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Abstract 

Recently, lithium-ion batteries (LIBs) have achieved wide acceptance for various 

energy storage applications, such as electric vehicles (EVs) and smart grids. As a 

vital component in EVs, the performance of lithium-ion batteries in the last few 

decades has made significant progress. The development of a robust battery 

management system (BMS) has become a necessity to ensure the reliability and 

safety of battery packs. In addition, state of charge (SOC) estimation and thermal 

models with high-fidelity are essential to ensure efficient BMS performance.  

The SOC of a LIB is an essential factor that should be reported to the vehicle’s 

electronic control unit and the driver. Inaccurate reported SOC impacts the 

reliability and safety of the lithium-ion battery packs (LIBP) and the vehicle. 

Different algorithms are used to estimate the SOC of a LIBP, including 

measurement-based, adaptive filters and observers, and data-driven; however, there 

is a gap in feasibility studies of running these algorithms for multi-cell LIBP on 

BMS microprocessors. On the other hand, temperature sensors are utilized to 

monitor the temperature of the cells in LIBPs. Using a temperature sensor for every 

cell is often impractical due to cost and wiring complexity. Robust temperature 

estimation models can replace physical sensors and help the fault detection 

algorithms by providing a redundant monitoring system. 
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In this thesis, an accurate SOC estimation and thermal modeling for lithium-ion 

batteries (LIBs) are presented using deep neural networks (DNNs). Firstly, two 

DNN-based SOC estimation algorithms, including a feedforward neural network 

(FNN) enhanced with external filters and a recurrent neural network with a long 

short-term memory layer (LSTM), are developed and benchmarked versus an 

extended Kalman filter (EKF) and EKF with recursive least squares filter (EKF-

RLS) SOC estimation algorithms. The execution time of EKF, EKF-RLS, FNN, 

and LSTM SOC estimation algorithms with similar accuracy was found to be 0.24 

ms, 0.25 ms, 0.14 ms, and 0.71 ms, respectively. The DNN SOC estimation 

algorithms were also demonstrated to have lower RAM use than the EKFs, with 

less than 1 kB RAM required to run one estimator.  

The proposed FNN and LSTM models are also used to predict the surface 

temperature of different lithium-ion cells. These DNN models are shown to be 

capable of estimating temperature with less than 2 ⁰C root mean square error for 

challenging low ambient temperature drive cycles and just 0.3 ⁰C for 4C rate fast 

charging conditions. In addition, a DNN model which is trained to estimate the 

temperature of a new battery cell, is found to still have a very low error of just 0.8 

⁰C when tested on an aged cell. 

Finally, an integrated physics, and neural network-based battery pack thermal 

model (LP+FNN) is developed and used to detect and identify different thermal 

faults of a LIBP. The proposed fault detection and identification method is validated 
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using various thermal faults, including fan system failure, airflow lower and higher 

than setpoint, airflow blockage of submodule and temperature sensor reading faults. 

The proposed method is able to detect different cooling system faults within 10 to 

35 minutes after fault occurrence. In addition, the proposed method demonstrated 

being capable of detecting temperature sensor reading offset and scale faults of ±3 

⁰C and ±0.15% or more, respectively with 100% accuracy.



vii 

 

 Acknowledgements 

I would like to express my sincere gratitude to my supervisor, Prof. Ali Emadi, for 

his inspiring leadership and continuous support throughout my Ph.D. journey. He 

is a role model to me, and I always learn from his passion and dedication in the way 

he leads our group. I am also very grateful to him for giving me the chance to be a 

part of one of the world’s leading academic research programs in transportation 

electrification at McMaster Automotive Resource Center (MARC). This gave me 

the opportunity to work in a unique lab and testing environment and collaborate 

with distinguished colleagues from different expertise areas.  

I would like to thank my supervisory committee members, Dr. Mehdi Narimani and 

Dr. Berker Bilgin, for their valuable comments and suggestions that always help 

me improve the quality of my Ph.D. thesis. I also would like to express my deepest 

appreciation to Dr. Phillip Kollmeyer for all his time and sincere support. We used 

to have a meeting weekly since I joined MARC, Dr. Phil was always present and 

eager to help in every part of my research work. I am also thankful to Dr. Ryan 

Ahmed for his support in sharing his knowledge and answering my questions at the 

beginning of my Ph.D. study. I would like to thank Dr. Carlos Vidal for his support, 

especially in establishing my research direction. 



 

viii 

 

I also would like to thank my friends, Josimar Duque, Junran Chen, Fauzia 

Khanum, Jeremy Lambert and all my friends in the energy management system 

team and Cam Fisher for their support in the testing and the collection of the data.  

Words cannot express my gratitude to my wife Christine for her dedication, 

patience, and sacrifice throughout our journey. She never showed less interest in 

hearing my presentations and helping me improve my work. I am also grateful to 

my parents and parents-in-law for giving me support and encouragement through 

my Ph.D. I also would like to thank my siblings, Fady, Hala, and Sandy, for the 

love they showed to my parents and me every time we needed it.  

This research was undertaken, in part, thanks to funding from the Natural Sciences 

and Engineering Research Council of Canada (NSERC) and Canada Research 

Chair in Transportation Electrification and Smart Mobility. 

  



 

ix 

 

Contents 

Contents 

Abstract ………………………………………………………………..iv 

Contents ………………………………………………………………..ix 

List of Figures ............................................................................................... xiv 

List of Tables. ............................................................................................. xxiii 

Notation ……………………………………………………………..xxvi 

 Introduction ................................................................................1 

1.1 Background and motivation ...................................................................1 

1.2 Thesis contributions ...............................................................................3 

1.3 Thesis outline .........................................................................................6 

 Lithium-Ion Battery Pack Characteristics and Challenges ........9 

2.1 Consistency analysis for lithium-ion battery cells and packs ..............14 

2.1.1 Inconsistency of cell manufacturing and welding progress .....16 

2.1.2 Impact of inconsistencies on pack performance ......................17 

2.1.3 Evaluation of pack inconsistencies ..........................................19 

2.1.4 Modeled impact of resistance and capacity variation on cell 

current, voltage and SOC .........................................................19 

2.2 SOC estimation of lithium-ion battery packs.......................................23 

2.2.1 SOC estimation algorithms ......................................................24 



 

x 

 

2.2.2 Battery pack SOC estimation methods ....................................25 

2.2.3 Comparison of pack SOC estimation methods ........................32 

2.3 SOC balancing methods for lithium-ion battery packs ........................33 

2.3.1 Dissipative balancing methods ................................................36 

2.3.2 Non-dissipative balancing methods .........................................37 

2.3.3 Comparison of balancing methods...........................................40 

2.4 Discussion and recommendations ........................................................42 

2.5 Summary ..............................................................................................45 

 Comparison of Microprocessor Time and Memory Use of 

Neural Network and Kalman Filter Battery State of Charge Estimation 

Algorithms 46 

3.1 Processor in the loop methodology ......................................................49 

3.1.1 Simulink model interface .........................................................50 

3.1.2 Microprocessor specifications .................................................51 

3.1.3 Software setup and configuration steps ...................................53 

3.2 SOC Estimation Algorithms ................................................................55 

3.2.1 Extended Kalman filter ............................................................55 

3.2.2 Extended Kalman filter with recursive least square errors filter

..................................................................................................58 

3.2.3 Feedforward neural network ....................................................60 

3.2.4 Recurrent neural network with long short-term memory layer

..................................................................................................62 

3.2.5 Determination of number of parameters for each algorithm ...65 

3.3 Test setup and data acquisition ............................................................66 

3.4 PIL methodology for validating the SOC algorithms: a case study.....67 

3.4.1 Demonstration of SOC estimated with the algorithms ............67 



 

xi 

 

3.4.2 Algorithm’s execution time and memory use ..........................69 

3.5 Summary ..............................................................................................74 

 Application of Deep Neural Networks for Lithium-Ion Battery 

Surface Temperature Estimation Under Driving and Fast Charge Conditions

 76 

4.1 Overview of deep neural networks ......................................................80 

4.2 Test setup and dataset ..........................................................................83 

4.3 Neural network temperature estimation models structures and FNN 

filter frequency determination..............................................................89 

4.3.1 Determination of optimal corner frequency for filters on FNN 

input data ..................................................................................89 

4.3.2 LSTM model structure .............................................................93 

4.4 Temperature estimation for Panasonic cell electric vehicle drive cycles

 94 

4.4.1 Training process with multiple training repetitions to select best 

trained model via validation data .............................................95 

4.4.2 Temperature estimation accuracy for best trained models and 

varying ambient temperature test data .....................................96 

4.5 Temperature estimation for kokam cell fast charging .........................99 

4.5.1 Training process with multiple training repetitions to select best 

trained model via validation data ...........................................100 

4.5.2 Temperature estimation accuracy for best trained models and 4C 

fast charge test data ................................................................101 

4.5.3 Impact of number of learnable parameters on temperature 

estimation accuracy ................................................................104 

4.5.4 Impact of SOC error on temperature estimation accuracy .....106 

4.6 Microprocessor execution time and memory use ..............................107 

4.7 Aging study and models benchmarking versus studies in the literature

 110 



 

xii 

 

4.8 Summary ............................................................................................113 

 Lithium-Ion Battery Pack Thermal Modeling Via an Integrated 

Physics and Machine Learning Based Approach ......................................115 

5.1 Battery pack thermal modeling overview ..........................................120 

5.1.1 Overview of the thermal lumped parameters model ..............123 

5.1.2 Overview of the feedforward neural network model .............127 

5.2 Cells and pack specifications, test setup and data collection .............128 

5.3 Temperature estimation models development ...................................132 

5.3.1 Lumped parameters model development ...............................132 

5.3.2 Neural network models development ....................................148 

5.4 Temperature estimation models testing using standard drive cycles and 

charge profiles ....................................................................................154 

5.5 Temperature estimation models robustness testing ...........................159 

5.6 Summary ............................................................................................163 

 Thermal Fault Detection of Lithium-Ion Battery Packs Through 

an Integrated Physics and Deep Neural Network Based Model ...............165 

6.1 Test Setup and method overview .......................................................168 

6.2 Multi-fault detection and identification method ................................171 

6.2.1 Residual calculation and evaluation.......................................171 

6.2.2 Fault identification method ....................................................175 

6.3 Experimental validation .....................................................................178 

6.3.1 Fault-free system analysis ......................................................178 

6.3.2 Cooling system faults analysis ...............................................180 

6.3.3 Temperature sensor fault analysis ..........................................184 

6.4 Summary ............................................................................................191 



 

xiii 

 

 Conclusions and Future Work ...............................................193 

7.1 Conclusions ........................................................................................193 

7.2 Future work ........................................................................................197 

7.3 Publications ........................................................................................199 

7.3.1 Journal papers ........................................................................199 

7.3.2 Conference papers ..................................................................200 

References 202 

 

 

  



 

xiv 

 

List of Figures 

Figure 2-1: Battery management system key functions ........................................ 10 

Figure 2-2: Lithium-ion battery packs inconsistency production and operational 

causes and effects .................................................................................................. 15 

Figure 2-3: Impact of 20% internal resistance mismatch on voltage sharing of 3 

series connected cells during constant current charge .......................................... 20 

Figure 2-4: Impact of 20% internal resistance mismatch on SOC and current 

sharing of 3 parallel connected cells during constant current charge ................... 21 

Figure 2-5: Impact of 10% capacity mismatch on SOC and voltage sharing of 3 

series connected cells during constant current charge .......................................... 22 

Figure 2-6: Impact of 10% capacity mismatch on SOC and current sharing of 3 

parallel connected cells during constant current charge. ...................................... 22 

Figure 2-7: Number of publications each year for keywords "state of charge" and 

"Lithium-ion batteries" searched in the IEEE library ........................................... 23 

Figure 2-8: Individual cell estimation method ...................................................... 27 

Figure 2-9: Lumped SOC estimation method ....................................................... 27 

Figure 2-10: Reference SOC estimation method .................................................. 29 



 

xv 

 

Figure 2-11: Mean and difference SOC estimation method ................................. 30 

Figure 2-12: The impact of the SOC imbalance on 4-cell battery pack during 

charging and discharging scenarios ...................................................................... 35 

Figure 2-13:  A comparison between dissipative and non-dissipative cell 

balancing methods ................................................................................................ 35 

Figure 3-1: Description of the proposed PIL platform ......................................... 50 

Figure 3-2: Simulink top and target models description for S32K144 

microprocessor ...................................................................................................... 52 

Figure 3-3: Two evaluation boards with the microprocessors used in the study .. 53 

Figure 3-4: A guide to software setup and configuration steps ............................ 54 

Figure 3-5: Second order battery equivalent circuit model .................................. 58 

Figure 3-6: The structure of a typical multilayer feedforward neural network .... 63 

Figure 3-7: The structure of an LSTM unit .......................................................... 63 

Figure 3-8: Feedforward and LSTM neural network SOC Estimation models .... 64 

Figure 3-9: Pacifica Hybrid battery cell and test fixture ....................................... 66 

Figure 3-10: Estimated SOC and SOC estimation error in % SOC for each 

algorithm for the US06 drive cycle at 40 ⁰C ......................................................... 68 



 

xvi 

 

Figure 3-11: Algorithm execution time when deployed to S32K142 and S32K344 

microprocessors .................................................................................................... 71 

Figure 3-12: Algorithm flash memory use when deployed to S32K142 and 

S32K344 microprocessors .................................................................................... 72 

Figure 3-13: Algorithm RAM memory use when deployed to S32K142 and 

S32K344 microprocessors .................................................................................... 73 

Figure 4-1: Panasonic test setup and data logging system .................................... 85 

Figure 4-2: Kokam module fixture and thermocouples positions on the middle cell

............................................................................................................................... 85 

Figure 4-3: Kokam module test setup ................................................................... 86 

Figure 4-4: Kokam battery module temperature measurements for 5C charge .... 88 

Figure 4-5: Cells’ temperatures for training, validation, and testing datasets ...... 88 

Figure 4-6: Structure of FNN and LSTM battery surface temperature estimation 

models ................................................................................................................... 90 

Figure 4-7: Panasonic validation data temperature estimation error versus filter 

frequency for FNN with a single set of filtered voltage and current inputs ......... 91 



 

xvii 

 

Figure 4-8: Panasonic validation data temperature estimation error versus second 

filter frequency for FNN with 1 mHz filters and a second set of filtered voltage 

and current inputs .................................................................................................. 92 

Figure 4-9: Temperature estimation error of each model for fixed ambient 

temperature Panasonic drive cycle validation data ............................................... 96 

Figure 4-10: Temperature estimation for best FNN (1mHz) and LSTM models for 

Mix#1 varied temperature drive cycles................................................................. 98 

Figure 4-11: Temperature estimation error of FNN(1mHz) and LSTM models for 

each varied ambient temperature testing drive cycle ............................................ 98 

Figure 4-12: Temperature estimation error of each model for varied ambient 

temperatures drive cycle testing data .................................................................... 99 

Figure 4-13: Temperature estimation error of each model for Kokam cell 2C fast 

charge validation data ......................................................................................... 101 

Figure 4-14: Temperature estimation for best FNN (1mHz) and LSTM models at 

1C to 5C fast charging rates ................................................................................ 102 

Figure 4-15: Temperature estimation error of each model for 4C fast charge 

testing data .......................................................................................................... 103 



 

xviii 

 

Figure 4-16: 4C fast charge testing temperature estimation RMS error of the 

FNN(1mHz) and LSTM models as a function of the number of learnable 

parameters ........................................................................................................... 105 

Figure 4-17: 4C fast charge testing temperature estimation RMS error for the 

FNN(1mHz) with ±5% offset error in the input SOC values ............................. 107 

Figure 4-18: NXP S32K344 160 MHz BMS microprocessor with FNN(1mHz) 

deployment and testing for 4C fast charge case.................................................. 109 

Figure 4-19: Samsung cell voltage, current, SOC, and temperature at 100% and 

80% SOH conditions........................................................................................... 112 

Figure 5-1: Battery pack temperature estimation models overview ................... 122 

Figure 5-2: Cell thermal lumped parameters model ........................................... 124 

Figure 5-3: The proposed thermal LP model of N series cells module .............. 126 

Figure 5-4: An air-cooled PHEV 72S1P battery pack layout ............................. 128 

Figure 5-5: SB Limotive cell test fixture ............................................................ 129 

Figure 5-6: Test setup for determination of the cell thermal lumped parameters134 

Figure 5-7: Cell charge and discharge electrical equivalent resistances at different 

SOC and temperatures ........................................................................................ 136 



 

xix 

 

Figure 5-8: Periodic 10C constant power loss test and the corresponding cell 

power loss at 25 ⁰C .............................................................................................. 136 

Figure 5-9: Five sensors readings at 10C constant power loss test at 25 ⁰C using 

one and two fans ................................................................................................. 137 

Figure 5-10: Cell average measured surface temperature for 10C constant power 

loss tests using one and two fans ........................................................................ 138 

Figure 5-11: Measured power loss from 10C constant power loss test at three 

different ambient temperatures ........................................................................... 139 

Figure 5-12: Periodic 8C constant power loss test performed on the pack and the 

corresponding power loss at 25 ⁰C ...................................................................... 144 

Figure 5-13: Steady state temperature achieved for each cell during 8C constant 

power loss test at 25 ⁰C ....................................................................................... 145 

Figure 5-14: MATLAB Simscape lumped parameters model for one module of 

the tested pack ..................................................................................................... 145 

Figure 5-15: Thermal resistance for cooling channels of two module battery pack 

extracted from 8C constant power loss test at 25 ⁰C ........................................... 147 

Figure 5-16: Estimated LP model temperature versus measured for four cells at 

8C constant power loss test at 25 ⁰C ................................................................... 147 



 

xx 

 

Figure 5-17: Correlation coefficients of different measurements and cell’s surface 

temperature ......................................................................................................... 150 

Figure 5-18: Structure of the FNN and LP+FNN cell models ............................ 151 

Figure 5-19: Training and testing temperature rise targets for FNN and LP+FNN 

models ................................................................................................................. 153 

Figure 5-20: Cells' maximum and one cell time-domain temperatures for different 

test profiles and ambient temperatures ............................................................... 155 

Figure 5-21: Models' temperature estimation RMS error for all testing cases ... 156 

Figure 5-22: Performance of the models for minimum and maximum temperature 

rise cells for UDDS&4C testing profile at 25 ⁰C ................................................ 158 

Figure 5-23: Performance of the models for minimum and maximum temperature 

rise cells for US06&6C testing profile at 15 ⁰C .................................................. 159 

Figure 5-24: Models' temperature estimation RMS error for the robustness test 

cases .................................................................................................................... 161 

Figure 5-25: Models' temperature estimation of cell#52 for the robustness test 

cases .................................................................................................................... 162 

Figure 6-1: Tested pack and the locations of the eight temperatures sensors 

installed to monitor the whole pack .................................................................... 169 



 

xxi 

 

Figure 6-2: The proposed fault detection and identification method overview .. 170 

Figure 6-3: The impact of log probability on the residual value ........................ 173 

Figure 6-4:  Cells' measured parameters and model estimated temperatures and 

the corresponding 𝑔 values for Mix#1-6 cycles at 15 and 25 ⁰C ambient 

temperatures ........................................................................................................ 174 

Figure 6-5: Residuals and normal distribution fit under healthy drive cycles .... 175 

Figure 6-6: Flow chart of the proposed fault detection and identification method

............................................................................................................................. 177 

Figure 6-7: Proposed method performance for HWCUST&10C fault-free test 

cases .................................................................................................................... 179 

Figure 6-8: Proposed method performance for a long driving scenario at 15 ⁰C 

with the fan off and higher airflow than setpoint faults ...................................... 182 

Figure 6-9: Proposed method performance for UDDS&4C at 15 ⁰C with lower 

airflow than setpoint fault ................................................................................... 183 

Figure 6-10: Proposed method performance for HWFET&10C at 15 ⁰C with 

submodule airflow blockage fault ....................................................................... 184 

Figure 6-11: UDDS&4C at 15 ⁰C ambient temperature test case with +1 ⁰C and 

+2 ⁰C offset reading faults added to sensor#49................................................... 186 



 

xxii 

 

Figure 6-12: Proposed method performance for a range of temperature sensor 

reading offset faults and different test cases ....................................................... 186 

Figure 6-13: US06&6C at 25 ⁰C ambient temperature test case with -0.05% and -

0.1% scale reading faults added to sensor#60 .................................................... 188 

Figure 6-14: Proposed method performance for a range of temperature sensor 

reading scale faults for different test cases ......................................................... 188 

Figure 6-15: Proposed method performance for UDDS&4C and LA92&8C at 25 

⁰C with incorrect sensor reading faults ............................................................... 191 

  



 

xxiii 

 

List of Tables 

Table 2.1: A comparison of SOC estimation methods in lithium-ion battery packs 

and the corresponding algorithms accuracy .......................................................... 34 

Table 2.2: Performance comparison of SOC estimation methods ........................ 35 

Table 2.3: A comparison of cell balancing methods in lithium-ion battery packs 

where N is number of cells in the pack ................................................................. 41 

Table 3.1: Comparison between NXP 32K142 and S32K344 microprocessors .. 53 

Table 3.2: Description of the benchmarked SOC estimation algorithms ............. 55 

Table 3.3: Test setup specifications ...................................................................... 67 

Table 3.4: Description of tests performed on the battery for SOC estimation ..... 67 

Table 4.1: Training parameters for temperature estimation models ..................... 83 

Table 4.2: Battery specifications ........................................................................... 86 

Table 4.3: Description of test setup and lab equipment ........................................ 86 

Table 4.4: Description of tests performed on batteries for temperature estimation 

models ................................................................................................................... 87 



 

xxiv 

 

Table 4.5: Description of model configurations investigated in Sections 4.4 and 

4.5.......................................................................................................................... 94 

Table 4.6: Number of learnable parameters for FNN (1mHz) and LSTM 

configurations investigated in Figure 4-16 ......................................................... 105 

Table 4.7: Model execution time and memory use for NXP S32K344 160 MHz 

BMS microprocessor .......................................................................................... 109 

Table 4.8: Comparison of temperature estimation models with prior research .. 113 

Table 5.1: Cell and pack specifications .............................................................. 129 

Table 5.2: Test setup specifications for the cell and pack .................................. 131 

Table 5.3: Summary of tests performed on the cell and the pack ....................... 131 

Table 5.4: Summary of obtained cell thermal parameters at three ambient 

temperatures ........................................................................................................ 139 

Table 5.5: Comparison of obtained thermal parameters versus prior research ... 142 

Table 5.6: Overview of pack thermal parameters ............................................... 142 

Table 5.7: Feedforward neural network temperature estimation models training 

parameters ........................................................................................................... 153 

Table 5.8: Summary of LP, FNN, and LP+FNN models error for studied cases 163 



 

xxv 

 

Table 6.1: Summary of fault-free and faulty tests performed on air-cooled pack

............................................................................................................................. 174 

  



 

xxvi 

 

Notation 

Abbreviations 

ALBO Adaptive Lemberger observer 

BMS Battery management system 

CNN Convolutional neural network 

CRELU Clipped rectified linear unit 

DNN Deep neural network 

ECM Equivalent circuit model 

EKF Extended Kalman filter  

EKF-RLS EKF with recursive least squares filter  

EV Electric vehicle 

EVB Microprocessor’s evaluation board 

FNN Feedforward neural network 

GRU Gated recurrent unit 

HPPC Hybrid pulse power characterization 

HWCUST Customized highway drive cycle 

HWFET Highway fuel economy test 

LA92 Unified dynamometer driving schedule 

LIB Lithium-ion batterie 

LIBP Lithium-ion battery pack 

LP Thermal lumped parameters  



 

xxvii 

 

LP+FNN 
Integrated physics and neural network-based 

thermal  

LRELU Leaky rectified linear unit 

LS least squares algorithm 

LSTM Long short-term memory layer 

MAE Mean absolute error 

MAXE Maximum error 

MCU Micro control unit 

NARX Non-linear autoregressive exogenous model 

NN Neural network 

NPF Nonlinear predictive filter 

OCV Open circuit voltage 

PDE Partial differential equation 

PHEV Plug-in hybrid electric vehicle 

PIL Processor in the loop 

RAM Random access memory 

RLS Recursive least squares 

RMSE Root mean square error 

RNN Recurrent neural network  

SDA Open serial debug adaptor 

 SHARCNET Shared hierarchical academic computing 

network 

SM Submodule 

SMC Sequential Monte Carlo 



 

xxviii 

 

 

SOC State of charge 

SOH State of health 

SPKF Sigma point Kalman filter  

TMS Thermal management system 

UART Universal asynchronous receiver-transmitter 

UDDS  Urban dynamometer driving schedule 

UKF Unscented Kalman filter  

US06 Supplemental federal test procedure 

WT Waiting window 

 

 

 

 



Ph.D. Thesis – Mina Naguib                                      McMaster University – Electrical Engineering 

 

1 

  

Introduction 

1.1 Background and motivation 

Recently, lithium-ion batteries (LIBs) have achieved wide acceptance for various 

energy storage applications, such as electric vehicles (EVs) and smart grids. As a 

vital component in EVs, the performance of lithium-ion batteries in the last few 

decades has made significant progress. Lithium-ion battery packs (LIBPs) are 

composed of series and parallel configurations of lithium-ion cells. The cells, 

although from the same manufacturing batch, vary in electrical characteristics, 

which adds more complexity to the battery management system (BMS). The BMS 

has an important role in monitoring the cells and controlling the pack. Hence, the 

development of an efficient BMS has become a necessity to ensure the reliability 

and safety of battery packs.  

The state of charge (SOC) of LIB is an essential parameter that should be reported 

to the vehicle electronic control unit and the driver. Inaccurate reported SOC 
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impacts the reliability and safety of the LIBP and vehicle. The SOC cannot be 

measured directly using sensors; hence, a robust SOC estimator must be 

implemented on the BMS. Different algorithms are used to estimate the SOC of a 

LIBP, including measurement-based, adaptive filters and observers, and data-

driven; however, there is a gap in feasibility studies of running these algorithms for 

multi-cell LIBP on actual BMS microprocessors. 

Temperature sensors are usually utilized to monitor the temperature of the cells in 

LIBPs. Using a temperature sensor for every cell is often impractical due to cost, 

and wiring complexity. Besides, most smart thermal fault detection systems require 

redundant models that help in detecting and identifying thermal faults. Hence, 

robust temperature estimation models can replace the physical sensors and help the 

fault detection algorithms by providing a redundant monitoring system for the 

existing sensors. Several studies have investigated the development of accurate 

temperature estimation models. However, these studies have only examined a 

limited range of operating conditions. Hence, a comprehensive analysis of different 

battery chemistry, dynamic, fast charge, aging conditions, and ambient 

temperatures is always required to ensure the robustness of these models before 

they are deployed to the BMS. 

LIBPs experience several faults during operation that lead to accelerated battery 

degradation and, in the worst case, trigger pack fire and explosion. The risk of the 

thermal runway of LIBPs is considered the major factor contributing to the decision 
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not to buy an EV. BMS should be able to early detect and identify these faults 

before triggering any of the LIBP safety limits. Several methods are developed to 

analyze the measurements from LIBP and detect the faults by capturing anomalies 

in these measurements. However, the quantity and quality of the collected 

measurements from the pack are considered one of the most challenging aspects 

contributing to the inaccuracy of these methods. In addition, several studies utilize 

the measured voltage of each cell to detect most of the electrical faults and severe 

thermal faults. However, for moderate and less severe thermal faults resulting in 

moderate temperature rise, the anomalies in the voltage can be negligible, and it is 

unclear if these faults can be detected using existing methods. Most thermal faults 

occur in the cooling system often leads to poor heat dissipation in the LIBP which 

are not sufficient to trigger the maximum temperature limits. These faults include 

cooling system failure, coolant lower or higher than a setpoint, coolant flow 

blockage and temperature sensor faults. 

1.2 Thesis contributions 

Based on the previous discussion, accurate SOC and temperature estimation models 

that are feasible to run on the BMS are essential for the safety and reliability of the 

EV. Therefore, this research presents significant contributions to the area of SOC 

and temperature estimation models’ development for multi-cell LIBPs and 

deployment feasibility to BMS microprocessors. Besides, this research also 
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contributes to thermal fault detection and identification development by developing 

an accurate method that can detect various thermal faults. Hence, the main 

contributions of this thesis are summarized as follows: 

1- A comprehensive overview of the characteristics of multi-cell lithium-ion 

battery packs, including inconsistency analysis, SOC estimation algorithms 

and methods and balancing techniques 

2- Development of methodology for a processor in the loop (PIL) for 

measuring the execution time and memory use measurements of a 

feedforward neural network (FNN) and recurrent neural network (RNN) 

with long short-term memory (LSTM) and benchmarking them versus 

traditional Kalman filter SOC estimation algorithms 

3- Development of two types of deep neural networks (DNNs) to predict 

lithium-ion cell surface temperature, including a FNN and a recurrent neural 

network with LSTM layer 

4- Investigation of the optimal frequencies applied to the inputs to the FNN 

temperature estimation model 

5- Evaluation of the proposed DNN temperature estimation models using data 

from three different lithium-ion batteries at realistic, challenging operating 
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conditions, including low ambient temperature, high temperature rise, fast 

charging, and aging 

6- A comprehensive benchmarking of the proposed DNN temperature 

estimation models versus prior studies in the literature  

7- Measurement of BMS microprocessor execution time and memory use for 

the proposed DNN temperature estimation models using a PIL platform 

8- Development of a physics-based combined with neural network 

temperature estimation (LP+FNN) concept for multicell LIBPs 

9-  Comprehensive development stages of the proposed LP+FNN model, 

including thermal lumped parameters determination method and training of 

the neural network 

10- Evaluation of the proposed LP+FNN using data collected from an air-

cooled 72-cell LIBP at driving and fast charge conditions at two different 

ambient temperatures 

11-  Development of statistical-based method using the LP+FNN model to 

detect thermal faults before triggering the maximum temperature limit 

12- Development of a fault identification scheme to identify different thermal 

faults  
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13- Validation of the proposed fault detection and identification method using 

various thermal faults, including cooling fan system failure, airflow lower 

or higher than setpoint, airflow blockage and temperature sensor reading 

faults 

1.3 Thesis outline 

This thesis aims to present accurate and computationally feasible SOC and 

temperature estimation models for lithium-ion batteries and packs. Besides, the 

thesis presents a comprehensive investigation of the different thermal faults of 

LIBPs and a new method to detect and identify them. The thesis is organized as 

follows:  

Chapter 2 presents an overview of the characteristics of multi-cell lithium-ion 

battery packs. Besides, the chapter investigates battery pack SOC estimation 

methods along with the impact of cell inconsistency on pack performance and SOC 

estimation. A detailed consistency analysis for lithium-ion battery packs is 

presented, including reasons and impacts on the pack performance. Besides, four 

categories of pack SOC estimation methods are presented, including individual cell, 

lumped cell, reference cell, and mean cell and difference estimation methods. The 

SOC estimation methods are compared in terms of algorithm type, computational 

load, and engineering effort to help practitioners decide which method best fits their 
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application. Cell balancing methods, which are necessary due to cell 

inconsistencies, are discussed as well. 

Chapter 3 proposes a processor in the loop (PIL) platform that is used to assess the 

execution time and memory use of different SOC estimation algorithms. Four 

different SOC estimation algorithms are presented and benchmarked, including a 

feedforward neural network (FNN) enhanced with external filters, a recurrent 

neural network with long short-term memory (LSTM), an extended Kalman filter 

(EKF), and EKF with recursive least squares filter (EKF-RLS). The algorithms are 

deployed to two different NXP S32Kx microprocessors and executed in real-time 

to assess the algorithms' computational load.  The algorithms are benchmarked in 

terms of accuracy, execution time, flash memory, and random access memory 

(RAM) use. In order to ensure the validity of running these models for multiple 

cells in the pack, the impact of increasing the number of instances to run each 

algorithm simultaneously is investigated as well. 

Chapter 4 presents two deep neural network (DNN) modeling approaches that are 

used to predict the surface temperature of LIBs. The first model type is based on a 

FNN enhanced with external filters, while the second model is based on a recurrent 

neural network with a LSTM layer. These models are trained and tested using 

experimental data from three batteries, two cylindrical cells, and one pouch cell at 

a range of driving, fast charging and health conditions. 
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Chapter 5 introduces an integrated physics and deep neural network-based battery 

pack thermal model (LP+FNN). Besides, the model is benchmarked against the 

traditional thermal lumped parameters (LP) and FNN models. The parametrization 

and training of the proposed model are discussed, then the model is tested using 

drive cycles from an air-cooled LIBP at various thermal and driving conditions.  

Chapter 6 proposes a method to detect and identify different thermal faults of LIBPs 

before triggering the maximum temperature limit. The method works by comparing 

the measured and the estimated temperatures from an accurate physics-based 

combined with a neural network model. The proposed fault detection and 

identification method is validated using various thermal faults, including cooling 

system failure, incorrect airflow, airflow blockage and temperature sensor reading 

faults. 

Chapter 7 provides a summary of the thesis, the conclusions, and recommendations 

for future research. 
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Lithium-Ion Battery Pack Characteristics and 

Challenges  

Recently lithium-ion battery packs have gained significant interest, especially for 

electric vehicle (EV) applications. Hybrid and electric vehicle battery packs are 

composed of series and parallel configurations of lithium-ion cells. The utilization 

of series and parallel connections allows for essentially any pack voltage and 

energy to be achieved; however, this adds more complexity for the battery 

management system (BMS) which monitors the cells and controls the pack [1]. 

Vehicles may have a very high number of small cells, such as one configuration of 

the Tesla Model S which has 7140 2.9 Ah cylindrical cells arranged in 16 modules, 

with each module consisting of 74 parallel cells and six series cells (74P6S) [2]. 
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They may also have a smaller number of larger cells, like one configuration of the 

BMW i3 which utilizes 50 Ah prismatic cells arranged in eight modules consisting 

of 2 parallel and 12 series cells each (2P12S) [3].  The BMS must be able to monitor 

the state of charge and ensure a balanced state of charge (SOC) for each series 

connected group of parallel cells in the pack. Figure 2-1 shows the main 

components and key functions of the BMS. Battery state of charge is defined as the 

ratio of coulombs of charge currently stored in the cell over the cell's total charge 

capacity. The SOC cannot be measured directly using sensors; hence, a robust SOC 

estimator must be implemented with the BMS to ensure accurate SOC values are 

reported to the driver [4]. Generally, the SOC of a battery can be estimated using 

different algorithms, including measurement-based, adaptive filters and observers, 

Figure 2-1: Battery management system key functions 
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and data-driven algorithms. For the measurement-based algorithms, SOC is 

estimated based on measured physical quantities; typically integrated current [5], 

[6], open circuit voltage (OCV) [7], [8], or impedance [9], which are directly related 

to the cell SOC.  Adaptive filters and observers estimate SOC using a battery model 

combined with measured physical quantities. Examples of these algorithms include 

the family of Kalman filters [10]–[14] and the particle filter [15], [16], least squares 

filter [17], [18], and adaptive Luenberger observer [19]. Data-driven algorithms, 

which are based on machine learning models, are often referred to as black-box 

models because they model LIB input-output relationships without the need for 

models representing the underlying physics or chemistry. Machine learning models 

are trained with measured data such as voltage, current, temperature, and state of 

charge. Recurrent and non-recurrent networks have been used to reliably and 

accurately estimate battery SOC [4], [20]–[22] and state of health (SOH) [4], [23] 

of the battery. 

Battery cells, even when manufactured in the same batch, can have parameter 

variations of 1% or more. One study, for example, found resistance to vary by 0.3% 

and capacity to vary by 1.3% [24].  When cells are assembled in a pack bus bar, 

weld resistance can further exacerbate differences between cells. These factors 

contribute to inhomogeneous current, voltage, temperature, and cell characteristics 

during pack operation, and may cause further aging to the battery pack [10]. For 

example, in [25], 48 cells from the same batch were tested under identical 
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conditions.  A 10% capacity variation was found between the cells after 1000 

cycles, and the cause of this variation was determined to be inconsistent 

manufacturing of the cells. Hence, some studies have presented a screening process 

for selecting homogeneous cells to group them in a pack [26], [27]. There are many 

methods for identifying inconsistencies in a battery pack from measured data, 

including signal processing, model, and data fusion-based methods which will be 

discussed in Section 2.1. 

When estimating SOC for a battery pack, the SOC of each cell must be considered 

due to inevitable variances in cell characteristics. Pack estimation algorithms utilize 

the discussed SOC estimation algorithms and may include additional features to 

minimize computational complexity or increase the accuracy. The simplest class of 

pack estimation algorithms lumps all the cells into a single large cell and estimates 

SOC for the lumped cell, ignoring differences in SOC of individual cells. An 

individual SOC estimator can also be used for each cell, but the computational 

complexity may be too high for the BMS. To address this, a reference cell may be 

selected for the pack, and then a higher bandwidth, more accurate SOC estimation 

method can be used for this cell. Lower bandwidth, less accurate SOC algorithms 

can then be used for the remainder of the cells, reducing the computational 

requirements. Pack SOC estimation methods can also utilize difference models, 

which estimate the difference in SOC of each cell from the mean cell SOC.  Details 
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of each of these types of methods, including implementation, advantages, and 

disadvantages are discussed in Section 2.2. 

Lithium-ion battery packs also require a means of adjusting or balancing individual 

cell SOC due to variations of the cells' characteristics and operating conditions. Cell 

balancing methods can be categorized into two main methods, namely, dissipative 

and non-dissipative methods. Dissipative methods typically discharge a cell by 

applying a resistor across it and tend to be slow acting but low cost and compact. 

Non-dissipative methods utilize power electronic circuits to transfer energy 

between cells. They may act more quickly and conserve energy but increase the 

cost and size of the BMS. Dissipative and non-dissipative balancing methods are 

discussed and compared in detail in Section 2.3.  

Overall, this chapter presents state of the art and current challenges for developing 

robust SOC estimation algorithms for lithium-ion battery packs and considers cell 

inconsistency and balancing in relation to SOC estimation. The causes of 

inconsistent performance among cells in the pack along with their impact on the 

pack performance are discussed and modeled results are presented to depict how 

variances of cell capacity and resistance impact cell state of charge, current and 

voltage distribution. A detailed discussion of different battery pack SOC estimation 

methods is provided, including algorithms used and the theory of operation of each 

method. Cell balancing methods are also compared in terms of the active elements, 

advantages, and disadvantages of each method. The rest of the chapter is organized 
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as follows; in section 2.1 the consistency analysis of lithium-ion battery packs is 

discussed and in section 2.2 battery pack SOC estimation algorithms and methods 

are presented. In section 2.3, the range of cell balancing methods are discussed and 

finally, the conclusions and recommendations are presented in section 2.4. 

2.1 Consistency analysis for lithium-ion battery cells 

and packs 

Ideally each battery cell leaving a manufacturing line would perform identically 

throughout its life if they were used under the same conditions. However, many 

factors cause cells in a pack to age at different rates though, such as variances in 

manufacturing processes and uneven temperature distribution. These factors tend 

to cause cells to age unevenly over time, as described in Figure 2-2, making 

managing a battery pack over its life difficult.  In this section, the causes of 

inconsistent performance among cells in a pack are discussed along with their 

impact on pack performance. Modeling is also used in this section to depict how 

variances of cell capacity and resistance impact cell state of charge and voltage and 

current distribution. 
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Figure 2-2: Lithium-ion battery packs inconsistency production and operational 

causes and effects 
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2.1.1 Inconsistency of cell manufacturing and welding progress  

Inconsistent cell characteristics originate at the production stage. Impurities in 

active materials and tolerance in human and automated manufacturing processes 

contribute to cell performance variations [24], [28]–[30].  Typically, these factors 

result in each cell having slight differences in capacity and resistance. For example, 

in one very comprehensive study, quantity 1100 Sony US26650FTC1 3 Ah 

cylindrical LiFePO4-graphite cells were tested [24].  Although, the cells produced 

in the same batch, the standard distribution of discharge capacity and dc resistance 

was found to be around 0.3% and 1.3%, respectively. Diagnostic tests, such as the 

wavelet-based method proposed in [31], may be used quickly to measure cell 

parameters so cells can be sorted into similar groups prior to the assembly of packs. 

While the differences between cells are typically small, they may have a significant 

impact on pack performance over time as will be discussed in the next subsection. 

When cells are assembled into a pack, series and parallel connections are made with 

conductive bus bars. The connection between the cells and the bus bars are most 

often made via a welding process. The welding process has a significant impact on 

the overall resistance of the pack. Since all welds are not identical, the welding 

process also contributes to differences in resistance between cells. In one study, 

cylindrical cell to bus bar connection methods including press contact, resistance 

spot welding, ultrasonic welding, laser beam welding, and soldering were 

investigated and found to have resistances of 0.154, 0.167, 0.169, 0.130, and 0.080 
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mΩ respectively [28].  Depending on the connection type, resistance can vary by 

as much as 0.02 mΩ, which would cause around a 0.1% variance in resistance for 

a cylindrical cell with 20 mΩ nominal resistance [28]. Unequal cell to bus bar 

resistance has been found to cause uneven heat generation in battery packs [29] and 

to contribute to unequal current sharing between parallel connected cells, especially 

at higher c-rates [30]. 

2.1.2 Impact of inconsistencies on pack performance 

Inconsistencies in initial cell resistance and capacity, as well as resistance variance 

introduced by cell to bus bar connections, all contribute to inhomogeneous current, 

voltage, temperature, and aging in battery packs. Many studies have investigated 

the impact of these inhomogeneities and quantified their impact. 

For example, a 3S3P configured pack with cell resistance and capacity varying by 

5% was found to have an 8% SOC imbalance and 3 ⁰C variance in temperature 

across the pack after a full discharge [32]. After 310 days of cycling, the variance 

of capacity and resistance between the cells grew to 10% and 25% respectively, 

demonstrating that over time variance between cells tends to grow. In another 

study, a 20% mismatch in resistance and capacity of parallel connected cells was 

found to reduce pack lifetime by 40%, showing the importance of having consistent 

cell characteristics [33].   
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Differences in cell resistance also contribute to uneven current and voltage 

distribution among parallel and series connected cells. In [34], low temperatures 

were found to exacerbate this issue, with two parallel connected cells with a 13% 

difference in resistance having a 50% difference in current at 5 ⁰C.  In [35], the 

current of parallel connected cells was found to be directly proportional to their 

relative capacities, leading to imbalanced state of charge during operation. 

Differences in cell capacity also cause nonuniform voltage and temperature 

distribution, as was observed for an 8S pack with 2.5% variation in capacity 

between cells which led to a 0.8% variation in terminal voltage between cells during 

a cycle [36].  

The cooling system for a battery pack can also drive uneven temperature 

distribution.  If the cooling media, typically air or liquid, significantly increases in 

temperature as it flows across the pack or does not cool some parts of the pack as 

effectively as others, there will be a temperature distribution across the cells. In 

[37], the liquid cooling system caused a 4 ⁰C temperature variation between cells 

in a 4S pack and resulted in a 1% variation in voltage between the cells during 

operation. Non-uniform temperature was shown to cause a 25% difference in 

current for two parallel connected cells in [38], and to cause 5% additional aging 

for a temperature distribution of 5 ⁰C in [39]. Cooling systems should therefore 

minimize the temperature variation across the pack, ideally keeping the hottest and 

coolest parts of the pack within a few degrees Celsius of each other. 
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2.1.3 Evaluation of pack inconsistencies  

Inconsistencies in the pack will result in differences in voltage, current, and 

temperature between cells. Cell resistance, capacity, and other characteristics can 

be estimated from measured voltage, current and temperature data. There are many 

methods for inconsistencies evaluation in a battery pack from measured data, 

including model, and data fusion-based methods.  For signal processing 

approaches, time domain voltage and current data, which is typically collected 

using lab-based tests, are used to extract pack inconsistency features [40], [41].  

Model-based methods utilize adaptive filters to fit equivalent circuit models to 

measured data and to estimate important features of each cell during operation, such 

as resistance and capacity [42], [43].  Data fusion methods directly quantify the cell 

inconsistency using mathematical theories without the need for a cell model, and 

include information entropy [44], principal component analysis [45], and copula 

theory [46].  All of these methods can be helpful for managing battery pack 

performance over time, and for determining if a battery pack meets manufacturing 

consistency and performance specifications. 

2.1.4 Modeled impact of resistance and capacity variation on cell 

current, voltage and SOC 

To illustrate how resistance and capacity variation between cells affect the 

distribution of voltage and current in a battery pack, several different cases are 
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modeled in this section.  The cells are modeled with a simple equivalent circuit 

model (ECM) developed in Simulink, which includes state of charge dependent 

open circuit voltage in series with a resistance. Figure 2-3 and Figure 2-4 show the 

impact of the variance of cell resistance on the performance of battery packs with 

three series and three parallel connected cells. The modeled cells have identical 

capacity and OCV-SOC characteristics and a 20% resistance variance, as labeled 

in the figures. Figure 2-3 shows that a 20% resistance variance in a 3S battery pack 

leads to significant differences between terminal voltage even though SOC is the 

same at each point in time. Figure 2-4 shows that when the cells are connected in 

parallel, the resistance variance leads to imbalanced current and, therefore 

imbalanced SOC during the charge. Once the charge stops, the cells' SOC will 

equalize due to the self-balancing effect [10], but these circulating currents will 

cause some extra loss. 

 
Figure 2-3: Impact of 20% internal resistance mismatch on voltage sharing of 3 

series connected cells during constant current charge 
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Figure 2-5 and Figure 2-6 show the impact of the cell capacity variance on the 

performance of a 3S and a 3P battery pack, respectively. The cells are assumed to 

have identical internal resistance and OCV-SOC characteristics and a 10% capacity 

variance, as indicated in each figure. The figures show cell capacity variance has a 

significant impact on the SOC of series connected cells, an imbalance that would 

have to be corrected for through cell balancing methods like those discussed in 

Section 2.3. 

The magnitude and types of cell inconsistency and their impact on the performance 

of the battery pack should be considered when developing battery pack estimation 

methods. Pack SOC estimation methods must be able to identify the SOC of each 

cell, even for example when the cells’ terminal voltage is different due to resistance 

 
Figure 2-4: Impact of 20% internal resistance mismatch on SOC and current 

sharing of 3 parallel connected cells during constant current charge 
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variation. Cell inconsistency may also lead to inhomogeneous degradation of the 

cells and accelerated aging of the pack. 

 
Figure 2-5: Impact of 10% capacity mismatch on SOC and voltage sharing of 3 

series connected cells during constant current charge 

 
Figure 2-6: Impact of 10% capacity mismatch on SOC and current sharing of 3 

parallel connected cells during constant current charge. 



Ph.D. Thesis – Mina Naguib                                      McMaster University – Electrical Engineering 

 

23 

 

2.2 SOC estimation of lithium-ion battery packs 

Estimating the state of charge for a lithium-ion battery pack is challenging because 

each series connection of parallel cells will have slightly different characteristics, 

such as capacity, resistance, or temperature. SOC estimation algorithms, which 

have been the subject of increasing interest in the literature (see Figure 2-7), must 

be able to account for differences in cell characteristics and report an SOC value 

for the pack. Several algorithms of estimating cell SOC are discussed in Section 

2.2.1.  These algorithms are then applied within pack SOC estimation methods like 

those which are compared and contrasted in detail in Section 2.2.2.  

 
Figure 2-7: Number of publications each year for keywords "state of charge" and 

"Lithium-ion batteries" searched in the IEEE library 
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2.2.1 SOC estimation algorithms 

Generally, SOC can be estimated using different algorithms, including 

measurement-based, adaptive filters and observers, and data-driven algorithms. In 

the measurement-based algorithms, SOC is estimated based on measuring some 

physical quantities which are directly related to the cell SOC namely; coulomb 

counting [5], [6], OCV [7], [8], and electrochemical impedance stereoscopy (EIS) 

[9]. For coulomb counting, SOC is estimated by integrating battery current [5], [6]. 

SOC can be estimated directly through open circuit voltage, but OCV can only be 

directly observed after an hour or more of non-use [7], [8]. Battery impedance 

measured with EIS, which applies a sinusoidal voltage or current to the battery and 

measures the response, can also be used to estimate the battery SOC [9]. 

Adaptive filters and observers estimate SOC as a function of measured terminal 

voltage, current, and temperature and are a more practical solution because they 

can estimate SOC during operation and correct for current sensor and other errors. 

These algorithms utilize a battery ECM or electrochemical model as part of the 

estimation process. The Kalman filter [10]–[14], particle filter [15], [16], least 

squares filter [17], [18], and adaptive Luenberger observer (ALBO) [19]  are all 

commonly used to estimate battery SOC. The family of Kalman filters includes the 

extended Kalman filter (EKF) [10], fuzzy-based EKF [11], adaptive Kalman filter 

(AKF) [12], sigma point Kalman filter (SPKF) [13], and unscented Kalman filter 

(UKF) [14]. Generally, the Kalman filter estimates SOC via coulomb counting and 



Ph.D. Thesis – Mina Naguib                                      McMaster University – Electrical Engineering 

 

25 

 

an equivalent circuit model which is fit to the measured data.  The filter is tuned to 

adjust how much it trusts the model and measurements. The particle filter or so-

called sequential Monte Carlo (SMC) filter utilizes a Monte Carlo sampling method 

to extract particles from the posterior probability distribution, update their weights, 

and thus estimate battery SOC [15], [16]. The least-squares filter is a statistical 

algorithm in which regression analysis is used to determine the best-fit line for a 

given dataset.  Least squares filters have been used with battery models to estimate 

battery SOC [17] and capacity [18]. Adaptive observers such as the ALBO, which 

updates observer gain each time step to match the stochastic nature of SOC 

estimation [19], can also be used to estimate SOC. 

Another category of SOC estimation algorithms is based on data-driven algorithms 

such as neural networks, deep learning, and support vector machine algorithms. 

These algorithms treat the battery as a black box, and learn the relation between 

measured values and SOC.  The models are trained with data recorded during 

operation, such as voltage, current, temperature, and state of charge which is the 

target. Recurrent and non-recurrent networks have been used to estimate SOC [20]–

[22] and state of health (SOH) as well [4]. 

2.2.2 Battery pack SOC estimation methods 

Battery pack SOC estimation methods must consider all the inconsistencies which 

are common in battery packs, while also not placing too much computational load 
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on the BMS. Pack SOC estimation methods, therefore, aim to simplify the 

estimation process and improve accuracy by lumping the cells together as a single 

large cell, by estimating SOC of some cells at a lower update rate, or by estimating 

cell SOC difference compared to a mean cell.  These SOC estimation methods, 

along with the simplest method of just estimating SOC for each individual cell, are 

discussed in the following sections. 

2.2.2.1 Individual cell estimation 

A straightforward method of pack SOC estimation is to implement a single SOC 

estimator for each individual cell, like those described in section 2.2.1. The pack 

SOC is then determined as a function of the individual cell SOCs, with for the 

simplest case the minimum cell SOC used to represent pack SOC during 

discharging and the maximum cell SOC used during charging, as described in 

equation (2.1) and shown in Figure 2-8.  Because each SOC estimation algorithm 

instance may utilize significant computation resources, this method is not always 

practical. Other pack estimation methods aim to reduce computational load and 

potentially improve estimation accuracy as well. 

 

    𝑆𝑂𝐶𝑝𝑎𝑐𝑘 = {
𝑆𝑂𝐶min𝑐𝑒𝑙𝑙,        𝑑𝑢𝑟𝑖𝑛𝑔 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
𝑆𝑂𝐶max𝑐𝑒𝑙𝑙,              𝑑𝑢𝑟𝑖𝑛𝑔 𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔

   (2.1) 
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2.2.2.2 Lumped cell estimation 

If the cells in a battery pack have similar characteristics, then it may be suitable to 

simply consider the pack to be one large cell and to estimate SOC as a function of 

the overall pack voltage, Vpack, and current, Ipack, as illustrated in Figure 2-9. 

Many such lumped cell models have been proposed in the literature, such as in [10] 

where the parameters for a pack ECM were determined offline using a genetic 

algorithm and SOC was estimated each time step with an EKF. In [19], a similar 

approach was taken, and pack ECM parameters were determined with a hybrid 

pulse power characterization test, and an ALBO was used to estimate SOC. 

Incorporating aging into SOC estimation is also important, as was done in [11] 

using a fuzzy-based EKF for estimating SOC at various stages of aging.  Since SOC 

is a direct function of open circuit voltage, it is also possible to consider algorithms 

 
Figure 2-8: Individual cell estimation method 

 
Figure 2-9: Lumped SOC estimation method 
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which eliminate the battery pack current sensor, a costly component.  The study in 

[47] proposed such a current sensor free solution using filtered terminal voltage and 

ECM, where reasonable SOC estimation accuracy was achieved for a pack. 

However, it significantly increased the computational load of the algorithm. 

The main advantages of lumped cell methods are their simplicity, and they may be 

a good option for less dynamic applications where the SOC imbalance of cells is 

not expected to be large. However, this method can lead to accelerated aging of the 

weakest cell in the pack and of a poor estimation of pack SOC if cell characteristics 

vary too much. 

2.2.2.3 Reference cell estimation 

As an alternative to lumping all the cells together a single cell from the pack, 

referred to as the reference cell, can be selected to represent the pack performance.  

The SOC of the reference cell is then estimated using a higher bandwidth, more 

accurate SOC estimation method. The remaining cells may have a simpler, lower 

bandwidth SOC estimation method applied as shown in Figure 2-10, allowing for 

a good pack SOC estimate without the need to have a full performance estimator 

for each cell. The reference cell is typically chosen based on the weakest cell, i.e., 

the cell with the lowest voltage during discharge and highest during charging, as is 

done in [48]-[50]. 
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In [48], the lowest voltage cell is selected as the reference cell and two proposed 

modified nonlinear predictive filters (NPF) are used, one executed at a higher 

frequency and a second at a lower frequency, to provide two different estimates of 

reference cell SOC. The proposed NPF is a modified optimal state estimator 

implemented for nonlinear systems. However, the process noise can take any form 

and is estimated with the optimal state. In [49] the lowest voltage cell was also 

selected as the reference cell, and an online variable factor recursive least squares 

filter was used to estimate the reference cell parameters for an EKF SOC estimation 

method. The work in [50] expands beyond that in the other studies by proposing a 

dual time-scale EKF method which estimates SOC of the weakest reference cell at 

a higher frequency and SOC of the remaining cells at a lower frequency. The SOC 

estimation of all cells can be used in equalizer circuit control and improve the 

accuracy of the SOC estimation in case the reference cells are changed. 

 
Figure 2-10: Reference SOC estimation method 
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2.2.2.4 Mean cell and reference estimation method 

The individual, lumped, and reference cell methods all approach SOC estimation 

in a similar way, using cell or pack measurements as inputs and outputting cells or 

pack SOC.  For mean cell and difference estimation another approach is taken.  

Mean cell SOC is estimated based on the mean of all the cell voltages and 

temperatures as shown in Figure 2-11. For each individual cell, the difference in 

SOC, ΔSOC, compared to the mean cell is estimated as a function of the difference 

between the individual and mean cell voltage, ΔVcell, and temperature, ΔT, using 

simplified cell difference models.  An accurate, higher bandwidth method is used 

for estimating the mean cell SOC, and a simpler, lower bandwidth method is used 

to estimate the ΔSOC values. As a result, mean cell and difference estimation 

methods typically estimate cell SOC and thus the pack SOC as mentioned in 

equation (2.1), with good accuracy and low computational complexity compared to 

other methods.  

 
Figure 2-11: Mean and difference SOC estimation method 



Ph.D. Thesis – Mina Naguib                                      McMaster University – Electrical Engineering 

 

31 

 

The cell difference models, which capture the difference in SOC between each cell 

and the mean cell, may also include the difference in internal resistance, capacity, 

temperature, polarization voltage, and OCV. Cell difference models are often 

equivalent circuit models with parameters such as delta open circuit voltage and 

delta resistance. The model parameters are determined by fitting the model to 

measured cell voltage difference data. 

Many mean cell and difference SOC estimation methods have been proposed in the 

literature, including [13], [14], [42], [51]–[53] which utilize mean cell voltage and 

few estimators which alternatively select the most average cell to represent the 

mean cell [27], [54], [55] The work in [51] presented a dual timescale method using 

an EKF to estimate mean cell SOC at a higher frequency and a method using OCV 

to estimate cell SOC difference at a lower frequency. In [14] and [42], which use 

an UKF and the OCV respectively, the cell difference models also account for cell 

resistance deviation, leading to more precise SOC estimation. Cell charge and 

discharge resistance was considered in [52], an EKF was used to estimate both 

mean cell and cell difference SOCs. Another method in [13] utilized even more 

detailed cell difference models which include deviation in temperature, internal 

resistance, and capacity, and utilizes a SPKF to estimate mean cell SOC at a higher 

frequency and a second SPKF to estimate cell SOC difference at a lower frequency.  

An SPKF was also used to estimate mean cell SOC in [53], and a delta filter was 



Ph.D. Thesis – Mina Naguib                                      McMaster University – Electrical Engineering 

 

32 

 

used to estimate cell SOC difference via a difference model considering cell 

resistance and capacity differences.  

The aforementioned studies all perform cell SOC difference estimation online, but 

this estimation can also be done using offline methods as in [54], [55]. Machine 

learning has been utilized as well, including in [54] and [55] which both use Kalman 

filters along with neural network based bias correction methods to determine cell 

to cell variations. 

2.2.3 Comparison of pack SOC estimation methods 

Table 2.1 presents a comprehensive comparison of the battery pack SOC estimation 

methods discussed in this section. The table lists the algorithm type, the cell 

variance characteristics considered, datasets used, and the corresponding SOC 

estimation root mean square error (RMSE), mean absolute error (MAE), and/or 

maximum error (MAXE). The variance in the cells' characteristics including 

resistance (R) and capacity (C) and their impact on the cells' temperature (T) and 

open circuit voltage (OCV). All of the algorithms are demonstrated to have quite 

reasonable error, RMSE a few percent or less or MAXE 5% or less.  Error may be 

higher for a given application though, so it could be beneficial to evaluate several 

different algorithms and methods before selecting one. 

The performance of the different pack SOC estimation methods is also compared 

qualitatively and quantitatively in Table 2.2. The individual cell and reference cell 
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methods require the most individual SOC estimation algorithms, and therefore have 

a higher computational load for the BMS. The lumped cell method only has a single 

SOC estimation algorithm, and the mean cell and difference method utilize 

simplified difference models to estimate individual cell SOC, resulting in both 

methods having the lowest computational load for the BMS.  The engineering effort 

to develop the algorithm is a qualitative value, indicating how much time and 

resources are needed to implement the algorithm. The individual and lumped cell 

methods require the least engineering effort to develop, since both only require 

standard SOC estimation algorithms while the reference and mean cell and 

difference methods require the development of specialized estimation methods for 

cells other than the reference or mean cell. 

2.3 SOC balancing methods for lithium-ion battery 

packs 

Because the cells in a battery pack have non-uniform properties, as was discussed 

in Section 2.1, it is necessary to have a method of balancing the pack to prevent cell 

SOC differences from growing over time. If the difference in SOC between cells 

becomes too large, the usable capacity will be substantially reduced due to the 

fullest cell limiting the maximum charge and the emptiest cell limiting the 

minimum charge, as illustrated in Figure 2-12.  Cell balancing is typically a very 

slow process, with resistive balancing circuits dissipating a few hundred milliwatts 
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of power from the most charged cells. Non-dissipative cell balancing circuits, 

which transfer energy from more charged to less charged or lower capacity cells, 

can also be used to extend the usable capacity of a battery pack. 

 Table 2.1: A comparison of SOC estimation methods in lithium-ion battery packs 

and the corresponding algorithms accuracy  

SOC 

Method 

Pack 

Configurat-

ion 

Algorithm 

Cell characteristics 

variance Dataset Error 

R C T OCV 

Lumped 

cell SOC 

estimation 

3S [10] EKF     DST1 
0.26 % 

RMSE 

16S [19] ALBO     FUDS2 
2.5% 

MAXE 

120S [11] 

Fuzzy-

based 

EKF 

    
NEDC3 

FTP4 

0.82% 

RMSE 

12S [47] OCV x    N/A N/A 

Reference 

cell SOC 

estimation 

6S [48] NPF x    UDDS5 2% MAXE 

4S [49] EKF x  x x FUDS 
0.5 RMSE 

20⁰C 

6S [50] EKF x x   DST 
2.34-2.37% 

RMSE 

Mean Cell 

and 

Difference 

SOC 

estimation 

96S [51] EKF    x 

Complex 

pulse 

current+ FTP 

4% MAXE 

8S [14] UKF x   x 
CC6 

Discharge 

1.83% 

RMSE 

96S [42] OCV x   x N/A 3% MAXE 

12S [52] EKF x   x NEDC 2% MAXE 

12P7S [13] SPKF x x x  N/A 
0.5 MAE at 

20⁰C 

4S [53] SPKF x x   UDDS 1% MAXE 

4S [27] AEKF x x x x UDDS+DST 1% MAXE 

6S [54] EKF  x x  UDDS+DST 
2% RMSE 

10⁰C 

12S [55] AEKF  x   DST 2% MAXE 

x: means covered in the study, DST1: Dynamic stress test, FUDS4: Federal urban driving schedule, 

NEDC3: New European drive cycle, FTP4: Federal test procedure, UDDS5: Urban dynamometer 

driving schedule, CC6: Constant current 
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Table 2.2: Performance comparison of SOC estimation methods 

 Individual 

cell 

Lumped 

cell 

Reference 

cell 

Mean cell and 

difference 

Number of SOC 

algorithms 
N 1 

(1) + 

(N-1) 

1 SOC + N 

SOC difference 

Cell SOC estimation Yes No Yes Yes 

Computational load 

for BMS 
High Low Medium Low 

Engineering effort to 

develop algorithm 
Low Low Medium High 

Non-dissipative balancing circuits are considerably more complex and expensive 

though and must be fairly high power to offer a meaningful improvement in battery 

 
Figure 2-12: The impact of the SOC imbalance on 4-cell battery pack during 

charging and discharging scenarios 

 
Figure 2-13:  A comparison between dissipative and non-dissipative cell 

balancing methods 
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pack performance.  In cases of large SOC imbalance, as shown in Figure 2-13, non-

dissipative balancing will prevent the need to simply convert excess charge to waste 

heat. Lithium-ion battery cells have such minimal self-discharge though that they 

typically require very little balancing over time, minimizing any efficiency benefits 

from non-dissipative methods.  Despite this, there is still substantial interest in 

balancing methods for lithium-ion battery packs, including the dissipative and non-

dissipative methods highlighted in the remainder of this section. 

2.3.1 Dissipative balancing methods 

Most EV manufacturers use dissipative resistive balancing circuits in their battery 

packs due to their reliability and simplicity. Switched shunt resistors [56] are most 

commonly used, but it is also possible to use fixed resistors which are always 

connected to the cells [57].  The fixed resistors cause the pack to naturally balance 

over time, since the highest voltage cells will have higher resistor current, but there 

are always losses even when the pack is fully balanced making it a rather 

undesirable method [58]. In the switched shunt resistor method [56], each cell is 

associated with a balancing resistor and a switch to connect it to the cell, typically 

a MOSFET. Most battery cell voltage measurement chips are able to directly 

control each balancing switch, and some even have the switches integrated into the 

chip and just require an external resistor. The BMS balances the pack by enabling 

the discharge resistors on the most charged cells. 
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2.3.2 Non-dissipative balancing methods 

Non-dissipative balancing utilizes capacitor [56], [58], inductors [59], [60], 

transformers [61]–[63], and various common power electronic converter topologies 

[64]–[68] to transfer the energy among the cells within the pack. Energy is 

transferred from more charged to less charged cells, preventing the waste of energy 

present for dissipative methods. Non-dissipative balancing can achieve relatively 

high balancing speed [69] and high efficiency [70], which are the main advantages 

of this method. However, this method involves many components that add more 

cost and complexity to the balancing circuits [71]. 

2.3.2.1 Capacitor-based balancing 

In this method, capacitors are utilized to transfer the energy between adjacent cells 

or from the pack to the cell, thus achieving cell balancing. All implementations are 

based of the same concept, a capacitor is charged while connected in parallel with 

a higher voltage cell and discharged while connected in parallel with a lower 

voltage cell. For double-tiered switched capacitor balancing, there is one capacitor 

per cell and two switches, and the capacitors are switched between adjacent cells at 

a 50% duty cycle to achieve equal voltage among cells [57]. For single switched 

capacitor balancing, a single capacitor is used with a group of cells along with five 

switches plus one switch per cell, allowing the capacitor to be connected in parallel 

with any of the cells [58]. The switches are controlled intelligently to move energy 
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between cells until balancing is achieved. The double-tiered capacitor method has 

a faster balancing time and can more easily be modularized while the single 

switched capacitor method has fewer components [72]. 

2.3.2.2 Inductor-based balancing 

For inductor-based methods, one or more inductors are utilized for cell balancing 

[61], [62]. The single-inductor balancing system utilizes one inductor to transfer 

the energy between the pack to the weakest cells [61]. The control system selects 

the weakest cell with the lowest SOC level to transfer the energy through activating 

the corresponding switches. The multi-inductor method utilizes N-1 inductor for 

balancing N cells, [62]. The controller senses the voltage difference of the two 

neighboring cells, then a control signal is applied to the switches with the condition 

that the higher cell must be switched on first to transfer the energy to the weakest 

cell. The inductor-based cell balancing methods have a relatively higher balancing 

speed and efficiency. However, they have higher switch current stress as compared 

to the remaining methods [74]. 

2.3.2.3 Transformer-based balancing 

Transformers can be utilized to perform isolated transfer of power between cells 

and the pack and individual cells. The variations of this approach include the use 

of multiple transformers [63], transformers with multiple secondary windings [64], 

and a single transformer switched among cells [65]. The multiple transformers 
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method [63] utilizes several transformers where all the primary windings are 

connected in parallel, and each of the secondary windings are connected to a 

separate cell via a diode. The primary winding is connected across the pack voltage 

via a switch, and power is transferred from the pack to the cells by switching at 

50% duty cycle. For the multi-secondary winding transformer method [64], the 

multiple transformers used for the previous method are replaced by a single multi-

secondary winding transformer and the balancing approach is the same.  However, 

in this method, the number of cells is limited by the feasible number of secondary 

windings [74], [75]. For the single transformer method, the secondary winding is 

switched between cells to charge the weakest cells until balancing is achieved [65]. 

The switched transformer method is more compact, but to ensure good equalization 

between cells it requires a more complex control process than the other transformer-

based methods [75].   

2.3.2.4 Common converter topology-based balancing 

Common dc-dc converter topologies can also be used for balancing, such as 

bidirectional buck-boost [64], bidirectional Cuk [65], bidirectional flyback [66], 

full-bridge [67], and quasi-resonant [68] converters. Typically, one converter per 

cell is utilized, and the converters transfer power between adjacent cells. Rather 

than simply allowing the voltage of cells to be matched like many of the prior 

methods discussed, the converters can control the flow of power in any way the 

BMS commands allowing more flexibility for managing SOC of the cells. 
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The bidirectional buck-boost converter is utilized in [64] to transfer energy between 

two adjacent battery cells. Another bidirectional converter, the Cûk converter, has 

the same principle of operation but utilizes capacitors as the energy transfer 

elements instead of inductors [65]. The bidirectional flyback converter, which is 

derived from the buck-boost converter [66], utilizes a transformer and fewer 

components to achieve cell balancing. Bidirectional converters have the advantage 

of transferring energy into or out of cells. The multi-module full-bridge converter 

is a fully controlled converter that transfers the energy from the cell to the adjacent 

cell or from the pack to the weakest cell [67]. This method has the advantage of it 

can be scaled for higher power applications. Zero-current quasi-resonant or zero-

voltage quasi-resonant converters can also be used to achieve cell to cell balancing 

[68]. The resonant circuits are tuned to achieve zero switching current and voltage 

which reduces the switching loss. Overall, the converter-based cell balancing 

methods achieve high efficiency and good balancing speed; however, they are more 

expensive and require a more complex control system [72], [73].  

2.3.3 Comparison of balancing methods 

Table 2.3 presents a comparison between the different cell balancing methods, 

including the number of active elements and advantages and disadvantages of each 

method [71]-[75]. Overall, dissipative balancing is a reliable, lower cost, and 

simpler cell balancing method. However, this approach is inefficient as the energy 

is released in resistors in the form of heat without being transferred to other cells. 
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The non-dissipative cell balancing methods can be fast and energy efficient as 

compared to the dissipative balancing methods. The comparison between the 

different non-dissipative balancing methods shows that there is no single method 

that is clearly the best, since each method has a different combination of cost, 

balancing speed, control complexity, and overall simplicity. Common converter-

based cell balancing methods may be very promising in the future if the power 

conversion and control circuits can be optimized to reduce the size and cost 

sufficiently. 

Table 2.3: A comparison of cell balancing methods in lithium-ion battery packs 

where N is number of cells in the pack  

Method 
Active 

elements 
Advantage Disadvantage 

Dissipative 

balancing 

Fixed resistors 

[74] 
N resistors 

Easy to 

implement, low 

cost  

Low balancing 

speed, 

continuous heat 

dissipation and 

pack discharge 

Switched 

resistors [75] 

N resistors, and 

N switches  

high balancing 

speed, relatively 

lower loss 

More cost, 

limited to low 

power due to 

need to dissipate 

loss 

Capacitor-

based 

balancing 

Double tiered 

switched 

capacitors [57]  

N capacitors, 

and 2N switches 

Adequate 

balancing 

speed, 

modularity, 

simple control 

High number of 

switches, high 

cost 

Single switched 

capacitor [58] 

1 capacitor, 1 

resistor, and 

N+5 switches 

Fewer 

components, 

more efficient 

Low balancing 

speed 

Inductor-

based 

balancing 

Single inductor 

[59]  

1 inductor, 2N 

switches, and 

2N diodes 

Satisfactory 

balancing 

speed, higher 

efficiency   

Complex control, 

high cost 

Multi-inductor 

[60]  

N-1 inductors, 

2N-2 switches 

Good balancing 

speed, less 

control 

complexity 

High cost 
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Transformer

-based 

balancing 

Multiple 

transformers 

[61] 

N transformers, 

1 switch, and N 

diodes 

Good modular 

design, good 

balancing speed 

Very high cost, 

less efficient, 

large size 

Multi windings 

transformer [62] 

1: N 

transformer, 1 

switch, and N 

diodes 

relatively 

compact 

less efficient, 

limited number 

of cells 

Switched 

transformer [63] 

1 transformer, 

N+6 switches, 

and 1 diode 

Lower magnetic 

losses, 

relatively 

compact 

High cost, 

complex control 

is needed 

Common 

converter-

based 

balancing 

 

Buck-boost 

converter [64] 
N converters 

Good 

efficiency, 

satisfactory 

balancing 

speed. 

Larger size, cost, 

complex control 

is needed 

Cuk converter 

[65] 
N-1 converters 

Good balancing 

speed, 

satisfactory 

efficiency 

Complex control 

is needed, 

relatively large 

size 

Flyback 

converter [66] 

1 converter, 2N 

switches, and 1 

transformer 

Fewer 

components, 

less complex 

control, fast 

balancing speed 

Transformer 

needed 

Multi-module 

full-bridge 

converter [67] 

N converters 

Can be scaled 

to high power 

applications, 

good balancing 

speed 

Large size, high 

cost, complex 

control is needed 

Quasi-resonant 

converter [68] 
N-1 converter 

Easy to 

implement, 

relatively 

higher 

efficiency 

Higher cost, and 

size 

2.4 Discussion and recommendations 

A robust SOC estimation algorithm and BMS must handle the inconsistencies 

between cells which are inevitably present in a battery pack.  Cells produced in the 

same batch may have capacity and resistance variation around 1%, and the method 

of connecting bus bars to cells may add a further 1% resistance variation.  These 



Ph.D. Thesis – Mina Naguib                                      McMaster University – Electrical Engineering 

 

43 

 

inconsistencies may also be exacerbated due to thermal variations within the pack 

and aging processes, resulting in cell capacity and resistance varying by more than 

10% at end of life. Cell sorting, advanced welding techniques, and improved bus 

bar and thermal design methods may be applied to reduce variation between cells 

throughout the life of the pack, reducing the challenge for pack SOC estimation 

algorithms and the need for higher power cell balancing. 

SOC estimation algorithms, including measurement based, filters, observers, and 

machine learning methods, form the basis for pack SOC estimation methods.  The 

most efficient pack SOC estimation methods estimate SOC at the fastest rate for a 

single reference or mean cell, and then estimate SOC or the SOC difference for the 

other cells with a simpler, slower updating algorithm.  These methods require more 

engineering effort to develop than methods which simply apply a full performance 

SOC estimation algorithm to each cell.  Importantly any pack SOC estimation 

method must handle the differing characteristics of each cell throughout the life of 

the pack.  Mean cell and difference methods, which fit a cell difference model to 

the difference in voltage between a cell and the mean cell, show particular 

advantage in identifying small differences in SOC between cells and therefore have 

significant promise for improving the robustness of pack SOC estimation.   

Cell balancing is necessary due to the differences in cell capacity which are present 

at the time of manufacture and throughout the life of the pack. Pack SOC estimation 

algorithms which estimate the SOC of each cell are needed so the BMS can 
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command the balancing circuitry to equalize charge throughout the pack. Resistive 

balancing remains the most common method of balancing SOC, but there are also 

many different non-dissipative methods for transferring energy between greater and 

lesser charged cells. The non-dissipative methods may utilize capacitors, inductors, 

or transformer-based power converters, and could potentially transfer enough 

energy to a weak cell to extend the range of an electrified vehicle.  More research 

is needed to quantify how non-dissipative methods could benefit battery pack 

performance over the life of the pack.  

There are many opportunities to further improve the robustness of pack SOC 

estimation algorithms.  Machine learning, for example, has been shown to offer 

significant potential for cell SOC estimation, but has not yet been optimized 

specifically for pack SOC estimation. Also, while studies have focused on 

developing pack SOC estimation methods which are more computationally 

efficient, these methods have not been deployed to a BMS and compared in a 

comprehensive manner, so it remains uncertain how much benefit reference cell or 

mean cell and difference models would have.  Furthermore, it is difficult to fairly 

compare different pack SOC estimation algorithms since each study utilizes 

different datasets.  A standardized dataset and evaluation method, which includes a 

realistic spread in cell parameters and has data to end of life, would help researchers 

compare algorithms more systematically.  
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2.5 Summary 

There is significant variation in the capacity and resistance of cells in a battery pack 

due to cell manufacturing tolerances, welding or interconnect methods, and bus bar 

design in the battery pack. As the battery pack ages, differences between cells grow 

due to non-uniformities in the pack, including non-uniform temperature 

distribution. Battery pack SOC estimation algorithms must consider these 

differences between cells and report a pack SOC value which considers the most 

and least charged cells. A robust algorithm will estimate the SOC of each cell, 

typically by either estimating the SOC of each cell individually or through methods 

like mean cell and difference algorithms which estimate the SOC of one cell and 

the difference in SOC between the remaining cells. Pack SOC estimation 

algorithms should not only estimate SOC accurately but must also not be too 

computationally intensive or difficult to design and implement. The differences 

between cells also necessitates that some method of balancing be implemented.  

Resistive balancing, where energy of more charged cells is dissipated in a resistor, 

remains the most common method. Many different power electronics converter-

based methods, which transfer energy between cells, have been investigated by 

researchers as well and will likely see increased adoption if they can be shown to 

increase pack life without adding significant size or expense to the BMS.
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Comparison of Microprocessor Time and 

Memory Use of Neural Network and Kalman 

Filter Battery State of Charge Estimation 

Algorithms 

Lithium-ion battery (LIB) performance and cost have improved considerably over 

the last few decades, resulting in their acceptance for a variety of applications 

including electric vehicles (EVs) and grid-tied energy storage [76]. LIBs have many 

positive characteristics, including high power and energy density and a prolonged 

lifetime. LIBs, regardless of the chemistry of the cathode, have strong nonlinear, 

time dependent characteristics which make battery modeling and state estimation 

challenging. A battery management system (BMS) is responsible for monitoring 

and controlling LIBs to ensure reliable and safe battery pack operation [77]. One of 

the essential roles of the BMS is to accurately report the battery state of charge 
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(SOC). The SOC cannot be measured directly using sensors and instead must be 

estimated using algorithms.  

Battery SOC is defined as the coulombs of charge stored in the cell divided by the 

cell's total charge capacity. SOC can be estimated directly from some physical 

measurements including coulomb counting [5], open circuit voltage (OCV) [7], and 

impedance [9].  However, these quantities require additional adaptive algorithms 

or external equipment to get an accurate estimate of  SOC. Adaptive filters and 

observers typically utilize measured values and battery equivalent circuit models 

(ECM) to estimate the battery SOC. Examples of these algorithms include the 

family of Kalman filters (KFs) [11], particle filters [78], and sliding mode observers 

[79]. SOC estimation filters, especially Kalman filters, are widely used with LIB 

chemistries because they demonstrate a reasonable trade-off between accuracy and 

computational load [80]. However, exhaustive battery model parameterization 

processes are necessary to ensure the effectiveness of the aforementioned filters. 

Recently, machine learning algorithms have also been developed to model LIB 

input-output relationships regardless of the underlying physics or chemistry. 

Machine learning algorithms can accurately estimate the battery SOC by training 

machine learning models with measured data such as voltage, current, and 

temperature without the need for a battery ECM [80]. Recurrent and non-recurrent 

neural networks have been utilized in battery modeling and state estimation 
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applications including state of health [81], battery voltage [82] and surface 

temperature [83].  

It is not sufficient for an SOC estimation algorithm to have good accuracy though, 

it must also be not too computationally complex, so that it can be implemented in 

real-time on a microprocessor for a multitude of cells. Some studies have 

investigated the computational load of algorithms along with their accuracy [84]-

[86]. The work in [84] compared the performance of an unscented Kalman filter 

(UKF) SOC estimator with two neural networks, including a non-linear 

autoregressive exogenous model (NARX) and a recurrent neural network (RNN) 

with a long short-term memory layer (LSTM). The LSTM model was shown to 

have the lowest root mean square error when tested using the UDDS and DST drive 

cycles. However, the NARX and UKF models showed a lower execution time when 

tested on Intel core-i7 9700 CPU. In order to achieve a better way to evaluate the 

computational load of the algorithms, a big O notation was introduced in [85] to 

determine the complexity of the different extended Kalman filter (EKF) SOC 

estimation algorithms. The results showed that the double forgotten factor adaptive 

extended Kalman filter has a slightly higher big O than traditional EKF. The work 

in [86] presented a processor execution time and memory use benchmarking for 

EKF, sliding mode and Leuenberger observers when deployed to a BMS 

microprocessor.  The execution time and the random access memory (RAM) use 

were {4.8, 2.8, 3 milli seconds}, and {3.56, 2.3, 2.16 kB} for one estimator of EKF, 
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sliding mode and Leuenberger observers respectively. The processor execution 

time and the memory use are considered the most practical and realistic factors to 

determine the computational load of the SOC algorithms and to ensure safely 

running of the algorithms in a real-time application.  

In this chapter, four battery SOC estimation algorithm types are benchmarked and 

deployed to microprocessors. The algorithms include an EKF, an EKF with a least-

squares filter (EKF-RLS), a feedforward neural network (FNN), and a recurrent 

neural network with an LSTM layer. A methodology for processor in the loop (PIL) 

testing of the algorithms is introduced and execution time and the memory use are 

measured for each algorithm. The algorithms are deployed to a low- and high-

performance microprocessor, both of which are recommended for BMS use. The 

execution time and memory usage are measured for both a single algorithm and for 

multiple estimators of the algorithm running on the processor, as would be done 

when estimating SOC for multiple cells. In Section 3.1 the PIL methodology is 

introduced, in Section 3.2 the algorithms are described, and in Section 3.3 the 

performance benchmarking of the algorithms is presented. 

3.1 Processor in the loop methodology 

The processor in the loop testing in this study is performed using the 

MATLAB/Simulink environment, as shown in Figure 3-1.  
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Figure 3-1: Description of the proposed PIL platform 

The SOC estimation algorithms are implemented in Simulink on a host computer. 

The microprocessor’s evaluation boards (EVBs) are connected to the host computer 

using a universal asynchronous receiver-transmitter (UART). The Simulink models 

are compiled into C code using the MATLAB model-based design toolbox and 

deployed to the target board. A Simulink profiler block is utilized to measure the 

execution time and the memory use of the deployed algorithms. The models' SOC 

estimation output and the profiling results are sent back to Simulink via the UART 

once the code execution is complete. The details of the proposed PIL methodology 

are described in the following subsections. 

3.1.1 Simulink model interface 

A Simulink model is created which contains the SOC estimation model, the board 

configuration, and profiler blocks. This model is shown in Figure 3-2, which shows 

Compiling

C code

U
A
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 esults Memory Usage

 Execution Time
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the PIL Simulink Top and Target Models. The model inputs are the measured 

battery voltage, current and temperature and the outputs are the code profiling 

values and the estimated SOC. The Target Model contains the SOC algorithm and 

is deployed to the microprocessor. When the Top Model is run in PIL mode, the 

Simulink Coder generates C source code for the Target Model to be deployed to 

the microprocessor.  An open serial debug adaptor (SDA) is then used to deploy 

the generated C code from Simulink to the microprocessors using the host 

computer, which has an Intel core-i5 CPU and MATLAB 2020b installed. Then the 

results are sent back to the host computer using UART communication. 

3.1.2 Microprocessor specifications  

Two micro control units (MCUs) manufactured by NXP Semiconductors, which 

are from the S32K1 and S32K3 product families, are benchmarked in this study. 

The S32K1 family of MCUs utilizes 32-bit Arm Cortex-M4 processors, while the 

S32K3 family utilizes 32-bit Arm Cortex-M7 MCUs with single, dual, triple, or 

lockstep cores. The S32K142 processor, an 80MHz low-cost evaluation and 

development processor for general purpose automotive applications, is chosen from 

the S32K1 family and shown in Figure 3-3 [87]. The 160 MHz single core S32K344 

MCU is selected from the S32K3 family and is recommended by NXP for battery 

management systems applications [87]. The specifications of both microprocessors 

are presented in Table 3.1. 



Ph.D. Thesis – Mina Naguib                                      McMaster University – Electrical Engineering 

 

52 

 

 

Figure 3-2: Simulink top and target models description for S32K144 

microprocessor 
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Figure 3-3: Two evaluation boards with the microprocessors used in the study 

Table 3.1: Comparison between NXP 32K142 and S32K344 microprocessors 

 NXP S32K142 NXP S32K344 

Microprocessor 

Type 

Arm Cortex-M4 Single 

Core 

Arm Cortex-M7 Single 

Core 

Frequency (MHz) 80 160 

Flash Memory 256 kB 4 MB 

RAM 32 kB 512 kB 

Simulink Support Yes Yes 

Production Stage In Production Pre-Production 

3.1.3 Software setup and configuration steps 

Figure 3-4 shows a summary of the software setup and configuration steps to install 

and run the proposed PIL models. The first step is to download and install PEmicro 

drivers for Open SDA communication [88]. Open SDA communication is essential 

to ensure safe deployment and debugging of the generated C code from Simulink 

Coder to the microprocessor. In the second step, the target board should be 

connected to the host computer using a USB/UART connection. If the target board 
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is in its first use, flashing light with the three colors, including red, green, and blue 

will be noticed. Then, the MATLAB model-based design toolbox from NXP should 

be downloaded and installed [89]. This step also requires generating a user license 

from NXP by creating an account, including user and hard disc serial number 

information. The last step is to adjust the board configuration settings by choosing 

the microcontrollers' family, type of connection, and the communication port 

number. A step-by-step guide is provided by NXP for getting started with the NXP 

S324K142 in [90]. However, no training is yet available for the S32K344 as it is 

still in the preproduction stage. 

 

Figure 3-4: A guide to software setup and configuration steps 
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3.2 SOC Estimation Algorithms 

In this section, the four different SOC estimation algorithms which will be deployed 

to the MCUs are described. Two algorithms are based on Kalman filters, including 

an EKF and an EKF-RLS, both of which have a second order battery equivalent 

circuit model (2RC-ECM). The other two algorithms utilize neural networks, a non-

recurrent FNN and a recurrent LSTM model. Table 3.2 lists the algorithms and the 

number of parameters for each. The number of parameters of EKF algorithms 

includes look-up tables containing the ECM and the covariance matrix values. The 

number of parameters is rather high because the algorithms are configured for 

temperatures ranging from -20 to 40 ⁰C. Besides, the number of parameters of the 

NN algorithms includes the weights and biases of the trained network. 

Table 3.2: Description of the benchmarked SOC estimation algorithms 

Algorithm Acronym Number of Parameters 

Extended Kalman filter with 2RC-ECM EKF 952 

Extended Kalman filter with recursive 

least squares filter and 2RC-ECM 

EKF-

RLS 
953 

Feedforward neural network FNN 522 

Recurrent neural network with long 

short-term memory 
LSTM 571 

3.2.1 Extended Kalman filter 

The Kalman filter is an optimal recursive data processing algorithm that works in a 

predictor-corrector fashion, and it is commonly used as an estimator for linear 

systems expressed in a state space form. The EKF is a special type of KF that is 

used for state estimation of non-linear systems. The filter states (𝑥𝑘) are updated 
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during the prediction stage while they are corrected during the measurement stage 

[11]. This is done by adjusting the value of the filter gain (K) as in (3.1)-(3.5).  

3.2.1.1 Prediction stage 

3.2.1.1.1 Predict the states ahead (a-priori) 

3.2.1.1.2 Predict the error covariance ahead (a-priori) 

3.2.1.2 Correction stage 

3.2.1.2.1 Kalman gain calculation 

3.2.1.2.2 Update state estimate with measurement (a-posteriori) 

3.2.1.2.3 Update error covariance matrix 

Where P, Q, and R are the parameter, process, and measurement covariance 

matrices, respectively. 𝑢𝑘 is the input matrix at time k and the A and C are the state 

space matrices of the battery ECM. 

    �̂�𝑘+1|𝑘 = 𝑓(�̂�𝑘|𝑘, 𝑢𝑘) (3.1) 

𝑃𝑘+1|𝑘 = 𝐴𝑃𝑘|𝑘𝐴
𝑇 + 𝑄𝑘 (3.2) 

𝐾𝑘+1 = 𝑃𝑘+1|𝑘𝐶
𝑇(𝐶𝑃𝑘+1|𝑘𝐶

𝑇 + 𝑅𝑘+1)
−1

 (3.3) 

�̂�𝑘+1|𝑘+1 = �̂�𝑘+1|𝑘 + 𝐾𝑘+1(𝑧𝑘+1 − 𝐶�̂�𝑘+1|𝑘) (3.4) 

𝑃𝑘+1|𝑘+1 = (1 − 𝐾𝐶)𝑃𝑘+1|𝑘 (3.5) 
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The 2RC-ECM utilized in the study consists of an OCV in series with an internal 

resistance (Ro) and two RC parallel pairs with separate charge and discharge 

resistance as shown in Figure 3-5. The resistances and the OCV are functions of 

the SOC and the temperature. The ECM parameters are calculated using Hybrid 

Pulse Power Characterization (HPPC) test data. The ECM voltage and state of 

charge equations are expressed in discrete state space form [11] in (3.6) and (3.7) 

so they can be utilized in the EKF equations. The state variables (𝑥𝑘) are SOC and 

the parallel branches voltages (V1, V2). The system input (uk) is the battery current 

(Ik), and the system output (zk) is the terminal voltage (𝑉𝑘). 

Where 𝜂 is the coulombic efficiency (assumed to be 1 for Li-ion batteries), 𝛥𝑡 is 

the time step, and 𝐶𝑜 is the cell nominal capacity. The parameters R1, R2, 𝐶1, and 

𝐶2 are the resistances and capacitance of the parallel branches. 

𝑥𝑘 = [𝑆𝑂𝐶 𝑉1 𝑉2];     𝑢𝑘 = [𝐼𝑘];      𝑧𝑘 = [𝑉𝑘] (3.6) 

{
 
 
 
 

 
 
 
 𝐴 = [

1 0 0
0 𝑒−𝛥𝑡/𝑅1𝐶1 0
0 0 𝑒−𝛥𝑡/𝑅2𝐶2

]

𝐵 = [

𝜂𝛥𝑡/𝐶𝑜
(1 − 𝑒−𝛥𝑡/𝑅1𝐶1 )𝑅1
(1 − 𝑒−𝛥𝑡/𝑅2𝐶2)𝑅2

]

𝐶 = [ẟ𝑂𝐶𝑉/ẟ𝑆𝑂𝐶 −1 −1]

𝐷 = [−𝑅0]

 
(3.7) 
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Figure 3-5: Second order battery equivalent circuit model 

3.2.2 Extended Kalman filter with recursive least square errors 

filter 

Recursive least squares (RLS) filter is a popular method to obtain the approximate 

parameter values of a static system by minimizing the sum of the squared errors 

between the measured data and the estimated values. Recursive techniques work 

well for estimating parameters which vary as system conditions change, such as 

battery parameters that vary with aging. In this work, the RLS is used to update 

ECM parameters so there is less error between the modeled and measured terminal 

voltage. In order to estimate the ECM parameters using the RLS algorithm, the 

discrete ECM voltage equations should be converted to the frequency domain by 

applying the bilateral z transform [91]. The RLS input matrix (Ф𝑘) contains two 

last time steps of the measured battery terminal voltage and current as in (3.8). The 

error (𝑒𝑘) between the estimated and measured terminal voltage is updated as in  

(3.9). Hence, the parameters matrix (𝜃𝑘) is updated based on the error and the 
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parameters' covariance (𝑌𝑘) as illustrated in (3.10)-(3.11). In the first time step of 

the RLS, the (𝜃𝑜) matrix is initialized with the unity vector.  Once the RLS 

parameters are calculated, the ECM parameters are updated as illustrated in (3.12)-

(3.13). These parameters are utilized to update the state space system equation in 

(3.7) which are input to the EKF. 

3.2.2.1 Error calculation 

3.2.2.2 Update the RLS covariance matrix 

3.2.2.3 Update the parameters matrix 

3.2.2.4 Obtain the updated ECM parameters 

Ф𝑘+1 = [1     𝑉𝑘−1      𝑉𝑘−2      𝐼𝑘     𝐼𝑘−1      𝐼𝑘−2 ] (3.8) 

𝑒𝑘+1 = 𝑉𝑘+1 −Ф𝑘+1
𝑇 𝜃𝑘 (3.9) 

    𝐻𝑘+1 =
1

𝜆
 (𝑌𝑘 −

𝑌𝑘Ф𝑘+1Ф𝐾+1
𝑇 𝑌𝑘

1+Ф𝐾+1
𝑇 𝑌𝑘Ф𝑘+1

) (3.10) 

𝜃𝑘+1 = 𝜃𝑘 + 𝑌𝑘+1Ф𝑘+1𝑒𝑘+1 (3.11) 

𝜃𝑘+1  = [(1 − 𝑎1𝑎2)𝑂𝐶𝑉     𝑎1    𝑎2      𝑎3     𝑎4    𝑎5 ] (3.12) 
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Where λ is the RLS forgetting factor (0<λ>1) and is set to 0.8 in this study  

3.2.3 Feedforward neural network 

FNNs are a type of ANN where data is fed in a forward direction from the input to 

the output [92]. The simplest FNN has input and output layers where each layer has 

a certain number of neurons (n). Multiple intermediate layers (l) can be used in 

larger, more complex problems. The inputs fed to the first layer neurons are 𝑥1 to 

𝑥𝑁𝐼, where NI is the number of inputs as shown in Figure 3-6.  The inputs are 

multiplied with the respective weight,  𝒘𝑖
𝑙,𝑛

, summed, and added to the bias value 

(𝑏𝑖
𝑙,𝑛) and output hidden state value 𝒉. Each neuron also uses an activation function, 

𝐹𝑙,𝑛, to improve the performance of the network.  Activation functions include the 

hyperbolic tangent, clipped rectified linear unit (CRELU), and leaky rectified linear 

unit (LRELU). Different activation functions are presented in [93] along with more 

details regarding the FNN. Eq. (3.16) is used to calculate the number of learnable 

parameters (𝐿𝑃𝐹𝑁𝑁) of a two-hidden layer FNN, like that used in this study. The 

{
 
 
 
 
 

 
 
 
 
 𝑎1 =

𝑅1𝐶1
𝑅1𝐶1 + 𝛥𝑡

+
𝑅2𝐶2

𝑅2𝐶2 + 𝛥𝑡

𝑎2 =
𝑅1𝐶1𝑅2𝐶2

(𝑅1𝐶1 + 𝛥𝑡)(𝑅2𝐶2 + 𝛥𝑡)

𝑎3 = −(𝑅0 +
𝑅1𝛥𝑡

𝑅1𝐶1 + 𝛥𝑡
+

𝑅2𝐶2𝛥𝑡

𝑅2𝐶2 + 𝛥𝑡
)

𝑎4 =
𝑅0𝛥𝑡

𝑅1𝐶1 + 𝛥𝑡
+

𝑅0𝛥𝑡

𝑅2𝐶2 + 𝛥𝑡
+

𝑅1
2𝐶1𝛥𝑡 + 𝑅2

2𝐶2𝛥𝑡

(𝑅1𝐶1 + 𝛥𝑡)(𝑅2𝐶2 + 𝛥𝑡)

𝑎5 =
−𝑅0𝑅1𝐶1𝑅2𝐶2

(𝑅1𝐶1 + 𝛥𝑡)(𝑅2𝐶2 + 𝛥𝑡)

 (3.13) 
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learnable parameters include all weight and bias values and are a function of the 

number of inputs (NI) and number of neurons in the first and second hidden layer, 

𝑁𝐻𝐿1 and 𝑁𝐻𝐿2. During the backpropagation training process, the weights and 

biases of each layer are adjusted to minimize the summation of squared error (E) 

between the actual SOC and the estimated state of charge (𝑆𝑂�̂�k) for D number of 

data points as in (3.14). 

Unlike the LSTM, the FNN does not have a memory cell embedded in the model, 

and therefore does not encode information from the previous time steps. Several 

studies addressed improving the FNN performance by adding some filtered data to 

the inputs, such as voltage and current [93],[94]. In this study, the accuracy of the 

FNN is evaluated with one first-order low pass Butterworth filters applied to the 

voltage and current measurements. The Butterworth filter is selected due to its 

smooth frequency response roll-off and less phase delay. The frequency response 

(𝐻(𝑓)) of the filter is described in (3.15), 

𝐸 =∑(𝑆𝑂�̂�𝑘 − 𝑆𝑂𝐶𝑘)
2

𝐷

𝑘=1

 (3.14) 

𝐻(𝑓) =
1

√1 + 𝜀2 (
𝑓
𝑓𝑐
)
2𝑚

 
(3.15) 
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where 𝑓𝑐 is the chosen cut-off frequency, maximum passband gain ε is equal to 1, 

and the filter order m is equal to 1. 

The network configuration used in this study consists of two hidden layers with 21, 

and 19 neurons and CRELU activation functions as shown in Figure 3-8 (a). The 

inputs of the network (𝛹𝑘) are battery current (𝐼𝑘), terminal voltage (𝑉𝑘), and 

battery surface temperature (𝑇𝑘) and the output is estimated SOC (𝑆𝑂�̂�𝑘). A 

Butterworth first order low pass filter with 5 mHz cutoff frequency is applied to the 

input voltage and current. The filtered inputs effectively add memory to the FNN 

over the bandwidth of the filter (roughly 200 seconds for a 5 mHz filter), increasing 

the accuracy of the network [94]. The network training process is repeated multiple 

times with different randomized initial parameters to help ensure the globally 

optimal training parameters are achieved. 

3.2.4 Recurrent neural network with long short-term memory 

layer  

The LSTM layer is commonly used to overcome the vanishing or exploding 

gradient issue which can occur during the backpropagation training process for 

some RNN types [112]. An LSTM layer comprises a memory cell (𝑪𝒌), a memory 

candidate (�̃�𝑘), an input gate (𝑽𝒌), an output gate (𝑼𝒌), and a forget gate (𝑭𝒌), as 

shown in Figure 3-7. The memory cell is utilized to save information from past time 

steps, and the three gates control the flow of information to and from the cell. The 
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LSTM layer utilizes the input data at the present time step (𝜳𝒌) and hidden state 

values from the preceding time step (𝑯𝒌−𝟏) to update the current hidden states (𝑯𝒌). 

The number of learnable parameters (LPLSTM) for an RNN with a single hidden 

LSTM layer can be calculated as a function of the number of hidden units (HU) and 

the number of inputs using (3.17) [93]. 

 

Figure 3-6: The structure of a typical multilayer feedforward neural network 

 

Figure 3-7: The structure of an LSTM unit 
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The LSTM SOC estimation model used in this study is composed of one LSTM 

layer with ten hidden units (HU) and an output layer with a fully connected layer 

with one neuron, as shown in Figure 3-8 (b). A CRELU activation function is used 

following the output layer. The inputs to the LSTM model are similar to the FNN 

including battery current, terminal voltage, and ambient temperature, and the output 

is the estimated SOC. The model parameters are proportionally adjusted based on 

the partial derivative of the loss function (E) during backpropagation process as in 

(3.14). 

 
(a) Feedforward network 

 

 

 

 

 

 

 
(b) LSTM network 

Figure 3-8: Feedforward and LSTM neural network SOC Estimation models 
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3.2.5 Determination of number of parameters for each algorithm 

The ECM for the EKF models is fit to the HPPC test data at 5% SOC intervals from 

0% to 20% and 80% to 100% SOC and at 10% SOC intervals from 20% to 80% 

SOC. As a result, the number of SOC breakpoints for each parameter of the ECM 

used in the EKF and the EKF-RLS algorithms is 14 points. Hence, the number of 

parameters at each temperature is 154 parameters (At each of the 14 SOC points 

there are 6 charge/discharge resistances, 4 charge/discharge time constants and one 

OCV). The parameter fitting process is repeated at each ambient temperature value, 

including -20, -10, 0, 10, 25, and 40 ⁰C. In addition, there are the R, and Q Kalman 

filter tuning matrices which include 14 points each and one forgotten factor value 

[82]. Hence, the total number of parameters used for the EKF and EKF-RLS are 

952 and 953 parameters, respectively. The ECM parameters for the EKF are 

calculated at each time step by linearly interpolating between the model parameter 

values based on the temperature and SOC input values. 

The FNN total number of learnable weight and bias parameters (𝐿𝑃𝐹𝑁𝑁) for the 

proposed model configuration, which are a function of the number of inputs, 

number of hidden layers, and the output layer, is 522 as in (3.16). The number of 

parameters for the LSTM model (𝐿𝑃𝐿𝑆𝑇𝑀) is 571 (i.e., weight and bias values) as in 

(3.17), 

𝐿𝑃𝐹𝑁𝑁 = 𝑁𝐻𝐿1 (1 + 𝑁𝐼 + 𝑁𝐻𝐿2) + 2𝑁𝐻𝐿2 + 1 (3.16) 
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where 𝑁𝐼 is the number of inputs to the model, 𝑁𝐻𝐿1, 𝑁𝐻𝐿2 are the number of 

neurons of the first and the second layer, respectively, and 𝐻𝑈 is the number of 

hidden units of the LSTM layer. 

3.3 Test setup and data acquisition  

A lithium-ion pouch cell, as shown in Figure 3-9, is tested with a rated nominal 

capacity of 47.7 Ah and 3.7 V nominal voltage.  The cell is the same as that used 

in the Chrysler Pacifica Hybrid PHEV. The cell was tested using twelve different 

automotive drive cycles and HPPC tests. The tests were performed with a Digatron 

Firing Circuits battery cycler with specifications presented in Table 3.3. The cell 

was tested using twelve different automotive drive cycles and HPPC tests presented 

in Table 3.4. 

 

Figure 3-9: Pacifica Hybrid battery cell and test fixture 

𝐿𝑃𝐿𝑆𝑇𝑀 = 4(𝑁𝐼 𝑥 𝐻𝑈 + 𝐻𝑈 𝑥 𝐻𝑈 + 𝐻𝑈) + 𝐻𝑈 + 1 (3.17) 
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Table 3.3: Test setup specifications 

Cycler Manufacturer Digatron Firing Circuits 
Test channel used 4 x 75 A, 0-5V 

Voltage/Current accuracy +/- 0.1% Full Scale 

Data acquisition rate 1 Hz 

Thermal chamber Envirotronics M# SH16  

Chamber size 8 cu. Ft. 

Table 3.4: Description of tests performed on the battery for SOC estimation 

Vehicle Modeled for Calculation of Drive Cycle Power 

Profiles 

Pacifica Hybrid with 16 

kWh 96s pouch cell pack 

Temperatures Tested -20, -10, 0, 10, 25, 40⁰C 

Characterization Test for Parametrizing ECM 
HPPC with four current 

pulse magnitudes at each 

SOC Drive Cycles for Training of Neural Network 

Algorithms 
Eight Mixed Cycles 

Drive Cycles for Testing All Algorithms 
UDDS, LA92, HWFET, 

US06 

3.4 PIL methodology for validating the SOC algorithms: 

a case study 

In this section the models are deployed to the two microprocessors and battery 

current, voltage, and temperature are the inputs, and the estimated SOC is the output 

as described in the previous sections. The SOC estimated by the four algorithms is 

presented for one drive cycle. The algorithms are also compared in terms of 

execution time and memory use on the two processors. 

3.4.1 Demonstration of SOC estimated with the algorithms 

In this subsection, the algorithms are deployed to one of the microprocessors and 

are tested using the US06 drive cycle at 40 ⁰C ambient temperature. The goal is 
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only to demonstrate that algorithms are functioning properly, comparison of the 

algorithms in terms of accuracy is beyond the scope of this work. 

Figure 3-10 shows measured and estimated time-domain SOC and the 

corresponding error, which is no greater than 5%, for the four algorithms. The US06 

is selected because it is one of the most challenging and aggressive drive cycles for 

the algorithms. The EKF algorithms show better performance than the neural 

network algorithms. The RLS, by providing a better estimate of the ECM 

parameters, is shown to enhance the EKF SOC estimation accuracy. Overall, the 

four algorithms have reasonable SOC estimation accuracy, making them good 

candidates for comparison in terms of processor execution time and memory. With 

more effort in training and configuring the FNN and LSTM, their accuracy could 

likely be increased to be similar to the EKF and LSTM. 

 

Figure 3-10: Estimated SOC and SOC estimation error in % SOC for each 

algorithm for the US06 drive cycle at 40 ⁰C 
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3.4.2 Algorithm’s execution time and memory use 

This subsection presents the execution time and memory use to run one instance 

and multiple instances of each estimation algorithm on both processors. The 

execution time is the time required for the algorithm to execute once and is 

indicative of the computational complexity of the algorithm. The memory use 

quantifies the amount of flash memory and random access memory (RAM) used by 

each algorithm. Both execution time and memory use can restrict the number of 

estimators that can run simultaneously in a multi-cell series battery pack, where one 

estimator is required for each cell for which SOC is being estimated. It should be 

noted that the four models are built based on 32-bit single precision floating point 

variables. 

Figure 3-11 shows the execution time for each microprocessor to run each 

algorithm for one timestep. The EKF, RLS-EKF, FNN, and LSTM took 1.7, 1.8, 

0.8, and 4.2 ms respectively, to execute on the lower performance 80 MHz 

S32K142 processor. On the 160 MHz S32K344 processor execution time is 

reduced by 80% to 90%, to between 0.2 and 0.7 ms. This substantial decrease in 

execution time is due to the faster processor speed and also to the S32K344’s use 

of an Arm Cortex-M7 processor, which has a 42% higher CoreMark/MHz 

computational efficiency score than the S32K142’s Arm Cortex-M4 processor 

[96]-[97]. Adding the RLS to the EKF only increased the execution time of the EKF 

by a few microseconds. Overall, the FNN SOC estimation algorithm shows the 
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lowest execution time while the LSTM algorithm shows the highest execution time, 

which is due to involving non-linear gate functions such as hyperbolic tangent and 

exponential. The LSTM can be configured with a lesser number of hidden units to 

improve its performance. 

To determine the impact of executing multiple estimators of the algorithms, ten 

estimators of each estimation algorithm are deployed and executed simultaneously 

on the S32K344. The execution time of each algorithm is shown to increase linearly 

with the number of estimators running simultaneously. The algorithm execution 

time for a 100-cell pack (i.e., 100 simultaneous estimators), would therefore be 100 

times the execution time for a single estimator, or 24 ms, 25 ms, 14 ms, and 71 ms 

for the EKF, RLS-EKF, FNN, and LSTM respectively.  The execution time of the 

EKF, RLS-EKF, FNN and LSTM is fast enough that they could operate within a 

100 ms (i.e., 10 Hz) update rate.  The memory utilized by each algorithm may also 

be a limitation though, and is hence investigated next. 
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Figure 3-11: Algorithm execution time when deployed to S32K142 and 

S32K344 microprocessors 

Figure 3-12 and Figure 3-13 show the flash and RAM memory use of each 

algorithm on both microprocessors. Flash memory use includes the code 

instructions size and model constant parameters' values, while the RAM includes 

the model variables that are calculated during code execution. The memory use 

only includes the SOC models, and excludes memory use for any of the supporting 

code. The EKF, EKF-RLS, FNN, and LSTM use 10, 12, 4, and 20 kB of flash 

memory respectively for one estimator of the algorithms on the S32K142 MCU.  

Each algorithm requires more flash memory on the S32K344 MCU, which is due 

to differences in each microprocessor’s architecture and compiler. The figure also 

shows that when running a hundred estimators on the S32K344 there is only a very 

slight increase in flash memory use, showing that the processor efficiently shares 

almost all of the code between each instance of the algorithm. For both processors 

the flash memory use is much less than the limit (256 kB for the S32K142 and 4 
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MB for the S32K344), showing the flash memory use is not a significant limitation 

for any of the algorithms. 

The RAM memory, which is the fastest memory type and is rather limited in size, 

32 kB for the S32K142 and 512 kB S32K344, is another potential limitation. Unlike 

for the flash memory, the EKF and the EKF-RLS algorithms have much higher 

RAM use than the neural network SOC estimation algorithms, as shown in Figure 

3-13. To run 100 estimators on the S32K344, for example, the EKF requires 538 

kB of RAM and the RLS-EKF requires 686 kB, while the FNN and LSTM only 

require19 and 32 kB or RAM respectively. The EKF algorithms require more than 

the 512 kB of memory, and therefore the compiled code could not even be deployed 

to the processor. Hence, unlike flash memory use, the RAM has a significant impact 

when deciding the number or type of estimators to use in a multi-cell battery pack. 

 

Figure 3-12: Algorithm flash memory use when deployed to S32K142 and 

S32K344 microprocessors 
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Figure 3-13: Algorithm RAM memory use when deployed to S32K142 and 

S32K344 microprocessors 

In Summary, the traditional EKF, EKF-RLS SOC estimation algorithms showed 

reasonable execution time and flash memory use, but significantly higher RAM 

memory use. This could be sufficient for applications that require few estimators to 

run simultaneously on a low performance microprocessor such as the NXP 

S32K142. However, low- and high-performance microprocessors RAM may not be 

enough to run a hundred or more EKF and EKF-RLS simultaneous SOC estimators. 

It’s also possible that RAM use could be reduced by implementing the code 

differently. The LSTM SOC estimator showed a considerably higher execution 

time and flash memory use, but lower RAM memory use. The computational 

complexity of the LSTM algorithm could be reduced by replacing some gate 

functions with less complicated approximated functions, or by reducing the number 

of LSTM hidden units. The FNN SOC estimation algorithm showed the lowest 

execution time and memory use and could even run two hundred estimators 
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simultaneously at a reasonable speed without exceeding the microprocessor RAM 

or computational limits. 

3.5 Summary 

Four lithium-ion battery state of charge (SOC) estimation algorithms were 

presented and tested in this work on two different microprocessors. Two algorithms 

are based of the traditional Kalman filter family including an extended Kalman 

filter (EKF) and EKF with recursive least squares filter (EKF-RLS). The other two 

algorithms use feedforward (FNN) and recurrent with long short-term memory 

layer (LSTM) neural networks SOC estimation algorithms. The four algorithms 

demonstrated to have reasonable accuracy when tested on a microprocessor using 

a standard drive cycle. While the LSTM algorithm took the most time to execute, 

0.71 ms on the higher power S32K344 processor, the FNN only had a lower 

execution time than the two EKF algorithms, 0.14 ms versus around 0.25 ms, 

showing that machine learning algorithms can have lower computational 

complexity than Kalman filters. The FNN and LSTM were also found to have less 

than 5% of the RAM use of the EKF algorithms, which required so much memory 

that 100 estimators could not be run simultaneously, an important limitation for 

high cell count battery packs. When evaluating an algorithm for an application it is 

therefore important to determine that its execution time and memory use do not 
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exceed the capabilities of the BMS microprocessor for the desired number of cells 

and sample rate. 
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Application of Deep Neural Networks for 

Lithium-Ion Battery Surface Temperature 

Estimation Under Driving and Fast Charge 

Conditions 

One of the essential functions of the battery management system (BMS) is to 

monitor the performance of lithium-ion batteries (LIBs). Battery temperature is a 

critical factor that should be monitored to ensure safe and reliable battery operation 

[98]. The temperature of the battery also impacts the accuracy of battery state 

estimation, including state of charge (SOC) [77] and state of health [81]. 

Temperature monitoring of the battery pack is essential to avoid, in the worst-case, 

thermal runaway and destruction of the pack. Temperature sensors are widely used 

to measure the temperature of battery cells. However, it is often impractical to sense 

the temperature of every cell due to cost, number of sensors, and wiring complexity. 

Robust temperature estimation models can be used as an alternative to physical 
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sensors or can perform as a redundant monitoring system for the existing sensors. 

In addition, these models can be applied to detect battery thermal and short circuit 

faults [99],[100] by monitoring the residual of the estimated and measured cell 

temperatures. 

Several methods for estimating cell temperature have been investigated in prior 

research. These methods include electrochemical impedance spectroscopy (EIS) 

based methods [101]-[103], partial differential equation (PDE) thermal-based 

methods [104]-[107], and data-driven methods [83],[108]-[110]. In the EIS 

methods, one or several frequencies of AC current are injected into the battery. 

Then, based on the AC voltage response, the impedance of the battery is measured 

and is correlated with the temperature. The EIS method requires complex BMS 

hardware though, and cannot easily be performed during operation [101]. The PDE 

methods are multi-state models that capture the thermal behavior of the batteries 

with reasonable accuracy. These models emulate the generation and transfer of heat 

in the battery considering thermal boundary conditions. These methods are shown 

to be capable of modeling the temperature distribution of LIBs with lumped [104] 

or multidimensional 1D [105], 2D [106], and 3D [107] models. However, the more 

complex versions of these methods are not easily implemented in real-time on a 

BMS because they involve a high number of parameters and complex mathematical 

operations. 
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Recently, data-driven methods, which are based on machine learning, have been 

used to model nonlinear, time-dependent system behavior and are a promising 

alternative for battery temperature estimation. Machine learning-based models are 

trained with measured battery data, with inputs such as voltage and current and 

outputs such as SOC or temperature.  Such models learn to mimic LIB behavior 

and have been used for terminal voltage modeling [82], SOC [77] and state of health 

(SOH) [81] estimation, and recently for temperature estimation [83],[108]-[110]. 

In [108], a recurrent neural network (RNN) model, with measured current, SOC, 

and ambient temperature as inputs, estimates battery cell voltage and surface 

temperature. The RNN model was shown to estimate the battery surface 

temperature during a portion of a low temperature drive cycle, where battery 

temperature was between 1 ⁰C and 8 ⁰C, with an error of less than 2 ⁰C. The work 

in [109] investigated different neural network (NN) model inputs to estimate battery 

surface temperature. The study concluded that feeding the model with measured 

voltage, current, and the prior time step of the predicted temperature led to 

predicting the battery surface temperature with a maximum estimation error 

(MAXE) of less than 3 ⁰C and less than 0.3 ⁰C root mean square error ( MSE). 

While this study does show very low error, it is not clear if unique data was used 

for training and testing the networ , and only temperatures of 25 ⁰C or greater were 

investigated, so the proposed methodology may not achieve as good of results under 

more realistic scenarios. The work in [110] uses a radial basis function feedforward 

neural network (FNN) model with a Kalman filter to estimate the internal core 
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temperature of a battery. The inputs to the model are measured surface temperature, 

voltage, and current, and a very low  MSE of less than 0.1 ⁰C and MAXE of less 

than 0.3 ⁰C is achieved for estimating internal core temperature. The reported 

results are excellent, but since measured surface temperature is an input to the 

model, it is not really comparable to algorithms which aim to estimate surface 

temperature like [108], [109], and the algorithms proposed in this study. In [83], a 

preliminary investigation of the application of non-recurrent and recurrent neural 

networks for battery surface temperature estimation was presented. Different 

combinations of networ  inputs were investigated, and around 3 ⁰C MAXE was 

achieved for automotive drive cycles. 

While multiple studies have investigated neural networks for temperature 

estimation, these studies have only examined a limited range of operating 

conditions, and none have investigated the practicality of implementing the 

algorithms in a BMS microprocessor. Hence, the main contributions of this chapter 

are summarized as follows: 

1) Development of two types of deep neural networks to predict LIB surface 

temperature including a feedforward neural network (FNN) and recurrent neural 

network (RNN) with long short-term memory (LSTM) 

2) A methodology for improving the performance of the FNN by effectively adding 

memory of past time steps through the use of one or more filtered inputs 
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3) A comprehensive evaluation of the FNN and the LSTM surface temperature 

prediction models for realistic, challenging operating conditions, including low 

ambient temperature, high temperature rise, fast charging, and aging 

4) A comprehensive benchmarking of the proposed models versus prior studies in 

the literature  

5) Measurement of BMS microprocessor execution time and memory use for each 

algorithm using a Processor in the loop (PIL) platform. 

The rest of the chapter is organized as follows: Section  4.1 provides an overview 

of deep neural networks. Section 4.2 presents the test setup and dataset. The 

structure selection for the surface temperature estimation models is detailed in 

Section 4.3. The temperature estimation for dynamic and fast charging conditions 

are presented in Section 4.4 and 4.5 respectively. The performance on a BMS 

microprocessor and testing the models’ performance for an aged data set and versus 

other studies in the literature is presented in Sections 4.6 and 4.7. Finally, the 

conclusions are presented in Section 4.8. 

4.1 Overview of deep neural networks 

In recent years, ANNs have shown strong capability in extracting features from 

non-linear complex mathematical relationships. Deep neural networks (DNNs) are 

ANNs containing more than one hidden layer.  There are several types of ANNs 
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including FNNs, RNNs, and convolutional neural networks (CNNs). Each ANN 

type varies in structure, characteristics, and application.  FNNs are commonly used 

in fault diagnosis of power systems [92] and pattern recognition [111].  RNNs were 

developed to model problems requiring memory so that past information is 

considered when calculating the current output.  RNNs have shown strong 

performance in stock market forecasting [112], battery SOC estimation [77], and 

speech recognition [95]. For very large inputs, such as images, FNNs would have 

a large, complex structure for which determining the model weights and biases is 

challenging. CNNs, which utilize convolution on the inner layers, were developed 

to deal with image recognition and classification problems in an efficient and 

effective manner [113]. LIB modeling and state estimation are considered 

regression problems where FNNs and RNNs are commonly used. This section 

presents an overview of the FNN and the RNN- LSTM which are used in this study. 

The hyperparameters and framework for training the models are discussed as well. 

The training of the proposed NNs and the corresponding hyper parameters are 

presented. The NN model parameters i.e., weights and biases, are updated 

iteratively during the backpropagation phase based on the loss (E) between the 

estimated and the actual output according to (4.1). 

𝐸 =∑ (𝑂𝑘 − Ô𝑘)
2𝑘=𝐷

𝑘=1
 

(4.1) 
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where D is the total length of the input training data, 𝑂𝑘 is the actual output which 

is the measured surface temperature of the battery at each time step k, and Ô𝑘 is the 

estimated output which is battery surface temperature at time k in this study. 

In this chapter, the initial learning rate for the training process, which specifies how 

much the weights and biases can be adjusted each epoch, is set to 0.01. The learning 

rate drop factor is 10%, and the patience is 1000 epochs, meaning that the learning 

rate is dropped by 10% each 1000 epochs. The training and testing datasets are 

resampled to 1 Hz and normalized so their values are between 0 and 1. All the 

training data is used as one minibatch for each update of the training parameters. 

The training process stops after the validation dataset accuracy does not improve 

for 300 consecutive epochs. Most trainings continued for around five thousand 

epochs, taking approximately three hours for the FNN and 13 hours for the LSTM 

models. The network's learnable parameters are randomly initialized at the start of 

each training. Each network configuration is trained between 3 and 20 times with 

different initial parameters each time, helping to ensure a global- or near-global 

optima solution is achieved. The network was created and trained with a similar 

script to that shared in [94] using MATLAB 2020b, the MATLAB Deep Learning 

Toolbox, and an Intel Core i7 CPU. Table 4.1 lists the different parameters used in 

the training process of the proposed NN models. 
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Table 4.1: Training parameters for temperature estimation models 

Loss Function Optimizer ADAM 

Training Software MATLAB 2020.b, MATLAB Deep 

Learning Toolbox 

Training Platform Intel Core i7 CPU 

Initial Learning Rate 0.1 

Learning Drop Factor 10% 

Number of Mini batches 1 

Validation Frequency Each 10 epochs 

Stopping Criteria 300 epochs with no loss improvement 

# Training Repetitions  3 to 20 

4.2 Test setup and dataset 

Two batteries with different chemistries are used to train and validate the proposed 

models. The first battery is Panasonic 18650PF Li-ion battery cell with NCA 

chemistry and 2.9 amp-hours rated capacity, as shown in Figure 4-1. This battery 

is cycled at different dynamic conditions with a range of drive cycles at different 

ambient temperatures. One temperature sensor was placed on the outer surface to 

monitor the temperature of the cell. The second cell is a Kokam NMC pouch cell, 

which is tested at different fast charging rates in a liquid cooled module with three 

parallel (3P1S) cells as shown in Figure 4-2 (a). Between each cell is a 0.26 cm 

thick aluminum plate for cooling and fifteen T-type thermocouples are placed 

throughout the module. Seven of the thermocouple measurements are used in this 

study, including four placed on the face of the middle cell as shown in Figure 4-2 

(b) and one on the coolant inlet and another on the outlet. A 200 W chiller with 15 

L/min coolant flow rate is used to cool the module and is connected to copper 

cooling tubes attached to the edges of the fixture as illustrated in Figure 4-3. The 

thermocouple temperatures are logged in LabVIEW and measured with a National 
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Instruments NI-9213 thermocouple module. Table 4.2 presents the specifications 

of each cell [114]-[115] while the battery cycler and thermal chamber specifications 

are listed in Table 4.3. 

Two types of data sets were collected for the Panasonic battery, one of which has -

20, -10, 0, 10, and 25 ⁰C fixed ambient temperature and the other of which has 

varied ambient temperature, as described in Table 4.4. The battery is cycled using 

four standard drive cycles – UDDS, LA92, HWFET, and US06 - and five mix drive 

cycles which are made of a randomized mix of the power profiles for the standard 

drive cycles. The maximum charge/discharge currents at 25 ⁰C for UDDS,  A92, 

HWFET, and US06 are 4.2/7.5 A, 9.7/10.5 A, 5.5/5.5 A, and 7.5/20.8 A, 

respectively. The mixed cycles are referred to as Mix#1 through Mix#5.  The varied 

ambient temperature tests start at either -20 or 10 ⁰C, and the temperature rise 

throughout the tests is achieved by turning the cooling system off while leaving the 

circulating fans on. The varied ambient temperature tests are used to test how the 

temperature estimation models perform when the thermal conditions around a 

battery are changing. The drive cycle power profiles are generated from a model of 

an electric truck with a 35kWh battery pack and are scaled for a single 18650PF 

cell.  
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Figure 4-1: Panasonic test setup and data logging system 

 
(a)Kokam Fixture 

 
(b) Thermocouples at middle cell 

Figure 4-2: Kokam module fixture and thermocouples positions on the middle 

cell 
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Figure 4-3: Kokam module test setup 

Table 4.2: Battery specifications 

 Battery Panasonic Kokam 

Model 18650PF SLPB78216216H 

Type Cylindrical Prismatic 

Chemistry/Capacity NCA (2.9 Ah) NMC (31.0 Ah) 

Nominal Resistance 36 mΩ 0.9 mΩ 

Specific Power 1.7 kW/kg 2.8 kW/kg 

Specific Energy 207 Wh/kg 160 Wh/kg 

Table 4.3: Description of test setup and lab equipment 

Cycler Manufacturer Digatron Firing Circuits 

Test Channel 
25 A, 0–18 V 

channel 

4×75 A, 0–5 V 

channels 

Cycler Data Acquisition  10 Hz 10 Hz 

Voltage/Current Accuracy  ±0.1% full scale ±0.1% full scale 

Temperature Acquisition 

system 

Embedded in cycler 

(±1.0 ⁰C) 

National 

Instruments NI-

9213 (±0.7 ⁰C) 

Thermal chamber 
Envirotronics Model 

SH16 

Thermotron 

Model SE3000 

Internal Volume 8 cu. Ft. 104 cu. Ft. 

Temperature Regulation 

Accuracy 
±0.5 ⁰C ±0.7 ⁰C 
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Table 4.4: Description of tests performed on batteries for temperature estimation 

models 

Battery Datasets Panasonic  3P1S Kokam 

module 

Training Mix 1 to 5 at -20 ⁰C, -10 ⁰C, 0 ⁰C, 

10 ⁰C, 25 ⁰C 

1C, 3C, 5C Fast 

Charge at 20 ⁰C 

Validation (used to 

select the best trained 

models)  

UDDS, LA92, HWFET, US06 at -

20 ⁰C, -10⁰C, 0 ⁰C, 10 ⁰C, 25 ⁰C 

“Fixed Ambient Temperature” 

2C Fast Charge at 

20⁰C  

Testing (done on the 

best trained models) 

Mix 1-4 at -20 ⁰C, 10 ⁰C starting 

ambient temperatures "Varied 

Ambient Temperature" 

4C Fast Charge at 

20 ⁰C 

The battery was fully charged at 25 ⁰C prior to each drive cycle test. Each drive 

cycle was repeated until the battery SOC reached between 10 and 30% depending 

on the temperature. This final SOC value was selected based on when the battery 

can no longer provide enough power to continue. The five mixed drive cycles at 

each fixed ambient temperature are used to train the proposed NN models and are 

labeled as Training data in Table 4.4. The four standard drive cycles with fixed 

ambient temperature are used for Validation and the mix drive cycles with varied 

ambient temperature are used for Testing the best trained NN models, and are 

referred to as the Fixed Ambient Temperature and Varied Ambient Temperature 

datasets respectively. 

The Kokam module is charged at currents ranging from one to five C, which is 93 

A to 465 A. For all the tests, the thermal chamber ambient temperature and the 

chiller coolant temperature are regulated to 20 ⁰C. Figure 4-4 shows the temperature 

collected from the thermocouples for a 5C charge. The thermocouple measurement 

which reaches the highest temperature, TC3, is used when training and testing the 
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temperature estimation algorithms in this study. The 1C, 3C, 5C rate charge data is 

used for Training while the 2C charge is used for Validation and the 4C for Testing, 

as listed in Table 4.4. Figure 4-5 shows the battery temperature versus amp-hours 

discharged or charged for the training, validation, and testing datasets of both 

batteries. The figure shows that the training data covers the whole capacity range 

of the battery and that the NN model will need to in effect, interpolate between the 

trained temperature data in almost all test cases and extrapolate beyond 30 ⁰C for a 

few of the Panasonic tests. 

 
Figure 4-4: Kokam battery module temperature measurements for 5C charge 

 
(a) Panassonic 

 
        (b) Kokam 

 
Figure 4-5: Cells’ temperatures for training, validation, and testing datasets 
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4.3 Neural network temperature estimation models 

structures and FNN filter frequency determination 

In this section the structure of the investigated FNN and LSTM are presented.  

Additionally, a study is performed to determine the optimal filter frequency values 

used for the filtered voltage and current inputs to the FNN. 

4.3.1 Determination of optimal corner frequency for filters on 

FNN input data  

Figure 4-6 (a) shows the basic structure of the investigated FNN temperature 

estimation model, including inputs, layers, activation functions, and output. The 

inputs include SOC, ambient temperature (Ta), and voltage (V) and current (I) or 

filtered voltage (𝑉𝑓1, 𝑉𝑓2) and current values (𝐼𝑓1, 𝐼𝑓2). Two hidden layers with fifty 

neurons each are used, which is expected to be a sufficient number of neurons and 

layers to achieve good accuracy [94]. The output layer consolidates all the neuron 

outputs to create a single output value for the network, estimated temperature (𝑇�̂�). 

The investigation in this section focuses on determining the proper corner 

frequency for the optional filtered input values.  A wide range of corner frequencies, 

for both one and two sets of filtered inputs, is considered. 
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(a) FNN model structure 

 
(b) LSTM model structure 

Figure 4-6: Structure of FNN and LSTM battery surface temperature estimation 

models 

First, a single set of filtered voltage and current inputs is investigated, such that 

inputs are {𝑉𝑓1, 𝐼𝑓1, 𝑆𝑂𝐶, 𝑇𝑎}. Twenty-one networks are trained with the Panasonic 

cell Training data and filter frequencies varying from 0.01 mHz and to 100 mHz. 

These cover the range of frequencies over which the LIB electrical and thermal 

time constants are likely to occur. Average Validation dataset error is shown in 

Figure 4-7.  
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Figure 4-7: Panasonic validation data temperature estimation error versus filter 

frequency for FNN with a single set of filtered voltage and current inputs 

The figure shows that the standard deviation of the three training repetitions is quite 

small, from 0.02 ⁰C to 0.11 ⁰C, verifying that three trainings are sufficient to ensure 

the best solution is achieved. With a filter frequency of 1 mHz the least error is 

achieved, just 1.16 ⁰C, which is 43% less than the 2.05 ⁰C error achieved for the 

FNN without filtered voltage and current as inputs, where inputs are instead 

{𝑉, 𝐼, 𝑆𝑂𝐶, 𝑇𝑎}. The error is high for both low and high frequency filter values 

because with a high frequency filter the signal is similar to the unfiltered signal, 

and when the filter frequency is very low the output of the filter is essentially a 

small rising value and provides no meaningful additional information. The similar 

error for the studied high and low frequency filters also shows that a sufficiently 

wide range of filter values was investigated. 
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Figure 4-8: Panasonic validation data temperature estimation error versus 

second filter frequency for FNN with 1 mHz filters and a second set of filtered 

voltage and current inputs 

Next, voltage and current filtered at 1 mHz, the filter value which achieved the best 

results with a single filter, are used along with voltage and current filtered at a 

second frequency, such that inputs are {𝑉𝑓1, 𝐼𝑓1, 𝑉𝑓2, 𝐼𝑓2, 𝑆𝑂𝐶, 𝑇𝑎}.  Networks are 

trained for twelve frequencies, ranging from 0.01 mHz to 100 Hz, and the results 

are presented in Figure 4-8.  The addition of a second set of filtered values is shown 

to achieve a 0.14 ⁰C, 12% reduction in error for filter frequencies equal to 4 m   

and 8 mHz. 
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selected purely based on the analysis of the Validation dataset error above, and the 

Testing dataset which will be used in Section 4.4 is kept blinded from the selection 

of the optimal filter frequencies. 

4.3.2 LSTM model structure 

The LSTM has internal memory embedding information from past time steps, so it 

is not necessary to include filtered data as an input as was done for the FNN. Figure 

4-6 (b) shows the LSTM temperature estimation model structure used in this study, 

including the layers and activation functions. Voltage, current, SOC, and ambient 

temperature are used as inputs. One hidden layer is used, and it includes 25 hidden 

units, where each hidden unit is the LSTM structure shown in Figure 3-7. Twenty-

five hidden units are used so that the total number of learnable parameters, 3026 as 

listed in Table 4.5, is similar to the FNN.  

In summary, the LSTM and the three FNN configurations from the previous section 

will be compared in the analysis for varied ambient temperature operation in section 

4.4 and fast charging in section 4.5.  The acronym, number of inputs and types, and 

number of parameters for each of the four models is presented in Table 4.5. 
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Table 4.5: Description of model configurations investigated in Sections 4.4 and 

4.5 

Model 

Structure 

Acronym # 

parameters 

# 

Inputs 

Type of inputs 

FNN with no 

filters 

FNN(N/F) 2851 4 Voltage, 

current, SOC, 

ambient 

temperature 
LSTM  LSTM 3026 4 

FNN with 1 

mHz filter 

FNN(1mHz) 2851 4 Filtered voltage, 

filtered current, 

SOC, ambient 

temperature 
FNN with 1 & 4 

mHz filters 

FNN(1&4mHz) 2951 6 

4.4 Temperature estimation for Panasonic cell electric 

vehicle drive cycles 

In this section, the temperature estimation models with configurations discussed in 

Section 4.3 are trained with the Panasonic cell drive cycle Training data, as defined 

in Table 4.4.  Each of the four models, three FNNs and one LSTM as listed in Table 

4.5, are trained twenty times.  The error of each of the trained models is calculated 

using the Validation dataset, which consists of the Fixed Ambient Temperature 

dataset. The trained model with the lowest validation error is then selected and 

evaluated using the Testing data, which consists of the Varying Ambient 

Temperature data which is more representative of conditions in an actual electric 

vehicle. 
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4.4.1 Training process with multiple training repetitions to select 

best trained model via validation data  

Each of the four models is trained 20 times with unique initial parameters to ensure 

that the global optimum solution is reached and that a fair comparison between the 

model types is performed. The average of the RMS temperature estimation error 

for all the Validation cycles is calculated and is plotted for each model type and 

training repetition in Figure 4-9.  The figure shows that it is important to perform 

multiple training repetitions, since the difference between the best and worst trained 

FNN with 1 and 4 mHz filters is quite significant, around 0.5 ⁰C. The difference is 

even greater for the LSTM, around 1.1 ⁰C. The trained model with the lowest 

Validation error – an error of 2.00 ⁰C for FNN (N/F), 1.12 ⁰C for FNN (1mHz), 

0.96 ⁰C for FNN (1&4mHz), and 0.50 ⁰C for LSTM – is selected for evaluation in 

the next section.  Notably, the error decreases substantially as more filtered inputs 

are added to the FNN, and the LSTM achieves about half the estimation error of 

the best FNN. 
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Figure 4-9: Temperature estimation error of each model for fixed ambient 

temperature Panasonic drive cycle validation data 

4.4.2 Temperature estimation accuracy for best trained models 

and varying ambient temperature test data  

In this subsection, the four best trained models are evaluated using the independent 

set of Testing data, the Varying Ambient Temperature drive cycle data as is 
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and have a temperature rise of as much as 35 ⁰C. The temperature estimated by the 

FNN with 1 mHz filters and by the LSTM is plotted for two of the drive cycles in 

Figure 4-10.  Even though the temperature rise is quite significant, the error is 

around 2.5 ⁰C or less for the  STM and 4 ⁰C or less for the     for this Mix#1 

cycle.  The RMS error for each of the eight Testing cycles is then plotted in Figure 

4-11, showing that the LSTM typically achieves around 5 to 10% lower error than 
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the FNN. Besides, both models show a stable error for the testing drive cycles with 

the     average error of 1.8 ⁰C and the  STM error of 1.6 ⁰C. The average  MS 

and maximum error of the eight Testing cycles for each model type are then plotted 

in Figure 4-12, showing that the LSTM still achieves the best accuracy, although 

by a smaller margin than was observed for the Validation data. 

While the error for the Testing data is much higher than for the Validation data, 

nearly twice as high for the FNN and three times as high for the LSTM, the results 

demonstrate that the models can estimate temperature for data which is very 

different than the data which the model was trained with.  This is an important 

characteristic for electric vehicle applications, where a wide range of operating 

conditions exist across different climates, terrain, and use cases. Overall, the 

accuracy of the temperature estimation is still quite reasonable, with less than 2 ⁰C 

RMS error for all but the FNN with no filters, less than 4.5 ⁰C max error for the 

   s with filters, and less than 4 ⁰C max error for the  STM. Considering that low 

cost physical temperature sensors are often rated for several degrees Celsius of 

error, the machine learning algorithms appear to be an excellent alternative. Finally, 

one unexpected result was that the FNN error is slightly higher with two input 

filters, suggesting that when only marginal benefits of a second filter are observed 

during validation it may not be beneficial to include the additional filter. 
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(a) Mix#1 starting at -20 ⁰C 

 
(b) Mix#1 starting at 10 ⁰C 

Figure 4-10: Temperature estimation for best FNN (1mHz) and LSTM models 

for Mix#1 varied temperature drive cycles 

 
Figure 4-11: Temperature estimation error of FNN(1mHz) and LSTM models 

for each varied ambient temperature testing drive cycle 
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Figure 4-12: Temperature estimation error of each model for varied ambient 

temperatures drive cycle testing data 
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4.5.1 Training process with multiple training repetitions to select 

best trained model via validation data 

Each model is trained twenty times with unique initial parameters to ensure the 

global optimum solution is reached, just like was done for the Panasonic drive cycle 

data.  The model is trained with a 1C, 3C, a 5C fast charge, and a 2C fast charge is 

used for validation, as specified in Table 4.4. The validation error for each training 

repetition is shown in Figure 4-13. Each FNN training repetition has similar error 

while the LSTM error varies widely, again demonstrating the value of performing 

multiple training repetitions. The best trained model is selected from the training 

repetitions for use in the next subsection, with an error of 0.65 ⁰C for the     ( / ) 

model, 0.25 ⁰C for     (1m  ), 0.20 ⁰C for     (1&4m  ), and 0.29 ⁰C for 

LSTM. The FNN performance again improves as more filters are added, even 

though the filter frequencies were selected using an analysis of Panasonic cell data. 

This suggests that if the filter frequencies are close to the electrical and thermal 

time constants of the battery system, this should be sufficient to improve the 

performance of the FNN. 
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Figure 4-13: Temperature estimation error of each model for Kokam cell 2C 

fast charge validation data 

4.5.2 Temperature estimation accuracy for best trained models 

and 4C fast charge test data 

In this section, the best trained models as identified in the last section are evaluated 
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(a) Best FNN (1 mHz)      

 
(b) Best LSTM 

 
Figure 4-14: Temperature estimation for best FNN (1mHz) and LSTM models 

at 1C to 5C fast charging rates 

The FNN error is exceptionally low for the 4C fast charge Testing case, never 

exceeding 1 ⁰C, which is impressive considering that the 1C, 3C, and 5C fast 

charges used for training have a quite different temperature rise.  The LSTM error 

is quite a bit higher, exceeding 2 ⁰C at one point.  Both models struggle to fit the 

1C fast charge training data accurately, but this is likely due to fluctuations in the 

coolant and battery temperature caused by on and off cycling of the chiller when 

loss is very low which could be improved by adding the chiller status to the NN 

models inputs.  
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Figure 4-15: Temperature estimation error of each model for 4C fast charge 

testing data 

Figure 4-15, shows the RMS error and maximum error of the four models for the 

4C fast charge.  Overall, the FNN with the 1 and 4 mHz filtered inputs has the 
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the NN to fit and contributing to the lower error of the NN compared to the error 

achieved for the drive cycles in Section 4.4. The LSTM, which performed best for 
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three times higher maximum error of 2.29 ºC. The fast charge dataset is smaller in 
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for fast charge versus 434,797 data points for drive cycles). The LSTM performs 

worse in this case because the smaller amount of training data may not be sufficient 

to fully train the memory aspects of the LSTM. The fast charging voltage/current 

profiles are also less dynamic than the drive cycles which make the fast charge a 

less complex problem for a simple FNN to efficiently extract system features. There 

aren’t many numerical studies comparing the FNN and LSTM, but the study in 

[116] showed that for modeling dynamic systems, the FNN shows better 

performance than a RNN when the inputs are noise-free.  While the experimental 

data is essentially noise free due to the high accuracy of the battery cycler 

measurements, the drive cycle data could be considered similar to noise since it is 

highly dynamic while the output is a smooth signal. In this way, the research in 

[116] could be considered to support the LSTM performing better than the FNN for 

drive cycle data in Section 4.4. 

4.5.3 Impact of number of learnable parameters on temperature 

estimation accuracy 

In the prior sections, each temperature estimation model was configured with 

around 3,000 learnable parameters. To investigate whether this number of 

parameters is necessary to achieve the best accuracy, FNN and LSTM models with 

between around 150 and 10,000 learnable parameters are tested in this section. 
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Table 4.6: Number of learnable parameters for FNN (1mHz) and LSTM 

configurations investigated in Figure 4-16 

FNN (1mHz) LSTM 

𝑁𝐻𝐿1 𝑁𝐻𝐿2 𝐿𝑃𝐹𝑁𝑁  𝐻𝑈 𝐿𝑃𝐿𝑆𝑇𝑀  

10 10 171 4 149 

25 25 801 15 1,216 

50 50 2,851 25 3,026 

75 75 6,151 35 5,236 

100 100 10,701 50 11,051 

 
Figure 4-16: 4C fast charge testing temperature estimation RMS error of the 

FNN(1mHz) and LSTM models as a function of the number of learnable 

parameters 

Similar to the previous cases, each model is trained 20 times and tested with the 4C 

fast charge data. The number of neurons, hidden units, and the corresponding 

number of learnable parameters of the LSTM and FNN model with 1mHz filters 

are presented in Table 4.6. The error versus number of learnable parameters is 

plotted in Figure 4-16 for the best model out of the 20 training repetitions, showing 

that both the FNN and LSTM error decreases as the learnable parameters increase. 

The FNN error decreases only slightly though, while the LSTM error decreases by 

about half as learnable parameters increase from 149 to 5,236. It is notable that 
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even the smallest FNN, with just 171 learnable parameters, has better accuracy than 

any of the LSTM models. These results clearly show that the FNN is well suited 

for estimating the temperature of constant current, constant voltage fast charges, 

achieving higher accuracy than the LSTM with a much smaller network. 

Overall, the FNNs with filtered data inputs are shown to be more accurate for the 

fast charging cases, while the LSTM is more accurate for the more complex 

dynamic, varied temperature drive cycles. In the next section, the execution time 

and memory use will be measured for each model when it is deployed to a BMS 

microprocessor. 

4.5.4 Impact of SOC error on temperature estimation accuracy  

The proposed models utilize SOC as one of the inputs, where SOC is calculated 

from current measured using an accurate battery cycler in the lab. However, SOC 

estimation algorithms implemented in the vehicle cannot be 100% accurate. Hence, 

a robustness test case with SOC error is investigated in this subsection. A ±5% 

offset in SOC is added to the 4C fast charge data. Temperature is estimated using 

the FNN with a 1mHz filter for the correct and offset SOC inputs, as shown in 

Figure 4-17. The RMSE obtained by the FNN (1mHz) for +5% and -5% offset in 

SOC are 0.35 ⁰C and 0.28 ⁰C respectively, and the error is 0.3 ⁰C with no SOC error. 

The error for the +5% SOC offset is just 15% greater than the error with the correct 

SOC, demonstrating that SOC error has a small impact on temperature estimation 
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error. The maximum error obtained for both offset cases is still within 1 ⁰C, which 

is quite acceptable given the fairly large SOC error. An accurate SOC estimation 

algorithm may achieve error of less than 2% for most cases, which would result in 

even less temperature estimation error. 

 
Figure 4-17: 4C fast charge testing temperature estimation RMS error for the 

FNN(1mHz) with ±5% offset error in the input SOC values 

4.6 Microprocessor e ecution time and memory use  

In this section, the three FNN models and the LSTM model with approximately 

3,000 learnable parameters and an FNN model with 171 learnable parameters, as 

listed in Table 4.5 and Table 4.6, are deployed to a BMS microprocessor. The BMS 

microprocessor used in this study is an NXP S32K344 with a 32-bit 160 MHz Arm 

Cortex-M7 processor, as shown in Figure 4-18 [87]. The microprocessor has 4 MB 

of flash memory and 512 kB of random access memory (RAM). The 
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MATLAB/Simulink environment is used to generate C-code from the models 

which are implemented in Simulink. The C-code is generated using the MATLAB 

model-based design toolbox and is deployed to the microprocessor evaluation 

board using a universal asynchronous receiver-transmitter. The model execution 

time and memory use are then measured using a Simulink profile block. All the 

input signals are transferred from the host computer to the deployed algorithm 

executing on the microprocessor.  

Figure 4-18 shows an example of the deployment of the FNN(1mHz) model with 

2851 parameters. The resulting error for the FNN(1mHz) model is completely 

identical to the results attained with the algorithm running on a PC as presented in 

Figure 4-14 (a) and Figure 4-15. The microprocessor execution time to run one 

instance of each model is listed in Table 4.7. For the models with around 3,000 

learnable parameters, the execution time is around 0.8 ms for the FNNs and 2.5 ms 

for the LSTM, indicating that despite the models having the same number of 

learnable parameters, the computational complexity of the LSTM, which includes 

nonlinear hyperbolic tangent and exponential gate functions, is higher. The results 

show that adding filtered inputs to the FNN results in a negligible execution time 

increase of a few microseconds.  The execution time is much less for the FNN with 

171 learnable parameters, just 0.09 ms, demonstrating that if slightly higher error 

is acceptable, a very computationally efficient algorithm can be used. 
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Figure 4-18: NXP S32K344 160 MHz BMS microprocessor with FNN(1mHz) 

deployment and testing for 4C fast charge case 

Table 4.7: Model execution time and memory use for NXP S32K344 160 MHz 

BMS microprocessor  

Model # Parameters Execution 

Time (μSec) 

Flash 

(kB) 

RAM 

(kB) 

FNN(N/F) 2851 758 8.19 0.39 

FNN(1mHz) 
2851 763 8.62 0.41 

171 93 3.82 0.16 

FNN(1&4mHz) 2951 771 9.00 0.48 

LSTM 3026 2490 52.53 1.02 

To implement one estimator of each algorithm on the microprocessor, between 4 

kB and 9 kB of flash memory are needed for the FNNs while 53 kB is needed for 

the LSTM.  This is just a fraction of the 4 Mb of flash memory available on the 

processor, demonstrating that the flash memory use of the proposed models is not 

a significant limitation to running them on a BMS. The models only require 0.2 to 

1 kB of RAM, which again is just a small fraction of the 512 kB of RAM available 
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on the processor and indicates that these algorithms could easily be implemented 

in a BMS. 

In summary, execution time may be more of a limitation than memory use.  

Running the models one hundred times, as would be needed to estimate the 

temperature of one hundred cells, would consume between 8 and 25% of the 

processor time for a 1 Hz update rate and the 3,000 parameter models.  Fortunately, 

for the fast charging case at least, a significantly smaller FNN model can be used 

which would reduce the overall execution time substantially, requiring just 0.8% of 

processor time to run 100 models each second. The smaller FNN could also easily 

be run a low-cost NXP S32K1 series microprocessor, which was observed in [117] 

to require about a factor of eight greater execution time compared to the NXP 

S32K3. 

4.7 Aging study and models benchmarking versus 

studies in the literature  

In the previous test cases, the proposed models were tested using experimental data 

from cells at the beginning of life (BOL). However, in any realistic scenario, the 

battery will experience aging while deployed in the vehicle. Therefore, in this test 

case, one of the proposed temperature estimation models is trained using charge 

profiles from a battery at BOL and is tested both at BOL and under aged conditions. 

Testing the neural network under aged conditions shows if the correlation between 



Ph.D. Thesis – Mina Naguib                                      McMaster University – Electrical Engineering 

 

111 

 

input voltage, current, and SOC and the temperature rise is consistent throughout 

the life of the battery. An FNN (1mHz) neural network is used, and is trained with 

experimental data from a 3 Ah capacity Samsung INR21700-30T cylindrical cell. 

The cell was subjected to an aging test performed at 25 ⁰C over six months until the 

cell reached 80% state of health (SOH). For the aging tests, the cell is discharged 

with drive cycle power profiles and then boost charged (4C rate followed by 2C 

rate).  

Figure 4-19 (a) shows the measured voltage, current, and SOC during the boost 

charge for the cell at 100% and 80% SOH conditions. The measured temperature 

and the temperature estimated by the FNN(1mHz) model, and the corresponding 

estimation error is shown in Figure 4-19 (b). The FNN(1mHz) model error is quite 

low at 100% SO , just 0.5 ⁰C  MS and 1.15 ⁰C max, and it only increases slightly 

at 80% SO  to 0.8 ⁰C  MS and 1.56 ⁰C max. This demonstrates that the model, 

which was only trained on new data, successfully learned the correlation between 

terminal voltage, current, SOC, and temperature.  The model essentially translated 

the higher terminal voltage of the more resistive aged cell to higher temperature 

rise. To improve accuracy throughout the life of the cell, the proposed model can 

always be updated or calibrated either onboard in the cloud using data collected 

from a fleet of vehicles. 
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(a) Cell voltage, current, and SOC 

 
(b) Cell measured versus estimated 

temperatures 

Figure 4-19: Samsung cell voltage, current, SOC, and temperature at 100% and 

80% SOH conditions 

The proposed models are also compared in Table 4.8 to other machine learning 

algorithms presented in the literature, including an LSTM, ANN, and FNN. The 

models are compared in terms of algorithm type, ambient temperature the 

algorithms are applied at, largest temperature rise case, and error. The maximum 

error of these models varies from 1.5 to 7 ⁰C, which is greater than the 0.7 to 4 ⁰C 

maximum error observed for the proposed models. Considering that the 

temperature rise reached up to 35 ⁰C, which is twice as high as the studies in the 

literature. Besides, the proposed model showed around 35% increase in estimating 

the temperature of an aged battery as compared to [109], where the model showed 

a 130% higher error for an aged battery. The FNN in our study has the advantage 

of decoding some memory information than in [118] by adding some selected filter 

frequencies. Besides, the LSTM model with voltage as an input in this study shows 
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better performance than the LSTM in [108] with only current, SOC, and ambient 

temperature.  The table also shows the superiority of the proposed study over other 

studies due to including a variety of dynamic and fast charge conditions which 

challenge any modeling approach. 

Table 4.8: Comparison of temperature estimation models with prior research 

Model 

[Reference] 

Li-Ion Battery 

{Capacity} 

Testing Dataset 

{Studied ambient 

temperatures (⁰C)} 

Maximum 

temperature 

rise1(⁰C) 

Error1 (⁰C) 

{RMSE, MAXE} 

LSTM [108] N/A Drive cycle {1 ⁰C} 7 {N/A, 2} 

ANN [109] N/A {1.8 Ah} 

Constant current 

constant voltage 

charge {25 ⁰C} 

≈17 
New cell {0.3, 3} 

aged cell {0.15, 7} 

FNN [118] Sony {2.1 Ah} 

Constant pulsating 

charge and discharges 

{5, 25, 45 ⁰C} 

13 {N/A, 1.5} 

FNN, 

LSTM 

[Proposed] 

Panasonic {2.9 Ah} 
Drive cycles 

{-20 to 40 ⁰C} 
35 

FNN {2, 4.05} 

LSTM {1.8, 3.42} 

Kokam {31 Ah} 
4C Fast charge 

{20 ⁰C} 
13 

FNN {0.3, 0.72} 

LSTM {0.41, 

2.29} 

Samsung {3 Ah} 
Fast charge 

{25 ⁰C} 
8 

100% SOH  

{0.5, 1.15} 

80% SOH  

{0.8, 1.56} 
1Data are for most challenging cases 

4.8 Summary 

In this chapter, two deep neural network modeling approaches were proposed to 

predict the surface temperature of lithium-ion batteries. The first model type is 

based on a feedforward neural network (FNN) enhanced with external filters, while 

the second model is based on a recurrent neural network (RNN) with long short-

term memory (LSTM). These models were trained and tested at a range of driving, 
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charging and health conditions, with up to 15 ⁰C of temperature rise and 450 A of 

current for the fast charge tests. The models were also deployed to an NXP 

S32K344 BMS microprocessor to benchmark the models in terms of execution time 

and memory use. Including filtered voltage and current inputs to the FNN models 

considerably improved their performance, resulting in error close to or better than 

for the LSTM. The proposed FNN with 1 mHz filter model shown to be capable of 

predicting the temperature with a maximum error of no more than 4.5 ⁰C for 

challenging, low temperature drive cycles and no more than 0.3 ⁰C for 4C rate fast 

charges. Besides, the proposed FNN model showed around 35% increase in 

estimating the temperature of an aged battery than the beginning of life error. When 

running the models with around 3,000 learnable parameters on the BMS 

microprocessor, the FNNs required about 1/3 the execution time of the LSTM, 

showing that the LSTM is much more computationally complex than the FNN. The 

results also showed that both flash and RAM memory use of the FNN is much lower 

than the LSTM.  

Overall, the results show that machine learning algorithms are very effective at 

learning the relationship between battery temperature and measured terminal 

parameters, reducing the need to create complex battery loss and thermal models. 

The machine learning algorithms can also easily be implemented to a BMS 

microprocessor, and do not require excessive execution time or memory. 
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Lithium-Ion Battery Pack Thermal Modeling 

 ia an Integrated Physics and Machine Learning 

Based Approach 

Lithium-ion battery pack (LIBP) is an essential component in electrified 

transportation systems. The cost of LIBPs significantly impacts the electric vehicles 

(EVs) manufacturing cost, typically representing 30% to 40% of the electric 

vehicle's total cost [119]. Generally, LIBPs are configured from hundreds of 

batteries connected together to provide sufficient power and energy demands. 

Batteries in the pack experience major inconsistencies due to variations in the raw 

material, manufacturing and operational conditions. Several studies addressed 

optimizing the cell matching process during the manufacturing stage to avoid any 

potential problems resulting from cells’ inconsistencies during operation. However, 

these studies concluded that these variations are found even in cells from the same 

manufacturing batch due to tolerance in the human, manufacturing and welding 
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processes.  The inconsistencies, although result from, they also contribute to the 

nonuniform temperature distribution over the cells, which impacts the vehicle range 

and safety. Thermal management system (TMS) is responsible for monitoring and 

controlling every cell temperature in the pack and detecting any potential faults. 

TMS is coupled with thermal models, which help in fault decision-making and add 

a redundant monitoring system to the existing physical temperature sensors. 

Thermal models are complex, especially for multi-cell battery packs, due to the 

involvement of several system components other than the cells. However, robust 

thermal modeling of LIBPs is always required to ensure safe and reliable pack 

operation. 

Several methods have been introduced to model the thermal behavior of LIBs.  A 

lumped or multi-dimension temperature distribution modeling requires accurate 

thermal parameters, including heat capacity and thermal conductivity of cells and 

other components in the pack. Each of these thermal parameters has a physical 

meaning and describes a thermal phenomenon that happens in the cell and the pack. 

The cell thermal lumped parameters can be calculated using a mass-weighted 

average of heat capacity and conductivity of cell components, including current 

collectors, tabs, and electrolytes. However, most battery manufacturers do not 

provide these thermal parameters and consider them confidential. Hence, several 

studies addressed thermal parameters’ determination through direct measurement 

[120]-[123] and numerical methods [124]–[127].  
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Direct measurement methods utilize calorimeters [120], xenon flash sensors [121], 

and heat flux sensors [122] or inserting thermocouples inside the core of the battery 

[123]. These devices are used to directly measure the heat capacity and thermal 

conductivity of the cell. The direct measurement methods are accurate in measuring 

the battery parameters; however, they require complex preparation and expensive 

equipment. Other studies presented less complex methods to obtain the LIB thermal 

parameters [124]-[127] using simplified tests and nondestructive numerical 

procedures. The study in [124] proposed a simple test procedure followed by the 

least squares (LS) regression fitting to determine the thermal lumped parameters 

using the measured surface temperature during a current pulse test. Then a thermal 

lumped parameters (LP) model was tested to mimic the surface temperature of the 

battery using one drive cycle showing an error of less than 0.5 ⁰C. The study in 

[125] proposed an adaptive LS regression algorithm to estimate the battery lumped 

heat capacity and thermal conductivity of a cylindrical NCA battery in real-time. 

The LP model was investigated at ambient temperatures ranging from -20 to 40 ⁰C 

and was able to estimate the battery surface temperature with a root mean squares 

error of less than 0.05 ⁰C. The previous studies relied on the measured surface 

temperature in both parameters’ determination and the model’s validation. 

However, direct measurement validation should be provided to ensure the validity 

of the obtained thermal parameters using core temperature measurement and/or 

calorimeter. The study in [126] presented lumped heat capacity determination 

method for prismatic pouch, and cylindrical cells based on the LS regression using 
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a simple constant power loss test at room temperature.  Then the obtained heat 

capacity showed a 3.9% deviation from the heat capacity obtained by the 

calorimeters. The study in [127] expanded the work in [126] by performing 

parameter identification at multi-temperature, and three dimensions thermal 

parameters deduction from lumped parameters. Then LP and 3D temperature 

models were validated using temperature sensors and an infrared camera. The 

proposed LP and 3D models were able to estimate the battery temperature at 2C 

discharge rate with a maximum error of 1.6 and 2.2 ⁰C, respectively. Based on the 

previous discussion, the numerical parameters’ determination methods can be a 

sufficient and less complex alternative for obtaining battery thermal parameters. 

However, a validation of the adopted methodology is always preferred using direct 

measurement or benchmarking versus the given manufacturing thermal parameters. 

In addition, integrating additional components other than the cells in the pack 

should be considered when developing thermal models for multi-cell battery packs. 

Recently, neural networks (NNs), derived from machine learning, are commonly 

used to model LIB behavior due to their strong capability in encoding the complex 

nonlinear behavior of the battery. Several studies addressed the application of the 

NNs for battery voltage modeling [82], and state of charge [77], and state of health 

[80] estimation. Recently, several studies discussed the possibility of using the NNs 

to model the battery thermal behavior, including core and surface temperature 

estimation [83],[131]-[132]. In [131], a recurrent NN based on a recurrent neural 
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network with long short-term memory (RNN-LSTM) was utilized to estimate the 

battery surface temperature with an error of less than 1 ⁰C at room ambient 

temperature. While a feedforward NN (FNN) was benchmarked against RNN-

LSTM model in [83] to estimate a cylindrical battery surface at different ambient 

temperature conditions ranging from -20 to 25 ⁰C. The proposed models in [83] 

were able to estimate the battery surface temperature with a maximum error of less 

than 3 ⁰C. The wor  in [132] presented a nonlinear autoregressive network with an 

exogenous inputs model to estimate the battery core temperature. The model was 

benchmarked against traditional FNN, and both models were able to estimate the 

battery core temperature with a maximum error of less than 1 ⁰C. The study in [110] 

proposed a hybrid FNN with an extended Kalman filter to enhance the core 

temperature estimation of a cylindrical battery. The proposed model was able to 

model a prismatic battery core temperature with a maximum error of less than 0.3 

⁰C. In [99], a RNN-LSTM was used for early detection of battery thermal runway 

by monitoring the residual of the estimated and measured cell temperatures. The 

proposed NN thermal model in [99] showed a temperature estimation mean 

absolute error of 0.01 ⁰C and a maximum error of 0.41 ⁰C when tested using non-

faulty test cycles. Several studies demonstrated the capability of the NN to encode 

the thermal behavior of LIBs. However, the    models’ parameters are abstract 

with no physical meaning, and they are highly dependent on the quality of the 

collected data and the nature of the training dataset. 



Ph.D. Thesis – Mina Naguib                                      McMaster University – Electrical Engineering 

 

120 

 

A thermal model with a few degrees Celsius error is always required to ensure fast 

and safe fault detection and identification. In this chapter, an accurate integrated LP 

and FNN-based battery pack thermal model (LP+FNN) is introduced. Besides, the 

model is benchmarked against the traditional LP and FNN models. The 

parametrization and training of the proposed model are discussed, then the models 

are tested using drive cycles from an air-cooled LIBP at various thermal and driving 

conditions.  

5.1 Battery pack thermal modeling overview 

In this section, an overview of the LP, NN and integrated LP+FNN models is 

presented. Then, details of LP thermal of one and multi-cell models development 

are illustrated, including models' parameters and equations. Finally, multi-

perception FNN and LP+FNN models are presented. 

In this study, a robust thermal model that combines the benefits of both LP and NN 

models is introduced. A LP model consisting of cell thermal lumped parameters 

can be a sufficient alternative to model the thermal behavior of a LIB, which has 

been extensively utilized in several studies in literature. For multicell LIBP, a LP 

model should consider several aspects, including a variation of the airflow rates, 

heat transfer between the cells, and thermal mass of the pack components other than 

the cells. Figure 5-1 shows the LP model used in this study; the model is coupled 

with an electrical equivalent circuit model (ECM) to calculate the cells’ power 
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losses. Although LP model accuracy could be sufficient in design stages, for fault 

detection purposes, a few degrees Celsius error would cause a delay in fault 

detection and can, in the worst case, lead to thermal runway.   

On the other hand, a multi-perception feedforward NN (FNN) model, shown in 

Figure 5-1, utili es measured cells’ voltage, current, and SOC and maps them to 

the cells’ surface temperatures.    models are developed using data collected in 

laboratories or from a fleet of vehicles on the cloud. The NN models are accurate 

enough when tested using various conditions and do not require experts to develop 

them. However, the NN parameters are abstract, and these models' accuracy relies 

on the quality of the data. For automotive applications, data is usually acquired and 

logged with low-cost sensors, which can challenge the FNN estimation accuracy. 

To overcome these challenges, integrating physics with FNN-based models can 

gather the benefits of both models. In this study, the concept of integrating a LP 

model and FNN, shown in Figure 5-1, is proposed to develop an accurate thermal 

model of multicell LIBP. The proposed integrated model utilizes the output 

temperature of the LP model and some measured battery parameters to estimate 

cells’ temperatures with the best possible accuracy. In the following sections, the 

development stages of LP, FNN and the LP+FNN models are discussed. 
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Figure 5-1: Battery pack temperature estimation models overview 
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5.1.1 Overview of the thermal lumped parameters model 

5.1.1.1 Cell lumped parameters model 

In this study, a LP cell model shown in Figure 5-2 is adopted to model the thermal 

behavior of one cell, where the thermal mass and the generated heat are assumed to 

be concentrated in the center of the cell. The heat is generated at the core and then 

transferred from the core to the surface of the battery by thermal conduction. The 

heat generation, absorption and transfer can be described by the heat balance 

equations described in (5.1)-(5.4). The core thermal resistance is divided equally 

between the cell surface into two halves to mimic the left and right sides of a 

prismatic cell. In lithium-ion batteries, the heat is generated from two sources, 

including irreversible and reversible heat losses [133]. The irreversible heat losses 

represent the ohmic losses of the internal cell components, including electrodes, 

tabs, and chemical reactions. They can be represented by an equivalent electrical 

resistance that consumes power in the form of heat as in (5.2). The reversible power 

losses represent the change in the entropy of the chemical reactions. The reversible 

heat losses can be calculated by multiplying the rate of the change of the battery 

open circuit voltage (OCV), battery current (I) and core temperature (𝑇𝑐) as in (5.3). 

Then, the summation of these heat components is assumed to be transferred by 

conduction to the surface of the cell. 
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Where 𝑅𝐶ℎ,𝐷𝑐ℎ is the electrical equivalent charge or discharge resistance, OCV is 

the cell open circuit voltage, 𝑚𝑏 is the weight of the battery, 𝐶𝑏 is the specific heat 

capacity of the cell, 𝑇𝑐 is the core temperature and  𝑇𝑠1, 𝑇𝑠2 are the battery two 

largest area sides’ surface temperatures. Besides, 𝑃𝑙𝑜𝑠𝑠 is the total power loss and 

𝑅𝑐,𝑒𝑞 is the thermal lumped core thermal resistance of the battery. 

 
Figure 5-2: Cell thermal lumped parameters model 

5.1.1.2 Battery pack lumped parameters model overview 

In this subsection, a thermal LP model for an air-cooled multicell pack is developed 

using the thermal parameter of each component in the pack, including cells, tabs, 

and airflow. Besides lithium-ion batteries’ applications, the LP models have been 

𝑃𝑙𝑜𝑠𝑠 = 𝑃𝑙𝑜𝑠𝑠𝑖𝑟𝑟 + 𝑃𝑙𝑜𝑠𝑠𝑟𝑒𝑣 (5.1) 

𝑃𝑙𝑜𝑠𝑠𝑖𝑟𝑟 = 𝐼
2𝑅𝐶ℎ,𝐷𝑐ℎ (5.2) 

𝑃𝑙𝑜𝑠𝑠𝑟𝑒𝑣 = −𝐼𝑇𝑐
𝑑𝑂𝐶𝑉

𝑑𝑡
 (5.3) 

𝑚𝑏𝐶𝑏
𝑑𝑇𝑐
𝑑𝑡

= 𝑃𝑙𝑜𝑠𝑠 + (𝑇𝑐 − 𝑇𝑠1)/(2𝑅𝑐,𝑒𝑞) + (𝑇𝑐 − 𝑇𝑠2)/(2𝑅𝑐,𝑒𝑞) (5.4) 
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extensively used to model the temperature of different electrical applications, 

including electric motors [134],[135], and power electronic converters [136],[137]. 

The LP in this study is developed for an air-cooled N series cells module with air 

running through cooling channels in air gaps between cells, as shown in Figure 5-3. 

The heat is generated at the core of each cell and transferred from the core of the 

cell to the surface through thermal resistance by conduction, as discussed in the cell 

LP model shown in Figure 5-2. Then the heat is assumed to transfer from the two 

largest area surfaces (Ax) to the air by convection, as shown in Figure 5-3. The other 

cells’ surfaces (Ay and Az) are isolated with plastic casing and PCBs, and the heat 

transfer through these surfaces is neglected.  The heat transfer is initiated by each 

cell and transferred to the adjacent cell by conduction and to the airflow by 

convection means which are presented by lumped contact (𝑅𝑐𝑐) and channels (𝑅ℎ) 

thermal resistances, respectively as shown in Figure 5-3. The core and contact 

thermal lumped resistance is considered fixed for all cells assuming identical cells 

properties and connections, while the channels thermal resistances vary due to the 

variation of the airflow between cells. In addition, the heat capacity of the pack 

components other than cells is lumped and is represented by two shunt thermal 

masses (𝑚𝑐𝐶𝑐) added to each two cell sides. Hence, a thermal LP model shown in 

Figure 5-3 is built based on the aforementioned assumptions to model the 

temperature distribution over the cells in an N series cells module. The governing 

thermal equations describing the heat generation and transfer between every two 
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adjacent cells can be written as in (5.5)-(5.7). The parameters determination method 

of the proposed model is discussed in Section 5.3. 

 

 

Where 𝑚𝑐𝐶𝑐 is pack distributed lumped heat capacity of the pack components other 

than cells in J/K. 𝑅ℎ,𝑖 is the lumped channel resistance of the cell#i. 𝑅𝑐𝑐 is the 

equivalent lumped thermal resistance of the tap connecting two adjacent cells and 

𝑁 is the total number of cells in one module, 𝑇𝑎 is the inlet air temperature which 

is always equal to the chamber ambient temperature. 

Figure 5-3: The proposed thermal LP model of N series cells module 

𝑚𝑏𝐶𝑏
𝑑𝑇𝑐,𝑖
𝑑𝑡

= 𝑃𝑙𝑜𝑠𝑠𝑖 +
𝑇𝑐,𝑖 − 𝑇𝑠1,𝑖
2𝑅𝑐,𝑒𝑞

 +
𝑇𝑐,𝑖 − 𝑇𝑠2,𝑖
2𝑅𝑐,𝑒𝑞

    𝑖 𝜖𝑁  (5.5) 

𝑆𝑖𝑑𝑒1: 𝑚𝑐𝐶𝑐
𝑑𝑇𝑠1,𝑖
𝑑𝑡

+
𝑇𝑠1,𝑖 − 𝑇𝑐,𝑖
2𝑅𝑐,𝑒𝑞

+
𝑇𝑠1,𝑖 − 𝑇𝑎
𝑅ℎ,𝑖

+
𝑇𝑠1,𝑖 − 𝑇𝑠2,𝑖−1

𝑅𝑐𝑐
= 0  (5.6) 

𝑆𝑖𝑑𝑒2: 𝑚𝑐𝐶𝑐
𝑑𝑇𝑠2,𝑖
𝑑𝑡

+
𝑇𝑠2,𝑖 − 𝑇𝑐,𝑖
2𝑅𝑐,𝑒𝑞

+
𝑇𝑠2,𝑖 − 𝑇𝑎
𝑅ℎ,𝑖+1

+
𝑇𝑠2,𝑖 − 𝑇𝑠1,𝑖+1

𝑅𝑐𝑐
= 0    (5.7) 
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5.1.2 Overview of the feedforward neural network model 

Feedforward neural networks (FNNs), commonly called multi perception neutral 

networks, are inspired by the human brain. FNNs are commonly used in fault 

diagnosis of power systems [92] and pattern recognition [111].  The basic structure 

of traditional FNNs contains neurons, layers, and activation functions all connected 

together to map the network inputs to outputs. Two FNNs are used in this study as 

presented in Figure 5-1, the first     utili es the measured cells’ parameters as 

inputs to the model, while the LP+FNN utilizes the estimated temperatures from 

the LP model as an additional input besides the cells’ measured parameters. Both 

models have the same structure as the simple feedforward neural networks shown 

in Figure 3-6, and both output the cells’ surface temperatures. A correlation analysis 

is performed first on cells’ measured parameters to select the highly correlated 

inputs with the measured temperature. Once the models’ inputs and structures are 

selected, the models are trained where their weights and biases are proportionally 

adjusted based on the partial derivative of the loss function (E) as in (4.1). Details 

about the development of the FNN and the LP+FNN models, including structure, 

inputs selection and training, are presented in Section 5.3. 
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5.2 Cells and pack specifications, test setup and data 

collection 

An air-cooled LIBP extracted from a Plug-in Hybrid vehicle (PHEV) is utilized in 

this study. The battery pack consists of 72 series 72s SB Limotive cells, each 5.2 

Ah nominal capacity. The pack is divided into two modules; each is 36 series cells, 

as shown in Figure 5-4. The pack has a total energy of 1.3 KWh and 266 V nominal 

operating voltage. Besides, ten dummy cells are placed at the beginning of each 

module, blocked with duct tapes to optimize the airflow across the cells. The pack 

is equipped with a fan to provide fresh air, which is conducted through a duct placed 

in the middle of the two modules. The cells are separated with 8 mm cooling 

channels which permit the fresh air to cool the cells down.  

 
Figure 5-4: An air-cooled PHEV 72S1P battery pack layout 
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Table 5.1: Cell and pack specifications 

 Cell Pack 

Cell Manufacturer SB Limotive 
72 series connected cells 

Cell type Prismatic 

Cell chemistry NMC 

Nominal Capacity 5.2 Ah 

Nominal/min/max voltage 3.7/2.8/4.2 V 266/202 /302 V 

Max discharge current 200A 

Specific Energy/Power 87 Wh/Kg/2887 W/Kg 

Pack total energy (1.3 KWh) 

Pack 10-sec power (40 

KWh) 

Nominal resistance 2.6 mΩ 200 mΩ 

Weight and dimensions 

(Lx× Ly × Lz) 
220 g/ 12×80×120 mm 55 Kg/ 979×415×138 cm 

Surface Area (Ax, Ay, Az) 9600, 1440, 960 mm2 N/A 

Seventy-two temperature sensors, one sensor placed on top of each cell, are used to 

record the surface temperatures of each cell and to parameterize/train the lumped 

and neural network models. One cell from the pack, shown in Figure 5-5, is 

characterized and cycled at three different ambient temperatures, including 0, 10, 

and 25 ⁰C. A hybrid power characterization test (HPPC) is used for electrical 

equivalent resistance determination, which is used in power loss calculations. 

  
Figure 5-5: SB Limotive cell test fixture 
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Besides, a 10C constant power loss test is performed at 0, 10, and 25 ⁰C ambient 

temperatures on one cell and is used to determine the cell thermal lumped 

parameters, including the core resistance and heat capacity, as will be discussed in 

Section 5.3. The cell is placed in a chamber from Envirotronics, and the ambient 

temperature is controlled by controlling the cooling system of the chamber. 

Besides, one channel from Arbin firing circuit is used for this test with 60 A.  At 

each test, the voltage, current, SOC, and battery surface temperature are collected 

using the Arbin tester at a 0.1 Sec log rate. 

Similarly, the battery pack was tested using characterization and drive cycle tests 

at 15, and 25 ⁰C ambient temperatures, which is used as the inlet air temperature. 

The pack tests are performed using a D&V Firing Circuits battery tester and placed 

in a Thermotron chamber with specifications presented in Table 5.2. An 8C 

constant power loss test was performed on the pack to determine the convection 

coefficient and the heat capacity of the remaining pack components other than the 

cells. The pack was cycled using four standards, six Mix drive cycles and four 

different constant C-rates charges. During all test cases, the fan is assumed to work 

at the nominal speed, assuming that the safe temperature range of the cells is 15 to 

40 ⁰C which does not require a varying fan speed. The four standard drive cycle 

tests are UDDS, LA92, HWFET, and US06, while the Mix cycles are made of 

randomized portions of the standard drive cycles and are used to train the NN 

models. The drive cycles power profiles are generated for a similar PHEV with 3.9 
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KWh which are scaled to match the tested pack power and energy capabilities. Pack 

total voltage, cells' voltages, current, and amp-hours are logged using Orion 

Original BMS [139] in 0.1 Sec log rate, and the cells’ temperatures are collected 

using Orion thermistor expansion module [140] in 1 Sec log rate. These data are 

used to train and test the proposed models. The characterization and drive cycle 

tests performed on the cell and pack are also summarized in Table 5.3. 

Table 5.2: Test setup specifications for the cell and pack 

 Cell Pack 

Tester manufacturer Arbin Instruments 

Cycler 
D&V Electronics 

Test channel used 60 A, 0-5V 400 A, 0-500 V 

Voltage/Current 

accuracy 

+/- 0.04% Full 

Scale 
+/- 0.1% Full Scale 

Data acquisition rate 10 Hz 
10 Hz for voltage and 

current and 1 Hz for 

temperature 
Thermal chamber 

Envirotronics M# 

SH16 
Thermotron SE-3000-6 

Chamber size 16 cu. Ft. 104 cu. Ft. 

Collected data log 

acquisition accuracy 
Same as cycler 

Orion BMS and 

thermistor expansion  

 

 

 

 

 

 

module +/- 0.25% 

   

Table 5.3: Summary of tests performed on the cell and the pack 

 Cell Pack 

Vehicle modeled for 

calculation of drive 

cycle power profiles 

Minivan PHEV with 3.9 kWh  

Ambient 

temperatures tested  
0, 10, 25 ⁰C 15, 25 ⁰C1 

Characterization tests  
HPPC test, and 10C 

constant power loss 

8C constant power loss 

test 

Dynamic tests N/A 

Ten drive cycles including 

Mix#1-Mix#6 and UDDS, 

LA92, HWFET, US06, 

and 4-10C fast charges 

1The pack is placed in the chamber, so this temperature is considered the inlet air temperature 

as well 
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5.3 Temperature estimation models development 

In this section, the parameters determination method of the LP model at different 

ambient temperatures is discussed. In addition, the obtained cell lumped parameters 

are benchmarked against parameters obtained using different methods for similar 

prismatic cells in the literature. Then the rest of the battery pack lumped parameters 

are obtained using tests performed on the pack. On the other hand, the FNN and 

LP+FNN models' development is presented, including the selection of the inputs, 

network structure and training framework. 

5.3.1 Lumped parameters model development 

In this section, the thermal lumped parameters determination of the cell and the 

pack are proposed. The parameters include cell specific heat capacity, core thermal 

resistance, pack components distributed lumped heat capacity, thermal contact, and 

channel thermal resistances. 

5.3.1.1 Cell thermal parameters determination 

A simplified cell LP model is utilized in this work, as shown in Figure 5-2. The cell 

is placed in a thermal chamber, maintaining it at a fixed ambient temperature, as 

shown in Figure 5-6 (a). The cell is tested at constant ambient and convection rate 

by adjusting the thermal chamber cooling/heating system and circulators. Five 

thermocouples are placed on the surface of the cell in the locations shown in Figure 
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5-6 (b) to improve the accuracy of the parameters' determination process. The heat 

balance equations in (5.1)-(5.4) are utilized to model the heat generation and 

transfer in the cell. In this study, reversible heat losses are neglected since 

irreversible power losses are the dominant source of heat generation in LIB [127]. 

The parameter determination method proposed in [126] and [127] are used in this 

study. The cell is placed in the chamber, and the air is assumed to flow uniformly 

all over the cells with no barriers. Hence, Eq. (5.4) can be reformulated to (5.8), 

where cell temperature (𝑇𝑠) is represented by the average reading of the five 

sensors. Besides, the heat is assumed to transfer to the ambient by convection means 

only. Hence the heat flow from the surface to the ambient can be represented by an 

equivalent lumped resistance (𝑅𝑜,𝑒𝑞) as described in (5.9). 

Since the ambient temperature does not change during the test; therefore, equation 

(5.9) is substituted in equation (5.8) as shown in equation (5.10). 

The output resistance can be obtained from (5.10) at the steady state when 
𝑑𝑇𝑠

𝑑𝑡
= 0. 

Besides, 𝐶𝑏
′  can be obtained by fitting measured surface temperature rise 

𝑚𝑏𝐶𝑏
𝑑𝑇𝑐
𝑑𝑡

= 𝑃𝑙𝑜𝑠𝑠 +
𝑇𝑐 − 𝑇𝑠
𝑅𝑐,𝑒𝑞

   
(5.8) 

𝑇𝑐 − 𝑇𝑠
𝑅𝑐,𝑒𝑞

 =
𝑇𝑠 − 𝑇𝑎
𝑅𝑜,𝑒𝑞

,   ℎ𝑒𝑛𝑐𝑒      𝑇𝑐 =
𝑅𝑐,𝑒𝑞

𝑅𝑜,𝑒𝑞
 (𝑇𝑠 − 𝑇𝑎) + 𝑇𝑠  (5.9) 

𝑚𝐶𝑏
′
𝑑𝑇𝑠
𝑑𝑡

= 𝑃𝑙𝑜𝑠𝑠 +
𝑇𝑎 − 𝑇𝑠
𝑅𝑜,𝑒𝑞

,             𝐶𝑏
′ = 𝐶𝑏(1 +

𝑅𝑐,𝑒𝑞

𝑅𝑜,𝑒𝑞
 )  (5.10) 



Ph.D. Thesis – Mina Naguib                                      McMaster University – Electrical Engineering 

 

134 

 

temperature using least squares fitting as in (5.10). In order to separate the core 

thermal resistance and cell specific heat capacity, two 𝐶𝑏
′  values are required. 

Hence, the test is repeated at two different airflow rates assuming negligible cell 

parameters change with the variation of the airflow. 

Stacked or jelly-rolled batteries have two thermal conductivities according to the 

direction of the heat flow, including in-plane and cross-plane. Once the lumped 

core thermal resistance is obtained, the cell cross-plane (𝐾𝑥), and in-plane thermal 

conductivities (𝐾𝑦, 𝐾𝑧) can be calculated from the corresponding thermal resistivity 

as in (5.11) and (5.12) [127]. 

 
(a) Cell in the chamber 

 

 

 
 

 

 

 
(b) Temperature sensors' locations on 

the cell 

Figure 5-6: Test setup for determination of the cell thermal lumped parameters 
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Where 𝐴𝑡 is the total surface area of the battery, 𝐴𝑑 is the surface area of the case 

at 𝑥, 𝑦, 𝑧 directions, and 𝐿𝑑 is the length in 𝑥, 𝑦, 𝑧 directions. 

A constant power loss test is designed for the parameters’ determination process, 

which lasts for a long time, ensuring the cell temperature reaches steady-state 

conditions. The test is repeated two times, using only chamber fans, and another 

test with both chamber and external fans running. The test is repeated at three 

different ambient temperatures, including 0, 10, and 25 ⁰C. At each test, the cell is 

fully charged at 25 ⁰C then it is discharged to half its nominal amp-hours capacity 

prior to each test, and the ambient temperature is kept fixed during the whole test. 

The battery charge and discharge electrical equivalent resistance values are 

obtained using the HPPC test at three ambient temperatures, including 0, 10, 25 ⁰C 

covering the whole temperature range. A look-up table of the charge and discharge 

resistances at three ambient temperatures versus the SOC, shown in Figure 5-7, is 

used in power loss calculation. Figure 5-8 (a) shows the recorded current and the 

voltage response for 100 seconds of the 10C constant power loss test at 25 ⁰C while 

running the chamber fans only (low convection heat transfer rate). Figure 5-8 (b) 

shows the cell calculated power loss at 25 ⁰C using the chamber fans only. 

𝑅𝑐,𝑑 = 𝑅𝑐,𝑒𝑞 (
𝐴𝑡
𝐴𝑑
)               𝑑 𝜖 𝑥, 𝑦, 𝑧   (5.11) 

𝐾𝑑 = 
𝐿𝑑/2

𝐴𝑑𝑅𝑐,𝑑
    𝑑 𝜖 𝑥, 𝑦, 𝑧 (5.12) 
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(a) Charge resistance 

 
(b) Discharge resistance 

Figure 5-7: Cell charge and discharge electrical equivalent resistances at 

different SOC and temperatures 

 
(a) Zoomed voltage and current                                             

 
(b) Calculated power loss        

Figure 5-8: Periodic 10C constant power loss test and the corresponding cell 

power loss at 25 ⁰C 

Figure 5-9 shows the surface temperature readings of the five temperature sensors 

when the cell is tested at 10C constant power loss test when running at one and two 

fans at 25 ⁰C ambient temperature. The figure shows that the differences in the 

temperature between the sensors over the cell are within 1 to 1.5 ⁰C. This confirms 

the assumption of uniform temperature distribution over the cell surfaces. Besides, 
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the maximum temperature rise is always shown near the cathode which is made 

from aluminum causing higher losses as compared to the copper anode. The 

average temperature rise using one fan and two fans at 25 ⁰C is 4.5 and 3.2 ⁰C, 

respectively, ensuring sufficient two convection resistance values. Moreover, using 

two fans helps the battery to achieve steady state conditions faster than using only 

one fan. Figure 5-10 shows the average temperature rise of the cell at the same 10C 

power loss test when repeated at different studied ambient temperatures and 

convection rates. 

 
(a) One fan                                                                 

 
(b) Two fans                                                                 

Figure 5-9: Five sensors readings at 10C constant power loss test at 25 ⁰C 

using one and two fans 
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The calculated average power loss values from the ECM using equation (5.1) at 0, 

10, and 25 ⁰C ambient temperatures are {11.023, 8.920, 6.835} and {11,461, 9.368, 

6.836} for one fan and two fans respectively as presented in Table 5.4. To validate 

the proposed power loss model, the power loss is measured directly from the slope 

of measured energy during each constant power loss test. Figure 5-11 shows the 

measured power loss from 10C constant power loss test at three different ambient 

temperatures and two heat convection rates. The results show that the error between 

the calculated power loss and the measured power loss is reasonable, between 6% 

to 13% for all tests. The accuracy of the power loss model used in this study is 

important since the calculated power loss for drive cycles and the charges are used 

and contribute to the accuracy of the LP model. The calculated power loss is used 

for the rest of the chapter, including the parameters determination and testing of the 

LP model. 

         
           

 

 

  

  

  

  

  

  

 
  

  
  

  
  

  
  

  
  

  
  

 
  
  

  
  

  
  

 
  
 

 

       
        

Figure 5-10: Cell average measured surface temperature for 10C constant power 

loss tests using one and two fans 
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Table 5.4: Summary of obtained cell thermal parameters at three ambient 

temperatures 

Test 

Temp 

Fan 

Status 

Average calc. 

𝑃𝑙𝑜𝑠𝑠 
𝑅𝑜,𝑒𝑞  𝐶𝑏

′  𝑅𝑐,𝑒𝑞(K/W) 
𝐶𝑏 

(J/Kg.K) 

0 ⁰C 
One Fan 11.023 0.660 1857 

0.638 943.9 
Two Fans 11.461 0.407 2423 

10 ⁰C 
One Fan 8.920 0.653 2113 

0.613 1089.9 
Two Fans 9.368 0.416 2695 

25 ⁰C 
One Fan 6.835 0.665 2185 

0.609 1141.6 
Two Fans 6.836 0.414 2639 

 
(a) One fan                                                                 

 
(b) Two fans                                                                 

Figure 5-11: Measured power loss from 10C constant power loss test at three 

different ambient temperatures 

The average surface temperature of the five sensors shown in Figure 5-10 is utilized 

to obtain the cell thermal lumped parameters. At each temperature, the output 

resistance is calculated at steady state while LS fitting algorithm is utilized to obtain 

the 𝐶𝑏
′ . Once two 𝐶𝑏

′  values are obtained for each ambient temperature, the battery 

core thermal resistance and specific heat capacity are separated using (5.10). Table 

5.4 summarizes the parameters obtained at each test and ambient temperature. The 

obtained core lumped thermal resistance and specific heat capacity at 25 ⁰C are 
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0.613 K/W, and 1141 J/Kg.K, respectively, while the output resistance changes 

from 0.66 to 0.41 from one fan to two fans, respectively.  

The obtained cell thermal conductivity shows a slightly positive correlation with 

the temperature. This trend is most likely from the positive correlation of the 

thermal conductivity of the tabs and the current collectors with rising ambient 

temperature [141]. There are contradictory results regarding the influence of 

temperature on the thermal conductivity of LIBs. The studies in  [142],[143] 

concluded a declining trend in thermal conductivity with rising temperature, while 

the studies in [127],[144] showed a rising trend in the thermal conductivity with the 

temperature increase. However, no dependency of thermal conductivity was shown 

on the temperature as presented in [145]. 

The obtained cell specific heat capacity shows approximately a 17% increase over 

the temperature rise range. The positive correlation of the cell specific heat capacity 

with the temperature results from the change in the heat capacity of the porous 

material, i.e., cathode, anode, and electrolyte. The specific heat capacities of the 

porous material are a function of thermal expansion, molar volume, and 

compressibility, which all are a function of temperature [146]. However, nonporous 

materials, including electrodes, current collectors, and the casing, have a negligible 

correlation with temperature change. 
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A summary of measured specific heat capacity and cross-plane thermal 

conductivity for similar prismatic batteries presented in the literature is summarized 

in Table 5.5. The cross-plane thermal conductivity of the tested cell in this study is 

calculated using (5.12) in the x direction and the cell dimension mentioned in Table 

5.1. Only cross-plane thermal conductivity is benchmarked since there is a lack of 

the in-plane thermal conductivities presented in the literature. The table shows that 

the thermal parameters’ determination methods range from the mass-weighted 

average of cell forming materials, using calorimeter, or inserting thermocouples 

inside the cell. The specific heat capacity for the prismatic cells presented in the 

table ranges from 900 to1142 J/kg.K at nominal temperature. This variation could 

be due to the variation in cathode chemistry, nominal capacity, and the accuracy of 

determination methods. The obtained specific heat capacity of the tested cell in this 

study lies within the range of the values in the literature.  

Unlike the heat capacity, there is significant variation shown in the cross-plane 

thermal conductivity between the studies presented in the table. This variation 

could be from the change in the chemistry and cell structure. The obtained cross-

plane conductivity of the investigated cell is slightly lower than the range of the 

values presented in the literature; however, such uncertainty is acceptable for the 

proposed simple method, which does not require a complex or expensive test 

procedure or destruction to the cell. 
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Table 5.5: Comparison of obtained thermal parameters versus prior research 

Cell [ref] 
Cell 

(Ah) 

Cathode 

chemistry 
Determination Method 

𝐶𝑏 

(J/Kg.K) 

𝐾𝑥 (cross 

plane) 

(W/m.K) 

[126] 5 NMC Calorimeter 1025 N/A 

[147] 104 NMC Adiabatic chamber 1033 N/A 

[149] 43 NMC Infrared camera 978 N/A 

[150] 42 LFP EIS measurement 1142 N/A 

[151] 20 LFP Calorimeter 1048 N/A 

[152] 2.8 N/A 

Infrared camera 

973 N/A 

[149] 23 LTO 1146 N/A 

[153] 60 LFP N/A 0.485 

[143] 6.8 LCO 
Mass-weighted 

average 
N/A 0.821 

[142] 34 NMC Inserting core 

thermocouple  

N/A 1.1 

[154] 25 NMC N/A 1.1 

[155] 37 NMC Calorimeter 901 1.034 

[148] 8 LFP 
Heater + core 

thermocouples 
1093 0.54 

[127] 43 NMC 
Lease squares fitting + 

Infrared camera 
933 0.82 

Proposed 5.2 NMC Least squares fitting 1141 0.403 

5.3.1.2 Pack thermal parameters determination  

This subsection presents the rest of the pack thermal parameters determination, 

including contact thermal resistance, components distributed thermal heat capacity, 

and thermal resistance of the cooling channels, as listed in Table 5.6.  

Table 5.6: Overview of pack thermal parameters  

Parameter Definition 
Determination 

method 
Value 

𝑅𝑐𝑐 
Contact thermal 

resistance 

Direct 

calculation 
0.21 K/W 

𝑅ℎ 
Cooling channels 

thermal resistances Genetic 

algorithm 

See Figure 5-15 

𝑚𝑐𝐶𝐶  
pack distributed 

lumped heat capacity 

180/branch and 

25920/pack J/K 

Firstly, the contact tap that connects the cells is made from aluminum and is 20 mm 

in length, and the conductivity of the aluminum 𝑘𝐴𝑙  is 239 W/m.K at 25 ⁰C [156]. 
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Hence, the contact thermal resistance (𝑅𝑐𝑐), can be calculated using equation (5.13), 

and is 0.21 K/W assuming that the variation of this resistance over the temperature 

is negligible. 

Where 𝐿𝑐 the length of the contact tap.  

The convection rate of the cooling channels is non-uniform due to the non-uniform 

distribution of the air viscosity and pressure over the air path and cooling channels. 

An 8C constant power loss test shown in Figure 5-12 at 25 ºC ambient temperature 

(inlet air temperature) is utilized to determine the pack the distributed heat capacity 

𝑚𝑐𝐶𝑐 and channels lumped thermal resistances (𝑅ℎ,𝑖). For each module, the number 

of the cooling channels is N+1. The calculated average power loss of the cells from 

the test varies between 3.78 to 3.85 W. Figure 5-13 shows the steady state 

temperature of the 72 cells at the end of the constant power loss test. A maximum 

of 5 ⁰C variations of the maximum temperatures between the cells is shown. The 

middle and close to air inlets cells experience lower airflow rates as the viscosity 

of the air path is higher, and pressure drop is lower near the air inlet than the outlet. 

Hence, these middle and close to air inlets cells, i.e., cells 26 to 33, and 39 to 48, 

experience higher temperature rise than others. 

𝑅𝑐𝑐 = 
1

𝐿𝑐 × 𝑘𝐴𝑙
   

(5.13) 
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The air channels lumped resistances are obtained at steady state by minimizing the 

error function (𝑓) between the steady state measured cell surface (𝑇𝑚,𝑖) and the 

lumped parameters model estimated temperatures (�̂�𝐿𝑃,𝑖) in (5.14) using the genetic 

algorithm. It should be noted that the estimated surface temperature of each cell is 

obtained using the average temperature of the cell sides. The studied pack LP model 

is built based on MATLAB Simscape shown in Figure 5-14 and is used to obtain 

the LP estimated cells’ temperatures. 

 
(a) One cell calculated power loss and 

current 

 
(b) zoomed cell calculated power loss 

and current 

Figure 5-12: Periodic 8C constant power loss test performed on the pack and the 

corresponding power loss at 25 ⁰C 

min
𝑅ℎ

𝑓 =  ∑ (�̂�𝐿𝑃,𝑖(𝑅ℎ,𝑖) − 𝑇𝑚,𝑖)
2

𝑖=2𝑁

𝑖=1

    

                                         𝑤ℎ𝑒𝑟𝑒 �̂�𝐿𝑃,𝑖 =
(𝑇𝑠1,𝑖 + 𝑇𝑠2,𝑖)

2
  𝑅ℎ,𝑖𝜖 𝑅ℎ,1 → 𝑅ℎ,2𝑁+2 

(5.14) 



Ph.D. Thesis – Mina Naguib                                      McMaster University – Electrical Engineering 

 

145 

 

 
Figure 5-13: Steady state temperature achieved for each cell during 8C 

constant power loss test at 25 ⁰C 

 

 
Figure 5-14: MATLAB Simscape lumped parameters model for one module of 

the tested pack  
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Figure 5-15 shows the cooling channels' thermal resistances obtained from the 

genetic algorithm ranging from 5.2 to 8.5 K/W. The obtained resistances coincide 

with the steady state temperature rise shown in Figure 5-13. 

On the other hand, the pack distributed lumped heat capacity (𝑚𝑐𝐶𝐶) is calculated 

by minimizing the error function (𝑓) between the estimated and measured cell 

surface temperatures during dynamic temperature rise using the genetic algorithm 

after updating the model with the optimized convection resistances. The obtained 

branch pack distributed lumped heat capacity, 𝑚𝑐𝐶𝐶, is 180 J/K per branch. Hence, 

the total heat capacity of the pack components other than cells is 25920 J/K which 

represents approximately 145% of the total heat capacity of the 72 cells in the pack. 

Figure 5-16 shows the estimated surface temperature from the pack LP model 

versus the measured temperature for cell#1, 11, 40, and 69 at the 8C constant power 

loss test after obtaining the optimal convection resistances and pack distributed 

lumped heat capacity. It should be noted that the measured temperatures are 

collected in 1 ⁰C precision, which is the limitation of the Orion data logging system. 

The selected cells have different temperature rise ranges from 11 to 15 ºC. The 

results showed that obtained cell and pack thermal lumped parameters from LS and 

genetic algorithm are sufficient to mimic the pack temperature with less than 2.5 

⁰C maximum error (MAXE) for the 8C constant power loss test. However, further 

test cases are added in the following sections to illustrate the strengths and 

weaknesses of the LP model. 



Ph.D. Thesis – Mina Naguib                                      McMaster University – Electrical Engineering 

 

147 

 

 
Figure 5-15: Thermal resistance for cooling channels of two module battery 

pack extracted from 8C constant power loss test at 25 ⁰C 

 

 
(a) Cell #1 

 
(b) Cell #11 

 
(a) Cell #40 

 
(b) Cell #69 

Figure 5-16: Estimated LP model temperature versus measured for four cells at 

8C constant power loss test at 25 ⁰C 
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5.3.2 Neural network models development 

In this subsection, the FNN and LP+FNN temperature estimation models are 

developed. A Spearman's rank correlation analysis is performed to determine the 

inputs to each model. Besides, the structure, numbers and types of layers of each 

model are presented. Finally, the training process and parameters are presented. 

5.3.2.1 Selection of neural network model inputs 

Different measured parameters are collected from the pack during operation, 

including cell voltages, pack voltage, pack current, cells' SOC, cells' temperatures 

rise, and inlet air temperature. Different combinations of these measurements, 

except the cells' temperature rise, can be inputted to the FNN. Using all 

measurements will impact the complexity of the training process, and in some 

cases, it leads to overfitting problems [157]. Hence, Spearman's rank correlation 

coefficient is performed between the different inputs and the measured temperature 

rise for one cell [158] to obtain the best features. Spearman's correlation assesses 

both linear and non-linear correlation between two variables by looking for 

monotonic relationships.  

The correlation coefficients for each measurement with the cell surface temperature 

rise are listed in Figure 5-17.  Coefficients from 0 to 0.2 are considered as no 

correlation, from 0.2 to 0.4 are considered low correlation, from 0.4 to 0.8 are 

considered moderate correlation, and from 0.8 to 1 are considered strong 
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correlation. The figure shows that there is a strong correlation between the cell 

temperature rise and the current. However, no correlation is found between cell 

temperature rise and cell and pack voltages. Recently, several studies addressed 

improving the FNN performance by adding some filtered data to the inputs, such 

as voltage and current [93]. In this study, one low-pass first-order Butterworth filter 

is applied to the measured voltage and current and included in the correlation 

analysis. The Butterworth filter is selected due to its smooth frequency response 

roll-off and less phase delay. Three corner frequencies of Butterworth filters are 

applied to the cell voltage and current, including 0.1, 1, and 10 mHz. The current 

with 1 mHz filter corner frequency seems to have a better correlation with the cell 

temperature rise, while the filtered voltages tend to have no correlation. In addition, 

the air inlet temperature and SOC show a low correlation to the temperature rise. 

Besides, the estimated cell temperature rise from the LP model shows a strong 

correlation with the cell measured temperature rise.  Based on the correlation study, 

the filtered current with 1 mHz (If) corner frequency, the cell SOC, and air inlet 

temperature (𝑇𝑎) are selected for the FNN model inputs. In addition, the integrated 

LP+FNN model shares a similar structure and inputs to the FNN except by adding 

the estimated LP model cells' temperature rise (𝛥�̂�𝐿𝑃). Figure 5-18 shows the 

structure of the investigated NN temperature estimation models for one cell, 

including inputs, layers, activation functions, and output. Two hidden layers with 

ten neurons each are used (𝑁𝐻𝐿1, 𝑁𝐻𝐿2 = 10), which is expected to be a sufficient 

number of neurons and layers to achieve good accuracy [93]. The output layer 
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consolidates all the neuron outputs to create a single output value for the network, 

cell estimated temperature rise (𝛥�̂�𝐹𝑁𝑁 , 𝛥�̂�𝐿𝑃+𝐹𝑁𝑁). Once, the estimated 

temperature rise of each model is obtained they are summed to the cell initial 

temperature to obtain the estimated cell temperature (�̂�𝐹𝑁𝑁 , �̂�𝐿𝑃+𝐹𝑁𝑁). 

 
Figure 5-17: Correlation coefficients of different measurements and cell’s 

surface temperature 
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Figure 5-18: Structure of the FNN and LP+FNN cell models 

5.3.2.2 Neural network models training using mix cycles 

The FNN models parameters i.e., weights and biases, are updated iteratively during 

the backpropagation phase based on the loss (E) between the estimated and the 

actual output according to (4.1).  The FNN and the LP+FNN models for each cell 

were trained using five Mix cycles, validated with one Mix cycle and tested using 

four standard drive cycles at two different ambient temperatures, as listed in Table 

5.3 and shown in Figure 5-19. The temperature rise of the 15 ºC ambient 
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temperatures cycles is slightly higher than the 25 ºC tests. The temperature rise of 

most test cases is in the range of the training dataset; however, in few cases, the 

models have to extrapolate. Besides, robustness test cases are added to investigate 

more scenarios that are not included in the training dataset.  

The training initial learning rate of 0.01 is selected for the training process, which 

constrains how much the weights and biases can be adjusted for each epoch. The 

learning rate drop factor is 10%, and the patience is 1000 epochs, meaning that the 

learning rate is dropped by 10% each 1000 epochs. The training and testing datasets 

are resampled to 1 Hz and normalized, so their values are between 0 and 1. All the 

training data is used as one minibatch for each update of the training parameters. 

The training process stops after the validation dataset accuracy does not improve 

for 300 consecutive epochs. The network's learnable parameters are randomly 

initialized at the start of each training. Each model is multiple times with different 

initialization conditions to ensure a global- or near-global optimal solution is 

achieved. The network was created and trained using MATLAB 2021.b, the 

MATLAB Deep Learning Toolbox running on the shared hierarchical academic 

computing network (SHARCNET) with GPU. Table 5.4 lists the different 

parameters used in the training process of the proposed neural network models. The 

training process is repeated five times for each cell model, and the model with the 

lowest error for each cell is selected as the best-trained model. A total of 72 best-
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trained models for each of the FNN and LP+FNN models are developed and 

benchmarked against the estimated temperature from the LP model. 

 
                                                                 25 ⁰C                15 ⁰C 

Figure 5-19: Training and testing temperature rise targets for FNN and 

LP+FNN models 

Table 5.7: Feedforward neural network temperature estimation models training 

parameters 

Loss Function Optimizer ADAM 

Training Software MATLAB 2021.b, MATLAB Deep Learning Toolbox 

Training Platform SHARCNET 

Initial Learning Rate 0.1 

Learning Drop Factor 10% 

Number of Mini batches 1 

Validation Frequency Each 10 epochs 

Stopping Criteria 300 epochs with no loss improvement 

# Training Repetitions  5 

Mix#1 6 & 

4C 10C Charge

Training and Validation Set

Standard Cycles& 

4C 10C Charge

Testing Set
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5.4 Temperature estimation models testing using 

standard drive cycles and charge profiles 

In this section, three LIBP temperature estimation models are benchmarked, 

including LP, FNN, and LP+FNN models using standard and different C-rate 

charges, which were not included in either characterizing or training the models. 

The proposed thermal models are tested using four test cycles, including UDDS, 

LA92, HWFET, and US06 and charge profiles range from 4 to 10 C-rate at 15 and 

25 ⁰C ambient temperatures. These testing drive cycles range from city and less 

aggressive to urban and aggressive driving conditions. Figure 5-20 shows the 

maximum temperature rise achieved at the end of each drive and charge profile for 

each cell, and the corresponding average power loss. This temperature rise is 

proportional to the cell power loss and the duration of each testing profile. The 

figure shows that the maximum temperature rise for 15 ⁰C ambient temperature test 

profiles is slightly higher than the 25 ⁰C cycles due to increased battery internal 

resistance at lower temperatures. The figure also shows that the maximum 

temperature rise achieved by the less thermally aggressive profiles such as 

UDDS&4C is almost half the maximum temperature rise achieved by aggressive 

test cases such as US06. Besides, the temperature difference between the maximum 

temperatures of the cells ranges from 2 to 5 ⁰C depending on the generated power 

loss and the location of the cell. Hence, the studied temperature estimation models 
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will be challenged by large temperature rise and variations of temperature between 

cells. Figure 5-21 shows a summary of the average root means squares error 

(RMSE) of the temperature estimation for each model for the aforementioned 

testing profiles. This average error is the mean temperature estimation error for the 

72 cells. The average RMSE ranges from 0.78 to 1.74 ⁰C, 0.89 to 3.38 ⁰C and 0.32 

to 0.57 ⁰C for  P,     and  P+    models, respectively. 

It can be seen that the LP model is able to accurately capture the surface temperature 

of the cells at a range of thermal conditions with reasonable average RMSE, while 

the FNN model shows significantly higher RMSE for all test cases except UDDS 

at 15 ºC test. However, the LP+FNN shows the lowest average RMSE with more 

than half the error of the LP and the FNN for every test case.  

 
(a) 15 ⁰C ambient temperature 

 
(b) 25 ⁰C ambient temperature 

Figure 5-20: Cells' maximum and one cell time-domain temperatures for 

different test profiles and ambient temperatures 
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Figure 5-21: Models' temperature estimation RMS error for all testing cases 

The average  MSE at 15 ⁰C ambient temperatures is 1.46 and 1.72, 0.49 for  P, 

FNN, and LP+FNN, respectively. On the other hand, the LP, FNN, and LP+FNN 

models show an average  MSE of 1.14, 1.95 and 0.41 ⁰C, respectively for 25 ⁰C 

test cases. The LP+FNN shows better and more stable performance with ambient 

temperature change than the LP and the FNN models.  Overall, the LP+FNN 

achieved almost 65% and 75% less total average RMSE than the LP model and the 

FNN models, respectively. The RMSE is an important factor when developing a 

fault detection algorithm since every 1% RMSE impacts the prognosis decision. 

Overall, the results show how the FNN and the LP models can model the thermal 

behavior of the cells by incorporating information from the measured pack 

parameters. However, in fault diagnosis applications where the accuracy of the 

model contributes to the robustness of the fault detection, LP+FNN can be useful 
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and potentially can enhance the BMS capability of thermal fault detection and 

decision time reduction.  

Figure 5-22 shows the time-domain models estimated temperatures to the 

UDDS&4C at 25 ⁰C, the lowest temperature rise test case, for minimum and 

maximum temperature rise cells, namely cell#1 and cell#25. The figure also shows 

the cell current, SOC, and power loss. The figure shows that the minimum and 

maximum cells' temperature rise are 5 and 7 ⁰C, respectively. The LP and FNN 

models show close performance for the two cells, with the FNN models showing a 

slightly lower MAXE of 3 ⁰C. The FNN model also shows the highest error near 

the end of the charge, which might highlight the inability of the FNN to mimic the 

temperature relaxation of the battery. The LP+FNN model shows significantly 

better performance than the LP and FNN models, with less than 0.5 and 1 ⁰C RMS 

and MAX errors, respectively. However, the performance of both LP and FNN 

models is still acceptable for cells that experience a mild temperature rise of less 

than 10 ºC and less aggressive thermal conditions with less than 1.5 ºC RMSE. 
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(a) Minimum temperature rise, cell#1 

 
(b) Maximum temperature rise, cell#25 

Figure 5-22: Performance of the models for minimum and maximum 

temperature rise cells for UDDS&4C testing profile at 25 ⁰C 

Figure 5-23 shows the models’ temperature estimation for the minimum and 

maximum temperature rise cells, namely cell#1 and cell#30, for US06&6C at 15 

⁰C profile, which is one of the highest temperature rise cases. The temperature rise 

of the cells for this drive cycle is significantly higher than UDDS&4C test and 

ranges from 11 to 15 ⁰C.  The  P model shows a significantly better temperature 

estimation than the FNN, especially in the cell where the temperature rise is 15 ⁰C, 

namely cell#30 with a MAXE of 3 ⁰C. The LP model also shows almost double the 

RMSE for cell#30 as compared to cell#1. The FNN struggles to estimate the 

temperatures of the studied cells with a RMS error of more than 2 ºC and a MAX 

error of 6 ⁰C during the test and near the end of the profile. Both LP and FNN are 

challenged by this test case where the temperature rise reaches up to 15 ºC leading 
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to significantly higher error than the previous test case with UDDS&4C. On the 

other hand, the LP+FNN shows a stable and better accuracy for both cells as 

compared to both LP and FNN models, with less than half the RMS and 2 ⁰C MAX 

errors. Hence, intergang the LP to the FNN in an integrated model as in LP+FNN 

achieves the optimum performance, especially in thermally aggressive and higher 

temperature rise cases. 

 
(a) Minimum temperature rise, cell#1 

 
(b) Maximum temperature rise, cell#30 

Figure 5-23: Performance of the models for minimum and maximum 

temperature rise cells for US06&6C testing profile at 15 ⁰C 

5.5 Temperature estimation models robustness testing 

In all previous training and testing profiles, the cells’ initial temperatures always 

match the inlet air temperature (ambient). In this case, the pack is tested at two 

different conditions where the air temperature and the initial cells’ temperatures do 
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not match. The first test case is LA92&8C, but the inlet air temperature is set to 20 

⁰C while the initial cells’ temperatures are adjusted to 15 ⁰C. The second test is 

UDDS&4C, with the inlet air temperature are set to 15 ⁰C while the initial cells’ 

temperatures are set to 20 ⁰C. These test cases are developed to mimic actual 

scenarios where the driver may drive the vehicle while the cells are warmer or 

colder than set coolant or ambient temperatures.  

The three models are tested using these robustness cases, and a summary of the 

RMSE for all cells is presented in Figure 5-24. The FNN, and LP+FNN models 

show 98%, and 91% higher total average RMSE, respectively as compared to their 

performance when tested using standard cycles where the cells’ initial temperature 

matches the inlet air temperature discussed in the previous subsection. The LP 

model shows almost no degradation in its performance when tested using the 

robustness test cases, demonstrating its ability to encode different thermal scenarios 

than the FNN and the LP+FNN models. However, the LP+FNN model still shows 

the least RMS for these robustness test cases with less than 1 ºC RMSE. 

The error standard deviation is another important indicator that is utilized in 

assessing how each model can estimate the temperature of all cells with similar 

performance. The maximum standard deviation of the LP, FNN, and LP+FNN 

models’ maximum standard deviations are 0.49 ⁰C, 1.02 ⁰C, and 0.29 ⁰C, 

respectively. The FNN shows the highest standard deviation of all cells meaning 

that the FNN model struggles to estimate the temperature of all cells with similar 
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or close performance. The LP+FNN model shows the lowest standard deviation in 

all cells and cases, while the LP model shows a slightly higher standard deviation 

of the error. This demonstrates that the LP+FNN model is also able to estimate the 

temperature accurately and encode the variation of the cells’ temperatures through 

the pack using the LP model.  

 
Figure 5-24: Models' temperature estimation RMS error for the robustness test 

cases 

Figure 5-25 shows the models’ performance for both robustness test cases for one 

average cell, i.e., cell#52. The figure shows how the LP+FNN could outperform 

the LP and the FNN models in real scenarios which were not included in the training 

dataset with a MAXE of less than 3 ⁰C as compared to 4 and 6 ºC for the LP and 

FNN models, respectively. 
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(a) LA92&8C with inlet air 

temperature of 20 ⁰C and initial cell 

temperatures of 15 ⁰C 

 
(b) UDDS&4C with inlet air 

temperature of 15 ⁰C and initial cell 

temperatures of 20 ⁰C 

Figure 5-25: Models' temperature estimation of cell#52 for the robustness test 

cases 

Finally, Error! Not a valid bookmark self-reference. shows the summary of the 

error obtained for each model for all studied test cases. The presented maximum 

errors are for the most challenging test case and worst cell temperature estimation. 

Overall, the results demonstrate the capability of the proposed LP+FNN to model 

the temperature of a multi-cell battery pack under different dynamic and thermal 

conditions with 1 and 3 ⁰C RMS and MAX errors, respectively. 
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Table 5.8: Summary of LP, FNN, and LP+FNN models error for studied cases 

Test Case Error LP FNN LP+FNN 

Standard test 

cases at 15 ⁰C 

Average RMSE (⁰C) 1.46 1.72 0.49 

MAXE (⁰C) 5 8 2 

Standard test 

cases at 25 ⁰C 

Average RMSE (⁰C) 1.14 1.95 0.41 

MAXE (⁰C) 5 8 2 

Robustness test 

cases 

Average RMSE (⁰C) 1.27 3.64 0.86 

MAXE (⁰C) 6 9 3 

5.6 Summary 

In this chapter, an accurate integrated physics -neural network-based thermal model 

(LP+FNN) was introduced to estimate the temperature of the cells of an air-cooled 

lithium-ion battery pack (LIBP). Besides the proposed model is benchmarked 

against two temperature estimation modeling approaches, including a physics-

based thermal lumped parameters (LP) model and a feedforward neural network 

(FNN).  The parametrization and training of the models were discussed, then the 

models were benchmarked using test cases under various thermal conditions. 

Overall, the LP, FNN, and LP+FNN models showed an average root mean square 

error (RMSE) of 1.3, 1.8, and 0.4 ºC, respectively, when tested with standard drive 

cycles and different C-rate charges at different ambient conditions. The LP and 

FNN models achieved reasonable accuracy and close performance to the LP+FNN 

for lower temperature rise and less thermally aggressive test cases. However, for 

aggressive thermal conditions, the LP+FNN model showed significantly better 

temperature estimation accuracy, with a maximum error (MAXE) of less than 2 ºC 

for these cases. The models also were tested using realistic test cases while the cells 

were warmer or colder than the inlet air and ambient temperatures. The LP+FNN 
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showed promising accuracy with less than 1 ºC average RMSE, typically 33%, 76% 

less than the error of the LP and FNN, respectively, and 3 ºC MAXE for these 

realistic test cases. Based on the studied test cases, the accuracy of the LP+FNN 

model can potentially enhance the BMS's thermal fault detection capability and 

reduce the time of fault detection. 
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Thermal Fault Detection of Lithium-Ion Battery 

Packs Through an Integrated Physics and Deep 

Neural Network Based Model 

A variety of faults and failures may occur in a battery pack over time, many of 

which are hard to determine based on conventional measurements. For example, a 

blockage in the cooling system would result in higher temperatures, but a fault 

would typically only be triggered if temperatures exceed a protection limit [159]. 

Failure to detect and identify these faults leads to accelerated battery degradation 

and, in the worst case, triggers pack fire and explosion [159]. These faults pose 

reliability and financial challenges for electric vehicle (EV) manufacturers [160]. 

Most of these faults can be detected early by capturing anomalies in the measured 

voltage, current, and temperature. Therefore, a robust battery management system 

(BMS) that is able to detect and identify these faults is essential. Besides, a BMS 

that can early detect the fault can avoid severe consequences of faults and thermal 
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runway. As there are numerous fault types that can happen in LIBPs such as internal 

and external short circuits, onboard chargers, cooling systems and sensor reading 

faults. Internal short circuit fault, one of the main causes of triggering thermal 

runway in the pack, occurs due to the damage of the insulating separator and the 

defection of the electrodes. The external short circuit is also another common fault 

caused by the deformation of a battery pack after an EV collision or failure in the 

connection cables. Several studies have addressed the internal [161]-[163] and 

external short circuit [164]-[165] faults detection and identification. In addition, 

faults can also happen at onboard chargers, and robust fault detection should be 

able to take preventive measures to detect and isolate these faults [166]. The LIBPs 

utilize hundreds of sensors to monitor the cells' currents, voltages, and 

temperatures. The possibility of faults occurring in any sensor increases with such 

large number of sensors. As the BMS main functions are dependent on the accuracy 

of the collected measurements from the sensors, neglecting any of the sensor 

reading faults leads to incorrectly reported data to the driver and several safety 

hazards. Several studies proposed a methodology for the sensors’ fault detection 

[167]-[170]. 

Battery fault detection methods are classified as data-driven and model-based 

methods. In data-driven methods, the fault features are extracted from the battery 

measurements and correlated to different faults [165],[170]-[171]. Model-based 

methods are coupled with battery electrical or thermal models and are used in 
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different fault detection applications [163],[164],[167]-[169]. In these model-based 

methods, the faults are evaluated by analyzing the residuals between the measured 

and model battery key parameters.  

In the existing literature, most studies rely on measured voltage anomalies to detect 

different faults. The advantage of using measured voltages is the availability of 

voltage sensors installed on each cell in the pack [163]-[171]. The measured cells 

and pack voltages demonstrated their correlation with several electrical faults; 

however, voltage is less sensitive to the thermal characteristics of the cell, 

especially for thermal faults where the temperature change is quite small.  Few 

studies developed a thermal fault detection system based on the measured 

temperature. The studies in [172] and [173] used the temperature sensors reading 

and were able to detect higher than normal heat generation [172] and thermal 

runway [173]. However, these studies addressed severe and easy-to-distinguish 

thermal conditions where the cell and the pack experience a high-temperature rise 

or thermal runway. There are various thermal faults that can occur in the pack, 

including cooling system failure, coolant lower or higher than a setpoint, coolant 

flow blockage and temperature sensor reading faults. These thermal faults involve 

moderate temperature rise, which could make it hard to be detected using the 

existing methods. In addition, to the extent of the author’s knowledge, none of the 

existing work has developed multi-fault detection and identification method 
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specifically for thermal faults. Hence, the contributions of this chapter are as 

follows: 

1) Development a novel physics-based combined with a neural network model to 

precisely mimic the temperature of cells in an air-cooled LIBP 

2) Development of a cumulative log probability algorithm to detect different 

thermal faults  

3) Development of a fault identification scheme to differentiate between different 

thermal faults  

4) Validation of the proposed fault detection and identification method using 

various thermal faults, including cooling fan system failure, airflow lower or 

higher than setpoint, airflow blockage and temperature sensor reading faults 

6.1 Test Setup and method overview 

An air-cooled LIBP extracted from a Plug-in Hybrid vehicle (PHEV) is utilized in 

this study. The battery pack consists of 72 series 72s SB Limotive cells, each 5.2 

Ah nominal capacity. The pack is divided into two modules; each is 36 series cells, 

as shown in Figure 5-4. Eight temperature sensors are selected on the two modules 

at cells# 1, 13, 24, 36, 37, 49, 60, and 72, dividing the pack into six submodules 

(SMs) as shown in Figure 6-1. The eight sensors are selected to mimic actual packs 

where only eight to ten temperature sensors are installed for every 100 cells.  
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Figure 6-1: Tested pack and the locations of the eight temperatures sensors 

installed to monitor the whole pack 

An integrating physics and NN-based thermal model (LP+FNN) is utilized to 

mimic the estimate the temperature of the eight cells. The idea of integrating a 

lumped thermal parameters (LP) model and feedforward neural network (FNN) 

models, shown in Figure 5-1, is proposed to develop an accurate thermal model of 

multicell LIBP with the best possible accuracy. The development stages of the 

LP+FNN model were discussed in Section 5.3, except only eight cells are selected 

and eight installed temperature sensors. Figure 6-2 illustrates the theory of 

operation of the proposed fault detection and identification method. The proposed 

method works by comparing the measured and the modeled temperatures of the 

eight sensors. Then residuals are generated and evaluated. The fault decision and 

type are determined based on the behavior of the generated residuals. Detailed 

illustrations of the residual calculation, evaluations, and fault detection and 

identification are presented in Section 6.2. 
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Figure 6-2: The proposed fault detection and identification method overview 
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6.2 Multi-fault detection and identification method 

The proposed fault detection method is built based on the residuals between the 

measured and modeled temperatures. The residuals are generated and evaluated 

first, then the fault detection decision and type are determined, as will be discussed 

in the following subsections.  

6.2.1 Residual calculation and evaluation 

In this work, residual (𝑒𝑗) between the sensor reading and model temperatures is 

calculated as in equation (6.1). A model cannot be 100% accurate; hence zero 

residuals even in healthy conditions are hard to achieve. Therefore, comparing the 

residuals directly with a fixed threshold can lead to false alarms and worsen the 

methods' reliability. Hence, a cumulative probability model is used to evaluate the 

faults [174],[175]. The results collected from fault-free test cases are fit to a normal 

probability density function, and a normal (𝜇) and standard deviation (𝜎) of the 

residuals are obtained. Then a cumulative summation of the log of the probability 

of the residuals (𝑔) is calculated using equations (6.2)-(6.3). The log of the 

probability has the advantage of providing higher weights to the residuals with low 

probabilities, i.e., outside the μ±3σ residual thresholds, as shown in Figure 6-3. The 

fault can be differentiated based on the 𝑔 values where the measured temperature 

is higher than the modeled temperature and vice versa. The value of the 𝑔 function 
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accumulates every time the residual exceeds the three standard deviations threshold 

(μ ± 3σ ) and resets to zero when the residual value goes back inside the thresholds. 

A fault flag is used to represent faults where the measured temperature is higher 

than the modeled temperature and vice versa. The fault is determined when the 𝑔 

value exceeds predetermined limits (𝐽) as in equation (6.4). 

𝑒𝑖(𝑘) = 𝑇𝑚,𝑖(𝑘) − �̂�𝐿𝑃+𝐹𝑁𝑁,𝑖(𝑘) 

𝑖 𝜖 {𝑐𝑒𝑙𝑙#1,13,24,36,37,49,60,72} 

(6.1) 

𝑔𝑖(𝑘) = {

𝑔𝑖(𝑘 − 1) − log(𝑃𝐷𝐹(𝑒𝑖(𝑘)) )        𝑖𝑓 𝑒𝑖(𝑘) >  𝜇 + 3𝜎

𝑔𝑖(𝑘 − 1) + log(𝑃𝐷𝐹(𝑒𝑖(𝑘)) )        𝑖𝑓 𝑒𝑖(𝑘) <  𝜇 − 3𝜎

0                                         𝑖𝑓 𝜇 − 3𝜎 ≤  𝑒𝑖(𝑘) ≤   𝜇 + 3𝜎

 

(6.2) 

𝑃𝐷𝐹(𝑥) =
1

𝜎 × √2𝜋
e−0.5(

𝑥−𝜇
𝜎
)
2

 
(6.3) 

𝐹𝑖(𝑘) = {

𝐻𝑖𝑔ℎ                                            𝑖𝑓 𝑔𝑖(𝑘) > 𝐽1 

𝐿𝑜𝑤                                              𝑖𝑓 𝑔𝑖(𝑘) < 𝐽2
𝑁𝑢𝑙𝑙                                    𝑖𝑓 𝐽1 > 𝑔𝑖(𝑘) > 𝐽2

 
(6.4) 

Where 𝐹 is the fault flag declaring faults that the reading is higher and lower than 

the modeled temperature respectively, and 𝐽1 and 𝐽2 are fault thresholds that are 

tuned using fault free test cases. 
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Figure 6-3: The impact of log probability on the residual value 

In this study the residuals are generated using twelve healthy mix cycles at two 

different ambient and inlet air temperatures, namely 15 ⁰C and 25 ⁰C as summarized 

in Table 6.1 and shown in Figure 6-4 (a). The Mix cycles are used to develop the 

LP+FNN model, as discussed in Chapter 5. Figure 6-5 shows the histogram of the 

concatenated residuals of the eight sensors and models for the fault-free test cases. 

The figure also shows the fit of the residuals to a normal distribution function with 

a mean of 0.13 ⁰C and a standard deviation of 0.83 ⁰C.  

Figure 6-4 (b) shows the residuals and log probability function values (𝑔) for the 

fault free mix cycles. The figure shows that the maximum 𝑔 function values 

obtained for these healthy cycles are 520 and -210, respectively. Hence 𝐽1 and 𝐽2 

are adjusted slightly higher the obtained value, is 600, and -250 respectively for all 

sensors to avoid any false alarms. 
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Table 6.1: Summary of fault-free and faulty tests performed on air-cooled pack 

Test Cases Status Purpose 

Mix#1-6& 4C-10C charges at 

15 ⁰C and 25 ⁰C ambient 

temperatures 

Fault-free 
Residuals generations and limits 

tuning  

HWCUST&10C at 15 ⁰C and 

25 ⁰C ambient temperatures 
Fault-free 

Test the system under fault-free 

conditions 

US06&6C, UDDS&4C and 

LA92,8C at 15 ⁰C ambient 

temperature 

Fan is off Fan failure  

Fan speed is 200% of 

the nominal value 
Airflow higher than setpoint 

UDDS&4C at 25 ⁰C ambient 

temperature 

Fan speed is 50% lower 

than the nominal value  
Airflow lower than setpoint 

 W ET&10C at 15 ⁰C 

ambient temperature 

Submodule (SM3) is 

blocked 
Submodule airflow blockage 

UDDS&4C, LA92&8C, 

HWFET&10C, US06&6C at 

15 ⁰C and 25 ⁰C ambient 

temperatures 

Offset, scale, and 

incorrect reading faults 

are added to these 

healthy cycles 

Sensor reading fault  

 
(a) Cells’ measured voltage, current, 

SOC, and power loss 

 
(b) cells’ temperatures, estimation 

error, and cumulative 𝑔 function values 

 
Figure 6-4:  Cells' measured parameters and model estimated temperatures and 

the corresponding 𝑔 values for Mix#1-6 cycles at 15 and 25 ⁰C ambient 

temperatures 
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Figure 6-5: Residuals and normal distribution fit under healthy drive cycles 

6.2.2 Fault identification method 

Faults can occur in any part of the thermal system, including fan, cooling path, and 

data acquisition, i.e., temperature sensor reading. Several thermal faults are 

discussed in this study, including fan/pump failure, liquid/air flow higher/lower 

than setpoint, submodule air/liquid flow blockage and temperature sensor reading 

faults. One of the most severe faults that happen in the LIBP is the cooling fan or 

pump operation failure, as this triggers thermal runway [176]. This failure of the 

cooling system fan or pump is directly associated with a rapid temperature rise of 

the cells due to poor heat dissipation. Besides, air/liquid flow blockage can also 

lead to poor heat dissipation in some cells of the pack. Air/liquid flow blockage, 

although less severe, should be detected to avoid triggering the temperature rise of 

some cells in the pack, which could lead to a thermal runway if not detected and 

resolved [177]. In addition, lower or higher air/liquid flow than setpoint is also 
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another important fault that should be monitored to ensure correct fan/pump 

operation. Temperature sensors may have unexpected readings while operating due 

to various reasons. This reason varies from manufacturing, such as manufacturing 

defects or operational reasons, such as overtime exposure at high temperatures, 

vibration, shock, and signal interference [178]. Different temperature sensor 

reading faults detection are presented in this study, including offset, scale, and 

incorrect readings. Figure 6-6 shows the flow chart of the proposed fault detection 

and identification method.  The proposed method is applied on an air-cooled pack 

in this study; however, it works the same way if applied on a liquid-cooled LIBP.  

The method starts by collecting the residuals and evaluating the recorded fault flags 

(𝐹) in each sensor based on the 𝑔 function values. Then based on the number and 

nature of the recorded flags, the fault type is determined. The fault is declared once 

one or more flags are recorded during a waiting window (WT). Then the fault type 

is determined based on the type and number of the recorded flags.  If only 𝐹 is 

recorded in only one sensor, then a sensor fault is declared. If high 𝐹 is declared in 

two to four subsequent sensors, then airflow blockage fault is declared in the 

corresponding submodule(s). A fan failure or low airflow faults are declared if more 

than four high 𝐹 flags are recorded within the window time. The fan off and low 

airflow faults can be separated by adjusting a certain level of the 𝑔 value for each 

fault. Finally, if more than one low 𝐹 flags are recorded, then an airflow higher than 

the setpoint fault is declared. The faults in this study are assumed to sustain a long 
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time until being detected by the proposed method. The WT of fault declaration is 

tuned to ten minutes in this study. Also, the faults are assumed to happen one at a 

time. 

 
Figure 6-6: Flow chart of the proposed fault detection and identification method 



Ph.D. Thesis – Mina Naguib                                      McMaster University – Electrical Engineering 

 

178 

 

6.3 E perimental validation 

The proposed fault detection method is tested using different experimental test 

cases, including fault-free and thermal faults. Firstly, the system is tested using 

fault-free test cases summarized in Table 6.1. Then, the proposed method is tested 

using tests containing different faults, including fan off case simulating cooling 

system failure, fan speed higher and lower than nominal simulating airflow higher 

or lower than setpoint and submodule#3 air path blocked simulating airflow 

blockage, as presented in Table 6.1. Finally, the proposed method is tested by 

adding different sensor reading faults to the eight studied sensors, including offset, 

scale, and incorrect reading. The sensor fault is added to fault-free testing standard 

drive cycles at two ambient and air inlet temperatures, namely 15 ⁰C and 25 ⁰C 

presented in Table 6.1. 

6.3.1 Fault-free system analysis  

The purpose of this section is to validate the performance of the proposed method 

at fault-free conditions. Inaccurate fault threshold adjustment can lead to a false 

alarm which is always not desired.  The proposed method is tested using two cycles 

that were not included in developing the model and tuning the proposed fault 

detection method.  HWCUST, a customized highway drive cycle with speeds 

varying between 100 and 130 km/h followed by 10C charge, is used to test the 

proposed method. The cycle is repeated at two different ambient (inlet air) 
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temperatures, as mentioned in Table 6.1. This drive cycle mimics an aggressive 

usage of the pack followed by a high C-rate fast charge.  

Figure 6-7 shows the proposed method performance for the HWCUST cycle at 15 

⁰C and 25 ⁰C ambient and inlet air temperatures.  It can be seen that residuals of 

both cycles reside within the μ±3σ except for cell#1 at minute#8 for 15 ⁰C test. 

However, the 𝑔 value does not exceed the 𝐽 limits.  This consistency suggests the 

reasonability of the proposed limits used and demonstrates that the LP+FNN 

temperature estimation model can learn the pack's thermal behavior with reasonable 

accuracy even for cycles were not included in the development stages. 

 
(a) 15 ⁰C 

 
(b) 25 ⁰C 

 
Figure 6-7: Proposed method performance for HWCUST&10C fault-free test 

cases 
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6.3.2 Cooling system faults analysis 

In this section, the proposed method is tested using tests containing different faults 

in the cooling system, including fan-off simulating fan failure fault. In addition, 

airflow higher and lower than nominal fan speeds simulating flow higher or lower 

than setpoint and airflow submodule blockage faults are discussed. 

A long driving scenario containing a series of US06&6C, UDDS&4C and 

LA92&8C at 15 ⁰C is used, as shown in Figure 6-8 (a). At the beginning of the 

US06, the system is fault-free. Then, after eight minutes, the fan is switched off for 

36 minutes. Then, the pack is cycled using UDDS and 4C charge with the fan 

switched on again for an hour and 17 minutes which is sufficient for the cells to 

return to their non-fault status. Then, the fan speed is increased to 200% of its 

nominal value at the beginning of the LA92 cycle, which lasts for 45 minutes and 

is returned to its nominal speed.  

Figure 6-8 (b) shows the system measured, estimated temperatures and the 

corresponding residuals and 𝑔 values. In addition, the type, and the number of 

recorded flags during the waiting window of each fault. Firstly, the system shows 

no flags during the first 24 minutes of the beginning of the cycles and 16 minutes 

after the fan is switched off. Then the first two high flags are recorded at minute#24 

from cell#24 and cell#60. After 10 minutes of a waiting window, eight high flags 

are recorded in the system. Since five or more high flags are recorded in the system, 



Ph.D. Thesis – Mina Naguib                                      McMaster University – Electrical Engineering 

 

181 

 

a fan failure or low airflow fault is declared. The proposed method is able to detect 

the fan failure fault even before the tempeture reaches the 45 ⁰C.  

The fault is then cleared after one hour from the beginning of the test, and the 

residuals go back to the μ±3σ threshold. This period ensures the ability of the 

proposed method to work on nonfaulty conditions with no false alarm. Then the fan 

speed is increased after approximately one hour from the fan off fault clearance. 

Figure 6-8 (b) shows that it takes nine minutes for the system to record the first low 

flag from cell#13. After ten minutes of the waiting time window, eight low flags 

are recorded, declaring airflow lower than the setpoint fault. The method shows less 

time in detecting this fault than the previous fault since the limits for 𝐽2 is tuned 

lower than 𝐽1. However, this fault detection time is highly dependent on the 

temperature rise of the cells, driving behavior and nature of the fault. It should be 

noted that in both faults, the middle cells report the faults faster than the side cells 

showing larger sensitivity of these middle cells to the heat dissipated by the cooling 

system. 
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(a) Cells’ measurements and fan 

status  

 
(b) Temperature and faults declaration 

 
Figure 6-8: Proposed method performance for a long driving scenario at 15 ⁰C 

with the fan off and higher airflow than setpoint faults 

Another testing case with UDDS and 4C charge while the fan is set to 50% of its 

nominal speed to test the proposed method's sensitivity to low airflow faults.  The 

fan speed is halved at the beginning of the UDDS cycle, as shown in Figure 6-9 (a). 

Figure 6-9 (b) shows the system measured, estimated temperatures and the 

corresponding residuals and 𝑔 values of the eight sensors for this test case. The 

figure shows that no flags are recorded in the first 35 minutes. Then five high flags 

are recorded during the ten minutes waiting window, declaring fan or low airflow 

fault. The results shown in Figure 6-9 (b) demonstrate that the sensitivity of the 

proposed method is sufficient to detect less severe faults such as airflow lower than 

the setpoint.  
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(a) Cells’ measurements and fan 

status 

 
(b) Temperature and faults declaration 

 
Figure 6-9: Proposed method performance for UDDS&4C at 15 ⁰C with lower 

airflow than setpoint fault 

However, the proposed method shows 220% higher time in detecting the fault than 

the fan off fault, which might be due to the low power loss and temperature rise 

experienced with UDDS and 4C charge. 

Another testing case with repeated HWFET and 10C charge at 15 ⁰C ambient 

temperature simulating highway driving followed by a fast charge with the airflow 

blocked on submodule#3 containing cells#24 to 36 is also studied and shown in 

Figure 6-10 (a). Figure 6-10 (b) shows that cell#24 shows a high flag after 22 

minutes from the beginning of the test.  
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(a) Cells’ measurements and modules 

status 

 
(b) Temperature and faults declaration 

 
Figure 6-10: Proposed method performance for HWFET&10C at 15 ⁰C with 

submodule airflow blockage fault 

Two high flags are recorded during the ten minutes waiting window from cell#24, 

and cell#36 declaring airflow blockage fault in submodule#3. The flags also 

frequently appear as the fault is not cleared till the end of the cycle due to the safety 

of the test procedure.  During the test, the residuals exceed μ±3σ thresholds by only 

0.3 ⁰C or less.  However, the proposed method's sensitivity is sufficient to detect 

the fault after a reasonable time. 

6.3.3 Temperature sensor fault analysis  

The proposed fault method is tested using different temperature sensor reading fault 

types, including offset, scale, and incorrect reading. The sensor faults are added to 
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eight fault-free test cases at two different ambient temperatures, as described in 

Table 6.1. The temperature rise of these test cases is different, ranging from 7 to 18 

⁰C, which impacts the LP+FNN model performance. The temperature sensor 

reading faults are assumed to occur one at a time. 

An offset error ranging from -4 to 4 ⁰C in 0.5 ⁰C steps is added to the eight sensors’ 

readings during the studied cases. Figure 6-11 shows the proposed method 

performance for an example test case, namely UDDS&4C at 15 ⁰C ambient 

temperature with +1 ⁰C and +2 ⁰C offset faults added to sensor#49 after ten minutes 

from the beginning of the test. The figure shows that the model is not able to 

distinguish the +1 ⁰C offset fault despite showing some spikes in the 𝑔 function, 

which is less than the 𝐽1 threshold. However, the method is able to detect the +2 ⁰C 

offset fault after 33 minutes from the moment of fault occurrence. This detection 

time is highly dependent on the model accuracy for the test case and the fault offset 

value.  

Figure 6-11 (a) shows the number of reported sensor faults for each studied test 

case versus the different offset values. The figure shows that the proposed method 

shows no false reported sensor faults in all zero offset cases. The figure also shows 

that the offset faults of the higher temperature rise cases, namely US06&6C and 

HWFET&10C, are hard to distinguish due to the challenging performance of the 

LP+FNN for these cases.  
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(a) +1 ⁰C sensor offset fault 

 
(b) +2 ⁰C sensor offset fault 

 
Figure 6-11: UDDS&4C at 15 ⁰C ambient temperature test case with +1 ⁰C and 

+2 ⁰C offset reading faults added to sensor#49 

 
(a) Offset fault for different test cases 

at nominal 𝐽 threshold values 

 
(b) Average offset fault for different 𝐽 

threshold values 

Figure 6-12: Proposed method performance for a range of temperature sensor 

reading offset faults and different test cases 
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Overall, for all test cases and ambient temperatures, the proposed method is able to 

detect offset faults with 100% accuracy, meaning the eight sensors’ faults are 

reported, for temperature sensor reading offsets higher than ±3 ⁰C at the nominal 𝐽 

threshold values. Figure 6-11 (b) shows the impact of the adjustment of the 𝐽 

threshold on the proposed method's performance in detecting offset sensor faults. 

The figure shows that even with 𝐽 threshold increases to ten times its nominal value, 

the proposed method is able to detect offsets faults of ±4 ⁰C with an accuracy of 

88% or higher. 

A temperature sensor reading scale fault is also investigated in the study. A scale 

reading faults ranging from -0.2% to 0.2% in 0.05 % steps is added to the eight 

sensors’ readings during the studied test cases. Figure 6-13 shows the proposed 

method performance for another test case, namely US06&6C at 25 ⁰C ambient 

temperature with -0.05% and -0.1% scale faults added to sensor#60. The figure 

depicts that for the -0.05% scale fault, the 𝑔 function increases to some extent 

during the test; but this rise is not sufficient to hit the 𝐽1 threshold and report the 

fault accordingly. However, the proposed method is able to detect the -0.1% scale 

fault after a few minutes from the occurrence of the fault.  
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(a) -0.05% sensor scale fault 

 
(b) -0.1% sensor scale fault 

 
Figure 6-13: US06&6C at 25 ⁰C ambient temperature test case with -0.05% and 

-0.1% scale reading faults added to sensor#60 

 

 
(a) Scale fault for different test cases at 

nominal 𝐽 threshold values 

 
(b) Scale fault for different 𝐽 

threshold values 

Figure 6-14: Proposed method performance for a range of temperature sensor 

reading scale faults for different test cases 
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Figure 6-14 (a) shows the number of reported sensor faults for each of the studied 

test cases versus the different scale fault values. Similar to the offset fault, the 

proposed method's capability to detect the scale fault varies for each case, and for 

all zero scale fault cases, the proposed method does not show any false reported 

sensor faults. For all studied test cases and ambient temperatures, the proposed 

method is able to detect offset faults with 100% accuracy for temperature sensor 

scale faults equal to or higher than ±0.15% at the nominal 𝐽 threshold value. Similar 

to Figure 6-12 (b), Figure 6-14 (b) shows the impact of the adjustment of the 𝐽 

threshold on the proposed method's performance for detecting the sensor reading 

scale faults. The proposed method shows 100% detection accuracy for the scale 

reading faults of ±0.2% or higher, with the 𝐽 threshold being ten times higher than 

its nominal value.  

Finally, the detection capability of the proposed method is validated using senor 

stuck reading faults. Two incorrect sensor reading scenarios are investigated, 

including sensor stuck and random readings faults. Figure 6-15 shows the 

performance of the proposed method for UDDS&4C and LA92&8C test cases at 

25 ⁰C ambient temperature after adding incorrect temperature reading to sensors 

#13 and 24.  The maximum temperature rise of the UDDS&4C test is 5 ⁰C, while 

the LA92&8C is 11 ⁰C. A stuck fault of 28, and a random reading of 30.5 ⁰C, are 

applied to sensor#24 sensor#13 five and ten minutes  after the beginning of the test, 

respectively. The random sensor reading value is selected based on the average 
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temperature rise of each test. This random value makes the residuals close to or 

inside the μ±3σ thresholds.  The UDDS&4C, being the lowest temperature rise test, 

makes detecting any stuck or random reading error challenging to the proposed 

method. The proposed method is not able to detect the random reading error of 28 

ºC and takes around 51 minutes to detect the stuck reading fault for the UDDS&4C 

test. However, the proposed method is able to detect both faults for the LA92&8C 

test due to the dynamic change in the temperature of this LA92&8C. In addition, 

the proposed takes fewer minutes than the UDDS&4C case to detect the same stuck 

sensor reading fault. Based on the analysis above, the proposed method is able to 

efficiently detect and declare temperature sensor stuck reading faults when error 

exceeds the μ±3σ thresholds. The method also struggles, and in some cases could 

not detect, random sensor readings equal to or close to the average of the 

temperature rise of the test case. The studied test cases here are very specific and 

challenging to show the limitations of the proposed method. However, the any 

random or sensor reading fault can be detected with longer cycle time and the 

accumulation of the residuals.   
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(a) UDDS&4C with sensor#13 stuck 

and sensor#24 random readings faults 

 
(b) LA92&8C with sensor#13 stuck 

and sensor#24 random readings faults 

 
Figure 6-15: Proposed method performance for UDDS&4C and LA92&8C at 25 

⁰C with incorrect sensor reading faults 

6.4 Summary 

In this chapter, a method to detect and identify different thermal faults of lithium-

ion battery packs (LIBPs) was proposed. The method works by comparing the 

measured and the estimated temperatures from an accurate physics-based combined 

with a neural network model. The proposed fault detection and identification 

method was validated using various thermal faults, including fan failure, airflow 

lower higher than setpoint, airflow blockage and temperature sensor reading faults. 

The proposed method showed no false faults when tested by a customized highway 

driving test which was not included in developing and tuning the parameters of the 

proposed method. The proposed method also was able to detect and declare 
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different cooling system faults within 10 to 35 minutes after the fault occurrence 

and before even hitting the maximum temperature of 45 ºC. The fault detection time 

appeared to be dependent on the fault's nature and driving behavior. The fan off 

fault, being the most severe fault, is shown to be fast detected, while lower than 

normal airflow and submodule airflow blockage faults are shown to be more 

challenging to be detected. Hence, it is always important to test any thermal fault 

detection methods using these scenarios to ensure the robustness of the method in 

detecting similar less severe faults. Finally, the proposed method was tested using 

different sensor reading faults, including offset, scale, and incorrect reading. The 

method demonstrated being capable of detecting sensor reading offset and scale 

faults of ±3 ⁰C and ±0.15% or more, respectively with 100% accuracy.
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Conclusions and Future Work 

7.1 Conclusions 

The main contribution of this thesis is proposing an accurate and computationally 

feasible state of charge (SOC) and surface temperature estimation models using 

deep neural networks (DNN). Two DNNs are utilized in this thesis, including a 

feedforward neural network (FNN) enhanced with external filters and a recurrent 

neural network with a long short-term memory layer (LSTM). The computational 

load of the DNN SOC estimation models is benchmarked against the conventional 

Kaman filters using a processor in the loop (PIL) platform. The capability of the 

DNNs to estimate the surface temperature of different batteries is also tested at 

realistic and challenging driving, charge, and aging conditions. Finally, an 

integrated physics and neural network-based (LP+FNN) model is developed to 

model the temperature for a multi-cell lithium-ion battery pack (LIBP).  The 
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proposed LP+FNN model also demonstrates its capability to help in detecting and 

identifying different thermal faults. 

After presenting a comprehensive overview of the challenges of the developed SOC 

estimation algorithms for LIBPs, the necessity of providing a real-time platform to 

assess the computational load for different state estimation algorithms is clarified. 

It is concluded that the existing SOC algorithms lack real-time testing to ensure 

their feasibility when run on battery management system (BMS) processors. 

Besides, DNN are practical to run on the BMS microprocessor without violating 

the execution time and memory limits. It is also concluded that developing accurate 

temperature estimation models for lithium-ion batteries is beneficial to improve the 

reliability and safety of electric vehicles (EVs). Accurate temperature estimation 

models can work with temperature sensors to detect different types of thermal 

faults, reducing the risk of the thermal runway and EV fire.  

Two DNN SOC estimation algorithms are benchmarked against two conventional 

Kalman filters when tested on two different microprocessors using the PIL 

platform. The DNN SOC estimation algorithms include FNN and LSTM neural 

networks SOC estimation algorithms. An external Butterworth first-order filter is 

applied to the inputs to the FNN algorithm to add a memory feature to the algorithm. 

The other two SOC estimation algorithms include an extended Kalman filter (EKF) 

and EKF with a recursive least squares filter (EKF-RLS). The four SOC estimation 

algorithms are shown to be capable of accurately estimating the SOC of a drive 
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cycle with less than 5% error. The LSTM algorithm shows the most time to execute, 

0.71 ms on the higher power S32K344 processor, the FNN only had a lower 

execution time than the two EKF algorithms, 0.14 ms versus around 0.25 ms, 

showing that machine learning algorithms can have lower computational 

complexity to Kalman filters. The FNN and LSTM are also found to have less than 

5% of the RAM use of the EKF algorithms. None of the tested algorithms exceed 

the Flash memory limits showing that the flash memory is not an actual limitation. 

The DNN capability to efficiently learn the relationship between battery surface 

temperature and measured terminal parameters is also discussed. A FNN enhanced 

with filters, and LSTM models are proposed to estimate the surface temperature of 

different lithium-ion batteries. These models are trained and tested at a range of 

driving, charging and health conditions, with up to 35 ⁰C of temperature rise and 

450 A of current for the fast charge tests. The models are also deployed to an NXP 

S32K344 BMS microprocessor to assess their computational load. A 

comprehensive analysis of the low pass Butter-worth corner frequencies applied on 

the FNN inputs is investigated. Both FNN enhanced with filters, and LSTM models 

show a reasonable temperature estimation accuracy when benchmarked against 

other temperature estimation models in the literature. The proposed FNN with 1 

mHz filter model shows a maximum error of less than 4.5 ⁰C when tested using 

challenging, low-temperature drive cycles. In addition, the FNN with 1 mHz filter 

shows a maximum error of 0.3 ⁰C when tested using 4C rate fast charge rate and 
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0.8 ⁰C error when trained on new cell condition and tested on an aged cell. The 

FNN and LSTM models with around 3,000 learnable parameters are deployed to 

the BMS microprocessor. The FNN shows only about 1/3 the execution time and 

much RAM and Flash memory use than of the LSTM, showing that the FNN is less 

computationally complex than the LSTM. Overall, the results show that machine 

learning algorithms can efficiently learn the relationship between battery surface 

temperature and measured terminal parameters, making it easier for non-experts to 

build less complex temperature estimation models. In addition, both DNN 

algorithms show a feasible performance when deployed to a BMS microprocessor 

and do not require excessive execution time or memory. 

Finally, an integrated physics and machine learning-based (LP+FNN) model is 

proposed to model the temperature of an air-cooled LIBP. The model combines a 

thermal lumped parameters (LP) model and a feedforward neural network (FNN). 

Comprehensive details of the parameter determination of the thermal lumped 

parameters and training of the FNN are introduced. The model is tested under 

different drive cycles and charge conditions. Overall, the LP+FNN model shows an 

average root mean squares error (RMSE) of 0.4 ºC which is 70% and 77% less error 

than the LP and FNN models, respectively. The model is also tested using realistic 

test cases while the cells are warmer or colder than the coolant inlet and ambient 

temperatures. Overall, the LP+FNN shows less than 1 ºC average RMSE and 

MAXE of 3 ºC for all studied test cases. The LP+FNN model is then utilized to 
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detect and identify different thermal faults of air-cooled LIBPs by comparing the 

measured temperatures and the estimated temperature from the LP+FNN model. 

The proposed fault detection and identification method is validated using various 

thermal faults, including fan system failure, airflow lower higher than setpoint, 

airflow blockage and temperature sensor reading faults. The proposed method 

shows no false faults when tested by a customized highway driving test which is 

not included in developing and tuning the parameters of the method. The proposed 

method also is able to detect different cooling system faults within 10 to 35 minutes 

after the fault occurrence before reaching the protection maximum temperature 

limit. Finally, the proposed method is tested using different sensor reading faults, 

including offset, scale, and incorrect reading. The proposed method demonstrated 

being capable of detecting sensor reading offset and scale faults of ±3 ⁰C and 

±0.15% or more, respectively with 100% accuracy. 

7.2 Future work 

This thesis includes a number of improvements to battery SOC and temperature 

estimation modeling using DNNs. In addition, the developed DNN models’ 

computational feasibility to run for multi-cell LIBPs is investigated. Also, the 

proposed DNN temperature estimation models are tested using batteries at different 

dynamic and fast charge, aging conditions. Finally, a LP+FNN temperature 

estimation model is applied to detect and identify different thermal faults.  



Ph.D. Thesis – Mina Naguib                                      McMaster University – Electrical Engineering 

 

198 

 

With the fast-growing EVs connected to the cloud, the amount of generated data 

significantly increases than in the past. The first recommendation for the work 

presented in this thesis is to test the proposed DNN SOC and temperature estimation 

models using data collected from on-road electric vehicles. The performance of 

machine learning models, in general, improves by incorporating more information 

extracted from on-road driving scenarios such as driving routes, air conditioning 

and heating loads. However, these data are not always suitable to be fed to DNN, 

mostly due to the quality of the sensors. Hence, there is room for further 

investigation and improvement of the usage of cloud-collected data to enhance the 

performance of the DNN SOC and temperature estimation models. 

Another recommendation for the modeling part is to add more than one fan speed 

setting to the proposed LP+FNN temperature estimation models in this thesis. The 

proposed temperature estimation models are developed on cells and air-cooled 

LIBP working on nominal fan speed, meaning one heat convection rate. This 

assumption is justified by operating the cells and the pack at a normal temperature 

operating margin, .i.e, 15 to 40 ⁰C. Adding more than one convection rate to the 

thermal model would enhance the capability of the models to mimic scenarios 

where an active thermal management system works when the temperature goes 

outside the operating margin.  

A digital twin with a virtual model of a battery system mirroring the electro-thermal 

behavior of the LIBPs and providing a parallel fault thermal monitoring system to 
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the battery is another substantial recommendation for future use work. Instead of 

running the proposed LP+FNN and fault detection method onboard, it runs on the 

cloud. This also will allow for updating the LP+FNN model online by adjusting the 

FNN parameters using the collected data. This can be enhanced by the continuous 

improvement of newly emerging technologies such as IoT devices and cloud 

computing. 
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