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Preface

C. Runge originally suggested the numerical methods of 

solving differential equations which will be examined, and were 

subsequently improved on by, to mention a few, K.Heun, and 

W. Kutta. The entirety of these methods have, as a result, 

been referred to as the Runge-Kutta methods for the numerical 

solution of differential equations.

The first section of the thesis consists of the derivation 

of third and fourth order Runge-Kutta methods and their respective 

truncation errors. Notation, definitions, and various concepts 

are introduced as needed in the various sections.

The numerical solutions of differential equations using 

third order Runge-Kutta methods are then discussed in the second 

section. Various formulae and relationships are derived here 

for third order methods. In all numerical tables that follow, 

the results were obtained using a Bendix Model G-15 Digital 

Computer.

In the third section, one considers fourth order Runge- 

Kutta methods for the numerical solution of ordinary differential 

equations. However, in addition to considerations of symmetry, 

reduction of operations and storage requirements, as examined 

in section two, one examines a Runge-Kutta method due to Blum 

which basically modifies a programming procedure.

Finally in the last section, one investigates methods due 

to A. Ralston which minimize a bound on the truncation error

(ii)



(iii)

derived in the first section.

An appendix is also included containing various programs 

for the Bendix G-15D that have been needed throughout the sections.
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SECTION I 

INTRODUCTION

To solve differential equations numerically is important 

for in solving practical problems such as those encountered in 

engineering, one nay obtain ordinary differential equations 

which even though are linear or of simple form cannot be solved 

analytically. Furthermore, in some cases, the analytical 

solution obtained may be complex and to determine a value for 

the dependent variable for some value of the independent 

variable, a considerable amount of computation may be required. 

Thus, numerical methods for the solution of differential 

equations are desirable and necessary.

To solve numerically the first order differential 

equation
-^=f(x,y) (1.00)

which satisfies the given initial condition y(xg) - yg , one 

basically wishes to determine the change in the dependent 

variable y (denoted by dy) which corresponds to an increment 

in the independent variable x (denoted by h). Starting with 

the initial values (x0,y0) and denoting the uniform increment 

in x by h, then at the (n+l)th calculation one obtains the 

numerical solution (xn+l,yn+l^ xQ+(n+l)h and

yn+i ” yn + dy (1.10)

where yn y(x^) has been calculated previously and an

-1-
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expression for dy is desired.

For Runge-Kutta methods of order K, dy is defined as

dy = h[wjf(xn,yn) + w2f (xn-+rn2h,yn+n2h) + ...

+Wkf^xn+mkh’yn+nkh^J (1.11)

where w^, nu, n^, w^, i=2,...k are constants to be determined 

so that when (1.11) is expanded in a power series in h and 

used in (1.10), then the coefficients of like powers of h in 

the Taylor’s series

yn+l ‘ yn + hyn + + ^n" + (1-12)

k and in (1.11) must agree up to and including the power h . 

To simplify calculations, one writes (1.11) as

yn+l ‘ yn ’ dy ~ ' + WA (1’20)

where K±, i=l,...k are given by

K1 = hf<xn>yn) (1,21)

K,. = hf(x + ah, y+ a K.) (1.22)
2 n o •'n 11

K3 “ W<xn+ boh> yn+ blKl+ b2K2> (1,23)

K4 = hf(xn+ CQh, yn+ cxK1+ c2K2+ CjK3) (1.24)

Kk " hf(xn+ V’ yn+ 11K1+ ”• + tc-A-l’ (1,25)

where again the constants ai? bi, ci} ... i-p vn, are to be
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determined.

One now considers the third order Runge-Kutta methods 

in which case only (1.21-1.23) are considered and (1.20) 

becomes

dy “ yn+l~ yn " W1K1+ w2K2+ w3K3 (1-30)

To simplify notation, we will write y for y x for xn, and 

f for f(x,y) when no ambiguity occurs. Continuing the numerical 

solution of the differential equation from (xri,yn), one 

immediately obtains

- hf (1.31)

In order to evaluate as a power series in h, one requires 

the Taylor expansion in two variables

co

f(x+p,y+q) - ^-(p^-+ql)f(x,y) (1.32)
/  n i o Tt * o
n=0

and the notation

f(x,y)
fy xv ..v“--------i ~ U-33)

I’factors j*£“ac£ors x1 ^yJ

Then, in view of (1.31-1.33)

K£ = hf + A2h2+ iA^h3 + lA^h4 + °(h?) (1.34)

where

A “ - (al + )nf n-0,1,2,3 (1-35)

Similarly as a power series in h^(1.23) becomes
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K3 = hf + B2h2 + |B3h3 +-|B4h4 + 0(h5) (1.36)

where
B2 " V > b3 ” Bb2f + 2b2fyDaf <1,37)

B4 = Db3f + 3b2fyDa2f + 6b2(Dbfy)(Daf) (1.38)

and

On multiplying (1.31), (1.34), (1.36) respectively by ,

w2, w^ and adding, one determines

yn+i-yn = dy “ c-jh + c2h2 + -|c3h3 + |c4h4 + o(h5) (1.40) 

where

Cj_ = (iq+w2+Wq )f'

C2 = (w2ao + w3bo>fz + (w2al+w3ibl+b2.Jffy

c3 = (»2“o2+ w3bo2 )fxx

+ (2w2aoax + 2w3b[b1+b23)ffxy

+ (w2a^ + w3[bi+b2j<^ffyy

2 
+ 2w3b2aQfzfv + 2w3a^b2ffy

G4 “ (w2ac^+ w3bo3 ^fxxx

+ 3( ^2aoal + w3bo lol+t)2) ^^xxy

+ 3(w2aoa12 + )f2fxyy

+ (w2a^ ^Vb2f)f^yyy
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+ 3w3b2fyDa2f + 6w3b2<DafWy>

Furthermore, one knows that

dx ~
and in general

* - g- < K*'t’"' <>■«>

Apply (1.41) to (1.12); then, the Taylor expansion becomes

yn+l-rn = “ + 2"T2h2 + f^113 +UtX + lfeT5h5 + °<h6>
(1.42 J

where

Tq = Df Tq = D2f +f Df (1.43)
z 3 y

T, = D3f + f D2f + f 2 Df + 3Df Df (1.44)
4 y y y

= D4f + f iPf + fy2 D2f + fy3 Df

+ 7fyDfDfy+3f r/DfDfy+4D2fDfy+6DfD2fy (1.45)

In order that (1.40) and (1.42) agree up to and including 

the power h3, the following relations between the coefficients 

must hold

W1 * w2 + w3 = 1 (1.50)

aow2 + bow3 =T (1-51)

aj_W£ + (bj + bj)Wj =-j- (1-52)

ao2w2 + bo2w3 ” ^3 (1«53)

aoalw2 + bo^bl + b2^w3 “ 1/3 (1*54)

a^ w^ (bl w3 “1/3 (1.55)
o \ - 1A (1.56)
2aQb w^ = 1/3
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2alb2w3 “ J/3 (1.57)

Immediately from (1.56) and (I.57),

ao = al (1/60)

and using this result in (1.51) and (1.52), one obtains

bo ” bl + b2

In view of (1.60), and (1.61) the relationships (1.50-1.57) 

become

wx + w2 + W3 = i (1.62)

aow2 + bow3 “ V2 (1.63)
a02 w2 + bo2 w3 “ 1/1 (1.64)

aob2w3 = X/6 (1.65)

The solution of 1.60-1.65 is considered in detail in section II.

In view of (1.60) and (1.61)

c4 = (a03w2 + b03w3)D3f + 3ac* b2w3fyD2f

+6aobob2w30fDf (1.70)

The error in our numerical solution consists of an

expression
Eh4 + 0(h5) (1.71)

where E depending on f(x,y) and its partial derivatives is 

evaluated as

E - 1/24T^ - 1/6C
- (1/24 - O^*2 + b3w,y6)j'if

+ (1/24 - a2b2w3/2)D2f fy

+ (3/24 - aobob2w3)Df Dfy +
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l/24fy2Df + 0(h5) (1.72)

For small h, 0(h5) is insignificant. Thus, in (1.71), one 

calls Eh2*' the truncation error for the third order Runge- 

Kutta method. The third order truncation error is considered 

in detail in section IV.

Similarly, if one insists that the Taylor expansion 

(1.42) and the numerical solution (1.20-1.25) agree up to and 
including the power h^, then (1.20) becomes

dy - wjKj + w2K2 + w^ + w4K (1.73)

Proceeding in a similar manner for the fourth order 

methods, one expands (1.21-1.24) in powers of h, multiplies 

by corresponding coefficients w^, w2, w^, and w^, and finally 

by equating respective coefficients of powers of h in (1.73) 

and (1.42), one obtains corresponding relationships for the 

constants of the fourth order methods. These relationships 

are found in section III.

The truncation error for the fourth order methods will 

consist of the following expression
Eh5 + 0(h°) (1.74)

where for small h, O(h^) is negligible and E, depending on 

f(x,y) and its partial derivatives is given by

E = E^f + E2fylPf + E3fy2D2f + E4fy3Df

+ E3fyDfDfy + E6fyyDfDfy + E?D2fDfy+EgDfD2fy

where
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E1 * V120 - (a0^w2 + b0^w3 + w^J/24

E2 = 1/120 - (a^b2w3 + [a^c2 + b^c^wJ/6

E3 » 1/120 - &Qb2c^w^/2

E = 1/120
4

e5 = 7/120 - ao(bQ + Db^w^

E6 * " ^aob2w3 + taoc2 + boc3Tw4)/2

Ey “ b/30 - (a|;bob2w3 + fa^c2 + b^c3jw, )/2

E8 = V20 - (aob^b2w3 + {aoc2 + bQc3]w4)/2

To obtain the above simplified expressions for i=1...8, one 

has assumed cos=l , ao=a^ , b0=b2+b2 , and %=ci+c2+c3 wbich 

are proven in section III. In section IV, one examines the 

fourth order truncation error and derives a number of fourth 

order substitution methods.

Third order Runge-Kutta methods are now considered in 

the following section.



SECTION II

THIRD ORDER RUNGE-KUTTA METHODS

Insisting that the Taylor expansion (1.42) and our 

numerical solution (1.40) agree up to and including the power 
1P, one obtained the following relationships

W1 + w2 + w3 * 1 (2.10)

aow2 + bow3 “ x/2 (2.11)

aow2 + boW3 * (2.12)

aob2w3 = (2.13)

together with
a0 = ax (2.14)

bQ = b^ + (2.15)

Since there are 6 equations and 8 constants, one evaluates 

the third order coefficients in terms of the parameters aQ 

and bQ as follows: (use a for a0, b for bQ )

w = ± + 2=4aL+_b) _ (2.20)
W1 1 + oab

, = 3b - 2 (2.21)
w2 6a(b - a)

w (2.22)
w3 6b(b - a)

aj_ = a (2.23)

bi = -^Srrhr^ <*•“»

-9-
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b(b - a) . .

b2 ’ 1(2 - 3a ) ’ (2-25)

In view of (2.20-2.25), one has the restriction

ab(a - b)(2 - 3a) 0 (2.26)

With only the preceding restrictions on the values of 

the parameters a,b, they may otherwise be arbitrarily chosen.

Prompted by reasons of convenience and symmetry, one

may reduce the indeterminacy of the equations (2.10-2.15), by 

assuming wq = w2 ; hence, by equating (2.20) and (2.21), the 

following quadratic equation in the variable b is obtained,

(6a-6)b2 + (4-6a2)b + (3a2 - 2a) = 0 (2.30)

which will have real solutions if a satisfies the relationship

f(a) = 9a4 - 18a3 + 18a2 - 12a + 4 0 (2.31)

It is easily seen using program 2-1 that f(a)^-0 for all 

values of a . However, in view of (2.20-2.25), the following 

values of the parameter

0 4 a < 1 a / 2/3

will produce suitable values for b such that w^ = w^ •

Similarly Wj_ = w^ produces the following quadratic

in b
(6a - 3 )b2 + (2 - 6a2)b + 6a2 - 4a = 0 (2.32)

which will have real values for b if a satisfies

f(a) = 9a^ - 36a3 + 36a2 - 12a +1^0 (2.33)
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With f(a) = 0, program 2-2 obtains four real roots

a - 0.12379, 0.46199, 0.75150, 2.6927

and graphically the function f(a) behaves as follows:

f (a)

f(a) = 9a4 - 36a3 + 36a2 - 12a + 1

I ____ ~

a » o71237T^^

a2 = 0.46199 

a3 = 0.75150

a. = 2.69274

In view of the above sketch and (2.20-2.26), the following

values of a

0^a< 0.12379 0.46199^ a <-0.75150 a / 2/3

will determine suitable values for b such that w^ = w^ .

With the assumption w^ = w^ one obtains the quadratic

3b2 - 2b + 3a2 - 2a = 0 (2.34)

which will have real roots if
f(a) - 9a2 - 6a - 1 i 0 (2.35)

If f(a) = 0 in (2.35), then a - -0.13807, 0.80474 and by

.Tanning the graph of (2.35), one determines that

0< a4 0.80474 a + 2/3
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will yield suitable corresponding values for b in (2.34) 

such that w2 = is satisfied.

On assuming w^ — w2 “ w^ as a further symmetry, one 

obtains an impossible solution.

If one now discards the symmetry requirements of the 

last paragraph, and instead investigates the possibility of 

reducing the number of calculations in the numerical solution, 

one obtains the following relationships between the parameters 

a and b:

Assumption Relationship
wq = 0 b = 4 ~ (2.40)

3 - 6a

w^ = 0 b=2/3, a arbitrary (2.41)

bx “ 0 b = 3a - 3a2 (2.42)

It must be noted that an infinity of methods of reasonable 

accuracy can be devised by assigning values for a in any of 

(2.40-2.42). Furthermore, equating other coefficients to zero 

result in impossible solutions.

By combining relationships from (2.40-2.42), one obtains 

useful substitution processes. In the first place, from (2.41) 

and (2.42), the quadratic equation

9a2 - 9a + 2 = 0 (2.43)

is obtained which determines the values

a - 1/3 b = 2/3

and hence yields a method in which w^ = 0 and bj = 0



-13-
Secondly, from (2.40) and (2.42), a must satisfy the cubic 

equation

16a3 - 27a2 + 12a - 2 - 0 (2.44)

which has a real root a = 0.89255. Since a = 0.89255 

determines w^ - C and b^ = 0, one obtains a numerical method, 

denoted by 316 in Table 2.2, which is an iterative procedure of 

the type

K± = i-2,3 (2.45)

Furthermore, a reduced number of storage registers are 

required when the method is programmed, (see Appendix, 

program 2-3)

The combination of (2.40) and (2.41) yields no 

allowable solution.

Having determined methods which separately incorporate 

symmetry and minimization of calculations, one now determines 

methods which utilize both considerations. By combining 

symmetry and minimization restrictions from the following table

Table 2.1

Symmetry Minimization

51 : wx = w2 Mjj w1 = 0

52 : “ WJ V W2 ■ °

Sj : "2 " «3 : b1 - 0

M, : wx=0 b±=0

M5: »2“° h-0
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one obtains a number of additional methods.

Imposing the conditions S-. and M , one obtains
J

54a^ - 144a3 + 144a2 - 63a + 10 = 0

which aas two real roots 0.40210, 0.66656, and hence two 

numerical methods having and 1^=0 are determined.

Assuming S£ and , one determines the equation

54a^ - 117a"3 + 90a2 - 27a +2 = 0

which has two real roots 0.10745 and 0.66655 giving two 

methods in which the conditions w^^-pand bj=O are satisfied.

Furthermore, and yield a cubic equation

18a3 - 10a2 + 15a - 2 = 0

having a real root 0.14352 .

On imposing and M , one establishes the equation

27a3 - 54a2 + 36a -8=0

which realizes one real root 0.66000 and hence furnishes a 

method having w2"w3 and kf’0.
All other combinations from Table 2.1 yield impossible

solutions.

Although the numerical solution of only a first order 

grantial equation has been specifically mentioned, the 

third order Runge-Kutta methods derived are also applicable to 

systems of first order differential equations. If we are given
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a system of N first order differential equations

dy- .
— " fi(x’yl”i“l,...N (2.46)

with initial conditions

yi(xQ) - Y± i=l,...N

we may define

y0 ” x Yo “ xo f0 = 1

and hence our system (2.46) is written in the convenient form

~ =fi^yo’yi’* * *i“O,l,...,N (2.47)

yi = Yi at x=x0 i=0,1,...,N

The numerical solution of our system (2.47) using a third order 

method is then given by the following: for i=O,l,...,N

KiX “ hfi(Y0,T1,...,rn) (2.50)

K^2 “ hf^(y0+a^oi» yjl+ a^n’* *’’+ a^Nl^ (2.51)

K13 = hfi<Yo+bK01’ Yl+ blKll+ b2K12’’*'

VblKNl +b2KN2 > ^-52)

where K±1 i=0,...,N is computed before K±2; Ki2 i=0,...,N 

before and the increment in Y± i=0,...N is given by

Y; + dY. • Tt ♦ w1Ku + w2K.2 + w3K±3 (2.53)

In view of (2.50-2.52) when the system (2.47) is

solved on a digital computer, our third order substitution
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methods will require 3N + A storage registers where A is a 

constant of the program.

A Runge-Kutta third order procedure due to S. D. Conte 

and R. F. Reeves is now obtained which requires 2N + A storage 

registers for the solution of (2.47) rather than the usual 

3N + A. To obtain 2N + A storage registers, one insists that 

the quantities,

Yi + wlKil
Y± + aK±1 i=l,...N

Y. + b K i 1 il

from (2.51-2.53) be equal, and as a result, the identities

w = a (2.60)

b^ = b - a (2.61)

must be satisfied and will make the system (2.10-2.15) 

determinate.

It is easily verified that the condition

abb^(2 - 3a) = 0 (2.62)

is incompatible with (2.10-2.15), and (2.60-2.61).

A solution of (2.10-2.15) together with (2.60-2.61) 

is obtained as follows: by eliminating b2 from (2.61) and 

(2.13), one obtains

w „ __L------ (2.70)
W3 6a(b - a)
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From (2.70), and (2.11), one establishes

W2 = ?a&a2(ba> a)b (2-7D

and from (2.70) and (2.12)

= _2a(b - a) - b2 (2
2 6a3(b - a) <2'72)

By the equality of (2.71) and (2.72), one obtains the identity

b - a(2 - 3a) (2.73)

In view of (2.73), (2.70) and (2.71), one utilizes the equation 

(2.10) to obtain

6a2 - 6a2 + 3a - 1 = 0 (2.74)

Since (2.74) has a non-zero real root 0.62654, the system 

(2.10-2.15) with the conditions (2.60-2.61) has a solution. 

Using in order (2.73), (2.71), (2.70), (2.61) and (2.60), one 

obtains the values of the remaining coefficients, (see 317, 

table 7-2).

As a result, the solution of (2.10-2.15) together with 

(2.60-2.61) establishes coefficients for a third order Runge- 

Kutta method which uses only 2N + A storage registers rather 

than the conventional number 3N + A. Program 2-4 illustrates 

how the computation is arranged to require only 2N + A 

storage registers.
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In solving (2.10-2.15) and obtaining the solution 

(2.20—2.25) which will te denoted by 31 , one required the 

assumption

ab(a - b)(2 - 3a) / 0 (2.26)

The question arises as to what solutions are possible for 

(2.10-2.15) if

ab(a - b)(2 - 3a) = 0

and on careful examination only the following possibilities may 

occur
b = 0, a ~ b, a = 2/3,

while
a = 0

yields an impossible solution.

Assuming b = 0, one simplifies (2.11) and (2.12) to 

obtain respectively

w2 = 2a
and 1

w2 “ 3^2
which establish

a = 2/3

If now a = 2/3 and b = 0 is applied to (2.10-2.15), one yields 

the following solution, denoted by 3U, with w^ as parameter:
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Method 3II

1
W1 - - ---- w^ a “ 2/3 b = 0

w2 - 3/4 .x- 2/3 br -X

w_ = arbitrary b = —
3 7 2 4*3

By requiring the conditions w1=w^, Wj"W2» w2~w3* and wi"° 

to be satisfied for Method 3II, one obtains respectively 

the solutions 3111,3112, 3H3, and 3H4 in Table 2.2 .

Alternatively, if a=b then (2.11) and (2.12) become 

respectively

a(w + w_) - 1/2
and

a2(»2+ ) = 1/3

from which it is obvious that a=b=2/3. These values in 

(2.10-2.15) determine the coefficients for Method 3III which 

follows:

Method 3 HI

w =1/4 a “ 2/3 b - 2/3

W2=T‘W3 V2/3 bl“f-4^

- arbitrary b2 4w3



-20-

Imposing the conditions in turn w2"*3 and

w^“3/4 on the coefficients of Method 3III, one determines 

the entries 3IIH, 3III2, 3III3, and 3III4 in Table 2.2 

page 21.

However, on assuming a=a2/3, one obtains the 

coefficients of Method 3H.

The entries of the following Table 2.2 are used

in the third order Runge-Kutta equations as follows:

K “ hf(x,y)

» hf(x + ah,y +

K » hf(x + bh,y + b K + b^K )

where a=a^ and the increment in y is given by

dy « w^K^ + *2^2 + w3^3



Table 2.2

Method W1 w2 w3 a b bl b2
311 1/6 1/6 2/3 1 1/2 -1/2 1

312 1/6 2/3 1/6 1/2 1-1 2

313 0 4/7 3/7 1/4 5/6 -13/18 14/9

314 0 3/4 1/4 1/3 1-1 2

315 1/4 0 3/4 1/3 2/3 0 2/3

316 0 0.35098 0.64902 0.89255 0.28871 0 0.28871

317 0.62654 0.85614 -O.48268 0.62654 0.075426 0.62654 -0.55111

3111 1/8 3/4 1/8 2/3 0 -2 2

3112 3/4 3/4 -1/2 2/3 0 -1/2 1/2

3113 -1/2 3/4 3/4 2/3 0 -1/3 1/3

3114 0 3/4 1/4 2/3 0 -1 1

3 mi 1/4 1/2 1/4 2/3 2/3 -1/3 1

3III2 1/4 1/4 1/2 2/3 2/3 1/6 1/2

3III3 1/4 3/8 3/8 2/3 2/3 0 2/3

3III4 1/4 0 3/4 2/3 2/3 1/3 1/3

21-
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When presenting papers of this type, one always 

concludes a section with some numerical example, to illustrate 

the previous discussion. In choosing a suitable differential 

equation, one must be able to solve the equation analytically 

in order to compare results of the numerical solution with 

the analytic one. The following example illustrates the 

point. The linear differential equation

y(4 - 3/2tan (3/2>) (0,1) (2.75)

has an analytic solution

y = e^'cos (3/2)x (2.76)

By computing the analytic value y(x) from (2.76), and the 

numerical value ye(x) from (2.75), one is able to obtain an 

estimate of the accuracy of the method by further computing 

the difference
|y(x) - ye(x)| =|e(x)| (2.77)

where E(x) denotes the value of the error. Program 2-5 

was used to obtain the results of Table 2.3 ,page 23, which 

has been constructed for the increments h = 0.25, 0.2, 0.1, 

and 0.05 in order that the following observation be made: if 

the number of steps of calculation be increased (i.e. h is 

decreased) then the value of |e(x)| decreases.

We now consider Runge—Kutta fourth order methodsj in

the next section.



Table 2.3

Method y(l) ye(l) | E<L) 1

0(0.25)1 312 51..38620 51..70087 51..31467
316 51..38620 51..28961 51..38330

3X14 51..38620 51..19136 51..19484

3III3 51..38620 51..19110 50..93902

0(0.2)1 312 51..38620 51..62236 51..23618

316 51..38620 51..16248 51..22372

3H4 51..38620 51..24835 51..13785

3IH3 51..38620 51..45826 50..72062

0(0.1)1 312 51..38620 51..43485 50..48669

316 51..38620 51..35403 50..32156

3114 51..38620 51..35501 50..31172

3IH3 51..38620 51..40503 50..18849

0(0.05)1 312 51..38620 51..39245 49..62649

316 51..38620 51..38236 49.-38227

3H4 51..38620 51..38118 49..50064

3III3 51..38620 51..38908 49..28957

NOTE: Floating point notation i3 used
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SECTION III

FOURTH ORDER RUNGE-KUTTA METHODS

If (1.73) and the Taylor expansion (1.42) agree up to 

and including the power h\ the equations (1.20-1.25) for the 

fourth order Runge-Kutta method are given by

- hf(x,y) (3.11)

K2 = hf(x + ah, y + aJCj (3.12)

K - hf(x + bh, y + bj^ + b2K2) (3.13)

K = hf(x * ch, y + c K + c K + c K ) (3.14)
4 1 1 2 2 3 3

dy = + w2K2 + w3K3 + w4^4 (3.15)

and after equating corresponding coefficients in (1.73) and

(1,42), one first obtains the relationships

a ” aj (3.16)

b = b^ + b^ (3.17)

c — c^ + c^ + c^ (3.It)

and then the equations

+ w2 + *3 + *4 " (3.21)

aw2 + bw-^ + cw^ = 1/2 (3.22)

a2w2 + b2wj + c2w^ = 1/3 (3.23)

a^w^ + b^w^ + c^w^ = 1/4 (3.24)

ab^w- + w4^ac2 + bc3 ” V° (3.25)
fi2b2w3 + w4(a2°2 + b2°3} = 1/12 (3,26)

abb2w) + wjac2 + bc^Jc = 1/8 (3.27)

ab2c^w^ =1/24 (3.28)

-24-
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The condition c = 1 will now be derived for (3.21-3.28)

By eliminating w2 from (3.23) and (3.24), one obtains

(ab - b^ )w + (ac - )w. = —a - — (3.31)
J 434

and from (3-22) and (3.23)

(ab - b2)wo + (ac - c2)w = -^a - — (3.32)
4 2 3

Proceeding to eliminate w^ from (3.31) and (3 -32), one determines 

b(a - b)(c - b)w_ = —+ —ac -—(a + c) (3.33)
3 4 2 3

From (3.25) and (3.27),

ab (c - b)w = 4c - — (3.34)
2 3 6 8

In view of (3.28), a, b^ t 0 and it may also be easily shown that 

(c - b) and w^ are non-zero.

To eliminate b^ from (3.34), one uses (3.25) and 

(3.26) to obtain first

c, _ 2a - 1 (3.35)
3 12w.b(a - b)4 

where a-b, b / 0.

Then using (3-35) in (3-26), one obtains

_ b<a - b) (3.36)
2 2a(2a - 1)

where a / 1/2. The following expression for w^ is then 

obtained
b(a - b)(c - b)w,^ — ( ~c -1 )(2a - 1) (3*37)
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Comparing (3.37) and (3.33), one obtains

ac = a

but since a / 0, the result follows that

c = 1 (3.38)

In view of (3-38), the equation (3.34) simplifies to

ab2(l - b)w^ - 1/24

which implies that
b / 1 (3.39)

Having eight equations (3.21-3.28), and ten unknowns, one uses 

a,b, as parameters and obtains expressions for the remaining 

coefficients as follows: in view of (3*37), and (3.38)

„ - --------2a ~ 1--------- (3.40)
"3 12b(a - b)(l - b)

and using this result in (3.32), one obtains

_ 1 2(a + b)-3 M /n
4 2 12(1 - a)(1 - b)

From (3.21-3.28), the remaining coefficients are determined as

1 , 1 - 2(a + b) 
w ---------------------- (3.42)

1 2 12ab

________ 2b - 1
z/2 12a(b - a)(l - a) 3* 3

b - (3.44)
2 2a(l - 2a)

c - (l-a)(a+5b-2-4b2) (3.45)

2 2a(b-a) (6ab-4^a+b}+ 3 )
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and a^, b^, Cj are given by

al “ a (3.46)

bx = b - b2 (3.47)

C1 = 1 ' c2 " °3 (3-48)

The expressions (3.40-3.48) are subject to the restrictions

a / 1, abc-^w^ / 0, a / 1/2, a / b, b / 1 

and the solutions of (3.21-3.28) possible when these 

restrictions are removed will be examined at the end of this 

section.

Having derived expressions for the coefficients of 

the numerical method in terms of the parameters a,b, one now 

examines various symmetries of the weights w^ i=l,2,3,4 and 

in so doing only the following cases of Table 3.1, are 

permissable. By evaluating the discriminent, where possible, 

of the quadratic equations in table 3.1, one obtains a range 

of values for "a” (or "b”) for each of the symmetries SSi} 

i=l,2,...11. For example, insisting that the quadratic 

equation of SS^ have real roots, one establishes that a must 

satisfy
f(a) = 36a6-12Oa5+16Oa4-116a3+57a2-2Oa+4 ** 0 

However, program 2-1 easily establishes that f(a) 0 for 

all a. In view of the expressions (3*40-3.48) a suitable 

range for a would be
„ 1 /I
0<a<7 2 a
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Table 3.1

Method Symmetry Equation

SS1 wrw2 (6a2-8a+4)b2+{-6a3+6a2+a-2)b+(2a3-3a2+a)=0

SS2 wz=w3 (6b2-8b+4)a^+(-6b3+6b2+b-2)a+(2b3-3b2+b)=0

SS3 wr\ (2-4b)a2+( -4b2+8b-3 )a+(2b"'-3b+l)=G

ss,4 V*3 2a2 - (l+2b)a + (2b2-b)=0

ss5 W2^4
(6a2-4a+2 )b*+( -6a'>+3a-3 )b+(4a" -3a2+l )“O

ss6 w3=w4
(6b2-4b+2)a2+(-6b3+3b-3)a+(4b3-3b2+l)=O

ss7 wn =w^=w.12 4
(3-6a)b2+(6a2)b-(3a2-2a+l)=0

ss8 W,“W_=W.
13 4

(3-6a)b' +(6a2-2)b+(1-3a2)=0

ss^ w =w2
W3W4

(3-3a)b2+(3a'-2)b-(a-l)=O

SS10 w =w
*2*4

(3a)b2+(-3a2-l)b+(3a2-2a+l)=O

ssu a+b=l
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To obtain the corresponding value of b for each a, one then 

uses the quadratic equation SS^. The expressions (3.40-3.48) 

will then be used to determine the remaining coefficients for 

a numerical method in which Wj_ « w2. The following Table 3.2, 

page 30 exhibits the discriminent of the quadratic equations 

for the symmetries SS^ i=l,...10 of Table 3.1 and suggests a 

suitable range for either a or b whichever the case may be.

The symmetry consideration w1=w^, W2==W3 ’ namely SSn 

exhibits a simple relationship

a + b = 1

which simplifies (3.40-3.48) as
-I t 2a2(6b-l)+a(b-2)-b2

1 2 12ab 1 1 2a(6ab - 1)

= 1 b = b - — c = b^a ~ b)
W2 12ab 1 ” 2a 2 2a(6ab-l)

*3 = uTb b2 2a 5 “ 6ab - 1

= J. _1_
4 2 ~ 12ab

A solution due to Kutta is obtained from the above when a=l/3 

and b=2/3, (see Method 411> Table 3.6).
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Table 3.2

Symmetry Discriminent Range

ss1 36a6-12Oa3+16Oa4-116a3+57a2-2Oa+4 0 < a < 1/2
1/2 < a < 1

SS2 36bL-120b3+160b4-116b^+57a2-20b+4 0 < b < 1/2
1/2 < b < 1

SS3 16b4 - 32b^ + 24b2 - 8b + 1 0 < b <1

S3
4

2
-12b + 12b + 1 0 < b < 1/2

1/2 < b < 1

ss5 36aJ-96a3+100a4-44a3+9a2-2a+l 0 < a < 1/2
1/2 < a <; 1

SS6 36b°-96b5+100b4-44b3+9b2-2b+l 0 < b < 1/2
1/2 < b < 1

SS7 3a4 - 6a3 + 7a2 - 4a + 1 0 <a <1/2
1/2 < a <s 1

••
9a4 - 18a3 + 3a^ + 6a - 2 0.42265 < a

<0.57735

SS9
9a4 - 24a2 + 24a - 8 0.89054

<a < 1

SS10
9a4 - 36a3 + 30a2 - 12a + 1 0<a<0.10946
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Proceeding in the same manner as section II, one now 

investigates the possibility of reducing the number of 

calculations involved in the various fourth order numerical 

methods. Hence by equating the various coefficients to zero, 

one obtains only the following relationships:

Table 3*3

Method Assumption Relationship

MM1 w^=0 a = (2b - 1)/(6b - 2)

MM2 w2=0 b = 1/2

MM b =0 4a2 - 3a + b = 0
3 1

2
MM,

4
c2=0 4b -5b-a+2=O

MM c =0 (-12a2+12a-4)b2+(12a2-15a+5)b
5 •4

+(-4a2+6a-2) = 0

By examining the discriminent of MM^ and MM^, one may easily

show that in order to have real roots, the conditions

b 9/16 for MM^

and
a •/ 7/16 for MM^

must respectively hold. Similarly, on examination of the 

discriminent of MM^, it is established that for real values 

of b, a must satisfy

f(a) = -48a4+120a3-103a2+42a-7 ? 0
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and using program 2-2, one establishes a suitable range for 

a as 0.44805<a<0.5 and 0.5 < a <1.

It must be noted that other coefficients from the 

fourth order method equated to zero result in impossible solutions

To reduce further the number of calculations, two 

coefficients may be equated to zero. For example, 

w^“0 b^=0

requires that a be a root of

24a3-26a2+8a-l = 0 (3-49)

and a=0.68594 satisfies (3.49)• The following Table 3.4 

lists the various possibilities that have a solution. The 

equation obtained and its root(s) x, 0<x<l, are also tabulated.

Table 3.4

Method Assumption Equation Root

mm6 w1=b1=0 24a3-26a2+8a-l = 0 a=0.68594

mm? w^=c^=-0 24b3-36b2+19b-3 = 0 b=o.27465

MMg 8a2 - 6a + 1 — 0 a=l/4

MMq b1=e1=0 96a5-192a4+158a3-71a2

+17a-2 = 0
a=0.81215

wi0 C1=C2=°
96a5-288a4+3 50a3-211a2

+61a-6 = 0
a=0.18810
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Again it must be noted that all other pairs of coefficients 

equated to zero yield impossible solutions. For the simple 

value of the parameter in MMg, the other coefficients have 

been calculated and are given by Method 412 Table 3.6

Having investigated all possible symmetry and minimum 

conditions individually, one may wish to incorporate both 

considerations into a fourth order numerical method. With 

this in mind, one examines the compatability of the minimum 

conditions with each of the symmetry possibilities.

For example, if one assumes w1=0 (MMj) and w.^^w-^ (SS^ ), 

one requires that a be a root of the equation

36a/4'-72a3+4Sa2-12a+l = 0

which has no real roots in the interval (0,1). As a result, 

MMj. and SS^ are incompatible on the range (0,1).

On the other hand, assuming MMj and SS^, one requires 

that q 2 _
6a -10az+6a-l = 0

and a=0.26530 is a root.

Furthermore, and SS^ produce the equation

6b3-10b2+6b-l = 0

which exhibits a root b=0.26530. Hence, one obtains a fourth 

order numerical method which incorporates the assumptions MM^ 

and SS(. . Continuing in this way, one shows that MM^ is
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incompatible with the remaining symmetry conditions.

Similarly, one establishes that MM.? and the symmetries 

SSi 1=1,...11 are incompatible.

On assuming and SS^ i=l,...ll, one laboriously 

obtains equations in all cases except for SS-q, having

no solution with MM^. The following Table 3.5 tabulates the 

equations obtained and their solutions.

Table 3-5

Method Equation Solution(s)

mm3 ssx 48a4-100a3+84a2-34a+5 = 0 a=0.30934
a=0.79658

MM SSO
3 2

192a5-352a4+268a3-108a2+22a-l = 0 a=0.061326

MHj SS^ 64a5-144a4+128a3-56a2+12a-l = 0 a=0.25,0.51149
a=0.45299

m3 ss4 64a3-144a4+132a3-64a2+17a-2 = 0 a=0.70279

MM, SS^ 48a5-68a4+48a3-22a2+7a-l = 0 a=0.31373

MM^ SS6 192a6-416a3+332a4-12Oa3+18a2+a-l=O a=0.81948

MM^ SS? 48a2* - 60a3 + 24a2 -1 = 0 a=0.32159

121^ SSg 48a2* - 60a3 + 24a2 - 4a + 1 = 0 no solution

MM^ SS9 48a5-lO8a4+9Oa3-35a2+7a-l - 0 a=0.89100

MM^ SSj.q 4Sa5-60a4+16a3+7a2-5a+l - 0 a=0.67260

If it be found advantageous, one may proceed to examine
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and MM^ separately with SSi i=l,...ll to obtain other 

solutions.

To obtain solution (3.40-3.48) which we will denote as 

Method I, a number of restrictions were assumed for the equa­

tions (3.21-3.28). The question arises as to what solutions 

will be obtained for (3.21-3.28) if these restrictions are 

removed. Using (3.22-3.24) and b=l, one obtains an impossible 

solution. Furthermore in view of (3.28), one need only 

examine the solution of (3.21-3.28) when the restrictions 

a/b, a/1, and a/1/2 are removed.

Previously, one had determined c=l for (3-21—3.28), 

but only after the assumptions a/b, a/1, and a/1/2 had been 

imposed. However, it may again be established that c=l when 

one assumes in turn a=b, a=l, and a=l/2. For example, on 

assuming a=b in (3.21-3.28), one eliminates w2 and w^ from 

first (3.22) and (3.23), and then from (3.23) and (3.24) to 

obtain respectively

2, 1 1 (ac - c )w4 = —a -y

and
. 2 3x 1
(ac - c )w^= —a - —

By eliminating w , one determines the equation
4

(4-6a)c2 + (6a2-3)c + 3 a-4a'' = 0

From (3.25) and (3.26), it is immediately established that
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a=l/2; thus, the previous equation becomes

2c2 - 3c + 1 = 0

which exhibits the roots c=l/2, and c=l. The value c=l/2 is 

impossible in view of (3.22-3>24) and hence c=l as required. 

Similarly, a=l, and a=l/2 each determines c=l.

Turning to (3.21-3.28) and imposing a=b, one eliminates 

w2, W3 from (3.21) and (3.22) to obtain

W, ' 2n; (3.50)
4 6(a - 1)

Similarly, from (3.23) and (3»24)

W, = ~ - (3.51)
4 12(a - 1)

Using (3.50) and (3.51), one obtains a=l/2 and with W3 as 

parameter, the coefficients for the solution of (3.21-3.28) 

when a=b is given by

Method 411

wx =1/6 a = 1/2 b = 1/2 c = 1

w2 = 2/3_W3 ai“ bl= 1//2“Sw^ cl= 0

w^ “arbitrary b2*-g— c£= l-3w^

w^ = 1/6 °3=

For convenience of symmetry and the reduction of operations,
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one assumes in turn Wj^Wp w-j=Wp w2=w^ and w2=0 which 

respectively determine the values w^= 1/2, 1/6, 1/3, 2/3 

and hence the methods 4111, 4112, 4113, and 4114 of Table 3.6.

The assumption of other symmetries or the reduction of operations 

yield vales for w^ which either duplicate the above methods or 

determine impossible solutions.

Assuming now a=l , in (3.21-3.2$), one eliminates

w2 and w^ from (3.22) and (3*23) to obtain

6b(l-b) (3.52)

Similarly from (3.23) and (3-24), one determines

wq =----- i--------  (3 - 53 )
> 12bz(l-b)

which together with (3 «52) establishes b=l/2. With w^ as 

parameter, the remaining coefficients are given by

Method 4III

= 1/6 a = 1 b = 1/2 c = 1
w2 - 1/6 - - 1 bx- 3/8 cr 1- -i_

w3 * 2/3 V 1A °2='i^

1
w, = arbitrary co4 3 3w4

By imposing in turn the conditions w2^,

and cx=0 one obtains the respective values of the parameter
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1/6, 1/2, 1/12, 2/3, 1/4 and hence determines respectively 

the coefficients 4III1, 4III2, 4III3, 4III4, and 4III5 of 

Table 3.6.

Similarly, one assumes a=l/2 in (3.21-3.28) and then 

eliminates w2> w from (3.21), (3.22) and (3.23) to obtain

b(b - 1) (b - l/2)w = 0 (3.54)

It is easily shown that w^^O and b=l yield impossible solutions 

while b=l/2 duplicates Method 411. As a result, b=0 and this 

value determines the following method:

Method 4IV

w = 1/6 - w^ a = 1/2 b = 0 c = 1
1 3

w£ • 2/3 1/2 bx= -1/(12w3) ct =-1/2 - 6w^

w^ = arbitrary b2= l/(12w^) c^ =3/2

\ = 1/6 C3 = 6w3

Insisting in turn the conditions w1=w2, w-pw-p w2=w^, w^^^ 

and Cj=O, one obtains the values w^= -1/2, 1/12, 2/3, 1/6, and 

-1/12 and hence each of these values for w^ respectively 

determine the coefficients 4IV1, 4IV2, 4IV3, 4IV4, and 4IV5 

of Table 3*6.

Table 3.6 now follows.
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Table 3.6

Method W1 *2 w3 W4 a b bl b2 c C1 C2 C3

411 1/8 3/8 3/8 1/8 1/3 2/3 -1/3 1 1 1 -1 1

412 1/6 0 2/3 1/6 1/4 1/2 0 1/2 1 1 -2 2

4111 1/6 1/6 1/2 1/6 1/2 1/2 1/6 1/3 1 0 “1/2 3/2

4112 1/6 1/2 1/6 1/6 1/2 1/2 “1/2 1 1 0 1/2 1/2

4113 1/6 1/3 1/3 1/6 1/2 1/2 0 1/2 1 0 0 1

4U4 1/6 0 2/3 1/6 1/2 1/2 1/4 X/4 1 0 -1 2

4III1 1/6 0 2/3 1/6 1 1/2 3/8 1/8 1 -1/2 -1/2 2

4III2 1/6 ■-1/3 2/3 1/2 1 1/2 3/8 1/8 1 1/2 -1/6 2/3

4HI3 1/6 1/12 2/3 1/12 1 1/2 3/8 1/8 1 -2 -1 4

4III4 1/6 -1/2 2/3 2/3 1 1/2 3/8 1/8 1 5/8 -1/8 1/2

4III5 1/6 ■-1/12 2/3 1/4 1 1/2 3/8 1/8 1 0 “1/3 4/3

4IV1 2/3 2/3 “1/2 1/6 1/2 0 1/6 -1/6 1 5/2 3/2 -3

4IV2 1/12 2/3 1/12 1/6 1/2 0 -1 1 1 -1 3/2 1/2

4IV3 “1/2 2/3 2/3 1/6 1/2 0 -1/8 1/8 1 -9/2 3/2 4

4IV4

4LV4

0

1/4

2/3

2/3

1/6

-1/12

1/6

1/6

1/2

1/2

0

0

-1/2

1

1/2

-1

1

1

-3/2

0

3/2

3/2

1

-1/2
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In section II, we derived a Runge-Kutta third order 

procedure due to Conte and Reeves which reduced the number of 

storage registers required to solve (2.47) from 3N+A to 2N+A. 

A similar treatment of Runge-Kutta fourth order methods, namely 

the reduction of storage registers, is now considered.

To solve (2.47) using the fourth order method (3.11- 

3.15), one may easily see that 4N+A storage registers are 

required where again A is a constant of the program (see p.16). 

Although the simultaneous first order differential equations 

(2.47) could be treated in a similar manner, let us for the 

sake of simplification consider the solution of

g - f(x,y) y(xo) - y0 (1.00)

using (3.11-3.15). In view of applying (3.11-3.15) to (1.00) 

the maximum number of storage registers required, namely four, 

occurs at that stage of the numerical procedure when one 

stores the quantities

y + b,K3 + bLJo 11 2 2
y0 + ciKi + °2k2 (3-55)

yo + w1K1 + w2K2

and

As a result, if one is able to reduce the number of 

registers required at this stage of the calculation to three, 

then one never exceeds this number for the entire program.

ClQax,lyJ three registers will suffice if the quantities
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(3.55) to be stored are linearly dependent. (3.55) will 

be linearly dependent if

1 b b
1 2

1 ci c2 = 0 (3.56)

1 *1 W2

and will be referred to as the condition for minimum storage.

One examines the compatibility of our fourth order 

methods with (3.56).

S. Gill examined Method 4U together with condition

(3.56) and obtained the following equation;

18w^ - 12w +1 = 0 (3.57)
3 3

having roots 1. + 1.
-3 “Jd-jf) d.58)

The coefficients obtained using (3-53) for Method ZJI are due 

to Gill and are given by Table 3*7 which follows.

Table 3-7

Gill I

wx 1/6

w2

Gill II Gill I Gill II

2 -i
1+2 2

1/6

j{1+2"2)
bl

b2
w3 -|(l+2 2) -^(l-2"2) c 1 1

w4 1/6 1/6 C1 0 1 0 1
"2

a 1/2 1/2 C2 -2
-J

2 2
n A

b 1/2 1/2 c3 1+2 2 1-2 2
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Thus, the preceding modifications due to Gill choose 

intermediate points for (3.11-3.15) which minimize the 

number of storage registers required in the program to just 

three. In order to utilize the modification due to Gill, a 

scheme for Gill I which successively evaluates the quantities 

y^, 1^, IL i=l,2,3,4 is illustrated below. At the jth 

evaluation in our program, one continues the calculations 

as follows: going across, one has

yl = y(xj) 

y2 = yl + iKl 12 = K1 K^=hf (xj+|h,y2)

y3=y2+(l-2*^)(K2-l2) l3=(2-2^)K2+(-2+3-2’2)l2 K =hf (Xj+|h,y3)

y4=y3+(l+2"2)(K3-l3) 1 =(2+2^)K^+(-2-3"2_2)lj K^-hf (Xj.+h,y4>

r5-JV K 'K “ y(xj+i)

and by replacing y.^ by y^, then one again repeats the above 

calculations of y±, K, and IL. For an example of the above 

scheme see program 3-1.

Considering Method 4IH in view of condition (3.56) 

one obtains no solution. Similarly, (3*56) is incompatible 

with Method 4IV.

Using (3.56) Gill has developed coefficients for two 

fourth order methods which reduce the number of storage
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registers required for the solution of (2.47) from (4N+A) 

to (3N+A). One now considers whether the number of storage 

registers can be reduced for fourth order methods for which 

the coefficients have been previously obtained. In one such 

case, Blum has considered coefficients 4H3 of Table 3.6 and 

modified the order of operations to obtain a sequence of 

calculations which require only 3N+A registers to solve (2.47).

The following modification due to Blum determines a 

saving of N storage registers by calculating the quantities 

Pf, q^, r^ i=0,1,2,3, in that order. Let

(yj)N - (y0,y1,...,yH)

and define

(a)N + (b)N - (a+b)H

The Blum procedure is then given horizontally by j=O,l...N

Po = (ypN qo * yj ro=hf?U

px = p0 + <ro/2)N - r0 rrhfj(pi)

P2 = PT + (ri/2-qi/2)N 12 “ 'll/6 lyhf

P3 ” P2 + (r2JN q3 = q2~r2 r3=hfj<P31+2r2

p4 ’ P3 + <q3 + r3/6)N

and the sequence of operations is repeated by replacing pQ 

by p . It is clear that the above process requires only 3N+A
7 4
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storage registers, but furthermore one now shows the above

Blum modification is equivalent to the Method 4113 of Table 

3.6 page 39.

Using program notation for K.. i=0,1,2,3 j=O,...N,
J i

one first notes that K. =hf (p^)=r andJu j 0 o 
prpo+(ro/2>N“<yj+ kjo/2)n

Furthermore
Kjl“hfJ((7J+KjO/2)N’ ■hfj(Pl’"rl

and
q = r = K

0 JO
which give , , .

p2“po+(ro/2+rl/2‘l’l/2)N=(yj+Kj/2)N 

and thus
KJ2“hf;i«yj+Kjl/2>N) =

Also . ,
and q2=KJ0/6

and thus . . . .
P3=(yj+Kjl/2+Kj2'Kjl/2)N_(yj+Kj2)N 

determines t t . . .
53"hfJ((VKJ2,N>-hf?P3)

from which it immediately follows that

r3=Kj3+2(KJ2*Kjl/2)=Kj3+2Kj2‘Kjl

’3"’2’r2“KjO/6-Kj2+KJl/Z 1

as a result .
P4“P3+<<l3+r3'6)N

"(yj+Kj2+Kjc/6-Kj2+Kjl/2
+(Kj3^2-Kjl)/6)K 

“(yj+(KJO+2Kjl+2Kj2+Kj3)/6)N
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which is the solution obtained by using Method 4113 of 

Table 3.6 and hence verifies the equivalence. For a program 

incorporating the Blum modification see program 3-2 in the 

Appendix.

In order to compare third and fourth order Runge- 

Kutta methods, one uses the fourth order program 3-3 to solve 

the differential equation

— = y(4 - 3/2tan£/2)*) at (0,1) (2.75)

having the analytic solution y = e^ cos (3/2)*. Results, 

using a third order method, have been obtained for (2.75) in 

Table 2.3; fourth order results now follow on page 46 for 

(2.75), given in Table 3.#.

In Table 3*8, one observes immediately the similarity 

of the results using 4113 and Blum. This fact is not surprising 

for Blum only rearranged the computing order of Method 4H3 

and used exactly the same coefficients in his numerical solution 

so that comparable results should be obtained.

On comparing Table 2.3 and Table 3.6 for the same 

increments h, one observes that the fourth order methods 

are more accurate but more computing time is required. However 

although computing time for fourth order methods exceeds 

that for third order methods, the reduction in error so 

obtained is well worth the expense of computing time. The 

following illustrates the point in question. Using the same



Table 3.8 -46-
Method y(l) ye(l) E(l)

0(0.25)1 411 51..33620 51..31352 50..72676
4113 51..33620 51.. 24901 51..13719
Gill I 51..33620 51..26200 51..12420
Blum 51..33620 51..24901 51..13719

0(0.2)1 411 51..33620 51..32893 50..57272

4113 51..33620 51..30551 50..80693
Gill I 51..33620 51..30690 50..79296
Blum 51..38620 51..30551 50..80691

0(0.125)1 411 51..38620 51..36575 50..20447

4H3 51..33620 51..36407 50..22129
Gill I 51..38620 51..36254 50..23660

Blum 51..38620 51..36407 50..22129

0(0.1)1 411 51..38620 51..37551 50..10677

4U3 51..38620 51..37523 50..10949

Gill I 51..38620 51..37427 50..11916

Blum 51..38620 51..37523 50..10948

0(o.05)l 411 51..38620 51..38522 48..96169

4113 51..38620 51..38527 48..91400

Gill I 51..38620 51..38516 49..10212

Blum 51..38620 51..38527 48..91171

0(0.04)1 411 51..38620 51..38580 48..40398

4U3 51..38620 51..38582 48..38528

Gill I 51..38620 51..38577 48..42763

Blum 51..38620 51..38581 48..38681
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increment h=0.05, one obtained

Method Error Time

3112 50..53424 3 min, 26 sec

4113 48..91400 4 min, 40 sec

However, to obtain the error of Method 3112 using 4113, one 

required a time of 2 min, 24 sec when h=0.1. On the other 

hand, if one uses Method 4113 for the same computing time 

as for Method 3112, namely 3 min, 26 sec, then one obtains an 

error of the magnitude 49*.21168, an increment of h=s0.0625 

being used. This value of the error 49..21168 is seen to be 

a significant improvement over that of Method 3112.

Other results obtained supported the above 

observation that for the same amount of computing time, the 

fourth order methods reduced the error more than using 

the third order numerical methods.

There is no immediate purpose in solvingother 

differential equations at this point; hence further examples 

will be given at the end of the next section.



SECTION IV

RUNGE-KUTTA METHODS WITH MINIMUM

ERROR BOUNDS

One thus far has derived Runge-Kutta methods with 

respect to symmetry of coefficients, reduction of operations, 

and minimization of the number of storage registers. With 

rapid computers presently available, it may be argued that the 

reduction of operations to save time is unimportant. 

Furthermore, minimizing the number of storage registers may 

again seem insignificant as modern computers have been so 

manufactured to supply an indefinite number of storage 

locations.

As a result, one now examines another criterion in 

deriving Runge-Kutta numerical methods which is to obtain 

methods with the least error. Among the infinity of third and 

fourth order Runge-Kutta methods available, there must exist 

one unique set of coefficients for each order which minimize 

the truncation error as derived previously ( see Section I, 

equations (1.72), and (1.75) page 7)

Using the above point of view , A. Ralston has 

obtained a set of coefficients respectively for order three and 

four which satisfy the requirement that a bound on the 

truncation errors of order three and four is minimized.

To obtain a bound on the truncation errors, we require 

the following notation: for a region about the numerical

-43-
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solution (*n,yn) of (1.00), define the constants M, and L, 

by
[ f(x,y) < M (4.00)

3 i+jf + .
<)x1^yj < (4.01)

Then, using the expression (1.72) for the third order

truncation error, and the above notation, one obtains the 

following bound on E for the Runge-Kutta third order methods:

3
| E|<(8|e,| + |e I +I2ep+e I + |e,+e7l + 2|e4+2|e l)ML

313 34 (4.10) 
where

e3 = 1/24 - C2(a+b)-3ab3/36 (4-11)

e2 = 1/24 - a/12 (4-12)

e3 = 1/8 - b/6 (4/13)

e = 1/24 (4.14)
4

Using program 4-1, one easily establishes that (4.10) will

be minimized when a=l/2 , b=3/4 in which case (4.10) becomes

IEK1/9ML3 (4.20)

and the equations of our numerical solution become

= hf(x,y) (4.30)

K2 - hf(x+h/2, y+Kx/2) (4.31)

= hf(x+3h/4, y+3K2/4) (4.32)

and the increment in y is given by

dy = (2K^+ 3^2+ 4K^)/9 (4»33)
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As a basis of comparison, the coefficient e in

\E|< eML' (4.34)

is computed for the third order methods previously obtained.

For example, using the coefficients of Method 3II, one obtains 

the value

e = 2/3

and hence for all numerical solutions derived from Method

3II, the error obtained is bounded by the expression

I I <. 3^'

Similarly, using the coefficients of Method 3III, one obtains 

the bound on the error to be

\ I < -

In calculating the error bounds for coefficients derived 

from Method 31, one uses the corresponding value of a and b 

in expressions (4.11-4.13) and together with (4.10) is able 

to evaluate e in (4.34). The values of e for two solutions of 

Method 31 are given. If a»l/3 and b=>2/3, one obtains a 

solution due to Heun (Method 315) for which the error is 

given as . 25 3

and similarly if a=l/2 and b-1, one determines the error bound

l I < v®-3
4
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for a method referred to as Simpson’s one-third rule (see 

Method 312, page 21).

Thus a minimum value of the bound (4.10) occurs when 

a~l/2 and b=3/4, and theoretically, the third order Runge- 

Kutta method obtained when a=l/2 and b=3/4 will give the least 

error. The following examples illustrate this result.

Using the best results of Table 2.3 and the results 

obtained using Ralston’s third order coefficients, one obtains 

Table 4.1

Table 4.1

Method y(l) ye(l) \e(1)\

0(0.25)1 3III3 51..38620 51..48010 50..93902

Ralst, 51..38620 51..45124 5O..65O4O

0(0.2 )1 3IH3 51..38620 51..45826 50..72062

Ralst. 51..38620 51..43947 50..53268

0(0.1)1 31113 51..38620 51..40503 50..18849

Ralst 51..38620 51..40186 50..15679

0(0.05)1 3III3 51..38620 51..38908 49..28957

Ralst. 51..38620 51..38875 49..25715

From the above Table 4.1, Ralston’s coefficients give the 

best numerical solution. The following differential equation

2xX-- at (0,5)
dx x2 + 1
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which exhibits an analytic solution

y » 5_____
x^ + 1

again is best solved using Ralston’s coefficients as seen 

by Table 4.2 which follows:

Table 4*2

Method y(l) ye(l) ^E(l)^

0(0.5)1 312 51..25000 51..25232 49..23163

315 51..25000 51..25159 49..15907

3III3 51..25000 51..24909 43..91243
Ralst. 51..25000 51..25090 43..90256

0(0.25)1 312 51..25000 51..25022 43.21935

315 51.,25000 51..25014 43..14267

3II13 51..25000 51..249^7 43..13423

Ralst. 51..25000 51..25006 47..59509

0(0.2)1 3L2 51..25000 51..25011 43..10605

315 51..25000 51..25007 47..67520

3III3 51..25000 51..24993 47..69427

Ralst. 51..25000 51..25003 47..25940

0(0.125)1 312 51..25000 51..25002 47..24414

315 51..25000 51..25001 47..14496

3III3 51..25000 51..24993 47..17166

Ralst. 51..25000 51..25001 46..53406

0(0.1)1 312 51..25000 51..25001 47..11326

315 51..25000 51..25001 46..72479

3IH3 51..25000 51..24999 46..37733

Ralst• 51..25000 51..25000 46..3O513
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It may be remarked that the preceding examples 

have been chosen to illustrate favourably the derived results. 

This is indeed so; that the method is not infallible is seen 

by the results of Table 4»3 for the differential equation

” ytan x + 2ex at (0,0)

having an analytic solution

y = e “(1 + tan x) - sec x

From Table 4-3, it is obvious that the Method 312 

yields less error than that using Ralston*s third order method. 

However, although in some cases, as for example the preceding 

differential equation, it may appear that Ralston’s method 

is not the best one, it must be said that in solving a 

differential equation for which the analytical solution is 

unknown, one would rather use a method which theoretically 

yields the smallest error rather than some other numerical 

method.

Continuing with Ralston’s third order method, 

one would predict that a method which works best for first 

order differential equations will also work best for systems 

of first order differential equations. As a result, a number 

of such systems were considered and the results obtained were 

favourable. One such example is presented here. Program 4-2 

was used to obtain the results. The second order equation 

considered, which is easily written as a system of first order



Table 4.3

Method y(l) ye(l) |E(1)|
0(0.25)1 312 51..51009 51..51079 48..69580

315 51..51009 51..50776 49..23346

3III3 51..51009 51..50879 49..13023

3H4 51..51009 51..50559 49..45036

Ralst, 51..51009 51..50884 49..12543

0(0.2)1 312 51..51009 51..51048 48..38300

315 51..51009 51..50881 49..12894

3III3 51..51009 51..50939 48..70496

3114 51..51009 51..50758 49..25154

Ralst. 51..51009 51..50941 48..68054

0(0.125)1 312 51..51009 51..51020 48..10452

315 51..51009 51..50974 48..35095

3III3 51..51009 51..50991 48..18539

311+ 51..51009 51..50939 48..69962

Ralst. 51..51009 51..50991 48..18005

0(0.1)1 312 51..51009 51..51015 47..52643

315 51..51009 51..50991 48.,18845

3III3 51..51009 51..51000 47..99182

311 + 51..51009 51..50972 48..37613

Ralst. 51..51009 51..51000 47..96893

0(0.05)1 312 51..51009 52..51010 46.,45776

315 51..51009 51..51007 47..25940

3III3 51.,51009 51..51008 47..14496

3 H + 51..51009 51..51005 47..51880

Ralst. 51..51009 51..51008 47..13733
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differential equations, was

A_L+ 4—+ 5y a. ioe”^X
dxz dx

satisfying the initial conditions

X = °, y = 4, -^=0

and having the analytic solution

y = e 2x(13sin x - cos x) + 5© ^x ;

Although for h=0.9 in Table 4.4 for the above differential 

equation Ralston’s method may not seem the best, its superiority 

becomes evident as h is decreased.

Table 4*4 now follows, after which the truncation 

error for Runge-Kutta methods of order four will be 

considered.
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Method y(3.6) ye(3.6) 1 E(3.6)|

0(0.9)3.6 312 -48..35234 -50..71700 50..71348

3114 -48..35234 -50..71648 50..71296

3III4 -48..35234 -50..71649 50..71297
Ralst. -48..35234 -50..79608 50..79255

0(0.6)3.6 312 -48..35234 -49..29099 49..25576

3H4 -48•.35234 -49.-29449 49..25926

3III4 -48..35234 -49..29449 49..25926

ftalst. -48..35234 -49..29334 49..25811

0(0.4)3.6 312 -48..35234 -48..74432 48..39198

3114 -48..35234 -48..75515 48..40280

3III4 -48..35234 -48..75516 48..40281

ftalst. -48..35234 -48..72851 48..37616

0(0.3)3.6 312 -48..35234 -48..48562 48..13427

3H4 -48..35234 -48..49046 48..13812

3III4 -48..35234 -48..49046 48..13812

Raist• -48..35234 -48..48045 48..12811

0(0.2)3.6 312 -48..35234 -48..38574 47..33391

3114 -48..35234 -48..38670 47..34355

3II14 -48..35234 -48..38671 47..34363

ftalst. -48..35234 -48..38417 47..31824
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For the fourth order methods of Section III, one 

utilizes the notation (4.00-4.01) and laboriously derives a 

bound on the fourth order truncation error (1.75) as

|E|<(16tej + 4|e2\ + le,+3e I + I2e +3e3l +|e +e 1 + le.l

+^6,1 +1e+1 Ze^+e. I +1e^+e +e I + le^l
+ I2e6+e7l + le?,|+ 2te&|)ML4 (4-40)

where
ex = ^(a^-a/<')w2 + • 1/4&0 (4-41)

e2 = ab2w3(l-b2)/2 - 1/30 (4.42)

= 1/120 -ta^b2wj + (a^c-g+b^ Jw^/6 (4.43)

e4 “ a2b2w3(l-b)/2 - 1/120 (4.44)

e^ = 1/120 - a/48 (4.45)
= 1/40 -£a2b22w3 + (ac^+bc^ )2w^/2 (4.46)

e? = 7/120 - (l+b)/24 (4-47)

efc = 1/120 (4.48)

Using program 4-3, one determines that the values

a aa 0.4 b = 0.45574

will minimize the bound (4.40) on the fourth order truncation 

error and this bound will be given by

— 9 4I El < 5.46x10 zML

By using inturn the coefficients 411, 4HI, 4IV in (4.40) 

one obtains respectively the values Wj~5/3> w^=10/51> and 

w^=-5/78 which will minimize the bound (4.40) on the 

truncation error. The bounds for Methods 411> 4III, 4IV are
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given respectively by

1E|< 7»22X1O”2ML4

|E|< 19.72xlO"2ML4

|EI< 17.64X1O~2ML4 ;

as a result, the best bound on the fourth order truncation 

error occurs for Method 41.

When a=0.4 and b=0.45574> the Runge-Kutta fourth order 

equations will be given by

= hf(x,y)

K2 = hf(x + 0.4h, y + 0.4K,)1
K = hf(x + O.45574h, y+0.29698^+0.15376K£) 

K4 = hf(x + h, y+0.21810^-3.0509^+3.3329^) 

dy = 0.17476^-0.55143^+1.2055^+0.17113^

and will be denoted as the Ralston I method. Before illustra­

ting the method numerically, one may wish to compute the 

value of e defined by
4

|E\< eML

for fourth order coefficients that have been obtained 

previously. For example, if one uses (4*40) and coefficients

411 and 412 of Table 3*6, one obtains respectively the error 

bounds 4
|EK9-91X1O ML

and o 4
IEK11.93x10"2ML

If on the other hand, one uses the coefficients Gill I on 

page 41, then the error bound becomes
1EI<8.83x10"2ML4
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Recalling the coefficients for the relationship 

a+b—1 (page 29), one uses them in (4.40) and obtains a numerical 

method denoted as Ralston II having rather simple coefficients. 

When a=2/5, (4*40) is a minimum and the equations for the 

Ralston II method are given by

Kx » hf(x,y)

K2 » hf(x + 2/5h, y + 2/5KJ

= hf(x + 3/5h, y - 3/20^ + 3/4Kq )

K4 = hf(x + h, y + 19/44K1- 15/44K2+ 1O/11K3) 

dy = (11^ + 25K2 + 25K3 + 11K )/72

for which the error bound is given by

|E(< 7.70X10"

Numerical examples now follow. Program 3-3 ./as used to 

obtain the results.

For the differential equation of Table 3*8, one obtains 

the following values using Ralston I coefficients.

Table 4.5

y(D ye(l) |E(1)(

0(0.25)1 51..36620 51..33559 5O..5O6O6

0(0.2)1 51..36620 51..35761 50..26590

0(0.125)1 51..36620 51..37732 49..66641

0(0.1)1 51..36620 51..36162 49..45670

0(0.05)1 51..36620 51..36574 46..43963

0(0.04)1 51..36620 51..36601 46..19035
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Comparing Tables 3.8, and 4.5, one notes that Ralston I 

method has the smallest error. Another example which is 

favourable is the differential equation

■J-rh- at(0’1) u.49)
having an analytic solution y = (1 + x)\ The results 

for the differential equation are given in Table 4.6

On examining Table 4.6, one again notes the similarity 

of results for Method 4113 and Blum (see 45th page). 

Furthermore, using Ralston I coefficients, one obtains, as 

desired, the least error.

As mentioned beforehand, one choses examples to best 

illustrate the theory. However, for the examples computed 

using fourth order numerical methods, the majority of the 

differential equations indicated the least error when 

Ralston I coefficients were used. Thus in solving a diff­

erential equation of which no analytic solution is known, 

one would clearly use a method which theoretically minimizes 

the error. Furthermore when fourth order methods were applied 

to systems of first order differential equations, Ralston’s 

method was favourable in that the least error was obtained.

Table 4.6 now follows for the differential equation 

(4.49).
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Method y(D ye(i) ( E(l)|
0(0.25)1 411 52..160000 52..15939 49..60928

4U3 52..16000 52..15937 49..63003
Blum 52..16000 52..15937 49..63034
Gill 52..16000 52..15937 49..63080
Rai st I 52..16000 52..15946 49..53955
Rai st II 52..16000 52..15938 49..62271

0(0.2)1 411 52. .16000 52..15972 49..28717

4U3 52..16000 52..15971 49..29709
Blum 52..16000 52..15971 49..29694
Gill 52..16000 52..15994 49..29861

Ralst I 52..16000 52..15975 49..25314

Ralst II 52..16000 52..15971 49..29358

0(0.1)1 411 52..16000 52..15995 48..55084

4113 52..16000 52..15995 48..57068

Blum 52..16000 52..15995 48..57068

Gill 52..16000 52..15994 48..58289

Ralst I 52..16000 52..15995 48..47455

Ralst II 52..16000 52..15995 48..56458

0(0.05)1 411 52..16000 52..15998 48..26550

4113 52..16000 52..15998 48..27618

Blum 52..16000 52..15998 48..28229

Gill 52..16000 52..15998 48..27855

Ralst I 52..16000 52..15998 48..22736

Ralst II 52..16000 52..15998 48..27161
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APPENDIX

Program 2-1

1. TITLE GRAPH POLY DEG 6
2. BEGIN
3. a1 : carr(1)
4. A=KEYBD
5. B=KEYBD
6. C=KEYBD
7 D=KEYBD
8. E=KEYBD
9. F=KEYBD

10. G=KEYBD
11. carr(1)
12. x1=KEYBD
13. H=KEYBD
14. x2=keybd
15. carr(2)
16 FOR x=x1(h)x2 begin
17. print(fl)=x
18. ye=a*(abs xh6+B*(ABS x|f4*x

+c*(abs xH4+d*(abs x)f2*x 
+E*(aBS x)t2+F*X+G

19. print(fl)=ye
20. CARr(1) END
21. BELLS(1)
22. GO TO a1
23. END

program 2-2

1- TITLE ROOT POLY DEG 6
2. LIBRARY S|n(0101000)

cos(0168000)
3. FUNCTION (aA,BB,CC,DD,EE,FF,

gg,xx=kk)
4. BEGIN
5. kk=aa*(abs xx|f6+bb*(abs XX)t4*xx

+cc*(abs xx)t4+DD*(ABS xx)t2*xx 
+ee*(abs Xx)t2+ff*xx+gg

6. RETURN
7. END
8. begin
9. carr(I)
10. A=KEYBD
11. B=KEYBD
12. C=KEYBD
13. D»KEYBD
14. £=KEYBD
15. F=KEYBD
16. G-KEYBD
17. carr(1)
18. start: x1=keybd
19. x2=keybd
20. carr(1)
21. calc: ff(a,b,c,d,e,f,g,x1«fx1)
22. print(fl)=fx1
23. ff (a,b,c,d,e,f,g,x2=fx2)
24. print(fl)=fx2
25. r=(x1*fx2-x2*fx1)/(fx2-fx1)
26. print(fl)=r
27. i=keybd
28. carr(1)
29. if 1=0 begin
30. x1=r
31. GO TO CALC END
32. GO TO START
33. END
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Program 2-3

1. TITLE RUNGE KUTTA 3RD ORDER ITERATIVE
2. LIBRARY SIN (O1O1OOO), COS (O163OOO), ARCTN (0164000)
3. DATA A(9,9), XX 0), k(1)
4. SUBSCRIPTS (|,j), M
5. FUNCTION FF (HH,XX,YY=Kk)
6. BEGIN
7. kk=»hh*(xx+yy)
8. RETURN
9. END

10. BEGIN
11. carr(1)
12. N=KEYBD
13. X1=KEYBD 45. Y=Y+DY ENr
14. x2=keybd 46. print(fl)=x
15. y1=keybd 47. print(fl)=y
16. carr(1) 48. ye=2*exp x-x-1
17. y«y1 49. print(fl)=ye
18. NN-N-1 50. YET-Y-YE
19. NP=NN*N 51. PR|NT(fl)=YET
20. for i=0(1)nn begin 52. y=y1
21. FOR j=O(n)np begin 53. carr(3) £ND END
22. stop 54. finish: bells(2)
23. read(p)xx 55. end
24. a[i,j]=xx[0] end end
25. carr(1)
26. for i=0(1|nn begin
27. for j=£)(n)np begin
28. IF a[l,j]=o begin
29. go to finish end
30. h=a[I,JJ
31. print(fl)=h
32. x3=x2-h
33. for x»x1(h)x3 begin
34. xv=x
35. YV=Y
36. ff (h,xv,yv=k[0))
37. xv=x+0.89255*h
38. yv=y+0.89255*k[01
39. ff (h,xv,yv=k[OJ)
40. dy=0.35098*k[0]
41. xv=xx+0.28871 *h
42. YVoY+O.28871*k[0]
43. ff (h,xv,yv=k[0])
44. dy=dy+0.64902*k[0]
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Program 2-4

1. TITLE CONTE REEVES 3RD ORDER 2n+A
2. LIBRARY SIN (O1O1OOO), COS (0168000), ARCTN (0168000)
3. data a(9,9), xx(1), k(1)
4. SUBSCRIPTS (l,j), M
5. FUNCTION FF (HH, XX, YY=Kk)
6. BEGIN
7. kk=hh*(xx+yy)
8. RETURN
9. END

10. BEGIN
11. carr(1)
12. N=KEYBD
13. Xl=KEYBD
14. x2=keybd
15. y1»keybd
16. carr(1)
17. Y-Yl
18. NN=N—1
19. NP=NN*N
20. for i=0(1Inn begin
21. for j=0(n)np begin
22. stop
23. read(p)xx
24. a[i,j]=xx[O] end end
25. carr(1)
26. for i=0(1|nn begin
27. FOR J=0(n)NP BEGIN
28. if a[i,j]=0 begin
29. go to finish end
30. h=a[I,j]
31. print(fl)=h
32. x3=x2-h
33. for x=x1(h)x3 begin
34. xv«x
35. YV=Y
36. ff (h,xv,yv=k[O])
37. xv=x+0.62654*h
38. yv=y+0.62654*k[01
39. ff (h,xv,yv=k [0])
40. y=yv
41. xv=x+O.075426*h
42. yv=y-0.55111*k[0]
43. y=y+0.85614*k[0]
44. ff (h,xv,yv=k[0J)

45. y«y-O.48268*k[O] end
46. print(fl)=x
47. print(fl)=y
48. ye=2*exp x-x-1
49. print(fl)=ye
50. yet«y-ye
51. print(fl)=yet
52. y=y1
53. carr(3) end end
54. finish: bells(2)
55. END
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Program 2-5

1. TITLE RUNGE KUTTA THIRD ORDER GENERAL READ
2. library sin (0101000), cos (0168000), arctn (0164000)
3. DATA p(5). pp(5), s(4), a(9,9), q(5), k(3), aa(5), bb(5), cc(4),

xx(1)
4. SUBSCRIPTS M, ( I, j)
5. FUNCTION FF (HH,XX,YY=Kk)
6. BEGIN
7. kk=HH*yy*(4-1*5*sin (1o5*xx)/cos (1o5*xx))
8. RETURN
9. END

10. BEGIN
11. carr(1)
12. N=KEYBD
13. x1=KEY8D
14. x2=keybd
15. Y=KEYBD
16. carr(1)
17. RR=O
18. SS=KEYBD
19. TT=KEYBD
20. carr(1)
21. NN=N—1
22. NP=NN*N
23. for i=0(1|nn begin
24. for j=0(n)np begin
25. stop
26. tabs(1)
27. read(p)xx
28. a[i,j]=xx[0] end end
29. bells(2)
30. stop
31. carr(1)
32. a1:read(p)aa
33. read(p)bb
34. read(p)cc
35. for m=0(1)4 begin
36. p[m]=aa[m]
37. print(fl)=p[m] end
38. carr(1)
39. for m=0(1)4 begin
40. pp[m]=bb[m]
41. print(fl)=pp[m] end
42. carr(1)
43. for m=0(1)3 begin
44. s[m]=>cc[mj
45. pr|nt(fl)=s[m] end
46. carr(3)
47. for m=0(1)4
48. q[m]=p[m]/pp[m]
49. for i=0(1)nn begin
50. for j=0(n)np begin

51. IF a[ I,BEGIN
52. GO TO FINISH END
53. h»a[|,j]
54. print(fl)=h
55. x3=x2-h
56. for x=x1(h)x3 begin
57. ff (h,x,y=k[0])
58. xv=x+q[1]*h
59. yv=y+q[1]*k[0]
60. ff (h,xv,yv=k[1])
61. xv-x+q[2]*h
62. yv=y+q[3J*k[0]+q[4]*k[1]
63. ff (h,xv,yv=k[2])
64. T =0
65. for m=0(1)2
66. t^t+s[h]*k[m]
67. dy=t/s[3]
68. Y=Y+DY END
69. print(fl)=»x
70. YE=EXP (4*x)*C0S (1o5»x)
71. print(fl|=ye
72. pr|nt(fl)=y
73. YET-YE-Y
74. print(fl)=yet
75. y«1
76. if tt=10 begin
77. STOP END
78. carr(3) end end
79. finish: rr=rr+1
80. carr(5)
81. IF RR<SS BEGIN
82. carr(3)
83. GO TO a1 end
84. bells(2)
85. END
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Program 3-1

1. TITLE GILL | FOURTH ORDER
2. LIBRARY SIN (0101000), COS (0168000), ARCTN (0164000)
3. DATA a(9,9), xx(1)
4. SUBSCRIPTS (|,j), M
5. FUNCTION FF (HH,XX,YY=Kk)
6. BEGIN
7. kk=hh*(xx+yy)
8. RETURN
9. END

10. BEGIN
11. carr(1)
12. N=KEYBD
13. X1=KEYBD
14. x2=keybd
15. yIsKEybd
16. tt=keybd
17. carr(1)
18. Y=Yl
19. NN»N-1
20. NP=NN*N
21. FOR i=0(11nn begin
22. FOR j=0(n)np begin
23. stop
24. carr(1)
25. read(p)xx
26. A[l,j]=xx[O] end end
27. carr(1)
28. for i=O(1)nn begin
29. FOR j=0(n)np begin
30. IF a[i,j]=0 begin
31. GO TO FINISH END
32. h=a[i,j]
33. print(fl)=h
34. x3=x2-h
35. FOR x=x1(h)x3 begin
36. xxx-x
37. YY=Y
38. FF (h,xxx,yy=kk)
39. xxx=x+h/2
40. YYaYY+KK/2
41. QQ=KK
42. FF (h,xxx,yy=kk)
43. xxx=*x+h/2
44. yy=yy+(1-1/sqrt 2)*(kk-qq)

45. qq=(2-sqrt 2)*kk+(3/sqrt 2-2)*qq
46. FF (h,xxx,yy=kk)
47. xxxasx+H
48. yy=yy+(1+1/sort 2)*(kk-qq)
49. qq=(2+sqrt 2)*kk+(-2-3/sqrt 2)*qo
50. ff(h,xxx,yy=kk)
51. y-yy+kk/6-qq/3 end
52. print(fl)=«x
53. print(fl)=«y
54. ye«2*exp x-x-1
55. print(fl)=yc
56. YET®YE-Y
57. print(fl)=yet
58. y=y1
59. IF TT»10 BEGIN
60. STOP END
61. carr(3) end end
62. finish: bells(5)
63. END
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Program 3-2

1. TITLE BLUM MODIFICATION ORDER FOUR
2. LIBRARY SIN (O1O1OOO), COS (0168000), ARCTN (0164000)
3. DATA a(9,9), xx(1)
4. SUBSCRIPTS (|,j),M
5. FUNCTION FF (HH,XX,YY=Kk)
6. BEGIN
7. kk=hh*(xx+yy)
8. RETURN
9. END

10 . BEGIN
11. carr(1)
12. N=KEYBD
13. x1=KEYBD
14. x2=keybd
15. y1=keybd
16. TT=KEYBD
17. carr(1)
18. f0=1
19. y=y1
20. NN=N—1
21. NP=NN*N
22. FOR i=0(1)nn BEGIN
23. FOR j=O(n)np BEGIN
24. stop
25. tabs(1|
26. read(p)xx
27. a[|,j]=Xx[O] END END
28. carr(1)
29. FOR 1=0(1)nn begin
30. FOR j=O(n)np begin
31. IF a[I,j]=0 BEGIN
32. GO TO finish end
33. h=a[l,j]
34. print(fl)=h
35. x3=x2-h
36. for x=x1(h)x3 begin
37. ax=x
38. ay=y
39. FF (h,ax,ay=vv)
40. bx=x
41. BY=Y
42. cx=h*fO
43. cy=vv
44. ax=ax+cx/2
45. ay=ay+cy/2
46. FF (h,ax,ay=vv)
47. bx=cx
48. BY=CY

49. cx=h*fO
50. CY=VV
51. ax=ax+cx/2-bx/2
52. ay=ay+cy/2-by/2
53. ff (h,ax,ay=vv)
54. bx=bx/6
55. by=by/6
56. cx=h*fO-cx/2
57. cy=vv-cy/2
58. ax=ax+cx
59. ay=ay+cy
60. FF (h,ax,ay=vv)
61. bx=bx-cx
62. BY=BY-CY
63. cx=h*fO+2*cx
64. cy=vv+2*cy
65. y=ay+by+cy/6 end
66. print(fl|=x
67. print(fl)=y
68. ye=2*exp x-x-1
69. print(fl)»ye
70. YET=Y-YE
71. PR I NT(FL)=Y£T
72. IF TT=10 BEGIN
73. stop end
74. y«y1
75. carr(3) end end
76. finish; bells(5)
77. END
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1. TITLE RUNGE KUTTA ORDER FOUR GENERAL READ
2. LIBRARY SIN (O1O1OOO), COS (0168000), ARCTN (0164000)
3. DATA p(9),pp(9),s(5),a(9,9),q(9),k(4),aa(9),bb(9),cc(5),xx(1)
4. SUBSCRIPTS (|,j),M
5. FUNCTION FF (HH,XX,YY=Kk)
6. BEGIN
7. kk=hh*yy*(4-1o5*sin (1.5*xx)/cos (1»5*xx))
8. RETURN
9. END

10. BEGIN
11. carr(1)
12. N=KEYBD
13. X1=KEYBD
14. x2=keybd
15. YaKEYBD
16. carr(1)
17. RR=O
18. SS=KEYBD
19. TT=KEYBD
20. carr(1)
21. NN=N—1
22. NP=NN*N
23. FOR |=0(1)nN BEGIN
24. for j-0(n)ni» BEGIN
25. stop
26. tabs(1)
27. read(p)xx
28. a[i,j]=xx[O] end end
29. bells(2)
30. stop
31. carr(1)
32. a1:read(p)aa
33. read(p)bb
34. read(p)cc
35. for m=0(1)8 begin
36. p[m]=aa[m]
37.. print(fl)=p[m] end
38. carr(1)
39. for m=0(1)8 begin
40. pp[m]=bb[m]
41. print(fl)=pp[m] end
42. carr(1)
43. for m=0(1)4 begin
44. s[m]=cc[mj
45. print(fl)=s[m] end
46. carr(3)
47. for m=0(1)8
48. q[m]=p[m]/pp[m]
49. for i=0(1)nn begin

50. for j«0(n)np begin
51. IF a[I,j]=0 BEGIN
52. GO TO FINISH END
53. h=a[i,j]
54. print(fl)=h
55. x3»x2-h
56. for x«x1(h)x3 begin
57. ff (h,x,y=k[OJ)
58. xv=x+q[1]*h
59. yv=y+q[1j*k[O]
60. ff (h,xv,yv=k[1J)
61. xv=x+q[2]*h
62. YV=Y+Q[3]*K[0]+Qr4]*K[1 ]
63. FF (h,xv,yv=k[2])
64. xv=x+q[5]*h
65. yv=y+q[6]*K[Ol+or7]*K[1]+q[8]*k[2]
66. ff (h,xy,yv=k[3])
67. t=0
68. FOR m»0(1)3
69. t=t+s[m]*k[m]
70. dy=t/s[4]
71. Y=Y+DY END
72. print(fl|=»x
73. print(fl)=y
74. YE=EXP (4*x)*cos (1*5*x)
75. print(fl)=ye
76. YET-Y-YE
77. print(fl)=yet
78. Y-1
79. IF tt«10 begin
80. STOP END
81. carr(3) end end
82. FINISH: RR=RR+1
83. carr(5)
84. IF RR<SS BEGIN
85. carr(3)
86. GO TO a1 end
87. bells(2)
88. END
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PROCRAM 4-1

1. TITLE RALSTON COEFFICIENTS ORDER 3
2. BEGIN
3. X1=KEYBD
4. H=KEYBD
5. x2=keybd
6. XX1=KEYBD
7. HH=KEYBD
8. xx2«keybd
9. carr(1)

10. FOR A=x1 h)x2 BEGIN
11. FOR B=XX (hh)xx2 begin
12. print(fl)=a
13. PR I NT(FL =B
14. FNL=ABS 1/3-2*(2*A+2*B-3*A*2)/9)

+ABS (1/6-B/3)
+ABS (o5-2*a/3)

15. print(fl)=fnl
16. carr(2) end end
17. end

PrOgram 4-2

1. TITLE RK THIRD ORDER SYSTEM 18. x1=KEYBD
2. LIBRARY SIN (0101000 , 19. x2=KEYBD

cos (0168000 , 20. y=keybd
ARCTN (0164000) 21. Z=KEYBD

3. DATA p(5),pp(5),s(4),a(9,9),xx(1) 22. carr(1)
q(5),k(3),aa(5),bb(5),cc(5), 23. rr=O

4. subscripts m,(|,j) 24. ss=keybd
5. function ff(h,x,y,z=k) 25. carr(1)
6. BEGIN 26. NN=N-1
7. K=H*Z 27. NP=NN*N
8. RETURN 28. FOR I=0(1)NN BEGIN
9. END 29. FOR J=O(n)NP BEGIN

10. FUNCTION GG (h,X,Y,Z=>k) 30. STOP
11* BEGIN 31. TABs(1)
12. k«h*(10*exp (-3*x)-5*y-4*z) 32. read(p)xx
13. return 33. a[i,j]=xx[O] end end
14. END 34. bells(2)
15. begin 35. stop
16. carr(1) 36. carr(1)
17. h«=keybd 37. a1:read(p)aa
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38. read(p)bb 87. print(fl)=ye
39. REAd(p)cC 88. YET-Y-YE
40. FOR m=0(1)4 begin 89. print(fl)=yet
41. p[m]=aa[mj 90. y-4
42. print(fl)=p[m] end 91. z=0
43. carr(1) 92. carr(3) end end
44. for m=0(1)4 begin 93. finish:rr=rr+1
45. pp[m]=ss[m] 94. carr(5)
46. print(fl)«pp[m] end 95. if rr<Ss begin
47. carr(1) 96. carr(3)
48. for m=0(1)3 begin 97. go to a1 end
49. s[m]»cc[mj 98. bells(2)
50. print(fl)=s[m] end 99. end
51. carr(3)
52. for m=0(1)4
53. q[m]»p[m]/pp[m]
54. for 1=0(1 Inn begin
55. for j=O(n)np begin
56. IF a[I,j]=0 BEGIN
57. go to finish end
58. h=a[i,j]
59. print(fl)»h
60. x3=x2-h
61. for x«x1(h)x3 begin
62. FF (h,x,y,z=k[O])
63. gg (h,x,y,z=kk[Oj)
64. xv=x+q[1]*h
65. yv=y+q‘1‘ *k[0]
66. zv=z+©[1]*kk[0]
67. ff (h,xv,yv,zv=k[1])
68. gg (h,xv,yv,zv=KK[1])
69. xv«x+q[2]*h
70. yv=y+q[3]*k[0]+q[4]*k[1]
71. zv»z+q[3]*kk[0]+q[41*kk[1]
72. ff (h,xv,yv,zv«k[2]'
73. gg (h,xv,yv,zv=kk[2J)
74. t=0
75. for m=0(1)2
76. t=t+s[m]*k[m]
77. dy=t/s[3]
78. tt=0
79. FOR M=0(1 2
80. tt=tt+s[m‘ *kk[m]
81. dz-tt/s[3’
82. Y=Y+DY
83. Z=Z+DZ END
84. print(fl|=x
85. print(fl)=y
86. YE-EXP (-2*x)*(13*sin x-cos x)+5*exp (-3*x)



Program 4-3 _7Q_

1. TITLE RALSTON COEFFICIENTS ORDER 4
2. BEGIN
3. X1=KEYBD
4. H-KEYBD
5. x2=keybd
6. xx1»keybd
7. hh=keybd
8. xx2=keybd
9. carr(1)

10. t1=»keybd
11. t2=keybd
12. FOR a=x1(h)x2 behin
13. for b-xx1(hh)xx2 begin
14. print(fl|=a
15. print(fl)=b
16. w1=0.E+(1-2*(a+b))/(12*a*b)
17. w2=s(2*b-1 )/( 12*a*(b-a)*(1-a) )
18. w3=(2*a-1)/(I2*b*(a—b)* 1—b )
19. w4=0o5<.(2*(a+b)-3)/(12*(1-a)*(1-b))
20. b2=b*(b-a)/(2*a*(1-2*a)
21. c2=>( 1-A)*(A+5*!?-2-4*Bt2)/(2*A*(B-A)*(6*A*n-4*(A+B)+3))
22. c3=(2*a-1)*91-a)*(1-b)/ b*(a-b)*(6*a*b-4*(a+b)+3))
23. if t1«1 begin
24. b1-b-b2
25. c1=1-c2-c3
26. carr(1)
27. print(fl)=w1
28. print(fl -v/2
29. print(fl)=w3
30. PR I NT(FL =w4
31. print(fl =b1
32. print(fl)=»b2
33. carr(1)
34. print(flUc1
35. print(fl ®c2
36. print(fl)=c3
37. carr(1) end
38. if t2=2 begin
39. e1»((A-At3)*w2+(B-Bt3)*w3)/24-l/80
40. E2=A*B2*w3*(1-Bt2)/2-l/30
41. E3»l/l20-(At3*B2*w3+(At3*c2+Bt3*c3)*w4)/6
42. E4»At2*B2*w3*(1-b)/2-1/120
43. e5=1/120-a/48
44. £6x:1/40-(At2*B2t2*w34-(A*c2+B*c3)t2*w4)/2
45,. e7=7/120-(1+b)/24
46. e8=1/120
47. ee^16*abs e1+4*a0S e2+abs (e2+3*e3)+abs (2*e2+3*e3)+abs (e3i-e3)

+abs e3+8*abs e4+abs e5+abs (2*e5i-e7)+abs (e54-e6+e7)+abs e6 
+abs (2*e6+-e7)+abs e7+abs e8*2

48. print(fl)=ee
49. carr(1) end end end
50. END
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