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Abstract 

In this thesis, we developed prognostic models of clinical outcomes, specific to violent and 

criminal outcomes in psychiatry, and predictive models of treatment response at an individual 

level. Overall, we demonstrate that evidence-based risk factors, protective factors, and treatment 

status variables were able to prognosticate prospective physical aggression at an individual level; 

2) prognostic models of clinical and violent outcomes in psychiatry have largely focused on 

clinical and sociodemographic variables, show similar performance between identifying true 

positives and true negatives, although the error rate of models are still high, and further 

refinement is needed; 3) within treatment response prediction models in MDD using EEG, 

greater performance was observed in predicting response to rTMS, relative to antidepressants, 

and across models, greater sensitivity (true positives), were observed relative to specificity (true 

negatives), suggesting that EEG prediction models thus far better identify non-responders than 

responders; and 4) across randomized clinical trials using data-driven biomarkers in predictive 

models, based on the consistency of performance across models with large sample sizes, the 

highest degree of evidence was in predicting response to sertraline and citalopram using fMRI 

features. 
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Chapter 1: Introduction 

1.1. Overall Approach: Precision Psychiatry  

Precision psychiatry is an emerging field that seeks to advance the personalized care of patients 

through improving our capacity to prognosticate the probability of clinical outcomes (prognostic 

models), response to therapeutic interventions (predictive models), and identify the presence of 

specific disorders (diagnostic models) at an individual patient level 1. Recent developments in 

individualized predictive modeling and large-scale data collection in psychiatry have facilitated a 

renewed effort to address longstanding issues with determining individual patient risk of clinical 

outcomes, a trial-and-error approach to treatment, as well as identifying reliable and valid 

biological diagnostic markers of either specific disorders, or biological markers that underlie  

systems across disorders, such as negative and positive valence in the context of the NIMH 

Research Domain Criteria (RDoC) 2,3.  

This thesis contributes to toward the field of precision psychiatry through developing prognostic 

and predictive models of negative clinical outcomes and treatment response, respectively. 

Principally, we develop prognostic models of prospective physical aggression in patients with 

Schizophrenia, where the performance of data-driven models is compared to clinician-rated 

clinical judgement of immediate and short-term violent risk, to assess its utility relative to standard 

clinical practices.  We also developed a meta-analysis of predicting violent and criminal outcomes 

in psychiatric patients, to identify important features, as well as evaluate the predictive capabilities 

across clinical models. In an editorial, we also consider the ethical and legal ramifications of 

prognostic models of criminality and violence in psychiatry and offer considerations to minimize 

patient harm.  With respect to predictive models in precision psychiatry, we first consider the use 

case of ketamine in treatment-resistant depression and highlight the need for identifying candidate 
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biological markers that can predict treatment response at an individual level. Furthermore, we 

compiled the evidence-base for predicting treatment response using electroencephalography 

(EEG), a cost-effective neurophysiological measure of brain activity with excellent temporal 

resolution, in the context of Major Depressive Disorder (MDD), which comprises most EEG 

treatment response prediction models in psychiatry to date. Moreover, we synthesize existing 

literature on data-driven biomarkers of treatment response within clinical trials in psychiatry and 

introduce a concept of precision machine learning trials as a candidate trial design.  

 

1.2. Predicting clinical outcomes in schizophrenia  

1.2.1. Epidemiology  

While schizophrenia is a relatively rare disorder, with a global age-standardized point prevalence 

of 0.28% (95% uncertainty interval: 0.24-0.31) across 195 countries and territories, it is 

associated with a substantial burden of disease 4. Similarly, in a systematic review comprising 

studies from 47 countries, with an estimated 154,140 potentially overlapping cases of 

schizophrenia, the median point prevalence of schizophrenia was 4.6 per 1000 lives, which 

measures prevalence at a particular point in time, the period prevalence was 3.3 per 1000 lives, 

which is the proportion of individuals with a disease or attribute at any time during the interval, 

and the lifetime prevalence was 4.0 per 1000 lives, respectively 5.  

Although heterogeneity exists across patients, the core characteristics of schizophrenia include 

positive symptoms, negative symptoms, and cognitive symptoms. Positive symptoms involve the 

presence hallucinations, or sensory experiences in the absence of external stimuli, and delusions, 

that involve bizarre or irrational beliefs that are incongruent with broader society 6. Conversely, 

negative symptoms comprise the decrease or absence of normal behaviors and functions 7, 
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including affective flattening, decreased movements, lack of vocal inflection, poverty of speech 

and content, avolition/apathy, anhedonia/asocial behavior, and emotional withdrawal 8. 

Moreover, impairments in executive functioning, while present in other forms of psychosis 9, 

tends to be more severe, with an earlier onset, and independent of other clinical symptoms in the 

context of Schizophrenia 10,11.  

1.2.2. Poor clinical outcomes are common in schizophrenia  

Apart from the core symptomatology of schizophrenia, there has been a large body of literature 

indicating poor clinical outcomes among these patients. For instance, only one in seven patients 

are expected to meet criteria for long-term recovery 12,  and in a 15-year prospective follow-up 

study, less than 40% of patients with schizophrenia showed one or more periods of recovery 13. 

Several risk factors of poor clinical outcomes have been identified across literature, including 

duration of the disorder, severity, cognitive impairment, and insight into illness.  

With respect to disorder duration, in a systematic review and meta-analysis across 33 studies, a 

small statistically significant correlation coefficient (r =0.13-0.18) was observed between long 

duration of untreated psychosis and poor general symptomatic outcomes, greater overall 

symptoms, decreased likelihood of remission, as well as poor social functioning 14. Additionally, 

within a separate meta-analysis across 43 studies, greater severity of negative symptoms was 

found to be significantly associated with a longer untreated psychosis duration (combined 

Hedges’s gu=0.28, 95% CI=0.1–0.45; combined correlation: r=0.15, 95% CI=0.9–0.21). 

Moreover, untreated psychosis duration was not found to be related to positive symptoms, global 

assessments of functioning, or global psychopathology severity at initial treatment contact 15. In 

another meta-analysis of 4490 participants, across 26 studies, while no statistically significant 

differences were observed between short and long duration on any outcome at 24 months, 
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including symptom severity, symptom domain, quality of life, and social functioning, at 15-year 

follow-up, patients with an untreated psychosis duration showed significantly worse outcomes in 

all domains, apart from negative symptoms, and were less likely to achieve remission. An 

association was also observed between longer duration of untreated psychosis and worse 

outcomes at 6 months, including overall functioning, quality of life, and total symptoms 16.  

Furthermore, among studies examining the role of symptom severity, within a prospective 

follow-up of previously treated (N=45) and first-episode patients with schizophrenia (N=53) 

assessed at intake with functional outcomes evaluated 2-8 years later (average 3 years), a higher 

level of overall functioning at follow-up was predicted by lower levels of depressive, positive, 

and negative symptoms at intake 17. Additionally, within a recent 3-year follow-up longitudinal 

retrospective study, patients with high levels of primary negative symptoms, which are 

characterized as largely persistent across illness stage and overall lifespan, individuals with 

higher levels of primary negative symptoms showed worse psychosocial functioning, poorer 

cognitive performance, earlier age of disorder onset, and greater utilization of psychiatric 

services, including a higher number of admissions in acute care, and overall inpatient services 18.  

Prior studies have also investigated the impact of insight into illness in schizophrenia, which 

involves whether a patient recognizes that they possess an illness that requires treatment or 

remediation. In a sample of 96 patients with a diagnosis of schizophrenia, 58.2% of patients 

lacked insight into symptoms, 32.7% for illness, 18.4% for treatment response, and 41.8% lacked 

understanding of the social consequences of their disorder 19. Poor insight into illness has also 

been associated with treatment compliance and psychosocial functioning 20 among patients. 

However, available evidence suggests that improving insight into illness is challenging among 
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patients with schizophrenia. For example, in a randomized controlled trial of compliance therapy 

in 56 individuals with schizophrenia, no major advantage was found over non-specific therapy in 

improving compliance at one year, or in any secondary outcome measures, including insight, 

global assessment of functioning, quality of life or overall symptomatology 21. Furthermore, 

although inconsistencies exist across the literature, lack of insight has been suggested to be a risk 

factor for aggressive behavior in schizophrenia 22. In a sample of 115 violent patients with 

schizophrenia within forensic settings, and 111 patients with schizophrenia without a history of 

violent behavior, violent patients showed poorer functioning, less insight, and were more 

symptomatic 22. Furthermore, in a sample of 47 patients with violent schizophrenia and 86 

nonviolent patients, those without a history of violence showed lower positive symptom scores, 

and higher clinical insight. Moreover, delusional severity, history of violence, and worse clinical 

insight were found to be significant predictors of violence in the context of schizophrenia 23. 

Altogether, patients with schizophrenia tend to show poor rates of remediation, and there is 

growing evidence of negative behavioral outcomes in a subset of individuals including violence 

and criminality.  

1.2.3.  Criminal and violent outcomes in schizophrenia  

Indeed, across prior studies, there is evidence to suggest that schizophrenia and related disorders 

are associated with increased rates of violent crime 24 and violent risk, particularly in those with 

symptoms of delusional beliefs 25. Considering this, the prediction and prevention of aggression 

in patients with psychotic disorders remains among the top priorities in their clinical care 26. In a 

recent meta-analysis and systematic review of the association between schizophrenia spectrum 

disorders and the perpetration of violence comprising 51,309 individuals across 24 studies in 15 

countries over four decades 27, those with psychosis and comorbid substance misuse showed 
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approximately 10-fold increased odds of prospective violence relative to general population 

controls. However, this relative risk was much lower, approximately 3-fold, among individuals 

lacking comorbidities 27. Similarly, another meta-analysis comprising 204 studies across 166 

independent datasets suggests that psychosis is associated with a 49-68% increased likelihood of 

violence, although substantial variability was found due to moderating factors such as how 

psychosis is measured, the presence of a comparison group, and study design 27. Altogether, this 

highlights the necessity of identifying risk factors and applying preventative strategies among a 

subset of patients who show an elevated likelihood of prospective physical aggression.  

1.2.4. Risk factors of criminality in schizophrenia spectrum disorders  

Within prior studies, several modifiable and causal risk factors for violent outcomes in psychosis 

have been identified including treatment nonadherence 28, impulsivity 29, and childhood trauma 

30. For example, in a prospective longitudinal UK Prisoner Cohort Study 31, comprising 

individuals without psychosis (N=742), with schizophrenia (N=94), delusional disorder (N=29), 

and drug-induced psychosis (N=102), schizophrenia was found to be associated with violence, 

but only in the absence of treatment (Odds Ratio, OR = 3.76, 95% CI: 1.39-10.19). Moreover, 

untreated schizophrenia was associated with the appearance of persecutory delusions at follow-

up (OR = 3.52, 95% CI: 1.18-10.52), which was associated with violence (OR = 3.68, 95% CI: 

2.44-5.55) 31.  

Additionally, in a study comprising 1410 patients with schizophrenia across 56 sites in the 

United States, the 6-month prevalence of any violence was 19.1%, with 3.6% of participants 

reporting serious violent behaviour. It was shown that positive psychotic symptoms, such as 

persecutory ideation increased the risk of violence, while negative symptoms such as social 
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withdrawal decreased the risk. Moreover, serious violence was associated with psychotic and 

depressive symptoms, as well as childhood conduct issues, and prior victimisation 32.  

Similarly, in a multinational case-control study comparing patients with schizophrenia in 

forensic settings, comprising 221 individuals with a lifetime history of serious interpersonal 

violence, relative to 177 patients without a history of violence, forensic patients showed a greater 

prevalence of comorbid personality disorder (29.3% v. 7.6%), and were more likely to be 

exposed to severe violence during childhood 22. Higher levels of disability, poorer performance 

in cognitive speed tasks, as well as lower social functioning were found to be protective factors, 

perhaps as a proxy measure of negative symptoms, alongside years of education 33.  

Furthermore, as reported in a recent meta-analysis 34, large-scale studies using unaffected sibling 

controls have been conducted to more carefully adjust for confounding familial factors including 

genetic liabilities, and early environmental considerations. For instance, a study comprising 

24,297 individuals with schizophrenia spectrum disorder 24, matched to sibling and general 

population controls, showed an increased odds of 1.8 (95% CI: 1.7-1.9) for violent crime in 

unaffected siblings, relative to general population controls, suggesting potential familial 

confounding factors 24. These findings have also been related in sibling control studies conducted 

in Sweden 35, and Israel 36.  

In terms of criminal recidivism in offenders with psychosis, a systematic review and meta-

analysis comprising 3511 repeat offenders with psychotic disorders, 5446 individuals with other 

psychiatric disorders, and 71552 healthy individuals, showed a significantly increased risk of 

repeat offending in psychosis (pooled OR = 1.6, 95% CI = 1.4-18), although substantial 

heterogeneity was found, and this analysis was based on a subset of four studies 37. A recent 

review also highlights that psychotic and manic symptoms are associated with an increased 
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likelihood of arrest for criminal offenses, although this appears to be driven by factors other than 

symptom severity 38.  

Furthermore, with respect to criminal outcomes, available evidence suggests that one in eight 

men, and one in sixteen women will subsequently commit a serious criminal offense after release 

from a psychiatric facility 39. This phenomenon is not isolated to specific geographical or 

generational effects, considering that in a systematic review comprising 33,588 individuals from 

24 countries and 109 datasets, high rates of mental illness in prisoners were found in both high- 

and low-income countries over the timespan of four decades 40. 

Additionally, results from a large Swedish registry study comprising 98,082 individuals with a 

history of hospitalization suggests that one in every twenty violent crimes is committed by 

someone with severe mental illness 41. Given the high prevalence of criminal acts committed 

across cultures in individuals with severe mental illness, there has been a concerted effort to 

identify predictors of prospective criminal risk following discharge from psychiatric facilities.  

1.2.5. Limitations of current methods of risk prediction  

In response to this, actuarial assessments became increasingly widespread, which use statistical 

algorithms to identify prospective patient risk, usually at the group level 42. However, there is 

little evidence that actuarial risk estimates can accurately determine whether a specific patient 

will reoffend or commit subsequent acts of violence 43.  

Among the existing actuarial risk assessment methods, which assess the likelihood of violence 

across a group within a certain window of time 44, methods such as the Violent Risk Appraisal 

Guide (VRAG) have shown an area under the receiver operating characteristic curve (AUC) of 

0.703 in identifying prospective criminal recidivism 45, with a slightly higher AUC when 
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examining patients who have committed prior violent offences (AUC=0.763). Additionally, the 

VRAG has shown a median AUC of 0.69 in predicting community violence in patients with 

schizophrenia across two studies 46. Similarly, the Historical Clinical and Risk Management - 20 

(HCR-20) is another structured tool to assess the risk of violence, that shows an AUC ranging 

from 0.674-0.723 in predicting prospective aggressive behaviour in men with schizophrenia 

living in the community 47.    

However, available actuarial risk assessment in forensic settings carry several limitations, 

including assuming a linear additive relationship between variables in predicting a complex 

outcome such as physical aggression in schizophrenia. While it can be argued that additive 

approaches to risk prediction that assume equal weightings between risk factors are not 

necessarily a limitation, provided they show some utility in clinical contexts, it is important to 

provide further context. For instance, many of the predictors used in actuarial risk assessments 

show high correlations with each other, and as such, there is a potential of moderate to large 

degree of multicollinearity, which may violate the assumption of independence between 

variables within multiple linear regression models 48. For instance, within a study validating the 

VRAG-Revised (VRAG-R) in a sample of 120 adult male offenders, small to moderate 

multicollinearity was observed across items, and only a subset of variables were identified as 

significant predictors of violent recidivism 49. Moreover, there is little evidence to suggest that 

the HCR-20, which utilizes historical risk factors as a structured professional judgement tool, is 

effective in assessing and managing the risk of violence 50. Altogether, while it remains 

inconclusive whether linear or nonlinear approaches are more appropriate to model violent 

behavior in schizophrenia, strategies comparing these methods are warranted.   
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To further complicate matters, most risk prediction methods have not reported performance 

indicators, such as AUC, and significant variation has been observed across studies and risk 

instruments in reporting practices 51. Moreover, among studies that have reported performance 

metrics, most have relied on AUC to assess model performance, which ignores the goodness-of-

fit and predicted probability values of the model in detecting true positives (sensitivity) and true 

negatives (specificity). As such, the model may show reasonable AUC, but fail to meaningfully 

predict physical aggression or criminal outcomes in the sample 52.  

Apart from AUC, an important consideration in determining the clinical viability of prognostic 

models are the true positive predictive values (PPV) and negative predictive values (NPV), in 

this case corresponding to the instances of physical aggression and non-aggression that are 

correctly identified, respectively. PPV is calculated as the true positive rate, divided by the sum 

of the true and false positive rate, multiplied by 100. Conversely, NPV is calculated as the true 

negative rate, divided by the sum of the true negative and false negative rate, multiplied by 100 

53. In other words, the PPV is the probability an individual with a positive result, in this case 

predicted to be physically aggressive, who will prospectively engage in physical aggression. 

Similarly, NPV is the probability an individual with a negative result, predicted to be non-

aggressive, will not engage in aggression at follow-up.  

It is necessary to caution while a prognostic model will ideally show a PPV and NPV 

approximating 100%, this rarely occurs in practical terms, and unlike with sensitivity and 

specificity metrics, PPV and NPV are impacted by the prevalence, or base rate, of the 

condition/disease in question. As such, an optimal threshold of PPV and sensitivity, or NPV and 

specificity, depends largely on how common the condition occurs, as well as the costs of false 

positives relative to false negatives. Even in cases where the PPV of a model is low, this can be 
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useful if the costs of intervention in those with false-positive results are low, relative to the 

benefits in intervening among those with a true-positive result 54. In the specific example of 

physical aggression in patients with schizophrenia, if the NPV of the test is high, negative 

predictions are useful to reject the presence of physical aggression in the sample, however in 

cases where the PPV is low, positive predictions of physical aggression have an increased 

likelihood of being false positives. As such, models with a lower PPV and higher NPV would be 

more likely to incorrectly classify patients as physically aggressive, while more correctly 

identifying patients who were not physically aggressive. Conversely, if the PPV of the test is 

high and NPV is low, positive predictions can be helpful to identify the presence of physical 

aggression, however with a low NPV, negative predictions have a higher probability of being a 

false negative. As such, these models would be more likely to incorrectly classify patients as 

non-aggressive, while more correctly identifying physically aggressive patients.  

Whether one scenario is preferrable largely depends on the specific context of how the model is 

implemented, and the ramifications in clinical care for patients. In cases where patients who are 

predicted to be positive cases are simply triaged as high risk and monitored more closely, models 

with higher NPV and lower PPV may have greater practical utility, as they are more likely to 

correctly identify non-aggressive patients, who can therefore be considered as low risk. While 

false positives will inevitably emerge in a high NPV and low PPV model, flagged patients can be 

more closely monitored, to decrease the likelihood of physical aggression occurring. Considering 

that available risk prediction methods largely focus on AUC as the exclusive performance 

metric, it remains difficult to assess their relative ability to detect true and false positives and 

negatives. Altogether, available tools to prospectively predict short-term physical aggression 

among patients in forensic settings remain limited, even though this remains a pressing need in 
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the clinical care of these individuals 26. Moreover, there is a need for new tools to predict 

criminal recidivism among individuals55.  

1.2.6. Supervised machine learning: classification models  

Broadly speaking, supervised machine learning is a subcategory of artificial intelligence where 

the model attempts to learn representations from labeled training data, or a set of features, to 

predict a given outcome 56. In classification tasks, this outcome is categorical in nature, for 

instance, discriminating individuals with schizophrenia from controls. Conversely, in regression 

tasks, this outcome is continuous in nature, for instance, predicting symptom change scores in 

response to ketamine treatment in major depressive disorder 57. In terms of classification-based 

models, or classifiers, common types of algorithms include logic (symbolic) methods, such as 

decision trees, which use conditional logic, with a series of nodes (features) and branches 

(outcomes), where all features are considered in the training data, and the decision tree attempts 

to find an optimal split of nodes with the lowest cost function 58; whereas statistical learning 

algorithms such as Bayesian networks, explicitly calculate the probability of a training instance 

belonging to a specific class, and instance-based learning, such as k-nearest neighbours (kNN), 

do not generate a series of abstractions from the underlying training data, but instead generate 

classification predictions using the specific instances themselves 59.  

Common algorithms used in classifiers include linear models, tree-based models, and kernel-

based methods. Linear models, such as logistic regression 60, are a form of linear regression with 

a sigmoid function used to map probabilities between 0 and 1. Tree-based models include both 

bagging and boosting algorithms, which are a form of ensemble learners, that utilize decision 

trees 61. Bagging involves a bootstrap procedure to generate multiple subsets of observations 

with replacements, where models are run independently and in parallel with each other, and final 



Ph.D. Thesis – D. P. Watts; McMaster University – Neuroscience.  

 

13 
 

predictions involve combining the predictions from all models, which decrease model variance 

relative to standard decision trees 62. Conversely, boosting involves developing sequential weak 

hypotheses (learners) that involve simple decision trees with a few nodes, where in cases where 

an input is misclassified by a hypothesis, its weight is increased so that the subsequent 

hypothesis is more likely to correctly classify the instance. While initially all data points are 

given equal weight, a weighted average of iteratively fitted weak learners decreases model bias, 

and generally performs well in classification tasks 62. Some examples of bagging algorithms 

include Random forest, bagged CART, and conditional forest, with random forest only selecting 

a subset of features at random out of the total 63, whereas bagged CART selects all features 62, 

and conditional forests use conditional inference trees as base learners, respectively 64 . 

Furthermore, kernel-based algorithms, use a linear classifier to solve a non-linear problem, 

where input data is mapped into a higher dimensional space, to compute the dot product between 

our features and outcome, without explicitly computing this high-dimensional space 65. Support 

Vector Machine (SVM) is the most used algorithm that incorporates a kernel function. In the 

absence of a kernel, SVM is a linear algorithm which includes a separating hyperplane that 

attempts to separate all samples with an optimal line with the greatest margin between classes 66. 

However, since in most cases there will be several training instances on the incorrect side of the 

separating hyperplane, a soft margin is used to indicate the degree to which violations in the 

separating hyperplane are permissible. With the addition of a kernel function, data is projected 

from a low dimensional space to a higher dimensional space, to generate a more complex 

separating hyperplane with less violations, and ideally, greater model accuracy 66.  

Furthermore, in terms of classification tasks, binary classification involves discriminating 

between two classes (e.g., Schizophrenia vs controls), whereas multiclass classification involves 
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discriminating between more than two classes (e.g., Schizophrenia vs Bipolar disorder vs 

controls), respectively 67. Moreover, an important consideration in model development is 

hyperparameter tuning, which involves finding a configuration of tuning parameters prior to 

model training that results in the best performance (e.g., accuracy for classification models, and 

lowest root mean squared error for regression models, respectively). A more detailed overview 

of supervised machine learning 68, algorithm selection 69, and hyperparameter tuning 69 can be 

found elsewhere.  

1.2.7. Ethical challenges of predictive models in forensic psychiatry patients  

Machine learning models raise a variety of opportunities and avenues to develop educational 

tools, preventive measures, and shape public policy 70. However, despite the potential for 

improving our ability to prognosticate clinical outcomes, in the context of forensic psychiatry, it 

is important to be cognizant of reducing the potential for further stigmatizing these vulnerable 

individuals, while also respecting their rights, as well as enhancing their safety and well-being.  

Several pertinent questions arise when evaluating the utility and implementation of such 

algorithms. For instance, an important consideration that is often overlooked is model 

interpretability. So called “black box” methods may perform well in testing and validation 

datasets, however without a rudimentary understanding of the directionality, and interaction 

effects, of important features, we lack the transparency required to justify implementing these 

models in high stakes clinical settings 71. Toward this end, new methods leveraging the internal 

structure of tree based algorithms can be used to directly measure local feature interaction 

effects, and provide insight into the magnitude, prevalence, and direction of a feature’s effect 72.  

Similarly, even among classification models that demonstrate high accuracy, there will be 

instances where individuals are misclassified. In cases where the risks of misclassification are 
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low, this may be largely unimportant. However, when dealing with the complex intersectionality 

between healthcare, personal freedom, and societal risk, this becomes a challenging 

consideration. For instance, how can we introduce ethical constraints in our models without 

significantly impacting their overall accuracy and utility? While this remains open to debate, it is 

important to ensure that our models are not predicated on immutable characteristics, and 

ensuring free, informed, and ongoing consent 73. Moreover, meaningfully engage with 

stakeholders (healthcare providers, patients, and their families) will likely be required to 

reasonably implement predictive models into clinical care, to ensure the scope of the problem, 

and important ethical considerations, are adequately elucidated.  

1.3.  Predicting treatment response in psychiatric disorders 

1.3.1. Treatment response prediction using EEG in major depressive disorder 

Apart from prognostic machine learning models used to predict meaningful clinical outcomes in 

psychiatric disorders, such as prospective physical aggression in schizophrenia, and violent and 

criminal behaviors in individuals with psychiatric conditions more broadly, there has been an 

increasing focus in the field on predicting treatment response to medications and interventions at 

an individual level. In the context of MDD, it was notably demonstrated in the Sequential 

Treatment Alternatives to Relieve Depression (STAR*D) study that antidepressants fail to 

facilitate remission in most patients with major depressive disorder (MDD), and that there is no 

clearly preferred medication when patients inadequately respond to several courses of 

antidepressants 74. Similarly, data from a multicentre randomised controlled trial spanning 2439 

patients across 73 general practices in the United Kingdom found that 55% of patients (95% CI: 

53-58%) met the threshold for treatment resistant depression, defined as ≥14 on the BDI-II, and 

who had been taking antidepressant medication of an adequate dose, for at least 6 weeks 75.  
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In contrast to neuroimaging modalities such as fMRI and MRI, which show a high cost 

associated with each scan, and excessive wait times to access a limited number of MRI 

machines, electroencephalography (EEG) is comparably more cost-effective and scalable as a 

potential clinical tool to predict treatment response. As described elsewhere 76, EEG oscillations 

refer to rhythmic electrical activity in the brain and constitute a mechanism where the brain can 

regulate changes within selected neuronal networks. This repetitive brain activity emerges 

because of the interactions of large populations of neurons. As such, there is evidence that MDD 

may be related to abnormalities in large-scale cortical and subcortical systems distributed across 

frontal, temporal, parietal, and occipital regions 76.  

For instance, power amplitudes in specific frequency bands, known as band power, are 

associated with different mechanisms in the brain. Although incompletely understood, alpha 

band power (8-12 Hz) reflects sensory and attentional inhibition and has been shown to be 

associated with creative ideation 77, beta frequencies (13-30 Hz) are prominent during problem 

solving 78, while delta frequencies (≤4 Hz) are notable during deep sleep 79, gamma frequencies 

(30-80 Hz) during intensive concentration 80, and greater theta band frequencies (4-8 Hz) during 

relaxation, respectively 81. Alpha asymmetry, which measures the relative alpha band power 

between hemispheres, particularly within frontal electrodes, have been shown to discriminate 

individuals with MDD from healthy controls, although inconsistencies have been found across 

literature 82. Similarly, beta and low gamma powers in fronto-central regions have been shown to 

be negatively correlated with inattention scores in MDD 83. Moreover, intrinsic local beta 

oscillations in the subgenual cingulate were found to be inversely related to depressive 

symptoms, particularly in the lower beta range of ~13-25 Hz 84. Additionally, in specific 

contexts, gamma rhythms, which represent neural oscillations between 25 and 140 Hz, have been 
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shown to distinguish patients with MDD from healthy controls, and various therapeutic agents 

for depression have also been shown to alter gamma oscillations 85. Patients with depression also 

show more random network structure, and differences in signal complexity 83, which may serve 

as replicable biomarkers of treatment response and remission.  

1.3.2. Data-driven biomarkers of treatment response in randomized clinical trials  

In addition to cost-effective measures such as EEG, there have been several predictive models 

thus far using baseline biological data within randomized clinical trials to predict treatment 

response. This strategy, unlike treatment response prediction in the absence of a comparator arm 

or placebo control, provides an opportunity to assess whether there are data-driven biomarkers 

specific to response to a given intervention. Considering that individual patients may deviate 

from the average group response, it can be expected that a specific treatment with demonstrated 

efficacy, relative to placebo, may not be efficacious across all patients. Additionally, due to strict 

inclusion/exclusion criteria meta-analyses and randomized controlled trials (RCTs) cannot 

properly map the complexity that are often seen in real patients, and as a result, are unable to 

render tailor-made evidence 86. In fact, the very idiosyncrasies that characterise most patients, 

such as multimorbidity profiles, are often exclusion criteria in clinical trials.  

It is also important to mention that statistically significant associations at the aggregate level do 

not necessarily translate into clinical benefit. For instance, in a network meta-analysis comparing 

the efficacy and acceptability of 21 antidepressant drugs across 522 trials for the acute treatment 

of adults with Major Depressive Disorder (MDD), while all antidepressants were found to be 

more efficacious than placebo, significant variability in efficacy and acceptability was observed 

between medications in head-to-head trials 87. Similar heterogeneity in treatment efficacy was 

also observed across patients with schizophrenia in a network meta-analysis comprising 402 
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trials and 32 oral antipsychotics, with large differences in side effects between medications 88.  

Altogether, available evidence suggests that approximately 20-60% of patients with psychiatric 

disorders continue to show significant residual symptoms following a course of treatment of 

sufficient dose and duration 89.  

Despite clinical heterogeneity in response to medications that have been shown to be effective in 

randomized placebo-controlled trials, we currently lack objective biomarkers to guide the clinical 

likelihood of sufficient symptomatic improvement, inadequate symptom reduction, or remission 

within a specific patient to a given course of treatment. As such, patients continue to endure 

prolonged periods of “trial-and-error” in search of effective treatment and the burden associated 

with this process. Moreover, validated, and reliable biomarkers are needed to improve our 

understanding of the mechanisms of patient remission in response to specific treatments. For 

instance, while first-line antidepressants such as fluoxetine have been shown to be effective in 

many patients with depression for over 3 decades 90, debate remains surrounding their exact 

mechanisms of action 91. Therefore, new strategies are required to determine which treatments 

are likely to be effective for a given patient, expedite biomarker discovery, and improve our 

mechanistic understanding of how currently approved medications improve symptoms, to guide 

the development of next-generation therapeutics in psychiatry.  

Towards this end, machine learning, as described in section 1.14, is a subfield of artificial 

intelligence focused on computational methods that can extract relevant information from 

complex datasets 92. Such methods can model patterns to generate individualized predictions 

using high quality data from various modalities, such as neuroimaging, genetics, 

neurophysiology, and clinical features 93. Incorporating these techniques into less restricted 

clinical trials with medications that have already proven their efficacy in previous RCTs will aid 
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in the development of precision psychiatry, by enabling more precise interventions that include 

patient’s idiosyncrasies 94. Considering the limitations of a “trial-and-error” approach to 

treatment in psychiatry, there is a major unmet need for individualized predictions of response to 

treatment within randomized clinical trials.  

1.4.   Main Aims 

Due to the clinical challenges of predicting criminal and violent outcomes in patients with 

psychotic disorders, and identifying whether a given individual will respond to a specific course 

of treatment, we sought to: 1) predict longitudinal physical aggression in patients with 

schizophrenia, 2) systematically review and meta-analyze machine learning models to predict 

criminal and violent outcomes in patients, 3) discuss the ethical considerations of such predictive 

models, 4) discuss the utility of an emerging fast-acting antidepressant in MDD and the need for 

candidate biomarkers, 5) systematically review and meta-analyze predicting treatment response 

using electroencephalography (EEG) in MDD, and 6) systematically review data-driven 

biomarkers of treatment response in randomized clinical trials in psychiatry. 

1.5.  Specific Objectives  

The specific objectives of this thesis were to: 

1) In chapter 2, predict longitudinal physical aggression in patients with Schizophrenia, within 

forensic settings, at an individual level using routinely collected clinical variables, 

2) In chapter 3, provide a systematic review and meta-analysis of machine learning models to 

predict criminal and violent outcomes in psychiatry, 

3) In chapter 4, discuss ethical considerations of developing predictive models of criminal and 

violent outcomes in psychiatry, 
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4) In chapter 5, discuss the potential of nasal esketamine as a fast-acting antidepressant, and 

identify the major unmet need for candidate biomarkers to predict treatment response to 

esketamine at an individual level,  

5) In chapter 6, provide a systematic review and meta-analysis of predicting treatment response 

using EEG in major depressive disorder (MDD), 

6) In chapter 7, provide a systematic review of data-driven biomarkers of treatment response 

within randomized clinical trials in psychiatry, 

1.6. Hypotheses 

 The hypotheses for objectives 1, 2, and 6 are as follows: 

1) Routinely collected baseline clinical variables will predict longitudinal physical aggression 

in patients with schizophrenia, 

2) Machine learning models incorporating evidence-based risk factors can predict criminal and 

violent outcomes in individuals with psychiatric disorders, 

3) Predictive models of treatment response using EEG will show better performance in 

neurostimulation trials, relative to pharmacological trials, across patients with MDD. 
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ABSTRACT 

The prediction and prevention of aggression in individuals with schizophrenia remains a top 

priority within forensic psychiatric settings. While risk assessment methods are well rooted in 

forensic psychiatry, there are no available tools to predict longitudinal physical aggression in 

patients with schizophrenia within forensic settings at an individual level. In the present study, 

we used evidence-based risk and protective factors assessed at baseline, to predict prospective 

incidents of physical aggression (4-month, 12-month, and 18-month follow-up) among 151 

patients with schizophrenia within the forensic mental healthcare system. Across our HARM 

models, the balanced accuracy (sensitivity + specificity / 2) of predicting physical aggressive 

incidents in patients with schizophrenia ranged from 59.73-87.33% at 4-month follow-up, 68.31-

80.10% at 12-month follow-up, and 46.22-81.63% at 18-month follow-up, respectively. 

Additionally, we developed separate models, using clinician rated clinical judgement of short 

term and immediate violent risk, as a measure of comparison. 

Several evidence-based modifiable predictors of prospective physical aggression in psychotic 

patients at an individual level, including changes in impulse control, substance abuse, 

impulsivity, treatment non-adherence, mood symptoms, substance abuse, psychotic symptoms, 

and poor family support. To the best of our knowledge, our HARM models are the first to predict 

longitudinal physical aggression at an individual level in patients with schizophrenia in forensic 

settings. However, it is important to caution that since these machine learning models were 

developed in the context of forensic settings, they may not be generalisable to individuals with 

schizophrenia more broadly. Moreover, considering the low base rate of physical aggressive 

incidents in the testing set (6.0-11.6% across timepoints), future studies with larger cohorts will 

be required to determine the replicability of these findings.  
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INTRODUCTION: 

The prediction and prevention of aggression in patients with psychotic disorders remains among 

the top priorities in their clinical care 1. It has been shown that schizophrenia and related 

disorders are associated with substantially increased rates of violent crime 2. In a recent meta-

analysis and systematic review of the association between schizophrenia spectrum disorders and 

the perpetration of violence comprising 51,309 individuals across 24 studies in 15 countries over 

four decades 3, those with psychosis and comorbid substance misuse showed approximately 10-

fold increased odds of prospective violence relative to general population controls. However, this 

relative risk was much lower, approximately 3-fold, among individuals lacking comorbidities 3. 

Similarly, another meta-analysis comprising 204 studies across 166 independent datasets 

suggests that psychosis is associated with a 49-68% increased likelihood of violence, although 

substantial variability was found due to moderating factors such as how psychosis is measured, 

the presence of a comparison group, and study design 4. As such, it is important to caution that 

there is little evidence to characterise individuals with schizophrenia as inherently dangerous 5, 

but rather, this highlights the necessity of identifying risk factors and applying preventative 

strategies among a subset of patients who show an elevated likelihood of prospective physical 

aggression.  
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Several prior studies have examined modifiable and causal risk factors including treatment 

nonadherence 6, impulsivity 7, and childhood trauma 8. For instance, in a prospective longitudinal 

UK Prisoner Cohort Study 9, comprising individuals without psychosis (N=742), with 

schizophrenia (N=94), delusional disorder (N=29), and drug-induced psychosis (N=102), 

schizophrenia was found to be associated with violence, but only in the absence of treatment 

(Odds Ratio, OR = 3.76, 95% CI: 1.39-10.19). Moreover, untreated schizophrenia was associated 

with the appearance of persecutory delusions at follow-up (OR = 3.52, 95% CI: 1.18-10.52), 

which was associated with violence (OR = 3.68, 95% CI: 2.44-5.55) 9.  

Additionally, in a study comprising 1410 patients with schizophrenia across 56 sites in the 

United States, the 6-month prevalence of any violence was 19.1%, with 3.6% of participants 

reporting serious violent behaviour. It was shown that positive psychotic symptoms, such as 

persecutory ideation increased the risk of violence, while negative symptoms such as social 

withdrawal decreased the risk. Moreover, serious violence was associated with psychotic and 

depressive symptoms, as well as childhood conduct issues, and prior victimisation 10.  

Similarly, in a multinational case-control study comparing patients with schizophrenia in 

forensic settings, comprising 221 individuals with a lifetime history of serious interpersonal 

violence, relative to 177 patients without a history of violence, forensic patients showed a greater 

prevalence of comorbid personality disorder (29.3% v. 7.6%), and were more likely to be 

exposed to severe violence during childhood 11. Higher levels of disability, poorer performance 

in cognitive speed tasks, as well as lower social functioning were found to be protective factors, 

perhaps as a proxy measure of negative symptoms, alongside years of education 11.  

Furthermore, as reported in a recent meta-analysis 12, large-scale studies using unaffected sibling 

controls have been conducted to more carefully adjust for confounding familial factors including 
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genetic liabilities, and early environmental considerations. For instance, a study comprising 

24,297 individuals with schizophrenia spectrum disorder 13, matched to sibling and general 

population controls, showed an increased odds of 1.8 (95% CI: 1.7-1.9) for violent crime in 

unaffected siblings, relative to general population controls, suggesting potential familial 

confounding factors 13. These findings have also been related in sibling control studies conducted 

in Sweden 14, and Israel 15.  

Despite the increased odds of physical violence and aggression among a subset of patients with 

schizophrenia, it remains a significant clinical challenge to predict which specific patients are 

likely to engage in violent acts before they occur. Considering that most patients with this 

condition do not show a lifetime history of violent offending and the low base rate of these 

events among those who do, patients with schizophrenia in forensic settings represent a high-risk 

group for prospective physical aggression.  

Among the existing actuarial risk assessment methods, which assess the likelihood of violence 

across a group within a certain window of time 16, methods such as the Violent Risk Appraisal 

Guide (VRAG) have shown an area under the receiver operating characteristic curve (AUC) of 

0.703 in identifying prospective criminal recidivism 17, with a slightly higher AUC when 

examining patients who have committed prior violent offences (AUC=0.763). Additionally, the 

VRAG has shown a median AUC of 0.69 in predicting community violence in patients with 

schizophrenia across two studies 18. Similarly, the Historical Clinical and Risk Management - 20 

(HCR-20) is another structured tool to assess the risk of violence, that shows an AUC ranging 

from 0.674-0.723 in predicting prospective aggressive behaviour in men with schizophrenia 

living in the community 19.   
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However, available actuarial risk assessment in forensic settings carry a number of limitations, 

including assuming a linear additive relationship between variables in predicting a complex 

outcome such as physical aggression in schizophrenia, and prior methods have relied on AUC to 

assess model performance, which ignores the goodness-of-fit and predicted probability values of 

the model in detecting true positives (sensitivity) and true negatives (specificity). As such, the 

model may show reasonable AUC, but fail to meaningfully predict physical aggression in the 

sample 20. As such, available tools to prospectively predict short-term physical aggression among 

patients in forensic settings remain limited, even though this remains a pressing need in the 

clinical care of these individuals 1.  

Increasingly, machine learning techniques have been used to make individualised predictions in 

various fields of healthcare 21. In general, these algorithms can leverage existing datasets to 

detect patterns, and use these patterns to make predictions in independent datasets. These 

methods, alongside high-quality data, can be used to facilitate advancements in the diagnosis, 

assessment, and treatment of patients in psychiatry 22. As such, in the present study, we 

developed a series of HARM models, using machine learning techniques alongside evidence-

based static and modifiable risk factors, to predict longitudinal physical aggression (4-month, 12-

month, and 18-month follow-up) in 151 at-risk patients with schizophrenia currently undergoing 

treatment within a forensic mental system.  

2. Methods 

The authors assert that all procedures contributing to this work comply with the ethical standards 

of the relevant national and institutional committees on human experimentation and with the 

Helsinki Declaration of 1975, as revised in 2008. All analyses involving human patients were 
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approved by the Hamilton Integrated Research Ethics Board (#12857). Patient data were 

anonymized with digital identifiers removed, in line with ethical standards.  

 

2.1. Study population 

The study population comprised 151 patients diagnosed with Schizophrenia, according to the 

DSM-5 23, undergoing treatment within a forensic psychiatry program in Canada. In Canada, 

individuals come under the jurisdiction of the forensic psychiatry system when they commit a 

criminal offence and are subsequently found not criminally responsible (NCR) or unfit to stand 

trial (UST) due to a mental disorder. All patients in the study were either NCR or UST at the 

time of data collection.  

2.2. Measures 

Data from the present study were gathered from the electronic Hamilton Anatomy of Risk 

Assessment (e-HARM), a structured professional judgement tool, developed for use in inpatient 

and outpatient psychiatric settings 24. The e-HARM captures historical risk factors, including 

prior violent and nonviolent offences, major mental disorders, personality disorders, substance 

use, and cognitive deficits, alongside dynamic risk factors including rule adherence, patient 

insight, mood and psychotic symptoms, impulse control, social support, substance abuse, 

medication nonadherence, antisocial attitude, and stress. The e-HARM allows clinicians/clinical 

teams to easily consider empirically supported risk factors of violence, demographic information, 

protective factors, medications, psychiatric diagnoses, and then formulate risk estimates and risk 

management plans. Moreover, embedded in the e-HARM is the Aggressive Incidents Scale 

(AIS) 24, which provides a standardised method of recording aggressive incidents along a 9-point 



Ph.D. Thesis – D. P. Watts; McMaster University – Neuroscience.  

 

35 
 

scale in ascending order of severity, as shown in Supplementary Figure S1. Levels one through 

three comprise verbal aggression while levels four and higher involve physical aggression.  

As discussed, elsewhere 25, the AIS strongly correlates with scores on the Modified Overt 

Aggression Scale (MOAS) (r= .92, p < .01), with considerable agreement between the AIS and 

MOAS (κ= .79, p < .0001) when dichotomizing aggression as present or absent.  A list of all 

variables collected within the e-HARM, as well as candidate features considered in model 

development, can be found in Supplementary Table S3. Binary classification was used to 

dichotomize physically aggressive (AIS ≥ 4) and non-physically aggressive incidents (AIS <3) at 

follow-up timepoints.  

Sixty-two variables, as detailed in Supplementary Table S3, were considered as candidate 

features within supervised binary machine learning classification models. This included all 

clinical, risk factors, protective factors, and treatment variables recorded within the eHARM, 

apart from variables related to clinician appraisal of immediate and short-term likelihood of 

patient violence, which were excluded from the candidate set of features. Considering that most 

of these variables were categorical, one-hot encoding was used to binarize factor levels. Nine 

machine learning models were compared, to dichotomize physical aggression and non-physical 

aggression at follow-up timepoints.  

Each model was trained using baseline HARMs, corresponding to five assessments (Median = 

88.50 days, SD = 32.12), to predict physical aggression at 4 months (Median = 114.50 days, SD 

= 41.79), 12 months (Median = 350 days, SD = 107.80), and 18 months (Median = 563.50 days, 

SD = 203.04), follow-up respectively. Further details can be found in the supplementary 

material. Importantly, our models were trained only using features available at baseline in the 

training set (60%), to predict longitudinal physical aggression at follow-up within a holdout 
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dataset (40%). Within the binary classification models, physical aggression was considered as 

the positive class, and non-aggression was considered as the negative class, respectively.  

2.3. Machine Learning Algorithms 

Nine machine learning algorithms (Boosted Logistic Regression, Elastic Net, Lasso Regression, 

k-nearest neighbours, Adaptive Boosting, Extreme Gradient Boosting, Random Forest, Bagged 

CART, and Conditional Forest) were implemented in R using various packages 25–28. Features 

were centred and scaled using preProcess in Caret 26. Zero and near-zero variance predictors 

were removed using the nearZeroVar function available in Caret 26. Importantly, each of these 

algorithms incorporate slightly different regularisation parameters to address the issue of 

multicollinearity. One-hot encoding was used to transform categorical variables into 

dichotomous numerical values.  

Briefly, boosted logistic regression involves adding a boosting parameter, or an ensemble of 

weak learners, to a linear model with a sigmoid function to reduce model bias 29. Elastic net is a 

penalised least squares regression method that combines L1 and L2 regularisation from lasso and 

ridge methods 30. This algorithm is efficient computationally and works well with highly 

correlated predictors. K-nearest neighbours is a simple and fast algorithm for classification, that 

involves tuning the number of nearest neighbours, with more defined boundaries as k is 

increased. However, since it is a non-parametric algorithm, meaning it does not make 

assumptions of the underlying data distribution, it scales poorly to larger datasets 31. 

Furthermore, Adaptive boosting (AdaBoost) 32 and extreme gradient boosting (XGBoost) 33 both 

use a series of weak sequential learners, that are only slightly correlated with the true 

classification, and sequentially places greater weights on instances with incorrect predictions and 

high errors. However, XGBoost incorporates a specific implementation of gradient boosting that 
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uses both L1 and L2 regularisation to improve model generalisation, whereas AdaBoost involves 

an exponential loss function. Moreover, XGBoost is more computationally efficient, able to 

handle sparse data, and provides many hyperparameters that can be tuned to increase model 

performance 33. Random forest, bagged CART, and conditional forest are all tree-based models, 

however, the fundamental difference is that random forest only selects a subset of features at 

random out of the total 34, whereas bagged CART selects all features 35, and conditional forests 

use conditional inference trees as base learners 36.  

 

2.4. Feature selection 

Within machine learning models, feature selection is an important pre-processing method to 

decrease dimensionality by removing irrelevant features 37,38. A detailed overview of available 

feature selection methods can be found elsewhere 39. In general, machine learning models tend to 

show greater generalizability in independent datasets when the number of features is limited.  In 

the present study, most candidate features were categorical in nature. Considering this, 

embedded feature selection was used, which combines filter and wrapper methods, and selects a 

subset of features from the overall model that show the highest variable importance using the 

VarImp function in R. For instance, as discussed in section 2.6, in an elastic net model, variable 

importance is calculated using the absolute value of the coefficients within the tuned model. 

Moreover, in a random forest model, variable importance is calculated by computing the out-of-

bag error rate for each tree, permuting each predictor variable, calculating the difference between 

these measures across all trees, and normalising by the standard deviation of the differences. In 

the model with the highest balanced accuracy for each outcome (4 month, 12-month, 18-month 
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follow-up), the top 30 features according to variable importance were retained, and performance 

was compared against an overall model comprising 67 variables. In all models, feature selection 

was only performed on training data (60%). Importantly, only variables available at baseline 

were considered as potential predictors. Variables containing 15% or more missing data were 

excluded. Furthermore, mean/median imputation was performed for numerical variables, and 

mode imputation was performed for categorical variables, respectively.   

 

2.5. Addressing Class Imbalance  

In binary classification problems, class imbalance is present when the number of a minority class 

(e.g., aggressive incidents) occurs much less often than in the majority class (e.g., non-aggressive 

incidents). Within the present study, as shown in Table 1, 9.5% of patients in the testing set 

committed an act of physical aggression (AIS score ≥ 4) at 4-month follow-up. Considering this, 

class imbalance was addressed by downsampling the majority class 40. 

2.6. Model testing and validation 

The HARM dataset was divided into training (60%) and testing sets (40%), respectively. This 

corresponded to 92 patients across baseline assessments (370 instances) in the training set, and 

61 patients across follow-up in the testing set (181 instances), respectively. This training and 

testing threshold was selected considering the sparsity of aggressive patients at follow-up. As 

such, patients could commit more than one aggressive incidence during baseline or follow-up, 

with each instance recorded as a separate event. Within the testing set, there were 21 instances of 

physical aggression at 4-month follow-up (Median days since baseline = 114.50, SD = 41.79), 15 
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instances of physical aggression at 12-month follow-up (Median days = 350.00, SD = 107.80), 

and 11 instances at 18-month follow-up (Median days = 563.50, SD = 203.04), respectively.  

Leave-one-group-out cross validation was used to estimate prediction error in the training set, 

which involves leaving one observation from each group out from the training set and predicting 

the response variable (physically aggressive vs. nonaggressive) in the left-out observations and 

calculating the mean standard error. Further details regarding the strengths and limitations of 

various cross-validation methods can be found elsewhere 41. Model performance was assessed 

using the confusionMatrix function in R 27. A confusion matrix is a table layout that provides an 

overview of model accuracy, misclassification rate, sensitivity, specificity, as well as true and 

false predictive values. This includes the number of correct and incorrect predictions, which are 

summarised with count values and broken down by each class. Further details can be found 

elsewhere 42.  

To further evaluate the performance of the HARM models, and potential clinical utility, we 

developed separate models using clinician-rated estimates of the immediate and short-term 

likelihood of violence as input features. This was assessed using four variables, which evaluated 

the clinical likelihood of violence both immediately (days) and short-term (weeks) along a five-

point scale, with 1 indicating low risk, and 5 indicating high risk, respectively.  We also 

developed additional models, comprising both data-driven and clinical-likelihood of violence 

variables, as a comparator. Furthermore, to evaluate whether there were statistically significant 

differences in classifier performances, a McNemar’s test with continuity correction was 

performed, between HARM vs clinical likelihood of violence (CLV) models, CLV vs combined 

models, and HARM vs combined models, respectively.  
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2.7. Model Interpretability  

Variable importance plots were generated using the varImp function in the caret package in R 27. 

Within boosted logistic regression and regularised logistic regression models, variable 

importance was calculated using the absolute value of the t-statistic for each model parameter. 

Similarly, in an elastic net model, this involved calculating the absolute value of the coefficients 

within the tuned model. Variable importance in the random forest model was calculated by 

computing the out-of-bag error rate for each tree, permuting each predictor variable, calculating 

the difference between these measures across all trees, and normalising by the standard deviation 

of the differences. Bagged and boosted tree models involve applying the same methodology as a 

single tree to all bootstrapped trees, and calculating total importance, and aggregating the 

importance over each boosting iteration, respectively. The kNN algorithm does not provide a 

method to calculate feature importance, and as such, this was not reported.  

 

Results  

In the present study, several machine learning models were developed, using features collected at 

baseline, to predict longitudinal physical aggression (4 months, 12 months, 18 months) in 153 

patients with schizophrenia, in forensic settings, at an individual level. A summary of patient 

demographics can be found in Table 1. Across all algorithms, the balanced accuracy of 

predicting physical aggressive incidents in patients with schizophrenia at four-month follow-up 

ranged from 64.19-86.60%. The highest performance was observed within a random forest 

model (Balanced Accuracy = 86.60%; Accuracy = 87.33%, 95% CI: 82.21-91.41; PPV = 41.86; 

NPV = 98.31; AUC = 0.914 (95% CI: 0.872-0.951). Further information can be found in Table 
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2, and Supplementary Figure S2. Moreover, model sensitivity, corresponding to correctly 

predicting physical aggression in patients (true positive), was 85.71%, and model specificity, 

corresponding to correctly predicting non-aggression in patients (true negative), was 87.50%, 

respectively. Similar performance was also observed within a conditional forest model (Balanced 

Accuracy = 85.36%; Accuracy = 77.38%, 95% CI: 71.28-82.72), and elastic net model 

(Balanced Accuracy = 82.22%; Accuracy = 83.26%. Conversely, poorer performance was 

observed using kNN (Balanced Accuracy = 64.19%; Accuracy = 73.76%, 95% CI: 67.43-79.43), 

and lasso regression (Balanced Accuracy = 62.83%, Accuracy = 59.73% (95% CI: 52.94-66.25). 

However, it should be noted the accuracy of most models fell within a similar range of 

confidence intervals, which precludes a definitive statement as to the best performance.  

Important features in the random forest model included worsening negative peer influence, 

worsening rule adherence, poor program participation, poor attitude, worsening stress 

management, substance abuse, and short-term escape risk, as well as currently being monitored 

for these behaviours. Similarly, changes in stress management, impulse control, worsening mood 

symptoms, worsening medication adherence, and frequency of medication use, were among the 

most important global features in the model. Further details regarding candidate features can be 

found in Supplementary Table S3.  

Moreover, as shown in Supplementary Table S1, the balanced accuracy of predicting physical 

aggression in patients with schizophrenia in forensic settings at 12-month follow-up ranged from 

65.58-86.15% across models. The best performance was observed within a random forest model, 

with a balanced accuracy of 86.15%, and overall accuracy of 80.10% (95% CI: 73.73-85.52). 

Additionally, the sensitivity of the model was 93.33%, and specificity was 78.97%, respectively. 

Important features at baseline in predicting 12-month physical aggression in the random forest 
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model, as shown in Supplementary Figure S3, included worsening impulse control, changes in 

rule adherence, worsening mood symptoms, worsening attitude, short-term escape risk, 

worsening program participation, poor stress management, use of haloperidol, presence of a 

personality disorder, and engagement in recreational and psychoeducational programs. 

Additionally, as presented in Supplementary Table S2, the balanced accuracy of predicting 

physical aggression at 18-month follow-up was slightly lower, with a range of 46.22-81.81%. An 

XGBoost model showed the highest performance, with a balanced accuracy of 81.81%, overall 

accuracy of 83.43% (95% CI: 77.19-88.53), sensitivity of 80.00%, specificity of 83.62%, and 

AUC of 0.870 (95% CI: 0.814-0.918). Important features included worsening impulse control, 

changes in rule adherence over time, being highly engaged in a program/intervention, psychotic 

symptoms, poor stress management, changes in family support, and worsening substance abuse. 

Additional details can be found in Supplementary Figure S4.  

Furthermore, across 4 month, 12 month, and 18 month follow-up timepoints, important baseline 

features predictive of subsequent aggression across models included change in 

attitude/cooperation (monitor and needs improvement), change in rule adherence (monitor and 

needs improvement), change in impulse control (monitor and needs improvement), change in 

stress management (monitor and needs improvement), worsening mood and psychotic 

symptoms, change in family support, presence of personality disorders, and peer influence.  

Apart from the data-driven HARM models, we also sought to compare their performance relative 

to models using clinician-rated clinical likelihood of short-term and immediate violence. 

Moreover, we also assessed whether combining both data-driven HARM and clinician-rated 

likelihood of violence features lead to greater performance. As shown in Supplementary Table 

S4, a random forest model using clinician rated CLV showed the best performance, with a 
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sensitivity of 96.50%, specificity of 57.14%, PPV of 95.54, and NPV of 63.16, respectively. 

Additionally, as detailed in Supplementary Table S5, a random forest model combining both 

HARM and clinician rated CLV showed the best performance, with a sensitivity of 95.23%, 

specificity of 88.00%, PPV of 45.45, and NPV of 99.43, respectively.  

Furthermore, a McNemar’s test with continuity correction was used to assess whether 

statistically significant differences in error rates were observed across HARM, clinical 

judgement, and combined models, in respective pairwise combinations.  No significant 

differences in error rates were observed between HARM and clinician rated CLV models 

(McNemar’s chi-square (χ2) = 2.37, p=0.123), or between HARM and combined models 

(McNemar’s χ2= 0.5, p=0.479). However, a significant difference was observed between 

combined and CLV models (McNemar’s χ2= 10.22, p= 0.001).  

 

Discussion  

To the best of our knowledge, this is the first study to longitudinally predict short-term physical 

aggression in patients with schizophrenia, in forensic settings, at an individual level.   

Importantly, the predictive models were developed using empirically supported risk factors of 

violence as candidate features, in conjunction with demographic variables, protective factors, and 

variables related to the course of treatment. Moreover, several potential protective factors 

emerged, including engagement in treatment programs, positive attitude, social support, family 

support, and medication adherence. Furthermore, it is important to clarify that although variables 

related to criminality were found to be important features in our HARM models to predict 

prospective physical aggression, most individuals with criminal histories do not pose an elevated 
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risk of violence. Moreover, these variables alone were insufficient to predict physical aggression 

in schizophrenia.   

Across the 4 month and 12-month models, random forest appeared to outperform eight other 

algorithms, including other tree-based algorithms and linear models, in predicting physical 

aggression in patients over time. However, considering the overlapping confidence intervals 

between models, this cannot be determined definitively. As discussed, elsewhere 43, random 

forest tends to perform well with categorical variables, and can handle multicollinearity between 

highly correlated features. Similarly, models that incorporated boosting (boosted logistic 

regression, XGBoost, and AdaBoost) tended to perform well, as multicollinearity does not tend 

to be a significant issue as individual decision trees are used. Conversely, it is anticipated that 

lasso regression performed comparatively poorer than other algorithms across timepoints 

(balanced accuracy of 47.42-63.31), as it, unlike elastic net, lacks a sum of squared coefficient 

penalty term, which can help address multicollinearity. Additionally, extreme gradient boosting 

outperformed all other algorithms at 18-month follow-up (Balanced accuracy: 81.81%), although 

similar performance was observed using random forest (Balanced accuracy: 75.93%).  

In contrast with existing actuarial tools, such as the VRAG and HCR-20, which consider a linear 

additive combination of variables to assess individual prospective risk, the HARM models 

incorporate a data-driven approach that allow for a non-linear weighting of importance between 

features, while also relying on theoretically sound and evidence-based risk factors, protective 

factors, and variables related to course of treatment. Moreover, the HARM models showed 

improvements in AUC relative to existing risk assessment tools, in predicting physical 

aggression at 4-month (AUC: 0.669-0.928), 12-month (AUC: 0.701-0.913), and 18-month 

(AUC: 0.597-0.870) follow-up. Additionally, the HARM models incorporate additional 
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performance measures, including sensitivity, specificity, balanced accuracy, overall model 

accuracy, as well as PPV and NPV, to better elucidate the goodness of fit of the models.  

Furthermore, the data-driven HARM models may show utility in conjunction with clinician 

judgement of violent risk, to improve the accurate detection of patients with schizophrenia in 

forensic settings at risk of physical aggression. Overall, while the HARM models showed high 

NPVs (93.82-99.34) at 4-months follow-up, the PPVs were much lower (18.64-41.86) indicating 

a high degree of false positives, where many individuals who are classified as physically 

aggressive at 4-month follow-up, will fail to commit aggressive acts. Conversely, using clinical 

judgement alone at 4-months follow-up, although the PPVs were much higher (95.41-96.85), 

which illustrates a lower degree of false positives than the HARM models, the NPVs were 

notably lower, ranging from 18.08-63.16. Additionally, as shown in Supplementary Table S4, 

across clinical judgement models, model specificity was poor (57.14-61.50%). These results 

indicates that clinical judgement of violent risk performed little better than chance at identifying 

true negatives. As such, a high degree of false negatives is observed, where individuals who are 

physically aggressive at follow-up are incorrectly predicted to be non-aggressive. However, it is 

important to clarify that no statistically significant differences in error rates were observed 

between HARM and CLV models (McNemar’s chi-square (χ2) = 2.37, p=0.123).  

Interestingly, as shown in Supplementary Table S5, a combined model incorporating both data-

driven features and clinical judgement of violent risk did not show notable improvements in 

PPV, NPV, sensitivity, specificity, or AUC, although slightly higher balanced accuracy was 

observed (91.61% in a random forest model in the combined model, relative to 86.60% in the 

HARM model).  Moreover, no statistically significant differences in error rates were observed 

between data-driven HARM models and those that incorporated clinician judgement of patient 
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risk (McNemar’s χ2= 0.5, p=0.479). While prospective validation is required, and a relatively 

small sample size was used in model development, machine learning models may show utility as 

an adjunct to clinical judgement to improve the accuracy of risk prediction for individualised 

care of patients with schizophrenia in forensic settings.  

Limitations 

The current study has some potential limitations. Although the study benefits from a longitudinal 

design, and showed similar variable importance across timepoints, a low base-rate of aggressive 

incidents was observed at 4-, 12-, and 18-month follow-up. As such, future studies with larger 

sample sizes will be required to determine the replicability of using evidence-based risk and 

protective factors, alongside treatment variables, to predict longitudinal physical aggression in 

patients with schizophrenia in forensic settings. Considering that the study used binary 

classification tasks, alongside baseline variables, to predict physical aggression, no hypothesis 

testing was performed, and as such, statistical power cannot be calculated. Since the present 

study had a low base rate of physical aggression, and relatively small sample size, it is possible 

that model accuracy is inflated.  

 

Additionally, it is important to consider that these models were developed in a specific at-risk 

cohort of patients with schizophrenia who have a history of criminal offences. As such, these 

models may not be generalisable to detect aggressive behaviours in schizophrenia in general. 

Moreover, our models were developed largely using categorical features, which were 

transformed into binary variables using one-hot encoding. While several models were used that 

can handle multicollinearity, other methods, such as transforming features into principal 
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components 44, can be used to derive a set of uncorrelated variables. Additionally, further 

refinement is needed in prospective models, and a much smaller error rate is required to 

implement such predictive models as clinical tools. Similarly, it is important to consider the 

possibility that the present HARM models show artificially inflated AUC scores, even though 

similar performance was observed between the internally cross-validated and externally cross-

validated models, across timepoints, due to a low base rate of physical aggression (n=26). As 

such, prospective validation with independent datasets is required to determine whether the 

HARM models show deflated scores within new samples. Nonetheless, these models are a 

notable improvement upon existing risk prediction in schizophrenia, which show a median AUC 

of 0.69 with an interquartile range of 0.60-0.77. Furthermore, it should be highlighted that within 

the HARM models the NPV/NPP substantially outperforms the PPV/PPP in the present analysis, 

which is related to the low base rate of physical aggression in the sample. Considering this, 

individuals who screen positive for non-aggression are more likely to show non-aggression at 

follow-up (true negatives), relative to individuals who screen positive for aggression (true 

positives).  

Perspectives 

Moving forward, further refinement is required for individualised predictive models of physical 

aggression in patients with psychotic disorders. As detailed elsewhere 48, this may be facilitated 

by a wider framework when selecting input features in our models. Considering that model 

performance is directly dependent on the quality and quality of features, or variables, we have at 

our disposal – an exploratory data-driven approach to feature selection may be warranted. 

However, a hypothesis-driven framework is still required to evaluate the robustness and 

replicability of previously identified predictors. Our models identified several known risk 

Commented [DW1]: Update this description  
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factors, including changes in impulsivity, attitude, psychotic symptoms, and mood symptoms as 

important predictors of longitudinal physical aggression in patients with schizophrenia. 

Considering this, targeting modifiable risk factors, including poor program participation, mood 

symptoms, and improving impulse control, may be useful strategies to curtail physical 

aggression in patients with schizophrenia in forensic settings.   

Prospective work may benefit from the inclusion of additional psychometric scales pertaining to 

these risk factors, to better elucidate more subtle changes in attitudes and behaviour that precede 

physical aggression in high-risk individuals with schizophrenia.  As such, future studies may 

benefit from including these variables as candidate features, alongside other presumed risk, and 

protective factors. Additionally, future studies may benefit from incorporating large-scale 

electronic health record (EHR) data, to both identify more time-dependent predictors with 

greater granularity, as well as potentially identify adjunctive medications that may decrease the 

risk of aggression in individuals, thereby serving as a repurposing candidate for prospective 

trials.  

Moreover, the current models utilise categorical features, and prospective studies may benefit 

from incorporating numeric variables that may better capture nuances in factors such as 

impulsivity, rule adherence, attitude, mood symptoms, and psychotic symptoms. While 

previously identified risk factors are important to include in our models to assess the replicability 

of these effects, novel markers are also required to improve our understanding of the 

mechanisms underlying physical aggression in patients with schizophrenia. For instance, it may 

be warranted to include routinely collected sensor data, such as blood pressure and heart rate 

variability, wearables such as actigraphy, and blood biomarkers in prospective models to identify 

novel markers that may improve the performance of models predicting aggression in patients 
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with psychotic disorders. Other modalities, such as neuroimaging and electroencephalography 

may also be useful when combined with structured and unstructured clinical data. 
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A) 

 

B) 

 

Overall model (67 variables) 

Balanced Accuracy = 86.60% 

Accuracy = 87.33% 

(95% CI: 82.21-91.41) 

Sensitivity = 85.71% 

Specificity = 87.50% 

PPV: 41.86 

NPV: 98.31 

Embedded feature selection (23 variables) 

Balanced Accuracy = 89.36% 

Accuracy = 84.62% 

(95% CI: 79.17, 89.10) 

Sensitivity = 95.23% 

Specificity = 83.50% 

PPV: 37.73 

NPV: 99.40 
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AUC = 0.914 (95% CI: 0.872-0.951) 

Positive Class: Physical Aggression 

AUC = 0.949 (95% CI: 0.914-0.975) 

Positive Class: Physical Aggression 

 

   

Figure 1 - AUC, Variable Importance, and Model Performance at 4-month follow-up 

The best performance in predicting physical aggression at 4-month follow-up in patients with schizophrenia in forensic settings was observed 

using a random forest model. ROC curves were generated using the roc function in R, as depicted in Supplementary Figure S5a. 95% CI of 

AUC was calculated using the ci.auc function in the pROC package in R, with 5000 stratified bootstrap replicates. A variable importance plot 

was generated using the varImp function in the caret package in R, showcasing the top 23 features. Model performance is shown for both the 

total model comprising 67 variables, and a model comprising the top 30 important features within a random forest model (as shown in Figure 

S2a), determined using the total decrease in node impurity, calculated using the Gini Index, from splitting on the variable, averaged over all 

trees. Important features in the random forest model included worsening peer influence (Peer_Influence_RFS4), worsening rule adherence 

(Rule_Adhere_RFS4), poor program participation (ProgramP_RFS4), worsening attitude (Attitude_RFS4), worsening stress management 

(Stress_Management_RFS4), and changes in substance abuse (Substance_Abuse_RFS3). Similarly, frequency of treatment (Frequency_1_7, 

Frequency_1_4), worsening mood symptoms (Mood_Symptoms_RFS4), changes in impulse control (Impulse_Control_RFS4, 

Impulse_Control_Chng4), worsening medication non-adherence (Med_Non_Adhere_RFS4), and personality disorder 

(Personality_Disorder_Cbox) were among the important features in the model. Further details regarding candidate features can be found in 

Supplementary Table S3.  
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  Nonaggressive 

(n=170) 

Aggressive 

(n=26) 

 p-Value 

Age (years) a
 

41.75±13.12 37.53 ±11.87                0.1777  

Gender b                                            

    Male 149 (87.6%) 19 (73.0%)               0.0480 (*) 

    Female 21 (12.3%) 7 (26.9%)  

 

Index Offences 

                         

                0.8026 

      Attempt Murder, Assault & Related    

         Offences 

   Escape Custody  

   Weapon Related Offence 

     Arson 

     Mischief, Driving-Related, and   

      Miscellaneous Offences                                                                                                                        

104 (80.6%                    

 

45 (26.4%)                      

 

34 (20.0%) 

20 (11.7%) 

 

79 (61.2%) 

 

                                      

15 (75%) 

 

10 (38.4%) 

 

6(23.0%) 

2 (7.6%) 

 

14 (70%) 

 

 

  

History of Substance Abuse 148 (87.05%) 23 (88.46 %)                           0.8417 

Personality Disorder  38 (22.35%) 13 (50.00%)              0.027 (*) 

Table 1 - Demographics 

Demographic and clinical characteristics of patients with schizophrenia at 4-month follow-up (n 

=151). A one-way ANOVA was used for numeric variables, and data are given as mean and 

standard deviation. A Chi-Square test with Yates correction, with a significance level of 0.5, was 

performed for categorical variables, including Gender, Index Offences, history of substance 

abuse, and diagnosis of a personality disorder. A statistically significant difference was observed 

between aggressive and non-aggressive patients with respect to diagnosis of a personality 

disorder (X2 = 8.95, p = .002), and gender (X2 = 3.90, p = 0.04). No significant group 

differences were observed with respect to age (p = 0.17), intake offence (p = 0.80), or history of 

substance abuse (p = 0.84).  
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Boosted Logistic Regression Elastic Net Lasso Regression 

Balanced Accuracy = 84.16% 

Accuracy = 74.20% 

(95% CI: 78.67-88.71) 

Sensitivity = 61.90% 

Specificity = 86.50% 

PPV: 32.50 

NPV: 95.58 

AUC: 0.903 

(95% CI: 0.858-0.942 

Balanced Accuracy = 82.22% 

Accuracy = 83.26% 

(95% CI: 77.67-87.93) 

Sensitivity = 80.95% 

Specificity = 83.50% 

PPV: 34.00 

NPV: 97.66 

AUC: 0.815 

(95% CI: 0.656-0.947) 

Balanced Accuracy = 62.83% 

Accuracy = 59.73% 

(95% CI: 52.94-66.25) 

Sensitivity = 66.66% 

Specificity = 59.00% 

PPV: 14.58 

NPV: 94.40 

AUC: 0.712 

(95% CI: 0.584-0.833) 

kNN AdaBoost XGBoost 

Balanced Accuracy = 64.19% 

Accuracy = 73.76% 

(95% CI: 67.43-79.43) 

Sensitivity = 52.38% 

Specificity = 76.00% 

PPV: 18.64 

NPV: 93.82 

AUC: 0.669 

(95% CI: 0.551-0.784) 

Balanced Accuracy = 74.83% 

Accuracy = 81.45 

(95% CI: 75.69-86.35) 

Sensitivity = 66.66% 

Specificity = 83.00% 

PPV: 29.16 

NPV: 95.95 

AUC: 0.826 

(95% CI: 0.764-0.883) 

Balanced Accuracy = 86.25% 

Accuracy = 82.81% 

(95% CI: 77.17-87.54) 

Sensitivity = 90.47% 

Specificity = 82.00% 

PPV: 34.54 

NPV: 98.79 

AUC: 0.928 

(95% CI: 0.885-0.963) 

Random Forest Bagged CART Conditional Forest 

Balanced Accuracy = 86.60% 

Accuracy = 87.33% 

(95% CI: 82.21-91.41) 

Sensitivity = 85.71% 

Specificity = 87.50% 

PPV: 41.86 

NPV: 98.31 

Balanced Accuracy = 74.21% 

Accuracy = 76.47% 

(95% CI: 70.32-81.90) 

Sensitivity = 71.42% 

Specificity = 77.00% 

PPV: 24.59 

NPV: 96.50 

Balanced Accuracy = 85.36% 

Accuracy = 77.38% 

(95% CI: 71.28-82.72) 

Sensitivity = 95.23% 

Specificity = 75.50% 

PPV: 28.98 

NPV: 99.34 
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AUC: 0.914 

(95% CI: 0.872-0.951) 

AUC: 0.928 

(95% CI: 0.886-0.964) 

AUC: 0.914 

(95% CI: 0.869-0.953) 

 

Table 2 - Model Performance - 4-month follow-up 

Model performance in predicting prospective physical aggression in patients with schizophrenia in 

the testing dataset (40%), using baseline risk factors, protective factors, and treatment status. 

Seventeen instances of aggression were recorded at baseline, and twenty-one instances were 

recorded at 4-month follow-up, respectively. Baseline assessments involved the first five Hamilton 

Anatomy of Risk Management (HARM) clinical evaluations, and follow-up involved assessments 

10-14, corresponding to 4-month follow-up. As such, patients could commit more than one 

aggressive incident during baseline, and follow-up, with each instance recorded as a separate 

event. Across binary classification models, aggression was considered as the positive class, and 

non-aggression as the negative class, respectively. The best performance was observed using 

random forest, followed by conditional forest, elastic net, XGBoost, and boosted logistic 

regression. Across most models, the true positives (sensitivities) were higher than true negatives 

(specificities), suggests that the models performed better in discriminating those with physical 

aggression, relative to non-aggression. However, considering the low base rate of physical 

aggression in the overall sample (15.29%) the negative predictive values (PPV), were much higher 

than the positive predictive values (NPV), indicating a much higher ratio of true negative 

predictions (non-aggression), considering all positive predictions, across models.  
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Level  Incident 

9 Critical incident - possible life and death - possible call police 

8 Violent unprovoked assault 

7 Violent assault 

6 Push/shove 

5 Destruction of property 

4 Improper physical contact 

3 Intimidating, threatening, personal space violated 

2 Intimidating, raised voice 

1 Rude, argumentative 

 

Supplementary Figure S1 - Aggressive Incidents Scale  

The AIS provides a standardised method to longitudinally record aggressive incidents in patients 

within forensic settings. In the current study, physical aggressive outcomes at follow-up time-

points were dichotomized (yes/no) according to whether an AIS score of ≥4 was observed. 

Individuals with schizophrenia who showcased an AIS score ≤3 at follow-up, were considered 

non physically aggressive.
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A) 

 

B) 

 

Overall model (67 variables) 

Balanced Accuracy = 81.81% 

Accuracy = 83.43% 

(95% CI: 77.19-88.53) 

Sensitivity = 80.00% 

Specificity = 83.62% 

PPV: 22.22 

NPV: 98.62 

AUC: 0.893 (95% CI: 0.843-0.936) 

Embedded feature selection (23 variables) 

Balanced Accuracy = 84.24% 

Accuracy = 82.20% 

(95% CI: 76.02-87.35) 

Sensitivity = 86.66% 

Specificity = 81.81% 

PPV: 28.88 

NPV: 98.63 

AUC: 0.868 (95% CI: 0.791-0.932) 
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Supplementary Figure S2 - AUC, Variable Importance, and Model Performance at 12-month follow-up 

The best performance in predicting physical aggression at 12-month follow-up in patients with schizophrenia in forensic settings was observed 

using a random forest model. ROC curves were generated using the roc function in R, as depicted in Supplementary Figure S5a. 95% CI of AUC 

was calculated using the ci.auc function in the pROC package in R, with 5000 stratified bootstrap replicates. A variable importance plot was 

generated using the varImp function in the caret package in R, showcasing the top 23 features. Model performance is shown for both the total 

model comprising 67 variables, and a model comprising the top 30 important features within a random forest model (as shown in Figure S2a), 

determined using the total decrease in node impurity, calculated using the Gini Index, from splitting on the variable, averaged over all trees. 

Important baseline features in the random forest model included changes in impulse control (Impulse_Control_RFS4, Impulse_Control_Chng4, 

Impulse_Control_Chng3), changes in rule adherence (Rule_Adhere_RFS4, Rule_Adhere_Chng3, Rule_Adhere_Chng4), worsening mood 

symptoms (Mood_Symptoms_RFS4), worsening attitude (Attitude_RFS4), short-term escape risk (EscapeRisk_STerm5), worsening program 

participation (ProgramP_RFS4), high engagement in a treatment program (RiskM_Response_2_4), worsening peer influence 

(Peer_Influence_RFS4), enrolment in a psychoeducational or recreational program (RiskM_TreatmentPlan_2_8, RiskMTreatmentPlan_2_6), 

and current use of Haloperidol (Medication_1_15). Other important features in the model included the presence of a personality disorder 

(Personality_Disorder_Cbox), changes in stress management (Stress_Management_RFS3, StressManagement_RFS4), worsening substance 

abuse (Substance_Abuse_RFS4), worsening family support (Family_Support_RFS4), and worsening psychotic symptoms 

(Psychotic_Symptoms_RFS4), and current enrolment in family support therapy (RiskM_TreatmentPlan_1_12). Further details regarding 

candidate features can be found in Supplementary Table S3.  
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A) 

 

 

B) 

  

Overall model (67 variables) 

Accuracy = 83.43% (95% CI: 77.19-88.53) 

Balanced Accuracy = 81.81% 

Sensitivity = 80.00% 

Specificity = 83.62% 

PPV = 22.22 

NPV = 98.62 

AUC = 0.870 (95% CI: 0.814-0.918) 

Embedded feature selection (23 variables) 

Accuracy = 70.71% (95% CI: 64.50-76.40) 

Balanced Accuracy = 66.39% 

Sensitivity = 60.00% 

Specificity = 85.38% 

PPV = 19.35 

NPV = 97.33 

AUC = 0.898 (95% CI: 0.825-0.956) 
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Supplementary Figure S3 - AUC, Variable Importance, and Model Performance at 18-month follow-up 

The best performance in predicting physical aggression at 18-month follow-up in patients with schizophrenia in forensic settings was observed 

using an Extreme Gradient Boosting (XGBoost) model. ROC curves were generated using the roc function in R, as depicted in Supplementary 

Figure S5a. 95% CI of AUC was calculated using the ci.auc function in the pROC package in R, with 5000 stratified bootstrap replicates. A 

variable importance plot was generated using the varImp function in the caret package in R, showcasing the top 23 features. Among them, 

worsening impulse control (Impulse_Control_RFS4), worsening rule adherence (Rule_Adhere_RFS4), high/moderate engagement in an 

existing treatment program/intervention (RiskM_Response_2_4, RiskM_Response_5), stress management (RiskM_TreatmentPlan_2_9), 

changes in family support (Family_Support_RFS3), changes in rule adherence (Rule_Adhere_RFS4), treatment with individual psychotherapy 

(RiskM_TreatmentPlan_2_9), changes in mood symptoms (Mood_Symptoms_Chng4, Mood_Symptoms_Chng4), medication non-adherence 

(Med_Non_Adhere_Chng4), and a history of a personality disorder (Personality_Disorder_Cbox)  were among the most important features in 

the model. Further details regarding candidate features can be found in Supplementary Table S3.  
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Boosted Logistic Regression Elastic Net Lasso Regression 

Balanced Accuracy = 79.70% 

Accuracy = 68.31% 

(95% CI: 61.03-74.97) 

Sensitivity = 93.33% 

Specificity = 66.07% 

PPV = 19.71 

NPV = 99.10 

AUC = 0.865 

(95% CI: 0.772-0.935) 

Balanced Accuracy = 75.01% 

Accuracy = 76.44% 

(95% CI: 69.77-82.27) 

Sensitivity = 73.33% 

Specificity = 76.05% 

PPV = 21.15 

NPV = 97.12 

AUC = 0.794 

(95% CI: 0.704-0.876) 

Balanced Accuracy = 63.31% 

Accuracy = 71.23% 

(95% CI: 64.77-77.99) 

Sensitivity = 53.33% 

Specificity = 73.29% 

PPV = 14.54 

NPV = 94.85 

AUC = 0.721 

(95% CI: 0.589-0.841) 

kNN AdaBoost XGBoost 

Balanced Accuracy = 65.58% 

Accuracy = 75.92% 

(95% CI: 69.21-81.80) 

Sensitivity = 53.33% 

Specificity = 77.84% 

PPV = 17.02 

NPV = 95.13 

AUC = 0.701 

(95% CI: 0.579-0.816) 

Balanced Accuracy = 79.48% 

Accuracy = 79.06% 

(95% CI: 0.725-0.846) 

Sensitivity = 80.00% 

Specificity = 78.97% 

PPV = 24.49 

NPV = 97.88 

AUC = 0.883 

(95% CI: 0.825-0.934) 

Balanced Accuracy = 83.88% 

Accuracy = 75.92% 

(95% CI: 69.21-81.80) 

Sensitivity = 93.33% 

Specificity = 74.44% 

PPV = 23.72 

NPV = 99.24 

AUC = 0.841 

(95% CI: 0.711-0.931) 

Random Forest Bagged CART Conditional Forest 

Balanced Accuracy = 

86.15% 

Accuracy = 80.10% 

(95% CI: 73.73-85.52) 

Sensitivity = 93.33% 

Specificity = 78.97% 

PPV = 27.45 

NPV = 99.28 

AUC = 0.911 

(95% CI: 0.862-0.954) 

Balanced Accuracy = 81.17% 

Accuracy = 76.44% 

(95% CI: 69.77-82.27) 

Sensitivity = 86.66% 

Specificity = 75.56% 

PPV = 23.21 

NPV = 98.51 

AUC = 0.858 

(95% CI: 0.798-0.912) 

Balanced Accuracy = 82.17% 

Accuracy = 72.77% 

(95% CI: 65.88-78,95) 

Sensitivity = 93.33% 

Specificity = 71.02% 

PPV = 21.53 

NPV = 99.20 

AUC = 0.913 

(95% CI: 0.859-0.955) 
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Supplementary Table S1 - Model Performance (12-month follow-up) 

Model performance in predicting prospective physical aggression in patients with schizophrenia 

in the testing dataset (40%), using baseline risk factors, protective factors, and treatment status. 

The best performance was observed using random forest, followed by XGBoost, conditional 

forest, boosted logistic regression, adaboost, and elastic net. The positive class corresponded to 

physical-aggression and the negative class corresponded to non-aggression, respectively. Across 

most models, the true positives (sensitivities) were higher than true negatives (specificities), 

suggests that the models performed better in discriminating those with physical aggression, 

relative to non-aggression. However, considering the low base rate of physical aggression at 12-

months (8.28%) the positive predictive values (PPV), were much lower than the negative 

predictive values (NPV), indicating a much higher ratio of true negative predictions (non-

aggression), considering all positive predictions, across models.   

 

Boosted Logistic Regression Elastic Net Lasso Regression 

Balanced Accuracy = 54.44% 

Accuracy = 85.08% 

(95% CI: 79.04-89.93) 

Sensitivity = 40.00% 

Specificity = 78.36% 

PPV = 9.75 

NPV = 95.71 

AUC = 0.732 

(95% CI: 0.614-0.843) 

Balanced Accuracy = 56.52% 

Accuracy = 80.11% 

(95% CI: 73.54-85.66) 

Sensitivity = 30.00% 

Specificity = 83.04% 

PPV = 9.37 

NPV = 95.30 

AUC = 0.611 

(95% CI: 0.381-0.813) 

Balanced Accuracy = 47.42% 

Accuracy = 71.82% 

(95% CI: 64.67-78.25) 

Sensitivity = 20.00% 

Specificity = 74.85% 

PPV = 4.44 

NPV = 94.11 

AUC = 0.628 

(95% CI: 0.528-0.730) 

kNN AdaBoost XGBoost 

Balanced Accuracy = 46.22% 

Accuracy = 77.90% 

(95% CI: 71.15-83.72) 

Sensitivity = 40.00% 

Specificity = 80.11% 

PPV = 10.52 

NPV = 95.80 

AUC = 0.597 

(95% CI: 0.717-0.842) 

Balanced Accuracy = 59.47% 

Accuracy = 76.80% 

(95% CI: 69.96-82.74) 

Sensitivity = 40.00% 

Specificity = 78.94% 

PPV = 10.00 

NPV = 95.74 

AUC = 0.747 

(95% CI: 0.654-0.839) 

Balanced Accuracy = 

81.81% 

Accuracy = 83.43% 

(95% CI: 77.19-88.53) 

Sensitivity = 80.00% 

Specificity = 83.62% 

PPV = 22.22 

NPV = 98.62 

AUC = 0.870 

(95% CI: 0.814-0.918) 

Random Forest Bagged CART Conditional Forest 
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Balanced Accuracy = 75.93% 

Accuracy = 81.22% 

(95% CI: 0.747-0.866) 

Sensitivity = 70.00% 

Specificity = 81.87% 

PPV = 18.42 

NPV = 97.90 

AUC = 0.868 

(95% CI: 0.797-0.928) 

Balanced Accuracy = 65.50% 

Accuracy = 72.38% 

(95% CI: 65.25-78.75) 

Sensitivity = 60.00% 

Specificity = 73.09% 

PPV = 11.53 

NPV = 96.89 

AUC = 0.750 

(95% CI: 0.652-0.785) 

Balanced Accuracy = 63.27% 

Accuracy = 83.98% 

(95% CI: 77.81-89.00) 

Sensitivity = 40.00% 

Specificity = 86.55% 

PPV = 14.81 

NPV = 96.10 

AUC = 0.852 

(95% CI: 0.775-0.924) 

Supplementary Table S2 - Model Performance (18-month follow-up) 

Model performance reported for predicting prospective physical aggression in patients with 

schizophrenia in the testing set (40%), using baseline risk factors, protective factors, and treatment 

status variables. The highest balanced accuracy and AUC was observed within an XGBoost 

model, with similar performance using random forests. On average, model sensitivities (true 

positives) were more variable than across 6-months and 12-months timepoints, ranging from 20-

80%. Across most models, the true negatives (specificities) were higher than true positives 

(sensitivities), suggests that the models performed better in discriminating those with physical 

aggression, relative to non-aggression. However, considering the low base rate of physical 

aggression (7.57%) the negative predictive values (PPV), were much lower than the negative 

predictive values (NPV), indicating a much higher ratio of true negative predictions (non-

aggression), considering all positive predictions, across models.  

 

 

Variable Description 

Patient_Gender Patient Gender 

Arson_IO_Cbox Arson at intake offence 

Assaults_IO_Cbox Assault at intake offence 

Homicide_IO_Cbox Homicide at intake offence 

Kidnapping_IO_Cbox Kidnapping at intake offence 

Robbery_IO_Cbox Robbery at intake offence 

Driving_IO_Cbox Driving offence at intake 
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Sexual_CC_Cbox Sexual offence at intake 

Frauds_CC_Cbox Fraud offence at intake  

Offenses_Past_Gender_Target Past gender target of patient 

Substance_Use_Cbox Substance use at intake 

Cognitive_Deficits_Cbox Cognitive deficits at intake  

Other1_HistRiskFactor_Cbox Other historical risk factor of patient  

Other2_HistRiskFactor_Cbox Other historical risk factor of patient  

Mood_Symptoms_Cbox Mood symptoms (historical risk factor) 

Impulse_Control_Cbox Impulse control (historical risk factor) 

ProgramP_Cbox Program participation (risk factor) 

Substance_Abuse_Cbox Substance abuse (risk factor) 

Med_Non_Adhere_Cbox Medication non-adherence (risk factor) 

Attitude_Cbox Attitude (risk factor) 

Stress_Management_Cbox Stress management (risk factor) 

Anger_Management_Cbox Anger management (risk factor) 

Peer_Influence_Cbox Peer influence (risk factor) 

Other_RiskFactor_Cbox Other risk factors 

Rule_Adhere_RFS Rule Adherence Risk Factor Status 

(Managed, monitor, needs improvement)  

Criminal_Harassment_IO_Cbox Criminal Harassment, Utter threats, and related 



Ph.D. Thesis – D. P. Watts; McMaster University – Neuroscience.  

 

64 
 

offences at intake 

Insight_Ill_RFS Insight into illness risk factor status  

(Managed, monitor, needs improvement)  

Mood_Symptoms_RFS Mood symptoms 

(Managed, monitor, needs improvement)  

Psychotic_Symptoms_RFS Psychotic symptoms 

(Managed, monitor, needs improvement)  

Impulse_Control_RFS  Impulse control 

(Managed, monitor, needs improvement)  

ProgramP_RFS  Program participation 

(Managed, monitor, needs improvement)  

Substance_Abuse_RFS Substance abuse  

(Managed, monitor, needs improvement)  

Med_Non_Adhere_RFS Medication non-adherence 

(Managed, monitor, needs improvement)  

Attitude_RFS Attitude  

(Managed, monitor, needs improvement)  

Stress_Management_RFS Stress management  

(Managed, monitor, needs improvement)  

Family_Support_RFS  Family support 

(Managed, monitor, needs improvement)  

Peer_Influence_RFS Peer influence  

(Managed, monitor, needs improvement)  
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Rule_Adhere_Chng  Rule adherence  

(Better, worse, same) 

Insight_Ill_Chng Insight into illness 

(Better, worse, same) 

Mood_Symptoms_Chng Mood symptoms 

(Better, worse, same) 

Psychotic_Symptoms_Chng Psychotic symptoms 

(Better, worse, same) 

Impulse_Control_Chng Impulse control 

(Better, worse, same) 

ProgramP_Chng Program participation 

(Better, worse, same) 

Substance_Abuse_Chng Substance abuse 

(Better, worse, same) 

Med_Non_Adhere_Chng  Medication non-adherence 

(Better, worse, same) 

Attitude_Chng  Attitude  

(Better, worse, same) 

Stress_Management_Chng Stress Management 

(Better, worse, same) 

Family_Support_Chng Family Support 

(Better, worse, same) 

Peer_Influence_Chng Peer influence  
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(Better, worse, same) 

Potential_Gender_Target Anticipated gender of potential victim 

EscapeRisk_IDays Escape risk immediate (days) 

EscapeRisk_STerm Escape risk short-term 

Medication  Medications 

Frequency  Frequency of medications 

Class_Of_Medication Class of medications 

Offenses_Past_Victim_Target Gender of prior victim 

Protective_Factors_1 Protective factors: employment, leisure activities, 

financial stability, motivation for treatment, positive 

attitude, realistic goals, stable intimate relationship, 

stable housing, external control, positive social 

support, none 

Protective_Factors_2 Protective factors: employment, leisure activities, 

financial stability, motivation for treatment, positive 

attitude, realistic goals, stable intimate relationship, 

stable housing, external control, positive social 

support, none 

Potential_Behaviours Anticipated behaviors - physical aggression, arson, 

criminal harassment, extreme property damage, 

robbery, sexual aggression/behavior, terrorism, 

verbal aggression 

Potential_Victim_Target Potential target of subsequent criminal offences - 

staff, known persons, children, stranger, 

acquaintance, family member, indiscriminate, 

serious property damage 

RiskM_RiskFactor_1 Risk factors: rule adherence, insight into illness, 

mood symptoms, psychotic symptoms, impulse 

control, program participation, substance abuse, med 
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non-adherence, attitude/cooperation, stress 

management, anger management, family support, 

peer influence  

RiskM_RiskFactor_2 Risk factors: rule adherence, insight into illness, 

mood symptoms, psychotic symptoms, impulse 

control, program participation, substance abuse, med 

non-adherence, attitude/cooperation, stress 

management, anger management, family support, 

peer influence  

RiskM_TreatmentPlan_1 Treatment plan: substance abuse program, anger 

management, social skills training, 

mindfulness/relaxation, stress management, 

recreational program, vocational program, 

psychoeducation, individual psychotherapy, group 

therapy, medication, spiritual support, discharge 

planning, behavioural therapy, dialectical 

behavioural therapy, occupational therapy 

RiskM_TreatmentPlan_2 Treatment plan: substance abuse program, anger 

management, social skills training, 

mindfulness/relaxation, stress management, 

recreational program, vocational program, 

psychoeducation, individual psychotherapy, group 

therapy, medication, spiritual support, discharge 

planning, behavioural therapy, dialectical 

behavioural therapy, occupational therapy 

RiskM_Response_1 Patient response: referral pending, declined 

participation, on waitlist, highly engaged, 

moderately engaged, low engagement, sporadic 

attendance, disruptive in program, withdrew from 

program, completed, expelled from program, 

medication adherent, medication non-adherent 

RiskM_Response_2 Patient response: referral pending, declined 

participation, on waitlist, highly engaged, 

moderately engaged, low engagement, sporadic 

attendance, disruptive in program, withdrew from 

program, completed, expelled from program, 

medication adherent, medication non-adherent 
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LTRE Long-term risk assessment 

 

 

Supplementary Table S3 - List of Candidate Features and eHARM Measures 

Baseline risk factors collected over three baseline assessments were used to predict subsequent 

physical aggression at 4-month, 12 months, and 18-month follow-ups. Only variables included in 

the list above were used as candidate features in model development.  
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Random Forest  Elastic Net Conditional Forest 

Balanced Accuracy = 71.26% 

Accuracy = 63.35% 

(95% CI: 56.62, 69.71) 

Sensitivity = 80.95% 

Specificity = 61.50% 

PPV = 96.85 

NPV = 18.08 

AUC = 0.800 

(95% CI: 0.646-0.930) 

Balanced Accuracy = 75.32% 

Accuracy = 90.05% 

(95% CI: 85.32, 93.66) 

Sensitivity = 93.50% 

Specificity = 57.14% 

PPV = 95.41 

NPV = 48.00 

AUC = 0.893 

(95% CI: 0.826-0.948) 

Balanced Accuracy = 

76.82% 

Accuracy = 92.76% 

(95% CI: 88.51, 95.81) 

Sensitivity = 96.50% 

Specificity = 57.14% 

PPV = 95.54 

NPV = 63.16 

AUC = 0.861 

(95% CI: 0.784-0.927) 

Supplementary Table S4: Clinician-rated clinical-likelihood of violence model  

A summary of the top performing algorithms, according to balanced accuracy and AUC. Across 

models, balanced accuracy ranged from 71.26-76.82%, with the highest balanced accuracy in a 

conditional forest model. While variation was observed in sensitivity and specificity across 

models, the number of true positives (sensitivity) of physical aggression was higher, relative to 

true negatives (specificity) of non-aggression. Therefore, in the current sample, clinical 

judgement alone showed a high detection rate of actual instances of physical aggression. 

However, models performed little better than chance in identifying true negatives. As such, 

clinical judgement shows a high level of false negatives, where individuals who are physically 

aggressive at follow-up are incorrectly predicted to be non-aggressive.  
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Random Forest Conditional Forest XGBoost 

Balanced Accuracy = 

91.61% 

Accuracy = 88.69% 

(95% CI: 83.76, 92.54) 

Sensitivity = 95.23% 

Specificity = 88.00% 

PPV = 45.45 

NPV = 99.43 

AUC = 0.945 

(95% CI: 0.907-0.974) 

Balanced Accuracy = 85.61% 

Accuracy = 77.83% 

(95% CI: 71.77, 83.12) 

Sensitivity = 95.23% 

Specificity = 76.00% 

PPV = 29.41 

NPV = 99.34 

AUC = 0.934 

(95% CI: 0.894-0.967) 

Balanced Accuracy = 82.73% 

Accuracy = 75.11% 

(95% CI: 68.87, 80.67) 

Sensitivity = 95.23% 

Specificity = 73.00% 

PPV = 27.02 

NPV = 99.32 

AUC = 0.919 

(95% CI: 0.873-0.958) 

 

Supplementary Table S5: Combined model of HARM features and clinician-rated clinical-     

likelihood of violence model 

A summary of the top performing algorithms, according to balanced accuracy and AUC. Across 

models, balanced accuracy ranged from 68.31-91.61%, with the highest balanced accuracy and 

AUC in a random forest model. A statistically significant difference was observed in classifier   

performance between a combined model, which incorporated both HARM features and clinician   

rated clinical likelihood of violence (CLV), and CLV alone (McNemar’s χ2= 10.22, p= 0.001). 
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Abstract 

Although reducing criminal outcomes in individuals with mental illness have long been a priority 

for governments worldwide, there is still a lack of objective and highly accurate tools that can 

predict these events at an individual level. Predictive machine learning models may provide a 

unique opportunity to identify those at highest risk of criminal activity and facilitate personalized 

rehabilitation strategies.  Therefore, this systematic review and meta-analysis aims to describe 

the diagnostic accuracy of studies using machine learning techniques to predict criminal and 

violent outcomes in psychiatry.  

We performed meta-analyses using the mada, meta, and dmetatools packages in R to predict 

criminal and violent outcomes in psychiatric patients (n=2428) (Registration Number: 

CRD42019127169) by searching PubMed, Scopus, and Web of Science for articles published in 

any language up to April 2022. 

Twenty studies were included in the systematic review. Overall, studies used single-nucleotide 

polymorphisms, text analysis, psychometric scales, hospital records, and resting-state regional 

cerebral blood flow to build predictive models. Of the studies described in the systematic review, 

nine were included in the present meta-analysis. The area under the curve (AUC) for predicting 

violent and criminal outcomes in psychiatry was 0.816 (95% Confidence Interval (CI): 70.57-

88.15), with a partial AUC of 0.773, and average sensitivity of 73.33% (95% CI: 64.09-79.63), 

and average specificity of 72.90% (95% CI: 63.98-79.66), respectively. Furthermore, the pooled 

accuracy across models was 71.45% (95% CI: 60.88-83.86), with a tau squared (τ2) of 0.0424 

(95% CI: 0.0184-0.1553). 

Based on available evidence, we suggest that prospective models include evidence-based risk 

factors identified in prior actuarial models. Moreover, there is a need for a greater emphasis on 
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identifying biological features and incorporating novel variables which have not been explored in 

prior literature. Furthermore, available models remain preliminary, and prospective validation 

with independent datasets, and across cultures, will be required prior to clinical implementation. 

Nonetheless, predictive machine learning models hold promise in providing clinicians and 

researchers with actionable tools to improve how we prevent, detect, or intervene in relevant 

crime and violent-related outcomes in psychiatry. 

 

Keywords 

machine learning; precision psychiatry; artificial intelligence; forensic psychiatry; psychotic 

disorders; computational psychiatry; criminality; diagnostic accuracy 

 

3.1 Introduction 

Available evidence suggests that one in eight men, and one in sixteen women will subsequently 

commit a serious criminal offense after release from a psychiatric facility 1. This phenomenon is 

not isolated to specific geographical or generational effects, considering that in a systematic 

review comprising 33,588 individuals from 24 countries and 109 datasets, high rates of mental 

illness in prisoners were found in both high- and low-income countries over the timespan of four 

decades 2. 

Additionally, results from a large Swedish registry study comprising 98,082 individuals with a 

history of hospitalization suggests that one in every twenty violent crimes is committed by 

someone with severe mental illness 3. Given the high prevalence of criminal acts committed 

across cultures in individuals with severe mental illness, there has been a concerted effort to 

identify predictors of prospective criminal risk following discharge from psychiatric facilities.  



Ph.D. Thesis – D. P. Watts; McMaster University – Neuroscience.  

 

79 
 

In response to this, actuarial assessments became increasingly widespread, which use statistical 

algorithms to identify prospective patient risk, usually at the group level 4. However, there is 

little evidence that actuarial risk estimates can accurately determine whether a specific patient 

will reoffend or commit subsequent acts of violence 5. This is largely because most risk estimates 

have been developed statistically to assess group-based risk and perform poorly when making 

individualized predictions 5. Altogether, this illustrates the limitations of current methods and the 

importance of a more precise, effective, and personalized approach to risk assessment in forensic 

settings. Given the ethical, psychiatric, and legal ramifications of inappropriately 

mischaracterizing the prospective risk of any given patient, and the resulting consequences to the 

individual, their families, and broader society, there is a growing interest in the use of artificial 

intelligence and predictive analytics to facilitate clinical decision making at an individual level 11. 

This can potentially pave the way for tailor-made tools for the diagnosis, assessment, and 

treatment of patients 6,7. While predictive machine learning models have already shown promise 

in other fields of medicine 8,9, there is a growing effort towards predicting criminal outcomes in 

psychiatric patients at an individual level. Incorporating such models into routine clinical care 

presents with the potential to facilitate personalized and targeted rehabilitation strategies to 

decrease prospective criminal outcomes. To the best of our knowledge, there are no systematic 

reviews describing the diagnostic accuracy of machine learning models in predicting criminal 

and violent outcomes in psychiatry. Therefore, this systematic review and meta-analysis aims to 

assess the diagnostic accuracy of studies using machine learning techniques to predict criminal 

outcomes in psychiatry.  

2.2 Methods 
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This study has been registered on PROSPERO with the registration number PROSPERO 

CRD42019127169. 

 

3.2.1. Search strategy 

We searched three electronic databases (PubMed, Scopus, and Web of Science) for articles 

published up until April 2022. To identify relevant studies, the following structure for the search 

terms was used: (Artificial Intelligence OR Supervised Machine Learning AND crime-related 

outcomes in psychiatry). The complete search filter is available in the supplementary material. 

We also screened references from included articles to search for potentially missed articles.  

 

3.2.2. Eligibility criteria 

This systematic review was performed according to the PRISMA statement 10. We selected 

original articles that used supervised machine learning models to predict crime-related outcomes 

in mental illness. We excluded review articles and studies using unsupervised learning, since 

methods such as clustering are not outcome oriented. Furthermore, studies that predicted crime 

or violent-related outcomes in individuals without psychiatric disorders were excluded, although 

further information regarding these studies can be found in Supplementary Table 2.  

 

3.2.4. Data collection and extraction 

Potential articles were independently screened in a blinded standardized manner for title and 

abstract contents by two researchers (DW and DLG). Following this, the full texts of screened 

articles were obtained and evaluated according to the inclusion and exclusion criteria. A third 

author (PB) provided a final decision in cases of disagreement. Criminal outcomes were 
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operationalized as rearrest, reconviction of crimes, or prediction of the type of crime committed. 

Violent outcomes involved recorded violent incidents during inpatient stay or following hospital 

discharge.  

3.2.5. Quality assessment 

We created a machine learning quality assessment table based on experts' opinion to evaluate the 

reproducibility and reliability of the included studies. Our assessment provides a quick way to 

evaluate published papers and can also serve as a checklist for future studies. Briefly, the 

instrument comprises nine methodological considerations, including representativeness of the 

sample, confounding variables, outcome assessment, algorithm selection, feature selection, class 

imbalance (where applicable), missing data, performance/accuracy, and testing/validation. The 

instrument can be found in Supplementary Table S1, and further details can also be found in the 

Supplementary Material.  

 

3.3. Statistical analysis  

A bivariate meta-analysis was performed for crime-related and violent outcomes using the mada 

11 meta 12, and dmetatools packages in R 11. Since we anticipated considerable between-study 

heterogeneity, a random-effects model was used to pool effect size. Additionally, an adjusted 

profile restricted maximum likelihood estimator was used to calculate the heterogeneity variance 

tau square (τ2). This metric was selected since the heterogeneity statistic I2 can be biased in 

meta-analyses with small sample sizes 13. Using the retisma function in ‘mada’ 11, a linear mixed 

model with random effects was selected to produce summary estimates of sensitivity and 

specificity, as well as calculate AUC and partial AUC summary receiver operating characteristic 

(ROC) curves, as described elsewhere 14. 95% confidence intervals for summary AUC were 
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generated using 2000 iterations of parametric bootstrapping with the ‘dmetatools’ package in R. 

Additionally, using the metamean function in ‘meta’ 12, mean accuracy across models was 

pooled alongside standard error of model accuracy, as detailed in Supplementary Table S3. As 

we anticipated considerable between-study heterogeneity, a random-effects model was selected 

to pool effect sizes. The restricted maximum likelihood estimator 15 was selected to calculate the 

heterogeneity variance τ2. Knapp-Hartung adjustments 16 were also used to calculate the 

confidence interval around the pooled effect. Additionally, we pooled the diagnostic odds ratio, 

and the positive negative and likelihood ratios within a random effects model with a 

DerSimonian-Laird estimator 17.  

Four studies were excluded from the meta-analysis, as the authors did not report the sensitivity 

and specificity of their models. Criminal outcomes were operationalized as rearrest, reconviction 

of crimes, or prediction of the type of crime committed. Violent outcomes involved recorded 

violent incidents during inpatient stay or following hospital discharge.  

 

3.4. Results 

We found 12420 potential titles/abstracts and included 20 studies which met inclusion criteria. A 

list of the included studies and their most relevant characteristics and findings are described in 

Table 1, while Table 2 details the diagnostic accuracies, odds ratios, and likelihood ratios of 

studies contained within the meta-analysis. Additionally, a schematic of the meta-analytic 

diagnostic accuracy of predicting criminal recidivism and physical violence are detailed Figure 

1. Furthermore, a machine learning quality assessment, additional figures related to model 

performance, and a table comprising twenty-one studies assessing criminal outcomes in non-

psychiatric individuals can be found in the supplementary material. Additional information about 
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machine learning algorithms 18 including methodological considerations, common problems, and 

limitations, can be found elsewhere 19.  

Of the studies included in the systematic review, six assessed predictors of criminal recidivism 

20–25, two assessed predictors of the type of criminal offence 26,27, three assessed predictors of 

physical violence during inpatient stay  28–30, and six assessed predictors of violent offending and 

aggression following discharge 24,31–38. All studies, apart from two 21,30, used clinical input 

features, including socio-demographic information, questionnaires, and psychometric measures 

to derive predictions.  

3.4.1. Studies assessing criminal outcomes 

Eight studies used machine learning models to predict criminal outcomes in patients with 

psychiatric disorders 20–27. Delfin and colleagues conducted the first 10-year follow-up of a 

cohort of forensic psychiatry patients, including 44 individuals, who underwent a single-photon 

emission CT scan. This data, alongside eight evidence-based clinical risk factors, were used in a 

random forest model to predict criminal recidivism, resulting in an accuracy of 82% and an AUC 

of 0.81. Of note, when only clinical risk factors were used alone, model performance degraded, 

with an accuracy of 64% and AUC of 0.69, emphasizing the importance of combining clinical 

and biological features to predict criminal recidivism.  The top features reflecting neuronal 

activity included the right and left parietal lobe, left temporal lobe, and right cerebellum 21.  

Kirchebner and colleagues used 653 clinical features to predict recidivism in 344 individuals 

with schizophrenia. Patients who had a criminal record prior to their current offence were 

considered as recidivists. Following imputation, the best performance was observed using 

Boosted Trees, with an accuracy of 67.6%. Without imputation, a Naive Bayes classifier 
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achieved an accuracy of 79.4%. Important variables included amisulpride prescription prior to 

offence, recent stressors, recent legal complaints, and number of prior offences 24.  

Sonnweber et al. developed a model to differentiate between violent and non-violent offenders in 

patients with schizophrenia. The best performance was observed using a gradient boosting 

machine, resulting in a balanced accuracy  (operationalized as the average of sensitivity and 

specificity, as defined elsewhere 39) of  67%. The most important variables included time spent 

in hospitalization, age at diagnosis, daily olanzapine at discharge, PANSS score at discharge, and 

social isolation in adulthood 26.  

Furthermore, Watts and colleagues developed a machine learning model to predict the type of 

criminal offence committed in a large transdiagnostic sample of 1240 psychiatric patients. Using 

multiclass classification, they showed that sexual crimes could be discriminated from violent and 

nonviolent crimes at an individual level with an accuracy of 71.22%. Moreover, following 

recursive feature elimination, a reduced model with 36 variables resulted in an accuracy of 

71.58%. The most important features for the model included previous absolute discharge, 

previous sexual convictions, cluster A personality disorder, and female gender 27. Other studies 

predicted rearrest after release from jail 20,22, reconviction for a violent crime 23, and risk of 

general criminal recidivism 25.  A summary of these findings can be found in Table 1 and 

Supplementary Table S2.  

3.4.2. Studies assessing violent outcomes 

Twelve studies used machine learning techniques to predict violent outcomes in patients with 

psychiatric disorders 28–38,40. Linaker and colleagues predicted violent incidents in psychiatric 

patients using behavioral symptoms from health records from 24 hours prior. Overall, 48 acts of 
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violence were recorded from 32 patients, and following feature selection using correlation 

coefficients, six variables were used as predictors in a logistic regression model. The authors 

reported a sensitivity of 81.3% and specificity of 100%, however it was unclear how class 

imbalance was addressed, since only 34.7% of patients committed an act of violence during the 

study 32.   

Kirchebner and colleagues used a series of known stressors to predict violent offending in 370 

patients with schizophrenia. The overarching goal was to determine whether accumulated 

stressors precipitated violent outcomes in patients. Using boosted classification trees, they 

reported an accuracy of 76.4%. However, no external validation or testing set was used, instead, 

performance was assessed using 5-fold CV 40.  

Furthermore, Menger et al. used text analysis from doctor and nurse notes to predict violent 

incidents in psychiatric inpatients. Four feature extraction methods were used, comprising binary 

bag of words, term frequency-inverse document frequency (tf-idf) bag of words, document 

embeddings, and word embeddings, as described elsewhere. An AUC of 0.788 was observed 

using document embeddings with recurrent neural networks. The worst performances occurred 

with the Naive Bayes algorithm, which is the most classical and widely used algorithm for text 

classification 28.  

Monahan and colleagues classified patients according to high and low risk of violence following 

discharge from psychiatric facilities. Decision trees were used in a binary classification task, and 

features were selected using a stepwise model, where the threshold of statistical significance 

between the feature and outcome were set at P<0.05. The model correctly identified 72.6% of the 

sample as either low or high risk. Important variables included seriousness of prior arrests, motor 

impulsiveness, paternal drug use, and recurrent violent fantasies. It is important to mention that 
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27.4% of the total sample remained unclassified, meaning it could find no combination of risk 

factors to classify patients into high or low-risk groups 33. 

Additionally, Suchting and colleagues used saliva FK506 binding protein 5 (FKBP5) 

polymorphisms alongside demographic and psychometric variables to predict state aggression, 

which resulted in an R2 of 0.66 30. Other studies identified predictors of violent risk following 

discharge 37,38 and aggression in patients 29,31,34–36, which are further described in Table 1.  

3.4.3. Meta-analysis of diagnostic accuracy  

A forest plot detailing model performance can be observed in Figures 1 and 2, while Table 2 

details the diagnostic accuracies, odds ratios, and likelihood ratios across studies. Additional 

details related to the standard error of model accuracy, 95% CI, and the true/false positives and 

negatives, can be found in Supplementary Table S3. Nine studies were pooled, comprising 2,428 

patients (the same dataset of 370 patients was used across two studies 26,40).  

Additionally, nine studies  which did not report the sensitivity and specificity of models 

20,22,23,28,29,31,33–35, and one regression-based model 30 were excluded from the meta-analysis. 

Overall, the pooled accuracy across models was 71.45% (95% CI: 60.88-83.85), with a 

sensitivity ranging from 54.4%-87.3% (average: 73.33%, 95% CI: 64.09-79.63) and specificity 

ranging from 60.5-96.6% (average:  72.90%, 95% CI: 63.98-79.66). The heterogeneity statistic 

τ2 for pooled model accuracy was 0.0424 (95% CI: 0.0184-0.1553). A plot of the false positive 

rate against sensitivity for all studies can be found in Supplementary Figure S1.  

The diagnostic odds ratio (DOR) across studies was 9.75 (95% CI: 4.035-22.72; τ2=1.505) as 

detailed in Table 2. Similarly, the positive likelihood ratio (posLR) was 3.083 (95% CI: 1.954-

4.866, with a τ2 of 0.437 (95% CI: 0.000-0.897), and the negative likelihood ratio (negLR) was 

0.342 (95% CI: 0.201-0.583), with a τ2 of 0.566 (95% CI: 0.000-3.476), respectively. 
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Additionally, the log DOR across studies was 2.466 (95% CI: 1.534-3.397). The average 

prevalence of the positive class (presence of criminal and violent outcomes) was 43.435% of the 

sample across studies. Furthermore, the AUC across studies was 0.816 (95% CI: 0.745-0.875) in 

predicting criminal and violent outcomes, with a partial AUC of 0.773. Spearman’s rho indicated 

a weak association (rho=0.150, 95% CI: -0.571-0.740) with a large confidence interval between 

the sensitivities and false positive rates of included studies.  

 

3.5. Discussion 

To the best of our knowledge, this is the first systematic review and meta-analysis comprising 

studies using supervised machine learning techniques to predict criminal or violent outcomes in 

individuals with psychiatric disorders. Throughout our review, we have identified recurrent 

features and algorithms used, as well as current methodological challenges. In this section, we 

detail key aspects of these models, showcasing their limitations as well as our perspectives on 

best practices for developing machine learning models with clinical utility. Further details 

regarding common methodological issues in machine learning models can be observed in the 

supplementary material.  

 

3.5.1. Model interpretability, model performance, and confidence intervals  

More recent machine learning algorithms that use regularization parameters to account for 

common issues such as multicollinearity, tended to show higher performance accuracy in 

predicting outcomes. However, model complexity carries the trade-off of greater difficulty in 

model interpretability and explainability 41.  
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Recently, new local explanation methods have been developed, including SHapley Additive 

exPlanations (SHAP), to explain variable contributions at the individual level 42. Adaptations of 

this, such as TreeExplainer, leverage the internal structure of tree-based models to efficiently 

compute local explanations using Shapley values 43. Moreover, SHAP dependence plots can be 

used to showcase the effect that a single feature has on predictions made by the model 43. In two 

studies included in the current review, feature importance metrics were not reported 28,35. It is 

argued that future studies may benefit from an increased focus on model interpretability, which 

may aid in the generalizability and replicability of such work. 

Furthermore, it is important to highlight that model performance can be over-optimistic when 

assessed using internal cross-validation alone, in the absence of separate training and testing sets. 

Of the twenty studies contained in the present review, only seven (35%) incorporated training 

and testing sets in model development. In the majority of studies 25,28–31,33–36,38 (76.9%) that 

evaluated model performance using internal cross-validation alone, sample sizes were also well 

over 100 patients. As mentioned elsewhere, several other fields use cross-validation to tune 

regularization parameters in model development, rather than taking performance estimates at 

face value 44. Similarly, it is important to mention that uncertainty estimates should be 

considered when evaluating model performance and its potential clinical utility.  Of nine studies 

comprising the meta-analysis, only four (44.4%) 21,26,27,37 reported accuracy estimates using a 

method such as 95% confidence intervals.  

3.5.2.  Model Performance and Clinical Predictors  

Overall, eighteen models assessed clinical predictors of criminal and violent outcomes 20,22,32–

38,40,23–29,31. In criminal prediction models, accuracy was generally high, ranging from 67.83-

82%.  
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With respect to criminal behavior, common predictors across models included age at first crime, 

substance use disorder, cluster B personality disorder, prior criminality, a high number of 

stressors, and childhood trauma. Future work may benefit from comprising a standardized 

evidence-based risk battery for use in prospective models.  

Furthermore, models predicting violent behaviour were more variable, ranging from 58.25-

92.1%, with five of twenty studies (25%) 22,23,28,35 comprising the systematic review only 

reporting AUC. As such, several were excluded from the meta-analysis. Nonetheless, important 

clinical features included confusion, irritability, threats, recently attacking objects, child abuse, 

physical neglect, and callous affect. Important search terms included aggressive, offered, angry, 

door, walk, arrest, offer emergency medication, and walked.  

With respect to the meta-analysis comprising nine studies (n=2,428 patients), the pooled 

accuracy was 71.45% (95% CI: 60.88-83.86) in predicting criminal and violent outcomes. 

Moreover, as detailed in Table 2, the DOR was 9.757 (95% CI: 4.035-22.72; τ2= 1.505) and log 

DOR was 2.466 (95% I: 1.534-3.397). As discussed elsewhere, the DOR is a measure of the 

effectiveness of a diagnostic test that is independent of prevalence 45.  A DOR of 9.757 

represents a high ratio of the odds of the test being positive if the individual will commit 

prospective criminal and violent outcomes relative to the odds of the test being positive if the 

individual will not prospectively commit criminal and violent outcomes. However, a large upper 

and lower bound of the 95% CI was observed, and the log DOR suggests a more conservative 

test effectiveness. Similarly, the posLR was 3.083 (95% CI: 1.954-4.866), suggesting a small 

increase in the likelihood of committing violent and criminal outcomes in patients with a positive 

test. In addition, the negative likelihood ratio was 0.342 (95% CI: 0.201-0.583), suggesting a 20-
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25% decrease in the odds of committing violent and criminal outcomes in patients with a 

negative test result.  

 

3.5.3. Model Performance and Biological Predictors 

Furthermore, two models 21,30 assessed biological predictors pertaining to saliva SNPs and 

resting-state regional cerebral blood flow. Although they contained small sample sizes and 

lacked external validation, both showed promising performance, corresponding to an R2 of 0.66, 

and accuracy of 82%, respectively. Important features included KBP5_14 (rs1460780), 

FKBP5_92 (rs9296158); and FKBP5_94 (rs9470080), right and left parietal lobe rCBF, left 

temporal lobe rCBF, and right cerebellum. Subsequent studies may benefit from replicating these 

findings and incorporating additional biological and physiological variables. 

 

3.5.4. Limitations 

Currently, the field of predicting crime and violent related outcomes using machine learning 

techniques remain in its infancy. As such, there is a lack of studies validating model performance 

using independent cohorts. Furthermore, it is important to note that model accuracy should be 

considered alongside several other factors, such as the input features used, the preprocessing 

pipeline, feature selection method, model optimization strategy, and the validation procedure. 

Furthermore, data-driven approaches to feature selection can be useful in many cases, since it 

does not require knowledge derived from pre-existing literature to manually select important 

variables 46–48. Of note, the absence of a formalized feature selection strategy was observed 

across a subset of studies.  
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There are several available feature selection methods, with varying degrees of appropriateness 

depending on the application, as described elsewhere 47. Furthermore, feature selection can be 

useful to improve the generalizability of models when applied to independent datasets 49. 

Considering that predictive models applied to forensic healthcare can have significant legal 

repercussions - such as incorrectly identifying individuals as not criminally responsible when in 

fact they are, or the inability to detect malingering - it is paramount that we use the most optimal 

methods available for these purposes. 

Additionally, only two studies developed separate models to assess potential differences in 

performance between men and women using the same variables, as described in the 

supplementary material. Rosselini et al. reported an AUC of 0.74 for men and an AUC of 0.82 

for women in predicting violent crime 50. Additionally, the same authors also investigated 

predictors of major violent crime and reported an AUC of 0.81 for both models in men, and an 

AUC of 0.80-0.82 for both models in women. Based on these studies, it is still unclear whether 

biological sex or gender play a key role in deciding which features should be included within a 

predictive machine learning model. 

3.5.5. Future directions  

Moving forward, a further refinement of predictive models in forensic risk prediction is required. 

Potentially, this may be facilitated by using a wider framework when selecting the input data in 

our models. Considering that our model performance is directly dependent on the available input 

data, an exploratory data-driven approach may be warranted in predictive models.  

Most machine learning studies in forensic psychiatry thus far focus purely on clinical and 

administrative data, given the widespread availability of such data. However, other modalities, 

such as neuroimaging (MRI, fMRI, DTI), electrophysiology (EEG, MEG, ERG) various sensors 
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(actigraphy, heart rate variability), and genomic features (whole genome sequencing, whole 

exome sequencing, and RNA sequencing) may prove to facilitate model performance, when used 

in conjunction with clinical data. Moreover, longitudinal studies with larger multicentric samples 

and adequate external validation are needed to translate proof-of-concept predictive models into 

applications to be used in clinical and legal settings. We hypothesize that such models may 

facilitate a more personalized approach to patient evaluation and risk management, provide 

greater precision in deriving a tailored treatment plan, and aid clinicians and the legal system in 

the decision-making process as it pertains to mentally disordered offenders. Ultimately, they may 

become critical tools to assist in prison sentencing, to determine fitness to stand trial, and to 

optimize the progress of individuals in the forensic system towards rehabilitation. 
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Figure 1: Paired Forest plot of model accuracy for criminal and violent outcomes in psychiatry 

A linear mixed model with random effects was selected to produce summary estimates of sensitivity and specificity using the retisma 

function in mada. The average sensitivity across studies was 73.33% (95% I: 64.09-79.63) and average specificity was 72.90% (95% 

CI: 60.50-96.6). As such, the balanced accuracy across models (sensitivity + specificity / 2) is 73.11%. 
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Figure 2: Pooled Effects of Model Accuracy 

Pooled accuracy of criminal and violent models in psychiatry across 2428 patients (two studies used the same sample n=370) within 

a random-effects model using a restricted maximum likelihood estimator to calculate the heterogeneity variance τ2. Reported mean 

accuracy across models was used, in conjunction with standard deviation, calculated by multiplying the standard error by the square 

root of the sample size (SD = SE×√n). Knapp-Hartung adjustments were used to calculate the confidence interval around the pooled 

effect. The average accuracy across models was 71.45% (95% CI: 60.88-83.86), with a heterogeneity variance τ2 of 0.0424.  
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First author, year Data utilized Outcome Sample size and 

diagnosis1 

Validation Machine 

learning model 

Accuracy Other measures 

 

CRIMINAL OUTCOMES 

Cohen 1988 Clinical and administrative 

data 

Subsequent arrest 127 male patients 

found not guilty by 

reason of insanity 

N/A Stepwise 

discriminant 

analysis 

76%  N/A 

Delfin 2019 resting-state regional cerebral 

blood flow (rCBF) and 

clinical risk factors 

Criminal recidivism 44 forensic psychiatry 

patients 

Out-of-bag (OOB) 

error 

RF Accuracy: 82% 

 

 

AUC: 0.81 

Sensitivity: 75%  

Specificity: 86% 

PPV = 0.73 

NPV = 0.86 

 

Note: the dataset was not split into 

training and testing sets, and OOB 

error was used as a resampling 

procedure 

Falconer, 2014 Age, past arrests, mental 

health diagnosis, enrollment 

to the JDP as well as 

utilization of outpatient 

group services, medical 

services, and case 

management  

Rearrest 2100 adult offenders 

with records in US 

mental health services 

and the criminal justice 

system    

Training (80%) and 

testing (20%) sets 

Elastic Net 

regularized 

logistic 

regression 

N/A AUC (test set) 

0.67 

0.60 (simplified model) 

Grann, 2007 10 risk factors of the 

Historical subscale of the 

HCR-20 

Reconviction for a 

violent crime 

404 violent offenders 

with a mental disorder 

followed up to eight 

years 

Holdout validation 

with training/testing 

(2:1) (ANN) 

BLR 

MLR 

ANN 

N/A AUCs 

BLR: 0.66-0.77 

MLR: 0.63-0.73 

ANN: 0.51-0.73 
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Kirchebner, 2020 Sociodemographic, clinical, 

behavioral, and symptom 

variables 

Criminal recidivism 344 offenders with 

schizophrenia 

 

Training (70%) and 

testing (30%) sets 

Boosted Trees 

Naive Bayes 

67.6-79.4% 

Best performance using Naive Bayes 

 

Best model 

Naive Bayes with imputation 

 

AUC: 0.83 

Sensitivity: 83% 

Specificity: 74% 

PPV: 84% 

NPV: 73% 

Pflueger, 2015 Demographic variables and 

clinical scales (Basel Catalog 

for Risk Assessment, 

Historical Clinical Risk 

Assessment, and the 

Psychopathy Checklist- 

screening version) 

Risk of general 

criminal recidivism of 

offenders with mental 

illness 

259 individuals 

subjected by court 

orders to forensic 

psychiatric evaluation 

for mental and 

behavioral disorders 

using the ICD-10  

4-fold cross-

validation 

 

RF 

 

Best model had an overall 85% 

accuracy and accounted for 91% 

of all observed re-offenses. 

 

 

Best model had a sensitivity of 

84% and specificity of 86%. 

Sonnweber, 2021  Clinical, developmental and 

social factors 

Discriminating 

between violent and 

nonviolent offending 

370 forensic offenders 

with schizophrenia 

Training (70%) and 

testing (30%) sets 

LR 

RF 

GBM 

KNN 

SVM 

Naive Bayes 

Best model had a balanced 

accuracy of 67.82% 

Sensitivity: 72.73% 

Specificity: 62.92% 

PPV: 65.98 

NPV: 70.00 

AUC: 0.764 

Watts, 2021 Sociodemographic, clinical, 

behavioral, and symptom 

variables 

Type of criminal 

offence (violent, 

sexual, nonviolent) 

1240 transdiagnostic 

patients 

 

Training (70%) and 

testing (30%) sets 

 

RF 

Elastic Net 

SVM 

Violent vs Sexual Offences: 

65.27-80.31% 

Nonviolent vs Sexual Offences: 

49.56-77.62% 

Sexual Offences vs Violent and 

Nonviolent: 59.82-71.58% 

Best models: 

 

Violent vs Sexual Offences: 

    Sensitivity: 76.74% 

    Specificity: 83.87% 
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    PPV: 97.06 

    NPV: 34.21 

 

Nonviolent vs Sexual Offences: 

    Sensitivity: 74.60% 

    Specificity: 80.65% 

    PPV: 80.65% 

    NPV: 60.98% 

 

Sexual vs Nonviolent and Violent 

Offences: 

    Sensitivity: 83.15% 

    Specificity: 60.00% 

    PPV: 95.08 

    NPV: 27.69 

VIOLENT OUTCOMES 

Kirchebner 2022 Clinical variables pertaining 

to childhood, adolescence, 

adulthood and psychiatric 

stressors 

Violent offending in 

schizophrenia  

370 offenders with 

schizophrenia 

5-fold cross-

validation; no 

external validation 

used. 

Boosted 

Classification 

Trees 

76.4% Sensitivity: 80.49 

Specificity: 71.19 

PPV: 66 

NPV: 84 

AUC: 0.83 

 Le, 2018 Text analysis from electronic 

mental health records 

 

Forensic risk 

assessment ratings as a 

proxy of violence to 

others 

Four NLP dictionary 

word lists - 6865 

mental health symptom 

words from Unified 

Medical Language 

10-fold stratified 

cross-validation; no 

external validation 

used. 

Bagging 

J48 

JRip 

SVM and LMT were the most 

accurate algorithms (accuracy of 

69-77%) with all three 

dictionaries. 

N/A 
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System, 455 DSM-IV 

diagnoses from UMLS 

repository, 6790 

English positive and 

negative sentiment 

words, and 1837 high-

frequency words from 

the Corpus 

Contemporary 

American English 

(COCA). 

 

Exact number of patients 

not reported 

 LMT 

LR 

Linear 

Regression 

SVM 

 

 

 

Linaker, 1995 55 items describing 

symptoms or behaviors 

reported or believed to be 

positively or negatively 

related to violent behaviors, 

obtained through screening 

of the medical records in the 

24 hours prior to the outcome 

Physical violence 

towards others, 

assessed by the 

screening of medical 

records 

94 patients admitted to 

a maximum-security 

psychiatric unit 

Holdout validation, 

with training 

(46.1%) and testing 

(53.9%) sets 

LR 92.1%  Specificity 100% 

Sensitivity 81.3% 

Menger, 2018 25.942 doctor and nurse text 

notes at the start of admission 

(predictors) and violence 

incident reports (outcome) 

Violent incidents in an 

inpatient unit occurring 

within the first 30 days 

of admission 

2521 psychiatric 

admissions from 6 

inpatients units 

5-fold cross-

validation. 

no external 

validation 

RNN 

CNN 

NN 

NB 

SVM 

DT 

N/A AUCs ranged from 0.654 (word 

embeddings with RNN) to 0.788 

(documents embedding with 

RNN) 

Menger, 2019 Electronic health records Inpatient violent risk 2209 psychiatric 

patients 

Training (53.5%) 

and testing (46.5%) 

samples 

SVM (radial 

kernel) 

Testing / Validation 

(Sensitivity/Specificity)  

Site 1: 92.5% / 24.8% 

AUC 

Site 1: 0.722 (0.690-0.753 95% 

CI) 

Site 2: 0.643 (0.610-0.675 95% 
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Site 2: 92.9% / 13.4% 

 

CI) 

 

Monahan, 2000 Clinical data obtained from 

interview, records, and 

questionnaires 

Violent incidents after 

20 weeks of hospital 

discharge 

939 psychiatric 

inpatients 

Bootstrapping ICT N/A 72.6% of the sample classified as 

low or high risk based on the 

prevalence of incident events 

based on a cut-off stipulated by 

the authors 

Steadman, 2000 Clinical and demographic 

risk factors collected through 

the MacArthur Violence Risk 

Assessment Study 

Predictors of violence 

risk 

939 psychiatric patients 

assessed during the 

first 20 weeks 

following hospital 

discharge 

Bootstrapping 

(1000 random 

samples with 

replacement drawn 

from original 

sample of 939). 

LR 

CTA 

ICT 

N/A LR: 0.81 AUC 

CTA: 0.79 AUC 

ICT: 0.82 AUC 

Did not report sensitivity, 

specificity, PPV or NPV. 

Suchting, 2018a Demographic variables, 

psychometric variables, and 

saliva samples for genetic 

testing of FKBP5 SNPs 

(FKBP5_13 (rs1360780); 

FKBP5_92 (rs9296158); and 

FKBP5_94 (rs9470080). 

Predictors of State 

Aggression in 

individuals with 

previous trauma  

48 participants selected 

irrespective of DSM 

diagnostic or 

psychometrically 

established clinical cut-

offs for trauma 

exposure. 

 

10-fold cross-

validation; no 

external validation 

used. 

 

Component-wise 

gradient 

boosting; 

backward 

elimination used 

for feature 

selection. 

 

 

N/A 

 

8-factor model R2 =0.66 

Did not report AUC, accuracy, 

sensitivity, specificity, PPV or 

NPV. 

Suchting, 2018b Extracting variables using 

retrospective electronic 

health records 

Predictors of 

aggression in inpatients  

29,841 patient records 

from the Harris County 

Psychiatric Center 

10-fold cross-

validation; no 

external validation 

used 

Four different 

algorithms: 

 GLM 

RF 

GBM 

DNN 

N/A 

 

GLM: 0.7801 AUC 

RF: 0.7420 AUC 

GBM: 0.7765 AUC 

DNN: 0.7137 AUC 

Thomas, 2005 Data from a large 

randomized controlled trial in 

Predictors of violence 

among patients with 

780 patients with 

psychosis, 158 of 

10-fold cross-

validation; no 

Full logistic 

regression (14 

57.5% Best Performance 
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4 inner-city mental health 

services in the United 

Kingdom 

(clinical/demographic 

variables)  

psychosis  which were violent 

during the 2-year 

follow-up period 

external validation 

used 

 

variables) 

Forward 

stepwise logistic 

regression (6 

variables) 

Full CART (123 

nodes) 

Pruned CART 

(22 nodes) 

Pruned CART 

(22 nodes: 

violent cases 

given, 5 x 

weight) 

 

 Full logistic regression  

Sensitivity - 19% 

Specificity - 96% 

PPV - 49% 

NPV - 79% 

Percent correctly classified - 77% 

Tzeng, 2004 

 

Patient insight ratings, 

medication compliance, and 

demographic characteristics 

Schedule for Assessment of 

Insight in Psychosis (SIP) 

Violence and Suicide 

Assessment Scale (VASA) 

Presence or absence of 

violent behavior 

towards people or 

things (1 year later) 

63 outpatients with 

schizophrenia, 

according to the DSM-

IV, who were in 

remission or had 

minimal psychosis 

symptoms 

 

3-fold cross-

validation; no 

external validation 

used 

SVM 76.2% An LR model was used as a point 

of comparison, however, no 

resampling measures were used 

(model developed using the entire 

sample)  

Wang, 2020 Identified 28 variables 

previously identified with 

violence or schizophrenia 

(Structured interviews, self-

report questionnaires, 

medical history, and 

demographic information) 

Violent vs Nonviolent 

(Ranging from absence 

of physical violence to 

assault causing bodily 

harm according to the 

Modified Overt 

Aggression Scale)   

275 patients with 

schizophrenia spectrum 

disorder, according to 

the DSM-IV 

 

5-fold cross 

validation; no 

external validation 

used 

LR 

LASSO 

Elastic Net 

RF 

GBRT 

57-62% 

Best performance using RF 

 

Best performance  

 

Random Forest 

AUC: 0.63 (± 0.004) 

Sensitivity: 63% (± 0.005) 
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SVM 

radial kernel 

Specificity: 32% (± 0.008) 

PPV: 62% (± 0.008) 

NPV: 54% (± 0.003) 

 

 

Table 1 – Predicting criminal and violent outcomes in psychiatry. 

A summary of input data, sample characteristics, validation methods, and machine learning models across studies.  

 

Abbreviations:  

ANN, Artificial neural networks; AUC, Area under the curve; CART, Classification and regression trees; CNN, Convolutional neural networks; CTA, Classification Tree Analysis; DNN, 

Deep neural networks; DSM IV-R, Diagnostics and Statistical Manual, Version IV, Revised; DT, Decision tree; EN, elastic net; GBRT, Gradient Boosted Regression Trees; HCR-20, 

Historical, clinical, risk management-20; ICT, Iterative classification tree; LASSO, Least Absolute Shrinkage and Selection Operator; LR, Logistic regression; NB, Naive Bayes; NN, Neural 

network; NPV, Negative Predictive Value; PPV, Positive Predictive Value. 

1The sample size showed in the table includes only the number of subjects used for the machine learning model development, with subjects used for other purposes, such as statistical 

analysis, not being included in this number.
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a)  

Authors Sensitivity 2.5% 97.5% Specificity 2.5% 97.5% 

 

Delfin, 

2019 

0.750 0.498 0.886 0.845 0.674 0.935 

Kirchebner, 

2020a 

0.830 0.777 0.873 0.739 0.651 0.811 

Kirchebner, 

2020b 

0.826 0.780 0.865 0.801 0.700 0.875 

Linaker, 

1995 

0.985 0.870 0.998 0.811 0.696 0.890 

Pflueger, 

2015 

0.841 0.768 0.894 0.860 0.790 0.909 

Sonnweber 

2021 

0.727 0.674 0.775 0.625 0.513 0.725 

Thomas, 

2005 

0.545 0.415 0.673 0.823 0.795 0.850 

Wang, 

2020 

0.630 0.534 0.716 0.321 0.256 0.394 

Watts, 2021 0.873 0.785 0.961 0.605 0.459 0.751 

AVERAGE 0.733 0.640 0.796 0.729 0.639 0.796 

 

Test for equality of sensitivities: X-squared = 281.09,   p-value = <0.000001 

Test for equality of specificities: X-squared = 382.63, p-value = <0.000001 

Correlation of sensitivities and false positive rates: Rho = 0.150 (-0.571-0.740) 

Total DOR: 9.57 (95% CI: 4.03-22.72), τ2=9.57 (95% CI: 0.00-6.93) 

Log DOR: 2.466 (95% CI: 1.534-3.397) 

posLR: 3.083 (95% CI: 1.954-4.866),  τ2= 0.437 (0.000-0.947) 

negLR: 0.342 (95% CI: 0.201-0.583), τ2= 0.566 (0.000-0.3476) 

AUC: 0.816 (95% CI: 0.745-0.875); pAUC: 0.733 

 

b) 
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Authors mean 95% CI %W(random) 

Delfin, 2019 80.50 68.92-94.02 10.1 

Kirchhebner, 2020 79.40 76.04-82.90 11.5 

Kirchhebner, 2022 75.84 71.65-80.27 11.4 

Linaker, 1995 90.65 83.78-98.07 11.2 

Pflueger, 2015 85.00 80.62-89.60 11.4 

Sonnweber, 2021 67.82 61.31-75.01 10.9 

Thomas, 2005 57.50 51.20-64.57 10.7 

Wang, 2020 47.00 46.53-47.46 11.6 

Watts, 2021 71.58 67.04-76.42 11.3 

AVERAGE 71.45 60.88-83.85 100% 

 

Number of Observations: 2798, τ2= 0.042 (95% CI: 0.018-0.153) 

 

 

Table 2: Performance Metrics: Accuracies, AUC, diagnostic odds ratio, and likelihood ratios 

A) Using the retisma function in mada, a linear mixed model with random effects was selected to produce 

summary estimates of sensitivity and specificity, as well as calculate AUC and partial AUC summary receiver 

operating characteristic (ROC) curves. Spearman’s rho was used to assess correlation between sensitivities and 

false positive rates of included studies. The total diagnostic odds ratio (DOR), and positive and negative 

likelihood ratios (posLR, negLR) were calculated in a random effects model with a DerSimonian-Laird 

estimator using the maduani function in mada. The 95% confidence interval (CI) for AUC was calculated using 

bootstrapping with 2000 iterations with the dmetatools package in R. The average AUC across models was 

0.816 (95% CI: 0.745-0.875), with a partial AUC of 0.733, and log DOR of 2.466 (95% CI: 1.534-3.397).  

B) Using the metamean function in meta, the pooled accuracy of criminal and violent models was performed 

across 2428 patients (two studies used the same sample n=370) within a random-effects model using a restricted 

maximum likelihood estimator to calculate the variance τ2. Knapp-Hartung adjustments were used to calculate 

the confidence interval around the pooled effect. The average accuracy across models was 71.45% (95% CI: 

60.88-83.86), with a heterogeneity variance τ2 of 0.0424. 
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Supplementary Figure S1: False Positive Rate Against Sensitivity Across Studies 
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Quality Scores of All Studies 

CRIMINAL OUTCOMES 

Authors Representative Confounding Outcome ML Feature 

Selection 

Class 

imbalance 

Missing 

data 

Performance Testing/ 

Validation 

Overall 

Score 

Cohen, 

1988 

Yes Yes 1) No Yes No  Yes No  Yes 6/9 

Delfin, 

2019 

No Yes 1) Yes Yes Yes Yes Yes No 7/9 

Falconer, 

2014 

Yes No  1) Yes Yes No No No  Yes 5/9 

Grann,           

2007 

Yes No 1) Yes No No No No Yes 4/9 

Kirchebner, 

2020 

No Yes 2) Yes No* No Yes Yes Yes 6/9 

McDermott,   

2006 

No Yes 2) No Yes No No Yes No 3/9 

Pflueger,      

2015 

Yes No 2) Yes Yes No No Yes No 4/9 

Sonnweber, 

2021 

No Yes 2) Yes Yes Yes Yes Yes Yes 7/9 

Watts, 2021 Yes Yes 2) Yes Yes Yes Yes Yes Yes 8/9 
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VIOLENT OUTCOMES 

Authors Representative Confounding Outcome ML Feature 

Selection 

Class 

imbalance 

Missing 

data 

Performance Testing/ 

Validation 

Overall 

Score 

Kirchebner, 

2022 

No Yes 2) Yes No Yes Yes Yes No 5/9 

Le, 2018 Yes No 2) Yes No Yes Yes No  Yes 6/9 

Linaker, 

1996 

No No 2) No Yes No No Yes No 4/9 

Menger, 

2018 

Yes Yes 2) Yes Yes No Yes No No 6/9 

Menger, 

2019 

Yes Yes 2) Yes Yes No Yes No Yes 7/9 

Monahan, 

2000 

Yes Yes 2) No Yes Yes Yes No No 6/9 

Steadman, 

2000 

Yes Yes 2) No No Yes Yes No  No 5/9 

Suchting, 

2018a 

No Yes 3) Yes Yes Yes Yes Yes No 6/9 

Suchting, 

2018b 

Yes Yes 2) Yes No Yes Yes No Yes 7/9 

Thomas, 

2005 

Yes Yes 2) Yes Yes No No Yes No 6/9 
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Tzeng, 2004 No Yes 2) Yes No No Yes No No 3/9 

Wang, 2020 No Yes 2) Yes Yes No Yes Yes No 5/9 

 

Supplementary Table S1: Quality of all studies 

We created a machine learning quality assessment table based on experts' opinion to evaluate the reproducibility and reliability of the included studies. Our 

assessment provides a quick way to evaluate published papers and can also serve as a checklist for future studies. Briefly, the instrument comprises nine 

methodological considerations, including representativeness of the sample, confounding variables, outcome assessment, algorithm selection, feature 

selection, class imbalance (where applicable), missing data, performance/accuracy, and testing/validation. Further details can be found in the Supplementary 

Material.  

* Kirchebner 2020: Feature selection was performed by ranking all variables, in order of importance, according to how often they were identified as top        

variables across backward selection, logistic regression, trees, SVMs and naive bayes. However, the exact way this was operationalized is unclear.   
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First author, year Data utilized Outcome Sample size and 

diagnosis1 

Validation Machine learning 

model 

Accuracy Other measures 

 

VIOLENT BEHAVIOR 

Barzman, 2018 Demographic variables, 

assessments of aggression, 

and static risk factors  

Risk of school violence 103 middle and high 

school students 

recruited through 

outpatient clinics, 

inpatient units, and 

emergency department 

Nested 10-fold 

cross-validation 

LR with L2 

normalization 

N/A 91.02% (assessments only) 

91.45% (assessments, clinical and 

sociodemographic data) 

Gardner, 1996 Clinical record data Violence was 

determined using 

incident reports from 

psychiatric, arrest, or 

criminal records and 

clinical interviews.  

784 subjects with a 

psychiatric diagnosis 

(schizophrenia, 

affective disorders, 

substance use 

disorders, personality 

disorders, and others) 

Not cross-validated CART N/A Sensitivity / Specificity 

One-stage RT: 7.7% / 99.2% 

One-stage NBR: 9.3% / 99.1% 

Two-stage RT: 6.9% / 99.3% 

Two-stage NBR: 6.9% / 99.5% 

Rosellini, 2018 Pre-Post Deployment Study 

(PPDS) of the Army 

STARRS dataset 

 

Risk of interpersonal 

violence 

7081 soldiers deployed 

to Afghanistan. 

 

10-fold cross-

validation; no 

external validation. 

Ensemble learning:  

LR 

 (EN with varying 

mixing parameter 

penalties, two SR, 

APS, two DT 

methods, BART, 

SVM, GBM, and 

NN) 

N/A Predictive models developed for each 

outcome, including depression (AUC 

0.88), generalized anxiety disorder 

(AUC 0.85), suicidality (AUC 0.86) and 

head injury (AUC 0.74). 

 

Super learner AUC was 0.79 for anger 

attacks, 0.80 for being bullied or hazed, 

and 0.75 for getting into a fight. 

 

The sensitivity, specificity, and balanced 

accuracy of the models were not 

reported.  

Thomas, 2005 Data from a large randomized 

controlled trial in 4 inner-city 

Predictors of violence 

among patients with 

780 patients with 

psychosis, 158 of 

10-fold cross-

validation; no 

Full logistic 

regression (14 

N/A Full logistic regression 
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mental health 

services in the United 

Kingdom 

(clinical/demographic 

variables) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

psychosis  which were violent 

during the 2-year 

follow-up period. 

 

 

external validation 

used. 

variables) 

Forward stepwise 

logistic regression 

(6 variables) 

Full CART (123 

nodes) 

Pruned CART (22 

nodes) 

Pruned CART (22 

nodes; violent cases 

given, 5 x weight) 

 

 

 Sensitivity - 19% 

Specificity - 96% 

PPV - 49% 

NPV - 79% 

Percent correctly classified - 77% 

Forward Stepwise Logistic Regression 

Sensitivity - 12% 

Specificity - 45% 

PPV - 41% 

NPV - 78% 

Percent correctly classified - 76% 

Full CART  

Sensitivity - 21% 

Specificity - 86% 

PPV - 31% 

NPV - 79% 

Percent correctly classified - 71% 

Pruned CART 

Sensitivity - 14% 

Specificity - 93% 

PPV - 38% 

NPV - 78% 

Percent correctly classified - 71% 

Pruned CART (22 nodes; violent cases 
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given, 5 x weight) 

Sensitivity - 19% 

Specificity - 87% 

PPV - 30% 

NPV - 75% 

Percent correctly classified - 71% 

CRIMINAL OUTCOMES 

 

Ang, 2013 Clinical questionnaires Being charged or not 

charged for initial 

juvenile offending 

2,899 adolescents from 

four school geographic 

areas 

Holdout validation LR 

DT 

ANN 

SVM 

Testing / validation 

LR: 94.50 / 95.20 

DT: 96.64 / 97.46 

ANN: 97.22 / 98.26 

SVM: 94.16 / 94.95 

AUC 

LR: 0.950 

DT: 0.968 

ANN: 0.973 

SVM: 0.946 

Brodzinski, 1994 Clinical and demographic 

data 

Differentiating criminal 

recidivists from non-

recidivists 

778 juvenile probation 

cases 

Training (90%) and 

testing (10%) 

samples 

Discriminant 

analysis  

ANN 

63% (discriminant) 

99% (ANN) 

N/A 

Caulkins, 1996 Clinical and administrative 

data 

Criminal recidivism 3508 offenders during 

a two-year period 

following release from 

federal prison 

Holdout validation 

with training 

(57.9%) and testing 

(41.9%) samples 

LR 

MNN 

 Eighteen variable 

model:  

 

LR:  0.689 

MNN: 0.699 

 

Eleven variable model:  

LR:  0.683 

N/A 
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MNN: 0.689 

 

 

Eight variable model: 

LR: 0.673 

MNN:  0.684 

 

 

Cope, 2014 sMRI coupled with clinical 

assessments and 

sociodemographic data 

Distinguishing 

homicide offenders 

from non-offenders 

155 youth from a 

maximum-security 

facility 

Two nested 

LOOCV 

SVM with feature 

selection 

81.29% (feature 

selection)  

78.06% (no feature 

selection) 

With feature selection: 

Specificity: 75.00% 

Sensitivity: 82.22% 

 

No feature selection: 

 Specificity: 70.00% 

Sensitivity: 79.26% 

Liu, 2011 HCR-20 questionnaire Reconviction by 

violent offenses 

882 male prisoners in 

England and Wales 

prospectively followed 

by a mean follow-up 

time of 3.31 years 

(1.34-4.24) 

Holdout validation, 

with training (50%, 

testing (25%) and 

validation (25%) 

sets 

LR 

CART 

ANN 

N/A Train 

LR: 0.72-0.75 

CART: 0.67-0.71 

MLPNN: 0.71-0.78 

 

Test 

LR: 0.63-0.68 

CART: 0.60-0.66 

MLPNN: 0.65-0.70 
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Validation 

LR: 0.64-0.66 

CART: 0.58-0.66 

MLPNN: 0.64-0.70 

Palocsay, 2000 Nine clinical/demographic 

variables 

Criminal recidivism 

among individuals 

released from prison  

10357 prisoners in two 

cohorts  

Holdout validation 

with training 

(n=2620), testing 

(n=7382) and 

validation sets 

(n=355) 

Linear regression 

ANN 

 

          1978 ANN: 

69.23% 

1978 Logistic 

regression: 66.73% 

1980 ANN: 66.98% 

1980 Logistic 

regression: 65.71%  

1978/1980 ANN: 

65.96% 

1978/1980 Logistic 

regression: 64.29 

Recidivist correct (%) 

1978 ANN: 41.26 

1978 Logistic regression: 30.41 

1980 ANN: 40.93 

1980 Logistic regression: 30.53 

1978/1980 ANN: 39.01 

1978/1980 Logistic regression: 36.35 

 

Non-recidivist correct (%) 

1978 ANN: 85.89 

1978 Logistic regression: 88.43 

1980 ANN: 82.84 

1978/1980 ANN: 82.15 

1978/1980 Logistic regression: 81.07 

Rosellini, 2016 Clinical and administrative 

data from the Army STARRS 

dataset 

first accusation of a 

major physical violent 

crime 

  

975 057 soldiers in the 

US Army in 2004–

2009 

Training (975, 057) 

and independent 

testing sample 

(43,248); of 10-fold 

cross-validated 

forward stepwise 

regression used for 

Stepwise regression, 

random forests, 

penalized 

regressions 

0.80-0.82 AUC in the 

training dataset and 0.77 

AUC  in the validation 

dataset 

Sensitivity, specificity, PPV and NPV 

were not reported. 

 

In the training dataset, an  AUC of 0.81 

was observed  among men and 0.80-

0.82 among women 
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feature selection 

  

 

 

Rosellini, 2017 Clinical and administrative 

data Army STARRS dataset 

Any crime with 

sufficient evidence to 

warrant an 

investigation  

25,966 men and 2728 

women who committed 

a first founded minor 

violent crime 

10-fold cross-

validation; external 

testing sample used 

Stepwise and 

Penalized regression 

RF 

AUC was 0.79 (for men 

and women) in the 2004-

2009 training sample 

and 0.74-0.82 (men-

women) in the 2011-

2013 test sample.   

 

 

N/A 

Silver, 2000 Official clinical and 

administrative information of 

offenders convicted of an 

indictable offense                                         

Risk of reimprisonment 

and 

 rearrest following 1 

year or 5 years after 

release 

11749 offenders 

convicted of an  

indictable offense 

between October 1976-

November 1977 

 

 

Holdout validation 

with training  

(n=5875) and 

testing (n=5874) 

sets  

LR 

CT 

 

Iterative LR 

ICT 

 

 

  Prison 1 year: 69.3%-

83.7% 

Prison 5 years: 66.5%-

82.5% 

 

Arrest 1 year: 45.6%-

68.0% 

Arrest 5 years: 54.0%-

82.2% 

 

N/A 

Silver, 2002 Official clinical and 

administrative information of 

offenders convicted of an 

indictable offense                                         

Recidivism 

(imprisonment within 1 

and 5 years, and arrest 

within 1 and 5 years 

11749 offenders 

convicted of an 

indictable offense 

between October 1976-

November 1977 

Divided data into 10 

subsamples, where 

1 was used to 

construct the risk 

assessment model 

and 9 were used for 

cross-validation  

LR 

ICT 

 

Feature selection 

using forward 

stepwise logistic 

regression  

N/A Model 1-10 

Prison 1 year: 0.77-0.85 AUC  

 Prison 5 years: 0.73-0.78 AUC 

 Arrest 1 year: 0.73-0.76 AUC 

Arrest 5 years: 0.73-0.77 AUC 

 

Multiple Models - full 
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Prison 1 year: 0.89 AUC 

Prison 5 years: 0.81 AUC 

Arrest 1 year: 0.79 AUC 

Arrest 5 years: 0.79 AUC 

 

Multiple Models - reduced 

Prison 1 year: 0.90 AUC 

Prison 5 years: 0.81 AUC 

Arrest 1 year: 0.78 AUC 

Arrest 5 years: 0.80 AUC 

Stalans, 2004 Clinical and demographic 

variables obtained through 

clinical charts and legal 

records. 

 

 

 Violent recidivism 

while on probation 

1344 violent offenders 

on probation 

 

LOOCV; no 

external validation 

used 

CTA - comparing 

against a logistic 

model with and 

without interaction 

 

 

CTA 78.6% accuracy 

 

Logistic without 

interaction 

  81.8% accuracy 

 

Logistic with interaction 

 81.8% accuracy 

 

 

CTA: sensitivity; 88.4% specificity 

 

Logistic without interaction: 9.8% 

sensitivity; 98.7% specificity 

 

Logistic with interaction :8.84% 

sensitivity; 98.9% specificity  

Vilares, 2017 fMRI collected during a 

decision-making task  

 

Mental states 

(knowledge and 

recklessness) when 

committing a 

hypothetical crime 

40 healthy controls Double-cross 

validation; no 

external validation 

used 

Elastic-Net 

Regression 

 

AUC of 0.792 

average correct 

classification rate (CCR) 

of 71% 

 

N/A 
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Haarsma, 2020 

 

Tablet-based 

neuropsychological tests 

Criminal recidivism 730 probationers  Training (80%) and 

testing (20%) 

samples 

GLM 

LDA 

k-NN 

SVM 

GBM 

RF 

EN 

N/A Testing / validation (RFE model) 

GLM: 0.68 AUC 

LDA: 0.69 AUC 

k-NN: 0.60 AUC 

SVM (polynomial): 0.67 AUC 

GBM: 0.67 AUC 

RF: 0.66 AUC 

EN: 0.70 AUC 

Delfin 2019 resting-state regional cerebral 

blood flow (rCBF) and 

clinical risk factors 

Criminal recidivism 44 forensic psychiatry 

patients 

Out-of-bag (OOB) 

error 

RF Accuracy: 82% 

Sensitivity: 75%  

Specificity: 86% 

 

AUC: 0.81 

PPV = 0.73 

NPV = 0.86 

 

Note: the dataset was not split into 

training and testing sets, and OOB error 

was used as a resampling procedure 

        

OTHER OUTCOMES 

Monaro, 2018 Behavioral Measures (mouse-

movements during a 

computerized task) 

Malingering of clinical 

depression 

100 individuals both 

with and without 

clinical depression 

Holdout validation 

with training (n=60 

and test(n=27) sets  

NB 

SMO 

LMT 

RF 

 

Feature selection: 

Correction based 

feature selection 

 

Accuracy in 10-fold-

cross validation (n=60) 

Naive Bayes - 80 

SMO - 82.5 

LMT - 80 

Random Forest - 87.5 

 

Accuracy in test set 

Note: authors did not report sensitivity, 

specificity, PPV or NPV 
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Validation: 10-fold 

cross validation  

(n=28) 

Naive Bayes - 94.4 

SMO - 88.9 

LMT - 88.9 

Random Forest - 94.4 

Ponseti, 2012 fMRI blood oxygen level-

dependent signals to child and 

adult sexual stimuli for each 

participant  

Identification of 

pedophilia 

24 participants with 

pedophilia 

32 healthy controls 

LOOCV LDA 

k-NN 

k-NN: 75-91% 

LDA: 89-95% 

Sensitivity / Specificity 

k-NN: 63-88% / 84-94% 

LDA: 88-92% / 88-100% 

Ponseti, 2015 Haemodynamic fMRI 

response to face images of 

women, girls, men, and boys 

Classification of 

Pedophilia  

24 males diagnosed 

with pedophilia 

according to the DSM-

IV-R 

(11 heterosexual 

pedophiles, 13 

homosexual 

pedophiles). 

 

LOOCV; no 

external validation 

Fisher's linear 

discriminant 

analysis 

 

 

Mean classification 

accuracy of 93% 

 

91% specificity 

95% sensitivity 

Rosenfeld, 2005 Official clinical and 

sociodemographic records 

from criminal defendants 

Stalking behavior 204 individuals 

evaluated for crimes 

related to stalking or 

obsessional harassment 

 

 

Jack-knife 

classification 

approach of training 

sample 

CART models 

comprising: Tree 

regression, Logistic 

regression,  

 

 

N/A Tree regression - AUC .649 

Logistic regression - AUC .706 
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Mazza, 2018 Computerized 

neuropsychological test 

Malingering     175 individuals  10-fold CV 

Hold-out validation 

with training 

(70.6%) and testing 

(29.4%)  sets 

LR 

SVM 

NB 

RF 

LMT 

Time-pressure models: 

95% accuracy across all 

models 

 

Non time-pressure 

models: Accuracy 

ranged from 75-95% 

AUC not reported 

 

Note: it is important to mention that a 

small testing set was used (n=20), which 

may yield inflated accuracy. 

Pace, 2019 Test taking effort assessment 

(b Test) 

Malingering 63 individuals LOOCV NB 

LR 

SL 

SVM 

RF 

NB: 90.47% 

LR: 90.47% 

SL: 92.9% 

SVM: 88.09% 

RF: 90.47% 

NB: 0.89 AUC 

LR: 0.85 AUC 

SL: 0.91 AUC 

SVM: 0.88 AUC 

RF: 0.89 AUC 

 

Note: sensitivity and specificity not 

reported. The model also did not 

separate the data into training and 

testing sets, as such, model accuracy 

may be inflated. 

        

Supplementary Table S2 – Machine learning studies predicting criminal and violent outcomes in non-psychiatric individuals.
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Authors Classification Task Method to address 

class imbalance 

True and False 

Positive/Negative 

Performance Metrics 95% Confidence 

Intervals of Accuracy 

Delfin 2019 

 

Recidivists (N=16) 

Non-recidivists (N=28) 

Downsampling of 

majority class 

TP = 12 

FP = 4 

FN = 4 

TN = 24 

Balanced Accuracy = 80.5% 

Sensitivity = 75% 

Specificity = 86% 

False Positive = 14% 

False Negative = 25% 

Standard Error = 6.3775 

Accuracy: 80.5% 

(95% CI: 68.92-94.02%) 

Kirchhebner, 2020 

 

Recidivists (N=209) 

Non-recidivists (N=135) 

None  TP = 193 

FP = 29 

FN = 39 

TN = 83 

Balanced Accuracy = 79.4% 

Sensitivity = 83% 

Specificity = 74% 

False Positive = 26% 

False Negative = 17% 

Standard Error = 2.2168 

Accuracy = 79.4% 

(95% CI: 76.04-82.91%) 

Kirchhebner, 2022 Violent offenders 

(N=294) 

Non-violent offenders 

(N=75) 

SMOTE 

 

TP = 254 

FP = 15 

FN = 53 

TN = 62 

 

Balanced Accuracy = 75.84% 

Sensitivity = 80.49% 

Specificity = 71.19% 

False Positive = 28.81% 

False Negative = 19.51% 

Standard Error = 2.1989 

Accuracy = 75.84% 

(95% CI: 71.65-76.43%) 

Linaker, 1995 Violent patients (N=32) 

Non-violent patients 

None  TP = 32 

FP = 11 

Balanced Accuracy = 90.65% 

Sensitivity = 100% 

Accuracy = 90.65% 

(95% CI: 83.79-98.07%) 
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(N=60) FN = 0 

TN = 49 

Specificity = 81.3% 

False Positive = 18.7% 

False Negative = 0% 

Standard Error = 3.6403 

 

Pflueger, 2015 Recidivists (N=128) 

Non-recidivists (N=131) 

None  TP = 108 

FP = 18 

FN = 20 

TN = 113 

Balanced Accuracy = 85% 

Sensitivity = 84% 

Specificity = 86% 

False Positive = 14% 

False Negative = 16% 

Standard Error = 2.2908 

Accuracy = 85.00% 

(95% CI: 80.64-89.61%)  

Sonnweber, 2021 Violent offenders 

(N=294) 

Non-violent offenders 

(N=75) 

Oversampling 

minority class 

TP = 214 

FP = 28 

FN = 80 

TN =  47 

Balanced Accuracy = 67.82% 

Sensitivity = 72.73% 

Specificity = 62.92% 

False Positive = 37.08% 

False Negative = 27.27% 

Standard Error = 3.4872 

Accuracy = 67.82% 

(95% CI: 61.32-75.01%) 

Thomas, 2005 Violent at follow-up 

(N=158) 

Non-violent at follow-up 

(N=622) 

None  TP = 30 

FP = 25 

FN = 128 

TN =  597 

Balanced Accuracy = 57.5% 

Sensitivity = 19% 

Specificity = 96% 

False Positive =  4% 

False Negative = 81% 

Accuracy = 57.50% 

(95% CI: 51.20-64.57%) 
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Standard Error = 1.8035 

Wang, 2020 Violent at follow-up 

(N=103) 

Non-violent at follow-up 

(N=172) 

None  TP = 65 

FP = 117 

FN = 38 

TN = 55 

Balanced Accuracy = 47% 

Sensitivity = 63% 

Specificity = 32% 

False Positive = 68% 

False Negative = 37% 

Standard Error = 0.4 

Accuracy = 47% 

(95% CI: 46.54-47.47%) 

 

Watts, 2021 Violent & Non-violent 

offenses (N=1116) 

Sexual offenses (N=124) 

 

Following downsampling: 

Violent & Non-violent 

offenses (N=248) 

Sexual offences (N=74) 

Downsampling of the 

majority class 

Metrics following 

downsampling: 

TP = 61 

FP = 99 

FN = 12 

TN = 149 

Balanced Accuracy = 71.58% 

Sensitivity = 83.15% 

Specificity = 60.00% 

False Positive = 40% 

False Negative = 16.85% 

Standard Error = 2.3928 

Accuracy = 71.58% 

(95% CI: 67.04-76.43%) 

  

Supplementary Table S3: Confusion Matrices of Classification Models  

False positive rate is calculated as 1-specificity, while false negative is calculated as 1-sensitivity. Standard error was calculated by subtracting 

the upper bound of the 95% CI from the lower bound and dividing by 3.92 (upper bound - lower bound)/3.92. This standard error calculation 

was used for all studies, apart from Wang et al. 2020, which reported standard error as 0.4. 95% confidence intervals are reported as calculated 

using an inverse variance method within a random effects model. Additionally, confusion matrices were provided according to the method used 

to address class imbalance, where applicable. It is important to note that none of the included studies reported the true positives/true negatives 

and false positives/false negative rates, and the numbers indicated in the table reflect calculations based on the prevalence, sensitivity, 

specificity, and total sample size.  
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SUPPLEMENTARY MATERIAL 

 

Scopus  
((artificial  AND intelligence)  OR  (supervised  AND machine  AND learning)  OR  (k-nearest  AND 

neighbors)  OR  (decision  AND trees) OR  (naive  AND bayes)  OR  (random  AND forest)  OR  

(gradient  AND boosting)  OR  (elastic  AND net)  OR  (support  AND vector  AND machine) OR 

(relevance AND vector AND machine) OR (Latent Class Analysis) OR (Neural Networks)) AND  

((commitment  AND of  AND mentally  AND ill)  OR  (insanity  AND defense))  OR  ((criminals)  OR  

(schizophrenia)  OR  (schizophrenia  AND spectrum  AND  other  AND psychotic  AND disorders)  OR  

(psychotic  AND disorders)  OR (forensic  AND psychiatry))  

Results: 6531 
Search Date: 2022-04-18 

 

PubMed 
(((((((((("Artificial Intelligence/classification"[Mesh] OR "Artificial Intelligence/methods"[Mesh])) AND 

("Supervised Machine Learning/classification"[Mesh]) OR "Commitment of Mentally Ill/statistics and 

numerical data"[Mesh])) OR ( "Insanity Defense/classification"[Mesh] OR "Insanity Defense/statistics 

and numerical data"[Mesh])) AND ("Criminals/classification"[Mesh] OR "Criminals/statistics and 

numerical data"[Mesh])) AND ("Schizophrenia/classification"[Mesh] OR "Schizophrenia/diagnostic 

imaging"[Mesh] OR "Schizophrenia/statistics and numerical data"[Mesh])) AND ("Schizophrenia 

Spectrum and Other Psychotic Disorders/classification"[Mesh] OR "Schizophrenia Spectrum and Other 

Psychotic Disorders/diagnosis"[Mesh] OR "Schizophrenia Spectrum and Other Psychotic 

Disorders/statistics and numerical data"[Mesh] )) AND ( "Psychotic Disorders/diagnosis"[Mesh] OR 

"Psychotic Disorders/statistics and numerical data"[Mesh] )) OR ("Forensic 

Psychiatry/classification"[Mesh] OR "Forensic Psychiatry/statistics and numerical data"[Mesh]))  

Results:  1613 
Search Date: 2022-04-18 
 
Web of Science 
(TS=(Artificial Intelligence)  OR  TS  =  (Supervised Machine Learning)  OR  TS  =  (Deep Learning)  

OR  AB  =  (Support Vector Machin*)  OR  AB  =  (Relevance Vector Machin*)  OR  AB  =  (Random 

Forest)  OR  AB  =  (Decision Tree*)  OR  AB  =  (Gradient Boost*)  OR  AB  =  (Extreme Boost*)  OR  

AB  =  (Elastic Net)  OR  AB  =  (Logistic Regression)  OR  AB  =  (Naive Bayes)  OR  AB=  (Neural 

Network*)  OR  TS  =  (Expert System*)  OR  TS  =  (Latent Class Analys*)) AND (TS = (Forensic 

Psych*) OR TS = (Commitment of Mentally Ill) OR TS = (Insanity Defence) OR TS = (Crimin*) OR TS 

= (Offend*)) 

Results: 4792 
Search Date: 2022-04-18 

 

Total records(before duplicate removal): 12936 

Total records(duplicates removed): 12420 

2. Quality assessment instrument development 
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We formed a group of multidisciplinary researchers from the fields of Neuroscience, Psychiatry, and 

Computer Science to develop a time efficient and practical assessment strategy to evaluate the quality of 

machine learning based healthcare research. For that purpose, we attempted to capture the reliability of 

the results presented in a given study and identify practical ways that methodology may be improved. 

This comprised nine methodological features, including sample representativeness, confounding 

variables, and outcome assessments, which were judged to be the most clinically pertinent components in 

machine learning-based healthcare research. Relevant considerations of each methodological feature are 

discussed in further detail in the next sections. The six remaining dimensions assess the quality and 

specific components of the machine learning approach that were used in a given study. In summary, this 

entails the algorithm or framework used, evidence that hyper-parameter optimization and feature selection 

procedures were used, whether authors provided details on how missing data and class imbalance 

problems were handled, the accuracy of a given model, and finally whether the model performance was 

tested in unseen data. These dimensions were qualitatively evaluated according to the information in 

section 3.  

3. Quality assessment instrument domains 

Methodological Feature Considerations 

1. Representativeness of  

    the sample   

Was the study representative of the heterogeneity observed in the 

target population? If not, was this related to the sampling method, 

insufficient sample size or inclusion/exclusion criteria?   

2.  Confounding variables Did the study control for the most relevant confounding variables? If 

so, were covariates assessed using subjective or objective measures?  

3.  Outcome assessment 

 

  

How were outcome measures assessed: 

A. Independent blind assessment (✓) 

B. Secure record (e.g., surgical records) (✓) 

C. Interview not blinded, self-report or medical record 

D. No description 

4. Algorithm selection  Was the machine learning algorithm used to analyse the data clearly 

described and appropriate? 

5. Feature selection Did the study describe both feature selection and hyperparameter 

tuning? Which metrics were used? 

6. Class imbalance  Did the authors address the class imbalance problem? Which method 

was used? 

7. Missing data Did the study describe how the authors handled missing data, including 

whether they were inputted or removed? 

8. Performance/accuracy Were the following performance metrics included for classification 

studies? 

A. Accuracy 

B. Sensitivity 
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C. Specificity 

D. AUC 

E. PPV/NPV 

F. 95% Confidence intervals of performance metrics 

 

Or, alternatively, were one of the following performance metrics 

included for regression studies? 

A. Mean-squared error 

B. Mean-absolute error 

C. Root-mean-squared error 

9. Testing/validation Was the test dataset "unseen" regarding model training? Was the model 

tested on a hold-out or an external dataset?  

  

3.1. Representativeness of the sample 
Machine learning models can deal with large amounts of data and the problem of heterogeneity. 

Therefore, there is less of a need to be restrictive with inclusion and exclusion criteria. Here, we evaluated 

whether the sample selected by the authors reflected the real population being studied. When the sample 

did not reflect the population being studied, we evaluated if it was because (1) the sampling methods were 

not appropriate, (2) the sample was not large enough to represent the population or (3) the inclusion and 

exclusion criteria restricted the individuals in the study. 

3.2. Confounding Variables 
To adequately control for confounding variables in machine learning, we need to ensure that they will 

have a similar effect across the entirety of the sample. To achieve this, randomization is used throughout 

the analysis. More specifically, training and testing datasets are randomised using resampling techniques, 

and the analysis is often repeated with different parameters and learning decisions (parameter tuning). 

Using the criteria, we evaluated whether the authors controlled for confounding variables. 

 
3.3. Outcome assessment 
How an outcome is defined has several important implications in a predictive model. Depending on the 

question or problem, a classification task may be appropriate, which uses a categorical outcome, or a 

regression task may be more relevant, which has a continuous numeric outcome. A clinical instrument or 

questionnaire, for example, can be used as a numeric score or it can be transformed into a categorical 

outcome by using a cut-off. We evaluated how authors assessed these outcomes, considering (1) 

independent blind assessments and secure records as high quality, (2) unblinded interview, self-report or 

medical record as lower quality and (3) when no description was available. 

  

3.4. Algorithm selection  
There are several algorithms to choose from, with each relying on slightly different assumptions of the 

underlying data. Broadly speaking, there are linear (logistic regression, linear support vector machine), 

non-linear (Naive Bayes, K-Nearest Neighbours, Learning Vector Quantization), tree-based (decision 

trees, random forest, xgboost) and neural network (convolutional neural network, multilayer perceptrons) 

models, although others exist. Certain algorithms may be better suited to particular problems. For 

example, tree-based models such as random forest may be better suited to datasets with multicollinearity 
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among features than linear-based models such as logistic regression. However, regularisation parameters 

can be used in linear-based models (such as L2 regularisation) to account for issues such as this. 

Nevertheless, it is often difficult to determine beforehand which algorithms will lead to the highest model 

performance. Therefore, it is often a good strategy to compare the model performance of several 

algorithms. In this item, we evaluated whether the authors used an algorithm that is commonly used for 

the specific type of dataset, if several algorithms were compared, and if hyperparameter tuning was used.  
 
The appropriateness of a machine learning algorithm was determined based on whether the specific data 

used in model development was congruent or incongruent with the strengths and limitations of the 

specific algorithm. For example, if a Gaussian process model was used, which is a non-sparse algorithm 

that loses efficiency in high dimensional spaces, in conjunction with a high-dimensional dataset, this 

algorithm would be deemed inappropriate for the input data. Conversely, Naive Bayes, which works well 

with high dimensional data would be considered an appropriate algorithm in such cases. Another example 

of an inappropriate model would be the use of convolutional neural networks for structural and tabular 

style datasets, as such algorithms are better suited to unstructured datasets. In cases where authors 

included both appropriate and inappropriate algorithms during model development, this consideration is 

scored with a “B”, alongside an asterisk to indicate which algorithms were inappropriate and why. Studies 

which only utilised one algorithm during model development that was deemed inappropriate received a 

score of “C”. Furthermore, studies are scored with a “B” if they did not compare multiple algorithms 

during model development and were scored as an “A” if they compared multiple algorithms that were 

deemed appropriate based on the candidate feature set.  
 
3.5. Feature selection 
A common problem in machine learning studies is the so-called small-n-large-p problem, also known as 

the curse of dimensionality, which occurs when there are more variables than examples in a dataset. 

Machine learning models created using these datasets are more prone to overfitting, which often results in 

overinflated performance in a training dataset, but much poorer performance in an external testing dataset. 

In addition, some algorithms cannot deal with more dimensions than examples. Highly correlated 

variables can also introduce more importance to a specific characteristic, decreasing the importance of the 

remaining variables. To circumvent these issues, a proper feature selection procedure, when applicable, 

should be done prior to training or as part of the training procedure, such as it happens in embedded 

methods. The feature selection can be knowledge-driven or data-driven. In this item, we examined if the 

study used a proper feature selection (if applicable). 

 
3.6. Class imbalance 
Class imbalance occurs when the distribution of the outcome classes is highly unbalanced, i.e., when one 

outcome occurs much more frequently than the other one. This may result in a model with high accuracy 

but with very little clinical utility. For example, let us suppose that we have 99 occurrences of non-

violence in our dataset and only 1 occurrence of a violent incident.  Even if our model has 99% accuracy, 

it is useless if the model cannot detect the one violent incident with high accuracy. In this item, we 

evaluated whether there was a class imbalance in the sample and if this problem was correctly addressed. 

This can be done using a series of methods, including (1) changing the metric of performance (accuracy, 

for example, is a poor form of evaluating imbalanced data sets; (2) resampling the data set by artificially 

increasing it (oversampling) or by removing examples from the majority class to create a more balanced 

data set (undersampling); (3) by generating more data with algorithms such as the Synthetic Minority 

Over-Sampling Technique (SMOTE); (4) by choosing algorithms that deal better with unbalanced 

classes, such as CART or random forests; (5) by using penalised models; or (6) by using anomaly and 

change detection. 
 
3.7. Missing data 
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It is critical to handle missing data since several algorithms cannot process incomplete data sets. 

Furthermore, it is also necessary to use an adequate imputation method to avoid introducing bias, which 

would otherwise lead to false conclusions if not addressed. It is important to report the amount of missing 

data in each variable, if these cases were excluded, or if the authors used an algorithm to input data and 

which algorithm/technique was used. Ideally, authors should provide a visual distribution of the patterns 

of missing data, such as aggregation plots, spinogram/spineplots, mosaic plots, etc. All these factors were 

evaluated in this section. 

3.8. Performance/accuracy 
Here, we evaluate whether the authors reported all relevant results and if they used the appropriate 

metrics. Studies informing only partial metrics may mask bias and flaws of the method, preventing the 

reader from fully understanding the relevance of the model. 

 
3.9. Testing/Validation 
We can divide the machine learning process into three main components: training, validation, and testing. 

A training set allows the algorithm to learn and develop a predictive model. The validation set contains 

unseen data and is used to control for overfitting. Frequently, the same dataset is divided into training and 

validation sets. After a model is trained and validated, and shows consistent performance in both these 

steps, the model can be applied in an external and independent testing set. This allows us to see if the 

model can be generalised outside of the original sample. Some validation methods include holdout 

validation, k-fold, and leave one out cross validation. 
      
A model that shows good performance in the training set but performs significantly poorer in the 

validation step is most likely due to overfitting - which occurs when the model relies more on the specific 

nuances and noise of the training dataset, resulting in poor accuracy in unseen data. In this item, we 

evaluated whether the authors properly tested and validated their models by taking steps to improve its 

generalizability. It is important to highlight that the use of cross-validation to evaluate performance 

should be discouraged when the data is large enough for a training-test split. Furthermore, the size of the 

test set should be sufficiently large for accuracy and other metrics to be estimated with high reliability.  
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Emerging technologies have enabled us to create increasingly accurate predictions about the 

propensity of psychiatric patients to commit criminal offenses.1 Machine learning models raise a 

variety of opportunities and avenues to develop educational tools, preventive measures, and 

shape public policy.2 However, despite the promise of predictive algorithms in forensic 

psychiatry, their use raises an important ethical challenge. Namely, how can we avoid further 

stigmatizing vulnerable individuals, and instead, ensure our algorithms respect their rights, 

enhance their safety, and promote their wellbeing? The noted philosopher Joel Feinberg 

envisioned a form of noncomparative justice, where each person is treated precisely as they 

deserve, without regard to the way anyone else is treated.3  

To better elucidate this concept, take the example of “voluntary” or “involuntary” criminal acts, 

which depend on an individual’s intention to commit a crime, otherwise known as means rea 

(guilty mind). When voluntary criminals are compared against voluntary criminals, such a 

system is thought to be fair and just in a legal sense. However, when involuntary criminals are 

compared with voluntary criminals in the same category, and are punished with similar severity, 

we can discern a state of injustice because of a difference in criminal culpability. As such, the 

voluntary nature of the criminal act, regardless of the severity of the crime, is a salient 

consideration.4  

In many countries, individuals with severe mental illness who commit criminal acts are evaluated 

according to noncomparative justice.5 Rather than simply punishing the offender in proportion to 

the severity and context of the crime, those with severe mental illness who lack means rea may 

be treated in a restorative framework, recognizing the need to aid, treatment, and seek to prevent 

future reoffending.5 In forensic psychiatry, this implies the need for targeted and individualized 

treatment.  
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However, several pertinent questions arise when evaluating the utility and implementation of 

such algorithms. For instance, an important consideration that is often overlooked is model 

interpretability. So called “black box” methods may perform well in testing and validation 

datasets, however without a rudimentary understanding of the directionality, and interaction 

effects, of important features, we lack the transparency required to justify implementing these 

models in high stakes clinical settings.6 Toward this end, new methods leveraging the internal 

structure of tree based algorithms can be used to directly measure local feature interaction 

effects, and provide insight into the magnitude, prevalence, and direction of a feature’s effect.7  

Similarly, even among classification models that demonstrate high accuracy, there will be 

instances where individuals are misclassified. In cases where the risks of misclassification are 

low, this may be largely unimportant. However, when dealing with the complex intersectionality 

between healthcare, personal freedom, and societal risk, this becomes a challenging 

consideration. For instance, how can we introduce ethical constraints in our models without 

significantly impacting their overall accuracy and utility? While this remains open to debate, it 

may be useful to consider such ethical goals from two distinct frameworks. 

Robert Nozick, the renowned American philosopher, once discussed the concept of moral pushes 

and pulls.8 Moral pushes involve ideals or values that propel us “from within”. From this 

framework, ethics are a set of principles that help guide us to being more virtuous individuals. 

Ethical algorithms can favour these individual moral values if the goal is to make us “better 

people”, allowing us to live a healthier life, or intrinsically, boosting moral dispositions so that 

we can better operate within society, leading to the benefit of others by proxy. Moral pulls, on 

the other hand, are constraints about the design of the algorithms. For instance, ensuring that our 

models are not predicated on immutable characteristics, and ensuring free, informed, and 
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ongoing consent.8 The concept of moral pulls also highlights the importance of patient centred 

perspectives. We argue that a prerequisite for the successful implementation of predictive models 

into routine care is for data scientists to meaningfully engage with stakeholders (healthcare 

providers, patients, and their families) to ensure the scope of the problem, and important ethical 

considerations, are adequately elucidated.  

Altogether, we advocate for a marked transformation in the field, where group level statistical 

approaches to risk assessment, therapeutic interventions, and rehabilitation are abandoned in 

favour of more precise, individualized models, developed according to a new, precision ethics 

approach.  
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One in twenty individuals worldwide suffer from depression,1,2, and limited developments have 

been made in pharmacological treatments over the last four decades 3. Current first-line treatment 

recommendations for major depressive disorder (MDD) involve medications that inhibit the 

reuptake of serotonin, norepinephrine, and dopamine through various mechanisms.4 However, as 

indicated in the STAR*D study, roughly one in three patients fail to achieve clinical remission 

through these medications 5.It is known that a sufficient clinical response to these medications 

can take an upwards of 8 to 12 weeks 6. Moreover, up to 15% of patients with MDD have a 

treatment-resistant form of the disorder 7. Altogether, this highlights the urgent need for rapid-

acting antidepressants with a novel mechanism of action. 

It has recently been shown that repeated infusions of ketamine have rapid, cumulative, and 

sustained antidepressant effects 8. It has also been shown that ketamine infusions can reduce 

suicidal ideation in treatment-resistant depression 9. This antidepressant effect persists in racemic 

formulations, such as esketamine,10 which shows non-inferiority to ketamine 11. However, the 

exact mechanism underlying its rapid antidepressant and anti-suicidal effects remains unknown. 

There is growing evidence that dysregulations in the glutamatergic and GABAergic systems are 

implicated in the pathophysiology of depression 12, which provides an opportunity for novel drug 

design and the repurposing of existing drugs. Ketamine has been shown to modulate 

extrasynaptic GABAA receptors in cortical neurons 13, and the rapid increase in glutamate that 

ketamine produces appears to be an essential component of its antidepressant effect 14. 

While many candidate pathways have been proposed to mediate the antidepressant effects of 

ketamine,15,16 few clinical trials have investigated biological predictors of treatment response. 

Among them, acute alterations in glutamate and glutamine levels, measured using in vivo 
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magnetic resonance spectroscopy, appears to mediate the antidepressant effects of ketamine 

17. However, no studies have yet identified a set of candidate biological markers that can predict 

treatment response to ketamine on an individual level. Clearly defined clinical markers in 

treatment-resistant depression coupled with effective, innovative, and fast acting treatments such 

as intranasal esketamine marks the dawn of precision psychiatry 18. 
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ABSTRACT 

Background: Selecting a course of treatment in psychiatry remains a trial-and-error process, and 

this long-standing clinical challenge has prompted an increased focus on predictive models of 

treatment response using machine learning techniques. Electroencephalography (EEG) 

represents a cost-effective and scalable potential measure to predict treatment response in Major 

Depressive Disorder.  

Method: We performed separate meta-analyses to determine the ability of models to distinguish 

between responders and non-responders using EEG across treatments, as well as a performed 

subgroup analysis of response to transcranial magnetic stimulation (rTMS), and antidepressants 

(Registration Number: CRD42021257477) in Major Depressive Disorder by searching PubMed, 

Scopus, and Web of Science for articles published between January 1960 and February 2022.  

Results: We included 15 studies that predicted treatment response among patients with major 

depressive disorder using machine-learning techniques. Within a random-effects model with a 

restricted maximum likelihood estimator comprising 758 patients, the pooled accuracy across 

studies was 83.93% (95% CI: 78.90-89.29), with an Area-Under-the-Curve (AUC) of 0.850 

(95% CI: 0.747-0.890), and partial AUC of 0.779. The average sensitivity and specificity across 

models was 77.96% (95% CI: 60.05-88.70), and 84.60% (95% CI: 67.89-92.39), respectively. In 

a subgroup analysis, greater performance was observed in predicting response to rTMS (Pooled 

accuracy: 85.70% (95% CI: 77.45-94.83), Area-Under-the-Curve (AUC): 0.928, partial AUC: 

0.844), relative to antidepressants (Pooled accuracy: 81.41% (95% CI: 77.45-94.83, AUC: 0.895, 

pAUC: 0.821). Furthermore, across all meta-analyses, the specificity (true negatives) of EEG 

models was greater than the sensitivity (true positives), suggesting that EEG models thus far 

better identify non-responders than to responders to treatment in MDD. Studies varied widely in 
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important features across models, although relevant features included absolute and relative 

power in frontal and temporal electrodes, measures of connectivity, and asymmetry across 

hemispheres.  

Conclusions: Predictive models of treatment response using EEG hold promise in major 

depressive disorder, although there is a need for prospective model validation in independent 

datasets, and a greater emphasis on replicating physiological markers. Crucially, standardisation 

in cut-off values and clinical scales for defining clinical response and non-response will aid in 

the reproducibility of findings and clinical utility of predictive models. Furthermore, several 

models thus far have used data from open-label trials with small sample sizes and evaluated 

performance in the absence of training and testing sets, which increases the risk of statistical 

overfitting. Large consortium studies are required to establish predictive signatures of treatment 

response using EEG, and better elucidate the replicability of specific markers. Additionally, it is 

speculated that greater performance was observed in rTMS models, since EEG is assessing 

neural networks more likely to be directly targeted by rTMS, comprising electrical activity 

primarily near the surface of the cortex.  Prospectively, there is a need for models that examine 

the comparative effectiveness of multiple treatments across the same patients. However, this will 

require a thoughtful consideration towards cumulative treatment effects, and whether washout 

periods between treatments should be utilised. Regardless, longitudinal cross-over trials 

comparing multiple treatments across the same group of patients will be an important 

prerequisite step to both facilitate precision psychiatry and identify generalizable physiological 

predictors of response between and across treatment options.  
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INTRODUCTION 

It has been notably demonstrated in the Sequential Treatment Alternatives to Relieve Depression 

(STAR*D) study that antidepressants fail to facilitate remission in most patients with major 

depressive disorder (MDD), and that there is no clearly preferred medication when patients 

inadequately respond to several courses of antidepressants 1. Similarly, data from a multicentre 

randomised controlled trial spanning 2439 patients across 73 general practices in the United 

Kingdom found that 55% of patients (95% CI: 53-58%) met the threshold for treatment resistant 

depression, defined as ≥14 on the BDI-II, and who had been taking antidepressant medication of 

an adequate dose, for at least 6 weeks 2.  

This long-standing clinical challenge of selecting an appropriate treatment for any given patient 

has prompted the increasing development of predictive models of treatment response using 

machine learning techniques. Broadly speaking, supervised machine learning models use 

labelled training data (e.g., features or input variables), to predict a given outcome (e.g., 

treatment response) in unseen data (e.g., testing or validation dataset) 3. In the context of 

psychiatry, these models have largely involved classification and regression tasks, where the 

outcome is a category (e.g., responders vs. non-responders), or a continuous outcome (e.g., 

depression change scores). There are several available algorithms to select from, each relying on 

a series of assumptions of the underlying input data. Moreover, an important consideration in 

model development is hyperparameter tuning, which involves finding a configuration of tuning 

parameters prior to model training that results in the best performance (e.g., accuracy for 

classification models, and lowest root mean squared error for regression models, respectively). A 

detailed overview of supervised machine learning 4, algorithm selection 3, and hyperparameter 

tuning 5can be found elsewhere.  
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Thus far, most studies have utilised baseline clinical data to predict prospective treatment 

response at an individual level, with varying degrees of success and methodological robustness 6. 

Similarly, there is a growing interest in the use of neuroimaging and neurophysiological markers 

as input features to these models. For instance, in a recent meta-analysis using MRI to predict 

treatment response in MDD, comprising 957 patients, the overall area under the bivariate 

summary receiver operating curve (AUC) was 0.84, with no significant difference in 

performance between treatments or MRI machines 7. AUC, as described elsewhere, is a measure 

ranging from 0-1 indicating how well a parameter can distinguish between two diagnostic groups 

(e.g., responders/non-responders to an intervention).  

However, fMRI and MRI remain impractical as widespread clinical tools to predict treatment 

response in psychiatry, considering high costs associated with each scan, and the excessive wait 

times to access a limited number of MRI machines. It was also recently shown in a landmark 

study that due to considerable analytical flexibility in fMRI pipelines, seventy independent teams 

yielded notably different conclusions when presented with the same dataset and series of 

hypotheses 8. 

In contrast, measures such as electroencephalography (EEG) are comparably more cost-effective 

and scalable as a potential clinical tool to predict treatment response. As described elsewhere 9, 

EEG oscillations refer to rhythmic electrical activity in the brain and constitute a mechanism 

where the brain can regulate changes within selected neuronal networks. This repetitive brain 

activity emerges because of the interactions of large populations of neurons. As such, there is 

evidence that MDD may be related to abnormalities in large-scale cortical and subcortical 

systems distributed across frontal, temporal, parietal, and occipital regions 9.  
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For instance, power amplitudes in specific frequency bands, known as band power, are 

associated with different mechanisms in the brain. Although incompletely understood, alpha 

band power (8-12 Hz) reflects sensory and attentional inhibition and has been shown to be 

associated with creative ideation 10, beta frequencies (13-30 Hz) are prominent during problem 

solving 11, while delta frequencies (≤4 Hz) are notable during deep sleep 12, gamma frequencies 

(30-80 Hz) during intensive concentration 13, and greater theta band frequencies (4-8 Hz) during 

relaxation, respectively 14. Alpha asymmetry, which measures the relative alpha band power 

between hemispheres, particularly within frontal electrodes, have been shown to discriminate 

individuals with MDD from healthy controls, although inconsistencies have been found across 

literature 15. Similarly, beta and low gamma powers in fronto-central regions have been shown to 

be negatively correlated with inattention scores in MDD 16. Moreover, intrinsic local beta 

oscillations in the subgenual cingulate were found to be inversely related to depressive 

symptoms, particularly in the lower beta range of ~13-25 Hz 17. Additionally, in specific 

contexts, gamma rhythms, which represent neural oscillations between 25 and 140 Hz, have been 

shown to distinguish patients with MDD from healthy controls, and various therapeutic agents 

for depression have also been shown to alter gamma oscillations 18. Patients with depression also 

show more random network structure, and differences in signal complexity 15, which may serve 

as replicable biomarkers of treatment response and remission.  

A detailed description of potential EEG biomarkers of depression including signal features, 

evoked potentials, and transitions in resting-state EEG between wake and deep sleep, can be 

found elsewhere 15. Altogether, no robust individual biomarker of treatment response in MDD 

has emerged. Towards this end, in a meta-analysis of treatment response prediction during a 

depressive episode, it was shown that the sensitivity across articles was 0.72 (95% CI=0.67-
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0.76), and specificity was 0.68 (95% CI=0.63-0.73), respectively 19. Nonetheless, most included 

studies used linear discriminant analysis in the absence of adequate cross-validation methods, 

training, and testing sets, or hyperparameter tuning, which may have led to biased performance 

metrics and a greater likelihood of statistical overfitting. Therefore, in the present study, we 

aimed to meta-analyse and systematically review studies that used machine learning techniques 

to predict treatment response in MDD.  

METHODS 

This study has been registered on PROSPERO with the registration number PROSPERO 

CRD42021257477. 

Search strategy 

Three electronic databases (PubMed, Scopus, and Web of Science) were examined for articles 

published between January 1960 and February 2022. To identify relevant studies, the following 

structure for the search terms was used: (Supervised Machine Learning OR Artificial 

Intelligence) AND (Major Depressive Disorder) AND (Electroencephalography) AND 

(Interventions OR Trials). The complete filter is available in the supplementary material. We 

also screened references from the included articles to identify potential missed articles. There 

were no language restrictions.  

Eligibility criteria 

This meta-analysis was performed according to the PRISMA statement 20. We selected original 

articles that assessed patients with a psychiatric disorder treated with pharmacological or non-

pharmacological interventions coupled with machine learning models and 

electroencephalography (EEG) features to predict treatment outcomes. Review articles and 

preclinical trials were excluded. A minimum criterion of cross-validation or training and testing 
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sets were required for study inclusion, since models lacking resampling procedures are less likely 

to appropriately generalise to independent datasets. Furthermore, studies with small sample sizes 

(≤30) that did not correct for overfitting were excluded, since cross-validation with small sample 

sizes, in the absence of training and testing sets, can lead to inflated and highly variable 

predictive accuracy 21. Details relating to excluded studies can be found in Supplementary Table 

1.  

Data collection and extraction 

Initially, the potential articles were independently screened for title and abstract contents by two 

researchers (DW and RFP). Then, they also obtained and read the full text of potential articles. A 

third author (ICP) provided a final decision in cases of disagreement. Data extracted from the 

studies included publication year, sample size, diagnosis, EEG system, reference choice, 

impedance, number and type of electrodes, method for de-artificing, feature selection and 

extraction method, type of intervention, outcomes of interest, machine learning algorithm, and 

performance metrics of the models (i.e., accuracy, balanced accuracy, sensitivity, specificity, 

area under the curve, true positive, false positive, true negative and false negative, and 

coefficient of determination). We also developed a quality assessment instrument specific to 

machine learning studies since there is no tool for quality assessment in machine learning 

studies. Briefly, the quality assessment evaluates studies according to several domains including 

representativeness of the sample, confounding variables, outcome assessment, machine learning 

approach, feature selection, class imbalance, missing data, performance/accuracy, and 

testing/validation. This instrument, and a brief description of each component, are further 

described in the Supplementary Material. Additionally, we utilised the Quality Assessment of 
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Diagnostic Accuracy Studies-2 (QUADAS-2) 22 to assess potential bias and variation in each 

included study, as described in Supplementary Table 2.  

In terms of the analysis, “mada” 23, “dmetatools” and “meta” packages in R were used to meta-

analyse diagnostic accuracy studies. The metamean function in the “meta” package was used to 

pool accuracy across studies in a random effects model using an inverse variance method with 

Knapp-Hartung adjustments to calculate the confidence interval around the pooled effect. A 

restricted maximum-likelihood estimator was used to calculate the heterogeneity variance τ2. 

Moreover, the madad function in the “mada” package was used to calculate the sensitivity, 

specificity, and pAUC across studies, while the madauni function was used to calculate the 

Diagnostic Odds Ratio (DOR), positive likelihood ratio (posLR), and negative likelihood ratio 

(negLR). AUC was calculated using the AUC_boot function in dmetatools, with an alpha of 0.95 

and 2000 bootstrap iterations.  

RESULTS  

We found 2489 potential abstracts and included 15 articles in the present meta-analysis and 

systematic review, two included after reference screening (Supplementary Table). A list of 

included studies as well as their most relevant characteristics and findings are detailed in Table 1. 

Two separate quality assessments can be observed in the supplementary material. Of the 

included studies, seven predicted response to brain stimulation therapies 24–30, and eight predicted 

response to pharmacological treatment 31–38. Additionally, a complete breakdown of how each 

study defined treatment response can be found in Supplementary Table S4. 

Studies predicting treatment response to brain stimulation therapies 

There were seven studies using EEG features to predict treatment response to brain stimulation 

24–30. Among these, all predicted response to repetitive transcranial magnetic stimulation (rTMS). 
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Further information relating to feature extraction methods, feature selection, and extracted 

features can be found in Table 2.  

Corlier and colleagues predicted treatment response to open label 10 Hz rTMS applied to the left 

dorsolateral prefrontal cortex (DLPFC) in a sample of 109 patients with MDD. Treatment 

response was defined as a decrease of ≥40% in post-treatment 30-item inventory of depressive 

symptomatology—self-rated (IDS-30) scores. Extracted features comprised changes in 

neurophysiological connectivity in the individual alpha frequency (IAF) band in response to 

rTMS stimulation. Using an elastic net model, which provides an embedded form of feature 

selection, the authors reported an accuracy of 61.8-69.3%, with the best performance using alpha 

spectral coherence features, defined as spectral correlation in the alpha frequency band. Of note, 

the same model showed 77% accuracy in a unilateral treatment subgroup 26. 

Furthermore, Erguzel and colleagues developed a model to predict antidepressant response to 20 

sessions of adjunctive 25 Hz rTMS applied to the left PFC in a sample of 147 individuals with 

MDD. Responder status was operationalized as a ≥50% reduction in Hamilton Depression 

Rating Scale (HAM-D) scores at the end of treatment. The best performance was observed in a 

Support Vector Machine (SVM) model in the theta frequency band across prefrontal regions 

using cordance features, which combines absolute and relative resting EEG activity, with an 

accuracy of 86.4% 29. Additionally, Hasanzadeh et al. developed a model to predict response to 

5-sessions of 10 Hz rTMS applied to the left DLPFC among 46 patients with MDD. Treatment 

response was defined as ≥50% decrease in BDI-II or HAMD-24 scores, or by BDI ≤ 8 (HAMD-

24 ≤ 9) which indicates remission. Using a k-Nearest Neighbours (k-NN) model, the best 

performance was observed using Lempel-Ziv complexity features in the beta frequency band, 

which counts the number of distinct segments in the signal, with an accuracy of 82.6%.30. 
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Another study 27 predicted treatment response (≥50% improvement in HAMD-17) in an 18-

session open-label trial of 25 Hz rTMS to the left prefrontal cortex, comprising 55 patients with 

MDD using cordance features in the delta and theta frequency bands, resulting in 89.09% 

accuracy. However, since accuracy was assessed using internal k-fold cross-validation alone, 

performance may be over-optimistic. In another study, treatment response was predicted within a 

15-session open-label trial of 10 Hz left prefrontal rTMS in 39 patients with MDD using theta, 

upper alpha, and upper gamma power and connectivity, as well as theta-gamma coupling 

features, resulting in an accuracy of 91% 24. Similarly, in another study using the same 

experimental design in 32 patients with MDD, treatment response was predicted using theta and 

alpha power and connectivity, frontal theta cordance, and alpha peak frequency, resulting in an 

accuracy of 86.66% 25. Furthermore, other studies with insufficient sample sizes predicted 

response to tDCS 39, and rTMS 40, as further described in Supplementary Table S1. 

Across neurostimulation trials, important features included absolute and relative power in frontal 

electrodes (alpha and theta band), connectivity measures (theta and gamma), spectral entropy, 

and cordance features across alpha, theta, delta, and gamma frequency bands. As described 

elsewhere 41, spectral entropy of a signal is a measure of its spectral power distribution and is 

based on Shannon’s entropy. With respect to important channels, one study 27 found Fp1, Fp2, 

F3, F7, and F8 in the theta frequency band to be important features following feature selection, 

and these same features were used in a follow-up study 29 by the same group, largely maintaining 

model accuracy (89.12% vs 78.3-86.4%, respectively). One study 30 compared nonlinear, power 

spectral density, bi-spectral features, and cordance, with the best performance observed when 

restricting features to power over all 19-channels in delta, theta, alpha and beta frequency 

ranges.  Furthermore, another study 24 found enhanced theta power at Fz to be significantly 
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different between responders and non-responders (F1=8.577, p=0.006), however no main effect 

for frontal-midline theta power was observed in a follow-up study 25. Furthermore, three studies 

24,25,29 did not report feature selection methods, and surprisingly, no studies compared multiple 

feature selection methods. Further details can be observed in Table 2.  

Studies predicting clinical response to pharmacological treatment  

Seven studies developed predictive models of clinical response to pharmacological treatment 31–

38.  Among these, three studies assessed treatment response to various classes of antidepressants 

within randomised double-blind trials 32–34,37, one assessed response within a randomised trial of 

ketamine or placebo 31, one assessed response in an open-label trial of an SSRI 42, and two other 

studies assessed response to sertraline 37, and escitalopram 38, respectively.  

Wu and colleagues developed a machine learning model known as Sparse EEG Latent SpacE 

Regression (SELSER), applied to alpha, beta, delta, and gamma frequency bands, to predict 

antidepressant treatment response using resting state EEG. SELSER was first trained on data 

from the largest neuroimaging-couped placebo-controlled randomised clinical study of 

antidepressant efficacy, comprising 309 patients. The generalizability of the antidepressant 

signature was tested in two independent samples of depressed patients treated with 

antidepressants, and another sample of patients treated with rTMS to assess the specificity of 

SELSER's signature for predicting response to antidepressants. Response was defined according 

to HAMD-17 change scores at the end of treatment. SELSER was shown to generalise across 

antidepressant datasets, with an R2 of 0.60 in predicting response to sertraline, and an R2 of 0.41 

in predicting response to placebo, respectively 37. 
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Cao and colleagues developed a machine learning model to predict rapid antidepressant response 

to ketamine in a sample of 55 patients with treatment resistant depression. Response was defined 

as ≥ 45% reduction in depressive symptoms (HAMD-17) 240 minutes following infusion. Using 

EEG power in delta, theta, lower alpha, and upper alpha bands, as well as alpha asymmetry in 

frontal electrodes as candidate features, the best performance was observed using SVM with a 

radial kernel, resulting in an accuracy of 78.4% 31. 

De la Salle and colleagues developed a model to predict response within a double-blinded 12-

week trial of escitalopram, bupropion, or combined treatments, in 47 patients with treatment 

resistant depression. Clinical response was defined as a ≥ 50% reduction in MADRS scores from 

baseline, and remitters were operationalized as those with ≤ 10 MADRS scores at posttreatment. 

Within a logistic regression model, change scores in middle right frontal cordance and prefrontal 

cordance across delta, theta, alpha, and beta frequency bands resulted in an accuracy of 74% and 

81% in predicting clinical response, respectively. Similarly, clinical remission could be predicted 

with 70% accuracy using prefrontal cordance, however middle right frontal cordance features 

were not discriminative (51% accuracy).  It is important to note that EEG features alone resulted 

in better accuracy (74-81%) than clinical features alone (66%) or a combined model of EEG and 

clinical features (64-66%) 33.  

Furthermore, Zhdanov et al. predicted antidepressant response to an 8-week open-label trial of 

escitalopram (10-20 mg) in a sample of 122 patients with MDD. Patients were classified as 

responders if they showed ≥50% reduction in Montgomery-Asberg Depression Rating Scale 

(MADRS) scores at the end of treatment. Of note, four classes of features were used, comprising 

electrode-level and source-level spectral features, multiscale-entropy-based features, and 

microstate-based features, as described in further detail within Supplementary Table 1. Using 
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baseline EEG features alone, their SVM model showed an accuracy of 79.2%. Performance 

improved slightly when adding EEG features from the second week of treatment, with an 

accuracy of 82.4% 38.  

In another study, Rajpurkar and colleagues predicted improvement in individual symptoms 

within the HAM-D from baseline to week 8 within a randomised trial of escitalopram, sertraline, 

or extended-release venlafaxine in a sample of 518 patients with MDD. Pre-treatment EEG 

candidate features included frontal alpha asymmetry, occipital beta asymmetry, and the ratio of 

beta/alpha and theta/alpha band power for each electrode. Using a gradient boosting machine 

(GBM) model with embedded feature selection, the authors reported an R2 of 0.375-0.551, with 

the best performance using EEG and baseline symptom features 36. Other studies predicted 

response to various classes of antidepressants, resulting in an accuracy of 88% 34, treatment 

remission, resulting in an accuracy of 64.4% 32, and treatment response to an open-label trial of 

an SSRI, resulting in an accuracy of 87.5% 35.  

Across medication trials, important features included alpha, theta, and gamma power in frontal 

electrodes, coherence between frontal and temporal electrodes, change scores in delta power, 

ratio of alpha and theta power in temporal electrodes, and asymmetry between hemispheres. 

With respect to important channels, two studies 31,36 found Fp2 absolute theta to be among the 

top ten features to predict response to SSRIs/SNRI, and ketamine, respectively. Additionally, 

two studies 34,36 showed baseline power at F7 to be an important feature, although in different 

frequency bands, corresponding to alpha, and beta and gamma, respectively. Overall, studies 

varied widely in the number of electrodes, electrodes of interest, and feature extraction methods, 

which preclude a set of well-elucidated individual biomarkers of treatment response.  
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Improvements in model accuracy by incorporating EEG features 

Additionally, we sought to investigate the contribution of EEG-based features to predictive 

accuracy in cases where clinical variables were also incorporated into predictive models of 

treatment response. However, only six studies 24–26,34,36,38 (42.8%) used both EEG and clinical 

candidate features within model development. Among them, only one 26 reported differences in 

model accuracy between EEG features, clinical features, and combined models. Corlier and 

colleagues reported that alpha spectral correlation features predicted treatment response with 

69.3% accuracy (Sensitivity: 67.1%, Specificity: 70.9%), while baseline IDS-30 scores predicted 

treatment response with 75.1% accuracy (Sensitivity: 64.1%, Specificity: 83.6%). Combining 

both features lead to greater model performance, with an accuracy of 79.2% (Sensitivity: 75.7%, 

Specificity: 81.9%) 26.  

Quality Metrics 

Overall, samples used to develop models were small, with a median sample size of 55 among 

studies predicting response to neurostimulation, and 86.5 among studies predicting response to 

antidepressant medication, respectively. Quality metrics were assessed using the QUADAS-2 22, 

and a quality assessment instrument specific to machine learning. These quality assessment 

metrics can be found in Supplementary Table 2, and the Supplementary Material, respectively. 

The QUADAS-2, as described elsewhere22, evaluates risk of bias according to the domains of 

patient selection, index test, reference standard, and flow and timing. Overall, most studies 

showed low risk of bias according to patient selection, how treatment response was defined, and 

the time interval between EEG assessments and treatment follow-up. However, 7 of 15 (46.6%) 

24–26,29,30,33 showed a high risk of bias in reference standards for model development, which 



Ph.D. Thesis – D. P. Watts; McMaster University – Neuroscience.  

 

159 
 

included a lack of training/testing sets, and lack of blinded assessment to treatment allocation 

when collecting symptom scales and EEG data.  

With respect to the machine learning quality assessment, the median score for neurostimulation 

studies was 5/9 (55.5%), and the median score for psychiatric medication studies was 6.5/9 

(72.2%), respectively. Most studies 24–33,35,38 did not discuss methods to address class imbalance, 

which occurs in classification models where there is a disproportionate ratio of observations in 

each class (e.g., responders vs non-responders). Moreover, several studies 24,25,27–30,32–34,36 

evaluated performance using cross-validation in the absence of training and testing sets, which 

increases the risk of model overfitting, and may lead to biased results.  

Meta-analyses of predictive models of treatment response using EEG 

Within the fifteen studies included in the systematic review, seven predicted treatment response 

to rTMS  24–30, and eight predicted response to antidepressant treatments (ketamine, 

escitalopram, sertraline, escitalopram, bupropion, and venlafaxine) respectively 31–34,36–38,43. 

Among them, eleven involved binary classification models 24–26,28–30,32,33,44–46(response vs non-

response) and reported summary statistics required to pool predictive accuracy. A detailed 

summary of performance metrics across models can be found in Supplementary Figure S4. The 

accuracy of treatment response prediction models in MDD across 758 patients was pooled in a 

random-effects model using an inverse variance method with restricted maximum likelihood 

estimator to calculate the heterogeneity variance τ2. Furthermore, Knapp-Hartung adjustments 

were used to calculate the confidence interval around the pooled effect.  

Overall, across six studies comprising 438 patients with MDD, the pooled accuracy of treatment 

response prediction using EEG was 83.93% (95% CI: 78.90-89.29), with a heterogeneity 

variance τ2 of 0.0044 (95% CI: 0.0009-0.0296), as depicted in Figure 1. Moreover, the median 
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sensitivity across studies was 77.96% (95% CI: 60.05-88.70), and median specificity was 

84.60% (95% CI: 67.89-92.39), respectively. Additionally, as shown in Table 3, the AUC was 

0.850 (95% CI: 0.747-0.890), with a pAUC of 0.777, whereas the total DOR was 23.49 (95% CI: 

10.40-52.02), with a posLR of 5.232 (95% CI: 3.15-8.67), and negLR of 0.271 (95% CI: 0.195-

0.376), respectively. Briefly, DOR is a ratio of the odds of testing positive (e.g., predicted as a 

responder) when actually reaching therapeutic response to treatment, relative to the odds of 

testing positive (e.g., predicted as a responder), when failing to respond to treatment, although 

this metric is also dependent on prevalence 47. Further information regarding this metric can be 

found elsewhere 48. Similarly, posLR describes the probability of testing positive divided by the 

probability a positive test would be expected in a negative case, whereas negLR is defined as the 

opposite. A posLR of 10 or more and a negLR of 0.1 or less are generally deemed to be 

informative tests. Additionally, considering potential study heterogeneity across treatment 

modalities, a subgroup analysis was performed for rTMS and antidepressant models, where these 

outcomes were assessed separately, as shown in Supplementary Figures S1-S4.  

Efficacy of predicting treatment response to rTMS 

Across six studies 24–26,28–30, comprising 438 patients, the pooled accuracy of rTMS treatment 

response prediction using EEG was 85.70% (95% CI: 77.45-94.83), with a heterogeneity 

variance τ2 of 0.0051 (95% CI: 0.0004: 0.0668). The median sensitivity across studies was 79.4% 

(95% CI: 58.65-90.80) and median specificity was 92.05% (95% CI: 81.70-99.30), respectively. 

Overall, the AUC across studies was 0.895 (95% CI: 76.07-93.99), with a partial AUC of 0.821, 

a DOR of 35.48 (95% CI: 7.805-161.364, τ2=2.797), posLR of 7.098 (95% CI: 2.843-17.725, 

τ2=0.915), and negLR of 0.234 (95% CI: 0.122-0.448, τ2=0.478), respectively.  
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A test for equality of proportions with a continuity correction of 0.5 yielded a Chi-Squared (X2) 

value of 20.05 (p= 0.0012) and 20.62 (p= 0.00095) for sensitivities and specificity, respectively. 

Moreover, a moderate negative correlation was observed between sensitivities and false positive 

rates (Rho = -0.526 (95% CI: -0.937 – 0.498). Further details can be observed in Supplementary 

Figures S1 and S3.  

Efficacy of predicting treatment response to antidepressants 

Across five studies, comprising 325 patients, the pooled accuracy of antidepressant treatment 

response prediction using EEG was 81.41% (95% CI: 71.09-92.23), with a heterogeneity 

variance τ2 of 0.0052 (95% CI: 0.00-0.11), as depicted in Supplementary Figure S2. The median 

sensitivity across studies was 77.78% (95% CI: 61.14-88.50), and median specificity was 

82.06% (95% CI: 65.54-95.24), respectively. Overall, the AUC of studies predicting response to 

antidepressant medications was 0.764 (95% CI: 0.710-0.899) with a partial AUC of 0.756. 

Furthermore, the overall DOR was 19.02 (95% CI: 5.51-65.61), with a posLR of 4.30 (95% CI: 

1.92-9.64), and negLR of 0.296 (95% CI: 0.208-0.422). A test for equality of proportions with a 

continuity correction of 0.5 yielded an X2 of 3.8 (p=0.434) for sensitivities and an X2 of 23.67 

(p=0.0000927) for specificities, respectively. Moreover, a weak negative correlation of 

sensitivities and false positive rates were observed across studies (Rho = -0.016, 95% CI: -0.886-

0.879). Further details can be observed in Supplementary Figures S2 and S4.  

Considering the small number of antidepressant studies, we performed another meta-analysis 

with the addition of three studies 49–51 that were excluded due to a small sample size (N ≤ 30), 

increasing the total sample to 402 patients with MDD. This resulted in a pooled accuracy of 

84.52% (95% CI: 77.67-91.98, τ2= 0.0034), median sensitivity of 82.07% (95% CI: 60.96-

91.72), median specificity of 84.47% (95% CI: 65.28-92.55), and AUC of 0.794 (95% CI: 0.728-
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0.887). Additionally, the DOR was 28.98 (95% CI: 9.95-84.4), with a posLR of 5.20 (95% CI: 

2.67-10.15), and negLR of 0.26 (95% CI: 0.19-0.37). Further details can be found in 

Supplementary Figure S5.  

DISCUSSION 

While there is a great deal of promise in using EEG within machine learning models to predict 

treatment response in MDD, there does not appear to be a consensus on collection methods, or 

consistent physiological markers of response to antidepressants, or rTMS across studies. Given 

the complexity of MDD, and the likelihood of heterogeneity in important features across 

patients, the field may require a conceptual shift away from the search for singular biomarkers, 

towards the use of composite features, identified using multivariate models. As such, it may be 

the case that no singular neurophysiological biomarker will demonstrate the sensitivity and 

specificity required to guide treatment selection in MDD. Rather, a composite biomarker 

comprising a series of distinct, but mutually informative features, may serve to both improve our 

mechanistic understanding of treatment response, and appropriately model this phenomenon. 

However, it is important to highlight that multimodal feature combinations carry several 

additional considerations. Namely, if complex approaches such as source localization are 

required to provide meaningful accuracy, this may provide a significant challenge in the clinical 

implementation of such models. Additionally, while resting-state features provide greater 

scalability relative to EEG activation patterns during specific tasks, the latter may inform 

features that could perhaps be more sensitive and specific in modelling clinical improvement in 

response to a given treatment.  

Model performance across meta-analyses 
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Overall, model performance in predicting response to rTMS (accuracy = 85.70%, 95% CI: 

77.45-94.83; AUC = 0.895, 95% CI: 76.07-93.99, DOR = 35.48, 95% CI: 7.805-161.364) was 

greater than predicting response to antidepressants (accuracy = 81.41%, 95% CI: 71.09-92.23; 

AUC = 0.764, 95% CI: 0.710-0.899, DOR = 19.02, 95% CI: 5.51-65.61), even after the addition 

of three excluded studies to increase the sample size (accuracy = 84.52%, 95% CI: 77.67-91.98; 

AUC = 0.794, 95% CI: 0.776-0.919; DOR = 28.98, 95% CI: 9.95-84.4). This was also found 

relative to a total model including 12 studies (N=792) across all rTMS and medication trials 

(accuracy = 83.93%, 95% CI: 78.90-89.29; AUC: 0.850, 95% CI: 0.600-0.887; DOR = 23.49, 

95% CI: 10.40-52.02).  

There are several potential contributing factors to this finding, as models that predicted response 

to rTMS utilised data from open-label trials that lacked an adequate sham condition. However, it 

is posited that this may be reflective of very specific targets across rTMS studies, since all 

involved high-frequency stimulation (10-25 Hz) to the DLPFC. Moreover, it is speculated that 

EEG, which measures electrical activity primarily near the surface of the cortex, is assessing 

neural networks that are more likely to be directly targeted by rTMS. Conversely, with respect to 

pharmacotherapy, the effect is much more indirect and potentially dependent on other factors 

that EEG cannot access such as hepatic metabolism, and pharmacokinetic interactions.  

Interestingly, across all four meta-analyses, model specificity (82.06-92.05%) was notably 

greater than model sensitivity (77.96-82.07%), even when considering the upper and lower 

bounds of the confidence intervals. This suggests that across all treatment modalities, including 

rTMS, antidepressants, and a combined model, EEG features are better able to capture predictors 

of clinical non-response to treatment, rather than predictors of clinical response. As such, it is 

possible that EEG may show greater utility in determining whether a patient will not respond to a 
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given intervention at baseline.  However, prospective validation with large samples in 

independent cohorts will be necessary to determine the reliability of this finding.  

Additionally, the rTMS model showed a higher DOR (DOR=35.48, 95% CI: 7.805-161.364; 

τ2=2.797, 95% CI: 0.00-8.402), relative to the total model (DOR=23.49, 95% CI: 10.40-53.02; 

τ2=1.395, 95% CI: 0.00-2.13), and antidepressant model (DOR=19.02, 95% CI: 5.51-65.61); 

τ2=1.27, 95% CI: 0.00-14.79), respectively. This indicates that the odds for positivity among 

individuals who respond to treatment is 35 times higher than the odds for positivity among 

individuals who will not respond to treatment. However, it is important to highlight that a large 

upper and lower bound of the confidence interval was observed across rTMS studies, as well as 

greater heterogeneity.  

Independent validation, feature replicability, and clinical outcomes  

Nonetheless, there is a need for greater emphasis on testing model performance with independent 

samples, greater consistency in sample collection and model development, and an increased 

focus on replicating features identified in previous models. Additionally, nine studies 24–30,33 

(60%) included in the present meta-analysis and systematic review did not test accuracy in 

holdout data, relying instead on internal cross-validation, which may lead to overoptimistic 

performance metrics. Furthermore, most studies (57.1%) utilised data from open-label trials 

lacking adequate double-blind procedures, and as such, there is a risk of bias pertaining to the 

scoring and interpretation of treatment response. There also remains an unmet need for 

prospective studies that compare features between models of treatment response and remission 

outcomes. Thus far, only one study 33 has assessed both outcomes, although it did not report a 

difference in top features between these models. It remains to be determined whether there are 
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reproducible features that are specific to reaching threshold for treatment response, relative to 

treatment remission.  

Definitions of clinical response  

A majority of studies contained in the present review (86.6%) used binary classification models 

to discriminate treatment responders’ treatment from non-responders. As detailed further in 

Supplementary Figure S4, studies varied in terms of the specific clinical scale and change-score 

thresholds that constituted treatment response. Overall, four studies (26.6%) selected a ≥ 50% 

reduction on the HAMD-17 as the threshold of clinical response, while three studies (20%) 

defined clinical response as ≥ 50% reduction on the MADRS. Large differences in treatment 

duration were also observed across trials. Importantly, greater standardisation in how clinical 

response is defined is required to better assess the performance of prospective models, aid in the 

reproducibility of findings, and improve the likelihood of real-world clinical utility of ML 

models in psychiatry. Similarly, as described elsewhere 52, there is a lack of clear consensus on 

how treatment resistance is defined, which highlights the need for greater consistency across 

studies.  

Comparison of algorithms across studies 

Furthermore, only three studies (20%) 28,44,53 assessed the performance of multiple algorithms, 

which limits a comparison on which algorithms tended to perform well. Considering this, two 

studies 39,40 that were excluded due to insufficient sample size which assessed multiple 

algorithms were pooled with included studies to examine potential trends, comprising a total of 

five studies. Among them, SVM was compared alongside other algorithms such as random forest 

within five studies and resulted in the best performance in 60% of cases. In the other 40% of 

cases 39,53, only composite accuracy across algorithms was reported. As described elsewhere 54, 
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SVM is well suited to very high dimensional data, considering its use of support vectors, various 

available kernels, and computational efficiency in large datasets.  

Pre-processing strategies across studies 

With respect to pre-processing strategies, all studies used a bandpass filter to limit included 

frequencies to a specific range, although studies varied widely (0.1-80 Hz) in terms of the upper 

and lower bounds. One study 38 also reported using a notch filter at 60 Hz, which attenuates 

frequencies in a specific range to very low levels. Furthermore, five studies 27–29,36,53 (33.3%) 

used independent component analysis to filter artefacts, and five 27–29,53,55 (33.3%) used a fast 

Fourier transform method. Other studies 30,38 used available pre-processing packages, such as the 

EEGLAB toolbox available in the MATLAB programming language.   

Future Perspectives 

Prospectively, there is a need for models that examine the comparative effectiveness of multiple 

treatments across the same patients. Studies thus far have focused on predicting response to a 

specific intervention rather than treatment selection, and few have been replicated to see if a 

classification tool has worked in external independent datasets.  

Furthermore, to facilitate EEG biomarkers of response to specific treatments, future studies may 

benefit from testing model performance on external datasets of other psychiatric medications or 

neurostimulation therapies. For example, Wu and colleagues assessed whether the algorithm 

SELSER, trained on SSRI datasets, could predict response to rTMS 37. This approach may help 

highlight differences in important features to predict treatment response across psychiatric 

medications and provide an avenue to investigate potential neurophysiological mechanisms of 

action. Moreover, by exploring whether models retain similar features and modest prediction 

accuracy when tested on external datasets of other interventions, this may provide a way to 
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identify generalizable EEG biomarkers that are related to therapeutic improvement or treatment 

resistance across disorders. Nonetheless, it may be more informative and realistic to focus on 

predictors of response to specific classes of medications and neurostimulation trials, to identify 

divergent mechanisms of therapeutic efficacy and treatment resistance. Either way, this will 

require a careful consideration of differences in outcome instruments between datasets.  

Surprisingly, in the present review there was little overlap in top features between models, even 

when stratifying between rTMS or antidepressant trials. As such, there remains a critical need for 

a systematic comparison of several types of features in prospective models of treatment response 

and treatment selection to help guide prospective biomarker identification and validation. Of the 

fifteen studies comprising the current review, only three 30,38,56 (20%) included three or more 

categories of candidate features during model development. For instance, Hasanzadeh and 

colleagues considered nonlinear, spectral entropy and cordance features, and found that 

combining spectral entropy (beta and delta) and cordance features resulted in the highest 

performance 30. Furthermore, Zhdanov and colleagues compared electrode-level spectral 

features, source-level spectral features, multiscale-entropy-based features, and micro-state-based 

features. Here, multiple-entropy-based features comprised the top 4 of 8 features in a model to 

predict response to 8-weeks of open label escitalopram 38.  

Apart from the categories of features used in the present review, as detailed in Table 2, 

prospective models may benefit from incorporating features derived from brain source 

localization methods. This process, as described elsewhere 57, involves predicting scalp 

potentials from current sources in the brain (forward problem) and estimating the location of the 

sources from measuring scalp potentials (inverse problem). These methods have the potential to 

improve the signal-to-noise ratio of extracted features and suppress volume conduction. 
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However, they require an accurate head model which is often difficult to obtain. It remains 

unclear what the overall effectiveness of these methods are in the context of extracting 

meaningful features to predict treatment response. 

Furthermore, as described in Supplementary Table S5, most predictive models have been 

developed using features derived from resting-state EEG. Only two studies 24,35 (13.3%) have 

used task-specific EEG to derive features, which involved the Sternberg Working Memory Task 

and 3-Stimulus Visual Oddball Task. Apart from this, event-related potentials may prove useful, 

especially if we could identify stimuli that are sensitive to depressed and psychotic states. 

Moreover, none of the reviewed studies developed predictive models using a combination of 

resting state and task-specific EEG. Incorporating both within the same model of treatment 

response may help inform potential mechanisms of action and yield more informative 

biomarkers. Additionally, no studies thus far have utilised intracranial EEG to predict treatment 

response in MDD. By placing electrodes directly on the surface of the brain, intracranial EEG 

provides a much cleaner signal, and by its nature, greater source localization 58. While 

intracranial EEG is much more invasive relative to surface electrodes, they may be justified for 

severe cases of treatment resistance.  

With respect to algorithm selection, SVM was found to perform well when comparisons against 

other algorithms were available. Apart from the approach of comparing performance across 

individual algorithms, stacked generalisation 59 provides an alternative ensemble method to 

combine the predictions of two or more machine learning algorithms, while using another 

algorithm to learn how to combine their outputs. As described elsewhere 60, stacking can 

improve model performance over any single model contained in the ensemble. Additionally, 

stacking differs from the traditional bagging and boosting ensemble methods in that it typically 
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uses different models that combine predictions from contributing models, rather than a series of 

decision trees, or models that comprise weak learners building upon the prediction of previous 

models, respectively. While two studies 39,53 averaged results across models into a composite 

accuracy, to our knowledge, stacked generalisation has not yet been explored in predictive 

models of treatment response using EEG.  

Similarly, hyperparameter tuning, which involves selecting the optimal set of hyperparameters 

for a given model, remains an important consideration in model development 61. While many 

software packages have default hyperparameter settings during cross-validation, searching the 

hyper-parameter space for the lowest loss-function, or best cross-validation score, is 

recommended. Although an exhaustive search of the hyperparameter space is often 

computationally infeasible, there are several available methods such as a manual grid search, 

collaborative hyperparameter tuning 62, and Bayesian optimization 63.   

As demonstrated in the current review, studies varied largely in the number of electrodes used, 

EEG systems, feature selection and extraction methods, and machine learning algorithms. 

Considering the heterogeneity observed across studies, large, standardised datasets must become 

available before this field can move ahead in a significant way. Importantly, there is a need for 

models developed using large well-characterised samples, with separate training, testing, and 

external validation datasets, to derive classification tools that can be useful clinically. Similarly, 

available repositories are needed to appropriately replicate models developed thus far, identify 

generalizable biomarkers of treatment response across interventions, and identify distinct 

neurophysiological markers that can help guide treatment selection in MDD.   

Conflict of interest statements 



Ph.D. Thesis – D. P. Watts; McMaster University – Neuroscience.  

 

170 
 

Devon Watts, Rafaela Fernandes Pulice, Jim Reilly, Andre R Brunoni, and Ives Cavalcante 

Passos report no biomedical financial interests or potential conflicts of interest. Flávio 

Kapczinski has received grants/research support from AstraZeneca, Eli Lilly, Janssen-Cilag, 

Servier, NARSAD, and the Stanley Medical Research Institute; has been a member of the 

speakers’ boards of AstraZeneca, Eli Lilly, Janssen and Servier; and has served as a consultant 

for Servier. 

Acknowledgements 

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível 

Superior - Brasil (CAPES) - Finance Code 001. Furthermore, this work received financial 

supports from Conselho Nacional de Desenvolvimento Científico e Tecnológico. We would also 

like to thank anonymous reviewers for their helpful feedback.  



Ph.D. Thesis – D. P. Watts; McMaster University – Neuroscience.  

 

171 
 

First author, 

year 

Sample size 

and 

diagnosis 1,2 

Intervention Outcome  Machine 

learning 

model 

Accuracy Other measures 

STUDIES PREDICTING RESPONSE TO NEUROSTIMULATION THERAPY  

Bailey, 2017 39 patients 

with 

treatment-

resistant 

depression  

3 weeks (15 sessions) 

unilateral left 10 Hz rTMS 

Responders vs. Non-

responders 

 

Responders defined 

as ≥ 50% decrease in 

HAM-D after 5-8 

weeks of rTMS 

Linear 

SVM 

91%  Sensitivity:91% 

Specificity:92% 

F1 score: 0.93  

Bailey, 2018 32 patients 

with 

treatment-

resistant 

depression  

3 weeks (15 sessions) 

unilateral left 10 Hz rTMS 

Responders vs. Non-

responders 

 

Responders defined 

as ≥ 50% decrease in 

HAM-D after 5-8 

weeks of rTMS 

Linear 

SVM 

86.66% Sensitivity: 84% 

Specificity: 89% 

Corlier, 

2019 

109 patients 

with MDD 

3 weeks (15 sessions) of 10 

Hz left DLPFC rTMS  

 

(68 subjects received 

unilateral left treatment, 41 

were changed to sequential 

bilateral treatment – 10 Hz 

left DLPFC, 1 Hz right 

DLPFC)  

Responders vs. Non-

responders 

 

Responders defined 

as ≥ 40% decrease in 

IDS-30 scores from 

baseline to treatment 

30  

Elastic Net 61.8%-79.2% 

(best 

performance 

observed with 

alpha band 

frequency and 

IDS-30 percent 

change score) 

AUC: 

0.52-0.77 

 

Specificity: 

70.9-82.7% 

 

Sensitivity: 

34.8-75.7% 

 

PPV:  

58.2-79.7% 

 

NPV: 

63.8-82.2% 
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Erguzel, 

2014 

147 patients 

with 

treatment-

resistant 

depression 

18 sessions of 25 Hz left 

PFC rTMS 

Responders vs. Non-

responders 

 

Responders defined 

as ≥ 50% decrease in 

HAM-D scores after 

3 weeks of treatment 

BPNN 89.12% Sensitivity: 94.44% 

AUC: 0.904 

Erguzel, 

2015 

55 patients 

with MDD 

18 sessions of 25 Hz left 

PFC rTMS 

Responders vs. Non-

responders 

 

Responders defined 

as ≥ 50% decrease in 

HAM-D scores after 

3 weeks of treatment 

ANN 89.09% Sensitivity: 86.67-93.33% 

Specificity: 80-84% 

AUC: 0.686-0.909 

 

Best model (6-fold CV) 

Sensitivity: 93.3% 

Specificity: 84.0% 

AUC: 0.909 

Erguzel, 

2016 

147 patients 

with 

treatment-

resistant 

depression 

20 sessions of adjunctive 25 

Hz left PFC rTMS 

Responders vs. Non-

responders 

 

Responders defined 

as ≥50% decrease in 

HAM-D scores after 

20 sessions of rTMS 

ANN 

SVM 

DT 

Accuracy: 78.3-

86.4% 

Best 

performance 

using SVM 

 

Balanced 

Accuracy: 

54.71-75.42% 

Sensitivity: 60.41-68.62% 

Specificity: 49.01-

82.22% 

Hasanzadeh, 

2019 

46 patients 

with MDD 

5-sessions of 10 Hz left 

DLPFC rTMS  

Responders vs. Non-

responders 

 

Remission vs. Non-

remission 

 

Responders defined 

as ≥50% decrease in 

BDI-II or HAM-D 

kNN 76.1-91.3% 

best 

performance 

with power 

spectral features 

Sensitivity: 69.6-87% 

 

Specificity: 82.6-95.7% 
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scores from baseline 

 

Remission defined as 

BDI ≤8 or HAM-D 

≤9 

STUDIES PREDICTING RESPONSE TO PHARMACOLOGICAL TREATMENT 

Cao, 2019 37 patients 

with 

treatment-

resistant 

depression 

Patients randomised to one 

of three groups (1:1:1): 

1. 0.5 mg/kg ketamine 

2. 0.2mg/kg ketamine 

3. Normal saline  

Responders vs. Non-

responders 

 

Responders defined 

as ≥45% reduction in 

HAM-D score from 

baseline to 240 min 

posttreatment  

LDA 

NMSC 

kNN 

PARZEN 

PERLC 

DRBMC 

SVM 

Radial 

kernel 

78.4% 

Best 

performance 

using SVM with 

a radial kernel 

Sensitivity: 79.3% 

Specificity: 84.2% 

Recall: 78.5% 

Precision: 87.0% 

F1 score: 52.6% 

Cook, 2020 180 patients 

with MDD 

8-week trial of escitalopram 

(10mg) or bupropion 

(150mg) 

 

(1 week single-blind 

escitalopram followed by 7 

weeks double-blind trial) 

Remission vs Non-

remission 

 

Remission defined as 

≤7 HDRS at week 8 

  

LDA 64.4% Sensitivity: 74.3% 

Specificity: 55.3% 

PPV: 60.5% 

NPV: 70.0% 

AUC: 0.635 

de la Salle, 

2020 

47 patients 

with MDD 

12-week double-blinded 

trial of:                    

 1) escitalopram + 

bupropion                    2) 

escitalopram + placebo  

3) bupropion + placebo 

Responders vs. Non-

responders 

 

Responders defined 

as ≥50% reduction in 

MADRS scores from 

baseline to 

posttreatment 

 

Remitters/Non-

LR Response: 

Change in PF 

Cordance: 

81% 

Change in MRF 

Cordance: 

74% 

 

Remission: 

Change in PF 

Response (ΔPF): 

AUC: 0.85  

Sensitivity: 70% 

Specificity: 85% 

PPV: 0.95 

NPV: 0.76 

 

Remission (ΔPF): 

AUC: 0.66 

Sensitivity: 65% 
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remitters 

 ≤10 MADRS at 

posttreatment 

Cordance: 

70% 

 

Change in MRF 

Cordance: 

51%  

Specificity: 74% 

PPV: 65% 

NPV: 74% 

 

Response (ΔMRF): 

AUC: 0.80 

Sensitivity: 70% 

Specificity: 95% 

PPV: 95% 

NPV: 76% 

 

Remission (ΔMRF): 

AUC: 0.59 

Sensitivity: 93% 

Specificity: 31% 

PPV: 39% 

NPV: 91% 

Jaworska, 

2019 

51 patients 

with MDD 

12-week double-blinded 

trial of:                    

 1) escitalopram + 

bupropion                    2) 

escitalopram + placebo  

3) bupropion + placebo 

Responders vs. Non-

responders 

 

Responders defined 

as ≥50% reduction in 

MADRS scores from 

baseline to 

posttreatment  

RF 

SVM 

AdaBoost 

CART 

MLP 

GNB 

88% 

 

Combined 

model, accuracy 

of each 

individual model 

not reported   

AUC: 0.716-0.901 

Highest AUC observed in 

Random Forest Model 

 

Combined model 

Sensitivity = 77% 

Specificity = 99% 

PPV = 99 

NPV = 81 

Mumtaz, 

2017 

34 patients 

with MDD 

Open-label trial of an SSRI Responders vs. 

Nonresponders 

 

Responders defined 

as ≥50% 

improvement in pre- 

vs. post-treatment 

LR 87.5% Sensitivity: 95% 

Specificity: 80% 
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BDI-II scores 

Rajpurkar, 

2020 

518 patients 

with MDD 

Patients randomised in a 

1:1:1: ratio to escitalopram, 

sertraline, or extended-

release venlafaxine for 8 

weeks 

Regression model  

 

Predict improvement 

in 

individual 

symptoms, defined 

as the difference in 

score for each of the 

symptoms on the 

HAM-D from 

baseline to week 8. 

GBM R2 0.375-0.551 

Best model 

observed using 

EEG and 

baseline 

symptom 

features 

95% CI: 0.473-0.639 

 

Used C-index to assess 

performance (probability 

that the algorithm will 

correctly identify, given 2 

random patients with 

different improvement 

levels, which patient 

showed greater 

improvement 

Wu, 2020 309 patients 

with MDD 

8-week course of sertraline 

or placebo 

Regression model  

 

Used pre- minus 

post- 

treatment difference 

in HAMD17 scores, 

with missing 

endpoint 

values imputed to 

maintain an intent-

to-treat framework. 

SELSER 

Algorithm 

developed 

in the 

current 

study 

R2 0.60 

Sertraline 

 

R2 0.41 

Placebo 

NA 

Zhdanov 

2020 

122 patients 

with MDD 

8-weeks of open-label 

escitalopram (10-20 mg) 

treatment 

Responders vs Non-

responders 

 

Responders defined 

as ≥50% 

improvement in 

MADRS scores from 

baseline to post-

treatment  

SVM 

Radial 

kernel 

79.2%  

Using baseline 

EEG data 

 

82.4% 

Using baseline 

and week 2 EEG 

data 

Baseline Model 

Sensitivity - 67.3% 

Specificity - 91.0% 

 

Baseline and Week 2 

Model 

Sensitivity: 79.2% 

Specificity: 85.5% 

 



Ph.D. Thesis – D. P. Watts; McMaster University – Neuroscience.  

 

176 
 

 

 

Table 1: Machine learning studies predicting treatment response using EEG in major depressive disorder 

Abbreviations:  

ANN, Artificial Neural Network; BDI, Beck Depression Inventory; BPNN, Back-Propagation Neural Networks; CART, Classification 

and Regression Trees; CNN, Convolutional Neural Network; DLPFC, Dorsolateral Prefrontal Cortex; DRBMC, Discriminative 

Restricted Boltzmann Machine; DT; Decision Trees; ELM, Extreme Learning Machine; GBM, Gradient Boosting Machine, GNB, 

Gaussian Naive Bayes; HAM-D, Hamilton Depression Rating Scale; IDS-SR, Inventory of Depressive Symptomatology (Self-Report); 

kNN, k-Nearest Neighbours; KPLSR, Kernelized Partial Least Squares Regression; LASSO, least absolute shrinkage and selection 

operator; LDA, Linear Discriminant Analysis; LR, Logistic Regression; MADRS, Montgomery-Asberg Depression Rating Scale; MFA, 

Mixture of Factor Analysis; MLP, Multi-Layer Perceptron; MRF, Middle Right Frontal; NMSC, nearest mean classifier; PARZEN, 

Parzen density estimation; PERCL, perceptron classifier; RF, Random Forest; SCZ, Schizophrenia; SELSER, Sparse EEG Latent 

SpacE Regression; SVM, Support Vector Machine 

 

 

 

 

 

 

First 

author, year 
Pre-processing Strategy EEG Features  Feature Extraction Method  Feature Selection Method  Top Features 

Top 10 features, if applicable 
STUDIES PREDICTING RESPONSE TO NEUROSTIMULATION THERAPY  

Bailey, 2017 Data downsampled to 1000 

Hz  
 

Second order Butterworth 

filtering with bandpass from 

1-80 Hz and a band-stop filter 

47-53 Hz  
 

Power Spectral 

Analysis  
 

Connectivity 

Analysis  

Power Spectral Analysis  
• Morlet Wavelet transform to 

calculate power in the upper alpha 

band (10-12.5 Hz), theta band (4-8 

Hz), and gamma band (30-45 Hz) 

• Average power calculated across 

entire retention period with each 

frequency band and averaged over 

 

 

 

 

 

Not applicable  

Statistically significant variables between 

responders and non-responders; authors 
did not report top features in the total 

model 
 

- Greater theta power at Fz in 

responders vs non-responders (F1 = 

8.577, p = 0.006) 
- No significant differences for alpha 
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Fast ICA used to manually 

select and remove eye blinks, 

movements, and remaining 

muscle artifacts.  

trials  

 
Connectivity Analysis  

• Hanning taper time-frequency 

transform to determine 

instantaneous phase values for 

complex Fourier-spectra from 4-

45 Hz with a 1 Hz resolution 

across a 3-oscillation sliding time 

window  

• Weighted phase lagged index 

(wPLI) calculated between each 

electrode  

• wPLI provides a value between 0-

1 for each electrode pair at each 

frequency and time point  

or gamma power, or theta-gamma 

coupling 
 

- Responders showed a non-

significant pattern of less gamma 

connectivity than non-responders at 

baseline (p=0.523), and greater 

gamma connectivity at week 1 

(p=0.0836). 
 

- Responders showed significantly 

more theta connectivity across 

baseline and week 1, with both 

interhemispheric fronto-parietal 

coupling, and frontal and parietal 

interhemispheric coupling (overall p 

= 0.003). 
Bailey 2018 Same Procedure as Bailey 

2017 
Power Spectral 

Analysis  
 

Connectivity 

Analysis 
 

Theta Cordance 

Analysis  

Power and connectivity analyses follow the same 
procedure as Bailey 2017 

 
Theta Cordance Analysis 

• Absolute power values for each 

epoch 1-80 Hz underwent a multi-

taper fast Fourier frequency 

transformation with a Hanning 

taper 

• Absolute power averaged across 

neighbouring electrode pairs 

• Relative power in reattributed 

absolute theta band calculated by 

dividing power in theta band by 

total power from 1-80 Hz 

• Subtracted half-maximal values 

from normalized absolute and 

relative power in theta band, and 

summed together for each 

electrode 

 
iAPF Analysis  

• Individualized alpha peak 

frequency averaged across F3, Fz, 

and F4 electrodes 

 
Not applicable   

Statistically significant variables between 
responders and non-responders; authors 

did not report top features in the total 

model 
- Greater theta connectivity in 

responders vs non-responders 

(p=0.0216, FDR p=0.030). 

Responders showed atypical, 

elevated theta connectivity, while 

non-responders showed typical theta 

connectivity, which was comparable 

to controls. 
- No main effect of theta cordance, 

frontal-midline theta power, or alpha 

power.  
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• Multitaper fast Fourier frequency 

transformation  

• Gaussian distribution with least 

squared error fitted to electrodes 

in 6-14 Hz range 

• Peaks of distribution selected 

from each electrode and averaged 

Corlier, 

2019  
ICA-based FASTER 

algorithm  
 

Dominant alpha frequency 

peak determined for each 

subject (highest spectral peak 

within 7-13 Hz alpha range) 

EEG functional 

connectivity 

measures 
 (coherence, 

envelope 

correlation, and 

alpha band 

frequency) 

Functional Connectivity Measures 
• Coherence: correlation of 

amplitude and phase  

• Envelope: correlation of 

amplitude  

• Alpha Frequency Band: similarity 

of the spectral waveform of the 

alpha band across regions  

Elastic Net  Coherence & Envelope: 
connections in the frontal to temporo-

parietal nodes 
 

    Alpha frequency band: 
Connections between the left frontal 

seeds (near stimulation site) and 

contralateral fronto-temporal 

locations 
 

EN models for coherence and 

envelope correlation showed a 

diffuse coupling pattern, while αSC 

showed 
a more focal connectivity.  

Erguzel 

2014  
Manually selected artifact-

free EEG data with a 

minimum split-half reliability 

ratio of 0.95 and minimum 

test-retest reliability ratio of 

0.90. 
 

FFT  

EEG Cordance 

(combines 

absolute and 

relative EEG 

power, and 

negative 

discordance 

values)  

EEG Cordance 
• Normalized power across 

electrode sites and frequency 

bands  

• Maximum absolute and relative 

power of each frequency band is 

calculated to derive normalized 

absolute and relative power 

• Half-maximal value is subtracted, 

absolute/relative normalized 

power is summed.  

Genetic Algorithm  
• adaptive heuristic 

search algorithm was 

applied to features of 

all selected channels 

to reduce the number 

of dimensions   

Fp1, Fp2, F7, F8, and F3 in the theta 

frequency band   

Erguzel 

2015 
Band-pass filter with 0.15-30 

Hz frequency 
 

FFT used to calculate 

absolute and relative power in 

each of two non-overlapping 

frequency bands 
(delta – 1-4 Hz, theta – 4-8 

Hz) 

EEG Cordance 
(combines 

absolute and 

relative EEG 

power, and 

negative 

discordance 

values) 

EEG Cordance 
• Normalized power across 

electrode sites and frequency 

bands  

• Maximum absolute and relative 

power of each frequency band is 

calculated to derive normalized 

absolute and relative power 

• Half-maximal value is subtracted, 

ANN NA 
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absolute/relative normalized 

power is summed.  
Erguzel 

2016 
Band-pass filter with 0.15-30 

Hz frequency  
 

Manually selected artifact-

free EEG data (at least 2 min) 
 

FFT 

EEG Cordance 

(combines 

absolute and 

relative EEG 

power, and 

negative 

discordance 

values) 

EEG Cordance analyses follow the same 

procedure as Erguzel 2014  
Not applicable  Feature set was composed of  

frequency bands for six frontal 

electrodes (Fp1, Fp2, F3, F4, F7 and 

F8) 

Hasanzadeh 

2019  
Sampling frequency 500 Hz 

 
Bandpass FIR filter (1-42 Hz) 
 

ICA to remove noisy data 
 

MARA to label noisy ICs 
 

Visually inspected to 

eliminate remaining artifacts 

21 features in four 

categories 

(nonlinear, PSDl, 

bispectral, and 

cordance)  

Nonlinear Features 
• LZC: Complexity measure of time 

series to estimate scholastic and 

chaotic behavior of time series  

• KFD: Algorithm for computing 

fractal dimension, a measure of 

self-similarity of a time series 

based on number of pattern 

repetitions  

 
Power Spectral Density  

• Delta (1-4 Hz) - Beta (12-30 Hz) 

by Welch method with a non-

overlapped window, 500 samples 

in length 

• Average power computed for 

frequencies in each band  

 
Bispectrum features  

• Method that quantifies the degree 

of phase coupling between 

components of a signal  

 
Cordance  

• measure of complexity of system 

based on chaos and time delay 

reconstruction theory   

mRMR - Nonlinear (LZC, KFD, CD) - 

80.4% accuracy 
 
- Power (D, T, A, B) - 91.3% 

accuracy 
 
- Bispectrum (BispSL, Bisp2M, and 

BispEn in all bands) - 84.8% 

accuracy 
 
- Cordance (Fr, Pre, Fr) - 76.1% 

accuracy 
 
- All - 87% accuracy  

STUDIES PREDICTING RESPONSE TO PHARMACOLOGICAL TREATMENT 
Cao, 2019  Real-time artifact removal 

algorithm based on CCA, 

feature extraction, and a 

GMM used to improve signal 

Power Spectral 

Analysis  
 

Power Spectral Analysis  
• 256-point FFT using Welch's 

method 

p-value: measured using the 

Wilcoxon rank-sum test with a 

significant p-value < 0.05.  

0.5 mg/kg dose 
- AF7 theta - p= 0.042 
- Fp2 theta - p= 0.035 
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quality EEG Alpha 

Asymmetry 
 

EEG Theta 

Cordance 

• 10 min spans of data with 256-

point moving window at 128-

point overlap 

• Absolute and relative power of 

four prefrontal channels from 

delta (1-3.5 Hz), theta (4-7.5 Hz), 

lower alpha (8-10 Hz) and upper 

alpha (10.5-12 Hz) bands. 

 
EEG Alpha Asymmetry 

• mid-prefrontal (Fp1/Fp2) and 

mid-lateral (AF7/AF8) 

hemispheric asymmetry index to 

establish a relative measure of the 

difference in EEG (lower and 

upper) alpha power between the 

right and left forehead areas.  

 
EEG Theta Cordance  

• Combines information from both 

absolute and relative powers in the 

EEG theta band   

 
0.2mg/kg dose 

- Fp1 theta - p= 0.038 
- Fp2 theta - p= 0.042 

Cooks 2020 Artifact-free epochs selected 

following rejection of muscle, 

electrocardiographic, and 

drowsiness artifacts. 

Power Spectral 

Analysis 
ATR  

 
Relative combined 

theta and alpha 

power 
  

Power Spectral Analysis 
• Calculated using consecutive two-

second epochs of eyes-closed rest, 

by averaging values calculated 

separately for each channel in 

each epoch 

 
Relative combined theta and alpha power 
• Non-linear weighted combination 

of relative combined theta and 

alpha power (3-112 Hz), alpha1 

power (8.5-12 Hz) and alpha2 

absolute power (9-11.5 Hz) 

Relative combined theta and 

alpha power was scaled to a 

range from 0-100; a cut-off 

score of ≥ 46.2 was selected 

NA 

Jaworska 

2019  
Bandpass filters 0.1-80 Hz 

 
100s of artifact-free data 

subjected to a FFT 
 

ln-transformed prior to 

eLORETA 

analysis  
 

Theta Cordance 

eLORETA analysis 
• estimates neural activity as current 

density based on MNI-152 

template, creating a low-

resolution activation image 

 
Theta Cordance 

Tree-Based Feature Selection 
 

 kernel PCA 

eLORETA features were most 

important, comprising 17 delta, 20 

theta, 14 alpha1, 20 alpha2, and 17 

beta EEG features. 
 

Delta 
Power at week 1 at T8 followed by 
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analyses to ensure normality 
(minimizes influence of extreme 

values)  

• Values from prefrontal electrodes 

(Fp1, Fp2) at baseline and week 1   

power at Cp6 
 

Theta 
Baseline power at Fp2 and week 1 

power at Fc2 
 

Alpha1 
Baseline power at F7/8 

 
Alpha2 

Baseline power at P8 and week 1 

power at O1 
 

Beta  
    Baseline power at T7 and week 

21   
                        power at Fz 

Mumtaz, 

2017 
Bandpass filters 0.1-70 Hz 

 
EEG data collected during 5 

min eyes open and 5 min eyes 

closed - 3-stimulus visual 

Oddball task used 
 

50 Hz notch filter used to 

suppress power line noise 

wavelet 

coefficients in the 

delta and theta 

frequency range 

Wavelet coefficients  
• involves a window function to 

capture both low and high 

frequency components of the 

signal  

rank-based feature selection 

according to their relevance to 

class labels  
 

minimum redundancy and 

maximum relevance 

Top EEG Features: 
Fp2 - delta frequency 
C3 - theta frequency 
F7 - delta frequency 
F3 - delta frequency 
F7 - theta frequency 
T4 - theta frequency 
F8 - theta frequency 
F4 - delta frequency 
Fz - delta frequency 
F4 - delta frequency 
C4 - delta frequency  
F8 - theta frequency 
T4 - delta frequency 
P3 - theta frequency 

Rajpurkar 

2020  
Raw EEG signal was filtered 

using a band-pass filter with 

0.15 - 30 Hz frequency prior 

to artifact removal 
 

FFT 

Relative and 

Absolute Band 

Power 
 

Frontal alpha 

asymmetry 
 

Occipital 

asymmetry 
 

Relative/Absolute Power as described above 
 

Frontal alpha asymmetry 
• difference in alpha bandpower 

between O2 and O1 

 
           Occipital beta asymmetry 

• difference in beta bandpower 

between O2 and O1 

Gradient Boosted Feature 

Selection  
Top EEG Features: 

 
1. T7-T3 alpha absolute ratio 
2. T7-T3 beta absolute ratio 

3. F7 gamma relative 
4. Fp2 delta relative 
5. F3 alpha absolute 
6. Fp2 theta absolute 
7. P4 alpha absolute 

8. T7-T3 beta relative ratio 
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Ratio of 

Beta/Alpha band 

power 
 

Ratio of 

Theta/Alpha band 

power 

 
Ratio of Beta/Alpha and Theta/Alpha band 

power 
• Calculated for each electrode  

 
Feature Selection:  

Decision Tree weight in LightGBM 

9. F7 beta relative  

Salle 2020 Data was filtered (0.1-30 Hz), 

ocular-corrected, and 

inspected for artifacts 

(voltages ± μV, faulty 

channels, drift) 
 
Minimum of 100 seconds of 

artifact-free data was required 

for participant inclusion 

Theta Cordance  
 
(Prefrontal – Fp1, 

Fp2 
MRF – Fz, Fp2, 

F4, F8) 

EEG Theta Cordance 
Combines information from both absolute 

and relative powers in the EEG theta band 

NA Top EEG Features: 
Change in prefrontal theta cordance 

(Fp1+ Fp2) = 81% accuracy 
 
Change in MRF theta cordance (Fz, 

Fp2, F4, F8) = 74% accuracy 

Wu 2020  60 Hz AC line noise artifact 

removed using CleanLine 
 

- Non-physiological slow 

drifts in EEG recordings were 

removed using 0.01 Hz high-

pass filter 
 
- Spectrally filtered EEG data 

were re-referenced to 

common average 
 
- Bad channels were rejected 

based on thresholding spatial 

correlations among channels 
 

- Subjects with more than 

20% bad channels were 

discarded 
 

- Rejected channels were 

interpolated from EEG of 

adjacent channels via 

spherical spline interpolation 
 

SELSER 
 

Channel-level 

alpha band power  
 
Theta Coherence 

 
Band power 

features of latent 

signals extracted 

with ICA or PCA 

Alpha band power and theta coherence as 
described above 

 
SELSER 

• spatial filter transforms multi-

channel EEG data into a single 

latent signal, where the power is 

used as a feature 

• model fitting is done under a 

sparse constraint on the number of 

spatial filters, which reduces 

dimensionality 

 
Latent signals extracted with ICA or PCA 

• eigenvalues of the covariance 

matrix to reduce dimensionality   

SELSER Best performance using SELSER on 

alpha frequency range eyes-open 

rsEEG data 
(feature importance was not 

reported)   



Ph.D. Thesis – D. P. Watts; McMaster University – Neuroscience.  

 

183 
 

- Remaining artifacts were 

removed using ICA 
 

- EEG data re-referenced to 

common average  
Zhdanov 

2020  
0.05 - 100 Hz bandpass filter 
 
Filtering performed using 2nd 

order Butterworth filters 

applied to the data in forward 

and reverse direction, to 

eliminate phase distortion 
 

Data pre-processed with 

EEGLAB toolbox 
 

Channels contaminated by 

large sporadic artifact were 

identified by human analyst 

and deleted 
 
EEG data bandpass filtered 1-

80 Hz 
 

notch-filtered at 60 Hz 

Electrode-level 

spectral features 
 

Source-level 

spectral features 
 

Multiscale-

entropy-based 

features 
 
Microstate-based 

features 

Electrode-level spectral features 
• EEGLAB function spectopo to 

obtain power spectrum 

• log-transformed absolute power 

obtained for each channel 

• For each pair, absolute power at 

left electrode divided by right, 

resulting in 25 features for each 

band 

 
Source-level spectral features 

• eLORETA algorithm as 

implemented by LORETA-KEY 

software 

• Following regions selected on 

basis of prior literature: ACC, 

rACC, and mOFC 

 
 Multiscale-entropy-based 

features 
• Quantifies variability of time 

series by estimating predictability 

of amplitude patterns across a 

time series 

• Two consecutive data points were 

used for data matching, and points 

were considered to match if their 

absolute amplitude difference was 

<15% of the standard deviation of 

the time series. 

 
Microstate-based features 

• Implemented using CARTOOL 

• average duration: average amount 

of time a microstate class remains 

stable when it appears (in 

Unpaired 2-tailed t test  MSE asymmetry features - C3/C4 

(baseline) 
 
MSE asymmetry features - FC3/FC4 

(baseline) 
 
MSE asymmetry features - T7/T8 

(week 2) 
 
MSE asymmetry features - CP3/CP4 

(week 2) 
 
Electrode-level spectral asymmetry - 

P3/P4 alpha low (baseline) 
 
Electrode-level spectral asymmetry - 

T7/TP8 theta (week 2) 
 
Electrode-level spectral asymmetry - 

F7/F8 beta mid (week 2) 
 
Source-level spectral features - alpha 

high ACC, rACC (week 2) 
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milliseconds) 

• frequency: occurrence of each 

microstate class per second 

• coverage: % of recording covered 

by each microstate class 

 

Table 2: Extracted Features Across Studies 

ACC, Anterior Cingulate Cortex; rACC, rostral Anterior Cingulate Cortex; ANN, Artificial Neural Network; CCA, Canonical 

Correlation Analysis; Coh, Coherence; eLORETA, Exact low resolution brain electromagnetic tomography; FDR, Fisher’s 

Discriminant Ratio; FIR, Finite Impulse Response; FFT, Fast Fourier Transformation; GMM, Gaussian Mixture Model; ICA, 

Independent Component Analysis; KFD, Katz Fractal Dimension;  LASSO, Least Absolute Shrinkage and Selection Operator; LCMV, 

linearly constrained minimum variance; LightGBM, Light Gradient Boosting Machine; LZC, Lempel-Ziv Complexity; MARA, 

Multiple Artifact Rejection Algorithm; MNI, Montreal Neurological Institute; mOFC, medial Orbitofrontal Cortex; MRF, Middle 

Right Frontal; mRMR; Maximum Relevance Minimum Redundancy; MSC, Magnitude Squared Coherence; PCA, Principal 

Component Analysis; PSD, Power Spectral Density; rACC, rostral Anterior Cingulate Cortex; rsEEG, Resting-state EEG; SELSER, 

Sparse EEG Latent SpacE Regression 
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 a) 
Authors Sensitivity 2.5% 97.5% Specificity 2.5% 97.5% 

 

Bailey, 2017 0.731 0.460 0.896 0.946 0.798 0.988 

Bailey, 2018 0.700 0.448 0.870 0.914 0.758 0.973 

Corlier 2019 0.607 0.494 0.709 0.643 0.477 0.780 

Erguzel, 2015 0.919 0.772 0.975 0.827 0.643 0.927 

Erguzel, 2016 0.841 0.665 0.945  0.938   0.769  0.985 

Hasanzadeh, 2019 0.854 0.665 0.945 0.938 0.769 0.985 

Cao, 2019 0.794 0.558 0.922 0.886 0.694 0.964 

Cook, 2020 0.731 0.576 0.845 0.542 0.383 0.692 

Salle, 2020 0.696 0.511 0.834 0.929 0.741 0.983 

Jaworska, 2019 0.768 0.585 0.886 0.980 0.834 0.998 

Mumtaz, 2017 0.921 0.719 0.982 0.763 0.539 0.899 

Zhdanov, 2020 0.791 0.666 0.878 0.846 0.742 0.913 

AVERAGE 0.776 0.600 0.892 0.846 0.678 0.923  

Test for equality of sensitivities: X-squared = 23.09,   p-value = 0.017 

Test for equality of specificities: X-squared = 46.23, p-value = 0.00000294 

Correlation of sensitivities and false positive rates: Rho = -0.203 (-0696-0.420) 

Total DOR: 23.49 (95% CI: 10.40-52.02), τ2=1.395 (95% CI: 0.00-2.13) 

posLR: 5.232 (95% CI: 3.15-8.67), τ2= 0.502 (0.00-1.24) 
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negLR: 0.271 (95% CI: 0.195-0.376), τ2= 0.190 (0.00-0.495) 

AUC: 0.850 (95% CI: 0.747-0.890); pAUC: 0.777 
 

 
                                                           b) 

Authors Mean Accuracy 95% CI %W (random) 
Bailey, 2017 91.0% 81.34-100% 8.3% 
Bailey, 2018 86.6% 82.23-91.16% 12.5% 
Corlier 2019 68.5% 59.96-78.24% 7.1% 
Erguzel, 2015 89.0% 80.49-98.59% 9.0% 
Erguzel, 2016 86.4% 80.86-92.31% 11.5% 
Hasanzadeh, 2019 91.3% 82.57-100% 9.1% 
Cao, 2019 81.3% 70.04-94.36% 6.3% 
Cook, 2020 64.4% 53.89-76.94% 5.0% 
Salle, 2020 80.9% 69.79-93.91% 6.3% 
Jaworska, 2019 88.2% 79.05-98.49% 8.4% 
Mumtaz, 2017 87.50 75.77-100% 6.5% 
Zhdanov, 2020 82.4% 75.58-89.83% 10.0% 
Random effects model  
Mean = 83.93% (95% CI: 78.90-89.29) 

 
Table 3 - Model Performance Metrics Across EEG Models 
A summary of performance metrics across all predictive models of treatment response using EEG.  
A) The madad function in the “mada” package was used to calculate the sensitivity, specificity, and partial Area-Under-The-Curve (AUC) across 

studies, while the maduani function was used to calculate the Diagnostic Odds Ratio (DOR), positive likelihood ratio (posLR), and negative 

likelihood ratio (negLR). AUC was calculated using the AUC_boot function in dmetatools, with an alpha of 0.95 and 2000 bootstrap iterations. 

Overall, the balanced accuracy (sensitivity + specificity / 2) was 81.1%.  
B) The metamean function in the “meta” package was used to pool accuracy across studies in a random effects model using an inverse variance 

method with Knapp-Hartung adjustments to calculate the confidence interval around the pooled effect. Across models, overall model accuracy was 

83.93% (95% CI: 78.90-89.29).  
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Supplementary Table S1 – Machine learning studies predicting treatment response using EEG in Major Depressive Disorder (excluded studies) 
 
First author, year Sample size and 

diagnosis 1,2 
Intervention Outcome  Machine 

learning 

model 

Accuracy Other measures 

STUDIES PREDICTING RESPONSE TO NEUROSTIMULATION THERAPY  
Al-Kyasi, 2016 10 patients with 

MDD 
15 sessions of tDCS over 3 weeks  Responders vs. Nonresponders 

 
Responders defined as ≥ 50% decrease in 

MADRS scores after session 15 or 23 of 

tDCS 

SVM 
ELM 
LDA 

76% 
 

Performance was 
averaged across all 

algorithms 

N/A 

Zandvakili, 2019 29 patients with 

comorbid MDD and 

PTSD 

33 sessions of 5 Hz left DLPFC 

rTMS 
Responders vs. Nonresponders 

 
Responders defined as ≥50% decrease in 

IDS-SR scores from baseline to end of 

treatment 

LASSO 
SVM 

LASSO 
73-80.5% 

 
SVM 

74-78.6% 

MDD 
 

AUC: 0.83 
Sensitivity: 47-94% 
Specificity: 0-83% 

 
PTSD: 

AUC: 0.71 
Sensitivity: 37-100% 
Specificity: 0-100% 

 
Sensitivity and specificity 

of SVM model not 
reported  

STUDIES PREDICTING RESPONSE TO PHARMACOLOGICAL TREATMENT 
Khodayari-

Rostamabad, 2013 
22 patients with 

MDD 
Open-label trial of SSRI 

antidepressant 
Responders vs. Nonresponders 

 
Responders defined as ≥30% 

improvement between the pre- and post-

treatment HAMD-17 scores. 

MFA 87.9% Sensitivity: 94.9% 
Specificity: 80.9% 

Rabinoff, 2011 25 patients with 

MDD 
8-week double-blinded trial of 

either: 1) fluoxetine, 2) 

venlafaxine or 3) placebo  

Responder vs Nonresponder 
 

 Responders defined as post-treatment 

HAM-D scores ≤10 points 

CART Venlafaxine 
Balanced Accuracy: 

91.5% 
 

Fluoxetine 
Balanced Accuracy: 

85.5%  

Venlafaxine 
Sensitivity: 83% 

Specificity: 100% 

PPV: 100% 
NPV: 86% 

 
Fluoxetine 

Sensitivity: 71% 
Specificity: 100% 

PPV: 100% 
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NPV: 75% 
Shahabi, 2021 30 patients with 

MDD 
4-week course of an SSRI Responders vs Nonresponders 

 
Responders defined as ≥50% 

improvement in BDI-II scores from 

baseline to post-treatment 

CNN 95.74% Sensitivity: 95.56% 
Specificity: 95.64% 

 
BDI, Beck Depression Inventory; CNN, Convolutional Neural Network; DLPFC, Dorsolateral Prefrontal Cortex; ELM, Extreme Learning Machine; GBM, Gradient Boosting 

Machine, HAM-D, Hamilton Depression Rating Scale; IDS-SR, Inventory of Depressive Symptomatology (Self-Report); kNN, k-Nearest Neighbors; LASSO, least absolute 

shrinkage and selection operator; LDA, Linear Discriminant Analysis; LR, Logistic Regression; MADRS, Montgomery-Asberg Depression Rating Scale; MFA, Mixture of Factor 

Analysis; PARZEN, Parzen density estimation; RF, Random Forest; SVM, Support Vector Machine  
 

First author, 

year 
EEG System Reference 

Choice 
Impedance Filtering 

Method 
Electrooculogram 

used? 
Electrocardiogram 

used? 
Eyes Open (EO) 

Eyes Closed (EC) 
STUDIES PREDICTING RESPONSE TO NEUROSTIMULATION THERAPY  

 

Bailey, 2017 30-channel Ag/AgCl electrode EasyCap EEG 

system  
CPz <5 kΩ Bandpass filter 

(1-80 Hz) 
 
Bandstop filter 

(47-53 Hz) 

No No EC 

Bailey, 2018 30-channel Ag/AgCl electrode EasyCap EEG 

system  
CPz <5 kΩ Bandpass filter 

(1-80 Hz) 
 
Bandstop filter 

(47-53 Hz) 

No No EO/EC 

Corlier, 2019  64-channel ANT Neuro TMS-compatible EEG 

system  
CPz <10 kΩ Bandpass filter 

(0.5-55 Hz) 
Yes No NA 

Erguzel, 2014  19-channel Scan LT EEG amplifier and 

electrode cap (6 channels were used) 
Linked Ears 

M1 + M2, LE, RE 
NA  Bandpass filter 

(0.15-30 Hz) 
No No EC 

Erguzel, 2015 19-channel Scan LT EEG amplifier and 

electrode cap 
Linked Ears 

M1 + M2, LE, RE 
NA Bandpass filter 

(0.15-30 Hz) 
No No EC 

Erguzel, 2016 19-channel Scan LT EEG amplifier and 

electrode cap 
Linked Ears 

M1 + M2, LE, RE 
NA  Bandpass filter 

(0.15-30 Hz) 
No No EC 

Hasanzadeh, 

2019  
Mitsar-EEG 201 

 
18 Ag/AgCL electrodes 

Linked Ears 
M1 + M2, LE, RE 

NA  Bandpass filter 

(1-42 Hz) 
No No EC 

STUDIES PREDICTING RESPONSE TO PHARMACOLOGICAL TREATMENT 
Cao, 2019 Mindo-4S Jellyfish  A2 NA Bandpass filter 

(1-12 Hz) 
No No EC 
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4 dry electrodes (Fp1, Fp2, AF7, AF8) 

Cook, 2020 Covidien BIS Complete 4-Channel Monitor 
 

4 channel system (FPz, FT7, FT8, A1/A2) 

A1+A2 NA NA No No NA  

De la Salle, 

2020 
32 channel EasyCap EEG with Ag/AgCl 

electrodes 
Common 

Average 

Reference 

≤5 kΩ Bandpass filter 

(0.1-30 Hz) 
Yes No EC 

Jaworska, 

2019  
32 channel EasyCap EEG with Ag/AgCl 

electrodes 
Common 

Average 

Reference 

≤5 kΩ Bandpass filter 

(0.1-30 Hz) 
Yes No EC 

Mumtaz, 2017 19 channel electro-gel sensors with linked ear 

references - Brain Master Discovery amplifier 

was used 

Linked Ear 

Reference 
NA Bandpass filter 

(0.1-70 Hz) 
No No EC/EO  

Rajpurkar, 

2020  
 Scan LT EEG amplifier and electrode cap 

 
 6 frontal electrodes used (Fp1, Fp2, F3, F4, F7, an 

F8) 

NA NA NA No No EC 

Wu, 2020  Data from four studies 
 

BioSemi (72 channels) 
NeuroScan Synamp (62 channels) 
NeuroScan Synamp (60 channels) 

Geodesic Net (129 channels)  

Common 

Average 

Reference 

<50 kΩ 0.01 Hz high-

pass filter 
 
100 Hz low-pass 

filter 

No No  EC/EO  

Zhdanov, 2020  Data from four sites 
 

58 electrodes 

Common 

Average 

Reference 

NA Bandpass filter 

(1 - 80 Hz) 
 
Notch-filtered at 

60 Hz 

No No  EC 

 

 
Supplementary Table S2 – Characteristics of EEG Systems  
 

 

 

 

 
Study RISK OF BIAS APPLICABILITY CONCERNS 
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PATIENT 

SELECTION 
INDEX 

TEST 
REFERENCE 

STANDARD 
FLOW AND 

TIMING 
PATIENT 

SELECTION 
 

INDEX 

TEST 
REFERENCE 

STANDARD 

Bailey, 2017 ☺ ☺ ☹ ☺ ☺ ☺ ☺ 
Bailey, 2018 

  ? ☺ ☹ ☺ ☺ ☺ ☺ 
Cao, 2019 

☹ ☺ ☺ ☺ ☺ ☺ ☺ 
Cook, 2020 ☺ ? ? ☺ ☺ ☺ ☺ 
Corlier, 2019 ☺ ☺ ☹ ☺ ☺ ☺ ☺ 
De la Salle, 

2020 ☺   ? ☹ ☺ ☺ ☺ ☺ 

Erguzel, 2014 ☺ ☺ ☹ ☺ ☺ ☺ ☺ 
Erguzel, 2015 

☹   ? ☹ ☺ ☺ ☺ ☺ 
Erguzel, 2016 ☺ ☺ ☹ ☺ ☺ ☺ ☺ 
Hasanzadeh, 

2019 ☺   ? ☹ ☺ ☺ ☺ ☺ 

Jaworska, 2019 ☺ ☺ ☺ ☺ ☺ ☺ ☺ 
Mumtaz, 2017 ☺ ☺ ☹ ☺ 

? ☺ ☺ 
Rajpurkar, 2020 ☺ ☺ ☺ ☺ ☺ ☺ ☺ 
Wu, 2020 ☺ ☺ ☺ ☺ ☺ ☺ ☺ 
Zhdanov, 2020 ☺ ☺ ☺ ☺ ☺ ☺ ☺ 

☺Low Risk ☹High Risk   ? Unclear Risk  

 

 
Supplementary Table S3 – Quality Assessment of Diagnostic Accuracy Studies-2 (QUADRS-2) 
 

 

Authors Classification Task Method to address 

class imbalance 

True and False 

Positive/Negative 

Performance 

Metrics 

95% Confidence 

Intervals of 

Accuracy 
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Bailey, 2017  Responders  

(≥ 50% improvement 

in HAMD-17)  

vs  

Non-responders 

(10/29)  

N/A TP = 9 

FP = 1 

TN = 26 

FN = 3 

Balanced 

Accuracy = 91% 

Sensitivity = 90% 

Specificity = 92% 

False Positive = 

8% 

False Negative = 

10% 

Standard Error = 

5.20 

Standard Deviation 

= 32.47 

Accuracy = 91% 

(95% CI: 77.36-

97.76) 

Bailey, 2018 Responders  

(> 50% improvement 

in HAMD-17) 

vs  

Non-responders 

(12/30)  

Class weights TP = 10 

FP = 2 

TN = 26 

FN =  4 

Balanced 

Accuracy = 

86.50% 

Sensitivity = 84% 

Specificity = 89% 

False Positive = 

11% 

False Negative = 

16% 

Standard Error = 

2.27 

Standard Deviation 

= 12.84 

Accuracy = 86.60% 

(95% CI: 82.14-

91.06) 

Corlier, 2019  Responders  

(≥ 49% improvement 

in IDS-30) 

vs  

Non-responders 

(68/41) 

N/A TP = 45 

FP = 12 

TN = 22 

FN = 29 

Balanced 

Accuracy = 69% 

Sensitivity = 

67.1% (19.2) 

Specificity = 

70.9% (13.3) 

Accuracy = 68.50% 

(95% CI: 58.86-

77.10) 
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False Positive = 

29.1% 

False Negative = 

32.9% 

Standard Error = 

4.65 

Standard Deviation 

= 48.54 

Erguzel, 2014  Responders 

(≥50% improvement 

in HAMD-17) 

vs 

Non-responders  

(90/57) 

N/A Not available  Balanced 

Accuracy = N/A 

Sensitivity =  

84.44% 

Specificity = N/A 

False Positive = 

N/A 

False Negative = 

15.56% 

Standard Error = 

N/A 

Standard Deviation 

= N/A 

Accuracy = 80.25%  

Erguzel, 2015 Responders  

(≥50% improvement 

in HAMD-17) 

vs  

Non-responders 

(30/25) 

N/A TP = 28 

FP = 4 

TN = 21 

FN = 2 

Balanced 

Accuracy = 

88.66% 

Sensitivity = 

93.33% 

Specificity = 

84.00% 

False Positive = 

16% 

False Negative = 

Accuracy = 89.09% 

(95% CI: 77.85-

95.94) 
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6.7% 

Standard Error = 

4.61 

Standard Deviation 

= 34.18 

Erguzel, 2016 Responders  

(≥50% improvement 

in HAMD-17) 

vs  

Non-responders 

(90/57) 

N/A TP = 76 

FP = 5 

TN = 52 

FN = 14 

Balanced 

Accuracy = 

87.70% 

Sensitivity = 

84.30% 

Specificity = 

91.11% 

False Positive = 

8.8% 

False Negative = 

15.7% 

Standard Error = 

2.92 

Standard Deviation 

= 35.40 

Accuracy = 86.4% 

(95% CI: 80.56-

92.04) 

Hasanzadeh, 

2019 

Responders  

(≥50% improvement 

in HAMD-24) 

vs  

Non-responders 

(23/23) 

N/A TP = 20 

FP = 1 

TN = 22 

FN = 3 

Balanced 

Accuracy = 91.3% 

Sensitivity = 87% 

Specificity = 

95.7% 

False Positive = 

4.3% 

False Negative = 

13% 

Standard Error = 

4.68 

Accuracy = 91.3% 

(95% CI: 79.21-

97.58) 
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Standard Deviation 

= 31.74 

Cao, 2019 Responders  

(≥45% improvement 

in HAMD-17) 

vs 

Non-responders 

(16/21) 

Oversampling 

minority class 

TP = 13 

FP = 2 

TN = 19 

FN =  3 

Balanced 

Accuracy = 87% 

Sensitivity = 

82.1% 

Specificity = 

91.9% 

False Positive = 

8.1% 

False Negative = 

17.9% 

Standard Error = 

6.18 

Standard Deviation 

= 37.59 

Accuracy = 81.3% 

(95% CI: 71.23-

95.47)  

Cook, 2020  Remission  

(≤7 HAMD-17) 

vs 

Non-remission 

(38/35)  

N/A TP = 28 

FP = 16 

TN = 19 

FN =  10 

Balanced 

Accuracy = 64.8% 

Sensitivity = 

74.3% 

Specificity = 

55.3% 

False Positive = 

44.7% 

False Negative = 

25.7% 

Standard Error = 

5.85 

Standard Deviation 

= 49.98 

Accuracy = 64.4% 

(95% CI: 52.30-

75.24) 
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Salle, 2020 Responders  

(≥50% improvement 

in MADRS) 

vs  

Non-responders 

(27/20) 

N/A TP = 19 

FP = 1 

TN = 19 

FN = 8  

Balanced 

Accuracy = 82.5% 

Sensitivity = 70% 

Specificity = 95% 

False Positive = 

5% 

False Negative = 

30% 

Standard Error = 

6.13 

Standard Deviation 

= 42.02 

Accuracy = 80.96% 

(95% CI: (66.87-

90.93) 

Jaworska, 

2019 

Responders  

(≥50% improvement 

in MADRS) 

vs  

Non-responders  

(27/24) 

N/A TP = 21 

FP = 0 

TN = 24 

FN = 6  

Balanced 

Accuracy = 88% 

Sensitivity = 77% 

Specificity = 99% 

PPV = 99% 

NPV = 81% 

Standard Error = 

4.95 

Standard Deviation 

= 35.35 

Accuracy = 88.24% 

(95% CI: 76.14-

95.56) 

Mumtaz, 2017 Responders  

≥50% improvement 

in BDI-II) 

vs 

Non-responders 

(17/17) 

N/A TP = 17 

FP = 4 

TN = 14 

FN = 1 

Balanced 

Accuracy = 87.5% 

Sensitivity = 95% 

Specificity = 80% 

False Positive = 

20% 

False Negative = 

5% 

Standard Error = 

Accuracy = 86.11% 

(95% CI: 70.50-

95.33) 
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6.33 

Standard Deviation 

= 37.44 

Zhdanov, 

2020 

Responders  

(≥50% improvement 

in MADRS) 

vs  

Non-responders  

(55/67) 

N/A Model 1 

TP = 43 

FP = 10 

TN = 57 

FN = 11 

 

Model 2 

TP = 37 

FP = 6 

TN = 61 

FN = 18 

Balanced 

Accuracy = 79.2% 

Sensitivity = 

67.3% 

Specificity = 

91.0% 

False Positive = 

9% 

False Negative = 

32.7% 

Standard Error = 

3.78 

Standard Deviation 

= 41.75 

 

Balanced 

Accuracy = 

82.35% 

Sensitivity = 

79.2% 

Specificity = 

85.5% 

False Positive = 

14.5% 

False Negative = 

20.8% 

Standard Error = 

3.63 

Standard Deviation 

Accuracy = 80.33% 

(95% CI: 72.12-

86.97) 

 

Accuracy = 82.4% 

(95% CI: 74.68-

88.91)  
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= 40.09 

 

Supplementary Table S4 –  Confusion Matrices of Classification Models 
False positive rate is calculated as 1-specificity, while false negative is calculated as 1-sensitivity. In cases where confidence intervals 

were not reported, this metric was calculated using the true/false positive/negative ratios, as well as the prevalence of the positive class 

(responders). Standard error was imputed by subtracting the upper bound of the 95% CI from the lower bound and dividing by 3.92 

(upper bound - lower bound)/3.92. Additionally, confusion matrices were provided according to the method used to address class 

imbalance, where applicable. It is important to note that none of the included studies reported the true positives/true negatives and false 

positives/false negative rates, and the numbers indicated in the table reflect calculations based on the prevalence, sensitivity, specificity, 

and total sample size. Summary statistics that were not reported in studies are indicated as N/A.  

 
 
First author, year Resting state EEG used? Task-specific EEG used? Comments  

STUDIES PREDICTING RESPONSE TO NEUROSTIMULATION THERAPY 
Bailey, 2017 No Yes Sternberg Working Memory Task 
Bailey, 2018 Yes No 

 

Corlier, 2019 Yes No 
 

Erguzel, 2014 Yes No 
 

Erguzel, 2015 Yes No 
 

Erguzel, 2016 Yes No 
 

Hasanzadeh, 2019 Yes No 
 

STUDIES PREDICTING RESPONSE TO PHARMACOLOGICAL TREATMENT 
Cao, 2019 Yes No  

 

Cook, 2020 Yes No 
 

De la Salle, 2020 Yes No 
 

Jaworska, 2019 Yes No 
 

Mumtaz, 2017 No Yes 3-stimulus visual Oddball Task  
Rajpurkar, 2020 Yes No 

 

Wu, 2020 Yes No 
 

Zhdanov 2020 Yes No 
 

 

Supplementary Table S5 –  Resting-state and task-specific EEG  
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Supplementary Material 

1. ML Quality Scores of All Studies  

ML Quality Scores of All Studies 

Predicting response to Neurostimulation  

Authors Representative Confounding Outcome ML Feature 

Selection 

Class 

imbalance 

Missing 

data 

Performance Testing/ 

Validation 

Overall Score 

Bailey, 

2017 

No Yes Yes Yes No  No Yes Yes No 5/9 

Bailey, 

2018 

No Yes Yes Yes No No Yes Yes No 5/9 

Corlier, 

2019 

No Yes Yes Yes Yes No Yes Yes Yes 7/9 

Erguzel, 

2014 

No No Yes Yes Yes No Yes Yes No 5/9 

Erguzel, 

2015 

No No Yes Yes Yes No Yes Yes No 5/9 

Erugzel, 

2016 

No No Yes Yes Yes No Yes Yes No 5/9 
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Hasanzadeh, 

2019 

No Yes Yes Yes Yes No Yes Yes No 6/9 

 

 

ML Quality Scores of All Studies 

Predicting treatment response to psychiatric medication  

Authors Representative Confounding Outcome ML Feature 

Selection 

Class 

imbalance 

Missing 

data 

Performance Testing/ 

Validation 

Overall 

Score 

Cao, 2019 No Yes Yes Yes Yes No Yes Yes Yes 7/9 

Cook, 

2020 

No Yes Yes Yes No No Yes Yes No 5/9 

Jaworska, 

2019 

No Yes Yes Yes Yes No Yes No No 5/9 

Rajpurkar, 

2020 

Yes Yes Yes Yes Yes    No** Yes Yes No 7/9 

De la 

Salle, 2020 

No Yes Yes Yes No No Yes Yes No 5/9 

Mumtaz, 

2017 

No Yes Yes Yes Yes No Yes Yes No 6/9 
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Wu, 2020 Yes Yes Yes Yes Yes    No** Yes Yes Yes 9/9 

Zhdanov, 

2020 

Yes Yes Yes Yes Yes No Yes Yes Yes 8/9 

** Class imbalance methods are not applicable to regression-based models  

2. Quality assessment instrument development 

We formed a group of multidisciplinary researchers from the fields of Neuroscience, Psychiatry, and Computer Science to develop a 

time efficient and practical assessment strategy to evaluate the quality of supervised machine learning based healthcare research. For 

that purpose, we attempted to capture the reliability of the results presented in each study and identify practical ways that methodology 

may be improved. This instrument is not intended to provide an exhaustive evaluation of all components of supervised machine 

learning studies, but rather provide a brief overview of common considerations in supervised models, including patient sample, the 

specific outcome, algorithm selection, and how performance was evaluated. In total, this comprised nine methodological features, 

including sample representativeness, confounding variables, and outcome assessments Relevant considerations of each 

methodological feature are discussed in further detail in the next sections. The six remaining dimensions assess the quality and 

specific components of the machine learning approach that were used in each study. In summary, this entails the algorithm or 

framework used, evidence that hyper-parameter optimization and feature selection procedures were used, whether authors provided 

details on how missing data and class imbalance problems were handled, the accuracy of a given model, and finally whether the model 

performance was tested in unseen data. These dimensions were qualitatively evaluated according to the information in section 3.  

  

3. Quality assessment instrument domains 

Methodological Feature Considerations 

1. Representativeness of the 

sample 

Was the study representative of the heterogeneity observed in the target population? If not, was this 

related to the sampling method, insufficient sample size or inclusion/exclusion criteria?   

2.  Confounding variables Did the study control for the most relevant confounding variables? If so, were covariates assessed using 
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subjective or objective measures?  

3.  Outcome assessment How were outcome measures assessed? 

A. Independent blind assessment (✓) 

B. Secure record (e.g., surgical records) (✓) 

C. Interview not blinded, self-report or medical record 

D. No description 

 

A-C scored as “Yes”; D scored as “No” 

4. Machine learning 

approach 

Was the machine learning algorithm used to analyse the data clearly described and appropriate? 

5. Feature selection Did the study describe both feature selection and hyperparameter tuning? Which metrics were used? 

6. Class imbalance  Did the authors address the class imbalance problem? Which method was used? 

7. Missing data Did the study describe how the authors handled missing data, including whether they were inputted or 

removed? 

8. Performance/accuracy Were the following performance metrics included for classification studies? 

1. Accuracy 

2. Sensitivity 

3. Specificity 

4. AUC 

5. PPV/NPV 

Or, alternatively, were one of the following performance metrics included for regression studies? 

1. Mean-squared error 

2. Mean-absolute error 
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3. Root-mean-squared error 

9. Testing/validation Was the test dataset "unseen" during model training? Was the model tested on a hold-out or an external 

dataset?  

3.1. Representativeness of the sample 

Machine learning models can deal with large amounts of data and the problem of heterogeneity. Therefore, there is less of a need to be 

restrictive with inclusion and exclusion criteria, relative to a traditional statistical approach examining significant effects at a group-

level. Considering all studies included in the present review used data from randomized clinical trials, determined whether 1) 

performance was tested on an external sample with differences in inclusion/exclusion criteria, and 2) whether a training sample of ≥ 

100 patients was used in model development.  

 

3.2. Internal CV 

To adequately control for confounding variables within machine learning models, it is important to ensure that these variables have a 

similar effect across the entire sample. To achieve this, randomization is an important step within the analysis. Often, the overall 

sample is randomly split into training and testing sets, and the analysis is repeated on the training dataset with different 

hyperparameters in order to maximize accuracy and minimize error. This is known as internal cross-validation. From here, if model 

performance is similar in the testing dataset, it presumes that potential confounding variables are uniformly distributed across the 

sample. Using the aforementioned criteria, we evaluated whether the authors controlled for confounding variables.  

 

3.3. Outcome assessment 

How an outcome is defined has several important implications in a predictive model. Depending on the question or problem, a 

classification task may be appropriate, which uses a categorical outcome, or a regression task may be more relevant, where the 

outcome is continuous and numeric. A clinical instrument or questionnaire, for example, can be used as a numeric score or it can be 

transformed into a categorical outcome by using a cut-off score. We evaluated how authors assessed these outcomes, considering (A) 

independent blind assessments and secure records as high quality, (B) unblinded interview, self-report, or medical record as lower 

quality and (C) when no description was available.  

 

3.4. Algorithm selection 

There are several algorithms to choose from, with each relying on slightly different assumptions of the underlying data. Broadly 

speaking, there are linear (logistic regression, linear support vector machine), non-linear (Naive Bayes, K-Nearest Neighbors, 

Learning Vector Quantization) 



Ph.D. Thesis – D. P. Watts; McMaster University – Neuroscience.  

 

203 
 

tree-based (decision trees, random forest, xgboost) and neural network (convolutional neural network, multilayer perceptrons) models, 

although others exist. Certain algorithms may be better suited to certain problems. For example, tree-based models such as random 

forest may be better suited to datasets with multicollinearity among features than linear-based models such as logistic regression. 

However, regularization parameters can be used in linear-based models (such as L2 regularization) to account for issues such as this.  

 

Nevertheless, it is often difficult to determine beforehand which algorithms will lead to the highest model performance. Therefore, it is 

often a good strategy to compare the model performance of several algorithms. In this item, we evaluated whether the authors used an 

algorithm that is commonly used for the specific type of dataset, if several algorithms were compared, and if hyperparameter tuning 

was used.  

 

The appropriateness of a machine learning algorithm was determined based on whether the specific data used in model development 

was congruent or incongruent with the strengths and limitations of the specific algorithm. For example, if a Gaussian process model 

was used, which is a non-sparse algorithm that loses efficiency in high dimensional spaces, in conjunction with a high-dimensional 

dataset, this algorithm would be deemed inappropriate for the input data. Conversely, Naive Bayes, which works well with high 

dimensional data would be considered an appropriate algorithm in such cases. Another example of an inappropriate model would be 

the use of convolutional neural networks for structural and tabular style datasets, as such algorithms are better suited to unstructured 

datasets. In cases where authors included both appropriate and inappropriate algorithms during model development, this consideration 

is scored with a “B”, alongside an asterisk to indicate which algorithms were inappropriate and why. Studies which only utilized one 

algorithm during model development that was deemed inappropriate received a score of “C”. Furthermore, studies are scored with a 

“B” if they did not compare multiple algorithms during model development and were scored as an “A” if they compared multiple 

algorithms that were deemed appropriate based on the candidate feature set.  

 

3.5. Feature selection  

A common problem in machine learning studies is the so-called small-n-large-p problem, also known as the curse of dimensionality, 

which occurs when there are more variables than examples in a dataset. Machine learning models created using these datasets are 

more prone to overfitting, which often results in overinflated performance in a training dataset, but much poorer performance in an 

external testing dataset. In addition, some algorithms cannot deal with more dimensions than examples. Highly correlated variables 

can also introduce more importance to a specific characteristic, decreasing the importance of the remaining variables. To circumvent 

these issues, a proper feature selection procedure, when applicable, should be done prior to training or as part of the training 

procedure, such as it happens in embedded methods. The feature selection can be knowledge-driven or data-driven. In this item, we 

examined if the study used a proper feature selection (if applicable).  

 

3.6. Class imbalance  
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Class imbalance occurs when the distribution of the outcome classes is highly unbalanced, i.e., when one outcome occurs much more 

frequently than the other outcome(s). This may result in a model with high accuracy but with very little clinical utility. For example, 

let us suppose that we have 95 occurrences of response in our dataset and only 5 occurrences of a nonresponse.  Even if our model has 

95% accuracy, it is useless if the model cannot detect the five instances of non-response high accuracy. In this item, we evaluated 

whether there was a class imbalance in the sample and if this problem was correctly addressed. This can be done using a series of 

methods, including (1) changing the metric of performance (accuracy, for example, is a poor form of evaluating imbalanced data sets; 

(2) resampling the data set by artificially increasing it (oversampling) or by removing examples from the majority class to create a 

more balanced data set (undersampling); (3) by generating more data with algorithms such as the Synthetic Minority Over-Sampling 

Technique (SMOTE); (4) by choosing algorithms that deal better with unbalanced classes, such as CART or random forests; (5) by 

using penalized models; or (6) by using anomaly and change detection. In cases where class imbalance was not relevant (balanced 

classes or regression models) this is scored as “yes”.  

 

3.7. Missing data  

It is critical to handle missing data since several algorithms cannot process incomplete data sets. Furthermore, it is also necessary to 

use an adequate imputation method to avoid introducing bias, which would otherwise lead to false conclusions if not addressed. It is 

important to report the amount of missing data in each variable, if these cases were excluded, or if the authors used an algorithm to 

input data and which algorithm/technique was used. Ideally, authors should provide a visual distribution of the patterns of missing 

data, such as aggregation plots, spinogram/spineplots, mosaic plots, etc. All these factors were evaluated in this section.  

 

3.8. Performance/accuracy  

Here, we evaluate whether the authors reported all relevant results and if they used the appropriate metrics. Studies informing only 

partial metrics may mask bias and flaws of the method, preventing the reader from fully understanding the relevance of the model. 

Confidence intervals should ideally be available for all performance metrics.  

 

3.9. Testing/Validation 

We can divide the machine learning process into three main components: training, validation, and testing. A training set allows the 

algorithm to learn and develop a predictive model. The validation set contains unseen data and is used to control for overfitting. 

Frequently, the same dataset is divided into training and validation sets. After a model is trained and validated, and shows consistent 

performance in both these steps, the model can be applied in an external and independent testing set. This allows us to see if the model 

can be generalized outside of the original sample. Some validation methods include holdout validation, k-fold, and leave one out cross 

validation. 
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A model that shows good performance in the training set but performs significantly poorer in the validation step is most likely due to 

overfitting - which occurs when the model relies more on the specific nuances and noise of the training dataset, resulting in poor 

accuracy in unseen data. In this item, we evaluated whether the authors properly tested and validated their models by taking steps to 

improve its generalizability. It is important to highlight that the use of cross-validation to evaluate performance should be discouraged 

when the data is large enough for a training-test split. Furthermore, the size of the test set should be sufficiently large for accuracy and 

other metrics to be estimated with high reliability.  

 

4. Search Filter  

PubMed/MEDLINE 

Abbreviated Search: (“Supervised Machine Learning” OR “Artificial intelligence”) AND (“Major Depressive Disorder”) AND 

(“Electroencephalography”) AND (“Intervention” OR “Treatment”) 
  
Full Search:  
((((((((((((((((((((((((((((((((((((((((((Artificial Intelligence[MeSH Major Topic]) OR (Supervised Machine Learning[MeSH Major Topic])) AND 

(Depressive Disorder, Major[MeSH Major Topic])) OR (Major Depressive Disorders[MeSH Terms])) OR (Major Depressive Disorder[MeSH 

Terms])) OR (Depressive Disorders[MeSH Terms])) OR (Neurosis, Depressive[MeSH Terms])) OR (Depressive Neuroses[MeSH Terms])) OR 

(Depressive Neurosis[MeSH Terms])) OR (Neuroses, Depressive[MeSH Terms])) OR (Depression, Endogenous[MeSH Terms])) OR 

(Depressions, Endogenous[MeSH Terms])) OR (Endogenous Depression[MeSH Terms])) OR (Endogenous Depressions[MeSH Terms])) OR 

(Depressive Syndrome[MeSH Terms])) OR (Depressive Syndromes[MeSH Terms])) OR (Syndrome, Depressive[MeSH Terms])) OR 

(Syndromes, Depressive[MeSH Terms])) OR (Depression, Neurotic[MeSH Terms])) OR (Depressions, Neurotic[MeSH Terms])) OR (Neurotic 

Depression[MeSH Terms])) OR (Neurotic Depressions[MeSH Terms])) OR (Melancholia[MeSH Terms])) OR (Melancholias[MeSH Terms])) OR 

(Unipolar Depression[MeSH Terms])) OR (Depression, Unipolar[MeSH Terms])) OR (Depressions, Unipolar[MeSH Terms])) OR (Dysthmic 

Disorder[MeSH Terms])) OR (Disorder, Dysthymic[MeSH Terms])) OR (Dysthymic Disorders[MeSH Terms])) OR (Dysthymia[MeSH Terms])) 

OR (Persistent Depressive Disorder, Dysthymia[MeSH Terms])) OR (Dysthymia and Chronic Depression[MeSH Terms])) OR (Neurotic 

Depression, Persistent Depressive Disorder[MeSH Terms])) AND (Electroencephalography[MeSH Major Topic])) OR (EEG[MeSH Terms])) OR 

(Electroencephalogram[MeSH Terms])) OR (Electroencephalograms[MeSH Terms])) OR (Brain Waves[MeSH Major Topic])) AND (Clinical 

Trials as Topic[MeSH Major Topic])) OR (Treatment response[Other Term])) OR (treatment prediction[Other Term])) OR (treatment 

selection[Other Term])) 
  
Date: 2022-02-11 

Retrieved references: 1827 

 
Scopus  
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Abbreviated Search: (Supervised Machine Learning OR Artificial Intelligence) AND (Major Depressive Disorder) AND 

(Electroencephalography) AND (Intervention OR Treatment) 

  
Full Search: ((Artificial Intelligence) OR (Supervised machine Learning)) AND ((Depressive Disorder, Major) OR (Major Depressive Disorders) 

OR (Depressive Disorders) OR (Neurosis, Depressive) OR (Depressive Neurosis) OR (Neuroses, Depressive) OR (Depression, Endogenous) OR 

(Depressions, Endogenous) OR (Endogenous Depression) OR (Endogenous Depressions) OR (Depressive Syndrome) OR (Depressive 

Syndromes) OR (Syndrome, Depressive) OR (Syndromes, Depressive) OR (Depression, Neurotic) OR (Depressions, Neurotic) OR (Neurotic 

Depression) OR (Neurotic Depressions) OR (Melancholia) OR (Melancholias) OR (Unipolar Depression) OR (Depression, Unipolar) OR 

(Depressions, Unipolar) OR (Unipolar Depressions) OR (Dysthmic Disorder) OR (Disorder, Dysthymic) OR (Dysthymic Disorders) OR 

(Dysthymia) OR (Persistent Depressive Disorder, Dysthymia) OR (Dysthymia and Chronic Depression) OR (Neurotic Depression, Persistent 

Depressive Disorder)) AND ((Electroencephalography) OR (EEG) OR (Electroencephalogram) OR (Electroencephalograms) OR (Brain Waves)) 

AND (Clinical Trials) OR (Treatment Response) OR (Treatment Prediction) OR (Treatment Selection) 
  
Date: 2022-02-11 

Retrieved References: 1466 

 
Web of Science 

Search: (TS= Algorithms OR Machine Learning OR Artificial Intelligence) AND (TS= Major Mental Disorder) AND (TS 

=Electroencephalography OR Magnetoencephalography) AND (TS = Intervention OR Treatment) 
Full Search:  

 (TS=(Artificial Intelligence) OR TS= (Machine Learning)) AND (TS=(Major Depressive Disorder) OR (TS=Depressive Disorder, Major) OR 

(TS=Major Depressive Disorders) OR (TS=Depressive Disorders) OR (TS=Depression) OR (TS=Dysthymia) OR (TS=Neurosis, Depressive) OR 

(TS=Depressive Neurosis) OR (TS=Neuroses, Depressive) OR (TS=Depression, Endogenous) OR (TS=Depressions, Endogenous) OR 

(TS=Endogenous Depression) OR (TS=Endogenous Depressions) OR (TS=Depressive Syndrome) OR (TS=Depressive Syndromes) OR 

(TS=Syndrome, Depressive) OR (TS=Syndromes, Depressive) OR (TS=Depression, Neurotic) OR (TS=Depressions, Neurotic) OR (TS=Neurotic 

Depression) OR (TS=Neurotic Depressions) OR (TS=Melancholia) OR (TS=melancholicas) OR (TS=Unipolar Depression) OR (TS=Depression, 

Unipolar) OR (TS=Depressions, Unipolar) OR (TS=Unipolar Depressions) OR (TS=Dysthmic Disorder) OR (TS=Disorder, Dysthymic) OR 

(TS=Dysthymic Disorders) OR (TS=Dysthymia) OR (TS=Persistent Depressive Disorder, Dysthymia) OR (TS=Dysthymia) OR (TS=Chronic 

Depression) OR (TS=Neurotic Depression, Persistent Depressive Disorder)) AND (TS=(Electroencephalography) OR (AB=EEG) OR 

(TS=Electroencephalogram) OR (TS=Electroencephalograms)  OR (TS=Brain Waves)) AND (TS=(Clinical Trials) OR (TS=Treatment Response) 

OR (TS=Treatment Prediction) OR (TS=Treatment Selection) OR (TS=Treatment) OR (TS=Therapy)) 

Date: 2022-02-11 
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This chapter in its entirety is currently under revision in the journal Molecular Psychiatry.   
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ABSTRACT 

Background: Selecting a psychotropic medication in psychiatry remains a trial-and-error 

process, with no specific biomarker to lend support in clinical decision making. Additionally, 

randomized clinical trials (RCTs) and meta-analyses yield group-level results, and usually do not 

adequately model the heterogeneity and multimorbidity observed in patients with psychiatric 

disorders. There is, therefore, a critical need for predictive tools to aid clinicians in determining 

the likelihood an individual patient will respond to a given treatment.  

Aims: The aims of the present study were 1) to review machine learning models of treatment 

response within clinical trials in psychiatry that incorporate data-driven biomarkers and 2) to 

provide methodological recommendations for machine-learning precision trials, a new trial 

design to occur following the successful completion of an RCT.  

Method: We performed a systematic review of studies using data from randomized clinical trials 

to predict treatment response in patients with psychiatric disorders using machine learning 

models comprising biological or physiological input features (Registration Number: 

CRD42016049635) by searching PubMed, Scopus, and Web of Science for articles published 

between January 1981 and March 2022.  

Results: We included 26 studies that predicted treatment response using data from randomized 

clinical trials among patients with any psychiatric diagnosis (n = 7031 patients in total). Studies 

thus far have used resting-state and task-specific fMRI, resting-state EEG, structural MRI, blood 

metabolites, serum biomarkers, and single nucleotide polymorphisms to develop predictive 

models. Model performance within classification models ranged from 57-86.7% when using 
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peripheral blood markers, 76-81% when using EEG, 71.4-77.5% when using neuroimaging 

features, and 50.3-84% when using multimodal data, respectively. Furthermore, based on the 

consistency of performance across models with large sample sizes, the highest degree of 

evidence was in predicting response to sertraline and citalopram using fMRI features. However, 

prospective models with larger sample sizes using EEG, blood-biomarker and multimodal data 

are required to determine whether a specific modality is superior in predicting treatment 

response.  

Conclusions: Machine learning models with high-quality input variables have the potential to 

address some limitations of evidence-based medicine, shifting the focus from group-level results 

to individualized predictions. We present methodological recommendations for machine-learning 

precision trials, an important second step following RCTs to improve the generalizability of 

models to heterogeneous patients seen in the clinic. Moreover, machine-learning precision trials 

of treatment selection, evaluating individual differences in comparative effectiveness across the 

same group of patients, are needed to advance the field of precision psychiatry.  

Keywords: machine learning; predictive modelling; artificial intelligence; precision psychiatry; 

computational neuroscience; biomarkers; evidence-based medicine, treatment response 

 

INTRODUCTION 

Evidence-based medicine (EBM) has prompted a revolution in patient treatment since its 

introduction in research and clinical practice. Indeed, EBM has led to several improvements in 

methodological research standards, as well as clinical guidelines and knowledge translation 1. 

The gold-standard of EBM are randomized controlled trials (RCTs), which assess the average 
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group response to a given intervention 2. Moreover, meta-analyses of RCTs, which pool 

individual RCTs together to derive an overall estimate of the effect of the intervention, are a key 

component of EBM 3.  

Considering that individual patients may deviate from the average group response, it can be 

expected that a specific treatment with demonstrated efficacy, relative to placebo, may not be 

efficacious across all patients. Additionally, due to strict inclusion/exclusion criteria meta-

analyses and RCTs cannot properly map the complexity that are often seen in real patients, and 

as a result, are unable to render tailor-made evidence 4. In fact, the very idiosyncrasies that 

characterise most patients, such as multimorbidity profiles, are often exclusion criteria in clinical 

trials.  

It is also important to mention that statistically significant associations at the aggregate level do 

not necessarily translate into clinical benefit. For instance, in a network meta-analysis comparing 

the efficacy and acceptability of 21 antidepressant drugs across 522 trials for the acute treatment 

of adults with Major Depressive Disorder (MDD), while all antidepressants were found to be 

more efficacious than placebo, significant variability in efficacy and acceptability was observed 

between medications in head-to-head trials 5. Similar heterogeneity in treatment efficacy was 

also observed across patients with schizophrenia in a network meta-analysis comprising 402 

trials and 32 oral antipsychotics, with large differences in side effects between medications 6.  

Altogether, available evidence suggests that approximately 20-60% of patients with psychiatric 

disorders continue to show significant residual symptoms following a course of treatment of 

sufficient dose and duration 7.  

Despite clinical heterogeneity in response to medications that have been shown to be effective in 

randomized placebo-controlled trials, we currently lack objective biomarkers to guide the clinical 
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likelihood of sufficient symptomatic improvement, inadequate symptom reduction, or remission 

within a specific patient to a given course of treatment. As such, patients continue to endure 

prolonged periods of “trial-and-error” in search of effective treatment and the burden associated 

with this process. Moreover, validated, and reliable biomarkers are needed to improve our 

understanding of the mechanisms of patient remission in response to specific treatments. For 

instance, while first-line antidepressants such as fluoxetine have been shown to be effective in 

many patients with depression for over 3 decades 8, debate remains surrounding their exact 

mechanisms of action 9. Therefore, new strategies are required to determine which treatments are 

likely to be effective for a given patient, expedite biomarker discovery, and improve our 

mechanistic understanding of how currently approved medications improve symptoms, to guide 

the development of next-generation therapeutics in psychiatry.  

Towards this end, machine learning is a subfield of artificial intelligence focused on 

computational methods that can extract relevant information from complex datasets 10. Such 

methods can model patterns to generate individualized predictions using high quality data from 

various modalities, such as neuroimaging, genetics, neurophysiology, and clinical features 11. 

Incorporating these techniques into less restricted clinical trials with medications that have 

already proven their efficacy in previous RCTs will aid in the development of precision 

psychiatry, by enabling more precise interventions that include patient’s idiosyncrasies 12. 

Considering the limitations of a “trial-and-error” approach to treatment in psychiatry, there is a 

major unmet need for individualized predictions of response to treatment.  

In the present study, we aimed to systematically review studies that used machine learning 

techniques to predict treatment response within randomized clinical trials in patients with 

psychiatric disorders. To assess predictors that may be implicated in the underlying mechanisms 
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of action of treatment response, only studies that incorporated biomarkers, broadly defined as 

biological or physiological input features, were included. Additionally, we provide 

recommendations for a new trial design that should be conducted following successful RCTs. 

We refer to this as machine-learning precision trials.  

 

METHODS 

This study has been registered on PROSPERO with the registration number PROSPERO 

CRD42019127169. 

Search strategy 

Three electronic databases (PubMed, Scopus, and Web of Science) were examined for articles 

published between January 1981 and March 2022. To identify relevant studies, the following 

structure for the search terms was used: (Artificial Intelligence OR Supervised Machine 

Learning) AND (psychiatric disorders) AND (clinical trials OR treatment response OR treatment 

prediction OR treatment selection). The complete filter is available in the supplementary 

material. We also screened the references from the articles included to find potential missed 

articles. There were no language restrictions.  

Eligibility criteria 

This systematic review was performed according to the PRISMA statement 13. We selected 

original articles that assessed patients with a psychiatric disorder treated with pharmacological or 

non-pharmacological interventions coupled with machine learning models to predict treatment 

outcomes. Review articles, observational studies, naturalistic trials, non-interventional studies, 
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models predicting response to heterogeneous open-label treatments (e.g., several SSRI 

antidepressants), and studies which did not consider biological or physiological variables as 

candidate features were excluded. Furthermore, studies that lacked either cross-validation 

measures or training and testing sets were excluded. Additionally, non-randomized open-label 

trials are considered separately in the supplementary material, as they lack a comparator group to 

assess the specificity of the predictive model to the treatment of interest, relative to a placebo or 

other treatment arm.  

Data collection and extraction 

Initially, the potential articles were independently screened for title and abstract contents by two 

researchers (DW and DLG). Then, they also obtained and read the full text of potential articles. 

A third author (ICP) provided a final decision in cases of disagreement. Data extracted from the 

studies included publication year, sample size, diagnosis, data inputted into the machine learning 

model, machine learning algorithm, sampling method and data imputation, type of intervention, 

outcomes of interest, and statistical performance of the models (i.e., accuracy, balanced 

accuracy, sensitivity, specificity, area under the curve, true positive, false positive, true negative 

and false negative and confidence intervals of performance metrics, when available). We 

developed a quality assessment instrument specific to machine learning studies since there is no 

tool for quality assessment in machine learning studies. This instrument is further described in 

the supplementary material. 

RESULTS 

We found 16,669 potential abstracts and included 26 articles in the present review, three 

included after reference screening 14–16. A list of included studies, comprising the clinical sample, 
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outcome, machine-learning models, top data-driven biomarkers, and performance metrics, can be 

observed in Table 1. Furthermore, Table 2 provides a thorough overview of true and false 

positives and negatives across classification studies, methods to address class imbalance as well 

as 95% confidence intervals of model accuracy. Additionally, details related to data pre-

processing and feature extraction for each model can be found in Supplementary Table S3. A 

quality assessment developed for machine learning models can be observed in Supplementary 

Table S2. Studies with lower quality assessment scores are described in brevity in the results 

section. Additionally, further context regarding feature extraction and model development are 

provided in the results, where required. Of the included studies, 3 studies used peripheral blood 

markers 17–19, 5 studies used electroencephalography 16,20–23, 9 studies used neuroimaging 24–32, 

and 10 studies used multimodal data 15,26,33–40, defined as at least two feature modalities, or 

overarching categories of input features, such as fMRI and EEG predictors. Furthermore, a table 

containing studies that developed models using data from non-randomized open-label trials can 

be found in Supplementary Table S1. Among them, 6 studies used EEG, 13 studies used 

neuroimaging, and 6 studies used multimodal data.  

Studies using blood biomarkers and genetics  

Three studies developed predictive models of treatment response within randomized clinical 

trials using peripheral blood markers 17–19. Amminger and colleagues predicted response to 

omega-3 fatty acids (ω-3) or placebo in a 12-week randomized controlled trial (RCT) of 81 

individuals at ultra-high risk of psychosis. Fatty acid composition was quantified via capillary 

gas chromatography. Clinical response was defined as a ≥15-point increase in Global 

Assessment of Functioning (GAF) scores from baseline to the end of treatment. Erythrocyte fatty 

acids were used as predictive variables, comprising six categories of fatty acids, including 
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arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Using a 

Gaussian Process Classifier, their model showed an accuracy of 86.7% in predicting response to 

Polyunsaturated fatty acids (PUFAs), and 79.6% in predicting response to placebo. Important 

variables in the ω-3 model included nervonic acid, margaric acid, and arachidonic acid 17.  

Furthermore, Maciukiewicz et al. 19 used SNP data from three previously conducted RCTs of 

duloxetine or placebo for 8 weeks, to predict treatment response and remission, defined as a 

>50% change in the Montgomery-Asberg Depression Rating Scale (MADRS) from baseline and 

a total MADRS score ≤10 at endpoint, respectively. However, the model showed poor balanced 

accuracy (46-49%), defined as the arithmetic mean of sensitivity and specificity 41, was observed 

across models. Additionally, Hou et al. 18predicted response to 11-weeks of ondansetron, a 5-

HT3 receptor antagonist, vs. placebo in 251 patients with Alcohol-Use Disorder (AUD) using 

polymorphisms in the promoter region of the SLC6A4 gene. However, the accuracy of these 

models was not reported 18.   

Studies using Electroencephalography  

Five studies developed predictive models of treatment response within RCTs using pre-treatment 

EEG 16,20–22,42. Wu and colleagues developed a predictive model of response to sertraline or 

placebo using data from 228 patients with MDD enrolled in the Establishing Moderators and 

Biosignatures of Antidepressant Response for Clinical Care for Depression (EMBARC) trial. 

Treatment response was considered as a continuous outcome, using pre- minus post-treatment 

differences in the 17-item Hamilton Depression Rating Scale (HAMD-17). The authors also 

developed a predictive algorithm known as Sparse EEG Latent SpacE Regression (SELSER) 

which uses spatial filters that map EEG signals to a latent space performed under a sparse 
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constraint on the number of spatial filters, and then relates the band powers of the latent signals 

to a treatment outcome using a linear regression model. In a leave-study-site-out analysis, 

SELSER predicted response to sertraline with a Pearson’s r (r) of 0.60 and predicted response to 

placebo with r=0.41.  Of note, when models were applied to the opposite arm of the study, the 

outcome could not be predicted (r=-0.03 and r=<0.22, respectively), demonstrating their 

specificity. Moreover, for the sertraline arm, only signals from the resting-eyes open condition 

were significantly predictive of treatment score change during cross-validation 23.  

Additionally, Cao and colleagues predicted treatment response (≥ 45% reduction in Hamilton 

Depression Rating Scale 17-items (HDRS17) from baseline to 240 min post-treatment) in a 

double-blind placebo-controlled trial of ketamine (0.2mg/kg, 0.5 mg/kg) and saline. Using EEG 

power and alpha asymmetry features, their Support Vector Machine (SVM) model showed an 

accuracy of 78.4% 21. Furthermore, de la Salle and colleagues predicted clinical response (≥ 50% 

improvement in MADRS scores from baseline) within a 12-week trial of bupropion, 

escitalopram, or combined treatments, across 47 patients with treatment resistant depression. 

Within a logistic regression model, prefrontal cordance across delta, theta, alpha, and beta 

frequency bands and change scores in middle right frontal cordance resulted in an accuracy of 

81% and 74% in predicting clinical response, respectively. Similarly, clinical remission could be 

predicted with 70% accuracy using prefrontal cordance, however middle right frontal cordance 

features were not discriminative (51% accuracy) 16. In another study, using the same dataset, 

Jaworska and colleagues predicted response in a double-blind trial of escitalopram + bupropion, 

escitalopram + placebo, or bupropion + placebo, resulting in an AUC of 0.716-0.901 22. 

Furthermore, another study 20 predicted response to transcranial direct current stimulation (tDCS) 
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in a sample of 10 patients with MDD, resulting in a cross-validated accuracy of 76%, with the 

best performance using FC4-AF8 electrode pairs 20. 

Studies using Neuroimaging 

Nine studies 24–32 developed predictive models of treatment response within randomized clinical 

trials using neuroimaging derived features. Braund and colleagues 24 developed a model using a 

connectome signature associated with neuroticism and clinical features to predict treatment 

response, defined as >50% reduction in HDRS17. More specifically, baseline intrinsic functional 

connectivity was calculated between each pair of 400 cortical regions and 36 subcortical regions, 

analyzed using network-based statistics to identify connectomics features associated with 

neuroticism (total NEO-FFI scores). This network-based statistics (NBS) analysis identified a 

signature comprising 622 connections across 198 nodes, where greater neuroticism was 

associated with significantly higher functional connectivity (corrected p=.010). Using an SVM 

model, with a filter-based feature selection method, 19 connections across 30 brain regions 

correctly classified responders from non-responders with 75% accuracy 24.  

Fonzo and colleagues 26 developed a model using emotional conflict-regulation-related brain 

activity, to a previously characterized emotional conflict task as part of EMBARC, the largest 

neuroimaging-coupled placebo-controlled RCT of depression to date. In total, 309 medication-

free outpatients with depression received either the SSRI sertraline or placebo for 8 weeks. 

Following a series of pre-processing steps, as outlined in Supplementary Table S3, regions of 

interest (ROIs) were mapped to seven functional networks according to the spatial overlap 

between each ROI and each network. In a regression model, treatment response was defined as 

pre-minus post-treatment change in the HAMD-17 using emotional conflict regulation 

activation. A relevance vector machine (RVM) model trained on the sertraline outcome yielded a 
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cross-validated prediction of r=-0.49, and when applied to the placebo arm, the sertraline-trained 

model did not yield a significant prediction of HAMD-17 change (r=-0.06). Interestingly, an 

RVM model trained on emotion conflict regulation brain activation data in the placebo arm to 

predict placebo outcome did not yield significant correlations between model-predicted symptom 

changes and observed symptom changes in either the placebo or sertraline arms (r=0.11, 

P>0.20). This suggests that the model reflects a sertraline-specific signal separate from treatment 

effects present across both treatment arms. Important features specific to the sertraline RVM 

model included the right insular lobe and right middle temporal gyrus 26.  

Koutsouleris et al. 28 predicted response to repetitive transcranial magnetic stimulation (rTMS) 

for first-episode psychosis within a multi-site trial of 92 patients randomized to either active 

(N=45) or sham (N=47) 10-Hz rTMS applied to the left dorsolateral prefrontal cortex (DLPFC) 

over 15 sessions. Response and nonresponse were defined according to a ≥ 20% change in 

PANSS negative scores through treatment. Features were extracted from structural MRI data 

using their NeuroMiner tool (https://github.com/neurominer-git/). Using a linear SVM, they 

correctly separated PANSS responders from non-responders with a cross-validated balanced 

accuracy of 84.3%. Important features included relative gray matter density (GMD) reductions in 

prefrontal, insular, and medial cortices. Of note, this pattern specifically separated nonresponders 

from responders in the active, but not the sham treatment group 28.  

Furthermore, Nord and colleagues. 30 conducted an 8-session double-blind RCT of real (N=20) 

or sham (N=19) transcranial direct current stimulation (tDCS) as an adjunct to cognitive 

behavioral therapy (CBT) in 39 unmedicated patients with MDD. An MRI protocol involved a 

T1-weighted anatomical scan and two T2-weighted functional scans during the n-back working 

memory task and an emotional processing task, where participants discerned the gender of 

https://github.com/neurominer-git/
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fearful, happy, and neutral faces. Immediately prior to each CBT session, a 1 mA constant 

current was delivered to the left PFC (anode on F3) using an EEG cap for placement, and a 

cathode on the ipsilateral deltoid. Treatment response was defined according to a ≥50% 

reduction in the HAM-D from baseline to end of treatment. Patients were divided according to 

low and high L-DLPFC activation during the working memory task, and baseline L-DLPFC 

activation was shown to discriminate responders from non-responders with an Area Under the 

Curve (AUC) of 0.856. Of note, this same pattern of activation did not discriminate responders 

from non-responders in the sham condition (AUC=0.417) 30.  

Sarpal and colleagues 31 predicted response within a double-blind randomized controlled trial of 

either risperidone or aripiprazole for 12 weeks in 81 patients with first-episode schizophrenia. 

Patients underwent a resting-state fMRI scan, and 91 features were extracted using a striatal 

connectivity index calculation, which comprised functional connectivity in the striatum. 

Treatment response was defined as two consecutive visits with a Clinical Global Impression 

(CGI) improvement score of 1 or 2 (very much improved) and a rating of 3 (mild) or less in 

conceptual disorganization, grandiosity, hallucinatory behaviour, and unusual thought content on 

the Brief Psychiatric Rating Scale (BPRS). Using cox regression, their model showed an 

accuracy of 77.5%. In posterior regions, greater connectivity in striatal subdivisions at baseline 

was associated with better subsequent treatment response. Conversely, lower striatal connectivity 

of frontal nodes at baseline was associated with better subsequent response 31.  

Furthermore, Yip and colleagues 32 developed a model to predict abstinence within a 12-week 

randomized controlled trial of behavioural therapy plus galantamine or placebo for cocaine use 

disorder. Abstinence during treatment was determined using results of biweekly urine testing and 

defined as the percentage of cocaine-negative urine provided during treatment. fMRI data was 
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acquired during the performance of a monetary delay task, and Connectome-Based Predictive 

Modelling (CPM) was used to extract features, which included group connectivity matrices as 

input to generate a predictive model of the outcome of interest from connectivity matrices. 

Briefly, edges and behavioural data from the training set are correlated using regression analyses 

to identify positive and negative predictive networks. Positive networks comprise those where 

increased edge weights (increased connectivity) are associated with the variable of interest, and 

negative networks are those where decreased edge weights (decreased connectivity) are 

associated with the variable of interest. In an independent sample, abstinence during treatment 

was predicted with r=0.36 (p=0.016), and with 64% accuracy when dichotomizing patients into 

the presence or absence of any cocaine-negative urine. The highest-degree nodes (those with the 

most connections) in the positive network were characterized by more within-network 

connections across medial, frontal, frontoparietal, default mode, motor/sensory, visual 

association, and salience networks. Within negative networks, more connections were observed 

within occipital and subcortical networks 32.  

Additionally, Nemati and colleagues 29 identified a specific connectome fingerprint that predates 

and predicts response to monoaminergic antidepressants. Data used in the predictive model 

involved 202 individuals with MDD from the EMBARC trial, and 56 individuals with MDD 

from a previous RCT of ketamine, from which baseline fMRI data was available. Features were 

extracted from fMRI data using nodal internal network restricted strength (niRNS), calculated as 

the average connectivity between nodes and all other nodes within the same intrinsic 

connectivity network (ICN), and nodal external network restricted strength (neNRS), calculated 

as the average connectivity between each node and all other nodes outside its ICN, respectively. 

Brain nodes were defined using multimodal parcellation atlases, dividing the cerebral cortex, 
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subcortical regions, and cerebellum into 424 nodes. The full connectome was calculated as the 

pairwise correlation coefficient between the averaged time series, which was subsequently 

transformed using a Fisher’s z transformation. Additionally, a network restricted strength 

predictive model (NRS-PM) was used, which incorporates feature selection to identify NRS 

edges that positively or negatively predict the behavioural measure of interest (p <0.05), and 

following this, the weighted sum of positive edges minus the weighted sum of negative edges are 

used to generate a summary statistic for each subject, with the resulting coefficients applied to 

predict the outcome. The whole brain NRS-PM predicted antidepressant response across AA-4 

and AA-150 architectures, following false discovery rate (FDR) correction, with a peak at AA-

58 (r=0.27, CV=10, iterations=1000, p=0.003). Independently, the positive predictive edges 

peaked at AA-58 (r=0.29, CV=10, iterations=1000, p=0.001) and the negative predictive edges 

peaked at AA-26 (r=0.25, CV=10, iterations=1000, p=0.003). Interestingly, the model showed 

partial generalization to an independent ketamine dataset, where it predicted response to 

ketamine compared with lanicemine (r=0.55, p=0.0003), but not ketamine relative to placebo 29.   

Furthermore, one study predicted response to sertraline using the EMBARC trial but did not find 

differences in features between sertraline and placebo models 25,  and another study 27 predicted 

response to citalopram or placebo using a network-based statistical analysis, resulting in an AUC 

of 0.68 in predicting response, and an AUC of 0.73 in predicting remission, respectively.  

Studies using multimodal predictors  

Ten studies 15,26,33–40 predicted treatment response within randomized clinical trials using 

multimodal data. Crane and colleagues 34 developed a predictive model of treatment response to 

antidepressants using inhibitory control during a functional MRI.  Twenty-nine patients with 
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MDD, free of any antidepressants for at least 90 days, were treated with open-label escitalopram 

or duloxetine for 10 weeks. The parametric go/no-go test (PGNG), which measures attention, 

set-shifting, processing speed and correct/incorrect responses was used, and ICA beta weights 

within the PGNG imaging task, traditional haemodynamic response function (HRF), medication 

type, age, sex, and the interaction between component beta weights and medication group were 

used as predictors. Following leave-one-out cross-validation, a random forest model predicted 

treatment remission (post-treatment HDRS17 <8) with 84% accuracy 34.  

Furthermore, Taliaz and colleagues 40 developed a predictive model of treatment response to 

antidepressants using 1697 patients with MDD from the Sequenced Treatment Alternatives to 

Relieve Depression (STAR*D) trial, which was tested on an external sample of 132 patients 

treated with citalopram from the Pharmacogenomic Research Network Antidepressant 

Medication Pharmacogenetic Study (PGRN-AMPS). Two measures of treatment response were 

used, corresponding to classic response and exponential response. Classic response was defined 

as a ≥50% reduction in the Quick Inventory of Depressive Symptomatology (QIDS) from 

baseline. Conversely, exponential response involved a continuous measure that represented the 

exponential fit for the individual longitudinal measurement of QIDS, during a specific treatment. 

This measure accounts for the change of the score over time, as well as the speed and dynamics 

of the response. As such, the median of the exponential antidepressant improvement rates was 

calculated independently for each STAR*D treatment. Candidate features for the models 

included clinical and demographic variables, alongside genes and microRNA that were reported 

to be associated with depression, antidepressant response, metabolism, and side effects, yielding 

281 genetic components. In the validation set, a SVM model predicted response with 72.3% 

across medications, with the best performance in predicting response to venlafaxine, with a 
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balanced accuracy of 80.2%. Furthermore, when tested on the external PGRN-AMPS dataset, the 

citalopram model showed a balanced accuracy of 61.3% 40. 

Fonzo and colleagues 14 predicted treatment response within an RCT comprising 12 sessions of 

prolonged exposure treatment (N=36) or waitlist condition (N=30) in patients with Post-

Traumatic Stress Disorder (PTSD). Clinical remission was defined as a post-treatment Clinician-

Administered PTSD Scale (CAPS) score ≤ 20. Using a combination of baseline clinical features, 

treatment arm, and bilateral activation of several brain regions during an emotional reactivity 

task, clinical remission was predicted with an accuracy ranging from 79.5%-97.7%. However, it 

should be noted that model accuracy is likely higher than what would be expected when tested in 

an independent cohort, since the same sample of participants was used in training and testing its 

predictive accuracy. Nevertheless, the most important features in predicting total CAPS scores 

from linear mixed models included 23 regions during an emotional reactivity task, 7 regions 

during an emotional conflict task, and 1 region in an emotional conflict vs gender conflict task. A 

summary of these predictors can be observed in Table 1 14.   

Joyce and colleagues 36 developed a predictive model of treatment response using data from 

PGRN-AMPS, an 8-week clinical trial of escitalopram or citalopram comprising 529 patients 

with MDD. Model performance was tested on CO-MED, a 7-month clinical trial where patients 

were randomized to either escitalopram + placebo, bupropion + escitalopram, or extended-

release venlafaxine plus mirtazapine. Clinical response was defined as ≥50% reduction in QIDS-

C total score from baseline, and remission was defined as a score of ≤5 on the QIDS-C, 

respectively. Two predictive models were developed, one comprising clinical, 

sociodemographic, and metabolomic features common to both the PGRN-AMPS and CO-MED 

studies, and a second augmented model incorporating six previously functionally validated 
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SNPs. Using the "metabolomics models" feature set, the best trained classifiers predicted 

response to combination antidepressant therapies at 8 weeks with accuracies of 76.6% (p<0.005; 

AUC:0.85) and 72.7% (p=0.053; AUC:0.76) for penalized regression and XGBoost, 

respectively. Using the "multi-omics models" feature set, accuracies improved to 77.5% (p<0.01; 

AUC:0.86) and 76.1% (p=0.017; AUC: 0.83). Of note, performance slightly decreased in the 

SSRI only XGBoost model when combining metabolomic and SNP data, relative to 

metabolomic data alone (75.3% vs 73.2%) 36. 

Furthermore, Nguyen and colleagues 37predicted change scores in HAMD17, clinical response 

(≥50% reduction in HAMD17 at week 8), and clinical remission (≤7 HAMD17 at week 8), using 

data from the EMBARC study comprising 222 patients randomized to 9 weeks of sertraline 

(n=106) or placebo (n=116). Subsequently, sertraline non-responders (n=37) were switched to 8 

weeks of bupropion. Reward task-based fMRI was acquired at baseline visit for 8 minutes during 

a block-design number-guessing task, where participants’ differential brain activation was 

measured between punishing vs. rewarding trials. Contrast maps were quantified using brain 

activation in the anticipation phase of number-guessing trials, reward expectancy, and prediction 

error, and were parcellated into 200 functional brain regions, yielding 600 fMRI features for each 

patient. Additionally, 95 pre-treatment clinical and demographic features were also considered as 

candidate features in feed-forward neural network models. Change scores in HAMD17 were 

predicted in sertraline, placebo, and bupropion conditions, with an R2 of 0.48, 0.28, and 0.34, 

respectively 37. Additional performance metrics can be observed in Table 1.  

In another study, Rajpurkar and colleagues 38 predicted improvements in depressive symptoms 

within a clinical trial of escitalopram, sertraline, or extended-release venlafaxine, using resting-

state EEG and baseline HDRS17 scores. EEG features included absolute power, relative power, 
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frontal alpha asymmetry, and beta-alpha ratio. In the combined model, the authors reported an R2 

of 0.551. Symptom features alone resulted in an R2 of 0.375. Of note, Shapley Additive 

Explanations (SHAP) were used to quantify the effect of each feature on the models. SHAP 

values were aggregated for features on individual predictions and the averaged Shapley 

contributions were reported as a percentage of the associations of all features. Shapley 

contributions were reported for changes in each item of the HDRS17 including waking early, 

physical anxiety, and trouble sleeping. For each individual item, baseline HRSD-21 scores 

showed the highest contribution. For instance, baseline trouble sleeping showed a 57.3% 

contribution to changes in trouble sleeping throughout treatment, followed by T7-T3 alpha 

absolute ratio (6.7%) and T7-T3 beta absolute ratio (4.4%), respectively 38. Further details on 

important EEG features within the model can be observed in Table 1.  

Other study 35 predicted response within the NIMH-funded Clinical Antipsychotic Trials of 

Intervention Effectiveness (CATIE) 43 study, resulting in an accuracy between 55-66%, a 

comparative trial of several antipsychotics 33, resulting in an accuracy of 50.3%, and an RCT of 

exercise therapy 39 in patients with MDD, resulting in an AUC of 0.785 in predicting remission, 

and an AUC of 0.710 in predicting non-response, respectively. Furthermore, Athreya and 

colleagues 15 predicted remission and response in patients with MDD, comprising 398 patients 

from PGRN-AMPS, 467 patients from STAR*D, and 165 from the International SSRI 

Pharmacogenomics Consortium (ISPC) trials. Using plasma metabolites associated with SSRI 

response and SNPs, remission and response was predicted with an AUC of ~0.70 across trials 15.  

DISCUSSION  
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Within this review, several studies have developed predictive models of treatment response using 

biological and physiological features generated from well-characterized, large-scale placebo-

controlled trials, which allows for a comparative examination of data-driven biomarkers that are 

specific to the active treatment arm. Importantly, a subset of these models 23,33,36,40 were 

replicated in independent datasets, largely maintaining meaningful but modest predictive 

accuracy, which suggests the potential for their scalability as classification tools.  

Model Performance  

In terms of performance, models using peripheral blood markers ranged from 66-86.7% accuracy 

in predicting response across two studies 17,19, whereas a third study 18 only reported mean 

difference of the continuous outcome identified between algorithms. EEG models ranged from 

76-81% accuracy to predict response across three studies 20–22, whereas a third regression model 

yielded an R2 of 0.60 in predicting response to sertraline, relative to placebo (R2=0.41) 23. A 

larger proportion of studies thus far have used neuroimaging, where the vast majority have 

involved features extracted using fMRI. Roughly half (44.4%) of all neuroimaging models 

25,26,29,32 have predicted continuous outcomes, with an R2 ranging from 0.19-0.49 in predicting 

response to sertraline (median = 0.346, n=3), and similar performance in a model to predict 

cocaine abstinence (R2= 0.36). In four studies using classification-based outcomes that reported 

model accuracy,24,28,31,32, performance ranged from 71.4%-77.5%, with the best performance in a 

small trial (n=41) of patients within an RCT of risperidone or aripiprazole 31. Within multimodal 

models, comprising six studies, accuracies ranged from 50.3-84%, with the best performance in a 

small trial of 49 medication-free patients in predicting response to open-label escitalopram or 

duloxetine for 10 weeks 34.  
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Model Validation  

However, it is important to mention that a subset of studies 20,26,27,30–32,34,37, especially those with 

smaller sample sizes, did not incorporate a holdout set, characterized as a partition of the sample 

that the model is tested on following cross-validation 44. Evaluating model performance using 

standard cross-validation alone may lead to inflated metrics, as discussed elsewhere 45. As such, 

when a sample is of sufficient size to train a model, keeping approximately 30% of the data as a 

holdout set to test model performance is useful to assess overfitting, and provide a more realistic 

appraisal of model generalizability 46.  

Moreover, best practices would involve testing model performance on an external sample, such 

as another RCT containing the same input features and outcome, to provide further insights into 

the generalizability of the model to other datasets evaluating the same intervention. Six studies 

19,21,24,28,36,40 included in the present review tested the performance of their models on 

independent samples. For instance, Taliaz and colleagues 40 utilized a subset of the STAR*D 

dataset where genetic variables were available, comprising 1697 patients, separated into training 

(n=1167), testing (n=271), and internal validation sets (n=259). Additionally, they assessed 

performance on an external validation set (n=132) from the PGRN-AMPS study, which largely 

preserved model performance (67% in internal validation set vs 61% in external validation set) 

40.  

Furthermore, testing model accuracy on external datasets also provides an opportunity to assess 

the specificity of the model, by determining whether its performance generalises to different 

treatment arms and evaluating mutually exclusive and overlapping features. For instance, Nemati 

and colleagues 29 tested whether their sertraline model generalised to a dataset from an 

independent ketamine RCT. Their model was found to predict response to ketamine compared 
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with lanicemine (r=0.55, p=0.0003), but not ketamine relative to placebo 29.  As such, this 

approach allows for a comparative assessment of treatment specific biomarkers of response, 

relative to placebo, and other interventions, which may help inform treatment-specific 

mechanisms of therapeutic efficacy.  

The following sections discuss data-driven biomarkers of treatment response identified in 

randomized clinical trials, provides a comparison of data-driven biomarkers across RCTs, 

relative to randomized and non-randomized open-label trials, as well as considers common 

algorithms and pre-processing strategies, and quality-metrics across studies.  

 

Data-driven biomarkers of treatment response in randomized and non-randomized clinical 

trials   

Given the relatively small number of studies (n=26) included in the present review, data-driven 

biomarkers identified in randomized-controlled trials (n=18, 72%) and randomized open-label 

trials (n=7, 28%) were assessed relative to excluded non-randomized open-label trials (n=25, 

Supplementary Table S1) to identify the degree of consistency in data-driven biomarkers across 

studies. Considering only six studies thus far that have utilized SNPs from peripheral blood 

samples as predictive features of treatment response, the lack of overlap in top features across 

studies is unsurprising. Nonetheless, twenty-one SNPs and several genes of interest have been 

identified, including the protein encoding genes MTOR, TSPAN5, DEFB1, AHR, ERICH3, 

PRKCA, GRIA1, GRIN2A, IFNA1, FKBP5, and GRIK4, as further described in Table 1.  

In terms of EEG studies, features in the alpha band were found to be highly predictive of 

treatment response in seven of eight studies (87.5%) where frequency band features were 
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included as candidate features. However, while higher alpha band power in prefrontal regions 

were found to be predictive of response to escitalopram 38, fluoxetine 47, and rTMS 48, lower 

alpha power in the Fp2 channel was found in responders in a small ketamine trial 21.  

Furthermore, among four studies 48–51 that incorporated theta cordance as candidate features, it 

was found to be predictive of treatment response in 50% of cases 48,49.   

Regarding neuroimaging studies using fMRI, BOLD signals in the amygdala 14,30, fusiform gyrus 

52,53, and posterior cingulate cortex 31,54 were found to be predictive of treatment response across 

two studies. Additionally, three studies found activation in the DLPFC 30,32,54 and thalamus 31,54,55 

to be predictive of treatment response, four found temporal gyrus activation to be predictive 

26,32,52,56, and five studies found activation in anterior cingulate cortex to be among the top 

predictors of treatment response 27,31,34,54,57, respectively. Additionally, three studies (23,25,53) 

found increased pre-treatment functional connectivity in the default mode network to be 

predictive of treatment response. 

Of note, features derived from fMRI that were found to be predictive of response to sertraline, 

relative to placebo, included activation in the right insular lobe and right middle temporal gyrus 

14, positive predictive edges in AA-58, and negative predictive edges in AA-26 29, as well as 

increased activation in the inferior frontal gyrus, pars triangularis 37.  

Furthermore, among the five structural MRI studies, regions of the temporal lobe were found to 

be predictive across two studies 58,59, and structures found predictive in fMRI studies were also 

highlighted, including the insula 56,58 and cingulate cortex 58. 

It is also important to highlight that many features identified within these treatment response 

prediction models are highly interrelated, and given this, important features may vary 
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dramatically across studies even in cases where the predictive accuracy of models are highly 

similar.   

Top Algorithms and Pre-processing Strategies 

Across 26 studies included in the present review, eight studies (30.7%) 18,20–22,33,36,39,60 assessed 

the relative performance of multiple algorithms. However, little consistency was observed in top 

algorithms across studies. For instance, while six studies included SVM, it was found to be the 

best performing algorithm in only one case 21. Similarly, three studies 22,33,39 included random 

forest, although only one 22 reported random forest as the best performing algorithm, whereas 

another only reported the performance of logistic regression 33, and the third study reported the 

average AUC across algorithms 39. Considering significant variability across studies in top 

algorithms, and that only a minority of studies thus far have compared performance across two or 

more algorithms, model development using several algorithms may help elucidate benchmarks 

for certain types of input data, feature scaling methods, and specific outcomes. For instance, Wu 

and colleagues assessed the relative performance of their algorithm SELSER against RVM with 

non-SELSER-optimized features as a benchmark, showing better performance with SELSER 

when using clinical features alone, and EEG features 23. Nonetheless, it is important to highlight 

that no singular algorithm should be expected to outperform others in all use cases. Performance 

is expected to largely vary based on the type of disorder, how the outcome was operationalized, 

the risk horizon, and the scaling of the predictors.  

In terms of feature selection methods, as detailed further in Supplementary Table S3, among 

seven studies 15,17–19,35,39,40 incorporating peripheral blood markers as input features, only three 

19,39,40 reported a method of feature selection which included non-zero β-coefficients using 

LASSO 19, bootstrap estimated mean decrease in Gini index within a Random Forest model 39, 
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and embedded feature selection (SVM, Random Forest, AdaBoost) 40. Similarly, of the five 

studies 20–23,39 incorporating EEG features, four 21–23,39 reported feature selection methods which 

included Bonferroni adjusted significance values 21, kernel principal component analysis (PCA) 

22, embedded feature selection using a sparse constraint on the number of spatial filters (22), and 

the highest C index scores 39.  

Furthermore, among the nine studies using fMRI input features 24–32, five used a correlation 

based method of feature selection 14,25,27,29,30, including false discovery rate (FDR) corrected two-

tailed tests with a p<0.05 25 and p<0.1 threshold 30, a family-wise error corrected significance 

threshold set at p<0.05 (two-tailed) 14, and Pearson correlation with a significance threshold set 

at p ≤ 0.10 27, and p < 0.05 29, respectively. Other feature selection methods included embedded 

feature selection within RVM 26, Support Vector Regression 32, and beta weights from each event 

during Targets, Commissions, and Rejections 34. Similarly, among the seventeen studies (73.9%) 

reporting feature extraction methods, little overlap across studies was observed across studies 

using the same modality of input data, as further detailed in Supplementary Table S3. As such, 

greater continuity within feature selection and extraction methods and a comparison of multiple 

approaches is required in prospective studies to assess their relative efficacy to derive 

meaningful features of treatment response.  

Quality Assessment  

Overall, moderate sample sizes were used to develop predictive models of treatment response 

within clinical trials in psychiatry, with a median sample of 251 (n=3) in peripheral blood marker 

studies, 53 patients (n=5) across EEG studies, 92 patients (n=9) across neuroimaging studies, and 

240.5 patients (n=10) in multimodal studies, respectively. Quality metrics were evaluated using a 

quality assessment instrument specific to machine learning, as described in Supplementary Table 
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S2. Quality scores ranged from 4/9 (44.4%) to 9/9 (100%), with the highest score in a cross-trial 

replication study comprising data from two large-scale trials of escitalopram and citalopram 36. 

Furthermore, sixteen studies (61.5%)  17–19,21–23,25–32,37 assessed treatment outcomes in a double-

blinded manner, and nineteen studies (76%)  14,15,17,19,21,23–26,28,29,31,32,34–38,40 reported all expected 

performance metrics including coefficient of determination and significance value within 

regression models, and sensitivity, specificity, positive predictive value (PPV), negative 

predictive value (NPV), and AUC within classification models.  

However, only six studies (23.0%) 19,21,24,28,36,40used separate training and testing sets, with the 

vast majority (76.9%) instead relying on internal cross-validation to assess model performance. 

While several such studies lacking training and testing sets involved small sample sizes, in 

52.6% of cases 15,23,25–27,29,30,35,37,38 performance was assessed using cross-validation alone 

although the study sample surpassed 100 patients. Similarly, of the six studies (26%) that used 

separate training and testing sets, only five (20%) 19,21,24,28,40reported either the standard 

deviation of model accuracy or 95% confidence intervals. Furthermore, only four of twenty 

studies incorporating classification models 14,27,32,36 (20%) described how class imbalance was 

handled, where applicable, while this consideration was unclear in sixteen studies (80%) 15,17,19–

22,24,28,30,31,33–35,37,39,40.  

METHODOLOGICAL RECOMMENDATIONS 

This is the first systematic review comprising predictive models of treatment response in 

randomized clinical trials in psychiatry. Throughout our review, we have identified recurrent 

data-driven biomarkers, algorithms, and pre-processing strategies used in predicting treatment 

response at an individual level. However, while several studies identified in the present review 

have used machine-learning models to predict treatment response using data derived from 
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existing large-scale randomized clinical trials, machine-learning guided interventional trials are 

lacking in psychiatry. Therefore, we propose a methodological pipeline to conduct prospective 

machine-learning guided trials according to best practices and provide strategies to improve the 

interpretability and generalizability of predictive models.  Further discussion related to model 

interpretability, dealing with class imbalance, predicting adverse drug reactions in clinical trials, 

and calculating heterogeneity scores in patients can be observed in the supplementary material.   

Machine-learning precision trials 

All included studies developed models using previously collected data, which necessitates a 

caution of their clinical implementation without adequate prospective validation. While RCTs 

have provided important insights into group-level statistics, they fail to yield individualized 

findings or account for patient heterogeneity. As such, we advocate for a new trial design to 

occur following the successful completion of an RCT. We refer to this as a machine-learning 

precision trial. Using standard RCT data within machine learning models garner two major 

limitations: (1) The sample included in the RCTs are not fully representative of the real clinical 

population with a specific disorder and (2) a considerable amount of the sample size is dedicated 

to a placebo condition, which may be better allocated towards an active arm from a modelling 

perspective.  

Machine-learning precision trials must therefore possess three distinct components from 

traditional RCTs: (1) The vast majority of participants (≤90%) are allocated to the active 

treatment, and a small subset of patients (≥10%) are allocated to a placebo or sham control.  This 

allows for testing the specificity of biomarkers identified within the treatment arm; (2) greater 

flexibility in inclusion and exclusion criteria to increase the external validity of the trial, and 

reflect heterogeneous patients seen in the clinic, and (3) randomizing patients to medication 
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dosages in the therapeutic range known to be effective, so that machine learning models can be 

trained to determine more individualized dosages based on patient characteristics.  

With respect to the second consideration, it is important to note that while patient idiosyncrasies 

are commonly observed in real-world clinical settings, such as comorbidities, are common 

exclusion criteria in RCTs, greater flexibility in exclusion criteria may help to provide a more 

realistic appraisal of the generalizability and clinical utility of machine-learning precision trials.  

Furthermore, although decreasing the sample size of individuals allocated to placebo conditions 

is required to maximize the sample in the active arm, it may be useful to retain a small 

proportion of the sample (approximately 10-20%), to be given an inert substance or sham 

condition, to determine the specificity of features relative to placebo. Additionally, other 

methods can be useful to control for placebo related features, such as utilising PCA to identify 

the components explaining the majority (≥90%) of variance in predicting response to placebo 

and using a method such as multivariate adaptive regression splines (MARS) 61, where placebo 

related variance is imputed in the forward pass and removed from the set of candidate features in 

the backwards pass.  

Machine-learning trials of treatment selection   

Importantly, while machine learning precision trials may initially develop clinical calculators of 

response to a single medication, to facilitate true precision medicine in psychiatry, a focus on 

individual differences in the comparative effectiveness of multiple medications is required. This 

involves comparing multiple treatments within the same group of patients in a randomized cross-

over trial, to determine the optimal medication for each individual patient to receive. In such 

cases, randomizing patients to different doses within a therapeutic window may not be realistic, 
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as very large samples would be required to generate sufficient training data of all medications 

within the trial, and medication dosages. To our knowledge, no such trials predicting the 

comparative effects across multiple treatment arms have yet been done.  

Figure 1: Schematic for prospective machine learning-guided trials.  

(1) A broader protocol design is used to more accurately represent heterogeneous patients seen 

within the clinic.  

(2) A) Ninety percent (90%) of patients within the trial are assigned to an active treatment and 

receive a randomly selected dose within the established therapeutic range of the medication. A 

truncated placebo arm (10%) changes dosage of the inert substance proportional to the active 

treatment. This condition is used to test the specificity of data-driven biomarkers (top features).  

(3) The trial continues treatment according to the duration established within phase III clinical 

trials. (4) Patient outcomes according to medication dosage are recorded, and common side 

effects are predicted at an individual level.  

(5) Individualized predictive models are created and used to develop clinical calculators. The 

sample size of the model should be sufficient to separate into training and testing sets of 

adequate sizes. The exact training/testing split may vary based on sample size, however, a 

common threshold used within studies is allocating 70% of the sample to training, and 30% to 

testing, respectively. Furthermore, the size of the test set should be sufficiently large for accuracy 

and other metrics to be estimated with high reliability.  

(6) Methods such as SHapley Additive exPlanations (SHAP) 62 are used to explain the output of 

predictive models and examine the effects of individual variables on model output.  
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(7) Optionally, randomized cross-over trials of treatment selection are conducted, where patients 

are assigned to one of several medications at a dosing regimen used in prior phase III trials, to 

predict the optimal treatment, among a candidate set at an individual level (treatment selection 

prediction). 

Perspectives  

Feature Screening and Extraction  

Several studies 19,25–27,29–32,34 included in the present review utilized high-dimensional features, 

defined as a significantly greater number of predictors (p) relative to the number of patients (n) 

in the training sample. In certain cases, such as when dealing with genome-wide genetic data, the 

number of candidate features can grow exponentially with the sample size, resulting in ultra-

high-dimensional data 63. In these cases, feature screening procedures, involving rank ordering 

features and significantly reducing dimensionality, can be useful prior to standard feature 

selection methods. While there are several available methods of feature screening, as explained 

elsewhere 64, model-free approaches are particularly useful in machine learning models with 

many candidate features, and limited evidence suggesting a parametric distribution of features.  

For instance, Zhu and colleagues 65 developed a model-free feature screening method for ultra-

high-dimensional data that is computationally efficient and robust to outliers, which utilises hard 

and soft thresholding strategies to obtain a cut-off point that separates active (relevant) and 

inactive (redundant) predictors for a given outcome 65. More recently, Li and colleagues (64) 

developed a feature screening method for ultra-high-dimensional data where an outcome (e.g., 

post-treatment symptom severity) is missing at random. This approach is based on an adjusted 

Spearman rank correlation, in conjunction with a nonparametric imputation technique. Of note, 
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this method is developed on the assumption that the candidate predictors are continuous, and the 

input features are not grouped data 66. Additionally, another recent method by Guo and 

colleagues 67 abandons hard rules, in favour of a method incorporating data-adaptive threshold 

selection, which can control the per family error rate and false discovery rate under certain 

conditions, while retaining all important features. 

Apart from feature screening measures, there are several newly developed feature engineering 

approaches that may be useful in predictive models of treatment response and selection, defined 

broadly as developing features from raw data or creating new variables from original variables. 

While an exhaustive overview of feature extraction methods is outside the scope of this review, a 

survey of feature extraction techniques for machine learning models can be found elsewhere 68.  

In terms of recently developed methods for high dimensional data, Bonidia and colleagues 69 

developed a method of feature extraction for biological sequencing data based on mathematical 

features, including six numerical mapping techniques with Fourier transform, Tsallis and 

Shannon entropy, and graphs (complex network). This mathematical method was compared 

against biological feature extraction methods (e.g., LncRNA-ID, IncRScan-SVM), and models 

using mathematical feature extraction methods reported the best performance (89.01-96.06% 

accuracy) across RNA classification tasks with an improvement of 3.28% and 3.01% across 

tasks relative to biological feature extraction methods alone. Of note, a hybrid model combining 

both mathematical and biological approaches of feature extraction improved accuracy, 

suggesting that merging features may improve the predictive performance of classification tasks. 

This method of merging biological and mathematical feature extraction methods may be 

particularly useful for prospective trials of treatment response and treatment selection using 

genome-wide SNPs and whole-blood RNA as input features 69. 
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Furthermore, Barandas and colleagues 70 developed Time Series Feature Extraction Library 

(TSFEL), a user-friendly Python package that provides a comprehensive list of feature extraction 

methods for time series data, across temporal, statistical, and spectral domains. Of note, TSFEL 

also provides a systematic way to record inputs, the dataset, metadata, and feature extraction 

parameters, for reproducibility. Toolboxes such as this may be particularly useful to extract 

features from EEG, and time-series fMRI data in prospective models 70.  

Algorithms, hyperparameter tuning, and stacked generalization 

Furthermore, an important consideration in model development is comparing multiple algorithms 

(e.g., linear, tree-based, and kernel methods) to assess their relative performance in predicting an 

outcome of interest. Approximately 35% of studies (n=8) included in the review compared 

model performance using at least two different algorithms. Apart from the standard comparison 

across algorithms, stacked generalization provides an alternative ensemble method to combine 

the predictions of two or more machine learning algorithms, while using another algorithm to 

learn how to combine their outputs 71. As described elsewhere 72, stacking can improve model 

performance over any single model contained in the ensemble. Additionally, stacking differs 

from the traditional bagging and boosting ensemble methods in that it typically uses different 

models that combine predictions from contributing models, rather than a series of decision trees, 

or models that comprise weak learners building upon the prediction of previous models, 

respectively. While no studies included in the present review utilized stacked generalization in 

model development, this approach may be useful to improve model accuracy in prospective 

studies.  
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Moreover, hyperparameter tuning, which involves selecting the optimal set of hyperparameters 

for a given model, remains an important consideration in model development. While many 

software packages have default hyperparameter settings during cross-validation, searching the 

hyper-parameter space for the lowest loss-function, or best cross-validation score, is 

recommended. Although an exhaustive search of the hyperparameter space is often 

computationally infeasible, there are several available methods such as a manual grid search, 

collaborative hyperparameter tuning, and Bayesian optimization.  

Importance of precision in performance estimates  

In the context of classification models, it is important to highlight that uncertainty estimates 

should be considered when evaluating model accuracy and other common performance metrics 

such as sensitivity and specificity. For instance, while a specific model may show a reasonable 

accuracy, if a large range is observed between the upper and lower bounds of the 95% 

confidence interval, it is plausible that the model may be too imprecise to reasonably predict 

treatment response or selection in a prospective trial. Therefore, in the absence of uncertainty 

estimates such as confidence intervals, it is imperative that model performance is interpreted 

with necessary caution. It is also worth noting the inherent difficulty in estimating the variability 

of cross-validated performance metrics 73. Additionally, many other fields successfully use cross-

validation as a basis for choosing between different models or tuning regularization parameters 

for a model, rather than taking its performance estimate at face value 74.  

Within the current review, only 6 of 26 studies (23.0%) 19,21,24,28,36,40incorporated training and 

testing sets during model development, allowing for a comparison of uncertainty estimates 

across these models. Among them, only five studies (19.2%)19,21,24,28,40 reported either the 

standard deviation of model accuracy or 95% confidence intervals. Further information can be 
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found in Supplementary Table S3. As such, there remains an urgent need for prospective models 

to report the uncertainty estimates of performance metrics.   

Performance metrics and their implications within precision medicine  

Apart from the important considerations of uncertainty estimates, there is a need to consider the 

relationship between performance metrics and their implications within precision medicine. 

Common methods of evaluating the performance of ML classification models across studies 

contained within this review include accuracy, sensitivity, specificity, PPV, NPV, and AUC.  

Although these metrics all provide useful information to evaluate the potential utility of the 

model, it is important to consider the relationship between them and their likely expected 

benefits for treatment selection. For instance, seventeen of twenty-six studies (65.38%) 14–17,19–

22,27,28,30,31,35,36,39,40,75 used a binary classification task to predict clinical response vs. non-

response to a specific intervention. In this instance, the sensitivity of the model corresponds to its 

ability to correctly identify patients who will respond to the intervention (true positive), while 

specificity relates to the ability to identify patients who are likely to be non-responders (true 

negative). Additionally, PPV and NPV provide insight into the prevalence of the outcome, and 

indicate the likelihood of clinical response, or non-response, in the case of a positive or negative 

result, respectively.  

Although the ideal threshold between sensitivity and specificity largely depends on the baseline 

rates of treatment efficacy for a given intervention, it is important to highlight that reasonable 

balanced accuracy does not necessarily translate into a model with clinical utility or scalability. 

For example, a binary classification model with a balanced accuracy of 67.5% in predicting 

response vs nonresponse to clozapine, corresponding to 45% sensitivity (true positive) and 85% 



Ph.D. Thesis – D. P. Watts; McMaster University – Neuroscience.  

 

247 
 

specificity (true negative), shows worse performance than random chance at identifying whether 

a given patient will meet a pre-specified threshold for clinical response to the medication. While 

clozapine has been shown to be an effective treatment in psychotic disorders 76, it also facilitates 

a host of undesirable side effects, including drowsiness, hypersalivation, and constipation 77. As 

such, this hypothetical model will perform extremely poorly in identifying which patients will 

respond to clozapine, and the associated predictors lack discriminative capabilities in this regard. 

In other words, important features, or biomarkers, within this model provide a signal for 

identifying whether a patient will not respond to clozapine but fail to provide meaningful signals 

for therapeutic response.   

Conversely, even with an 85% specificity (true negative), this model will misclassify patients as 

non-responders in 15% of cases. This misclassification error, or number of false negatives, scales 

proportionally to the overall sample size, leading to many individuals prescribed a medication 

with many adverse side effects that will ultimately be ineffective when implemented clinically.  

Therefore, when evaluating performance thresholds to ascertain whether a given model is 

sufficiently accurate to make a useful impact in selecting treatments, it is important to consider 

the expected efficacy of the intervention, the therapeutic safety profile, and whether the 

proportion of true positives and true negatives within a model provide a meaningful performance 

threshold for a given disorder and intervention. Moreover, metrics such as PPV and NPV provide 

useful context into the prevalence of a given outcome, and should be considered alongside 

sensitivity, specificity, and AUC.  

Novel features in prospective models of treatment response and selection  
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Throughout the review, models of treatment response within randomized clinical trials have been 

developed using peripheral blood markers comprising SNPs and fatty acid composition, resting-

state EEG, resting-state, and task-specific fMRI, as well as multimodal data comprising 

combinations of clinical, genetic, EEG, and fMRI features. Besides the approaches used in the 

literature thus far, there are several types of features that may be useful to incorporate in 

prospective models of treatment response and selection.  

In terms of whole-blood peripheral biomarkers, next-generation sequencing methods such as 

RNA sequencing (RNA-seq) can be used to identify gene expression markers that are predictive 

of treatment response. For instance, Nøhr and colleagues 78 used data from a placebo-controlled 

trial comprising 184 patients treated with either vortioxetine or placebo for MDD, and using 

blood samples collected with PAX gene tubes, identified three novel genes whose RNA 

expression levels at baseline and week 8 were significantly (FDR <0.05) associated with 

treatment response after 8 weeks of treatment. However, they did not identify any genes that 

were differentially expressed between placebo and vortioxetine groups 78. More recently, new 

low-cost, portable high-throughput single-cell RNA sequencing methods have been developed, 

which have been used for cell-specific biomarker discovery 79. Importantly, new feature selection 

methods are available for biomarker discovery using sparse single cell data. For example, it was 

shown that a probabilistic generative model can reduce the high-dimensional space in single-cell 

gene expression data and provide uncertainty estimates 80. 

With respect to neurophysiological measures such as EEG, new multimodal techniques have 

been developed, such as combining TMS with EEG, to directly and non-invasively explore 

cortical reactivity with improved temporal resolution 81. This allows for examining several types 

of features, including cortical excitability, cortical inhibition, cortical oscillations, and the 
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balance between excitation and inhibition within the cortex in response to TMS pulses. This 

technique may be particularly useful in randomized trials of rTMS, by measuring baseline brain 

neurophysiology and mid-treatment. For instance, in a study by Voineskos and colleagues 82, 

N45 amplitude measured using TMS-EEG over the DLPFC was shown to discriminate 

individuals with depression from healthy controls with 76.6% accuracy (80% sensitivity, 73.3% 

specificity, AUC: 0.829) 82.  

In terms of functional neuroimaging, functional near-infrared spectroscopy (fNIRS) is a method 

that uses near-infrared light to estimate cortical hemodynamic activity in response to neural 

activity 83. While fNIRS has several remaining limitations 84, such as a depth sensitivity of 

approximately 1.5 cm, and a spatial resolution up to 1 cm, it has recently been used to 

dichotomize patients with MDD from healthy controls, with frontal region integral values 

correctly classifying 75.2% of patients with MDD, and 74.3% of healthy controls, respectively 

85. However, it remains to be investigated whether this has utility in identifying predictors of 

treatment response between individuals within the same diagnostic category.  

Furthermore, in terms of low-cost features that may be predictive of treatment response, there is 

increasing interest in the use of speech-based biomarkers adopted using smartphone technology 

86. For instance, in a study by Mundt and colleagues 87 comprising 105 adults with MDD, it was 

found that baseline and week 4 speech markers could predict responder vs non-responder status 

to sertraline at week 4 with a sensitivity estimate of 70.6% and specificity estimate of 79.2%, 

respectively. Moreover, six vocal acoustic measures were found to significantly correlate with 

depressive severity scores, as measured using the Quick Inventory of Depressive 

Symptomatology - Clinician Rating (QIDS-C) scale. This included total pause time, pause 

variability, percent pause time, speech/pause ratio, and speaking rate 87.  
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CONCLUSION 

While RCTs and evidence-based medicine have facilitated undeniable advancements in patient 

care, personalised interventions remain a critical need in mental health 88. Machine-learning 

precision trials may help us move away from the “one size fits all” assumption of current trials 

by including patient heterogeneity in individualized models. Similarly, assigning patients to a 

randomly selected dose in the established therapeutic range, while keeping important 

considerations such as body weight and contraindications in mind, may facilitate useful 

algorithms to titrate medications with greater granularity. However, this will require large sample 

sizes, and appropriate training, testing, and external validation prior to clinical implementation.   

Importantly, although treatment response prediction has utility in prognosticating whether a 

patient will respond to a specific intervention, they cannot determine the optimal treatment 

option for a specific patient. As such, machine-learning guided models of treatment selection, 

evaluating individual differences in comparative effectiveness across the same group of patients, 

are required to facilitate precision psychiatry.  
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Figure 1: Schematic for prospective machine learning-guided trials.  

(1) A broader protocol design is used to more accurately represent heterogeneous patients seen 

within the clinic. 

(2) A) Ninety percent (90%) of patients within the trial are assigned to an active treatment and 

receive a randomly selected dose within the established therapeutic range of the medication. A 

truncated placebo arm (10%) changes dosage of the inert substance proportional to the active 

treatment. This condition is used to test the specificity of data-driven biomarkers (top features). 

(3) The trial continues treatment according to the duration established within phase III clinical 

trials.  

(4) Patient outcomes according to medication dosage are recorded, and common side effects are 

predicted at an individual level. 

(5) Individualized predictive models are created and used to develop clinical calculators. The 

sample size of the model should be sufficient to separate into training and testing sets of 

adequate sizes. The exact training/testing split may vary based on sample size, however, a 

common threshold used within studies is allocating 70% of the sample to training, and 30% to 

testing, respectively. Furthermore, the size of the test set should be sufficiently large for accuracy 

and other metrics to be estimated with high reliability. 

(6) Methods such as SHapley Additive exPlanations (SHAP) 61 are used to explain the output of 

predictive models and examine the effects of individual variables on model output. 

(7) Optionally, randomized cross-over trials of treatment selection are conducted, where patients 

are assigned to one of several medications at a dosing regimen used in prior phase III trials, to 

predict the optimal treatment, among a candidate set at an individual level (treatment selection 

prediction). 
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First 

author, 

year 

Sample size 

and diagnosis1,2 

Clinical Trial Outcome  Machine 

learning 

model 

Data utilized Top Data-Driven 

Biomarkers 

(Features) 

Accuracy 

(95% CI) 

Additional 

Performance 

Metrics 

STUDIES USING PERIPHERAL BLOOD MARKERS 

 

Amminger, 

2015 

 

81 individuals at 

ultra-high risk 

of psychosis 

    -27 males 

    -54 females 

 

ω-3 PUFAs vs. 

placebo 

Responder vs 

non-responder 

 

≥ 15-point 

increase in 

GAF score 

classified as 

responders. 

 

GPC 

Erythrocyte fatty acid 

composition of the 

phosphatidylethanola

mine quantified via 

capillary gas 

chromatography. 

ALA, EPA, DPA, 

DHA, LA, AA, and 

NA were examined 

ω-3 response: 

1. Nervonic acid 

2. margaric acid 

3. arachidonic acid 

 

Placebo response: 

1. Erucic Acid 

2. Arachidonic acid 

3. Docosahexaenoic 

acid 

 

ω-3: 86.7% 

placebo: 79.6% 

 

 

 

ω-3: sensitivity - 

86.7%; specificity: 

86.7% 

 

placebo:  sensitivity 

83.3%; specificity: 

75% 

Hou, 2015 251 patients 

with AUD 

11 weeks of 

Ondansetron (5-

HT3 receptor 

antagonist)  

vs placebo  

Percentage of 

heavy drinking 

days (PHDD) 

IT 

VT 

LR 

Genotyping of long 

and short alleles of 

the functional 

insertion-deletion 

polymorphism (5'-

HTTLPR) in the 

promoter region of 

the SLC6A4 gene. 

 

A total of 21 genetic 

polymorphisms were 

VT model: 

1. rs1150226-GG 

2. rs1176719-AG 

3. PHDD_base 

<0.883 

 

IT model: 

1. rs1150226-AG 

2. rs1176719-AG 

3. Onset age ≥ 23 

N/A Mean difference of 

PHDD 

 - IT subgroup: 

17.2% 

 - VT subgroup: 

21.8% 

 

(Table 1) subgroup 

comparison for % 

of patients with ≤1 
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considered as 

predictors. 

heavy drinking day 

in month 3 of 

follow-up 

-TRM (n=57) OR 

5.0, p=0.015 

       - VT (n=88) 

OR 3.8, p=0.017 

       - IT (n=118) 

OR 2.1, p=0.05 

Maciukiewi

cz, 2018 

450 patients 

with MDD 

Enrolled in one of 

three clinical trials 

where each patient 

received duloxetine 

or placebo for up to 

8 weeks 

 

Responders vs 

Non-

responders 

 

≥ 50% 

reduction in 

MADRS total 

score at 

endpoint 

 

Remission vs 

non-remission 

 

≤10 MADRS 

total score at 

CART 

SVM 

571,054 SNPs 

generated using an 

Infinium PsychArray-

24 Kit 

19 SNPs 

 

rs2036270 

rs7037011 

rs1138545 

rs1107372 

rs11136977 

rs11581838 

rs11843926 

rs1347866 

rs16932062 

rs19999223 

Response 

CART: 55-57% 

SVM: 64-66% 

 

Remission 

CART: 45-51% 

SVM: 51-52% 

           Response 

   Sensitivity 

(CART):    

             71-75% 

   Specificity 

(CART):   

              15-17% 

 

   Sensitivity 

(SVM):    

              87-89% 

   Specificity 

(SVM):     



Ph.D. Thesis – D. P. Watts; McMaster University – Neuroscience.  

 

255 
 

endpoint  

 

rs2710664 

rs2710664 

rs39185 

rs4520243 

rs46858655 

rs4777522 

rs4954764 

rs60230255 

rs6550948 

rs972016 

               7-9% 

  

                             

Remission 

  Sensitivity 

(CART):    

             45-51% 

  Specificity 

(CART):  

              33-51% 

 

   Sensitivity 

(SVM):    

              58-59% 

   Specificity 

(SVM):  

              41-46% 

 

First 

author, 

year 

Sample size 

and diagnosis1,2 

Clinical Trial Outcome  Machine 

learning 

model 

Data utilized Top Features Accuracy Additional 

Performance 

Metrics 
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STUDIES USING ELECTROENCEPHALOGRAPHIC MEASURES 

Al-Kaysi, 

2017 

10 patients with 

MDD 

15 sessions of 

tDCS or sham over 

3 weeks, followed 

by an optional 3-

weeks of open-

label tDCS 

Responder vs 

non-responder 

 

≥ 50% 

reduction in 

MADRS 

scores from 

baseline to 

treatment 

session 15 or 

23 

(Assessment at 

week 23 was 

part of the 

open-label 

trial. 

SVM 

ELM 

LDA 

Continuous eyes-

closed resting-state 

EEG over 10 minutes.  

 

Average PSD in 

conventional EEG 

frequency bands 

(delta, theta, alpha, 

beta, gamma). 

 

Alpha asymmetry in 

the frontal, central, 

and parietal cortices.  

 

 

Frontal  

AF2-AF8 - 71% 

AF8-F9 - 71% 

AF-AF8 - 70% 

 

Central/Parietal  

T8-C1 - 73% 

T8-CpZ - 71% 

T8-Cz - 70% 

 

Parietal/Occipital 

 Pz-P2 - 68% 

Pz-PO4 - 62% 

Pz-PO3 - 61% 

 

All regions  

FC4-AF8 - 76% 

T8-C1 - 73% 

76% 

 

Best performance 

using FC4-AF8 

electrode pairs 

(76%) 

 

Channel Tp9 

performed best for 

predicting 

responder vs 

nonresponder 

status (71±11% 

NA  
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T8-CPz - 71% 

Cao, 2019 55 patients with 

treatment-

resistant 

depression 

Double-blind 

placebo-controlled 

trial (1:1:1): 

 1) 0.5 mg/kg  

     ketamine 

 2) 0.2mg/kg  

     ketamine 

 3) Normal saline 

Responders vs 

non-responders 

 

≥ 45% 

reduction in 

HDRS-17 from 

baseline to 240 

min                  

post-treatment  

LDA 

NMSC 

kNN 

PARZEN 

PERLC 

DRBMC 

SVM 

Radial 

kernel 

Resting-state EEG 

functional 

connectivity measures 

 

EEG Power  

 

EEG Alpha 

Asymmetry 

Responders in the 

0.5mg/kg ketamine group 

showed lower relative 

EEG theta and lower alpha 

power (p <0.05) 

 

Responders in the 

0.2mg/kg showed 

significantly weaker 

relative EEG power in the 

theta band on the Fp2 

channel than non-

responders 

78.4% 

Best performance 

using SVM with a 

radial kernel 

Sensitivity: 79.3% 

Specificity: 84.2% 

Recall: 78.5% 

Precision: 87.0% 

F1 score: 52.6% 

de la Salle, 

2020 

47 patients with 

MDD 

12-week double-

blind trial of: 

  1)  escitalopram 

  2)  bupropion 

  3) escitalopram +   

      bupropion 

Responders vs. 

Non-

responders  

(≥50% 

reduction in 

MADRS 

scores from 

baseline to 

posttreatment) 

  

Remitters/Non-

remitters  

≤10 MADRS 

at 

LR EEG Theta cordance 

EEG middle right 

frontal  

Best performance using 

change in prefrontal theta 

cordance 

Response 

74-81% 

Best performance 

using change in 

PF cordance 

 

Remission 

51-70% 

AUC: 0.85 

Sensitivity: 70% 

Specificity: 85% 

PPV: 0.95 

NPV: 0.76 

 

Remission (ΔPF):  

AUC: 0.66  

Sensitivity: 65%  

Specificity: 74%  

PPV: 65% NPV: 
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posttreatment  

 

74% 

  

Response (ΔMRF):  

AUC: 0.80  

Sensitivity: 70%  

Specificity: 95%  

PPV: 95%  

NPV: 76%  

 

Remission 

(ΔMRF):  

AUC: 0.59  

Sensitivity: 93%  

Specificity: 31%  

PPV: 39%  

NPV: 91%  

 

Jaworska, 

2019 

51 patients with 

MDD 

12-week double-

blind trial of: 

  1)  escitalopram 

  2)  bupropion 

  3) escitalopram +   

      bupropion  

Responders vs 

Non-

responders 

 

≥50% MADRS 

score reduction 

from baseline 

RF 

AdaBoost 

SVM 

CART 

MLP 

Gaussian 

naive Bayes 

 

Best overall 

performance 

Pre-treatment rs-EEG 

 

eLORETA 

EEG Band Power 

Alpha 2 - eLORETA 

Alpha 2 - EEG band power 

Alpha 1 - eLORETA 

Theta - EEG band power 

Delta - eLORETA 

Beta - EEG band power 

 

 

NA  Alpha 2 - 

eLORETA 

AUC: 0.585-0.803 

 

Alpha 2 - EEG 

band power 

AUC: 0.689-0.783 

 

Alpha 1 - 
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using RF  

The most predictive 

features were EEG delta 

power at week 1 at T8 

followed by power at CP6. 

eLORETA 

AUC: 0.635-0.756 

 

Theta - EEG band 

power 

AUC: 0.664-0.752 

 

Delta - eLORETA 

AUC: 0.569-0.718 

 

Beta - EEG band 

power 

AUC: 0.689-0.783 

Wu, 2020 309 patients 

with MDD 

 

EMBARC study 

(n=228) 

tested in two 

independent 

samples (n=72) 

and (n=24) 

8-week double-

blind trial of 

sertraline or 

placebo 

Pre- minus 

post-treatment 

difference in 

HAMD17 

scores 

SELSER 

Algorithm 

developed in 

the current 

study 

 

RVM used 

as a 

Pre-treatment resting-

state EEG (eyes 

open/eyes closed) 

 

SELSER - neural 

signals drawn from θ 

and α frequency 

bands 

 

For the sertraline arm, only 

signals from the resting-

eyes open condition (alpha 

band) were significantly 

predictive of treatment 

score change during cross-

validation. 

R2 0.60 

Sertraline 

 

R2 0.41 

Placebo 

 

Different 

Less rsEEG-

predicted 

HAMD17 change 

with sertraline was 

associated with 

greater response to 

1-Hz rTMS on the 

DASS (rsEEG-

predicted 

HAMD17 

sertraline change x 
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respectively comparator 

 

 

 

SELSER optimizes a 

sparse set of spatial 

filters that map EEG 

signals to a latent 

space, and then 

relates the band 

powers of the latent 

signals to the 

treatment outcome 

via a linear regression 

model. 

important features 

in sertraline and 

placebo models 

time interaction: F 

(1,128) =9.02, P=4 

X 10-3) 

First 

author, 

year 

Sample size 

and diagnosis1,2 

Clinical Trial Outcome  Machine 

learning 

model 

Data utilized Top Features Accuracy Additional 

Performance 

Metrics 

STUDIES USING NEUROIMAGING 

Braund, 

2022  

226 patients 

with MDD 

Patients 

randomized in a 

1:1:1: ratio to 

escitalopram, 

sertraline, or 

extended-release 

venlafaxine for 8 

weeks 

(iSPOT-D) 

Responders vs 

Non-

responders 

>50% 

reduction in 

HDRS17 or 

QIDS-SR16. 

Remission vs 

non-remission 

SVM 

 

Baseline intrinsic 

functional 

connectivity between 

each pair of 436 brain 

regions.  

 

19 connections across 

30 brain regions that 

were associated with 

neuroticism (total 

Most important edges 

consisted of connections 

between the somatomotor 

and limbic networks, 

limbic and executive 

control networks, 

executive control, and 

dorsal attention networks, 

and somatomotor and 

visual networks. 

75%   

(95% CI: 57.8-

87.9%) 

Sensitivity: 62.5% 

Specificity: 85.0% 

PPV: 76.9% 

NPV: 73.9% 

 



Ph.D. Thesis – D. P. Watts; McMaster University – Neuroscience.  

 

261 
 

 

HDRS17 score 

<7 or QIDS-

SR16 score <5 

at week 8 

 

NEO-FFI scores) 

were used in final 

model 

Fan, 2020 200 

unmedicated 

patients with 

MDD 

EMBARC trial  

 

All patients 

randomly assigned 

to 8 weeks of either 

sertraline or 

placebo (up to 200 

mg daily) 

Percentage 

change in 

HAMD-17 

scores before 

and after 8 

weeks of 

treatment  

CPM rs-fMRI 

 

functional 

connectome 

fingerprints  

Enhanced treatment 

response was predicted by 

lower pretreatment 

connectivity between the 

executive and 

sensorimotor and salience 

modules, but increased 

connectivity between the 

DM modules and the rest 

of the brain. 

Sertraline or 

placebo: 

r=0.19 

 

No difference in 

features between 

sertraline and 

placebo models 

Secondary analyses 

also identified 

pretreatment CFP 

at higher resolution 

(A424), which 

significantly 

predicted 

percentage of 

symptom 

improvement 

(r=0.19, CV=10, 

iterations=1000, 

p=0.02), while 

pretreatment CFP 

at lower resolution 

(AA-24) showed a 

trend on the 

prediction (r=0.14, 

CV=10, 

iterations=1000, 

p=0.08) 
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Fonzo, 2019 251 

unmedicated 

patients with 

MDD 

EMBARC trial 

 

All patients 

randomly assigned 

to 8 weeks of either 

sertraline or 

placebo (up to 200 

mg daily) 

Pre-minus-post 

change in 

HAMD-17 

scores 

RVM fMRI during an 

emotional conflict 

task  

 

 

 

Important features specific 

to the sertraline RVM 

model included the right 

insular lobe and right 

middle temporal gyrus. 

 

Features that predicted 

treatment outcome across 

study arms included the 

left anterior cingulate 

cortex/superior medial 

gyrus, and both 

hemispheres of the anterior 

cingulate cortex. 

Sertraline: 

r=-0.49, P<0.001 

 

Placebo: 

r=-0.06, P=0.48 

Interesting, an 

RVM model 

trained on 

emotional conflict 

regulation brain 

activation data in 

the placebo arm to 

predict placebo 

outcome did not 

yield significant 

correlations 

between model-

predicted symptom 

changes and 

observed symptom 

changes in either 

the placebo or 

sertraline arms 

(r=0.11, P>0.20) 

Klöbl, 2020 35 patients with 

MDD 

Randomized, 

double-blind, 

cross-over trial of 8 

mg intravenous 

citalopram or 

placebo 

Responder vs 

non-responder 

 

≥50% 

reduction in 

HAM-D scores 

from baseline 

to 

posttreatment 

Linear 

regression 

with robust 

“bisquare” 

weighting 

fMRI 

 

Network-based 

statistical analysis  

Top predictors included 

voxels in the ventral 

attention (VA; e.g., 

anterior midcingulate 

cortex, left superior 

temporal and 

supramarginal gyrus, 

insula, eye fields), default 

mode (DM; e.g., frontal 

cortex, anterior and 

NA Response AUC = 

0.68 

 

Remission AUC = 

0.73 
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(median of 10 

weeks) 

 

Remission vs 

non-remission 

 

HAMD ≤ 7 

posterior cingulate cortex, 

precuneus) and fronto-

parietal (FP; e.g., frontal 

and prefrontal cortex, 

anterior cingulate cortex) 

networks. 

Koutsouleri

s 2017 

92 patients with 

SCZ 

Randomized to 

either active 

(N=45) or sham 

(N=47) 10-Hz 

rTMS applied to 

the left DLPFC 5 

days per week for 

21 days 

Responders vs 

non-responders 

 

≥ 20% 

improvement 

in PANSS-NS 

between 

baseline and 

day 21 

SVM sMRI 

 

Total intracranial, 

gray matter, white 

matter, and 

cerebrospinal fluid 

volume 

 

Largest feature weights 

(overall mean standard 

error) included global CSF 

volume and total 

intracranial volume 

 

Active rTMS: 

61.5-71.4% 

Sensitivity: 61.5-

70.8% 

Specificity: 66.7-

71.1% 

PPV: 54.5-75.0% 

NPV: 54.5-75.0% 

Nemati, 

2020 

258 patients 

with MDD 

 

EMBARC trial 

(n=202) 

 

Independent 

8-weeks of daily 

oral placebo or 

sertraline 

Percentage 

change in 

HAMD-17 

scores before 

and after 8 

weeks of 

treatment 

CPM rs-fMRI 

(Connectome 

fingerprints) 

Whole brain NRS-PM 

predicted antidepressant 

response across AA-4 to 

AA-150 architectures 

(following FDR 

correction), with a peak at 

AA-58 (r=0.27, CV=10, 

iterations=1000, p=0.003) 

r= 0.25-0.29  N/A 
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RCT of 

ketamine, 

placebo, or 

(n=56) 

 

Positive predictive edges 

peaked at AA-58 (r=0.29, 

CV=10, iterations=1000, 

p=0.001) and the negative 

predictive edges peaked at 

AA-26 (r=0.25, CV=10, 

iterations=1000, p=0.003) 

 

 

Nord, 2019 39 unmedicated 

patients with 

MDD 

Double-blind trial 

of 8-weeks of real 

(N=20) or sham 

(N=19) tDCS 

 

Immediately 

following each 

tDCS session, 

patients received a 

1-h CBT 

intervention for 

depression 

 

n-back working 

memory task 

Responder vs 

non-responders 

 

≥50% 

reduction in 

HAM-D scores 

from baseline 

to 

posttreatment 

 

Remission vs 

non-remission 

 

HAMD ≤ 7 

LDA fMRI 

 

whole-brain flexible 

factorial analysis 

 

ROIs for the 

emotional processing 

task included the left 

and right amygdala, 

subgenual anterior 

cingulate cortex, and 

L-DLPFC 

Baseline L-DLPFC 

activation was shown to 

discriminate responders 

from non-responders with 

an AUC of 0.856. 

 

Of note, this same pattern 

of activation did not 

discriminate responders 

from non-responders in the 

sham condition (AUC = 

0.417). 

N/A Response to active 

tDCS 

AUC: 0.856 

 

Response to sham 

tDCS 

AUC: 0.417 
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performed during 

stimulation  

 

Sarpal, 

2016 

41 patients with 

first-episode 

schizophrenia 

Double-blind 

randomized 

controlled 

treatment with 

either risperidone 

or aripiprazole for 

52 weeks 

 

(18 patients with 

first-episode 

schizophrenia 

treated with 

aripiprazole 22 

treated with 

risperidone) 

 

Responder vs 

non-responder 

 

Responders 

defined as two 

consecutive 

visits with a 

CGI 

improvement 

score ≥1 and a 

rating ≤3 on 

the following 

BPRS items: 

conceptual 

disorganization

, grandiosity, 

hallucinatory 

behavior, and 

unusual 

thought content    

Cox-

regression 

rs-fMRI 

 

Functional 

Connectivity 

Analyses 

 

Voxel-Wise Survival 

analysis 

 

Striatal Connectivity 

Index 

The insular cortex, 

opercular cortex, anterior 

cingulate, thalamus, 

orbitofrontal 

cortex, and posterior 

cingulate were regions that 

frequently appeared on the 

list of predictive 

connections with the 

striatum. 

 

In posterior regions, 

greater connectivity with 

striatal subdivisions at 

baseline were associated 

with better subsequent 

treatment response. 

 

In more frontal regions, by 

contrast, lower striatal 

connectivity of these nodes 

at baseline was 

77.5% Sensitivity: 80% 

Specificity: 75% 

PPV: 76% 

NPV: 79% 
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associated with better 

subsequent response. 

Yip, 2019 74 patients with 

cocaine-use 

disorder 

Randomized 

controlled trial of 

behavioral therapy 

plus galantamine or 

placebo 

Abstinence 

during 

treatment was 

determined 

using biweekly 

urine testing 

and defined as 

the percentage 

of urine 

negative for 

cocaine 

provided 

during 

treatment. 

 

A classification 

model was also 

used, 

dichotomizing 

patients by the 

presence or 

absence of any 

cocaine-

negative result 

CPM fMRI during a 

monetary delay task 

Highest-degree nodes (i.e. 

nodes with the most 

connections) for the 

positive network included 

a prefrontal node with 

connections to limbic, 

temporal, parietal, 

cerebellar, and other 

prefrontal nodes, and a 

temporal node with 

connections to limbic, 

parietal, motor, and 

prefrontal nodes. 

 

 

- Highest-degree nodes for 

the negative network also 

included a temporal node 

with connections to limbic, 

parietal, and prefrontal 

nodes as well as with 

connections to cerebellar 

and subcortical nodes. 

r=0.36 

 

Accuracy: 64% 

 

Sensitivity: 35% 

Specificity: 82% 
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First 

author, 

year 

Sample size 

and diagnosis1,2 

Clinical Trial Outcome  Machine 

learning 

model 

Data utilized Top Features Accuracy Additional 

Performance 

Metrics 

STUDIES USING MULTIMODAL DATA 

Ambrosen, 

2020 

138 first episode 

SCZ 

 

Three patient 

cohorts randomized 

to either: 

 1) Risperidone or   

     zuclopenthixol 

for  

     3 months 

2) Quetiapine for 6  

     months 

3) Amisulpride for 

6  

     weeks 

Short term 

treatment 

response 

- relative 

change in 

PANSS total 

score from 

baseline to 

short-term 

follow-up 

 

Long-term 

treatment 

response 

- poor response 

was defined as 

any of the 

following: 1) 

clozapine 

prescription, 2) 

LR 

Naive Bayes 

RF 

DT 

SVM 

k-NN 

Clinical, EEG and 

sMRI data 

 

WAIS-III 

CANTAB 

 

EEG during the 

Copenhagen 

Psychophysiology 

Test Battery 

 

Cortical thickness, 

surface area, mean 

curvature 

 

 

NA Long-term 

treatment response 

50.3% 

 

 

Short-term 

treatment response 

NMSE = 0.96 
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Eligibility for 

clozapine, 3) 

polypharmacy 

>90 days of 

treatment with 

at least two 

different 

antipsychotics 

Athreya, 

2019 

1030 white 

outpatients with 

MDD  

 

PGRN-AMPS 

(n=398) 

 

STAR*D 

(n=467) 

 

ISPC (n=165)  

8-weeks citalopram 

or escitalopram 

 

PGRN-AMPS 

 

STAR*D 

 

ISPC 

Responders vs 

Non-

responders 

 

≥ 50% 

reduction in 

HDRS or 

QIDS from 

baseline to 

post-treatment 

 

Remission vs 

non-remission 

 

HDRS ≤ 7 or 

QIDS ≤ 5 

 

RF Six SNPs in or near 

TSPAN5 

(r10516436), 

ERICH3 (rs696692), 

DEFB1 (rs5743467, 

rs2741130, and 

rs2702877), and AHR 

(rs17137566) genes. 

 

26 clinical and 

sociodemographic 

variables (including 

age, BMI, and plasma 

drug levels) 

 

Men HDRS - response 

TSPAN5 

DEFB1_1 

DEFB1_2 

AHR 

HAMD baseline 

ERICH3 

DEFB1_3 

 

Men HDRS - remission 

HAMD baseline 

DEFB1_2 

DEFB1_1 

Response 

66-88% 

 

Remission 

66-86% 

Response 

Sensitivity: 0.68-

0.90 

Specificity: 0.63-

0.85 

PPV: 0.82-0.93 

NPV: 0.51-0.79 

AUC: 0.7-0.9 

 

Remission 

Sensitivity: 0.59-

0.90 

Specificity: 0.71-

0.84 

PPV: 0.67-0.84 
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AHR 

TSPAN5 

ERICH3 

DEFB1_3 

 

Women HDRS - response 

DEFB1_1 

HAMD baseline 

DEFB1_2 

TSPAN5 

AHR 

ERICH3 

DEFB1_3 

 

Women HDRS - remission 

HAMD baseline 

DEFB1_2 

DEFB1_1 

AHR 

NPV: 0.759-0.87 

AUC: 0.75-0.90 
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TSPAN5 

ERICH3 

DEFB1_3 

Crane, 2017 49 patients with 

MDD 

medication free 

for at least 90 

days from an 

SSRI or SNRI 

and at least 30 

days from all 

other 

medications 

(including birth 

control) 

Open-label 

treatment with 

escitalopram or 

duloxetine for 10 

weeks 

Percentage 

change in 

Hamilton 

Depression 

Rating Scale 

pre- to post-

treatment 

LR  Go/No-go test and 

fMRI 

 

ICA beta weights 

 

haemodynamic 

response function 

 Two event-related 

component beta weights 

were significant predictors 

of treatment response 

during commission errors, 

Components 24 and 25, 

and survived FDR 

correction. 

 

More HRF-based 

activation during 

Commission errors was 

observed in the right 

ventrolateral PFC of 

component 11; in the 

dorsal ACC of Component 

24, and in four clusters of 

Component 25, including 

the rostral dorsal ACC and 

left medial PFC, all 

predicted poorer treatment 

response. 

 

84% Sensitivity: 84.2% 

Specificity: 80.0% 
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Fonzo, 2017 66 patients with 

PTSD 

RCT of immediate 

treatment with 

prolonged exposure 

therapy or 

treatment waitlist 

(10 week) 

 

Sessions took place 

1-2 times per week, 

for a total of 9-12 

sessions (90 min 

each) 

 

 

Remission vs 

non-remission  

 

Post-treatment 

CAPS ≤ 20 

LDA 3-T GE Signa scanner 

(T1-weighted image) 

 

Emotional Reactivity 

Task 

Emotional Conflict 

Task 

Gender Conflict Task 

Reappraisal Task  

 

Baseline clinical 

features and treatment 

arm 

 

 

Top features  

(Emotional conflict) 

- R Superior Frontal 

Gyrus/Middle Frontal 

Gyrus/Inferior Frontal 

Gyrus (Pars Triangularis) 

- L/R Anterior 

Cingulate/Middle 

Cingulate 

- R Superior Frontal 

Gyrus/Middle Frontal 

Gyrus 

- L Insula Lobe 

- R Superior Frontal 

Gyrus/Middle Frontal 

Gyrus 

- L Amygdala 

- L Superior Frontal Gyrus 

- R Superior Frontal Gyrus  

- L Inferior Temporal 

Gyrus/Middle Temporal 

Gyrus 

- L Anterior 

Cingulate/Middle 

79.5%-97.7% 

 

Best performance 

in combined mode 

(a-priori 

voxelwise and 

whole-brain 

exploratory 

analysis of 

conscious fear vs 

neutral) 

 

Leave-one-out 

classification 

accuracy is likely 

optimistic, as the 

authors note, “the 

predictive 

accuracy of these 

models is likely 

higher than what 

would be expected 

in an independent 

cohort of 

participants given 

that the same 

sample of 

A-priori voxelwise 

analysis of 

conscious fear vs 

neutral 

PPV=1.00 

NPV=0.74 

 

Whole-brain 

exploratory 

analysis of 

conscious fear vs 

neutral 

PPV=0.90 

NPV=0.79 

 

Combined model 

PPV=1.00 

NPV=0.94 
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Cingulate/Superior Medial 

Gyrus 

- L Inferior Temporal 

Gyrus 

- R Middle Frontal 

Gyrus/Superior Frontal 

Gyrus 

- L Inferior Frontal Gyrus 

(Pars Triangularis) 

- L Superior Frontal Gyrus 

- L Angular Gyrus 

- R Anterior 

Cingulate/Middle 

Cingulate  

- L Middle Frontal Gyrus 

- L Superior Frontal Gyrus 

- L Angular Gyrus/Inferior 

Parietal Lobule 

- L Inferior Temporal 

Gyrus 

- R Cerebellum 

- L Middle Temporal 

Gyrus 

participants was 

utilized to train 

the model and test 

its predictive 

accuracy.” 
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- R Cerebellum 

- L Middle Temporal 

Gyrus 

- R Middle Frontal Gyrus 

 

Emotional Connectivity 

Task  

- R Middle Frontal 

Gyrus/Superior Frontal 

Gyrus 

- R Superior Frontal Gyrus 

- L Middle Frontal Gyrus 

- R Superior Frontal Gyrus 

- R Anterior 

Cingulate/Middle 

Cingulate  

- L/R Olfactory Cortex/ 

Anterior 

Cingulate/Caudate 

Nucleus/Olfactory 

Cortex/Anterior 

- L/R Cingulate/Caudate 

Nucleus  
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Emotional vs Gender Task  

- LR Olfactory 

Cortex/Anterior 

Cingulate/Caudate 

Nucleus 

Lee, 2018 259 patients 

with SCZ 

Clinical 

Antipsychotic 

Trials of 

Intervention 

Effectiveness - 

patients 

randomized to one 

of five 

antipsychotic 

medications for 18 

months 

Good vs Poor 

Outcome 

 

Good (if 

PANSS total 

decreased) vs. 

Poor 

(otherwise) 

LGEM 53 clinical and 

sociodemographic 

variables, including 

BMI, heart rate, 

weight, and weight 

 

Top 25 SNPs from 

the GWAS for 

schizophrenia in the 

CATIE study 

 

13 SNPs 

(rs10803138, 

rs11682175, 

rs6704641, 

rs6704768, rs215411, 

rs1106568, 

rs12522290, 

rs4129585, 

Feature importance not 

reported 

(range) 

Accuracy: 55-66% 

(Greatest 

accuracy observed 

in Ziprasidone 

model) 

Specificity:  

52-74% 

 

Sensitivity: 

52-61% 

 

PPV: 

49-86% 

 

NPV: 

53-77% 
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rs2514218, 

rs2239063, rs4702, 

rs12325245, and 

rs9636107) from the 

128 genome-wide 

significant 

associations for 

schizophrenia 

identified by the 

Schizophrenia 

Working Group of the 

Psychiatric Genomics 

Consortium 

Joyce, 2021 375 outpatients 

with MDD 

 

PGRN-AMPS 

(n=264) 

 

CO-MED 

(n=111) 

PGRN-AMPS 

8-week clinical 

trial randomized to 

either: 

1. escitalopram 

(10/mg day)   

2. citalopram 

(20/mg day)  

 

CO-MED 

7-month clinical 

trial randomized to 

Responder vs 

non-responder 

 

≥50% 

reduction in 

QIDS-C total 

score from 

baseline to 

week 8 

 

Remission vs 

non-remission 

<5 on QIDS-C 

Linear 

penalized 

Regression 

 

XGBoost 

 

Best 

performance 

using linear 

penalized 

regression 

153 metabolites 

within five analyte 

groups: 

acylcarnitines, amino 

acids, biogenic 

amines, 

glycerophospholipids, 

and sphingolipids 

 

Six functionally 

validated 

pharmacogenomic 

SNP biomarkers in or 

near the TSPAN5, 

Top predictors varied by 

algorithm and feature set, 

but hydroxylated 

sphingomyelins, 

glycerophospholipids, 

clinical/sociodemographic 

features, and 

acylcarnitines, and were 

all represented. 

Citalopram / 

Escitalopram 

75.3% 

 

Citalopram/ 

Escitalopram/Plac

ebo 

72.7-76.6% 

 

SSRI models: 

(Metabolomics 

alone) 

 

Linear penalized 

regression - AUC: 

0.84 

XGBoost - AUC: 

0.75 

 

(metabolomics + 

SNPs) 
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either: 

1. escitalopram (≤   

20/mg day) + 

placebo 

2. bupropion (≤ 

400 mg/day) + 

escitalopram 

3. extended-release 

venlafaxine (≤ 300 

mg) + mirtazapine 

(≤ 45 mg/day)  

 

 

ERICH3, DEFB1, 

and AHR genes 

Linear penalized 

regression - AUC: 

0.86 

XGBoost - AUC: 

0.74 

 

 

SSRI + placebo 

models: 

(Metabolomics 

alone) 

 

Linear penalized 

regression - AUC: 

0.85 

XGBoost - AUC: 

0.75 

 

(metabolomics + 

SNPs) 

Linear penalized 

regression - AUC: 

0.86) 
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XGBoost - AUC: 

0.83 

Nguyen, 

2022  

222 patients 

with MDD 

enrolled in the 

EMBARC trial  

Trial contained two 

8-week stages: 

 

First randomized in 

a double-blind 

manner to 

sertraline or 

placebo arms. At 

week 8, patients 

who did not meet 

response criteria 

(Clinical Global 

improvement score 

less than “much 

improved” were 

crossed over under 

double-blind 

conditions to 

bupropion 

treatment.  

 

Classification 

and regression 

models  

 

Change in 

HAMD over 8-

week treatment 

stage (week 8 

minus baseline 

for sertraline 

and placebo, 

week 16 minus 

week 8 for 

bupropion) 

 

Responders vs. 

Non-

responders 

≥50% 

reduction in 

HAMD from 

pretreatment  

 

Feed-

forward 

neural 

networks 

 

Data 

augmentatio

n, a process 

used in deep 

learning to 

reduce the 

likelihood of 

overfitting, 

was used, 

which 

generates 

additional 

image data 

by causing 

slight 

distortion to 

the original 

acquired 

images.   

Contrast maps 

parcellated into 200 

functional brain 

regions during 

number-guessing 

trial, reward 

expectancy and 

prediction error 

 

95 pretreatment 

clinical measures and 

demographic features 

acquired on the same 

day as imaging 

Top 20 predictors 

(Sertraline): 

SCID Psychomotor 

agitation 

17-item HAMD total 

24-item HAMD total 

PE Cerebellum Crus1 L2 

FHS family hx. suicide 

SCQ total 

SCID Age of first 

dysphoria  

RE SupraMarginal R 2 

RE Frontal Inf Tri R 

AN Frontal Sup L 

SCID Age of first MDD 

episode 

RE SupraMarginal R 2 

RE Frontal Inf Tri R 

AN Frontal Sup L 

Sertraline: 

R2=0.48 

RMSE=5.15 

 

Placebo: 

R2=0.28 

RMSE=5.87 

 

Bupropion: 

R2=0.34 

RMSE=4.46 

Remission 

Sertraline: 

AUC: 0.60 

PPV: 0.69 

 

Placebo: 

AUC: 0.65 

PPV: 0.81 

 

Bupropion: 

AUC: 0.71 

PPV: 0.75 

 

Response 

Sertraline: 

AUC: 0.62 

PPV: 0.68 
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Remission vs 

non-remission  

HAMD ≤7 at 

week 8. 

 

SCID Age of first MDD 

episode 

AN Occipital Mid R 

RE Cingulum Post R 

Employed part-time 

FHS family hx. Mania 

PE Temporal Sup R 2 

FHS family hx. 

hallucinations 

NEO Conscientiousness 

score 

Unemployed 

AN Temporal Mid R 

 

Top 20 predictors 

(Placebo) 

SCID Current panic 

disorder 

Age at evaluation 

SCID Hypersomnia  

Marital status - Separated 

Placebo: 

AUC: 0.67 

PPV: 0.69 

 

Bupropion: 

AUC: 0.57 

PPV: 1.00 



Ph.D. Thesis – D. P. Watts; McMaster University – Neuroscience.  

 

279 
 

PE Cerebellum 4 5 L 

Asian race 

AN Occipital Mid R 2 

NEO Openness score 

MASQ Anhedonic 

Depression score 

SCID Longest period w/o 

dysphoria  

EHI Handedness score 

PE Cerebellum 9 L 2 

RE SupraMarginal R 

PE Temporal Sup L 2 

STAI post-fMRI score 

PE Occipital Inf R 

PE Temporal Mid R 3 

PE Parietal Sup L 2 

AN Occipital Inf L 

PE Frontal Mid L 

 

Top 20 predictors 
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(Bupropion) 

Years of education 

Highest education level - 

high school  

AN Cerebellum 9 R 

PE Cingulum Mid R 

RE Caudate L 

FHS family hx. mental 

illness 

RE Frontal Mid Orb L 2 

SCID current episode 

anxious distress 

FHS family hx. 

Depression 

PE Caudate R 

AN Cingulum Post R 2 

RE Cerebellum Crus1 R 

AN Frontal Sup R 

PE Lingual R 

RE Hippocampus R 2 
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RE Cerebellum Crus1 L 2 

MASQ Anxious Arousal 

score 

CHRTP propensity score 

PE Lingual L 

AN Vermis 10  
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Rajpurkar, 

2020 

518 patients 

with MDD 

Patients 

randomized in a 

1:1:1: ratio to 

escitalopram, 

sertraline, or 

extended-release 

venlafaxine for 8 

weeks 

(iSPOT-D) 

Predicting the 

Improvement 

for Each 

Symptom 

of the HRSD-

21 Depression 

Assessment 

Scale 

GBM Baseline symptoms 

and pre-treatment 

EEG data  

Important EEG features 

included: 

 

 O1 alpha absolute  

(3.0% - Physical Anxiety) 

 

T7-T3 alpha absolute ratio 

(6.7%-Trouble Sleeping) 

T7-T3 beta absolute ratio  

(4.4% - Trouble sleeping) 

 

F7 gamma relative  

(5.1% - Weight loss) 

Fp2 delta relative  

(4.4% - Weight loss) 

 

F8 theta relative  

(2.9% - Agitation) 

 

F3 alpha absolute  

R2 0.375-0.551 

Best model 

observed using 

EEG and baseline 

symptom features 

95% CI: 0.473-

0.639 

 

Used C-index to 

assess performance 

(probability that the 

algorithm will 

correctly identify, 

given 2 random 

patients with 

different 

improvement 

levels, which 

patient showed 

greater 

improvement 
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(2.4% - Appetite change) 

Fp2 theta absolute  

(2.4% - Appetite change) 

 

T7-T3 beta relative ratio 

 (4.7% - Unreality and 

nihilism) 

F7 beta relative  

(3.3% - Unreality and 

nihilism)  

Rethorst, 

2017 

122 patients 

with MDD 

Patients were 

randomized to one 

of two exercise 

dose groups for 12 

weeks: 4 or 16 

kcal/kg/week 

(TREAD trial) 

Patients were 

categorized 

into “remitters” 

(≤12 on the 

IDS-C), non-

responders 

(<30% 

drop in IDS-

LASSO 

RF 

25 clinical variables, 

five baseline serum 

biomarkers  

( IL-1B, IL6, TNF-α, 

SHAPS, BDNF) 

Remission  

BDNF 

PANAS (positive) 

IDS-SR 

IL-β 

 

NA AUC (average from 

both models) 

Remission: 0.785 

Nonresponse: 0.710 
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C), or neither. Non-responder 

VO2max 

PANAS (positive) 

BDNF 

IL-6 

Taliaz, 2021 1829 patients 

with MDD 

 

Training set: 

1167 patients 

(STAR*D) 

 

Testing set: 271 

patients 

(STAR*D) 

 

Validation set: 

259 patients 

(STAR*D) 

 

External 

validation set: 

STAR*D 

Largest prospective 

clinical trial of 

major depressive 

disorder ever 

conducted; 

comprised 4 levels 

of treatment 

according to 

clinical response. 

 

PGRN-AMPS 

8-week clinical 

trial randomized to 

either: 

1. escitalopram 

(10/mg day)   

2. citalopram 

Responders vs 

Non-

responders 

 

1) exponential   

     response 

Continuous 

measure 

representing 

median 

antidepressant 

improvement 

rates for each 

of the 

STAR*D 

treatments, and 

used to 

partition 

patients into 

responders/ 

SVM 

linear kernel 

Final model 

comprised 43 features 

(27 genetic variants, 9 

clinical features, and 

7 demographic 

features)  

 

Genetic components 

comprised brain-

related terms (40%), 

neuronal signalling-

related terms (40%), 

and 20% comprised 

other terms (e.g., 

regulation of body 

fluid levels)  

Citalopram model: 

OPRM1 

ZFPM2 

WWOX 

Depression severity 

Employment  

Age 

Marital Status 

Education 

 

Venlafaxine model: 

STK39 

CERS6 

CCDC63 

STAR*D model 

(validation set) 

Citalopram 

60.5% 

 

Venlafaxine 

74.3% 

 

Sertraline 

75.5% 

 

PGRN-AMPS 

model 

(External 

validation set) 

STAR*D model 

(Validation set) 

Citalopram 

Sensitivity: 67% 

Specificity: 54% 

PPV: 59.3% 

NPV: 62% 

 

Venlafaxine 

Sensitivity: 70% 

Specificity: 78.6% 

PPV: 76.6% 

NPV: 72.4% 
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132 patients 

(PGRN-AMPS) 

(20/mg 

day)  

 

 

 

 

non-responders 

 

2) Classic 

response 

≥ 50% 

reduction in 

QIDS from 

baseline to 

each treatment   

 

 

85% agreement 

in response 

between two 

definitions, 

however there 

was a 

discrepancy in 

15% of cases 

 

Sertraline model: 

MTOR 

HS6ST3 

PRKCA 

GRIA1 

GRIN2A 

IFNA1 

FKBP5 

GRIK4 

Anxiety Disorders 

Neurological system 

problems 

Musculoskeletal/ 

Integumentary system 

problems 

History of medication use 

Employment 

Residence 

Age 

Citalopram  

61.3% 

Sertraline 

Sensitivity: 69.2% 

Specificity: 81.8% 

PPV: 79.2% 

NPV: 72.7% 

 

PGRN-AMPS 

model 

(External validation 

set) 

Citalopram 

Sensitivity: 75.5% 

Specificity: 47.1% 

PPV: 58.8% 

NPV: 65.8% 
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Table 1 – Data-driven Biomarkers and Model Performance  

 

Abbreviations:  

AA, Arachidonic Acid; AAP, Atypical Antipsychotics; ALA, α-Linolenic Acid; BPRS, Brief Psychiatric Rating Scale; AN, anticipation; CAPS, Clinician 

Administered PTSD Scale; CBM, Connectome Based Predictive Model; CBT, Cognitive Behavioural Therapy; CFP, Cingulo-frontal-parietal 

cognitive/attention network; CI, Confidence Interval; CO-MED, Combining medications to enhance depression outcomes; CPM, Connectome-based 

predictive modeling; DA, Discriminant Analysis; DF, Deterministic Forest; DHA, Docosahexaenoic Acid; DPA, Docosapentaenoic Acid; DT, Decision 

Tree; ELM, Extreme Learning Machine; EPA, Eicosapentaenoic Acid; FDR, Fisher Discriminant Ratio; FDG-PET, (18F)Fluorodeoxyglucose PET; FHS, 

Family History Screen; fMRI, Functional Magnetic Resonance Imaging; GBM, Gradient Boosting Machine; GM, Gray Matter; GPC, Gaussian Process 

Classification; Hx, History; ICA, Independent Component Analysis; IDS, Inventory of Depressive Symptomatology; ISPC ,International SSRI 

Pharmacogenomics Consortium; iSPOT-D, international Study to Predict Optimized Treatment in Depression; IT, Interaction Tree;  LASSO, Least Absolute 

Shrinkage and Selection Operator; LDA, Linear Discriminant Analysis; LGEM, Latent Group Effectiveness Modeling; LR, Logistic Regression; MDD, 

Major Depressive Disorder; Mid, middle; MRF, Midline Right Frontal; NEO-FFI, NEO-Five Factor Inventory; NPV, Negative Predictive Value; OCD, 

Obsessive Compulsive Disorder; PANSS-NS, Positive and Negative Symptom Scale (negative scale); PCA, Principal Component Analysis; PE, Prediction 

Error; PF, Prefrontal; PGRN-AMPS, Pharmacogenomics Research Network Antidepressant Medication Pharmacogenomic Study; PHDD, Percentage of 

Heavy Drinking Days; PHQ, Patient Health Questionnaire; PPV, Predictive Positive Value; PUFAs, Polyunsaturated Fatty Acids; SCID, Structured 

Clinical Interview for DSM-5; SCQ, Self-Administered Comorbidity Questionnaire; SELSER, Sparse EEG Latent SpacE Regression; sMRI, Structural 

Magnetic Resonance Imaging; SNP, Single-Nucleotide Polymorphisms; SNRI, Serotonin and Norepinephrine Reuptake Inhibitor; SPECT, Single-photon 

emission computerized tomography; SSRI, Selective Serotonin Reuptake Inhibitor; Sup, Superior; SVM, Support Vector Machine; SVR, Support Vector 

Regression; RE, Reward expectancy; RF, Random Forest; rs-fMRI, Resting State Functional Magnetic Resonance Imaging; RVM, Relevance Vector 

Machine; tDCS, Transcranial Direct Current Stimulation; TRD, Treatment-Resistant Depression; TREAD, TREAting Depression with physical activity; 

UHR, Ultra-High Risk; VT, Virtual Twins; ω-3, Long-chain Omega-3; WM, White Matter; XGBoost, Extreme Gradient Boosting 

1All studies used DSM-IV criteria for diagnosis, except when specified otherwise. 2The sample size showed in the table includes only the number of patients 

used for the model development, and does not include healthy controls used for other purposes 
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Authors Classification Task Method to 

address class 

imbalance 

True and False 

Positives/Negatives 

Performance Metrics 95% Confidence 

Intervals of Accuracy 

PERIPHERAL BLOOD MARKERS 

Amminger, 

2015 

Responders 

(≥ 15-point increase in the GAF) 

vs 

Non-responders 

(22/18) 

N/A TP = 19 

FP = 2 

TN = 16 

FN = 3 

Balanced Accuracy = 

86.7% 

Sensitivity = 86.7% 

Specificity = 86.7% 

 

Accuracy = 86.70% 

(95% CI: 73.20-95.81) 

Maciukiewicz, 

2018 

Responders  

(≥50% improvement in MADRS) 

vs 

Non-responders 

(27/11) 

 

Remission  

(<10 MADRS) 

vs. 

Non-remission 

(19/18) 

N/A Response 

TP = 23 

FP = 10 

TN = 1 

FN = 4 

 

Remission 

TP = 13 

FP = 10 

TN = 8 

FN = 6 

 

Response 

Balanced Accuracy = 47% 

Sensitivity = 87% 

Specificity = 7% 

 

Remission 

Balanced Accuracy = 57% 

Sensitivity = 68% 

Specificity = 46% 

Response 

Accuracy = 63.12% 

(95% CI: 45.95-78.15) 

 

Remission  

Accuracy = 56.74% 

(95% CI: 39.48-72.89) 

 

ELECTROENCEPHALOGRAPHY 

Al-Kaysi, 

2017 

Responders  

(≥50% improvement in MADRS) 

vs  

Non-responders 

(5/5) 

N/A N/A Accuracy = 76% N/A 

Cao, 2019 Responders  

(≥45% improvement in HAMD-

17) 

vs 

Non-responders 

Oversampling 

minority class 

TP = 13 

FP = 2 

TN = 19 

FN = 3 

Balanced Accuracy = 87% 

Sensitivity = 82.1% 

Specificity = 91.9% 

 

Accuracy = 81.3% 

(95% CI: 71.23-95.47) 
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(16/21) 

de la Salle, 

2020 

Responders  

(≥50% improvement in MADRS) 

vs  

Non-responders  

(27/20) 

N/A TP = 19 

FP = 1 

TN = 19 

FN = 8 

Balanced Accuracy = 

82.5% 

Sensitivity = 70% 

Specificity = 95% 

Accuracy = 80.96% 

(95% CI: (66.87-90.93) 

Jaworska, 

2019 

Responders  

(≥50% improvement in MADRS) 

vs  

Non-responders  

(27/24) 

N/A TP = 21 

FP = 0 

TN = 24 

FN = 6 

Balanced Accuracy = 88% 

Sensitivity = 77% 

Specificity = 99% 

Accuracy = 88.24% 

(95% CI: 76.14-95.56) 

NEUROIMAGING 

Braund, 2022 Responders  

(≥50% improvement in HAMD17 

or QIDS-SR16) 

vs  

Non-responders  

(102/127) 

N/A TP = 64 

FP = 19 

TN = 107 

FN = 39 

Balanced Accuracy = 

73.75% 

Sensitivity = 62.5% 

Specificity = 85.0% 

  

Accuracy = 75%  

(95% CI: 57.8-87.9) 

Klöbl, 2020 Responders  

(≥50% improvement in HAMD17) 

vs  

Non-responders  

(19/10) 

 

Remission 

(HAMD17 ≤ 7) 

vs 

Non-remission 

(16/13) 

N/A N/A AUC = 0.68-0.73 

Sensitivity and specificity 

not reported 

N/A 

Koutsouleris, 

2017 

Good clinical response 

(≥60 GAF at endpoint) 

vs  

N/A Full sample 

TP = 81 

FP = 29 

Full sample 

Balanced Accuracy = 

72.1% 

Accuracy = 74.56% 

(95% CI: 69.52-79.15) 
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Poor clinical response 

(110/224) 

TN = 156 

FN = 67 

 

Independent sample of 

108 patients 

TP = 13 

FP = 5 

TN = 64 

FN = 5 

Sensitivity = 69.6% 

Specificity = 74.5% 

 

Independent sample 

Balanced Accuracy = 

71.7% 

Sensitivity = 71.1% 

Specificity = 72.2% 

Accuracy = 82.49% 

(95% CI: 72.85-89.80) 

 

 

Nord, 2019 Responders  

(≥50% improvement in HAMD17) 

vs  

Non-responders  

(10/10) 

 

N/A N/A AUC = 0.856 

Sensitivity and specificity 

not reported 

N/A 

Sarpal, 2016 Responders 

(Two consecutive visits with CGI 

improvement score of 1-2 and ≤3 

in conceptual disorganization, 

grandiosity, hallucinatory 

behavior, and unusual thoughts on 

the BPRS-A)  

vs 

Non-responders 

(44/37)  

N/A Independent sample of 

40 patients 

TP = 16 

FP = 5 

TN = 15 

FN = 4 

Balanced Accuracy = 

77.5% 

Sensitivity = 80% 

Specificity = 75% 

  

Accuracy = 77.50% 

(95% CI: 61.55-89.16) 

Yip, 2019 Abstinence  

(Cocaine negative urine) 

vs. 

relapse  

(Cocaine positive urine) 

Exact numbers of each class not 

reported 

N/A N/A Sensitivity = 35% 

Specificity = 82% 

N/A 
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MULTIMODAL DATA 

Ambrosen, 

2020 

Responders 

(20% decrease in PANSS) 

vs. 

Non-responders 

(71/68) 

N/A N/A N/A N/A 

Athreya, 2019 Responders 

(≥50% improvement in HAMD17 

or QIDS-C) 

vs. 

Non-responders 

(379/253) 

 

(n=467 STAR*D; n=165 ISPC) 

N/A HAMD17 – men  

TP = 188 

FP = 52 

TN = 134 

FN = 92 

 

HAMD17 – women 

TP = 191 

FP = 69 

TN = 118 

FN = 90 

 

QIDS-C – men 

TP = 79 

FP = 19 

TN = 47 

FN = 20 

 

QIDS-C – women 

TP = 77 

FP = 21 

TN = 45 

FN = 22 

HAMD17 – men  

Balanced Accuracy = 

69.5% 

Sensitivity = 67% 

Specificity = 72% 

 

HAMD17 – women 

Balanced Accuracy = 

65.5% 

Sensitivity = 68% 

Specificity = 63% 

 

QIDS-C – men 

Balanced Accuracy = 

75.5% 

Sensitivity = 80% 

Specificity = 71% 

 

QIDS-C – women 

Balanced Accuracy = 73% 

Sensitivity = 78% 

Specificity = 68% 

HAMD17 – men  

Accuracy = 69.10% 

(95% CI: 64.69-73.27) 

 

HAMD17 – women 

Accuracy = 66.02% 

(95% CI: 61.53-70.31) 

 

QIDS-C – men 

Accuracy = 76.36% 

(95% CI: 69.14-82.92) 

 

QIDS-C – women 

Accuracy = 73.94% 

(95% CI: 66.54-80.45) 

 

 

Crane, 2017 Responders 

(≥50% improvement in HAMD17) 

vs. 

N/A N/A Balanced Accuracy = 

82.1% 

Sensitivity = 84.2% 

N/A 
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Non-responders 

(Exact number of responders/non-

responders was not reported) 

Specificity = 80.0% 

 

Fonzo, 2017 Remission  

(≤ 20 post-treatment CAPS score) 

vs. 

Non-remission 

(Exact number of responders/non-

responders was not reported) 

N/A N/A Accuracy = 79.5-97.7% 

Sensitivity and specificity 

not reported 

N/A 

Lee, 2018 Good outcome 

(Decrease in PANSS) 

vs. 

Poor outcome 

(Olanzapine – 85/23; 

Ziprasidone – 24/27) 

N/A Olanzapine 

TP = 69 

FP = 11 

TN = 16 

FN = 12 

 

Ziprasidone  

TP = 33 

FP = 5 

TN = 6 

FN = 8 

Olanzapine 

Balanced Accuracy = 

66.5% 

Sensitivity = 81% 

Specificity = 52% 

 

Ziprasidone 

Balanced Accuracy = 

74.5% 

Sensitivity = 75% 

Specificity = 74% 

Olanzapine 

Accuracy = 79.66%  

(95% CI: 70.84-86.80) 

 

Ziprasidone 

Accuracy = 74.96% 

(95% CI: 61.01-85.94) 

Joyce, 2021 Responders 

(≥50% improvement in HAMD17) 

vs. 

Non-responders 

(Model 1 - 48/29; 

Model 2 – 45/26) 

Oversampling 

minority class 

Model 1 - metabolomic 

TP = 33 

FP = 3 

TN = 26 

FN = 15 

 

Model 2 - multi-omics 

TP = 32 

FP = 3 

TN = 23 

FN = 13 

 

Model 1 - metabolomic 

Balanced Accuracy = 

Sensitivity = 69% 

Specificity = 90% 

 

Model 2 - multi-omics 

Balanced Accuracy = 

Sensitivity = 71% 

Specificity = 88% 

 

Model 1 - metabolomic 

Accuracy = 76.63% 

(95% CI: 65.60-85.52) 

 

Model 2 - multi-omics 

Accuracy = 77.48% 

(95% CI: 66.02-86.55) 
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Rethorst, 

2017 

Remitters 

(≤12 on the IDS-C) 

Non-responders 

(<30% improvement in IDS-C) 

vs. 

Responders 

(neither) 

(36/56/30) 

N/A N/A Response – AUC = 0.785 

Non-response – AUC = 

0.710  

N/A 

Taliaz, 2021 Exponential responders 

(Continuous measure representing 

exponential fit for individual 

longitudinal measurements of 

QIDS during a specific treatment) 

vs. 

Non-responders 

Venlafaxine 

41.7% response (R = 10; NR = 14) 

 

Sertraline 

41.7% response (R = 10; NR = 14) 

 

Citalopram 

44.6% response (R = 112; NR = 

139) 

N/A Venlafaxine 

TP = 7 

FP = 3 

TN = 11 

FN = 3 

 

Sertraline 

TP = 9 

FP = 2 

TN = 4 

FN = 9 

 

Citalopram 

TP = 75 

FP = 64 

TN = 75 

FN = 37 

Venlafaxine 

Balanced Accuracy = 

74.3% 

Sensitivity = 71% 

Specificity = 88% 

 

Sertraline 

Balanced Accuracy = 

75.5% 

Sensitivity = 69.2% 

Specificity = 81.8% 

 

Citalopram 

Balanced Accuracy = 

60.5% 

Sensitivity = 67% 

Specificity = 54% 

 

Venlafaxine 

Accuracy = 75.00% 

(95% CI: 53.29-90.23) 

 

Sertraline 

Accuracy = 78.97% 

(95% CI: 57.09-92.97) 

Citalopram 

Accuracy = 59.76% 

(95% CI: 53.41-65.88) 

 

 

 

Table 2: 95% Confidence Intervals of Clinical Response 

Performance metrics across predictive models of treatment response within randomized clinical trials. In cases where confidence intervals were not reported, 

this metric was calculated using true/false positives and negatives, as well as the prevalence of responders within each study. In instances where true/false 
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positives and negatives were not reported, this was imputed using the sensitivity, specificity, and prevalence of studies. Studies that did not report these 

prerequisite summary statistics are indicated with N/A.  

Abbreviations: BPRS-A, Brief Psychiatric Rating Scale-Anchored; GAF, Global Assessment of Functioning, HAMD17, Hamilton Depression Rating Scale 

17-item, IDS, Inventory for Depressive Symptomatology; ISPC, International SSRI Pharmacogenomics Consortium; MADRS, Montgomery-Asberg 

Depression Rating Scale; PANSS, Positive and Negative Syndrome Scale; PGRN-AMPS, Pharmacogenomics Research Network Antidepressant 

Pharmacogenomics Study; QIDS-SR16, Quick Inventory of Depressive Symptomatology, STAR*D, Sequenced Treatment Alternatives to Relieve Depression 
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Supplementary Table S1 – Machine learning studies predicting treatment response in psychiatric disorders (non-randomized open-label trials)  

 

First 

author, year 

Sample size 

and diagnosis1,2 

Open-label 

Trial 

Outcome Machine 

learning model 

Data utilized Top Data-Driven 

Biomarkers 

(Features) 

Accuracy Additional 

Performance 

Metrics 

STUDIES USING ELECTROENCEPHALOGRAPHIC MEASURES 

Arns, 2012 90 patients with 

treatment-

resistant 

depression 

Average of 20 

sessions of 

left DLPFC 

10 Hz rTMS 

treatment 

Responders vs 

Nonresponders  

 

≥ 50% reduction in 

BDI from baseline 

to post-treatment 

LDA resting-state 

EEG 

 

EEG theta power 

 

Alpha peak 

frequency 

 

PF Delta 

Cordance   

Anterior iAPF, P300 

amplitude at Pz, prefrontal 

delta and beta cordance 

NA AUC: 0.814 

Bruder, 

2008 

18 patients with 

MDD 

12-weeks of 

open-label 

fluoxetine 

Responders vs 

Nonresponders 

 

CGI-I rating of 

“much or very 

much” improved 

LDA resting-state 

EEG 

 

Alpha power and 

asymmetry at 

Alpha power and asymmetry 

at occipital sites 

 

 

 

NA PPV: 72.7-77.8% 

NPV: 55.6-80.0% 
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considered as 

responders 

occipital sites 

 

 

 

Erguzel, 

2016 

147 patients 

with treatment-

resistant 

depression  

 

3 weeks (20 

sessions) of 

open label 

adjunctive 

rTMS 

Responders vs 

Nonresponders 

 

≥ 50% reduction in 

HAM-D from 

baseline to post-

treatment 

 

ANN 

SVM 

DT 

resting-state 

EEG 

 

Cordance 

(combination of 

absolute and 

relative power) 

Not available  78.3-86.4% 

Best 

performanc

e using SVM 

 

SVM 

AUC: 0.918 

 

ANN 

AUC: 0.877 

 

DT 

AUC: 0.807 

Hasanzadeh

, 2019 

46 patients with 

MDD 

5-sessions of 

left DLPFC 

10 Hz rTMS 

treatment 

Responders vs 

Nonresponders 

≥ 50% reduction in 

BDI-II or HRSD 

scores 

 

 Remission vs non-

remission 

kNN resting-state 

EEG 

 

Nonlinear 

features (LZC, 

CD, KDF) 

 

Power spectrum 

features (delta, 

Power (D,T, A, B)- 91.3% 

 

Composite measures 

All - 87% 

Bispectrum - 84.8% 

Nonlinear (LZC, KFD, CD) - 

80.4% 

78.3-82.6% 

best 

performanc

e with 

Lempel-Ziv 

complexity 

feature 

extraction 

Sensitivity: 78.3-

82.6% 

 

Specificity: 73.9-

91.3A% 
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BDI ≤ 8 theta, alpha, 

beta) 

 

Bispectrum 

features 

(2D Fourier 

transform of the 

third order 

cumulant) 

Cordance - 76.1% 

 

Single measures 

Power-B - 91.3% 

BisplSL-D - 89.1% 

BisplSL-B - 87% 

Bisp2M-D - 84.8% 

BispEn-D - 82.6% 

Salle, 2020 * 47 patients with 

MDD 

12-week 

double-blind 

trial of: 

  1)  

escitalopram 

  2)  

bupropion 

  3) 

escitalopram 

+   

       

bupropion  

Responders vs 

Nonresponders 

 

≥50% MADRS 

score reduction 

from baseline 

 

Remitters vs 

Nonremitters 

 

≤10 MADRS at 12 

weeks 

LR Pre-treatment 

rs-EEG 

 

Baseline PF and 

MRF Theta 

Cordance 

Response: 

Change in PF Cordance ≤-

0.81 

Change in MRF 

≤0.02 

 

Remission: 

Change in PF Cordance ≤-

0.81 

Change in MRF 

≤ 0.54 

74-81% 

Response 

 

51-70% 

Remission 

 

Best 

performanc

e in both 

models 

using PF 

Cordance 

alone 

Response - PF 

Cordance 

AUC: 0.85 

Sensitivity: 70% 

Specificity: 95%  

PPV: 0.95 

NPV: 0.64 

 

Remission - PF 

Cordance 

 AUC: 0.66 

Sensitivity: 0.70 
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Specificity:0.63 

PPV: 0.58 

NPV: 0.74 

Zandvakili, 

2019 

29 patients with 

comorbid MDD 

and PTSD 

Unblinded 

trial of 5 Hz 

rTMS to the 

left DLPFC 

(F3) for three 

weeks  

 

 

 

Responders vs 

Nonresponders 

 

≥ 50% reduction in 

IDS-SR 

 

LASSO 

SVM 

resting-state 

EEG 

 

EEG coherence 

(alpha, beta, 

theta, delta) 

Alpha band, local left 

prefrontal connections 

(contributed 12.13% 

accuracy,95% CI: 

9.18%−14.85% on bootstrap) 

 

Prefrontal electrodes and 

midline electrodes 

contributed 7.26% (95% CI: 

4.31%−9.86%), but 

performance did not depend 

on local-midline connections. 

 

 

 

 

 

75.4-78.4% MDD 

 

AUC: 0.83 

Sensitivity: 47-94% 

Specificity: 0-83% 

 

PTSD: 

AUC: 0.71 

Sensitivity: 37-100% 

Specificity: 0-100% 

 

Zhdanov, 

2020 

122 patients 

with MDD 

Multicentre 

open-label 

trial of 

Responders vs 

Nonresponders 

SVM 

Radial kernel 

resting-state 

EEG (baseline + 

week 2) 

High alpha-band-power in 

anterior cingulate cortex was 

the most prominent 

79.2%  

Using 

baseline 

Baseline Model 

Sensitivity - 67.3% 
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escitalopram 

(10-20mg) 

treatment 

 

≥ 50% reduction in 

MADRS from 

baseline to week 8 

 

 Electrode-level 

frequency 

analysis 

 

power spectral 

features in the 

source domain 

 

 spatiotemporal 

complexity 

 

 global brain 

network 

dynamics 

 

predictive feature shared by 

all the feature sources. 

 

High-alpha-band power in 

rostral anterior cingulate 

cortex appeared in baseline 

and week 2 data and high-

beta-band at week 2 only 

 

EEG data 

 

82.4% 

Using 

baseline 

and week 2 

EEG data 

Specificity - 91.0% 

 

Baseline and Week 2 

Model 

Sensitivity: 79.2% 

Specificity: 85.5% 

STUDIES USING NEUROIMAGING 

Ananth, 

2020 

27 patients with 

bipolar 

depression 

 

8 weeks of 

lithium 

monotherapy 

titrated to a 

therapeutic 

plasma level 

of 0.8-1.2 

Responders vs 

Nonresponders 

 

 

≥ 50% reduction in 

LASSO PET 

 

5-HTT and 5-

HT1A binding 

 

Amygdala, hippocampus, 

and parahippocampal gyrus 

were found to be important 

features, with all other 

features shrunk to zero. 

 

87.7% 87.5% sensitivity 

80% specificity  
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mEq/l HDRS-24 pre to 

post-treatment 

12 ROIs  

Brown, 2020 20 patients with 

either MDD or 

Bipolar 

Depression 

 

DBS 

implanted 

into SCC 

white matter 

bilaterally 

Responders vs 

Nonresponders 

 

≥ 48% reduction in 

HDRS scores from 

baseline to 6 

months 

postoperatively 

 

 

Gaussian NB  Baseline mean 

FDG-PET signal 

intensity  

Baseline mean FDG-PET 

signal intensity from the 

SCC ROI could predict 

which patients responded to 

treatment 

with an accuracy of 80%. 

 

80% Sensitivity: 80% 

Specificity: 80% 

Cao, 2018 43 drug-naive 

inpatients with 

first-episode 

schizophrenia 

10-week 

open-label  

risperidone 

treatment 

Responders vs 

Nonresponders 

 

≥ 30% reduction in 

PANSS total score 

 

SVM 

linear 

 

 

rs fMRI Left fusiform -  t=4.55 

Right precentral cortex  -      

t=4.26 

Right cuneus cortex -       t= 

4.01 

left fusiform -  t=4.87 

left lingual -  t=4.15 

Right postcentral cortex -  

t=4.04 

Right fusiform -  t=4.04 

82.5% Sensitivity: 88.0% 

Specificity: 76.9% 
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Left lingual -  t=4.08 

Cao, 2018b 24 inpatients 

with MDD 

8-sessions of 

ECT 

Remission vs Non-

remission  

 

Post-treatment 

HAM-D total score  

≤ 7 

SVM 

linear 

sMRI 

 

Hippocampal 

subfield volumes 

Significant volume increases 

in bilateral GCL and right 

CA3, CA4, molecular layer, 

and subiculum in remitters 

83.3% Sensitivity: 91.7% 

Specificity: 75% 

AUC: 0.90 

Cash, 2019 47 patients with 

MDD 

5-8 weeks of 

rTMS 

treatment 

targeting 

region F3  

Responders vs 

Nonresponders 

 

> 25% change in 

MADRS scores 

SVM 

 

rs fMRI 

 

Voxel-wise 

BOLD signal 

power 

 

resting state 

network 

connectivity 

Lower BOLD power in 

caudate, prefrontal cortex, 

and thalamus, as well as FC 

in the DMN  and affective 

networks were associated 

with treatment response 

85% 92% specificity 

75% sensitivity 

Ge, 2020 32 patients with 

treatment-

resistant MDD 

20-30 

sessions of 10 

Hz (high-

frequency left 

stimulation) 

or 

intermittent 

theta-burst 

Responders vs 

Nonresponders 

 

≥ 50% reduction in 

HRSD from 

baseline 

LDA rACC-IPL and 

sgACC-DLPFC 

based FC 

Stronger the FC between 

rACC and IPL, greater 

improvement on HRSD 

(r=0.49, p=3.48 x 10-4) 

 

Stronger the FC between 

sgACC and right DLPFC, 

76-84% 

 

best 

performanc

e using 

rACC-IPL 

features 

rACC-IPL 

84% (sensitivity: 

81%, specificity: 

86%) 

 

sgACC-DLPFC 
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rTMS over 

the left 

DLPFC 

lesser improvement on 

HRSD (r=-0.62, p=1.95 x 10-

6) 

76% (sensitivity: 

48%, specificity: 

97%) 

Gong, 2020 57 patients with 

SCZ 

12-sessions of 

ECT in 

conjunction 

with standard 

antipsychotic 

drugs 

Regression model - 

continuous 

improvement in 

symptoms 

(PANSS) 

SVR sMRI 

dMRI 

 

GM tissues of 23 

ROIs and the FA 

values of 37 

WM tracts  

Calcarine_L-

Temporal_Pole_Sup_L 

 

Lingual_R-Temporal_Mid_R 

 

Occipital_Mid_L-

Temporal_Inf_L 

 

Frontal_Inf_Orb_R-Insula_R 

 

Frontal_Inf_Orb_R-Insula_R 

 

Occipital_Mid_R-

Temporal_Mid_R 

N/A RMSE: 14.980 

Hahn, 2015 49 medication-

free patients 

with PD/AG 

12-sessions of 

CBT  

Responders vs 

Nonresponders 

 

> 50% reduction in 

GPC fMRI during a 

differential fear-

conditioning task 

Top 10% whole-brain GPC 

weights 

 

Precentral gyrus - 3.19 

82% Sensitivity: 92% 

Specificity: 72% 
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HARS scores Occipital fusiform gyrus - 

3.04 

Frontal orbital cortex - 2.79 

Middle temporal gyrus 

(temporo-occipital part) - 

2.78 

Putamen - 2.68 

Supramarginal gyrus 

(anterior division) - 2.47 

Frontal pole - 2.23 

Occipital pole - 2.15 

Inferior frontal gyrus (pars 

triangularis) - 2.15 

Postcentral gyrus - 2.03 

Leaver, 

2018 

46 patients with 

MDD 

Right-

unilateral 

ECT 

Responders vs 

Nonresponders 

 

≥ 50% reduction in 

composite 

depression scores 

SVM 

radial kernel 

sMRI 

arterial spin-

labeled-fMRI 

Most significant features in 

responders 

Left thalamus - p, RFT 

corrected = 2.50 x 10-6 

Left somatomotor cortex - p, 

RFT corrected = 3.68 x 10-5 

Left occipital cortex - p, RFT 

corrected =.0438 

58-68% Sensitivity: 54-64% 

Specificity: 55-74% 
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Right angular gyrus = 1.09 x 

10-10 

Right frontal operculum = 

.00622 

Precuneus = .031 

 

Most significant features in 

nonresponders 

Right hippocampus and 

accumbens = 1.79 x 10-7 

Posterior cingulate cortex = 

.000767 

Månsson, 

2015 

26 patients with 

SAD 

Open-label 

cross-over 

trial: 

1) 9-week 

guided 

internet CBT 

2) ABM 

Responders vs 

Nonresponders 

 

Post-treatment 

scores (1 year 

follow-up) of 1-2 

on the CGI-I as 

responders  

 

≥  3 on post-

treatment CGI-I 

classified as 

SVM 

linear 

fMRI during a 

self-referential 

criticism task 

ACC - 91.7% 

Amygdala - 47.7% 

dlPFC - 43.2% 

Hippocampus - 51.9% 

Insula - 43.6% 

vmPFC - 39.0% 

 

39-91.7% 

 

Best 

performanc

e observed 

using ACC  

Sensitivity: 41.7-

83.3% 

 

Specificity: 36.4-

100% 

 

AUC: 0.29-0.91 
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nonresponders 

Wade, 2016 53 patients with 

MDD 

4-6 weeks of 

open-label 

ECT 

(3 treatments 

per week)  

Responders vs 

Nonresponders 

 

Response defined 

as  > 50% 

improvement in 

HAM-D scores 

over the course of 

treatment. 

SVM 

radial 

Siemens 3T 

Allegra (T1-

Structural MRI) 

 

radial distance 

and Jacobian 

determinant in 

the accumbens, 

caudate, 

putamen and 

pallidum 

Significant volumetric gain 

in the accumbens F(2, 

18.98)=9.18, P=0.002, in 

responders 

72% AUC: 0.54                    

(95 % CI=29-78%)  

 

 

 

Xi, 2020 57 patients with 

SCZ 

9-12 sessions 

of unilateral 

ECT  

(800 mA 

stimulus 

intensity) 

Responders vs 

Nonresponders 

 

≥ 70% reduction in 

PANSS total 

scores 

SVM GE Discovery 

MR750 3T 

(T1-structural 

MRI) 

 

GM volume in 

19 ROIs 

(258 features) 

Top features included 

cortical (inferior frontal 

gyrus, cingulate cortex, and 

temporal and parietal lobes) 

and 

subcortical regions (insula, 

thalamus, and hippocampus) 

87.59% N/A 

STUDIES USING MULTIMODAL DATA 

Bailey, 2018  57 patients with 

treatment-

5-8 weeks of 

rTMS  

Responders vs 

Nonresponders 

SVM 

linear 

Pre-treatment 

resting-state 

EEG and mood 

Responders showed more 

theta connectivity relative to 

non-responders (p=0.0216, 

86.60% Sensitivity: 84% 

Specificity: 89% 
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resistant MDD  

Response defined 

as  > 50% 

improvement in 

HDRS scores 

symptoms FDR p=0.030) 

 

 

Ball, 2014 48 adults 

25 patients with 

GAD 

23 patients with 

PD 

10-sessions of 

open-label 

weekly 

individual 

CBT 

Responders vs 

Nonresponders 

 

OASIS scores of 

⩽5 at the end of 

therapy  

RF Clinical/ socio-

demographic 

data, and an 

fMRI task 

appraising 

emotional 

responses to 

negative images 

 

reappraise- and 

maintain-related 

activation before 

treatment in each 

of the 70 

anatomical ROIs 

Ten variables met inclusion 

in final model 

 

OASIS, ASI, PSWQ-A, as 

well as  

right hippocampus and left 

uncus activation during 

maintenance, and left 

transverse temporal gyrus, 

left supramarginal gyrus, left 

precentral gyrus, left superior 

frontal gyrus, and right 

substantia nigra activation 

during reappraisal 

69-79% 

Best 

performanc

e observed 

with fMRI 

features 

alone 

Sensitivity: 79-86% 

Specificity: 53-68% 

Luo, 2014 24 patients with 

cocaine 

dependence 

12-weeks of 

contingency 

management 

therapy  

 

24 sessions 

Responders vs 

Nonresponders  

 

≥ 1 month of 

abstinence (urine 

LR 

SVM 

radial kernel 

Baseline 

demographic 

variables, and 

striatal PET 

(ECAT EXACT 

HR+) data 

Best performance using 

change in binding potential 

in the ventral striatum and 

posterior caudate at week 2, 

3 and 4 

82-96% 

Best 

performanc

e observed 

using 

neuroimagi

N/A 
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total 

(Community 

Reinforcemen

t Approach) 

measurements)  

  

ng and 

behavioral 

predictors 

Kim, 2015 83 patients with 

ADHD 

8-week open 

label trial of 

methylphenid

ate 

Responders vs 

Nonresponders  

 

Post-treatment 

scores (8-weeks) 

of 1-2 on the CGI-I 

as responders  

 

≥  3 on post-

treatment CGI-I 

classified as 

nonresponders 

SVM 

 2nd order 

polynomial 

kernel 

DT 

RF 

LRR 

Genomic DNA 

extracted from 

whole blood 

lymphocytes 

using a G-

DEXTM II 

polymorphism 

and 40-base pair 

VNTR 

polymorphism 

located in the 3'-

-UTR of DAT1 

were genotyped 

 

Resting-state 

fMRI (3T 

Siemens 

scanner) 

repetition time 

3000 ms; echo 

time 40 ms; 

acquisition 

matrix 128× 

128; field of 

Wrapper subset evaluation 

method demonstrated the 

age, weight, ADRA2A 

MspI and Dra I 

polymorphisms, lead level, 

SCWT color-word 

and word performance, and 

oppositional symptoms of 

DBD 

as the most differentiating 

subset of features. 

(range) 

SVM: 64.1-

84.6% 

DT: 61.5-

69.2% 

RF: 61.5-

73.1% 

LRR: 65.4-

76.9% 

(range) 

SVM: 64.1-84.6% 

DT: 61.5-69.2% 

RF: 61.5-73.1% 

LRR: 65.4-76.9% 
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view 240× 240 

mm2; flip angle 

90°; voxel size 

1.9  mm × 1.9  

mm × 4.0 mm; 

slices 30. 

Martinuzzi, 

2019 

325 patients 

with first-

episode 

psychosis  

 

OPTiMiSE 

Study 

(7 general 

hospitals and 

clinics in 14 

European 

countries, Israel 

and 

Australia) 

 

 

4 weeks of 

open label 

Amisulpride 

(≤ 800 

mg/day) 

 

Remission vs non-

remission 

 

≤3 on 8 PANSS 

items: P1, P2, P3, 

N1, N4, N6, G5, 

and G9 

Sparse k-means 

(used to derive 

4 patient 

subtypes) 

 

Regularized LR 

Data acquired on 

the V-PLEX 

Sector Imager 

2400 plate 

reader and 

analyzed using 

the Discovery 

Workbench 3.0 

software (MSD) 

 

Proinflammatory 

Panel 1, 

Cytokine Panel 

1, Chemokine 

Panel 1, Th17 

Panel 1 and 

Vascular Injury 

Panel 2 v-

PLEX®kits 

(MSD) 

Lower serum levels of IL-15, 

higher serum levels of 

CXCL12, seropositivity to 

CMV, use of recreational 

drugs, and being younger 

were all associated with 

increased odds of being non-

remitters in CA patients. 

64% AUC: 0.73 

Sensitivity: 83% 

Specificity: 45% 
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Takamiya, 

2020 

27 patients with 

MDD 

Bitemporal 

ECT 2-3 

times per 

week until no 

improvement 

was seen 

within the last 

2 sessions 

Regression model - 

continuous 

improvement in 

symptoms 

(HAMD) 

SVM 

radial kernel 

Baseline 

demographic 

variables, and 

pretreatment 

sMRI 

 

T1-weighted 

images 

3-T GE Signa 

HDxt scanner 

repetition 

time=6.9 

milliseconds 

time to echo = 

2.9 milliseconds 

slice thickness = 

1.0 mm 

Left gyrus rectus 

Right anterior lateral 

temporal lobe 

Left lateral occipital lobe 

Right cuneus 

Left putamen 

Left third ventricle 

HAMD item 3 (suicide) 

HAMD item 10 (anxiety 

psychic) 

Right inferior middle 

temporal gyrus 

Right third ventricle 

Right cerebellum 

Right superior temporal 

gyrus 

Left brainstem 

HAMD item 9 (agitation) 

Right brainstem 

70.4-92.6% 

Best 

performanc

e observed 

using 

clinical and 

neuroimagi

ng features 

Sensitivity: 95-100% 

Specificity: 0-71.4% 

PPV: 73.1-90.9% 

NPV: 0-100% 

 

Supplementary Table S1 – Machine learning studies predicting treatment response in psychiatric disorders (non-randomized open-label trials)  
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Abbreviations:  

AA, Arachidonic Acid; AAP, Atypical Antipsychotics; ABM, Attention Bias Modification; ACC, Anterior Cingulate Cortex; ADHD-RS, Attention 

Deficit and Hyperactivity Disorder Rating Scale; ADTree, Alternating Decision Tree; AIC, Akaike Information Criteria; ALA, α-Linolenic Acid; AN, 

Anorexia Nervosa; ANN, Artificial Neural Networks; AUD, Alcohol Use Disorder; BDD, Body Dysmorphic Disorder; BDI-II, Beck Depression Inventory 

- Second Edition; BN, Bayesian Networks; BOLD, Blood-Oxygen Level-Dependent; BSP, Brief Supportive Psychotherapy; BZD, Benzodiazepines; 

Calcarine-L, Calcarine fissure and surrounding cortex; CBM, Connectome Based Predictive Model; CBT, Cognitive Behavioural Therapy; DA, 

Discriminant Analysis; DBS, Deep Brain Stimulation; DF, Deterministic Forest; DHA, Docosahexaenoic Acid; dMRI, diffusion MRI; DPA, 

Docosapentaenoic Acid; DSB, Deep-Brain Stimulation; DT, Decision Tree; ELM, Extreme Learning Machine; EMD, Empirical Mode Decompositions; 

ENRR, Elastic Net Regularized Regression; EPA, Eicosapentaenoic Acid; ERP, Exposure and Response Prevention; FF-BP ANN, Feed-forward Back-

propagation Artificial Neural Network; FDR, Fisher Discriminant Ratio; (18F)Fluorodeoxyglucose PET; (FDG-PET), Feature Selection; fMRI, 

Functional Magnetic Resonance Imaging; FIBSER, Frequency, Intensity, and Burden of Side Effects Rating; Frontal_Inf_Orb_R, right Frontal gyrus, 

orbital part; GAD, Generalized Anxiety Disorder; GBM, Gradient Boosting Machine; GK, Gaussian Kernel; GCL, granule cell layer; GM, Gray Matter; 

GPC, Gaussian Process Classification; GPR, Gaussian Process Regression; GEE, Generalized Estimated Equation; GNB, Gaussian Naive Bayes; 

HARS, Hamilton Anxiety Rating Scale; HDRS, Hamilton Depression Rating Scale; ICA, Independent Component Analysis; IPT-PS, Interpersonal 

Psychotherapy for Depression with Panic and Anxiety Symptoms; IDS, Inventory of Depressive Symptomatology; IT, Interaction Tree; KL, Kullback-

Leibler; KPLSR, Kernelized Partial Least Squares Regression; L1-LR, L1 Regularized Logistic Regression; LAR, Least Angle Regression; LASSO, Least 

Absolute Shrinkage and Selection Operator; LDA, Linear Discriminant Analysis; LGEM, Latent Group Effectiveness Modeling; Lingual_R, right lingual 

gyrus; LITHIA, Lithium Intelligent Agent (algorithm based on genetic algorithms and fuzzy systems); LR, Logistic Regression; LRR, Logistic Ridge 

Regression; LSO, Leave-site-out; LVSR, Linear Support Vector Regression; MDA, Mixture of Factor Analysis; MDD, Major Depressive Disorder; MET, 

Methadone; MER, Mixed Effects Regression; MFA, Mixture of Factor Analysis; MLP, Multi-Layer Perceptron; MPH, Methylphenidate; MRMR, 

Minimum redundancy and maximum relevance; NPV, Negative Predictive Value; NB, naive Bayes, OASIS, Overall Anxiety Severity And Impairment 

Scale; OCD, Obsessive Compulsive Disorder; Occipital_Mid_L, left middle occpital cortex; Occipital_Mid_R, right middle occipital cortex; PCA, 

Principal Component Analysis; PD, Panic disorder; PD/AG, Panic Disorder with Agoraphobia; PHDD, Percentage of Heavy Drinking Days; PHQ, 

Patient Health Questionnaire; PPV, Predictive Positive Value; PUFAs, Polyunsaturated Fatty Acids; SAD, Social Anxiety Disorder; SCC, Subcallosal 

Cingulate Cortex; SCZ, Schizophrenia; SELSER, Sparse EEG Latent SpacE Regression; SGD, Stochastic Gradient Descent; sMRI, Structural Magnetic 

Resonance Imaging; SNP, Single-Nucleotide Polymorphisms; SNRI, Serotonin and Norepinephrine Reuptake Inhibitor; SSRI, Selective Serotonin 
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Reuptake Inhibitor; STFT, Short-time Fourier Transform; SVM, Support Vector Machine; SVM-L, Support Vector Machine with Linear Kernel; SVR, 

Support Vector Regression; SVM-RBF, Support Vector Machine with Radial Basis Function Kernel; SVM-RFE, Support Vector Machine Recursive 

Feature Elimination; SVR, Support Vector Regression; RBFS, Rank-Based Feature Selection; RBFSVR, Radial Basis Support Vector Regression; REM, 

Rapid Eye Movement; RMSE, Root Mean Square Error; RF, Random Forest; RFE, Recursive Feature Elimination; RR, Ridge Regression; rs-fcMRI, 

Resting-state Functional Connectivity Magnetic Resonance Imaging; rs-fMRI, Resting State Functional Magnetic Resonance Imaging; RVR, Relevance 

Vector Regression; tDCS; transcranial Direct Current Stimulation; Temporal_Pole_Sup_L, Temporal pole: superior temporal gyrus; Temporal_Inf_L, left 

Temporal Inferior Cortex; Temporal_Mid_R, right middle temporal gyrus; TRD, Treatment-Resistant Depression; TSD, Treatment-Sensitive Depression; 

UHR, Ultra-High Risk; VT, Virtual Twins; ω-3, Long-chain Omega-3; WCST, Wisconsin Card-Sorting Task; WM, White Matter 

 

1All studies used DSM-IV criteria for diagnosis, except when specified otherwise. 

2The sample size showed in the table includes only the number of subjects used for the model development, and does not include healthy controls used 

for other purposes 

* Study lacked cross-validation metrics or training and testing sets and was therefore excluded. 
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PERIPHERAL BLOOD MARKERS  

Authors Representativ

e 

Internal CV Outcome ML Feature 

Selection 

Class 

imbalance 

Missing 

data 

Performance Testing/ 

Validation 

Overall 

Score 

Amminger, 

2015 

No Yes A 

 

B No No Yes Yes No 5/9 

Hou, 2015 No Yes B B No No Yes No No 4/9 

Maciukiewi

cz, 2018 

No Yes B A Yes No Yes Yes Yes 7/9 

ELECTROENCEPHALOGRAPHY  

Authors Representativ

e 

Internal CV Outcome ML Feature 

Selection 

Class 

imbalance 

Missing 

data 

Performance Testing/ 

Validation 

Overall 

Score 

Al-Kaysi, 

2017 

No Yes A A No No Yes No No 4/9 

Cao, 2019 No Yes A A Yes No Yes Yes Yes 7/9 

Jaworska, 

2019 

No Yes A A Yes No Yes No Yes 6/9 

de la Salle, 

2020 

No Yes A B Yes No Yes Yes No 6/9 

Wu, 2020 Yes Yes A A Yes Yes Yes Yes No 8/9 
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NEUROIMAGING  

Authors Representativ

e 

Internal CV Outcome ML Feature 

Selection 

Class 

imbalance 

Missing 

data 

Performance Testing/ 

Validation 

Overall 

Score 

Braund, 2022  No Yes A B Yes No Yes Yes Yes 7/9 

Fan, 2020 No Yes A A Yes Yes Yes Yes No 7/9 

Fonzo, 2019 No Yes A A Yes Yes Yes Yes No 7/9 

Klöbl, 2020 No Yes A B Yes Yes Yes No No 6/9 

Koutsouleri

s, 2017 

No Yes B A Yes No Yes Yes Yes 7/9 

Nemanti, 

2020 

Yes Yes A A Yes Yes Yes Yes No 8/9 

Nord, 2019 No Yes A B No No Yes No No 4/9 

Sarpal, 

2016 

No Yes A B Yes No Yes Yes No 6/9 

Yip, 2019 No Yes A A Yes Yes Yes Yes No 7/9 

MULTIMODAL DATA  

Authors Representativ

e 

Internal CV Outcome ML Feature 

Selection 

Class 

imbalance 

Missing 

data 

Performance Testing/ 

Validation 

Overall 

Score 

Ambrosen, 

2020 

No Yes B A No No Yes No No 4/9 
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Athreya, 

2019 

Yes Yes A A Yes No Yes Yes No 7/9 

Crane, 2017 No Yes B B Yes No Yes Yes No 6/9 

Fonzo, 2017 No Yes B B Yes Yes Yes Yes No 7/9 

Lee, 2018 No Yes B B Yes No Yes Yes No 6/9 

Joyce, 2021 Yes Yes A A Yes Yes Yes Yes Yes 9/9 

Nguyen, 

2022 

No Yes A B Yes No Yes Yes No 6/9 

Rajpurkar, 

2020 

No Yes B A Yes Yes Yes Yes No 7/9 

Rethorst, 

2017 

No Yes B A Yes No Yes No No 5/9 

Taliaz, 2021 Yes Yes A A Yes No Yes Yes Yes 8/9 

 

 

Supplementary Table 2: Quality Scores of All Studies 
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First author, 

year 

Data acquisition Preprocessing / 

Quality Control Metrics 

Imputation 

strategy 

Feature extraction method  

(if applicable) 

Feature selection method  

(if applicable) 

STUDIES USING PERIPHERAL BLOOD MARKERS 

Amminger, 

2015 

Fatty acid 

composition of the 

phosphatidylethanola

mine phospholipid 

fraction quantified 

using capillary gas 

chromatography 

 

(7 features in total) 

NA  NA  NA NA 

Hou, 2015 Genotyping of long 

and short alleles of 

the functional 

insertion-deletion 

polymorphism (5'-

HTTLPR) in the 

promoter region of the 

SLC6A4 gene. 

 

NA  NA  NA NA 
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(21 features in total)  

Maciukiewicz, 

2018 

Infinium PsychArray 

BeadChip by Illumina 

 

571,054 SNPs were 

genotyped 

 

19 SNPs retained with 

the highest β-

coefficients  

Ancestry control - 

Multidimensional scaling 

(MDS) using PLINK 

 

Control for minor allele 

frequency >1% 

 

Hardy-Weinberg 

equilibrium (p > .0000001) 

 

Genotype call rate (> 98%) 

 

Individual missingness 

(<10%) 

Whole-genome 

IMPUTE v2.2 in 5-

Mb segments per 

chromosome after 

pre-phasing with 

SHAPEIT2 and the 

1000 genomes 

reference panel 

 

 

NA LASSO 

(non-zero β-coefficients) 

 

 

 

First author, 

year 

Data utilized  Preprocessing / 

Quality Control Metrics 

Imputation 

strategy 

Feature extraction method  

(if applicable) 

Feature selection method  

(if applicable) 

STUDIES USING ELECTROENCEPHALOGRAPHY MEASURES 

Al-Kaysi, 2017 64-channel BrainAmp Downsampled to 2 KHz NA Power spectral density NA 
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MR Plus amplifiers 

(62 channels used) 

 

Reference electrode: 

Fz and Cz 

 

Sampling rate: 5 KHz 

 

High-pass filter (Butterworth 

filter with 0.5 Hz cut-off 

frequency) 

 

Artifact removal using ICA 

delta (0.5-4 Hz) 

theta (4-8 Hz) 

alpha (8-12 Hz) 

beta (13-30 Hz) 

gamma (30-100 Hz) 

 

Alpha asymmetry 

(frontal, central, and parietal 

cortex) 

Cao, 2019 Mindo-4S Jellyfish 

(four dry electrodes - 

Fp1, Fp2, AF7, and 

AF8) in the prefrontal 

region 

 

Reference electrode: 

A2 

 

Sampling rate: 512 Hz 

Built-in real-time EEG 

signal enhancement to 

remove artifacts 

 

CCA used to decompose 

continuous signal into 

components 

 

GMM used to cluster 

features into groups, where 

outliers were removed 

NA Power spectral density 

(relative and absolute power) 

delta (1-3.5 Hz) 

theta (4-7.5 Hz) 

lower alpha (8-10 Hz) 

upper alpha (10.5-12 Hz) 

Hochberg’s sharpened 

Bonferroni adjusted significance 

values  

(primary significance level p < 

0.05) 

de la Salle, 

2020 

32 channel EasyCap 

system 

Data was filtered (0.1-30 

Hz), ocular-corrected, and 

inspected for artifacts 

NA PFC cordance 

(Average absolute and relative 
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Reference: average 

scalp reference 

 

sampling rate: 500 Hz 

(voltages ± μV, faulty 

channels, drift)  

Minimum of 100 seconds of 

artifact-free data was 

required for participant 

inclusion  

theta power from Fp1 and Fp2 

electrodes at baseline and week 

1) 

 

MRF cordance 

Average absolute and relative 

theta power from Fz, Fp2, F4, 

and F8 electrodes at baseline 

and week 1) 

Jaworska, 

2019 

32 channel EasyCap 

system 

 

Reference: average 

scalp reference 

 

sampling rate: 500 Hz 

Ocular-corrected epochs 

excluded if voltage >±75 μV 

 

ln-transformation 

(normality) 

 

Min-Max scaling 

 

Individuals with 

missing data (i.e., 

those without week 

1 data) were 

removed (N = 2) 

eLORETA 

(Current source density 

measures from 84 Brodmann 

areas) 

 

Theta Cordance  

(Average absolute and relative 

theta power from Fp1 and Fp2 

electrodes at baseline and week 

1) 

KPCA 

Wu, 2020 62-channel 

NeuroScan 

(EMBARC) 

 

1) EEG data resampled to 

250 Hz 

 

2) 60-Hz AC line noise 

Missing outcomes 

imputed using 

Bayesian regression  

SELSER 

(each spatial filter transforms 

multichannel EEG data into a 

signal latent filter) 

SELSER 

(performed under a sparse 

constraint on number of spatial 

filters, which serves to reduce 
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256-channel Hydrocel 

Geodesic Sensor Net 

 

artefact removed 

(CleanLine) 

 

3) nonphysiological slow 

drifts removed using a 0.01-

Hz high-pass filter 

 

4) spectrally filtered EEG 

data re-referenced to the 

common average 

 

5) bad epochs rejected by 

thresholding magnitude of 

each epoch 

 

6) remaining artefacts 

removed using ICA 

θ and α frequency bands  

 

dimensionality)  

 

 

First author, 

year 

Data utilized  Preprocessing / 

Quality Control Metrics 

Imputation 

strategy 

Feature extraction method  

(if applicable) 

Feature selection method  

(if applicable) 

STUDIES USING NEUROIMAGING 
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Braund, 2022  3T GE MRI Scanner  

 

Average time series 

extracted from 400 

cortical regions and 

36 regions from the 

subcortex.  

- BOLD time-series 

within each of these 

regions were 

correlated pair-wise 

with every other 

region and Fisher-Z 

transformed to create 

a 436x436 

interregional 

functional correlation 

matrix for each 

participant.  

 

Network-based statistic 

method used to analyse 

whole-brain network 

functional connectivity 

associated with neuroticism 

 

Covariates included age, 

sex, years of education, and 

baseline HRSD17.  

NA Network-based statistics 

analysis identified a 

connectomic signature 

comprising 622 connections 

across 198 nodes in people with 

MDD, where greater 

neuroticism was associated with 

significantly higher functional 

connectivity (corrected p=0.10) 

 

 

Filter-based approach was used, 

which is less prone to overfitting 

compared to wrapper methods. 

Fan, 2020 3-Tesla structural 

(1x1x1 mm3) and 

functional 

(3.2x3.2x3.1mm 3;       

TR = 2000 ms; 

TE=28 ms; 12 min) 

MRI 

Slice timing correction, 

motion correction, intensity 

normalisation, brain 

masking, and registration of 

fMRI images to structural 

MRI and standard template. 

NA Gray matter whole-brain 

parcellation using the A424 

atlas  

1) NRS connectome is the 

pairwise connectivity of FNs 

affiliated modules at AA-24 and 

2-tailed t-tests 

(FDR; p < 0.05) 
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ICA-FIX used to identify 

and remove artefacts, 

followed by MGTR 

 

AA-50 

2) nodal strength (nS) is the 

average connectivity strength 

from one node to all other nodes 

in the brain 

3) nodal internal NRS - average 

connectivity strength from one 

node to all other nodes within 

the same canonical connectivity 

FN 

4) nodal external NRS - average 

connectivity strength from one 

node to all other nodes outside 

of its FN 

 

Fonzo, 2019 3-Tesla structural 

(1x1x1 mm3) and 

functional 

(3.2x3.2x3.1mm 3;       

TR = 2000 ms; 

TE=28 ms; 12 min) 

MRI 

FSL tools used to preprocess 

imaging data (FLIRT and 

FNIRT) 

 

Nuisance signals 

corresponding 

to segmented white matter 

and cerebrospinal fluid were 

regressed out of motion- 

corrected functional images. 

MICE Individual contrast maps 

specifying the difference in 

activation for iI–cI trials 

 

ROIs were mapped to seven 

previously identified functional 

networks according to the 

spatial overlap between each 

ROI and each network. 

(cortical, striatal, cerebellar, 

amygdala, anterior/posterior 

Relevance Vector Machine  

(Bayesian evidence framework) 
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A 6-mm full-width at half 

max isotropic smoothing 

kernel was then applied to 

preprocessed time series 

images to account for 

individual anatomical 

variability. 

 

Minimum behavioural 

accuracy during the 

emotional conflict task                                        

(≥ 80% of trials correct). 

hippocampus, and thalamus) 

Klöbl, 2020 3T Siemens Biograph 

mMR system 

71/77/100 min after 

infusion of study 

medication 

 

1) correction of transient 

slice artefacts (ArtRepair) 

2) slice-timing correction 

(SPM) 

3) realignment (SPM) 

4) reslicing of realigned 

images (SPM) 

5) pre-smoothing with 4 mm 

FWHM 

Nuisance regression and 

frequency filtering were 

For two patients, 

missing post-

treatment scores 

were linearly 

interpolated from 

the visit before and 

after, and rounded 

up. 

 

Network-based statistical 

analysis  

Differences in connectivity z-

matrices between SSRI and 

placebo condition (significant 

threshold set to p ≤ 0.10) 

Median pearson correlation 

(significant threshold set to p ≤ 

0.10) 
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performed for QC 

Koutsouleris 

2017 

3T structural MRI 

MNI-152 template 

smoothed with 8 mm 

Gaussian kernel 

 

DARTEL 

(Automated tissue 

segmentation & 

high-dimensional 

stereotactic registration) 

 

NA 

 

PCA 

(PCs explaining study site with 

R2 >.16 were removed) 

PCA 

(20-25 PCs accounting for 80% 

of variance) 

Nemati, 2020 Sertraline 

3.0 T structural 

(1x1x1 mm3) and 

functional 

(3.2x3.2x3.1 mm3; 

TR=2000 ms; TE=28 

min; 12 min at 

baseline and week 1 

scans 

 

Ketamine 

3.0 T structural 

(1x1x1 mm3) and 

functional (3x3x2.5 

mm3; TR=3000 ms.; 

TE=30 ms.; 5min. 

immediately prior to 

infusion and 20 min. 

FreeSurfer parcellation of 

structural scans, slice timing 

correction, motion 

correction, intensity 

normalisation, brain 

masking, and registration of 

fMRI images to structural 

MRI and standard template 

 

ICA-FIX used to identify 

and remove artefacts, 

followed by MGTR 

 

NA Full connectome computed as 

the pairwise Pearson correlation 

coefficients between these 

averaged time series, and 

subsequently transformed using 

a Fisher-z function. 

 

Nodal strength (nS) was 

computed as the average 

connectivity between each node 

and all other nodes within the 

full 

Connectome. 

 

Akiki-Abdallah cortical (AAc) 

atlas  

Within- and between-network 

connectivity values (i.e., edges) 

were used in regression models 

(Pearson correlation) to identify 

NRS edges that positively or 

negatively predict the 

behavioural measure of interest 

(p < 0.05). 
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during infusion 

starting at 20 min post 

administration) 

Nord, 2019 5 min T1-weighted 

anatomical scan (1 

mm isotropic 

magnetization-

prepared rapid 

gradient-echo) using a 

Siemens Avanto 1.5 

Tesla MRI scanner 

with a 32-channel 

head coil. 

 

Echo time = 50 ms; 

repetition time per 

slice= 87 msec, in-

plane resolution 2 x 2 

mm. 

 

N-back working 

memory task 

performed during 

stimulation  

For each time series, 

removed the first six 

volumes to allow for T1 

equilibration, realigned the 

remaining volumes to the 

seventh volume, 

coregistered the volumes to 

each participant’s 

anatomical scan, normalised 

into standardised space 

using the Montreal 

Neurological Institute 

template, and smoothed 

using an 8mm full width at 

half maximum Gaussian 

kernel. 

Missing outcomes 

imputed using last 

observation carried 

forward 

Intra-class correlation 

coefficients were calculated for 

each ROI that was significantly 

associated with clinical 

response 

 

Pre-randomization activation 

averaged within each ROI (the 

L-DLPFC for the n-back task; 

amygdalae and sgACC for the 

emotional faces task) 

 

Constructed an independent 

samples t-test in SPM testing for 

the effect of group (active or 

sham) on each contrast and 

included percent change in 

HAM-D as a covariate in the 

model and the interaction (alpha 

= 0.05, two-tailed) 

Sarpal, 2016 GE3-T scanner FSL and AFNI NA ROIs were spherical regions For every voxel located within 
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5-min resting-state 

functional scans (150 

whole-brain volumes) 

 

TR = 7.5 ms, TE = 3 

ms, TI = 650 ms 

matrix = 256x256, 

FOV = 240 mm) 

producing 216 

contiguous images 

(slice thickness = 

1mm) 

Rigid body motion 

correction performed with 

FLIRT 

Skull stripping performed 

with BET 

Images spatially smoothed 

with 6-mm FWHM 

Gaussian kernel 

High pass filter - 0.05 Hz 

Low pass filter - 0.1 Hz 

with a radius of 3.5 mm around 

a seed voxel 

AFNI (3dfim+) used to create 

functional maps 

 

Mean time course of resting-

state blood-oxygen-level-

dependent activity was 

extracted from each seed region. 

 

he Fisher z-transformation was 

applied to the resulting 

correlation maps 

gray matter (181,144 voxels 

total), the corresponding 

connectivity strength for each 

first-episode patient was entered 

into a univariate Cox regression 

analysis. 

 

Resulting z scores of this 

analysis for each voxel were 

placed in Montreal Neurological 

Institute standard brain space to 

create whole-brain maps 

 

Applied a threshold of p<0.005 

Yip, 2019 Siemens Trio 3T 

scanner using a T2*-

sensitive echo-planar 

image (EPI) gradient-

echo pulse sequence 

(repetition time/echo 

time 

(TR/TE)=1500/27ms, 

flip angle=60º, field 

of view 

(FOV)=220x220mm, 

matrix=64x64, 

3.4x3.4mm in-plane 

Slice-time and motion 

correction performed using 

SPM8 

All further analyses 

performed using BioImage 

Suite 

 

Several covariates of no 

interest were regressed from 

the data including linear and 

quadratic drifts, mean CSF 

signal, mean white-matter 

NA Whole-brain functional 

connectivity conducted using 

BioImage suite 

Network nodes defined using 

Shen 268-node brain atlas 

 

Mean time courses computed 

for each of the 268 nodes (i.e., 

average time course of voxels 

within the node) for use in 

node-by-node pairwise 

Embedded feature selection 

(SVR) 
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resolution, slice 

thickness=4mm 

with 1mm skip, 5mm 

effective slice 

thickness, 25 slices) 

 

During task 

performance, 

participants presented 

with one of six cues 

(win $1/$0/$5, lose 

$0/$1/$5) for 1000ms, 

indicating the amount 

of money to be won 

or lost on that trial, 

followed by a fixation 

cross (variable delay). 

signal, and mean gray-matter 

signal 

 

Temporal smoothing using a 

Gaussian filter (approximate 

cutoff frequency=0.12 Hz) 

 

MID task runs were variance 

normalised and concatenated 

 

 

 

 

 

 

 

 

Pearson’s 

Correlation. 

 

r-values were transformed using 

Fisher’s z-transformation to 

create 

symmetric 268x268 

connectivity matrices in which 

each element of the matrix 

represents the 

strength of connection between 

two individual nodes. 

 

 

First author, 

year 

Data utilised  Preprocessing / Quality 

Control Metrics 

Imputation 

strategy 

Feature extraction method  

(if applicable) 

Feature selection method  

(if applicable) 
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STUDIES USING MULTIMODAL DATA 

Athreya, 2019 SNPs from blood 

samples identified 

during a GWAS for 

plasma kynurenine 

concentrations and 26 

clinical and 

sociodemographic 

variables 

Blood samples drawn at 

baseline; DNA genotyped 

using Illumina Human610-

Quad Beadchips. Minor 

allele frequency, call rate 

and departure from Hardy-

Weinberg equilibrium were 

evaluated. 

 

NA NA NA 

Ambrosen 

2020 

MRI 

Cohort A:  T1-

weighted sagittal 

MPRAGE images 

obtained with echo 

time (TE) 4 ms, 

repetition time (TR) 

9.7 ms, flip angle 12°, 

field of view (FOV) 

250 mm, matrix 256 × 

256, 0.98 × 0.98 × 1 

mm3 voxels, 170 

slices. 

 

Cohort B: T1-

weighted MPRAGE 

images were acquired 

MRI 

Images processed using 

FreeSurfer 

Applied a 3T specific option 

for Talairach alignment 

 

 

EEG 

 Processing performed using 

BESA software 

Median imputation 

and probabilistic 

principal 

component analysis 

(PPCA) imputation 

Segmentation of subcortical 

volumes involved neck 

removal, bias-field correction, 

brain extraction, tissue type 

segmentation, and FIRST 

 

CPTB consists of the prepulse 

inhibition (PPI), 

P50 suppression, mismatch 

negativity (MMN), and 

selective attention (SA) 

paradigms 

NA 
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with TE 3.93 ms, TR 

1540 ms, flip angle 

9°, FOV 256 mm, 

matrix 256 × 256, 1 

mm isotropic voxels, 

192 slices. 

 

Cohort C: T1-

weighted FFE images 

were acquired with 

TE 4.6 ms, TR 10 ms, 

flip angle 8°, FOV 

240 mm, matrix 304 x 

299, acquired voxel 

size 0.79 x 0.80 x 

0.80 mm3 and 

reconstructed voxel 

size 0.75 x 0.75 x 

0.80 mm3, 200 slices. 

 

EEG 

64 channel BioSemi  

continuous 70 dB 

played during PPI 

Crane, 2017 3.0 T GE Signa 

scanner using a 

Data despiked using AFNI NA GIFT used to perform ICA Beta weights from each event 

(Targets, Commissions, 
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standard radio 

frequency coil and 

T2-weighted pulse 

sequence 

 

Repetition time = 

2000 ms, echo time = 

30 ms, flip angle = 90, 

field of 

view = 22 cm, 64 64 

matrix, slice thickness 

= 4 mm, 29 slices. 

 

 

Slice-time corrected in 

SPM8 and realigned in FSL 

using MCFLIRT 

 

Anatomical and functional 

images were co-registered 

and normalised to the T1-

weighted structural image in 

MNI space using SPM8 

 

Isotropic smoothing 

completed with a full-width 

at half-maximum filter of 5 

mm3. 

 

 

Pearson correlations were 

calculated between the 

behavioural results and the top 

five components for each 

behaviour for the individuals 

included in the ICA analysis 

Rejections) were used as 

separate independent variables in 

a multiple regression. 

Fonzo, 2018 Three behavioral 

paradigms that probe 

components of 

emotional reactivity 

and regulation, as 

well as a control task 

during an fMRI scan. 

 

 3-T GE Signa 

During behavioural 

paradigms, measures of 

heart rate and respiration 

were collected and used to 

remove physiological noise 

from the time series. 

 

Global signal corresponding 

to segmented white matter 

Analyses restricted 

to patients without 

missing data. 

Whole brain exploratory 

analysis of conscious fear vs. 

neutral contrast. 

 

The a priori contrasts of interest 

were the differences in 

activation for conscious fear vs. 

neutral and for non-conscious 

(masked) fear vs. 

The significance threshold was 

set at a family-wise error 

corrected p < 0.05 (two-tailed). 
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scanner (T2*-

weighted gradient 

echo (TR=2000 ms, 

TE=30 ms, flip angle 

= 80 degrees, field of 

view = 22 cm, 64x64 

matrix). 

T1 structural scan 

used for anatomical 

localization of BOLD 

signal. 

 

Emotional Conflict 

Task: 148 

presentations of an 

emotional face and 

instructed to identify 

underlying facial 

emotion (fearful or 

happy) while ignoring 

an overlying 

emotional distracting 

word. 

 

Reappraisal task: 

Presentation of 30 

negative and 15 

neutral photographs 

and CSF was regressed out 

of motion-corrected 

functional images, which 

were isotropically smoothed 

with a 6 mm full-width half 

max (FWHM) to account for 

individual anatomical 

variability. 

 

Participants with a root 

mean square absolute 

movement > 3mm across the 

mean of the squared 

maximum displacements in 

each of the 6 estimated 

translational and rotational 

motion parameters for each 

functional run were 

excluded from further 

analysis for quality control 

purposes. 

 

neutral, each allowing for the 

isolation of fear reactivity 

processes within a particular 

processing depth. 

 

Whole brain analyses were 

restricted to a probabilistic gray 

matter mask (> 40%) derived 

from an independent sample of 

healthy participants. 
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taken from the IAPS 

(International 

Affective Picture 

System) database. 

 

Gender Conflict Task: 

Task to identify face 

gender and ignore 

congruent or 

incongruent overlaid 

gender words. 

Joyce, 2021 Plasma metabolites in 

both the PGRN-

AMPS and the CO-

MED cohorts were 

measured by targeted 

metabolomics with 

the AbsoluteIDQ 

p180 assay 

Platform 

 

Six functionally 

validated 

pharmacogenomic 

SNP biomarkers in or 

near the 

Metabolites were 

transformed by the Yeo-

Johnson transformation then 

centred at zero and scaled to 

unit variance 

 

One of the 

six SNPs were genotyped in 

the CO-MED sample with a 

LooRsq > 99% and the 

remaining five SNPs were 

imputed using the Michigan 

Imputation Server with an 

imputation R2 > 97.5% and 

a call rate > 99%. 

Features with ≥10% 

missingness and 

individuals missing 

≥20% of features 

were excluded  

NA NA 
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TSPAN5, ERICH3, 

DEFB1, and AHR 

genes, and related to 

MDD 

pathophysiology or 

citalopram/escitalopra

m response. 

 

PGRN-AMPS 

genotyping was done 

using Illumina human 

610-Quad 

BeadChip 

 

CO-MED genotyping 

was done using 

Illumina 

Quad, Human Omni 

2.5 bead chip 

 

Baseline clinical and 

sociodemographic 

variables 

Lee, 2018 First set of 13 SNPs 

(rs10803138, 

NA PAM algorithm NA NA 
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rs11682175, 

rs6704641, 

rs6704768, rs215411, 

rs1106568, 

rs12522290, 

rs4129585, 

rs2514218, 

rs2239063, rs4702, 

rs12325245, and 

rs9636107) were from 

the 128 genome-wide 

significant 

associations for 

schizophrenia 

identified by the 

Schizophrenia 

Working Group of the 

Psychiatric Genomics 

Consortium 

 

The second set of 25 

SNPs were from the 

top 25 results 

obtained from the 

GWAS for 

schizophrenia in the 

CATIE study 

although no SNP or 

combination of SNPs 

achieved genome-
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wide statistical 

significance. 

 

53 baseline clinical 

variables 

Nguyen, 2022  fMRI contrast maps 

parcellated into 200 

functional brain 

regions during 

number-guessing trial, 

reward expectancy 

and prediction error 

 

95 pretreatment 

clinical measures and 

demographic features 

acquired on the same 

day as imaging 

fMRI data preprocessed 

using skull-stripping, head 

motion correction, spatial 

normalisation, and spatial 

smoothing with a 4-mm full 

width at half maximum 

kernel.  

 

Data augmentation, a 

process used in deep 

learning to reduce the 

likelihood of overfitting, was 

used, which generates 

additional image data by 

causing slight distortion to 

the original acquired images.   

NA Three contrast maps computed 

for each participant, quantifying 

brain activation in the initial 

anticipation phase of each 

number-guessing trial, reward 

expectancy (differential 

activation in rewarding vs. 

punishing trials), and prediction 

error (after wrong guesses).  

Each contrast map is parcellated 

into 200 functional brain 

regions using spatially 

constrained spectral clustering, 

yielding a total of 600 fMRI 

features for each participant.  

Deep learning (feed-forward 

neural networks) were used, 

which incorporates embedded 

feature selection through 

stacking hidden layers. 

Rajpurkar, 

2020 

Resting-state EEG 

(26-channels) was 

recorded for 2 

minutes while 

participants were 

NA Patients with 

missing features 

(EEG or clinical) 

were excluded 

A search was performed over 

various combinations of input 

features by altering the bands, 

time windows, and relative or 

absolute power of the EEG 

Highest C index scores 



Ph.D. Thesis – D. P. Watts; McMaster University – Neuroscience.  

 

334 
 

relaxed with eyes 

closed and eyes open 

from sites in 5 regions 

(frontal, temporal, 

central, parietal, and 

occipital) with a 

NuAmps system 

(Compumedics) and 

QuickCap 

(Compumedics). 

 

features. Each feature is 

calculated at each of the 26 

electrodes. 

 

Power of the EEG signals in 

each frequency range at each 

electrode site were extracted 

using the Welch method for 

spectral density estimation. 

Two additional features were 

computed: a frontal alpha 

asymmetry feature by 

subtracting alpha power for a 

left scalp site (F3) from the 

homologous right site (F4) and 

a beta- 

alpha ratio feature by taking the 

ratio of the beta features at each 

of the sites with the 

corresponding 

alpha features 

Rethorst, 2017 25 clinical variables, 

five baseline serum 

biomarkers  

( IL-1B, IL6, TNF-α, 

SHAPS, BDNF) 

NA NA NA Bootstrap estimated mean 

decrease in Gini 
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Taliaz, 2021 DNA samples were 

genotyped on arrays 

measuring 500,000 or 

more SNPs that tag 

most common 

variants in the human 

genome 

 

(43 features, 27 

features are genetic 

variants that were 

segmented to 26 

genetic components) 

DNA was extracted from 

blood or lymphoblastoid cell 

lines and genotyped on 

arrays measuring 500,000 or 

more single-nucleotide 

polymorphisms (SNPs) that 

tag most common variants in 

the human genome. DNA 

samples were then 

genotyped using the 

Affymetrix© Human 

Mapping 500K Array and 

the Genome-Wide Human 

SNP Array 5.0  

NA Gene Ontology (GO) 

enrichment analysis 

Embedded feature selection 

(SVM, Random Forest 

AdaBoost) 

 

Supplementary Table S3 - Feature processing, selection, and extraction 
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1. Search Filter 

 

Scopus  

((artificial  AND intelligence)  OR  (supervised  AND machine  AND learning))  AND  ((mental  
AND disorder)  OR  (mental  AND disorders)  OR  (psychiatric  AND disorder)  OR  
(psychiatric  AND disorders)  OR  (mental  AND illness)  OR  (bipolar  AND disorder)  OR  
(schizophrenia)  OR  (depressive  AND disorders)  OR  (anxiety  AND disorders)  OR  
(substance  AND use  AND disorder)  OR  (attention  AND deficit  AND disorder  AND with  
AND hyperactivity)  OR  (personality  AND disorders)  OR  (stress,  AND disorders,  AND 
post-traumatic)  OR  (trauma  AND  stressor  AND related  AND disorders))  AND  ((clinical  
AND trials)  OR  (clinical  AND trial)   OR (treatment AND selection) OR (treatment AND 
response) OR (treatment AND prediction)) AND  (LIMIT-TO ( DOCTYPE ,  "ar" ) )  AND  
(LIMIT-TO ( SUBJAREA ,  "MEDI" )  OR  LIMIT-TO ( SUBJAREA ,  "COMP" )  OR  
LIMIT-TO ( SUBJAREA ,  "NEUR" )  OR  LIMIT-TO ( SUBJAREA ,  "PSYC" )  OR  LIMIT-
TO ( SUBJAREA ,  "ENGI" )  OR  LIMIT-TO ( SUBJAREA ,  "BIOC" ))  

 

Results: 10900 

Search Date: 2022-03-22 

 

 

PubMed 

((((((((((((((("Artificial Intelligence"[Majr]) OR "Supervised Machine Learning"[Majr]) AND 

"Mental Disorders"[Majr]) OR "Anxiety Disorders"[Majr]) OR "Bipolar and Related 

Disorders"[Majr]) OR "Feeding and Eating Disorders"[Majr]) OR "Mood Disorders"[Majr]) OR 

"Personality Disorders"[Majr]) OR "Schizophrenia Spectrum and Other Psychotic 

Disorders"[Majr]) OR "Substance-Related Disorders"[Majr]) OR "Trauma and Stressor Related 

Disorders"[Majr]) AND "Clinical Trials as Topic"[Majr]) OR “Treatment response”[Other 

Term]) OR “treatment prediction”[Other Term]) OR “Treatment selection”[Other Term]) 

Results: 3471 

Search Date: 2022-03-22 

 

Web of Science 

((((WC=(Supervised Machine Learning)) AND (WC=(Mental Disorders))) AND 

AB=(Treatment response)) OR AB=(treatment prediction)) OR AB=(Treatment selection) 
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Document Types: Articles 

Web of Science Categories: Psychiatry or Neurosciences  

 

Results: 5412 

Search Date: 2022-03-22 

Total records (before duplicate removal): 19,723 

Total records (duplicates removed):16,669 
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2. Quality assessment instrument development 

 

We formed a group of multidisciplinary researchers from the fields of Neuroscience, Psychiatry, 

and Computer Science to develop a time efficient and practical assessment strategy to evaluate 

the quality of machine learning based healthcare research. For that purpose, we attempted to 

capture the reliability of the results presented in each study and identify practical ways that 

methodology may be improved.  

 

This comprised nine methodological features, including sample representativeness, confounding 

variables, and outcome assessments, which were judged to be the most clinically pertinent 

components in machine learning-based healthcare research. Relevant considerations of each 

methodological feature are discussed in further detail in the next sections. The six remaining 

dimensions assess the quality and specific components of the machine learning approach that 

were used in a given study. In summary, this entails the algorithm or framework used, evidence 

that hyper-parameter optimization and feature selection procedures were used, whether authors 

provided details on how missing data and class imbalance problems were handled, the accuracy 

of a given model, and finally whether the model performance was tested in unseen data. These 

dimensions were qualitatively evaluated according to the information in section 3.   

 

 

3. Quality assessment instrument domains 

 

Methodological Feature Considerations 

1. Representativeness of  

    the sample  

 

Was the study representative of the heterogeneity observed in 

the target population? If not, was this related to the sampling 

method, insufficient sample size or inclusion/exclusion criteria?   

2.  Confounding variables Did the study control for the most relevant confounding 

variables? If so, were covariates assessed using subjective or 

objective measures?  

3.  Outcome assessment How were outcome measures assessed: 
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A. Independent blind assessment (✓) 

B. Secure record (e.g., surgical records) (✓) 

C. Interview not blinded, self-report or medical record 

D. No description 

4. Algorithm selection  Was the machine learning algorithm used to analyze the data 

clearly described and appropriate? 

5. Feature selection Did the study describe both feature selection and 

hyperparameter tuning? Which metrics were used? 

6. Class imbalance  Did the authors address the class imbalance problem? Which 

method was utilized? 

7. Missing data Did the study describe how the authors handled missing data, 

including whether they were inputted or removed? 

8. Performance/accuracy Were the following performance metrics included for 

classification studies? 

A. Accuracy 

B. Sensitivity 

C. Specificity 

D. AUC 

E. PPV/NPV 

F. 95% Confidence intervals of performance metrics 

 

Or, alternatively, were one of the following performance metrics 

included for regression studies? 

A. Mean-squared error 

B. Mean-absolute error 

C. Root-mean-squared error 

9. Testing/validation Was the test dataset "unseen" in regard to model training? Was 

the model tested on a hold-out or an external dataset?  
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3.1. Representativeness of the sample 

Machine learning models can deal with large amounts of data and the problem of heterogeneity. 

Therefore, there is less of a need to be restrictive with inclusion and exclusion criteria, relative to 

a traditional statistical approach examining significant effects at a group-level. Considering all 

studies included in the present review used data from randomized clinical trials, determined 

whether 1) performance was tested on an external sample with differences in inclusion/exclusion 

criteria, and 2) whether a training sample of ≥ 100 patients was used in model development.  

 

3.2. Internal CV 

To adequately control for confounding variables within machine learning models, it is important 

to ensure that these variables have a similar effect across the entire sample. To achieve this, 

randomization is an important step within the analysis. Often, the overall sample is randomly 

split into training and testing sets, and the analysis is repeated on the training dataset with 

different hyperparameters to maximize accuracy and minimize error. This is known as internal 

cross-validation. From here, if model performance is similar in the testing dataset, it presumes 

that potential confounding variables are uniformly distributed across the sample. Using this 

criteria, we evaluated whether the authors controlled for confounding variables.  

 

3.3. Outcome assessment 

How an outcome is defined has several important implications in a predictive model. Depending 

on the question or problem, a classification task may be appropriate, which uses a categorical 

outcome, or a regression task may be more relevant, where the outcome is continuous and 

numeric. A clinical instrument or questionnaire, for example, can be used as a numeric score or it 

can be transformed into a categorical outcome by using a cut-off score. We evaluated how 

authors assessed these outcomes, considering (A) independent blind assessments and secure 

records as high quality, (B) unblinded interview, self-report, or medical record as lower quality 

and (C) when no description was available.  

 

3.4. Algorithm selection 

There are several algorithms to choose from, with each relying on slightly different assumptions 

of the underlying data. Broadly speaking, there are linear (logistic regression, linear support 

vector machine), non-linear (Naive Bayes, K-Nearest Neighbors, Learning Vector Quantization) 

tree-based (decision trees, random forest, xgboost) and neural network (convolutional neural 
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network, multilayer perceptrons) models, although others exist. Certain algorithms may be better 

suited to particular problems. For example, tree-based models such as random forest may be 

better suited to datasets with multicollinearity among features than linear-based models such as 

logistic regression. However, regularization parameters can be used in linear-based models (such 

as L2 regularization) to account for issues such as this.  

 

Nevertheless, it is often difficult to determine beforehand which algorithms will lead to the 

highest model performance. Therefore, it is often a good strategy to compare the model 

performance of several algorithms. In this item, we evaluated whether the authors used an 

algorithm that is commonly used for the specific type of dataset, if several algorithms were 

compared, and if hyperparameter tuning was used.  

 

The appropriateness of a machine learning algorithm was determined based on whether the 

specific data used in model development was congruent or incongruent with the strengths and 

limitations of the specific algorithm. For example, if a Gaussian process model was used, which 

is a non-sparse algorithm that loses efficiency in high dimensional spaces, in conjunction with a 

high-dimensional dataset, this algorithm would be deemed inappropriate for the input data. 

Conversely, Naive Bayes, which works well with high dimensional data would be considered an 

appropriate algorithm in such cases. Another example of an inappropriate model would be the 

use of convolutional neural networks for structural and tabular style datasets, as such algorithms 

are better suited to unstructured datasets. In cases where authors included both appropriate and 

inappropriate algorithms during model development, this consideration is scored with a “B”, 

alongside an asterisk to indicate which algorithms were inappropriate and why. Studies which 

only utilized one algorithm during model development that was deemed inappropriate received a 

score of “C”. Furthermore, studies are scored with a “B” if they did not compare multiple 

algorithms during model development and were scored as an “A” if they compared multiple 

algorithms that were deemed appropriate based on the candidate feature set.  

 

3.5. Feature selection  

A common problem in machine learning studies is the so-called small-n-large-p problem, also 

known as the curse of dimensionality, which occurs when there are more variables than 

examples in a dataset. Machine learning models created using these datasets are more prone to 

overfitting, which often results in overinflated performance in a training dataset, but much poorer 

performance in an external testing dataset. In addition, some algorithms cannot deal with more 

dimensions than examples. Highly correlated variables can also introduce more importance to a 

specific characteristic, decreasing the importance of the remaining variables. To circumvent 

these issues, a proper feature selection procedure, when applicable, should be done prior to 
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training or as part of the training procedure, such as it happens in embedded methods. The 

feature selection can be knowledge-driven or data-driven. In this item, we examined if the study 

used a proper feature selection (if applicable).  

 

3.6. Class imbalance  

Class imbalance occurs when the distribution of the outcome classes is highly unbalanced, i.e., 

when one outcome occurs much more frequently than the other outcome(s). This may result in a 

model with high accuracy but with very little clinical utility. For example, let us suppose that we 

have 95 occurrences of response in our dataset and only 5 occurrences of a nonresponse.  Even if 

our model has 95% accuracy, it is useless if the model cannot detect the five instances of non-

response high accuracy. In this item, we evaluated whether there was a class imbalance in the 

sample and if this problem was correctly addressed. This can be done using a series of methods, 

including (1) changing the metric of performance (accuracy, for example, is a poor form of 

evaluating imbalanced data sets; (2) resampling the data set by artificially increasing it 

(oversampling) or by removing examples from the majority class to create a more balanced data 

set (undersampling); (3) by generating more data with algorithms such as the Synthetic Minority 

Over-Sampling Technique (SMOTE); (4) by choosing algorithms that deal better with 

unbalanced classes, such as CART or random forests; (5) by using penalized models; or (6) by 

using anomaly and change detection. In cases where class imbalance was not relevant (balanced 

classes or regression models) this is scored as “yes”.  

 

3.7. Missing data  

It is critical to handle missing data since several algorithms cannot process incomplete data sets. 

Furthermore, it is also necessary to use an adequate imputation method to avoid introducing bias, 

which would otherwise lead to false conclusions if not addressed. It is important to report the 

amount of missing data in each variable, if these cases were excluded, or if the authors used an 

algorithm to input data and which algorithm/technique was used. Ideally, authors should provide 

a visual distribution of the patterns of missing data, such as aggregation plots, 

spinogram/spineplots, mosaic plots, etc. All these factors were evaluated in this section.  

 

3.8. Performance/accuracy  

Here, we evaluate whether the authors reported all relevant results and if they used the 

appropriate metrics. Studies informing only partial metrics may mask bias and flaws of the 

method, preventing the reader from fully understanding the relevance of the model. Confidence 

intervals should ideally be available for all performance metrics.  
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3.9. Testing/Validation 

We can divide the machine learning process into three main components: training, validation, 

and testing. A training set allows the algorithm to learn and develop a predictive model. The 

validation set contains unseen data and is used to control for overfitting. Frequently, the same 

dataset is divided into training and validation sets. After a model is trained and validated, and 

shows consistent performance in both these steps, the model can be applied in an external and 

independent testing set. This allows us to see if the model can be generalized outside of the 

original sample. Some validation methods include holdout validation, k-fold, and leave one out 

cross validation. 

      

A model that shows good performance in the training set but performs significantly poorer in the 

validation step is most likely due to overfitting - which occurs when the model relies more on the 

specific nuances and noise of the training dataset, resulting in poor accuracy in unseen data. In 

this item, we evaluated whether the authors properly tested and validated their models by taking 

steps to improve its generalizability. It is important to highlight that the use of cross-validation to 

evaluate performance should be discouraged when the data is large enough for a training-test 

split. Furthermore, the size of the test set should be sufficiently large for accuracy and other 

metrics to be estimated with high reliability.  

 

4. Additional Methodological Considerations  

 

4.1. Calculating a heterogeneity score in patients 

A longstanding problem in clinical trials in psychiatry is patient heterogeneity. As such, while a 

novel medication may be highly effective for a subset of patients, it may fail placebo control in 

the presence of excessive treatment effect variability across the sample. Although we advocate 

for a shift towards machine-learning guided trials, calculating baseline patient heterogeneity 

scores at an individual level may foster more effective patient recruitment within traditional 

clinical trials in psychiatry. While this approach may exclude a subset of patients from larger 

trials, it would also provide greater flexibility in recruiting patients that have a higher likelihood 

of attaining treatment response. Furthermore, it is equally important to assess punitive 

mechanisms of insufficient treatment effects in patients who do not respond in initial feasibility 

trials.  

 

4.2. Drug Discovery and Drug Repurposing  
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While drug discovery using ML applications remains largely unexplored in the context of mental 

health, a few preliminary studies suggest the feasibility of this. Zhao & So 1 describe a general 

approach to drug repurposing in psychiatry using the predictors of gene expression for profiles 

for each medication. L1 regularization is used to identify the top gene expression targets. 

Medications which are not approved for the disorder but have a high predicted probability of a 

good candidate, can be tested in prospective trials. Furthermore, Ekins et al. 2 detail an ML 

platform for end-to-end drug discovery and development.  Issa et al. 3 also report a machine-

learning guided modelling of biological processes in cancer to discover new disease-related 

targets, drug-phenotype associations, and discovery novel therapeutic targets. Additionally, 

Rodriguez et al. 4 showed that a machine learning framework applied to a list of genes can 

nominate drugs that may be repurposed for use in Alzheimer's disease. Considering that most 

medications in psychiatry, such as lithium, have been discovered by happenstance, ML models 

developed using high-quality biological data may help identify new therapeutic agents and 

repurpose currently approved medications for use in psychiatry.  

 

4.3. Common Regularization Techniques 

Regularization techniques, broadly speaking, are useful to decrease model complexity and 

improve model performance by applying various cost functions. Common regularization 

techniques applied to logistic regression models include L1 (ridge) and L2 (lasso) regularization. 

However, there are several available regularization methods, as described elsewhere 5. 

 

4.3.1. L1 regularization 

Briefly, Least Absolute Shrinkage and Selection Operator (LASSO) 6adds a penalty term that is 

equivalent to the sum of the absolute value of coefficients. As such, LASSO shrinks less 

important feature coefficients to zero, which can work as a form of feature selection if we have 

more features than the number of individuals in our model 7. The tuning parameter for LASSO is 

λ (alpha), and the lower the alpha, the more the model will resemble a standard linear regression 

model. A greater value of alpha places greater restrictions on the coefficients, leading to a 

sparser model 6.  

 

4.3.2. L2 regularization  

L2 regularization adds a penalty term that is equivalent to the squared magnitude of coefficients. 

By minimizing the sum of squares of coefficients, we can reduce the impact of correlated 

predictors. We can also introduce bias, which is referred to as lambda, so that our predictions are 

less sensitive to certain independent variables. When lambda corresponds to zero, the penalty is 
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also zero, and so we are essentially minimizing the sum of squared residuals. When lambda 

increases, our bias increases, however too much bias can also degrade model performance. 8    

 

 

Predicting adverse drug reactions in clinical trials 

Recently it was shown that adverse drug reactions could be predicted with an AUC of 0.79-0.85 
9. It was also shown that a deep learning model was able to learn molecular substructures that are 

specific to an adverse drug reaction 10. In the context of psychiatry, adverse drug reactions are 

common, and this consideration also becomes salient when considering prospective clinical trials 

with novel compounds. Moreover, in another recent study, Yoo et al. 11 predicted sleep side 

effects from an 8-week, open-label trial of methylphenidate in pediatric ADHD with an accuracy 

of 86.1%. While preliminary, the key features in their model included fronto-striatal 

connectivity, and the SNPs DAT1, ADRA2A, and SLC6A2 11.  

In future studies, it is important to predict adverse reactions in interventional trials using cost-

effective biological, clinical, and physiological data that can be applied to the clinic. Ideally, 

such models would be well-suited to small RCTs, such as a feasibility trial or Phase II study, to 

decrease the probability of adverse reactions in large-scale phase III trials. Similarly, patient 

dropouts remain a persistent issue in feasibility and pilot studies, which can render a trial 

underpowered. As such, there is a need for studies predicting medication tolerability, and 

whether a given patient is likely to drop-out prior to the end of treatment.  

 

Predictive biomarker discovery  

While there is a vast literature on predictive models and biomarkers in mental health, very few 

have been validated in clinical trials. Other fields of medicine, as described elsewhere, have used 

biological data, such as gene expression, to predict drug sensitivity 12. This may be facilitated by 

the rapid evolution of low-cost, portable high-throughput single-cell RNA sequencing, which 

have been used for cell-specific biomarker discovery 13. Importantly, new feature selection 

methods for biomarker discovery have recently been developed. For example, it was shown that 

a probabilistic generative model can reduce the high-dimensional space in single-cell gene 

expression data and provide uncertainty estimates 14. However, to our knowledge, no predictive 

models have been conducted using next generation sequencing to inform punitive mechanisms 

and therapeutic targets in psychiatry. Among the available studies in mental health, Niculescu et 

al. found that a set of gene expression changes and clinical markers could predict suicidal 

ideation across psychiatric diagnoses with an AUC of 0.92 15. 
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Chapter 9: Discussion 

9.1. Summary of Findings  

In the context of this thesis, our results showed that: 1) evidence-based risk factors, protective 

factors, and treatment status variables were able to prognosticate prospective physical aggression 

at an individual level, and that there was a statistically significant difference in error rate between 

a model comprising these variables and clinical judgement, relative to clinical judgement alone; 

2) prognostic models of clinical and violent outcomes in psychiatry have largely focused on 

clinical and sociodemographic variables, show similar performance between identifying true 

positives and true negatives, although the error rate of models are still high, suggesting that 

further refinement is needed prior to implementing such models clinically; 3) within treatment 

response prediction models in MDD using EEG, greater performance was observed in predicting 

response to rTMS, relative to antidepressants, and across models, greater sensitivity (true 

positives), were observed relative to specificity (true negatives), suggesting that EEG prediction 

models thus far are better able to identify non-responders than responders; and 4) across 

randomized clinical trials using data-driven biomarkers in predictive models, based on the 

consistency of performance across models with large sample sizes, the highest degree of 

evidence was in predicting response to sertraline and citalopram using fMRI features. 

Importantly, a subset of these models has been replicated in independent datasets, largely 

maintaining meaningful but modest predictive accuracy, which suggests the potential for their 

scalability as classification tools. We also highlight that machine-learning guided intervention 

trials are lacking in psychiatry and propose a methodological pipeline to conduct prospective 
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machine-learning guided trials according to best practices and provide strategies to improve the 

interpretability and generalizability of predictive models.  

 

9.2. Significance and General Discussion 

In chapter 2, the predictive HARM models were developed using empirically supported risk 

factors of violence as candidate features, in conjunction with demographic variables, protective 

factors, and variables related to the course of treatment. These models were compared against 

clinician rated CLV and combined models, to evaluate their comparative performance, as briefly 

discussed in Chapter 6.1. Of note, clinician rated CLV, and HARM models largely showed 

contrary predictive values, where CLV models were better at identifying true positives, and 

HARM models were better at identifying true negatives, respectively. Moreover, although no 

statistically significant differences in error rates were observed between HARM and CLV 

models (McNemar’s chi-square (χ2) = 2.37, p=0.123), a statistically significant difference was 

found between CLV and combined models (McNemar’s χ2= 10.22, p= 0.001). As such, data-

driven HARM variables, in conjunction with clinical judgement, appear to show better 

performance in discriminating physical aggression from non-aggression within patients with 

schizophrenia in forensic settings, better than clinical judgement alone. Moreover, CLV alone 

showed poor sensitivity across models (57.14-61.50%), indicating a high degree of false 

positives.  Altogether, these results suggest that data-driven HARM models may show utility as 

an adjunct to clinical judgement, since these models are better able to identify true negative 

instances of non-aggression among patients, while clinical judgement is better able to identify 

true positive instances, relative to the HARM models. Moreover, several potential protective 
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factors emerged, including engagement in treatment programs, positive attitude, social support, 

family support, and medication adherence.  

In contrast with existing actuarial tools, such as the VRAG 1 and HCR-20 2, which consider a 

linear additive combination of variables to assess individual prospective risk, the HARM models 

incorporate a data-driven approach that allow for a non-linear weighting of importance between 

features, while also relying on theoretically sound and evidence-based risk factors, protective 

factors, and variables related to course of treatment. Moreover, the HARM models showed 

improvements in AUC relative to existing risk assessment tools, in predicting physical 

aggression at 4-month (AUC: 0.669-0.928), 12-month (AUC: 0.701-0.913), and 18-month 

(AUC:0.597-0.870) follow-up. Additionally, the HARM models incorporate additional 

performance measures, including sensitivity, specificity, balanced accuracy, overall model 

accuracy, as well as PPV and NPV, to better elucidate the goodness of fit of the models. While 

prospective validation is required, and a relatively small sample size was used in model 

development, machine learning models may show utility to improve the accuracy of risk 

prediction for individualised care of patients with schizophrenia in forensic settings. 

In chapter 3, within a meta-analysis and systematic review, prognostic models of criminal and 

violent outcomes in psychiatry were assessed. Across eighteen models, accuracy ranged from 

67.83-82%, with important variables in criminal outcome models including age at first crime, 

substance use disorder, cluster B personality disorder, prior criminality, a high number of 

stressors, and childhood trauma. Furthermore, models predicting violent behaviour were more 

variable, ranging from 58.25-92.1%, with important clinical features including confusion, 

irritability, threats, recently attacking objects, child abuse, physical neglect, and callous affect. 
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Overall, studies thus far have largely focused on electronic health record data, such as 

sociodemographic, clinical, and treatment-related variables. Within a bivariate meta-analysis of 

diagnostic accuracy, comprising this category of input features, the AUC for predicting violent 

and criminal outcomes in psychiatry was 0.816 (95% Confidence Interval (CI): 70.57-88.15), 

with a partial AUC of 0.773, average sensitivity of 73.33% (95% CI: 64.09-79.63), and average 

specificity of 72.90% (95% CI: 63.98-79.66), respectively. As such, based on available evidence, 

although clinical and sociodemographic variables appear to show discriminative capabilities 

above chance, they show a sizeable false positive (average: 26.67, 95% CI: 11.85-35.91), and 

false negative rate (average: 27.10, 95% CI: 20.34-36.02). Therefore, new approaches are 

warranted. For example, clinical and sociodemographic models may benefit from incorporating 

additional numeric clinical scales, that could perhaps be more conducive to capturing changes 

over time, relative to categorical or binary features. Additionally, it may be useful to incorporate 

features with greater granularity, such as a time series analyses with actigraphy and other 

wearable sensors, to potentially identify more time sensitive features, that may be more 

conducive to clinical intervention. Additionally, there are a lack of studies incorporating 

biological features to predict criminal and violent outcomes in psychiatry, as efforts thus far have 

only involved a set of single nucleotide polymorphisms and resting-state regional cerebral blood 

flow. Other modalities, such as EEG, task-based fMRI, or blood-based biomarkers, may also 

prove to be useful, although prospective studies are needed to elucidate this.  

In chapter 4, we briefly consider the long-term ramifications of individualized prognostic models 

of clinical and violent outcomes within psychiatric disorders, which should be weighed against 

the strengths and weaknesses of available tools that are currently clinically implemented. To 
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further clarify, it is important to ensure that patient privacy is respected when scaling such 

models to clinical settings, for instance, how is training data stored, and shared, and whether data 

is stored centrally or cloud based, both of which may present a risk of personal data breaches 

involving highly sensitive criminal and healthcare records 3. However, recent methods have been 

developed, including swarm learning, a decentralized machine learning approach that integrates 

blockchain-based peer-to-peer networking, edge computing, and maintains confidentiality 

without the need for a centralized hub 4. Furthermore, another pertinent consideration is how 

these models will be implemented clinically. Namely, how will the care of patients who are 

predicted to be high risk of criminal and violent outcomes change? If these tools are used to 

triage patients who are predicted to be violent in the immediate future as requiring more cautious 

care, and reallocating resources including security and additional staff from patients who are not 

predicted to be an immediate or short-term danger, than this may potentially be feasible. 

However, in cases where predictive models are used to determine an individual’s eligibility for 

privileges to enter into the community, it becomes more challenging ethically to implement, 

particularly if the false positive rate is high, as was the case within the HARM models described 

in Chapter 2.  Altogether, while we advocate for more precise personalized prognostic models of 

criminal and violent outcomes in patients in order to improve targeted prevention, and overall 

clinical outcomes, we believe that precision psychiatry pertaining to the intersection of 

criminality, violence, and psychiatric patients who disproportionately have been diagnosed with 

schizophrenia 5, requires a precision ethics approach.  

Similarly, in chapter 5, we open the discussion on predictive models of treatment response in 

psychiatry, with the use case of ketamine, a rapid acting antidepressant 6. In terms of peripheral 
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markers, only a handful of studies have investigated peripheral blood biomarkers. Within a 

recent systematic review and meta-analysis of blood-based biomarkers of antidepressant 

response to ketamine and esketamine, no consistent associations were found between baseline 

levels of blood biomarkers and response to ketamine. Among longitudinal analyses, the only 

consistent finding was that ketamine responders showed significant increases in brain-derived 

neurotrophic factor (BDNF), relative to pre-treatment levels SMD [95% CI] = 0.26 [0.03, 0.48], 

p = 0.02), while non-responders did not show significant changes in BDNF (SMD [95% 

CI] = 0.05 [−0.19, 0.28], p = 0.70) 7. 

Since ketamine and esketamine appear to show a divergent mechanism of action from traditional 

antidepressants 8, it is argued that there remains an unmet for need prospective clinical trials to 

investigate biological predictors of treatment response, and to examine the precision and true 

negatives of such biological predictors within classification models. Moreover, considering 

discrepancies across studies in the exact threshold of treatment response to discriminate 

responders and non-responders, as discussed further in chapter 6, regression models used to 

predict change scores may also be warranted. In chapter 6, while there is a great deal of promise 

in using EEG within machine learning models to predict treatment response in MDD, there does 

not appear to be a consensus on collection methods, or consistent physiological markers of 

response to antidepressants, or rTMS across studies. Given the complexity of MDD, and the 

likelihood of heterogeneity in important features across patients, the field may require a 

conceptual shift away from the search for singular biomarkers, towards the use of composite 

features, identified using multivariate models. As such, it may be the case that no singular 

neurophysiological biomarker will demonstrate the sensitivity and specificity required to guide 
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treatment selection in MDD. Rather, a composite biomarker comprising a series of distinct, but 

mutually informative features, may serve to both improve our mechanistic understanding of 

treatment response, and appropriately model this phenomenon. However, it is important to 

highlight that multimodal feature combinations carry several additional considerations. Namely, 

if complex approaches such as source localization are required to provide meaningful accuracy, 

this may provide a significant challenge in the clinical implementation of such models. 

Additionally, while resting-state features provide greater scalability relative to EEG activation 

patterns during specific tasks, the latter may inform features that could perhaps be more sensitive 

and specific in modelling clinical improvement in response to a given treatment.  

In chapter 7, all studies predicting treatment response in randomized clinical trials using 

previously collected data, which necessitates a caution of their clinical implementation without 

adequate prospective validation. While RCTs have provided important insights into group-level 

statistics, they fail to yield individualized findings or account for patient heterogeneity. As such, 

we advocate for a new trial design to occur following the successful completion of an RCT. We 

refer to this as a machine-learning precision trial. Using standard RCT data within machine 

learning models garner two major limitations: (1) The sample included in the RCTs are not fully 

representative of the real clinical population with a specific disorder and (2) a considerable 

amount of the sample size is dedicated to a placebo condition, which may be better allocated 

towards an active arm from a modelling perspective.  

Machine-learning precision trials must therefore possess three distinct components from 

traditional RCTs: (1) The vast majority of participants (≤90%) are allocated to the active 

treatment, and a small subset of patients (≥10%) are allocated to a placebo or sham control.  This 
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allows for testing the specificity of biomarkers identified within the treatment arm; (2) greater 

flexibility in inclusion and exclusion criteria to increase the external validity of the trial, and 

reflect heterogeneous patients seen in the clinic, and (3) randomizing patients to medication 

dosages in the therapeutic range known to be effective, so that machine learning models can be 

trained to determine more individualized dosages based on patient characteristics.  

With respect to the second consideration, it is important to note that while patient idiosyncrasies 

are commonly observed in real-world clinical settings, such as comorbidities, are common 

exclusion criteria in RCTs, greater flexibility in exclusion criteria may help to provide a more 

realistic appraisal of the generalizability and clinical utility of machine-learning precision trials.  

Furthermore, although decreasing the sample size of individuals allocated to placebo conditions 

is required to maximize the sample in the active arm, it may be useful to retain a small 

proportion of the sample (approximately 10-20%), to be given an inert substance or sham 

condition, to determine the specificity of features relative to placebo. Additionally, other 

methods can be useful to control for placebo related features, such as utilising principal 

component analysis (PCA) 9 to identify the components explaining the majority (≥90%) of 

variance in predicting response to placebo and using a method such as multivariate adaptive 

regression splines (MARS) 10, where placebo related variance is imputed in the forward pass and 

removed from the set of candidate features in the backwards pass.  

9.3. Limitations  

Within chapter 2, although the study benefits from a longitudinal design, and showed similar 

variable importance across timepoints, a low base-rate of aggressive incidents was observed at 4-
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, 12-, and 18-month follow-up. As such, future studies with larger sample sizes will be required 

to determine the replicability of predicting longitudinal physical aggression in patients with 

schizophrenia in forensic settings. Considering that the study used binary classification tasks, 

alongside baseline variables, to predict physical aggression, no hypothesis testing was 

performed, and as such, statistical power cannot be calculated. Since the present study had a low 

base rate of physical aggression, and relatively small sample size, it is possible that model 

accuracy is inflated.  

Additionally, it is important to consider that these models were developed in a specific at-risk 

cohort of patients with schizophrenia who have a history of criminal offences. As such, these 

models may not be generalizable to detect aggressive behaviours in schizophrenia in general. 

Moreover, our models were developed largely using categorical features, which were 

transformed into binary variables using one-hot encoding 11. While several models were used 

that can handle multicollinearity, other methods, such as transforming features into principal 

components 44, can be used to derive a set of uncorrelated variables. 

With respect to chapter 3, Currently, the field of predicting crime and violent related outcomes 

using machine learning techniques remain in its infancy. As such, there is a lack of studies 

validating model performance using independent cohorts. Furthermore, it is important to note 

that model accuracy should be considered alongside several other factors, such as the input 

features used, the preprocessing pipeline, feature selection method, model optimization strategy, 

and the validation procedure. Furthermore, data-driven approaches to feature selection can be 

useful in many cases, since it does not require knowledge derived from pre-existing literature to 
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manually select important variables 12–14. Of note, the absence of a formalized feature selection 

strategy was observed across a subset of studies.  

Additionally, only two studies developed separate models to assess potential differences in 

performance between men and women using the same variables. Rossellini et al. reported an 

AUC of 0.74 for men and an AUC of 0.82 for women in predicting violent crime 15. 

Additionally, the same authors also investigated predictors of major violent crime and reported 

an AUC of 0.81 for both models in men, and an AUC of 0.80-0.82 for both models in women. 

Based on these studies, it is still unclear whether biological sex or gender play a key role in 

deciding which features should be included within a predictive machine learning model. 

In reference to chapter 6, there is a need for greater emphasis on testing model performance with 

independent samples, greater consistency in sample collection and model development, and an 

increased focus on replicating features identified in previous models. Additionally, nine studies 

(60%) included in the present meta-analysis and systematic review did not test accuracy in 

holdout data, relying instead on internal cross-validation, which may lead to overoptimistic 

performance metrics. Furthermore, most studies (57.1%) utilised data from open-label trials 

lacking adequate double-blind procedures, and as such, there is a risk of bias pertaining to the 

scoring and interpretation of treatment response. There also remains an unmet need for 

prospective studies that compare features between models of treatment response and remission 

outcomes. Thus far, only one study 33 has assessed both outcomes, although it did not report a 

difference in top features between these models. It remains to be determined whether there are 
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reproducible features that are specific to reaching threshold for treatment response, relative to 

treatment remission.  

Most studies contained in the present review (86.6%) used binary classification models to 

discriminate treatment responders’ treatment from non-responders. Studies varied in terms of the 

specific clinical scale and change-score thresholds that constituted treatment response. Overall, 

four studies (26.6%) selected a ≥ 50% reduction on the HAMD-17 16 as the threshold of clinical 

response, while three studies (20%) defined clinical response as ≥ 50% reduction on the MADRS 

17. Large differences in treatment duration were also observed across trials. Importantly, greater 

standardisation in how clinical response is defined is required to better assess the performance of 

prospective models, aid in the reproducibility of findings, and improve the likelihood of real-

world clinical utility of ML models in psychiatry. Similarly, as described elsewhere 18, there is a 

lack of clear consensus on how treatment resistance is defined, which highlights the need for 

greater consistency across studies. Furthermore, only three studies (20%) assessed the 

performance of multiple algorithms, which limits a comparison on which algorithms tended to 

perform well. 

Within chapter 7, in the context of classification models, it is important to highlight that 

uncertainty estimates should be considered when evaluating model accuracy and other common 

performance metrics such as sensitivity and specificity. For instance, while a specific model may 

show a reasonable accuracy, if a large range is observed between the upper and lower bounds of 

the 95% confidence interval, it is plausible that the model may be too imprecise to reasonably 

predict treatment response or selection in a prospective trial. Therefore, in the absence of 

uncertainty estimates such as confidence intervals, it is imperative that model performance is 
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interpreted with necessary caution. It is also worth noting the inherent difficulty in estimating the 

variability of cross-validated performance metrics 19. Additionally, many other fields 

successfully use cross-validation as a basis for choosing between different models or tuning 

regularization parameters for a model, rather than taking its performance estimate at face value 

20.  

Within the current review, only 6 of 26 studies (23.0%) incorporated training and testing sets 

during model development, allowing for a comparison of uncertainty estimates across these 

models. Among them, only five studies (19.2%) reported either the standard deviation of model 

accuracy or 95% confidence intervals. As such, there remains an urgent need for prospective 

models to report the uncertainty estimates of performance metrics. Apart from the important 

considerations of uncertainty estimates, there is a need to consider the relationship between 

performance metrics and their implications within precision medicine. Common methods of 

evaluating the performance of ML classification models across studies contained within this 

review include accuracy, sensitivity, specificity, PPV, NPV, and AUC.  

Although these metrics all provide useful information to evaluate the potential utility of the 

model, it is important to consider the relationship between them and their likely expected 

benefits for treatment selection. For instance, seventeen of twenty-six studies (65.38%) used a 

binary classification task to predict clinical response vs. non-response to a specific intervention. 

In this instance, the sensitivity of the model corresponds to its ability to correctly identify 

patients who will respond to the intervention (true positive), while specificity relates to the 

ability to identify patients who are likely to be non-responders (true negative). Additionally, PPV 
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and NPV provide insight into the prevalence of the outcome, and indicate the likelihood of 

clinical response, or non-response, in the case of a positive or negative result, respectively.  

Furthermore, while the ideal threshold between sensitivity and specificity largely depends on the 

baseline rates of treatment efficacy for a given intervention, it is important to highlight that 

reasonable balanced accuracy does not necessarily translate into a model with clinical utility or 

scalability. For example, a binary classification model with a balanced accuracy of 67.5% in 

predicting response vs nonresponse to clozapine, corresponding to 45% sensitivity (true positive) 

and 85% specificity (true negative), shows worse performance than random chance at identifying 

whether a given patient will meet a pre-specified threshold for clinical response to the 

medication. While clozapine has been shown to be an effective treatment in psychotic disorders 

21, it also facilitates a host of undesirable side effects, including drowsiness, hypersalivation, and 

constipation 22. As such, this hypothetical model will perform extremely poorly in identifying 

which patients will respond to clozapine, and the associated predictors lack discriminative 

capabilities in this regard. In other words, important features, or biomarkers, within this model 

provide a signal for identifying whether a patient will not respond to clozapine but fail to provide 

meaningful signals for therapeutic response.  Conversely, even with an 85% specificity (true 

negative), this model will misclassify patients as non-responders in 15% of cases. This 

misclassification error, or number of false negatives, scales proportionally to the overall sample 

size, leading to many individuals prescribed a medication with many adverse side effects that 

will ultimately be ineffective when implemented clinically.  

Therefore, when evaluating performance thresholds to ascertain whether a given model is 

sufficiently accurate to make a useful impact in selecting treatments, it is important to consider 
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the expected efficacy of the intervention, the therapeutic safety profile, and whether the 

proportion of true positives and true negatives within a model provide a meaningful performance 

threshold for a given disorder and intervention. Moreover, metrics such as PPV and NPV provide 

useful context into the prevalence of a given outcome, and should be considered alongside 

sensitivity, specificity, and AUC.  

9.4. Future Directions 

Within chapter 2, while the HARM model showed reasonable performance, further refinement is 

needed in prospective models, and a much smaller error rate is required to implement such 

predictive models as clinical tools. Furthermore, as mentioned previously, variables with more 

than 15% missing data were excluded from the analysis. Other imputation strategies, such as k-

nearest neighbours 23, and multiple imputation by chained equations (MICE) 24 may be a useful 

alternative in the case of missing data. Nonetheless, it is important to note that each imputation 

strategy has its own set of limitations 25. Other algorithms, and pre-processing strategies, may 

lead to different performance metrics. Additionally, considering both the small sample size and 

low base rate, models developed using larger training sets, and prospective validation, are 

required. Within chapter 3, there is a need for models that use a wider framework when selecting 

input data to use as candidate features. Considering that our model performance is directly 

dependent on the available input data, an exploratory data-driven approach may be warranted in 

predictive models. Most machine learning studies in forensic psychiatry thus far focus purely on 

clinical and administrative data, given the widespread availability of such data. However, other 

modalities, such as neuroimaging (MRI, fMRI, DTI), electrophysiology (EEG, MEG, ERG) 

various sensors (actigraphy, heart rate variability), and genomic features (whole genome 
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sequencing, whole exome sequencing, and RNA sequencing) may prove to facilitate model 

performance, when used in conjunction with clinical data. Moreover, longitudinal studies with 

larger multicentric samples and adequate external validation are needed to translate proof-of-

concept predictive models into applications to be used in clinical and legal settings. We 

hypothesize that such models may facilitate a more personalized approach to patient evaluation 

and risk management, provide greater precision in deriving a tailored treatment plan, and aid 

clinicians and the legal system in the decision-making process as it pertains to mentally 

disordered offenders. Ultimately, they may become critical tools to assist in prison sentencing, to 

determine fitness to stand trial, and to optimize the progress of individuals in the forensic system 

towards rehabilitation. 

Within chapter 6, to facilitate EEG biomarkers of response to specific treatments, future studies 

may benefit from testing model performance on external datasets of other psychiatric 

medications or neurostimulation therapies. For example, Wu and colleagues assessed whether 

the algorithm SELSER, trained on SSRI datasets, could predict response to rTMS 26. This 

approach may help highlight differences in important features to predict treatment response 

across psychiatric medications and provide an avenue to investigate potential neurophysiological 

mechanisms of action. Moreover, by exploring whether models retain similar features and 

modest prediction accuracy when tested on external datasets of other interventions, this may 

provide a way to identify generalizable EEG biomarkers that are related to therapeutic 

improvement or treatment resistance across disorders. Nonetheless, it may be more informative 

and realistic to focus on predictors of response to specific classes of medications and 

neurostimulation trials, to identify divergent mechanisms of therapeutic efficacy and treatment 
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resistance. Either way, this will require a careful consideration of differences in outcome 

instruments between datasets. As demonstrated in the current review, studies varied largely in 

the number of electrodes used, EEG systems, feature selection and extraction methods, and 

machine learning algorithms. Considering the heterogeneity observed across studies, large, 

standardised datasets must become available before this field can move ahead in a significant 

way. Importantly, there is a need for models developed using large well-characterised samples, 

with separate training, testing, and external validation datasets, to derive classification tools that 

can be useful clinically. Similarly, available repositories are needed to appropriately replicate 

models developed thus far, identify generalizable biomarkers of treatment response across 

interventions, and identify distinct neurophysiological markers that can help guide treatment 

selection in MDD.   

In chapter 7, models of treatment response within randomized clinical trials have been developed 

using peripheral blood markers comprising SNPs and fatty acid composition, resting-state EEG, 

resting-state, and task-specific fMRI, as well as multimodal data comprising combinations of 

clinical, genetic, EEG, and fMRI features. Besides the approaches used in the literature thus far, 

there are several types of features that may be useful to incorporate in prospective models of 

treatment response and selection.  

In terms of whole-blood peripheral biomarkers, next-generation sequencing methods such as 

RNA sequencing (RNA-seq) can be used to identify gene expression markers that are predictive 

of treatment response. For instance, Nøhr and colleagues 27 used data from a placebo-controlled 

trial comprising 184 patients treated with either vortioxetine or placebo for MDD, and using 
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blood samples collected with PAX gene tubes, identified three novel genes whose RNA 

expression levels at baseline and week 8 were significantly (FDR <0.05) associated with 

treatment response after 8 weeks of treatment. However, they did not identify any genes that 

were differentially expressed between placebo and vortioxetine groups 27. More recently, new 

low-cost, portable high-throughput single-cell RNA sequencing methods have been developed, 

which have been used for cell-specific biomarker discovery 28. Importantly, new feature selection 

methods are available for biomarker discovery using sparse single cell data. For example, it was 

shown that a probabilistic generative model can reduce the high-dimensional space in single-cell 

gene expression data and provide uncertainty estimates 29. 

With respect to neurophysiological measures such as EEG, new multimodal techniques have 

been developed, such as combining TMS with EEG, to directly and non-invasively explore 

cortical reactivity with improved temporal resolution 30. This allows for examining several types 

of features, including cortical excitability, cortical inhibition, cortical oscillations, and the 

balance between excitation and inhibition within the cortex in response to TMS pulses. This 

technique may be particularly useful in randomized trials of rTMS, by measuring baseline brain 

neurophysiology and mid-treatment. For instance, in a study by Voineskos and colleagues 31, 

N45 amplitude measured using TMS-EEG over the DLPFC was shown to discriminate 

individuals with depression from healthy controls with 76.6% accuracy (80% sensitivity, 73.3% 

specificity, AUC: 0.829) 31.  

In terms of functional neuroimaging, functional near-infrared spectroscopy (fNIRS) is a method 

that uses near-infrared light to estimate cortical hemodynamic activity in response to neural 
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activity 32. While fNIRS has several remaining limitations 33, such as a depth sensitivity of 

approximately 1.5 cm, and a spatial resolution up to 1 cm, it has recently been used to 

dichotomize patients with MDD from healthy controls, with frontal region integral values 

correctly classifying 75.2% of patients with MDD, and 74.3% of healthy controls, respectively 

34. However, it remains to be investigated whether this has utility in identifying predictors of 

treatment response between individuals within the same diagnostic category.  

Furthermore, in terms of low-cost features that may be predictive of treatment response, there is 

increasing interest in the use of speech-based biomarkers adopted using smartphone technology 

35. For instance, in a study by Mundt and colleagues 36 comprising 105 adults with MDD, it was 

found that baseline and week 4 speech markers could predict responder vs non-responder status 

to sertraline at week 4 with a sensitivity estimate of 70.6% and specificity estimate of 79.2%, 

respectively. Moreover, six vocal acoustic measures were found to significantly correlate with 

depressive severity scores, as measured using the Quick Inventory of Depressive 

Symptomatology - Clinician Rating (QIDS-C) scale. This included total pause time, pause 

variability, percent pause time, speech/pause ratio, and speaking rate 36.  

While RCTs and evidence-based medicine have facilitated undeniable advancements in patient 

care, personalised interventions remain a critical need in mental health 37. Machine-learning 

precision trials may help us move away from the “one size fits all” assumption of current trials 

by including patient heterogeneity in individualized models. Similarly, assigning patients to a 

randomly selected dose in the established therapeutic range, while keeping important 

considerations such as body weight and contraindications in mind, may facilitate useful 
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algorithms to titrate medications with greater granularity. However, this will require large sample 

sizes, and appropriate training, testing, and external validation prior to clinical implementation.   

Importantly, although treatment response prediction has utility in prognosticating whether a 

patient will respond to a specific intervention, they cannot determine the optimal treatment 

option for a specific patient. As such, machine-learning guided models of treatment selection, 

evaluating individual differences in comparative effectiveness across the same group of patients, 

are required to facilitate precision psychiatry.  

9.5. Conclusion 

The results of this thesis have advanced the field of precision psychiatry by 1) developing a 

predictive model of longitudinal physical aggression in patients with schizophrenia in forensic 

settings and comparing such models against clinician judgement alone, and models that combine 

data-driven approaches and clinician insight. Here, we showed that clinical judgement alone 

shows a high false negative rate, where patients who will commit physical aggression are 

incorrectly identified as low risk. Conversely, the data-driven HARM models showed a low false 

negative rate, correctly identifying the majority of patients who are low risk. However, clinical 

judgement showed a higher positive predictive value than the data-driven HARM models, 

suggesting that such prognostic tools may have utility as an adjunct to clinical judgement; 2) 

systematically synthesizing existing studies on predicting criminal and violent outcomes in 

psychiatry, and confirming the utility of evidence-based risk factors in developing models with 

an average sensitivity of 73.33% (95% CI: 64.09-79.63) and average specificity of 72.90% (95% 

CI: 63.98-79.66), respectively , 3) highlighting the importance of considering ethical constraints 

in models within forensic psychiatry, and 4) systematically synthesizing existing studies on 
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predicting treatment response using EEG in MDD, and in the context of clinical trials more 

broadly, as well as identify methodological recommendations for prospective machine-learning 

guided trials. 

 

9.6. References 

1. Grann, M., Belfrage, H. & Tengström, A. Actuarial assessment of risk for violence: 

Predictive validity of the VRAG and the historical part of the HCR-20. Crim Justice 

Behav (2000) doi:10.1177/0093854800027001006. 

2. Dernevik, M., Grann, M. & Johansson, S. Violent behaviour in forensic psychiatric 

patients: Risk assessment and different risk-management levels using the HCR-20. 

Psychology, Crime and Law (2002) doi:10.1080/10683160208401811. 

3. Sharma, P. K. et al. Issues and challenges of data security in a cloud computing 

environment. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile 

Communication Conference, UEMCON 2017 2018-Janua, 560–566 (2017). 

4. Warnat-Herresthal, S. et al. Swarm Learning for decentralized and confidential clinical 

machine learning. Nature 594, 265–270 (2021). 

5. Jansman-Hart, E. M., Seto, M. C., Crocker, A. G., Nicholls, T. L. & Côté, G. International 

Trends in Demand for Forensic Mental Health Services. Int J Forensic Ment Health 10, 

326–336 (2011). 

6. Phillips, J. L. et al. Single , Repeated , and Maintenance Ketamine Infusions for 

Treatment-Resistant Depression : A Randomized Controlled Trial. Am J Psych 176, 401–

409 (2019). 

7. Medeiros, G. C. et al. Blood-based biomarkers of antidepressant response to ketamine and 

esketamine: A systematic review and meta-analysis. Mol Psychiatry 27, 3658–3669 

(2022). 

8. Matveychuk, D. et al. Ketamine as an antidepressant: overview of its mechanisms of 

action and potential predictive biomarkers. Ther Adv Psychopharmacol 10, 

204512532091665 (2020). 

9. Abdi, H. & Williams, L. J. Principal component analysis. Wiley Interdiscip Rev Comput 

Stat 2, 433–459 (2010). 



Ph.D. Thesis – D. P. Watts; McMaster University – Neuroscience.  

 

  

 

 

375 
 

10. Friedman, J. H. & Roosen, C. B. An introduction to multivariate adaptive regression 

splines. Stat Methods Med Res 4, 197–217 (1995). 

11. Fitkov-Norris, E., Vahid, S. & Hand, C. Evaluating the Impact of Categorical Data 

Encoding and Scaling on Neural Network Classification Performance: The Case of Repeat 

Consumption of Identical Cultural Goods. in Communications in Computer and 

Information Science vol. 311 343–0352 (2012). 

12. Dash, M. & Liu, H. Feature selection for classification. Intelligent Data Analysis (1997) 

doi:10.3233/IDA-1997-1302. 

13. Tang, J., Alelyani, S. & Liu, H. Feature selection for classification: A review. in Data 

Classification: Algorithms and Applications (2014). doi:10.1201/b17320. 

14. Chandrashekar, G. & Sahin, F. A survey on feature selection methods. Computers and 

Electrical Engineering (2014) doi:10.1016/j.compeleceng.2013.11.024. 

15. Rosellini, A. J. et al. Predicting non-familial major physical violent crime perpetration in 

the US Army from administrative data. Psychol Med (2016) 

doi:10.1017/S0033291715001774. 

16. Zimmerman, M., Martinez, J. H., Young, D., Chelminski, I. & Dalrymple, K. Severity 

classification on the Hamilton depression rating scale. J Affect Disord 150, 384–388 

(2013). 

17. Quilty, L. C. et al. The structure of the Montgomery-Åsberg depression rating scale over 

the course of treatment for depression. Int J Methods Psychiatr Res 22, 175–184 (2013). 

18. Howes, O. D., Thase, M. E. & Pillinger, T. Treatment resistance in psychiatry: state of the 

art and new directions. Molecular Psychiatry Preprint at https://doi.org/10.1038/s41380-

021-01200-3 (2021). 

19. Varoquaux, G. Cross-validation failure: Small sample sizes lead to large error bars. 

NeuroImage vol. 180 68–77 Preprint at https://doi.org/10.1016/j.neuroimage.2017.06.061 

(2018). 

20. James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning 

with Applications in R Second Edition. (2021). 

21. Wagner, E. et al. Efficacy and safety of clozapine in psychotic disorders—a systematic 

quantitative meta-review. Translational Psychiatry vol. 11 Preprint at 

https://doi.org/10.1038/s41398-021-01613-2 (2021). 

22. Farooq, S. & Taylor, M. Clozapine: Dangerous orphan or neglected friend? British 

Journal of Psychiatry vol. 198 247–249 Preprint at 

https://doi.org/10.1192/bjp.bp.110.088690 (2011). 



Ph.D. Thesis – D. P. Watts; McMaster University – Neuroscience.  

 

  

 

 

376 
 

23. Zhang, Z. Introduction to machine learning: k-nearest neighbors. Ann Transl Med 4, 218–

218 (2016). 

24. Azur, M. J., Stuart, E. A., Frangakis, C. & Leaf, P. J. Multiple imputation by chained 

equations: what is it and how does it work? Int J Methods Psychiatr Res 20, 40–49 (2011). 

25. Poulos, J. & Valle, R. MISSING DATA IMPUTATION FOR SUPERVISED LEARNING †. 

(2018). 

26. Wu, W. et al. An electroencephalographic signature predicts antidepressant response in 

major depression. Nat Biotechnol 38, 439–447 (2020). 

27. Nøhr, A. K. et al. A large-scale genome-wide gene expression analysis in peripheral blood 

identifies very few differentially expressed genes related to antidepressant treatment and 

response in patients with major depressive disorder. Neuropsychopharmacology 46, 1324–

1332 (2021). 

28. Gierahn, T. M. et al. Seq-Well: Portable, low-cost rna sequencing of single cells at high 

throughput. Nat Methods 14, 395–398 (2017). 

29. Ding, J., Condon, A. & Shah, S. P. Interpretable dimensionality reduction of single cell 

transcriptome data with deep generative models. Nat Commun 9, (2018). 

30. Hill, A. T., Rogasch, N. C., Fitzgerald, P. B. & Hoy, K. E. TMS-EEG: A window into the 

neurophysiological effects of transcranial electrical stimulation in non-motor brain 

regions. Neuroscience and Biobehavioral Reviews Preprint at 

https://doi.org/10.1016/j.neubiorev.2016.03.006 (2016). 

31. Voineskos, D. et al. Altered Transcranial Magnetic Stimulation–Electroencephalographic 

Markers of Inhibition and Excitation in the Dorsolateral Prefrontal Cortex in Major 

Depressive Disorder. Biol Psychiatry 85, 477–486 (2019). 

32. Ferrari, M. & Quaresima, V. A brief review on the history of human functional near-

infrared spectroscopy (fNIRS) development and fields of application. NeuroImage vol. 63 

921–935 Preprint at https://doi.org/10.1016/j.neuroimage.2012.03.049 (2012). 

33. Chen, W. L. et al. Functional Near-Infrared Spectroscopy and Its Clinical Application in 

the Field of Neuroscience: Advances and Future Directions. Frontiers in Neuroscience 

vol. 14 Preprint at https://doi.org/10.3389/fnins.2020.00724 (2020). 

34. Husain, S. F. et al. Validating a functional near-infrared spectroscopy diagnostic paradigm 

for Major Depressive Disorder. Sci Rep 10, (2020). 

35. Fagherazzi, G., Fischer, A., Ismael, M. & Despotovic, V. Voice for Health: The Use of 

Vocal Biomarkers from Research to Clinical Practice. Digital Biomarkers vol. 5 78–88 

Preprint at https://doi.org/10.1159/000515346 (2021). 



Ph.D. Thesis – D. P. Watts; McMaster University – Neuroscience.  

 

  

 

 

377 
 

36. Mundt, J. C., Vogel, A. P., Feltner, D. E. & Lenderking, W. R. Vocal acoustic biomarkers 

of depression severity and treatment response. Biol Psychiatry 72, 580–587 (2012). 

37. Cavalcante, I. & Benson, P. Machine learning-guided intervention trials to predict 

treatment response at an individual patient level : an important second step following 

randomized clinical trials. Mol Psychiatry 701–702 (2020) doi:10.1038/s41380-018-0250-

y. 

  

 

 

 

 

 


