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Abstract 

As fluorescent nanomaterial with excellent properties, carbon quantum dots have 

attracted significant attention. In particular, the synthesizing of carbon quantum dots 

has become the focus of various studies. Among them, carbon quantum dots 

synthesized from coal by strong acid oxidation have been widely studied for mass 

production. However, the broad size distribution of the products restricts their 

development, thereby prompting an issue that needs to be urgently resolved. Therefore, 

in this study, to achieve the control of size distribution, we simulated the diffusion 

process, in which sulfuric acid is inserted into the graphene layers of coal and destroys 

the van der Waals bonds. The result showed that when graphene layers are longer than 

5 nm, the van der Waals bonds between them could not be broken within 10000 

iterations. For bituminous carbon quantum dots, since its crystal structure size is 

small, the van der Waals bonds can be effectively broken, and narrow size distribution 

can be obtained at the 1500th iteration, which corresponds to the actual time of 34.2 h; 

for coke carbon quantum dots, since the crystal structure average size is larger than 5 

nm, diffusion process cannot effectively break van der Waals bonds. The simulated 

result unravels the mechanism, guiding the experimental method to obtain a narrow 

size distribution and avoiding blind trials. 
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1 Introduction 

1.1 Potential applications and economic impact 

1.1.1 Properties and applications of carbon quantum 

dots 

1.1.1.1 Quantum dots 

Fluorescence probes are among the most widely used imaging tools in biomedical 

research. With the rapid development of nanotechnology, fluorescent nanomaterials 

with excellent properties continue to emerge. Compared with traditional organic dyes, 

fluorescent nanomaterials have the advantages of high photostability, tunable emission 

spectra, and high quantum yield (QY) (Loukanov et al., 2016; Xu et al., 2016). Among 

many fluorescent nanomaterials, quantum dots (QDs) with unique photophysical 

properties and high QY have potential applications in bioimaging, sensing, catalysis, 

and other fields, as shown in Figure 1.1. QDs are initially defined as nanocrystals 

made of semiconducting materials, usually composed of group II-VI or III–V 

elements of the periodic table, such as CdSe, with a particle size smaller than the 

exciton Bohr (Bawendi et al., 1990; Chan, 2002). 
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Figure 1.1 Properties and applications of semiconductor. Reprinted with permission 

from (Pang & Gong, 2019). Copyright 2019 American Chemical Society.  

Compared to traditional and commonly used organic dyes, semiconductor QDs 

present obvious advantages as fluorescent probes, owing to their optical properties 

(Arul et al., 2017; Nair et al., 2020). Firstly, semiconductor QDs have broad excitation 

and narrow emission wavelength ranges, meaning that any wavelength smaller than 

the emission wavelength can be used. Thus, QDs are excited by the excitation light 

wavelength, and their fluorescence peak position can be regulated by changing their 

size. Moreover, QDs have a significant Stokes shift, which can avoid the overlap of 

the emission and excitation spectra, thereby allowing spectroscopic detection at low 
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signal intensities. In addition, the emission peaks of QDs are narrow and symmetrical, 

with a slight overlap and minimal mutual interference, which overcome the problems 

caused by spectral overlap. The emission wavelength of QDs can be adjusted by 

controlling their size and composition, thereby allowing the arbitrary synthesis of QDs 

that emit the desired wavelengths. Furthermore, QDs also have strong anti-

photobleaching ability and high photochemical stability, which is approximately 100 

times that of ordinary fluorescent dyes. Photobleaching refers to the phenomenon that 

reduces the fluorescence intensity by the decomposition of luminescent substances 

caused by light excitation. Finally, the luminescence lifetime of QDs is longer. 

However, semiconductor QDs face toxicity problems because of the presence of 

heavy metals, such as Cd, Hg, Zn, and Pb, thereby suspending clinical studies on them. 

Even at low doses, they tend to exert a harmful effect on human beings and the 

environment because of the heavy metals in their preparation. Such limitations prompt 

further development of QDs (Arul et al., 2017; Nair et al., 2020; Pang & Gong, 2019). 

1.1.1.2 Carbon quantum dots  

Carbon quantum dots are zero-dimensional carbon nanoparticles that have a size of 

smaller than 10 nm (Sun, 2006). Carbon quantum dots were accidentally first 

discovered in 2004 when Xu separated single-walled carbon nanotubes using gel 

electrophoresis from the carbon soot produced by arc discharge (Xu X, 2004).  

Compared with traditional organic dyes and semiconductor QDs, carbon quantum dots 
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have excellent properties of non-toxicity, good biocompatibility, long luminescence 

lifetime, easy modification, good photostability, and good water solubility, resulting in 

their high potential for various applications (Loukanov et al., 2016; Younis et al., 

2020). The most prominent property of carbon quantum dots is their fluorescent 

properties, which have a narrow-band tunable emission and size-dependent 

photoluminescence (PL). In detail, when carbon quantum dots absorb light, some 

electrons migrate from the ground state to a higher excited energy state, thereby 

leaving a hole. When the electrons and holes meet, the electrons return to the ground 

state, which fills the holes and releases excess energy. The resulting light color is 

consistent with the energy difference between the excited and ground states of the 

electrons and the size of the carbon quantum dots. Thus, the energy levels of the 

electrons can be controlled to emit different colors. In general, smaller carbon 

quantum dots result in a larger bandgap and a larger gap between the valence and 

conduction bands (Loukanov et al., 2016; Younis et al., 2020). Therefore, higher 

energy is required for the excitation and release of electrons to return to their ground 

state, as depicted by the change of the emitted fluorescent color from red to blue as 

shown in Figure 1.2. 
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Figure 1.2 Schematic representation of the quantum confinement effect on the energy 

level structure of a semiconductor material. Used with permission of Royal Society of 

Chemistry, from (Donega ,́ 2011); permission conveyed through Copyright Clearance 

Center, Inc. 

1.1.3 Carbon quantum dots applications 

Traditional fluorescent nanomaterials, such as organic dyes and semiconductor QDs, 

have been used in various fluorescent applications owing to their strong and tunable 

fluorescence. However, the photobleaching and low extinction coefficients of organic 

dyes, poor water solubility and inherent toxicity of semiconductor QDs limit their safe 

use in clinical settings. Such drawbacks can be addressed using carbon quantum dots. 

Compared with traditional fluorescent nanomaterials, carbon quantum dots have good 
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water solubility, easy functionalization, low toxicity, high photobleaching resistance, 

and good biocompatibility, thereby exhibiting broad application prospects, as shown 

in Figure 1.3 (Nekoueian et al., 2019; Pan et al., 2010; Xu et al., 2016; Younis et al., 

2020; Zheng et al., 2015). Currently, carbon quantum dots have shown their strong 

potential in various applications, such as sensing (Molaei, 2020), biomedicine 

(Nekoueian et al., 2019; Pan et al., 2010; Xu et al., 2016; Younis et al., 2020; Zheng et 

al., 2015), and optoelectronic devices (W. Liu et al., 2020; Shaari et al., 2020; Wu et 

al., 2018; A. Xu et al., 2020; Yan et al., 2019; Yuan, 2016; Zhang & Yu, 2016; Zhang 

et al., 2012). 

 

Figure 1.3 Carbon quantum dots applications. Reproduced with permission of Small 

from (Zheng et al., 2015). Copyright 2015 John Wiley and Sons.  

In biological imaging, carbon quantum dots can replace traditional fluorescent 

nanomaterials as probes for early disease detection and cell imaging diagnosis. 
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Moreover, in biological therapy, carbon quantum dots can be used as cancer 

therapeutics and biomedical transporters for diseases, such as drug delivery, 

photodynamic therapy, and photothermal therapy.  

In biological imaging, the most important hurdle that should be addressed is the 

absorption of almost all visible light wavelengths by imaging tissues and cells. In 

addition, the absorption of higher energy electromagnetic radiation (e.g., ultraviolet 

light) can damage the imaging target. Therefore, a narrow wavelength range of 650–

900 nm is optimal for studying biological systems. Tao et al. (Tao et al., 2012) 

conducted the in vivo fluorescence imaging of carbon quantum dots injected into mice 

at different excitation wavelengths, with the optimal fluorescence contrast observed 

under an excitation of 595 nm. Huang et al. (Huang et al., 2019) mixed green 

renewable raw materials, namely wheat straw (WS) and bamboo residue, with urea to 

prepare amino-passivated carbon quantum dots by a one-pot hydrothermal method. 

The produced carbon quantum dots exhibit blue-green fluorescence and a QY of ~13% 

under an excitation of 365 nm. In vivo, optical imaging studies of the prepared carbon 

quantum dots were conducted by inoculating nude mice with tumor cells and 

subsequently intravenously injecting them with carbon quantum dots through the tail 

vein. Over time, the carbon quantum dots gradually accumulated in the kidney, liver, 

and tumor sites and displayed fluorescence, as shown in Figure 1.4, demonstrating the 

low toxicity and remarkable bioimaging performance of carbon quantum dots. 
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Furthermore, researchers have investigated the use of carbon quantum dots in 

biological imaging of various cells, including E. coli (Liu et al., 2009), Ehrlich ascites 

carcinoma cells (Ray, 2009), HeLa cells (Dong et al., 2012; Li, 2010; Pan et al., 2010), 

Hep G2 cells (Xu et al., 2013), LLC-PK1 (Hsu et al., 2012), NIH-3T3 fibroblast cells 

(Zhang et al., 2013), human lung cancer (A549) cells (Wu et al., 2018), T47D cells 

(Peng et al., 2012), murine alveolar macrophage cells (Wu et al., 2013), human 

hepatic cancer cells (Kumar et al., 2014), and MCF-7 cells (Dong et al., 2013). 

 

Figure 1.4 (a) In vivo fluorescence images of the mice after intravenous injection of 

the CQDs -WS solution. (b) Fluorescence images of the dissected mouse organ after 

intravenous injection of CQDs -WS solution for 1 day. Reprinted with permission of 

Huang et al. from (Huang et al., 2019); permission conveyed through Copyright 

Clearance Center, Inc. 
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Photocatalysis has recently gained significant attention. Traditional photocatalysts 

include titanium dioxide, zinc oxide, cadmium sulfide, and other oxide-sulfide 

semiconductors. However, the application of these catalysts is limited by their low 

light utilization and high photoinduced electron-hole complexation rates (Jiang et al., 

2018). As functional nanomaterials with excellent optical and electronic properties, 

such as efficient light trapping, extraordinary up-conversion luminescence (UCPL), 

and excellent photoinduced electron transfer, carbon quantum dots are considered as 

effective components for constructing high-performance photocatalysts, which can 

broaden the photo response region and improve the separation rate of photoinduced 

charge carriers (Y. Liu et al., 2020; Yan et al., 2021). Guo et al. (Guo et al., 2019) 

synthesized carbon quantum dots through an electrochemical method and used them 

for decorating urchin-like and yolk-shell TiO2 microspheres (UYTMs), as shown in 

Figure 1.5. The photocatalytic experiments were carried out by the photodegradation 

of aqueous phenol and methylene blue solutions. UYTMs with 2-8 wt.% carbon 

quantum dots have been studied, and the composite with 6 wt.% carbon quantum dots 

exhibited the highest photocatalytic efficiency with ~99% degradation rate of 

methylene blue after ultraviolet (UV) irradiation for 20 min. As the content of carbon 

quantum dots increases from 2 wt.% to 6 wt.%, the photocatalytic degradation 

efficiency is enhanced, mainly because carbon quantum dots with up-conversion 

properties can realize the conversion from partially visible light to near-ultraviolet 

light and promote the separation of photogenerated electron-hole pairs in the 
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heterojunction. However, when carbon quantum dots content increased to 8 wt.%, 

excessive carbon quantum dots tend to occupy the main active sites on the surface of 

TiO2 and prevent the O2 adsorption, resulting in a high recombination rate of electron-

hole pairs and poor photocatalytic activity. 

 

Figure 1.5 Formation process of the CQDs/UYTMs composites. Reprinted from (Guo 

et al., 2019). Copyright 2019, with permission from Elsevier.  

In addition to TiO2, other semiconductor photocatalysts have been combined with 

carbon quantum dots for applications in photocatalytic reactions, such as Bi-based 

compounds, CdS-based and graphitic carbon nitride composites. Wang et al. (Wang et 

al., 2020) synthesized carbon quantum dots by hydrothermal method and prepared 

CQDs/BiOBr. Their photocatalytic performance was evaluated by photodegrading 

bisphenol A. The efficiency of the resulting product significantly improved from 11.5% 

to 67.9% after introducing carbon quantum dots. This can be attributed to the broader 
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photo response region and improved separation ratio of the photoinduced electron-

hole pairs after the introduction of carbon quantum dots. Huang et al. (Huang et al., 

2020) produced a CQDs-modified composite CQDs@CdIn2S4/CdS using microwave-

assisted method. The 1% CQDs@CdIn2S4/CdS composite was characterized by 

transmission electron microscopy (TEM) and high-resolution TEM (HRTEM), as 

shown in Figure 1.6. The prepared carbon quantum dots with up-conversion PL 

properties can convert light from a long wavelength (λ > 600 nm) to a short 

wavelength (λ < 600 nm). With the addition of 1 wt.%, the largest hydrogen evolution 

rate was obtained, which is 280 times that of commercially available P25. Thus, 

carbon quantum dots broadened the CdIn2S4/CdS composite light response range and 

improved its sunlight utilization. Di et al. (Di et al., 2020) prepared composite 

photocatalyst CQDs/g-C3N4 to degrade sulfamethoxazole. After 50 min of simulated 

sunlight exposure, the degradation rate of sulfamethoxazole by CQDs/g-C3N4 was 

~97.3%, which was significantly higher than that of g-C3N4 (45.8%). This is ascribed 

to the role of carbon quantum dots as a donor-sensitizer-acceptor to facilitate charge 

separation and enhance light absorption. 
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Figure 1.6 (a, b) TEM and (c, d) HRTEM images of 1% CQDs@CdIn2S4/CdS 

composites. HRTEM analysis results of (e) CdS, (f) CdIn2S4, and (g) Carbon quantum 

dots. Reprinted from (Huang et al., 2020). Copyright 2020, with permission from 

Elsevier. 

1.1.2 Photoluminescence mechanism 

PL is one of the unique properties of carbon quantum dots, along with narrow-band 

tunable emission, size-dependent PL, large absorption coefficient, size-dependent 

absorption, broad excitation spectrum, multiphoton excitation, easy functional 

grouping, good biocompatibility, good solubility in polar solvents, anti-

photobleaching, no light flickering, good fluorescence stability, and low toxicity (Liu 

et al., 2019). Different PL properties and carbon quantum dots structures are obtained 

with the synthesis of varying reaction routes, conditions, and raw materials, resulting 

in difficulty studying their PL mechanism. Researchers have conducted extensive 
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studies on the PL properties of carbon quantum dots, including the different emission 

centers, excitation dependence, pH sensitivity and solvent sensitivity. Among them, 

emission centers of carbon quantum dots prepared by different methods have been 

extensively studied. Currently, three widely accepted PL mechanisms for carbon 

quantum dots are quantum confinement effect, surface state, and molecular state (Xu 

et al., 2016; Zhu et al., 2015). 

1.1.2.1 Quantum confinement effect  

The quantum confinement effect occurs when carbon quantum dots are smaller than 

their exciton Bohr radius (Chen et al., 2011). For carbon quantum dots with a perfect 

sp2 graphene domain core and few surface chemical groups, the bandgap of the sp2 

graphene domain is considered the true intrinsic PL center of carbon quantum dots 

(Zhu et al., 2015). In other words, the PL emission of the carbon quantum dots can be 

tuned by adjusting the size of the sp2 graphene domain, instead of the actual particle 

size (Ding et al., 2018). Typically, as the particle size decreases, the luminescence 

energies blue shift to a higher energy. 

Li et al. (Li et al., 2010) used an electrochemical method to prepare carbon quantum 

dots with different particle sizes, as shown in Figure 1.7. To determine the PL 

emission center, the synthesized carbon quantum dots were treated with hydrogen 

plasma to remove the surface oxygen from the graphene surface. The result shows that 

no apparent change was observed in the PL spectra of the carbon quantum dots before 
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and after treatment, indicating that the PL center of the carbon quantum dots is the 

quantum-sized graphene structure itself rather than the carbon-oxygen surface. 

Furthermore, the PL properties were confirmed to vary with the particle size: 1.2 nm 

carbon quantum dots emit UV light, which is approximately 350 nm; 1.5–3 nm carbon 

quantum dots emit visible light in the range of 400–700 nm; 3.8 nm carbon quantum 

dots emit near-infrared light at approximately 800 nm. The particle size dependence is 

consistent with the quantum confinement effects. Similarly, Kim et al. (Kim, 2012) 

prepared carbon quantum dots of different sizes by cutting graphene oxide by the 

modified Hummers method. When the diameter of the carbon quantum dots were less 

than 17 nm, the absorption peak energy of the carbon quantum dots decreased with the 

increase in size and exhibited a red-shift emission owing to the quantum confinement 

effect. 

 

Figure 1.7 (a) Optical images of typical carbon quantum dots illuminated under a 

white light (left, daylight lamp) and UV light (right, 365 nm). (b) Relationship 

between the carbon quantum dots size and bandgap energy. Reprinted with permission 

from (Li et al., 2010). Copyright 2010 American Chemical Society.  
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Carbon quantum dots are composed of light atoms with small dielectric constants and 

weak spin-orbit coupling, leading to strong carrier–carrier interactions and electronic 

states with well-defined spin multiplicity. Therefore, the energy band of carbon 

quantum dots is significantly larger than that of semiconductor QDs of similar size, 

resulting in the blue-to-green fluorescence color of most carbon quantum dots 

(Mueller et al., 2011). 

1.1.2.2 Surface state 

Surface states are determined by the hybridization of carbon skeletons and the 

attached chemical groups. Different functional groups have different energy levels, 

leading to a series of emission traps. Therefore, when the light of a specific excitation 

wavelength illuminates the carbon quantum dots, the surface state emission traps act 

as PL center. Higher degrees of surface oxidation or other effective modifications 

achieve more surface defects, leading to a red-shifted emission (Zhu et al., 2015). 

Sun et al. (Sun, 2006) prepared carbon quantum dots by the laser ablation of a carbon 

target; however, no PL was detected. Then surface passivation was performed with 

polyethylene glycol (PEG). The passivated carbon quantum dots exhibit strong PL, as 

shown in Figure 1.8, which can be attributed to the surface energy wells.  



M.A. Sc Thesis – Q. WANG                             McMaster University -Materials Science and Engineering 

16 
 

 

Figure 1.8 (a) Surface passivation of carbon quantum dots with diamine-terminated 

oligomeric polyethylene glycol (PEG1500N). (b) Strong photoluminescence of 

passivated carbon quantum dots. Reprinted with permission from (Sun, 2006). 

Copyright 2006 American Chemical Society. 

1.1.2.3 Molecular state 

Unlike the surface state formed by the synergistic hybridization of chemical groups 

and carbon cores, the molecular state is the PL center formed by organic fluorophores. 

The fluorophores formed at low reaction temperatures are attached to the surface or 

internal surface of the carbon skeleton and can directly exhibit PL emission. These 

exist only on the carbon quantum dots prepared by bottom-up route (Zhu et al., 2015).  

Song et al. (Song et al., 2015) prepared carbon quantum dots from CA and EDA, as 

shown in Figure 1.9. At reaction temperatures of less than 150 °C, a type of bright 
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blue fluorophore 5-oxo-1, 2, 3, 5-tetrahydroimidazo [1,2-a] pyridine-7-carboxylic 

acid (IPCA) with a high QY was formed. At reaction temperatures of 150–250 °C, CA 

and EDA formed fluorophore molecules and a crosslinked polymer backbone. Carbon 

quantum dots were formed by the dehydration of CA and EDA. In this situation, the 

PL mainly results from the formed fluorophores connected to the carbon quantum dots. 

At high temperatures (over 300 °C), partial fluorophores are consumed to further form 

owing to further carbonization. 

 

Figure 1.9 Schematic of the products obtained at different hydrothermal temperatures. 

Used with permission of Royal Society of Chemistry, from (Song et al., 2015); 

permission conveyed through Copyright Clearance Center, Inc. 

1.1.3 Synthetic routes of carbon quantum dots 

Currently, a wide variety of synthetic methods have been developed to produce carbon 

quantum dots, which are classified in two categories: top-down and bottom-up routes. 

1.1.3.1 Bottom-up route 
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The bottom-up route produces carbon quantum dots from small precursors, such as 

carbohydrates and citrates, through hydrothermal (Li et al., 2020; Newman Monday et 

al., 2021; Ran et al., 2020), solvothermal treatments (Li et al., 2020), microwave-

assisted (Gul et al., 2020) and ultrasonic-assisted methods (Saikia et al., 2019).  

Monday et al. (Newman Monday et al., 2021) prepared EDA and L-phenylalanine-

doped N-CQDs from natural abundant waste palm kernel husk by hydrothermal 

methods. The prepared carbon quantum dots exhibited an average particle size of 2 

nm with a QY of 13.7% and 8.6% for the CQDs-EDA and CQDs-L-phenylalanine, 

respectively. Deng et al. (Deng et al., 2020) prepared carbon quantum dots by the 

solvothermal method using L-ascorbic acid as the carbon source, as shown in Figure 

1.10. Under excitation at 365 nm, the aqueous solution of the carbon quantum dots 

emits fluorescence at 430 nm. Afterward, the carbon quantum dots were dissolved in a 

solvent mixed with polar solvent ethylene glycol and water in a volume ratio of 1:1 to 

prepare a fluorescent ink that meets the requirements of inkjet printing. Gul et al. (Gul 

et al., 2020) used banana peels to prepare carbon quantum dots by a microwave-

assisted method. Carbon quantum dots with a particle size of 1.4 nm can be prepared 

in 5 min at 700 W. Carbon quantum dots emit blue fluorescence under 365 nm UV 

light. When Ag nanoparticles are incorporated into the carbon quantum dots matrix, 

they can be used as a colorimetric indicator probe for H2O2 and can also be applied to 

the detection of glucose oxidase. Saikia et al. (Saikia et al., 2019) oxidized anthracite 
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and bituminous coals with hydrogen peroxide under an ultrasonic bath, thereby 

forming carbon quantum dots in size range of 2–12 nm characterized by HRTEM, as 

shown in Figure 1.11. The method can be used as a simple large-scale synthesis of 

carbon quantum dots from abundant and economic coal resources for advanced 

applications. Although the bottom-up route offers high controllability and fewer 

product defects, the high cost of raw materials and poor water solubility of the 

resultant product are the main limitation (W. Liu et al., 2020; Manikandan & Lee, 

2022; Younis et al., 2020).  

 

Figure 1.10 Solvothermal schematic of the synthetic process of the carbon quantum 

dots and inkjet printing. Reprinted with permission of Chemistry Select from (Deng et 

al., 2020). Copyright 2020 John Wiley and Sons.  
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Figure 1.11 HRTEM micrographs of the carbon quantum dots (2–12 nm) at different 

magnifications (a, b) anthracite-produced carbon quantum dots, (c, d) semi-anthracite 

produced carbon quantum dots, and (e, f) bituminous blue gem coal produced carbon 

quantum dots. Reprinted from (Saikia et al., 2019), with permission from Elsevier. 

1.1.3.2 Top-down route 

The top-down route refers to breaking larger carbon structures, such as graphite 

powder, carbon fibers, and carbon nanotubes, into carbon quantum dots using  
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chemical oxidation (Qiao et al., 2010), laser ablation (Sun, 2006), arc discharge (Xu X, 

2004), electrochemical (Li et al., 2011) and other technologies. The chemical 

oxidation method involves the exfoliation of precursor carbon materials, such as 

graphene oxide, carbon nanotubes, carbon fibers, and coal, by strong oxidizing agents 

and acids. This is a straightforward and cheap synthetic approach for the mass 

production of high-quality carbon quantum dots. Qiao et al. (Qiao et al., 2010) 

oxidized activated carbon with nitric acid to prepare carbon quantum dots with an 

average size of 4.5 nm, as shown in Figure 1.12(a). As-prepared carbon quantum dots 

exhibit good biocompatibility. After passivation with 4,7,10-trioxa-1,13-

tridecanediamine or PEG1500N, a QY as high as 12.6% was obtained. However, during 

the preparation of carbon quantum dots using strong acids, toxic gases are often 

released, resulting in impurities in the sample. This increases the production cost, 

since more labor is required to completely remove the excess acid or salt, thereby 

limiting the application of this method. Calabro et al. (Calabro et al., 2018) ) used 

carbon nano-onions as the carbon source and ablated them under 1.30 W laser for 7 h 

to prepare carbon quantum dots with a size of 1.8 nm, as shown in Figure 1.12(b). 

Compared with the carbon quantum dots prepared by chemical oxidation, the surface 

functional group is the main emission center of the carbon quantum dots prepared by 

laser ablation. As their surface has more hydroxyl groups and due to its smaller size, a 

higher surface-to-volume ratio of the functional groups is obtained, resulting in a blue 

shift of the emission.  



M.A. Sc Thesis – Q. WANG                             McMaster University -Materials Science and Engineering 

22 
 

 

 

Figure 1.12 (a) Schematic illustration of the chemical oxidation carbon quantum dots 

synthesis method. Used with permission of Royal Society of Chemistry, from (Qiao et 

al., 2010); permission conveyed through Copyright Clearance Center, Inc. 

(b) Schematic illustration of the laser ablation carbon quantum dots synthesis method. 

Reprinted from (Calabro et al., 2018). Copyright 2018, with permission from Elsevier. 

(c) Schematic illustration of the preparation of carbon quantum dots through 

electrochemical exfoliation of the defect-induced graphite rod. Reprinted from 

(Ahirwar et al., 2017); permission conveyed through Copyright Clearance Center, Inc.  

https://www-sciencedirect-com.libaccess.lib.mcmaster.ca/topics/physics-and-astronomy/laser-ablation
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Xu et al. (Xu X, 2004) first prepared carbon quantum dots by simultaneously 

obtaining fluorescent carbon dots when preparing single-walled carbon nanotubes by  

arc discharge soot. Ahirwar et al. (Ahirwar et al., 2017) reported the preparation of 

carbon quantum dots from graphite rods by electrochemical exfoliation, as shown in 

Figure 1.12(c). In detail, the graphite rod was first heated to cause several defects on 

the surface of the graphite rod, which is called defect-induced graphite rod. During the 

electrochemical stripping process, the defect site is cut and oxidized, whereby more 

defects promote the cutting and oxidation processes. In addition, the electrolyte is a 

mixture of CA and NaOH in water. The as-prepared carbon quantum dots have an 

average size of 2–3 nm and emit blue to green fluorescence when irradiated with a 

365 nm UV light. The top-down route is highly suitable for mass production because 

of the abundant and low-cost raw materials and simple operations. However, the broad 

size distribution of the products is the main problem that restricts its development and 

should be solved urgently (W. Liu et al., 2020; Yan et al., 2019).  

1.2 Size Distribution Problem 

In quantum mechanics, bandgap is related to quantum size, and its energy is inversely 

proportional to size (Kwon et al., 2014; Sk et al., 2014; Yeh et al., 2016). Since the 

size of carbon quantum dots affects the bandgap, the optical properties of carbon 

quantum dots largely depend on size, and the synthetic carbon quantum dots with 

narrow size distribution are significant for expanding the application range. 
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Compared with other raw materials, coal has the advantages of low cost and 

presenting small crystalline carbon domains linked by weak carbon chains, as shown 

in Figure 1.13. Thus, coal is used as a raw material for preparing carbon quantum dots 

(Cai et al., 2020; Raj & Balachandran, 2020). The chemical oxidation method is facile 

and effective for extracting carbon quantum dots from coal. The small crystalline 

carbon domains with defects present in the coal can be extracted with the oxidation 

technique.  

 

Figure 1.13 Macroscale image and simplified illustrative nanostructure of coal. 

Reprinted by permission from Springer Nature Nature Communications (Ye et al., 

2013), copyright 2013. 

Ye et al. (Ye et al., 2013) reported the synthesis of carbon quantum dots from different 

ranks coal using acidic oxidation technique with sulfuric and nitric acid, as shown in 

Figure 1.14. In this process, the area with graphene crystal area and sp2 hybrid 

structure in coal can be extracted from the amorphous carbon with sp3 hybrid structure 
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and other impurities by strong acid reagents. During exfoliation, the internal structure 

of the graphene crystal is not damaged; however, this synthetic method leads to the 

problem of the broad size distribution (Ye et al., 2013). To solve this problem, the 

mechanism of this method was analyzed, and subsequently, any contradictions were 

determined. The strength of the sp2 and sp3 covalent bonds within the graphene layers 

were ~524 and ~356 kJ/mol, respectively, whereas the van der Waals bonds between 

the graphene layers were only ~7 kJ/mol. The van der Waals bonds between the 

graphene layers is significantly smaller than the sp3 covalent bonds in amorphous 

carbon. Therefore, we assumed that the sulfuric acid further destroyed the van der 

Waals bonds between the graphene layers.  
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Figure 1.14 Synthetic procedure of carbon quantum dots from coal by Ye et al.  

1.3 Previous Attempts 

Although there have been studies trying to solve the problem of the broad size 

distribution, they have not started from the mechanism of chemical cutting, and the 

experimental method is limited by raw materials and operation. Ye et al. (Ye et al., 

2015) explored the effects of temperature on the size distribution. The results showed 



M.A. Sc Thesis – Q. WANG                             McMaster University -Materials Science and Engineering 

27 
 

that smaller size and more narrow size distribution are obtained with a higher reaction 

temperature. Ye et al. (Ye et al., 2015) and Nilewski et al. (Nilewski et al., 2019) 

performed the cross-flow ultrafiltration method for size control. Zhang et al. (Zhang et 

al., 2019) and Yeh et al. (Yeh et al., 2016) used ultrafiltration through the membranes 

and gel electrophoresis, respectively. However, the additional post-treatment process 

increased the complexity of the operation and the experimental time. In addition, the 

researchers have used simulation method to study the process of sulfuric acid 

diffusion into the graphene layers. Seiler et al. (Seiler et al., 2018) simulated the 

process of sulfuric acid intercalation between graphite layers by Ab initio molecular 

dynamics simulation. The results showed that the ideal stacking of graphite layers and 

the presence of oxidants could effectively promote intercalation; on the contrary, 

inherent stacking faults will increase the free energy barrier, thereby hindering the 

intercalation process. However, the research is on regular graphite structures rather 

than coal structures. Thus, the root cause and scientific basis of the problems 

associated with the broad size distribution of coal carbon quantum dots should be 

determined to avoid blind trials without a mechanistic understanding. 

1.4 Proposed plan  

The purpose of the current research is to start the study on the exploration of the 

mechanism using dynamic simulation to explore the mechanism of carbon quantum 

dots synthesized from coal by sulfuric acid. Furthermore, we aim to address the 
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contradiction of whether concentrated acid can break the van der Waals bonds 

between the graphene layers. In addition, numerical simulation is more conducive to 

the detailed study of the reaction process to clarify the intermediate process of the 

reaction, thereby obtaining the size distribution of the intermediate products. 

Therefore, we simulated the dynamic process to achieve size distribution control. In 

the process, sulfuric acid is inserted into the graphene layers in the reaction system, 

which destroys the van der Waals bonds. The larger the graphene layers, the longer it 

takes to destroy the interlayer van der Waals bonds. Within the 10000 iterations we 

performed, when graphene layers exceeded 5 nm, the van der Waals bonds between 

them could not be broken. The average size of bituminous powder crystal structure is 

2.96 nm, the van der Waals bonds can be effectively broken, and a narrow size 

distribution can be obtained at the 1500th iteration, corresponding to the actual time of 

34.2 h. However, because the average size of coke powder crystal structure is 5.8 nm, 

the van der Waals bonds cannot be effectively broken. Therefore, it cannot effectively 

break the van der Waals bonds, and narrow size distribution cannot be obtained 

through acid diffusion. The simulation results reveal the reason for the broad size 

distribution and provide guidance for the experimental operation, avoiding blind trials.  
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2 Methodology  

Dynamic bond percolation model is intended to describe diffusion of small particles in 

a medium which is statistically disordered (Chang, 1993; Harris, 1986; Son & Wang, 

2020; Xu, 1992). We used dynamic bond percolation model to simulate the diffusion 

of sulfuric acid between layers of the coal crystal structure. 

2.1 Two-dimensional Model development 

The destruction of coal particles by a sulfuric acid is a dynamic process. In this 

process, sulfuric acid molecular is inserted into the graphene layers in the reaction 

system, which destroys van der Waals bonds, as shown in Figure 2.1. In this process, 

it is challenging to intercalate the sulfuric molecule into the graphene layers because 

the distance between the graphene layers is only 0.35 nm. In comparison, the sulfuric 

molecule is about 0.39 nm. Thus, nitric acid is needed to deoxidize carbon atoms at 

the edge of graphene, and the graphene lamellar channel is opened and then diffused 

into graphene sheets by molecular thermal motion (Chen et al., 2022). Then, the 

intercalation interval is increased to 0.798 nm (Dimiev, 2012). Therefore, sulfuric acid 

diffusion process should be simulated.  
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Figure 2.1 Insertion of sulfuric acid molecular into the graphene layers destroys the 

van der Waals bonds. Reprinted by permission from Springer Nature Nature 

Communications (Pei et al., 2018), copyright 2018. 

Since there are many different ranks of coal in nature, such as bituminous and coke 

(Raj & Balachandran, 2020), we adjusted the size distribution of graphene crystal 

structure in the coal powder particles, simulated the acid diffusion process respectively, 

and analyzed the simulation results. 

For the simulation, we created a two-dimensional (2D) 200 × 200 square along the X 

and Y axes for the simulation, where the x and y integers are in the range of 1 to 200, 

as declared in units of the spacing, as shown in Figure 2.2. We assume that the 200 × 

200 square represents a part of the coal powder's cross-section, where the graphene 

crystal structure is surrounded by amorphous carbon. Red geometric figures represent 

graphene crystal in the coal particle, whereby its location, shape, and size are 
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randomly distributed in the square. Sulfate acid diffuse into the graphene layers, and 

the distance between the layers expands, resulting in the breakage of the van der 

Waals bonds between the layers.  

 

Figure 2.2 (a)2D 200 × 200 square model for sulfuric acid diffusion, corresponds to 

35 nm×35 nm. Boundary conditions are shown. (b) The graphene layers, sp3-bonded 
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branches, and van der Waals bonds are designated by red, brown, and yellow lines, 

respectively. 

2.2 Diffusion Formula 

The diffusion process is simulated according to the master formula (1) (Xu, 1992): 

𝑃𝑛𝑒𝑤 = 𝑃𝑜𝑙𝑑 + 𝑠 ∑(𝑃𝑗𝑊𝑗𝑖 − 𝑃𝑖𝑊𝑖𝑗)

𝑗

(1) 

where P is the acid level, W is the diffusion path (de-binding), 𝑃𝑛𝑒𝑤 is the updated P, 

𝑃𝑜𝑙𝑑 is the P that should be updated, 𝑃𝑖 is the water level at site i, and j is the site 

adjacent to site i, including four sites up, down, left, and right. 

In the square, each site is associated with a value of the acid level, represented by P, as 

shown in Figure 2.3. For example, site i is connected by the possible diffusion paths 

to its left, right, upper, and down. The diffusion path is represented by W, indicating 

the possibility of breaking the bond, and its values will be updated during the actual 

acid diffusion process. 
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Figure 2.3 The possible diffusion paths to left, right, upper, and down of site i. 

The master formula is derived from the following derivation process to obtain an 

updated P value: 

𝑃𝑛𝑒𝑤 = 𝑃𝑜𝑙𝑑 + 𝑑𝑃𝑖 (2) 

Introducing Fick’s Second Law: 

𝜕𝑃

𝜕𝑡
= 𝐷

𝜕2𝑃

𝜕𝑥2
(3) 

where 𝐷 is the diffusivity, 9.8×10-10 m2/s (Leshin, 2004). 

𝑑𝑃𝑖 =
𝐷 × 𝑑𝑡

𝑑𝑥2
∑(𝑃𝑗𝑊𝑗𝑖 − 𝑃𝑖𝑊𝑖𝑗)

𝑗

(4) 

where 𝑑𝑡 is the time step; and 𝑑𝑥 is the unit length, 0.175 nm. 
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Diffusivity variable s is then introduced: 

𝑠 =
𝐷 × 𝑑𝑡

𝑑𝑥2
(5) 

By introducing s into formula (3), master formula (1) is obtained. 

In the coal particles, the graphene layers and sp3-bonded branches are indicated by red 

and brown lines, respectively. As the graphene layers and sp3 branches are not 

breaking, the P and W values are always equal to 0, indicating that they are non-

penetrable. For the van der Waals bonds (yellow lines), W = 0.2 (Xu, 1992) for the 

start of the diffusion, which increases with the P value. For all sites, P =0 at the 

beginning, and W is randomly updated within [0,1] and multiplied by the diffusivity. 

In the diffusion model, the diffusivity path to the neighbor site is different, represented 

by the W value, indicating its difference from Fick's diffusion. The diffusivity 

bridging all sites are the same in Fick's diffusion. 

Diffusion occurs by setting P = 1 at the left boundary, as shown in Figure 2.2, as 

indicated in the blue line at the left. When P reaches 1, coal breaks and is painted with 

blue color. When the whole yellow line turns blue, it indicates the van der Waals 

bonds have been broken, and it will be painted green.  

To avoid the index being out of bounds, we apply boundary conditions, as shown in 

formula (6)-(9): 
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𝑖𝑓 𝑥 + 1 = 200: (6)
𝑥𝑟𝑖𝑔ℎ𝑡 = 𝑥  

𝑖𝑓 𝑥 − 1 = −1: (7)
𝑥𝑙𝑒𝑓𝑡 = 𝑥  

𝑖𝑓 𝑦 + 1 = 200: (8)
𝑦𝑢𝑝 = 𝑦  

𝑖𝑓 𝑦 − 1 = −1: (9)
𝑦𝑑𝑜𝑤𝑛 = 𝑦

 

The final ideal result is that the yellow line becomes green when the acid level P 

reaches 1, which means the van der Waals bonds break, and the graphene layers are 

successfully stripped off, as shown in Figure 2.4. 
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Figure 2.4 Final ideal result of sulfuric acid diffusion. 

2.3 Programming Scheme 

A block diagram of the programming is presented in Scheme 1. 

The CPU running time of bituminous particles is 154.28 min, and the CPU running 

time of coke particles is 445.62 min. 

 

 

https://pubs-acs-org.libaccess.lib.mcmaster.ca/doi/full/10.1021/acsami.0c17323#sch1
https://pubs-acs-org.libaccess.lib.mcmaster.ca/doi/full/10.1021/acsami.0c17323#sch1


M.A. Sc Thesis – Q. WANG                             McMaster University -Materials Science and Engineering 

37 
 

 

 

 

 

 

 

 

Scheme 1 Modeling process of the acid diffusion.  

2.4 Quantification of acid diffusion 

To quantitatively describe the process of acid diffusion over time and extraction of 

coal particles, the x coordinates were averaged using the P values via <x2>, which is 

plotted against the time steps and is calculated by the formula (10): 

< 𝑥2 >= ∑ 𝑃𝑖𝑥𝑖
2 (10) 

2.5 Size distribution statistics  

Since carbon quantum dots products with a narrow size distribution will expand the 

Initialize the P 

and W values: 

One P value is 

assigned and an 

array of four W 

values, 

corresponding to 

the four directions 

assigned per site 

in the coal 

particle. 

 

Loop for 5000 iterations 

In each iteration: 

1. W values are randomly 

updated within [0,1]. 

2. P values are updated 

using the newly updated W 

values and master formula. 

3. At certain stages of the 

loop (i.e., iteration number 

T=0, 100, 500, 1000), a 

color map of the current 

state of the P values is 

printed for each site in the 

coal particle.  

 

 

 

Create a 

matrix of 

color arrays 

and draw the 

initial coal 

powder  

structure. 

https://pubs-acs-org.libaccess.lib.mcmaster.ca/doi/full/10.1021/acsami.0c17323#sch1
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potential applications of carbon quantum dots, we statistically analyzed the size 

distribution of the carbon quantum dots products during the acid diffusion process. 

The dimension measurement of carbon quantum dots at iteration number T=0, 1500, 

2000, 2500, 3000, 4000 and 5000 are performed by Nano Measurer software. 

Snapshots of the acid diffusion were taken at iteration number T=0, 1500, 2000, 2500, 

3000, 4000 and 5000, respectively. The interlayer size of graphene layers is set to 0.35 

nm, as shown in Figure 2.5. Then, lines are drawn on the snapshots to measure the 

length and width of each geometric figure, as shown in Figure 2.6, calculate their area, 

and obtain their one-dimensional particle sizes according to the following formula 

(11): 

𝑁 = √𝐴 (11) 

where N represents the one-dimensional particle size, and A represents the area of the 

geometric figure, which is calculated from the measured length and width. 

One-dimensional particle size data of several diffusion process results were collected, 

and the Origin software was used for statistics. Particle size frequency histograms 

were generated, and Gaussian fitting was performed. Then, the particle size 

distribution was obtained, and the mean value and standard deviation were analyzed to 

obtain the ideal narrow size distribution. 
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Figure 2.5 Graphene layer’s structure. 

 

Figure 2.6 Length and width measured by Nano Measurer software. The blue lines 

are the length and width measurements. 
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3 Results and discussion 

3.1 Diffusion results of bituminous particle  

We created a two-dimensional square to simulate the sulfuric acid diffusion in the 

graphene particle and the breakage of the van der Waals bonds between the graphene 

layers. Figure 3.1-3.4 shows the snapshot of the diffusion process at iteration number 

T=0, 100, 750, 1500, 2000, 3000, 4000 and 5000, when diffusivity variable s = 0.44, 

and dt=1.35×10-11 sec. By setting P=1 at the left boundary, diffusion occurs. The 

graphene layers, sp3-bonded branches, and van der Waals bonds are indicated by the 

red, brown, and yellow lines, respectively. The blue sites represent the areas with P = 

1, and the green line represents the van der Waals bonds that have been successfully 

broken.  

We simulate the acid diffusion process of bituminous particles. The proportion of 

crystal structure in the simulated bituminous particles is 13%. At T=1500, the van der 

Waals bonds started to break, and some small graphene layers were peeled off. At 

T=5000, the graphene layers were successfully peeled off. Therefore, an ideal peeling 

result was obtained, which suggests that the sulfuric acid can effectively break the van 

der Waals bonds and peel off the graphene layers.  
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Figure 3.1 Snapshot of the bituminous particles diffusion process at iteration number 

(a) T=0, (b) T=100. 
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Figure 3.2 Snapshot of the bituminous particles diffusion process at iteration number 

(a) T=750, (b) T=1000. 
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Figure 3.3 Snapshot of the bituminous particles diffusion process at iteration number 

(a) T=2000, (b) T=3000. 
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Figure 3.4 Snapshot of the bituminous particles diffusion process at iteration number 

(a) T=4000, (b) T=5000. 
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3.2 Quantification of acid diffusion 

To quantitatively describe the process of acid diffusion over time and extraction of 

coal particles, the x coordinates were averaged using the P values via <x2>, which is 

plotted against the time steps. When diffusivity variable s = 0.44, and dt=1.35×10-11 

sec, a complete diffusion curve was obtained within 5000 iterations, as shown in 

Figure 3.5. When the s value was decreased to 0.2, the diffusion process is 

excessively slow, and a complete diffusion curve cannot be obtained within 5000 

iterations. When diffusivity variable s is excessively large by 0.7, the curve diverges, 

as shown in Figure 3.6. 

 

Figure 3.5 Diffusion curve <x2>-t of bituminous particle when diffusivity variable s = 

0.44. 
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Figure 3.6 Diffusion curve <x2>-t of bituminous particles when diffusivity variable (a) 

s = 0.2 and (b) s = 0.7. 

According to previous studies (Ye et al., 2013), sulfuric acid is able to exfoliate the 

amorphous carbon around the graphene crystal structure to obtain carbon quantum 

dots, as confirmed by our simulation. From bituminous particle simulation results, we 

believe that by extending the experimental time, sulfuric acid can further destroy the 

van der Waals bonds between the layers, thereby peeling off the graphene layers and 

obtaining carbon quantum dots with a controllable size.  

3.3 Bituminous particle size distribution results 

To expand the application range of carbon quantum dots, we explored obtaining 

carbon quantum dot products with a narrow size distribution. Therefore, we made 

statistics on the size distribution of the acid diffusion process of bituminous particles. 
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For bituminous particles, diffusivity variable s=0.44, it was found that the graphene 

layers began to peel off at the 1500th iteration, so made statistics on the size 

distribution of the acid diffusion process at the 0th, 1500th, 2000th, 2500th, 3000th, 

4000th and 5000th iterations, as shown in Figure 3.8-3.12. According to Ye et al. (Ye 

et al., 2013) result, bituminous graphene crystal structure size distribution is 2.96±

0.96 nm, as shown in Figure 3.7. Therefore, at the 0th iteration, we made similar size 

distribution, which is 2.64±0.87 nm, as shown in Figure 3.8. At the 1500th iteration, 

the size distribution becomes to 2.71±0.51 nm, because some small-sized graphene 

layers start to peel off. Between the 2000th to 2500th iteration, more graphene layers 

are peeled off, resulting in the formation of two peaks at 0-0.5 nm and 2.5-3 nm, and 

the size distribution does not conform to the Gaussian distribution. However, larger-

sized particles can be separated by centrifugal or dialysis methods; therefore, we made 

statistics for the size distribution of particles larger than 1 nm, which are 2.59±0.74 

nm and 2.64±0.83 nm, respectively. At the 3000th, 4000th and 5000th iterations, the 

size distribution is 0.56±0.29 nm, 0.58±0.34 nm, and 0.69±0.25 nm, respectively. 

During this process, larger graphene layers are exfoliated, and the size distribution 

peak shifts from 0-0.5 to 0.5-1 nm, resulting in a slight increase in size distribution. 

The narrow size distribution was obtained at the 5000th iteration. 

In order to make the simulation results have a guiding value for the actual experiment, 

we convert the simulation time into the actual experiment time. For 35 nm×35 nm 
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particles, the actual time corresponding to 5000 iterations is 6.75×10-8 sec. According 

to Fick's second law, diffusion time is proportional to the square of the diffusion 

distance, as shown in formula (3). The particle size of the actual bituminous raw 

material used by Ye et al. (Ye et al., 2013) in the experiment is 110 μm. 2D simulation 

starts the diffusion from one side, in actual particles, the diffusion progresses from one 

side to the middle and therefore the size increases to 55 μm×55 μm. The actual time to 

obtain narrow size distribution at the 5000th iteration is 114 h, which is much larger 

than experiment time 26 h (Ye et al., 2013). To obtain a narrow size distribution in a 

shorter time, the 1500th iteration is the subsequent narrowest size distribution, 

corresponding to 34.2 h. Therefore, in the actual experiment process, at the reaction 

time of 34.2 h, the carbon quantum dot products with narrow size distribution can be 

obtained after separation using centrifugation and dialysis methods. 
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Figure 3.7 Ye et al. bituminous carbon quantum dots size distribution, size=2.96±

0.96 nm. Reprinted by permission from Springer Nature Nature Communications (Ye 

et al., 2013), copyright 2013. 
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Figure 3.8 Bituminous carbon quantum dots size distribution at (a) T=0, size=2.64±

0.87 nm; (b) T=1500, size=2.71±0.51 nm. 
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Figure 3.9 Bituminous carbon quantum dots size distribution at (a) T=2000; (b) size 

distribution larger than 1 nm, size=2.59±0.74 nm. 
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Figure 3.10 Bituminous carbon quantum dots size distribution at (a)T=2500; (b) size 

distribution larger than 1 nm, size=2.64±0.83 nm. 
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. 

Figure 3.11 Bituminous carbon quantum dots size distribution at (a)T=3000, 

size=0.56±0.29 nm; (b) T=4000, size=0.58±0.34 nm. 
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Figure 3.12 Bituminous carbon quantum dots size distribution at T=5000, size=0.69

±0.25 nm. 

3.4 Diffusion results of coke particle  

Since there are many different ranks of coal in nature, such as anthracite, bituminous, 

and coke, we adjusted the graphene crystal structure size distribution in the coal 

powder particles, simulated coke particle acid diffusion, and analyzed the simulation 

results. 

To simulate coke particles, we increase the 2D model to 350×350, corresponding to 

the actual size of 61.25 nm×61.25 nm, and increase the iteration number to 10000, the 

proportion of crystal structure in the simulated coke particles is 17%, as shown in 

Figure 3.13-3.16. In diffusion process, s=0.44, and time step dt=1.35×10-11 sec. 

Within 10000 iterations, the van der Waals bonds of the particles with a graphene 
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layer longer than 5 nm could not be broken. On the contrary, the van der Waals bonds 

of the layers whose length was smaller than 5 nm could be effectively broken. 

 

Figure 3.13 Snapshot of the coke particle diffusion process at iteration number (a) 

T=0, (b) T=100. 
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Figure 3.14 Snapshot of the coke particle diffusion process at iteration number (a) 

T=1250, (b) T=2250. 
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Figure 3.15 Snapshot of the coke particle diffusion process at iteration number (a) 

T=3000, (b) T=5000. 
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Figure 3.16 Snapshot of the coke particle diffusion process at iteration number (a) 

T=7500, (b) T=10000. 
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To quantitatively describe the process of acid diffusion over time of coke particles, the 

x coordinates are averaged using the P values via <x2>, which is plotted against the 

time steps. When s = 0.44, a complete diffusion curve is obtained within 10000 

iterations, as shown in Figure 3.17. 

 

Figure 3.17 Diffusion curve <x2>-t of coke particles when diffusivity variable s = 

0.44. 

For coke particles, diffusivity variable is s=0.44, it was found that the graphene layers 

began to peel off at the 5000th iteration, so made statistics on the size distribution of 

the acid diffusion process at the 0th, 5000th, 7500th and 10000th iteration, as shown 

in Figure 3.19-3.22. According to Ye et al. (Ye et al., 2013) result, coke graphene 

crystal structure size distribution is 5.8±1.7 nm, as shown in Figure 3.18. Therefore, 

at the 0th iteration, we made similar size distribution, which is 5.55±1.98 nm, as 
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shown in Figure 3.19 (a). At the 5000th iteration, small graphene layers begin to peel 

off; the size distribution is 5.53±1.91 nm. At the 7500th iteration, more graphene 

layers were peeled off, forming an average size distribution in each size range, which 

does not conform to a Gaussian distribution. At the 10000th iteration, the size 

distribution peak is between 0-0.5 nm, and the size distribution is 0.8±0.31 nm. 

However, only a few small crystal structures were stripped. Therefore, we concluded 

through numerical simulations that within 10000 iterations, because of the large size 

of the coke carbon quantum dots, narrow size distribution cannot be obtained by 

breaking the van der Waals bonds using sulfuric acid diffusion. 

 

Figure 3.18 Coke carbon quantum dots size distribution according to Ye et al., 

size=5.8 ± 1.7 nm. Reprinted by permission from Springer Nature Nature 

Communications (Ye et al., 2013), copyright 2013. 
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Figure 3.19 Coke carbon quantum dots size distribution at (a) T=0, size=5.55±1.98 

nm; (b) T=5000, size=5.53±1.91 nm. 
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Figure 3.20 Coke carbon quantum dots size distribution at (a)T=7500; (b) T=10000, 

size=0.8±0.31 nm. 
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4 Conclusion 

This study revealed the root cause of the broad size distribution in synthesizing carbon 

quantum dots from coal by sulfuric acid diffusion via numerical simulation. In 

particular, the results of this work attributed this issue to the breakage of the van der 

Waals bonds between the graphene layers by sulfuric acid diffusion. Whether the van 

der Waals bonds can be broken by acid diffusion depends on the size of the coal 

graphene structure. When graphene structure sizes are larger than 5 nm, because of the 

long diffusion time, the narrow size distribution cannot be obtained by breaking the 

van der Waals bonds. Due to the small average size of bituminous carbon quantum 

dots of 2.96 nm, a narrow size distribution can be obtained at the 1500th iteration, 

corresponding to the actual time of 34.2 h; however, coke carbon quantum dots 

average size is large of 5.8 nm, the van der Waals bonds cannot be broken, and narrow 

size distribution cannot be obtained by acid diffusion. The result uncovers the 

scientific basis of broad size distribution, guides the experimental approach to 

obtaining narrow size distributions, and avoid blind trials. 
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6 Appendix 

Program of bituminous, modified from Kevin Xu (K. J. Xu et al., 2020). 

import sys 

import numpy as np 

import random 

import matplotlib.pyplot as plt 

import time 

from matplotlib.colors import ListedColormap, LinearSegmentedColormap 

#initialization matrix，G is color 

m = 200 

n = 200 

Hlite = 40 

Wlite = 40 

startP = 0 

P = np.full((m,n), 0.0) 

W = np.full((m,n,4), random.uniform(0, 99)/100) 

G = np.full((m,n), 0) 

# small geometry 

def create_graph(): 

    cos = [-3,-2,-1,0,1,2,3,2,1,0,-1,-2,-3,-2,-1,0,1,2,3,2,1,0,-1,-2,-3,2,1,0,1,2,3,2,1,0,-1,-

2,-3,-2,-1,0,1,2,3,2,1,0,-1,-2,-3,-2,-1,0,1,2,3,2,1,0,-1,-2,-3,-2,-1,0,1,2,3,2,1,0,-1,-2,-3,-
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2,-1,0,1,2,3,2,1,0,-1,-2,-3] 

    sin = [3,2,1,0,-1,-2,-3,-2,-1,0,1,2,3,2,1,0,-1,-2,-3,-2,-1,0,1,2,3,2,1,0,-1,-2,-3,-2,-

1,0,1,2,3,2,1,0,-1,-2,-3,-2,-1,0,1,2,3,2,1,0,-1,-2,-3,-2,-1,0,1,2,3,2,1,0,-1,-2,-3,-2,-

1,0,1,2,3,2,1,0,-1,-2,-3,-2,-1,0,1,2,3] 

    nothing = 

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

    baseA=random.gauss(17,6) 

    baseC=random.gauss(9,3) 

    baseH = round(baseA) 

    baseW = round(baseC) 

    Glite = np.full((Hlite,Wlite), 0) 

    startnum = random.randint(0, 30) 

    edge1 = random.choice([cos,sin,nothing])[startnum:startnum+baseW] 

    edge2 = random.choice([cos,sin,nothing])[startnum:startnum+baseW]    

    for i  in range(baseW-1): 

        #red 

        redC = baseH + edge1[i] + edge2[i]        

        redCN =0  

        if i + 1 <= baseW: 
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            redCN = baseH + edge1[i+1] + edge2[i+1] 

        for j in  range(0,baseH-1): 

            Glite[i*2+4][j+5] = 1 

            if i< baseW-2: 

                Glite[i*2+4+1][j+5] = 2 

        if edge1[i] != 0:    

            for k in range(0,abs(edge1[i])-1):                  

                if edge1[i] >0 :       

                    Glite[i*2+4][5+baseH+k-1] = 1    

                elif edge1[i] < 0 : 

                    Glite[i*2+4][5+baseH-k-1] = 0                    

        if edge2[i] !=0: 

            for l in range(0,abs(edge2[i])-1): 

                if edge2[i] >0 : 

                    Glite[i*2+4][5-l] = 1 

                elif edge2[i] < 0 : 

                    Glite[i*2+4][5+l] = 0 

        #yellow             

        if i < baseW -2: 

            if redCN >= redC: 

                if edge1[i] != 0: 
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                    for k in range(0,abs(edge1[i])-1): 

                        if edge1[i] >0 : 

                            Glite[i*2+4+1][5+baseH+k-1] = 2 

                        elif edge1[i] < 0 : 

                            Glite[i*2+4+1][5+baseH-k-1] = 0 

                if edge2[i] !=0: 

                    for l in range(0,abs(edge2[i])-1): 

                        if edge2[i] >0 : 

                            Glite[i*2+4+1][5-l] = 2 

                        elif edge2[i] < 0 : 

                            Glite[i*2+4+1][5+l] = 0 

            else: 

                if edge1[i+1] != 0: 

                    for k in range(0,abs(edge1[i+1])-1): 

                        if edge1[i+1] >0 : 

                            Glite[i*2+4+1][5+baseH+k-1] = 2 

                        elif edge1[i] < 0 : 

                            Glite[i*2+4+1][5+baseH-k-1] = 0 

                if edge2[i+1] !=0: 

                    for l in range(0,abs(edge2[i+1])-1): 

                        if edge2[i+1] >0 : 
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                            Glite[i*2+4+1][5-l] = 2 

                        elif edge2[i+1] < 0 : 

                            Glite[i*2+4+1][5+l] = 0 

        #brown              

        brownNum = random.randint(11, 28) 

        brownStart = random.randint(0,baseW) 

    for b in range(0,brownNum): 

        if brownStart*2 - b -1>=0: 

            Glite[brownStart*2 - b][1] = 3 

        else: 

            Glite[1][1+brownNum-b] = 3 

    for z in range(0,random.randint(0, 3)): 

        Glite = np.rot90(Glite) 

    return Glite 

# small geometry random position 

def create_big(): 

    RESULT_HEIGHT = m 

    RESULT_WIDTH = n 

    ROW_COUNT = 5 

    COL_COUNT = 5 

    GRAPH_COUNT = 21 
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    data = np.zeros((RESULT_HEIGHT, RESULT_WIDTH), dtype=int) 

    ids = 

random.sample([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24],GRA

PH_COUNT) 

    for i in range(0,GRAPH_COUNT-1): 

        g = create_graph() 

        gr, gc = g.shape 

        brindex = ids[i] // ROW_COUNT 

        bcindex = ids[i] % COL_COUNT 

        data[brindex * gr: (brindex+1) * gr, bcindex * gc: (bcindex+1) * gc] = g 

    return data 

#Initial W,P        

def iterateS(g): 

    r, c = g.shape 

    x = np.arange(0, c, dtype=int) 

    for i in range(r): 

        gi = g[i] 

        aclist = np.full(200, "white") 

        aclist[np.where(gi==1)] = "red" 

        aclist[np.where(gi==2)] = "gold" 

        aclist[np.where(gi==3)] = "tan" 
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        Wy = np.where(gi==2)[0] 

        if g[i][0] == 0 : 

            g[i][0]= 4 

            P[i][0]= 1 

        aclist[np.where(gi==4)] = "aqua"     

        if len(Wy)!=0: 

            for j in range(len(Wy)): 

                Wyc = [] 

                gu = g[i-1][Wy[j]] 

                gd = g[i+1][Wy[j]] 

                gl = g[i][Wy[j]-1] 

                gr = g[i][Wy[j]+1] 

                if gr == 2 : 

                    Wyc.append(0.2) 

                elif gr == 0 : 

                    Wyc.append(random.uniform(0, 99)/100) 

                else: 

                    Wyc.append(0) 

                if gu == 2 : 

                    Wyc.append(0.2) 

                elif gu == 0 : 
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                    Wyc.append(random.uniform(0, 99)/100) 

                else: 

                    Wyc.append(0) 

                if gl == 2 : 

                    Wyc.append(0.2) 

                elif gl == 0 : 

                    Wyc.append(random.uniform(0, 99)/100) 

                else: 

                    Wyc.append(0) 

                if gd == 2 : 

                    Wyc.append(0.2) 

                elif gd == 0 : 

                    Wyc.append(random.uniform(0, 99)/100) 

                else: 

                    Wyc.append(0) 

                W[i][Wy[j]] = Wyc 

    y = np.full(200, 200 - i) 

    plt.scatter(x, y, c=aclist) 

    return g  

#update W,P 

def iterateT(g): 
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        baseS = 0.44 

        for i in range(0,200): 

            for j in range(0,200): 

                x= j 

                y= i 

                u = y-1  

                d = y+1  

                l = x-1  

                r = x+1  

                if x+1 == m: 

                    r = x 

                if x-1 == -1: 

                    l = x   

                if y+1 == n: 

                    d = y 

                if y-1 == -1: 

                    u = y   

                dP = P[u][x]*W[u][x][2] + P[y][r]*W[y][r][3] + P[d][x]*W[d][x][0] + 

P[y][l]*W[y][l][1] - P[y][x]*W[y][x][2] - P[y][x]*W[y][x][3] - P[y][x]*W[y][x][0] - 

P[y][x]*W[y][x][1] 

                if G[y][x] !=1 and G[y][x] !=3: 
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                    if G[y][x] == 4: 

                        P[y][x] =1 

                    if G[y][x] != 2 : 

                        W[y][x] =  [random.uniform(0, 99)/100,random.uniform(0, 

99)/100,random.uniform(0, 99)/100,random.uniform(0, 99)/100] 

                    else: 

                        if P[y][x]<=0.2: 

                         W[y][x] = [0.2,0.2,0.2,0.2] 

                        else: 

                         W[y][x] = [P[y][x],P[y][x],P[y][x],P[y][x]] 

                    if  P[y][x] >= 1: 

                        P[y][x] = 1 

                        G[y][x] = 4 

                    P[y][x] = round(P[y][x] + dP*baseS,2) 

def showS(g,msg): 

        r, c = g.shape 

        x = np.arange(0, c, dtype=int) 

        for i in range(r): 

            gi = g[i] 

            aclist = np.full(200, "white") 

            aclist[np.where(gi==0)] = "white" 
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            aclist[np.where(gi==1)] = "red" 

            aclist[np.where(gi==2)] = "gold" 

            aclist[np.where(gi==3)] = "tan" 

            aclist[np.where(gi==4)] = "aqua" 

            y = np.full(n, m - i) 

            plt.scatter(x, y,c=aclist,s=30,marker=".",alpha=(1)) 

        plt.title(msg) 

        plt.rcParams["figure.figsize"] = (10,10)  

        plt.show() 

start=time.time()  

x_avg = [] 

G = create_big() 

G = iterateS(G) 

for i  in range(5001): 

    iterateT(G) 

    if i in [0,1,100,500,1000,1250,1350,1500,2000,2500,3000,3500,4000,4500,5000]: 

     msg = "T="+str(i) 

     showS(G,msg) 

     # calculate x average 

     num = 0 

     den = 0 
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     for x in range(1,m): 

         x_summ = 0 

         for y in range(n): 

             x_summ += P[y][x] 

         num += x_summ*(x**2) 

         den += x_summ 

     x_avg.append((num/den))  

     print(x_avg) 

    if len(np.where(G==0)[0])==0: 

        showS(G,msg+"      im full") 

        sys.exit() 

fig=plt.figure() 

ax=fig.add_axes([0,0,1,1]) 

ax.scatter([0,1,100,500,1000,1250,1350,1500,2000,2500,3000,3500,4000,4500,5000], 

x_avg, color='#000000', s = 10) 

ax.set_xlabel('T axis') 

ax.set_ylabel('X squared avg axis') 

ax.set_title('plot of <x^2> vs t') 

plt.show() 

end=time.time() 

print ('running time:' +str((end-start)/60)+'min') 


