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ABSTRACT 

Stress and overload are strongly associated with unsafe behaviour, which motivated various studies 

to detect them automatically in workplaces. This study aims to advance safety research by 

developing a data-driven stress and overload detection method. An unsupervised deep learning-

based anomaly detection method is developed to detect stress. The proposed method performs with 

convolutional neural network encoder-decoder and long short-term memory equipped with an 

attention layer. Data from a field experiment with 18 participants was used to train and test the 

developed method. The field experiment was designed to include a pre-defined sequence of 

activities triggering mental and physical stress, while a wristband biosensor was used to collect 

physiological signals. The collected contextual and physiological data were pre-processed and then 

resampled into correlation matrices of 14 features. Correlation matrices are used as an input to the 

unsupervised Deep Learning (DL) based anomaly detection method. The developed method is 

validated, offering accuracy and F-measures close to 0.98. The technique employed captures the 

input data attributes correlation, promoting higher interpretability of the DL method for easier 

comprehension. Over-reliance on uncertain absolute truth, the need for a high number of training 

samples, and the requirement of a threshold for detecting anomalies are identified as shortcomings 

of the proposed method. To overcome these shortcomings, an Adaptive Neuro-Fuzzy Inference 

System (ANFIS) was designed and developed. While the ANFIS method did not improve the 

overall accuracy, it outperformed the DL-based method in detecting anomalies precisely. The 

overall performance of the ANFIS method is better than the DL-based method for the anomalous 

class, and the method results in lower false alarms. However, the DL-based method is suitable for 

circumstances where false alarms are tolerated. 

Keywords: Worker Safety; Stress and Overload; Data-Driven Health Monitoring; Wearable 

Sensors; Unsupervised Learning; Adaptive Neuro-Fuzzy Inference System  
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Chapter 1 Introduction 

1.1 Chapter Overview 

This chapter presents the research problem statement as the primary stage of the study. It starts by 

addressing Motivation and Background in section 1.2 and defining research objectives in section 

1.3. Research methodology and scopes are described in section 1.4, followed by thesis organization 

in section 1.5. 

1.2 Motivation and Background 

Due to the significant rate of accidents and fatalities in construction sites, safety remains a 

considerable concern in construction environments. Despite the advancement in research, 

developments, and regulations for safety in construction, the construction industry remains the 

most fatal among other sectors in Canada (AWCBC/ACATC, 2020). Canada Work Injury, 

Disease, and Fatality Statistics (Fig. 1) showed that fatal accidents in construction accounted for 

almost 20 percent of the reported workers’ fatalities in 2020 (AWCBC/ACATC, 2020). Despite 

the start of the Covid 19 pandemic in 2020 and the extraordinary risk of working in the healthcare 

industry, 29 fatalities were reported in the healthcare and social assistance industry (Fig. 1). In the 

same year, 193 cases were reported for the construction industry, which is more than six times the 

healthcare reported fatalities cases (AWCBC/ACATC, 2020).  
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Fig. 1. 2020 Fatalities from the Association of Workers’ Compensation Boards of Canada 

(AWCBC/ACATC, 2020) 

Accidents in construction are caused by reasons such as lack of training, unsafe equipment, unsafe 

site conditions, unsafe methods, poor management, as well as human and social factors 

(Abdelhamid & Everett, 2000a; Adams et al., 2014; Khosravi et al., 2015; Toole, 2002). Multiple 

models have been developed for tracing the root causes of an accident, and the Accident Root 

Cause Tracing Model (Abdelhamid & Everett, 2000b) identified unsafe acts, unsafe conditions, or 

both as direct causes of accidents. Among conditions and causal factors leading to accidents, 
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dangerous human behaviour and human error are identified as the leading cause of accidents (Chua 

& Goh, 2004; HEINRICH, 1950; Reason, 1991). 

As unsafe human behaviour is widely identified as the most frequent cause of accidents, most 

studies in construction safety focused on studying human factors leading to dangerous behaviour 

(Eskandar et al., 2019). Many construction safety studies focused on construction workers’ 

cognitive processes as unsafe behaviour is driven by failures at some stages of human cognition 

(Hasanzadeh et al., 2017; Reason, 1991). From a human cognition perspective, understanding how 

individuals perceive information and decide to take action can uncover why an unsafe act may 

follow (Fang et al., 2016). 

A significant factor influencing cognition is the lack of situation awareness (SA), as Endsley 

described a detailed relation of SA to the human cognition process (Endsley 1988c, 1988a). Also, 

(Bedny & Meister, 1999) considered SA part of the cognitive process of dynamic systems. 

Precisely, in the construction industry, due to the excessive workload in a dynamic and complex 

work setting, the lack of SA has an evident impact on human behaviour (Hasanzadeh et al., 2016, 

2017). Higher cognitive loads increase muscle activity and impact task completion time (Biondi 

et al., 2021). Workers’ lack of attention could prevent them from identifying an incident that leads 

to an accident (Manchi et al., 2013).  

Moreover, due to the physically demanding nature of construction activities, many workers go 

beyond the accepted and safe physiological level for manual work (Abdelhamid & Everett, 2002). 

As Lee et al. (2017) stated, one of the contributing features to unsafe behaviours in a construction 

zone is workers’ physical status, which reflects the safety and productivity of the work. Therefore, 
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it is essential to consider workers’ physiological situation in research and development for 

construction safety.  

From a physiological and neurological perspective, stress and overload are strongly associated 

with unsafe behaviour, which motivated the current study to detect stress and overload in the 

workplace. Stress, as a biological response to the pressures on the nervous system (Deary, 1996), 

can be measured through subjective tests and questionnaires of individual responses (Reiss et al., 

1986; Wittchen & Boyer, 1998).   

Stress can be detected through variations in physiological features such as heartbeats, body 

temperature, and respiration rate (Harari et al., 2016; Kothgassner et al., 2016; Vrijkotte et al., 

2000).  Due to the enhancements in biosensors and real-time data collection, many recent studies 

focused on the physiological impacts of stress on the body to develop a stress detection model 

(Can, Arnrich, et al., 2019; Can, Chalabianloo, et al., 2019; Nath et al., 2020; Yadav et al., 2020). 

In identifying research gaps by reviewing the previous literature, it was revealed that the existing 

stress detection studies are mainly focused on and differ from each other in (1) data collection 

method (e.g., wearable sensors, pupil tracking, questionnaire); (2) selected features and variety of 

physiological signals; (3) the stress-inducing approach and design of the field experiment (e.g.,  

data collection location and designed activities); and (4) learning algorithms.  

The review of the related literature revealed that the current stress detection models based on 

physiological signals could benefit from further situational or contextual input data, such as the 

subjects’ basic information. Another identified gap is the inadequate stress-inducing approaches 

considered in field experiments in stress detection research. An important finding was that no 

applied anomaly detection algorithms had been used so far to detect stress, while unsafe stress 
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levels can be considered anomalies. This research differs from the existing literature in input 

features, various stress-inducing activities in the field experiment, and the use of multivariate 

anomaly detection algorithms. It aims to train a stress detection algorithm that provides an 

interpretable method for easier comprehension. 

1.3 Research Objectives 

This research aims to advance safety research by developing intelligent stress and overload 

detection model. While the goal of this study is to detect abnormal states of occupational stress 

and overload, the objectives of this study are:  

1) Design and implementation of a field experiment aiming to collect a range of data, 

including physiological and contextual data, while inducing stress;  

2) Design, develop, and evaluate anomaly detection method(s) for stress and overload 

detection; 

3) Align the model with the long-term objectives and future application in the construction 

industry as a potential human in the loop cyber-physical system. 

1.4 Research Methodology and Scope 

To address the research objective of detecting anomalous states of stress and overload, designing 

an in-person field experiment to provide data for learning, testing and validating the outcomes was 

needed. Therefore, a field experiment was designed and implemented, in which contextual data 

and physiological were collected. Using the collected data, the anomaly detection methods are 

designed, developed, and evaluated for workplace stress and overload using (1) Deep Learning-
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Based, and (2) Adaptive Neuro-Fuzzy Inference System anomaly detection method, discussed in 

Chapter 5 and Chapter 6. 

This research was conducted within the following scope to achieve the defined objectives. 

• The field experiment for this study was conducted using sensors that can be worn outside 

clinical environments (i.e., non-invasive wearable devices)  

• The stress detection model functions based on contextual and physiological data collected 

using a wristband with a frequency equal to or below one record per second. 

• The stress detection model doesn’t record participants’ insight and confirmation (perceived 

stress level through questionnaire). 

• Abnormal states of stress, but not the types of activities, are detected. 

• The stress detection model explores the adaptivity of application for construction workers 

through wearing personal protective equipment and working in a noisy and dynamic 

environment. 

1.5 Thesis Organization 

The chapters of this thesis are organized as follows. Chapter 1 discusses the problem statement as 

the primary stage of the research. It started with discussions on motivation and background in 

section 1.2, defining research objectives in section 1.3, describing research methodology and scope 

in section 1.4, and thesis organization in section 1.5. 

Following the problem statement, a comprehensive literature review was conducted and presented 

in Chapter 2., aligned with the identified objectives presented in Chapter 1. First, stress and 

overload impact on unsafe behaviour is investigated in section 2.2. Then, Physiological Data 
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Associated with Stress and Overload is studied in section 2.3 to recognize the physiological data 

that can reveal anomalous stress states in humans. In section 2.4, we went through different Stress 

Detection Methods and Algorithms that were used in previous research studies. After selecting the 

desired system for stress detection, various aspects of the algorithm that uses Multivariant Time 

Series Anomaly Detection are explored in section 2.5. Finally, aligned with the long-term 

objectives and future application of the model in the construction industry, Cyber-Physical 

Systems for Construction Safety is studied in section 2.6. 

In Chapter 3, the project scope, objectives, and methodology for two subjects, (1) anomaly 

detection and (2) fuzzy inference system, are presented. Chapter 4 presents the data collection and 

pre-processing stages. Details on the field experiment, such as designed activities to perform by 

participants, equipment used for recording data, location, and timeline of the in-person experiment, 

are presented in 4.2. Section 4.3 focuses on the three different types of collected data, namely (1) 

basic-level data, (2) situation-level data, and (3) signal-level data. Data pre-processing, including 

signal-level data normalization, resampling, and standardization, are reported in section 4.4. 

Conducting an in-person field experiment requires special measures that are explained in section 

4.5 which includes ethics, health and safety standards of the field experiment.  

The design and implementation of the anomaly detection method are presented in Chapter 5. This 

method is based on the correlation matrices given in 5.2. The method’s structure, training process, 

and validation results for this method are shown in sections 5.3, 5.4, and 5.5. Section 5.6 concludes 

the method's results and addresses the limitations that motivate the study presented in chapter 6. 

Adaptive Neuro-Fuzzy Inference System (ANFIS) as the second method in response to the 

limitation of the first method is shown in Chapter 6. This chapter starts by presenting some key 
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background information on the adopted method in section 6.2. Section 6.3 follows the proposed 

method, with details in section 6.4. Experimental results and analysis are reported in section 6.5, 

followed by concluding remarks in section 6.6. 

The final chapter presents the research summary in section 7.2, followed by research contributions 

in section 7.3. Limitations and future work related to (1) experiment design and data collection, 

(2) stress detection using unsupervised deep learning, and (3) stress detection using ANFIS are 

presented in sections 7.4.1, 7.4.2, and 7.4.3. Method’s comparison in section 7.5 presents the 

comparison and discussion regarding methods' efficiency and training cost and methods’ 

performance metrics in sections 7.5.1 and 7.5.2. The final chapter is closed by concluding remarks 

in section 7.6. References used in this research are delivered after the last chapter. This thesis 

contains three Jupyter Notebooks (Eskandar, 2022a, 2022b, 2022c) uploaded in the GitHub 

repository name Sahel-Eskandar/PhD_Thesis, which include Pre-Processing (Eskandar, 2022c), 

Deep-Learning (Eskandar, 2022b), and ANFIS (Eskandar, 2022a) python codes used for this 

research with comments and outputs. 

 



 

9 

Ph.D. Thesis - S. Eskandar - McMaster University - Civil Engineering 

 

Chapter 2 Research Background 

2.1 Chapter Overview 

This chapter continues the preliminary stage presented in Chapter 1 through the following outline. 

First, as discussed in the previous chapter, mental stress and overload directly impact unsafe 

behaviour. Therefore, Stress and Overload Impact on Unsafe Behaviour is investigated in section 

2.2. Then, preceding similar publications have been studied to identify essential features leading 

to and correlating with stress. Section 2.3, named Physiological Data Associated with Stress and 

Overload, helps this research to recognize the biological data that can reveal stressful moments in 

the human body. Afterward, section 2.4 presents different ways of stress detection and their 

algorithms, and the pros and cons of their application for construction settings are discussed. This 

section helps us to narrow down the method, which allows us to reach the research objectives. 

After studying stress detection algorithms, the anomaly detection method is selected for detecting 

moments of stress. Different algorithms that use Multivariant Time Series Anomaly Detection are 

explored in section 2.5. Aligned with the long-term objectives and future application of the model 

in the construction industry, Cyber-Physical Systems for Construction Safety are studied in section 

2.6. Finally, research gaps are presented in section 2.7. 
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2.2 Stress and Overload Impact on Unsafe Behaviour  

Physical and psychological stress are among the contributing features leading to unsafe behaviours 

(Leung et al., 2010, 2016). Examples of stress factors in workplaces such as construction include 

(1) physical stressors (like noise, vibration, lighting, boredom, fatigue, cold or heat); and (2) social 

and psychological stressors (like fear, uncertainty, anxiety, mental overload, and time pressure) 

(Choudhry et al., 2007; Goldenhar et al., 2003; Langdon & Sawang, 2018; Leung et al., 2016; 

Shakerian et al., 2021).  The dynamic and ever-changing nature of the work and environment in 

the construction industry also contributes to workers’ mental overload as an indispensable stressor 

(Love et al., 2010).  

2.3 Physiological Data Associated with Stress and Overload 

Physiological data collection has become a ubiquitous task, using a vast network of wearable 

sensors, enabling unobtrusive real-time data collection. Currently, the human body’s vital signs 

can be quickly and practically recorded through wearable biosensors and health gadgets (e.g., 

smart watches, earbuds, and headsets). Many researchers used such sensors to measure specific 

physiological conditions to study factors that affect individual neurological statuses, such as stress 

(Jebelli et al., 2019), sleep deprivation (Powell & Copping, 2010), fatigue (Abdelhamid & Everett, 

2000c; Abuwarda et al., 2023), and social aspects (Choudhry et al., 2009; Hasan et al., 2022; Yadav 

et al., 2020; Zokaei et al., 2020). 

As Gedam and Paul (2021), after retrieving data from 9334 papers, presented, in detecting stress 

using wearable sensors, one or more psychophysiological parameters such as Heart Rate (HR), 
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Skin Temperature (ST), Galvanic Skin Response (GSR), Respiration Rate (RR), Accelerometer 

(ACC), Blood Pressure (BP), Electrocochleography (EEG) have been used. 

Among different biological measuring methods that could reflect stress and mental overload, 

Electroencephalogram (EEG) sensors have been commonly applied in many studies (Chen et al., 

2017; Jebelli et al., 2018; Wang et al., 2017). EEG is a valuable source in identifying brain 

activities by measuring the brain neurons’ electrical activities using electrodes positioned on the 

scalp. However, there are limitations in its applications for extensive physical activities, such as 

those in Construction. EEG signals are sensitive to face and body movements (e.g., eye blinks), 

making the method impractical for construction safety applications (Lew et al., 2012; Teplan, 

2002; D. Wang et al., 2017).  Similarly, cortisol level measurement, as an indicator of stress 

hormone secretion, is considered impractical for free-moving conditions. Considering the above 

limitations, viable biosensors that could detect and reflect the stress in workplaces such as 

construction are Photoplethysmography (PPG), Electrodermal Activity (EDA), and peripheral skin 

temperature (ST) (Jebelli et al., 2019).  

Measurement of cardiovascular parameters using a photoplethysmography optical sensor (i.e., 

PPG) has been vastly used in the past. PPG can record real-time data in body relaxation and stress 

stimulation situations and precisely recall stress (Heo et al., 2021; Přibil et al., 2020). On the other 

hand, Electrodermal activity (EDA) is an indicator of sympathetic nervous system initiation, 

known as one of the specific and practical symptoms of stress arousal (Pakarinen et al., 2019). 

Spike in stress level activates sweat secretion, which can be measured precisely and effortlessly 

using an EDA sensor on the wrist or feet (Anusha et al., 2020). There is a positive correlation 

between stress arousal and skin conductance when skin gets saturated (Bari et al., 2021).  
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Among a limited number of sensors that can be worn outside clinical environments with high 

accuracy, a non-invasive wearable device is required to measure humans' physiological parameter 

changes in workplaces such as construction. The data recorded by such sensors can be used to 

identify stress as the nuances of physiological and biological features correlate with a human’s 

neurological and psychological state (Lean & Shan, 2012). For instance, acute psychological stress 

triggers an instant physiological reaction (Sevil, Rashid, Hajizadeh, Askari, et al., 2021). 

2.4 Stress Detection Methods and Algorithms 

Most stress detection techniques rely on classification, regression, and clustering to classify 

different stress levels experienced by subjects (Gedam & Paul, 2021; Hasan et al., 2022). 

Algorithms such as Logistic Regression (Rodríguez-Arce et al., 2020; Subhani et al., 2017), 

Support Vector Machine (SVM) (Betti et al., 2018; Can et al., 2020; Subhani et al., 2017), and 

Naïve Bayes (Airij et al., 2018; Egilmez et al., 2017; Saeed et al., 2020) are frequently used for 

classification in stress detection application.  

Classification research conducted by Eskandar and Razavi (2020) applied a Long Short-Term 

Memory (LSTM) algorithm on an open database of multivariant time series collected by 

Birjandtalab et al. (2016). LSTM algorithm was applied to train and test the method to classify 

four different neurological states (i.e., four classes). A robust automated pattern recognition 

method, using a deep learning LSTM, was used to identify states by identifying associated patterns. 

This study considers the same number of instances for each class in the preprocessing stage. Failing 

to follow this requirement leads to having more data points associated with one class and hence 

biases the method to predict more of that class, failing to perform adequately in a testing stage. 
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Common classification algorithms fail to classify anomalous points. Anomalies are data points in 

the dataset that differ from other data points (i.e., non-anomalies) which deviate from the dataset's 

usual patterns. Anomalies occur rarely and are significantly fewer than non-anomalous points in a 

dataset (Schneider & Xhafa, 2022). Standard classification algorithms fail to distinguish and 

classify anomalies since a relatively comparable amount of positive and negative samples in a 

classification problem doesn’t support issues with significantly fewer positive (anomalous) 

instances than negative (non-anomalous) instances. 

Designing a method to identify patterns associated with the anomalies requires knowing the data 

type and preparing it before processing it to represent accurate information. Since physiological 

signals contain inherent noises and are continuous readings in time, pre-processing is a critical step 

in designing a pattern detection system. Physiological signals are time series data type, and 

multiple time series are referred to as multivariant time series. This terminology is reviewed in 

more detail.  

2.5 Multivariant Time Series Anomaly Detection 

The definition of anomalies relates to the domain and the type of information they represent. 

Anomalies are data points in a dataset that differ from regular instances, signifying infrequent 

experience in a system (Teng, 2010). Three generally accepted categories of anomalies are point 

anomalies, context anomalies, and collective anomalies. Point anomalies are abnormal occurrences 

despite the entire dataset. In other words, point anomalies often represent some extremum. Context 

anomalies are abnormal instances in the context of meta-information (e.g., time or space) 

associated with the data points. Collective anomalies are a subset of data points (as a collection) 
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that differ considerably from the whole data set (in terms of data features), where the individual 

data points are neither anomalies nor considered abnormal in a contextual sense. 

Detecting anomalies in the time series dataset differs from the typical dataset as it involves 

temporal dimensions (i.e., time). Predicted trends, patterns, frequent spikes, regular drops, or 

seasonal changes are some of the time-related occurrences that require different anomaly detection 

techniques from a dataset without time or order (Lin & Su, 2019). A simple dataset of multivariant 

time series is shown in Fig. 2 and the highlighted red intervals are identified as anomalies. 

Although data point values do not fall within low-density regions, they don’t follow typical 

seasonal trends. Seasonal trends are the recurrent changes in data that occur after a period of time. 

For instance, line A in Fig. 2 represents a seasonal trend as it increases in value after a certain 

period of time. Similarly, in Line B, a big drop follows by a smaller drop creating a seasonal trend, 

which happens regularly. 

 

Fig. 2. Highlighted red intervals are identified as examples of contextual anomalies 

Unforeseen events and incidences in data can be identified using anomaly detection. Anomaly 

detection applications are primarily applied to the unlabelled dataset, which requires unsupervised 

learning techniques (M. Munir et al., 2019). A simple known anomaly detection method that 

A B C
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considers prior information is ARIMA, limited to univariate time series (Piccolo, 1990). 

Anomalies in multivariate time series are often contextual and generated from a complex 

interaction of variables. Therefore, identifying anomalies by detecting individual features is 

erroneous and not reliable.  

Deep Learning-based (DL-based) methods have both scalability and long-term temporal 

dependency advantages over traditional methods (Luo et al., 2021). Among different DL-based 

methods for anomaly detection, an autoencoder-based method using a simple Recurrent Neural 

Network (RNN) can be used. Still, it does not demonstrate causal factors contributing to the 

anomaly. Convolutional Long Short-Term Memory deep learning-based method that considers the 

causal factors is used for anomaly detection (Deepak et al., 2021).  

Time series anomaly detection techniques fall into two paradigms:  

(a) Forecasting based and  

(b) Reconstruction based methods. 

2.5.1 Forecasting based methods 

In the forecasting-based method, anomaly detection works based on historical data to predict future 

data. Several points from the past produce an estimate of the future point and forecasted points in 

the future will be used to estimate a new point, and it continues. The Auto-Regressive Integrated 

Moving Average (ARIMA) is a widely used forecasting anomaly detection method that predicts 

future points using past points and past errors. The ARIMA is used for modelling univariate time 

series (single variable). LSTM frequently is used for predicting the value in time series based on 

previous changes. LSTM has feedback connections in addition to the standard feedforward 
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processing that enables the method to process entire data sequences and make them accessible in 

time series data. Bayesian Network and Hierarchical Temporal Memory (HTM) also has been used 

for multivariate time series. These presented forecasting-based anomaly detection methods do not 

scale well for time series (Razaque et al., 2022). 

2.5.2 Reconstruction based methods 

In a reconstruction-based method, the method learns how to reproduce the original input by 

looking at specific latent features. Dobson (2003) described latent variables as “variables that can 

only be inferred indirectly through a mathematical model from other observable variables.” A 

reconstruction-based method obtains the latent features of an input instance through filters. Filters, 

also called kernels, can detect spatial patterns and plays an important role. Autoencoder is a neural 

network architecture to employ the reconstruction-based method, in which every unit in each layer 

acts as a filter. Autoencoder reconstructs the input instance by first encoding along hidden layers 

(compressing input data by reducing value dimensions and applying filters) and then decoding 

(rebuilding the output by increasing value dimensions). 

Zhang et al. (2019) compared different anomaly detection techniques fitting multivariant time 

series and proposed the Multi-Scale Convolutional Recurrent Encoder-Decoder (MSCRED). The 

proposed method consists of four Convolutional Long-Short Term Memory (ConvLSTM) layers 

with attention module. The method was compared to eight baseline methods in four different 

categories: 

(1) Classification models to challenge the model’s decision functions:  

• One-Class SVM model (OC-SVM) 
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(2) Density estimation models to detect models’ data density impact for the purpose of outlier 

detection:  

• Gaussian Mixture Model (DAGMM)  

(3) Prediction models to test models’ temporal dependencies over training data and its’ 

strength in predicting the value of test data:  

• History Average (HA) 

• Auto-Regression Moving Average (ARMA)  

• LSTM encoder-decoder (LSTM-ED) 

(4) MSCRED variants to justify the effectiveness of each component.  

• CNNConvLSTM
ED(4)

 with attention module and 4th ConvLSTM layer  

• CNNConvLSTM
ED(3,4)

 with attention module and 3rd and 4th ConvLSTM layers 

• CNNConvLSTM
ED  without attention module 

The proposed method, MSCRED, is CNNConvLSTM
ED  with attention module, outperformed baseline 

methods. The MSCRED captures spatial and temporal dimensions to understand the system's 

behaviour (Zhang et al., 2019) . 

This research takes a deep learning autoencoder equipped with Long Short-Term Memory (LSTM) 

plus an attention module as the preferred method for multivariate anomaly detection problems. 

Autoencoders are deep learning networks where Convolutional Neural Network (CNN) 

reconstructs the same input following the same pattern as explained above. For the chosen method, 

spatial dimensions and inter-feature relationships are captured through correlation matrices as 

input. The selected method labels an input as an anomaly if the reconstruction error is high (Z. 
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Cheng et al., 2021), in which reconstruction error refers to a difference between the original input 

and reconstructed output. This method is deep learning as it holds several hidden layers. 

2.6 Cyber-Physical Systems for Construction Safety 

Human-in-The-Loop Cyber-Physical System for Workplace Safety Industry 4.0 has led to rapid 

technological and industrial changes in the 21st century due to rising interconnectivity and 

automation. The construction industry, as one of the main economic sectors, has benefited from 

automation and integrated systems. Some of the applications are; Virtual Reality (VR) and 

Augmented Reality (AR) applications for civil infrastructural projects (Behzadan et al., 2015; Xie 

et al., 2022), automation in controlling safety measures (J. Wang & Razavi, 2019); visualization 

of a construction zone (Guo et al., 2017); identifying the ongoing activities and progress in working 

areas (K. Liu & Golparvar-Fard, 2015); preventing collision and contact injuries by warning the 

construction workers and heavy equipment operators when hazardous item proximity is detected 

(Genders et al., 2015); digital twin (Ruikar et al., 2021) and improving the delivery process in 

building and infrastructure development (Anumba et al., 2010; Hegazy et al., 2014).  

Technology and engineering advances have led to robust connections between the physical world 

and cyberspace, assisting civil engineering in various areas, from smart design to automatic heavy 

equipment. Common examples of these systems are Cyber-Physical Systems (CPS), in which the 

physical setting is tightly connected with computation sections. CPSs are aimed to observe and 

control the physical environment intelligently. These systems interact with their operating 

environment mainly for the purpose of measuring and sensing the physical features, process the 

information, and then take actions to reach the desired outcome. It uses sensors and actuators to 
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monitor and control physical phenomena and create monitored, maintained, and adaptable 

environments (Nunes et al., 2018).  

CPS reforms the way humans interact with the physical world through linking cyberspace and the 

physical world. In construction setting, to facilitate the flow of information in the system, the 

cyberspace can connect to the physical space through the integration of virtual design and physical 

actuators. Humans or users are essential to such systems (Munir et al., 2013). Notably, in 

construction sites, where heavy machines and workers are moving, working, and interacting in a 

complex, dynamic, and hazardous environment, human interaction with the environment is a 

primary concern. Including a human entity in a cyber-physical system can result in more resilient 

information acquisition (Cárdenas et al., 2009; Cooke & Chong, 2017; Leitão et al., 2016). A 

resilient flow of information is valued due to the lack of awareness and the excess mental workload 

in a construction zone (Cooke & Chong, 2017; Griffor et al., 2017; C. Zhang et al., 2017).  

A CPS that considers humans in the system is called Human-in-The-Loop Cyber-Physical System 

(HiLCPS or HiLCPS). The HiLCPS has remarkably enhanced performance and accuracy due to 

adding humans to the main control loop (Nunes et al., 2018). It incorporates human intentions, 

behaviour, presence, psychological state, emotions, and actions, which help better understand the 

context and determine more appropriate measures. By studying the context, systems' goals, and 

the human-related factors affecting the system's performance, we gather information to define a 

role of a human entity in the HiLCPS system.  

Refining construction safety has been a critical concern due to the industry's high rate of injuries 

and fatalities and the environment's complexity and unpredictable nature (van der Molen et al., 

2005). Accidents mainly happen in construction due to unsafe acts and conditions, for which 
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unsafe behaviour and error by humans play a critical contributing factor (Chua & Goh, 2004; 

HEINRICH, 1950; Reason, 1991). 

Multiple frameworks for HiLCPS are developed (Griffor et al., 2017; S. Munir et al., 2013; 

Schirner et al., 2013). In the framework by Schirner et al. (2013), a human role was studied in 

relationship with the embedded system (cyberspace) and the physical world, in which sensors 

collect information on the human state and intentions from brain or body. Collected information 

is transferred to the cyber system to be processed and transformed into a readable version by the 

physical world. In the end, appropriate action is performed using actuators to achieve desired state. 

In another taxonomy by Munir et al. (2013), the human connection with the HiLCPSs are classified 

into three forms: systems controlled by humans, systems passively monitor humans, and a 

combination of the two. Nunes et al. (2018) proposed a taxonomy in which human was considered 

in three stages: (1) data acquisition, (2) state inference, and (3) actuation. Each stage plays a crucial 

role in collecting data, delivering status assessments, or operating in the actuation stage. 

The latest taxonomy by Nunes et al. (2018) has both simplicity and inclusion and benefits from an 

added feedback control. Considering feedback in a loop can enable the system to perform with 

higher efficiency and flexibility (Griffor et al., 2017; Guan et al., 2016; S. Munir et al., 2013; C. 

Zhang et al., 2017). 

Humans can be placed in any stage depending on the application and the context. Knowledge 

regarding human factors and parameters in favour of the system goals are crucial for incorporating 

human in each application. Detecting and understanding human contributing factors causing a 

dangerous action is essential for design and development of a HiLCPS safety application. The 

following sections describe the human role in HiLCPS, as shown in Fig. 3. 
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Fig. 3 Different human roles in HiLCPS for Workplace Safety  

2.6.1 Data Acquisition 

Humans add to data acquisition through either sensor connected to a human or providing 

information directly to the system. Examples of human-generated data could be social media 

activities, contact lists, or setting preferences by human. Collected information can be transferred 

actively or passively. Data acquisition consists of collecting data on physical phenomena such as 

body temperature and blood pressure or nonphysical like social media posts or human. Such 

information enables the system to detect patterns related to human physiological features, human 

psychological states, and external conditions. Selecting sensors and data gathering methodology 

is essential depending on the application. For instance, wearable sensors are recommended to avoid 

disruptions to the work and workers’ mobility or focus. Also, non-disruptive ways of transferring 

collected data such as Wireless Sensor Networks (WSN) with data streaming services need to be 

considered (Wood & Stankovic JA, 2008). 

State 

Inference 
Actuation 

Feedback Data 

Acquisition 
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Collecting real-time information in an undisruptive manner has become more affordable over the 

past decade. Human physiological signs such as heart rate, oxygen level, and sleep schedule can 

be recorded without disruption through wearable sensors (e.g., health gadgets, smart watches, 

smart rings, and smart fabrics). Moreover, information such as electrophysiological signals1 can 

be measured using body and brain sensors (Schirner et al., 2013).  

Smartphones are great data collection devices that enable passive and accessible data collection. 

They are capable of sensing human activities and processing the information. Smartphones at the 

edge of the network referred to as edge computing, in which analyze the recorded data at the edge 

rather than transferring data to the core network or cloud data center for processing (Bonomi et al., 

2012; Cisco Systems, 2016). 

2.6.2 State Inference 

The state inference or data processing stage assists in inferring human intent from the collected 

information. This process can detect physiological or psychological states such as stress or 

overload through asking human for processed data or using mathematical or machine learning 

models and infer the states. So, the role of human in the state inference could be offering direct 

information or expert knowledge (Nunes et al., 2018).  

 

 

 

1 electrophysiological signals are electrical activity in different parts of the human body, such as 

electroencephalography (EEG), electrocardiography (ECG), and electromyography (EMG) 
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2.6.3 Actuation 

Actuation can refer to a notification on a cellphone to alert a user. A human’s contribution in the 

actuation step is when there is a need for human action than robotic actuators. Humans and 

machines can collaborate in actuation, and their functions can be supplementary. Depending on 

the identified state, actuation changes the physical environment to reach the desired goals. 

Consider a simple application like a slip or fall detector that records a worker’s physical 

information using an accelerometer. This system can translate a rapid change of acceleration value 

in the vertical axis to a fall. Instant alarms and notifications may be sent to the safety controller 

and medical emergency services. 

2.6.4 Feedback 

Feedback controls some parts of the system, such as changing preferences, which is an example 

of incorporating humans into feedback control. Humans' contribution to this process will result in 

a more reliable and robust system (S. Munir et al., 2013). It’s common for a system to face some 

changes or challenges in its life cycle that might contradict its performance. Feedback from a user 

can improve and direct the system toward the desired outcomes. Systems, in addition to the self-

adopting process, can learn from human through observation (Z. Liu et al., 2011).   

Adopting HiLCPSs in workplace safety applications can be summarized in sensing and monitoring 

physiological factors to identify unsafe human actions and conditions and assist the user with 

information to improve safety (Gualdi et al., 2009). In terms of a physiological aspect, bending 

posture, fatigue, and stress contribute to unsafe behaviour. In HiLCPS application, the associated 

data needs to be collected (e.g., workers’ tri-axial acceleration for posture analysis detection) and 
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data can be inferred to understand the system state (e.g., calculating bending angle or observing 

fatigue symptoms). Then, suitable action can be taken to improve workplace safety.  

2.7 Research Gaps 

Based on what has been discussed so far through reviewing the literature, the existing stress 

detection studies are mainly focused on and differ from each other in the following aspects: 

(1) Data collection method (e.g., wearable sensors, pupil tracking, questionnaire);  

(2) Selected features and variety of physiological signals;  

(3) The stress-inducing approach and design of the field experiment (e.g.,  data collection 

location and designed activities); 

(4) Learning algorithms;  

The review of physiological data associated with stress and overload in section 2.3 revealed that 

the current stress detection methods based on physiological signals could benefit from further 

situational or contextual input data, such as the subjects’ basic and demographic information. 

Moreover, there are inadequate stress-inducing activities in conducted field experiments in stress 

detection studies, which is discussed in more detail in Chapter 4 section 4.2. A critical finding by 

studying the background revealed the lack of anomaly detection algorithms in stress detection, 

while moments of unsafe stress states can be considered anomalies. This research differs from the 

existing literature in (1) input features, (2) various stress-inducing activities in the field experiment, 

and (3) the use of multivariate anomaly detection algorithms. Moreover, it aims to train a stress 

detection algorithm that (4) provides an interpretable method for easier comprehension. Deploying 

such a method requires studying current integration systems, which is presented in section 2.6. 
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Chapter 3 Methodology 

3.1 Chapter Overview 

Stress as an essential influencing factor to unsafe behaviour in the workplace motivated this study 

on intelligent stress detection methods to detect human abnormal stress states for occupational 

safety. Stress is detected through a combination of contextual data and variations in physiological 

features such as heartbeats, blood volume, and skin temperature. This chapter presents the research 

methodology in section 3.2. 

3.2 Research Methodology 

The following methodology framework is used to achieve the objectives presented in section 1.3. 

This section offers the general roadmap to research methodology, shown in Fig. 4 along with 

details and defined activities. The framework, presented in Fig. 4, has six broad sections, namely; 

(1) Preliminary Stage,  

(2) Data Collection,  

(3) Data Pre-Processing,  

(4) Stress Anomaly Detection,  

(5) Validation, and  

(6) Conclusion. 
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3.2.1 Preliminary Stage 

The preliminary stage of the research started with a literature review for the problem statement 

and identifying research gaps to define the scope and objectives of this study. An initial literature 

review regarding unsafe human behaviour and accidents' root causes led this research to focus on 
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human stress and overload. A wide range of literature reviews on physiological data associated 

with stress, data collection method, as well as stress detection methods and algorithms followed. 

An overview of a cyber-physical system for potential use in construction safety applications is 

presented, followed by the role of humans in the loop of a cyber-physical system. 

3.2.2 Data Collection 

A field experiment is designed and proceeded for ethical clearance to involve human participation 

in the research stated. Due to the COVID-19 pandemic, the designed experiment was revised, and 

the ethics clearance was approved for conducting research when the field experiment location (i.e., 

McMaster Campus) is outside the Covid-19 municipal red zone. Following the Covid regulations 

and gathering participants' consent, the experiment was conducted safely with 18 participants in 

18 appointments. Participants were recruited and compensated following a McMaster Research 

Ethics Board (MREB) procedure. 

Three sets of data were collected during each field trial: (1) multivariate physiological signals. The 

participant’s physiological features were collected while performing specific activities that 

triggered mental stress and overload. A wristband biosensor was used for the field experiment to 

collect real-time electrodermal activities, skin temperature, blood volume pressure, 3-axis 

accelerometer, and heart rate while participants followed planned activities. (2) basic-level data 

such as demographic information, height, weight, hours of sleep, and participants’ mood; and (3) 

Situation-level data such as activity type and the participant's reaction time at specific time 

intervals during the experiment.  
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3.2.3 Data Pre-Processing 

Data preprocessing is essential to fuse the above-noted three levels of data. As explained, real-

time human physiological signals are collected using wearable sensors with different frequencies 

that require noise removal and alignment. Data smoothing for noise cancellation applied, 

alignment including up-sampling and down-sampling, and standardization. 

3.2.4 Stress Anomaly Detection  

A wide range of literature on stress detection methods and algorithms motivated the adoption of 

an unsupervised deep learning method. To detect occupational stress from physiological signals, 

there is no formulated equation or algorithm to calculate, and there are countless contributing 

factors affecting stress levels. So, the nature of the problem promotes deep learning-based 

applications.  

3.2.4.1 Deep Learning-Based Anomaly Detection 

Unsupervised deep learning-based, inspired by the anomaly detection methods presented by Zhang 

et al. (2019) adopted that looks into a correlation matrix of 14 collected features. Using Long 

Short-Term Memory (LSTM) helps the method to keep track of fluctuations over a few seconds. 

The method learns countless patterns by going through 500k matrices of size 14 × 14. Using 

correlation matrices and looking into the correlation between features equips the method with an 

interpretation tool to demonstrate the contributing features.  

3.2.4.2 Adaptive Neuro-Fuzzy Inference System 

This method presents a proof of concept for the potential use of Fuzzy Inference Systems (FIS) to 

detect the degree of anomaly. Adaptive Neuro-Fuzzy Inference Systems (ANFIS), as a form of 
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FIS-based, is selected due to the absence of reasoning about the inherently vague concept of 

abnormal psychological states and the shortcomings of the first method. The limitations of the first 

method are a need for thousands of training samples, the high cost of training and data collection, 

over-reliance on uncertain absolute truth, and setting a threshold for detecting anomalies. The 

shortcomings motivated this research to investigate further. Fuzzy logic promotes solving 

problems with an imprecise spectrum of data that enables finding an array of accurate conclusions.  

Chapter 6 presents the proposed Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and its 

architecture. In the second method, the input, output, and rules are modelled as neurons, in which 

the values of fuzzy sets are transferred as weights. Section 6.3 describes the basics of the method 

and the formulas, and section 6.4 describes the detail of the proposed ANFIS for the anomaly 

detection problem. Then, section 6.5 describes experimental results and discussion, and the last 

section presents the conclusion. 

3.2.5 Evaluation 

The proposed methods in Chapter 5 and Chapter 6 are evaluated in sections 5.5 and 6.5 against 

two separate test datasets. The labels (i.e., absolute truth) for the first test dataset are tagged on the 

expert’s opinion by studying the raw collected time series. The second test dataset was arranged 

without following the original sequence of activities in order to prove the method’s independence 

from the sequence of activities in the designed experiment. While recording data, the times of 

intentionally added extra mental stress/overload were logged as labels. Precision, recall, F1-score 

metrics for each class as well as accuracy, macro averaged, and weighted average are calculated 

to validate the performance of the methods. 
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3.2.6 Conclusion 

The final section includes a methods comparison with regard to efficiency, training cost, and 

performance metrics. It also presents research contributions as well as limitations and future works 

for the field experiment, unsupervised deep learning, and adaptive neuro-fuzzy inference system.   
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Chapter 4 Data Collection and Pre-Processing 

4.1 Chapter Overview 

This chapter is allocated to all related information regarding the field experiment and collected 

data. As explained in section 1.3, we aim to design and implement a field experiment to collect 

sample physiological data while inducing stress. The field trial design, equipment, and activities 

that triggered mental stress and overload are expanded in section 4.2. The participant’s 

physiological features were collected during the trial, presented in section 4.3, which includes three 

sets of data. Section 4.3.3 is assigned to signal-level data that is collected using a biosensor 

wristband, and section 4.4 expands the preprocessing procedure, such as smoothing, resampling, 

and standardization. Ethical clearance must be achieved due to human involvement in the field 

experiment, and section 4.5 is allocated to participants' ethics, health, and safety. The ethics 

clearance is approved for the following proposed experiment under MREB #5015. 

4.2 Experiment Design 

The experiment is designed with a sequence of activities to expose the participant to stress and 

overload. In the planned experiment, it is anticipated that each participant will experience mental 

stress and overload while following the proposed stress-triggering activities. Throughout the 

experiment, real-time physiological features were constantly recorded using a wearable biosensor 
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to monitor the physiological reaction. Similar studies have adopted chosen activities as mental 

stress-inducing activities that reduce cognitive performance and induce stress (Bali & Jaggi, 2015; 

Brisswalter et al., 2002; Calibo et al., 2013; Rao et al., 2017; Renaud & Blondin, 1997). Stressors 

are events or conditions that have the potential to stimulate stress responses. There are different 

categories of stressors: physical, environmental, mental or task-related, social, psychological/ 

emotional, chronic, and traumatic (Cooper, 2005). In this study, a combination of physical and 

mental activities has been adopted as the ultimate objective is workplace safety and involves both 

stressor types. 

Due to their effectiveness, the Stroop Colour Word Test and mental arithmetic tasks were 

identified as the most used stressors in inducing mental or task-related stress (Giannakakis et al., 

2022). The Stroop colour naming test uses visual and written stimulation that has been widely used 

(Hjortskov et al., 2004; Hou et al., 2016; Salahuddin et al., 2007). Fig. 5 presents the Stroop test 

interface. Human physiological reaction upon solving the Stroop test has been validated (Tulen et 

al., 1989). Similarly, mental arithmetic exposure has been validated as a physiological stimulus 

that induces stress (Lackner et al., 2011). 

Among mental or tasks related stressors, arithmetic problems (e.g., counting backward by 7), video 

games (e.g., speed race game), and solving puzzles are frequently used to induce stress. 

Exceptionally, video games, such as a speed race game with a moving level of difficulty that 

requires high cognition performance, are efficient in generating stress (Karthikeyan et al., 2011; 

Rani et al., 2002). Fig. 6 presents an interface for the speed race test. The user needs to dodge 

moving and static obstacles in a race. 
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Physical activity and keeping balance have also been adopted as they elicit physiological stress 

reactions and have been proven to be stress stimuli (Kerr et al., 1985; Sevil, Rashid, Hajizadeh, 

Park, et al., 2021). Demographic information determines the intensity of the physiological reaction 

(Giannakakis et al., 2022), in which related demographic information, planned to be recorded 

through a questionnaire, is explained in section 4.3.1. There are proven differences between 

physical and psychological stress and how they affect the body (Ponce et al., 2019).  

 

 

This experiment's activities are designed and undertaken based on the previously reviewed 

research. At the beginning of each experiment, the participant was asked to relax for 5 minutes 

Fig. 6 Speed race game interface Fig. 6 Stroop colour word test interface 
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(warming up period). The relaxation period was then followed by different activities in the 

following order:  

(1) One-foot balance, in which participants were asked to stand on one foot at a time and 

keep the balance for two minutes.  

(2) Walking, in which participants follow a specific path while walking at an average pace 

for three minutes. The route was marked by tape on the ground to guide the subject in the 

desired direction. 

(3) Speed race game, performed on a digital device; participants must skip obstacles in a 

race through the desert with moving tumbleweeds, other drivers, and other barriers. 

(4) Stroop colour word, performed on a digital device, measures participant’s flexibility. 

Two colour words appear horizontally on the screen in different colour fonts (Fig. 5). 

Participants were asked if the meaning of the upper colour word matches the colour font 

of the lower colour word.  

(5) Counting backward, in which participants were asked to count backward by seven 

from 2864 (e.g., 2864, 2857, 2850).  

Participants were asked to perform under time pressure for the speed race game, Stroop colour 

word, and counting backward. A five-minute relaxation session was given to reset the 

psychological state to a relaxed state between each activity. The 5 minutes of relaxing time 

between different tasks ensure the mental state is back to baseline, and the order of tasks doesn’t 

impact the result. Moreover, certify that the order of activities is independent of the results 

obtained. Fig. 7 demonstrates the timeline for the proposed experiment. 
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Fig. 7. The timeline of the experiment 

After each activity, the Ruler test was conducted, which provided us with the reaction time. More 

detail on the time and sequence of the ruler test can be found in Fig. 7. In the ruler test, the test-

supervisor drops a ruler vertically between the participant’s thumb and index finger and the 

participant catches the ruler between their fingers. The test supervisor records the measurement on 

the ruler where the participant’s fingers are. This test is used to assess the participant's reaction 

time. The ruler test was repeated three times (for every reading) to gain the average reaction time.  

Fig. 7 illustrates the timeline of the conducted experiment. Individuals were asked to wear long 

pants and boots in addition to personal protective equipment (PPE), a safety hat, a vest, and safety 

shoes. Instructions for each activity were given immediately before the activity to increase mental 
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stress and overload during the experiments. The test supervisor observed participants during 

activities and stayed out of sight for the relaxation sessions to take away the mental stress of being 

watched.  

4.3 Data Collection 

Three types of data collected during the proposed experiment are discussed below. Data collection 

methodology, i.e. questionnaires, labelling, and clinical wearable device, have been chosen for 

basic, situational, and signal-level data, respectively. The following three subsections present more 

information and examples for each type. 

4.3.1 Basic-Level Data  

At the beginning of the experiment, basic-level data is collected using a questionnaire to gather 

participants’ demographic information. Basic-level data contain participants’ gender, age, height, 

weight, mood, and hours of sleep. The following table represents the coding and value assignment 

for the basic-level data for some of the participants of the field experiment. 

Table 1: Portion of basic-level data 

ID Gender Age Height Weight Feel Sleep 

S1 F 29 165 62 3 2 

S2 F 30 165 57 3 4 

S3 M 38 187 98 3 1 

… … … … … … … 

S18 … … … … ... … 
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4.3.2 Situation-Level Data  

The second type of data is the records of activities and the exact time of changes, also called 

situation-level data. This category presents the performed activity and reaction time throughout 

the experiment and shows the type of work a participant performs, which varies over time as the 

activity changes. Internal real-time clock with high accuracy of 5ppm2 in the adopted wearable 

wristband enables precise time reference. The following section presents more information on the 

wristband. 

Table 2: Sample of situation-level data 

Time Index 

Tag Occurrence 

1
6
0
9
9
7
7
6
3
2
 

1
6
0
9
9
7
7
7
6
3
 

1
6
0
9
9
7
7
8
2
5
 

1
6
0
9
9
7
7
9
4
6
 

1
6
0
9
9
7
8
2
6
2
 

1
6
0
9
9
7
8
4
5
3
 

1
6
0
9
9
7
8
7
5
5
 

1
6
0
9
9
7
8
9
4
6
 

1
6
0
9
9
7
9
2
4
7
 

1
6
0
9
9
7
9
4
3
7
 

1
6
0
9
9
7
9
7
4
2
 

1
6
0
9
9
7
9
9
5
7
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R
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Ruler test (cm) 30   42  25  24  22  15 

 

 

 

2 Parts per million (ppm), is defined to denote the frequency difference of two clocks. It’s a way 

to compare accuracies. 
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4.3.3 Signal-Level Data  

Signal-level data, as the third type, was collected using a wearable biosensor. Despite the ability 

of clinical / in-lab devices that enable a broad range of information collection (e.g., EEG headset, 

cortisol secretion level), a non-invasive wearable wristband is selected for this research so that the 

method can be transferable to workplace environments. Furthermore, due to the nature of the work 

and the necessity for real-time reading of physiological features, a wearable sensor with a 

Bluetooth streaming mode was selected that also enables easy access to raw data with a secure 

cloud platform. Clinical quality precession is another feature of the chosen wristband that precisely 

measures the sympathetic nervous system and heart rate simultaneously. 

 

Fig. 8 Empatica E4 wristband (a) front and (b) inside view 

Error! Reference source not found. shows the selected wearable biosensor from the front and 

inside angles. This wristband collects five physiological features: blood volume pulse (BVP), 

(a)                                             (b) 
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photoplethysmography (PPG), skin temperature (ST), 3-axis accelerometer (ACC), and heart rate 

(HR). The above-noted physiological features are collected using the following embedded sensors:  

1. PPG sensor to record blood volume pulse, which is used as an indicator of heart rate 

variability (HRV) and cardiac changes such as inter-beat-interval3 (IBI);  

2. Galvanic skin response (GSR) sensor to measure the changes in electrical properties of the 

skin, which is an indicator of sweating rate;  

3. Infrared Thermopile to read peripheral skin temperature, which is an indicator of 

thermoregulation, and 

4. ACC to capture motion-based activities as an indicator of physical movement.  

The raw multivariate physiological data, recorded by wearable wristband, is presented in  

Fig. 9. The vertical axis indicates the timeline of the experiment, and horizontal red lines are tagged 

time during the experiment at which the activity is changed. The horizontal axis shows different 

physiological measurements. 

4.4 Data Pre-Processing 

Pre-Processing and integrating wireless sensor data is a primary step toward having an efficient, 

robust, stable, quality-assured model tested with an actual data set. Therefore, the acquired signal-

level data is preprocessed to reduce noise, align frequencies, and scale. More details of the applied 

 

 

3 The IBI, inter-beat-interval, is calculated by detecting the BVP peaks and computing the lengths 

of the intervals between adjacent peaks 
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pre-processing methods using Python language programming can be found in Pre-Processing 

Jupyter Notebook (Eskandar, 2022c). The following sections briefly discuss these processes. 

  

Fig. 9. Sample of signal-level data 

4.4.1 Smoothing for Noise Reduction 

If data is measured by sensors or is generated from a physical phenomenon, it inherently contains 

noise and requires noise reduction. An individual’s biometric signals captured through wearable 

sensors are susceptible to external (i.e., environment artifacts) and internal (i.e., physiological 

artifacts) noises. There are many ways to reduce wearable sensor noises without removing 

important information. Simple yet effective methods such as normalization (shifting and rescaling 
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data points to a range of 0 to 1) are applied. Normalizing the input signal-level data improves 

robustness and efficiency by transforming raw recording into a uniform pattern.  

The Locally Weighted Scatterplot Smoothing (LOWESS) function (Tibshirani & Wang, 2008) is 

a widely used method that recovers a signal from noise through localized measures by looking at 

each data point and calculating the smooth value using its neighbouring samples (d samples in the 

D set). The LOWESS method used in this study is similar to K-Nearest Neighbour (KNN) 

algorithm (Fix & Hodges, 1989), in which window size k determines the neighbouring sample. A 

set of weights is applied to adjacent samples to reflect the importance and distance to the data 

point. The larger k (or window size) in localized measures results in lowers variance and higher 

bias. The optimum size should be identified to remove and flatten external noises and not remove 

information. Accurate smoothing assists in better understanding the signal by leaving behind the 

noises and discovering patterns.  

4.4.2 Data Resampling 

The collected multivariate time series have different frequencies besides the extrinsic signal 

artifacts that require preprocessing. By up-sampling the data with smaller frequency and down-

sampling data with larger frequency, raw recorded multivariate time series are resampled to 4 Hz. 

IBI and Heart rate samples with 1 Hz frequency are up-sampled using interpolation to 4 Hz 

frequency. EDA (8 Hz frequency), PPG (64 Hz frequency), and accelerometer (32 Hz frequency) 

readings are down-sampled with a median of 4 Hz frequency. As such, all signals are aligned for 

each point in time (at each timestep). Resampling might differ based on the frequency of signal-

level data and chosen frequency for aligning information.  
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4.4.3 Data Standardization 

Input features have different units (i.e., g, s,C, beats per minute, kg, cm), which requires feature 

scaling in the pre-processing step. Feature scaling is crucial for distant-based algorithms (e.g., 

KNN, K-mean, SVM) and gradient descent-based algorithms (e.g., logistic regression, neural 

network). Several scalers were applied to the recorded data, and a portion of the scaled information 

is presented in graphs to visualize the scaling method outcomes. Methods used for feature scaling 

are Standard Scaler, Min-Max Scaler, Robust Scaler, and Normalizer. 

Standard scaler can be applied over a normally distributed dataset using Eq. ( 1 ), in which 

mean(x) is the distribution mean and stdev(x) is distribution standard deviation. Fig. 10 shows 

scaled values of physiological time series using the Standard Scaler formula. 

xi
Scaled =

xi–mean(x)

stdev(x)
                                                                                                              Eq. ( 1 ) 

 

Fig. 10. Physiological data scaled value using Standard Scaler 

The MinMax Scaler, a famous scaling algorithm, shrinks the range to 0 and 1 or -1 to 1 (in the 

case of existing negative values). This scaler is sensitive to outliers, and it is best if the standard 

deviation is minimal or the data is not normally distributed. Eq. ( 2 ) demonstrates the MinMax 

Scaler formula and scaled physiological time series using this scaler are presented in Fig. 11. 
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xi
Scaled =

xi–min(x)

max(x)–min(x)
                                                                                                        Eq. ( 2 ) 

 

Fig. 11. Physiological data scaled value using MinMax Scaler 

Robust Scaler is similar to the MinMaxScaler, but the interquartile range is replaced with the min-

max range, which makes it robust to outliers. Eq. ( 3 ) presents the Robust Scaler formula, in which, 

Q1(x) is first quartile and Q3(x) is the third quartile. Fig. 12 presents physiological data scaled 

time series using the Robust Scaler. 

xi
Scaled =

xi−Q1(x)

Q3(x)−Q1(x)
                                                                                                            Eq. ( 3 ) 

 

Fig. 12. Physiological data scaled value using Robust Scaler 

The Normalizer scales each value by dividing it by its magnitude in an n-dimensional space. 

Assume x, y and z dimensions of a feature. The scaled value for x would be calculated in Eq. ( 4 

). Fig. 13 presents physiological data scaled time series using Normalizer. 
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xi
Normalized =

xi

√(xi
2+yi

2+zi
2 )

                                                                                                   Eq. ( 4 ) 

Robust Scaler has been chosen among different standardization methods since a hyperparameter 

tuning stage resulted in a lower error and higher accuracy, which will be discussed in section 5.5.  

 

Fig. 13. Physiological data scaled value using Normalizer 

4.5 Ethics, Health and Safety Measures of the Data Collection Experiment  

An experiment brochure and a poster were prepared and posted to recruit participants on online 

platforms associated with McMaster University, e.g., McMaster Facebook groups and Instagram 

pages. Individuals interested in this experiment contacted the researcher via email and had their 

questions and concerns answered using the same communication channel. Due to the pandemic 

restrictions, the experiment took place at McMaster University's campus area under extensive 

cautionary measures to protect the health and safety of all participants and the test supervisor. 

Informed consent was obtained from all participants before experiments, including a Letter of 

Intent (LOI) and McMaster Covid-19 Letter of Intent (Covid LOI) for precaution. Section 4.5.1 

summarize related details of COVID-19 risks and procedures for in-person research at McMaster 

University, and section 4.5.2 presents the LOI. 
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4.5.1 COVID-19 risks and procedures 

The experiments occurred at McMaster's main campus, in the open area on the northwest side of 

the University Hall. All on-campus guidelines, such as maintaining a distance of 2m and wearing 

a face-covering mask, were considered in the experiment's design. All devices and tools were 

sanitized with extra caution after each experiment, and the required tools and instruments were 

placed on a desk for picking up by the participant so that no close contact was needed for the whole 

process. Before the session began, the responsible investigator disinfected all touching surfaces 

with disinfectants from the list of hard-surface disinfectants with evidence against COVID-19 

(Government of Canada, 2020). The wristband and earbuds are disinfected by allergy-tested 

disinfected from the same list on Canada's government website.  

Only one experiment was organized per day, in which every experiment required a single subject 

at a time. A social distance of more than 2 meters was kept between a subject and the investigator. 

Before the session started, individuals were asked to fill out the demographic information forms 

using paper and a pencil placed on a desk. Individuals were asked to wear Personal Protective 

Equipment (PPE) (listed in the previous section under test instruments) and a wristband sensor, 

which is easy to wear, and no close contact was needed. 

Participants were asked to wear earbud headphones under hearing protection to receive guidance 

through the process from a distance for communicating purposes. By communicating through 

headphones, participants stay at a safe distance from the research investigator while receiving 

instructions verbally. Participants were allowed to remove the mask and breathe normally in an 

open environment far from people. 
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A letter of intent is written in plain language. Using simple and direct language makes it easier for 

the readers to comprehend. Everything was explained step-by-step, and participants were asked to 

sign this form right before the experiment. 

4.5.2 Letter of Intent (LOI) 

Research Sponsor: NSERC Discovery Accelerator Supplement Grant No: RGPAS-2018-522618, 

and in part by the NSERC Discovery Grant No: RGPIN-2018-05434 

Purpose of the Study: In search of representative factors influencing construction safety, stress 

and overload were among the key reasons attributed to accidents caused by human error. This 

study includes people aged 18-55 without mobility issues or hearing impairment. This research 

focuses on identifying and detecting an unsafe state of the human body and mind, which causes 

insufficient situation awareness and decreased alertness. Individual physiological features will be 

measured through a wristband that collects real-time electrodermal activities, skin temperature, 

blood volume pressure, a 3-axis accelerometer, and heart rate. Participants should follow activities 

that trigger stress and overload, such as standing on one foot, walking on a specific path, playing 

a speed test game, a Stroop colour-word test game, and counting backward while alerted by a 

buzzer. By collecting a series of physiological signals and building a model to recognize a pattern, 

we aim to train a stress and overload detection model to detect unsafe neurological status.  

You are invited to participate in this study on the "Assessment of Stress and Overload for Research 

in Construction." This research aims to detect stress and overload from your physiological signal 

changes. 
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Procedures involved in the research: You will be given extreme consideration to protect your 

health and safety, particularly against COVID-19. You don't need to print this form and COVID 

LOI as hard copies are available on the experiment day. 

You will be given personal protective equipment PPE (i.e. head, hand, hearing, and eye protection, 

high-visibility hat and vest, and harness lanyard) to wear for the session. You will be asked to 

bring and wear long pants and winter boots for the day of the experiment. For data collection 

purposes, you will be given a wristband sensor to wear for the whole duration of the test. A 

headphone, tablet, pen and paper, and chair will be available on the experiment day. The test will 

be approximately 60 minutes in length. You have the right to ask for a break or any request to feel 

comfortable through the sessions. 

Test Instruments: Here, you can find the list of Personal Protective Equipment PPE, provided for 

the experiment: 

• Head protection (provided) 

• Eye Protection (provided) 

• Hearing protection (provided) 

• High-visibility hat and vest (provided) 

• Hand protection (provided) 

• Harness lanyard (provided) 

Equipment required by participants 

• Long pants (required by participants) 

• Foot protection (wearing winter boots required by participants) 

Here you can find the list of instruments for data collection: 
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• E4 wristband for data collection (provided) 

• Headphone (provided) 

• Pen and paper (provided) 

• Chair (provided) 

• Tablet for Stroop Colour Word and Race Speed Test (provided) 

Activity Guides: The experiment will occur at McMaster's main campus in the open area on the 

northwest side of University Hall. A few simple questions regarding your gender, age, height, 

weight, feeling and hour of sleep will be asked with your permission. Then, you are expected to 

perform the following activities in one session.  

1. Sit on a chair and relax for 5 minutes and then perform a ruler test,  

2. Stand on the right leg and try to maintain balance for 2 minutes, then relax for 1 minute, 

then stand on the left leg and try to maintain balance for 2 minutes, 

3. Perform the ruler test and relax for 5 minutes  

4. Walking on a defined path for 3 minutes 

5. Ruler test and Relax for 5 minutes 

6. Race speed test performed by tablet for 3 minutes 

7. Ruler test and Relax for 5 minutes 

8. Stroop colour word test performed by tablet for 3 minutes 

9. Ruler test and Relax for 5 minutes 

10. Counting backward for 3 minutes 

11. Ruler test  
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Potential harms, risks or discomfort: We make sure that you mindfully participate, and you have 

the option to leave at any moment. You will be prepared for each task and given five minutes of 

relaxing time between activities to alleviate the potential pressure and risks. It should be noted that 

you will be requested to perform actions that aim to trigger mental stress and overload, leading to 

frustration and requiring patience and focus from your side. These prompts could potentially cause 

you to be worried or upset. For such activities, you can skip that step or opt out of the study at any 

time up to three weeks from the data collection day.  

Experiments will be conducted on days without snow or rain for your convenience, in addition to 

removing existing snow or dirt before your arrival. However, there are physical risks associated 

with this experiment, as they are performed outdoors.  

Potential benefits: The research will not benefit you directly. The research goals and objectives 

that decrease accidents and unsafe human behaviour will help society and the construction industry 

in many ways. 

Incentives: As compensation, you will receive the 25CAD Amazon Gift Card (e-gift card) after 

participating in the experiment. You will receive a 12.5CAD Gift Card ( e-gift card) for each half 

hour of participation. You will also be reimbursed for parking for the experiment's duration and 

half an hour.  

Confidentiality: All records of the documented observations and individual and recorded database 

information will be kept private. Information from this experiment only is available to the research 

supervisor. Descriptions and necessary demographic details will be used only for research 

purposes. The identification code will be assigned to your recorded information from the moment 

of data collection instead of your information. The cross-code will be kept in secure storage with 
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secure access. The given code will be used in all publications, and no one will be identified by 

name in this study.  

Participation and withdrawal: If you feel uncomfortable with the observations, you are welcome 

to inform the responsible investigator immediately. Every effort will be made to respect your 

privacy and comfort. Suppose there are any activities or questions you feel uncomfortable going 

through or would prefer not to contribute. In that case, you may skip over that section or terminate 

the experiment. Participation in this research is entirely voluntary.  

You can withdraw from this study for up to three weeks from the data collection day. In the case 

of withdrawal, you will receive $12.50 if you withdraw in the first 30 minutes of participation and 

$25 if you withdraw after 30 minutes of participation. This is due to the incentive of 12.5$ for 

every 30 minutes of participation. 

Information about the Study Results: This study is expected to be completed around the 

beginning of 2021. If you are interested to receive a summary of the results, please let us know to 

send it to you. 

Questions about the Study: If you have any questions or like to know more about the study, 

please email the responsible investigator at: eskandah@mcmaster.ca  

This study has been reviewed by the McMaster University Research Ethics Board and successfully 

achieved ethics clearance. Please use the following contact in a case you have concerns or 

questions about either your rights or about the way the study is conducted:  

 McMaster Research Ethics Secretariat 

 Telephone: (905) 525-9140 ext. 23142 

 C/o Research Office for Administrative Development and Support 

mailto:eskandah@mcmaster.ca
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Chapter 5 Anomaly Detection Using Unsupervised Deep Learning  

5.1 Chapter Overview 

This chapter presents a deep learning-based anomaly detection technique developed to identify 

workers’ stress and overload. Due to the nature of the stress and overload, all three levels of 

acquired data, discussed in Chapter 4 section 4.3, are processed to generate an input to the anomaly 

detection method. After pre-processed stages are discussed in section 4.4, correlation matrices are 

produced, presented in section 5.2. The proposed method architecture is given in section 5.3, 

discussing different areas of the method and its function. After that, in section 5.4, the training 

process is presented, followed by validation results over two test datasets in section 5.5, and finally, 

conclusions and limitations in section 5.6 

5.2 Input Correlation Matrices  

In multivariate data, correlations provide a metric to indicate whether two variables are strongly 

dependent or not. The Signature Matrix or Correlation Matrix (Mt), presents the correlation 

between different data pairs and is critical to characterize the system status. In the proposed 

anomaly detection method, Mt, or pairwise correlations of features, are used as input. Signature 

Matrices have 14 rows and 14 columns ( coming from 14 recorded features).  
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For a given time step t, the signature matrix (inter-correlation between different pairs of features 

i, j) is calculated using Eq. ( 5 ) to Eq. ( 7 ). Window length, referred to as ω, is a period that all 

readings in that segment are considered for one sample data (such as [t − ω, t]). The following 

equation is formulated to a t − ω to t segment for features i and j. κ in Eq. ( 7 ) is the rescaling 

factor representing three different window lengths. By considering κ = ω, short-term, medium-

term, and long-term data simultaneously can be captured. 

Xi
ω = (xi

t−ω,  xi
t−ω−1, … ,  xi

t)                                                                                               Eq. ( 5 ) 

Xj
ω = (xj

t−ω, xj
t−ω−1, … ,  xj

t)                                                                                              Eq. ( 6 ) 

mij
t =

∑ xi
t−δxj

t−δω
δ=0

κ
 ,     mij

t ∈ Mt                                                                                         Eq. ( 7 ) 

Fig. 14 displays the signature matrix from one subsequent series in time step 50 (t = 50), 

containing data from five previous steps (ω = 5). This matric reflects information recorded from 

time steps 45 to 50. 

 

Fig. 14. signature matrix sample for t = 50 
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To create training and test data for the anomaly detection method, a fixed-length window size ω, 

slides over recorded data for a length of h steps to generate a set of subsequent multivariate series. 

Fig. 15 shows a sample of a rolling window on generic data (e.g., x). The rolling window will 

capture h consecutive readings of signal with a length of ω, those results in a sample data size 

h × x × ω. The same concept applies to signature matrices from recorded 14 features with 

14 ×  14 sizes at each timestep. So, the result will be the size of h ×  14 ×  14 ×  ω.  

 

Fig. 15 Sample of a rolling window on generic data 

After considering different h sizes in the hyperparameter tuning stage, h equal to 5 has been chosen 

as an optimum size, which will be presented in section 5.5.4. in. other words, signature matrices 

of five previous periods or timesteps (each timestep is 0.25 sec considering 4 Hz frequency) are 

stacked together to reflect the changes over time. Three different sizes of ω are considered for 

generating data using correlation equation Eq. ( 5 ) to Eq. ( 7 ), and matrices are stacked in groups 

of three (i.e., different window sizes of 5, 10, 20). Other window sizes are considered to 

simultaneously capture short-, medium-, and long-term data, equivalents to RGB channels in 

colour image application problems. Also, it helps the method to capture different window sizes 

and have less bias over the selected ω. Ultimately, the input dimensions are (5, 14, 14, 3). A sample 



 

54 

Ph.D. Thesis - S. Eskandar - McMaster University - Civil Engineering 

 

stack of matrices is visualized in Fig. 16. The generated stack of signature matrices is passed along 

as an input. More details on correlation matrix calculation can be found in Deep Learning Jupyter 

Notebook (Eskandar, 2022b). 

 

Fig. 16. A sample input with a size equal to (5,14,14,3) 

5.3 Anomaly detection method Structure  

Section 2.5 compared different anomaly detection techniques applied over multivariant time series. 

Multi-Scale Convolutional Recurrent Encoder-Decoder (MSCRED), a deep learning autoencoder 

with LSTM and an Attention layer, is preferred to detect multivariant time series anomalies. 

Autoencoders are deep learning methods used to reconstruct the same input. Autoencoder labels 

an input as an anomaly if the reconstruction error is high, in which reconstruction error refers to a 

difference between the original input and reconstructed output.  

Fig. 17 presents the proposed architecture, a deep learning method with several hidden layers and 

three general sections; Encoder, LSTM, and Decoder explained in sections 5.3.1, 5.3.2, and 5.3.3. 

Input to the following architecture is a stack of correlation matrices, depicted in Fig. 16. As 

described in section 5.2, the input includes the correlation between 14 features for five consecutive 

time steps within three different window lengths of 5, 10, and 20. Consequently, resulting in an 
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input size of (5,14,14,3). The output of this method is a reconstructed correlation matrix for the 

last timestep with a flow of information similar to the arrows in Fig. 17. 

 

Fig. 17. Anomaly detection method architecture 

The network is trained using the TensorFlow library on a Tesla P100-PCIE-16GB GPU cloud 

processing server. More information on training is presented in section 5.4. All algorithms and 

libraries used for the anomaly detection method using Python language programming can be found 

in the Deep Learning Jupyter Notebook (Eskandar, 2022b). Below, different parts of the method 

and their primary purpose are given. 

Fig. 17 demonstrates the detail of the final anomaly detection method architecture. The above 

optimum method (which leads to lower validation loss) is selected by tuning hyperparameters 
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through the grid search method. A hyperparameter is a parameter that controls the learning process, 

such as the number of hidden layers, the size of each hidden layer, or the optimizer algorithm. In 

this process, different variations for hyperparameters are considered (e.g., three encoding layers 

instead of 4 or smaller filter sizes or larger strides). Grid search is a simple algorithm for finding 

the optimum hyperparameter. The search area of the hyperparameters is divided into discrete grids, 

similar to Fig. 18. All the possible combinations are considered, and performance metrics are 

calculated to find the optimum solution. 

 

Fig. 18 Grid search algorithm example for hyperparameter tuning 

The following sections clarify the method’s three main components: CNN Encoder, Convolutional 

LSTM, and CNN Decoder. 

5.3.1 CNN Encoder 

The Convolutional Neural Network (CNN) encoder consists of four CNN layers (Conv1 to 4) that 

reduce the input dimensions by applying filters and extracting features from the input. Conv in 

refers to a CNN which passes multiple filters across the matrix to generate new features. By 

applying Conv, the matrix size shrinks based on filter size. 25 filters (kernels of size 2 × 2 with 

1 × 1 strides) are used in each layer for feature extraction while reducing the size of matrices. 
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5.3.2 Convolutional-LSTM with Attention 

Since the input is time-related, LSTM is added to learn a representation of sequence data, as it can 

extract the effect of past events (both long-term and short-term effects). An attention mechanism 

is employed to overcome a shortcoming of the Autoencoder architecture on long sequences. The 

attention layer is beneficial for capturing spatial features and patterns lost throughout the 

autoencoder. After each encoder layer, Convolutional-LSTM with attention is added to extract 

temporal information.  

One Convolutional-LSTM is assigned for each CNN layer (tagged as ConvLSTM + Attention) 

while many-to-one architecture is selected for the middle LSTM layer. The attention layer is an 

added weight that helps to look at the input sequence’s essential parts rather than the whole series. 

5.3.3 CNN Decoder 

CNN Decoder reconstructs the signature matrix using (DeConv1 to 4 in Fig. 17). CNN Decoder 

acts in the reverse order of the CNN Encoder by increasing the dimensions of matrices and 

reconstructing the original matrices. DeConv in Fig. 17 refers to a CNN Decoder that tries to 

reconstruct the original matrix and up-sample layers. The system architecture is based on an 

encoder-decoder, and every decoder corresponds to a pooling unit of an encoder. 

5.4 Training Process 

The dataset for training consists of recorded data from 17 subjects after preprocessing step, while 

the associated data related to one participant (Participant No. 18) is kept for the test dataset. 

Training dataset size has the size of (33659, 5, 14, 14, 3), of which 10 percent is kept unseen and 
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allocated to the validation dataset. Having 10 percent of training data for validation allows the 

method to monitor the generalizing performance over unseen data after each iteration.  

The method contains a total of 116,028 parameters to be trained over a maximum of 150 

epochs/iterations and improve itself and lower the loss. In the training process, achieving high 

accuracy on the training dataset does not lead to developing a method that generalizes well over 

the test dataset. After each iteration, the training loss and validation loss are calculated based on 

the formula presented below, Eq. ( 8 ). The method should terminate the training process if it 

cannot improve the validation loss after a certain number of consecutive iterations. This technique 

is called early stopping, and it’s applied to prevent the method from overfitting the training dataset 

and avoiding unnecessary training times. Seven iterations are selected for early stopping after 

several tries and errors. The number of iterations depends heavily on the neural network's size, 

type, and optimizer. Frequently 3 to 10 consecutive iterations are adopted for the early stopping of 

similar networks (Hasty.ai, 2022; Terry et al., 2021). 

TensorFlow (Abadi et al., 2015) is employed for implementing the model and tuning the 

parameter. TensorFlow is an open-source software library created for Machine Learning (ML) and 

artificial intelligence. TensorFlow has a particular focus on the training of deep neural networks 

and their inference process. The proposed method is trained using a Colab GPU cloud processing 

server (Colab Pro - Tesla P100-PCIE-16GB) to increase the training speed by roughly 65 times 

(Yuqi, 2021) instead of using Colab CPU cloud processing (Colab Pro - Intel(R) Xeon(R) CPU @ 

2.30GHz). More information on the training processing time can be found in Chapter 7.  

Training a method that can lead to a good generalization over unseen data is challenging and 

requires optimizing parameters based on the validation set loss. To minimize the loss, the Adam 
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optimizer (Kingma & Ba, 2014) is employed with the mini-batch stochastic gradient descent 

method. Adam is an optimization algorithm, an extension to a stochastic gradient descent method, 

based on adaptive estimation of the first-order and second-order moments. In each iteration, step 

loss is calculated using Eq. ( 8 ) as the absolute difference between the original and reconstructed 

matrix for all items in the training dataset. Fig. 19 presents the method training and validation loss 

progress for 100 iterations. Until the 100th iteration, the accuracy was improving, and then for 

seven consecutive iterations, there wasn’t any lower value for validation loss.  

Loss =  ∑ ∑ || χ:,:,k
t − χ̂:,:,k

t ||
n

23
k=1

5
t=1                                                                                      Eq. ( 8 ) 

 

Fig. 19. Training and validation loss 

The anomaly detection method output, residual matrix (i.e., reconstruction error), is calculated in 

the last step by subtracting reconstructed pairwise correlation values from the input pairwise 

correlation values. If reconstruction error (i.e., the absolute sum of residual values for every 

feature, step, and window size) is above a calculated threshold, that moment is flagged as an 

anomaly. The threshold is calculated for each activity taking situation-level data into account. 

Activity type is considered in the threshold calculation (Relax, one-foot balance, walking, speed 
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test, Stroop test, and counting backward). A threshold equal to 90 percentiles of the reconstructed 

error for each activity group is calculated and applied to detect anomalies. 

Similar to considering the activity type, other features can be regarded as and form a decision 

fusion. Additional features for decision fusion can be the application-level data (i.e., type of job, 

nature of work, and industry). It helps the application calibrate the stress detection results for any 

specific workplace or occupation. While this phase of the work will remain for the authors’ future 

work, the decision fusion presented in this paper focuses only on calibrating the threshold 

mentioned above for each activity, considering the application-level data. The level of confidence 

is set to 90 percentiles of reconstructed error over the test set. In other words, if the reconstructed 

error is high, the input to the method is ladled as an anomaly, demonstrated in detail later.  

5.5 Validation Results and Discussion 

This section presents anomaly detection analysis and results by applying the trained method to two 

test sets. The residual matrix is discussed in the next section as an interpretation tool to comprehend 

contributing features for detected anomalies. 

5.5.1 Residual Matrices 

Residual matrices bring insight into the interpretation of contributing features. Fig. 20 illustrates 

the residual matrix of a standard sample with a reconstruction error less than the selected threshold 

versus an anomalous sample with a higher reconstruction error than the threshold. The contributing 

features in detecting an anomaly from a residual matrix are presented with a heat map. The 
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following figure shows the predicted correlation values for accelerometer (Acc) and heart rate (Hr) 

are the main contributing features to this anomalous sample.  

 

Fig. 20. Residual matrix of a normal sample vs. an anomalous sample 

An anomaly can be detected by assessing the number of poorly reconstructed pairwise correlations 

(i.e., signature matrix) equal to a more significant reconstruction error or greater values in residual 

signature matrices. A threshold equal to 90 percentiles of the reconstructed error is used to detect 

anomalies. Precision Eq. ( 9 ), Recall Eq. ( 10 ), and F1-Score Eq. ( 11 ) are used to validate the 

performance of the anomaly detection method. In the following equations, TP, FP, TN, and FN 

are True Positive, False Positive, True Negative, and False Negative.  

Precision =
TP

TP + FP
                                                                                                             Eq. ( 9 ) 

Recall =
TP

TP + FN
                                                                                                                  Eq. ( 10 ) 

F1 score =
2 × Precision × Recall

Precision+Recall
=

TP

TP+
1

2
(FP+FN)

                                                                  Eq. ( 11 ) 
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Precision Eq. ( 9 ) is the proportion of the detected classes that were correctly detected. Precision 

answers the question of how many detected anomalies were truly anomalous. Recall Eq. ( 10 ) is 

the ability to find all relevant categories, which is the proportion of correctly detected anomalous 

to all actual anomalies. Moreover, F1-Score Eq. ( 11 ) considers both precision and recall and 

offers a useful metric that is a harmonic average.  

5.5.2 Test Dataset Ⅰ 

The first test dataset size is (8211, 5, 14, 14, 3), which includes information captured from one 

participant out of 18 who participated in the experiment. It is worth repeating that test datasets 

were kept unseen through training for accurate testing purposes. Anomalies of the test dataset are 

identified and labelled based on the expert’s opinion by looking at the raw collected time series. 

In other words, valid abnormalities of this dataset were visually recognized by spotting an 

uncoordinated movement in multivariant time series (e.g., a sudden spike or drop in heart rate 

while the acceleration is steady). The results of accuracy metrics over the test dataset Ⅰ are 

presented in Table 3. 

The macro average considers all classes equally, irrespective of the number of support values (i.e., 

class weight). Macro averaged F1-score is computed using arithmetic mean or unweighted mean. 

On the other hand, the weighted-averaged F1-score is calculated by calculating the F1-score mean 

considering each class’s support number (i.e., class weight). Accuracy, or micro F1, or global F1-

score average, is presented in Eq. ( 12 ). To compute accuracy, it first requires calculating the sum 

of TP, FP, and FN values for all classes, then values are put into the F1-score equation Eq. ( 11 ). 

Accuracy =
∑ TP

∑ TP+
1

2
(∑ FP+∑ FN)

                                                                                             Eq. ( 12 ) 
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Table 3 presents precision, recall, and F1-score for both classes with support numbers and the 

number of actual samples in the test dataset. Accuracy, macro averaged, and weighted-averaged 

F1-score are given, showing that the trained DL-based anomaly detection method provides 98% 

accuracy. 

Table 3. Unsupervised DL-based model accuracy using test dataset Ⅰ 

 Precision Recall F1-score Support 

0 Non-Anomaly 1.00 0.98 0.99 8129 

1 Anomaly 0.35 1.00 0.52 82 

accuracy   0.98 8211 

macro avg 0.68 0.99 0.76 8211 

weighted avg 0.99 0.98 0.99 8211 

 

The Unsupervised DL-Based method performance over the test dataset Ⅰ shows 1.00 precision for 

non-anomalies and 0.35 for anomalies. The method can recall 98% and 100% of cases for non-

anomalies and anomalies. F1-Score for anomalies is 0.52, and 0.99 for non-anomalies. Accuracy 

as a global F1-score average is 0.98, the macro average is 0.76, and the weighted average of 0.99. 

Based on the defined metrics, the method can predict all anomalies in the first test dataset. 

However, it is detecting more anomalies than exist due to low precision. It is beneficial in highly 

sensitive circumstances where the false alarm is accepted for a higher level of safety.  

Fig. 21 demonstrates the reconstructed error at each timestep from predicting the test dataset Ⅰ. 

Horizontal grey ribbons represent a new activity in the series of actions that the participants of the 

experiment undertook. Fig. 21, the reconstructed error is presented in a series of connected blue 

dots with horizontal black lines as the threshold. All data points above the threshold are detected 
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anomalies, presented with orange stars. Anomalies represent a higher error than the calculated 

threshold (i.e., 90 percentiles of error for each activity).  

 

Fig. 21. Reconstruction error on the test set and detected anomalies  

A portion of the test dataset timeline, starting from timestep 7470 and ending in 7730, is presented 

in Fig. 22. This moment is the start of a new activity in the test experiment, in which the participant 

was asked to count backward by 7. As shown in Fig. 22, the threshold line is applied to start from 

the timestep 7490 (i.e., 5sec later). The same technique is used for the rest of the datasets when 

activity changes.  

 

Fig. 22. Visualising anomaly detection results for the last activity in the test dataset Ⅰ 

To reduce false positives, a few seconds after the beginning of each activity, the threshold has 

changed to a higher number. The threshold value in this zone is set to a higher value to prevent the 
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method from detecting false positive anomalies. It is probable to detect anomalies when 

participants were asked to change the activity and instruction was given for what to do due to rapid 

change of the existing state. It’s unknown whether a participant started the next activity in 1 sec 

or 5 sec, had delayed understanding the instruction and was in a transition state. So, the transition 

period is removed from the calculation by increasing the threshold to a maximum of five seconds 

before and after each tag. More details are presented for the mentioned zone in Fig. 23 and 24. 

 

Fig. 23. Feature values for the last activity in the test dataset Ⅰ 

Fig. 24 presents the residual matrix of a standard sample with a reconstruction error less than the 

selected threshold versus an anomalous sample with a higher reconstruction error than the 

threshold. We can identify the contributing features in detecting an anomaly by investigating the 

residual matrix at each timestep. An anomalous sample has a higher reconstruction error than a 

standard sample, for which the trained method failed to simulate the signature matrix identical to 

the input. For instance, for time step 7555 in a dataset, by analyzing the residual matrix presented 

in Fig. 24; we can identify that Acc and BVP signals are the most contributing features in the 

detected anomaly. The residual matrix at 7535 is a standard sample with insignificant values. 
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Fig. 24. Residual matrix of a normal (timestep 7535) vs. an anomalous sample (timestep 7555) 

5.5.3 Test Dataset Ⅱ  

Another data collection was arranged for testing purposes of the proposed method to label data 

while collecting. This experiment was conducted without following the original sequence of 

activities in order to prove the method’s independence from the sequence of activities in the 

designed experiment. While recording data, the moments of intentionally added extra mental 

stress/overload were logged as labels. Added mental stress and overload are arranged by 

distracting the participant using an unexpectedly moving object in front of the participants, a 

buzzer, and sudden talking during the experiment.  

The second test dataset size (2895, 5, 14, 14, 3) includes tagged timesteps. While participants got 

periodically stressed/disturbed/distracted, timesteps are captured in a separate file. Tags on the 

occurrence of these methods are assumed as valid anomalies that can validate the proposed 
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unsupervised deep learning method. The results performance of the trained method for predicting 

anomalies over test-set Ⅱ is presented in Table 4. 

Table 4. Unsupervised DL-based method accuracy using test dataset Ⅱ 

  Precision  Recall   F1-score Support 

0   Non-Anomaly 0.97 0.92 0.94 2712 

1 Anomaly 0.33 0.57 0.42 183 

accuracy        0.90 2895 

macro avg 0.65 0.75 0.68 2895 

weighted avg  0.93 0.90 0.91 2895 

 

The Unsupervised DL-Based method performance over the test dataset Ⅱ shows 0.97 precision for 

non-anomalies and 0.33 for anomalies. The method can recall 92% and 57% of cases for non-

anomalies and anomalies. F1-Score for anomalies is 0.42, and 0.94 for non-anomalies. Accuracy 

as a global F1-score average is 0.90, the macro average is 0.68, and the weighted average of 0.91. 

The given performance metrics don’t discuss the temporal aspect of the problem. So, by examining 

samples over the timesteps and analyzing each detected anomaly, the method performance can be 

observed in a better way. Reconstructed errors and indicated anomalies over time are illustrated in 

Fig. 25 and Fig. 26. 

 

Fig. 25. Reconstruction error and detected anomalies on the test dataset Ⅱ 
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Fig. 26. Valid anomalies and predicted anomalies for the test dataset Ⅱ 

As Fig. 26 presents, the moments of valid and predicted anomalies match in most cases, prediction 

starts slightly later, and it predicts more anomalies a few seconds later. Two moments during the 

experiment, the method detected the anomalies that weren’t tagged during the experiment. For a 

portion of the above test set (timestep 1200 to 1900), details are presented in Fig. 27 and Fig. 28. 

 

 Fig. 27. Part of reconstruction error and detected anomalies on the test dataset Ⅱ 

 

 Fig. 28. Part of valid anomalies and predicted anomalies for the test dataset Ⅱ 

As Fig. 28 presents, there are moments of the predicted anomalies after each valid anomaly that 

are considered false positive, however, the tagged labels are not precise. From this portion of test 
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dataset Ⅱ, two examples of residual matrices, one standard sample and one anomalous sample, are 

presented in Fig. 29. 

 

Fig. 29. Residual matrix of a normal sample vs. an anomalous sample 

The residual matrix for the anomalous at timesteps 1279 is presented in Fig. 29, which shows an 

unconventional correlation between accelerometer, blood volume pressure, electrodermal activity, 

and label. Residual matrices are significant indicators for identifying uncoordinated features that 

lead to an anomaly. 

5.5.4 Window Size Impact 

To capture the impact of window size on the performance of the anomaly detection mode, different 

window sizes are selected for training and testing while keeping the same number of samples. The 

larger window sizes include a more extended period for the method to capture the trend, resulting 

in higher calculation time. As demonstrated in  
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Fig. 30, the optimum window size is five, leading to the least processing time while keeping a low 

training and validation loss. The processing time is calculated for training 116,028 parameters with 

training dataset size (33659, 5, 14, 14, 3), using Tesla P100-PCIE-16GB. 

 

Fig. 30. Anomaly detection method training loss and validation loss for different window sizes 

5.6 Conclusion and Limitation 

This chapter presented a deep learning-based method for detecting workers’ stress and overload 

based on the acquired data, which was discussed in Chapter 4. All three levels of acquired data are 

pre-processed, aligning frequencies and time intervals to increase method efficiency, which leads 

to improved information accuracy and method quality. The proposed method includes 

unsupervised learning formulated over the correlation of 14 features stacked together for five 

consecutive timesteps and three different window sizes. Fig. 31. presents the overview of 

occupational stress detection and contributing feature assessment.  
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Fig. 31. Deep Learning-Based Anomaly Detection Research Methodology 

The framework presents a  deep learning-based anomaly detection method for the stress detection 

model. It contains four sections: experiment design and data collection, data pre-processing, 

anomaly detection method, and validation and discussion, as explained in the methodology. A 

wide range of data is collected, including physiological signals using a wearable biosensor. The 

collected data are labelled and sliced into smaller sections stacked together to record the changes 

over time. Then, an unsupervised deep learning anomaly detection was developed that identifies 
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patterns and reconstructs the input. High reconstruction error indicates the method's inability to 

predict the pairwise correlation (by studying at the previous 1.25 seconds), flagging an anomaly.  

The method was tested against two separate test datasets resulting in 98 percent accuracy against 

the first test dataset. This test dataset was tagged by the expert’s opinion by looking at the raw 

collected time series. The second test dataset was arranged without following the original sequence 

of activities in order to prove the method’s independence from the sequence of activities. While 

recording data, the moments of added extra mental stress/overload were logged as labels. So, the 

second test dataset includes tagged timesteps based on real-time observations of incidents. The 

method showed 90 percent accuracy against the second test dataset. 

Despite the high accuracy of the developed method, assuming that the outcomes can be compared 

against absolute truth in a problem space uncertain by nature is unrealistic. Therefore, the stress 

detection method discussed in this chapter suffers from the lack of availability of absolute truth. 

This method identifies anomalies when the reconstruction error exceeds the defined threshold. 

Defining a higher threshold will result in high false negatives, while a lower threshold value leads 

to high false positives. Moreover, training unsupervised deep learning methods, such as discussed 

in this chapter, requires thousands of training samples due to a higher number of parameters to be 

calculated. The training time for DL-based anomaly detection is high, which leads to a higher cost 

of training in addition to a higher cost of data collection. So, setting thresholds, over-reliance on 

absolute truth, and the need for countless training samples is this method's shortcoming. To 

overcome the above-mentioned challenges and shortcomings, further research and investigation 

resulted in the designing and development of an adaptive Neuro-Fuzzy Inference System for 

anomaly detection. 
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Chapter 6 Anomaly Detection Using Adaptive Neuro-Fuzzy Inference System  

6.1 Chapter Overview 

The previous chapter proposed a method to detect anomalous states of stress using deep neural 

networks. Looking into the limitations of the proposed method, such as setting a threshold for 

detecting anomalies and the need for thousands of training samples, motivated this research to 

investigate a practice using fuzzy logic. Although Artificial Neural Networks (ANN) enable self-

learning, the absence of human inference makes such a method challenging to comprehend. 

Besides, it consumes thousands of samples to train, which makes it inefficient. In contrast, the 

Fuzzy Inference System (FIS) is fast and easy to interpret compared to neural networks. In 

particular, the Fuzzy set theory attempts to consider human reasoning by using approximate and 

uncertain information in making decisions. In cases of uncertainties in decision-making, Fuzzy 

logic improves the system’s performance by assigning a feature value between zero and one rather 

than binary values.  

The fuzzy inference system offers promises to address the challenges and shortcomings of the 

Artificial Neural Network stress detection method, which was proposed in Chapter 5. The problem 

space in this research, which is to identify abnormal psychological states using physiological info, 

is inherently vague and fuzzy. Unlike high-level ANN, fuzzy logic algorithms are based on lower-

level machine control methodologies. 
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This chapter presents a proof of concept for the potential use of FIS methods to detect the degree 

of anomaly. Adaptive Neuro-Fuzzy Inference Systems (ANFIS), a form of FIS-based method, is 

selected, in which the self-learning ability of ANN and the linguistic expression function of FIS 

are combined. In this method, the input, output, and rules are modelled as neurons, in which the 

values of fuzzy sets are transferred as weights. 

The organization of this chapter is as follows. The next two sections describe the Adaptive Neuro-

Fuzzy Inference Systems (ANFIS) and their architecture. Section 6.4 describes the detail of the 

modified ANFIS for the anomaly detection problem in this thesis. Then, section 6.5 describes 

experimental results and discussion, and the last section presents the conclusion. 

6.2 Background 

Fuzzy logic promotes solving problems with an imprecise spectrum of data that enables finding 

an array of accurate conclusions. A fuzzy Inference System (FIS) typically contains four stages: 

(1) fuzzification, (2) rules base, (3) inference, and (4) defuzzification.  

1. Fuzzification refers to the process of applying membership functions (MF) to convert crisp 

input values into a degree of membership of fuzzy sets. An MF for a fuzzy set is defined 

as μ(x) → [0,1], where each element of x is mapped to a value in the range of [0,1], called 

membership value or degree of membership. 

2. Fuzzy rule base stores IF-Then rules, which are the natural language-based logics defined 

by experts.  

3. The inference results from applying fuzzy set input in the fuzzy rules base.  

4. Defuzzification converts the fuzzy set conclusion into crisp output.  
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There are two major kinds of FIS, Mamdani FIS (Mamdani & Assilian, 1975) and Sugeno FIS 

(Takagi & Sugeno, 1985). These two are different in the last stage (i.e., defuzzification). The 

former uses techniques such as the center of gravity to obtain the crisp output, and the latter uses 

a weighted average to calculate the crisp outputs. 

Traditional fuzzy systems mainly depend on the understanding and knowledge of the problem to 

acquire an acceptable prediction result, especially in case of incomplete or insufficient 

information. An adaptive neuro-fuzzy inference system (ANFIS) was developed by Jyh-Shing 

Roger Jang (1997) to solve fuzzy inference system limitations. ANFIS is a form of FIS based on 

the Sugeno model (Takagi & Sugeno, 1985), which combines the self-learning ability of ANN and 

the linguistic expression function of fuzzy inference. In this method, the input, output, and rules 

are modelled as neurons, in which the values of fuzzy sets are transferred as weights. Since 

membership functions determined by humans are rarely optimum, fine-tuning the membership 

functions is recommended when holding a large data set. In ANFIS, membership functions and 

fuzzy rules are calculated from existing data instead of expert knowledge or intuition. This 

adaptive method provides the system with the benefit of both ANN and fuzzy, making it a 

classification method.  The rule base of a neuro-fuzzy inference system is constructed as a neural 

network.  

Fuzzy control is the most widely used application of fuzzy set theory and fuzzy inference systems. 

The adaptive capability of ANFIS makes it almost directly applicable to adaptive control and 

learning control. The nonlinearity and structured knowledge representation of ANFIS are its 

primary advantages over classical linear approaches. The wide use of ANFIS in signal processing 
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supports this argument (Depari et al., 2007; Dogantekin et al., 2010; Kamel et al., 2009; Lei et al., 

2007). 

6.3 ANFIS Architecture 

ANFIS architecture, explained by Jyh-Shing Roger Jang (1997), is depicted in Fig. 32 which 

contains five layers, each responsible for one stage of adapting a fuzzy system. The functions of 

these layers are fuzzification, applying rules, a sum of rules/normalization, adaptive nodes, and 

calculating the overall output.  

 

 

Fig. 32: ANFIS architecture for two inputs 

Layer 1: The input (crisp data) passes through the first layer employing the membership function. 

Nodes in this layer are adaptive nodes and incorporate a membership function quantifier of a fuzzy 

set. Adaptive nodes in neural networks are improving the model's performance (e.g., prediction 

and pattern recognition) by altering themselves (change of membership function parameter here) 

to the latest optimal structure and changing inputs to the next layer while training. 

 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5  

Input Fuzzification Rules 
Sum of Rules  

Normalize 

Adaptive  

Nodes 

Overall  

Output 
Output 
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Each node in this layer indicates the degree to which the input x (or y) satisfies the quantifier A 

(or B). To some extent, Ai is a linguistic label related to a node (e.g., i). For instance, A1 can be an 

adaptive node for a μA1
(x) membership function that indicates the degree to which x is small, and 

A2 incorporates μA2
(x) membership function that indicates the degree to which x is large. The 

quantifier, μ(x), can be any MF, such as the generalized bell shape Eq. ( 13 ). 

μA(x) =  
1

1+|
x−ci

ai
|
2b.                                                                                                             Eq. ( 13 ) 

Parameter set in MF, {ai, bi , ci}, change and include broad forms of MF for a fuzzy set. These 

parameters in layer one are called premise parameters that enable the adaptive function of the first 

layer. A range of possible values is assigned to each parameter. Applying an optimization 

algorithm such as Particle Swarm Optimization, the optimum value for each parameter is 

calculated from the range, which is explained in detail in section 6.4.5. 

Layer 2: This layer contains fixed nodes that export the product of all incoming values following 

Eq. ( 14 ).The number of equations in this layer is equal to the product of the number of nodes in 

the previous layer. 

Wi = μAi
(x)μBi

(y)                                                                                                             Eq. ( 14 ) 

These nodes perform the fuzzy T-norm (triangular norm) operator, aggregating two membership 

grades as Eq. ( 15 ). More information on different operators can be found in the “Neuro-Fuzzy 

and Soft Computing” by Jyh-Shing Roger Jang (1997). 

μA∩B(x) = T(μA(x), μB(x)) = μA(x) ∗ μB(x)                                                                  Eq. ( 15 ) 

Layer 3: Each node in layer 3 is a fixed node that calculates the ratio of rules Eq. ( 16 ): 
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w̅i =
wi

∑ wii
                                                                                                                            Eq. ( 16 ) 

Layer 4: The rule system in ANFIS follows an adaptive function. A common rule set with two 

fuzzy if-then rules follows Eq. ( 17 ): 

Rule1: if x is A1 and y is B1then f1 = p1x + q1y + r1                                                       Eq. ( 17 ) 

Rule2: if x is A2 and y is B2then f2 = p2x + q2y + r2                                                                       

Like layer 2, nodes in this layer are adaptive nodes following Eq. ( 18 ) with a {pi, qi, ri} 

parameter set, referred to as consequent parameters. 

w̅ifi = w̅i(pix + qiy + ri)                                                                                                  Eq. ( 18 ) 

Layer 5: This node is a fixed node responsible for calculating the overall output, which calculates 

the summation of all incoming values Eq. ( 19 ). 

f = ∑ w̅ifii =  w̅1f1 + w̅2f2                                                                                                  Eq. ( 19 ) 

Fig. 33 contains a detailed view of the adaptive neural fuzzy inference system with two inputs. 

 

Fig. 33 Detailed ANFIS architecture 
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With the architecture, as mentioned earlier, two sets of parameters exist. A hybrid learning 

algorithm can be applied to calculate the premise parameters (nonlinear) and consequent 

parameters (linear). During the forward pass, consequent parameters in layer four are computed 

using the least-squares method, and the network error is propagated backward to update the 

premise parameters in layer 2 using the gradient descent method.  

The basics of the ANFIS system, as presented above, can be modified and replaced by other 

parameters. For instance, the generalized bell shape membership function, which was explained in 

layer 2, can be replaced by any other type of membership function such as (A) triangular, (B) z-

shape, (C) trapezoidal, (D) s-shape, (E) sigmoid, and (F) Gaussian (Fig. 34) 

 

Fig. 34: Membership function (A) triangular, (B) z-shape, (C) trapezoidal, (D) s-shape, (E) 

sigmoid, (F) Gaussian 

Likewise, different optimization algorithms can be applied to calculate the nonlinear parameter in 

layer two and linear parameters in layer 4. As Palupi et al. (2016) proposed, combining particle 
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swarm optimization with ANFIS leads to a better result in terms of interpretability and accuracy 

for classification problems. Similarly, the ANFIS-PSO combination has shown promising results 

(Alarifi et al., 2016; Robati & Iranmanesh, 2020).  

Finding the proper structure is critical to the successful application, including finding an 

appropriate input-space partition style, which is the number of membership functions for each 

input. For instance, x and y in Fig. 33, each hold two partitions: A1 , A2 for x and B1 , B2 for y. 

The importance of detecting proper structure increases as the input dataset gets larger. Choosing 

an effective partitioning system for the input space reduces the number of rules and makes the 

process faster in both the learning and application phases.  

6.4 Proposed ANFIS for Stress Detection 

This section represents details on ANFIS implementation. Fig. 35 illustrates the general 

architecture of the method. The rule base of a neuro-fuzzy inference system is constructed as a 

neural network. The input, output, and rules are modelled as neurons, in which the values of fuzzy 

sets are transferred as weights. Each layer of network performs a similar function to section 6.3. 

6.4.1 Input Data 

Input to the method is the six physiological signals and labels of the performed activities. A 

window size of 5 readings with a frequency of 4 Hz (i.e., 1.25 sec), similar to the first method, is 

considered. Having a limitation of one input in the fuzzy inference system for each feature prevents 

us from choosing time series as an input to this method. To address this limitation, the proposed 
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method uses changes in values over a 1.25-sec window size as input. The changes (Delta) are 

calculated using the absolute value of the minimum and maximum (Eq. ( 20 )).  

∆ =  |max(x) − min(x)|                                                                                                    Eq. ( 20 ) 

 

Fig. 35: The ANFIS architecture 

6.4.2 Membership Functions (MFs) 

The number of membership functions in a fuzzy set varies. As mentioned earlier, a membership 

function (MF) is a curve that defines in what way each point in a fuzzy set is mapped to a 

membership value, demonstrating specific linguistic meaning (e.g., small, medium, and large). A 

higher total number of MFs leads to a higher computational load as it determines the number of 

rules and adds to the interconnection between nodes. Based on the distribution of each feature in 
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this research, a reasonable number of MFs are assigned. Ultimately, the optimum number of MFs 

for each feature can be finalized using hyperparameter tuning and changing the parameter to find 

the optimum solution.  

Table 5 demonstrates the assigned number of membership functions, indexes, and linguistic 

meanings that are fuzzy values for variables. Variables in this method are the collected 

physiological signals (i.e., EDA, Temp, Hr, Acc, Bvp, IBI), activity label and reaction. Due to the 

nature of the accelerometer and the high level of sudden drops and spikes in this variable, the 

calculated delta introduced ambiguity. It caused the overall low performance of the method. 

Therefore, one membership function was assigned to this input to minimize the impact on overall 

performance. 

Table 5 Assigned number of membership functions, indexes, and values (linguistic meaning) 

Variable Number of MFs MF indexes Fuzzy Values 

1.EDA 2 1,2 Small, Large  

2.Temp 2 3,4 Small, Large 

3.Hr 2 5,6 Small, Large  

4.Acc 1 7  

5.Bvp 2 8,9 Small, Large 

6.IBI 1 10  

Label 3 11-13 Relax, Physical, Mental Activities 

 

The membership function for all variables is selected to be a bell shape function Eq. ( 21 ) presents 

the mathematical equation, where s, mu, and c are called premise parameters, which are defined 

in Table 6. 
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μA(x) =  
1

1+|
x−mui

si
|
2c                                                                                                            Eq. ( 21 ) 

Table 6 Premise and Consequent parameter and their definition for training 

Parameters Definition 

Premise  s Center value of the standard deviation.  

mu Variation of the mean.  

c Values of the exponent  

Consequent  A Coefficients matrix containing all consequent parameters 

 

6.4.3 Output Data 

Two classes were considered to describe the anomalies’ degree of existence: non-anomalous and 

anomalous states. In this method, output labels for each sample are calculated based on the 

calculated reconstruction error in section 5.5. 

6.4.4 System Specification 

Of the total samples, 70% were allocated for training and 30% for testing. That leads to 10386 

training samples and 2598 test samples. There are six input variables and two output classes 

(classes 0 and 1). The proposed ANFIS layout, previously discussed in Table 5, is [2,2,2,1,2,1,3], 

which indicates the partitioning style. ANFIS layout shows the number of membership functions 

for each input variable. For instance, two membership functions for the first input variable. 

Each membership function in the first layer contains premise functions Eq. ( 13 ), which result in 

an equal number of premise functions. The total number of premise functions is equal to the sum 

of all numbers in the ANFIS layout (i.e., 13). The number of rules in the network can be calculated 
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by the product of numbers in the ANFIS layout, which equals the number of interconnections 

between nodes in the first and second layers (i.e.,  48 rules). The number of consequent functions 

is similar to the number of rules in the network. The proposed ANFIS system specification is 

presented in Table 7. 

Table 7: System specification 

System parameters Specified value 

Number of samples  12984 

Number of inputs  7  

Number of outputs  2 

Classes  [0. 1.]  

Number of training samples  10386 

Number of test samples  2598 

ANFIS layout  [2, 2, 2, 1, 2, 1, 3] 

Number of premise functions  13  

Number of consequent functions  48  

Number of model parameter 807 

 

6.4.5 Particle Swarm Optimization (PSO) 

Selecting the parameters of the fuzzy neural networks is particularly critical to the ANFIS’s 

success. Primarily, the accuracy and efficiency of the network’s learning algorithms determine 

their success. Gradient-based algorithms are the most common learning algorithm, in which, 

despite the learning power, it uses the local search technique and tends to result in the local 

optimum. A particle Swarm Optimization algorithm (PSO) with robust search and optimization 

ability can help identify optimal or near-optimal solutions in large search spaces. The movement 

of the Birds Group inspired PSO, and so far, it has been used successfully in many cases (Li et al., 
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2011; Y. Zhang & Wu, 2011). PSO is also a good tool for development and application in multi-

objective optimization problems due to the high convergence rate commonly found in optimization 

problems (Hassan et al., 2005).  

Solving the problem of local optimum traps related to gradient-based algorithms has interested 

scholars. One solution is employing collective intelligence algorithms such as PSO algorithms for 

the training phase. The pseudocode by (Nalluri et al., 2017) for PSO is presented below.  

 

For each particle 

   Initialize position and velocity randomly 

End 

t=1 

Do 

   For each particle 

     Calculate fitness function 

     If fitness value > pbest, Then 

        Set current fitness value as pbest 

   End 

   Update particle with best fitness value as gbest 

   For each particle 

    Calculate new velocity using:𝑣𝑖(𝑡) = 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)) 

    Update position using equation  

   End 

   t = t+1 

While (t < maximum iterations) 

Post-process the result. 

 

Researchers have used optimization algorithms to improve the performance of neural network 

models (Ajbar et al., 2021; Wang et al., 2017; Yu et al., 2008). The ANFIS structure, a neural 

network-based structure, consists of many nodes in different interconnected layers. The premise 

and consequent parameters in the nodes determine the ANFIS's performance. PSO was 

implemented to optimize the proposed ANFIS structure for improved computational performance 

and to avoid being trapped in local optimums. The flowchart in Fig. 36 presents the process of 
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using PSO in the proposed ANFIS. It includes the initial iteration for initializing the values and 

then recurrent iteration to train the mode.  

The first iteration, presented on the left side of Fig. 36, sets the basic structures of the system and 

starts by initializing the dataset information. Then, it follows by setting the PSO initial algorithm 

parameters (e.g., the number of iterations, population of the particles, coefficients of PSO 

algorithm, optimization threshold). In the PSO algorithm, the particle’s next position is according 

to three components:  

1. A particle velocity, 

2. Toward the particle’s best performance, and  

3. Towards the best performance of all particles. 

 

Fig. 36: ANFIS-PSO flowchart 
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After randomly generating all the initial parameters, the first fitted model is calculated along with 

memorizing the Pbest (i.e., local best position) and the Gbest (i.e., global best position) among all the 

particles. The results are evaluated using the objective function (i.e., mean-square error MSE). 

Then, the ANFIS process follows the flowchart in Fig. 36 until the system criteria are reached (i.e., 

the parameter not improving further in more iterations). Then, the accuracy of the models is 

checked with statistical indicators. The ANFIS Jupyter Notebook (Eskandar, 2022a) presents the 

python code, including all calculations and outputs for this method. The source code for ANFIS 

calculation has been developed by Gilardi, (2020). 

The equation of the motion for particles is presented in Eq. ( 22 ), in which, xd is a particle next 

displacement, υd is the particle velocity, pd is the best performance of the particle, and gd is the 

best performance of the global best particle (Clerc, 2010). 

{

υd ← c1υd + c2(pd − xd) + c3(gd − xd)

′
xd ← xd + υd                                                  

                                                                       Eq. ( 22 ) 

Traditionally the components of the particle’s next movement have been calculated using c1, c2, c3 

coefficients. Alternatively, these can be replaced with a confidence coefficient, which makes a 

linear weighting of three vectors using Eq. ( 23 ). Each particle has been given a confidence 

coefficient for better convergence and robustness.  

{

c1 =
1

φ−1+√φ2−2φ

′
cmax = φc1         

                                                                                                             Eq. ( 23 ) 

PSO will run simultaneously in the search space to find the optimum value for two objectives: (1) 

searching for optimal premise/consequent parameters and (2) minimizing the cost function. PSO 
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defines the search space by setting lower and upper boundaries and searches for the optimal 

premise and consequent parameters while increasing the system’s accuracy.  

For finding both presented objectives, 200 particles are assigned to PSO to distribute in the search 

domain and find the optimum value for all variables mentioned in Table 5. As discussed earlier, 

the general bell shape function was chosen for MFs. A maximum of 500 iterations are considered 

to reach the optimum solution before reaching the maximum. The acceleration coefficient 

presented in Eq. ( 23 ) is set to 2.05, looking at similar literature (Qasem & Shamsuddin, 2009). 

Random vectors r1 and r2 are assigned to each particle to define the upper and lower boundaries 

initial search area. The initial parameter setting of particle swarm optimization (PSO) is presented 

in Table 8. 

6.4.6 Accuracy 

The overall system goal is to minimize the cost function, which is classification accuracy. The 

system’s accuracy is measured based on the percentage of correct classifications. The Root Mean 

Square Error (RMSE) using Error! Reference source not found. ), or other error aggregation 

measurements. In classification problems, TP, FP, TN, and FN are designed as below: 

– True Positive (TP) is the number of samples correctly identified 

– False Positive (FP) is the number of samples incorrectly identified 

– True Negative (TN) is the number of samples correctly rejected 

– False Negative (FN) is the number of samples incorrectly dismissed. 

RMSE =  √
∑ (yi−ti)2N

i=1

N
                                                                                                       Eq. ( 24 ) 
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Table 8 Specification of initial parameter setting 

PSO parameter Value 

Number of particles 200 

Number of values in a fuzzy set Different for each variable (Table 5) 

Type of membership function Bell-shape function 

Number of iterations 500 

Obj. function 1 Find premise/consequent parameters  

Obj. function 2 Minimize RMSE to increase accuracy 

Acceleration coefficient φ=2.05 

Random vectors r1 and r2 Random 

 

As was mentioned earlier, the database is divided into training and testing portions using a 70/30 

ratio. Both training and testing databases contain equal samples for each class to remove the biases 

toward a class that holds the majority. The training set has 10386 samples for two classes (i.e., 

non-anomalous and anomalous) and 2598 test samples. In training and testing, an equal number 

of samples is considered for each class to eliminate bias. 

6.5 Experimental Result and Analysis 

In this section, the results and accuracy of the proposed method are presented. The algorithms, 

calculations, and results, using Python language programming, are shown in ANFIS Jupyter 

Notebook (Eskandar, 2022a). An accuracy of 76% was reached, which is considered a reasonable 

value compared to similar problems (i.e., multi-objective ANFIS for classification (Palupi et al., 
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2016)). Indeed, finding the best membership function and defining rules based on satisfactory 

accuracy is not easy.  

Critical values of True Positive (TP), False Positive (FP), False Negative (FN), and True Negative 

(TN) were calculated based on the confusion matrix (Fig.37), shown in Table 9. False negatives 

for non-anomalous points are higher, leading to low precision for anomalous points. 

 

Table 9: Calculated TP, FP, FN, and TN for class 0 (Non-Anomalous) and class 1 (Anomalous) 

Class  TP FP FN TN 

0 Non-Anomalous 899 227 400 1072 

1 Anomalous 1072 400 227 899 

 

Fig. 37: Confusion Matrix for the test dataset 

 

Classification measurements of the ANFIS method are presented in Table 10 which, similar to the 

confusion matrix, offers high precision, recall, and F1-score for the Anomalous and the Non-

Anomalous classes.  
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Table 10 similar to what was explained in the previous chapter, section 5.5.2, presents precision 

Eq. ( 9 ), which response to how many predicted anomalies were truly anomalous out of all 

detected anomalies. Recall Eq. ( 10 ), aka sensitivity, response to how many predicted anomalies 

were truly anomalies out of all actual existing anomalies. F1-score Eq. ( 11 ) considers both 

precision and recall. The macro average considers all classes equally, irrespective of the number 

of support values. The weighted-averaged is calculated by taking the mean of F1-scores for classes 

while considering each class’s support number. Accuracy Eq. ( 12 ), or micro F1, is a global F1-

score average. 

Table 10: ANFIS accuracy 

 Precision Recall F1-score Support 

Non- Anomalous 0.80 0.69 0.74 1299 

Anomalous 0.73 0.83 0.77 1299 

Accuracy   0.76 2598 

Macro avg 0.76 0.76 0.76 2598 

Weighted avg 0.76 0.76 0.76 2598 

 

The ANFIS method has a 0.8 precision for non-anomalies and 0.73 for anomalies. The method can 

recall 0.69 non-anomalies and 0.83 anomalies. F1-Score for anomalies is 0.77 and 0.74 for non-

anomalies. Accuracy, macro averaged, and weighted averaged F1-score is 0.76. As mentioned in 

previous sections, the ANFIS method was trained and tested using the same number of samples 

for both classes due to the algorithm's sensitivity to imbalanced distribution in classification.  

The method performance is balanced with 0.74 and 0.77 F1-score for non-anomalies and 

anomalies. Applying the ANFIS method leads to experiencing low false alarms, and it also fails to 
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detect some of the anomalies. The overall performance of the ANFIS method is better for the 

anomalous class with the 0.77 F1-score compared to the 0.52 value by the first method. More 

comparisons are presented in the final chapter. 

Table 11 presents the result of ANFIS sensitivity and specificity for each class that shows low 

sensitivity for Non-Anomalous, similar to recall, is the accuracy for predicting classes (i.e., the 

true number of positives per total actual positives). Also, there is comparably low specificity for 

the Anomalous class. Specificity is the accuracy for predicting non-events (i.e., the true negatives 

per total actual negatives of a classifier). 

 

Table 11 Sensitivity and specificity for classes 

 Class Specificity Sensitivity 

0 Non- Anomalous 0.82525 0.692071 

1 Anomalous 0.692071 0.82525 

 

Table 12 contains the calculated premise parameter during the training session that leads to the 

optimum value for objectives. As presented in Table 6, the bell-shaped membership function 

parameters are mu, s, and c, which correspond to the mean, standard deviation, and exponent value 

of the general bell-shaped function Eq. ( 21 ). ANFIS method's two objectives were to search for 

premise parameters that define membership functions and consequent petameters that define rules. 

Based on the values presented in Table 12, membership functions for every seven variables are 

plotted in Fig. 38 to Fig. 44 . Linguistic meaning of membership functions is shown in Table 5. 
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Table 12: Premise membership parameter 

  Inputs No. of  

MFs 

Membership Parameter             

  
1 2   

    c s mu c s mu       

1 EDA 2 1.249 16.558 -0.255 1.044 16.495 32.775 
   

2 Temp 2 1.536 25.610 -0.441 1.007 25.535 51.276 
   

3 Hr 2 2.239 19.863 0.387 1.200 19.950 36.195 
   

4 Acc 1 1.748 0.429 6.724 
      

5 Bvp 2 1.633 7.756 0.077 1.416 7.715 11.937 
   

6 IBI 1 2.807 0.419 1.651 
      

7 label 3 1.738 0.825 -0.363 1.177 0.673 0.689 2.042 0.946 2.102 

 

 

Fig. 38: Calculated membership function for EDA 
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Fig. 39: Calculated membership function for Temp 

 

Fig. 40: Calculated membership function for Hr 

 

Fig. 41: Calculated membership function for Acc 
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Fig. 42: Calculated membership function for Bvp 

 

Fig. 43: Calculated membership function for IBI 

 

Fig. 44: Calculated membership function for Labels 
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Due to the vast volume of interconnection between membership functions, the calculated 

consequent parameters matrix’s length is 96, which presents consequent parameters for all 

interconnection between nodes with membership functions. The matrix can be found in ANFIS 

Jupyter Notebook (Eskandar, 2022a). 

6.6 Conclusion 

An adaptive neuro-fuzzy system (ANFIS) has been proposed to classify and partition data into two 

classes representing anomalies’ degrees of existence. This method assigns optimum membership 

functions to each partition and allocates the rules. Adaptive layers in this network improve the 

parameter over iterations using an optimization algorithm efficient for the vast search area. Particle 

swarm optimization (PSO) searches the parameters by assigning particles and moving each particle 

toward the global optimum. The root-mean-square error is used to calculate the training error at 

each iteration and is backpropagated to improve membership functions and rules in adaptive 

layers. The ANFIS method is adaptive and selected due to the absence of reasoning about the 

inherently vague concept of abnormal psychological states. Typical FIS requires defining 

membership functions for all values and rules among all values. Due to the absence of a calculated 

equation for each physiological signal and knowing the relationship between values, an adaptive 

method is necessary. 

The experimental results demonstrated the effectiveness of the proposed approach for identifying 

Anomalous and Non-Anomalous states. The method performance of the proposed method is 

balanced with 0.74 and 0.77 F1-score for non-anomalies and anomalies class. This method leads 

to experiencing low false alarms (0.73 precision for anomalies class). The overall performance of 
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the ANFIS method is better for the anomalous class with the 0.77 F1-score compared to the 0.52 

value by the first method. More comparisons are presented in the final chapter. 

More importantly, it does not require any user-specified parameter for either setting rules or 

defining membership functions. This method addresses the shortcomings of the previous approach 

by not relying on the threshold for determining anomalies. However, it resulted in comparably 

lower accuracy than the previous method. The next chapter discusses each approach with its 

performance and compares the outcomes. 
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Chapter 7 Conclusions 

7.1 Chapter Overview 

This research was inspired by identifying the strong association of stress with unsafe behaviour in 

construction. The study investigates the physiological features associated with stress and offers 

enhanced stress detection methods resulting in contributions discussed further in this chapter. This 

chapter first summarizes the research study presented in this dissertation and discusses the main 

contributions to the body of knowledge in data analytics for safety. The chapter follows with 

discussions on limitations and potential future work for the field experiment design and data 

collection process, as well as the two stress detection methods based on unsupervised deep learning 

and the Adaptive Neuro-Fuzzy Inference System. A discussion on the comparison of the two 

methods follows. The chapter concludes with concluding remarks. 

7.2 Research Summary 

A comprehensive literature review revealed that current stress detection methods work based on 

limited physiological signals without considering the subjects’ basic information or situational 

data. Many field experiments for stress detection research are designed with inadequate stress-

inducing approaches during data collection. Also, among the previous studies, there is no applied 

anomaly detection-based method in the stress detection domain. These identified gaps in research 
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motivated this study to develop stress detection methods that involve anomaly detection and are 

trained using the collected dataset from the designed field experiments. The conducted data 

collection offers diverse records of data collected through unobtrusive methods while using stress-

inducing approaches. 

This study presented two anomaly detection methods. For the first method, an unsupervised deep 

learning-based method was used for detecting workers’ stress and overload based on the acquired 

data. This method performs based on three categories of acquired data. The proposed method 

includes unsupervised learning architecture formulated over an input size of (5,14,14,3). Input is 

the correlation of 14 features stacked together for five consecutive timesteps (the previous 1.25 

seconds) and three different window sizes. 

The method performs based on reconstructing the same input (i.e., pairwise correlation). High 

reconstruction error indicates the method's inability to predict, therefore flagging an anomaly. The 

proposed anomaly detection method supports identifying contributing features for the detected 

anomalies. Interpretation is possible by analyzing the residual matrix and looking into error values 

for correlation between every two features. The methods’ limitations and shortcomings, discussed 

in Chapter 6, motivated further investigation and development of the Fuzzy Logic method. 

Anomaly detection using an Adaptive Neuro-Fuzzy Inference System (ANFIS) was designed and 

developed to classify and partition data into two classes representing anomalies’ degrees of 

existence. This method performs based on six physiological signals and labels of the performed 

activities for five consecutive timesteps in the previous 1.25 seconds, which includes input size 

equal to (5, 7). ANFIS method assigns optimum membership functions to each partition and 

allocates the rules. Particle swarm optimization (PSO) is used to search the parameters. The root-
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mean-square error is calculated at each iteration and backpropagated to improve membership 

functions. The experimental results demonstrated the effectiveness of the proposed approach, 

especially for identifying Anomalous and Non-Anomalous cases.  

7.3 Research Contributions 

This research pursued three objectives presented in section 1.3. The first objective was to design 

and implement a field experiment to collect a range of data, including physiological and contextual 

data while inducing stress. As demonstrated in Chapter 4, section 4.2, a field experiment was 

conducted with 18 participants performing a pre-defined sequence of activities triggering mental 

and physical stress. A wristband biosensor is used to collect physiological signals while engaging 

in activities. The database of contextual and physiological data was created to be utilized for 

training and testing stress detection methods. 

The second objective was to design, develop, and evaluate anomaly detection method(s) for stress 

and overload detection. As given in Chapter 5 and Chapter 6, two methods were developed in 

response to the second objective. The third objective was to align the model with the long-term 

goals and future application in the construction industry as a potential human in the loop cyber-

physical system. This was partially achieved through the experiment design stage. Participants 

were provided with PPE equipment, and unobtrusive wearable sensors were selected. Collecting 

contextual data on the work condition and tasks in the future and using it in the model design will 

align the stress detection model to different workplaces. 

The overall outcome of this study is an advanced stress detection toolkit for improving safety in 

workplaces, with potential applications to other areas such as education, driving, and long-term 
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care. The improvements in the stress detection approach were achieved using the power of data, 

AI, and ML. AI/ML-enhanced data analytics was the enabler of this work, contributing to the body 

of knowledge in safety research. This study proved effective in developing an anomaly detection 

method using two methods: (1) Unsupervised DL and (2) ANFIS. 

In terms of visualization, interpretation, and application, the first method provides reconstruction 

error matrices that allow us to analyze error values, which is the correlation difference between 

every two features. Higher intensity of error values regards as the abnormality from commonly 

recognized patterns. On the other hand, the second method is easier to utilize by a non-specialist 

in the machine learning domain. This method presents the membership functions and fuzzy rules, 

which are easier to understand and deploy. 

7.4 Limitations and Future Work  

7.4.1 Experiment Design and Data Collection 

The proposed stress detection methods heavily rely on data. The development and validation of 

the methods presented in this study are influenced by the quality and limitations of the data 

collected through the field experiments. It is important to note that the field experiment was 

conducted in controlled circumstances and therefore lacks the actual work setting data. In addition, 

only a limited number of activities and participants were considered in the experiment. For better 

detection performance for specific workplaces, it is recommended that the method be trained on a 

broader range of subjects and activities for future work, with the training/testing data collected in 

an actual dynamic situation in the targeted workplace.  
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There are limitations to effectively collecting some non-invasive physiological signals from 

construction workers while involved in physical activities. For instance, utilizing precise and 

effective ways of collecting data that show the impact of stress and overload, such as EEG signals, 

is not practical. EEG signals are sensitive to intrinsic artifacts like eye blinking in addition to 

extrinsic artifacts that arise from the outside body (e.g., environmental noises) that bring some 

limitations in their applications. More contextual information can be recorded to enhance the 

system further, such as the participant’s task, location, and surrounding noise.  

Moreover, safety is not related to the isolated act of individuals, and the social interactions 

resulting from the collaboration and communication among workers in such a dynamic 

environment will impact human behaviour. Therefore, investigating social factors and their 

influence on stress and situation management is an important area to be examined in future work 

to advance safety research. Moreover, researchers’ future work includes stress detection model 

adaptation and calibration in different workplaces such as construction. The reliability of the 

detected anomalies will be further improved using a decision fusion method to calibrate the 

anomaly detection method for any different workspace or application context. 

7.4.2 Stress Detection Using Unsupervised Deep Learning 

The method was examined against two separate test datasets resulting in 98 percent accuracy over 

the first test set. The labels (i.e., absolute truth) for the first test dataset are tagged on the expert’s 

opinion by studying the raw collected time series. For future work, including different expert 

inputs and specialists (e.g., Cardiologists) is recommended to improve the absolute truth in 

calculating the accuracy.  
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The second test dataset was arranged without following the original sequence of activities in order 

to prove the method’s independence from the sequence of activities in the designed experiment. 

While recording data, the times of intentionally added extra mental stress/overload were logged as 

labels. So, the second test dataset size includes tagged timesteps based on real-time observations. 

The method showed 90 percent accuracy against the second test dataset. This reduced performance 

can be attributed to the significant difference in individual responses to the same stress stimuli that 

require future extensive research over customizing anomaly detection models for every individual. 

It is unrealistic to assume that the outcomes can be compared against absolute truth in a problem 

space, which is uncertain by nature. Therefore, the stress detection method discussed in this chapter 

suffers from a lack of availability of absolute truth. Anomalies in this method are identified when 

the reconstruction error is higher than the defined threshold (90 percentile of the reconstruction 

error for each activity).  

Defining a higher threshold will result in high false negatives, while a lower value leads to high 

false positives. So, setting thresholds and over-reliance on absolute truth are the shortcomings of 

the DL-based anomaly detection method. To overcome the above-mentioned challenges and 

shortcomings, further research and investigation resulted in the designing and development of an 

adaptive Neuro-Fuzzy Inference System for anomaly detection. 

7.4.3 Stress Detection Using Adaptive Neuro-Fuzzy Inference System 

The second method addresses the shortcomings of the previous approach by not relying on the 

threshold for determining anomalies. Moreover, the proposed ANFIS, unlike common FIS, does 

not require any user-specified parameter for either setting rules or defining membership functions. 
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This method is faster in nature and offers a transparent distribution of input data through a 

Membership Function (MF) that provides a straightforward approach to users. However, the 

ANFIS method resulted in considerably lower accuracy than the deep learning method. This study 

considered a general bell shape MF for all input variables. To improve the accuracy, the impact of 

different forms of membership functions can be added to pick the best matching form 

automatically. General bell shape MF was considered for all input variables, and diverse MFs can 

be assigned to each variable. Moreover, increasing the flexibility of MFs and rules can be regarded 

as considering wider combinations of options to be searched by an optimization algorithm. 

Another critical issue in stress detection methods is the natural differences in individuals 

responding to stress-inducing events or conditions. Further studies can address this limitation to 

customize and calibrate anomaly detection methods for every individual. 

7.5 Methods’ Comparison and Discussion 

7.5.1 Methods Efficiency and Training Cost 

Regarding the efficiency and training cost, the unsupervised deep learning-based method has 144 

times larger parameters to train compared with the adaptive neuro-fuzzy inference system method. 

The first method contains a total of 116,028 parameters to be trained; however, there are only 807 

parameters for the second method. The higher number of parameters indicates a higher training 

cost for the first method. Above all, the first method requires more samples for the training process, 

which undoubtedly results in a higher data collection and management cost. Both methods’ 

processing time was calculated using Intel(R) Xeon(R) CPU @ 2.30GHz CPU. The first method 
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reached the stopping criteria in 1d 5h 16min 26s, which is 16 times slower than 1h 49min 49s for 

the second method.  

Table 13: Unsupervised DL-based and ANFIS anomaly detection efficiency and training cost 

Methods Parameters Processing Time 

1-Unsupervised DL-Based 116028 1d 5h 16min 26s 

2-ANFIS 807 1h 49min 49s 

 

7.5.2 Methods’ Performance Metrics 

Both methods’ performance metrics are organized in Table 14, which presents the performance of 

the first method (i.e., 1- Unsupervised DL-Based) next to the second method (i.e., 2-ANFIS). The 

first method has a precision of 1.00 for non-anomalies data, while the second method offers a 

precision of 0.8 for the same class of data. For the anomalies, the second method provides a 

precision of 0.73, which outperforms the first method with a precision of 0.35. The first method 

recall is 0.98 and 1 for non-anomalies and anomalies, higher than 0.69 and 0.83 for the same 

classes in the second method. The second method’s F1-score for anomalies is 0.77, higher than the 

0.52 of the first method. However, the non-anomalies F1-Score is 0.99 for the first method, which 

outperforms the 0.74 for the second method. 

There is a considerable difference between the two methods’ accuracy. Accuracy as a global F1-

score average is the percentage of correct predictions over the total number of samples. The first 

method resulted in 0.98 accuracies, higher than the second method with 0.76 accuracies. Accuracy, 

macro average, and the weighted average for the second method are equal (i.e., 0.76) since the 
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second method was trained and tested with the same number of samples for each class. As 

explained in Chapter 6, the second method holds the same number of samples for both classes due 

to the algorithm's sensitivity to unbalanced distribution in classification. 

The macro averaged F1-score considers all classes equally, irrespective of the class weight, which 

in imbalanced class distribution, there are different weights to different classes. The weighted 

averaged F1-score is calculated by taking the mean of all F1-scores for classes while considering 

the class’s weight (i.e., the proportion of samples for each class). The first method, with 0.99 

weighted averaged F1-score, performs better than the second method, with 0.76 weighted averaged 

F1-score. Overall, the second method performs better for the anomalous class with the 0.77 F1-

score compared to the 0.52 value by the first method. 

Table 14 Unsupervised DL-based and ANFIS anomaly detection accuracy  

 Anomaly Detection Method 

 1-Unsupervised DL-Based 2-ANFIS 

Classes Precision Recall F1-score Precision Recall F1-score 

Non- Anomalous 1.00 0.98 0.99 0.80 0.69 0.74 

Anomalous 0.35 1.00 0.52 0.73 0.83 0.77 

Accuracy   0.98   0.76 

Macro avg 0.68 0.99 0.76 0.76 0.76 0.76 

Weighted avg 0.99 0.98 0.99 0.76 0.76 0.76 

 

Based on the defined metrics, the first method can predict all anomalies. However, it is detecting 

more anomalies than exist due to low precision. Therefore, the first method is suitable for highly 

sensitive circumstances where the false alarm is accepted for a higher level of safety. However, 

the second method is more balanced regarding detecting anomalies, with 0.83 recall and 0.73 
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precision. Applying the second method leads to experiencing fewer false alarms while not 

detecting some of the anomalies. 

7.6 Conclusions  

This research demonstrated improvements in the stress detection approach using the power of data, 

AI, and Machine Learning. AI/ML-enhanced data analytics was the enabler of this work, 

contributing to the body of knowledge in safety research. However, as discussed, the nature of the 

stress phenomena, the construction environment, and the limitations of data collection methods 

constrained this work. 

Despite the above-mentioned fundamental limitations, this study proved effective in developing 

an anomaly detection method using two methods: (1) unsupervised deep learning-based and (2) 

adaptive neuro-fuzzy inference system with 98% and 76% accuracy. 

In conclusion, the second method performs better for the anomalous class than the first method. 

Also, the second method is more balanced regarding detecting anomalies and non-anomalies, 

which leads to lower and more manageable false alarms. However, the first method is suitable for 

highly sensitive circumstances where the false alarm is accepted.
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