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Abstract

The remarkable ability of the human brain to draw an accurate percept from im-

precise sensory information is not well understood. Bayesian inference provides an

optimal means for drawing perceptual conclusions from sensorineural activity. This

approach has frequently been applied to visual and auditory studies but only rarely

to studies of tactile perception. We explored whether a Bayesian observer model

could replicate fundamental aspects of human tactile spatial perception. The model

consisted of an encoder that simulated sensorineural responses with Poisson statistics

followed by a decoder that interpreted the observed firing rates. We compared the

performance of our Bayesian observer on a battery of tactile tasks to human partici-

pant data collected previously by our laboratory and others. The Bayesian observer

replicated human performance trends on three spatial acuity tasks: classic two-point

discrimination (C2PD), sequential two-point discrimination (S2PD), and two-point

orientation discrimination (2POD). We confirmed the widely reported observation

that C2PD is the least reliable method of assessing tactile acuity due presumably

to the presence of non-spatial cues. Additionally, the Bayesian observer performed

similarly to humans on raised letter and Braille character-recognition tasks. The

Bayesian observer further replicated two illusions previously reported in humans: an

adaptation-induced repulsion illusion and an orientation anisotropy illusion. Taken
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together, these results suggest that human tactile spatial perception may arise from

a Bayesian-like decoder that is unaware of the precise characteristics of its inputs.
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Chapter 1

Introduction

1.1 Perception and Survival

The ability of humans to correctly estimate the state of the world amid uncertainty is

crucial for our survival. For our ancestors, an error in judgment regarding a source of

movement in bushes could have been fatal. Modern humans, if we make perceptual

misjudgments, would face the same dire consequences each time we attempt to cross

a street or walk down a staircase. Luckily, the human brain is adept at dealing with

stimulus uncertainty. The brain’s ability to infer the state of the external world is

particularly impressive considering that nearly all input to the nervous system is

subject to noise and, consequently, uncertainty. The mechanism by which the brain

generates an accurate inference from imprecise sensory inputs is not well understood.

Such inference requires the brain to distinguish signal from noise, but how is this

accomplished?

1
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1.1.1 What is Perception

We must first define what we mean by perception, and more specifically how it dif-

fers from sensation. Like many other conceptual terms denoting a mental process,

while we may have an intuitive understanding of the term, it is exceedingly diffi-

cult to explicitly define it. Webster’s dictionary defines perception as ”awareness of

the elements of environment through physical sensation”. Although this is a good

starting definition, it is incomplete as perception is far more than just the awareness

of the environment. Perception also entails the process of interpreting, identifying,

and categorizing elements in the environment. Sensation involves the acquisition of

environmental signals through our senses. Perception involves the process by which

we make sense of these signals.

1.2 Computational Models of Perception

1.2.1 Qualities of the model

The mechanism by which perception emerges from sensory information is a mystery.

Empirical research such as neurophysiological and psychophysical studies has got-

ten us closer to uncovering this mechanism; however, the information obtained by

these studies is often disconnected and segregated. We lack a unifying theory that

explains how nervous systems encode, represent, and store sensory information, and

how perception interprets this information. A promising complement to the empirical

research is computational modelling, which aims to tackle the overarching encoding

and decoding principles that may govern perception. Like piecing together a puzzle, a

2
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good computational model has the power to contextualize empirical findings, summa-

rize the multiplicity of findings, and uncover hidden truths. Different computational

models are designed for a specific task and scope. In deciding which computational

model to use to investigate human tactile spatial perception, we set two criteria. Our

model needs to be Simplified/Idealized and Probabilistic.

Model Simplicity

Computational models can be largely categorized as descriptive, mechanistic, or inter-

pretive (Dayan & Abbott, 2001). Descriptive models, as the name suggests, describe

what neural circuits do by summarizing large amounts of experimental data com-

pactly. Mechanistic models explain how the nervous system operates and propose

neural mechanisms based on established circuitry and physiology. Lastly, interpre-

tive models aim to understand what function the nervous systems are constructed to

perform. These models explore the behavioural and cognitive significance and com-

putational advantage of various aspects of nervous system operations. Depending on

the research question, different levels of complexity and detail need to be employed

in the model. A more detailed model does not necessarily make it superior (Dayan &

Abbott, 2001). For a model to be effective, it needs to be detailed enough to answer

the research question; more complexity can hinder the effectiveness of the model.

Given the broad nature of our question, a mechanistic model would be too detailed

for our work; thus, a descriptive model is more appropriate.

3
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Probabilistic vs Deterministic Models

Characterizing the relationship between stimulus and response is difficult because

neuronal responses are complex and variable. Neurons typically respond by producing

complex spike sequences that reflect both the intrinsic dynamics of the neuron and

the temporal characteristics of the stimulus. Neural responses can vary from trial

to trial even when the same stimulus is presented repeatedly. This variable response

pattern is due to a number of different potential sources, including variable levels of

arousal and attention, and randomness associated with various biophysical processes

that affect neuronal firing.

Deterministic models, as their name suggests, assume that the brain functions

deterministically—for a given stimulus, the same response is elicited. These mod-

els are able to accurately predict the response pattern only if all their inputs are

known. However, there remain many unknowns in regard to neural networks that

make deterministic models inaccurate in practice. The complexity and trial-to-trial

variability of action potential sequences make it unlikely that we can describe and

predict the timing of each spike deterministically. Instead, we seek a model that

can account for the probabilities of different evoked spike sequences. A probabilistic

model assumes that perception reflects what is statistically likely to occur in reality,

therefore mitigating the random effects of noise. A great deal of psychophysical and

electrophysiological evidence suggests that given the same stimulus, the variable out-

put is observed (Waschke et al., 2021). The source of this variability or noise is still

in question, and whether the noise is a by-product of neurological processors or an

intentional computational mechanism is still unknown.

4
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Sensory Models

Bayesian inference provides an optimal method for drawing perceptual conclusions

from sensorineural activity. Thus, the Bayesian framework provides a useful norma-

tive model with which to study perception. A growing number of studies in vision,

hearing, and multi-modal perception have shown that human performance conforms

closely to the predictions of Bayesian models (Geisler & Kersten, 2002; Ma et al.,

2006; Stocker & Simoncelli, 2006). The near-optimal performance of humans has led

many researchers to suspect that perception involves Bayesian-like calculations; how-

ever, the extent to which the brain uses Bayesian inference is unclear. Most previous

studies have focused on non-tactile senses. In the present study, our goal is to in-

vestigate whether observed trends in tactile perception – particularly, passive tactile

spatial perception – are consistent with the Bayesian framework.

1.3 Somatosensory Transduction Pathway

When an object touches the skin, mechanoreceptors encode the properties of the ob-

ject as response patterns. These mechanoreceptors are distinguished based on their

receptive field, their rates of adaptation and the type of stimulation to which they

respond (Jones & Smith, 2014). Merkel cells, which are innervated by slowly adapting

type 1 (SA1) afferents, detect static stress and sustained pressure (Maricich et al.,

2009), making them ideal for encoding fine tactile spatial information. SA1 afferent

inputs from the hands ascend via the dorsal columns to synapse in the cuneate nu-

cleus of the medulla oblongata. The signal subsequently passes through the medial

5
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lemniscus to the ventroposterolateral thalamus, and from there to the primary so-

matosensory cortex (Pei et al., 2009). The brain somehow decodes the evoked firing

patterns to infer the properties of the felt object from the observed pattern of neural

activity. This inference is presumably based on a series of assumptions the brain

makes about the world.

1.4 Our Bayesian Model

Similar to the human transduction pathway, our simulations involve an encoding and a

decoding stage. The encoding stage (forward-processing or generative stage) converts

sensory stimuli into spatial patterns of action potentials characterized by Poisson

firing rate variability—the mean firing rate is approximately equal to the variance of

the firing rate—that are typical of the firing rates cortical sensory neurons (Moreno-

Bote, 2014; Sripati et al., 2006). The decoding stage uses Bayesian inference to

solve the inverse problem: inferring the stimulus structure from the observed spatial

pattern of spike counts. The two ingredients considered by the Bayesian decoder

are the likelihood function and the prior probability distribution. The likelihood

function is the probability of the observed neural activity as a function of the tactile

stimulus structure based on the internal representation of the generative stage. The

prior probability distribution is the probability of occurrence of each tactile stimulus

structure based on previous experiences or task instruction. The general formula for

Bayesian inference is:

posterior ∝ likelihood× prior (1.4.1)

6
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The Bayesian inference approach has scarcely been applied in studies of tactile per-

ception; therefore, it has been unclear whether the Bayesian brain model can extend

successfully to all senses. We investigated whether the Bayesian framework is able to

provide a unifying explanation of human performance on some of the most commonly

used tactile spatial perception tasks involving punctate stimuli. We considered two

categories of experiments—tactile acuity tasks and illusion tasks—to investigate the

general applicability of our model.

1.5 Tasks Simulated

1.5.1 Tactile Spatial Acuity Tasks

Tactile spatial acuity can be assessed by different variations of two-point discrimina-

tion tasks (2PDs) and letter recognition tasks. The original variation of two-point

discrimination task was introduced by E. H. Weber in 1834, in which, two spatially

separated points contact the skin simultaneously, and participants are asked whether

they felt one point or two (Helen et al., 2018). As the distance between the two points

decreases, it becomes more difficult for the participants to distinguish between two

points and one point. In practice, this classic two-point discrimination task (C2PD)

suffers from highly variable within and between subjects’ responses (Craig & John-

son, 2000; Johnson & Phillips, 1981a; Stevens & Patterson, 1995). Even though the

two-interval forced choice (2IFC) variation of this task could mitigate some of these

practical problems, it apparently still suffers from a fundamental problem—evident by

above 50% performance at 0.0 mm stimulus separation distance (Johnson & Phillips,

1981b).

7
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Several purportedly more rigorous alternative tasks have been suggested, such as

the sequential two-point discrimination task (S2PD), in which participants are asked

to judge whether two successive points of stimulation were applied in a proximal or

a distal sequence (Mancini et al., 2014), and two-point orientation discrimination

tasks (2POD), in which participants are asked to discriminate the orientation of two

simultaneous points of contact (Tong et al., 2013). Using our Bayesian observer

model, we investigated the possible causes for C2PD’s shortcomings, and whether

2POD and S2PD are valid alternatives to C2PD.

Other methods to assess tactile spatial acuity include raised-character recognition

tasks. We looked at two variations of this task, letter recognition (RLRT) and braille

character recognition (BCRT). In this task, participants are asked to identify the letter

stimulus presented to them (Johnson & Phillips, 1981b). We investigated whether

our Bayesian observer could replicate the human participant confusion matrices on

these tasks.

1.5.2 Illusion Tasks

Illusions are a powerful tool to reveal underlying perceptual mechanisms. Under the

Bayesian framework, illusions can arise from sub-optimal decoders with either faulty

likelihood function or prior probability distribution. A faulty likelihood function is

due to a decoder’s erroneous internal representation of the generative stage. Many

visual illusions have already been explained by the Bayesian framework (Geisler &

Kersten, 2002), and this approach has been less-frequently applied to the investiga-

tion of tactile illusions (Goldreich, 2007; Goldreich & Tong, 2013; Tong et al., 2016).

8
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Similarly, we investigated whether tactile illusions such as adaptation induced repul-

sion illusion (AIRI) and orientation anisotropy illusion (OAI) could plausibly result

from a Bayesian inference process. Inspired by visual aftereffect illusions (Schwartz

et al., 2006), Li et al. (2017) discovered AIRI in which sensory adaptation causes

the perceived location of a stimulus to shift away from the adapted area. Longo and

Haggard (2011) discovered OAI in which the transverse distances on the dorsum of

the hand are perceived larger than the same vertical distances. Unlike the acuity

tasks in which we used an optimal decoder, to simulate illusion tasks, we created

sub-optimal decoders. By manipulating assumptions that our sub-optimal decoder

makes, we discovered situations in which these perceptual errors arise.

9

http://www.mcmaster.ca/
https://www.neurosciencemcmaster.ca/


Chapter 2

Method

2.1 General Model

Our Bayesian model comprises of two computational stages, an encoding and decod-

ing stage. The encoding stage simulates stimulus transduction, and the decoding

stage simulates source inference. To make our model generalizable, we have adopted

a dimensionless unit, c, to refer to the center-to-center spacing distance between

RFs. All other length variables are expressed in terms of this unit. By inserting the

appropriate value for c, we are able to scale our model for different body locations.

2.1.1 Encoder

The encoding stage simulates the spiking patterns of cortical neurons in response to

tactile stimuli based on the response properties of modelled receptive fields (2.1A).

The encoder model space is a 10c×10c patch of simulated skin that is innervated by a

grid of N cortical neurons with 2D Gaussian function RF shapes (2.1B). The Gaussian

10
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functions are defined by two parameters, standard deviation (σ) and amplitude (A).

For all sensory tasks, we simulated individual participants with the same number of

RFs and spacing but with a varying shift in the transverse phase to avoid idiosyncratic

results (2.1C). RF positions are calculated as follows:

x1 ∼ U(−1

2
,
1

2
) · c

xi+1 = xi + c

(2.1.1)

where x is position of RF center and c is RF center to center spacing. The position

of the first RF center is jittered by half of RF spacing.

For testing the effect of jittering the individual neuron RF properties—such as

jittering amplitude, sigma, and spacing—within a given participant on performance,

we used a similar formula:

Ai = A · eX

σi = σ · eX

xi+1 = xi + c · eX

X ∼ U(ln
1

J
, ln J)

(2.1.2)

where A is tuning curve amplitude, σ is gaussian RF sigma, c is RF center to center

spacing, J is the jitter level, X is a double-precision floating-point numeric number

sampled from a uniform distribution defined by U(ln
1

J
, ln J).

A point stimulus was defined by its position (px, py) on the skin patch. For a given

point stimulus, the encoder calculates the expected stimulus-evoked spike count, si,

11
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(A) RF Characteristics (B) Skin Space

(C) RF Position Transverse Phase Shift

Figure 2.1: The model skin patch. (A) The model skin patch is represented
by a square array of dots, in which each dot corresponds to a neuron’s RF center.
(B) Each neuron is characterized by its amplitude (A), sigma (σ) and their spacing
to nearby RF centers (c). Depending on the task the sigma and spacing is scaled to
match the location of the task on the body. (C) Three set of RF centers shown each
corresponding to three different participants.
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of a neuron based on the Gaussian function of distance from the neuron’s RF center:

si = I × Ae
−
d2i

2σ2 , di =
√

((py − yi)2 + (px − xi)2) (2.1.3)

where I is stimulus intensity, A is the Tuning curve amplitude, xi and yi denote the

coordinate of the RF centers, and px and py denote stimulus coordinate. Values used

in the simulation for these variables can be found in the Appendix.

Stimulus intensity (I) represents the skin indentation depth of a point stimulus.

In order to investigate practical aspects of human experimentation, we simulated

the use of two different control paradigms; displacement control and force control.

In the displacement control paradigm, the stimulus intensity for each point is the

same; in the force control paradigm, the stimulus intensity for each point is inversely

proportional to the number of points for that task. We calculated the tuning curve

amplitude based on the spike data collected previously from extracellular recordings

of neurons in cortical area 3b of macaque monkeys in response to a punctate stimulus

(Pei et al., 2009), as shown here,

A = rON × tON + rSUSTAIN × tSUSTAIN + rOFF × tOFF (2.1.4)

where rON , rSUSTAIN ,and rOFF are the ON, SUSTAIN, and OFF response rate re-

spectively, and tON , tSUSTAIN , and tOFF are ON, SUSTAIN, and OFF response time

respectively.

We assumed linear summation of expected stimulus-evoked spike count to multi-

point stimuli. Our model considers two separate sources of noise, spontaneous cor-

tical activity and independent Poisson neural variability (Vazquez et al., 2013). A

13
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stimulus-evoked spike count, ki, for each neuron is randomly sampled from a Poisson

distribution with a mean expected spike count, λi, such that:

λi = si + rspontaneous × ttotal, ki ∼ Poisson(λi) (2.1.5)

where rspontaneous is the spontaneous firing rate and ttotal is the total stimulus duration.

The spike counts from each cortical neuron are then sent to the decoder for pro-

cessing. For 2IFC experiments, there are two intervals of data creation. The spike

count data resulting from the first interval (D1) and the second interval (D2) are sent

to the decoder.

2.1.2 Decoder

The decoder processes the spike count data, D, to provide probabilistic estimates of

stimulus features. To do so, the decoder considers a range of hypotheses for stimulus

features (i.e., stimulus location). We assumed that the decoder has an internal rep-

resentation of the generative model; meaning, the decoder was aware of the encoding

stage RF characteristics (i.e., the Gaussian function, spacing, sigma, amplitude and

positions), expected spike count, linear summation of spike count, spontaneous noise,

and Poisson-like firing variability. For each hypothesis, Hl, the decoder calculates the

expected spike count for all the neurons (λ) according to the equation 2.1.5. The

decoder then uses λ to calculate the likelihood, P (D | Hl):

P (D | Hl) =
∏
i

e−λi × λkii
ki!

(2.1.6)

where l is hypothesis index, i is neuron index; there are 121 neurons in total.

14
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To avoid numeric underflow when calculating the likelihoods, we calculated the

log-likelihoods, found the maximum log-likelihood, subtracted the maximum log-

likelihood from log-likelihoods, summed all the log-likelihoods, and exponentiated

the log-likelihoods. This method is the same as multiplying likelihoods by a nor-

malizing constant. This procedure does not affect the posterior PDF because the

posterior PDF is only affected by the relative likelihoods of the hypotheses.

P (D | Hl) = e
ln(

∏
i

e−λi × λkii
ki!

)

= e
∑
i ki ln(λi)−λi−ln(ki!) (2.1.7)

1

eML
× P (D | Hl) = e

∑
i ki ln(λi)−λi−ln(ki!)−ML (2.1.8)

where ML is the maximum log-likelihood.

For 2IFC tasks, the decoder needs to consider composite hypotheses, M j, with

their own range of sub-hypotheses regarding stimulus feature. We assume a uniform

prior over these sub-hypotheses; therefore, the priors are reciprocal of the number of

sub-hypotheses in each composite hypothesis. For a given M j, the decoder calculates

the composite hypothesis likelihood as marginal likelihood:

P (D |M j) =
∑
l

P (D | Hl,M j)P (Hl |M j) (2.1.9)

where D is the data the decoder receive, and Hl is a sub-hypothesis.

For 2IFC tasks, the decoder considers two composite hypotheses, M1 and M2,

corresponding to different stimulus presentations. Based on equation 2.2.7, the de-

coder calculates the posterior probability of these hypotheses using the calculated
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composite hypothesis likelihoods:

P (M j | Di, D2) =
P (D1, D2 |M i)P (M i)

P (D1, D2 |M1)P (M1) + P (D1, D2 |M2)P (M2)
(2.1.10)

where D1 and D2 are data from the first and second interval respectively.

When the posterior odds
P (M1 | D1, D2)

P (M2 | D1, D2

) is greater than one, the decoder reports

M1 as trial response, otherwise M2 is reported as the trial response. To make sure

that all stimuli are detected by the decoder, we considered a composite hypothesis,

M3, that the spike counts are due to spontaneous noise. We then took the average

posterior probability of M3 over all trials. For the default experimental procedure,

we confirmed that M3 was less than 0.05.

2.2 Spatial Acuity Tasks

The two-point discrimination tasks were simulated using 2IFC paradigm in which each

trial consisted of two possible stimulus sequences (2.2). The decoder has to make

a judgement regarding which stimulus sequence was presented. For this purpose,

the decoder considers a composite hypothesis for each of the two possible stimulus

sequences. The decoder subsequently calculates the Bayes factor and reports its

answer.

C2PD

The two composite hypotheses that the decoder considers are MV O and MOV . MV O

corresponds to D1 being the result of two-point stimulus, and D2 being the result of
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(A) C2PD (B) 2POD (C) S2PD

Figure 2.2: Schematic of two-point discrimination tasks. The asterisks are
the stimulus location. All points are centered at the center of the skin patch. In
C2PD, a point is given at one interval, and two points of varying separation is given
at the other interval (A). In 2POD, two-point stimulus of varying separation is given
longitudinally at one interval and transversally at the other (B). In S2PD, a point
is given at the proximal location at one interval and the distal location at the other;
such that both points are equidistant from the center point (C).

one-point stimulus. MOV corresponds to the alternative stimulus presentation order.

To find the likelihood of each composite hypothesis, the decoder finds the marginal

likelihoods as follows:

P (D1, D2 |MOV ) =
∑
d

P (D1 | HO)P (D2 | HV d)P (Hd |MOV ) (2.2.1)

P (D1, D2 |MV O) =
∑
d

P (D1 | HV d)P (D2 | HO)P (Hd |MV O) (2.2.2)

To find the probability that at any given interval the data are due to a two-

point stimulus P (D | HV d), the decoder hypothesizes possible pairs of points that
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are separated from each other at distances (d) of 0c to 4c at
2

15
c steps. To find

the probability that any given interval, the data are due to a one-point stimulus

P (D | HO), the decoder considers a stimulus at the center of the skin patch.

2POD

The two composite hypotheses that the decoder considers are MTL and MLT . MTL

corresponds to D1 being the result of transverse stimulus and D2 being the result of

a longitudinal orientated stimulus pair. MLT corresponds to the alternative stimulus

presentation. To find the likelihood of each composite hypothesis, the decoder finds

the marginal likelihood:

P (D1, D2 |MTL) =
∑
d

P (D1 | HT d)P (D2 | HLd)P (Hd |MTL) (2.2.3)

P (D1, D2 |MLT ) =
∑
d

P (D1 | HLd)P (D2 | HT d)P (Hd |MLT ) (2.2.4)

To find the probability that at any given interval the data are due to a transverse

stimulus P (D | HT d), the decoder hypothesizes possible pairs of points in the trans-

verse direction that are separated at distances (d) of 0c to 4c at
2

15
c steps. Similarly,

to find the P (D | HLd), the decoder hypothesizes possible pairs of points but in the

longitudinal direction.
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S2PD

The two composite hypotheses that the decoder considers are MY P and MPY . MY P

corresponds to D1 being the result of distal stimulus and D2 being the result of

the proximal stimulus. MPY corresponds to the alternative stimulus presentation.

To find the likelihood of each composite hypothesis, the decoder finds the marginal

likelihood:

P (D1, D2 |MY P ) =
∑
d

P (D1 | HY d)P (D2 | HP d)P (Hd |MY P ) (2.2.5)

P (D1, D2 |MPY ) =
∑
d

P (D1 | HP d)P (D2 | HY d)P (Hd |MPY ) (2.2.6)

To find the probability that at any given interval the data are due to proximal

stimulus P (D | HY ), the decoder hypothesizes x positions that are away from the

transverse-line at distances (d) of 0c to 2c at
1

15
c steps. To find P (D | HP ), the

decoder hypothesizes x positions that are away from the transverse-line at distances

(d) of 0c to −2c at − 1

15
c steps.

2.2.1 Threshold

To summarize the Bayesian observer’s performance in the 2PD tasks, we used the 76%

threshold as the metric. The 76%-correct threshold is the stimulus value at which

the Bayesian observer’s proportion of correct response is 76%. For a 2IFC task, the

76% threshold is equivalent to the stimulus value at which d′ = 1 (Colman, 2009).
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To find the 76% threshold of our psychometric functions we used linear interpolation.

For tasks that involved a large number of simulations, we used a Bayesian adaptive

method (Kontsevich & Tyler, 1999) to find the threshold.

2.2.2 Letter Recognition Task

(A) Raised Letter (B) Braille Letter

Figure 2.3: Letter Recognition Task Schematic. Example of a raised letter and
a Braille character stimulus on a fingertip. (A) The raised letter T stimulus consists
of 22 points in which the transverse distance between points is twice as long as the
longitudinal distance, modelled after optacon letter presentation (Craig, 1976). (B)
The Braille character representation of the letter T consists of four points with equal
distance to their neighbouring point. For both tasks, the participants need to identify
the stimulus letter given to them.

Both braille and raised letter recognition tasks follow a similar encoding and de-

coding process (2.3). In the encoding stage, the letters are converted to a series of
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points. Each dot in a Braille character is considered as one point (i.e. the braille char-

acter representing the letter Z,
.
.
.

.

.

.

rr rr , consists of four points). The Braille characters’

dimensions were modeled after Loomis (1982). For the raised letter recognition task,

we converted uppercase English alphabet letters with Microsoft Sans Serif font to a

4-bit image data and subsequently to a bitmap. Each pixel in the bitmap represented

a specific point, the position of which was calculated such that the overall height

of the letters matched the height of the letters used by Craig (1979). We adjusted

the font size such that the number of points for each letter roughly matched the

number of points produced by the Optacon in Craig (1979). Under the force-control

paradigm, we normalized the stimulus intensity of each point such that the sum of

stimulus intensities of all the points within a letter was equal across letters. For each

letter/character presented, the decoder considered twenty-six possible letter hypothe-

ses. Based on Bayes’ theorem, the decoder can calculate the posterior probability of

each hypothesis as:

p(Hl | D) =
P (D | Hl)P (Hl)∑
j P (D | Hj)P (Hj)

(2.2.7)

The hypothesis with the highest posterior probability was reported as the trial

response. The results were then summarized in a form of a confusion matrix. We

simulated our letter recognition tasks based on the data gathered from Craig (1979)

and Loomis (1982). To fit our simulated model to human participants’ data, we used

a gradient descent algorithm to adjust the stimulus intensity as a free parameter

such that the average proportion correct in the confusion matrix diagonal (hit rate)

matched the human confusion matrix. We investigated the top twenty most confusing

letter pairs based on the off-diagonal highest response letter pairs. The Pearson
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correlation of simulated and human confusion matrices was taken.

We also explored the effect of stimulation mode on model performance. We looked

at three different modes of stimuli presentation, the static mode, the repeated static

mode, and the movement mode. In both the static mode and the repeated static

mode, the letters are presented at the center of the skin patch. However, in the

repeated static mode, the letters are presented multiple times at the same location

(same position multiple sampling). In the movement mode, to simulate the movement

of letters on the skin, the letters are presented along the skin over the distance of one

RF center to center spacing length following this formula:

∆x =
c× i

step count
− c

2
(2.2.8)

where step count represents the number of stimulus steps.

2.3 Illusion Tasks

2.3.1 Adaptation Induced Repulsion Illusion (AIRI)

In this experiment, the participants are presented with a two-point stimulus on both

the comparison and the reference arm (2.4). The stimulus separation distance in

the reference arm is held constant, while the separation distance in the comparison

arm is varied. Participants are asked whether the separation distance was greater

on the comparison or the reference arm. Under the adaptation paradigm, the center

of the reference arm is adapted. Li et al. (2017) hypothesized that the adaptation-

induced repulsion illusion could be explained by a Bayesian decoder that is unaware

of the adaptation states of its neurons. To simulate adaptation, we used an adapting
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(A) Comparison Arm
(B) Reference Arm

Figure 2.4: Adaptation Induced Repulsion Illusion Schematic. Illustration
of comparison (A) and the reference arm (B) in the AIRI. The asterisks are the
stimulus location. The dashed circle represents the area of adapting stimulus at the
center of the skin patch. The stimulus separation in the reference arm stays constant,
but the separation distance of the stimulus in the comparison arm varies.
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stimulus at the center of the skin patch which attenuates the response of the cortical

neurons depending on their position relative to the adapting stimulus. Neurons with

RFs that fall under the area of the adapting stimulus are uniformly adapted using

the following equation:

si,adapted = si,unadapted(1− α) (2.3.1)

where α ranges from 0 to 1, with 0 meaning completely unadapted, and 1 meaning

completely adapted.

Neurons with RF centers that fall outside of the area of adapting stimulus are

adapted using the following equation:

si,adapted = si,unadapted(1− e−
(di−r)

2

2σ2 · α) (2.3.2)

where r is the radius of adapting stimulus and di is the distance of RF centers to the

center of adapting stimulus.

The decoder considers two composite hypotheses, MC>R and MR>C . MC>R con-

sists of sub-hypotheses that the comparison stimulus separation distance is greater

than the reference stimulus separation distance, and MR>C consists of sub-hypotheses

that the reference stimulus separation distance is greater than the comparison stim-

ulus separation distance.

To test whether adaptation awareness affects the decoder’s response, we made

the decoder’s internal representation of the generative stage unadapted (α=0). As a

control, we also simulated the task with no adaptation.
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2.3.2 Orientation Anisotropy Illusion (OAI)

On each trial, two pairs of stimuli were applied sequentially to the hand, one pair

oriented longitudinally and the other pair oriented transversely (2.5). Both pairs of

stimuli shared a common center. The separation distance along the longitudinal axis

was held constant but the separation distance along the transverse axis was varied.

Participants judged which separation distance felt larger. To make this judgement,

our decoder considers two composite hypotheses, ML>T and MT>L. ML>T corre-

sponds to the composite hypothesis that the separation distance in the longitudinal

axis is greater than the separation distance in the transverse axis, andMT>L corre-

sponds to transverse separation distance being larger than the longitudinal. To find

the probability of ML>T , the decoder considers all the possible pairs of hypotheses

in which the longitudinal distance (dL) is greater than the transverse distances (dT ).

The decoder is able to find the model likelihoods using the equation:

P (D1, D2 |ML>T ) =
4c∑

dL=
4c

15

P (D1 | HdL)P (HdL)

dL−
2c

15∑
dT=0

P (D2 | HdT )P (HdT ) (2.3.3)

P (D1, D2 |MT>L) =
4c∑

dT=
4c

15

P (D1 | HdT )P (HdT )

dT−
2c

15∑
dL=0

P (D2 | HdL)P (HdL) (2.3.4)

Unlike our other simulations, we made the RF geometry and center-to-center
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(A) Palm (B) Dorsum

Figure 2.5: Orientation Anisotropy Illusion Schematic. Illustration of palm
(A) and dorsum (B) of the hand in OAI. The asterisks denote stimulus locations.
The stimulus separation distance along the longitudinal axis was held constant, and
the stimulus separation distance along the transverse axis varied. For a given hand,
the participants are asked to judge whether the stimulus separation distance in the
transverse direction was greater than the stimulus direction in the longitudinal direc-
tion.
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spacing anisotropic. This was necessary to consider due to the reported RF shape

differences and mapping in the dorsum and the palm of the hand. A cortical mapping

study with owl monkeys (Merzenich et al., 1987) suggests that on average the RFs on

the dorsum of the hand are more vertically elongated and spaced closer horizontally

than the ones on the palm of the hand.
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Chapter 3

Two Point Discrimination Results

3.1 Force-Control vs Displacement-Control

The mean performance of 2POD, C2PD, and S2PD is show in figure 3.1. To compare

the performance of these tasks, we simulated two testing paradigms, force-control

and displacement-control. In the force-control paradigm, the intensity of a point

stimulus was adjusted such that the total intensity, the summation of all stimulus

point intensities in a given interval, remained constant across stimulus intervals and

tasks. Under the force-control paradigm, the point-stimulus intensity of S2PD was

set to 1.0, the point-stimulus intensity of 2POD was set to 0.5, and the point-stimulus

intensity of C2PD was set to 0.5 for the 2-point intervals and to 1.0 for the in 1-point

intervals. Under this paradigm, the total spike count, on average, in a given trial is

the same across tasks. In the displacement-control paradigm, the intensity of a point

stimulus remains constant across tasks.

Under the displacement-control paradigm, the point-stimulus intensity of S2PD,

2POD, and C2PD tasks was set to 1.0. As shown in Fig. 3.1A, under force-control,
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S2PD performance was higher than 2POD followed by C2PD. However, under dis-

placement control, C2PD outperformed the other two 2PD tasks (Fig. 3.1B). The

performance of S2PD remained the same because the 1-point stimulus intensity did

not differ under the two paradigms; however, the performance of 2POD increased as

the 2-point stimulus intensity was greater under the displacement-control paradigm.

Under the displacement-control paradigm, the total stimulus intensity of the 2-point

interval is greater than that of the 1-point interval. This means that the Bayesian

observer receives more spike counts on average in the 2-point intervals than in the

1-point intervals. Because C2PD has both 2-point stimulus and 1-point stimulus in-

tervals, the Bayesian observer can distinguish two points from one point based on

total number of spikes in the neuronal population, even when the two points can-

not be individually perceived (magnitude cue). The discrepancy in the total interval

spike count in C2PD results in markedly higher performance under the displacement-

control paradigm, evident by close to 100% performance at all separation distances

(Fig. 3.1B). Because both 2POD and S2PD use the same number of stimulus point(s)

across their intervals, their performance does not benefit from the magnitude cue.

3.2 Magnitude Factor

The mathematical representation of the magnitude cue, the magnitude Factor (m),

is:

m =
IV
IO

(3.2.1)
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(A) Force-Control
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(B) Displacement Control
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Figure 3.1: Two Point Discrimination Tasks Performance Comparison.
Bayesian observer’s proportion correct versus stimuli separation distance for 2POD,
C2PD, and S2PD under force-control (A) and displacement control (B).

where IV is the stimulus intesity of a point in the 2-point interval and IO is the

1-point interval stimulus intensity.

In the force-control version of C2PD, m=0.5, and in the displacement-control ver-

sion of the task, m=1.0. The magnitude cue is present when m 6= 0.5. To explore

the effect magnitude cue on C2PD performance, we stimulated C2PD at m = 0.5,

0.6, 0.7, and 1.0 (Fig. 3.2). As expected, the larger the magnitude factor, the higher

the performance of the observer was (Fig. 3.2A). The above 50% proportion correct

at 0.0c separation distance suggests that the Bayesian observer was taking advantage

of the magnitude cue in addition to the spatial cue to make a decision. To study

the effect of the magnitude cue along on perceptual performance, we simulated a

non-Bayesian total-spike-count decoder that ignored the spatial pattern of the neural

activity. This total-spike-count decoder makes decisions by comparing the 2-point
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and 1-point stimulus intervals’ total spike count; it simply selects the interval with

a greater total spike count as the 2-point stimulus interval. As shown in Fig. 3.2B,

higher magnitude factors resulted in progressively better performance of the total-

spike-count decoder. Because this decoder did not have access to spatial information,

performance was not impacted by stimulus separation distance, resulting in a horizon-

tal plot. The excellent performance of this decoder as the magnitude cue approaches

1.0 supports previous empirical research that has called into question the validity of

C2PD as a means of measuring tactile spatial acuity.

(A) Bayesian Observer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4

P
ro
p
o
rt
io
n
C
o
rr
ec
t

Stimulus Separation (c)

m=0.5 m=0.6 m=0.7 m=1.0

(B) Total Spike Count Decoder
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Figure 3.2: The Effect of Magnitude Cue on C2PD. Bayesian observer’s and
total-spike-count decoder’s performance at different stimulus separation distances for
C2PD at varying magnitude cue strength. The simple decoder considers the interval
with the higher number of action potentials as the two-point stimulus interval
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3.3 Intensity vs Threshold

The effect of intensity on the performance across 2PD tasks, under the force-control

paradigm, was as expected. Increasing stimulus intensity resulted in higher perfor-

mance and lower 76% correct thresholds. We used linear interpolation to measure

the 76% threshold. Our default force-control point-stimulus intensity was IV = 0.5

and IO = 1.0. By increasing the stimulus intensity by a factor of 1.5 and 2, we

obtained Fig.3.3. Once again, the S2PD (76% threshold 0.31c, 0.22c, 0.18c) outper-

formed 2POD (76% threshold 1.32c, 1.08c, 0.96c) and C2PD (76% threshold 1.52c,

1.27c, 1.13c) tasks at all intensity levels. Interestingly, the increase in the stimulus

intensity resulted in a diminishing improvement in performance across tasks. To test

whether the increase in performance as the result of an increase in stimulus intensity

is asymptotic, we use the Bayesian adaptive method to explore the effect of stimulus

intensity of up to 100 on the performance. As shown in Fig.3.3D, the increase in

performance (the decrease in threshold) seems to be asymptotic.

3.4 S2PD vs C2PD vs 2POD

So far, we have shown that under the force-control paradigm, the performance of

S2PD is consistently higher than 2POD and C2PD. The reason behind this perfor-

mance difference can be better illustrated by comparing the spike count profile for

each task’s intervals. The spike count profile is a matrix that shows the action po-

tentials fired by each neuron in the encoder. As expected, under the force-control

paradigm, the average spike count profile of all tasks and their intervals are identical

(Fig.3.4A). However, as we increase the separation distance, the spatial profiles of
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(C) C2PD
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(D) Intensity vs Threshold
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Figure 3.3: The Effect of Intensity on 2PD Tasks Performance. The Bayesian
observer’s proportion correct versus stimulus separation distance at varying intensity
level for 2POD(A), C2PD (C), and S2PD (B) under force-control paradigm. (D)
Increasing intensity resulted in lower threshold; however, the threshold asymptotes
at high intensity levels.
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the spike counts become distinguishable. The decoder is tasked with distinguishing

the two intervals. The more similar the spatial spike count profiles are, the lower the

performance of the decoder on the task. When looking at the activity profiles at 2c

separation, the intervals of S2PD look most distinguishable from each other compared

to the intervals of other tasks (Fig.3.4B). At 4c separation, all the activity profiles

look very distinct, which could explain the ∼100% performance of the 2PD tasks at

high separation distances.

3.5 The Effect of Sigma

We investigated the effect of varying the receptive field width, σ, on 2PD tasks per-

formance (Fig. 3.5). We tested three σ levels, 2
3
c, c, 3

2
c. We used linear interpolation

to find the 76% threshold. In C2PD, the 76% threshold was measured to be 1.19

for σ = 2
3
c, 1.50 for σ = c, and 1.71 for σ = 3

2
c. In 2POD, the 76% threshold was

measured to be 1.07 for σ = 2
3
c, 1.32 for σ = c, and 1.50 for σ = 3

2
c. In S2PD, the 76%

threshold was measured to be 0.32 for σ = 2
3
c, 0.31 for σ = c, and 0.31 for σ = 3

2
c.

In C2PD and 2POD, decrease in σ levels corresponded to an increase in performance

(Fig. 3.5A,3.5C); however, in S2PD, changes in σ levels did not affect performance

(Fig. 3.5B). To investigate whether the variable impact of σ on 2PD tasks was due

to the task setup or the variable baseline performance, we decided to normalize the

2PD tasks. We adjusted the intensity of 2POD and S2PD such that their 76% thresh-

old coincides with C2PD threshold. After normalizing the tasks, 2POD performed

similarly to C2PD; however, S2PD performed better than the other tasks at separa-

tions below the threshold and performed worse at separations above the threshold.

We also looked at how varying σ from 0.3c to 2c in increments of 0.6c affects 2PD
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(A) 0c Separation

(B) 2c Separation

(C) 4c Separation

Figure 3.4: 2PD Spike Count Profile. The encoder spike count profile at various
separations and across tasks and intervals, under force-control paradigm. Each cell
represents a neuron in which the color of the cell indicates the number of action
potentials it fired due to the stimulus. The brighter the color, the higher the number
of action potentials. At 0c separation (A), all the spike count profiles look identical
to each other. At 2c separation (B), it is much easier to distinguish between profiles.
At 4c separation (C), each profile looks very distinct.
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performance. As shown previously, the performance of C2PD and 2POD worsened

by increasing sigma levels and the performance S2PD remained the same. Next, we

looked at how these trajectories changed when we normalized the tasks. Under the

normalized conditions, the 2POD had the same trajectory as C2PD. Contrastingly,

the performance of S2PD improved by increasing sigma levels at lower sigma values

and asymptoted to 1.24c at higher sigma values. These trends suggest that with high

sigma values the performance of S2PD does not change with increasing sigma values.

3.6 Duplication Factor

We explored how our model performs if we increase the number of cortical neurons

that independently sample from the receptive field. Each of the original neurons

in our grid (such as the 11 x 11 neuron grid of Figure 2.1B) is duplicated (D =

2) or quadrupled (D = 4), such that 2 or 4 (or etc) neurons occupy the identical

location and respond independently to the stimulus. Thus, we tested duplication

factors D = 1, 2, 4. Across all 2PD tasks, increasing the duplication factor increased

the performance of the Bayesian observer on the task. In 2POD, the thresholds

when D = 1,2, and 4 are 1.32, 1.09, and 0.90 accordingly (Fig. 3.6A). In S2PD, the

thresholds are 0.31, 0.22, and 0.15(Fig. 3.6B). In C2PD, the thresholds are 1.50, 1.25,

and 1.04 (Fig. 3.6C). Using the Bayesian adaptive method, we determined the 76%

threshold at duplication factors from 1 to 1024.
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Figure 3.5: The Effect of Sigma on 2PD Tasks Performance. The impact
of different sigma levels on the Bayesian observer’s proportion correct versus stimu-
lus separation distance for 2POD(A), S2PD(B), and C2PD(C) under force-control
paradigm. C2PD(D) The intensity of 2POD was reduced by 22% and the intensity
of S2PD was reduced to 81% in order for to have a similar 76% threshold to C2PD.
(E) Increasing the sigma level resulted in a lower threshold for 2POD and C2PD
tasks and had negligible effect of S2PD performance.(F) Under the normalized con-
dition, the performance of 2POD and C2PD were similar and positively correlated
with sigma level. S2PD did not have a 76% threshold at σ = 0.3c, 0.4c, or0.47c. The
performance on S2PD increased with increasing sigma level until it intersected the
other two 2PD tasks at 1.3c± 0.3, after which, it asymptoted.
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Figure 3.6: The Effect of Duplication Factor on 2PD Tasks Performance.
The impact of different duplication factor on the Bayesian observer’s proportion cor-
rect versus stimulus separation distance for (A) 2POD, (B) S2PD (B), and C2PD
(C) under force-control paradigm. (D)Increasing the duplication factor resulted in
a lower threshold for all 2PD tasks.(E) On the log scale, the 2PD plots show a linear
trend, with C2PD having a slope of -0.26, 2POD having a slope of -0.25, and S2PD
having a slope of -0.34.
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3.7 Jitter Awareness

We investigated the effect of jittering RF characteristics on model performance, and

we examined conditions in which the decoder was or was not aware of the jitter

(Fig. 3.7). At both jitter levels (J=2, J=4), the Bayesian observer’s performance

is impacted by the jittering and the awareness regarding RF characteristics. When

J=5, jitter awareness made a greater difference. The average total spike count in no

jitter condition for all 2PD tasks was 652 AP. The average total spike count in jitter

conditions for all 2PD tasks was 806 AP. In 2POD and C2PD, being aware of jitter

in the jittered condition had a higher performance at an early stimulus separation

distance than in the no jitter condition, which can be explained by the higher total

spike counts in the jitter condition than the no jitter condition.

3.8 Prediction

3.8.1 Circular Stimulus

Real psychophysical experiments use punctate stimuli, such as pinheads, that have a

certain diameter. So far we have simulated our experiments assuming that the stimuli

are points with no diameters. To investigate the effect on performance of the size of

the stimulator, we simulated 2PD tasks with varying stimulus radii SR, SR = 0, 1
3
, 2
3
.

We also ran these simulations under the force-control paradigm and under two new

sub-paradigms, variable-indentation and fixed-indentation. The results—-shown in

Figure 3.8— indicate that under variable-indentation sub-paradigm, the performance

decreased as the stimulus radius increased. However, under the fixed-indentation sub-

paradigm, the performance for S2PD increased with increasing stimulus radius. No
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Figure 3.7: The Effect of Jitter on 2PD Tasks Performance. The impact of jit-
ter on the Bayesian observer’s proportion correct versus stimulus separation distance
for 2POD (A,B), S2PD (C,D), and C2PD (E,F) under force-control paradigm. Ex-
cept for the no jitter condition, in all other conditions σ,A, and c were jittered using
equation 2.1.2.
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pronounced pattern between performance and stimulus radius was observed in C2PD

and 2POD under fixed-indentation sub-paradigm. These results make predictions

that can be tested in future human psychophysics work.
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Figure 3.8: The Effect of Stimulus Radius on 2PD Tasks Performance.
The impact of stimulus radius length on Bayesian observer’s performance in 2PD
tasks under fixed or variable indentation paradigm. Under the variable-indentation
paradigm, the performance of 2PD tasks increased with increasing stimulus radius.
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Chapter 4

Character Recognition Results

4.1 Letter Recognition Confusion Metrices

In addition to the two-point tests discussed in the previous chapter, raised-character

identification tests have proved useful as measures of tactile spatial acuity in hu-

mans (Craig & Lyle, 2001; Essick et al., 1999; Johnson & Phillips, 1981b). Here, we

simulate such tasks with our Bayesian observer model. The raised-letter recognition

task confusion matrix data (Fig. 4.1) from Craig (1979) were used to simulate the

experiment. The average hit rate of human participants on this task was 52%. We

adjusted stimulus intensity such that the average hit rate of our simulation was also

52%. The Pearson correlation between the simulated and the experimental confusion

matrix diagonals was 82%, and the whole matrix correlation was 94%. Similarly, we

fit our observer’s performance in the Braille character recognition task to the human

participant hit rate from Loomis (1982). The average hit rate for both human par-

ticipants and our simulation on this task was 61%. The Pearson correlation between

the simulated and the experimental confusion matrix diagonals was 72%, and the
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whole matrix correlation was 95%. We then compared the percent correct recogni-

tion for each letter by human participants to that of the Bayesian observer under the

force-control paradigm (Fig. 4.2).

Having investigated the performance of the Bayesian observer on the Braille char-

acter recognition task under the force-control paradigm, we simulated this task under

the displacement-control paradigm (Fig. 4.3). We were interested if the performance

on the task would differ based on the experimental paradigm; in other words, we were

interested in whether Braille reading strategy affects performance. The force-control

paradigm can be analogous to tracing Braille characters by vertical finger movement

(such that the force on the characters remains constant), whereas the displacement-

control paradigm can be analogous to reading with a fixed vertical finger position.

Poor Braille readers tend to have more variable vertical finger movement compared

to skilled readers (Davidson et al., 1980; M. Heller, 1993; Nonaka et al., 2021; Pa-

padimitriou & Argyropoulos, 2017). Although vertical finger movement in reading

Braille does not necessarily indicate a force-control paradigm, the absence of vertical

finger movement does indicate a displacement-control paradigm.

The Bayesian observer’s average hit rate was fit to that of human participants by

adjusting the stimulus intensity parameter. Under the displacement-control paradigm,

the stimulus intensity had to be 77.4% smaller than that of the force-control paradigm

to fit human participants, suggesting that the displacement-control paradigm is more

informative than force-control. The Pearson correlation between the displacement-

control simulated and the experimental confusion matrix diagonals was 53%, and

the whole matrix correlation was 93%. The resultant confusion matrices of the two

simulations—force-control and displacement-control—were comparable such that the
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

A 55% 3% 0% 0% 1% 1% 3% 2% 0% 0% 6% 0% 4% 3% 0% 1% 0% 4% 3% 0% 0% 1% 1% 9% 1% 2% 

B 2% 35% 1% 1% 12% 2% 11% 4% 0% 1% 1% 0% 3% 1% 2% 4% 2% 10% 5% 0% 1% 0% 2% 1% 0% 0% 

C 1% 2% 41% 11% 2% 1% 3% 1% 0% 1% 1% 2% 1% 0% 22% 1% 4% 1% 1% 0% 4% 0% 0% 0% 0% 1% 

D 1% 3% 10% 27% 0% 1% 3% 1% 0% 2% 0% 0% 1% 1% 36% 2% 6% 1% 1% 0% 4% 0% 0% 0% 0% 0% 

E 1% 11% 0% 1% 54% 10% 4% 3% 0% 0% 1% 1% 1% 1% 0% 4% 1% 3% 2% 0% 0% 0% 1% 1% 0% 2% 

F 0% 1% 0% 0% 3% 74% 0% 2% 0% 0% 1% 0% 0% 1% 0% 12% 0% 0% 0% 1% 0% 0% 0% 1% 1% 1% 

G 2% 12% 3% 4% 4% 2% 28% 3% 0% 1% 2% 0% 4% 1% 6% 4% 7% 9% 4% 0% 2% 0% 2% 1% 0% 0% 

H 2% 4% 0% 1% 5% 3% 4% 40% 0% 2% 5% 0% 6% 7% 1% 2% 1% 2% 2% 0% 3% 1% 6% 2% 0% 2% 

I 0% 0% 0% 0% 0% 0% 0% 0% 97% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2% 0% 0% 0% 0% 0% 0% 

J 0% 0% 0% 0% 0% 0% 0% 1% 4% 89% 0% 1% 0% 0% 1% 0% 0% 0% 0% 0% 2% 1% 0% 0% 0% 1% 

K 3% 1% 0% 0% 1% 2% 1% 4% 0% 0% 42% 0% 2% 4% 0% 1% 0% 2% 1% 0% 0% 2% 1% 23% 3% 5% 

L 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 0% 98% 0% 0% 0% 0% 0% 0% 0% 0% 1% 0% 0% 0% 0% 0% 

M 2% 4% 0% 0% 1% 2% 2% 11% 0% 2% 5% 1% 25% 12% 1% 1% 1% 2% 1% 0% 3% 5% 16% 4% 1% 1% 

N 4% 3% 0% 0% 1% 1% 2% 10% 0% 1% 6% 0% 13% 28% 1% 1% 0% 2% 2% 0% 3% 5% 11% 5% 1% 1% 

O 1% 1% 10% 15% 0% 0% 2% 1% 0% 2% 0% 0% 1% 0% 47% 2% 7% 1% 1% 0% 7% 1% 0% 0% 0% 0% 

P 2% 3% 1% 0% 3% 22% 1% 3% 0% 0% 1% 0% 1% 1% 1% 54% 1% 4% 1% 0% 0% 0% 0% 0% 1% 1% 

Q 1% 2% 6% 10% 0% 0% 2% 2% 0% 2% 0% 0% 1% 1% 35% 3% 21% 2% 1% 0% 9% 1% 1% 0% 1% 0% 

R 4% 13% 1% 3% 5% 3% 9% 3% 0% 0% 3% 1% 5% 1% 2% 7% 4% 26% 4% 0% 0% 0% 1% 2% 0% 1% 

S 4% 9% 0% 1% 5% 5% 7% 3% 0% 1% 4% 0% 2% 2% 2% 7% 2% 9% 31% 0% 0% 1% 0% 2% 1% 2% 

T 0% 0% 0% 0% 0% 0% 0% 0% 10% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 83% 0% 0% 0% 0% 4% 1% 

U 0% 0% 1% 1% 0% 0% 0% 4% 0% 9% 0% 3% 1% 1% 4% 0% 1% 0% 0% 0% 69% 2% 2% 0% 0% 0% 

V 1% 0% 0% 0% 0% 0% 0% 1% 1% 3% 1% 1% 1% 2% 0% 0% 0% 0% 0% 0% 3% 70% 2% 3% 11% 1% 

W 2% 4% 0% 1% 0% 1% 3% 7% 0% 2% 2% 0% 12% 7% 2% 1% 1% 3% 1% 0% 8% 4% 35% 1% 1% 1% 

X 4% 1% 0% 0% 0% 1% 0% 4% 0% 1% 16% 0% 1% 2% 0% 0% 0% 1% 0% 0% 0% 4% 1% 51% 7% 5% 

Y 0% 0% 0% 0% 0% 0% 0% 1% 2% 1% 2% 0% 1% 1% 0% 1% 0% 0% 0% 4% 0% 8% 0% 2% 76% 0% 

Z 1% 1% 1% 1% 1% 1% 2% 1% 1% 1% 6% 1% 0% 1% 0% 1% 1% 3% 2% 3% 0% 0% 1% 5% 1% 64% 
 

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

A 62% 1% 0% 0% 1% 2% 1% 4% 2% 0% 2% 0% 0% 3% 0% 1% 0% 4% 3% 1% 0% 2% 5% 3% 0% 3% 

B 5% 12% 4% 5% 3% 2% 6% 4% 0% 1% 2% 0% 2% 5% 2% 2% 3% 4% 8% 1% 8% 3% 3% 5% 3% 7% 

C 0% 2% 56% 3% 5% 1% 3% 0% 0% 0% 3% 2% 1% 1% 4% 0% 6% 2% 1% 0% 3% 0% 1% 1% 0% 3% 

D 0% 2% 4% 40% 5% 1% 5% 2% 0% 0% 1% 1% 4% 1% 6% 5% 2% 2% 6% 0% 5% 1% 2% 1% 1% 2% 

E 1% 2% 8% 5% 36% 6% 2% 1% 0% 0% 7% 6% 1% 1% 1% 1% 1% 4% 7% 1% 2% 1% 1% 3% 1% 3% 

F 1% 0% 1% 1% 4% 69% 0% 1% 0% 0% 7% 0% 0% 0% 0% 8% 0% 2% 0% 2% 0% 0% 0% 1% 1% 1% 

G 2% 4% 8% 10% 5% 0% 16% 2% 0% 1% 1% 1% 4% 2% 7% 1% 8% 2% 7% 0% 8% 2% 4% 2% 0% 4% 

H 5% 3% 0% 1% 1% 1% 1% 33% 0% 0% 4% 0% 7% 11% 0% 4% 1% 3% 2% 0% 5% 5% 7% 5% 1% 0% 

I 1% 0% 0% 0% 0% 0% 0% 0% 90% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 5% 0% 1% 0% 0% 0% 2% 

J 0% 0% 0% 0% 0% 0% 0% 0% 0% 93% 0% 0% 0% 0% 0% 0% 2% 0% 0% 0% 1% 1% 0% 0% 0% 1% 

K 2% 0% 3% 1% 7% 7% 0% 3% 0% 0% 51% 1% 2% 2% 0% 3% 0% 5% 1% 0% 1% 1% 3% 5% 1% 1% 

L 0% 0% 2% 1% 4% 0% 0% 0% 0% 0% 0% 90% 0% 0% 0% 0% 0% 0% 1% 0% 1% 0% 0% 0% 0% 0% 

M 1% 0% 1% 3% 1% 0% 1% 5% 0% 0% 3% 1% 47% 2% 4% 2% 3% 1% 1% 0% 5% 6% 9% 2% 1% 0% 

N 7% 4% 1% 2% 2% 1% 1% 11% 0% 0% 3% 0% 5% 26% 1% 2% 1% 4% 6% 0% 5% 6% 4% 6% 2% 0% 

O 0% 1% 5% 5% 0% 0% 4% 0% 0% 0% 0% 0% 4% 0% 54% 1% 15% 0% 1% 0% 3% 0% 3% 1% 0% 0% 

P 1% 1% 1% 4% 1% 8% 0% 2% 0% 0% 3% 0% 1% 0% 1% 65% 0% 3% 0% 1% 0% 0% 3% 2% 2% 1% 

Q 0% 1% 7% 3% 0% 0% 3% 1% 0% 2% 0% 0% 3% 1% 16% 0% 49% 1% 2% 0% 4% 0% 2% 1% 0% 1% 

R 6% 3% 3% 4% 6% 4% 2% 4% 0% 0% 8% 0% 2% 4% 1% 7% 1% 24% 4% 1% 1% 1% 4% 6% 2% 2% 

S 3% 4% 2% 6% 7% 1% 4% 1% 0% 1% 1% 1% 2% 4% 1% 0% 3% 4% 36% 1% 3% 3% 2% 3% 2% 4% 

T 1% 0% 0% 0% 0% 1% 0% 0% 7% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 81% 0% 0% 0% 0% 4% 3% 

U 0% 4% 4% 6% 2% 0% 4% 5% 0% 2% 1% 1% 7% 4% 4% 1% 4% 1% 3% 0% 36% 6% 2% 2% 1% 2% 

V 2% 1% 0% 1% 0% 0% 0% 4% 1% 2% 1% 0% 5% 3% 0% 1% 0% 1% 2% 0% 5% 62% 1% 1% 5% 1% 

W 6% 1% 1% 2% 1% 1% 2% 5% 0% 0% 4% 0% 7% 3% 3% 3% 2% 2% 2% 0% 1% 1% 49% 4% 0% 0% 

X 4% 2% 1% 1% 2% 1% 1% 3% 0% 0% 4% 0% 2% 3% 1% 3% 1% 4% 4% 0% 1% 1% 4% 48% 5% 4% 

Y 0% 1% 0% 0% 0% 1% 0% 0% 0% 0% 1% 0% 1% 1% 0% 3% 0% 1% 1% 4% 0% 5% 0% 4% 76% 2% 

Z 3% 3% 2% 1% 3% 1% 1% 0% 2% 2% 1% 0% 0% 0% 0% 0% 1% 1% 3% 3% 1% 1% 0% 3% 2% 66% 
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 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

A 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

B 5% 86% 1% 2% 1% 0% 0% 0% 0% 2% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

C 0% 0% 93% 2% 2% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

D 0% 4% 6% 52% 7% 3% 5% 6% 0% 5% 0% 0% 0% 0% 4% 2% 0% 1% 0% 0% 1% 0% 3% 0% 0% 0% 

E 0% 1% 2% 2% 85% 0% 0% 4% 1% 0% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

F 0% 1% 9% 4% 1% 49% 8% 4% 5% 6% 0% 0% 1% 0% 0% 1% 0% 1% 5% 3% 0% 0% 1% 0% 0% 0% 

G 0% 1% 3% 7% 0% 4% 74% 1% 0% 5% 0% 0% 0% 0% 0% 0% 0% 1% 0% 1% 0% 0% 0% 1% 0% 0% 

H 0% 1% 2% 2% 10% 2% 2% 57% 0% 3% 0% 0% 0% 1% 2% 0% 0% 4% 0% 2% 2% 5% 2% 0% 0% 0% 

I 0% 1% 1% 0% 3% 2% 0% 1% 77% 3% 0% 0% 1% 0% 0% 1% 0% 0% 5% 1% 0% 0% 1% 0% 0% 0% 

J 0% 1% 2% 1% 0% 3% 4% 3% 9% 57% 0% 0% 0% 2% 2% 0% 0% 2% 2% 3% 1% 1% 4% 0% 0% 2% 

K 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 92% 1% 2% 0% 0% 0% 0% 0% 0% 0% 2% 0% 0% 1% 0% 0% 

L 0% 5% 0% 0% 0% 0% 0% 0% 1% 0% 22% 68% 0% 0% 0% 0% 0% 0% 1% 0% 1% 0% 0% 0% 0% 0% 

M 1% 0% 0% 1% 0% 2% 0% 0% 0% 0% 1% 0% 81% 1% 1% 1% 1% 0% 2% 2% 1% 0% 1% 2% 0% 0% 

N 0% 0% 0% 3% 0% 1% 2% 1% 0% 2% 1% 0% 12% 27% 13% 6% 5% 3% 2% 2% 1% 0% 4% 4% 7% 4% 

O 0% 0% 1% 2% 1% 1% 2% 0% 0% 2% 0% 0% 2% 9% 44% 1% 1% 2% 1% 4% 4% 1% 3% 2% 1% 15% 

P 0% 0% 0% 0% 0% 15% 0% 0% 1% 1% 0% 0% 22% 5% 1% 32% 4% 2% 9% 2% 1% 2% 2% 0% 1% 0% 

Q 0% 1% 0% 1% 0% 2% 14% 0% 0% 0% 0% 0% 1% 4% 4% 5% 44% 5% 0% 6% 0% 0% 1% 1% 7% 3% 

R 0% 0% 0% 2% 0% 2% 3% 2% 0% 3% 0% 1% 1% 7% 15% 1% 2% 36% 1% 2% 3% 4% 3% 0% 2% 7% 

S 0% 0% 0% 1% 1% 3% 0% 1% 13% 0% 4% 2% 3% 2% 2% 6% 0% 0% 51% 6% 2% 1% 1% 0% 0% 2% 

T 0% 0% 0% 1% 0% 5% 0% 0% 4% 8% 0% 0% 0% 5% 2% 2% 1% 2% 14% 37% 2% 1% 9% 0% 2% 2% 

U 0% 0% 0% 0% 1% 0% 0% 1% 0% 1% 7% 0% 1% 1% 1% 0% 0% 1% 0% 1% 78% 4% 0% 1% 1% 1% 

V 0% 0% 0% 0% 1% 0% 0% 2% 0% 0% 3% 1% 0% 2% 0% 0% 0% 2% 3% 1% 18% 59% 1% 2% 1% 3% 

W 0% 0% 0% 2% 0% 2% 3% 1% 0% 6% 0% 0% 1% 5% 2% 1% 5% 4% 3% 8% 1% 2% 46% 1% 0% 7% 

X 0% 0% 0% 0% 0% 0% 1% 0% 0% 0% 2% 0% 7% 1% 0% 0% 2% 0% 0% 0% 4% 0% 1% 79% 2% 1% 

Y 0% 0% 0% 0% 0% 0% 3% 0% 0% 1% 1% 0% 2% 6% 2% 3% 6% 1% 0% 1% 0% 1% 2% 28% 37% 5% 

Z 0% 0% 0% 1% 0% 0% 0% 0% 0% 2% 0% 0% 0% 7% 15% 0% 1% 3% 1% 4% 7% 2% 3% 2% 5% 45% 
 

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

A 98% 1% 1% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

B 1% 89% 0% 0% 0% 2% 0% 4% 0% 0% 0% 2% 0% 0% 0% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

C 1% 0% 90% 4% 0% 4% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

D 0% 0% 5% 72% 7% 2% 8% 0% 1% 3% 0% 0% 0% 3% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

E 0% 0% 0% 8% 74% 1% 7% 6% 0% 2% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

F 1% 3% 4% 2% 1% 67% 6% 2% 8% 0% 0% 0% 2% 1% 0% 2% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

G 0% 0% 0% 9% 8% 10% 37% 8% 8% 10% 0% 0% 1% 3% 0% 1% 4% 0% 0% 0% 0% 0% 1% 0% 0% 0% 

H 0% 4% 0% 0% 8% 2% 8% 62% 1% 3% 0% 0% 0% 0% 1% 2% 4% 5% 0% 0% 0% 0% 1% 0% 0% 0% 

I 0% 0% 0% 2% 0% 6% 8% 1% 65% 10% 0% 0% 1% 1% 0% 3% 2% 0% 1% 1% 0% 0% 0% 0% 0% 0% 

J 0% 0% 0% 2% 1% 0% 7% 2% 6% 66% 0% 0% 0% 2% 0% 0% 3% 0% 0% 4% 0% 0% 7% 0% 0% 0% 

K 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 76% 12% 1% 0% 1% 3% 0% 1% 1% 0% 2% 2% 0% 1% 0% 0% 

L 0% 3% 0% 0% 0% 0% 0% 0% 0% 0% 14% 64% 0% 0% 0% 5% 0% 7% 2% 0% 0% 5% 0% 0% 0% 0% 

M 0% 0% 1% 1% 0% 2% 1% 0% 1% 0% 1% 0% 64% 8% 1% 10% 1% 0% 3% 0% 0% 0% 0% 5% 0% 0% 

N 0% 0% 0% 2% 2% 0% 3% 0% 2% 3% 0% 0% 9% 41% 5% 3% 10% 0% 2% 5% 0% 0% 2% 4% 7% 0% 

O 0% 0% 0% 0% 1% 0% 0% 2% 0% 0% 2% 1% 1% 4% 43% 2% 5% 13% 2% 4% 1% 4% 1% 4% 3% 7% 

P 0% 2% 0% 0% 0% 3% 1% 2% 4% 0% 3% 3% 14% 3% 3% 41% 8% 3% 9% 0% 0% 0% 0% 2% 0% 0% 

Q 0% 0% 0% 0% 1% 1% 4% 6% 5% 4% 0% 1% 3% 10% 7% 11% 24% 6% 5% 7% 0% 0% 1% 3% 2% 0% 

R 0% 0% 0% 0% 0% 0% 0% 6% 0% 0% 0% 8% 0% 0% 12% 4% 5% 44% 4% 4% 0% 7% 0% 1% 1% 3% 

S 0% 0% 0% 0% 0% 0% 0% 0% 2% 0% 1% 2% 3% 1% 1% 5% 3% 3% 63% 12% 0% 1% 0% 3% 0% 0% 

T 0% 0% 0% 0% 0% 0% 0% 0% 1% 7% 0% 0% 0% 4% 3% 0% 6% 4% 11% 52% 0% 1% 5% 1% 4% 1% 

U 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 2% 0% 0% 0% 2% 0% 0% 0% 0% 0% 69% 14% 0% 3% 0% 9% 

V 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 3% 5% 0% 0% 4% 1% 0% 5% 2% 0% 15% 60% 0% 2% 0% 4% 

W 0% 0% 0% 0% 1% 0% 0% 1% 0% 6% 0% 0% 0% 1% 1% 0% 0% 0% 0% 6% 0% 0% 70% 1% 10% 3% 

X 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1% 0% 5% 3% 4% 1% 1% 0% 1% 1% 4% 1% 1% 58% 13% 6% 

Y 0% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 1% 7% 5% 0% 2% 1% 1% 5% 1% 0% 11% 18% 37% 10% 

Z 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 6% 0% 0% 1% 0% 1% 9% 5% 3% 6% 8% 60% 
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Figure 4.1: Character Recognition Task Confusion Matrices. Braille and
raised-letter recognition task confusion matrices from human and simulated experi-
ments. The human data for the raised-letter confusion matrix was taken from Craig
(1979), and the human data for the Braille-character confusion matrix was taken
form Loomis (1982). The simulated confusion matrices were created by adjusting the
stimulus intensity parameter such that the average hit rate matched the human data.
The top three highest response letters for a given stimulus are highlighted such that
the highest response letter has a dark blue cell. Blank cells represent a value < 0.5%.
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(A) Braille Character
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(B) Raisesd Letter
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Figure 4.2: Character Recognition Tasks Hit Rate. The Bayesian observer’s
percent correct recognition for each letter vs the percent correct recognition by human
participants in raised letter (A) and Braille character (B) recognition tasks.
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Figure 4.3: Braille Recognition Tasks Performance. The Bayesian ob-
server’s percent correct Braille character recognized under the force-control vs. the
displacement-control paradigm.

Pearson correlation of confusion matrix diagonals was 52%, and the whole matrix

correlation was 95%. Although many characters had a similar recognition accu-

racy under the two paradigms, there were some characters that did not. Mainly,

characters with a smaller number of points (A, B, C) performed better under force-

control, and characters with a high number of points (G, Q, Y) performed better

under displacement-control (Fig. 4.3).
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4.1.1 Most Confusing Letters

Having shown the similarity in correct recognition of each letters between humans and

the Bayesian observer on RLRT (Fig. 4.2A), we were interested in comparing the in-

correct stimulus-response pair recognition between the model and humans. We looked

at the top twenty incorrect stimulus-response pairs (based on proportion response)

for both the Bayesian observer and human participants (Table. 4.1). Interestingly,

the stimulus-response pair percent recognition were not symmetrical for both the

Bayesian observer and humans (i.e, the proportion response of D-O pair is different

from O-D pair). Among this list, we can see similarities in letter confusion between

the Bayesian observer and humans, such as rounded letters (D, O, Q) getting confused

with one another. One major difference between the Bayesian observer and humans

is that the proportion response of the top confused letters is lower in the Bayesian

observer, suggesting that the incorrect recognition in the Bayesian observer is more

uniformly distributed.

4.1.2 Letter Similarity

We were interested in whether letter similarity is correlated with an incorrect response

in RLRT. Letter similarity was measured by quantified by measuring the Pearson

correlation of between any two letters bitmap. We found that stimulus-response pair

letter similarity was moderately correlated with proportion of incorrect responses in

our simulation (R = 0.59) and weakly correlated in human participants (R = 0.40)

(fig. 4.4).

48

http://www.mcmaster.ca/
https://www.neurosciencemcmaster.ca/


M.A.Sc. Thesis – S. Dehnadi; McMaster University – Neuroscience

Table 4.1: Most confused stimulus-response pair from Bayesian observer and human
data (Craig, 1979) for the raised-letter recognition task.

Human Participant Bayesian Observer

Stimulus Response Proportion Response Stimulus Response Proportion Response

D O 35.70% Q O 16.16%

Q O 34.50% O Q 15.40%

K X 22.60% H N 11.36%

C O 22.20% N H 11.00%

P F 21.60% G D 10.20%

M W 16.30% M W 8.64%

X K 15.70% B U 8.44%

O D 15.00% F p 8.44%

R B 13.40% B S 8.20%

N M 12.80% P F 8.08%

F P 12.30% R K 7.92%

W M 12.10% G C 7.76%

B E 11.70% G Q 7.56%

G B 11.60% E C 7.56%

M N 11.60% G U 7.52%

C D 11.10% K F 7.44%

E B 10.80% Q C 7.40%

N W 10.80% H M 7.28%

B G 10.60% R P 7.08%

V Y 10.50% G O 6.96%
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(A) Bayesian Observer
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(B) Human Participants
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Figure 4.4: Braille Character Recognition Task Incorrect Responses. Pro-
portion of incorrect response to a given stimulus vs stimulus-response letter similarity
in Braille character recognition task. The first letter of the labels corresponds to the
stimulus letter and the second letter corresponds to the response, so QO means re-
sponding O to the stimulus Q. The orange line is a linear trend line with R = 0.59
and slope of 0.063 for the Bayesian observer (A) and R = 0.39 and slope of 0.065 for
human participants (B).

50

http://www.mcmaster.ca/
https://www.neurosciencemcmaster.ca/


M.A.Sc. Thesis – S. Dehnadi; McMaster University – Neuroscience

4.2 Predictions

4.2.1 Ways To Make Braille Easier

The importance of the ability to read Braille is well documented (Hoskin et al.,

2022); Braille literacy is correlated with employment, life-satisfaction, and self-esteem

(Arielle Michal Silverman & Edward C. Bell, 2018; Ryles, 1996). Although the Braille

literacy rate among blind individuals is not accurately known (Sheffield et al., 2022),

some estimate that only 12% of blind individuals can read braille (Toussaint & Tiger,

2010). The estimated decline in Braille literacy rate from 50% in 1960s (Toussaint

& Tiger, 2010) is alarming. Here, we looked at possible ways to improve Braille

learning by increasing character recognition performance. specifically, we investigated

at the effect of stimulus intensity and letter scaling on Braille character recognition

performance. Under both force and displacement control paradigms, the increase

in stimulus intensity and letter scale resulted in an increase in the average hit rate

(Fig. 4.5). Unsurprisingly, the displacement control paradigm had higher performance

due to the existence of magnitude cues. Our results suggest that Braille character

recognition can be increased by increasing Braille height and inter-dot spacing.

4.2.2 The Effect of Masking

In studies of visual information processing, masking paradigms are often used to

study the effect of ”masking” stimuli on perceptibility of target stimulus (Breitmeyer

& Ogmen, 2006). Visual lateral masking has shown to decrease performance in letter

recognition tasks (Massaro & Klitzke, 1979). Similarly, Loomis and Apkarian-Stielau

(1976) showed that lateral masking decreases the letter recognition in slit-scanning

51

http://www.mcmaster.ca/
https://www.neurosciencemcmaster.ca/


M.A.Sc. Thesis – S. Dehnadi; McMaster University – Neuroscience

(A) Scaling Effect

Human Hitrate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.125 0.25 0.5 1 2 4

A
v
er
a
g
e
H
it
ra
te

Scale

Force Control Displacement Control

(B) Stimulus Intensity Effect

Human Hitrate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0625 0.25 1 4 16 64

A
v
er
a
g
e
H
it
ra
te

Intensity

Force Control Displacement Control

Figure 4.5: Braille Character Recognition Task Prediction. The effect of
letter scale and stimulus intensity on the average hit rate on the Braille character
recognition task under force and displacement-control paradigms.
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condition, a condition in which letters are presented by moving through a stationary

vertical slot at 16 columns/sec. They further showed that the distance of the masking

stimuli to the target stimulus is correlated with the percent recognition. Inspired by

their study, we investigated the effect of masking on the raised-letter recognition task

when the letters are presented as a whole and in static condition (Fig. 4.6B). We used

two columns of 14 points as our masking stimuli. In the no masking condition, the

performance of the Bayesian observer was 52.6%. When the masking columns were

at ±3.7c and the decoder was aware of the masking stimuli, the average hit rate was

23.4%, but when the decoder was unaware of the masking stimuli, the average hit

rate was 13.4%. When the masking columns were at ±5c and the decoder was aware

of the masking stimuli, the average hit rate was 26.2%, but when the decoder was

unaware of the masking stimuli, the average hit rate was 17.2%. The total number

of spike counts was the same in both far and near masking conditions.
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Figure 4.6: Raised-Letter Recognition Task Masking Prediction. The effect
of masking on raised-letter recognition task performance. (A) The raised letter is
shown as a series of punctate points at the center of the modelled skin space. Shown
to the sides of the letter are the masking side bands that are comprised of two sets of 14
points. The near mask is at the horizontal position of ±3.7c and the far mask is at the
horizontal position of ±5c. (B) No masking condition has the highest performance
followed by far masking and near masking conditions. Unawareness regarding the
existence of masks further reduces performance.
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Chapter 5

Illusion Tasks Results

5.1 Adaptation-Induced Repulsion Illusion

Inspired by the visual aftereffect illusion, in which lines are perceived as tilted away

from an adapted orientation, Li et al. (2017) demonstrated an adaptation-induced

repulsion illusion, in which stimulus is perceived as shifted away from an adapted area,

in the sense of touch. In their study, they found that participants perceived the two-

point stimulus separation to be larger when the area between the stimuli was adapted.

Following their experimental procedure, we used skin parameters corresponding to

the forearm. We simulated the presence of a tactile repulsion illusion on the model

skin with and without an adaptor stimulus. In a AIRI task, the Bayesian observers

compared the separation distance of a two-point stimulus on the reference hand to

the comparison hand, reporting which distance was perceived greater. The reference

distance was fixed at 2c, and the comparison distance varied from 0c to 4c. The

point of subject equality (PSE) was extracted from the psychometric graphs as a

measure of observers’ perceived distance between the reference points. We measured
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and compared the baseline PSEs and the PSEs under the adaptation paradigm.

Li et al. (2017) proposed that AIRI may be due to the brain’s unawareness re-

garding its sensory neurons’ adaptation. To investigate this claim, we simulated AIRI

at different adaptation strength (α) and under adaptation-aware and unaware con-

ditions (Fig. 5.1). In the adaptation-aware condition, the Bayesian observer knows

the value of α and the effect of adaptation on the spike count. In adaptation un-

aware condition, the Bayesian observer assumes that there is no adaptation. As

expected, when α = 0, awareness regarding adaptation had no effect on the perfor-

mance (PSE = 2.00). However, when the Bayesian observer was unaware of the

adaptation while its neurons were adapted (α = 0.4 and 0.8), the PSE was shifted to

the left (PSE = 2.52 and 3.25). When the Bayesian observer was aware of the adap-

tation while its neurons were adapted (α = 0.4and0.8), the PSE did not significantly

change (PSE = 1.97 and 1.98). Regardless of the Bayesian observer’s awareness of

adaption, adaptation lowered the slope of the psychometric functions due to the de-

crease in the signal-to-noise ratio. The PSE shift observed in the adaptation-unaware

condition is because the Bayesian observer mistakenly interprets the lower firing rates

of the adapted neurons to mean that the stimulus points are farther apart.

5.2 Orientation Anisotropy Illusion

Orientation anisotropy illusion was first discovered by Longo and Haggard (2011)

in which stimulus separations on the dorsum of the hand are perceived larger when

oriented transversely (across the hand) than longitudinally (along the hand). The

authors suggested that this illusion arises from a mismatch between the representa-

tion of hand shape in the brain and in reality. To investigate their suggestion, we
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Figure 5.1: AIRI Adaptation Awareness. The proportion of times the Bayesian
observer reported comparison stimulus separation is larger than the reference stimulus
separation distance (R = 2c). The adapting stimulus was placed at the center of the
skin patch. The awareness of the decoder regarding the adaptation state when there
was no adaptation (α=0) was inconsequential and the PSE = 2.00. (A) When the
decoder was aware of the adaptation (α = 0.4), the PSE = 1.97, and (B) when the
deocder was unaware of this adaptation, the PSE = 2.52. (C) When the decoder
was aware of the adaptation (α = 0.8), the PSE = 1.98, and (D) when the decoder
was unaware of this adaptation, the PSE = 3.25;
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first examined how the RFs in the dorsum and the palm of the hand differ. Sig-

nificant peripheral afferent RF shape anisotropy is observed in the dorsum of the

hand (Johansson & Vallbo, 1980). To determine whether RF shape anisotropy is true

regarding cortical neurons, we looked at Merzenich et al. (1987) which used extra-

cellular recording to map neuronal receptive fields in cortical areas 3b and 1. Using

PlotDigitizer, we extracted RF dimensions and spacing (Fig. 5.2). Although we were

able to extract information regarding the RF dimensions in the palm and dorsum of

the hand, we were able to gather information for RF spacing only for the palm of the

hand. Because we could not find information regarding RF spacing at the dorsum

of the hand, we assumed that the cortical RF area overlap is the same on the palm

and the dorsum of the hand. With this assumption, we were able to come up with

RF spacing, such that the
σratio
cratio

is the same for both dorsum and palm of the hand.

σratio is the ratio of transverse sigma to longitudinal sigma, and cratio is the ratio of

transverse RF spacing to longitudinal RF spacing. On the palm of macaque monkey

hand, we measured the RF spacing ratio as 0.81 and the sigma ratio as 0.54. On the

dorsum of the hand, we measured the RF spacing ratio to be 0.68 and the sigma ratio

to be 0.45. Using these values, we updated our encoder to reflect the new RF tuning

characteristics.

Next, we investigated how the observer’s awareness of the RF properties affects

their perception in the OAI (Fig. 5.3). When the Bayesian observer was aware of

the RF anisotropy, the decoder’s understanding of the modelled skin matched the en-

coder’s modelled skin. When the Bayesian observer was unaware of the RF anisotropy,

the decoder assumed that σratio = cratio = 1.0. In the RF anisotropy-aware condi-

tion, the psychometric function for the palm (PSE = 1.86) and the dorsum (PSE =
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(A) RF Sigma (B) RF Spacing

Figure 5.2: RF Sigma and Spacing Schematic. The RF spacing and sigma
were extracted from Merzenich et al. (1987), which recorded the neuronal activity
from cortical areas 3b of adult owl monkeys. (A) Examples of the RF map on the
dorsum and palm of the hand. The area 3b and 1 cortical RFs are shown as ovals.
By dividing the transverse diameters of these ovals by their longitudinal diameters,
we measured the RF sigma ratio. The average sigma ratio of the RFs on the palm of
the hand was measured to be 0.54 and on the dorsum of the hand was measured to be
0.45. (B) Examples of RF centers on the palm of the hand. The red dots are the RF
centers that were used to measure inter-receptive field center spacing. By dividing
the length of longitudinal RF spacing by the transverse RF spacing, we measured the
RF spacing ratio. The average spacing ratio of the RFs on the palm of the hand was
measured to be 0.81, and the average spacing ratio of the RFs on the dorsum of the
hand was calculated to be 0.68.

1.85) were very similar to each other. In the RF anisotropy-unaware condition, the

psychometric function for the dorsum of the hand (PSE = 1.41) was to the left of the

psychometric function for the palm of the hand (PSE = 1.68), resulting in orientation

anisotropy illusion.
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Figure 5.3: RF Anisotropy Awareness. The proportion of times the Bayesian
observer reported transverse stimulus separation is larger than the longitudinal stim-
ulus separation distance (R = 2c). (A) When the decoder was aware of the RF
anisotropy and tested on the palm of the hand, PSE = 1.86, and when tested on the
dorsum of the hand, PSE = 1.85. (B) When the decoder was unaware of the RF
anisotropy and tested on the palm of the hand, PSE = 1.68, and when tested on the
dorsum of the hand, PSE = 1.41.
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5.3 Prediction

5.3.1 AIRI Surround Adaptation

The predecessor to AIRI is tactile spatial aftereffect as demonstrated by Day and

Singer (1964). In their study, they showed that the separation distance between two

stimulus bars is perceived as longer when the area between the bars was adapted, and

the separation distance between two stimulus bars is perceived as shorter when the

areas outside of the bars were adapted. However, their study contained methodolog-

ical bias from using an asymmetrical range of comparison stimuli as pointed out by

Day and Singer (1964). Although Li et al. (2017) demonstrated that adaptation of

the area between stimuli results in spatial repulsion, it has remained open to investi-

gation whether adaptation of the area outside stimuli results in spatial contraction.

Therefore, we investigated what would happen if the adapting stimuli in AIRI were

on the flanks of the skin patch (Fig. 5.4). The adapting stimuli with SR =
1

15
c were

placed at x =-3c and +3c positions of the skin patch. When the Bayesian observer

was aware of adaptation, the adaptation of α = 0.4 resulted in a PSE shift of −0.02c

and the adaptation of α = 0.8 resulted in a PSE shift of −0.04c. When the Bayesian

observer was unaware of adaptation, the adaptation of α = 0.4 resulted in a PSE shift

of −0.11c and the adaptation of α = 0.8 resulted in a PSE shift of −0.29c. Therefore,

we predict that adaptation of regions outside of the stimulus leads to length contrac-

tion. We think the principle behind length contraction is similar to that of AIRI in

that the decoder mistakenly interprets the lower firing rates of the adapted neurons

at the surrounding regions of the skin to mean that the stimulus points are farther

from those neurons and closer to the center of the skin patch.
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Figure 5.4: AIRI Surround Adaptation. The proportion of times the Bayesian
observer reported comparison stimulus separation is larger than the reference stimulus
separation distance (R = 2c). To stimulate surround adaptation, we placed adapting
stimuli at (−3c, 0c) and (+3c, 0c). (A) When the decoder was aware of the α = 0.4
adaptation, the PSE = 1.99, and when there was no adaptation, the PSE = 2.01.
(B) When the decoder was unaware of the α = 0.4 adaptation, the PSE = 1.89, and
when there was no adaptation, the PSE = 2.00. (C) When the decoder was aware
of the α = 0.8 adaptation, the PSE = 1.97, and when there was no adaptation, the
PSE = 2.01. (D) When the decoder was unaware of the α = 0.8 adaptation, the
PSE = 1.73, and when there was no adaptation, the PSE = 2.01.
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5.3.2 OAI Oblique Stimulus

Having investigated the possible cause of OAI, we were next interested in whether

using oblique stimulus instead of transverse or longitudinal stimuli would result in

OAI. For this simulation, we followed the same procedure as in the default OAI

simulation with the difference of using oblique two-point stimuli instead of transverse

or longitudinal stimuli. In one interval, the observer is given a two-point stimulus

oriented at +45◦ to longitudinal with a variable separation distance. In another

interval, the observer is given a two-point stimulus oriented at −45◦ to longitudinal

with a fixed 2c separation distance. As shown in Fig. 5.5, using oblique stimuli does

not result in a shift of the psychometric curves, regardless of the observer’s awareness

of the RF anisotropy. For all conditions, the PSE = 2.00, which signifies that the

observer does not experience OAI. That being said, unawareness of the RF anisotropy

resulted in shallower curves, and the psychometric curves for the palm of the hand

were shallower than the curves for the dorsum.
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Figure 5.5: OAI Oblique Stimulus. The proportion of times the Bayesian ob-
server reported whether the +45◦ oblique stimulus separation is larger than the −45◦

oblique stimulus separation distance (R = 2c). (A) When the decoder was aware
of the RF anisotropy, the PSE = 2.00 on both the dorsum and palm of the hand;
however, the slope of the psychometric plot for the dorsum was steeper than the one
for the palm of the hand. (B) Similarly, when the decoder was unaware of the RF
anisotropy, the PSE = 2.00 on both the dorsum and palm of the hand, and the slope
of the psychometric plot for the dorsum was steeper than the one for the palm of the
hand.

5.3.3 OAI Different Sigma and Spacing Ratios

Having investigated the decoder’s awareness of the RF anisotropy in the palm and

dorsum of the hand in OAI, we were next interested in how different sigma and

spacing ratios affect perception (Fig. 5.6). We predict that OAI can be observed in

the areas of skin where its RFs are anisotropic; the higher the RF anisotropy, the more

pronounced the illusion. Specifically, we predict that a low cratio and a high σratio will
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result in a PSE shift to the left, and a high cratio will result in a positive PSE shift.

Furthermore, when cratio = σratio, increasing their ratios results in a rightward PSE

shift.
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Figure 5.6: The Effect of Sigma and Spacing Ratio of PSE Shift. (A)
The decoder was aware of RF sigma and spacing anisotropy. (B) The decoder was
unaware of RF sigma and spacing anisotropy.

65

http://www.mcmaster.ca/
https://www.neurosciencemcmaster.ca/


Chapter 6

Discussion

6.1 Two-Point Discrimination Tasks

The simplest form of assessing tactile spatial acuity is through a single-point local-

ization test. In this test, the participants are asked to determine the location of the

stimulus on their skin. In one variation of this task, the participants are instructed

to close their eyes while being stimulated and open their eyes afterward to indicate

the location of the stimulus by pointing to it with their finger (Yoshioka et al., 2013).

Localization errors are then used to calculate a participant’s threshold. Although

simple to test, the validity of this method is questionable. The localization error is

not only influenced by tactile spatial acuity but also by the participant’s memory

and motor localization. In a less problematic variation of the single-point localization

test, participants are stimulated at a reference location and then subsequently stim-

ulate at either the same or a different location. The participants are then asked to

report whether the stimulus location remained the same or changed. By varying the

distance of the second stimulus to the reference location, the participant’s threshold
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is calculated (Weinstein, 1968). A limitation of this task is that it is dependent on

the criterion participants adopt for responding to what they perceive as ”same” ver-

sus ”different” locations. The two-point discrimination variation of this task, S2PD,

mitigates the criterion issue as the participants understanding of proximal and distal

location is irrelevant when the experiments is performed under 2IFC protocol.

The C2PD is often used in assessing tactile spatial acuity; however, the validity of

this task has been called into question (Craig & Johnson, 2000; Johnson & Phillips,

1981b; Lundborg & Rosén, 2004). We can broadly categorize the C2PD’s shortcom-

ings into two components, experimental and fundamental. For this task to be valid,

the total number of action potentials send to be brain must be the same between

one-point intervals and two-point intervals with zero c separation. We call this a

force-control paradigm based on the idea that the total force applied in a given inter-

val remains constant. To ensure that there is no magnitude cue when running this

task, the experimenters must consider the skin-stimulus dynamic and local circuitry

when deciding the appropriate force for each stimulus point. The difficulty associated

with finding the appropriate stimulus force level is an experimental shortcoming of

C2PD. Under the force-control paradigm, C2PD is a valid task as the Bayesian ob-

server’s proportion correct at 0c separation is 50% (Fig. 3.1A). However, C2PD still

has lower performance (higher threshold) than its alternatives (Fig. 3.1A), making

it a less desirable task to use. Under the force-control paradigm, S2PD has higher

performance (lower threshold) than 2POD and C2PD. The threshold in S2PD task

was also lower than C2PD in human participants (Mancini et al., 2014). The low

threshold of S2PD compared to the other 2PD tasks makes it a useful alternative in

measuring tactile acuity on the fingertips (or other small skin areas).
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If the experimenters use the same force for all individual stimulus points, then

one would expect the number of action potentials in two-point intervals to be greater

than the one-point intervals, under the linear summation of action potentials as-

sumption. We called this experimental setup, the displacement-control paradigm,

because it reflects the situation in which the depth of skin displacement is equal in

the two intervals. Because of the unequal signal-to-noise ratio from each interval in

displacement-controlled C2PD, the Bayesian observer can easily distinguish two-point

from one-point intervals; hence, above 50% performance at 0c separation. In contrast,

the displacement-control paradigm does not provide any magnitude cue advantage in

S2PD and 2POD because the number of stimulus point(s) remain the same across

their intervals.

Although magnitude cues can result from uncareful experimental procedures, they

can also result from the sub-linear addition of neural responses. Studies in peripheral

SA1 afferents have shown that closely spaced stimulus points suppress the neural

response of each other (Vega-Bermudez & Johnson, 1999). Therefore, the number

of action potentials created by two points is less than one point, resulting in a mag-

nitude cue in C2PD. The magnitude cue resulting from the non-linear addition of

neural responses is a fundamental shortcoming of C2PD. To illustrate the effect of

the magnitude cue, we defined the magnitude factor as the intensity of a point in

a two-point stimulus interval over the intensity of a point in a one-point interval.

Varying the magnitude factor in C2PD (Fig. 3.2) resulted in above 50% performance,

similar to results found in literature (Johnson & Phillips, 1981c; Tong et al., 2013).

The magnitude cue is such an informative cue that our total spike count decoder had

a relatively high performance at high magnitude factor values (Fig. 3.2B). Because
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this decoder only took the total spike count into account, the performance remained

constant across different stimulus separations.

6.1.1 S2PD is a Better Measure of Acuity

Under the force control paradigm, the total number of action potentials in a given

interval of 2PD tasks are the same. So the total signal-to-noise ratio should also be the

same, which begs the question of why the S2PD produces lower thresholds than 2POD

and C2PD. To answer this question, we looked at the encoder spike count profile of

all the 2PD tasks’ intervals. At 0c separation, the profile of all the tasks looks the

same. However, at 2c separation, the intervals in S2PD can easily be distinguished

from each other in comparison to the other tasks. We think that the distribution of

the signal is an important factor in explaining why S2PD had better performance.

Similarly, 2POD intervals’ spike patterns are more distinctive than C2PD intervals

because of the orthogonal spread of action potentials in the 2POD transverse interval.

At 4c separation, the intervals in all tasks can easily be distinguished.

6.1.2 Impact of Stimulus Intensity on Performance

SA1 mechanoreceptors are generally associated with tactile spatial resolution (Bruns

et al., 2014). Their response is linearly correlated with indentation depth up to

1.5 mm (Mountcastle et al., 1966) and are only marginally impacted by indentation

depths greater than 1.6 mm (Vega-Bermudez et al., 1991) or contact forces greater

than 1 N (Johnson et al., 2000). Indentation depths greater than 1.6 - 1.8 mm results

in saturation of SA1 afferents (Mountcastle et al., 1966). Thus, we may expect that

tactile spatial acuity to be largely unaffected by the force of the stimulus after large
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forces are reached (Vega-Bermudez & Johnson, 2004). Indeed, Johnson and Phillips

(1981b) found that increasing indentation depth in the grating orientation task results

in a diminished improvement in performance. G. O. Gibson and Craig (2006) showed

that increasing stimulus force (from 50g to 200g) in the grating orientation task

had no effect on performance. In this paper, we have also shown that increase in

stimulus intensity resulted in diminished improvement in performance across all 2PD

tasks (Fig. 3.3). Although the diminished performance in psychophysical studies

could be attributed to the saturation of SA1 axons, given that we did not limit the

number of action potentials in our model, our results suggest that there exists an

irreducible source of spatial uncertainty that cannot be resolved by an increase in

stimulus intensity.

6.1.3 Impact of RF Size on Performance

The RF size in many cortical areas has been shown to be malleable. Following digit

amputation in adult owl monkeys, the size of RFs in un-amputated digits shrank

(Merzenich et al., 1984). Following a focal lesion to the photoreceptor layer, the RFs in

the cat’s primary visual cortex expanded (Pettet & Gilbert, 1992). Lack of stimulation

within the RF area paired with the stimulation surrounding the RF area resulted in

RF size enlargement (Pettet & Gilbert, 1992). Peripheral denervation resulted in

enlargement in RF size of raccoon’s SI (Kaas et al., 1983). Gilbert and Wiesel (1992)

found that following binocular retinal lesions, the RFs along the boundary of the lesion

enlarged to five times their pre-lesion size. Moreover, cortical RF size can also alter

due to experience-dependent plasticity. Womelsdorf et al. (2006) found that attention

to stimulus position can shift rhesus macaque monkeys’ cortical area MT RF centers
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and shrink their RF size. Furthermore, the size of somatosensory cortical neuron RF

varies across different body parts, which corresponds to their tactile acuity (Daroff

& Aminoff, 2014). For example, the afferent neurons corresponding to the finger

pad have relatively small Rfs, but their representation in the somatosensory cortex is

large, corresponding with high tactile spatial acuity (Weinstein, 1968). Therefore, we

predicted that the shrinkage of RF size would lead to improvements in performance.

To test this prediction, we looked at the effect of changing σ on 2PD task perfor-

mance. Once again, S2PD had higher performance than 2POD and C2PD. However,

the effect of σ was not the same across that tasks. In 2POD and C2PD, increasing

the size of σ reduced performance, whereas, in S2PD, increasing the size of σ had

negligible effect of the performance. By referring to the Eq. 2.1.3, we can see that

increasing σ increases the expected stimulus-evoked spike count, s, of a neuron. Para-

doxically, an increase in s does not necessarily increase performance; in fact, increasing

σ lessens the contribution of stimulus distance to s. To make this point more clear, let

us assume that A = 10AP , I = 1 and σ = 15mm. When d = 0mm, s = 10AP , and

when d = 15mm, s = 6AP . Now let us consider the same case but with σ = 50mm.

In this case, when d = 15mm, s = 9.5AP , which is similar to s = 10AP at d = 0mm.

Therefore, at high σ values, the Bayesian decoder has a harder time inferring the true

distance of the stimulus because the expected stimulus-evoked spike count at different

separations are similar to each other.
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6.1.4 Duplication Factor

An important assumption in our model is that all the neurons’ spike counts are con-

ditionally independent of one another. However, neurons in the primary somatosen-

sory cortex receive convergent inputs from many neurons in the network and output

to many other neurons in a form of excitatory and inhibitory lateral connections

(Doetsch et al., 1992; Kang et al., 1985; Macgillis et al., 1983; Xing & Gerstein,

1996). Application of GABA antagonists has been shown to enlarge the RF size of

SI neurons (Alloway et al., 1989), which suggests that inhibitory connections affect

tactile acuity by regulating RF size. Lateral inhibition is theorized to be an impor-

tant process in refining somatosensory information and improving the discrimination

of two points (Daroff & Aminoff, 2014). Xing and Gerstein (1996) attributes mod-

ulation in RF size of neurons in SI to excitatory and lateral connections in which

RF sizes increase with an increase in excitatory levels and decrease with an increase

in inhibitory levels. That being said, we can view each neuron in our model as a

representation of a set of cortical neurons whose collective inputs are conditionally

independent of other sets.

To explore what would happen if multiple neurons received the same input, we

came up with a duplication factor. The duplication factor can be viewed as an

independent sampling of the data. As expected, increasing the duplication factor

increased the performance across all 2PD tasks (Fig. 3.6). Our result suggests that by

having more neurons independently receive information from the peripheral afferent,

tactile acuity performance increases. In fact, by having an infinite number of cortical

neurons the performance would be equal to the performance if decoding happened

in the peripheral neurons. A similar process could underlie improvement in tactile
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acuity due to the enlargement of skin representation in the cortex. Merzenich et al.

(1984) reported that cortical representation of digits increased upon amputation of

an adjacent digit. This increase in representation was accompanied by an increase

in tactile acuity. Meaning, by recruiting more neurons to attend to a particular skin

area the brain could increase the tactile acuity of that area.

6.1.5 Encoding Jitter

In our default model, for each participant, the RF grid was shifted by a value drawn

from a uniform distribution (Eq. 2.1.1). The maximum value for deviation was half

of RF center-to-center spacing. The purpose of this phase shift from one participant

to the next was to prevent idiosyncrasies that could arise from stimuli landing on

the RF centers. Nevertheless, our default skin patch is an idealized model. Although

our model takes into account two sources of cortical noise, spontaneous activity and

Poisson firing rate variability, it is still idealized with respect to the position and

characteristics of RFs. To explore how our Bayesian observer would perform with

these additional sources of encoding noise, we jittered the individual RFs’ position,

sigma, and amplitude based on Eq. 2.1.2. Our Bayesian observer performed relatively

well when J = 2, despite its state of awareness of the noise (Fig. 3.7A). However,

at J = 5, the performance of the Bayesian observer that was unaware of the jitters

was considerably impacted across all 2PD tasks. Still, the Bayesian observer was

quite robust to this noise. Yet again, the performance of S2PD was greater than

the other tasks, and the decrease in the performance due to noise was less than the

others. Interestingly, when the Bayesian observer was aware of all the jitters, the

performance was better than the no-jitter condition at early separation distances,
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suggesting that the variable RFs are more informative than uniform RFs. The total

number of spike counts in the jitter condition was also higher than in the no-jitter

condition, further explaining the increase in performance in the jitter-aware condi-

tion. When we looked at how jitter awareness regarding individual RF characteristics

affected the performance, we found that awareness regarding the RF amplitude made

the least difference in performance. Awareness regarding the position of RF centers

resulted in the most difference in the performance of tasks, suggesting that position

awareness is the most informative RF characteristic for the Bayesian observer. Some

investigators have argued that the brain receives detailed stimulus information such

as signalled edge orientation (Pruszynski & Johansson, 2014) from peripheral affer-

ents. Our results suggest if the brain is Bayesian then it does not necessarily need to

receive detailed information regarding its RF property and the stimulus to perform

relatively well on acuity tasks.

6.1.6 Stimulus Probe Size

For the sake of simplicity, the stimuli in our default model are points with no width.

In reality, stimuli used in 2PD tasks have width and surface area. For example,

Mancini et al. (2014) used a 0.2 mm Frey filaments to map tactile acuity across body.

The fact that stimuli have width means that there is a practical limit to a separation

distance that an experimenter could test when using a two-point stimulus. In the

case of Mancini et al. (2014) study, that limit would be 0.4 mm. This limitation

does not apply to S2PD because only one stimulus point is delivered at any given

time. To test the effect of radial stimuli on performance, we came up with two

experimental paradigms, the variable-indentation and the fixed-indentation. In the
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variable indentation paradigm, the intensity of stimuli was adjusted such that the

total spike count would remain the same regardless of stimulus surface area. In the

fixed indentation paradigm, the total spike count is not controlled; meaning, the larger

the stimulus radius, the higher the total spike count. We found that stimulus radius

was inversely correlated with performance under the variable-indentation paradigm,

suggesting that a smaller stimulus with higher intensity is more informative to the

Bayesian observer than a larger stimulus with smaller intensity. When we do not

control for the spike count in the fixed-indentation paradigm, the larger the stimulus

radius the higher the performance in S2PD. This increase in performance can be

explained as a larger stimulus radius results in a higher total spike count. However,

the stimulus radius does not significantly impact the performance in C2PD and 2POD,

indicating that the benefit of a higher spike count is offset by a rise in ambiguity in

inferring two-point stimulus separation.

6.2 Character Recognition Tasks

Character recognition tasks are another method of assessing tactile spatial acuity.

The benefit of this method is that because it involves many point stimuli, the effect

of the magnitude cue would be minimized (Johansson et al., 1980). Furthermore,

this task is suggested as a convenient alternative to the 2PD tasks as it does not

require participant training and careful calliper manipulation. Bruns et al. (2014)

came up with a tactile acuity chart similar to a Snellen eye chart in which they used

Braille characters of various sizes and orientations as stimuli. The threshold of partic-

ipants on this task was similar to C2PD threshold (Bruns et al., 2014). We simulated

two variations of this task, raised letter and Braille character recognition, under a
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force-control paradigm. For both tasks, we looked at the effect of moving stimulus

presentation (movement) and static stimulus presentation (static). We found that

repeated static touch had a similar performance to movement touch. However, move-

ment touch had a higher average hit rate than static touch, similar to the findings in

humans (M. Heller, 1986; Loomis, 1974). In movement and repeated static touch, the

Bayesian observer receives more information regarding the stimulus through multiple

sampling, resulting in increased performance.

In RLRT, embossed letters are often used as stimuli (Johnson & Phillips, 1981b;

Loomis, 1982). However, for our simulation, we represented upper case English al-

phabet letters as a set of points (dotted letters) in a similar manner to those produced

by Optacon (Efron, 1977). Human participants’ performance with dotted letters is

similar to their performance with embossed letters with a thin font but better than

embossed letters with a bolded font (Geyer & Gupta, 1981; Loomis, 1981). By ad-

justing the stimulus intensity of in our simulations, we fitted the Bayesian observer’s

average hit rate to that of human participants (Craig, 1979). The resulting confusion

matrix showed considerable similarity to the human confusion matrix. Similar to

the human participants, on average the Bayesian observer responded correctly to all

letter stimuli. Among the top ten incorrect responses, there were some similarities

between the model and humans, such as confusing letters Q&O, P&F and M&W .

We also looked at whether letter similarity predict performance on RLRT. We found

that letter similarity was moderately correlated with the Bayesian observer’s incorrect

stimulus-response pair and weakly correlated with the human participant’s incorrect

stimulus-response pair.

In the visual psychophysics literature, masking refers to the interference of one
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stimulus with the recognition of another stimulus (target). In particular, lateral

masking, which is the interference of a masking stimulus in recognition of an adjacent

letter, has been extensively studied in linguistic literature. In studies of visual letter

recognition tasks, lateral masking has been shown to decrease the perceptibility of

letters (Massaro & Klitzke, 1979), such that the closer the masking stimulus to the

target letter, the smaller the performance(Huckauf & Heller, 2002; Huckauf et al.,

1999; Nazir, 1992). Similarly, lateral masking has been shown to decrease the perfor-

mance in RLRT based on the proximity of the masking stimulus to the target letter

(Loomis & Apkarian-Stielau, 1976). To explore the effect of masking in RLRT, we

flanked stimulus letters with masking columns. Our results concur with the findings

in the literature. The Bayesian observer performed worse the closer the masking stim-

uli were to the stimulus letter. Additionally, we predicted that masking unawareness

lowers the performance in RLRT. Masking stimuli lower performance by introducing

a new source of noise to the model. Even when the Bayesian observer is aware of

masking stimuli, it still performs worse than the no-masking condition because the

added action potentials increase the ambiguity of letters and makes it harder to infer

what the true stimulus letter was.

Similar to the RLRT, we fitted the Bayesian observer’s average hit rate on the

BCRT to the average hit rate of human participants (Craig, 1979). The resulting

confusion matrix was highly correlated with the human confusion matrix. We also

simulated BCRT under displacement control. The average hit rate was higher under

displacement-control compared to the force-control. However, when the average hit

rate was fit to human data, the resulting matrix was highly correlated with the

human and simulated force-control confusion matrices. Yet, there were quite a few
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letter outliers between the two paradigms. For example, the performance of the

Bayesian observer on Braille characters Q (
.
.
.

.

.

.

rrr rr ), G(
.
.
.

.

.

.

rr rr ), and Y(
.
.
.

.

.

.

rr rrr ) was higher in

the displacement-control paradigm than in the force-control, and the performance of

Braille characters A (
.
.
.

.

.

.

r
), B(

.

.

.

.

.

.

rr ), and C(
.
.
.

.

.

.

r r
) was higher in the force-control than in

the displacement-control. This pattern is expected as Braille characters with a high

number of dots (i.e., Q, G, Y) have higher total spike counts under the displacement-

control paradigm, and Braille characters with a low number of dots (i.e., A, B, C)

have higher point intensity under the force-control paradigm, making them more

distinguishable.

The Snellen chart is based on the principle that the size of a letter corresponds to

recognition difficulty. Similarly, the larger the size of a Braille character is, the higher

the recognition accuracy (Loomis, 1981). The height of Braille dots is shown to be

correlated with reading speed (Lei et al., 2019) and performance (Douglas et al., 2009).

Similarly, we found that changing character scale and stimulus intensity increases the

average hit rate. The performance was higher under displacement control than under

force-control. Our result suggests that Braille can be made easier by increasing the

size of the characters and increasing the height of the dots; nevertheless, larger Braille

characters can make the overall readability lower by reducing the number of characters

that can be put in a line.
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6.3 Illusions

6.3.1 Orientation Anisotropy Illusion

Longo and Haggard (2011) discovered an illusion in which stimulus separations on the

dorsum are perceived larger when oriented transversely than longitudinally. For the

sake of convenience, we call this illusion orientation anisotropy illusion. The authors

suggested that this illusion arises from a distorted representation of the hand shape

in the brain. In other words, there is a mismatch between the generative stage of

the encoder and that assumed by the decoder. To explore what could underlie this

mismatch, we investigated how the RFs in the dorsum of the hand differed from the

RFs in the palm.

Studies of tactile acuity have reported that the measured thresholds are dependent

on the orientation of the stimulus (Essock et al., 1992; G. O. Gibson & Craig, 2005;

Stevens & Patterson, 1995). In fact, Weber was the first to report that the two-point

discrimination threshold was smaller when the stimulus was orientated transversely

rather than longitudinally (Weber et al., 2018). Studies of peripheral afferents found

that 50% of the RFs are elongated longitudinally (Bensmäıa et al., 2006; Johansson

& Vallbo, 1980; Knibestöl & Vallbo, 1970). Brown et al. (1975) demonstrated that in

the elongated RFs, their long axis may be more than twice as long as the short axis

on the hairy skins. RF elongation is also accompanied by closer RF spacing (G. O.

Gibson & Craig, 2006); meaning, the RF centers are closer together in the transverse

direction than the longitudinal direction. Not only the RFs of peripheral afferents

are elliptical but the RFs of cortical neurons are elliptical as well. In adult owl and

squirrel monkeys, neurons in SI whose RFs are located on the hand are shown to
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be elongated longitudinally (Jenkins et al., 1990; Merzenich et al., 1983; Merzenich

et al., 1984; Sur et al., 1982). To measure RF shape anisotropy, we extracted RF

dimensions and spacing from Merzenich et al. (1987) which extensively mapped and

recorded from neurons in cortical areas 3b and 1 (Fig .5.2). We noticed that on

average the RFs on the dorsum of the hand are more elliptical than the ones in the

palm of the hand, and the RF spacing in the dorsum of the hand is smaller in the

transverse direction than in the longitudinal direction.

By updating our model parameters according to our findings from Merzenich et al.

(1987), we were able to replicate the illusion under an unaware condition. When our

Bayesian observer was aware of the RFs shape and spacing anisotropy, only a slight

shift in the psychometric curves was observed. However, when the Bayesian observer

assumed that the RFs are circular and equidistant from their neighbours, a significant

shift in the psychometric curves were observed. We observed this shift in both sides

of the hand with the dorsum showing a greater shift. Several investigators have

reported no OAI on the palm of the hand (Cholewiak, 1999; Green, 1982; Longo &

Haggard, 2011); however, recent studies have demonstrated a significant but smaller

in magnitude anisotropy on the palm of the hand (Fiori & Longo, 2018; Knight et al.,

2014; Longo et al., 2015).

The anisotropy in the spacing and sigma of the RFs means that separation dis-

tances are perceived differently depending on whether the orientation of the stimuli

is longitudinal or transverse. Consequently one would expect that perception of sep-

aration distances of stimuli that are oriented obliquely (±45◦) would not be different.

Because all the RFs spacing and shapes are elongated longitudinally, the perception

of oblique stimuli of either +45◦ or −45◦ from the longitudinal axis is affected to
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the same degree, so we would not expect a bias in either oblique direction. Indeed,

our simulation of the OAI experiment using oblique stimuli showed no occurrence of

illusion, regardless of RF shape anisotropy awareness. However, unawareness resulted

in shallower curves, which stems from the decoder’s inaccurate understanding of the

generative stage. Furthermore, the psychometric curves for the palm of the hand were

shallower than the curves for the dorsum, which can be explained as the RF density

in the transverse direction at the dorsum of the hand is greater than the palm of the

hand, and the RF area in the dorsum is smaller than the palm.

We also explored how awareness regarding different sigma and spacing ratios af-

fects PSE. In general, when the Bayesian observer is aware of its RF characteristics

such as sigma and spacing ratio, we do not observe a significant change in the PSE.

However, when the Bayesian observer is not aware of its RF characteristics, we see a

noticeable shift in PSE at certain sigma and spacing ratios. For example, we predict

that if an area of skin has a sigma and spacing ratio of 1.8 then we would expect

objects to be perceived as smaller when oriented transversely than longitudinally,

opposite to the OAI.

6.3.2 Adaptation Induced Repulsion Illusion

Studies of visual adaptation have given us insight into mechanisms underlying vision.

A notable example of visual adaptation is the tilt aftereffect illusion. In this illusion,

adaptation to a stimulus line causes subsequent line stimuli to be perceived titled

away from the adapted orientation (J. J. Gibson & Radner, 1937). Schwartz et al.

(2007) proposes that illusions such as the tilt aftereffect could arise from downstream
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decoders not being aware of the tuning changes brought on by contextual cues. In-

spired by the aftereffect illusion, Li et al. (2017) demonstrated an adaptation-induced

repulsion illusion in the sense of touch. Li et al. (2017) proposed that a Bayesian

observer could replicate this illusion if it does not take the adaption of the state of

the sensory neurons into account when decoding. To test this proposal, we simulated

AIRI with a focal adaptation at the center of our skin patch. When the Bayesian ob-

server was aware of the adaptation state of its neurons, the performance did not differ

greatly between the adapted and unadapted conditions. The slope of the psychome-

tric curve decreased slightly in the adapted condition because adaptation decreases

the signal-to-noise ratio. However, when the Bayesian observer was unaware of the

adaptation state of its neurons, the psychometric curve for the adapted condition

shifted to the right, meaning, stimulus separations were perceived to be larger than

what they really were. Increasing the adaptation level resulted in a higher shift of

psychometric function under the unaware-adapted condition, meaning, the strength

of the illusion could be enhanced by either increasing the adapting stimulus frequency

or prolonging the duration of adaptation. Based on the result of our simulation, we

predicted that if two focal adaptors were placed at the flanks of a two-point stimulus

then stimulus separation distance would feel smaller than it really was. Similar to

the default AIRI, increasing the adaptation level strengthens the illusion.

6.4 Noise and Uncertainty

The variable response seen in human participants across many different psychophysi-

cal studies suggests underlying mechanisms that are prone to randomness. Although

the source of this trial-to-trial variability is not fully understood, the noise observed
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in the cortical neurons presumably is the result of the accumulation of noise through

the sensory transduction and transmission pathway. According to the theory of infor-

mation processing inequality, the information content of a signal cannot be increased

in the subsequent steps of operation (Latham & Roudi, 2009). Therefore, a cortical

decoder is not able to perform better than a hypothetical decoder that has access to

peripheral sensory information. Each step of the sensory transmission pathway intro-

duces a degree of uncertainty. When a stimulus touches our skin, the skin dynamic

ever so slightly varies, causing the discharge of the mechanoreceptors to vary as well.

Along the sensory transmission pathway, there are many sources of stochastic noise

such as the opening and closing of ion channels (Kispersky & White, 2008), vesicle

diffusion (Lou et al., 2005), and the binding of neurotransmitters (Maio et al., 2017).

Yet, surprisingly little noise can be seen in the recordings of afferents, suggesting

that the majority of noise inherent in perception originates in the cortex (Hay &

Pruszynski, 2020). Not every neuron in the cortex exhibits the same level of neuronal

variability. Many cortical neurons fire in a highly variable manner resembling Poisson

(Moreno-Bote, 2014; Shadlen & Newsome, 1998; Tomko & Crapper, 1974) or Gamma

(Tomko & Crapper, 1974) distributions, whereas others have less variable responses

(DeWeese et al., 2003; Gur et al., 1997). A neuron can also have a different response

variability depending on the stimulus (Warzecha & Egelhaaf, 1999). A growing view-

point suggests that the noise observed in the nervous system may have computational

benefits.
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6.4.1 Purpose of Noise

Some studies have shown that the stochasticity in neuronal response is tightly con-

trolled and regulated by neuronal machinery, suggesting that the noise observed

in neurons may serve valuable functions. Several computational approaches have

adopted noise to improve processing information. Benzi et al. (1981) proposed a pro-

cess termed stochastic resonance by which the sensitivity of a system to weak signals

can be enhanced at certain noise intensity. Synaptic noise has been shown to increase

the probability of response to a weak signal in pyramidal cells (Shu et al., 2003).

In crayfish mechanoreceptors, the addition of an intermediate level of external noise

enhanced signal transmission; however, the addition of a high level of noise degraded

signal transmission (Douglass et al., 1993). Similarly, external noise was shown to

enhance SA1 afferent response to a weak signal (Collins et al., 1996). A variation

of this mechanism, inverse stochastic resonance, by which noise of particular inten-

sity reduces the excitability of neurons (Uzuntarla et al., 2017) has been observed in

Purkinje cells (Buchin et al., 2016). Thus, a certain level of noise can increase the

probability that sub-threshold signals reach the threshold. However, high levels of

noise can render supra-threshold signals meaningless. The addition of noise to neural

network models has been demonstrated to make the models more robust, increase

model generalizability (reducing over-fitting), and facilitate learning (Kirkpatrick et

al., 1983; Krogh & Hertz, 1992). Similarly, the brain may be generating noise to

enhance learning.
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6.4.2 Managing Noise

As mentioned, the noise in a system can not be diminished in subsequent processing

(Latham & Roudi, 2009); however, the brain may employ strategies to mitigate the

negative consequences of noise while still benefiting from its computational advan-

tages. Two of these strategies are by averaging signals and using prior knowledge.

Averaging may be applied when there is a redundancy of information such as when

multiple neurons carry the same signals with independent sources of noise (Ferster,

1996). Additionally, prior knowledge can be used to help reduce noise. When the

expected statistical structure of a stimulus is known, the signal can be distinguished

from the noise (Turin, 1960). These two strategies are embedded in the Bayesian

inference framework. A Bayesian observer uses prior knowledge and noisy observa-

tions to calculate the probabilities of hypotheses about the state of the world. We

have shown that increasing the duplication factor increases the performance of the

model, which is similar to reducing noise through averaging. Furthermore, when the

Bayesian observer was aware of the encoding jitter, it was also able to perform better

than when it did not know the detailed structure of its encoding stage. In this thesis,

we have shown that the Bayesian observer is capable of replicating general trends in

the tactile spatial literature, and it can be used to make sense of data and predict

behaviour.
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Table A.1: Values used for the simulation.

Variable Value Citation

Spontaneous Firing Rate (rspontaneous) 10AP/s Vazquez et al. (2013)

Response Rate

rON = 62AP/s

rSUSTAIN = 8AP/s

rOFF = 43AP/s

Pei et al. (2009)

Stimulation Duration

tON = 0.04s

tSUSTAIN = 0.42s

tOFF = 0.04s

Pei et al. (2009)

Sigma (σ)
forearm: 15mm

fingertip: 2mm

Sur et al. (1980)

Adaptor Radius 9.5mm Li et al. (2017)

Spacing Between RF Centers 15mm Arbitrarily decided

Skin Dimension 150mm× 150mm Arbitrarily decided

Number of Participants 150 Arbitrarily decided

Number of Trails Per Participants 150 Arbitrarily decided
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