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Abstract 

Ideally, a nutritional biomarker serves as an objective measure of the intake of a 

particular food or nutrient, may provide a reflection of health and disease processes, and 

can aid in the development of personalized nutritional recommendations. However, few 

food biomarkers have been validated and most have yet to be critically appraised in the 

literature. With the increased use of metabolomics in population-based studies, it is 

important to identify the sources of variability in nutritional biomarkers that may be 

attributed to intrinsic physiologic characteristics and extrinsic factors so that exposure-

outcome associations can be examined more accurately. Additionally, circulating 

metabolites are associated with obesity-related changes in gut microbiome but there has 

been limited integration of metabolomics with microbiome in childhood obesity, and 

even less is known in non-white populations. This dissertation presents a series of studies 

that provide direct support for utility of nutritional biomarkers in population-based 

studies. The first study, presented in Chapter 2, contributes to the growing literature on 

food-based biomarkers by generating a comprehensive list of metabolites associated with 

a comprehensive list of all individual foods and food groups, and rated the evidence 

based on interstudy repeatability and study design. Chapter 3 identifies sources of 

variability in serum metabolite concentrations in White Europeans and South Asian 

pregnant women, thereby guiding appropriate statistical modeling when utilizing 

metabolomics in nutritional epidemiological studies. Chapter 4 provides results from a 

multi-omics integration analysis of serum metabolites and amplicon sequence variants of 

16S ribosomal RNA genes to identify biomarkers that discriminate children with and 
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without obesity. Collectively, the results showed that a specific food/food group may give 

rise to many metabolites, however in several cases, a single metabolite can be a good 

indicator of food intake. Dietary factors explained the highest proportion of variability in 

exogenous food-based biomarkers relative to non-dietary factors, whereas the 

contribution of non-dietary factors was either similar or lower for metabolites that can 

either be produced endogenously, biotransformed by gut microbiota, and/or derived from 

more than one food source. Most of the circulating metabolites differed by ethnicity 

(South Asian and White Europeans). Biomarkers with good evidence can be considered 

direct surrogates for food intake, however, they can be influenced by several non-dietary 

factors, which require appropriate consideration during the statistical analyses of the data. 

Finally, the results showed notable differences in serum metabolome and specific gut 

bacterial species, and between specific metabolites and bacterial species related to 

childhood obesity. Obesity related metabolic pathways such as glutamate and carnitine 

metabolism may provide insight into the metabolic processes related to early onset of 

obesity in childhood. 
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Chapter 1 – Introduction 

1.1 Overview of metabolomics 

Metabolomics is one of the ‘-omics’ approaches that is used to characterize, identify, and 

quantify small molecules (metabolites) in a biological system (1). Metabolites are low-

molecular weight (up to 1000 to 1500 Dalton) chemical substrates, intermediates, or end 

products of biochemical reactions. A set of metabolites in an organism constitutes the 

metabolome (2). The metabolome provides a snapshot of the active metabolic processes 

which are influenced by internal factors including the genome, epigenome, transcriptome, 

and proteome, and external factors such as lifestyle and health behaviours including diet, 

gut microbiome, and environmental factors (1). The human metabolome is estimated to 

be comprised of thousands of metabolites, with the latest report in the Human 

Metabolome Database (HMDB) from December 2020 listing approximately 8,000 

endogenous metabolites (3), and 35,000 exogenous metabolites from sources of diet, 

medications, microbes, and environmental exposures (3). The application of 

metabolomics has increased exponentially in the past decade and is now routinely applied 

to identify correlative or predictive markers for various human diseases. Metabolome 

analysis can be a useful approach for not only the identification of biomarkers that can be 

used for diagnosis, treatment, and prevention of diseases, but also for providing novel 

insights into the molecular mechanisms and to generate hypotheses for future research. 

Metabolites have diverse chemical properties, thus, no single analytical approach 

is capable of measuring all metabolites (2). There are two fundamentally different 

approaches used for metabolite profiling: targeted and untargeted. The untargeted 
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approach is used to measure as many known and unknown metabolites as possible, often 

in a non-quantitative manner (2). The main limitation of this approach is the difficulty 

with identification of unknown metabolites (4). In contrast, the targeted approach 

provides absolute concentrations of a fixed number of known metabolites using authentic 

chemical standards and calibration curves for each metabolite (2). The targeted 

metabolomics approach is more accurate and precise than the non-targeted approach, but 

is more labor intensive and biased towards metabolites for which the appropriate internal 

standards are available for quantification (2). 

There are several analytical platforms that can applied for both targeted and 

untargeted approaches, with mass spectrometry (MS) and nuclear magnetic resonance 

spectroscopy (NMR) being the two most commonly used (5). MS measures metabolites 

based on their mass-to-charge ratios (m/z) (6). MS has higher sensitivity and lower limits 

of detection, higher resolution and accuracy, is relatively faster and requires smaller 

sample volumes compared to NMR (2). However, the samples can come in direct contact 

with the detector so there is a potential risk of contamination, thus quality control 

samples are required. MS is often combined with pre-fractionation methods such as gas 

chromatography (GC), liquid chromatography (LC), and capillary electrophoresis (CE) to 

reduce sample complexities (2, 7). GC provide a high resolution and sensitivity and is the 

most suitable technique for quantifying volatile and semi-volatile compounds (8). 

However, this technique requires intensive pre-processing and longer run times. While 

the traditional LC does not have a very high resolution, the development of high and 

ultra-high performance liquid chromatography (HPLC and UPLC, respectively) has 
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improved separation sensitivity and lowered run times, thereby making these methods 

highly efficient for large-scale studies (9). NMR applies a magnetic field to an atomic 

nucleus and uses radiofrequency waves to characterize the resonant frequency of the 

atomic nucleus in relation to its chemical or environmental surroundings (10, 11). Unlike 

MS, NMR offers advantages for metabolites that are difficult to ionize or require 

derivatization (i.e., requires no separation and derivatization), and this method is faster 

than GC-MS and LC-MS (12). NMR is inherently robust and reliable as it provides 

quantitative and structural information for the identification of compounds (12). 

Moreover, it is nondestructive so the samples can be reused for future analyses (13). The 

limitation of NMR is its relatively low sensitivity compared to MS, making it unsuitable 

to detect metabolites that are present in low abundance (2). Generally, the metabolomics 

workflow consists of a series of independent steps for identification of metabolites as 

shown in Figure 1.1. 
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Figure 1.1: Overview of the data workflow in metabolomics for identification of 

biomarkers relevant to human diseases in clinical medicine. 

Retrieved from: https://britz.mcmaster.ca/research/directed-metabolite-analyses 

1.2 Metabolomics in nutrition 

Objective, valid, and reliable assessment tools are needed to measure dietary exposure in 

order to gain a better understanding of the causal links between nutrition and health 

outcomes (14). However, measuring food intake using methods that are both accurate and 

applicable to free-living individuals remains a challenge (15). Dietary intake in 

epidemiological studies is traditionally assessed using self-reported, and often memory-

based approaches including dietary records, weighted food diaries, 24-hour dietary 

recalls, and food frequency questionnaires (FFQs) (15). The reliability and validity of 

these tools for measuring dietary intake have been questioned as they are prone to serious 

systematic errors (16, 17). With the exception of prospectively-collected weighted diet 

records, these methods rely on participants’ memory and are therefore prone to over- and 

under-reporting of certain foods (18). Additionally, day-to-day variability in dietary 

intake and estimation of portion size makes it difficult to accurately measure intake of 

food and nutrients (19). To overcome these limitations, metabolomics has been 

increasingly applied in large-scale epidemiological studies to identify and validate 

biomarkers of food intake (20, 21). Biomarkers offer a complement (or, in some cases, an 

alternative) to self-report tools for a more objective assessment of food exposures 

because they account for nutrient bioavailability and metabolism. Although studies using 

FFQs have shown to provide adequate precision to distinguish high from low consumers 
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of foods and foods varying across populations, studies using metabolomics better 

characterize dose–response relations (1). 

The ‘food metabolome’ has traditionally been defined as “the sum of all 

metabolites directly derived from the digestion of foods, their absorption in the gut, and 

biotransformation by the host tissues and the microbiota” (22). More recently, others 

have defined it as the whole set of food constituents in any food (1, 23). Although the 

application of metabolomics in nutrition has a relatively long history in identification of 

food biomarkers related to known constituents of food chemistry (using a targeted 

approach), the application of untargeted metabolomics only started to gain prominence in 

the mid-2000s and has greatly expanded in the last decade. Only a few biomarkers of 

foods have been validated to this date. For example, proline betaine has been validated in 

a large-scale observational study, where it was highly sensitive (86.3%) and specific 

(90.6%) for citrus fruit consumption and it has been shown to be minimally metabolized 

in the body (Figure 1.2) (24).  
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Figure 1.2: Receiver operating characteristic curves to assess the predictive ability of 

excretion of proline betaine for discrimination of citrus fruit intake and no citrus fruit 

intake 

Adapted from Heinzmann et al (24). 

In contrast, other metabolites that may be derived from a variety of precursors 

(e.g., trimethylamine N-oxide (TMAO)) or the occurrence of the same precursor in 

various foods (e.g., carnitine) are less robust in populations (Figure 1.3) (25).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Pathways for trimethylamine N-oxide (TMAO) formation from dietary 

sources 

Adapted from Janeiro et al (26). 
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For this reason, it is important to consider the characteristic of the food 

biomarker. Identifying robust biomarkers will depend on the sensitivity of the analytical 

technique used and the quality of dietary data against which the metabolites are 

correlated (21). Additionally, the chance of identifying biomarkers is limited if there is 

lower accuracy and lower number of foods documented in food questionnaires (21). The 

food metabolome is highly complex, with a varying composition based on the diet, and 

because of its responsiveness to change in dietary intake, has the potential to measure 

dietary exposure with a high level of detail and precision. 

1.3 Sources of variability in metabolite concentrations 

The ideal food biomarker is one that can be readily measured in the biological 

sample of interest at the population level, is highly specific for one food item or food 

group, shows a distinct dose- and time-dependent response, and is ideally neither 

generated in vivo nor extensively transformed by the microbiota and host tissue upon 

consumption. However, food matrices (i.e., the nutrient and non-nutrient components of 

foods) are complex since nutrients can be derived from various food sources rather than 

exclusively originate from a single food or nutrient and can show intercorrelation 

between metabolic processes (27). Further, the human metabolome can exhibit variation 

due to intrinsic physiologic characteristics, such as age, sex, ethnicity, hormonal levels, 

and the gut microbiome, as well as extrinsic factors such as dietary intake, drug use, 

lifestyle, and psychological stress. For example, TMAO is a naturally occurring small 

organic dietary compound that is produced by gut bacteria from choline, betaine, and 

carnitine and is abundant in diets rich in TMA precursors such as fish, beef, and eggs 
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(25). Further, many food-specific metabolites such as dietary quercetin-3-rutinoside or 

catechin are absorbed from the colon and are further metabolized in the liver at different 

rates (28), which can contribute to greater variability in metabolite concentration 

depending on the enzyme activity. Gut microbes influence the metabolism of food 

derived nutrients such as polyphenols. Hippuric acid, which is largely derived from 

vegetables, is derived from polyphenol contents of food via gut microbiota producing 

phenylpropionic acids (29, 30). 

There is evidence of sex differences in the human metabolome with one study 

identifying one-third of the metabolites measured in serum to be significantly different 

between males and females. Even among females, differences in metabolome have been 

observed between pregnant and non-pregnant women (31, 32). Several studies have used 

metabolomic approaches to better understand physiological changes associated with 

pregnancy and to examine metabolomic differences between pregnant and non-pregnant 

women as well as between women with normal pregnancy and those with pregnancy 

complications including pre-eclampsia, fetal growth restriction, and preterm delivery 

among other outcomes (33-37). Although studies have suggested the application of 

metabolomics to understand the underlying mechanisms and prognostic and predictive 

value of biomarkers in relation to pregnancy complications, they have not considered the 

influence of sociodemographic, environmental, and lifestyle factors when examining the 

association between metabolites and outcomes (38, 39). For example, a recent systematic 

review examining biomarkers associated with preterm birth noted that only three of the 

14 included studies statistically adjusted for confounding factors such as maternal age 
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and maternal weight or body mass index (BMI) even though all studies collected these 

data (39). To prevent bias and to accurately assess metabolite-health associations, it is 

essential to identify factors beyond dietary intake that may contribute to variability in 

metabolite concentrations in order to appropriately adjust for them in the analysis.  

Ethnicity is another important factor influencing, the metabolite concentrations 

and the susceptibility, incidence, and response to risk factors and health conditions such 

as obesity and type 2 diabetes (40, 41). In addition to genetics, differences in metabolic 

rate, dietary intake, socioeconomic and lifestyle factors, and access to health care may 

partly explain the ethnic disparities in health outcomes (42-44). It is therefore important 

to account for ethnicity when examining sources of variation in metabolite concentrations 

and when utilizing metabolomics to understand disease pathologies (45, 46). It is also not 

well known whether non-dietary factors contributing to variability in metabolite 

concentrations are similar or unique among different ethnic groups. Therefore, the 

purpose of the second study in this dissertation is to determine the extent to which non-

dietary factors explain the variability in the concentrations of the putative biomarkers of 

food intake among White and South Asian populations. 

It is important to identify the non-dietary sources of food biomarkers and 

determine to what extent these factors explain differences in metabolite concentration. 

Understanding these sources of variation will impact the utility of biomarkers of food 

intake and help advance the field by identifying robust and reproducible biomarkers that 

can be used routinely in public health and clinical research. The nutrients and 

macromolecules present in the habitual diet are metabolized and excreted, so they will 
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have some influence on metabolic profiles. Thus, utilizing a holistic approach, 

metabolomics, could prove invaluable for identification, annotation, and characterization 

of metabolic signatures associated with health outcomes. 

1.4 Obesity 

Obesity is a multifactorial process with complex etiology and has become a significant 

public health concern reaching ‘epidemic’ status worldwide (47). The prevalence of 

childhood obesity has progressively increased globally in the past few decades (48). 

According to the World Health Organization (WHO), the prevalence of childhood obesity 

has increased by 33% between 1990 and 2016, and if this trend continues, an estimated 

70 million children worldwide will be overweight or obese by 2025 (49). The most rapid 

increase in weight gain among children occurs between the ages of 2 and 6 years, and 

90% of children obese at 3 years of age present overweight or obesity during adolescence 

(50). Although childhood obesity is a growing problem worldwide, its prevalence is 

higher in nonwhite populations (51). Childhood obesity is a risk factor for future 

cardiovascular and metabolic complications such as dyslipidemia and type 2 diabetes, 

which become more prevalent with increasing age (52). In fact, obesity is the most 

common comorbidity of type 2 diabetes in children (53, 54). In recent decade, the 

increasing prevalence of type 2 diabetes in children is mainly due to the increase in 

obesity rates observed in children (55, 56). Over 85% of children with type 2 diabetes are 

overweight or obese at the time of diagnosis (54). On a societal level, childhood obesity 

has been shown to have significant social and economic consequences. The annual cost 

of childhood obesity in Canada is estimated to be $22 billion in lost productivity and 
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health-care costs (57). Additionally, the total lifetime cost attributable to 

overweight/obesity are estimated to be five times higher in females and three times 

higher in males with a history of childhood obesity compared to children with normal 

weight (58). 

Factors that likely contribute to the disparities in childhood obesity are many, 

involving genetics, physiology, socioeconomic status, culture, environment, and the 

interactions between them; but also other factors that have not yet been sufficiently 

researched such as the gut microbiome (43). The origin of obesity involves an imbalance 

between energy intake and energy expenditure resulting from the complex interplay 

between genetic, behavioural, social and environmental factors (59, 60). Adding to that is 

the variability in the composition of the gut microbiota, which may contribute to nutrient 

acquisition, energy regulation, and adipose storage (61). More recently, metabolomics 

has attracted great interest in obesity research because metabolic profiling can be used to 

detect subtle changes in metabolic networks and provide predictive biomarkers or 

biomarker patterns relevant to the biological mechanism of childhood obesity. Lifestyle 

interventions are effective but not sufficient in addressing childhood obesity (62).  A 

meta-analysis of randomized controlled trials examining the efficiency of behavioral 

family lifestyle interventions for childhood obesity found a small-to-moderate effect 

(standardized effect size of 0.47) of interventions on improving weight outcomes (63). 

Therefore, in addition to lifestyle interventions, identifying novel risk factors is important 

to provide insight into the etiopathogenesis of childhood obesity. 
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1.5 Obesity and Metabolomics 

Metabolic dysregulation is closely related to an individual’s predisposition to develop 

low-grade inflammation and oxidative stress, both of which contribute to pathogenesis 

and progression of obesity and associated downstream consequences such as the 

metabolic syndrome, type 2 diabetes and cardiovascular disease (64). Several metabolic 

traits (for example fasting blood glucose, triglycerides, and cholesterol levels) have long 

been used as biomarkers of obesity-related phenotypes (65). Using metabolites as 

biomarkers to understand pathogenesis and progression of obesity is useful because their 

levels are likely regulated by genetic and environmental factors, therefore they may be 

more so related to obesity in comparison to these factors (genetic and environmental) 

alone. 

 Metabolomic profiling of children with obesity has revealed several metabolic 

signatures. A recent systematic review of 41 studies that reported metabolic profiles of 

blood and urine samples of children with obesity found that the most commonly and 

consistently reported metabolites are branched-chain amino acids (BCAAs), aromatic 

amino acids (AAAs), short chain acylcarnitines (more commonly free carnitine and 

acetylcarnitine), lipids, and steroids (66). However, most of the studies included in this 

review were cross-sectional in design, which severely limits causal inference. Many 

studies used a targeted approach (i.e., assessing a list of known metabolites), which 

further limits the scope of their findings by possibly missing novel metabolites of obesity. 

Nevertheless, several biomarkers of childhood obesity reported in cross-sectional studies 
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may likely reflect obesity because they have been identified in interventional studies for 

weight loss and a causal study in young adults (67, 68). 

 There is evidence to suggest that some metabolites such as BCAAs and 

metabolites of tryptophan metabolism may be predictors of childhood obesity (69-72). 

However, whether they are markers or direct contributors to obesity, remains 

inconclusive. For example, BCAAs reflect dietary proteins and have frequently been 

linked with obesity (73), but paradoxically, a BCAA-rich diet improves metabolic health 

including satiety and regulation of body weight (74, 75). Further, metabolomic analyses 

can simultaneously assess metabolic changes related to diet, products of microbial 

metabolism, and physiological changes (76). For instance, the association between p-

cresol sulfate (L-tyrosine-derived microbial metabolite) and childhood obesity is 

inconsistent, likely because p-cresol sulfate can be affected by both tyrosine levels and 

altered microbial composition (77, 78). However, only a few studies have discovered 

metabolites (e.g., metabolites related to tryptophan metabolism and BCAAs) as 

determinants by metabolome at birth or during infancy and associated them BMI later in 

childhood (79, 80). 

There is ample evidence to support the role of endogenously produced or derived 

metabolites in response to host diet and biotransformed by gut microbiota, which may 

influence host metabolic processes (energy gain or inflammation) related to obesity (66). 

For this reason, there is a growing interest in the integration of metabolomics with other 

omics-based approaches to better characterize molecular changes of obesity necessary to 

gain a better understanding of this pathology. Therefore, integrative multi-omics analysis 
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of microbial and metabolomics data in a prospective cohort design has potential for 

identifying microbial influence on host physiology through production or modification of 

bioactive metabolites to gain a more complete understanding of the molecular changes 

that contribute to childhood obesity. 

Multi-omics aims to integrate two or more -omics datasets and offers a more 

system-based approach to explore molecular processes from many different perspectives. 

More recently, mixOmics provides a set of supervised and unsupervised multivariate 

methods for the integration of -omics datasets with a particular focus on variable 

selection. The package allows integration of multi-omics datasets on the same individuals 

(vertical integration) or across studies on the same variables (horizontal integration) to 

classify or cluster samples. Data Integration Analysis for Biomarker discovery using 

Latent cOmponent (DIABLO), a framework in mixOmics package, extends generalized 

canonical correlation analysis to identify correlated multi-omics features to discriminate 

subtypes of an outcome variable (81, 82). DIABLO is a multivariate dimensionality 

reduction method that selects correlated variables by maximizing the covariance between 

the linear combination of variables (latent component scores) from each omics dataset 

(Figure 1.4). 
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Figure 1.4: A framework for multi-omics data integration and identification of molecular 

features using DIABLO 

Adapted from Singh et al (83). 

1.6 Rationale 

Given the emergent application of metabolomics in food science and its potential for 

global metabolic assessment, discovery of food derived biomarkers, and monitoring the 

progression of diet-related metabolic diseases such as obesity, it is inevitable that more 

researchers will adopt metabolomics in future research. While there are a few 

metabolomics-derived food composition databases that serves as a resource for the 

scientific community, it remains a challenge to critically appraise and classify robust 

dietary biomarkers in a rapidly evolving field (84). Therefore, it is important to generate a 

comprehensive list of food associated metabolites and rate the evidence of these 
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biomarkers. It is also important to recognize that although the use of food metabolome is 

more objective, it exhibits variability due to the human intrinsic physiologic 

characteristics and extrinsic factors. Understanding the sources of variation in biomarkers 

of food intake that are not attributed to changes in food intake are critical to advancing 

the application/field of food intake biomarkers, because they will further reduce exposure 

misclassification. Finally, the focus of nutritional biomarkers has largely been on the 

discovery of specific metabolites associated with food consumption and its impact on 

chronic disease risk. It is highly relevant to identify biomarkers to characterize changes in 

metabolic profile of children with obesity in very early stages of life to prevent future 

chronic diseases. 

1.7 Aims and Objectives 

The overall aim of this dissertation was to contribute to the development of metabolomics 

in the field of nutrition and identify alterations in the metabolic environment using 

metabolome and microbiome during the early developmental stage of life to those who 

are at risk of developing obesity in childhood. The specific objectives of each study are 

listed below: 

Study 1 (Chapter 2):  

1) Generate a comprehensive list of metabolites associated with individual food and 

food groups in apparently healthy individuals 

2) Report on the study designs, metabolomic approaches, and biospecimen used. 

3) Using a scoring system, rate the empirical evidence of metabolites as candidate 

biomarker of food intake based on interstudy repeatability and study design. 
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Study 2 (Chapter 3): 

1) Examine the associations of non-dietary factors, including demographics, 

lifestyle, and pregnancy-related factors with serum metabolite concentrations 

using a panel of commonly identified biomarkers derived from food intake and/or 

gut microbiota in pregnant women of two ethnically diverse groups. 

2) Determine the extent to which non-dietary factors explain the variability in the 

concentrations of the putative biomarkers of food intake. 

Study 3 (Chapter 4): 

1) Employ multi-omics approach of 16S rRNA gene amplicon sequence variant 

(ASV) and serum metabolome data to identify integrated molecular features that 

characterize risk of obesity in children. 
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2.1 Abstract 

Recent advances in metabolomics allows for more objective assessment of contemporary 

food exposures, which have been proposed as an alternative or complement to self-

reporting of food intake. However, the quality of evidence supporting the utility of 

dietary biomarkers as valid measures of habitual intake of foods or complex dietary 

patterns in diverse populations has not been systematically evaluated. We reviewed 

nutritional metabolomics studies reporting metabolites associated with specific foods or 

food groups, evaluate the inter-study repeatability of dietary biomarker candidates, and 

report study design, metabolomic approach, analytical technique(s), and type of biofluid 

analyzed. A comprehensive literature search of five databases (PubMed, EMBASE, Web 

of Science, BIOSIS, and CINAHL) was conducted from inception through December 

2020. This review included 244 studies: 169 (69%) of which were interventional studies 

(9 of these were replicated in free-living participants), and 151 (62%) of which measured 

the metabolomic profile of serum and/or plasma. Food-based metabolites identified in 

more than one study and/or biofluid were associated with 11 food-specific categories or 

dietary patterns: 1) fruits; 2) vegetables; 3) high fiber foods (grain-rich); 4) meats; 5) 

seafood; 6) pulses, legumes, and nuts; 7) alcohol; 8) caffeinated beverages, teas, and 

cocoas; 9) dairy and soya; 10) sweet and sugary foods; and 11) complex dietary patterns 

and other foods. We conclude that 69 metabolites represent good candidate biomarkers of 

food intake. Quantitative measurement of these metabolites will advance our 

understanding of the relationship between diet and chronic disease risk and support 

evidence-based dietary guidelines for global health. 
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2.2 Introduction 

Diet plays an important role in modulating the risk of chronic diseases including 

obesity, diabetes, cardiovascular disease, and certain cancers (1). Food intake in 

epidemiological studies has traditionally been assessed using self-reported and often 

memory-based approaches, including 24-hour dietary recalls, weighted food diaries, or 

food frequency questionnaires (FFQs). The reliability and validity of these tools have 

been questioned due to presence of potentially serious systematic and random 

measurement errors (2, 3). Errors such as misreporting of total energy intake and food 

portion sizes by 30-88% (4, 5) have hindered efforts to disentangle diet-disease 

relationships. Over the last decade, metabolomics has emerged as a valuable tool for 

revealing changes in metabolic profiles induced by recent or long-term/habitual diets (6, 

7). High-throughput platforms for metabolomics enable comprehensive characterization 

of low molecular weight metabolites in biological samples, and offer a complement (or in 

some cases, an alternative) to self-report tools for objective assessment of “true” food 

exposures. Metabolomic studies may also better characterize dose-response relationships, 

which would be an advance over FFQs, which generally offer sufficient precision only to 

distinguish high from low consumers of food and food groups varying considerably 

across populations (8).  

The primary focus of nutritional metabolomics has been the discovery of specific 

metabolites associated with food consumption and its impact on chronic disease risk. 

Such studies have led to the discovery of atherogenic trimethylamine-N-oxide (TMAO), a 
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metabolite produced by the gut microbiome from dietary nutrients such as choline, 

betaine, and L-carnitine that are prevalent in eggs, red meat, and fish (9, 10). The ability 

to discriminate metabolites of foods in a robust and generalizable manner depends on 

intrinsic factors such as characteristics of the study population (e.g., genetics, ethnicity, 

food habits) and extrinsic factors such as quantity and duration of food exposure. This 

problem is further exacerbated because there is no clear consensus on the choice of 

optimal study designs, sample size, metabolomic approach, biospecimen type, and 

methods used for metabolite identification and quantification (11).  

The two main analytical techniques used in metabolomics are mass spectrometry 

(MS) and nuclear magnetic resonance (NMR); the latter method is highly robust, requires 

minimal sample handling, but is less sensitive. In contrast, MS-based approaches are 

usually preceded by more extensive sample preparation and chromatographic separations 

based on liquid chromatography (LC), gas chromatography (GC), or capillary 

electrophoresis (CE) for broader metabolome coverage with improved selectivity, 

including isomer resolution (12, 13). Recent advances in high resolution MS, in 

particular, the implementation of standardized LC-MS methods, have made it possible to 

detect thousands of molecular features when performing nontargeted metabolomics for 

hypothesis generation; however, rigorous data filtering approaches are needed to identify 

and authenticate metabolites while reducing data set redundancy and artifact signals to 

prevent false discoveries (8, 14, 15). On the other hand, targeted metabolomics is also 

widely used to quantify known list/group of known metabolites for hypothesis testing 

using validated analytical methods. Alternatively, both targeted and nontargeted 
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strategies using more than one analytical platform are increasingly used in large-scale 

metabolomic studies depending on sample volume requirements, sample throughput, and 

operational costs. 

There are several thousands of low molecular weight compounds derived from 

foods. The food biomarker alliance (FOODBALL) is a joint initiative across 11 countries 

aimed at discovery and validation of dietary biomarkers 

(http://foodmetabolome.org/foodball/). The Food Database (FooDB) 

(http://www.foodb.ca/) is the most comprehensive database with over 70,000 metabolites 

derived from foods and food constituents (16). Also, Exposome-Explorer 

(http://exposome-explorer.iarc.fr) is a manually curated database of exposome chemicals 

including dietary and pollutant biomarkers (17). While these databases are 

comprehensive and useful, it is challenging for the scientific community to critically 

appraise and classify robust dietary biomarkers in a rapidly evolving field. Furthermore, 

recent nutritional metabolomic reviews do not distinguish between health/disease states 

of participants, and thus disease status may confound the association between dietary 

intake and their biomarkers (18, 19). 

The purpose of this review is to 1) to generate a comprehensive list of metabolites 

associated with individual food and food groups in apparently healthy individuals, 2) 

report on the study designs, metabolomic approaches and biospecimen used, and 3) rate 

the evidence based on the inter-study repeatability and study design. 

http://foodmetabolome.org/foodball/
http://www.foodb.ca/
http://exposome-explorer.iarc.fr/
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2.3 Methods 

 A comprehensive literature search was developed in collaboration with an 

information scientist. We searched Medline through OVID, EMBASE, Web of Science, 

BIOSIS, and CINAHL and included published articles from inception until December 

2020. We used a comprehensive search strategy including a combination of Medical 

Subject Headings (MeSH) terms and key words related to study design, population, 

individual foods and food groups, and metabolomics. For the details of our search 

strategy, please see Supplemental Methods. References of the included studies were 

manually searched to identify any further relevant studies. Search results from all 

databases were merged and duplicates were removed with the use of EndNote citation 

manager (version X9, Thomson Reuters). Articles were initially screened based on title 

and/or abstract and full text of potential articles was retrieved and evaluated 

independently by two reviewers (TR and SMA). Any disagreement was resolved through 

discussion and if necessary, a third investigator made the final decision (RJdS). 

2.3.1 Eligibility Criteria 

Studies were eligible to be included in our review if 1) they were conducted in 

healthy adults or children of any sex or ethnicity, 2) used nontargeted or targeted 

approaches to identify metabolites of individual foods (e.g., oranges or red meat), 

complex dietary patterns (e.g., Mediterranean diet or meat-based diet), and/or specific 

nutrients or non-nutrients (e.g., trans-fats or carotenoids), 3) examined the relationship 

(observational studies) or the effect (intervention studies) of food on metabolites 

primarily in serum, plasma, or urine samples. We restricted the results to individual foods 
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and food groups but excluded dietary supplements, given that we were interested in 

reporting metabolites derived from food intake. We excluded studies: 1) that had 

examined food intake in conjunction with other interventions or lifestyle changes such as 

weight loss to ensure that a biomarker is specific to food and not some other intervention, 

2) without a control group, 3) that enrolled participants with existing disease to ensure 

that identified biomarkers are not a result of a pathologic process or pharmacological 

intervention. 

2.3.2 Study Selection Criteria 

 We identified 14,179 records across the five databases, and 12,177 remained after 

removal of duplicates (PRISMA flow diagram, Figure 2.1). The number of potentially 

relevant studies narrowed to 539 after title and abstract screening. After full-text review, 

a total of 244 studies remained eligible and were included in this systematic review. 

2.3.3 Data extraction and Analysis 

 We extracted information regarding publication details including name of first 

author and year of publication, and study characteristics including age, country, type of 

study (e.g., feeding study or cross-sectional study), sample size, length of follow-up, 

specification of analytical technique, biological sample (urine or blood), exposure and/or 

comparator details, method of dietary assessment (only for observational studies), and all 

resulting metabolites following diet exposure (Appendix Tables 1 and 2). Given the large 

number and chemical diversity of food metabolites, a data reduction approach was 

applied where only those metabolites that were identified in at least two different studies 

and/or biofluids (blood and urine) are presented and discussed in the text of this review. 
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Figure 2.1: Flow diagram of the literature search process 
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2.3.4 Assessing Level of Evidence 

We developed a scoring system to rate the evidence for each metabolite as a 

candidate biomarker of food intake into one of three mutually exclusive categories: 

‘good’, ‘fair’, or ‘poor’. The rating is based on empirical evidence of inter-study 

repeatability and study design.  

Repeatability: Metabolites identified in more than one study were assigned a score of 2 

points for each of these studies that was an interventional study plus 1 additional point for 

each observational study. Only metabolites that were replicated were assigned a score. 

The following algorithms were used to assess replication: (1) Two independent 

publications. A metabolite identified by one observational study and one interventional 

study was assigned a total score of 3 points (1x1 point for observational study and 1x2 

points for interventional study); (2) A single publication reporting results from two 

independent cohorts/studies of a metabolite of a food, and both were congruent, was 

assigned a score of 3 points (1x1 points for observational study and 1x2 points for 

interventional study); (3) Two different biological fluids for the same cohort (urine and 

blood). For example, a biomarker identified in both urine and blood sample was assigned 

a score of 2 points if identified in an observational study (1x1[urine] + 1x1[blood]) and a 

score of 4 points if identified in an interventional study (1x2[urine] + 1x2[blood]). 

Thus, the lowest score for replicated metabolite was 2 points, classified as poor 

evidence to be a score of 2 points, a score of 3-4 was considered as fair evidence, and a 

score of ≥5 points was considered good evidence (Table 2.1). While this scoring system 

has not been published previously in the literature, we have carefully designed it to be a 



PhD. Thesis – Talha Rafiq; McMaster University – Medical Science 

 

34 
 

tool for assessing the extent of evidence of metabolites as related to recent or habitual 

food consumption. Certain metabolites recently recognized in the scientific community as 

“strong” biomarkers of food intake (BFIs) such as proline betaine for citrus fruits, were 

also correctly classified as “good” using our scoring system. 
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Table 2.1: List and Scoring of Food Metabolites Replicated in Literature1 

Food Name Good (≥ 5) Fair (4-3) Poor (2) 

Fruits Proline Betaine (5)2 Hippuric acid (4)2  

Strawberry Pelargonidin Glucuronide (6) 
  

Apple  Epicatechin sulfate (4) 
Hydroxyphenylvaleric acid sulfate (4) 
Xylose (3)2 

 

Banana  3-methoxytyramine sulfate (3)2 
Dopamine sulfate (3)2 
Methoxyeugenol glucuronide (3)2 
Salsolinol sulfate 1 (3)2 

 

Fruit Juice  Proline Betaine (4) 
N-methylproline (3) 
Scyllo-inositol (3) 

 

Cranberry 
Juice 

 
Ferulic acid sulfate (4) 
Sinapic acid (4) 
Quinic acid (4) 
Hippuric acid (4) 

 

Orange Juice Proline Betaine (7)2 
Hippuric acid (6) 
4’-Hydroxyhippuric acid (6) 
3’-hydroxyhippuric acid (6) 
4-hydroxyphenylacetic acid (6) 
  

3-(3’-Hydroxy-4’-
methoxyphenyl)hydracrylic acid (4) 
3-(3’-Hydroxy-4’-
methoxyphenyl)propionic acid (4) 
3-(4’-Methoxyphenyl)propionic acid-
3’-sulfate (4) 

 

Orange Proline Betaine (5)2   

Citrus Fruit Proline Betaine (9)2 N-methylproline (4) 
Naringenin (3)2 
Hesperetin (3)2 
Chiro-inositol (3) 
Scyllo-inositol (3) 

 

Broccoli Sulforaphane (8) 
Sulforaphane N-acetylcysteine (8) 
Sulforaphane cysteine (8) 
Isothiocyanates (6) 

Sulforaphane cysteinylglycine (4) 
Erucin-cysteine (4) 
Erucin-N-acetylcysteine (4) 

 

Broccoli 
Sprouts 

Sulforaphane (8) 
 

Erucin (4)  

Cruciferous 
Vegetables 

 S-Methyl-L-cysteine-sulfoxide (3)2  

Green Leafy 
Vegetables 

  3-carboxy-4-methyl-5-propyl-
2-furanpropanoate (CMPF) 

Mushroom   Ergothioneine 
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Table 1: (Continued) 

Food Name Good (≥ 5) Fair (4-3) Poor (2) 

High-Fiber 
(grain rich) 

Alkylresorcinols (8) 
3-(3,5-dihydroxyphenyl)-1-
propanoic acid (DHPPA) (5)2 

2-aminophenol sulfate (4)2 
3,5-dihydroxybenzoic acid (DHBA) (3)2  

Daidzein 
Genistein 

Whole grain 
Rye Bread 

 Alkylresorcinols (4) 
DHPPA sulphate (3)2 

 

Meat Creatinine (6)2 Creatine (5)2 
O-acetyl-L-carnitine (3)2 
4-hydroxyproline (3)2 
Glutamine (3)2 

 

Chicken/ 
Poultry 

3-methylhistidine (11)2 Anserine (4)2 
Carnosine (4)2 
O-acetyl-L-carnitine (3)2 

Pyroglutamine3 

Processed 
Meat 

O-acetyl-L-carnitine (6)2   

Red Meat O-acetyl-L-carnitine (6)2 
 

Trimethylamine-N-oxide (TMAO) (4) 
Carnosine (4)2 
Carnitine (3)2 
Anserine (3)2 

 

Seafood Docosahexaenoic acid (DHA, 
22:6n–3) (5) 
 

CMPF (3)  
Eicosapentaenoic acid (20:5n–3) (3) 

Docosapentaenoic acid (22:5n–3) 
 

Fatty Fish Docosahexaenoic acid (DHA, 
22:6n–3) (5)2 

Eicosapentaenoic acid (20:5n–3) (4)2  

Fish Trimethylamine-N-oxide 
(TMAO) (19)2 
Docosahexaenoic acid (DHA, 
22:6n–3) (12)2 
CMPF (7)2 
Creatine (7)2 
Eicosapentaenoic acid (20:5n–
3) (7)2 
Dimethylamine (5)2 

1-methylhistidine (4) 
1,2,3,4-Tetrahydro-β-carboline-3-
carboxylic acid (4) 
Arsenobetaine (4) 
1-Docosahexaenoylglycero-
phosphocholine (3) 
Docosapentaenoic acid (22:5n–3) (3)2 
Acetylcarnitine (3)2 

Lysine 
Methionine 
Tryptophan 
Tyrosine 

Seafood (Lean)  Trimethylamine-N-oxide (TMAO) (4)  

Seafood & 
Plant Protein 

  Docosahexaenoic acid (DHA, 
22:6n–3) 

Shellfish  3-carboxy-4-methyl-5-propyl-2-
furanpropanoate (CMPF) (4) 

2-hydroxybutyrate 

Pulses/ 
Legumes/ Nuts 

 Trigonelline (4) 
3-methylhistidine (4) 
Dimethylglycine (4) 
Trimethylamine (4) 
Lysine (4) 
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Table 1: (Continued) 

Food Name Good (≥ 5) Fair (4-3) Poor (2) 

Dry Bean 
Enriched Diet 

 Trigonelline (4) 
Pipecolic acid (4) 
S-methylcysteine (4) 

 

Nuts (Mixed)  Tryptophan betaine (4) 4-vinylphenol sulfate 

Peanut  Tryptophan betaine (3) 
4-vinylphenol sulfate (3) 

 

Alcohol  4-Androsten-3β-diol disulfate (3) 
2-aminobutyrate (3) 

α-Hydroxyisovalerate 
β-hydroxyisovalerate 
5α-androstan-3β-diol disulfate 
2-hydroxybutyrate 
4-methyl-2-oxopentanoate 
Pipecolate 
Docosapentaenoic acid (22:5n–3) 
Stearidonate (18:4n3) 
Piperine 
Ethyl glucuronide 
Palmitoleate (16:1n–7) 
Dihomo-linoleate (20:2n–6) 
Malate 
17β-diol disulfate 
17β-diol disulfate 1 

Liquor  Ethyl glucuronide (4)  

De-alcoholized 
Red Wine 

Methylgallic sulfate (6) 
Σ(Epi)catechin glucuronides (6) 
3-Hydroxyphenylacetic acid (6) 
p-Coumaric acid (6) 

Ethylgallate sulfate (4) 
Ethylgallate (glucuronide 1) (4) 
Ethylgallate (glucuronide 2) (4) 
Σ Methyl(epi)catechin glucuronides (4)  
Σ Dihydroxyphenyl-γ-valerolactone 
glucuronide (4) 
ΣDihydroxyphenyl-γ-valerolactone 
sulfates (4) 
ΣMethoxy-hydroxyphenyl-γ-
valerolactone glucuronide (4) 
2,4-Dihydroxybenzoic acid (4) 
2,6-Dihydroxybenzoic acid (4) 
2,5-Dihydroxybenzoic acid (4) 
3,5-Dihydroxybenzoic acid (4) 
4-Hydroxybenzoic acid (4) 
3-Hydroxybenzoic acid (4) 
Gallic acid (4) 
Methylgallic acid (4) 
2-Hydroxyphenylacetic acid (4) 
Caffeic acid (4) 
Ferulic acid (4) 
3-(3-hydroxyphenyl) propionic acid (4) 
Enterolactone (4) 
Pyrogallol (4) 
Syringic acid (4) 
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Table 1: (Continued) 

Food Name Good (≥ 5) Fair (4-3) Poor (2) 

  Ethylgallate (4) 
3,4-Dihydroxyphenylacetic acid (4) 
Dihydrocaffeic acid (4) 
(Epi)catechin sulfates (4) 
Enterolactone (4) 

 

Wine  Ethyl glucuronide (3) 
 

2,3-dihydroxyisovalerate 
2,3-butanediol 
Scyllo-inositol 

Red Wine ΣMethyl(epi)catechin 
glucuronides (6) 
Methylgallic acid sulfate (5)2 
 

Gallic acid (4) 
Methylgallic acid (4) 
3-Hydroxyphenylacetic acid (4) 
p-Coumaric acid (4) 
(Epi)catechin glucuronide (4) 
dihydroxyphenyl-γ-valerolactone (DHPV) 
(4) 
DHPV 2 (4) 
ΣDHPV glucuronides (4) 
Ethylgallate (3)2 

 

Cocoa 3-methylxanthine (7)2 
3-Methyluric acid (5)2 
7-Methylxanthine (5)2 
Theobromine (5)2 

Epicatechin-glucuronide (4) 
5-(3′,4′-dihydroxyphenyl)-γ-
valerolactone glucuronide (3)2 

 

Coffee Paraxanthine (13)2 
Caffeine (13)2 
1-methylxanthine (10)2 
Quinate (9)2 
Theophylline (10)2 
Hippuric acid (9)2 
Trigonelline (9)2 
5-acetylamino-6-amino-3-
methyluracil (8)2 
Dihydroferulic acid (8) 
1,7-dimethylurate (6)2 
1,3,7-Trimethylurate (6)2 
3-hydroxyhippurate (6)2 
1,3-dimethylurate (7)2 
Catechol sulfate (5)2 
Dihydrocaffeic acid (6) 
Caffeic acid (7)2 
Ferulic acid (5)2 
Feruloylquinic acid (5)2 
Isoferulic acid (6)2 
N-(2-furoyl)glycine (5)2 
Theobromine (5)2 

3-caffeoylquinic acid (4) 
3-methyl catechol sulfate (4)2 
3-methylxanthine (4)2 
4-caffeoylquinic acid (4) 
Dihydrocaffeic acid-3-O-sulfate (4) 
1-methylurate (4)2 
3-hydroxypyridine sulfate (3)2 
7-methylguanine (3)2 
Caffeic acid sulfate (3)2 
Citraconate (3)2 
Cyclo(leu-pro) (3) 
Gallic acid (3)2 
Kynurenic acid (3)2 

3,7-dimethyluric acid 

Green Tea Hippuric acid (10) O-methyl-epicatechin-O-sulfates (4) 
O-me-epigallocatechin-O-glucuronide (4) 
(-)-epigallocatechin-3-gallate (4) 
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Table 1: (Continued) 

Food Name Good (≥ 5) Fair (4-3) Poor (2) 

Black Tea 4-O-methylgallic acid (5)2 Hippuric acid (4)  

Chocolate Theobromine (7)2 
7-methyluric (5)2 

7-methylxanthine (4)2 
6-Amino-5-[N-methylformylamino]-1-
methyluracil (6-AMMU) (4) 
3,7-dimethyluric acid (3)2 

 

Dark 
Chocolate 

 4-hydroxyphenyl acetate (4)  

Sweet and 
Sugary 
Beverages 

 Citrulline (3)2 
Taurine (3)2 
Isocitrate (3)2 

Carbon isotopic signatures (δ13C) 

Dairy   Pantothenic acid (vitamin B5) 

Butter  10-undecenoic acid (11:1n1) (3) 
 

Pentadecanoate (15:0) 
Methyl palmitic isomers 

Cheese  3-phenyllactic (4)2 
Proline (4)2 
Methionine (4)2 

 

Milk Galactonic acid (5)2 Galactose (4) 
Lactose (4) 
Galactono-1,5-lactone (4) 
Urea (4) 

Uridine 

High Soy Diet Daidzein (9)2 
Genistein (8)2 
O-desmethylangolensin (O-
DMA) (5)2 

Equol (4) 
Glycitein (3) 

Total isoflavonoids 

Soy-Based 
Drink 

 Pinitol (4) 4-ethylphenylsulfate 

Soy-Based 
Cheese 

 Daidzein (4) 
Genistein (4) 

 

Whey  Leucine/Isoleucine (4)  

Average 
Danish Diet 

 Theobromine (4) 
Proline betaine (4) 

 

DASH Diet  β-Cryptoxanthin (3)2  

Fruits & 
Vegetables 

Hippuric acid (5)2 β-Carotene (3)2 
Genistein (3)2 
Total carotenoid (3)2 

 

Healthy Eating 
Index 

 3-carboxy-4-methyl-5-propyl-2-
furanpropanoate (CMPF) (3)2 
Eicosapentaenoic acid (20:5n–3) (3)2 
Hippuric acid (3)2 

Docosahexaenoylcholine 
Docosahexaenoic acid (DHA, 
22:6n–3) 
Carotene diol 
Ergothioneine 
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Table 1: (Continued) 

Food Name Good (≥ 5) Fair (4-3) Poor (2) 

High 
Carotenoid 
Diet 

 α-Carotene (3)2 
β-Carotene (3)2 
Total carotenoids (3)2 

 

Mediterranean 
Diet 

 Docosahexaenoic acid (DHA, 
22:6n–3) (4)2 

3-carboxy-4-methyl-5-propyl-2-
furanpropanoate (CMPF) 

New Nordic 
Diet 

Trimethylamine-N-oxide 
(TMAO) (6) 

Hippuric acid (4)  

Vegetarian   Lysine 
Methionine 
Tryptophan 
Tyrosine 

Vegan  Alanine (3)2 
Glycine (3) 

 

1Metabolites identified in at least 2 studies 
2Robust biomarker (i.e., reported using both interventional and observational study design) 
 3Inverse association 
 
Interstudy repeatability score: interventional studies (2x); observational studies (1x) – Example: metabolite found in 2 
interventional studies and 1 observational study will have a score of 5 
 

Good = score of 5 or more 
Fair = score of 4-3 
Poor = score of 2 

 
Mass-to-charge ratio (m/z) for good metabolites only reported using untargeted analysis: Proline Betaine for orange (m/z = 
144.0988), Trigonelline (m/z = 138.0550), 1,7-dimethylurate (m/z = 195.0524), 1,3,7-Trimethylurate (m/z = 209.068), 3-
hydroxyhippurate (m/z = 194.0459), 1,3-dimethylurate (m/z = 197.0669), and Catechol sulfate (m/z = 188.9863) for coffee, 
Theobromine for chocolate (m/z = 181.0720), and Trimethylamine-N-oxide (TMAO) for New Nordic Diet (NND) (m/z = 76.0757) 

 

2.4 Results 

 This review included 244 studies: 169 (69%) of which were interventional studies 

(9 of these were replicated in free-living participants), and 101 (4 1%) of which 

measured metabolomic profile of urine, plasma (n = 64), serum (n= 46), or in both 

plasma/serum and urine samples (n = 41). A total of 7,273 individuals contributed data to 

169 interventional studies (average of 42 participants per study), and 79,256 individuals 

participated in 84 observational studies (average of 922 participants per study). Most 
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studies focused on adult population with only two intervention and seven observational 

studies including children and/or adolescents. All but two intervention and three 

observational studies did not provide information on age of participants, and nearly all 

studies reported sex-related information. The dietary biomarkers were measured in blood 

(plasma or serum) and/or urine sample and were detected using LC–MS (mainly with 

either reversed-phase (RP) or hydrophilic interaction (HILIC) modes), GC–MS, 1H 

NMR, or other analytical methods (e.g., flow-injection electrospray ionization-MS, 

capillary electrophoresis-mass spectrometry, or inductively coupled plasma MS) 

(Supplemental Figure S2.1). Each metabolite was scored based on the interstudy 

repeatability and study design score system described above. As expected, proline betaine 

was classified to have good evidence (score >5) for intake of citrus fruits as it appeared in 

two interventional studies (score=4) and five observational studies (score=5), for a 

combined score of 9. Meanwhile, ergothioneine for intake of mushrooms appeared in two 

observational studies and was classified to have poor evidence (score=2). Overall, our 

review concluded that 69 metabolites are good, 161 are fair, and 48 are poor biomarkers 

of foods. 

Most food-derived exogenous compounds are biotransformed into one or more 

metabolites following primary and secondary metabolism, and have an optimal detection 

window within a 24-hour period depending on dose and frequency of food intake (mostly 

with urine sample), though some extend to 48-hours or longer. In this section, we discuss 

robust dietary biomarkers associated with intake of specific foods or complex dietary 

patterns. Metabolites identified in more than one study or biofluid were grouped into the 
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following eleven categories: 1) Fruits; 2) Vegetables; 3) High Fiber (grain-rich); 4) 

Meats; 5) Seafood; 6) Pulses, Legumes, and Nuts; 7) Alcohol; 8) Caffeinated Beverages, 

Teas, and Cocoas; 9) Dairy and Soya; 10) Sweet and Sugary Foods; and 11) Complex 

Dietary Patterns and Other Foods.  
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Figure 2.2: Metabolites identified from fruits, vegetables and high fiber (grain-rich) 

foods, and seafood by number of studies, type of study design, and type of biofluid 

2.4.1 Fruits 

 A total of 29 subcategories of fruits were identified in this systematic review, of 

which, nine categories had reported at least one metabolite that was replicated (Table 2.1, 

Figure 2.2). Metabolites for intake of fruits were analyzed in two interventional (20, 21) 

and eight observational studies (22-29), fruit juices in one interventional (20) and three 

observational studies (22, 30, 31), citrus fruits in three interventional (20, 32, 33) and six 

observational studies (22, 27, 31, 34-36), orange in three interventional (20, 33, 37) and 

one observational study (22), orange juice in seven interventional (21, 38-43) and one 

observational study (34), apple in five interventional (20, 44-47) and two observational 

study (22, 45), banana in one interventional (48) and four observational studies (31, 34, 

48, 49), strawberry in four interventional studies (50-53), and cranberry juice in four 

interventional studies (54-57). Several studies reported higher concentration of proline 

betaine with intake of fruits in general (21, 24-26). Proline betaine was also identified as 

the most frequent biomarker of citrus fruit (20, 22, 27, 31, 32, 34) and orange juice (21, 

34, 38, 40), fruit juice (22, 30, 31), and the only metabolomic signature of orange fruit 

(22, 33, 37). Proline betaine was specific to the habitual consumption of citrus fruit or 

fruit juice due to its high natural abundance with appreciable amounts found in less 

commonly eaten foods, such as Stachys affinis or Chinese artichoke (58). In addition, 

studies reported higher levels of hippuric acid with intake of fruits (21, 24, 25), orange 

juice (39, 42, 43), and cranberry juice (55, 56). Other metabolites (including 
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biotransformed hippuric acid metabolites excreted in urine) identified were 3’-

hydroxyhippuric acid (39, 42, 43), 4’-hydroxyhippuric acid (41-43), 4-

hydroxyphenylacetic acid (39, 41, 43), 3-(3’-hydroxy-4’-methoxyphenyl)hydracrylic acid 

(41, 42), 3-(3’-hydroxy-4’-methoxyphenyl)propionic acid (42, 43), and 3-(4’-

methoxyphenyl)propionic acid-3’-sulfate (41, 43) for orange juice, naringenin (20, 35), 

hesperetin (20, 35), N-methylproline (22, 27, 34), chiro-inositol (22, 27), and scyllo-

inositol (22, 27) for citrus fruits, epicatechin sulfate (45, 47), hydroxyphenyl valeric acid 

sulfate (47), and xylose (45) for apple, and N-methylproline, chiro-inositol, and scyllo-

inositol for intake of fruit juice (22, 30, 31). Meanwhile, pelargonidin, the main 

anthocyanin highly specific to strawberries was the only dietary biomarker reported at 

high concentration after intake of strawberry (50, 51, 53), 3-methoxytyramine sulfate 

after intake of banana (34, 48), and one study reported higher urine and plasma 

concentration of ferulic acid sulfate and sinapic acid (54), and quinic acid (55, 56) 

following intake of cranberry juice. 

2.4.2 Vegetables 

 Five of the total 20 vegetable subcategories had identified at least one replicated 

metabolite as a dietary biomarker (Table 2.1, Figure 2.2). Metabolites associated with 

intake of broccoli were analyzed in five interventional studies (59-63), broccoli sprouts in 

four interventional studies (64-67), cruciferous vegetables in two interventional (68, 69) 

and three observational studies (22, 27, 34), green leafy vegetables in three observational 

studies (22, 27, 31), and mushroom in two observational studies (31, 34). Studies 

reported increased concentration of sulforaphane as the frequently identified metabolite, 
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which is derived from hydrolysis of glucosinolates by myrosinase, to be associated with 

intake of broccoli (62, 63) and broccoli sprouts (64, 65, 67). Additionally, sulfur-

containing isothiocyanate exogenous compound prevalent in cruciferous vegetables was 

another more frequently identified metabolite for intake of broccoli (60, 61), as well as 

related sulforaphane metabolites/thiol conjugates excreted in urine such as sulforaphane 

cysteinylglycine (62), sulforaphane cysteine (62, 63), and sulforaphane N-acetylcysteine 

(SFN-NAC) (62, 63). In addition, a higher concentration of erucin was found in urine or 

blood with intake of broccoli sprouts (65), erucin-cysteine and erucin N-acetylcysteine 

with broccoli (63), and S-methyl-L-cysteine-sulfoxide, 3-carboxy-4-methyl-5-propyl-2-

furanproponante (CMPF), and ergothioneine were the only metabolites associated with 

cruciferous vegetables (34, 69), green leafy vegetables (27, 31), and mushrooms (31, 34), 

respectively. 

2.4.3 High Fiber (Grain-rich) Foods 

 The subcategories of high fiber (grain-rich) foods and whole-grain rye bread had 

identified at least one metabolite that was replicated (Table 2.1, Figure 2.2). Metabolites 

for a high fiber diet were examined in six interventional (70-75) and nine observational 

studies (22, 23, 26, 29, 31, 76-79) and whole-grain rye bread in seven interventional (74, 

80-85) and one observational study (86). Higher concentration of urinary and blood 

alkylresorcinols, well-known phenolic lipids that are prevalent in whole grain wheat and 

rye, and 3-(3,5-dihyroxyphenyl)-1-propanoic acid (DHPPA), which can be measured as 

free molecules or as glucuronide or sulfonate conjugates resulting from phase I and II 

metabolism, was reported with intake of a high fiber diet (72-75) and whole-grain rye 
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bread (80, 81, 86). Meanwhile, studies reported higher intake of higher dietary fiber to be 

associated with greater urinary excretion and blood concentration of 3,5-

dihydroxybenzoic acid (DHBA) (75, 77), 2-aminophenol sulfate (26, 70, 79), as well as 

daidzein (23, 76), and genistein (23, 76). The latter two phytochemicals are not specific 

to fiber intake since they are also prevalent in soya products, which have long been 

associated with habitual dietary patterns, and cancer and chronic disease risk (87). 

2.4.4 Seafood 

  Six of the total eight subcategories had at least one metabolite that was replicated 

(Table 2.1, Figure 2.2). Metabolites for intake of seafood in general were identified in 

five observational studies (13, 26, 30, 31, 88), fatty fish in one interventional study (89) 

and three observational studies (90-92), fish in nine interventional studies (69, 93-99) and 

15 observational studies (22, 24, 27, 31, 34, 52, 88, 90, 94, 99-105), lean seafood in two 

interventional studies (106, 107), seafood in combination with plant protein in two 

observational studies (26, 108), and shellfish in four observational studies (22, 27, 34, 

105). Docosahexaenoic acid (DHA, 22:6n–3), an essential omega-3 fatty acid, was the 

most frequently reported dietary biomarker of seafood in general (13, 26, 30, 31, 88), 

fatty fish (89-92), and seafood in combination with plant protein (26, 108). Meanwhile, 

TMAO (a gut microbiota-generated metabolite) was the most frequently reported 

metabolite associated with intake of fish (52, 69, 94, 97-99, 105). DHA was the second 

most frequently reported metabolite associated with fish intake (22, 27, 31, 34, 90, 94, 

95, 97, 102), and CMPF for seafood in general (26, 30, 31), and shellfish (22, 27, 34). 

Further, two other omega-3 fatty acids, docosapentaenoic acid (22:5n–3) and 
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eicosapentaenoic acid (20:5n–3) were both reported higher after intake of seafood (13, 

26, 30, 31), fish (22, 27, 31, 34, 90, 95), and higher concentration of eicosapentaenoic 

acid (20:5n–3) was reported with intake of fatty fish (89-91). Also, elevated levels of 

CMPF (22, 27, 31, 34, 96), creatine (97, 98, 105), and dimethylamine (69, 99, 105) were 

associated with intake of fish, and TMAO for lean seafood (106, 107). Few other 

metabolites were replicated for intake of fish, and another metabolite for shellfish was 2-

hydroxybutyrate (22) an endogenous metabolite also associated with threonine 

metabolism and oxidative stress (109). We therefore do not consider it a specific 

biomarker for shellfish. 
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Figure 2.3: Metabolites identified from meats, pulses, legumes, and nuts, alcohol, and 

dealcoholized red wine by number of studies, type of study design, and type of biofluid 

1Metabolites in lower concentration compared to control 

2.4.5 Meats 

 Six meat subcategories were identified in this systematic review, of which four 

categories of overall meat intake, chicken/poultry, processed meat, and red meat had 

reported at least one metabolite that was replicated (Table 2.1, Figure 2.3). Examination 

of potential metabolites for meats was analyzed in two interventional (93, 110) and seven 

observational studies (24, 31, 90, 101, 104, 111, 112), poultry/chicken in four 

interventional (69, 94, 113, 114) and six observational studies (22, 27, 31, 34, 94, 114), 

processed meat in one interventional (94) and five observational (22, 27, 31, 94, 115), 

and red meat in five interventional (94, 114, 116-118) and seven observational studies 

(22, 27, 34, 94, 114, 115, 119). The most frequently identified metabolites include 

creatinine (93, 104, 110, 112) for meat, which was first identified a few decades ago and 

is degraded from creatine during cooking, O-acetyl-L-carnitine for red meat (22, 94, 115, 

118), and a modified amino acid, 3-methylhistidine for chicken/poultry (34, 69, 94, 113, 

114) which has long been used as a biomarker for muscle protein turnover. Other 

replicated markers include 4-hydroxyproline (31, 93), glutamine (110, 112), creatine (24, 

110, 112), and O-acetyl-L-carnitine (104, 110) for meat, TMAO (116), anserine (114), 

carnosine (94, 114), and L-carnitine (22, 116) specifically for red meat, O-acetyl-L-

carnitine for processed meat (22, 94, 115), as well as higher anserine and carnosine (94, 

114) and lower pyroglutamine level (27, 31) for chicken/poultry. 
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Pulses, Legumes, and Nuts 

 Four of the seven subcategories including mixes of pulses, legumes, nuts or dry-

bean enriched diets, mixed nuts, and peanut had reported at least one replicated 

metabolite (Table 2.1, Figure 2.3). Metabolites for intake of pulses/legumes/nuts in 

general were analyzed in three interventional studies (120-122) and four cross-sectional 

studies (23, 27, 123, 124), dry-bean enriched diet in two interventional studies (125, 126), 

mixed nuts in one interventional (127) and three observational studies (22, 26, 34), and 

peanuts in four observational studies (27, 34, 123, 128). Studies reported higher levels of 

tryptophan betaine (an indole alkaloid) and 4-vinylphenol sulfate (a xenobiotic associated 

with benzoate metabolism) with intake of mixed nuts (22, 26, 34) and peanuts (27, 34, 

128). In addition, increased concentration in a vitamin B3 metabolite, trigonelline was 

reported with intake of pulses/legumes/nuts (120) and dry-bean enriched diet (125, 126). 

Other dietary biomarkers include 3-methylhistidine, dimethylglycine, trimethylamine, 

and lysine for pulses/legumes/nuts (120) and pipecolic acid and S-methylcysteine for dry-

bean enriched diet (125, 126). 

2.4.6 Alcohol 

 The subcategories of alcohol, liquor, wine, red wine, and de-alcoholized red wine 

had reported at least one metabolite that was replicated (Table 2.1, Figure 2.3B-C). 

Metabolites for intake of alcohol were analyzed in 12 observational studies (22, 27, 31, 

34, 90, 101, 128-133), liquor in four observational studies (22, 27, 31, 34), wine in three 

interventional (20, 134, 135) and six observational studies (22, 27, 31, 34, 136, 137), red 

wine in three interventional (138-140) and three observational studies (34, 36, 136), and 
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de-alcoholized red wine in two interventional studies (138, 141). While several 

metabolomic signatures were identified to be associated with intake of alcohol, red wine, 

and de-alcoholized red wine, the more frequently reported metabolites include 4-

androsten-3β-diol disulfate (27, 31, 128) and 2-aminobutyrate (31, 128, 130) for alcohol, 

the sum of methyl(epi)catechin glucuronides (138, 140) for red wine, and the sum of 

(epi)catechin glucuronides, 3-hydroxyphenylacetic acid, and p-coumaric acid for 

dealcoholized red wine (138, 141). Additional metabolites associated with intake of de-

alcoholized red wine were methylgallic sulfate, 3-hydroxyphenylacetic acid, and p-

coumaric acid (138). Additionally, higher concentration of ethyl glucuronide, a common 

secondary metabolite of ethanol excreted in urine, was most frequently reported with 

intake of wine (22, 34, 137) and liquor (22, 27, 34). 

2.4.7 Caffeinated Beverages, Teas, and Cocoas 

 The subcategories of black tea, green tea, cocoa, and coffee intake had reported at 

least one metabolite that was replicated (Table 2.1, Figure 2.4A-B). Metabolites for 

intake of black tea was analyzed in four interventional (20, 142-144) and three 

observational studies (31, 145, 146), green tea in eight interventional (143, 144, 147-152) 

and one observational study (146), cocoa in six interventional (153-158) and one 

observational study (159), and coffee in 10 interventional (20, 46, 160-167) and 16 

observational studies (22, 27, 30, 31, 34, 36, 136, 146, 168-175). Paraxanthine (22, 27, 

30, 34, 160, 162, 170-172, 174) and 1,3,7-trimethylxanthine (coffee) (22, 30, 34, 160, 

162, 169, 171-174) were the most frequently identified markers for coffee intake. Among 

many, some of the other metabolites more frequently identified for coffee intake include 
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hippuric acid (formed by the conjugation of benzoic acid with glycine) (22, 136, 162, 

163, 171, 174), and well-known coffee constituent theobromine and its metabolites 1-

methylxanthine (22, 27, 30, 34, 171, 172, 176) and 3-methylxanthine (136, 160, 162, 

172). Meanwhile, 4-O-methylgallic acid, a methyl ether derivative of gallic acid, and 

hippuric acid were the most frequently identified metabolites for intake of black tea (20, 

142, 145) and green tea (143, 144, 147, 148, 152), respectively. Furthermore, higher 

levels of the well-known coffee constituent theobromine and its metabolite 3-

methylxanthine (most frequently) were associated with intake of cocoa (153, 156, 157, 

159). There were no biomarkers for decaffeinated coffee that were reported in at least 2 

studies, suggesting that the metabolites associated with coffee may likely be metabolites 

of caffeine and not specific to coffee. 1-methyluric acid and 5-acetamido-6-amino-3-

methyluracil (AAMU) are also widely measured end-products of caffeine metabolism 

prevalent in urine that are associated with caffeinated beverage intake in large 

populations (172).  
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Figure 2.4: Metabolites identified from dairy-based foods, teas, cocoas, coffee, and 

sweet and sugary foods by number of studies, type of study design, and type of biofluid 
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2.4.8 Dairy  

 Three of the five subcategories including intake of dairy products, butter, cheese, 

and milk had reported at least one metabolite that was replicated (Table 2.1, Figure 

2.4A). Metabolites for intake of dairy products was analyzed in two interventional studies 

(177, 178) and five observational studies (26, 90, 179-181), butter in four observational 

studies (22, 27, 31, 34), cheese in three interventional studies (182-184), milk in five 

interventional (178, 182-185) and seven observational studies (23, 27, 29, 34, 180, 181, 

186). Galactonic acid (derived from galactose being oxidized via galactono-1,5-lactone) 

for milk (34, 182, 183) and 10-undecenoic acid (11:1n1) for butter intake (27, 31, 34) 

were identified to be the most frequently reported dietary biomarkers. A small number of 

other metabolites were also reported in higher concentration for these subcategories 

including galactose (182, 183), lactose (182, 183), galactono-1,5-lactone (182, 183), 

uridine (181, 186), and urea for milk (184, 185), and pentadecanoate (15:0) and methyl 

palmitic acid isomers for butter (27, 31). Additionally, studies reported higher 

concentration of 3-phenullactic (182, 183), proline (182, 183), and methionine (183, 184) 

for cheese intake, and pantothenic acid (vitamin B5) (179, 181) for dairy products.  

2.4.9 Sweet and Sugary Foods 

 The subcategories of chocolate, dark chocolate, and sweet and sugary beverages 

had reported at least replicated metabolite (Table 2.1, Figure 2.4C). Metabolites for 

intake of chocolate were analyzed in two interventional (33, 52) and four observational 

studies (27, 31, 34, 36), dark chocolate in two interventional studies (187, 188), and 

sweet and sugary beverages in one interventional (189) and seven observational studies 
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(22, 24, 27, 189-192). While several metabolomic signatures were associated with intake 

of chocolate, theobromine (an alkaloid from cocoa plant) (27, 31, 33, 34, 52) followed by 

its endogenous metabolite 7-methyluric acid (33, 34, 52) were the most frequently 

reported metabolites. Meanwhile, 4-hydroxyphenyl was the only biomarker reported in 

higher concentration for intake of dark chocolate (187, 188). Further, citrulline, taurine, 

isocitrate, carbon isotopic signatures (δ13C) were reported in higher concentration after 

intake of sweet and sugary beverages (189-191). Various artificial sweeteners can also 

serve as specific/exogenous biomarkers reflecting intake of low caloric beverages and 

processed foods prevalent in a Western diet, including acesulfame K, aspartame, 

saccharin, sucralose, and steviol glycoside (193).  

2.4.10 Complex Dietary Patterns and Other Foods 

 A number of dietary patterns and other food subcategories had identified 

metabolites that were replicated (Table 2.1, Figure 2.5A-B). Metabolites for intake of the 

Average Danish Diet (ADD) was analyzed in four interventional studies (33, 194-196), 

Dietary Approaches to Stop Hypertension (DASH) diet in one interventional (197) and 

two observational study (108, 198), Healthy Eating Index (HEI) in one interventional 

(96) and three observational studies (26, 108, 198), Mediterranean Diet in three 

interventional (199-201) and five observational studies (26, 108, 198, 202, 203), New 

Nordic Diet (NND) in four interventional studies (33, 194-196), vegetarian in three 

observational studies (100, 104, 204), vegan in one interventional (205) and three 

observational studies (100, 104, 112), high carotenoid in one interventional (206) and one 

observational study (207), fruits and vegetables in four interventional (69, 208-210) and 
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eight observational studies (28, 30, 76, 108, 133, 168, 176, 211), whey in three 

interventional studies (97, 185, 212), soy-based drink in three interventional (178, 182, 

183) and two observational studies (31, 34), high-soy diet in two interventional (213, 

214) and five observational studies (23, 76, 215-217), and soy-based cheese in one 

interventional (urine and plasma) study (218). Elevated levels of theobromine and proline 

betaine was reported for ADD (33, 194), β-cryptoxanthin for DASH Diet (108, 

197),TMAO (33, 194, 196) and hippuric acid (33, 196) for NND, and CMPF (96, 108), 

eicosapentaenoic acid (20:5n–3) (96, 108), and hippuric acid (96, 198) for HEI. 

Meanwhile, higher levels of DHA (22:6n–3) was found to be associated with 

consumption of a Mediterranean Diet (26, 108, 199). Additionally, higher concentration 

of hippuric acid for fruits and vegetables (69, 176, 208), glycine for vegan (100, 104, 

112), common dietary isoflavones daidzein and genistein for high-soy diet (23, 213-217) 

and soy-based cheese (218), and pinitol for soy-based drink (182, 183) were identified to 

be the most frequently reported markers. 
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Figure 2.5: Metabolites identified from dietary patterns and other foods by number of 

studies, type of study design, and type of biofluid 

 

 

Figure 2.6: Number of publications in nutritional metabolomics 

Note: Data presented is based on the inclusion criteria of this review 

2.5 Discussion 

 This review included 244 articles (169 interventional studies, of which, 9 studies 

were replicated in free-living participants) that assessed the association between 

metabolites measured in common biofluids (i.e., urine, serum or plasma) and intake of 

individual food or food groups published between 1998–2020. Although, there has been a 

relatively long history of studies using a targeted approach to identify dietary biomarkers 

related to known constituents of food chemistry, the application of untargeted 

metabolomics only started to gain prominence in the mid-2000s and has greatly expanded 

in the past 5–10 years (Figure 2.6). Additionally, earlier studies have mainly been 
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interventional in design, but the number of observational studies has increased since the 

early 2000s. Given this trend and combined with recent advances in metabolomics, the 

application of metabolomics in nutritional epidemiology holds substantial promise. 

2.5.1 Metabolites Associated with Foods or Food Groups 

 Based on our review, we rated the repeatability of 69 metabolites as good, 161 as 

fair, and 48 as poor markers of specific foods. Specifically, results from this review 

indicate that proline betaine for fruits in general, but also for orange, orange juice, and 

citrus fruit was the most repeatable (based on interstudy repeatability and study design). 

Additionally, pelargonidin glucuronide for strawberry; sulforaphane, sulforaphane 

cysteinylglycine, sulforaphane N-acetylcysteine, and sulforaphane cysteine for broccoli; 

sulforaphane for broccoli sprouts; alkylresorcinols for high fiber (grain-rich); creatinine 

for meat; 3-methylhistidine for chicken/poultry; acetylcarnitine for red meat and 

processed meat; DHA for seafood in general and fatty fish; TMAO for fish and NND; 

Σmethyl(epi)catechin glucuronides for red wine; methylgallic sulfate for dealcoholized 

red wine; 4-O-methylgallic acid for black tea; hippuric acid for green tea; 3-

methylxanthine for cocoa; paraxanthine and caffeine for coffee; theobromine for 

chocolate; galactonate for milk; daidzein for high-soy diet; and hippuric acid for fruits 

and vegetables have good evidence and were also highly repeatable. This subset of 

metabolites is consistent with several previous reviews (18, 219-221).  

 It is important to mention that several other metabolites also had good evidence 

(i.e., 5 or more points) but were not found to be among the most repeated markers (i.e., 

not with the most points within the good category) (Table 1). For example, DHPPA for 
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high fiber (grain rich) foods appeared in two interventional studies (score: 2 x 2) and one 

observation study (score: 1 x 1), and we can classify this to be of good evidence (i.e., 

score ≥ 5) (Table 1, Figure 2B). However, since alkylresorcinols appeared in 4 

interventional studies (score = 8) for the same food group, it was considered to be the 

“best” candidate metabolite (i.e., highest score). 

2.5.2 Study Designs 

 All articles included in this review identified metabolites in human samples, and 

nearly 70 percent of the studies included were interventional in design (>50% of studies 

used a crossover design). Of the 69 metabolites with good evidence, 48 were reported in 

both interventional and observational studies, 20 were found only in interventional 

studies and one found only in observational studies. A cross-over design is ideal for 

assessing metabolites as participants act as their own control, which lowers variability 

due to physiological variation between individuals, lifestyle factors, and reporting bias 

(222). Most of the included interventional studies reflect short-to medium-term effects of 

diet or focus on a single food (e.g., orange juice) or food group (e.g., meats), whereas 

observational studies can be more informative as most have a large sample size (on 

average, 42 and 922 participants per interventional and observational study, respectively) 

and focus on multiple foods and/or food groups simultaneously. However, understanding 

the potential for biomarkers in observational designs is important because they are most 

likely to suffer from biases due to misreporting. Although we identified several markers 

in both study designs, there were a few markers that have not yet been identified in 

observational designs, likely because of lack of observational studies examining these 
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biomarkers. For example, while our review proposed isothiocyanates as a candidate 

dietary biomarker for broccoli consumption, it is yet to be studied in observational studies 

to assess their robustness (223). Having said this, we are confident that isothiocyanates 

may serve as a quantitative measure of short-term broccoli consumption since this 

biomarker was not associated with any other commonly consumed food. In contrast, we 

are less confident in a biomarker representing a particular food if that marker is yet to be 

identified in a free-living population and is not specific to a food (e.g., hippuric acid, a 

candidate marker for green tea, is also shown to be a candidate marker for fruits in 

general, fruits and vegetable, and coffee). In comparison, 3-methylhistidine as a 

biomarker for chicken/poultry consumption might serve as a valid marker for both short- 

and long-term intake as it was shown in both interventional and observational studies, 

with the conclusion that both study designs will provide important and unique 

information necessary to advance dietary biomarkers research (224). 

2.5.3 Metabolomic Approaches  

 Of the 69 metabolites with good evidence, 38 were identified using both 

untargeted and targeted approaches. Some metabolites with good evidence were reported 

using only an untargeted approach (n=9), while others were reported using only a 

targeted approach (n=22) that benefits from the use of validated assays for their 

quantitative analysis. Though informative, a drawback of targeted analysis is that it aims 

to quantify a priori known subset of metabolites that are usually of related chemical 

structure and/or biological activity, and therefore discovery of novel markers cannot be 

achieved (8, 225). Meanwhile, an untargeted approach provides the broadest metabolite 
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coverage despite lengthy and complex post-analytical procedures for data filtering and 

unknown identification that are prone to bias or incomplete structural elucidation if not 

confirmed by mass spectral comparison and co-elution using an authentic standard. 

Nonetheless, there are potentially yet to be discovered metabolites that may be better 

indicators for some food groups. For these reasons, whenever possible, both approaches 

should be applied. 

2.5.4 Analytical Techniques 

 All but one (DHPPA for high-fiber foods – using HPLC without MS) metabolite 

with good evidence were identified using LC-MS, 37 were identified using GC-MS, and 

17 were identified using 1H NMR.  Less than one-fifth of studies in this review employed 

cross-platform metabolomic analysis likely due to costs, volume requirements, and 

throughput constraints. Moreover, due to the complexity of the metabolome, it is not 

possible to analyze ‘each all’ metabolites present in a biological sample using one or 

more analytical techniques due to their wide dynamic range in concentration and diverse 

physiochemical properties. Additionally, many metabolites are derived from specific 

foods infrequently consumed in a population or present at low concentration levels below 

detection limits resulting in missing value inputs. For this reason, it is often necessary to 

perform sample workup procedures prior to analysis, such as solvent extractions for 

sample enrichment or background matrix cleanup, noting that a non-selective solvent for 

sample preparation is preferred for untargeted approach, while targeted approaches 

sometimes rely on sample preparation procedures optimized for specific chemical groups 

(226). The results of this review showed that more than half of the food-specific 



PhD. Thesis – Talha Rafiq; McMaster University – Medical Science 

 

64 
 

metabolites with good evidence were reported using at least two independent analytical 

platforms with acceptable mutual agreement (bias <10%) in measured concentrations, 

such as urinary iodide (227). 

2.5.5 Concordance Between Biological Samples 

 A greater number of studies in this review were based on the analysis of blood 

(plasma or serum) than urine sample. Notwithstanding that 59 of the 69 food metabolites 

with good evidence were replicated in both blood and urine sample, DHA for seafood 

and fatty fish and catechol sulfate for coffee were detected only in blood, and 

dimethylamine for fish, pelargonidin glucuronide for strawberry intake, hippuric acid for 

fruits and vegetables intake and all four metabolites for cocoa intake were detected only 

in urine. The answer to the critical question of which biological sample (urine or blood) 

best characterizes intake of these foods thus remains unclear, with some evidence 

suggesting urine to be the superior biological sample to study nutrient intake or to 

identify BFIs (8).  

2.5.6 Understanding Discordance Between Biological Samples 

While few studies in this review that had used both blood and urine samples 

identified the same metabolites in both biospecimens (42% of the metabolites with good 

evidence) such as acetylcarnitine for red meat, other studies using both samples did not 

always find similar results. Urine has higher levels of exogenous metabolites compared to 

blood, which may be either phytochemicals, xenobiotics, or chemical by-products of 

cooking (8). The non-nutrient compounds derived from food intake are converted into 

more polar metabolites to decrease their renal threshold and are thus readily excreted in 
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urine (228). This may explain why fewer metabolites are more likely to be found in 

blood, because blood carries many more non-polar lipids than urine. Urine is a 

noninvasive biofluid, and cheaper and easier to collect in repeat measures and large-scale 

studies (especially children) than blood for better adherence, and it reflects a wider range 

of dietary biomarkers and time window to assess recent food exposures, so it is often 

considered the preferred sample for identification of food metabolites (22).  

The biological variance of metabolites in urine is generally much greater than 

blood and requires adjustment for hydration status (e.g., creatinine, osmolality, and 

specific gravity) when relying on single-point/random collections. In contrast, 24-hour 

urine sampling is ideal for better assessment of average food exposures in observational 

or nutritional intervention trials, such as DASH style diets (46), but it is more difficult to 

collect consistently in large populations. Further, excretion site can influence detection of 

metabolites. An example of this is the detection of catechol sulfate after coffee intake in 

blood but not in urine. Catechol, a derivative of coffee processing, is conjugated to 

catechol sulfate in plasma to facilitate absorption and is generally eliminated in feces 

(229). 

Finally, it is important to consider the time period during which the biological 

sample is collected; and the storage condition of the sample. Most food-specific 

metabolites are present in human blood and urine for approximately 5-10 hours, with 

some extending to 48-hours (230).  Again, whenever possible, it is recommended to use a 

24-48-hour model where multiple biological samples are collected and integrated over 

this longer time period to examine change in metabolite concentration over time or to 
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obtain an average value to represent “true” concentration. Typically, metabolite 

concentrations change rapidly in blood relative to urine biofluid, so the use of non-fasting 

sample adds heterogeneity to the results, but some biomarkers are best measured 

postprandially. Additionally, another potential influencing factor in metabolomics may be 

introduced with improper storage conditions (i.e., temperature, light, or duration), which 

may possibly lead to metabolite degradation or oxidation such as polyunsaturated fatty 

acids (PUFAs). There are also concerns of chemical stability if urine samples are not 

frozen promptly, and thus require the use of preserving agents such as sodium azide or 

boric acid to prevent bacterial growth (231). 

2.6 Strengths and Limitations 

 A major strength of this review is that it provides a detailed and concise summary 

of all nutritional metabolomic studies reporting metabolites associated with individual 

foods and food groups that were conducted in healthy participants. We also provided a 

set of objective, transparent criteria for evaluating repeatability.  

However, this review has a few limitations. First, we focused only on blood or 

urine metabolites and excluded studies using other less common biological samples, such 

as adipose tissue, feces, breath condensates, and saliva. Second, we were unable to 

conduct a quantitative analysis due to the variability in metabolite targets and approaches 

among studies, which makes it challenging to directly compare metabolite concentrations 

across studies. In addition, the variability in the portion size of foods and/or frequency of 

food intake (e.g., once versus repeated) can impose an important limitation when aiming 

to synthesize and integrate results from individual studies. Third, because the purpose of 
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the review was to rate the evidence of biomarkers based on repeatability, other validation 

criteria (e.g., specificity) were not assessed in this review (223). Fourth, urine and plasma 

measured within the same study were each counted as separate investigations and given 

equal weight because the samples were collected independently with the added advantage 

for researchers to evaluate whether either specimen could be used due to sample 

availability. For instance, 3-methylhistidine and proline betaine were consistently 

demonstrated as robust dietary biomarkers of a Prudent diet in both single-spot urine and 

fasting plasma samples collected from the same participants, which were also associated 

with self-reported intake of protein and citrus fruit, respectively (12). However, this may 

have inflated the score for some of the biomarkers. While we strived towards a 

reasonable, accurate yet simple score, the score may be biased by the biomarker’s 

physicochemical properties e.g., detection and concentration, where lower nanomolar-

picomolar metabolites or less-readily ionizable compounds are less likely to be detected, 

and thus identified. Finally, only a limited number of labs have investigated biomarkers 

associated with food intake and therefore we were unable to examine interlaboratory 

variability as required for nutritional epidemiology. 

2.7 Conclusion 

 This review has reviewed and summarized metabolites associated with all 

possible food and food groups. The results show that while many metabolites can be 

identified from a specific food, there are many cases where a single metabolite is a good 

indicator of food intake. Findings obtained from this review have important public health 

implications. Dietary advice is an important component of chronic disease prevention and 
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management. Identifying good metabolites associated with food intake in generally 

healthy populations is an integral step towards examining diet as a risk factor for chronic 

disease more objectively (232). We recommend that future studies validate these 

metabolites by using criteria developed by Dragsted and colleagues (223) that includes 

biological plausibility, dose-response, time-response, robustness, reliability, stability, 

analytical performance, and inter-laboratory reproducibility to further advance the use of 

BFIs in nutritional research. 
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Supplemental Methods 

We used the following search terms, with Medical Subject Headings (MeSH) words 

where available: (“Nutrition Therapy” OR “diet” OR “vegetarian*” OR “Fruit” OR “diet, 

food, and nutrition” OR “nutrition*” OR “Dietary Carbohydrates” OR  “VITAMINS” 

OR “whole grain*” OR “fruit*” OR “vitamin*” OR “vegetable*” OR “nut*” OR 

“legume*” OR “bean*” OR “egg*” OR “dairy*” OR “dairies*” OR “milk*” OR 

“yogurt*” OR “cheese*” “ fish*” OR “seafood*” OR “meat*” OR “processed meat*” OR 

“citrus fruit*” OR “citrus*” OR “grain*” OR “refined grain*” OR “cereal*” OR “rice*” 

OR “potato*” OR “oil*” OR “spice*” OR “Sodium, Dietary” OR “vegan*” OR “Diet, 

Vegan” OR “Dietary Sugars” OR “beverage*” OR “caffeine*” OR “starch*” OR “Fats” 

OR “Cholesterol, Dietary” OR “red meat*” OR “wholegrain*” OR “wholewheat*” 

“lentil*” OR “soy*” OR “coffee*” OR “Dietary Proteins” OR “Calcium, Dietary” OR 

“Potassium, Dietary” OR “Folic Acid” OR “Dietary Fiber”) AND (“Metabolomics” OR 

“Metabolome” OR “metabolom*” OR “metabonom” OR “metabolite*” OR “Magnetic 

Resonance Spectroscopy” OR “nmr*” OR “spectrometry*” OR “Chromatography, High 

Pressure Liquid” OR “HPLC*” OR “Gas chromatography” “Chromatography, Gas”) 

AND (“Cross-Sectional Studies” OR “Cohort Studies” OR “Case-Control Studies” OR 

“Clinical Trial” OR “cohort study” OR “historical cohort” OR “Retrospective Studies” 

OR “retrospective stud*” OR “retrospective cohort” OR “cohort analysis” OR “case-

control” OR “cross-sectional” OR “Randomized Controlled Trial” OR “Randomized 

Controlled Trial*” OR “clinical trial*” OR “case-cohort*” OR “nested case-control”). 
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Figure S2.1: Analytical techniques by metabolomic approach (targeted versus 

untargeted) 
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CHAPTER 3 – Sources of variation in food-related metabolites during pregnancy 
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3.1 Abstract: The extent to which variation in food-related metabolites are attributable to 

non-dietary factors remains unclear, which may explain inconsistent food-metabolite 

associations observed in population studies. This study examined the association between 

non-dietary factors and serum concentrations of food-related biomarkers and quantified 

the amount of variability in metabolite concentrations explained by non-dietary factors. 

Pregnant women (n=600) from two Canadian birth cohorts completed a validated semi-

quantitative food frequency questionnaire, and serum metabolites were measured by 

multisegment injection-capillary electrophoresis-mass spectrometry. Hierarchical linear 

modelling and principal component partial R-square (PC-PR2) were used for data 

analysis. For proline betaine and DHA (mainly exogenous), citrus foods and fish/fish oil 

intake, respectively, explained the highest proportion of variability relative to non-dietary 

factors. The unique contribution of dietary factors was similar (15:0, 17:0, hippuric acid, 

TMAO) or lower (14:0, tryptophan betaine, 3-methylhistidine, carnitine) compared to 

non-dietary factors (i.e., ethnicity, maternal age, gestational age, prepregnancy BMI, 

physical activity, and smoking) for metabolites that can either be produced endogenously, 

biotransformed by gut microbiota, and/or derived from multiple food sources. The results 

emphasize the importance of adjusting for non-dietary factors in future analyses to 

improve the accuracy and precision of measures of food intake, and their associations 

with health and disease. 

 

 

 



PhD. Thesis – Talha Rafiq; McMaster University – Medical Science 

 

95 
 

3.2 Introduction 

Accurate assessment of dietary intake remains a major challenge in human nutrition 

research due to the complex nature of food exposure, and reliance on self-reporting, 

which often leads to biased or unreliable measures of food intake. While most studies use 

self-reported dietary intake methods such as food frequency questionnaires (FFQ), 24-h 

dietary recalls, and food records, they may be subject to recall, misclassification, and 

measurement biases (1). To circumvent this problem, metabolomics—the global analysis 

of low molecular weight metabolites in biological samples—have been increasingly 

applied in large-scale epidemiological studies for the discovery and validation of food 

intake biomarkers (2). 

 Biomarkers can provide a more objective assessment of food exposures than self-

reported dietary intake because they account for nutrient bioavailability and metabolism. 

An ideal biomarker of food intake is one that can be readily measured in human biofluid 

(blood or urine) at the population level, highly specific for one food item or food group, 

shows a dose- and time-dependent response, and is not extensively transformed by the 

microbiota and host tissue upon consumption. However, complex interpretative 

challenges exist since nutrients are derived from various food sources and can display 

intercorrelation between other metabolic processes (3). Furthermore, the human 

metabolome exhibits variability due to intrinsic physiologic characteristics such as age, 

sex, hormonal levels, and the gut microbiome, as well as due to extrinsic factors such as 

habitual diet and lifestyle. Further, many putative biomarkers of food intake do not 

exclusively originate from a single food or nutrient. For example, trimethylamine N-
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oxide (TMAO) is formed from TMA-containing nutrient such as choline, which is 

abundant in fish, beef and eggs, but can also be produced from carnitine in red meat (2, 

4). Moreover, many of the gut-microbiome dependent metabolites and other food-specific 

metabolites are metabolized in the liver at different rates depending on hepatic enzyme 

activity (5), which may contribute to the greater variability observed in the range of 

metabolite measured in the biological samples (6). Consequently, it is important to 

identify potential non-dietary sources of food-related biomarkers and examine the extent 

to which these factors explain differences in metabolite concentration. 

 In most cases, food intake explains a relatively small proportion (R2 <10%) of the 

total variation in a given metabolite concentration, and other determinants are typically 

unknown, unmeasured, or if measured, the extent of measurement error is not clear (7). 

Biomarkers derived from food intake and gut microbiota are influenced by non-dietary 

factors (8, 9), however the extent to which these factors compromise the validity of the 

metabolite as a food intake biomarker may depend on the specificity of the biomarker 

(well-established, uncertain, or weak biomarker of the particular food), whether the 

biomarker is endogenously produced, biotransformed by gut microbiota, and/or derived 

from more than one food source. Understanding the sources of variation in biomarkers of 

food intake that are not attributed to changes in food intake are critical to advance the 

application/field of food intake biomarkers. If sources of variation are not clearly 

understood, then using these biomarkers as markers of food/nutrient intake may simply 

exchange one source of measurement error (self-misreport) for others (changes in the 

biomarker intake unrelated to changes in food intake). 
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 Carefully designed studies examining the association between non-dietary factors 

and biomarker concentrations are sparse and especially lacking in women during 

pregnancy. Observational studies, specifically birth cohort studies, are useful designs to 

learn about pregnancy exposures and birth outcomes (10). Women experience a series of 

metabolic modifications during pregnancy, likely affected by pre-pregnancy and 

intrapartum factors, which in turn may affect maternal health and disease at critical stages 

of fetal development (11, 12). Moreover, metabolite concentrations during gestation and 

pre-pregnancy, and pregnancy related factors such as GDM also differ between ethnic 

groups (e.g., White Europeans and South Asians) (9). The purpose of this study was to 

examine the associations of non-dietary factors including demographics, lifestyle, and 

pregnancy-related factors with serum metabolite concentrations using a panel of 

commonly identified biomarkers derived from food intake and/or gut microbiota 

including proline betaine, five fatty acids (even-chain saturated fatty acids (SFA) myristic 

acid (14:0), odd-chain SFA pentadecanoic acid (15:0) and heptadecanoic acid (17:0), and 

omega-3 polyunsaturated fatty acids (ω-3 PUFA) docosahexaenoic acid (DHA) and 

eicosapentaenoic acid (EPA)), hippuric acid, TMAO, 3-methylhistidine, carnitine, and 

tryptophan betaine, in pregnant women of two ethnically diverse groups; and to 

determine the extent to which non-dietary factors explain the variability in concentrations 

of putative biomarkers of food intake. 
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3.3 Materials and Methods 

3.3.1 Data Source and Participants 

 This study used data from two longitudinal Canadian birth cohorts of pregnant 

women: Family Atherosclerosis Monitoring In earLy life (FAMILY) study and SouTh 

Asian biRth cohorT (START). The FAMILY study included White European women and 

the START cohort included women of South Asian ethnic background. Design and 

methodology of these two studies have been described in detail elsewhere (13, 14). 

Briefly, the FAMILY study was designed to understand the environmental, genetic, and 

biochemical factors important in the development of obesity and cardiovascular disease 

risk factors in childhood. A total of 857 families (901 newborns) were recruited between 

2002 and 2009 in the Hamilton area, Ontario, Canada. Women were recruited between 24 

and 36 weeks of gestation. The START study enrolled 1,012 South Asian (people who 

originate from the Indian sub-continent: India, Pakistan, Sri Lanka, or Bangladesh) 

mother–child pairs between 2011 and 2015 from the Peel Region of Ontario to 

investigate the influence of diverse environmental exposures and genetics on early life 

adiposity, growth trajectory, and cardiometabolic risk. Ancestral origin of both the 

woman, her partner, and both offspring’s grandparents were required to be classified as 

South Asian. 

 All enrolled participants provided full informed consent, and both studies 

obtained ethics approval from the McMaster Hamilton Integrated Research Ethics Board 

[START (HiREB #10–640) and FAMILY (HiREB #02–060)]. 
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 Clinical and demographic data was harmonized across the two cohorts. When 

questions were not identical between studies (e.g., physical activity level during 

pregnancy), comparable categories were constructed with the available data to satisfy the 

same definition. Within each cohort, 300 pregnant women were randomly selected for 

serum metabolomics analysis as previously described (15). This selection was based on 

the contrasting diet quality score (DQS), where 100 mothers were randomly selected 

from the 3 DQS groups (>90th percentile [“high” diet quality], <10th percentile [“low” 

diet quality], and between 10th and 90th percentile [“intermediate” diet quality]). A total 

of 600 pregnant mothers were included in the current analysis (Supplementary Figure 

S1). 

3.3.2 Maternal Serum Metabolome Analyses 

A validated multiplexed separation platform based on multisegment injection-

capillary-electrophoresis-mass spectrometry (MSI-CE-MS) was used for targeted and 

nontargeted profiling of polar/ionic metabolites measured consistently in serum filtrate 

samples with stringent quality control (QC). A standardized method protocol was used 

for identification and quantification of the maternal serum metabolome as described in 

more detail elsewhere (15). Briefly, a total of 66 and 67 polar ionic metabolites from 

serum filtrate samples satisfied selection criteria for their analysis in the FAMILY and 

START cohorts, respectively, and 53 of these were measured consistently across both 

cohorts. Serum metabolites were reported only if they satisfied two additional criteria: 1) 

metabolites that were detected in majority of the individual samples (≥75%) in a cohort 

(i.e., frequency filter), and 2) with acceptable technical precision based on repeated 
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analysis of QC samples (i.e., QC filter), to reduce false discoveries and data overfitting. 

Metabolites with nondetectable or missing values were replaced with half of the lowest 

detected value for the compound in each cohort. Moreover, a QC-based batch correction 

algorithm was applied for robust correction of long-term monitoring of signal drift in 

MSI-CE-MS (16). Among metabolites measured consistently in the two cohorts, six 

metabolites including proline betaine, 3-methylhistidine, hippuric acid, TMAO, carnitine, 

and tryptophan betaine were selected for our current analysis as they were previously 

determined to be associated with self-report of dietary intake (2, 17). Further, they offer a 

combination of evidence (good, fair, or poor) for candidate biomarkers of food intake that 

are produced exogenously, endogenously, biotransformed by gut microbiota, and/or 

derived from more than one food source (2, 17, 18). The reference interval for these 

serum metabolites in different birth cohorts from across Canada, and their 

technical/biological variance, and interclass correlation coefficients have been reported 

previously (15). 

3.3.3 Assessment of Dietary Intake 

 Maternal dietary intake during pregnancy was collected at 24-28 weeks gestation. 

Semi-quantitative validated food-frequency questionnaires (157 items in the FAMILY 

and 163-items in the START) developed and validated as part of the Study of Health and 

Risk in Ethnic Groups (SHARE) Study were used (19-21). Participants were asked to 

report on the frequency (daily, weekly, monthly, yearly, or never) and amount in serving 

size of each food or food group on average in the past 12 months. For our study, food 

items were either used as separate items (chicken, canned fish, fried fish) or classified 
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into main food groups: citrus food (citrus fruit and citrus juice), red meat, eggs (boiled 

and fried eggs), seafood, nuts and legumes, and fruits and vegetables. Nutrient intakes 

were calculated using the ESHA Food Processor Nutrient Analysis Software (ESHA 

Research, version 6.11, 1996, Salem, OR), derived from the 1991 Canadian Nutrient File 

and the US Department of Agriculture nutrient food composition databases. Fiber intake 

and total energy intake were also estimated from the FFQ (17, 19). Data were logarithm-

transformed to correct for skewness prior to including them in the regression analysis, 

and nutrient intakes were adjusted for energy intake using the residual approach (22). 

3.3.4 Non-Dietary Factors 

 Non-dietary factors included ethnicity (White European or South Asian), maternal 

age (years), gestational age (i.e., weeks of pregnancy), parity, pre-pregnancy body mass 

index (BMI, kg/m2), smoking history (current or former smoker and never smoker), 

physical activity (mainly sedentary, mild activity, moderate activity, and strenuous 

activity), social disadvantage index (SDI), and gestational diabetes (GDM). For SDI, 

derived using a previously validated index based on employment status, income, and 

marital status, higher values indicate greater socioeconomic disadvantage (23). A case of 

GDM was defined based on the Born in Bradford (BiB) oral glucose tolerance test 

criteria, self-reported GDM, and insulin use in pregnancy in START cohort; whereas the 

International Association of the Diabetes and Pregnancy Study Groups [IADPSG] criteria 

[75-g OGTT with fasting glucose ≥5.1 mmol/L, 1 hour ≥10.0 mmol/L, 2 hours 

≥8.5 mmol/L] was used in FAMILY cohort. We selected these factors based on the 
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known and plausible associations with the selected metabolites and/or they are commonly 

adjusted in population-based nutritional metabolomics studies. 

3.3.5 Statistical Analysis 

Descriptive statistics for categorical variables were summarized using frequency 

and percentages, and continuous data were summarized using mean and standard 

deviation (SD) or median and interquartile range (IQR). Random-effects hierarchical 

linear models (HLM) were fit whereby each of the natural logarithm-transformed food-

metabolite concentration was regressed on dietary and non-dietary factors after adjusting 

for other covariates including total energy intake (kcal), total fiber intake (g/day), and 

period of time between the day FFQ information was collected and blood was drawn 

(FFQ before blood, FFQ after blood, and both taken on the same day) (24). 

The data had a nested (clustered) structure where individuals within the same 

cohort represented a cluster because they were more similar to one another with regards 

to dietary and non-dietary factors. Therefore, we used hierarchical linear modeling 

(HLM) to accommodate the dependent nature of observations in clustered data. HLM 

allows nesting effects to be incorporated into the model, producing more accurate 

estimates, and corrects for the error structure violations (non-independent errors) to 

provide robust conclusions (25, 26). First unconditional (intercept-only) HLM models 

were tested to determine whether serum metabolite concentrations were nested within 

cohort using an intraclass correlation (ICC) calculated based on the covariance parameter 

estimates. An ICC refers to amount of variation attributed to level-two (study-level) 

factor. An ICC can be determined from an intercept-only model and any relationship with 
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an ICC of 2% or greater suggests the presence of level-two effects (24). The results 

showed an ICC of 3.9% for proline betaine, 25.6% for 3-methylhistidine, 1.5% for 

carnitine, 0% for hippuric acid, 46.0% for tryptophan betaine, and 7.0% for TMAO. A 

sensitivity analysis using an Ordinary Least Squares (OLS) multivariable linear 

regression was conducted for carnitine and hippuric acid (Supplementary Table S1). 

Next, the association between dietary factors as level 1 predictors (fixed) previously 

shown to be associated with a specific metabolite (e.g., citrus fruit and proline betaine) 

was examined. Finally, in addition to the dietary factors, all non-dietary factors were also 

added as level 1 predictors. These HLM procedures produced the following three models: 

The goodness-of-fit statistics including the Akaike Information Criterion [AIC], Bayesian 

Information Criterion [BIC], and the change in deviance statistic were used to evaluate 

model fit in terms of the clustering variable. Smaller values of these statistics indicate a 

Intercept-only Model (Unconditional Model) 

Metabolite𝑖𝑗 = 𝛽0𝑗 + 𝑒𝑖𝑗  

       𝛽0𝑗 = 𝛾00 + 𝑢0𝑗 

Random Intercept (𝑢0𝑗) with Fixed Level-1 Factors (Dietary factors, 𝛾10) 

Metabolite𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗Dietaryfactor+ 𝑒𝑖𝑗  

       𝛽0𝑗 = 𝛾00 + 𝑢0𝑗 

       𝛽1𝑗 = 𝛾10 

Random Intercept (𝑢0𝑗) with Fixed Level-1 Factors (Dietary (𝛾10) and Non-dietary factors (𝛾20…)) 

Metabolite𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗Dietaryfactor + 𝛽2𝑗Age … + 𝑒𝑖𝑗  

       𝛽0𝑗 = 𝛾00 + 𝑢0𝑗  

       𝛽1𝑗 = 𝛾10 

       𝛽2𝑗 = 𝛾20 
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better model fit (27). The AIC and BIC consider error and model parsimony 

simultaneously. An OLS multivariable linear regression was conducted for NEFAs as 

these data were only available in FAMILY cohort. Regression estimates (b), 95% 

confidence intervals (95% CI), and p-values were reported, and statistical analysis was 

conducted using SAS software version 9.4. 

Finally, principal component partial R-square (PC-PR2) analysis was used to 

quantify the sources of systematic variability in serum metabolite concentrations (28). 

The PC-PR2 method combines features of principal component analysis (PCA) and the 

partial R-square statistic in multivariable linear regression and allows for some degree of 

inter-correlation between explanatory variables. The mathematical details of the PC-PR2 

method are described elsewhere (28). Data reduction component was not necessary 

because the analytic strategy was applied to a single metabolite. The partial R2 statistic 

was calculated for each explanatory variable, which quantifies the amount of variability 

in metabolite explained by that variable, conditional on all other covariates included in 

the model. The PC-PR2 method was conducted using the R software, version 1.2.5. 

3.4 Results 

3.4.1 Association of dietary and non-dietary factors with food-related metabolites 

 Descriptive characteristics of the participants overall and by ethnicity are shown 

in Table 1. Model fit statistics from the HLM examining the dietary and non-dietary 

factors associated with food-intake biomarkers are presented in Supplementary Table 

S3.2 and the regression estimates and 95% CI are presented in Table 3.2. Three 

regression models including an unconditional model (Model 1), the random intercept 
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model with level-one dietary factors (Model 2), and random intercept model with level-

one dietary and non-dietary factors (Model 3) were examined (Supplementary Table 

S3.2). For each metabolite outcome, the log likelihood, AIC, and BIC statistics decreased 

considerably after adding the non-dietary covariates, indicating better model fit. Thus, the 

regression estimates presented in Table 3.2 are based on Model 3. As expected, most of 

the dietary food sources were significantly associated with their respective metabolite 

concentrations, except for carnitine (p>0.05) (Table 3.2). For exogenous metabolites 

specific to a single food source, higher citrus food intake was positively associated with 

proline betaine concentration (b: 0.27; 95% CI: 0.20, 0.34), and higher intake of nuts and 

legumes was positively associated with tryptophan betaine concentration (b: 0.02; 95% 

CI: 0.00, 0.03). For metabolites with both endogenous metabolic and exogenous sources 

and obtained from multiple food sources, such as hippuric acid, higher intake of fruits 

and vegetables were associated with higher hippuric acid concentration (b: 0.22; 95% CI: 

0.08, 0.36), but no such association was found with tea and coffee intake. Higher intake 

of chicken (b: 0.02; 95% CI: 0.00, 0.04) and red meat (b: 0.03; 95% CI: 0.01, 0.06) were 

positively associated with 3-methyl-histidine concentration, while seafood intake was 

positively associated with TMAO concentration (b: 0.08; 95% CI: 0.04, 0.12) (Table 2). 

 For non-dietary factors, maternal age, gestational age, and smoking history were 

associated with serum concentration of some metabolites after adjusting for the diet-

related factors (Table 2). Higher maternal age was associated with a higher concentration 

of proline betaine (b: 0.04; 95% CI: 0.01, 0.07) and TMAO (b: 0.02; 95% CI: 0.00, 0.04), 

and higher gestational age of pregnancy was associated with a higher concentration of 3-
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methyl-histidine (b: 0.01; 95% CI: 0.00, 0.02) and lower concentration of carnitine (b: -

0.01; 95% CI: -0.02, -0.01). Participants who indicated ever smoking cigarettes had lower 

concentration of proline betaine (b: -0.60; 95% CI: -0.95, -0.25) and higher concentration 

of carnitine (b: 0.06; 95% CI: 0.02, 0.10) compared to those who never smoked cigarettes 

(Table 3.2). Parity, GDM, pre-pregnancy BMI, physical activity, SDI, and timing of the 

administration of the FFQ (before or after blood draw relative to at the same time as the 

blood draw) were found to not be associated with any of the six metabolite concentration 

outcomes. The results for the HLM models examining the association of dietary and non-

dietary factors with food-related metabolites stratified by ethnicity (White European and 

South Asians) are presented in Supplementary Tables S3.3 and S3.4, respectively. The 

results between the two cohorts were generally similar to those reported for the overall 

sample. 

 The results from the OLS regression models examining the association of dietary 

and non-dietary factors with NEFAs are presented in Table 3.3. Higher intake of full-fat 

dairy was positively associated with odd-chain SFAs 15:0 (b: 0.06; 95% CI: 0.03, 0.10) 

and 17:0 (b: 0.04; 95% CI: 0.01, 0.07), and higher fish/fish oil daily servings was 

positively associated with DHA (b: 0.11; 95% CI: 0.07, 0.14) and EPA+DHA (b: 0.08; 

95% CI: 0.04, 0.12). For non-dietary factors, higher gestational age of pregnancy was 

associated with lower odd-chain SFAs 15:0 (b: -0.02; 95% CI: -0.03, -0.01) and 17:0 (b: -

0.01; 95% CI: -0.02, -0.01), higher pre-pregnancy BMI was associated with both lower 

percentage concentrations (mol%) of even-chain and odd-chain SFAs 14:0, 15:0, and 

17:0 (b: -0.01; 95% CI: -0.02, -0.00) and lower DHA (b: -0.01; 95% CI: -0.02, -0.00), 



PhD. Thesis – Talha Rafiq; McMaster University – Medical Science 

 

107 
 

and higher physical activity was associated with lower 17:0 (b: -0.10; 95% CI: -0.17, -

0.02). The results examining the association of dietary fish intake and ω-3 PUFA are 

presented in Supplementary Table S3.5. 

3.4.2 Results from PC-PR2 analysis 

 The PC-PR2 analysis was utilized to quantify the sources of systematic variability 

in serum metabolite concentrations, and the results for the overall sample are displayed in 

Figures 3.1-2 and stratified by cohort are displayed in Supplementary Figures S3.2-3.7. 

For largely exogenous metabolites such as proline betaine, hippuric acid, and tryptophan 

betaine, dietary food intake explained the greater proportion of variability in the 

metabolite than non-dietary factors. Citrus fruit intake explained the largest proportion of 

variation in proline betaine concentration with a R2
partial value of 10.8%, followed by 

smoking history (2.5%), maternal age (1.2%), and ethnicity/cohort (1.2%) (Figure 3.1A). 

Similarly, for hippuric acid, fruits and vegetables intake displayed the largest R2
partial 

value of 2.0%, followed closely by energy intake (1.4%) (Figure 3.1B). For tryptophan 

betaine, intake of nuts and legumes, fiber intake, and overall energy intake explained 

between 1.2% and 1.9% of the variability. Meanwhile, ethnicity has quite a substantial 

impact on tryptophan betaine levels as the R2
partial value of cohort was 10.2% (Figure 

3.1C). When the model was stratified by cohort, nuts and legumes explained the most 

variability (3.6%) in the FAMILY cohort (primarily White European women), while fiber 

intake (4.2%), energy intake (2.2%), and GDM (1.5%) explained most of the variability 

in tryptophan betaine in the START cohort (exclusively South Asian women) 

(Supplementary Figure S3.4). 
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 For endogenous (less food-specific) metabolites, the dietary factors explained the 

most variability for two of the metabolites (3-methyl-histidine and TMAO) while non-

dietary factors such as gestational age (R2
partial value: 5.7%) and smoking history (R2

partial 

value: 1.9%) appeared to play a more prominent role in explaining the variability in 

carnitine (Figure 3.1D). This latter finding is also consistent with the results obtained 

from HLM showing no dietary factor was associated with carnitine concentration. 

Seafood intake explained the greatest proportion of variability in TMAO with a R2
partial 

value of around 3.0%, followed by maternal age (R2
partial value: 1.2%) (Figure 3.1E). For 

3-methyl-histidine, red meat intake had the highest R2
partial value of 1.2% (Figure 3.1F). 

There was evidence of differences by ethnicity/cohort where red meat explained 5.8% of 

the variability in 3-methyl-histidine in the START cohort but a negligible amount in the 

FAMILY cohort. Each of the remaining explanatory variables explained negligible 

amount of total variation in the metabolite concentrations. Although there were some 

differences in findings between the two cohorts, overall, the results obtained from PC-

PR2 are congruent with those obtained from the HLM analysis. 

 For NEFAs, pre-pregnancy BMI (R2
partial value: 1.8%) explained the most 

variability in even-chain SFA 14:0 (Figure 3.2A). Gestational age explained most 

variability in odd-chain SFAs 15:0 (R2
partial value: 6.9%) and 17:0 (R2

partial value: 3.6%), 

followed by full-fat dairy intake (R2
partial value: 5.9%) and pre-pregnancy BMI (R2

partial 

value: 2.4%) for 15:0, and physical activity (R2
partial value: 3.0%) and full-fat dairy intake 

(R2
partial value: 2.6%) for 17:0 (Figures 3.2B-C). Fish/fish oil intake explained the greatest 
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proportion of variability in DHA (R2
partial value: 11.2%), followed by followed by pre-

pregnancy BMI (R2
partial value: 2.5%) (Figure 3.2E). 

 

Figure 3.1: Weighted Rpartial
2 for each factor showing the percentage of explained 

variability in: (A) Proline betaine, (B) Hippuric acid, (C) Tryptophan betaine, (D) 

Carnitine, (E) trimethylamine N-oxide (TMAO), and (F) 3-methylhistidine. Statistical 
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significance was based on hierarchical linear models. * p ≤ 0.05, **p ≤ 0.01, ***p ≤ 

0.001. Intraclass correlation suggested a cluster effect by ethnicity (level-two factor) for 

proline betaine (ICC = 3.9%), tryptophan betaine (ICC = 46.0%), TMAO (ICC = 7.0%), 

and 3-methylhistidine (ICC = 25.6%), and did not suggest a cluster effect by ethnicity for 

hippuric acid (ICC = 0.0%) and carnitine (ICC = 1.5%). 
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Figure 3.2: Weighted Rpartial
2 for each factor showing the percentage of explained 

variability in: (A) Myristic acid (14:0), (B) Pentadecanoic acid (15:0), (C) Heptadecanoic 

acid (17:0), (D) Eicosapentaenoic acid (EPA, 20:5n-3), (E) Docosahexaenoic acid (DHA; 

22:6n-3), and (F) EPA + DHA in FAMILY cohort. Statistical significance was based on 

ordinary least squares regression. * p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. 

3.5 Discussion 

Using data from two birth cohorts representing two ethnically diverse groups, the 

results showed that for exogenous biomarkers such as proline betaine and (largely) DHA, 

dietary factors explained higher proportion of variability whereas the contribution of 

nondietary factors was relatively little. On the contrary, for metabolites that can either be 

produced endogenously, biotransformed by gut microbiota, and/or derived from more 

than one food source, the unique contribution of dietary factors was similar (15:0, 17:0, 

hippuric acid, and TMAO) or lower (14:0, tryptophan betaine, 3-methylhistidine, and 

carnitine) compared to non-dietary factors (ethnicity, maternal age, gestational age, pre-

pregnancy BMI, physical activity, and smoking history). Further, there was an ethnicity 

effect for all metabolites, except carnitine and hippuric acid (Supplemental Figure S9). 

For the non-dietary factors, higher maternal age was positively associated and 

ever smoking was inversely associated with proline betaine concentrations after adjusting 

for citrus foods. Evidence indicates that older women are more likely to make healthier 

choices including increasing their consumption of fruits and vegetables from pre-

pregnancy to pregnancy compared to younger women (29, 30). Many studies have also 

shown that smokers have lower concentrations of antioxidants and elevated concentration 
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of 8-isoprostane (31, 32), which may be due to low consumption of antioxidants (33), 

reduced vitamin C absorption, or decreased turnover of vitamin C by free radicals 

produced from smoking (34). Proline betaine (stachydrine), a marker of citrus foods, 

which are rich in vitamin C (potent water-soluble antioxidant), has been shown to inhibit 

cell proliferation and production of reactive oxygen species in in-vitro and in-vivo studies 

(35, 36). As expected, higher citrus food intake was associated with proline betaine 

concentration and explained the largest proportion of variation in proline betaine 

concentration relative to non-dietary factors. In kinetics studies, proline betaine is 

excreted rapidly and nearly completely in urine within 24 hours (37), and therefore it is 

considered to be minimally metabolized in humans. Further, proline betaine was 

previously validated in a large-scale observational study, where it was highly sensitive 

(86.3%) and specific (90.6%) for citrus fruit consumption (37), and thus considered a 

robust biomarker for citrus food intake. 

Even-chain SFA (14:0) can be derived from both exogenous sources (via dietary 

intake) and endogenous synthesis (via de novo lipogenesis) (38, 39), whereas odd-chain 

SFAs (15:0 and 17:0) mainly reflect dietary intake of full-fat dairy (40), though the 

possible contribution of endogenous sources cannot be ruled out (41, 42). As expected, 

both 15:0 and 17:0 were associated with full-fat dairy intake, and 14:0 was not. Full-fat 

dairy intake did not, however, explain the largest variance in 15:0 or 17:0 levels. Rather, 

non-dietary factors including higher gestational age and pre-pregnancy BMI were 

associated with lower odd chain SFA (15:0 and 17:0) and low physical activity level was 

associated with lower 17:0. In a previous longitudinal analysis, odd-chain SFA (sum of 
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15:0 and 17:0) progressively declined during pregnancy (43). Although the exact 

mechanism for the gestational alterations in these SFAs remain unclear, it is possible that 

pregnancy associated physiologic changes and increase in adipose deposition throughout 

pregnancy may be important factors contributing to the observed differences (44). In 

several population-based studies, higher circulating odd-chain SFAs (15:0 and 17:0) were 

inversely associated with obesity and cardiometabolic diseases (45, 46). ω-3 PUFAs 

(DHA more than EPA) have been considered robust biomarkers of habitual fish/fish oil 

intake (2). This association was demonstrated for DHA in the current study where 

fish/fish oil intake explained the largest proportion of variation in DHA relative to non-

dietary factors. Fish/fish oil daily servings explains about twice the amount of variation in 

ω-3 PUFAs compared with dietary fish intake, indicating that it is important to account 

for EPA and DHA sources from both diet and supplements. 

For other metabolites, non-dietary factors were associated with metabolite 

concentrations, however, their overall contribution was minimal, except for carnitine 

which was mostly explained by gestational age. Carnitine mainly reflects consumption of 

amino acids and fatty acid-containing foods and as a result is considered a generic marker 

for foods of animal origin but also may be synthesized from essential amino acids lysine 

and methionine (4, 47). A decline in carnitine across trimesters during pregnancy was 

previously reported (9, 48). A significant rise in acylcarnitine in pregnant women as 

pregnancy progresses may reflect enhanced fatty acid oxidation in later periods of 

gestation (48). This distribution may suggest a greater uptake of carnitine in the fatty acid 
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β-oxidation process leading to lower free carnitine substrate and resulting lower total 

body carnitine pool in pregnant women (49, 50). 

For all metabolites except for proline betaine and two NEFAs (15:0 and DHA), 

the unique contribution of food sources was similar to or lower than non-dietary factors. 

This may reflect endogenous production, microbial synthesis, or multiple food sources of 

some of these metabolites. Interindividual variability in hippuric acid (51, 52), TMAO 

(53, 54), and tryptophan betaine (55, 56) may partly be due to differences in intestinal 

microbiota. However, the potential variation in these metabolites attributable to the gut 

microbiome could not be accounted for in our study. Further, variation in an endogenous 

metabolite concentration such as carnitine may reflect general intake of foods of animal 

origin and/or physiological changes that take place during pregnancy, and is influenced 

by factors such as age and health status, and thus may not be a suitable biomarker of red 

meat at the population level (4, 47).  

Metabolite concentration may also vary widely across cultures and ethnic groups 

as the type of food, method of consumption, and food preparation techniques may vary 

(57). In our multi-level analysis, there was an ethnicity effect for all metabolites, except 

carnitine and hippuric acid. Proline betaine concentration was shown to vary to some 

extent by cohort, likely attributable to differences in citrus food intake in the two cohorts 

(Table 3.1). Also, some of this variability may be attributed to differences in lifestyle 

factors between members of the two cohorts, such as smoking status. Regardless, citrus 

fruit consumption still explained the largest amount of variance in proline betaine in both 

cohorts, suggesting that non-dietary factors do not contribute substantially to proline 
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betaine variation (Supplementary Figure S3.2). However, mixed results were shown by 

cohort for metabolites that are synthesized or modified by gut bacteria. Tryptophan 

betaine concentration was shown to be vary considerably between the two cohorts, with 

higher tryptophan betaine associated with higher nuts and legumes intake in the FAMILY 

cohort, and with higher fiber intake and lower kilocalories in the START cohort. A 

possible explanation for this discrepancy may be that nuts and legumes is a 

heterogeneous food group so the type of nuts and preparation/cooking methods for 

legumes may play an important part (58). Further, it is also likely that the association of 

nuts or legumes intake with tryptophan betaine may be confounded by fiber intake in the 

START cohort as fiber intake is higher in this cohort, and tryptophan betaine has been 

identified in fiber-rich plant-based foods and linked to gut microbiota in fiber-enriched 

diets (55).  

Hippuric acid was one of the metabolites that did not vary by ethnic cohort but 

was only associated with greater fruit and vegetable intake in the FAMILY cohort despite 

greater intake in the START cohort. An explanation for this may be related to 

metabolism of different dietary polyphenols (59). Evidence suggests that differences in 

excretion of hippuric acid may reflect altered gut microbial metabolism (60). Generally, 

amount of variability in the food consumption may also affect the robustness of the 

association. For example, the IQR for certain foods such as chicken and red meat were 

higher in FAMILY compared to START, whereas variability for other foods such as 

fruits and vegetables, tea, eggs, and nuts and legumes were higher in START compared 
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to FAMILY. This may explain inconsistencies in the results for at least some serum 

metabolites such as association between red meat and TMAO in the START cohort. 

In other comparisons, TMAO varied slightly by cohort, but may be explained by a 

relatively lower consumption of meats including red meat, canned and fried fish, and 

seafood in START cohort compared to FAMILY cohort. Despite this, higher seafood 

intake was positively associated with TMAO concentration in both cohorts. Differences 

in TMAO production and excretion may partly be related to metabolic precursors such as 

choline, betaine, and carnitine. TMAO concentration increases postprandially (within 15 

mins) after consumption of fish (61), but it takes more time after consumption of meat 

(62), suggesting that free TMAO in seafood may be readily absorbed after fish 

consumption without much involvement of gut microbiota. Finally, although the 

association of 3-methylhistidine with chicken and red meat was significant in the overall 

sample, these associations were attenuated when analysis was stratified by cohort. This is 

likely because the intra-cohort variability was small, or intakes of these foods were highly 

correlated (as was the case in the START cohort). 

Finally, biomarkers with ‘good’ evidence are considered as direct surrogates for 

food intake (63). However, there are several factors, in addition to food exposure, that 

can influence variation in food-related metabolites concentration and thus require 

appropriate consideration during the statistical analyses of the data (64). In line with 

previous research (7), in most cases, our study found that dietary factors explained less 

than 10% of the total variation in metabolite concentration. While some of the source of 

error is explained by measurement error (self-report), other can be related to non-dietary 
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factors. Therefore, future studies should account for non-dietary factors and differences 

by ethnicity to control for some of the inter-individual variation in food-related 

metabolites. 

3.6 Limitations 

Our study has several strengths including a large sample size that allowed for 

stratification by ethnicity, use of fasting serum samples, and comparing a diverse set of 

metabolites reflecting commonly consumed foods which have been previously reported 

in free-living population studies (2). We adopted a novel methodological approach to 

address an unanswered question regarding non-dietary sources of metabolites variation in 

the field of nutritional metabolomics and biomarkers of food intake. Our study also has 

some limitations. We included only pregnant women from white European and South 

Asian backgrounds, and thus generalizability of our findings is limited to these 

populations. Dietary assessment was based on a self-reported FFQ and maybe prone to 

some measurement error, however, FFQs are commonly used in nutritional 

epidemiology. The period of dietary assessment of 12 months may not be indicative of 

recent intake of foods or intake of foods only during pregnancy, but since our aim was to 

identify sources of variability in metabolites of foods that reflect habitual dietary intake, a 

12-month intake was more appropriate. Samples were collected at one point in pregnancy 

and data on changes in dietary intake during pregnancy were not collected and therefore, 

not available for the analysis. 
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3.7 Conclusions 

Overall, the results emphasize that serum metabolites that reflect specific foods 

are also influenced by non-dietary factors (ethnicity, maternal age, gestational age, 

prepregnancy BMI, physical activity, and smoking history) but to differing degrees. The 

results of this study provide insight into the external factors that impact serum metabolite 

concentrations and provide guidance on appropriate modeling when metabolomics is 

used in nutritional epidemiological studies to identify diet-disease associations. 

Identifying robust and generalized food related biomarkers in diverse populations 

remains a challenge, but appropriate adjustment for non-dietary factors is necessary for 

an unbiased assessment of metabolite concentration. Future work will explore the role of 

maternal nutrition and food exposures on health outcomes later in life, such as childhood 

obesity and metabolic syndrome. 
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Table 3.1: Descriptive statistics of participants overall and by ethnicity. 

Factor 

Overall 

n = 600 

White European 

n = 300 

South Asian 

n = 300 

p-value 

Age (years), mean (SD) 31.20 (4.50) 32.35 (4.89) 30.01 (3.73) <0.0001 

Gestational age (weeks), mean (SD) 28.06 (3.27) 29.50 (3.76) 26.61 (1.75) <0.0001 

Pre-pregnancy BMI (kg/m2), mean (SD) 25.35 (5.63) 26.77 (6.39) 23.94 (4.33) <0.0001 

Parity, n (%)     

0 240 (42.33) 145 (48.33) 95 (35.58) 0.0528 

1 229 (40.39) 110 (36.67) 119 (44.57)  

2 76 (13.40) 34 (11.33) 42 (15.73)  

≥3 22 (3.88) 11 (3.67) 11 (4.12)  

Gestational diabetes (GDM), n (%)a 169 (28.94) 50 (17.54) 119 (39.80) <0.0001 

Smoking history (ever smoked), n (%) 104 (17.48) 104 (35.25) 0 (0.00) <0.0001 

Physical activity (moderate/vigorous), n (%) 144 (24.04) 84 (28.00) 60 (20.07) 0.0231 

Social disadvantage index, mean (SD)b 1.31 (1.37) 0.85 (1.22) 1.84 (1.35) <0.0001 
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Fiber intake (g/day), mean (SD) 22.52 (10.24) 20.66 (9.23) 24.38 (10.85) <0.0001 

Energy Intake (kcal), mean (SD) 2165.39 (772.06) 2327.86 (766.33) 2002.92 (744.26) <0.0001 

Time of FFQ and blood draw, n (%)     

FFQ and blood draw on same day 354 (60.31) 88 (29.33) 266 (92.68) <0.0001 

FFQ before blood drawc 221 (37.65) 206 (68.67) 15 (5.23)  

FFQ after blood drawc 12 (2.04) 6 (2.00) 6 (2.09)  

Food items (servings/day), median (IQR)     

Citrus food 0.57 (0.95) 0.64 (0.99) 0.43 (0.89) <0.0001 

Fruits and vegetables 6.28 (5.74) 5.12 (4.26) 7.85 (6.06) <0.0001 

Tea 0.43 (0.98) 0.14 (0.57) 1.0 (1.36) <0.0001 

Coffee 0 (0.14) 0.02 (0.64) 0 (0.00) <0.0001 

Canned fish 0 (0.03) 0.03 (0.07) 0 (0.00) <0.0001 

Fried fish 0 (0.03) 0.01 (0.03) 0 (0.02) <0.0001 

Seafood 0 (0.01) 0.01 (0.02) 0 (0.00) <0.0001 

Chicken 0.10 (0.29) 0.14 (0.21) 0 (0.14) <0.0001 
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Eggs 0.21 (0.40) 0.20 (0.32) 0.29 (0.57) 0.9927 

Red meat 0.20 (0.44) 0.41 (0.35) 0.01 (0.15) <0.0001 

Nuts and legumes 0.71 (0.92) 0.62 (0.83) 0.85 (0.97) <0.0001 

Full-fat dairy ─ 1.05 (1.11) ─ ─ 

Fish/fish oil ─ 0.08 (0.15) ─ ─ 

Metabolite concentration, median (IQR)     

Proline betaine 1.81 (3.82) 2.33 (5.52) 1.40 (2.47) <0.0001 

Hippuric acid 10.01 (9.87) 9.68 (9.03) 10.07 (10.36) 0.8848 

TMAO 2.53 (1.95) 2.68 (1.96) 2.24 (1.99) <0.0001 

3-methylhistidine 7.17 (4.12) 8.64 (4.90) 6.14 (2.24) <0.0001 

Carnitine 15.61 (3.82) 15.35 (3.69) 15.89 (3.98) 0.0117 

Tryptophan betaine 1.27 (0.37) 1.19 (0.14) 1.47 (0.37) <0.0001 

Fatty acids, median (IQR)d     

Myristic acid (14:0) ─ 2.19 (0.74) ─ ─ 

Pentadecanoic acid (15:0) ─ 0.24 (0.08) ─ ─ 
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Heptadecanoic acid (17:0) ─ 0.69 (0.23) ─ ─ 

Eicosapentaenoic acid (EPA or 20:5n-3) ─ 0.51 (0.26) ─ ─ 

Docosahexaenoic acid (DHA or 22:6n-3) ─ 0.67 (0.29) ─ ─ 

FFQ = Food frequency questionnaire; TMAO = trimethylamine N-oxide Wilcoxon’s rank sum test was used to compare 

continuous variables, and chi-square to compare categorical variables by cohort.  aGDM was defined based on the Born in 

Bradford oral glucose tolerance test criteria, self-reported GDM, and insulin use in pregnancy in START cohort, whereas the 

International Association of the Diabetes and Pregnancy Study Groups criteria [75-g OGTT with fasting glucose ≥5.1 mmol/L, 

1 hour ≥10.0 mmol/L, 2 hours ≥8.5 mmol/L] was used in FAMILY cohort.  bThe maximum social disadvantage index was five, 

and the lowest possible score was zero, reflecting the least social disadvantage.  cFFQ was implemented within a one-year time 

period of the blood draw.  dFatty acids data were only available in FAMILY cohort. 
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Table 3.2: Results from random effects hierarchical modelling examining the association of dietary and non-dietary factors 

with food-based metabolites. 

 

Proline 

betaine 

Hippuric 

acid 

3-Methyl 

histidine 

Carnitine 

Tryptophan 

betaine 

TMAO 

Factor b (95% CI) b (95% CI) b (95% CI) b (95% CI) b (95% CI) b (95% CI) 

Age (years) 

0.04* 

(0.01, 0.07) 

0.01 

(0.00, 0.03) 

0.00 

(-0.01, 0.01) 

0.00 

(0.00, 0.00) 

0.00 

(0.00, 0.03) 

0.02* 

(0.00, 0.04) 

Gestational age (weeks) 

0.02 

(-0.03, 0.06) 

0.01 

(-0.01, 0.03) 

0.01* 

(0.00, 0.02) 

-0.01*** 

(-0.02, -0.01) 

0.00 

(0.00, 0.00) 

0.01 

(-0.01, 0.03) 

Parity 

-0.10 

(-0.25, 0.06) 

0.03 

(-0.05, 0.11) 

-0.01 

(-0.05, 0.03) 

0.01 

(-0.01, 0.02) 

-0.01 

(-0.02, 0.01) 

0.01 

(-0.07, 0.09) 

Gestational diabetes (GDM) 

0.05 

(-0.24, 0.35) 

0.06 

(-0.10, 0.21) 

0.02 

(-0.05, 0.10) 

0.02 

(-0.02, 0.05) 

0.02 

(-0.01, 0.05) 

0.03 

(-0.13, 0.19) 

Pre-pregnancy BMI (kg/m2) 

-0.02 

(-0.05, 0.00) 

-0.01 

(-0.02, 0.00) 

-0.01 

(-0.01, 0.00) 

0.00 

(0.00, 0.00) 

0.00 

(0.00, 0.00) 

-0.01 

(-0.02, 0.01) 

Smoking history  -0.60*** -0.12 0.04 0.06** 0.00 -0.01 
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(ever vs. never smoked) (-0.95, -0.25) (-0.30, 0.06) (-0.06, 0.13) (0.02, 0.10) (-0.03, 0.03) (-0.20, 0.17) 

Physical activity (low vs. high) 

-0.13 

(-0.42, 0.17) 

0.02 

(-0.14, 0.18) 

-0.03 

(-0.10, 0.05) 

-0.01 

(-0.04, 0.02) 

0.00 

(-0.03, 0.03) 

-0.04 

(-0.21, 0.12) 

Social disadvantage index 

-0.05 

(-0.15, 0.06) 

-0.02 

(-0.08, 0.03) 

0.00 

(-0.03, 0.02) 

0.00 

(-0.01, 0.01) 

0.00 

(-0.01, 0.01) 

-0.01 

(-0.06, 0.05) 

Fiber intake (g/day) 

0.01 

(-0.01, 0.02) 

0.01 

(-0.01, 0.02) 

0.00 

(-0.01, 0.00) 

0.00 

(0.00, 0.00) 

2.68×10-3** 

(0.00, 0.00) 

0.00 

(-0.01, 0.01) 

Energy intake (kcal) 

0.00 

(0.00, 0.00) 

-1.6×10-4** 

(-0.00, -0.00) 

0.00 

(0.00, 0.00) 

0.00 

(0.00, 0.00) 

-3×10-5* 

(0.00, 0.00) 

0.00 

(0.00, 0.00) 

FFQ before blood draw vs. FFQ at 

the same time as blood draw 

0.02 

(-0.30, 0.35) 

0.11 

(-0.05, 0.27) 

-0.05 

(-0.13, 0.04) 

0.00 

(-0.03, 0.04) 

-0.01 

(-0.04, 0.02) 

0.09 

(-0.08, 0.26) 

FFQ after blood draw vs. FFQ at 

the same time as blood draw 

0.50 

(-0.34, 1.34) 

0.08 

(-0.37, 0.54) 

0.04 

(-0.18, 0.26) 

0.06 

(-0.04, 0.16) 

-0.04 

(-0.12, 0.04) 

-0.11 

(-0.56, 0.35) 

Citrus food  

(servings/day) 

0.27*** 

(0.20, 0.34) 
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Fruits and vegetables 

(servings/day) 

 

 

0.22** 

(0.08, 0.36) 

    

Tea  

(servings/day) 

 

0.01 

(-0.01, 0.04) 

    

Coffee  

(servings/day) 

 

0.02 

(0.00, 0.04) 

    

Chicken  

(servings/day) 

  

0.02* 

(0.00, 0.04) 

   

Red meat 

(servings/day) 

  

0.03* 

(0.01, 0.06) 

0.00 

(0.00, 0.01) 

 

0.00 

(-0.04, 0.04) 

Eggs  

(servings/day) 

  

0.01 

(-0.01, 0.02) 

  

0.00 

(-0.03, 0.04) 

Nuts and legumes 

(servings/day) 

  

0.02 

(-0.02, 0.06) 

 

0.02* 

(0.00, 0.03) 

 

Canned fish       0.01 
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(servings/day) (-0.03, 0.04) 

Fried fish 

(servings/day) 

     

0.01 

(-0.03, 0.05) 

Seafood 

(servings/day) 

     

0.08*** 

(0.04, 0.12) 

*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 FFQ = Food frequency questionnaire; TMAO = trimethylamine N-oxide. 
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Table 3.3: Results from ordinary least squares regression examining the association of dietary and non-dietary factors with 

serum non-esterified fatty acid (NEFA) in FAMILY cohort. 

 even-chain SFA odd-chain SFA ω-3 PUFA 

 14:0 15:0 17:0 EPA DHA EPA + DHA 

Variable b (95% CI) b (95% CI) b (95% CI) b (95% CI) b (95% CI) b (95% CI) 

Age (years) 

4.24×10-3 

(-0.00, 0.01) 

-3.54×10-4 

(-0.01, 0.01) 

-0.01 

(-0.01, 0.00) 

-0.01 

(-0.03, 0.00) 

-4.77×10-3 

(-0.01, 0.00) 

-0.01 

(-0.02, 0.00) 

Gestational age (weeks) 

-0.01 

(-0.02, 0.00) 

-0.02*** 

(-0.03, -0.01) 

-0.01** 

(-0.02, -0.00) 

-0.01 

(-0.03, 0.01) 

-0.01 

(-0.02, 0.00) 

-0.01 

(-0.02, 0.00) 

Parity 

-0.01 

(-0.04, 0.03) 

2.105 × 10-4 

(-0.03, 0.03) 

2.21×10-3 

(-0.03, 0.03) 

-2.07×10-5 

(-0.06, 0.06) 

-0.03 

(-0.08, 0.01) 

-0.02 

(-0.07, 0.03) 

Gestational diabetes (GDM) 

0.02 

(-0.07, 0.10) 

-0.01 

(-0.09, 0.07) 

-0.06 

(-0.14, 0.03) 

-0.06 

(-0.22, 0.10) 

-0.07 

(-0.18, 0.04) 

-0.07 

(-0.19, 0.05) 

Pre-pregnancy BMI (kg/m2) 

-0.01* 

(-0.01, -0.00) 

-0.01** 

(-0.01, -0.00) 

-0.01* 

(-0.01, -0.00) 

-2.86×10-3 

(-0.01, 0.01) 

-0.01* 

(-0.02, -0.00) 

-0.01 

(-0.01, 0.00) 

Smoking history  -0.02 -0.04 -0.05 -0.01 -0.05 -0.04 
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(ever vs. never smoked) (-0.08, 0.05) (-0.10, 0.03) (-0.12, 0.01) (-0.13, 0.10) (-0.14, 0.03) (-0.12, 0.05) 

Physical activity  

(low vs. high) 

-0.01 

(-0.09, 0.08) 

-0.01 

(-0.09, 0.06) 

-0.10** 

(-0.17, -0.02) 

-0.03 

(-0.18, 0.11) 

-0.03 

(-0.12, 0.06) 

-0.03 

(-0.13, 0.08) 

Social disadvantage index 

-0.02 

(-0.04, 0.01) 

-1.79×10-3 

(-0.03, 0.03) 

0.02 

(-0.01, 0.05) 

0.04 

(-0.03, 0.10) 

0.04 

(-0.00, 0.08) 

0.04 

(-0.01, 0.08) 

Fiber intake  

(g/day) 

-1.12×10-3 

(-0.01, 0.01) 

2.84×10-3 

(-0.00, 0.01) 

1.45×10-3 

(-0.00, 0.01) 

4.51×10-3 

(-0.00, 0.01) 

2.01×10-3 

(-0.00, 0.01) 

3.48×10-3 

(-0.00, 0.01) 

Energy intake (kcal) 

-1.05×10-5 

(-0.00, -0.00) 

-4.76×10-5 

(-0.00, 0.00) 

-2.42×10-5 

(-0.00, 0.00) 

-8.23×10-5 

(-0.00, 0.00) 

-4.77×10-5 

(-0.00, 0.00) 

-6.21×10-5 

(-0.00, 0.00) 

FFQ before blood draw vs. FFQ at the 

same time as blood draw 

-0.03 

(-0.10, 0.04) 

0.06 

(-0.01, 0.13) 

0.01 

(-0.06, 0.08) 

-3.01×10-3 

(-0.14, 0.14) 

0.05 

(-0.04, 0.15) 

0.02 

(-0.07, 0.12) 

FFQ after blood draw vs. FFQ at the 

same time as blood draw 

-0.05 

(-0.26, 0.16) 

0.02 

(-0.09, 0.13) 

0.04 

(-0.10, 0.19) 

0.06 

(-0.26, 0.38) 

0.24* 

(0.02, 0.46) 

0.16 

(-0.07, 0.40) 

Full-fat dairy 

(servings/day) 

0.02 

(-0.02, 0.06) 

0.06*** 

(0.03, 0.10) 

0.04** 

(0.01, 0.07) 
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Fish/Fish oil 

(servings/day) 

   

0.05 

(-0.00, 0.11) 

0.11*** 

(0.07, 0.14) 

0.08*** 

(0.04, 0.12) 

*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 
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Table S3.1: Results from ordinary least squares regression examining the 

association of dietary and non-dietary factors with food-based metabolites 

 Hippuric  

acid 

Carnitine 

Variable b (95% CI) b (95% CI) 

Age (years) 0.01 

(-0.01, 0.03) 

0.00 

(-0.00, 0.00) 

Gestational age (weeks) 0.01 

(-0.01, 0.03) 

-0.01** 

(-0.02, -0.01) 

Parity 0.03 

(-0.05, 0.11) 

0.00 

(-0.01, 0.02) 

Gestational diabetes (GDM) 0.06 

(-0.10, 0.23) 

0.02 

(-0.02, 0.05) 

Pre-pregnancy BMI (kg/m2) -0.01 

(-0.03, 0.00) 

0.00 

(-0.00, 0.00) 

Smoking history  

(ever vs. never smoked) 

-0.13 

(-0.29, 0.03) 

0.06* 

(0.02, 0.10) 

Physical activity  

(low vs. high) 

0.02 

(-0.11, 0.15) 

-0.01 

(-0.04, 0.02) 

Social disadvantage index -0.02 

(-0.08, 0.04) 

0.00 

(-0.01, 0.01) 

Fiber intake  

(g/day) 

0.01 

(-0.00, 0.02) 

0.00 

(-0.00, 0.00) 

Energy intake (kcal) 0.00* 

(-0.00, -0.00) 

0.00 

(-0.00, 0.00) 

FFQ before blood draw  

vs. FFQ at the same time as blood draw 

0.10 

(-0.07, 0.26) 

0.01 

(-0.03, 0.05) 

FFQ after blood draw  

vs. FFQ at the same time as blood draw 

0.08 

(-0.18, 0.34) 

0.06 

(-0.07, 0.19) 

Ethnicity (White European vs. South 

Asian) 

0.04 

(-0.18, 0.26) 

-0.02 

(-0.07, 0.04) 

Fruits and vegetables 

(servings/day) 

0.22* 

(0.08, 0.36) 

 

Tea  

(servings/day) 

0.01 

(-0.01, 0.04) 

 

Coffee  

(servings/day) 

0.02 

(-0.00, 0.04) 

 

Red meat 

(servings/day) 

 0.00 

(-0.00, 0.01) 
*p ≤ 0.01, **p ≤ 0.001  
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Table S3.2: Results of model fitting analyses examining the association of dietary 

and non-dietary factors with food metabolites 

 −2 Log L BIC AIC Sb
2 Sw

2 

Proline Betaine      

Model 1 − − − 0.14 0.13 

Model 2 2100.0 2101.4 2104.0 0.02 0.11 

Model 3 1779.0 1780.4 1783.0 0.20 0.12 

Hippuric acid      

Model 1 − − − 0.00 0.03 

Model 2 1394.7 1395.3 1396.7 0.00 0.03 

Model 3 1182.1 1182.8 1184.1 0.00 0.03 

3-methylhistidine      

Model 1 − − − 0.07 0.01 

Model 2 515.3 518.8 525.3 0.02 0.01 

Model 3 496.0 497.4 500.0 0.02 0.01 

Carnitine      

Model 1 − − − 0.00 0.00 

Model 2 -387.0 -385.6 -383.0 0.00 0.00 

Model 3 -298.6 -297.9 -296.6 0.00 0.00 

Tryptophan betaine      

Model 1 − − − 0.03 0.00 

Model 2 -588.1 -586.7 -584.1 0.02 0.00 

Model 3 -489.4 -488.0 -485.4 0.02 0.00 

TMAO      

Model 1 − − − 0.07 0.04 

Model 2 1421.5 1422.9 1425.5 0.02 0.03 

Model 3 1211.1 1211.8 1213.1 0.00 0.04 
AIC = Akaike Information Criterion, BIC = Bayesian Information Criterion, -2 Log L = -2 log likelihood, 

Sb
2 = Sum of square between, Sw

2 = Sum of square within 

Model 1: Unconditional (intercept only) model 

Model 2: Random Intercept with Fixed Level-1 Factors (dietary factors) 

Model 3: Random Intercept with Fixed Level-1 Factors (dietary and non-dietary factors) 
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Table S3.3: Results from ordinary least squares regression examining the association of dietary and non-dietary factors 

with food-based metabolites in FAMILY cohort 

 Proline  

betaine 

Hippuric  

acid 

3-Methyl 

histidine 

Carnitine Tryptophan 

betaine 

TMAO 

Variable b (95% CI) b (95% CI) b (95% CI) b (95% CI) b (95% CI) b (95% CI) 

Age (years) 0.06** 

(0.02, 0.10) 

0.02 

(-0.01, 0.04) 

0.00 

(-0.01, 0.02) 

0.00 

(-0.00, 0.01) 

0.00 

(-0.00, 0.00) 

0.02 

(-0.01, 0.04) 

Gestational age (weeks) 0.02 

(-0.02, 0.10) 

0.00 

(-0.02, 0.02) 

0.01 

(-0.01, 0.02) 

-0.01*** 

(-0.02, 0.01) 

0.00 

(-0.00, 0.00) 

0.01 

(-0.01, 0.04) 

Parity -0.06 

(-0.26, 0.15) 

-0.02 

(-0.11, 0.08) 

0.00 

(-0.07, 0.07) 

-0.01 

(-0.03, 0.01) 

-0.01 

(-0.02, 0.00) 

-0.04 

(-0.12, 0.05) 

Gestational diabetes (GDM) -0.15 

(-0.65, 0.35) 

0.01 

(-0.23, 0.24) 

0.06 

(-0.07, 0.19) 

0.03 

(-0.02, 0.08) 

-0.01 

(-0.04, 0.02) 

-0.07 

(-0.29, 0.15) 

Pre-pregnancy BMI (kg/m2) -0.03* 

(-0.06, -0.00) 

-0.01 

(-0.03, 0.01) 

-0.00 

(-0.01, 0.00) 

-0.00 

(-0.01, 0.00) 

0.00 

(-0.00, 0.00) 

-0.01 

(-0.02, 0.01) 

Smoking history  

(ever vs. never smoked) 

-0.53** 

(-0.91, 0.14) 

-0.10 

(-0.26, 0.07) 

0.03 

(-0.07, 0.13) 

0.06** 

(0.02, 0.10) 

0.00 

(-0.02, 0.00) 

0.01 

(-0.17, 0.19) 

Physical activity  

(low vs. high) 

0.06 

(-0.31, 0.43) 

-0.02 

(-0.18, 0.14) 

-0.05 

(-0.15, 0.06) 

-0.02 

(-0.06, 0.03) 

0.00 

(-0.03, 0.02) 

-0.02 

(-0.21, 0.18) 

Social disadvantage index -0.03 

(-0.22, 0.17) 

-0.01 

(-0.10, 0.07) 

0.00 

(-0.04, 0.05) 

-0.00 

(-0.02, 0.01) 

0.00 

(-0.01, 0.01) 

0.04 

(-0.03, 0.11) 

Fiber intake  

(g/day) 

-0.00 

(-0.03, 0.02) 

0.01 

(-0.00, 0.02) 

-0.00 

(-0.01, 0.01) 

0.00 

(-0.00, 0.00) 

0.00 

(-0.00, 0.00) 

0.00 

(-0.01, 0.02) 

Energy intake (kcal) -0.00 

(-0.00, 0.00) 

-0.00* 

(-0.00, -0.00) 

-0.00 

(0.00, 0.00) 

-0.00 

(-0.00, 0.00) 

0.00 

(-0.00, 0.00) 

-0.00 

(-0.00, 0.00) 

FFQ before blood draw  

vs. FFQ at the same time as 

blood draw 

0.06 

(-0.29, 0.40) 

0.09 

(-0.09, 0.26) 

-0.06 

(-0.16, 0.05) 

0.02 

(-0.02, 0.06) 

-0.01 

(-0.03, 0.02) 

0.10 

(-0.08, 0.28) 
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FFQ after blood draw vs. FFQ 

at the same time as blood draw 

0.08 

(-0.70, 0.86) 

-0.02 

(-0.46, 0.41) 

0.10 

(-0.30, 0.50) 

0.05 

(-0.10, 0.21) 

-0.02 

(-0.11, 0.06) 

-0.14 

(-0.72, 0.45) 

Citrus food  

(servings/day) 

0.40*** 

(0.24, 0.57) 

     

Fruits and vegetables 

(servings/day) 

 0.30*** 

(0.16, 0.45) 

    

Tea  

(servings/day) 

 0.00 

(-0.02, 0.03) 

    

Coffee  

(servings/day) 

 0.01 

(-0.01, 0.04) 

    

Chicken  

(servings/day) 

  0.03 

(-0.00, 0.06) 

   

Red meat 

(servings/day) 

  0.01 

(-0.03, 0.05) 

0.02* 

(0.00, 0.04) 

 0.04 

(-0.02, 0.10) 

Eggs  

(servings/day) 

  0.03 

(-0.00, 0.06) 

  0.03 

(-0.04, 0.10) 

Nuts and legumes 

(servings/day) 

  0.06* 

(0.00, 0.12) 

 0.02* 

(0.00, 0.04) 

 

Canned fish  

(servings/day) 

     0.02 

(-0.01, 0.06) 

Fried fish 

(servings/day) 

     0.02 

(-0.02, 0.07) 

Seafood 

(servings/day) 

     0.07** 

(0.02, 0.11) 
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 
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Table S3.4: Results from ordinary least squares regression examining the association of dietary and non-dietary factors 

with food-based metabolites in START cohort 

 Proline  

betaine 

Hippuric  

acid 

3-Methyl 

histidine 

Carnitine Tryptophan 

betaine 

TMAO 

Variable b (95% CI) b (95% CI) b (95% CI) b (95% CI) b (95% CI) b (95% CI) 

Age (years) -0.01 

(-0.07, 0.04) 

-0.01 

(-0.04, 0.02) 

0.00 

(-0.01, 0.01) 

-0.00 

(-0.01, 0.00) 

0.00 

(-0.01, 0.01) 

0.03 

(-0.01, 0.06) 

Gestational age (weeks) 0.02 

(-0.08, 0.13) 

0.05 

(-0.01, 0.11) 

-0.00 

(-0.03, 0.02) 

-0.02*** 

(-0.03, -0.01) 

-0.01 

(-0.02, 0.00) 

0.02 

(-0.03, 0.07) 

Parity -0.18 

(-0.45, 0.10) 

0.11 

(-0.02, 0.24) 

-0.03 

(-0.09, 0.04) 

0.03 

(-0.00, 0.06) 

-0.01 

(-0.04, 0.03) 

0.07 

(-0.06, 0.21) 

Gestational diabetes (GDM) 0.18 

(-0.18, 0.55) 

0.09 

(-0.14, 0.32) 

-0.02 

(-0.11, 0.07) 

0.01 

(-0.03, 0.06) 

0.04 

(-0.00, 0.09) 

0.05 

(-0.18, 0.27) 

Pre-pregnancy BMI (kg/m2) 0.01 

(-0.04, 0.05) 

-0.02 

(-0.05, 0.00) 

-0.01 

(-0.02, 0.00) 

0.00 

(-0.00, 0.01) 

0.00 

(-0.00, 0.01) 

-0.02 

(-0.04, 0.01) 

Physical activity  

(low vs. high) 

-0.57* 

(-0.12, 0.03) 

-0.05 

(-0.27, 0.17) 

-0.01 

(-0.11, 0.09) 

-0.00 

(-0.05, 0.05) 

0.03 

(-0.02, 0.08) 

-0.04 

(-0.36, 0.28) 

Social disadvantage 

index 

-0.05 

(-0.18, 0.09) 

-0.03 

(-0.10, 0.05) 

-0.00 

(-0.04, 0.03) 

0.01 

(-0.01, 0.02) 

-0.00 

(-0.02, 0.02) 

-0.07 

(-0.15, 0.01) 

Fiber intake  

(g/day) 

0.01 

(-0.02, 0.04) 

0.01 

(-0.01, 0.03) 

-0.00 

(-0.01, 0.00) 

-0.00 

(-0.01, 0.00) 

0.00** 

(0.00, 0.01) 

-0.00 

(-0.02, 0.01) 

Energy intake (kcal) -0.00 

(-0.00, 0.00) 

0.00* 

(0.00, 0.00) 

0.00 

(-0.00, 0.00) 

0.00** 

(0.00, 0.00) 

-0.00* 

(-0.00, -0.00) 

0.00 

(-0.00, 0.00) 

FFQ before blood draw vs. 

FFQ at the same time as blood 

draw 

-0.76 

(-1.58, 0.07) 

0.24 

(-0.25, 0.72) 

0.00 

(-0.18, 0.19) 

0.05 

(-0.14, 0.05) 

-0.01 

(-0.08, 0.05) 

0.02 

(-0.37, 0.41) 

FFQ after blood draw vs. FFQ 

at the same time as blood draw 

0.94** 

(0.29, 1.59) 

0.14 

(-0.23, 0.50) 

-0.07 

(-0.28, 0.13) 

0.06 

(-0.14, 0.27) 

-0.06 

(-0.24, 0.12) 

-0.19 

(-0.64, 0.26) 
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Citrus food  

(servings/day) 

0.18*** 

(0.17, 0.28) 

     

Fruits and vegetables 

(servings/day) 

 0.11 

(-0.09, 0.30) 

    

Tea  

(servings/day) 

 0.03 

(-0.02, 0.08) 

    

Coffee  

(servings/day) 

 0.02 

(-0.04, 0.07) 

    

Chicken  

(servings/day) 

  -0.00 

(-0.03, 0.03) 

   

Red meat 

(servings/day) 

  0.06** 

(0.02, 0.10) 

-0.00 

(-0.01, 0.01) 

 0.00 

(-0.06, 0.06) 

Eggs  

(servings/day) 

  -0.01 

(-0.02, 0.01) 

  0.00 

(-0.03, 0.07) 

Nuts and legumes 

(servings/day) 

  -0.05 

(-0.11, 0.01) 

 0.02 

(-0.01, 0.05) 

 

Canned fish  

(servings/day) 

     -0.08 

(-0.24, 0.07) 

Fried fish 

(servings/day) 

     -0.00 

(-0.08, 0.07) 

Seafood 

(servings/day) 

     0.11* 

(0.01, 0.21) 
*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001
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Table S3.5: Results from ordinary least squares regression examining the 

association of dietary and non-dietary factors with serum non-esterified fatty acid 

(NEFA) in FAMILY cohort 

 ω-3 PUFA 

 EPA DHA EPA + DHA 

Variable b (95% CI) b (95% CI) b (95% CI) 

Age (years) -0.01 

(-0.02, 0.00) 

-2.92×10-3 

(-0.01, 0.01) 

-0.01 

(-0.02, 0.00) 

Gestational age (weeks) -0.01 

(-0.03, 0.00) 

-0.01* 

(-0.02, -0.00) 

-0.01* 

(-0.02, -0.00) 

Parity -0.01 

(-0.07, 0.06) 

-0.05* 

(-0.09, -0.00) 

-0.03 

(-0.08, 0.02) 

Gestational diabetes (GDM) -0.06 

(-0.22, 0.10) 

-0.06 

(-0.17, 0.05) 

-0.07 

(-0.18, 0.05) 

Pre-pregnancy BMI (kg/m2) -3.34×10-3 

(-0.01, 0.01) 

-0.01** 

(-0.02, -0.00) 

-0.01 

(-0.01, 0.00) 

Smoking history  

(ever vs. never smoked) 

-0.01 

(-0.13, 0.11) 

-0.04 

(-0.13, 0.04) 

-0.03 

(-0.12, 0.05) 

Physical activity  

(low vs. high) 

-0.03 

(-0.18, 0.12) 

-0.02 

(-0.12, 0.08) 

-0.02 

(-0.13, 0.09) 

Social disadvantage index 0.03 

(-0.04, 0.10) 

0.03 

(-0.01, 0.07) 

0.03 

(-0.02, 0.08) 

Fiber intake  

(g/day) 

0.01 

(-0.00, 0.01) 

3.71×10-3 

(-0.00, 0.01) 

4.88×10-3 

(-0.00, 0.01) 

Energy intake (kcal) -7.71×10-5 

(-0.00, 0.00) 

-3.76×10-5 

(-0.00, 0.00) 

-5.39×10-5 

(-0.00, 0.00) 

FFQ before blood draw vs. FFQ at 

the same time as blood draw 

-0.01 

(-0.15, 0.13) 

0.04 

(-0.05, 0.13) 

0.02 

(-0.08, 0.11) 

FFQ after blood draw vs. FFQ at 

the same time as blood draw 

0.06 

(-0.26, 0.39) 

0.25 

(-0.04, 0.54) 

0.17 

(-0.11, 0.44) 

Fish 

(servings/day) 

0.02 

(-0.01, 0.05) 

0.04** 

(0.01, 0.06) 

0.03* 

(0.01, 0.05) 

*p ≤ 0.05, **p ≤ 0.01 

 

 

 

 



PhD. Thesis – Talha Rafiq; McMaster University – Medical Science 

 

143 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3.1: Consort flow diagram outlining selection criteria used in a cross-

sectional study involving participants from the FAMILY and START birth cohorts 
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Figure S3.2: Weighted Rpartial
2 for each factor showing the percentage of explained 

variability in Proline betaine in (A) FAMILY and (B) START cohort 

Statistical significance was based on hierarchical linear models. * p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 

A 

B 
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Figure S3.3: Weighted Rpartial
2 for each factor showing the percentage of explained 

variability in Hippuric acid in (A) FAMILY and (B) START cohort 

Statistical significance was based on hierarchical linear models. * p ≤ 0.05, ***p ≤ 0.001 

B 

A 
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Figure S3.4: Weighted Rpartial
2 for each factor showing the percentage of explained 

variability in Tryptophan betaine in (A) FAMILY and (B) START cohort 

Statistical significance was based on hierarchical linear models. * p ≤ 0.05, **p ≤ 0.01 

A 

B 
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Figure S3.5: Weighted Rpartial
2 for each factor showing the percentage of explained 

variability in Carnitine in (A) FAMILY and (B) START cohort 

Statistical significance was based on hierarchical linear models. * p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 

A 

B 
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Figure S3.6: Weighted Rpartial
2 for each factor showing the percentage of explained 

variability in trimethylamine N-oxide (TMAO) in (A) FAMILY and (B) START 

cohort 

Statistical significance was based on hierarchical linear models. * p ≤ 0.05, **p ≤ 0.01 

A 

B 
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Figure S3.7: Weighted Rpartial
2 for each factor showing the percentage of explained 

variability in 3-methylhistidine in (A) FAMILY and (B) START cohort 

Statistical significance was based on hierarchical linear models. * p ≤ 0.05, **p ≤ 0.01 

A 

B 
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Figure S3.8: Weighted Rpartial
2 for each factor showing the percentage of explained 

variability in Eicosapentaenoic acid (EPA, 20:5n-3) in FAMILY cohort 

Statistical significance was based on ordinary least squares regression. 

 

Figure S3.9: Weighted Rpartial
2 for each factor showing the percentage of explained 

variability in Docosahexaenoic acid (DHA; 22:6n-3) in FAMILY cohort 

Statistical significance was based on ordinary least squares regression. * p ≤ 0.05, **p ≤ 0.01 
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Figure S3.10: Weighted Rpartial
2 for each factor showing the percentage of explained 

variability in EPA + DHA in FAMILY cohort 

Statistical significance was based on ordinary least squares regression. * p ≤ 0.05 
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Figure S3.11: Venn diagram showing overlap of serum metabolites based on the 

cluster effect by ethnicity/cohort
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4.1 Abstract 

Background: Emerging evidence supports the complex interplay of gut microbiome and 

host metabolism as important regulators of obesity. The metabolome profile and 

microbiome activity from dietary exposures may also contribute to greater obesity risk in 

children.  

Objective: We aimed to identify features that discriminated children with 

overweight/obesity and normal weight by integrating 16S rRNA gene amplicon sequence 

variant (ASV) and serum metabolome data. 

Methods: This prospective analysis included 50 South Asian children from the SouTh 

Asian biRth cohorT (START). Serum metabolites were measured by multisegment 

injection-capillary electrophoresis-mass spectrometry and the relative abundance of 

bacterial species was evaluated with 16S rRNA sequencing (V3 region) from stool 

samples at 1 year of age. Cumulative body mass index (BMIAUC) and skinfold thickness 

(SSFAUC) scores were calculated using 4 measurements obtained from birth to 3-years as 

the total area under the growth curve (AUC). BMIAUC and/or SSFAUC >85th percentile was 

used to classify overweight/obesity children. Data Integration Analysis for Biomarker 

discovery using Latent cOmponent (DIABLO) was used to identify discriminant features 

associated with childhood adiposity. Logistic regression was used to examine the 

association between the identified features and anthropometric measures in young 

children.  

Results: Several serum metabolites including glutamic acid, acetylcarnitine, carnitine, 

and threonine were positively, whereas γ-aminobutyric acid (GABA), symmetric 



PhD. Thesis – Talha Rafiq; McMaster University – Medical Science 

 

155 
 

dimethylarginine (SDMA), and asymmetric dimethylarginine (ADMA) were negatively 

associated with childhood adiposity. The bacterium Akkermansia was positively 

correlated with GABA, whereas Pseudobutyrivibrio and Lactobacillus were inversely 

correlated with GABA and SDMA. 

Conclusion: Metabolites related to protein and fat metabolism were associated with 

specific gut bacterial species. By integrating infant metabolome and microbiome, this 

study provides insights into metabolomic features and microbial composition associated 

with obesity trajectories in childhood.  
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4.2 Introduction 

Obesity is a multifactorial process characterized by excess adipose tissue accompanied by 

chronic low-grade inflammation resulting from complex interactions between genetic, 

behavioural, social, and environmental factors. However, the pathophysiological 

mechanisms leading to excess adiposity early in life remains poorly understood. Recent 

advances in –omics technologies and approaches have allowed for a comprehensive 

characterization of metabolic networks to decipher underlying biological responses that 

lead to phenotypic obesity (1) due to dynamic changes at the genetic, epigenetic, protein, 

and metabolites levels. For instance, emerging evidence has shown that the distribution of 

bacterial communities found in the intestine (i.e., the microbiome) of children who are 

overweight or obese differs from those who are of normal weight (2, 3). Environmental 

factors and changes in the gut microbiota may therefore jointly underlie the phenotypic 

expression of obesity and may also signal changes in other –omics markers (4). Adiposity 

is also characterized by lower gut microbial diversity as compared to normal weight 

controls (5). Although host-derived factors are genetically hardwired, the microbiome can 

be regulated by environmental factors such as habitual diet. However, it is unclear 

whether imbalances in the microbiome composition (i.e., dysbiosis) that cause or increase 

risk of disease and accompanying changes in the metabolome are a cause or consequence 

of childhood adiposity. General strategy to provide evidence for causality is to observe 

change in adiposity over time in the correct temporal sequence. 

 The colonization of the gut microbiota starts from birth and alterations in 

maturation during infancy is a potential contributor to obesity and metabolic traits (3, 6). 
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Alterations in intestinal microbiota composition, specifically a higher Firmicutes-to-

Bacteroidetes ratio and lower microbiota diversity are shown to be associated with 

obesity in children as young as 7 years of age (7), and can lead to disruption in energy 

acquisition and regulation (8). The gut microbiome associated with diet-induced obesity 

may be more efficient at extracting energy from indigestible polysaccharides, 

contributing to greater caloric uptake (9). Moreover, elevated Firmicutes-to-

Bacteroidetes ratio can lead to more efficient hydrolysis and fermentation of the 

indigestible dietary polysaccharides to generate short-chain fatty acids (SCFAs), which 

can increase the host's ability to extract energy from the food components entering the GI 

tract and activate the lipogenic pathways (10). However, some studies report higher 

Bacteroides abundance and Bacteroides/Prevotella to be associated with obesity in 

children (11-13). These inconsistent results have been attributed to bias caused by a lack 

of standardized methods for stool collection and storage during gut microbiome sampling 

(14), and non-technical factors that are rarely or insufficiently controlled, such as inter-

individual genetic, environmental, and dietary variance. In addition to SCFAs, fecal 

metabolome studies have showed that obesity incidence is associated with higher levels 

of branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, and 

aromatic amino acids (AAs), including phenylalanine, tryptophan, and tyrosine (15, 16). 

A recent systematic review of 41 studies using blood and urine samples reported a 

consistent metabolic profile of children with obesity comprising higher levels of amino 

acids including BCAAs and AAAs, carnitines, lipids, and steroids (17). These findings 

support the role of that certain metabolites can be endogenously produced or derived in 
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response to diet exposure and gut microbiota activity, which may influence host 

metabolic processes that increase obesity due to altered energy balance and/or 

inflammation. It is therefore of interest to use integrative multi-omics analyses to 

characterize molecular changes of childhood obesity necessary to gain new insights into 

its etiology.  

Obesity and its complications are disproportionately more prevalent in non-white 

populations (18). Children of South Asian ancestry have an increased cardiometabolic 

risk at lower body mass index (BMI) than other ethnic groups which has been attributed 

to lower lean mass and higher abdominal fat mass at the same BMI (18-20). However, 

studies of metabolome or microbiome and childhood obesity have been performed 

primarily in white Europeans, and thus need to be examined in other ethnic populations, 

such as South Asians (17). Another research gap is the integration of metabolomics with 

microbiome, which is of great interest in child obesity research, but little research has 

been done and it remains largely understudied in non-white populations. To address these 

gaps, we employed a multi-omics approach of serum metabolomics and amplicon 

sequence variants (ASVs) of 16S rRNA genes to identify integrated molecular features 

that characterize risk of obesity in young children. 

4.3 Methods 

4.3.1 Data source and participants 

The South Asian Birth Cohort (START) is a prospective birth cohort designed to study 

the influence of diverse environmental exposures and genetics on early life adiposity, 

growth trajectory and cardiometabolic health of South Asians living in Canada. In brief, 
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START enrolled 1,012 South Asian mother–child pairs from the Peel Region of Ontario, 

Canada. Participants were recruited through physician referrals between 2011 and 2015, 

and followed up at 1-, 2-, and 3-years. Ancestral origin of both the woman, her partner, 

and both offspring’s grandparents were required to be South Asian (from the Indian sub-

continent: India, Pakistan, Sri Lanka, or Bangladesh). Further details on the START 

design and methodology have been described in detail elsewhere (21). Of the 182 infants 

who provided fecal samples for microbiome analyses, our analytic dataset includes 50 

infants who provided complete data on microbiome and serum metabolome at 1-year, and 

anthropometric measures at birth, 1, 2, and 3 years. A primary caregiver of all enrolled 

participants provided full informed consent. The study was approved by the McMaster 

Hamilton Integrated Research Ethics Board [START (HiREB #10–640). 

4.3.2 Anthropometrics 

Child anthropometric measurements were obtained by a trained research assistant 

following a standard procedure as previously described (21). Specifically, length was 

measured using the O’Leary Pediatric Length Board at birth, 1-, and 2-years, and a 

stadiometer was used to measure height after 24 months. Infant birth weight was obtained 

from the birth delivery reports, and weight at each follow-up visit was measured using an 

electronic scale. BMI was calculated as weight in kilograms divided by squared height or 

length in meters. The skinfold thickness of triceps and subscapular sites were measured in 

triplicate using calipers (Holtain Tanner/Whitehouse, UK) to the nearest 0.2 mm, and 

summed to create “sum of skinfolds” (SSF) (21). 
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4.3.3 Area under the curve (AUC) of BMI and SSF 

For each child, we calculated area under the curve (AUC) of BMIAUC and SSFAUC from 

birth to 3-years as a cumulative exposure to summarize the duration and degree of body 

mass. The BMIAUC and SSFAUC were calculated separately using the following formula: 

AUC = Average (BMI or SSF value at age 1, BMI or SSF value at birth) x (1 – 0) + 

            Average (BMI or SSF value at age 2, BMI or SSF value at age 1) x (2 – 1) + 

            Average (BMI or SSF value at age 3, BMI or SSF value at age 2) x (3 – 2) 

 In the analysis, children with BMIAUC and/or SSFAUC at or above internally 

derived 85th percentile were classified as being overweight/obese and those with BMIAUC 

and SSFAUC below 85th percentile were classified as normal weight (22). A contingency 

table comparing the classification of overweight/obesity using the BMIAUC and SSFAUC is 

presented in Supplementary Table S4.1. 

4.3.4 Serum metabolome analyses 

A validated multiplexed separation platform based on multisegment injection-capillary-

electrophoresis-mass spectrometry (MSI-CE-MS) was used for targeted and nontargeted 

analyses of 73 polar ionic metabolites measured in serum filtrate samples with stringent 

quality control (QC) (23). This multiplexed separation platform takes advantage of a 

serial sample injection format comprising seven (or more) serum filtrates analyzed within 

a single run using an Agilent 6230 time-of-flight mass spectrometer (TOF-MS) with a 

coaxial sheath liquid Jetstream electrospray ion source coupled to an Agilent G7100A 

capillary electrophoresis (CE) unit (23). A standardized protocol for identification and 

quantification of circulating serum metabolites under positive and negative ion mode 
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detection is described in more detail elsewhere (23). Briefly, an iterative data workflow 

was used to effectively filter out spurious signals, redundant peaks, and background ions, 

when performing targeted and nontargeted metabolite profiling based on analysis of a 

pooled serum sample that served as a QC sample to monitor technical precision (24). 

Serum metabolites were reported if they were detected in majority of the individual 

samples (≥75%) with an acceptable technical precision (CV <30%) based on repeated 

analysis of QC samples to minimize false discoveries and data overfitting. Missing values 

(below method detection limit) were set as half of the lowest detected value for each 

metabolite. Unambiguous identification of most serum metabolites (level 1) in this work 

was achieved after spiking a pooled serum sample with authentic standards based on their 

co-migration and accurate mass with low mass error (<5 ppm). These authenticated 

metabolites were quantified in terms of their absolute concentration (M) using external 

calibration curves, where the ion response for each compound was normalized to an 

internal standard (i.e., relative peak area). Unknown serum metabolites were otherwise 

annotated based on their relative migration time, accurate mass and most likely molecular 

formula. 

4.3.5 Microbiome data acquisition 

A fecal sample was collected from infants at the 1-year visit. Mothers were instructed to 

collect stool sample from a regular diaper and record the time and date of the sample and 

place it in a sterile bag in the freezer until their scheduled appointment. Upon arrival, the 

stool samples were divided into four pre-labeled cryovials and transferred to the lab in a 

cooler, weighed, and stored at −80 °C. Sample storage, DNA extraction, 16S rRNA gene 
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sequencing, and analysis has been described in detail previously (25). In brief, the V3 

region of 16S rRNA gene (150 base pairs) was sequenced in the McMaster Genomics 

Facility with 250-base pair sequencing on the MiSeq sequencer (Illumina, Inc.). Adapter, 

primer and barcode sequences were trimmed from sequencing reads using cutadapt 

(v1.2.1) (26), and ASVs were inferred using the Divisive Amplicon Denoising Algorithm 

2 (DADA2) package in R (27). The naive Bayesian classifier method in DADA2 was 

used to assign taxonomy using the SILVA 16S rRNA gene reference file. 

4.3.6 Statistical Analysis 

Data Integration Analysis for Biomarker discovery using Latent cOmponent (DIABLO) 

was used to integrate 73 serum metabolites and 55 16S rRNA ASVs data to identify 

discriminant features between children with overweight/obesity and those with normal 

weight (28, 29). DIABLO is a supervised learning approach based on partial least squares 

(PLS) that builds on sparse Generalized Canonical Correlation Analysis (sGCCA) and 

aims to maximize covariance between linear combination of variables (latent component 

scores) and a response variable. Before proceeding with data integration, individual 

sparse-PLS-discriminant analysis (sPLS-DA) was used to understand major sources of 

variation in each dataset and guide the integration process (Supplementary Figures S4.1-

2). A 10% prevalence filter was used to remove low-prevalence ASVs and then 

transformed using the Centered Log Ratio (CLR) with the ALDEx2 package in R (30). 

Serum metabolome data were transformed using natural logarithm. First, the 

block.splsda() function was used to determine the optimum number of components based 

on the performance of the model considering the centroid distance technique and lowest 
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balanced error rate with a 5-fold cross-validation (repeated 500 times). One component 

was selected for use in the final model based on the lowest balanced error rate of 39% 

with a centroid distance metric. Next, a tune.block.splsda() function was applied to 

choose the optimal number of variables from each data on each component. Furthermore, 

a plotDiablo() function was used to generate a plot to show the overall correlation 

between the most discriminant ASVs and metabolites, and circosPlot() to visualize 

correlations greater than 0.5 between them. Finally, the plot.loadings() function is used to 

visualize the set of loading vectors assigned to each selected variables in each 

component. For discriminant analysis, the magnitude of the median value corresponds to 

the importance of each variable and the colour corresponds to the outcome group 

(overweight/obese and normal weight) in which the variable is most abundant. 

 Logistic regression models were also used to examine the association of the 

identified discriminant ASVs and metabolites with overweight/obesity. We estimated 

overweight/obesity per standard deviation increase in log-transformed serum metabolite 

level. Odds ratios (OR), 95% confidence intervals (95% CI), and p-values were reported. 

All analyses were carried out using R software, version 1.2.5. 

4.4 Results 

4.4.1 Descriptive statistics 

The distribution of demographic characteristics in the overall cohort and by child 

adiposity status are presented in Table 4.1. A total of 11 (22.0%) children were classified 

as overweight/obese and about 36% of these children were males. Children with 

overweight/obesity compared to those with normal weight had a lower mean gestational 
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age (38.49 vs. 39.26 months) and social disadvantage index (0.91 vs. 2.06), and were 

more likely to have been born preterm (18.2% vs. 7.7% corresponding to mean 

gestational age of 35.52 vs 39.52 months). As sensitivity analysis, we compared the AUC 

derived variable with BMI z-score using World Health Organization (WHO) Child 

Growth Standards and found that on average those classified as overweight/obese using 

AUC had higher BMI z-scores at ages 1-3 years compared those classified as normal 

weight using AUC (Supplementary Figure S4.3). A contingency table comparing 

overweight/obese status using the AUC method with the BMI z-score calculated using 

WHO Child Growth Standards are presented in Supplementary Table S4.1. 

4.4.2 Integrative analysis of ASVs and serum metabolome 

The DIABLO analysis revealed a weak correlation (r=0.28) between discriminant ASVs 

and circulating serum metabolites (Figure 1A). The optimal feature panel consisted of 9 

ASVs and 10 serum metabolites, which produced the highest correlations across the 

datasets and discriminated children with overweight/obesity and those with normal 

weight. The contribution of each selected feature based on its loading weights is shown in 

Figure 1B. The most important serum metabolites associated with overweight/obesity in 

this cohort were glutamic acid, acetylcarnitine, threonine, carnitine, tryptophan, and 

asparagine, and the most important ASVs at the genus level were Pseudobutyrivibrio, 

Lactobacillus, Rothia, and Lachnospira. On the other hand, the most important serum 

metabolites associated with normal weight relative to children with overweight/obesity 

were γ-aminobutyric acid (GABA), symmetric dimethylarginine (SDMA), asymmetric 

dimethylarginine (ADMA), and uric acid, whereas ASVs were members of the genera 
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Clostridium sensu stricto 1, Akkermansia, Hungatella, Roseburia, and 

Erysipelatoclostridium. A circos plot displays correlated features between selected ASVs 

and serum metabolites using a minimum cut-off value of r = 0.4 (Figure 4.1C). In this 

case, Pseudobutyrivibrio and Lactobacillus were inversely correlated with GABA (r= -

0.43 and r= -0.41, respectively) and SDMA (r= -0.42 and r= -0.40, respectively), and 

Akkermansia was positively correlated with GABA (r= 0.43) and SDMA (r= 0.41). 

Pearson correlation between the discriminatory metabolites and ASVs are depicted in 

Figures 4.2-3.  

4.4.3 Associations of selected metabolites and ASVs with overweight/obesity 

The associations between serum metabolites and ASVs with overweight/obesity status 

are presented in Table 2. For metabolites involved in glutamate metabolic pathway, 

higher serum glutamic acid was positively associated with odds of childhood adiposity 

(OR per SD=2.9; 95% CI=1.3, 7.4), whereas higher serum GABA was negatively 

associated (OR per SD=0.5; 95% CI=0.2, 0.8) with the odds of childhood adiposity 

compared to children with normal weight. Two main metabolites involved in carnitine 

metabolism, namely carnitine (OR per SD=5.0; 95% CI=1.4, 32.1) and acetylcarnitine 

(OR per SD=3.6; 95% CI=1.3, 14.6), were both also positively associated with 

overweight/obesity. Serum concentration for SDMA (OR per SD=0.4; 95% CI=0.2, 0.8) 

and ADMA (OR per SD=0.46; 95% CI=0.2, 0.9), both isomers generated via methylation 

of arginine, were negatively associated with childhood adiposity. Threonine, related to 

glycine, serine, and threonine metabolic pathway, was positively associated with 
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childhood adiposity. However, tryptophan, uric acid, and asparagine were not statistically 

associated with childhood anthropometric measures in this study. 

 The abundance of a Pseudobutyrivibrio (OR=1.3; 95% CI=1.0, 1.7) and 

Lactobacillus (OR=1.2; 95% CI=1.0, 1.5) ASVs were positively associated and the 

abundance of Clostridium sensu stricto 1 (OR=0.7; 95% CI=0.5, 0.9) and Akkermansia 

ASVs (OR=0.2; 95% CI=0.1, 0.7) was inversely associated with children with 

overweight/obesity compared to normal weight children. ASVs assigned as Rothia, 

Lachnospira, Hungatella, Roseburia, and Erysipelatoclostridium were not statistically 

associated with overweight/obesity. Figure 4.4 shows the distribution of discriminatory 

serum metabolites and ASVs between children with overweight/obesity and those with 

normal weight. 

4.5 Discussion 

This study aimed to identify multi-omic molecular features that discriminated children 

with overweight/obesity from normal weight children. The results from DIABLO showed 

coherent patterns between ASVs and circulating metabolites with respect to 

overweight/obesity and significant associations between the identified features. In the 

regression models, children with overweight/obese had higher levels of several 

metabolites at 1 year of age, including glutamic acid, acetylcarnitine, carnitine, and 

threonine, and lower levels of GABA, SDMA, and ADMA compared to normal weight 

children. Our results also showed higher abundance of members of the genera 

Pseudobutyrivibrio and Lactobacillus, and lower abundance of Clostridium sensu stricto 

1 and Akkermansia in the feces of children with overweight/obesity. Akkermansia was 
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positively correlated with GABA, and Pseudobutyrivibrio and Lactobacillus were 

inversely correlated with GABA and SDMA. 

 Glutamic acid, an α-amino acid necessary for the biosynthesis of glutamate, 

acquired from foods common to omnivore diets (such as meats, poultry, fish, eggs, and 

dairy products) was identified to have the greatest discriminatory power and present in 

higher level in children with overweight/obesity. Elevated glutamate levels is a proposed 

indicator of future risk of cardiometabolic disorders since it is found in higher 

concentration prior to development of type 2 diabetes and coronary artery disease in 

adults (31). Few studies have shown higher levels of glutamic acid in children with 

obesity (32, 33). In vitro studies have indicated that higher glutamate contributes to 

glucose-toxicity in pancreatic β-cells (34). Moreover, it is proposed that elevated 

glutamate levels increase the transamination of pyruvate to alanine, which can lead to the 

development of obesity-related insulin resistance (35). We observed a moderate 

correlation between glutamic acid and alanine (r = 0.57, p = <0.001), and on average 

higher levels of alanine in children with overweight/obesity compared to those with 

normal weight (mean = 4.43 vs. 3.64 RPA, p = 0.0331). Several factors likely contribute 

to the variation in circulating levels of glutamic acid, including dietary factors, genetic 

variation, metabolic complications, and gut microbiota. We used food-frequency data to 

compare serum levels of glutamine and its associated foods (measured per 1000 

kilocalories). Higher glutamic acid was positively correlated with red or processed meat 

intake (r = 0.33, p = 0.0350), but it did not correlate with any other protein-based dietary 

factor (Supplementary Figure S4.4). 
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In contrast to glutamic acid, GABA, synthesized from glutamate by glutamic acid 

decarboxylase, was present in higher levels in the normal weight sample, and this finding 

is in agreement with a previous study (36). Hepatic GABA synthesis may modulate 

insulin and glucagon secretion, homeostatic model assessment for insulin resistance 

(HOMA-IR), type 2 diabetes, and BMI (37). Recent evidence showed that alterations in 

gut microbiome can influence changes in plasma concentration of glutamate and GABA 

levels (38, 39). In our study, GABA was positively correlated with member of the genus 

Akkermansia, and negatively correlated with Pseudobutyrivibrio and Lactobacillus. 

Higher abundance of Akkermansia has been shown to impact the net production capacity 

of GABA (40). Although there is no evidence in children, increased abundance of 

Akkermansia have been inversely associated with higher fasting glucose, waist-to-hip 

ratio, and subcutaneous adipocyte diameter in adults (41, 42). Meanwhile, 

Pseudobutyrivibrio (11) and Lactobacillus (12) have been found in higher abundance in 

feces of obese children, and higher abundance of Lactobacillus was correlated with 

plasma inflammatory marker C-reactive protein (12). Previously, Lactobacillus species 

have been identified in microbiota of breast milk and can be transmitted to infants 

through breastfeeding. Our data confirms this finding where children who were breastfed 

until 1-year had higher abundance of Lactobacillus compared to those who were 

breastfed less than 1 year or never breastfed. Although these results are intriguing and 

somewhat consistent, the mechanism involved are not clear, thus further studies are 

required to understand the role of these ASVs and metabolites in childhood obesity. 
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We also observed higher levels of carnitine and acetylcarnitine in children who 

were overweight/obese. Carnitine is largely acquired from breast milk and formula milk 

in newborns but can also be synthesized endogenously from two essential amino acids, 

lysine and methionine (43, 44). However, although our data showed a strong correlation 

between lysine and methionine (r = 0.80, p = <0.001), we did not find any correlation of 

carnitine levels with lysine and methionine. Carnitine is essential for the transport of 

long-chain fatty acids from cytoplasm into mitochondria for β-oxidation and energy 

production, and therefore it has a vital regulatory role in lipid metabolism and body 

composition (45). Supplementation with carnitine can increase fat oxidation in 

individuals with overweight/obesity, and therefore has been widely studied for weight 

loss (46). Thus, the positive effect of carnitine supplementation on body composition 

conversely suggests that higher body fat might be related to dysfunction of carnitine or 

lipid metabolism, which would result in higher carnitine levels. Additionally, greater 

body fat may overload β-oxidation of fatty acids and lead to higher amounts of short- or 

medium-chain-acylcarnitines (47). Short chain acylcarnitines such as acetylcarnitine and 

carnitine are associated with higher BMI in children (32, 48, 49). Further, both carnitine 

and acetylcarnitine have been linked to protein-rich diets (44, 50). However, we could not 

confirm these associations due to the low consumption of meats in our cohort 

(Supplemental Figure S4.4).  

Another metabolite, threonine, was shown to be present in higher level in children 

who were overweight/obese, which is consistent with a previous study (51). Dietary 

threonine restriction may protect against metabolic alterations associated with obesity and 
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improve metabolism via regulation of liver-derived hormone fibroblast growth factor 21 

(51). 

  In addition to GABA (discussed above), SDMA (52, 53) and its structural isomer 

ADMA was present in higher levels in normal weight children. Although the underlying 

cause of the inverse association between SDMA and obesity is unclear, studies have 

attributed this to increased cellular uptake and hepatic extraction of SDMA, where both 

mechanisms have been related to increased insulin levels associated with obesity-induced 

insulin resistance (54, 55).  

Tryptophan, an essential aromatic amino acid, acquired from whole foods (such 

as oats, poultry, fish, eggs, and milk) was present in higher levels in the overweight/obese 

samples in the DIABLO analysis, but was not statistically significant in the regression 

analysis, although the effect size supports a potential association (OR = 1.9; p = 0.0667). 

Our data shows that higher tryptophan levels were correlated with consumption of red 

meat (r = 0.29, p = 0.0382) and eggs (r = 0.34, p = 0.0151). Overnutrition may lead to 

excess tryptophan uptake and availability (56, 57). Approximately 90-95% of tryptophan 

is metabolized by the kynurenine pathway in the liver via indoleamine-2,3-dioxygenase 

(IDO) into co-enzyme nicotinamide adenine dinucleotide (NAD+) and other bioactive 

metabolites; and residual tryptophan is largely used for serotonin synthesis (58). 

Tryptophan catabolism is shifted towards the kynurenine pathway in human obesity 

induced by inflammatory biomarkers (TNFα and IL-6) and oxidative stress (59-61). 

Elevated tryptophan (62, 63), IDO activity (62, 64), and kynurenine levels (62, 65), and 

reduced serotonin production (66) has been shown to be associated with obesity and 
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related metabolic diseases. Further, alterations in tryptophan metabolism may also be 

driven by gut microbiome in obesity, as previously shown to be disrupted at the 

compositional and functional level in individuals with obesity (67). Taken together, the 

evidence suggests that obesity may induce concomitant alterations of host (kynurenine 

pathway) and microbial (indole) tryptophan metabolic pathways, both of which are 

associated with obesity-related inflammation (66). 

The optimal feature panel did not include BCAAs (leucine, isoleucine, and valine) 

and aromatic AAs (phenylalanine and tyrosine), which are considered “good” biomarkers 

of childhood obesity (17). Nevertheless, our data shows a significant positive correlation 

between BCAAs and glutamic acid, which is produced during the transamination reaction 

(first step) in BCCA catabolism (Supplementary Figure S4.5). Higher BCAAs have been 

shown to disrupt the balance of essential amino acids including tryptophan and threonine 

(both were correlated with BCAAs in our data), which we observed in higher levels in 

children with overweight/obesity. 

The gut microbiome provides essential capacities for fermentation of non-

digestible substrates such as complex plant carbohydrates (dietary fibre) (68). Differences 

in gut microbiota composition can influence an individual’s capacity to extract more 

energy from diet which in turn can activate lipogenic pathways (69). Several studies have 

shown children with obesity to have higher levels of bacteria in the Firmicutes phylum 

and lower in the Bacteroidetes phylum (70), and it is proposed that Firmicutes are more 

efficient at extracting energy from dietary fiber than Bacteroidetes (71). Given that South 

Asians have a carbohydrate rich diet, it is possible that they have an elevated risk of 
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obesity as their microbiome is enriched with bacteria that is more efficient at extracting 

energy and absorbing more calories. 

This study has some limitations that should be considered when interpreting the 

results. This study had a relatively small sample size; thus, future studies with larger 

sample sizes are needed to confirm these findings. Nevertheless, the sample size is 

consistent with a number of previous studies in this context (72-75). Our study was 

limited to polar ionic metabolites and should be expanded to include fatty acids and lipids 

in future research. Some of the biological variation is likely related to gene expression, 

which should be integrated and analyzed simultaneously to provide a better functional 

connection of the gut microbiome on the host metabolome. Also, the choice of -omic 

platforms and biological sample (urine, serum, tissue, and faeces) can influence the 

performance of data integration and comparison. For instance, intestinal bacterial 

products may represent a larger proportion of fecal metabolome that enter the systemic 

circulation and have a greater impact on the host compared to serum metabolites. Further, 

the number of features per dataset may determine the integration process and 

classification performance. This may explain why we did not observe a significant 

overlap between the two -omics datasets. Another likely explanation for the identification 

of small number of ASVs is due to the high-interindividual variation in gut microbiome, 

which is well-known to confound studies with smaller sample size. Finally, we were 

unable to adjust for covariates in the regression analysis and therefore causal association 

cannot be established (76). 
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4.6 Conclusions 

Our study suggests the potential role of integrated molecular analysis for 

identifying biomarkers to discriminate between children who were overweight/obese and 

normal weight to unravel biological pathways involved in the pathophysiology of 

childhood obesity. Notable differences were found in serum metabolome, and between 

specific metabolites and ASVs associated with overweight/obesity. In particular, several 

metabolites including glutamic acid, acetylcarnitine, carnitine, and threonine were higher, 

and GABA, SDMA, and ADMA were lower in children with overweight/obesity. 

Additionally, Akkermansia was positively correlated and Pseudobutyrivibrio was 

inversely with both GABA and SDMA, and Lactobacillus was inversely correlated with 

GABA. Further studies on a larger scale and using a larger panel of omics features are 

required to validate the biomarkers that were found to be associated with 

overweight/obesity in children and identifying potential therapeutic targets. 

Understanding the functional capacity of these biomarkers and potential modifiable risk 

factor (e.g., diet) early in life may lead to targeted early-life screening and interventions, 

thereby offer a novel approach for prevention of obesity in children. 
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Table 4.1: Descriptive statistics of maternal and infant characteristics overall and by overweight/obesity status of children in 

START cohort 

Variable Overall 

n = 50 

Owt/Ob 

n = 11 

Normal Weight 

n = 39 

Sex (Male), n (%) 25 (50.0) 4 (36.36) 21 (53.85) 

Maternal age (years), mean (SD) 30.64 (3.88) 31.18 (2.82) 30.49 (4.15) 

Gestational age (weeks), mean (SD) 39.09 (1.54) 38.49 (2.23) 39.26 (1.28) 

Gestational weight gain (kg), mean (SD) 13.92 (6.52) 14.72 (8.33) 13.68 (8.33) 

Pre-pregnancy BMI (kg/m2), mean (SD) 24.77 (4.78) 24.82 (4.46) 24.76 (4.92) 

Gestational diabetes (GDM), n (%)1 21 (42.0) 7 (63.64) 22 (56.41) 

Preterm birth (Yes), n (%) 5 (10.0) 2 (18.18) 3 (7.69) 

Mode of delivery, n (%)    

Vaginal 34 (68.0) 9 (81.82) 25 (35.90) 

Caesarean section (planned or emergency) 16 (32.0) 2 (18.18) 14 (35.90) 

Antibiotic use in labour (Yes), n (%) 26 (53.06) 7 (70.0) 19 (48.72) 

Breastfeeding status at 1-year, n (%)    

Yes, and child is still being breast fed  22 (44.0) 4 (36.36) 18 (46.15) 

Yes, child was breast fed but now stopped 26 (52.0) 6 (54.55) 20 (51.28) 

Child was never breast fed 2 (4.0) 1 (9.09)  1 (2.56) 

Time of solid food introduction (months), mean (SD) 6.02 (1.36) 6.0 (0.89) 6.03 (1.48) 

Maternal physical activity (min per day), mean (SD) 11.94 (18.05) 13.64 (17.04) 11.45 (18.52) 

Social disadvantage index, mean (SD)2 1.77 (1.38) 0.91 (0.94) 2.06 (1.39) 

Total fibre intake at 1 year (grams), mean (SD) 18.35 (8.36) 18.06 (10.44) 18.43 (7.83) 

Energy intake at 1 year (kcal), mean (SD) 1872.35 (1016.98) 1981.66 (1486.02) 1841.52 (864.92) 

Birthweight (kg), mean (SD)  3.23 (0.46) 3.23 (0.71) 3.23 (0.38) 

BMIAUC, mean (SD) 48.47 (5.06) 54.57 (5.37) 46.74 (3.41) 
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SSFAUC, mean (SD) 52.17 (8.90) 63.33 (9.10) 49.02 (5.84) 
1GDM was defined based on the Born in Bradford oral glucose tolerance test criteria, self-reported GDM, and insulin use in pregnancy. 
2The maximum social disadvantage index was five, and the lowest possible score was zero, reflecting the least social disadvantage.  

BMI = Body mass index, SSF = Sum of skinfold, AUC = Area under the curve 
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Table 4.2: Results from logistic regression models examining the association of discriminatory metabolites and ASVs with 

overweight/obesity among children in the START cohort 

 Odds ratio1 

(95% CI) 

p-value   

Metabolites Sub‐Pathway Super‐Pathway 

Glutamic acid 

 

2.86   

(1.32, 7.37) 

0.0144 Glutamate metabolism Amino Acid 

GABA 0.45   

(0.21, 0.86) 

0.0204 Glutamate metabolism Amino acid 

Symmetric dimethylarginine 0.43    

(0.20, 0.85) 

0.0217 Urea cycle; arginine and 

proline metabolism 

Amino acid 

Acetylcarnitine 3.60 

(1.34, 14.63) 

0.0326 Carnitine metabolism Lipid 

Threonine 3.13 

(1.29, 10.12) 

0.0270 Glycine, serine and 

threonine metabolism 

Amino acid 

Carnitine 5.01   

(1.44, 32.07) 

0.0453 Carnitine metabolism Lipid 

Asymmetric dimethylarginine 0.46 

(0.20, 0.92) 

0.0378 Urea cycle; arginine and 

proline metabolism 

Amino acid 

Uric acid 0.46   

(0.19, 0.96) 

0.0564 Purine metabolism Purine derivative 

Tryptophan 1.89 

(0.98, 4.01) 

0.0667 Tryptophan metabolism Amino acid 

Asparagine 2.24 

(1.06, 5.60) 

0.0527 Alanine and aspartate 

metabolism 

Amino Acid 

ASVs Phylum Family 

Pseudobutyrivibrio 1.30   

(1.04, 1.67) 

0.0258 Firmicutes Lachnospiraceae 

Clostridium sensu stricto 1 0.69   

(0.47, 0.96) 

0.0344 Firmicutes Clostridiaceae 1 
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Akkermansia 0.23 

(0.05, 0.67) 

0.0301 Verrucomicrobia Akkermansiaceae 

Lactobacillus 1.23 

(1.01, 1.54) 

0.0497 Firmicutes Lactobacillaceae 

Rothia 1.79 

(1.06, 3.53) 

0.0534 Actinobacteria Micrococcaceae 

Lachnospira 1.27 

(0.98, 1.67) 

0.0684 Firmicutes Lachnospiraceae 

Hungatella 0.70   

(0.43, 1.0) 

0.0831 Firmicutes Lachnospiraceae 

Roseburia 0.75 

(0.45, 1.00) 

0.1237 Firmicutes Lachnospiraceae 

Erysipelatoclostridium 0.73 

(0.49, 1.03) 

0.0920 Firmicutes Erysipelotrichaceae 

ORs are estimated per standard deviation (SD) increase in log-transformed metabolite levels.
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Figure 4.1: DIABLO integrative analysis of metabolome and ASVs discriminatory 

between overweight/obese and normal weight groups. (A) Matrix scatter plot shows the 

clustering of samples based on the first component in each dataset and the correlation 

between the datasets. (B) Loading weights of the selected discriminant metabolites and 

ASVs. Colours indicate the group in which the median relative abundance is maximum, 

and values indicate the contribution to the first component. (C) Circos plot showing 

correlations between the most discriminatory metabolites and ASVs. Positive correlations 

are displayed using blue line-connectors. 

γ-aminobutyric acid (GABA); Symmetric dimethylarginine (SDMA); Asymmetric dimethylarginine (ADMA). 



PhD. Thesis – Talha Rafiq; McMaster University – Medical Science 

 

186 
 

 
 

Figure 4.2: Correlation between most discriminatory metabolites in participants overall 

and by overweight/obese (O) and normal weight (N) groups. 

γ-aminobutyric acid (GABA); Symmetric dimethylarginine (SDMA); Asymmetric dimethylarginine (ADMA). 
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Figure 4.3: Correlation between most discriminatory ASVs in participants overall and by 

overweight/obese (O) and normal weight (N) groups. 
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Figure 4.4: Distribution of significantly different metabolites (concentration) and ASV 

between children who were overweight/obese (O) and normal weight (N). 

ASV counts were transformed using CLR-transformation.  
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Table S4.2: A contingency table illustrating the outcomes of a comparison between 

BMIAUC and SSFAUC 

 Area under the growth curve using 

Body Mass Index at or above 85th 

percentile 

 

Overweight/obese Normal weight Total 

Area under the 

growth curve 

using sum of 

skinfold at or 

above 85th 

percentile 

Overweight/obese 5 3 8 

Normal weight 3 39 42 

 Total 8 42 50 

Highlighted cells include children with BMIAUC and/or SSFAUC at or above internally derived 85th 

percentile and were classified as being overweight/obese. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



PhD. Thesis – Talha Rafiq; McMaster University – Medical Science 

 

190 
 

Table S4.2: A contingency table illustrating the outcomes of a comparison between AUC 

derived and World Health Organization (WHO) Child Growth Standards at 1-3 years  

 Area under the growth curve 

Overweight/obese 
Normal 

weight 

BMI z-score at 3 years 

using the World Health 

Organization (WHO) Child 

Growth Standards 

Overweight/obese 5 1 

Normal weight 6 38 

 Total 11 39 

 

 Area under the growth curve 

Overweight/obese 
Normal 

weight 

BMI z-score at 2 year using 

World Health Organization 

(WHO) Child Growth 

Standards 

Overweight/obese 7 6 

Normal weight 4 33 

 Total 11 39 

 

 Area under the growth curve 

Overweight/obese 
Normal 

weight 

BMI z-score at 1 year using 

World Health Organization 

(WHO) Child Growth 

Standards 

Overweight/obese 9 24 

Normal weight 2 15 

 Total 11 39 

Cumulative body mass index (BMIAUC) and skinfold thickness (SSFAUC) scores were calculated 

using from birth to 3-years as the total area under the growth curve (AUC). BMIAUC and/or 

SSFAUC >85th percentile was used to classify overweight/obesity children. 
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Figure S4.1: PLS-DA analysis of the metabolomics data 
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Figure S4.2: PLS-DA analysis of the microbiome data 
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Figure S4.3: Boxplots of Body Mass Index (BMI) z-scores at 1-3 years calculated from 

World Health Organization (WHO) Child Growth Standards by overweight/obese status 

using area under the growth curve (AUC) of children 

Cumulative body mass index (BMIAUC) and skinfold thickness (SSFAUC) scores were calculated 

using from birth to 3-years as the total area under the growth curve (AUC). BMIAUC and/or 

SSFAUC >85th percentile was used to classify overweight/obesity children. 
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Figure S4.4: Pearson correlation of discriminant metabolites with their associated foods 

in participants overall and by overweight/obese status of children 
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Figure S4.5: Pearson correlation between BCAAs (leucine, isoleucine, and valine), 

glutamic acid, threonine, and tryptophan in participants overall and by overweight/obese 

status of children 
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Chapter 5 – Epilogue and Conclusions 

5.1 Overview of major thesis contributions 

The aims of this dissertation were (a) to contribute to the growing literature on food-

based biomarkers by generating a comprehensive list of food-associated metabolites, (b) 

provide information on sources of variability to guide appropriate modeling when 

utilizing metabolomics in nutritional epidemiological studies, and (c) employ multi-omics 

integration analysis of serum metabolites and ASVs of 16S rRNA genes to identify 

molecular features that characterize risk of obesity in young children. 

 The first study (Chapter II) of this dissertation was a review of the literature and 

provided a comprehensive list of metabolites associated with a comprehensive inventory 

of foods and food groups in apparently healthy individuals, reported on study designs, 

metabolomic approaches, and biospecimen used, and rated the evidence based on 

interstudy repeatability and study design. We developed a scoring system based on 

empirical evidence to rate metabolites as candidate biomarker of food intake into one of 

three mutually exclusive categories: ‘good’, ‘fair’, or ‘poor’. The results showed that 

many metabolites can be identified from a specific food, however in several cases, a 

single metabolite can be a “good” indicator of food intake. While the scoring system has 

not been published previously, there has been another publication that used a similar 

quality assessment score to systematically collating metabolites (1). This is an active area 

of method development, and with more common use of metabolomics in nutrition 

studies, efforts to improve standardization and methodological quality of such studies is 

important. 
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Having identified “good” metabolites of foods in the first study, the purpose of 

the second study (Chapter III) was to provide insight into the external factors that impact 

serum metabolite concentrations in White Europeans and South Asian pregnant women. 

The results of this study demonstrated that dietary factors explained the highest 

proportion of variability in exogenous food-based biomarkers relative to non-dietary 

factors, whereas the contribution of non-dietary factors was either similar or lower for 

metabolites that can either be produced endogenously, biotransformed by gut microbiota, 

and/or derived from more than one food source. Metabolite concentration also differed by 

ethnicity (South Asian and White Europeans). We confirmed that biomarkers with 

“good” evidence can be considered as direct surrogates for food intake. However, several 

factors other than food exposure can influence variation in food-related metabolites 

concentration and therefore measurement and modeling of these factors requires 

consideration during the planning and final statistical analyses of the data. 

The third study of this dissertation (Chapter IV) employed a multi-omic molecular 

analysis for identifying biomarkers that discriminate children with from those without 

adiposity in order to provide insight into abnormalities associated with early onset of 

obesity in childhood. The results showed notable differences in serum metabolome and 

specific gut bacterial species, and between specific metabolites and bacterial species 

related to adiposity. 

5.2 Clinical significance and contribution of the research 

This dissertation has provided useful information on the application of metabolomics in 

characterizing habitual dietary exposure, insight into the external factors that impact 
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metabolite concentration during pregnancy, and its role in deciphering interactions 

between diet, gut microbiome, and childhood obesity. There are several thousand 

metabolites derived from food and given the rapid pace of development of the field, it has 

been challenging for the scientific community to critically appraise and classify robust 

dietary biomarkers. This dissertation comprehensively reviews state-of-the art models, 

and examines methodological issues related to confounders and data integration to assist 

nutrition researchers interested in gaining a broader insight into the potential of its 

application, including the historical transition, recent focuses, and issues that remain to be 

overcome in future research. The first study of this dissertation generated a 

comprehensive list of metabolites associated with individual food and food groups which 

can potentially be employed to (a) correct self-reported data, (b) be used in conjunction 

with existing dietary assessment methods to measure dietary intake, and/or (c) assess 

compliance to dietary interventions. In terms of public health implications, the integration 

of metabolomics into nutritional epidemiology can, to some extent, identify differences in 

dietary components so that interventions (e.g., dietary recommendations) can be tailored 

to specific groups of people. 

  This dissertation also provides insight into the interindividual variation in 

metabolite levels due to intrinsic physiologic characteristics and extrinsic factors in two 

ethnically diverse groups during pregnancy. The results showed that for exogenous 

biomarkers such as proline betaine, dietary factors explained higher proportion of 

variability compared to nondietary factors. For metabolites that can either be produced 

endogenously, biotransformed by gut microbiota, and/or derived from more than one 
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food source, the unique contribution of dietary factors was similar (15:0, 17:0, hippuric 

acid, and TMAO) or lower (14:0, tryptophan betaine, 3-methylhistidine, and carnitine) 

compared to non-dietary factors including ethnicity, maternal age, gestational age, pre-

pregnancy BMI, physical activity, and smoking history. Further, there was an ethnicity 

effect for all metabolites, except carnitine and hippuric acid. Reducing measurement error 

in epidemiological studies is critical because of the potential risk of biasing the effect 

estimates of the exposure-outcome association (2). When examining associations 

between a biomarker of food intake and a health outcome, investigators should select a 

valid biomarker, and analyze and interpret data with the knowledge of the potential 

factors that may influence metabolite concentrations (3). Similarly, in nutritional 

epidemiological studies, using a common cutpoint to classify biomarker values may not 

be applicable to all subgroups and populations. Researchers must consider cutpoints by 

subgroups formed by sociodemographic and lifestyle variables as well as by ethnicity (3). 

Further, these findings imply that if appropriate consideration for non-dietary factors 

during statistical analysis of data is not made then using these biomarkers as markers of 

food/nutrient intake may simply exchange one source of measurement error (self-

misreport) for others (changes in the biomarker intake unrelated to changes in food 

intake). Careful assessment of nutritional biomarkers in metabolomic studies will assist in 

understanding the causal association between a dietary exposure and outcome. 

There is evidence that biomarkers of food intake are associated with childhood 

obesity and this association is influenced by microbiome composition. The third study in 

this dissertation used a multi-omic analysis to identify biomarkers that discriminate 
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children with and without adiposity in order to provide insight into abnormalities 

associated with early onset of obesity in childhood. The results demonstrated alterations 

in a panel of -omics features that discriminated children with and without obesity. The 

findings suggest that obesity related metabolic pathways such as glutamate and carnitine 

metabolism may provide insight into the metabolic processes related to early onset of 

obesity in childhood. Childhood obesity is associated with obesity in adolescence and 

adulthood, and is associated with an increased risk of a wide range of adverse health 

outcomes including cardiovascular and metabolic diseases, orthopedic problems, and 

psychological disorders (4-7). There is strong evidence suggesting that childhood obesity 

is associated with alternations in the biochemical and physiological processes, which in 

turn can lead to chronic diseases in later years of life (4). If validated, the findings have 

the potential to help in the development of early-life screening, and personalized 

prognostic and intervention approaches. 

5.3 Future research directions 

Nutritional metabolomics is still in its initial stages and there are several issues that need 

to be resolved before dietary biomarkers can be utilized in population-based studies. For 

instance, many of the food metabolites identified in our review were of endogenous 

origin and generated in the human body during metabolic processes, thus it can be 

challenging to determine their origin and measure the amount of variance explained by 

food. Further, the heterogenous composition of many foods (i.e., lack of specificity) 

hinders the ability to critically appraise and classify robust biomarkers. Therefore, future 

studies need to validate the BFIs using the criteria developed by Dragsted and colleagues 
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(8) that include biological plausibility, dose– response, time–response, robustness, 

reliability, stability, analytical performance, and interlaboratory reproducibility to 

evaluate the utility of these biomarkers in nutritional research. Currently, the consensus is 

to combine validated BFIs with self-reported dietary data to account for measurement 

error in assessment of dietary intake (9). Additionally, it is important that the 

heterogeneity of intake of certain foods in different populations or ethnicities in different 

geographical areas are taken into account in statistical analyses examining metabolite and 

health associations. Thus, not only is the specificity of many foods affecting the 

assessment and validation of BFIs, the interpretation (i.e., generalizability) of these 

biomarkers to other diverse populations may be limited. 

 Candidate BFIs identified in feeding (experimental) studies should subsequently 

be confirmed in observational studies. However, researchers should acknowledge the 

potential confounding factors in observational studies, and results must be interpreted 

with caution if confounders have not been considered in the statistical analysis. For 

instance, the findings from the second study in the dissertation showed that most of the 

commonly used biomarkers of habitual food intake were influenced by non-dietary 

factors, especially ethnicity. As a result, candidate food biomarkers should not be directly 

used in different ethnic groups for assessment of diet or disease classification without 

appropriate adjustment for non-dietary factors for an unbiased assessment of metabolite 

concentration. Moreover, different non-dietary factors may influence metabolite 

concentration and to varying degrees in different populations. Future research is therefore 
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required to account for differences in non-dietary factors by ethnicity to control for some 

of the inter-individual variation in food-related metabolites. 

 In order to strengthen the evidence for the application of biomarkers derived from 

food sources, future research should examine how these biomarkers are linked to health 

outcomes. Study three of this dissertation showed independent associations of 

metabolites and bacterial species with childhood obesity, as well as the integration of the 

two -omics dataset to improve the classification of children with obesity from those with 

normal weight. However, this study had a relatively smaller sample size which did not 

allow adjustment for covariates. Studies using a longitudinal design with a larger sample 

size and panel of -omics features are required to validate the results and further provide 

insight into the underlying mechanisms that could initiate the onset of obesity in children. 

Future research should examine the metabolic pathways such as glutamate, carnitine, and 

tryptophan metabolism, that were proposed in study three and their association with 

childhood obesity. Few additional issues were raised from the integrated multi-omics 

analysis which needs to be addressed in future studies. It is unclear what constitutes a 

physiologically relevant difference in -omics pool size, and whether it will differ across 

different -omics datasets. Also, it can be challenging to sort through extensive data to 

determine relevant information, especially when some of the findings have not been well-

replicated in literature. Given that obesity is a multifactorial process characterized by 

changes at different molecular levels, future analysis should utilize the integrative 

approach based on multiomics datasets to understand the interplay between molecular 

features and their role in the mechanisms underlying obesity. Further, studies need to 
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determine the time at which dysbiosis of gut microbiota may lead to obesity and whether 

it is possible to reverse these features to treat obesity. It is also important to determine 

whether the -omics features differ by the type of obesity (central versus peripheral 

obesity). 

5.4 Conclusion 

 Overall, the application of metabolomics in nutrition research holds great promise 

for the assessment of dietary intake using biomarkers. Our results demonstrate that many 

metabolites can be identified from a specific food, and there are many cases in which a 

single metabolite is a good indicator of food intake. However, metabolites that reflect 

specific foods are influenced by non-dietary factors (ethnicity, maternal age, gestational 

age, pre-pregnancy BMI, physical activity, and smoking history) and to differing degrees. 

Further, using an integrative multi-omic analyses to characterize molecular features of 

obesity, notable differences were observed in serum metabolome and specific gut 

bacterial species, and between specific metabolites and bacterial species related to 

childhood obesity. 
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APPENDIX I – Study Characteristics of Interventional Studies and Metabolites of Foods and Food group 

Supplemental 
Reference 

Study 
population, 

location 

Study design 
 

N 
(follow-up) 

Technique  
(metabolite targets) 

Biofluid 
 

Food category and/or food item 

Acar et al., 
2019 (1) 

18-65 y, 
Denmark 

Feeding Study 146 
(26 weeks) 

UPLC-Q-ToF-MS 
(Untargeted) 

Plasma New Nordic diet (NND) (organic diet high in 
fruit, vegetables, whole grains, and fish).  
Average Danish Diet (ADD) (high in imported 
and processed foods) 

New Nordic Diet (NND) Diet related metabolites: pipecolic acid betaine; trimethylamine oxide (TMAO); prolyl hydroxyproline 
Fat metabolism: polyunsaturated phosphatidylcholines 

Average Danish Diet (ADD) Diet related metabolites: theobromine; proline betaine 
Amino acid: indolelactic acid; hydroxy-3-methylbutyrate 
Fat metabolism: butyryl carnitine 

 

Allen et al., 
2002 (2) 

22-39 y, 
 

Crossover 
Feeding Study 

24 
(3 days) 

HPLC (Targeted – lycopene 
concentration and changes 
in lycopene isomer 
patterns) 

Plasma Control (low lycopene); fresh tomatoes; or 
processed tomato juice 

Tomato  Fresh tomato: Total lycopene; 5-cis lycopene; other cis-lycopene; all-trans-lycopene 
Processed tomato sauce: Total lycopene; all-trans-lycopene 

 

Amer et al., 
2017 (3) 

 

≥ 18 y, 
Denmark 

Feeding Study 52 
(12 weeks) 

GC–MS and LC–MS 
(Untargeted) 

Urine & 
Plasma 

Low amount of MCFAs + Whey (WL); High 
amount of MCFAs + Whey (WH); Low 
amount of MCFAs + Casein (CL); High 
amount of MCFAs + Casein (CH) 

MCFAs + Whey (WL) Plasma (GC-MS): Myristic acid; Threonic acid 
Plasma (LC-MS): Leucine/isoleucine; 3-Hydroxyundecanoic acid; Pivaloylcarnitine; Phenylalanine; Cinnamic acid; 4-
Hydroxyphenylacetic acid 

High amount of MCFAs + 
Whey (WH) 

Plasma (GC-MS): Sebacic acid; Succinic acid; Glycerol; Valine; Pyroglutamic acid; Sarcosine; Threonic acid 
Plasma (LC-MS): Valine; Leucine/isoleucine; Tyrosine; Phenylpyruvic acid; 2-Phenylacetamide; 3-Hydroxyundecanoic acid; 
Pivaloylcarnitine 
Urine (GC-MS): Fumaric acid; Citric acid; Succinic acid; Adipic acid; Threonine 

Low amount of MCFAs + 
Casein (CL) 

Plasma (GC): α-Hydroxybutyric acid; Sarcosine; Threonic acid; Alanine 
Urine (GC-MS): Pyroglutamic acid; Myo-Inositol 
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High amount of MCFAs + 
Casein (CH) 

Plasma (GC): α-Hydroxybutyric acid; β-Hydroxybutyric acid; 3,4-Dihydroxybutyric acid; Pyroglutamic acid; Threonic acid; 
Threonine; Myo-Inositol 
Urine (GC-MS): Adipic acid 

 

Andersen et al., 
2014 (4) 

NND:  
44 ± 13 y 

ADD: 
41 ± 13 y, 
Denmark 

Feeding Study 107 
(6 months) 

UPLC-Q-ToF-MS 
(Untargeted) 

Urine New Nordic Diet (NND) or an Average 
Danish Diet (ADD) 

Strawberry  2,5-Dimethyl-4-methoxy-3(2H)-furanone sulphate 

Orange/citrus Proline betaine; Hesperetin glucuronide 

Beetroot 4-Ethyl-5-amino-pyrocatechol sulphate; 4-Ethyl-5-methylamino-pyrocatechol sulphate; 4-Methylpyridine-2-carboxylic 
acidglycine conjugate 

Green beans Unsaturated aliphatic hydroxy-dicarboxylic acid 

Red cabbage 3-Hydroxy-3-(methyl-sulphinyl)propanoic acid; 3-Hydroxy-hippuric acid sulphate; 3-Hydroxy-hippuric acid 

Red cabbage (brussels 
sprouts, pointed cabbage) 

Iberin N-acetyl-cysteine (IB-NAC); N-acetyl-S-(N-3-methylthiopropyl)cysteine 

Red cabbage (brussels 
sprouts, horseradish) 

N-acetyl-S-(N-allylthiocarbamoyl)cysteine (AITC-NAC) 

Red cabbage 
(Brussels sprouts) 

Sulphoraphane N-acetyl-cysteine (SFN-NAC) 

Walnut 5-Hydroxyindole-3-acetic acid 

Chocolate 6-Amino-5-[N-methylformylamino]-1-methyluracil (6-AMMU); 7-Methyluric acid; Theobromine 

 

Andersen et al., 
2014 (5) 

18–65 y, 
Denmark 

Feeding Study 107  
(6 months) 

UPLC-Q-ToF-MS 
(Untargeted) 

Urine 40 food groups 

Average Danish Diet (ADD) Octanoyl-glucuronide; 3-indoleacetic acid glucuronide 
Heat treatment cluster: pyrraline 
Chocolate cluster: theobromine; 7-methyluric acid; 6-amino-5-[N-methylformylamino]-1- methyluracil; 3,7-dimethyluric 
acid; 7-methylxanthine 
Citrus cluster: proline betaine; pyroglutamyl proline 
Limonene cluster: p-menth-1-ene-6,8,9-triol; perillic acid-8,9-diol-glucuronide; limonene-8,9-diol-glucuronide; 
dihydroperillic acid glucuronide; limonene-1,2-diol glucuronide 
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New Nordic Diet (NND) Hydroquinone glucuronide; (2-oxo-2,3-dihydro-1H-indol-3-yl)acetic acid; 3,4,5,6-tetrahydrohippurate; hippuric acid 
Fish: trimethylamine N-oxide (TMAO) 

 

Baenasa et al., 
2017 (6) 

27-36 y, 
Spain 

Crossover 
Feeding Study 

14 women  
(7 days) 

UHPLC-QqQ-MS/MS 
(Targeted – glucosinolates,  
Isothiocyanates, and 
indoles) 

Urine Broccoli and radish sprouts 

Broccoli  Isothiocyanates; indole-3-carbinol (I3C) 

 

Barnes et al., 
2019 

(7) 

Lean control 
23.7 (5.0)  

Lean mango 
25.6 (4.2) 

Obese mango 
27.8 (8.3), 

US 

Feeding Study 32 
(6 weeks) 

LC-MS (Targeted) Urine & 
Plasma 

Mango consumption 

Mango Plasma: 4-O-methylgallic acid 
Urine: 4-O-methylgallic acid-3-O-sulfate; sum of gallotannin metabolites 

 

Beckmann et 
al., 2015 (8) 

29.9 ± 4.7 y, 
UK 

Feeding Study 90 females 
(Acute) 

FIE-MS and GC-ToF-MS 
(Untargeted) 

Urine & 
Plasma 

0, 50, or 100 g sucrose in 500 mL water 

Sucrose Urine: fructose; erythronic acid; 3-hydroxybutanoic acid 
Plasma: 3-Hydroxybutanoic acid; dihydroxybutanoic acid 

 

Bondia-Pons et 
al., 2013 (9) 

28-56 y, 
Finland 

Crossover 
Feeding Study 

20 
(4 weeks) 

UPLC-Q-ToF-MS 
(Untargeted) 

Urine Whole gain rye bread (RB) versus refined 
wheat bread (WB, control) 

Whole grain rye bread 3-(3,5-dihydroxyphenyl)-1-propanoic acid (DHPPA) sulphate; Ascorbic acid; 2-Aminophenol sulphate; Nonanedioic acid; 
DHPPA glucuronide; Indolylacryloylglycine; Enterolactone glucuronide; Ferulic acid-4-O-sulphate; 2,4-Dihydroxy-1,4-
benzoxazin-3-one sulphate; 3,5-Dihydroxyphenylethanol sulphate; 1,3,4,5-Tetrahydroxycyclohexane-1-carboxylic acid 

 

Boto-Ordóñez 
et al., 2013 (10) 

61 ± 9 y, 
Spain 

Feeding Study 36 males 
(1 month) 

UPLC-MS/MS (Targeted – 
phenolics and microbial 
derived phenolic acids) 

Urine Dealcoholized red wine (DRW) 

Dealcoholized red wine Phase II Metabolites of (Epi)catechin, Hydroxyphenylvalerolactones, and Hydroxybenzoic Acids 
Hydroxybenzoic acids 
Gallic acid metabolites: methylgallic sulfate 
Ethylgallate metabolites: ethylgallate sulfate; ethylgallate (glucuronide 1); ethylgallate (glucuronide 2) 
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Flavan-3-ols: (Epi)catechin (glucuronide 1); (epi)catechin (glucuronide 2); (epi)catechin (glucuronide 3); (epi)catechin 
(glucuronide 4); (epi)catechin sulfate 1; (epi)catechin sulfate 2; (epi)catechin sulfate 3; methyl(epi)catechin (glucuronide 
1); methyl(epi)catechin (glucuronide 2); methyl(epi)catechin (glucuronide 3) 
 
Hydroxyphenylvalerolactones: Dihydroxyphenyl-γ-valerolactone (DHPV)  glucuronide 1; DHPV glucuronide 2; DHPV 
sulfate 1; DHPV sulfate 2; methoxy-hydroxyphenyl-γ-valerolactone (MHPV) glucuronide 1; MHPV sulfate 1; MHPV sulfate 
2 
 
Microbial Phenolic Acids Metabolites 
Hydroxybenzoic acids: 2,4-dihydroxybenzoic acid; 2,6-dihydroxybenzoic acid; 2,5-dihydroxybenzoic acid; 3,5-
dihydroxybenzoic acid; protocatechuic acid; syringic acid; 4-hydroxybenzoic acid; 3-hydroxybenzoic acid; 4-
hydroxyhippuric acid; 3-hydroxyhippuric acid; 
Gallic acid metabolites: gallic acid; methylgallic acid 
Ethylgallate metabolites: ethylgallate 
 
Hydroxyphenylacetic acids: Phenylacetic acid; 3-hydroxyphenylacetic acid; 2-hydroxyphenylacetic acid; 3,4-
dihydroxyphenylacetic acid; homovanillic acid 
 
Hydroxycinnamic acids: m-coumaric acid; o-coumaric acid; p-coumaric acid; caffeic acid; ferulic acid; sinapic acid 
 
Hydroxyphenylpropionic acids: 3-(4-hydroxyphenyl) propionic acid; 3-(3-hydroxyphenyl) propionic acid; dihydrocaffeic 
acid 
 
Glycinates: Vanilloylglycine; feruloylglycine 
 
Hydroxyphenylvalerolactones: DHPV 1; DHPV 2 
 
Other polyphenols: Enterolactone; pyrogallol 

 

Bub et al., 2001 
(11) 

31 ± 4 y, 
Germany 

Crossover 
Feeding Study 

6 
(Acute) 

RP-HPLC (Targeted –
malvidin-3-glucoside ) 

Urine & 
Plasma 

M-3-G quantities: red wine 68mg, 
dealcoholized red wine 58mg, and red grape 
juice 117mg 

Malvidin-3-glucoside drinks No significant differences in M-3-G excretion was found between the 3 beverages 
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Carkeet et al., 
2008 (12) 

45 ± 8.4 y, 
US 

Crossover 
Feeding Study 

12  
(24 hours) 

HPLC-DAD-ion-trap MS 
(Targeted – anthocyanin 
(pelargonidin)) 

Urine 100, 200, & 400 g of pureed strawberries, 
delivering 15, 30, and 60 mmol anthocyanin, 
respectively 

Strawberry Pelargonidin 3-glucoside and 3 metabolites of pelargonidin 3-glucoside (monoglucuronides) 
 

Carrizo et al., 
2017 (13) 

30.5 y, 
UK 

Feeding Study 31 UPLC-Q-ToF-MS 
(Untargeted) 

Serum  Remove all meat from diet (high red meat 
intake group), or continue their usual diet 
(control group) 

Red meat 
 

(1) 7-Cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo [2,3‑d] pyrimidin-4-ylamine 

(2) Glycerophosphocholines [GP01], Monoacylglycero-phosphocholines [GP0105], LysoPC(18:2(9Z,12Z)) 
(3) Glycochenodeoxycholic acid 
(4) 2-Aminoethyl 2-[(1E)-1-hexadecen-1-yloxy]-3-hydroxypropyl hydrogen phosphate  
(5) Docosahexaenoic acid (DHA) 
(6) Glycerophosphoethanolamines [GP02], 1Z-alkenylglycerophosphoethanolamines [GP0207], PE(P-18:0/0:0) 
(7) Glycerophosphocholines [GP01], Monoacylglycero-phosphocholines [GP0105], GPCho(14:0/22:4) 
(8) Sphingomyelin d18:1-C18:0 
(9) Phosphatidylserine 18:0-18:1 
(10) Glycerophosphoethanolamines [GP02], PE(P-16:0/20:3) 1Z-alkenylglycerophosphoethanolamines [GP0207] 
(11) Phosphatidylethanolamine alkenyl 18:0-18:2, PE(18:1(9Z)/18:1(9Z) 
(12) 2-Acetylthiophene 
(13) n-(tert-butoxycarbonyl)-s-trityl-l-cysteine 
(14) Glycerophosphocholines [GP01], Monoacylglycero-phosphocholines [GP0105], PC(18:3/0:0) 
(15) Glycerophosphocholines [GP01], Monoacylglycero-phosphocholines [GP0105], PC(18:2/0:0) 
(16) Glycerophosphocholines [GP01], Monoacylglycero-phosphocholines [GP0105], PC(20:3/0:0) 
(17) Glycerophosphocholines [GP01], Monoacylglycero-phosphocholines [GP0105], GPCho(6:0/26:2) 
(18) Glycerophosphocholines [GP01], Monoacylglycero-phosphocholines [GP0105], GPCho(16:0/17:2) 
(19) Glycerophosphoethanolamines [GP02], 1Z-alkenylglycerophosphoethanolamines [GP0207] 

 

Charron et al., 
2020 
(14) 

54.3 ± 9.2, 
US 

Crossover 
Feeding Study 

17 
(16 days) 

LC-MS (Targeted – 
glucosinolate metabolites) 

Urine & 
Plasma 

Cooked broccoli 

Cooked broccoli Plasma: erucin-cysteineglycine (ER-CG (50% of total)); sulforaphane-cysteineglycine (SF-CG (14%)), sulforaphane (SF 
(13%)), erucin-cysteine (ER-C (7%)), sulforaphane-glutathione (SF-GSH (6%)), sulforaphane-N-acetylcysteine (SF-NAC 
(5%)), sulforaphane-cysteine (SF-C) and erucin-N-acetylcysteine (ER-NAC (each 2%)), and erucin-glutathione (ER-GSH 
(<1%)) 
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Urine: ER-NAC (39% of total) and SF-NAC (38%), SF-C (11%), ER-C (7%), and SF (4%). 

 

Chen et al., 
2017 (15) 

 

US Crossover 
Feeding Study 

15 HPLC-ESI-MS/MS 
(Targeted – caffeine; and 
it’s three major 
metabolites (paraxanthine, 
theobromine, and 
theophylline)) 

Plasma 100 mg of caffeine by administration of an 
energy drink and by oral inspiration of a fine 
powder 

Energy drink Caffeine; paraxanthine 

 

Cheung et al., 
2017 (16) 

59.4 ± 4.1 y,  
UK 

Feeding Study 40  
(3 weeks) 

UHPLC-Q-ToF-MS 
(Targeted) 

Plasma Chicken, red meat, processed meat, and fish 

Fish Interventional (blood): acetylcarnitine; trimethylamine-N-oxide (TMAO); propionylcarnitine 

Poultry/chicken Interventional (blood):  methylhistidine; acetylcarnitine 

Processed meat (cooked ham) Interventional (blood): acetylcarnitine 

Red meat Interventional (blood): acetylcarnitine 

 

Chiang et al., 
2012 (17) 

23-65 y, 
US 

Crossover 
Feeding Study 

25 
(4 weeks) 

GC-FID (Targeted –
phospholipid fatty acid 
profile) 

Plasma Walnut diet incorporating 42.5 g of walnuts 
per 10.1 mJ 6 times per week (1.8% of 
energy n-3 fat); fish diet providing 113 g of 
fatty fish per 10.1 mJ 2 times per week (0.8% 
of energy n-3 fat), or a control diet (no nuts 
or fish, 0.4% of energy n-3 fat) 

Walnut diet 
 

Oleic acid (18:1n–9); Polyunsaturated fatty acids; Omega-6 fatty acids; Linoleic acid (18:2n–6); y-Linolenic acid (18:3n–6); 
Dihomo-y-linolenic acid (20:3n–6); Arachidonic acid (20:4n–6); Omega-3 fatty acids; a-Linolenic acid (18:3n–3) 

Fish diet Linoleic acid (18:2n–6); y-Linolenic acid (18:3n–6); Dihomo-y-linolenic acid (20:3n-6); Eicosatetraenoic acid (20:4n–3); 
Eicosapentaenoic acid (20:5n–3); Docosapentaenoic acid (22:5n–3);  Docosahexaenoic acid (22:6n–3) 

 

Clarke et al., 
2011 (18) 

19-50 y, 
US 

Crossover 
Feeding Study 

12 
(Acute) 

HPLC-MS/MS (Targeted – 
isothiocyanates 
(sulforaphane and erucin)) 

Urine & 
Plasma 

40 grams of fresh broccoli sprouts vs. 6 pills 
of a broccoli supplement 

Broccoli sprouts Sulforaphane; erucin 

 

Clarke et al., 
2014 (19) 

18-65 y, 
UK 

Feeding Study 50 
(3 months) 

LC–MS/MS (Targeted –  
free and conjugated forms 

Urine Green tea and vitamin C supplements or a 
placebo 
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of catechins and 
metabolites) 

Green tea Epicatechin-O-glucuronide; Epicatechin-O-sulphate; O-me-epicatechin-O-sulphate; Epigallocatechin-O-glucuronide; O-
me-epigallocatechin-O-sulphate; O-me-epigallocatechin-O-glucuronide; Quercetin-O-glucuronide; M4-O-sulphate; O-me-
M4-O-sulphate; M6/M6’-O-glucuronide; M6/M6’-O-sulphate; Hippuric acid 

 

Conaway et al., 
2000 (20) 

34 ± 8.1 y, 
US 

Crossover 
Feeding Study 

12 males HPLC-MS (Targeted – 
isothiocyanates (ITCs), 
hydrolysis products of 
glucosinolates) 

Urine & 
Plasma 

200 g of fresh or steamed broccoli 

Broccoli Isothiocyanates (ITCs); N-acetyl-L-cysteine conjugate of sulforaphane (SFN-NAC) 
 

Cornelis et al., 
2018 (21)  

<65 y of age, 
Finland 

Crossover 
Feeding Study 

47 
(3 months) 

UPLC-ESI-MS/MS 
(Untargeted) 

Serum Refrained from drinking coffee for 1 month, 
consumed four cups of coffee/day in the 2nd 
month and eight cups/day in the 3rd month 

Coffee 
 

Amino Acid 
Creatine metabolism: Creatinine; Guanidinoacetate 
Histidine metabolism: Hydantoin-5-propionic acid; Imidazole lactate 
Leucine, isoleucine and valine metabolism: Isovalerylcarnitine 
Methionine, cysteine, SAM and taurine metabolism: Cysteine; Methionine sulfone 
Polyamine metabolism: 4-Acetamidobutanoate; N-acetylputrescine 
Tryptophan metabolism: 5-Bromotryptophan; Indolelactate; Kynurenine 
Tyrosine metabolism: 2-Hydroxyphenylacetate 
Urea cycle, arginine and proline metabolism: Homoarginine 
 
Carbohydrate 
Aminosugar metabolism: Glucuronate 
Glycolysis, gluconeogenesis, and pyruvate: 1,5-Anhydroglucitol (1,5-AG) 
 
Cofactors and vitamins  
Nicotinate and nicotinamide metabolism: Trigonelline (N'-methylnicotinate) 
 
Energy  
Oxidative phosphorylation: Phosphate 
TCA cycle: Citraconate/glutaconate 
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Lipid  
Diacylglycerol: Linoleoyl-linoleoyl-glycerol (18:2/18:2) 
Endocannabinoid: Linoleoyl ethanolamide; N-oleoyltaurine; Palmitoyl ethanolamide; Stearoyl ethanolamide 
Fatty acid metabolism (acyl choline): Arachidonoylcholine; Dihomo-linolenoyl-choline; Docosahexaenoylcholine; 
Oleoylcholine; Palmitoloelycholine; Palmitoylcholine 
Glycerolipid metabolism: Glycerol 3-phosphate 
Phospholipid metabolism: Choline 
Polyunsaturated fatty acid (n3 and n6): Arachidonate (20:4n6); Docosapentaenoate (n6 DPA) 
Secondary bile acid metabolism: Glycocholenate sulfate 
Sphingolipid metabolism: Palmitoyl dihydrosphingomyelin 
Steroid: 4-Androsten-3alpha,17alpha-diol monosulfate (3); 4-Androsten-3beta,17beta-diol monosulfate (2); 
Epiandrosterone sulfate; Etiocholanolone glucuronide; Pregn steroid monosulfate 
Sterol: 3Beta,7alpha-dihydroxy-5-; Campesterol 
 
Nucleotide 
Purine metabolism, (hypo)xanthine/inosine: Urate 
Purine metabolism, adenine containing: N6-carbamoylthreonyladenosine 
Purine metabolism, guanine containing: 7-Methylguanine 
Pyrimidine metabolism, uracil containing: 2'-Deoxyuridine 
 
Peptide  
Dipeptide derivative: N-acetylcarnosine 
Fibrinogen cleavage peptide: DSGEGDFXAEGGGVR 
 
Xenobiotics: 
Benzoate metabolism: 3-(3-hydroxyphenyl)propionate; 3-(3-hydroxyphenyl)propionate sulfate; 3-Hydroxyhippurate; 3-
Methyl catechol sulfate (1); 3-Phenylpropionate; 4-Vinylphenol sulfate; Catechol sulfate; Hippurate; O-methylcatechol 
sulfate 
Chemical: 3-Hydroxypyridine sulfate; N-methylpipecolate; Succinimide 
Food component/plant: Cinnamoylglycine; Dihydroferulic acid; Homostachydrine; N-(2-furoyl)glycine; Pyrraline; Quinate 
 
Xanthine metabolism: 1,3,7-Trimethylurate; 1,3-Dimethylurate; 1,7-Dimethylurate; 1-Methylurate; 1-Methylxanthine; 
3,7-Dimethylurate; 3-Methylxanthine; 5-Acetylamino-6-amino-3-methyluracil; 7-Methylxanthine; Caffeic acid sulfate; 
Caffeine; Paraxanthine; Theobromine; Theophylline 
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Cuparencu et 
al., 2016 (22) 

28.2 ± 7.3 y, 
 

Crossover 
Feeding Study 

16 males 
(Acute) 

UPLC-ESI-Q-ToF-MS 
(Untargeted) 

Urine Sea buckthorn puree, strawberry puree or 
an iso-caloric control drink. 

Berries (sea buckthorn & 
strawberry) 

Both (Berries): Catechin Sulphate 

Strawberry 4-Hydroxyhippuric acid; Furaneol glucuronide; Pelargonidin glucuronide; P-coumaric acid sulphate; Dihydrokaempferol 
glucuronide; Furaneol sulphate; Mesifurane sulphate; Leucopelargonidin sulphate; Dihydrokaempferol glucuronide 
isomer 

Sea buckthorn (berry) 5-Hydroxyindole-3-acetic acid; xi-2,3-Dihydro-2-oxo-1H-indole-3-acetic acid; Hippuric acid; Cyclohexane carboxylic acid 
glycine; 1-Cyclohexene carboxylic acid glycine; Cyclohexadiene carboxylic acid glycine; N-methyl hippuric acid; 
Isorhamnetin glucuronide; Pyrocatechol sulphate; Dihydroxycyclohexane carboxylic acid; Protocatechuic acid glucoside 

 

Cuparencu et 
al., 2020 

(23) 

18-70 y, 
Denmark 

Crossover 
Feeding Study 

10 
(acute) 

UPLC-ESI-q-TOF-MS 
(Untargeted) 

Urine Beef, pork, and chicken 

Poultry Carnosine; anserine; 3-methylhistidine 

Red meat Carnosine; anserine 

 

Cuff et al., 2015 
(24) 

40-70 y, 
UK 

Feeding Study 162 
(12 weeks) 

GC-MS (Targeted –
alkylresorcinols 
metabolites (3,5-
dihydroxybenzoic acid 
(DHBA) and 3-(3,5-
dihydroxyphenyl)-
propanoic acid (DHPPA)) 

Urine Diet high in refined cereals (CON) or a diet 
close to dietary guidelines, with an increased 
content of whole grain (DG) 

Whole grain diet 3,5-dihydroxybenzoic acid (DHBA); 3-(3,5-dihydroxyphenyl)-propanoic acid (DHPPA) 

 

Davis et al., 
2017 (25) 

71 ± 4.9 y, 
Australia 

Feeding Study 137 
(6 months) 

HPLC (Targeted – 
carotenoids) 

Serum Mediterranean diet (MedDiet) and the 
habitual diet (HabDiet) 

Mediterranean diet Lycopene; β-carotene; total erythrocyte saturated fat (SFA, %); total erythrocyte MUFA (%); magnesium 
 

de Oliveira Silva 
el al., 2020 

(26) 

20-45 y, 
Brazil 

Crossover 
Feeding Study 

18 HPLC-DAD-FLD (Targeted) Urine Soy bean meal and fermented soy bean 
meal biscuits 

Fermented soy bean meal 
(FSBM) biscuits 

Glycitein; genistein; daidzein; dihydrodadzein; ODMA; dihydrogenistein; 6-hydroxy-ODMA; equol 
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Del Rio et al., 
2010 (27) 

26 ± 5 y, 
Italy 

Feeding Study 20 
(Acute) 

HPLC-MS/MS (Targeted – 
flavan-3-ol catabolism) 

Urine & 
Plasma 

Green tea (containing approximately 400 
mmol of flavan-3-ols) 

Green tea Plasma: (-)-epigallocatechin-3-gallate 
Urine: polyhydroxyphenyl-γ-valerolactones 

 

Derkach et al., 
2017 (28) 

31-55 y 
(majority), 

US 

Crossover 
Feeding Study 

119 
(30 days) 

UHPLC-MS/MS and GC–MS 
(Untargeted) 

Plasma High (150 nmol or 3450 mg), medium (100 
nmol or 2300 mg), and low (50 nmol or 1150 
mg) amounts of sodium 

Sodium Diet High- to low-sodium: 
- Fatty acid (Isovalerate; Butyrylcarnitine; Valerylcarnitine) 
- Food component or plant group (4-allylphenol sulfate; methyl glucopyranoside (α plus β); Nacetylalliin; methyl 

indole-3-acetate; gluconate; homostachydrine; erothioneine) 
- Benzoate metabolism pathway (4-ethylphenysulfate; 4-Methycatechol sulfate) 
- ƴ-glutamyl amino acid group (ƴ-glutamylvaline; ƴ-glutamylisoleucine; ƴ-glutamylleucine; ƴ-glutamylmethionine; ƴ-

glutamylglutamate; ƴ-glutamylphenylalanine; ƴ-glutamyltyrosine) 
- Methionine metabolism pathway (methionine sulfone; a-ketobutyrate; S-adenosylhomocysteine; N-

formylmethionine; N-acetylmethionine; methionine; methionine sulfoxide) 
- Tryptophan group (indoleacetate; indolebutyrate; methyl indole-3-acetate; tryptophan betaine; 

indoleacetylglutamine; C-glycosyl tryptophan) 

 

Díaz-Rubio et 
al., 2015 (29) 

29.5 ± 4.1 y, 
Spain 

Feeding Study 28 
(8 weeks) 

LC-Q-ToF-MS (Untargeted) Urine & 
Plasma 

200 mL of ARJ (pomegranate and grape) 
daily 

Pomegranate & Grape juice Urolithin A glucuronide; Ascorbic acid sulfate; Pyrogallol sulfate 

 

Dickson et al., 
2018 (30) 

18 – 38 y, 
Brazil 

Crossover 
Feeding Study 

16 
(Acute) 

UHPLC-MS (Untargeted) Urine Genipap (a native fruit from Amazonia) 

Genipap (native fruit from 
Amazonia) 

Dihydroxyhydrocinnamic acid; (1R,6R)-6-hydroxy-2-succinylcyclohexa-2,4-diene-1-carboxylate; hydroxyhydrocinnamic 
acid; genipic acid; 12-demethylated-8-hydroxygenipinic acid; 3(7)-dehydrogenipinic acid; genipic acid glucuronide; 
Nonate; 3,4-dihydroxyphenylacetate 

 

Donovan et al., 
1999 (31) 

29 ± 3 y,  
US 

Crossover 
Feeding Study 

9  
(Acute) 

GC-MS (Targeted - 
catechin and its metabolite 
3’-O-methylcatechin) 

Plasma 120 mL of red wine one day and de-
alcoholized red wine 

Red wine  3’-O-methylcatechin 
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Egner et al., 
2011 (32) 

29-62 y, 
China 

Crossover 
Feeding Study 

48 
(7 days) 

UPLC-QqQ-ESI-MS 
(Targeted – glucoraphanin, 
sulforaphane and 
sulforaphane thiol 
conjugates) 

Urine Broccoli sprout-derived beverages: one 
glucoraphanin-rich (GRR) and the other 
sulforaphane-rich (SFR) 

Sulforaphane-rich (SFR) 
broccoli sprout 

Sulforaphane 

 

Ellinger et al., 
2020 
(33) 

26.9 ± 4.1 y, 
Germany 

Crossover 
Feeding Study 

12 
(acute) 

HPLC with coulometric 
electrode array detection 
(Targeted) 

Plasma Milk-based cocoa beverage 

Milk-based cocoa beverage Epicatechin 

 

Erlund et al., 
2006 (34) 

Int 1: 19-48 y, 
Int 2: 60 y, 

Int 3: 19-52 y, 
Finland  

Int-1: 
Crossover 

Feeding Study; 
Int-2: Feeding 

Study; 
Int-3: Feeding 

Study 

Int-1: 18 
(2 days); 
Int-2: 40  

(8 weeks); 
Int 3: 80 

(6 weeks) 

HPLC‐ECD (Targeted – 
flavonol (quercetin)) 

Plasma Berries 

Berries Quercetin 
 

Favari et al., 
2020 
(35) 

18-35 y, 
Germany 

Crossover 
Feeding Study 

10 
(acute) 

UHPLC-ESI-QqQ-MS/MS 
(Targeted) 

Urine & 
Plasma 

Cranberry juice 

Cranberry Juice 5-(Dihydroxyphenyl)-γ-valerolactone-glucuronide (3′,4′,5′); 5-(5′-Hydroxyphenyl)-γ-valerolactone-3′-glucuronide; 5-(3′,5′-
Dihydroxyphenyl)-γ-valerolactone; 5-(Dihydroxyphenyl)-γ-valerolactone-sulfate (3′,4′,5′); 5-Phenyl-γ-valerolactone-4′-
glucuronide; 5-(3′-Hydroxyphenyl)-γ-valerolactone-4′-glucuronide; 5-Phenyl-γ-valerolactone-sulfate-glucuronide isomer 
(3′,4′); 5-(4′-Hydroxyphenyl)-γ-valerolactone-3′-glucuronide; 4-Hydroxy-5-(hydroxyphenyl)valeric acid-sulfate (3′/4′) 
isomer 1; 4-Hydroxy-5-(hydroxyphenyl)valeric acid-glucuronide (3′/4′); 5-(3′,4′-Dihydroxyphenyl)-γ-valerolactone; 5-(5′-
Hydroxyphenyl)-γ-valerolactone-3′-sulfate; 5-Phenyl-γ-valerolactone-methoxy-glucuronide isomer (3′,4′); 5-
Hydroxyphenyl-γ-valerolactone-methoxy-glucuronide (3′,4′,5′); 5-Phenyl-γ-valerolactone-3′-glucuronide; 4-Hydroxy-5-
(hydroxyphenyl)valeric acid-sulfate (3′/4′) isomer 2; 5-(Hydroxyphenyl)-γ-valerolactone-methoxy-sulfate (3′,4′,5′); 5-
(Hydroxyphenyl)-γ-valerolactone-sulfate (3′,4′ isomers); 5-Phenyl-γ-valerolactone-4′-sulfate; 5-Phenyl-γ-valerolactone-
methoxy-sulfate (3′,4′) isomer 1; 5-Phenyl-γ-valerolactone-3′-sulfate; 5-Phenyl-γ-valerolactone-methoxy-sulfate (3′,4′) 
isomer 2 
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Felberg et al., 
2015 (36) 

24-42 y, 
Brazil 

Crossover 
Feeding Study 

6 
(Acute) 

LC–MS (Targeted – 
isoflavones and 
chlorogenic acids (CGA)) 

Urine Soy (79.7 μmol ISO), coffee (561.2 μmol 
CGA) and soy–coffee beverage (79.7 μmol 
ISO and 561.2 μmol CGA) 

Soy, coffee and soy–coffee 
beverages 

3-caffeoylquinic acid, 4-caffeoylquinic acid, 5-caffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 
4,5-dicaffeoylquinic acid, and 15 metabolites: caffeic, ferulic, isoferulic, vanillic, gallic, p-hydroxybenzoic dihydrocaffeic, 
syringic, sinapic, hippuric, trans-3-hydroxycinnamic, 3,4-dihydroxyphenylacetic, benzoic, 2,4-dihydroxybenzoic and 
3-(4-hydroxyphenyl) propionic acids 

 

Feliciano et al., 
2017 (37) 

18-35 y, 
Germany 

Crossover 
Feeding Study 

10 males  
(Acute) 

UPLC-Q-ToF-MS (Targeted 
– (poly)phenols) 

Urine & 
Plasma 

Cranberry juices containing 409, 787, 1238, 
1534 and 1910 mg total (poly)phenols 

Cranberry juice -
((poly)phenols) metabolites 

Plasma:  2,4-dihydroxybenzoic acid; 2,5-dihydroxybenzoic acid; 3-hydroxybenzoic acid; (4R)-5-(30-hydroxyphenyl)-γ-
valerolactone-40-O-sulfate; 4-methylgallic acid-3-O-sulfate; caffeic acid 3-O-ß-D-glucuronide; caffeic acid 4-O-ß-D-
glucuronide; ferulic acid; ferulic acid 4-O-sulfate; ferulic acid 4-O-ß-D-glucuronide; isoferulic acid 3-O-sulfate; quercetin-3-
O-ß-D-glucuronide; sinapic acid; syringic acid; vanillic acid-4-O-sulfate 
 
Urine:  2,3-dihydrobenzoic acid; 2,4-dihydrobenzoic acid; dihydrocaffeic-3-O-sulfate; ferulic-O-4-sulfate; o-courmaric 
acid; quercetin-3-O-ß-d-glucuronide; 2,5-dihydroxybenzoic acid; chlorogenic acid; p-coumaric acid; sinapic acid; benzoic 
acid; isoferulic acid 

 

Fuchsmann et 
al., 2020  

(38) 

– 
Switzerland 

Crossover 
Feeding Study 

11 
(acute) 

GC-MS Urine & 
Plasma 

Cheese, Milk, and Soy-Based Drink 

Cheese Plasma: heptan-2-one; undecan-2-one 
Urine: heptan-4-one; medium-chain fatty acid ester; medium-chain fatty acid ester 

Dairy Plasma:  3,5-dimethyloctan-2-one 
Urine:  1-methoxy-2-propyl acetate; medium-chain fatty acid ester; 9-decenoic acid, methyl ester; medium-chain fatty 
acid ester 

Soy-based drink Urine: 1,3-octadiene; 2,4-octadiene; 1-octen-3-ol, methyl ether; monoterpene; methoxycyclooctanet; naphthalene 
derivative; 1-octen-3-ol; acetophenone; 1,1,6-trimethyl-1,2-dihydronaphthalene; coumarin derivative; methyl 
tetradecanoate 

Milk 3-ethylphenol 

 

Fujioka et al., 
2014 (39) 

35.8 ± 12 y, 
US 

Crossover 
Feeding Study 

25 
(3 days) 

LC-ESI-MS/MS-SRM 
(Targeted – 3,3′-
diindolylmethane 

Urine 50 g of either raw ‘Jade Cross’ Brussels 
sprouts (high glucobrassicin 
concentration) or ‘Blue Dynasty’ cabbage 
(low glucobrassicin concentration) 
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(DIM, a metabolite of 
indole-3-carbinol)) 

Brussels sprouts (high 
glucobrassicin 
concentration) 

3,3′-diindolylmethane (DIM) 

 

Fujioka et al., 
2016 (40) 

31.5 ± 1.5 y, 
 US 

Crossover 
Feeding Study 

45 
(2 days) 

LC-ESI-MS/MS-SRM 
(Targeted – 3,3′-
diindolylmethane (DIM)) 

Urine Mixture of Brussels sprouts and/or cabbage, 
at 1 of 7 discrete dose levels of 
glucobrassicin ranging from 25 to 500 μmol 

Brassica vegetables 3,3′-diindolylmethane (DIM) 

 

Garcia-Aloy et 
al., 2020 

(41) 

28 ± 6 y, 
Spain 

Crossover 
Feeding Study 

11 
(acute) 

LC-HR-MS (Untargeted) Urine & 
Serum 

Lentils, chickpeas, and white beans 

Lentils Hydroxyarginine; Oxoarginine; (Epi)catechin sulfate; 4-Hydroxy-5-(dihydroxyphenyl)-valeric acid-O-sulfate; 5-(3’,4’-

Dihydroxyphenyl)-y-valerolactone-3-O-sulfate; 5-(3’,4’-Dihydroxyphenyl)-y-valerolactone-glucuronide; 5-(3’,5’-
Dihydroxyphenyl)-y-valerolactone-methylglucuronide; Vanillic acid sulfate; Dopamine sulfate 

Chickpeas Asp-Met; Asp-(i)Leu-Pro / (i)Leu-Asp-Pro;  Asp-Ala-(i)Leu / Ala-Asp-(i)Leu;  Asp-Gly-Tyr / Gly-Asp-Tyr;  Cyclo((i)Leu-Phe);  
Asp-Thr-Pro / Thr-Asp-Pro; Protocatechuic acid glucoside; Ascorbic acid  

White beans 2-Hydroxyhippuric acid; Hydroxyjasmonic acid; Hydroxydihydrojasmonic acid (I); Hydroxydihydrojasmonic 
acid (II); Methylcysteine; Pipecolic acid; Trigonelline 

 

Garcia-Perez et 
al., 2016 (42) 

22-32 y, 
UK 

Crossover 
Feeding Study 

6 
(4 days) 

1H NMR (Untargeted) Urine Grapes 

Grapes Tartaric acid  

 

Garcia-Perez et 
al., 2017 (43) 

21-65 y, 
UK 

Crossover 
Feeding Study 

19 
(Acute) 

1H NMR (Untargeted) 
 

Urine WHO healthy eating guidelines (increase 
fruits, vegetables, whole grains, and dietary 
fibre; decrease fats, sugars, and salt) 

WHO healthy eating 
guidelines (increase fruits, 
vegetables, whole grains, and 
dietary fibre; decrease fats, 
sugars, and salt) 

Hippurate (a marker of fruit and vegetable consumption); (N-acetyl-)S-methyl-Lcysteine-sulfoxide (cruciferous 
vegetables); dimethylamine and TMAO (fish); and 1-methylhistidine and 3-methylhistidine (oily fish and chicken) 

 

Garg et al., 
2016 (44) 

27.8 ± 6.5 y, 
Ireland 

Crossover 
Feeding Study 

14 
(Acute) 

1H NMR (Untargeted) 
 

Urine Minimally processed bran or aleurone 
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Wheat bran/aleurone Lactate; alanine; N-acetylaspartate acid; N-acetylaspartylglutamate; betaine 
 

 

Gibbons et al., 
2015 (45) 

27 ± 3 y, 
Ireland 

Feeding Study 10  
(Acute) 

1H NMR (Untargeted - 
Panel of biomarkers 
indicative of sugar-
sweetened beverages) 

Urine Sugar-sweetened beverages (330-mL can of 
cola) 

Sugar-sweetened beverage Citrulline; formate; isocitrate; taurine  

 

Gibbons et al., 
2017 (46) 

59 ± 5, 
England 

Feeding Study 50  
(3 days for 3 

weeks) 

1H NMR (Targeted - proline 
betaine) 

Urine Orange juice 

Orange juice Proline betaine 
 

Gómez-Juaristi 
et al., 2019 

(47) 

26.67 ± 3.21 y, 
Spain 

Crossover 
Feeding Study 

13 
(acute) 

HPLC-ESI-QToF-MS 
(Targeted) 

Urine & 
Plasma 

Two soluble cocoa products: a conventional 
and a flavanol-rich product 

Two soluble cocoa products: a 
conventional and a flavanol-
rich product 

Plasma 
Flavanols: Epicatechin-3’-glucuronide; Epicatechin-3’-sulfate; Epicatechin-methoxy-sulfate (isomer 1); Epicatechin-
methoxy-sulfate (isomer 2) 
Phenyl-y-Valerolactone (PVL) derivatives:  5-(30,40-Dihydroxyphenyl)-y-valerolactone (DHPVL); 5-(40-Hydroxyphenyl)-y-
valerolactone-30-glucuronide (HPVL-3’-glucuronide); 5-(Hydroxyphenyl)-y-valerolactone-sulfate (HPVL-sulfate); 5-Phenyl-
y-valerolactone-methoxy-glucuronide (PVL-methoxy-glucuronide); 5-Phenyl-y-valerolactone-3’-sulfate (PVL-30-sulfate) 
Phenylvaleric acid derivatives: 4-Hydroxy-5-(hydroxyphenyl)valeric acid-sulfate (HHPVA-sulfate) 
Other microbial metabolites: 3,4-Dihydroxyphenylpropionic acid; 3-Methoxy-4-hydroxyphenylpropionic acid 
 
Urine 
Flavanols: Epicatechin-3’-glucuronide; Epicatechin-3’-methoxy-glucuronide; Epicatechin-3’-sulfate; Epicatechin-methoxy-
sulfate (isomer 1); Epicatechin-methoxy-sulfate (isomer 2); Epicatechin-methoxy-sulfate (isomer 3) 
Phenyl-y-Valerolactone (PVL) derivatives:  5-(30,40-Dihydroxyphenyl)-y-valerolactone (DHPVL); 5-(30-Hydroxyphenyl)-y-
valerolactone-40-glucuronide (HPVL-4’-glucuronide); 5-(40-Hydroxyphenyl)-y-valerolactone-30-glucuronide (HPVL-3’-
glucuronide); 5-(Hydroxyphenyl)-y-valerolactone-sulfate (HPVL-sulfate); 5-Phenyl-y-valerolactone-methoxy-glucuronide 
(PVL-methoxy-glucuronide); 5-Phenyl-y-valerolactone-methoxy-sulfate (PVL-methoxy-sulfate); 5-(30-Hydroxyphenyl)-y-
valerolactone (HPVL); 5-Phenyl-y-valerolactone-30-glucuronide (PVL-30-glucuronide); 5-Phenyl-y-valerolactone-3’-sulfate 
(PVL-30-sulfate) 
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Phenylvaleric acid derivatives: 4-Hydroxy-5-(3’,4’-dihydroxyphenyl)valeric acid (HDHPVA); 4-Hydroxy-5-
(hydroxyphenyl)valeric acid-glucuronide (HHPVA-glucuronide); 4-Hydroxy-5-(hydroxyphenyl)valeric acid-sulfate (HHPVA-
sulfate) 
Other microbial metabolites: 3,4-Dihydroxyphenylpropionic acid; 3-Methoxy-4-hydroxyphenylpropionic acid; 3-
Hydroxyphenylpropionic acid; 3,4-Dihydroxyphenylacetic acid; 3-Methoxy-4-hydroxyphenylacetic acid; 3-
Hydroxyphenylacetic acid; Ferulic acid; Isoferulic acid; 3,4-Dihydroxybenzoic acid; 4-Hydroxyhippuric acid; 3-
Hydroxyhippuric acid; Hydroxybenzoic acid 

 

Gouado et al., 
2007 (48) 

22-27 y, 
Cameroon 

Feeding Study 14 
(Acute) 

HPLC (Targeted – 
carotenoids provitamin A, 
lycopene and lutein) 

Serum Mango and papaya in three types of meal 
treatments (juice, fresh and dried fruit) 

Mango a-Carotene; b-Carotene; Cryptoxanthin; Zeaxanthin 

Papaya a-Carotene; Lycopene; Cryptoxanthin; Zeaxanthin 

 

Gu et al., 2013 
(49)  

17.8-52.0 y, 
China 

Feeding Study 75 UPLC-Q-ToF-MS and GC-
ToF-MS (Untargeted) 

Serum Very low carbohydrate diet 

Very low carbohydrate diet 4 weeks of VLCD: 2-aminobutyrate, proline, ornithine, tryptophan, methionine, threonine, theanine, cis-11,14-
eicosadienoate, cis-11,14,17-eicosatrienoate, arachidonate, acetyl-carnitine, 3-hydroxybutyrate, p-cresol, 3-
aminophenol, threitol, urea, glutamate, alanine, cysteine, ribose, mannose, succinate, cis-5,8,11,14,17-
eicosapentaenoate, palmitoleate, stearate, pentadecanoate, fumarate, 2-hydroxybutyrate, 2,3-dihydroxybutanoate, 
adenine, and nicotinamide 
 
8 weeks of VLCD: proline, ornithine, tryptophan, threonine, p-cresol, threitol, urea, glutamate, alanine, ribose, mannose, 
succinate, palmitoleate, elaidate, stearate, oleamide, xanthine, 4-hydroxy-3-methoxymandelate, nicotinamide, 
chenodeoxycholate, glyceraldehyde, and glycerol  

 

Gürdeniz et al., 
2016 (50) 

18−60 y, 
Denmark 

Crossover 
Feeding Study 

18 
(Acute) 

UPLC-Q-ToF-MS 
(Untargeted) 

Urine & 
Plasma 

Four different test beverages: strong, 
regular, and nonalcoholic beers and a soft 
drink 

Beer  Blood & Urine: N-methyl tyramine sulfate; sum of iso-α-acids; Iso-cohumulone 
Urine only: Tricyclohumols 

 

Hagen et al., 
2020 
(51) 

18-69 y, 
Norway 

Feeding Study 62 
(8 weeks) 

LC or GC combined with 
MS/MS (Targeted) 

Urine & 
Serum 

Cod and salmon 

Cod Serum: trimethylamine N-oxide (TMAO); creatine; 1-methylhistidine 
Urine: trimethylamine N-oxide (TMAO); creatine; 1-methylhistidine 
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Salmon Serum: 1-methylhistidine; creatine 
Urine: 1-methylhistidine; creatine 

 

Halder et al., 
2018 (52)  

23.7 ± 2 y, 
Singapore 

 

Crossover 
Feeding Study 

17 Chinese 
males 

(Acute) 

UHPLC-MS/MS (Targeted – 
phenolic acids) 

Plasma Curry meal containing 0 g, 6 g, and 12 g of 
mixed spices 

Spices Cinnamic acid; phenylacetic acid 

 

Hanhineva et 
al., 2013 (53) 

57 ± 9 y, 
Finland 

Crossover 
Feeding Study 

12 
(Acute) 

LC-Q-ToF-MS (Untargeted) Plasma 100% whole-grain sourdough rye bread or 
white wheat bread enriched with native 
unprocessed rye bran or bioprocessed rye 
bran 

Whole-wheat rye or rye bran Hydroxy-N-(2-hydroxyphenyl) acetamide (HHPAA); N-(2-hydroxyphenyl) acetamide (HPAA) 

 

Hanhineva et 
al., 2015 (54) 

40–70 y, 
Finland 

Feeding Study 106 
(12 weeks) 

UHPLC-Q-ToF-MS 
(Untargeted) 

Plasma 1) whole-grain products, fatty fish, and 
bilberries (HD); 2) a whole-grain–enriched 
diet with the same grain products as in the 
HD intervention but 
with no change in fish or berry consumption; 
and 3) refined-wheat breads and restrictions 
on fish and berries (control diet) 

Fish  3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) 

Berries 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF); Hippuric acid 

Whole grain Alkenylresorcinol (AenR) 21:1-Gln; alkylresorcinol (AR) 19:0-Gln; Pipecolic acid betaine; y-Butyrobetaine 

Healthy diet (HD) Pyrocatechol sulfate; Hippuric acid; CMPF; 3-Carboxy-4-methyl-5-pentyl-2-furanpropionic acid; EPA; Nonadecyl-
benzenediol glucuronide (AR 19:0-Gln); Heneicosenyl-benzenediol-glucuronide (AenR 21:1-Gln); lysophosphatidylcholine 
(LPC) (20:5) minor isomer; lysophosphatidylcholine LPC (20:5) 

Whole-grain–enriched diet Nonadecyl-benzenediol glucuronide (AR 19:0-Gln); Heneicosenyl-benzenediol-glucuronide (AenR 21:1-Gln) 

 

Hauder et al., 
2011 (55) 

50-82 y, 
Germany 

Feeding Study 76 
(4 weeks) 

HPLC-MS/MS (Targeted –
sulforaphane (SFN) and 
indole-3-carbinol 
metabolites) 

Urine & 
Plasma 

200 g of a daily dose of regular blanched 
broccoli, selenium-fertilized blanched 
broccoli, or placebo 

Regular broccoli Plasma: Sulforaphane; sulforaphane cysteinylglycine (SFN-Cys-Gly); sulforaphane cysteine (SFN-Cys); sulforaphane N-
acetylcysteine (SFN-NAC) 
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Urine: Sulforaphane; sulforaphane cysteinylglycine (SFN-Cys-Gly); sulforaphane cysteine (SFN-Cys); sulforaphane N-
acetylcysteine (SFN-NAC) 

Selenium-fertilized broccoli Plasma: Sulforaphane; sulforaphane cysteinylglycine (SFN-Cys-Gly); sulforaphane N-acetylcysteine (SFN-NAC) 
Urine: Sulforaphane; sulforaphane cysteinylglycine (SFN-Cys-Gly); sulforaphane cysteine (SFN-Cys); sulforaphane N-
acetylcysteine (SFN-NAC) 

 

Heinzmann et 
al., 2010 (56) 

Study 1:  
28-45 y, 
Study 2: 
24-46 y, 

UK 

Crossover 
Feeding Study 

Study 1: 8 
Study 2: 6 

(Acute) 

1H NMR (Untargeted and 
targeted – proline betaine) 

Urine Study 1: mixed-fruit meal (apple, orange, 
grapes, and grapefruit) 
Study 2: orange juice 

Mixed fruits Proline betaine; tartaric acid; hippuric acid 

Orange juice Proline betaine 

 

Henning et al., 
2010 (57) 

29 ± 6.3 y, 
US 

Feeding Study 21 females 
(3 weeks) 

HPLC–MS/MS (Targeted – 
pelargonidin-glucuronide, 
urolithin A-glucuronide, 
and 2,5-dimethyl-4-
hydroxy-3-
[2H]furanoneglucuronide) 

Urine Frozen strawberries (250 g) administered 
daily 

Strawberry Pelargonidin (Pg)-glucuronide; urolithin A (UA)-glucuronide; 2,5-Dimethyl-4-hydroxy-3-[2H]furanone (DMHF)-glucuronide 
 

Hernández-
Alonso et al., 

2017 (58) 

55.3 ± 2 y, 
Spain 

Crossover 
Feeding Study 

39 
prediabetic 

subjects 
(4 months) 

1H NMR (Targeted – 
metabolites related with 
gut microbiota 
metabolism) 

Urine Pistachio-supplemented diet (PD, 50% 
carbohydrates, 33% fat, including 57 g/d of 
pistachios daily) and a control diet (CD, 55% 
carbohydrates, 30% fat) 

Pistachio-supplemented diet Hippurate; p-cresol sulfate; dimethylamine; cis-aconitate (intermediate of the tricarboxylic acid (TCA)); creatinine; 
trimethylamine N-oxide (TMAO); N-methyl-trans-4-hydroxy-L-proline 

 

Hernández-
Alonso et al., 

2019 (59) 

30-60 y, 
Spain 

Feeding Study 102 
(6 months) 

GC-Q-ToF-MS and HPLC-Q-
ToF-MS, and 1H NMR 
(Targeted) 

Plasma Low-glycemic index (LGI) diet, high-glycemic 
index (HGI) diet, and a low-fat (LF) diet 

Low-glycemic index (LGI) Serine; tyrosine; glycine; leucine; valine; C32:1 SM; C42:3 SM; C20:3 lysophosphatidylcholine (LPC); C18:2 LPC; C32:1; 
C34:2e; C36:2e; C36:5e; C38:5; C40:6 PC 

 

Hodgson et al., 
2000 (60) 

61.8 ± 2.7 y, 
Australia 

Crossover 
Feeding Study 

10 
(4 weeks) 

GC-MS (Targeted – gallic 
acid metabolites) 

Urine 5 cups per day of black tea 
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Black tea 4-O-methylgallic acid, 3-O-methylgallic acid, and 3,4-O-dimethylgallic acid 

 

Hodgson et al., 
2013 (61) 

22 ± 8 y, 
UK 

Feeding Study 27 males 
(1 week) 

LC–MS/MS and GC–MS 
(Untargeted and targeted 
– catecholamines) 

Plasma Green tea extracts (1200 mg catechins, 240 
mg caffeine/day) or placebo drinks 

Green tea Urea; Cholesterylester C18:1; Cholesterylester C18:2; Glycerol (lipid fraction); Docosahexaenoic acid 
(C22:cis[4,7,10,13,16,19]6); Isopalmitic acid (C16:0); TAG (C16:0,C16:1); TAG (C16:0,C18:2); TAG (C18:2,C18:2); TAG 
(C18:2,C18:3); Phosphatidylcholine(C18:0,C22:6); Sphingomyelin (d18:1,C16:0); 3-hydroxybutyrate; Citrate; 5-hydroxy-3-
indoleacetic acid (5-HIAA); Homovanillic acid (HVA); Caffeine; Glycerol (polar fraction); Hippuric acid 

 

Housley et al., 
2018 (62) 

36 ± 5.3 y, 
US 

Crossover 
Feeding Study 

10 
(Acute) 

HPLC–MS/MS 
(Untargeted) 

Plasma Fresh broccoli sprouts (a rich dietary source 
of bioactive sulforaphane) 

Broccoli sprouts Glutathione; Cysteine; Glutamine; Dehydroepiandrosterone (DHEA); Deoxyuridine monophosphate (dUMP); FA 14:0; FA 
14:1; FA 16:0; FA 16:1; FA 18:0; FA 18:1 

 

Hövelmann et 
al., 2019 (63) 

23-32 y, 
Germany 

Feeding Study 7 
(Acute) 

LC-ESI-MS (Untargeted) Urine Tomato juice (1 L) + standardized breakfast 

Tomato juice Hydroxyesculeogenin B isomer; Esculeogenin B sulfonate; Esculeogenin B isomer; Tomatidine 

 

Hutchins et al., 
2000 (64) 

66.9 ± 8.2 y, 
US 

Crossover 
Feeding Study 

31 females 
(7 week) 

GC-MS (Targeted – dietary 
estrogens, such as lignans) 

Urine Habitual diets plus 0, 5, or 10 grams of 
ground flaxseed per day 

Flaxseed  Enterodiol; enterolactone; total lignan 

 

Ibero-Baraibar 
et al., 2016 (65) 

57.5 ± 5.3 y, 
Spain 

Feeding Study 47 
(4 weeks) 

HPLC-ToF-MS (Untargeted) Urine Ready-to-eat meals containing a cocoa 
extract (with 1.4 g of cocoa extract (645 mg 
polyphenols)) vs. meals without cocoa 

Cocoa diet 
 

Theobromine metabolism (3-Methylxanthine; 3-Methyluric acid) 
Food processing (L-Beta-aspartyl-L-phenylalanine) 
Flavonoid metabolism (2,5,7,3′,4′-Pentahydroxyflavanone 5-O-glucoside; 7,4′-Dimethoxy-6-C-methylflavanone) 
Catecholamine metabolism (3-Methoxy-4-hydroxyphenylglycol (MHPG) sulphate) 
Endogenous metabolism (Uridine monophosphate) 

 

Jahns et al., 
2014 (66) 

32.1 ± 2.5 y, 
US 

Feeding Study 29 
(8 weeks) 

HPLC (Targeted – 
carotenoids) 

Plasma Fruits and vegetables intake 

Fruits and vegetables Total carotenoid 

 

Jin et al., 2011 
(67) 

44.6 ± 13.3 y, 
UK 

Crossover 
Feeding Study 

20 
(Acute) 

LC–MS and GC–MS 
(Targeted – anthocyanins) 

Urine 20% blackcurrant juice drink (250 ml) 
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Blackcurrant juice Anthocyanins: Delphinidin-3-rutinoside; Cyanidin-3-rutinoside; Delphinidin-3-glucoside1 

 

Johansson-
Persson et al., 

2013 (68) 

(58.6 ± 1 y), 
Sweden 

 

Crossover 
Feeding Study 

25 
(5 weeks) 

LC-Q-ToF/MS 
(Untargeted) 

Plasma High dietary fiber intake (consisted of oat 
bran, rye bran, and sugar beet fiber) 

High fiber diet 2,6-dihydroxybenzoic acid (DHBA); 2-aminophenol sulfate 
 

Kempf et al., 
2010 (69) 

54 ± 9 y, 
Germany 

Feeding Study 47 
(2 months) 

HPLC and GC–MS 
(Targeted – polyphenols 
and methylxanthines) 

Plasma Coffee (refrained for 1 month, then 4 and 8 
cups per day in the 2nd and 3rd months, 
respectively) 

Coffee Caffeine; paraxanthine; theobromine; theophylline; caffeic acid; dihydrocaffeic acid; Coumaric acid; dihydro-3-coumaric 
acid; ferulic acid; isoferulic acid; dihydroferulic acid; dihydroisoferulic acid; dimethoxycinnamic acid; 3-(3,4-
Dimethoxyphenyl)-propionic acid 

 

Khakimov et al., 
2016 (70) 

20-66 y, 
Denmark 

Feeding Study 145 
(6 months) 

GC-MS (Untargeted) Plasma New Nordic Diet (NND) or Average Danish 
Diet (ADD) 

New Nordic Diet  glycine; 3-hydroxybutanoic acid; 2,3-dihydroxybutanoic acid; erythritol, 2-hydroxybenzoic acid; aspartic acid; threonic 
acid; pyrophosphate; xylitol; 2,5 diisopropylnaphthalene; N-acetylaspartic acid; 3-(2,5-dimethoxyphenyl)propionic acid; 
palmitoleic acid 

Average Danish Diet lactic acid; oxalic acid; alanine; threonine; phenylalanine; diethyl phthalate; 2,6-diisopropylnaphthalene (2,6-DIPN); citric 
acid, cholesterol 

 

Khymenets et 
al., 2015 (71) 

25-55 y, 
Spain 

Crossover 
Feeding Study 

31 
(Acute and 

15 days) 

HPLC-Q-ToF-MS 
(Untargeted) 

Urine Grape skin extract/polyphenol (drink) 

Grape-derived 
extract/polyphenols 
(functional beverage) 

Unique for Acute: tyrosine 
Unique for Sustained beverage: two 4-hydroxy-5-(dihydroxyphenyl)-valeric acid glucuronides; 4-hydroxy-5-
(dihydroxyphenyl)-valeric acid sulphate; two 5-(dihydroxyphenyl)-y-valerolactone glucuronide; 5-(hydroxyphenyl)-y-
valerolactone glucuronide; 5-(hydroxy-methoxy-phenyl)-y-valerolactone glucuronide 
Common: 4’-hydroxyhippuric acid; two hydroxy-dimethoxybenzoic acid glucuronide; vanillic acid glucuronide; 
vanilloylglycine; (epi)catechin glucuronide; two (epi)catechin sulphates; dihydrosinapic acid glucuronide 

 

Kremer et al., 
2018 (72) 

22-27 y, 
Germany 

Feeding Study 10 
(2 days) 

HPLC-ESI-MS/MS 
(Targeted – niacin 
metabolites) 

Urine 500 mL coffee beverage 

Coffee nicotinic acid (NA); nicotinamide (NAM); N1-methyl-nicotinamide (NMNAM), and N1-methyl-2-pyridon-5-carboxamide (2-
Py) 
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Kristensen et 
al., 2007 (73) 

26-30 y, 
Denmark 

Crossover 
Feeding Study 

6 
(2 days) 

HPLC-MS (Targeted – 
isothiocyanates) 

Urine A basic diet supplemented with 80 or 350 g 
of mixed cruciferous vegetables 

Cruciferous vegetables Isothiocyanates (ITCs) 

 

Kuntz et al., 
2015 (74) 

23-27 y, 
Germany 

Crossover 
Feeding Study 

10 UPLC-MS (Targeted – 
anthocyanins) 

Urine & 
Plasma 

0.33 litres of juice or smoothie (made from 
an eighty/twenty mixture of red grapes and 
blueberries) 

Berries & grapes juice or 
smoothie 

Delphinidin-3-glucoside; cyanidin-3-glucoside; petunidin-3-glucoside; malvidin-3-glucoside; peonidin-3-glucoside; 
malvidin-3-glucuronides; peonidin-3-glucuronides; 3,4-dihydroxybenzoic acid 

 

Lacalle-
Bergeron et al., 

2020 
(75) 

25.0 ± 2.8 y, 
Spain 

Crossover 
Feeding Study 

30 
(acute) 

UHPLC-IMS-HRMS 
(Untargeted) 

Plasma Orange 

Orange Synephrime hydrogen sulfate; N-methyltyramine hydrogen sulfate; Hesperitin hydrogen sulfate; N-methyl-proline; 
Betonicine; Stachydrine 

 

Landberg et al., 
2009 (76) 

30.6 ± 10.3 y,  
Sweden 

Crossover 
Feeding Study 

16 
(1 week) 

Urine: HPLC-MS 
Plasma: GC-MS 
(Targeted – 
alkylresorcinols and their 
metabolites) 

Urine & 
Plasma 

Rye bran flakes containing 11, 22, or 44 mg 
total alkylresorcinols (AR) 

Rye bran flakes  Alkylresorcinols 

 

Langer et al., 
2018 (77) 

23 ± 3 y, 
UK 

Crossover 
Feeding Study 

9 
(Acute) 

LC–ESI-Q-Orbitrap-MS 
(Untargeted) 

Urine & 
Plasma 

250 g of fresh blueberries either as the 
whole fruit or after juicing 

Blueberries Urine 
- Whole fruit: Ferulic acid 4-sulphate; Caffeic acid 4-sulphate; Ferulic acid 4-sulphate; Abscisic acid; 2'-Methoxy-3-(2,4-

dihydroxyphenyl)-1,2-propanediol 4’-glucoside 
Plasma 
- Juice: N-(7-Sulfanylheptanoyl)-L-threonine 
- Whole fruit: Deoxynivalenol 3-glucoside 

 

Lankinen et al., 
2011 (78) 

58.7 ± 5.8 y, 
 

Crossover 
Feeding Study 

39 females 
(8 weeks) 

UPLC-ESI-MS, GC and UPLC 
(Untargeted) 

Plasma High-fiber rye bread (RB) or white wheat 
bread (WB) 

High-fiber rye bread Ribitol; Ribonic acid; 1H-Indole-3-acetic acid 
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Lappi et al., 
2013 (79) 

35-65 y, 
Finland 

Crossover 
Feeding Study 

15 
(Acute) 

GC-MS (Targeted – 
phenolic acids and their 
metabolites) 

Urine White wheat breads fortified with 
bioprocessed or native rye bran, and 
wholegrain rye bread and white wheat 
bread as controls 

White wheat bread fortified 
with rye bran 

Ferulic acid; Sinapic acid 

 

Lee et al., 2012 
(80) 

23.3 ± 2.8 y, 
US 

Crossover 
Feeding Study 

16 
(Acute) 

UHPLC-ESI-Q-ToF-MS/MS 
(Targeted – quercetin 
metabolites) 

Plasma (1) Apple peel powder-enriched applesauce  
(2) Onion powder-enriched applesauce 

Apple sauce (apple peal or 
onion powder) 

Quercetin sulfate; quercetin glucuronide; quercetin diglucuronide 
 

Lennerz et al., 
2015 (81) 

(22-34 y), 
US 

Crossover 
Feeding Study 

14 
overweight 

subjects 
(Acute) 

LC–MS/MS (Targeted – 
benzoate and hippurate) 

Plasma Sodium benzoate (a widely used food 
preservative) 

Sodium benzoate (a widely 
used food preservative) 

Benzoate; hippurate; anthranilic acid (tryptophan metabolite); acetylglycine 
 

Li et al., 2001 
(82) 

31-35 y, 
US 

Crossover 
Feeding Study 

5 
(Acute) 

HPLC-ESI-MS (Targeted – 
polyphenols glucuronides 
and sulphates) 

Urine Green tea 

Green tea Monoglucuronides and monosulfates of (-)-epigallocatechin (EGC) and (-)-epicatechin; O-methyl-EGC-O-glucuronides and 
-O-sulfates and O-methyl-epicatechin-O-sulfates; (-)-5-(3′,4′,5′-Trihydroxyphenyl)-γ-valero- lactone (M4); (-)-5-(3′,4′-
dihydroxyphenyl)-γ-valerolactone (M6); the ring-fission metabolites of EGC and (-)-epicatechin 

 

Li et al., 2018 
(83) 

10 ± 0.8 y, 
US 

Feeding Study 38 
(4 weeks) 

UPLC–MS/MS 
(Untargeted) 

Plasma (1) no navy beans or rice bran (control), (2) 
17.5 g/day cooked navy beans, (3) 15 g/day 
heat-stabilized rice bran, or (4) a 
combination of 9 g/day navy bean and 8 
g/day rice bran 

Navy bean Trigonelline; ferulic acid 4-sulfate; Pipecolate; S-methylcysteine, and S-methylcysteine sulfoxide 

Rice bran  Methionine sulfone; alpha-hydroxycaproate; linoleoyllinolenoyl-glycerol; palmitoyl-linolenoylglycerol; pyridoxal; 2-
hydroxyhippurate; salicylate; gamma-glutamylglutamate; gamma-glutamylthreonine; hypoxanthine; dihydroorotate 

 

Li et al., 2020 
(84) 

28.7 ± 6.5 y, 
UK 

Crossover 
Feeding Study 

15 
(2 weeks) 

UHPLC-QqQ-MS (Targeted) Urine Blood orange juice 
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Blood orange juice Hesperetin-3’-glucuronide; hesperetin-7-glucuronide 

 

Liu et al., 2017 
(85) 

21-29 y, 
US 

Crossover 
Feeding Study 

17 
(3 days) 

UHPLC-Q-Orbitrap-HRMS 
(Untargeted) 

Plasma Cranberry juice or apple juice 

Cranberry juice Exogenous metabolites: quinic acid; vanilloloside; catechol sulfate; 3,4-dihydroxyphenyl ethanol sulfate; coumaric acid 
sulfate; ferulic acid sulfate; 5-(trihydroxphenyl)-gamma-valerolactone; 3-(hydroxyphenyl)proponic acid; 
hydroxyphenylacetic acid; trihydroxybenzoic acid 
Endogenous metabolites: citramalic acid; aconitic acid, hydroxyoctadecanoic acid; hippuric acid; 2-hydroxyhippuric acid; 
Vanilloylglycine; 4-acetamido-2-aminobutanoic acid; dihydroxyquinoline; glycerol 3-phosphate 

 

Llorach et al., 
2009 (86) 

18–50 y,  
Spain 

Crossover 
Feeding Study 

10  
(3 days) 

HPLC-Q-ToF-MS 
(Untargeted) 

Urine  (a) 40 g of cocoa powder with 250 mL of 
water (b) 40 g of cocoa powder with 250 mL 
of milk and (c) 250 mL of milk as a control 

Cocoa 
 

3-methyluric acid; 3-methylxanthine; 3′-methoxy-4′-hydroxyphenylvalerolactone glucuronide; 3,5-Diethyl-2-
Methylpyrazine; 3,7-dimethyluric acid; 4-hydroxy-5-(3,4-dihydroxyphenyl)-valeric acid; 5-(3′,4′-dihydroxyphenyl)-γ-
valerolactone glucuronide; 6-amino-5-[N-methylformylamino]-1-methyluracil (AMMU); 7-methyluric acid; 7-
methylxanthine; Caffeine; Cyclo(Ser-Tyr); Cyclo(Pro-Pro); Epicatechin-O-sulfate; hydroxyacetophenone; Hydroxynicotinic 
acid; O-Methylepicatechin; Theobromine; Tyrosine; Trigonelline; Vanillic acid; Vanilloylglycine 

 

Lloyd et al., 
2011 (87) 

44.2 ± 18.2 
UK 

Crossover 
Feeding Study 

24 
(Acute) 

FI-ESI-MS and GC-ToF-MS 
(Untargeted and targeted) 

Urine (a) Oily fish (60 g smoked salmon 
trimmings) 

(b) A cruciferous vegetable (200 g steamed 
broccoli florets) 

(c) A berry fruit (200 g raspberries) 
(d) A whole-grain wheat cereal (37.5 g; 2 

biscuits) with 125 mL ultra-high 
temperature–treated semi-skimmed 
milk 

Salmon Anserine; 1- and 3-Methylhistidine; Trimethylamine-N-oxide (TMAO) 

Raspberry Caffeoyl sulfate; Ascorbate; Methyl-epicatechin sulfate; 3-Hydroxyhippuric acid; Naringenin glucuronide 

Broccoli Ascorbate; Tetronic acids; Tetronic acid derivative; L-Xylonate/L-lyxonate; Threitol/erythritol; Naringenin glucuronide; 
Hesperitin glucuronide plus other glucuronides 

 

Macdonald et 
al., 2009 (88) 

Intervention: 
59.3 ± 2.1 
Control: 

Feeding Study 226 
(2 years) 

HPLC (Targeted – vitamins 

(E, C, K), carotenoids, 

folate and homocysteine) 

Plasma 
& 

Serum 

300 g additional fruit & vegetables per day, 
placebo, or potassium citrate 
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59.8 ± 2.2, 
UK 

Fruit & vegetables α-Tocopherol; α-Tocopherol (cholesterol); ƴ-Tocopherol; β-Carotene; β-Cryptoxanthin 

 

Madrid-Gambin 
et al., 2016 (89) 

25-44 y, 
Spain 

Crossover 
Feeding Study 

10 males 
(28 days) 

1H NMR (Untargeted) Urine Coffee extract beverage (CEB: 223 mg/100 
ml of CGAs) or a control beverage with equal 
caffeine dose 

Coffee extract beverage Acute intervention: Trigonelline; 2-Furoylglycine; Citric acid; Succinic acid; 3-Methyl-2-oxovaleric acid; Isobutyric acid 
Sustained intervention: Trigonelline; Hippuric acid; 3-(3-Hydroxyphenyl)-3-hydroxypropionic acid (HPHPA); 3-
Hydroxyhippuric acid 

 

Madrid-Gambin 
et al., 2018 (90) 

19-37 y, 
Spain 

Crossover 
Feeding Study 

11 
(2 days) 

1H NMR (Untargeted) Urine & 
Serum 

Pulses (i.e., white beans, chickpeas, and 
lentils) 

Pulses/Legumes Trigonelline; 3-methylhistidine; dimethylglycine; trimethylamine; lysine 
 

Madrid-Gambin 
et al., 2019 (91) 

25-44 y, 
Spain 

Crossover 
Feeding Study 

10 
(28 days) 

1H NMR (Untargeted) Urine Functional high-catechin tea (HCT, 350 mL 
containing 187 mg/100 mL of catechins) or 
control (containing caffeine similar to HCT 
group) 

Catechin tea Acute intake: 3-methyl-2-oxovalerate; theanine; gallate; epicatechin (EC); epigallocatechin (EGC) 
Sustained intake: 2-hydroxyisobutyrate; succinate; pyrogallol sulfate 

 

Mahale et al., 
2018 (92)  

26-35 y, 
UK 

Feeding Study 4 
(Acute) 

LC-ESI-MS/MS (Targeted – 
curcuminoids) 

Plasma Turmeric-containing food consisting of soup, 
a sandwich, and an oat bar 

Turmeric-containing food Curcumin; Curcumin glucuronide; Demethoxycurcumin glucuronide; Curcumin sulfate 

 

Martin et al., 
2009 (93) 

18-35 y, 
Netherlands 

Feeding Study 30 subjects 
classified as 
low and high 

anxiety 
(14 days) 

1H NMR (Untargeted), GC-
MS, and LC-MS/MS 
(Targeted) 

Urine Dark chocolate 

Dark chocolate 4-Hydroxyphenylacetate; Adrenaline; Asparagine; Corticosterone; Cortisol; Cystine; Glucose-6-phosphate; 
Normetanephrine; Phenylacetylglutamine; p-Cresol sulfate; Threonic acid 

 

Martínez-López 
et al., 2014 (94) 

18-45 y, 
Spain 

Crossover 
Feeding Study 

13 
(Acute) 

HPLC-DAD (plasma) 
LC-QTOF and quantified by 
LC-DAD (urine) 

Urine & 
Plasma 

Methylxanthines in two soluble cocoa 
products, one containing methylxanthines 
naturally occurring in cocoa (CC) and a 
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(Targeted –
methylxanthines) 

product enriched in methylxanthines (CC-
MX) 

Cocoa product enriched in 
methylxanthines 

Caffeine; Paraxanthine; Theobromine; Theophylline; 1-Methylxanthine; 3-Methylxanthine; 7-Methylxanthine; 1-
Methyluric acid; 1,3-Methyluric acid; 1,7-Methyluric acid; 3,7-Methyluric acid; 1,3,7-Methyluric acid 

 

May et al., 2013 
(95) 

29 ± 4.9 y, 
US 

Feeding Study 10 
(2 weeks) 

LC-ESI-LTQ-Orbitrap-MS 
(Untargeted) 

Urine A diet rich in cruciferous vegetables, citrus 
and soy (F&V), and a fruit- and vegetable-
free (basal) diet 

Fruits & vegetables diet Sulforaphane; Proline betaine; Hippuric acid; Genistein; Daidzein; Equol; Glycitein; O-Desmethylangolensin; 7C-aglycone; 
Enterolactone; Trigonelline; Isovalerylglycine; Valerylglycine; Hydroxyphenylacetylglycine; Nicotinuric acid; Adenosine; 5-
methylcytidine 

Basal diet Iopterin; D-Biopterin; Dyspropterin; Orinapterin; Primapterin; Sepiapterin; N1-Methyl-4-pyridone-3-Carboxamide; 
Porphobilinogen; Riboflavin; 1-Pyrroline-4-hydroxy-2-carboxylate; N-Acryloylglycine; Pyroglutamic acid; 
Pyrrolidonecarboxylic acid; 2-Methylbutyroylcarnitine; Isovalerylcarnitine; 2,6 Dimethylheptanoyl carnitine; L-Carnitine; 
L-Acetylcarnitine; L-Kynurenine; Kynurenic acid; Xanthurenic acid; 3-Hydroxyhippuric acid; Salicyluric acid; 
Argininosuccinic acid; L-Histidine 

 

McKeown et 

al., 2016 (96) 
18-40 y, 

US 
Crossover 

Feeding Study 
19  

(1 week) 
GS-MS (plasma) & HPLC 
(urine) (Targeted - 
Alkylresorcinols 
metabolites [3,5-
dihydroxybenzoic acid and 
3-(3,5-dihydroxyphenyl)-
propanoic acid]) 

Urine & 
Plasma 

Whole grain wheat and rye consumption 

Whole grain Urine: Alkylresorcinols (including its metabolites: 3,5-dihydroxybenzoic acid (DHBA) ; 3,5-dihydroxyphenylpropanoic acid 
(DHPPA) 
Serum: Alkylresorcinols 

 

McNamara et 
al., 2020 

(97) 

34 ± 12 
(acute) 
29 ± 10 

(short-term), 
Ireland 

Feeding Study 17 
(acute) 

32 
(short-term) 

LC-MS (Untargeted) Urine Apple 

Apple NMR: 3-hydroxyisovalerate; acetylsalicylate; glycine; xylose 
LC-MS: Ethyl 2-aminobenzoate; Pro Leu; 1-(Malonylamino)cyclopropanecarboxylic acid; Epicatechin sulfate; Dopachrome 
o-semiquinone; 4-Pyridoxic acid; L-Suberyl carnitine; D-Xylono-1,5 lactone; Glucodistylin;  
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Mennen et al., 
2006 (98) 

35-60 y, 
France 

Feeding Study 53 
(2 days) 

HPLC–ESI–MS/MS 
(Targeted – 13 
polyphenols and 
metabolites) 

Urine Polyphenol-rich foods 

Apple Phloretin 

Red fruits m-coumaric acid; kaempferol 

Grapefruit naringenin 

Orange caffeic acid; hesperetin 

Citrus fruit caffeic acid; naringenin; hesperetin 

Fruits Kaempferol; naringenin; phloretin 

Fruit juices gallic acid; 4-O-methylgallic acid; isorhamnetin; naringenin; hesperetin 

Fruits and/or fruit juices m-coumaric acid; kaempferol; hesperetin; naringenin; phloretin 

Vegetables gallic acid 

Wine  gallic acid; 4-O-methylgallic acid 

Coffee caffeic acid; chlorogenic acid 

Black tea chlorogenic acid; m-coumaric acid; gallic acid; 4-O-methylgallic acid; kaempferol 

 

Meuronena et 
al., 2020 

(99) 

58.9 ± 6.5 y 
Finland 

Feeding Study 79 
(12 weeks) 

LC-MS/MS (Targeted) Plasma Fatty fish, lean fish, and camelina sativa oil 

Fatty fish  4- and 17-HDoHE; 19,20- dihydroxy-docosapentaenoic acid (19,20-DiHDPA); hydroxydocosahexaenoic acids (5- and 18-
HEPE); docosahexaenoic acid (DHA); eicosapentaenoic acid (EPA) 

Camelina sativa oil 15-hydroxyeicosadienoic acid (15-HEDE); ALA-derived hydroxyoctadecatrienoic acids (9- and 13- 
HOTrE); 12(13)-epoxy-octadecadienoic acid (12(13)-EpODE) 

 

Michielsen et 
al., 2019 (100) 

SFA: 51 ± 7y, 
MUFA:58 ± 5y, 
MED: 57 ± 5y, 
Netherlands 

Feeding Study 47 
(8 weeks) 

1H NMR (Targeted – 
circulating lipids, 
lipoprotein particles, 
lipoprotein composition, 
and low-molecular-weight 
metabolites, including 
amino acids) 

Serum Mediterranean (MED), monounsaturated 
fatty acid (MUFA), or saturated fatty acid 
(SFA) 
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Mediterranean (MED) LDL related fractions; subset of the cholesterol fractions (serum cholesterol, very-low-density lipoprotein (VLDL)-
cholesterol, free cholesterol, and remnant cholesterol); multiple VLDL related fractions; mainly in the XL-, L-, and M-VLDL 
subclasses; total VLDL-TG concentration; total triglyceride (TG); ApoB1; ApoB to ApoA1 ratio; albumin; DHA1; DHA to FA1; 
FAω3 to FA ratio1; CLA1; CLA to FA ratio1; MUFA to FA ratio1 

Monounsaturated fatty acid 
(MUFA) 

LDL related fractions; subset of the cholesterol fractions (serum cholesterol, very-low-density lipoprotein (VLDL)-
cholesterol, free cholesterol, and remnant cholesterol); ApoB1; ApoB to ApoA1 ratio; albumin; FAω31; FAω3 to FA ratio1; 
CLA1; CLA to FA ratio1; MUFA to FA ratio1 

 

Mills et al., 
2017 (101) 

26.3 ± 1.6 y, 
Switzerland 

Crossover 
Feeding Study 

15 males 
(Acute) 

UPLC-ESI-MS (Targeted – 
phenolic acids) 

Plasma Low polyphenol coffee (89 mg CGA), high 
polyphenol coffee (310 mg CGA), or control 
(0 mg CGA) 

Low polyphenol coffee (89 mg 
CGA) and high polyphenol 
coffee (310 mg CGA) 

3-caffeoylquinic acid (3CQA); 4-caffeoylquinic acid (4CQA); caffeic-40-O-sulfate (CA4S); 3-feruloylquinic acid (3FQA); 4-
feruloylquinic acid (4FQA); 5-feruloylquinic acid (5FQA); ferulic acid (FA); isoferulic acid (iFA); methylferulic acid (MeFA); 
ferulic-40-O-glucuronide (F4G); isoferulic-30-O-glucuronide (iF3G); ferulic-40-O-sulfate (F4S); and isoferulic-30-O-sulfate 
(iF4S) 

 

Moazzami et 
al., 2012 (102) 

58.8 ± 5.8 y, 
Finland 

Crossover 
Feeding Study 

33 females 
(8 weeks) 

1H NMR (Untargeted) Serum “A minimum of 20% of their daily energy 
intake as high fiber WG rye bread (RB) or 
refined wheat bread (WB)” 

Rye bread Isoleucine; Leucine; Betaine; N,N-dimethylglycine 

 

Mora-Cubillos 
et al., 2015 

(103) 

18-65 y, 
Spain 

Feeding Study 50 
(12 weeks) 

LC-ESI-Q-ToF-MS 
(Untargeted) 

Plasma Daily supplement of 30 g of raw mixed nuts 
with skin (15 g of walnuts, 7.5 g of almonds, 
and 7.5 g of hazelnuts), while the control 
was recommended to avoid consumption of 
nuts 

Mixed nuts Urolithin A glucuronide; Sebacic acid; Dodecanedioic acid 

 

Mulder et al., 
2005 (104) 

18-70 y, 
Netherlands 

Crossover 
Feeding Study 

17 males 
(2 days) 

HPLC-MS/MS (Targeted – 
Hippuric acid) 

Urine Daily dose of 6 g green tea solids, 6 g black 
tea solids, or 360 mg caffeine 

Green Tea & Black Tea Hippuric acid 
 

Münger et al., 
2017 (105) 

18-40 y, 
Switzerland 

Crossover 
Feeding Study 

11 
(Acute) 

GC-MS and 1H NMR 
(Untargeted) 

Urine Single intake of milk and cheese as test 
products, and soy-based drink as control 

Milk Lactose; galactose; galactonate; allantoin; hippurate; galactitol; galactono-1,5-lactone 

Cheese 3-phenyllactic; alanine, proline, and pyroglutamic acid 
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Soy-based drink Pinitol; trigonelline 
 

Nieman et al., 
2012 (106) 

49–75 y,  
US 

Feeding Study 62 
Overweight/ 
obese, post-
menopausal 

women  
(each day 

for 10 
weeks) 

GC–MS (Targeted – fatty 
acids) 

Plasma Chia seed (whole or milled) and placebo 
(poppy seed) groups 

Milled chia seed 
 

α-Linolenic acid (ALA); eicosapentaenoic acid 

 

Nilsson et al., 
2010 (107) 

25.9 ± 3.2 y, 
Sweden 

Crossover 
Feeding Study 

15 
(Acute) 

GC (Targeted – short-chain 
fatty acids (SCFA)) 

Plasma Eight cereal-based evening test meals with 
different GI and contents of indigestible 
carbohydrates 

High-amylose barley kernels 
or high-b-glucan barley 
kernels 

Butyric acid 
 

O’Sullivan et al., 
2011 (108) 

35.5 ± 12 y, 
Ireland 

Feeding Study 125 
(4 weeks) 

1H NMR (plasma and 
urine), and GC (plasma 
fatty acid profiling) 
(Untargeted) 

Urine & 
Plasma 

3 clusters were identified and characterized 
on the basis of the food groups that were 
distinct contributors to the total energy 
intake in each cluster 

Higher energy contribution 
from whole-meal bread, 
whole milk, fish, 
confectionary, and ice cream 
and desserts; Lower 
contribution from low-energy 
beverages 

Glycine; phenylacetylglutamine; actetoacetate 

Higher energy contributions of 
white bread, sugars and 
preserves, butter and spreads, 
red meat, red-meat dishes, 
meat products, and alcohol; 

Oleic acid (18:1); ƴ-linoleic acid (18:3n-6); docosapentaenoic acid (DPA; 22:5n-3); total monounsaturated fatty acid 
(MUFA); trimethylamine N-oxide (TMAO); O-acetylcarnitine; nn-dimethylglycine 
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Lower contribution from 
vegetables 

Red meat  O-acetylcarnitine 

Vegetable intake Phenylacetylglutamine 
 

Ostertag et al., 
2017 (109) 

23–65 y, 
Scotland 

Crossover 
Feeding Study 

42  
(Acute) 

1H NMR and HPLC-ToF-MS 
(Untargeted) 

Urine Flavan-3-ol-enriched dark chocolate and 
standard dark chocolate compared with 
white chocolate 

Flavan-3-ol-enriched dark and 
Dark Chocolate 
 

Dietary Markers: 3- and 7-methylxanthines; caffeine; hydroxynicotinate; theobromine (3,7-dimethylxanthine); 
vanilloylglycine; xanthine purine rings; epicatechin monosulfate; 4-hydroxy-5-(3,4-dihydroxyphenyl)-valerate; 5-(3′,4′-
dihydroxyphenyl)-γ-valerolactone; 3′-methoxy-4′-hydroxyphenylvalerolactone 
 
Endogenous Markers: creatinine; arginine; valine; alanine; glycine; N-methylnicotinamide; N-acetylated compounds; 
dimethylamine; 3-hydroxyisovalerate; 2-hydroxyisobutyrate; 3-hydroxyisobutyrate; lactate; pyruvate; 4-hydroxyphenyl 
acetate; tyrosine 

 

Paetau et al., 
1998 (110) 

45.7 ± 7.6 y, 
US 

Crossover 
Feeding Study 

15 
(4 weeks) 

HPLC–MS (Targeted) Plasma Lycopene-rich tomato juice, tomato 
oleoresin, lycopene beadlets, and a placebo 

Lycopene rich tomato juice Lycopene; Cyclolycopene (2,6-cyclolycopene-1,5-diol); Lutein; β-Carotene; ζ-Carotene; Phytofluen; Phytoene 

 

Pereira-Caro et 
al., 2014 (111) 

23-60 y, 
UK 

Crossover 
Feeding Study 

12 
(Acute) 

HPLC–MS and GC–MS 
(Targeted – flavonoids & 
aromatic acids) 

Urine Pulp-enriched orange juice (250 mL) 

Orange juice Metabolites: Hesperetin-O-glucuronides; naringenin-O-glucuronides; hesperetin-3’-O-sulfate 
Catabolites: 3-(3’-methoxy-4’-hydroxyphenyl)propionic acid; 3-(3’-hydroxy-4’-methoxyphenyl)propionic acid, 3-(3’-
hydroxy-4’-methoxyphenyl)hydracrylic acid; 3-(3’-hydroxyphenyl)hydracrylic acid; 3’-methoxy-4’-hydroxyphenylacetic 
acid, hippuric acid, 3’-hydroxyhippuric acid, and 4’-hydroxyhippuric acid 

 

Pereira-Caro et 
al., 2017 (112) 

31.8 ± 5.7 y, 
Scotland 

Crossover 
Feeding Study 

10 males 
(Acute) 

HPLC-MS (Targeted – 
flavanone metabolites & 
(poly)phenol catabolites) 

Urine 500 mL of orange juice containing 398 mmol 
of (poly)phenols, of which 330 mmol was 
flavanones 

Orange juice Cinnamic acids: Ferulic acid-4’-sulfate; Isoferulic acid-3’-O-glucuronide 
Phenylhydracrylic acid: 3-(3’-Hydroxy-4’-methoxyphenyl)hydracrylic acid 
Phenylpropionic acids: 3-(4’-Methoxyphenyl)propionic acid-3’-O-glucuronide; 3-(4’-Methoxyphenyl)propionic acid-3’-
sulfate 
Phenylacetic acid: 4’-Hydroxyphenylacetic acid 
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Benzoic acid: 3-Hydroxybenzoic acid-4-sulfate 
Mandelic acid: 4’-Hydroxymandelic acid 
Hippuric acid: 4’-Hydroxyhippuric acid 

 

Pereira-Caro et 
al., 2020 

(113) 

31.8 ± 5.7 y, 
Scotland 

Feeding Study 10 
(acute) 

HPLC-HR-MS (Targeted) Plasma Orange juice 

Orange juice Cinnamic acid derivatives: 4′-Hydroxy-3′-methoxycinnamic; 3′-Methoxycinnamic acid-4′-glucuronide; 3′-Methoxycinnamic 
acid-4′-sulfate; 4′-Methoxycinnamic acid-3′-glucuronide; 3′-Hydroxy-4′-methoxycinnamic; Cinnamic acid-4′-glucuronide; 
3′-Hydroxycinnamic acid-4′-sulfate; 4′-Hydroxycinnamic acid-3′-sulfate 
 
Phenylpropanoic acid derivatives: 3-Hydroxy-3-(3′-hydroxy-4′-methoxyphenyl)propanoic acid; 3-Hydroxy-3-(3′-
hydroxyphenyl)propanoic acid; 3-(3′-Methoxyphenyl)propanoic acid-4′-glucuronide; 3-(3′-Methoxyphenyl)propanoic 
acid-4′-sulfate; 3-(3′-Hydroxy-4′-methoxyphenyl)propanoic acid; 3-(4′-Methoxyphenyl)propanoic acid-3′-glucuronide; 3-
(4′-Methoxyphenyl)propanoic acid-3′-sulfate; 3-(3′-Hydroxyphenyl)propanoic acid; 3-(4′-Hydroxyphenyl)propanoic acid; 
3-(Phenyl)propanoic acid; 3-(3′,4′-Dihydroxyphenyl)propanoic acid; 3-(3′-Hydroxyphenyl)propanoic acid-4′-sulfate; 3-(4′-
Hydroxyphenyl)propanoic acid-3′-sulfate; 3-(4′-Hydroxy-3′-methoxyphenyl)propanoic acid 
 
Phenylacetic acid derivatives:  2-Hydroxy-2-(4′-hydroxyphenyl)acetic; 3′-Hydroxyphenylacetic acid; 4′-
Hydroxyphenylacetic acid; 2-Hydroxy-2-(4′-hydroxy-3′-methoxyphenyl); 3′-Hydroxyphenylacetic acid-4′-sulfate; 
Methoxyphenylacetic acid-glucuronide; 4′-Methoxyphenylacetic acid-3′-sulfate; 3′-Methoxyphenylacetic acid-4′-sulfate 
 
Benzoic acid derivatives: 3,4-Dihydroxybenzoic acid; Benzoic acid-4-sulfate; Benzoic acid-3-sulfate 
 
Benzoylglycine derivatives: Hippuric acid; 3′-Hydroxyhippuric acid; 4′-Hydroxyhippuric acid 

 

Perera et al., 
2016 (114) 

35-75 y, 
US 

Feeding Study 46 males 
(4 weeks) 

LC-ESI-MS, LC-MS, and GC-
MS (Targeted) 

Serum Dry beans 

Dry bean-enriched diet (250 
g/d) 

Pipecolic acid; S-methyl-cysteine; N-Acetylornithine; Trigonelline; Indole propionate 

 

Pezdirc et al., 
2016 (115) 

22.0 ± 4.2 Crossover 
Feeding Study 

30 
(4 weeks) 

HPLC (Targeted – lycopene 
oxidation products) 

Plasma High-carotenoid-containing fruits and 
vegetables F/V (HCFV) (176,425 mg beta 
carotene/wk) vs. low-carotenoid F/V (LCFV) 
(2,073 mg beta carotene/wk) 

Carotenoids from fruits and 
vegetables (F/V) 

Alpha carotene, beta carotene, lutein, total carotenoids 
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Pujos-Guillot et 
al., 2013 (116) 

Short-term 
intervention 
(STI): 33 ± 7 y 
Medium-term 
intervention 

(MTI): 56 ± 1 y, 
France 

Feeding Study STI: 4 
(Acute) 
MTI: 24  

(4-weeks) 

RP-LC-ESI-ToF-MS 
(Untargeted) 

Urine (a) consumed an acute dose of orange or 
grapefruit juice, (b) consumed orange juice 
regularly for one month, and (c) reported 
high or low consumption of citrus products 
for a large cohort study 

Citrus fruit Proline betaine; flavanone glucuronides; two terpene metabolites (limonene 8,9-diol glucuronide and nootkatone 13,14-
diol glucuronide) 

 

Quifer-Rada et 
al., 2014 (117) 

28 ± 3 y, 
Spain 

Crossover 
Feeding Study 

41 
(Acute) 

LC-MS/MS (Targeted – 
isoxanthohumol) 

Urine 30 g of ethanol/d as gin or beer, or an 
equivalent amount of polyphenols as 
nonalcoholic beer 

Beer  Isoxanthohumol (IX) 

 

Rådjursöga et 
al., 2018 (118) 

Males:  
27.0 ± 6.6 

33.2 ± 13.2 
Females 

25.9 ± 10.1 
31.9 ± 8.2, 

Sweden 

Crossover 
Feeding Study 

32 
(3 days) 

1H NMR (Untargeted) Serum Breakfast meals corresponding to vegan 
(VE), lacto ovo-vegetarian (LOV), and 
omnivore (OM) diets 

Breakfast meals Vegan (VE): Acetate; Acetone; Alanine; Arginine & Lysine; Glucose (alpha, beta); Asparagine; Betaine; Creatinine; 
Creatinine & Creatine & Creatine phosphate; Leucine; Lipids/FFA; Mannose; Methionine; myo-Inositol; O-Phosphocholine 
& 3-Hydroxybutyrate; Ornithine; Succinic acid; Threonine 
Lacto ovo-vegetarian (LOV): 3-hydroxyisobutyrate; Acetate; Glucose (alpha, beta); Arginine & Lysine; Carnitine & 
Acetoacetate; Leucine & Arginine; Mannose; N-Acetylcysteine & Proline & Glutamate; Ornithine; Proline; Propylene 
glycol; Tyrosine; Valine 
Omnivore (OM): 3-Hydroxyisobutyrate; Acetate; Arginine & Lysine; Betaine; Carnitine & Acetoacetate; Choline; 
Isoleucine; Leucine & Arginine; Lipids/FFA; Lysine; Mannose; Methionine; myo-Inositol; Ornithine; Proline; Tyrosine; 
Valine 

 

Rangel-Huerta 
et al., 2017 

(119) 

22–63 y, 
Spain 

Crossover 
Feeding Study 

30  
(12 weeks) 

UHPLC-MS (Untargeted) Serum Normal-polyphenol orange juice or a high-
polyphenol orange juice (500 ml of orange 
juice) 

Orange juice Stachydrine; methyl glucopyranoside (alpha+beta); betonicine; galactonate 
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Rasmussen et 
al., 2012 (120) 

37–45 y, 
Denmark 

Feeding Study 77 
overweight 
(6 months) 

1H NMR (Untargeted) Urine Low protein, low GI (LP/LGI); low protein, 
high GI (LP/HGI); high-protein, low GI 
(HP/LGI); high-protein, high GI (HP/HGI); or 
control (CTR) diet 

High protein diets Creatine; nitrogen 

Low protein diets Citric acid 

 

Rebholz et al., 
2018 (121) 

31–55 y, 
US 

Feeding Study 329 
(8 weeks) 

GC–MS and LC–MS 
(Untargeted) 

Serum DASH diet, the fruit and vegetables diet, or a 
control diet 

Dash diet N-methylproline; stachydrine; tryptophan betaine; theobromine; 7-methylurate; chiro-inositol; 3-methylxanthine; methyl 
glucopyranoside;  ß-cryptoxanthin; 7-methylxanthine 

 

Regueiro et al., 
2014 (122) 

30.7 ± 5.9 y, 
Spain 

Crossover 
Feeding Study 

21 males LC-ESI-MS/MS (Targeted – 
tartaric acid) 

Urine 100-, 200-, or 300-ml wine 

Wine Tartaric acid 

 

Reisdorph et 
al., 2020 

(123) 

61 ± 2 y, 
US 

Crossover 
Feeding Study 

19 
(6 weeks) 

RP-LC/MS (Untargeted) Urine DASH diet 

Apple 4-Hydroxydiphenylamine; Diphenylamine; Presqualene diphosphate; 28-Hydroxymangiferonic acid; 3,4-Dihydro-6-
hydroxy-2,5,7,8-tetramethyl-2H-1-benzopyran-2-carboxylic acid; 3-Methylellagic acid 2-(4-galactosylglucoside); 3-O-p-cis-
Coumaroylalphitolic acid; 4-HYDROXYBENZOATE; 4-Hydroxyxanthone; 5,7,8-Trihydroxy-3,6,4'-trimethoxy-flavone 8-
isovalerate; Afzelechin; Carthamin; Cinnamtannin A2; D-Chicoric acid; Dianhydroaurasperone C; Evoxine; Gnididilatin; 
Hibiscitrin; Mangiferoleanone; Manglupenone; Morellin; Procyanidin B8; Quercetin 3-(6''-malonyl-glucoside); 
Rubroskyrin; Scutellarein 6-xyloside 

Apple juice Deoxyuridine; (S)-N-Acetylmethionine; 2,5-Furandicarboxylic acid; Ascorbigen; Cobalt-precorrin 6; Cyanidin 3-(6''-
acetylglucoside); Fraxetin; Gerberinol; Glucoputranjivin; Leucocyanidin; Leucodelphinidin 3-O-alpha-L-
rhamnopyranoside; Morellic acid; PG(18:4/0:0); Rubraflavone B ; Rubroskyrin; Scutellarein 7-glucuronide-6-ferulate; xi-8-
Acetonyldihydrosanguinarine 

Apple and apple juice 4-Hydroxydiphenylamine; Diphenylamine; Mammeigin; Mangiferoleanone; Manglupenone; Presqualene diphosphate; 
Vomifoliol 9-[xylosyl-(1-6)-glucoside] 

Beef 1-(beta-D-Ribofuranosyl)-1,4-dihydronicotinamide; 1alpha-hydroxy-22-[3-(1-hydroxy-1-methylethyl)phenyl]-
23,24,25,26,27-pentanorvitamin D3; Alpha-linolenyl carnitine; Undecanoylcarnitine; Cycloheximide; Amifloxacin; 
Artenolide; b-D-Glucopyranosiduronic acid, (3a,5b)-24-[(carboxymethyl)amino]-24-oxocholan-3-yl; Desmosterol; 
Ferrioxamine; Hydroxyhexanoycarnitine; L-Urobilin; LysoPC(18:3); LysoPC(20:5); LysoPE(0:0/18:3); LysoPE(0:0/20:4); 
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LysoPE(0:0/20:5); N'-Formylkynurenine; PE(P-16:0/18:3); Pristanoylglycine; Rifaximin; Sodium taurocholate; Tryptophyl-
Arginine; 1-(9Z,12Z-octadecadienoyl)-2-(9Z-nonadecenoyl)-glycero-3-phosphoserine; 1-(9Z-heptadecenoyl)-glycero-3-
phosphoserine; 1-(9Z-tetradecenoyl)-2-dodecanoyl-glycero-3-phosphoethanolamine; 1-dodecanoyl-2-tetradecanoyl-
glycero-3-phosphoserine; 1-hexadecanoyl-2-(2E-propionyl)-sn-glycero-3-phosphocholine; 1-hexadecanoyl-2-(9-carboxy-
nonanoyl)-sn-glycero-3-phosphocholine; 1-hexadecanoyl-2-(9-oxo-nonanoyl)-sn-glycero-3-phosphocholine; 1-
hexadecanoyl-2-glutaroyl-sn-glycero-3-phosphocholine; 1-tridecanoyl-2-eicosanoyl-glycero-3-phosphoserine; N-
hexadecanoyl-phenylalanine E; N-hexadecanoyl-taurine; N-octadecanoyl-tyrosine; PI(18:0/0:0); PI(18:1/0:0) 

Blueberries (14alpha,17beta,20S,22R)-14,20-Epoxy-17-hydroxy-1-oxowitha-3,5,24-trienolide; Dalpanol O-glucoside; 1,2-Dimethoxy-
13-methyl-[1,3]benzodioxolo[5,6-c]phenanthridine; 6-C-Fucosylluteolin; 8-Hydroxy-2-methoxy-6-methyl-1,4-
naphthoquinone; Artobiloxanthone; Artomunoxanthentrione; Avicularin; Chlorogenoquinone  
delta6-Dehydroferruginol; Dihydroroseoside; Fisetin; Kuwanon A; L-Citronellol glucoside; Leonuriside A; Myricetin 3-
[galloyl-(-2)-4-acetyl-a-L-rhamnoside]; N-(2,5-Dihydroxyphenyl)pyridinium(1+); Naphthoherniarin; Physalin E acetate; 
Rubraflavone C; Sandoricin; 4a-peroxy-tetrahydrobiopterin; Withaperuvin E; 5,6-Dimethoxy-3',4'methylenedioxy-6'',6''-
dimethylpyrano[2'',3'':7,8]isoflavone; 5,7,3',4',5'-Pentahydroxy-3,6,8-trimethoxyflavone; 5,7-Dihydroxy-3,6,8,4'-
tetramethoxyflavone 7-glucosyl-(1-3)-galactoside; 6,8-Di-C-beta-D-arabinopyranosylapigenin; Bruceantinol; 
Eupachloroxin; Europinidin 3-glucoside; Neolinderatone; Ornithine; Rotundifoline 

Broccoli Isorhamnetin 3-sophoroside 7-glucoside; Muzanzagenin; Chlorophyll c; Cyclobrassinin; Dihydroneopterin phosphate; 
Glucoraphanin; Hirsutin; Pyrophaeophorbide a; Raphanusamic acid; Bn-NCC-2; Cabbage identification factor 1; 3' 5'-cyclic 
AMP; 5-Methyltetrahydropteroyltri-L-glutamate; Eremosulphoxinolide B; 
Linamarin; Malvin; Asclepin; CL(22:6/18:2/18:2/16:1); Cnidimol 7-glucoside; Isotriglochinin 

Coffee 2,3-Dihydro-5-(5-methyl-2-furanyl)-1H-pyrrolizine; Furfuryl acetate; Na-p-Hydroxycoumaroyltryptophan; 
N-Caffeoyltryptophan; 11-Methylgerberinol; 2-Hexylbenzothiazole; 5,6,7-Trihydroxy-4'-methoxyflavanone 7-(2-p-
coumaroylglucoside); 5,7-Dihydroxy-3,6-dimethoxyflavone; 7-Ethoxy-4-methyl-2H-1-benzopyran-2-one; 8-Caffeoyl-3,4-
dihydro-5,7-dihydroxy-4-phenylcoumarin; 9-Hydroxy-4-methoxypsoralen; Benzylamine 
Cnidimol 7-glucoside; Cyclohexylamine; Formononetin 7-(2-p-hydroxybenzoylglucoside); Gamma-glutamyl-Glycine; 
Gentianine; Glycerol 1-propanoate; Gynocardin; Harmalol; Hypoglycin B; Meteloidine; N6-Galacturonyl-L-lysine; N-
eicosanoyl-ethanolamine; N'-Formylkynurenine; p-Anisidine; Pantothenic acid; Physagulin B; Riboflavin reduced; 
Sciadopitysin; Secoclausenamide; Trietazine 

Chicken Avermectin A2b; Pivaloylcarnitine; (all-Z)-7,10,13-Docosatrienoic acid; 1,2-di-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-sn-
glycero-3-phospho-(1'-myo-inositol); 3-(7'-Methylthio)heptylmalic acid; Gamma-glutamyl-Asparagine; Gamma-glutamyl-
Cysteine; Gamma-glutamyl-Glycine; Levofloxacin; Methyl bisnorbiotinyl ketone; Prolyl-Arginine; PS(17:2/0:0); 
TG(18:1/14:0/20:4); TG(18:3/16:0/18:3); TG(20:4/18:0/18:3) 

Cucumber (R)-Byakangelicin; Gibberellin A4; Lipoyllysine; N-ACETYL-DL-METHIONINE; Procyanidin B3 7-glucoside; Tokinolide A 
5alpha-Stigmasta-7,22,25-trien-3beta-ol; 4-Methylene-2-pyrrolidinecarboxylic acid; 2-O-alpha-D-Galactopyranosyl-1-
deoxynojirimycin; 2-Phenyl-2-butenal; 3'-O-Methylcyanidin 3-O-beta-D-glucoside; alpha-Carissanol  
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alpha-Ionol O-[arabinosyl-(1-6)-glucoside]; Corchoionoside B; D-Glutamine; LysoPE(0:0/18:4); 7(14)-Bisabolene-2,3,10,11-
tetrol; 7-Hydroxycostal; Asparenyol; Fluazifop; Formylfusarochromanone; Fumitremorgin B; PE(14:1/14:0); PE(18:0/20:5) 

Grapefruit (4S,8S,12S,16S,20S-Pentamethylhexacosanyl)-beta-D-mannosyl phosphate; 4-[(6,7-Dihydroxy-3,7-dimethyl-2-
octenyl)oxy]-7H-furo[3,2-g][1]benzopyran-7-one; 6''-(3-Hydroxy-3-methylbutanoyl)astragalin; Citbismine B; Citrusin F 
Dolichyl phosphate D-mannose; Hesperetin 7-(2,6-dirhamnosylglucoside); Hesperetin 7-neohesperidoside; Isolimonic 
acid; Nobiletin; Nomilin; Nomilinic acid; Obacunone; Obacunone 17-O-beta-D-glucoside; (E)-Suberenol; 4-
Hydroxyphenylacetaldehyde E; alpha-CEHC; Cyclocalamin; Deacetylnomilin; Deacetylnomilinic acid; Ichangin 4-glucoside; 
Margrapine B; Naringin 6''-rhamnoside; Natsudaidain 3-(4-O-3-hydroxy-3-methylglutaroylglucoside); Neoacrimarine B; 
Paradisin C; Subaphylline; Bis(5-hydroxynoracronycine); 1'',2''-Dihydro-8-hydroxyisopentanyl-2'-methoxy-4'-O-
methylalpinumisoflavone; 1-Hydroxy-3,5-dimethoxy-2-prenylxanthone; 1-O-Caffeoylglucose; 3-
Vinylbacteriochlorophyllide a; 4-(4-Hydroxyphenyl)-2-butanone glucoside; 4,4'-Diapophytoene; 7-(4-Carboxy-3-hydroxy-
3-methylbutanoyl)sudachitin 4'-glucoside; 7alpha-1(10-19)-Abeo-7-acetoxyobacun-9(11)-ene; 8-Hydroxycarapin, 3,8-
Hemiacetal; 8-Epiiridodial glucoside tetraacetate; Apigenin 7-(6''-O-alpha-rhamnosyl-beta-glucoside); Apo-10'-
violaxanthal; Chrysoeriol 7-(3'',6''-di-(E)-p-coumaroylglucoside); Cinnamic acid; Dukunolide A; Dulxanthone H; 
Heteroartonin A; Isomangiferin; Kaempferide 3-[rhamnopyranosyl-(1-6)-glucoside] 7-rhamnoside;Mammea A/AC cyclo F; 
Methylsyringin Esi+8.138; Moracin N; Morusignin B; Mumefural; Myricetin 3-glucoside; Normammein; Paucine; Physalin 
I; Phytoene; Pinostrobin 5-glucoside; Prupaside; Ramontoside; Sapidolide A; Ssioriside; 1-Phenyl-6,7-dihydroxy-
isochroman; 3-alpha(S)-Strictosidine; 3-hydroxyundecanoyl carnitine; 7-[(6-Hydroxy-3,7-dimethyl-2,7-octadienyl)oxy]-2H-
1-benzopyran-2-one 

Peanut butter Biotin; gamma-Tocopherol; Linoelaidic acid; 1,4,5-Naphthalenetriol; DG(16:0/18:3/0:0); DG(18:0/18:3/0:0); Glyceryl 
lactooleate; alpha-Linolenic acid; Arachin; 19-hydroxy-nonadecanoic acid; Homoarecoline; Vinyl caffeate; 1-
Pyrrolidinecarboxaldehyde; (1S,2R,4R,8S)-p-Menthane-2,8,9-triol 2-glucoside; (1xi,3xi)-1,2,3,4-Tetrahydro-1-methyl-beta-
carboline-3-carboxylic acid; (R)-Byakangelicin 2'-glucoside; 1-Cyclopropyl-4-methyl-1,3-cyclohexanediol; 4'-Apo-3,4-
didehydrolycopene; 4'-Apo-beta,psi-caroten-4'-al; 4-Demethylsimmondsin 2'-(E)-ferulate; 7,9-Hexacosanedione 
Docosanamide; L-3-Amino-2-(oxalylamino)propanoic acid; MG(0:0/20:0/0:0); Perilloside A; Phloroacetophenone 6'-
[xylosyl-(1-6)-glucoside]; Sorbitan stearate; Villinol; (R)-2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one 2-
glucoside; 1-(14-methyl-pentadecanoyl)-2-(8-[3]-ladderane-octanyl)-sn-glycerol; 1-(4-O-beta-D-glucopyranosyl-3-
methoxyphenyl)-3,5-dihydroxydecane; 1-(9Z-hexadecenoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-glycero-3-
phospho-(1'-myo-inositol); 1-(9Z-nonadecenoyl)-glycero-3-phospho-(1'-myo-inositol); 1-(9Z-pentadecenoyl)-2-(9Z-
octadecenoyl)-glycero-3-phospho-(1'-sn-glycerol); 1-dodecanoyl-2-heneicosanoyl-glycero-3-phospho-(1'-sn-glycerol); 1-
eicosyl-glycero-3-phospho-(1'-myo-inositol); 1-O-(1Z-Tetradecenyl)-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine; 1-
octadecyl-2-dodecanoyl-glycero-3-phospho-(1'-myo-inositol); 3-oxo-tricosanoic acid; 4-Amino-2-methyl-1-naphthol; 6,8-
Icosanedione; 6-bromo-tricosa-5E,9Z-dienoic acid; CPA(18:2/0:0); D-Cysteine; Glucosamine-1P; LysoPC(24:0); 
ysoPE(0:0/18:1); LysoPE(0:0/18:2); Methyl (E)-2-decene-4,6,8-triynoate; N-(11Z-eicosaenoyl)-ethanolamine; N-(9Z-
octadecenoyl)-histidine; N-(9Z-octadecenoyl)-phenylalanine; NBD-Stearoyl-2-Arachidonoyl-sn-glycerol; NeuAcalpha2-
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3Galbeta-Cer(d18:1/24:1); N-Oleoylethanolamine; Octadecanedioic acid; PC(22:6/22:5); PE(P-16:0/14:1); PE-
Cer(d14:1(4E)/20:0(2OH)); PE-Cer(d14:1(4E)/20:1(2OH)); PE-Cer(d14:2(4E,6E)/22:1); Phellogenic acid; Propylene glycol 
stearate; TG(20:5/20:5/20:5); TG(22:4/22:6/22:5) 

Pork 4,8 dimethylnonanoyl carnitine; 1-(1Z-eicosenyl)-glycero-3-phosphoethanolamine; Galabiosylceramide (d18:1/18:0); 
Gamma Hydroxybutyric Acid; Tetracosahexaenoic acid 

Tilapia TRANS-4-HYDROXYPROLINE; CITCO; 9-methyl-sphinga-4E,8E,10E-trienine; Cer(d18:1/14:0); Ceramide; 
Dodecanoylcarnitine; Glutarylglycine 

 

Renouf et al., 
2013 (124) 

18-65 y, 
Switzerland 

Crossover 
Feeding Study 

12 
(Acute) 

LC-ESI-MS/MS (Targeted – 
catechins) 

Plasma Green tea (3, 5, and 7 g tea leaves in 400 mL 
water) 

Green Tea  Epicatechin (EC), 4’-O-Me-epigallocatechin (4-O-Me-EGC); epigallocatechin (EGC); epigallocatechin-3-gallate (EGCg) 

 

Rodriguez-
Mateos et al., 

2012 (125) 

27 ± 3 (SEM) y, 
UK 

Crossover 
Feeding Study 

15 HPLC-fluorescence 
detection/UV (Targeted – 
flavonoids) 

Plasma High-flavanol (266 mg) chocolate containing 
maltitol, a high-flavanol (251 mg) chocolate 
with sucrose or a low-flavanol (48 mg) 
chocolate with sucrose 

Chocolate (high-flavanol 
chocolate with sucrose) 

Non-methylated flavanols; 3′-O-methylated flavanols; 4′-O-methylated flavanols 

 

Ross et al., 
2012 (126) 

45 ± 10 y, 
UK 

Crossover 
Feeding Study 

266 
(16 weeks) 

HPLC with Coularray 
electrochemical detection 
(Targeted – 
alkylresorcinols) 

Plasma Control (no dietary change), intervention 1 
(60 g whole grain/d for 16 wk), or 
intervention 2 (60 g whole grain/d for 8 wk 
followed by 120 g whole grain/d for 8 wk) 

Whole grain Alkylresorcinols 

 

Ross et al., 
2013 (127) 

20 – 50 y, 
Switzerland 

Crossover 
Feeding Study 

17 
(2 weeks) 

1H NMR and GC-MS 
(plasma) (Untargeted) 

Urine & 
Plasma 

Whole grain (WG)-rich or Refined grain-rich 
foods 

Whole grain Urine: N-acetylcarnitine; taurine; 4-hydroxyphenylacetate1; dimethylamine1; trimethylamine; urea1; methylguanadine1; 
creatinine; 1pyruvate; citrate1; succinate1; fumarate2; N-acetyl-glycoproteins1; 3-hydroxyisovalerate1 
Plasma: urea 

 

Ross et al., 
2015 (128)  

41-67 y, 
Sweden 

 

Crossover 
Feeding Study 

17 
overweight 

men  
(Acute) 

GC–MS (Untargeted and 
targeted) 

Plasma Baked herring, pickled herring, and baked 
beef 

Meat intake Beta-alanine; 4-hydroxyproline; 2-Aminoadipic acid; Creatinine 

Herring intake Docosahexaenoic acid (DHA); cetoleic acid 

 



PhD. Thesis – Talha Rafiq; McMaster University – Medical Science 

 

239 
 

Roura et al., 
2007 (129) 

18-50 y, 
Spain 

Crossover 
Feeding Study 

21 
(Acute) 

LC-MS/MS (Targeted - 
epicatechin ((–)-Ec) 
metabolites) 

Urine Polyphenol-rich food (PRF) (cocoa beverage 
containing 40 g of cocoa powder and 250 ml 
water) and a polyphenol-free food (PFF) 
(250 ml of whole milk) 

Polyphenol-rich food (cocoa 
beverage containing 40 g of 
cocoa powder and 250 ml 
water) 

(–)-epicatechin-sulphate 1; (–)-epicatechin-sulphate 2; epicatechin-sulphate 3; (–)-epicatechin-glucuronide 

 

Roura et al., 
2007 (130) 

25.7 ± 6.9 y, 
Spain 

 

Crossover 
Feeding Study 

21 
(Acute) 

LC-MS/MS (Targeted – (–)-
epicatechin ((–)-Ec)) 

Plasma 250 ml of whole milk (M-c) (control), 40 g of 
cocoa powder dissolved in 250 ml of whole 
milk (CC-M), and 40 g of cocoa powder 
dissolved with 250 ml of water (CC-W) 

Cocoa (40 g of cocoa powder 
dissolved in 250 ml of whole 
milk and with 250 ml of water 

(–)- epicatechin glucuronide ((–)-Ec-glucuronide) 

 

Roura et al., 
2008 (131) 

25.7 ± 6.9 y, 
Spain 

Crossover 
Feeding Study 

21 
(Acute) 

LC–MS/MS (Targeted – (–)-
epicatechin metabolite) 

Urine (1) 250 ml whole milk as a control; (2) 40 g 
cocoa powder dissolved in 250 ml whole 
milk (CC–M); (3) 40 g cocoa powder 
dissolved in 250 ml water (CC–W) 

Cocoa beverages Epicatechin-sulfate 2 (Ec-S2); epicatechin-glucuronide (Ec-G) 

 

Schär et al., 
2015 (132) 

60.6 ± 5.6 y, 
UK 

Crossover 
Feeding Study 

14 males 
(Acute) 

HPLC-ESI-MS (Targeted – 
flavanone metabolites) 

Plasma Orange juice or a hesperidin supplement 
(both providing 320 mg hesperidin) or 
control (all matched for sugar and vitamin C 
content) 

Orange juice Flavanones:  1, hesperetin-glucuronide; 2, naringenin-7-glucuronide; 3, hesperetin-glucuronide; 4, hesperetin-
diglucuronide; 5, hesperetindiglucuronide; 6, naringenin-glucuronide; 7, hesperetin; 8, naringenin 
 
Phenolic metabolites: 1, hippuric acid; 2, dihydroferulic acid; 3, dihydroferulic acid–3-glucuronide; 4, 4-
hydroxyphenylacetic acid; 5, vanillic acid; 6, hydroxyhippuric acid; 7, iso/ferulic acid–glucuronide; 8, 3- 
hydroxyhippuric acid; 9, isovanillic acid; 10, 3-hydroxyphenylacetic acid; 11, vanillic acid–glucuronide; 12, isovanillic acid–
glucuronide; 13, iso/vanillic acid–glucuronide; 14, 4-hydroxy-benzoic acid; and 15, benzoic acid–4-glucuronide 
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Schär et al., 
2018 (133) 

25-62 y, 
UK 

Crossover 
Feeding Study 

7 
(Acute) 

UPLC–ESI–MS/MS 
(Targeted - phenolic acids 
and avenanthramides) 

Urine Oat bran (60 g) or a phenolic low (control) 
diet  

Oat Bran Avenanthramide A; Ferulic acid; p-coumaric acid; Dihydroferulic acid; Isovanillic acid; Syringic acid; 2,4-dihydroxybenzoic 
acid; 2,5-dihydroxybenzoic acid; Vanillic acid; 2-hydroxyhippuric acid; 3-hydroxyhippuric acid; 4-hydroxyhippuric acid; 
Feruloylglycine; Caffeic acid-sulfate; (Iso)ferulic acid-O-sulfate; Isoferulic acid-3-O-sulfate; Syringic acid-O-sulfate; Sinapic 
acid-O-sulfate; Dihydroxybenzoic acid-O-sulfate; Benzoic acid-O-sulfate; Vanillin or hydroxyphenylacetic acid-O-sulfate; 
Syringaldehyde OR homovanillic acid OR dihydroxyhydrocinamic acid sulfate; Ferulic Acid-4-O-glucuronide; Isoferulic 
acid-O-glucuronide; Dihydroferulic acid-4-O-glucuronide; Dihydro(iso)ferulic acid-O-glucuronide; Benzoic acid-O-
glucuornide; Syringaldehyde OR Homovanillic acid OR 3,4-dihydroxyhydrocinamic acid-O-glucuronide; Vanillin OR 4-
hydroxyphenylacetic acid-O-glucuronide 

 

Scheffler et al., 
2016 (134) 

25–33 y, 
Germany 

Feeding Study 12 
(Acute) 

GC-MS/O (Untargeted and 
targeted) 

Urine 3 g raw garlic (equals 1–2 garlic cloves) 

Garlic  Allyl methyl sulfide (AMS); allyl methyl sulfoxide (AMSO); allyl methyl sulfone (AMSO2); Dimethyl trisulfide (DMTS) 

 

Schmedes et 
al., 2016 (135) 

18-65 y, 
Norway 

Crossover 
Feeding Study 

20 
(4 weeks) 

1H NMR and LC-MS 
analyses (Untargeted) 

Urine Lean seafood & non-seafood diets 

Lean-seafood diet L-carnitine; 2,6-dimethylheptanoylcarnitine; N-methyl-2-pyridone-5-carboxamide; trimethylamine-N-oxide (TMAO); 
Hypoxanthine; dimethylamine 

Non-seafood diet Guanidinoacetate; 3-methylhistidine 

 

Schmedes et 
al., 2018 (136) 

50.6 ± 3.4 y, 
Norway 

Crossover 
Feeding Study 

19 
(4 weeks) 

1H NMR and LC-MS 
(Untargeted) 

Serum Two diets that varied mainly in protein 
source: lean seafood versus non-seafood 
proteins 

Sea-food diets (vary by 
protein) 

Lean sea-food diet: isoleucine; valine; TMAO1; lactate1; citrate; BCAAs (isoleucine)1;  
Non-sea food diet: certain ceramides2; lysophosphatidylcholines; free fatty acids; lysophosphatidylethanolamines; 
phosphatidic acids; phosphatidylethanolamines; phosphatidylinositols; phosphatidylglycerols; phosphatidylserines; 
phosphatidylcholines; triacylglycerol (TAG)1 

 

Shi et al., 2017 
(137) 

23-60 y, 
Sweden 

 

Crossover 
Feeding Study 

21 
(Acute) 

1H NMR (36 plasma 
metabolites) and GC-MS 
(short chain fatty acids) 
(Targeted) 

Plasma Plain whole-grain rye porridges (40 and 55 
g), rye porridge enriched with different 
inulin: gluten proportions (9:3 g; 6:6 g; 3:9 
g), and a 55 g refined wheat bread (control) 

Whole-grain rye porridges RPHI: porridge. 40 g whole-grain rye + 9 g inulin + 3 g gluten: Acetate; Glucose 
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RPIG: porridge. 40 g whole-grain rye + 6 g inulin + 6 g gluten: Acetate; Leucine; Isoleucine; Valine; 2-oxoisocaproate; 
Phenylalanine 
RPHG: porridge. 40 g whole-grain rye + 3 g inulin + 9 g gluten: Isoleucine; Phenylalanine; Leucine; Valine; 2-
oxoisocaproate; Lysine 

 

Sri Harsha et 
al., 2018 (138) 

25 ± 4.2 y, 
Denmark 

Crossover 
Feeding Study 

11 
(Acute) 

UPLC-Q-ToF-MS 
(Untargeted) 

Urine Peas 

Peas  2-Isopropylmalic acid (2-IPMA); Asparaginyl valine; N-Carbamoyl-2-amino-2-(4-hydroxyphenyl) acetic acid (NC) 

 

Stalmach et al., 
2009 (139) 

19-35 y, 
UK 

Feeding Study 11 
(Acute) 

HPLC-MSn: MS2, daughter 
ions produced from [M-
H]– fragmentation; MS3, 
daughter ions produced 
from fragmentation of MS2 
base ion (Targeted – 
chlorogenic acids) 

Urine & 
Plasma 

Coffee containing 412 µmol of chlorogenic 
acids 

Coffee Urine: 3-O-Caffeoylquinic acid-O-sulfate; Dihydrocaffeic acid-3-O-sulfate; Dihydrocaffeic acid-3-O-glucuronide; 4-O-
Caffeoylquinic acid-O-sulfate; Caffeic acid-4-O-sulfate; Dihydroferulic acid-4-O-sulfate; Caffeic acid-3-O-sulfate; 
Dihydrocaffeic acid; Dihydroferulic acid-4-O-glucuron; Ferulic acid-4-O-sulfate; 3-O-Feruloylquinic acid; Isoferulic acid-3-
O-sulfate; Dihydro(iso)ferulic acid-3-O-glucuronide; Isoferulic acid-3-O-glucuronide; Feruloylglycine; 3-O-Caffeoylquinic 
acid lactone-O-sulfate; 4-O-Caffeoylquinic acid lactone-O-sulfate; 4-O-Feruloylquinic acid; Dihydroferulic acid; 5-O-
Feruloylquinic acid 
 
Plasma: Dihydrocaffeic acid-3-O-sulfate; Caffeic acid-4-O-sulfate; Dihydroferulic acid-4-O-sulfate; Caffeic acid-3-O-sulfate; 
Dihydrocaffeic acid; Dihydroferulic acid-4-O-glucuron; Ferulic acid-4-O-sulfate; 5-O-Caffeoylquinic acid; 3-O-
Feruloylquinic acid; Isoferulic acid-3-O-sulfate; Isoferulic acid-3-O-glucuronide; 3-O-Caffeoylquinic acid lactone-O-sulfate; 
4-O-Caffeoylquinic acid lactone-O-sulfate; 4-O-Feruloylquinic acid; Dihydroferulic acid; 5-O-Feruloylquinic acid 

 

Stalmach et al., 
2014 (140) 

19-35 y, 
Scotland 

Crossover 
Feeding Study 

11 
(Acute) 

HPLC-MSn: MS2, daughter 
ions produced from [M-
H]– fragmentation; MS3, 
daughter ions produced 
from fragmentation of MS2 
base ion (Targeted – 
chlorogenic acids) 

Urine & 
Plasma 

Single servings of coffee beverage containing 
low (412 μmol), medium (635 μmol) and 
high (795 μmol) amounts of chlorogenic 
acids 

Coffee Feruloylquinic acids; sulphated caffeoylquinic acid lactones 
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Stanstrup et al., 
2014 (141) 

40-68 y, 
Denmark 

Crossover 
Feeding Study 

11 
(Acute) 

LC-Q-ToF-MS (Untargeted) Urine & 
Plasma 

Whey (WI), casein (CAS), cod (COD) or gluten 
(GLU) protein 

Whey Plasma: Leucine/Isoleucine; γ-glutamyl-leucine; Tryptophan 
 
Urine: N-acetyl-tyrosine 

Casein Plasma: Methionine sulfoxide; N-phenylacetyl-methionine; Isoleucine; Paracetamol; Threonine; γ-glutamyl-methionine; 
Lysine; β-hydroxyisobutyric acid; Methionine; γ-glutamyl-valine; Paracetamol sulfate; Kynurenine; Paracetamol 
glucuronide; α-keto-3-methylvaleric acid; Valine; Citrulline; 3-Hydroxy-2-methylbutyric acid; Glutamic acid; 
Propionylcarnitine; α-hydroxydecanoic acid; Lauric acid; Myristic acid; Hydroxybutyric acid isomers 
 
Urine: N-phenylacetyl-Methionine sulfoxide; N-phenylacetyl-methionine; β-asp-Leu 

Cod   Plasma: TMAO; Creatine; Proline; Arsenobetaine; 1-Methyl-Histidinec and 3-Methyl-Histidinec mixture; 1,2,3,4-
Tetrahydro-β-carboline-3-carboxylic acid; Phenylalanine; Taurine; Docosahexaenoic acid 
 
Urine: TMAO; N6,N6,N6-trimethyl-lysine; 1,2,3,4-Tetrahydro-β-carboline-3-carboxylic acid; Arsenobetaine; 1-Methyl-
Histidinec and 3-Methyl-Histidinec mixture 

Gluten Plasma: Dopamine-3-O-sulfate 

 

Stea et al., 2008 
(142) 

18–26 y, 
Norway 

Feeding Study 
 

 750 
(5 months) 

HPLC (Targeted –tHcy, 
cysteine, riboflavin, flavin 
adenine dinucleotide, 
flavin mononucleotide, 
folate and vitamin B12) 

Plasma Vegetables, fruits and bread 

Fruits, vegetables, and bread Total homocysteine (tHcy); cysteine; folate; riboflavin; flavin adenine dinucleotide (FAD) 

 

Stella et al., 
2006 (143) 

25-74 y, 
UK 

Crossover 
Feeding Study 

12 males 
(15 days) 

1H NMR (Untargeted) Urine Vegetarian, low meat, and high meat diet 

High meat diet Creatinine; creatine; acetylcarnitine; TMAO; taurine; 1- and 3- methylhistidine; glutamine 

 

Trimigno et al., 
2018 (144) 

19-31 y, 
Switzerland 

Crossover 
Feeding Study 

11 
(Acute) 

1H NMR and GC-MS 
(Untargeted and Targeted 
(candidate metabolites 
previously reported such 
as galactitol, galactonate, 
and galactono-1,5-lactone 

Serum Isocaloric amounts of milk, cheese, and a soy 
drink as non-dairy alternative 
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(milk), 3-phenyllactic acid 
(cheese), and pinitol (soy). 

Milk, cheese, and soy drink Milk: lactose; galactose; galactonate; galactono-1,5-lactone 
Cheese: methionine; proline; leucine; glutamic acid; 3-phenyllatic acid; methionine; proline; leucine 
Soy: dodecanoic acid, linoleic acid, ƴ-tocopherol, pinitol; maltol; sucrose; guaiacol; catechol 

 

Trimigno et al., 
2020 
(145) 

42 y, 
Denmark 

Feeding Study 142 
(6 months) 

1H NMR (Untargeted) Urine New Nordic Diet (NND) & Average Danish 
Diet (ADD) 

New Nordic Diet (NND) Glycine betaine; Glucose; Glucose, lactose, maltose; Hippurate; Phenylalanine; Taurine; TMAO 

Average Danish Diet (ADD) Dimethyl sulfone; Propylene glycol; Tartrate 

 

Tsang et al., 
2005 (146) 

23-50 y, 
UK 

Feeding Study 20 
(2 weeks) 

HPLC- MS/MS (Targeted – 
phenolics) 

Plasma 375 ml red wine or control  

Red wine (+)-Catechin glucuronide; (-)-Epicatechin glucuronide; Methyl catechin glucuronide; Methyl epicatechin glucuronide 

 

Ulaszewska et 
al., 2016 (147) 

26-70 y, 
UK 

Feeding Study 126 
(18 weeks) 

LS-MS/MS (Untargeted) Urine High flavonoid diet, low flavonoid diet, or 
habitual diet as a control 

Flavonoid diet 
 

High flavonoid diet: Coumaroyl malic acid; Dihydroxyphenyl-y-valerolactone-O- sulfate; Fatty Acid Hydroxy-C13:1-GLC 
(Hydroxy-tridecenoic acid glucuronide (Isomer I)); Fatty Acid Hydroxy-C13:1-GLC (Hydroxy-tridecenoic acid glucuronide 
(Isomer II)); Fatty Acid Hydroxy-C13:1-GLC (Hydroxy-tridecenoic acid glucuronide (Isomer III)); Fatty Acid Dicarboxylic 
C14:1-GLC (Dicarboxylic Tetradecenoic Acid Glucuronide); Fatty Acid C15:2-GLC (Pentadienoic acid glucuronide); Fatty 
Acid Hydroxy-C15:3-GLC (Pentatrienoic acid glucuronide); Fatty Acid Dicarboxylic C17:0-GLC (Dicarboxylic heptadecanoic 
Acid Glucuronide); Ferulic acid; Iberin N-acetyl-cysteine; Hydroxyphenylacetic acid; Methyl-gallic acid sulfate; 
Phenylacetic acid; Proline Betaine; Trihydroxyphenyl-y-valerolactone; Vanillic Acid Sulfate 
 
Low flavonoid diet: Absicic Acid Glucuronide; Cyclohexadiene carboxylic acid glycine; Cyclohexane carboxylic acid glycine; 
Trihydroxybenzoic acid (Gallic Acid) 

 

Ulaszewska et 
al., 2020 

(148) 

29–69 y, 
UK 

Crossover 
Feeding Study 

40 
(8 weeks) 

LC-MS (Untargeted) Urine & 
Plasma 

Apple 

Apple Urine: Phloretin glucuronide; Phloretin glucuronide sulfate; (Epi)catechin sulfate (I); (Epi)catechin sulfate (II); 
(Epi)catechin glucuronide; (Epi)catechin methyl sulfate; Methyl (epi)catechin; Hydroxyphenyl-y-valerolactone sulfate; 
Hydroxyphenyl-y-valerolactone glucuronide (I); Hydroxyphenyl-y-valerolactone glucuronide (II); Dihydroxyphenyl-y-
valerolactone sulfate; Dihydroxyphenyl-y-valerolactone glucuronide; Dihydroxyphenyl-y-valerolactone methyl 
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glucuronide; Dihydroxyphenyl-y-valerolactone glucuronide sulfate; Hydroxyphenyl valeric acid sulfate; Hydroxyphenyl 
valeric acid-glucuronide; Dihydroxyphenyl valeric acid; Dihydroxyphenyl valeric acid glucuronide; 
Hydroxy(dihydroxyphenyl) valeric acid glucuronide; Hydroxy(dihydroxy)phenyl valeric acid sulfate; 
Hydroxy(dihydroxyphenyl) valeric acid methyl; glucuronide 
Hydroxy(dihydroxy)phenyl valeric acid methyl sulfate; Feruloylquinic acid; Hydroxycinnamic acid; Cinnamoyl glycine; 
Cinnamic acid glycine; Hydroxyphenylpropionic acid sulfate; Dihydroxyphenyl propionic acid (I); Dihydroxyphenyl 
propionic acid (II); Hydroxyphenylacetic acid; Hydroxyphenylacetic acid sulfate; Glucosyl-phenyl propionic acid; 
Hydroxyhippuric acid (I); Hydroxyhippuric acid (II); Hydroxyhippuric acid sulfate; Methoxy-benzylalcohol glucuronide; 
Hydroxybenzoic acid sulfate; Fatty Acid C10:2; Hydroxy fatty acid glucuronide (OH)C13:0-GLC (I); Hydroxy fatty acid 
glucuronide (OH)C13:0-GLC (II); Hydroxy fatty acid glucuronide (OH)C13:0-GLC (III); Hydroxy fatty acid glucuronide 
(OH)C13:1-GLC; Fatty acid glucuronide 
C13:2-GLC (I); Fatty acid glucuronide C13:2-GLC (II); Fatty acid glucuronide C13:2-GLC (III); Hydroxy fatty acid 
(OH)C13:2-GLC; Hydroxy fatty acid glucuronide (OH)C13:3-GLC (I); Fatty acid GLC OH-C13:3-GLC (II); Hydroxy fatty acid 
glucuronide (OH)C15:1-GLC; Fatty Acid Glucuronide C15:2-GLC (I); Fatty acid glucuronide C15:2-GLC(II); Hydroxy fatty acid 
glucuronide (OH)C15:3-GLC; Hydroxy fatty acid (OH)C15:4; Dicarboxylic fatty acid glucuronide C15:1-GLC; Indole-
acetylaspartic acid; Indolylacryloylglycine; Hydroxyphenylacetylglutamine sulfate; Hydroxyphenylacetylglutamine; N-
Acetylglutamic acid; Hydroxy-glutaric acid (position 3-OH); Methylglutaconic acid glucuronide 
 
Plasma: Hydroxyphenylvaleric acid sulfate; Hydroxyphenylvaleric acid; (Hydroxyphenyl) propionic acid sulfate; (3-
Hydroxyphenyl) acetic acid; 3-Hydroxyhippuric acid; Dicarboxylic Fatty Acid C12:3; Dicarboxylic Fatty Acid C14:1; 
Dicarboxylic Fatty Acid C14:0 

 

Urpi‐Sarda et 
al., 2015 (149) 

61 ± 9 y, 
Spain 

Crossover 
Feeding Study 

36 males 
(4 weeks) 

UPLC-MS/MS (Targeted – 
phenolics) 

Urine & 
Plasma 

Red wine or gin, or dealcoholized red wine 

Urpi‐Sarda et 
al., 2015 

Red wine or gin, or 
dealcoholized red wine 

Urine 
Red wine: 2,4-Dihydroxybenzoic acid; 2,6-Dihydroxybenzoic acid; 2,5-Dihydroxybenzoic acid; Syringic acid; 
Gallic acid; Methylgallic acid; Methylgallic sulfate; Ethylgallate; Ethylgallate sulfate; Ethylgallate glucuronide 
1; Ethylgallate glucuronide 2; 3-Hydroxyphenylacetic acid; p-Coumaric acid; Σ(Epi)catechin glucuronides; Σ 
(Epi)catechin sulfates; ΣMethyl(epi)catechin glucuronides; ΣMethyl(epi)catechin sulfates; Vanilloylglycine; 
dihydroxyphenyl-γ-valerolactone (DHPV) 1; DHPV 2; ΣDHPV glucuronides; ΣDHPV sulfates; Resveratrol 
Biomarker; ΣResveratrol Microbial Metabolites; ΣTotal resveratrol metabolites; Pyrogallol 
 
Dealcoholized red wine: 4-Hydroxybenzoic acid; 3-Hydroxybenzoic acid; 2,4-Dihydroxybenzoic acid; 2,6-
Dihydroxybenzoic acid; 2,5-Dihydroxybenzoic acid; 3,5-Dihydroxybenzoic acid; Syringic acid; Gallic acid; 
Methylgallic acid; Methylgallic sulfate; Ethylgallate; Ethylgallate sulfate; Ethylgallate glucuronide 1; 
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Ethylgallate glucuronide 2; 3-Hydroxyphenylacetic acid; 2-Hydroxyphenylacetic acid; 3,4-
Dihydroxyphenylacetic acid; p-Coumaric acid; Caffeic acid; Ferulic acid; 3-(3-Hydroxyphenyl) propionic acid; 
Dihydrocaffeic acid; Σ(Epi)catechin glucuronides; Σ (Epi)catechin sulfates; ΣMethyl(epi)catechin 
glucuronides; ΣMethyl(epi)catechin sulfates; DHPV 1; DHPV 2; ΣDHPV glucuronides; ΣDHPV sulfates; MHPV 
glucuronide; ΣMHPV sulfates; Resveratrol Biomarker; ΣResveratrol Microbial Metabolites; ΣTotal resveratrol 
metabolites; Enterolactone; Pyrogallol 
 
Gin: m-Coumaric acid 
 
Plasma 
Red wine: Gallic acid; Methylgallic acid; Methylgallic sulfate; 3-Hydroxyphenylacetic acid; p-Coumaric acid; 
(Epi)catechin glucuronide; Methyl(epi)catechin glucuronide; DHPV 1; DHPV 2; ΣDHPV glucuronides 
 
Dealcoholized red wine: Methylgallic sulfate; 3-Hydroxyphenylacetic acid; p-Coumaric acid; (Epi)catechin 
glucuronide 

 

Van Dorsten et 
al., 2006 (150) 

20-70 y, 
Netherlands 

Crossover 
Feeding Study 

17 males 
(Acute) 

1H NMR (Untargeted) Urine Black tea, green tea, or caffeine 

Tea (both black & green) Hippuric acid; 1,3-dihydroxyphenyl-2-O-sulfate (1,3-DHPS) 

 

Vázquez-Fresno 
et al., 2015 

(151) 

53-79 y, 
Spain 

Feeding Study 98 
(3 years) 

1H-NMR (Untargeted) Urine Mediterranean diet supplemented with 
either extra-virgin olive oil (MD + EVOO) or 
nuts (MD + Nuts), to those on advice to 
follow a control low-fat diet (LFD) 

Mediterranean diet Mediterranean diet: 3-hydroxybutyrate; amino acids (proline, glycine); the branched-chain amino acid (BCAA) leucine (its 
derived metabolites (isobutyric acid and 2-oxoisovaleric acid), the threonine metabolite (4-deoxythreonic acid (4-DTEA)); 
the N-acetyl groups of glycoproteins (N-Ac); gut microbiota cometabolite p-cresol, fatty acid (oleic acid), and its 
breakdown product (suberic acid) 
 
Mediterranean diet supplemented with nuts: amino acid glutamine (phenylacetylglutamine and Nacetylglutamine); 
creatine 
 
Mediterranean diet supplemented with either extra-virgin olive oil: creatinine; two intermediates of the tricarboxylic acid 
cycle (TCA); citrate; cis-aconitate 
Otherwise, hippurate, trimethylamine-N-oxide, histidine and derivates (methylhistidines, carnosine, and anserine), and 
xanthosine were predominant after LFD. 
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Low-fat diet: hippurate; trimethyl-N-oxide (TMAO); histidine and its derived metabolites (3-methylhistidine [3-MH], 1-
methylhistidine [1-MH]), carnosine, and anserine); proline-betaine; xanthosine 

 

Vázquez-
Manjarrez et 

al., 2019 
(152) 

30.0 ± 4.9 y, 
France 

Crossover 
Feeding Study 

12 
(3 days) 

UPLC-QTOF-MS (24-hour 
urine samples) & GC × GC-

MS (Kinetic urine) 

Urine Banana pulp 

Banana Salsolinol sulfate 1; Methoxyeugenol glucuronide; 2-Isopropylmalic acid; Dopamine sulfate; Salsolinol sulfate 2; N-
acetyldopamine sulfate; Mevalonic acid; 6-Hydroxy-1-methyl-1,2,3,4-tetrahydro β-carboline sulfate; 5-Hydroxyindole-3-
acetic acid; Xanthurenic acid; Kynurenic acid; 3-Methoxytyramine sulfate 
5-Hydroxyindole acetic acid 3TMS; Dopamine 4TMS; Fructose MEOX-5TMS derivative 2; Fructose MEOX-5TMS derivative 
1; 3,4-Dihydroxyphenylacetic acid 3TMS; N-methyl-2-pyridone-5-carboxylic acid TMS; Norepinephrine 5TMS; 1,5-
Anhydrosorbitol 4TMS; 2-Ethyl-3-hydroxypropionic acid 2TMS; 4-Hydroxy-3-methoxyphenylacetic acid 2TMS 

 

Vergne et al., 
2008 (153) 

20-29 y, 
France 

Crossover 
Feeding Study 

12 males 
(Acute) 

HPLC (Targeted – 
isoflavones) 

Urine & 
Plasma 

soya-derivative product containing 35 mg 
isoflavones, as either supplements or cheese 

Soy-based cheese Daidzein; Genistein 

 

Vetrani et al., 
2016 (154) 

54.5 ± 8.6 y, 
Italy 

 

Feeding Study 72 
overweight/ 

obese 
individuals 
(8 weeks) 

GC×GC–ToF MS (Targeted 
– polyphenols) 

Urine High-polyphenol diet (2868 mg/day) or a 
low-polyphenol (363 mg/day) control diet 

Green tea 3-OHBA; 3,4-diOHPPr; ferulic acid; hippuric acid 

 

Villañoa et al., 
2019 
(155) 

45 ± 6 (males) 
41 ± 6 (pre-
menopausal 

women) 

55 ± 3 (post-

menopausal 
women) 

Feeding Study 69 
(5 weeks) 

UHPLC–MS/MS (Targeted 
– glucosinolates) 

Urine Broccoli sprouts 

Broccoli sprouts Sulphoraphane-N-acetylcysteine (SFN-NAC); sulphoraphane-cysteine (SFN-CYS); sulphoraphane (SFN); 3–3-
diindolylmethane (3,3′-DIM) 
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Wang et al., 
2019 (156) 

21-65 y, 
US 

Crossover 
Feeding Study 

113 
(4 weeks) 

HPLC-MS/MS (Targeted – 
TMAO) 

Urine & 
Plasma 

Red meat, white meat, or non-meat 

Red meat Urine & Plasma: Trimethylamine N-oxide (TMAO) 
Plasma: choline; betaine; carnitine; ƴ-butyrobetaine; crotonobetaine 

 

Wedekind et 
al., 2019 

(157) 

31 ± 5.2 y, 
– 

Crossover 
Feeding Study 

12 
(3 days) 

LC-MS (Untargeted) Urine 3 processed meat products (bacon, salami, 
and hot dog) 

Smoked meat product  
(hot dog) 

Syringol sulfate; 4-Methylsyringol sulfate; 4-Ethylsyringol sulfate; 4-Allylsyringol sulfate isomer II 

 

Wedekind et 
al., 2020 

(158) 

31 ± 5.2 y, 
Finland 

Crossover 
Feeding Study 

12 
(3 days) 

LC-MS (Untargeted) Urine & 
Serum 

Fried fresh pork versus tofu 

Fried fresh pork Acylcarnitines (C0, 2:0, 3:0, 4:0 (OH), 5:0, 6:0, 6:0 (OH), 6:0 (DC); 7:0, 8:0 (OH), 8:0 (OH.2), 8:2 (OH), 10:4, 10:0 (OH), 11:1, 
12:2 (OH), 12:1 (OH)) 
Note: OH = hydroxyl group on fatty acid moiety; DC = dicarboxylic acid 

 

Wellington et 
al., 2019 

(159) 

47 y, 
Canada 

Feeding Study 42 
(2 weeks) 

MSI-CE-MS (Untargeted) 
LC-MS/MS (Untargeted) 
GC-MS (Targeted – fatty 
acid)  

Urine & 
Plasma 

Prudent or Western diets 

Prudent diet Plasma: 3-methylhistidine; proline betaine; ketoleucine; ketovaline 
Urine: 3-methylhistidine; proline betaine; imidazole propionate; hydroxypipecolic acid; dihydroxybenzoic acid; 
enterolactone glucuronide 

Western diet Plasma: myristic acid; linoelaidic acid; linoleic acid; alpha-linoleic acid; pentadecanoic acid; alanine; proline; carnitine; 
deoxycarnitine 
Urine: acesulfame K 

 

Wiczkowski et 
al., 2016 (160) 

29 ± 5 y, 
Poland 

Crossover 
Feeding Study 

13 
(2 days) 

HPLC–MS/MS (Targeted – 
anthocyanins) 

Urine & 
Plasma 

Fresh and fermented red cabbage 

Red cabbage 
 
 
 
 
 

Native anthocyanins: 
Cyanidin-3-diglucoside-5-glucoside; 2 Cyanidin-3-glucoside-5-glucoside; Cyanidin-3-(sinapoyl)-diglucoside-5-glucoside; 
Cyanidin-3-(sinapoyl)-triglucoside-5-glucoside; Cyanidin-3-(caffeoyl)(p-coumaroyl)-diglucosides-5-glucoside; Cyanidin-3-
(feruloyl)-triglucosides-5-glucoside; Cyanidin-3-(sinapoyl)-triglucoside-5-glucoside; Cyanidin-3-(feruloyl)(feruloyl)-
triglucoside-5-glucoside; Cyanidin-3-(feruloyl)(sinapoyl)-triglucoside-5-glucoside; Cyanidin-3-(caffeoyl)-diglucoside-5-
glucoside; Cyanidin-3-(p-coumaroyl)-diglucoside-5-glucoside; Cyanidin-3-(feruloyl)-diglucoside-5-glucoside; Cyanidin-3-
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(sinapoyl)-diglucoside-5-glucoside; Cyanidin-3-(feruloyl)-glucoside-5-glucoside; Cyanidin-3-(sinapoyl)-glucoside-5-
glucoside; Cyanidin-3-(feruloyl)(feruloyl)-diglucoside-5-glucoside; Cyanidin-3-(feruloyl)(sinapoyl)-diglucoside-5-glucoside; 
Cyanidin-3-(sinapoyl)(sinapoyl)-diglucoside-5-glucoside 
 
Anthocyanin metabolites: 
Cyanidin 3-glucoside; Peonidin; Peonidin 3-glucoside; Cyanidin monoglucuronide; Methylated cyanidin diglucoside; 
Methylated cyanidin triglucoside; Methylated cyanidin monoglucuronide; Methylated cyanidin glucoside 
monoglucuronide sulfate; Methylated cyanidin (p-coumaroyl)-triglucoside; Methylated cyanidin (caffeoyl)-triglucoside; 
Methylated cyanidin (feruloyl)-triglucoside; Methylated cyanidin (sinapoyl)-triglucoside 

 

Wiseman et al., 
2004 (161) 

24 ± 6.7 y, 
UK 

Feeding Study 76 
(10 weeks) 

LC-MS (urine) and GC–MS 
(plasma) (Targeted – 
isoflavones) 

Urine & 
Plasma 

High-soy diet (104 ± 24 mg total 
isoflavones/d) with a low-soy diet (0.54 ± 
0.58 mg total isoflavones/d) 

High-soy diet Genistein; Daidzein; Equol; O-desmethylangolensin (O-DMA) 
 

Yin et al., 2017 
(162) 

62 ±1 y, 
England 

Feeding Study 10 
(3 weeks) 

1H NMR (urine) and HPLC-
MS (plasma) (Untargeted 
and targeted) 

Urine & 
Plasma 

Chicken, in increasing amounts from 88 to 
290 g/d 

Chicken Urine: Guanidoacetate 
Plasma: 3-methylhistidine 

 

Yin et al., 2020 
(163) 

62 ± 1 y, 
London 

Feeding Study 10 
(3 weeks) 

1H NMR (Untargeted) Urine Fish 

Fish TMAO; dimethylamine; dimethyl sulfone 
 

Zamora-Ros et 
al., 2006 (164) 

Males:  
28.2 ± 7.3 y 

Females:  
38.1 ± 9.2 y, 

Spain 

Feeding Study 20  
(28 days) 

LC–MS/MS (Targeted – 
resveratrols) 

Urine 30 g of ethanol/day as sparkling wine or gin 
for 28 days 

Wine Total resveratrol metabolites (trans and cis-resveratrol-3-O-glucuronide) – red wine > white wine > sparkling 

 

Zhao et al., 
2020 
(165) 

21–29 y, 
US 

Crossover 
Feeding Study 

16 
(21 days) 

UHPLC-Q-Orbitrap-HRMS 
(Targeted) 

Plasma Cranberry Juice 

Cranberry juice Quinic acid; 3-(Hydroxyphenyl) propionic acid; (S)-Homostachydrine; Glycerol 3-phosphatel; Dihydroxyquinolin; Ethyl 
(methylthio)methyl disulfide; Hippuric acid; Hydroxypyruvic acid; 3,4-Dihydroxyphenylglycol; Guanidoacetic acid; 
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Catechol sulfate; 2-Phenylacetamide; Tyrosine; 3-Isopropylmalate; 2-Chloromaleylacetate; Lanthionine ketimine; S-Acetyl 
dihydroasparagusic acid; Pyrocatechol; Prolyl-Hydroxyproline; Guaiacol; Tyramine-O-sulfate; (3,4,5,6-tetrahydroxyoxan-
2-yl)methyl 
4-hydroxybenzoate; (4-[2,3-dioxo-3-(2,4,6-trihydroxy-3-methoxyphenyl)propyl]-2-hydroxy-6-
methoxyphenyl)+oxidanesulfonic acid 

 

Zheng et al., 
2015 (166) 

 

12-15 y, 
Denmark 

Feeding Study 192 
(12 weeks) 

1H NMR (Untargeted) Urine 1 L/day of casein (citrate content: 3.27 
mol/L), whey (citrate content: 0.04 mol/L), 
skim milk, or water 

Cheese and milk 
 

Cheese: proline betaine; tyrosine levels; creatine; creatinine; choline; TMAO 
Milk: citrate; hippurate; urea; TMAO 

 

Zheng et al., 
2015 (167) 

18-50 y, 
Denmark 

Crossover 
Feeding Study 

15 males 
(14 days) 

1H NMR (Untargeted) Urine Three isocaloric diets with similar fat 
contents (i) high in milk, (ii) high in cheese 
with equal amounts of dairy calcium, or (iii) 
a control diet 

Casein Urea 

Skim milk Urea 

Whey Citrate 

 

Zheng et al., 
2016 (168) 

18-60 y, 
Denmark 

Feeding Study 38 
overweight/

obese 
females 

(24 weeks) 

1H NMR (Untargeted) Urine & 
Plasma 

Dairy intake (high vs. low intake) 

High dairy intake Citrate; creatinine; urea; trimethylamine-N-oxide (TMAO); hippurate 

 

Zhong et al., 
2017 (169) 

20-45 y, 
US 

Crossover 
Feeding Study 

12 
(Acute) 

UHPLC-Q-ToF-MS/MS 

(Untargeted and targeted 
(anthocyanins, cholinergic 
acid & their metabolites)) 

Plasma Wild blueberries (WBB) beverage (25 g 
freeze dried WBB powder) 

Wild blueberries (WBB) 3-CGA (3-chlorogenic acid); peonidin glycoside; delphinidin glycoside; cyanidin glycoside; petunidin glycoside 
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APPENDIX II – Study Characteristics of Observational Studies and Metabolites of Foods and Food group 

Supplemental 
Reference 

Study 
population, 

location 

Study 
design 

 

N 
(follow-up) 

Technique  
(Method) 

Biofluid Food category 
and/or food item 

Dietary assessment 
tool 

Aguilar et al., 
2014 (170) 

5-17 y, 
US 

Cross-
sectional 

45 HPLC (Targeted – 
carotenoids) 

Serum Fruits and 
vegetables intake 

27-itemFFQ and an 
automated 
multiple-pass 24-
hour daily recall 

Fruits and vegetables Total carotenoid; beta carotene 
 

Azab et al., 
2019 
(171) 

32 y, 
Canada 

Cross-
sectional 

50 MSI-NACE-MS 
(Targeted) 

Serum Dietary fat intake Semiquantitative 
FFQ 

Total ω-3 PUFAs EPA (20:5n–3); DHA (22:6n–3); [EPA + DHA] 

Fish/Seafood EPA (20:5n–3); DHA (22:6n–3); [EPA + DHA] 

Healthy nutrient-rich foods EPA (20:5n–3); DHA (22:6n–3); [EPA + DHA] 

Full-fat dairy intake Myristic acid (14:0); Pentadecanoic acid (15:0) 

 

Allen et al., 
2008 (172) 

20–69 y, 
UK 

Cross-
sectional 

96 females GC–MS (Targeted – 
fatty acids) 

Plasma Meat Semi-quantitative 
FFQ 

Meat eaters phytanic acid; pentadecanoic acid; heptadecanoic acid 
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Aubertin-
Leheudre et 

al., 2010 (173) 

46 ± 13 y, 
Finland 

Cross-
sectional 

56 females HPLC (Targeted –
alkylresorcinols) 

Serum Cereal fibre intake 3-d dietary record 

Cereal fibre intake 3,5-dihydroxybenzoic acid (DHBA); 3-(3,5-dihydroxyphenyl)-1-propanoic acid (DHPPA) 
 

Bouchard-
Mercier et al., 

2013 (174) 

34.6 ± 9.2 y, 
Canada 

Cross-
sectional 

37 LC-MS (Targeted – 14 
amino acids and 41 
acylcarnitines) 

Plasma The Prudent 
dietary pattern 
(higher intakes of 
vegetables, fruits, 
whole grain 
products, non-
hydrogenated fat 
and lower intakes 
of refined grain 
products; Western 
dietary pattern 
(higher intakes of 
refined grain 
products, desserts, 
sweets and 
processed meats) 

91-items FFQ 

PC1 and/or PC2 

Western Diet PC1; PC2 

Fruits PC2 

Desserts PC2 

Saturated fat PC2 

Total fat PC2 

Individual metabolites 

Vegetables and fruits octadecadienyl-L-carnitine; xleucine 

Fruits only methionine 

Non-hydrogenated fats tetradecadienyl-L-carnitine; octadecadienyl-L-carnitine; histidine 
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Desserts 3 amino acids (methionine, phenylalanine, xleucine); methionine; hydroxyoctadecenoyl-L-carnitine; glutaconyl-L-
carnitine 

Saturated fat valeryl-L-carnitine; octadecadienyl-L-carnitine 

Monounsaturated fat octenoyl-L-carnitine; methylglutaryl-L-carnitine 

Polyunsaturated fat methylglutaryl-L-carnitine; proline; decadienyl-L-carnitine 

Protein ornithine; histidine 

Carbohydrates ornithine  
 

Chandler et al., 
2020 
(175) 

67–68 y, 
US 

Cross-
sectional 

904 
 

LC–MS/MS 
(Untargeted) 

Serum Western and 
Prudent dietary 
patterns 

122-item FFQ 

Prudent dietary pattern C58:8 TAG; C58:9 TAG; C60:12 TAG; eicosapentaenoate; C40:10 PC; C38:6 PC; C20:5 CE; C38:4 PC plasmalogen-B; C58:11 
TAG; C40:6 PC-B; tetradecanedioate; docosahexaenoic acid; C56:9 TAG; C58:10 TAG; C56:8 TAG; C56:10 TAG; C36:5 PC; 
C36:1 PC plasmalogen; uracil; C22:6 CE; C22:6 LPC; C18:2 SM; C36:2 PC plasmalogen-A; C34:0 PS; C38:7 PC plasmalogen; 
uridine; C58:7 TAG; C22:6 LPE-B; C56:7 TAG; C34:0 PC plasmalogen; C54:9 TAG; C54:8 TAG; C38:6 PE; C7 carnitine; C38:4 
PC plasmalogen-A; indole-3-propionate; C36:5 PC plasmalogen-A; C38:7 PE plasmalogen; C18:0 LPC plasmalogen; 
pipecolic acid; docosatrienoic acid; C22:6 LPE-A; C12 carnitine; C34:5 PC; NMMA; thiamine; 4-pyridoxate; C38:6 PC 
plasmalogen-A; C16:1 CE; C10 carnitine; C36:3 PC plasmalogen-A; C18:2 LPE; C8 carnitine; C36:3 PE plasmalogen; C12:1 
carnitine; N-acetylornithine; C18 carnitine; trimethylbenzene; hippurate; C4-OH carnitine; C40:6 PE; C54:7 TAG; C36:4 PE 
plasmalogen; beta-hydroxybutyrate; pantothenate; C52:7 TAG; C20 carnitine; C23:0 Ceramide (d18:1); C6 carnitine; N-
alpha-acetylarginine; myristoleic acid; C22:1 MAG; C36:2 PE plasmalogen; sebacate; N-carbamoyl-beta-alanine; C36:2 PC; 
C22:0 Ceramide (d18:1); C38:1 PC; C14 carnitine; 7-methylxanthine; C24:1 SM; C36:3 PC plasmalogen-B; C34:2 PC 
plasmalogen-A; C34:3 PE plasmalogen; C16:0 CE; C14:2 carnitine; hypoxanthine; 2-aminooctanoate; C20:4 LPE-A; C36:2 
PS plasmalogen; C16:0 LPE; C3 carnitine; C14:1 carnitine; homoarginine; C36:2 PC plasmalogen-B; UDP-glucuronate; 
docosapentaenoic acid; eicosanedioate; C32:1 PC plasmalogen-A; C18:2 LPC; ectoine 

Western dietary pattern Tetradecanedioate; C16:1 CE; C38:4 PC plasmalogen-B; C34:2 PC plasmalogen-A; C18:2 SM; C36:2 PC plasmalogen-A; C7 
carnitine; C36:3 PC plasmalogen-B; C34:3 PE plasmalogen; C36:3 PE plasmalogen; C36:3 PC plasmalogen-A; C36:4 PE 
plasmalogen; docosatrienoic acid; N-methylproline; proline betaine; C38:2 PE; C58:8 TAG; C36:1 PC plasmalogen; 
docosahexaenoic acid; eicosapentaenoate; C4-OH carnitine; C14:0 CE; C38:6 PC plasmalogen-B; C10:2 carnitine; C20:5 
CE; C36:2 PE plasmalogen; C20:3 CE; Trimethylbenzene; C34:5 PC plasmalogen; C60:12 TAG; C36:2 PS plasmalogen; 
indole-3-propionate; C16:0 LPE; C32:1 PC; C58:9 TAG; C36:2 PC; C51:3 TAG; C23:0 Ceramide (d18:1); eicosanedioate; 
C36:2 PC plasmalogen-B; beta-hydroxybutyrate; glucose; C34:0 PC plasmalogen; C18:0 LPC plasmalogen; C38:6 PC; C9 
carnitine; C36:5 PC; C36:4 PC plasmalogen-B; C34:3 PC plasmalogen; C36:4 DAG-A; C52:4 TAG; C58:7 TAG; C38:6 PE; 
C40:6 PC-B; C40:10 PC; C22:6 LPE-B; C8 carnitine 
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Cheung et al., 
2017 (16) 

54.2 ± 9 y,  
10 European 

countries 

Cross-
sectional 

481 LC-MS/MS (Targeted) Urine Chicken, red meat, 
processed meat, 
and fish 

24-h dietary recall 

Fish Observational (urine): acetylcarnitine; trimethylamine-N-oxide (TMAO) 

Poultry/chicken Observational (urine): 3-methylhistidine, anserine, carnosine, acetylcarnitine 

Processed meat (cooked ham) Observational (urine): carnosine; acetylcarnitine 

Red meat Observational (urine):  carnosine; acetylcarnitine 

 

Chun et al., 
2009 (176) 

19 y or older, 
US 

Cross-
sectional 

2,908 (HN-APCI)-MS (Targeted 
– isoflavones) 

Urine Isoflavones 24-hour dietary 
recall 

Isoflavones Genistein; Daidzein; O-desmethylangolensin (O-DMA) 

 

Chung et al., 
2009 (177) 

31.9 ± 2.0 y, 
US 

Cross-
sectional 

25 HPLC (Targeted – 
carotenoids) 

Serum Dietary carotenoid 100-item Health 
Habits and History 
FFQ 

Dietary carotenoid α-carotene; β-carotene; β-cryptoxanthin; total carotenoids 

 

Cuparencu et 
al., 2020 

(23) 

– 
New Zealand 

Cross-
sectional 

158 UPLC-ESI-q-TOF-MS 
(Untargeted) 

Urine Meat-related food 
groups, in servings: 
red meat (e.g., 
beef, pork, lamb), 
poultry (e.g., 
chicken, turkey), 
seafood (e.g., fish 
and shellfish high 
or low in n-3 LC-
PUFA), processed 
meats and organ 
meats. 

Food diaries 

Poultry Carnosine; anserine; 3-methylhistidine 

Red meat Carnosine; anserine 

 

De Filippis et 
al., 2016 (178) 

Vegetarians 
39 ± 9 y 
Vegans  

Cross-
sectional 

153 GC-MS/SPME (Targeted 
– short chain fatty acids 
(SCFA)) 

Urine Mediterranean 
diet 

7-day weighed food 
diary 
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37 ± 10 y 
Omnivores  

37 ± 9 y 

Mediterranean diet Trimethylamine oxide (TMAO) 
 

de Pee et al., 
1999 (179) 

27 ± 6 y, 
Indonesia 

Cross-
sectional 

600 HPLC (Targeted – 
retinol) 

Serum Vitamin A Semi-quantitative 
24 h recall 
questionnaire 

Vitamin A Retinol 

 

Dorgan et al., 
2019 
(180) 

25-29 y, 
US 

Cross-
sectional 

211 females UPLC-MS/MS 
(Untargeted) 

Serum Alcohol Questionnaire or 
three non-
consecutive 24-h 
dietary recalls  

Alcohol Amino acid (sarcosine) 
Lipid (eicosapentaenoate (EPA; 20:5n3)) 
Steroid (4-Androsten-3beta,17beta-diol monosulfate (2)) 
Cofactor/Vitamin (gamma-carboxyethyl hydroxychroman (CEHC)) 

 

Du et al., 2020 
(181) 

26-36 y, 
Australia 

Cross-
sectional 

1785 NMR (Targeted) Serum Alcohol 12-month FFQ 

Alcohol Fatty acids: total fatty acids (FAs); saturated FAs (SFAs); MUFAs; omega-3 FAs; docosahexaenoic acid (DHA); omega-3 
FAs; DHA levels to total FAs; omega-6 FA ratio; polyunsaturated FA (PUFA) ratio; linoleic acid ratio to total FAs 
Glycine; isoleucine; valine; phenylalanine; citrate 

 

Edmands et 
al., 2015 (182) 

55.3 ± 8.4 y 
10 European 

Countries 
 

Cross-
sectional 

481 HPLC-Q-ToF-MS 
(Untargeted) 

Urine 6 polyphenol-rich 
foods (coffee, tea, 
red wine, citrus 
fruit, apples and 
pears, and 
chocolate 
products) 

24-h dietary recalls 
(acute) and FFQ 
(habitual) 

Citrus fruit Naringenin glucuronide; Hesperetin glucuronide sulfate; Hesperetin glucuronide (I);  

Apples & pears  Methyl(epi)catechin sulfate (I); Phloretin glucuronide; Dihydroxyphenyl-y-valerolactone sulfate 

Chocolate Methyl(epi)catechin sulfate (I); 4-Hydroxy-(3’,4’-dihydroxyphenyl)valeric acid sulfate; Dihydroxyphenyl-y-valerolactone 
glucuronide; Vanillic acid sulfate 
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Coffee Dihydroferulic acid sulfate; Guaiacol glucuronide; Feruloylquinic acid; Ferulic acid sulfate; Feruloylquinic acid glucuronide; 
3-O-Caffeoylquinic acid; p-Coumaric acid sulfate; Caffeic acid sulfate; Ferulic acid glucuronide; Hydroxyhippuric acid; 
Dihydrocaffeic acid sulfate; m-Coumaric acid sulfate; Dihydroferulic acid glucuronide; p-Hydroxyphenyllactic acid; 
Guaiacol sulfate; Ethylcatechol glucuronide 

Tea Methylgallic acid sulfate (I); 4-O-Methylgallic acid; Dihydroxyphenyl-g-valerolactone sulfate; Pyrogallol sulfate (I); 
Hydroxyphenylvaleric acid glucuronide; Methyl(epi)catechin sulfate (I); Dihydroxyphenyl-y-valerolactone glucuronide 

Red wine m-Coumaric acid sulfate; Gallic acid ethyl ester sulfate; Hydroxytyrosol sulfate; Dihydroresveratrol glucuronide; Syringic 
acid sulfate; Methylgallic acid sulfate (I); 4-O-Methylgallic acid 

 

Floegel et al., 
2013 (183)  

49.8 ± 8.9 y, 
Germany 

Cross-
sectional 

2,380 FIA–MS/MS (Targeted – 
acylcarnitines, amino 
acids, hexose and 
choline-containing 
phospholipids) 

Serum 45 food groups 148-item FFQ 

Cornflakes, crisps  
(Positive loading) 

Acylcarnitines (C14:1 (2.02), C2 (1.97), C18 (1.84), C14:2 (1.83), C18:1 (1.70), C7-DC (1.30), C16 (0.99),C16:2 (0.95), C6-
OH/C5-DC (0.81), C10 (0.78), C18:2 (0.54), C8:1 (0.46), C0 (0.40), C10:2 (0.40), C5-OH/ C3-DCM (0.17), C9 (–0.06), C3 
(0.05) Fish, other vegetable fat, 

whole grain bread, cooked 
vegetables, garlic, nuts, tea, 
cabbage, sweet bread 
spreads, cake, cookies, high-
fat cheese  
(Negative loading) 

Canned fruit, fried potatoes, 
legumes, cake, cookies 
(Positive loading) 

Amino acids (Ser (1.34), Tyr (–1.02), Gly (0.67), Thr (0.65), Val (–0.61), His (0.25), Ile (–0.21), Pro (–0.13), Gln (0.02), Met 
(–0.01), Phe (0), Orn (0), Trp (0), Arg (0) 

Water, low-fat cheese, fish, 
whole grain bread, grain 
flakes, muesli  
(Negative loading) 

Sauce, butter  
(Positive loading) 

Diacylphosphatidylcholines (C36:1 (3.67), C28:1 (3.51), C34:1 (3.08), C30:0 (3.00), C32:1 (2.73), C40:4 (2.18), C42:2 (–
1.57), C32:2 (1.44), C40:5 (1.42), C34:4 (1.37), C36:0 (–1.37), 
C42:0 (–1.32), C38:0 (–1.28), C42:1 (–1.23), C32:0 (1.23), C36:3 (1.04), C34:3 (1.03), C40:3 (–0.99), C38:3 (0.79), C40:2 (–
0.67), C38:6 (–0.62), C38:5 (0.58), C36:4 (0.56), C38:1 (–0.50), C38:4 (0.49), C40:6 (–0.41), C32:3 (0.35), C36:2 (0.06), 
C36:5 (–0.04), C42:4 (0.03), C42:6 (0.03), C34:2 (0.01), C42:5 (0), C36:6 (0) 

Fish, whole grain bread, tea, 
grain flakes, muesli  
(Negative loading) 
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Red meat, processed meat, 
poultry, margarine, non-
wholegrain bread 
(Positive loading)  

Acyl-alkylphosphatidylcholines (C36:4 (7.43), C38:5 (7.18), C36:5 (6.57), C38:6 (4.04), C30:0 (–3.89), C36:3 (3.22), C36:1 (–
2.96), C34:0 (–2.86), C34:3 (2.78), C34:1 –1.56), C34:2 (1.49), 
C38:4 (1.24), C42:1 (1.08), C44:6 (0.81), C40:1 (0.66), C38:3 (–0.64), C44:5 (0.63), C42:5 (0.62), C40:4 (0.61), C36:2 (–0.61), 
C30:2 (–0.57), C40:2 (–0.56), C30:1 (–0.34), C40:5 (0.31), C44:3 (0.30), C40:3 (–0.23), C36:0 (0.22), C42:4 (0.18), C42:3 
(0.17), C38:1 (–0.16), C40:6 (0.07), C38:2 (0.05), C32:1 (0.05), C38:0 (0.02), C42:2 (–0.01), C32:2 (–0.01), C44:4 (0) Sweet bread spreads, butter, 

desserts, high-fat dairy 
products, tea, vegetarian 
dishes 
(Negative loading) 

Margarine, non-whole grain 
bread, processed meat, red 
meat, coffee (Positive loading) 

Lysophosphatidylcholines C20:4 (2.91), C18:2 (2.19), C18:0 (1.36), C20:3 (1.26), C17:0 (–0.97), C28:1 (–0.79), C16:0 (0.65), 
C18:1 (0.63), C14:0 (–0.56), C16:1 (–0.11) 

Butter, pasta, rice, tea, 
desserts, soup  
(Negative loading) 

Butter, sweet bread spreads, 
high-fat cheese, fresh fruit, 
whole grain bread, desserts, 
cake, cookies, high-fat dairy 
products  
(Negative loading) 

Sphingomyelins C24:1 (4.41), OH-C14:1 (–1.95), C24:0 (1.95), C26:1 (1.70), C16:0 (1.45), C18:0 (1.44), C18:1 (1.21), C16:1 
(1.11), OH-C16:1 (–0.75), OH-C22:2 (–0.09), OHC24:1 (–0.03), C26:0 (0.01), C20:2 (0), OH-C22:1 (0) 

 

Frankenfeld et 
al., 2003 (184) 

61 ± 8 y, 
US 

Cross-
sectional 

96 post 
menopausal  

females 

LC-MS (Targeted – 
isoflavone) 

Serum Soy-based foods 122-item FFQ 

Soy intake Daidzein; Genistein 

Fiber Daidzein; Genistein 

Caffeine Daidzein 

Fruit and vegetables Genistein 

 

Frankenfeld 
2011 (185) 

45.0 + 0.5 y, 
US 

Cross-
sectional 

3,115 HPLC-MS/MS (Targeted 
– isoflavone and 
daidzein metabolite 
concentrations) 

Urine Dairy consumption 24-h dietary recall 
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Legumes, nuts, and seeds Daidzein; Genistein; O-desmethylangolensin (ODMA) 

Grain products Daidzein; Genistein; Equol; O-desmethylangolensin (ODMA) 

Fruits  Daidzein; Equol; O-desmethylangolensin (ODMA) 

Milk and milk products Equol 

High soy Daidzein; Genistein; O-desmethylangolensin (ODMA) 

 

Garcia-Aloy et 
al., 2014 (186) 

55-80 y, 
Spain 

Cross-
sectional 

195 HPLC-Q-ToF-MS  
(Untargeted) 

Urine Walnut 
consumption 

9 category FFQ 

Garcia-Aloy 
et al., 2014 

Walnut 
 

3-indolecarboxylic acid glucuronide; hydroxyindoleacetic acid sulfate; N-acetylserotonin sulfate; 10-hydroxy-
decene-4,6-diynoic acid sulfate; urolithin C glucuronide; urolithin A glucuronide; urolithin A 
sulfoglucuronide; tridecadienoic/ tridecynoic acid glucuronide; urolithin B glucuronide; enterolactone 
glucuronide; urolithin C sulfate; urolithin A sulfate 

 

Garcia-Aloy et 
al., 2015 (187) 

67.0 ± 6.3 y, 
Spain 

Cross-
sectional 

64 HPLC-Q-ToF-MS 
(Untargeted) 

Urine Cocoa or derived 
products 

137-item FFQ 

Cocoa 
  

5-acetylamino-6-amino-3-methyluracil (AMMU); 3-methyluric acid; 7- and 3-methylxanthine; 3,7-dimethyluric acid; 
theobromine; methoxyhydroxyphenylvalerolactone; 5-(3’,4’-dihydroxyphenyl)-valerolactone (DHPV) glucuronide; 5-
(3’,4’-dihydroxyphenyl)-valerolactone (DHPV) glucuronide sulphate 

 

Garcia-Aloy et 
al., 2015 (188) 

68 ± 6 y, 
Spain 

Cross-
sectional 

155 HPLC–Q-ToF-MS 
(Untargeted) 

Urine Bread Validated semi-
quantitative 137-
item FFQ 

Whole grain bread 2-Aminophenol sulphate; N-(2-hydroxyphenyl) acetamide (HPAA) glucuronide; 2-hydroxy-N-(2-hydroxyphenyl) acetamide 
(HHPAA)1; 2-hydroxy-1,4-benzoxazin-3-one (HBOA) glycoside1; 2-hydroxy-N-(2-hydroxyphenyl) acetamide (HPPA); 2-
hydroxy-7-methoxy-2H-1,4-benzoxazin-3-one (HMBOA); 3-(3,5-dihydroxyphenyl) propanoic acid (DHPPA) glucuronide1; 
3,5-Dihydroxyphenylethanol sulphate; 5-(3,5-dihydroxyphenyl) pentanoic acid (DHPPTA) sulphate1; Hydroxybenzoic acid 
glucuronide; Dihydroferulic acid sulphate1; Enterolactone glucuronide1; Pyrraline; 3-Indolecarboxylic acid glucuronide1; 
Riboflavin1; N-a-Acetylcitrulline; 2,8-Dihydroxyquinoline glucuronide1 

White-bread consumers 2-Aminophenol sulphate; N-(2-hydroxyphenyl) acetamide (HPAA) glucuronide; 2-hydroxy-7-methoxy-2H-1,4-benzoxazin-
3-one (HMBOA) glucuronide; 2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3-one (HMBOA); 3-(3,5-dihydroxyphenyl) 
propanoic acid (DHPPA) glucuronide; Hydroxybenzoic acid glucuronide; Riboflavin 

 

Gibbons et al., 
2015 (45) 

47 ± 16 y, 
Ireland 

Cross-
sectional/ 

RCT 

565 1H NMR (Untargeted) Urine Sugar-sweetened 
beverages 

4-day semi-
weighed food 
record 
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Sugar-sweetened beverage Amino Acids: citrulline; taurine  
Other: formate isocitrate 

 

Gibbons et al., 
2017 (189) 

Cluster 1 
52 ± 16 y 
Cluster 2 
42 ± 15 y, 

Ireland 

Cross-
sectional 

567 1H NMR (Untargeted) Urine Healthy versus 
unhealthy dietary 
clusters 

4-day semi-
weighed food 
diaries 

Healthy cluster 
 

Higher intakes of breakfast cereals, low fat and skimmed milks, potatoes, fruit, fish and fish dishes: 
 
Hippurate; N-phenylacetylglutamine; Anserine; 3-hydroxybutyrate; 2-aminoadipate; Citrate 

Unhealthy cluster Higher intakes of chips/processed potatoes, meat products, savory snacks and high-energy beverages: 
 
Creatinine; Glycylproline; Theophylline; N-acetylglutamate; Tryptophan 

 

Gibson et al., 
2020 
(190) 

 

40-59 y, 
Japan, China, 

the United 
Kingdom, and 
United States 

Cross-
sectional 

4680 NMR Urine 
(Targeted) 

Fish 24-h dietary recalls 

Fish TMAO; taurine; creatine; homarine; ethyl glucuronide; trimethyllysine; dimethylamine 

Shellfish Homarine 

 

Griep et al., 
2016 (191) 

40-59 y, 
US & UK 

Cross-
sectional 

2,032 (US) 
449 (UK) 

1H NMR (Targeted – 
hippurate and proline 
betaine) 

Urine Fruits intake 
(including 100% 
fruit juices) 

4 in-depth 24-hr 
dietary recalls 

Fruits Hippurate; proline betaine 

 

Guertin et al., 
2014 (192) 

64 ± 5 y, 
US 

Cross-
sectional 

502 UHPLC–MS/MS and 
GC–MS (Untargeted) 

Serum 36 dietary groups 137-item FFQ  
 

Citrus Stachydrine; Chiro-inositol; Scyllo-inositol; N-methyl proline 

Berries 1-Palmitoylglycero-phospho-inositol 

Apples, pears  13-HODE + 9-HODE 

Melon Pregnenolone sulfate 
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Bananas y-Tocopherol 

Other Pyridoxate 

Cruciferous a-CEHC glucuronide 

Greens 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) 

Yellow/orange vegetables Creatinine 

Starchy vegetables Cyclo (-Leu-Pro) 

Alliums (garlic, onions) 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) 

Other Docosahexaenoic acid (DHA) 

Red meat Indolepropionate 

Poultry: chicken Pyroglutamine 

Fish (excluding shellfish) 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF); docosahexaenoic acid (DHA); eicosapentaenoic acid (EPA);  
1-Docosahexaenoylglycero-phosphocholine 

Shellfish 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) 

Processed meat Lathosterol 

Baked sweets Glutamine 

Chocolate Theobromine 

Candy (non-chocolate) Leucylleucine 

Chips Docosahexaenoic acid (DHA) 

Tofu 4-Ethylphenylsulfate 

Beans S-Methylcysteine 

Eggs Indolepropionate 

Added fats δ-Tocopherol 

Butter Methyl palmitate (15 or 2); Pentadecanoate (15:0); 10-Undecenoate (11:1n–1); 

Peanuts Tryptophan betaine; 4-Vinylphenol sulfate 

Rice (white) Docosahexaenoic acid (DHA) 

Dairy: milk Homostachydrine 
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Coffee Quinate; 1-Methylxanthine; Paraxanthine; N-2-furoyl-glycine; Catechol sulfate 

Sugar-sweetened beverages Quinate 

Beer  16-Hydroxypalmitate 

Wine Scyllo-inositol 

Liquor Ethyl glucuronide 

Total alcohol1 Ethyl glucuronide; 4-Androsten-3b,17b-diol disulfate 1; 5-a-Androstan-3b,17b-diol disulfate; Cyclo (-Leu-Pro); Bilirubin 
(E,Z or Z,E); 16-Hydroxypalmitate; Dihomo-linoleate (20:2n–6); Palmitoleate (16:1n–7) 

Vitamins/supplements 
Multivitamins 

Pantothenate; Pyridoxate; α-Tocopherol; ƴ-Tocopherol; Threonate; β-Tocopherol 

 

Hanhineva et 
al., 2015 (193) 

44 ± 17 y, 
Sweden 

Cross-
sectional 

91  LC-Q-ToF-MS 
(Untargeted) 

Urine Whole grain rye 
intake 

3-day weighed food 
records 

Whole grain rye intake Hydroxyhydroxyphenyl acetamide (HHPAA) sulfate; 3,5-dihydroxyphenylpropionic acid sulfate (3,5- DHPPA); caffeic acid 
sulfate; hydroxyphenyl acetamide (HPAA) sulfate 

 

Harada et al., 
2016 (194) 

35–74 y, 
Japan 

Cross-
sectional 

896 males CE-ToF-MS 
(Untargeted) 

Serum Alcohol Self-administered 
questionnaire 

Alcohol 
 
 

2-Oxoglutarate; Arg; Carnitine; Gln; Guanidinosuccinate; Hippurate; Hypoxanthine; Kynurenine; Lys; Malate; Malonate; 
Mucate; Octanoate; Phthalate; Quinate; Trigonelline; 2-Aminobutyrate; 2-Hydroxybutyrate; 4-Methyl-2-oxopentanoate; 
Alpha-Aminoadipate; Choline; Citrate; Creatine; CSSG; Glycerophosphorylcholine; Hydroxyproline; Ile; Leu; N,N-
Dimethylglycine; Ornithine; Pipecolate; Taurine; Thr; Threonate; Tyr; Val 

 

Hodgson et al., 
2006 (195) 

70-85 y, 
Australia 

Cross-
sectional 

232 females GC-MS (Targeted – 4-O-
methylgallic acid) 

Plasma Tea (black or 
green) 

Interviewer-
administered 24-h 
dietary recall 

Tea (black or green) 4-O-methylgallic acid (4OMGA); homocysteine (tHcy) 

 

Hruby et al., 
2020 
(196) 

55.1 ± 9.8 y, 
US 

Cross-
sectional 

2,205 HILIC LC-MS 
(Untargeted & 
Targeted) 

Serum Total dairy, milk, 
cream/butter, 
cheese, and yogurt 

Harvard 
semiquantitative 
126-item FFQ 

Total dairy cis/trans-Hydroxyproline; pantothenate; uridine 

Milk cis/trans-Hydroxyproline; uridine 

Cream/butter C54:4 TAG;  

Cheese C46:0 TAG; C54:4 TAG; C54:5 TAG; C54:6 TAG 
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Yogurt C20:5 CE 
 

Hustad et al., 
2020 
(197) 

55 y, 
Norway 

Cross-
sectional 

517 NMR (Targeted) Plasma Fatty fish Semi-quantitative 
FFQ 

Fatty fish Fatty acids (Unsaturation; DHA; n-3 FA; DHA:FA; n-3 FA:FA) 
Amino Acids (Valine; Tyrosine) 

 

Jaceldo-Siegl 
et al., 2008 

(198) 

31-93 y, 
US & Canada 

Cross-
sectional 

100 
 

HPLC–PDA–MS 
(Targeted –
isoflavonoids (daidzein, 
genistein, total 
isoflavonoids, and 
equol) 

Urine Soy protein Three 24-h recalls 

Soy-protein Daidzein; genistein; total isoflavonoids 

 

Klebanoff et 
al., 1998 (199) 

– 
US 

Cross-
sectional 

60 females HPLC (Targeted) Serum Caffeine 24-hour dietary 
recall 

Caffeine Paraxanthine 

 

Landberg et 
al., 2018 (200) 

50–64 y, 
Sweden 

Cross-
sectional 

40 GC-MS (Targeted –
alkylresorcinol 
(AR) metabolites) 

Urine Whole grain intake 4-day food record 

Whole grain intake (3,5-dihydroxycinnamic acid (DHCA); 2-(3,5-dihydroxybenzamido)acetic acid (DHBA-glycine) 

 

Lau et al., 
2018 (201) 

6–11 y, 
Six European 

countries 

Cross-
sectional 

1,192 
children 

1H NMR – urine 
LC-MS/MS – serum 
(Targeted – amino 
acids, biogenic amines, 
acylcarnitines, 
glycerophospholipids, 
sphingolipids, and sum 
of hexoses) 

Urine & 
Serum 

Dietary intake 
habits 

Short FFQ 
(consumption per-
week) 

Bakery product  Serum: lysoPC a C17:0; PC aa C36:6; PC aa C38:0; PC aa C38:6; PC aa C40:6; PC ae C38:0; PC ae C38:6; PC ae C40:2; PC ae 
C40:6; SM (OH) C14:1; SM (OH) C16:1 

Beverages (soft & fizzy drinks) Urine: 3-hydroxybutyrate/ 3-aminoisobutyrate 
Serum: C5:1; C6:1; SM (OH) C16:1 
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Dairy Urine: pantothenate 
Serum: PC aa C28:1; PC aa C30:0; PC aa C38:0; PC ae C30:0; PC ae C38:6; SM (OH) C14:1 

Fish  Serum: PC aa C36:0; PC aa C36:5; PC aa C36:6; PC aa C38:0; PC aa C38:6; PC aa C40:1; PC aa C40:4; PC aa C40:6; PC aa 
C42:2; PC ae C38:0; PC ae C38:6; PC ae C40:6 

Fruits 
 

Urine: leucine; threonine/ lactate; alanine; succinate; glutamine; scyllo-inositol; hippurate; proline betaine; N-
methylnicotinic acid 
Serum: Acetylornithine 

Meat Urine: creatine 
Serum: PC ae C36:3; PC ae C36:4; PC ae C36:5; PC ae C38:5 

Potatoes Urine: acetate 
Serum: PC ae C30:0; PC ae C34:0; SM (OH) C14:1 

Sweets Serum: PC aa C38:0; PC aa C38:6; PC ae C38:5; PC ae C38:6; PC ae C40:6 

Vegetables Urine: hippurate 
 

Lécuyer et al., 
2020 
(202) 

48.3 ± 6.7 
France 

Cross-
sectional 

160 females UPLC-QToF-MS 
(Untargeted) 

Plasma Overall diet 24-h dietary record 

Alcohol Ethyl-β-D-glucopyranoside 

Fruits and vegetables Pipecolic acid; 2,6 dimethylheptanoyl carnitine; nonanoyl-l-carnitine; acylcarnitine C9:1; Phenylalanine 

Vegetables added fat LysoPC (17:1) 

Milk and dairy products Phenylalanyl-phenylalanine 

Sweetened food Cholic acid 

Western diet Pipecolic acid; Piperine 

Healthy diet Pipecolic acid; 2,6 dimethylheptanoyl carnitine; nonanoyl-l-carnitine; acylcarnitine C9:1; Dihydro4mercapto-3(2H) 
furanone 

 

Lindqvist et al., 
2019 
(203) 

120 y, 
Sweden 

Cross-
sectional 

120 1H-NMR (Untargeted) Serum meat-eaters from 
non–meat eaters 
and vegans from 
nonvegans 

FFQ and a 4-d 
weighed food diary 

Meat eaters 2-aminobutyrate; 3-hydroxyisobutyrate; Creatine; Creatine + lysine; Creatinine; Glutamine; Glycine; Isoleucine; Leucine + 
isoleucine; Lysine + arginine; Trimethylamine; Valine 
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Vegan 2-aminobutyrate; 3-hydroxyisobutyrate; Creatine; Creatine + lysine; Glutamine; Glycine; Isoleucine; Leucine; Leucine + 
isoleucine; Lysine + arginine; Trimethylamine; Valine 

 

MacDougall et 
al., 2018 (204) 

Children  
9 ± 2 y 

Adolescents 
15 ± 2 y, 

US 

Cross-
sectional 

326 Stable isotope-MS 
(Targeted – δ13C 
biomarker) 

Plasma Added sugar & 
sugar-sweetened 
beverages 

24-h dietary recall 

Added sugar & sugar-
sweetened beverages  

13C:12C (reported as δ13C) 

 

Mack et al., 
2019 
(205) 

49.2 y, 
Germany 

Cross-
sectional 

97 GC×GC-MS 
(Untargeted) 

Urine Coffee 24 h dietary recall 

Coffee 3,4-dimethyl-2,5-furandione; 2-Methyl-furan; Guaiacol; 2-/3-Methyl-butanoic acid; 2-Vinylfuran 

 

Malik et al., 
2019 (206) 

3 ongoing 
studies:  

(1) Nurses’ 
Health Study 

30–55 y 
(2) NHS II  
25–42 y 

(3) Health 
Professionals 

Follow-up 
Study 

40–75 y, 
US 

Cross-
sectional 

1,099 LC-MS (Targeted – lipid 

metabolites) 

Plasma Nut Consumption Validated FFQs 

Total Nut consumption C24:0 SM; C36:3 phosphatidylcholine (PC) plasmalogen-A; C36:2 PC plasmalogen; C24:0 ceramide; C36:1 PC plasmalogen; 
C22:0 SM; C34:1 PC plasmalogen; C36:2 phosphatidylethanolamine plasmalogen; C34:3 diacylglycerol (DAG); C16:1 
lysophosphatidylcholine (LPC); C16:1 cholesterol ester (CE); C32:1 DAG, C22:6 lysophosphatidylethanolamine (LPE); C22:6 
LPC; C18:0 sphingomyelin (SM); C50:2 TG; C34:2 DAG 

Peanuts & peanut butter C24:0 SM; C24:0 ceramide; C22:0 SM 

Other nuts C16:1 LPC; C16:1 CE; C34:3 DAG; C22:6 LPC; C22:6 LPE; C32:1 DAG 
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Markhus et al., 
2013 (207) 

29.6 ± 4.8 y,  
Norway 

Cross-
sectional 

 LC–MS/MS (Targeted – 
omega-3 index, the 
omega-3 HUFA score, 
and serum 25OH 
vitamin D) 

Serum Seafood 
consumption 

Short FFQ 

Oily fish 
dinner index 

25OHD3 

Seafood spread index DHA; Omega-3 index1; RBC omega-3 HUFA score2 

Oily fish spread index DHA; Omega-3 index1; RBC omega-3 HUFA score2 

 

Maskarinec et 
al., 1998 (208) 

36-80 y, 
US 

 

Cross-
sectional 

102 females RP-HPLC (Targeted – 
isoflavones) 

Urine Soy intake 12-item soy-based 
foods 
questionnaire 

Soy protein intake Urinary isoflavones (Daidzein at the highest rate, followed by Genistein and Glycitein) 

 

McNamara et 
al., 2020 

(97) 

18-90 y, 
Ireland 

Cross-
sectional 

565 1H-NMR & LC-MS 
(Untargeted) 

Urine Apple Four-day semi-
weighed food diary 

Apple xylose 

 

Menni et al., 
2013 (209) 

58.5 ± 10.5 y, 
UK 

Cross-
sectional 

1,003 
females 

FIA-MS/MS (Targeted –
acylcarnitines, 
Hydroxylacylcarnitines 
and dicarboxyl-
acylcarnitines, amino 
acids, sugar, 
sphingomyelins and 
sphingomyelin-
derivatives, and 
glycerophospholipids) 

Serum Nutritional 
patterns 

131-item FFQ 

Garlic  Acylcarnitines - C8:1; C5–DC(C6–OH) 

Coffee Acylcarnitines - C10:1 

Hypo-caloric dieting Acylcarnitines - C9 
Glycerophospholipids - PC ae C38:3 
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Fruit and vegetables Glycerophospholipids - PC aa C36:6; PC aa C38:6; PC aa C40:6; PC ae C38:6; PC ae C40:6 
Sphingolipids - SM C26:1 

 

McCullough et 
al., 2019 (210) 

68.3 ± 5.7 y, 
US 

Cross-
sectional 

1,367 post-
menopausal 

females 

UPLC-MS/MS 
(Untargeted) 

Serum 4 diet pattern 
scores—
Mediterranean 
diet score (aMED), 
alternate Healthy 
Eating Index 
(AHEI)-2010, the 
Dietary 
Approaches to 
Stop Hypertension 
(DASH) diet, and 
the Healthy Eating 
Index (HEI) 

152-item modified 
semi-quantitative 
Harvard FFQ 

aMED General: Sphingomyelin (d17:1/16:0, d18:1/15:0, d16:1/17:0); γ -Tocopherol/β-tocopherol; Orotidine; N-Acetylalanine 
Fish: Sphingomyelin (d18:2/18:1); Hydroxy-CMPF; Docosahexaenoate (DHA, 22:6n–3); Eicosapentaenoate (EPA, 20:5n–3); 
CMPF; Docosahexaenoylcholine; Eicosapentaenoylcholine; 1-Docosahexaenoylglycerol (22:6) 
 

AHEI General: Hydroxy-CMPF; CMPF; Docosahexaenoate (DHA, 22:6n–3); Sphingomyelin (d18:2/18:1); Eicosapentaenoate 
(EPA, 20:5n–3); γ -Tocopherol/β-tocopherol; Eicosapentaenoylcholine; Ergothioneine 
Red/processed meat: Docosahexaenoylcholine 
Fruits & vegetables: Carotene diol 

DASH General: Sphingomyelin (d18:2/18:1); γ -Tocopherol/β-tocopherol; Hydroxy-CMPF; Carotene diol; Threonate 
Fruits: β-Cryptoxanthin 
Low-fat dairy: Galactonate 

HEI General: Docosahexaenoylcholine; 1-Docosahexaenoylglycerol (22:6); Eicosapentaenoylcholine; Eicosapentaenoate (EPA, 
20:5n–3); 3-Methylxanthine; 7-Methylurate 
Seafood & plant protein: Docosahexaenoate (DHA, 22:6n–3); Hydroxy-CMPF 
Greens & beans: Hydroxy-CMPF; Carotene diol 
Fruits: β-Cryptoxanthin 
Added Sugar: Ergothioneine 
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Noh et al., 
2017 (211) 

53.9 ± 8.5 y, 
Four 

European 
countries 

(Germany, 
France, Italy, 
and Greece) 

Cross-
sectional 

475 UPLC-ESI-MS/MS 
(Targeted – polyphenol 
metabolites) 

Urine Polyphenol-rich 
foods 

24-h dietary recalls 
and 158-266 items 
dietary 
questionnaire (12 
months) 

Apple & pears  Phloretin; Epicatechin 

Citrus  Naringenin; Hesperetin; 3,4-Dihydroxyphenylacetic acid; Catechin 

Coffee Caffeic acid; Ferulic acid; 3,4-Dihydroxyphenylacetic acid; Gallic acid; Apigenin; Quercetin; Homovanillic acid; 
Protocatechuic acid; Daidzein 

Olives Hydroxytyrosol; Tyrosol; Quercetin; 3,4-Dihydroxyphenylacetic acid; Gallic acid ethyl ester 

Tea  Gallic acid; Hydroxytyrosol; Protocatechuic acid; 3,4-Dihydroxyphenylacetic acid; 3-Hydroxybenzoic acid; m-Coumaric 
acid; 3,5-Dihydroxyphenylpropionic acid; Resveratrol; Gallic acid ethyl ester 

All wine  Hydroxytyrosol; Gallic acid ethyl ester; Homovanillic acid; 3-Hydroxybenzoic acid 

Red wine Gallic acid ethyl ester 

 

O’Gorman et 
al., 2014 (212) 

32 ± 12 
(Male) 
37±14 

(Female), 
Ireland 

Cross-
sectional 

34 ESI–MS/MS (Targeted – 
lipidomic patterns) 

Serum Lipidomic patterns 
with dietary data 

The European 
Prospective 
Investigation into 
Cancer (EPIC) FFQ 

Saturated fatty acid PCaeC38:3; PCaeC36:2; PEaaC22:2; PEaaC34:0; PEaeC40:4 SMC21:0; SMC20:2; LPCaC18:2 

Polyunsaturated fatty acid PEaaC22:2; PEaaC34:0; PEaeC40:4; SMC15:0; SMC20:2; SMC21:1; LPEeC18:0 

Monounsaturated fatty acid PCaeC36:2; PCaeC38:3; PEaaC22:2; PEaaC34:0; PEaeC40:4; SMC19:0 

Meat  PEaaC38:5; PEaaC36:1 

Alcohol LPCeC18:0 

Fish LPEaC18:2; PEaaC38:4 

Vegetable PSaaC36:2 
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Pallister et al., 
2016 (213) 

52.5 ± 13 y, 
UK 

Cross-
sectional 

3,559 
Females 

LC-MS and GC-MS 
(Untargeted and 
targeted) 

Blood Food groups and 
individual food 
items 

131-item FFQ 

Alcohol Amino Acids: 2-aminobutyrate; 2-hydroxybutyrate (AHB); 3-(4-hydroxyphenyl)lactate; 3-methyl-2-oxobutyrate; 4-methyl-
2-oxopentanoate; alpha-hydroxyisovalerate; beta-hydroxyisovalerate; pipecolate 
 
Lipids: 4-androsten-3beta,17beta-diol disulfate 11; 5alpha-androstan-3beta,17beta-diol disulfate; arachidonate (20:4n6); 
caprate (10:0); caprylate (8:0); docosahexaenoate (DHA; 22:6n3); docosapentaenoate (n3 DPA; 22:5n3); 
eicosapentaenoate (EPA; 20:5n3); epiandrosterone sulfate; myo-inositol; scyllo-inositol; stearidonate (18:4n3); X-12644--
1-docosahexaenoylglycerophosphoethanolamine 
 
Xenobiotics: benzoate; piperine; theophylline  

Seafood Amino Acid: pyroglutamine1; X-12696--3,4-dihydroxyphenylacetate sulfate 
 
Carbohydrates: 1,5-anhydroglucitol (1,5-AG) 
 
Lipids: 1-docosahexaenoylglycerophosphocholine1; 1-eicosatrienoylglycerophosphocholine1; 3-carboxy-4-methyl-5-
propyl-2-furanpropanoate (CMPF); docosapentaenoate (n3 DPA; 22:5n3); docosahexaenoate (DHA; 22:6n3); 
eicosapentaenoate (EPA; 20:5n3) 

Meat Amino Acids: creatine; pyroglutamine1; trans-4-hydroxyproline 

Meat dishes Amino Acids: 3-phenylpropionate (hydrocinnamate);   
 
Lipids: scyllo-inositol  
 
Xenobiotics: ergothioneine 

Fats and oils Lipids: 10-undecenoate (11:1n1); 10-nonadecenoate (19:1n9); 15-methylpalmitate (isobar with 2-methylpalmitate); X-
13431--nonanoylcarnitine1; eicosapentaenoate (EPA; 20:5n3); myristate (14:0); pentadecanoate (15:0) 

Tea and coffee Lipids: Phosphatidylcholine acyl-alkyl C38:3; Phosphatidylcholine acyl-alkyl C40:4; Phosphatidylcholine acyl-alkyl C40:3; 
Phosphatidylcholine acyl-alkyl C38:2; Phosphatidylcholine diacyl C42:4; Phosphatidylcholine acyl-alkyl C38:1 
 
Peptide: cyclo(leu-pro) 
 
Xenobiotics: 1-methylxanthine; X-12039--3-hydroxypyridine sulfate; X-12217--O-methyl catechol sulfate; X-13741--3-
methyl catechol sulfate 1; catechol sulfate; quinate 
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Allium vegetables Amino Acids: tryptophan betaine 

Apples/pears Amino Acids: 3-phenylpropionate (hydrocinnamate); indolepropionate 
 
Carbohydrates: threitol 

Avocado Lipids: 1-docosahexaenoylglycerophosphocholine1; 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF); 
eicosapentaenoate (EPA; 20:5n3) 

Baked sweets Lipids: docosahexaenoate (DHA; 22:6n3); eicosapentaenoate (EPA; 20:5n3); scyllo-inositol 

Banana  Amino Acids: indolepropionate 

Beef Burger Amino Acids: trans-4-hydroxyproline 

Black tea Peptide: cyclo(leu-pro) 
 
Xenobiotics: X-12039--3-hydroxypyridine sulfate; X-13741--3-methyl catechol sulfate 1; quinate 

Butter Lipids: 10-undecenoate (11:1n1); 10-nonadecenoate (19:1n9); 15-methylpalmitate (isobar with 2-methylpalmitate); X-
13431--nonanoylcarnitine1; myristate (14:0); pentadecanoate (15:0) 

Chocolate Xenobiotics: 7-methylxanthine; theobromine 

Citrus fruit Carbohydrates: glycerate  
 
Xenobiotics: stachydrine 

Coffee Peptide: cyclo(leu-pro) 
 
Xenobiotics: 1-methylxanthine; X-12039--3-hydroxypyridine sulfate; X-12217--O-methyl catechol sulfate; X-13741--3-
methyl catechol sulfate 1; catechol sulfate; quinate 

Confectionary/jam Amino Acids: pipecolate 
 
Carbohydrates: glycerate 

Cream Lipids: lysoPhosphatidylcholine acyl; C17:0 Hydroxysphingomyeline C14:1; lysoPhosphatidylcholine acyl C28:1 

Fried fish Amino Acids: 3-phenylpropionate (hydrocinnamate) 
 
Lipids: scyllo-inositol 

Fruit juice Xenobiotics: stachydrine 

Green leafy vegetables Lipids: 1-docosahexaenoylglycerophosphocholine1; 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF) 
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Hamburgers Amino Acids: trans-4-hydroxyproline 

Herbal tea Lipids: Phosphatidylcholine acyl-alkyl C38:3; Phosphatidylcholine acyl-alkyl C40:4; Phosphatidylcholine acyl-alkyl C40:3; 
Phosphatidylcholine acyl-alkyl C38:2; Phosphatidylcholine diacyl C42:4; Phosphatidylcholine acyl-alkyl C38:1 

Salad dressing (high fat) Lipids: eicosapentaenoate (EPA; 20:5n3) 

High fiber cereal Cofactors and vitamins: pyridoxate 
 

Meat Amino Acids: creatine; pyroglutamine1; trans-4-hydroxyproline 

Mushrooms Xenobiotics: ergothioneine 

Oily fish Lipids: 1-arachidonoylglycerophosphoethanolamine1; 1-docosahexaenoylglycerophosphocholine1; 1-
eicosatrienoylglycerophosphocholine1; 1-linoleoylglycerophosphoethanolamine1; 1-oleoylglycerophosphoethanolamine; 
3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF); docosapentaenoate (n3 DPA; 22:5n3); docosahexaenoate 
(DHA; 22:6n3); eicosapentaenoate (EPA; 20:5n3); 

Other fish/ seafood Amino Acid: pyroglutamine1; X-12696--3,4-dihydroxyphenylacetate sulfate 
 
Carbohydrates: 1,5-anhydroglucitol (1,5-AG) 
 
Lipids: 1-docosahexaenoylglycerophosphocholine1; 1-eicosatrienoylglycerophosphocholine1; 3-carboxy-4-methyl-5-
propyl-2-furanpropanoate (CMPF); docosapentaenoate (n3 DPA; 22:5n3); docosahexaenoate (DHA; 22:6n3); 
eicosapentaenoate (EPA; 20:5n3); 

Porridge Xenobiotics: X-12253--2-aminophenol sulfate 

Poultry/chicken Amino Acids: creatine; pyroglutamine1 

Processed meat Amino Acids: 3-phenylpropionate (hydrocinnamate) 

Red meat Amino Acids: creatine; pyroglutamine1; trans-4-hydroxyproline 

Refined grain (white/brown 
bread) 

Lipids: Octenoylcarnitine 

Savoury pies Amino Acids: 3-phenylpropionate (hydrocinnamate) 
 
Xenobiotics: ergothioneine 

Soy/other milk Xenobiotics: 4-ethylphenylsulfate 

Spirits/liquor Lipids: 4-androsten-3beta,17beta-diol disulfate 11 

Sweet baked products Lipids: docosahexaenoate (DHA; 22:6n3); eicosapentaenoate (EPA; 20:5n3); scyllo-inositol;  
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Tomatoes Carbohydrates: glycerate 

Wine Amino Acids: 2-aminobutyrate; 2-hydroxybutyrate (AHB); 3-(4-hydroxyphenyl)lactate; 3-methyl-2-oxobutyrate; 4-methyl-
2-oxopentanoate; alpha-hydroxyisovalerate; beta-hydroxyisovalerate; pipecolate 
 
Lipids: 4-androsten-3beta,17beta-diol disulfate 11; 5alpha-androstan-3beta,17beta-diol disulfate; arachidonate (20:4n6); 
caprate (10:0); caprylate (8:0); docosahexaenoate (DHA; 22:6n3); docosapentaenoate (n3 DPA; 22:5n3); 
eicosapentaenoate (EPA; 20:5n3); epiandrosterone sulfate; myo-inositol; scyllo-inositol; stearidonate (18:4n3); X-12644--
1-docosahexaenoylglycerophosphoethanolamine 
 
Xenobiotics: benzoate; piperine; theophylline 

 

Pallister et al., 
2017 (214) 

TwinUK  
55.3 ± 13.4 y 

EGCUT   
37.9 ± 15.7 y 

KORA   
64.1 ± 5.5 y 

Cross-
sectional 

TwinUK 
(3,559) 
EGCUT 

(1,109) KORA 
(1,593) 

FIA-MS/MS (Untargeted 
and targeted) 

Serum Milk intake 131-item FFQ 

Milk  Trimethyl-N-aminovalerate (5-trimethylaminovalerate); Uridine; Phenylalanine; Tyrosine; Valine; 1,5-Anhydroglucitol; 
Erythronate; Diacylphosphatidylcholine C28:1; Hydroxy-sphingomyelin C14:1 

 

Papandreou et 
al., 2019 (215) 

67.14 ± 6 y, 
Spain 

Cross-
sectional 

1,664 LC-MS (Untargeted) Plasma Coffee Validated semi-
quantitative 137-
item FFQ 

Total coffee1 5-Acetylamino-6-amino-3-methyluracil (AAMU); Caffeine; Cotinine; C24:0 sphingomyelin (SM); Proline betaine; Kynurenic 
acid; Glycocholate; Lactate; Glyco-deoxy-chenodeox; Sucrose; 7-methylguanine 

Caffeinated coffee Caffeine; 5-Acetylamino-6-amino-3-methyluracil (AAMU); C24:0 sphingomyelin (SM); Cotinine; Sucrose; Proline betaine; 
Acetaminophen; C16:0 lyso-phosphatidylethanolamine (LPE); Piperine; Hypoxanthine 

Decaffeinated coffee Hydroxyhippurate; Alpha-glycerophosphate; C24:0 sphingomyelin (SM); Hippurate; C40:6 phosphatidylcholine (PC); 
C16:0 lyso-phosphatidylethanolamine (LPE); Phosphocreatine; Allantoin 

 

Parmenter et 
al., 2018 (216) 

77.2 y, 
Ireland 

Cross-
sectional 

346 UHPLC-ESI-MS 
(Targeted – 
(poly)phenol (phenyl-γ- 
valerolactones)) 

Plasma Dietary 
(poly)phenols 

Interviewer led FFQ 

Dietary (poly)phenol intake phenyl-γ-valerolactones metabolites:  
▪ 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone-3′-O-sulfate (3′4’-DiOH-VL-3′-O-Sulph) 
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▪ 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone-3′-O-glucuronide (3′4’-DiOHVL-3′-O-Gluc) 
▪ 5-(3′,5′-dihydroxyphenyl)-γ-valerolactone-3′-O-glucuronide (3′5’-DiOH-VL-3′-O-Gluc) 

 

Perng et al., 
2019 
(217) 

8-14 y, 
Mexico 

Cross-
sectional 

242 
 

LC-MS (Untargeted) Plasma Sugar-sweetened 
beverage (SSB) 

Age-specific semi-
quantitative FFQ 

Sugar-sweetened beverage 
(SSB) 

Females: 5-methyl-tetrohydrofolate; phenylephrine;  urate; nonanoate; deoxyuridine; sn-glycero-3-phosphocholine 
Males: 2-piperidinone; octanoylcarnitine; catechol 

 

Philibert et al., 
2006 (218) 

18-74 y, 
Canada 

Cross-
sectional 

243 Inductively coupled 
plasma (ICP)-MS 
(Targeted – fatty acids) 

Serum Total fish 
consumption 

Interviewer-
administered FFQ 

Total fatty fish eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) 

Total salmonid eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) 

 

Playdon et al., 
2016 (219) 

57 ± 9, 
US 

Case-
control 

253 UHPLC-MS/MS and GC-
MS (Untargeted) 

Urine & 
Serum 

Habitual diet 100-item FFQ 

Apple  Urine 
Lipids: Trimethylamine N-oxide (TMAO) 

Beer  Urine 
Amino acids: Beta-hydroxyisovalerate; Homovanillate sulfate; hydroxyisovaleroyl carnitine; Proline 
Lipids: Glycerol 3-phosphate (G3P); Phosphoethanolamine 

Butter  Urine 
Xenobiotics: 2-hydroxyacetaminophen sulfate; 3-(cystein-S-yl)acetaminophen 

Caffeinated coffee Urine 
Amino acids: C-glycosyltryptophan; Homovanillate sulfate; Methionine; Proline; Pyroglutamylvaline; Sarcosine (N-
Methylglycine) 
Xenobiotics: 1-methylurate; 1-methylxanthine; 1,3-dimethylurate; 1,3,7-trimethylurate; 1,7-dimethylurate; 5-
acetylamino-6-amino-3-methyluracil; 3-methylxanthine; 5-acetylamino-6-formylamino-3-methyluracil; Caffeine; 
Hippurate; N-(2-furoyl)glycine; Paraxanthine; Quinate; Theophylline;  
Cofactors and vitamins: Nicotinate; Trigonelline (N'-methylnicotinate) 
Lipids: Phosphoethanolamine 
Nucleotide: Pseudouridine 
Energy: 2-methylcitrate; Succinylcarnitine 
Serum 
Amino acids: Cyclo(leu-pro) 
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Xenobiotics: 1-methylxanthine; 1,3-dimethylurate; 1,3,7-trimethylurate; 1,7-dimethylurate; Caffeine; Catechol sulfate; N-
(2-furoyl)glycine; Paraxanthine; Quinate; Theophylline 
Cofactors and vitamins: Trigonelline (N'-methylnicotinate) 

Chicken Urine 
Nucleotide: 7,8-dihydroneopterin 

Citrus  Urine 
Amino acids: N-methylproline or N-methyl proline; N-methylglutamate 
Xenobiotics: Betonicine or 4-hydroxyproline betaine; Ectoine; Quinate; Stachydrine 
Lipids: Chiro-inositol; Myo-inositol; Scyllo-inositol 
Serum 
Amino acids: N-methylproline or N-methyl proline 
Xenobiotics: Stachydrine 
Lipids: Chiro-inositol; Scyllo-inositol 

Coffee Urine 
Amino acids: 2-aminobutyrate; 3-methoxytyrosine; 3-methyl-2-oxovalerate; C-glycosyltryptophan; Alanine; 
Homovanillate sulfate; Isoleucine; Methionine; Pyroglutamylvaline; Sarcosine (N-Methylglycine); Threonine; 
Vanillylmandelate (VMA) 
Xenobiotics: 1-methylxanthine; 1-methylurate; 1,3-dimethylurate; 1,7-dimethylurate; 3-hydroxyhippurate; 5-
acetylamino-6-formylamino-3-methyluracil; 5-acetylamino-6-amino-3-methyluracil; Caffeine; Hippurate; Quinate; N-(2-
furoyl)glycine; Paraxanthine; Theophylline 
Lipids: Phosphoethanolamine 
Carbohydrates: 3-sialyllactose; Lactose 
Nucleotide: Pseudouridine 
Energy: 2-methylcitrate; Succinylcarnitine 
Serum (caffeinated and decaffeinated) 
Amino acids: Cyclo(leu-pro); Glutarylcarnitine (C5) or glutaroyl carnitine 
Xenobiotics: 1-methylxanthine; 1,3,7-trimethylurate; Caffeine; Catechol sulfate; Quinate; N-(2-furoyl)glycine; 
Paraxanthine; Theophylline 
Cofactor and vitamins: Trigonelline (N'-methylnicotinate) 
Serum (decaffeinated) 
Amino acids: 3-methoxytyrosine 
Xenobiotics: 1,7-dimethylurate 

Corn Urine 
Amino acids: 3,4-dihydroxyphenylacetatel; Cysteine; Homovanillate (HVA); Homovanillate sulfate 
Xenobiotics: 2-oxo-1-pyrrolidinepropionate; 4-hydroxymandelate; Erythritol 
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Lipids: 3-hydroxy-3-methylglutarate; 21-hydroxypregnenolone disulfate; Azelate (nonanedioate); Pimelate 
(heptanedioate); Suberate (octanedioate) 
Carbohydrates: 3-sialyllactose; 6-sialyl-N-acetyllactosamine; Arabitol; Cytosine; Erythronate; Mannitol; Xylonate 
Nucleotide: N1-methylguanosine; N2,N2-dimethylguanosine; N2-methylguanosine; N4-acetylcytidine; Pseudouridine 
Cofactor and vitamins: Pantothenate 
Energy: 2-methylcitrate 

Cruciferous vegetables Urine 
Lipids: Acetylcarnitine; Cholate  
Serum 
Amino acids: Kynurenine 

Desserts 
 

Urine 
Xenobiotics: 3-methylxanthine; 7-methylxanthine 

Fish Urine 
Lipids: 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF) 
Serum 
Lipids: 1-docosahexaenoylglycerophosphocholine (22:6n3); 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF); 
Docosahexaenoate (DHA; 22:6n3); Eicosapentaenoate (EPA; 20:5n3);  

Green leafy vegetables Urine 
Carbohydrates: 6-sialyl-N-acetyllactosamine 
Serum 
Amino acids: Glutamate 
Cofactor and vitamins: Threonate 

Grapefruit Serum 
Lipids: Deoxycarnitine 

High fiber grains Urine 
Lipids: Octanoylcarnitine 
Carbohydrates: Sucrose 
Cofactor and vitamins: Quinolinate 

Liquor Urine 
Xenobiotics: Ethyl glucuronide 
Serum 
Xenobiotics: Ethyl glucuronide 

Margarine Urine 
Carbohydrates: Pyruvate 
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Meat fat Urine 
Amino acids: 4-hydroxyphenylacetate; 5-aminovalerate; Creatine; Lysine; Leucine; N-acetyltyrosine; N-acetylglutamine; 
N-acetylleucine;  
Lipids: Acetylcarnitine 
Carbohydrates: Xylitol 

Multivitamin use Urine 
Cofactor and vitamins: Alpha-CEHC sulfate (X - 12435); Alpha-CEHC glucuronide; Pantothenate; Pyridoxate; Riboflavin 
(Vitamin B2) 
Serum 
Cofactor and vitamins: Alpha-tocopherol; Pantothenate; Pyridoxate; Riboflavin (Vitamin B2) 

Nuts  Urine 
Amino acids: Tryptophan betaine 
Xenobiotics: 4-vinylphenol sulfate 
Serum 
Amino acids: Tryptophan betaine 

Orange Urine 
Amino acids: Anserine 
Xenobiotics: Stachydrine 
Nucleotide: Allantoin 

Orange/Yellow vegetables Urine 
Amino acids: 5-aminovalerate 

Other fruit 
 

Urine 
Xenobiotics: Hydroxycotinine; Nicotine 
Carbohydrates: Xylitol 
Energy: Isocitrate 
Serum 
Carbohydrates: Mannitol 

Other vegetables Urine 
Xenobiotics: Stachydrine 

Processed meat Urine 
Lipids: Acetylcarnitine; Carnitine 
Serum 
Carbohydrates: Glycerate 

Red meat Urine 
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Xenobiotics: Cinnamoylglycine; Ethyl glucuronide; Methyl-alpha-glucopyranoside 
Lipids: 3-dehydrocarnitine; Acetylcarnitine; Carnitine 
Carbohydrates: Sorbitol; Xylitol 

Shellfish  Urine 
Amino acids: 2-hydroxybutyrate (AHB); Alpha-hydroxyisovalerate; Creatine; Ciliatine (2-aminoethylphosphonate); Lysine; 
N-acetylglycine; Taurine 
Xenobiotics: Sulforaphane-cysteine 
Lipids: 3-hydroxybutyrate (BHBA); 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF) 
Serum 
Amino acids: 2-hydroxybutyrate (AHB) 
Lipids: 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF) 

Sugar sweetened beverage 
 

Urine 
Xenobiotics: Stachydrine 

 
Serum 
Amino acids: Methylglutaroylcarnitine (3-methylglutarylcarnitine) 

Tea  Urine 
Amino acids: 3-(4-hydroxyphenyl)lactate; 5-aminovalerate 

Total alcohol Urine 
Amino acids: 3-hydroxykynurenine; 5-hydroxyindoleacetate; Beta-hydroxyisovalerate; Gamma-glutamylisoleucine; 
Gamma-glutamylvaline; Homovanillate sulfate; Isobutyrylcarnitine; N-acetylthreonine; Proline 
Xenobiotics: Ethyl glucuronide; Nicotine 
Lipids: Glycerol 3-phosphate (G3P) 
Carbohydrates: 1,5-anhydroglucitol (1,5-AG); 3-sialyllactose 
Energy: Succinylcarnitine 
Serum 
Amino acids: Beta-hydroxypyruvate 
Cofactor and vitamins: Oxalate (ethanedioate) 

Vitamin C Urine 
Cofactor and vitamins: Ascorbate (Vitamin C) 
Serum 
Carbohydrates: Glycerate 

Vitamin E Urine 
Cofactor and vitamins: Alpha-CEHC sulfate (X - 12435); Pantothenate 
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Serum 
Cofactor and vitamins: Alpha-CEHC glucuronide; Alpha-tocopherol; Gamma-tocopherol 

Wine  Urine 
Xenobiotics: 2,3-dihydroxyisovalerate; 2,4,6-trihydroxybenzoate; 2-isopropylmalate; Ethyl glucuronide; Methyl-alpha-
glucopyranoside; Nicotine  
Carbohydrates: 2,3-butanediol; Xylitol 

 

Playdon et al., 
2017 (220) 

54–62 y, 
US 

Cross-
sectional 

1,336 
Male 

smokers 

LC-MS, LC-MS/MS, and 
GC-MS (Untargeted) 

Serum 4 diet quality 
indexes [the 
Healthy Eating 
Index (HEI) 2010, 
the Alternate 
Mediterranean 
Diet Score (aMED), 
the WHO Healthy 
Diet Indicator 
(HDI), and the 
Baltic Sea Diet 
(BSD)] 

FFQ (203 foods and 
73 mixed dishes) 

HEI-2010 

Whole grain Xenobiotics: Homostachydrine 

Total protein Xenobiotics: Homostachydrine 

Seafood and plant protein Amino acids: Pyroglutamine 
Lipids: Docosahexaenoate (22:6n–3); Stearidonate (18:4n–3) 
Xenobiotics: Ergothioneine 

Limit solid fats and added 
sugars 

Amino acids: Pyroglutamine 
Lipids: Linoleate (18:2n–6); Ergothioneine; Dihomo-linoleate (20:2n–6); Stearidonate (18:4n–3); 1-
Linoleoylglycerophosphoinositol 

Dairy Lipids: Linoleate (18:2n–6) 
Xenobiotics: Ergothioneine 

Ratio of mono- & poly-
unsaturated fat to saturated 
fat 

Lipids: Linoleate (18:2n–6); Dihomo-linoleate (20:2n–6); 1-Linoleoylglycerophosphoinositol 

Seafood  Lipids: Docosapentaenoate (n–3 DPA; 22:5n–3) 
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Limit refined grains Lipids: Docosapentaenoate (n–3 DPA; 22:5n–3) 

Limit sodium Xenobiotics: Ergothioneine 

Vegetables Amino acids: N-δ-acetylornithine 
Cofactor and vitamins: Threonate 
Xenobiotics: Ergothioneine 

Whole grain Xenobiotics: 2-Aminophenol sulfate (X-12253) 

Total or whole fruit Cofactor and vitamins: Threonate 

aMED 

Ratio of monounsaturated fat 
to saturated fat 

Amino acids: Indolebutyrate 
Cofactor and vitamins: ƴ-CEHC 
Lipids: 1-Myristoleoylglycerophosphocholine (14:1); Mead acid (20:3n–9); cis-4-Decenoyl carnitine; Linoleate (18:2n–6); 
Linolenate (α or ƴ; 18:3n–3 or 18:3n–6); 1-Linoleoylglycerol (1-monolinolein) 
Xenobiotics: Phytanate 

Vegetables Cofactor and vitamins: ƴ-CEHC; Threonate 
Xenobiotics: Ergothioneine 

Fish & seafood Lipids: 3-Carboxy-4-methyl-5-propyl-2-furanpropanoate; DHA (22:6n–3) 
Xenobiotics: Ergothioneine 

Fruits Amino acids: N-methylproline or N-methyl proline 
Carbohydrate: Threitol 
Cofactor and vitamins: Threonate 
Xenobiotics: Stachydrine 

Nuts  Amino acids: Tryptophan betaine 

HDI 

Polyunsaturated fat 6–10% Lipids: cis-4-Decenoyl carnitine; Linoleate (18:2n–6); 1-Linoleoylglycerophosphoinositol; Linolenate (a or g; 18:3n–3 or 
18:3n–6) 
Cofactor and vitamins: ƴ-CEHC; ƴ-CEHC glucuronide 

Fiber Xenobiotics: 2-Aminophenol sulfate (X-12253); Homostachydrine 

BSD 

Ratio of polyunsaturated fat 
to saturated and trans fat 

Amino acids: 3-Hydroxy-2-ethylpropionate 
Cofactor and vitamins: a-Tocopherol 
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Lipids: cis-4-Decenoyl carnitine; ƴ-CEHC; 1-Palmitoleoylglycerophosphoinositol; Linoleate (18:2n–6); 10-Undecenoate 
(11:1n–1) 

Reduce total fat percentage Carbohydrate: Threitol 
Lipids: Linoleate (18:2n–6) 

Vegetables Cofactor and vitamins: Threonate 

Fruits Carbohydrate: Threitol 
Cofactor and vitamins: Threonate 

 

Pujos-Guillot 
et al., 2013 

(116) 

Middle aged 
adults, 
France 

Cohort 80 RP-LC-ESI-ToF-MS 
(Untargeted) 

Urine Citrus fruits Dietary 
questionnaire 
(cohort study) 

Citrus fruit Proline betaine; flavanone glucuronides; two terpene metabolites (limonene 8,9-diol glucuronide and nootkatone 13,14-
diol glucuronide) 

 

Rabassa et al., 
2020 
(221) 

73 y, 
Italy 

Cross-
sectional 

119 HPLC-Q-ToF-MS 
(Untargeted) 

Urine Nuts Italian version of 
the FFQ 

Nuts Urolithin A; Urolithin A glucuronide; Urolithin A sulfate; Urolithin A sulphoglucuronide; Urolithin B; Urolithin B 
glucuronide; Hydroxyhippuric acid; 2-Hydroxyphenylacetic acid; Resveratrol-sulfate; Dodecanedioic acid; 
Dimethylglutaric acid; Indole-3-acetic acid glucuronide; Indoxyl sulfate/Indoxylsulphuric acid; Dihydroxy-benzoxazinone 

 

Reeves et al., 
2017 (222) 

26-36 y, 
Australia 

Cohort 546 females 1H NMR (Targeted – n-3 
fatty acids or tyrosine) 

Serum Fish 127-item FFQ 

Fish DHA; n-3 PUFA; n-3:n-6; Total PUFA; Tyrosine; Tyrosine:LNAA 

 

Rios‑Leyvraz et 
al., 2020 

(223) 

10.6 ± 2.9 y, 
Switzerland 

Cross-
sectional 

91 UHPLC-ESI-MS/MS 
(Targeted) 

Urine Caffeine Semiquantitative 
questionnaire 

Caffeine Caffeine 

 

Rothwell et al., 
2014 (224) 

– 
France 

Cross-
sectional 

39 HPLC-Q-ToF-MS 
(Untargeted) 

Urine Coffee Six detailed 24 h 
records and an FFQ 

Coffee Atractyligenin glucuronide; Cyclo(isoleucyl-prolyl); 1-Methylxanthine; 1,7 Dimethyluric acid; Kahweol oxide glucuronide; 
1-Methyluric acid; Trigonelline; Dimethylxanthine (Paraxanthine or Theophylline) glucuronide; 3-methyluracil (AFMU); 
Kahweol oxide glucuronide analogue; Hippuric acid; Trimethyluric acid; Paraxanthine; 3-hydroxyhippuric acid; 1,3- or 3,7-
dimethyluric acid; Caffeine 
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Rothwell et al., 
2019 
(225) 

52.5 ± 6.9 
France, 

53.2 ± 8.8 
Germany,  

58.2 ± 10.8 
Greece,  

54.6 ± 7.5 
Italy 

Cross-
sectional 

451 UHPLC–MS 
(Untargeted) 

Serum Coffee intake Center specific FFQ 

Coffee Trigonelline; Paraxanthine; AAMU; Caffeine; Cyclo(prolyl-valyl); Quinic acid; Cyclo(isoleucyl-prolyl); Pyrocatechol sulfate; 
Hippuric acid; Cyclo(leucyl-prolyl); Theophylline 

 

Rybak et al., 
2015 (226) 

≥ 6 y, 
US 

Cross-
sectional 

2,261  LC-ESI-MS/MS 
(Targeted – caffeine 
and caffeine 
metabolites) 

Urine Caffeine intake 
(from foods, 
beverages and 
dietary 
supplements) 

24-h dietary recall 
interview 

Coffee Caffeine (1,3,7-trimethylxanthine); theophylline (1,3-dimethylxanthine); paraxanthine (1,7-dimethylxanthine); 1-
methylxanthine; 1-methyluric acid; 1,3-dimethyluric acid; 1,7- dimethyluric acid; 1,3,7-trimethyluric acid; 5-acetylamino-
6-amino-3-methyluracil; 3,7-dimethyluric acid1; theobromine (3,7-dimethylxanthine)1; 3-methyluric acid1; 3-
methylxanthine1; 7-methyluric acid1; 7-methylxanthine1 

 

Schmidt et al., 
2015 (227) 

 30–49 y, 
UK 

Cross-
sectional 

379 Males 
 

LC-MS (Targeted – 
acylcarnitines, amino 
acids, biogenic amines, 
glycerophospholipids, 
hexose, and 
sphingolipids) 

Plasma Meat eaters, fish 
eaters, 
vegetarians, and 
vegans 

Semi-quantitative 
(FFQ) 

Meat eaters 
 
 
 

Acylcarnitines: C0; C3; C4; C5; C16 
 
Amino Acids: alanine; creatinine 
 
Glycerophospholipids: highest concentration (majority) – (largest difference: PC aa 36:6) 
 
Sphingolipids: highest concentration (majority) 

Fish eaters Amino Acids: glutamate; glutamine; leucine; lysine; methionine; tryptophan; tyrosine; valine 
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Vegetarians Amino Acids:  citrulline; kynurenine; leucine; lysine; methionine; tryptophan; tyrosine; valine 

Vegans 
 

Acylcarnitines: C18:2 
 
Amino Acids:  citrulline; glycine; ornithine 
 
Glycerophospholipids: lowest concentration (majority) 
 
Sphingolipids: lowest concentration (majority) – especially: SM(OH)24:1 

 

Schmidt et al., 
2016 (228) 

30-49 y, 
UK 

Cross-
sectional 

392 males LC-MS/MS (Targeted – 
amino acids) 

Plasma Meat-eaters, fish-
eaters, 
vegetarians, and 
vegans 

Semi-quantitative 
FFQ 

Habitual diet group Fish-eaters: lysine; methionine; tryptophan; tyrosine; alanine; Glycine 
Vegetarians: lysine; methionine; tryptophan; tyrosine; alanine; Glycine 
Vegans: lysine; methionine; tryptophan; tyrosine; alanine; Glycine 

 

Seow et al., 
1998 (229) 

45–74 y, 
Singapore 

Cross-
sectional 

147 HPLC (Targeted – 
isoflavonoids) 

Urine Soy intake Structured food 
frequency/portion 
size questionnaire 

Soy intake Daidzein; Sum of isoflavonoids (Daidzein +  Genistein +  Glycitein) 
 

Seow et al., 
2020 
(230) 

49.7 y, 
Singapore 

Cross-
sectional 

1,104 
(coffee) 
2,302 

(black tea) 
2,075 

(green tea) 

LC-MS (Targeted – 
amino acids, 
acylcarnitines, and 
sphingolipids) 

Plasma Coffee, Black Tea, 
and Green Tea 
Consumption 

Semi-quantitative 
169-item validated 
FFQ 

Coffee  SM C30:1; SM C30:1; SM d18:1/14:0; HexCer d16:1/24:0; Hex2Cer d18:1/14:0; SM d18:1/16:0; HexCer d16:1/16:0; SM 
C32:1; HexCer d18:1/24:0; HexCer d16:1/22:0; SM d16:1/24:0; Hex2Cer d16:1/16:0; SM d16:1/20:0; SM C40:1; SM 
d16:1/16:0; SM d16:1/22:0; SM d18:2/14:0; SM C38:1; SM C42:1; Cer d16:1/24:0; SM C32:2; S1P d16:1; Cer d16:1/16:0; 
HexCer d18:1/26:0; SM d18:1/22:0; SM d18:1/24:0; Cer d18:1/24:0; HexCer d18:1/18:0; Cer d18:1/16:0; HexCer 
d18:1/23:0; SM d16:1/24:1; SM C42:2; HexCer d18:2/24:0; C18:2 (Acylcarnitine); Cer d16:1/18:0; SM C36:1; SM C34:1; 
SM d18:2/24:0; HexCer d18:1/22:0; C16:2 Acylcarnitine; C14:2 Acylcarnitine; SM d16:1/18:0; C18-DC/C20-OH 
Acylcarnitine; Cer d16:1/20:0; C2 Acylcarnitine; SM d18:2/22:0; SM d18:1/23:0; HexCer d18:2/22:0; SM C40:2; Cer 
d16:1/22:0; Alanine; SPH d16:1; C14:1-OH; SM d18:1/18:0; SM d18:1/20:0; Cer d18:2/24:0; HexCer d18:1/16:0; Hex2Cer 
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d18:2/16:0; Cer d18:1/26:0; Cer d18:1/22:0; C10:1; HexCer d18:1/25:0; C10:2; Hex2Cer d18:1/16:0; Cer d18:1/20:0; Cer 
d18:1/24:1; C7-DC; Hex2Cer d18:1/24:0; HexCer d18:1/24:1; C8:1-OH/C6-DC; C12:1;  SM d18:2/23:0; Cer d16:1/24:1; 
C16:1-OH/C14:1-DC; Cer d16:1/23:0; SM d18:1/24:1; SM d18:2/16:0; C10:3 

Black Tea SM d16:1/18:0; S1P d17:1; SM d16:1/20:0; Hex2Cer d16:1/16:0; S1P d16:1; SM d18:2/18:0; SM C36:2; SM C43:2; Glycine 

Green Tea GM3 d18:1/16:0; C8:1-OH/C6-DC; SM d18:2/18:0; SM d18:1/14:0 
 

Shiokawa et 
al., 2018 (231) 

23−43 y, 
Japan 

Cross-
sectional 

8 1H NMR (Targeted) Urine Fruits and 
vegetables 

309 nutritional 
datasets of daily 
dietary intake 
records 

Fruits and vegetables Hippurate 

 

Szeto et al., 
2004 (232) 

Vegetarian 
44.2 ± 9.0 y, 

Non-
vegetarian 

44.0 ± 9.2 y, 
Hong Kong 

Cross-
sectional 

30 
vegetarians 

HPLC (Targeted – amino 
acids) 

Plasma Vegetarian diet Ate no meat or fish 
owing to their 
religious (Taoist) 
beliefs 

Vegetarians Ascorbic acid; hsCRP; triacylglycerol; uric acid 

 

Thiébaut et al., 
2009 (233) 

56.8 ± 6.4 y, 
France 

Cross-
sectional 

1,114 
women 

Capillary-GC (Targeted 
– phospholipid fatty 
acid) 

Serum Fatty acid 
composition as 
a biomarker of 
dietary fat 

208-item diet 
history 
questionnaire 

Sunflower oil Monounsaturates (cis16:1n-7; cis18:1n-9) 
n-6 PUFAs (cis18:2n-6; 20:4n-6; Total n-6) 
n-3 PUFAs (18:3n-3; 20:5n-3) 
Ratios (18:0/18:1) 

Olive oil Monounsaturates (cis18:1n-9) 
n-6 PUFAs (cis18:2n-6; 20:4n-6; Total n-6) 
n-3 PUFAs (18:3n-3; 20:5n-3; 22:6n-3; Total n-3) 
Ratios (18:0/18:1; n-6/n-3) 

Dairy products Saturates (15:0; 17:0) 

Margarine 
 

Monounsaturates (cis18:1n-9; trans16:1n-7; trans18:1n-9; trans-MUFA1) 

n-6 PUFAs (cis18:2n-6; 20:4n-6; Total n-6) 
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Ratios (18:0/18:1) 

Total fish 
 

Saturates (16:0) 
Monounsaturates (cis18:1n-9) 
n-6 PUFAs (cis18:2n-6; 20:4n-6; Total n-6) 
n-3 PUFAs (20:5n-3; 22:6n-3; Total n-3) 
Ratios (n-6/n-3) 

Fatty fish 
 

n-6 PUFAs (Total n-6) 
n-3 PUFAs (20:5n-3; 22:6n-3; Total n-3) 
Ratios (n-6/n-3) 

Meat n-6 PUFAs (20:4n-6) 

Manufactured food Monounsaturates (trans18:1n-9; trans-MUFA1) 

Alcoholic beverages Saturates (15:0; 17:0; 16:0; 18:0) 
Monounsaturates (cis16:1n-7; cis18:1n-9; trans16:1n-7; trans18:1n-9; trans-MUFA1) 

n-6 PUFAs (cis18:2n-6) 
n-3 PUFAs (20:5n-3) 
Ratios (18:0/18:1) 

 

Toffano et al., 
2018 (234) 

11.7 ± 1.1 y, 
Brazil 

Cross-
sectional 

167 UPLC (α-tocopherol and 
β-carotene); RP-LC-ESI- 
MS (riboflavin and 
pyridoxine); LC-MS/MS 
(S-adenosyl-L-
homocysteine) 
(Targeted) 

Plasma Dietary exposure Dietary intakes 
(mean scores) - 
averaging 24-h 
recalls at baseline 
(visit 1), and six 
(visit 2) and 12 
(visit 3) weeks 

Total vegetables linoleic acid (LA); α-linolenic acid (ALA); eicosapentaenoic fatty acid (EPA); docosahexaenoic fatty acid (DHA); arachidonic 
fatty acid (ARA); β-carotene; Creatine 

Total fruits linoleic acid (LA); α-linolenic acid (ALA); eicosapentaenoic fatty acid (EPA); docosahexaenoic fatty acid (DHA); arachidonic 
fatty acid (ARA); β-carotene 

Dark green and orange 
vegetables & legumes 

α-linolenic acid (ALA); β-carotene; Retinol; Creatine 

Meat, eggs and legumes α-linolenic acid (ALA); docosahexaenoic fatty acid (DHA); β-carotene; Creatine 

Dark green and orange 
vegetables WITHOUT legumes 

docosahexaenoic fatty acid (DHA); Retinol; S-adenosyl-homocysteine (SAH) 
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Whole fruits β-carotene; Riboflavin 

Milk & dairy Retinol; Pyridoxal 

Whole grains 5 methyl tetrahydrofolate (5-MTHF) 
 

Tong et al., 
2020 
(235) 

48,4 y, 
UK 

Cross-
sectional 

10,806 LC-ESI-MS/MS 
(Targeted – 
acylcarnitines, amines, 
sphingolipids, and 
phospholipids) 

Plasma Mediterranean 
diet 

130-item 
semiquantitative 
FFQ 

Mediterranean diet Acylcarnitines (18:0, 18:2, 16:0, 14:2, 10:1, and carnitine) 
Amino Acid/Biogenic Amines (trans-hydroxyproline, cis-hydroxyproline, acetylornithine, creatinine, citrulline, threonine, 
isoleucine, proline, tryptophan, glutamate) 
Lysophosphatidylcholines (20:3, 20:4, 24:0, 16:1, 18:1, 28:0) 
Phosphatidylcholines, Acyl-Alkyl (42:4, 38:0, 40:6, 36:4, 38:4, 40:2, 38:6, 38:1, 36:3, 40:1, 34:1, 42:1, 42:3, 38:3, 44:6, 
40:4, 40:5, 34:2, 42:0, 36:5, 36:1) 
Phosphatidylcholines, Diacyl (38:6, 40:6, 38:0, 36:5, 36:6, 36:0, 36:1, 34:1, 38:3, 32:1, 38:4, 40:5, 40:1, 42:0, 38:1, 36:3, 
34:3, 42:2, 36:4, 40:2, 42:4) 
Sphingomyelins (18:0, 24:1)  

 

Van Roekel et 
al., 2018 (236) 

35–70 y,  
10 European 

countries 

Cross-
sectional 

2,974 HPLC-MS/MS (Targeted 
– acylcarnitines, amino 
acids, biogenic amines, 
a sum of hexoses, 
phosphatidylcholines 
(PCs) including lysoPCs, 
diacyl PCs, and acyl–
alkyl PCs, and 
sphingomyelins) 

Plasma & 
Serum 

Alcohol Validated country-
specific or center-
specific 
questionnaires 

Alcohol 
 
 

Amino Acids: citrulline 
 
Lipids: diacylphosphatidylcholines; lysophosphatidylcholines; sphingomyelins 
 
Other: acylcarnitines; acyl-alkyl-phosphatidylcholines 
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Vázquez-
Fresno et al., 
2014 (237) 

53-79 y, 
Spain 

Cohort 
study 

91 
(5-year) 

1NMR (Untargeted) Urine Wine 137-item FFQ 

Wine Food metabolome metabolites: tartrate; ethyl glucuronide [EtG]; 2,3-butanediol; mannitol; ethanol  
Endogenous response to wine exposure: 3-methyl-2-oxovalerate 

 

Vázquez-
Manjarrez et 

al., 2019 
(152) 

47 y, 
Germany 

Cross-
sectional 

78 UPLC-QTOF-MS 
(Targeted) 

Urine Banana 24-h dietary recall 

Banana Methoxyeugenol glucuronide; Dopamine sulfate; Salsolinol sulfate 1; 6-Hydroxy-1-methyl-1,2,3,4-tetrahydro 
β-carboline sulfate 

 

Walker et al., 
2020 
(238) 

55 y, 
US 

Cross-
sectional 

2208 LC-MS/MS Serum Alternative Healthy 
Eating Index 
(AHEI), the Dietary 
Approaches to 
Stop Hypertension 
(DASH) diet; and a 
Mediterranean-
style (MDS) diet 

Harvard semi-
quantitative FFQ 

Alternative Healthy Eating 
Index (AHEI) diet  

Aconitate; Cholesterol ester (C22:6); Hippurate; Isocitrate; Lysophosphatidylcholine (C20:5); Lysophosphatidylcholine 

(C22:6); Phosphatidylcholine (C38:6); Phosphatidylcholine (40:6); Sphingomyelin (C18:0); Sphingomyelin 
(C18:1); Triacylglycerol (C56:7); Triacylglycerol (C56:8); Triacylglycerol (C58:10); Triacylglycerol (C58:8); 
Triacylglycerol (C58:9); Uridine 

Dietary Approaches to Stop 
Hypertension (DASH) 

Aconitate; Cis/trans-hydroxyproline; Cotinine; Hippurate; Isocitrate; Lysophosphatidylcholine (C20:5); 
Lysophosphatidylcholine (C22:6); Ornithine; Oxalate; Pantothenate; Phosphatidylcholine (C38:6); Phosphatidylcholine 
(40:6); Serine; Sphingomyelin (C18:0); Sphingomyelin (C18:1); Thiamine; Triacylglycerol (C56:7); Triacylglycerol (C56:8); 
Triacylglycerol (C58:10); Triacylglycerol (C58:8); Triacylglycerol (C58:9); Uridine 

Mediterranean-style (MDS) 
diet 

Cholesterol ester (C22:6); Cis/trans-hydroxyproline; Cotinine; Hippurate; Isocitrate; Lysophosphatidylcholine (C22:6); 
Lysophosphatidylethanolamine (C20:4); Oxalate; Phosphatidylcholine (C38:6); Phosphatidylcholine (40:6); Sphingomyelin 
(C14:0); Sphingomyelin (C18:0); Sphingomyelin (C18:1); Triacylglycerol (C54:7); Triacylglycerol (C56:7); Triacylglycerol 
(C56:8); Triacylglycerol (C58:10); Triacylglycerol (C58:8); Triacylglycerol (C58:9) 

 

Wanders et al., 
2018 (239) 

67.9 ± 7.1, 
Netherlands 

Cross-
sectional 

1,171 GC-FID (Targeted – fatty 
acids (linoleic acid (LA), 

Plasma 
(CODAM) 

Linoleic acid (LA), 
alpha-linolenic acid 

79-item semi-
quantitative FFQ 
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(pooled data 
from the 

CODAM and 
Hoorn 

studies) 

alpha-linolenic acid 
(ALA), eicosapentaenoic 
acid (EPA), and 
docosahexaenoic acid 
(DHA)) 

& Serum 
(Hoorn) 

(ALA), 
eicosapentaenoic 
acid (EPA), and 
docosahexaenoic 
acid (DHA) 

Self-reported LA, ALA, EPA, 
and DHA 

Strong association with circulating LA, EPA and DHA 
Weaker association with circulating ALA 

 

Wang et al., 
2018 (240) 

68.3 ± 5.7 y, 
US 

Cross-
sectional 

369  
Nonsmoking 

post-
menopausal 

women 

UHPLC–MS/MS) 
(Untargeted) 

Serum 91 food groups or 
items 

152-item FFQ 

Total citrus fruits and juices Amino acids: N-methylproline 
Xenobiotics: stachydrine (proline betaine); methyl glucopyranoside (α + β); β-cryptoxanthin 

Orange juice Amino acids: N-methylproline 
Lipids: chiro-inositol 
Xenobiotics: stachydrine (proline betaine) 

Banana Amino acid: dopamine 3-O-sulfate; dopamine 4-sulfate; S-methylmethionine; 3-methoxytyramine sulfate; 5-
hydroxyindoleacetate 

Prunes Amino acid: 5-hydroxymethyl-2-furoic acid 
Xenobiotics: hippurate; benzoylcarnitine; catechol sulfate 

Cruciferous vegetables Amino acid: S-methylcysteine sulfoxide 

Mushrooms Xenobiotics: ergothioneine 

Allium vegetables Amino acid: N-methyltaurine 
Cofactor/vitamin: γ –CEHC; γ -CEHC glucuronide 
Xenobiotics: N-acetylalliin; piperine; ergothioneine 

Onion Amino acid: N-methyltaurine 

Garlic Amino acid: N-methyltaurine 
Cofactor/vitamin: γ -CEHC glucuronide; γ -CEHC 
Xenobiotics: N-acetylalliin; S-allylcysteine; ergothioneine; alliin 

Eggs Lipids: 1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (P-18:0/20:4) 

Red meat Lipids: 1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (P-18:0/20:4); 1-(1-enyl-stearoyl)-2-oleoyl-GPE (P-18:0/18:1) 
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Poultry Amino acid: 3-methylhistidine 

Total fish Lipids: 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF); docosahexaenoic acid (DHA); docosahexaenoylcholine; 
1-docosahexaenoylglycerol (22:6); eicosapentaenoic acid (EPA); eicosapentaenoylcholine 

Dark fish Lipids: 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF); docosahexaenoic acid (DHA); eicosapentaenoic acid 
(EPA); docosahexaenoylcholine; sphingomyelin (d18:2/18:1); eicosapentaenoylcholine; 1-docosahexaenoylglycerol 
(22:6); docosapentaenoate (n-6 DPA; 22:5n-6) 

Shellfish Lipids: 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF) 

Total nuts Amino acids: tryptophan betaine 
Peptide: γ -glutamylvaline 
Lipids: lignoceroylcarnitine (C24); behenoylcarnitine (C22); sphingomyelin (d18:2/23:1) 
Xenobiotics: 4-vinylphenol sulfate 

Peanuts Amino acids: tryptophan betaine 
Peptide: γ -glutamylvaline 
Lipids: lignoceroylcarnitine (C24); behenoylcarnitine (C22); sphingomyelin (d18:2/23:1) 
Xenobiotics: 4-vinylphenol sulfate 

Milk  Carbohydrates: galactonate 
Peptide: phenylacetylglycine 
Xenobiotics: 2,8-quinolinediol sulfate 

Soy milk Xenobiotics: 4-ethylphenylsulfate 

Butter  Lipids: caprate (10:0); 10-undecenoate (11:1n-1); sphingomyelin (d18:1/25:0, d19:0/24:1, d20:1/23:0, d19:1/24:0); 
caprylate (8:0); sphingomyelin (d17:1/16:0, d18:1/15:0, d16:1/17:0) 

French fries Lipids: eicosanodioate 

Chocolate candies Xenobiotics: 3-methylxanthine; 7-methylurate; 3,7-dimethylurate; theobromine; 7-methylxanthine 

Desserts Lipids: sphingomyelin (d18:2/18:1) 
Xenobiotics: ergothioneine 

Total alcohol Lipids: 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF); sphingomyelin (d18:2/18:1) 
Xenobiotics: ethyl glucuronide; caffeine 

Total wine Lipids: 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF); sphingomyelin (d18:2/18:1); oleoyl-linoleoyl-glycerol 
(18:1/18:2) (2); androstenediol (3β,17β) monosulfate (2) 
Xenobiotics: ethyl glucuronide; 2,3-dihydroxyisovalerate 

Red wine Xenobiotics: ethyl glucuronide; 2,3-dihydroxyisovalerate 

White wine Xenobiotics: ethyl glucuronide; 2,3-dihydroxyisovalerate 
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Liquor Lipids: androstenediol (3β,17β) disulfate (1); androstenediol (3β,17β) monosulfate (2); 5α-androstan-3β,17β-diol 
disulfate; 5α-androstan-3α,17β-diol disulfate 
Xenobiotics: ethyl glucuronide 

Total coffee Cofactor/vitamin: trigonelline (N’-methylnicotinate) 
Energy: citraconate/glutaconate 
Xenobiotics: quinate; 3-hydroxypyridine sulfate; 3-methyl catechol sulfate (1) 

Caffeinated coffee Xenobiotics: 1-methylxanthine; Paraxanthine; 1-methylurate; 5-acetylamino-6-amino-3-methyluracil; 1,3-dimethylurate; 
1,7-dimethylurate; theophylline; caffeine; 1,3,7-trimethylurate 

Decaffeinated coffee Cofactor/vitamin: trigonelline (N’-methylnicotinate) 
Xenobiotics: 3-hydroxypyridine sulfate; quinate; 2,3-dihydroxypyridine 

Total tea Xenobiotics: theanine 

Non-herbal tea Xenobiotics: theanine 

Diet soft drinks Xenobiotics: saccharin 
 

Wedekind et 
al., 2019 

(157) 

53.9 ± 8.5 y, 
Germany 

Italy 
France 
Greece 

Cross-
sectional 

474 LC-MS (Targeted) Urine Smoked meat 
intake 

24HDR and FFQ 

Smoked meat product Syringol sulfate; 4-Methylsyringol sulfate; 4-Ethylsyringol sulfate; 4-Allylsyringol sulfate isomer II 

 

Wedekind et 
al., 2020 

(158) 

53. 9± 8.52 
(urine) 

54.2 ± 8.5 
(serum) 

Germany, 
Italy, France, 
and Greece 

Cross-
sectional 

474 (urine) 
451 (serum) 

LC-MS (Targeted – 
acylcarnitines) 

Urine & 
Serum 

Red and processed 
meat 

24-h dietary recall  

Red & processed meat Acylcarnitines (C0, 2:0, 3:0, 4:0 (OH), 5:0, 7:0, 8:0 (OH), 8:0 (OH.2), 10:0 (OH), 11:1) 
Note: OH = hydroxyl group on fatty acid moiety 

 

Yeung et al., 
2010 (241) 

60–80 y, 
US 

Cross-
sectional 

186 Stable isotope-MS 
(Targeted – δ13C 
biomarker) 

Serum Food products 
containing corn- 
and cane-based 
sweeteners 

Validated Willett 
semi-quantitative 
FFQ 



PhD. Thesis – Talha Rafiq; McMaster University – Medical Science 

 

288 
 

(measured as 
sweetened 
beverage intake) 

Sweetened beverage Carbon isotopic signatures (δ13C)  
 

Yin et al., 2020 
(163) 

45 ± 2 y, 
Ireland 

Cross-
sectional 

100 1H NMR (Targeted) Urine Fish FFQ 

Fish TMAO 

 

Zheng et al., 
2014 (242) 

 52.9 ± 5.8 y, 
(Discovery) 
52.7 ± 5.7 y 

(Replication) 

Cross-
sectional 

1,977 African 
Americans 

GC-MS and LC-MS 
(Untargeted) 

Serum Dietary intake 
habits 

66-item 
interviewer-
administered semi-
quantitative FFQ 

Sugar-rich foods and 
beverages 
 

Unsaturated long chain: Docosapentaenoate (n3 DPA; 22:5n3) 
Fatty acids: 10-Nonadecenoate (19:1n9); Adrenate (22:4n6); Dihomo-linoleate (20:2n6); Eicosenoate (20:1n9 or 11); 
Oleate (18:1n9); Palmitoleate (16:1n7) 
2-Hydroxybutyrate–related metabolites: 2-Aminobutyrate; 2-Hydroxybutyrate; 2-Hydroxyisobutyrate; 3-
Hydroxyisobutyrate; α-Hydroxyisovalerate 
Sex steroids: 4-Androsten-3β,17β-diol disulfate 1; 5α-Androstan-3β,17β-diol disulfate 
γ-Glutamyl dipeptides: γ-Glutamylglutamate; γ-Glutamylisoleucine; γ-Glutamylleucine; γ-Glutamylthreonine; γ-
Glutamyltyrosine 
In amino acid pathway: Creatine 
In Krebs cycle pathway: Malate 
In xanthine metabolism: Theobromine 

Fruits and vegetables In carbohydrate pathway: Glycerate 

Coffee Quinate; Paraxanthine 5-Acetylamino-6-amino-3-methyluracil; 1,7-Dimethylurate; 1-Methylurate; 1-Methylxanthine; 
Caffeine; 1,3,7-Trimethylurate; 7-Methylxanthine 

Eggs Docosapentaenoate (n6 DPA; 22:5n6) 

Fish and seafood Eicosapentaenoate (EPA; 20:5n3); Docosahexaenoate (DHA; 22:6n3); 3-carboxy-4-methyl-5-propyl-2-furanpropanoate 
(CMPF) 

Fruit juice Glycerate; Stachydrine; N-methyl proline; Threonate; Scyllo-inositol; Homostachydrine 

Nuts and peanut butter Tryptophan betaine; 2-Methylbutyroylcarnitine; 4-Vinylphenol sulfate; 5α-Androstan-3β,17β-diol disulfate; 4-Androsten-
3β,17β-diol disulfate 1 
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Dietary Sucrose 10-Nonadecenoate; 2-Aminobutyrate; 2-Hydroxybutyrate; 3-Hydroxyisobutyrate; 4-Androsten-3β,17β-diol disulfate 1; 
5α-Androstan-3β,17β-diol disulfate; α-Hydroxyisovalerate; Dihomo-linoleate (20:2n6); Eicosenoate (20:1n9 or 11); γ-
Glutamylglutamate; γ-Glutamylisoleucine; γ-Glutamylleucine; γ-Glutamylthreonine; γ-Glutamyltyrosine; Malate; Oleate 
(18:1n9); Theobromine 

Carbohydrate 10-Nonadecenoate; 2-Aminobutyrate; 2-Hydroxybutyrate; 3-Hydroxyisobutyrate; 4-Androsten-3β,17β-diol disulfate 1; 
5α-Androstan-3β,17β-diol disulfate; Adrenate (22:4n6); α-Hydroxyisovalerate; γ-Glutamylglutamate; γ-
Glutamylisoleucine; γ-Glutamylleucine; γ-Glutamylthreonine; γ-Glutamyltyrosine 

 

Zheng et al., 
2014 (243) 

52.9 ± 5.8 y, 
(Discovery) 
52.8 ± 5.6 y 

(Replication) 

Cross-
sectional 

1,977 African 
Americans 

GC-MS and LC-MS 
(Untargeted) 

Serum Alcohol Interviewer-
administered 
dietary FFQ 

Alcohol 
 
 
 

Amino acid: 2-Aminobutyrate; α-Hydroxyisovalerate; 2-Hydroxyisobutyrate; α-Hydroxyisocaproate; 2-Hydroxy-3-
methylvalerate; 5-oxoproline; Indolelactate 
Lipid: Docosapentaenoate (n-3 docosapentaenoic acid; 22:5n23); Palmitoleate (16:1n27); Adrenate (22:4n26); 
Dihomolinoleate (20:2n26); 10-Heptadecenoate [17:1n2Cyclo(leu-pro)7]; Eicosenoate (20:1n2Cyclo(leu-pro)9 or 11); 
Oleate (18:1n2Cyclo(leu-pro)9); Myristoleate (14:1n2Cyclo(leu-pro)5); Palmitate (16:0); Myristate (14:0); Stearidonate 
(18:4n23); 5-Hete; 5-Hepe; 1-Palmitoleoylglycerophosphocholine; 1-Stearoylglycerophosphoethanolamine; 1-
Pentadecanoylglycerophosphocholine; 2-Arachidonoylglycerophosphoethanolamine; 4-Androsten-3b,17b-diol disulfate 
1; 5a-Androstan-3b,17b-diol disulfate; Isovalerate 
Peptide: Leucylleucine; Cyclo(leu-pro)2; γ-Glutamyl valine; γ-Glutamyl phenylalanine; γ-Glutamyl leucine; γ-Glutamyl 
isoleucine; γ-Glutamyl tyrosine; γ-Glutamyl glutamate; γ-Glutamyl alanine 
Energy: Malate 
Xenobiotics: Piperine 

 

Zong et al., 
2014 (244) 

50–70 y, 
China 

Cross-
sectional 

2,091 GC-FID (Targeted – 
Erythrocyte fatty acids) 

Plasma Dairy consumption 74-item FFQ 

Dairy products Trans-18:1 isomers 

Milk  Trans-18:1 isomers 
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