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Abstract
This thesis uses hydrodynamic simulations to explore the properties of protoplanetary

disks in the limit of weak turbulence and small particles. It characterizes the nature

of the Kelvin-Helmholtz instability that is expected after the initial settling phase in

disks containing small grains. These disks generate levels of turbulence consistent with

observations. Values of the Shakura-Sunyaev turbulence parameter α are extracted

directly from the simulations and are found to be approximately α = 2.7 × 10−5. The

implications of high and low values of α on planet formation are investigated, showing

that planets can still form in disks with weak turbulence. We explore the associated

constraints on planet formation and how they may affect the formation of planets at

different radii within plausible planet forming disks.
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Chapter 1

Introduction

In the 300,000 years that modern humans have existed, we have transformed from a

species of nomadic cave-dwellers with primitive tools into a global society that can

communicate at the speed of light. Few of humanity’s traits have remained constant

in that time, but one of our most prevailing characteristics is our propensity for

wonder when we look at the stars. It is therefore interesting to ask what drives this

fascination; perhaps it speaks to some subconscious instinct for connection – both

with each other and with the universe itself. Maybe the motivation is to be part of

something bigger, or to make contact with the vastness beyond the horizon simply

because it is out of reach. Or maybe our enamoration is, as Carl Sagan once said, a

consequence of us being “a way for the cosmos to know itself.”

Whatever the reason, we have a long history of trying to understand the cosmos.

Archaeological discoveries going back as far as 32,000 years have showed evidence

of people tracking, painting, and assigning stories to objects in the night sky (Rap-

penglück 2003). Since then, we have imaged more of the universe than we have of

our own oceans. We’ve even stepped on the moon. However, our ability to study

the heavens has always been limited because we are confined to our local celestial
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neighbourhood. Some of our biggest questions have therefore been unknowable for so

long: are there other worlds out there? What do they look like? Is there anyone on

those worlds looking back and wondering the same things? It wasn’t until 1879 that

Agnes Mary Clerke took the first clear image of another planet in our solar system,

and exoplanets were not even confirmed to exist until 1992. The good news is that,

as humans entered the modern millennium, we brought with us an accelerating rate

of technological advancement that finally helped us answer these questions.

The Kepler space telescope launched in 2009 and dramatically increased the number

of known exoplanets. To date, there are over 5000 confirmed exoplanets and almost

3000 of them were confirmed by Kepler (Schneider et al. 2011; Akeson et al. 2013).

The results of the mission highlighted the diversity in mass, size, composition, and

orbital properties among planets as well as the limitless possibilities of how they

could be arranged into solar systems (see Figure 1.1). The scale of Kepler’s findings

additionally provided the definitive conclusion that planetary systems are ubiquitous

in the universe.

Our ability to observe and categorize so many new worlds was a major breakthrough

in astronomy, but it only added fuel to another long-standing question: how did we

get here? We now know that our solar system is not alone in the universe, but where

did the Earth and all these other planets come from?

2
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Figure 1.1: This image plots all the exoplanets confirmed by 2017 according to their sizes
and orbital periods. Plot points are colour-coded to show the method of discovery, and a
selection of planet types is highlighted. The Frontier represents the region of future research.
NASA/Ames Research Center/Natalie Batalha/Wendy Stenzel.
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The modern big picture of planet formation is based on the nebular hypothesis which

can be traced back to Immanuel Kant’s 1755 publication Allgemeine Naturgeschichte

und Theorie des Himmels (“Universal Natural History and Theory of the Heavens”).

He posits that solar systems are formed from a cloud (or “nebula”) of gas and dust that

orbits a central star. We know that this cloud collapses into a disk that differentiates

into planets over time (Armitage 2020); in this section we provide an overview of the

nature of these disks and summarize how the tiny dust grains inside them grow into

massive planets.

While the nebular hypothesis provides a foundation for our understanding of planet

formation, there are still many unanswered questions about the details of this process.

For example, what conditions are required in the disk to form planets? Are there any

barriers to growth, and if so how do we resolve them? These are some of the questions

that will be explored in this thesis.

1.1 Protoplanetary Disks

Figure 1.2: These high resolution images of nearby protoplanetary disks taken by ALMA
illustrate the large variations in their shape and size. The scale bar in the bottom right of
each image denotes 10 AU. ALMA (ESO/NAOJ/NRAO), S. Andrews et al. (2018).

The wide diversity in planetary systems reflects, in part, the physical conditions of the

disks inside which the planets are formed. These disks are dense concentrations of gas

4
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and dust rotating around young stars. The cool dust in these disks is ideally observed

with infrared (IR) wavelengths or longer, and the molecules within the disks are also

best visible in the mm/sub-mm. The Atacama Large Millimeter Array (ALMA) has

been providing high resolution images of these disks since 2014, revealing that they are

very often interspersed with rings. These gaps are observed in the dust continuum at

a variety of orbital radii (Andrews et al. 2018), and it is thought that they are caused

by giant planets clearing a path in their orbit around a young star (Andrews et al.

2016; Pinte et al. 2020).

Light from Young Stellar Objects (YSOs) interacts with dust in the disk, leading to

re-emission of the energy at longer wavelengths. We therefore expect to see a near-

infrared excess around these young stars when compared to their older counterparts.

YSOs are classified as Class 0, Class I, Flat Spectrum, Class II, or Class III. Each

subsequent classification is a later evolutionary stage, such that Class 0 stars are

deeply embedded with the highest IR excess (seen as a blackbody spectrum of optically

thick gas) and Class III stars have very wispy disks with weak IR excess. We see less

of an IR excess in YSOs than we expect to: most disks correspond to Class II, which

means that the dust in disks is disappearing at a fast rate (Armitage 2020). Estimates

based on the missing IR excess suggest that disk lifetimes do not typically exceed 10

million years (Mamajek 2009). The collapse of both magnetic and non-magnetic

molecular cores has been modelled numerically, and these simulations also support

the idea that disks form within ∼ 104 years (Yorke et al. 1993; Hueso and Guillot

2005). Important phases of planet formation have timescales that are estimated to be

shorter than the lifetime of the Class 0 and Class I phases of YSO evolution, which

goes to show that planet formation must be well underway in protoplanetary disks

much earlier than previously assumed – even before the central star becomes optically

5
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visible (Armitage 2020). While we have come a long way from painting constellations

in caves, there is still a lot about the universe that we don’t understand.

Since the release of those images by ALMA, there has been a resurgence of interest

in the study of planet formation and the nature of protoplanetary disks. These disks

are extremely complex, and are home to many different dynamical processes that

are intricately connected by their interactions with one another. Additionally, many

of these processes occur over thousands of years and cannot be observed in real-

time. Therefore, an effective way to study protoplanetary disks is through the use of

computer simulations.

1.1.1 Formation and Evolution of Disks

Molecular clouds are large structures of gas and dust that can be 10 − 100 parsecs

across. Within them are regions of higher density called cores from which stars and

disks are formed. These cores have masses of order ∼ 1M⊙ and span a region of

about 0.1 pc, inside which the number densities exceed 104 cm−3 particles per cubic

centimeter (Myers 1985). When the core reaches some critical density, it begins to

collapse under the influence of its own gravity. Most of the mass collects in the central

region, causing it to heat up faster than the surrounding material and eventually form

a protostar. The rest of the gas and dust forms a cloud that rapidly flattens as it

collapses in order to conserve its angular momentum. This is how protoplanetary

disks (sometimes called circumstellar disks) are formed (Nakamoto and Nakagawa

1994; Montmerle et al. 2006).

Typical sizes of protoplanetary disks are in the 100s of AU. As the disk evolves, angular

momentum is transported to larger radii by turbulent viscosity (Section 1.1.4) and

6
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the disk expands. Disk winds can remove excess angular momentum and prevent

this expansion if they are present (Lynden-Bell and Pringle 1974; Hartmann et al.

1998). In young disks, the gas and dust extend out to a similar radius, but radial

drift (Section 1.1.3) causes the size of the dust disk to shrink over time. Eventually,

the gas disk will extend beyond the limits of the dust disk. (Ansdell et al. 2018).

By examining the amount of material required to create the planets, the minimum-

mass solar nebula (MMSN) model (Weidenschilling 1977b; Hayashi 1981) provides a

lower limit on the mass of the young disk around our Sun. Estimates of the MMSN

place this limit at 0.01M⊙ for our solar system (Armitage 2020). This is consistent

with star formation simulations, which give expected disk masses of 1%−8% the mass

of the central star M∗ (Bate 2018). The MMSN is also comparable to the smallest

observational estimates of protoplanetary disk masses around other stars (Ansdell

et al. 2016). Some of the disk’s initial mass will be lost over time as it drifts and

accretes onto the star (Bitsch et al. 2015). Another possible source of mass depletion

is photoevaporation (Armitage 2020).

1.1.2 Disk Structure

Protoplanetary disks are geometrically thin. If we balance the vertical component of

stellar gravity acting on the disk with the vertical pressure gradient in the gas, the

thickness of the disk can be described by the gas scale height Hg. In a typical disk

we have Hg/r ≪ 1 at a radial distance r from the star (Armitage 2020).

Hg = cs

Ω (1.1)

7
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Here, cs is the isothermal sound speed and Ω is the Keplerian angular velocity:

c2
s = kBT

µmp

(1.2)

Ω2 = GM∗

r3 (1.3)

The mass of a proton is mp and the mean molecular weight µ = 2.3 for molecular gas.

kB is the Boltzmann constant and T is the temperature of the disk (Armitage 2020).

It is commonly assumed that the disk is vertically isothermal, and that its temperature

depends only on its radial distance from the star. These are reasonable assumptions

if the temperature of the gas is set by stellar irradiation. For flared disks, the tem-

perature profile can be described as in Armitage (2020) where L∗ is the luminosity of

the star and σsb is the Stefan-Boltzmann constant:

Tdisk =
(

L∗

4πσsb

)1/4

α
1/4r−1/2 (1.4)

If the disk can absorb radiation from the star up to a height hp(r) above the mid-plane,

then the disk is flared if hp/r increases with the orbital radius r:

Figure 1.3: Schematic showing the structure of a flared disk (Armitage 2020).

8
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A typical value for the irradiation angle is α = 0.05 (Dullemond and Dominik 2005).

This α is not related to the Shakura-Sunyaev turbulence parameter introduced in

Section 1.1.4.

Rotating disks are supported against gravitational collapse by thermal pressure and

centrifugal force. We can use the surface density of the gas disk Σg to define a pa-

rameter that quantifies this stability (Toomre 1964):

Q ≡ csκ

πGΣg

(1.5)

Here, G is the gravitational constant and κ is the disk’s epicyclic frequency. In a

Keplerian disk, κ = Ω. A disk is stable against strong instabilities (such as spiral

modes) if Q ≳ 3. Most planet formation occurs within the inner 50 AU, and disks are

stable in this region. Therefore, gravitational instabilities are not expected to play a

significant role in the formation of most planets in any direct way.

As briefly discussed in Section 1.1, interspersed gaps in the dust continuum of pro-

toplanetary disks are one of their most commonly observed large-scale structures.

However, small particles like dust typically only make up about 1% of the total disk

mass (Armitage 2020); the vast majority of the disk is dominated by gas while the

dust settles into a thin layer along the mid-plane.

The surface density of the gas is commonly assumed to be a power law ∼ Σg ∝ r−1

(Lynden-Bell and Pringle 1974; Andrews et al. 2009) and the dust surface density is

initially Σd = Z×Σg (Drążkowska et al. 2021), where Z is the dust-to-gas ratio. In the

interstellar medium, Z ∼ 0.01 (Bohlin et al. 1978), but observations of protoplanetary

disks have suggested that Z can be as large as 0.1 within them as a result of radial drift

concentrating the dust (Long et al. 2017; Kama et al. 2020). Section 1.1.3 includes a

9
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detailed description of radial drift.

It is important to note that the dust-to-gas ratio Z differs from metallicity, which

is usually defined as the mass of all material heavier than helium (“metals”) divided

by the total gas mass. This difference is due to the fact that dust is a mixture of

solid compounds that can include both metals and hydrogen. One notable example is

ice: solid water-ice is a significant component of our solar system beyond the ice line.

Sometimes called the snow line or frost line, this is the radial point in the disk rice

where temperatures are low enough for water to freeze into grains of solid ice. The

result is a sharp increase in Z (and consequently the initial surface density of solids)

by a factor of ∼ 4 at r ≥ rice for a disk with solar-like composition (Hayashi 1981).

In a disk that has a region dominated by turbulence, the ice line is slowly displaced

inward due to changes in opacity resulting from grain growth and disk accretion. The

position of the ice line remains fixed over time for a strictly radiative disk with no

other source of heating (Jewitt et al. 2007; Hasegawa and Pudritz 2011). There exist

different ice lines to describe the radial distances at which other volatile compounds

like CO2 and methane can solidify, but the ubiquity of water makes rice the most

important one from a planet formation perspective (see Section 4.3).

1.1.3 Interactions Between Dust and Gas

As noted earlier, dust and gas can separate radially. This is due to drag. Particles that

are smaller than the mean-free-path of gas molecules in the disk will feel Epstein drag

(Epstein 1924; Weidenschilling 1977a). In this regime, spherical particles of radius s

traveling with velocity v relative to the surrounding gas experience a drag force FD.

10
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For a particle travelling at a speed v that is much slower than the mean thermal speed

of the gas vth =
√

8/πcs, this drag force is (Armitage 2020):

FD = −4π

3 ρgs2vthv (1.6)

Here, ρg is the volumetric gas mass density. We can describe the timescale required

for Epstein drag to significantly modify the velocity of the particle by defining a char-

acteristic stopping time:

tstop = mv

|FD|
= ρms

ρgvth
(1.7)

The Stokes number τs is then derived by comparing this stopping time to the orbital

period Torb = 2πΩ−1

τs = tstopΩ (1.8)

where ρm is the internal density of the dust particle (it is also sometimes called the

material density or specific weight). Note that ρm is a property of an individual dust

particle and should not be confused with ρd which is derived from the total mass of

all dust particles in a volume of space. Most small particles in the disk (excluding the

innermost regions close to the star) experience Epstein drag (Birnstiel et al. 2016).

Since gas density and temperature decrease away from the star, a radially outward

pressure gradient is created; as a result, the gas in a disk will orbit at slightly sub-

Keplerian speeds. Dust particles are not affected by this pressure gradient and attempt

to travel at Keplerian velocities. This means that dust grains feel a headwind during

their orbit which causes them to lose angular momentum and spiral toward the star

in a process called radial drift. The velocity of radial drift depends on the size of the

dust grains, which is proportional to the Stokes number (Figure 1.4).
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Figure 1.4: The radial drift velocity of particles at the disk mid-plane as a function of the
Stokes number (Armitage 2020). vk =

√
GM∗/r is the local Keplerian velocity

Small grains are very well coupled to the gas, and large grains (planetesimals) travel

on Keplerian orbits without significant drifting. Radial drift is highest in-between

these two extremes, at a Stokes number of unity: at 1 AU, this corresponds to a

particle around one-meter in size. Once the disk has formed, radial drift occurs on a

timescale of 103 years or less; this is much shorter than the lifetime of the disk, which

implies that planetesimal formation must be very rapid (Armitage 2020).

1.1.4 Nature of Disk Turbulence

The gas in a protoplanetary disk experiences turbulent flow, which transports the gas

and dust in eddies. This movement may facilitate collisions and sticking between dust

particles, allowing them to grow (Brauer et al. 2008; Birnstiel et al. 2010; Drążkowska

12
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et al. 2013). However, dust grain growth may also be slowed if turbulence is too strong

(Cuzzi et al. 1993; Okuzumi and Ormel 2013; Gole et al. 2020). For these reasons, the

characterization of turbulence in protoplanetary disks is crucial to our understanding

of planet formation.

Turbulent flow is characterized by a high Reynolds number (Re), which is the ratio

of inertial and viscous forces within a fluid:

Re ≡ uL

νm

= u4

ϵνm

(1.9)

In protoplanetary disks, u = cs is the flow speed, L = Hg is the characteristic length

determined by convention, νm ∼ Dcs is the molecular (or kinematic) viscosity of

the gas with units [Length]2 [Time]−1 and D is the mean-free-path of the gas. The

probable onset of turbulence is expected for Re > 5 × 105 (Incropera et al. 1996).

Typical estimates of the Reynolds number in protoplanetary disks are very high, of

order Re = 108 − 1011 (Cuzzi et al. 2001). Measurements of molecular line widths

in interferometric data also tell us that the turbulence in protoplanetary disks is

subsonic with Mach numbers ≪ 1 (Guilloteau et al. 2012), which means that the

flow is essentially incompressible (Almgren et al. 2006). Any supersonic turbulence

would result in shocks that will quickly dissipate and force the turbulence back into

the subsonic regime (Armitage 2020).

Large eddies in a turbulent fluid are unstable and break up into smaller eddies. This

causes kinetic energy to be transferred to smaller and smaller scales until the eddies

become so small that their energy is dissipated by νm into heat and they disappear
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(Richardson 1922; Pope 2000) 1. We can therefore characterize the flow with a mean

rate of energy dissipation ϵ which has units [Length]2 [Time]−3.

Combining ϵ with νm gives the length scale at which viscous dissipation occurs:

lK =
(

ν3
m

ϵ

)1/4

(1.10)

lK is called the Kolmogorov scale, and it describes the size of the smallest eddies in

the fluid (Kolmogorov 1941). If we take Λ to be an upper limit on the size of eddies,

we can define an inertial range spanning Λ−1 ≪ k ≪ l−1
K in which there is negligible

dissipation and the dominant process is the transfer of kinetic energy from large

eddies to small eddies by inertial effects. Here, k is the wavenumber. Kolmogorov

hypothesized that when Re was high, the energy entering the inertial range was in

equilibrium with the amount of energy exiting it; therefore, the energy spectrum E(k)

in this regime depends only on ϵ. From dimensional arguments, Kolmogorov surmised

that E(k) ∝ ϵ2/3k−5/3 in the inertial subrange (Kolmogorov 1941; Pope 2000).

Since the turbulence in protoplanetary disks is subsonic and characterized by a large

Re, it can be described by Kolmogorov’s theory and its energy spectra should follow

the power law E(k) ∝ k−5/3 in the inertial range. Völk et al. (1980) and Markiewicz et

al. (1991) developed a formalism for describing grain collision velocities in Kolmogorov

turbulence that was later solved analytically by Ormel and Cuzzi (2007). These

models are frequently used in dust coagulation codes (e.g., Dullemond and Dominik

2005; Okuzumi et al. 2012) and hold up well when tested against numerical simulations
1 The turbulent energy cascade was described in a poem by Lewis Fry Richardson as “big whorls

have little whorls which feed on their velocity, and little whorls have lesser whorls and so on to
viscosity” (Richardson 1922).
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(Pan and Padoan 2015; Sakurai et al. 2021). Recent studies have suggested non-

Kolmogorov turbulence is possible in the presence of magnetic fields (Gong et al.

2021), but the k−5/3 profile is expected whenever the Mach number is low.

Consider a protoplanetary disk in local thermodynamic equilibrium that can efficiently

radiate away viscous heat to become geometrically thin. We take the gas scale height

as the maximum size of an eddy: Λ = Hg. Under the same assumptions of strong

subsonic turbulence as before, we can do another dimensional analysis to describe the

turbulent viscosity of this disk as νt = αcsHg. Note that νm ̸= νt. The non-dimensional

factor α < 1 was first proposed by Shakura and Sunyaev (1973); it stores information

regarding the efficiency of angular momentum transport from turbulence, and it is

treated as a constant (although it might actually vary with temperature, composition,

or density of the disk). A larger α means stronger turbulence (Armitage 2020).

The study of the origins, nature, and strength of α is still an active area of research.

One popular hypothesis for the source of protoplanetary disk turbulence is the mag-

netorotational instability (MRI): temperatures in the disk interior where r < 0.1 AU

can exceed 1000 K, causing the gas in this region to ionize and create a magnetic

field. For a disk that is rotating with angular velocity Ω ∝ r−3/2, this magnetic field

is destabilizing (Balbus and Hawley 1991). Simon et al. (2012) estimate that turbu-

lence caused by the MRI has a strength α ∼ 0.01 in the inner disk. This value of α

is consistent with observed rates of disk accretion very close to the star (Hartmann

et al. 1998).

However, ionization of the gaseous mid-plane is thought to be weak further away from

the star (Turner and Drake 2009). For r > 0.1 AU, interactions between the magnetic

field and the gas happen indirectly via non-ideal magnetohydrodynamics (MHD).
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Some simulations of the turbulence in this region have estimated that α ∼ 0.001−0.1

(Simon et al. 2013; Simon et al. 2015). Others predict that the MRI does not work

at all for non-ideal MHD, giving essentially no α (Bai and Stone 2013). Although

simulations have not yet conclusively proven that the MRI cannot work in this region,

observational constraints favour that conclusion. For example, Cleeves et al. (2015)

suggest that α is much lower than 0.001 in this “dead zone” that can extend to 50−65

AU in the disk around the K6 T-Tauri star TW Hydrae, which has a mass of 0.8M⊙

and luminosity 0.28L⊙. In more luminous stars, the inner edge of this dead zone is

pushed to larger radii. The location of the outer edge of the dead zone depends on

the amount of X-rays and cosmic rays present.

In all cases, the dead zone will coincide with the region where most planet formation

occurs. There must be another source of turbulence in this part of the disk. Some

examples of alternative sources of turbulence are the vertical shear instability, convec-

tive overstability, and the zombie vortex instability. See Lyra and Umurhan (2019)

for an overview of these alternatives. Importantly, there may still be regions of the

disk beyond the dead-zone that do experience MRI turbulence. This is also true for

heights far above the mid-plane (Turner and Drake 2009).

The dusty mid-plane of a protoplanetary disk orbits at Keplerian speeds, while the

gas above and below travels at slightly sub-Keplerian velocities due to impedence from

a radial pressure gradient (see Section 1.1.3). The discrepancy between the speeds

of the two layers results in a velocity gradient which leads to a vertical shear that

can become unstable and generate a Kelvin-Helmholtz instability (KHI). The KHI is

the most general form of the vertical shear instability, and it is a popular alternate

hypothesis for the origin of turbulence in protoplanetary disks (Goldreich and Ward

1973; Cuzzi et al. 1993). A comparison between the characteristics of disk turbulence
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and the properties of Kelvin-Helmholtz instabilities could help us understand if this

is the case.

Figure 1.5: Two fluids moving at different speeds (a) create a vertical shear (b) that can
grow to a point of non-linear instability (c, d). Kelvin-Helmholtz instabilities are commonly
seen in cloud formations on Earth. Photograph modified from The International Cloud
Atlas/June Grønseth.

It is important to note that the KHI only applies for an infinitely thin shear layer.

For a finitely thin fluid layer, we can instead use the Richardson number to describe

its stability:

Ri = − g

ρ

∂ρ/∂z

(∂u/∂z )2 (1.11)

In this equation, g is the magnitude of vertical gravity, ρ is the density of the fluid,

u is its flow speed, and z is the height at the point of interest. Classically, Ri > 0.25

indicates stability (Chandrasekhar 1961) but we will revisit this limit in Chapter 3.

In a protoplanetary disk, g ∼ Ω2Hd is dominated by the vertical component of the

17

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.Sc. Thesis – Rishita Gudapati McMaster University – Physics & Astronomy

star’s gravity, and ρ = ρg + ρd is the total density. The dust scale height Hd is much

smaller than the gas scale height Hg as a result of dust settling to the mid-plane.

Observational evidence has produced estimates on the upper limit of α ∼ 10−2 −10−3

in protoplanetary disks via measurements of line widths or the study of disk evolution

(Hartmann et al. 1998; Flaherty et al. 2015; Teague et al. 2016). However, methods

based on disk evolution are unable to constrain α if there are disk winds, so these

estimates are probably not relevant. Additionally, an upper limit is insufficient in

describing the exact nature of turbulence in disks. Research has shown that there are

multiple ranges of α within this limit that have very different effects on planet forma-

tion (Gole et al. 2020). It is therefore important to provide more precise estimates of

α in a typical disk.

1.2 Stages of Planet Formation

The mechanisms which allow solid particles in a disk to grow from µm to planet sizes

are dependant on their size; in other words, different sized solid objects are subject to

different methods of growth. At small sizes, the behaviour of dust grains is dictated

by aerodynamic forces and interactions with the gas that allow the grains to be stirred

up and stick together. Gravitational interactions become important when the objects

grow to ∼ 1−100 km in size, at which point they are called planetesimals. Subsequent

evolution of planetesimals is governed by their gravitational interactions and collisions

with each other and with the dust and gas in their orbits. A planetary embryo is only

considered a planet once it has grown large enough for its self-gravity to shape it into

a spherical object and it has cleared out the majority of dust and gas in its path

around the central star. In this section, we will give details of the processes that are
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involved in each stage of planet formation.

1.2.1 Settling

Planet formation begins from an initial pool of micron-sized rocky or icy dust in the

disk. The smallest dust grains grow by colliding and coagulating with other dust

grains nearby as they settle toward the disk mid-plane. Turbulent mixing can also

help the grains grow at this stage, until they become loose cm-size aggregates.

Collisions between dust particles do not always result in their net growth. The out-

come of a collision between two dust grains depends on the impact velocity, the size of

the grains, their composition, and other properties (Blum and Wurm 2008; Windmark

et al. 2012).

Figure 1.7 shows the parameter space for the following possible outcomes of collisions

between two dust grains (Birnstiel et al. 2016):

• sticking: particles stick together, resulting in growth without either of the

particles fragmenting in the process

• bouncing: particles bounce off one another and neither changes its mass; it is

possible for either particle to become more compacted

• erosion: the smaller particle glances off the larger one, from which it shaves off

some material; the smaller particle may also shatter

• mass transfer: the smaller particle fragments during collision and deposits

some of its mass onto the larger target
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Figure 1.6: The bottom panel shows the growth of a single particle at 1 AU during the
settling stage for different starting sizes (s is its radius). The upper panel shows the particle’s
height above the mid-plane. The scale height is h = 3 × 1011 cm in this example (Armitage
2020).
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Figure 1.7: The mean outcome of collisions between silicate grains. In green regions,
there is net-growth of the larger particle. Similarly, red regions indicate a net loss of mass
and orange regions denote mass-neutral outcomes. The axes refer to a speherical particle’s
radius. Reproduced with permission from Birnstiel et al. (2016).
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• fragmentation: one or more of the particles is completely destroyed and no

mass is transferred

1.2.2 Growth Barriers

As seen in Figure 1.4, radial drift velocities are greatest for objects with τs = 1. This

corresponds to meter-sizes at 1 AU. Weidenschilling (1977a) concludes that meter-

sized objects located at this radius will fall into the star within 100 years, and those

at 10 AU will disappear within 1000 years. This marks a prospective upper limit on

the timescale of planetesimal formation called the radial drift barrier.

To overcome the radial drift barrier, grains must grow to planetesimal sizes within

100 years at 1 AU. Alternatively, they could avoid drifting if there exists a local

pressure maximum caused by strong turbulence (Whipple 1972). The plausibility of

such maxima and their potential role in planetesimal formation is an active area of

research.

Grains at this size also tend to fragment upon collision with one another (see Figure

1.7). This is called the fragmentation barrier. The fragmentation and radial drift bar-

riers together define the “meter-size barrier” in planetesimal formation where growth

beyond one meter at 1 AU cannot be achieved through coagulation (sticking) alone.
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Figure 1.8: The plot on the left shows radial drift velocities for particles at different orbital
radii. The plot on the right shows the timescales within which particles fall into the star.
The horizontal axis indicates the particle’s initial orbital radius. In each case, s is the radius
of a spherical particle. Figures 5 and 6 in Weidenschilling (1977a). Reprinted by permission
of Oxford University Press on behalf of the Royal Astronomical Society.

1.2.3 Streaming Instability

If we assume the gas in a disk is incompressible and treat the dust as a pressure-less

fluid, we can model the interactions between the dust and gas using coupled continuity

and momentum equations. Subsequently solving these equations for a steady state

gives the Nakagawa–Sekiya–Hayashi (NSH) equilibrium (Nakagawa et al. 1986). The

vertical component of gravity from the central star and any self-gravity within the
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gas and dust fluids is neglected in this model.

Youdin and Goodman (2005) were first to study the stability of the NSH equilibrium

by introducing small perturbations to the dust velocity in regions of the disk that

contained an initial overdensity of cm-sized solids. In these regions, momentum is

transferred from the drifting dust to the surrounding gas which causes the gas to be

accelerated toward Keplerian speeds. As a result, the dust particles in these regions

feel a reduced headwind from the gas, and radial drift of the dust slows. This causes a

pile-up of mm/cm-sized dust particles which organize into filaments and collapse into

clumps within a few local orbital periods. If these clumps exceed the Roche density

(when self-gravity overcomes tidal forces from the star), they will quickly condense

into planetesimals ∼ 100 km in size. This mechanism of collapse in overdense dust

filaments is called the streaming instability (SI) and it is the leading proposal for

overcoming the meter-size barrier in planet formation.

In the original framework by Youdin and Goodman (2005), the perturbations were

linear and two-dimensional. They found that as long as the relative equilibrium

velocity between the particles and gas was non-zero, the disk was unstable for a large

range of τs, dust-to-gas mass volume ratio µ = ρd/ρg, and perturbation wavelengths.

τs closer to 1 sped up the growth rate, as did choosing a µ near unity. However, only

a small subset of parameter choices would allow growth to occur within a hundred

orbits. The growth rates for the fastest growing mode in their system is plotted as

a function of the perturbation wavenumber k in the top panel of Figure 1.9. The

bottom panel shows a similar plot for the fastest growing mode in a system which

includes a steady vertical velocity for the dust in order to represent the settling of

particles to the mid-plane (Chiang and Youdin 2010; Squire and Hopkins 2018).
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Figure 1.9: Top: Growth rates of the fastest growing mode in a linear streaming instability
normalized by Ω ∝ T −1

orb as a function of kηr, which characterizes the dynamics of the disk.
The strength of the pressure gradient on the gas is described by η (see Section 2.3), and k
is the wavenumber. Bottom: As above, but with the inclusion of a steady vertical settling
velocity on the dust. Reproduced with permission from Rucska (2022).
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Johansen et al. (2007) were able to expand on previous work by exploring non-linear

evolutions of this instability in 3D simulations of a disk with an initial dust-to-gas

mass ratio of 1%. Although the distribution of the dust was roughly uniform initially,

they found that the SI was capable of concentrating grains into regions where the

dust mass densities could be over 50 times larger than the surrounding density of

the gas. The disk enters a state of turbulent saturation within a few orbital times

and the maximum dust density stops growing. At this point in the disk’s evolution,

Johansen et al. (2007) introduce particle self-gravity into their simulations which

causes the overdense regions of dust to collapse into multiple bound clumps. One of

these clumps had a mass similar to that of Ceres.

Later simulations by Bai and Stone (2010a) also studied non-linear evolution of the SI

but from a different perspective; instead of exploring the effects of self-gravity, they

allowed multiple particle sizes within the range τs = [10−4, 10−1] to coexist in the disk.

This contrasts the model in Johansen et al. (2007) where the initial grain sizes are all

approximately ∼ τs = 1. Bai and Stone (2010a) found that only their largest grains

(τs ≥ 0.1) could form significantly dense filaments.

Recent numerical studies have attempted to define the boundary where dust clumping

can occur via the streaming instability in a parameter space of particle size and dust-

to-gas ratio (Carrera et al. 2015; Yang et al. 2017; Li and Youdin 2021) – hereby

(C15), (Y17), and (L21). A result from this last paper is shown in Figure 1.10.

One major limitation of these studies is that they are conducted in 2D, despite 3D sim-

ulations showing that dust density evolves differently in three dimensions (Johansen

et al. 2007; Bai and Stone 2010a; Carrera et al. 2021).
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Figure 1.10: The green curve shows the threshold for when the SI can activate as a
function of dust-to-gas ratio Z and Stokes number τs in 2D simulations. Reproduced with
permission from Li and Youdin (2021).
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1.2.4 Late Stage Growth

In later stages of their growth, planetesimals must either collide or sweep up much

smaller grains to continue growing. The latter mechanism is called pebble accretion,

and it takes over once planetesimals reach ∼ 100 km sizes. In this process, cm-

to m-size pebbles drifting in from outer regions of the disk are accreted onto mov-

ing planetary cores. Recent numerical studies have examined this process in detail

(Drążkowska et al. 2021). During and after the pebble accretion stage, the resulting

planetary embryos can continue to grow through giant impacts via processes called

runaway and oligarchic growth. Once an embryo is large enough for its mass to con-

dense into a spherical shape and it has cleared a path through the gas and dust in its

orbit, it is considered a planet. This is the end-stage for terrestrial planets (Armitage

2020). At larger radii, there is more material in the disk and temperatures are colder.

This allows planets to reach critical sizes of 5 to 10 Earth masses, at which point

they undergo an additional period of growth by accreting gas onto their rocky cores

to become gas giants (Perri and Cameron 1974; Pollack et al. 1996; Ayliffe and Bate

2012).

1.3 Thesis Overview

In this thesis, we examine the nature of protoplanetary disk turbulence using numer-

ical simulations and semi-analytic studies of different processes in a dusty disk. We

compare the characteristics of a Kelvin-Helmholtz instability (KHI) to the structure

of turbulence in our simulations in order examine the KHI as a source of disk turbu-

lence. We use our simulations to estimate α for a disk composed of small dust grains

and investigate how different values of α impact planet formation.
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In Chapter 2 we define the requirements of our simulation and argue that a shearing

box approximation set up with the Athena hydrodynamic grid code is a suitable

framework for our needs. We then describe how Athena’s numerical methods work

and outline the parameters in our simulations. We also briefly discuss any limitations

of our approach and how our simulations compare to real physical systems.

In Chapter 3 we introduce a simulation of a simple KHI that helps us demonstrate and

validate our analysis techniques. We apply these techniques to our more complicated

shearing box simulations to study the nature of their velocity fields. We compare

these velocities to what is expected by the NSH equilibrium and describe how the

velocities evolve over time. Finally, we extract turbulent α values directly from our

simulations. This is a key result of this thesis and a significant improvement over

previous research into disk turbulence which often assumes an α value a priori.

In Chapter 4 we consolidate our extracted α values with previous work and some

original derivations of growth barrier boundaries to explore the conditions in proto-

planetary disks that are necessary to form planets and how the adjustments of key

parameters can affect the outcome of the planet formation process. This allows us to

understand the requirements for creating a solar system with rocky planets close to

the star and gas giants further away.

We conclude with a summary of results in Chapter 5 and provide some suggestions

for future work.
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Chapter 2

Methods

Grain growth happens on small scales relative to the size of the entire disk. We there-

fore need a simulation framework that can resolve these scales efficiently in numerical

studies.

2.1 Shearing Box Approximation

One popular framework is based on a local approximation of the disk that was first

described by Goldreich and Lynden-Bell (1965). Consider a box that encloses a small

region of a protoplanetary disk. The box is centered at a point (r0, θ0, 0) relative

to the star, where the mid-plane of the disk is at the vertical direction’s zero-point.

The movement of gas and dust inside the box is described using a 3-Dimensional

co-rotating Cartesian frame (x, y, z) with the origin at the center of the box. The

equivalent global coordinates with the star at the origin are then (r0 + x, θ0 + y, z).
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We can describe the evolution of the gas and dust in this non-inertial reference frame:

∂ρg

∂t
+ ∇ · (ρgu) = 0 (2.1)

∂ (ρgu)
∂t

+ ∇ · (ρguu) = − ∇Pg + ρg

[
−2Ω × u + 2qΩ2xx̂ − Ω2zẑ + µ

v̄ − u
tstop

]
(2.2)

dvi

dt
= 2vi × Ω + 2qΩ2xx̂ − Ω2zẑ − vi − u

tstop
+ Fg (2.3)

If we assume an isothermal equation of state, then the gas pressure can be written

Pg = ρgc2
s. The ratio of local volumetric dust and gas mass densities is µ = ρd/ρg,

u is the local gas velocity, and the velocity of the i-th dust particle is vi. The

mass-weighted average velocity of all dust particles in a single gas cell is v̄, and the

gravitational force is Fg.

The box rotates together with the disk, and its rotation axis points along the z-axis:

Ω = Ωẑ, where Ω ∝ r−q. The rotation is Keplerian, so q = 3/2 as in equation (1.3).

As a result of this uniform orbital motion, there is a background velocity given by

vk = qΩx in the −ŷ direction (Stone and Gardiner 2010). Any orbital effects from

the azimuthal curvature of the disk are neglected in this local approximation, which

is valid as long as the dimensions of the domain are small compared to r0.

This method is called the shearing box approximation, and it is used heavily in the

study of local dynamics in accretion disks (Stone and Gardiner 2010; Johansen and

Youdin 2007; Bai and Stone 2010a) because it provides the required advantage of

having higher resolution at the scales of interest. The trade-off is that it can’t be used

to calculate global disk properties or effects that arise globally, such as large scale

dust migration leading to local enhancements of the dust-to-gas ratio.
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2.2 Resolution Requirements

The next step in preparing a simulation is to identify the resolution that is required

to simulate the physics of the problem. We need to consider a few important scales

including that of the disk thickness Hg, the scales at which streaming occurs, the as-

sumptions for KHI (Hg → 0), and the length scale for viscous dissipation of turbulence

(equation 1.10).

Figure 1.9 shows us the growth rates of the fastest growing grains in a linear SI, and

particles of size τs = 0.01 can meet these rates when kηr ∼ 100 after settling (top

panel). Many disks can be characterized by ηvk = 0.05cs (Bai and Stone 2010a).

Working in units of the isothermal sound speed cs and Keplerian angular velocity

Ω = vk/r, we can solve for the wavenumber k to calculate the scales we need to

resolve if we want to simulate the linear SI.

ηvk = η (Ωr) = 0.05cs −→ η = 0.05
r

(2.4)

kηr −→k
(0.05

r

)
r ∼ 100 (2.5)

=⇒ k ∼ 2000 (2.6)

Similarily, for τs = 0.001 we have kηr ∼ 1000 and k ∼ 20 000. This tells us that the

linear SI is weak and on extremely small scales of order 2π/k = 3 × 10−3 to 3 × 10−4

the gas scale height Hg. Additionally, small grains are not expected to undergo non-

linear streaming (Li and Youdin 2021). The SI is of almost no importance to the small

grains we want to study so we will disregard it from our resolution considerations.
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The KHI does not have a minimum length scale; there will always be a large enough

k (small enough length) that is unstable. However, our shearing boxes will not ex-

perience an idealized KHI with a sharp discontinuity in density and velocity at the

boundary of the two fluids because the gas and dust disks have finite thickness Hg and

Hd respectively. The finite thickness suppresses large k ≫ H−1
g (small lengths), such

that it is possible to have no unstable effects at these scales (Chandrasekhar 1961). At

the end of Section 1.1.4 we define the Richardson number Ri ∝ g(z), which describes

the stability of a fluid with a finite thickness. Stable systems have large Richardson

number. This indicates that gravity can stabilize a disk at small k ≪ H−1
g (large

lengths) where Hg is the driving length scale of turbulence, which corresponds to the

size of the largest eddies. Therefore, there is a range of instability around the pre-

ferred scale length Hg. Since Hd ≪ Hg it is key to resolve the dust scale height Hd in

our shearing box simulations. The cell-size will act as a dissipation length scale. We

will examine how well Hd is resolved in Section 3.2.1.

2.3 Simulation Code

The hydrodynamic grid-code Athena has been used extensively in the past to gen-

erate high-resolution 3D simulations of the instabilities in protoplanetary disks (e.g.,

Stone and Gardiner 2010; Simon et al. 2016), so it is both well-tested and capable of

resolving the scales of interest in our problem. For these reasons, we use it to simulate

our shearing boxes.

Our copy of Athena is the public C-version of the code with a modification made by

Rucska (2022) to its gravity solver which allows us to include dust self-gravity in our

simulation. The rest of our code is standard to Athena’s 3D problem generator for
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non-linear streaming instability in stratified disks called par_strat3d.c (Stone et al.

2008; Stone and Gardiner 2010).

Athena is based on a finite volume Godunov scheme that obeys mass, momentum,

and energy conservation to machine accuracy. Numerical fluxes are calculated us-

ing the HLLC Reimann solver, and the system is evolved in time by integrating the

equations of motion with the dimensionally-unsplit cornered transport upwind (CTU)

integrator (Colella 1990; Toro et al. 1994; Stone et al. 2008). Both spatial and tem-

poral integrations are accurate to second-order.

Additionally, Athena models dust as Lagrangian particles where the i-th particle

with mass m experiences a radially inward aerodynamic drag force given by:

Fdrag,i = m (u − vi)
tstop

(2.7)

The background velocity vk is treated separately by the orbital advection scheme, so

it is subtracted from the dust momentum equations to give:

dv′
i

dt
= 2

(
v

′

iy − ηvk

)
Ωx̂ − (2 − q)v′

ixΩŷ − Ω2zẑ − v′
i − u′

tstop
+ Fg (2.8)

where v′
i = v − (qΩx) ŷ and u′

i = u − (qΩx) ŷ. This improves both the accuracy

and efficiency of the code (Masset 2000; Johnson et al. 2008). To maintain shear flow

at the edges of the radial domain, boundary conditions in the x-direction are shear-

periodic, whereas conditions in the y and z directions are pure periodic (Hawley et al.

1995; Stone and Gardiner 2010).
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Following Bai and Stone (2010b), the momentum of the dust is evolved using a semi-

implicit integrator, and particle properties are interpolated to and from the gas grid

using the triangular-shaped cloud (TSC) scheme. If the dust grains are small and

well coupled to the gas, the integrator is instead fully implicit.

The radially outward pressure gradient with profile Pg ∝ r−n acting on the gas is

equivalent in effect to a constant radial force Fgrad = 2ηvkΩx̂. The value η = n (c2
s/v2

k)

is related to the strengths of both the radial gas pressure gradient and the drag force on

the dust. To approximate the radial pressure gradient without creating discontinuities

at the edges of the domain, a constant and radially inward force −Fgrad is added to

the particles.

Rucska (2018) describes the benefit of using a hydrodynamic grid-code like Athena

over alternatives like Smoothed-Particle Hydrodynamics (SPH). Particularly, SPH is

bad at simulating small perturbations in a subsonic fluid. This is important when

studying the SI or KHI.

Dust self-gravity is required for the SI to collapse dust filaments into bound clumps

(see Section 1.2.3). Our code includes a modification to Athena developed by Ruc-

ska (2022) which incorporates dust self-gravity; it makes use of the Poisson solver

implemented in Athena by Kim and Ostriker (2017). Boundary conditions for this

gravity solver are shear-periodic in the x and y directions and open in the z direction

(Gammie 2001; Koyama and Ostriker 2009).

The gas is initialized with a vertical Gaussian profile:

ρg(z) = ρg,0 exp
{

− z2

2H2
g

}
(2.9)
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where ρg,0 is the volumetric gas mass density at the disk mid-plane.

The number of dust particles in a simulation is constant and equivalent to the number

of grid cells in the box. The mass of a particle is proportional to ZHgsw where the

radius of the spherical particle is s, the power-law index is w, and the dust-to-gas

ratio is Z. Particle positions are initialized uniformly across the x-y plane by a

random number generator. Initial distribution of dust across the z direction follows

the Gaussian profile described by equation (2.9) with ρg 7→ ρd and Hg 7→ Hd which is

the dust scale height. The stopping time tstop is fixed.

Gas and dust velocities are initialized to NSH equilibrium values with a correction

added to their y-components to account for shear flow.

2.4 Parameters

Five simulations were run, encompassing two different values of the Stokes number τs

at varying resolutions. This leaves the exact radius r unspecified, which allows us to

rescale the box as needed. The purpose of simulating the same problem at different

resolutions is to help distinguish real effects from numerical ones.

In our simulations, we set Ω = cs = Hg = ρg,0 = w = 1 for these models. Since

all dust particles within a simulation are the same size, they will also have the same

mass. The stopping time of a particle is always equivalent to its Stokes number τs,

and all of these simulations involve well coupled small particles so the integrator is

fully implicit. The radius of a spherical particle s can be determined from its Stokes

number (equations 1.7 and 1.8).
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Table 2.1: Details of shearing box simulations

Name Particle Size Box Size Grid Resolution

τs (Lx × Ly × Lz) (Nx × Ny × Nz)

tau-3N60 0.001 0.1 × 0.1 × 0.4 60 × 60 × 240

tau-3N120 0.001 0.1 × 0.1 × 0.4 120 × 120 × 480

tau-2N60 0.01 0.1 × 0.1 × 0.4 60 × 60 × 240

tau-2N120 0.01 0.1 × 0.1 × 0.4 120 × 120 × 480

tau-2N240 0.01 0.1 × 0.1 × 0.4 240 × 240 × 960

Z G̃ Π

0.02 0.05 0.05

The total number of grid cells is Ncells = Nx × Ny × Nz

The box size is listed here in units of the gas scale height Hg

Π is a parameterization of η and G̃ describes the relative strengths of gas self-gravity

and tidal shear.
Π ≡ ηvk

cs

G̃ ≡ 4πGρg,0

Ω2 (2.10)

Following Bai and Stone (2010a), we set Π = 0.05 which is applicable to a wide

range of disk models. We set G̃ = 0.05 following Simon et al. (2016): this value

of G̃ is equivalent to a Toomre Q = 32, which indicates that the gas disk is very

gravitationally stable. Thus, we can ignore the self-gravity of the gas since there are

negligible perturbations in its local density.

The shear flow correction to the NSH equilibrium velocities is +ηvkŷ = 0.05ŷ for

both gas and dust in these units; there are no higher order shifts to velocity and no
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non-unity factors that could further modify ρs or the drag force. The initial dust scale

height is set to Hd = 0.05Hg.

The dust-to-gas ratio in our shearing box simulations is Z = 0.02. This is slightly

larger than the fiducial value of solar metallicity Z⊙ = 0.014, and it also differs from

the Z = 0.01 value commonly used in simulations of protoplanetary disks. The reason

for this change is that the streaming instability (Section 1.2.3) generally requires an

initial dust-to-gas ratio greater than Z⊙ in order to trigger (Rucska 2022). As with

most previous work, the Z in our model is constant. However, it is well known that

the dust-to-gas ratio in disks evolves with time (Weidenschilling 1977a).

In a simple linear convection problem for a flow speed u and velocity magnitude M :

∂u

∂t
+ M

∂u

∂x
= 0 (2.11)

The Courant–Friedrichs–Lewy (CFL) number C is defined in terms of the timestep

∆t and length between cells ∆x. It must generally be ≤ 1 for convergence:

C = M
∆t

∆x
≤ 1 (2.12)

Changing the CFL number will modify the timestep. The CFL number is C = 0.4 in

all of our simulations.

We aim to run our simulations until the dust has settled and steady turbulence has

been generated in the disk. Smaller grains take longer to settle, with tsettle ∝ τ−1
s for

τs ≪ 1 so simulations with τs = 0.001 are more expensive. Higher resolution runs are

also expensive, so we did not run a 240 × 240 × 960 simulation with τs = 0.001.
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Chapter 3

Turbulence Characterization

The origin, nature, and strength of turbulence in protoplanetary disks is an open

question in modern astrophysics. As discussed in Section 1.1.4, turbulent mixing can

facilitate coagulation between dust grains as they settle toward the mid-plane, but

too much turbulence can also slow growth rates (Gole et al. 2020). It is therefore

clear that a careful examination of turbulence in protoplanetary disks is necessary for

a complete understanding of planet formation at every stage. We will begin with an

examination of the KHI and apply our results to the shearing boxes.

3.1 Kelvin–Helmholtz Instability Simulation

Until recently, the MRI was thought to be very important in the generation of pro-

toplanetary disk turbulence. It may still play a role in some regions of the disk, but

evidence suggests that the MRI is not the source of turbulence in the areas of the disk

where planet formation happens (see Section 1.1.4). One hypothesis for the source of

turbulence in these regions is that it is generated by a Kelvin-Helmholtz instability,

and previous work has explored its role in planet formation (Johansen et al. 2006).
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We present a simulation of a simple Kelvin-Helmholtz instability (KHI) in this sec-

tion as a proof of concept for our analysis codes. The purpose of this exercise is to

ensure that our analysis produces coherent results before we apply it to the more

complicated shearing box simulations. The nature of the instability in this section

will not be exactly the same as in the shearing box, but it will help us understand

the behaviour of Kelvin-Helmholtz instabilities more generally.

3.1.1 Setup and Assumptions

We extend Athena’s 2D kh.c problem to three dimensions by duplicating the physics

of the dimension perpendicular to flow and initializing the momentum in all three di-

mensions with different random seeds. We then use this framework to simulate a

Kelvin-Helmholtz instability in a 480 × 480 × 480 box with the following domain in

code units:

x = [−0.5, 0.5]

y = [−0.5, 0.5]

z = [−0.5, 0.5]

Flow is initialized in the x-direction with velocities u±:

u− = − 0.1 in the region |y| < 0.25

u+ = + 0.1 in the region |y| ≥ 0.25

Both streams are initially uniform, and the initial density of the fluid is ρ0 = 1

throughout the box. The pressure is P = 1
γ

ρc2
s where the adiabatic index γ = CP /CV

is the ratio of specific heats at constant pressure and constant volume, respectively.

We set γ = 5/3 for an ideal monatomic gas, and the pressure is initially P0 = 2.5

everywhere. There is no magnetic field in our example. The instability is seeded by
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adding random numbers with uniform distribution to all components of the velocity.

These perturbations are random to mimic the behaviour of the instability in the

shearing boxes, and initial perturbation velocities have a peak-to-peak amplitude

A0 = 0.001 centered around u+. The boundary conditions are periodic everywhere,

and the CFL number is C = 0.4.

3.1.2 Velocity Field and Turbulence

Figure 3.1: A visualization of the velocity fields in the KHI simulation at three different
times for z = 0. From left to right, the columns show vx, vy, and vz. Top: initial conditions
at t = 0. Middle: the instability forms by t = 10. Bottom: at late time t = 50.
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We expect to see the instability once perturbation amplitudes A = A0 exp{iωt} are

appreciable, around A = 0.1 to A = 1. In code units, this occurs at times t = 5 to

t = 7. Figure 3.1 visualizes the velocity field at the beginning of the simulation, at

some time after the non-linear instability forms, and at a late time to show how the

instability spreads in all three dimensions.

We can study the structure of the turbulence in this system by subtracting the mean

velocity from the field and plotting a power spectrum of what is left over. Figure

3.2 shows the total and component-wise power spectra for this KHI; all of the curves

follow a Kolmogorov-like profile k−5/3 in the inertial range (see Section 1.1.4) and a

k−6 profile in the dissipative range, which matches findings by San and Maulik (2018).

The curves in the separate directional component spectra all lie on top of each other,

which means that the turbulence is isotropic as expected. Comparing the shape of

this power spectrum to the ones from the shearing boxes will help us characterize

the turbulence in our disks. Also, note that we cannot measure past the Nyquist

frequency at k = N/2, so this region of each plot is greyed out in Figure 3.2.

It is important to note that in this test, the density is uniform throughout the simu-

lation domain, there is no vertical gravity or dust, and flow is only in one direction.

In the presence of dust, there is a stabilizing effect as a result of the density contrast

with the heavier fluid (consisting of both gas and dust) underneath the gas. This

configuration leads to a static stability that can be destabilized by flow (Scott 2022).

Therefore, this test does not exactly replicate the instability in the shearing boxes,

but the general behaviour is correct.
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Figure 3.2: Energy spectra of the simple KHI at time = 10
Left: total power spectrum. Right: component power spectra
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3.2 Turbulence in a Protoplanetary Disk

In this section we will take a closer look at our shearing boxes. Each simulation

was run for as long as possible, with the minimum stopping condition being that the

system had settled. A visualization of the dust surface density in the boxes at the end

of each run is given in Figure 3.3. We focus on tau-2N120 as the standard case for

analysis. We will examine how the velocity field in the shearing boxes is structured

and how it changes over time. We pay attention to how closely the velocities follow

the NSH equilibrium (Section 1.2.3) because any deviation is a result of turbulence

in the box. We will then apply the analysis from the previous section to our shearing

boxes in order to characterize this turbulence. Finally, we measure α directly from

simulation data.

3.2.1 Dust Scale Height

Over time, the dust in the shearing boxes settles to the mid-plane. The top panel

of Figure 3.4 shows how the dust scale height Hd evolves for the simulations with

τs = 0.01 and the bottom panel does the same for the simulations with τs = 0.001.

Since the lower resolution runs were able to reach later times, Figure 3.4 also includes

a zoomed-in view to make the curve for the highest resolution run clearer.

The settling time tsettle is proportional to τ−1
s and this is what we see in Figure 3.4,

where tsettle is approximately 200 Ω−1 for τs = 0.01, and 1000 Ω−1 for τs = 0.001.

After this point, disk turbulence grows (see Figure 3.8) and kicks up the particles

enough to thicken the dust scale height to a final value. The simulation is considered

to have “settled” once Hd levels out.
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All of the boxes have vertical length Lz = 0.4Hg; this corresponds to Nz = 240 grid-

cells for the low resolution runs and 960 grid-cells for the highest resolution run (see

Section 2.4). The size of a single grid-cell is the numerical dissipation scale in our

shearing boxes. Better resolution therefore corresponds to a smaller dissipation length,

so smaller modes can contribute to turbulence in the box. See Gerbig et al. (2020)

for a similar discussion of resolution effects when simulating the SI. In summary, a

greater amount of turbulence is able to be generated in the Nx = 120 and Nx = 240

runs, which thickens the dust scale height. The dust settles at a larger Hd compared

to their low resolution Nx = 60 counterparts. However, the final Hd is converging:

we can see that the distance between the Nx = 240 and Nx = 120 curves in the top

panel of Figure 3.4 is smaller than the distance between the Nx = 120 and Nx = 60

curves.

We can examine how well Hd was resolved in the shearing box simulations. Figure

3.4 shows that the Nx = 60 run for τs = 0.01 reaches a final dust scale height of

Hd ≃ 0.008Hg which corresponds to (0.008/0.4) × 240 ≃ 5 grid cells. Similarly, the

Nx = 120 run resolves Hd to 13 grid-cells and the Nx = 240 run resolves it to 38 grid-

cells. From this information and by noting how much shorter the highest resolution

simulation was able to run, we can conclude that resolutions with Nx > 240 would be

very computationally expensive while not offering much benefit due to the convergence

of final Hd with resolution.

The dust surface density at the end point of each run is shown in Figure 3.3. Dust is

more concentrated toward the mid-plane at lower resolutions, due to a smaller amount

of turbulence generating. In Figure 3.4 we can see that this difference in Hd is always

present between different resolutions, even when they are compared at the same time.

As predicted in Section 2.2, there is no clumping in any of the simulations so the SI
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is not part of our considerations with these small grains. We will therefore focus our

efforts on characterizing the KHI in these runs.

3.2.2 Velocity Structure and Evolution

The y-velocity of the gas is plotted in Figure 3.5 for run tau-2N120 at three different

times: the beginning of the simulation, the settling time tsettle, and at the end of the

run. In each shearing box, the initial velocitites are set to the NSH equilibrium values

with ηvk added to the y-components to account for the background flow. This is

shown in the top right panel of Figure 3.5, where the velocity curves line up exactly

with the NSH values given by the solid black curve.

During the settling stage, the width of the dust layer shrinks and the velocities start to

spread about the NSH values (Figure 3.5 lower left panel). The dashed lines mark the

minimum and maximum velocities at each height. By the end of the run, turbulence

kicks in and increases the width of the dust layer again to intermediate thickness

(Figure 3.5 lower right panel). The shaded area indicates the region ⟨vy⟩ ± σy where

σy is the standard deviation of the y-velocity. This spread around the NSH velocity

tells us that there is turbulence present in the box, and that it appears gradually over

the course of the run.
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Figure 3.3: The dust surface density of the shearing box simulations at the end of each
run for y = 0. Each plot is zoomed into the mid-plane.
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Figure 3.4: Top: evolution of the dust scale height Hd for τs = 0.01. On the right is a
zoomed-in view. Bottom: evolution of the dust scale height Hd for τs = 0.001.
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Figure 3.5: The vy gas velocities in tau-2N120 are shown at the three different times
marked in the top left panel. The solid black curve shows the NSH equilibrium predictions,
the dashed curves show the minimum and maximum velocities, and the shaded region indi-
cates the area ⟨vy⟩ ± σy where σy is the standard deviation of vy
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Figure 3.6: Gas velocity in tau-2N120 at 2872 Ω−1 with the dust density superimposed.
On the right is a close-up of the same image at the disk mid-plane; the range of z on the
right coincides with the maximum vertical extent of dust grains at this simulation time.

In Figure 3.6 we see that there is very little activity in the velocity of the gas outside

of the dusty mid-plane. This is consistent with a KHI, which is driven by a velocity

gradient between the dust and gas layers. The solid purple curve is the mean velocity

⟨vx⟩.

In Figure 3.7 we see that turbulence is present in both the dust and gas at approx-

imately equal strengths by the end of run tau-2N120. Another way to check the

relative strengths of the dust and gas turbulence is to plot the velocity dispersions for

dust and gas:
√

⟨ρd(vi − vi)2⟩/⟨ρd⟩ with i = d, g for dust and gas respectively. We’ve

weighted the dispersions by the dust density ρd in order to focus on the turbulence as

experienced by the dust, since this is what impacts growth rates. The result is Figure

3.8, which shows us that the dust and gas turbulence is in fact of similar magnitude.

The dust moves slightly slower because the grains are so small that the drag force

slows them down considerably.
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Figure 3.7: Gas and dust velocities in tau-2N120 at 2872 Ω−1 with relative dust−gas
velocities at the same time.
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At the end of Section 1.1.4, we give the definition of the Richardson number Ri which

describes the stability of a finitely thin fluid. Classically, a value of Ri > 0.25 indicates

stability, while Ri < 0.25 is a necessary (but not sufficient) condition for instability

(Chandrasekhar 1961; Sekiya 1998). The classical results are idealized and assume

completely uniform density and velocity gradients. Numerical simulations have shown

that this critical Richardson number is closer to Ricrit = 1 when the Coriolis force is

taken into account (Gómez and Ostriker 2005; Johansen et al. 2006). Therefore, Ri

≳ 1 is stable, and Ri ≲ 1 is necessary for instability.

Figure 3.9 shows the Richardson number for tau-2N120 at three different times during

the settling stage t < tsettle. The horizontal axes in the right column are limited to

where dust can be found. This figure shows that the vertical region of the box that is

potentially unstable slowly narrows over time as the dust settles to the mid-plane. At

the same time, there is now more material in this region which can promote collisions

between particles. A similar plot is given in Figure 3.10 at the end of the run, which

shows that the vertical region of instability does not change much after tsettle.

Figures 3.9 and 3.10 also include plots of dρ/dz where the total density is ρ = ρg +ρd.

Regions with dρ/dz < 0.1% of its peak value indicate noise due to very few dust

grains being present, and they are shaded in these plots. The Richardson number

estimates in these regions are not valid.

It is important to note again that the standard Richardson number applies to a fluid

with uniform density and velocity gradients. In our case, u and ρ in equation (1.11)

are composed of both gas and dust values. Additionally, g = g(z) in our case is not

constant. This could introduce uncertainties into our calculation of Ri.
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Figure 3.8: Top Left: evolution of gaseous velocity dispersion in tau-2N120. The orange
curve is the raw value and the blue is weighted by the dust density. Top Right and Bottom
Row: evolution of gas and dust velocity dispersions for τs = 0.01 at three different resolu-
tions.
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Figure 3.9: Left: dρ/dz where ρ is the total dust and gas density. Regions with significant
noise are shaded. Right: the Richardson number of the disk superimposed with the dust
density. These plots are from tau-2N120.
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Figure 3.10: Left: dρ/dz and Right: Richardson number with dust density superimposed
for tau-2N120 at 2872 Ω−1

3.2.3 Energy Spectra

Figures 3.11 and 3.12 show the total power spectrum of all the shearing box simula-

tions. All profiles follow a Kolmogorov power law in the inertial range and have the

expected slope in the dissipative range (see Sections 1.1.4 and 3.1.2). Spectra beyond

the Nyquist frequency at k = Nx/2 are not physically meaningful and omitted in

subsequent plots.

The component spectra for run tau-2N120 in Figure 3.13 shows that energy in the

system is distributed approximately isotropically, with slightly less energy stored in

the radial direction. Figure 3.14 shows the total power spectrum of this simulation

at 80%, 90%, and 100% of its run. All these curves lie on top of each other, further

indicating that the system has settled and that the turbulent state is steady. We

demonstrate that sharp peaks for small k in any of the power spectra can be attributed

to binning effects (see Figure 3.15). When this error is minimized, like in Figure 3.14,

it becomes clear that there are no preferred wavenumbers in the shearing box.
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Figure 3.11: Total power spectrum in shearing boxes for τs = 0.01

Figure 3.12: Total power spectrum in shearing boxes for τs = 0.001
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Figure 3.13: The components of the 3D power spectrum in tau-2N120

Figure 3.14: Evolution of the total power spectrum in tau-2N120. This shows that the
turbulent state is steady.
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Figure 3.15: The effects of different binning in the total power spectrum of tau-2N120 at
2872 Ω−1. The number of bins and the alignment of their centers (mid = middle, or left)
is shown. This figure demonstrates that the spectrum is noisy (due to small numbers of
modes) for k ≤ 5 but robust for larger k.
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3.2.4 Extraction of α

We can write the velocity of the largest gaseous eddies in a turbulent disk as vL = cs

√
α

(Cuzzi et al. 2001). By measuring vL in our simulations, we can extract an α from

the shearing box. In our case, vL is equivalent to the gaseous velocity dispersion

plotted in Figure 3.8. It is important to note, however, that the exact relationship

between velocity dispersion and α relies on specific assumptions on the nature of the

turbulence. The errors introduced by these assumptions is on the order of ∼ 2. There

exist other methods of estimating α from velocities, such as in Simon and Hawley

(2009), in which α = ⟨ρvxδvy⟩/⟨ρc2
s⟩. Here, vx and vy have the mean velocity in x and

y subtracted from them (respectively), and ρ is the total density of dust and gas. δvy

is a small change in vy.

The Cuzzi et al. (2001) approach characterizes the turbulence itself, and thus their

equation for α is directly relevant for grain growth and fragmentation. The Simon

and Hawley (2009) approach originates in the MRI/MHD community and uses α to

measure the effective turbulent viscosity. It is concerned with the implications for

the torque and angular momentum flux. The value for α from these two approaches

do not have to be the same for a complex turbulent disk structure, and are only

similar for idealized 3D turbulence. The values for α obtained using the Simon and

Hawley (2009) approach are numerically smaller, which suggests that implications for

slow processes like accretion onto the star are different to the implications for eddies

and relative motions between dust grains. There may only be academic interest in

small values of α that characterize torque and effective viscosity if disk winds play a

larger role than turbulence in the accretion rate of disks. Finally, the α from Cuzzi

et al. (2001) corresponds better to the α estimated from line widths. It is difficult to

translate the torque-characterizing α into an expected line width.
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The raw gaseous velocity dispersion in the box increases with time (top left panel in

Figure 3.8), but we cannot use the entire box to examine turbulent properties. The

gas extends to regions much higher than the dust layer, including beyond the limits

of the simulation box. Therefore any measurement of the velocity dispersion based

on the gas alone will not converge with height. Additionally, the KHI driving the

turbulence is responding to the velocity gradient that is created by the presence of

the dust, and so the instability is absent far from the dust. We make the assumption

that the best place to characterize the turbulence in terms of its amplitude and the

characteristic vertical length scale is around the dust layer. We are only interested in

the turbulence as experienced by the dust grains because it is what affects the growth

rate of the dust via turbulent mixing: turbulent eddies cause collisions that can lead

to coagulation or fragmentation.

Figure 3.8 shows the evolution of the gas and dust velocity dispersions in three sim-

ulations with τs = 0.01. The Nx = 120 and Nx = 240 runs seem to approach the

same weighted velocity, but the lower resolution Nx = 60 run was not able to develop

enough turbulence.

We provide a summary of results in Table 3.1. All velocity dispersions for τs = 0.01

are taken at 800 Ω−1, and the velocity dispersions for τs = 0.001 are taken at 5000 Ω−1

to ensure that the dust has settled and for ease of comparison between runs. When

calculated with the Cuzzi et al. (2001) method, α increases with resolution and grain

size and approaches a single value in the high resolution limit.

Estimates on the upper limit of α ∼ 10−3 in protoplanetary disks have been given

by measurements of molecular line widths (Flaherty et al. 2015; Teague et al. 2016).

The turbulence extracted from our shearing boxes is two orders of magnitude smaller
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Table 3.1: Turbulent α extracted from the shearing boxes

Simulation Cuzzi et al. (2001) Simon and Hawley (2009)

tau-3N60 6.3 × 10−6 9.2 × 10−7

tau-3N120 1.1 × 10−5 2.1 × 10−7

tau-2N60 1.9 × 10−5 3.1 × 10−6

tau-2N120 2.7 × 10−5 1.3 × 10−6

tau-2N240 2.5 × 10−5 5.4 × 10−7

than this limit; such a weak turbulence may slow the growth of dust grains during the

coagulation stage but, if growth is able to reach sufficient sizes despite this, a small α

might allow growth at larger scales because fragmentation can be avoided (Gole et al.

2020). In the next section, we will provide a detailed examination of the effects of

this α value on the growth of grains in various kinds of protoplanetary disks.

Note again that the conversion between velocity dispersion and turbulence is difficult

and has an error of order unity. Possible sources of error include whether or not the

system being studied has fully settled and the nature of the turbulence. For example,

is the turbulence isotropic? Are there any effects from magnetic fields? What is

driving it? Since the exact relationship between velocity dispersion and α is an area

of current research (Teague et al. 2016; Flaherty et al. 2018; Ormel and Cuzzi 2007),

it is likely that corrections may be required to our extracted values of α at some point

in the future when this relationship is better understood. The values in Table 3.1

could also be improved by averaging over many snapshots to get a smoothed velocity

dispersion.
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Chapter 4

Implications for Planet Formation

In this section, we explore the implications of our results for planet formation. We

will follow the growth of micron-sized dust grains through every stage of planetesimal

formation in various kinds of disks via semi-analytic considerations. Along the way,

we will apply results from the previous sections of this thesis to develop a big-picture

understanding of what is required to form planetary systems.

4.1 Semi-Analytical Setup

Consider a flared protoplanetary disk with radial extent rc around a star of mass M∗

and luminosity L∗. The temperature of a disk T heated by the star can be described by

equation (1.4). A single dust grain that is settling toward the mid-plane at early times

will grow as a result of coagulation (Section 1.2.1). We can describe this particle’s

vertical position in the disk z and its mass m as a set of coupled ordinary differential
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equations (Dullemond and Dominik 2005):

dz

dt
= − 3Ω2zm

4ρgcsσg

(4.1)

dm

dt
= Z × ρg

∣∣∣∣∣dz

dt

∣∣∣∣∣σg (4.2)

where Z is the dust-to-gas ratio (Section 1.1.2). If we assume that the disk is verti-

cally isothermal and that the gas density obeys hydrostatic equilibrium, the volume

density of the gas is an exponentially decreasing function of z:

ρg(r, z) = Σg(r)√
2πHg(r)

exp
{

−z2

2H2
g (r)

}
(4.3)

If s is the radius of a spherical dust particle, then the collisional cross-section for

grain-gas interactions is:
σg = πs2 (4.4)

We solve equations (4.1) and (4.2) numerically, substitute equation (4.4), and solve

for s to get the final size of the particle after settling as a function of its location in the

disk ssettle(r). The grain may continue to grow after settling via turbulent mixing and

the streaming instability if necessary conditions are met (Section 1.2), but its growth

might also be halted by radial drift or the fragmentation barrier (Section 1.2.2). In

order to understand the sizes that grains can reach, it is therefore also necessary to

quantify any possible growth barriers.
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We follow Birnstiel et al. (2012) and Birnstiel et al. (2016) to model the radial drift

barrier as a function of the particle’s radial position:

sdrift(r) ≃ 0.35Σd(r)
ρmq

(
Hg(r)

r

)−2

(4.5)

The gas volume density is given by ρg ∝ Σg/(2Hg). We have Σg ∝ r−1, T ∝ r−1/2,

and Ω ∝ r−3/2. This gives us cs ∝ r−1/4 and Hg ∝ r5/4 for a flared disk (see Section

1.1.2). All together, this results in a fixed power law for the gas pressure profile

P ∝ ρgT =⇒ P ∝ r−q, with q = 11/4.

For particles of equal size, the relative turbulent velocities between particles is given

in Birnstiel et al. (2016):

∆vturb =
√

3α

τs + τ−1
s

cs (4.6)

If we set ∆vturb to the fragmentation threshold velocity vfrag and rearrange equation

(4.6) for the Stokes number τs defined by equation (1.8), we will get a function that

describes the size at which the fragmentation barrier prevents growth:

sfrag(r) = Σg

ρmπ

3α

(
cs

vfrag

)2

±

√√√√9α2

(
cs

vfrag

)4

− 4

 (4.7)

A particle of size s at radius r′ will fragment upon collision with another grain of

similar size if s−
f (r′) < s < s+

f (r′), where s−
f is the smaller root of equation (4.7) and

s+
f is the larger root. See Figure A1 in Gonzalez et al. (2017) for more information.

Note that it is possible to have no solution, in which case dust grains should never
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exceed the fragmentation velocity for any size. Equation (4.7) is an original derivation

in this thesis, and it is different from the fragmentation limit derived in Birnstiel et al.

(2016) which makes the assumption that grains are small. Our derivation does not

make this assumption.

A particle’s fragmentation threshold velocity vfrag is determined by several properties

of the grain, including its size and composition (Section 1.2.1). According to exper-

iments, silicates fragment at ∼ 1 m/s, but icy rocks can withstand speeds of up to

∼ 10 m/s (Blum and Wurm 2008; Gundlach and Blum 2014).

We incorporate a water ice-line rice into our model disks by calculating the point where

the temperature drops to Tdisk < 150 K (Armitage 2020). We set the fragmentation

threshold velocity for particles at r ≥ rice to 10 m/s, because the dust in this region

is primarily composed of water ice. Particles at r < rice will have a fragmentation

threshold velocity of 1 m/s as they are mostly silicates. The initial dust-to-gas ratio

Z0(r) is four times larger for r ≥ rice compared to the inner disk (see Section 1.1.2).

We can also loosely model the threshold at which there is a possibility for the SI to

kick in and further increase the size of the particle. From Birnstiel et al. (2016), we

can write the size of a particle as a function of its Stokes number. Note that ρm could

in principle change with composition.

s(r) = 2
(

Σg(r)
πρm

)
τs (4.8)

Looking up the dust-to-gas ratio Z(r) on Figure 1.10 will give us the corresponding

τSI value on the green curve. This curve separates the simulations in which there

was clumping from those that did not form any clumps. If we substitute τs = τSI
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into equation (4.8), we get a function that might describe the minimum size required

sSI(r) for the streaming instability to complete the transition to large planetesimals

at a given radius.

It is important to note that this “streaming threshold” is very approximate: the

original paper by Li and Youdin (2021) is based on 2D numerical simulations and

similar studies with 3D simulations are inconclusive (Rucska 2022). The applicability

of Figure 1.10 to real disks is not clear. Additionally, the authors of Li and Youdin

(2021) fit the green threshold curve in Figure 1.10 by eye because it represents a

theoretical boundary that follows a discrete number of simulations. Finally, Figure

1.10 only covers a narrow range of values, so I fit a function to the green curve in

order to model disks that were not represented on the domain of the plot. However,

any extrapolation based on this figure is quite uncertain.

Next, we will allow the disk to age by toggling between a YOUNG/EVOLVED parameter.

The total initial mass of any disk Mdisk defaults to 3% the stellar mass. In young

disks, the maximum radius is rc and the gas surface density is given by Andrews et al.

(2009) with a surface density gradient of unity. At early times, the dust and gas

surface densities are related by Z0 (Drążkowska et al. 2021):

Σg,0 = Mdisk

(2πr2
c )

(
r

rc

)−1
exp

{
− r

rc

}
(4.9)

Σd,0 = Z0 × Σg,0 (4.10)

The surface density profiles follow a power law in the inner disk and taper off expo-

nentially at large radii (Lynden-Bell and Pringle 1974).

For evolved systems, we assume that disk winds prevent the disk from expanding such
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that the maximum size of the gas disk is still rc. The maximum radius of the dust

disk rdust is set to half the size of the gas disk as a result of radial drift. The mass of

the dust disk (excluding water-ice) Mdust is initially equal to the Z0 value inside the

ice-line multiplied by Mdisk. We will account for any increase or decrease in local dust

mass due to radial drift, particle pile-up, or the presence of an ice-line by modifying

Σd directly.

The mass of the gas disk is Mgas = Mdisk − Mdust and the surface densities become:

Σg = Mgas

(2πr2
c )

(
r

rc

)−1
exp

{
− r

rc

}
(4.11)

Σd = Mdust

(2πr2
c )

(
r

rdust

)−1
exp

{
− r

rdust

}
(4.12)

For r ≥ rice the dust density Σd is multiplied by 4.

We mimic the effect of particle loss through radial drift by forcing Σd/Σg to remain

at or below the initial dust-to-gas ratios Z0(r) everywhere in the disk. However, we

need to add back some of this dust according to Birnstiel et al. (2010): they predict a

pile up of particles at the ice-line that can cause the dust-to-gas ratio within r < rice

to increase by up to 160× its initial value. We multiply the dust surface density Σd

at r < rice by a constant e to represent this pile-up, with 1 < e < 160.

To ensure that we do not end up with more dust than we started with, we check that

the final ratio of the mass Mf,d of all non water-ice particles to the total gas mass

Mf,g is less than or equal to the initial dust-to-gas ratio within the ice-line: we require

Mf,d/Mf,g < Z0(r < rice). Birnstiel et al. (2010) also note that in their model, they

need the gas surface density Σg ∼ 1000 gcm−2 at r = 0.1 AU so we make this check

as well. If Σg is too large, the initial mass of the disk Mdisk is reduced.
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4.2 Model Disks

We will now present a collection of plots showing the growth lines and barriers dis-

cussed in the previous section. A table summarizing the different parameters in each

disk is below.

Table 4.1: Parameter variation in model disks

Disk M∗
2 L∗

3 Mdisk
2 rc

4 α Z0
5 e 6 rice?

A 1 1 0.03 100 2.7 × 10−5 0.01 − No

B 1 1 0.03 100 2.7 × 10−5 0.01 − Yes

C 1 1 0.03 100 1 × 10−3 0.01 − Yes

D 1 1 0.03 100 2.7 × 10−5 0.01 1.64 Yes

E 1 1 0.03 100 2.7 × 10−5 0.01 2.5 Yes

F 1 1 0.03 100 2.7 × 10−5 0.01 16 Yes

G 1 1 0.80 100 2.7 × 10−5 0.01 2.5 Yes

H 2 11 0.03 100 2.7 × 10−5 0.01 2.5 Yes

I 1 1 0.03 150 2.7 × 10−5 0.01 2.5 Yes

J 1 1 0.03 100 2.7 × 10−5 0.01 5 Yes

K 1 1 0.03 100 2.7 × 10−5 0.02 5 Yes

L 1 1 0.03 100 1 × 10−3 0.01 5 Yes

M 1 1 0.03 100 1 × 10−3 0.02 5 Yes

2 units of M⊙
3 units of L⊙
4 in AU
5 initial dust-to-gas ratio at r > rice in disks with an ice-line (Z0 inside the ice-line is a quarter of

this number); in disks without an ice-line, the listed value is the initial dust-to-gas ratio everywhere
6 only applicable to evolved disks
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For all disks, we will follow a spherical dust particle with internal density ρm = 1.6

g/cc (Birnstiel et al. 2012) and initial radius s0 = 1 µm that starts at a height

z0 = 4Hg above the mid-plane.

First, consider a solar mass, solar luminosity star with a gas disk that extends to

rc = 100 AU. With disks containing a solar-type star in its center, it is important

to note that this would not be the mass and luminosity of our own Sun during its

pre-main-sequence lifetime. We set α = 2.7 × 10−5, which is the value extracted from

our tau-2N120 run (Section 3.2.4).

(A) Disk A (Figure 4.1) shows a young disk with no ice-line. We set Z = 0.01

and vfrag = 1 m/s everywhere. The dust particle starts at some r on the horizontal

axis and travels toward the upper left of the plot. On its way, it can hit any of

the solid curves. Once it reaches the solid green curve, it has reached the maximum

size possible from settling alone ssettle(r). If disk turbulence is strong enough, the

particle can continue to grow toward the solid red streaming threshold sSI(r). In the

inner part of the disk r < 0.6 AU, the particle hits the solid blue fragmentation limit

sfrag(r) (equation 4.7) before it can undergo streaming: any grain in the blue region

will fragment following collision. In the outer region, streaming can occur before the

fragmentation curve limits further growth. The solid grey line is the drift limit sdrift(r)

(equation 4.5), which does not set an upper bound on the grain size in this particular

disk. Planetesimal formation is not possible in any region where the dust grain meets

the solid blue or solid grey lines from below before it meets the solid red line. An

evolved disk with no ice-line is identical to Disk A because we have forced Σd/Σg to be

less than or equal to Z0 everywhere in the disk to mimic radial drift. Enhancements

in dust surface density due to a pile up of dust or the freezing of water in an evolved

disk will only occur at an ice-line. The choice of τs = 0.01 or 0.001 in our shearing box

69

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.Sc. Thesis – Rishita Gudapati McMaster University – Physics & Astronomy

simulations falls along parallel curves between the green and red curves; these sizes

were chosen to see if the particles would undergo streaming. Since they did not, we

can surmise that turbulence was not strong enough in our simulations to bridge the

gap between the green and red curves for particles of this size. The distance between

the red and green curves is determined by Figure 1.10.

Figure 4.1: Disk A: a young disk without an ice-line and α = 2.7 × 10−5

(B) We can introduce an ice-line into Disk A. Its location is rice = 1.7 AU, which is

the expected naïve value for a solar-type star if factors like disk optical depth effects

on temperature and adjustments to the disk surface density profile associated with

accretion are not considered (Lecar et al. 2006). Z = 0.01 for r ≥ rice and 0.0025 for

r < rice. The fragmentation threshold velocity increases to 10 m/s beyond rice which
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results in a discontinuity in the fragmentation limit. The chosen α is not strong

enough to fragment icy solids (see Figure 4.14), so there is no fragmentation limit

beyond the ice-line in this disk. Additionally, the dust-to-gas ratio inside the ice-line

(0.01/4) = 0.0025 is not high enough to initiate streaming at any particle size (see

Figure 1.10).

Figure 4.2: Disk B: a young disk with an ice-line and α = 2.7 × 10−5. The ice-line is
indicated with a shaded orange region, inside which the transition between pre- and post-
ice-line values occurs.

If there is sufficient turbulence in this disk, a dust particle at r < rice can grow beyond

the settling size, but it will not undergo streaming and its size will be limited by the

fragmentation barrier inside rice. At r > rice, the particle can undergo streaming if

turbulence is strong enough to bridge the gap between the maximum settling size and
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the streaming threshold. Streaming is absent for r < rice because the dust-to-gas ratio

is too low to initiate clumping (Figure 1.10). The size of a dust grain in the outer

disk has a maximum value dictated by the drift limit. Disk B is plotted in Figure 4.2.

(C) If we take Disk B and set α = 10−3 instead, the fragmentation limit reappears in

the outer disk. If the dust grain is meeting the fragmentation curve from underneath,

it will notice that the limit increases sharply at the ice-line because the ice-rich solids

at r > rice have a higher fragmentation threshold velocity compared to the silicates

inside the ice-line.

Figure 4.3: Disk C : a young disk with an ice-line and α = 1 × 10−3. This turbulence is
strong enough to fragment icy solids beyond the ice-line.
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Planetesimal formation is not possible in the inner disk for the high α used here;

grains at r < rice will not even reach the final size from settling because they will

fragment first. In the outer disk, streaming is possible. The size of the dust grains is

limited by the fragmentation barrier for rice < r < 45 AU. For 45 AU < r < rc, the

maximum size of the grain is set by the drift limit. Disk C is plotted in Figure 4.3.

(D) Next, consider a more evolved disk, in which the dust has drifted inwards slightly.

We revert the turbulence to α = 2.7 × 10−5 and include a dust surface density en-

hancement of e = 1.64 interior to the ice-line. We note that Birnstiel et al. (2012)

find enhancements of at least 40 around and inside the ice-line so this a relatively

modest choice. Additionally, e = 1.64 is the minimum enhancement that allows the

streaming threshold to extend into r < rice. However, fragmentation prevents the SI

from starting inside the ice-line and limits the size of the dust grains in the inner disk.

In the outer regions of the disk, streaming is possible but once again the maximum

dust size is set by the drift limit. Disk D is plotted in Figure 4.4.

(E) If we increase the enhancement factor to e = 2.5, we can finally get streaming

at the ice-line. Any enhancement e > 2.5 will lower the radius at which streaming is

limited by fragmentation. Disk E is plotted in Figure 4.5.

(F) For example, consider an enhancement of e = 16. In this case, streaming can

occur anywhere in the disk, even for grains that have not yet reached the maximum

potential size after settling alone. We will not set e > 16 in our model because it

sets the dust-to-gas ratio too far outside the domain of Figure 1.10 and therefore

extrapolation of τSI becomes significantly more unreliable.

Disk F is plotted in Figure 4.6.
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Figure 4.4: Disk D: an evolved disk with an ice-line and α = 2.7 × 10−5. The dust surface
density is enhanced by a factor of 1.64 inside the ice-line
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Figure 4.5: Disk E : an evolved disk with an ice-line and α = 2.7 × 10−5. The dust surface
density is enhanced by a factor of 2.5 inside the ice-line
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Figure 4.6: Disk F : an evolved disk with an ice-line and α = 2.7 × 10−5. The dust surface
density is enhanced by a factor of 16 inside the ice-line
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(G) We return to the parameters of Disk E but set the mass of the disk to Mdisk =

0.8M∗. This pushes Q < 1 at large radii and Σg(0.1 AU) ≃ 37 000 gcm−2. Although

this disk is unstable at large radii, the general shape and locations of the streaming,

fragmentation, drift, and settling curves remains the same as in Disk E. 1 is shown as

a dotted black line. Disk G is plotted in Figure 4.7.

Figure 4.7: Disk G: an evolved disk with an ice-line and α = 2.7 × 10−5 that is unstable
at large radii. Dust enhancement inside the ice-line is a factor of 2.5
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(H) Consider a star with mass M∗ = 2M⊙. The mass-luminosity relationship for

main-sequence stars M∗ ∝ L3.5
∗ tells us that the luminosity of this star is approximately

L∗ = 11L⊙. It is important to note that this relation is not completely accurate,

especially for pre-main-sequence stars. We will keep all other parameters the same as

in Disk E.

Figure 4.8: Disk H : an evolved disk with an ice-line and α = 2.7 × 10−5 around a 2M⊙
star. The dust surface density is enhanced by a factor of 2.5 inside the ice-line
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The location of the ice-line and all of the solid curves shift to the right, but the

behaviour of the disk is the same as in Disk E; for example, the radius at which

streaming is limited by fragmentation is still at the ice-line. Once again, objects

inside this radius are growth limited by the fragmentation barrier without undergoing

streaming, and objects outside the ice-line will undergo streaming but their maximum

size will be set by the drift limit. Conversely, the ice-line and all the solid curves would

move to the left for a smaller star with the same rc. Disk H is plotted in Figure 4.8.

(I) Let’s return to a solar-type star but increase the maximum size of the gas disk

to rc = 150 AU. All other parameters are the same as in Disk E. We get Σg(0.1

AU) ∼ 700 gcm−2 so we do not need to increase Mdisk. The location of the ice-line

is the same as in Disk E, but a smaller percentage of the disk is inside the ice-line.

Therefore, more of the disk can participate in streaming. Disk I is plotted in Figure

4.9.

(J, K, L, M): Consider now an evolved disk with an ice-line and e = 5. We present

four disks. Disk J has α = 2.7 × 10−5, and Z = 0.01 beyond the ice-line. Disk K

has α = 2.7 × 10−5, Z = 0.02. Disk L has α = 1 × 10−3, Z = 0.01 and Disk M has

α = 1 × 10−3, Z = 0.02. There is a range of Z for which the fragmentation barrier

does not limit streaming at a specific radius r′. This range of Z is smaller for high

turbulence. On the other hand, if Z is large enough, even high α allows streaming in

the inner disk. If Z is very low, weak α will also prohibit streaming in the inner disk.

79

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.Sc. Thesis – Rishita Gudapati McMaster University – Physics & Astronomy

Figure 4.9: Disk I : an evolved disk with an ice-line and α = 2.7 × 10−5. The dust surface
density is enhanced by a factor of 2.5 inside the ice-line, and the maximum disk radius is
rc = 150
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Figure 4.10: Disk J : an evolved disk with an ice-line and α = 2.7×10−5. The dust surface
density is enhanced by a factor of 5 inside the ice-line, and Z = 0.01 outside the ice-line
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Figure 4.11: Disk K : an evolved disk with an ice-line and α = 2.7 × 10−5. The dust
surface density is enhanced by a factor of 5 inside the ice-line, and Z = 0.02 outside the
ice-line
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Figure 4.12: Disk L: an evolved disk with an ice-line and α = 1 × 10−3. The dust surface
density is enhanced by a factor of 5 inside the ice-line, and Z = 0.01 outside the ice-line

83

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.Sc. Thesis – Rishita Gudapati McMaster University – Physics & Astronomy

Figure 4.13: Disk M : an evolved disk with an ice-line and α = 1 × 10−3. The dust surface
density is enhanced by a factor of 5 inside the ice-line, and Z = 0.02 outside the ice-line
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4.3 Effects of Parameter Variation

On many of the plots in the previous section, there is a gap between the final size a

dust grain reaches after settling and the minimum size required to trigger the SI. In

theory, this gap can be closed in the presence of Kelvin-Helmholtz driven turbulence

(characterized by α) which encourages particles to continue growth via collisions after

they have settled to the mid-plane. In principle, drift could also prevent a dust grain

from bridging this gap, but in practice the drift time is too long to cut off growth.

The value of α is also important to the placement of the fragmentation size barrier

(equation 4.5). A high value of α can facilitate growth through turbulent mixing.

The turbulence also has a more unexpected consequence on growth. Figure 4.14 com-

pares the value of α extracted from our tau-2N120 shearing box to the observational

upper limit 10−3. The simulation value of 2.7 × 10−5 is just under two orders of mag-

nitude smaller than this limit, which significantly lowers the rate of collision and slows

down the growth rate. The weaker turbulence is never strong enough to fragment icy

solids, which are commonly assumed to have vfrag = 10 m/s so there is essentially no

fragmentation limit beyond the ice-line (for example, see Figure 4.8. Both values of

α are strong enough to fragment silicates in the inner solar system (vfrag = 1 m/s).

There are many ice-lines for different compounds (ie CO/CO2, methane, ammonia,

nitrogen...). As the disk gets colder, more materials can solidify and become available

to participate in particle collisions. More material allows planets to grow their cores

more rapidly and to a larger final size. Eventually, they can become large enough to

hold on to a significant gaseous atmosphere (gas giants). Since the composition of a

solid object also affects its fragmentation threshold velocity, the inner solar system –

which contains mostly silicates, refractories, and iron-like metals – is a much harsher
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Figure 4.14: In disks characterized by a weak α like the one extracted from our 3D
shearing box simulation (bottom panel), turbulent velocity can not collide icy solids fast
enough to destroy them; this can greatly reduce or eliminate the fragmentation barrier past
the ice-line.
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environment for particle growth when compared to the outer solar system which also

has water ice. Since water is such a large component of our solar system, it is the

primary ice-forming compound to consider when studying how ice-lines affect planet

formation.

A low value of the fragmentation threshold velocity vfrag makes it more likely for

particles to break apart during fragmentation, which can be destructive to collisional

growth. A discontinuity in vfrag at the ice-line will result in a discontinuity in the

fragmentation size limit afrag (equation 4.7).

The local dust-to-gas ratio is very important. Slightly super-solar Z is required to kick

start SI (see last page of Section 2.4). Additionally, Z sets the streaming instability

threshold size τSI according to Figure 1.10. Finally, the drift size limit is linearly

proportional to Z (equation 4.5). Similarly, the same arguments apply to e, which is

just a modification to Z in evolved disks at radii interior to the ice-line. Increasing the

intrinsic density of individual dust grains ρm will lower afrag, adrift, asettle, and aSI by

the same amount. However, the minimum disk radius for streaming will not change.

Changing the mass of the star, luminosity of the star, or maximum size of the disk

moves the ice-line, modifies the proportion of the disk inside the ice-line, the min-

imum radius where streaming can occur, and the extent of the disk limited by the

fragmentation barrier as opposed to the drift limit. These changes do not, however,

modify the relationship between these curves as they all move together. The general

behaviour of the disk will therefore not change if we modify these quantities.

If we want to build a solar system with rocky planets close to the star and gas giants

further away, we need to start with a young disk containing a water ice-line like Disk

B in Figure 4.2. A disk with too much turbulence can prevent grains in the inner
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disk from even reaching the settling size – see Disk C in Figure 4.3. Therefore, nature

seems to require α ≪ 10−3.

Streaming is not possible in the inner regions of Disk B, so for now only planets beyond

the ice-line will experience significant growth. This suggests that planets beyond the

ice-line (or their rocky cores) are first to develop. At later times, the size of the dust

disk shrinks due to radial drift. Some dust is lost into the star, but other particles

pile up at the ice-line and inside it (Birnstiel et al. 2010). A minimum enhancement

of ∼ 2.5× the initial dust-to-gas ratio is required interior to the ice-line in order for

streaming to be possible everywhere in this region. If we meet these conditions, we

can form rocky planets in the inner solar system. The growth time of a dust grain

is tgrow = (Z0Ω)−1, which is much shorter than a million years (Birnstiel et al. 2016).

Planetesimal formation will not be limited by the lifetime of the disk.
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Chapter 5

Conclusions

In this thesis we have explored a new regime of planetesimal formation in the low

turbulence, small grain limit. Recent observational studies have suggested that the

turbulence in protoplanetary disks is characterized by α < 10−3 so this is an important

limit to consider (Flaherty et al. 2020).

The previously leading hypothesis concerning the origins of disk turbulence was that

it is a result of the magnetorotational instability (MRI). However, evidence shows

that only the inner most region of the disk mid-plane r < 0.1 AU is ionized enough

for the MRI to be strong. In a “dead zone” that can extend from 0.1 AU up to 65 AU,

magnetic interactions can only occur via non-ideal magnetohydrodynamics (MHD).

Some numerical simulations suggest that the MRI effectively does not operate in

the dead zone, and this is supported by observational evidence (Bai and Stone 2013;

Cleeves et al. 2015). Since grain growth (and thus planet formation) will stall without

turbulence, this suggests that there must be another source of turbulence in this

section of the disk that coincides with the location of planet formation. Importantly,

the MRI may become significant again for r > 65 AU and large scale heights (Turner

and Drake 2009). In this work, we present simulations that are located in the dead
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zone between these regions of MRI-type turbulence. We assumed no external sources

of turbulence, including MRI active upper layers. However, turbulence from the upper

layers may penetrate into the inner disk slightly, creating larger values of α.

Other possible sources of turbulence in protoplanetary disks are hydrodynamic in-

stabilities like the vertical shear instability (VSI), convective overstability, and the

zombie vortex instability. These have been suggested as alternatives in the MRI dead

zone (Lyra and Umurhan 2019). In this work, we explored the Kelvin-Helmholtz in-

stability (KHI), which is a type of VSI arising from a difference in speed between the

gas in a disk and the dusty mid-plane. We simulated the KHI in the Athena hydro-

dynamic grid-code using a shearing box approximation with shear-periodic boundary

conditions that allowed us to zoom into a small section of the disk. This local ap-

proximation helps us better resolve the dynamics at small scales. The grain sizes in

our simulations τs = 0.01 − 0.001 were too small to undergo streaming, so we focused

on resolving the scale height Hg which is a characteristic length in a turbulent, finite

width fluid.

The value for α was extracted directly from each shearing box and we found that all

of the runs had α ≪ 10−3. Additionally, the magnitude of α increased with resolution

and approached α ∼ 2.7 ∼ 10−5 in the high resolution limit. So higher resolution

runs resulted in greater turbulence. This is because the increase in resolution corre-

sponds to a smaller numerical dissipation length, which allows more turbulence to be

generated. However, the changes became small as the dust layer became well resolved

and we anticipate that α is unlikely to increase much beyond 3 × 10−5. Similarly,

we converge at a final Hd ∼ 0.017Hg at infinite resolution after settling in disks with

grains characterized by either τs = 0.01 or τs = 0.001. The increased turbulence in

high resolution simulations was able to thicken the dust scale height more than their
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low resolution counterparts.

We applied an extracted α = 2.7 × 10−5 to a semi-analytic disk model. In order to

account for MRI turbulence in the upper layers or other possible sources of turbulence

affecting the mid-plane, we compared our extracted value against the observational

upper limit of α = 10−3. We found that turbulence corresponding to α > 10−3 is not

necessary for planet formation. In fact, low turbulence is more conducive to planet

formation in the inner solar system (interior to the water ice-line) because the size

at which a dust grain fragments upon collision is higher for lower α. Lower α can

remove the fragmentation barrier in the outer disk entirely if it cannot move grains

fast enough to reach the higher fragmentation threshold velocities beyond the ice-line.

Even for high α, the increase in fragmentation threshold velocity at the ice-line raises

the fragmentation size limit in the outer disk compared to its value in the inner solar

system. The implications of this is that planets in the outer solar system (gas giants)

are formed first. The formation of gas giants may create ring structures in the disk

that result in local pressure maxima which can relieve issues of radial drift in the

inner solar system. Once the disk is allowed to evolve, a pile up of dust at r ≤ rice

can raise the dust-to-gas ratio in this region enough that inner solar system planets

can begin to form.

5.1 Future Work

A major limitation of shearing box simulations like the ones presented in this thesis is

that they cannot resolve length scales that are comparable to the size of planetesimals,

nor do they include global disk properties. Furthermore, they would be improved by

incorporation of a grain growth model to simulate the growth rates of dust in real
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disks. The addition of disk winds to these simulations would also help us understand

how winds mitigate the effects of turbulence and how this might impact planetesimal

formation. An ideal simulation would incorporate all of these effects at high resolution,

but would be computationally impossible with current codes. Some form of adaptivity

(like adaptive mesh refinement) may allow such work, but current methods rely on

the fluid limit and would not work for larger grains where τs ∼ 1.

Next steps could include an examination of how turbulence originating from a KHI

can be conducive to the growth of dust. Particularly, it would be good to quantify

how large α needs to be to bridge the gap between the settling and streaming curves in

Chapter 4. A weak α will not be able to drive this post-settling growth via turbulent

mixing. If α is very small, it may mean that growth takes over a million years, in

which case we begin to reach the time constraint set by the removal of disk gas by

solar wind. It would also be good to examine how α depends on the set-up of the

disk, particularly the pressure gradient profile. If the pressure gradient changes over

time, so will the value of α in the disk. If this is the case, we may be able to form

planets at different times.

We need to further study the thresholds for streaming in 3D simulations, such as in

recent work by Rucska (2022). This will help us better understand where and when

planets can form in the disk. Including a model for grain growth in these simulations

might move the threshold to lower dust-to-gas ratios Z, since grains that are allowed

to evolve will reach cm sizes quicker for a given Z. The threshold may also be lowered

if multiple grain sizes are included, as collisions between particles of different size are

less likely to result in fragmentation. Once again, this allows grains to reach cm sizes

more quickly.
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We also need to better understand the impact of large scale radial drift. A high res-

olution box that incorporates global disk properties will help us do this, in contrast

to the local shearing box approximations used in this thesis. Recent work by Carrera

and Simon (2022) is a first step in learning about possible global disk effects that

we may be missing. A hybrid approach would be to conduct a low resolution global

simulation and identify snapshots of interest for further investigation with a shearing

box: the low resolution run can be periodically checked for SI, perhaps by examining

the critical conditions for streaming discussed in Rucska (2022). If streaming is ex-

pected to occur, it would be possible to zoom into the global simulation with a high

resolution shearing box that is capable of simulating streaming. Since the duration

of the SI is short, only a small number of snapshots would need to be resolved in the

local approximation. However, grain growth, radial drift, and turbulence continue in

the background even when streaming is not present and will complicate any methods

used to anticipate or detect the SI. Research like this thesis can help characterize

these small scale processes and contribute to the development of a subgrid model for

background dynamics in a low resolution global disk simulation.
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