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Abstract
In this research, we study multi-activity tour scheduling problems with heterogeneous employees

in a service sector where demand varies greatly during the day. This problem relates to assigning

the employees’ working days throughout the planning horizon and working periods on each

working day. In each period, an activity type is given which requires certain skill of the employees.

The goal is to reduce the overall over- and under-coverage for each period and activity. The

shifts and breaks defined with variable starting slots and durations make the problem flexible

and hard to solve. In order to address the problem, an integer programming (IP) approach is

first proposed. Due to the problems’ high degree of flexibility, it is impossible to solve instances

involving numerous employees and activities in a timely and efficient manner. This leads to

the proposal of a heuristic method based on a large neighborhood search (LNS) algorithm. We

first create the daily schedules by a context-free grammar (CFG). Then we solve a resource-

constrained shortest path problem (RCSPP) to create weekly schedules. Heuristic search is

performed on weekly schedules. Moreover, when a constraint on task repetition is added, a CFG

is unable to express this constraint, so we incorporate an extension of the IP into our proposed

algorithm. Importantly, our approach does not use any closed-source commercial solver like

CPLEX. Computational experiments are carried out on the industrial and randomly generated

instances to evaluate the performance of the IP solved by CPLEX and the proposed algorithm.

Results reveal that our method outperforms CPLEX in both solution time and solution quality

in larger instances.
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Chapter 1

Introduction

Organizations in the service industry, like retail sectors or restaurants, usually are open 24 hours

and seven days a week, with a wide fluctuation in demand throughout the day. Hence, workforce

scheduling is critical and keeps a service organization competitive since it directly impacts its

profit and customer service quality. An efficient schedule could reduce the over or under-coverage

problem in these environments. However, efficient scheduling could be computationally expensive

since the schedules should be flexible due to various types of workers with different skill sets,

availabilities, and the highly flexible environment. The flexibility is reflected by shift types, shift

start time, shift end time, break placements, assigned activities, etc.

Baker (1976) has suggested a classification for workforce scheduling problems. Days-off

scheduling, shift scheduling, and tour scheduling are the three main categories under this di-

vision. The days-off scheduling involves choosing the working days and rest days throughout

the planning horizon. Shift scheduling decides which working periods to give each employee

during the working day. In tour scheduling, other than rules on shifts, constraints related to the

planning horizon are included. Based on these rules, the working days and working periods of

each working day for each employee are determined. Hence, days-off and shift scheduling are

combined in tour scheduling.

In this research, we study a multi-activity tour scheduling problem for heterogeneous employ-

ees in the service industry like retail sectors or restaurants. Due to the mentioned properties of

these environments flexible shifts need to be considered. The hierarchical structure of schedules

1



Master of Science– RANA SHARIAT; McMaster University– School of Computational Science
& Engineering

in this study are as following. A task is defined as consecutive periods that an activity is being

performed. Combination of tasks builds a timeslot. Two timeslots with a break in between build

a daily schedule. Finally, daily schedules and off days are combined to make weekly schedules.

First, we develop an exact integer programming (IP) model. The large size of the problem and

high computational cost is why we develop a heuristic method. The objectives are to develop an

algorithm in which constraints could be easily added or removed. Also, using any commercial

solvers should be avoided.

In Chapter 2, a study of the literature is conducted on the exact and heuristic methods

developed for the service sectors’ shift and tour scheduling problems. In Section 2.3, we have

shown our contributions in detail by comparing our proposed method to the most relevant studies

in the literature.

In Chapter 3 we first define the problem setting studied in this research. We have bounds on

the shift length, activity duration, break placement, and weekly parameters for scheduling shifts,

similar to other studies in the literature. However, there are no limits on the timeslot duration

or number of tasks each employee can perform at each timeslot. So, the shift is flexible, and

the number of feasible schedules is enormous. Also, there are no bounds on the break duration,

but the break length is a function of shift length. That is why we have two shift types in our

problem. A tour scheduling IP model is proposed for this problem. To include the shift types in

the model, we have enumerated shifts. The parameters for each enumerated shift are shift start

time, shift end time, and break length.

In Chapter 4, we develop an algorithm to solve the problem described heuristically. This

algorithm employs a large neighborhood search (LNS) approach to repeatedly assign weekly

schedules to the employees until an optimal local solution is identified. The weekly schedules are

generated in two steps to reduce computational time. context-free grammar (CFG) and automa-

ton modeling techniques are widely used in the literature to model problems with constraints

on the sequence of decision variables. In our problem setup, employees could have multiple

activities in their skill set. Since a CFG is more expressive than an automaton and the com-

putational cost for larger instances is less than an automaton, we chose this method to model

the daily schedules. This step consists of two sub-steps. First, we generate feasible timeslots
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using CFG modeling techniques and algorithms developed for generating feasible solutions for

this technique. Next, we generate daily schedules using a CFG. However, the same algorithms

used to generate timeslots cannot be used due to the different structures of the problem. We

proposed modifications to the algorithm to build feasible daily schedules. The second step solves

a resource-constrained shortest path problem (RCSPP) to generate weekly schedules from the

daily schedules as weekly parameters cannot be expressed by a CFG. A bidirectional A* search

algorithm is used in the literature to build weekly schedules. We use a new exact technique

based on a bidirectional A* search algorithm considering one resource and the upper bound on

the resource consumption, which uses several heuristics in the preprocessing and core stages of

the method to search faster. However, we modified the algorithm to include multiple resources

and lower bounds on resource consumption. Also, due to the layered structure of our weekly

scheduling graph, some simplifications are made in the preprocessing step to make the algorithm

faster. In addition, two improvement techniques are also suggested to reduce the computational

time heuristically for the instances with a larger number of feasible daily schedules.

In addition, a new constraint on task repetition is indicated in Chapter 5, which prohibits

workers from performing tasks with similar activities on each working day. This constraint can

help to improve the fairness between the employees. Also, for some environments, different

activities are associated with different floors of a building. So, changing activities means moving

between different floors for several times. When such a constraint is added, the tour scheduling

IP formulation and the proposed algorithm must be adjusted. As this constraint cannot be

expressed by a CFG, we propose a task assignment IP which uses the solution found by a LNS

as an initial solution. Some parts of this solution, such as working days, shift periods, and break

periods are extracted as parameters. Then, the task assignment IP assigns activities using an

open-source solver.

The computational experiments and results for the tour scheduling IP and the proposed

heuristic algorithm are shown in Chapter 6 for both industrial and randomly generated instances.

In Chapter 7, a summary of the study, results, and future research directions are included.

3
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Chapter 2

Literature Review

2.1 Shift Scheduling

The specification of each employee’s working periods during their working days is called shift

scheduling. In the following, we review the exact and heuristic approaches for this problem.

2.1.1 Exact Methods

The shift scheduling problem was first introduced by Edie (1954) for toll booth personnel schedul-

ing. In this study, it is suggested to use probability theory tools to address the issue quantitatively

while taking into account service quality and economic goals. Later, Dantzig (1954) proposed

using linear IP techniques to address the toll booth problem. The proposed IP formulation has

a form of set-covering problem, which assigns potential patterns, or shifts, to each employee in

order to meet demand. In this formulation, the binary decision variables determine whether or

not an employee is allocated to a shift.

In the set-covering formulation, the possible shifts are enumerated explicitly. However, a

complete enumeration of shifts is infeasible due to the astronomical number of shifts when model

flexibility in terms of shift start, length, break time, and break placement increases. So, implicit

models were proposed to handle problems with high flexibility. Bechtold and Jacobs (1990)

study a shift scheduling problem with flexible break times. They were the first to present an

implicit integer linear programming model. In this approach, a break decision variable is defined
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that shows the overall number of breaks taken by the entire set of employees during a period,

as opposed to enumerating all possible combinations of shifts and breaks in the set-covering

formulation. The computational results show that, in terms of execution time and computer

memory needs, the implicit model outperforms the set covering formulation in more flexible

problems. Later, it was demonstrated by Bechtold and Jacobs (1996) that these two formulations

are equivalent.

Thompson (1995) integrates the works of Bechtold and Jacobs (1990) on the formulation of

implicit flexible breaks and Moondra (1976) on implicitly depicted shifts with flexible starting

times and lengths. In the proposed IP model, a set of shifts with the same cost, working periods,

break duration, minimum and maximum duration limit, and minimum and maximum limit on

the before and after break work durations are referred to as a shift type. The number of shifts

of each type starting and ending at each period as well as the number of breaks starting at each

period are included as decision variables. The characteristics of each shift type are ensured by

various sets of constraints. Compared to Bechtold and Jacobs (1990), this approach can generate

more shift alternatives and find the optimal solutions faster.

Aykin (1996) proposed an implicit shift scheduling formulation with various breaks and break

windows. The decision variables in this method are comparable to those suggested by Bechtold

and Jacobs (1996), but two rest breaks and one lunch break are permitted. Later, Aykin (1998)

added heuristic improvements to the exact method. To optimally solve the largest examples

addressed up to that time, they devise a branch-and-cut algorithm in which upper bounds are

developed for the variables, and a rounding heuristic is employed.

Although the set-covering model has limitations for large size problems with many activities,

diverse employees, and high levels of flexibility, a B&P method was proposed by Mehrotra et al.

(2000) to overcome this issue by generating only a small fraction of feasible shifts. The set-

covering formulation of the shift scheduling problem, which included minimum and maximum

restrictions on the number of employees and breaks at each period as well as different windows for

rest, meal, and break times, is proposed in this research. A column generation (CG) algorithm

is designed to solve this problem. The computational results show that this approach can reduce

computational time significantly compared to the implicit models.

5
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The presented works solve shift scheduling problems, in which working and break periods are

assigned to each employee. However, the following exact works take into account multi-activity

shift scheduling problems. In these problems, besides break and working periods, the activity

carried out in each period must be determined.

As it is hard to express problems with constraints on the sequence of the decision variables us-

ing mixed integer programming (MIP), constraint programming techniques are proposed, which

provide a simpler way to express complex constraints. Demassey et al. (2005) presented a CG

method based on constraint programming using regular language, which is recognized by an au-

tomaton. This method’s capacity to tackle different problems while avoiding significant changes

to the algorithm itself is what makes it interesting. They used Dantzig (1954)’s formulation to

represent the problem, in which all feasible shifts are created, and the optimal set is chosen. A

cost-regular constraint is proposed to generate only negative reduced cost schedules. Constraint

satisfaction techniques. This research examines three problems: First, the homogeneous em-

ployees with objective cost equal to the sum of the schedules; second, considering over coverage

and under coverage; and third, heterogeneous employees considering preferences. The method is

implemented for the first problem type.

Côté et al. (2011a) suggested a constraint programming-based method using a CFG and

automaton. They propose two MIP models. One model uses the automaton, while the other

uses a CFG to produce graphs of feasible sequences. In the numerical experiments for multi-

activity shift scheduling problems, it is shown that both models reduce computational time and

simplify modeling when compared to the compact MIP formulation. Later, Côté et al. (2011b)

suggested a new implicit shift scheduling model when symmetry is brought in by homogeneous

employees. Although this work solves large-scale multi-activity problem instances, it cannot

handle personalized scheduling problems. For addressing this gap, Côté et al. (2013) employed

the B&P algorithm to the classical set covering formulation. The pricing subproblem employs a

CFG to produce feasible schedules for each employee and is solved with dynamic programming

by traversing the grammar graph. Large-scale examples can be solved using this method, and the

adaptability of CFG allows for the modeling of various scheduling problems. However, when the

number of total working periods expands more than one day, this method will become inefficient.

6
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Boyer et al. (2014) proposed an extension to the B&P method proposed by Côté et al. (2013).

They investigate a shift scheduling problem with heterogeneous employees with various skills and

availability. In addition to activities, they have defined uninterruptable tasks with fixed lengths

and hard constraints on their sequences and completion time. For the restriction on the sequence

of the tasks, two formulations are suggested. Similarly, a set covering model is proposed and a

CFG generates feasible shifts with complex constraints like task time windows, break placement,

and continuous working period length in the pricing problem. For the case studies that are based

on real cases, three branching strategies are offered. Employees are scheduled using two different

timetables: fixed working hours over a week and flexible hours for one day.

2.1.2 Heuristic Methods

When the size or the flexibility level of the scheduling problems increase, the corresponding

decision variables and constraints will increase, which makes the scheduling problems more dif-

ficult to solve. In many cases, the exact methods can’t solve realistic instances. Therefore, to

solve realistic instances, heuristic methods based on local search, LNS, and relaxations are also

very popular in solving scheduling problems. Moreover, meta-heuristics based on CG and B&P

methods are proposed.

Shift design problems are also studied in the literature, which entails determining the start

time, duration, and staffing level of each working shift within a company. Musliu et al. (2004)

suggested a shift design method with two steps. In the first step, the shifts are designed. Next,

employees are assigned to shifts. They use this two-stage method since it is easier to solve the

problem in several stages. One of the objectives of the problem is to minimize the number of

shifts which is NP hard. So, the local search method is used to solve this problem. Various

shift types with minimum and maximum bounds on shift start and length for each shift type

are considered. For each solution, neighborhoods are defined using several move types. Tabu

search is also incorporated into the move type selection procedure to prevent search cycles.

Moreover, moves are ranked according to their level of promise to avoid investigating the entire

neighborhood. As a result, the neighborhood search for the current solution is interrupted each

time a better incumbent solution is discovered. Additionally, depending on the requirements and
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the structure of shift types, an algorithm is developed to determine an initial solution.

An algorithm utilizing local search operators and constraint programming techniques was

employed by Gaspero et al. (2010) to address an extension of the shift design problem. Break

scheduling is also included in this problem. Different shift types are defined in this study with

restrictions on the earliest and latest start time and length. The first step involves designing

shifts and figuring out how many staff should be assigned to each using the hill-climbing local

search method. Following that, constraint programming is used to set breaks, including lunch

breaks, if the shift duration is long enough, with the earliest and latest start time and length

limitations. Additionally, Gaspero et al. (2013) reviewed the literature on shift design and break

scheduling problems and the approaches for solving them. Further, two strategies based on local

search methods are explained in depth, and one is used in a real-world case study.

Some researchers propose their own heuristic methods based on the problem structure. To set

weekly work schedules in a chain of retail clothing stores, Pastor and Olivella (2008) presented

a heuristic method including working time accounts and minimum and desired level of employee

capacity for each period in the problem. Although a weekly scheduling problem is studied, this

method cannot be regarded as a tour scheduling method because it does not consider days-off

scheduling. This approach introduces working time accounts, which track each employee’s weekly

working hours. Considering this balance, each employee may owe working hours to the company

or the other way around. Additionally, the minimum and desired number of staff is considered

for each period. There are two phases in the solution strategy. Each employee receives a schedule

based on a set of feasible schedules in the first phase using a mixed integer linear program. If

solving the problem takes longer than the allotted time, the answer quality is improved through

local optimization utilizing the neighborhood search method. The schedules are changed in the

second phase using established heuristic algorithms to reduce surpluses and shortages by reducing

or lengthening working hours.

Next, we review the heuristic methods to solve multi-activity shift scheduling problems.

Meisels and Schaerf (2003) investigated a multi-activity shift scheduling problem which has

various shift types with fixed beginning and ending times using a local search method. Soft

constraints on distributing assignments evenly among staff and preferences for shifts are also

8
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incorporated. They first provide a model of constraint programming. Then, a local research

method based on the hill-climbing strategy is proposed. The four hill climbing techniques that

have been suggested vary in the area of the neighborhood that they examine, from analyzing

a single neighbor chosen randomly to examining the entire neighborhood. The search space is

then expanded by defining two more move types. Whether the requirements are met or not,

this new search space encompasses all potential assignments. The cost function has been altered

by giving different parts of the function modifiable weights to explore the larger search space

efficiently. According to the computational results, the extended search space method performed

better when compared to other local search methods.

Bonutti et al. (2017) addressed call centers and supermarkets’ multi-activity shift design

problem based on local search. The proposed method, differently from Gaspero et al. (2013)

uses a single-stage simulated annealing method to search the solution space. The search method

core is a composite neighborhood that simultaneously modifies the shift staffing, shift shape,

and break position. There are different types of shifts described, and each type has unique

characteristics including minimum and maximum length, earliest and latest start times, planning

days that it can be used on, and break presence. Some break-related parameters are also given if

the shift type has one. The first step is to generate shifts at random for each shift type to meet

the requirements of each period. Next, five moves are introduced to define the neighborhoods.

To enhance the solution, the moves are chosen using a simulated annealing method.

Demassey et al. (2006) extended their previous work (Demassey et al. (2005)) by proposing a

B&P method. They propose a new cost-regular optimization constraint that directs the search

heuristically in the pricing problem by offering upper and lower bounds. The shortest and longest

paths in a layered directed graph, where the layers correspond to the states of the automaton,

are employed to compute these bounds. The computational results on the generated instances

showed that the method could solve scheduling problems with less than three activities in 2

hours. The approach did not converge in a reasonable amount of time for the data from the

real-world case.

Bhulai et al. (2008) suggested a new two-step heuristic method for allocating shifts in multi-

skill call centers by including agent groups. Depending on their skills, the employees can work
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in various agent groups. The first phase involves determining the staffing requirements for each

agent group for each period. The optimal number of shifts for each type is chosen in the second

stage. The best solution is chosen using an IP approach. Then, a developed heuristic algorithm

relying on a linear programming model assigns the agents to the shifts at each period. The

computational outcomes demonstrate that the problems with two to five skills are not numerically

challenging and can be solved using this approach.

In addition to local search techniques, LNS has been used in the literature for shift scheduling

problems. The reason is that larger neighborhoods reduce the likelihood of becoming trapped

in a local minimum. Quimper and Rousseau (2010) proposed two algorithms that use regular

and context-free languages to describe the complicated realities of shift scheduling problems.

In the first method, all the possible sequences are formulated using regular languages. Then,

the expanded automaton graph is used to generate feasible schedules. In the second method, a

CFG model is suggested, which encodes richer languages than an automaton in the sense that

a CFG can recognize any regular language, but the reverse is not true. In this method, parsing

trees from the grammar graph show the possible schedules. The CYK (Cocke (1969) Kasami

(1966) Younger (1967)) parser algorithm is used to build a graph embedding all the parsing

trees in the grammar. In order to extract the optimum cost parsing tree from the graph, they

also develop a cost-assigning method. Finally, a LNS algorithm is designed to assign the best-

generated schedule using the above techniques to each employee in a round-robin way. During

each iteration of the search, the destructor operator removes the schedule for an employee, and

the constructor operator finds the optimal schedule based on the schedules assigned to the other

ones. Up until an optimal local solution is discovered, the algorithm keeps running. The initial

solution is a random assignment of feasible schedules to the employees. Both methods are used to

solve scheduling instances. Each time a local optimum is reached for an instance, it is restarted

using a new initial solution. The computation results demonstrate that as the number of activities

increases beyond 3, the CFG method’s computing time becomes less than the regular method.

For further comparison, a one-activity shift scheduling problem using the grammar method is

evaluated with an exact MIP model proposed previously in the literature. CPLEX is used to

solve the MIP, and the process ends after one hour of computation or a 1% gap. The findings

demonstrate that the suggested approach discovers solutions at 1% of the optimal solution in
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less than 25 seconds for all the instances and that the proposed method’s minimum cost is lower

or equal to the MIP’s minimum cost.

Restrepo et al. (2012) present a heuristic CG technique for shift scheduling problems that

involve multiple activities, breaks, variable shift lengths, and over time. In this approach, the set

covering problem, which determines employee shift assignments, is solved by the master problem.

The CG is used to solve the linear relaxation of the master problem. Then, an integer solution

is obtained by solving the reduced master problem under the integrality constraint. The set of

possible shifts is generated in the pricing problem. In this pricing problem, a feasible shift is

presented as a path in a graph. So, the pricing problem is modeled as an RCSPP. Some of the

most difficult constraints are included in the structure of the built graph.

Hernández-Leandro et al. (2019) studied a multi-activity shift scheduling problem with het-

erogeneous employees and established constraints on the earliest start time and latest finish time

for each activity. Lagrangian relaxation is used in the suggested meta-heuristic method to obtain

a selection of promising shifts. Specifically, the objective function includes the relaxed demand

restrictions, and the subgradient method is used to solve the Lagrangian dual. A feasible so-

lution is found by solving the restricted set covering problem. This approach uses a CFG to

represent feasible shifts. In many cases, the computational results are superior to those obtained

using Côté et al. (2013)’s B&P approach. Additionally, the method’s processing time is generally

significantly faster.

2.2 Tour Scheduling

Tour scheduling, where the working days during a time horizon and the working periods for each

working day are determined, combines days-off and shift scheduling. The exact and heuristic

approaches to this problem will next be discussed.
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2.2.1 Exact Methods

Mathematical programming approaches such as IP and MIP models are also used for tour schedul-

ing problems. The shift start time bands, which include potential start times, were first intro-

duced by Jacobs and Brusco (1996). They solve the tour scheduling problem optimally utilizing

an implicit compact IP model that uses shifts and days-on variables. Toll collector scheduling has

been done using this model. The results demonstrated a significant improvement in scheduling

efficiency compared to the scenario where personnel begins at the same time on each day of their

tour.

Brusco and Jacobs (2000) integrate meal-break windows into the tour scheduling problem in

addition to starting time bands. The implicit IP approach suggested in this paper uses shifts,

working days, and breaks as decision variables. The shift and break variables are connected by

applying the same constraints Bechtold and Jacobs (1990) suggested.

Larger linear programming models can be solved to optimality by using B&P methods which

make use of CG algorithm. Brunner and Bard (2013) discusses the problem of service workers’

flexible shift scheduling at postal processing and distribution centers. Different shift starting

times, lengths, lunch break allowances, and the day off assignments are all part of the schedule

flexibility considered in this paper. The problem is modeled as a set-covering MIP to solve the

linear relaxation of the problem. The B&P method is also utilized to obtain integer solutions.

The master problem is a set covering formulation assigning tours associated with each employee

type (regular or flexible). Additionally, two different subproblems for both regular and flexible

workers are presented. Unlike the flexible workers, the shifts are explicitly generated for the

regular workers. According to computational findings, adding more flexibility to the problem

can result in significant cost reductions.

The exact approaches to multi-activity tour scheduling problems are next reviewed. Regard-

ing problems with hierarchical workforce tour scheduling with off days, Seçkiner et al. (2007)

presented an IP approach. Employees have varying levels of qualification, as seen by the hi-

erarchical structure. The staff members who are the most qualified can execute each activity,

whereas the staff members who are the least competent can only perform one. This model is an
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expansion of Billionnet (1999)’s, which only allows for the assignment of employees to one shift

type; in contrast, this model allows for assigning employees to various shift types. Additionally,

based on how many working days are allotted to them, the number of off days is determined.

Kabak et al. (2008) suggested an MIP model minimizing the number of staff required in a retail

sector while meeting the demand. To accomplish this goal, they employ a two-stage strategy. An

hourly staff requirement is initially calculated using historical data and a sales response model.

The second stage involves assigning full-time and part-time workers to a predetermined set of

daily shifts with fixed start times, durations, and break times using an explicit MIP model.

Additionally, it is presumed that every employee can carry out every activity. Meeting the

standards outlined in the union contract regarding the upper bound for the part-time staff to

full-time staff ratio and limits for each staff member’s working days and hours per week are also

included in this model. In addition, a simulation is run to validate and improve the output of

the sales response model.

Jones and Nolde (2013) presented an MIP multi-activity workforce scheduling model for the

Swiss Migros market for the heterogeneous workforce. The duration of each activity is also

constrained in this model. Activity shifts are proposed to be enumerated to include these limits,

where an activity shift is a set of consecutive periods where a specific activity is performed.

Employees are then assigned to these activity shifts using the MIP. Additionally, there are

minimum and maximum thresholds for employee numbers in each period, the length of breaks

(breaks are considered activities in the model setup), working days, and uninterrupted work

hours. This model aims to reduce the sum of squared errors between the expected and assigned

staff numbers for each period. The objective function is approximated with a convex piecewise

affine function to convert the problem into an MIP model. Some constraints were softened to

achieve a feasible schedule and avoid infeasibility. Studies on computational scheduling at Migros

stores with 16 employees and 3 activities revealed that it takes roughly 5 to 10 minutes to address

instances with 1-hour periods, a horizon of 7 days, and 4 to 20 employees. However, the same

instances with 30-minute periods were resolved in 10 to 25 minutes.

Besides decomposition methods like B&P, Benders decomposition is also proposed to solve

scheduling problems. Restrepo et al. (2018) used a strategy that combines Benders decomposition
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and CG to solve the multi-activity tour scheduling problem for homogeneous employees. The

subproblems in Benders decomposition method allocate activities and break periods to produce

daily shifts. To represent the rules in generating shifts in the subproblems, a CFG is used. Then,

daily shifts and tour patterns are connected by the master problem. The master problem is

solved by CG since there may be an excessive number of shifts if fully enumerated. According to

the computational results, high-quality solutions can be developed for instances with up to ten

activities, and the strategy performs better than a B&P approach.

2.2.2 Heuristic Methods

For tour scheduling problems with flexible shift start time, Bailey (1985) suggested a formulation

to reduce the overall expense of assigning staff to the shifts and staff under coverage. First, an IP

optimization model is used to assign employees to shift and days-off patterns. The start time of

the shift is unrestricted. The length of the shift, however, is set at 8 hours. A heuristic method

is additionally suggested to set the shift start time and restrict the occurrence of shift patterns

with a maximum difference in start timings. Compared to a two-step optimization strategy

recommended in the literature, where the days-off problem is handled first, and then seven shift

scheduling problems are solved later, the computational findings of this model demonstrate an

improvement in objective cost.

Using the set-covering formulation, Easton and Rossin (1991) suggested a methodology to

assign predetermined tours to employees. There are two distinct categories of full-time and part-

time workers, and their ratio is constrained by a parameter. While part-time employees work

shifts of four hours with no break, full-time employees could be given nine-hour shifts beginning

at any time of the day with a fixed break. Then, based on CG, they create a heuristic method to

generate a subset of possible tours. Two distinct studies including solely full-time workers and

both types of the workforce were conducted. In comparison to formulations based on all feasi-

ble tours, the method for the first set of experiments could obtain the optimal cost with fewer

variables. When all possible tours were constructed, the objective cost for the second method

was equivalent to accurate methods and lower than other heuristic methods in the literature.
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Additionally, the computational cost was significantly lower than that of the competing alterna-

tives. In addition to the flexibility in the tour scheduling problem that Easton and Rossin (1991)

proposed, Brusco and Jacobs (1993) also put up a model with flexibility in the arrangement of

off days and meal breaks. Up to 2 billion viable tours were generated by the stated environment.

The problem was thus solved using a novel heuristic based on simulated annealing. The results of

the experiments demonstrated that near-optimal solutions could be discovered, and the method

was very favorably comparable to an IP solution strategy developed for this problem in terms of

solution quality and computing time.

Al-Yakoob and Sherali (2008) looked into tour scheduling of the gas station employees while

taking into account their preferences for shifts, off days, and work locations. Three staff classifi-

cations are present in this issue, and three shifts covering the day are specified. For solving the

linear relaxation of the problem’s set-partitioning formulation, a CG approach is suggested. The

subproblem includes restrictions on the number of consecutive working days and shifts assigned

on consecutive days. A sequential variable-fixing heuristic is suggested to produce a feasible

schedule for each employee.

Exploiting variable neighborhood search technique, Talarico and Duque (2015) offered two

personnel management strategies—exact and heuristic—for an Italian grocery chain’s check-out

operation. In these methods, the set of feasible daily shifts is enumerated. The length of the

shift, the number of working days, and the number of off days are all constrained in this problem.

In addition, there must be at least one break for each daily shift and a 2-hour break after every

6 straight hours of work. In order to assign the workers to a set of daily shifts during the week,

an exact set-covering formulation is first proposed. Then, a three-phase meta-heuristic method

that combines an exact and heuristic approach is developed. In the first phase, which is an

initial solution generator, only a subset of feasible weekly shifts is generated and a set covering

model assigns shifts to employees. A variable neighbourhood descent approach is employed in

the second phase to improve the initial solution using 4 operators. Two techniques are utilized in

phase three as diversification strategies to avoid the local optimum. The outcomes of the meta-

heuristic algorithm are compared with the exact method solution provided by CPLEX. The

average optimality gap was 1.3% compared to CPLEX, but the computing time was reduced by
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35.4%.

Next, an overview of heuristic solutions to multi-activity tour scheduling problems is provided.

Detienne et al. (2009) offered two IP models for employee timetabling to satisfy the requirements

at the lowest possible cost. For each employee a set of feasible work pattern is given. The first

model is a set-covering problem and workers are assigned to the predetermined work patterns.

The second model is a multi-dimensional, multi-choice knapsack formulation. A Lagrangian lower

bound, a heuristic approaches based on cut generation, and an exact method based on Benders

decomposition are proposed. The master problem in the exact approach is a multi-dimensional,

multi-choice knapsack problem and the sub-problem is a b-matching problem.

To address the scheduling of heterogeneous part-time service employees, Hojati and Patil

(2011) proposed a heuristic method based on a two-stage IP method according to the problem

structure. Different employee availability possibilities and weekly work restriction considerations

are addressed in the problem setting. The goal is to reduce overstaffing and ensure that employees

complete the required number of hours of work each week. There are two steps in the suggested

heuristic method. An IP model is used to select suitable shifts that satisfy employee needs in the

first step. Afterward, a heuristic based on IP is used to assign the shifts to the employees. The

computational results showed that the method is robust and can find close-to-optimal solutions.

A more flexible tour scheduling problem with flexible shifts is studied by Qu and Curtois

(2020). They presented a variable neighborhood search method for a multi-activity tour schedul-

ing problem. In this problem, there are limits on the maximum consecutive working days, mini-

mum and maximum working periods and shift length, minimum rest time between the shifts and

activity duration, and valid shift start times. To enhance the solution, four distinct neighborhood

operators are defined.

To schedule multi-activity tours for heterogeneous staff, Restrepo et al. (2016) presented a

B&P method. The problem setting includes adjustable shift start times, lengths, breaks, and

day off patterns. Based on the Dantzig-Wolfe decomposition, two formulations are suggested. In

the first formulation, columns represent daily shifts produced by a CFG, and tours are produced

in the master problem by taking into account the weekly regulations. At each node of the B&P
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algorithm, the employee holding the largest fractional values is chosen as branching rule imposes.

The second formulation employs tours as columns, which are generated in the subproblems in two

steps. The RCSPP is used to construct tours once daily shifts are generated using a CFG. This

formulation’s branching rule combines the first formulation’s rule with an aggressive variable-

fixing method. The findings demonstrate that for all instances with an optimality gap smaller

than 1%, the second formulation is stronger in terms of its lower bound and high-quality solutions.

Gérard et al. (2016) studied a flexible multi-activity tour scheduling problem. Due to the

problem setting and larger time horizon, the B&P method proposed by Restrepo et al. (2016)

cannot be used, and instead, heuristic versions of B&P method based on the nested dynamic

program are proposed. This problem includes days-off scheduling, shift scheduling, activity

assignment, and pause and lunch break assignment for heterogeneous employees. The purpose

is to minimize both over and under-coverage along the planning horizon. The problem is solved

using four different approaches: a compact MIP model, a B&P method using a heuristic-based

nested dynamic program approach, a diving heuristic, and a greedy heuristic utilizing the same

subproblem solver. The lack of effectiveness of the RCSPP and grammar-based formulations for

the pricing subproblems is attributed to the numerous lower and upper bounds and negative costs

for some arcs for the first method, and multiple bounds and long time horizons for the second one.

The studied problem has the following hierarchical structure. A task is a span of time during

which a single activity is carried out over successive intervals of time; a timeslot is a set of tasks;

a day-shift is a set of timeslots divided by a lunch break, and combinations of day-offs and day-

shifts result in individual planning for an employee. The problem is resolved using the dynamic

programming approach from the inner to the outer level. Some states are heuristically removed

from the pricing algorithm, and pause assignment is simplified. Additionally, the branching step

selects the most fractional triplet employee-activity-period, then a depth-first strategy is used

to search the tree. The computational findings on real-world and randomly generated instances

demonstrate that, in many situations, the suggested methods produce optimal or almost optimal

solutions within a 24-hour time limit.

Later, in their thesis, Pan (2018) investigated a multi-activity tour scheduling problem for

heterogeneous employees that was modeled after the one suggested by Gérard et al. (2016).
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They also contained various additions, such as the addition of interruptions besides breaks,

variable rest durations between two successive daily shifts, predetermined timeslot length and

shift start, and transitions between activities. To address the issue, a B&P method based on

CG is suggested. In order to accelerate the B&P convergence, a dual ascent heuristic is also

developed. In addition, A pricing problem is presented that uses automata to create timeslots,

which are then combined using daily automata and RCSPP to create daily shifts. RCSPP is

then used to create feasible weekly schedules. To deal with large-scale problems, various heuristic

strategies based on CG, LNS, and tabu search are also discussed. The results show that LNS

can get feasible solutions quickly. However, methods based on CG can get high-quality solutions

but fail due to the convergence suffering of CG for large-scale instances.

Pan et al. (2018) presented a hybrid heuristic that combines tabu search and LNS techniques

for a different problem form the one presented in Pan (2018). In contrast with the previous

model, no limit is set on the number of tasks in each timeslot. Also, the activity performed

in each task is not determined. There are constraints on the length of an activity, consecutive

working hours, daily working hours, break duration, the amplitude of a daily shift, weekly working

hours, and rest between two daily shifts. First, the MIP model is suggested to minimize the

overall over- and under-coverage. After that, a two-phased heuristic technique is suggested. The

employee requirements for each period are employed to construct an initial greedy solution in

the first phase, and tabu search is used to integrate the problem’s constraints. Utilizing regular

language, feasible timeslots and then daily shifts are generated in the second phase. Later,

feasible weekly schedules are created utilizing the already-built daily shifts by employing the

RCSPP. The findings indicate that, for situations involving two to five activities and ten to

sixty employees, the suggested hybrid technique can, in a reasonable amount of time, identify a

solution that satisfies all legal requirements while violating workload demand by an average of

4.5%.

2.3 Contributions

This study investigates a multi-activity tour scheduling problem with heterogenous employees

and a high degree of flexibility for the shifts, breaks, and activities. The contributions are as

18

http://www.mcmaster.ca/
http://www.https://cse.mcmaster.ca/
http://www.https://cse.mcmaster.ca/


Master of Science– RANA SHARIAT; McMaster University– School of Computational Science
& Engineering

follows.

First, an IP is suggested in which, in contrast to formulations in Pan (2018) and Gérard et al.

(2016), any activity could be carried out by any skilled person. The mentioned studies suggest

an MIP model in which the number of tasks in each timeslot and the type of activities within

each task should be predefined. This restriction is not included in the paper proposed by Pan

et al. (2018). however, there are bounds on the duration of breaks while the breaks are defined

differently in our problem. Break duration in our model is a function of shift length. That is

why we use shift types in our approach.

Second, we developed a heuristic LNS method that generates timeslots, daily schedules, and

weekly schedules in a sequential manner, inspired by Pan (2018). However, we use a CFG in

place of the automaton used by Pan (2018), which is expected to perform better for the problems

with employees with a larger number of skills. We employ algorithms developed by Quimper

and Rousseau (2010) to generate feasible timeslots. Due to the difference between the leaf nodes

in the daily schedule grammar graph and those in the timeslot graphs, the same techniques

cannot be used to construct daily schedules from timeslots. So we make adjustments to the

algorithms in Quimper and Rousseau (2010). Then, because a CFG cannot express the weekly

rules, the weekly schedules are created by combining daily schedules using a fast, exact algorithm

for RCSPP developed by Ahmadi et al. (2021). This approach uses heuristics and preprocessing

processes to solve the RCSPP more quickly. This approach has been modified to be consistent

with our scheduling problem, which contains lower bounds on the resources in addition to the

upper bounds and multiple resources instead of just one.

Finally, we propose a new constraint on task repetition that prevents employees from per-

forming tasks with a specific activity more than once daily. This constraint cannot be represented

using a CFG; hence a task assignment IP is suggested. The heuristic LNS model’s solution is

used as the initial solution for the task assignment IP. In this IP model, the initial solution’s

shift and break start time and duration and activities that can be performed by each employee

each day are included as parameters.
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Chapter 3

Model Development

3.1 Problem Setting

Scheduling the workers is a challenging task in a service industry organization where demand is

very variable. The underlying setting is as follows. Periods, which are 30 minutes, are the shortest

time interval that generates the planning horizon. Employees may be assigned to various shifts

with various lengths and starting times daily. A shift could last from 4 to 12 hours. Additionally,

shifts of less than 8 hours have a 30-minute break, and shifts of 8 hours or more have an hour-

long break. These breaks may begin at least 3 hours after the start of the scheduled shift

and must end prior to the shift’s final period. Each employee has a skill set that details the

tasks they are capable of carrying out. Each activity has a minimum and maximum time limit.

Employees should be assigned to either an activity or a break in each period of their allocated

shift. Moreover, there are restrictions on the total number of periods worked per day, the total

number of periods worked per week, the number of working days per week, and the consecutive

working days each week. The goal is to assign schedules to use employees with the least amount

of overall excess and shortage of employees across the planning horizon.

3.2 Tour Scheduling Integer Program

Since there is only a restriction on the length of each shift in this setting, the shifts that employees

can be assigned to are rather variable. Therefore, if all of the shift-related characteristics are
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included as decision variables, the mathematical model will be very large. We must enumerate

every potential shift for each duration and start time throughout shop business hours and assign

employees to those enumerated shifts in order to simplify the model and reduce the number

of constraints. After enumeration, the model will receive as input parameters the shift length,

start period, working periods, and the number of break periods for each enumerated shift. For

instance, Table 3.1 contains a collection of enumerated shifts with a 4-hour length if the store is

open for 6 hours. The shifts with a particular start time, duration, and break times allocated to

each employee are called actual shifts. For enumerated shift 1, the start period is 1, the end is

8, the length is 8, and the break length is 1. The actual shift created from enumerated shift 1

have one break period (30-minute break) in period 7. The break should be at least 3 hours after

the start of the shift and end before the last period.

Table 3.1: Parameters for each enumerated 4-hour shift

Enumerated Shift Start Period End Period Length (periods) Break Length (period)

1 1 8 8 1
2 2 9 8 1
3 3 10 8 1
4 4 11 8 1
5 5 12 8 1

In the situation where the shifts are not enumerated, we must use the variable ze,i,p,d, which

represents that employee e is allocated to a shift beginning in period p with duration d on the

day i, in place of variable ze,s,i in our IP model, where s is the enumerated shift index. We found

that enumeration of the shifts would lead to a smaller model comparing the number of variables

and constraints. We define the sets, indices, parameters, and decision variables in Table 3.2.

Appendix A contains the model formulation. For all activities and periods, the objective

function seeks to reduce the weighted total of shortage and excess. Both shortage and excess

are allowed in the problem setting. However, they are penalized by costs equal to cs and ce,

respectively. Based on the environment of scheduling and the importance of shortage or excess,

the values for these costs could be defined to better meet the goal of demand coverage. If the

staff is not hired, the constraint sets (1) & (2) make sure that the sum of working days in the

time horizon for each employee is equal to zero, and if the staff is hired, the sum is between a

21

http://www.mcmaster.ca/
http://www.https://cse.mcmaster.ca/
http://www.https://cse.mcmaster.ca/


Master of Science– RANA SHARIAT; McMaster University– School of Computational Science
& Engineering

Table 3.2: Sets, indices, parameters, and decision variables for the IP model

Sets

I set of days in the planning horizon
S set of enumerated shifts
P set of periods
A set of activities
E set of employees
Ae set of activities that employee e has skill and is able to perform
B set of break durations, where B = {1, 2} (30-minute and 1-hour break, respectively)

Indices

i index of days, where i ∈ I

s index of enumerated shift, where s ∈ S

p index of periods, where p ∈ P ; period p is defined as the interval [p, p + 1)
a index of activities, where a ∈ A

e index of employees, where e ∈ E

b index of break durations, where b ∈ B

Parameters

pn number of periods in each day
cs shortage cost for each period and activity
ce excess cost for each period and activity
di,p,a number of workers required on day i, in period p, for activity a

ls enumerated shift s length
ls enumerated shift s start period
ls enumerated shift s end period
lbs enumerated shift s break length
wpp,s is 1 if period p is a working period of the enumerated shift s, otherwise 0
[lac

a , uac
a ] bounds on the duration of activity a

[ldp
e , udp

e ] bounds on the daily working periods for employee e

[lwp, uwp] bounds on the weekly working periods
[ld, ud] bounds on the weekly working days
ucd maximum number of consecutive working days
we,i is 1 if day i in previous week was a working day for employee e, otherwise 0;

i ∈ {−(ucd − 1), . . . , 0}

Binary Decision Variables

ze,s,i is 1 if and only if employee e is assigned to the enumerated shift s on day i

we,i is 1 if and only if employee e is working on day i

ye,i,p,b is 1 if and only employee e on day i starts a break in period p with length b

te,i,a,p is 1 if and only employee e on day i starts to do activity a in period p

xe,i,a,p is 1 if and only employee e on day i performs activity a in period p

he s 1 if and only if employee e is assigned to at least one shift in the planning horizon

Integer Decision Variables

ui,p,a shortage on day i in period p for activity a

ui,p,a excess on day i in period p for activity a
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minimum and maximum. In the event that it is a working day, constraint set (3) assigns the staff

exactly one enumerated shift. Otherwise, there is no shift assignment. The maximum number

of consecutive working days is limited by constraint set (4). The sum of all successive ucd + 1

variables for working days must be less than or equal to ucd. If an employee does not possess

the required skill, we cannot allocate this employee to an activity that requires the same skill

under the constraint set (5). Constraint set (6) assigns a staff member a break period with a

length dependent on the given enumerated shift s. The break must begin at least three hours

after the allotted enumerated shift start period (ls) and terminate at least one period before it

ends (ls). Therefore, the employee’s break may begin during the periods ls + 6 to ls − lbs. Every

employee on staff is guaranteed a maximum of one break per day according to the constraint set

(7). Employees not assigned a shift that day should not be put on break periods. The shortage

and the excess amount for each activity at each period are determined using the constraint set

(8). Therefore, the total excess and required staff for that activity equal the number of workers

allocated to conduct that activity and the shortage during that time. Unless it is a break time,

constraint set (9) requires assigned personnel to do exactly one activity throughout each period

of the assigned shift. Additionally, a staff member must be assigned to a shift that includes the

period in which they perform an activity. If the employee is assigned to the enumerated shift s

and period p is a working period for s, the first expression on the right side will equal 1. If an

employee has begun their break and has not yet ended in period p, the second expression will

equal 1. In order to have a break time in period p, the break time must not begin earlier than

period p − b + 1 if the break duration is equal to b. To keep the third index for the y variable

feasible, the upper bound on d is set to min(b, p). Constraint sets (10) to (12), proposed by Pan

et al. (2016), relate the variables x and t associated with performing and starting an activity.

If an employee is already engaged in an activity before period p, constraint set (10) prohibits

starting that activity in period p. This is done to avoid going over the allowed activity duration.

The cause of p’s range is [2, pn − lac
a +1] is that starting an activity must take place during a time

frame that allows for its continuation for at least lac
a periods. The x variable will always equal

1 if activity begins during a period due to the constraint set (11). Constraint set (12) requires

the variables to take on values in such a way that if a worker is engaged in an activity during

a period, they were either engaged in that activity during the preceding period or they have
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just begun it. Constraint set (13) ensures that if an employee is doing an activity in the first

period, they have started doing the activity in the first period. The minimum activity duration

is constrained by the constraint set (14). As a result, if an employee starts an activity during

a period, they must perform it throughout all lac
a periods. The maximum activity duration is

set by the constraint set (15). Therefore, if an employee begins doing activity a in period p, the

activity a could be assigned to at most lac
a periods in the following uac

a +1 periods beginning from

period p. Because the indices for the summation on the right side of the constraint cannot exceed

the upper bound limit, p does not exceed pn − lac
a + 1. The minimum and maximum working

periods per day and week for the hired personnel are determined by constraint sets (16) to (19).

The decision variables are defined by the constraint sets (20) to (27). A numerical example of

the tour scheduling IP could be found in Appendix B.
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Chapter 4

Solution Methodology

In this chapter, we develop an algorithm to solve the problem described in Chapter 3 heuristically.

First, we generate feasible daily schedules based on the considered daily rules. Second, a feasible

combination of daily schedules is chosen to create weekly schedules. The generation of daily

schedules is done in two steps: timeslot generation and daily schedule generation. To generate

timeslots, we model the timeslot rules using a CFG. Next, two timeslots and a break are combined

using a CFG to generate daily schedules. As a CFG cannot represent the weekly constraints,

a dynamic programming RCSPP is employed to generate the weekly schedules considering the

daily schedules. A large-neighborhood search method is used to assign the weekly schedules

to the employees in a round-robin way. Finally, two improvements are proposed to reduce the

computational time of the algorithm heuristically, which are used for large-scale instances.

4.1 Context-Free Grammar

A CFG is defined as a tuple of the type G = ⟨N, S, Σ, P ⟩, where N stands for the set of non-

terminals in upper case symbols and Σ for the set of terminals in lowercase symbols. S indicates

the starting non-terminal. P indicates productions of type A → w, where w is a sequence of

terminals and non-terminals and A ∈ N . A parsing tree is a tree composed of root S, non-

terminal inner nodes, and terminal leaves. Furthermore, each inner node’s A children join to

produce w when A → w ∈ P . The sequence of terminals created by a parsing tree’s leaf nodes

25



Master of Science– RANA SHARIAT; McMaster University– School of Computational Science
& Engineering

is recognized by the grammar. The set of all sequences recognized by the grammar is defined as

context-free language. A production A → w|v denotes either A → w or A → v.

If each production results in two non-terminals or one terminal, such as A → a or A → BC,

then the grammar has Chomsky normal form (first described by Chomsky (1959)). A directed

acyclic graph (DAG) encoding all feasible parsing trees for a CFG in Chomsky normal form

is produced via Algorithm 1 proposed by Quimper and Rousseau (2010) on page 10, which is

referred to as QR1 in this research. Each leaf node in the DAG has a terminal and a position

in the sequence assigned to it. An inner node is of type N(A, i, j) and has non-terminal A, i as

its starting position, and j as its span. If a substring is of length j, starting at position i, and

formed from non-terminal A, then this node is considered a member of the graph. A list of pairs

of nodes of type ⟨N(B, i, j), N(C, i + k, j − k)⟩, where A → BC ∈ P , form the children of each

inner node. This indicates that a non-terminal A starting at position i with a span of j can be

created by concatenating two substrings. The first is a substring starting at position i with a

length of j generated from non-terminal B, and the second is a substring starting at position

i + k with a length of j − k generated from non-terminal B.

Following Quimper and Walsh (2007), the dynamic programming algorithm CYK parser

(Cocke (1969), Kasami (1966), and Younger (1967)) is employed to develop the QR1 algorithm.

If a sequence is from a context-free language, the CYK parser returns a parsing tree. The

terminals and their positions in the sequences are displayed in this graph’s leaves. Each inner

node, denoted as N(A, i, j), is associated with a non-terminal A that starts in position i with

span j.

Context-free language can be improved by specifying valid spans for the subsequences sug-

gested by Quimper and Rousseau (2010) in order to impose length restrictions on the subse-

quences. For instance, ASa
→ BSb

CSc
indicates that the sets Sa, Sb, and Sc specify the accept-

able spans for the A, B, and C subsequences, respectively. Line 16 of QR1 must be modified to

accommodate these constraints by adding j ∈ Sa, k ∈ Sb, and j − k ∈ Sc.

In order to determine the price of the grammar graph’s best cost sequence, Quimper and

Rousseau (2010) suggest using Algorithm 2 on page 12, referred to as QR2 in this research.
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The sequence can be obtained by retracing the grammar graph using the best cost subsequence

selected at each inner node or leaf node. The aforementioned algorithms will be used in the

development of our solution methodology.

For workforce scheduling problems, both regular and context-free languages have been utilized

in the literature. In these languages, the schedules are expressed as sequences. Pesant (2004)

presented regular constraints to generate sequences that belong to a regular language. Demassey

et al. (2006) extended Pesant (2004)’s work to cost-regular constraints to accept sequences with a

cost threshold. A regular language is the sequences recognized by an automaton. An automaton

is defined as a set of states and transitions, which could be shown by a directed graph. The

nodes and edges of this graph are states and transitions of the automaton, respectively. Quimper

and Rousseau (2010) proposed two methods using regular and context-free languages for multi-

activity shift scheduling problems. They demonstrated that a CFG is more effective when the

problem has many activities. In this situation, there are fewer nodes in the grammar graph than

nodes and edges in the automaton expanded graph. Moreover, compared to an automaton, a

CFG is more expressive, and writing the model is more straightforward. Hence, we will model

our problem using a CFG.

In the setup described in Section 3.1, weekly restrictions, including the minimum and the max-

imum number of working days and periods per week, and restrictions on the consecutive working

days, cannot be presented as a CFG. As a result, we will not include the weekly constraints in

the first stage. The CFG model is illustrated in the following for feasible daily schedules that

takes employee e’s daily rules into account. We incorporate the hierarchical schedule structure

suggested by Gérard et al. (2016) into this model. In this structure, a task is a sequence of peri-

ods where the same activity is performed consecutively. A sequence of tasks creates a timeslot.

Note that two tasks with the same activity cannot be performed in a row. The reason is that

if this constraint is not considered, the bounds on the activity duration would be violated. A

daily schedule is created by placing two timeslots in succession with a break in between. In the
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following, we propose the CFG model for the problem described in Chapter 3 .

S =⇒ RW1R|RW2R|R (1)

W1[a1,b1] =⇒ P[6,b1−2]bP (2)

W2[a2,b2] =⇒ P[6,b2−3]bbP (3)

R =⇒ RR|r|ϵ (4)

P =⇒ AaP ′
a|Aa ∀a ∈ Ae (5)

Aa[lac
a ,uac

a ] =⇒ A′
a ∀a ∈ Ae (6)

A′
a =⇒ aA′

a|a ∀a ∈ Ae (7)

P ′
a =⇒ A′

a′P ′
a′ |A′

a′ ∀a, a′ ∈ Ae, a′ ̸= a (8)

a1 =


ldp
e if 8 ≤ ldp

e , udp
e ≤ 15

ldp
e if 8 ≤ ldp

e ≤ 15, 16 ≤ udp
e ≤ 24

0 if 16 ≤ ldp
e , udp

e ≤ 24

a2 =


0 if 8 ≤ ldp

e , udp
e ≤ 15

16 if 8 ≤ ldp
e ≤ 15, 16 ≤ udp

e ≤ 24

ldp
e if 16 ≤ ldp

e , udp
e ≤ 24

b1 =


udp

e if 8 ≤ ldp
e , udp

e ≤ 15

15 if 8 ≤ ldp
e ≤ 15, 16 ≤ udp

e ≤ 24

0 if 16 ≤ ldp
e , udp

e ≤ 24

b2 =


0 if 8 ≤ ldp

e , udp
e ≤ 15

udp
e if 8 ≤ ldp

e ≤ 15, 16 ≤ udp
e ≤ 24

udp
e if 16 ≤ ldp

e , udp
e ≤ 24

According to the production set (1), an employee will either be assigned to a shift that lasts

longer than or equal to 8 and less than 16 periods with one break period (W1), longer than

or equal to 16 and less than or equal to 24 periods (W2) with two break periods, or no shift

at all. Productions (2) and (3) show how daily schedules can be created using timeslots (P )

and breaks (b). Additionally, the break start time is restricted to a time that is at least six

periods following the start of the shift. Moreover, the minimum and maximum duration limit

on P is set considering the break start time and the overall break and second timeslot duration.

The parameters a1, a2, b1, and b2 are determined by the limits on the daily working periods.
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For instance, the employee e can only be assigned to shifts of type W1 if udp
e is less than 16

periods. Therefore, for this employee, a2 and b2 are equal to 0, but a1 and b1 are equal to ldp
e

and udp
e , respectively. The rest period sequence is produced by production set (4) for the periods

throughout the planning horizon that the employee is not assigned to any shifts. Timeslots are

generated by the production set (5) using a sequence of tasks (Aa). Production set (6) limits

the time allotted for each task’s associated activity. A task is created from a sequence of a single

activity by the production set (7). Two tasks with a similar activity performed back-to-back are

forbidden by the production set (8). Note that all productions from (5) to (8) are based on the

activities in the employee’s skill set and are proposed by Restrepo et al. (2016).

4.2 Daily Schedules

To make the daily schedules, we can use two methods. The first method is to apply QR1 to the

grammar presented in Section 4.1 to produce the grammar graph for each employee. However,

preliminary experiments indicated that this methos is ineffective for setting. The second method

has two steps to generate daily schedules. In the first step, feasible timeslots are generated.

The second step generates feasible daily shifts based on the generated timeslots. This method is

suggested by Gérard et al. (2016) by developing a nested dynamic program and Pan (2018) by

developing automata to generate timeslots and daily schedules. We also use the second method

to generate daily schedules. Although Pan (2018) used automata, we will employ a CFG in our

method. As previously stated, a CFG is superior to an automaton.

To produce all the feasible sequences for the daily schedules, we must first generate all the

possible timeslot sequences for each duration. The Algorithm 1 is an illustration of this process.

The Chomsky normal form of the production sets (5) through (8) mentioned in Section 4.1

are the grammar we use to generate feasible timeslots. The Chomsky normal form of these

productions could be found in Appendix C. A timeslot’s lowest possible duration is equal to the

minimum lower bound of the activity duration for the activities in the set of employee skills, and

its highest possible duration is equal to the maximum of b1 − 2 and b2 − 3 values as explained for

productions (2) and (3). To retrieve the grammar graphs for all possible lengths, we do not need

to build them separately; instead, we can generate the grammar graph for the longest length and
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then identify the descendants of the root node N(P, 1, d) for all d in feasible durations. Indeed,

the grammar graphs for the smaller lengths are also constructed simultaneously as the grammar

graph for the longest length is built.

Algorithm 1 Algorithm for building the timeslot for each employee e

1: Set the productions (5) through (8) in Chomsky normal form as the grammar;
2: Set t = min

a∈Aa

lac
a and T = max(b1 − 2, b2 − 3) as the min and max possible length for a timeslot duration;

3: Generate the grammar graph using QR1 for the sequence of length T;
4: for d = t, . . . , T do
5: Find the descendants of N(P, 1, d);
6: end for

Next, we use the constructed feasible timeslot sequences to build every possible daily schedule

for every possible duration. Algorithm 2 illustrates the procedure. Productions (2) and (3)

mentioned in Section 4.1 in Chomsky normal form, which are related to producing acceptable

daily schedules, are considered as two separate grammars in this step. The graphs will be

produced using production (2), (3), or both, depending on the ldp
e and udp

e values for each

employee. For instance, if an employee’s ldp
e and udp

e values are 9 and 18, respectively, two

distinct graphs utilizing productions (2) and (3) must be created. However, we would only

create one graph using production (2) if udp
e equaled 14. It should be noted that QR1 cannot

directly be utilized to generate the grammar graph for daily schedules. The reason is that the

definition of leaf node is different, and all the leaf nodes do not have span equal to 1. Nodes of

non-terminal P with any span are considered leaf nodes in the daily schedule graph. Children of

leaf nodes are not just terminals but also sequences associated with feasible timeslots. To create

daily schedule grammar graphs, we use Algorithm 3, which is a modification of QR1. We do

not need to separately produce graphs for the different daily schedule durations, as described

in Algorithm 1, which constructs timeslots. The graph for the sequences of length T will be

generated initially. The graph for each possible duration will then be constructed from the
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descendants of N(P, 1, d).

Algorithm 2 Algorithm for building the daily schedules for each employee e

1: Set productions (2) and (3) in Chomsky normal form as separate grammars with W1 and W2 starting non-
terminals;

2: Set t = ldp
e and T = udp

e as the min and max possible length for a daily schedule duration;
3: Generate grammar graphs using Algorithm 3 for the sequence of length T;
4: for d = t, . . . , T do
5: if d ≤ 15 then
6: Find the descendants of N(W1, 1, d);
7: else
8: Find the descendants of N(W2, 1, d);
9: end if

10: end for

As previously noted, timeslot sequences may be the children of the daily schedule graphs’ leaf

nodes. Therefore, lines 4 to 6 in Algorithm 3 are added to add timeslots of length 1 to children

of non-terminal P with span 1 if the minimum timeslot duration value is equal to 1. Also, lines

14 to 16 are added to include timeslots of length j as the children of non-terminal P with a

span larger than 1, provided that the span is within the employee’s acceptable timeslot duration

limitations.
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Algorithm 3 Algorithm for building the daily schedules graphs
1: for all non-terminals A do
2: for i ∈ [1, T ] do
3: Create node N(A, i, 1);
4: if A = P & min

a∈Aa

lac
a = 1 then

5: Children(N(A, i, 1))← timeslots with duration 1;
6: end if
7: Children(N(A, i, 1))← {t|A→ t ∈ G}
8: end for
9: end for

10: for j ∈ [2, T ] do
11: for i ∈ [1, T − j + 1] do
12: for all non-terminal A do
13: Create node N(A, i, j);
14: if A = P & min

a∈Aa

lac
a ≤ j ≤ max(b1 − 2, b2 − 3) then

15: Children(N(A, i, j))← timeslots with duration j;
16: end if
17: Children(N(A, i, j))← {⟨N(B, i, k), N(C, i + k, j − k)⟩|

k ∈ [1, j), A→ BC ∈ G, Children(N(B, i, k)) ̸= ∅, Children(N(C, i + k, j − k)) ̸= ∅};
18: end for
19: end for
20: end for

4.3 Weekly Schedules

When creating weekly schedules, weekly limits are considered along with a combination of daily

schedules and off days. These restrictions are limits on the maximum number of consecutive

working days ucd, weekly working days [ld, ud], and weekly working periods [lwp, uwp]. Since

a CFG cannot account for these restrictions, RCSPP is employed. We solve the RCSPP and

generate weekly schedules using the fast exact algorithm developed by Ahmadi et al. (2021).

Bidirectional A* search expands partial paths in both directions, from source to target and target

to source, to find a complete minimum cost path. Normally, in the RCSPP context, the minimum

cost path to each node in each direction is used to solve the problem heuristically. In the approach

proposed by Ahmadi et al. (2021), on top of a bidirectional A* algorithm, numerous heuristics

are constructed to improve both the initialization process and the core search. Nevertheless,

a few adjustments have to be made to match the algorithm to our scheduling problem. For

instance, only one resource is considered in Ahmadi et al. (2021)’s approach, and there are no
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minimum restrictions on resource usage. However, we have multiple resources and lower bounds

on resource usage.

After generating all feasible schedules for each employee for each day, we construct a DAG

to provide the ideal weekly schedule, as illustrated in Figure 4.1. Each layer of the graph is

associated with one day of the week. Our convention is that all the nodes except the last

represent working days and gives a schedule. The last node represents an off day. For example,

nodes x11 to x1n1−1 represent the working schedules for day 1, and x1n1 is an off day. We begin

at source node s and the end is at sink node t. Since there are no constraints on the schedules

for any two consecutive days, we can shift from any layer i schedule to any layer i + 1 schedule.

Thus, there are edges connecting every vertex in one layer to every vertex in the next. The

aforementioned weekly constraints are the only restrictions on the routes from s to t. Each edge

connecting node u to u′ consumes resources pu′ and du′ where they display the number of periods

in node u′ and whether the schedule is a working day, respectively. This edge also has a cost

equal to the price of the schedule u′. In Section 4.4, we will explain how we arrived at this cost.
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x7n7
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Figure 4.1: The weekly scheduling DAG

Labels are used to store the information of each partial path. Our method defines a label as

{f, g, r, u}, where f is the lower bound on the source-target cost, g displays the cost, r displays the

set of resource consumptions, and u represents the final node of the partial path. Additionally,

the definition of r is {WP, DP, CD}, where WP stands for the total weekly working periods,

DP for the total weekly working days, and CD for the total number of consecutive working days.

Moving from node u to node u′ will update r as shown below. In the bidirectional method, the
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generation of labels start from both the source and the sink node. The labels are then extended

forward and backward to the inner layers and combined to create complete routes from the source

to the sink node.

WP ′ = WP + pu′

DP ′ = DP + du′

CD′ =

 CD + 1 if du′ = 1

0 else

The initialization phase is the first step in Ahmadi et al. (2021)’s algorithm. This step selects

a subset of potential vertices for the following phase, along with obtaining lower bounds on the

cost and resource utilization for source-target paths and the initial cost for a complete path.

Additionally, the budget factors, which represent the upper limit on resource utilization in each

direction, are computed. The direction is indicated by d, which can be either forward (f) or

backward (b). The cost of the shortest path from the source or sink node to node u based on

the direction is gd. This path uses resources in the amount rgd . The symbol rd shows a node’s

resource usage of the resource-optimal path to the node in the direction d, and the cost of this

path is shown by the symbol gd
r . The cost of the best-known solution is denoted by C∗

0 . The

details of the modified initialisation phase are displayed in Algorithm 4.
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Algorithm 4 Initialisation phase

1: Forward Dijkstra on resources W P and DP , find the initial C∗
0

2: Set rf = {pu, du} for each node u;
3: Set C∗

0 equal to the total cost of all days off;

4: Backward Dijkstra on resources W P and DP

5: Set rb = 0 for each node u;

6: Forward Dijkstra on cost, and update C∗
0 if possible

7: Run Dijkstra algorithm and find gf for each node;

8: if the best-cost path is feasible then
9: Update C∗

0 and stop;
10: end if

11: Backward Dijkstra on cost
12: Set V as the set of expanded nodes;
13: Run Dijkstra algorithm and find gb for each node;

14: if gb + gf ≤ C∗
0 for the node u then

15: Add u to V ;
16: end if

17: Calculate the Budget factors Bf and Bb using nodes V

18: Bd = 0.5×min(2,
∑

v∈V
gd(v)/

∑
v∈V

gd′ (v));

The initialization algorithm proposed by Ahmadi et al. (2021) is modified due to the structure

of the DAG of the scheduling problem and the lower bound limits on resource usage. In the first

stage, we wish to use Dijkstra on each resource independently to obtain gf
r for each resource and

node. Since no resources are used on an off day on each layer of the DAG, the answer is trivial.

Therefore, even without running Dijkstra’s algorithm, we can conclude that gf
r represents the

resource utilization of each node. The resource-optimal path will also consist of only days off

during which no resources are consumed. As a result, we assign C∗
0 to the cost of all days off

schedule. In the second stage, we want to obtain gb
r for each resource and node. The answer

is trivial, and gb
r equals zero for each node for the same reason as previously stated. The third

stage employs Dijkstra’s algorithm to find gf in the forward direction. The optimal solution is

identified if the shortest path is also feasible regarding resource usage. Therefore, we will update

C∗
0 and then stop. Otherwise, backward Dijkstra’s algorithm is used to find gb for each node.

According to a lemma put forth by Ahmadi et al. (2021), the search can be terminated on a node

if the criteria in line 14 is not met, and we are not required to examine it in the core search.
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Therefore, the set of expanded nodes for the main search will only include the nodes that satisfy

this requirement. Finally, the budget factors, which represent the upper bound on the maximum

resource utilization in each direction, are computed.

The enhanced biased bidirectional A* called RC-EBBA* is the next step associated with the

main search. We must change some of its components to adapt this algorithm to a problem with

multiple resources and lower bounds on resource usage. Here are the modifications: In line 3,

we update the definition of variable rd
min(v) from tracking the minimum resource usage at each

node to tracking all resource usage vectors rd(v). In line 11, in order to prune any partial path

with a resource vector similar to a partial path already constructed for that node, we alter the

pruning condition to r ∈ rd(v). Also, in line 14, the resource vector will be added to the set of

resource vectors. Finally, the condition in line 34 needs to be altered to Rmin ≤ r + r′ ≤ R,

where Rmin and R are the lower and upper bound vectors on the resources usage, in order to

incorporate the lower bound. Note that there is no limit on the minimum number of consecutive

days. So, we set the lower bound for this variable equal to zero. Additionally, this approach

makes use of two auxiliary functions. Line 8 for the Feasible function will be modified similarly

to line 11 for the core search. Lines 4 through 6 for the EarlyC*Update will be removed.

4.4 Large Neighborhood Search

The iterative technique known as the LNS, which was first developed by Shaw (1998), starts with

an initial solution and improves it by destroying and then repairing a portion of the solution.

The neighborhood is defined by the techniques used to destroy and rebuild. This means that all

the solutions that can be achieved by using the destroy approach and then the repair method

are collectively referred to as the neighborhood N(x) of the solution x.

High-quality local optimum can be discovered by searching large neighborhoods. On the one

hand, it takes time to scan a large neighborhood; therefore, applying different filtering methods

to make the search focused is essential. On the other hand, unlike a smaller neighborhood, a large

neighborhood enables the heuristic to travel the solution space easily, even in the circumstances
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of strict boundaries (Pisinger and Ropke 2010). In order to efficiently produce a better solution

in each iteration, the neighborhoods must be carefully picked.

In our scheduling problem, the destructor picks employee e ∈ E and preserves the other

employees’ schedules while removing the one for employee e. All feasible schedules that can be

assigned to this employee are in the neighborhood. The builder searches the neighborhood for

the ideal schedule that enhances the solution. Our problem’s cost function minimizes the overall

over-coverage and under-coverage across all activities and periods. In each LNS iteration, we

search for the schedule with the minimum cost. The residual workload is the unmet demand

taking into account the partial solution. Considering the residual workload, the builder selects

the minimum cost schedule associated with the least amount of overall over-coverage and under-

coverage.

Algorithm 5 demonstrates how we apply LNS in our problem. We begin with the initial

solution, which consists of a blank set of schedules. The destructor picks the workers in a round-

robin manner according to their index in each iteration. The employee’s schedule is then deleted.

We will start by creating the most cost-effective time slots for each day. The graphs produced

in Algorithm 1 and QR2 for the employee are utilized to find the least-cost timeslot for each

feasible duration d and each starting period p. When utilizing QR2 to identify the best-cost

timeslot, only the residual demand during the intervals p to p + d − 1, which establishes the

prices related to the graph’s leaf nodes, is taken into account. Next, using Algorithm 2 and the

modified QR2, Algorithm 6, best-cost daily schedules are created for each feasible duration and

starting slot. Because the leaf nodes in daily graphs may also have timeslot children other than

terminals, we cannot utilize QR2. Similar to timeslot generation, the best-price daily schedule

is determined by solely taking into account the residual demand of the periods associated with

each daily schedule span. The cost of the periods that the daily schedules do not cover must

thus be included after the daily schedules are generated to obtain the total cost of the schedule

for all the periods. Next, we will combine the daily schedules using the RC-EBBA* algorithm

to get the optimal weekly schedule. Up until a local optimum is discovered, the LNS continues.

The cost of the optimal daily plan for the given duration d and starting period p is shown

in Algorithm 6. A modification of QR2 is used in this algorithm. The daily graphs’ leaf nodes
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differ from those of the timeslot graphs, as was previously mentioned. In daily graphs, there

are two types of leaf nodes. N(P, i, s) is the initial type and can have timeslot-type children.

Line 2 entails assigning each leaf node of this type the best-cost timeslot, which has already

been constructed for each duration and starting period. The second type, N(X, i, 1), can have

children of type terminal b; X is the nonterminal in the Chomsky normal form of the language

that yields to break, as is shown in Appendix C. If the schedule for the current employee is

removed and they are given a break, the cost of the period i is given in line 5 by the expression

cost(S[i]\{se[i]}∪{b}, i), where S[i] and se[i] represent the set of schedules for all employees and

employee e in period i, respectively.

Algorithm 5 LNS
1: Set weekly schedule se = {}, ∀e ∈ E;
2: while local optimum is not found do
3: for employee e ∈ E do
4: Set se = {}
5: for day i ∈ I do
6: Set t = min

a∈Aa

lac
a , and T = max(b1 − 2, b2 − 3) as the min and max possible timeslot length;

7: for d = t, ..., T do
8: for starting period p = 1, ..., pn − d + 1 do
9: Find the best-cost timeslot using the timeslot graph of duration d built by Algorithm 1

and QR2 for starting period p;
10: end for
11: end for
12: Set t = ldp

e and T = udp
e as the min and max possible length for a daily schedule duration;

13: for d = t, ..., T do
14: for starting period p = 1, ..., pn − d + 1 do
15: Find the best-cost daily schedule using the daily schedule graph of duration d built by

Algorithm 2 and 6 for starting period p;
16: end for
17: end for
18: end for
19: Use Algorithm 4 and the modified RC-EBBA* to generate the best weekly schedule as se;
20: end for
21: end while
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Algorithm 6 Algorithm for computing the best schedule cost in a daily schedule graph for
duration d and starting period p

1: for every leaf node N(P, i, s) do
2: weight(N(P, i, s))← min(cost(timeslot with starting period p + i− 1 and duration s));
3: end for
4: for every leaf node N(X, i, 1) do
5: weight(N(X, i, 1))← cost(S[i]\{se[i]} ∪ {b}, i);
6: end for
7: for every inner node N(A, i, j) in post-order do
8: weight(N(A, i, j))← min{weight(N(B, x, y) + weight(N(C, w, z)|

⟨N(B, x, y), N(C, w, z)⟩ ∈ Children(N(A, i, j))};
9: end for

4.5 Improvements

The most computationally expensive part of our solution methodology is the dynamic program-

ming that produces the weekly schedules. The computation time grows exponentially as the

DAG’s layer count increases. Since we are focusing on the weekly scheduling problem, there

must be at least seven layers in the DAG. Reducing the number of daily schedules in each layer

and keeping the most promising ones is a natural idea for managing computation time. In or-

der to simplify our procedure, we can apply the following two heuristics. These methods are a

modification of the methods proposed by Pan (2018).

4.5.1 Starting Slots Selection

This heuristic is used to pick a few starting periods and create daily schedules only for those

periods. The demand for all the activities that an employee is capable of performing is assessed

while choosing the periods for that individual. First, only the periods with increasing demands

are selected. All the slots {id + s1| i ∈ N, id + s1 < s2} are added to the starting periods set

if the time difference between two consecutively picked periods s1 and s2 is more than the daily

schedule length maximum limit, d = max(b1 − 2, b2 − 3). We call this improvement I1.
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4.5.2 Daily Schedules Selection

Even after applying the first improvement to some cases, the number of daily schedules is still

substantial. Because of this, the second improvement will be used to generate fewer schedules

overall. This approach selects the two best schedules at the lowest cost for each daily schedule

duration. We call this improvement I2.
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Chapter 5

Repetition Constraints

Repeating a task with a specific activity during a daily shift might not be ideal for some work-

places. Therefore, in some circumstances, we should prohibit it. This implies that a worker

cannot restart a task with the same activity they have already performed. Employees can only

perform a task with a specific activity more than once if they perform it just before the break.

They can then begin doing it in the first period following the break. Additionally, repetition is

possible if the employee possesses one skill. For example, for an employee with skills to perform

activities 1 and 2, schedule 112211, where each number shows the activity being performed, is

not feasible, whereas 112222 is a feasible schedule. The reason to include this constraint is that

the minimum duration limit for some activities is high. So, scheduling a task with this activity

for the employee so many times during one shift is not sustainable. Also, fairness is not applied

between employees. Each employee should do a task with a specific activity at most once during

one day. Another reason is that each activity could be related to different building floors in the

retail industry. For example, activity 1 represents activity on the first floor and activity 2 on

the second floor. If an employee is assigned to schedule 121212, they must change the floors

several times during a shift, which is unreasonable. The proposed tour scheduling LNS algo-

rithm can provide schedules without considering the task repetition constraint. In other words,

an employee can repeatedly start and stop performing tasks with similar activities throughout a

shift. For the problems with no limit on task repetition, we only need to use the proposed LNS

algorithm to solve the problem. Otherwise, we modify the solution methodology. First, we will

include the task repetition restriction in the tour scheduling IP suggested in Section 3.2. Then,
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we will demonstrate how this constraint should be included in our solution methodology using

a task assignment IP. So, for the problems with this constraint, other than the tour scheduling

LNS, a task assignment IP is used.

The IP should include the following constraint to prevent repetition. The repetition parameter

is re, which is equal to 1 if the repetition is permitted for employee e, 0 otherwise. The second

term on the left states that an employee may begin a task after a break ends with the same

activity as the task completed just before the break, even if the repetition is zero.

pn−lac
a +1∑

p=1

te,i,a,p −
pn−lac

a +1∑
p=1

∑
b

te,i,a,p+b × xe,i,a,p−1 × ye,i,a,p ≤ 2pnre + 1 ∀e ∈ E, i ∈ I, a ∈ A

Next, we will suggest a strategy for incorporating this constraint into the LNS search. Im-

portantly, a CFG is not able to capture the repetition limitations, since a CFG cannot track

the number of non-terminals or non-consecutive terminals in a sequence. We utilized RCSPP

for generating weekly schedules for the same reason since a CFG could not model weekly re-

strictions. We propose the following substitute way to include such constraints. First, we will

execute the weekly scheduling LNS algorithm to obtain weekly schedules for employees. The

output of the algorithm will be used as an initial solution, and we will extract the set of working

days, the shift start time, shift end time, break periods, and the set of tasks performed by each

employee on each day. We will use the algorithm’s output as a starting point and then extract

the set of working days, the start and end periods of each employee’s shifts, their break times,

and the activities they performed each day. This data will be used later as input for a task

assignment IP. Based on the shifts and set of activities already assigned to the employees in the

initial solution, this IP allocates tasks to the employees, including the new constraint. This IP

will be considerably smaller than the original one because the majority of the variables in the

original IP are now parameters. Table 5.1 defines the decision variables, parameters, and indices

of this task assignment IP.

Appendix D contains the model formulation. The objective function seeks to reduce the
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Table 5.1: Sets, indices, parameters, and decision variables for the task assignment IP

Sets

I set of days in the planning horizon
P set of periods
A set of activities
E set of employees
Be,i set of break periods for employee e on day i

We set of working days for employee e

Ae,i set of activities for employee e on day i

Indices

i index of days, where i ∈ I

p index of periods, where p ∈ P ; period p is defined as the interval [p, p + 1)
a index of activities, where a ∈ A

e index of employees, where e ∈ E

Parameters

pn number of periods in each day
cs shortage cost for each period and activity
ce excess cost for each period and activity
di,p,a number of workers required on day i, in period p, for activity a

sse,i shift start time for employee e on day i

see,i shift end time for employee e on day i

[lac
a , uac

a ] bounds on the duration of activity a
re,i is 1 if employee e can repeat an activity on day i, otherwise 0

(equals 1 if and only if there is just one activity in Ae,i)

Binary Decision Variables

te,i,a,p is 1 if and only employee e on day i starts to do activity a in period p

xe,i,a,p is 1 if and only employee e on day i performs activity a in period p

Integer Decision Variables

ui,p,a shortage on day i in period p for activity a

ui,p,a excess on day i in period p for activity a

weighted total of shortage and excess for all activities and periods. The idea is to keep the

overall cost as low as possible since it leads to costs for the system. For the activities that are

not in the set of skills for every employee every day, constraints (1) and (2) set the variables x

and t equal to 0, respectively. For each employee’s off days, constraint (3) sets the variable x

equal to 0. For the periods not in the shift assigned to each employee each day, the variables x

and t are set to equal 0 by constraints (4) and (5), respectively. The shortage and the excess

amount for each task in each period are determined using the constraint set (6). Therefore, the

total excess and required staff for that task equals the number of people allocated to accomplish
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it and the shortage during that period. Except for break times, constraint set (7) assigns each

employee exactly one activity per period for the duration of their shift. If an employee is already

working on an activity in period p − 1, constraint set (8) prohibits starting that activity in

period p. That is done to avoid going over the permitted activity duration.The reason that p

is in the region [2, pn − lac
a + 1] is the requirement that starting activity a must be in a period

that permits continuing it at least for lac
a periods. Constraint set (9) ensures that if a task

starts in a period, the variable x equals 1 in that period. According to constraint set (10), if an

employee is performing an activity during a period, they either perform the same activity during

the previous period or begin the task within the present period. Constraint set (11) ensures that

if an employee is doing an activity in the first period, they have started doing the activity in the

first period. Constraint set (12) sets the minimum activity duration limit. So, if an activity is

started in a period, the employee must execute it in all lac
a periods. The most extensive activity

duration is constrained by the constraint set (13). Constraint sets (14) to (16) are used for

forbidding task repetition with the same activity. As a result, starting from period p, an activity

a could be allocated to an employee for up to uac
a periods in the subsequent uac

a + 1 periods.

The decision variables are defined by the constraint sets (17) to (21). An example of the task

assignment IP can be found in Appendix E.
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Chapter 6

Computational Experiments

In this section, the performance of the tour scheduling IP and the proposed algorithm is assessed

taking into account the additional constraints related to task repetition using two datasets, i.e.,

the industrial instances and the randomly generated instances. We include the task repetition

constraint because it adds another step, task assignment IP, to our method. Hence, it is more

difficult to solve the problem. If we do not include this constraint, we only need to use the

tour scheduling LNS to solve the problem. The weekly scheduling DAG can hold up to 500

feasible schedules in some instances with flexible daily period boundaries. In order to decrease

the number of schedules, we employ I1 and I2 improvements, which are mentioned in Section

4.5. We have applied both of these improvements in the later instances where the upper and

lower bounds are unequal, meaning employees can be assigned to shifts of different lengths. The

tour scheduling IP model is implemented in Julia 1.8.2 and solved by CPLEX 22.1.0. For the

proposed algorithm, C++ and Julia are used for the tour scheduling LNS algorithm and task

assignment IP implementation, respectively. The task assignment IP model is solved by HiGHS

1.3.0, a solver proposed by Huangfu and Hall (2018).

6.1 Industrial Instances

The industrial data comes from a company that develops workforce scheduling software. The

instances relate to clients in the service sector, where demand varies throughout the day. Hence,

considering the flexibility in the scheduling can lead to more profitability. The parameters for
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Table 6.1: Parameters of industrial instances

Instance |E| |A| Avg. Skills [lac
a , uac

a ] [ldp
e , udp

e ] [lwp, uwp] [ld, ud] ucd

C1 10 4 2.30 [3,16] [16,16] [0,80] [0,5] 5
C2 29 6 2.86 [3,16] [16,16] [0,80] [0,5] 4
C3 102 19 7.18 [1,16] [16,16] [0,80] [4,5] 5
C4 18 14 5.77 [1,16] [8,22] [0,132] [6,6] 6
C5 28 10 1.25 [1,16] [8,22] [0,110] [0,5] 5

each instance are displayed in Table 6.1. The second and third column represent the number

of employees and activities, respectively. The fourth column indicates the average number of

activities in each employee’s skill set. Columns five through nine show the constraints for activity,

daily, and weekly parameters. As explained, due to the high flexibility of daily schedules duration

for instances C4 and C5, improvements I1 and I2 are employed for solving these instances.

The Table 6.2 shows the running times and objective costs of the proposed algorithm and

CPLEX for these industrial instances. The first column shows the instance index. The second

column indicates the initial cost which means the total shortage when no employee is assigned

to any schedule. This is the initial solution for the proposed algorithm and the CPLEX solver.

Columns three and four display the running times of the proposed algorithm, for the tour schedul-

ing LNS and the task assignment IP, respectively. For each of these stages, a time limit of 30

minutes is used. The fifth column is the objective cost of the proposed algorithm. The last two

columns are the objective costs of the solutions found by CPLEX for two test setups. First,

we use the solution time of our proposed algorithm as the limit for the CPLEX solver (variable

limit). For example, in C1, the time limit is 175.41 seconds, equal to the summation of the third

and fourth columns. Second, we simply set a 1-hour time limit for the CPLEX solver.

CPLEX failed to find the optimal solution within the allotted time for all the industrial in-

stances. Hence, the objective cost of the best solution found is reported. By comparing the

results of the two methods, i.e., the proposed algorithm and CPLEX, the faster method and

lower objective cost are bolded in the table for the running time and objective cost, respectively.

As CPLEX did not stop solving before the time limit, the proposed algorithm was faster since it

solved all instances within the limited time. In addition, the findings for the industrial instances

demonstrate better objective costs across all instances. We observe that in C3, CPLEX cannot
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Table 6.2: Running times (in seconds) & objective cost of the proposed algorithm and CPLEX solver

Obj. Cost
Running Time CPLEX

Instance Init. Cost Tour Sch. LNS Task As. IP Pro. Alg. Var. Lim. 1h Lim.
C1 707 168.27 7.14 199 707 293
C2 3994 32.62 6.07 2214 3994 2246
C3 5345 908.87 229.05 2189 5345 5345
C4 1816 1195.56 71.92 507 663 663
C5 2205 137.92 6.31 710 2205 770

discover a better solution than the initial one in one hour due to a large number of employees.

Except for instance C4, CPLEX could not find a better solution than the initial solution in the

time limit equal to our proposed algorithm running time. Instance C4 was not solved by our

proposed algorithm as quickly as the other instances. The reasons are the heterogeneous em-

ployees with a high average number of skills and flexible daily period boundaries that yields high

computational time in our proposed algorithm for creating the grammar graphs and generating

schedules at each iteration of the tour scheduling LNS.

6.2 Random Instances

To further study the influence of parameters on the running time and objective cost for the

proposed algorithm, we tested randomly generated instances. After performing initial tests, we

concluded that parameters could be divided into four groups and algorithm performance could be

tested by changing the flexibility degree of each group. These groups include employee number,

activity, daily, and weekly parameters. For the employee number, we generate instances with 10,

45, and 80 employees. For each of the remaining groups, we consider two possibilities of high

flexibility (H) and low flexibility (L).

For instance with H activity parameters flexibility, [lac
a , uac

a ] = [1, 16] and the number of

activities, |A|, is equal to |E|
5 +2, where |E| is the number of employees. Also, a random variable

from uniform distribution U{1, ⌈ |A|
3 ⌉} is generated for each employee that indicates the number

of activities in the skill set of the employee. For flexibility L, [lac
a , uac

a ] = [6, 12], and |A| is equal

to |E|
10 . Also, uniform distribution U{1, ⌈ |A|

5 ⌉} is used to generate random variables. Finally,
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based on the assigned numbers, activities are randomly selected as the skill set of each employee.

The third set of parameters is the daily flexibility set. In case the flexibility is H, [ldp
e , udp

e ] is

equal to [8, 24] for all the employees, otherwise [16, 16]. The reason that we use I1 improvement

and I2 improvement when the daily flexibility is H is that the number of feasible daily schedules

increases. By using I1 improvement, we cam decrease the daily schedule generation time, and I2

improvement decreases the weekly schedule generation times.

The weekly flexibility parameters set is the fourth set we study in the experiments. If the

flexibility is H, [lwp, uwp], [ld, ud], and ucd are [0, 7udp
e ], [0, 7], and 7, respectively. Else, they will

be equal to [4ldp
e , 5udp

e ], [4, 5], and 4. The same demand curves as the industrial instances are

used for these instances.

6.2.1 Low Daily Flexibility

The scheduling instances with daily flexibility L will be tested first. In this case, we do not use any

of the improvements proposed in Section 4.5. Table 6.3 shows the parameters for each instance.

The second and third columns, respectively, list the number of employees and activities. The

number of activities is a function of the number of employees and activity parameters’ flexibility.

The following columns display how flexible each set of parameters is. The instances are generated

in a way that as the instance number increases, the number of variables and constraints increases

as well. For example, the number of variables and constraints for R2 are 59182 and 11780 while

they are 102568 and 49540 for R3.

Tables 6.4 and 6.5 show the running times and objective cost of our algorithm and CPLEX

for the random instances, respectively. In Table 6.4, if the CPLEX solver cannot find the optimal

solution within the specified time limit, we use "T". The experiment setup is exactly the same as

the industrial instances. The results show that for small instances, such as R1 and R2, with 10

employees and 1 activity both methods could find the optimal solution. However, CPLEX was

much faster. For the instances R3 to R5 our method could solve the problem in a shorter time.

However, due to the heuristic nature of LNS, it finds a local optimal solution and stops at that

point. As the number of employees and flexibility increases, CPLEX fails to beat our algorithm
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Table 6.3: Randomly generated low daily flexibility instances

Instance |E| |A| Activity Weekly Daily
R1 10 1 L H L
R2 10 1 L L L
R3 10 4 H H L
R4 10 4 H L L
R5 45 4 L H L
R6 45 4 L L L
R7 45 11 H H L
R8 45 11 H L L
R9 80 8 L H L
R10 80 8 L L L
R11 80 18 H H L
R12 80 18 H L L

Table 6.4: Running times (in seconds) of the proposed algorithm and CPLEX solver for the low daily
flexibility random instances

Pro. Alg. CPLEX
Instance Tour Sch. LNS Task As. IP Var. Lim. 1h Lim.
R1 124.9 0 7.31 7.31
R2 85.98 0 8.67 8.67
R3 100.18 7.01 T T
R4 125.65 3.29 T T
R5 253.23 0 T T
R6 193.11 0 T T
R7 350.74 62.92 T T
R8 739.72 73.69 T T
R9 576.62 15.67 T T
R10 848.64 14.89 T T
R11 T 933.09 T T
R12 T T T T

in terms of both speed and finding a solution in a reasonable time. As the results show, CPLEX

could not find a solution for the instances R8 to R12 which have a higher number of employees.

Another finding by comparing the instances R5 and R6 is that when the weekly flexibility is

L and we have more strict constraints on the weekly parameters, the problem becomes much

harder for CPLEX to solve.
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Table 6.5: Objective cost of the proposed algorithm and CPLEX solver for the low daily flexibility
random instances

CPLEX
Instance Init. Cost Pro. Alg. Var. Lim. 1h Lim.
R1 1850 870 870 870
R2 1850 1150 1150 1150
R3 707 245 173 171
R4 707 257 513 189
R5 2828 980 1860 614
R6 2828 836 2772 1152
R7 4662 1322 4662 1390
R8 3660 962 3660 3360
R9 5656 1414 5656 5656
R10 6160 580 6160 6160
R11 8554 2780 6446 6446
R12 6160 2098 6160 6160

Table 6.6: Randomly generated high daily flexibility instances

Instance |E| |A| Activity Weekly Daily
R13 10 1 L H H
R14 10 1 L L H
R15 10 4 H H H
R16 10 4 H L H
R17 45 4 L H H
R18 45 4 L L H
R19 45 11 H H H
R20 45 11 H L H
R21 80 8 L H H
R22 80 8 L L H
R23 80 18 H H H
R24 80 18 H L H

6.2.2 High Daily Flexibility

Next, the scheduling instances with daily flexibility H will be discussed, where the improvements

I1 and I2 proposed in Section 4.5 will be used in the proposed algorithm. The Table 6.6 shows

the parameters for each instance. Similar to Section 6.2.1 the instances are generated in a way

that as the instance number increases, the number of variables and constraints increases as well.

The Tables 6.7 and 6.8 show the running time and objective cost of our algorithm and

CPLEX for the random instances. The results show that in small instances, such as R13 to

R17, with 10 and 40 employees and 1 activity, CPLEX could get a better solution in 1 hour
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Table 6.7: Running times (in seconds) of the proposed algorithm and CPLEX solver for the high daily
flexibility random instances

Pro. Alg. CPLEX
Instance Tour Sch. LNS Task As. IP Var. Lim. 1h Lim.
R13 100.84 0 T T
R14 55.3 0 T T
R15 90.97 3.86 T 275.64
R16 122.98 8.02 T T
R17 93.46 8.25 T T
R18 126.41 6.37 T T
R19 T 1724.79 T T
R20 T 154.63 T T
R21 1489.34 140.18 T T
R22 T 82.52 T T
R23 M - T T
R24 M - T T

although our method was faster for most of the cases. The reason is that in addition to the

heuristic characteristic of LNS, we use two improvement methods which remove some of the less

promising feasible solutions. So, there is a higher chance of getting an optimal local solution.

However, we can see the difference between the objective costs gets smaller as the size of the

instance increases. This gap is much smaller for instances R16 and R17. For the remaining

instances, i.e., R18 to R22, our algorithm could get a better solution faster. Also, CPLEX could

not find a solution for the instances R19 to R24, where the number of employees and activities is

large. The last two samples could not be solved by either method. The proposed algorithm faced

memory issues when generating the grammar graphs for the employees. Due to a high number

of employees with different skills, as the employees were generated randomly, the method will

generate different graphs for each employee as none of them could be used by more than one

employee. Also, the high daily flexibility makes the number of graphs larger as the method

generates different graphs for each feasible daily duration.
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Table 6.8: Objective cost of the proposed algorithm and CPLEX solver for the high daily flexibility
random instances

CPLEX
Instance Init. Cost Pro. Alg. Var. Lim. 1h Lim.
R13 704 128 704 28
R14 704 96 704 48
R15 707 133 125 56
R16 707 132 205 128
R17 6168 531 6168 499
R18 2816 373 2816 640
R19 6981 2425 6981 6981
R20 5065 2322 5065 5065
R21 11702 1431 11702 11702
R22 8840 1117 8840 8440
R23 26360 - 26360 26360
R24 26360 - 26360 26360
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Chapter 7

Conclusions and Future Research

Directions

7.1 Summary

This study explores multi-activity tour scheduling problems with flexible shifts and heterogeneous

employees. The shifts in this problem can begin at any period, with upper and lower bounds of

8 and 24 periods, respectively, and a duration of 30 minutes for each period. The length of the

shift affects how many break periods there will be. The shifts with fewer than 16 periods have

one break, whereas the others have two. The start time of the break is flexible, but it must begin

at least six periods after the start of the shift and must end before the last period of the shift.

Also, there are restrictions on the duration of the activity, the daily and weekly working hours,

and the consecutive working days. To solve the model to optimality, a tour scheduling IP model

is first suggested in Chapter 3.

In Chapter 4, a heuristic method based on LNS has been created because the IP model cannot

efficiently solve large-scale problems. Three steps are followed to create a feasible daily schedule.

First, a CFG is used to create feasible timeslots. Grammar graphs are then used to mix timeslots

and breaks to create feasible daily shifts. Finally, using RCSPP, weekly schedules are created

from the daily schedules that have previously been created considering the weekly constraints as

resources. In some cases with flexible working hours per day, the number of feasible daily shifts
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could reach 500. Two heuristics are defined to select the shifts’ most promising starting times

first, and then select the most promising schedules for each possible length, in order to reduce

computing time. After creating feasible weekly schedules, LNS is used to iteratively allocate

schedules to the employees and refine the problem until a local optimal is reached.

In addition, a restriction that prohibits the repetition of tasks is added to the problem in

Chapter 5. It is more practical for some working industries to assign people to each type of task

once each day rather than restarting it numerous times. First, this condition is added to the

suggested tour scheduling IP. The developed heuristic algorithm includes an extension because

this constraint cannot be stated by a CFG. We fix the start and finish times of each employee’s

shifts, as well as the length of breaks and the set of activities that can be performed for each

day, based on the local optimal solution from the LNS. Then, taking into account the constraint

of work repetition, a new IP model is utilized to assign tasks to employees.

In Chapter 6, both customer instances and randomly generated instances are used in compu-

tational research. In our algorithm, each LNS and task assignment IP is given a 30-minute time

limit, and CPLEX solves the tour scheduling IP within a 1-hour time limit. The findings demon-

strate that as the flexibility and size of the instance increase, the developed heuristic approach

performs superior to the tour scheduling IP and produces better results in terms of solution

time and solution quality. Indeed, for the industrial instances, our algorithm is faster and in all

instances we could find much better solutions than CPLEX. For the random instances, for some

smaller instances with fewer employees and activities, CPLEX can obtain a better objective cost

within the allotted time frame. While our algorithm can find a high-quality solution, CPLEX

struggles to do so when the number of employees and activities becomes large.

7.2 Future Research Directions

When a local optimal solution is identified or the time limit is reached, the search in the developed

algorithm is over. The initial solution at the beginning of the search determines the local optimal

the algorithm can reach. In our method, we start searching from an empty solution where no

one is assigned to any schedule. By employing a technique to produce a better initial solution for
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the search, a better objective cost could be reached. Additionally, since the developed algorithm

is fast, it stops even before the considered time limit for most of the instances. Each time the

search finds a locally optimal solution, we can restart the search to look for a better solution.

A different initial solution should be taken into account each time the search is restarted. By

making use of these advances, we could find solutions closer to the global optimal.

The improvements we outlined in Section 4.5 and use for high daily flexibility instances

could be an aspect to investigate for better performance. Using the first improvement, we

skip generating some daily schedules with specific starting times. We delete the less promising

daily schedules using the second improvement before generating the weekly schedules. These

improvements decrease both the computational time and solution quality. We can reduce the

time required for daily schedule generation and RCSPP while maintaining the solution quality

by suggesting better improvements than the ones already proposed.

Last but not least, a machine learning technique may be used to forecast the schedule gen-

eration and RCSPP time based on the problem’s parameters and guide us in selecting from

the developed improvements to reduce the computing effort while maintaining a good level of

solution quality.
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Appendix B

Chapter 3 Supplement

Example 1

Consider a three-employee tour scheduling problem. Assume that the store is open for 8 hours.

So, h ∈ {1, 2, ..., 18}. Additionally, this store has two activities that each have a minimum and

maximum time limit of 2 and 4 periods, respectively. Assume that employee 1 is skilled for

activity 1, employee 2 is skilled for activity 2, and employee 3 is skilled for both activities. The

minimum and maximum working periods per day are 8 and 24, the minimum and maximum

working periods per week are 16 and 120, and the minimum and maximum working days per

week are 2 and 5. There can be no more than five consecutive days in a week. Assume that none

of the employees worked the week before. All 45 eligible shifts with a duration of 8 to 16 periods

are listed in Table A2.1. Table A2.2 lists the sets and parameters.
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Table A2.1: Parameters for each enumerated shift for each duration between 8 to 16 periods and each
start period

Enumerated Shift Start Period End Period Length (periods) Break Length (period)

1 1 8 8 1
2 2 9 8 1
...

...
...

...
...

9 9 16 8 1
10 1 9 9 1
11 2 10 9 1
...

...
...

...
...

17 8 16 9 1
...

...
...

...
...

45 1 16 16 2

Table A2.2: Sets and parameters for the IP model

Sets

I {1, 2, . . . , 7}
S {1, 2, . . . , 45}
P {1, 2, . . . , 16}
A {1, 2}
Ae A1 = {1} A2 = {2} A3 = {1, 2}
E {1, 2, 3}
B {1, 2}

Parameters

pn 16
wpp,s e.g. wpp,1 is 1 ∀p ∈ {1, 2, ..., 8}, otherwise 0
[lac

a , uac
a ] [2, 4] ∀a ∈ A

[ldp
e , udp

e ] [8, 24] ∀e ∈ E

[lwp, uwp] [16, 120]
[ld, ud] [2, 5]
ucd 5
we,i 0 ∀e ∈ E, i ∈ {−4, −3, . . . , 0}
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Appendix C

Chapter 4 Supplement

Chumsky Normal Form

S =⇒ W1R|RW1|RZ1|RW2|W2R|RZ2|RR (1)

Z1 =⇒ W1R (2)

W1[a1,b1] =⇒ P[6,b1−2]Y1 (3)

Y1 =⇒ XP (4)

Z2 =⇒ W2R (5)

W2[a2,b2] =⇒ P[6,b2−3]Y2 (6)

Y2 =⇒ LP (7)

L =⇒ XX (8)

X =⇒ b (9)

R =⇒ RR|r (10)

P =⇒ A′
a[lac

a ,uac
a ]P

′
a|A′

a[lac
a −1,uac

a −1]A
′
a[1,1] ∀a ∈ Ae (11)

P =⇒ a ∀a ∈ {a| lac
a = 1, a ∈ Ae} (12)

A′
a =⇒ A′

aA′
a|a ∀a ∈ Ae (13)

P ′
a =⇒ A′

a′[lac
a′ ,uac

a′ ]P
′
a′ |A′

a′[lac
a′ −1,uac

a′ −1]A
′
a′[1,1] ∀a, a′ ∈ Ae, a′ ̸= a (14)
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P ′
a =⇒ a′ ∀a, a′ ∈ Ae, a′ ̸= a, a′ ∈ {a′| lac

a′ = 1} (15)
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Appendix E

Chapter 5 Supplement

Example 2

Take into account a weekly scheduling problem with two employees. The store will be open for

8 hours. So, p ∈ {1, 2, ..., 16}. Additionally, this store has two activities, each with minimum

and maximum durations of 2 and 4 periods, respectively. Assume that employee one is skilled in

activity 1 and that employee two is skilled in activities 1 and 2. The following schedules are the

outputs of the LNS algorithm used to solve the weekly scheduling problem. Employee 1 works

the first 5 days from periods 1 to 11, and the break period is 7 for each of the 5 days. Employee

2 works periods 2 through 14 on days 6 and 7, and the break period is 8 for both days. This

employee completes task 1 prior to the break and 2 following it. The parameters and indices are

indicated in Table A5.1 for the task assignment IP model.

66



Master of Science– RANA SHARIAT; McMaster University– School of Computational Science
& Engineering

Table A5.1: Sets, indices, parameters, and decision variables for the task assignment IP

Sets

I {1, 2, ..., 7}
P {1, 2, ..., 16}
A {1, 2}
E {1, 2}
We W1 = {1, 2, ..., 5} W2 = {6, 7}
Be,i B1,i = {7} ∀i ∈ W1 B2,i = {8} ∀i ∈ W2

Ae,i A1,i = {1} ∀i ∈ W1 A2,i = {1, 2} ∀i ∈ W2

Parameters

pn 16
sse,i ss1,i = 1 ∀i ∈ W1 ss2,i = 2 ∀i ∈ W2

see,i se1,i = 11 ∀i ∈ W1 se2,i = 14 ∀i ∈ W2

[lac
a , uac

a ] [2, 4] ∀a ∈ A

re,i 0 ∀e ∈ E, i ∈ I
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