which tend to increase as the valve progressively narrows 19. These metrics are all crucial in the 

overall assessment of the severity of AS.  

1.6.2 Computed Tomography  

Alternatively, Computed Tomography (CT) imaging offers high spatial resolution that allows for 

high quality visualization of a variety of structures. It is based on a computerized x-ray imaging 

procedure in which x-ray tubes rotate quickly around a patient and produces a series of signals that 

are reconstructed into tomographic images (cross-sectional slices of the region of interest) 20. The 

various images and then automatically stacked together to generate a 3D model from the scan. 

Depending on the scenario, a contrast dye is often administered (through IV or orally) to further 

enhance certain structures such as details of the heart valves 21.  

While a limited number of CT scans is generally considered safe, the modality does produce 

ionizing radiation (from the x-rays) and repeat exposure may lead to elevated risk of diseases 

including cancer 20. In recent years, advances in reconstruction algorithms and imaging procedures 

have led to a reduction in overall radiation doses for patients 22.  

CT imaging is a crucial tool in the planning of TAVR for patients suffering from AS. During the 

TAVR planning stages, clinicians use CT images of the aortic valve and surrounding structures 

such as the sinus of Valsalva, sino-tubular junction, coronary ostia and ascending aorta (Figure 4) 

to determine parameters such as calcium score and distribution 23. CT images are also critical in 
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access planning and implantation planning, allowing surgeons to improve valve placement and 

sizing and reduce post procedure complications 23. 

 

 

Figure 4: CT images of (A) aortic valve annulus; (B) sinus of Valsalva; (C) sino-tubular junction; (D) ascending aorta; (E) left 

coronary ostial height; (F) right coronary ostial height 23 

 

Coronary Computed Tomography Angiography (CCTA) is a specific type of contrast CT imaging 

applied to the coronary arteries to identify any plaque build up or stenosis. Similar to CT imaging 

of the valves, it produces a high-resolution 3D model of coronaries and surrounding structures and 

can be used in the diagnosis of CAD and the planning of surgeries such as PCI or CABG.  

1.6.3 Magnetic Resonance Imaging  

Magnetic resonance imaging (MRI) utilizes magnets and computer-generated radio-frequency 

waves to excite and detect changes of protons in water molecules in the body, which can be used 

to reconstruct a 3D image of the regions of interest 24. Compared to CT, MRI is better suited to 

image soft tissue within the body (such as the brain, spinal cord and nerves) but is commonly used 

to diagnose various cardiovascular diseases 24. A major upside to MRI is that it can generate images 

with high spatial resolution without emitting ionizing radiation. However, MRI is often more 

expensive than CT and echo and due to the strong magnetic field, patients with implants like 

pacemakers, stents, cochlear implants and insulin pumps are ineligible 24.  
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In recent years, advances in MRI technology, hardware, image reconstruction algorithms and data 

processing has led to clinically available four-dimensional (4D) flow MRI. This non-invasive 

modality allows clinicians to visualized 3D blood flow in the heart and great vessels during a short 

time window (Figure 5) 25. Clinically useful metrics including forward flow, reverse flow, 

regurgitation fraction and peak velocity can be extracted and used to study, assess and diagnose 

cardiovascular diseases 25.  

 

 

Figure 5: Different imaging modes to visualize blood flow patterns in the aorta from 4D Flow MRI; (A) Colour-coded 3D 

rendering; (B) Colour-coded 3D rendering with streamlines; (C) Colour-coded 3D rendering with velocity vectors 25 

 

1.6.4 Catheterization   

Unlike the aforementioned modalities, cardiac catheterization is an invasive method to collect 

hemodynamic data from a patient. A thin catheter probe is inserted through a blood vessel (often 

near the groin, wrist, or neck) and guided into the heart, where pressure and blood velocity data 

can be collected 26. Currently, it is the gold standard for obtaining local hemodynamic data from 

the coronary arteries. Often, a dye is injected through the catheter and into the coronary arteries 

and imaged using x-rays (coronary angiogram) to look for blockages or narrowed vessels 26. 

Depending on the severity of the coronary blockages, clinicians may conduct a PCI directly (either 

through the placement of a metal/metal and drug eluting stent or by inflating a tiny balloon to 
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widen the arteries). While cardiac catheterization is generally safe, some risks include blood vessel 

injuries, kidney injuries, cerebral embolisms 26, 27.  

1.7 Computational Modelling  

While medical imaging on its own is a vital tool for clinicians, researcher and engineers are always 

looking to further enhance these modalities and combine them with the power of computation to 

create smarter tools. In recent years, the marriage between imaging and computational modelling 

has grown dramatically and lead to a variety of patient specific modelling techniques. These 

frameworks use medical images and data as inputs and provide clinicians with additional 

quantitative information and predictions about disease diagnoses, management, and procedure 

outcomes. While machine learning and deep learning have garnered most of the attention is this 

area 28, this thesis focuses on patient specific cardiovascular modelling (i.e. frameworks that use a 

series of equations to govern the behaviour of blood flow and are tuned for each patient based on 

the input data rather than learned from a large dataset). Within this area of patient specific 

cardiovascular computational modelling, the two main groups of models are (1) higher order 

models and (2) lower order models.  

(1) Higher order models (such as computational fluid dynamics (CFD) models or fluid-structure 

interaction (FSI) models) allow for detailed 3D (or 2D) simulations of blood flow and pressure 

within a desired region of the cardiovascular system. Often medical imaging data from a patient is 

used to re-construct the area of focus (for instance the ventricle, valves, and ascending aorta) and 

generate input/output (boundary) conditions. Computational techniques are then applied to 

approximate blood flow and pressure in all 3 spatial coordinates within these structures using a 

variety of methods such as finite volume method 29, 30. These models tend to provide highly 

detailed results with many possible metrics such as blood flow, pressure, wall shear stress, vortex 

structures and others but are computationally intensive and require a large amount of pre and post 

processing 29, 30.  

(2) Alternatively, lower order models (such as LPM) offer a simpler but computationally more 

efficient method to simulate blood flow and pressure in the cardiovascular system. Like higher 

order models, patient specific input data is used but rather than simulating the flow in 3D, the 

outputs are time dependant waveforms for a certain cardiovascular region (such as the coronary 
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arteries, valves, or ventricles). These waveforms can be useful on their own or can be used to 

derive other metrics like ventricle workload 31.    

In this thesis, the focus is on the development and application of a non-invasive, patient specific 

LPM aimed at the coronary arteries. A detailed review of LPM including the key equations, 

background, theory, optimization, impact, new developments, and important models is presented 

in Chapter 2.  

1.8 Objectives of the Thesis 

Aim 1: Highlight the importance of lumped parameter modelling in the future of patient specific 

cardiovascular medicine and provide a strong theoretical and applied background.  

Aim 2: Develop a non-invasive, patient specific LPM framework aimed at simulating blood flow 

waveforms in the three main coronary arteries. 

Aim 3: Validate the results from this novel framework against a patient specific 3D FSI framework 

and conduct a model sensitivity analysis to quantify how changes in input parameters will impact 

the model results. 

Aim 4: Apply this developed framework to 19 patients who have undergone TAVR to non-

invasively quantify the impact of the procedure (pre and post) on coronary blood flow and global 

hemodynamic metrics. 
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2.1 Abstract  

Cardiovascular (CV) disease impacts tens of millions of people annually and carries a massive 

global economic burden. Continued advances in medical imaging, hardware and computational 

efficiency are leading to an increased interest in the field of cardiovascular computational 

modelling to help combat the devastating impact of CV disease. This review article will focus on 

a computational modelling technique known as lumped parameter modelling (LPM). Due to its 

rapid computation time, ease of automation and relative simplicity, LPM holds the potential of 

aiding in the early diagnosis of CV disease, assisting clinicians in determining personalized and 

optimal treatments and offering a unique in-silico setting to study cardiac and circulatory diseases. 

In addition, it is one of the many tools that are needed in the eventual development of patient 

specific cardiovascular “digital twin” frameworks. This review focuses on how the personalization 

of cardiovascular lumped parameter models are beginning to impact the field of patient specific 

cardiovascular care. It presents an in-depth examination of the approaches used to develop current 

predictive LPM hemodynamic frameworks as well as their applications within the realm of 

cardiovascular disease. The roles of these models in higher order blood flow (1D/3D) simulations 

are also explored in addition to the different algorithms used to personalize the models. The article 

outlines the future directions of this field and the current challenges and opportunities related to 

the translation of this technology into clinical settings.  
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2.2 Introduction  

Cardiovascular disease is a global epidemic that impacts millions of people annually and carries a 

massive global economic burden. In 2017, cardiovascular diseases were responsible for an 

estimated 17.8 million deaths, making it the number one cause of death globally and accounting 

for 37% of premature deaths from noncommunicable diseases [1, 2]. In Canada, one in every four 

deaths is from cardiovascular disease and it costs the Canadian economy more than $22 billion 

every year [3]. In the United States alone, it is projected that by 2035 annual medical costs and 

lost productivity due to cardiovascular disease will surpass USD$749 billion and USD$368 billion 

respectively, amounting to over USD$1 trillion in total costs [4]. Similarly, in 2017 the total 

estimated cost of cardiovascular diseases on the European union economy was €210 billion [5]. 

Given the enormous burden of this disease, researchers and clinicians are continually searching 

for ways to reduce its impact and improve outcomes for patients.  

In the past two decades, breakthroughs in computation have driven substantial advances in 

technology and medicine [6]. Due to the increasing focus on personalized healthcare and the 

devastating impact of heart disease, there has been growing interest in the field of cardiovascular 

computational modelling. Cardiovascular in-silico models have assisted researchers in gaining a 

deeper and more complete understanding of heart and circulatory diseases and are beginning to 

aid clinicians in determining personalized and optimal treatments [7, 8]. Recent advances in 

medical imaging, computational efficiency and biological modelling have continued to propel this 

area of research [9, 10]. As the technology develops, researchers and physicians have envisioned 

the ultimate goal of a personalized whole heart computation model that incorporates personalized 

genomics, cellular behavior, tissue structure integrated with heart mechanics and fluid dynamics 

[6, 9, 11, 12]. Figure 6 Panel A and B illustrates the potential value of these models and certain 

proposed modelling pipelines (from Niederer et al. [9] and Kayvanpour et al. [13]). Uniting 

genomics, electrophysiology and hemodynamics into a single comprehensive simulation 

framework would mark a major milestone in the development of patient specific medicine. Despite 

many remarkable advances, there are still numerous challenges to be addressed in each of these 

respective fields.  

“Cardiology is flow” [14] and indeed hemodynamic quantification can be immensely valuable for 

precise and early diagnosis, however, we still lack precise and early diagnostic tools for various 
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cardiovascular diseases because the hemodynamics analysis methods that can be used as engines 

of such diagnostic tools are not well developed yet [10]. The required quantities for these tools are 

local and global hemodynamics metrics [15-28]: (1) Metrics of circulatory function (local), e.g., 

detailed information of the dynamics of the circulatory system, and (2) Metrics of cardiac function 

(global), e.g., heart workload and its contribution breakdown of each component of the 

cardiovascular diseases. Assessments of hemodynamics, if available, would provide valuable 

information about the patient’s state of cardiac deterioration as well as heart recovery and could 

be used for planning complex valvular-vascular-ventricular disease (C3VD) interventions and 

making critical clinical decisions with life-threatening risks. Although remarkable advances have 

been made in medical imaging, offering progressively detailed anatomy and flow information (in 

some cases), there are no tools or imaging modalities available to invasively or noninvasively 

quantify local and global hemodynamics. Phase-contrast magnetic resonance imaging (MRI) can 

provide velocity field, but it has a lower temporal resolution than Doppler echocardiography (DE) 

[29, 30]. It is important to note that magnetic resonance imaging (MRI) cannot be used for patients 

with most implanted medical devices except for MRI-conditional devices. Computed Tomography 

(CT) is often used for dimensional measurements of components having internal geometry and 

flexible structures [31], however, it has a low temporal resolution [32-34] and cannot measure any 

(local and global) hemodynamic parameters. Furthermore, CT uses ionizing radiation [35, 36] so 

receiving multiple scans increases the risk of developing cancer [37-40]. Cardiac catheterization 

is the gold standard for evaluating cardiac function, but it is invasive, carries significant risk [41], 

and is not feasible for diagnosis in daily clinical practice or serial follow-up examinations. 

Moreover, cardiac catheterization provides access to flow and pressure only in limited regions 

rather than comprehensive details of the physiological pulsatile flow and pressure throughout the 

heart and the circulatory system. Doppler echocardiography is risk-free, has high temporal 

resolution and can be used to investigate cardiac function in real time. Despite DE’s potential 

advantages, there have been no DE methods to evaluate local hemodynamics precisely and to 

quantify global hemodynamics, and breakdown contributions of each component of the 

cardiovascular diseases.  

In this paper, we seek for a method that can quantify global hemodynamics in addition to measures 

of local hemodynamics. Currently only lumped-parameter models have these capabilities to 

quantify both local and global hemodynamics due to the complexity of the cardiovascular system 
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and the unmanageable computational cost that 3-D models of hemodynamics in the entire 

cardiovascular system has. A clinical diagnostic lumped parameter model framework that can 

quantify both local and global hemodynamics in patients with cardiovascular diseases should 

satisfy the following 2 requirements:  

1. The computational diagnostic framework should be developed based on the clinical 

patient-specific input parameters (e.g., hemodynamic metrics, clinical data and imaging). 

Upon development of a diagnostic lumped parameter model, its results should be validated 

against clinical data obtained using Doppler echocardiography, magnetic resonance 

imaging and especially cardiac catheterization (if available) as the clinical gold standard to 

evaluate pressure and flow through the heart and circulatory system. 

2. The patient-specific input parameters for such development should be obtained non-

invasively in each patient because obtaining them invasively (e.g., with catheterization) 

contradicts the whole purpose of the diagnostic computational framework.   

Using personalized simulation tools to quantify cardiac function and blood flow characteristics 

also offers a unique avenue to examine the effects and patient-specific treatment options for a 

range of diseases [42-44]. Additionally, studying the cardiovascular system from an in-silico 

setting has allowed researchers to gain new insights and metrics into the characteristics of 

cardiovascular illnesses [15, 45-47]. This article reviews how the personalization of lumped 

parameter modelling is changing the field of patient-specific cardiovascular care. An overview of 

the modelling technique will be presented followed by a breakdown of different approaches to 

simulating the cardiac and circulatory system and cardiovascular diseases. Lumped parameter 

modelling in the context of higher order modelling will be reviewed and the personalization of 

these simulations through a range of optimization methods will also be discussed. Finally, the 

future directions and the current challenges and opportunities related to the translation of this 

technology into clinical settings will be reviewed. 

2.3 Lumped Parameter Modelling 

Lumped parameter modelling offers a basic approach in which the desired blood characteristics, 

such as pressure, flow rate and volume vary as a function of time. By relating the flow of fluids 

and the flow of electrons through the hydraulic-electrical analogy, one can simulate the desired 
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blood waveforms by using a series of electrical elements. By solving the associated equations that 

govern electronic circuits, a mathematical representation is formed which can be used to analyze 

and predict blood flow behaviour within the cardiovascular system [48, 49].  

The concept of quantitatively modelling the arterial system was first proposed by German 

physician Otto Frank in 1899 who developed the early two element Windkessel model [50]. The 

simple model utilized a resistor and a capacitor in parallel to represent the arterial load faced by 

the heart and the hemodynamics in the aorta [50, 51]. Over time, more complex models were 

designed since the original model could not accurately account for high frequency components 

[52]. A three element Windkessel model was developed by adding a characteristic impedance to 

the original model, which better represented the oscillatory behaviour of the aortic input 

impedance at higher frequencies [53]. To account for the inaccuracies at lower frequencies in the 

three-element model, a four element Windkessel model was also proposed by adding an inductor 

element [54]. This component factored in the total inertance of the arterial system, which helped 

to reduce input impedance error over the entire frequency range but rendered parameter estimation 

more difficult due to the increased number of model elements [51].  

Over the years, a series of different variations of these models have been proposed [55-57] with 

the goal of more accurately modelling different physiological phenomena such as microcirculation 

[58]. In the recent decades, this modelling technique has been used to test artificial heart devices 

[59-61], study hemodynamics related to surgical procedures [62-64] and is playing an important 

role in the development of personalized cardiovascular tools [15, 16, 18, 19, 42, 65-70]. A typical 

model includes heart chamber compartments acting as a blood pump (or simply an input pressure 

and flow waveform) and a series of vascular networks to transport the fluid throughout the body 

[48]. In the electrical domain, this configuration can be represented by using a combination of 

resistors, capacitors, and inductors to model the physical properties of the cardiovascular system. 

From a physiological perspective, the resistors represent the viscous resistance blood faces as it is 

pumped through the vessels. The capacitors are used to account for the energy stored by the 

vessel’s compliance and the inductors factor in the inertia of the blood [49]. By adding or removing 

elements, models of different details and sophistications can be formed. Furthermore, different 
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Figure 6: (a) Overview of a general personalized computational cardiovascular framework that incorporates a variety of clinical 

data and outlines certain quantitative outputs that can add value to the clinical workflow from Niederer et al. [9]; (b) Illustration 

of a patient-specific computational cardiology pipeline used in the multi-scale modelling of a failing heart from Kayvanpour et 

al. [13] 
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cardiovascular diseases, including peripheral and vascular disease [46, 71-74], coronary artery 

disease [75, 76], valvular disease [15, 28, 72] and others can also be modelled using this approach.  

In order for the system to behave in a realistic manner, physical governing equations are applied. 

In the hemodynamic domain, mass and momentum conservation are accounted for through the 

continuity equation, Poiseuille’s Law and the Navier Stokes equations, which dictate the flow and 

pressure in the system [77]. Through the analogous relationship of fluid flow and electric current 

and fluid pressure and voltage, the concepts that govern fluid behaviour can be applied to the 

electrical model. These principles can be translated into the electrical domain by using Ohm’s Law 

and Kirchhoff's laws, which govern the voltage and current behaviour in circuits [77, 78]. By 

combining these principles, each compartment is then mathematically represented by a series of 

ordinary differential equations and an algebraic equation to couple the pressure-volume 

relationship based on compliance [78]. Depending on the complexity of the design and the factors 

considered, these equations may be linear or non-linear in nature. The heart and valve 

compartments are also guided by relatively similar approaches. An examination of each of the 

main compartments will be explored in Section 2.4. Numerical methods can then be applied to 

solve these equations and the desired hemodynamic parameters including blood flow and pressure 

can be examined throughout the network at different points. Lumped parameter modelling derives 

one of its main strengths from the minimal computation time required to solve ODEs and algebraic 

equations. Furthermore, the relatively simple structure of the model allows most personalized 

simulations to be automated. These advantages may increase the ease of embedding this style of 

cardiovascular modelling into a high throughput clinical workflow [8, 79]. 

Within the realm of circulatory mechanics, lumped parameter modelling offers the unique ability 

to examine both cardiac function and global hemodynamics within the context of a single model. 

Due to the interconnected nature of the cardiovascular system, being able to quantify both is crucial 

for the effective prediction and diagnosis of CV diseases. Not only can the lumped parameter 

approach be an effective tool on its own, but its integration with higher order modelling can 

provide more realistic local phenomena [18, 19, 80]. However, one of the main challenges in 

lumped parameter modelling is determining appropriate values for each of the model elements. 

Since many of the model parameters do not directly represent measurable physiological quantities, 

they must be approximated or inferred. Additionally, even for the parameters that can be measured, 
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many require invasive and practically difficult measurements [77]. To account for this issue, many 

authors rely on a combination of values from literature sources, past studies, population averages 

and animal experiments [78, 81-85]. Another approach, which will be elaborated on in Section 

2.6, is the individual tuning of some of these parameters based on non-invasive approaches [15, 

16, 18, 19, 42, 65, 86-89]. Basing the model parameter on individual patient data leads to more 

personalized simulations, which is critical for developing patient-specific diagnostic and 

predictive tools. As one example, Figure 7, shows a schematic diagram (Panel A) and sample 

results (Panel B) of a fully Doppler-based patient-specific diagnostic, monitoring and predictive 

lumped parameter framework for complex and mixed valvular, vascular a ventricular disease that 

was validated against catheterization data in forty-nine patients (from Keshavarz-Motamed [42]). 

While lumped parameter modelling is particularly advantageous for simulating global 

hemodynamics and cardiac function, there are other higher order modelling approaches such as 1-

D propagation models and 3-D computational fluid dynamics (using conventional macroscopic 

numerical methods based on the discretization of Navier–Stokes equations; e.g., finite difference 

method, finite volume method, finite element method, etc.) that are suited to study local flow 

dynamics [90-94]. The major difference between lumped parameter modelling and higher order 

modelling is spatial detail. In a zero-dimensional model, the hemodynamic parameters only vary 

as a function of time, while in a 3-D model for example, they vary as a function of time as well as 

in all three spatial coordinates within the specified structure. In the mathematical sense, the 

variables of higher order models are represented by a series of non-linear partial differential 

equations (PDEs) as opposed to ordinary differential equations (ODEs). See Figure 8 (Panel A) 

for a sample using a 0-D lumped model and a 3-D Lattice Boltzmann model (LBM) [19]. Figure 

8 (Panel B and C) outline samples of lumped models coupled with a 3-D model of the coronary 

arteries [95] and a finite element ventricular-vascular model coupled with a closed loop lumped 

parameter (0D) model [69] respectively.  

Given the nature of lumped parameter modelling, it is a useful tool to simulate the heart and 

circulatory components as well as their associated diseases. By further improving and 

personalizing these models, the hope is that cardiovascular simulations may be one of the many 

avenues that helps combat the global impact of cardiovascular diseases.  
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Figure 7: (a) Schematic diagram of a diagnostic and predictive lumped parameter modelling framework to quantify local and 

global hemodynamics (a. Anatomical representation; b. Electrical representation) in patients with complex valvular, vascular, 

and ventricular diseases (from Keshavarz-Motamed [42]); (b) Example of predicted hemodynamics in a patient with complex 

valvular, ventricular and vascular diseases from baseline to 90 days post-transcatheter aortic valve replacement (TAVR) from 

Keshavarz-Motamed [42] 
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2.4 Modelling of Heart Components and Cardiovascular Diseases  

2.4.1 Cardiovascular Disease and the Implementation of Lumped Parameter Modelling  

Cardiovascular disease is a broad group of diseases that encompass illnesses related to the heart 

and the blood vessels. It includes diseases associated with the narrowing of blood vessels such as 

coronary or peripheral artery disease, abnormal heart rhythms such as arrhythmia, diseases related 

to the heart valves and ventricles such as valvular stenosis and ventricular hypertrophy, heart 

failure and others [2, 96-98]. 

To aid in the diagnosis of these diseases, physicians often rely on blood flow and pressure 

information in addition to medical imaging, blood tests and physiological tests [97]. Currently, the 

gold standard technique for obtaining numerical hemodynamic data in the heart and coronary 

arteries is cardiac catheterization [42, 99]. Although it is a common and well-established 

technique, the process is also invasive, expensive, provides limited and semiquantitative data, and 

is not practical for a range of clinical scenarios [41, 97, 100].   

The addition of personalized cardiovascular modelling into this process holds the potential to open 

a new chapter in non-invasive, quantitatively driven, cardiovascular disease diagnosis and 

predictive surgical planning [101, 102]. It offers a method to enhance current medical imaging and 

transform it into a comprehensive patient-centered predictive framework which can improve the 

availability of data in a range of scenarios such as post-operative follow-up examinations [10, 

103]. Finally, it allows researchers and clinicians to study cardiovascular diseases in an in-silico 

setting, allowing for a unique method to study disease mechanisms and interactions with local and 

global hemodynamics as well as cardiac behaviour [15, 16, 45, 46, 104-107]. 

2.4.2 Heart Modelling and Ventricular Diseases 

The heart is the central driving force for the cardiovascular system and is essential for transporting 

oxygen, carbon dioxide and nutrients to various portions of the body [49]. The four heart chambers 

(the left and right atriums and ventricles) act as the main pumping sources and are heavily 

intertwined with the entire cardiovascular system. Modelling the heart, and especially the chamber 

characteristics, is important for developing accurate and personalized cardiovascular models and 

is beginning to show promise in the areas related to cardiovascular diseases, treatment evaluation 

and medical device design [16, 18, 19, 42, 46, 48, 67, 68, 70, 108-111].  
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Modelling of the heart in lumped parameter models is based around developing a mathematical 

approach to generating pulsatile blood waveforms that are comparable to those achieved from the 

natural contractions of the human heart. A variety of different methodologies have been developed, 

but the majority can be classified based on a series of attributes. 

Depending on the intent and required complexity of the model, authors tend to simulate either all 

four heart chambers or individual chambers. Certain authors [42, 65, 72, 112, 113], including 

Casas et al. [114] for example, focused predominantly on developing a model for the left portion 

of the heart since the goal was to study blood flow in the systemic circulation. Figure 9 (Panel D) 

displays a visualization of the 4D flow MRI data and analysis planes used in the study as well as 

a circuit schematic. Others, such as Broomé et al. [115] developed a four-chamber lumped 

parameter heart model since the experiment encompassed both hemodynamics and oxygen 

transport, which required both systemic and pulmonary circulation. 

A commonly used method to simulate heart chamber contractions is based on the concept of time 

varying elastance [48, 116]. This approach was first proposed by Suga et al. [117] and centers 

around modelling myocardial mechanics through an instantaneous pressure volume ratio that 

represents the changing muscle stiffness during the heart contraction. In their experiment, they 

examined cardiac behaviour through pressure-volume (PV) loops and studied both ejecting and 

non-ejecting cardiac contractions [118]. They found that the pressure-volume data from these 

contractions, recorded at different points in the heart cycle, were all located on linear lines [117, 

118]. These lines are described by their slopes, which represent elastance (E) since E = 

Pressure/Volume, and by their intercept, which has a quasi-constant volume (V0) [118]. This led 

to the formulation of time varying elastance which was determined to be a load independent 

function. This concept is illustrated in Figure 9 (Panel A) and mathematically by the following 

equation. 

𝐸(𝑡) =
𝑃(𝑡)

𝑉(𝑡)−𝑉0
                                                                       (1)       

where P(t), V(t) and V0 are ventricular time varying pressure, time varying volume and unstressed 

volume respectively [119, 120]. The time varying elastance heart model is often represented by 

using a periodic double-Hill function [25, 42, 65, 75, 112, 113, 115, 116, 120]. 
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𝐸(𝑡) =
𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛

max[(
𝑔1

1+𝑔1
)(

1

1+𝑔2
)]

(
𝑔1

1+𝑔1
) (

1

1+𝑔2
) + 𝐸𝑚𝑖𝑛                                               (2) 

where 

𝑔1 = (
𝑡

𝜏1
)

𝑚1

 𝑎𝑛𝑑     𝑔2 = (
𝑡

𝜏2
)

𝑚2

 

 

where 𝐸𝑚𝑎𝑥, 𝐸𝑚𝑖𝑛, 𝜏1, 𝜏2, 𝑚1 and 𝑚2 are maximum elastance, minimum elastance, systolic time 

constant, diastolic time constant, contraction rate constant and relaxation rate constant respectively 

[113, 116] (see Figure 9 Panel B for a graphical representation). By combining the contraction and 

relaxation of the chambers, the double-Hill function can describe both systole and diastole since 

the function is comparable to the cooperative nature of myocyte recruitment during preload [42, 

121]. Parameters for this function are often based on experimental data [119, 120, 122, 123] 

however certain authors have optimized a portion of these parameters by using patient specific 

cardiac measurements [25, 65, 112, 114]. While the double-Hill representation tends to be the 

more commonly used function, other authors have used different mathematical functions to model 

time varying elastance [66, 69, 81, 124-126]. Tang et al. [104] for instance, used a combination of 

Gaussian functions to simulate the heart chambers in a lumped parameter model aimed at studying 

the abnormal hemodynamic mechanisms related to pulmonary hypertension.  

In the electrical analog model, the time varying elastance is typically simulated by a variable 

capacitor element [49] and is occasionally placed in series with a resistor [18, 81, 114, 116]. This 

allows for the generation of an analog signal that simulates the heart chamber contractions and 

thus the pulsatile behaviour of the blood flow and pressure over time.  

Although the time varying elastance concept is one of the more popular approaches, certain authors 

have argued that some of the underlying assumptions, such as the load independence of E(t), may 

be flawed [127] and that the theory does not accurately characterize the atrial and ventricular 

behaviour [109, 125, 128]. Kim et al. [60] also argued that using the time varying elastance 

approach to model certain pathological conditions, such as irregular heart rhythms, was 

questionable. Instead, they proposed a synergistic model that incorporated the electrical, 

mechanical, and chemical activity of the heart tissues and macroscale heart properties to improve  
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Figure 8: (a) Sample results from a 0-D and 3-D Lattice Boltzmann method simulation (LBM) (from Sadeghi et al. [19]); (b) 

Schematic diagram of an image-based 3D model of a portion of the aorta and coronary arteries coupled with closed-loop lumped 

parameter models and sample of the pressure and flow results from the study by Mirramezani et al. [95]; (c) Schematic diagram 

of a  finite element ventricular-vascular model coupled with a closed loop lumped parameter (0D) model and sample simulation 

results from Shavik et al [69] 
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the accuracy of the model for left ventricular assist device (LVAD)-heart interactions. Pironet et 

al. [129] also presented another mathematical multiscale model that factored in the cellular activity 

responsible for cardiac contraction to overcome the limitations of the time varying elastance 

theory. Regardless, the time varying elastance model continues to be used by many authors due to 

its ease of implementation, reliability, and acceptable accuracy for most experiments [48, 77, 115].  

One of the major advantages of simulating the heart function, especially in personalized lumped 

parameter models, is that it yields quantitative data about the cardiac function. In cardiovascular 

medicine, pressure-volume loops offer crucial insight into different cardiac metrics [130]. These 

graphs are formed by plotting the ventricular pressure against ventricular volume throughout a 

cardiac cycle and they represent the relationship between the two parameters [98]. PV loops 

contain an abundance of information such as ejection fraction, contractility, stroke volume and 

stroke work which are important in evaluating the health of the heart [25, 105]. A variety of 

different cardiovascular diseases such as valvular stenosis, valvular regurgitation, hypertrophy and 

heart failure can impact the shape of a PV loop, making these graphs a useful tool in the diagnosis 

of these diseases [98, 112]. Although these PV loops contain large amounts of useful information, 

the needed data is typically obtained invasively using a catheter probe, limiting their overall 

availability in clinical settings, and reducing their application in routine examinations [25].  

Lumped parameter models that incorporate non-invasive personalized cardiac parameters offer a 

unique way to generate these personalized PV loops in a rapid and non-invasive manner. 

Additionally, they can be used to study the impact of different treatment options and treatment 

priorities in a patient-specific manner [28, 72, 104, 105, 131]. In recent work, Motamed [42] used 

a personalized lumped parameter model with a time varying elastance heart model and non-

invasive parameters to evaluate how different intervention options would impact the cardiac 

workload for a patient with multiple valvular diseases based on PV loops (Figure 9 Panel E). Itu 

et al. [112] also developed a non-invasive personalized automated lumped parameter framework 

that was able to accurately generate PV loops for patients with mild aortic valve regurgitation 

(Figure 9 Panel C).  

2.4.3 Heart Modelling and Valvular Diseases 

In addition to modelling the heart chambers, the heart valves are another crucial component for 

cardiovascular simulations. These four valves (mitral, aortic, tricuspid, and pulmonic) allow for  
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Figure 9: (a) Illustration of time varying elastance curve (and normalized curve) derived from multiple PV loop from Segers et 

al. [118]; (b) Time varying elastance curve based on a double-Hill function and data from the work of Mynard et al. [116]; (c) 

Simulated and in-vivo pressure and volume results from a non-invasive automated echocardiography based 0-D model developed 

by Itu et al. [112]; (d) Visualization of the 4D flow MRI data and analysis planes used in the study as well as the lumped 

parameter model schematic proposed by Casas et al. [65]; (e) Pre intervention PV loop disease contributions based on a patient-

specific non-invasive lumped parameter model from Motamed [42] 
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the unidirectional flow of blood into and out of the ventricles during the cardiac cycle [98]. Since 

the opening and closing of heart valves is driven by the pressure gradient across these valves (as 

well as external fluid forces such as vortices and shear force) [132], a similar approach is often 

used to describe them in 0D models.  

The net pressure gradient formulation (TPGnet) proposed by Garcia et al. [133] for example, is one 

of the mathematical functions that has been developed to model aortic valves and aortic stenosis. 

It is based around calculating the instantaneous net pressure gradient across the valve and 

characterizes the flow acceleration, deceleration, and energy losses [42, 65]. 

 

𝑇𝑃𝐺𝑛𝑒𝑡 = 2𝜋𝜌
𝜕𝑄(𝑡)

𝜕𝑡

1

√𝐸𝐿𝐶𝑜
+

1

2
𝜌

𝑄2(𝑡)

𝐸𝐿𝐶𝑜2                                                               (3) 

where 

𝐸𝐿𝐶𝑜 =  
𝐸𝐴𝑂 𝐴𝐴𝑜

𝐴𝐴𝑜− 𝐸𝑂𝐴
                                                                                  (4) 

where 𝑄(𝑡), 𝜌, 𝐸𝐿𝐶𝑜, 𝐸𝐴𝑂, 𝐴𝐴𝑜 are the transvalvular flow rate, blood viscosity, energy loss 

coefficient, effective orifice area and the ascending aorta cross-sectional area respectively [133]. 

The expression is highly time dependent over systole and incorporates instantaneous transvalvular 

flow rate and the energy loss coefficient to relate the left ventricular pressure and ascending aorta 

pressure [28, 133]. The energy loss coefficient is also included to account for the pressure recovery 

phenomenon which frequently occurs in patients with aortic stenosis [28, 65, 134]. This same 

formulation, with a few adjustments, can also be used to model the mitral valve [42, 45, 65].  

This configuration, though commonly used, is a simplification of the valve mechanics and does 

not take into account the local hemodynamic factors such as the shear forces acting on the valve 

leaflets or the impact of vorticity generation [48, 77]. To account for these limitations, certain 

authors have developed more complex approaches to simulating heart valve dynamics [135-137]. 

Korakianitis et al. [138] proposed an advanced valve model to describe the blood-leaflet 

interactions by including parameters such as leaflet opening angle while Mynard et al. [116] also 

presented another model that incorporated the instantaneous pressure difference and the valve 
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position index. Both these models were designed to be implemented into a lumped parameter or 

1D model.  

Most zero-dimensional models use a diode in series with a resistor (and in certain cases an 

inductor) to model the heart valves [42, 44, 65, 66, 68-70, 75, 104, 112, 126, 139]. The diode, 

which allows for unidirectional current flow, switches states when the pressure or flow signal 

exceeds a certain threshold [112, 140, 141] or at a predefined time within the heart cycle [142].   

Different valvular diseases, such as aortic stenosis and mitral regurgitation, can impact the opening 

and closing of the valve leaflets [143]. For the past few decades, lumped parameter models have 

been used to study a variety of different heart and valvular diseases and their impacts on local and 

global hemodynamics as well as aid in the design of mechanical heart valves [42, 45, 107, 109, 

139, 144, 145]. Fiore et al. [146] for example, proposed a zero-dimensional model to study the 

hydraulic characteristics of three different clinically approved mechanical prosthetic heart valves. 

In a 2015 study, lumped parameter modelling also provided Scarsogli et al. [147] with a unique 

framework to examine the impact of atrial fibrillation on transvalvular flow dynamics without the 

presence of other valvular diseases, something that is difficult to study in clinical settings due to 

the concomitant nature of the pathologies. Furthermore, there have been a series of personalized 

non-invasive lumped models developed to evaluate the impact of valvular disease [16, 42, 112]. 

In a 2019 clinical study, Ben-Assa et al. [15] used a patient specific lumped parameter model, 

which utilized an arm cuff sphygmomanometer and echocardiography as inputs, to investigate the 

left ventricular stroke work and vascular impedance of seventy patients with severe aortic stenosis 

before and after a transcatheter aortic valve replacement (TAVR) (Figure 10 Panel A).   

2.4.4 Coronary Arteries and Their Diseases  

Given the substantial impact of coronary artery disease (CAD) [1, 2, 4], there has been a growing 

effort to develop personalized non-invasive cardiovascular simulation tools to model blood flow 

in the coronary arteries. The formulation of these simulations differs slightly from other vascular 

models due to the unique characteristics of blood flow in the coronary arteries. During the 

ventricular contraction of the myocardium, the blood flow in the large coronary arteries is briefly 

reversed due to the magnitude of the contractile force exerted on these arteries [148]. In contrast 

to the flow in the majority of blood vessels, maximum blood flow in the left coronary vessels 

occurs during early diastole as opposed to systole, since the ventricles have relaxed, and the  
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Figure 10: (a) Schematic of the data acquisition, impedance analysis and LV stroke work analysis used in the clinical study by 

Ben-Assa et al. [15]; (b) Lumped parameter model and multiscale model develop by Kim et al. [44] and the coronary artery wall 

shear stress results during rest and exercise simulations; (c) Comprehensive lumped parameter model used by Liang et al. [168] 

which included major branches of the cardiovascular system 
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compression force is absent [148]. This phenomenon (known as extravascular compression) also 

occurs in the right coronary artery but is substantially less pronounced due to the lower force 

exerted by the right ventricle on the artery.      

To simulate this behaviour, a pressure source is often embedded into the coronary vasculature 

model and is equated to a fraction of the left and right ventricular pressure [43, 44, 66, 68, 70, 75, 

76] (a sample is shown in Figure 8 (Panel A) and Figure 10 (Panel B) – see Pim component in 

coronary outlet ). These pressure values vary depending on the location in the coronary network 

since different positions will be impacted differently by the extravascular compression. The 

remainder of the coronary network is typically based around the same principles used to construct 

vessels and vasculature, which were outlined in Section 2.3. For further reading about the design 

of vasculature, readers are referred to reviews by Shi et al. [77] and Zhou et al. [52].  

Most of the personalized coronary simulation tools developed to date are either 1D or 3D models, 

supplemented with lumped parameter portions. Higher order models are often used to simulate the 

coronary arteries since local spatial distribution of blood flow and pressure can be obtained. Other 

useful information, such as wall shear stress (WSS), wall shear stress gradient (WSSG) and flow 

disturbance data can also be generated, which can give additional insight into CAD and the 

formation of stenosis [14, 44, 149, 150]. These models tend to use 3D geometry obtained from an 

imaging modality (such as CT, CTA, IVUS or MRI) and existing software (ITK-SNAP, 3D slicer 

and Mimics for example) [151-153] to reconstruct the main vessel sections [48, 102]. The outlet 

boundary conditions are often formed by using lumped parameter circuits that are coupled to the 

outlet of each vessel [44, 68, 70, 76, 95, 110, 154]. In certain models, such as the ones proposed 

by Kim et al. [44] and Mirramezani et al. [95], a zero-dimensional heart model is also used to 

create the inlet pressure and flow waveforms. Lumped models can recreate realistic downstream 

conditions and can be tuned on a patient specific basis, making them useful boundary conditions 

[44, 77]. More details on the use and coupling of the lumped parameter models for higher order 

modelling will be discussed in Section 2.5.  

These coronary models have been applied to a variety of clinical scenarios such as coronary artery 

surgery planning [70, 155-158]. Sankaran et al. [110] for example, developed a personalized model 

to study the hemodynamics in patients with multiple coronary artery bypass grafts (CABGs). Their 

simulation utilized Computed Tomography angiography (CTA) and non-invasive clinical 
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measurements in conjunction with CFD and lumped parameter boundary conditions to evaluate 

the impact of graft shape on local and global hemodynamics. Others have developed simulations 

for the management and diagnosis of coronary artery disease [76, 95, 159, 160]. Kim et al. [44] 

combined a 3D finite element coronary and aortic model, which included tunable lumped 

parameter boundary conditions, with cardiac-gated CT and brachial artery pulse pressure to study 

how different degrees of stenosis and exercise impacted the coronary blood flow, pressure and 

wall shear stress (Figure 10 Panel B). Similar work was also translated into the first FDA approved 

cardiovascular flow simulation tool (HeartFlow FFRCT by HeartFlow Inc. ©) to conduct non-

invasive coronary CTA-based fraction flow reserve (FFR) analysis [161].   

In the past two decades, coronary lumped parameter models, without higher order components, 

have also been proposed based on generic or invasive physiological parameters. They have been 

used to simulate coronary artery related surgeries [84, 162], study coronary flow [106], and aid in 

the design of a physiologically representative in-vitro coronary model [163]. There have also been 

a limited, but growing, number of coronary focused lumped parameter models developed in recent 

years based on non-invasive patient specific parameters. Examples of these models include work 

by Duanmu et al. [66] and Li et al. [75] who both used CTA to obtain patient specific coronary 

artery geometry. Duanmu et al. [66] used the individual vessel diameters to determine the 

resistance, compliance, and inductance values for each section of the left and right coronary 

network and used their model to study the impact of different stenosis conditions on the simulated 

flow, pressure, and FFR. Li et al. [75] used CTA in addition to heart rate, non-invasive blood 

pressure, age and height paired with a genetic optimization algorithm [164] to personalize several 

of the heart and coronary model parameters. Mao et al. [43] also created a personalized lumped 

parameter framework for surgical planning of CABG. The model utilized CT imaging, Doppler 

ultrasound and non-invasive blood pressure in combination with various parameters from a model 

by Kim et al. [44] and the same optimization process used by Li et al. [75]. The final model was 

used to simulate different stenosis conditions and compared the bypass graft options (saphenous 

vein graft and left internal mammary artery graft).  

As computational technology, medical imaging and predictive algorithms continue to progress, 

patient specific non-invasive coronary artery simulations will continue to be one of the main areas 
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of focus for clinical simulation tools in the coming years due to the severity and burden of coronary 

artery disease.  

2.4.5 Multi-Compartment Models  

In the lumped parameter domain, a series of researchers have also proposed more advanced and 

intricate closed loop models that attempt to simulate the major compartments of the human body 

all within a single model. These complex, multi-compartment lumped parameter models have been 

developed to study a variety of different physiological scenarios and examine the impact of 

regulatory systems on global hemodynamics. The underlying models are based around the same 

principles mentioned previously, but rather than focusing on one section, such as the coronary 

arteries or aortic arch, they encompass many different regions like the liver, kidney, brain, and 

others. Certain simulations include additional features such as neurological and auto regulatory 

control [102]. These multi-compartment models offer a framework to study the interconnected 

nature of the cardiovascular system in-silico, but often contain many unknown parameters and 

variables, which increases the difficulty of parameter personalization. 

In a paper by Hassani et al. [82], an electronic circuit representation of the cardiovascular system 

was developed consisting of 42 segments representing the arterial system, which included the 

carotid, hepatic, and renal circulation. This model served as the basis to simulate the impacts of 

bradycardia, tachycardia as well as aortic aneurysms and renal stenosis on the cardiovascular 

system [47, 165]. Models such as these, although ideal and based on generic parameters, can be 

one of the effective tools for studying the pathogenesis of certain cardiovascular diseases [165]. 

Other authors have built upon advanced multi-compartment models and embedded regulatory 

mechanisms within them [49, 102, 166, 167]. Liang et al. [168] designed a comprehensive closed 

loop lumped model with an integrated autonomic nervous control system to study the cardiac 

characteristics of diastolic dysfunction. The model was capable of predicting global 

hemodynamics in seven main cardiovascular subsystems (upper limb, cerebral, pulmonary, renal, 

etc.) as well as hemodynamic regulation given system perturbations (Figure 10 Panel C). Similarly, 

Werner et al. [137] coupled a pulsatile model with the well-studied Guyton model [169], which 

consisted of hundreds of equations to model circulatory control and included control of the 

cardiovascular system via arterial baroreceptors, chemoreceptors, and ergoreceptors [137, 170]. 

This coupled model was then applied to study cardiac electrotherapy and the importance of a range 



M.A.Sc. Thesis, Louis Garber             McMaster University, School of Biomedical Engineering 

33 

 

of factors such as the effect of impaired ventricular relaxation and the selection of appropriate 

cardiac pacemakers [137].        

Due to the complexity of these models and the numerous unknown parameters, to the best of our 

knowledge, they currently have limited applications as personalized diagnostic tools for common 

cardiovascular diseases. As parameter optimization continues to advance, these large multi-

compartment full body models may eventually play a role in the understanding and diagnosis of 

multiple CV diseases due to their ability to connect truly global hemodynamics with complex 

regulatory mechanisms.  

2.5 Lumped Parameter Modelling in the Context of 3-D Modelling 

Within the field of hemodynamic modelling, a large body of research is focused on multiscale 

modelling due to its powerful ability to simulate local dynamics with high spatial resolution. This 

modelling approach lends itself well to examining the local hemodynamic impacts of different 

cardiovascular diseases. Lumped parameter modelling often plays a role in the personalization of 

these models. 

In these higher order simulations, the incompressible blood flow motion within the vasculature is 

governed by continuity and momentum equations, known as Navier-Stokes equations [171]. There 

is no analytical solution to these non-linear equations for complex geometries of the cardiovascular 

system. Computational fluid dynamics (CFD) is a method to calculate approximate numerical 

solutions by solving differential equations governing the fluid motion [171]. In addition to the 

conventional numerical methods based on discretization of macroscopic continuum equations in 

CFD, such as finite volume method (FVM) or finite element method (FEM), the lattice Boltzmann 

method (LBM) is an alternative method based on microscopic models and mesoscopic kinetic 

equations which is computationally faster thanks to its efficient parallel algorithms [19, 172-174]. 

If the vessel walls material property effects are also considered through the fluid structure 

interaction (FSI) method, the fluid domain will be coupled to the solid domain by adding an 

additional solid solver. While traditional FSI techniques are based around Arbitrary Lagrangian-

Eulerian (ALE) method, more recent methods have been introduced as an alternative such as 

immersed boundary method (IBM) and coupled momentum method (CMM) [173]. 
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Although CFD is a well-established computational tool for 3D flow analysis of local regions of 

vasculature, it is not possible to perform 3D simulations for the entire cardiovascular system due 

to its high computational cost [171, 173]. Therefore, CFD is usually used for a specific region of 

the cardiovascular system together with inlet and outlet boundary conditions [173]. These 

boundary conditions (in addition to patient geometry) are one of the main aspects that shape the 

personalization of simulations [175]. While for many CFD simulations, average patient data or 

literature data are used for boundary conditions, patient-specific tuned boundary conditions are 

essential to achieve a reliable, accurate, robust, and stable simulation [173, 176]. Lower-order 

models such as LPM can provide detailed non-invasive patient-specific pressure or flow boundary 

conditions efficiently, without wasting high temporal and spatial refinement on regions beyond the 

specific region of request [171]. Such LPM boundary conditions can be coupled to 3D CFD solvers 

explicitly or implicitly. In the case of implicit approach, LPM and 3D CFD models are coupled by 

adding an additional model to numerical algorithms to solve the governing equations [176].  

Figure 11 (Panel A) depicts the typical modelling pipeline starting with image processing to result 

analysis for 3D CFD based simulations. This workflow is based on an open-source software (Sim 

Vascular) [177] which was developed to provide a complete environment for personalized 

cardiovascular blood flow simulations. Panel B in Figure 11 outlines certain open and closed loop 

0D boundary conditions that can be applied to the 3D models from within the software [177].  

Recently, Khodaei et al. [178] developed a patient-specific computational fluid dynamics 

framework formulated around a Doppler-based patient-specific lumped-parameter algorithm that 

allows for the analysis of any combination of complex valvular, vascular and ventricular diseases 

and a 3-D strongly-coupled fluid-solid interaction (FSI) (Figure 12, Panel A) to quantify: (1) 

metrics of circulatory function (global hemodynamics); (2) metrics of cardiac function (global 

hemodynamics) as well as (3) cardiac fluid dynamics (local hemodynamics) in patients with 

complex valvular, ventricular an vascular diseases who undergo transcatheter aortic valve 

replacement (TAVR) in both pre and post intervention states (Figure 12, Panel B).  

2.6 Personalization Algorithms for Lumped Parameter Models   

One of the major challenges in designing 0-D models to represent the cardiovascular system or 

represent boundary conditions for higher order models, is accurately determining the values of 

each of the required elements. Many models developed to date rely on literature data, population  
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Figure 11: (a) Typical patient-specific image-based 3D cardiovascular modelling pipeline based on the open source software Sim 

Vascular [177]; (b) Open and closed loop 0D boundary conditions applied to 3D models from within the Sim Vascular software 

[177] 
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averages and animal models in an attempt to create a generic patient model [78, 81-85]. A key 

limitation of relying on generic values is that they do not consider the unique characteristics of an 

individual. A wide variety of factors including age, sex, and lifestyle choices such as diet and 

exercise have been shown to influence the compliance of blood vessels for instance [51, 52, 71, 

179], which are important cardiovascular model parameters. As the focus in medicine and patient 

care slowly shift towards patient-specific medicine, so has the field of cardiovascular simulation 

tools. In recent years, there has been an increased focus on the development of patient-specific 

models that use non-invasive measurements to tune model parameters [42-44, 65, 75, 87-89, 102, 

112, 180, 181]. To accurately tune these values, a variety of methods have been employed, drawing 

knowledge from the areas of control systems [182] to statistical stochastic modelling [87].  

Many of the developed personalized hemodynamic models lay on the intersection between forward 

modelling and inverse modelling [182, 183]. Broadly, these models are developed to mimic the 

behaviour of the cardiovascular system and then are used to derive predictions about that system. 

Often physiological data (in the form of blood pressure, blood flow rate, geometrical details, and 

other measurements) is also fed into the framework to further personalize these models. Most 

patient-centered cardiovascular simulation tools use a combination of these modelling approaches 

where a portion of the parameters are derived from physical principles while others are tuned based 

on patient specific data [42, 48, 102, 181, 182].  

The general technique for parameter identification and estimation of lumped 0-D models is to tune 

model parameters so that the difference between the resulting output data and the measured patient 

specific data is minimized. To accomplish this, a variety of algorithms have been developed and 

deployed based on a series of different approaches. Additionally, sensitivity analyses and 

uncertainty quantification can be conducted on the identified parameters to examine their overall 

impact on the simulation results. One of the classical approaches to parameter identification and 

tuning is based on manual tuning. This approach will not be discussed as it is often time consuming  

 



M.A.Sc. Thesis, Louis Garber             McMaster University, School of Biomedical Engineering 

37 

 

 

Figure 12: (a) Illustration of a patient-specific lumped parameter modelling and fluid solid interaction modelling developed by 

Khodaei et al. [178]; (b) Changes in local and global hemodynamics in a sample patient between baseline and 90-day post-TAVR 

by Khodaei et al. [178] 
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and prone to inconsistencies [87-89]. Instead, this section will be focusing on more advanced 

tuning algorithms.   

In recent work, Huang and Ying [86] develop an on-line parameter identification framework for a 

patient specific 5-element 0-D arterial model. The process involved applying a genetic and 

iterative optimization algorithm to minimize the squared error between the predicted state space 

model output and the cardiovascular model output by adjusting the values of the circuit elements. 

Figure 13 (Panel A) outlines the general process flow in addition to the simulated and predicted 

aortic pressure. Similarly, Casas et al. [65] combined a series of approaches including non-linear 

optimization based on the Levenberg-Marquardt algorithm [184] to minimize the error between 

the measured 4D flow MRI waveforms and the predicted model flow waveforms (Figure 13 Panel 

C). Zhang et al. [181] also used the same Levenberg-Marquardt algorithm to personalize a 1D/0D 

model of the major cardiovascular vessels using only non-invasive ultrasound and brachial blood 

pressure measurements from 62 volunteers. Figure 13 (Panel B) illustrates the general patient 

specific data collection and blood pressure tuning approach. Others including Spilker et al. [185], 

Ismail et al. [186] and Itu et al. [102] have also employed similar strategies for parameter 

identification. Figure 13 (Panel D) outlines an approach used by Itu et al. [102] in which a model 

is initially reduced to an LPM to obtain initial solutions for the parameters (described as a “warm 

start” to the optimization algorithm). This improves the initial guess for the boundary condition 

element values used in the model algorithm and reduces the number of iterations required. For 

more details regarding different optimization methods, readers are referred to a review by Marsden 

[175] which examines optimization in cardiovascular modelling.  

Another method is based around the implementation of Kalman filters to determine optimal model 

parameters. Arthurs and colleagues [89] for instance, proposed a computational framework which 

utilizes a Reduced Order Unscented Kalman Filter (ROUKF) or a constrained least squares version 

(ROUKF-CLS), depending on the model complexity, in conjunction with non-invasive patient 

data to estimate 0-D model parameters. These low-order models were used as boundary conditions 

in a 3D FSI patient specific hemodynamic simulation. Likewise, Pant et al. [180] applied an 

unscented Kalman filter (UKF) paired with clinical measurements to estimate model parameters 

and developed a set of sensitivity analysis tools to examine possible identifiability problems. The 

scheme was then applied to a patient specific aortic coarctation simulation. Huang et al. [187] also  
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Figure 13: (a) Illustration of the on-line parameter estimation algorithm developed by Huang and Ying [86] as well as the 

simulated and identified aortic pressure based on the proposed framework; (b) Patient specific non-invasive data acquisition 

process and blood pressure tuning algorithm used in personalized hemodynamic model by Zhang et al. [181]; (c) Simulated and 

measured flow waveforms at five locations in the heart and aorta post parameter optimization from work by Casas et al. [65]; 

(d) Outline of the transformation from patient specific aorta geometry with coarctation to multiscale model to LPM, which is 

used in the warm start portion of the optimization algorithm developed by Itu et al. [102]; (e) The workflow for the automated 

parameter tuning and uncertainty quantification framework developed by Tran et al. [87] 
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used an Iterated Unscented Kalman Filter (IUKF) algorithm to identify optimal model parameters 

and element layout for a 4-element systemic arterial system used in mock circulatory loops to test 

left ventricular assist devices.  

One of the difficulties faced in this process is accurately accounting for the uncertainty that arises 

from the acquisition of patient specific clinical data and understanding how this may impact the 

estimation process and ultimately the model results. A proposed method to deal with these 

uncertainties was recently developed by Tran et al. [87] in which an automatic parameter tuning 

framework that quantified the estimation uncertainty and indicated the resulting confidence in the 

predicted hemodynamic results was designed. The approach paired Bayesian estimation with 

parameter computation as well as a Monte Carlo method to propagate the calculated uncertainties 

into a coronary artery model. Figure 13 (Panel E) outlines the general workflow of the proposed 

framework. A similar algorithm was also proposed by Schiavazzi et al. [88] which focused on 

single-ventricle simulation.  

2.7 Conclusions and Future Directions 

The future of personalized cardiovascular simulations appears to be promising. Continued 

advances in computational capabilities, together with the exponential growth of digital cardiology 

data, is driving simulation tools closer to successful integration into clinical workflows. Within 

these computational frameworks, lumped parameter modelling is playing a crucial role in the 

personalization of both stand alone 0D models and models used to examine global and local 

hemodynamics and the impacts of cardiovascular diseases. These tools are being used to predict 

and manage diseases, plan interventions, quantify the outcomes and study disease mechanisms 

through a novel lens.   

To truly appreciate the progress made in the field of mathematical and computational 

hemodynamics over the last 20 years, we refer readers to Modeling the Cardiovascular System—

A Mathematical Adventure: Part I & II [188, 189] where author Alfio Quarteroni discusses the 

possibilities and challenges that lay ahead in this area of research in early 2001. In Part II [189], 

Quarteroni acknowledges that “the mathematical adventure of developing models for the 

numerical simulation of the cardiovascular system of a real patient is in the very early stages. Its 

evolution will require the tackling of several central issues in applied mathematics and numerical 

modeling”. It is incredible to observe the considerable advances made over the last 2 decades and 
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makes one ponder about the computational cardiology tools that may be available 20 years from 

now.  

With the exciting advances in artificial intelligence (AI) being applied to cardiology, this marks 

one of the next chapters for cardiovascular simulation tools. The integration of these advanced 

methods has the potential to render LPM and frameworks even more personalized, reduce the 

needed computation time and provide clinicians and scientists with previously inaccessible data 

and trends [190-194]. 

Moving forward, one of the major challenges in cardiovascular modelling, spanning not only 

hemodynamics but also electrophysiological modelling is long term patient specific predictions. 

The vast majority of current models are capable of predicting outcomes in the short term, such as 

directly following interventions, but as is the case with most predictive models, the further into the 

future predictions are estimated, the more uncertainty there is. The eventual integration of complex 

factors such as tissue remodeling and growth into cardiovascular models for example, will help 

improve the long-term accuracy of these simulations [9, 195, 196].  

In order for these modelling tools to become part of a clinical routine, it is paramount that the 

results obtained from the computational frameworks can be presented in a simple yet informative 

manner. As Niederer and colleagues [9] point out in a recent publication, the model development 

requires a deep knowledge of a variety of fields such as numerical analysis, computer science and 

mechanics. For the technology to translate into a clinical setting, the results and inferences must 

be user-friendly for cardiologists and medical experts [9, 197].  

 This will become increasingly important as the cardiovascular models become more complex and 

AI algorithms are integrated. Simple conclusion driven results are needed while allowing the 

operators to understand how the algorithm determined its predictions. In the field of AI, there has 

been a focus on developing algorithms that can explain how they arrive at their conclusions 

(explainable artificial intelligence), with the goal of increasing trust and clarity in the process [198, 

199]. This same principle needs to be applied to cardiovascular modelling frameworks to help 

clinicians develop trust in the models and not view them simply as a black box. 

Another key front that needs to be further examined is the value added from these modelling 

technologies. An interesting consideration is discussed by Fernando DiCarli and colleagues [10] 
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where they note that in recent years, there has been a dramatic growth in multimodal cardiovascular 

imaging technologies which are leading to extraordinary progress in the areas of disease diagnosis, 

risk assessment and disease management. The substantial cost increase associated with this growth 

in imaging though, has prompted discussions regarding the impact of the technologies on the 

patient specific decision making process and if they are indeed better than the current alternatives. 

Further comparative effectiveness studies need to be conducted to examine how the imaging 

technologies are impacting clinical factors such as improved patient quality of life and long-term 

outcomes [10].   

This same argument can be made for cardiovascular simulation tools which will also require 

further larger scale clinical studies to truly evaluate the benefits and value added in comparison 

with traditional techniques and tools [131, 200]. In certain cases for example, simpler solutions, 

such as a fully lumped parameter model may be sufficient as opposed to a 3-D CFD model due to 

the lower computational cost and ease of automation [8, 79].  

Regardless, these are all obstacles that can be overcome through continued collaboration between 

researchers, engineers, clinicians, and computer scientists. As these computational tools continue 

to advance, it appears they will play a substantial role in the field of patient specific cardiovascular 

care and may be one of the many channels to help combat the global burden of cardiovascular 

disease. 
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3.1 Abstract 

In recent years, transcatheter aortic valve replacement (TAVR) has become the leading method for 

treating aortic stenosis. While the procedure has improved dramatically in the past decade, there 

are still uncertainties about the impact of TAVR on coronary blood flow. Recent research has 

indicated that negative coronary events after TAVR may be partially driven by impaired coronary 

blood flow dynamics. Furthermore, the current technologies to rapidly obtain non-invasive 

coronary blood flow data are relatively limited. Herein, we present a lumped parameter framework 

to simulate coronary blood flow in the main arteries as well as a series of cardiovascular 

hemodynamic metrics. The model was designed to only use a few inputs parameters from 

echocardiography, Computed Tomography and a sphygmomanometer. The novel framework was 

then validated and applied to 19 patients undergoing TAVR to examine the impact of the procedure 

on coronary blood flow in the left anterior descending (LAD) artery, left circumflex (LCX) artery 

and right coronary artery (RCA) and various global hemodynamics metrics. Based on our findings, 

the changes in coronary blood flow after TAVR varied and were subject specific (37% had 

increased flow in all three coronary arteries, 32% had decreased flow in all coronary arteries, and 

31% had both increased and decreased flow in different coronary arteries). Additionally, valvular 

pressure gradient, left ventricle (LV) workload and maximum LV pressure decreased by 61.5%, 

4.5% and 13.0% respectively, while mean arterial pressure and cardiac output increased by 6.9% 

and 9.9% after TAVR. By applying this proof-of-concept framework, a series of hemodynamic 

metrics were generated non-invasively which can help to better understand the individual 

relationships between TAVR and mean and peak coronary flow rates. In the future, tools such as 

these may play a vital role by providing clinicians with rapid insight into various cardiac and 

coronary metrics, rending the planning for TAVR and other cardiovascular procedures more 

personalized. 
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3.2 Introduction 

Since the first procedure in 2002, transcatheter aortic valve replacement (TAVR) has 

revolutionized the landscape of interventional cardiology 1. It has made heart valve replacement 

accessible to a wider spectrum of patients with aortic stenosis (AS), especially previously 

inoperable or high-risk populations 1. Since the initial Food and Drug Administration approval, 

the number of TAVR surgeries has increased each year and in 2019, TAVR surpassed conventional 

surgical aortic valve replacement in the United States (72,900 procedures vs. 57,600 respectively) 

2. Similar trends are present globally, with over 450,000 patients in 65 countries undergoing TAVR 

3. However, as is the case with most medical developments, TAVR is associated with some 

complications and drawbacks. Although the procedure has improved considerably in the past 

decade, patients still suffer from post-intervention complications such as vascular complications 4, 

coronary obstruction 5, acute coronary syndrome 6, cerebrovascular events 7, paravalvular leakage 

8 and others.  

Furthermore, a large fraction of patients undergoing TAVR also have comorbid diseases such as 

coronary artery disease (CAD) 9, 10. Given the high prevalence of concomitant CAD in patients 

undergoing TAVR (40-70% 10) and the widespread impact of heart disease and CAD (leading 

cause of death globally) 11, 12, additional insight into how the procedure would impact coronary 

blood flow is crucial. Being able to understand, quantify and predict how TAVR would impact 

coronary blood flow and global hemodynamics on a patient specific basis during the procedure 

planning may help to prevent adverse coronary related incidences post-TAVR. Acute coronary 

syndrome for instance, which is caused by a significant reduction in blood flow to the myocardium, 

has been reported in roughly 5% of patients who underwent TAVR and is associated with a high 

30-day morality rate 6. With rapidly available and quantitative data about coronary hemodynamics, 

clinicians may be able to better personalize and optimize TAVR planning.  

Moreover, as younger and lower risk patients receive TAVR, it is increasingly likely that they will 

need a follow up valve replacement in their lifetime (valve in valve TAVR for example) 13, 14. 

Recently though, it has become clear that in a substantial number of these cases, invasive coronary 

catheter access becomes unfeasible due to the leaflet re-location from the first valve implantation 

13, 14. Having a tool that could non-invasively simulate coronary blood flow behaviour would allow 
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clinicians to better plan the follow up procedure and screen for possible coronary related 

complications when invasive access is not possible.  

While medical imaging has allowed clinicians to visualize parts of the cardiovascular system, 

modalities to capture hemodynamics are relatively limited and are usually restricted to larger 

arteries and ventricles. Furthermore, they are typically limited to imaging velocity instead of blood 

flow rate and pressure. Angiography (invasive) and CT-angiography (minimally/non-invasive) are 

the primary imaging methods used to evaluate coronary arteries but are limited to capturing the 

structure of the vessels 15. Echocardiography has shown promise in visualize and quantify 

hemodynamics in the coronary arteries but is often limited to just the left main or left anterior 

descend branch and has seen limited clinical adoption in this domain 16. Furthermore, it is not 

possible in all patients and requires extensive technician training to obtain reliable measurements 

16.  Recently 4D flow MRI has been applied to capture coronary flow but was limited to only the 

left main coronary artery and required long scan times 17. Functional coronary hemodynamic data 

is predominantly obtained from invasive catheterization to evaluate the severity of CAD and guide 

coronary interventions, but it is not always collected in the pre/post-TAVR settings 18.   

In the past decade, researchers have paired medical imaging and routine clinical data with the 

power of computing to generate non-invasive personalized cardiovascular hemodynamics models. 

The marriage of computational science and cardiology has yielded tools capable of simulating 

possible interventions 19, 20, 21, 22 studying cardiovascular diseases in-silico 23, 24, 25, 26 and 

generating patient specific metrics 27, 28, 29, 30. While many of these models are aimed at the 

coronary arteries and compute clinically relevant parameters (such as fractional flow reserve 31, 32) 

few are designed to simulate or predict the patient-specific impact of TAVR or other non-coronary 

interventions on coronary hemodynamics. Furthermore, many of these advanced 3D simulation 

tools require pre-processing and computation time in the order of days for each patient, making 

the automation and implementation into a clinical workflow challenging 33. Alternatively, lumped 

parameter modelling (LPM) offers a simpler, but computationally quicker method to simulate 

patient specific cardiology models. It relies on using electronic circuits (and the hydraulic-

electrical analogy) to simulated waveforms such as blood flow or pressure over time in different 

regions of the heart 34. By combining a variety of medical imaging techniques, circuit layouts, 

element tuning, and optimization techniques, patient-specific waveforms can be obtained 34. While 
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there exist a series of pure LPMs designed to estimate coronary blood flow 34, none of them are 

highly patient specific and utilize multiple clinical modalities to rapidly estimate both cardiac, 

circulatory and coronary parameters simultaneously. Moreover, none have been directly applied 

to study patients undergoing TAVR.  

In this paper, we developed a novel lumped parameter framework to simulate blood flow 

waveforms in the main proximal coronary branches: LAD, LCX and RCA as well as other global 

cardiovascular hemodynamic parameters. The model was designed to only utilizes limited, non-

invasive clinical inputs. The framework was then applied to 19 patients with AS who underwent 

TAVR to examine the impact of the procedure on coronary blood flow rate and various 

cardiovascular metrics. The coronary flow results from the model were compared with those from 

a patient specific 3D fluid structure interaction (FSI) model (n=19) along with a model sensitivity 

analysis.  

3.3 Methods 

A novel, proof-of-concept patient-specific, image-based LPM framework was developed, 

validated, and tested in this study (Figure 14, Schematic Diagram; Table 2). The model was aimed 

at: 1) quantifying metrics of circulatory function (global hemodynamics); 2) quantifying metrics 

of cardiac function (global hemodynamics); 3) providing non-invasive insight into coronary 

blood flow patterns in the pre-intervention and in the post-intervention states (local 

hemodynamics). The computational framework used Doppler echocardiography (DE), Computed 

Tomography (CT) and sphygmomanometer data to generate patient-specific cardiovascular 

models. The developed framework was tested on a retrospective dataset of 19 patients who 

underwent transcatheter aortic valve replacement (TAVR). The aim was to quantify the impact of 

the procedure on circulatory, cardiac and coronary artery blood flow metrics without the use of 

invasive catheters.   

Our lab previously developed a non-invasive diagnostic computational-mechanics framework for 

complex valvular, vascular and ventricular disease (called C3V-LPM for simplicity) 35. The 

method was described in detail elsewhere 35. In this study, we further developed C3V-LPM to 

enable the quantification of local and global hemodynamics in patients with mixed and complex 

valvular, vascular, mini-vascular and ventricular diseases (known as C3VM-LPM) (Figure 14, 

Table 2).  The developed framework uses limited input parameters that can all be reliably measured 
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non-invasively using DE, CT and a sphygmomanometer. Currently, none of the above metrics 

(global and local hemodynamics) can be obtained noninvasively in patients and when invasive 

procedures are performed, the gathered metrics cannot be by any means as complete as the results 

that C3VM-LPM provides. The previously created model, C3V-LPM, was validated against 

clinical catheterization data in forty-nine AS patients with a substantial inter- and intra-patient 

variability with a wide range of disease 35. In addition, some of the sub-models of the patient-

specific LPM algorithm have been used previously 27, 28, 36, 37, 38, 39, 40, with validation against in 

vivo cardiac catheterization (N=34) 41, 42 in patients with vascular diseases, in vivo MRI data 

(N=57) 43 in patients with AS, and in vivo MRI data (N=23) 44 in patients with coarctation and 

mixed valvular diseases.  

The major development with the new C3VM-LPM framework is the additional capability to non-

invasively capture and quantify patient-specific hemodynamics in the following left and right 

coronary artery branches: 1) LAD 2) LCX 3) RCA. The following sections outline the different 

compartments and tuning approaches developed for this patient specific model (see Figure 14 for 

the complete electrical representation).  

3.3.1 Study population and data acquisition  

19 patients who underwent TAVR in 2020 at St. Joseph's Healthcare and Hamilton Health Science 

(Hamilton, Canada) were considered in this study. The study protocols were reviewed and 

approved by the Hamilton Integrated Research Ethics Board (HiREB) for Hamilton Health Science 

and St. Joseph’s Healthcare. Informed consents were obtained from all human participants. All 

methods and measurements were performed in accordance with all relevant guidelines and 

regulations including guidelines from the American College of Cardiology and American Heart 

Association. Data was collected at 2 time points: pre-procedure and post-procedure. Table 1 

outlines the demographic and procedural data of the patients. All data and results are expressed as 

mean ± standard deviations (SD). 

3.3.2 Coronary arteries 

Each of coronary branches is modeled using a circuit comprised of 3 resistors 

(Rcor,p, Rcor,m, Rcor,d), 2 capacitors (Ccor,p, Ccor,m) and an embedded pressure (voltage) source 

(𝑃𝑖𝑚). This circuit representation was initially proposed by Mantero et al. 45 and further advanced 

and popularized by Kim et al. 46. It has been used in numerous LPMs  31, 47, 48, 49, 50 and has been  
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Table 1: Baseline and post-TAVR patient characteristics 

 Pre-TAVR (n=19, 

mean ± SD) 

90-day post-TAVR (n=19, 

mean ± SD) 

Patient Characteristics 

Age (year) 77.8 ± 6.0  N/A 

Female subjects  10 (53%) N/A 

Mean weight (kg)  85.2 ± 33.3 N/A 

Mean height (cm) 168.5 ± 9.6 N/A 

Body mass index (kg/m2) 2.0 ± 0.4 N/A 

NYHA – Class I 0 11 (58%) 

NYHA – Class II 10 (53%) 3 (16%) 

NYHA – Class III 9 (47%) 5 (26%) 

NYHA – Class IV  0 0 

Arterial Characteristics  

Brachial systolic BP (mmHg) 133.0 ± 18.9 142.0 ± 22.3 

Brachial diastolic BP (mmHg) 70.5 ± 9.2 72.0 ± 15.4 

Hypertension 15 (79%) N/A 

Coronary artery disease  5 (26%) N/A 

Echocardiography Findings  

Heart rate (bpm) 71 ± 14 73 ± 13 

Ejection fraction (%) 59.9 ± 8.4 62.3 ± 7.0 

Stenotic aortic valve EOA (cm2) 0.84 ± 0.19 N/A 

Stenotic aortic valve type Tricuspid:  11 (58%)  

 Bicuspid:  5 (26%) 

Unknown: 3 (16%) 

N/A 

Max aortic valve flow velocity (m/s) 4.45 ± 0.56 2.75 ± 0.65 

Mean aortic valve pressure gradient (mmHg) 47.2 ± 13.1 18.2 ± 8.3 

Paravalvular leakage  N/A Trace: 0   Mild: 1   

Moderate-to-Severe: 1 

Severe: 0 

 

shown to capture the bi-phasic nature of coronary flow, in which peak blood flow occurs during 

the diastole phase rather than during systole 45, 46. While inductors are including in the ventricle 
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and valvular portion of the model, they were not included in the coronary branches since the 

inertial phenomena is not significant in the coronary arteries 45. The following ODEs are obtained 

from the circuit layout to model each of the coronary branches 49: 

qin =  
Pin −  Pp

Rcor,p
 

(1) 

 

qin = Ccor,p

dPp

dt
+ qm 

(2) 

 

Pp = qmRcor,m + Pm  (3) 

 

qm = qout + Ccor,m

dPim

dt
 

(4) 

 

Pm = qoutRcor,d + Pout (5) 

  

where  qin, Pin, qout and Pout are the blood flow and pressure into and out of the coronary branch. 

Rcor,p, Rcor,m, Rcor,d are the proximal, medial, and distal resistors while Ccor,p, Ccor,m are the 

proximal and medial capacitors. Pp, Pm and Pim are the proximal, medial and intramyocardial 

pressures. 

Pim is set to be either the left ventricle (LV) or right ventricle (RV) pressure, depending on the 

coronary artery that it is coupled to.  In this study, we used the LV pressure for the left branches 

(LAD and LCX) and 0.5PLV 51 to create the RV pressure for the right branch (RCA).  
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Determining arterial resistance and compliance in coronaries 

Total coronary resistance 

The mean flow rate to the coronary arteries was assumed to be 4.0% of the cardiac output (CO) 46. 

The total coronary resistance was then estimated based on a relationship between pressure and 

flow 31: 

𝑅𝑐𝑜𝑟,𝑡𝑜𝑡𝑎𝑙 =
𝑀𝐴𝑃

𝑄𝑐𝑜𝑟,𝑡𝑜𝑡𝑎𝑙
=

𝑀𝐴𝑃

(0.04) ∗ 𝐶𝑂
 

(6) 

where 𝑅𝑐𝑜𝑟,𝑡𝑜𝑡𝑎𝑙 is the total coronary resistance and mean arterial pressure (MAP) is calculated 

based on systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) 52: 

𝑀𝐴𝑃 = 𝐷𝐵𝑃 + [
1

3
+ (𝐻𝑅 ∗ 0.0012)](𝑆𝐵𝑃 − 𝐷𝐵𝑃) 

(7) 

Coronary vessel resistance and compliance  

The total coronary resistance was divided between each of the branches based on a variation of 

Murray’s law 53, which relates resistance to vessel diameter:  

𝑅𝑐𝑜𝑟,𝑗 =  
∑ √𝐴𝑖

2.6𝑛
𝑖=1

√𝐴𝑗

2.6  𝑅𝑐𝑜𝑟,𝑡𝑜𝑡𝑎𝑙           𝑤ℎ𝑒𝑟𝑒 𝑗 = {𝐿𝐴𝐷, 𝐿𝐶𝑋 𝑜𝑟 𝑅𝐶𝐴} 

(8) 

where 𝑅𝑐𝑜𝑟,𝑗 is the total coronary resistance in the desired branch and 𝐴𝑖 is the cross-sectional area 

of each of the coronary vessels 46. Further division of the total vessel resistance into the 3 resistive 

elements in the circuit was based on the work of Sankaran et al. 54:  

𝑅𝑐𝑜𝑟,𝑗,𝑝 =  (0.32)𝑅𝑐𝑜𝑟,𝑗  𝑅𝑐𝑜𝑟,𝑗,𝑚 =  (0.52)𝑅𝑐𝑜𝑟,𝑗  𝑅𝑐𝑜𝑟,𝑗,𝑑 =  (0.16)𝑅𝑐𝑜𝑟,𝑗                             (9)     

where  𝑅𝑐𝑜𝑟,𝑗,𝑝 , 𝑅𝑐𝑜𝑟,𝑗,𝑚 , 𝑅𝑐𝑜𝑟,𝑗,𝑑  are the proximal, medial, and distal resistors.  

To account for the cases with coronary vessel stenoses or vessels with considerable reductions in 

diameters, the following approach was used 55: 

𝛼 =
𝐴𝑠𝑡𝑒𝑛

𝐴0
                            (10) 

𝑅𝑐𝑜𝑟,𝑟𝑒𝑑,𝑗 = 𝑅𝑐𝑜𝑟,𝑗(𝛼−2)               (11) 



M.A.Sc. Thesis, Louis Garber             McMaster University, School of Biomedical Engineering 

63 

 

where 𝐴𝑠𝑡𝑒𝑛 represents the cross-sectional area of the stenosis/diameter reduction and 𝐴0 

represents the normal cross-sectional area (non-stenotic area). The original resistance for the vessel 

(𝑅𝑐𝑜𝑟,𝑗), assuming no stenosis, is then multiplied with an area reduction factor (𝛼) to yield the new 

branch resistance (𝑅𝑐𝑜𝑟,𝑟𝑒𝑑,𝑗), which can then be further divided into the sub resistors.  

 The left coronary compliance was computed by dividing up the total left coronary compliance 

based on vessel diameter:   

𝐶𝑐𝑜𝑟,𝑗 =  
𝐴𝑗

∑ 𝐴𝑖
𝑛
𝑖=1

 𝐶𝑐𝑜𝑟,𝑡𝑜𝑡𝑎𝑙 
𝐿  

     (12) 

where 𝐶𝑐𝑜𝑟,𝑗 is the left coronary vessel compliance, 𝐶𝑐𝑜𝑟,𝑡𝑜𝑡𝑎𝑙 
𝐿 is the total left coronary compliance 

and 𝐴𝑖 is the cross-sectional area of each of the left coronary branches 46. A manual tuning process 

was utilized to determine total left coronary compliance value that led to physiological coronary 

flow waveforms 56, 57, 58.  

The compliances were then divided across the 2 capacitors based on the following relationship, 

developed by Sankaran et al. 54: 

𝐶𝑐𝑜𝑟,𝑗,𝑝 = (0.11)𝐶𝑐𝑜𝑟,𝑗       𝐶𝑐𝑜𝑟,𝑗,𝑚 = (0.89)𝐶𝑐𝑜𝑟,𝑗          (13) 

where 𝐶𝑐𝑜𝑟,𝑗,𝑝 and 𝐶𝑐𝑜𝑟,𝑗,𝑚 are the proximal and medial capacitors. The same process was applied 

for the right coronary vessels. 

3.3.3 Input parameters and geometry reconstruction  

The C3VM-LPM used the following patient specific measurements as inputs: forward left 

ventricle outflow tract stroke volume (Forward LVOT-SV), cardiac cycle time (T), ejection time 

(TEJ), effective orifice area of the aortic valve (𝐸𝑂𝐴𝐴𝑉), effective orifice area of the mitral valve 

(𝐸𝑂𝐴𝑀𝑉), area of left ventricle outflow tract (𝐴𝐿𝑉𝑂𝑇), aortic regurgitant effective orifice area 

(𝐸𝑂𝐴𝐴𝑅), mitral regurgitant effective orifice area (𝐸𝑂𝐴𝑀𝑅) and paravalvular leakage volume 

(𝑉𝑙𝑒𝑎𝑘) measured by DE. Branchial systolic and diastolic blood pressure were measured by a 

sphygmomanometer.  

ITK-SNAP (version 3.8.0-BETA) 59 and the collected CT data were used to re-construct the 3D 

geometries of the main coronary arteries (left main coronary artery (LMCA), proximal LAD, LCX  



M.A.Sc. Thesis, Louis Garber             McMaster University, School of Biomedical Engineering 

64 

 

 

Figure 14: Electrical and anatomical schematic diagrams of the LPM.  (a) Anatomical illustration showing the different circuit 

meshes and their relationship to the cardiovascular system; (b) Electrical diagram with data inputs. The model includes the 

following sub-models: LAD, LCX and RCA, left ventricle, aortic valve, left atrium, mitral valve, aortic valve regurgitation, mitral 

valve regurgitation, systemic circulation, pulmonary circulation. Abbreviations in the schematic are the same as in Table 2. 
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and RCA) in both the pre-TAVR and post-TAVR cases. Figure 14 Panel B outlines how the inputs 

parameters are related to the lumped parameter sub-models.  

Table 2: Parameter summary for patient specific LPM 

Parameter Description Abbreviation Value 

Valve Parameters 

Effective orifice area EOA Measured using DE 

Energy loss coefficient ELCO (𝐸𝐴𝑂)𝐴

𝐴−𝐸𝑂𝐴
 ; A measured using DE 

Mitral valve inertance MMV Constant value: 0.53 g/cm2 32 

Systemic Circulation Parameters 

Aortic resistance  Rao Constant value: 0.05 mmHg·s/mL 31 

Aortic compliance Cao Initial value: 0.5 mL/mmHg 

Optimized based on branchial pressure 

Systemic vein resistance RSV Constant value: 0.05 mmHg·s/mL 31 

Systemic arteries and veins compliance CSAC Initial value: 2 mL/mmHg 

Optimized based on branchial pressure 

Systemic arteries resistance RSA Initial value: 0.8 mmHg·s/mL 

Optimized based on branchial pressure 

Upper body resistance Rub Adjusted to direct 15% of total flow rate 

in healthy cases 33 

Proximal descending aorta resistance Rpda Constant value: 0.05 mmHg·s/mL 31 

Elastance Function Parameters  

Maximum elastance Emax 2.1 (LV) | 0.17 (LA) 34, 35 

Minimum elastance Emin 0.06 (LV & LA) 34, 35 

Elastance ascending gradient m1 1.32 (LV & LA) 34, 35 

Elastance descending gradient  m2 27.4 (LV) | 13.1 (LA) 34, 35 

Elastance ascending time translation 𝜏1  0.269T (LV) | 0.110T (LA) 34, 35 

Elastance descending time translation 𝜏2  0.452T (LV) | 0.18T (LA) 34, 35 

Coronary Parameters  

Proximal coronary resistance Rcor,p Adjusted based on CO, MAP, and coronary 

branch cross sectional area 

Medial coronary resistance Rcor,m Adjusted based on CO, MAP, and coronary 

branch cross sectional area 

Distal coronary resistance Rcor,d  Adjusted based on CO, MAP, and coronary 

branch cross sectional area 

Proximal coronary compliance Ccor,p Adjusted based on total coronary compliance 

and branch cross sectional area 
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Medial coronary compliance Ccor,m  Adjusted based on total coronary compliance 

and branch cross sectional area 

Pulmonary Circulation Parameters 

Pulmonary vein inertance LPV Constant Value: 0.0005 mmHg·s2/mL 32 

Pulmonary vein resistance RPV Constant Value: 0.002 mmHg·s/mL 32 

Pulmonary vein and capillary resistance RPVC Constant Value: 0.001 mmHg·s/mL 32 

Pulmonary vein and capillary compliance CPVC Constant Value: 40 mL/mmHg 32 

Pulmonary capillary inertance LPC Constant Value: 0.0003 mmHg·s2/mL 32 

Pulmonary capillary resistance RPC Constant Value: 0.21 mmHg·s/mL 32 

Pulmonary arterial resistance RPA Constant Value: 0.01 mmHg·s/mL 32 

Pulmonary arterial compliance CPA Constant Value: 4 mL/mmHg 32 

Mean flow rate of pulmonary valve QMPV Optimized flow parameter s.t the model 

could reproduce the Forward LVOT-SV 

seen in DE 

Input and Output Conditions 

Forward left ventricular outflow tract 

stroke volume 

Forward 

LVOT-SV 

Measured using DE 

Central venous pressure PCV0 Constant value: 4 mmHg 31 

Additional Parameters  

Heart rate HR Measured using DE 

Duration of cardiac cycle T Measured using DE 

Density of blood 𝜌  Constant value: 1050 kg/m3 31 

Systolic end ejection time TEJ Measured using DE 

End diastolic volume EDV Measured using DE 

End systolic volume ESV Measured using DE 

 

3.3.4 Computational algorithm  

The ordinary differential equations which govern the LPM circuit were formulated and solved in 

Matlab Simscape (MathWorks Inc, Natick USA). Addition functions were written in Matlab and 

Simulink to enhance the Simscape code. The Matlab Optimization Toolbox and Simulink Design 

Optimization Toolbox were also used to implement part of the parameter tuning algorithms based 

on in-house code. The trapezoid rule variable step solver (ode23t) was used with an initial step 

time of 0.1 milliseconds. The initial voltages and currents of the capacitors and inductors in the 

circuit were set to zero and the convergence residual criterion was set to 10-6. On average, the 

model had a computation time in the order of 10-15s (on a workstation with the configurations of 
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Intel Core™ i7-10700 CPU @2.90 GHz and 64 GB Ram). Table 4 outlines all the model 

parameters and their values or formulas.   

3.4 Results  

3.4.1 Model verification  

In many cases, during the pre-TAVR workup, invasive flow and pressure data in the coronary 

arteries are not collected and angiography images are often used to decide if the coronary arteries 

should be re-vascularized before, during or after TAVR 60. Since this invasive coronary data in the 

pre- and post-TAVR cases is limited and not routinely collected, we used our patient-specific 3-D 

FSI model results to validate our newly developed LPM. While this approach is not true gold-

standard validation, using a complex FSI model offers a strong proof-of-concept verification 

method to examine the performance of the LPM. This full 3D modelling technique was applied to 

the 19 patients and the mean and peak flows for the LAD, LCX and RCA were computed.  

The 3D FSI model used individual CT images to reconstruct the geometry of the coronary arteries, 

proximal ascending aorta, and aortic valve leaflets. The boundary conditions were based on patient 

specific DE and blood pressure data. The 3D coronary arteries flow was simulated using FSI 

method 61, 62 using finite volume method - the details of FSI algorithm can be found elsewhere 19, 

20. Due to the complexity of heart valve motions during full cardiac cycle, the FSI model simulated 

blood flow in the structure during the diastole phase (main filling phase for coronaries) assuming 

rigidly closed aortic valve. As the majority of coronary blood flow occurs in diastole (due to the 

impact of extravascular ventricle compression in systole 63), this allows for a relatively complete 

validation of the total blood flow during the cardiac cycle.  

Figures 15 and 16 outline the blood flow waveforms in the pre- and post-TAVR settings for all 3 

coronary branches for two samples patients according to the LPM developed in this paper (C3VM-

LPM) along with the 3D FSI model results. Overall, there is a strong agreement in the waveforms 

between the modelled coronary blood flow rates from the CV3M-LPM (lumped) and the FSI (3D) 

model. Table 3 outlines the average mean and peak flow rate error between the two models in pre- 

and post-TAVR (n=19). 

 



M.A.Sc. Thesis, Louis Garber             McMaster University, School of Biomedical Engineering 

68 

 

Table 3: Mean and peak blood flow rate error % (± std) between the LPM and the FSI models in the three main coronary artery 

branches (n=19) 

 Mean Flow Rate Error Peak Flow Rate Error 

 LAD LCX RCA LAD LCX RCA 

Pre-TAVR 13.2 ± 17% 11.7 ± 11% 16.1 ± 29% 15.3 ± 14% 18.1 ± 18% 22.7 ± 28% 

Post- TAVR 17.3 ± 17% 11.0 ± 15% 13.3 ± 10% 15.9 ± 19% 15.2 ± 24% 19.9 ± 18% 

 

To better understand how the C3VM-LPM responded to possible independent variations in 

parameters and inputs, a sensitivity analysis was conducted. The focus of this analysis was on the 

coronary branches as previous parameter analyses have been conducted on the values in the cardiac 

and circulatory regions; see 36, 37 and 64 for more details. Table 4 outlines the parameters that 

control the mean flow rate and shape of the coronary flow curves in the model (see equations 6-

12). Each parameter was independently varied by ± 20% and the maximum relative error 

percentage in the computed mean flow rate for the LAD, LCX and RCA was tabulated (Table 2). 

Following the approach of Tran et al. 65, the heart rate was assumed to a deterministic parameter. 

Table 4 outlines the results from the coronary branch sensitivity analysis. The mean coronary flow 

rates estimated from the model are relatively sensitive to changes in MAP (27.4% max relative 

error averaged across all 3 branches), CO (22.0%) and branch cross sectional area (LAD – 14.2%, 

LCX – 12.6% and RCA – 11.5%). Conversely, the mean coronary flow rate is not significantly 

impacted by changes in the left and right coronary compliance (5.1% and 0.7% respectively). 

Vessel compliance tends to impact the shape the waveform rather than the mean flow rate directly 

65. When the left and right coronary compliances were varied by ± 20%, the max relative error in 

the peak flow rates were only 7.1% and 7.4% respectively.  

3.4.2 Cardiac and circulatory function and hemodynamics (global hemodynamics) 

Using the lumped model, pre- and post-TAVR cardiac and ventricular indices were calculated for 

the patients (Figure 17). All the patients who underwent the procedure had aortic stenosis and the 

severity was assessed by senior cardiologists based on aortic valve flow dynamics according to the 

European Association of Cardiovascular Imaging and American Society of Echocardiography 

guidelines 66.   

The reduction in valve area caused by aortic stenosis led to the formation of high velocity jets 

driven by the pressure gradient across the valve. In all but 1 patient, valve pressure gradient  
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Figure 15: Coronary Blood Flow Waveform Validation – Patient #01. The pre- and post-TAVR diastole blood flow waveforms in 

all 3 branches (LAD, LCX and RCA) from the LPM and the 3D FSI model for patient #01. The time has been normalized to 0.5s. 

RMSE – root mean squared error between the waveforms. 
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Figure 16: Coronary Blood Flow Waveform Validation – Patient #07. The pre- and post-TAVR diastole blood flow waveforms in 

all 3 branches (LAD, LCX and RCA) from the LPM and the 3D FSI model for patient #07 The time has been normalized to 0.5s. 

RMSE – root mean squared error between the waveforms. 
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decreased (61.5% on average) after TAVR. While the valvular pressure reduced for almost all 

patients, this reduction is not always associated with improved global hemodynamics and better 

prognosis 27.  

Table 4: Maximum relative error (%) in the computed mean coronary branch flow rates from the sensitivity analysis in response 

to independent variation in model parameters and inputs 

Description  Parameter Range Max 

Relative 

Error – 

LAD (%) 

Max 

Relative 

Error – 

LCX (%) 

Max 

Relative 

Error – 

RCA (%) 

Mean across 

LAD/LCX/RCA 

(%) 

Mean Arterial 

Pressure 
MAP ± 20% 28.4 27.9 25.7 27.4 

Cardiac Output 

 
CO ± 20% 22.9 22.4 20.8 22.0 

LAD Area 

 
ALAD ± 20% 16.0 13.5 13.0 14.2 

LCX Area 

 
ALCX ± 20% 7.3 21.1 9.3 12.6 

RCA Area 

 
ARCA ± 20% 7.1 7.2 20.2 11.5 

Total left coronary 

compliance 
CL

cor,total ± 20% 5.2 5.0 - 5.1 

Total right coronary 

compliance 
CR

cor,total ± 20% - - 0.7 0.7 

 

LV workload is a measure of the required work by the left ventricle to eject blood and overcome 

the opposing cardiovascular systemic load 19, 43. The workload was computed through the integral 

of the left ventricle pressure-volume loop generated by the lumped model. On average, the 

workload decreased by 4.5% after TAVR (but increased in 9 of the 19 subjects). Similarly, the 

presence of aortic stenosis pre-TAVR led to elevated LV pressure and impaired LV function for 

the patients. By surgically implanting the valve, TAVR led to the reduction in LV pressure for 16 

of the 19 patients and decreased the pressure by 13.0% on average.  

SBP increased in 13 patients (7.3% average increase across all patients) and DBP increased in 13 

patients (5.5% average increase). Mean atrial pressure, which represents a weighted average 

between SBP and DBP, increased by 6.9% on average after TAVR, while increasing for 13 of the 

patients. Sustained increase in blood pressure after TAVR is often associated with better prognosis 

while decreased BP may be linked to less favourable prognoses 67, 68. Similarly, cardiac output 
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increased by 9.9% on average (increased in 12 patients) and a 1.9% increase in resting heart rate 

was observed (increase in 12 patients - not shown in Figure 17).  

3.4.3 Coronary blood flow dynamics (local hemodynamics) 

Coronary blood flow is crucial for delivering oxygen to the myocardium and is heavily governed 

by numerous physiological factors including cardiac output, heart rate, ventricular pressure, 

coronary perfusion pressure, vessel diameter, aortic valve area, disease status (such as AS or CAD) 

as well as other biological regulation factors 57, 69, 70. 

As there was patient-specific variation in many of these parameters (Figure 17), there was also 

large individual variations in the impact of TAVR on coronary artery blood flow across the 3 

branches (Figure 18). Of the 19 patients, 7 had increases in coronary blood flow in all branches, 6 

patients had decreases in all branches, while the remainder had increases and decreases in 

difference branches. Across all the patients, mean flow increased by 2.8% on average post-TAVR 

(5.4%, -3.0% and -0.1% for the LAD, LCX and RCA branches, respectively; N=19). When broken 

down into the cardiac phases, the coronary blood flow increased by 17.5% post-TAVR during 

systole (15.7%, 22.6% and 14.3% for the LAD, LCX and RCA branches, respectively; N=19) 

while decreasing by 7.1% during diastole (-1.2%, -7.6% and -12.4% for LAD, LCX and RCA 

branches; N=19). 

Similar trends were observed for the peak coronary flow rate. After TAVR, there was an 8.4% 

increase during systole (3.8%, 6.8% and 14.5% LAD, LCX and RCA branches; N=19) but a 11.1% 

decrease during diastole (-5.1%, -11.8% and -16.3% LAD, LCX and RCA branches; N=19). 

Overall, the coronary blood flow rate during systole was impacted more than the blood flow rate 

during diastole.  
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Figure 17: Global Hemodynamic Metrics Pre- and Post-TAVR. The changes in individual and mean global hemodynamic metrics 

from pre-TAVR to post-TAVR (n=19) for (a) left ventricle workload (J); (b) max left ventricle pressure (mmHg); (c) mean arterial 

pressure (mmHg); (d) cardiac output (mL/min) 
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Figure 18: Coronary Blood Flow Rate Pre- and Post-TAVR. The changes in individual coronary blood flow rate (mL/s) from 

pre-TAVR to post-TAVR (n=19) (a) LAD; (b) LCX; (c) RCA 
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3.4.4 Patient Specific Coronary Hemodynamics 

Coronary artery blood flow dynamics are impacted by various physiological factors and diseases 

71. For a computational tool to appropriately predict these waveforms, it must be able to capture 

the patient specific impacts between the various cardiac and circulatory interactions. Since the 

C3VM-LPM is designed to include not only the coronary arteries but also the pulmonary 

circulation, left atrium, mitral valve, aortic valve, ascending aorta and systemics circulation, it can 

simulate a portion of the cardiovascular system. Furthermore, it can provide a window to examine 

various aspects of the system in both the pre- and post-intervention setting for individual patients.   

Figures 19, 20 and 21 illustrate patient specific cardiovascular data for various regions of the heart 

and coronary arteries in both the pre- and post-TAVR cases. Patients #18, #13 and #16 were 

selected to illustrate cases in which the procedure led to varying outcomes in coronary flow rates 

and cardiac dynamics.   

Patient #18 was suffering from severe aortic stenosis prior to receiving a TAVR procedure, which 

had led to an increased burden on the left ventricle. Following TAVR, the aortic valve area 

increased from 0.80 to 2.30 cm2 and the ejection fraction increased from 69% to 71%. Based on 

the model, the intervention led to an increase in peak LV pressure (+4.7%), an increase in the MAP 

(+35.2%), an increase in LV workload (+24.0%), an increase in cardiac output (+28.3%), and an 

increase in resting heart rate (+2.9 %). Overall, an increase in the LAD (+31.1%), LCX (+32.4%) 

and RCA (+30.8%) flow rates were observed post-TAVR. Additionally, the total estimated 

myocardial blood flow (coronary blood flow per gram of cardiac mass) increased from 2.36 to 

4.06 mL/min/g.  

Patient #13 was also suffering from severe aortic stenosis prior to receiving TAVR. Similar to 

patient #18, the intervention increased the aortic valve area from 0.90 to 1.04 cm2 and the ejection 

fraction increased from 60% to 64%. According to the model, the intervention led to a decrease in 

the peak LV pressure (-21.8%), a decrease in LV workload (-53.4%), a decrease in MAP (-2.9%), 

an increase in resting heart rate (+9.1%) and a decrease in cardiac output (-31.4%). The coronary 
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flow in the LAD, LCX and RCA decreased by 22.5%, 20.7% and 85.7% after surgery, respectively. 

The total estimated myocardial blood flow also decreased from 2.42 to 2.39 mL/min/g. 

Patient #16 suffered from the same condition and severity as the other subjects. As with the other 

subjects, the aortic valve area increased after TAVR (0.5 to 0.9 cm2) and the ejection fraction 

decreased (64% to 62%). Interestingly though, even though the total coronary flow increased after 

TAVR (+21.5%), the total myocardial blood flow rate barely changed after the surgery (2.05 to 

2.06 mL/min/g). This is likely due to the increase in the left ventricle mass index (77 to 93 g/m2) 

which may be a by-product of the increase in left ventricle work (1.06 to 1.37 J).  

Figure 19: Predicted cardiac and coronary hemodynamics (Patient #18). The plots on the left and right illustrate the pre-TAVR 

and post-TAVR data respectively. Before the intervention, this patient suffered from severe aortic stenosis. After TAVR, the mean 

pressure gradient and max aortic valve velocity decreased and all the other predicted hemodynamic metrics increased, including 

myocardial blood flow. 
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The examples illustrated by patients #18, #13 and #16 provide insight into the capabilities of the 

C3VM-LPM to compute patient specific cardiovascular data, including non-invasive insight into 

the hemodynamics in the coronary arteries. It also further highlights the patient specific nature of 

treating aortic stenosis and the resulting hemodynamics.  

3.5. Discussion  

As medicine becomes more patient centered, there is a strong motivation to create patient specific 

treatment approaches and design tools capable of capturing individual health data. The union 

between computational science, medical imaging, and cardiology has opened the doors to 

numerous new patient specific cardiovascular tools. “Cardiology is flow” 72 and providing 

Figure 20: Predicted cardiac and coronary hemodynamics (Patient #13). The plots on the left and right illustrate the pre-TAVR 

and post-TAVR data respectively. Before the intervention, this patient suffered from severe aortic stenosis. After TAVR, the mean 

pressure gradient, max aortic valve velocity, cardiac output, MAP, max LV pressure and myocardial blood flow all decreased 

while ejection fraction and resting heart rate increased. 
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clinicians with a non-invasive window into coronary blood flow and global cardiovascular 

parameters can be advantageous in helping clinicians and cardiologists make treatment decisions 

33, 73, 74. Furthermore, the development of computationally efficient methods to non-invasively 

quantify blood flow may be useful in high volume clinical settings.  

In this paper, we develop a novel LPM framework which utilizes non-invasive inputs to simulate 

blood flow waveforms in the main proximal coronary branches (LAD, LCX and RCA) as well as 

other global cardiovascular hemodynamic parameters. The model was then applied to 19 patients 

undergoing TAVR to examine the impact of the procedure on various cardiovascular metrics. The 

coronary flow results from the framework were compared with those from a patient specific 3D 

FSI model (n=19) and a model sensitivity analysis was conducted.  

3.5.1 Coronary Blood Flow Increase or Decrease Varies in Patients After TAVR 

The coronary waveforms from the lumped model for patients with and without aortic stenosis were 

very consistent with the waveforms reported in literature 57, 75, 70, 76. For patients without aortic 

stenosis, a clear bi-phasic flow pattern was present with lower flow during systole and more flow 

occurring in diastole. In the presence of aortic stenosis, the blood flow during systole decreased 

considerably (in some cases resulting in zero or negative retrograde flow) and most of the blood 

flow was delivered to the coronaries in diastole. Garcia et al. 57, Hongo et al. 75 and others 70, 76 

have observed very similar flow patterns in healthy and aortic stenosis cases.   

After TAVR, the model yielded an increase in both the mean and peak flow rates during systole 

but a decrease during diastole. This trend has been observed in numerous other studies regarding 

the relationship between coronary flow and TAVR 70, 77, 78, 79. In patients with aortic stenosis, 

systolic blood flow from the ventricle can be limited due to the obstruction caused by the stenotic 

valve, thus limiting coronary flow. Additionally, the elevated LV pressure enhances the impact of 

extravascular compression, further restricting systolic coronary flow. After TAVR, the increase in 

valve orifice area and reduction in ventricular pressure leads to increased blood flow during  

systole, resulting in an increase in systolic coronary flow. Since aortic stenosis is a systolic 

phenomenon that impacts the opening rather than closing of the valve, TAVR has been shown to 

have a smaller impact on the diastolic phases and thus less impact on coronary flow during diastole 

77, 78.  
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Figure 21: Predicted cardiac and coronary hemodynamics (Patient #16). The plots on the left and right illustrate the pre-TAVR 

and post-TAVR data respectively. Before the intervention, this patient suffered from severe aortic stenosis. After TAVR, the mean 

pressure gradient, max aortic valve velocity, ejection fraction, resting heart rate and max LV pressure decreased while cardiac 

output and MAP increased. Coronary blood flow rate increased while the overall myocardial blood flow increased slightly after 

TAVR. 

This study demonstrated individual differences in terms of coronary blood flow increase or 

decrease for the full cardiac cycle after TAVR. This varying outcome has been previously noted, 

for instance, Ben-Dor et al. 70 found that of the 90 patients in their clinical study, only 48% had a 

≥10% increase in their left main coronary flow velocity after TAVR. Relative reduction in 

coronary blood flow has been associated with various negative cardiovascular events including 

decreased ventricle contractile function, ventricular dysfunction and increased risk of ischemic 

events 80, 81. Furthermore, moderate or prolonged reduction in coronary blood flow may lead to 

molecular and morphological changes in the myocardium and may worsen heart failure 80.  
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There is currently uncertainty around the optimal management and treatment of AS and coexisting 

CAD 82. There is a current debate about whether CAD should be treated before AS, alongside the 

AS or after the AS 83, 18, 78. Additionally, some preliminary research indicates that negative 

coronary events after TAVR may be driven by impaired coronary flow dynamics and coronary 

hypoperfusion related to the TAVR prosthesis 60. Currently clinicians have relatively limited 

options to examine coronary flow hemodynamics in a rapid and non-invasive fashion 84. By using 

frameworks like the one presented in this paper, clinicians may eventually be able understand, 

quantify, and predict adverse coronary related events surrounding TAVR that otherwise might be 

missed without this additional data and insight.  

3.5.2 Global Hemodynamic Metrics Vary in Patients After TAVR 

The increase or decrease in certain computed global hemodynamic parameters (LV workload, 

SBP, DBP and CO) varies from subject to subject after TAVR. LV workload for instance 

decreased in 10 patients while increasing for 9 subjects after TAVR. While the workload often 

decreases post-TAVR due to a reduction in afterload 28, this only occurred in a subset of our 

subjects. This observed increase in workload may be driven by the interplay of various 

cardiovascular factors such as the presence of mixed valvular disease including mitral valve 

regurgitation or post-TAVR complications such as paravalvular leakage (2 patients had mild and 

moderate to severe PVL respectively) 27. In regard to blood pressure, according to our model SBP, 

DBP and MAP all increased in 68% of the subjects. Similarly, Perlman et al. 85 found that of 150 

subjects who underwent TAVR, 51% had sustained increases in blood pressure after the procedure. 

Interestingly, in this study, subjects with increased blood pressure after TAVR had better a long-

term prognosis and fewer adverse events after 30 days and 12 months 85. While there are some 

disagreements regarding the benefits and drawbacks of increased blood pressure after TAVR, 

various studies have found that blood pressure increase or decrease after TAVR is highly 

dependant on the individual 67. 

Unlike the other global metrics, aortic valve pressure gradient decreased in all but one subject after 

TAVR. Since implanting the new valve (and increasing the valve effective orifice area) is one of 

the main aims this procedure, it is expected that the valve pressure gradient would decrease after 

TAVR 28, 35. In all, due to the highly interconnected and dynamic nature of cardiovascular system, 
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this patient specific variability in global hemodynamics can likely help explain why coronary 

blood flow increase or decrease after TAVR also varies.  

3.5.3 Limitation of Current LPMs to Capture Coronary Blood Flow 

While there exist some LPM frameworks developed for the coronary arteries 47, 48, 55, 86, 87, 88, 89 

very few include patient specific coronary and cardiac segments. In work by Duanmu et al. 55, the 

authors use CT images to extract details of the coronary branches to tune the circuit elements but 

use generic heart functions as inputs to the coronary arteries. Li et al. 47 also used a similar approach 

but tuned the model parameters to match generic coronary artery flow patterns for a single patient. 

Calderan et al. 89 applied both an in-vivo model and lumped model to characterize the impact of 

TAVR on coronary artery flow but relied on semi-generic parameters and did not divide the blood 

flow into the 3 main coronary arteries. Currently, none of the existing pure LPM frameworks can 

simulate and examine the impact of TAVR on coronary blood flow in a patient specific manner.  

In recent years, most of the developments related patient specific computational cardiology models 

have made use of 3D based modelling (computational fluid dynamics, FSI, Lattice-Boltzmann and 

others). These powerful models can provide detailed insight into parameters such as wall shear 

stress, multi-dimensional blood flow patterns, vortical structures and other key parameters. On the 

other end of the spectrum, LPM offers a simpler and computationally cheaper method to simulate 

a series of global cardiovascular metrics and flow/pressure waveforms. While LPM sacrifices the 

ability to compute many of the 3D based parameters, it reduces the computational time from hours 

or days to seconds and makes model automation easier.  

3.6. Limitations 

This study was performed and validated using 19 patients and showed strong agreement with both 

the pre- and post-TAVR results from the 3D FSI models. Numerous FSI models have been 

previously shown to accurately simulate blood flow in the cardiovascular system, including the 

coronary arteries 46, 56, 90, 91. Furthermore, the cardiac LPM was previously designed to capture 

complex valvular, vascular, and ventricular diseases and has been previously validated against 49 

patients with a wide range of diseases 35. Nevertheless, future studies must consider validating the 

coronary flow waveforms from the model against invasive coronary catheter data.  
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As outlined in the analysis, the model is relatively sensitive to changes in coronary vessel cross 

sectional area, which is currently computed from 3D CT-based reconstructions. While a standard 

segmentation and reconstruction process is applied to all patients, it is currently done manually 

and is prone to a small degree of human error. This error could be reduced by using coronary CT 

angiography or standard angiography which produce higher quality coronary images.  

The model is also sensitive to changes in mean arterial pressure, an input parameter currently 

obtained using a clinical grade sphygmomanometer. As coronary perfusion pressure (which is 

partially based on MAP) increases in healthy patients, the body naturally adjusts coronary 

resistance to help regulate the coronary blood flow rate 63. Although it is not fully clear how this 

autoregulation is impacted by the presences of AS and CAD and only occurs for range of pressures, 

future models could be enhanced through the addition of patient specific control loops to further 

regulate the relationship between coronary pressure and flow.  
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Chapter 4: Conclusions and Future Directions 

 

4.1 Conclusions 

Cardiovascular lumped parameter modelling is a useful tool to rapidly generate patient-specific 

hemodynamic data. It utilizes a series of electronic circuits with tunable elements and an 

optimization algorithm to simulate blood flow waveforms in different cardiac and circulatory 

regions. Depending on the purpose and desired complexity of the model, additional circuit 

compartments, which represent cardiovascular components like valves or vessels, can be added 

or removed. While the outputs are not as detailed as other higher order modelling techniques, the 

results can be generated in a fraction of the time and require substantially less pre and post 

processing, making it a viable approach for real-world, high-volume clinics.  

In this thesis, a patient-specific, non-invasive lumped parameter framework focusing primarily 

on the coronary arteries (LAD, LCX and RCA) was developed and validated on a series of 

patients undergoing TAVR (n=19). The model used only non-invasive clinical data as inputs: CT 

images, echocardiography data and cuff blood pressure. Blood flow and pressure waveforms 

were simulated in the coronary arteries alongside the left ventricle, aortic valve, left atrium, 

mitral valve, and aorta for each subject. Additional hemodynamic metrics such as left ventricle 

workload and myocardial blood flow rate were computed on a patient-specific basis.  

To validate the model results, the diastolic coronary flow waveforms for each subject were 

compared with results from a patient specific 3D FSI model previously developed in the lab. 

Overall, there was strong qualitative and quantitative agreement with the FSI results during both 

pre- and post-TAVR. Numerous hemodynamic metrics were generated and tracked at both time 

points and compared for the 19 subjects. The clinical metrics that were directly tied to TAVR 

such as the aortic valve area and net pressure gradient across the aortic valve improve for almost 

all the subjects after the intervention. As for the hemodynamic data, there was substantial 

variability in terms of their increase or decrease post-TAVR. On average, LV workload and 

maximum LV pressure decreased while cardiac output, aortic pressure and resting heart rate 

increased. These individual variations in hemodynamic parameters helped contribute to 

variability in the coronary blood flow increase or decrease in the different vessels (LAD, LCX 

and RCA) and overall myocardial blood flow after the procedure. Some preliminary research 
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indicates that negative coronary events after TAVR may be partially driven by impaired or 

reduced coronary blood flow dynamics related to the TAVR prosthesis 16.  

In conclusion, since there was large patient specific variability in hemodynamic changes after 

TAVR, having a non-invasive, patient-specific tool to rapidly quantify cardiac, circulatory and 

coronary data may eventually aid clinicians to better manage patient suffering from AS and CAD 

and improve the planning of the associated interventions.  

4.2 Future Directions  

With the newly developed C3VM lumped parameter framework, we can now simulate blood flow 

waveforms and hemodynamic metrics in the major cardiac chambers and vessels as well as the 

coronary arteries. In this work, a major focus is on examining the changes in metrics such as 

coronary blood flow rate (and myocardial blood flow) in the pre- and post-TAVR settings. Going 

forward, it would be interesting to see the relationship between these indices and longer-term 

clinical outcomes. While there is some research in this area 36, 37, 38, it is scarce and often does not 

focus directly on the coronary arteries. It would be interesting for instance to conduct a longitudinal 

study and collect non-invasive data from subjects at multiple time points pre- and post-TAVR. 

With this data, the C3VM model could be applied to see the relationships between the generated 

metrics like change in myocardial blood flow after TAVR and 6-month or 2-year mortality rate. 

This future research would be import since this could further highlight the validity of the model 

and emphasize its clinical utility.  

With the enormous growth of machine learning (ML) over the past decade, it would also be 

interesting to combine the generated blood flow waveforms from the C3VM model with some ML 

algorithms to classify the severity of certain cardiovascular diseases (CAD severity for instance). 

A series of features could be extracted from the generated waveforms (such as mean flow, peak 

flow, flow derivates, etc.) or the waveforms could be transformed using signal processing 

techniques like fast Fourier transforms or continuous wavelet transforms to extract more complex 

features. If a large enough dataset was available, the features could be used in different ML 

algorithms (like logistic regression, random forest, or more complex neural network models) to 

attempt to classify the severity of a desired cardiovascular diseases. 

Finally, future developments are needed to improve the framework for patients with complex 

cases of CAD. In Chapter 3, we outline that the model does not perform as well in cases where 
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patients have complex vessel geometry and CAD (ex. multi vessel CAD, highly tortuous vessels 

and LMCA CAD, etc.). Future developments in this area could include using different 

algorithms to better account for highly varying coronary vessel diameters or using different 

imaging modalities (such as CCTA) to better visualize the complex build-up of plaque in the 

arteries.  
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