RECENT SYNTHETIC AND STRUCTURAL DEVELOPMENTS IN NOBLE-GAS, CHLORINE, BROMINE, IRIDIUM, AND GROUP 6 FLUORINE CHEMISTRY

MARK R. BORTOLUS

RECENT SYNTHETIC AND STRUCTURAL DEVELOPMENTS IN NOBLE-GAS, CHLORINE, BROMINE, IRIDIUM, AND GROUP 6 FLUORINE CHEMISTRY

By MARK R. BORTOLUS, B.Sc.

A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

TITLE: Recent Synthetic and Structural Developments in Noble-Gas, Chlorine, Bromine, Iridium, and Group 6 Fluorine Chemistry

AUTHOR: SUPERVISOR:

NUMBER OF PAGES:
Mark R. Bortolus, B. Sc. (McMaster University)
Professor Gary J. Schrobilgen
xl, 679

Abstract

The noble-gas difluorides, $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$, are moderate-strength fluoride-ion donors which react with strong fluoride-ion acceptors to form salts of $[\mathrm{NgF}]^{+}$and $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}$. Although $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$and $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$salts had been synthesized and structurally characterized, the mixed $\mathrm{Kr}^{\mathrm{II}} / \mathrm{Xe}^{\mathrm{II}}$ analogue, $[\mathrm{FKrFXeF}]^{+}$, had not been reported. Reaction of [XeF$]\left[\mathrm{AsF}_{6}\right]$ with excess KrF_{2} at $-78^{\circ} \mathrm{C}$ in anhydrous hydrogen fluoride (aHF) solvent yielded the first mixed $\mathrm{Kr}^{\mathrm{II}} / \mathrm{Xe}^{\mathrm{II}}$ noble-gas compound, $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$, a salt of the $[\mathrm{FKrFXeF}]^{+}$cation. In the course of the redox decomposition of $[\mathrm{FKrFXeF}]^{+}$, the potent oxidative fluorinating properties of the $\mathrm{Kr}^{\mathrm{II}}$ fluoride species resulted in oxidation of $\mathrm{Xe}^{\mathrm{II}}$ to $\mathrm{Xe}^{\mathrm{IV}}$ in aHF at $-60{ }^{\circ} \mathrm{C}$ to form the mixed $\mathrm{Kr}^{\mathrm{II} / \mathrm{Xe}^{\mathrm{IV}} \text { cocrystals, }}$ $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right)_{2} \cdot \mathrm{XeF}_{4}$ and $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$. Further decomposition at $22{ }^{\circ} \mathrm{C}$ resulted in oxidation of $\mathrm{Xe}^{\mathrm{IV}}$ to $\mathrm{Xe}^{\mathrm{VI}}$ to give the recently reported $\mathrm{Kr}^{\mathrm{II}} / \mathrm{Xe}^{\mathrm{VI}}$ complexes, $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{n}\right]\left[\mathrm{AsF}_{6}\right] \quad(n=1,2),\left[\mathrm{F}_{5} \mathrm{Xe}\right]\left[\mathrm{AsF}_{6}\right]$, and a new $\mathrm{Kr}^{\mathrm{II}} / \mathrm{Xe}^{\mathrm{VI}}$ complex, $\left[\left(\mathrm{F}_{5} \mathrm{Xe}\right)_{2}(\mu-\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{2}\right]$, which was characterized by low-temperature (LT) Raman spectroscopy. The $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF},\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right) 2 \cdot \mathrm{XeF}_{4}$, and $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$ compounds were characterized by LT Raman spectroscopy and single-crystal X-ray diffraction. Quantum-chemical calculations were used to assess the bonding in $[\mathrm{FKrFXeF}]^{+},\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$, and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$and to assist in their vibrational assignments.

Although the fluoride-ion donor chemistries of the neutral $\mathrm{X}(\mathrm{V})(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ fluorides and oxide fluorides are developed, the coordination chemistries of the $\mathrm{X}(\mathrm{V})$ cations $\left[\mathrm{XF}_{4}\right]^{+},\left[\mathrm{XOF}_{2}\right]^{+}$, and $\left[\mathrm{XO}_{2}\right]^{+}$were largely unknown. The synthesis and structural characterization of the first $\mathrm{Cl}(\mathrm{V})$ coordination complex of $\mathrm{XeF}_{2},\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$, is

described. The reaction of $\alpha-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ with XeF_{2} at $-78{ }^{\circ} \mathrm{C}$ in anhydrous HF (aHF) solvent yields $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$, which constitutes a rare example of noble-gas difluoride coordination to a main-group Lewis acid center. The low-temperature (LT) phase of β - $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ was obtained for the first time upon recrystallization of α $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ from aHF solvent at $-10{ }^{\circ} \mathrm{C}$. The compounds were characterized by LT single-crystal X-ray diffraction and LT Raman spectroscopy. Quantum-chemical calculations were carried out for the model gas-phase $\left.\left(\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}\right)^{-}$anion to aid in the assignments of fundamental vibrational frequencies and ${ }^{35 / 37} \mathrm{Cl}$ isotopic shifts for $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ and to assess chemical bonding in $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]^{+}$by use of an NBO analysis. The $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]^{+}$cation and $\left[\mathrm{AsF}_{6}\right]^{-}$anion of $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ exist as intimate ion-pairs with secondary $\mathrm{Cl}---\mathrm{F}_{\mathrm{As}}$ and $\mathrm{Cl}---\mathrm{F}_{\mathrm{Xe}}$ bonds that are significantly shorter than the sums of the Cl and F van der Waals radii, and are predominantly electrostatic in nature. MEPS and NBO analyses were also carried out for the gas-phase $\left[\mathrm{XO}_{2}\right]^{+}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ cations in order to assess the possibilities of analogous $\left[\mathrm{BrO}_{2}\right]^{+}$and $\left[\mathrm{IO}_{2}\right]^{+}$coordination complexes.

In a related study, the reactions of $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{PnF}_{6}\right]$ with XeF_{2} in aHF were shown to yield $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{n}\right]\left[\mathrm{AsF}_{6}\right](n=1,2)$ and $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$. The complexes were characterized by low-temperature Raman spectroscopy and single-crystal X-ray diffraction (SCXRD) and provided the first examples of coordination complexes between a noble-gas difluoride and $\left[\mathrm{BrO}_{2}\right]^{+}$. The fluorine atoms of XeF_{2} and $\left[\mathrm{PnF}_{6}\right]^{-}$interact with $\left[\mathrm{BrO}_{2}\right]^{+}$to form primarily electrostatic $\mathrm{Br}---\mathrm{F}$ bonds by coordination of F atoms to
regions of high electrostatic potential on the $\mathrm{Br}(\mathrm{V})$ atom of $\left[\mathrm{BrO}_{2}\right]^{+}$, with contact trajectories that avoid the stereo-active valence electron lone pair of $\operatorname{Br}(\mathrm{V})$.

The neutral interhalogen chlorine fluorine compounds $\mathrm{ClF}, \mathrm{ClF}_{3}$, and ClF_{5} are potent oxidative fluorinating agents, and their applications as such have been well documented. The $\mathrm{Cl}(\mathrm{III})$ and $\mathrm{Cl}(\mathrm{V})$ fluorides also undergo O / F metathesis, which makes them useful synthetic reagents for the fluorination of oxides. Metatheses with ClF_{3} yield unstable OClF , which rapidly dismutates to ClF and $\mathrm{ClO}_{2} \mathrm{~F}$ and had not been directly observed in these reactions. Although the oxides and fluorides of many heavy transition metals (TMs) had been established, there were no structurally characterized oxide fluorides of the noble metals, i.e., $\mathrm{Rh}, \mathrm{Pd}, \mathrm{Ag}, \mathrm{Ir}$, Pt , or Au . The apparent anomaly was investigated by the candidate, who synthesized and structurally characterized the first iridium oxide fluoride, the oxygen-bridged $\left[\operatorname{cyclo}-\left(\mu \text { - } \mathrm{OIrF}_{4}\right)_{3}\right]^{2-}$ anion, and iridium(V) fluoride adduct, $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$, by reaction of IrO_{2} with ClF_{5} and ClF_{3}, respectively, in anhydrous hydrogen fluoride (aHF). The $\left[\text { cyclo- }\left(\mu-\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}$ anion provides the only example of a mixed-oxidation-state $2 \mathrm{x} \operatorname{Ir}(\mathrm{V})$ and $1 \mathrm{x} \operatorname{Ir}(\mathrm{VI})$ oxyfluoro-species. The formation of $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ prevents thermodynamically unstable OClF from rapidly disproportionating to yield ClF and $\mathrm{ClO}_{2} \mathrm{~F}$, providing the first crystallographically characterized OCIF coordination complex, and the first direct evidence for the formation of OClF in the reaction of ClF_{3} with a metal oxide.

The coordination chemistries of the Group 6 oxide tetrafluorides, $\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}$, W), have been developed by the structural characterizations of their coordination complexes with the noble-gas difluorides, $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}$, Xe$)$. The $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{M}=$

Mo, W) and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ complexes have been previously synthesized in anhydrous HF (aHF) solvent and melts, respectively. However, $\mathrm{KrF}_{2} \cdot 2 \mathrm{MoOF}_{4}$ and $\mathrm{KrF}_{2} \cdot n \mathrm{WOF}_{4}(n=1$, 2) had not been characterized by X-ray diffraction because they decomposed prior to crystallization. The candidate's contribution to this study was to synthesize $\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$ and the solvate, $\left[--\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---(\mu-\mathrm{F}) \mathrm{H}--\right]_{\infty}$, in aHF and to characterize them by SCXRD. The SCXRD structures of the series of complexes show $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ have $\mathrm{F}_{\mathrm{t}}-\mathrm{Ng}_{\mathrm{g}}-\mathrm{F}_{\mathrm{b}}---\mathrm{M}$ arrangements, in which the NgF_{2} ligands coordinate to MOF_{4} through μ - F_{b} bridges. The XeF_{2} ligands of $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ also coordinate to $\mathrm{F}_{3} \mathrm{OM}-$ $\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime} \mathrm{OF}_{4}$ moieties through $\mathrm{F}_{\mathrm{t}}-\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}---\mathrm{M}$ bridges to form $\mathrm{F}_{\mathrm{t}}-\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}---\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---$ $\mathrm{M}^{\prime} \mathrm{OF}_{4}$, where XeF_{2} coordinates trans to O of M and Fb^{\prime} is trans coordinated to O of M^{\prime}. The $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}, \mathrm{Ng}-\mathrm{F}_{\mathrm{b}}$, and $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bond lengths of $\mathrm{NgF}_{2} \cdot n \mathrm{MOF}_{4}$ are consistent with MOF_{4} and $\mathrm{F}_{3} \mathrm{OM}-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime} \mathrm{OF}_{4}$ fluoride-ion affinity trends: $\mathrm{CrOF}_{4}<\mathrm{MoOF}_{4}<\mathrm{WOF}_{4} \approx \mathrm{~F}_{3} \mathrm{OMo}-$ $\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{Mo}^{\prime} \mathrm{OF}_{4}<\mathrm{F}_{3} \mathrm{OW}-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{W}^{\prime} \mathrm{OF}_{4}$. Quantum-chemical calculations show the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bonds of $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ are predominantly electrostatic, σ-hole type bonds, with a significant orbital contribution that accounts for their bent $\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}---\mathrm{M}$ bond angles.

The coordination complex, $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$, was synthesized in CFCl_{3} solvent by reaction of the weak fluoride-ion donor and strong oxidative fluorinating agent, XeF_{4}, with the intermediate-strength fluoride-ion acceptor, WOF_{4}. The complex was characterized at low temperatures by single-crystal X-ray diffraction and Raman spectroscopy, and is the only TM coordination complex of Xe(IV). Xenon tetrafluoride and WOF_{4} coordinate trans to the $\mathrm{W}=\mathrm{O}$ bond through a $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bond. The XeF_{3} moiety of
$\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ acquires a degree of $\left[\mathrm{XeF}_{3}\right]^{+}$character upon coordination that is reflected by its stretching frequencies that are intermediate with respect to XeF_{4} and $\left[\mathrm{XeF}_{3}\right]^{+}$. Quantum-chemical calculations show $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ is predominantly an electrostatic, σ-hole bond with a significant orbital contribution that accounts for the bent $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}---\mathrm{W}$ angle of
 which is consistent with failed attempts to synthesize $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}--\mathrm{MoOF}_{4}$.

The oxide, fluoride, and oxide fluoride chemistries of $\mathrm{Cr}(\mathrm{VI})$ are significantly less developed than $\mathrm{Mo}(\mathrm{VI})$ and $\mathrm{W}(\mathrm{VI})$. Xenon hexafluoride is the most fluorobasic fluorideion donor among the noble-gas difluorides. Its reactions with the weak fluoride-ion acceptor, CrOF_{4}, were explored with the aim to synthesize novel $\mathrm{Cr}(\mathrm{VI})$ oxyfluoro-anion salts. Unpublished work from this group revealed that molten mixtures of XeF_{6} and CrOF_{4} react by means of F_{2} elimination and reduction of $\mathrm{Cr}(\mathrm{VI})$ to $\mathrm{Cr}(\mathrm{V})$ and $\mathrm{Cr}(\mathrm{IV})$ to form $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{Cr}^{\mathrm{V}} \mathrm{OF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4},\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2}{ }^{\mathrm{V}} \mathrm{O}_{2} \mathrm{~F}_{8}\right],\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}^{\mathrm{IV}} \mathrm{F}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}$, and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{Cr}^{\mathrm{IV}} \mathrm{F}_{6}\right]$. The present work showed that their reactions in anhydrous hydrogen fluoride (aHF) and $\mathrm{CFCl}_{3} / \mathrm{aHF}$ yield $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF}$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$. Their reaction pathways involve redox transformations that give $\left[\mathrm{XeF}_{5}\right]^{+}$and/or $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$salts of the known $\left[\mathrm{CrOF}_{5}\right]^{2-}$ and $\left[\mathrm{CrF}_{6}\right]^{2-}$ anions, and the novel $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ anion. A low-temperature Raman spectroscopic study of an equimolar mixture of solid XeF_{6} and CrOF_{4} revealed that $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ is formed as a reaction intermediate. The salts were structurally characterized by LT SCXRD and LT Raman spectroscopy and provide the first structural characterizations of the $\left[\mathrm{CrOF}_{5}\right]^{2-}$ and $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ anions in which $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ represents a new structural motif among the
known oxyfluoro-anions of Group 6. The X-ray crystal structures show that $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$form intimate ion-pairs with their respective through electrostatic $\mathrm{Xe}---\mathrm{F}-\mathrm{Cr}$ secondary bonding interactions. Quantum-chemical calculations were carried out to obtain the energy-minimized, gas-phase geometries and the vibrational frequencies and intensities of the anions as their gas-phase ion-pairs to aid in the assignments of their Raman spectra and to assess their bonding.

Recent advances in high-oxidation-state $\mathrm{Cr}(\mathrm{VI})$ and $\mathrm{Cr}(\mathrm{V})$ oxide fluoride chemistry have exploited the fluorobasicity of XeF_{6} and resistance of the $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cations to oxidation for the preparation of the first examples of $\mathrm{Cr}(\mathrm{VI})$ and $\operatorname{Cr}(\mathrm{V})$ oxyfluoro-anions to be characterized by SCXRD. This provided impetus to attempt the synthesis and structural characterization of new $\operatorname{Cr}(\mathrm{VI}) / \mathrm{Cr}(\mathrm{V})$ oxyfluoro-anions derived from the reaction of $\mathrm{CrO}_{2} \mathrm{~F}_{2}$ with XeF_{6}. The syntheses and structural characterizations of the first dinuclear $\mathrm{Cr}(\mathrm{VI})$ oxyfluoro-anion salts, $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$, $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}, \quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}, \quad$ and the mononuclear anion $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ by LT Raman spectroscopy and single-crystal X-ray diffraction are described. The salts were prepared by reaction of XeF_{6} with $\mathrm{CrO}_{2} \mathrm{~F}_{2}$ in the oxidatively resistant solvents, aHF and CFCl_{3}, and by their direct reaction in melts at elevated temperatures (ca. $50{ }^{\circ} \mathrm{C}$). The $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ dianion is a dimer of $\left[\mathrm{CrO}_{2} \mathrm{~F}_{3}\right]^{-}$. Quantumchemical calculations show that the salts are strongly ion-paired and interact by means of primarily electrostatic Xe---F secondary bonding interactions. Quantum-chemical calculations were carried out to obtain the energy-minimized, gas-phase geometries and the vibrational frequencies and intensities of the gas-phase ion-pairs to aid in vibrational
frequency assignments and NBO and MEPS analyses were carried to assess their bonding.

In related studies, the reactions of XeF_{6} with the fluoride-ion acceptors $\mathrm{M}^{\prime} \mathrm{OF}_{4}\left(\mathrm{M}^{\prime}\right.$ $=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ yielded $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$salts of the Group 6 oxyfluoro-anions $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]$ and $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right](\mathrm{M}=\mathrm{Mo}, \mathrm{W})$. Xenon hexafluoride and MOF_{4} react in aHF solution to give equilibrium mixtures of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+},\left[\mathrm{XeF}_{5}\right]^{+},\left[(\mathrm{HF})_{n} \mathrm{~F}\right]^{-},\left[\mathrm{MOF}_{5}\right]^{-}$, and $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$from which the salts crystallized. The $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{CrOF}_{5}\right]$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ salts did not form when attempts were made to react CrOF_{4} with XeF_{6} in aHF at low temperatures owing to the low fluoride-ion affinity of CrOF_{4}, but form $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$ instead. Unlike $\mathrm{CrOF}_{4}, \mathrm{MoOF}_{4}$ and WOF_{4} are sufficiently Lewis acidic to abstract F^{-}ion from $\left[(\mathrm{HF})_{n} \mathrm{~F}\right]^{-}$in aHF to form $\left[\mathrm{MOF}_{5}\right]^{-}$and $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$salts of the $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cations. Hydrolysis of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ by small amounts of water contaminant in aHF solvent yielded $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$. To circumvent $\left[(\mathrm{HF})_{n} \mathrm{~F}\right]^{-}$formation, $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ was synthesized at LT in the oxidatively resistant solvent, $\mathrm{CF}_{2} \mathrm{ClCF}_{2} \mathrm{Cl}$. The salts were characterized by LT SCXRD and LT Raman spectroscopy to give the first X-ray crystal structure of the $\left[\mathrm{CrOF}_{5}\right]^{-}$anion. Quantumchemical calculations were carried out for gas-phase $\mathrm{M}^{\prime} \mathrm{OF}_{4},\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-},\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$, $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2},\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$, and $\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}$ to obtain their energyminimized, gas-phase geometries and vibrational frequencies to aid in vibrational mode assignments and discussions of their chemical bonding.

ACKNOWLEDGEMENTS

I wholeheartedly thank Professor Gary J. Schrobilgen for his mentorship and friendship over the past several years. I could not have asked for a better supervisor. I look forward to what the years ahead bring for us both. I will forever be grateful for the kindness and patience you have shown me, and how you have pushed me to be a better scientist.

A special thank you to Dr. Helene P. A. Mercier, not only for the countless hours she spent teaching me to analyze X-ray, Raman, and computational data, and improve my writing, but for her unwavering support, guidance, and patience as a colleague and friend.

I would also like to thank my Ph.D. committee members, Prof. David J. H. Emslie and Prof. Yurij Mozharivskyj, for their guidance and support throughout my degree.

To past members of the research group, thank you! My time in the lab was made all the better for having worked with you. Thank you also to Brianna Nyugen and Griffin LaChapelle for being such great undergraduate Thesis students.

To my family, thank you for your love and support throughout my degree. It is from you that I found the courage to pursue this path. To my grandparents, Carl, Sylvia, Elizabeth, and Bruno, whom I love with all my heart. To my parents; Anna and Glenn Bortolus, who have given me the courage and drive to pursue this path. To my siblings and their partners, who were always willing to listen during stressful times. Thank you.

Finally, thank you to my wife, Jessica. You have been with me from first year Life Science to the end of my Ph.D. and have supported me at each turn. Thank you for being patient with me during this past decade, and for always listening when I talk about work, especially when you have no idea what I am talking about.

DECLARATION OF ACADEMIC ACHIEVEMENT

Dr. Hélène P. A. Mercier, a research scientist in the Schrobilgen group, is acknowledged for her contributions to the candidates training as highly-qualified-personnel, and for her assistance with structure solutions and refinements for problematic single-crystal X-ray diffraction data sets, Raman assignments and vibrational mode interpretations, and quantum-chemical calculations. She has also provided editing/proofreading services for the authors published works, and for the unpublished chapters of this Thesis. She is a coauthor for the published chapters in which her contributions to the work were significant. During her $4^{\text {th }}$ year undergraduate thesis in the Schrobilgen group, Brianna Nyugen assisted with experimental work leading to $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$ (Chapter 3) and is a co-author on the published paper. Jamie Haner, a former graduate student in the Schrobilgen group, initially identified the $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ and $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ coordination complexes (Chapters 4 and 5). During his $4^{\text {th }}$ year undergraduate thesis in the Schrobilgen group, Griffin LaChapelle assisted with experimental work leading to the synthesis and characterization of the XeF_{2} coordination complexes with $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{PnF}_{6}\right](\mathrm{Pn}$ $=\mathrm{As}, \mathrm{Sb})($ Chapter 5) and will be a co-author on the published work. Dr. Jamie Goettel, a former graduate student in the Schrobilgen group, initially prepared the iridium oxidefluoride anion species $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- $\left.\left(\mu \text { - } \mathrm{OIrF}_{4}\right)_{3}\right]$, which was misidentified at the time as $\left[\mathrm{ClO}_{2}\right]\left[\right.$ cyclo- $\left.\left(\mu-\mathrm{OIrF}_{4}\right)_{3}\right]$ (Chapter 6). He also synthesized $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}$, $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{CrF}_{6}\right], \quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$, which are described in Chapter 9. Dr. Jim Britten, the X-Ray Manager at McMaster University, assisted with the solution of the crystal structure of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{4}\right]$.

PREFACE

The following Chapters have been published.
Chapter 3: Bortolus, M. R.; Mercier, H. P. A.; Nyugen, B.; Schrobilgen, G. J. Angew. Chem. Int. Ed. 2021, 60, 23678-23686.

Chapter 4: Bortolus, M. R.; Ellwanger, M.; Haner, J.; Schrobilgen, G. J. J. Fluor. Chem. 2021, 250, 109814.

Chapter 7: Bortolus, M. R.; Mercier, H. P. A.; Brock, D. S.; Schrobilgen, G. J. Chem. Eur. J. 2022, 28, e202103729.
and,
Mercier, H. P. A.; Breddemann, U.; Brock, D. S.; Bortolus, M. R.; Schrobilgen, G. J. Chem. Eur. J. 2019, 25, 12105-12119.

Chapter 8: Bortolus, M. R.; Mercier, H. P. A.; Schrobilgen, G. J. Angew. Chem. Int. Ed. 2022, 61, e202211699.

Chapter 9: Goettel, J. T.; Bortolus, M. R.; Stuart, D. G.; Mercier, H. P. A.; Schrobilgen, G. J. Chem. Eur. J. 2019, 25, 15815-15829.

Chapter 11: Bortolus, M. R.; Mercier, H. P. A.; Schrobilgen, G. J. Chem. Eur. J. 2020, 26, 8935-8950.

Chapters 5, 6 , and 10 will be submitted for publication as their own individual papers.

CANDIDATE'S SPECIFIC CONTRIBUTIONS TO PUBLISHED PAPERS

Chapters 3, 4, 8, and 11. The candidate carried out all low-temperature (LT) syntheses, LT structural characterizations (Raman spectroscopy and single-crystal X-ray diffraction), and experimental data analyses described in these papers. He also worked with co-authors to carry out the quantum-chemical analyses described in the paper, assign the Raman spectra of the title compounds with the aid of calculated vibrational frequency assignments, and to draft the paper for publication.

Chapter 7. The candidate carried out the LT syntheses and structural characterizations of $\mathrm{XeF}_{2} \cdot \mathrm{CrOF}_{4}, \quad \mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$, and $\left[-\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---(\mu-\mathrm{F}) \mathrm{H}--\right]_{\infty}$. He analyzed the experimental data (Raman, X-ray, syntheses) for all of the compounds described in both papers (Chem. Eur. J. 2022, 28, e202103729, and Chem. Eur. J. 2019, 25, 1210512119.), and collaborated with the co-authors to draft the manuscripts for publication. He also contributed to carrying out quantum-chemical calculations and writing the discussion of the quantum-chemical calculation results for these papers. Only the most recent article in which the candidate is first-author, Chem. Eur. J. 2022, 28, e202103729, is reproduced because it draws comparisons with and refers to the other published paper and to $\mathrm{XeF}_{2} \cdot \mathrm{CrOF}_{4}$ throughout the text.

Chapter 9. The candidate carried out the LT syntheses of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF}$, and structurally characterized both compounds by LT Raman spectroscopy and LT single-crystal X-ray diffraction. He analyzed the experimental data for all the compounds described in the paper, contributed to carrying out the quantumchemical calculations, and drafted the manuscript for publication with the co-authors.

LIST OF ABBREVIATIONS AND SYMBOLS

General

ax	axial
eq	equatorial
FEP	perfluoroethylene/perfluoropropylene copolymer
IR	infrared
Kel-F	chlorotrifluoroethylene
VSEPR	valence shell electron pair repulsion
N.A.	natural abundance (isotopic)
i.d.	inner diameter
o.d.	inch
in.	low temperature
LT	room temperature
RT	coordination number
CN	

Raman Spectroscopy

$\Delta \nu$	frequency
cm^{-1}	wavenumber
ν	stretching mode
δ	in-plane bend
$\delta_{\text {umb }}$	umbrella mode
ρ_{w}	wagging mode
ρ_{r}	rocking mode
ρ_{t}	twisting mode
o.o.p.	out-of-plane
i.p.	in-plane

X-ray Crystallography

$\alpha, b, c, \alpha, \beta, \gamma$	unit cell parameters
V	unit cell volume
λ	wavelength
μ	absorption coefficient
ρ	density
Z	molecules per unit cell
mol. wt.	molecular weight
F	structure factor
R_{1}	conventional agreement index
$w R_{2}$	weighted agreement index

Computational

DFT	density functional theory
ADF	amsterdam density functional
NBO	natural bond orbital
AIM	atoms in molecules
ELF	electron localization function
MEPS	molecular electrostatic potential surface
EDA	energy decomposition analysis
ETS-NOCV	valence
SOC	spin orbit coupling
VELP	valence electron lone paition-state natural orbitals for chemical
EP	quantum-chemical

TABLE OF CONTENTS

page
CHAPTER 1: INTRODUCTION
1.1. Discovery of Noble-gas Reactivity 1
1.2. Chemical Properties of the Noble-gas Fluorides 2
1.2.1. Noble-gas Difluorides $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$ 2
1.2.2. Xenon Tetrafluoride 8
1.2.3. Xenon Hexafluoride 14
Purpose and Scope of the Thesis Research 21
CHAPTER 2: EXPERIMENTAL SECTION
2.1. Standard Techniques 25
2.1.1. Drybox and Vacuum Line Techniques 25
2.1.2. Preparative Apparatus and Sample Vessels. 28
2.2. Synthesis and Purification of Starting Materials 30
2.2.1. Sources and Purification of Gases: $\mathrm{N}_{2}, \mathrm{Ar}, \mathrm{F}_{2}, \mathrm{Xe}$, and Kr 30
2.2.2. Purification of Solvents: Anhydrous $\mathrm{HF}, \mathrm{SO}_{2} \mathrm{ClF}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{CFCl}_{3}$ (Freon-11),
$\mathrm{CF}_{2} \mathrm{ClCF}_{2} \mathrm{Cl}$ (Freon-114) 30
2.2.3. Syntheses and Purification of Reagents. 31
2.3. Syntheses and Characterizations of the Mixed Noble-Gas Compounds,$\left.\left[\mathrm{FKr}^{\mathrm{II}} \mathrm{FXe}^{\mathrm{II}} \mathrm{F}\right]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{Kr}^{\mathrm{II}} \mathrm{F}_{2} \cdot 2 \mathrm{HF},\left(\left[\mathrm{Kr}^{\mathrm{II}}{ }_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right)\right)_{2} \cdot \mathrm{Xe}^{\mathrm{IV}} \mathrm{F}_{4}$, and $\mathrm{Xe}^{\mathrm{IV}} \mathrm{F}_{4} \cdot \mathrm{Kr}^{\mathrm{II}} \mathrm{F}_{2} \ldots \ldots37$
2.3.1. Syntheses and Crystal Growth 38
2.3.1.1. $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$ 38
2.3.1.2. $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right) 2 \cdot \mathrm{XeF}_{4}$ 39
2.3.1.3. $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{SbF}_{6}\right]$ 39
2.3.1.4. $\mathrm{XeF}_{4} \cdot \mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$ and XeF_{4} 40
2.3.1.5. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right]$ 41
2.4. Syntheses and Structural Characterizations of the $\mathrm{Cl}(\mathrm{V})$ Coordination Complex, $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$, and $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ 41
2.4.1. β - $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ and $\alpha-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ 41
2.4.2. β - $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ crystal growth 42
2.4.3. $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ 42
2.4.4. $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ 43
2.4.5. Attempted Synthesis of $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ 43
2.5. Syntheses and Structural Characterizations of the $\operatorname{Br}(\mathrm{V})$ Coordination Complexes,
$\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{n}\right]\left[\mathrm{AsF}_{6}\right](n=1,2)$, and $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ 44
2.5.1. Synthesis of $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ 44
2.5.2. Synthesis of $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ 44
2.5.3. Syntheses of $\left[\mathrm{O}_{2} \operatorname{Br}(\mathrm{FXeF})_{n}\right]\left[\mathrm{AsF}_{6}\right](n=1,2)$ and Crystal Growth 45
2.5.4. Synthesis of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ and Crystal Growth 46
2.5.5. Attempted Synthesis of $\left[\mathrm{O}_{2} \mathrm{BrFXeF}\right]\left[\mathrm{SbF}_{6}\right]$ 46
2.6. Syntheses and Structural Characterizations of $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- μ - $\left.\left(\mathrm{OIrF}_{4}\right)_{3}\right]$ and the
Coordination Complex F_{5} Ir---OCIF 47
2.6.1. Syntheses of $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ and $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{IrF}_{6}\right]$ 47
2.6.2. Synthesis of $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- $\left.\mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]$ 48
2.7. Noble-Gas Difluoride Complexes of CrOF_{4} and $\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W}) ; \mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}$$(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe}), \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}, \mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF}_{4}$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{M}^{\prime} \mathrm{OF}_{4}\left(\mathrm{M}^{\prime}=\mathrm{Mo}, \mathrm{W}\right) \ldots \ldots \ldots . .49$49
2.7.1. $\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$ 49
2.7.2. $\left[--\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---(\mu-\mathrm{F}) \mathrm{H}--\right]_{\infty}$ 49
2.7.3. $\mathrm{XeF}_{2} \cdot \mathrm{CrOF}_{4}$ 50
2.8. Synthesis, Structure, and Bonding of a Xe(IV) Transition-Metal Coordination
Complex, $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ 50
2.8.1. $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}--\mathrm{WOF}_{4}$ 50
2.8.2. Attempted Synthesis of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ in a Melt 51
2.8.3. Attempted Synthesis of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ in aHF 52
2.8.4. Attempted Syntheses of $\mathrm{F}_{3} \mathrm{XeF}_{b}---\mathrm{MoOF}_{4}$ in CFCl_{3} Solvent
and in a Melt 52
2.8.5. Attempted Synthesis of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{W}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{W}^{\prime} \mathrm{OF}_{4}$ in CFCl_{3} 53
2.9. Chromium Oxide Tetrafluoride and Its Reactions with Xenon Hexafluoride; the$\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$Salts of the $\left[\mathrm{Cr}^{\mathrm{VI}} \mathrm{OF}_{5}\right]^{-},\left[\mathrm{Cr}^{\mathrm{V}} \mathrm{OF}_{5}\right]^{2-},\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$, and $\left[\mathrm{Cr}^{\mathrm{IV}} \mathrm{F}_{6}\right]^{2-}$
\qquadAnions.53
2.9.1. $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF}$. 53
2.9.2. $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ 54
2.10. Syntheses and Structural Characterizations of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$,
$\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF},\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ 54
2.10.1. $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$ 54
2.10.2. $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ 55
2.10.3. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ 56
2.11. Group 6 Oxyfluoro-anion Salts of $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$; Syntheses and Structures
of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right] \quad(\mathrm{M}=\mathrm{Mo}, \mathrm{W}), \quad\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right] \quad\left(\mathrm{M}^{\prime}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}\right)$,
$\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$ 56
2.11.1. $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ 56
2.11.2. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$ 57
2.11.3. $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right](\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ 58
2.11.4. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right](\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ 58
2.11.5. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$ 59
2.11.6. Attempted Syntheses of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{MOF}_{5}\right](\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ in CFCl_{3} 59
2.12. X-ray Crystallography 60
2.12.1. Low-Temperature Crystal Mounting 60
2.12.2. Data Collection 63
2.12.2.1. Bruker SMART APEX II Diffractometer 63
2.12.2.2. STOE IPDS II X-ray diffractometer 63
2.12.2.3. Solution and Refinement of Structures 64
2.13. Raman Spectroscopy 66
2.14. Quantum-Chemical Calculations 66
CHAPTER 3: Syntheses and Characterizations of the Mixed Noble-Gas Compounds,$\left[\mathrm{FKr}^{\mathrm{II}} \mathrm{FXe}^{\mathrm{II}} \mathrm{F}\right]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{Kr}^{\mathrm{II}} \mathrm{F}_{2} \cdot 2 \mathrm{HF},\left(\left[\mathrm{Kr}^{\mathrm{II}}{ }_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right) 2 \cdot \mathrm{Xe}^{\mathrm{IV}} \mathrm{F}_{4}$, and $\mathrm{Xe}^{\mathrm{IV}} \mathrm{F}_{4} \cdot \mathrm{Kr}^{\mathrm{II}} \mathrm{F}_{2} \ldots \ldots . . .68$
3.1. Introduction 68
3.2. Results and Discussion 69
3.2.1. Syntheses 69
3.2.2. X-ray Crystallography 72
3.2.3. Raman Spectroscopy 79
3.2.4. Computational Results 83
3.2.4.1. Calculated Geometries. 84
3.2.4.2. Natural Bond Orbital (NBO) Analyses 85
3.2.4.3. Atoms in Molecules (AIM) Analyses 86
3.2.4.4. Electron Localization Function (ELF) Analyses. 86
3.2.4.5. Molecular Electrostatic Potential Surface (MEPS) Analyses 89
3.3. Conclusion 91
CHAPTER 4: Syntheses and Structural Characterizations of the $\mathrm{Cl}(\mathrm{V})$ Coordination Complex, $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$, and $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ 92
4.1. Introduction. 92
4.2. Results and discussion 93
4.2.1. Syntheses and properties 93
4.2.1.1. β - $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ and $\alpha-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$. 93
4.2.1.2. $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$. 94
4.2.1.3. Attempted Syntheses of $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ 94
4.2.2. X-ray crystallography 95
4.2.2.1. β - $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ 96
4.2.2.2. $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$. 97
4.2.3. Raman spectroscopy 103
4.2.3.1. $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ and $\alpha-\left[\mathrm{ClO}_{2} \mathrm{AsF}_{6}\right]$ 103
4.2.3.2. $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ 104
4.2.4. Computational results 113
4.2.4.1. Geometry optimizations of $\left[\mathrm{XO}_{2}\right]^{+}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ and
$\left(\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}\right)^{-}$ 113
4.2.4.2. Natural Bond Orbital (NBO) analyses 114
4.2.4.3. Molecular electrostatic potential surface (MEPS) analyses 115
4.3. Conclusion 118
CHAPTER 5: Syntheses and Structural Characterizations of the $\operatorname{Br}(\mathrm{V})$ Coordination
Complexes, $\quad\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{n}\right]\left[\mathrm{AsF}_{6}\right] \quad(n \quad=\quad 1, \quad 2), \quad$ and
$\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$. 119
5.1. Introduction 119
5.2. Results and Discussion 121
5.2.1. Syntheses and Crystal Growth 121
5.2.1.1. $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ and $\left[\mathrm{O}_{2} \mathrm{BrFXeF}\right]\left[\mathrm{AsF}_{6}\right]$ 122
5.2.1.2. $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$. 122
5.2.1.3. Attempted Synthesis of $\left[\mathrm{O}_{2} \mathrm{BrFXeF}\right]\left[\mathrm{SbF}_{6}\right]$ 123
5.2.2. X-ray Crystallography 123
5.2.2.1. $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ and $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ 124
5.2.2.2. $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]$. 128
5.2.3. Raman Spectroscopy 131
5.2.3.1. $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ and $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ 133
5.2.3.2. $\left[\mathrm{O}_{2} \mathrm{BrF}(\mathrm{XeF})\right]\left[\mathrm{AsF}_{6}\right]$ 134
5.3. Conclusions 141
CHAPTER 6: Syntheses and Structural Characterizations of $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- $\left.\mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]$; and the Coordination Complex F_{5} Ir---OClF 142
6.1. Introduction 142
6.2. Results and Discussion 146
6.2.1. Syntheses. 146
6.2.1.1. Syntheses of $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ and $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{IrF}_{6}\right]$. 146
6.2.1.2. Synthesis of $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- $\left.\mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]$ 147
6.2.2. X-ray Crystallography 149
6.2.2.1. $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- $\left.\mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]$ 150
6.2.2.2. $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ 154
6.2.3. Quantum-chemical Calculations 157
6.3. Conclusions 163
CHAPTER 7: Noble-Gas Difluoride Complexes of CrOF_{4} and $\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$;$\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe}), \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}, \mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF}_{4}$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{M}^{\prime} \mathrm{OF}_{4}\left(\mathrm{M}^{\prime}=\mathrm{Mo}\right.$,W)164
7.1. Introduction 164
7.2. Results and Discussion. 165
7.2.1. Syntheses and Reactivities. 165
7.2.1.1. $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ and $\mathrm{XeF}_{2} \cdot \mathrm{CrOF}_{4}$ 165
7.2.1.2. $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}(5), \mathrm{W}$ (6)). 167
7.2.2. X-ray Crystallography 167
7.2.2.1. $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ 167
7.2.2.2. $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ 169
7.2.2.3. $\left[--\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---(\mu-\mathrm{F}) \mathrm{H}--\right]_{\infty}(7)$ 175
7.2.3. Raman Spectroscopy 176
7.2.3.1. $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ 177
7.2.4. Computational Results 178
7.2.4.1. Calculated Geometries. 178
7.2.4.2. Natural Bond Orbital (NBO) Analyses 179
7.2.4.3. Atoms in Molecules (AIM) Analysis 181
7.2.4.4. Electron Localization Function (ELF) Analysis 182
7.2.4.5. Molecular Electrostatic Potential Surface (MEPS) Analyses 183
7.2.4.6. Energy Decomposition Analysis (EDA) 185
7.2.4.7. Natural Orbitals for Chemical Valence (ETS-NOCV) Analysis. 186
7.3. Conclusion. 187
CHAPTER 8: Synthesis, Structure, and Bonding of a Xe(IV) Transition-Metal
Coordination Complex, $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ 189
8.1. Introduction. 189
8.2. Results and Discussion. 190
8.2.1. Syntheses. 190
8.2.2. X-ray Crystallography 191
8.2.3. Raman Spectroscopy 193
8.2.3. Quantum-chemical Calculations 195
CHAPTER 9: Chromium Oxide Tetrafluoride and Its Reactions with Xenon Hexafluoride; the $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$Salts of the $\left[\mathrm{Cr}^{\mathrm{VI}} \mathrm{OF}_{5}\right]^{-},\left[\mathrm{Cr}^{\mathrm{V}} \mathrm{OF}_{5}\right]^{2-}$, $\left[\mathrm{Cr}^{\mathrm{V}} \mathrm{O}_{2} \mathrm{O}_{8}\right]^{2-}$, and $\left[\mathrm{Cr}^{\mathrm{IV}} \mathrm{F}_{6}\right]^{2-}$ Anions 201
9.1. Introduction 201
9.2. Results and Discussion 205
9.2.1. Syntheses 205
9.2.1.1. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ 205
9.2.1.2. $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}$ 207
9.2.1.3. $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{CrF}_{6}\right]$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]$ 208
9.2.1.4. $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF}$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ 208
9.2.2. X-ray Crystallography 209
9.2.2.1. $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$ 210
9.2.2.2. XeOF_{4} 215
9.2.2.3. CrOF_{4} 216
9.2.2.4. $\left[\mathrm{CrF}_{6}\right]^{2-}$ 220
9.2.2.4. $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ 221
9.2.2.5. $\left[\mathrm{CrOF}_{5}\right]^{2-}$ 222
9.2.3. Raman Spectroscopy 223
9.2.3.1. $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ 224
9.2.3.2. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ 227
9.2.4. Computational Results 228
9.2.4.1. Calculated Geometries 228
9.2.4.1.1. $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ and $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ 229
9.2.4.1.2. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ and $\left[\mathrm{CrOF}_{5}\right]^{2-}$ 229
9.3. Conclusions 231
CHAPTER 10: Syntheses and Structural Characterizations of $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ and
$\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ salts 233
10.1. Introduction 233
10.2. Results and Discussion 234
10.2.1. Syntheses 234
10.2.1.1. $\quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right], \quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$, and
$\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ 235
10.2.1.2. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ 236
10.2.2. X-ray Crystallography 236
10.2.2.1. $\quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right], \quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$, and
$\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ 236
10.2.2.2. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ 241
10.2.3. Raman Spectroscopy 245
10.2.3.1. $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right],\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$, $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ 246
10.2.3.2. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ 250
10.2.4. Computational Results 252
10.2.4.1. Calculated Geometries 252
10.2.4.1.1. $\quad \mathrm{CrO}_{2} \mathrm{~F}_{2}, \quad\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}, \quad\left[\mathrm{XeFF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$,
$\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$, and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ 253
10.2.4.1.2. $\left[\mathrm{XeFF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ 254
10.2.4.2. Natural Bond Orbital (NBO) Analysis. 255
10.2.4.3. Molecular Electrostatic Potential Surface (MEPS) Analysis 257
10.3. Conclusions 259
CHAPTER 11: Group 6 Oxyfluoro-anion Salts of $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$; Syntheses and
Structures of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right](\mathrm{M}=\mathrm{Mo}, \mathrm{W}),\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{M'OF}_{5}\right]\left(\mathrm{M}^{\prime}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}\right)$,
$\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$ 261
11.1. Introduction. 261
11.2. Results and Discussion. 264
11.2.1. Syntheses 264
11.2.1.1. $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right](\mathrm{M}=\mathrm{Mo}, \mathrm{W}),\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right](\mathrm{M}=\mathrm{Mo}, \mathrm{W})$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$ 264
11.2.1.2. Attempted Syntheses of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{MOF}_{5}\right](\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ in
CFCl_{3}. 265
11.2.1.3. $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$ 266
11.2.2. X-ray Crystallography 267
11.2.2.1. $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$ 270
11.2.2.2. $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}\left(\mathrm{M}^{\prime}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}\right)$. 273
11.2.2.3. $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$. 277
11.2.2.4. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$ 278
11.2.2.5. XeOF_{4} 278
11.2.3. Raman Spectroscopy 280
11.2.3.1. $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ 284
11.2.3.2. $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ 285
11.2.3.4. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ 286
11.2.4. Computational Results 288
11.2.4.1. Calculated Geometries 288
11.2.4.1.1. $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2},\left[\mathrm{CrOF}_{5}\right]^{-},\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right](\mathrm{M}=$Mo, W), and [MOF5] ${ }^{-}$.. 289
11.2.4.1.2. $\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}$ and $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$. 292
11.2.4.2. Natural Bond Orbital (NBO) Analyses 293
11.2.4.3. Molecular Electrostatic Potential Surface (MEPS) Analyses 296
11.3. Conclusion 300
CHAPTER 12: CONCLUSIONS 302
CHAPTER 13: FUTURE WORK 309
13.1. Further Developments in $\mathrm{X}(\mathrm{V})(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ Coordination Chemistry 309
13.2. Syntheses and Structural Characterizations of Inorganic Derivatives of $\mathrm{CrO}_{2} \mathrm{~F}_{2}$ and
CrOF_{4} and their Related Ions 311
REFERENCES 313
APPENDIX 1 339
APPENDIX 2 423
APPENDIX 3 441
APPENDIX 4 454
APPENDIX 5 531
APPENDIX 6 552
APPENDIX 7 582
APPENDIX 8 626

Table 3.1. Summary of crystal data and refinement results for $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}, \quad\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right)_{2} \cdot \mathrm{XeF}_{4}, \quad\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{SbF}_{6}\right], \quad \mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$, $\mathrm{XeF}_{4} \cdot \mathrm{XeF}_{2}, \mathrm{XeF}_{4}$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right]$.

Table 3.2. Experimental and calculated geometric parameters for the cations of $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF},\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right)_{2} \cdot \mathrm{XeF}_{4}$, and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{SbF}_{6}\right] \ldots \ldots \ldots \ldots . .$.

Table 3.3. Experimental Raman frequencies of $[\mathrm{FKrFXeF}]^{+}$in $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$ and calculated vibrational frequencies, intensities, and assignments for $[\mathrm{FKrFXeF}]^{+}$.83

Table 4.1. Summary of crystal data and refinement results for β - $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ and $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ 99

Table 4.2. Experimental bond lengths (\AA) for β - $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ and $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ and calculated bond lengths (\AA) for gas-phase $\left(\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}\right)^{-} \ldots \ldots \ldots \ldots \ldots . . .$.

Table 4.3. Experimental Raman frequencies $\left(\mathrm{cm}^{-1}\right)$, intensities, and assignments for α $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ and $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$. 106

Table 4.4. Experimental Raman frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities for $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$, and the calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$, intensities, and assignments for the model anion, $\left(\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}\right)^{-} \ldots \ldots$

Table 5.1. Summary of X-ray crystal data and refinement results for $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right],\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$, and $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right] \ldots \ldots \ldots \ldots \ldots$.

Table 5.2. Experimental geometric parameters for $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ and
Table 5.3. Experimental geometric parameters of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]$130
Table 5.4. Experimental vibrational frequencies, intensities, and assignments for$\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ and $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right] \ldots . . . \ldots \ldots$
Table 5.5. Experimental vibrational frequencies, intensities, and assignments for $\left[\mathrm{O}_{2} \mathrm{BrFXeF}\right]\left[\mathrm{AsF}_{6}\right]$. .139

Table 6.1. Summary of crystal data and refinement results for $\left.\left[\mathrm{ClO}_{2}\right]_{2}\left[\text { cyclo- }(\mu \text {-OIrF })_{3}\right)_{3}\right]$ and $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ 150
Table 6.2. Experimental and calculated bond lengths (\AA) for $\left[\text { cyclo- } \mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}$ 153
Table 6.3. Experimental and calculated bond lengths (\AA) for $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ 154Table 7.1. Summary of crystal data and refinement results for $\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}, \mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$,$\mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}, \mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}, \mathrm{XeF}_{2} \cdot 2 \mathrm{MoOF}_{4}, \mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}$, and $\left[--\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}--(\mu-\right.$F) $\mathrm{H}--]_{\infty}$170

Table 7.2. Key experimental and calculated bond lengths (\AA) and bond angles (deg) for $\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}, \mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}, \mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}, \mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}, \mathrm{XeF}_{2} \cdot 2 \mathrm{MoOF}_{4}, \mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4} . .173$

Table 8.1. Energy decomposition analyses (EDA) for the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ Bonds of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}--$ $\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ and $\mathrm{FXeF}_{\mathrm{b}}--\mathrm{MOF}_{4}$ 199

Table 9.1. Summary of X-ray crystal data and refinement results for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}, \quad\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{CrF}_{6}\right], \quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right], \quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF}$, $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.

Table 9.2. Experimental geometric parameters for the $\left[\mathrm{CrF}_{6}\right]^{2-}$ anion of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}$.220

Table 9.3. Experimental geometric parameters for the $\left[\mathrm{CrF}_{6}\right]^{2-}$ anion of
\qquad
Table 9.4. Experimental geometric parameters for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]$ and

Table 9.5. Experimental and calculated geometric parameters for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ and $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-} \ldots \ldots$

Table 9.6. Experimental and calculated geometric parameters of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ and $\left[\mathrm{CrOF}_{5}\right]^{2-} \ldots . . . \ldots \ldots$

Table 10.1. Summary of X-ray crystal data and refinement results for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$, $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF},\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right] \ldots \ldots . . .237$

Table 10.2. Experimental and calculated geometric parameters for $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ in $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right],\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$, and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$241

Table 10.3. Experimental and calculated geometric parameters for $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-} \ldots \ldots \ldots . .243$
Table 11.1. Summary of methods previously used for the characterizations of the $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}\left(\mathrm{M}^{\prime}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}\right),\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$, and $\left[\mathrm{MOF}_{6}\right]^{2-}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ anions 263

Table 11.2. Summary of X-ray crystal data and refinement results for [$\left.\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$, $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}, \quad\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right], \quad\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right], \quad\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$,

Table 11.3. Experimental and calculated geometric parameters for $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}\left(\mathrm{M}^{\prime}=\mathrm{Cr}\right.$, $\mathrm{Mo}, \mathrm{W})$ in $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right],\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$, and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right] \ldots \ldots \ldots \ldots \ldots$.

Table 11.4. Experimental and calculated geometric parameters of $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}(\mathrm{M}=\mathrm{Mo}$, $\mathrm{W})$ in $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$.

LIST OF FIGURES

Figure 1.1. The X-ray crystal structures of (a) $\alpha-\mathrm{KrF}_{2}$ and (b) the low-temperature phase of XeF_{2} .4

Figure 1.2. Molecular orbital diagram of NgF_{2} .5

Figure 1.3. Equilibrium pressures of xenon fluorides as a function of temperature .10

Figure 1.4. The coordination environments of the $\left[\mathrm{XeF}_{3}\right]^{+}$cations in the X-ray crystal structures of (a) $\left[\mathrm{H}_{5} \mathrm{~F}_{4}\right]\left[\mathrm{SbF}_{6}\right] \cdot 2\left[\mathrm{XeF}_{3} \cdot \mathrm{HF}\right]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]$, (b) $\left[\mathrm{XeF}_{3} \cdot \mathrm{HF}\right]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]$, and (c) $\left[\mathrm{XeF}_{3}\right]\left[\mathrm{SbF}_{6}\right]$.12

Figure 1.5. Atom numbering scheme, bond lengths (\AA) and angles (deg) for $\left[\mathrm{XeF}_{5}\right]^{-}$at

Figure 1.6. Coordination of the Mg atom in the crystal structure of

Figure 1.7. The tetramer unit $\left(\left[\mathrm{XeF}_{5}\right]^{+} \mathrm{F}^{-}\right)_{4}$ in the low-temperature phase of crystalline
\qquad
Figure 1.8. The experimental and calculated structures of $\mathrm{F}_{6} \mathrm{Xe}---\mathrm{NCCH}_{3}$ and

Figure 1.9. Schematic representation of the $C_{3 v}$ structure of XeF_{6} optimized at the $\operatorname{CCSD}(\mathrm{T})$ level 17

Figure 1.10. The coordination environment of the $\left[\mathrm{XeF}_{5}\right]^{+}$cation in $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AgF}_{4}\right] \ldots . . .18$
Figure 1.11. The structural units in the SCXRD structures of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{NiF}_{6}\right]$ and
\qquad

Figure 1.12. The structural units in the SCXRD structures of $\left[\mathrm{XeF}_{5}\right]\left[\mu-\mathrm{F}\left(\mathrm{OsO}_{3} \mathrm{~F}_{2}\right)_{2}\right]$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\right.$ fac- $\left.\mathrm{OsO}_{3} \mathrm{~F}_{3}\right]$ and the the primary and secondary coordination spheres of $\mathrm{Xe}(\mathrm{VI})$ in $\left[\mathrm{XeF}_{5}\right]^{+}$showing the four Xe---F secondary bonding interactions. 20

Figure 2.1. Schematic Diagram of the Metal Vacuum Line System........................... 27
Figure 2.2. Glass vacuum line used for the manipulation of non-corrosive volatile materials.. 29

Figure 2.3. Hydrogen fluoride distillation apparatus... 32
Figure 2.4. The stainless steel hot-wire reactor used for the preparation of $\mathrm{KrF}_{2} \ldots \ldots . .35$
Figure 2.5. Low-temperature crystal mounting apparatus.. 62
Figure 3.1. (a) The structural unit in the crystal structure of $[\mathrm{FKrFXeF}]\left[\mathrm{AF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$, where one of two orientations of the disordered $\left[\mathrm{AsF}_{6}\right]^{-}$ anion is shown. (b) The gas-phase optimized geometry of $[\mathrm{FKrFXeF}]^{+}$(B2PLYP-D3/Def2-TZVPD) .75

Figure 3.2. The structural unit in the crystal structure of $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right)_{2} \cdot \mathrm{XeF}_{4} \ldots \ldots \ldots . .76$
Figure 3.3. The coordination environment around $\mathrm{Xe}_{(1)} \mathrm{F}_{4}$ in the crystal structure of

Figure 3.4. Raman spectrum of $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$ recorded under frozen aHF at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation... 82

Figure 3.5. ELF isosurface plots at $\eta(\mathrm{r})=0.60$ (B2PLYP-D3/Def2-TZVPD) for

Figure 3.6. Molecular electrostatic potential surfaces of $[\mathrm{FKrFXeF}]^{+},\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+},[\mathrm{KrF}]^{+}$, and KrF_{2} depicted at their 0.001 e $a_{0}{ }^{-3}$ isosurfaces... 90

Figure. 4.1. (a) The coordination environment $\left(\mathrm{CN}_{\mathrm{Cl}}=2+4\right)$ of $\left[\mathrm{ClO}_{2}\right]^{+}$in β $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$. (b) A packing diagram showing the unit cell of β - $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ viewed along the b-axis of the unit cell. 101

Figure. 4.2. (a) The structural unit in the crystal structure of $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$. (b) Expanded views of the chlorine coordination environment $\left(\mathrm{CN}_{\mathrm{Cl}}=2+5\right)$ of $\left[\mathrm{ClO}_{2}\right]^{+}$in $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ from different perspectives. (c) The calculated (B3LYP/Def2TZVPD (O, F, As, Cl, Xe)) gas-phase geometry of the model $\left(\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}\right)^{-}$ anion. .102

Figure. 4.3. Raman spectrum of $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ recorded on a dry powder at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation .105

Figure. 4.4. Raman spectrum of $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ recorded on a dry crystalline sample at $-150^{\circ} \mathrm{C}$ using 1064-nm excitation. 109

Figure 4.5. The molecular electrostatic potential surface (MEPS) contours calculated at the $0.001 \mathrm{e} a_{0}{ }^{-3}$ isosurfaces of $\left[\mathrm{ClO}_{2}\right]^{+},\left[\mathrm{BrO}_{2}\right]^{+}$and $\left[\mathrm{IO}_{2}\right]^{+}$

Figure 5.1. Structural unit in the X-ray crystal structure of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right] \ldots . . .126$
Figure 5.2. Structural unit in the X-ray crystal structure of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right] \ldots128$
Figure 5.3. The two structural units in the X-ray crystal structure of

Figure 5.4. Raman spectrum of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064nm excitation... 137

Figure 5.5. Raman spectrum of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-
\qquad

Figure 5.6. Raman spectrum of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]$ recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation.. 140

Figure 6.1. Molecular orbital scheme for $\left[\mathrm{VO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}\left(C_{4 \mathrm{v}}\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$.
Figure 6.2. Overview of selected compounds obtained from reactions with $\mathrm{ClF}_{3} \ldots \ldots . .144$
Figure 6.3. (a) The structural unit in the X-ray crystal structure of $\left[\mathrm{ClO}_{2}\right]_{2}[$ cyclo- μ $\left.\left(\mathrm{OIrF}_{4}\right)_{3}\right]$. (b) The calculated gas-phase geometry of $\left[\text { cyclo- } \mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}\left(C_{1}\right) \ldots \ldots \ldots . .151$

Figure 6.4. Side-on views of the (a) experimental and (b) calculated structures of [cyclo-$\left.\mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}$152

Figure 6.5. (a) One of two structural units in the X-ray crystal structure of $\mathrm{F}_{5} \mathrm{Ir}$---OClF. (b) The calculated gas-phase geometry of $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ 156

Figure 6.6. The MEPS calculated at the 0.001 e $a_{0}{ }^{-3}$ isosurfaces for $\mathrm{IrF}_{5}, \mathrm{OCIF}$, and $\mathrm{F}_{5} \mathrm{Ir}$ ---OClF 162

Figure 7.1. The X-ray crystal structure of $\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$ (near-eclipsed conformation) and its calculated staggered conformation.171

Figure 7.2. The X -ray crystal structure of (a) $\mathrm{XeF}_{2} \cdot 2 \mathrm{MoOF}_{4}$ and its calculated
\qquad
Figure 7.3. A portion of the X-ray crystal structure of $\left[--\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---(\mu-\mathrm{F}) \mathrm{H}--\right]_{\infty}$ showing its infinite-chain structure.. 176

Figure 7.4. The MEPS calculated at the 0.001 e $a_{0}{ }^{-3}$ isosurfaces for $\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$ and $\mathrm{XeF}_{2} \cdot \mathrm{CrOF}_{4}$ 184

Figure 7.5. The major contribution in the ETS-NOCV analysis of $\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$ 187

Figure 8.1. (a) The structural unit in the X-ray crystal structure of $\mathrm{F}_{3} \mathrm{XeF}_{b}---\mathrm{WOF}_{4}$. (b) The calculated energy-minimized, gas-phase geometry of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}--\mathrm{WOF}_{4} \ldots \ldots \ldots \ldots \ldots . .$. Figure 8.2. The MEPS contours calculated at the 0.001 e $a_{0}{ }^{-3}$ isosurfaces of $\mathrm{WOF}_{4}, \mathrm{XeF}_{4}$,

Figure 8.3. ELF isosurface plots $(\eta(r)=0.60)$ for $\mathrm{WOF}_{4}, \mathrm{XeF}_{4}$, and $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}--\mathrm{WOF}_{4} \ldots 197$

Figure 9.1. The X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}$. The coordination spheres of (a) the $\left[\mathrm{XeF}_{5}\right]^{+}$cation and (b) the $\left[\mathrm{CrF}_{6}\right]^{2-}$ anion are depicted. 213

Figure 9.2. The X -ray crystal structure of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{CrF}_{6}\right]$. The coordination spheres of
(a) the $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cation and (b) the $\left[\mathrm{CrF}_{6}\right]^{2-}$ anion are depicted. .214

Figure 9.3. The X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]$. The coordination spheres of (a) the $\left[\mathrm{XeF}_{5}\right]^{+}$cation and (b) the $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ anion are depicted........................ 215

Figure 9.4. The X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.
Figure 9.5. Depictions of (a) the X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$, and (b) the coordination environment around the $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ anion .218

Figure 9.6. Depictions of (a) the asymmetric unit in the X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ and (b) the coordination environment around the
\qquad
Figure 9.7. Raman spectra of (a) $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ and (b) $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ recorded at $-140{ }^{\circ} \mathrm{C}$ using 1064-nm excitation......... 226

Figure 9.8. Calculated geometries of (a) $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ and (b)
\qquad

Figure 9.9. Calculated geometries of (a) $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$, (b) the coordination environment around $\left[\mathrm{CrOF}_{5}\right]^{2-}$, and (c) $\left[\mathrm{CrOF}_{5}\right]^{2-}$.231

Figure 10.1. (a) The X -ray crystal structure of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$. (b) Calculated gasphase geometry of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$ 237

Figure 10.2. (a) The X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$. (b) Calculated gasphase geometry of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF} \ldots \ldots$

Figure 10.3. (a) The X -ray crystal structure of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$. (b) Calculated gas-phase geometry of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$.239

Figure 10.4. A packing diagram showing the unit cell of 4 viewed along the c-axis of the unit cell. .242

Figure 10.5. (a) One of two crystallographically unique structural units in the X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$. (b) The calculated gas-phase geometry of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$.244

Figure 10.6. Raman spectra of a mixture of solid $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$ (1), $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$ (2), and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ (3), where $\mathbf{1}$ was dominant.. 248

Figure 10.7. Raman spectra of a mixture of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right](\mathbf{1}),\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$ (2), and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ (3) recorded at $-150{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation under frozen aHF solution in which $\mathbf{2}$ was dominant. .249

Figure 10.8. Raman spectra of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}(3)$ recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation under frozen aHF solution. .250

Figure 10.9. Raman spectra of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ (4) recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation under frozen aHF solution. .252

Figure 10.10. The molecular electrostatic potential surface (MEPS) contours at the 0.001 e bohr ${ }^{-3}$ isosurfaces for $\mathrm{CrO}_{2} \mathrm{~F}_{2},\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$, and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .258$

Figure 10.11. The molecular electrostatic potential surface (MEPS) contours at the 0.001 e bohr ${ }^{-3}$ isosurfaces for $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+} \ldots \ldots$

Figure 11.1. The dimeric structural unit in the X-ray crystal structure of

Figure 11.2. The dimeric structural unit in the X-ray crystal structure of

Figure 11.3. (a) The structural unit in the X -ray crystal structure of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$. (b) A diagram showing the stacking of the structural units of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$ in columns along the a-axis of the unit cell.. 272

Figure 11.4. The dimeric structural unit in the X-ray crystal structure of

Figure 11.5. The structural unit in the X-ray crystal structure of

Figure 11.6. Raman spectrum of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ recorded at $-140{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$
\qquad
Figure 11.7. Raman spectrum of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$ recorded at $-140{ }^{\circ} \mathrm{C}$ using 1064-nm excitation.. 282

Figure 11.8. Raman spectra of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ recorded at $-140{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation... 283

Figure 11.9. The calculated gas-phase geometry of $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2} \ldots \ldots \ldots \ldots \ldots$.
Figure 11.10. The calculated gas-phase geometry of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right] \ldots291$
Figure 11.11. The calculated gas-phase geometry of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right] \ldots \ldots \ldots \ldots \ldots$.
Figure 11.12. The molecular electrostatic potential surface (MEPS) contours calculated at the $0.001 \mathrm{e}^{\text {bohr }}{ }^{-3}$ isosurfaces of $\mathrm{CrOF}_{4}, \mathrm{MoOF}_{4}$ and WOF_{4}298

Figure 11.13. The molecular electrostatic potential surface (MEPS) contours calculated at the $0.001 \mathrm{e} \cdot \mathrm{bohr}^{-3}$ isosurfaces of $\left[\mathrm{CrOF}_{5}\right]^{-},\left[\mathrm{MoOF}_{5}\right]^{-}$and $\left[\mathrm{WOF}_{5}\right]^{-} \ldots \ldots \ldots \ldots \ldots \ldots$.

CHAPTER 1

INTRODUCTION

The chapters of this Thesis have either been published or are in press and contain their own introductions. This general introductory chapter focuses on noble-gas chemistry, with emphasis on the chemistries of the binary noble-gas fluorides, which are the synthetic precursors of all new noble-gas compounds described in this Thesis.

1.1. Discovery of Noble-gas Reactivity

Noble-gas reactivity was discovered by Neil Bartlett on March 23, 1962. ${ }^{1}$ Bartlett, then at the University of British Columbia, hypothesized that because PtF_{6} oxidized molecular oxygen to $\left[\mathrm{O}_{2}\right]^{+}\left(\mathrm{IP}_{1}, 12.2 \mathrm{eV}\right)$, it should also oxidize xenon gas $\left(\mathrm{IP}_{1}, 12.13 \mathrm{eV}\right)$ to $\mathrm{Xe}^{+} .{ }^{1}$ The reaction was carried out at room temperature (Eq 1.1) and resulted in a yelloworange powder which coated the inside of the Pyrex glass reaction vessel. Bartlett

$$
\begin{equation*}
\mathrm{Xe}_{(\mathrm{g})}+\mathrm{PtF}_{6(\mathrm{~g})} \longrightarrow \mathrm{Xe}\left[\mathrm{PtF}_{6}\right]_{(\mathrm{s})} \tag{1.1}
\end{equation*}
$$

formulated the solid as $\mathrm{Xe}^{2}\left[\mathrm{PtF}_{6}\right]$, but it was later shown to be a mixture of $[\mathrm{XeF}]\left[\mathrm{PtF}_{6}\right]$ and $[\mathrm{XeF}]\left[\mathrm{Pt}_{2} \mathrm{~F}_{11}\right] .{ }^{2}$ The discovery of noble-gas reactivity contradicted the preexisting dogma of noble-gas inertness. Research in this field has proven instrumental in the development of our current understanding of chemical bonding, particularly in relation to hyper-valent bonding and the nature of secondary and σ-hole bonding.

Within three years of Bartlett's discovery, the precursors for most noble-gas compounds, $\mathrm{KrF}_{2},{ }^{3} \mathrm{XeF}_{2},{ }^{4} \mathrm{XeF}_{4},{ }^{5}$ and $\mathrm{XeF}_{6},{ }^{6}$ as well as $\mathrm{XeO}_{3},{ }^{7}$ and $\mathrm{XeOF}_{4},{ }^{8}$ had been synthesized. Among the noble-gas (Group 18) elements, only xenon and krypton form
compounds in macroscopic quantities. Several reviews on noble-gas chemistry have been published, ${ }^{9-20}$ as well as a historical account of the events leading up to the discovery of noble-gas reactivity and its impact on modern chemistry. ${ }^{21}$ Most recently, the candidate has co-authored a chapter in Comprehensive Inorganic Chemistry III (ca. 100 pages) titled "Noble-gas Chemistry" which provides a review of developments in noble-gas chemistry since 2013. This article is in-press and highlights several published chapters in this Thesis. The latter reviews should be consulted for a more comprehensive background relating to synthetic and structural noble-gas chemistry.

1.2. Chemical Properties of the Noble-gas Fluorides

1.2.1. Noble-gas Difluorides $\mathrm{NgF}_{2}(\mathbf{N g}=\mathbf{K r}, \mathrm{Xe})$

Xenon difluoride has been prepared by reaction of Xe and F_{2} gas in the presence of several different types of energy, such as heat, UV light, sun light, electric discharge, and high-energy irradiation. ${ }^{22-24}$ The high-yield synthesis of bulk quantities of XeF_{2} can be achieved by reaction of excess Xe with F_{2} at ca. $400{ }^{\circ} \mathrm{C},{ }^{24}$ or by UV irradiation of a gaseous $\mathrm{Xe}: \mathrm{F}_{2}$ mixture in a mole ratio of $1: 2$ with addition of $\mathrm{ca} .1 \mathrm{~mol} \% \mathrm{HF}$ as a catalyst. Xenon difluoride is a colorless crystalline solid that is stable at room temperature $\left(\Delta H_{f}^{o}=-162.8 \pm 0.9 \mathrm{~kJ} \mathrm{~mol}^{-1.25}\right.$ m.p., $129.03 \pm 0.05{ }^{\circ} \mathrm{C} ;{ }^{26}$ vapor pressure at $298.15 \mathrm{~K}, 4.55$ torr^{26}), and is an accessible and easy to handle noble-gas compound that has found important synthetic applications as a gas-phase etchant for microelectromechanical systems ${ }^{27}$ and as an electrophilic and oxidative fluorinating agent that has found
application in ${ }^{18} \mathrm{~F}$ positron emission tomography (PET), ${ }^{28-30}$ main-group chemistry, ${ }^{31-33}$ transition-metal chemistry, ${ }^{34-36}$ and organic chemistry. ${ }^{23,37,38}$

Krypton difluoride is a colorless crystalline solid that is thermodynamically unstable at room temperature $\left(\Delta H_{f}^{o}=60.2 \pm 3.3 \mathrm{~kJ} \mathrm{~mol}^{-1}\right.$, gas at $\left.93{ }^{\circ} \mathrm{C}\right) .{ }^{17}$ Due to its thermodynamic instability and the difficulty atomizing F_{2} at low temperatures, the preparation of synthetically useful amounts of KrF_{2} is technically challenging and difficult to scale. Gram quantities of KrF_{2} may be prepared by electric glow discharge, ${ }^{3,39,40}$ UV-photolysis, ${ }^{41-45}$ or by use of a hot wire reactor, ${ }^{45,46}$ and may be stored indefinitely at $-78{ }^{\circ} \mathrm{C} .{ }^{3}$ Krypton difluoride has a significant vapour pressure at low temperatures (vapor pressure at $273.0 \mathrm{~K}, 29 \pm 2$ torr) ${ }^{17}$ which allows it to be sublimed under static or dynamic vacuum without appreciable decomposition.

All krypton chemistry is derived from $\mathrm{KrF}_{2} .{ }^{17}$ Although the oxidative fluorinating strength of the binary xenon fluorides increases with formal oxidation state, i.e., $\mathrm{XeF}_{2}<$ $\mathrm{XeF}_{4}<\mathrm{XeF}_{6},{ }^{47} \mathrm{KrF}_{2}$ is the strongest neutral oxidative fluorinating agent presently known, and is capable of oxidizing xenon gas to XeF_{6} and gold metal to $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AuF}_{6}\right]$ below room temperature. ${ }^{17}$ In addition to its thermal instability, the substantial difference between the oxidizer strengths of KrF_{2} and XeF_{2} can be attributed to substantially higher first and second ionization potentials for krypton ($13.999 \mathrm{eV}, 24.359 \mathrm{eV}$) relative to xenon (12.130 eV, 21.21 eV$).{ }^{47}$

The linear triatomic $\left(D_{\infty h}\right)$ structures of NgF_{2} have been established in the solid-, liquid-, and gas-phases by many characterization techniques ${ }^{17,48}$ and are consistent with
$\mathrm{AX}_{2} \mathrm{E}_{3}$ valence shell electron lone pair (VSEPR) arrangements of bond-pairs (X) and valence electron lone pairs (E) around the central Ng atoms (A), with solid-state $\mathrm{Ng}-\mathrm{F}$ bond distances of $1.894(5)\left(\alpha-\mathrm{KrF}_{2}\right)^{46}$ and 1.999(4) $\left(\mathrm{XeF}_{2}\right)^{48} \AA(\mathrm{SCXRD}$, Figure 1.1). Although XeF_{2} is soluble and stable in a variety of oxidatively resistant solvents, i.e., BrF_{5}, anhydrous HF , and $\mathrm{CH}_{3} \mathrm{CN}$, it undergoes hydrogen and halogen exchange reactions with $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}, \mathrm{CCl}_{4}, \mathrm{CFCl}_{3}, \mathrm{CH}_{2} \mathrm{Br}_{2}, \mathrm{CFCl}_{2} \mathrm{CF}_{2} \mathrm{Cl}^{49}$ Krypton difluoride is generally handled in only the most oxidatively resistant solvents such as aHF and BrF_{5} to circumvent or reduce oxidative fluorination of the solvent medium. ${ }^{17}$
a

b

Figure 1.1. The X -ray crystal structures of (a) $\alpha-\mathrm{KrF}_{2}{ }^{46}$ and (b) the low-temperature phase of $\mathrm{XeF}_{2},{ }^{48}$ with thermal ellipsoids drawn at the 50% probability level. Dashed lines in (b) indicate secondary Xe---F secondary bonding interactions. Reprinted with permission from (a) Lehmann, J. F.; Dixon, D. A.; Schrobilgen, G. J. Inorg. Chem. 2001, 40, 3002-3017 (Copyright 2001 American Chemical Society), and (b) Elliot, H. S. A.; Lehmann, J. F.; Mercier, H. P. A.; Jenkins, H. D. B.; Schrobilgen, G. J. Inorg. Chem. 2010, 49, 8504-8523 (Copyright 2010 American Chemical Society).

The bonding in NgF_{2} has been described in terms of a three-center, four electron (3c-4e) molecular orbital model in which the $\mathrm{Xe} 5 \mathrm{p}_{\mathrm{z}}$ or $\mathrm{Kr} 4 \mathrm{p}_{\mathrm{z}}$ atomic orbitals interact with the $\mathrm{F} 2 \mathrm{p}_{\mathrm{z}}$ atomic orbitals to form bonding, non-bonding, and antibonding molecular orbitals (Figure 1.2). ${ }^{17,50}$ The bonding and non-bonding orbitals are fully occupied, and give rise to a total bonding interaction that has formal $\mathrm{Ng}-\mathrm{F}$ bond orders of $1 / 2$. The charge distributions in NgF_{2} have been investigated by ${ }^{19} \mathrm{~F}-\mathrm{NMR}^{3,51,52}$ and Mössbauer spectroscopies, ${ }^{53,54}$ which reveal that there is significantly more negative charge transfer to the F atoms of XeF_{2} relative to KrF_{2}, indicating a greater degree of covalent character for the $\mathrm{Ng}-\mathrm{F}$ bonds of KrF_{2}.

Ψ_{u}^{*}

Ψ_{g}

F

Ng

F

Figure 1.2. Molecular orbital diagrams for NgF_{2}. Modified with permission from Reprinted with permission from Lehmann, J. F.; Mercier, H. P. A.; Schrobilgen, G. J. Coord. Chem. Rev. 2002, 233-234, 1-39. Copyright 2002 American Chemical Society.

The covalent nature of the $\mathrm{Kr}-\mathrm{F}$ bonds in KrF_{2} has also been established through exposure of solid KrF_{2} to γ-irradiation which yielded the F . and KrF • radicals by homolytic cleavage of the $\mathrm{Kr}-\mathrm{F}$ bond. ${ }^{55}$ The radicals were characterized by EPR
spectroscopy, ${ }^{55}$ and their formation indicates that F . and KrF . have similar electron affinities. These observations in addition to the low mean thermochemical bond energy $\left(48.9 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)^{56,57}$ and energy of atomization $\left(97.9 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)^{56,57}$ for KrF_{2} provide rationales for the ability of KrF_{2} to serve as a good low-temperature source of F .

The $\mathrm{Ng}-\mathrm{F}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$ bonding of NgF_{2} may also be represented by a $3 \mathrm{c}-4 \mathrm{e}$ valence bond description in accordance with resonance Structures I and II.

$$
\begin{gathered}
\mathrm{F}-\mathrm{Ng}^{+} \mathrm{F}^{-} \longleftrightarrow \mathrm{F}-\mathrm{Ng}-\mathrm{F} \longleftrightarrow \mathrm{~F}^{-+} \mathrm{Ng}-\mathrm{F} \\
\mathrm{I}
\end{gathered}
$$

The high ionic characters of the polar-covalent $\mathrm{Ng}-\mathrm{F}$ bonds implied by Structures I and II account for the fluoride-ion donor behavior of NgF_{2} towards strong to moderate strength Lewis acids such as $\mathrm{TiF}_{4}{ }^{58}$ and $\mathrm{MF}_{5}\left(\mathrm{M}=\mathrm{As},{ }^{17,46,48} \mathrm{Sb},{ }^{17,46,48} \mathrm{Bi},{ }^{17} \mathrm{~V},{ }^{17} \mathrm{Nb},{ }^{17}\right.$ $\mathrm{Ta},{ }^{17} \mathrm{Au}^{17}$). These fluoride-ion transfer reactions may be carried out in the oxidatively resistant solvent, anhydrous $\mathrm{HF}(\mathrm{aHF})$, to form $[\mathrm{NgF}]\left[\mathrm{MF}_{6}\right]$ and $[\mathrm{NgF}]\left[\mathrm{M}^{\prime}{ }_{2} \mathrm{~F}_{11}\right]\left(\mathrm{M}^{\prime}=\right.$ $\mathrm{Sb},{ }^{17,46,48} \mathrm{Bi},{ }^{17} \mathrm{Nb},{ }^{17} \mathrm{Ta},{ }^{17} \mathrm{Ir},{ }^{17} \mathrm{Pt}^{17}$) salts [Eq. (1.2)].

$$
\begin{equation*}
\mathrm{NgF}_{2}+n \mathrm{MF}_{5} \rightarrow[\mathrm{NgF}]\left[\mathrm{M}_{n} \mathrm{~F}_{5 n+1}\right](n=1 \text { or } 2) \tag{1.2}
\end{equation*}
$$

The $[\mathrm{NgF}]^{+}$cations are potent oxidizers, with $[\mathrm{KrF}]^{+}$being the strongest oxidative fluorinating agent currently known. ${ }^{17,46} \mathrm{The}[\mathrm{NgF}]^{+}$cations are also moderately strong Lewis acids which form intimate ion-pairs that interact through $\mathrm{Ng}---\mathrm{F}_{\mathrm{b}}-\mathrm{M}$ fluorine bridges between the cation and a fluorine atom of $\left[\mathrm{M}_{n} \mathrm{~F}_{5 n+1}\right]^{-17,46,48}$ The ionic character of the secondary $\mathrm{Ng}--\mathrm{F}_{\mathrm{b}}$ bridge bond increases with the Lewis acidity of $\mathrm{MF}_{5},{ }^{48}$ resulting in
a longer $\mathrm{Ng}---\mathrm{F}_{\mathrm{b}}$ bond, a shorter terminal $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ bond, greater $[\mathrm{NgF}]^{+}$character, and enhanced oxidizer strength.

The reaction of NgF_{2} with a $[\mathrm{NgF}]^{+}$salt in aHF yields the planar V-shaped $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}(\mathrm{Ng}=\mathrm{Kr}$ or Xe$)$ cations [Eq. (1.3)]. ${ }^{17,46,48,58,59}$

$$
\begin{equation*}
\mathrm{NgF}_{2}+[\mathrm{NgF}]\left[\mathrm{MF}_{6}\right] \rightarrow\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{MF}_{6}\right] \tag{1.3}
\end{equation*}
$$

The formal $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ bond orders of $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}$lie between $1 / 2\left(\mathrm{NgF}_{2}\right)$ and $1\left([\mathrm{NgF}]^{+}\right)$, in accordance with the $5 \mathrm{c}-6 \mathrm{e}$ valence bond description given by resonance Structures IIIV.

$$
[\mathrm{F}-\mathrm{Ng}-\mathrm{F}-\mathrm{Ng}-\mathrm{F}]^{+} \leftrightarrow \mathrm{F}-\mathrm{Ng}-\mathrm{F}^{+} \mathrm{Ng}-\mathrm{F} \leftrightarrow \mathrm{~F}-\mathrm{Ng}^{+} \mathrm{F}^{-+} \mathrm{Ng}-\mathrm{F} \leftrightarrow \mathrm{~F}-\mathrm{Ng}^{+} \mathrm{F}-\mathrm{Ng}-\mathrm{F} \leftrightarrow[\mathrm{~F}-\mathrm{Ng}-\mathrm{F}-\mathrm{Ng}-\mathrm{F}]^{+}
$$

$$
\begin{array}{lllll}
\text { III } & \text { IV } & \text { V } & \text { IV } & \text { III }
\end{array}
$$

The $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}$cations do not form intimate ion-pairs with their anions and have oxidizer strengths that lie between those of $\mathrm{NgF}_{2}(1 / 2)$ and $[\mathrm{NgF}]^{+}(1)$, consistent with the formal $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ bond orders. ${ }^{17,51}$

The ligand behaviors of KrF_{2} and XeF_{2} are well established and have been described in several reviews. ${ }^{17,19,22}$ To stabilize terminal NgF_{2} coordination complexes, i.e., complexes with the general formula $\mathrm{A}---\mathrm{F}_{\mathrm{b}}{ }^{\delta-}-\mathrm{Ng}^{\delta+}-\mathrm{F}_{\mathrm{t}}$, the fluoride-ion affinity of the fluoride-ion acceptor must be closely matched with the fluorobasicity of NgF_{2}, and the acceptor (A) must be resistant to oxidative fluorination by the polarized NgF_{2} ligand which has enhanced $[\mathrm{NgF}]^{+}$character. Xenon difluoride forms terminal and bridging coordination complexes with a considerable number of fluoride-ion acceptors that include
main-group and transition-metal cations (i.e., $\mathrm{Li}^{+}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ag}^{+}, \mathrm{Cd}^{2+}$, $\mathrm{Ba}^{2+}, \mathrm{La}^{3+}, \mathrm{Nd}^{3+}, \mathrm{Pb}^{2+},{ }^{15,19} \mathrm{La}^{3+}, \mathrm{Ce}^{3+}, \mathrm{Pr}^{3+}, \mathrm{Nd}^{3+}, \mathrm{Sm}^{3+}, \mathrm{Eu}^{3+}, \mathrm{Gd}^{3+}, \mathrm{Tb}^{3+}$, and Dy^{3+}, Y^{3+60}), the halogen (V) cations, $\left[\mathrm{ClO}_{2}\right]^{+61}$ and $\left[\mathrm{BrOF}_{2}\right]^{+},{ }^{62,63}$ the noble-gas cation $\left[\mathrm{XeF}_{5}\right]^{+},{ }^{19,64}$ and the neutral TM oxide tetrafluorides $\mathrm{MOF}_{4}\left(\mathrm{M}=\mathrm{Cr},{ }^{65-67} \mathrm{Mo},{ }^{67} \mathrm{~W}^{67}\right)$. Molecular addition compounds of XeF_{2} also have been synthesized and structurally characterized that include $\mathrm{XeOF}_{4} \cdot \mathrm{XeF}_{2},{ }^{68} \quad \mathrm{IF}_{5} \cdot \mathrm{XeF}_{2},{ }^{69}$ and $\mathrm{XeF}_{4} \cdot \mathrm{XeF}_{2} .{ }^{70,71}$ The descriptions of these compounds as molecular addition compounds are based on the similarity of the vibrational frequencies and geometrical parameters of these compounds to those of their component molecules.

In contrast, crystallographically characterized examples of KrF_{2} coordination compounds are very rare due to the thermodynamic instability and exceptional oxidative fluorinating strength of KrF_{2} and its derivatives. The only KrF_{2} coordination complexes that have been structurally characterized by SCXRD were all characterized within the past decade: $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FKrF})_{2} \mathrm{AsF}_{6}\right],{ }^{62} \mathrm{Hg}(\mathrm{FKrF})_{1.5}\left(\mathrm{OTeF}_{5}\right)_{2},{ }^{72} \mathrm{KrF}_{2} \cdot \mathrm{MOF}_{4}\left(\mathrm{M}=\mathrm{Cr},{ }^{65}\right.$ $\left.\mathrm{Mo},{ }^{67} \mathrm{~W}^{67}\right), \mathrm{KrF}_{2} \cdot 2 \mathrm{CrOF}_{4},{ }^{65}\left[\mathrm{~F}_{5} \mathrm{Xe}\left(\mathrm{FKrF}_{n} \mathrm{AsF}_{6}\right](n=1,2),{ }^{73}\left[\mathrm{Mg}(\mathrm{FKrF})_{4}\left(\mathrm{AsF}_{6}\right) 2\right],{ }^{74}\right.$ and $\left[\mathrm{Mg}(\mathrm{FKrF})_{4}\left(\mathrm{AsF}_{6}\right)_{2}\right] \cdot 2 \mathrm{BrF}_{5} .{ }^{74}$ The $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{n} \mathrm{AsF}_{6}\right](n=1,2)$ complexes are the only examples of mixed $\mathrm{Xe} / \mathrm{Kr}$ noble-gas compounds where the KrF_{2} ligands are coordinated to $\mathrm{Xe}^{\mathrm{VI}}$ in $\left[\mathrm{XeF}_{5}\right]^{+}$through primarily electrostatic σ-hole type $\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}$ bonds.

1.2.2. Xenon Tetrafluoride

The chemistry of $\mathrm{Xe}(\mathrm{IV})$ is significantly less developed than the chemsitries of $\mathrm{Xe}(\mathrm{II})$ and $\mathrm{Xe}(\mathrm{VI}) .{ }^{20}$ Several factors contribute to the scarcity of Xe(IV) species which include their
strong oxidizing properties, and the endothermic natures of $\mathrm{Xe}(\mathrm{IV})$ oxides and oxide fluorides and their propensities to undergo redox eliminations and disproportionations. ${ }^{20}$ A comprehensive review of developments pertaining to the syntheses, properties, structures, and bonding of $\mathrm{Xe}(\mathrm{IV})$ compounds ranging from the discovery of noble-gas reactivity in 1962 to 2014 inclusive is provided in Chemical Reviews (2015), and should be consulted for a more detailed overview of Xe(IV) chemistry. ${ }^{20}$

Shortly after the discovery of noble-gas reactivity, the high-temperature and pressure reaction of Xe and F_{2} was investigated, which led to the discovery of the first binary noble-gas fluoride, $\mathrm{XeF}_{4} .{ }^{75,76}$ Xenon tetrafluoride is the precursor for all Xe (IV) compounds, and is difficult to synthesize in high purity by the thermal method due to the formation of equilibrium mixtures of $\mathrm{XeF}_{2}, \mathrm{XeF}_{4}$, and XeF_{6} (Eqs 1.4-1.6). ${ }^{20,75,76}$ Gasphase equilibrium constants have been determined for the formation of the binary xenon fluorides from the reaction of their elements at elevated temperature and pressure (Figure 1.3), which emphasize the importance of rigorous experimental control of $\mathrm{Xe}: \mathrm{F}_{2}$ stoichiometry, temperature, and pressure in the preparation of pure xenon fluorides. ${ }^{20}$

$$
\begin{align*}
& \mathrm{Xe}+\mathrm{F}_{2} \rightleftharpoons \mathrm{XeF}_{2} \tag{1.4}\\
& \mathrm{XeF}_{2}+\mathrm{F}_{2} \rightleftharpoons \mathrm{XeF}_{4} \tag{1.5}\\
& \mathrm{XeF}_{4}+\mathrm{F}_{2} \rightleftharpoons \mathrm{XeF}_{6} \tag{1.6}
\end{align*}
$$

The synthesis of high purity XeF_{4} has been achieved by reaction of a ca. $1: 5$ molar mixture of $\mathrm{Xe}: \mathrm{F}_{2}$ at $400^{\circ} \mathrm{C}$ in a 130 mL welded nickel reactor for 1 h followed by rapid cooling to RT in a water bath. The vessel is then cooled to $-78^{\circ} \mathrm{C}$, and excess F_{2} is pumped away to yield essentially pure XeF_{4}. Small amounts of volatile $\mathrm{XeF}_{6}, \mathrm{~F}_{2}$, Xe , and

HF may then be removed under vacuum. More complex mixtures of $\mathrm{XeF}_{2}, \mathrm{XeF}_{4}$, and XeF_{6} may also be chemically purified by reaction with AsF_{5} to afford pure $\mathrm{XeF}_{4} .{ }^{77}$ Xenon tetrafluoride is calculated to be stable to disproportionation into XeF_{2} and XeF_{6} by ~ 5 $\mathrm{kcal} \mathrm{mol}{ }^{-1}$ under standard conditions and is a potent oxidative fluorinating agent. ${ }^{20,78}$ Its square-planar structure has been unambiguously established by single-crystal X-ray diffraction (SCXRD), neutron diffraction, and infrared (IR), Raman, and NMR spectroscopies, and is consistent with an $\mathrm{AX}_{4} \mathrm{E}_{2}$ VSEPR arrangement around the central xenon atom. ${ }^{20}$

Figure 1.3. (a) Equilibrium pressures of xenon fluorides as a function of temperature. Initial conditions: 125 mmol of $\mathrm{Xe}, 275 \mathrm{mmol}$ of F_{2} per 1000 mL . (b) Equilibrium pressures of xenon fluorides as a function of temperature. Initial conditions: 125 mmol of $\mathrm{Xe}, 1225 \mathrm{mmol}$ of F_{2} per 1000 mL . Reprinted with permission from Reprinted from Haner, J.; Schrobilgen, G. J. Chem. Rev., 2015, 115, 1255-1295. Copyright 2015, with permission from Elsevier.

Xenon tetrafluoride reacts with strong Lewis acids such as $\mathrm{MF}_{5}\left(\mathrm{M}=\mathrm{As},{ }^{79} \mathrm{Sb},{ }^{79-82}\right.$ $\left.\mathrm{Bi}^{83}\right)$ in aHF solvent and in melts to form $\left[\mathrm{XeF}_{3}\right]\left[\mathrm{MF}_{6}\right]$ and $\left[\mathrm{XeF}_{3}\right]\left[\mathrm{M}^{\prime}{ }_{2} \mathrm{~F}_{11}\right]\left(\mathrm{M}^{\prime}=\right.$ $\mathrm{Sb},{ }^{79,84,85} \mathrm{Bi}^{86}$) salts [Eq. (1.7)].

$$
\begin{equation*}
\mathrm{XeF}_{4}+n \mathrm{MF}_{5} \rightarrow\left[\mathrm{XeF}_{3}\right]\left[\mathrm{M}_{n} \mathrm{~F}_{5 n+1}\right](n=1 \text { or } 2) \tag{1.7}
\end{equation*}
$$

The reactions of XeF_{4} with the alkali metal fluorides $\mathrm{MF}\left(\mathrm{M}=\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}\right.$, and $\left.\mathrm{Cs}^{+}\right)$, NOF, and with the "naked" and anhydrous fluoride-ion donor $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F}^{20,87}$ yield salts of the $\left[\mathrm{XeF}_{5}\right]^{-}$anion (Eqs. (1.8-1.10)).

$$
\begin{align*}
& \mathrm{XeF}_{4}+\mathrm{MF} \rightarrow \mathrm{M}\left[\mathrm{XeF}_{5}\right]\left(\mathrm{M}=\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \text {and } \mathrm{Cs}^{+}\right) \tag{1.8}\\
& \mathrm{XeF}_{4}+\mathrm{NOF} \rightarrow[\mathrm{NO}]\left[\mathrm{XeF}_{5}\right] \tag{1.9}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{XeF}_{4}+\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F} \rightarrow\left[\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{XeF}_{5}\right] \tag{1.10}
\end{equation*}
$$

The solid-state and solution structures of the $\left[\mathrm{XeF}_{3}\right]^{+}$and $\left[\mathrm{XeFF}_{5}\right]^{-}$ions have been determined by SCXRD and Raman and multi-NMR spectroscopies. ${ }^{20}$ The coordination environment around the Xe atom in the T -shaped $\left[\mathrm{XeF}_{3}\right]^{+}$cation is an $\mathrm{AX}_{3} \mathrm{E}_{2}$ VSEPR arrangement ${ }^{88}$ in which two bond-pair domains occupy axial positions, and one bond-pair domain and two lone-pair domains occupy equatorial positions of a trigonal bipyramid. In the case of $\left[\mathrm{XeF}_{3}\right]^{+}$salts, the cation is strongly ion-paired with its respective anion, and their primary $\mathrm{Xe}-\mathrm{F}$ bonds have increased covalent character relative to XeF_{4} (Figure 1.4). ${ }^{20}$

The F atom arrangement of the $\left[\mathrm{XeF}_{5}\right]^{-}$anion is a regular pentagon $\left(D_{5 \mathrm{~h}}\right)$, which provided the first example of a structurally characterized $\mathrm{AX}_{5} \mathrm{E}_{2}$ VSEPR arrangement (Figure 1.5). ${ }^{87}$
a

C

Figure 1.4. The coordination environments of the $\left[\mathrm{XeF}_{3}\right]^{+}$cations in the X-ray crystal structures of (a) $\left[\mathrm{H}_{5} \mathrm{~F}_{4}\right]\left[\mathrm{SbF}_{6}\right] \cdot 2\left[\mathrm{XeF}_{3} \cdot \mathrm{HF}\right]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]$, (b) $\left[\mathrm{XeF}_{3} \cdot \mathrm{HF}^{2}\right]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right]$, and (c) $\left[\mathrm{XeF}_{3}\right]\left[\mathrm{SbF}_{6}\right]$. Thermal ellipsoids are drawn at the 50% probability level. Secondary Xe--F_{b} bridge bond interactions between $\left[\mathrm{XeF}_{3}\right]^{+}$and nearby anions and/or cocrystallized HF molecules are indicated by dashed lines. Reprinted with permission from Brock, D. S.; Mercier, H. P. A.; Schrobilgen, G. J. J. Am. Chem. Soc. 2013, 135, 5089-5104. Copyright 2013 American Chemical Society.

Figure 1.5. The atom numbering scheme, bond lengths (\AA) and angles (deg) for $\left[\mathrm{XeF}_{5}\right]^{-}$ at $-86^{\circ} \mathrm{C}$ in $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{XeF}_{5}\right]$. Thermal ellipsoids are drawn at the 50% probability level. Reprinted with permission from Reprinted with permission from Christe, K. O.; Curtis, E. C.; Dixon, D. A.; Mercier, H. P. A.; Sanders, J. C. P.; Schrobilgen, G. J. J. Am. Chem. Soc. 1991, 113, 3351-3361. Copyright 1991 American Chemical Society.

The coordination chemistry of $\mathrm{Xe}(\mathrm{IV})$ is very limited relative to that of $\mathrm{Ng}(\mathrm{II})(\mathrm{Ng}$ $=\mathrm{Kr}, \mathrm{Xe})$. This is attributed to the low fluorobasicity of XeF_{4}, which is significantly less
than NgF_{2} and XeF_{6}, i.e., $\mathrm{XeF}_{4} \ll \mathrm{KrF}_{2} \approx \mathrm{XeF}_{2}<\mathrm{XeF}_{6}{ }^{20,89}$ The potent oxidative fluorinating strength of the $\left[\mathrm{XeF}_{3}\right]^{+}$cation which is the highest among xenon cations derived from the binary fluorides as determined from calculated F^{+}detachment energies, i.e., $\left[\mathrm{XeF}_{5}\right]^{+}<[\mathrm{XeF}]^{+}<\left[\mathrm{XeF}_{3}\right]^{+} .{ }^{90}$ Presently, there is only one structurally characterized example of an XeF_{4} coordination complex, $\left[\mathrm{Mg}\left(\mathrm{XeF}_{2}\right)\left(\mathrm{XeF}_{4}\right)\right]\left[\mathrm{AsF}_{6}\right]_{2}$ (Figure 1.6), ${ }^{91}$ which was formed by reaction of a 1:1:1 molar mixture of $\mathrm{XeF}_{2}, \mathrm{XeF}_{4}$, and $\mathrm{Mg}\left[\mathrm{AsF}_{6}\right]_{2}$ in aHF solvent at room temperature. The coordinated XeF_{4} molecule is polarized by its interaction with Mg^{2+} in the crystal structure of the complex such that the primary coordination environment of $\mathrm{Xe}(\mathrm{IV})$ is intermediate with respect to XeF_{4} and ion-paired salts of $\left[\mathrm{XeF}_{3}\right]^{+}$.

Figure 1.6. Coordination of the Mg atom in the crystal structure of $\left[\mathrm{Mg}\left(\mathrm{XeF}_{2}\right)\left(\mathrm{XeF}_{4}\right)\right]\left[\mathrm{AsF}_{6}\right]_{2}$. Thermal ellipsoids are drawn at the 50% probability level. Reprinted with permission from Tavčar, G.; Žemva, B. Angew. Chem. Int. Ed. 2009, 48, 1432-1343. Copyright 2009 John Wiley and Sons.

Xenon tetrafluoride also forms two molecular addition compounds (cocrystals) that have been structurally characterized; $\mathrm{XeF}_{4} \cdot \mathrm{XeF}_{2}{ }^{70,92}$ and $\left(\left[\mathrm{XeF}_{5}\right]\left[\mathrm{CrF}_{4}\right]\right) 4 \cdot \mathrm{XeF}_{4},{ }^{93}$ where the geometric parameters of XeF_{4} in their X-ray crystal structures are comparable to those of solid XeF_{4}. Although the oxide-fluorides and oxides of Xe (IV) have their own interesting chemistries, they are not directly related to the focus of this Thesis and are not discussed.

1.2.3. Xenon Hexafluoride

Xenon hexafluoride is prepared in high yield and purity by the reaction of Xe with 20 or more equivalents of F_{2} at ca. $300{ }^{\circ} \mathrm{C}$ and pressures above 50 atm (Eq. 1.4-1.6). ${ }^{94}$ The oxide and oxide fluorides of $\mathrm{Xe}(\mathrm{VI}), \mathrm{XeOF}_{4},{ }^{68,95} \mathrm{XeO}_{2} \mathrm{~F}_{2},{ }^{96}$ and $\mathrm{XeO}_{3},{ }^{97,98}$ are prepared by the controlled hydrolysis of XeF_{6} with stoichiometric amounts of water (Eqs 1.11-1.13). The treacherously shock-sensitive and explosive nature of $\mathrm{XeO}_{3}{ }^{97}$ highlights the challenges associated with noble-gas chemistry, where strictly anhydrous reaction conditions are of paramount importance. Although the oxide-fluorides and oxides of $\mathrm{Xe}(\mathrm{VI})$ have their own interesting chemistries, they are not directly related to the focus of this Thesis and are not discussed in further detail. Instead, the focus is on the structure of XeF_{6} and its use as a fluoride-ion donor.

$$
\begin{align*}
& \mathrm{XeF}_{6}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{XeOF}_{4}+2 \mathrm{HF} \tag{1.11}\\
& \mathrm{XeOF}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{XeO}_{2} \mathrm{~F}_{2}+2 \mathrm{HF} \tag{1.12}\\
& \mathrm{XeO}_{2} \mathrm{~F}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{XeO}_{3}+2 \mathrm{HF} \tag{1.13}
\end{align*}
$$

The structures of XeF_{6} and stereo-activity of its VELP in the solid, liquid, and gas-phases have been the subject of considerable discussion over the past 50 years. The
possible geometries of monomeric gas-phase XeF_{6} are an octahedral structure $\left(O_{\mathrm{h}}\right)$ with a stereo-inactive VELP or a monocapped octahedron $\left(C_{3 \mathrm{v}}\right)$ with a stereo-active VELP. The VSEPR model of molecular geometry predicted a monocapped octahedral geometry ($C_{3 \mathrm{v}}$) for XeF_{6} very early in the history of noble-gas chemistry. ${ }^{88,99}$ Although seven crystal phases of XeF_{6} have been characterized by LT SCXRD, ${ }^{100}$ none of these phases contain well-isolated XeF_{6} molecules that exhibit $C_{3 \mathrm{v}}$ symmetry. Rather, five of their phases are ionic oligomers of the form $\left(\left[\mathrm{XeF}_{5}\right]^{+} \mathrm{F}^{-}\right)_{n}(n=4$ (Figure 1.7), 6), and two phases are comprised of $\left(\left[\mathrm{XeF}_{5}\right]^{+} \mathrm{F}^{-}\right)_{3} \cdot \mathrm{XeF}_{6}$ structural units that may be described as $\left(\left[\mathrm{XeF}_{5}\right]^{+} \mathrm{F}^{-}\right)_{3}$ trimers that are coordinated to an XeF_{6} molecule that exhibit local $C_{2 v}$ symmetry.

Figure 1.7. The tetrameric unit $\left(\left[\mathrm{XeF}_{5}\right]^{+} \mathrm{F}^{-}\right)_{4}$ in the low-temperature phases of XeF_{6} ($m P 16$). Thermal ellipsoids are drawn at the 50% probability level. The tetrameric of phase XeF_{6} (oP16, not shown) is very similar to the $m P 16$ phase, except with poorer crystallographic resolution. Reprinted from Hoyer, S.; Emmler, T.; Seppelt, K. J. Fluor. Chem. 2006, 127, 1415-1422. Copyright 2006, with permission from Elsevier.

Recently, a joint synthetic and computational study reported the syntheses and structural characterizations of the $\mathrm{F}_{6} \mathrm{Xe}---\mathrm{NCCH}_{3}$ and $\mathrm{F}_{6} \mathrm{Xe}---\left(\mathrm{NCCH}_{3}\right)_{2}$ coordination complexes (Figure 1.8), which conclusively showed the presence of a diffuse stereochemically active VELP for XeF_{6} in the solid-state. ${ }^{101,102}$

Figure 1.8. (a) X-ray crystal structure of $\mathrm{F}_{6} \mathrm{Xe}---\mathrm{NCCH}_{3}$ (top). Ellipsoids are shown at the 50% probability level. The calculated geometry (PBE1PBE/aug-cc-pVTZ(-PP)) for $\mathrm{F}_{6} \mathrm{XeNCCH}_{3}$ (bottom) is also shown. (b) X-ray crystal structure of $\mathrm{F}_{6} \mathrm{Xe}\left(\mathrm{NCCH}_{3}\right)_{2} \cdot \mathrm{CH}_{3} \mathrm{CN}$. The lattice $\mathrm{CH}_{3} \mathrm{CN}$ molecule is not shown (top). Ellipsoids are shown at the 50% probability level. The calculated geometry (PBE1PBE/aug-cc-pVTZ(PP)) for $\mathrm{F}_{6} \mathrm{Xe}\left(\mathrm{NCCH}_{3}\right)_{2}$ (bottom) is also shown. Reprinted from Matsumoto, K.; Haner, J.; Mercier, H. P. A.; Schrobilgen, G. J. Angew. Chem. Int. Ed. 2015, 54, 14169-14173. Copyright 2015 John Wiley and Sons.

The LT solution structure of XeF_{6} has been shown by ${ }^{19} \mathrm{~F}$ and ${ }^{129} \mathrm{Xe}$ NMR spectroscopy to be a fluxional tetramer, $\mathrm{Xe}_{4} \mathrm{~F}_{24}$, in which the four Xe and 24 F atoms undergo rapid intramolecular exchange on the NMR time scale ${ }^{103,104}$ and therefore do not provide definitive stereochemical information about the VELPs of the xenon atoms in solution. The gas-phase structure of monomeric XeF_{6} has been shown by electron diffraction, ${ }^{105-108}$ and by far-infrared, ${ }^{109}$ Raman, ${ }^{110,111}$ UV-visible absorption, ${ }^{111}$ and photoelectron spectroscopies ${ }^{112,113}$ to have $C_{3 \mathrm{v}}$ symmetry, consistent with XeF_{6} having a stereo-active VELP. Recent coupled-cluster quantum-chemical calculations indicate that the O_{h} and $C_{3 \mathrm{v}}$ conformers (Figure 1.9) correspond to local minima, whereas the higher energy $C_{2 \mathrm{v}}$ geometry is a transition state between $C_{3 \mathrm{v}}$ conformers. ${ }^{114,115}$

Figure 1.9. Schematic representation of the $C_{3 v}$ structure of XeF_{6} optimized at the $\operatorname{CCSD}(\mathrm{T})$ level. Reprinted from Gawrilow, M.; Beckers, H.; Riedel, S.; Cheng, L. J. Phys. Chem. (A) 2018, 122, 119-129. Copyright 2018 American Chemical Society.

The ionic character implied by the solid-state and solution structures of XeF_{6} are consistent with its highly fluorobasic behavior. Solutions of XeF_{6}, the strongest fluoride-
ion donor among the binary noble-gas fluorides, were studied as a function of concentration by Raman spectroscopy in aHF, and provided principal equilibria that describe the ionization of XeF_{6} to the strong-oxidant cations, $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$, in aHF solvent (eqs $\mathbf{1 . 1 4}, \mathbf{1 . 1 5}$). ${ }^{116}$

$$
\begin{align*}
& \left(\left[\mathrm{XeF}_{5}\right]^{+} \mathrm{F}^{-}\right)_{4}+2 n \mathrm{HF} \rightleftharpoons 2\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}+2\left[(\mathrm{HF})_{n} \mathrm{~F}\right]^{-}(n \geq 1) \tag{1.14}\\
& {\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}+n \mathrm{HF} \rightleftharpoons 2\left[\mathrm{XeF}_{5}\right]^{+}+\left[(\mathrm{HF})_{n} \mathrm{~F}\right]^{-}(n \geq 1)} \tag{1.15}
\end{align*}
$$

The geometry of the $\left[\mathrm{XeF}_{5}\right]^{+}$cation is a square-pyramidal $\mathrm{AX}_{5} \mathrm{E}$ VSEPR arrangement (Figure 1.10), where the Xe VELP occupies the open square face of the square pyramid which, in turn, displaces the equatorial fluorine atoms towards the axial fluorine due to lone pair-bond pair repulsions between the Xe VELP domain and the $\mathrm{Xe}-\mathrm{F}_{\text {eq }}$ bond-pair domains.

Figure 1.10. The coordination environment of the $\left[\mathrm{XeF}_{5}\right]^{+}$cation in $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AgF}_{4}\right],{ }^{117}$ where thermal ellipsoids are drawn at the 50% probability level. Reprinted with permission from Lutar, K.; Jesih, A.; Leban, I.; Žemva, B.; Bartlett, N. Inorg. Chem. 1989, 28, 3467-3471. Copyright 1989 American Chemical Society.

The $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cation may be described as two $\left[\mathrm{XeF}_{5}\right]^{+}$cations bridged by a fluoride-ion (Figure 1.11). As observed for $\left[\mathrm{XeF}_{5}\right]^{+}$, the F_{eq} ligands of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$are displaced by the Xe VELPs towards their respective F_{ax} ligands. The primarily electrostatic $\mathrm{Xe}---\mathrm{F}$ secondary bonding interactions between $\left[\mathrm{XeF}_{5}\right]^{+} /\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$and their fluoro- and oxyfluoro-anions are directed towards regions of high positive electrostatic potential (σ-holes) on the Xe atoms of $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+} .{ }^{73}$ The regions are located at the intersections of the equatorial $\mathrm{Xe}-\mathrm{F}$ bond-pair domains on the base of the squarebased pyramids formed by their axial and equatorial F atoms.

Figure 1.11. (a) The structural unit in the SCXRD structure of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{NiF}_{6}\right]^{118}$ with thermal ellipsoids drawn at the 50% probability level. Reprinted with permission from Jesih, A.; Lutar, K.; Leban, I.; Žemva, B. Inorg. Chem. 1989, 28, 2911-2914. Copyright 1989 American Chemical Society. (b) The structural unit in the SCXRD structure of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{AuF}_{6}\right]^{119}$ with thermal ellipsoids drawn at the 50% probability level. Reprinted with permission from Leary, K.; Zalkin, A.; Bartlett, N. Inorg. Chem. 1974, 13, 775-779. Copyright 1974 American Chemical Society.

The +6 oxidation state of xenon in the $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cations results in electronic environments that are sufficiently electron poor to enable stabilization of a variety of high-oxidation state transition-metal oxyfluoro-anions. These include the $\mathrm{Tc}(\mathrm{VII})$ and $\mathrm{Os}(\mathrm{VIII})$ oxyfluoro-anion salts $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{TcO}_{2} \mathrm{~F}_{4}\right],{ }^{120}\left[\mathrm{XeF}_{5}\right]\left[\mu-\left(\mathrm{OsO}_{3} \mathrm{~F}_{2}\right)_{2}\right]$, $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right]$, and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[f a c-\mathrm{OsO}_{3} \mathrm{~F}_{3}\right]$ (Figure 1.12). ${ }^{121}$
a

b

Figure 1.12. (a) The structural unit in the SCXRD structure of $\left[\mathrm{XeF}_{5}\right]\left[\mu-\mathrm{F}\left(\mathrm{OsO}_{3} \mathrm{~F}_{2}\right)_{2}\right]$ with thermal ellipsoids drawn at the 70% probability level (top), and (b) the primary and secondary coordination spheres of $\mathrm{Xe}(\mathrm{VI})$ in $\left[\mathrm{XeF}_{5}\right]^{+}$showing the four $\mathrm{Xe}---\mathrm{F}$ secondary bonding interactions (bottom). (b) The structural unit in the SCXRD structure of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[f a c-\mathrm{OsO}_{3} \mathrm{~F}_{3}\right]$ with thermal ellipsoids drawn at the 70% probability level (top), and the primary and secondary coordination spheres of $\mathrm{Xe}(\mathrm{VI})$ in the XeF_{5}-units of the $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cation showing the $\mathrm{Xe}---\mathrm{F} / \mathrm{O}$ secondary bonding interactions (bottom). ${ }^{121}$ Reprinted with permission from Hughes, M. J.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 2010, 49, 3501-3515. Copyright 2010 American Chemical Society.

Purpose and Scope of the Thesis Research

The research described in this Thesis is in the field of synthetic inorganic fluorine chemistry with emphases the application of noble-gas compounds towards the syntheses and structural characterizations of fluoro- and oxyfluoro-derivatives of main-group and transition-metal (TM) elements in their highest oxidation states and at the limits of coordination. This work advances our understanding of structure and chemical bonding over a broad range of noble-gas and TM compounds which include hyper-valent species and weak covalent/electrostatic bonds that exemplify trends within the Periodic Table.

A goal of this Thesis research has been to address the absence of mixed $\mathrm{Xe}(\mathrm{II}) / \mathrm{Kr}(\mathrm{II})$ and $\mathrm{Xe}(\mathrm{IV}) / \mathrm{Kr}(\mathrm{II})$ noble-gas compounds. Chapter 3 describes a thorough synthetic, structural, and computational study of the first mixed $\mathrm{Kr}^{\mathrm{II}} / \mathrm{Xe}^{\mathrm{II}}$ species, the $[\mathrm{FKrFXeF}]^{+}$cation (as the $\left[\mathrm{AsF}_{6}\right]^{-}$salt), and the first mixed $\mathrm{Kr}^{\mathrm{II}} / \mathrm{Xe}^{\mathrm{IV}}$ compounds, obtained as the cocrystals $\left(\left[\mathrm{Kr}^{\mathrm{II}}{ }_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right)_{2} \cdot \mathrm{Xe}^{\mathrm{IV}} \mathrm{F}_{4}$ and $\mathrm{Xe}^{\mathrm{IV}} \mathrm{F}_{4} \cdot \mathrm{Kr}^{\mathrm{II}} \mathrm{F}_{2}$. The isolation and structural characterization of mixed $\mathrm{Kr}^{\mathrm{II}} / \mathrm{Xe}^{\mathrm{II}}$ and $\mathrm{Kr}^{\mathrm{II}} / \mathrm{Xe}^{\mathrm{IV}}$ noble-gas compounds pose formidable synthetic challenges, and could only be isolated and structurally characterized at low temperatures under rigorously anhydrous and oxygen-free conditions owing to the propensity of KrF_{2}, $[\mathrm{KrF}]^{+}$, and $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$to oxidize $\mathrm{Xe}^{\mathrm{II}}$ to $\mathrm{Xe}^{\mathrm{IV}}$ and $\mathrm{Xe}^{\mathrm{VI}}$ at low temperatures. For these reasons, the study also delves into the redox reaction pathway of $[\mathrm{FKrFXeF}]^{+}$by monitoring the reaction between KrF_{2} and $[\mathrm{XeF}]\left[\mathrm{AsF}_{6}\right]$ and the subsequent redox decomposition of $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right]$ by means of low-temperature (LT) Raman spectroscopy. The structures of $[\mathrm{FKrFXeF}]^{+}$and the mixed $\mathrm{Kr}^{\mathrm{II} / \mathrm{Xe}^{\mathrm{IV}} \text { and }}$ $\mathrm{Kr}^{\mathrm{II}} / \mathrm{Xe}^{\mathrm{VI}}$ redox products and their bonding were determined by LT single-crystal X-ray
diffraction, LT Raman spectroscopy, and by quantum-chemical (QC) analyses. QC calculations were also used to assess bonding and to aid in the assignments of Raman spectra.

This Thesis also describes examples in which noble-gas fluorides have been used to significantly extend high-oxidation state main-group coordination chemistry. Chapters 4 and 5 describe advancements in the coordination chemistries of cationic $\mathrm{X}(\mathrm{V})(\mathrm{X}=\mathrm{Cl}$, $\mathrm{Br})$ species, which had been limited to four structurally characterized $\operatorname{Br}(\mathrm{V})$ examples; $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FNgF})_{2}\right]\left[\mathrm{AsF}_{6}\right](\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe}),\left[\mathrm{F}_{2} \mathrm{OBrFXeF}\right]\left[\mathrm{AsF}_{6}\right]$, and $\left[\mathrm{O}_{2} \mathrm{Br}\left(\mathrm{BrO}_{2} \mathrm{~F}\right)_{2}\right]\left[\mathrm{AsF}_{6}\right]$. Utilization of the known ligand behavior of XeF_{2}, the syntheses and structural characterizations of the first coordination complexes between the $\left[\mathrm{XO}_{2}\right]^{+}$cations and XeF_{2} has significantly advanced the coordination chemistry of $\mathrm{X}(\mathrm{V})(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ cations and has provided further examples of noble-gas difluorides coordinated to strong oxidant main-group Lewis acid centers. The studies also provided insight into the nature of secondary X(V)---FXeF bonds.

A further expansion of main-group fluoride chemistry is provided in Chapter 6, which describes the application of the neutral chlorine fluorides ClF_{3} and ClF_{5} as oxidative fluorinating and O / F metathesis reagents in their reactions with IrO_{2}. The main objective of the study was to prepare novel iridium oxyfluoro compounds. This work resulted in the syntheses of the first iridium oxyfluoro-anion, $\left[\text { cyclo- }\left(\mu-\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}$, as the $\left[\mathrm{ClO}_{2}\right]^{+}$salt, and the first neutral $\operatorname{Ir}(\mathrm{V})$ coordination complex, $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$. The syntheses and structural characterizations of these compounds by SCXRD has significantly advanced TM oxyfluoride and fluoride chemistry and represents a breakthrough in
fundamental noble-metal chemistry, in addition to providing the first direct evidence for the formation of highly unstable OClF in the reaction of ClF_{3} with a metal fluoride.

Another focus of this Thesis has been to exploit the chemistries of the binary noblegas fluorides to develop high-oxidation-state Group 6 TM oxyfluoride chemistry (Chapters 7-11). The Group 6 oxide tetrafluorides, MOF $_{4}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$, are intermediate-strength fluoride-ion acceptors that had been previously shown to form complexes with the noble-gas difluorides, $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$, having the general formulae $\mathrm{NgF}_{2} \cdot n \mathrm{MOF}_{4}(n=1,2)$. At the outset of this Thesis research, $\mathrm{FKrF}_{\mathrm{b}}---\mathrm{WOF}_{4}$, and $\mathrm{FKrF}_{\mathrm{b}}---\mathrm{MOF}_{3} \mathrm{Fb}_{\mathrm{b}}{ }^{\prime}---\mathrm{MOF}_{4}{ }^{\prime}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ had not been characterized by X-ray diffraction because these complexes rapidly decompose prior to crystallization. Chapter 7 describes the syntheses of $\mathrm{FXeF}_{\mathrm{b}}---\mathrm{CrOF}_{4}, \mathrm{FKrF}_{\mathrm{b}}---\mathrm{WOF}_{4}$, and the $\left[--\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---\right.$ $(\mu-\mathrm{F}) \mathrm{H}--]_{\infty}$ solvate in aHF solvent and their structural characterizations. Accompanying quantum-chemical calculations provide a detailed description of the nature of the $\mathrm{M}--\mathrm{F}_{\mathrm{b}}$ bonds in the $\mathrm{FNgF}_{\mathrm{b}}---\mathrm{MOF}_{4}$ and $\mathrm{FNgF}_{\mathrm{b}}---\mathrm{MOF}_{3} \mathrm{~F}_{\mathrm{b}}{ }^{\prime}---\mathrm{MOF}_{4}{ }^{\prime}$ adduct series.

In a related study (Chapter 8), the first TM adduct of $\mathrm{XeF}_{4}, \mathrm{~F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$, was synthesized and structurally characterized by LT SCXRD and Raman spectroscopy. The study represents a significant development in XeF_{4} coordination chemistry, which had been previously limited to one structurally characterized example, $\left[\mathrm{Mg}\left(\mathrm{XeF}_{2}\right)\left(\mathrm{XeF}_{4}\right)\right]\left[\mathrm{AsF}_{6}\right]_{2}$, and includes detailed QC calculations that describe the nature of the bonding in $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$.

The reactions of $\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ with XeF_{6} were also studied and are described in Chapters 9-11 - the objective was to synthesize high-oxidation state Group 6
oxyfluoro-anion salts of $\left[\mathrm{XeF}_{5}\right]^{+}$and/or $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$. The room-temperature reaction of XeF_{6} and CrOF_{4} in aHF and CFCl_{3} (Chapter 9) led to reductive elimination of F_{2} along with the novel formations of the $\mathrm{Cr}(\mathrm{V})$ oxyfluoro-anion salts, $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF}$. The reaction of $\mathrm{CrO}_{2} \mathrm{~F}_{2}$ and XeF_{6} gave $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$, $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$, $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$, which provided the first structural characterizations of a dinuclear $\mathrm{Cr}(\mathrm{VI})$ oxyfluoro-anion, $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$, and of $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ (Chapter 10). In contrast with NgF_{2} and XeF_{4}, reactions of $\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ with XeF_{6} in aHF solvent yielded oxyfluoro-anion salts, i.e., $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$ (Chapter 11). The low-temperature (LT) reaction of XeF_{6} and CrOF_{4} in aHF yielded $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$, which demonstrated that CrOF_{4} is too weak of a Lewis acid to abstract fluoride-ion from $\left[\mathrm{HF}_{2}\right]^{-}$at LT in aHF. To circumvent $\left[\mathrm{HF}_{2}\right]^{-}$formation, $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ was synthesized in Freon-114, which provided the first X-ray crystal structure of $\left[\mathrm{CrOF}_{5}\right]^{-}$.

CHAPTER 2

EXPERIMENTAL SECTION

2.1. Standard Techniques

Cautionary Statement. Anhydrous HF (aHF) must be handled using appropriate protective gear with ready access to proper treatment procedures ${ }^{122-124}$ in the event of contact with the liquid, vapor, solutions, and HF formed by the hydrolysis of the moisture-sensitive compounds encountered in this study. The noble-gas fluorides are potent oxidative fluorinators and highly energetic materials that are generally only stable under the rigorously anhydrous conditions. They react vigorously or may detonate upon hydrolysis or contact with organic materials. Furthermore, the hydrolyses of Xe(VI) compounds may form XeO_{3}, a highly endothermic, shock-sensitive detonator when dry, and highly toxic HF. The syntheses of noble-gas compounds are therefore generally restricted to small amounts ($<100 \mathrm{mg}$) and their syntheses and other manipulations are most often carried out in FEP (perfluoroethylene/perfluoropropylene copolymer) vessels to avoid sharp fragments in the event of a detonation. The use of adequate protective apparel and shielding are crucial for the safe handling of all these compounds. The utmost precautions must be taken when disposing of these materials and their derivatives.

2.1.1. Drybox and Vacuum Line Techniques

The compounds used and prepared in this work are moisture- and temperaturesensitive and were handled under rigorously anhydrous conditions on glass and metal vacuum line systems or in the nitrogen atmosphere of a dry box (Vacuum Atmospheres Model DLX, oxygen and moisture $<0.1 \mathrm{ppm}$) equipped with a glass cryowell. Low-
temperature additions of potentially reactive solids were carried out in the dry box by use of a metal Dewar filled with 4.5 mm copper plated steel spheres (air rifle shot) that had been previously cooled to ca. $-140^{\circ} \mathrm{C}$ in the glass cryowell $\left(-196{ }^{\circ} \mathrm{C}\right)$ of the dry box.

Transfers of volatile corrosive compounds and aggressively fluorinating solvents (e.g., HF and AsF5) were carried out on metal vacuum lines constructed mainly from nickel and 316 stainless steel and fitted with 316 stainless steel valves (Autoclave Engineers Inc., Figure 2.1), ${ }^{125}$ which were themselves fitted with grease-free PTFE packings. Pressures were measured at ambient temperatures using MKS Model PDR-5B pressure transducers having inert wetted surfaces constructed of Inconel. The dynamic range of the pressure transducers was $0-1150$ torr with an accuracy of ± 0.5 torr over the entire pressure range. Two Edwards two-stage E2M8 direct-drive vacuum pumps functioned as a rough pump and as a high vacuum pump. The rough pump was primarily used to remove volatile fluoride compounds by pumping through a fluoride/fluorine trap consisting of a stainless-steel column packed with a soda lime absorbent (Fisher Scientific, 4-8 mesh), followed by a glass liquid nitrogen trap to remove any CO_{2}, water and other volatile products generated in the soda lime trap. The second vacuum pump provided a high vacuum source (ca. 10^{-4} torr) and was fitted with a glass liquid nitrogen trap and copper column, immediately before the pump, packed with activated charcoal (Norit)

Figure 2.1. \quad Schematic Diagram of the Metal Vacuum Line System: (A) outlet to liquid nitrogen and charcoal (Norit) traps followed by a two-stage direct-drive rotary vacuum pump (Edwards, E2M8) - hard vacuum, (B) outlet to soda lime and liquid nitrogen traps followed by a two-stage direct-drive rotary vacuum pump (Edwards, E2M8) - rough vacuum, (C) dry nitrogen inlet, (D) fluorine inlet, (E) MKS Model PDR-5B pressure transducer ($0-1000$ torr), (F) MKS Model PDR-5B pressure transducer ($0-10$ torr), (G) Bourdon pressure gauge ($0-1500$ torr), (H) ${ }^{3 / 8}$-in. 316 stainless steel high pressure valve (Autoclave Engineers, 30BM6071), (I) 316 stainless steel cross, (J) 316 stainless steel T-piece, (K) 316 stainless steel L-piece, (L) nickel
 permission from Leblond, N. Ph. D. Thesis, McMaster University, Hamilton, Canada, 1998.

Transfers of volatile compounds that did not attack glass were carried out on Pyrex glass vacuum lines (Figure 2.2) equipped with grease-free 6-mm J. Young glass stopcocks which were fitted with PTFE barrels. Vacuum (ca. 10^{-4} torr) was achieved using a single vacuum pump (Edwards two-stage E2M8 direct-drive) connected through a glass liquid nitrogen trap. Pressures inside the glass vacuum lines were monitored using a mercury manometer when backfilling reaction vessels.

2.1.2. Preparative Apparatus and Sample Vessels

All synthetic work was carried out in reactors constructed from lengths of $1 / 4$-in. o.d. FEP tubing which were heat-sealed at one end and heat-flared ($\left.45^{\circ} \mathrm{SAE}\right)$ at the other. The tubing was connected to Kel-F valves, encased in aluminum housings, using brass flare fittings. All vessels were then connected to a glass vacuum line using $1 / 4-\mathrm{in}$. stainless steel Swagelok Ultra-torr unions fitted with Viton O-rings and were rigorously dried by pumping (a minimum of 6 h) under dynamic vacuum. Vessels were then connected to the metal vacuum line using Swagelok Ultra-torr unions and passivated with ca. 1000 torr of F_{2} for ca. 12 h . Once passivated, vessels were evacuated under dynamic vacuum to remove all volatile impurities and back-filled with dry N_{2} (ca. 1000 torr) prior to use. Similarly, connections made to a metal vacuum line were dried under dynamic vacuum and passivated with F_{2} gas overnight. Connections made to a glass vacuum line were dried under dynamic vacuum overnight. Glass vessels used to handle less corrosive materials were dried under dynamic vacuum for a minimum of 8 hr and were periodically heated (flamed out) with a Bunsen burner while under vacuum.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Low-temperature Raman spectra of solids (ca. -140 to $-150{ }^{\circ} \mathrm{C}$) were recorded on samples prepared in thin-walled $1 / 4-$ in. o.d. FEP tubing.

All connections to vacuum lines were made using thick-walled $1 / 4$-in. o.d. $3 / 16$-in i.d. FEP tubing in conjunction with $1 / 4$-in. stainless steel Swagelock Ultra-torr connectors outfitted with stainless steel compression fittings and Viton rubber O-rings.

2.2. Synthesis and Purification of Starting Materials

2.2.1. Sources and Purification of Gases: $\mathbf{N}_{2}, \mathrm{Ar}_{\mathrm{F}} \mathrm{F}_{2}, \mathrm{Xe}$, and Kr

House nitrogen gas was generated by boiling off liquid nitrogen (Air Liquide) and was further dried through a freshly regenerated bed of type $4 \AA$ molecular sieves. High-purity nitrogen gas (Praxair, 99.999\%) and argon gas (VitalAire, 99.999\%) were also employed for the back pressuring of reaction vessels and were used without further purification. Technical grade fluorine gas (Air Products, $>98 \%$) and ultra-high purity Xe (Air Products, 99.995%) and Kr (Air Products, 99.995\%) were used without further purification.

2.2.2. Purification of Solvents: Anhydrous $\mathbf{H F}, \mathrm{CFCl}_{3}$ (Freon-11), $\mathrm{CF}_{2} \mathrm{ClCF}_{2} \mathbf{C l}$

(Freon-114)

HF. Commercial anhydrous hydrogen fluoride (Harshaw Chemical Co.) was purified by addition of ca. 5 atm of F_{2} gas to a commercial HF sample contained in a nickel can that was allowed to stand for a minimum of ca. 48 h prior to use, converting residual water to HF and O_{2}. The reactor was subsequently cooled to $-196^{\circ} \mathrm{C}$ and all volatiles, such as O_{2} and F_{2}, were removed under dynamic vacuum. Alternatively, aHF was dried over $\mathrm{K}_{2} \mathrm{NiF}_{6}$ in a 3/4 in. o.d. FEP vessel outfitted with Kel-F valve. After drying, the vessel was cooled
to $-196{ }^{\circ} \mathrm{C}$ and placed under dynamic vacuum to remove any non-condensable gases $\left(\mathrm{O}_{2}\right.$ and F_{2}). Anhydrous HF (aHF) was then distilled into a dry Kel-F storage vessel equipped with a Kel-F valve and stored at room temperature for future use. Transfer of aHF was accomplished by vacuum distillation from the Kel-F storage vessel, on a metal vacuum line, through a vacuum submanifold constructed from FEP, as shown in Figure 2.3.

Freon-114 ($\mathrm{CF}_{2} \mathrm{ClCF}_{2} \mathrm{Cl}$, Matheson) and Freon-11 (CFCl_{3}, Matheson) were dried over $\mathrm{P}_{4} \mathrm{O}_{10}$ for several days and distilled into $175-\mathrm{mL}$ glass dispensing vessels outfitted with grease-free 6-mm J. Young glass/Teflon stopcocks for storage. Small quantities (ca. 0.5 mL) were transferred under static vacuum on a glass vacuum line through a glass submanifold into individual reaction vessels.

2.2.3. Syntheses and Purification of Reagents

AsF3. Arsenic trifluoride was prepared according to the literature method. ${ }^{126}$
AsF5. Arsenic pentafluoride was prepared as previously described ${ }^{127,128}$ by direct fluorination of AsF_{3} with purified F_{2} in a nickel can. The AsF5 was used from the reaction can without further purification.

SbF3. Antimony trifluoride (Aldrich, 98%) was purified by sublimation at ca. $350-400{ }^{\circ} \mathrm{C}$ under dynamic vacuum. The SbF_{3} was then transferred to the dry box and stored in a $1 / 4$ in. o.d. FEP storage vessel fitted with a Kel-F valve until used.

SbF5. Antimony pentafluoride was prepared in situ by direct fluorination of SbF_{3} with F_{2} in aHF as previously described. ${ }^{129}$

IrO2. Iridium dioxide powder was obtained from abcr (99\% purity).

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Figure 2.3. Hydrogen fluoride distillation apparatus. (A) Kel-F storage vessel containing HF. (B) FEP reaction vessel fitted with a Kel-F valve. (C) Kel-F valve connected to vacuum manifold. (D) $1 / 4-$ in. Teflon union. Reproduced with permission from Leblond, N. Ph. D. Thesis, McMaster University, Hamilton, Canada, 1998.

CIF3. Chlorine trifluoride was synthesized using a modification of the literature method described by Brauer. ${ }^{130}$ The nickel reaction vessel was first passivated by synthesizing a small amount of ClF_{3} and allowing it to stand overnight in the reactor, followed by removal of Cl_{2} and unreacted ClF_{3} under vacuum. Chlorine trifluoride was synthesized by condensing 108 mmol of Cl_{2} and 340 mmol of F_{2} into a 1.377 -liter nickel reaction vessel and heating it to $240-260{ }^{\circ} \mathrm{C}$ for 24 h . Excess F_{2} was removed at $-196^{\circ} \mathrm{C}$, and ClF_{3} was transferred into a smaller nickel storage vessel. The LT Raman spectrum of an aliquot of colorless ClF_{3} in an FEP sample tube showed bands only assigned to ClF_{3}.
CIF_{5} and BrF_{5}. Spectroscopically pure ClF_{5} (Raman spectroscopy) was obtained in a stainless-steel cylinder from Prof. K. O. Christe (University of Southern California) and was used without further purification. Bromine pentafluoride (Ozark-Mahoning Co) was purified in an FEP vessel equipped with a Kel-F valve and loaded with 20 g of KF (to complex HF as $\mathrm{K}\left[\mathrm{HF}_{2} \cdot n \mathrm{HF}\right]$. Bromine and BrF_{3} impurities were eliminated by directly fluorinating them to BrF_{5} at ambient temperature as previously described. ${ }^{131}$ The product was stored in the purification vessel under 1000 torr of a $1: 1$ mixture of $\mathrm{N}_{2}($ or Ar$)$ and F_{2} at $-78^{\circ} \mathrm{C}$ until transferred under dynamic vacuum for use.
$\mathbf{X e F}_{2}, \mathbf{X e F}_{4}$, and $\mathbf{X e F}_{6}$. Xenon difluoride ${ }^{127}$ and $\mathrm{XeF}_{4}{ }^{132}$ were prepared according to the literature methods and stored in a Kel-F tube inside a dry box until needed. Xenon hexafluoride was prepared by the reaction of Xe and F_{2} similar to the method described by Malm and Chernick. ${ }^{133}$
$\mathbf{K r F}$ 2. Krypton difluoride was prepared by use of a 316-stainless steel hot-wire reactor (Figure 2.4) equipped with a nickel filament, similar to that originally described ${ }^{134}$ and
subsequently modified. ${ }^{45}$ The filament was fabricated from a $1 / 16$-in. diameter nickel wire tightly wound about a second length of $1 / 16-\mathrm{in}$. nickel wire that was, in turn, coiled and stretched into a helix. The hot-wire reactor was pressurized with ca. 1000 torr (50 mmol) of krypton and then cooled to $-196{ }^{\circ} \mathrm{C}$ in a 20-L Dewar. After reaching thermal equilibrium, the reactor was pressurized with 25 torr of F_{2} and the DC power supply for the nickel filament was adjusted to ca. 6 V and 30 A (the filament was dull red in color under these conditions). The F_{2} pressure increased to ca. 45 torr after the power supply was turned on and was regulated between 25 and 45 torr by the periodic addition of F_{2} during the synthesis. The decreasing F_{2} pressure was used to qualitatively monitor the production of KrF_{2}, and additional aliquots of $\mathrm{Kr}(1.0$ to 2.0 mmol$)$ were condensed into the reactor when the rate of KrF_{2} production slowed. Upon completion of the reaction (ca. 14 h), excess F_{2} was removed under dynamic vacuum at $-196{ }^{\circ} \mathrm{C}$. The excess Kr and crude KrF_{2} were recovered as a colorless solid by rapidly warming the reactor with compressed air to room temperature while dynamically pumping the volatile contents through a $1 / 2$-in. o.d. FEP U-trap $\left(-196^{\circ} \mathrm{C}\right)$. The $\mathrm{Kr} / \mathrm{KrF}_{2}$ mixture was then warmed to $78{ }^{\circ} \mathrm{C}$ under dynamic vacuum to remove the unreacted Kr . The remaining colorless KrF_{2} was finally warmed to room temperature and rapidly sublimed into a $3 / 8$-in. o.d. FEP tube equipped with a Kel-F valve, where it was stored under 1000 torr of N_{2} at $-78{ }^{\circ} \mathrm{C}$ until used. The yield was ca. 5 g of pure KrF_{2}.
$\mathrm{CrO}_{2} \mathrm{~F}_{2}$ and MoOF_{4}. Chromyl fluoride $\left(\mathrm{CrO}_{2} \mathrm{~F}_{2}\right)$ and MoOF_{4} were synthesized by reaction of CrO_{3} with MoF_{6} according to the published procedure. ${ }^{135}$
6.7 in.

Figure 2.4. The stainless steel hot-wire reactor used for the preparation of KrF_{2}. (a) An external view and dimensions of a hot-wire reactor submerged in a liquid nitrogen coolant bath. (b) A perspective drawing of the hot-wire reactor showing the flange assembly and nickel filament (cut away region). Reproduced with permission from Gerken, M. Ph. D. Thesis, McMaster University, Hamilton, Canada, 2000.

CrOF4. Chromium oxide tetrafluoride was synthesized by the reaction of KrF_{2} and CrOF_{4} in aHF using a modification ${ }^{65}$ of a previously published procedure. ${ }^{66}$

WOF4. Tungsten oxide tetrafluoride was synthesized as previously described. ${ }^{136}$
$\mathbf{C l O}_{2} \mathbf{F}$. Chloryl fluoride $\left(\mathrm{ClO}_{2} \mathrm{~F}\right)$ was prepared by the literature method. ${ }^{137}$ Prior to transfer, pale yellow $\mathrm{ClO}_{2} \mathrm{~F}$ was decolorized by direct fluorination of the Cl_{2} contaminant by addition of a mixture of ~ 400 torr F_{2} and ~ 500 torr N_{2} to the sample at $-196{ }^{\circ} \mathrm{C}$, followed by warming with agitation to $-78^{\circ} \mathrm{C}$. Oxidative fluorination of Cl_{2} contaminant to ClF_{3} and/or ClF_{5} prevented partial reduction of XeF_{2}. The purity of $\mathrm{ClO}_{2} \mathrm{~F}$ was confirmed by recording a LT Raman spectrum, which was in good agreement with the literature and showed no bands attributable to $\mathrm{Cl}_{2}, \mathrm{ClF}_{3}$, or $\mathrm{ClF}_{5} .{ }^{138}$
$\mathrm{BrO}_{2} \mathbf{F}$. Bromyl fluoride $\left(\mathrm{BrO}_{2} \mathrm{~F}\right)$ was synthesized using a modification of a published literature procedure. ${ }^{139}$ Sodium bromate ($31.4 \mathrm{mg}, 0.208 \mathrm{mmol}$) was weighed into an FEP reaction vessel and dried for 24 h under dynamic vacuum. Approximately 0.3 mL of aHF was condensed into the reactor under static vacuum at $-196^{\circ} \mathrm{C}$. The sample was warmed to $-20^{\circ} \mathrm{C}$ with agitation to effect dissolution and cooled to $-196^{\circ} \mathrm{C}$ whereupon ca. 0.1 mL of BrF_{5} was condensed into the reaction vessel under static vacuum. The sample was slowly warmed to $-78{ }^{\circ} \mathrm{C}$, whereupon the aHF liquified and a vigorous reaction was observed which yielded a light orange precipitate. The Raman spectrum $\left(-150{ }^{\circ} \mathrm{C}\right)$ of this precipitate was recorded under frozen aHF which revealed a mixture of $\mathrm{BrO}_{2} \mathrm{~F}$ and unreacted BrF_{5}. Additional $\mathrm{NaBrO}_{3}(20.5 \mathrm{mg}, 0.136 \mathrm{mmol})$ was dried and added at LT (ca. $-150{ }^{\circ} \mathrm{C}$) to the vessel in the dry box. The sample was reacted as previously described. Excess BrF_{5} and the aHF solvent were then removed under dynamic vacuum at
$-40{ }^{\circ} \mathrm{C}$, whereupon the light orange precipitate became white. Pure $\mathrm{BrO}_{2} \mathrm{~F}$ (assessed by LT Raman spectroscopy) was then transferred under static vacuum at -10 to $30^{\circ} \mathrm{C}$ into an empty FEP reaction vessel at $-196{ }^{\circ} \mathrm{C}$. A LT Raman spectrum of pure $\mathrm{BrO}_{2} \mathrm{~F}$ was collected and compared with its previously reported spectra. ${ }^{139}$ The sample was then stored under ca. 1000 torr of Ar at $-78^{\circ} \mathrm{C}$ until needed.

2.3. Syntheses and Characterizations of the Mixed Noble-Gas Compounds,

The salt, $[\mathrm{XeF}]\left[\mathrm{AsF}_{6}\right]$, was synthesized in aHF by reaction of XeF_{2} with a stoichiometric excess of AsF_{5} according to the literature method ${ }^{48}$ and was stored in a dry box at room temperature in a $1 / 4$-in. o.d. FEP vessel until used.

Samples for a Variable-temperature Raman Spectroscopic Study of the Redox

 Decomposition of $[\mathbf{F K r F X e F}]\left[\mathrm{AsF}_{6}\right] \cdot \mathbf{0} \cdot \mathbf{5 K r F} \mathbf{F}_{2} \cdot \mathbf{2 H F}$. Two samples containing [XeF$]\left[\mathrm{AsF}_{6}\right]$ and KrF_{2} in aHF were prepared as previously described using the following quantities of reagents: (a) $[\mathrm{XeF}]\left[\mathrm{AsF}_{6}\right], 18.23 \mathrm{mg}, 0.054 \mathrm{mmol} ; \mathrm{KrF}_{2}, 31.4 \mathrm{mg}, 0.258$ mmol, (b) [XeF][AsF6], $17.4 \mathrm{mg}, 0.051 \mathrm{mmol}$; $\mathrm{KrF}_{2}, 35.3 \mathrm{mg}, 0.290 \mathrm{mmol}$. Samples (a) and (b) were then warmed, in stages and for varying periods of time, from -78 to $0{ }^{\circ} \mathrm{C}$ and from -65 to $22^{\circ} \mathrm{C}$, respectively. Product distributions were periodically monitored by LT Raman spectroscopy as described in the discussion of the variable-temperature Raman spectroscopic studies in the Results and Discussion; Syntheses and Reactivities and in Tables A1.1 and A1.2 of Appendix 1.Sample for the Raman Spectrum of $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF} \boldsymbol{F}_{6}\right]\right)_{2} \cdot \mathrm{XeF}_{4}$ (2). A sample containing $11.8 \mathrm{mg}(0.035 \mathrm{mmol})[\mathrm{XeF}]\left[\mathrm{AsF}_{6}\right]$ and $24.4 \mathrm{mg}(0.200 \mathrm{mmol}) \mathrm{KrF}_{2}$ in aHF was prepared as previously described and warmed from -78 to $0^{\circ} \mathrm{C}$ in stages over ca. 30 min . The sample was cooled to $-196{ }^{\circ} \mathrm{C}$ and subsequently warmed to $-78{ }^{\circ} \mathrm{C}$, whereupon white solids precipitated from solution. The LT Raman spectrum (Figure A1.13) of the solid mixture was recorded under frozen aHF at $-150{ }^{\circ} \mathrm{C}$ and was shown to be primarily $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right)_{2} \cdot \mathrm{XeF}_{4}$ with minor amounts of $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$, $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$, and XeF_{4}.

2.3.1. Syntheses and Crystal Growth

2.3.1.1. [FKrFXeF][AsF $\left.\boldsymbol{F}_{6}\right] \cdot \mathbf{0 . 5 K r F} \mathbf{2} \cdot \mathbf{2 H F}$ (1). Inside a dry box, $35.6 \mathrm{mg}(0.105 \mathrm{mmol})$ of $[\mathrm{XeF}]\left[\mathrm{AsF}_{6}\right]$ was added to a $1 / 4$-in. o.d. h-shaped FEP reaction vessel equipped with a KelF valve. Approximately 0.5 mL of aHF and $22.8 \mathrm{mg}(0.187 \mathrm{mmol})$ of KrF_{2} was then condensed into the reaction vessel under static vacuum at $-196{ }^{\circ} \mathrm{C}$ through an FEP submanifold attached to a metal vacuum line. The reaction vessel was backfilled with 1000 torr of Ar and the sample was warmed in stages from -78 to $-45^{\circ} \mathrm{C}$, whereupon all [XeF$]\left[\mathrm{AsF}_{6}\right]$ and KrF_{2} dissolved to give a colorless solution. The sample was maintained at $-45{ }^{\circ} \mathrm{C}$ for ca. 1 h before it was quenched at $-196^{\circ} \mathrm{C}$ and subsequently warmed to -78 ${ }^{\circ} \mathrm{C}$, whereupon a fine white precipitate deposited from the solution. The LT Raman spectrum of the solid was recorded under frozen aHF at $-150{ }^{\circ} \mathrm{C}$ and was shown to be primarily $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}(\mathbf{1})$, with minor amounts of $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]$ and $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$ (4) formed from the redox decomposition of $\mathbf{1}$. The sample was warmed from -150 to $-45^{\circ} \mathrm{C}$ with agitation to effect dissolution, and colorless, block-shaped crystals of

1 were grown by slow cooling of the reaction vessel from -45 to $-78^{\circ} \mathrm{C}$ over ca. 6 h . The crystals were isolated by decanting the aHF supernatant at $-78^{\circ} \mathrm{C}$ into the side arm of the FEP reaction vessel, which was subsequently cooled to $-196^{\circ} \mathrm{C}$ and heat-sealed off under dynamic vacuum. Residual aHF was removed from the crystalline sample under dynamic vacuum at $-78^{\circ} \mathrm{C}$. All subsequent crystalline samples were isolated in a similar manner. A single crystal of 1 having the dimensions $0.078 \times 0.098 \times 0.300 \mathrm{~mm}^{3}$ was selected and mounted (vide infra) for a LT SCXRD determination.
2.3.1.2. $\left(\left[\mathrm{Kr}_{2} \boldsymbol{F}_{3}\right]\left[\boldsymbol{A s F} \boldsymbol{F}_{6}\right)_{2} \cdot \mathrm{XeF}_{4}\right.$ (2). Inside a dry box, $30.68 \mathrm{mg}(0.09045 \mathrm{mmol})$ of $[\mathrm{XeF}]\left[\mathrm{AsF}_{6}\right]$ was loaded into a $1 / 4$-in. o.d. h-shaped FEP reaction vessel equipped with a Kel-F valve. Approximately 0.5 mL of aHF and 35.6 mg (0.292 mmol) of KrF_{2} were condensed into the reaction vessel under static vacuum at $-196{ }^{\circ} \mathrm{C}$. The reaction vessel was backfilled with 1000 torr of N_{2} at $-196{ }^{\circ} \mathrm{C}$ and warmed to $-78^{\circ} \mathrm{C}$, whereupon the aHF melted. The reaction mixture was then warmed to $-40{ }^{\circ} \mathrm{C}$ for ca. 10 min with agitation to effect dissolution. The sample was slowly cooled to $-50^{\circ} \mathrm{C}$ over ca. 2 h , during which time colorless, block-shaped crystals of 1 grew. Slow gas evolution was also observed during crystal growth. Slow cooling of the reaction vessel from -50 to -60 ${ }^{\circ} \mathrm{C}$ over ca. 1 h resulted in a second crystal growth which yielded colorless, plate-shaped crystals of $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right) 2 \cdot \mathrm{XeF}_{4}$ (2). A single crystal of $\mathbf{2}$ having the dimensions 0.042 x $0.216 \mathrm{x} 0.931 \mathrm{~mm}^{3}$ was selected and mounted (vide infra) for a LT SCXRD determination.
2.3.1.3. $\left[\mathrm{Xe}_{2} \boldsymbol{F}_{3}\right]\left[\mathbf{S b F} \boldsymbol{F}_{6}\right]$ (3). In a typical synthesis, $170.84 \mathrm{mg}(1.009 \mathrm{mmol})$ of XeF_{2} was added to an aHF/ $\mathrm{SbF}_{5}\left(0.518 \mathrm{mmol} \mathrm{SbF}_{5}\right)$ mixture at $-150{ }^{\circ} \mathrm{C}$ inside a dry box. The
reactor was then warmed to $0^{\circ} \mathrm{C}$ with agitation to effect dissolution. Slow cooling of the sample from $-39{ }^{\circ} \mathrm{C}$ to $-42{ }^{\circ} \mathrm{C}$ over 4 h yielded pale yellow, block-shaped crystals of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{SbF}_{6}\right]$. A single crystal of $\mathbf{3}$ having the dimensions $0.079 \times 0.085 \times 0.380 \mathrm{~mm}^{3}$ was selected and mounted (vide infra) for a LT SCXRD determination.
2.3.1.4. $\mathrm{XeF}_{4} \cdot \mathrm{Ng}_{2}$ ($\mathrm{Ng}=\mathrm{Kr}$ (4), Xe (5)) and XeF_{4} (6). Crystalline XeF_{4} (26.21 mg, $0.1264 \mathrm{mmol}(\mathrm{Kr}) ; 42.82 \mathrm{mg}, 0.2066 \mathrm{mmol}(\mathrm{Xe}))$ was transferred inside a dry box into $1 / 4-$ in. o.d. FEP reaction vessels outfitted with Kel-F valves. Approximately 0.5 mL CFCl 3 solvent was condensed into each reaction vessel under static vacuum on a glass vacuum line at $-196{ }^{\circ} \mathrm{C}$. The samples were warmed to room temperature for ca. 5 min with agitation, whereupon approximately half of the crystalline XeF_{4} dissolved. Because crystalline XeF_{4} is partially soluble in CFCl_{3} at room-temperature, the samples were rapidly quenched to $-196{ }^{\circ} \mathrm{C}$ and warmed to $-78{ }^{\circ} \mathrm{C}$ to precipitate powdered XeF_{4}. After two further warming/quenching cycles, all crystalline XeF_{4} was converted to a white powder. In the case of $\left.\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}, 37.7 \mathrm{mg}(0.310) \mathrm{mmol}\right)$ of KrF_{2} was condensed into the reactor under static vacuum at $-196^{\circ} \mathrm{C}$ through an FEP submanifold that was attached to a metal vacuum line. In the case of $\mathrm{XeF}_{4} \cdot \mathrm{XeF}_{2}$, powdered XeF_{4} under frozen CFCl_{3} was transferred into a dry box and maintained at $-150{ }^{\circ} \mathrm{C}^{140}$ while $\mathrm{XeF}_{2}(29.52 \mathrm{mg}, 0.174$ mmol) was added to the reaction vessel. The samples were then slowly warmed to $22{ }^{\circ} \mathrm{C}$ to effect dissolution. Gentle bubbling was observed for the $\mathrm{XeF}_{4} / \mathrm{KrF}_{2}$ sample at this temperature and the solvent became pale yellow in color, indicating some oxidative fluorination of CFCl_{3} with the liberation of Kr and Cl_{2} gas had occurred. Slow cooling of the reaction vessels from 22 to $10{ }^{\circ} \mathrm{C}(\mathrm{Xe})$ and $0{ }^{\circ} \mathrm{C}(\mathrm{Kr})$ over ca. 30 min led to the
formation of colorless, plate-shaped crystals of $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$ (4) and $\mathrm{XeF}_{4} \cdot \mathrm{XeF}_{2}$ (5), and colorless, block-shaped crystals of $\mathrm{XeF}_{4}(\mathbf{6})$. Single crystals of 4, 5, and $\mathbf{6}$ having the dimensions $0.016 \times 0.028 \times 0.220 \mathrm{~mm}^{3}, 0.073 \times 0.140 \times 0.253 \mathrm{~mm}^{3}$, and $0.156 \times 0.162 \times$ $0.713 \mathrm{~mm}^{3}$, respectively, were selected and mounted (vide infra) for LT SCXRD determinations.
2.3.1.5. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right]$ (7). Single-crystals of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right]$ (7) were crystallized from aHF solution between 22 and $-30^{\circ} \mathrm{C}$ over ca. 4 h from sample (b) of the Variable-temperature Raman Spectroscopic Study of the Redox Decomposition of [FKrFXeF][AsF $\left.{ }_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$ (vide supra). A single crystal of 7 having the dimensions $0.063 \times 0.136 \times 0.213 \mathrm{~mm}^{3}$ was selected and mounted (vide infra) for a LT SCXRD determination.

2.4. Syntheses and Structural Characterizations of the $\mathbf{C l}(\mathrm{V})$ Coordination Complex, $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$, and $\boldsymbol{\beta}-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$

2.4.1. $\boldsymbol{\beta}-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1) and $\alpha-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$. In a typical synthesis, ca. 100 mg (ca. 1.14 mmol) of $\mathrm{ClO}_{2} \mathrm{~F}$ and 1.05 mmol of AsF_{5} were added to ca. 0.5 mL aHF at $-196{ }^{\circ} \mathrm{C}$. The reactor and contents were warmed to $22^{\circ} \mathrm{C}$ for ca. 5 min and subsequently cooled to -196 ${ }^{\circ} \mathrm{C}$, whereupon a voluminous white precipitate formed. The LT Raman spectrum of this precipitate under frozen aHF was assigned to previously unknown β - $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$. The aHF solvent and excess $\mathrm{ClO}_{2} \mathrm{~F}$ were removed under dynamic vacuum at -78 . The Raman spectrum of the resulting fine white precipitate was consistent with that of compound (1). The sample was warmed to $22^{\circ} \mathrm{C}$, agitated for ca. 5 min , and then cooled to $-196^{\circ} \mathrm{C}$. The LT Raman spectrum of the sample was consistent with the known phase, $\alpha-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$,
and was assigned by comparison with previously published spectra. ${ }^{141,142}$ The sample was stored in a $1 / 4$-inch o.d. FEP storage vessel in a dry box until used.
2.4.2. $\boldsymbol{\beta}-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1) crystal growth. Approximately 0.5 mL of aHF and 23.2 mg of $\alpha-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ were added to a $1 / 4-\mathrm{in}$. o.d. FEP reaction vessel equipped with a Kel-F valve. The reactor and contents were warmed to $22{ }^{\circ} \mathrm{C}$ to effect dissolution and subsequently cooled to $-7{ }^{\circ} \mathrm{C}$, whereupon a white solid precipitated from solution. The LT Raman spectrum of the precipitate, recorded under frozen aHF, corresponded to β $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$. The sample was then warmed with agitation to $0{ }^{\circ} \mathrm{C}$ to effect dissolution. The resulting solution, which was slowly cooled from 0 to $-10^{\circ} \mathrm{C}$ over ca. 4 h , yielded colorless, block-shaped crystals of $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$. The crystals were isolated by removal of the aHF solvent under dynamic vacuum at $-78^{\circ} \mathrm{C}$. The LT Raman spectrum was obtained for the dry crystalline sample. A single crystal of $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ having the dimensions $0.048 \times 0.123 \times 0.242 \mathrm{~mm}^{3}$ was selected and mounted (see Sec. 4.4.1) for a LT SCXRD determination.
2.4.3. $\left[\boldsymbol{C l O}_{2}\right]\left[\mathbf{S b F} \boldsymbol{F}_{6}\right]$. The salt, $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$, was synthesized by a procedure similar to that described for $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (Sec. 4.3.2). Approximately $82 \mathrm{mg}(0.94 \mathrm{mmol})$ of $\mathrm{ClO}_{2} \mathrm{~F}$ was added to an $\mathrm{HF} / \mathrm{SbF}_{5}$ mixture containing 0.58 mmol of SbF_{5} at $-196^{\circ} \mathrm{C}$. The reactor was slowly warmed to $-78{ }^{\circ} \mathrm{C}$ and agitated, whereupon a white precipitate formed. The LT Raman spectrum of the precipitate, recorded under frozen aHF, was consistent with that previously reported for $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{SbF}_{6}\right] .{ }^{143}$ The aHF solvent and excess $\mathrm{ClO}_{2} \mathrm{~F}$ were removed under dynamic vacuum at $-78{ }^{\circ} \mathrm{C}$ to give $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ as a dry powder, which was stored in a $1 / 4$-inch o.d. FEP vessel inside a dry box until used.
2.4.4. $\left[\mathrm{O}_{2} \mathrm{Cl}(\boldsymbol{F X e F})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (2). Approximately 0.5 mL of aHF was added to a $1 / 4-\mathrm{in}$. o.d. straight FEP reaction vessel equipped with a Kel-F valve. Inside a dry box, 5.51 mg $(0.0217 \mathrm{mmol})$ of $\alpha-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ and $13.21 \mathrm{mg}(0.0780 \mathrm{mmol})$ of XeF_{2} were loaded into the reactor which was maintained at $-150{ }^{\circ} \mathrm{C}$ by means of copper-plated steel air rifle shot that had been cooled inside the cryowell of the dry box. The reaction vessel was then warmed from -150 to $-20{ }^{\circ} \mathrm{C}$, whereupon $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ and XeF_{2} dissolved to give a colorless solution. The sample was quenched at $-196^{\circ} \mathrm{C}$ and subsequently warmed to -78 ${ }^{\circ} \mathrm{C}$, whereupon a fine white precipitate deposited. The LT Raman spectrum of the solid, recorded under frozen aHF, was shown to consist of $\mathbf{2}$ and excess XeF_{2}. The sample was then warmed to $-30^{\circ} \mathrm{C}$ to effect dissolution and colorless, block-shaped crystals of $\mathbf{2}$ were grown by slow cooling of the solution from -30 to $-65{ }^{\circ} \mathrm{C}$ over ca. 5 h . The crystals were isolated as described in Sec. 4.3.2 and a LT Raman spectrum was obtained for the dry crystalline material. A single crystal of $\mathbf{2}$ having the dimensions $0.132 \times 0.142 \times$ $0.470 \mathrm{~mm}^{3}$ was selected and mounted (see Sec. 4.4.1) for a LT SCXRD determination.
2.4.5. Attempted Synthesis of $\left.\left[\mathrm{O}_{2} \mathbf{C l (F X e F}\right)_{2}\right]\left[\mathbf{S b F}_{\boldsymbol{6}}\right]$. Approximately $1: 3$ and $1: 8$ molar mixtures of $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{SbF}_{6}\right](1: 3,15.21 \mathrm{mg}, 0.0502 \mathrm{mmol} ; 1: 8,16.8 \mathrm{mg}, 0.0554 \mathrm{mmol})$ and $\mathrm{XeF}_{2}(1: 3,22.2 \mathrm{mg}, 0.1311 \mathrm{mmol} ; 1: 8,71.3 \mathrm{mg}, 0.4211 \mathrm{mmol})$ were prepared as described above. Both samples were warmed with agitation to $22^{\circ} \mathrm{C}$ for ca. 5 min and subsequently quenched at $-196{ }^{\circ} \mathrm{C}$. Warming the quenched samples to $-78^{\circ} \mathrm{C}$ yielded white precipitates, which were identified by recording their LT Raman spectra under frozen aHF. The 1:3 molar mixture showed only unreacted starting materials, whereas the 1:8 molar mixture consisted of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{SbF}_{6}\right]$ and $\mathrm{ClO}_{2} \mathrm{~F}$. The aHF solvent was then
removed from the 1:3 molar mixture under dynamic vacuum at $-78^{\circ} \mathrm{C}$, and ca. 0.5 mL CFCl_{3} was condensed into the reactor at $-196{ }^{\circ} \mathrm{C}$. The sample was then slowly warmed from -196 to $-30^{\circ} \mathrm{C}$ with agitation to dissolve the reactants. Upon warming to $-30^{\circ} \mathrm{C}$, vigorous gas evolution ensued and the CFCl_{3} solvent turned yellow due to Cl_{2} formation. The sample was quenched at $-196{ }^{\circ} \mathrm{C}$ and warmed to $-78{ }^{\circ} \mathrm{C}$, whereupon a white precipitate formed. The LT Raman spectrum of the precipitate corresponded to that of $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{SbF}_{6}\right],{ }^{143}$ with no bands observed for XeF_{2} or an XeF_{2} coordination complex. The CFCl_{3} solvent was removed under dynamic vacuum at $-78{ }^{\circ} \mathrm{C}$, and the LT Raman spectrum of the remaining white solid showed it to be pure $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{SbF}_{6}\right] .{ }^{143}$

2.5. Syntheses and Structural Characterizations of the $\operatorname{Br}(\mathrm{V})$ Coordination

 Complexes, $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{n}\right]\left[\mathrm{AsF}_{6}\right](\mathrm{n}=1,2)$, and $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$2.5.1. Synthesis of $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$. Approximately 0.5 mL of aHF was condensed into an FEP reaction vessel containing $40 \mathrm{mg}(0.31 \mathrm{mmol})$ of $\mathrm{BrO}_{2} \mathrm{~F}$ at $-196^{\circ} \mathrm{C}$. The sample was then warmed to $-20^{\circ} \mathrm{C}$ with agitation to effect dissolution, and subsequently cooled to $-196{ }^{\circ} \mathrm{C}$ whereupon 310 torr (0.317 mmol) of AsF_{5} was condensed into the reaction vessel under static vacuum. The sample was slowly warmed to $-20^{\circ} \mathrm{C}$, mixed, and then cooled to $-78{ }^{\circ} \mathrm{C}$, whereupon an orange precipitate formed. The LT Raman spectrum of the precipitate recorded under frozen aHF was identical to the published spectrum of $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{AsF}_{6}\right] .{ }^{139}$ The sample was stored under 1000 torr of Ar at $-78{ }^{\circ} \mathrm{C}$ until used.
2.5.2. Synthesis of $\left[\mathrm{BrO}_{2}\right] /\left[\mathbf{S b F}_{6}\right]$. In a typical reaction, $25 \mathrm{mg}(0.191 \mathrm{mmol})$ of $\mathrm{BrO}_{2} \mathrm{~F}$ was transferred into an FEP reaction vessel containing a frozen $\left(-196{ }^{\circ} \mathrm{C}\right)$ solution of $\mathrm{SbF}_{5}(0.16 \mathrm{mmol})$ dissolved in ca. 0.5 mL of aHF. The reaction mixture was then warmed
to $-10{ }^{\circ} \mathrm{C}$ to effect dissolution, and upon cooling to $-78^{\circ} \mathrm{C}$, a pale orange precipitate formed. The LT Raman spectrum of the precipitate, recorded under frozen aHF solvent, was identical to the previously reported LT spectrum of $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right] .{ }^{143}$ The aHF solvent was removed at $-78{ }^{\circ} \mathrm{C}$ by pumping through a $-196{ }^{\circ} \mathrm{C}$ FEP U-trap, and excess $\mathrm{BrO}_{2} \mathrm{~F}$ was removed under static vacuum at $-10^{\circ} \mathrm{C}$ by sublimation and condensed into an FEP storage vessel maintained at $-196^{\circ} \mathrm{C}$. The FEP vessel containing dry $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ was then backfilled with 1000 torr Ar at $-78^{\circ} \mathrm{C}$ and stored at RT in the dry box until used. Alternatively, $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ that had been freshly prepared in aHF solvent was transferred into the dry box for reaction with XeF_{2}, without removal of excess $\mathrm{BrO}_{2} \mathrm{~F}, \mathrm{SbF}_{5}$, or HF under dynamic vacuum.
2.5.3. Syntheses of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{n}\right]\left[\mathrm{AsF}_{6}\right](\mathrm{n}=1,2)$ and Crystal Growth. A freshly prepared sample of $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{AsF}_{6}\right](91.9 \mathrm{mg}, 0.306 \mathrm{mmol})$ was dissolved in ca. 0.5 mL of aHF and was transferred into the dry box through a cryowell, where $\mathrm{XeF}_{2}(79.9 \mathrm{mg}, 0.472$ mmol) was added to the FEP reaction vessel at $-150{ }^{\circ} \mathrm{C}$. The valved vessel and contents were removed from the dry box and the reaction mixture was warmed to ca. $-10^{\circ} \mathrm{C}$ with agitation to effect dissolution. Subsequent cooling of the sample to $-78{ }^{\circ} \mathrm{C}$ yielded an orange precipitate and a small amount of white precipitate. The LT Raman spectrum of the sample, recorded under frozen aHF at $-150{ }^{\circ} \mathrm{C}$, showed two new $\left[\mathrm{BrO}_{2}\right]^{+}$coordination complexes of XeF_{2} had formed, as well as the presence of unreacted $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{AsF}_{6}\right], \mathrm{XeF}_{2}$, and a small amount of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]$. The formation of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]$ is attributed to the reaction of XeF_{2} with excess AsF_{5} used for the synthesis of $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (Section 2.5.1.). The mixture was redissolved in aHF at $0{ }^{\circ} \mathrm{C}$, and the solution was slowly cooled to $-8{ }^{\circ} \mathrm{C}$
over a period of ca. 1 h , which resulted in crystallization of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]$ (identified by a SCXRD unit cell determination). Further cooling to $-42{ }^{\circ} \mathrm{C}$ over ca. 7 h yielded dark orange crystals of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$, and orange crystals of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]$ grew over ca. 3 h at $-46{ }^{\circ} \mathrm{C}$. The aHF solvent was removed under dynamic vacuum at $-78^{\circ} \mathrm{C}$, and crystals suitable for SCXRD structure determinations were mounted at low temperature on an X-ray diffractometer.
2.5.4. Synthesis of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ and Crystal Growth. A valved FEP reaction vessel containing ca. 0.5 mL aHF solvent was transferred into a dry box through a glass cryowell and dry crystalline $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right](66.4 \mathrm{mg}, 0.191 \mathrm{mmol})$ was loaded into the vessel at ca. $-150{ }^{\circ} \mathrm{C}$. The sample was warmed to RT to dissolve $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ and subsequently cooled to ca. $-150{ }^{\circ} \mathrm{C}$, and $\mathrm{XeF}_{2}(88.2 \mathrm{mg}, 0.521 \mathrm{mmol})$ was added to the frozen sample. The reaction mixture was slowly warmed to RT with agitation outside the dry box, which resulted in dissolution of the reactants to give a light orange solution. Cooling the reaction mixture to $18{ }^{\circ} \mathrm{C}$ led to crystallization of amber $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$. Further cooling to $-50^{\circ} \mathrm{C}$ over ca. 10 h resulted in the growth of orange, needle-shaped crystals of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$. Excess XeF_{2} crystallized upon cooling the sample to $-78{ }^{\circ} \mathrm{C}$. The aHF solvent was removed under dynamic vacuum at $-78{ }^{\circ} \mathrm{C}$, and the resulting crystalline mixture was shown to consist of $\mathrm{XeF}_{2},\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$, and $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ by LT Raman spectroscopy (Figure 5.5) and LT SCXRD.
2.5.5. Attempted Synthesis of $\left[\mathrm{O}_{2} \mathbf{B r}(\mathbf{F X e F})\right]\left[\mathbf{S b F}_{6}\right]$. A valved FEP reaction vessel containing $25.0 \mathrm{mg}(0.0719 \mathrm{mmol})$ of $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ and $12.9 \mathrm{mg}(0.0762 \mathrm{mmol})$ of XeF_{2} in ca. 0.5 mL aHF solvent was prepared as described in Section 2.5.3. The reaction
mixture was warmed to $0{ }^{\circ} \mathrm{C}$ outside the dry box to effect dissolution. Upon cooling to $-78^{\circ} \mathrm{C}$, orange and colorless solids precipitated from solution. The LT Raman spectrum of the precipitate, recorded under frozen aHF solvent, showed unreacted $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$, $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$, and a small amount of colorless $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{SbF}_{6}\right]$. Following addition of more $\mathrm{XeF}_{2}(15.0 \mathrm{mg}, 0.089 \mathrm{mmol})$, the LT Raman spectrum showed the sample consisted of a mixture of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right],\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right], \mathrm{XeF}_{2}$, and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{SbF}_{6}\right]$.

2.6. Syntheses and Structural Characterizations of $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- μ - $\left.\left(\mathrm{OIrF}_{4}\right)_{3}\right]$ and the Coordination Complex FsIr---OCIF

2.6.1. Syntheses of $\boldsymbol{F}_{5} \mathbf{I r}--\mathbf{O C l F}$ and $\left[\mathrm{ClO}_{2}\right]\left[\right.$ IrF $\left.\boldsymbol{F}_{6}\right]$. Iridium dioxide ($23.20 \mathrm{mg}, 0.1034$ mmol) was weighed into the main arm of a $1 / 4$-in. o.d. FEP h-shaped reaction vessel that was outfitted with a stainless-steel valve and was dried under dynamic vacuum for over 24 h on a glass vacuum line. Anhydrous HF (ca 0.5 mL) and ClF_{3} (ca. 0.3 mL) were condensed into the reaction vessel under static vacuum at $-196{ }^{\circ} \mathrm{C}$. The sample was then backfilled with ca. 1000 torr of N_{2} gas and warmed to RT, whereupon vigorous gasevolution ensued that originated from black, solid IrO_{2} at the bottom of the reaction vessel along with simultaneous formation of a brown-black precipitate that was likely IrF_{4}. Continued reaction at RT for ca. 4 h resulted in the consumption of IrO_{2} and the brown-black precipitate with the formation of a dark amber solution. The sample was then cooled to and stored at $-78^{\circ} \mathrm{C}$, whereupon amber, needle-shaped crystals of $\mathrm{F}_{5} \mathrm{Ir}---$ OClF and purple, plate-shaped crystals of $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{IrF}_{6}\right]$ deposited overnight from solution. The aHF solvent was removed under dynamic vacuum at $-78^{\circ} \mathrm{C}$ by pumping through an FEP U-trap maintained at $-196{ }^{\circ} \mathrm{C}$. Crystals of $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ and $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{IrF}_{6}\right]$ that were
suitable for SCXRD structure determinations were selected and mounted at low temperatures on an X-ray diffractometer.
2.6.2. Synthesis of $\left[\mathrm{ClO}_{2}\right]_{2}$ [cyclo- μ - $\left.\left(\mathrm{OIrF}_{4}\right)_{3}\right]$. In a typical reaction, $\mathrm{IrO}_{2}(14.60 \mathrm{mg}$, 0.0651 mmol) was weighed into the main arm of a $1 / 4-\mathrm{in}$. o.d. FEP h -shaped reactor outfitted with a stainless-steel valve and dried for 24 h on a glass vacuum line. Anhydrous HF solvent (ca. 0.5 mL) and ClF_{5} (ca. 0.2 mL) were condensed onto IrO_{2} under static vacuum at $-196{ }^{\circ} \mathrm{C}$. The reaction vessel was then backfilled to a pressure of ca. 1000 torr with N_{2} gas at $-78^{\circ} \mathrm{C}$. Upon warming to RT , gas evolution occurred that originated from solid IrO_{2} at the bottom of the reaction vessel, and a brown-black precipitate simultaneously formed in the solution above IrO_{2} which was likely IrF_{4}. The colorless solution slowly turned an intense dark-brown color that became opaque over a period of ca. 4 h . The sample was allowed to react at room temperature for an additional 4 days and yielded a brown-black supernatant and a brown-black precipitate. The sample was cooled to $-24{ }^{\circ} \mathrm{C}$, and brown-black, needle-shaped crystals of $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- $\left.\mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]$ and purple, plate-shaped crystals of $\left[\mathrm{ClO}_{2}\right]\left[\left[\mathrm{IFF}_{6}\right]\right.$ grew from the solution between -24 and -30 ${ }^{\circ} \mathrm{C}$ over a period of 1 h . Crystals of $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- $\left.\mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]$ and $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{IrF}_{6}\right]$ that were suitable for SCXRD structure determinations were selected and mounted at LT on an Xray diffractometer.
2.7. Noble-Gas Difluoride Complexes of CrOF_{4} and $\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$; $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe}), \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}, \mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF}_{4}$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{M}^{\prime} \mathrm{OF}_{4}\left(\mathbf{M}^{\prime}=\right.$ Mo, W).
2.7.1. $\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$. Tungsten oxide tetrafluoride was weighed into the main arm of a passivated $1 / 4$-in. o.d. FEP h-shaped reactor in a dry box. Anhydrous HF solvent (ca 0.5 mL) and KrF_{2} were condensed into the reaction vessel under static vacuum at $-196{ }^{\circ} \mathrm{C}$ and the vessel was backfilled with ca. 1000 torr N_{2} gas at $-7{ }^{\circ} \mathrm{C}$. The sample was maintained at $-78{ }^{\circ} \mathrm{C}$ for ca. 5 min with periodic agitation, which yielded a flocculant, white precipitate. Upon warming to $-65^{\circ} \mathrm{C}$, the white precipitate dissolved after ca. 10 min with agitation, and the solution was immediately poured into the side arm of the reactor. The side arm was warmed to $-55{ }^{\circ} \mathrm{C}$ for ca. 15 s to effect dissolution and immediately cooled to $-60^{\circ} \mathrm{C}$. Slow cooling of the side arm from -60 to $-66^{\circ} \mathrm{C}$ over ca. 1 h yielded colorless, needle-shaped crystals of $\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$. A Raman spectrum was obtained on the crystals under solid aHF at $-150{ }^{\circ} \mathrm{C}$.
2.7.2. $\left[--\left(\boldsymbol{F}_{4} \mathbf{O M o}\right)\left(\boldsymbol{\mu}_{3}-\boldsymbol{F}\right) \boldsymbol{H}--(\boldsymbol{\mu} \boldsymbol{-} \boldsymbol{F}) \boldsymbol{H}-\right]_{\infty}$ In the dry box, $\mathrm{MoOF}_{4}(\mathrm{ca} .50 \mathrm{mg})$ was weighed into a $1 / 4$-in. o.d. FEP reactor equipped with a Kel-F valve. The reactor was then removed from the dry box and moved to a metal vacuum line where aHF (ca. 0.5 mL) was transferred into the reactor at $-196^{\circ} \mathrm{C}$. The sample was warmed to room temperature for ca. 10 min , whereupon all MoOF_{4} dissolved. Slow cooling of the sample from room temperature to $-60{ }^{\circ} \mathrm{C}$ over ca. 4 h yielded colorless plates of $\left[--\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---(\mu-\right.$ F)H--] $]_{\infty}$. The crystalline samples were isolated by decanting the aHF supernatant at -78 ${ }^{\circ} \mathrm{C}$ into the side arm of the reaction vessel, which was cooled to $-196^{\circ} \mathrm{C}$ and heat-sealed
off under dynamic vacuum. Residual aHF was removed from the crystalline sample under dynamic vacuum at $-78{ }^{\circ} \mathrm{C}$. All crystalline samples described in subsequent subsections were isolated in a similar manner. The attempted synthesis of $\left[--\left(\mathrm{F}_{4} \mathrm{OW}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---(\mu-\right.$ F) $\mathrm{H}--]_{\infty}$ was carried out in a similar manner to the synthesis of $\left[--\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---(\mu-\right.$ F) $\mathrm{H}--]_{\infty}$ using $47.46 \mathrm{mg} \mathrm{WOF}_{4}$ and ca. 0.5 mL aHF in a $1 / 4-\mathrm{in}$. o.d. FEP reactor equipped with a Kel-F valve.
2.7.3. $\mathrm{XeF}_{2} \cdot \mathrm{CrOF}_{4}$. In a typical synthesis, $\mathrm{CrOF}_{4}\left(74.0 \mathrm{mg} ; 0.521 \mathrm{mmol}\right.$) and XeF_{2} $(103.1 \mathrm{mg} ; 0.609 \mathrm{mmol})$ were weighed into an FEP reaction vessel at $-150{ }^{\circ} \mathrm{C}$ in a dry box. The reaction vessel was warmed to ca. $76{ }^{\circ} \mathrm{C}$ for 2 min , whereupon the sample melted and a red vapor attributable to gaseous CrOF_{4} was visible above the melt. Upon melting, pale-red, CrOF_{4}-stained crystals of XeF_{2} (identified by a unit cell determination) sublimed directly above the heated region of the reactor. The molten sample was quenched at $-78{ }^{\circ} \mathrm{C}$ and its LT $\left(-150{ }^{\circ} \mathrm{C}\right)$ Raman spectrum was shown to correspond to $\mathrm{XeF}_{2} \cdot \mathrm{CrOF}_{4}$ and a small amount of excess XeF_{2}.

2.8. Synthesis, Structure, and Bonding of a $\mathrm{Xe}(\mathrm{IV})$ Transition-Metal Coordination

Complex, $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}$---WOF4

2.8.1. \boldsymbol{F}_{3} XeF $_{\boldsymbol{b}}$--- $\boldsymbol{W O F}_{4}$. Crystalline $\mathrm{XeF}_{4}(43.46 \mathrm{mg}, 0.2097 \mathrm{mmol})$ was transferred inside a dry box into a $1 / 4-$ in. o.d. FEP reaction vessel outfitted with a Kel-F valve. Approximately 0.5 mL CFCl 3 solvent was condensed into the reaction vessel at $-196{ }^{\circ} \mathrm{C}$ under static vacuum on a glass vacuum line. The sample was warmed to RT for ca. 5 min with agitation, whereupon approximately half of the crystalline XeF_{4} dissolved. Because crystalline XeF_{4} is only partially soluble in CFCl_{3} at room temperature, the sample was
rapidly quenched to $-196{ }^{\circ} \mathrm{C}$ and warmed to $-78{ }^{\circ} \mathrm{C}$ to precipitate a microcrystalline powder. After two further warming/quenching cycles, the original XeF_{4} sample was converted to a microcrystalline powder. The powdered XeF_{4} under frozen CFCl_{3} was transferred into a dry box and maintained at $-150{ }^{\circ} \mathrm{C}$ while WOF_{4} ($48.09 \mathrm{mg}, 0.1743$ mmol) was added to the reaction vessel. A Kel-F valve was connected to the reaction vessel, which was then slowly warmed to $22^{\circ} \mathrm{C}$ to effect dissolution. Slow gas evolution was observed at this temperature as the colorless solution became pale yellow in color, indicating some oxidative fluorination of CFCl_{3} with the liberation of Xe and Cl_{2} gas had occurred. Slow cooling of the reaction vessel from 22 to $-20^{\circ} \mathrm{C}$ over ca. 1 h led to the formation of colorless, plate-shaped crystals of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ and colorless, blockshaped crystals of XeF_{4} (identified by single-crystal X-ray unit cell determinations). A single crystal of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ having the dimensions $0.050 \times 0.171 \times 0.287 \mathrm{~mm}^{3}$ was selected and mounted (vide infra) for a LT SCXRD determination.
 $0.1963 \mathrm{mmol})$ and $\mathrm{WOF}_{4}(36.50 \mathrm{mg}, 0.1323 \mathrm{mmol})$ were added at $-150{ }^{\circ} \mathrm{C}$ to an FEP reaction vessel inside a dry box. The reaction vessel was closed with a Kel-F valve and the sample was warmed to $\mathrm{ca} .50^{\circ} \mathrm{C}$, whereupon the solids fused and rapid gas evolution ensued. The sample was cooled to room temperature, whereupon the molten mixture solidified to yield a white polycrystalline solid. Upon cooling to $-78{ }^{\circ} \mathrm{C}$, a white solid $\left(\mathrm{WF}_{6}\right)$ formed on the cooled walls of the FEP reaction vessel. The LT Raman spectrum of the solid mixture showed bands due to $\mathrm{FXeF}_{\mathrm{b}}---\mathrm{WOF}_{4}, \mathrm{XeF}_{4}$, and $\mathrm{WF}_{6}(324,328,670$,

673 , and $771 \mathrm{~cm}^{-1}$) consistent with oxidative fluorination of WOF_{4} to WF_{6} and O_{2}, and reduction of $\mathrm{Xe}(\mathrm{IV})$ to $\mathrm{Xe}(\mathrm{II})$.
2.8.3. Attempted Synthesis of $\boldsymbol{F}_{3} \mathbf{X e F}_{\boldsymbol{b}}-$ - WOF $_{4}$ in $\boldsymbol{a H F}$. Approximately 0.5 mL of aHF solvent was transferred into a $1 / 4-$ in o.d. FEP reaction vessel under static vacuum. The reactor was transferred into a dry box, maintained at ca. $-150{ }^{\circ} \mathrm{C}$ using liquid-nitrogen cooled air-rifle shot, and $\mathrm{XeF}_{4}(27.85 \mathrm{mg}, 0.1344 \mathrm{mmol})$ and $\mathrm{WOF}_{4}(45.11 \mathrm{mg}, 0.1635$ $\mathrm{mmol})$ were added. The reaction vessel and contents were warmed to $22^{\circ} \mathrm{C}$ for ca 5 min with agitation, and upon cooling to $-78^{\circ} \mathrm{C}$, a white precipitate formed. The LT $\left(-150{ }^{\circ} \mathrm{C}\right)$ Raman spectrum of the precipitate was recorded under frozen aHF solvent and showed bands due to unreacted XeF_{4} and WOF_{4}. The sample was then allowed to react at room temperature over a period of 6 h followed by cooling to $-78^{\circ} \mathrm{C}$, which yielded crystalline $\mathrm{FXeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ that was identified by LT Raman spectroscopy.

2.8.4. Attempted Syntheses of $\mathrm{F}_{3} \mathrm{XeF}_{b}--\mathrm{MoOF}_{4}$ in CFCl_{3} Solvent and in a Melt. Using

 the synthetic procedure described for $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}, \mathrm{XeF}_{4}(47.45 \mathrm{mg}, 0.2288 \mathrm{mmol})$ and $\mathrm{MoOF}_{4}\left(56.63 \mathrm{mg}, 0.2053 \mathrm{mmol}\right.$) were allowed to react in 0.5 mL of CFCl_{3} solvent in a $1 / 4-$ in. o.d FEP reaction vessel equipped with a Kel-F valve. After warming to $22{ }^{\circ} \mathrm{C}$ with periodic agitation for ca. 15 min , the reaction vessel and contents were cooled to -78 ${ }^{\circ} \mathrm{C}$, whereupon a white solid formed that remained suspended in the solvent. The LT $\left(-150{ }^{\circ} \mathrm{C}\right)$ Raman spectrum of the solid under frozen CFCl_{3} solvent showed bands due to unreacted XeF_{4} and MoOF_{4}, which indicated no reaction had occurred.The direct reaction of XeF_{4} with MoOF_{4} in a melt was also attempted. Xenon tetrafluoride ($59.20 \mathrm{mg}, 0.2856 \mathrm{mmol}$) and $\mathrm{MoOF}_{4}(52.70 \mathrm{mg}, 0.2804 \mathrm{mmol})$ were
weighed out and loaded into a $1 / 4$-in. o.d. FEP reaction vessel at ca. $-150{ }^{\circ} \mathrm{C}$ inside a dry box. The reaction vessel was closed with a Kel-F valve and the solid mixture was warmed to ca. $75^{\circ} \mathrm{C}$, whereupon the solids fused to give a colorless liquid. The sample was then allowed to cool and solidify at $22^{\circ} \mathrm{C}$. The resulting white polycrystalline mass was shown by LT Raman spectroscopy to correspond to a mixture of unreacted XeF_{4} and MoOF_{4}.

 tetrafluoride ($32.30 \mathrm{mg}, 0.1559 \mathrm{mmol}$) and $\mathrm{WOF}_{4}(96.50 \mathrm{mg}, 0.3499 \mathrm{mmol})$ were added at $-150{ }^{\circ} \mathrm{C}$ to an FEP reaction vessel containing ca $0.5 \mathrm{mLCFCl} \mathrm{Cl}_{3}$ inside a dry box. The reaction vessel was closed with a Kel-F valve and allowed to react as previously described to give a mixture of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ and unreacted WOF_{4} (determined from the Raman spectrum of the frozen sample at $-150^{\circ} \mathrm{C}$).2.9. Chromium Oxide Tetrafluoride and Its Reactions with Xenon Hexafluoride; the $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$Salts of the $\left[\mathrm{Cr}^{\mathrm{VI}} \mathrm{OFF}_{5}\right]^{-},\left[\mathrm{Cr}^{\mathrm{V}} \mathrm{OF}_{5}\right]^{2-},\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$, and $\left[\mathrm{Cr}^{\text {IV }} \mathrm{F}_{6}\right]^{2-}$ Anions
2.9.1. $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \boldsymbol{F}_{8}\right] \cdot \mathbf{2 H F}$. Xenon hexafluoride ($56.0 \mathrm{mg}, 0.223 \mathrm{mmol}$) was transferred under static vacuum at $-196^{\circ} \mathrm{C}$ into a fluorine-passivated FEP reaction vessel containing HF-wetted CrOF_{4} (ca. $36 \mathrm{mg}, 0.25 \mathrm{mmol}$) in CFCl_{3} solvent (ca. 0.4 mL). The sample was warmed to room temperature, whereupon CrOF_{4} and XeF_{6} rapidly dissolved to give a clear, colorless solution. Pale yellow-green, block-shaped crystals of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF}$ were grown from the solution at $-78{ }^{\circ} \mathrm{C}$ over a period of 48 h . A single crystal of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF}$ (dimensions, $0.17 \times 0.31 \mathrm{x} 0.55 \mathrm{~mm}^{3}$) was selected and mounted for a LT X-ray crystal structure determination. Amber, block-
shaped crystals of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ were also obtained, as confirmed by unit cell determinations.
2.9.2. $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$. Using a procedure similar to that used for the synthesis of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF}, \mathrm{XeF}_{6}(64.5 \mathrm{mg}, 0.263 \mathrm{mmol})$ and $\mathrm{CrOF}_{4}(\mathrm{ca} .55 \mathrm{mg}, 0.38$ mmol) were combined in aHF solvent (ca. 0.4 mL). The sample was warmed to room temperature, whereupon CrOF_{4} and XeF_{6} rapidly dissolved to give an amber solution. Amber, block-shaped crystals of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ were grown from solution overnight at $-78{ }^{\circ} \mathrm{C}$. A Raman spectrum of the dry crystalline sample was recorded at $-150{ }^{\circ} \mathrm{C}$. A single crystal (dimensions, $0.13 \times 0.17 \times 0.21 \mathrm{~mm}^{3}$) was selected and mounted for a LT X-ray crystal structure determination.
2.10. Syntheses and Structural Characterizations of $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{\mathbf{2 P}^{-}}$and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{\mathbf{2 -}}$ salts.
2.10.1. $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$ (1) and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot \mathbf{4 H F}$ (2). Approximately 0.5 mL of aHF, $17.5 \mathrm{mg}(0.143 \mathrm{mmol})$ of $\mathrm{CrO}_{2} \mathrm{~F}_{2}$, and $90.7 \mathrm{mg}(0.536 \mathrm{mmol})$ of XeF_{6} were condensed at $-196^{\circ} \mathrm{C}$ through an FEP submanifold into a $1 / 4-\mathrm{in}$. o.d. FEP reaction vessel equipped with a sidearm and outfitted with a Kel-F valve. The reaction mixture was warmed to RT and agitated, whereupon the reactants dissolved to give an amber solution. Upon cooling the solution to $-78^{\circ} \mathrm{C}$, a dark amber solid and a small amount (ca. $<5 \%$) of a yellow solid precipitated from solution. The LT Raman spectrum of the solid showed it was a mixture of $\mathbf{1}$ and $\mathbf{3}$, where $\mathbf{1}$ was the dominant component (Figure 10.6). The solution was warmed to RT to dissolve the solids, and amber, block-shaped crystals of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$ (1) and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$ (2) and yellow to amber, block-shaped
crystals of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ (3) (identified by LT Raman spectroscopy, Figure 10.7) grew when the solution was cooled from 22 to $-47^{\circ} \mathrm{C}$ over 6 h . The crystals were isolated by decanting the HF supernatant into the side arm of the reaction vessel at $78{ }^{\circ} \mathrm{C}$. The side-arm and contents were cooled to $-196{ }^{\circ} \mathrm{C}$ and heat-sealed off under dynamic vacuum. Residual HF was removed from the crystalline sample under dynamic vacuum at $-78{ }^{\circ} \mathrm{C}$ by pumping through an FEP U-trap that was maintained at $-196{ }^{\circ} \mathrm{C}$. The LT Raman spectrum of the sample was obtained, and suitable single crystals of $\mathbf{1}$ and $\mathbf{2}$ were mounted on a goniometer for SCXRD structure determinations. Crystals of $\mathbf{3}$ were of poor quality, so another sample was prepared by purposely allowing a mixture of XeF_{6} and $\mathrm{CrO}_{2} \mathrm{~F}_{2}$ in aHF to hydrolyze by exposure to trace amounts of moisture which diffused into the reaction vessel over ca. 7 days at $-78^{\circ} \mathrm{C}$ (vide infra).
2.10.2. $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ (3). A sample was prepared as previously described in Section 2.10.1 using ca. 0.5 mL of aHF, $30.5 \mathrm{mg}(0.250 \mathrm{mmol})$ of $\mathrm{CrO}_{2} \mathrm{~F}_{2}$, and 112.3 $\mathrm{mg}(0.663 \mathrm{mmol})$ of XeF_{6}. The sample was allowed to stand at $-78^{\circ} \mathrm{C}$ for one week, and was then warmed to RT and agitated, to give a amber solution. Light yellow, blockshaped crystals of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ and colorless, block-shaped crystals of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot 1.5 \mathrm{HF}$ (identified by LT SCXRD unit cell determinations) ${ }^{100}$ were grown by slowly cooling the sample from 22 to $-30{ }^{\circ} \mathrm{C}$ over 2 h . The crystals were isolated as previously described and the LT Raman spectrum of the crystalline sample was obtained. A single crystal of $\mathbf{3}$ was selected and mounted for a LT X-ray crystal structure determination.
2.10.3. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \boldsymbol{F}_{11}\right]\left[\mathrm{CrO}_{2} \boldsymbol{F}_{4}\right]$ (4). A mixture of $12.0 \mathrm{mg}(0.098 \mathrm{mmol})$ of $\mathrm{CrO}_{2} \mathrm{~F}_{2}$ and 29.5 mg (0.1202 mmol) of XeF_{6} was obtained by statically subliming individual components into a $1 / 4$-in. o.d. FEP reaction vessel at $-196^{\circ} \mathrm{C}$. The sample was warmed to $22{ }^{\circ} \mathrm{C}$ to give a light red liquid. The sample was placed in a water bath (ca. $50^{\circ} \mathrm{C}$) and crystals of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ were grown by allowing the bath to slowly cool to room temperature overnight. The crystals were isolated as previously described (see Section 2.10.1. and the LT Raman spectrum of the crystalline sample was obtained. Several attempts to grow high-quality crystals of $\mathbf{4}$ yielded twinned crystals. The propensity for crystals of $\mathbf{4}$ to twin is likely due to the packing arrangement in its crystal structure (see Section 10.2.2.2). A single crystal of $\mathbf{4}$ was selected and mounted for a LT X-ray crystal structure determination.

2.11. Group 6 Oxyfluoro-anion Salts of $\left[\mathrm{XeFF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$; Syntheses and Structures of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right](\mathrm{M}=\mathbf{M o}, \mathbf{W}),\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]\left(\mathrm{M}^{\prime}=\mathbf{C r}, \mathbf{M o}, \mathbf{W}\right)$,
 $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$

2.11.1. $\left[\mathrm{Xe}_{2} \boldsymbol{F}_{11}\right]\left[\mathrm{CrOF} \boldsymbol{F}_{5}\right]$. Inside a dry box, $\mathrm{CrOF}_{4}(20.20 \mathrm{mg}, 0.1403 \mathrm{mmol})$ was loaded into a passivated $1 / 4-\mathrm{in}$. FEP reactor equipped with a Kel-F valve and maintained at -150 ${ }^{\circ} \mathrm{C}$ by copper-plated steel air rifle shot that had been previously cooled inside the cryowell of a dry box. The reaction vessel was then attached to a glass vacuum manifold, cooled to $-196{ }^{\circ} \mathrm{C}$, and ca. 0.45 mL of $\mathrm{CF}_{2} \mathrm{ClCF}_{2} \mathrm{Cl}$ was condensed into the reaction vessel under static vacuum. The reaction vessel was backfilled with dry N_{2} (ca. 800 torr), closed, connected to a FEP XeF_{6} storage vessel through an FEP submanifold on a high-vacuum metal vacuum line. Xenon hexafluoride ($76.4 \mathrm{mg}, 0.311 \mathrm{mmol}$) was sublimed under static
vacuum into the reaction vessel at $-196{ }^{\circ} \mathrm{C}$. The reactor and contents were slowly warmed to $-78{ }^{\circ} \mathrm{C}$ and agitated for ca. 5 min to dissolve XeF_{6} and CrOF_{4}. The sample was immediately quenched at $-196^{\circ} \mathrm{C}$ and subsequently warmed to $-78^{\circ} \mathrm{C}$, whereupon an orange-colored precipitate formed. The LT Raman spectrum $\left(-150{ }^{\circ} \mathrm{C}\right)$ of the precipitate was identical to that previously reported for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ (see Chapter 9), which was obtained by reaction of XeF_{6} and CrOF_{4} between -78 and $18{ }^{\circ} \mathrm{C}$. The sample was slowly warmed to $-28{ }^{\circ} \mathrm{C}$, whereupon the orange precipitate dissolved, with agitation, after ca. 10 min . Dark purple, trapezoid-shaped crystals of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ (1) that were suitable for a single-crystal X-ray structure determination were grown by slowly cooling the reaction vessel and contents from -28 to $-43{ }^{\circ} \mathrm{C}$ over ca. 2 h and were isolated by decanting the $\mathrm{CF}_{2} \mathrm{ClCF}_{2} \mathrm{Cl}$ supernatant at $-78{ }^{\circ} \mathrm{C}$ into the side arm of the reaction vessel, which was subsequently cooled to $-196{ }^{\circ} \mathrm{C}$ and heat-sealed off under dynamic vacuum. Residual $\mathrm{CF}_{2} \mathrm{ClCF}_{2} \mathrm{Cl}$ was removed from the crystalline sample under dynamic vacuum at $-78{ }^{\circ} \mathrm{C}$, after which a Raman spectrum was recorded on the crystalline product at $-150{ }^{\circ} \mathrm{C}$. All crystalline samples described in subsequent subsections were isolated in a similar manner. A single crystal of $\mathbf{1}$ (dimensions, 0.212 x $0.385 \times 0.560 \mathrm{~mm}^{3}$) was selected and mounted (vide infra) for a LT single-crystal X-ray structure determination.
2.11.2. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$. Approximately 0.5 mL of aHF was condensed under static vacuum into a passivated $1 / 4$-in o.d. FEP reactor equipped with a Kel-F valve, which was then cooled to and maintained at ca. $-150{ }^{\circ} \mathrm{C}$ inside a dry box and loaded with CrOF_{4} $(15.20 \mathrm{mg}, 0.1056 \mathrm{mmol})$. Xenon hexafluoride $(60.2 \mathrm{mg}, 0.245 \mathrm{mmol})$ was then sublimed
under static vacuum into the reaction vessel at $-196{ }^{\circ} \mathrm{C}$, which was warmed to $-78{ }^{\circ} \mathrm{C}$ with agitation, but showed no evidence of reaction after ca. 5 min . The reaction vessel was slowly warmed from -78 to $0^{\circ} \mathrm{C}$, whereupon all material dissolved to give a light red solution. Violet, trapezoid-shaped crystals of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$ (2) and colorless, blockshaped crystals of XeF_{6} (confirmed by a unit cell determination) were grown by slowly cooling the reaction vessel from 0 to $-53{ }^{\circ} \mathrm{C}$ over ca. 3 h . A single crystal of $\mathbf{2}$ (dimensions, $0.178 \times 0.306 \times 0.379 \mathrm{~mm}^{3}$) was selected and mounted (vide infra) for a LT single-crystal X-ray structure determination.
2.11.3. $\left[\mathrm{Xe}_{2} \boldsymbol{F}_{11}\right]\left[\mathrm{MOF}_{5}\right](\boldsymbol{M}=\boldsymbol{M o}, \boldsymbol{W})$. Inside a dry box, $\mathrm{MOF}_{4}(\mathrm{Mo}, 30.5 \mathrm{mg}, 0.162$ $\mathrm{mmol} ; \mathrm{W}, 38.7 \mathrm{mg}, 0.140 \mathrm{mmol}$) was loaded into a passivated $1 / 4-\mathrm{in}$. FEP reactor equipped with a Kel-F valve. The reaction vessel was cooled to $-196^{\circ} \mathrm{C}$ and ca. 0.5 mL aHF was condensed into the reaction vessel under static vacuum. Xenon hexafluoride (Mo, $45.2 \mathrm{mg}, 0.184 \mathrm{mmol} ; \mathrm{W}, 88.7 \mathrm{mg}, 0.361 \mathrm{mmol}$) was then sublimed under static vacuum into the reaction vessel at $-196^{\circ} \mathrm{C}$. The samples were slowly warmed from -196 to $-20(\mathrm{Mo})$ and $0{ }^{\circ} \mathrm{C}(\mathrm{W})$, whereupon all material dissolved to give colorless solutions. Colorless, block-shaped crystals of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$ (3) and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ (4) were grown by slowly cooling the solutions from -20 to $-53{ }^{\circ} \mathrm{C}(\mathrm{Mo})$ and from 0 to $-31{ }^{\circ} \mathrm{C}$ (W) over ca. 3 and 6 h , respectively. Single crystals of $\mathbf{3}$ and 4 having the dimensions $0.148 \times 0.158 \times 0.284 \mathrm{~mm}^{3}(\mathrm{Mo})$ and $0.052 \times 0.121 \times 0.141 \mathrm{~mm}^{3}(\mathrm{~W})$ were selected and mounted (vide infra) for LT single-crystal X-ray structure determinations.
2.11.4. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right](\boldsymbol{M}=\mathbf{M o}, \boldsymbol{W})$. The syntheses of $\mathbf{5}$ and $\mathbf{6}$ followed a procedure similar to that described for $\mathbf{3}$ and $\mathbf{4}$ using $48.0 \mathrm{mg}(0.255 \mathrm{mmol})$ of MoOF_{4} and 19.2 mg
$(0.078 \mathrm{mmol})$ of XeF_{6} for the synthesis of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right](5)$ and $36.7 \mathrm{mg}(0.133$ $\mathrm{mmol})$ of WOF_{4} and $51.1 \mathrm{mg}(0.208 \mathrm{mmol})$ of XeF_{6} for the synthesis of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right.$] (6). The samples were slowly warmed from -196 to $-30(\mathrm{Mo})$ and $-35{ }^{\circ} \mathrm{C}$ (W), whereupon all material dissolved to give colorless solutions. Colorless, block-shaped crystals of $\mathbf{5}$ and $\mathbf{6}$ were grown by slow cooling of the solutions from -30 to $-55^{\circ} \mathrm{C}$ and from -35 to $-45^{\circ} \mathrm{C}$, respectively, over ca. 4 h . Single crystals of 5 and $\mathbf{6}$ having the dimensions $0.071 \times 0.099 \times 0.157 \mathrm{~mm}^{3}(\mathrm{Mo})$ and $0.080 \times 0.291 \times 0.382 \mathrm{~mm}^{3}(\mathrm{~W})$, were selected and mounted (vide infra) for LT single-crystal X-ray structure determinations.
2.11.5. $\left.\left[\mathrm{XeF}_{5}\right] / \mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$. The formation of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$ (7) resulted from a synthetic procedure similar to that described for 4 using $67.8 \mathrm{mg}(0.246 \mathrm{mmol})$ of WOF_{4} and $104.6 \mathrm{mg}(0.426 \mathrm{mmol})$ of XeF_{6}. The sample was stored for one week at -78 ${ }^{\circ} \mathrm{C}$, during which time small amounts of $\mathrm{H}_{2} \mathrm{O}$ diffused through the walls of the FEP reaction vessel. The sample was then slowly warmed to room temperature, whereupon all material dissolved to give a colorless solution. Colorless, block-shaped crystals of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$ (7) were grown by slowly cooling the solution from room temperature to $-40^{\circ} \mathrm{C}$ over ca. 3 h . A single crystal of 7 having the dimensions 0.059 x $0.137 \times 0.301 \mathrm{~mm}^{3}$ was selected and mounted (vide infra) for a LT single-crystal X-ray structure determination.
2.11.6. Attempted Syntheses of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{MOF}_{5}\right](M=\mathrm{Mo}, \boldsymbol{W})$ in CFCl_{3}. Xenon hexafluoride ($\mathrm{Mo}, 17.8 \mathrm{mg}, 0.07 \mathrm{mmol} ; \mathrm{W}, 46.4 \mathrm{mg}, 0.19 \mathrm{mmol}$) was sublimed into passivated $1 / 4-$ in. FEP reaction vessels equipped with Kel-F valves. The reaction vessels were then attached to a glass vacuum manifold, cooled to $-196^{\circ} \mathrm{C}$, and ca. 0.55 mL
quantities of CFCl_{3} onto XeF_{6} under static vacuum. The vessels were transferred into a dry box through a cryowell, where they were maintained at $-150{ }^{\circ} \mathrm{C}$ and loaded with $\mathrm{MOF}_{4}(\mathrm{Mo}, 13.5 \mathrm{mg}, 0.07 \mathrm{mmol} ; \mathrm{W}, 49.7 \mathrm{mg}, 0.18 \mathrm{mmol}$). The reaction mixtures were slowly warmed outside the dry box from -196 to $-15(\mathrm{Mo})$ and $23^{\circ} \mathrm{C}(\mathrm{W})$ and dissolved to give colorless solutions. Samples were cooled to $-196{ }^{\circ} \mathrm{C}$ and subsequently warmed to $-78^{\circ} \mathrm{C}$, whereupon a white powder precipitated from solution. The LT Raman spectra of these powders were obtained at $-150^{\circ} \mathrm{C}$ in their frozen aHF solutions. The samples were then briefly warmed to room temperature to effect dissolution and colorless, block-shaped crystals of 6 were grown by slow cooling of the $\mathrm{XeF}_{6} / \mathrm{WOF}_{4}$ sample from -30 to $-45{ }^{\circ} \mathrm{C}$ over ca. 5 h , which were characterized by an X-ray unit cell determination.

2.12. X-ray Crystallography

2.12.1. Low-Temperature Crystal Mounting

Because most compounds investigated in this work were thermally unstable and/or moisture sensitive, their crystals were mounted at low temperature using the apparatus depicted in Figure 2.5. The reaction vessels containing the samples were first cut open below the Kel-F valve while maintaining the sample at $-78{ }^{\circ} \mathrm{C}$. The sample was then quickly dumped into the aluminum trough of the crystal mounting apparatus under a stream of dry nitrogen, precooled $\left(-104 \pm 2{ }^{\circ} \mathrm{C}\right)$ by the regulated passage of dry nitrogen gas flow through a 5 - L dewar filled with liquid N_{2}. The temperature inside the trough was measured using a copper-constantan thermocouple positioned in the sample region of the trough. Crystals were then selected using a stereo-zoom microscope and mounted on a
nylon cryoloop (MiTiGen MicroMounts ${ }^{\mathrm{TM}}$) using perfluorinated polyether oil (Ausimont Inc., Fomblin Z25) which served as an adhesive upon freezing at low temperature. The cryloop was fitted to a magnetic base and affixed to the end of a magnetic wand (Hampton Research). The magnetic wand could be fastened to an adjustable support stage such that samples could be inspected in the dry nitrogen cold stream under the stereozoom microscope. The mounted crystal and magnetic head were quickly (ca. 5 to 10 s) transferred from the crystal mounting apparatus to the magnetic mount of the goniometer by means of a cryotongs (Hampton Research) which had been precooled in liquid N_{2} prior to use. The crystals were maintained at low temperature on the goniometer head by a cold N_{2} gas flow provided by a Molecular Structure Corporation cryostat system.

Figure 2.5. Low-temperature crystal mounting apparatus. (A) Nitrogen inlet. (B) Glass sleeve for ambient nitrogen flow. (C) Liquid N_{2} dewar. (D) Adjustable support stage. (E) Silvered dewar (glass). (F) Aluminum trough. (G) Stereo-zoom microscope. Reproduced with permission from Leblond, N. Ph. D. Thesis, McMaster University, Hamilton, Canada, 1998.

2.12.2. Data Collection

2.12.2.1. Bruker SMART APEX II Diffractometer

With the exception of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right], \quad\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$, and $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$, the crystallographic data acquired for this Thesis was collected using a Bruker SMART APEX II diffractometer equipped with Oxford Cryosystems low-temperature cryostream accessory that provided a stream of cold, gaseous N_{2} for low-temperature data collection. The instrument was controlled by a Cryostream Controller 700 (Oxford Cryosystems). The Bruker SMART APEX II X-ray diffractometer is equipped with an APEX II 4K CCD (charge-coupled device) area detector and a triple-axis goniometer that is controlled by the APEX II Graphical User Interface (GUI) software. ${ }^{144}$ A Bruker Triumph curved crystal monochromator was used with a Moка $_{\alpha}(\lambda=0.71073 \AA)$ radiation source for all compounds. Diffraction data collection at $-173{ }^{\circ} \mathrm{C}$ consisted of ω - and ϕ-scans collected at 0.5° intervals. The crystal-to-detector distance was 4.960 cm and the data collection was carried out in 512×512 pixel mode using 2×2 pixel binning. The raw data sets were processed by use of either the APEX II ${ }^{144}$ or APEX III GUI software. ${ }^{145,146}$ Scaling of the diffraction data was done using the SADABS ${ }^{146}$ or TWINABS ${ }^{147}$ programs.

2.12.2.2. STOE IPDS II X-ray diffractometer

Crystals of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right],\left[\mathrm{O}_{2} \mathrm{Br}\left(\mathrm{FXeF}_{2}\right]\left[\mathrm{AsF}_{6}\right]\right.$, and $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ were characterized on a STOE IPDS II X-ray diffractometer equipped with Dectris Pilatus detector and a triple-axis goniometer that was controlled by X-Area software. A Мока $(\lambda=0.71073 \AA)$ radiation source was used for all compounds, and diffraction data collection at $-173{ }^{\circ} \mathrm{C}$ consisted of Ω-scans collected at 0.5° intervals. The crystal-to-detector distance was 6.000 cm . The raw STOE data sets were converted by use of
di2bruker software into Bruker image files which were then processed by the APEX III GUI software. ${ }^{145}$ Scaling of the diffraction data was done using the SADABS ${ }^{146}$ or TWINABS ${ }^{147}$ programs.

2.12.2.3. Solution and Refinement of Structures

The XPREP program ${ }^{148}$ was used to confirm unit cell dimensions and the crystal lattice. The crystal structures were solved with $S H E L X T^{149}$ and refined with SHELXL ${ }^{150}$ programs, within the Olex2 software. ${ }^{151}$ The space group choice was confirmed using Platon. ${ }^{152}$ The final refinement was obtained by introducing anisotropic thermal parameters and the recommended weightings for all of the atoms. The maximum electron densities in the final difference Fourier maps were most often located near heavy atoms, i.e., Kr, Xe, W, etc.

The unit cell of $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$ contains two voids $\left(26.2 \AA^{3}\right.$ and $8.9 \mathrm{e}^{-}$each) which are occupied by disordered HF molecules. Attempts to model the fluorine atoms of the HF molecules using an atomistic disorder model led to nonpositive F atom thermal parameters because their positions in the crystal lattice are not well defined. Instead, the disordered HF molecules were modelled using the PLATON SQUEEZE function for disordered solvents embedded in crystal lattices, as implemented in OLEX2, prior to refinement.

The crystal structures of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{SbF}_{6}\right]$ and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right]$ were refined as twocomponent twins using the twin laws $-10001000-1$ (BASF, 0.50 (2)) and -100 $01000-1$ (BASF $0.03(2)$), respectively. Attempts to model the elongated F-atom ellipsoids in the structural solution of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right]$ by means of an atomistic disorder model resulted in non-positive F-atom thermal parameters and F-atom ellipsoids that could not be split.

The crystal structure of $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ was refined as a merohedral twin using the twin law -10001000-1 with a BASF value of 0.498 (14). The crystal structure of $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ was refined as a merohedral twin using the twin law -1000 $1000-1$ with a BASF value of $0.0029(5)$.

The crystal structure of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ was refined as a merohedral twin using the twin law ($-10000-10-10$) with a BASF value of $0.0693(8)$. The crystal structure of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ was refined as a merohedral twin using the twin law (-10000-10-10) with a BASF value of 0.1718(9).

The crystal structure of $\mathrm{XeF}_{2} \cdot \mathrm{CrOF}_{4}$ was refined as a two-component twin (BASF, 0.0044). The hydrogen atoms of $\left[--\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---(\mu-\mathrm{F}) \mathrm{H}--\right]_{\infty}$ were placed at positions derived from a difference map.

The crystal structure of $\mathrm{F}_{3} \mathrm{XeF}---\mathrm{WOF}_{4}$ was refined as a non-merohedral twin with a BASF value of $0.3678(14)$.

The crystal structure of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$ was refined as a non-merohedral twin with a BASF value of 0.328 (3). The crystal structure of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ was refined as a merohedral twin using the twin law ($\begin{array}{llllllll}1 & 0 & 1 & 0 & -1 & 0 & 0 & 0\end{array}$-1) with a BASF value of 0.499 (3).

The crystal structure of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ was refined as a two-component twin (BASF, 0.4070). The crystal structure of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$ was refined as a merohedral twin using the twin law $-1010-10001$ with a BASF value of $0.0038(3)$.

2.13. Raman Spectroscopy

Raman spectra were recorded on a Bruker RFS 100 FT Raman spectrometer using $1064-\mathrm{nm}$ excitation, 300 mW laser power, and $\pm 0.5 \mathrm{~cm}^{-1}$ resolution. The spectra were recorded at $-150{ }^{\circ} \mathrm{C}$ in the macrosample chamber of the spectrometer as previously described ${ }^{73}$ using 1028 scans on samples contained in FEP reaction vessels. Product distributions in aHF and CFCl_{3} solvents were periodically monitored by LT Raman spectroscopy. Reaction mixtures were quenched at $-196^{\circ} \mathrm{C}$ and subsequently warmed to $-78^{\circ} \mathrm{C}$, whereupon white solids precipitated from solution. Raman spectra were either recorded on the dry solids or on solids under frozen solvent.

2.14. Quantum-Chemical Calculations

All basis sets were obtained online from the EMSL Basis Set Exchange (https://bse.pnl.gov/bse/portal). ${ }^{153}$ Quantum-chemical calculations (density functional theory) were carried out by using the program Gaussian 09^{154} for geometry optimizations, vibrational frequencies, and vibrational band intensities. All geometries were fully optimized by using analytical gradient methods. The program GaussView ${ }^{155}$ was used to visualize the vibrational mode descriptions and MEPS isosurface contours. Natural Bond Orbital analyses were carried out by use of NBO program version 6.0. ${ }^{156}$ AIM and ELF analyses were carried out by use of the Multiwfn package ${ }^{157}$ and the formatted G09 wavefunction files as input. ELF basins were also analyzed by use of the program Chimera. ${ }^{158}$

The gas-phase geometries used for EDA and ETS-NOCV analyses were optimized using the Amsterdam Density Functionals (ADF) package in Software for Chemistry and Materials (SCM, version 2016.106). ${ }^{159}$ The calculations were carried
out at the DFT level using the hybrid form of PBE (25% HF exchange) by ErnzerhofScuseria ${ }^{160}$ and by Adamo-Barone ${ }^{161}$ with the triple- ζ double-polarization all-electron basis set (TZ2P). Relativistic effects were considered by use of the zero-order regular approximation (ZORA) ${ }^{162}$ and the GrimmeD4 correction was used to account for dispersion effects. ${ }^{163}$ The computational results were visualized using the ADF Graphical User Interface (SCM).

CHAPTER 3

Syntheses and Characterizations of the Mixed Noble-Gas Compounds,

Adapted with permission from: Bortolus, M. R.; Mercier, H. P. A.; Nyugen, B.;
Schrobilgen, G. J. Angew. Chem. Int. Ed. 2021, 60, 23678-23686.

3.1. Introduction

Xenon compounds exhibit a wide range of formal oxidation states: $0,+1 / 2,+2,+4,+6$, and +8 , but krypton compounds are presently limited to the +2 -oxidation state. All known krypton compounds are derived from $\mathrm{KrF}_{2},{ }^{17}$ an endothermic compound $\left(\Delta H_{f}\right.$ $=60.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$, gas phase, $\left.93{ }^{\circ} \mathrm{C}\right)^{56,57}$ and potent oxidative fluorinating agent that is capable of oxidizing Xe to XeF_{6} at (RT). ${ }^{17}$

Although $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}$salts have been synthesized and structurally characterized at low temperatures (LT) by single-crystal X-ray diffraction (SCXRD), ${ }^{17,48,58,59}$ Raman
 analogue, $[\mathrm{FKrFXeF}]^{+}$, had not been reported. The isolation and structural characterization of mixed $\mathrm{Kr}^{I I} / \mathrm{Xe}^{\mathrm{II}}$ and $\mathrm{Kr}^{\mathrm{II}} / \mathrm{Xe}^{\mathrm{IV}}$ noble-gas compounds pose a formidable synthetic challenge owing to the ability of $\mathrm{KrF}_{2},[\mathrm{KrF}]^{+}$, and $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$to oxidize $\mathrm{Xe}^{\mathrm{II}}$ and $\mathrm{Xe}^{\mathrm{IV}}$ to $\mathrm{Xe}^{\mathrm{VI}}$. The $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{n} \mathrm{AsF}_{6}\right](n=1,2)$ complexes ${ }^{73}$ are the only reported examples of mixed noble-gas compounds in which the KrF_{2} ligands are bound to $\mathrm{Xe}^{\mathrm{VI}}$ by means of weak electrostatic interactions, i.e., σ-hole bonds. ${ }^{164}$

The present work describes the synthesis and structural characterization of the first mixed $\mathrm{Kr}^{\text {II }} / \mathrm{Xe}^{\text {II }}$ noble-gas compound, $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$, and its redox decomposition in aHF to known mixed $\mathrm{Kr}^{\mathrm{II}} / \mathrm{Xe}^{\mathrm{VI}}$ complexes and the first $\mathrm{Kr}^{\mathrm{II} / \mathrm{Xe}^{\mathrm{IV}} \text { complexes. }}$

3.2. Results and Discussion

3.2.1. Syntheses

[FKrFXeF][AsF $\boldsymbol{F}_{6} \cdot \mathbf{0} \cdot \mathbf{5 K r} \boldsymbol{F}_{2} \cdot \mathbf{2 H F}$ (1). The reaction of $\left[\mathrm{XeF}^{2}\right]\left[\mathrm{AsF}_{6}\right]$ with KrF_{2} in aHF solvent at $-78{ }^{\circ} \mathrm{C}$ yielded [FKrFXeF][AsF6], which cocrystallized with HF and KrF_{2} between -40 and $-78^{\circ} \mathrm{C}$ to give $\mathbf{1}$ [Eq. (3.3)]. Compound $\mathbf{1}$ was stable at $-78{ }^{\circ} \mathrm{C}$ in aHF but underwent redox decomposition at $-60^{\circ} \mathrm{C}$ in aHF in the presence of excess KrF_{2}.

$$
\begin{equation*}
[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right]+0.5 \mathrm{KrF}_{2}+2 \mathrm{HF} \rightleftharpoons\left[\mathrm{FKrFXeF}^{2}\right]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF} \tag{3.3}
\end{equation*}
$$

Redox Decomposition of 1 in aHF. The redox decomposition of $\mathbf{1}$ was periodically monitored by LT Raman spectroscopy to identify reaction products, semiquantitatively determine their relative distributions, and to determine reaction pathways for the redox decomposition of $\mathbf{1}$. The decomposition of $\mathbf{1}$ in the presence of excess KrF_{2} in aHF solution was monitored for two samples; (a) -78 to $0^{\circ} \mathrm{C}$, and (b) -65 to $22{ }^{\circ} \mathrm{C}$. Both samples were warmed in successive stages (vide infra) for varying periods of time followed by quenching to $-196{ }^{\circ} \mathrm{C}$ to halt decomposition. The quenched samples were then warmed to $-78{ }^{\circ} \mathrm{C}$, whereupon aHF melted and finely divided white solids precipitated from their respective solutions. Samples were then mechanically agitated at $-78^{\circ} \mathrm{C}$ to homogenize the solid mixtures, allowed to settle for ca. 1 min , and quenched again to $-196{ }^{\circ} \mathrm{C}$ before acquiring their Raman spectra at $-150{ }^{\circ} \mathrm{C}$. Raman frequencies and assignments are provided in Tables A1.1 and A1.2 of Appendix 1.

Sample (a): A 5:1 molar ratio of KrF_{2} : $[\mathrm{XeF}]\left[\mathrm{AsF}_{6}\right]$ was dissolved at $-78{ }^{\circ} \mathrm{C}$, agitated for ca. 5 min , and shown by LT Raman spectroscopy to contain unreacted
$[\mathrm{XeF}]\left[\mathrm{AsF}_{6}\right],{ }^{48} \mathrm{KrF}_{2},{ }^{165}$ and to exhibit a new set of bands that was assigned to $\mathbf{1}$. Warming the solution from -78 to $-42^{\circ} \mathrm{C}$ led to consumption of $[\mathrm{XeF}]\left[\mathrm{AsF}_{6}\right]$, a set of new bands that was assigned to $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right] \cdot n \mathrm{KrF}_{2},{ }^{46}$ and a dominant set of bands due to $\mathbf{1}$. Upon warming to $-38^{\circ} \mathrm{C}$, the band intensities of KrF_{2} and $\mathbf{1}$ decreased, the intensities of the $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right] \cdot n \mathrm{KrF}_{2}$ bands increased, and three sets of new bands appeared that were assigned to $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right) 2 \cdot \mathrm{XeF}_{4}$ (2), $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$ (4), and XeF_{4} $(6)^{20}$ Further warming from -38 to $-10^{\circ} \mathrm{C}$ led to decreased band intensities for $\mathbf{1}$ and increased band intensities for 2, 4, $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right] \cdot n \mathrm{KrF}_{2},{ }^{46}$ and $\mathbf{6}$, where the $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right] \cdot n \mathrm{KrF}_{2}$ bands were the most intense. At $-20^{\circ} \mathrm{C}$, weak bands assigned to $\left[\mathrm{O}_{2}\right]\left[\mathrm{AsF}_{6}\right]^{166}$ were also observed (Table A1.1, footnote [a]). Upon warming from -10 to $0{ }^{\circ} \mathrm{C}$, the $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right] \cdot n \mathrm{KrF}_{2}$ and $\mathbf{6}$ bands decreased in intensity and those of $\mathbf{2}$ and 4 increased in intensity, where the bands of $\mathbf{4}$ were the most intense.

Sample (b): The reaction of an 8:1 molar ratio of $\mathrm{KrF}_{2}:[\mathrm{XeF}]\left[\mathrm{AsF}_{6}\right]$ in aHF at $-65^{\circ} \mathrm{C}$ for ca. 15 min yielded a mixture of $[\mathrm{XeF}]\left[\mathrm{AsF}_{6}\right], \mathrm{KrF}_{2}$, and $\mathbf{1}$. Further reaction at $-55^{\circ} \mathrm{C}$ for ca. 15 min resulted in consumption of $[\mathrm{XeF}]\left[\mathrm{AsF}_{6}\right]$, increased intensities for bands assigned to $\mathbf{1}$, and the appearance of new bands assigned to $\mathbf{2 , 4}$, $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right] \cdot n \mathrm{KrF}_{2}$, and $\mathbf{6}$. Warming of the sample to $0^{\circ} \mathrm{C}$ for ca. 5 min resulted in complete reaction of $[\mathrm{XeF}]\left[\mathrm{AsF}_{6}\right]$, a significant decrease in the band intensities of $\mathbf{1}$, and increased band intensities for $\mathbf{2}, \mathbf{4},\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right] \cdot n \mathrm{KrF}_{2}$, and $\mathbf{6}$. Warming from $0{ }^{\circ} \mathrm{C}$ to RT for ca. 15 min resulted in complete decomposition of $\mathbf{1}$ and partial decomposition of 2 with the formation of [$\left.\mathrm{F}_{5} \mathrm{Xe}\right]\left[\mathrm{AsF}_{6}\right],{ }^{73}$ the $\mathrm{Kr}^{\mathrm{II}} / \mathrm{Xe}^{\mathrm{VI}}$ complexes, $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{n} \mathrm{AsF}_{6}\right](n=1,2){ }^{73}$ and minor amounts of $\left[\mathrm{O}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (Table A1.1, footnote [a]). ${ }^{166} \mathrm{~A}$ weak band at $485 \mathrm{~cm}^{-1}$ was assigned to the new $\mathrm{Kr}^{\mathrm{II}} / \mathrm{Xe}^{\mathrm{VI}}$ complex, $\left[\left(\mathrm{F}_{5} \mathrm{Xe}\right)_{2}(\mu-\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{2}\right]$ (vide infra). The sample was then warmed to RT for ca. 10
\min and slowly cooled to $-50^{\circ} \mathrm{C}$ over a period of ca. 4 h , whereupon colorless, blockshaped crystals grew. The crystals and a white, polycrystalline solid were isolated upon removal of the aHF solvent under dynamic vacuum at $-78{ }^{\circ} \mathrm{C}$. The LT Raman spectrum of the dry solid mixture exhibited bands due to the aforementioned crystals, $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right],{ }^{73}\left[\mathrm{~F}_{5} \mathrm{Xe}\right]\left[\mathrm{AsF}_{6}\right]$ (7), and 6 (confirmed by single-crystal unit cell determinations), and a set of intense bands that were assigned to polycrystalline $\left[\left(\mathrm{F}_{5} \mathrm{Xe}\right)_{2}(\mu-\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{2}\right]$ (Table A1.2). Although $\left[\left(\mathrm{F}_{5} \mathrm{Xe}\right)_{2}(\mu-\mathrm{FXeF})\left(\mathrm{AsF}_{6}\right)_{2}\right]^{64} \mathrm{had}$ been previously synthesized and characterized, the $\mathrm{Kr}^{\mathrm{II}}$ analogue, $\left[\left(\mathrm{F}_{5} \mathrm{Xe}\right)_{2}(\mu-\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{2}\right]$, was unknown.

Reaction pathways for the redox decomposition of $\mathbf{1}$ in aHF solvent in the presence of excess KrF_{2} are proposed in Eqs. (3.4-3.9) that are based on LT Raman spectroscopic studies of the decompositions of samples (a) and (b) between -78 and $22^{\circ} \mathrm{C}$:
$2[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}+3 \mathrm{KrF}_{2} \xrightarrow{-60^{\circ} \mathrm{C}}$

$$
\begin{equation*}
2\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]+2 \mathrm{XeF}_{4}+2 \mathrm{Kr}+4 \mathrm{HF} \tag{3.4}
\end{equation*}
$$

$$
\begin{align*}
& 2\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]+\mathrm{XeF}_{4} \stackrel{-60^{\circ} \mathrm{C}}{\rightleftharpoons}\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right)_{2} \cdot \mathrm{XeF}_{4} \tag{3.5}\\
& {\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]+n \mathrm{KrF}_{2} \stackrel{-60^{\circ} \mathrm{C}}{\rightleftharpoons}\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right] \cdot n \mathrm{KrF}_{2}} \tag{3.6}\\
& \mathrm{XeF}_{4}+\mathrm{KrF}_{2} \stackrel{-60 \text { to }^{\circ} \mathrm{C}}{\rightleftharpoons} \mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2} \tag{3.7}\\
& {\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]+\mathrm{XeF}_{4} \stackrel{22{ }^{\circ} \mathrm{C}}{\longrightarrow}\left[\mathrm{~F}_{5} \mathrm{Xe}\right]\left[\mathrm{AsF}_{6}\right]+\mathrm{Kr}+\mathrm{KrF}_{2}} \tag{3.8}\\
& {\left[\mathrm{~F}_{5} \mathrm{Xe}\right]\left[\mathrm{AsF}_{6}\right]+n \mathrm{KrF}_{2} \stackrel{22{ }^{\circ} \mathrm{C}}{\rightleftharpoons}\left[\mathrm{~F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{n} \mathrm{AsF}_{6}\right](n=0.5,1,2)} \tag{3.9}
\end{align*}
$$

The $\mathrm{XeF}_{4} \cdot \mathrm{NgF}_{2}$ adducts were also synthesized by direct reaction of XeF_{4} and NgF_{2} (see Appendix 1).

3.2.2. X-ray Crystallography

Details of the data collection parameters and other crystallographic information for $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}(\mathbf{1}),\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right) 2 \cdot \mathrm{XeF}_{4}(\mathbf{2}),\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{SbF}_{6}\right](\mathbf{3})$, $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$ (4), $\mathrm{XeF}_{4} \cdot \mathrm{XeF}_{2}$ (5), XeF_{4} (6), and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right]$ (7) are summarized in Table 3.1. Experimental geometric parameters are given for $\mathbf{1 - 7}$ in Table 3.2 and Tables A1.3-A1.7. The structural units and packing diagrams for the crystal structures of $\mathbf{1 - 7}$ are provided in Figures 3.1-3.3 and Figures A1.1-A1.9. The structure of $\mathbf{3}$ was re-determined at $-173{ }^{\circ} \mathrm{C}$ to obtain more precise structural parameters to enable comparison of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$with $[\mathrm{FKrFXeF}]^{+}$in (1), and $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$in (2). The structure of $\mathbf{6}$ was also re-determined at $-173{ }^{\circ} \mathrm{C}$ to provide a better comparison with cocrystallized XeF_{4} in 2, 4, and 5. The structures of $\mathbf{6}$ and $\mathbf{7}$ are discussed in Appendix 1.
$[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{Kr}_{2} \cdot 2 \mathrm{HF}$ (1), $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF} \mathrm{F}_{6}\right]\right)_{2} \cdot \mathrm{XeF}_{4}(2)$, and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{SbF}_{6}\right]$ (3). The structures of $\mathbf{1 , 2}$, and $\mathbf{3}$ consist of discrete $[\mathrm{FKrFXeF}]^{+}$or $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}(\mathrm{Ng}=\mathrm{Kr}$ or Xe) cations and $\left[\mathrm{MF}_{6}\right]^{-}(\mathrm{M}=\mathrm{As}(\mathbf{1}, \mathbf{2}), \mathrm{Sb}(\mathbf{3}))$ anions that are cocrystallized with $\mathrm{KrF}_{2} \mathbf{(1)}$) or XeF_{4} (2). The shortest cation-anion distances (1, Xe---F $\mathrm{F}_{\mathrm{As}}, 3.124(6) \AA ; \mathrm{Kr}-$ $--\mathrm{F}_{\mathrm{As}}, 3.086(2) \AA$; 2, Kr--- $\mathrm{F}_{\mathrm{As}}, 2.986(3) ; \mathbf{3}, \mathrm{Xe}---\mathrm{F}_{\mathrm{Sb}}, 3.077(3) \AA$) and the shortest $\mathrm{Ng}--$ -F distances (1, Xe---F $\mathrm{F}_{\mathrm{KrF} 2}, 3.198(2) \AA$; 2, $\mathrm{Kr}^{---\mathrm{F}_{\mathrm{XeF}},} 3.271(4) \AA$) are shorter than but close to the sums of the Ng and F van der Waals radii $\left(\mathrm{Kr} \cdots \mathrm{F}, 3.49 \AA ;{ }^{167} 3.71 \AA \AA^{168}\right.$ $\mathrm{Xe} \cdots \mathrm{F}, 3.63 \AA \AA^{-167} 3.52 \AA^{168}$). The geometric parameters of KrF_{2} in $\mathbf{1}$ (Table A1.3) are equal to $\alpha-\mathrm{KrF}_{2},{ }^{46}$ and those of XeF_{4} in 2 (Table A1.4) are similar to XeF_{4} (6). The bond lengths and bond angles of $\left[\mathrm{MF}_{6}\right]^{-}$in 2 and $\mathbf{3}$ (Tables A1.4, A1.5) are comparable to other $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{MF}_{6}\right]$ salts, e.g., monoclinic $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right],{ }^{59}$ $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right] \cdot[\mathrm{KrF}]\left[\mathrm{AsF}_{6}\right],{ }^{46}\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{SbF}_{6}\right] \cdot \mathrm{KrF}_{2},{ }^{46}$ and $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right)_{2} \cdot \mathrm{KrF}_{2} .{ }^{46}$ The
same is true for the $\left[\mathrm{AsF}_{6}\right]^{-}$anion in $\mathbf{1}$, however, it is positionally disordered (Figure A1.1b).

The terminal $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ bonds of $[\mathrm{FKrFXeF}]^{+}$in $\mathbf{1}(\mathrm{Kr}, 1.806(4) \AA ; \mathrm{Xe}, 1.882(4)$ \AA) are significantly shorter than the $\mathrm{Ng}--\mathrm{F}_{\mathrm{b}}$ bridge bonds $(\mathrm{Kr}, 2.055(4) \AA$; Xe, $2.172(4) \AA$), consistent with the greater covalent characters for the terminal $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ bonds as inferred from resonance Structures III-V (see Section 1.2.1.). The $\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Kr}--\mathrm{F}_{\mathrm{b}}$ bonds are significantly more polarized than the $\mathrm{Kr}-\mathrm{F}$ bonds of $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{n} \mathrm{AsF}_{6}\right](n=1,2)\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}: 1.8393(12)-1.8505(15) \AA\right.$ § $\mathrm{Kr}---\mathrm{F}_{\mathrm{b}}: 1.9167(15)-$ $1.9367(9) \AA),{ }^{73}$ which is consistent with the greater covalent character of the $\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}$ bond in $\mathbf{1}$ and contrasts with the electrostatic $\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}$ bonds in $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{n} \mathrm{AsF}_{6}\right]$ (n $=1,2)(2.550(2)-2.576(2) \AA){ }^{73} \mathrm{The} \mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Kr}---\mathrm{F}_{\mathrm{b}}$ bond lengths of $\mathbf{1}$ are similar to those of $\mathbf{2}\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}, 1.793(3)\right.$ and $1.797(3) \AA ; \mathrm{Kr}---\mathrm{F}_{\mathrm{b}}, 2.054(3)$ and $\left.2.069(3) \AA\right)$, and lie within the $\mathrm{Kr}-\mathrm{F}$ bond length ranges of other $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$salts $\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}, 1.780(7)-\right.$ $\left.1.805(5) \AA ; \mathrm{Kr}---\mathrm{F}_{\mathrm{b}}, 2.027(5)-2.065(4) \AA\right),{ }^{17,46}$ but are significantly longer and shorter, respectively, than in intimately ion-paired $[\mathrm{KrF}]^{+}$salts $\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}, 1.765(3)-\right.$ $\left.1.774(6) \AA ; \mathrm{Kr}---\mathrm{F}_{\mathrm{b}}, 2.090(6)-2.140(3) \AA\right) .{ }^{17,46}$

The $\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$ bond in $\mathbf{1}$ is somewhat shorter than in $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$salts (1.901(4)$1.929(6) \AA$) and lies within the range of $\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$ bonds that have been reported for intimately ion-paired $[\mathrm{XeF}]^{+}$salts $(1.854(4)-1.913(7) \AA) . .^{48,58}$ This indicates a greater degree of $[\mathrm{XeF}]^{+}$character in $[\mathrm{FKrFXeF}]^{+}$than in $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$, in accordance with the enhanced covalent characters of the $\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Kr}---\mathrm{F}_{\mathrm{b}}$ bonds of $[\mathrm{FKrFXeF}]^{+}$relative to its $\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}$ bonds. These trends are also observed in the QTAIM, NBO, MEPS, and ELF analyses of $[\mathrm{FKrFXeF}]^{+}$and $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}$(see Computational Results).

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table 3.1. Summary of crystal data and refinement results for $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}(1),\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right)_{2} \cdot \mathrm{XeF}_{4}(2)$, $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{SbF}_{6}\right]$ (3), $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$ (4), $\mathrm{XeF}_{4} \cdot \mathrm{XeF}_{2}$ (5), XeF_{4} (6), and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right]$ (7)

Compound	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Space group	Pbam	$P 2_{1} / n$	$C c$	$C m c e$	$P 2_{1} / c$	$P 2_{1} / n$	$A m a 2$
$a(\AA)$	$11.7093(5)$	$7.7079(13)$	$14.542(4)$	$12.1734(8)$	$6.4389(5)$	$4.9474(3)$	$9.796(2)$
$b(\AA)$	$15.0296(6)$	$9.1056(16)$	$8.129(3)$	$10.4910(7)$	$7.2692(6)$	$5.7792(4)$	$13.272(2)$
$c(\AA)$	$5.5794(2)$	$13.723(3)$	$9.971(3)$	$8.7562(6)$	$6.2293(5)$	$5.7872(4)$	$11.578(2)$
$\beta\left({ }^{\circ}\right)$	90	$95.366(7)$	$130.421(9)$	90	$92.577(3)$	$100.279(2)$	90
$V\left(\AA^{3}\right)$	$981.90(7)$	$958.9(3)$	$897.4(5)$	$1118.26(13)$	$291.27(4)$	$162.81(2)$	$1505.2(4)$
Z	4	2	4	8	2	2	8
$M_{\mathrm{W}}\left(\mathrm{g} \mathrm{mol}^{-1}\right)$	521.92	1034.34	555.35	329.10	376.60	207.30	415.22
$\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	3.531	3.582	4.111	3.910	4.294	4.229	3.665
$T\left({ }^{\circ} \mathrm{C}\right)$	-173	-173	-173	-173	-173	-173	-173
$\mu\left(\mathrm{~mm}^{-1}\right)$	13.678	14.581	10.592	14.057	11.665	10.498	9.103
$R_{1}^{[\mathrm{a}]}$	0.0442	0.0467	0.0244	0.0382	0.0181	0.0098	0.0356
$w R_{2}^{[\mathrm{b}]}$	0.1261	0.1177	0.0524	0.1409	0.0516	0.0249	0.0759

$[\mathrm{a}] R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \Sigma\left|F_{\mathrm{o}}\right| \cdot[\mathrm{b}] w R_{2}=\left[\Sigma\left(w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right) / \Sigma\left(w\left(F_{\mathrm{o}}^{2}\right)^{2}\right)\right]^{1 / 2}$.

Figure 3.1. (a) The structural unit in the crystal structure of $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$ (1), where one of two orientations of the disordered [AsF6] ${ }^{-}$anion is shown (see Figure A1.1). Thermal ellipsoids are drawn at the 50% probability level. (b) The gas-phase optimized geometry of [FKrFXeF] ${ }^{+}$(B2PLYP-D3/Def2-TZVPD).

The $\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}$ bond of $\mathbf{1}$ is somewhat longer than those of $\mathbf{3}(2.152(3) \AA, 2.155(3) \AA)$ and intermediate with respect to other $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$salts $(2.139(7)-2.194(4) \AA),{ }^{17,48,58}$ but shorter and more covalent than the $\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}$ bonds of ion-paired $[\mathrm{XeF}]^{+}$salts (2.204(7)-2.343(4) $\AA)^{48,58}$

The $\mathrm{Kr}---\mathrm{F}_{\mathrm{b}}--\mathrm{Xe}\left(131.8(2)^{\circ}\right)$ angle of $[\mathrm{FKrFXeF}]^{+}$is notably smaller than the $\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}--\mathrm{Xe}$ angles of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$salts $\left(139.8(8)^{\circ}-164.3(3)^{\circ}\right),{ }^{17,48,58,59}$ and is intermediate with respect to the $\mathrm{Kr}---\mathrm{F}_{\mathrm{b}}---\mathrm{Kr}$ angles of $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$salts $\left(126.0(2)^{\circ}-\right.$ $\left.142.5(3)^{\circ}\right) .{ }^{17,46}$ The variations of $\mathrm{Ng}---\mathrm{F}_{\mathrm{b}}--\mathrm{Ng}$ angles are consistent with their low experimental and calculated gas-phase vibrational frequencies (see Raman Spectroscopy) and their associated deformabilities, which are influenced by crystal packing. ${ }^{46,48,59}$ The $\mathrm{F}_{\mathrm{b}}---\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ angles of $\mathbf{1 - 3}\left(\mathbf{1}, \mathrm{Kr}, 177.1(2)^{\circ}\right.$ and $\mathrm{Xe}, 178.8(2)^{\circ} ; \mathbf{2}$, $\mathrm{Kr}, 177.0(1)^{\circ}$ and $178.3(1)^{\circ} ; \mathbf{3}, \mathrm{Xe}, 176.3(1)^{\circ}$ and $\left.179.1(1)^{\circ}\right)$ display small, but significant deviations from linearity that are consistent with other $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}$ salts. ${ }^{17,46,48,59}$ Similar near-linear $\mathrm{F}_{\mathrm{b}}---\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ angles were reproduced by the calculated gas-phase geometries of $[\mathrm{FKrFXeF}]^{+}$and $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}$(see Computational Results).

Figure 3.2. The structural unit in the crystal structure of $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right)_{2} \cdot \mathrm{XeF}_{4}$ (2). Thermal ellipsoids are drawn at the 50% probability level.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table 3.2. Experimental and calculated geometric parameters for the cations of $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}(\mathbf{1})$, $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right)_{2} \cdot \mathrm{XeF}_{4}(\mathbf{2})$, and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{SbF}_{6}\right](\mathbf{3})^{[\mathrm{a}]}$

		Exptl			Calcd ${ }^{\text {b }}$	
	$\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$(2)	$[\mathrm{FKrFXeF}]^{+}$(1)	$\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}(3)$	$\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}\left(\mathbf{2}^{\prime}\right)$	$[\mathrm{FKrFXeF}]^{+}\left(\mathbf{1}^{\prime}\right)$	$\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}\left(3^{\prime}\right)$
Bond Lengths (\AA)						
$\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$	$\left.\begin{array}{l} 1.797(3) \\ 1.793(3) \end{array}\right\}$	$1.806(4)$		1.797	1.795	
$\mathrm{Kr}---\mathrm{F}_{\mathrm{b}}$	$\left.\begin{array}{l} 2.054(3) \\ 2.069(3) \end{array}\right\}$	2.055(4)		2.092	2.075	
$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$		1.882(4)	$\left.\begin{array}{l}1.924(3) \\ 1.924(3)\end{array}\right\}$		1.912	1.914
Xe---Fb		2.172(4)	$\left.\begin{array}{l} 2.155(3) \\ 2.152(3) \end{array}\right\}$		2.232	2.213
Bond Angles (deg)						
$\mathrm{F}_{\mathrm{t}}-\mathrm{Kr}---\mathrm{F}_{\mathrm{b}}$	$\left.\begin{array}{l} 178.3(1) \\ 177.0(1) \end{array}\right\}$	177.1(2)		177.95	178.49	
$\mathrm{F}_{\mathrm{t}}-\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}$		178.8(2)	$\left.\begin{array}{l} 179.1(1) \\ 176.3(1) \end{array}\right\}$		178.18	179.07
$\mathrm{Kr}--\mathrm{F}_{\mathrm{b}}---\mathrm{Kr}$	131.8(2)			142.12		
$\mathrm{Kr}---\mathrm{F}_{\mathrm{b}}---\mathrm{Xe}$		131.8(2)			149.89	
Xe---F---Xe			158.3(2)			162.58

[a] Geometric parameters for $\left[\mathrm{AsF}_{6}\right]^{-}$and $\left[\mathrm{SbF}_{6}\right]^{-}$are given in Tables A1.3-A1.5. [b] B2PLYP-D3/Def2-TZVPD (F, Kr, Xe).
$\mathrm{XeF}_{4} \cdot \mathrm{Ng}_{2}(\mathrm{Ng}=\mathrm{Kr}(4), \mathrm{Xe}(5))$. A low-precision, RT SCXRD structure of $\mathbf{5}$ was previously reported ${ }^{92}$ without an accompanying structural diagram. The LT, highprecision SCXRD structures of cocrystals 4 (Figures 3.3, A1.4a, and A1.5a) and 5 (Figures A1.4b, and A1.5b) are not isotypic and are comprised of XeF_{4} and NgF_{2} molecules that are weakly coordinated through electrostatic, σ-hole type fluorinebridge interactions, where the shortest $\mathrm{Xe}^{\mathrm{IV}}-\mathrm{-}-\mathrm{F}$ contact distances in $4(3.219(1) \AA)$ and 5 (3.083(2) \AA) are close to the sums of the Xe and F van der Waals radii (vide supra). The XeF_{4} and NgF_{2} molecules of $\mathbf{4}$ and $\mathbf{5}$ both form columns along the c-axes and alternating layers of XeF_{4} and NgF_{2} molecules along the a - and b-axes of their unit cells (Figure A1.5).

The $\mathrm{Xe}^{\mathrm{IV}}-\mathrm{F}$ bond lengths in 4 (1.946(2)-1.950(2) \AA) are equal to those of XeF_{4} in 6 (1.9449(6), $1.9509(6) \AA$), whereas the $\mathrm{Xe}^{\mathrm{IV}}-\mathrm{F}$ bonds in 5 (1.937(1)$1.9412(9) \AA$) are somewhat shorter than those of 4 and 6 . There are two crystallographically nonequivalent XeF_{4} molecules in the structural unit of 4 . The Xe atom of one XeF_{4} molecule lies on a special position and has four symmetry-related long $\mathrm{Xe}^{\mathrm{IV}}---\mathrm{F}_{\mathrm{Kr}}$ contacts (3.083(2) \AA) with four neighboring KrF_{2} molecules and two symmetry-related long $\mathrm{Xe}^{\mathrm{IV}}---\mathrm{F}_{\mathrm{Xe}}$ contacts (3.508(2) \AA) with two adjacent XeF_{4} molecules $\left(\mathrm{CN}_{\mathrm{XeIV}}=4+6\right.$, Figure 3.3). The Xe atom of the second XeF_{4} molecule has four symmetry-related long $\mathrm{Xe}^{\mathrm{IV}}---\mathrm{F}_{\mathrm{Kr}}$ contacts $(3.367(2) \AA)$ with four neighboring KrF_{2} molecules, and four symmetry-related long $\mathrm{Xe}^{\mathrm{IV}}---\mathrm{F}_{\mathrm{Xe}}$ contacts (3.341(2) \AA) with two neighboring XeF_{4} molecules $\left(\mathrm{CN}_{\mathrm{XeIV}}=4+8\right.$, Figure A1.4a).

The $\mathrm{Kr}-\mathrm{F}$ bonds of $\mathbf{4}(1.922(2) \AA)$ are somewhat longer than those of $\alpha-\mathrm{KrF}_{2}$ $(1.894(5) \AA)^{46}$ due to long $\mathrm{Xe}^{\mathrm{IV}}---\mathrm{F}_{\mathrm{Kr}}$ contacts $(2 \times 3.083(2) \AA)$, which polarize these bonds. In contrast, the $\mathrm{Xe}^{\mathrm{II}}-\mathrm{F}$ bonds of $5(1.9940(9) \AA$) are equal to those of
crystalline $\mathrm{XeF}_{2}(1.999(4) \AA)^{48}$ due to the less polarizing, longer $\mathrm{Xe}^{\mathrm{IV}}---\mathrm{F}_{\text {XeII }}$ contacts of $5(2 \times 3.219(1) \AA)$.

Figure 3.3. The coordination environment around $\mathrm{Xe}_{(1)} \mathrm{F}_{4}$ in the crystal structure of $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$ (4). Thermal ellipsoids are drawn at the 50% probability level. Diagrams showing the coordination environments around the $\mathrm{Xe}_{(2)} \mathrm{F}_{4}$ molecule of 4 (Figure A1.4a) and the XeF_{4} molecule of $\mathrm{XeF}_{4} \cdot \mathrm{XeF}_{2}$ (5) (Figure A1.4b) are provided in Appendix 1.

3.2.3. Raman Spectroscopy

The factor-group analysis of $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$ (1) and vibrational assignments of $\left[\mathrm{AsF}_{6}\right]^{-}$are provided in Appendix 1 (Figures A1.10- A1.12 and Table A1.8) along with those of $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right) 2 \cdot \mathrm{XeF}_{4}$ (2) (Figures A1.13- A1.16 and Table A1.9), $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$ (4) (Figures A1.17-S19, and Table A1.10), and $\left[\left(\mathrm{F}_{5} \mathrm{Xe}\right)_{2}(\mu-\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{2}\right]$ (Figure A1.20 and Table A1.11).

The LT Raman spectrum of $\mathbf{1}$ is shown in Figure 3.4. Spectral assignments for the $[\mathrm{FKrFXeF}]^{+}$cation were made by comparison with the calculated gas-phase vibrational frequencies, mode displacements, and Raman intensities of the energyminimized geometry of $[\mathrm{FKrFXeF}]^{+}\left(\mathbf{1}^{\prime}\right.$, Table 3.3). The vibrational assignments for $[\mathrm{FKrFXeF}]^{+}$were also aided by comparison with the experimental and calculated vibrational frequencies of the related $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}$cations (see Computational Results). Overall, the vibrational frequency trends are well reproduced by the calculations.

All vibrational bands of $[\mathrm{FKrFXeF}]^{+}$are split into two components that are attributed to vibrational mode coupling within the crystallographic unit cell, i.e., factor-group splitting. The origin of these splittings was verified by a factor-group analysis that is based on the X-ray crystal structure of $\mathbf{1}$ and was carried out using the "correlation method" ${ }^{169}$ (Figure A1.10).

In addition to factor-group splitting, the calculated vibrational displacements of gas-phase $[\mathrm{FKrFXeF}]^{+}$reveal significant intra-ionic vibrational coupling between the $\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$ stretching modes and the $\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}$ and $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$ stretching modes, where similar couplings have been observed for $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+} .{ }^{17,48,59}$ The $v\left(N g-\mathrm{F}_{\mathrm{t}}\right)$ and $v\left(\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}\right)$ modes each in-phase and out-of-phase couple to give a total of four stretching modes. The coupled $v\left(\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}\right)$ stretches occur at significantly higher frequencies than the coupled $v\left(\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}\right)$ stretches, which is consistent with their relative $\mathrm{Ng}-\mathrm{F}$ bond lengths and formal bond orders deduced from resonance Structures III-V and NBO analyses (see Computational Results). Thus, the in-phase coupled mode, $\left[v\left(\mathrm{Kr}_{\mathrm{r}}-\mathrm{F}_{\mathrm{t}}\right)+v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\right)\right]$, occurs at higher frequency (exptl, $598 / 607 \mathrm{~cm}^{-1}$; calcd, 613 $\left.\mathrm{cm}^{-1}\right)$ than the out-of-phase coupled mode, $\left[v\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}\right)-v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\right)\right]\left(\right.$ exptl, $558 / 562 \mathrm{~cm}^{-1}$; calcd, $\left.595 \mathrm{~cm}^{-1}\right)$. The observed and calculated frequencies of the $\left[v\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}\right) \pm v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\right)\right]$
modes are intermediate with respect to those of the $\left[v\left(N g-F_{t}\right) \pm v\left(\mathrm{Ng}^{\prime}-\mathrm{F}_{\mathrm{t}}\right)\right]$ modes of $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$(exptl, 594-610 and 555-570 cm^{-1}; calcd, 616 and $589 \mathrm{~cm}^{-1}$) and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$ (exptl, 589-596 and $570-578 \mathrm{~cm}^{-1}$; calcd, 610 and $600 \mathrm{~cm}^{-1}$). The in-phase coupled $\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}$ stretching mode, $\left[v\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}\right)+v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right)\right]$, occurs at lower frequency (exptl, $304 / 308$; calcd, $247 \mathrm{~cm}^{-1}$) than its out-of- phase counterpart, $\left[v\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}\right)-v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right)\right]$ (exptl, $448 / 452 \mathrm{~cm}^{-1}$; calcd, $422 \mathrm{~cm}^{-1}$). The observed and calculated frequencies of the coupled $\left[v\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}\right) \pm v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right)\right]$ modes are also intermediate with respect to the $\left[v\left(\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}\right) \pm v\left(\mathrm{Ng}^{\prime}-\mathrm{F}_{\mathrm{b}}\right)\right]$ modes of $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$(exptl, 330-358 and 437-462 cm^{-1}; calcd, 280 and $426 \mathrm{~cm}^{-1}$) and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$(exptl, 243-275 and $400-420 \mathrm{~cm}^{-1}$; calcd, 200 and $\left.416 \mathrm{~cm}^{-1}\right) .{ }^{17,48,59}$

The $\delta\left(\mathrm{F}_{\mathrm{t}} \mathrm{NgF}_{\mathrm{b}}\right)$ bending modes occur at much lower frequencies and are predicted to be weaker in intensity. The in-plane $\delta\left(\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}\right)_{\text {i.p. }}$ and $\delta\left(\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}\right)_{\text {i.p. }}$. bends couple in-phase (exptl, 160/162; calcd, $139 \mathrm{~cm}^{-1}$) and out-of-phase (exptl, 181/183; calcd, $158 \mathrm{~cm}^{-1}$), as do the out-of-plane $\delta\left(\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}\right)_{\text {o.o.p. }}$ and $\delta\left(\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}\right)_{\text {o.o.p. }}$ bends (i.p.: exptl, 172/174; calcd, $146 \mathrm{~cm}^{-1}$; o.o.p.: exptl, 187/191; calcd, $199 \mathrm{~cm}^{-1}$). These frequencies are comparable to those observed and calculated for $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$(exptl, 158$190 \mathrm{~cm}^{-1}$; calcd, 163, 166, 164, $203 \mathrm{~cm}^{-1}$) and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$(exptl, 154-182 cm^{-1}; calcd, $\left.132,139,140,180 \mathrm{~cm}^{-1}\right) .{ }^{17,48,59}$

The $\delta\left(\mathrm{KrF}_{\mathrm{b}} \mathrm{Xe}\right.$) bending mode occurs at lowest frequency (calcd, $30 \mathrm{~cm}^{-1}$), and could not be observed. The calculated frequency is comparable to and higher than those calculated for $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}\left(36 \mathrm{~cm}^{-1}\right)$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}\left(15 \mathrm{~cm}^{-1}\right)$, respectively.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Figure 3.4. Raman spectrum of $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$ (1) recorded under frozen aHF at $-150{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. The symbols denote $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right](\S)$ and $\mathrm{XeF}_{4}(\ddagger)$ contaminant formed by redox decomposition of $\mathbf{1}, \mathrm{FEP}$ sample tube bands $\left({ }^{*}\right)$, and an instrumental artifact (\dagger).

Table 3.3. Experimental Raman frequencies of $[\mathrm{FKrFXeF}]^{+}$in [FKrFXeF$]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$ (1) and calculated vibrational frequencies, intensities, and assignments for $[\mathrm{FKrFXeF}]^{+}\left(\mathbf{1}^{\prime}\right)$

Expt ${ }^{[\mathrm{a}, \mathrm{b}]}$	Calcd ${ }^{[a, c, d]}$	Assgnts ${ }^{[\mathrm{e}]}$
$\begin{aligned} & 607(100) \\ & 598(75)^{[f]} \end{aligned}$	613(202)[7]	$v_{1}\left(\mathrm{~A}^{\prime}\right), v\left(\mathrm{Kr}-\mathrm{F}_{t}\right)+v\left(\mathrm{Xe}-\mathrm{F}^{\prime}{ }^{\prime}\right)$
$\begin{aligned} & 562(45) \\ & 558(\mathrm{sh}) \end{aligned}$	595(15)[194]	$v_{2}\left(A^{\prime}\right), v\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}\right)-v\left(\mathrm{Xe}-\mathrm{F}^{\prime}{ }^{\prime}\right)$
$\begin{aligned} & 452(\mathrm{sh}) \\ & 448(5) \end{aligned}$	422(23)[608]	$v_{3}\left(\mathrm{~A}^{\prime}\right), v\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}\right)-v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right)$
$\begin{aligned} & 308(\mathrm{sh}) \\ & 304(10) \end{aligned}$	247(9)[16]	$v_{4}\left(\mathrm{~A}^{\prime}\right), v\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}\right)+v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right)$
$\begin{aligned} & 191(8) \\ & 187(\mathrm{sh}) \end{aligned}$	199(<1)[12]	$v_{8}\left(\mathrm{~A}^{\prime \prime}\right), \delta\left(\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}\right)_{\text {o.o.p. }}-\delta\left(\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}\right)_{\text {o.o.p. }}$
$\begin{aligned} & 183(15)^{[f]} \\ & 181(18) \end{aligned}$	158(4)[2]	$v_{5}\left(\mathrm{~A}^{\prime}\right), \delta\left(\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}\right)_{\text {i.p. }}-\delta\left(\mathrm{F}^{\prime} \mathrm{XeF}_{\mathrm{b}}\right)_{\text {i.p. }}$
$\begin{aligned} & 173(13)^{[f]} \\ & 171(\mathrm{sh}) \end{aligned}$	146(2)[2]	$v_{9}\left(\mathrm{~A}^{\prime \prime}\right), \delta\left(\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}\right)_{\text {o.o.p. }}+\delta\left(\mathrm{F}^{\prime} \mathrm{XeF}_{\mathrm{b}}\right)_{\text {o.o.p. }}$
$\begin{aligned} & 162(10) \\ & 160(\mathrm{sh})^{[f]} \end{aligned}$	139(2)[1]	$v_{6}\left(\mathrm{~A}^{\prime}\right), \delta\left(\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}\right)_{\text {i.p. }}+\delta\left(\mathrm{F}^{\prime} \mathrm{XeF}_{\mathrm{b}}\right)_{\text {i.p. }}$
	$30(3)[<0.1]$	$v_{7}\left(\mathrm{~A}^{\prime}\right), \delta\left(\mathrm{KrF}_{\mathrm{b}} \mathrm{Xe}\right)$

[a] Frequencies are given in cm^{-1}. [b] Values in parentheses denote relative Raman intensities. Abbreviations denote shoulder (sh). The Raman spectrum was recorded under frozen aHF in an FEP sample tube at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. [c] B2PLYP-D3/Def2-TZVPD (F, Kr, Xe). [d] Values in parentheses and square brackets denote calculated Raman intensities $\left(\AA^{4} \mathrm{amu}^{-1}\right)$ and infrared intensities $\left(\mathrm{km} \mathrm{mol}^{-1}\right)$, respectively. [e] Assignments are for the energy-minimized geometry of gas-phase [FKrFXeF$]^{+}\left(C_{\mathrm{s}}\right)$. Abbreviations denote stretch (v), bend (δ), in-plane (i.p.), out-of-plane (o.o.p.), terminal fluorine (F_{t}), bridging fluorine (F_{b}). [f] The band overlaps with a $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]$ band.

3.2.4. Computational Results

Quantum-chemical calculations were used to assess the bonding of $[\mathrm{FKrFXeF}]^{+}\left(\mathbf{1}^{\prime}\right)$, $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}\left(\mathbf{2}^{\prime}\right)$, and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}\left(\mathbf{3}^{\prime}\right)$. The NgF_{2} molecules and $[\mathrm{NgF}]^{+}$cations were also calculated for comparison. Among the levels tested (Tables A1.12-A1.15), the B2PLYP-D3/Def2-TZVPD (F, Kr, Xe) level of theory gave the best agreement with experiment.

The NBO, QTAIM, ELF, and MEPS analyses were also carried out, with a fuller discussion of the QTAIM and ELF analyses given in Appendix 1 (Tables A1.16- A1.19 and Figures A1.21- A1.31).

3.2.4.1. Calculated Geometries

The calculated gas-phase geometries of $\mathbf{1 '}^{\prime}, \mathbf{2 '}^{\prime}$, and $\mathbf{3 '}^{\mathbf{\prime}}$ reproduce the V-shaped experimental geometries.

The calculated $\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}\left[1.797\right.$ (1'), 1.795 (2') \AA] and $\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\left[1.912\right.$ ($\left.\mathbf{1}^{\prime}\right), 1.914$ (3') $\left.\AA\right]$ bonds are significantly shorter than their respective $\mathrm{Kr}---\mathrm{F}_{\mathrm{b}}[2.075$ (1'), 2.092 (2') \AA] and $\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}\left[2.232\left(\mathbf{1}^{\prime}\right), 2.213\left(\mathbf{3}^{\prime}\right) \AA\right.$] bonds, in accordance with their crystal structures (Table 3.2). The bond length trends, $\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}\left(\mathbf{1}^{\prime}\right)<\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\left(\mathbf{1}^{\prime}\right)$ and $\mathrm{Kr}---\mathrm{F}_{\mathrm{b}}\left(\mathbf{1}^{\prime}\right)<\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}\left(\mathbf{1}^{\prime}\right)$, agree with experiment and follow the relative covalent radii of Kr and Xe . Other bond length trends are also reproduced: $\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}\left(\mathbf{1}^{\prime}\right) \geq \mathrm{Kr}-\mathrm{F}_{\mathrm{t}}\left(\mathbf{2}^{\prime}\right), \mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\left(\mathbf{1}^{\prime}\right)<\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\left(\mathbf{3}^{\prime}\right), \mathrm{Kr}--\mathrm{F}_{\mathrm{b}}\left(\mathbf{1}^{\prime}\right) \approx$ $\mathrm{Kr}--\mathrm{F}_{\mathrm{b}}\left(\mathbf{2}^{\prime}\right), \mathrm{Xe}---\mathrm{F}_{\mathrm{b}}\left(\mathbf{1}^{\prime}\right) \geq \mathrm{Xe}---\mathrm{F}_{\mathrm{b}}\left(\mathbf{3}^{\prime}\right)$.

The poorer agreement between the calculated and experimental $\mathrm{Ng}---\mathrm{F}_{\mathrm{b}}--\mathrm{Ng}$ angles is related to their low calculated $\delta\left(\mathrm{NgF}_{\mathrm{b}} \mathrm{Ng}\right)$ bending frequencies (Tables A1.12A1.13) and their high deformabilities, which render them susceptible to crystal packing. ${ }^{48,59}$ Although comparisons of calculated and experimental $\mathrm{Ng}---\mathrm{F}_{\mathrm{b}}--\mathrm{Ng}$ angles are complicated by the deformabilities of these angles, the calculated $\mathrm{Kr}---\mathrm{F}_{\mathrm{b}}--\mathrm{Kr}$ and $\mathrm{Kr}--\mathrm{F}_{\mathrm{b}}---\mathrm{Xe}$ angles are very similar, but smaller than the $\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}--\mathrm{Xe}$ angles $\left[149.89^{\circ}\right.$ $\left.\left(\mathbf{1}^{\prime}\right), 142.12^{\circ}\left(\mathbf{2}^{\prime}\right), 162.58^{\circ}\left(3^{\prime}\right)\right]$.

The small deviations of the calculated $\mathrm{F}_{\mathrm{r}}-\mathrm{Ng}---\mathrm{F}_{\mathrm{b}}$ angles from linearity well reproduce the experimental deviations [178.49 and $178.18^{\circ}\left(\mathbf{1}^{\prime}\right)$, $177.5^{\circ}\left(\mathbf{2}^{\prime}\right), 179.07^{\circ}$
$\left.\left(\mathbf{3}^{\prime}\right)\right]$. Thus, the small deviations of these angles are not solely a consequence of crystal packing.

3.2.4.2. Natural Bond Orbital (NBO) Analyses

The NAO analyses (Table A1.16) show that the $\mathrm{Ng}, \mathrm{F}_{\mathrm{t}}$, and F_{b} atoms of $\mathbf{1}^{\prime}, \mathbf{2}^{\prime}$, and $\mathbf{3}^{\prime}$ have NPA charge distributions, Wiberg valences, and Wiberg bond indices that are consistent with resonance Structures III-V of $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}$(See Section 1.2.1. of the Introduction).

The Kr and Xe charges of $\mathbf{1 '}^{\prime}\left(\mathrm{Kr}, 1.144\right.$; Xe , 1.341), 2' (1.143), and $\mathbf{3 '}^{\prime}$ (1.343) are very similar to those of $[\mathrm{NgF}]^{+}(\mathrm{Kr}, 1.166 ; \mathrm{Xe}, 1.348)$ and are somewhat more positive than in $\mathrm{NgF}_{2}(\mathrm{Kr}, 1.071 ; \mathrm{Xe}, 1.276)$ (Table A1.17). The F_{t} atom charges of $\mathbf{1}^{\prime}\left(\mathrm{F}_{\mathrm{t}}(\mathrm{Kr})\right.$, $\left.-0.330 ; \mathrm{F}_{\mathrm{t}}(\mathrm{Xe}),-0.475\right)$ are nearly equal to those of $\mathbf{2}^{\prime}(-0.323), \mathbf{3}^{\prime}(-0.480)$ and to the average F atom charges of NgF_{2} and $[\mathrm{NgF}]^{+}(\mathrm{Kr},-0.351 ; \mathrm{Xe}-0.493)$. The F_{b} atom charge of $\mathbf{1}^{\prime}(-0.679)$ is the average (-0.682) of the F_{b} atom charges in $\mathbf{2}^{\prime}(-0.639)$ and $\mathbf{3}^{\prime}$ (-0.725).

The Ng valences of $\mathbf{1}^{\prime}(\mathrm{Kr}, 1.040 ; \mathrm{Xe}, 0.934)$ are equal to those of $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}(\mathrm{Kr}$, 1.039; $\mathrm{Xe}, 0.931$) and, in turn, to the average Ng valences of $[\mathrm{NgF}]^{+}$and $\mathrm{NgF}_{2}(\mathrm{Kr}, 1.041$; $\mathrm{Xe}, 0.947)$. The $\mathrm{F}_{\mathrm{t}(\mathrm{Kr})}(0.909)$ and $\mathrm{F}_{\mathrm{t}(\mathrm{Xe})}(0.792)$ valences of $\mathbf{1}^{\prime}$ are nearly equal to those of $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}(\mathrm{Kr}, 0.914 ; \mathrm{Xe}, 0.786)$, whereas the $\mathrm{F}_{\mathrm{b}(\mathrm{Ng})}$ valence of $\mathbf{1}^{\prime}(0.591)$ is the mean of the $\mathrm{F}_{\mathrm{b}(\mathrm{Kr})}(0.658)$ and $\mathrm{F}_{\mathrm{b}(\mathrm{Xe})}(0.516)$ valences in $\mathbf{2}^{\prime}$ and $\mathbf{3}^{\prime}$ (0.587). The $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}$ Wiberg bond indices of $[\mathrm{NgF}]^{+}, \mathrm{NgF}_{2}, \mathbf{1}^{\prime}, \mathbf{2}^{\mathbf{\prime}}$, and $\mathbf{3}^{\mathbf{\prime}}$ show that $\mathrm{Kr}-\mathrm{F}$ bonds are consistently more covalent than $\mathrm{Xe}-\mathrm{F}$ bonds, in accordance with the higher electronegativity of krypton. ${ }^{170,171}$

3.2.4.3. Atoms in Molecules (AIM) Analyses

In general, indicators of bond covalency are provided by several AIM properties evaluated at the bond critical points ${ }^{172}$ (see discussion and Tables A1.18, A1.19 in Appendix 1). The charge density contour maps of the Laplacian distributions $\left(\nabla^{2} \rho\right)$ are provided for $\mathbf{1 '}^{\prime}, \mathbf{2}^{\prime}, \mathbf{3}^{\prime}, \mathrm{NgF}_{2}$, and $[\mathrm{NgF}]^{+}$in Figure A 1.21 .

Overall, the $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Ng}---\mathrm{F}_{\mathrm{b}}$ bond properties are consistent with their relative $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Ng}---\mathrm{F}_{\mathrm{b}}$ bond lengths and Wiberg bond indices. Likewise, the AIM parameters of $\mathbf{1}^{\prime}, \mathbf{2}^{\prime}$, and $\mathbf{3}^{\prime}$ are in accordance with $\mathrm{Kr}-\mathrm{F}_{\mathrm{t} / \mathrm{b}}$ bonds that are more covalent than $\mathrm{Xe}-\mathrm{F}_{\mathrm{t} / \mathrm{b}}$ bonds.

3.2.4.4. Electron Localization Function (ELF) Analyses

ELF analyses ${ }^{173,174}$ were carried out for $\mathbf{1}^{\prime}, \mathbf{2}^{\prime}, \mathbf{3}^{\prime}, \mathrm{NgF}_{2}$, and $[\mathrm{NgF}]^{+}$to visualize the behaviors of the Ng valence electron lone pairs (VELPs) of these species. ELF parameters are provided in Tables A1.18 and A1.19 and ELF isosurface plots are shown for the localization domains of $\mathbf{1}^{\prime}, \mathbf{2}^{\prime}, \mathbf{3}^{\prime}, \mathrm{NgF}_{2}$, and $[\mathrm{NgF}]^{+}$(Figure 3.5 and Figures A1.22 and A1.23). In the ensuing discussion and figures, the abbreviations denote atomic basin populations, $\bar{N}[\mathrm{~A}]$; electron localization function, $\eta(\mathbf{r})$; core basin, C(A); monosynaptic valence basin, $\mathrm{V}(\mathrm{A})$; and closed isosurface, $\eta(\mathbf{r})=f$, where $\eta(\mathbf{r})$ is defined as the isosurface contour.

Figure 3.5. ELF isosurface plots at $\eta(\mathrm{r})=0.60$ (B2PLYP-D3/Def2-TZVPD) for $[\mathrm{FKrFXeF}]^{+},\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+},[\mathrm{KrF}]^{+}$, and KrF_{2}. Color code: red $=$ core; blue $=$ monosynaptic basin.

The ELF basin populations of the Kr and Xe cores are comparable for $\mathbf{1}^{\prime}, \mathbf{2}^{\prime}, \mathbf{3}^{\prime}$, NgF_{2}, and $[\mathrm{NgF}]^{+}$. The ELF valence population analyses suggest an interpretation of bonding in which there is significant delocalization of electron density between the valence shells of the Ng atoms and those of its neighboring F atoms. The ELF analyses of $\mathbf{1}^{\prime}, \mathbf{2}^{\prime}, \mathbf{3}^{\prime}, \mathrm{NgF}_{2}$, and $[\mathrm{NgF}]^{+}$only display monosynaptic Ng and F valence basins, in accordance with their polar-covalent bonds. The toroidal shapes of their Ng valence basins (Figure 3.5) result from the combination of the three-valence electron lone pair domains of Ng , with the atomic core electron basin $(\mathrm{C}(\mathrm{Ng}))$ lying at the center of the torus. Similar toroidal valence basins have been noted for the $\mathrm{Ng}(\mathrm{Ng}=\mathrm{Kr}$ or Xe$)$ atoms of $\mathrm{XeF}_{2},{ }^{175}\left[\mathrm{XeF}_{3}\right]^{-},{ }^{175}\left[\mathrm{XeOTeF}_{5}\right]\left[\mathrm{Sb}\left(\mathrm{OTeF}_{5}\right)_{6}\right] \cdot \mathrm{SO}_{2} \mathrm{ClF},{ }^{176} \mathrm{~F}_{4} \mathrm{OCrFNgF},{ }^{65} \mathrm{~F}_{4} \mathrm{OCrFNgF}-$ $\mathrm{CrOF}_{4},{ }^{65}$ and $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{n} \mathrm{AsF}_{6}\right] .{ }^{73}$ The small perturbations of the $\mathrm{V}(\mathrm{Ng})$ toroidal basins of $\mathbf{1}^{\prime}, \mathbf{2}^{\mathbf{\prime}}$, and $\mathbf{3}^{\mathbf{\prime}}$ arise from accommodation of the $\mathrm{V}(\mathrm{Ng})$ basins to the asymmetries of their immediate environments. ${ }^{65,73}$

The $\mathrm{V}(\mathrm{Ng})$ basin perturbations of the $[\mathrm{NgF}]^{+}$cations are noteworthy because the VSEPR rules ${ }^{88}$ predict a trigonal pyramidal AXE_{3} arrangement of one electron bond pair (X) and three VELPs (E), where A is the Ng atom. Owing to strong mutual repulsions among the VELPs of Ng , the toroidal shape of the $\mathrm{V}(\mathrm{Ng})$ basin is maintained, with only a slightly closed toroidal hole on the side of the $\mathrm{V}(\mathrm{Ng})$ basin opposite to the $\mathrm{Ng}-\mathrm{F}$ bond. Correspondingly, a region of high electrostatic potential occurs opposite to the $\mathrm{Ng}-\mathrm{F}$ bond in the molecular electrostatic potential surfaces (MEPS) of $[\mathrm{KrF}]^{+}$and $[\mathrm{XeF}]^{+}$(vide infra).

The ELF reduction of localization diagrams for $\mathbf{1 '}^{\prime}, \mathbf{2}^{\prime}, \mathbf{3}^{\prime}, \mathrm{NgF}_{2}$, and $[\mathrm{NgF}]^{+}$ (Figures A1.24-A1.26), which provide the hierarchies of ELF basins and the corresponding basin separation values $\left(f_{\text {sep }}\right)$, are discussed in Appendix 1.

3.2.4.5. Molecular Electrostatic Potential Surface (MEPS) Analyses

The MEPS isosurfaces of $\mathbf{1}^{\prime}, \mathbf{2}^{\mathbf{\prime}}, \mathbf{3}^{\mathbf{\prime}}, \mathrm{NgF}_{2}$, and $[\mathrm{NgF}]^{+}$are depicted in Figure 3.6 and Figures A1.27- A1.31. The isosurfaces of NgF_{2} confirm XeF_{2} is more fluorobasic than $\mathrm{KrF}_{2},{ }^{17}$ as reflected in the electrostatic potential (EP) minima of their fluorine ligand atoms $\left(\mathrm{F}_{\mathrm{Xe}},-92 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \mathrm{F}_{\mathrm{Kr}},-74 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ and in accordance with the relative electrophilicities of Xe and Kr and their EP maxima ($\mathrm{Xe}, 105 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \mathrm{Kr}, 116 \mathrm{~kJ} \mathrm{~mol}^{-1}$). Regions of most negative EP occur on the F ligands as rings around the $C_{\infty}-\mathrm{axes}$ of NgF_{2} (Figures 3.6 and A1.30). The most positive EPs of $\mathbf{1 '}^{\prime}, \mathbf{2}^{\prime}$, and $\mathbf{3}^{\prime}$ lie between their respective Ng atoms $\left(\mathrm{Kr} 573 \mathrm{~kJ} \mathrm{~mol}^{-1}\right.$, $\mathrm{Xe} 568 \mathrm{~kJ} \mathrm{~mol}^{-1}$; $\mathrm{Kr}^{2} 596 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$; Xe $537 \mathrm{~kJ} \mathrm{~mol}^{-}$ $\left.{ }^{1}\right)$ and are opposed to the lowest EP values of their F_{t} atoms $\left(\mathrm{Kr} 314 \mathrm{~kJ} \mathrm{~mol}^{-1}\right.$, Xe 277 kJ $\mathrm{mol}^{-1} ; \mathrm{Kr} 322 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \mathrm{Xe} 269 \mathrm{~kJ} \mathrm{~mol}^{-1}$).

The higher EP values of Kr relative to those of Xe are consistent with the greater electronegativity of Kr . Correspondingly, the maximum EP values of F_{b} in 2' (358 kJ $\left.\mathrm{mol}^{-1}\right)$, 1' $\left(370 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}\right)$ and $\mathbf{3}^{\prime}\left(399 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ increase with decreasing total electrophilicities of the Ng atoms. The Ng atoms of $[\mathrm{KrF}]^{+}$and $[\mathrm{XeF}]^{+}$display the most positive EP maxima in the series of noble-gas species examined in this study and are opposite to the $\mathrm{Ng}-\mathrm{F}$ bonds and nearly equal for both cations. These regions correspond to highly directional σ-holes ${ }^{164}$ that are aligned with the exposed Ng cores situated at the centers of the near-toroidal Ng valence basins (see ELF Analyses). Like NgF_{2} (vide

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry
supra), regions of lowest EP on the F ligands (Figures 3.6 and A1.30) occur as rings around the C_{∞}-axes of $\left[\mathrm{KrF}^{+}\left(503 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)\right.$ and $[\mathrm{XeF}]^{+}\left(431 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$.
$\left[\right.$ FKrFXeF] ${ }^{+}$

$\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$

$[\mathrm{KrF}]^{+}$

KrF_{2}

Figure 3.6. Molecular electrostatic potentials of $[\mathrm{FKrFXeF}]^{+},\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+},[\mathrm{KrF}]^{+}$, and KrF_{2} are depicted at their $0.001 \mathrm{e} a_{0}{ }^{-3}$ isosurfaces where extrema are indicated by arrows (B2PLYP-D3/Def2-TZVPD).

3.3. Conclusion

The synthesis and structural characterization of $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$ by LT single-crystal X-ray diffraction and LT Raman spectroscopy provides a unique example of a mixed $\mathrm{Kr}^{\mathrm{II}} / \mathrm{Xe}^{\mathrm{II}}$ compound. The propensity of $[\mathrm{KrF}]^{+},[\mathrm{FKrFXeF}]^{+}$, and KrF_{2} to oxidatively fluorinate $\mathrm{Xe}^{\mathrm{II}}$ to $\mathrm{Xe}^{\mathrm{IV}}$ and $\mathrm{Xe}^{\mathrm{VI}}$ at the low temperatures required the synthesis and structural characterization of the $[\mathrm{FKrFXeF}]^{+}$cation to be carried out in aHF solvent below $-60{ }^{\circ} \mathrm{C}$ under rigorously anhydrous conditions. The thermally sensitive $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$ salt undergoes rapid redox decomposition in the presence of excess KrF_{2} between -60 and $-38{ }^{\circ} \mathrm{C}$ in aHF solvent to yield XeF_{4}, $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]$, and Kr gas. The cocrystals, $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right) 2 \cdot \mathrm{XeF}_{4}$ and $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$; which crystallized from equilibrium mixtures of the decomposition products; $\mathrm{KrF}_{2}, \mathrm{XeF}_{4}$, and $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]$ in aHF solvent between -38 and $0{ }^{\circ} \mathrm{C}$; provided the first examples of mixed $\mathrm{Kr}^{\mathrm{II}} / \mathrm{Xe}^{\mathrm{IV}}$ compounds. The $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right)_{2} \cdot \mathrm{XeF}_{4}$ cocrystal underwent further redox decomposition at RT to yield $\left[\mathrm{F}_{5} \mathrm{Xe}\right]\left[\mathrm{AsF}_{6}\right], \mathrm{KrF}_{2}, \mathrm{Kr}$ gas, the known $\mathrm{Kr}^{\mathrm{II}} / \mathrm{Xe}^{\mathrm{VI}}$ complexes, $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{n} \mathrm{AsF}_{6}\right](n=1,2)$, and a new $\mathrm{Kr}^{\mathrm{II}} / \mathrm{Xe}^{\mathrm{VI}}$ complex, $\left[\left(\mathrm{F}_{5} \mathrm{Xe}\right)_{2}(\mu-\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{2}\right]$, which was characterized by LT Raman spectroscopy. Quantum-chemical calculations were employed to obtain gas-phase geometries, vibrational assignments. QTAIM, NBO, MEPS, and ELF analyses were employed to assess the nature of bonding in $[\mathrm{FKrFXeF}]^{+}$ and $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}$, and show that their terminal $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Ng}---\mathrm{F}_{\mathrm{b}}$ bonds are polar covalent, where the $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ bonds are significantly more covalent than $\mathrm{Ng}--\mathrm{F}_{\mathrm{b}}$ bonds, and $\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Kr}--\mathrm{F}_{\mathrm{b}}$ are more covalent than $\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}$.

CHAPTER 4

Syntheses and Structural Characterizations of the $\mathbf{C l}(\mathbf{V})$ Coordination Complex, $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$, and $\boldsymbol{\beta}-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$

Adapted with permission from: Bortolus, M. R.; Ellwanger, M.; Haner, J.; Schrobilgen, G. J. J. Fluor. Chem. 2021, 250, 109814.

4.1. Introduction

Although the fluoride-ion donor properties of neutral $\mathrm{Cl}(\mathrm{V})$ and $\mathrm{Br}(\mathrm{V})$ fluorides and oxide fluorides have been studied, ${ }^{141,143,177,178}$ the coordination chemistries of their cations have not been as extensively explored. The Lewis acidic $\left[\mathrm{XF}_{4}\right]^{+},\left[\mathrm{XOF}_{2}\right]^{+}$, and $\left[\mathrm{XO}_{2}\right]^{+}(\mathrm{X}=\mathrm{Cl}$, Br) cations form intimate ion-paired fluoro-anion salts and therefore may be expected to form complexes with oxidatively resistant Lewis bases and polar-covalent fluorides. The noble-gas difluorides, $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$, are moderate-strength fluoride-ion donors, which readily transfer fluoride ion to strong fluoride-ion acceptors such as $\mathrm{PnF}_{5}(\mathrm{Pn}=\mathrm{As}$, $\mathrm{Sb}, \mathrm{Bi})^{46,48,51,179-181}$ to form intimately ion-paired $[\mathrm{NgF}]\left[\mathrm{PnF}_{6}\right]$ salts. In contrast, the intermediate strength fluoride-ion acceptors, $\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}),{ }^{65,66,182-184}$ do not fully transfer fluoride ion but form neutral coordination complexes with NgF_{2} by means of $\mathrm{Ng}-\mathrm{F}---\mathrm{M}$ bridges, e.g., $\mathrm{FNgF}---\mathrm{CrOF}_{4}$ and $\mathrm{F}_{4} \mathrm{OCr}---\mathrm{FNgF}---\mathrm{CrOF}_{4}$.

The fluoride-ion donor ability of NgF_{2} has been exploited to synthesize the first examples of $\mathrm{Br}(\mathrm{V})$ adduct-cations, $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FNgF})_{2}\right]\left[\mathrm{AsF}_{6}\right](\mathrm{Ng}=\mathrm{Xe}, \mathrm{Kr})^{62,63}$ and $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right] .{ }^{63}$ More recently, the reaction of excess $\mathrm{BrO}_{2} \mathrm{~F}$ with AsF_{5} has provided a further example of a $\mathrm{Br}(\mathrm{V})$ complex cation, $\left[\mathrm{O}_{2} \mathrm{Br}\left(\mathrm{BrO}_{2} \mathrm{~F}\right)_{2}\right]\left[\mathrm{AsF}_{6}\right] .{ }^{139}$ To the authors' knowledge, there are no prior examples of structurally characterized $\mathrm{Cl}(\mathrm{V})$ or
$\mathrm{I}(\mathrm{V})$ cation coordination complexes. A prior attempt to synthesize $\left[\mathrm{F}_{2} \mathrm{OCl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ in aHF solvent by the reaction of $\left[\mathrm{ClOF}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ with XeF_{2} resulted in fluoride-ion transfer with the formation of ClOF_{3} and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right] .{ }^{63}$

The $\left[\mathrm{ClO}_{2}\right]^{+}$cation is anticipated to be a weaker fluoride-ion acceptor than $\left[\mathrm{ClOF}_{2}\right]^{+}$, and may therefore form isolable coordination complexes with NgF_{2} that do not readily dissociate or undergo fluoride-ion transfer reactions. The present work describes such a synthesis and the structural characterization of a $\mathrm{Cl}(\mathrm{V})$ coordination complex, $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$, as well as a new low-temperature modification, $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$. Both salts were characterized by LT single-crystal X-ray diffraction (SCXRD) and LT Raman spectroscopy. Gas-phase geometry optimizations and NBO and MEPS analyses were employed to aid in the discussion of chemical bonding and calculated vibrational frequencies were used to aid with assignments of fundamental vibrational frequencies and ${ }^{35 / 37} \mathrm{Cl}$ isotopic shifts.

4.2. Results and discussion

4.2.1. Syntheses and properties

4.2.1.1. $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF} \mathrm{F}_{6}\right]$ (1) and $\alpha-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$.

The reaction of a $1: 1$ molar mixture of $\mathrm{ClO}_{2} \mathrm{~F}$ and AsF_{5} in aHF at $22{ }^{\circ} \mathrm{C}$ yielded α $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ according to [Eq. (4.1)]. Rapid cooling of the sample from 22 to $-196{ }^{\circ} \mathrm{C}$ followed by warming to $-78^{\circ} \mathrm{C}$ yielded a white polycrystalline solid that was shown to be

$$
\begin{equation*}
\mathrm{ClO}_{2} \mathrm{~F}+\mathrm{AsF}_{5} \xrightarrow{\mathrm{aHF}} \beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right] \xrightarrow{\mathrm{RT}} \alpha-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right] \tag{4.1}
\end{equation*}
$$

$\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1) by recording its LT Raman spectrum under frozen aHF. Removal of the aHF at $-78{ }^{\circ} \mathrm{C}$ yielded dry $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$, which underwent an irreversible phase
transition to the known $\alpha-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ phase upon warming to room temperature (RT). The α-phase had been previously synthesized by the RT reactions of $\mathrm{ClO}_{2} \mathrm{~F}$ with $\mathrm{AsF}_{5},{ }^{142}$ and ClF_{3} with $\mathrm{As}_{2} \mathrm{O}_{5} .{ }^{178}$ Dissolution of $\alpha-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ in aHF at $0{ }^{\circ} \mathrm{C}$ followed by rapid cooling to $-78{ }^{\circ} \mathrm{C}$ afforded $\mathbf{1}$ in quantitative yield. Single-crystals of $\mathbf{1}$ were grown by dissolution of $\alpha-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (ca. 23 mg) in ca. 0.5 mL of aHF solvent at $22{ }^{\circ} \mathrm{C}$ and slowly cooling the sample to $-10^{\circ} \mathrm{C}$ over ca. 4 h .

4.2.1.2. $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (2)

The reaction of $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ with 3.59 equiv of XeF_{2} at $-20^{\circ} \mathrm{C}$ in aHF solvent yielded 2 [Eq. (4.2)]. Although aHF solutions of $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (2) were stable at RT, single crystals had to be grown by slow cooling of the aHF solution from -30 to $-65^{\circ} \mathrm{C}$ over ca. 5 h.

$$
\begin{equation*}
\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]+2 \mathrm{XeF}_{2} \xrightarrow{-20^{\circ} \mathrm{C} \text { in aHF }}\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right] \tag{4.2}
\end{equation*}
$$

4.2.1.3. Attempted Syntheses of $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$

No reaction was observed when a $\sim 1: 3$ molar ratio of $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ and XeF_{2} in aHF was warmed to $22{ }^{\circ} \mathrm{C}$ for ca. 5 min . In contrast, a $\sim 1: 8$ molar ratio of $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ and XeF_{2} in aHF solution yielded $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{SbF}_{6}\right]$ and $\mathrm{ClO}_{2} \mathrm{~F}$ when warmed to $22{ }^{\circ} \mathrm{C}$ for ca. 1 min [Eq. (4.3)]. Equation (4.3) is consistent with the lower fluorobasicity of [$\left.\mathrm{SbF}_{6}\right]^{-}$

$$
\begin{equation*}
\left[\mathrm{ClO}_{2}\right]\left[\mathrm{SbF}_{6}\right]+2 \mathrm{XeF}_{2} \xrightarrow{\mathrm{aHF}}\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{SbF}_{6}\right]+\mathrm{ClO}_{2} \mathrm{~F} \tag{4.3}
\end{equation*}
$$

relative to that of $\left[\mathrm{AsF}_{6}\right]^{-}$in aHF, which results in sufficient enhancement of the Lewis acidity of $\left[\mathrm{ClO}_{2}\right]^{+}$to favor fluoride-ion abstraction from XeF_{2} in preference to $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{n}\right]^{+}(n=1,2)$ formation. Analogous fluoride-ion abstraction reactions occur
for $\left[\mathrm{XOF}_{2}\right]\left[\mathrm{AsF}_{6}\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ and XeF_{2} in aHF solution which have been shown to yield $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]$ and $\mathrm{XOF}_{3} .{ }^{63}$

No reaction was observed when $\mathrm{a} \sim 1: 3$ molar mixture of $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ and XeF_{2} was dissolved in CFCl_{3} at $-78{ }^{\circ} \mathrm{C}$. Upon warming to $-30{ }^{\circ} \mathrm{C}$, vigorous gas evolution ensued, and the solution color turned yellow, indicative of Cl_{2} formation. When gas evolution ceased after ca. 15 s , the sample was immediately quenched at $-196^{\circ} \mathrm{C}$. The LT Raman spectrum of the sample under frozen CFCl_{3} showed only $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ and solvent bands. Removal of CFCl_{3} solvent under dynamic vacuum at $-78{ }^{\circ} \mathrm{C}$ yielded a white solid, which had a LT Raman spectrum that corresponded to $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{SbF}_{6}\right] .{ }^{143} \mathrm{~A}$ prior study has shown that XeF_{2} slowly fluorinates CFCl_{3} over 14 d at RT to yield $\mathrm{CF}_{2} \mathrm{Cl}_{2}, \mathrm{CF}_{3} \mathrm{Cl}, \mathrm{Xe}$, and Cl_{2}, whereas the reaction rate was dramatically increased and went to completion within several hours in the presence of catalytic amounts of $\mathrm{HF} .{ }^{49}$ The aggressive redox fluorination of CFCl_{3} by $\mathrm{XeF}_{2} /\left[\mathrm{ClO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ in the present study is likely attributable to a Lewis-acid catalyzed fluorination of CFCl_{3} by XeF_{2} that is activated by coordination of XeF_{2} to the $\left[\mathrm{ClO}_{2}\right]^{+}$cation, e.g., $\left[\mathrm{O}_{2} \mathrm{Cl}--\mathrm{FXeF}\right]^{+}$.

4.2.2. X-ray crystallography

Details of the data acquisition parameters and other crystallographic information for β $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1) and $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (2) are provided in Table 4.1. The crystal structure of $\mathbf{1}$ is not isotypic with other $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{MF}_{6}\right](\mathrm{M}=\mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Ir})$ salts. ${ }^{141,143} \mathrm{Key}$ experimental and calculated geometric parameters are given in Table 4.2 and Table A2.1 of Appendix 2 and the crystal structures of $\mathbf{1}$ and $\mathbf{2}$ are depicted in Figures 4.1 and 4.2, respectively. The geometry of $\left[\mathrm{ClO}_{2}\right]^{+}$may be described in terms of an $\mathrm{AX}_{2} \mathrm{E} \mathrm{VSEPR}^{88}$
arrangement of two double-bond domains (X) and a valence electron lone pair domain (E) around $\mathrm{Cl}(\mathrm{A})$ which result in a trigonal planar geometry in which the Cl valence electron lone pair (VELP) domain occupies one vertex of the triangle formed by the VELP and the $\mathrm{Cl}-\mathrm{O}$ double-bond pair domains.

The As-F bond lengths of $\left[\mathrm{AsF}_{6}\right]^{-}$in 1 are similar to those of other ion-paired [AsF 6$]^{-}$salts. ${ }^{46,48}$ The short Cl--- $\mathrm{F}_{\text {As }}$ secondary bonds between the cation and anion are significantly polarized so that the longest As-F bonds (1.731(3)-1.747(3) \AA) correspond to the F atoms of the shortest $\mathrm{Cl}--\mathrm{F}_{\mathrm{As}}$ secondary bonds. The geometric parameters of [$\left.\mathrm{AsF}_{6}\right]^{-}$in $\mathbf{2}$ are similar to those of $\mathbf{1}$, and also show similar As-F bond length differences that result from short $\mathrm{Cl}---\mathrm{F}_{\mathrm{As}}$ secondary bonds.

4.2.2.1. $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1)

The geometric parameters of $\left[\mathrm{ClO}_{2}\right]^{+}$in $1(\mathrm{Cl}-\mathrm{O}, 1.407(4), 1.408(4) \AA$; $\mathrm{O}-\mathrm{Cl}-\mathrm{O}$, $\left.119.2(2)^{\circ}\right)$ occur within the ranges of $\mathrm{Cl}-\mathrm{O}$ bond lengths (1.379(9)-1.418(4) \AA) and $\mathrm{O}-$ $\mathrm{Cl}-\mathrm{O}$ bond angles $\left(117.2(9)-119.75(5)^{\circ}\right)$ observed in other $\left[\mathrm{ClO}_{2}\right]^{+}$salts. ${ }^{141,143,185-187}$

The cations and anions of $\mathbf{1}$ are intimately ion-paired through four secondary Cl--F_{As} bonds (2.500(3)-2.758(3) \AA), which are significantly shorter than the sum of the Cl and F van der Waals radii $\left(3.22 \AA,{ }^{167} 3.28 \AA^{168}\right.$) and avoid the stereo-active VELP domain of chlorine. The $\mathrm{Cl}---\mathrm{F}_{\mathrm{As}}$ bonds are directed towards four σ-holes on the Cl atom of $\left[\mathrm{ClO}_{2}\right]^{+}$(see 4.2.4.3. Molecular Electrostatic Potential Surface (MEPS) Analyses). The coordination environment of the Cl atom in $1\left(\mathrm{CN}_{\mathrm{Cl}}=2+4\right)$ is similar to those of $\mathrm{X}(\mathrm{X}=$ Cl, Br) in $\left[\mathrm{XO}_{2}\right]\left[\mathrm{SbF}_{6}\right]^{143}$ (Figure 4.1a). The ion-pairs of $\mathbf{1}$ pack in columns along the b -
axis with the cations and anions lying in separate $b c$-planes that alternate along the a-axis of the crystallographic unit cell (Figure 4.1b).

4.2.2.2. $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (2)

The geometric parameters of $\left[\mathrm{ClO}_{2}\right]^{+}$in $\mathbf{2}$ are equal, within $\pm 3 \sigma$, to those observed for $\mathbf{1}$ (Table 4.2 and Table A2.1 of Appendix 2). Terminal coordination of XeF_{2} to the Cl atom of $\left[\mathrm{ClO}_{2}\right]^{+}$polarizes the $\mathrm{Xe}-\mathrm{F}$ bonds and results in $\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$ bond contraction (1.9721(11) \AA) and $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$ bond elongation $(2.0381(10) \AA)$ relative to the $\mathrm{Xe}-\mathrm{F}$ bonds of XeF_{2} (1.999(2) $\AA) .{ }^{48}$ The $\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$ bonds of $\mathbf{2}$ are comparable to those of $\mathrm{XeF}_{2} \cdot \mathrm{CrOF}_{4}(1.969(2) \AA)$ and are somewhat longer than those of $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right](1.956(5), 1.960(4) \AA),{ }^{63}$ whereas the $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$ bonds are significantly shorter than in $\mathrm{XeF}_{2} \cdot \mathrm{CrOF}_{4}(2.057(2) \AA)^{65}$ and $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right](2.052(4), 2.053(4) \AA) .{ }^{63}$ The Xe-F bonds of 2 are significantly less polarized than those of $[\mathrm{XeF}]\left[\mathrm{AsF}_{6}\right]\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}, 1.888(3) \AA ; \mathrm{Xe}-\mathrm{F}_{\mathrm{b}}, 2.208(3) \AA\right),{ }^{48}$ which is consistent with the formation of a terminally coordinated XeF_{2} complex. The bent $\mathrm{Cl}--$ F-Xe bond angles of $2\left(125.45(4)^{\circ}\right)$ are similar to the $\mathrm{Cr}--\mathrm{F}-\mathrm{Ng}$ bond angles of $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}\left(\mathrm{Kr}, 123.51(4)^{\mathrm{o}} ; \mathrm{Xe}, 118.50(8)^{\circ}\right)$ and $\mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF}_{4}\left(\mathrm{Kr}, 119.77(3)^{\circ} ; \mathrm{Xe}\right.$, $\left.126.44(7)^{\circ}\right],{ }^{65}$ and are significantly smaller than the $\mathrm{Br}---\mathrm{F}-\mathrm{Xe}$ bond angles of $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]\left(134.1(2)\right.$ and $\left.142.1(2)^{\mathrm{o}}\right) .{ }^{63}$ The $\mathrm{F}-\mathrm{Xe}-\mathrm{F}$ bond angles of 2 $\left(178.11(7)^{\circ}\right)$ show small deviations from 180° that are similar to those of $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]\left(178.4(2), 179.8(2)^{0}\right)^{63}$ and $\mathrm{XeF}_{2} \cdot \mathrm{CrOF}_{4}\left(179.81(8)^{\circ}\right) .{ }^{65}$

The $\left[\mathrm{ClO}_{2}\right]^{+}$cation of 2 interacts with the coordinated XeF_{2} molecules and neighboring $\left[\mathrm{AsF}_{6}\right]^{-}$anions through Cl---F secondary bonds (Figure 4.2a, Table 4.2, and Figure A2.1, Table A2.1 of Appendix 2) that are significantly less than the sum of the Cl

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry
and F van der Waals radii (vide supra) and avoid the stereo-active VELP domain on Cl . As in the case of 1, the trajectories of the Cl---F secondary bonds are directed towards regions of high positive electrostatic potential (EP), σ-holes, on the Cl atom. The two shortest $\mathrm{Cl}--\mathrm{FXe}_{\mathrm{Xe}}$ secondary bonds result from terminal coordination of two XeF_{2} molecules ($2 \times 2.4242(10) \AA$) into σ-holes located on both faces of the triangle defined by the two $\mathrm{Cl}-\mathrm{O}$ double-bond domains and the VELP domain of Cl . The longest $\mathrm{Cl}--\mathrm{F}$ secondary bonds are formed with the F atoms of neighboring $\left[\mathrm{AsF}_{6}\right]^{-}$anions (2.6350(13), $3.0307(13), 3.0307(13) \AA$) and are directed towards σ-holes on Cl which are trans to $\mathrm{Cl}-$ O double bond domains. This is presently the only example of a seven-coordinate, $\mathrm{CN}_{\mathrm{Cl}}=$ $2+5$, salt of $\left[\mathrm{ClO}_{2}\right]^{+}$, whereas $\mathrm{CN}_{\mathrm{Cl}}=2+4$ and $\mathrm{CN}_{\mathrm{Cl}}=2+6$ have been observed for other $\left[\mathrm{ClO}_{2}\right]^{+}$salts. ${ }^{141}$ Although the atomic radii increase from Cl to Br , the $\mathrm{Cl}---\mathrm{F}_{\mathrm{Ng}}$ bonds of $\mathbf{2}$ are significantly longer than the $\mathrm{Br}---\mathrm{F}_{\mathrm{Ng}}$ bonds of $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right],{ }^{63}$ and the $\mathrm{Xe}-\mathrm{F}$ bonds of the coordinated XeF_{2} molecules of $\mathbf{2}$ are correspondingly less polarized, in accordance with the greater Lewis acidity of $\left[\mathrm{BrOF}_{2}\right]^{+}$relative to that of $\left[\mathrm{ClO}_{2}\right]^{+}$.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table 4.1. Summary of crystal data and refinement results for β - $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1) and $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (2)

	1	2
space group	Pc	Cmc2 ${ }_{1}$
$a(\AA)$	5.6418(15)	13.7150(8)
$b(\AA)$	5.0245(13)	9.4147(5)
$c(\AA)$	9.985(3)	8.3911(5)
α (deg)	90	90
β (deg)	102.863(12)	90
γ (deg)	90	90
$V\left(\AA^{3}\right)$	275.94(13)	1083.48(11)
Z (Molecules/unit cell)	2	4
$M_{\mathrm{W}}\left(\mathrm{g} \mathrm{mol}^{-1}\right)$	256.37	594.97
$\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	3.086	3.647
$T\left({ }^{\circ} \mathrm{C}\right)$	$-173{ }^{\circ} \mathrm{C}$	$-173{ }^{\circ} \mathrm{C}$
$\mu\left(\mathrm{mm}^{-1}\right)$	6.720	9.657
$R_{1}{ }^{[a]}$	0.0448	0.0153
$w R_{2}{ }^{[\mathrm{b}]}$	0.1149	0.0370

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table 4.2. Experimental bond lengths (\AA) for $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1) and $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (2) and calculated bond lengths (\AA) for gas-phase $\left(\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}\right)^{-}\left(\mathbf{2}^{\prime}\right)^{\mathrm{ad}}$

	$\begin{gathered} \mathbf{1} \\ \text { exptl } \end{gathered}$		$\begin{gathered} \mathbf{2} \\ \text { exptl } \end{gathered}$	$\begin{gathered} \mathbf{2}^{\prime \prime} \\ \text { calcd }^{[b]} \end{gathered}$
$\mathrm{Cl}(1)-\mathrm{O}(1)$	1.407(4)	$\mathrm{Cl}(1)-\mathrm{O}(1)$	1.4107(16)	1.414
$\mathrm{Cl}(1)-\mathrm{O}(2)$	$1.408(4)$	$\mathrm{Cl}(1)-\mathrm{O}(2)$	1.4045(15)	1.415
		$\mathrm{Xe}(1)-\mathrm{F}(5)$	2.0381(10)	2.087
		Xe(1)-F(6)	1.9721(11)	1.977
$\mathrm{Cl}(1)--\mathrm{F}(1)$	$2.500(3)$	$\mathrm{Cl}(1)--\mathrm{F}(5 \mathrm{~A})$	2.4242(10)	2.331
$\mathrm{Cl}(1)--\mathrm{F}(6 \mathrm{~B})$	$2.515(3)$	$\mathrm{Cl}(1)--\mathrm{F}(5 \mathrm{~B})$	2.4242(10)	2.331
$\mathrm{Cl}(1)--\mathrm{F}(3 \mathrm{C})$	2.728 (3)	$\mathrm{Cl}(1)--\mathrm{F}(1 \mathrm{~A})$	2.6350(13)	2.689
$\mathrm{Cl}(1)--\mathrm{F}(2 \mathrm{~A})$	2.758(3)	$\mathrm{Cl}(1)--\mathrm{F}(4)$	3.0307(13)	3.069
		$\mathrm{Cl}(1)--\mathrm{F}(4 \mathrm{~A})$	3.0307(13)	3.069
As(1)-F(1)	$1.734(3)$	As(1)-F(1)	1.7283(12)	1.743
$\mathrm{As}(1)-\mathrm{F}(2)$	1.729(3)	$\mathrm{As}(1)-\mathrm{F}(2)$	1.7124(11)	1.738
$\mathrm{As}(1)-\mathrm{F}(3)$	1.731(3)	$\mathrm{As}(1)-\mathrm{F}(2 \mathrm{~A})$	1.7124(11)	1.738
$\mathrm{As}(1)-\mathrm{F}(4)$	1.701(3)	$\mathrm{As}(1)-\mathrm{F}(3)$	1.7194(13)	1.744
$\mathrm{As}(1)-\mathrm{F}(5)$	1.708(3)	As(1)-F(4)	1.7274(10)	1.774
As(1)-F(6)	1.747(3)	As(1)-F(4A)	1.7274(10)	1.774
		$\mathrm{As}(1 \mathrm{~A})-\mathrm{F}(1 \mathrm{~A})$	1.7283(12)	1.794
		$\mathrm{As}(1 \mathrm{~A})-\mathrm{F}(2 \mathrm{~B})$	1.7124(11)	1.744
		$\mathrm{As}(1 \mathrm{~A})-\mathrm{F}(2 \mathrm{BA})$	1.7124(11)	1.744
		$\mathrm{As}(1 \mathrm{~A})-\mathrm{F}(3 \mathrm{~A})$	1.7194(13)	1.732
		$\mathrm{As}(1 \mathrm{~A})-\mathrm{F}(4 \mathrm{~B})$	1.7274(10)	1.749
		$\mathrm{As}(1 \mathrm{~A})-\mathrm{F}(4 \mathrm{BA})$	1.7274(10)	1.749

[a] The labeling scheme corresponds to that used in Figure 4.2. Experimental bond angles for $\mathbf{1}$ and 2 and the calculated bond angles for the model anion, $\mathbf{2}^{\prime}$, are provided in Table A2.1 of Appendix 2. [b] B3LYP/Def2-TZVPD.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Figure. 4.1. (a) The coordination environment $\left(\mathrm{CN}_{\mathrm{Cl}}=2+4\right)$ of $\left[\mathrm{ClO}_{2}\right]^{+}$in β $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1). (b) A packing diagram showing the unit cell of $\mathbf{1}$ viewed along the b axis of the unit cell. Thermal ellipsoids are drawn at the 50% probability level and secondary $\mathrm{Cl}---\mathrm{F}$ bonding interactions are indicated by dashed lines.

Figure. 4.2. (a) The structural unit in the crystal structure of $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (2). Thermal ellipsoids are drawn at the 50% probability level and secondary $\mathrm{Cl}---\mathrm{F}$ bonding interactions are indicated by dashed lines. (b) Expanded views of the chlorine coordination environment $\left(\mathrm{CN}_{\mathrm{Cl}}=2+5\right)$ of $\left[\mathrm{ClO}_{2}\right]^{+}$in $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (2) from different perspectives. (c) The calculated (B3LYP/Def2-TZVPD (O, F, As, Cl, Xe)) gasphase geometry of the model $\left(\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}\right)^{-}\left(\mathbf{2}^{\prime}\right)$ anion.

4.2.3. Raman spectroscopy

4.2.3.1. $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1) and $\alpha-\left[\mathrm{ClO}_{2} \mathrm{AsF}_{6}\right]$

The solid-state, LT Raman spectra of β - $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1) and $\alpha-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ are shown in Figure 4.3 and Figure A2.2 of Appendix 2, respectively. Spectral assignments (Table 4.3) were made by comparison with the Raman spectra of $\alpha-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right](\mathrm{RT})^{142}$ and $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{SbF}_{6}\right]\left(-163{ }^{\circ} \mathrm{C}\right) .{ }^{143}$

The stretching bands of $\left[\mathrm{ClO}_{2}\right]^{+}$are split into two components having ca. $\sim 3: 1$ relative intensity ratios due to chlorine isotope shifts $\left(\Delta v^{35 / 37}\right)$ that arise from the natural abundance chlorine isotopes, ${ }^{35} \mathrm{Cl}(75.8 \%)$ and ${ }^{37} \mathrm{Cl}(24.2 \%) .{ }^{143}$ The ${ }^{35 / 37} \mathrm{Cl}$ isotopic shifts resolved for $\mathbf{1}\left[\Delta v_{\mathrm{as}}\left({ }^{35 / 37} \mathrm{ClO}_{2}\right), 14.4 \mathrm{~cm}^{-1} ; \Delta v_{\mathrm{s}}\left({ }^{35 / 37} \mathrm{ClO}_{2}\right), 5.6 \mathrm{~cm}^{-1} ; \Delta \delta\left({ }^{35 / 37} \mathrm{OClO}\right), 5.4\right]$ are in good agreement with those of $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{SbF}_{6}\right]\left[\Delta v_{\mathrm{as}}\left({ }^{35 / 37} \mathrm{ClO}_{2}\right), 14.8 \mathrm{~cm}^{-1}\right.$; $\Delta v_{\mathrm{s}}\left({ }^{35 / 37} \mathrm{ClO}_{2}\right), 5.3 \mathrm{~cm}^{-1} ; \Delta \delta\left({ }^{35 / 37} \mathrm{OClO}\right)$, not observed $]^{143}$ and the calculated isotopic shifts of gas-phase $\left[\mathrm{ClO}_{2}\right]^{+}\left[\Delta \nu_{\mathrm{as}}\left({ }^{35 / 37} \mathrm{ClO}_{2}\right), 15.5 \mathrm{~cm}^{-1} ; \Delta v_{\mathrm{s}}\left({ }^{35 / 37} \mathrm{ClO}_{2}\right), 5.9 \mathrm{~cm}^{-1} ; \Delta \delta\left({ }^{35 / 37} \mathrm{OClO}\right)\right.$, $\left.4.1 \mathrm{~cm}^{-1}\right]$. The $\Delta v_{\text {as }}\left({ }^{35 / 37} \mathrm{ClO}_{2}\right)$ and $\Delta v_{\mathrm{s}}\left({ }^{35 / 37} \mathrm{ClO}_{2}\right)$ bands also exhibit factor-group splittings. The formally Raman-inactive bands $\left[v_{3}\left(T_{1 u}\right), v_{4}\left(T_{1 u}\right), v_{6}\left(T_{2 u}\right)\right]$ and Ramanactive bands $\left[v_{1}\left(\mathrm{~A}_{1 \mathrm{~g}}\right), v_{2}\left(\mathrm{E}_{\mathrm{g}}\right), v_{5}\left(\mathrm{~T}_{2 \mathrm{~g}}\right)\right]$ of $\left[\mathrm{AsF}_{6}\right]^{-}$were also observed as factor-group split bands in the Raman spectrum of 1. Separate factor-group analyses were carried out for $\left[\mathrm{ClO}_{2}\right]^{+}$and $\left[\mathrm{AsF}_{6}\right]^{-}$(Figures A2.3 and A2.4, respectively, of Appendix 2) based on the X-ray crystal structure of $\mathbf{1}$ using the "correlation method". ${ }^{169}$ The factor-group analysis predicts splitting of the $\left[\mathrm{ClO}_{2}\right]^{+}$vibrational bands into $3 \mathrm{~A}^{\prime}$ and $3 \mathrm{~A}^{\prime \prime}$ components under unit cell symmetry, C_{s}, which were resolved on the $v_{\mathrm{s}}\left({ }^{35 / 37} \mathrm{ClO}_{2}\right)$ and $v_{\mathrm{as}}\left({ }^{35} \mathrm{ClO}_{2}\right)$ stretching bands. Site symmetry lowering of $\left[\mathrm{AsF}_{6}\right]^{-}$under crystal site symmetry $\left(C_{1}\right)$ removes the
degeneracy of its $v_{2}\left(E_{g}\right), v_{3}\left(T_{1 u}\right), v_{5}\left(T_{2 \mathrm{~g}}\right)$, and $v_{6}\left(T_{2 u}\right)$ vibrational modes which, along with $v_{1}\left(\mathrm{~A}_{1 \mathrm{~g}}\right)$, vibrationally couple under C_{s} unit cell symmetry to give $15 \mathrm{~A}^{\prime}$ and $15 \mathrm{~A}^{\prime \prime}$ Ramanactive modes, of which only 17 bands were observed (Table 4.3).

The fundamental vibrations of $\left[\mathrm{ClO}_{2}\right]^{+}$occur within the frequency ranges of other $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{MF}_{6}\right]\left(\mathrm{M}=\mathrm{Sb},{ }^{143} \mathrm{Ru},{ }^{185} \mathrm{Ir}^{141,188}\right)$ salts: $v_{\mathrm{s}}\left(\mathrm{ClO}_{2}\right), 1056-1065 \mathrm{~cm}^{-1} ; \mathrm{vas}\left(\mathrm{ClO}_{2}\right)$, $1287-1308 \mathrm{~cm}^{-1}$; and $\delta(\mathrm{OClO}), 518-519 \mathrm{~cm}^{-1}$, and exhibit significant solid-state packing dependencies that are more pronounced for the $v_{s}\left(\mathrm{ClO}_{2}\right)$ and $v_{\mathrm{as}}\left(\mathrm{ClO}_{2}\right)$ stretching modes than for the $\delta(\mathrm{OClO})$ bending mode. Accordingly, the ClO_{2} stretching bands of $\mathbf{1}$ occur at significantly higher frequencies than those of $\alpha-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right],{ }^{142}$ whereas $\delta(\mathrm{OClO})$ occurs at a similar frequency (Table 4.3).

4.2.3.2. $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (2)

The LT Raman spectrum of $\mathbf{2}$ is shown in Figure 4.4. Spectral assignments were made by comparison with the calculated vibrational frequencies and Raman intensities of the energy-minimized, gas-phase geometry of the model anion, $\left(\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}\right)^{-}\left(\mathbf{2}^{\prime}\right)$ (Table 4.4 and Table A2.2 of Appendix 2), and well reproduced the experimental vibrational frequencies of $\mathbf{2}$. The $\left[\mathrm{AsF}_{6}\right]^{-}$anion modes of $\mathbf{2}$, which do not couple with $\left[\mathrm{ClO}_{2}\right]^{+}$or XeF_{2} modes, are assigned under O_{h} symmetry in Table 4.4. More detailed anion mode assignments and descriptions that correspond to those of $\mathbf{2}^{\prime}$ are provided in Table A2.2 of Appendix 2.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Figure. 4.3. Raman spectrum of β - $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1) recorded on a dry powder at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. The symbols denote FEP sample tube bands (*) and an instrumental artifact (\dagger).

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table 4.3. Experimental Raman frequencies $\left(\mathrm{cm}^{-1}\right)$, intensities, and assignments for $\alpha-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ and β $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right](1)$

[a] This work. The Raman spectrum was recorded in an FEP sample tube at $-150^{\circ} \mathrm{C}$ on a dry powder using 1064 -nm excitation. Vibrational bands were also observed at $104.3(9), 117.0(5), 123.7(4)$, and $140.0(14) \mathrm{cm}^{-1}$, which are tentatively assigned to lattice modes. [b] Values in parentheses denote relative Raman intensities. The abbreviation (sh) denotes a shoulder. [c] $\Delta v^{35 / 37}=v\left({ }^{35} \mathrm{ClO}_{2}\right)-v\left({ }^{37} \mathrm{ClO}_{2}\right)$. [d] The Raman spectrum was recorded on a dry crystalline sample in an FEP sample tube at $-150{ }^{\circ} \mathrm{C}$. Bands were also observed at 107.4(10), 117.9(2), 146.2(14), 172.4(2), 186.7 (sh), and $195.6(\mathrm{sh}) \mathrm{cm}^{-1}$ that are tentatively assigned to lattice modes. [e] Assignments were made under $C_{2 \mathrm{v}}$ symmetry for the $\left[\mathrm{ClO}_{2}\right]^{+}$cation and O_{h} symmetry for the $\left[\mathrm{AsF}_{6}\right]^{-}$anion. Abbreviations denote stretch (v), bend (δ), symmetric (s), and asymmetric (as).

The ion-paired formula unit of $\mathbf{2}$ possesses C_{s} symmetry in its crystal structure and in the calculated model anion ($\mathbf{2}^{\prime}$). Site symmetry lowering alone does not account for the Raman band splittings observed for the non-degenerate $\left[\mathrm{ClO}_{2}\right]^{+}$and $\left[\mathrm{AsF}_{6}\right]^{-}$modes of $\mathbf{2}$. Consequently, a factor-group analysis (Figure A2.5 of Appendix 2), based on the X-ray crystal structure of 2, was carried out by use of the "correlation method" ${ }^{169}$ (see Appendix 2). Of the 84 coupled modes predicted by the factor-group analysis of $\mathbf{2}$, only 27 were observed in the Raman spectrum, indicating that the majority of predicted splittings are too small to be resolved.

Chlorine isotopic shifts were resolved for the $\left[\mathrm{ClO}_{2}\right]^{+}$stretching modes of 2 $\left[\Delta v_{\mathrm{as}}\left({ }^{35 / 37} \mathrm{ClO}_{2}\right), 14.7 \mathrm{~cm}^{-1}\right.$ and $\Delta v_{\mathrm{s}}\left({ }^{35 / 37} \mathrm{ClO}_{2}\right), 6.0 \mathrm{~cm}^{-1}$] which are comparable to those of 1 (see Sec. 2.3.1), and are in excellent agreement with the calculated isotopic shifts of the cation stretching modes of $\mathbf{2}^{\prime}\left[\Delta v_{\mathrm{as}}\left({ }^{35 / 37} \mathrm{ClO}_{2}\right), 14.6 \mathrm{~cm}^{-1} ; \Delta v_{\mathrm{s}}\left({ }^{35 / 37} \mathrm{ClO}_{2}\right), 6.7 \mathrm{~cm}^{-1}\right]$. The $\left.\Delta v_{\mathrm{s}}{ }^{35 / 37} \mathrm{ClO}_{2}\right)$ stretches (1071.2, $\left.1077.2 \mathrm{~cm}^{-1}\right)$ of $\mathbf{2}$ occur at significantly higher frequencies than the $\left.\Delta v_{\mathrm{s}}{ }^{35 / 37} \mathrm{ClO}_{2}\right)$ stretches of $\mathbf{1}\left(1059.9 / 1061.7,1065.2 / 1067.5 \mathrm{~cm}^{-1}\right)$, whereas the $\left.\Delta \nu_{\mathrm{as}}{ }^{35 / 37} \mathrm{ClO}_{2}\right)$ stretches of $2\left(1301.2,1315.9 \mathrm{~cm}^{-1}\right)$ occur at frequencies comparable to the $\Delta v_{\mathrm{as}}\left({ }^{(35 / 37} \mathrm{ClO}_{2}\right)$ stretches of $\mathbf{1}\left(1300.8,1315.2 \mathrm{~cm}^{-1}\right)$. The in-plane bending mode, $\delta\left(\mathrm{O}_{1} \mathrm{ClO}_{2}\right)_{\text {i.p. }}$, occurs at significantly higher frequency $\left(536.1 \mathrm{~cm}^{-1}\right)$ than the bending mode of $\mathbf{1}\left(516.2,521.6 \mathrm{~cm}^{-1}\right)$. The out-of-plane bending mode, $\delta\left(\mathrm{O}_{1} \mathrm{ClO}_{2}\right)_{\text {o.o.p. }}$, was calculated at $305.9 \mathrm{~cm}^{-1}$, but was not observed.

Terminal coordination of XeF_{2} to $\left[\mathrm{ClO}_{2}\right]^{+}$results in two polarized XeF_{2} molecules which do not display in-phase and out-of-phase coupling between their $v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\right)$ and $v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right)$ stretches. Instead, the $v\left(\mathrm{Xe}_{\mathrm{e}}-\mathrm{F}_{\mathrm{t}}\right)$ stretching modes in-phase and out-of-phase
couple, as do the $v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right)$ modes, to give two in-phase and two out-of-phase $\mathrm{Xe}-\mathrm{F}$ stretching modes: $v_{s}\left(\mathrm{Xe}_{\mathrm{e}}-\mathrm{F}_{\mathrm{t}}\right)=\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)\right], v_{\mathrm{as}}\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\right)=\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)-\right.$ $\left.v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)\right], v_{\mathrm{s}}\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right)=\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]$, and $v_{\mathrm{as}}\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right)=\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)-\right.$ $\left.v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]$. Analogous couplings have been observed and assigned for the $v\left(\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}\right)$ and $v\left(\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}\right)$ stretching modes of $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FNgF})_{2}\right]\left[\mathrm{AsF}_{6}\right],{ }^{62,63} \quad\left[\mathrm{Mg}(\mathrm{FXeF})_{4}\left(\mathrm{AsF}_{6}\right)_{2}\right],{ }^{189}$ $\left[\mathrm{Hg}\left(\mathrm{KrF}_{2}\right)_{8}\right]\left[\mathrm{AsF}_{6}\right]_{2},{ }^{190}$ and $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{2} \mathrm{AsF}_{6}\right],{ }^{73}$ which also do not exhibit cross coupling of their $v\left(N g-F_{t}\right)$ and $v\left(N g-F_{b}\right)$ stretches. The $v_{s}\left(X e-F_{t}\right)\left(519 \mathrm{~cm}^{-1}\right)$ and $v_{a s}\left(X e-F_{t}\right)$ ($531,481 \mathrm{~cm}^{-1}$) modes of $\mathbf{2}$ occur at significantly higher frequencies than their $v_{\mathrm{s}}\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right)$ $\left(447 \mathrm{~cm}^{-1}\right)$ and $v_{\mathrm{as}}\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right)\left(436 / 439 \mathrm{~cm}^{-1}\right)$ modes, in accordance with the greater covalent characters of the $\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$ bonds. The $v_{s}\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\right)$ mode is weakly in-phase coupled with the $\delta\left(\mathrm{O}_{1} \mathrm{ClO}_{2}\right)_{\text {i.p. }}$ mode and occurs at a frequency $\left(519.0 \mathrm{~cm}^{-1}\right)$ that is intermediate with respect to its asymmetric counterpart, $v_{\mathrm{as}}\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\right)$. The latter mode is in-phase and out-ofphase coupled with $\left[v\left(\mathrm{As}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{As}_{1}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{As}_{1}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{As}_{1}-\mathrm{F}_{4}\right)\right]\left(530.9 \mathrm{~cm}^{-1}\right)$ and $\left[v\left(\mathrm{As}_{1}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{As}_{1}-\mathrm{F}_{4}\right)\right]-\left[v\left(\mathrm{As}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{As}_{1}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]\left(481.1 \mathrm{~cm}^{-1}\right)$, respectively. The symmetric $v_{s}\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right)$ mode also occurs at higher frequency $\left(446.7 \mathrm{~cm}^{-1}\right)$ than the asymmetric $v_{\mathrm{as}}\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right)$ mode $\left(435.6 / 439.4 \mathrm{~cm}^{-1}\right)$, which is weakly in-phase coupled with $\delta\left(\mathrm{O}_{1} \mathrm{ClO}_{2}\right)_{\text {o.o.p. }}$.

The $\delta(\mathrm{FXeF})$ bending modes are also in-phase and out-of-phase coupled to give four modes: $\delta_{\mathrm{s}}(\mathrm{FXeF})_{\text {i.p. }}=\left[\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)_{\text {i.p }}+\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)_{\text {i.p }}\right], \delta_{\mathrm{s}}(\mathrm{FXeF})_{\text {o.o.p. }}=\left[\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)_{\text {o.o.p }}\right.$ $\left.+\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)_{\text {o.o. } . \mathrm{p}}\right], \delta_{\mathrm{as}}(\mathrm{FXeF})_{\text {i.p. }}=\left[\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)_{\mathrm{i} . \mathrm{p}}-\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)_{\mathrm{i} . \mathrm{p}}\right]$ and $\delta_{\mathrm{as}}(\mathrm{FXeF})_{\text {o.o.p. }}=$ $\left[\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)_{\text {o.o.p }}-\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)_{\text {o.o.p }}\right]$. Only the $\delta_{\mathrm{s}}(\mathrm{FXeF})_{\text {o.o.p. }}$ band $\left(233.7 \mathrm{~cm}^{-1}\right)$ was observed,

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry
with a frequency similar to those of the $\delta(\mathrm{FXeF})$ bending modes of $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]$ $\left(244 \mathrm{~cm}^{-1}\right)$ and $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]\left(232,299 \mathrm{~cm}^{-1}\right) .{ }^{63}$

Figure. 4.4. Raman spectrum of $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (2) recorded on a dry crystalline sample at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Symbols denote bands assigned to excess $\mathrm{XeF}_{2}(\ddagger)$, FEP sample tube bands $\left.\mathbf{(}^{*}\right)$, and an instrumental artifact (\dagger).

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table 4.4. Experimental Raman frequencies $\left(\mathrm{cm}^{-1}\right)$ and intensities for $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (2), ${ }^{[a]}$ and the calculated vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$, intensities, and assignments for the model anion, $\left(\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}\right)^{-}\left(\mathbf{2}^{\prime}\right)^{[\mathrm{bb]}}$

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table 4.4 (continued)

$\begin{gathered} 2 \\ \operatorname{expt1}^{[a]} \end{gathered}$	2^{\prime}				
	$\Delta 3^{35 / 37}$ [c]	${ }^{35} \mathrm{Cl} \mathrm{calcd}{ }^{[b]}$	${ }^{37} \mathrm{Cl} \mathrm{calcd}{ }^{[b]}$	$\Delta v^{35 / 37}$ [c]	assgnts ${ }^{[d]}$
233.7(20)		$246.0(4)[<1]$	$246.0(4)[<1]$		$\left[\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)_{\text {o.o.p. }}+\delta\left(\mathrm{F}_{5 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)_{\text {o.o.p. }}\right]$
		305.9(18)[315]	302.2(18)[305]	3.7	$\delta\left(\mathrm{O}_{1} \mathrm{ClO}_{2}\right)_{\text {o.op. }}$.
		$235.9(<0.1)[<1]$	$235.9(<0.1)[<1]$		
		234.1(<0.1)[<1]	234.1(<0.1)[<1]		
		$232.9(<0.1)[<0.1]$	$232.9(<0.1)[<0.1]$		
		$229.2(<0.1)[<1]$	$229.2(<0.1)[<1]$		
		$225.3(<0.1)[<1]$	$225.3(<0.1)[<1]$		
		$225.0(<0.1)[2]$	$225.0(<0.1)[2]$		
196.3(16)					Lattice mode
		219.7(<1)[19]	219.6(<1)[18]	0.1	$\left[\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)_{\text {o.o.p. }}-\delta\left(\mathrm{F}_{5 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)_{\text {o.o.p. }}\right]$
		208.6(<1)[38]	208.5(<1)[38]	0.1	$\left[\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)_{\text {i.p. }}+\delta\left(\mathrm{F}_{54} \mathrm{Xe}_{1 /} \mathrm{F}_{6 \mathrm{~A}}\right)_{\text {i.p. }}.\right]$
		$206.6(<1)[<1]$	$206.5(<1)[<1]$	0.1	$\left[\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)_{\text {i.p. }}-\delta\left(\mathrm{F}_{5 A} \mathrm{Xe}_{1 A} \mathrm{~F}_{6 \mathrm{~A}}\right)_{\text {i.p. }}.\right]$
		$155.8(<1)[<1]$	$155.5(<1)[<1]$	0.3	
		132.9(1)[5]	131.9(1)[4]		
		127.2(4)[7]	126.5(3)[7]	0.7	
		116.8(2)[27]	116.3(2)[27]	0.5	
		103.0(5)[<1]	103.0(5)[<1]		
		82.6(1)[<1]	$82.5(1)[<1]$	0.1	
		71.7(3)[2]	71.6(3)[2]	0.1	
		$66.9(<1)[15]$	$66.6(<1)[15]$	0.3	
		$61.4(2)[<1]$	$61.3(2)[<1]$	0.1	
		$52.6(<0.1)[<1]$	$52.6(<0.1)[<1]$		
		$52.4(<1)[2]$	$52.3(<1)[2]$	0.1	Deformation modes
		49.6(<1)[3]	49.6(<1)[3]		
		43.0(<1) $\ll 1]$	$43.0(<1)[<1]$		
		$36.4(<1)[2]$	$36.4(<1)[2]$		
		29.3(<1 [$\ll 1]$	$29.3(<0.1)[<1]$		
		$29.3(<0.1)[<1]$	29.3(<1)[<1]		
		18.2(<0.1)[<1]	18.2(<1 [[<1]		
		$14.9(<1)[1]$	14.9(<1)[1]		
		13.2(<1)[1]	$13.2(<0.1)[<1]$		
		$11.8(<0.1)[<1]$	$11.8(<0.1)[<1]$		
		$-22.6(<1)[<0.1]$	$-22.6(<0.1)[<1]$		

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table 4.4. (continued) [a] The Raman spectrum was recorded on a dry crystalline sample in an FEP sample tube at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Vibrational bands were also observed at 101.6(7), 111.4(20), 113.7(20), 120.0(25), 133.5(16), 137.6(18), 144.1(23), and $196.3(16) \mathrm{cm}^{-1}$ that are tentatively assigned to lattice modes. Abbreviation denotes a shoulder (sh). [b] B3LYP/Def2-TZVPD. The atom labeling scheme is the same as that shown in Figure 4.2b. Values in parentheses and square brackets denote calculated Raman intensities $\left(\AA^{4} \mathrm{amu}^{-1}\right)$ and infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$), respectively. [c] $\Delta v^{35 / 37}$ $=v\left({ }^{35} \mathrm{Cl}\right)-v\left({ }^{37} \mathrm{Cl}\right)$. [d] General assignments were made under O_{h} symmetry for the $\left[\mathrm{AsF}_{6}\right]^{-}$anion, however, more detailed vibrational assignments for the $\left[\mathrm{AsF}_{6}\right]^{-}$anion are provided in Table A2.2 of Appendix 2. Abbreviations denote stretch (v), bend (δ), inplane (i.p.), and out-of-plane (o.o.p.). The ClO_{2}-plane lies in the $b c$-mirror plane of the crystallographic unit cell.

4.2.4. Computational results

Quantum-chemical calculations were used to assess the bonding in the model $\left(\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}\right)^{-}\left(\mathbf{2}^{\prime}\right)$ anion. The calculation at the B3LYP/Def2-TZVPD level of theory resulted in a stationary point with one imaginary frequency $\left(-22.6 \mathrm{~cm}^{-1}\right)$. The calculated geometry of gas-phase $\mathbf{2}^{\prime \prime}$ well reproduced the coordination environment of the $\left[\mathrm{ClO}_{2}\right]^{+}$cation in the crystal structure of 2 (Figure 4.2c, Table 4.2, and Table A2.1 of Appendix 2). Parallel calculations for $\left[\mathrm{ClO}_{2}\right]^{+}$and XeF_{2} at the same level of theory (Tables A2.3-A2.5 of Appendix 2) resulted in stationary points with all frequencies real and enabled comparisons with $\mathbf{2}^{\prime}$. An NBO (Table A2.6 of Appendix 2) analysis of $\mathbf{2}^{\prime}$ was also carried out to aid in the discussion of the chemical bonding in $\mathbf{2}$, and NBO (Tables A2.7 and A2.8 of Appendix 2) and MEPS (Figure 4.5) analyses of $\left[\mathrm{XO}_{2}\right]^{+}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ were implemented to help assess the feasibility of synthesizing $\left[\mathrm{O}_{2} \mathrm{X}(\mathrm{FNgF})_{2}\right]\left[\mathrm{AsF}_{6}\right](\mathrm{X}=$ $\mathrm{Br}, \mathrm{I} ; \mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$ analogues.

4.2.4.1. Geometry optimizations of $\left[\mathrm{XO}_{2}\right]^{+}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ and $\left(\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}\right)^{-}$

 (2')The initial geometries of $\left[\mathrm{ClO}_{2}\right]^{+}$and $\mathbf{2}^{\prime}$ were obtained starting from the X-ray crystal structures of $\mathbf{1}$ and 2, respectively, and the initial geometry used for $\left[\mathrm{BrO}_{2}\right]^{+}$was obtained from the X-ray crystal structure of $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right] .{ }^{143}$ Because no structurally characterized $\left[\mathrm{IO}_{2}\right]^{+}$salts had been reported, the initial geometry in the optimization of $\left[\mathrm{IO}_{2}\right]^{+}$was approximated from the optimized geometry of $\left[\mathrm{BrO}_{2}\right]^{+}$by replacement of the Br atom by an I atom. The calculated gas-phase $\left[\mathrm{XO}_{2}\right]^{+}$cations have V-shaped geometries as observed in the crystal structures of $\left[\mathrm{ClO}_{2}\right]^{+}$and $\left[\mathrm{BrO}_{2}\right]^{+},{ }^{143}$ where their $\mathrm{X}-\mathrm{O}$ bonds
elongate and their O-X-O bond angles compress upon descending the Group 17 (Table A2.6 of Appendix 2).

The gas-phase geometry of $\mathbf{2}^{\prime}$ optimized to C_{s} symmetry (Table 4.2, Figure 4.2b, and Table A2.1 of Appendix 2) and was compared with gas-phase $\left[\mathrm{ClO}_{2}\right]^{+}$(Table A2.3 of Appendix 2) to assess the effects of secondary bonding. The calculated structural parameters of $\mathbf{2}^{\prime}$, although slightly overestimated, are in good agreement with and reproduce the most important features in the crystal structure of 2: (1) the $\mathrm{CN}_{\mathrm{Cl}}=2+5$ coordination environment of $\left[\mathrm{ClO}_{2}\right]^{+}$, (2) the directionality of the $\mathrm{Cl}--\mathrm{F}$ secondary bond interactions, which avoid the stereo-active VELP domain of Cl and are directed towards σ-holes of Cl , and (3) the elongation of the $\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$ bonds and contraction of the $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$ bonds of the coordinated XeF_{2} molecules. Ion-pair formation significantly weakens and elongates the $\mathrm{Cl}-\mathrm{O}$ bonds in the calculated geometry of $\mathbf{2}^{\prime}(1.414,1.415 \AA)$ relative to gas-phase $\left[\mathrm{ClO}_{2}\right]^{+}(1.4090 \AA)$, and results in a significantly smaller $\mathrm{O}-\mathrm{Cl}-\mathrm{O}$ bond angle for $\mathbf{2}^{\prime}\left(115.87^{\circ}\right)$ than for gas-phase $\left[\mathrm{ClO}_{2}\right]^{+}\left(121.49^{\circ}\right)$.

4.2.4.2. Natural Bond Orbital (NBO) analyses

The natural atomic orbital (NAO) analyses of $\left[\mathrm{XO}_{2}\right]^{+}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, I) (Table A2.7 of Appendix 2) show increases in positive (X) and negative (O) charges, and decreases in Wiberg bond indices and valence indices for all atoms upon descending Group 17.

The Cl and O atoms of $\left[\mathrm{ClO}_{2}\right]^{+}$in $\mathbf{2}^{\prime}$ display high valence indices $(\mathrm{Cl}, 3.320$; O , $2.069,2.070)$ and Cl-O Wiberg bond indices (2 x 1.559) (Table A2.6 of Appendix 2) that are consistent with significant $\mathrm{Cl}-\mathrm{O}$ double bond character. When compared with gasphase $\left[\mathrm{ClO}_{2}\right]^{+}$(Table A2.7 of Appendix 2), $\mathbf{2}^{\prime}$ has greater positive Cl and negative O
charges and significantly lower O valence indices and $\mathrm{Cl}-\mathrm{O}$ Wiberg bond indices due to the polarizing effect of the Cl---F secondary bonds. The Wiberg bond indices of the $\mathrm{Cl}---$ FXe secondary bonds of $^{\prime \prime} \mathbf{2}^{\prime}$ are very low ($0.004-0.081$), indicating that these bonds are primarily electrostatic in nature and are best described as σ-hole bonds (see Section 4.2.4.3. Molecular Electrostatic Potential Surface (MEPS) Analyses). Polarization of the $\mathrm{Xe}-\mathrm{F}$ bonds in $\mathbf{2}^{\prime}$ is consistent with terminal XeF_{2} coordination. Thus, the F_{b} atoms of the adducted XeF_{2} molecules that form short $\mathrm{Cl}---\mathrm{F}_{\mathrm{Xe}}$ secondary bonds have smaller negative charges, lower $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$ Wiberg bond indices, and greater F atom valence indices than XeF_{2} (Table A2.8 of Appendix 2), and the F atom charges of the terminal F_{t} atoms are more negative and have greater valence indices and $\mathrm{Xe}-\mathrm{F}$ Wiberg bond indices than free XeF_{2} and the F_{b} atoms of adducted XeF_{2}. The F atoms of $\left[\mathrm{AsF}_{6}\right]^{-}$, which form secondary bonds with the Cl atom of $\left[\mathrm{ClO}_{2}\right]^{+}$in $\mathbf{2}^{\prime}$, have higher negative charges, lower valence indices, and lower As-F Wiberg bond indices than F atoms that do not interact with $\left[\mathrm{ClO}_{2}\right]^{+}$.

4.2.4.3. Molecular electrostatic potential surface (MEPS) analyses

The MEPS isosurfaces for the $\left[\mathrm{XO}_{2}\right]^{+}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ cations are compared in Figure 4.5. Their relative Lewis acid strengths are reflected in their global EP maxima (Cl, 782 kJ $\mathrm{mol}^{-1} ; \mathrm{Br}, 767 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \mathrm{I}, 761 \mathrm{~kJ} \mathrm{~mol}^{-1}$), which decrease from Cl to I and are located on both faces of the triangle defined by the two $\mathrm{X}-\mathrm{O}$ double-bond domains and the VELP domain of X and correspond to σ-holes. These σ-holes and those located trans to the $\mathrm{X}-\mathrm{O}$ bonds $\left(\mathrm{Cl}, 740 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \mathrm{Br}, 754 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \mathrm{I}, 756 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ form a band of high positive EP that encircles the VELP domain of X. The Cl---F secondary bonds in the crystal structures of $\mathbf{1}$ and $\mathbf{2}$ are directed towards σ-holes within this band, where the $\mathrm{O}-\mathrm{Cl}--\mathrm{F}$

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry
contact angles $\left(92.34(3)-97.16(3)^{\circ}\right)$ of the shortest secondary bonds are closer to 90° and the $\mathrm{O}-\mathrm{Cl}---\mathrm{F}$ contact angles $\left(149.69(6)-153.99(8)^{\circ}\right)$ of the longest secondary bonds are directed towards σ-holes that are trans to the $\mathrm{Cl}-\mathrm{O}$ bonds. The global EP minima are located on the O atoms $\left(\mathrm{Cl}, 478 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \mathrm{Br}, 423 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \mathrm{I}, 362 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ and become less positive upon descending Group 17.

The trends are in accordance with decreasing valence indices and Wiberg bond indices and increased positive (X) and negative (O) NPA charges (Table A2.7 of Appendix 2) upon descending Group 17. The high positive EP maxima on the halogen isosurfaces of $\left[\mathrm{BrO}_{2}\right]^{+}$and $\left[\mathrm{IO}_{2}\right]^{+}$suggest they may be candidates for complex formation with $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$ under reaction conditions similar to those employed for the synthesis of $\mathbf{2}$.

Figure 4.5. The molecular electrostatic potential surface (MEPS) contours calculated at the 0.001 e $a_{0}{ }^{-3}$ isosurfaces of $\left[\mathrm{ClO}_{2}\right]^{+},\left[\mathrm{BrO}_{2}\right]^{+}$and $\left[\mathrm{IO}_{2}\right]^{+}$. The extrema of selected electrostatic potentials are indicated by arrows. The optimized geometries and MEPS were calculated at the B3LYP/Def2-TZVPD (O, Cl, Br, I) level of theory.

4.3. Conclusion

The moderate Lewis acid strength and oxidative resistance of the $\left[\mathrm{ClO}_{2}\right]^{+}$cation has been exploited to synthesize the first $\mathrm{Cl}(\mathrm{V})$ coordination complex of XeF_{2}. The reaction of α $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ with XeF_{2} in aHF afforded $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$, which was structurally characterized by LT Raman spectroscopy and LT SCXRD. The LT phase, β $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$, was obtained by crystallization or precipitation from aHF solution and was also characterized by LT Raman spectroscopy and LT SCXRD. The irreversible conversion of β - $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ to the known α-phase was shown to occur upon warming to RT. The α-phase was converted to the β-phase by dissolution in aHF followed by precipitation at $-78{ }^{\circ} \mathrm{C}$. The cation stretching frequencies of $\alpha-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ occur at significantly lower frequency than those of $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ which is likely due to crystal packing differences. The $\left[\mathrm{ClO}_{2}\right]^{+}$cations of $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ and $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ form short $\mathrm{Cl}---\mathrm{F}$ secondary bonds with neighboring $\left[\mathrm{AsF}_{6}\right]^{-}$anions or XeF_{2} molecules in the solid-state that are significantly less than the sums of the Cl and F van der Waals radii and are best described as σ-hole bonds. The NBO analysis of the model anion, $\left(\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}\right)^{-}$, affirms that the $\mathrm{Cl}---\mathrm{F}_{\mathrm{Xe}}$ and $\mathrm{Cl}---\mathrm{F}_{\mathrm{As}}$ secondary bonds are primarily electrostatic, noncovalent bonds, and a MEPS analysis of gas-phase $\left[\mathrm{ClO}_{2}\right]^{+}$ shows that these bonds are directed towards regions of high positive electrostatic potential (EP), σ-holes, on the isosurface of Cl . The synthesis of a $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]^{+}$salt represents a significant extension of $\mathrm{Cl}(\mathrm{V})$ coordination chemistry and suggests the syntheses of other high-oxidation-state $\left[\mathrm{XO}_{2}\right]^{+}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ coordination complexes of NgF 2 , such as $\left[\mathrm{O}_{2} \mathrm{X}(\mathrm{FNgF})_{2}\right]\left[\mathrm{AsF}_{6}\right](\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$, may also be achievable.

CHAPTER 5

Syntheses and Structural Characterizations of the $\operatorname{Br}(\mathrm{V})$ Coordination Complexes, $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{n}\right]\left[\mathrm{AsF}_{6}\right](n=1,2)$, and $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$

5.1. Introduction

The highest Cl and Br oxidation state for which cationic coordination complexes have been synthesized and structurally characterized is the +5 oxidation state. ${ }^{62,63,139}$ This is due, in part, to the scarcity of known X(VII) cation salts, which is attributed to their aggressive oxidizing characters and to the inability to prepare the neutral XOF_{5} and $\mathrm{BrO}_{2} \mathrm{~F}_{3}$ precursors. ${ }^{177,191-198}$ Furthermore, attempts to synthesize salts of $\left[\mathrm{XO}_{3}\right]^{+}$cations by reaction of $\mathrm{XO}_{3} \mathrm{~F}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ with SbF_{5} and with $\mathrm{SbF}_{5} /$ aHF superacid mixtures resulted in redox elimination of O_{2} and formation of $\left[\mathrm{XO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ salts. ${ }^{143}$ Of the known X (VII) cations $\left[\mathrm{ClO}_{2} \mathrm{~F}_{2}\right]^{+199}$ and $\left[\mathrm{XF}_{6}\right]^{+},{ }^{200-203}\left[\mathrm{ClO}_{2} \mathrm{~F}_{2}\right]^{+}$has the greatest potential to form coordination complexes because it is coordinatively unsaturated and is known to react with $\mathrm{NO}_{2} \mathrm{~F}$ to yield the extremely reactive neutral $\mathrm{Cl}(\mathrm{VII})$ oxyfluoride, $\mathrm{ClO}_{2} \mathrm{~F}_{3} .{ }^{199}$ However, $\left[\mathrm{ClO}_{2} \mathrm{~F}_{2}\right]^{+}$has only been prepared as the minor product (ca. 10% yield) in the reaction of $\mathrm{ClO}_{2} \mathrm{~F}$ with the strong oxidant PtF_{6}, which makes the preparation of synthetically useful amounts of $\left[\mathrm{ClO}_{2} \mathrm{~F}_{2}\right]^{+}$and/or $\mathrm{ClO}_{2} \mathrm{~F}_{3}$ very challenging and difficult to scale. ${ }^{199}$ Although the strong oxidant fluoro-cations, $\left[\mathrm{ClF}_{6}\right]^{+}$and $\left[\mathrm{BrF}_{6}\right]^{+}$, have been synthesized and structurally characterized, ${ }^{200-203}$ their syntheses also require strong oxidants $\left(\mathrm{Cl},[\mathrm{KrF}]^{+}\right.$or $\left.\mathrm{PtF}_{6} ; \mathrm{Br},[\mathrm{KrF}]^{+}\right)$, and their Lewis acidities are expected to be significantly diminished owing to steric crowding in their valence shells. ${ }^{143}$ Thus, $\left[\mathrm{BrF}_{6}\right]\left[\mathrm{AsF}_{6}\right]$ does not react with strongly fluorobasic NOF to form BrF_{7}, but undergoes
redox disproportionation to form $[\mathrm{NO}]\left[\mathrm{AsF}_{6}\right],[\mathrm{NO}]\left[\mathrm{BrF}_{6}\right]$, and $\mathrm{F}_{2} .{ }^{201}$ The chemistries of $\mathrm{Cl}(\mathrm{VII})$ and $\mathrm{Br}(\mathrm{VII})$ are significantly more limited than that of $\mathrm{I}(\mathrm{VII})$, for which $\mathrm{IF}_{7}, \mathrm{IOF}_{5}$, $\mathrm{IO}_{2} \mathrm{~F}_{3}$, and $\mathrm{IO}_{3} \mathrm{~F}$ are known.

In contrast with the chemistries of $\mathrm{Cl}(\mathrm{VII}), \mathrm{Br}(\mathrm{VII})$, and $\mathrm{I}(\mathrm{VII})$, the fluoride-ion donor-acceptor properties of $\mathrm{Br}(\mathrm{V}), \mathrm{Cl}(\mathrm{V})$, and $\mathrm{I}(\mathrm{V})$ fluorides and oxyfluorides have been extensively studied. ${ }^{177,191-198,204,205}$ Reactions of amphoteric $\mathrm{XF}_{5}, \mathrm{XO}_{2} \mathrm{~F}$, and $\mathrm{XOF}_{3}(\mathrm{X}=$ $\mathrm{Cl}, \mathrm{Br})$ with strong fluoride-ion donors such as anhydrous $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right] \mathrm{F}$, NOF, and alkali metal fluorides yield the $\left[\mathrm{XF}_{6}\right]^{-},{ }^{206-210}\left[\mathrm{XO}_{2} \mathrm{~F}_{2}\right]^{-},{ }^{191,211-213}$ and $\left[\mathrm{XOF}_{4}\right]^{-}$anions, ${ }^{143,191-196,214}$ whereas their reactions with fluoride-ion acceptors such as AsF_{5}, and SbF_{5} result in fluoride-ion abstraction to afford salts of the Lewis acidic $\left[\mathrm{XF}_{4}\right]^{+},{ }^{215-217}$ $\left[\mathrm{XO}_{2}\right]^{+},{ }^{139,142,143,185-188,218-222}$ and $\left[\mathrm{XOF}_{2}\right]^{+} 63,143,191,192,194,195,223,224$ cations, respectively. Reactions of $\left[\mathrm{BrOF}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ with the oxidatively resistant noble-gas difluorides $\mathrm{NgF}_{2}(\mathrm{Ng}$ $=\mathrm{Kr}, \mathrm{Xe})$ in aHF solvent have been shown to form the $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FNgF})_{2}\right]\left[\mathrm{AsF}_{6}\right](\mathrm{Ng}=$ $\left.\mathrm{Kr},{ }^{62} \mathrm{Xe}^{63}\right)$ and $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]$ coordination complexes (Eqs. 5.1 and 5.2).

$$
\begin{align*}
& {\left[\mathrm{BrOF}_{2}\right]\left[\mathrm{AsF}_{6}\right]+\mathrm{XeF}_{2} \xrightarrow[\text { RT }]{\text { aHF }}\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]} \tag{5.1}\\
& {\left[\mathrm{BrOF}_{2}\right]\left[\mathrm{AsF}_{6}\right]+2 \mathrm{NgF}_{2} \xrightarrow[\mathrm{RT}]{\mathrm{aHF}}\left[\mathrm{~F}_{2} \mathrm{OBr}(\mathrm{FNgF})_{2}\right]\left[\mathrm{AsF}_{6}\right]} \tag{5.2}
\end{align*}
$$

Coordination of NgF_{2} to Lewis acidic p-block elements is challenging because the Lewis acid must be resistant to oxidative fluorination, but not Lewis acidic enough to abstract fluoride-ion to form $[\mathrm{NgF}]^{+}$salts. The $\left[\mathrm{BrOF}_{2}\right]^{+}$cation meets these criteria, and these studies provided the first examples of structurally characterized cationic $\operatorname{Br}(\mathrm{V})$ coordination complexes.

More recently, the synthesis of $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]^{61}$ provided the first example of a cationic $\mathrm{Cl}(\mathrm{V})$ coordination complex which was structurally characterized by LT Raman spectroscopy and LT SCXRD. ${ }^{61}$ This study showed that XeF_{2} terminally coordinates to the Lewis acidic $\mathrm{Cl}(\mathrm{V})$ center through primarily electrostatic $\mathrm{Cl}---\mathrm{F}_{\mathrm{Xe}}$ bonds that are directed towards regions of high electrostatic potential on the $\mathrm{Cl}(\mathrm{V})$ atom of $\left[\mathrm{ClO}_{2}\right]^{+}$. MEPS analyses for $\left[\mathrm{BrO}_{2}\right]^{+}$and $\left[\mathrm{IO}_{2}\right]^{+}$indicated that these cations are expected to form coordination complexes with XeF_{2}. Prior to this work, only one cationic $\mathrm{Br}(\mathrm{V})$ coordination complex of $\left[\mathrm{BrO}_{2}\right]^{+},\left[\mathrm{O}_{2} \mathrm{Br}\left(\mathrm{BrO}_{2} \mathrm{~F}\right)\right]\left[\mathrm{AsF}_{6}\right],{ }^{139}$ had been synthesized and structurally characterized. However, the adducted $\mathrm{BrO}_{2} \mathrm{~F}$ molecules exhibited an O / F positional disorder, and no discussion was provided concerning the nature of the bonding in this complex. Thus, the reactions of XeF_{2} with $\left[\mathrm{BrO}_{2}\right]^{+}$salts in aHF solvent were investigated with the view to synthesize and structurally characterize $\left[\mathrm{BrO}_{2}\right]^{+}$ coordination complexes by analogy with those of $\left[\mathrm{ClO}_{2}\right]^{+} .{ }^{61}$

5.2. RESULTS AND DISCUSSION

5.2.1. Syntheses

The syntheses of XeF_{2} coordination complexes of $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{PnF}_{6}\right]$ employed small quantities of $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{PnF}_{6}\right](<100 \mathrm{mg})$ to avoid handling and transfer of hazardous quantities of thermally unstable and potentially explosive $\mathrm{BrO}_{2} \mathrm{~F}$ (calcd. $\Delta \mathrm{H}_{\mathrm{f}}=18.8 \mathrm{~kJ}$ mol^{-1}, CCSD-DTQ; $12.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$, CCSD-Q5). ${ }^{177}$ To circumvent transfer of small quantities of dry $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{PnF}_{6}\right]$ salts in a dry box, the salts were synthesized in aHF solvent and allowed to react in situ with XeF_{2}. Consequently, small excesses of PnF_{5} used
for the syntheses of $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{PnF}_{6}\right]$ in aHF reacted with XeF_{2} to form small amounts of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{PnF}_{6}\right]$.

Final products and distributions were monitored by recording the LT $\left(-150{ }^{\circ} \mathrm{C}\right)$ Raman spectra of precipitated solids under frozen aHF solvent. Dry crystalline material was also characterized by LT SCXRD and/or LT Raman spectroscopy.

5.2.1.1. $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ and $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right][\mathrm{AsF} 6]$

The reaction of a ca. $1.0: 1.5$ molar mixture of freshly prepared $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ with XeF_{2} at $-10{ }^{\circ} \mathrm{C}$ in aHF solvent led to a mixture of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right],\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$, unreacted $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ and XeF_{2} (Eqs. 5.3 and 5.4).

$$
\begin{align*}
& {\left[\mathrm{BrO}_{2}\right]\left[\mathrm{AsF}_{6}\right]+\mathrm{XeF}_{2} \underset{-10^{\circ} \mathrm{C}}{\stackrel{\mathrm{aHF}}{\rightleftharpoons}}\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]} \tag{5.3}\\
& {\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]+\mathrm{XeF}_{2} \underset{-10^{\circ} \mathrm{C}}{\stackrel{\mathrm{aHF}}{\rightleftharpoons}}\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]} \tag{5.4}
\end{align*}
$$

The sample was warmed to $0^{\circ} \mathrm{C}$ to effect dissolution of all solid materials. Dark orange, needle-shaped crystals of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ grew upon cooling the sample to $-42{ }^{\circ} \mathrm{C}$ over ca. 7 h , and light orange, needle-shaped crystals of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]$ grew upon cooling from -42 to $-46{ }^{\circ} \mathrm{C}$ over 3 h . Crystals of $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right], \mathrm{XeF}_{2}$, and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]$ also grew from aHF solution (see Section 2.5.3.).

5.2.1.2. $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$

The reaction of a $1.0: 2.5$ molar mixture of dry $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ and XeF_{2} in aHF solvent at $-10{ }^{\circ} \mathrm{C}$ yielded $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ and unreacted starting materials (Eq. 5.5), indicating that $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right], \mathrm{XeF}_{2}$, and $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ exist in equilibrium in aHF solvent.

$$
\begin{equation*}
\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right]+2 \mathrm{XeF}_{2} \underset{-10^{\circ} \mathrm{C}}{\stackrel{\mathrm{aHF}}{\rightleftharpoons}}\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right] \tag{5.5}
\end{equation*}
$$

Dark red-orange, needle-shaped crystals of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ (3) were grown by slowly cooling the reaction mixture from 22 to $-50{ }^{\circ} \mathrm{C}$ over ca. 10 h . Crystals of $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ and XeF_{2} also grew from aHF solution (see Section 2.5.4.).

5.2.1.3. Attempted Synthesis of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{SbF}_{6}\right]$

The reaction of an approximately equimolar mixture of freshly prepared $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ with XeF_{2} in aHF yielded $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$, unreacted $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$, and a small amount of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{SbF}_{6}\right]$. Addition of another equivalent of XeF_{2} yielded a mixture of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right], \mathrm{XeF}_{2}$, and $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$. The absence of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{SbF}_{6}\right]$ is presumably due to of the lower fluorobasicity of $\left[\mathrm{SbF}_{6}\right]^{-}$relative to that of $\left[\mathrm{AsF}_{6}\right]^{-}$. This enhances the Lewis acidity of $\left[\mathrm{BrO}_{2}\right]^{+}$sufficiently to favor $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ formation. Preferential formation of $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FKrF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ was also reported when the synthesis of $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FKrF})\right]\left[\mathrm{AsF}_{6}\right]$ was attempted. ${ }^{62}$

5.2.2. X-ray Crystallography

A summary of X-ray crystallographic data and refinement results for $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1), $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ (2), and $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]$ (3) is provided in Table 5.1. The X-ray crystal structures and key bond lengths and angles of $\mathbf{1}$ 3 are provided in Figures 5.1-5.3 and Tables 5.1-5.3.

The coordinated $\left[\mathrm{BrO}_{2}\right]^{+}$cations in $\mathbf{1}-\mathbf{3}$ have the bent geometry that is predicted for an $\mathrm{AX}_{2} \mathrm{E}$ VSEPR arrangement of two bond pair domains (X) and one valence electron lone-pair domain (E) around the central $\operatorname{Br}(\mathrm{V})$ atom (A). The $\left[\mathrm{PnF}_{6}\right]^{-}$anions have octahedral AX_{6} VSEPR geometries that are slightly distorted by ion-pair interactions. The structural parameters of the $\left[\mathrm{PnF}_{6}\right]^{-}$anions are similar to those of other ion-paired $\left[\mathrm{PnF}_{6}\right]^{-}$
salts, ${ }^{17,46,48,61,143}$ including the slight elongation of the Pn-F bonds for F atoms that form $\mathrm{Br}---\mathrm{F}_{\mathrm{Pn}}$ secondary bonds relative to those $\mathrm{Pn}-\mathrm{F}$ bonds corresponding to F atoms that do not engage in secondary bond formation with $\operatorname{Br}(\mathrm{V})$.

5.2.2.1. $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1) and $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ (2)

Both $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1) and $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ (2) crystallize in the $P \overline{1}$ space group and are isotypic. The salts are intimate ion-pairs that are extensively fluorine bridged in the solid-state through secondary $\mathrm{Br}---\mathrm{F}_{\mathrm{Xe}}$ and $\mathrm{Br}---\mathrm{F}_{\mathrm{Pn}}$ bonds. The geometric parameters of $\left[\mathrm{BrO}_{2}\right]^{+}$in 1 (1.584(4) and 1.597(4) \AA; 111.9(2) ${ }^{\circ}$) and 2 (1.589(5) and 1.593(4) $\left.\AA ; 111.1(2)^{\circ}\right)$ are equal within $\pm 3 \sigma$ to those of $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{PnF}_{6}\right]$ (As: $1.590(3) \AA$, $\left.112.1(3)^{\mathrm{o}} ;{ }^{139} \mathrm{Sb}: \quad 1.595(2) \quad \AA, \quad 111.9(1)^{\mathrm{o}}\right) .{ }^{143}$ Unlike $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]^{61}$ and $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right],{ }^{63}$ where both XeF_{2} ligands are terminally coordinated, complexes 1 and 2 have one asymmetrically and two symmetrically bridged XeF_{2} ligands that each interact with two $\mathrm{Br}(\mathrm{V})$ atoms. The differences among XeF_{2} coordination modalities in $\mathbf{1}$, 2, $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right],{ }^{61}$ and $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]^{63}$ are attributed to the larger covalent radius of $\operatorname{Br}(\mathrm{V})$ relative to that of $\mathrm{Cl}(\mathrm{V})$, and to the lower fluoride-ion affinity and less congested coordination sphere of $\left[\mathrm{BrO}_{2}\right]^{+}$relative to $\left[\mathrm{BrOF}_{2}\right]^{+}$. The two symmetrically bridged XeF_{2} ligands of $\mathbf{1}$ and 2 have bond lengths (2.001(3) \AA and $1.997(3) \AA$) that are equal within $\pm 3 \sigma$ to those of the low-temperature phase of XeF_{2} $(1.999(2) \AA) .{ }^{48}$ In contrast, asymmetric bridging of XeF_{2} results in contraction of one $\mathrm{Xe}-$ F bond (1, 1.965(3) $\AA ; \mathbf{2}, 1.970(4) \AA$) and elongation of the other Xe-F bond (1, 2.026(3) $\AA ; \mathbf{2}, 2.039(3) \AA$) relative to the $\mathrm{Xe}-\mathrm{F}$ bond lengths of symmetrically bridged XeF_{2} (vide supra). The $\mathrm{Xe}-\mathrm{F}$ bonds of the asymmetrically bridged XeF_{2} ligands of $\mathbf{1}$ and $\mathbf{2}$ are more
asymmetric than those of $\left[\mathrm{Cd}(\mathrm{FXeF})_{5}\right]\left[\mathrm{PF}_{6}\right]_{2} \quad(1.990(7) \text { and } 2.010(8) \AA)^{225}$ $\left[\mathrm{Ca}(\mathrm{FXeF})_{4}\right]\left[\mathrm{AsF}_{6}\right]_{2}(1.973(8)$ and $2.030(8) \AA),{ }^{226}$ and $\mathrm{Hg}\left(\mathrm{OTeF}_{5}\right)_{2} \cdot 1.5 \mathrm{XeF}_{2}(1.991(4)$ and $2.012(4) \AA) .{ }^{72}$ The $\mathrm{F}-\mathrm{Xe}-\mathrm{F}$ bond angles of the asymmetrically bridged XeF_{2} ligands (1, $179.0(2)^{\mathrm{o}} ; 2,178.7(2)^{\mathrm{o}}$) are essentially linear and are similar to those in other asymmetrically bridged coordination complexes $\left(\left[\mathrm{Cd}(\mathrm{FXeF})_{5}\right]\left[\mathrm{PF}_{6}\right]_{2}, \quad 178.7(4)^{\mathrm{o}}{ }^{2}{ }^{225}\right.$ $\left.\left[\mathrm{Ca}(\mathrm{FXeF})_{4}\right]\left[\mathrm{AsF}_{6}\right]_{2}(176.5(5) \AA) ;{ }^{226} \mathrm{Hg}\left(\mathrm{OTeF}_{5}\right)_{2} \cdot \mathrm{XeF}_{2}, 179.4(2)^{\mathrm{o}}\right) .{ }^{72}$

Table 5.1. Summary of X-ray crystal data and refinement results for $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1), $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ (2), and $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]$ (3)

	1	2	3
space group	$P \overline{1}$	$P \overline{1}$	$P \overline{1}$
$a(\AA)$	7.0662(4)	7.1159(5)	6.1219(4)
$b(\AA)$	8.7302(5)	8.8756(7)	9.3670 (6)
$c(\AA)$	8.7948(5)	8.9035(6)	14.7903(10)
α (deg)	92.417(2)	90.560(4)	91.719(3)
β (deg)	92.112(2)	91.595(3)	92.563(2)
γ (deg)	92.048(3)	91.794(4)	90.658(2)
$V\left(\AA^{3}\right)$	541.32(5)	561.80(7)	846.83(10)
$Z^{[a]}$	2	2	4
$M_{\text {W }}{ }^{[b]}$	639.43	686.26	470.13
$\rho_{\text {calcd }}{ }^{[\text {c] }]}$	3.923	4.057	3.687
$T\left({ }^{\circ} \mathrm{C}\right)$	$-173{ }^{\circ} \mathrm{C}$	$-173{ }^{\circ} \mathrm{C}$	$-173{ }^{\circ} \mathrm{C}$
$\mu^{\text {[d] }}$	13.109	12.061	12.771
$R_{1}{ }^{\text {[e] }}$	0.0381	0.0349	0.0379
$w R_{2}{ }^{[f]}$	0.0883	0.0839	0.0991

[a] Molecules/unit cell. [b] $\mathrm{g} \mathrm{mol}^{-1}$. [c] $\mathrm{g} \mathrm{cm}^{-3}$. [d] mm^{-1}. [e] $R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \Sigma\left|F_{\mathrm{o}}\right|$. [f] $w R_{2}=\left[\Sigma\left(w\left(F_{0}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right) / \Sigma\left(w\left(F_{\mathrm{o}}^{2}\right)^{2}\right)\right]^{1 / 2}$.

The $\left[\mathrm{BrO}_{2}\right]^{+}$cations of $\mathbf{1}$ and $\mathbf{2}$ interact with neighboring XeF_{2} ligands and with the $\left[\mathrm{PnF}_{6}\right]^{-}(\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$ anions through secondary $\mathrm{Br}---\mathrm{F}_{\mathrm{Xe}}$ bonds $(1,2.531(3)-2.860(3)$ \AA; 2, 2.527(3)-2.902(3) \AA) and Br---FPn bonds (1, 2.814(3) and 2.951(3) \AA; 2, 2.468(3)
and $2.873(3) \AA$) that are significantly shorter than the sum of the Br and F van der Waals radii $(3.30,3.32 \AA) .{ }^{167}$ The $\mathrm{Br}---\mathrm{F}_{\mathrm{Xe}}$ secondary bonds of $\mathbf{1}$ and $\mathbf{2}$ are significantly longer than those of $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right](2.292(4), 2.306(4) \AA),{ }^{63}$ which is consistent with the lower anticipated fluoride-ion affinity of $\left[\mathrm{BrO}_{2}\right]^{+}$relative to that of $\left[\mathrm{BrOF}_{2}\right]^{+}$. These primarily electrostatic, σ-hole interactions avoid the stereo-active valence electron lone pair on $\operatorname{Br}(\mathrm{V})$ and are directed towards regions of high positive electrostatic potential on $\operatorname{Br}(\mathrm{V})$ that are cis and trans to the $\mathrm{Br}-\mathrm{O}$ bonds, in accordance with the previously reported MEPS analysis of $\left[\mathrm{BrO}_{2}\right]^{+} .{ }^{61}$ The shorter $\mathrm{Br}---\mathrm{F}_{\mathrm{Xe}}$ secondary bonds of $\mathbf{1}$ and $\mathbf{2}$ are directed towards regions of highest positive EP on $\left[\mathrm{BrO}_{2}\right]^{+}$that are cis to the $\mathrm{Br}-\mathrm{O}$ bonds, whereas the longer $\mathrm{Br}--\mathrm{F}_{\mathrm{Xe}}$ secondary bonds are directed towards localized regions of high positive EP (σ-holes) that are trans to $\mathrm{Br}-\mathrm{O}$ bonds. This results in a distorted bicapped trigonal prismatic $\left(\mathrm{CN}_{\mathrm{Br}}=2+6\right)$ coordination sphere for $\mathrm{Br}(\mathrm{V})$ in $\mathbf{1}$ and $\mathbf{2}$.

Figure 5.1. Structural unit in the X-ray crystal structure of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1). Thermal ellipsoids are drawn at the 50% probability level and secondary $\mathrm{Br}---\mathrm{F}_{\mathrm{Xe}}$ and $\mathrm{Br}-$ $--\mathrm{F}_{\mathrm{As}}$ bonds are indicated by dashed lines.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table 5.2. Experimental geometric parameters for $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1) and $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ (2)

Bond Lengths (\AA)					
	1	2		1	2
$\mathrm{Br}(1)-\mathrm{O}(1)$	1.584(4)	1.589(5)	$\mathrm{Xe}(3)-\mathrm{F}(4)$	2.001(3)	1.999(3)
$\mathrm{Br}(1)-\mathrm{O}(2)$	1.597(4)	1.593(4)	Xe(3)-F(4A)	2.001(3)	1.999 (3)
$\operatorname{Br}(1)---\mathrm{F}(1)$	2.531(3)	2.527(3)	$\mathrm{Pn}(1)-\mathrm{F}(5)$	1.723(3)	1.872(3)
$\operatorname{Br}(1)--\mathrm{F}(2 \mathrm{~A})$	2.860(3)	2.902(3)	$\mathrm{Pn}(1)-\mathrm{F}(5 \mathrm{~A})$	1.723(3)	1.872(3)
$\operatorname{Br}(1)--\mathrm{F}(3)$	2.584(4)	2.610(3)	$\mathrm{Pn}(1)-\mathrm{F}(6)$	1.718(3)	1.882(3)
$\operatorname{Br}(1)---\mathrm{F}(4)$	2.685(3)	2.708(4)	$\mathrm{Pn}(1)-\mathrm{F}(6 \mathrm{~A})$	1.718(3)	1.882(3)
$\operatorname{Br}(1)--\mathrm{F}(7 \mathrm{~A})$	2.814(3)	2.768(3)	$\mathrm{Pn}(1)-\mathrm{F}(7)$	1.743(3)	1.897(3)
$\operatorname{Br}(1)--\mathrm{F}(8 \mathrm{~A})$	2.951(3)	2.873(3)	$\mathrm{Pn}(1)-\mathrm{F}(7 \mathrm{~A})$	1.743 (3)	1.897(3)
$\mathrm{Xe}(1)-\mathrm{F}(1)$	2.026(3)	2.039(3)	$\mathrm{Pn}(2)-\mathrm{F}(8)$	1.737(3)	1.898(3)
$\mathrm{Xe}(1)-\mathrm{F}(2)$	1.965(3)	1.970(4)	$\mathrm{Pn}(2)-\mathrm{F}(8 \mathrm{~A})$	1.737(3)	1.898(3)
			$\mathrm{Pn}(2)-\mathrm{F}(9)$	1.714(3)	1.873(3)
$\mathrm{Xe}(2)-\mathrm{F}(3)$	1.997(3)	2.000(3)	$\mathrm{Pr}(2)-\mathrm{F}(9 \mathrm{~A})$	1.714(3)	1.873(3)
Xe(2)-F(3A)	1.997(3)	2.000(3)	$\operatorname{Pn}(2)-\mathrm{F}(10)$	1.724(3)	1.876 (3)
			$\mathrm{Pn}(2)-\mathrm{F}(10 \mathrm{~A})$	1.724(3)	1.876(3)
Bond Angles (${ }^{\circ}$)					
$\mathrm{O}(1)-\mathrm{Br}(1)-\mathrm{O}(2)$	111.9(2)	111.1(2)	$\mathrm{F}(5 \mathrm{~A})-\mathrm{Pn}(1)-\mathrm{F}(6)$	89.82(17)	90.57(16)
$\mathrm{F}(1)---\mathrm{Br}(1)-\mathrm{O}(1)$	92.61(17)	92.52(19)	$\mathrm{F}(5 \mathrm{~A})-\mathrm{Pn}(1)-\mathrm{F}(6 \mathrm{~A})$	90.18(17)	89.44(16)
$\mathrm{F}(2 \mathrm{~A})--\mathrm{Br}(1)-\mathrm{O}(1)$	76.17(17)	76.74(18)	$\mathrm{F}(5 \mathrm{~A})-\mathrm{Pn}(1)-\mathrm{F}(7)$	89.78(16)	90.23(15)
$\mathrm{F}(3)--\mathrm{Br}(1)-\mathrm{O}(1)$	132.55(17)	133.47(18)	$\mathrm{F}(5 \mathrm{~A})-\mathrm{Pn}(1)-\mathrm{F}(7 \mathrm{~A})$	90.22(16)	89.77(15)
$\mathrm{F}(4)--\mathrm{Br}(1)-\mathrm{O}(1)$	83.47(17)	84.26(18)	$\mathrm{F}(6)-\mathrm{Pn}(1)-\mathrm{F}(6 \mathrm{~A})$	180.00	180.00
$\mathrm{F}(7 \mathrm{~A})--\mathrm{Br}(1)-\mathrm{O}(1)$	77.01(16)	77.46(17)	$\mathrm{F}(6)-\mathrm{Pn}(1)-\mathrm{F}(7)$	90.11(18)	89.62(15)
$\mathrm{F}(8 \mathrm{~A})--\mathrm{Br}(1)-\mathrm{O}(1)$	153.57(16)	153.51(18)	$\mathrm{F}(6)-\mathrm{Pn}(1)-\mathrm{F}(7 \mathrm{~A})$	89.89(17)	90.38(15)
$\mathrm{F}(1)---\mathrm{Br}(1)-\mathrm{O}(2)$	84.68(17)	86.58(17)	$F(6 A)-\operatorname{Pn}(1)-\mathrm{F}(7)$	89.88(17)	90.38(15)
$\mathrm{F}(2 \mathrm{~A})--\mathrm{Br}(1)-\mathrm{O}(2)$	79.00(17)	77.80(17)	$\mathrm{F}(6 \mathrm{~A})-\mathrm{Pn}(1)-\mathrm{F}(7 \mathrm{~A})$	90.11(18)	89.62(15)
$\mathrm{F}(3)--\mathrm{Br}(1)-\mathrm{O}(2)$	80.22(17)	79.94(17)	$\mathrm{F}(7)-\mathrm{Pn}(1)-\mathrm{F}(7 \mathrm{~A})$	180.00	180.00
$\mathrm{F}(4)---\mathrm{Br}(1)-\mathrm{O}(2)$	145.13(16)	147.24(17)	$\mathrm{F}(8)-\mathrm{Pn}(2)-\mathrm{F}(8 \mathrm{~A})$	180.00	180.00
$\mathrm{F}(7 \mathrm{~A})--\mathrm{Br}(1)-\mathrm{O}(2)$	144.53(17)	141.72(17)	$\mathrm{F}(8)-\mathrm{Pn}(2)-\mathrm{F}(9)$	90.28(16)	89.49(14)
$\mathrm{F}(8 \mathrm{~A})--\mathrm{Br}(1)-\mathrm{O}(2)$	89.70(17)	89.54(18)	$\mathrm{F}(8)-\mathrm{Pn}(2)-\mathrm{F}(9 \mathrm{~A})$	89.72(16)	90.51(14)
$\mathrm{F}(1)-\mathrm{Xe}(1)-\mathrm{F}(2)$	179.01(17)	178.73(16)	$F(8)-\mathrm{Pn}(2)-\mathrm{F}(10)$	90.45(16)	89.55(15)
$\mathrm{F}(3)-\mathrm{Xe}(2)-\mathrm{F}(3 \mathrm{~A})$	180.00	180.00	$\mathrm{F}(8)-\mathrm{Pn}(2)-\mathrm{F}(10 \mathrm{~A})$	89.55(16)	90.45(15)
$\mathrm{F}(4)-\mathrm{Xe}(3)-\mathrm{F}(4 \mathrm{~A})$	180.00	180.00	$F(8 A)-\operatorname{Pn}(2)-F(9)$	89.72(16)	90.51(14)
$\mathrm{F}(5)-\mathrm{Pn}(1)-\mathrm{F}(5 \mathrm{~A})$	180.00	180.00	$\mathrm{F}(8 \mathrm{~A})-\mathrm{Pn}(2)-\mathrm{F}(9 \mathrm{~A})$	90.28(16)	89.49(14)
$\mathrm{F}(5)-\mathrm{Pn}(1)-\mathrm{F}(6)$	90.18(17)	89.44(16)	$\mathrm{F}(8 \mathrm{~A})-\mathrm{Pn}(2)-\mathrm{F}(10)$	89.56(16)	90.45(15)
$\mathrm{F}(5)-\mathrm{Pn}(1)-\mathrm{F}(6 \mathrm{~A})$	89.82(17)	90.56(16)	$\mathrm{F}(8 \mathrm{~A})-\mathrm{Pn}(2)-\mathrm{F}(10 \mathrm{~A})$	90.44(16)	89.55(15)
$\mathrm{F}(5)-\mathrm{Pn}(1)-\mathrm{F}(7)$	90.22(17)	89.77(15)	$F(9)-\operatorname{Pn}(2)-F(9 A)$	180.00	180.00
$F(5)-\mathrm{Pn}(1)-\mathrm{F}(7 \mathrm{~A})$	89.78(16)	90.23(15)	$F(9)-\operatorname{Pn}(2)-F(10)$	89.70(16)	90.06(15)
			$F(9)-\mathrm{Pn}(2)-\mathrm{F}(10 \mathrm{~A})$	90.30(16)	89.93(15)
			$\mathrm{F}(10)-\mathrm{Pn}(2)-\mathrm{F}(10 \mathrm{~A})$	180.00	180.00

Figure 5.2. Structural unit in the X -ray crystal structure of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ (2). Thermal ellipsoids are drawn at the 50% probability level and secondary $\mathrm{Br}--\mathrm{F}_{\mathrm{Xe}}$ and $\mathrm{Br}-$ --Fsb bonds are indicated by dashed lines.

5.2.2.2. $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]$ (3).

The X-ray crystal structure of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]$ (3) is extensively fluorine bridged and consists of two crystallographically inequivalent structural units (Figure 5.3 and Table 5.3). The $\left[\mathrm{BrO}_{2}\right]^{+}$cations have $\mathrm{Br}-\mathrm{O}$ bond lengths (1.588(4) and $1.602(4) \AA$) and $\mathrm{O}-\mathrm{Br}-\mathrm{O}$ bond angles (111.1(2) and $\left.111.6(2)^{\circ}\right)$ that are equal within $\pm 3 \sigma$ to those of $\mathbf{1}$ and $\mathbf{2}$. The XeF_{2} ligands are located on general positions and are asymmetrically coordinated between two $\operatorname{Br}(\mathrm{V})$ centers $\left(\mathrm{Xe}_{1}-\mathrm{F}: 1.971(3)\right.$ and 2.014(3) $\AA ; \mathrm{Xe}_{2}-\mathrm{F}: 1.978(3)$ and $2.007(3) \AA)$, where the $\mathrm{Xe}-\mathrm{F}$ bond lengths are similar to those of $\mathbf{1}$ and $\mathbf{2}$.
a

b

Figure 5.3. The structural units (a) and (b) in the X-ray crystal structure of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]$ (3) showing the $\mathrm{Br}(\mathrm{V})$ coordination environments. Thermal ellipsoids are drawn at the 50% probability level and secondary $\mathrm{Br}---\mathrm{F}_{\mathrm{Xe}}$ and $\mathrm{Br}---\mathrm{F}_{\mathrm{As}}$ bonds are indicated by dashed lines.

Table 5.3. Experimental geometric parameters for $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]$ (3)

Bond Lengths (\AA)			
$\mathrm{Br}(1)-\mathrm{O}(1)$	1.588(4)	$\mathrm{Xe}(1)-\mathrm{F}(1)$	1.971(3)
$\mathrm{Br}(1)-\mathrm{O}(2)$	1.594(3)	$\mathrm{Xe}(1)-\mathrm{F}(2)$	2.014(3)
$\operatorname{Br}(1)--\mathrm{F}(2)$	2.438(3)	Xe(2)-F(3)	2.007(3)
$\operatorname{Br}(1)--\mathrm{F}(4)$	2.777(3)	$\mathrm{Xe}(2)-\mathrm{F}(4)$	1.978(3)
$\operatorname{Br}(1)--\mathrm{F}(5 \mathrm{~A})$	3.018(3)		
$\mathrm{Br}(1)--\mathrm{F}(7 \mathrm{~B})$	2.866(3)	As(1)-F(5)	1.724(3)
$\operatorname{Br}(1)--\mathrm{F}(8 \mathrm{~A})$	2.944(3)	As(1)-F(6)	1.717(3)
$\operatorname{Br}(1)--\mathrm{F}(9)$	2.707(3)	As(1)-F(7)	1.726(3)
		As(1)-F(8)	1.722(3)
$\mathrm{Br}(2)-\mathrm{O}(3)$	1.602(4)	$\mathrm{As}(1)-\mathrm{F}(9)$	1.728(3)
$\mathrm{Br}(2)-\mathrm{O}(4)$	1.598(3)	As(1)-F(10)	1.704(3)
$\operatorname{Br}(2)---\mathrm{F}(1)$	2.599(3)	As(2)-F(11)	1.721(3)
$\operatorname{Br}(2)--\mathrm{F}(3)$	2.532(3)	As(2)-F(12)	1.728(3)
$\mathrm{Br}(2)--\mathrm{F}(12 \mathrm{~B})$	2.851(3)	As(2)-F(13)	1.729(3)
$\operatorname{Br}(2)---\mathrm{F}(13)$	2.796(3)	As(2)-F(14)	1.726(3)
$\operatorname{Br}(2)--\mathrm{F}(14 \mathrm{~A})$	2.876(3)	As(2)-F(15)	1.728(3)
$\operatorname{Br}(2)--\mathrm{F}(15 \mathrm{~B})$	2.907(3)	$\mathrm{As}(2)-\mathrm{F}(16)$	1.711(3)
Bond Angles (${ }^{\circ}$)			
$\mathrm{O}(1)-\mathrm{Br}(1)-\mathrm{O}(2)$	111.6(2)	$\mathrm{F}(1)-\mathrm{Xe}(1)-\mathrm{F}(2)$	179.2(1)
$\mathrm{F}(2)--\mathrm{Br}(1)-\mathrm{O}(1)$	101.8(2)	$\mathrm{F}(3)-\mathrm{Xe}(2)-\mathrm{F}(4)$	179.7(1)
$\mathrm{F}(4)--\mathrm{Br}(1)-\mathrm{O}(2)$	145.9(2)		
$\mathrm{F}(7 \mathrm{~B})---\mathrm{Br}(1)-\mathrm{O}(1)$	84.5(2)	$\mathrm{F}(5)-\mathrm{As}(1)-\mathrm{F}(6)$	91.1(2)
$\mathrm{F}(8 \mathrm{~A})---\mathrm{Br}(1)-\mathrm{O}(1)$	148.1(2)	$\mathrm{F}(5)-\mathrm{As}(1)-\mathrm{F}(7)$	177.6(2)
$\mathrm{F}(9)--\mathrm{Br}(1)-\mathrm{O}(2)$	138.3(2)	$\mathrm{F}(5)-\mathrm{As}(1)-\mathrm{F}(8)$	88.0(2)
$\mathrm{F}(5 \mathrm{~A})---\mathrm{Br}(1)-\mathrm{O}(1)$	151.8(2)	$\mathrm{F}(5)-\mathrm{As}(1)-\mathrm{F}(9)$	89.2(2)
		$\mathrm{F}(5)-\mathrm{As}(1)-\mathrm{F}(10)$	91.1(2)
$\mathrm{O}(3)-\mathrm{Br}(2)-\mathrm{O}(4)$	111.1(2)		
		$\mathrm{F}(11)-\mathrm{As}(1)-\mathrm{F}(12)$	90.1(2)
$\mathrm{F}(1)--\mathrm{Br}(2)-\mathrm{O}(4)$	149.8(2)	$\mathrm{F}(11)-\mathrm{As}(1)-\mathrm{F}(13)$	179.5(2)
$\mathrm{F}(3)--\mathrm{Br}(2)-\mathrm{O}(4)$	89.6(2)	$\mathrm{F}(11)-\mathrm{As}(1)-\mathrm{F}(14)$	89.8(2)
$\mathrm{F}(12 \mathrm{~B})--\mathrm{Br}(2)-\mathrm{O}(3)$	149.7(2)	$\mathrm{F}(11)-\mathrm{As}(1)-\mathrm{F}(15)$	90.1(2)
$\mathrm{F}(13)---\mathrm{Br}(2)-\mathrm{O}(4)$	138.1(2)	$\mathrm{F}(11)-\mathrm{As}(1)-\mathrm{F}(16)$	90.4(1)
$\mathrm{F}(14 \mathrm{~A})--\mathrm{Br}(2)-\mathrm{O}(3)$	98.2(2)		
$\mathrm{F}(15 \mathrm{~B})--\mathrm{Br}(2)-\mathrm{O}(4)$	152.5(2)		

The $\left[\mathrm{BrO}_{2}\right]^{+}$cations of $\mathbf{3}$ interact with the asymmetrically coordinated XeF_{2} ligands and nearby $\left[\mathrm{AsF}_{6}\right]^{-}$anions through primarily electrostatic $\mathrm{Br}--\mathrm{F}_{\mathrm{Xe}}(\mathrm{Br}(1)$, 2.438(3), 2.777(3) $\AA ; \operatorname{Br}(2), 2.532(3), 2.599(3) \AA)$ and $\mathrm{Br}--\mathrm{F}_{\mathrm{As}}(\mathrm{Br}(1), 2.707(3)$, $2.866(3), 2.944(3), 3.018(3) \AA ; \operatorname{Br}(2), 2.795(3), 2.851(3), 2.876(3), 2.907(3) \AA)$ secondary bonds. As in $\mathbf{1}$ and 2, these secondary bonds avoid the stereo-active lone pair on $\operatorname{Br}(\mathrm{V})$, and are directed towards regions of high electrostatic potential on $\left[\mathrm{BrO}_{2}\right]^{+}$that are cis and trans to the $\mathrm{Br}-\mathrm{O}$ bonds. These interactions are significantly shorter than the sum of the Br and F van der Waals radii (vide supra), ${ }^{167}$ and give rise to distorted bicapped trigonal prismatic $\operatorname{Br}(\mathrm{V})$ coordination spheres $\left(\mathrm{CN}_{\mathrm{Br}}=2+6\right)$ for both $\operatorname{Br}(\mathrm{V})$ centers. The shortest $\mathrm{Br}---\mathrm{FXe}_{\mathrm{Xe} / \mathrm{As}}$ contacts $(\mathrm{Br}(1), 2.438(3) \AA$; $\operatorname{Br}(2), 2.532(3) \AA$) coordinate cis to the $\mathrm{Br}-\mathrm{O}$ bonds, whereas the longer $\mathrm{Br}---\mathrm{F}_{\mathrm{Xe} / \mathrm{As}}$ contacts are trans to the $\mathrm{Br}-\mathrm{O}$ bonds $(\mathrm{Br}(1), 2.777(3) \AA$; $\mathrm{Br}(2), 2.599(3) \AA$).

5.2.3. Raman Spectroscopy

Calculated gas-phase geometries and frequencies of compounds $\mathbf{1}-\mathbf{3}$ were not obtained because they are extensively fluorine bridged. Attempts to optimize oligomeric models failed at the B3LYP/Def2-TZVPD, APFD/Def2-TZVPD, and PBE1PBE/Def2-TZVPD levels of theory. The calculated gas-phase optimized geometry of $\left[\mathrm{BrO}_{2}\right]^{+}$and associated vibrational frequencies and isotopic shifts are provided in Chapter 4. ${ }^{61}$ Spectral assignments (Tables 5.4 and 5.5) for $\left[\mathrm{BrO}_{2}\right]^{+}$and the terminal and bridging XeF_{2} ligands were therefore made by comparison with $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{AsF}_{6}\right],{ }^{139} \quad\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right],{ }^{143}$ $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{BF}_{4}\right],{ }^{191}\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right],{ }^{61}\left[\mathrm{~F}_{2} \mathrm{OBr}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}{ }_{6}\right],\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right],{ }^{63}$
and $\mathrm{Hg}\left(\mathrm{OTeF}_{5}\right)_{2} \cdot 1.5 \mathrm{XeF}_{2}{ }^{72}$ Quantum-chemical calculations for XeF_{2} coordination complexes $\quad\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right],{ }^{61} \quad\left[\mathrm{~F}_{2} \mathrm{OBr}(\mathrm{FNgF})_{2}\right]\left[\mathrm{AsF}_{6}\right],{ }^{62,63} \quad$ and $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right],{ }^{63}$ have shown that little or no intermolecular vibrational coupling occurs among the $\mathrm{Ng}-\mathrm{F}$ stretching modes of coordinated NgF_{2} and the cation and anion stretching modes within the unit cell. It is therefore reasonable to assume that this also applies to compounds $\mathbf{1}, \mathbf{2}$, and $\mathbf{3}$. Thus, tentative assignments were made assuming no significant vibrational coupling occurs among the vibrational modes of $\mathrm{XeF}_{2},\left[\mathrm{BrO}_{2}\right]^{+}$, and $\left[\mathrm{PnF}_{6}\right]^{-}$. Previous QC calculations have also shown that when two or more XeF_{2} ligands are present in a complex that have the same coordination modality, terminal or bridging, intermolecular coupling of the $\mathrm{Xe}-\mathrm{F}$ stretches occurs for these ligands within the crystallographic unit cell. ${ }^{61-63}$ It was therefore assumed that intermolecular coupling also occurs between the two symmetrically bridged XeF_{2} ligands of $\mathbf{1}$ and $\mathbf{2}\left(\mathrm{F}_{3}, \mathrm{~F}_{3 \mathrm{~A}}\right.$ and $\left.\mathrm{F}_{4}, \mathrm{~F}_{4 \mathrm{~A}}\right)$ and between the two asymmetrically bridged XeF_{2} ligands of $\mathbf{3}\left(\mathrm{F}_{1}, \mathrm{~F}_{2}\right.$ and F_{3}, F_{4}).

Vibrational assignments for $\left[\mathrm{PnF}_{6}\right]^{-}(\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$ were made by comparison with other $\left[\mathrm{PnF}_{6}\right]^{-}$salts ${ }^{17,46,48,61,143}$ and under assumed O_{h} symmetry. Symmetry lowering of the $\left[\mathrm{PnF}_{6}\right]^{-}$anions from the gas-phase O_{h} symmetry to C_{i} site symmetry in the crystal structures of $\mathbf{1}$ and $\mathbf{2}$ accounts for the splitting of the degenerate Eg_{g} and $\mathrm{T}_{2 \mathrm{~g}}$ modes, and is consistent with the observation of no formally Raman inactive ungerade modes in the Raman spectra of their anions (Table 5.4). In contrast, the $\left[\mathrm{AsF}_{6}\right]^{-}$anion in the crystal structure of 3 exhibits C_{1} site symmetry, which results in observation of the formally Raman inactive $\mathrm{T}_{1 \mathrm{u}}$ modes in addition to splittings arising from site-symmetry-lowering
for the $\mathrm{E}_{\mathrm{g}}, \mathrm{T}_{2 \mathrm{~g}}$, and $\mathrm{T}_{1 \mathrm{u}}$ modes (Table 5.5). Correlation of the site symmetries of $\mathbf{1}\left(C_{\mathrm{i}}\right), \mathbf{2}$ $\left(C_{\mathrm{i}}\right)$, and $3\left(C_{1}\right)$ to the space group symmetries $\left(C_{\mathrm{i}}\right)$ does not predict band splitting. However, the occurrence of two crystallographically inequivalent $\left[\mathrm{AsF}_{6}\right]^{-}$anions in $\mathbf{3}$ gives rise to splitting of the symmetric $\mathrm{A}_{1 \mathrm{~g}}$ band of $\left[\mathrm{AsF}_{6}\right]^{-}$.

5.2.3.1. $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1) and $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ (2)

The low-temperature Raman spectra of $\mathbf{1}$ and $\mathbf{2}$ are shown in Figures 5.4 and 5.5, respectively. The Raman frequencies of $\left[\mathrm{BrO}_{2}\right]^{+}$of $\mathbf{1}\left(v_{\mathrm{as}}\left(\mathrm{BrO}_{2}\right), 944.2 / 947.3 \mathrm{~cm}^{-1}\right.$; $\left.v_{\mathrm{s}}\left(\mathrm{BrO}_{2}\right), 885.9 \mathrm{~cm}^{-1} ; \delta(\mathrm{OBrO}), 379.2 \mathrm{~cm}^{-1}\right)$, and $2\left(v_{\mathrm{as}}\left(\mathrm{BrO}_{2}\right), 943.7 / 946.1 ; v_{\mathrm{s}}\left(\mathrm{BrO}_{2}\right)\right.$, 886.6; $\left.\delta(\mathrm{OBrO}), 377.0 \mathrm{~cm}^{-1}\right)$ are similar to those of $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ (942.8/940.5, 877.9, $\left.371.9 \mathrm{~cm}^{-1}\right),{ }^{143}\left[\mathrm{BrO}_{2}\right]\left[\mathrm{AsF}_{6}\right]\left(931,862,382 \mathrm{~cm}^{-1}\right)$, and $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{BF}_{4}\right]\left(947,884,379 \mathrm{~cm}^{-}\right.$ $\left.{ }^{1}\right) .{ }^{191}$ The ${ }^{79 / 81} \mathrm{Br}$ isotopic shift, $\Delta v=v\left({ }^{79} \mathrm{Br}\right)-v\left({ }^{81} \mathrm{Br}\right)$, was only resolved for the $\Delta v_{\mathrm{as}}\left({ }^{(79 / 81} \mathrm{BrO}_{2}\right)$ modes $\left(\mathbf{1}, 3.1 \mathrm{~cm}^{-1} ; \mathbf{2}, 2.4 \mathrm{~cm}^{-1}\right)$ and are comparable to the $\Delta v_{\mathrm{as}}\left({ }^{79 / 81} \mathrm{BrO}_{2}\right)$ isotopic shift of $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right]\left(2.3 \mathrm{~cm}^{-1}\right) .{ }^{143}$

The bands at $515.5 \mathrm{~cm}^{-1}$ (1) and $513.3 \mathrm{~cm}^{-1}$ (2) are assigned to the in-phase coupled stretching modes of the two symmetrically bridged XeF_{2} ligands, $\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{3}\right)+\right.$ $\left.v\left(\mathrm{Xe}_{2}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{3}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]$, and are similar to those of the symmetrically bridged XeF_{2} complexes $\left[\mathrm{Pb}_{3}(\mathrm{FXeF})_{11}\right]\left[\mathrm{PF}_{6}\right]_{6}\left(514 \mathrm{~cm}^{-1}\right)$ and $\left[\mathrm{Pb}(\mathrm{FXeF})_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}\left(513 \mathrm{~cm}^{-}\right.$ ${ }^{1}$). ${ }^{227}$ The bands at $464.4,535.5$ (1) and $458.4,533.9$ (2) cm^{-1} are similar to those observed for terminally coordinated XeF_{2} in $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (435.6, 439.4, 446.7, and 481.1, 519.0, 530.9 $\left.\mathrm{cm}^{-1}\right),{ }^{61}\left[\mathrm{~F}_{2} \mathrm{OBr}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right](409,460,467$, and 540, 543, $\left.548,552 \mathrm{~cm}^{-1}\right)$, and $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]\left(426,447\right.$, and $\left.531,543,559 \mathrm{~cm}^{-1}\right),{ }^{63}$ where
the lower frequencies correspond to the longer bridging $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$ bonds and the higher frequencies correspond to the shorter terminal $\mathrm{Xe}-\mathrm{F}_{\mathfrak{t}}$ bonds. Thus, the bands around 460 and $530 \mathrm{~cm}^{-1}$ of $\mathbf{1}$ and $\mathbf{2}$ were assigned to the $v\left(\mathrm{Xe}_{1}-\mathrm{F}_{1}\right)$ and $v\left(\mathrm{Xe}_{1}-\mathrm{F}_{2}\right)$ stretching modes. The bands display significant shifts to lower and higher frequency, respectively, relative to the $v_{1}\left(\Sigma_{\mathrm{g}}{ }^{+}\right)$band of solid $\mathrm{XeF}_{2}\left(496 \mathrm{~cm}^{-1}\right) .{ }^{48} \mathrm{~A}$ similar, but less pronounced, frequency asymmetry has been reported for the asymmetrically bridged XeF_{2} ligand of $\mathrm{Hg}\left(\mathrm{OTeF}_{5}\right)_{2} \cdot 1.5 \mathrm{XeF}_{2}\left(489\right.$ and $\left.518 \mathrm{~cm}^{-1}\right) .^{72}$

The bands at 230.7 (1) and $228.6(\mathbf{2}) \mathrm{cm}^{-1}$ are assigned to overlapping $\delta\left(\mathrm{F}_{1} \mathrm{Xe}_{1} \mathrm{~F}_{2}\right)$, $\delta\left(\mathrm{F}_{3} \mathrm{Xe}_{2} \mathrm{~F}_{3 \mathrm{~A}}\right)$, and $\delta\left(\mathrm{F}_{4} \mathrm{Xe}_{3} \mathrm{~F}_{4 \mathrm{~A}}\right)$ bending modes by analogy with those reported for $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right] \quad\left(234 \mathrm{~cm}^{-1}\right),{ }^{61} \quad\left[\mathrm{~F}_{2} \mathrm{OBr}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right] \quad\left(232,299 \mathrm{~cm}^{-1}\right)$, and $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]\left(244 \mathrm{~cm}^{-1}\right) .{ }^{63}$ These bands are shifted to higher frequency relative to $v_{2}\left(\Pi_{u}\right)$ of $\mathrm{XeF}_{2}\left(213 \mathrm{~cm}^{-1}\right) .^{48}$

5.2.3.2. $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]$ (3)

The LT Raman spectrum of $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]$ (3) is shown in Figure 5.5. The occurrence of two crystallographically inequivalent $\left[\mathrm{BrO}_{2}\right]^{+}$cations in $\mathbf{3}$ results in additional splittings of the $\left[\mathrm{BrO}_{2}\right]^{+}$Raman bands $\left(v_{\mathrm{as}}\left(\mathrm{BrO}_{2}\right) ; 943.5 / 945.7\right.$ and 934.4/937.2 $\mathrm{cm}^{-1} ; v_{\mathrm{s}}\left(\mathrm{BrO}_{2}\right), 883.8$ and $876.8 \mathrm{~cm}^{-1} ; \delta(\mathrm{OBrO}), 376.2$ and $\left.371.0 \mathrm{~cm}^{-1}\right)$ in addition to isotopic splittings, $\Delta v_{\mathrm{as}}\left({ }^{79 / 81} \mathrm{BrO}_{2}\right)=2.2$ and $2.8 \mathrm{~cm}^{-1}$, that are similar to those of $\mathbf{1}$ and $\mathbf{2}$.

The Xe-F bond length asymmetries of $\mathbf{3}$ are similar to those of $\mathbf{1}, \mathbf{2}$, and the terminally coordinated XeF_{2} coordination complex, $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right] .{ }^{63}$ The $v(\mathrm{Xe}-$ F) stretching modes of the two XeF_{2} ligands in $\mathbf{3}$ are therefore expected to in- and out-of-
phase (i.p. and o.o.p.) couple to give four modes, $\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{1}\right) \pm v\left(\mathrm{Xe}_{2}-\mathrm{F}_{4}\right)\right]$ and $\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{2}\right)\right.$ $\left.\pm v\left(\mathrm{Xe}_{2}-\mathrm{F}_{3}\right)\right]$. The assignment of specific bands to the i.p. and o.o.p. coupled modes were made by analogy with $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$, which increase in frequency in the order $\left[v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right)-v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right)\right]<\left[v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right)+v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right)\right]<\left[v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\right)-v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\right)\right]<\left[v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\right)+v(\mathrm{Xe}-\right.$ $\left.\left.\mathrm{F}_{\mathrm{t}}\right)\right]{ }^{61}$ The highest frequency bands (i.p., 545.9 ; o.o.p., $525.6 \mathrm{~cm}^{-1}$) are therefore assigned to the $\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{1}\right) \pm v\left(\mathrm{Xe}_{2}-\mathrm{F}_{4}\right)\right]$ stretching modes, whereas the lower frequency bands (i.p., 497.0; o.o.p., $\left.458.8 \mathrm{~cm}^{-1}\right)$ are assigned to the $\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{2}\right) \pm v\left(\mathrm{Xe}_{2}-\mathrm{F}_{3}\right)\right]$ stretching modes. These bands occur at frequencies that are comparable to those of the asymmetrically bridged XeF_{2} ligands of $\mathbf{1}$ and $\mathbf{2}$ (vide supra). The band at $214.7 \mathrm{~cm}^{-1}$ is assigned to the in-phase coupled $\left[\delta\left(\mathrm{F}_{1} \mathrm{Xe}_{1} \mathrm{~F}_{2}\right)+\delta\left(\mathrm{F}_{3} \mathrm{Xe}_{2} \mathrm{~F}_{4}\right)\right]$ bending mode of $\mathbf{3}$ by comparison with the bending modes of $\mathbf{1}$ and $\mathbf{2}$.

Table 5.4. Experimenta ${ }^{[a]}$ vibrational frequencies, intensities, and assignments for $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$
(1) and $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$ (2)

[a] The Raman spectrum was recorded for a dry crystalline mixture of $\mathbf{1},\left[\mathrm{BrO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$, and XeF_{2} in an FEP sample tube at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation, where 1 was the dominant species. The band assigned to the symmetric stretching frequency of unreacted XeF_{2} occurred at $496(89) \mathrm{cm}^{-1}$. Vibrational bands due to $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ were observed at 932(1), 863(5), 687(sh), 580(1), 575(1), 553(3), 371(sh), and 365(sh) cm^{-1} (this work; assigned by comparison with ref. 136). [b] The Raman spectrum was recorded for a dry crystalline mixture of 2, $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$, and XeF_{2} in an FEP sample tube at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation, where 2 was the dominant species. The band assigned to the symmetric stretching mode of unreacted XeF_{2} occurred at $496(89) \mathrm{cm}^{-1}$. The vibrational bands of $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ were observed at $940(\mathrm{sh})$, 878(27), 637(19), 563(5), 551(12), 372(6), 284(10), and 279(6) cm^{-1} (this work; assigned by comparison with ref. 139). [c] Assignments were made under O_{h} symmetry for the [$\left.\mathrm{PnF}_{6}\right]^{-}$anions. Abbreviations denote stretch (v) and bend (δ). [d] The band overlaps with $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{AsF}_{6}\right]\left(\mathrm{v}_{3}\left(\mathrm{~T}_{2 \mathrm{~g}}\right)\left[\mathrm{AsF}_{6}\right]^{-}, 365,371 \mathrm{~cm}^{-1}\right)$. [e] The band overlaps with $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right]\left(v_{3}\left(\mathrm{~T}_{2 \mathrm{~g}}\right)\left[\mathrm{SbF}_{6}\right]^{-}, 284,279 \mathrm{~cm}^{-1}\right)$.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Figure 5.4. Raman spectrum of dry crystalline $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1) recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Symbols denote bands assigned to unreacted $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{AsF}_{6}\right](\ddagger)$ and $\mathrm{XeF}_{2}(\cdot)$, FEP sample tube bands $\left({ }^{*}\right)$, and an instrumental $\operatorname{artifact}(\dagger)$.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Figure 5.5. Raman spectrum of dry crystalline $\left[\mathrm{O}_{2} \mathrm{Br}\left(\mathrm{FXeF}_{2}\right)_{2}\right]\left[\mathrm{SbF}_{6}\right]$ (2) recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Symbols denote bands assigned to unreacted $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{SbF}_{6}\right](\ddagger)$ and $\mathrm{XeF}_{2}(\cdot)$, FEP sample tube bands $(*)$, and an instrumental artifact (\dagger).

Table 5.5. Experimental ${ }^{[a]}$ vibrational frequencies, intensities, and assignments for $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]$ (3)

[a] The Raman spectrum was recorded for a dry crystalline mixture of $\mathbf{3},\left[\mathrm{BrO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$, and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]$ in an FEP sample tube at $-150^{\circ} \mathrm{C}$ using 1064-nm excitation, where 3 was the dominant species. Vibrational bands of $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ occurred at $931(\mathrm{sh}), 862(12)$, and $554(5) \mathrm{cm}^{-1}$. Vibrational bands of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]$ occurred at $596(14), 589(14)$, and $166(\mathrm{sh}) \mathrm{cm}^{-1}$. [b] Assignments for the [AsF6] anions were made under O_{h} symmetry. Abbreviations denote stretch (v), bend (δ). [c] The band overlaps with $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ ($\mathrm{v}_{4}\left(\mathrm{~T}_{1 \mathrm{u}}\right)$ ([AsF $]^{-}$), $700 ; \mathrm{v}_{1}\left(\mathrm{~A}_{\mathrm{gg}}\right)\left(\left[\mathrm{AsF}_{6}\right]^{-}\right), 685 \mathrm{~cm}^{-1}$). [d] The band overlaps with $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]$ (683, 577, 572, and $\left.376 \mathrm{~cm}^{-1}\right)$. [e] The band overlaps with $v_{1}\left(\sum_{\mathrm{g}}^{+}\right)$of $\mathrm{XeF}_{2}\left(496 \mathrm{~cm}^{-1}\right)$.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Figure 5.6. Raman spectrum of dry crystalline $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]$ (3) recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Symbols denote a band that overlaps with the $v_{1}\left(\Sigma_{\mathrm{g}}{ }^{+}\right)$of unreacted solid $\mathrm{XeF}_{2}\left(496 \mathrm{~cm}^{-1}\right)(\S)$; and bands assigned to unreacted $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{AsF}_{6}\right](\ddagger),\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right](\bullet)$, FEP sample tube bands $\left({ }^{*}\right)$, and an instrumental artifact (\dagger).

5.3. CONCLUSIONS

The coordination chemistry of cationic $\operatorname{Br}(\mathrm{V})$ species had been limited to four structurally characterized complexes; $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right],\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FNgF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ $(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$, and $\left[\mathrm{O}_{2} \mathrm{Br}\left(\mathrm{BrOF}_{2}\right)_{2}\right]\left[\mathrm{AsF}_{6}\right]$. Three new $\mathrm{Br}(\mathrm{V})$ coordination complexes have now been synthesized by reactions of $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{PnF}_{6}\right](\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$ with XeF_{2} in aHF, namely $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{PnF}_{6}\right]$ and $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]$, which were structurally characterized by LT Raman spectroscopy and LT SCXRD and provide the first examples of $\left[\mathrm{BrO}_{2}\right]^{+}$coordination complexes with a noble-gas fluoride. In contrast with $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{PnF}_{6}\right]$, which displays both symmetrically and asymmetrically bridged XeF_{2} ligands, $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})\right]\left[\mathrm{AsF}_{6}\right]$ displays only an asymmetrically bridged XeF_{2} ligand. The $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{PnF}_{6}\right]$ salts are not isotypic with $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$, which is attributed to the larger covalent radius of $\mathrm{Br}(\mathrm{V})$ relative to that of $\mathrm{Cl}(\mathrm{V})$, where $\operatorname{Br}(\mathrm{V})$ can accommodate a larger primary plus secondary coordination sphere. The $\operatorname{Br}(\mathrm{V})$ atoms of these complexes have total $\operatorname{Br}(\mathrm{V})$ coordination numbers of eight $\left(\mathrm{CN}_{\mathrm{Br}}=2+6\right)$. The complex salts are intimately ionpaired, and are extensively fluorine bridge in the solid-state through secondary $\mathrm{Br}--$ F_{Xe} and $\mathrm{Br}---\mathrm{F}_{\mathrm{Pn}}$ bonds that are predominantly electrostatic in character.

CHAPTER 6

Syntheses and Structural Characterizations of

$\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- $\left.\mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]$ and the Coordination Complex $\mathrm{F}_{5} \mathrm{Ir}-\mathrm{-OClF}$

6.1. Introduction

Historically, the noble metals ($\mathrm{Ru}, \mathrm{Rh}, \mathrm{Pd}, \mathrm{Ag}, \mathrm{Os}, \mathrm{Ir}, \mathrm{Pt}$, and Au) have been characterized by their resistance to chemical attack and propensity to favor oxidation state 0 , much like the noble gases. Although the chemistries of the oxides and fluorides of the noble metals are well established, ${ }^{228}$ there are no structurally characterized examples of $\mathrm{Rh}, \mathrm{Pd}, \mathrm{Ag}, \mathrm{Ir}, \mathrm{Pt}$, and Au oxide fluorides. ${ }^{228}$ This may be rationalized, in part, by the oxo-wall rule: transition metals in tetragonal coordination environments that have more than five d electrons cannot form $\mathrm{M}-\mathrm{O}(\mathrm{M}=$ transition metal) π-bonds because their π^{*} antibonding orbitals are fully occupied. ${ }^{229}$ The MO diagram of the d^{1} vanadyl ion, $\left[\mathrm{VO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}$ (Figure 6.1), provides an illustration of an early-row TM in a tetragonal coordination sphere that obeys the oxo-wall rule that has fully populated π bonding orbitals which gives rise to a $\mathrm{V} \equiv \mathrm{O}$ triple bond. ${ }^{230}$ Transition metals having more than five d electrons must reduce their coordination numbers and/or adopt different geometries to make orbitals available that can accommodate nonbonding electrons. Consequently, late-row TMs, especially the noble-metals, do not form metal-oxygen double bonds in tetragonal coordination environments unless they are in their highest oxidation states, which renders them prone to $\mathrm{O}_{2}, \mathrm{~F}_{2}$, and OF redox eliminations owing to their high electron affinities. Thus, compounds of $\mathrm{Rh} / \mathrm{Ir}(\mathrm{IV}, \mathrm{V}, \mathrm{VI}), \mathrm{Pd} / \mathrm{Pt}(\mathrm{V}, \mathrm{VI})$, and $\mathrm{Au}(\mathrm{V})$ are candidates for noble-metal oxide fluoride formation because their d-orbital occupancies fall short of the oxo-wall regardless of their coordination geometries.

Figure 6.1. Molecular orbital (MO) scheme for $\left[\mathrm{VO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}\left(\mathrm{C}_{4 \mathrm{v}}\right)$. Energy levels are drawn to scale. The MOs are labeled according to their respective symmetries under $C_{4 \mathrm{v}}$ point group symmetry. The prefixes I, II, and III denote different MO's that have a_{1} symmetry. Reproduced with permission from Ballhausen, C. J.; Gray, H. B. Inorg. Chem. 1962, 1, 111-122.

Among the elements in the Periodic Table, iridium has the greatest range of documented oxidation states $(-3,-1,0,+1,+2,+3,+4,+5,+6,+7,+8$, and +9$){ }^{231}$ The highest iridium oxidation state for which macroscopic amounts of compounds have been isolated is $\operatorname{Ir}(\mathrm{VI})$, as exemplified by $\mathrm{IrF}_{6}{ }^{232}$ and the $\left[\mathrm{IrO}_{6}\right]^{6-}$ anion. ${ }^{233}$ Quantum-chemical calculations indicate that the highest oxidation state iridium fluoride or oxide fluoride that has a realistic chance of existing is $\operatorname{Ir}(\mathrm{VII})$, e.g., IrF_{7}, IrOF_{5}, and $\left[\mathrm{IrF}_{6}\right]^{+} .{ }^{234}$ The $\left[\mathrm{IrF}_{6}\right]^{+}$cation has been observed in the gas phase by mass spectrometry (Schrobilgen et al., unpublished work). Both $\mathrm{Ir}^{\mathrm{VII}} \mathrm{OF}_{5}$ and $\mathrm{Ir}^{\mathrm{VI}} \mathrm{OF}_{4}$ have
fewer than five d electrons and are predicted to be stable with respect to $\mathrm{O}_{2}, \mathrm{~F}_{2}$, or OF elimination, ${ }^{234}$ and are therefore reasonable synthetic goals for the syntheses of iridium oxide fluoride species. Oxidative fluorination or O / F metathesis of IrO_{2} may therefore yield an isolable iridium oxide fluoride species.

Like the noble-gas fluorides, ClF_{3} is an aggressive oxidative fluorinating agent which has diverse applications as an O / F metathesis reagent and amphoteric fluorideion donor/acceptor (Figure 6.2). ${ }^{178}$

Figure 6.2. Overview of selected compounds obtained from reactions with ClF_{3}. Reproduced with permission from Scheibe, B.; Karttunen, A. J.; Kraus, F. Z. Anorg. Allg. Chem. 2022, e202200106.

Reactions of ClF_{3} with metal oxides are known to yield $\left[\mathrm{ClO}_{2}\right]^{+}$salts of high-oxidation-state fluoro- and oxyfluoro-anions by means of oxidative fluorination and O / F metathesis. ${ }^{141}$ The latter reactions yield endothermic OClF (calcd. $\Delta H^{o}{ }_{\mathrm{f}}=27.6 \mathrm{~kJ}$ mol^{-1}, CCSD-DTQ; $24.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$, CCSD-Q5), ${ }^{177}$ which rapidly disproportionates to $\mathrm{ClO}_{2} \mathrm{~F}$ and ClF at room temperature. ${ }^{235-238}$ Salts of $\left[\mathrm{ClO}_{2}\right]^{+}$form by reactions of $\mathrm{ClO}_{2} \mathrm{~F}$
with Lewis acidic metal fluorides and/or oxide fluorides that are formed by fluorination of metal oxides. ${ }^{141}$ Although OClF is proposed as an unstable intermediate in the reaction of ClF_{3} with metal oxides, it has not been directly observed in these reactions. ${ }^{141}$ However, it has been synthesized and isolated by hydrolysis of $\mathrm{ClF}_{3},{ }^{236,238}$ photolysis of ClF and O_{3} in an argon matrix, ${ }^{237}$ and exposure of ClF_{3} and O_{2} to an electric discharge. ${ }^{238}$ The structure of OClF has been shown by vibrational ${ }^{235-238}$ and microwave spectroscopies ${ }^{238}$ to be bent, and the analysis of its ground-state rotational spectrum has provided high-precision gas-phase structural parameters. ${ }^{238}$ The half-life of gaseous OClF in a stainless steel absorption cell pressurized to 100 Pa with an equimolar mixture of ClF_{3} and $\mathrm{H}_{2} \mathrm{O}$ is ca. $3 \mathrm{~min} .{ }^{236}$ Thus, OClF is surprisingly long-lived in the gas-phase, and may therefore have sufficient kinetic stability in an acidic medium such as aHF to react with fluoride-ion acceptors. However, attempts to abstract fluoride-ion from OClF formed by controlled hydrolysis of $\left[\mathrm{ClF}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ in aHF were unsuccessful. Instead of $[\mathrm{ClO}]\left[\mathrm{AsF}_{6}\right]$, $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ was obtained as the only product after volatile compounds had been removed under dynamic vacuum. ${ }^{239}$ More recently, the hydrolysis of $\left[\mathrm{ClF}_{2}\right]\left[\mathrm{IrF}_{6}\right]$ in aHF solvent in the presence of ClF_{3} was shown to yield $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{rrF}_{6}\right] .{ }^{141}$ Thus, no $[\mathrm{ClO}]^{+}$salts or neutral coordination complexes of OClF have been reported.

Although $\mathrm{ClF}_{5}^{240,241}$ is a weaker oxidative fluorinating agent than ClF_{3}, it fluorinates second and third row non-metals ${ }^{241}$ and may react with metal oxides to yield $\left[\mathrm{ClO}_{2}\right]^{+}$salts of high-oxidation-state metal fluoro- and oxyfluoro-anions. The present study therefore investigates the reactions of IrO_{2} with ClF_{3} and ClF_{5} in aHF solvent with the goals to synthesize an iridium oxide fluoride species and monitor the products of these reactions to obtain direct evidence for OCIF formation.

6.2. Results and Discussion

6.2.1. Syntheses

6.2.1.1. Syntheses of $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ and $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{IrF}_{6}\right]$

The reaction of IrO_{2} with excess ClF_{3} in aHF solvent was carried out at room temperature in an FEP reaction vessel equipped with a stainless steel valve. Excess ClF_{3} was condensed onto a sample of IrO_{2} under frozen aHF solvent at $-196{ }^{\circ} \mathrm{C}$. Upon warming to room temperature, vigorous gas evolution ensued that originated from the IrO_{2} powder at the bottom of the reaction vessel. A brown-black precipitate, likely IrF_{4}, initially formed which was subsequently consumed as the reaction progressed. The solution turned dark amber in color upon complete consumption of IrO_{2} and IrF_{4} within ca. 4 h . The sample was cooled to $-78^{\circ} \mathrm{C}$, whereupon amber, needle-shaped crystals of $\mathrm{F}_{5} \mathrm{Ir}-$--OClF and purple, plate-shaped crystals of $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{IrF}_{6}\right]$ grew from solution overnight. Crystals suitable for single-crystal X-ray structure determinations were isolated by removal of the aHF solvent at $-78^{\circ} \mathrm{C}$ and were characterized by LT SCXRD.

The synthesis and crystallographic characterization of F_{5} Ir---OCIF (Eqs. 6.16.3) provides the first evidence for the formation of OClF as an intermediate in the reaction of ClF_{3} with a metal oxide.

$$
\begin{align*}
& \mathrm{IrO}_{2}+2 \mathrm{ClF}_{3} \xrightarrow{\mathrm{aHF}} \mathrm{IrF}_{4}+2 \mathrm{OClF} \tag{6.1}\\
& 2 \mathrm{IrF}_{4}+\mathrm{ClF}_{3} \xrightarrow{\mathrm{aHF}} 2 \mathrm{IrF}_{5}+\mathrm{ClF} \tag{6.2}\\
& \mathrm{IrF}_{5}+\mathrm{OClF} \xrightarrow{\mathrm{aHF}} \mathrm{~F}_{5} \mathrm{Ir}--\mathrm{OClF} \tag{6.3}
\end{align*}
$$

Excess OClF disproportionates to ClF and $\mathrm{ClO}_{2} \mathrm{~F}$ (Eq. 6.4), and $\mathrm{ClO}_{2} \mathrm{~F}$ reacts with IrF_{5} to form $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{IrF} \mathrm{F}_{6}\right]$ (Eq. 6.5).

$$
\begin{align*}
& 2 \mathrm{OClF} \xrightarrow{\text { aHF }} \mathrm{ClF}+\mathrm{ClO}_{2} \mathrm{~F} \tag{6.4}\\
& \mathrm{ClO}_{2} \mathrm{~F}+\mathrm{IrF}_{5} \xrightarrow{\text { aHF }}\left[\mathrm{ClO}_{2}\right]\left[\mathrm{IrF}_{6}\right] \tag{6.5}
\end{align*}
$$

Examination of the crystalline sample under a stereomicroscope during LT SCXRD crystal mounting showed that the product consisted of approximately equal amounts of $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ and $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{IrF}_{6}\right]$.

Attempts to obtain a LT Raman spectrum of the dry crystalline mixture of amber $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ and purple $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{IrF}_{6}\right]$ resulted in pyrolysis of the sample at the focal point of the laser beam and the formation of a yellow solid that was likely IrF_{5}. The Raman spectrum exhibited seven intense, broad fluorescence bands between $2175-3662 \mathrm{~cm}^{-1}$ with no perceptible bands at lower frequencies other than those of the FEP sample tube.

6.2.1.2. Synthesis of $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- μ - $\left.\left(\mathrm{OIrF}_{4}\right)_{3}\right]$

The reaction of IrO_{2} with excess ClF_{5} in aHF solvent was carried out in an FEP reaction vessel equipped with a stainless-steel valve. The reaction required up to 4 days to go to completion at ambient temperature. The faster reaction time for ClF_{3} relative to that of ClF_{5} is consistent with their relative oxidative fluorinating strengths. Upon warming to room temperature, slow gas evolution occurred that originated from solid IrO_{2} at the bottom of the reaction vessel and coincided with the formation of a brown-black precipitate that was likely IrF_{4}. As the reaction proceeded, the solution changed from colorless to brown-black and was accompanied by dissolution of solid IrO_{2} and IrF_{4} and gas evolution. The brown-black solution was olive-green in color when a thin film of the solution coated the FEP reaction vessel. After reaction at RT for 4 days, the sample was cooled to $-22^{\circ} \mathrm{C}$, whereupon black, needle-shaped crystals of $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- $\left.\mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]$ and purple, plate-shaped crystals of $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{rrF}_{6}\right]$ grew
from the solution between -22 and $-30^{\circ} \mathrm{C}$ over a period of 8 h . Crystals suitable for LT SCXRD structure determinations were mounted on a X-ray diffractometer.

The LT Raman spectrum of a dry crystalline mixture of $\left[\mathrm{ClO}_{2}\right]_{2}[$ cyclo- μ $\left.\left(\mathrm{OIrF}_{4}\right)_{3}\right]$ and $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{IrF}_{6}\right]$ resulted in strong fluorescence bands in the $2100-3600$ cm^{-1} region. Absorption of the laser beam (1064-nm) by black crystalline $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- $\left.\mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]$ resulted in rapid decomposition with the formation of a yellow spot, possibly IrF_{5}, where the laser beam struck the sample.

A plausible reaction pathway that leads to the formation of the mixed oxidation state $2 \times \operatorname{Ir}(\mathrm{V}) / 1 \times \operatorname{Ir}(\mathrm{VI})$ dianion, $\left[\text { cyclo }-\mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}$, is provided in the ensuing discussion.

The formation of $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{IrF}_{6}\right]$ (characterized by a LT SCXRD unit cell determination) is slow, and may occur by reaction of ClF_{5} with IrO_{2} (Eqs. 6.6-6.8).

$$
\begin{align*}
& \mathrm{IrO}_{2}+\mathrm{ClF}_{5} \xrightarrow{\text { aHF }} \mathrm{IrF}_{4}+\mathrm{ClO}_{2} \mathrm{~F} \tag{6.6}\\
& 2 \mathrm{IrF}_{4}+\mathrm{ClF}_{5} \xrightarrow{\text { aHF }} 2 \mathrm{IrF}_{5}+\mathrm{ClF}_{3} \tag{6.7}\\
& \mathrm{IrF}_{5}+\mathrm{ClO}_{2} \mathrm{~F} \xrightarrow{\text { aHF }}\left[\mathrm{ClO}_{2}\right]\left[\mathrm{IrF}_{6}\right] \tag{6.8}
\end{align*}
$$

Formation of ClF_{3} in Eq. 6.7. necessitates that its reaction with IrO_{2} to give $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{IrF}_{6}\right]$ and $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ must also be considered (Eqs. 6.1-6.5). Although $\mathrm{F}_{5} \mathrm{Ir}$--OClF is stable in aHF solvent at room temperature for up to ca. 4 h , the longer reaction time employed for this reaction (4 days) may have allowed the slower competing redox disproportionation of $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ to proceed to completion (Eq. 6.9).

$$
\begin{equation*}
\mathrm{F}_{5} \mathrm{Ir}^{\mathrm{V}}-\mathrm{-} \mathrm{OClF} \xrightarrow{4 \mathrm{~d}} \mathrm{Ir}^{\mathrm{VI}} \mathrm{OF}_{4}+\mathrm{ClF}+1 / 2 \mathrm{~F}_{2} \tag{6.9}
\end{equation*}
$$

Redox decomposition of $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ accounts for the presence of $\operatorname{Ir}(\mathrm{VI})$ in $[$ cyclo- $\mu-$ $\left.\left(\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}$, because ClF_{3} and ClF_{5} are not expected to oxidize iridium above the +5 oxidation state given that the room temperature reaction of the stronger oxidative fluorinating agent, ClF_{3}, with Ir metal in aHF solvent yields $\left[\mathrm{ClF}_{2}\right]\left[\right.$ [rF $\left.{ }_{6}\right] .{ }^{242}$ Lewis acidic IrOF_{4} is expected to abstract fluoride ion from $\mathrm{ClO}_{2} \mathrm{~F}$ in aHF solution to form $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{Ir}^{\mathrm{VI}} \mathrm{OF}_{5}\right]$ (Eq. 6.10).

$$
\begin{equation*}
\mathrm{IrOF}_{4}+\mathrm{ClO}_{2} \mathrm{~F} \xrightarrow{\text { aHF }}\left[\mathrm{ClO}_{2}\right]\left[\mathrm{IrOF}_{5}\right] \tag{6.10}
\end{equation*}
$$

By analogy with $\left[\mathrm{CrOF}_{5}\right]^{-}$in its $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$salt (see Chapters 9 and 11), ${ }^{243,244}$ the $\left[\mathrm{Ir}^{\mathrm{VI}} \mathrm{OF}_{5}\right]^{-}$anion may undergo redox elimination of F_{2} in aHF solvent at RT to form the more stable $\left[\mathrm{Ir}^{\mathrm{V}} \mathrm{OF}_{4}\right]^{-}$intermediate (Eq. 6.11). The $\left[\mathrm{Ir}^{\mathrm{V}} \mathrm{OF}_{4}\right]^{-}$anion has an unsaturated primary coordination sphere and may be expected to dimerize to form $\left[\mathrm{ClO}_{2}\right]_{2}\left[\mathrm{Ir}_{2} \mathrm{~V}_{2} \mathrm{~F}_{8}\right]$ (Eq. 6.12) by analogy with $\left[\mathrm{CrOF}_{4}\right]^{-244}$ and $\left[\mathrm{AsOF}_{4}\right]^{-245}$ which dimerize to form the F-bridged $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ dianion ${ }^{244}$ (see Chapter 9) and O-bridged $\left[\mathrm{As}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ dianion. ${ }^{245}$

$$
\begin{align*}
& {\left[\mathrm{ClO}_{2}\right]\left[\mathrm{IrOF}_{5}\right] \xrightarrow{\mathrm{aHF}}\left[\mathrm{ClO}_{2}\right]\left[\mathrm{IrOF}_{4}\right]+1 / 2 \mathrm{~F}_{2}} \tag{6.11}\\
& 2\left[\mathrm{ClO}_{2}\right]\left[\mathrm{IrOF}_{4}\right] \xrightarrow{\text { aHF }}\left[\mathrm{ClO}_{2}\right]_{2}\left[\mathrm{Ir}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \tag{6.12}
\end{align*}
$$

Reaction of $\left[\mathrm{ClO}_{2}\right]_{2}\left[\mathrm{Ir}_{2}{ }_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]$ and IrOF_{4} in aHF would then yield the observed mixed-oxidation-state product, $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- $\left.\mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]$ (Eq. 6.13), in which two $\operatorname{Ir}(\mathrm{V})$ and one $\operatorname{Ir}(\mathrm{VI}) \mathrm{O}$-bridge to form a six-membered $\mathrm{Ir}_{3} \mathrm{O}_{3}$-ring.

$$
\begin{equation*}
\left[\mathrm{ClO}_{2}\right]_{2}\left[\mathrm{Ir}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]+\mathrm{IrOF}_{4} \xrightarrow{\text { aHF }}\left[\mathrm{ClO}_{2}\right]_{2}\left[\text { cyclo }-\mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right] \tag{6.13}
\end{equation*}
$$

6.2.2. X-ray Crystallography.

A summary of the X-ray crystallographic data and refinement results for $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- $\left.\mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]$ and $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ is provided in Table 6.1. The experimental
and calculated geometric parameters for $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- $\left.\mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]$ (1) and $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ (2) are listed in Tables 6.2, 6.3, and A3.1-A3.3.

Table 6.1. Summary of crystal data and refinement results for $\left[\mathrm{ClO}_{2}\right]_{2}[$ cyclo- $(\mu-$ $\left.\left.\mathrm{OIrF}_{4}\right)_{3}\right]$ (1) and $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}(\mathbf{2})$

	1	2
space group	Fdd2	$P 2_{1} / n$
$a(\AA)$	15.6155(9)	5.1257(7)
b (\AA)	11.9737(6)	19.739(3)
$c(\AA)$	14.3621(8)	10.8299(15)
α (deg)	90	90
β (deg)	90	99.673(5)
γ (deg)	90	90
$V\left(\AA^{3}\right)$	2685.4(3)	1080.2(3)
$Z^{[a]}$	8	8
$M_{\text {W }}{ }^{[b]}$	987.50	357.65
$\rho_{\text {calcd }}{ }^{[\text {c] }}$	4.885	4.399
$T\left({ }^{\circ} \mathrm{C}\right)$	-173	-173
$\mu^{[d]}$	30.24	25.270
$R_{1}{ }^{[\text {[] }}$	0.0110	0.0433
$w R_{2}{ }^{[f]}$	0.0243	0.0856

[a] Molecules/unit cell. [b] $\mathrm{g} \mathrm{mol}^{-1}$. [c] g cm${ }^{-3}$. [d] mm^{-1}. [e] $R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \Sigma\left|F_{\mathrm{o}}\right|$. $[\mathrm{f}] w R_{2}=\left[\Sigma\left(w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right) / \Sigma\left(w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right)\right]^{1 / 2}$.

6.2.2.1. $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- $\left.\mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]$ (1)

The crystal structure of $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- $\left.\mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]$ (1) provides the first structurally characterized example of a iridium oxide fluoride dianion and of a mixed $\operatorname{Ir}(\mathrm{V}) / \mathrm{Ir}(\mathrm{VI})$ species (Figure 6.3, Table 6.2). The cations and dianions are strongly ion-paired, with each dianion forming twelve secondary $\mathrm{Cl}---\mathrm{F}_{\text {Ir }}$ bonds with neighboring $\left[\mathrm{ClO}_{2}\right]^{+}$
cations (2.548(2)-3.174(1) \AA) that are significantly shorter than the sum of the chlorine and fluorine van der Waals radii $(3.22,3.28 \AA) .{ }^{167}$ This gives rise to a threedimensional fluorine-bridged network of intimately ion-paired cations and dianions. The $\left[\mathrm{ClO}_{2}\right]^{+}$cations in 1 occupy general positions, and have $\mathrm{Cl}-\mathrm{O}$ bond lengths (1.409(3), $1.409(3) \AA$) that are somewhat longer than those of $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{RuF}_{6}\right](1.379(9)$ \AA), ${ }^{185}$ and $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{SbF}_{6}\right](1.385(5) \AA) .{ }^{143}$ The $\mathrm{O}-\mathrm{Cl}-\mathrm{O}$ bond angle $\left(118.7(2)^{\circ}\right)$ is bent and equal within $\pm 3 \sigma$ to those of $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{RuF}_{6}\right]\left(117.2(9)^{\circ}\right)^{185}$ and $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{SbF}_{6}\right]$ $\left(117.8(9)^{0}\right) .{ }^{143}$

Figure 6.3. (a) The $\left[\text { cyclo- } \mu-\left(\mathrm{OIFF}_{4}\right)_{3}\right]^{2-}$ dianion in the X-ray crystal structure of $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo $\left.-\mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]$. Thermal ellipsoids are drawn at the 50% probability level. Secondary $\mathrm{Cl}--\mathrm{F}$ bonds are indicated by dashed lines. (b) The gas-phase geometry of $\left[\text { cyclo- } \mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}\left(C_{1}\right)$ was optimized at the uPBE1PBE/aug-cc-pVTZ-(Ir)-Def2-TZVPD-(O, F) level of theory.

The $\left[\text { cyclo- }\left(\mu \text { - } \mathrm{OIrF}_{4}\right)_{3}\right]^{2-}$ dianion is a six-membered ring $\left(C_{2}\right.$ symmetry, Figure 6.4) comprised of two symmetry-equivalent $\operatorname{Ir}(\mathrm{V})$ atoms and one $\operatorname{Ir}(\mathrm{VI})$ atom that are bridged by O atoms (Figure 6.1) in which the $\mathrm{Ir}_{1}, \mathrm{Ir}_{2}, \mathrm{Ir}_{2 \mathrm{~A}}$, and O_{4} atoms are coplanar and the O_{3} and $\mathrm{O}_{3 \mathrm{~A}}$ atoms are positioned $0.385 \AA$ above and below the plane. The dianion of $\mathbf{1}$ is O -bridged like that of $\left[\text { cyclo- } \mu-\left(\mathrm{OSbF}_{4}\right)_{3}\right]^{3-}$ in its Cs^{+}salt, except that $\left[\text { cyclo- } \mu-\left(\mathrm{OSbF}_{4}\right)_{3}\right]^{3-}$ has a boat-shaped $\mathrm{Sb}_{3} \mathrm{O}_{3}$-ring structure with C_{s} symmetry. ${ }^{246}$

Figure 6.4. Side-on views of the (a) experimental and (b) calculated (uPBE1PBE/aug-cc-pVTZ-(Ir)-Def2-TZVPD-(O, F)) structures of $\left[\text { cyclo- } \mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}$. Thermal ellipsoids are drawn at the 50% probability level.

Each Ir atom of $\left[\text { cyclo- }\left(\mu-\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}$ has two terminal Ir-F bonds that are trans to Ir-O bridge bonds and two terminal $\mathrm{Ir}-\mathrm{F}$ bonds that are trans to one another. The Ir coordination spheres are distorted octahedra in which the $\mathrm{Ir}-\mathrm{F}$ bonds are bent away from the $\operatorname{Ir}-\mathrm{O}$ bridge bonds $\left(\mathrm{O}-\mathrm{Ir}-\mathrm{F}_{\text {cis }}, 90.41(10)-93.90(10)^{\circ}\right)$. The terminal $\mathrm{Ir}-\mathrm{F}$ bonds (1.883(2)-1.923(2) \AA) are significantly longer than the $\mathrm{Ir}-\mathrm{O}$ bridge bonds
(1.8479(13), $1.851(2), 1.861(2) \AA$). This supports assignment of the bridging atoms to oxygen rather than to fluorine because $\operatorname{Ir}-\mathrm{F}$ bridge bonds would have greater degrees of ionic character and would therefore be significantly longer than terminal Ir-F bonds. Furthermore, the average $\mathrm{Ir}-\mathrm{O}$ bond length of $\left[\text { cyclo- } \mu-\left(\mathrm{OIFF}_{4}\right)_{3}\right]^{2-}(1.853(2) \AA)$ is somewhat shorter than the bridging $\mathrm{Ir}-\mathrm{O}$ bonds of the symmetrically bridged dinuclear iridium oxo-complexes $\mathrm{Cl}(\text { pyalk })_{2} \operatorname{Ir}-\mathrm{O}-\mathrm{Ir}(\text { pyalk })_{2} \mathrm{Cl}$ (pyalk $=2-(2-$ pyridinyl)-2-propanolate), which contract upon oxidation of iridium from $\operatorname{Ir}(\mathrm{IV}) /$ $\operatorname{Ir}(\mathrm{IV})(1.917(5) \AA$) in $\mathrm{Cl}($ pyalk $) \operatorname{Ir}-\mathrm{O}-\operatorname{Ir}($ pyalk $) \mathrm{Cl}$ to $\operatorname{Ir}(\mathrm{IV}) / \operatorname{Ir}(\mathrm{V})(1.876(4) \AA$) in $\left[\mathrm{Cl}(\text { pyalk })_{2} \mathrm{Ir}-\mathrm{O}-\operatorname{Ir}(\text { pyalk })_{2} \mathrm{Cl}\right]\left[\mathrm{PF}_{6}\right]$ and $\operatorname{Ir}(\mathrm{V}) / \operatorname{Ir}(\mathrm{V})\left(1.8621(4) \AA\right.$) in $\left[\mathrm{Cl}(\text { pyalk })_{2} \mathrm{Ir}-\mathrm{O}-\right.$ $\left.\operatorname{Ir}(\text { pyalk })_{2} \mathrm{Cl}\right]\left[\mathrm{PF}_{6}\right]_{2} .{ }^{247}$ The shorter average Ir-O bridge bond length of $\mathbf{1}(1.853(2) \AA)$ relative to that of $\left[\mathrm{Cl}(\text { pyalk })_{2} \mathrm{Ir}-\mathrm{O}-\mathrm{Ir}(\text { pyalk })_{2} \mathrm{Cl}\right]^{2+}$ is consistent with a description of $\left[\text { cyclo- } \mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}$ as a $2 \times \operatorname{Ir}(\mathrm{V}) / 1 \times \operatorname{Ir}(\mathrm{VI})$ mixed-oxidation-state dianion.

Table 6.2. Experimental and calculated ${ }^{[a]}$ bond lengths (\AA) for $\left[\text { cyclo- } \mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}$

	exptl	calcd		exptl	
$\operatorname{Ir}(1)-\mathrm{O}(3)$	$1.861(2)$	1.851	$\operatorname{Ir}(1)-\mathrm{O}(3 \mathrm{~A})$	$1.861(2)$	1.851
$\operatorname{Ir}(1)-\mathrm{F}(1)$	$1.883(2)$	1.895	$\operatorname{Ir}(1)-\mathrm{F}(1 \mathrm{~A})$	$1.883(2)$	1.895
$\operatorname{Ir}(2)-\mathrm{F}(2)$	$1.910(2)$	1.897	$\operatorname{Ir}(2)-\mathrm{F}(2 \mathrm{~A})$	$1.910(2)$	1.886
$\operatorname{Ir}(2)-\mathrm{O}(3)$	$1.851(2)$	1.897	$\operatorname{Ir}(2 \mathrm{~A})-\mathrm{O}(3 \mathrm{~A})$	$1.851(2)$	1.897
$\operatorname{Ir}(2)-\mathrm{O}(4)$	$1.8479(13)$	1.873	$\operatorname{Ir}(2 \mathrm{~A})-\mathrm{O}(4)$	$1.8479(13)$	1.872
$\operatorname{Ir}(2)-\mathrm{F}(3)$	$1.923(2)$	1.879	$\operatorname{Ir}(2 \mathrm{~A})-\mathrm{F}(3 \mathrm{~A})$	$1.923(2)$	1.879
$\operatorname{Ir}(2)-\mathrm{F}(4)$	$1.911(2)$	1.900	$\operatorname{Ir}(2 \mathrm{~A})-\mathrm{F}(4 \mathrm{~A})$	$1.911(2)$	1.900
$\operatorname{Ir}(2)-\mathrm{F}(5)$	$1.895(2)$	1.882	$\operatorname{Ir}(2 \mathrm{~A})-\mathrm{F}(5 \mathrm{~A})$	$1.895(2)$	1.888
$\operatorname{Ir}(2)-\mathrm{F}(6)$	$1.884(2)$	1.888	$\operatorname{Ir}(2 \mathrm{~A})-\mathrm{F}(6 \mathrm{~A})$	$1.884(2)$	1.882

[a] uPBE1PBE/aug-cc-pVTZ(Ir)-Def2TZPVD-(O, F). The labeling scheme is the same as in Figure 6.3. Table A3.1 lists the complete set of experimental geometric parameters for $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- $\left.\mu-\left(\mathrm{OIFF}_{4}\right)_{3}\right]$ and Table A3.2 lists the complete set of calculated geometric parameters for $\left[\text { cyclo- } \mu-\left(\mathrm{OIFF}_{4}\right)_{3}\right]^{2-}$.

The shortest $\mathrm{Ir}-\mathrm{O}$ bridge bonds of $\mathbf{1}$ are trans to the longest $\mathrm{Ir}-\mathrm{F}$ bonds, which form the shortest secondary $\mathrm{Cl}--\mathrm{F}$ bonds, and vice versa. The polar-covalent $\mathrm{Ir}-\mathrm{F}$ bonds of $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- $\left.\mu-\left(\mathrm{OIFF}_{4}\right)_{3}\right]$ occur within the range for the Ir-F bond lengths of the intimately ion-paired $[\mathrm{XeF}]\left[\mathrm{IrF}_{6}\right]$ salt (1.854(5)-1.961(4) \AA). ${ }^{248}$

6.2.2.2. F5Ir---OCIF (2)

The structural characterization of $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}(2)$ provides the first crystal structure of a TM coordination complex with OCIF and of the OCIF ligand. The asymmetric unit of $\mathbf{2}$ (Table 6.3, Figure 6.5) consists of two crystallographically unique $\mathrm{F}_{5} \mathrm{Ir}-$--OCIF structural units.

Table 6.3. Experimental and calculated bond lengths $(\AA \AA)$ for $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$

	exptl			calcd	
				Gaussian ${ }^{[a]}$	$\mathrm{ADF}^{[b]}$
$\mathrm{Cl}(1)-\mathrm{O}(1)$	1.548(4)	$\mathrm{Cl}(2)-\mathrm{O}(2)$	1.548(3)	1.513	1.520
$\mathrm{Cl}(1)-\mathrm{F}(1)$	1.594(4)	$\mathrm{Cl}(2)-\mathrm{F}(7)$	1.600(3)	1.611	1.622
$\operatorname{Ir}(1)-\mathrm{F}(2)$	1.879(3)	$\operatorname{Ir}(2)-\mathrm{F}(8)$	1.867(3)	1.895	1.867
$\operatorname{Ir}(1)-\mathrm{F}(3)$	1.870(3)	$\operatorname{Ir}(2)-\mathrm{F}(9)$	1.864(3)	1.842	1.869
$\operatorname{Ir}(1)-\mathrm{F}(4)$	1.873(3)	$\operatorname{Ir}(2)-\mathrm{F}(10)$	1.874(3)	1.875	1.851
$\operatorname{Ir}(1)-\mathrm{F}(5)$	1.855(4)	$\operatorname{Ir}(2)-\mathrm{F}(11)$	1.885(3)	1.830	1.854
$\operatorname{Ir}(1)-\mathrm{F}(6)$	1.885(3)	$\mathrm{Ir}(2)-\mathrm{F}(12)$	1.879(3)	1.844	1.844
$\operatorname{Ir}(1)--\mathrm{O}(1)$	2.029(4)	Ir(2)---O(2)	2.028(3)	2.066	2.073

The labeling scheme is the same as in Figure 6.5. [a] uPBE1PBE/aug-cc-pVTZ-pp(Ir)-Def2-TZVPD-(O, F, Cl). [b] PBE0-D4/TZ2P (including collinear SOC). Table A3.3 lists the complete set of experimental and calculated geometric parameters for $\mathrm{F}_{5} \mathrm{Ir}$--OCIF.

The $\mathrm{Cl}^{\text {III }}$ atoms of the OClF ligands in $\mathbf{2}$ each have six nearby $\mathrm{F}_{\text {Ir }}$ atoms that are within the sum of the Cl and F van der Waals radii ($3.22,3.28 \AA$). However, not all of these contacts are considered significant secondary bonding interactions. The total primary bond valences of the $\mathrm{Cl}^{\mathrm{III}}$ atoms in 2 are 2.822 and 2.845 vu ($\mathrm{vu}=$ bond valence units; Cl-O, $\left.R_{0}=1.71 ; \mathrm{Cl}-\mathrm{F}, R_{0}=1.69 ; B=0.37\right) .{ }^{249,250}$ Inclusion of three Cl---F secondary bonds for $\mathrm{Cl}_{(1)}(2.659(3), 2.749(3)$, and $2.885(3) \AA$) and two $\mathrm{Cl}---\mathrm{F}$ secondary bonds for $\mathrm{Cl}_{(2)}(2.565(3)$ and $2.587 \AA)$ to the total bond valences of $\mathrm{Cl}_{(1)}$ $(3.015 \mathrm{vu})$ and $\mathrm{Cl}_{(2)}(3.001 \mathrm{vu})$ give values that are close to the formal +3 oxidation state of Cl . The secondary bonds result in an extended three-dimensional solid-state packing arrangement (Figure A7.1).

The primary iridium coordination sphere in $\mathbf{2}$ may be described as an $\mathrm{AX}_{5} \mathrm{Y}$ VSEPR arrangement ${ }^{88}$ of one axial Ir---O bond (Y) and one axial and four equatorial Ir- F bonds (X) around the central Ir atom that constitutes the distorted octahedral primary coordination sphere of $\operatorname{Ir}(\mathrm{V})$. The O atom of OClF interacts with Ir at the center of the basal face of the square pyramid formed by the four equatorial F atoms and the axial F atom of the IrF_{5} moiety. The Ir---O bonds of 2 (2.028(3), 2.029(4) \AA) are significantly longer than the $\mathrm{Ir}-\mathrm{O}$ bridge bonds of $\mathbf{1}$ (vide supra), which is consistent with their greater electrostatic character. The $\mathrm{Ir}---\mathrm{O}-\mathrm{Cl}$ bond angles of $\mathbf{2}$ $\left(120.4(2), 119.8(2)^{\circ}\right)$ are more acute than the $\mathrm{Xe}---\mathrm{Fb}_{\mathrm{b}}-\mathrm{M}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ bond angles of $\mathrm{F}_{\mathrm{t}} \mathrm{NgF}_{\mathrm{b}}---\mathrm{MOF}_{4}\left(134.33(5)-148.09(7)^{\mathrm{o}}\right)$. The $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bonds of $\mathrm{F}_{\mathrm{t}} \mathrm{NgF}_{\mathrm{b}}---$ MOF_{4} are predominantly electrostatic with small but significant degrees of covalent character that contribute to their bent $\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}-\mathrm{M}$ bond angles along with contributions from crystal packing. Thus, the Ir---O bonds of $\mathbf{2}$ are expected to have a higher degree of covalent character than the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bonds of $\mathrm{F}_{\mathrm{t}} \mathrm{NgF}_{\mathrm{b}}---\mathrm{MOF}_{4}$. The Ir-F bonds of
$\mathrm{F}_{5} \mathrm{Ir}--\mathrm{OClF}$ (1.855(4)-1.885(3) \AA) are polarized by short Cl---F secondary bonds (2.565(3)-2.885(3) \AA) with neighboring OClF ligands and are comparable to the $\mathrm{Ir}-\mathrm{F}$ bond lengths of $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{IrF}_{6}\right](1.868(2)-1.892(2) \AA) .{ }^{141}$ The shortest Ir-F bonds (1.855(4), $1.864(3) \AA$) correspond to two equatorial F atoms from different $\mathrm{F}_{5} \mathrm{Ir}$--OCIF molecules that do not have significant Cl---F secondary bonding interactions. In contrast, the longest Ir-F bonds (1.885(3), 1.885(3) \AA) correspond to F atoms on Ir that have the shortest Cl---F secondary bonds.

Figure 6.5. (a) One of two structural units in the X-ray crystal structure of $\mathrm{F}_{5} \mathrm{Ir}$--OCIF (2). Thermal ellipsoids are drawn at the 50% probability level. (b) The calculated gas-phase geometry of F_{5} Ir---OCIF was calculated at the uPBE1PBE/aug-cc-pVTZ-(Ir)-Def2-TZVPD-(O, F, Cl) level of theory. Secondary Ir---O and Cl---F bonds are indicated by dashed lines. The second structural unit in the X-ray crystal structure of $\mathbf{2}$ is depicted in Figure A7.2.

The Cl-O (1.548(4), 1.548(4) \AA) and Cl-F (1.594(4), $1.600(3) \AA$) bonds of the OCIF ligands of $\mathbf{2}$ are significantly elongated and shortened, respectively, relative to those of gas-phase OClF (Cl-O, 1.488(5) \AA; Cl-F, 1.693(4) \AA). ${ }^{238}$ The O-Cl-F bond angle $\left(106.7(2)^{\circ}\right)$ of $\mathbf{2}$ is also somewhat more acute relative to that of gas-phase OCIF $\left(110.6(8)^{\circ}\right)^{238}$ which, in part, may be attributable to solid-state packing.

6.2.3. Quantum-chemical Calculations

Recent computational studies of the neutral iridium fluorides $\operatorname{IrF}_{n}(n=1-6)$ at the scalar relativistic $\operatorname{CCSD}(\mathrm{T}) /$ triple- ζ level and two-component quasi-relativistic DFT levels of theory show that SOC dominates in IrF_{5} and is required to achieve a triplet ground state solution with $C_{4 \mathrm{v}}$ symmetry. ${ }^{251}$ In the absence of $\mathrm{SOC}, \mathrm{IFF}_{5}$ distorts to a ${ }^{3} \mathrm{~B}_{1} / C_{2 \mathrm{v}}$ ground-state structure with two longer and two shorter $\mathrm{Ir}-\mathrm{F}_{\text {eq }}$ bonds. ${ }^{251}$

In the present study, the gas-phase geometries of $\mathrm{OClF}\left(C_{\mathrm{s}}\right), \operatorname{IrF}_{5}\left(C_{4 \mathrm{v}}\right)$ and FsIr---OC1F $\left(C_{1}\right)$ were optimized at the PBE0-D4/TZ2P level of theory with relativistic SOC included (Tables A3.2-A3.5). Attempts to optimize the gas-phase geometry of $\left[\text { cyclo- } \mu \text { - }\left(\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}$ at the PBE0-D4/TZ2P level of theory with relativistic SOC included are in progress. The geometries of OClF, IrF5, $\mathrm{F}_{5} \mathrm{Ir}-\mathrm{-}$-OClF, and $\left[\text { cyclo- } \mu-\left(\mathrm{OIFF}_{4}\right)_{3}\right]^{2-}$ were also calculated at the uPBE1PBE/aug-cc-PVTZ-(Ir)-Def2-TZVPD-(F,O,Cl) level of theory without inclusion of SOC because the desired bonding analysis, NBO, is incompatible with SOC corrections.

The distortion of IrF_{5} to $C_{2 \mathrm{v}}$ symmetry in the absence of SOC is reproduced in this study at the uPBE1PBE/aug-cc-PVTZ-(Ir)-Def2-TZVPD-(F,O,Cl) level of theory, with a similar distortion observed for the $\mathrm{Ir}-\mathrm{F}$ bond lengths in $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$. Other than this difference, the gas-phase geometries of F_{5} Ir---OClF calculated at PBE0-D4/TZ2P
and uPBE1PBE/aug-cc-PVTZ-(Ir)-Def2-TZVPD-(F,O,Cl) levels of theory are comparable, including their Ir---O bond lengths and Ir---O-Cl bond angles. To facilitate comparisons of $\mathrm{F}_{5} \mathrm{II}---\mathrm{OClF}$ and $\left[\text { cyclo- } \mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}$ with each other, discussions pertaining to their calculated geometries and NBO analyses were limited to the uPBE1PBE/aug-cc-PVTZ-(Ir)-Def2-TZVPD-(F,O,Cl) level of theory. The MEPS of OClF, IrF_{5}, and $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ were calculated at the PBE0-D4/TZ2P level of theory.

6.2.3.1. Gas-phase Geometry Optimization

The gas-phase geometries of $\left[\text { cyclo- } \mu-\left(\mathrm{OIFF}_{4}\right)_{3}\right]^{2-}\left(\right.$ Figure 6.3, $\left.C_{1}\right), \mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ (Figure 6.5, C_{1}), IrF_{5} (Figure A3.3, $C_{2 \mathrm{v}}$), and OClF (Figure A3.4. C_{s}) optimized at the uPBE1PBE/aug-cc-PVTZ-(Ir)-Def2-TZVPD-(F,O,Cl) level of theory with all frequencies real (Tables A3.2-A3.8). The starting geometries used for the gas-phase optimizations of $\left[\text { cyclo- } \mu-\left(\mathrm{OIFF}_{4}\right)_{3}\right]^{2-} \quad\left(C_{1}\right)$ and $\mathrm{F}_{5} \operatorname{Ir}---\mathrm{OClF} \quad\left(C_{1}\right)$ were the crystallographic geometries obtained from $\mathbf{1}$ and $\mathbf{2}$, respectively. Attempts to optimize the geometry of $\left[\text { cyclo- } \mu-\left(\mathrm{OIFF}_{4}\right)_{3}\right]^{2-}$ at a higher symmetry $\left(C_{2}\right)$ resulted in a large negative frequency $\left(-223 \mathrm{~cm}^{-1}\right)$. The geometry of $\left[\text { cyclo- } \mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}$ was optimized with spin multiplicities $2,4,6$, and 8 , where multiplicity 8 gave the lowest energy solution. The geometry of $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ was optimized with spin multiplicities 1 and 3, where multiplicity 3 gave the lower energy solution. The initial geometries for OCIF and IrF_{5} were obtained from their ground-state rotational spectrum, ${ }^{238}$ and X-ray crystal structure of $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$, respectively.

The calculated gas-phase geometry of $\left[\text { cyclo- } \mu \text { - }\left(\mathrm{OIFF}_{4}\right)_{3}\right]^{2-}$ exhibits the following bond length differences relative to the ion-pair in its X-ray crystal structure: (1) the Ir-F bonds of F atoms that form the shortest secondary bonds in the solid state
($\operatorname{Ir}_{1}-\mathrm{F}_{2,2 \mathrm{~A}}, \mathrm{Ir}_{2}-\mathrm{F}_{3-5}, \mathrm{Ir}_{2 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}-5 \mathrm{~A}}$) are shorter in the calculated gas-phase structure; (2) the $\operatorname{Ir}_{2}-\mathrm{O}_{3}, \mathrm{Ir}_{2}-\mathrm{O}_{3 \mathrm{~A}}, \operatorname{Ir}_{2}-\mathrm{O}_{4}$, and $\operatorname{Ir}_{2}-\mathrm{O}_{4 \mathrm{~A}}$ bonds that are trans to the contracted $\operatorname{Ir}-\mathrm{F}$ bonds are elongated relative to those of $\mathbf{1}$; and (3) the $\operatorname{Ir}_{1}-\mathrm{O}_{3,3 \mathrm{~A}}$ bonds that are trans to the $\operatorname{Ir}-\mathrm{F}_{1,1 \mathrm{~A}}$ bonds are contracted in the calculated gas-phase structure.

The experimental bond lengths and bond angles of $\mathrm{F}_{5} \mathrm{Ir}-$--OCIF are well reproduced at both levels of theory. The energy-minimized gas-phase geometries of $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ have staggered conformations ($\angle \mathrm{Cl}-\mathrm{O}---\mathrm{Ir}-\mathrm{F}_{(2)}$ dihedral angle: Gaussian, 41.8°; ADF, 52.7°), whereas the experimental geometry is closer to an eclipsed conformation $\left(11.0(3)^{\circ}, 22.1(2)^{\circ}\right)$ (Figure 6.5). The differences between the calculated and the experimental structures are likely due to crystal packing and the tendency for $\mathrm{Cl}($ III) to complete its valence shell through intra- and intermolecular secondary $\mathrm{Cl}---$ $\mathrm{F}_{\text {Ir }}$ interactions. ${ }^{250}$ This is exemplified by the formation of two intramolecular $\mathrm{Cl}--\mathrm{F}_{2,3}$ secondary bonds between coordinated OClF and IrF_{5} in the calculated gas-phase geometry (Gaussian, 2.887, $2.966 \AA$; ADF, $2.873,3.004 \AA$) which are significantly shorter than the sums of the Cl and F van der Waals radii (vide supra).

6.2.3.2. Natural Bond Order (NBO) Analyses

The chemical bonding in $\left[\text { cyclo- } \mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}, \mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}, \mathrm{IrF}_{5}$, and OClF was assessed by NBO analyses (uPBE1PBE/aug-cc-PVTZ-(Ir)-Def2-TZVPD-(F,O,Cl)) to provide semi-quantitative descriptions of their bonding (Tables A3.9-A3.12). The O atom valences of $\left[\text { cyclo- } \mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}$ are somewhat greater than $2(2.088,2.106$, 2.016) and their associated O atom charges $(-0.580,-0.581,-0.613)$ and $\mathrm{Ir}-\mathrm{O}$ WBIs ($0.683,0.765,0.852$, and 0.852) are consistent with polar-covalent $\mathrm{Ir}-\mathrm{O}$ bridge bonds. The F-atom charges (-0.516 to -0.550) and associated Ir-F WBIs $(0.500-0.556)$ of

Ir-F bonds that are trans to Ir-O bonds indicate these bonds have greater ionic characters than Ir-F bonds that are cis to Ir-O bonds (charges, -0.507 to -0.541 ; WBIs, $0.523-0.579)$. The Ir atom charges ($2.032,2.032$, and 2.042) and atom valences (3.937, 3.937, and 4.102) of $\left[\text { cyclo- } \mu-\left(\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}$ are consistent with polar-covalent $\mathrm{Ir}-$ O and $\mathrm{Ir}-\mathrm{F}$ bonds.

The NBO analyses of $\mathrm{F}_{5} \mathrm{Ir}$---OClF, IrF_{5}, and OClF show that complex formation results in significant negative charge transfer from OClF to IrF_{5}, as indicated by the IrF_{5} and OClF group charges ($\mathrm{IrF}_{5},-0.240$; OClF, 0.240). The Ir---O bond has a significantly lower WBI (0.338) than the $\operatorname{Ir}-\mathrm{F}$ bonds $(0.547-0.719)$, which indicates that the Ir---O coordinate bond has greater electrostatic character. Complexation enhances the ionic character of the $\mathrm{Cl}-\mathrm{O}$ bond and the covalent character of the $\mathrm{Cl}-\mathrm{F}$ bond upon coordination of OCIF, as shown by differences between the $\mathrm{Cl}-\mathrm{O}$ and $\mathrm{Cl}-\mathrm{F}$ WBIs of $\mathrm{OClF}\left(\mathrm{Cl}-\mathrm{O}, 1.519\right.$; $\mathrm{Cl}-\mathrm{F}, 0.679$) and $\mathrm{F}_{5} \mathrm{Ir}---$ OClF (Cl-O, 1.287; Cl-F, 0.794). This is also reflected in the O and F atom charges for OCIF, which become more negative and positive, respectively, upon complexation. The Ir---O bond is therefore predominantly electrostatic with a significant degree of covalent character, and the OClF ligand is polarized to a significant extent upon coordination.

Coordination also enhances the ionic characters of the Ir-F bonds in $\mathrm{F}_{5} \mathrm{Ir}---$ OClF relative to the $\mathrm{Ir}-\mathrm{F}$ bonds in IrF_{5}, as shown by decreased $\operatorname{Ir}-\mathrm{F}$ WBIs (IrF_{5}, $0.601-0.857$; F5Ir---OCIF, 0.547-0.719) and F atom valences (IrF5, 0.834-1.006; F5Ir---OCIF, $0.789-0.999$), and more negative F -atom charges $\left(\mathrm{IrF}_{5},-0.345\right.$ to -0.512 ; $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF},-0.418$ to -0.545). The formation of two $\mathrm{Cl}--\mathrm{F}_{2,3}$ secondary bonds (WBIs, 0.050 and 0.140) also slightly increase the ionic characters of the $\operatorname{Ir}-\mathrm{F}_{2,3}$
bonds. The low WBIs of these secondary bonds are consistent with primarily electrostatic, σ-hole bonds that are directed towards regions of high positive electrostatic potential on Cl (vide infra).

6.2.3.3. Molecular Electrostatic Potential Surface Analyses

The MEPS isosurfaces (PBE0-D4/TZ2P) of gas-phase $\mathrm{OClF}^{2}, \mathrm{IrF}_{5}$, and $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ are depicted in Figure 6.6 along with their EP extrema. Electrostatic potential values provided in parentheses are in $\mathrm{kJ} \mathrm{mol}^{-1}$.

The MEPS isosurface of OCIF is consistent with coordination through O instead of F based on their relative EP minima ($\mathrm{F},-40 ; \mathrm{O},-76$). The isosurface of IrF_{5} has a maximum positive EP on $\operatorname{Ir}(438)$ that is located trans to the axial Ir-F bond. The O atom of the OClF ligand in F_{5} Ir---OClF coordinates into their region of high charge depletion on Ir, a σ-hole, to give a predominantly electrostatic Ir---O bond. The OClF ligand has two σ-holes on the isosurface of Cl that are located trans to the $\mathrm{Cl}-\mathrm{O}$ (163) and Cl-F (176) bonds, respectively. The EP isosurface minima on the equatorial F atoms of $\operatorname{IrF}_{5}(-29)$ are significantly more negative than the EP maximum of its axial F atom (4).

Coordination of OCIF to IrF_{5} significantly enhances regions of high positive EP on Cl that are trans to the $\mathrm{Cl}-\mathrm{O}$ (296) and $\mathrm{Cl}-\mathrm{F}$ (275) bonds relative to those of free $\mathrm{OClF}(\mathrm{Cl}-\mathrm{O}, 163$; $\mathrm{Cl}-\mathrm{F}, 176)$. The $\mathrm{Cl}---\mathrm{F}_{\text {Ir }}$ secondary bonds in the experimental and calculated geometries of $\mathrm{F}_{5} \mathrm{Ir}$---OClF are directed towards the σ-holes on Cl . The EP maxima of the O and F atom isosurfaces of the OClF ligand in FsIr---OClF change their polarities from negative in $\operatorname{OClF}(\mathrm{F},-40 ; \mathrm{O},-76)$ to positive in $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}(\mathrm{F}$, 86; $\mathrm{O}, 53$). The EP minima of the equatorial F atom isosurfaces of IrF_{5} in $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ $\left(\mathrm{F}_{\text {eq }},-71,-85 ; \mathrm{F}_{\mathrm{ax}}, 78\right)$ are significantly more negative than in $\operatorname{IrF}_{5}\left(\mathrm{~F}_{\mathrm{eq}},-29 ; \mathrm{F}_{\mathrm{ax}}, 4\right)$.

In particular, the EP of the axial F atom is negative for $\mathrm{F}_{5} \mathrm{Ir}--\mathrm{OClF}(-78)$ and positive for IrF_{5} (4). This is in accordance with transfer of significant negative charge from OClF to IrF_{5} as shown by the NBO analyses (vide supra).

Figure 6.6. The MEPS calculated at the 0.001 e $a_{0}{ }^{-3}$ isosurface value for IrF_{5}, OClF , and $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$. Electrostatic potential extrema are indicated by arrows. The optimized geometries and MEPs were calculated at the PBE0-D4/TZ2P level of theory and include collinear SOC.

6.3. Conclusions

Although the oxides and fluorides of the majority of heavy transition metal elements were known, there have been no structurally characterized examples of oxide fluorides reported for the noble metals $\mathrm{Rh}, \mathrm{Pd}, \mathrm{Ag}, \mathrm{Ir}, \mathrm{Pt}$, or Au . Now, the synthesis and structural characterization of the first iridium oxide fluoride species, the [cyclo-(μ -$\left.\left(\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}$ dianion, is reported. Furthermore, the $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ coordination complex was synthesized by reaction of IrO_{2} with ClF_{5} or ClF_{3} in aHF solvent. The structural characterization of $\mathrm{F}_{5} \mathrm{Ir}--$-OClF provides the first direct evidence for the formation of OClF in the reaction of ClF_{3} with a metal oxide, IrO_{2}, and the first crystallographic characterization of a OClF species. Formation of the $\mathrm{F}_{5} I \mathrm{Ir}$---OCIF complex also stabilizes endothermic OClF with respect to disproportionation to ClF and $\mathrm{ClO}_{2} \mathrm{~F}$. The $\left[\text { cyclo- }\left(\mu-\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}$ dianion is oxygen bridged and provides a rare example of a mixed high-oxidation-state iridium species $[2 \mathrm{x} \operatorname{Ir}(\mathrm{V})$ and $1 \mathrm{x} \operatorname{Ir}(\mathrm{VI})$]. The oxo-wall is circumvented by the high-oxidation-states and non-tetragonal coordination spheres of Ir in $\left[\text { cyclo- }\left(\mu-\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}$ and by the formation of Ir-O single bonds. Both $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- $\left.\left(\mu-\mathrm{OIrF}_{4}\right)_{3}\right]$ and $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ exhibit extended three-dimensional networks in the solid-state that result from primarily electrostatic Cl--- $\mathrm{F}_{\text {Ir }}$ secondary bonds. Quantum-chemical calculations show that the Ir-F bonds of [cyclo-(μ -$\left.\left.\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}$ and $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ and the $\mathrm{Ir}-\mathrm{O}$ bridge bonds of $\left[\text { cyclo- }\left(\mu-\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}$ are polar-covalent in nature. The $\mathrm{Ir}---\mathrm{O}$ bond of $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ is predominantly electrostatic in character and may be described as a σ-hole bond. However, the Ir---O bond also has a significant degree of covalent character that accounts for its bent $\mathrm{Ir}--\mathrm{O}-\mathrm{Cl}$ bond angles in its calculated gas-phase and X-ray crystal structures.

CHAPTER 7

Noble-Gas Difluoride Complexes of CrOF_{4} and $\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$;
 $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}(\mathbf{N g}=\mathrm{Kr}, \mathrm{Xe}), \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}, \mathrm{NgF}_{2} \cdot \mathbf{2 C r O F} 4$, and $\mathrm{XeF}_{2} \cdot \mathbf{2 \mathrm { M } ^ { \prime } \mathrm { OF } _ { 4 }}$
 $$
\left(\mathbf{M}^{\prime}=\mathbf{M o}, \mathbf{W}\right)
$$

Adapted with permission from: Bortolus, M. R.; Mercier, H. P. A.; Brock, D. S.; Schrobilgen, G. J. Chem. Eur. J. 2022, 28, e202103729. and Mercier, H. P. A.; Breddemann, U.; Brock, D. S.; Bortolus, M. R.; Schrobilgen, G. J. Chem. Eur. J. 2019, 25, 12105-12119.

7.1. Introduction

The noble-gas difluorides $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$ are fluoride-ion donors and potent oxidative fluorinating agents that react with strong fluoride-ion acceptors such as PnF_{5} $(\mathrm{Pn}=\mathrm{As}, \mathrm{Sb}, \mathrm{Bi})$ to form $[\mathrm{NgF}]^{+}$and $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}$salts of $\left[\mathrm{PnF}_{6}\right]^{-}$and $\left[\mathrm{Pn}_{2} \mathrm{~F}_{11}\right]^{-}$. ${ }^{46,48,58,59}$ In contrast, the Group 6 oxide tetrafluorides, $\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$, are significantly weaker fluoride-ion acceptors that form two series of neutral complexes with $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$ having the general formulae $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ and $\mathrm{NgF}_{2} \cdot 2 \mathrm{MOF}_{4} .{ }^{65,66,182-184}$

Although $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}$ and $\mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF}_{4}$ have been thoroughly characterized by low-temperature (LT) single-crystal Xray diffraction (SCXRD) and Raman spectroscopy, ${ }^{65} \mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$ was the only $\mathrm{NgF}_{2} \cdot n \mathrm{MOF}_{4}(n=1,2 ; \mathrm{M}=\mathrm{Mo}, \mathrm{W})$ complex to have been structurally characterized by SCXRD, but at low precision. ${ }^{182}$ Low-temperature solution ${ }^{19} \mathrm{~F}$ and ${ }^{129} \mathrm{Xe}$ NMR studies in both BrF_{5} and $\mathrm{SO}_{2} \mathrm{ClF}$ solvents showed $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{MOF}_{4}, \mathrm{~F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}$ '---M $\mathrm{M}_{\mathrm{t}}{ }^{\prime} \mathrm{OF}_{4}, \mathrm{~F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{M}\left(\mathrm{OF}_{3}\right)-$
 F_{b} '" ${ }^{\prime}--\mathrm{M}_{\mathrm{t}}{ }^{\prime}$ ', OF_{4} have $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}---\mathrm{M}$ bridges and metal-fluorine-metal bridges that are non-labile on the NMR time scale, with structures having trans, trans-arrangements of the $\mathrm{M}=\mathrm{O}$ and $\mathrm{M}_{\mathrm{t}}{ }^{\prime}=\mathrm{O} / \mathrm{M}_{\mathrm{t}}{ }^{\prime \prime}=\mathrm{O} / \mathrm{M}_{\mathrm{t}}{ }^{\prime}{ }^{\prime \prime}=\mathrm{O}$ bonds with respect to $\mathrm{F}_{\mathrm{b}}{ }^{\prime} / \mathrm{F}_{\mathrm{b}}{ }^{\prime \prime} / \mathrm{F}_{\mathrm{b}}{ }^{\prime}{ }^{\prime}{ }^{183}$. ${ }^{183}$ The
$\mathrm{XeF}_{2} \cdot n \mathrm{MOF}_{4}(n=1,2)$ complexes have also been characterized in the solid state by Raman spectroscopy and their spectra tentatively assigned. The $\mathrm{KrF}_{2} \cdot n \mathrm{MoOF}_{4}(n=1-$ 3) and $\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$ complexes were formed in $\mathrm{SO}_{2} \mathrm{ClF}$ solution at LT. ${ }^{184}$ Their solution ${ }^{19} \mathrm{~F}$ NMR spectra provided definitive proof for the formation of $\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}---$ $\mathrm{MoOF}_{4}, \mathrm{~F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}---\mathrm{WOF}_{4}, \mathrm{~F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}---\mathrm{Mo}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}$ '---Mo $\mathrm{Mo}_{\mathrm{t}} \mathrm{OF}_{4}$, and $\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}---\mathrm{Mo}\left(\mathrm{OF}_{3}\right)-$ $\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{Mo}^{\prime}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}$ "---Mot $\mathrm{Mo}_{\mathrm{t}}{ }^{\prime} \mathrm{OF}_{4}$ complexes having non-labile $\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}--\mathrm{Mo} / \mathrm{W}$ bridges and metal-fluorine-metal bridges that are assigned trans, trans-arrangements of the $\mathrm{Mo}=\mathrm{O}$ and $\mathrm{Mot}_{\mathrm{t}}{ }^{\prime}=\mathrm{O} / \mathrm{Mo}_{\mathrm{t}}{ }^{\prime}=\mathrm{O}$ bonds with respect to $\mathrm{F}_{\mathrm{b}}{ }^{\prime} / \mathrm{F}_{\mathrm{b}}{ }^{\prime}{ }^{184}$ The Raman spectra of the solid $\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$ and $\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$ complexes are consistent with their ${ }^{19} \mathrm{~F}$ solution NMR studies and their xenon analogues. ${ }^{184}$

The present work provides solid-state structural characterizations of $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; \mathrm{M}=\mathrm{Mo}, \mathrm{W})$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ by LT SCXRD and Raman spectroscopy. The HF solvate, $\left[--\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---(\mu-\mathrm{F}) \mathrm{H}--\right]_{\infty}$, was also characterized by LT SCXRD and Raman spectroscopy. Quantum-chemical calculations (QC) were employed to arrive at definitive assignments of the Raman spectra of the NgF_{2} complexes, and to assess and compare bonding in $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$.

7.2. Results and Discussion

7.2.1. Syntheses and Reactivities

7.2.1.1. $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})(\mathrm{M}=\mathrm{Mo}, \boldsymbol{W})$ and $\mathrm{XeF}_{2} \cdot \mathrm{CrOF}_{4}$. In typical reactions, 1:1 molar mixtures of $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$ and $\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ were allowed to react at $-78^{\circ} \mathrm{C}$ in aHF solvent for ca. 5 min with periodic agitation to give flocculent white precipitates of the $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ complexes [Eq. (7.1)].

$$
\begin{equation*}
\mathrm{NgF}_{2}+\mathrm{MOF}_{4} \xrightarrow{\mathrm{aHF}} \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4} \tag{7.1}
\end{equation*}
$$

Colorless, needle-shaped crystals of $\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$ (1) were grown by dissolving a $1: 1$ molar mixture of KrF_{2} and MoOF_{4} in aHF at $-35^{\circ} \mathrm{C}$, followed by slow cooling from -35 to $-55^{\circ} \mathrm{C}$ over ca. 4 h . Crystalline samples were isolated by decanting the aHF supernatant at $-78^{\circ} \mathrm{C}$ into the side arm of an FEP h -shaped reaction vessel, which had been cooled to $-196{ }^{\circ} \mathrm{C}$, and heat-sealed off under dynamic vacuum. Residual aHF was removed from the crystalline sample under dynamic vacuum at $-78^{\circ} \mathrm{C}$. Except for $\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$ (2), all crystalline samples described in the ensuing subsections were isolated in a similar manner.

Crystals of $\mathrm{KrF}_{2} \cdot$ WOF $_{4}$ (2) were particularly challenging to grow owing to the propensity of KrF_{2} to oxidatively fluorinate WOF_{4} to WF_{6} and O_{2} in aHF solution at the crystallization temperature $\left(-60^{\circ} \mathrm{C}\right)$. This difficulty was overcome by partially dissolving a sample of $\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$, with agitation, in aHF at $-65^{\circ} \mathrm{C}$ over a ca. 10 min period. The supernatant was then carefully decanted into the cooled $\left(-62^{\circ} \mathrm{C}\right)$ side arm of the h -shaped reactor, warmed to $-55^{\circ} \mathrm{C}$ for ca .15 s to ensure complete solubility, and then cooled to and maintained at $-60^{\circ} \mathrm{C}$ for ca. 1 min to initiate crystal growth. Slow cooling of the sample from -60 to $-66^{\circ} \mathrm{C}$ for ca. 1 h yielded colorless, needleshaped crystals of $\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$ (2). The LT Raman spectrum of the crystalline sample was obtained under solid HF at $-150^{\circ} \mathrm{C}$ prior to decanting HF into the main arm of the reactor at $-78^{\circ} \mathrm{C}$. The decanted solvent was isolated by cooling the supernatant to $-196{ }^{\circ} \mathrm{C}$ and heat-sealing off the side arm under dynamic vacuum. Residual HF was removed from the crystalline sample under dynamic vacuum at $-78^{\circ} \mathrm{C}$.

Colorless, needle-shaped crystals of $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}(\mathbf{3}), \mathrm{W}$ (4)) were grown by dissolving 1:1 molar mixtures of XeF_{2} and MoOF_{4} or WOF_{4} in aHF at room
temperature, followed by slow cooling of these samples from 25 to $-69^{\circ} \mathrm{C}$ and 25 to $-78^{\circ} \mathrm{C}$, respectively.
7.2.1.2. $\mathrm{XeF}_{2} \cdot \mathrm{CMOF}_{4}(\boldsymbol{M}=\boldsymbol{M o}(\mathbf{5}), \boldsymbol{W}$ (6)). The reactions of 1:2 molar mixtures of molten XeF_{2} and MOF_{4} at $50^{\circ} \mathrm{C}$ resulted in colorless liquids [Eq. (7.2)]. Slow cooling of these melts from 50 to $12{ }^{\circ} \mathrm{C}$ and from 50 to $21^{\circ} \mathrm{C}$ respectively, resulted in colorless, plate-shaped crystals of $\mathrm{XeF}_{2} \cdot 2 \mathrm{MoOF}_{4}(\mathbf{5})$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}$ (6).

$$
\begin{equation*}
\mathrm{XeF}_{2}+2 \mathrm{MOF}_{4} \xrightarrow{50^{\circ} \mathrm{C}} \mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4} \tag{7.2}
\end{equation*}
$$

An attempt to synthesize $\mathrm{KrF}_{2} \cdot 2 \mathrm{MoOF}_{4}$ in aHF yielded crystalline $\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$ and the HF solvate, $\left[--\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---(\mu-\mathrm{F}) \mathrm{H}--\right] \infty$ (7) [Equation (7.3)] (see Appendix 4, Figure A4.1 and Table A4.1). Attempts to form the solvated WOF_{4} analogue of 7 by dissolution of WOF_{4} in aHF were unsuccessful and only yielded unreacted WOF_{4} upon removal of aHF solvent.

$$
\begin{equation*}
\mathrm{MoOF}_{4}+2 \mathrm{HF} \rightarrow\left[--\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---(\mu-\mathrm{F}) \mathrm{H}--\right]_{\infty} \tag{7.3}
\end{equation*}
$$

7.2.2. X-ray Crystallography

Data collection parameters and other crystallographic information for $\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$ (1), $\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$ (2), $\mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}$ (3), $\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$ (4), $\mathrm{XeF}_{2} \cdot 2 \mathrm{MoOF}_{4}$ ($P 21 / \mathrm{c}$) and are best described as complexes in which an F atom of NgF_{2} coordinates into the σ-hole region of M that is trans to the axial $\mathrm{M}=\mathrm{O}$ bond (Figure 7.1 and Figure A4.2, Appendix 4) to give near-eclipsed conformations ($\angle \mathrm{Kr}-\mathrm{F}_{\mathrm{b}}--\mathrm{Mo}-\mathrm{F}_{(1)}, 14.34(7)^{\circ}$; $\left.\angle \mathrm{Kr}-\mathrm{Fb}---\mathrm{W}-\mathrm{F}_{(1)}, 16.1(2)^{\circ}, \angle \mathrm{Xe}-\mathrm{F}_{\mathrm{b}}--\mathrm{Mo}-\mathrm{F}_{(1)}, 7.55(6)^{\circ} ; \angle \mathrm{Xe}-\mathrm{F}_{\mathrm{b}}---\mathrm{W}-\mathrm{F}_{(1)}, 5.9(2)^{\circ}\right)$. The structural units are well-isolated, where the shortest $\mathrm{O} \cdots \mathrm{F}$ and $\mathrm{F} \cdots \mathrm{F}$ intermolecular contacts of $\mathrm{KrF}_{2} \cdot \mathrm{MOF}_{4}$ and $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ (Tables A4.2 and A4.3) are
somewhat longer and shorter, respectively, than the sums of their van der Waals radii (O $\cdots \mathrm{F}, 2.99,{ }^{167} 2.96^{168} \AA ; \mathrm{F}^{\cdots} \cdots, 2.94,{ }^{167} 2.92^{168} \AA$).

The $\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}\left(\mathrm{Mo}, 1.8202(9) ; \mathrm{W}, 1.805(2) \AA\right.$), $\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}(\mathrm{Mo}, 1.9653(9) ; \mathrm{W}$, $1.989(2) \AA$) , $\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\left(\mathrm{Mo}, 1.9369(12) ; \mathrm{W}, 1.929(3) \AA\right.$) and $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}(\mathrm{Mo}, 2.0813(12) ; \mathrm{W}$, $2.102(3) \AA$) bonds of $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ (Table 7.2) are significantly shorter and longer, respectively, than those of $\alpha-\mathrm{KrF}_{2}(\mathrm{Kr}-\mathrm{F}: 1.894(5) \AA)^{46}$ and XeF_{2} (Xe-F: 1.999(4) $\AA),{ }^{48}$ as observed in $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}, 1.8489(9), \mathrm{Kr}-\mathrm{F}_{\mathrm{b}}, 1.9279(9) ; \mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\right.$, $\left.1.945(3), 1.969(2), \mathrm{Xe}-\mathrm{F}_{\mathrm{b}}, 2.035(3), 2.057(2) \AA\right)^{65}$ The $\mathrm{Ng}-\mathrm{F}$ bonds of the NgF_{2} ligand become more polarized, consistent with the calculated FIAs of the Group 6 oxide tetrafluorides $\left(\mathrm{CrOF}_{4},-285 ; \mathrm{MoOF}_{4},-355 \mathrm{WOF}_{4},-386 \mathrm{~kJ} \mathrm{~mol}^{-1}\right),{ }^{252}$ which result in progressively longer $\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}$ bridge bonds and shorter $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ terminal bonds (see above). Because the $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}$ bonds of $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ are significantly longer and shorter, respectively, than those of $[\mathrm{NgF}]\left[\mathrm{PnF}_{6}\right],{ }^{46,48,58}$ the relative degree of fluoride-ion transfer from NgF_{2} to MOF_{4} is correspondingly smaller. The F-Kr-F bond angles are near-linear (178.3(2)-179.19(5) ${ }^{\circ}$), and are comparable to those of $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}\left(\mathrm{Kr}: 179.91(5)^{\circ}\right.$; Xe: 179.1(1), $\left.179.81(8)^{\circ}\right),{ }^{65}$ The $\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}--\mathrm{M}$ bond angles in $\mathrm{KrF}_{2} \cdot \mathrm{MOF}_{4}\left(\mathrm{Mo}, 134.33(5) ; \mathrm{W}, 135.22(12)^{\circ}\right)$ and $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{Mo}$, 148.09(7); W, 150.6(2) ${ }^{\circ}$) are bent and are in good agreement with those of $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}\left(\mathrm{Kr}: 123.51(4)^{\circ}\right.$; Xe: 133.1(1), 118.50(8) $\left.{ }^{\circ}\right) .{ }^{65}$ Similar trends have been noted for other terminally coordinated $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$ adducts: $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FNgF})_{2} \mathrm{AsF}_{6}\right],{ }^{62,63}\left[\mathrm{Mg}(\mathrm{FKrF})_{4}\left(\mathrm{AsF}_{6}\right)_{2}\right]{ }^{74}\left[\mathrm{~F}_{5} \mathrm{Xe}(\mathrm{FNgF}) n \mathrm{AsF}_{6}\right](n=1,2),{ }^{64,73}$ and $\left[\mathrm{Hg}(\mathrm{FKrF})_{8}\right]\left[\mathrm{AsF}_{6}\right]_{2} .{ }^{190}$

The Mo-O (Kr, 1.6508(12); Xe, 1.6492(14) \AA), W-O (Kr, 1.679(3); Xe, $1.677(3) \AA)$, $\mathrm{Mo}-\mathrm{F}(\mathrm{Kr}, 1.8400(9)-1.8562(8) ; \mathrm{Xe}, 1.8396(12)-1.8524(11) \AA)$, and $\mathrm{W}-$

F (Kr, 1.852(2)-1.862(2); Xe, 1.846(3)-1.862(3) Å) bond lengths are comparable to those of the infinite-chain $\mathrm{MoOF}_{4}{ }^{253}$ and tetrameric WOF_{4} structures, ${ }^{254}$ and gaseous monomeric $\mathrm{MOF}_{4}\left(\mathrm{Mo}^{255,256} \mathrm{~W}^{256}\right)$. The secondary Mo--- $\mathrm{F}_{\mathrm{b}}(\mathrm{Kr}, 2.2473(9)$; Xe, $2.2352(12) \AA$) and $\mathrm{W}---\mathrm{F}_{\mathrm{b}}(\mathrm{Kr}, 2.217(2) ; \mathrm{Xe}, 2.199(3) \AA)$ bonds are significantly longer than $\mathrm{M}-\mathrm{F}_{\mathrm{t}}$ bonds (see above) owing to their dominant electrostatic characters. The $\mathrm{M}--\mathrm{F}_{\mathrm{b}}$ bond lengths of $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}\left(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; \mathrm{M}=\mathrm{Cr},{ }^{65} \mathrm{Mo}, \mathrm{W}\right)$ decrease with increasing FIA upon descending Group $6,{ }^{252}$ in accordance with primarily electrostatic σ-hole type M ---Fb bonds (see Computational Results).
7.2.2.2. $\mathrm{XeF}_{2} \cdot \mathbf{2 M O F}_{4}(\boldsymbol{M}=\mathbf{M o}, \boldsymbol{W})$. The crystal structures of $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ are isotypic (Pbcn) and consist of well-isolated structural units (Figure 7.2 and Figure A4.3). The shortest $\mathrm{O} \cdots \mathrm{F}$ and $\mathrm{F} \cdots \mathrm{F}$ intermolecular contacts in $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ (Table A4.4) are slightly less than the sums of their van der Waals radii (see above). The F_{b} ' atom of the $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}$ ' moieties in $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ are trans-coordinated to the $\mathrm{M}^{\prime}=\mathrm{O}$ bond of a second $\mathrm{M}^{\prime} \mathrm{OF}_{4}$ molecule to give $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime} \mathrm{OF}_{4}$. The $\mathrm{M}-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime}$ bridge bond angles ($\mathrm{Mo}, 159.02(7)$; $\mathrm{W}, 159.5(2)^{\circ}$) are significantly less than 180° (see Computational Results). The $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}$ ' moieties adopt
 $\left.2.3(3)^{\circ}\right)$, similar to those of $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ (see above). The crystal structures reveal cis, trans-arrangements of $\mathrm{M}=\mathrm{O} / \mathrm{M}^{\prime}=\mathrm{O}$ bonds relative to F_{b} ' instead of the trans, transarrangements previously assigned based on LT solution ${ }^{19} \mathrm{~F}$ NMR studies. ${ }^{183}$ Both arrangements have been observed for the $\left[\mathrm{Mo}_{3} \mathrm{O}_{3} \mathrm{~F}_{13}\right]^{-}$anion in the crystal structure of $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{Mo}_{3} \mathrm{O}_{3} \mathrm{~F}_{13}\right] . .^{141}$

Table 7.1. Summary of crystal data and refinement results for $\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$ (1), $\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$ (2), $\mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}$ (3), $\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}(4), \mathrm{XeF}_{2} \cdot 2 \mathrm{MoOF}_{4}(5), \mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}(6)$, and $\left[--\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---(\mu-\mathrm{F}) \mathrm{H}--\right]_{\infty}(7)$

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
space group	$P 2_{1} / c$	$P b c n$	$P b c n$	$P 2_{1} / c$			
$a(\AA)$	$5.2881(1)$	$5.3024(3)$	$5.2334(1)$	$5.2105(3)$	$16.9762(3)$	$17.1091(8)$	$7.226(1)$
$b(\AA)$	$10.1495(2)$	$10.1808(6)$	$9.5634(2)$	$9.6408(6)$	$8.24267(1)$	$8.4664(4)$	$6.9321(12)$
$c(\AA)$	$10.9750(2)$	$10.9945(7)$	$12.3165(3)$	$12.3383(8)$	$13.9290(2)$	$13.9364(7)$	$10.3917(18)$
α	90	90	90	90	90	90	90
$\beta(\mathrm{deg})$	$93.630(1)$	$94.058(2)$	$90.494(1)$	$90.736(2)$	90	90	$97.670(3)$
γ	90	90	90	90	90	90	90
$V\left(\AA^{3}\right)$	$587.86(2)$	$592.02(6)$	$616.41(2)$	$619.74(7)$	$1992.59(5)$	$2018.7(2)$	$515.84(16)$
Z	4	4	4	4	8	8	4
$M \mathrm{w}\left(\mathrm{g} \mathrm{mol}^{-1}\right)$	309.74	397.65	357.24	445.15	545.18	721.00	227.96
$\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	3.500	4.461	3.849	4.771	3.635	4.745	2.935
$T\left({ }^{\circ} \mathrm{C}\right)$	-173	-173	-173	-173	-173	-173	-173
$\mu\left(\mathrm{~mm}^{-1}\right)$	9.758	26.986	7.580	24.063	5.990	26.203	2.592
$R_{1}^{[a]}$	0.0283	0.0325	0.0191	0.0277	0.0244	0.0381	0.0234
$w R_{2}{ }^{[\mathrm{bb}]}$	0.0519	0.0804	0.0357	0.0664	0.0448	0.0928	0.0463

$[\mathrm{a}] R_{1}=\sum\left\|F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}} \| / \sum\right| F_{\mathrm{o}}\right|\right.$ for $I>2 \sigma(I) .[\mathrm{b}] w R_{2}=\left[\sum\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \sum w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]^{1 / 2}$ for $I>2 \sigma(I)$.

Figure 7.1. (a) The X-ray crystal structure of $\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$ (near-eclipsed conformation) with thermal ellipsoids drawn at the 50% probability level; and (b) its calculated staggered conformation.

The $\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\left(\mathrm{Mo}, 1.9283(10) ; \mathrm{W}, 1.922(4) \AA\right.$) and $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}(\mathrm{Mo}, 2.1153(10) ; \mathrm{W}$, $2.136(4) \AA$) bonds of $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ (Table 7.2) are somewhat shorter and longer, respectively, than those of $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$, indicating that $\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime} \mathrm{OF}_{4}$ is a stronger fluoride-ion acceptor than MOF_{4}. As expected, the longest $\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}$ bridge bonds and shortest $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ terminal bonds are observed for $\mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}$, consistent with the greater calculated FIA of WOF_{4} relative to $\mathrm{MoOF}_{4} \cdot{ }^{252}$ As in $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$, the $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}$ bonds of $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ are significantly longer and shorter, respectively, than those of $[\mathrm{XeF}]\left[\mathrm{AsF}_{6}\right] .{ }^{48}$ Although $\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime} \mathrm{OF}_{4}$ is expected to be a stronger fluoride-ion acceptor than MOF_{4}, it is incapable of complete fluoride-ion transfer from NgF_{2} to form $[\mathrm{NgF}]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ salts. The $\mathrm{F}_{\leftarrow}-\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$ bond angles are nearly linear (Mo, 178.85(4); $\left.\mathrm{W}, 178.1(2)^{\circ}\right)$, and are comparable to those of other terminally coordinated NgF_{2} ligand complexes (see above). The $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}---\mathrm{M}$ bond angles of $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ (Mo, 130.84(5); W, 131.7(2) ${ }^{\circ}$) are comparable to those of $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}\left(\mathrm{M}=\mathrm{Cr},{ }^{65} \mathrm{Mo}, \mathrm{W}\right)$ and other terminally coordinated NgF_{2} complexes (see above).

The $\mathrm{M}=\mathrm{O}$ ($\mathrm{Mo}, 1.6432(12), 1.6461(12) ; \mathrm{W}, 1.660(5), 1.662(6) \AA$) and $\mathrm{M}-\mathrm{F}$ (Mo, 1.8208(10)-1.8456(10); W, 1.825(4)-1.848(4) \AA) bond lengths of $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ are comparable to those of $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ (see above). As expected, the shortest $\mathrm{M}-\mathrm{F}_{\mathrm{t}}$ bond is trans to the $\mathrm{M}-\mathrm{F}_{\mathrm{b}}$ '---M' bridge, and the longest $\mathrm{M}-\mathrm{F}_{\mathrm{t}}$ bond nearly eclipses (see above) the XeF_{2} ligand. The $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bridge bonds with NgF_{2} (Mo, 2.1980(9); W, $2.177(4) \AA$) are significantly shorter than in $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ (see above) and indicate, when combined with the trends observed for $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}$, the order of increasing FIA for the XeF_{2} ligand is: $\mathrm{MoOF}_{4}<\mathrm{WOF}_{4} \approx \mathrm{Mo}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{Mo}^{\prime} \mathrm{OF}_{4}<\mathrm{W}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}-$ --W'OF4. The asymmetric M-Fb'---M' bridge bonds are consistent with polar-

Ph.D. Thesis - Mark R. Bortolus; McMaster University - Chemistry

Table 7.2. Key experimental and calculated bond lengths (\AA) and bond angles (deg) for $\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}(\mathbf{1}), \mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}(\mathbf{2}), \mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}(\mathbf{3}), \mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}(\mathbf{4})$, $\mathrm{XeF}_{2} \cdot 2 \mathrm{MoOF}_{4}(5), \mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}(6)^{[\mathrm{a}]}$

	Exptl						Calcd ${ }^{[b]}$					
	$\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$			$\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$			$\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$			$\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$		
	1	2	3	4	5	6	$1{ }^{\prime}$	2'	3'	$4{ }^{\prime}$	5^{\prime}	6^{\prime}
$\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$	1.8202(9)	1.805(2)	1.937(12)	1.929(3)	1.928(10)	1.922(4)	1.834	1.829	1.955	1.951	1.950	1.944
$\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}$	1.9653(9)	1.989(2)	2.081(12)	2.102(3)	$2.115(10)$	2.136(4)	1.926	1.935	2.048	2.058	2.059	2.072
M---F ${ }_{\text {b }}$	2.2473(9)	2.217(2)	$2.235(12)$	2.199(3)	2.1980 (9)	2.177(4)	2.416	2.405	2.389	2.378	2.339	2.321
$\mathrm{F}_{\mathrm{t}}-\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}$	179.19(5)	178.8(11)	178.35(6)	178.3(2)	178.85(4)	178.1(2)	178.8	178.8	178.3	178.3	178.4	177.9
$\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}--\mathrm{M}$	134.33(5)	135.2(12)	148.09(7)	150.6(2)	130.84(5)	131.7(2)	114.2	114.5	116.8	117.2	125.6	123.8

[a] Geometric parameters for the $\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ groups are provided in Tables A4.3-A4.5 of Appendix 4. [b] APFD/Def2TZVPD.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Figure 7.2. The X-ray crystal structure of (a) $\mathrm{XeF}_{2} \cdot 2 \mathrm{MoOF}_{4}$ (5) with the thermal ellipsoids drawn at the 50% probability level; and (b) its calculated geometry (5^{\prime}). The X-ray crystal structure of $\mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}$ (6) and its calculated geometry ($\mathbf{6}^{\prime}$) are depicted in Figure A4.4, Appendix 4.
covalent $\mathrm{M}-\mathrm{F}_{\mathrm{b}}$ ' bonds ($\mathrm{Mo}-\mathrm{F}_{\mathrm{b}}$ ', $1.9350(10), \mathrm{W}-\mathrm{F}_{\mathrm{b}}$ ', $1.929(4) \AA$) and primarily electrostatic Fb_{b}---Mo (2.2990(10) \AA) and Fb_{b} '---W (2.313(4) \AA) bonds. The shorter $\mathrm{M}-\mathrm{F}_{\mathrm{b}}$ ' and longer $\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime}$ bonds observed in $\mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}$ are consistent with the higher FIA of WOF_{4} relative to that of MoOF_{4}, which has less fluorobasic F ligands. This is consistent with the fact that $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{W}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}$ '---Mo' OF_{4} cannot be synthesized in solutions or melts (see Experimental Section) apparently owing to the lower FIA of MoOF_{4} and its inability to coordinate to an F ligand of WOF_{4} in $\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$.
7.2.2.3. $\left[-\left(\boldsymbol{F}_{4} \mathrm{OMo}\right)\left(\boldsymbol{\mu}_{3}-\boldsymbol{F}\right) \boldsymbol{H}--(\boldsymbol{\mu}-\boldsymbol{F}) \boldsymbol{H}-\right]_{\infty}$ (7). The crystal structure of 7 is a coordination complex in which the F atom of an HF molecule interacts with the σ-hole of Mo that is trans to the axial $\mathrm{Mo}=\mathrm{O}$ bond of MoOF_{4}, and the H atom of adducted HF forms an H -bonded, infinite-chain structure that incorporates a second equivalent of HF (Figure 7.3). The chains are well separated, with the shortest $\mathrm{O} \cdots \mathrm{F}$ and $\mathrm{F} \cdots \mathrm{F}$ intermolecular contacts between chains being only somewhat shorter than the sums of their van der Waals radii (Table A4.5).

 $\mathrm{Mo}=\mathrm{O}(1.650(2) \AA)$ and $\mathrm{Mo}-\mathrm{F}(1.8427(14)-1.8875(14) \AA)$ bond lengths are like those of $\mathrm{NgF}_{2} \cdot \mathrm{MoOF}_{4}$. The Mo---F bridge bond of 7 (2.1527(14) \AA) is intermediate with respect to the $\mathrm{Mo}-\mathrm{F}_{\mathrm{ax}}$ bond of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right](2.061(2) \AA)^{243}$ and the $\mathrm{Mo}---\mathrm{F}_{\mathrm{b}}$ bridge bond of $\mathrm{NgF}_{2} \cdot \mathrm{MoOF}_{4}$ ($\mathrm{Kr}: 2.2470(9)$; $\mathrm{Xe}: 2.2352(12) \AA$), in accordance with the description of 7 as a coordination complex rather than a salt, and the greater fluorobasicity of HF relative to that of NgF_{2}.

Figure 7.3. A portion of the X-ray crystal structure of $\left[--\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---(\mu-\mathrm{F}) \mathrm{H}--\right.$ $]_{\infty}$ (7) showing its infinite-chain structure. Thermal ellipsoids are drawn at the 50% probability level.

7.2.3. Raman Spectroscopy

The LT Raman spectra of $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; \mathrm{M}=\mathrm{Mo}, \mathrm{W})$ (Figures A4.4 and A4.5, Appendix 4) have been re-recorded to provide more precise assignments and descriptions of the vibrational modes that are based on their calculated vibrational frequencies and the atomic displacements of gas-phase structures 1'-6' (Tables A4.6-A4.8). The previously published Raman spectra of $\mathrm{KrF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ were recorded at $-196^{\circ} \mathrm{C}^{184}$ and were of very good quality; they did not need to be re-recorded. The Raman spectra of $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ were previously assigned to a trans, trans-arrangement of $\mathrm{M}=\mathrm{O}$ bonds based on solution ${ }^{19} \mathrm{~F}$ NMR studies, ${ }^{183}$ and are now re-assigned based on the cis, trans-arrangements of
$\mathrm{M}=\mathrm{O}$ bonds in their crystal structures (see above). A detailed discussion of the vibrational assignments for $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ is provided in Appendix 4 along with factorgroup analyses for $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ (Figures A4.6 and A4.7).
7.2.3.1. XeF $_{2} \cdot \mathbf{2 M O F}_{4}(\boldsymbol{M}=\boldsymbol{M o}, \boldsymbol{W})$. The high-frequency bands at $1036(\mathrm{Mo})$ and 1050/1053 (W) cm ${ }^{-1}$ (calcd, 1094 (Mo) and $1073(\mathrm{~W}) \mathrm{cm}^{-1}$) are assigned to the inphase $v\left(\mathrm{M}_{1}-\mathrm{O}_{1}\right)+v\left(\mathrm{M}_{2}-\mathrm{O}_{2}\right)$ mode, whereas the out-of-phase $v\left(\mathrm{M}_{1}-\mathrm{O}_{1}\right)-v\left(\mathrm{M}_{2}-\mathrm{O}_{2}\right)$ mode occurs at lower frequency, 1028 (Mo) and 1041/1044 (W) cm ${ }^{-1}$ (calcd, 1028 (Mo) and $1070(\mathrm{~W}) \mathrm{cm}^{-1}$). The bands between 589-724 (Mo) and 610-719 (W) cm^{-1} are assigned to coupled $v\left(\mathrm{M}_{1}-\mathrm{F}_{\mathrm{t}}\right)$ and $v\left(\mathrm{M}_{2}-\mathrm{F}_{\mathrm{t}}\right)$ stretches (calcd, 595-716 (Mo) and 612-711 (W) cm ${ }^{-1}$) and are comparable to the $v\left(\mathrm{M}-\mathrm{F}_{\mathrm{t}}\right)$ stretching frequencies of the 1:1 complex (Tables A4.7 and A4.8). The bands at 525/527 (Mo) and 535/537 (W) cm^{-1} (calcd, $564(\mathrm{Mo})$ and $563(\mathrm{~W}) \mathrm{cm}^{-1}$) occur at significantly lower frequencies than the terminal $v\left(M-F_{\mathrm{t}}\right)$ stretches and are assigned to the bridging out of- phase, $v\left(\mathrm{M}_{1}-\mathrm{F}_{6}\right)-v\left(\mathrm{M}_{2}-\mathrm{F}_{6}\right)$ mode, consistent with longer $\mathrm{M}_{1}-\mathrm{F}_{6}$ and $\mathrm{M}_{2}-\mathrm{F}_{6}$ bonds. The calculations show no intraligand coupling between $v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\right)$ and $v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right)$. The $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ bands at $572 / 574(5)$ and $582 / 585(6) \mathrm{cm}^{-1}$ are assigned to $v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\right)$ and occur at slightly higher frequency than those of $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ (562/567(3); 571/574(4) cm^{-1}), in accordance with the experimental bond length trends, $\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}(1: 2)<\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$ (1:1). The $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ bands at $421(\mathrm{Mo})$ and $408(\mathrm{~W}) \mathrm{cm}^{-1}$ are assigned to $v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right)$ and occur at slightly lower frequency than those of $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ (449/466 (Mo); $437 / 466(\mathrm{~W}) \mathrm{cm}^{-1}$), in agreement with the experimental bond length trends, $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$ $(1: 2)>\mathrm{Xe}-\mathrm{Fb}_{\mathrm{b}}(1: 1)$. These trends were reproduced by the calculations: $v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\right): 557$ (5^{\prime}); 567 ($\left.6^{\prime}\right) \mathrm{cm}^{-1}>551$ (3'); $556\left(4^{\prime}\right) \mathrm{cm}^{-1} ; v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right): 460\left(5^{\prime}\right) ; 445\left(6^{\prime}\right) \mathrm{cm}^{-1}<472$ (3'); 462 (4') cm^{-1}.

Deformation modes that involve XeF_{2} ligand coupling with the $\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}$ $\left(\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}\right.$ '---M' $\left.\mathrm{OF}_{4}\right)$ moiety occur at frequencies that are similar to the non-coupled modes of the $1: 1$ adduct. The in-plane bends, $\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)$, occur at higher frequencies (exptl: 259, 276 (Mo); 248, 270[6] (W) cm ${ }^{-1}$; calcd: 251, 288 (Mo); 249, 287 (W) cm^{-1}) than the out-of-plane bends (exptl: 193/198, 236 (Mo); 193/201, 235/237 (W) cm^{-1}; calcd: 196, $\left.238(\mathrm{Mo}) ; 192,231(\mathrm{~W}) \mathrm{cm}^{-1}\right)$. The rocking modes, $\rho_{\mathrm{r}}\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)$, occur at higher frequencies (exptl: 141/146 (Mo); 139/142 (W) cm ${ }^{-1}$; calcd: 133 (Mo); $134(\mathrm{~W}) \mathrm{cm}^{-1}$) than the torsional modes, which were not observed (calcd: 84 (Mo); 86 (W) $\left.\mathrm{cm}^{-1}\right)$. The $\delta\left(\mathrm{M}_{1} \mathrm{~F}_{5} \mathrm{Xe}_{1}\right)$ bending modes occur at very low frequencies (calcd: 43 (Mo); $42(\mathrm{~W}) \mathrm{cm}^{-1}$) and also could not be observed.

7.2.4. Computational Results

The gas-phase geometries of $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; \mathrm{M}=\mathrm{Mo}$, W) were optimized with all frequencies real at the APFD/Def2-TZVPD (F, O, Mo, W, Kr, Xe) and B3LYP/ Def2-TZVPD (O, F, Mo, W)/aug-cc-pVTZ(-PP) (Kr, Xe) levels of theory. Calculated vibrational frequencies, intensities, and geometric parameters are given in Table 7.2 and Tables A4.2-A4.4 and A4.6-A4.8 of Appendix 4. The APFD results provide gas-phase structures that better reproduce the experimental geometric parameters and are therefore referred to in the ensuing discussion, where comparisons are also made with the $\mathrm{NgF}_{2} \cdot n \mathrm{CrOF}_{4}(n=1,2)$ complexes, calculated at the same level of theory. ${ }^{65}$

7.2.4.1. Calculated Geometries

The energy-minimized gas-phase geometries of $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ have staggered conformations (Cs symmetry) as observed for $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}{ }^{65}$ and are discussed in Appendix 4. The energy-minimized gas-phase geometry of $\mathrm{XeF}_{2} \cdot 2 \mathrm{MoOF}_{4}$ (5') has a
near-eclipsed conformation, with a small $\angle \mathrm{Xe}-\mathrm{F}_{\mathrm{b}}---\mathrm{Mo}-\mathrm{F}_{(1)}$ dihedral angle, similar to the experimental value of $\mathbf{5}$ (calcd: 1.4°; exptl: $\left.7.55(6)^{\circ}\right)$ (Figure 7.2). The energyminimized gas-phase geometry of $\mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}\left(\mathbf{6}^{\prime}\right)$ has a gauche conformation, with a larger $\angle \mathrm{Xe}-\mathrm{F}_{\mathrm{b}}---\mathrm{W}-\mathrm{F}_{(1)}$ dihedral angle, contrasting with the experimental neareclipsed conformation of 6 (calcd: 24.1°; exptl: $5.9(2)^{\circ}$) (Figure A4.3, Appendix 4). As observed in their crystal structures, the calculated $\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$ bonds are shorter than the $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$ bonds (Table 7.2), with average calculated $\mathrm{Xe}-\mathrm{F}_{\mathrm{t} / \mathrm{b}}$ bond lengths that are very similar to the calculated bond lengths of free $\mathrm{NgF}_{2}(\mathrm{Kr}, 1.869$; $\mathrm{Xe}, 1.986 \AA) .{ }^{65}$ The near linear $\mathrm{F}_{\mathrm{t}}-\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$ bond angles and the bent $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}---\mathrm{M}$ bond angles (calcd: $\mathbf{5}^{\prime}$, $125.6 ; \mathbf{6}^{\prime}, 123.8^{\mathbf{o}}$; exptl: $\left.\mathbf{5}, 130.84(5) ; \mathbf{6}, 131.7(2)^{\circ}\right)$ of $\mathbf{5}^{\prime}$, and $\mathbf{6}^{\prime}$, are reproduced by the calculations. The latter angles are expected to be highly deformable ${ }^{65}$ and susceptible to crystal packing, which is consistent with the calculated low frequencies of $\delta\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}-\right.$ --M) (Tables A4.6-A4.8, Appendix 4).

All experimental bond length and bond angle trends for the $\mathrm{F}_{3} \mathrm{OM}_{(1)}-\mathrm{F}_{(4)}---$ $\mathrm{M}_{(2)} \mathrm{OF}_{4}$ moieties are well reproduced by the calculations (Table A4.4); including the
 6', 2.416 and $1.909 \AA$; exptl: 5, $2.2990(10)$ and $1.9350(10) \AA ; 6,2.313(4)$ and $1.929(4) \AA$), and the $\mathrm{M}_{(1)-}-\mathrm{F}_{(4)---\mathrm{M}_{(2)}}$ angles (calcd: $\mathbf{5}^{\prime}, 145.8 ; \mathbf{6}^{\prime}, 145.6^{\circ}$; exptl: 5, 159.02(7); 6, 159.5(2) ${ }^{\circ}$.

7.2.4.2. Natural Bond Orbital (NBO) Analyses

The NAO analyses (Table A4.9) show that the Kr and Xe atom NPA charges of $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}, \mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF}_{4},{ }^{65} \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ are slightly more positive than those of free NgF_{2}. The small degrees of charge transfer from NgF_{2} to $\mathrm{CrOF}_{4}, \mathrm{MOF}_{4}$, and $\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}$ are consistent with coordination complexes in which the
$\mathrm{CrOF}_{4}, \mathrm{MOF}_{4}$, and $\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}$ group charges are some-what less negative for $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}(\mathrm{Xe},-0.072 ; \mathrm{Kr},-0.067)^{65}$ and $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{Mo}: \mathrm{Xe},-0.074 ; \mathrm{Kr}$, -0.077 ; W: Xe, $-0.077 ; \mathrm{Kr},-0.074$) than for $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ (Mo: Xe, -0.090 ; W: Xe, -0.096). These charges, which are equal in magnitude to the small positive charges of the coordinated NgF_{2} ligands, follow the fluoride-ion acceptor strength trend, $\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}$ $>\mathrm{MOF}_{4}>$ CrOF $_{4}$ (see MEPS Analyses). The relative F_{b} and F_{t} atom charges of $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}\left(\mathrm{Kr},-0.517, \mathrm{~F}_{\mathrm{b}}\right.$ and $-0.471, \mathrm{~F}_{\mathrm{t}} ; \mathrm{Xe},-0.599, \mathrm{~F}_{\mathrm{b}}$ and $\left.-0.576, \mathrm{~F}_{\mathrm{t}}\right)$, $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}\left(\mathrm{Mo}: \mathrm{Kr},-0.541, \mathrm{~F}_{\mathrm{b}}\right.$ and $-0.449, \mathrm{~F}_{\mathrm{t}} ; \mathrm{Xe},-0.621, \mathrm{~F}_{\mathrm{b}}$ and $-0.561, \mathrm{~F}_{\mathrm{t}} ; \mathrm{W}$: $\mathrm{Kr},-0.550, \mathrm{~F}_{\mathrm{b}}$ and $-0.442, \mathrm{~F}_{\mathrm{t}} ; \mathrm{Xe},-0.627, \mathrm{~F}_{\mathrm{b}}$ and $-0.554, \mathrm{~F}_{\mathrm{t}}$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}(\mathrm{Mo}$: $-0.625, \mathrm{~F}_{\mathrm{b}}$ and $-0.553, \mathrm{~F}_{\mathrm{t}} ; \mathrm{W}:-0.632, \mathrm{~F}_{\mathrm{b}}$ and $-0.544, \mathrm{~F}_{\mathrm{t}}$) reflect the degrees of ligand polarization, with F atom charges that are more negative for F_{b} and less negative for F_{t} relative to the F atom charges of $\mathrm{NgF}_{2}(\mathrm{Kr},-0.509$; $\mathrm{Xe},-0.605)$. The $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Ng}-$ F_{b} Wiberg bond indices of $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}, 0.599 ; \mathrm{Kr}-\mathrm{F}_{\mathrm{b}}, 0.483 ; \mathrm{Xe}-\mathrm{F}_{\mathrm{t}}, 0.557\right.$; $\left.\mathrm{Xe}-\mathrm{F}_{\mathrm{b}} 0.441\right)^{65} \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}\left(\mathrm{Mo}: \mathrm{Kr}-\mathrm{F}_{\mathrm{t}}, 0.625, \mathrm{Kr}-\mathrm{F}_{\mathrm{b}}, 0.452 ; \mathrm{Xe}-\mathrm{F}_{\mathrm{t}}, 0.581 ; \mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right.$, $0.410 ; \mathrm{W}: \mathrm{Kr}-\mathrm{F}_{\mathrm{t}}, 0.637 ; \mathrm{Kr}-\mathrm{F}_{\mathrm{b}}, 0.438 ; \mathrm{Xe}-\mathrm{F}_{\mathrm{t}}, 0.591 ; \mathrm{Xe}-\mathrm{F}_{\mathrm{b}}, 0.397$) and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ (Mo: $\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}, 0.592 ; \mathrm{Xe}-\mathrm{F}_{\mathrm{b}}, 0.387 ; \mathrm{W}: \mathrm{Xe}-\mathrm{F}_{\mathrm{t}}, 0.606 ; \mathrm{Xe}-\mathrm{F}_{\mathrm{b}}, 0.368$) are greater and smaller, respectively, than those of $\mathrm{NgF}_{2}(\mathrm{Xe}, 0.521 ; \mathrm{Kr}, 0.555)$ and also reflect the degrees of ligand polarization in these complexes. The atomic charges and Wiberg bond indices are consistent with polar-covalent NgF_{2} ligand bonds in their CrOF_{4}, MOF_{4}, and $\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}$ complexes. The small Wiberg bond indices of $\mathrm{Cr}--\mathrm{F}_{\mathrm{b}}$ and $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ are also in accordance with the fluoride-ion acceptor strength trend deduced from MEPS isosurface extrema (see below): $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}\left(\mathrm{Kr}, 0.090\right.$; Xe, 0.098), ${ }^{65}$ $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}\left(\mathrm{Mo}: \mathrm{Kr}, 0.101 ; \mathrm{Xe}, 0.109\right.$; W: Kr, 0.110 ; $\mathrm{Xe}, 0.117$), $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ (Mo: 0.128; W: 0.141).

7.2.4.3. Atoms in Molecules (AIM) Analysis

Detailed discussions of the AIM analyses ${ }^{172}$ for $\mathrm{MOF}_{4}, \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ are provided in Appendix 4. Upon adduct formation, the AIM properties of the $\mathrm{M}=\mathrm{O}$ and $\mathrm{M}-\mathrm{F}$ bonds in MOF_{4} and $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ (Table A4.10) show trends that are similar to those of $\mathrm{NgF}_{2} \cdot n \mathrm{CrOF}_{4}{ }^{65}$ The AIM properties for the $\mathrm{Ng}-\mathrm{F}$ bonds of $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}$ and $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ (Table A4.10) indicate increased degrees of $\mathrm{Ng}-\mathrm{F}$ bond polarization upon descending Group 6 that are in accordance with the relative fluoride-ion affinities of CrOF_{4} and MOF_{4}. The primarily electrostatic $\mathrm{Cr}--\mathrm{F}_{\mathrm{b}}$ and $\mathrm{M}-$ $-\mathrm{F}_{\mathrm{b}}$ bonds of $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}$ and $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ become more covalent as evidenced by their increased Laplacian of electron densities $\left(\nabla^{2} \rho_{\mathrm{b}}\right)$, densities of all electrons $\left(\rho_{\mathrm{b}}\right)$, and delocalization densities (δ) when descending Group 6. AIM analyses of $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ (Table A4.11) reveal that coordination of $\mathrm{M}^{\prime} \mathrm{OF}_{4}$ to $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ to give $\mathrm{F}_{\mathrm{t}} \mathrm{XeF} \mathrm{F}_{\mathrm{b}}--\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}$ '---M' OF_{4} significantly polarizes the $\mathrm{M}-\mathrm{F}$ and $\mathrm{Xe}-\mathrm{F}$ bonds. The $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$, $\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$, and $\mathrm{M}-\mathrm{F}_{\mathrm{t}}$ bonds of $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}--\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}$ '---M'OF 4 have greater covalent character than $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$, with increased $\rho_{\mathrm{b}}, \nabla^{2} \rho_{\mathrm{b}}$, and δ-values, and decreased energy densities, H_{b}. In contrast, the $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$ and $\mathrm{M}-\mathrm{F}_{\mathrm{b}}$ ' bonds are more ionic, having decreased $\rho_{\mathrm{b}}, \nabla^{2} \rho_{\mathrm{b}}$, and δ-values, and increased $H b$-values. The AIM parameters of the $\mathrm{M}^{\prime}---\mathrm{F}_{\mathrm{b}}$ ' bonds are consistent with primarily electrostatic, σ-hole interactions, and indicate that the $\mathrm{M}^{\prime}---\mathrm{F}_{\mathrm{b}}$ ' bonds of $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ are less covalent than the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bonds. These observations are consistent with the relative FIAs for MOF_{4} and $\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime} \mathrm{OF}_{4}$ that follow the order $\mathrm{CrOF}_{4}<\mathrm{MoOF}_{4}<\mathrm{WOF}_{4} \approx$ $\mathrm{Mo}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{Mo}^{\prime} \mathrm{OF}_{4}<\mathrm{W}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{W}^{\prime} \mathrm{OF}_{4}$, and are also in accordance with the NBO, MEPS, ELF, and EDA analyses of $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ (vide infra).

7.2.4.4. Electron Localization Function (ELF) Analysis

ELF analyses ${ }^{173,174}$ were carried out for $\mathrm{MOF}_{4}, \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$. ELF parameters are provided in Tables A4.10 and A4.11 and ELF isosurface plots are shown for the localization domains of $\mathrm{MOF}_{4}, \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ in Figure A4.8. The ELF valence basins of $\mathrm{MOF}_{4}, \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ are monosynaptic, consistent with the highly polar-covalent nature of the bonding in these compounds. Coordination of NgF_{2} to MOF_{4} results in perturbation of the toroidal $\mathrm{V}(\mathrm{Ng})$ basins, similar to those in $\mathrm{NgF}_{2} \cdot n \mathrm{CrOF}_{4},{ }^{65}$ where bond critical points are observed between the $\mathrm{V}(\mathrm{Ng})$ and the equatorial $\mathrm{V}(\mathrm{F})$ basins of adducted MOF_{4}. These perturbations are more pronounced in $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$, where the toroidal $\mathrm{V}(\mathrm{Xe})$ basin must also accommodate the $\mathrm{V}(\mathrm{F})$ basins of coordinated $\mathrm{M}^{\prime} \mathrm{OF}_{4}$.

The $\bar{N}[\mathrm{C}(\mathrm{Ng})], \bar{N}[\mathrm{C}(\mathrm{F})]$, and $\bar{N}[\mathrm{C}(\mathrm{O})]$ ELF core basin populations are close to the ideal charges, and do not differ significantly upon complex formation. Coordination of NgF_{2} to MOF_{4} results in no changes in $\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}}\right)\right]$, but enhancement of $\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{b}}\right)\right]$ relative to NgF_{2}, which is more pronounced for $\mathrm{NgF}_{2} \cdot \mathrm{WOF}_{4}$. The F_{b} basin populations follow the order $\mathrm{Cr}<\mathrm{Mo}<\mathrm{W}$. Coordination of $\mathrm{M}^{\prime} \mathrm{OF}_{4}$ to $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ to give $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}$ '--- $\mathrm{M}^{\prime} \mathrm{OF}_{4}$ follows a similar trend, with an even greater increase in $\bar{N}\left[V\left(\mathrm{~F}_{\mathrm{b}}\right)\right]$ for $\mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}$. Increases in the $\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{b}}{ }^{\prime}\right)\right]$-values of the coordinated F_{b} ' atoms of MOF_{4} relative to those of $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ are also observed. The localization domain reduction tree diagrams for $\mathrm{MOF}_{4}, \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ (Figure A4.9) provide the hierarchies of ELF basins and their basin separation values (fsep). The ELF reduction of the localization diagrams of $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ follow an order like those described for $\mathrm{NgF}_{2} \cdot n \mathrm{CrOF}_{4},{ }^{65}$ and are not discussed in detail. Upon descending Group 6, the $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}$ and $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$
adducts separate into NgF_{2} and $\mathrm{CrOF}_{4} / \mathrm{MOF}_{4} f$-localization domains in the order $\mathrm{Cr}<$ $\mathrm{Mo}<\mathrm{W}$, consistent with the relative $\mathrm{Cr}---\mathrm{F}_{\mathrm{b}}$ and $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bond covalencies. For the $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ complexes, $\mathrm{M}^{\prime} \mathrm{OF}_{4}$ separates from $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ at somewhat lower f -sep-values ($\mathrm{Mo}, 0.05 ; \mathrm{W}, 0.06$) than $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ separates into XeF_{2} and $\mathrm{MOF}_{4}(f$ sep: $\mathrm{Mo}, 0.08 ; \mathrm{W}, 0.09$), in accordance with the relative bond strengths of $\mathrm{M}--\mathrm{F}_{\mathrm{b}}$ and $\mathrm{M}^{\prime}--\mathrm{F}_{\mathrm{b}}{ }^{\prime}$.

7.2.4.5. Molecular Electrostatic Potential Surface (MEPS) Analyses

The MEPS isosurfaces of gas-phase $\mathrm{CrOF}_{4}, \mathrm{MOF}_{4}\left(C_{4 v}\right), \mathrm{NgF}_{2}, \mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}$, and $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ are depicted in Figure 7.4 and Figure A4.10 along with selected electrostatic potential extrema (EP, $\mathrm{kJ} \mathrm{mol}^{-1}$). The MEPS isosurfaces of CrOF_{4} and $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}$, obtained from a related study, were calculated at the same level of theory. ${ }^{65}$ The MEPS isosurfaces of KrF_{2} and XeF_{2} confirm XeF_{2} is somewhat more fluorobasic than $\mathrm{KrF}_{2}{ }^{65}$ The isosurfaces of CrOF_{4} and MOF_{4} have regions of high positive EP with maxima (Cr, 247; Mo, 350; W, 354) located on the metal atoms, trans to the $\mathrm{Cr}=\mathrm{O}$ and $\mathrm{M}=\mathrm{O}$ bonds that are in accordance with the calculated FIAs (kJ mol^{-1}) of CrOF_{4} (285), MoOF_{4} (355), and WOF_{4} (387). ${ }^{252}$ The fluorine ligands of NgF_{2} in $\mathrm{NgF}_{2} \cdot n \mathrm{CrOF}_{4}(n=1,2), \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ coordinate into these regions of high charge depletion to give $\mathrm{Cr}---\mathrm{F}$ and $\mathrm{M}---\mathrm{F}$ bonds that are predominantly electrostatic with small covalent contributions as revealed by NBO, AIM, ELF, and EDA analyses (see below). The higher EP maxima of the Ng and the terminal F atoms of Ng in $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}\left(\mathrm{Xe}, 113\right.$; $\mathrm{FXe}_{\mathrm{X}},-55 ; \mathrm{Kr}, 125 ; \mathrm{F}_{\mathrm{r}},-39$), $\mathrm{NgF}_{2} \cdot \mathrm{MoOF}_{4}\left(\mathrm{Xe}, 136 ; \mathrm{F}_{\mathrm{Xe}},-34 ; \mathrm{Kr}, 150 ; \mathrm{F}_{\mathrm{Kr}},-18\right), \mathrm{NgF}_{2} \cdot \mathrm{WOF}_{4}\left(\mathrm{Xe}, 147 ; \mathrm{F}_{\mathrm{Xe}},-24 ;\right.$ $\left.\mathrm{Kr} 160 ; \mathrm{F}_{\mathrm{Kr}},-6\right), \mathrm{XeF}_{2} \cdot 2 \mathrm{MoOF}_{4}\left(\mathrm{Xe}, 141 ; \mathrm{F}_{\mathrm{Xe}},-26\right)$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}\left(\mathrm{Xe}, 155 ; \mathrm{F}_{\mathrm{Xe}}\right.$,
-14) relative to those of free $\mathrm{NgF}_{2}\left(\mathrm{XeF}_{2}: \mathrm{Xe}, 95 ; \mathrm{F}_{\mathrm{Xe}},-78 ; \mathrm{KrF}_{2}: 104 ; \mathrm{F}_{\mathrm{Kr}},-64\right)$ are consistent with polarization of the coordinated NgF_{2} molecule by the Group 6 metal.
$\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$

$\mathrm{XeF}_{2} \cdot \mathrm{CrOF}_{4}$

Figure 7.4. The MEPS calculated at the 0.001 e $\cdot a_{0}{ }^{-3}$ isosurfaces for $\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$ and $\mathrm{XeF}_{2} \cdot \mathrm{CrOF}_{4}$. Selected electrostatic potentials are indicated by arrows. The optimized geometries and MEPs were calculated at the APFD/Def2-TZVPD (F, O, Cr, W, Xe) level of theory.

Correspondingly, the EP extrema of the O and F atoms on the metal of $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}$ (Xe: O, 30; Fav., $-48 ; \mathrm{Kr}: \mathrm{O}, 32 ; \mathrm{Fav}_{\mathrm{av}}$, -46), $\mathrm{NgF}_{2} \cdot \mathrm{MoOF}_{4}$ (Xe: O, $-37 ; \mathrm{Fav}_{\mathrm{av}},-48 ; \mathrm{Kr}$: $\mathrm{O},-34 ; \mathrm{Fav}_{\text {av. }},-48$), and $\mathrm{NgF}_{2} \cdot \mathrm{WOF}_{4}$ (Xe: $\mathrm{O},-70 ; \mathrm{Fav}_{\mathrm{av}},-50 ; \mathrm{Kr}: \mathrm{O},-67 ; \mathrm{Fav}_{\mathrm{av}},-49$), and the O atoms of $\mathrm{XeF}_{2} \cdot 2 \mathrm{MoOF}_{4}\left(\mathrm{O}_{\mathrm{t}},-31 ; \mathrm{O}_{\mathrm{b}},-16\right)$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}\left(\mathrm{O}_{\mathrm{t}},-61 ; \mathrm{O}_{\mathrm{b}},-45\right)$ are significantly less than those of free $\mathrm{CrOF}_{4}(\mathrm{O}, 51 ; \mathrm{F},-30), \mathrm{MoOF}_{4}(\mathrm{O},-7 ; \mathrm{F},-31)$, and $\mathrm{WOF}_{4}(\mathrm{O},-34 ; \mathrm{F},-30)$, respectively. Comparisons of the Xe and Ft EP maxima of $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ with those of $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ are consistent with greater XeF_{2} ligand polarization for $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ complexes and the relative fluoride-ion acceptor
strengths: $\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime} \mathrm{OF}_{4}>\mathrm{MOF}_{4}$ and $\mathrm{W}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{W}^{\prime} \mathrm{OF}_{4}>\mathrm{Mo}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---$ Mo'OF4. The EP extrema of $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ show the fluorine atoms on the metals are significantly more basic than the terminal fluorine of XeF_{2}. Thus, when a second M'OF4 molecule coordinates to $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$, it preferentially coordinates to a more basic fluorine atom of the MOF_{4} moiety in $\mathrm{F}_{\mathrm{t}} \mathrm{NgF}_{\mathrm{b}}---\mathrm{MOF}_{4}$ rather than to F_{t} of the XeF_{2} ligand, thereby providing rationales for (1) why coordination of a second MOF_{4} molecule does not result in XeF_{2}-bridged complexes analogous to $\mathrm{OF}_{4} \mathrm{Cr}$---FNgF--$\mathrm{CrOF}_{4},{ }^{65}$ and (2) why the O ligands of the $\mathrm{O}=\mathrm{M}-\mathrm{F}_{\mathrm{b}}{ }^{\prime}--\mathrm{M}^{\prime}=\mathrm{O}$ moiety are cis to one another and XeF_{2} coordinates trans to the $\mathrm{M}=\mathrm{O}$ bond as in $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$.

7.2.4.6. Energy Decomposition Analysis (EDA)

The bonding in gas-phase $\mathrm{NgF}_{2} \cdot n \mathrm{CrOF}_{4}(n=1,2), \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; \mathrm{M}=$ Mo, W), and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ was analyzed by use of EDA, ${ }^{258}$ at the PBE0-D4/TZ2P level of theory (Tables A4.12-A4.18). A more detailed discussion of the EDA is provided in Appendix 4. Trends among the EDA terms of $\mathrm{NgF}_{2} \cdot n \mathrm{CrOF}_{4}, \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ indicate that the orbital and electrostatic contributions to the $\mathrm{M}---\mathrm{Fb}_{\mathrm{b}}$ and $\mathrm{M}^{\prime}---\mathrm{F}_{\mathrm{b}}$ ' bonds increase upon descending Groups 6 and 18. Orbital mixing comprises $26.9-35.8 \%$ of the total attractive contributions for the $\mathrm{M}--\mathrm{F}_{\mathrm{b}}$ bonds of $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$, and accounts for the non-linear $\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}--\mathrm{M}$ bond angles in their crystal structures. ${ }^{65}$ Symmetric bridging of two CrOF_{4} molecules to a NgF_{2} ligand in $\mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF}_{4}$ results in weaker $\mathrm{Cr}---\mathrm{F}_{\mathrm{b}}$ bonding interactions relative to $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}$, whereas the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bonds of terminally coordinated $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ are stronger than those of $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$. The $\mathrm{M}^{\prime}---\mathrm{F}_{\mathrm{b}}{ }^{\prime}$ bonds of $\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime} \mathrm{OF}_{4}$ are weaker than, but similar to the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bonds of $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}--\mathrm{MOF}_{4}$, with small but significant degrees
of covalency that may account for the nonlinear $\mathrm{M}-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime}$ bond angles observed in their crystal structures. These angles are, however, highly deformable and susceptible to crystal packing (see above).

7.2.4.7. Natural Orbitals for Chemical Valence (ETS-NOCV) Analysis

Detailed ETS-NOCV analyses ${ }^{259}$ of $\mathrm{NgF}_{2} \cdot n \mathrm{CrOF}_{4}, \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ are provided in Appendix 4 (Figures A4.11-A4.17 and Tables A4.19-A4.21). The analysis of $\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$ is provided as a representative example. Breakdown of the orbital energy contribution, $\Delta \mathrm{E}_{\text {orb }}$, for $\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$ into individual pairwise contributions of orbitals reveals two significant interactions (Table A4.19) between KrF_{2} and $\mathrm{MoOF}_{4}:(1) \sigma$-type donation from the HOMO, HOMO-1, and HOMO-2 SFOs of KrF_{2} to the LUMO+3 SFO of $\mathrm{MoOF}_{4}\left(\Psi_{1 /-1}= \pm 0.22091,-32.9 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (Figure 7.5), and (2) σ-type donation from the HOMO-6 SFO of MoOF_{4} into the HOMO-6 SFO of $\mathrm{KrF}_{2}\left(\Psi_{1 /-1}= \pm 0.11636,-8.6 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (Figure A4.12).

Similar σ-type donations from NgF_{2} to CrOF_{4} and MOF_{4} are observed for all coordination complexes, where the degrees of charge delocalization and energy gain increase down Groups 6 and 18 (Table A4.19). It is likely that similar σ-bond interactions from MOF_{4} to NgF_{2} also occur in other coordination complexes described in this work, however, their individual energetic contributions do not meet the threshold energy requirement ($>8.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$) to be described by the ETS-NOCV method.

Figure 7.5. The major contribution in the ETS-NOCV analysis of $\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$ (PBE0-D4/TZ2P). The isosurface values used for SFO depictions and deformation densities are 0.03 and 0.0002 a.u, respectively. Relative contributions of the SFOs are given in square brackets. Phases of SFOs and NOCV pairs are indicated in light blue and orange. Deformation density colors indicate increased (red) and decreased (blue) electron density relative to the parent fragments.

7.3. Conclusion

The coordination chemistries of NgF_{2} and the Group 6 oxide tetrafluorides, MoOF_{4} and WOF_{4}, have been significantly extended by the syntheses and detailed structural characterizations of $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; \mathrm{M}=\mathrm{Mo}, \mathrm{W})$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ and the complementary QC calculations presented in this study. The NgF_{2} molecules terminally coordinate to the metal atom of MOF_{4} in $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ (M $=\mathrm{Mo}, \mathrm{W})$ to form $\mathrm{F}_{\mathrm{t}} \mathrm{NgF}_{\mathrm{b}}---\mathrm{MOF}_{4}$ and $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}--\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime} \mathrm{OF}_{4}$, whereas two CrOF_{4} molecules coordinate to give a symmetrically bridged NgF_{2} ligand in the $\mathrm{F}_{4} \mathrm{OCr}--\mathrm{FNgF}---\mathrm{CrOF}_{4}$ complex. In the cases of Mo and W , the second MOF_{4}
molecule preferentially coordinates to the MOF_{4} moiety of $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ instead of to F_{t} of the XeF_{2} ligand. This is consistent with the observed and calculated cis, transarrangements of $\mathrm{M}=\mathrm{O}$ and $\mathrm{M}^{\prime}=\mathrm{O}$ bonds relative to F_{b} ' and with the greater fluorobasicities of the F atoms of coordinated MOF_{4} relative to the F_{t} atom of the XeF_{2} ligand. The geometries of $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}$ '---M' OF_{4} are unusual and contrast with the related $\left[\mathrm{F}_{4} \mathrm{OM}---\mathrm{F}_{\mathrm{b}} \text { '---MOF } \mathrm{MO}_{4}\right]^{-}$anions where both $\mathrm{M}=\mathrm{O}$ bonds are trans to F_{b}. The $\mathrm{Ng}-\mathrm{Ft}, \mathrm{Ng}-\mathrm{Fb}$, and $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bond lengths of $\mathrm{XeF}_{2} \cdot n \mathrm{MOF}_{4}(n=1,2)$ and the FIAs follow the trend: $\mathrm{CrOF}_{4}<\mathrm{MoOF}_{4}<\mathrm{WOF}_{4} \approx \mathrm{Mo}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}$ ' $---\mathrm{Mo}^{\prime} \mathrm{OF}_{4}<$ $\mathrm{W}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}$ '---W' OF_{4}. The crystal structures, Raman spectra, and quantum-chemical analyses (AIM, ELF, NAO, MEPS, EDA, and ETS-NOCV) demonstrate that the M--F_{b} and $\mathrm{M}^{\prime}---\mathrm{F}_{\mathrm{b}}$ ' bonds of the $\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}---\mathrm{M}$ and $\mathrm{M}-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime}$ fluorine bridges are predominantly electrostatic with small degrees of covalency. The $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ and M '--- F_{b} ' bonds are dominated by σ-hole type interactions in which the highly nucleophilic F_{b} atom interacts with the electrophilic region of the transition metal of MOF_{4} that is trans to the oxygen atom, with a small covalent component, which accounts for the bent $\mathrm{M}---\mathrm{F}_{\mathrm{b}}-\mathrm{Ng}$ bridge bond angles that are observed and calculated for $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$.

CHAPTER 8

Synthesis, Structure, and Bonding of a $\mathrm{Xe}(\mathrm{IV})$ Transition-Metal Coordination Complex, $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}-$--WOF $_{4}$

Adapted with permission from: Bortolus, M. R.; Mercier, H. P. A.; Schrobilgen, G. J. Angew. Chem. Int. Ed. 2022, 61, e202211699.

8.1. Introduction

Xenon tetrafluoride is the weakest fluoride-ion donor among the binary noble-gas fluorides (relative fluoride-ion donor strengths: $\left.\mathrm{XeF}_{6}>\mathrm{XeF}_{2} \approx \mathrm{KrF}_{2} \gg \mathrm{XeF}_{4}\right)^{20,260}$ and a powerful oxidative fluorinating agent. ${ }^{20}$ The reactions of XeF_{4} with the strong fluoride-ion acceptors, liquid SbF_{5} or SbF_{5} and BiF_{5} in anhydrous HF (aHF) solvent, result in intimately ion-paired $\left[\mathrm{XeF}_{3}\right]\left[\mathrm{Pn}_{n} \mathrm{~F}_{5 n+1}\right](n=1,2, \mathrm{Pn}=\mathrm{Sb}, \mathrm{Bi})$ salts. ${ }^{20}$ Xenon tetrafluoride also reacts with liquid AsF_{5} at $-100{ }^{\circ} \mathrm{C}$ to form $\left[\mathrm{XeF}_{3}\right]\left[\mathrm{AsF}_{6}\right]$, which is stable in the presence of excess AsF_{5} at $-78^{\circ} \mathrm{C}$ but dissociates under vacuum at this temperature. ${ }^{20}$ The $\left[\mathrm{XeF}_{3}\right]^{+}$cation is a stronger oxidative fluorinating agent than XeF_{4} whose salts are only stabilized by oxidatively resistant, weakly fluorobasic fluoroanions. ${ }^{20}$

Although several $\left[\mathrm{XeF}_{3}\right]^{+}$salts have been synthesized and structurally characterized, ${ }^{20}$ only one example of a neutral XeF_{4} coordination complex, $\left[\mathrm{Mg}\left(\mathrm{XeF}_{2}\right)\left(\mathrm{XeF}_{4}\right)\right]\left[\mathrm{AsF}_{6}\right]_{2}$, has been reported in which Mg^{2+} is coordinated to XeF_{4} through a fluorine bridge, $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}--\mathrm{Mg} .{ }^{91}$ The synthesis of an XeF_{4} coordination complex is challenging owing to the low fluorobasicity of XeF_{4}. Stabilization requires coordination of XeF_{4} to an oxidatively resistant Lewis acid center (A) through an $\mathrm{Xe}-$ $\mathrm{F}_{\mathrm{b}---\mathrm{A}}$ bridge. The oxidizer strength of coordinated XeF_{4} is enhanced due to its $\left.\mathrm{XeF}_{3}\right]^{+}$ character. Thus, a suitable fluoride-ion acceptor for the synthesis of a XeF_{4}
coordination complex must be oxidatively resistant and have an FIA that is significantly less that of $\mathrm{AsF}_{5}\left(\mathrm{FIA}=443 \mathrm{~kJ} \mathrm{~mol}^{-1}, \mathrm{MP} 2 / \mathrm{PDZ}\right) .{ }^{261}$

The latter criteria are met by the Group 6 oxide tetrafluorides, $\mathrm{MOF}_{4}(\mathrm{Cr}, \mathrm{Mo}$, W), which are oxidatively resistant, moderate-strength fluoride-ion acceptors (FIAs: $\mathrm{CrOF}_{4}, 285 ; \mathrm{MoOF}_{4}, 355$; $\mathrm{WOF}_{4}, 387 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \operatorname{CCSD}(\mathrm{T}) /$ aug-cc-pVQZ-PP) ${ }^{252}$ that readily abstract fluoride-ion from XeF_{6} to yield ion-paired Group 6 oxyfluoro-anion salts of $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+} .{ }^{243,244}$ In contrast, members of the MOF_{4} series are incapable of fluoride-ion abstraction from NgF_{2}, and form neutral coordination complexes instead, e.g., $\mathrm{FNgF}_{\mathrm{b}}---\mathrm{MOF}_{4}$ and $\mathrm{F}_{4} \mathrm{OCr}---\mathrm{F}_{\mathrm{b}} \mathrm{NgF}_{\mathrm{b}}---\mathrm{CrOF}_{4}{ }^{65,67}$ The present study explores the fluoride-ion donor behavior of XeF_{4} towards the strongest fluoride-ion acceptors among the Group 6 oxide tetrafluorides, MoOF_{4} and WOF_{4}. The substantial FIA of WOF_{4} and its resistance to oxidation are exploited to synthesize the first transition-metal coordination complex with the weak fluoride-ion donor and potent oxidative fluorinating agent, XeF_{4}.

8.2. Results and Discussion

8.2.1. Syntheses

Synthetic details are provided in Appendix 5; reaction products were determined by LT Raman spectroscopy.

Reaction of a 1.20:1.00 molar ratio of $\mathrm{XeF}_{4}: \mathrm{WOF}_{4}$ in CFCl_{3} solvent at $22{ }^{\circ} \mathrm{C}$ yielded a mixture of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ and unreacted starting materials [Eq. (8.1)].

$$
\begin{equation*}
\mathrm{XeF}_{4}+\mathrm{WOF}_{4} \rightleftarrows \mathrm{~F}_{3} \mathrm{XeF}_{\mathrm{b}---\mathrm{WOF}_{4}} \tag{8.1}
\end{equation*}
$$

Reaction of a 1.48:1.00 molar ratio of $\mathrm{XeF}_{4}: \mathrm{WOF}_{4}$ in a melt at ca. $50{ }^{\circ} \mathrm{C}$ resulted in rapid oxidative fluorination of WOF_{4} and reduction of Xe (IV) to Xe (II) to yield $\mathrm{FXeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ and WF_{6}, and O_{2} gas [Eqs. (8.2) and (8.3)].

$$
\begin{align*}
& \mathrm{XeF}_{4}+\mathrm{WOF}_{4} \rightarrow \mathrm{XeF}_{2}+\mathrm{WF}_{6}+1 / 2 \mathrm{O}_{2} \tag{8.2}\\
& \mathrm{XeF}_{2}+\mathrm{WOF}_{4} \rightarrow \mathrm{FXeF}_{\mathrm{b}}--\mathrm{WOF}_{4} \tag{8.3}
\end{align*}
$$

Attempts to synthesize $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ in aHF by reaction of a $1.00: 1.21$ molar ratio of $\mathrm{XeF}_{4}: \mathrm{WOF}_{4}$ for 5 min at $22{ }^{\circ} \mathrm{C}$ yielded unreacted starting materials. Further reaction at RT for 6 h resulted in oxidative fluorination of WOF_{4} and $\mathrm{Xe}(\mathrm{IV})$ reduction to give $\mathrm{FXeF}_{\mathrm{b}}---\mathrm{WOF}_{4}, \mathrm{WF}_{6}$, and O_{2} gas [Eqs. (8.2) and (8.3)].

The attempted synthesis of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}--\mathrm{MoOF}_{4}$ in a melt and in CFCl_{3} solvent under similar reaction conditions yielded unreacted starting materials, in accordance with the lower FIA of MoOF_{4}. The synthesis of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{W}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{W}^{\prime} \mathrm{OF}_{4}$ was also attempted in CFCl_{3} solvent. The RT reaction of a $1.00: 2.24$ molar ratio of $\mathrm{XeF}_{4}: \mathrm{WOF}_{4}$ in CFCl_{3} yielded $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ and unreacted WOF_{4}.

8.2.2. X-ray Crystallography

The $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ complex is a colorless crystalline solid that was characterized by SCXRD $(P \overline{1}, a=5.555(11) \AA, b=7.607(10) \AA, c=8.361(16) \AA, \alpha=$ $79.76(6)^{\mathrm{o}}, \beta=73.64(5)^{\mathrm{o}}, \gamma=86.74(5)^{\mathrm{o}}, Z=2, V=333.6(10) \AA^{3}, T=-173{ }^{\circ} \mathrm{C}, R_{1}=$ 4.16, and $w R_{2}=11.85$). The $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}--\mathrm{WOF}_{4}$ molecules pack in columns (Figure A5.1, Appendix 5), with the shortest $\mathrm{F} \cdots \mathrm{F}$ distance (2.609(5) \AA) between adjacent columns being somewhat less than the sum of the fluorine van der Waals radii $\left(2.94 \AA,{ }^{167} 2.92\right.$ \AA^{168}). Key experimental and calculated geometric parameters are provided in Table A5.1, Appendix 5.

The $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ structural unit is best described as a coordination complex in which an F atom of XeF_{4} coordinates trans to the $\mathrm{W}=\mathrm{O}$ bond of the WOF_{4} moiety (Figures 8.1 and A5.2). Four long $\mathrm{Xe} \cdots \mathrm{F}_{\mathrm{W}}$ contacts (3.043(4)-3.120(4) \AA) occur between the equatorial F atoms of four neighboring WOF_{4} groups and the Xe
atom of XeF_{4}, two above and two below the XeF_{4}-plane, that avoid the stereo-active valence electron lone pairs (VELPs) on $\mathrm{Xe}(\mathrm{IV})$. The $\mathrm{Xe}(\mathrm{IV})$ coordination sphere of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ may be described as a distorted square-planar $\mathrm{AX}_{3} \mathrm{YE}_{2}$ valence shell electron lone pair (VSEPR) ${ }^{88}$ arrangement of VELP (E) domains and Xe-F bond-pair $(\mathrm{X} / \mathrm{Y})$ domains. The $\mathrm{Xe}-\mathrm{F}_{1}$ bond (1.872(5) \AA) trans to the $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$ bridge bond is contracted whereas the $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$ bond (2.068(5) \AA) is elongated relative to the $\mathrm{Xe}-\mathrm{F}_{2,3}$ bonds (1.912(5), 1.917(5) Å). Similar bond length trends were observed for the coordinated XeF_{4} molecule of $\left[\mathrm{Mg}\left(\mathrm{XeF}_{2}\right)\left(\mathrm{XeF}_{4}\right)\right]\left[\mathrm{AsF}_{6}\right]_{2}(1.871(7) \AA), 1.906(7)$, 1.916(7), and 2.083(6) \AA, respectively). ${ }^{91}$ The $\mathrm{Xe}-\mathrm{F}_{2,3}$ bond lengths of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---$ WOF_{4} are equal, within $\pm 3 \sigma$, to those of the ion-paired β - $\left[\mathrm{XeF}_{3}\right]\left[\mathrm{SbF}_{6}\right]$ salt (1.893(2), $1.901(2) \AA$), ${ }^{82}$ but longer than its $\mathrm{Xe}-\mathrm{F}_{\text {eq }}$ bond (1.840(2) \AA). The $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$ bridge bond is intermediate with respect to the $\mathrm{Xe}-\mathrm{F}$ bonds of XeF_{4} (1.9449(6), $\left.1.9509(6) \AA\right)^{20}$ and the $\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}$ bonds of the $\beta-\left[\mathrm{XeF}_{3}\right]\left[\mathrm{SbF}_{6}\right]$ ion-pair (2.484(2), 2.645(2) $\left.\AA\right) .{ }^{82}$ The F_{1-} $\mathrm{Xe}-\mathrm{F}_{2,3}\left(87.3(2), 87.7(2)^{\mathrm{o}}\right)$ and $\mathrm{F}_{\mathrm{b}}-\mathrm{Xe}-\mathrm{F}_{1}\left(178.5(2)^{\circ}\right)$ bond angles are similar to those of $\left[\mathrm{Mg}\left(\mathrm{XeF}_{2}\right)\left(\mathrm{XeF}_{4}\right)\right]\left[\mathrm{AsF}_{6}\right]_{2}\left(85.4,87.1,179.0^{\circ}\right)^{91}$ but differ markedly from those of β-[$\left.\mathrm{XeF}_{3}\right]\left[\mathrm{SbF}_{6}\right]\left(79.62(8), 79.77(8), 152.71(7)^{\circ}\right) .{ }^{82}$ The $\mathrm{F}_{1}-\mathrm{Xe}-\mathrm{F}_{2,3}$ bond angles of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ are somewhat less than for $\left.\mathrm{XeF}_{4}\left(89.74(3), 90.26(3)^{\circ}\right)\right)^{262}$ The geometric parameters of the WOF_{4} moiety (Table A5.1) in $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}---\mathrm{WOF}_{4} \text { are }}$ comparable to those of $\mathrm{FNgF}_{\mathrm{b}}---\mathrm{WOF}_{4} .{ }^{67}$ The $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bond $(2.239(5) \AA)$ is primarily electrostatic and is best described as a σ-hole bond that is longer and somewhat weaker than the $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bonds of $\mathrm{FNgF}_{\mathrm{b}}---\mathrm{WOF}_{4}(\mathrm{Kr}, 2.217(2) ; \mathrm{Xe}, 2.199(3) \AA),{ }^{67}$ in accordance with the lower fluorobasicity of XeF_{4} relative to $\mathrm{NgF}_{2}{ }^{260}$ However, compression of the $\mathrm{O}-\mathrm{W}-\mathrm{F}_{5-8}$ bond angles (100.0(2)-100.3(2) ${ }^{\mathrm{o}}$) in the complex
relative to gas-phase $\mathrm{WOF}_{4}\left(104.8(6)^{\circ}\right)^{256}$ and its bent $\mathrm{W}---\mathrm{F}_{\mathrm{b}}-\mathrm{Xe}$ bond angle $\left(145.2(2)^{\circ}\right)$ indicates that the $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bond contains some degree of orbital interaction.

The gas-phase geometry of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ was optimized at the APFD/Def2TZVPD level of theory to assess the bonding in this complex (Table A5.1). The experimental bond lengths and bond angles are generally well reproduced, whereas the calculated conformation $\left(C_{\mathrm{s}}\right)$ differs from experiment $\left(C_{1}\right)$; i.e., the dihedral $\angle \mathrm{F}(5)-\mathrm{W}-\mathrm{Xe}-\mathrm{F}(2)$ angle in the crystal structure $\left(97.1(2)^{\circ}\right)$ is much larger than in the calculated structure $\left(35.12^{\circ}\right)$. The conformational difference (Figure 8.1) likely arises from crystal packing and the tendency for $\mathrm{Xe}(\mathrm{IV})$ to complete its valence shell through weak intermolecular secondary Xe---F bonds. ${ }^{250}$

Figure 8.1. (a) The structural unit in the X -ray crystal structure of $\mathrm{F}_{3} \mathrm{XeF}_{b}---\mathrm{WOF}_{4}$, where thermal ellipsoids are drawn at the 50% probability level. (b) The calculated energy-minimized, gas-phase geometry of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$.

8.2.3. Raman Spectroscopy

Vibrational assignments for the LT Raman spectrum of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}--$-WOF 4 (Figure A5.3 and Table A5.2, Appendix 5) were made by comparison with the calculated gas-phase
vibrational frequencies (square brackets) and atomic displacements for the calculated vibrational modes of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}, \mathrm{XeF}_{4}$ (Table A5.3), WOF_{4} (Table A5.4); and the Raman spectra of $\mathrm{WOF}_{4},{ }^{263} \mathrm{XeF}_{4},{ }^{20} \beta-\left[\mathrm{XeF}_{3}\right]\left[\mathrm{SbF}_{6}\right],{ }^{79}$ and $\mathrm{FNgF}_{\mathrm{b}}---\mathrm{WOF}_{4} .{ }^{67}$

The calculated vibrational frequencies and relative Raman intensities for gasphase $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ are in good agreement with experiment. The calculated vibrational displacements show that intraligand coupling among the $v\left(\mathrm{Xe}-\mathrm{F}_{1}\right)$, $v\left(\mathrm{XeF}_{2,3}\right)$, and $v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right)$ stretches is insignificant. The most intense band at 614 [604] cm^{-1} is assigned to the $v\left(\mathrm{Xe}-\mathrm{F}_{1}\right)$, which is similar to that of $\left[\mathrm{Mg}\left(\mathrm{XeF}_{2}\right)\left(\mathrm{XeF}_{4}\right)\right]\left[\mathrm{AsF}_{6}\right]_{2}$ $\left(605 \mathrm{~cm}^{-1}\right),{ }^{91}$ but occurs at significantly lower frequency than the factor-group (FG) split $v\left(\mathrm{Xe}_{\mathrm{e}}-\mathrm{F}_{\mathrm{eq}}\right)$ stretch of $\beta-\left[\mathrm{XeF}_{3}\right]\left[\mathrm{SbF}_{6}\right]\left(643 / 663 \mathrm{~cm}^{-1}\right) .{ }^{79}$ The $v\left(\mathrm{XeF}_{2,3}\right)$ stretches are in- and out-of-phase coupled to give two modes, $\left[v\left(\mathrm{Xe}-\mathrm{F}_{2}\right)+v\left(\mathrm{Xe}-\mathrm{F}_{3}\right)\right]$ and $\left[v\left(\mathrm{Xe}-\mathrm{F}_{2}\right)\right.$ $\left.-v\left(\mathrm{Xe}-\mathrm{F}_{3}\right)\right]$, where the latter mode is also weakly coupled to $\left[v\left(\mathrm{~W}-\mathrm{F}_{5}\right)-v\left(\mathrm{~W}-\mathrm{F}_{6}\right)\right]$. These modes are assigned to bands at 580 [564] and $610[600] \mathrm{cm}^{-1}$, respectively, and occur at frequencies similar to those of $\left[\mathrm{Mg}\left(\mathrm{XeF}_{2}\right)\left(\mathrm{XeF}_{4}\right)\right]\left[\mathrm{AsF}_{6}\right]_{2}\left(552,596 \mathrm{~cm}^{-1}\right),{ }^{91}$ and the FG-split $v\left(\mathrm{XeF}_{2 \mathrm{ax}}\right)$ stretches of $\beta-\left[\mathrm{XeF}_{3}\right]\left[\mathrm{SbF}_{6}\right]\left(564 / 576,604 / 612 \mathrm{~cm}^{-1}\right),{ }^{79}$ consistent with the similar $\mathrm{Xe}-\mathrm{F}_{2,3}$ bond lengths of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}--\mathrm{WOF}_{4}$, $\left[\mathrm{Mg}\left(\mathrm{XeF}_{2}\right)\left(\mathrm{XeF}_{4}\right)\right]\left[\mathrm{AsF}_{6}\right]_{2}{ }^{91}$ and $\beta-\left[\mathrm{XeF}_{3}\right]\left[\mathrm{SbF}_{6}\right] .^{79}$ The $v\left(\mathrm{Xe}^{\left.-\mathrm{F}_{1}\right)}\right.$ and $v\left(\mathrm{XeF}_{2,3}\right)$ stretches of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ occur at higher frequencies than $v_{\mathrm{s}}\left(\mathrm{XeF}_{4}\right)$ and $v_{\mathrm{as}}\left(\mathrm{XeF}_{4}\right)$ of $\mathrm{XeF}_{4}\left(533 / 544\right.$ and $\left.503 / 506 \mathrm{~cm}^{-1}\right){ }^{262}$ which is consistent with enhancement of $\left[\mathrm{XeF}_{3}\right]^{+}$character upon XeF_{4} coordination. The band at $422[472] \mathrm{cm}^{-1}$ is assigned to the $v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}\right)$, and is similar to an unassigned band at $460 \mathrm{~cm}^{-1}$ in the Raman spectrum of $\left[\mathrm{Mg}\left(\mathrm{XeF}_{2}\right)\left(\mathrm{XeF}_{4}\right)\right]\left[\mathrm{AsF}_{6}\right]_{2}{ }^{91}$ The bands at 331 [333], 248 [239], and 161 [153] cm^{-1} are respectively assigned to the deformation modes, $\delta_{\mathrm{umb}}\left(\mathrm{XeF}_{1} \mathrm{~F}_{2} \mathrm{~F}_{3} \mathrm{~F}_{4}\right)$, $\left[\delta\left(\mathrm{F}_{1} \mathrm{XeF}_{2}\right)+\delta\left(\mathrm{F}_{3} \mathrm{XeF}_{4}\right)\right]$, and $\delta\left(\mathrm{F}_{2} \mathrm{XeF}_{3}\right)$.

The vibrational bands at 1044 [1096] cm^{-1} and 712 [727], 637 [631] cm^{-1} are respectively assigned to the $\mathrm{W}-\mathrm{O}$ and $\mathrm{W}-\mathrm{F}$ stretching modes of the WOF_{4} moiety and are similar to those of $\mathrm{FNgF}_{\mathrm{b}}---\mathrm{WOF}_{4} .{ }^{67}$ The deformation band at $315[321] \mathrm{cm}^{-1}$ is assigned to $\left[\delta\left(\mathrm{F}_{6} \mathrm{WF}_{7}\right)+\delta\left(\mathrm{F}_{5} \mathrm{WF}_{8}\right)\right]$ and those at $302[309]$ and $296[307] \mathrm{cm}^{-1}$ are assigned to the out-of-plane $\left[\delta\left(\mathrm{OWF}_{5} \mathrm{~F}_{6}\right)_{\text {o.o. } . ~}-\delta\left(\mathrm{OWF}_{7} \mathrm{~F}_{8}\right)_{\text {o.o.p. }}\right]$ and in-plane $\left[\delta\left(\mathrm{OWF}_{5} \mathrm{~F}_{6}\right)_{\text {i.p. }}-\delta\left(\mathrm{OW}_{7} \mathrm{~F}_{8}\right)_{\text {i.p. }}\right.$. bends. Low-frequency bands at 265 [257], 200 [186], and $156[150] \mathrm{cm}^{-1}$ are assigned to coupled XeF_{4} and WOF_{4} deformation modes.

8.2.4. Quantum-chemical Calculations

The bonding of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ was assessed by NBO (Table A5.5, Appendix 5), MEPS (Figure 8.2), and ELF analyses (Figure 8.3, and Figure A5.4 and Table A5.6) (APFD/Def2-TZVPD). AIM analyses (Table A5.6) are exclusively discussed in Appendix 5. An energy decomposition (EDA) analysis and natural orbitals for a chemical valence extended transition state (ETS-NOCV) analysis were also carried out for the $\mathrm{M}--\mathrm{F}_{\mathrm{Xe}}$ bonds $(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ and those of the hypothetical $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{CrOF}_{4}$ and $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}---\mathrm{MoOF}_{4} \text { analogues (PBE0-D4/TZ2P) }}$ (Tables 8.1, A5.1, A5.7 and A5.8). Parallel analyses for XeF_{4} and WOF_{4} (Table A5.1) enabled comparisons with $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ and assessment of the effects of complex formation. More in-depth discussions pertaining to these analyses are provided in Appendix 5.

The NBO analyses show coordination of XeF_{4} to WOF_{4} results in significant bond polarity changes for the $\mathrm{Xe}-\mathrm{F}, \mathrm{W}-\mathrm{F}$, and $\mathrm{W}-\mathrm{O}$ bonds of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF} 4$. The atom charges, Wiberg bond indices, and valences of the Xe-F bonds (Table A5.5) reflect their relative covalencies, i.e., $\mathrm{F}_{\mathrm{b}}<\mathrm{F}_{2,3}<\mathrm{F}_{1}$. The Wiberg bond index of W--- F_{b} (0.097) is somewhat less than the W--- F_{b} bond indices of $\mathrm{FNgFF}_{\mathrm{b}}--$ WOF $_{4}(\mathrm{Xe}, 0.117$;
$\mathrm{Kr}, 0.110)$ and consistent with the lower fluorobasicity of XeF_{4} relative to NgF_{2}. In the MEPS analysis (Figure 8.2), the electrostatic potential (EP) minima of the F atoms of $\mathrm{XeF}_{4}\left(-34 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ are significantly less negative than those of $\mathrm{NgF}_{2}(\mathrm{Xe},-78 \mathrm{~kJ}$ $\mathrm{mol}^{-1} ; \mathrm{Kr},-64 \mathrm{~kJ} \mathrm{~mol}^{-1}{ }^{67}$), in accordance with the higher formal oxidation state of $\mathrm{Xe}(\mathrm{IV})$ and the lower fluorobasicity of XeF_{4}.

Figure 8.2. The MEPS contours calculated at the 0.001 e $a_{0}{ }^{-3}$ isosurfaces of WOF4, XeF_{4}, and $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$. The extrema of selected electrostatic potentials are indicated by arrows.

The MEPS analysis of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ (Figure 8.2) shows that the F_{b} atom interacts with a region of high electrostatic potential on $\mathrm{W}\left(375 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$, that is trans to the $\mathrm{W}=\mathrm{O}$ double bond, to form a primarily electrostatic $\mathrm{W}---\mathrm{F}_{\mathrm{b}} \sigma$-hole bond and slightly elongated $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$ and contracted $\mathrm{Xe}-\mathrm{F}_{1}$ bonds. The EP maxima on the MEPS isosurfaces of the $\mathrm{Xe}, \mathrm{F}_{1}$, and $\mathrm{F}_{2,3}$ atoms are more positive than those of XeF_{4}, and correspondingly the EP extrema of the O and F atoms of coordinated WOF_{4} are more
negative than those of free WOF_{4}. These trends are consistent with polarization of XeF_{4} upon complex formation that is accompanied by a small degree of charge transfer from XeF_{4} to WOF_{4} (NBO Analysis, Table A5.5).

Figure 8.3. ELF isosurface plots $(\eta(r)=0.60)$ for $\mathrm{WOF}_{4}, \mathrm{XeF}_{4}$, and $\mathrm{F}_{3} \mathrm{XeF}_{b}---\mathrm{WOF}_{4}$. Color code: core basins (red); $\mathrm{C}(\mathrm{W}), \mathrm{C}(\mathrm{Xe})$; monosynaptic valence basins (blue); $\mathrm{V}(\mathrm{F}), \mathrm{V}(\mathrm{O}), \mathrm{V}(\mathrm{Xe})$.

The F and Xe electron localization function (ELF) valence basins of XeF_{4}, WOF $_{4}$, and $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ are monosynaptic, in accord with the polar-covalent bond characters of this compound (Figure 8.3). The ELF isosurface plot of XeF_{4} is consistent with an $\mathrm{AX}_{4} \mathrm{E}_{2}$ VSEPR arrangement around xenon, where the stereo-active VELPs of Xe occupy axial positions and the Xe-F bond domains occupy equatorial positions. Coordination of XeF_{4} to WOF_{4} distorts the $\mathrm{AX}_{4} \mathrm{E}_{2}$ arrangement such that the axial $\mathrm{V}(\mathrm{Xe})$ lone pair basin proximate to the $\mathrm{V}\left(\mathrm{F}_{5,6}\right)$ basins of WOF_{4} is perturbed. The ELF reduction of localization diagram (Figure A5.4) for $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ separates into XeF_{4} and WOF_{4} domains at $f_{\text {sep }}=0.07$, which is marginally less than for
$\mathrm{FXeF}_{\mathrm{b}}--\mathrm{WOF}_{4}(0.08)$ and consistent with a primarily electrostatic $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bond. The $\mathrm{V}(\mathrm{F})$ basins of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ separate from $\mathrm{V}(\mathrm{Xe})$ in accord with the relative polarcovalent characters of its $\mathrm{Xe}-\mathrm{F}$ bonds, i.e., $\mathrm{V}\left(\mathrm{F}_{\mathrm{b}}\right)<\mathrm{V}\left(\mathrm{F}_{2,3}\right)<\mathrm{V}\left(\mathrm{F}_{4}\right)$.

Energy decomposition analyses (EDA) for the $\mathrm{M}--\mathrm{F}_{\mathrm{b}}$ bonds of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---$ WOF 4 , the hypothetical $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{CrOF}_{4}$ and $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{MoOF}_{4}$ analogues, and the known $\mathrm{FXeF}_{\mathrm{b}}---\mathrm{MOF}_{4}$ analogues ${ }^{67}$ are compared in Tables 8.1 and A5.7. The W--- F_{b} bond dissociation energy $\left(D_{\mathrm{E}}\right)$ of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}\left(36.90 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ is substantially less than those of $\mathrm{FNgF}_{\mathrm{b}}---\mathrm{WOF}_{4}\left(\mathrm{Kr}, 49.18 ; \mathrm{Xe}, 55.17 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$, in accordance with the lower fluorobasicity of XeF_{4}. Electrostatic interactions contribute 57.4% to the total attractive terms for the $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bond, whereas orbital mixing contributes 35.4% and dispersion effects provide the remaining 7.2%. The EDA analysis shows the $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bond is primarily electrostatic with a smaller orbital contribution, and intermediate with respect to the D_{E} values for the $\mathrm{Cr}---\mathrm{F}_{\mathrm{b}}$ and $\mathrm{Mo}---\mathrm{F}_{\mathrm{b}}$ bonds of $\mathrm{FXeF}_{\mathrm{b}}--\mathrm{CrOF}_{4}$ and $\mathrm{FXeF}_{\mathrm{b}}---\mathrm{MoOF}_{4}$. The D_{E} values of the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bonds for both complex series follow the FIA trend, $\mathrm{WOF}_{4}>\mathrm{MoOF}_{4}>\mathrm{CrOF}_{4}$. The percent electrostatic and orbital contributions to the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bonds of $\mathrm{FXeF}_{\mathrm{b}}---\mathrm{MOF}_{4}$ and $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{MOF}_{4}$ are similar in both series, where electrostatic contributions to the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bonds ($57-64 \%$) dominate orbital contributions ($27-35 \%$). The orbital contribution to the $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bond accounts for the non-linear $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}---\mathrm{W}$ bond angle in the gas-phase, ${ }^{67}$ which significantly contributes, along with crystal packing effects, to its non-linearity in the crystal structure of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$. The calculated $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}---\mathrm{M}$ bond angles of $\mathrm{F}_{3} \mathrm{XeF}_{b}--\mathrm{CrOF}_{4}\left(116.90^{\circ}\right), \mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}--\mathrm{MoOF}_{4}\left(122.53^{\circ}\right)$, and $\mathrm{F}_{3} \mathrm{XeF}_{b}---\mathrm{WOF}_{4}\left(122.64^{\circ}\right)$ are very similar to those of $\mathrm{FXeF}_{\mathrm{b}}--\mathrm{CrOF}_{4}\left(120.45^{\circ}\right), \mathrm{FXeF}_{\mathrm{b}}---\mathrm{MoOF}_{4}\left(122.86^{\circ}\right)$, and

FXeF $_{b}---$ WOF $_{4}\left(123.68^{\circ}\right),{ }^{67}$ in accordance with similar percentage orbital contributions to the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bonds of both series of complexes (Table 8.1).

Table 8.1. Energy Decomposition Analyses (EDA) ${ }^{[a]}$ for the $\mathrm{M}--\mathrm{F}_{\mathrm{b}}$ Bonds of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}-$ $--\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ and $\mathrm{FXeF}_{\mathrm{b}}--\mathrm{MOF}_{4}$

Attractive Energy Terms ${ }^{[\mathrm{a}]} \rightarrow$	$\Delta E_{\text {orb }}{ }^{[b]}$	$\Delta E_{\text {elstat }}{ }^{[b]}$	$\Delta E_{\text {disp }}{ }^{[\mathrm{b}]}$	$D_{\mathrm{E}}{ }^{[\mathrm{b}, \mathrm{c}]}$
FXeF ${ }_{\mathrm{b}}---\mathrm{WOF}_{4}{ }^{[d]}$	-71.24 (34.4 \%)	-126.87 (61.2 \%)	-9.13 (4.4 \%)	55.17
$\mathrm{FXeF}_{\mathrm{b}}--\mathrm{MoOF}_{4}{ }^{\text {[d] }}$	-58.37 (33.3 \%)	-107.94 (61.7 \%)	-8.73 (5.0 \%)	48.88
$\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}-$-- WOF_{4}	-52.15 (35.4 \%)	-84.32 (57.4 \%)	-10.64 (7.2 \%)	36.90
$\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{MoOF}_{4}$	-39.89 (33.8 \%)	-68.03 (57.7 \%)	-9.97 (8.5 \%)	32.93
$\mathrm{FXeF}_{\mathrm{b}}--\mathrm{CrOF}_{4}{ }^{[d]}$	-26.11 (26.9 \%)	-62.12 (64.1 \%)	-8.73 (9.0 \%)	28.43
$\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}--\mathrm{CrOF}_{4}$	-17.02 (26.6 \%)	-37.14 (57.9 \%)	-9.93 (15.5 \%)	20.94

[a] Calculated at the PBE0-D4/TZ2P level of theory. The attractive energy terms are $\Delta E_{\text {orb }}=$ orbital mixing (covalency) between fragments, $\Delta E_{\text {elstat }}=$ electrostatic interaction energy between fragment charge densities, $\Delta E_{\text {disp }}=$ dispersion energy. [b] $\mathrm{kJ} \mathrm{mol}^{-1} .[\mathrm{c}]-D_{\mathrm{E}}=\Delta E_{\text {int }}+\Delta E_{\text {prep }}$, where D_{E} is the M--- F_{b} bond dissociation energy, $\Delta E_{\text {int }}$ is the interaction energy, and $\Delta E_{\text {prep }}$ is the preparation energy. [d] Ref. [67].

An ETS-NOCV analysis was carried out to determine and visualize the most significant attractive orbital contributions in the EDA analysis for the $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bond of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}--$ WOF $_{4}$. The most significant orbital interaction between XeF_{4} and WOF_{4} is σ-donation from the HOMO and HOMO-3 symmetry fragment orbitals (SFOs) of XeF_{4} into the $\mathrm{LUMO}+3$ of $\mathrm{WOF}_{4}\left(\Psi_{1 /-1}= \pm 0.21194\right)$ (Figure 8.4), which contributes $-31.62 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (61% of the total orbital interaction energy) to the $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bond. The deformation of electron density that results from this interaction is also depicted in Figure 8.4. Similar σ-bond interactions were obtained from ETS-NOCV analyses for
the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bonds of $\mathrm{FNgF}_{\mathrm{b}}---\mathrm{MOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; \mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}){ }^{67}{ }^{7}$ The $\mathrm{FNgF}_{\mathrm{b}}---$ WOF $_{4}$ complexes have greater degrees of charge delocalization $\left(\Psi_{1 /-1}: \mathrm{Xe}, 0.24840\right.$; $\mathrm{Kr}, 0.23953$) and total orbital energy gains ($\mathrm{Xe},-44.0 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \mathrm{Kr},-40.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$) than $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ (vide supra). The energy contribution to the $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bond of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ from all other orbital interactions is $-20.53 \mathrm{~kJ} \mathrm{~mol}^{-1}$, where no single contribution meets the threshold energy ($>8.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$) required for explicit description by the ETS-NOCV method.

Figure 8.4. The ETS-NOCV analysis for $\mathrm{F}_{3} \mathrm{XeF}_{b}---\mathrm{WOF}_{4}(\mathrm{PBE} 0 / \mathrm{TZ} 2 \mathrm{P})$ showing the SFO combinations for the XeF_{4} (HOMO-3 and HOMO) and WOF_{4} (LUMO+3) orbital combinations. Phases of SFO combinations and NOCV pairs are denoted by light blue and orange colors. Deformation density colors denote increased (blue) and decreased (red) electron densities relative to the parent fragments. Isosurface values used for orbital depictions are SFOs ($\mathrm{XeF}_{4}, \mathrm{WOF}_{4}$) and NOCV pairs (0.03 a.u.), and deformation densities (0.003 a.u.).

CHAPTER 9

Chromium Oxide Tetrafluoride and Its Reactions with Xenon Hexafluoride; the $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$Salts of the $\left[\mathrm{Cr}^{\mathrm{VI}_{1}} \mathrm{OF}_{5}\right]^{-},\left[\mathrm{Cr}^{\mathrm{V}} \mathrm{OF}_{5}\right]^{2-},\left[\mathrm{Cr}_{2}{ }_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$, and $\left[\mathrm{Cr}^{\mathrm{IV}}{ }^{\mathrm{F}}{ }_{6}\right]^{2-}$ Anions

Adapted with permission from: Goettel, J. T.; Bortolus, M. R.; Stuart, D. G.; Mercier, H. P. A.; Schrobilgen, G. J. Chem. Eur. J. 2019, 29, 15815-15829.

9.1. Introduction

The chromium(VI) oxide fluorides, $\mathrm{CrO}_{2} \mathrm{~F}_{2}{ }^{135}$ and $\mathrm{CrOF}_{4},{ }^{66,264}$ and salts of the $\left[\mathrm{CrO}_{3} \mathrm{~F}\right]^{-},{ }^{265-267}\left[\mathrm{CrO}_{2} \mathrm{~F}_{3}\right]^{-},{ }^{268}$ cis- $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-269-271}$ and $\left[\mathrm{CrOF}_{5}\right]^{-66,264}$ anions, have been synthesized and characterized. Recent synthetic and structural studies have shown that CrOF_{4} is sufficiently Lewis acidic to form stable adducts with the noblegas difluorides $\mathrm{NgF}_{2}\left(\mathrm{Ng}=\mathrm{Kr},{ }^{65,66} \mathrm{Xe}^{65}\right)$. However, CrF_{6} is presently nonexistent, although its synthesis and characterization by elemental analysis was reported in 1963^{272} and its low-temperature (LT) IR spectrum was reported in $1966 .{ }^{273}$ The IR spectrum was later shown to arise from a mixture of $\mathrm{CrF}_{5}, \mathrm{CrO}_{2} \mathrm{~F}_{2}, \mathrm{CrOF}_{4}$, and other compounds. ${ }^{274}$ Subsequent reports, which appeared in 1984, ${ }^{275} 1985,{ }^{276}$ and $1991,{ }^{277}$ claimed to have substantiated the existence of CrF_{6} based on matrix-isolation IR and UV-visible spectroscopic studies. However, further matrix-isolation IR studies reported in 1990^{274} and 1992^{278} showed that the spectrum previously attributed to CrF_{6} was due to CrF_{5}. A more recent matrix-isolation IR and computational study ${ }^{279}$ concurred with the latter findings and the present nonexistence of CrF_{6}.

Both MoOF_{4} and WOF_{4} were initially synthesized and described in 1907 by Ruff and Eisner, ${ }^{280}$ but it was not until 1963 that the synthesis of CrOF_{4} was reported by Edwards, ${ }^{281}$ which was subsequently improved to provide higher purities and
yields. ${ }^{66,264,282}$ The fluoride-ion acceptor properties of MoOF_{4} and WOF_{4} have been the subjects of studies which have resulted in the syntheses of numerous $\left[\mathrm{MoOF}_{5}\right]^{-}$ ${ }^{283-287}$ and $\left[\mathrm{WOF}_{5}\right]^{-283-285,288-296}$ salts that have been well characterized in the solid state by IR and Raman spectroscopy, ${ }^{283,285,288,290,293,294,296}$ elemental analyses, ${ }^{283,286,287,290,292-294}$ and powder X-ray diffraction; ${ }^{283,287}$ and in solution by ${ }^{19} \mathrm{~F}$ NMR spectroscopy ${ }^{283,284,291-295}$ and cyclic voltammetry. ${ }^{286}$ X-ray crystal structures of the $\left[\mathrm{AsPh}_{4}\right]^{+},{ }^{290}\left[\mathrm{Cs}(15 \text {-crown- } 5)_{2}\right]^{+,}{ }^{290}$ and Ag^{2+288} salts of $\left[\mathrm{WOF}_{5}\right]^{-}$, in which the O/F positions are disordered, have also been reported. The crystal structures of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$ and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ have recently been reported (see Chapter 11), and the X-ray crystal structures of the $\mathrm{Li}^{+}-\mathrm{Cs}^{+}$salts of $\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-297}$ and $\left[\mathrm{MoOF}_{5}\right]^{-}$in $\mathrm{K}_{3}\left[\mathrm{MoOF}_{7}\right]^{298}$ were subsequently published.

Although several $\left[\mathrm{CrOF}_{5}\right]^{-}$salts have been synthesized and characterized by vibrational spectroscopy, no X-ray crystal structure of a $\left[\mathrm{CrOF}_{5}\right]^{-}$salt has been reported. The $\left[\mathrm{CrOF}_{5}\right]^{-}$anion has been synthesized as its Cs^{+}salt by heating a 1:1 molar ratio of CsF and CrOF_{4} to $100^{\circ} \mathrm{C}$ (eq 9.1). ${ }^{264}$ Elemental analysis and the IR spectrum of the product were in good agreement with the formulation, $\mathrm{Cs}\left[\mathrm{CrOF}_{5}\right]$. The $\left[\mathrm{NO}^{+}\right.$salt was subsequently prepared by reaction of CrOF_{4} with NOF at room temperature (eq 9.1), ${ }^{66}$

$$
\begin{equation*}
\mathrm{CrOF}_{4}+\mathrm{MF} \xrightarrow{\mathrm{aHF}}[\mathrm{M}]\left[\mathrm{CrOF}_{5}\right] \mathrm{M}=\mathrm{Cs}^{+} \text {or }[\mathrm{NO}]^{+} \tag{9.1}
\end{equation*}
$$

The $\left[\mathrm{CrOF}_{5}\right]^{-}$anion of $[\mathrm{NO}]\left[\mathrm{CrOF}_{5}\right]$ was characterized by low-temperature IR and Raman spectroscopy and its spectrum was assigned under $C_{4 v}$ point symmetry. ${ }^{66}$ Controlled pyrolysis of [NO][CrOF5] resulted in a mixture which was shown to consist of $[\mathrm{NO}]\left[\mathrm{CrOF}_{5}\right]$ and $[\mathrm{NO}]\left[\mathrm{CrOF}_{5}\right] \cdot n \mathrm{CrOF}_{4}$ by IR spectroscopy. These findings suggested that salts such as $[\mathrm{NO}]\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ are thermally more stable than
$[\mathrm{NO}]\left[\mathrm{CrOF}_{5}\right] .{ }^{66}$ The $\mathrm{Cs}\left[\mathrm{CrOF}_{5}\right]$ and $[\mathrm{NO}]\left[\mathrm{CrOF}_{5}\right]$ salts were subsequently synthesized by the reaction of equimolar amounts of $\mathrm{CrO}_{2} \mathrm{~F}_{2}$ with excess F_{2} and either NOF or CsF at $80^{\circ} \mathrm{C}(\mathrm{eq} 9.2)$ and the $\mathrm{Cs}\left[\mathrm{CrOF}_{5}\right]$ salt was also prepared by reaction of CrO_{3} with CsF and COF_{2} at $90{ }^{\circ} \mathrm{C}(\mathrm{eq} \mathrm{9.3}) .{ }^{270}$ The $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnF}^{+}\right.$salt of $\left[\mathrm{CrOF}_{5}\right]^{-}$was prepared by reaction of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnF}_{2}$ with CrOF_{4} in aHF solvent (eq 9.4). ${ }^{270}$

$$
\begin{align*}
& \mathrm{CrO}_{2} \mathrm{~F}_{2}+\mathrm{MF}+\mathrm{F}_{2} \xrightarrow{\mathrm{aHF}}[\mathrm{M}]\left[\mathrm{CrOF}_{5}\right]+1 / 2 \mathrm{O}_{2} \tag{9.2}\\
& \mathrm{CrO}_{3}+\mathrm{CsF}+\mathrm{COF}_{2} \xrightarrow{\text { aHF }} \mathrm{Cs}\left[\mathrm{CrOF}_{5}\right]+2 \mathrm{CO}_{2} \tag{9.3}\\
& \left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnF}_{2}+\mathrm{CrOF}_{4} \xrightarrow{\text { aHF }}\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnF}\right]\left[\mathrm{CrOF}_{5}\right] \tag{9.4}
\end{align*}
$$

The chemistries of $\mathrm{Cr}(\mathrm{V})$ and $\mathrm{Cr}(\mathrm{IV})$ oxide fluorides are more limited. The synthesis and vibrational spectra have been reported for pure $\mathrm{CrOF}_{3}^{299-301}$ and the syntheses of the K^{+}and Cs^{+}salts of [$\left.\mathrm{CrOF}_{4}\right]^{-}$and their characterizations by mass balance measurements, ${ }^{302}$ X-ray powder diffraction, ${ }^{301}$ and by infrared ${ }^{300}$ and UV-vis spectroscopies ${ }^{300}$ have also been reported. A LT ESR study of $\mathrm{K}\left[\mathrm{CrOF}_{4}\right]$ reported the observation of both $\left[\mathrm{CrOF}_{4}\right]^{-}$and $\left[\mathrm{CrOF}_{5}\right]^{2-}$ in frozen 48% aqueous HF glasses. ${ }^{303}$ The $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{~N}\right]^{+}$salt of $\left[\mathrm{CrOF}_{5}\right]^{2-}$ was synthesized by the reaction of $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{~N}\right]\left[\mathrm{CrOCl}_{4}\right]$ with AgF in a $\mathrm{HF}_{(\mathrm{aq})} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ mixture and was characterized by ESR and IR spectroscopy. ${ }^{304}$ The neutral $\mathrm{Cr}(\mathrm{IV})$ oxide fluoride, CrOF_{2}, was synthesized by the thermal decomposition of $\mathrm{CrO}_{2} \mathrm{~F}_{2}$ at $500{ }^{\circ} \mathrm{C}$, and is insoluble in water, ${ }^{305}$ aqueous acids $\left(\mathrm{HCl}, \mathrm{HF}, \mathrm{HNO}_{3}\right)$, aqueous bases $\left(\mathrm{NH}_{4} \mathrm{OH}, \mathrm{NaOH}, \mathrm{KOH}\right)$, and common organic solvents. The only $\mathrm{Cr}(\mathrm{IV})$ oxyfluoro-anion that has been reported is $\left[\mathrm{CrO}_{2} \mathrm{~F}\right]^{-}$, which was obtained as a reduction product in the reaction of $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]\left[\mathrm{CrO}_{3} \mathrm{~F}\right]$ with organic alcohols and was characterized by elemental analysis and IR spectroscopy. ${ }^{266}$ To date,
there have been no crystal structures reported for $\left[\mathrm{CrOF}_{5}\right]^{-},\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{FF}_{9}\right]^{-},\left[\mathrm{CrOF}_{4}\right]^{-}$, and $\left[\mathrm{CrOF}_{5}\right]^{2-}$.

The noble-gas difluorides, $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$, are sufficiently fluorobasic to form adducts with the Group $6 \mathrm{~d}^{0}$ metal oxide tetrafluorides, $\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$, having the general formulae $\mathrm{NgF}_{2} \cdot n \mathrm{MOF}_{4}(n=1,2) .{ }^{65,183,184,306}$ Members of the MOF_{4} series are intermediate strength fluoride-ion acceptors which do not fully transfer fluoride ion to form $[\mathrm{NgF}]\left[\mathrm{MOF}_{5}\right]$ or $[\mathrm{NgF}]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ salts. Instead, NgF_{2} coordinates to the metal by means of Ng-F---M bridges. ${ }^{65}$ Xenon hexafluoride is more fluorobasic than $\mathrm{XeF}_{2},{ }^{260}$ and is therefore more likely to donate fluoride ion to CrOF_{4} to form $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$salts of $\left[\mathrm{CrOF}_{5}\right]^{-}$. The +6 oxidation state of xenon in $\left[\mathrm{XeF}_{5}\right]^{+}$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$provides the electron-poor environments that are needed to stabilize high-oxidation state transition-metal oxyfluoro-anions such as in the case of the stable $\mathrm{Os}(\mathrm{VIII})$ salts, $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right],\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[f a c-\mathrm{OsO}_{3} \mathrm{~F}_{3}\right]$, and $\left[\mathrm{XeF}_{5}\right]\left[\mu-\mathrm{F}\left(\mathrm{OsO}_{3} \mathrm{~F}_{2}\right)_{2}\right] .{ }^{121}$

A prior attempt to synthesize $\operatorname{Cr}(\mathrm{V})$ fluoro-anion salts by use of XeF_{6} as a fluoride ion donor led to $\mathrm{Cr}(\mathrm{V})$ reduction and F_{2} elimination. ${ }^{307}$ Instead of the anticipated $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Cr}^{\mathrm{V}} \mathrm{F}_{6}\right]$ salt, the reaction of XeF_{6} with CrF_{5} yielded $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Cr}^{\mathrm{IV}} \mathrm{F}_{5}\right]$ which was characterized by single-crystal X-ray diffraction (eq 9.5). ${ }^{307}$

$$
\begin{equation*}
\mathrm{XeF}_{6}+\mathrm{CrF}_{5} \xrightarrow{\mathrm{aHF}}\left[\mathrm{XeF}_{5}\right]\left[\mathrm{CrF}_{5}\right] \tag{9.5}
\end{equation*}
$$

The present study examines the reactions between CrOF_{4} and XeF_{6} in melts and in the oxidatively resistant solvents, aHF and CFCl_{3}. The reaction pathways involve redox transformations that give rise to several chromium oxide fluoride anions in the +6 and +5 oxidation states and $\left[\mathrm{CrF}_{6}\right]^{2-}$. The latter anions were isolated as $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$salts and structurally characterized by LT single-crystal X-ray diffraction and LT Raman spectroscopy. Quantum-chemical calculations were
employed to calculate the gas-phase geometries and to aid in the vibrational frequency assignments of several compounds synthesized in this study.

9.2. Results and Discussion

9.2.1. Syntheses

9.2.1.1. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right] /\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ (6) and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$. Equimolar mixtures of XeF_{6} and CrOF_{4} liquified near room temperature to form a dark purple liquid with the vigorous evolution of a gas that was noncondensible at $-196^{\circ} \mathrm{C}$ (eq 9.6). The gas was identified as F_{2} by rapid tarnishing of a drop of mercury upon exposure to it. Slow cooling of the reaction product from 20 to $0{ }^{\circ} \mathrm{C}$ resulted in the growth of large, rod-shaped crystals (m.p. $18{ }^{\circ} \mathrm{C}$) which were shown to be $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ (6) (see X-ray Crystallography). The net equation for the reaction of XeF_{6} with CrOF_{4} in a melt near ambient temperature is given by eq 9.6.

$$
\begin{equation*}
3 \mathrm{XeF}_{6}+3 \mathrm{CrOF}_{4} \xrightarrow{\text { melt }}\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}+1 / 2 \mathrm{~F}_{2} \tag{9.6}
\end{equation*}
$$

and likely proceeds by the following pathway (eqs 9.6a-9.6c):

$$
\begin{equation*}
\mathrm{XeF}_{6}+\mathrm{CrOF}_{4} \xrightarrow{\text { melt }}\left[\mathrm{XeF}_{5}\right]\left[\mathrm{CrOF}_{5}\right] \tag{9.6a}
\end{equation*}
$$

and/or

Upon crystallization, CrOF_{4} is introduced into the coordination sphere of the $\left[\mathrm{CrOF}_{5}\right]^{2-}$ anion in 6 (see X-ray Crystallography).

To establish whether $\left[\mathrm{CrOF}_{5}\right]^{-}$salts are formed as intermediates in eqs 9.6 a and $\mathbf{9 . 6 b}$, the reaction between XeF_{6} and CrOF_{4} was monitored as a function of time and temperature by Raman spectroscopy. Equimolar amounts of solid XeF_{6} and CrOF_{4} were mixed at $-78^{\circ} \mathrm{C}$ and then warmed to $-50^{\circ} \mathrm{C}$, whereupon the color of the mixture changed from red to orange. The sample was thereafter successively warmed to higher temperatures in steps ranging from $-30^{\circ} \mathrm{C}$ to ambient temperature and was allowed to react at each temperature stage for a sufficient length of time to produce a notable change in the Raman spectrum. The sample was intermittently agitated during each reaction period, and then quenched to $-196^{\circ} \mathrm{C}$. Reaction progress was monitored by recording the low-temperature (-91 to $-120{ }^{\circ} \mathrm{C}$) Raman spectrum after each warm/quench cycle (see footnotes [i-m] in Table A6.1).

The Raman spectra of the orange solid (Table A6.1) showed that bands corresponding to free CrOF_{4} persisted while a new set of bands appeared and grew in intensity until the sample reached $0{ }^{\circ} \mathrm{C}$. The new bands arose from $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ (eq 9.6a) and were assigned by comparison with those of $\mathrm{Cs}\left[\mathrm{CrOF}_{5}\right],{ }^{264}$ $[\mathrm{NO}]\left[\mathrm{CrOF}_{5}\right],{ }^{66}$ and the calculated frequencies of the gas-phase $\left[\mathrm{CrOF}_{5}\right]^{-}$anion listed in footnote $[\mathrm{g}]$ of Table A6.1. The experimental Raman bands of $\left[\mathrm{CrOF}_{5}\right]^{-}$(Table A6.1) occurred at: $v(\mathrm{Cr}-\mathrm{O}), 951 \mathrm{~cm}^{-1} ;\left[v_{\mathrm{s}}\left(\mathrm{Cr}^{-}-\mathrm{F}_{4 \mathrm{e}}\right)+v\left(\mathrm{Cr}-\mathrm{F}_{\mathrm{ax}}\right)\right], 640 \mathrm{~cm}^{-1} ; v_{\mathrm{as}}\left(\mathrm{Cr}^{2}-\mathrm{F}_{4 \mathrm{e}}\right)$, $568 \mathrm{~cm}^{-1} ; \mathrm{v}\left(\mathrm{Cr}-\mathrm{Fax}_{\mathrm{ax}}\right), 527 \mathrm{~cm}^{-1} ;\left[\delta\left(\mathrm{OCrF}_{\mathrm{e}}\right)+\delta\left(\mathrm{FeCrFax}_{\mathrm{ax}}\right)\right], 341 \mathrm{~cm}^{-1} ;\left[\delta\left(\mathrm{FeCrFe}_{\mathrm{e}}\right)+\right.$ $\left.\delta\left(\mathrm{FeCrF}_{\mathrm{e}}\right)\right], 323 / 314 \mathrm{~cm}^{-1} ;\left[\rho_{\mathrm{w}}\left(\mathrm{OCrFax}_{\mathrm{ax}}\right)+\rho_{\mathrm{w}}\left(\mathrm{FeCrF}_{\mathrm{e}}\right)\right], 275 \mathrm{~cm}^{-1} ;\left[\rho_{\mathrm{t}}\left(\mathrm{FeCrF}_{\mathrm{e}}\right)+\right.$ $\left.\rho_{\mathrm{t}}\left(\mathrm{FeCrF}_{\mathrm{e}}\right)\right], 216 \mathrm{~cm}^{-1}$. The $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cation bands (Table A6.1) were assigned by comparison with known $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$salts. ${ }^{121,308}$ The sample was then warmed in stages
until fusion occurred at ca. $18{ }^{\circ} \mathrm{C}$ and then immediately quenched at $-196{ }^{\circ} \mathrm{C}$, whereupon weak bands due to $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ (6) (see Raman Spectroscopy) began to appear in addition to those of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ and free CrOF_{4}. The sample was then re-melted and held at ambient temperature for ca. 1 min with no apparent sign of gas evolution and then quenched at $-196^{\circ} \mathrm{C}$. The Raman spectrum showed $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ and increased amounts of $\mathbf{6}$, but no free CrOF_{4} could be detected. Upon continued reaction for one additional hour at ambient temperature, gas evolution was clearly evident and predominantly compound $\mathbf{6}$ and a small amount of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ were observed in the Raman spectrum of the quenched sample. Crystals of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ that were suitable for an X -ray crystal structure determination could not be obtained from the melts during the course of these studies.
9.2.1.2. $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}$ (1). When ca. 1.5 equivalents of CrOF_{4} were allowed to react with one equivalent of XeF_{6} at room temperature, the mixture fused to give a dark-purple liquid that contained undissolved CrOF_{4}. The reaction mixture was warmed to approximately $60^{\circ} \mathrm{C}$ and the contents were agitated to effect dissolution of the remaining CrOF_{4} (eq 9.5). Upon slow cooling of the melt to room temperature, dark-red, needle-shaped crystals of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}$ deposited on the walls of the reaction vessel.

The proposed pathway for the reaction of XeF_{6} with CrOF_{4} (eq 9.7) at elevated temperature $\left(60{ }^{\circ} \mathrm{C}\right)$ initially proceeds via eq 9.6 a to give $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{CrOF}_{5}\right]$, which then undergoes F_{2} elimination to form $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{CrOF}_{4}\right]$ (eq 9.7a). The latter salt undergoes fluorine/oxygen metathesis with XeF_{6} (eq 9.7b), with introduction of CrOF_{4} into the
coordination sphere of $\left[\mathrm{CrF}_{6}\right]^{2-}$ occurring upon crystallization of the melt (see compound $\mathbf{1}$ in X-ray Crystallography).

$$
\begin{align*}
& 3 \mathrm{XeF}_{6}+3 \mathrm{CrOF}_{4} \xrightarrow[60^{\circ} \mathrm{C}]{\mathrm{melt}}\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right]_{6} \cdot 2 \mathrm{CrOF}_{4}+1 / 2 \mathrm{~F}_{2}+\mathrm{XeOF}_{4} \tag{9.7}\\
& {\left[\mathrm{XeF}_{5}\right]\left[\mathrm{CrOF}_{5}\right] \longrightarrow\left[\mathrm{XeF}_{5}\right]\left[\mathrm{CrOF}_{4}\right]+1 / 2 \mathrm{~F}_{2}} \tag{9.7a}\\
& 2 \mathrm{XeF}_{6}+\left[\mathrm{XeF}_{5}\right]\left[\mathrm{CrOF}_{4}\right] \longrightarrow\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right]+\mathrm{XeOF}_{4}+1 / 2 \mathrm{~F}_{2} \tag{9.7b}
\end{align*}
$$

9.2.1.3. $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{CrF}_{6}\right]$ (2) and $\left.\left[\mathrm{XeF}_{5}\right]_{2} / \mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]$ (3). Approximately four equivalents of XeF_{6} were allowed to react with one equivalent of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}$ in a melt at $30{ }^{\circ} \mathrm{C}$. Slow cooling from $30{ }^{\circ} \mathrm{C}$ to room temperature resulted in the formation of crystalline $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{CrF}_{6}\right]$ (colorless needles) and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]$ (red-orange blocks).

The overall reactions leading to the formation of $\mathbf{2}$ and $\mathbf{3}$ are provided by eqs (9.8) and (9.9), respectively. Compound $\mathbf{2}$ arises from the addition of XeF_{6} to $\left[\mathrm{XeF}_{5}\right]^{+}$ of the starting compound, $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}(\mathbf{1})$ in eq 9.8. Compound $\mathbf{3}$ is

$$
\begin{equation*}
2 \mathrm{XeF}_{6}+\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4} \longrightarrow\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{CrF}_{6}\right]+2 \mathrm{CrOF}_{4} \tag{9.8}
\end{equation*}
$$

formed by the reaction of co-crystallized CrOF_{4} in 1 with XeF_{6} (eq 9.9). The overall reaction presumably occurs in two consecutive steps, eqs 9.6 a and 9.9a, which yield $\left[\mathrm{CrOF}_{4}\right]^{-}$as a transient species that dimerizes to form $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$.

$$
\begin{align*}
& 2 \mathrm{XeF}_{6}+2 \mathrm{CrOF}_{4} \longrightarrow\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]+\mathrm{F}_{2} \tag{9.9}\\
& 2\left[\mathrm{XeF}_{5}\right]\left[\mathrm{CrOF}_{5}\right] \longrightarrow \mathrm{F}_{2}+2\left[\mathrm{XeF}_{5}\right]\left[\mathrm{CrOF}_{4}\right] \longrightarrow\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \tag{9.9a}
\end{align*}
$$

9.2.1.4. $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF}$ (4) and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ (5). The reaction

 of equimolar amounts of XeF_{6} with HF -wetted CrOF_{4} in CFCl_{3} solvent at room temperature yielded a mixture of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF}$ (4) and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}(\mathbf{5})$, where compound 4 was the major component. Xenonhexafluoride was transferred onto a sample containing CrOF_{4} and aHF in CFCl_{3} solvent at $-196{ }^{\circ} \mathrm{C}$. Upon warming to room temperature, CrOF_{4} and XeF_{6} rapidly dissolved to give a clear, amber solution. Transparent, pale yellow-green, blockshaped crystals of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF}$ (4) and amber, block-shaped crystals of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ (5) slowly grew from solution when the sample was allowed to stand at $-78^{\circ} \mathrm{C}$ for 48 h .

The reaction of equimolar amounts of XeF_{6} and CrOF_{4} in aHF at $-78{ }^{\circ} \mathrm{C}$ initially yielded crystalline $\mathrm{XeF}_{6} \cdot 1.5 \mathrm{HF}^{100}$ and $\alpha-\mathrm{CrOF}_{4},{ }^{65}$ which were confirmed by unit cell determinations. Upon warming to room temperature, $\alpha-\mathrm{CrOF}_{4}$ and $\mathrm{XeF}_{6} \cdot 1.5 \mathrm{HF}$ rapidly dissolved in aHF to give an amber solution. Quenching the sample at $-196{ }^{\circ} \mathrm{C}$ yielded a white precipitate, which readily redissolved in aHF at room temperature. Amber, block-shaped crystals of $\mathbf{5}$ slowly grew from solution upon standing overnight at $-78^{\circ} \mathrm{C}$.

The products resulting from the reactions of XeF_{6} and CrOF_{4} in aHF and in $\mathrm{CFCl}_{3} /$ aHF suggest the overall reaction proceeds according to eq 9.9 which may be understood in terms of the reaction pathway represented by eqs 9.6a and 9.9a. The formation of XeOF_{4} arises via eqs $\mathbf{9 . 7} \mathbf{7}$ and $\mathbf{9 . 7 b}$. Co-crystallized HF and XeOF_{4} are presumably introduced into the coordination spheres of $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ upon crystallization (see compounds $\mathbf{4}$ and $\mathbf{5}$ in X-ray Crystallography).

9.2.2. X-ray Crystallography

Details of data collection and crystallographic information pertaining to $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4} \quad$ (1), $\quad\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{CrF}_{6}\right] \quad$ (2), $\quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \quad$ (3),
$\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF} \quad$ (4), $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4} \quad$ (5), and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}(6)$ are provided in Table 9.1.

The crystal structures contain $\left[\mathrm{XeF}_{5}\right]^{+}$and/or $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cations which interact with their respective anions by means of Xe---F secondary bonds (Tables A6.2-A6.6). In cases here the cations interact with more than one anion (compounds $\mathbf{1 - 3}$), the formula units form columns by ion-pair formation between neighboring cations and anions (Figures 9.1-9.3 and A6.2-A6.4). The columns run parallel to the b-axis (1 and 2) or to the c-axis (3) of their unit cells. The $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]$ ion pairs of 4 are bridged through HF molecules and form well-separated columns that run parallel to the c-axis (Figures 9.4 and A6.5). Additional $\mathrm{Cr}--\mathrm{F}$ interactions occur between the CrOF_{4} molecule and the fluorine atoms of their anions in $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}$ (1) and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ (6) (Figures 9.1 and 9.5, Tables A6.2 and A6.6). In contrast, $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}(\mathbf{5})$ and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ (6) do not form extended structures but consist of well-isolated units having no significant intermolecular interactions to one another (Figures 9.5, 9.6, A6.6, and A6.7).

Structural units that are in common for the crystal structures are compared in separate sections of the ensuing discussion.
9.2.2.1. $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \boldsymbol{F}_{11}\right]^{+}$. The bond lengths, bond angles, and Xe---F contact distances of $\left[\mathrm{XeFF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$in all six salts (Tables A6.2-A6.6) are comparable to those observed in $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{AuF}_{6}\right],{ }^{308} \quad\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{NiF}_{6}\right],{ }^{118} \quad\left[\mathrm{XeF}_{5}\right]_{3}\left[\mathrm{Ti}_{4} \mathrm{~F}_{19}\right],{ }^{309}$ $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right],\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right]$, and $\left[\mathrm{XeF}_{5}\right]\left[\mu-\mathrm{F}\left(\mathrm{OsO}_{3} \mathrm{~F}_{2}\right)_{2}\right] .{ }^{121}$

The $\left[\mathrm{XeFF}_{5}\right]^{+}$cation geometry may be described in terms of an $\mathrm{AX}_{5} \mathrm{E}$ VSEPR arrangement of five bond pairs (X) and a valence electron lone pair (E) around Xe (A) which result in its square-pyramidal geometry. ${ }^{88}$ The Xe valence electron lone pair is
located in the open square face of the square pyramid, and displaces the equatorial fluorine atoms towards the axial fluorine atom due to repulsions between the axial electron lone pair and $\mathrm{Xe}-\mathrm{F}_{\mathrm{eq}}$ bond-pair domains. Consequently, the negatively charged fluorine ligands, which contact the positively charged Xe atom, avoid the $\mathrm{Xe}-\mathrm{F}_{\text {eq }}$ bond pairs and valence electron lone pair of Xe in the manner previously noted and described for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{PtF}_{6}\right] .{ }^{310}$ The $\left[\mathrm{XeF}_{5}\right]^{+}$cations of compounds $\mathbf{1}$ and 3-6

Table 9.1. Summary of X-ray crystal data and refinement results for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}$ (1), $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{CrF}_{6}\right]$ (2), $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right](3),\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF}$ (4), $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}(\mathbf{5})$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ (6)

	1	2	3	4	5	6
space group	$P \overline{1}$	C2/c	C2/c	$P 21 / c$	$P \overline{1}$	Pbca
$a(\AA)$	5.3742(3)	21.866(1)	16.4840(7)	10.7873(7)	7.435(1)	17.3003(9)
$b(\AA)$	9.3138(5)	5.5211(2)	9.1198(4)	9.1928(6)	8.750(1)	9.1104(5)
$c(\AA)$	9.3642(5)	17.3538(8)	8.9772(4)	8.5616(5)	8.993(1)	27.7020(15)
α (deg)	106.091(3)	90	90	90	90.920(2)	90
β (deg)	98.974(3)	115.183(2)	93.122(2)	106.870(2)	108.392(2)	90
γ (deg)	95.973(3)	90	90	90	97.838(2)	90
$V\left(\AA^{3}\right)$	439.45(4)	1895.9(1)	1347.6(1)	812.48(9)	548.9(1)	4366.2(4)
Z	1	4	4	4	1	8
$M_{\text {W }}{ }^{[a]}$	906.60	1109.20	740.60	410.32	1187.20	1148.90
$\rho_{\text {calcd }}{ }^{[b]}$	3.426	3.886	3.650	3.354	3.591	3.496
$T\left({ }^{\circ} \mathrm{C}\right)$	-173	-173	-173	-173	-173	-173
$\mu^{[\mathrm{cc]}}$	5.853	7.887	6.777	5.672	7.285	6.294
$R_{1}{ }^{[d]}$	0.0398	0.0574	0.0229	0.0248	0.0304	0.0384
$w R_{2}{ }^{[\mathrm{e}]}$	0.0996	0.1175	0.0515	0.0653	0.0753	0.0634

interact with their respective anions through Xe---F secondary bonding interactions (Tables A6.2-A6.6) that are significantly less than the sum of the Xe and F van der Waals radii ($3.61 \AA,{ }^{167} 3.52 \AA^{168}$). Each $\left[\mathrm{XeF}_{5}\right]^{+}$cation of structure 4 also interacts with the fluorine atom of a HF molecule through a Xe--- $\mathrm{F}_{(\text {(H) }}$ contact (2.7985(9) \AA) that is significantly less than those of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{H}_{2} \mathrm{~F}\right] \cdot \mathrm{HF}\left(\mathrm{Xe}---\mathrm{F}_{(\mathrm{H})}, 3.006(5)-3.096(6)\right.$ \AA). ${ }^{100}$ With the exception of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{AuF}_{6}\right],{ }^{308}$ which has a coordination number of 7 , the common coordination numbers of Xe in $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$salts are $\mathrm{CN}=8$: e.g., $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{PdF}_{6}\right],{ }^{311}\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right],{ }^{312}\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{NiF}_{6}\right],{ }^{313}$ and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right],{ }^{121}$ and
$\mathrm{CN}=9:$ e.g., $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{SbF}_{6}\right] \cdot \mathrm{XeOF}_{4},{ }^{314}\left[\mathrm{XeF}_{5}\right]\left[\mathrm{PtF}_{6}\right],{ }^{310}\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AgF}_{4}\right],{ }^{117}\left[\mathrm{XeF}_{5}\right][\mu-$ $\left.\mathrm{F}\left(\mathrm{OsO}_{3} \mathrm{~F}_{2}\right)_{2}\right],{ }^{121}\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right],{ }^{121}$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{NiF}_{6}\right] .{ }^{118}$

The Xe atom $(\mathrm{CN}=8)$ of $\left[\mathrm{XeF}_{5}\right]^{+}$in $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}(\mathbf{6})$ (Figure 9.4) has three $\mathrm{Xe}---\mathrm{F}$ contacts with the axial and equatorial fluorine atoms of the $\left[\mathrm{CrOF}_{5}\right]^{2-}$ anion (Xe(1)---F(3), 2.632(2) \AA; Xe(1)---F(4), 2.624(2) \AA; Xe(1)--$\mathrm{F}(1), 2.463(2) \AA)$. The Xe atoms $(\mathrm{CN}=9)$ of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}$ (1) (Figure 9.1) each have two $\mathrm{Xe}---\mathrm{F}$ contacts with two fluorine atoms of two $\left[\mathrm{CrF}_{6}\right]^{2-}$ anions ($\mathrm{Xe}(1)-$ $--\mathrm{F}(3 \mathrm{~A}), 2.436(3) \AA ; \mathrm{Xe}(1)--\mathrm{F}(2), 2.447(3) \AA$) and with two fluorine atoms of two CrOF_{4} molecules (Xe(1)---F(4), 3.084(3) \AA; Xe(1)---F(5A), 3.044(3) $\left.\AA\right)$. Each Xe atom $(\mathrm{CN}=9)$ of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right](3)$ (Figure 9.3) has two $\mathrm{Xe}---\mathrm{F}$ contacts with one $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ anion (Xe(1)---F(4), 2.4272(8) \AA; $\mathrm{Xe}(1)---\mathrm{F}(2 \mathrm{~A}), 3.0227(9) \AA$) and two $\mathrm{Xe}---\mathrm{F}$ contacts with a second $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ anion (Xe(1)---F(2B), 2.6560(9) \AA; $\mathrm{Xe}(1)--$ $-\mathrm{F}(3 \mathrm{~B}), 2.6573(9) \AA)$. The Xe atoms are also nine-coordinate in $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF}$ (4) and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}(5)$, with each Xe atom having two shorter and one longer Xe---F contact with a single $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ anion (4: Xe(1)---F(2), 2.4581(8) \AA; $\mathrm{Xe}(1)--\mathrm{F}(4 \mathrm{~A}), 2.4837(8) \AA ; \mathrm{Xe}(1)--\mathrm{F}(3), 3.0718(8) \AA$ and 5: Xe(1)---F(2A), $2.518(1) \AA \AA ; \mathrm{Xe}(1)---\mathrm{F}(4), 2.475(1) \AA \AA ; \mathrm{Xe}(1)--\mathrm{F}(3), 3.039(1) \AA \AA)$ and one longer Xe--F contact with the fluorine atom of an HF molecule (4: Xe(1)---F(11), 2.7985(9) \AA) or an XeOF_{4} molecule (5: $\mathrm{Xe}(1)---\mathrm{F}(12), 3.262(1) \AA$).

Figure 9.1. The X -ray crystal structure of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}$ (1) with thermal ellipsoids drawn at the 50% probability level. The coordination spheres of (a) the $\left[\mathrm{XeF}_{5}\right]^{+}$cation and (b) the $\left[\mathrm{CrF}_{6}\right]^{2-}$ anion are depicted. Secondary Xe---F and Cr---F bonding interactions are indicated by dashed lines.

The $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cations are comprised of two $\left[\mathrm{XeF}_{5}\right]^{+}$cations that are asymmetrically fluorine-bridged by a fluoride ion. As in $\left[\mathrm{XeF}_{5}\right]^{+}$, the $\mathrm{F}_{\text {eq }}$ atoms are displaced towards their respective F_{ax} atoms due to repulsions between the axial valence electron lone pair of Xe and their $\mathrm{Xe}-\mathrm{F}_{\text {eq }}$ bond pairs. The Xe atoms $(\mathrm{CN}=8)$ of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{CrF}_{6}\right]$ (2) (Figure 9.2) have Xe---F contacts with one axial fluorine atom (Xe(1)---F(14B), 2.711(5) $\AA \AA ;(\mathrm{Xe}(2)--\mathrm{F}(14), 2.712(5) \AA$) and one equatorial fluorine atom ($\mathrm{Xe}(1)---\mathrm{F}(12), 2.588(6) \AA$; $\mathrm{Xe}(2)---\mathrm{F}(13), 2.583(6) \AA$) of two different $\left[\mathrm{CrF}_{6}\right]^{2-}$
anions. The Xe atoms $(\mathrm{CN}=8)$ of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$in $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}(6)$ have contacts with the axial fluorine ligand ($\mathrm{Xe}(2)--\mathrm{F}(1), 2.822(2) \AA$; $\mathrm{Xe}(3)--\mathrm{F}(1)$, 2.826(2) \AA) and one equatorial fluorine ligand (Xe(2)---F(2), 2.575(2) \AA; Xe(3)--$\mathrm{F}(5), 2.660(2) \AA)$ of the same $\left[\mathrm{CrOF}_{5}\right]^{2-}$ anion. Although the Xe---F cation-anion contact distances of compounds $\mathbf{2}$ and $\mathbf{6}$ are significantly shorter than the sum of the Xe and F van der Waals radii, they are longer than the $\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}$ bridge bonds of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}(\mathbf{2}: \mathrm{Xe}(1)-\mathrm{F}(11), 2.262(6) \AA \AA ; \mathrm{Xe}(2)-\mathrm{F}(11), 2.250(6) \AA$; 6: $\mathrm{Xe}(2)-\mathrm{F}(16)$, 2.333(2) \AA; $\mathrm{Xe}(3)-\mathrm{F}(16), 2.247(2) \AA$).

Figure 9.2. The X-ray crystal structure of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{CrF}_{6}\right]$ (2) with thermal ellipsoids drawn at the 50% probability level. The coordination spheres of (a) the $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$ cation and (b) the $\left[\mathrm{CrF}_{6}\right]^{2-}$ anion are depicted. Secondary Xe---F bonding interactions are indicated by dashed lines.
9.2.2.2. XeOF_{4}. The bond lengths and bond angles around the Xe atom of XeOF_{4} in 5 are comparable to those of $\mathrm{XeOF}_{4} \cdot \mathrm{XeF}_{2} \cdot{ }^{68} \mathrm{As}$ is the case of the isoelectronic $\left[\mathrm{XeF}_{5}\right]^{+}$ cation (vide supra) and $\mathrm{XeOF}_{4} \cdot \mathrm{XeF}_{2}$, the four $\mathrm{Xe}---\mathrm{F}$ contacts with the Xe atom of XeOF_{4} in $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}(5)(2.968(1) \AA, 2.986(1) \AA, 3.337(1) \AA, 3.496(1)$
\AA) occur in the open square face of the square-pyramidal XeOF_{4} molecule and avoid the valence electron lone pair of Xe that is trans to the oxygen atom.

Figure 9.3. The X -ray crystal structure of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]$ (3) with thermal ellipsoids drawn at the 50% probability level. The coordination spheres of (a) the $\left[\mathrm{XeF}_{5}\right]^{+}$cation and (b) the $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ anion are depicted. Secondary Xe---F bonding interactions are indicated by dashed lines.
9.2.2.3. CrOF_{4}. The geometric parameters of the co-crystallized CrOF_{4} molecules in $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}$ (1) (Figure 9.1) and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ (6) (Figure 9.6) are very similar to those of α - and β - CrOF_{4} and $\mathrm{XeF}_{2} \cdot 2 \mathrm{CrOF}_{4}{ }^{65}$ The cocrystallized CrOF_{4} molecules of both salts interact with a fluorine ligand of the anion through a $\mathrm{Cr}--\mathrm{F}$ contact that is trans to the $\mathrm{Cr}-\mathrm{O}$ bond. The CrOF_{4} molecules of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ (6) interact with two adjacent equatorial fluorine ligands of the $\left[\mathrm{CrOF}_{5}\right]^{2-}$ anion $(\mathrm{Cr}(2)--\mathrm{F}(3), 2.393(2) \AA$; $\mathrm{Cr}(3)---\mathrm{F}(4), 2.483(2) \AA)$. The CrOF_{4} molecules of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}$ (1) are trans to one another, and interact with the axial fluorine ligands of $\left[\mathrm{CrF}_{6}\right]^{2-}$ through $\mathrm{Cr}--\mathrm{F}$ contacts $(\mathrm{Cr}(1)---$ $\mathrm{F}(1), 2.216(3) \AA)$, and with neighboring $\left[\mathrm{XeF}_{5}\right]^{+}$cations through short $\mathrm{Xe}---\mathrm{F}$ contacts (vide supra). The Cr---F contacts in $\mathbf{1}$ and $\mathbf{6}$ are comparable to those of α-CrOF 4 (2.274(3)-2.333(3) $\AA), \beta-\mathrm{CrOF}_{4}\left(2.3659(6) \AA \AA^{65}\right.$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{CrOF}_{4}(\mathrm{Cr}(2)--\mathrm{F}(1)$, $2.386(1) \AA) .{ }^{65}$ The $\mathrm{Cr}-\mathrm{O}$ bonds of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}$ (1) (1.571(4) \AA) and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}(6)(1.547(3) \AA, 1.530(3) \AA$) have significant double bond character and are comparable in length to those of $\alpha-\mathrm{CrOF}_{4}$ (1.539(3)-1.558(4) \AA), $\beta-\mathrm{CrOF}_{4}(1.5490(7) \AA)$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{CrOF}_{4}(1.545(2) \AA) .{ }^{65}$ The fluorine ligands of CrOF_{4} are bent away from the sterically more demanding $\mathrm{Cr}-\mathrm{O}$ double bond domains of this non-VSEPR molecule. ${ }^{88}$

Figure 9.4. The X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF}$ (4) with thermal ellipsoids drawn at the 50% probability level. Secondary Xe---F bonding interactions are indicated by dashed lines.

Figure 9.5. Depictions of (a) the X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ (5), and (b) the coordination environment around the $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ anion; thermal ellipsoids are drawn at the 50% probability level. Secondary Xe---F bonding interactions are indicated by dashed lines.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Figure 9.6. Depictions of (a) the asymmetric unit in the X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ (6) and (b) the coordination environment around the $\left[\mathrm{CrOF}_{5}\right]^{2-}$ anion; thermal ellipsoids are drawn at the 50% probability level. Secondary bonding interactions are indicated by dashed lines.
9.2.2.4. $\left[\boldsymbol{C r F}_{6}\right]^{2-}$. The $\mathrm{Cr}-\mathrm{F}$ bonds of the $\left[\mathrm{CrF}_{6}\right]^{2-}$ anion in $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}(\mathbf{1})$ (Figure 9.1) are essentially equal resulting in a Cr coordination sphere that is close to octahedral (Table 9.2). This contrasts with the $\left[\mathrm{CrF}_{6}\right]^{2-}$ anion of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{CrF}_{6}\right]$ (2) (Figure 9.2) where two trans $\mathrm{Cr}-\mathrm{F}_{\mathrm{ax}}$ bonds $(\mathrm{Cr}(1)-\mathrm{F}(14), 1.855(6) \AA$) are significantly longer than the four $\mathrm{Cr}-\mathrm{F}_{\mathrm{eq}}$ bonds $(\mathrm{Cr}(1)-\mathrm{F}(12), 1.797(5) \AA ; \operatorname{Cr}(1)-\mathrm{F}(13) 1.798(5) \AA$), resulting in a local Cr environment that is close to $D_{4 h}$ symmetry (Table 9.3). The $\mathrm{Cr}-\mathrm{F}_{\mathrm{eq}}$ bond lengths of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{CrF}_{6}\right]$ (2) are equal, within $\pm 3 \sigma$, to those of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}$ (1). The longer $\mathrm{Cr}-\mathrm{F}_{\mathrm{ax}}$ bonds of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{CrF}_{6}\right]$ (2) are a consequence of short intermolecular contacts between the F_{ax} ligands and the Xe atoms of two different $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cations (vide supra). The $\mathrm{Cr}-\mathrm{F}_{\mathrm{eq}}$ and $\mathrm{Cr}-\mathrm{F}_{\mathrm{ax}}$ bond lengths of the $\left[\mathrm{CrF}_{6}\right]^{2-}$ anions in $\mathbf{2}$ are significantly shorter and longer, respectively, than those of $\mathrm{Li}_{2}\left[\mathrm{CrF}_{6}\right]\left(\mathrm{Cr}-\mathrm{F}_{\text {eq }}, 1.829(3) \AA\right.$; $\mathrm{Cr}-\mathrm{F}_{\mathrm{ax}}, 1.812(4) \AA$) ${ }^{315}$ and are intermediate with respect to the terminal and bridging $\mathrm{Cr}-\mathrm{F}$ bonds of known $\mathrm{Cr}(\mathrm{IV})$ fluoride species in which the Cr atom is coordinated to six fluorine ligands, namely, $\mathrm{XeF}_{2} \cdot \mathrm{CrF}_{4} \quad\left(\mathrm{Cr}-\mathrm{F}_{\mathrm{t}}, \quad 1.683(3)-1.750(2) \quad \AA ; \quad \mathrm{Cr}-\mathrm{F}_{\mathrm{b}}, \quad 1.839(2)-2.099(2) \quad \AA\right) \quad$ and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{CrF}_{5}\right]\left(\mathrm{Cr}-\mathrm{F}_{\mathrm{t}}, 1.675(11)-1.825(10) \AA ; \mathrm{Cr}-\mathrm{F}_{\mathrm{b}}, 1.900(9)-1.971(10) \AA\right) .{ }^{307}$

Table 9.2. Experimental geometric parameters for the

$\left[\mathrm{CrF}_{6}\right]^{2-}$ anion of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}(\mathbf{1})$			
$\mathrm{Cr}(1)-\mathrm{F}(1)$	Bond Lengths (\AA)		
$\mathrm{Cr}(1)-\mathrm{F}(2)$	$1.812(3)$	$\mathrm{Cr}(1)-\mathrm{F}(3)$	$1.820(3)$
	$1.816(3)$		
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	Bond Angles (deg)		
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$	$89.8(1)$	$\mathrm{F}(2)-\mathrm{Cr}(1)-\mathrm{F}(3)$	$90.7(1)$
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(2 \mathrm{~A})$	$89.9(1)$	$\mathrm{F}(2)-\mathrm{Cr}(1)-\mathrm{F}(2 \mathrm{~A})$	$180.0(1)$
$\mathrm{F}(1)-\mathrm{Fr}(3 \mathrm{~A})$	$89.3(1)$		
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(1 \mathrm{~A})$	$90.2(1)$	$\mathrm{F}(3)-\mathrm{Cr}(1)-\mathrm{F}(3 \mathrm{~A})$	$180.0(2)$
	$180.0(2)$		

Table 9.3. Experimental geometric parameters for the $\left[\mathrm{CrF}_{6}\right]^{2-}$ anion of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{CrF}_{6}\right]$ (2).

	Bond Lengths (\AA)		
$\mathrm{Cr}(1)-\mathrm{F}(12)$	$1.797(5)$	$\mathrm{Cr}(1)-\mathrm{F}(14)$	$1.855(6)$
$\mathrm{Cr}(1)-\mathrm{F}(13)$	$1.798(5)$		
	Bond Angles (deg)		
$\mathrm{F}(12)-\mathrm{Cr}(1)-\mathrm{F}(13)$	$89.89(2)$	$\mathrm{F}(13)-\mathrm{Cr}(1)-\mathrm{F}(14)$	$87.1(3)$
$\mathrm{F}(12)-\mathrm{Cr}(1)-\mathrm{F}(14)$	$92.93(3)$	$\mathrm{F}(13)-\mathrm{Cr}(1)-\mathrm{F}(14 \mathrm{~A})$	$92.8(3)$
$\mathrm{F}(12)-\mathrm{Cr}(1)-\mathrm{F}(12 \mathrm{~A})$	$90.2(4)$	$\mathrm{F}(13)-\mathrm{Cr}(1)-\mathrm{F}(13 \mathrm{~A})$	$90.6(4)$
$\mathrm{F}(12)-\mathrm{Cr}(1)-\mathrm{F}(13 \mathrm{~A})$	$174.3(3)$	$\mathrm{F}(14)-\mathrm{Cr}(1)-\mathrm{F}(14 \mathrm{~A})$	$179.8(4)$
$\mathrm{F}(12)-\mathrm{Cr}(1)-\mathrm{F}(14 \mathrm{~A})$	$87.2(3)$		

9.2.2.4. $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \boldsymbol{F}_{8}\right]^{2-}$. The $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ anion (Figures 9.3-9.5, Tables 9.4 and 9.5) can be described as two symmetry-equivalent $\left[\mathrm{CrOF}_{4}\right]^{-}$anions which share two fluorine bridge atoms, $\mathrm{F}(1)$ and $\mathrm{F}(1 \mathrm{~A})$. As expected, the $\mathrm{Cr}-\mathrm{F}_{\mathrm{b}}$ bridge bonds (2.1177(8) $\AA(3)$, $2.2237(8) \AA(4), 2.265(1) \AA(5))$ are disposed trans to the O-ligand due to the transinfluence and are significantly longer than the equatorial $\mathrm{Cr}-\mathrm{F}_{\text {eq }}$ bonds (1.7940(9)$1.8519(8) \AA(3), 1,7940(8)-1.8739(7) \AA(4)$, and $1.733(1)-1.904(1) \AA(5))$. The shortest $\mathrm{Cr}-\mathrm{F}_{\text {eq }}$ bond in $\mathbf{5}$ (1.733(1) \AA) corresponds to the only $\mathrm{F}_{\text {eq }}$ atom that has no Xe---F bonding interaction (Table A6.5) and has a bond length that is comparable to the $\mathrm{Cr}-\mathrm{F}_{\mathrm{eq}}$ bond lengths of $\alpha-\mathrm{CrOF}_{4}\left(1.707(2)-1.729(2) \AA\right.$) and $\beta-\mathrm{CrOF}_{4}(1.7212(6)-$ $1.7372(6) \AA) .{ }^{65}$ The $\mathrm{Cr}-\mathrm{O}$ bond lengths $(1.567(1) \AA(3), 1.5438(9) \AA(4), 1.549(1) \AA$ (5)) are characteristic of $\mathrm{Cr}-\mathrm{O}$ double bonds, and are slightly longer than those of $\mathrm{CrOF}_{3}(1.542(5) \AA),{ }^{299} \alpha-\mathrm{CrOF}_{4}(1.539(3)-1.558(4) \AA)$, and $\beta-\mathrm{CrOF}_{4}(1.5490(7) \AA) .{ }^{65}$ The four equatorial fluorine ligands of the coordinated CrOF_{4} molecule are bent away from the $\mathrm{Cr}-\mathrm{O}$ double bond domain, as indicated by their large $\mathrm{O}-\mathrm{Cr}-\mathrm{F}_{\mathrm{eq}}$ angles $\left(97.01(5)^{-102.56(5)^{\circ}}(3), 97.32(4)^{-103.20(5)^{\circ}}\right.$ (4), 98.92(6)-105.63(7) ${ }^{\circ}$ (5)). The $\mathrm{F}-\mathrm{Cr}-\mathrm{F}$ and $\mathrm{F}---\mathrm{Cr}-\mathrm{F}$ bond angles of the $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ anions in $3-5$ are comparable.

9.2.2.5. $\left[\mathrm{CrOF}_{5}\right]^{2-}$. The primary chromium coordination sphere of $\left[\mathrm{CrOF}_{5}\right]^{2-}$ (Figure

 9.6, Table 9.6) in $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ (6) consists of four equatorial fluorine ligands and an axial fluorine ligand trans to the oxygen ligand. The $\mathrm{Cr}-\mathrm{F}_{\mathrm{ax}}$ bond (2.121(2) \AA) is significantly longer than the $\mathrm{Cr}-\mathrm{F}_{\text {eq }}$ bonds (1.814(2)-1.879(2) \AA). The elongated bond is attributed to the trans-influence of oxygen and to three Xe-$--\mathrm{F}_{\mathrm{ax}}$ contacts $(\mathrm{Xe}(1)---\mathrm{F}(1), 2.463(2) \AA$; $\mathrm{Xe}(2)--\mathrm{F}(1), 2.822(2) \AA ; \mathrm{Xe}(3)--\mathrm{F}(1)$, $2.826(2) \AA$) with the xenon atoms of neighboring cations (vide supra).Table 9.4. Experimental geometric parameters for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]$ (3) and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF}$ (4)

	(3)	(4)		(3)	(4)
Bond Lengths and Contacts (\AA)					
$\mathrm{Cr}(1)-\mathrm{O}(1)$	1.567(1)	1.5438(9)	$\mathrm{Cr}(1)-\mathrm{F}(3)$	1.7940(9)	1.7940(8)
$\mathrm{Cr}(1)-\mathrm{F}(1)$	1.8519(8)	1.8730(7)	$\mathrm{Cr}(1)-\mathrm{F}(4)$	1.8330(8)	1.8398(8)
$\mathrm{Cr}(1)-\mathrm{F}(2)$	1.8497(8)	1.8362(8)	$\mathrm{Cr}(1)--\mathrm{F}(1 \mathrm{~A})$	2.1177(8)	2.2237(8)
Bond Angles (deg)					
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(1)$	98.27(5)	98.85(4)	$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(4)$	97.11(5)	97.32(4)
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	97.01(5)	99.55(5)	$\mathrm{O}(1)-\mathrm{Cr}(1)--\mathrm{F}(1 \mathrm{~A})$	171.34(5)	169.75(4)
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$	102.56(5)	103.20(5)	$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(4)$	90.33(4)	89.89(4)
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	90.35(4)	86.03(4)	$\mathrm{F}(1)-\mathrm{Cr}(1)--\mathrm{F}(1 \mathrm{~A})$	73.14(4)	72.03(3)
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$	159.07(4)	157.85(4)	$\mathrm{F}(2)-\mathrm{Cr}(1)-\mathrm{F}(4)$	165.61(4)	163.06(4)
$\mathrm{F}(2)-\mathrm{Cr}(1)-\mathrm{F}(3)$	85.17(4)	88.28(4)	$\mathrm{F}(2)-\mathrm{Cr}(1)--\mathrm{F}(1 \mathrm{~A})$	84.38(4)	84.75(3)
$\mathrm{F}(3)-\mathrm{Cr}(1)-\mathrm{F}(4)$	89.10(4)	89.37(4)	$\mathrm{F}(4)-\mathrm{Cr}(1)--\mathrm{F}(1 \mathrm{~A})$	82.07(4)	78.35(3)
$\mathrm{F}(3)-\mathrm{Cr}(1)--\mathrm{F}(1 \mathrm{~A})$	86.07(4)	86.15(3)	$\mathrm{Cr}(1)--\mathrm{F}(1 \mathrm{~A})-\mathrm{Cr}(1 \mathrm{~A})$	106.83(4)	107.97(3)

Table 9.5. Experimental and calculated geometric parameters for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}(\mathbf{5})$ and $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}\left(\mathbf{5}^{\prime}\right)$

	exptl	calcd ${ }^{[a]}$			exptl	calcd $^{[a]}$	
Bond Lengths and Contacts (\AA)							
	(5)	(5)	(5')		(5)	(5)	(5')
$\mathrm{Cr}(1)-\mathrm{O}(1)$	1.549(1)	1.493	1.526	$\mathrm{Cr}(1)-\mathrm{F}(3)$	1.733(1)	1.725	1.779
$\mathrm{Cr}(1)-\mathrm{F}(1)$	1.904(1)	1.839	1.827	$\mathrm{Cr}(1)-\mathrm{F}(4)$	1.840(1)	1.833	1.771
$\mathrm{Cr}(1)-\mathrm{F}(2)$	1.854(1)	1.851	1.771	$\mathrm{Cr}(1)--\mathrm{F}(1 \mathrm{~A})$	$2.265(1)$	2.354	2.373
Bond Angles (deg)							
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(1)$	100.92(6)	105.53	100.79	$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(4)$	99.17(6)	100.70	102.63
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	98.92(6)	101.43	100.95	$\mathrm{O}(1)-\mathrm{Cr}(1)--\mathrm{F}(1 \mathrm{~A})$	172.40(6)	176.56	172.19
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$	105.63(7)	106.71	102.63	$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(4)$	87.20(5)	86.74	88.50
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	84.17(4)	84.44	88.53	$\mathrm{F}(1)-\mathrm{Cr}(1)--\mathrm{F}(1 \mathrm{~A})$	71.63(5)	71.06	71.40
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$	153.22(5)	147.64	156.58	$\mathrm{F}(2)-\mathrm{Cr}(1)-\mathrm{F}(4)$	161.13(4)	157.66	158.07
$\mathrm{F}(2)-\mathrm{Cr}(1)-\mathrm{F}(3)$	88.24(5)	86.58	87.05	$\mathrm{F}(2)-\mathrm{Cr}(1)--\mathrm{F}(1 \mathrm{~A})$	82.05(4)	78.79	79.24
$\mathrm{F}(3)-\mathrm{Cr}(1)-\mathrm{F}(4)$	92.01(5)	90.01	87.05	$\mathrm{F}(4)-\mathrm{Cr}(1)--\mathrm{F}(1 \mathrm{~A})$	79.31(4)	78.93	79.24
$\mathrm{F}(3)-\mathrm{Cr}(1)--\mathrm{F}(1 \mathrm{~A})$	81.91(5)	76.72	85.18	$\mathrm{Cr}(1)--\mathrm{F}(1)-\mathrm{Cr}(1 \mathrm{~A})$	108.37(5)	108.94	108.60

[a] The uPBE1PBE/aug-cc-pVDZ (Xe)-Def2-SVP (F, O, Cr) level of theory was used.

Table 9.6. Experimental and Calculated Geometric Parameters of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}(6)$ and $\left[\mathrm{CrOF}_{5}\right]^{2-}\left(\mathbf{6}^{\prime}\right)$

	exptl	calcd $^{[a]}$			exptl	calcd $^{[a]}$	
Bond Lengths and Contacts (\AA)							
	(6)	(6)	(6')		(6)	(6)	(6')
Cr1-O1	1.546(2)	1.491	1.559	Cr1-F3	1.879(2)	1.836	1.844
Cr1-F1	2.121(2)	2.233	1.887	Cr1-F4	1.872(2)	1.825	1.844
Cr1-F2	1.823(2)	1.807	1.844	Cr1-F5	1.814(2)	1.814	1.844
Bond Angles (deg)							
O1-Cr1-F1	176.93(11)	178.12	180.0	F1-Cr1-F5	81.62(8)	79.98	85.79
$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{F} 2$	100.59(11)	102.51	94.21	F2-Cr1-F3	90.16(8)	88.86	89.69
O1-Cr1-F3	99.21(10)	102.27	94.21	F2-Cr1-F4	160.40(8)	153.37	171.58
$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{F} 4$	98.65(11)	103.98	94.21	F2-Cr1-F5	90.98(9)	88.59	89.69
$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{F} 5$	100.57(11)	101.89	94.21	F3-Cr1-F4	83.14(8)	83.00	89.69
F1-Cr1-F2	81.45(8)	77.64	85.79	F3-Cr1-F5	159.62(8)	155.69	171.58
F1-Cr1-F3	78.43(8)	75.85	85.79	F4-Cr1-F5	89.09(9)	88.57	89.69
F1-Cr1-F4	79.17(8)	75.79	85.79				

[a] The uPBE1PBE/aug-cc-pVDZ (Xe)-Def2-SVP (F, O, Cr) level of theory was used.

The equatorial fluorine ligands of $\left[\mathrm{CrOF}_{5}\right]^{2-}$ interact with $\left[\mathrm{XeF}_{5}\right]^{+},\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$, and CrOF_{4} through a number of $\mathrm{Xe}---\mathrm{F}_{\text {eq }}$ and $\mathrm{Cr}---\mathrm{F}_{\text {eq }}$ contacts. These secondary bonding interactions account for the large $\mathrm{Cr}-\mathrm{F}_{\text {eq }}$ bond length range (1.814(2)-1.879(2) \AA) observed for $\left[\mathrm{CrOF}_{5}\right]^{2-}$, where shorter distances correspond to a single contact with the $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cation and longer distances correspond to contacts with the $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cations and two $\mathrm{Cr}---\mathrm{F}_{\text {eq }}$ contacts with the co-crystallized CrOF_{4} molecules. The $\mathrm{Cr}-\mathrm{O}$ bond length of $\left[\mathrm{CrOF}_{5}\right]^{2-}\left(1.546(2) \AA\right.$) is comparable to those of CrOF_{3} (1.542(5) $\AA),{ }^{299} \alpha-\mathrm{CrOF}_{4}(1.539(3)-1.558(4) \AA)$, and $\beta-\mathrm{CrOF}_{4}(1.5490(7) \AA) .{ }^{65}$

9.2.3. Raman Spectroscopy

The low-temperature Raman spectra of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ (5) and $\left.\left[\mathrm{XeF}_{5}\right] \mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ (6) are shown in Figures 9.7a and 9.7b, respectively. The Raman spectra were recorded on crystalline samples of $\mathbf{5}$ and $\mathbf{6}$ which were subsequently characterized by single-crystal X-ray structure determinations (see X-ray Crystallography). Spectral assignments were made by comparison with the calculated
vibrational frequencies and intensities of the energy-minimized, gas-phase geometries of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ (5) and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ (6) at the uPBE1PBE/aug-cc-pVDZ-Def2SVP level of theory. Vibrational assignments for $\mathrm{CrOF}_{4}, \mathrm{XeOF}_{4}$, and the $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cations were also aided by comparison with polymeric $\mathrm{CrOF}_{4},{ }^{65} \mathrm{XeOF}_{4} \cdot \mathrm{XeF}_{2},{ }^{68} \quad\left[\mathrm{XeF}_{5}\right]\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right],{ }^{121} \quad\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right],{ }^{316}$ $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{BF}_{4}\right],{ }^{316}\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{AuF}_{6}\right],{ }^{308}\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{PdF}_{6}\right],{ }^{308}$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right] .{ }^{121}$ The observed and calculated frequencies, their detailed assignments, and mode descriptions are provided in Tables A6.7 and A6.8. Except for the overestimated $v(\mathrm{Cr}-$ $\mathrm{O})$ and underestimated $v(\mathrm{Xe}-\mathrm{O})$ stretching frequencies, the experimental vibrational frequencies and their trends are well reproduced by the calculated frequencies.

A Raman spectrum (Figure A6.8) was also recorded on a crystalline sample obtained by reaction of four equivalents of XeF_{6} with one equivalent of $\mathbf{6}$. Unit cell parameters showed the sample contained primarily compound $\mathbf{2}$; however, the occurrence of a weak, broad band at $1002 \mathrm{~cm}^{-1}$ in the Raman spectrum suggested the sample was not entirely homogeneous. This band was assigned to a small amount of unreacted 6.
9.2.3.1. $\left.\left[\mathrm{XeF}_{5}\right]_{2} / \mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ (5). Several bands exhibit splittings in the Raman spectrum of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ (Table A6.7). Consequently, a factor-group analysis based on the X-ray crystal structure of 5 (Figure A6.9) was carried out using the "correlation method" ${ }^{169}$ to determine if these splittings arise from vibrational coupling within the crystallographic unit cell. A total of 102 vibrational modes are predicted for gas-phase $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ under C_{i} symmetry. The vibrations belong to the irreducible representations $\Gamma=51 A_{g}+51 A_{u}$, where the A_{g} and A_{u} modes are Raman- and infrared-active, respectively. The A_{g} and A_{u} representations of
gas-phase vibrational modes of $\mathbf{5}$ correlate to A irreducible representations under C_{1} site symmetry in the solid state and to A representations under the C_{1} unit cell symmetry. Therefore, all 102 modes are predicted to be both Raman and infrared active (Figure A6.9) under the unit cell symmetry. Consequently, any band splittings that occur in the solid-state Raman spectrum do not arise from vibrational coupling within the unit cell but are due to intramolecular vibrational coupling.

The band observed at $1026 \mathrm{~cm}^{-1}$ is assigned to the symmetric stretch, $\left[v\left(\mathrm{Cr}_{1}-\right.\right.$ $\left.\left.\mathrm{O}_{1}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)\right]$ of the $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ anion, and occurs at higher frequency than in $\mathrm{Cr}^{\mathrm{V}} \mathrm{OF}_{3}(\mathrm{Ra})\left(1000 \mathrm{~cm}^{-1}\right)^{301}$ and $\mathrm{Cs}\left[\mathrm{Cr}^{\mathrm{V}} \mathrm{OF}_{4}\right]$ (IR) $\left(1005 \mathrm{~cm}^{-1}\right) .{ }^{300}$ The calculated $v(\mathrm{Cr}-$ O) stretching frequency increases upon ion-pair formation (anion: $1148 \mathrm{~cm}^{-1}$; ion pair: $\left.1209 \mathrm{~cm}^{-1}\right)$. The asymmetric stretch, $\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)\right]$, is Raman inactive under C_{i} symmetry and was not observed. The diversity of $\mathrm{Cr}-\mathrm{F}$ and $\mathrm{Cr}--\mathrm{F}$ bond lengths results in $v(\mathrm{Cr}-\mathrm{F})$ stretching modes that range from 398 to $700 \mathrm{~cm}^{-1}$ (calcd: $369-731 \mathrm{~cm}^{-1}$) (Table A6.7). The band at $398 \mathrm{~cm}^{-1}$ involves the bridging F atoms and corresponds to $\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]$; however, the out-of-phase counterpart, $\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]$, which is predicted to be weak and to occur at much lower frequency ($231 \mathrm{~cm}^{-1}$), was not observed. The bands at 370 and $375 \mathrm{~cm}^{-1}$ are assigned to $\delta(\mathrm{FCrO})$ deformation modes (calcd: 358, 359, $365 \mathrm{~cm}^{-1}$) by comparison with analogous modes in α - and β $\mathrm{CrOF}_{4}{ }^{65}$

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Figure 9.7. Raman spectra of (a) $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ (5) and (b) $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ (6) recorded at $-140{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. The symbol (\dagger) denotes an instrumental artifact. Asterisks (${ }^{*}$) denote FEP sample tube bands.
9.2.3.2. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ (6). Unlike compound (5), band splittings were not observed in the Raman spectrum. The medium-intensity band at $1000 \mathrm{~cm}^{-1}$ (Table A6.8) is assigned to overlapping Cr-O stretches of CrOF_{4} (calcd: 1230, 1232 cm^{-1}) and $\left[\mathrm{CrOF}_{5}\right]^{2-}$ (calcd: $1192 \mathrm{~cm}^{-1}$), which is consistent with the very similar $\mathrm{Cr}-\mathrm{O}$ bond lengths of $\mathrm{CrOF}_{4}\left(1.526(3), 1.545(3) \AA\right.$) and $\left[\mathrm{CrOF}_{5}\right]^{2-}(1.545(3) \AA$) in the crystal structure of 6 . The calculated $v(\mathrm{Cr}-\mathrm{O})$ stretching frequency of $\left[\mathrm{CrOF}_{5}\right]^{2-}$ increases significantly upon ion-pair formation (free anion: $1009 \mathrm{~cm}^{-1}$; ion-pair: 1192 cm^{-1}). The bands between 700 and $750 \mathrm{~cm}^{-1}$ (calcd: $722-762 \mathrm{~cm}^{-1}$) are assigned to the $\mathrm{Cr}-\mathrm{F}$ stretching modes of the coordinated CrOF_{4} molecules and do not couple with the cation or anion modes. The $\mathrm{Cr}-\mathrm{F}_{\text {eq }}$ stretching modes of $\left[\mathrm{CrOF}_{5}\right]^{2-}$ occur at lower frequencies, which are consistent with the longer $\mathrm{Cr}-\mathrm{F}_{\text {eq }}$ bonds of the anion (1.813(2)-1.875(2) \AA) than in the coordinated CrOF_{4} molecules (1.734(2)-1.745(2) \AA) of $\mathbf{6}$. The latter stretching modes are coupled to the Xe-F stretching modes of the cations. The bands at $555-608 \mathrm{~cm}^{-1}$ (calcd: $562-602 \mathrm{~cm}^{-1}$) arise from the $\mathrm{Cr}-\mathrm{F}$ stretches of $\left[\mathrm{CrOF}_{5}\right]^{2-}$ and CrOF_{4}, which are coupled to the Xe-F stretches of both $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$. The band at $470 \mathrm{~cm}^{-1}$ (calcd: $469 \mathrm{~cm}^{-1}$) results from coupling of the $\mathrm{Cr}-\mathrm{Fe}_{\mathrm{e}}$ stretches of $\left[\mathrm{CrOF}_{5}\right]^{2-}$ to the $\mathrm{Xe}-\mathrm{Fe}_{\mathrm{e}}$ stretches of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$. The bands at $372-419 \mathrm{~cm}^{-1}$ are mainly assigned to $\delta(\mathrm{FCrO})$ and $\delta(\mathrm{FCrF})$ deformation modes (calcd: $357-413 \mathrm{~cm}^{-1}$) arising from both $\left[\mathrm{CrOF}_{5}\right]^{2-}$ and CrOF_{4}. The umbrella modes, $\delta_{\text {umb }}\left(\mathrm{CrF}_{4 \mathrm{e}}\right)$, of CrOF_{4} occur at lower frequencies (exptl: 343, $351 \mathrm{~cm}^{-1}$; calcd: $\left.344-354 \mathrm{~cm}^{-1}\right)$ and are coupled to the $\delta(\mathrm{FXeF})$ deformation modes of $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$.

9.2.4. COMPUTATIONAL RESULTS

9.2.4.1. Calculated Geometries

The optimized gas-phase structures of CrOF_{4} and $\left[\mathrm{CrOF}_{5}\right]^{-}$were optimized at the PBE1PBE/aug-cc-pVDZ (Xe)-Def2-SVP (F, O, Cr) level of theory and resulted in stationary points with all frequencies real (Tables A6.7-A6.10). The calculated frequencies of the $\left[\mathrm{CrOF}_{5}\right]^{-}$anion (Table A6.1, footnote g) are consistent with the observed values provided in the Syntheses section of the Results and Discussion and in Table A6.1.

The geometries of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$
$\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}(\mathbf{6}),\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}\left(\mathbf{5}^{\prime}\right)$, and $\left[\mathrm{CrOF}_{5}\right]^{2-}\left(\mathbf{6}^{\prime}\right)$ were fully optimized, with no imaginary frequencies, by employing a broken symmetry approach (uPBE1PBE/def2-TZVP), which used different orbitals for α - and β-spin electrons. In the case of the gas-phase $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ anion, the $\mathrm{Cr} \cdots \mathrm{Cr}$ distance was fixed to that calculated for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}(3.43 \AA$) to find a minimum. In the absence of this constraint, the $\left[\mathrm{CrOF}_{4}\right]^{-}$anions separated at this level of theory. The geometries of the triplet-state adducts and corresponding anions optimized, and a stability analysis showed that the final unrestricted wavefunctions were stable. The starting geometries used for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}, \quad\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}, \quad\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]-$ $\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$, and $\left[\mathrm{CrOF}_{5}\right]^{2-}$ were the crystallographic geometries obtained from their respective $\left[\mathrm{XeF}_{5}\right]^{+}$salts. All trends observed in the crystal structures are reproduced by the calculated geometries of $\mathbf{5}$ and $\mathbf{6}$, including the secondary bond lengths and their associated contact angles. The greatest discrepancies occur for the $\mathrm{Cr}-\mathrm{O}$ and $\mathrm{Cr}-\mathrm{F}$ bond lengths, which are underestimated, and for the $\mathrm{Xe}-\mathrm{F}$ bond lengths, which are overestimated.
9.2.4.1.1. $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ and $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}\left(5^{\prime}\right)$. The $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ anion optimized to C_{i} symmetry (Figure 9.8). The $\mathrm{Cr}-\mathrm{F}_{\mathrm{t}}$ bond that is trans to the $\mathrm{Cr}-\mathrm{F}_{\mathrm{b}}$ bridge bond is slightly shorter $(1.771 \AA)$ than the $\mathrm{Cr}-\mathrm{F}_{\mathrm{t}}$ bonds $(1.779 \AA)$ that are cis to the $\mathrm{Cr}-\mathrm{F}_{\mathrm{b}}$ bridge bond ($1.827 \AA$). As expected, the $\mathrm{Cr}-\mathrm{F}_{\mathrm{t}}$ bonds are significantly shorter than the $\mathrm{Cr}---\mathrm{F}_{\mathrm{b}}$ contact distances $(2.373 \AA)$. Upon salt formation, the $\mathrm{Cr}-\mathrm{F}_{\mathrm{b}}$ and $\mathrm{Cr}---\mathrm{F}_{\mathrm{b}}$ bonds of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ (1.839 and $2.354 \AA$) change very little (Figure 9.8). Three of the terminal $\mathrm{Cr}-\mathrm{F}_{\mathrm{t}}$ bonds are elongated due to $\mathrm{Xe}---\mathrm{F}$ contacts with XeOF_{4} and $\left[\mathrm{XeF}_{5}\right]^{+}$, whereas the $\mathrm{Cr}-\mathrm{F}_{\mathrm{t}}$ bond, with no significant contacts, and the $\mathrm{Cr}-\mathrm{O}$ bond are significantly shorter (1.725 and $1.493 \AA$, respectively) than in the isolated anion (1.779 and $1.526 \AA$). Bond length contractions are only observed for bonds where the fluorine/oxygen atoms do not have significant secondary bonding interactions. The contractions are induced by increased polarization of the $\mathrm{Cr}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Cr}-\mathrm{O}$ bonds when they are trans to terminal fluorine ligands that have short contacts with neighboring Xe or Cr atoms.
9.2.4.1.2. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ and $\left[\mathrm{CrOF}_{5}\right]^{2-}\left(6^{\prime}\right)$. The $\left[\mathrm{CrOF}_{5}\right]^{2-}$ anion optimized to $C_{4 \mathrm{v}}$ symmetry, with the $\mathrm{Cr}-\mathrm{F}_{\mathrm{ax}}$ bond being significantly longer ($1.887 \AA$) than the $\mathrm{Cr}-\mathrm{F}_{\text {eq }}$ bonds ($1.844 \AA$) (Figure 9.9). The $\mathrm{Cr}-\mathrm{O}$ bond ($1.559 \AA$) is also longer than that of the calculated $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ anion (1.526 \AA). Unlike $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$, the $\left[\mathrm{CrOF}_{5}\right]^{2-}$ anion of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ is severely distorted in the gasphase ion-pair (Figure 9.9), with the $\mathrm{Cr}^{-}-\mathrm{F}_{\mathrm{ax}}$ bond (2.233 \AA) being significantly elongated in comparison with the free $\left[\mathrm{CrOF}_{5}\right]^{2-}$ anion ($1.887 \AA$). The elongation results from interactions between F_{ax} and $\mathrm{Xe}_{1}(2.351 \AA), \mathrm{Xe}_{2}(2.752 \AA)$, and Xe_{3} (3.047 \AA), and is also accompanied by shortening of the $\mathrm{Cr}-\mathrm{F}_{\text {eq }}$ bonds (1.807-1.836 \AA), increases in the $\mathrm{O}-\mathrm{Cr}-\mathrm{F}_{\text {eq }}$ angles ($101.9-102.5^{\circ}$ relative to 94.5° in $\mathbf{6}^{\prime}$), and
decreases in the $\mathrm{F}_{\mathrm{ax}}-\mathrm{Cr}-\mathrm{F}_{\text {eq }}$ angles ($75.8-80.0^{\circ}$ relative to 85.8° in $\mathbf{6}^{\prime}$). As observed for gas-phase $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$, the $\mathrm{Cr}-\mathrm{O}$ bond of gas-phase $\left[\mathrm{CrOF}_{5}\right]^{2-}(1.491 \AA)$ in $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ is significantly shorter than in the free $\left[\mathrm{CrOF}_{5}\right]^{2-}$ anion ($1.559 \AA$).

b

Figure 9.8. Calculated geometries of (a) $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ and (b) $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$. The uPBE1PBE/aug-ccpVDZ (Xe)-Def2-SVP (F, O, Cr) level of theory was used.

C

Figure 9.9. Calculated geometries of (a) $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$, (b) the coordination environment around $\left[\mathrm{CrOF}_{5}\right]^{2-}$, and (c) $\left[\mathrm{CrOF}_{5}\right]^{2-}$. The uPBE1PBE/augccpVDZ (Xe)-Def2-SVP (F, O, Cr) level of theory was used.

9.3. Conclusions

The reactions of XeF_{6} with CrOF_{4} in melts and in the oxidatively resistant solvents, aHF and CFCl_{3}, resulted in the formation of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}(\mathbf{1})$, $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{CrF}_{6}\right] \quad$ (2), $\quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \quad$ (3), $\quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF}$
$\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ (5), and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ (6), which were characterized by LT single-crystal X-ray diffraction. Reduction of $\mathrm{Cr}(\mathrm{VI})$ to $\mathrm{Cr}(\mathrm{V})$
and $\mathrm{Cr}(\mathrm{VI})$ is accompanied by F_{2} elimination, a common feature of this chemistry. The reaction of XeF_{6} with CrOF_{4} to give $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ was shown by LT Raman spectroscopy to proceed through the intermediate $\operatorname{Cr}(\mathrm{VI})$ salt, $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$. The syntheses of the salts provide the first X-ray crystal structures of the previously known $\left[\mathrm{CrOF}_{5}\right]^{2-}$ and the novel $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ anions. The $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cations of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4},\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{CrF}_{6}\right]$, and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]$ interact with their anions and CrOF_{4} through $\mathrm{Xe}---\mathrm{F}$ and $\mathrm{Cr}---\mathrm{F}$ secondary bonding interactions to give well-separated chains in their crystal structures, whereas the solidstate structures of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ are comprised of well-isolated formula units that have no significant intermolecular interactions. The $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ anion has C_{i} symmetry and consists of two symmetryequivalent $\left[\mathrm{CrOF}_{4}\right]^{-}$anions that interact through two asymmetric $\mathrm{Cr}---\mathrm{F}_{\mathrm{b}}-\mathrm{Cr}$ bridges. The $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ salts were also characterized by low-temperature Raman spectroscopy. Quantum-chemical calculations were carried out for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}, \quad\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$, $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$, and $\left[\mathrm{CrOF}_{5}\right]^{2-}$ in order to obtain their gas-phase optimized geometries, and to aid in their vibrational frequency assignments. Other than the $\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right]^{-}$and $\left[\mu-\mathrm{F}\left(\mathrm{OsO}_{3} \mathrm{~F}_{2}\right)\right]^{-}$anions, the $\left[\mathrm{CrOF}_{5}\right]^{-}$, $\left[\mathrm{CrOF}_{5}\right]^{2-}$, and $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ anions are the only other high-oxidation-state transition-metal oxide fluoride anions that are known to form stable salts with noble-gas cations.

CHAPTER 10

Syntheses and Structural Characterizations of $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ Salts

10.1. Introduction.

Until recently, the $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+},{ }^{267} \mathrm{~K}^{+}, \mathrm{Rb}^{+}$, and Cs^{+}salts of $\left[\mathrm{CrO}_{3} \mathrm{~F}\right]^{-},{ }^{265}$ prepared by reaction of CrO_{3} with $\mathrm{MF}\left(\mathrm{M}=\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}\right)$, provided the only crystallographically characterized examples of a $\mathrm{Cr}(\mathrm{VI})$ oxide fluoride anion. Furthermore, although salts of $\left[\mathrm{MO}_{3} \mathrm{~F}_{2}\right]^{2-}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ are known, ${ }^{317,318}$ the Cr analogue is unknown. In Chapters 9 and 11, the syntheses of high-oxidation-state $\mathrm{Cr}(\mathrm{VI})$ and $\mathrm{Cr}(\mathrm{V})$ oxide fluorides exploited the fluorobasicity of XeF_{6} and the oxidative resistance of the $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cations to prepare the first examples of stable $\left[\mathrm{Cr}^{\mathrm{VI}} \mathrm{OF}_{5}\right]^{-},\left[\mathrm{Cr}^{\mathrm{V}} \mathrm{OF}_{5}\right]^{2-}$, and $\left[\mathrm{Cr}_{2}{ }_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$ salts to be characterized by SCXRD, namely; $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{Cr}^{\mathrm{VI}} \mathrm{OF}_{5}\right],{ }^{243}\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}^{\mathrm{V}}{ }_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right],\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}^{\mathrm{V}} \mathrm{O}_{2} \mathrm{O}_{2}\right] \cdot 2 \mathrm{HF}$, $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2}{ }_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{Cr}^{\mathrm{V}} \mathrm{OF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4} .{ }^{244}$ The salts were prepared by the reaction of XeF_{6} with CrOF_{4} in melts and in the oxidatively resistant solvents aHF, CFCl_{3}, and Freon-114 under rigorously anhydrous reaction conditions. ${ }^{244}$ Like $\left[\mathrm{MO}_{3} \mathrm{~F}_{2}\right]^{2-}$, salts of $\left[\mathrm{MOF}_{6}\right]^{2-}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ have been reported but $\left[\mathrm{CrOF}_{6}\right]^{2-}$ is unknown.

No crystal structures have been reported which contain $\mathrm{Cr}(\mathrm{VI})$ oxyfluoroanions derived from $\mathrm{CrO}_{2} \mathrm{~F}_{2}$, namely the $\left[\mathrm{CrO}_{2} \mathrm{~F}_{3}\right]^{-}$and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ anions. This contrasts with Mo and W, where salts of $\left[\mathrm{M}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-286,319,320}$ and $\left[\mathrm{MO}_{2} \mathrm{~F}_{4}\right]^{2-321-324}$ have been characterized by SCXRD. The $\left[\mathrm{M}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ dianions are dimers of the $\left[\mathrm{MO}_{2} \mathrm{~F}_{3}\right]^{-}$anions which have cis-dioxo arrangements and fluorine-bridged structures. ${ }^{286,319,320}$ The fluoride-ion donor-acceptor properties of chromyl fluoride $\left(\mathrm{CrO}_{2} \mathrm{~F}_{2}\right)$
were studied by Gard et al. in 1975 and 1978. The products of the reactions of $\mathrm{CrO}_{2} \mathrm{~F}_{2}$ with the fluoride-ion donors $\mathrm{M}^{\prime} \mathrm{F}\left(\mathrm{M}^{\prime}=\left[\mathrm{NO}^{+},{ }^{268}\left[\mathrm{NO}_{2}\right]^{+},{ }^{268} \mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+} \text {, and } \mathrm{Cs}^{+}\right)^{269}\right.$ and $\mathrm{M}^{\prime \prime} \mathrm{F}_{2}\left(\mathrm{M}^{\prime \prime}=\mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}\right) ;{ }^{269}$ the Lewis acids $\mathrm{SO}_{3}, \mathrm{TaF}_{5}, \mathrm{SbF}_{5}$, and $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$, as well as the salts $\mathrm{NaOOCCF}_{3}$ and NaNO_{3} were characterized by vibrational spectroscopy, ${ }^{268,269}$ powder X-ray diffraction, ${ }^{269}$ magnetic susceptibility measurements, ${ }^{269}$ and chemical analysis. ${ }^{268,269}$ Although these studies resulted in the RT characterizations of $[\mathrm{NO}]\left[\mathrm{CrO}_{2} \mathrm{~F}_{3}\right],{ }^{268} \quad\left[\mathrm{NO}_{2}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{3}\right],{ }^{268} \quad \mathrm{M}^{\prime} 2\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$, $\mathrm{M}^{\prime \prime}\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right], \quad \mathrm{CrO}_{2}\left(\mathrm{CF}_{3} \mathrm{COO}\right)_{2}, \quad \mathrm{CrO}_{2}\left(\mathrm{SO}_{3} \mathrm{~F}\right)_{2}, \quad\left[\mathrm{CrO}_{2} \mathrm{~F}\right]\left[\mathrm{TaF}_{6}\right], \quad\left[\mathrm{CrO}_{2} \mathrm{~F}\right]\left[\mathrm{SbF}_{6}\right]$, $\left[\mathrm{CrO}_{2} \mathrm{~F}\right]\left[\mathrm{Sb}_{2} \mathrm{~F}_{11}\right], \mathrm{Na}_{2}\left[\mathrm{CrO}_{2} \mathrm{~F}_{2}\left(\mathrm{CF}_{3} \mathrm{COO}\right)_{2}\right]$, and $\mathrm{Na}_{2}\left[\mathrm{CrO}_{2} \mathrm{~F}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right] ;$; ${ }^{269}$ no detailed structural studies, including SCXRD structure determinations, have been forthcoming for these compounds.

The SCXRD characterizations of $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ salts alone would provide a significant extension of the very limited chemistry of $\mathrm{Cr}(\mathrm{VI})$ oxyfluorides, complete the series of structurally characterized $\left[\mathrm{M}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ and $\left[\mathrm{MO}_{2} \mathrm{~F}_{4}\right]^{2-}(\mathrm{M}=\mathrm{Cr}$, Mo, W) anions, and the series of known $\mathrm{Cr}(\mathrm{VI})$ oxyfluoro-anions; $\left[\mathrm{CrO}_{3} \mathrm{~F}\right]^{-},\left[\mathrm{CrOF}_{5}\right]^{-}$, $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}\left(\left[\mathrm{CrO}_{2} \mathrm{~F}_{3}\right]^{-}\right.$dimer $)$, and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$. This provided impetus to investigate the reaction of $\mathrm{CrO}_{2} \mathrm{~F}_{2}$ with the fluoride-ion donor, XeF_{6}, with the aim to synthesize and structurally characterize $\left[\mathrm{XeF}_{5}\right]^{+}$and/or $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$salts of the $\left[\mathrm{CrO}_{2} \mathrm{~F}_{3}\right]^{-}$and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ anions by LT Raman spectroscopy, LT SCXRD, and QC calculations.

10.2. Results and Discussion

10.2.1. Syntheses

Reaction product distributions were monitored by recording the LT Raman spectra of precipitated solids under frozen aHF solvent or dry solids obtained from reactions in melts.

10.2.1.1. $\quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \quad$ (1), $\left.\quad\left[\mathrm{XeF}_{5}\right]_{2} / \mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF} \quad$ (2), and

 $\left.\left[\mathrm{XeF}_{5}\right]_{2} / \mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ (3).The reaction of a 3.7 : 1.0 molar ratio of XeF_{6} with $\mathrm{CrO}_{2} \mathrm{~F}_{2}$ in aHF solvent at $22{ }^{\circ} \mathrm{C}$ followed by slow cooling to $-47^{\circ} \mathrm{C}$ over 6 h resulted in the formation of amber, block-shaped crystals of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$ (1) and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$ (2) (Eq. 10.1), and trace amounts of light yellow $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ (3), where the $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ dianion is the dimer of the $\left[\mathrm{CrO}_{2} \mathrm{~F}_{3}\right]^{-}$anion.

Four equivalents of HF were incorporated into the crystal lattice of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$ when this salt was crystallized from aHF to give 2 (Eq. 10.2).

$$
\begin{align*}
& 2 \mathrm{XeF}_{6}+2 \mathrm{CrO}_{2} \mathrm{~F}_{2} \longrightarrow 2\left[\mathrm{XeF}_{5}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{3}\right] \longrightarrow\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \tag{10.1}\\
& {\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]+4 \mathrm{HF} \longrightarrow\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}} \tag{10.2}
\end{align*}
$$

Samples of XeF_{6} in aHF solvent hydrolyzed in the presence of trace amounts of $\mathrm{H}_{2} \mathrm{O}$ which diffused into the reaction vessels over prolonged periods of sample storage at $-78{ }^{\circ} \mathrm{C}$ to form XeOF_{4} and HF (Eqs. 10.3 and 10.4). Yellow to amber, block-shaped crystals of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ (3) grew from a sample which contained a 2.5 : 1.0 molar ratio of $\mathrm{XeF}_{6}: \mathrm{CrO}_{2} \mathrm{~F}_{2}$ in aHF that had been stored at $-78{ }^{\circ} \mathrm{C}$ for approximately one week. The reaction mixture was subsequently warmed to $22{ }^{\circ} \mathrm{C}$ followed by slow cooling to $-30^{\circ} \mathrm{C}$ over ca. 2 h . The formation of $\mathbf{3}$ is described by Eq. 10.5, where two equivalents of XeOF_{4} are incorporated into the crystal lattice of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$ upon crystallization from aHF.

$$
\begin{equation*}
\mathrm{XeF}_{6}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{XeOF}_{4}+2 \mathrm{HF} \tag{10.3}
\end{equation*}
$$

and/or

$$
\begin{align*}
& {\left[\mathrm{XeF}_{5}\right]^{+}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{XeOF}_{4}+\left[\mathrm{H}_{2} \mathrm{~F}\right]^{+}} \tag{10.4}\\
& {\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]+2 \mathrm{XeOF}_{4} \longrightarrow\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}} \tag{10.5}
\end{align*}
$$

10.2.1.2. $\left.\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \boldsymbol{F}_{11}\right] / \mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ (4). Reaction of a 1.2 : 1.0 molar mixture of XeF_{6} and $\mathrm{CrO}_{2} \mathrm{~F}_{2}$ in a melt at ca. $50{ }^{\circ} \mathrm{C}$ yielded the mixed cation salt $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ (4) (Eqs. 10.6 and 10.7).

$$
\begin{align*}
& 2 \mathrm{XeF}_{6}+2 \mathrm{CrO}_{2} \mathrm{~F}_{2} \longrightarrow\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \tag{10.6}\\
& {\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]+\mathrm{XeF}_{6} \longrightarrow\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]+\mathrm{CrO}_{2} \mathrm{~F}_{2}} \tag{10.7}
\end{align*}
$$

Amber colored, plate-shaped crystals of $\mathbf{4}$ were grown from the melt when it was slowly cooled from 50 to $22^{\circ} \mathrm{C}$ overnight in a water bath.

10.2.2. X-ray Crystallography

Details of data collection and crystallographic information pertaining to $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$ (1), $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$ (2), $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ (3), and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ (4) are provided in Table 10.1. The experimental geometric parameters of $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$in $\mathbf{1 - 4}$ (Table A7.1-A7.5 of Appendix 7) are comparable to those of other fluoro- and oxyfluoro-anion salts of $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+121,243,244,307-312}$ and are not discussed. The geometric parameters of XeOF_{4} in 3 are comparable to those in $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}{ }^{244}$ and $\mathrm{XeOF}_{4} \cdot \mathrm{XeF}_{2}{ }^{68}$ and are also not discussed.

10.2.2.1. $\quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \quad$ (1), $\left.\quad\left[\mathrm{XeF}_{5}\right]_{2} / \mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF} \quad$ (2), and

 $\left[\mathrm{XeF}_{5} \mathbf{J}_{2} / \mathrm{Cr}_{2} \mathrm{O}_{4} \boldsymbol{F}_{6}\right] \cdot \mathbf{2 X e O F} \mathbf{F}_{4}$ (3). The $\left[\mathrm{XeF}_{5}\right]^{+}$cations in $\mathbf{1 - 3}$ interact with their respective anions and with coordinated $\mathrm{HF}(\mathbf{2})$ or XeOF_{4} (3) by means of primarily electrostatic Xe---F secondary bonds (Tables A7.1-A7.3) that avoid the stereo-active Xe VELP. The $\left[\mathrm{XeF}_{5}\right]^{+}$cation in $\mathbf{1}$ has a total coordination number of eight, with five primary $\mathrm{Xe}-\mathrm{F}$ bonds and three $\mathrm{Xe}---\mathrm{F}_{\mathrm{Cr}}$ secondary bonding interactions with the F atoms of the anion. Coordination of four HF molecules in $\mathbf{2}$ results in hydrogen-Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table 10.1. Summary of X-ray crystal data and refinement results for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$ (1), $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$ (2), $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ (3), and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ (4)

	1	2	3	4
space group	$P 21 / n$	$P 2.1 / c$	$P \overline{1}$	P2/c
$a(\AA)$	6.347(2)	7.6348(5)	7.6308(8)	17.560(5)
$b(\AA)$	11.968(4)	10.6633(6)	8.4310(9)	12.610(4)
$c(\AA)$	8.691(4)	10.3706(6)	9.3022(10)	15.550(6)
α (deg)	90	90	116.654(4)	90
β (deg)	99.373(18)	104.519(3)	90.954(3)	116.321(11)
γ (deg)	90	90	97.757(4)	90
$V\left(\AA^{3}\right)$	651.4(4)	817.33(9)	527.95(10)	3086.3(17)
Z	2	2	2	8
MW ${ }^{[a]}$	734.60	814.63	593.60	857.90
calcd density ${ }^{[b]}$	3.746	3.310	3.734	3.693
$T\left({ }^{\circ} \mathrm{C}\right)$	-173	-173	-173	-173
$\mu^{[\mathrm{c}]}$	6.999	5.629	7.574	7.438
$R_{1}{ }^{[d]}$	0.0453	0.0287	0.0226	0.0991
$w R_{2}{ }^{\text {[e] }}$	0.1256	0.0726	0.0584	0.2684

Figure 10.1. (a) The X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$ (1) with thermal ellipsoids drawn at the 50% probability level. Secondary Xe---F bonds are indicated by dashed lines. (b) The gas-phase geometry of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]\left(\mathbf{1}^{\prime}\right)$ was calculated at the PBE1PBE/Def2-SVP level of theory.
bonded HF bridges between the cations and dianion. One HF molecule forms a Xe--F_{H} secondary bond with the Xe atom of $\left[\mathrm{XeF}_{5}\right]^{+}(2.7868(11) \AA)$ and a H-bond with a neighboring HF molecule ($\mathrm{F}_{\mathrm{H}} \cdots \mathrm{F}_{\mathrm{H}}, 2.5431(17) \AA$). The additional Xe--- F_{H} interactions reduce the Lewis acidities of the $\left[\mathrm{XeF}_{5}\right]^{+}$cations so that the $\mathrm{Xe}---\mathrm{F}_{1,1 \mathrm{~A}}$ secondary bonds formed with the bridging fluorines $\left(\mathrm{F}_{1,1 \mathrm{~A}}\right)$ of the dianion in $2(2 \times 3.1624(9) \AA$) are significantly longer than in $1(2 \times 2.762(3) \AA$). The proximate HF molecules interact through a $\mathrm{H}_{\mathrm{F}---\mathrm{F}_{1,1 \mathrm{~A}}}$ secondary bonds with the bridging $\mathrm{F}_{1,1 \mathrm{~A}}$ atoms of $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}(\mathrm{F} \cdots \mathrm{F}, 2 \times 2.4774(15) \AA$) and serve to complete the Xe---F-H---F-H--$\mathrm{F}_{1,1 \mathrm{~A}}$ bridges between the cations and dianion.

Figure 10.2. (a) The X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$ (2) with thermal ellipsoids drawn at the 50% probability level. Secondary Xe---F bonds are indicated by dashed lines. (b) The gas-phase geometry of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$ (2') was calculated at the PBE1PBE/Def2-SVP level of theory.

The coordinated XeOF_{4} molecules of $\mathbf{3}$ also bridge the cations and dianion
 $-\mathrm{F}_{2,2 \mathrm{~A}}(2 \times 3.0036(9) \AA)$ and $\left.\mathrm{Xe}_{2,2 \mathrm{~A}---\mathrm{F}_{3,3 \mathrm{~A}}(2 \times 3.2685(9)} \AA\right)$ secondary bonds. The
secondary $\mathrm{Xe}_{2,2 \mathrm{~A}}--\mathrm{F}_{1,1 \mathrm{~A}-3,3 \mathrm{~A}}$ bonds are directed towards the open square face of the square-pyramidal XeOF_{4} molecules and avoid the stereo-active VELPs of $\mathrm{Xe}_{2,2 \mathrm{~A}}$ that are trans to the $\mathrm{Xe}_{2,2 \mathrm{~A}}-\mathrm{O}$ bonds.

Figure 10.3. (a) The X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ (3) with thermal ellipsoids drawn at the 50% probability level. Secondary Xe---F bonds are indicated by dashed lines. (b) The gas-phase geometry of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ ($\mathbf{3}^{\prime}$) was calculated at the PBE1PBE/Def2-SVP level of theory.

The dimeric $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ dianion (Figures 10.1-10.3, Tables A7.1-A7.3) is comprised of two symmetry-equivalent $\left[\mathrm{CrO}_{2} \mathrm{~F}_{3}\right]^{-}$anions that have cis-dioxo arrangements of terminal $\mathrm{Cr}-\mathrm{O}$ bonds and bridge through two fluorine atoms, F_{1} and $\mathrm{F}_{1 \mathrm{~A}}$. The primary coordination spheres of the $\mathrm{Cr}(\mathrm{VI})$ atoms may be described in terms of $\mathrm{AX}_{2} \mathrm{Y}_{4}$ VSEPR arrangements ${ }^{88}$ that give rise to a distorted octahedral coordination spheres around each $\mathrm{Cr}(\mathrm{VI})$ atom (A) that consists of two $\mathrm{Cr}-\mathrm{O}$ double bonds that are cis to one another (X) and four $\mathrm{Cr}-\mathrm{F}$ single bonds (Y), where two $\mathrm{Cr}-\mathrm{F}$ bonds are
trans to one another and two bridging $\mathrm{Cr}-\mathrm{F}$ bonds are cis to one another. The $\mathrm{Cr}-\mathrm{F}_{2,3}$ bonds are bent away from the $\mathrm{Cr}-\mathrm{O}$ double bonds, as indicated by $\mathrm{O}-\mathrm{Cr}-\mathrm{F}_{2,3}$ bond angles that are greater than 90°; (93.2(2)-97.1(2) (1), 95.12(5)-97.66(5) (2), 94.26(5)$96.93(5)^{\circ}(3)$. The more open angles are attributed to bond-pair double-bond-pair repulsions.

The Cr-O bond lengths (1.585(5), 1.590(5) (1), 1.5765(11), 1.5822(11) (2), $1.5758(10), 1.5822(10)(3) \AA$) have significant double-bond character but are somewhat elongated relative to those of the $\operatorname{Cr}(\mathrm{V})$ oxyfluoro-anion salts $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \quad(1.567(1) ~ \AA \AA), \quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF} \quad(1.5438(9) \quad \AA), \quad$ and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4} \quad(1.549(1) ~ \AA) ; 244$ the $\mathrm{Cr}(\mathrm{VI})$ oxyfluoro-anion salt $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\left(1.565(1) \AA\right.$); and the neutral $\mathrm{Cr}(\mathrm{VI})$ oxide fluorides $\alpha-\mathrm{CrOF}_{4}$ (1.539(3)-1.558(4) $\AA),{ }^{65} \beta-\mathrm{CrOF}_{4}(1.5490(7) \AA),{ }^{65}$ and $\mathrm{CrO}_{2} \mathrm{~F}_{2}(1.574(1), 1.576(1)$ Å). ${ }^{325}$

The trans-influences of the $\mathrm{Cr}-\mathrm{O}$ bonds result in greater degrees of ionic character in the asymmetric $\mathrm{Cr}-\mathrm{F}_{1,1 \mathrm{~A}}$ bridge bonds (2.065(4), 2.082(5) (1), 2.1146(9), $2.1314(9)(2)$, and $2.0660(8), 2.1337(8)(3) \AA$), that are cis to one another and trans to $\mathrm{Cr}-\mathrm{O}$ bonds. The $\mathrm{Cr}-\mathrm{F}_{1,1 \mathrm{~A}}$ bridge bonds are significantly longer than the terminal $\mathrm{Cr}-$ $\mathrm{F}_{2,3}$ bonds (1.861(4), 1.870(4)(1), 1.8451(9), 1.8509(9)(2), and 1.8488(8), 1.8668(8) (3) \AA), which is consistent with their relative degrees of covalent character, $\mathrm{Cr}-\mathrm{F}_{2,3}>$ $\mathrm{Cr}-\mathrm{F}_{1,1 \mathrm{~A}}$. The geometries of the $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ dianions in $\mathbf{1 - 3}$ are isostructural with $\left[\mathrm{Mo}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ in its protonated piperazine $\left(\left[o-\mathrm{N}_{2} \mathrm{C}_{4} \mathrm{H}_{12}\right]^{+}\right),{ }^{320}$ pyridine $\left(\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}\right]^{+}\right),{ }^{320}$ and N-butylpyridinium $\left(\left[\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}\right]^{+}\right)^{286}$ salts, and $\left[\mathrm{W}_{2} \mathrm{O}_{4} \mathrm{~F} 6\right]^{2-}$ in $[\mathrm{Na}-15$-crown$5]_{2}\left[\mathrm{~W}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{CH}_{3} \mathrm{CN} .{ }^{319}$

Table 10.2. Experimental and Calculated ${ }^{[2]}$ Geometric Parameters for $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ in

	$\begin{gathered} 1 \\ \text { exptl } \end{gathered}$	$\begin{gathered} \mathbf{1}^{\prime} \\ \text { calcd } \\ \quad \text { Bo } \end{gathered}$	$\begin{gathered} 2 \\ \text { exptl } \\ \text { d Lengths }(\AA) \text {) } \end{gathered}$	$\begin{gathered} 2^{\prime} \\ \text { calcd } \end{gathered}$	$\begin{gathered} 3 \\ \text { exptl } \end{gathered}$	$\begin{gathered} 3^{\prime} \\ \text { calcd } \end{gathered}$
$\mathrm{Cr}(1)-\mathrm{O}(1)$	1.585(5)	1.520	1.5765(11)	1.5202	1.5822(10)	1.5185
$\mathrm{Cr}(1)-\mathrm{O}(2)$	1.590(5)	1.520	1.5822(11)	1.5202	$1.5758(10)$	1.5185
$\mathrm{Cr}(1)-\mathrm{F}(1)$	2.082(5)	2.135	2.1146 (9)	2.1501	2.0660 (8)	2.1499
$\mathrm{Cr}(1)-\mathrm{F}(1 \mathrm{~A})$	2.065(4)	2.135	2.1314(9)	2.1501	$2.1337(8)$	2.1499
$\mathrm{Cr}(1)-\mathrm{F}(2)$	1.861(4)	1.831	1.8509(9)	1.8180	1.8488(8)	1.8281
$\mathrm{Cr}(1)-\mathrm{F}(3)$	1.870(4)	1.831	1.8451(9)	1.8180	1.8668(8)	1.8281

Bond Angles $\left({ }^{\circ}\right)$						
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{O}(2)$	$104.5(2)$	105.5	$104.82(6)$	105.74	$104.69(6)$	105.64
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(1)$	$163.4(2)$	160.9	$161.65(5)$	161.71	$160.23(5)$	161.59
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(1 \mathrm{~A})$	$93.4(2)$	92.7	$91.40(5)$	92.50	$90.00(5)$	92.44
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	$94.2(2)$	95.6	$95.12(5)$	96.94	$97.00(5)$	96.90
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$	$96.0(2)$	98.7	$97.66(5)$	98.45	$94.26(5)$	98.64
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(1)$	$91.5(3)$	92.7	$93.43(5)$	92.50	$94.75(5)$	92.44
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(1 \mathrm{~A})$	$161.2(3)$	160.9	$163.75(5)$	161.71	$165.26(5)$	161.59
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(2)$	$97.1(2)$	98.7	$96.67(5)$	98.45	$96.93(5)$	98.64
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(3)$	$93.2(2)$	95.6	$95.73(5)$	96.94	$96.73(5)$	96.90
$\mathrm{~F}(1)-\mathrm{Cr}(1)-\mathrm{F}(1 \mathrm{~A})$	$71.29(14)$	70.0	$70.39(4)$	69.30	$70.69(4)$	69.77
$\mathrm{~F}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	$79.18(18)$	75.5	$80.67(4)$	78.70	$84.03(4)$	82.26
$\mathrm{~F}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$	$87.36(18)$	85.1	$82.09(4)$	80.27	$79.63(3)$	76.56
$\mathrm{~F}(1 \mathrm{~A})-\mathrm{Cr}(1)-\mathrm{F}(2)$	$87.31(18)$	85.1	$82.59(4)$	80.27	$79.74(3)$	76.56
$\mathrm{~F}(1 \mathrm{~A})-\mathrm{Cr}(1)-\mathrm{F}(3)$	$78.85(18)$	75.5	$80.87(4)$	78.70	$83.16(3)$	82.26
$\mathrm{~F}(2)-\mathrm{Cr}(1)-\mathrm{F}(3)$	$163.23(15)$	156.4	$159.29(4)$	154.37	$159.47(4)$	154.15
$\mathrm{Cr}(1)-\mathrm{F}(1)-\mathrm{Cr}(1 \mathrm{~A})$	$108.71(14)$	110.0	$110.24(5)$	110.70	$109.31(4)$	110.23

[a] PBE1PBE/Def2-SVP.
10.2.2.2. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ (4). The unit cell of 4 is comprised of two crystallographically inequivalent structural units that are well separated from one another (Table 10.3, Figures 10.4 and 10.5). The structural units stack in columns along the c-axis of the unit cell, and these columns pack in the $b c$-plane to form ordered layers. The spaces between the layers are solely occupied by F-atoms bound to Xe and provide a "slippery" interface over which adjacent layers may translate
relative to one another. This likely serves as an interface that accounts for why $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ crystals have a propensity to twin and exhibit diffuse X-ray scattering indicative of a loss of order in one dimension. Both structural units in the crystal structure of $\mathbf{4}$ exhibit the same geometric trends, thus only one unit considered in the ensuing discussion.

Figure 10.4. A packing diagram showing the unit cell of 4 viewed along the c-axis of the unit cell.

The structural units in $\mathbf{4}$ are intimately ion-paired salts in which the $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ dianions form short Xe---FCr secondary bonds (2.368(13)-2.830(13) \AA) with $\left[\mathrm{XeF}_{5}\right]^{+}$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$that avoid the stereo-active VELPs on their Xe atoms (Figure 10.5). The $\left[\mathrm{XeF}_{5}\right]^{+}$cations form two short $\mathrm{Xe}_{1---\mathrm{F}_{1,2}}$ secondary bonds with $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ (2.414(12) and $2.447(12) \AA$) and one longer bond with $\mathrm{F}_{3}\left(2.687(14) \AA\right.$). The $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cations also form two short $\mathrm{Xe}_{2,3} 3_{---\mathrm{F}_{1,2}}$ secondary bonds (2.417(11) and 2.544(13) \AA) and two longer $\mathrm{Xe}_{2,3}--\mathrm{F}_{4}$ bonds (2.779(12) and $2.830(13) \AA$). The Xe---F bond lengths reflect the relative fluorobasicities of the F atoms in $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$, which increase in the order $\mathrm{F}_{4} \approx \mathrm{~F}_{3}<\mathrm{F}_{1} \approx \mathrm{~F}_{2}$.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table 10.3. Experimental and Calculated ${ }^{[\text {al }]}$ Geometric Parameters for $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ exptl (4)
calcd (4')

exptl (4) Bond Len				calcd (4)
$\mathrm{Cr}(1)-\mathrm{O}(1)$	1.504(16)	$\mathrm{Cr}(2)-\mathrm{O}(3)$	1.560(16)	1.5198
$\mathrm{Cr}(1)-\mathrm{O}(2)$	$1.595(16)$	$\mathrm{Cr}(2)-\mathrm{O}(4)$	1.520(17)	1.5198
$\mathrm{Cr}(1)-\mathrm{F}(1)$	2.105(12)	$\mathrm{Cr}(2)-\mathrm{F}(21)$	2.178(12)	2.2079
$\mathrm{Cr}(1)-\mathrm{F}(2)$	2.081(13)	$\mathrm{Cr}(2)-\mathrm{F}(22)$	2.146(12)	2.2079
$\mathrm{Cr}(1)-\mathrm{F}(3)$	1.812(14)	$\mathrm{Cr}(2)-\mathrm{F}(23)$	1.834(14)	1.7968
$\mathrm{Cr}(1)-\mathrm{F}(4)$	$1.838(13)$	$\mathrm{Cr}(2)-\mathrm{F}(24)$	1.823(12)	1.7985

Bond Angles $\left.{ }^{\circ}\right)$				
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{O}(2)$	$101.2(11)$	$\mathrm{O}(3)-\mathrm{Cr}(2)-\mathrm{O}(4)$	$107.2(10)$	105.4
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(1)$	$94.3(9)$	$\mathrm{O}(3)-\mathrm{Cr}(2)-\mathrm{F}(21)$	$90.4(8)$	91.3
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	$169.8(9)$	$\mathrm{O}(3)-\mathrm{Cr}(2)-\mathrm{F}(22)$	$164.3(7)$	163.2
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$	$103.1(10)$	$\mathrm{O}(3)-\mathrm{Cr}(2)-\mathrm{F}(23)$	$104.2(9)$	100.6
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(4)$	$97.4(9)$	$\mathrm{O}(3)-\mathrm{Cr}(2)-\mathrm{F}(24)$	$96.3(8)$	100.8
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(1)$	$164.5(8)$	$\mathrm{O}(4)-\mathrm{Cr}(2)-\mathrm{F}(21)$	$162.0(8)$	163.2
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(2)$	$89.0(8)$	$\mathrm{O}(4)-\mathrm{Cr}(2)-\mathrm{F}(22)$	$88.5(7)$	91.3
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(3)$	$98.8(8)$	$\mathrm{O}(4)-\mathrm{Cr}(2)-\mathrm{F}(23)$	$96.2(10)$	100.6
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(4)$	$98.2(8)$	$\mathrm{O}(4)-\mathrm{Cr}(2)-\mathrm{F}(24)$	$104.1(9)$	100.8
$\mathrm{~F}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	$75.5(5)$	$\mathrm{F}(21)-\mathrm{Cr}(2)-\mathrm{F}(22)$	$74.0(5)$	71.9
$\mathrm{~F}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$	$78.0(5)$	$\mathrm{F}(21)-\mathrm{Cr}(2)-\mathrm{F}(23)$	$75.4(6)$	74.4
$\mathrm{~F}(1)-\mathrm{Cr}(1)-\mathrm{F}(4)$	$79.1(5)$	$\mathrm{F}(21)-\mathrm{Cr}(2)-\mathrm{F}(24)$	$77.0(5)$	76.8
$\mathrm{~F}(2)-\mathrm{Cr}(1)-\mathrm{F}(3)$	$75.6(6)$	$\mathrm{F}(22)-\mathrm{Cr}(2)-\mathrm{F}(23)$	$74.4(5)$	74.4
$\mathrm{~F}(2)-\mathrm{Cr}(1)-\mathrm{F}(4)$	$80.4(6)$	$\mathrm{F}(22)-\mathrm{Cr}(2)-\mathrm{F}(24)$	$78.4(5)$	76.8
$\mathrm{~F}(3)-\mathrm{Cr}(1)-\mathrm{F}(4)$	$150.2(6)$	$\mathrm{F}(23)-\mathrm{Cr}(2)-\mathrm{F}(24)$	$145.4(6)$	144.2

[a] PBE1PBE/Def2-SVP.

Figure 10.5. (a) One of two crystallographically unique structural units in the X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ (4), where thermal ellipsoids are drawn at the 50% probability level, and secondary Xe---F bonds are indicated by dashed lines. (b) The calculated gas-phase geometry of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ (PBE1PBE/Def2-SVP).

The primary coordination sphere of $\mathrm{Cr}(\mathrm{VI})$ in $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ may be described as an $\mathrm{AX}_{2} \mathrm{Y}_{4}$ VSEPR arrangement ${ }^{88}$ of two $\mathrm{Cr}-\mathrm{O}$ double bond-pair domains (X) and four $\mathrm{Cr}-\mathrm{F}$ single bond-pair domains (Y) around the central Cr atom (A) and is similar to the $\mathrm{Cr}(\mathrm{VI})$ coordination environments of $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$. The $\mathrm{Cr}-\mathrm{O}$ double-bond pairs interact with the $\mathrm{Cr}-\mathrm{F}$ single-bond pairs and with each other to give more open $\mathrm{O}-\mathrm{Cr}-$ F (89.0(8)-103.1(10) $)^{\circ}$) and $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ bond angles $\left(101.2(11)^{\circ}\right)$ when compared with the cis-F-Cr-F bond angles (75.5(5)-80.4(6) ${ }^{\circ}$). The $\mathrm{Cr}-\mathrm{F}_{1,2}$ bonds (2.105(12) and $2.081(13) \AA$, respectively) are significantly elongated relative to the $\mathrm{Cr}-\mathrm{F}_{3,4}$ bonds (1.812(14) and $1.838(13) \AA$, respectively) due to the trans-influences of the $\mathrm{Cr}-\mathrm{O}$ bonds (1.504(16)-1.560(16) \AA), where the relative $\mathrm{Cr}-\mathrm{F}$ bond lengths reflect the relative fluorobasicities, $\mathrm{F}_{4} \approx \mathrm{~F}_{3}<\mathrm{F}_{1} \approx \mathrm{~F}_{2}$. The $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ anion geometries in 4 are
similar to those of the ordered $\left[\mathrm{M}^{\prime} \mathrm{O}_{2} \mathrm{~F}_{4}\right]^{2-}\left(\mathrm{M}^{\prime}=\mathrm{Mo}, \mathrm{W}\right)$ anions in $[\mathrm{pyH}]_{2}\left[\mathrm{Cu}(\mathrm{py})_{4}\left(\mathrm{MoO}_{2} \mathrm{~F}_{4}\right)_{2}\right],{ }^{326} \quad \mathrm{Na}_{2}\left[\mathrm{WO}_{2} \mathrm{~F}_{4}\right],{ }^{327}$ and $\quad\left[\mathrm{HNC}_{6} \mathrm{H}_{6} \mathrm{OH}\right]_{2}\left[\mathrm{Cu}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)_{4}-\right.$ $\left.\left(\mathrm{WO}_{2} \mathrm{~F}_{4}\right)_{2}\right],{ }^{324}$ and complete the series of crystallographically characterized $\left[\mathrm{MO}_{2} \mathrm{~F}_{4}\right]^{2-}$ anions $(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$.

10.2.3. Raman Spectroscopy

The low-temperature Raman spectra of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$ (1), $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$ (2), $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ (3), and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ (4) (Figures 10.6, 10.7, 10.8 , and 10.9 , respectively) are the first fully assigned vibrational spectra reported for salts of the $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ anions. Spectral assignments were made by comparison with the calculated vibrational frequencies and intensities of the energy-minimized, gas-phase geometries of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \quad\left(\mathbf{1}^{\prime}\right)$, $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF} \quad\left(\mathbf{2}^{\prime}\right), \quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4} \quad\left(\mathbf{3}^{\prime}\right), \quad$ and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]\left(4^{\prime}\right)$ at the PBE1PBE/Def2-SVP level of theory. The observed and calculated frequencies, their detailed assignments, and vibrational mode descriptions for $\mathbf{1 - 4}$ are provided in Tables A7.6-A7.9. Except for the overestimated $v(\mathrm{Cr}-\mathrm{O})$ stretching frequencies, the experimental vibrational frequencies and their trends are well reproduced by the calculations. Vibrational assignments for the cocrystallized XeOF_{4} and the $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cations were also aided by comparison with vibrational spectra of $\mathrm{XeOF}_{4},{ }^{68} \mathrm{XeOF}_{4} \cdot \mathrm{XeF}_{2},{ }^{68}\left[\mathrm{XeF}_{5}\right]\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right],{ }^{121}$ $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right],{ }^{316}\left[\mathrm{XeF}_{5}\right]\left[\mathrm{BF}_{4}\right],{ }^{316}\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right],{ }^{121}\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4} .{ }^{244}$ The latter assignments are in good agreement with the literature and are not discussed. Tables A7.6-A7.9 show that many of the
vibrational modes are coupled to some extent. Therefore, only the predominant components in the mode descriptions are used as the basis for ensuing discussions.
10.2.3.1. $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \quad$ (1), $\quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4} \quad$ (2), and $\left.\left[\mathrm{XeF}_{5}\right]_{2} / \mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ (3). The $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ anions in the SCXRD structures of $\mathbf{1}-\mathbf{3}$ have C_{i} symmetry. Factor-group analyses based on the crystal structures of $\mathbf{1}-\mathbf{3}$ were carried out using the "correlation method" (Figures A7.1-A7.3). ${ }^{169}$ Correlation of the gas-phase ion-pair symmetries of $\mathbf{1}^{\prime}-\mathbf{3}^{\prime}\left(C_{2 \mathrm{~h}}\right)$ to the crystal site symmetries $\left(C_{\mathrm{i}}\right)$ and space group symmetries $\left(\mathbf{1}, \mathbf{2}, C_{2 \mathrm{~h}} ; \mathbf{3}, C_{\mathrm{i}}\right)$ do not result in symmetry lowering. The unit cells of all three salts have centers of symmetry so that mutual exclusion applies. Accordingly, no formally Raman inactive modes were observed in the Raman spectra of $\mathbf{1 - 3}$.

The highest frequency Raman bands are assigned to the in-phase symmetric $\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{O}_{2}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)\right]\left(\mathbf{1}, 940 \mathrm{~cm}^{-1} ; \mathbf{2}, 951 \mathrm{~cm}^{-1} ; \mathbf{3}\right.$, $\left.951 \mathrm{~cm}^{-1}\right)$ and asymmetric $\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{O}_{2}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)\right](\mathbf{1}$, $\left.919 \mathrm{~cm}^{-1} ; \mathbf{2}, 912 \mathrm{~cm}^{-1} ; \mathbf{3}, 922 \mathrm{~cm}^{-1}\right)$ stretches. The $v(\mathrm{Cr}-\mathrm{O})$ stretching modes of $\mathbf{1}-\mathbf{3}$ occur at somewhat lower frequencies than the $v(\mathrm{Cr}-\mathrm{O})$ stretching modes of $\mathrm{CrO}_{2} \mathrm{~F}_{2}$ (Ra: 935 and $955 \mathrm{~cm}^{-1}$), ${ }^{328} \mathrm{CrOF}_{4}$ (Ra: $\beta, 995 ; \alpha, 1001 \mathrm{~cm}^{-1}$), ${ }^{65}$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ (Ra: $951 \mathrm{~cm}^{-1}$). ${ }^{243}$ The calculated gas-phase (Cr-O) stretching frequencies of $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ increase upon ion-pair formation (anion: $1075-1106 \mathrm{~cm}^{-1}$ and ion-pair: 1, 1148-1182 $\left.\mathrm{cm}^{-1} ; \mathbf{2}, 1153-1189 \mathrm{~cm}^{-1} ; \mathbf{3}, 1151-1185 \mathrm{~cm}^{-1}\right)$, indicating that ion-pairing strengthens the $\mathrm{Cr}-\mathrm{O}$ bonds somewhat.

The in-phase symmetric stretches, $\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+\right.$ $\left.v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]$, occur at (1) 534 , (2) 585 , and (3) $563 \mathrm{~cm}^{-1}$, whereas the in-phase asymmetric stretches, $\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]$, occur at
lower frequencies $\left(\mathbf{1}, 520 \mathrm{~cm}^{-1} ; \mathbf{2}, 540 \mathrm{~cm}^{-1} ; \mathbf{3}, 542 \mathrm{~cm}^{-1}\right)$. The symmetric and asymmetric modes occur at lower frequency than the $v(\mathrm{Cr}-\mathrm{F})$ stretching modes of liquid $\mathrm{CrO}_{2} \mathrm{~F}_{2}$ (Ra: 770 and $708 \mathrm{~cm}^{-1}$). ${ }^{328}$ The in-phase symmetric stretches that involve the bridging F atoms, F_{1} and $\mathrm{F}_{1 \mathrm{~A}},\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)+\right.$ $\left.v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]$, occur at even lower frequency $\left(\mathbf{1}, 408 \mathrm{~cm}^{-1} ; \mathbf{2}, 397 \mathrm{~cm}^{-1} ; \mathbf{3}, 405 \mathrm{~cm}^{-1}\right)$, consistent with their relative experimental and calculated $\mathrm{Cr}-\mathrm{F}$ bond lengths which increase in the order $\mathrm{Cr}-\mathrm{F}_{1,1 \mathrm{~A}}>\mathrm{Cr}-\mathrm{F}_{2,3}$. The in-phase asymmetric stretches, $\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)\right.$ $\left.-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]$, occur at somewhat lower frequency (1, 401; 2, 339; 3, $373 \mathrm{~cm}^{-1}$).

The symmetric $\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]$ bending modes of $\mathbf{1} \mathbf{- \mathbf { 3 }}$ were observed at (1) 445, (2) 439, and (3) $440 \mathrm{~cm}^{-1}$ (calcd: $\mathbf{1}^{\prime}, 481 ; \mathbf{2}^{\prime}, 483 ; \mathbf{3}^{\prime}, 481 \mathrm{~cm}^{-1}$). These bands occur at somewhat higher frequencies than the $\delta(\mathrm{OCrO})$ bending mode of liquid $\mathrm{CrO}_{2} \mathrm{~F}_{2}\left(403 \mathrm{~cm}^{-1}\right) .{ }^{328}$ The bands at 296 (1), 261 (2), and 272 (3) cm^{-1} are assigned to the bending modes, $\left[\delta\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\delta\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$. The corresponding calculated values ($\mathbf{1}^{\prime}, 294 \mathrm{~cm}^{-1} ; \mathbf{2}^{\prime}, 265 \mathrm{~cm}^{-1} ; \mathbf{3}^{\prime}, 275 \mathrm{~cm}^{-1}$) are comparable to those calculated for gas-phase $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}\left(275 \mathrm{~cm}^{-1}\right)$.

The symmetric $\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]$ deformation modes of $\mathbf{1 - 3}$ are assigned to the bands at (1) 356 , (2) 339 , and (3) $353 \mathrm{~cm}^{-1}$ (calcd: $\mathbf{1}^{\prime}, 363 ; \mathbf{2}^{\prime}, 373$; $\left.3^{\prime}, 360 \mathrm{~cm}^{-1}\right)$. The symmetric $\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{t}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]$ twisting modes give rise to bands at (1) 356 , (2) 339 , and (3) $353 \mathrm{~cm}^{-1}$. The $\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\right.$ $\left.\rho_{\mathrm{t}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]$ modes are assigned to bands at 242 (1) and 239 (2) cm^{-1}, respectively. The same coupled mode of $\mathbf{2}^{\prime}$ is calculated to be lower in frequency (202 cm^{-1}) and likely overlaps with the lattice modes of $2\left(114-187 \mathrm{~cm}^{-1}\right)$.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Figure 10.6. The Raman spectrum of a mixture of solid [$\left.\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$ (1), $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$ (2), and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ (3), where $\mathbf{1}$ was dominant. The spectrum was recorded under a frozen aHF solution at $-150{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. The symbols denote Raman bands of $\mathbf{1}$ which overlap with those of 2 (§), bands due to $\mathbf{3}(\ddagger)$, FEP sample tube bands $\left(^{*}\right)$, and an instrumental artifact (\dagger).

Figure 10.7. The Raman spectrum of a mixture of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$ (1), $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}(\mathbf{2})$, and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ (3) recorded under a frozen aHF solution at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation, where 2 was the dominant component. The symbols denote bands assigned to $2(\dagger)$, FEP sample tube bands (*), and an instrumental artifact (\ddagger). Unmarked bands corresponding to $\mathbf{1}$ and $\mathbf{3}$ are listed in footnote [a] of Table A7.7.

Figure 10.8. The Raman spectrum of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ (3) recorded under a frozen aHF solution at $-150{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. The symbols denote an instrumental artifact (\dagger) and FEP sample tube bands $\left(^{*}\right)$.
10.2.3.2. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ (4). A factor-group analysis based on the crystal structure of $\mathbf{4}$ was carried out using the "correlation method" (Figure A7.4). ${ }^{169}$ Seventy-two vibrational modes are predicted for gas-phase $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ $\left(C_{\mathrm{s}}\right)$. The vibrations belong to the irreducible representations $\Gamma=39 \mathrm{~A}^{\prime}+33 \mathrm{~A}^{\prime \prime}$, where all modes are Raman- and infrared-active. The A^{\prime} and $\mathrm{A}^{\prime \prime}$ representations of
gas-phase $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ correlate to A representations under C_{1} site symmetry in the crystal structure of 4 . When correlated to the space group symmetry $\left(C_{i}\right)$, each of the 72 A modes splits into Raman-active A_{g} and infrared-active A_{u} components (Figure A7.4). Thus, all 72 vibrational bands in the calculated Raman spectra of $\mathbf{4}$ are predicted to be Raman active (Table A7.9). Of the 72 predicted bands, 25 were observed.

The Raman bands observed at 954 and $950 \mathrm{~cm}^{-1}$ are assigned to the symmetric $\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{O}_{2}\right)\right]$ and asymmetric $\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{O}_{2}\right)\right]$ stretches, respectively. The calculated $v(\mathrm{Cr}-\mathrm{O})$ stretches of $\mathbf{4}^{\prime}\left(1183\right.$ and $\left.1164 \mathrm{~cm}^{-1}\right)$ occur at higher frequencies than in the free gas-phase $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ anion (1058 and $1042 \mathrm{~cm}^{-1}$), indicating that ion-pair formation strengthens the $\mathrm{Cr}-\mathrm{O}$ double bonds.

The bands observed at 579 and $573 \mathrm{~cm}^{-1}$ are assigned to the symmetric, $[v(\mathrm{Cr}-$ $\left.\left.{ }_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4}\right)\right]$ and asymmetric, $\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4}\right)\right]$, stretches, respectively; whereas the band at $283 \mathrm{~cm}^{-1}$ is assigned to the symmetric stretch, $\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1-}\right.\right.$ $\left.F_{2}\right)$]. This observed frequency difference is reproduced for the calculated ion-pair $\mathbf{4}^{\prime}$ (591 and $583 \mathrm{~cm}^{-1}$ versus $305 \mathrm{~cm}^{-1}$). These values bracket the $v(\mathrm{Cr}-\mathrm{F})$ stretching frequencies calculated for gas-phase $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}\left(558,501,404,397 \mathrm{~cm}^{-1}\right)$ where $v\left(\mathrm{Cr}^{-} \mathrm{F}_{3,4}\right)$ and $v\left(\mathrm{Cr}^{-}-\mathrm{F}_{1,2}\right)$ in-phase and out-of-phase couple (558 and $404 \mathrm{~cm}^{-1}$), reflecting decreases in the $\mathrm{Cr}-\mathrm{F}_{3,4}$ bond lengths and increases in the $\mathrm{Cr}-\mathrm{F}_{1,2}$ bond lengths upon ion-pair formation.

The band at $441 \mathrm{~cm}^{-1}$ is assigned to the $\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)$ bending mode (calcd: 441 cm^{-1}), a frequency similar to the $\delta(\mathrm{OCrO})$ modes of $\mathbf{1}-\mathbf{3}$ (vide supra). The $\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right), \rho_{\mathrm{r}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)$, and $\rho_{\mathrm{r}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)$ deformation modes are strongly coupled to other deformation modes but could be assigned to the bands observed at $358 / 323$,

344 , and $294 \mathrm{~cm}^{-1}$, respectively (calcd: $365 / 359,361$, and $316 \mathrm{~cm}^{-1}$). Note that the frequencies calculated for 4^{\prime} are comparable to those of gas-phase $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}(453$, 361,336 , and $340 \mathrm{~cm}^{-1}$).

Figure 10.9. The Raman spectrum of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ (4) recorded under a frozen aHF solution at $-150{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. The symbols denote an instrumental artifact (\dagger) and FEP sample tube bands $\left(^{*}\right)$.

10.2.4. COMPUTATIONAL RESULTS

10.2.4.1. Calculated Geometries

The gas-phase structures of $\left[\mathrm{XeF}_{5}\right]^{+},\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}, \mathrm{CrO}_{2} \mathrm{~F}_{2},\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$, and $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$, and the ion-pairs $\quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \quad\left(\mathbf{1}^{\prime}\right), \quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF} \quad\left(\mathbf{2}^{\prime}\right)$,
$\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}\left(\mathbf{3}^{\prime}\right)$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]\left(4^{\prime}\right)$ were optimized at the PBE1PBE/Def2-SVP level of theory which resulted in stationary points with all frequencies real (Tables A7.1-A7.3, A7.5-A7.15, Figures 10.1-10.4 and A7.5-A7.9). The gas-phase structure of $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}\left(C_{2 \mathrm{~h}}\right)$ optimized with one imaginary frequency ($-46 \mathrm{~cm}^{-1}$). The imaginary frequency persisted when geometry optimizations were carried out using lower symmetry starting geometries $\left(C_{\mathrm{s}},-47 ; C_{\mathrm{i}},-48 ; C_{1},-48\right.$ $\left.\mathrm{cm}^{-1}\right)$. The $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ dimer did not separate into discrete $\left[\mathrm{CrO}_{2} \mathrm{~F}_{3}\right]^{-}$anions during any geometry optimization cycle. The starting geometries used for $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$and for $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ were the crystallographic geometries obtained from 1 and 4, respectively. The starting geometries used for $\mathrm{CrO}_{2} \mathrm{~F}_{2}{ }^{325}$ and ion-pairs 1'-4' were the crystallographic geometries, 1-4. The experimental geometries of $\mathbf{1 - 4}$ are well reproduced by the calculated ion-pair geometries of $\mathbf{1}^{\prime}-\mathbf{4}^{\prime}$.
10.2.4.1.1. $\left.\mathrm{CrO}_{2} \mathrm{~F}_{2},\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-},\left[\mathrm{XeF}_{5}\right]_{2} / \mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]\left(1^{\prime}\right),\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}\left(\mathbf{2}^{\prime}\right)$, and $\left[\mathrm{XeF}_{5} J_{2} / \mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot \mathbf{2 X e O F} \mathbf{H}_{4}\left(\mathbf{3}^{\prime}\right)$. The gas-phase geometries of $\mathrm{CrO}_{2} \mathrm{~F}_{2}$ and $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ optimized to $C_{2 \mathrm{v}}$ and $C_{2 \mathrm{~h}}$ symmetries, respectively. The $\mathrm{Cr}-\mathrm{O}(1.552 \AA)$ and $\mathrm{Cr}-\mathrm{F}_{2,3}(1.781 \AA)$ bond lengths of $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ are elongated relative to those of $\mathrm{CrO}_{2} \mathrm{~F}_{2}(\mathrm{Cr}-\mathrm{O}, 1.525 \AA ; \mathrm{Cr}-\mathrm{F}, 1.685 \AA$), consistent with the enhanced $\mathrm{Cr}-\mathrm{O}$ and $\mathrm{Cr}-\mathrm{F}$ bond polarities of the $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ dianion. The $\mathrm{Cr}-\mathrm{O}$ bond elongations are in part attributable to localization of the dianion charge on the oxygen atoms, which may be rationalized in terms of $\mathrm{Cr}=\mathrm{O} \leftrightarrow \mathrm{Cr}-\mathrm{O}^{-}$resonance contributions. The $\mathrm{Cr}-\mathrm{F}_{1,1 \mathrm{~A}}$ bridge bonds of $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ are significantly longer ($2.068 \AA$) than its terminal $\mathrm{Cr}-\mathrm{F}_{2,3}$ bonds $(1.781 \AA)$ owing to the trans-influences of the $\mathrm{Cr}-\mathrm{O}$ bonds, and to the different coordination number of the bridged and terminal fluorine atoms.

The F atoms of the $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ dianions in the gas-phase ion-pairs $\mathbf{1}^{\prime}-\mathbf{3}^{\prime}$ form secondary Xe---F bonds with the $\left[\mathrm{XeF}_{5}\right]^{+}$cations ($\mathbf{1}^{\prime}, 2.421$ and $2.522 \AA ; \mathbf{2}^{\prime}, 2.4798$ and $3.1502 \AA ; 3^{\prime}, 2.4642$ and $2.6655 \AA$) that are significantly shorter than the sum of the Xe and F van der Waals radii (vide supra). In the cases of $\mathbf{2}^{\prime}$ and $\mathbf{3}^{\prime}$, secondary Xe-$--\mathrm{F}_{\mathrm{H}}$ and Xe--- FXeOF_{4} bonds are also formed ($\mathbf{2}^{\prime}, 2.4771 \AA ; \mathbf{3}^{\prime}, 3.3951 \AA$). These interactions significantly elongate the $\mathrm{Cr}-\mathrm{F}_{1,1 \mathrm{~A}}$ bridge bonds $\left(\mathbf{1}^{\prime}, 2.135 \AA ; \mathbf{2}^{\mathbf{\prime}}, 2.150 \AA ;\right.$ $\mathbf{3}^{\prime}, 2.150 \AA$) and terminal $\mathrm{Cr}-\mathrm{F}_{2,3}$ bonds ($\mathbf{1}^{\prime}, 1.831 \AA ; \mathbf{2}^{\mathbf{\prime}}, 1.818 \AA ; \mathbf{3}^{\prime}, 1.828 \AA$) relative to the gas-phase values of $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}\left(\mathrm{Cr}-\mathrm{F}_{1,1 \mathrm{~A}}: 2.068 \AA ; \mathrm{Cr}-\mathrm{F}_{2,3}: 1.781 \AA\right)$. The elongations are accompanied by contracted $\mathrm{Cr}-\mathrm{O}$ bonds $\left(\mathbf{1}^{\prime}, 1.520 \AA ; \mathbf{2}^{\prime}, 1.520 \AA \AA^{\prime} ; \mathbf{3}^{\prime}\right.$, $1.519 \AA$ Å) relative to gas-phase $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}(1.552 \AA$ Å). Thus, ion-pair formation elongates the $\mathrm{Cr}-\mathrm{F}$ bonds and contracts the $\mathrm{Cr}-\mathrm{O}$ bonds of $\mathbf{1}^{\prime}-\mathbf{3}^{\prime}$ relative to those of gas-phase $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$. Hydrogen bonding of HF to the $\mathrm{F}_{1,1 \mathrm{~A}}$ atoms in $\mathbf{2}^{\prime}$ and coordination of XeOF_{4} in $\mathbf{3}^{\prime}$ result in longer $\mathrm{Cr}-\mathrm{F}_{1,1 \mathrm{~A}}$ bridge bonds and shorter $\mathrm{Cr}-\mathrm{F}_{2,3}$ terminal bonds relative to $\mathbf{1}^{\prime}$ (vide supra).
10.2.4.1.2. $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ (4'). The gas-phase geometries of $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ and 4^{\prime} optimized to $C_{2 \mathrm{v}}$ and C_{s} symmetries, respectively. The $\mathrm{Cr}-\mathrm{F}_{1,2}$ bonds of gas-phase $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}(1.930 \AA)$ are significantly longer than the $\mathrm{Cr}-\mathrm{F}_{3,4}$ bonds ($1.856 \AA$) due to the trans-influence of the $\mathrm{Cr}-\mathrm{O}$ double bonds ($1.570 \AA$). The $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ anion in $\mathbf{4}^{\prime}$ ion-pairs with $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$through short secondary Xe--- F_{Cr} bonds (Xe--- $\mathrm{F}_{1,2}, 2.387$ and $2.398 \AA \AA$ Xe--- $\mathrm{F}_{3,4}, 2.3872-2.8574 \AA$) that are comparable in length to those calculated for $\mathbf{1}^{\mathbf{\prime}}-\mathbf{3}^{\prime}$. Ion-pairing significantly elongates the $\mathrm{Cr}-\mathrm{F}_{1,2}$ bonds ($2.208 \AA$) and shortens the $\mathrm{Cr}-\mathrm{F}_{3,4}$ bonds (1.7797, 1.799 \AA) and $\mathrm{Cr}-$ O bonds $(1.520 \AA)$ relative to gas-phase $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ (vide supra).

10.2.4.2. Natural Bond Orbital (NBO) Analysis

The natural atomic orbital (NAO) analyses of gas-phase $\mathrm{CrO}_{2} \mathrm{~F}_{2},\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$, and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ (Tables A7.16-A7.22) show trends of decreasing natural population analysis (NPA) charges for all atoms with increasing net negative charge: $\mathrm{CrO}_{2} \mathrm{~F}_{2}>$ $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}>\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$. The Cr atom valences increase and the O atom valences and $\mathrm{Cr}-\mathrm{O}$ WBIs decrease in the same order. The $\mathrm{Cr}-\mathrm{O}$ WBIs of $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}(1.809)$ are less than those of $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{--}(1.860)$, in accord with the greater WBIs of the trans-$\mathrm{Cr}-\mathrm{F}_{1,2}$ bonds of $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}(0.460)$ relative to those of the trans $-\mathrm{Cr}-\mathrm{F}_{1,1 \mathrm{~A}}$ bonds of $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}(0.268)$. In contrast, the WBIs of the $\mathrm{Cr}-\mathrm{F}_{2,3}$ bonds of $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}(0.654)$ are greater than those of $\mathrm{Cr}-\mathrm{F}_{3,4}$ in $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}(0.540)$. Thus, the $\mathrm{Cr}-\mathrm{O}$ and cis- $\mathrm{Cr}-\mathrm{F}$ bonds in $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ become more ionic as the covalent characters of the trans-Cr-F bonds increase.

The cations and dianions of $\mathbf{1}^{\prime}-\mathbf{3}^{\prime}$ are intimately ion-paired (Tables A7.17A7.19), as exemplified by the net charges of the ions ($\left[\mathrm{XeF}_{5}\right]^{+}, 0.759-0.807$; $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-},-1.520$ to -1.604) which indicate significant degrees of charge transfer from the dianion to cation. The ions pair through primarily electrostatic $\mathrm{Xe}---\mathrm{F}_{1,1 \mathrm{~A}}$ and Xe--- $\mathrm{F}_{2,3}$ bridge bonds that have correspondingly small WBIs ($0.011-0.085$ and $0.084-0.108$, respectively). Ion-pairing in $\mathbf{1}^{\prime} \mathbf{-} \mathbf{3}^{\prime}$ increases the WBIs of the $\mathrm{Cr}-\mathrm{O}$ bonds (2.037-2.053) and decreases the WBIs of the $\mathrm{Cr}-\mathrm{F}_{2,3}$ (0.501-0.515) and $\mathrm{Cr}-\mathrm{F}_{1,1 \mathrm{~A}}$ ($0.181-0.203$) bonds relative to gas-phase $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$. These interactions also result in more positive NPA charges on Cr and O and more negative charges on the bridging $\mathrm{F}_{1,1 \mathrm{~A}}$ and terminal $\mathrm{F}_{2,3}$ atoms of $\mathbf{1}^{\prime}-\mathbf{3}^{\prime}$, which is consistent with more covalent $\mathrm{Cr}-\mathrm{O}$ bonds and more ionic $\mathrm{Cr}-\mathrm{F}$ bonds relative to the free $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ dianion. The
valences of O and $\mathrm{F}_{1,1 \mathrm{~A}}$ in $\mathbf{1}^{\prime} \mathbf{-} \mathbf{3}^{\prime}$ also increase relative to those of $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$, whereas the Cr and $\mathrm{F}_{2,3}$ valences decrease.

The coordinated HF molecules of $\mathbf{2 '}^{\prime}$ interact with the cations through secondary $\mathrm{Xe}---\mathrm{F}_{\mathrm{H}}$ bonds (WBI, 0.103), and interact with one another (WBI, 0.148) and with the anion (WBI, 0.131) through F---HF hydrogen bonds. These interactions result in more positive NPA charges on O , higher valences for O and $\mathrm{F}_{2,3}$, and greater WBIs for the $\mathrm{Cr}-\mathrm{O}$ and $\mathrm{Cr}-\mathrm{F}_{2,3}$ bonds of $\mathbf{2}^{\prime}$ relative to those of $\mathbf{1}^{\prime}$. This is accompanied by more negative charges on $\mathrm{F}_{1,1 \mathrm{~A}}$ and $\mathrm{F}_{2,3}$, and decreased $\mathrm{Cr}-\mathrm{F}_{1,1 \mathrm{~A}}$ WBIs and Cr and $\mathrm{F}_{1,1 \mathrm{~A}}$ atom valences for $\mathbf{2}^{\prime}$ relative to $\mathbf{1}^{\prime}$. Thus, HF coordination in $\mathbf{2}^{\prime}$ increases the ionic characters of the $\mathrm{Cr}-\mathrm{F}_{1,1 \mathrm{~A}}$ bonds and the covalent characters of the $\mathrm{Cr}-\mathrm{O}$ and $\mathrm{Cr}-\mathrm{F}_{2,3}$ bonds relative to $\mathbf{1}^{\prime}$. In the case of $\mathbf{3}^{\prime}$, coordination of XeOF_{4} through secondary Xe---F bonding interactions (WBIs 0.061 and 0.090) results in more positive O atom charges, increased Cr, O, and $\mathrm{F}_{2,3}$ valences and $\mathrm{Cr}-\mathrm{O}$ WBIs, more negative $\mathrm{F}_{1,1 \mathrm{~A}}$ charges, and decreased $\mathrm{F}_{1,1 \mathrm{~A}}$ valences and $\mathrm{Cr}-\mathrm{F}$ WBIs relative to $\mathbf{1}^{\prime}$. This indicates greater degrees of ionic characters for the $\mathrm{Cr}-\mathrm{F}$ bonds and covalent characters for the $\mathrm{Cr}-\mathrm{O}$ bonds of $\mathbf{3}^{\prime}$ relative to $\mathbf{1}^{\prime}$.

The cations and dianion of $\mathbf{4}^{\prime}$ are intimately ion-paired (Table A7.19), with calculated charges that indicate a significant degree of dianion to cation charge transfer $\left(\left[\mathrm{XeF}_{5}\right]^{+}, 0.712 ;\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}, 0.761 ;\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-},-1.472\right)$. The WBIs of the
 consistent with primarily electrostatic interactions. The WBIs of the highly polarcovalent $\mathrm{Cr}-\mathrm{F}_{1,2}$ bonds (0.151) of $\mathbf{4}^{\prime}$ are significantly lower than in gas-phase $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ (vide supra) due to polarization by strong secondary $\mathrm{Xe}---\mathrm{F}_{1,2}$ bonds. Consequently, the WBIs of the $\mathrm{Cr}-\mathrm{O}$ (2.024) and $\mathrm{Cr}-\mathrm{F}_{3,4}$ (0.566 and 0.568) bonds of
4^{\prime} are greater than in gas-phase $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ (vide supra). Ion pairing also results in more positive charges on Cr, O, and $\mathrm{F}_{3,4}$; more negative charges on $\mathrm{F}_{1,2}$; increased atom valences for O and $\mathrm{F}_{3,4}$; and decreased Cr and $\mathrm{F}_{1,2}$ valences for $\mathbf{4}^{\prime}$ relative to $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$. These observations are consistent with more covalent $\mathrm{Cr}-\mathrm{O}$ and $\mathrm{Cr}-\mathrm{F}_{3,4}$ bonds and more ionic $\mathrm{Cr}-\mathrm{F}_{1,2}$ bonds for $\mathbf{4}^{\prime}$ relative to gas-phase $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$.

10.2.4.3. Molecular Electrostatic Potential Surface (MEPS) Analyses

The MEPS of $\mathrm{CrO}_{2} \mathrm{~F}_{2},\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$, and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ are depicted in Figure 10.10. The negative electrostatic potential (EP) maxima $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ of $\mathrm{CrO}_{2} \mathrm{~F}_{2}$ are located on the F atom isosurfaces (-42) and are similar in magnitude to those calculated for the F atom isosurfaces of $\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Cr} \text {, Mo, W, i.e., } \mathrm{Cr},-33 \text {; } \mathrm{Mo},-46 \text {; and } \mathrm{W},-47)^{243}$ at the same level of theory. Two positive EP maxima (151) on Cr are trans to the $\mathrm{Cr}-\mathrm{O}$ double bonds and are significantly less than the EP maximum of CrOF_{4} (218), consistent with a lower fluoride affinity of $\mathrm{CrO}_{2} \mathrm{~F}_{2}$ relative to that of CrOF_{4}.

The EP minima of $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}(-979)$ and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}(-1124)$ lie at the intersections of the $\mathrm{F}_{1,1 \mathrm{~A}}$ and $\mathrm{F}_{2,3}$ isosurfaces of $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ and at the intersections of the $\mathrm{F}_{1,2}$ and $\mathrm{F}_{3,4}$ isosurfaces of $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$. Local EP minima are also located on the $\mathrm{F}_{1,1 \mathrm{~A}}(-858)$ and $\mathrm{F}_{2,3}(-774)$ isosurfaces of $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ and the $\mathrm{F}_{1,2}(-885)$ and $\mathrm{F}_{3,4}$ (-827) isosurfaces of $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$, which reflect their relative F -atom fluorobasicities.

Figure 10.10. The molecular electrostatic potential surface (MEPS) contours at the $0.001 \mathrm{e} \mathrm{bohr}^{-3}$ isosurface were calculated at the PBE1PBE/Def2-SVP level of theory for $\mathrm{CrO}_{2} \mathrm{~F}_{2},\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$, and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$. Positive and negative electrostatic potential extrema are indicated by arrows.

The MEPS isosurfaces of $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$are depicted in Figure 10.11. Examination of a narrow range of high positive EP values for $\left[\mathrm{XeF}_{5}\right]^{+}(735-780)$ shows four localized EP maxima (780) on the Xe isosurface that are located trans to the $\mathrm{Xe}-\mathrm{F}_{\mathrm{ax}}$ bond at the intersections of the F_{eq} isosurfaces. A similar examination of a narrow range of high positive EP values for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$(603-643) shows only one maximum on each Xe atom isosurface (643) that is located at the intersection of the F_{b} and F_{eq} isosurfaces. Comparison of the EP maxima on the Xe atoms of $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$indicates that $\left[\mathrm{XeF}_{5}\right]^{+}$is more Lewis acidic. The trajectories of the secondary Xe---F bonds of $\mathbf{1 - 4}$ and $\mathbf{1}^{\prime}-\mathbf{4}^{\prime}$ are directed towards regions of highest positive EP on $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$, and supports their description as predominantly electrostatic, σ-hole bonds.

$$
\left[\mathrm{XeF}_{5}\right]^{+}\left(C_{4 v}\right)
$$

$$
\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}\left(\mathrm{C}_{2}\right)
$$

Figure 10.11. The molecular electrostatic potential surface (MEPS) contours at the $0.001 \mathrm{e} \mathrm{bohr}^{-3}$ isosurfaces were calculated at the PBE1PBE/Def2-SVP level of theory for $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$. The positive electrostatic potential extrema are indicated by arrows.

10.3. Conclusions

The chemistry of $\mathrm{Cr}(\mathrm{VI})$ oxide fluoride species is more limited than that of $\mathrm{M}(\mathrm{VI})(\mathrm{M}$ $=\mathrm{Mo}, \mathrm{W})$. Although salts of the $\left[\mathrm{M}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ and $\left[\mathrm{MO}_{2} \mathrm{~F}_{4}\right]^{2-}$ anions have been characterized by SCXRD, no salts of $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ or $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ had been crystallographically characterized. The syntheses and structural characterizations of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right], \quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}, \quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}, \quad$ and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ by LT Raman spectroscopy and SCXRD described in this work completes the series of structurally characterized $\mathrm{Cr}(\mathrm{VI})$ oxide fluoride anions
$\left[\mathrm{CrO}_{3} \mathrm{~F}\right]^{-},\left[\mathrm{CrOF}_{5}\right]^{-},\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$, and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$, and the series of crystallographically characterized $\left[\mathrm{M}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ and $\left[\mathrm{MO}_{2} \mathrm{~F}_{4}\right]^{2-}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ anions. Their characterization by vibrational spectroscopy also provides the first Raman spectroscopic study of salts containing the $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ anions that have been fully assigned with the aid of quantum-chemical calculations. The $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ (dimer of $\left[\mathrm{CrO}_{2} \mathrm{~F}_{3}\right]^{-}$) and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ anions were stabilized by the oxidatively resistant noble-gas cations $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$, which have previously been used to isolate other high-oxidation-state transition-metal oxyfluoro-anion salts. ${ }^{121,243,244}$ The $\mathrm{Cr}(\mathrm{VI})$ oxyfluoro-anion salts were prepared by reaction of XeF_{6} with $\mathrm{CrO}_{2} \mathrm{~F}_{2}$ in the oxidatively resistant solvent aHF and by direct reaction in melts at elevated temperatures (ca. $50{ }^{\circ} \mathrm{C}$). NBO analyses show that the salts are intimately ion-paired through primarily electrostatic $\mathrm{Xe}---\mathrm{F}_{\mathrm{Cr}}$ bonds. Quantum-chemical calculations indicate significant degrees of negative charge transfer from the dianions to the cations in their ion-pairs, and that secondary $\mathrm{Xe}---\mathrm{F}_{\mathrm{Cr}}$ bonds influence the covalent characters of the $\mathrm{Cr}-\mathrm{O}$ and $\mathrm{Cr}-\mathrm{F}$ bonds. MEPS analyses show the secondary $\mathrm{Xe}---\mathrm{F}_{\mathrm{Cr}}$ bonds are directed towards regions of high positive EP on $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$.

CHAPTER 11

Group 6 Oxyfluoro-anion Salts of $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$; Syntheses and Structures of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right](\mathrm{M}=\mathbf{M o}, \mathbf{W}),\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]\left(\mathrm{M}^{\prime}=\mathbf{C r}, \mathbf{M o}, \mathbf{W}\right)$,

 $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$Adapted with permission from: Bortolus, M. R.; Mercier, H. P. A.; Schrobilgen, G. J. Chem. Eur. J. 2020, 26, 8935-8950.

11.1. Introduction

The Group 6 oxide tetrafluorides, $\mathrm{M}^{\prime} \mathrm{OF}_{4}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$, are significantly weaker Lewis acids and fluoride-ion acceptors than $\mathrm{PF}_{5}, \mathrm{AsF}_{5}, \mathrm{SbF}_{5}$, and BiF_{5}. The Group 15 pentafluorides abstract fluoride ion from $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$ to form ion-paired $[\mathrm{NgF}]^{+}$salts of the $\left[\mathrm{PnF}_{6}\right]^{-}\left(\mathrm{Pn}=\mathrm{P}^{46} \mathrm{As},{ }^{46,48,51} \mathrm{Sb},{ }^{46,48,51,179} \mathrm{Bi}^{46,48}\right)$ and $\left[\mathrm{Pn}^{\prime}{ }_{2} \mathrm{~F}_{11}\right]^{-}\left(\mathrm{Pn}^{\prime}\right.$ $=\mathrm{Sb},{ }^{48,51,179-181} \mathrm{Bi}^{48}$) anions. This contrasts with the Group 6 oxide tetrafluorides which do not abstract fluoride ion from NgF_{2}, but form series of adducts having the general formulae $\mathrm{NgF}_{2} \cdot n \mathrm{M}^{\prime} \mathrm{OF}_{4}(n=1,2) .{ }^{65,67}$ In both $\mathrm{NgF}_{2} \cdot \mathrm{M}^{\prime} \mathrm{OF}_{4}\left(\mathrm{M}^{\prime}=\mathrm{Mo}, \mathrm{W}, \mathrm{Cr}\right)$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$, a single fluorine atom of NgF_{2} coordinates to the metal, trans to the axial $\mathrm{M}^{\prime}-\mathrm{O}$ bond and trans to an M-O bond, to form FNgF--$\mathrm{M}^{\prime}(\mathrm{O}) \mathrm{F}_{4}{ }^{65-67,182-184,306}$ and $\mathrm{FXeF}---\mathrm{M}(\mathrm{O}) \mathrm{F}_{3} \mathrm{~F}---\mathrm{M}(\mathrm{O}) \mathrm{F}_{4},{ }^{67,183,184,306}$ respectively. In contrast, both F atoms of NgF_{2} coordinate to two CrOF_{4} molecules in $\mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF}_{4}$ to give $\mathrm{F}_{4}(\mathrm{O}) \mathrm{Cr}---\mathrm{FNgF}---\mathrm{Cr}(\mathrm{O}) \mathrm{F}_{4} .{ }^{65}$

The Group 6 oxide tetrafluorides readily abstract F^{-}from strong fluoride-ion donors such as NOF and the alkali metal fluorides to form salts of the $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}$ $\left(\mathrm{Cr},{ }^{66,264,270} \mathrm{Mo},{ }^{283-287,298} \quad \mathrm{~W}^{283-285,288,292-296,329-331}\right), \quad\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-} \quad\left(\mathrm{Mo},{ }^{283,297,332,333}\right.$ $\mathrm{W}^{283,293,297,334-338}$), and $\left[\mathrm{MOF}_{6}\right]^{2-283}$ anions, which have been characterized in the solid state and in solution (Table 11.1). Although the $\left[\mathrm{WOF}_{5}\right]^{-288,290,292,331}$ and
$\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-336-338}$ anions have been previously characterized by Xray crystallography, several structures suffer from O / F positional disorders and/or are of low precision. Subsequent to the authors' preliminary reports of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]$ and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$, the structural characterization of the $\left[\mathrm{MOF}_{5}\right]^{-}$anions in $\mathrm{K}_{3}\left[\mathrm{MOF}_{7}\right],{ }^{298,331}$ and the $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$anions in their $\mathrm{Li}^{+}-\mathrm{Cs}^{+}$salts were reported. ${ }^{297,339}$ Although the $\mathrm{Cs}^{+},{ }^{264}[\mathrm{NO}]^{+},{ }^{66}$ and $\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~F}\right]^{+}{ }^{270}$ salts of $\left[\mathrm{CrOF}_{5}\right]^{-}$have been characterized by vibrational spectroscopy, ${ }^{66,264,270}$ elemental analysis, ${ }^{66,264,270}$ and Xray powder diffraction (unindexed d-spacings were reported for $[\mathrm{NO}]\left[\mathrm{CrOF}_{5}\right]$), ${ }^{66}$ no crystal structures of $\left[\mathrm{CrOF}_{5}\right]^{-}$or $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$salts have been forthcoming. Thermal decomposition of $[\mathrm{NO}]\left[\mathrm{CrOF}_{5}\right]$ was reported to yield polyanion salts of $\mathrm{Cr}^{\mathrm{VI}}$, $[\mathrm{NO}]\left[\mathrm{CrOF}_{5}\right] \cdot n \mathrm{CrOF}_{4}$, based on the observation of new $\mathrm{Cr}-\mathrm{O}$ and $\mathrm{Cr}-\mathrm{F}$ stretching bands in the infrared spectrum of the pyrolysis product. ${ }^{66}$ In contrast, a recent study showed that thermal decomposition of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ in melts and in aHF and CFCl_{3} solutions resulted in F_{2} elimination and salts of the Cr^{V} oxyfluoro-anions, $\left[\mathrm{CrOF}_{5}\right]^{2-}$ and $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$, which were characterized by single-crystal X-ray diffraction, low-temperature Raman spectroscopy, and quantum-chemical calculations. ${ }^{244}$

Anhydrous hydrogen fluoride (aHF) solutions of MoOF_{4} and WOF_{4} have been shown by Raman and ${ }^{19} \mathrm{~F}$ NMR spectroscopy to partially self-ionize to form $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$and $\left[\mathrm{H}_{2} \mathrm{~F}\right]^{+} .{ }^{283}$ The latter study also demonstrated that addition of the strong F^{-}ion donor, NOF, resulted in equilibrium mixtures of the $[\mathrm{NO}]^{+}$salts of $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F} 9\right]^{-}$, $\left[\mathrm{MOF}_{5}\right]^{-}$, and $\left[\mathrm{MOF}_{6}\right]^{2-}$. Subsequent Raman and ${ }^{19} \mathrm{~F}$ NMR spectroscopic studies of CrOF_{4} in aHF solution ${ }^{66}$ suggested that self-ionization may also give rise to $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F} 9\right]^{-}$and $\left[\mathrm{H}_{2} \mathrm{~F}\right]^{+}$. These studies were inconclusive and did not provide
unambiguous proof for the formation of $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$in aHF, nor were discrete salts of $\left[\mathrm{CrOF}_{5}\right]^{-}$and $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$isolated from aHF solution.

Table 11.1. Summary of methods previously used for the characterizations of the $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}$ $\left(\mathrm{M}^{\prime}=\mathbf{C r}, \mathrm{Mo}, \mathrm{W}\right),\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$, and $\left[\mathrm{MOF}_{6}\right]^{2-}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ anions

Anion	Characterization Methods ${ }^{\left[{ }^{[a]}\right.}$
$\left[\mathrm{CrOF}_{5}{ }^{-}\right.$	Ra,,66,270 IR, ${ }^{264}$ EA,,66,264,270 PXRD $^{[66, b]}$
$\left[\mathrm{MoOF}_{5}{ }^{-}\right.$	$\begin{aligned} & \text { Ra, } 283,285,286 \\ & \text { PXRD }{ }^{298} \end{aligned}{ }^{28}{ }^{269,271} \mathrm{EA},{ }^{284,286,287}{ }^{19} \mathrm{~F} \text { NMR, }{ }^{283,284} \mathrm{CV},{ }^{286} \text { PXRD, }{ }^{283} \text { LT }$
$\left[\mathrm{WOF}_{5}\right]^{-}$	Ra, ${ }^{283,286,288,293,294,296}$ IR, ${ }^{283,285,292-294,296,331}$ EA, ${ }^{283,293,294,296}{ }^{19} \mathrm{~F}$ NMR, ${ }^{283,293-}$ ${ }^{295,329}$ PXRD ${ }^{283,296,331}$ RT SCXRD ${ }^{288,290,292,294}$ LT PXRD ${ }^{331}$
$\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$	
$\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$	${ }_{338} \mathrm{Ra}^{283,293,339}$ IR, ${ }^{283,293,339}$ EA, ${ }^{283,293,339}{ }^{19}$ F NMR, ${ }^{283,293,334-336}$ RT SCXRD ${ }^{334,336-}$ ${ }^{338}$, LT SCXRD 339
$\left[\mathrm{MOF}_{6}\right]^{2-}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$	Ra, IR, PXRD ${ }^{283}$

[a] Abbreviations denote Raman spectroscopy (Ra), infrared spectroscopy (IR), elemental analysis (EA), solution nuclear magnetic resonance spectroscopy (NMR), cyclic voltammetry (CV), powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction (SCXRD). [b] d-spacings were reported for [NO][CrOF5 ${ }_{5}$, but a unit cell was not determined.

Xenon hexafluoride is considerably more fluorobasic in aHF solution than either XeF_{2} or $\mathrm{XeF}_{4} .{ }^{116}$ Raman ${ }^{116}$ and ${ }^{19} \mathrm{~F}$ NMR spectroscopic studies ${ }^{340}$ have shown that XeF_{6} ionizes in aHF to give equilibrium mixtures of $\left[\mathrm{XeF}_{5}\right]^{+},\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$, $\left(\left[\mathrm{XeF}_{5}\right]^{+} \mathrm{F}^{-}\right)_{4}$, and $\left[(\mathrm{HF})_{n} \mathrm{~F}\right]^{-}$, whereas XeF_{2} and XeF_{4} do not ionize to a significant extent. ${ }^{99}$ Several examples of $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$transition-metal oxyfluoro-anion salts are known for $\mathrm{Os}^{\mathrm{VIII}}$ and Cr^{V}, which have been structurally characterized by single-crystal Xray diffraction: $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right],{ }^{121}\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\right.$ fac- $\left.\mathrm{OsO}_{3} \mathrm{~F}_{3}\right],{ }^{121}\left[\mathrm{XeF}_{5}\right][\mu-$ $\left.\mathrm{F}\left(\mathrm{OsO}_{3} \mathrm{~F}_{2}\right)_{2}\right],{ }^{121} \quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right],{ }^{244} \quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF},{ }^{244}$ $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4},{ }^{244}$ and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4} .{ }^{244}$ The recent LT Raman spectroscopic characterization of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ as a reaction intermediate in the synthesis of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ suggests that the $\left[\mathrm{MOF}_{5}\right]^{-}(\mathrm{M}=\mathrm{Mo}$, W) salts of $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$should also form owing to the greater calculated fluoride-ion affinities (FIAs) of $\mathrm{MoOF}_{4}\left(-355 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ and $\mathrm{WOF}_{4}\left(-386 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ compared with that of $\mathrm{CrOF}_{4}\left(-285 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) .{ }^{252}$ The high fluorobasicity of XeF_{6} and
its extensive ionization in aHF solvent make it a viable fluoride-ion donor for the syntheses of stable $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$salts of $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}$and $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$in aHF.

The present study reports the syntheses and structural characterizations of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right](\mathbf{1}),\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}(\mathbf{2}),\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right](\mathbf{3}),\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ (4), $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ (5), $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ (6), and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$ (7) by LT single-crystal Xray diffraction and Raman spectroscopy. The study also provides the first structural characterization of a $\left[\mathrm{CrOF}_{5}\right]^{-}$salt and precise crystal structures of the $\left[\mathrm{MOF}_{5}\right]^{-}$and $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$anions. Quantum-chemical calculations are employed to aid in the vibrational frequency assignments and discussions of the primary and secondary bonding in these salts.

11.2. Results and Discussion

11.2.1. Syntheses

11.2.1.1. $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right](\mathrm{M}=\mathbf{M o}(3), \mathbf{W}(4)),\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F} 9\right](\mathrm{M}=\mathrm{Mo}(5), \mathbf{W}$

 (6)), and $\left[\mathrm{XeFF}_{5}\right]\left[\mathrm{WOFF}_{5}\right] \cdot \mathrm{XeOF}_{4}$ (7).Equilibria arising from the ionization of MOF_{4} in aHF solvent have been previously investigated $[\text { Eqs. (11.1) }-(\mathbf{1 1 . 3})]^{283}$ and shown to shift to the right with increasing $\left[(\mathrm{HF})_{n} \mathrm{~F}\right]^{-}$concentration.

$$
\begin{align*}
& 2 \mathrm{MOF}_{4}+\left[(\mathrm{HF})_{n} \mathrm{~F}\right]^{-} \rightleftharpoons n \mathrm{HF}+\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-} \quad(n \geq 1) \tag{11.1}\\
& {\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}+\left[(\mathrm{HF})_{n} \mathrm{~F}\right]^{-} \rightleftharpoons n \mathrm{HF}+2\left[\mathrm{MOF}_{5}\right]^{-} \quad(n \geq 1)} \tag{11.2}\\
& {\left[\mathrm{MOF}_{5}\right]^{-}+\left[(\mathrm{HF})_{n} \mathrm{~F}\right]^{-} \rightleftharpoons n \mathrm{HF}+\left[\mathrm{MOF}_{6}\right]^{2-} \quad(n \geq 1)} \tag{11.3}
\end{align*}
$$

In an unrelated study, the Raman spectra of XeF_{6} in aHF solutions were studied as a function of initial XeF_{6} concentration (ca. 0.3 to 5.0 M). ${ }^{116}$ The XeF_{6} tetramer, $\left(\left[\mathrm{XeF}_{5}\right]^{+} \mathrm{F}^{-}\right)$, was shown to be the dominant species at high initial molar ratios $\left(\mathrm{XeF}_{6} / \mathrm{HF}=1: 10\right)$, whereas solutions having intermediate initial molar ratios
$\left(\mathrm{XeF}_{6} / \mathrm{HF}=1: 20\right)$ had $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$as the dominant cation, and dilute solutions $\left(\mathrm{XeF}_{6} / \mathrm{HF}\right.$ $=1: 150)$ had $\left[\mathrm{XeF}_{5}\right]^{+}$as the dominant cation. The principal equilibria which describe the ionization of XeF_{6} in aHF are given by Equations (11.4) and (11.5).

$$
\begin{align*}
& \left(\left[\mathrm{XeF}_{5}\right]^{+} \mathrm{F}^{-}\right)_{4}+2 n \mathrm{HF} \rightleftharpoons 2\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}+2\left[(\mathrm{HF})_{n} \mathrm{~F}\right]^{-} \quad(n \geq 1) \tag{11.4}\\
& {\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}+n \mathrm{HF} \rightleftharpoons 2\left[\mathrm{XeF}_{5}\right]^{+}+\left[(\mathrm{HF})_{n} \mathrm{~F}\right]^{-} \quad(n \geq 1)} \tag{11.5}
\end{align*}
$$

In the present work, $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]\left(\mathrm{Mo}(3), \mathrm{W}\right.$ (4)) and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ (Mo (5), W (6)) were obtained by varying the initial molar ratios of XeF_{6} and MOF_{4} in dilute aHF solutions $\left(\mathrm{XeF}_{6} / \mathrm{HF}\right.$ molar ratios ranged from $1: 70$ to $\left.1: 313\right)$, in accordance with Equations (11.1)-(11.5). When a stoichiometric excess of XeF_{6} was employed, the equilibria shifted to favor $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$and $\left[\mathrm{MOF}_{5}\right]^{-}$, whereas a stoichiometric or limiting amount of XeF_{6} favored $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$formation. The hydrolysis of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ in aHF yielded $\mathrm{HF},\left[\mathrm{XeF}_{5}\right]^{+}$, and XeOF_{4} [Eq. (11.6)], which crystallized in the presence of $\left[\mathrm{WOF}_{5}\right]^{-}$to give 7.

$$
\begin{equation*}
\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]+\mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right]+\mathrm{XeOF}_{4}+2 \mathrm{HF} \tag{11.6}
\end{equation*}
$$

11.2.1.2. Attempted Syntheses of [XeFs][MOF5] $(\mathrm{M}=\mathbf{M o}, \mathbf{W})$ in CFCl_{3}.

In an attempt to circumvent $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$ and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ formation, the syntheses of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{MOF}_{5}\right]$ were attempted in CFCl_{3} solvent and reactions were periodically monitored by LT $\left(-150{ }^{\circ} \mathrm{C}\right)$ Raman spectroscopy in order to semiquantitatively determine the dominant species in the frozen (quenched) samples (see Experimental Section). The reaction of equimolar amounts of XeF_{6} and MoOF_{4} in CFCl_{3} at -78 to $-15{ }^{\circ} \mathrm{C}$ yielded a mixture of $\mathrm{MoOF}_{4}, \mathrm{XeF}_{6}$, and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$ in which $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$ dominated. Further reaction at -15 to $25{ }^{\circ} \mathrm{C}$ yielded a mixture of $\mathrm{MoOF}_{4}, \quad\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ in which $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$ dominated, but XeF_{6} was not detected in the Raman spectrum. The
reaction of XeF_{6} and WOF_{4} in CFCl_{3} at RT yielded a mixture of WOF_{4}, $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ in which $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ was the dominant species. Crystalline $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ was also identified by unit cell determinations.

Xenon hexafluoride is not expected to ionize in CFCl_{3}, but is likely present as its tetramer, $\left(\left[\mathrm{XeF}_{5}\right]^{+} \mathrm{F}^{-}\right)_{4} .^{104}$ A plausible equilibrium describing fluoride-ion abstraction from the tetramer to yield the strongly ion-paired salts, $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$ $(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$, is given by Eq. (11.7). Dominance of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$ in the reaction of XeF_{6} with MOF_{4} in CFCl_{3} solvent and consumption of XeF_{6} upon warming the reaction mixture to $25^{\circ} \mathrm{C}$ indicated that the proposed equilibrium [Eq. (11.7)] favors $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$ formation. Fluoride-ion abstraction from $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$ by MOF_{4} presumably yields two equivalents of [$\left.\mathrm{XeF}_{5}\right]\left[\mathrm{MOF}_{5}\right]$ according to Eq. (11.8) which, in turn, react with MOF_{4} to form $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F} 9\right]$ according to Eq. (11.9). Because $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{MOF}_{5}\right]$ was not observed and reaction mixtures that had been warmed to room temperature yielded $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right],\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$, and MOF_{4}; it may be inferred that the equilibria [Eqs. (11.8) and (11.9)] lie to the left and to the right, respectively.

$$
\begin{align*}
& \left(\left[\mathrm{XeF}_{5}\right]^{+} \mathrm{F}^{-}\right)_{4}+2 \mathrm{MOF}_{4} \rightarrow\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right] \tag{11.7}\\
& {\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]+\mathrm{MOF}_{4} \rightarrow 2\left[\mathrm{XeF}_{5}\right]\left[\mathrm{MOF}_{5}\right]} \tag{11.8}\\
& {\left[\mathrm{XeF}_{5}\right]\left[\mathrm{MOF}_{5}\right]+\mathrm{MOF}_{4} \rightarrow\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]} \tag{11.9}
\end{align*}
$$

11.2.1.3. $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ (1) and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$ (2).

Unlike MoOF_{4} and WOF_{4}, the reaction of CrOF_{4} with XeF_{6} in aHF did not yield either a $\left[\mathrm{CrOF}_{5}\right]^{-}$or a $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$salt. The room-temperature reaction of XeF_{6} and CrOF_{4} in aHF was recently shown to form the Cr^{V} oxyfluoro-anion salt, $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$, through a multi-step pathway which involved reductive
elimination of F_{2} and O / F metathesis. ${ }^{244}$ In an attempt to prevent $\mathrm{Cr}^{\mathrm{VI}}$ reduction, the LT (-78 to $0{ }^{\circ} \mathrm{C}$) reaction of XeF_{6} and CrOF_{4} in aHF was carried out, however, only $\alpha-\mathrm{CrOF}_{4}, \beta$ - CrOF_{4}, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right]$ were identified in the reaction mixture by determinations of their unit cells. When a $2.21: 1$ molar ratio of $\mathrm{XeF}_{6} / \mathrm{CrOF}_{4}$ was allowed to react at $0{ }^{\circ} \mathrm{C}$ in aHF (initial molar ratio of $\mathrm{XeF}_{6} / \mathrm{HF}=1: 100$), the $\mathrm{Cr}^{\mathrm{VI}}$ adduct, $\mathbf{2}$, formed as the sole product, which was isolated from solution along with a small quantity of unreacted crystalline XeF_{6} (identified by unit cell determinations). Unlike MoOF_{4} and $\mathrm{WOF}_{4}, \mathrm{CrOF}_{4}$ is incapable of abstracting F^{-}from $\left[(\mathrm{HF})_{n} \mathrm{~F}\right]^{-}$at $0{ }^{\circ} \mathrm{C}$ in aHF solution, and forms 2 instead, in accordance with the low fluoride-ion affinity of CrOF_{4}.

To avoid $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right]$ formation, the reaction of XeF_{6} and CrOF_{4} was carried out in the oxidatively resistant solvent, $\mathrm{CF}_{2} \mathrm{ClCF}_{2} \mathrm{Cl}$. This reaction resulted in fluorideion abstraction from XeF_{6} by CrOF_{4} to give 1 [Eq. (11.7)]. The room-temperature reactions of XeF_{6} and CrOF_{4} in aHF and in $\mathrm{CFCl}_{3} / \mathrm{HF}$ mixtures had been previously shown to yield Cr^{V} oxyfluoro-anion salts by reductive elimination of $\mathrm{F}_{2}{ }^{244}$ Consequently, the synthesis of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ by reaction of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ with excess CrOF_{4} at room temperature in $\mathrm{CF}_{2} \mathrm{ClCF}_{2} \mathrm{Cl}$ was not investigated.

11.2.2. X-ray Crystallography

Details of X-ray data collection and crystallographic information pertaining to $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right](\mathbf{1}),\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}(\mathbf{2}),\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right](\mathbf{3}),\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ (4), $\left[\mathrm{XeFF}_{5}\right]\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ (5), $\left[\mathrm{XeFF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ (6), and $\left[\mathrm{XeFF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$ (7) are provided in Table 11.2.

The crystal structures of $\mathbf{1 - 7}$ (Figures 11.1-11.5 and Figures A8.1-A8.3 of Appendix 8) are best described as ion-pairs in which the Lewis acidic $\left[\mathrm{XeF}_{5}\right]^{+}$and
$\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cations form fluorine bridges with their respective anions by means of $\mathrm{Xe}---$ F secondary bonds. The latter bonds are significantly shorter than the sum of the Xe and F van der Waals radii ($3.61 \AA,{ }^{167} 3.52 \AA$) ${ }^{168}$ (Tables A8.1-A8.6 of Appendix 8). Each cation and anion of $\mathbf{1}, \mathbf{2}, \mathbf{5}$, and $\mathbf{6}$ interacts with two anions and two cations, respectively, to form dimeric structural units that pack along the a-axes of their unit cells. The dimeric units of $\mathbf{1}, \mathbf{5}$, and $\mathbf{6}$ are well-separated with no significant intermolecular contacts, whereas compound $\mathbf{2}$ crystallizes in sheets that are bridged by long Xe--- $\mathrm{F}_{\mathrm{CrOF} 4}$ contacts to neighboring sheets (Figure A8.4). Compounds $\mathbf{3}$ and $\mathbf{4}$ are isotypic and form six-membered rings (lying in the $b c$-planes of their unit cells) that interact with one another through long Xe--- $\mathrm{F}_{\text {eq }}$ contacts to form columns which stack parallel to the a-axes of their unit cells (Figure A8.5). Although $\mathbf{1}$ has a molecular formula that is analogous to those of $\mathbf{3}$ and $\mathbf{4}$, its crystal structure is not isotypic with the crystal structures of the latter compounds (Table 11.2). Compound 7 crystallizes in chains that result from short secondary bonding interactions between $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{WOF}_{5}\right]^{-}$. The chains run parallel to the a-axis and alternate with columns of cocrystallized XeOF_{4} molecules that are parallel to the b-axis (Figure A8.6).

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table 11.2. Summary of X-ray crystal data and refinement results for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ (1), $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$ (2), $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOFF}_{5}\right]$ (3), $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right](4),\left[\mathrm{XeFF}_{5}\right]\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right](5),\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ (6), and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$ (7)

	1	2	3	4	5	6	7
space group	$P \overline{1}$	$P \overline{1}$	$P 2_{1} / n$	$P 2{ }_{1} / n$	$P \overline{1}$	$P \overline{1}$	$P 2_{1 / m}$
$a(\AA)$	7.5409(6)	6.3011(4)	8.6130(7)	8.6465(3)	8.0652(4)	8.105(5)	5.5727(5)
b (\AA)	9.4357(6)	7.8902(6)	8.7822(9)	8.8270(3)	8.9035(5)	8.919(5)	8.6980(7)
$c(\AA)$	9.7089(6)	8.6923(5)	15.6503(14)	15.6220(6)	8.9681(5)	8.971(8)	12.1256(11)
α (deg)	63.205(2)	92.315(3)	90	90	85.270(2)	85.00(7)	90
β (deg)	89.251(3)	102.700(3)	94.716(5)	94.994(2)	74.702(2)	75.46 (5)	101.422(4)
$\gamma(\mathrm{deg})$	68.274(2)	100.824(3)	90	90	70.945(2)	71.12(5)	90
$V\left(\AA^{3}\right)$	562.90(7)	412.57(5)	1179.80(19)	1187.79(7)	587.13(6)	593.9(8)	576.10(9)
$Z^{[a]}$	2	2	4	4	2	2	2
$M_{W^{[b]}}$	634.60	409.31	678.54	766.45	621.18	797.00	744.45
$\rho_{\text {calcd }}{ }^{[\text {[]] }}$	3.744	3.295	3.820	4.286	3.514	4.457	4.292
$T\left({ }^{\circ} \mathrm{C}\right)$	-173	-173	-173	-173	-173	-173	-173
$\mu^{[\mathrm{d}]}$	7.147	5.584	6.963	15.537	5.153	22.336	15.992
$R_{1}{ }^{[\text {[e] }}$	0.0238	0.0209	0.0384	0.0340	0.0236	0.0448	0.0442
$w R_{2}{ }^{[f]}$	0.0581	0.0547	0.0922	0.0786	0.0519	0.1392	0.0989

[a] Molecules/unit cell. [b] $\mathrm{g} \mathrm{mol}^{-1}$. [c] g cm ${ }^{-3}$. [d] mm^{-1}. [e] $R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right| / \Sigma\right| F_{\mathrm{o}} \mid$. [f] $w R_{2}=\left[\Sigma\left(w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right) / \Sigma\left(w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right)\right]^{1 / 2}$.
11.2.2.1. $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$. The primary bond lengths and bond angles of $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$in all seven salts (Tables A8.1-A8.6 of Appendix 8) are comparable to those of other fluoro- and oxyfluoro-anion salts of $\left[\mathrm{XeFF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$, e.g., $\quad\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{AuF}_{6}\right],{ }^{308} \quad\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{NiF}_{6}\right],{ }^{118} \quad\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{SbF}_{6}\right],{ }^{341}$ $\left[\mathrm{XeF}_{5}\right]_{3}\left[\mathrm{Ti}_{4} \mathrm{~F}_{19}\right],{ }^{309} \quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{PdF}_{6}\right],{ }^{311} \quad\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right],{ }^{312} \quad\left[\mathrm{XeF}_{5}\right]\left[\mathrm{SbF}_{6}\right] \cdot \mathrm{XeOF}_{4},{ }^{314}$ $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{PtF}_{6}\right],{ }^{310} \quad\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AgF}_{4}\right],{ }^{117} \quad\left[\mathrm{XeF}_{5}\right]\left[\mathrm{CrF}_{5}\right] \cdot \mathrm{XeF}_{4},{ }^{93} \quad\left[\mathrm{XeF}_{5}\right]\left[\mathrm{BF}_{4}\right],{ }^{341}$ $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right], \quad\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[f a c-\mathrm{OsO}_{3} \mathrm{~F}_{3}\right], \quad\left[\mathrm{XeF}_{5}\right]\left[\mu-\mathrm{F}\left(\mathrm{OsO}_{3} \mathrm{~F}_{2}\right)_{2}\right],{ }^{121}$ $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4},\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{CrF}_{6}\right],\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right],\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4},{ }^{244}$ and are not discussed further.

Each Xe atom of both $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cations in the dimeric structural unit of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right](\mathbf{1})$ has one short $\mathrm{Xe}---\mathrm{F}_{\mathrm{ax}}(2.5065(9) \AA, 2.5687(9) \AA)$ and one long $\mathrm{Xe}---\mathrm{F}_{\text {eq }}(2.814(1) \AA, 2.862(1) \AA)$ contact with a $\left[\mathrm{CrOF}_{5}\right]^{-}$anion of the dimeric unit. In contrast, the $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cations of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$ (3) and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ (4) $\left(\mathrm{CN}_{\mathrm{Xe}}=8\right)$ have short Xe---F secondary bonding interactions with the F_{ax} ligand (Mo, 2.348(2) \AA; W, 2.405(2) \AA) and one $\mathrm{F}_{\text {eq }}$ ligand ($\mathrm{Mo}, 2.640(2) \AA ; \mathrm{W}, 2.661(2) \AA$) of $\left[\mathrm{MOF}_{5}\right]^{-}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$, and two long interionic Xe---Feq contacts ($\mathrm{Mo}, 2.969(2) \AA$, $3.072(2) \AA ; \mathrm{W}, 2.966(2) \AA, 3.057(2) \AA$) with two $\mathrm{F}_{\text {eq }}$ ligands of two neighboring $\left[\mathrm{MOF}_{5}\right]^{-}$anions. The $\left[\mathrm{XeF}_{5}\right]^{+}$cations of 5 and $6\left(\mathrm{CN}_{\mathrm{Xe}}=9\right)$ have two short (Mo, $2.6438(9) \AA, 2.6553(8) \AA ; \mathrm{W}, 2.677(5) \AA, 2.681(5) \AA$) and two long (Mo, 2.8987(9) $\AA, 2.9828(9) \AA ; \mathrm{W}, 2.888(5) \AA, 2.990(5) \AA$) interionic Xe--- $\mathrm{F}_{\text {eq }}$ contacts with two adjacent $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$anions. In contrast, the $\left[\mathrm{XeF}_{5}\right]^{+}$cation of 7 has two short Xe---F secondary bonding interactions with one $\mathrm{F}_{\text {ax }}$ ligand (2.357(4) \AA) and one $\mathrm{F}_{\text {eq }}$ ligand $\left(2.689(4) \AA\right.$) of two neighboring $\left[\mathrm{WOF}_{5}\right]^{-}$anions (next nearest Xe---F distance is $3.131(3) \AA$), and provides the first example of an $\left[\mathrm{XeF}_{5}\right]^{+}$cation for which $\mathrm{CN}_{\mathrm{Xe}}=7$.

Figure 11.1. The dimeric structural unit in the X-ray crystal structure of [$\left.\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ (1) with thermal ellipsoids drawn at the 50% probability level. Secondary Xe---F and Cr---F bonding interactions are indicated by dashed lines.

Figure 11.2. The dimeric structural unit in the X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$ (2) with thermal ellipsoids drawn at the 50% probability level. Secondary Xe---F and Cr---F bonding interactions are indicated by dashed lines.

Figure 11.3. (a) The structural unit in the X-ray crystal structure of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$ (3) with thermal ellipsoids drawn at the 50% probability level. (b) A diagram showing the stacking of the structural units of $\mathbf{3}$ in columns along the a-axis of the unit cell. Secondary $\mathrm{Xe}---\mathrm{F}$ and Mo---F bonding interactions are indicated by dashed lines. The structural unit in the X-ray crystal structure of the isotypic $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ (4) salt is shown in Figure A8.1 of Appendix 8.
 provides the only X-ray crystal structure of the $\left[\mathrm{CrOF}_{5}\right]^{-}$anion; and $\mathbf{3}$ (Figure 11.2), $\mathbf{4}$ (Figure A8.1), and 7 (Figure 11.5) provide precise crystal structures for the $\left[\mathrm{MoOF}_{5}\right]^{-}$ and $\left[\mathrm{WOF}_{5}\right]^{-}$anions (Tables 11.3 and A8.6). The primary coordination spheres of the $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}$anions are distorted octahedra comprised of four $\mathrm{M}^{\prime}-\mathrm{F}_{\mathrm{eq}}$ bond domains that are bent away from the $\mathrm{M}^{\prime}-\mathrm{O}$ double-bond domain, and a F_{ax} ligand trans to the $\mathrm{M}^{\prime}-\mathrm{O}$ bond. The $\mathrm{M}^{\prime}-\mathrm{F}_{\text {eq }}$ bonds vary in length, where the shortest $\mathrm{M}^{\prime}-\mathrm{F}_{\text {eq }}$ bonds correspond to the $\mathrm{F}_{\text {eq }}$ ligands that have the longest $\mathrm{Xe}---\mathrm{F}_{\text {eq }}$ contacts, and vice versa (vide supra). The short $\mathrm{M}^{\prime}-\mathrm{O}$ bonds ($\mathrm{Cr}, 1.565(1) \AA$; Mo, $\left.1.664(3) \AA ; \mathrm{W}, 1.697(3) \AA, 1.686(5) \AA\right)$ are consistent with significant double bond character. The $\mathrm{M}^{\prime}-\mathrm{F}_{\mathrm{ax}}$ bonds $(\mathrm{Cr}$, $2.1059(9) \AA$; Mo, 2.061(2) \AA); W, 2.047(2) $\AA, 2.063(4) \AA$) are significantly longer than the $\mathrm{M}^{\prime}-\mathrm{F}_{\text {eq }}$ bonds (Cr, 1.7437(9)-1.7712(9) \AA; Mo, 1.835(3)-1.898(2) \AA; W, 1.848(2)-1.900(2) $\AA, 1.862(4)-1.890(4) \AA)$ (Tables 11.3 and A8.6). Their elongations are attributed to the trans-influence of their $\mathrm{M}^{\prime}-\mathrm{O}$ bonds and the existence of short $\mathrm{Xe}---\mathrm{F}_{\mathrm{ax}}$ contacts (vide supra) with the Xe atoms of nearby $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cations. The covalent radii of the Group 6 metals increase from Cr to W , which is reflected by commensurate $\mathrm{M}^{\prime}-\mathrm{O}$ and $\mathrm{M}^{\prime}-\mathrm{F}_{\text {eq }}$ bond length increases. In contrast, the $\mathrm{M}^{\prime}-\mathrm{F}_{\text {ax }}$ bond lengths decrease from Cr to W , consistent with the trend of increasing FIA for $\mathrm{M}^{\prime} \mathrm{OF}_{4}$ upon descending the Group 6 triad. ${ }^{252}$

The M-F and M-O bond lengths of $\mathbf{3}$ and $\mathbf{4}$ are comparable to the $\left[\mathrm{MOF}_{5}\right]^{-}$ anions in $\mathrm{K}_{3}\left[\mathrm{MOF}_{7}\right]^{298,331}$ and to the $\left[\mathrm{WOF}_{5}\right]^{-}$anion of 7, respectively. The $\mathrm{W}-\mathrm{F}_{\text {eq }}$ bonds of $\mathbf{4}$ (vide supra) are significantly longer than in $\mathrm{Ag}\left[\mathrm{WOF}_{5}\right]_{2}$ (W-Feq, 1.826(7)$1.873(7) \AA),{ }^{288}$ whereas the $\mathrm{W}-\mathrm{O}$ and $\mathrm{W}-\mathrm{F}_{\text {ax }}$ bonds of 4 are significantly shorter than those of $\mathrm{Ag}\left[\mathrm{WOF}_{5}\right]_{2}(1.729(8) \AA$ and $2.075(7) \AA$, respectively $)$.

Figure 11.4. The dimeric structural unit in the X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ (5) with thermal ellipsoids drawn at the 50% probability level. The $\left[\mathrm{XeF}_{5}\right]^{+}$cations have been faded to emphasize the anions. Secondary Xe---F and Mo---F bonding interactions are indicated by dashed lines. The dimeric structural unit of the isotypic $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ (6) salt is shown in Figure A8.2 of Appendix 8.

Figure 11.5. The structural unit in the X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$ (7) with thermal ellipsoids drawn at the 50% probability level. Only one of two orientations for XeOF_{4} is shown. Secondary Xe---F and W---F bonding interactions are indicated by dashed lines. A figure depicting both XeOF_{4} orientations may be found in Appendix 8 (Figure A8.3).

Table 11.3. Experimental and calculated ${ }^{[a]}$ geometric parameters for $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}\left(\mathrm{M}^{\prime}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}\right)$ in 1,3 , and 4

	1		3		4	
	exptl	calcd	exptl	calcd	exptl	calcd
	Bond Lengths (\AA)					
M'1-O1	1.565(1)	1.498	1.664(3)	1.665	$1.698(3)$	1.693
M'1-F1	1.7717(9)	1.733	1.898(2)	1.943	1.900(2)	1.958
M'1-F2	1.7560 (9)	1.726	1.855(3)	1.843	1.873(2)	1.913
M'1-F3	1.7712(9)	1.733	1.835(3)	1.844	$1.848(2)$	1.863
M'1-F4	1.7437(9)	1.699	1.863(3)	1.899	1.867(2)	1.864
M'1-F5	$2.1059(9)$	2.315	2.061(2)	2.153	2.047(2)	2.148
	Bond Angles (deg)					
O1-M'1-F1	98.43(6)	101.6	94.8(1)	96.4	95.1(1)	96.7
O1-M'1-F2	97.14(5)	100.1	97.4(2)	100.2	96.6(2)	98.8
O1-M'1-F3	97.79(6)	101.6	98.0(2)	98.7	97.6(1)	98.4
O1-M'1-F4	96.93(5)	100.8	96.5(2)	98.7	97.4(2)	99.8
O1-M'1-F5	178.16(5)	178.6	176.9(1)	176.7	177.1(1)	176.9
F1-M'1-F2	88.38(4)	87.3	88.0(1)	87.2	88.0(1)	81.0
F1-M'1-F3	163.77(5)	156.9	167.2(1)	164.1	167.3(1)	164.1
F1-M'1-F4	88.98(5)	88.5	88.1(1)	81.7	88.1(1)	87.2
F1-M'1-F5	82.02(4)	78.5	82.1(1)	82.0	81.93(9)	82.0
F2-M'1-F3	88.95(5)	87.3	90.2(1)	94.9	90.5(1)	91.6
F2-M'1-F4	165.92(5)	159.0	165.8(1)	159.1	165.7(1)	158.9
F2-M'1-F5	84.65(4)	81.2	83.0(1)	82.7	83.0(1)	78.2
F3-M'1-F4	89.74(5)	88.5	90.6(1)	91.1	90.3(1)	95.3
F3-M'1-F5	81.80(4)	78.5	85.1(1)	82.7	85.4(1)	82.7
F4-M'1-F5	81.29(4)	77.8	83.0(1)	78.2	82.9(1)	82.9

[a] The PBE1PBE/Def2-SVP (F, O, M, Xe) level of theory was used.
The $\mathrm{O}-\mathrm{M}^{\prime}-\mathrm{F}_{\mathrm{eq}}$ bond angles of $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}$in $\mathbf{1}\left(\mathrm{Cr}, 96.93(5)-98.43(6)^{\circ}\right), \mathbf{3}(\mathrm{Mo}$, $\left.94.8(1)-98.0(2)^{\circ}\right), 4\left(\mathrm{~W}, 95.1(1)-97.4(2)^{\circ}\right)$, and $7\left(\mathrm{~W}, 95.8(2)-98.3(2)^{\circ}\right)$ are significantly more closed than in $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}\left(98.87(5)-100.11(5)^{\circ}\right)$, $\mathrm{XeF}_{2} \cdot \mathrm{CrOF}_{4} \quad\left(99.72(8)-100.9(1)^{\circ}\right), \quad \mathrm{XeF}_{2} \cdot 2 \mathrm{CrOF}_{4} \quad\left(100.24(9)-102.04(9)^{\circ}\right),{ }^{65}$ and $\mathrm{WOF}_{4} \cdot\left(o-\mathrm{NC}_{5} \mathrm{FH}_{4}\right) \quad\left(98.2(5)-100.3(5)^{\mathrm{o}}\right) ;{ }^{32}$ and are comparable to those of $\mathrm{MOF}_{4} \cdot \mathrm{OPPh}_{3}\left(\mathrm{Mo}, 95.47(9)-97.97(8)^{0} ;{ }^{343} \mathrm{~W}, 96.0(2)-98.0(2)^{\mathrm{o}}\right)^{344}$ The $\mathrm{O}^{3}-\mathrm{M}^{\prime}-\mathrm{F}_{\mathrm{eq}}$ bond angles of gas-phase $\mathrm{M}^{\prime} \mathrm{OF}_{4}$ are more open ${ }^{345-347}$ than in $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}$because their $\mathrm{M}^{\prime}-\mathrm{F}_{\text {eq }}$ single bond domains only interact with an axial $\mathrm{M}^{\prime}-\mathrm{O}$ double bond domain. In the cases of the neutral $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$ and $\mathrm{MOF}_{4} \cdot \mathrm{OPPh}_{3}$ adducts, the $\mathrm{Cr}-\mathrm{F}_{\text {eq }}$ and $\mathrm{M}-\mathrm{F}_{\text {eq }}$ bond domains also interact with their respective $\mathrm{Cr}---\mathrm{F}_{\mathrm{HF} 2-}$ and $\mathrm{M}-\mathrm{O}$ bond
domains, which result in smaller $\mathrm{O}-\mathrm{Cr}-\mathrm{F}_{\text {eq }}$ and $\mathrm{O}-\mathrm{M}-\mathrm{F}_{\text {eq }}$ bond angles relative to those of $\mathrm{M}^{\prime} \mathrm{OF}_{4}$.
11.2.2.3. $\left[\boldsymbol{M}_{2} \mathrm{O}_{2} \boldsymbol{F}_{9}\right]^{-}(\boldsymbol{M}=\boldsymbol{M o}, \boldsymbol{W})$. The bond lengths and angles of $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$in the isotypic crystal structures of $\mathbf{5}$ (Figure 11.4) and $\mathbf{6}$ (Figure A8.2) are comparable. The anions are comprised of two asymmetrically fluorine-bridged MOF_{4} molecules, $\left[\mathrm{F}_{4}(\mathrm{O}) \mathrm{M}---\mathrm{F}_{\mathrm{b}}--\mathrm{M}(\mathrm{O}) \mathrm{F}_{4}\right]^{-}$, where the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bridge bonds (Mo, 2.1060(8), 2.1420(8) \AA; W, 2.113(5), 2.167(5) \AA) are trans to the M-O double bonds (Table 11.4) and are significantly longer than the terminal $\mathrm{M}-\mathrm{F}_{\mathrm{eq}}$ bonds (Mo, 1.8327(9)-1.9043(9) $\AA ; \mathrm{W}$, $1.839(5)-1.907(5) \AA)$ due to the dicoordinate F_{b} atom and the combined transinfluences of two M-O bonds. The longest M- $\mathrm{F}_{\text {eq }}$ bonds (Mo, 1.8787(9)-1.9043(9) \AA; W, 1.881(5)-1.907(5) \AA) correspond to the shortest Xe--- $\mathrm{F}_{\text {eq }}$ contacts (vide supra), whereas the F_{eq} atoms of the shortest $\mathrm{M}-\mathrm{F}_{\mathrm{eq}}$ bonds (Mo, 1.8327(9)-1.8407(9) \AA; W, $1.839(5)-1.851(5) \AA$) have no significant contacts. The short M-O bonds (Mo, $1.657(1) \AA, 1.659(1) \AA ; W, 1.681(6) \AA, 1.696(5) \AA)$ are consistent with significant double-bond character and are very similar to those of $\left[\mathrm{MOF}_{5}\right]^{-}$(vide supra). The M---$\mathrm{F}_{\mathrm{b}}--\mathrm{M}$ bond angles $\left(\mathrm{Mo}, 147.40(4)^{\circ} ; \mathrm{W}, 147.6(2)^{\circ}\right)$ and $\mathrm{F}_{\text {eq }} \mathrm{MMF}_{\text {eq }}$ dihedral angles (Mo, 0.30(4)-2.07(5) ${ }^{\circ}$; W, 0.4(3)-2.6(3) ${ }^{\circ}$) are expected to be highly deformable based on their low calculated deformation frequencies (see Raman Spectroscopy) and are likely bent or nearly eclipsed to accommodate Xe---F ion-pair interactions within the crystal lattice. The primary bond lengths and angles of the $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$anions in 5 and 6 lie within the range of values reported for their $\mathrm{Li}^{+}-\mathrm{Cs}^{+}$salts. ${ }^{297,339}$ The $\mathrm{Feq}_{\mathrm{eq}} \mathrm{MMF}_{\text {eq }}$ dihedral angles of the latter salts increase with cation size and have a broad range of M--- $\mathrm{F}_{\mathrm{b}}--\mathrm{M}$ bond angles (Mo, 137.98(11)-158.89(12) ${ }^{\mathrm{o}}$; W, 138.7(2)-152.0(2) ${ }^{\circ}$)..297,339
11.2.2.4. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$. The $\left[\mathrm{XeF}_{5}\right]^{+}$cations $\left(\mathrm{CN}_{\mathrm{Xe}_{\mathrm{e}}}=9\right)$ of compound 2 (Figure 11.2) have two short interionic Xe---F $\mathrm{F}_{\mathrm{HF} 2-}$ contacts (2.4231(7) $\AA, 2.4320(7) \AA$) with two $\left[\mathrm{HF}_{2}\right]^{-}$anions that result in a dimeric structural unit in which the $\mathrm{F} \cdots \mathrm{F}$ distance of $\left[\mathrm{HF}_{2}\right]^{-}(2.386(1) \AA)$ is comparable to those of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{HF}(2.383(4) \AA, 2.445(4)$ A). ${ }^{100}$ The dimeric structural unit of $\mathbf{2}$ also contains two adducted CrOF_{4} molecules which have primary bond lengths and angles that are comparable to those of polymeric α - CrOF_{4}, β - CrOF_{4}, and $\mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe}) .{ }^{65}$ The Cr atom coordinates to the F ligand of $\left[\mathrm{HF}_{2}\right]^{-}$that is not coordinated to the Xe atom. The Cr--$\mathrm{F}_{\mathrm{HF} 2-}$ distance $\left(2.2378(7) \AA\right.$) is somewhat shorter than the $\mathrm{Cr}---\mathrm{F}_{\mathrm{NgF} 2}$ distances in $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}\left(\mathrm{Kr}, 2.3265(9) \AA\right.$; $\mathrm{Xe}, 2.314(2) \AA$) and $\mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF}_{4}(\mathrm{Kr}, 2.4293(6) \AA ;$ Xe, $2.385(1) \AA),{ }^{65}$ and is consistent with the greater fluorobasicity of $\left[\mathrm{HF}_{2}\right]^{-}$relative to that of NgF_{2}, and with the dominant electrostatic character of the Cr---F bond, a σ hole type interaction similar to those observed for $\mathrm{NgF}_{2} \cdot n \mathrm{CrOF}_{4}(n=1,2) .{ }^{65}$
11.2.2.5. XeOF_{4}. The bond lengths and bond angles of cocrystallized XeOF_{4} in 7 (Table A8.6) are very similar to those of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}{ }^{244}$ and $\mathrm{XeOF}_{4} \cdot \mathrm{XeF}_{2} .{ }^{68}$ There is one $\mathrm{Xe}---\mathrm{F}_{\text {eq }}$ secondary bond with the $\left[\mathrm{WOF}_{5}\right]^{-}$anion (2.890(7) \AA) that avoids the stereo-active xenon valence electron lone pair trans to the O atom of $\mathrm{XeOF}_{4}\left(\mathrm{CN}_{\mathrm{Xe}}=6\right)$. The next nearest $\mathrm{Xe} \cdots \mathrm{F}$ and $\mathrm{Xe}^{\cdots \mathrm{O}}$ distances are $3.829(4) \AA$ and $3.371(5) \AA$, respectively.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table 11.4. Experimental and calculated ${ }^{[a]}$ geometric parameters of $\left[_{M_{2}} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ in 5 and 6

	5		6	
	Bond Lengths (\AA)			
$\mathrm{M}(1)-\mathrm{O}(1)$	1.657(1)	1.643	1.681(6)	1.676
$\mathrm{M}(1)-\mathrm{F}(1)$	1.8327(9)	1.821	1.851(5)	1.843
$\mathrm{M}(1)-\mathrm{F}(2)$	1.8355(9)	1.822	1.843(5)	1.844
$\mathrm{M}(1)-\mathrm{F}(3)$	1.9043(9)	1.904	1.887(5)	1.918
$\mathrm{M}(1)-\mathrm{F}(4)$	1.8947(8)	1.898	1.881(5)	1.916
$\mathrm{M}(1)--\mathrm{F}(5)$	2.1060(8)	2.116	$2.167(5)$	2.130
$\mathrm{M}(2)-\mathrm{O}(2)$	1.659(1)	1.643	$1.696(5)$	1.676
$\mathrm{M}(2)--\mathrm{F}(5)$	2.1420 (8)	2.116	$2.113(5)$	2.130
$\mathrm{M}(2)-\mathrm{F}(6)$	1.840(1)	1.821	1.846 (5)	1.844
$\mathrm{M}(2)-\mathrm{F}(7)$	1.8407(9)	1.822	$1.839(5)$	1.844
$\mathrm{M}(2)-\mathrm{F}(8)$	1.8787(9)	1.904	$1.907(5)$	1.917
$\mathrm{M}(2)-\mathrm{F}(9)$	1.8822(9)	1.898	1.892(4)	1.916
	Bond Angles (deg)			
$\mathrm{M}(1)--\mathrm{F}(5)--\mathrm{M}(2)$	147.40(4)	148.2	147.6(2)	148.9
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(1)$	98.57(5)	99.4	99.4(3)	99.1
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(2)$	99.27(5)	99.2	99.6(3)	99.1
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(3)$	95.90(5)	96.4	98.6(3)	96.9
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(4)$	95.30(5)	96.4	97.4(3)	96.9
$\mathrm{O}(1)-\mathrm{M}(1)--\mathrm{F}(5)$	175.37(5)	175.5	178.2(3)	175.6
$\mathrm{F}(1)-\mathrm{M}(1)-\mathrm{F}(2)$	91.89(5)	92.9	89.9(3)	92.9
$\mathrm{F}(1)-\mathrm{M}(1)-\mathrm{F}(3)$	165.34(4)	163.8	161.9(3)	163.5
$\mathrm{F}(1)-\mathrm{M}(1)-\mathrm{F}(4)$	89.96(4)	89.2	88.9(2)	88.9
$\mathrm{F}(1)-\mathrm{M}(1)--\mathrm{F}(5)$	84.17(4)	83.8	81.4(2)	83.9
$\mathrm{F}(2)-\mathrm{M}(1)-\mathrm{F}(3)$	88.08(4)	88.3	88.6(2)	88.6
$\mathrm{F}(2)-\mathrm{M}(1)-\mathrm{F}(4)$	164.87(4)	163.7	162.9(2)	163.5
$\mathrm{F}(2)-\mathrm{M}(1)--\mathrm{F}(5)$	84.31(4)	83.8	82.0(2)	83.9
$\mathrm{F}(3)-\mathrm{M}(1)-\mathrm{F}(4)$	86.37(4)	85.4	87.4(2)	85.1
$\mathrm{F}(3)-\mathrm{M}(1)--\mathrm{F}(5)$	81.24(4)	80.2	80.5(2)	79.9
$\mathrm{F}(4)-\mathrm{M}(1)--\mathrm{F}(5)$	80.93(3)	80.4	81.0(2)	79.9
$\mathrm{O}(2)-\mathrm{M}(2)--\mathrm{F}(5)$	178.60(5)	175.5	176.0(3)	175.6
$\mathrm{O}(2)-\mathrm{M}(2)-\mathrm{F}(6)$	98.68(6)	99.4	99.2(3)	99.1
$\mathrm{O}(2)-\mathrm{M}(2)-\mathrm{F}(7)$	98.46(5)	99.2	99.8(3)	99.1
$\mathrm{O}(2)-\mathrm{M}(2)-\mathrm{F}(8)$	97.43(6)	96.4	97.2(3)	96.9
$\mathrm{O}(2)-\mathrm{M}(2)-\mathrm{F}(9)$	97.15(5)	96.4	96.7(3)	96.9
$\mathrm{F}(5)--\mathrm{M}(2)-\mathrm{F}(6)$	82.28(4)	83.8	82.9(2)	83.9
$\mathrm{F}(5)--\mathrm{M}(2)-\mathrm{F}(7)$	82.52(4)	83.8	83.5(2)	83.9
$\mathrm{F}(5)--\mathrm{M}(2)-\mathrm{F}(8)$	81.59(4)	80.2	80.6(2)	80.0
$\mathrm{F}(5)-\mathrm{M}(2)-\mathrm{F}(9)$	81.83(4)	80.4	79.9(2)	79.9
$\mathrm{F}(6)-\mathrm{M}(2)-\mathrm{F}(7)$	90.55(5)	92.9	91.7(3)	92.9
$\mathrm{F}(6)-\mathrm{M}(2)-\mathrm{F}(8)$	163.84(4)	163.8	163.5(2)	163.4
$\mathrm{F}(6)-\mathrm{M}(2)-\mathrm{F}(9)$	89.01(4)	89.2	89.8(2)	88.8
$\mathrm{F}(7)-\mathrm{M}(2)-\mathrm{F}(8)$	88.42(4)	88.3	87.6(2)	88.7
$\mathrm{F}(7)-\mathrm{M}(2)-\mathrm{F}(9)$	164.27(4)	163.7	163.0(2)	163.5
$\mathrm{F}(8)-\mathrm{M}(2)-\mathrm{F}(9)$	87.66(4)	85.4	86.2(2)	85.1
$\mathrm{F}_{\text {eq }} \mathrm{MMF}_{\text {eq }}$	0.30(4),	0.10 ,	0.4(3),	0.01,
	2.07(5)	0.07	2.6(3)	0.03

[a] The PBE1PBE/Def2-SVP (F, O, M, Xe) level of theory was used.

11.2.3. Raman Spectroscopy

The LT Raman spectra of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]\left(\mathrm{M}^{\prime}=\mathrm{Cr}\right.$ (1), Mo (3), W (4)), $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right](\mathrm{M}=\mathrm{Mo}(\mathbf{5}), \mathrm{W}(\mathbf{6}))$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$ (7) are shown in Figures 11.6-11.8 and Figures A8.7-A8.9 of Appendix 8. Spectral assignments for $\mathbf{1}$ and 3-6 were made by comparison with the calculated vibrational frequencies of the energy-minimized, gas-phase geometries of $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\} 2,\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$, and $\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}$ at the PBE1PBE/Def2-SVP level of theory. The observed and calculated frequencies, their detailed vibrational band assignments, and mode descriptions are provided in Tables A8.7-A8.9 of Appendix 8. The vibrational frequencies of the free gas-phase $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}$and $\left[\mathrm{M}_{2}^{\prime} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$anions were also calculated (Tables A8.10 and A8.11 of Appendix 8). The vibrational assignments for $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$were also aided by comparison with the vibrational frequencies and band intensities of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right],{ }^{316}\left[\mathrm{XeF}_{5}\right]\left[\mathrm{BF}_{4}\right],{ }^{116,316}\left[\mathrm{XeF}_{5}\right]\left[f a c-\mathrm{OsO}_{3} \mathrm{~F}_{3}\right]$, $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[f a c-\mathrm{OsO}_{3} \mathrm{~F}_{3}\right], \quad\left[\mathrm{XeF}_{5}\right]\left[\mu-\mathrm{F}\left(\mathrm{OsO}_{3} \mathrm{~F}_{2}\right)_{2}\right],{ }^{121} \quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}, \quad$ and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4} .{ }^{244}$ Overall, the vibrational frequency trends are well reproduced by the calculations. Because the gas-phase geometry of 7 was not optimized, its Raman spectrum was assigned by comparison with those of $\mathbf{4}, \mathbf{6}$, and $\mathrm{XeOF}_{4}{ }^{348}$ (Table A8.12 of Appendix 8). Several vibrational bands in the Raman spectra of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right](\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ are split into two components (Table A8.8). The band splittings are attributed to vibrational mode coupling within the crystallographic unit cells of both salts, i.e., factor-group splitting. To confirm the origins of these splittings, a factor-group analysis (Figure A8.10), based on the isotypic crystal structures of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$, was carried out using the "correlation method". ${ }^{169}$ Fifty-four vibrational modes are predicted for gas-phase $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Figure 11.6. Raman spectrum of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ (1) recorded at $-140{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. The symbols denote the $v(\mathrm{Cr}-\mathrm{O})$ band of an unidentified chromium oxyfluoride reduction product (\ddagger), FEP sample tube bands $\left(^{*}\right.$), and an instrumental artifact (\dagger).

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Figure 11.7. Raman spectrum of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$ (3) recorded at $-140^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. The symbols denote FEP sample tube bands $\mathbf{(}^{*}$) and an instrumental artifact (\dagger). The Raman spectrum of isotypic $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right](4)$ is given in Figure A8.7 of Appendix 8

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Figure 11.8. Raman spectra of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ (5) recorded at $-140{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. The symbols denote FEP sample tube bands $\left({ }^{*}\right)$ and an instrumental artifact (\dagger). The Raman spectrum of isotypic $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right](6)$ is given in Figure A8.8 of Appendix 8.
under C_{1} symmetry. The vibrations belong to the irreducible representations $\Gamma=54 \mathrm{~A}$, where the A modes are Raman- and infrared-active. The A representations of gas-phase $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$ correlate to A representations under C_{1} site symmetry in the solid state. When correlated to the crystal symmetry $\left(C_{2 h}\right)$, each of the 54 modes splits into Ramanactive A_{g} and B_{g} components and infrared-active A_{u} and B_{u} components (Figure A8.10). Factor-group splittings were resolved for many of the vibrational bands in the Raman spectra of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$ (Table A8.8).
11.2.3.1. $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF} \boldsymbol{F}_{5}\right]$ (1). Preliminary assignments were recently provided for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ that are based on the calculated frequencies of the gas-phase $\left[\mathrm{CrOF}_{5}\right]^{-}$ anion. ${ }^{244}$ The assignments have now been improved by use of a model that closely resembles the crystal structure of the title compound. Unlike $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$, no vibrational band splittings are observed in the Raman spectrum of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$, in accordance with the factor-group analysis (Figure A8.11), which predicts each vibrational band is split into a Raman-active A_{g} and an infrared- active A_{u} component. Thus, only the A_{g} components are observed as unsplit bands in the Raman spectrum (Table A8.7). The highest frequency band at $951 \mathrm{~cm}^{-1}$ is assigned to $v(\mathrm{Cr}-\mathrm{O})$, and occurs at a frequency that is very similar to that of $\mathrm{Cs}^{2}\left[\mathrm{CrOF}_{5}\right]$ (IR) $\left(955 \mathrm{~cm}^{-1}\right),{ }^{264}$ but is lower than those of $[\mathrm{NO}]\left[\mathrm{CrOF}_{5}\right](\mathrm{Ra})\left(993 \mathrm{~cm}^{-1}\right)^{66}$ and $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnF}\right]\left[\mathrm{CrOF}_{5}\right]$ (IR) $\left(997 \mathrm{~cm}^{-1}\right) .{ }^{270}$ The bands at $527,652,677$, and $715 \mathrm{~cm}^{-1}$ arise from $v\left(\mathrm{Cr}^{-}-\mathrm{F}_{\text {eq }}\right)$ stretching modes (see Table A8.8), with the intense band at $652 \mathrm{~cm}^{-1}$ assigned to the in-phase $\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4 \mathrm{eq}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{eq}}\right)\right]$ mode. The large frequency range observed for the $v\left(\mathrm{Cr}-\mathrm{F}_{\text {eq }}\right)$ stretching modes is reproduced by the calculations $\left(553,698,699\right.$, and $\left.750 \mathrm{~cm}^{-1}\right)$. The coupled $v\left(\mathrm{Cr}-\mathrm{F}_{\mathrm{ax}}\right)$ stretching modes
are predicted at lower frequencies, where one out-of-phase $\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{5}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]$ mode couples with $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$stretches and two in-phase $\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]$ modes couple with CrOF_{4} deformation modes. The bands at 216 and $233 \mathrm{~cm}^{-1}$ are assigned to the in-phase modes (calcd, 209 and $227 \mathrm{~cm}^{-1}$) whereas the out-of-phase mode was not observed because it is only infrared active (calcd, $353 \mathrm{~cm}^{-1}$). The band at $407 \mathrm{~cm}^{-1}$ (calcd, $401 \mathrm{~cm}^{-1}$) is assigned to the $\delta\left(\mathrm{F}_{\mathrm{eq}} \mathrm{CrF}_{\mathrm{eq}}\right)$ bending mode, the bands at 365 and 371 cm^{-1} (calcd, 377 and $393 \mathrm{~cm}^{-1}$) are assigned to $\delta\left(\mathrm{OCrF}_{\mathrm{eq}}\right)$ bending modes, and the band at $362 \mathrm{~cm}^{-1}$ (calcd, $373 \mathrm{~cm}^{-1}$) is assigned to the $\delta_{\text {umb }}\left(\mathrm{MF}_{4 \mathrm{eq}}\right)$ umbrella mode. The band at $323 \mathrm{~cm}^{-1}$ (calcd, $318 \mathrm{~cm}^{-1}$) is assigned to the $\rho_{\mathrm{w}}\left(\mathrm{F}_{\mathrm{eq}} \mathrm{CrF}_{\mathrm{eq}}\right)$ wag, which is also coupled to $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$bending modes.
11.2.3.2. $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$ (3) and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ (4). The $v(\mathrm{M}-\mathrm{O})$ stretches at 1002 (Mo) and 1015 (W) cm^{-1} are comparable to those observed in the Raman spectra of $\left[\mathrm{ClOF}_{2}\right]\left[\mathrm{MoOF}_{5}\right]\left(1011 \mathrm{~cm}^{-1}\right){ }^{283}[\mathrm{NO}]\left[\mathrm{MOF}_{5}\right]\left(\mathrm{Mo}, 985 ; \mathrm{W}, 1001 \mathrm{~cm}^{-1}\right),{ }^{283}$ and Cs[$\left.\mathrm{MOF}_{5}\right]\left(\mathrm{Mo}, 973 ; \mathrm{W}, 989 \mathrm{~cm}^{-1}\right) .{ }^{285}$ The $v\left(\mathrm{M}-\mathrm{F}_{\text {eq }}\right)$ stretches, which involve $\mathrm{F}_{\text {eq }}$ atoms that do not have significant secondary $\mathrm{Xe}---\mathrm{F}_{\mathrm{eq}}$ bonding interactions, occur at higher frequencies (exptl: Mo, 623/626, 695/698 cm^{-1}; W, 626/630, 700/703 cm^{-1}; calcd: Mo, $637,727 / 733 \mathrm{~cm}^{-1} ; \mathrm{W}, 637,705 / 715 \mathrm{~cm}^{-1}$) than those which involve F_{eq} atoms that are coordinated to the cation. In the latter case, out-of-phase (exptl: Mo, $535 / 538 \mathrm{~cm}^{-1} ; \mathrm{W}$, $545 / 554 \mathrm{~cm}^{-1}$; calcd: Mo, $525 \mathrm{~cm}^{-1} ; \mathrm{W}, 538 \mathrm{~cm}^{-1}$) and in-phase (exptl: Mo, $323 \mathrm{~cm}^{-1}$; W, $324 / 327 \mathrm{~cm}^{-1}$; calcd: Mo, $326 \mathrm{~cm}^{-1}$; W, $325 \mathrm{~cm}^{-1}$) modes are predicted. The coupled $v\left(\mathrm{M}-\mathrm{F}_{\mathrm{ax}}\right)$ stretching modes have out-of-phase components, which occur at higher frequencies (exptl: Mo, $412 \mathrm{~cm}^{-1} ; \mathrm{W}, 411 \mathrm{~cm}^{-1}$; calcd: Mo, $405 \mathrm{~cm}^{-1} ; \mathrm{W}, 411 \mathrm{~cm}^{-1}$), and
in-phase components, which occur at lower frequencies (exptl: Mo, $358 \mathrm{~cm}^{-1}$; W, 358 cm^{-1}; calcd: Mo, $350 \mathrm{~cm}^{-1}$; W, $349 \mathrm{~cm}^{-1}$). The out-of-phase and in-phase $v\left(\mathrm{M}-\mathrm{F}_{\mathrm{eq}}\right)$ and $v\left(\mathrm{M}-\mathrm{F}_{\mathrm{ax}}\right)$ stretches are also coupled with cation modes and other anion modes. Except for three deformation modes (exptl: Mo, 127, 301, 319, $\mathrm{cm}^{-1} ; \mathrm{W}, 121,301,324 \mathrm{~cm}^{-1}$; calcd: Mo, 126, 312, $320 \mathrm{~cm}^{-1} ; \mathrm{W}, 121,308,324 \mathrm{~cm}^{-1}$), all anion deformation modes couple with cation modes (Table A8.8). The calculated $v\left(\mathrm{M}^{\prime}-\mathrm{O}\right)$ stretching frequencies $\left(\mathrm{M}^{\prime}=\mathrm{Cr}\right.$, Mo, W) of the ion-pairs ($\left.\mathrm{Cr}\left(\mathbf{1}^{\prime}\right), 1225 \mathrm{~cm}^{-1} ; \mathrm{Mo}\left(\mathbf{2}^{\prime}\right), 1018 \mathrm{~cm}^{-1} ; \mathrm{W}\left(\mathbf{3}^{\prime}\right), 994 \mathrm{~cm}^{-1}\right)$ are higher than those of free $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}\left(\mathrm{Cr}, 1127 \mathrm{~cm}^{-1} ; \mathrm{Mo}, 1087 \mathrm{~cm}^{-1} ; \mathrm{W}, 1060 \mathrm{~cm}^{-1}\right)$. The same trend is observed for the $v\left(\mathrm{M}^{\prime}-\mathrm{F}_{\text {eq }}\right)$ stretching frequencies (ion-pairs: $\mathrm{Cr}\left(\mathbf{1}^{\prime}\right), 553$, $696-750 \mathrm{~cm}^{-1} ; \operatorname{Mo}\left(2^{\prime}\right), 525,637,727,733 \mathrm{~cm}^{-1} ; \mathrm{W}\left(\mathbf{3}^{\prime}\right), 538,637,705,717 \mathrm{~cm}^{-1} ;$ free
 contrast, the $v\left(\mathrm{M}^{\prime}-\mathrm{F}_{\mathrm{ax}}\right)$ stretches decrease upon ion-pair formation (free $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}$: $\mathrm{Cr}, 492$ cm^{-1}; Mo, $556 \mathrm{~cm}^{-1} ; \mathrm{W}, 565 \mathrm{~cm}^{-1}$; ion-pairs: $\mathrm{Cr}\left(\mathbf{1}^{\prime}\right), 227$ and $209 \mathrm{~cm}^{-1}$; Mo (2'), 405 and $350 \mathrm{~cm}^{-1} ; \mathrm{W}\left(\mathbf{3}^{\prime}\right), 411$ and $349 \mathrm{~cm}^{-1}$), whereas the deformation modes of the free $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}$anions and their ion-pairs $\left(\mathbf{1}^{\prime}, \mathbf{2}^{\prime}, \mathbf{3}^{\prime}\right)$ are predicted to occur in similar frequency ranges.
11.2.3.4. $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ (5) and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ (6). No band splittings were observed in the Raman spectra of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$, which is consistent with their factorgroup analyses (Figure A8.12) and the predicted absence of vibrational coupling within the crystallographic unit cell. In accordance with the factor-group analysis, the A_{u} components are infrared-active and only the unsplit Ag_{g} components are observed in the Raman spectrum (Table A8.9). The bands at 1009, $1023 \mathrm{~cm}^{-1}$ (Mo) and 1027, $1040 \mathrm{~cm}^{-1}$
(W) are assigned to the asymmetric and symmetric $v(\mathrm{M}-\mathrm{O})$ stretches, respectively, and occur at frequencies comparable to those of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$. The $v(\mathrm{M}-\mathrm{O})$ stretching frequencies are in good agreement with those of $\left[\mathrm{ClOF}_{2}\right]\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\left(1020 \mathrm{~cm}^{-1}\right),{ }^{283}$ $[\mathrm{NO}]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\left(\mathrm{Mo}, 1025 \mathrm{~cm}^{-1} ; \mathrm{W}, 1041 \mathrm{~cm}^{-1}\right),{ }^{283}\left[\mathrm{NF}_{4}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\left(1034 \mathrm{~cm}^{-1}\right),{ }^{293}$ and $[\mathrm{Cs}]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F} 9\right]\left(1036 \mathrm{~cm}^{-1}\right) .{ }^{293}$ As noted for 3 and $\mathbf{4}$, the $v\left(\mathrm{M}-\mathrm{F}_{\text {eq }}\right)$ stretches which involve $\mathrm{F}_{\text {eq }}$ atoms that are not coordinated to $\left[\mathrm{XeF}_{5}\right]^{+}$occur at higher frequencies (exptl: Mo, 694, $713,720 \mathrm{~cm}^{-1} ; \mathrm{W}, 701,711,716 \mathrm{~cm}^{-1} ;$ calcd: Mo, $729,735,750 \mathrm{~cm}^{-1} ; \mathrm{W}, 719,736,743$ cm^{-1}) than those which involve F_{eq} atoms that are coordinated to $\left[\mathrm{XeF}_{5}\right]^{+}$(exptl: Mo, 523, $556,632,646,679 \mathrm{~cm}^{-1} ; \mathrm{W}, 549,593,633,643,683 \mathrm{~cm}^{-1}$; calcd: Mo, 523, 529, 620, $\left.648,682 \mathrm{~cm}^{-1} ; \mathrm{W}, 545,597,615,649,684 \mathrm{~cm}^{-1}\right)$. The latter frequencies are assigned to $v\left(\mathrm{M}-\mathrm{F}_{\text {eq }}\right)$ stretches that are weakly coupled to $v(\mathrm{Xe}-\mathrm{F})$ stretching modes of both $\left[\mathrm{XeF}_{5}\right]^{+}$ cations. The coupled $v\left(M-F_{b}\right)$ stretching modes are predicted at lower frequencies. Of the four predicted modes, only the band corresponding to the in-phase $\left[v\left(\mathrm{Mo}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Mo}_{2}-\right.\right.$ $\left.\left.\mathrm{F}_{5}\right)\right]+\left[v\left(\mathrm{Mo}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{Mo}_{2 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]$ mode is observed at $131 \mathrm{~cm}^{-1}\left(\right.$ calcd, $\left.131 \mathrm{~cm}^{-1}\right)$ for 5, whereas the in-phase $\left[v\left(\mathrm{~W}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{~W}_{2}-\mathrm{F}_{5}\right)\right]+\left[v\left(\mathrm{~W}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{~W}_{2 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]$ and the out-of-phase $\left[v\left(\mathrm{~W}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{~W}_{2}-\mathrm{F}_{5}\right)\right]-\left[v\left(\mathrm{~W}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{~W}_{2 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]$ bands are observed at 127 and $121 \mathrm{~cm}^{-1}$ (calcd, 122 and $116 \mathrm{~cm}^{-1}$), respectively, for 6 . Other than the latter bands, all bands that occur below 419 (Mo) and 412 (W) cm ${ }^{-1}$ arise from cation and anion deformation modes. The medium-intensity bands observed at 319 and $322(\mathrm{Mo}) \mathrm{cm}^{-1}$ and 315 and $320(\mathrm{~W}) \mathrm{cm}^{-1}$, are assigned to $\delta(\mathrm{OMF})$ bending modes (calcd: Mo, 312 and 320 $\mathrm{cm}^{-1} ; \mathrm{W}, 313$ and $\left.323 \mathrm{~cm}^{-1}\right)$. As in the case of the $\left[\mathrm{MOF}_{5}\right]^{-}$anions, the calculated $v(\mathrm{M}-\mathrm{O})$ stretching frequencies increase for the $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F} 9\right]$ ion-pairs (free $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$: Mo,

1053 and $1069 \mathrm{~cm}^{-1} ;$ W, 1068 and $1073 \mathrm{~cm}^{-1}$; ion-pairs: Mo (5'), 1102 and $1123 \mathrm{~cm}^{-1} ;$ W $\left(6^{\prime}\right), 1088$ and $\left.1103 \mathrm{~cm}^{-1}\right)$, whereas the $v\left(\mathrm{M}-\mathrm{F}_{\mathrm{b}}\right)$ stretching frequencies are relatively insensitive to ion-pair formation (free $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$: $\mathrm{Mo}, 123$ and $468 \mathrm{~cm}^{-1}$; W, 108 and 484 cm^{-1}; ion-pairs: $\mathrm{Mo}\left(5^{\prime}\right), 131$ and $440 \mathrm{~cm}^{-1} ; \mathrm{W}\left(\mathbf{6}^{\prime}\right), 127$ and $459 \mathrm{~cm}^{-1}$). Upon ion-pair formation, many $v\left(\mathrm{M}-\mathrm{F}_{\text {eq }}\right)$ stretching modes couple with $v(\mathrm{Xe}-\mathrm{F})$ stretching modes, resulting in greater frequency ranges for the calculated ion-pairs (Mo(5), 512-750 cm^{-1}; $\left.\mathrm{W}\left(\mathbf{6}^{\prime}\right), 537-716 \mathrm{~cm}^{-1}\right)$ than for the free $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$anions $\left(\mathrm{Mo}, 606-714 \mathrm{~cm}^{-1} ; \mathrm{W}, 649-\right.$ $716 \mathrm{~cm}^{-1}$).

11.2.4. Computational Results

11.2.4.1. Calculated Geometries. The gas-phase structures of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$ and $\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ were optimized at the PBE1PBE/Def2-SVP level of theory and resulted in stationary points with all frequencies real (Tables A8.7-A8.9). The geometries of $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2}$ and $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$were optimized at the same level of theory (Table 11.3 and Table A8.13), each with one imaginary frequency $\left(-24 \mathrm{~cm}^{-1}\right.$ and $-4 \mathrm{~cm}^{-1}$, respectively). The gas-phase geometries of the $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}\left(\mathrm{M}^{\prime}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}\right)$ and $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ anions optimized to $C_{4 v}$ and C_{4} symmetries, respectively, with all frequencies real (Table A8.13 and Figure A8.13), and were compared to assess the effects of ion-pair formation. The gas-phase geometries of $\mathrm{M}^{\prime} \mathrm{OF}_{4}$ optimized to $\mathrm{C}_{4 \mathrm{v}}$ symmetry (Table A8.14) with all frequencies real (Table A8.15). The initial geometries of $\mathrm{M}^{\prime} \mathrm{OF}_{4}$ were obtained from gas-phase electron diffraction studies ${ }^{345-347}$ and those used for $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-},\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2}, \quad\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-},\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$, and $\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}$ were obtained from the X-ray crystal structures of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]$ and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$
described in the present work. The initial geometry used for $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$was the optimized geometry of the $\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$anion where the Mo atoms had been replaced by Cr atoms. The calculated $\mathrm{Cr}-\mathrm{O}$ and $\mathrm{Cr}-\mathrm{F}_{\text {eq }}$ bond lengths of the $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2}$ ion-pair are, on average, underestimated by 0.07 and $0.04 \AA$, respectively, relative to their experimental values. The calculated terminal $\mathrm{Xe}-\mathrm{F}$ bond lengths of $\left[\mathrm{XeFF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$in the $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2},\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$, and $\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}$ ion-pairs are, on average, overestimated by $0.02 \AA$ relative to their experimental values.

11.2.4.1.1. $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2},\left[\mathrm{CrOF}_{5}\right]^{-},\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right](\mathrm{M}=\mathrm{Mo}$, W$)$, and $\left[\mathrm{MOF}_{5}\right]^{-}$.

 The gas-phase geometry of the dimeric $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2}$ ion pair optimized to C_{i} symmetry (Figure 11.9). The calculated geometry reproduces the crystallographic trends for $\mathbf{1}$, i.e., the F_{ax} atom of the $\mathrm{Cr}-\mathrm{F}_{\mathrm{ax}}$ bond $(2.315 \AA$) trans to the $\mathrm{Cr}-\mathrm{O}$ bond $(1.498 \AA)$ has short interionic $\mathrm{Xe}---\mathrm{F}_{\mathrm{ax}}$ contacts $(2.246,2.247 \AA)$ with the Xe atoms of two $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$ cations, and the $\mathrm{Cr}-\mathrm{F}_{\mathrm{ax}}$ bond is significantly longer than the $\mathrm{Cr}-\mathrm{F}_{\text {eq }}$ bonds (1.699-1.733 \AA). The two shortest $\mathrm{Cr}-\mathrm{F}_{\mathrm{eq}}$ bonds of $\mathbf{1}$ have no significant interionic contacts, whereas the two longest $\mathrm{Cr}-\mathrm{F}_{\text {eq }}$ bonds have two $\mathrm{Xe}---\mathrm{F}_{\text {eq }}$ contacts with two $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cations (2.849, $2.850 \AA$) which result in $\mathrm{CN}_{\mathrm{Xe}}=8$. Ion-pair formation results in short interionic $\mathrm{Xe}---\mathrm{F}_{\mathrm{ax}}$ contacts with $\left[\mathrm{CrOF}_{5}\right]^{-}$that significantly weaken the $\mathrm{Cr}-\mathrm{F}_{\mathrm{ax}}$ bond and polarize the $\mathrm{Cr}-\mathrm{O}$ and $\mathrm{Cr}-\mathrm{F}_{\mathrm{eq}}$ bonds, leading to elongation of the $\mathrm{Cr}-\mathrm{F}_{\mathrm{ax}}$ bond and contraction of the $\mathrm{Cr}-\mathrm{O}$ and $\mathrm{Cr}-\mathrm{F}_{\mathrm{eq}}$ bonds. The preference for coordination of a second $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cation to the F_{ax} atom of $\left[\mathrm{CrOF}_{5}\right]^{-}$rather than to a F_{eq} atom in the gas-phase ion-pair is consistent with the lower relative basicities of the $\mathrm{F}_{\text {eq }}$ atoms. This contrasts with what is observed in the crystal structures and calculated gas-phase ion-pairs of $\mathbf{3}$ and $\mathbf{4}$ in which$\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$has short Xe --- F contacts with both the F_{ax} and the $\mathrm{F}_{\text {eq }}$ fluorine atoms of $\left[\mathrm{MOF}_{5}\right]^{-}$. The gas-phase geometries of the $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$ ion-pairs optimized to C_{1} symmetry and reproduce the trends observed in the crystal structures of $\mathbf{3}$ and $\mathbf{4}$ (Figures 11.10 and A8.14a). The short M-O bonds (Mo, $1.665 \AA$; W, $1.693 \AA$) are indicative of double-bond character. The $\mathrm{M}-\mathrm{Fax}_{\mathrm{ax}}$ bonds (Mo, $2.153 \AA ; \mathrm{W}, 2.148 \AA$) are significantly longer than the $\mathrm{M}-\mathrm{F}_{\text {eq }}$ bonds ($\mathrm{Mo}, 1.843-1.943 \AA ; \mathrm{W}, 1.863-1.958 \AA$) owing to short Xe--- F_{ax} contacts (vide supra) and the trans-influences of their $\mathrm{M}-\mathrm{O}$ bonds. The $\mathrm{M}-\mathrm{F}_{\mathrm{ax}}$ bonds of $\left[\mathrm{MOF}_{5}\right]^{-}$(vide supra) in the ion-pairs are significantly elongated with respect to gasphase $\left[\mathrm{MOF}_{5}\right]^{-}\left(\mathrm{Mo}, 1.955 \AA ; \mathrm{W}, 1.972 \AA\right.$). The longest $\mathrm{M}-\mathrm{F}_{\text {eq }}$ bonds correspond to the shortest $\mathrm{Xe}---\mathrm{F}_{\text {eq }}$ contacts (vide supra), and vice versa. Each Xe atom in the crystal structures of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$ forms a $\mathrm{Xe}---\mathrm{F}_{\text {eq }}-\mathrm{M}$ bridge with the anion of a neighboring ion-pair to give $\mathrm{CN}_{\mathrm{Xe}}=8$, whereas the Xe atoms of the calculated gas phase ion-pairs achieve $\mathrm{CN}_{\mathrm{Xe}}=8$ by reorientation of the $\left[\mathrm{MOF}_{5}\right]^{-}$anion so that one F_{eq} atom interacts with both Xe atoms of the $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$cation (Mo, 3.146, $3.232 \AA ; \mathrm{W}, 3.157,3.353 \AA$). The Xe coordination environments of the calculated gas-phase ion-pair of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$ are reminiscent of the Xe coordination environments in the crystal structure and the calculated gas-phase ion-pair of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[f a c-\mathrm{OsO}_{3} \mathrm{~F}_{3}\right] .{ }^{121}$ The $\mathrm{M}^{\prime}-\mathrm{F}_{\mathrm{ax}}, \mathrm{M}^{\prime}-\mathrm{F}_{\text {eq }}$, and $\mathrm{M}^{\prime}-\mathrm{O}$ bond lengths of the gas-phase $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]$ - anions significantly increase with the covalent radii of the metal $(\mathrm{Cr}<\mathrm{Mo}<\mathrm{W}),{ }^{349}$ whereas the $\mathrm{M}^{\prime}-\mathrm{F}_{\mathrm{ax}}$ bond lengths of their ion-pairs decrease from Cr to W , in accordance with their crystal structures and calculated fluorideion affinities. ${ }^{252}$

Figure 11.9. The calculated gas-phase geometry of $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2}$. The PBE1PBE/Def2-SVP (F, O, Cr, Xe) level of theory was used.

Figure 11.10. The calculated gas-phase geometry of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$. The PBE1PBE/Def2-SVP (F, O, Mo, W, Xe) level of theory was used. The calculated gas phase geometry of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ may be found in Appendix 8 (Figure A8.14a).

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

 experimental C_{i} symmetries, the gas phase geometries (Figures 11.11 and A8.14b) of the $\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}$ dimers optimized to $C_{2 \mathrm{~h}}(\mathrm{Mo})$ and $C_{2}(\mathrm{~W})$ symmetries. The calculated gas-phase geometries of $\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}$ accurately reproduce the experimental bond lengths, angles, and trends (Tables 11.4 and A8.5). The greatest differences between the calculated and experimental geometries are consequences of the higher symmetries of their optimized geometries, which result in four very similar Xe--- F_{eq} secondary bonds (Mo, 2.635-2.645 $\AA ;$ W, 2.645-2.657 \AA) instead of the two short and two long Xe---Feq bonds observed in the crystal structures of 5 (Mo, 2.6438(9)-2.9828(9) \AA) and $\mathbf{6}$ (W, $2.677(5)-2.990(5) \AA$). In contrast with the experimental $\mathrm{M}-\mathrm{F}_{\text {eq }}--\mathrm{Xe}$ angles (Mo, 147.14(4)-164.14(4) $\left.{ }^{\circ} ; \mathrm{W}, 148.0(2)-164.5(2)^{\circ}\right)$, the calculated $\mathrm{M}-\mathrm{F}_{\text {eq---Xe contact angles }}$ are very similar ($\mathrm{Mo}, 158.7-168.9^{\circ}$; W, 165.7-169.9 ${ }^{\circ}$). Two $\mathrm{F}_{\text {eq }}$ ligands of the MOF_{4} moieties in the $\left[\mathrm{F}_{4}(\mathrm{O}) \mathrm{M}---\mathrm{F}_{\mathrm{b}}--\mathrm{M}(\mathrm{O}) \mathrm{F}_{4}\right]^{-}$anions of $\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}$ form short Xe--F_{eq} secondary bonds with neighboring $\left[\mathrm{XeF}_{5}\right]^{+}$cations (vide supra) which result in $\mathrm{CN}_{\mathrm{Xe}_{\mathrm{e}}}=$ 9 for each $\left[\mathrm{XeF}_{5}\right]^{+}$cation. The calculated $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bond lengths (Mo, $2.116 \AA$; W, $2.130 \AA$) are very similar to the average experimental $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bond lengths (Mo, 2.124(3) \AA; W, $2.140(7) \AA$) and are also significantly longer than the $\mathrm{M}-\mathrm{F}_{\mathrm{eq}}(\mathrm{Mo}, 1.821-1.904 \AA$; W , 1.843-1.918 \AA) and M-O bonds (Mo, $1.643 \AA ; \mathrm{W}, 1.676 \AA$). The primary bond lengths of the gas-phase $\left[\mathrm{M}_{2}^{\prime} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$anions increase with the covalent radii of the metals, similar to the trends observed for the gas-phase $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}$anions. The gas-phase $\left[\mathrm{F}_{4}(\mathrm{O}) \mathrm{M}^{\prime}--\mathrm{F}_{\mathrm{b}}---\right.$ $\left.\mathrm{M}^{\prime}(\mathrm{O}) \mathrm{F}_{4}\right]^{-}$anions have linear $\mathrm{M}^{\prime}---\mathrm{F}_{\mathrm{b}}---\mathrm{M}^{\prime}$ bond angles with near-staggered $\mathrm{F}_{\mathrm{eq}} \mathrm{M}^{\prime} \mathrm{M}^{\prime} \mathrm{F}_{\mathrm{eq}}$ dihedral angles ($\mathrm{Cr}, 40.8-49.2^{\circ}$; Mo, 39.2-50.8 ${ }^{\circ}$; W, 44.6-45.4 ${ }^{\circ}$). Ion-pair formation
results in bent $\mathrm{M}---\mathrm{F}_{\mathrm{b}}--\mathrm{M}$ bond angles $\left(\mathrm{Mo}, 148.2^{\circ} ; \mathrm{W}, 148.9^{\circ}\right)$, and eclipsed (Mo, $0^{\circ} ; \mathrm{W}$, $\left.0.3^{\circ}\right) \mathrm{F}_{\text {eq }} \mathrm{MMF}_{\mathrm{eq}}$ dihedral angles in order to optimize secondary bonding interactions with the Xe atoms of neighboring $\left[\mathrm{XeF}_{5}\right]^{+}$cations, in agreement with the crystal structures of $\mathbf{5}$ and 6. As observed for all other ion-pairs discussed in this study, $\mathrm{M}-\mathrm{F}_{\text {eq }}$ bonds, which have $\mathrm{F}_{\text {eq }}$ atoms that have secondary contacts with Xe , are significantly elongated relative to $\mathrm{M}-\mathrm{F}_{\mathrm{eq}}$ bonds that have no Xe--- $\mathrm{F}_{\text {eq }}$ interactions. The $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bond lengths of the free anions and their ion-pairs are comparable, whereas the $\mathrm{M}-\mathrm{O}$ bonds are slightly shorter in the gas-phase ion-pairs.
11.2.4.2. Natural Bond Orbital (NBO) Analyses. The natural atomic orbital (NAO) analyses of $\mathrm{M}^{\prime} \mathrm{OF}_{4}\left(\mathrm{M}^{\prime}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}\right)($ Table A8.16) show trends of increasing positive $\left(\mathrm{M}^{\prime}\right)$ and negative (O, F) natural population analysis (NPA) charges, and decreasing valence indices for all atoms upon descending Group 6. These trends are also observed for the $\mathrm{M}^{\prime}, \mathrm{M}, \mathrm{O}, \mathrm{F}_{\mathrm{ax}}$, and F_{eq} atoms of gas-phase $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-},\left[\mathrm{M}_{2}^{\prime} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$, $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2},\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$, and $\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}$. The charge and valence index differences between CrOF_{4} and MoOF_{4} are significantly greater than between MoOF_{4} and WOF_{4}, and follow a similar trend for the $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}$anions. A parallel trend also occurs among the calculated fluoride-ion affinities (FIAs) of $\mathrm{M}^{\prime} \mathrm{OF}_{4},{ }^{252}$ where the FIA of CrOF_{4} is significantly less negative than those of MoOF_{4} and WOF_{4}.

Figure 11.11. The calculated gas-phase geometry of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$. The PBE1PBE/Def2-SVP (F, O, Mo, W, Xe) level of theory was used. The calculated gasphase geometry of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ may be found in Appendix 8 (Figure A8.14b).

The NPA charges of $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}$are more negative, the valence indices of the M^{\prime} atoms are greater, and the valence indices of the O and $\mathrm{F}_{\text {eq }}$ atoms are smaller than those of $\mathrm{M}^{\prime} \mathrm{OF}_{4}$. The F_{ax} atom charges become more negative upon descending Group 6 and have more negative charges and lower valence indices than their $\mathrm{F}_{\text {eq }}$ atoms, consistent with their greater fluorobasicities. The O and F_{eq} valence indices and $\mathrm{M}^{\prime}-\mathrm{O}$ and $\mathrm{M}^{\prime}-\mathrm{F}_{\mathrm{eq}}$ Wiberg bond indices of $\left[\mathrm{M}_{2}^{\prime} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$are greater than those of $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}$, which is attributable to greater delocalization of the net charge in $\left[\mathrm{M}_{2}^{\prime} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$.

The $\mathrm{F}_{\text {eq }}$ atoms of $\left[\mathrm{MOF}_{5}\right]^{-}$and $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$in $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$ and $\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}$ that form $\mathrm{Xe}---\mathrm{F}_{\text {eq }}$ secondary bonds in their ion-pairs are more polarized and exhibit more negative NPA charges, lower valence indices, and lower MF_{eq} Wiberg bond indices than the free gas-phase anions, whereas the F_{eq} atoms, which lack significant secondary bonding interactions, show the opposite trends. The F_{ax} atoms of ion-paired $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$ also display significantly more negative charges, lower valences, and lower $\mathrm{M}-\mathrm{F}_{\mathrm{ax}}$ bond indices than those of the free gas-phase $\left[\mathrm{MOF}_{5}\right]^{-}$anions. The relative basicities of the F_{ax} and F_{eq} atoms of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$ are reflected in the differences between the Wiberg bond indices of the shortest $\mathrm{Xe}---\mathrm{F}_{\mathrm{ax}}$ contacts (Mo, 0.207 ; $\mathrm{W}, 0.191$) and $\mathrm{Xe}---\mathrm{F}_{\text {eq }}$ contacts (Mo, 0.064, W; 0.063). The $\mathrm{M}-\mathrm{F}_{\mathrm{ax}}$ Wiberg bond indices of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right](\mathrm{Mo}, 0.278 ; \mathrm{W}, 0.282)$ are comparable to the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bond indices of $\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}$ (Mo, 0.282; W, 0.272). The high charges, low valence indices, and low Wiberg bond indices of the $\mathrm{M}-\mathrm{F}_{\mathrm{ax}}$ bonds in $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$ and the $\mathrm{M}--$ $-\mathrm{F}_{\mathrm{b}}$ bonds in $\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}$ show they are best described as highly polar-covalent bonds.

When compared with gas-phase $\left[\mathrm{CrOF}_{5}\right]^{-}$, the $\left[\mathrm{CrOF}_{5}\right]^{-}$anion in $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2}$ displays significant negative charge increases $\left(\mathrm{F}_{\mathrm{ax}}\right)$ and decreases $(\mathrm{O}$ and $\mathrm{F}_{\text {eq }}$). The $\mathrm{F}_{\text {eq }}$ atoms that form short $\mathrm{Xe}---\mathrm{F}_{\text {eq }}$ secondary bonds have more negative charges, lower valence indices, and lower $\mathrm{Cr}-\mathrm{F}_{\text {eq }}$ bond indices relative to F_{eq} atoms that do not have significant secondary bonding interactions. The trends indicate significant polarization of the $\mathrm{Cr}-\mathrm{F}_{\mathrm{ax}}$ bond owing to short interionic $\mathrm{Xe}---\mathrm{F}_{\mathrm{ax}}$ contacts, which reduce the $\mathrm{F}_{\text {eq }}$ atom basicities in $\left[\mathrm{CrOF}_{5}\right]^{-}$. This trend is not observed for the gas-phase
[$\left.\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$ ion-pairs, and likely accounts for the formation of the dimeric structural unit in the crystal structure of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ by favoring a second $\mathrm{Xe}---\mathrm{F}_{\mathrm{ax}}$ contact instead of an additional $\mathrm{Xe}---\mathrm{F}_{\text {eq }}$ contact.

11.2.4.3. Molecular Electrostatic Potential Surface (MEPS) Analyses

The MEPS of $\mathrm{M}^{\prime} \mathrm{OF}_{4}$ and the $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}$anions $\left(\mathrm{M}^{\prime}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}\right)$ are depicted in Figures 11.12 and 11.13. The differences between the electrostatic potential (EP) minima and maxima of the MEPS for $\mathrm{CrOF}_{4}, \mathrm{MoOF}_{4}$, and WOF_{4} are greater for CrOF_{4} and $\mathrm{MoOF}_{4} / \mathrm{WOF}_{4}$ than for MoOF_{4} and WOF_{4}, in accordance with their NBO analyses. Similar trends are observed among the $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}$anions.

The EP maxima of the $\mathrm{M}^{\prime} \mathrm{OF}_{4}$ isosurfaces trans to the $\mathrm{M}^{\prime}-\mathrm{O}$ bonds become more positive $\left(\mathrm{Cr}, 218 \mathrm{~kJ} \mathrm{~mol}^{-1}\right.$; Mo, $340 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \mathrm{W}, 375 \mathrm{~kJ} \mathrm{~mol}^{-1}$) when going from CrOF_{4} to WOF_{4}, in accordance with their calculated FIAs. ${ }^{252}$ Their relative fluorobasicities are also reflected in their F atom EP minima $\left(\mathrm{Cr},-39 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \mathrm{Mo},-46 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \mathrm{W},-47 \mathrm{~kJ}\right.$ mol^{-1}), which become more negative in going from Cr to W . The EP minima of the O atoms also become more negative in going from Cr to $\mathrm{W}\left(\mathrm{Cr}, 34 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}\right.$; Mo, $-6 \mathrm{~kJ}$ $\left.\mathrm{mol}^{-1} ; \mathrm{W},-9 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$. These trends are in accordance with increasing positive $\left(\mathrm{M}^{\prime}\right)$ and negative (O, F) NPA charges (Table A8.16) upon descending Group 6.

The global EP minima of the MEPS for the $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]-$ anions $\left(\mathrm{Cr},-567 \mathrm{~kJ} \mathrm{~mol}^{-1}\right.$; Mo, $-512 \mathrm{~kJ} \mathrm{~mol}^{-1}$; W, $-499 \mathrm{~kJ} \mathrm{~mol}^{-1}$) (Figure A8.15) lie at the intersections of their respective F_{ax} and F_{eq} isosurfaces, and are approximately 11 to 17 times more negative than the global EP minima of $\mathrm{M}^{\prime} \mathrm{OF}_{4}\left(\mathrm{Cr},-33 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \mathrm{Mo},-46 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \mathrm{W},-47 \mathrm{~kJ}\right.$ $\left.\mathrm{mol}^{-1}\right)$. The EPs of the F_{ax} atoms in $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}\left(\mathrm{Cr},-509 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \mathrm{Mo},-486 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \mathrm{W}\right.$,
$-486 \mathrm{~kJ} \mathrm{~mol}^{-1}$) become more positive when going from Cr to Mo / W, consistent with the relative FIAs of $\mathrm{M}^{\prime} \mathrm{OF}_{4}{ }^{252}$ and the F_{ax} atom basicities of $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}$. The EPs of the F_{ax} atoms are also significantly more negative than those of the F_{eq} atoms, which accords with the relative basicities of the F_{ax} and $\mathrm{F}_{\text {eq }}$ ligands. The EP minima of the O atoms become more negative when going from Cr to $\mathrm{W}\left(\mathrm{Cr},-389 \mathrm{~kJ} \mathrm{~mol}^{-1}\right.$; $\mathrm{Mo},-412 \mathrm{~kJ} \mathrm{~mol}^{-1}$; $\left.\mathrm{W},-438 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ and parallel the trend observed for $\mathrm{M}^{\prime} \mathrm{OF}_{4}\left(\mathrm{Cr}, 34 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \mathrm{Mo},-6 \mathrm{~kJ}\right.$ $\mathrm{mol}^{-1} ; \mathrm{W},-9 \mathrm{~kJ} \mathrm{~mol}^{-1}$), which is opposite to the trend that occurs for the EP minima of the $\mathrm{F}_{\text {eq }}$ atoms $\left(\mathrm{Cr},-446 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \mathrm{Mo},-433 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \mathrm{W},-431 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$.

The MEPS of $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2}$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$ were also calculated (Figures A8.16 and A8.17) to assess the effects of ion-pair formation on the EP isosurfaces of the F_{eq} atoms in $\left[\mathrm{MOF}_{5}\right]^{-}$. The EP minima of two equivalent F_{eq} atoms of $\left[\mathrm{CrOF}_{5}\right]^{-}$in $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2}$, which are well-separated from neighboring MEPS isosurfaces and can be reliably evaluated ($-53 \mathrm{~kJ} \mathrm{~mol}^{-1}$), are approximately one-eighth that of gas-phase $\left[\mathrm{CrOF}_{5}\right]^{-}\left(-446 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ and are comparable to the EP minimum of F_{eq} in $\mathrm{CrOF}_{4}\left(-33 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$. Parallel trends are observed for the $\mathrm{F}_{\text {eq }}$ isosurfaces of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]\left(\mathrm{Mo},-64 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \mathrm{W},-74 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ and free $\left[\mathrm{MOF}_{5}\right]^{-}(\mathrm{Mo},-433 \mathrm{~kJ}$ $\mathrm{mol}^{-1} ; \mathrm{W},-431 \mathrm{~kJ} \mathrm{~mol}^{-1}$), consistent with polarization of the electron density of these strongly ion-paired salts away from their terminal $\mathrm{F}_{\text {eq }}$ atoms towards $\mathrm{F}_{\text {eq }}$ atoms that form secondary $\mathrm{Xe}---\mathrm{F}_{\text {eq }}$ bonds in their ion-pairs. These observations are in accordance with the NPA charges, bond valences, and Wiberg bond indices of the $\mathrm{F}_{\text {eq }}$ atoms in $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2}$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$.

Figure 11.12. The molecular electrostatic potential surface (MEPS) contours calculated at the 0.001 e bohr ${ }^{-3}$ isosurfaces of $\mathrm{CrOF}_{4}, \mathrm{MoOF}_{4}$ and WOF_{4}. The extrema of selected electrostatic potentials are indicated by arrows. The optimized geometries and MEPS were calculated at the PBE1PBE/Def2-SVP (O, F, Cr, Mo, W) level of theory.

Figure 11.13. The molecular electrostatic potential surface (MEPS) contours calculated at the $0.001 \mathrm{e} \mathrm{bohr}^{-3}$ isosurfaces of $\left[\mathrm{CrOF}_{5}\right]^{-},\left[\mathrm{MoOF}_{5}\right]^{-}$and $\left[\mathrm{WOF}_{5}\right]^{-}$. The extrema of selected electrostatic potentials are indicated by arrows. The optimized geometries and MEPS were calculated at the PBE1PBE/Def2-SVP (O, F, Cr, Mo, W) level of theory.

11.3. Conclusion

Prior work has shown that the oxide tetrafluorides of the Group 6 triad form neutral adducts with KrF_{2} and $\mathrm{XeF}_{2} .{ }^{65,67,182-184,306}$ In the present work, the room-temperature reactions of $\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ with XeF_{6}, the strongest fluoride-ion donor among the noble-gas fluorides, in aHF and CFCl_{3} solvents have provided the ion-paired salts, $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$ and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$. Hydrolysis of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ in HF was shown to form $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$. In an earlier related study, ${ }^{244}$ the room-temperature reaction of XeF_{6} and CrOF_{4} in melts and in aHF and CFCl_{3} solvents yielded Cr^{V} and $\mathrm{Cr}^{\mathrm{IV}}$ fluoro- and oxyfluoro-anion salts that resulted from F_{2} elimination reactions. The salt, [$\left.\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$, was identified by LT Raman spectroscopy as an intermediate in the reaction between XeF_{6} and CrOF_{4} that led to the reduction of $\mathrm{Cr}^{\mathrm{VI}}$ to Cr^{V} by means of F_{2} elimination and formation of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4} .{ }^{244}$ The present study has shown that the low-temperature reaction of XeF_{6} with CrOF_{4} in aHF yielded $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$ and revealed that CrOF_{4} is incapable of abstracting F^{-}from $\left[(\mathrm{HF})_{n} \mathrm{~F}\right]^{-}$ at $0{ }^{\circ} \mathrm{C}$ in aHF, in accordance with the calculated FIAs of the Group 6 oxide tetrafluorides. ${ }^{252}$ Bifluoride formation was circumvented by the low-temperature reaction of XeF_{6} and CrOF_{4} in $\mathrm{CF}_{2} \mathrm{ClCF}_{2} \mathrm{Cl}$ solvent, which provided $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$. The $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right], \quad\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}, \quad\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right], \quad\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$, $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right],\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$ salts were synthesized and structurally characterized by low-temperature single-crystal X-ray diffraction and Raman spectroscopy. The present study has provided the first crystal structure determination of the $\left[\mathrm{CrOF}_{5}\right]^{-}$anion, precise crystal structures of $\left[\mathrm{MOF}_{5}\right]^{-}$and
$\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$, and the first adduct of CrOF_{4} with a fluoro-anion, $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$. The crystal structures of the strongly ion-paired salts and their calculated gas-phase ion-pairs reflect the relative fluorobasicities of their anions and the calculated fluoride-ion affinities of $\mathrm{M}^{\prime} \mathrm{OF}_{4}\left(\mathrm{M}^{\prime}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}\right)$. The NBO analyses of gas-phase $\mathrm{M}^{\prime} \mathrm{OF}_{4},\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}$, $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\} 2,\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-},\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$, and $\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}$ show that the $\mathrm{F}_{\text {eq }}$ ligands of $\left[\mathrm{CrOF}_{5}\right]^{-}$in $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2}$ are significantly less fluorobasic than those of $\left[\mathrm{MOF}_{5}\right]^{-}$in $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$, as indicated by two $\mathrm{Xe}---\mathrm{F}_{\mathrm{ax}}$ secondary bonds in the structural unit of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ (1) in contrast to one $\mathrm{Xe}---\mathrm{F}_{\mathrm{ax}}$ secondary bond in the structural units of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right](3,4)$. Detailed vibrational frequency assignments and mode descriptions for the Raman spectra of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]$ and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ have been obtained and fully assigned with the aid of quantum-chemical calculations.

CHAPTER 12

Conclusions

The first example of a mixed $\mathrm{Kr}^{\mathrm{II}} / \mathrm{Xe}^{\mathrm{II}}$ compound, $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$, was synthesized in aHF solvent below $-60{ }^{\circ} \mathrm{C}$ under rigorously anhydrous conditions and structurally characterized by LT SCXRD and LT Raman spectroscopy. Redox decomposition of the thermally sensitive $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$ salt was monitored by LT Raman spectroscopy and showed oxidative fluorination of $\mathrm{Xe}^{\mathrm{II}}$ to $\mathrm{Xe}^{\mathrm{VI}}$ had occurred with the formation of $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right)_{2} \cdot \mathrm{XeF}_{4}$ and $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$. The latter were the first examples of mixed $\mathrm{Kr}^{\mathrm{II}} / \mathrm{Xe}^{\mathrm{IV}}$ compounds. Further reaction at room temperature yielded the known $\mathrm{Kr}^{\mathrm{II}} / \mathrm{Xe}^{\mathrm{VI}}$ complexes, $\left[\mathrm{F}_{5} \mathrm{Xe}\left(\mathrm{FKrF}_{n} \mathrm{AsF}_{6}\right](n=1,2)\right.$, and a new $\mathrm{Kr}^{\mathrm{II}} / \mathrm{Xe}^{\mathrm{VI}}$ complex, $\left[\left(\mathrm{F}_{5} \mathrm{Xe}\right)_{2}(\mu-\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{2}\right]$, which was characterized by LT Raman spectroscopy. Quantum-chemical analyses of $[\mathrm{FKrFXeF}]^{+}$revealed that the terminal $\mathrm{Ng}-$ F bonds are polar covalent, where the $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ bonds have a greater degree of covalent character than the $\mathrm{Ng}---\mathrm{F}_{\mathrm{b}}$ bonds, and the $\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Kr}---\mathrm{F}_{\mathrm{b}}$ bonds were shown to be more covalent than the $\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}$ bonds.

The first $\mathrm{Cl}(\mathrm{V})$ coordination complex of XeF_{2} was prepared by exploiting the Lewis acid character and oxidative resistance of the $\left[\mathrm{ClO}_{2}\right]^{+}$cation. The reaction of α $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ with XeF_{2} in aHF afforded $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$, which was structurally characterized by LT Raman spectroscopy and LT SCXRD. The LT β - $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ phase was obtained for the first time by crystallization or precipitation from aHF solution and was also characterized by LT Raman spectroscopy and LT SCXRD. An NBO analysis of the model anion, $\left(\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}\right)^{-}$, shows that the $\mathrm{Cl}---\mathrm{F}_{\mathrm{Xe}}$ and $\mathrm{Cl}---\mathrm{F}_{\mathrm{As}}$ bonds are
primarily electrostatic, and a MEPS analysis of gas-phase $\left[\mathrm{ClO}_{2}\right]^{+}$showed that these bonds are directed towards regions of high positive electrostatic potential, σ-holes, on the isosurface of Cl . The synthesis of a salt of the $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]^{+}$cation is a significant extension of $\mathrm{Cl}(\mathrm{V})$ coordination chemistry and indicated that the syntheses of other highoxidation state $\left[\mathrm{XO}_{2}\right]^{+}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, I) coordination complexes of NgF , such as $\left[\mathrm{O}_{2} \mathrm{X}(\mathrm{FNgF})_{2}\right]\left[\mathrm{AsF}_{6}\right](\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$, may also be possible.

In a follow-up and related study, the reactions of $\left[\mathrm{BrO}_{2}\right]\left[\mathrm{PnF}_{6}\right](\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$ with XeF_{2} in aHF were investigated and shown to yield $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{n}\right]\left[\mathrm{AsF}_{6}\right](n=1,2)$ and $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right]$. The complexes were characterized by low-temperature Raman spectroscopy and SCXRD and provided the first examples of coordination complexes between a noble-gas difluoride and $\left[\mathrm{BrO}_{2}\right]^{+}$. The F atoms of XeF_{2} and $\left[\mathrm{PnF}_{6}\right]^{-}$interact with regions of high electrostatic potential on the bromine atom of $\left[\mathrm{BrO}_{2}\right]^{+}$such that their contact trajectories avoid the stereo-active valence electron lone pair of $\operatorname{Br}(\mathrm{V})$.

Prior to the present work, there were no structurally characterized examples of oxide fluorides of the noble metals $\mathrm{Rh}, \mathrm{Pd}, \mathrm{Ag}, \mathrm{Ir}$, Pt , or Au . Chlorine trifluoride and ClF_{5} are oxidative fluorinating agents which are also known to undergo O / F metathesis reactions, and their reactions with IrO_{2} were investigated with the aim to prepare the first iridium oxide fluoride species. The neutral iridium(V) fluoride coordination complex, $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$, was prepared by reaction of IrO_{2} with ClF_{3} in aHF solvent. The characterization of $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ by SCXRD provided the first experimental evidence for the formation of OClF as an unstable reaction intermediate in the reaction of ClF_{3} with a metal oxide, and the first example of an OCIF coordination complex. The first iridium
oxyfluoro-anion salt, $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- $\left.\left(\mu-\mathrm{OIrF}_{4}\right)_{3}\right]$, was synthesized by reaction of IrO_{2} with ClF_{5} in aHF solvent at room temperature over a period of four days. The [cyclo- $(\mu-$ $\left.\mathrm{OIrF} 4)_{3}\right]^{2-}$ anion is a six-membered $\mathrm{Ir}_{3} \mathrm{O}_{3}$-ring in which the Ir coordination sphere of 4 x $\mathrm{Ir}-\mathrm{F}$ and 2 x Ir- -O bonds is octahedral with cis-oriented $\mathrm{Ir}-\mathrm{O}$ bonds. This salt provides a rare example of a high-oxidation-state, mixed-valence $(2 \times \operatorname{Ir}(\mathrm{V})$ and $1 \times \operatorname{Ir}(\mathrm{VI}))$ species, and the first structurally characterized high-oxidation-state iridium oxide fluoride. Quantum-chemical calculations showed that the $\mathrm{Ir}---\mathrm{O}$ bond in $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$ is predominantly electrostatic in nature.

The coordination chemistries of the Group 6 oxide tetrafluorides with NgF_{2} were significantly extended by the syntheses and detailed structural characterizations of $\mathrm{F}_{\mathrm{t}} \mathrm{NgF}_{\mathrm{b}}--\mathrm{M}(\mathrm{O}) \mathrm{F}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; \mathrm{M}=\mathrm{Mo}, \mathrm{W})$ and $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{M}(\mathrm{O}) \mathrm{F}_{3} \mathrm{~F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime}(\mathrm{O}) \mathrm{F}_{4}$ by SCXRD. In this study, KrF_{2} was shown to coordinate to the electrophilic center of the transition metal through fluorine in its complexes: $\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}--\mathrm{Mo}(\mathrm{O}) \mathrm{F}_{4}$ and $\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}---$ $\mathrm{W}(\mathrm{O}) \mathrm{F}_{4}$. The synthesis and characterization of the tungsten complex with KrF_{2} proved to be particularly challenging owing to the propensity of this complex to decompose by oxidative fluorination to $\mathrm{WF}_{6}, \mathrm{Kr}$, and O_{2} at low temperatures $\left(-65{ }^{\circ} \mathrm{C}\right)$. The study also provided the first definitive structural characterizations of the $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}--\mathrm{M}(\mathrm{O}) \mathrm{F}_{3} \mathrm{~F}_{\mathrm{b}}{ }^{\prime}---$ $\mathrm{M}^{\prime}(\mathrm{O}) \mathrm{F}_{4}$ complexes, which have cis-, trans-arrangements of $\mathrm{M}=\mathrm{O}$ and $\mathrm{M}^{\prime}=\mathrm{O}$ bonds with respect to F_{b}, by LT SCXRD structure determinations and low-temperature Raman spectroscopy. The preference for the cis-, trans-isomer over the trans-, trans-isomer is attributed to the greater fluorobasicities of the F atoms of coordinated MOF_{4} relative to the F_{t} atom of the XeF_{2} ligand, as shown by NBO, AIM, and MEPS analyses. The nature
of $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ and $\mathrm{M}^{\prime}---\mathrm{F}_{\mathrm{b}}{ }^{\prime}$ in $\mathrm{F}_{\mathrm{t}} \mathrm{NgF}_{\mathrm{b}}---\mathrm{M}(\mathrm{O}) \mathrm{F}_{4}$ and $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{M}(\mathrm{O}) \mathrm{F}_{3} \mathrm{~F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime}(\mathrm{O}) \mathrm{F}_{4}$ were investigated by quantum-chemical calculations and were shown to be σ-hole bonds. These bonds have small but significant degrees of covalent character which account for the bent $\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}--\mathrm{M}$ bond angles and staggered dihedral $\mathrm{O}=\mathrm{M}---\mathrm{F}_{\mathrm{b}}-\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ angles that are observed in the crystal structures of these compounds and are calculated for the gas-phase molecules.

The chemistry of XeF_{4} is the least developed among the binary xenon fluorides $\mathrm{XeF}_{2}, \mathrm{XeF}_{4}$, and XeF_{6}. The absence of an XeF_{4} coordination complex with a TM center underscores the relative dearth of synthetic and structural information and highlights the experimental challenges associated with $\mathrm{Xe}(\mathrm{IV})$ chemistry. Now, a thorough synthetic, structural, and computational investigation has led to the synthesis and characterization of the first TM complex of $\mathrm{Xe}(\mathrm{IV}), \mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ by LT Raman spectroscopy and LT SCXRD. This provided only the second structurally characterized example of XeF_{4} ligand behavior. The complex was synthesized by reaction of XeF_{4}, one of the most potent oxidative fluorinators known, with the oxidatively resistant Lewis acid, WOF_{4}, in CFCl_{3} solvent. Quantum-chemical calculations were used to assist with the assignments of the Raman spectrum and to provide insight into the bonding of the complex. Chemical bonding was thoroughly assessed using NBO, AIM, ELF, MEPS, EDA, and ETS-NOCV analyses, which show that the $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bonds in $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ and the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bonds in the hypothetical $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}--\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Cr}$, Mo$)$ complexes are best described as σ-hole bonds which have small but significant degrees of covalent character.

The chemistry of chromium in its highest oxidation state, +6 , is severely limited relative to molybdenum and tungsten. Because CrF_{6} is unknown, CrOF_{4} provides the most highly fluorinated neutral Cr compound. The chemistry of CrOF_{4} had been limited to the vibrationally characterized Cs^{+}and $\left[\mathrm{NO}^{+}\right.$salts of $\left[\mathrm{CrOF}_{5}\right]^{-}$, and the crystallographically and vibrationally characterized $\mathrm{F}_{\mathrm{t}} \mathrm{NgF}_{\mathrm{b}}--\mathrm{CrOF}_{4}$ and $\mathrm{F}_{4} \mathrm{OCr}---$ $\mathrm{F}_{\mathrm{b}} \mathrm{NgF}_{\mathrm{b}}---\mathrm{CrOF}_{4}$ coordination complexes. Reactions of CrOF_{4} with XeF_{6}, the strongest fluoride-ion donor among the noble-gas fluorides, in melts and in the oxidatively resistant solvents aHF and CFCl_{3} were investigated with the aim to synthesize and structurally characterize $\mathrm{Cr}(\mathrm{VI})$ oxyfluoro-anion salts. The reaction pathways involve redox transformations that result in F_{2} gas elimination and reduction of $\mathrm{Cr}(\mathrm{VI})$ to $\mathrm{Cr}(\mathrm{V})$ and $\mathrm{Cr}(\mathrm{IV})$ and/or oxygen/fluorine metatheses to yield: $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}^{\mathrm{IV}} \mathrm{F}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}$, $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{Cr}^{\mathrm{IV}} \mathrm{F}_{6}\right], \quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2}{ }_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right], \quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2}{ }_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF}$, $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}^{\mathrm{V}}{ }_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{Cr}^{\mathrm{V}} \mathrm{OF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$, which were characterized by LT single-crystal X-ray diffraction. This provided the first crystal structure of the $\left[\mathrm{Cr}^{\vee} \mathrm{OF}_{5}\right]^{2-}$ anion and the first syntheses and crystal structures of the $\left[\mathrm{Cr}^{\mathrm{V}} \mathrm{Z}_{2} \mathrm{O}_{2}\right]^{2-}$ anion. The reaction of XeF_{6} with CrOF_{4} to give $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ was also shown by LT Raman spectroscopy to proceed through the intermediate $\mathrm{Cr}(\mathrm{VI})$ salt, $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$. Quantum-chemical calculations were employed to calculate the gas-phase geometries, and aid in vibrational frequency assignments and discussions of chemical bonding.

Like CrOF_{4}, the chemistry of $\mathrm{CrO}_{2} \mathrm{~F}_{2}$ is also limited. This is exemplified by the fact that salts of the $\left[\mathrm{M}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-286,319,320}$ and $\left[\mathrm{MO}_{2} \mathrm{~F}_{4}\right]^{2-321-324}$ anions $(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ have
been characterized by SCXRD, whereas their Cr analogues had not. Salts of the high-oxidation-state oxyfluoro-anions $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$ have now been synthesized by reactions of XeF_{6} with $\mathrm{CrO}_{2} \mathrm{~F}_{2}$ in aHF solvent and by their direct reaction in melts at elevated temperatures (ca. $50{ }^{\circ} \mathrm{C}$), namely $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$, $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$, $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$. The salts were characterized by LT Raman spectroscopy and SCXRD and provide the first crystallographic characterizations of $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$. The $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ anions are fluorinebridged dimers of $\left[\mathrm{CrO}_{2} \mathrm{~F}_{3}\right]^{-}$which have terminal cis-dioxo $\mathrm{Cr}-\mathrm{O}$ double bonds. Quantum-chemical calculations show that the $\mathrm{Cr}-\mathrm{F}_{\mathrm{b}}$ bonds in $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ are highly polar-covalent, and that ion-pair formation as well as HF and XeOF_{4} coordination significantly effects the covalent characters of the $\mathrm{Cr}-\mathrm{O}$ and $\mathrm{Cr}-\mathrm{F}$ bonds in $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$ and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$.

In a related study, the RT reactions of $\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ with XeF_{6} in aHF and CFCl_{3} solvents yielded the ion-paired salts, $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$ and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$, and hydrolysis of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ in HF gave $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$. In contrast, the LT reaction of XeF_{6} with CrOF_{4} in aHF yielded $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$, which demonstrated that CrOF_{4} is incapable of abstracting F^{-}from $\left[(\mathrm{HF})_{\mathrm{x}} \mathrm{F}\right]^{-}$at $0{ }^{\circ} \mathrm{C}$ in aHF, in accordance with the calculated FIAs of $\mathrm{CrOF}_{4}, \mathrm{MoOF}_{4}$, and WOF_{4}. Bifluoride formation was circumvented by the low-temperature reaction of XeF_{6} and CrOF_{4} in $\mathrm{CF}_{2} \mathrm{ClCF}_{2} \mathrm{Cl}$ (Freon114) solvent and yielded $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$. The salts were characterized by lowtemperature single-crystal X-ray diffraction and Raman spectroscopy, which provided the first crystal structure determination of the $\left[\mathrm{CrOF}_{5}\right]^{-}$anion, precise and non-disordered
geometric parameters for $\left[\mathrm{MOF}_{5}\right]^{-}$and $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$, and the first structurally characterized coordination complex of CrOF_{4} with a fluoro-anion, $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$. Quantumchemical calculations show that structural differences between dimeric $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ and monomeric $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$ may be attributed to the significantly lower and higher basicities of the F_{eq} and F_{ax} atoms of $\left[\mathrm{CrOF}_{5}\right]^{-}$in $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2}$ relative to those of $\left[\mathrm{MOF}_{5}\right]^{-}$in $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$.

CHAPTER 13

Future Work

13.1. Extending $\mathbf{X}(\mathbf{V})(\mathbf{X}=\mathbf{C l}, \mathbf{B r}, \mathrm{I})$ Coordination Chemistry

The advances in $\mathrm{X}(\mathrm{V})$ coordination chemistry described in Chapters 4 and 5 of this Thesis provide the basis for further research in this field. Presently, $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ is the only cationic $\mathrm{Cl}(\mathrm{V})$ coordination complex that has been structurally characterized, ${ }^{61}$ and the $\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{n}\right]\left[\mathrm{AsF}_{6}\right](n=1,2), \quad\left[\mathrm{O}_{2} \mathrm{Br}(\mathrm{FXeF})_{2}\right]\left[\mathrm{SbF}_{6}\right], \quad\left[\mathrm{F}_{2} \mathrm{OBrFXeF}\right]\left[\mathrm{AsF}_{6}\right]$, $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FNgF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$, and $\left[\mathrm{O}_{2} \mathrm{Br}\left(\mathrm{BrO}_{2} \mathrm{~F}\right)\right]\left[\mathrm{AsF}_{6}\right]$ complexes represent the known $\mathrm{Br}(\mathrm{V})$ cationic coordination complexes. An obvious extension of this work would be to use KrF_{2} as the coordinating ligand, which has previously been demonstrated for $\left[\mathrm{BrOF}_{2}\right]^{+62}$ but not for $\left[\mathrm{XO}_{2}\right]^{+}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})(\mathrm{Eq} .13 .1)$.

$$
\begin{equation*}
\left[\mathrm{XO}_{2}\right]\left[\mathrm{PnF}_{6}\right]+n \mathrm{KrF}_{2} \longrightarrow\left[\mathrm{O}_{2} \mathrm{X}(\mathrm{FKrF})_{n}\right]\left[\mathrm{PnF}_{6}\right](\mathrm{Pn}=\mathrm{As}, \mathrm{Sb} ; n=1 \text { or } 2) \tag{13.1}
\end{equation*}
$$

There are presently no structurally characterized examples of cationic $I(V)$ coordination complexes. Recent molecular electrostatic potential surface analyses of the $\left[\mathrm{XO}_{2}\right]^{+}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ cations have demonstrated that the global electrostatic potential maxima, which correlate with Lewis acidity, are similar for the $\left[\mathrm{BrO}_{2}\right]^{+}\left(767 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ and $\left[\mathrm{IO}_{2}\right]^{+}\left(762 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}\right)$ cations. ${ }^{61}$ Thus, it is likely that $\left[\mathrm{IO}_{2}\right]^{+}$coordination complexes of $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$ can be synthesized by analogy with those of $\left[\mathrm{ClO}_{2}\right]^{+}$and $\left[\mathrm{BrO}_{2}\right]^{+}$ (Eq. 13.1). It would also be interesting to see if $\left[\mathrm{O}_{2} \mathrm{X}(\mathrm{FKrF})_{n}\right]^{+}$undergoes intramolecular oxidative fluorination to the +7 oxidation state of X to form $\left[\mathrm{XO}_{2} \mathrm{~F}_{2}\right]^{+}$salts according to Eq. 13.2.

$$
\begin{equation*}
\left[\mathrm{O}_{2} \mathrm{X}(\mathrm{FKrF})\right]\left[\mathrm{PnF}_{6}\right] \longrightarrow\left[\mathrm{XO}_{2} \mathrm{~F}_{2}\right]\left[\mathrm{PnF}_{6}\right]+\mathrm{Kr} \tag{13.2}
\end{equation*}
$$

No nitrogen- or oxygen-base complexes of the $\mathrm{X}(\mathrm{V})(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ cations $\left[\mathrm{XF}_{4}\right]^{+},\left[\mathrm{XOF}_{2}\right]^{+}$, and $\left[\mathrm{XO}_{2}\right]^{+}$have been reported. Attempts to form $\mathrm{X}---\mathrm{N} / \mathrm{O}$ bonded cationic coordination complexes of $\left[\mathrm{XO}_{2}\right]^{+}$by coordination of oxidatively resistant Lewis bases such as acetonitrile, pentafluoropyridine, and thiazyl trifluoride should be attempted in efforts to form $\left[\mathrm{O}_{2} \mathrm{X}(\mathrm{L})_{2}\right]\left[\mathrm{PnF}_{6}\right]\left(\mathrm{L}=\mathrm{NCCH}_{3}, \mathrm{C}_{5} \mathrm{~F}_{5} \mathrm{~N}, \mathrm{NSF}_{3}\right)(\mathrm{Eq} .13 .3)$.

$$
\begin{equation*}
\left[\mathrm{XO}_{2}\right]\left[\mathrm{PnF}_{6}\right]+n \mathrm{~L} \longrightarrow\left[\mathrm{O}_{2} \mathrm{X}(\mathrm{~L})_{n}\right]\left[\mathrm{PnF}_{6}\right](\mathrm{Pn}=\mathrm{As}, \mathrm{Sb} ; n=1 \text { or } 2) \tag{13.3}
\end{equation*}
$$

This work may also be expanded to the oxyfluoro-cations $\left[\mathrm{XF}_{4}\right]^{+}{ }^{215-217}$ and $\left[\mathrm{XOF}_{2}\right]^{+},{ }^{139,142,143,185-188,218-222}$ which are more Lewis acidic than $\left[\mathrm{XO}_{2}\right]^{+}$and are expected to form coordination complexes with noble-gas fluorides. Prior attempts to synthesize $\left[\mathrm{F}_{2} \mathrm{OCl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ by analogy with $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ resulted in fluoride-ion abstraction to give $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]$ and ClOF_{3}, which can be attributed to the greater Lewis acidity of $\left[\mathrm{ClOF}_{2}\right]^{+}$relative to that of $\left[\mathrm{BrOF}_{2}\right]^{+}$. To reduce the propensity for NgF_{2} to transfer fluoride-ion and form a neutral coordination complex instead, the $\left[\mathrm{ClOF}_{2}\right]^{+}$ cation, and more Lewis acidic $\mathrm{Cl}(\mathrm{V}), \operatorname{Br}(\mathrm{V})$, and $\mathrm{I}(\mathrm{V})$ cations, should be paired with anions that are more fluorobasic than $\left[\mathrm{PnF}_{6}\right]^{-}(\mathrm{Pn}=\mathrm{As}, \mathrm{Sb})$ such as the $\left[\mathrm{MOF}_{5}\right]^{-}$and $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ counterions (Eqs. 13.4 and 13.5). This is expected to reduce the effective Lewis acidity of the cations and may facilitate the formation of stable $\left[\mathrm{XOF}_{2}\right]^{+}$ and $\left[\mathrm{XF}_{4}\right]^{+}$coordination complexes with NgF_{2}.

$$
\begin{align*}
& {\left[\mathrm{XOF}_{2}\right]\left[\mathrm{M}_{n} \mathrm{O}_{n} \mathrm{~F}_{4 n+1}\right](n=1 \text { or } 2)+m \mathrm{NgF}_{2} \longrightarrow\left[\mathrm{~F}_{2} \mathrm{OX}(\mathrm{FNgF})_{m}\right]\left[\mathrm{M}_{n} \mathrm{O}_{n} \mathrm{~F}_{4 n+1}\right]} \tag{13.4}\\
& {\left[\mathrm{XF}_{4}\right]\left[\mathrm{M}_{n} \mathrm{O}_{n} \mathrm{~F}_{4 n+1}\right](n=1 \text { or } 2)+m \mathrm{NgF}_{2} \longrightarrow\left[\mathrm{~F}_{4} \mathrm{X}(\mathrm{FNgF})_{m}\right]\left[\mathrm{M}_{n} \mathrm{O}_{n} \mathrm{~F}_{4 n+1}\right]} \tag{13.5}
\end{align*}
$$

13.2. Syntheses and Structural Characterizations of Inorganic Derivatives of $\mathbf{M O}_{2} \mathrm{~F}_{\mathbf{2}}$

 $(\mathbf{M}=\mathbf{C r}, \mathbf{M o}, \mathbf{W})$ and their Related Ions.As highlighted in Chapters 9-11, the high-oxidation state oxide, fluoride, and oxide fluoride chemistries of Group 6, particularly those of chromium, are limited. Although the research described in Chapters $9-11$ has advanced the aforementioned research areas, significant gaps remain that are mainly related to the syntheses and structural characterizations of inorganic derivatives of high-oxidation state Group 6 oxide, fluoride, and oxide fluoride species. For example, chromyl fluoride $\left(\mathrm{CrO}_{2} \mathrm{~F}_{2}\right)$ reacts with $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ and SO_{3} to give $\mathrm{CrO}_{2}\left(\mathrm{OCCF}_{3}\right)_{2}$ and $\mathrm{CrO}_{2}\left(\mathrm{SO}_{3} \mathrm{~F}\right)_{2},{ }^{269}$ and undergoes ligand exchange with $\mathrm{Hg}\left(\mathrm{OSeF}_{5}\right)_{2}$ to yield $\mathrm{CrO}_{2}\left(\mathrm{OSeF}_{5}\right)_{2}$ and $\mathrm{HgF}_{2},{ }^{350}$ however, no crystal structures of the reaction products have been forthcoming.

The pseudo-octahedral $\mathrm{F}_{5} \mathrm{TeO}$-ligand (teflate) is a highly electronegative, oxidatively resistant ligand that is often employed as a bulky analogue of fluorine. ${ }^{351-355}$ The group electronegativity of the $\mathrm{F}_{5} \mathrm{TeO}$-ligand is similar to that of fluorine, except that it forms bonds through its oxygen atom, is isoelectronic with $\left[\mathrm{SbF}_{6}\right]^{-}$, and its salts are tend to be very soluble in non-polar solvents because the $\mathrm{F}_{5} \mathrm{TeO}$-ligands generally do not engage in bridging, unlike fluorine compounds. The high electronegativity, oxidative resistance, steric bulk, and high solubilities of $\mathrm{F}_{5} \mathrm{TeO}$-derivatives have resulted in extensive use of the $\mathrm{F}_{5} \mathrm{TeO}$-ligand as a fluorine analogue in main-group chemistry, and especially for noble-gas compounds.

Reactions of $\mathrm{MO}_{2} \mathrm{X}_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W} ; \mathrm{X}=\mathrm{Cl}$ or F$)$ with HOTeF_{5} in CFCl_{3} or $\mathrm{CF}_{2} \mathrm{ClCF}_{2} \mathrm{Cl}$ solvent are expected to yield $\mathrm{MO}_{2}\left(\mathrm{OTeF}_{5}\right)_{2}$ and HX according to Eq. 13.6.

Alternatively, $\mathrm{MO}_{2}\left(\mathrm{OTeF}_{5}\right)_{2}$ may be prepared by reaction of $\mathrm{MO}_{2} \mathrm{X}_{2}$ with $\mathrm{Hg}\left(\mathrm{OTeF}_{5}\right)_{2}$ or $\mathrm{B}\left(\mathrm{OTeF}_{5}\right)_{3}$ according to Eqs. 13.7 and 13.8 .

$$
\begin{align*}
& \mathrm{MO}_{2} \mathrm{X}_{2}+2 \mathrm{HOTeF}_{5} \longrightarrow \mathrm{MO}_{2}\left(\mathrm{OTeF}_{5}\right)_{2}+2 \mathrm{HX} \tag{13.6}\\
& \mathrm{MO}_{2} \mathrm{X}_{2}+\mathrm{Hg}\left(\mathrm{OTeF}_{5}\right)_{2} \longrightarrow \mathrm{MO}_{2}\left(\mathrm{OTeF}_{5}\right)_{2}+\mathrm{HgX}_{2} \tag{13.7}\\
& 3 \mathrm{MO}_{2} \mathrm{X}_{2}+2 \mathrm{~B}\left(\mathrm{OTEF}_{5}\right)_{3} \longrightarrow 3 \mathrm{MO}_{2}\left(\mathrm{OTeF}_{5}\right)_{2}+2 \mathrm{BX} \mathrm{X}_{3} \tag{13.8}
\end{align*}
$$

Nitrogen base adducts of Lewis acidic $\mathrm{MO}_{2}\left(\mathrm{OTeF}_{5}\right)_{2}$ may also be prepared by reaction of $\mathrm{MO}_{2}\left(\mathrm{OTeF}_{5}\right)_{2}$ with oxidatively resistant nitrogen bases such as acetonitrile to obtain the $\mathrm{MO}_{2}\left(\mathrm{OTeF}_{5}\right)_{2} \mathrm{~L}_{2}\left(\mathrm{~L}=\mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}\right)$ series of adducts (Eqs. 13.9).

$$
\begin{equation*}
\mathrm{MO}_{2}\left(\mathrm{OTeF}_{5}\right)_{2}+2 \mathrm{CH}_{3} \mathrm{CN} \longrightarrow \mathrm{MO}_{2}\left(\mathrm{OTeF}_{5}\right)_{2} \mathrm{~L}_{2} \tag{13.9}
\end{equation*}
$$

Reactions of $\mathrm{MO}_{2}\left(\mathrm{OTeF}_{5}\right)_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ with $\mathrm{M}^{\prime}\left[\mathrm{OTeF}_{5}\right]\left(\mathrm{M}^{\prime}=\mathrm{TMA}, \mathrm{Cs}\right.$, $\mathrm{Ag})$ may be expected to yield salts of novel monomeric $\left[\mathrm{MO}_{2}\left(\mathrm{OTeF}_{5}\right)_{3}\right]^{-}$and $\left[\mathrm{MO}_{2}\left(\mathrm{OTeF}_{5}\right)_{4}\right]^{2-}$ anions, or of the dimerized $\left[\mathrm{M}_{2} \mathrm{O}_{4}\left(\mathrm{OTeF}_{5}\right)_{6}\right]^{2-}$ anions. This work may also be extended to other oxidatively resistant electron-withdrawing functional groups such as $-\mathrm{OC}\left(\mathrm{CF}_{3}\right)_{3},-\mathrm{OC}(\mathrm{O}) \mathrm{CF}_{3},-\mathrm{OSO}_{2} \mathrm{~F}$, and $-\mathrm{OSO}_{2} \mathrm{CF}_{3}$, provided suitable ligand transfer reagents can be found.

CHAPTER 14

REFERENCES

1. Bartlett, N. Proc. Chem. Soc. 1962, 218.
2. Graham, L.; Graudejus, O.; Jha, N. K.; Bartlett, N. Coord. Chem. Rev. 2000, 197, 321-334.
3. Schreiner, F.; Malm, J. G.; Hindman, J. C. J. Am. Chem. Soc. 1965, 87, 25-28.
4. Hoppe, R.; Dähne, W.; Mattauch, H.; Rödder, K. Angew. Chem. Int. Ed. 1962, 1, 599.
5. Claassen, H. H.; Selig, H.; Malm, J. G. J. Am. Chem. Soc. 1962, 84, 3593.
6. Malm, J. G.; Sheft, I.; Chernick, C. L. J. Am. Chem. Soc. 1963, 85, 110-111.
7. Smith, D. F. J. Am. Chem. Soc. 1963, 85, 816-817.
8. Smith, D. F. Science 1963, 140, 899-900.
9. Schrobilgen, G. J. "Lewis Acid Properties of Noble Gas Cations", In Synthetic Fluorine Chemistry, Chambers, R. D.; Olah G. A.; Prakash, G. K. S. eds., New York: Wiley and Sons, 1992, Chapter 1, pp. 1-30.
10. Gomila, R. M.; Frontera, A. Front. Chem. 2020, 8, 395.
11. Saha, R.; Jana, G.; Pan, S.; Merino, G.; Chattaraj, P. K. Molecules 2019, 24, 2933.
12. Nabiev, S. S.; Sokolov, V. B.; Chaivanov, B. B. Russ. Chem. Rev. 2014, 83, 11351180.
13. Mazej, Z. Molecules 2020, 25, 3014.
14. Pan, S.; Jana, G.; Merino, G.; Chattaraj, P. K. ChemistryOpen 2019, 8, 173-187.
15. Hope, E. G. Coord. Chem. Rev. 2013, 257, 902-909.
16. Grandinetti, F. Noble Gas Chemistry: Structure, Bonding, and Gas-Phase Chemistry; John Wiley \& Sons, 2018.
17. Lehmann, J. F.; Mercier, H. P. A.; Schrobilgen, G. J. Coord. Chem. Rev. 2002, 233-234, 1-39.
18. Tavčar, G.; Tramšek, M. J. Fluor. Chem. 2015, 174, 14-21.
19. Brock, D. S.; Schrobilgen, G. J.; Žemva, B. "Noble-Gas Chemistry" In Comprehensive Inorganic Chemistry II (Second Edition): From Elements to Applications; Elsevier Ltd, 2013; Vol. 1, pp 755-822.
20. Haner, J.; Schrobilgen, G. J. Chem. Rev. 2015, 115, 1255-1295.
21. a) Laszlo, P.; Schrobilgen, G. J. Angew. Chem. Int. Ed. 1988, 27, 479-489. b) Schrobilgen, G. J. "Chemistry at the Edge of the Periodic Table: The Importance of Periodic Trends on the Discovery of the Noble Gases and the Development of Noble-Gas Chemistry", In The Periodic Table I - Historical Development and Essential Features, Mingos, D. M. P. Ed.; Structure and Bonding 181, Springer Nature, Zurich, 2019, Chapter 49, pp.157-196.
22. Tramšek, M.; Žemva, B. Acta. Chim. Slov. 2006, 55, 105-116.
23. Halpern, D. F.; Tavčar, G.; Tramšek, M. "Xenon(II) Fluoride" In Encyclopedia of Reagents for Organic Synthesis; John Wiley \& Sons Ltd, 2017; pp 1-5.
24. Falconer, W. E.; Sunder, W. A. J. Inorg. Nucl. Chem. 1967, 29, 1380-1381.
25. Johnson, G. K.; Malm, J. G.; Hubbard, W. N. J. Chem. Thermodyn. 1972, 4, 879891.
26. Schreiner, F.; McDonald, G. N.; Chernick, C. L. J. Phys. Chem. 1968, 72, 11621166.
27. Easter, C.; O’Neal, C. B. J. Microelectromech. Syst. 2009, 18, 1054-1061.
28. Schrobilgen, G. J.; Firnau, G.; Chirakal, R.; Garnett, E. S. J. Chem. Soc. Chem. Comтип. 1981, 4, 198-199.
29. Lu, S.; Pike, V. W. J. Fluor. Chem. 2010, 131, 1032-1038.
30. Vasdev, N.; Pointner, B. E.; Chirakal, R.; Schrobilgen, G. J. J. Am. Chem. Soc. 2002, 124, 12863-12868.
31. Yamaguchi, S.; Shirasaka, T.; Tamao, K. Organometallics 2002, 21, 2555-2558.
32. Yamaguchi, S.; Akiyama, S.; Tamao, K. J. Organomet. Chem. 2002, 646, 277-281.
33. Klapötke, T. M.; Krumm, B.; Mayer, P.; Piotrowski, H.; Ruscitti, O. P.; Schiller, A. Inorg. Chem. 2002, 41, 1184-1193.
34. Yahav, A.; Goldberg, I.; Vigalok, A. J. Am. Chem. Soc. 2003, 125, 13634-13635.
35. Bernhardt, E.; Bach, C.; Bley, B.; Wartchow, R.; Westphal, U.; Sham, I. H. T.; von Ahsen, B.; Wang, C.; Willner, H.; Thompson, R. C.; Aubke, F. Inorg. Chem. 2005, 44, 4189-4205.
36. Yahav, A.; Goldberg, I.; Vigalok, A. Inorg. Chem. 2005, 44, 1547-1553.
37. Jeon, K. J.; Lee, Z.; Pollak, E.; Moreschini, L.; Bostwick, A.; Park, C. M.; Mendelsberg, R.; Radmilovic, V.; Kostecki, R.; Richardson, T. J.; Rotenberg, E. ACS Nano. 2011, 5, 1042-1046.
38. Patrick, T. B.; Mortezania, R. J. Org. Chem. 1988, 53, 5153-5155.
39. Sessa, P. A.; McGee, H. A. J. Phys. Chem. 1969, 73, 2078-2080.
40. Prusakov, V. N.; Sokolov, V. B. Sov. At. Energy 1971, 31, 990-999.
41. Turner, J. J.; Pimentel, G. C. Science 1963, 140, 974-975.
42. Streng, L. V.; Streng, A. G. Inorg. Chem. 1966, 5, 328-329.
43. Slivnik, J.; Šmalc, A.; Lutar, K.; Žemva, B.; Frlec, B. J. Fluor. Chem. 1975, 5, 273274.
44. Šmalc, A.; Lutar, K.; Žemva, B.; Kinkead, S. A. Inorg. Synth. 2007, 29, 11-15.
45. Kinkead, S. A.; FitzPatrick, J. R.; Foropoulos, J.; Kissane, R. J.; Purson, J. D. ACS Symposium Series, 1994, 555, 40-55.
46. Lehmann, J. F.; Dixon, D. A.; Schrobilgen, G. J. Inorg. Chem. 2001, 40, 30023017.
47. Liebman, J. F. Struct. Chem. 2000, 11, 261-263.
48. Elliott, H. St. A.; Lehmann, J. F.; Mercier, H. P. A.; Jenkins, H. D. B.; Schrobilgen, G. J. Inorg. Chem. 2010, 49, 8504-8523.
49. Dukat, W. W.; Holloway, J. H.; Hope, E. G.; Townson, P. J.; Powell, R. L. J. Fluor. Chem. 1993, 62, 293-296.
50. Rundle, R. E. J. Am. Chem. Soc. 1963, 85, 112-113.
51. Gillespie, R. J.; Schrobilgen, G. J. Inorg. Chem. 1976, 15, 22-31.
52. Gillespie, R. J.; Netzer, A.; Schrobilgen, G. J. Inorg. Chem. 1974, 13, 1455-1459.
53. Ruby, S. L.; Selig, H. Phys. Rev. 1966, 147, 348-354.
54. Holloway, J. H.; Schrobilgen, G. J.; Bukshpan, S.; Hilbrants, W.; de Waard, H. J. Chem. Phys. 1976, 66, 2627-2630.
55. Falconer, W. E.; Morton, J. R.; Streng, A. G. J. Chem. Phys. 1964, 41, 902-903.
56. Gunn, S. R. J. Chem. Phys. 1967, 71, 2934-2937.
57. Gunn, S. R. J. Am. Chem. Soc. 1966, 88, 5924.
58. Radan, K.; Goreshnik, E.; Žemva, B. Angew. Chem. Int. Ed. 2014, 53, 1371513719.
59. Fir, B. A.; Gerken, M.; Pointner, B. E.; Mercier, H. P. A.; Dixon, D. A.; Schrobilgen, G. J. J. Fluor. Chem. 2000, 105, 159-167.
60. Mazej, Z.; Goreshnik, E. Eur. J. Inorg. Chem. 2021, 2021, 2669-2681.
61. Bortolus, M. R.; Ellwanger, M.; Haner, J.; Schrobilgen, G. J. J. Fluor. Chem. 2021, 250, 109814.
62. Brock, D. S.; Casalis de Pury, J. J.; Mercier, H. P. A.; Schrobilgen, G. J.; Silvi, B. J. Am. Chem. Soc. 2010, 132, 3533-3542.
63. Brock, D. S.; Casalis de Pury, J. J.; Mercier, H. P. A.; Schrobilgen, G. J.; Silvi, B. Inorg. Chem. 2010, 49, 6673-6689.
64. Žemva, B.; Jesih, A.; Templeton, D. H.; Zalkin, A.; Cheetham, A. K.; Bartlett, N. J. Am. Chem. Soc. 1987, 109, 7420-7427.
65. Mercier, H. P. A.; Breddemann, U.; Brock, D. S.; Bortolus, M. R.; Schrobilgen, G. J. Chem. Eur. J. 2019, 25, 12105-12119.
66. Christe, K. O.; Wilson, W. W.; Bougon, R. A. Inorg. Chem. 1986, 25, 2163-2169.
67. Bortolus, M. R.; Mercier, H. P. A.; Brock, D. S.; Schrobilgen, G. J. Chem. Eur. J. 2022, 28, e202103729.
68. Hughes, M. J.; Brock, D. S.; Mercier, H. P. A.; Schrobilgen, G. J. J. Fluor. Chem. 2011, 132, 660-668.
69. Jones, G. R.; Burbank, R. D.; Bartlett, N. Inorg. Chem. 1970, 9, 2264-2268.
70. Adams, C. J. J. Raman Spectrosc. 1974, 2, 391-397.
71. Burns, J. H. J. Phys. Chem. 1963, 67, 536.
72. Debackere, J. R.; Mercier, H. P. A.; Schrobilgen, G. J. J. Am. Chem. Soc. 2014, 136, 3888-3903.
73. Lozinšek, M.; Mercier, H. P. A.; Schrobilgen, G. J. Angew. Chem. Int. Ed. 2021, 60, 8149-8156.
74. Lozinšek, M.; Mercier, H. P. A.; Brock, D. S.; Žemva, B.; Schrobilgen, G. J. Angew. Chem. Int. Ed. 2017, 56, 6251-6254.
75. Claassen, H. H.; Selig, H.; Malm, J. G. J. Am. Chem. Soc. 1962, 84, 3593.
76. Chernick, C. L.; Claassen, H. H.; Fields, P. R.; Hyman, H. H.; Malm, J. G.; Manning, W. M.; Matheson, M. S.; Quarterman, L. A.; Schreiner, F.; Selig, H. H.; Sheft, I.; Siegel, S.; Sloth, E. N.; Stein, L.; Studier, M. H.; Weeks, J. L.; Zirin, M. H. Science 1962, 138, 136-138.
77. Malm, J. G.; Chernick, C. L.; Williamson, S. M. Inorg. Synth. 1966, 8, 254-258.
78. Bartlett, N.; Sladky, F. O. "The Chemistry of Krypton, Xenon and Radon" In The Chemistry of the Monatomic Gases; Elsevier, 1973; pp 213-330.
79. Gillespie, R. J.; Landa, B.; Schrobilgen, G. J. Inorg. Chem. 1976, 15, 1256-1263.
80. Gillespie, R. J.; Schrobilgen, G. J. Inorg. Chem. 1974, 13, 2370-2374.
81. Boldrini, P.; Gillespie, R. J.; Ireland, P. R.; Schrobilgen, G. J. Inorg. Chem. 1974, 13, 1690-1694.
82. Brock, D. S.; Mercier, H. P. A.; Schrobilgen, G. J. J. Am. Chem. Soc. 2013, 135, 5089-5104.
83. Gillespie, R. J.; Martin, D.; Schrobilgen, G. J.; Slim, D. R. J. Chem. Soc., Dalton Trans. 1977, 22, 2234-2237.
84. Gillespie, R. J.; Landa, B.; Schrobilgen, G. J. J. Chem. Soc. (D). 1971, 23, 15431544.
85. McKee, D. E.; Zalkin, A.; Bartlett, N. Inorg. Chem. 1973, 12, 1713-1717.
86. Gillespie, R. J.; Martin, D.; Schrobilgen, G. J. J. Chem. Soc., Dalton Trans. 1980, 10, 1898-1903.
87. Christe, K. O.; Curtis, E. C.; Dixon, D. A.; Mercier, H. P. A.; Sanders, J. C. P.; Schrobilgen, G. J. J. Am. Chem. Soc. 1991, 113, 3351-3361.
88. Gillespie, R. J.; Hargittai, I. The VSEPR Model of Molecular Geometry; Allyn and Bacon: Boston, MA, 1991.
89. Gillespie, R. J.; Landa, B.; Schrobilgen, G. J. J. Inorg. Nucl. Chem. Supplement 1976, 28, 179-182.
90. Grant, D. J.; Wang, T. H.; Dixon, D. A.; Christe, K. O. Inorg. Chem. 2010, 49, 261-270.
91. Tavčar, G.; Žemva, B. Angew. Chem. Int. Ed. 2009, 48, 1432-1434.
92. Burns, J. H. J. Phys. Chem. 1963, 67, 536.
93. Mazej, Z.; Darriet, J.; Grannec, J.; Lutar, K.; Tressaud, A.; Žemva, B. J. Fluor. Chem. 1999, 99, 25-28.
94. Chernic, C. L.; Malm, J. G.; Williamson, S. M. Inorg. Chem. 1966, 8, 258-260.
95. Selig, H. Inorg. Chem. 1966, 5, 183-186.
96. Huston J. L. J. Phys. Chem. 1967, 71, 3339-3341.
97. Goettel, J. T.; Schrobilgen, G. J. Inorg. Chem. 2016, 55, 12975-12981.
98. Templeton, D. H.; Zalkin, A.; Forrester, J. D.; Wiliamson, S. M. J. Am. Chem. Soc. 1963, $85,817$.
99. Bartlett, N.; Jha, N. K. Noble Gas Compounds; H. H. Hyman, Ed.; University of Chicago Press: Chicago, 1963; p 23.
100. Hoyer, S.; Emmler, T.; Seppelt, K. J. Fluor. Chem. 2006, 127, 1415-1422.
101. Matsumoto, K.; Haner, J.; Mercier, H. P. A.; Schrobilgen, G. J. Angew. Chem. Int. Ed. 2015, 54, 14169-14173.
102. Haner, J.; Matsumoto, K.; Mercier, H. P. A.; Schrobilgen, G. J. Chem Eur. J. 2016, 22, 4833-4842.
103. Schrobilgen, G. J.; Holloway, J. H.; Granger, P.; Brevard, C. Inorg. Chem. 1978, 17, 980-987.
104. Seppelt, K.; Bartlett, N. Z. Anorg. Allg. Chem. 1977, 436, 122-126.
105. Bartell, L. S.; Gavin, R. M.; Thompson, H. B.; Chernick, C. L. J. Chem. Phys. 1965, 43, 2547-2548.
106. Harshbarger, W.; Bohn, R. K.; Bauer, S. H. J. Am. Chem. Soc. 1967, 89, 64666469.
107. Gavin, R. M.; Bartell, L. S. J. Chem. Phys. 1968, 48, 2460-2465.
108. Bartell, L. S.; Gavin, R. M. J. Chem. Phys. 1968, 48, 2466-2483.
109. Hyunyong K.; Claassen, H. H.; Pearson, E. F. Inorg. Chem. 1968, 7, 616-617.
110. Gasner, E. L.; Claassen, H. H. Inorg. Chem. 1967, 6, 1937-1938.
111. Claassen, H. H.; Goodman, G. L.; Hyunyong, K. J. Chem. Phys. 1972, 56, 50425053.
112. Cutler, J. N.; Bancroft, G. M.; Bozek, J. D.; Tan, K. H.; Schrobilgen, G. J. J. Am. Chem. Soc. 1991, 113, 9125-9131.
113. Bancroft, G. M.; Bristow, D. J.; Tse, J. S.; Schrobilgen, G. J. Inorg. Chem. 1983, 22, 2673-2677.
114. Peterson, K. A.; Dixon, D. A.; Stoll, H. J. Phys. Chem. 2012, 116, 9777-9782.
115. Gawrilow, M.; Beckers, H.; Riedel, S.; Cheng, L. J. Chem. Phys. 2018, 122, 119129.
116. Adams, C. J.; Bartlett, N. Isr. J. Chem. 1978, 17, 114-125.
117. Lutar, K.; Jesih, A.; Leban, I.; Žemva, B.; Bartlett, N. Inorg. Chem., 1989, 28, 3467-3471.
118. Jesih, A.; Lutar, K.; Leban, I.; Žemva, B. Inorg. Chem. 1989, 28, 2911-2914.
119. Leary, Z.; Zalkin, A.; Bartlett, N. Inorg. Chem. 1974, 13, 775-779.
120. Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 1993, 32, 145-151.
121. Hughes, M. J.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 2010, 49, 35013515.
122. Bertolini, J. C. J. Emerg. Med. 1992, 10, 163-168.
123. Peters, D.; Miethchen, R. J. Fluor. Chem. 1996, 79, 161-165.
124. Segal, E. B. Chem. Health Saf. 2000, 7, 18-23.
125. Nicolas LeBlond. Ph.D. Thesis, McMaster, Hamilton, 1998.
126. Breuer, G. Handbook of Preparative Inorganic Chemistry, vol. 1, Ed. Riley, R. F. Academic Press Inc., 1963, pp. 197.
127. Mercier, H. P. A.; Sanders, J. C. P.; Schrobilgen, G. J.; Tsai, S. S. Inorg. Chem. 1993, 32, 386-393.
128. Emara, A. A. A.; Lehmann, J. F.; Schrobilgen, G. J. J. Fluor. Chem. 2005, 126, 1373-1376.
129. Kinkead, S. A; FitzPatrick, J. R.; Foropoulos, J. J.; Kissane, R. J.; Purson, J. D. In Fluorine Chemistry Toward the 21st Century; Thrasher, J. S.; Strauss, S. H., Eds.; ACS Symposium Series 555; American Chemical Society: Washington, DC, 1994; Chapter 3, pp 40-55.
130. Breuer, G. Handbook of Preparative Inorganic Chemistry, vol. 1, Ed. Riley, R. F. Academic Press Inc., 1963, pp. 155.
131. Gillespie, R. J.; Schrobilgen, G. J. Inorg. Chem. 1976, 15, 22-31.
132. Malm, J. G.; Chernick, C. L. Inorg. Synth. 1966, 3, 254-258.
133. Malm, J. G.; Chernick, C. L. Inorg. Synth. 1966, 8, 258-260.
134. Bezmel'nitsyn V. N.; Legasov V. A.; Chaivanov B. B. Dokl. Akad. Nauk. SSSR 1997, 235, 96-98.
135. Green, P. J.; Gard, G. L. Inorg. Chem. 1977, 16, 1243-1245.
136. Burns, R. C.; O’Donnell, T. A.; Waugh, A. B. J. Fluor. Chem. 1978, 12, 505-517.
137. Christe, K. O.; Wilson, R. D.; Schack, C. J.; Desmarteau, D. D. Inorg. Synth. 1986, 24, 3.
138. Tantot, G.; Joubert, P.; Bougon, R. Can. J. Chem. 1978, 56, 1634-1637.
139. Seppelt, K. Angew. Chem. Int. Ed. 2019, 58, 18928-18930.
140. Casteel, W. J.; Dixon, D. A.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 1996, 35, 4310-4322.
141. Scheibe, B.; Karttunen, A. J.; Kraus, F. Eur. J. Inorg. Chem. 2021, 2021, 405-421.
142. Christe, K. O.; Schack, C. J.; Pilipovich, D.; Sawodny, W. Inorg. Chem. 1969, 8, 2489-2494.
143. Lehmann, J. F.; Riedel, S.; Schrobilgen, G. J. Inorg. Chem. 2008, 47, 8343-8356.
144. APEX2, v.2014.9-0, Bruker AXS Inc.; Madison, WI, 2005-2014.
145. APEX3, release v2017.3-0; Bruker AXS Inc.; Madison, WI, 1995.
146. Sheldrick, G. M. SADABS (Siemens Area Detector Absorption Corrections), version 2.03; Siemens Analytical X-ray Instruments, Inc.; Madison, WI, 1999.
147. TWINABS - Bruker AXS Scaling for Twinned Crystals, v.2012/1, Madison, WI, 2014.
148. XPREP - Reciprocal Space Exploration, v.2014/2, Bruker AXS Inc., Madison, WI, 2014.
149. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3-8.
150. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3-8.
151. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339-341.
152. Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7-13.
153. EMSL Basis Set Exchange, v.1.2.2, https://bse.pnl.gov/bse/portal, Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA.
154. Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, J.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc: Wallingford, CT, 2009.
155. GaussView, version 3.0; Gaussian Inc.: Pittsburgh, PA, 2003.
156. NBO 6.0. Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Landis, C. R.; Weinhold, F. Theoretical Chemistry Institute, University of Wisconsin, Madison, 2013.
157. Multiwfn, version 3.3.8; Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580-592.
158. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M. Meng, E. C.; Ferrin, T. E. J. Comput. Chem. 2004, 25, 1605-1612.
159. a) ADF 2016, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com; b) Guerra, F. C.; Snijders, J. G.; te Velde, G.; Baerends, E. J. Theor. Chem. Acc. 1998, 99, 391-403; c) te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Guerra, C. J.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J. Comput. Chem. 2001, 22, 931-967.
160. Ernzerhof, M.; Scuseria, G. E. J. Chem. Phys. 1999, 110, 5029-5036.
161. Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158-6170.
162. a) van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. 1993, 99, 4597-4610; b) van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys. 1994, 101, 9783-9792; c) van Lenthe, E.; Ehlers, A.; Baerends, E. J. Chem. Phys. 1999, 110, 8943-8953; d) van Lenthe, E.; Snijders, J. G.; Baerends, E. J. J. Chem. Phys. 1996, 105, 6505-6516; e) van Lenthe, E.; van Leeuwen, R.; Baerends, E. J.; Snijders, J. G. Int. J. Quantum Chem. 1996, 57, 281-293.
163. Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456-1465.
164. Politzer, P.; Murray, J. S.; Clark, T.; Resnati, G. Phys. Chem. Chem. Phys. 2017, 19, 32166-32178
165. Al-Mukhtar, M.; Holloway, J. H.; Hope, E. G.; Schrobilgen, G. J. J. Chem. Soc., Dalton Trans., 1991, 2831-2834.
166. Griffiths, J. E.; Sunder, W. A. J. Chem. Phys. 1982, 77, 1087-1092.
167. Bondi, A. J. Phys. Chem. 1964, 68, 441-451.
168. Alvarez, S. J. Chem. Soc., Dalton Trans. 2013, 42, 8617-8636.
169. Fateley, W. G.; McDevitt, N. T.; Bentley, F. F. Appl. Spectrosc. 1971, 25, 155-173.
170. Allen, L. C. Int. J. Quantum Chem. 1994, 49, 253-277.
171. Rahm, M.; Zeng, T.; Hoffmann, R. J. Am. Chem. Soc. 2019, 141, 342-351.
172. Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press; Clarendon Press, 1990.
173. Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397-5403.
174. Silvi, B.; Savin, A. Nature 1994, 371, 683-686.
175. Vasdev, N.; Moran, M. D.; Tuononen, H. M.; Chirakal, R.; Suontamo, R. J.; Bain, A. D.; Schrobilgen, G. J. Inorg. Chem. 2010, 49, 8997-9004.
176. Mercier, H. P. A.; Moran, M. D.; Sanders, J. C. P.; Schrobilgen, G. J.; Suontamo, R. J. Inorg. Chem. 2005, 44, 49-60.
177. Thanthiriwatte, K. S.; Vasiliu, M.; Dixon, D. A.; Christe, K. O. Inorg. Chem. 2012, 51, 10966-10982.
178. Scheibe, B.; Karttunen, A. J.; Weigend, F.; Kraus, F. Chem. Eur. J. 2021, 27, 23812392.
179. Frlec, B.; Holloway, J. H. Inorg. Chem. 1976, 15, 1263-1270.
180. Burgess, J.; Fraser, C. J. W.; McRae, V. M.; Peacock, R. D.; Russell, D. R. J. Inorg. Nucl. Chem. 1976, 28, 183-188.
181. Mcrae, V. M.; Peacock, R. D.; Russell, D. R. J. Chem. Soc. (D). 1969, 62-63.
182. Tucker, P. A.; Taylor, P. A.; Holloway, J. H.; Russell, D. R. Acta Crystallogr. 1975, B31, 906-908.
183. Holloway, J. H.; Schrobilgen, G. J.; Holloway, J. H.; Schrobilgen, G. J. Inorg. Chem. 1980, 19, 2632-2640.
184. Holloway, J. H.; Schrobilgen, G. J. Inorg. Chem. 1981, 20, 3363-3368.
185. Bougon, R.; Cicha, W. V.; Lance, M.; Meublat, L.; Nierlich, M.; Vigner, J. Inorg. Chem. 1991, 30, 102-109.
186. Antipin, M. Y.; Ehllern, A. M.; Sukhoverkhov, V. F.; Struchkov, Y. T.; Buslaev, Y. A. Dokl. Akad. Nauk. SSSR 1987, 293, 1152-1155.
187. Tobias, K. M.; Jansen, M. Z. Anorg. Allg. Chem. 1987, 550, 16-26.
188. Christe, K. O. Inorg. Chem. 1973, 12, 1580-1587.
189. Tramšek, M.; Benkič, P.; Žemva, B. Inorg. Chem. 2004, 43, 699-703.
190. DeBackere, J. R.; Schrobilgen, G. J. Angew. Chem. Int. Ed. 2018, 57, 13167-13171.
191. Gillespie, R. J.; Spekkens, P. H. Isr. J. Chem. 1978, 17, 11-19.
192. Christe, K.; Curtis, E. C.; Schack, C. J. Inorg. Chem. 1972, 11, 2212-2215.
193. Christe, K. O.; Curtis, E. C. Inorg. Chem. 1972, 11, 2209-2211.
194. Christe, K. O.; Schack, C. J.; Pilipovich, D. Inorg. Chem. 1972, 11, 2205-2208.
195. Schack, C. J.; Lindahl, C. B.; Pilipovich, D.; Christe, K. O. Inorg. Chem. 1972, 11, 2201-2205.
196. Christe, K. O.; Curtis, E. C. Inorg. Chem. 1972, 11, 2196-2201.
197. Pilipovich, D.; Rogers, H. H.; Wilson, R. D. Inorg. Chem. 1972, 11, 2192-2195.
198. Pilipovich, D.; Lindahl, C. B.; Schack, C. J.; Wilson, R. D.; Christe, K. O. Inorg. Chem. 1972, 11, 2189-2192.
199. Christe, K. O.; Wilson, R. D. Inorg. Chem. 1973, 12, 1356-1357.
200. Schroer, T.; Christe, K. O. Inorg. Chem. 2001, 40, 2415-2419.
201. Gillespie, R. J.; Schrobilgen, G. J. Inorg. Chem. 1974, 13, 1230-1235.
202. Wilson, W. W.; Christe, K. O. J. Fluor. Chem. 1982, 21, 7.
203. Christe, K. O.; Wilson, W. W.; Curtis, E. C. Inorg. Chem. 1983, 22, 3056-3060.
204. Scheibe, B.; Ivlev, S. I.; Karttunen, A. J.; Kraus, F. Eur. J. Inorg. Chem. 2020, 2020, 1319-1324.
205. Christe, K. O; Curtis, E. C.; Dixon, D. A. J. Am. Chem. Soc. 1993, 115, 1520-1526.
206. Christe, K. O.; Wilson, W. W. Inorg. Chem. 1989, 28, 3275-3277
207. Mahjoub, A. R.; Hoser, A.; Fuchs, J.; Seppelt, K. Angew. Chem. Int. Ed. 1989, 28, 1526-1527.
208. Mahjoub, A. R.; Zhang, X.; Seppelt, K. Chem. Eur. J. 1995, 1, 261-265.
209. Dixon, D. A.; Grant, D. J.; Christe, K. O.; Peterson, K. A. Inorg. Chem. 2008, 47, 5485-5494.
210. Christe, K. O.; Wilson, W. W.; Chirakal, R. V.; Sanders, J. C. P.; Schrobilgen, G. J.; Chirakal, R. V. Inorg. Chem. 1990, 29, 3506-3511.
211. Gillespie, R. J.; Spekkens, P. J. Chem. Soc., Dalton Trans. 1976, 2391-2396.
212. Huggins, D. K.; Fox, W. B. Inorg. Nucl. Chem. Letters 1970, 6, 337-339.
213. Christe, K. O.; Curtis, E. C. Inorg. Chem. 1972, 11, 35-39.
214. Ellern, A.; Boatz, J. A.; Christe, K. O.; Drews, T.; Seppelt, K. Z. Anorg. Allg. Chem. 2002, 628, 1991-1999.
215. Christe, K. O.; Zhang, X.; Sheehy, J. A.; Bau, R. J. Am. Chem. Soc. 2001, 123, 6338-6348.
216. Vij, A.; Tham, F. S.; Vij, V.; Wilson, W. W.; Christe, K. O. Inorg. Chem. 2002, 41, 6397-6403.
217. Lind, M. D.; Christe, K. O.; Lind, M. D.; Christe, K. O. Inorg. Chem. 1972, 11, 608-612.
218. Mallouk, T. E.; Rosenthal, G. L.; Müller, G.; Brusasco, R.; Bartlett, N. Inorg. Chem. 1984, 23, 3167-3173.
219. Edwards, A. J.; Sills, R. J. C. J. Chem. Soc., Dalton Trans. 1974, 1726-1729.
220. Schmeisser, M.; Brändle, K. Adv. Inorg. Chem. Radiochem. 1963, 5, 41-89.
221. Nabiev, S. S. Russ. Chem. Bull. 1999, 48, 711-717.
222. Jacob, E. Angew. Chem. Int. Ed. 1976, 15, 158-158.
223. Bougon, R.; Huy, T. B.; Charpin, P.; Gillespie, R. J.; Spekkens, P. H. J. Chem. Soc., Dalton Trans. 1979, 6-12.
224. Adelhelm, M.; Jacob, E. Angew. Chem. Int. Ed. 1977, 16, 461.
225. Bunič, T.; Tavčar, G.; Tramšek, M.; Žemva, B. Inorg. Chem. 2006, 45, 1038-1042.
226. Benkič, P.; Tramšek, M.; Žemva, B. Solid State Sci. 2002, 4, 1425-1434.
227. Bunič, T.; Tramšek, M.; Goreshnik, E.; Tavčar, G.; Žemva, B. Inorg. Chem. 2007, 46, 5276-5282.
228. Riedel, S. "High-Valent Fluorides and Fluoro-Oxidizers." In Comprehensive Inorganic Chemistry II (Second Edition): From Elements to Applications; Elsevier Ltd, 2013; Vol. 2, pp 187-221.
229. Winkler, J. R.; Gray, H. B. Electronic Structures of Oxo-Metal Ions. Structure and Bonding; Springer, Berlin, Heidelberg 2012, pp 17-28.
230. Ballhausen, C. J.; Gray, H. B. Inorg. Chem. 1962, 1, 111-122.
231. Pyykkö, P.; Xu, W.-H. Angew. Chem. Int. Ed. 2015, 54, 1080-1081.
232. Drews, T.; Supeł, J.; Hagenbach, A.; Seppelt, K. Inorg. Chem. 2006, 45, 37823788.
233. Choy, J. -H.; Kim, D. -K.; Hwang, S. -H.; Demazeau, G.; Jung, D. -Y. J. Am. Chem. Soc. 1995, 117, 8557-8566.
234. Riedel, S.; Kaupp, M. Angew. Chem. Int. Ed. 2006, 45, 3708-3711.
235. Cooper, T. D.; Dost F. N.; Wang, C. H. J. Inorg. Nucl. Chem. 1972, 34, 3564-3567.
236. Muller, H. S. P. Chem. Phys. Lett. 1999, 314, 396-402.
237. Andrews, L.; Chi, F. K.; Arkell, A. J. Am. Chem. Soc. 1974, 96, 1997-2000.
238. Müller, H. S. P.; Cohen, E. A. J. Chem. Phys. 2002, 116, 2407-2416.
239. Christe, K. O. Inorg. Chem. 1972, 11, 1220-1222.
240. Gatti, R.; Krieger, R. L.; Sicre, J. E.; Schumacher, H. J. J. Inorg. Nucl. Chem. 1966, 28, 647-658.
241. Pilipovich, D.; Maya, W.; Lawton, E. A.; Bauer, H. F.; Sheehan, D. F.; Ogimachi, N. N.; Wilson, R. D.; Gunderloy, F. C.; Bedwell, V. E. Inorg. Chem. 1967, 6, 1918-1919.
242. Scheibe, B.; Haiges, R.; Ivlev, S. I.; Karttunen, A. J.; Müller, U.; Christe, K. O.; Kraus, F. Eur. J. Inorg. Chem. 2020, 2020, 4483-4496.
243. Bortolus, M. R.; Mercier, H. P. A.; Schrobilgen, G. J. Chem. Eur. J. 2020, 26, 8935-8950.
244. Goettel, J. T.; Bortolus, M. R.; Stuart, D. G.; Mercier, H. P. A.; Schrobilgen, G. J. Chem. Eur. J. 2019, 25, 15815-15829.
245. Haase, W. Chem. Ber. 1974, 107, 1009-1018.
246. Haase, W. Acta Crystallogr. 1974, B30, 2465-2469.
247. Shopov, D. Y.; Sharninghausen, L. S.; Sinha, S. B.; Mercado, B. Q.; Balcells, D.;

Brudvig, G. W.; Crabtree, R. H. Inorg. Chem. 2018, 57, 5684-5691.
248. Tamadon, F.; Seidel, S.; Seppelt, K. Acta. Chim. Slov. 2013, 60, 491-494.
249. Brown, I. D. The Chemical Bond in Inorganic Chemistry. The Bond Valence Model; Oxford University Press, 2006.
250. Brown, I. D. Private Communication. (Cl-O, $\left.R_{0}=1.71 ; \mathrm{Cl}-\mathrm{F}, R_{0}=1.69 ; B=0.37\right)$.
251. Lu, Y.; Tsegaw, Y. A.; Wodyński, A.; Li, L.; Beckers, H.; Kaupp, M.; Riedel, S. Chem. Eur. J. 2022, 28, e202104005.
252. Craciun, R.; Dixon, D. A. Private Communication. Calculated fluoride-ion affinities of $\mathrm{CrOF}_{4}\left(-285 \mathrm{~kJ} \mathrm{~mol}^{-1}\right), \mathrm{MoOF}_{4}\left(-355 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$, and $\mathrm{WOF}_{4}\left(-386 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$.
253. Edwards, A. J.; Steventon, B. R. J. Chem. Soc. (A), 1971, 21-25.
254. Turnbull, D.; Chaudhary, P.; Leenstra, D.; Hazendonk, P.; Wetmore, S. D.; Gerken, M. Inorg. Chem. 2020, 59, 17544-17554.
255. Iijima, K. Bull. Chem. Soc. Jpn. 1977, 50, 373-375.
256. Robiette, A. G.; Hedberg, K.; Hedberg, L. J. Mol. Struct. 1977, 37, 105-112.
257. Atoji, M.; Lipscomb, W. N. Acta. Crystallogr. 1954, 7, 173-175.
258. Ziegler, T.; Rauk, A. Theor. Chim. Acta. 1977, 46, 1-10.
259. Mitoraj, M. P.; Michalak, A.; Ziegler, T. J. Chem. Theory. Comput. 2009, 5, 962975.
260. Gillespie, R. J.; Landa, B.; Schrobilgen, G. J. J. Inorg. Nucl. Chem. 1976, 28, 179182.
261. Christe, K. O.; Dixon, D. A.; Mclemore, D.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A. J. Fluor. Chem. 2000, 101, 151-153.
262. Bortolus, M. R.; Mercier, H. P. A.; Nguyen, B.; Schrobilgen, G. J. Angew. Chem. Int. Ed. 2021, 60, 23678-23686.
263. Beattie, I. R.; Livingston, K. M. S.; Reynolds, D. J.; Ozin, G. A. J. Chem. Soc. (A) 1970, 1210-1216.
264. Hope, E. G.; Jones, P. J.; Levason, W.; Ogden, J. S.; Tajik, M.; Turff, J. W. J. Chem. Soc., Dalton Trans. 1985, 529-533.
265. Granier, W.; Vilminot, S.; Vidal, J. D.; Cot, L. J. Fluor. Chem. 1981, 19, 123-134.
266. Ghammamy, S.; Baghy, M. R. Transit. Met. Chem. 2007, 32, 456-460.
267. Ghammamy, S.; Dastpeyman, S.; Sadjadi, S. A. S. Trans. Met. Chem. 2006, 31, 482-486.
268. Green, P. J.; Gard, G. L. Inorg. Nucl. Chem. Lett. 1978, 14, 179-182.
269. Brown, S. D.; Green, P. J.; Gard, G. L. J. Fluor. Chem. 1975, 5, 203-219.
270. Mallela, S. P.; Shreeve, J. M. Organometallics 1989, 8, 2751-2754.
271. Brown, S. D.; Gard, G. L. Inorg. Chem. 1973, 12, 483-484.
272. Glemser, O.; Roesky, H.; Hellberg, K. -H. Angew. Chem. 1963, 75, 346-347.
273. Hellberg, K. H.; Müller, A.; Glemser, O. Z. Naturforsch. B. 1966, 21, 118-121.
274. Jacob, E.; Willner, H. Chem. Ber. 1990, 123, 1319-1321.
275. Hope, E. G.; Jones, P. J.; Levason, W.; Ogden, J. S.; Tajik, M. J. Chem. Soc. Chem. Comтип. 1984, 20, 1355-1356.
276. Hope, E. G.; Jones, P. J.; Levason, W.; Ogden, J. S.; Tajik, M.; Turff, J. W. J. Chem. Soc., Dalton Trans. 1985, 7, 1443-1449.
277. Hope, E. G.; Levason, W.; Ogden, J. S. Inorg. Chem. 1991, 30, 4873-4874.
278. Jacobs, J.; Müller, H. S. P.; Willner, H.; Jacob, E.; Bürger, H. Inorg. Chem. 1992, 31, 5357-5363.
279. Schlöder, T.; Brosi, F.; Freyh, B. J.; Vent-Schmidt, T.; Riedel, S. Inorg. Chem. 2014, 53, 5820-5829.
280. Ruff, O.; Eisner, F. Ber. Dtsch. Chem. Ges. 1907, 40, 2926-2935.
281. Edward A. J. Proc. Chem. Soc. 1960, 205.
282. Mallela, S. P.; Shreeve, J. M. Inorg. Synth. 1992, 29, 124-127.
283. Bougon, R.; Huy, T. B.; Charpin, P. Inorg. Chem. 1975, 14, 1822-1830.
284. Buslaev Y. A.; Kokunov T. V.; Bochkareva, V. A.; Shustorovish, E. M. Dokl. Akad. Nauk. SSSR 1971, 201, 355-358.
285. Beuter, V. A.; Sawodny, W. Z. Anorg. Allg. Chem. 1976, 427, 37-44.
286. Kanatani, T.; Matsumoto, K.; Hagiwara, R. Eur. J. Inorg. Chem. 2010, 1049-1055.
287. Hargreaves, G. B.; Peacock, R. D. J. Chem. Soc. 1958, 4390-4393.
288. Mazej, Z.; Gilewski, T.; Goreshnik, E. A.; Jagličić, Z.; Derzsi, M.; Grochala, W. Inorg. Chem. 2017, 56, 224-233.
289. Turnbull, D.; Gerken, M. Acta Crystallogr. 2020, E76, 1345-1348.
290. Nuszhär, D.; Weller, F.; Dehnicke, K.; Hiller, W. J. Alloy. Compd., 1992, 183, 3044.
291. Il'in, E. G.; Golovanov, B. V.; Ignatov, M. E.; Butskii, V. D.; Buslaev, Y. A. Dokl. Akad. Nauk. SSSR, 1986, 289, 624-627.
292. Massa, W.; Hermann, S.; Dehnicke, K. Z. Anorg. Allg. Chem. 1982, 493, 33-40.
293. Wilson, W. W.; Christe, K. O. Inorg. Chem. 1981, 20, 4139-4143.
294. Selig, H.; Sunder, W. A.; Schilling, F. C.; Falconer, W. E. J. Fluor. Chem. 1978, 11, 629-635.
295. Buslaev, Yu. A.; Kokunov, Yu. V.; Gustyakova, M. P.; Chubar, Yu. D.; Moiseev, I. I. Dokl. Akad. Nauk. SSSR, 1977, 233, 357-360.
296. Bagnall, K. W.; du Preez, J. G. H.; Gellatly, B. J.; Holloway, J. H. J. Chem. Soc., Dalton Trans. 1975, 19, 1963-1968.
297. Stene, R. E.; Scheibe, B.; Karttunen, A. J.; Petry, W.; Kraus, F. Eur. J. Inorg. Chem. 2019, 2019, 3672-3682.
298. Stoll, C.; Seibald, M.; Baumann, D.; Huppertz, H. Eur. J. Inorg. Chem. 2019, 2019, 3383-3388.
299. McHughes, M.; Willett, R. D.; Davis, H. B.; Gard, G. L. Inorg. Chem. 1986, 25, 426-427.
300. Hope, E. G.; Jones, P. J.; Levason, W.; Ogden, J. S.; Tajik, M.; Turff, J. W. J. Chem. Soc., Dalton Trans. 1984, 11, 2445-2447.
301. Green, P. J.; Johnson, B. M.; Loehr, T. M.; Gard, G. L. Inorg. Chem. 1982, 21, 3562-3565.
302. Clark, H. C.; Sadana, Y. N. Can. J. Chem. 1964, 42, 702-704
303. Manoharan, P. T.; Rogers, M. T. J. Chem. Phys. 1968, 49, 5510-5519.
304. Ziebarth, O. V.; Selbin, J. J. Inorg. Nucl. Chem. 1970, 32, 849-865.
305. Rochat, W. V.; Gerlach, J. N.; Gard, G. L. Inorg. Chem. 1970, 9, 998-999.
306. Holloway, J. H.; Schrobilgen, G. J.; Taylor, P. J. Chem. Soc., Chem. Commun. 1975, 40-41.
307. Lutar, K.; Borrmann, H.; Žemva, B. Inorg. Chem. 1998, 37, 3002-3006.
308. Leary, K.; Zalkin, A.; Bartlett, N. Inorg. Chem. 1974, 13, 775-779.
309. Mazej, Z.; Goreshnik, E. Eur. J. Inorg. Chem. 2009, 4503-4506.
310. Bartlett, N.; Einstein, F.; Stewart, D. F.; Trotter, J. J. Chem. Soc. (A), 1967, 11901193.
311. Leary, K.; Templeton, D. H.; Zalkin, A.; Bartlett, N. Inorg. Chem. 1973, 12, 17261730.
312. Bartlett, N.; DeBoer, B. G.; Hollander, F. J.; Sladky, F. O.; Templeton, D. H.; Zalkin, A. Inorg. Chem. 1974, 13, 780-785.
313. Jesih, A.; Lutar, K.; Leban, I.; Žemva, B. Eur. J. Solid State Inorg. Chem. 1991, 28, 829-840.
314. Pointner, B. E.; Suontamo, R. J.; Schrobilgen, G. J. Inorg. Chem. 2006, 45, 15171534.
315. Mazej, Z.; Goreshnik, E. Eur. J. Inorg. Chem. 2008, 11, 1795-1812.
316. Christe, K. O.; Curtis, E. C.; Wilson, R. D. J. Inorg. Nucl. Chem. 1976, 28, 159165.
317. Hou, Y.; Wu, H.; Yu, H.; Hu, Z.; Wang, J.; Wu, Y. Angew. Chem. Int. Ed. 2021, 60, 25302-25306.
318. Hou, Y.; Li, H.; Wu, H.; Yu, H.; Hu, Z.; Wang, J.; Wu, Y. Dalton Trans. 2022, 51, 14036-14040.
319. Barth, J. A.; Wollert, R.; Rentschler, E.; Massa, W.; Dehnicke, K. Z. Anorg. Allg. Chem. 1991, 596, 121-132.
320. Veryasov, G.; Morozov, D.; Goreshnik, E.; Jesih, A. J. Fluor. Chem. 2013, 156, 240-245.
321. Sergienko, V. S.; Porai-Koshits, M. A.; Khodashova, T. S.; Kurnakov, N. S. J. Struct. Chem. 1972, 13, 431-436.
322. Laptash, N. M.; Udovenko, A. A. J. Struct. Chem. 2016, 57, 390-398.
323. Shi, T.; Zhang, F.; Li, Y.; Gao, L.; Yang, Z.; Pan, S. Inorg. Chem. 2020, 59, 30343041.
324. Welk, M. E.; Norquist, A. J.; Stern, C. L.; Poeppelmeier, K. R. Inorg. Chem. 2001, 40, 5479-5480.
325. Supeł, J.; Abram, U.; Hagenbach, A.; Seppelt, K. Inorg. Chem. 2007, 46, 55915595.
326. Heier, K. R.; Norquist, A. J.; Wilson, C. G.; Stern, C. L.; Poeppelmeier, K. R. Inorg. Chem. 1998, 37, 76-80.
327. Chaminade, J. P.; Moutou, J. M.; Villeneuve, G.; Couzi, M.; Pouchard, M.; Hagenmuller, P. J. Solid State Chem. 1986, 65, 27-39.
328. Brown, S. D.; Gard, G. L.; Loehr, T. M. J. Chem. Phys. 1976, 64, 1219-1222.
329. Il'in, E. G.; Golovanov, B. V.; Ignatov, M. E.; Butskil, V. D.; Buslaev, Y. A. Dokl. Akad. Nauk. SSSR 1986, 289, 624-627.
330. Nuszhär, D.; Weller, F.; Dehnicke, K.; Hiller, W. J. Alloys. Compd. 1992, 183, 3044.
331. Stoll, C.; Heymann, G.; Seibald, M.; Baumann, D.; Huppertz, H. J. Fluor. Chem. 2019, 226, 109356.
332. Buslaev, Y. A.; Kokunov, Y. V.; Bochkareva, V. A.; Shustorovich, E. M. J. Struct. Chem. 1972, 13, 491-492.
333. Beuter, A.; Sawodny, W. Angew. Chem. 1972, 84, 1099-1100.
334. Buslaev, Y. A.; Kokunov, Y. V.; Bochkareva, V. A. Dokl. Akad. Nauk. SSSR 1972, 13, 611-616.
335. McFarlane, W.; Noble, A. M.; Winfield, J. M. J. Chem. Soc. (A) 1971, 948-953.
336. Arnaudet, L.; Bougon, R.; Ban, B.; Lance, M.; Navaza, A.; Nierlich, M.; Vigner, J. J. Fluor. Chem. 1992, 59, 141-152.
337. Crossman, M. C.; Fawcett, J.; Hope, E. G.; Russell, D. R. J. Organomet. Chem. 1996, 514, 87-91.
338. Hoskins, B. F.; Linden, A.; O’Donnell, T. A. Inorg. Chem. 1987, 26, 2223-2228.
339. Stene, R. E.; Scheibe, B.; Karttunen, A. J.; Petry, W.; Kraus, F. Eur. J. Inorg. Chem. 2020, 2020, 2260-2269.
340. Gillespie, R. J.; Schrobilgen, G. J. Inorg. Chem. 1974, 13, 765-770.
341. Mazej, Z.; Goreshnik, E. Eur. J. Inorg. Chem. 2017, 2017, 2800-2807.
342. Arnaudet, L.; Bougon, R.; Buu, B.; Lance, M.; Nierlich, M.; Vigner, J. Inorg. Chem. 1993, 32, 1142-1146.
343. Levason, W.; Monzittu, F. M.; Reid, G.; Zhang, W.; Hope, E. G. J. Fluor. Chem. 2017, 200, 190-197.
344. Levason, W.; Reid, G.; Zhang, W. J. Fluor. Chem. 2016, 184, 50-57.
345. Robiette, A. G.; Hedberg, K.; Hedberg, L. J. Mol. Struct. 1977, 37, 105-112.
346. Iijima, K. Bull. Chem. Soc. Jpn. 1977, 50, 373-375.
347. Huang, J.; Hedberg, K.; Shreeve, J. M.; Mallela, S. P. Inorg. Chem. 1988, 27, 4633-4635.
348. Tsao, P.; Cobb, C. C.; Claassen, H. H. J. Chem. Phys. 1971, 54, 5247-5253.
349. Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. J. Chem. Soc. Dalton Trans. 2008, 21, 2832-2838.
350. Seppelt, K. Chem Ber 1975, 108, 1823-1829.
351. Strauss, S. H. Chem. Rev. 1993, 93, 927-942.
352. Krossing, I.; Raabe, I. Angew. Chem. Int. Ed. 2004, 43, 2066-2090.
353. Seppelt, K. Angew. Chem. Int. Ed. 1993, 32, 1025-1027.
354. Damerius, R.; Huppmann, P.; Lentz, D.; Seppelt, K. J. Chem. Soc., Dalton Trans. 1984, 2821-2826.
355. Birchall, T.; Myers, R. D.; de Waard, H.; Schrobilgen, G. J. Inorg. Chem. 1982, 21, 1068-1073.

APPENDIX 1

Chapter 3 Supporting Information

Syntheses and Characterizations of the Mixed Noble-Gas Compounds,

Adapted with permission from: Bortolus, M. R.; Mercier, H. P. A.; Nyugen, B.; Schrobilgen, G. J. Angew. Chem. Int. Ed. 2021, 60, 23678-23686.

Table of Contents

Table A1.1 Raman Frequencies and Intensities for Sample (a); the Redox 342 Decomposition of $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$ (1) at VariousTemperatures
Table A1.2 Raman Frequencies and Intensities for Sample (b); the Redox 357 Decomposition of $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$ (1) at Various Temperatures
Syntheses and Reactivities; Syntheses of $\mathrm{XeF}_{4} \cdot \mathrm{NgF}_{2}(\mathbf{N g}=\mathbf{K r}, \mathbf{X e})$ (continued) 353
Table A1.3 Experimental geometric parameters for [$\mathrm{AsF}_{6}{ }^{-}$and cocrystalized KrF_{2} in 1 355
Table A1.4 Experimental geometric parameters for $\left[\mathrm{AsF}_{6}\right]^{-}$and cocrystalized XeF_{4} 356 in $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right)_{2} \cdot \mathrm{XeF}_{4}(\mathbf{2})$
Table A1.5 Experimental geometric parameters for $\left[\mathrm{SbF}_{6}\right]^{-}$in $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{SbF}_{6}\right]$ (3) 356
Table A1.6 Experimental geometric parameters for $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$ (4), $\mathrm{XeF}_{4} \cdot \mathrm{XeF}_{2}$ (5), 357
and XeF_{4} (6)
Table A1.7 Experimental and calculated geometric parameters for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right]$ 358(7)
Figure A1.1 (a) A packing diagram showing the X-ray crystal structure of $\mathbf{1}$ viewed 360 along the c-axis of the unit cell. (b) The structural unit in the X-ray crystal structure of $\mathbf{1}$ showing both orientations of the disordered $\left[\mathrm{AsF}_{6}\right]^{-}$anion.
Figure A1.2 A packing diagram showing the X-ray crystal structure of $\mathbf{2}$ viewed along 361the a-axis of the unit cell
Figure A1.3 The structural unit in the X-ray crystal structure of $\mathbf{3}$ 362
Figure A1.4 (a) A portion of the X-ray crystal structure of 4 showing the coordination 363environment around the xenon atom of $\mathrm{Xe}_{(2)} \mathrm{F}_{4}$. (b) A portion of the X-raycrystal structure of $\mathbf{5}$ showing the secondary bonding interactions to XeF_{4}.
Figure A1.5 (a) A packing diagram showing the X-ray crystal structure of 4 viewedalong the c-axis of the unit cell. (b) A packing diagram showing the X-raycrystal structure of $\mathbf{5}$ viewed along the c-axis of the unit cell
Figure A1.6 A packing diagram showing the X-ray crystal structure of $\mathbf{6}$ viewed along 365
the c-axis of the unit cell
Figure A1.7 The structural units in the X-ray crystal structures of (a) 4, (b) 5, and (c) 6 366
Figure A1.8 A packing diagram showing the X-ray crystal structure of 7 viewed along 367the a-axis of the unit cell
Figure A1.9 The structural unit in the X-ray crystal structure of 7 368
X-ray Crystallography; XeF_{4} (6) and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right]$ (7) (continued) 369
Figure A1.10 Factor-group analysis of $[\mathrm{FKrFXeF}]^{+}$in $\mathbf{1}$ 371
Figure A1.11 Factor-group analysis of $\left[\mathrm{AsF}_{6}\right]^{-}$in 1 373
Figure A1.12 Factor-group analysis of KrF_{2} in 1 374
Table A1.8 Experimental Raman frequencies, intensities, and general assignments for 375 [$\left.\mathrm{AsF}_{6}\right]^{-}$in 1
Figure A1.13 Raman spectrum of 2. 377
Table A1.9 Raman frequencies and calculated vibrational frequencies, intensities, and 378 assignments for $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$in 2
Figure A1.14 Factor-group analysis of $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$in 2 380
Figure A1.15 Factor-group analysis of $\left[\mathrm{AsF}_{6}\right]^{-}$in 2 381
Figure A1.16 Factor-group analysis of XeF_{4} in 2 382
Figure A1.17 Raman spectrum of 4 383
Table A1.10 Raman frequencies, intensities, and assignments for 4 384
Figure A1.18 Factor-group analysis of KrF_{2} in 4 385
Figure A1.19 Factor-group analysis of XeF_{4} in 4 387
Figure A1.20 Raman spectrum of a solid mixture of $\left[\left(\mathrm{F}_{5} \mathrm{Xe}\right)_{2}(\mu-\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{2}\right]$, 389$\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right],\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right], \mathrm{XeF}_{4}$, and $\left[\mathrm{O}_{2}\right]\left[\mathrm{AsF}_{6}\right]$
Table A1.11 Raman frequencies, intensities, and assignments for 390$\left[\left(\mathrm{F}_{5} \mathrm{Xe}\right)_{2}(\mu-\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{2}\right]$
Computational Results (continued)391
Table A1.12 Calculated geometry and key vibrational frequencies for $[\mathrm{FKrFXeF}]^{+}$ 397
Table A1.13 Calculated geometry and key vibrational frequencies for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$ 398
Table A1.14 Calculated geometry and key vibrational frequencies for $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$ 399
Table A1.15 Calculated geometries and vibrational frequencies for $[\mathrm{NgF}]^{+}$and NgF_{2} 400
Table A1.16 Natural population analysis (NPA) charges, Wiberg valences, and Wiberg 401bond indices for $[\mathrm{FKrFXeF}]^{+}\left(C_{s}\right)$ and $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}\left(C_{2 v}\right)(\mathrm{Ng}=\mathrm{Xe}, \mathrm{Kr})$
Table A1.17 Natural population analysis (NPA) charges, Wiberg valences, and Wiberg 402 bond indices for $[\mathrm{NgF}]^{+}\left(C_{\infty \nu}\right)$ and $\mathrm{NgF}_{2}\left(D_{\infty h}\right)(\mathrm{Ng}=\mathrm{Xe}, \mathrm{Kr})$
Table A1.18 QTAIM density of all electrons $\left(\rho_{\mathrm{b}}\right)$, Laplacian of electron density $\left(\nabla^{2} \rho_{\mathrm{b}}\right)$, 403energy density $\left(H_{\mathrm{b}}\right)$, QTAIM delocalization indices (δ), QTAIM atomicpopulations (\bar{N}), and ELF basin populations $(\bar{N}[\mathrm{~A}])$ for $[\mathrm{FKrFXeF}]^{+}\left(C_{s}\right)$and $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}\left(C_{2 v}\right)(\mathrm{Ng}=\mathrm{Xe}, \mathrm{Kr})$
Table A1.19 QTAIM density of all Electrons $\left(\rho_{\mathrm{b}}\right)$, Laplacian of electron density $\left(\nabla^{2} \rho_{\mathrm{b}}\right)$, energy density $\left(H_{\mathrm{b}}\right)$, QTAIM delocalization indices (δ), QTAIM atomic populations (\bar{N}), and ELF basin populations $(\bar{N}[\mathrm{~A}])$ for $[\mathrm{NgF}]^{+}\left(C_{\infty v}\right)$ and $\mathrm{NgF}_{2}\left(D_{\infty}\right)(\mathrm{Ng}=\mathrm{Xe}, \mathrm{Kr})$
Figure A1.21 Contour maps of the charge density showing the bond paths and the intersections of interatomic surfaces (top) and charge density contour maps of the Laplacian distribution (bottom) for $[\mathrm{FKrFXeF}]^{+},\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}$, $[\mathrm{NgF}]^{+}$, and $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$.
Figure A1.22 ELF isosurface plots at various $\eta(\mathbf{r})$ values (B2PLYP-D3/Def2-TZVPD) for $[\mathrm{FKrFXeF}]^{+}$and $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}(\mathrm{Ng}=\mathrm{Xe}, \mathrm{Kr})$
Figure A1.23 ELF isosurface plots at $\eta(\mathbf{r})=0.60$ (B2PLYP-D3/Def2-TZVPD) for $[\mathrm{FKrFXeF}]^{+},\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+},[\mathrm{NgF}]^{+}$, and $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Xe}, \mathrm{Kr})$
Figure A1.24 ELF reduction of localization diagrams (B2PLYP-D3/Def2-TZVPD)for $[\mathrm{FKrFXeF}]^{+}, \mathrm{NgF}_{2}$, and $[\mathrm{NgF}]^{+}(\mathrm{Ng}=\mathrm{Xe}, \mathrm{Kr})$
Figure A1.25 ELF reduction of localization diagrams (B2PLYP-D3/Def2-TZVPD)
for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}, \mathrm{XeF}_{2}$, and $[\mathrm{XeF}]^{+}$
Figure A1.26 ELF reduction of the localization diagrams (B2PLYP-D3/Def2- 413 TZVPD) for $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}, \mathrm{KrF}_{2}$, and $[\mathrm{KrF}]^{+}$
Figure A1.27 Calculated molecular electrostatic potentials for the $0.001 \mathrm{e} \cdot a_{0}^{-3} \mathbf{4 1 4}$ isosurface of the $[\mathrm{FKrFXeF}]^{+}$cation
Figure A1.28 Calculated molecular electrostatic potentials for the $0.001 \mathrm{e} \cdot a_{0}^{-3} \mathbf{4 1 5}$ isosurface of the $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$cation
Figure A1.29 Calculated molecular electrostatic potentials for the $0.001 \mathrm{e} \cdot a_{0}{ }^{-3} \mathbf{4 1 6}$ isosurface of the $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$cation
Figure A1.30 Calculated molecular electrostatic potentials for the $0.001 \mathrm{e} \cdot a_{0}{ }^{-3} \mathbf{4 1 7}$ isosurfaces of the $[\mathrm{NgF}]^{+}$cations $(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$
Figure A1.31 Calculated molecular electrostatic potentials for the 0.001 e $\cdot a_{0}{ }^{-3} 418$ isosurfaces of $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$
$\begin{array}{ll}\text { References } & 419\end{array}$

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A1.1. Raman frequencies and intensities for sample (a); the redox decomposition of [FKrFXeF $]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}(\mathbf{1})$ at various temperatures ${ }^{[a]}$

Sample (a); redox decomposition of (1)							
$-78{ }^{\circ} \mathrm{C}$	$-50{ }^{\circ} \mathrm{C}$	$-42{ }^{\circ} \mathrm{C}$	$-38{ }^{\circ} \mathrm{C}$	$-30{ }^{\circ} \mathrm{C}$	$-20{ }^{\circ} \mathrm{C}$	$-10{ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$
					1857(5)	1856(14)	1865(11)
723(sh)							
	698(sh)	698(4)					
	695(9)	695(8)	694(sh)	694(sh)	694(sh)	694(sh)	694(sh)
					690(10) ${ }^{\text {b] }}$	691(14) ${ }^{\text {b] }}$	691(11) ${ }^{\text {b] }}$
684(sh)	684(22)	685(19)	685(24) ${ }^{\text {b] }}$	$684(17)^{[b]}$	$685(19)^{[b]}$	$685(21)^{[b]}$	685(14) ${ }^{\text {b] }}$
			682(sh)	682(sh)	682(sh)	682(sh)	
680(25)							
	678(9)	678(8)					
610(71)							
$606(100)^{[c]}$	$606(100)$	606(100)	606(sh)	606(sh)	606(sh)	606(sh)	606(36)
	603(sh)	$603(\mathrm{sh})$	603(100)	603(100)	604(100)	604(100)	603(sh)
			600(sh)	600(sh)	600(sh)	600(79)	600(89)
597(42)	597(65)	597(69)	597(sh)	597(sh)	597(sh)	597(sh)	597(sh)
	594(sh)	594(sh)	594(sh)	594(sh)	594(sh)	594(sh)	
			590(sh)	590(17)	590(19)	590(21)	590(sh)
			588(sh)	588(sh)	588(sh)	588(sh)	588(sh) ${ }^{\text {[c] }}$
586(4)	586(17)	586(sh)	586(18) ${ }^{\text {[c] }}$	586(sh) ${ }^{\text {[c] }}$	586(19) ${ }^{\text {c] }}$	586(21) ${ }^{\text {c] }}$	586(11) ${ }^{\text {[c] }}$
			582(24)	582(sh)	582(sh)	582(21)	582(sh)
			580(sh)	580(sh)	580(sh)	580(sh)	
579(6)	578(13)	579(sh)	578(29) ${ }^{\text {b] }}$	578(26) ${ }^{\text {b] }}$	578(sh) ${ }^{[\mathrm{b}]}$	578(sh) ${ }^{[\mathrm{b}]}$	578(sh) ${ }^{[\mathrm{b}]}$
	576(13)	576(15)	576(sh)	576(22)	576(24)	576(29)	576(14)
572(sh)	571(sh)	571(sh)	572(sh)	572(sh)	572(sh)		
						570(14)	570(7)
			564(sh)	564(13)	564(sh)		564(sh)
562(17)	563(43)	563(42)	562(24)	562(sh)	562(sh)	562(sh)	
			561(sh)	560(sh)	560(sh)	560(21)	560(21)
	558(sh)	558(sh)					
	555(sh)	555(sh)	555(sh)	555(sh)	555(sh)	555(sh)	
	342						

continued ...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A1.1. (continued)

Sample (a); redox decomposition of (1)							
$-78{ }^{\circ} \mathrm{C}$	$-50{ }^{\circ} \mathrm{C}$	$-42{ }^{\circ} \mathrm{C}$	$-38{ }^{\circ} \mathrm{C}$	$-30{ }^{\circ} \mathrm{C}$	$-20{ }^{\circ} \mathrm{C}$	$-10{ }^{\circ} \mathrm{C}$	$0{ }^{\circ} \mathrm{C}$
	554(sh)	554(sh)	554(35)	553(48)	553(57)	553(71)	554(sh)
			548(sh)	548(sh)	546(sh)	547(sh)	548(82)
			544(12) ${ }^{\text {d] }}$	544(48) ${ }^{[d]}$	544(52) ${ }^{\text {d] }}$	544(100) ${ }^{\text {[d] }}$	543(100) ${ }^{\text {[d] }}$
			540(6)	540(sh)	540(sh)	540(sh)	540(sh)
			510(6)	509(13)	509(sh)	509(sh)	509(sh)
				507(17)	507(24)	507(50)	507(75)
				503(30)	503(29)	503(57)	
				500(sh)	500(sh)	500(sh)	500(14)
468(sh)	468(178)	468(142)	468(441) ${ }^{\text {[e] }}$	468(230) ${ }^{\text {[e] }}$	468(214) ${ }_{\text {[e] }}$	469(221) ${ }_{\text {[e] }}$	469(261) ${ }_{\text {[e] }}$
464(3813) ${ }^{\text {[c] }}$	464(178) ${ }^{\text {[c] }}$	464(112) ${ }^{\text {[c] }}$	464(sh) ${ }^{\text {[c] }}$	464(sh) ${ }^{\text {[c] }}$	464(sh) ${ }^{\text {c] }]}$	464(sh) ${ }^{\text {c] }}$	464(sh) ${ }^{\text {[c] }}$
	452(sh)	452(4)					
	448(9)	449(4)					
421(4)							
		410(2)					
		408(2)					
		400(3)					
		398(3)					
	382(sh)	382(sh)	382(sh)	382(sh)	382(sh)		
378(sh) ${ }^{[f]}$							
	376(sh) ${ }^{[f]}$	376(sh) ${ }^{[f]}$	375(6) ${ }^{[f]}$	375(9) ${ }^{[f]}$	375(10) ${ }^{[f]}$	375(sh) ${ }^{[f]}$	
372(4)	372(9)		373(sh) ${ }^{\text {b] }}$	372(9) ${ }^{\text {[b] }}$	$372(10)^{[6]}$	372(sh) ${ }^{\text {b] }}$	373(sh) ${ }^{\text {[c] }}$
370(4)	370(13)	370(12)	370(sh) ${ }^{\text {b] }}$	369(4) ${ }^{\text {[b] }}$	$369(10)^{\text {[b] }}$	369(7) ${ }^{\text {[b] }}$	370(7) ${ }^{\text {[b] }}$
			365(sh)	365(sh)	365(10)	365(7)	365(7)
	364(4)	363(4)	363(sh)	363(4)	363(sh)	362(sh)	
			360(sh)	360(4)	359(10)	359(14)	359(7)
			353(3)	353(9)	353(10)		353(4)
				350(9)	349(10)	350(14)	

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A1.1. (continued)

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A1.1. (continued)

Sample (a); redox decomposition of (1)							
$-78{ }^{\circ} \mathrm{C}$	$-50{ }^{\circ} \mathrm{C}$	$-42{ }^{\circ} \mathrm{C}$	$-38{ }^{\circ} \mathrm{C}$	$-30{ }^{\circ} \mathrm{C}$	-20 ${ }^{\circ} \mathrm{C}$	$-10{ }^{\circ} \mathrm{C}$	$0{ }^{\circ} \mathrm{C}$
							149(sh)
148(sh)							
						147(sh)	$147(\mathrm{sh})$
						$144(7)$	$143(21)$
						141(7)	141(sh)
						137(7)	137(sh)
						135(sh)	135(sh)
	133(4)	$133(4)$	133(sh)		133(5)		
$130(238){ }^{[b]}$	$130(\mathrm{sh})^{[\mathrm{h}]}$	$131(4)^{[\mathrm{h}]}$	$130(12)^{[\mathrm{c}, \mathrm{~h}]}$	$131(4)^{[\mathrm{c}, \mathrm{h}]}$		131(14) ${ }^{[\mathrm{c}, \mathrm{h}]}$	131(7) ${ }^{\text {[c,h] }}$
	128(9)	128(sh)			$128(\mathrm{sh})$	128(sh)	128(sh)
	$124(\mathrm{sh})$	$125(\mathrm{sh})$	125(12) ${ }^{\text {[c] }}$	126(sh) ${ }^{\text {[c] }}$	126(sh) ${ }^{\text {cc] }}$	126(sh) ${ }^{\text {[c] }}$	$126(\mathrm{sh})^{[\mathrm{cc]}}$
	122(sh)	122(sh)	122(sh) ${ }^{\text {[c] }}$	122(sh) ${ }^{\text {[c] }}$	122(sh) ${ }^{\text {c] }}$	122(sh) ${ }^{\text {[c] }}$	122(sh) ${ }^{\text {[c] }}$
	120(17)	120(sh)	120(24) ${ }^{\text {c] }}$	120(sh) ${ }^{\text {[c] }}$	120(sh) ${ }^{\text {cc] }}$	120(29) ${ }^{\text {cc] }}$	120(29) ${ }^{\text {[c] }}$
	118(13)	118(sh)		119(17) ${ }^{\text {[c] }}$	119(24) ${ }^{\text {[c] }}$	$119(\mathrm{sh})^{\text {[c] }}$	119(sh) ${ }^{\text {[c] }}$
	116(sh)	115(15)	$115(15)^{\text {[b] }}$	115(13) ${ }^{\text {[c] }}$	116(24) ${ }^{\text {c] }}$	117(29) ${ }^{\text {[c] }}$	118(18) ${ }^{[\mathrm{c}]}$
	114(13)	114(sh)	$112(18)^{[b]}$	112(13) ${ }^{\text {[c] }}$	112(19) ${ }^{\text {c] }}$	112(sh) ${ }^{\text {[c] }}$	112(sh) ${ }^{\text {cc] }}$
	111(13)	111(12)					
	109(13)	109(sh)	110(sh) ${ }^{\text {[c] }}$	109(13) ${ }^{\text {[c] }}$	109(14) ${ }^{\text {[c] }}$	109(21) ${ }^{\text {[c] }}$	108(sh) ${ }^{\text {[c] }}$
	107(sh)	106(12)	107(18)		107(14) ${ }^{\text {[c] }}$	107(21) ${ }^{\text {[c] }}$	
				105(13)	105(14)	105(21)	105(sh)
	103(13)	103(sh)	102(24) ${ }^{\text {[c] }}$	102(sh) ${ }^{\text {[c] }}$	102(sh) ${ }^{\text {[c] }}$	101(sh) ${ }^{\text {[c] }}$	101(sh) ${ }^{\text {[c] }}$
	100(sh)	100(sh)		99(sh)	99(sh)	99(sh)	
	98(sh)	98(sh)		97(sh)	97(sh)	97(sh)	97(sh)

Table A1.1. (continued)
[a] Frequencies are given in cm^{-1}. The abbreviation (sh) denotes a shoulder. Color code: [XeF][AsF $\left.{ }_{6}\right]$, ${ }^{[S 1]}$ [FKrFXeF] $\left.\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}(\mathbf{1}), \beta-\mathrm{KrF}_{2},{ }^{[\mathrm{SS} 2]} \boldsymbol{\alpha}-\mathrm{KrF}_{2},{ }^{[\mathrm{S} 2]}\left(\left[\mathrm{Kr}_{2} \mathbf{F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right)\right)_{2} \cdot \mathbf{X e F}_{4}(\mathbf{2}),\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right] \cdot n \mathrm{KrF}_{2},{ }^{[S 3]} \mathbf{X e F}_{4} \cdot \mathbf{K r F}_{2}(4), \mathrm{XeF}_{4}$, $\left[O_{2}\right]\left[A s F_{6}\right] \cdot{ }^{[S 4]}$ Values in parentheses are relative Raman intensities. Bolded blue values correspond to the [FKrFXeF] ${ }^{+}$bands of $\mathbf{1}$. The Raman spectra were recorded at $-150{ }^{\circ} \mathrm{C}$ under a frozen aHF solution in an FEP sample tube using 1064-nm excitation. Reaction conditions are provided in the "Results and Discussion" section of the manuscript under "Syntheses and Reactivities; Redox Decomposition of 1 in $\boldsymbol{a} \boldsymbol{H F}$ ". Oxidation of small amounts of $\mathrm{H}_{2} \mathrm{O}$ and/or O_{2} contaminants by $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]$ during the redox decomposition of 1 likely led to the formation of $\left[\mathrm{O}_{2}\right]\left[\mathrm{AsF}_{6}\right]\left(v(\mathrm{O}-\mathrm{O}), 1856-1865 \mathrm{~cm}^{-1}\right)$. The contaminants likely resulted from diffusion through the walls of the FEP sample tube when the sample was stored at $-78^{\circ} \mathrm{C}$. [b] The band overlaps with a band of 2. [c] The band overlaps with a band of 1. [d] The band overlaps with a XeF_{4} band. [e] The band overlaps with a band of 4. [f] The band overlaps with an FEP sample tube band. [g] The band overlaps with a $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right] \cdot n \mathrm{KrF}_{2}$ band. [h] The band overlaps with an $\boldsymbol{\alpha}$ - KrF_{2} band.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A1.2. Raman frequencies and intensities for sample (b); the redox decomposition of $\left[\mathrm{FKrFXeF}^{2}\right]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}(\mathbf{1})$ at various temperatures ${ }^{[a]}$

Sample (b): redox decomposition of (1)					
$-65^{\circ} \mathrm{C}^{[b]}$	$-55{ }^{\circ} \mathrm{C}{ }^{\text {b }{ }^{\text {b }} \text {] }}$	$0^{\circ} \mathrm{C}^{\text {b }{ }^{\text {b }}}$	RT 15 min ${ }^{[b]}$	RT 30 min $^{\text {[b] }}$	dry crystals ${ }^{\text {[c] }}$
					1864(4)
			1857(11)	1857(15)	1857(10)
			749(1)		748(9)
			743(1)		742(sh)
			740(1)		740(5)
731(sh)					
					727(sh)
724(16)					
			723(sh)		723(sh)
			720(sh)		720(sh)
			708(1)		708(1)
$696(4){ }^{\text {a }}$					
					694(sh)
			691(11)	691(13)	691(15) ${ }^{[d]}$
		690(sh)			
684(6)	685(19)	685(18) ${ }^{\text {[e] }}$	$685(5)^{[\mathrm{e}, \mathrm{f}, \mathrm{g}]}$	$685(1)^{[g]}$	685(16) ${ }^{[f]}$
$680(30)$	680(13)				
678(sh)	678(sh)	678(1)			
			675(sh)	675(sh)	675(53)
			670(3, br)	670(4, br)	669(19)
			661(1)	661(1)	$661(15)^{[8]}$
					651(1)
			630(sh)	630(sh)	630(50)
			625(4) ${ }^{\text {[8] }}$	625(6) ${ }^{[\mathrm{g}]}$	$625(100){ }^{[\mathrm{h]}}$
			623(8)	623(6)	623(sh)

continued ...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A1.2. (continued)

Sample (b); redox decomposition of (1)					
$-65^{\circ} \mathrm{C}^{[b]}$	$-55^{\circ} \mathrm{C}^{[\mathrm{b}]}$	$0^{\circ} \mathrm{C}^{[b]}$	RT 15 min ${ }^{\text {[b] }}$	RT 30 min $^{\left[{ }^{[b]}\right.}$	dry crystals ${ }^{[c]}$
610(82)	610(sh)				
				609(sh)	609(20)
606(100) ${ }^{[\mathrm{h}]}$	606(100)	606(100)			
	603(sh)	603(sh)			
	600(sh)	600(sh)	600(19)	600(sh)	
597(26)	597(69)	597(32)			598(sh)
594(sh)	594(sh)	594(sh)			
		590(sh)	590(5)		
					589(5)
		588(14) ${ }^{\text {[e] }}$	588(5)		
585(6)	585(15)	585(sh) ${ }^{[j]}$			
	582(sh)	582(sh)	581(8)	581(7)	581(2)
		580(sh)	578(11)		
578(8)	578(17)	578(23) ${ }^{[\mathrm{j}]}$			
572(4)	572(15)	572(sh)			
		570(sh)	571(6)		
			568(8)	568(7)	567(3)
563(13)	563(35)	563(16) ${ }^{[j]}$	564(5) ${ }^{\text {[e] }}$	564(sh) ${ }^{[\mathrm{g}, \mathrm{j}]}$	564(2)
	561(sh)	561(sh)	560(8)	560(4)	560(sh)
559(8)	559(sh)	559(sh)			559(3)
		556(sh)			
	554(sh)	554(45)	554(24) ${ }^{\text {[i] }}$	554(20) ${ }^{\text {[i] }}$	554(sh) ${ }^{[\mathrm{m}]}$
	548(3)	548(68)	549(sh)	549(sh)	549(36)
	544(1) ${ }^{[\mathrm{m}]}$	$544(95)^{[\mathrm{m}]}$	$544(100)^{[i]}$	544(100) ${ }^{\text {[i] }}$	544(28) ${ }^{[\mathrm{m}]}$
		541(sh)	$541(22)^{[j]}$		540(sh)
			$532(2)$		$533(3)$
					530(sh)
		510(sh)			
	508(1)	508(55)			
				507(sh)	507(sh)
			348		

continued ...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A1.2. (continued)

Sample (b); redox decomposition of (1)					
$-65{ }^{\circ} \mathrm{C}$	$-55{ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	RT 15 min	RT 30 min	dry crystals
	506(sh)				
	503(sh)	503(sh)	503(68)	503(67)	503(17)
		500(27)	500(sh)		
			484(3)	484(sh)	485(69)
			473(5)		
468(sh)	468(219)	468(368) ${ }^{[\mathrm{k}]}$	468(5,br)	468(5,br)	
464(313)	464(192)	464(768)			
			455(4)	455(4)	454(68)
	452(sh)				
	448(4)				
					421(sh)
420(5)	420(2)				
					417(sh)
					412(sh)
					411(5)
	409(1)				409(sh)
					407(4)
					405(sh)
					402(sh)
					401(5)
	398(1)	399(1)			
					397(4)
	395(sh)				
					393(sh)
	392(sh)	391(sh)			
					389(6)
	382(sh)	382(sh)			
					381(1)
					379(sh)
					376(sh)

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A1.2. (continued)

Sample (b); redox decomposition of (1)					
$-65{ }^{\circ} \mathrm{C}$	$-55{ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	RT 15	RT 30 min	dry crystals
$375(\mathrm{sh})^{[1]}$	$375(8){ }^{[1]}$	375(sh) ${ }^{[1]}$			
	373(8) ${ }^{\text {[e] }}$	373(9) ${ }^{\text {[e] }}$	$373(4){ }^{[1]}$	373(sh) ${ }^{[1]}$	$\begin{aligned} & 374\left(\text { sh) }{ }^{[1]}\right. \\ & 373(6)^{[1]} \end{aligned}$
$370(5)^{[j]}$	370 (8) ${ }^{[j]}$	370(9) ${ }^{[j]}$			
			369(sh)	369(sh)	369(6)
	365(2)	366(5)			
					364(2)
	363(2)	363(9)			
	360(2)	360(9)			
	357(2)	357(9)			
	353(2)	353(9)			
	350(3)	350(9)			
					347(5)
344(23)	344(6)				344(sh)
		342(5)			
		339(5)			
		330(5)			
306(sh)	306(8)	305(2)			
304(sh)	304(8)				
					302(7) ${ }^{[1]}$
					298(9) ${ }^{[1]}$
					294(4) ${ }^{[1]}$
		277(9)			
					265(1)
					238(1)
		228(5)			
					$226(1)$
				$214(4)$	214(1)
			$199(3)$	199(4)	
		195(sh)			
			350		

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A1.2. (continued)

Sample (b); redox decomposition of (1)					
$-65{ }^{\circ} \mathrm{C}$	$-55{ }^{\circ} \mathrm{C}$	$0{ }^{\circ} \mathrm{C}$	RT 15 min	RT 30 min	dry crystals
190(3)	190(8)	190(14)			
			188(8)	188(6)	
186(sh)	186(sh)	186(9)			
183(sh)	183(sh)	183(9)			
181(5)	181(15)	180(9)			
	178(sh)	178(sh)			
175(sh)	175(sh)	175(sh)			
172(sh)	172(sh)				
162(7)	162(sh)				
160(7) ${ }^{\text {[0] }}$	160(8)				
150(sh)				150(4)	150(sh)
				144(sh)	144(sh)
	142(sh)	142(18)	143(5)	142(sh)	142(12)
				137(sh)	137(11)
					134(sh)
131(20) ${ }^{\text {[e] }}$	130(sh)	$130(50)^{[\mathrm{e}]}$	130(5)	130(sh)	130(sh)
				125(sh)	125(sh)
124(8)					
					123(sh)
122(8)					
120(8)		120(23)	120(sh)	121(sh)	120(7)
			118(14)	118(9)	118(sh)
117(6)	$117(13){ }^{[f]}$	117(18) ${ }^{[f]}$			
				115(8)	115(sh)
113(sh)		114(18)			
				112(sh)	112(4)
108(3)				109(sh)	109(4)
				107(4)	107(4)
105(3)		105(9)		105(sh)	105(4)
				103(sh)	103(4)

Table A1.2. (continued)
${ }^{[a]}$ Frequencies are given in cm^{-1}. The abbreviation (sh) denotes a shoulder. Color code: $[\mathrm{XeF}]\left[\mathrm{AsF}_{6}\right],{ }^{[\mathrm{S} 1]}[\mathbf{F K r F X e F}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF} 2 \cdot 2 \mathrm{HF}(\mathbf{1})$,
 $\left[F_{5} X e(F K r F)_{2} A s F_{6}\right],{ }^{[55]}\left[\left(\mathrm{F}_{5} \mathbf{X e}\right)_{2}(\mu-\mathbf{F K r F})\left(\mathrm{AsF}_{6}\right)_{2}\right],\left[\mathbf{X e} \boldsymbol{F}_{5}\right]\left[A s F_{6}\right] .{ }^{[55]}$ Values in parentheses are relative Raman intensities. Bolded blue values denote the $[\mathrm{FKrFXeF}]^{+}$bands of $\mathbf{1}$. Reaction conditions are provided in the "Results and Discussion" section of the manuscript under "Syntheses and Reactivities; Redox Decomposition of 1 in $\boldsymbol{a H F}$ ". Oxidation of small amounts of $\mathrm{H}_{2} \mathrm{O}$ and/or O_{2} contaminants by $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]$ during the redox decomposition of 1 likely led to the formation of $\left[\mathrm{O}_{2}\right]\left[\mathrm{AsF}_{6}\right]\left(v(\mathrm{O}-\mathrm{O}), 1856-1865 \mathrm{~cm}^{-1}\right)$. The contaminants likely resulted from diffusion through the walls of the FEP sample tube when the sample was stored at $-78{ }^{\circ} \mathrm{C}$. [b] The Raman spectrum was recorded at $-150^{\circ} \mathrm{C}$ under a frozen aHF solution in an FEP sample tube using 1064-nm excitation. [c] The Raman spectrum was recorded at $-150{ }^{\circ} \mathrm{C}$ on dry crystals in an FEP sample tube using 1064-nm excitation. [d] The band overlaps with a [O_{2}][AsF A_{6}] band. [e] The band overlaps with a band of $\mathbf{1}$. [f] The band overlaps with a $\left[F_{5} X e(F K r F)_{2} A s F_{6}\right]$ band. [g] The band overlaps with a $\left[\left(\mathrm{F}_{5} \mathbf{X e}\right)_{2}\left(\mu-\mathrm{FHrF}^{2}\right)(\mathbf{A s F})_{2}\right]$ band. [h] The band overlaps with a band of $[\mathrm{XeF}]\left[\mathrm{AsF}_{6}\right]$ band. [i] The band overlaps with a $\left[\mathrm{XeF}_{5}\right]\left[A s F_{6}\right]$ band. [j] The band overlaps with a $\left(\left[\mathrm{Kr}_{2} \mathbf{F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right)_{2} \cdot \mathbf{X e F}_{4}$ (2) band. [k] The band overlaps with a $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right] \cdot n \mathrm{KrF}_{2}$ band. [1] The band overlaps with an FEP band. [m] The band overlaps with a XeF_{4} band. [n$]$ The band overlaps with a $\mathbf{X e F}_{4} \cdot \mathbf{K r F}_{2}$ band. [o] The band overlaps with a [XeF][AsF 6] band.

Syntheses and Reactivities (continued)

Syntheses of $\mathrm{XeF}_{4} \cdot \mathbf{N g}_{\mathbf{2}}(\mathbf{N g}=\boldsymbol{K r} \boldsymbol{r}, \boldsymbol{X e})$. The $\mathrm{XeF}_{4} \cdot \mathrm{XeF}_{2}$ cocrystal was initially obtained when it was fortuitously formed when the synthesis of pure XeF_{4} was attempted by direct reaction of Xe with F_{2} at high temperature. ${ }^{[\mathrm{S} 6]}$ The cocrystal was also obtained by the fusion of an equimolar mixture of XeF_{4} and $\mathrm{XeF}_{2} .{ }^{[\mathrm{S} 7]}$ The latter approach is not suitable for the synthesis of $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$ because KrF_{2} rapidly oxidatively fluorinates XeF_{4} to XeF_{6} at room temperature. In efforts to circumvent $\mathrm{Xe}(\mathrm{IV})$ oxidation, the synthesis of $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$ was attempted in aHF and in CFCl_{3} solvents.

Reaction of XeF_{4} with ca. 2 molar equivalents of XeF_{2} in aHF solvent at $22{ }^{\circ} \mathrm{C}$ only resulted in unreacted starting reagents. Thus, XeF_{4} and XeF_{2} are strongly favored by equilibrium (Eq. A1.1) in aHF solvent. This is consistent with the formation of $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$

$$
\begin{equation*}
\mathrm{XeF}_{4}+\mathrm{NgF}_{2} \rightleftharpoons \mathrm{XeF}_{4} \cdot \mathrm{NgF}_{2} \tag{A1.1}
\end{equation*}
$$

in the redox decomposition of $\mathbf{1}$ in aHF when a large excess of KrF_{2} is present, and a mixture of $\mathrm{XeF}_{4}, \mathrm{KrF}_{2}$, and $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$ is formed as the concentration of KrF_{2} decreases and XeF_{4} increases (see Table A1.2).

When XeF_{4} was allowed to react with 2.45 or 0.84 molar equivalents of KrF_{2} or XeF_{2}, respectively, at room temperature (RT) in CFCl_{3}, equilibrium mixtures of XeF_{4}, NgF_{2}, and $\mathrm{XeF}_{4} \cdot \mathrm{NgF}_{2}$ were obtained. In contrast with aHF solvent, $\mathrm{XeF}_{4} \cdot \mathrm{NgF}_{2}$ formation [Eq. (A1.1)] was favorable in CFCl_{3}. Single-crystals of $\mathrm{XeF}_{4} \cdot \mathrm{NgF}_{2}$ were obtained by slowly cooling the reaction mixtures from RT to $10{ }^{\circ} \mathrm{C}(\mathrm{Xe})$ and to $0{ }^{\circ} \mathrm{C}(\mathrm{Kr})$ over a
period of ca. 30 min . The Raman spectra, recorded at $-150{ }^{\circ} \mathrm{C}$ under frozen CFCl_{3}, showed mixtures of crystalline $\mathrm{XeF}_{4} \cdot \mathrm{NgF}_{2}, \mathrm{XeF}_{4}$, and NgF_{2}.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A1.3. Experimental geometric parameters for $\left[\mathrm{AsF}_{6}\right]^{-}$and cocrystalized KrF_{2} in $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$ (1)

Bond Lengths (\AA)			
$\mathrm{Kr}(2)-\mathrm{F}(4)$	1.893(4)	$\mathrm{Kr}(2)-\mathrm{F}(4 \mathrm{~A})$	1.893(4)
As(1)-F(5)	1.701(4)	As(1)-F(8A)	1.671(7)
As(1)-F(6)	1.712(4)	$\mathrm{As}(1)-\mathrm{F}(9)$	1.689(6)
As(1)-F(7)	1.764(7)	As(1)-F(9A)	1.689(6)
As(1)-F(7A)	1.764(7)	As(1)-F(10)	1.775(6)
As(1)-F(8)	1.671(7)	As(1)-F(10A)	1.775(6)
Bond Angles (deg)			
$\mathrm{F}(3)-\mathrm{Kr}(2)-\mathrm{F}(4)$	180.0		
$\mathrm{F}(5)-\mathrm{As}(1)-\mathrm{F}(6)$	179.9(3)	$\mathrm{F}(7)-\mathrm{As}(1)-\mathrm{F}(10 \mathrm{~A})$	87.2(4)
$\mathrm{F}(5)-\mathrm{As}(1)-\mathrm{F}(7)$	95.7(2)	$\mathrm{F}(7 \mathrm{~A})-\mathrm{As}(1)-\mathrm{F}(8)$	67.1(4)
$\mathrm{F}(5)-\mathrm{As}(1)-\mathrm{F}(7 \mathrm{~A})$	95.7(2)	$\mathrm{F}(7 \mathrm{~A})-\mathrm{As}(1)-\mathrm{F}(8 \mathrm{~A})$	177.3(4)
$\mathrm{F}(5)-\mathrm{As}(1)-\mathrm{F}(8)$	85.0(3)	$\mathrm{F}(7 \mathrm{~A})-\mathrm{As}(1)-\mathrm{F}(9)$	87.1(5)
$\mathrm{F}(5)-\mathrm{As}(1)-\mathrm{F}(8 \mathrm{~A})$	85.0(3)	$\mathrm{F}(7 \mathrm{~A})-\mathrm{As}(1)-\mathrm{F}(9 \mathrm{~A})$	31.3(3)
$\mathrm{F}(5)-\mathrm{As}(1)-\mathrm{F}(9)$	85.5(3)	$\mathrm{F}(7 \mathrm{~A})-\mathrm{As}(1)-\mathrm{F}(10)$	87.2(4)
$\mathrm{F}(5)-\mathrm{As}(1)-\mathrm{F}(9 \mathrm{~A})$	85.5(3)	$\mathrm{F}(7 \mathrm{~A})-\mathrm{As}(1)-\mathrm{F}(10 \mathrm{~A})$	154.4(4)
$\mathrm{F}(5)-\mathrm{As}(1)-\mathrm{F}(10)$	93.8(3)	$\mathrm{F}(8)-\mathrm{As}(1)-\mathrm{F}(8 \mathrm{~A})$	110.3(6)
$\mathrm{F}(5)-\mathrm{As}(1)-\mathrm{F}(10 \mathrm{~A})$	93.8(3)	$\mathrm{F}(8)-\mathrm{As}(1)-\mathrm{F}(9)$	151.4(4)
$F(6)-\operatorname{As}(1)-\mathrm{F}(7)$	84.2(2)	$\mathrm{F}(8)-\mathrm{As}(1)-\mathrm{F}(9 \mathrm{~A})$	95.6(4)
$\mathrm{F}(6)-\mathrm{As}(1)-\mathrm{F}(7 \mathrm{~A})$	84.2(2)	$F(8)-\operatorname{As}(1)-\mathrm{F}(10)$	22.9(4)
$\mathrm{F}(6)-\mathrm{As}(1)-\mathrm{F}(8)$	95.2(3)	$\mathrm{F}(8)-\mathrm{As}(1)-\mathrm{F}(10 \mathrm{~A})$	90.1(5)
$\mathrm{F}(6)-\mathrm{As}(1)-\mathrm{F}(8 \mathrm{~A})$	95.2(3)	$\mathrm{F}(8 \mathrm{~A})-\mathrm{As}(1)-\mathrm{F}(9)$	95.6(4)
$\mathrm{F}(6)-\mathrm{As}(1)-\mathrm{F}(9)$	94.3(3)	$\mathrm{F}(8 \mathrm{~A})-\mathrm{As}(1)-\mathrm{F}(9 \mathrm{~A})$	151.4(4)
$\mathrm{F}(6)-\mathrm{As}(1)-\mathrm{F}(9 \mathrm{~A})$	94.3(3)	$\mathrm{F}(8 \mathrm{~A})-\mathrm{As}(1)-\mathrm{F}(10)$	90.1(5)
$\mathrm{F}(6)-\mathrm{As}(1)-\mathrm{F}(10)$	86.5(3)	$\mathrm{F}(8 \mathrm{~A})-\mathrm{As}(1)-\mathrm{F}(10 \mathrm{~A})$	22.9(4)
$\mathrm{F}(6)-\mathrm{As}(1)-\mathrm{F}(10 \mathrm{~A})$	86.5(3)	$\mathrm{F}(9)-\mathrm{As}(1)-\mathrm{F}(9 \mathrm{~A})$	57.7(6)
$\mathrm{F}(7)-\mathrm{As}(1)-\mathrm{F}(7 \mathrm{~A})$	115.4(5)	$F(9)-\operatorname{As}(1)-\mathrm{F}(10)$	174.1(4)
$\mathrm{F}(7)-\mathrm{As}(1)-\mathrm{F}(8)$	177.3(4)	$F(9)-\operatorname{As}(1)-\mathrm{F}(10 \mathrm{~A})$	117.4(4)
$\mathrm{F}(7)-\mathrm{As}(1)-\mathrm{F}(8 \mathrm{~A})$	67.1(4)	$\mathrm{F}(9 \mathrm{~A})-\mathrm{As}(1)-\mathrm{F}(10)$	117.4(4)
$\mathrm{F}(7)-\mathrm{As}(1)-\mathrm{F}(9)$	31.3(3)	$\mathrm{F}(9 \mathrm{~A})-\mathrm{As}(1)-\mathrm{F}(10 \mathrm{~A})$	174.1(4)
$\mathrm{F}(7)-\mathrm{As}(1)-\mathrm{F}(9 \mathrm{~A})$	87.1(5)	$\mathrm{F}(10)-\mathrm{As}(1)-\mathrm{F}(10 \mathrm{~A})$	68.4(5)
$\mathrm{F}(7)-\mathrm{As}(1)-\mathrm{F}(10)$	154.4(4)		

Table A1.4. Experimental geometric parameters for $\left[\mathrm{AsF}_{6}\right]^{-}$and cocrystalized XeF_{4} in $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right)_{2} \cdot \mathrm{XeF}_{4}(\mathbf{2})$

Bond Lengths (\AA)			
$\mathrm{Xe}(1)-\mathrm{F}(4)$	1.931(3)	Xe(1)-F(5)	1.940(4)
$\mathrm{Xe}(1)-\mathrm{F}(4 \mathrm{~A})$	1.931(3)	$\mathrm{Xe}(1)-\mathrm{F}(5 \mathrm{~A})$	1.940(4)
As(1)-F(6)	1.716(3)	As(1)-F(9)	1.712(3)
As(1)-F(7)	1.711(3)	$\mathrm{As}(1)-\mathrm{F}(10)$	1.717(3)
As(1)-F(8)	1.692(3)	$\operatorname{As}(1)-\mathrm{F}(11)$	1.728(3)
Bond Angles (deg)			
$\mathrm{F}(4)-\mathrm{Xe}(1)-\mathrm{F}(4 \mathrm{~A})$	180.0(2)	$\mathrm{F}(4 \mathrm{~A})-\mathrm{Xe}(1)-\mathrm{F}(5)$	90.3(2)
$F(4)-\mathrm{Xe}(1)-\mathrm{F}(5)$	89.7(2)	$\mathrm{F}(4 \mathrm{~A})-\mathrm{Xe}(1)-\mathrm{F}(5 \mathrm{~A})$	89.7(2)
$\mathrm{F}(4)-\mathrm{Xe}(1)-\mathrm{F}(5 \mathrm{~A})$	90.3(2)	$\mathrm{F}(5)-\mathrm{Xe}(1)-\mathrm{F}(5 \mathrm{~A})$	180.0
$\mathrm{F}(6)-\mathrm{As}(1)-\mathrm{F}(7)$	89.0(2)	$\mathrm{F}(7)-\mathrm{As}(1)-\mathrm{F}(11)$	89.6(2)
$\mathrm{F}(6)-\mathrm{As}(1)-\mathrm{F}(8)$	179.7(2)	$\mathrm{F}(8)-\mathrm{As}(1)-\mathrm{F}(9)$	90.3(3)
$\mathrm{F}(6)-\mathrm{As}(1)-\mathrm{F}(9)$	89.6(2)	$F(8)-\operatorname{As}(1)-\mathrm{F}(10)$	90.8(2)
$\mathrm{F}(6)-\mathrm{As}(1)-\mathrm{F}(10)$	89.4(2)	$\mathrm{F}(8)-\mathrm{As}(1)-\mathrm{F}(11)$	89.3(2)
$\mathrm{F}(6)-\mathrm{As}(1)-\mathrm{F}(11)$	90.4(2)	$\mathrm{F}(9)-\operatorname{As}(1)-\mathrm{F}(10)$	89.0(2)
$\mathrm{F}(7)-\mathrm{As}(1)-\mathrm{F}(8)$	91.1(2)	$\mathrm{F}(9)-\mathrm{As}(1)-\mathrm{F}(11)$	90.4(2)
$\mathrm{F}(7)-\mathrm{As}(1)-\mathrm{F}(9)$	178.5(2)	$\mathrm{F}(10)-\mathrm{As}(1)-\mathrm{F}(11)$	179.4(2)
$\mathrm{F}(7)-\mathrm{As}(1)-\mathrm{F}(10)$	91.0(2)		

Table A1.5. Experimental geometric parameters for $\left[\mathrm{SbF}_{6}\right]^{-}$in $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{SbF}_{6}\right]$ (3)

Bond Lengths (\AA)			
$\mathrm{Sb}(1)-\mathrm{F}(4)$	$1.716(3)$	$\mathrm{Sb}(1)-\mathrm{F}(7)$	$1.712(3)$
$\mathrm{Sb}(1)-\mathrm{F}(5)$	$1.711(3)$	$\mathrm{Sb}(1)-\mathrm{F}(8)$	$1.717(3)$
$\mathrm{Sb}(1)-\mathrm{F}(6)$	$1.692(3)$	$\mathrm{Sb}(1)-\mathrm{F}(9)$	$1.728(3)$
Bond Angles (deg)			
$\mathrm{F}(4)-\mathrm{Sb}(1)-\mathrm{F}(5)$	$179.0(1)$	$\mathrm{F}(5)-\mathrm{Sb}(1)-\mathrm{F}(9)$	$89.5(1)$
$\mathrm{F}(4)-\mathrm{Sb}(1)-\mathrm{F}(6)$	$89.8(1)$	$\mathrm{F}(6)-\mathrm{Sb}(1)-\mathrm{F}(7)$	$89.1(1)$
$\mathrm{F}(4)-\mathrm{Sb}(1)-\mathrm{F}(7)$	$89.8(1)$	$\mathrm{F}(6)-\mathrm{Sb}(1)-\mathrm{F}(8)$	$178.8(1)$
$\mathrm{F}(4)-\mathrm{Sb}(1)-\mathrm{F}(8)$	$91.1(1)$	$\mathrm{F}(6)-\mathrm{Sb}(1)-\mathrm{F}(9)$	$91.2(1)$
$\mathrm{F}(4)-\mathrm{Sb}(1)-\mathrm{F}(9)$	$91.5(1)$	$\mathrm{F}(7)-\mathrm{Sb}(1)-\mathrm{F}(8)$	$90.1(1)$
$\mathrm{F}(5)-\mathrm{Sb}(1)-\mathrm{F}(6)$	$90.6(1)$	$\mathrm{F}(7)-\mathrm{Sb}(1)-\mathrm{F}(9)$	$178.7(1)$
$\mathrm{F}(5)-\mathrm{Sb}(1)-\mathrm{F}(7)$	$89.2(1)$	$\mathrm{F}(8)-\mathrm{Sb}(1)-\mathrm{F}(9)$	$89.6(1)$
$\mathrm{F}(5)-\mathrm{Sb}(1)-\mathrm{F}(8)$	$88.6(1)$		

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A1.6. Experimental geometric parameters for $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}(\mathbf{4}), \mathrm{XeF}_{4} \cdot \mathrm{XeF}_{2}(\mathbf{5})$, and XeF_{4} (6)

Bond Lengths (\AA)					
$\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$		$\mathrm{XeF}_{4} \cdot \mathrm{XeF}_{2}$		XeF_{4}	
$\mathrm{Xe}(1)-\mathrm{F}(1)$	1.950(2)	$\mathrm{Xe}(1)-\mathrm{F}(1)$	1.9412(9)	$\mathrm{Xe}(1)-\mathrm{F}(1)$	1.9509(6)
$\mathrm{Xe}(1)-\mathrm{F}(1 \mathrm{~A})$	1.950(2)	$\mathrm{Xe}(1)-\mathrm{F}(1 \mathrm{~A})$	1.9412(9)	$\mathrm{Xe}(1)-\mathrm{F}(1 \mathrm{~A})$	1.9509(6)
$\mathrm{Xe}(1)-\mathrm{F}(1 \mathrm{~B})$	1.950(2)	$\mathrm{Xe}(1)-\mathrm{F}(2)$	1.937(1)	$\mathrm{Xe}(1)-\mathrm{F}(2)$	1.9449(6)
$\mathrm{Xe}(1)-\mathrm{F}(1 \mathrm{C})$	1.950(2)	$\mathrm{Xe}(1)-\mathrm{F}(2 \mathrm{~A})$	1.937(1)	$\mathrm{Xe}(1)-\mathrm{F}(2 \mathrm{~A})$	1.9449(6)
$\mathrm{Xe}(2)-\mathrm{F}(2)$	1.950(2)				
$\mathrm{Xe}(2)-\mathrm{F}(2 \mathrm{~A})$	1.950(2)	$\mathrm{Xe}(2)-\mathrm{F}(3)$	1.9940(9)	Xe(1)---F(1B)	3.1507(6)
$\mathrm{Xe}(2)-\mathrm{F}(3)$	1.946(2)	Xe(2)-F(3A)	$1.9940(9)$	Xe(1)---F(1C)	3.4075(6)
$\mathrm{Xe}(2)-\mathrm{F}(3 \mathrm{~A})$	1.946(2)			Xe(1)---F(2B)	3.1962(6)
		$\mathrm{Xe}(1)--\mathrm{F}(1 \mathrm{~B})$	3.262(1)		
$\mathrm{Kr}(1)-\mathrm{F}(4)$	1.922(2)	Xe(1)---F(3)	3.290 (1)		
$\mathrm{Kr}(1)-\mathrm{F}(4 \mathrm{~A})$	1.922(2)	$\mathrm{Xe}(1)--\mathrm{F}(3 \mathrm{~B})$	3.219(1)		
		Xe(2)---F(2)	3.236(1)		
Xe(1)---F(4)	3.083(2)				
Xe(2)---F(1)	3.341(2)				
Xe(2)---F(4)	3.367(2)				
$\mathrm{Kr}(1)--\mathrm{F}(1 \mathrm{D})$	3.083(2)				
Bond Angles (deg)					
$\mathrm{F}(1)-\mathrm{Xe}(1)-\mathrm{F}(1 \mathrm{~A})$	92.1(1)	$\mathrm{F}(1)-\mathrm{Xe}(1)-\mathrm{F}(1 \mathrm{~A})$	180.0	$\mathrm{F}(1)-\mathrm{Xe}(1)-\mathrm{F}(1 \mathrm{~A})$	180.0
$\mathrm{F}(1)-\mathrm{Xe}(1)-\mathrm{F}(1 \mathrm{~B})$	180.0	$F(1)-\mathrm{Xe}(1)-\mathrm{F}(2)$	90.47(5)	$F(1)-\mathrm{Xe}(1)-\mathrm{F}(2)$	90.26(3)
$F(1)-\mathrm{Xe}(1)-\mathrm{F}(1 \mathrm{C})$	87.9(1)	$\mathrm{F}(1)-\mathrm{Xe}(1)-\mathrm{F}(2 \mathrm{~A})$	89.53(5)	$\mathrm{F}(1)-\mathrm{Xe}(1)-\mathrm{F}(2 \mathrm{~A})$	89.74(3)
$F(1 A)-X e(1)-F(1 B)$	87.9(1)	$F(1 A)-X e(1)-F(2)$	89.53(5)	$F(1 A)-X e(1)-F(2)$	89.74(3)
$F(1 A)-X e(1)-F(1 C)$	180.0	$F(1 A)-X e(1)-F(2 A)$	90.47(5)	$\mathrm{F}(1 \mathrm{~A})-\mathrm{Xe}(1)-\mathrm{F}(2 \mathrm{~A})$	90.26(3)
$F(1 B)-X e(1)-F(1 C)$	92.1(1)	$F(2)-\mathrm{Xe}(1)-\mathrm{F}(2 \mathrm{~A})$	180.0	$F(2)-\mathrm{Xe}(1)-\mathrm{F}(2 \mathrm{~A})$	180.0
$\mathrm{F}(2)-\mathrm{Xe}(1)-\mathrm{F}(2 \mathrm{~A})$	180.0	$\mathrm{F}(3)-\mathrm{Xe}(2)-\mathrm{F}(3 \mathrm{~A})$	180.0		
$F(2)-X e(1)-F(3)$	90.0				
$F(2)-\mathrm{Xe}(1)-\mathrm{F}(3 \mathrm{~A})$	90.0				
$\mathrm{F}(2 \mathrm{~A})-\mathrm{Xe}(1)-\mathrm{F}(3)$	90.0				
$F(2 A)-X e(1)-F(3 A)$	90.0				
$F(3)-X e(1)-F(3 A)$	180.0				
$\mathrm{F}(4)-\mathrm{Kr}(1)-\mathrm{F}(4 \mathrm{~A})$	178.2(1)				

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A1.7. Experimental and calculated geometric parameters for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right]$ (7)

Bond Lengths (\AA)			
$\mathrm{Xe}(1)-\mathrm{F}(1)$	1.800(8)	$\mathrm{Xe}(2)-\mathrm{F}(4)$	1.815(7)
$\mathrm{Xe}(1)-\mathrm{F}(2)$	1.840(6)	$\mathrm{Xe}(2)-\mathrm{F}(5)$	1.844(5)
Xe(1)-F(2A)	1.840(6)	$\mathrm{Xe}(2)-\mathrm{F}(6)$	1.833(8)
$\mathrm{Xe}(1)-\mathrm{F}(3)$	1.839(6)	$\mathrm{Xe}(2)-\mathrm{F}(6 \mathrm{~A})$	1.833(8)
Xe(1)-F(3A)	$1.839(6)$	$\mathrm{Xe}(2)-\mathrm{F}(7)$	1.832(8)
Xe(1)---F(8)	2.615(6)	Xe(2)---F(10)	2.767(6)
Xe(1)---F(8A)	2.615(6)	Xe(2)---F(10A)	2.767(6)
Xe(1)---F(13)	2.793(6)	Xe(2)---F(14)	$2.705(5)$
		Xe(2)---F(14A)	$2.705(5)$
As(1)-F(8)	1.712(6)	$\mathrm{As}(2)-\mathrm{F}(11)$	1.710(7)
As(1)-F(8A)	$1.712(6)$	$\mathrm{As}(2)-\mathrm{F}(12)$	$1.709(5)$
$\mathrm{As}(1)-\mathrm{F}(9)$	1.657(7)	As(2)-F(12A)	$1.709(5)$
As(1)-F(9A)	1.657(7)	$\mathrm{As}(2)-\mathrm{F}(13)$	1.741(6)
As(1)-F(10)	1.699(6)	$\mathrm{As}(2)-\mathrm{F}(14)$	1.749 (5)
As(1)-F(10A)	$1.699(6)$	As(2)-F(14A)	$1.749(5)$
Bond Angles (deg)			
$\mathrm{F}(1)-\mathrm{Xe}(1)-\mathrm{F}(2)$	80.6(3)	$F(4)-X e(2)--\mathrm{F}(10)$	134.2(3)
$F(1)-\mathrm{Xe}(1)-\mathrm{F}(2 \mathrm{~A})$	80.6(3)	$F(4)-X e(2)---F(10 A)$	134.2(3)
$F(1)-\mathrm{Xe}(1)-\mathrm{F}(3)$	79.6(3)	$F(4)-X e(2)--\mathrm{F}(14)$	138.3(2)
$\mathrm{F}(1)-\mathrm{Xe}(1)-\mathrm{F}(3 \mathrm{~A})$	79.6(3)	$F(4)-X e(2)---F(14 A)$	138.2(2)
$F(1)-X e(1)---F(8)$	146.0(3)	$F(5)-\mathrm{Xe}(2)-\mathrm{F}(6)$	88.3(2)
$F(1)-X e(1)--\mathrm{F}(8 \mathrm{~A})$	146.0(3)	$F(5)-\mathrm{Xe}(2)-\mathrm{F}(6 \mathrm{~A})$	88.3(2)
$F(1)-\mathrm{Xe}(1)--\mathrm{F}(13)$	130.0(3)	$F(5)-\mathrm{Xe}(2)-\mathrm{F}(7)$	158.0(3)
$\mathrm{F}(2)-\mathrm{Xe}(1)-\mathrm{F}(2 \mathrm{~A})$	87.2(5)	$F(5)-X e(2)--\mathrm{F}(10)$	68.9(2)
$F(2)-X e(1)-F(3)$	160.2(3)	$F(5)-X e(2)---F(10 A)$	68.9(2)
$F(2)-\mathrm{Xe}(1)-\mathrm{F}(3 \mathrm{~A})$	88.4(3)	$F(5)-X e(2)--\mathrm{F}(14)$	129.6(2)
$F(2)-X e(1)---F(8)$	114.5(3)	$F(5)-X e(2)---F(14 A)$	129.6(2)
$F(2)-X e(1)---F(8 A)$	70.5(3)	$F(6)-X e(2)-F(6 A)$	160.0(5)
$F(2)-X e(1)--\mathrm{F}(13)$	130.2(3)	$F(6)-\mathrm{Xe}(2)-\mathrm{F}(7)$	88.0(3)
$F(2 A)-X e(1)-F(3)$	88.4(3)	$F(6)-X e(2)--\mathrm{F}(10)$	68.0(4)
$F(2 A)-X e(1)-F(3 A)$	160.2(3)	$F(6)-X e(2)---F(10 A)$	68.0(4)
$F(2 A)-X e(1)---F(8)$	70.5(3)	$F(6)-X e(2)--\mathrm{F}(14)$	72.2(2)
$F(2 A)-X e(1)---F(8 A)$	114.5(3)	$F(6)-X e(2)---F(14 A)$	72.2(2)
$F(2 A)-X e(1)---F(13)$	130.2(3)	$F(6 \mathrm{~A})-\mathrm{Xe}(2)-\mathrm{F}(7)$	88.0(3)
$\mathrm{F}(3)-\mathrm{Xe}(1)-\mathrm{F}(3 \mathrm{~A})$	89.3(4)	$F(6 A)-X e(2)---F(10)$	128.4(4)
$F(3)-X e(1)---F(8)$	82.0(4)	$F(6 A)-X e(2)--\mathrm{F}(10 \mathrm{~A})$	128.4(4)
$F(3)-X e(1)--\mathrm{F}(8 \mathrm{~A})$	128.6(3)	$F(6 A)-X e(2)---F(14)$	124.1(2)
$F(3)-X e(1)--\mathrm{F}(13)$	65.7(2)	$F(6 A)-X e(2)--\mathrm{F}(14 \mathrm{~A})$	124.1(2)
$F(3 A)-X e(1)--\mathrm{F}(8)$	128.6(3)	$F(7)-X e(2)--\mathrm{F}(10)$	128.8(3)
$F(3 A)-X e(1)---F(8 A)$	82.0(4)	$F(7)-X e(2)---F(10 A)$	128.8(3)
$\mathrm{F}(3 \mathrm{~A})-\mathrm{Xe}(1)--\mathrm{F}(13)$	65.7(2)	$F(7)-X e(2)--\mathrm{F}(14)$	69.2(3)
$F(8)---X e(1)---F(8 A)$	65.9(6)	$F(7)-X e(2)---F(14 A)$	69.2(3)
$F(8)--\mathrm{Xe}(1)---\mathrm{F}(13)$	64.6(2)	$F(10)---X e(2)---F(10 A)$	60.7(3)
$F(8 A)---X e(1)---F(13)$	64.6(2)	$F(10)---X e(2)---F(14)$	60.7(3)
$F(4)-\mathrm{Xe}(2)-\mathrm{F}(5)$	78.5(3)	F(10)---Xe(2)---F(14A)	87.5(3)
$\mathrm{F}(4)-\mathrm{Xe}(2)-\mathrm{F}(6)$	80.0(3)	$F(10 A)---X e(2)---F(14)$	60.7(3)
$\mathrm{F}(4)-\mathrm{Xe}(2)-\mathrm{F}(6 \mathrm{~A})$	80.0(3)	$F(10 \mathrm{~A})---\mathrm{Xe}(2)---\mathrm{F}(14 \mathrm{~A})$	87.5(3)
$F(4)-X e(2)-F(7)$	79.5(4)	F(14)---Xe(2)---F(14A)	60.7(3)

continued ...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A1.7. (continued)

$\mathrm{F}(8)-\mathrm{As}(1)-\mathrm{F}(8 \mathrm{~A})$	$90.3(6)$	$\mathrm{F}(11)-\mathrm{As}(2)-\mathrm{F}(12)$	$91.6(3)$
$\mathrm{F}(8)-\mathrm{As}(1)-\mathrm{F}(9)$	$87.8(5)$	$\mathrm{F}(11)-\mathrm{As}(2)-\mathrm{F}(12 \mathrm{~A})$	$91.6(3)$
$\mathrm{F}(8)-\mathrm{As}(1)-\mathrm{F}(9 \mathrm{~A})$	$92.0(6)$	$\mathrm{F}(11)-\mathrm{As}(2)-\mathrm{F}(13)$	$176.5(3)$
$\mathrm{F}(8)-\mathrm{As}(1)-\mathrm{F}(10)$	$178.7(6)$	$\mathrm{F}(11)-\mathrm{As}(2)-\mathrm{F}(14)$	$90.0(3)$
$\mathrm{F}(8)-\mathrm{As}(1)-\mathrm{F}(10 \mathrm{~A})$	$89.0(5)$	$\mathrm{F}(11)-\mathrm{As}(2)-\mathrm{F}(14 \mathrm{~A})$	$90.0(3)$
$\mathrm{F}(8 \mathrm{~A})-\mathrm{As}(1)-\mathrm{F}(9)$	$92.0(5)$	$\mathrm{F}(12)-\mathrm{As}(2)-\mathrm{F}(12 \mathrm{~A})$	$93.0(3)$
$\mathrm{F}(8 \mathrm{~A})-\mathrm{As}(1)-\mathrm{F}(9 \mathrm{~A})$	$87.8(5)$	$\mathrm{F}(12)-\mathrm{As}(2)-\mathrm{F}(13)$	$90.9(2)$
$\mathrm{F}(8 \mathrm{~A})-\mathrm{As}(1)-\mathrm{F}(10)$	$89.0(5)$	$\mathrm{F}(12)-\mathrm{As}(2)-\mathrm{F}(14)$	$90.7(3)$
$\mathrm{F}(8 \mathrm{~A})-\mathrm{As}(1)-\mathrm{F}(10 \mathrm{~A})$	$178.7(6)$	$\mathrm{F}(12)-\mathrm{As}(2)-\mathrm{F}(14 \mathrm{~A})$	$176.0(3)$
$\mathrm{F}(9)-\mathrm{As}(1)-\mathrm{F}(9 \mathrm{~A})$	$179(1)$	$\mathrm{F}(12 \mathrm{~A})-\mathrm{As}(2)-\mathrm{F}(13)$	$90.9(2)$
$\mathrm{F}(9)-\mathrm{As}(1)-\mathrm{F}(10)$	$91.1(5)$	$\mathrm{F}(12 \mathrm{~A})-\mathrm{As}(2)-\mathrm{F}(14)$	$176.0(3)$
$\mathrm{F}(9)-\mathrm{As}(1)-\mathrm{F}(10 \mathrm{~A})$	$89.1(5)$	$\mathrm{F}(12 \mathrm{~A})-\mathrm{As}(2)-\mathrm{F}(14 \mathrm{~A})$	$90.7(3)$
$\mathrm{F}(9 \mathrm{~A})-\mathrm{As}(1)-\mathrm{F}(10)$	$89.1(5)$	$\mathrm{F}(13)-\mathrm{As}(2)-\mathrm{F}(14)$	$87.6(2)$
$\mathrm{F}(9 \mathrm{~A})-\mathrm{As}(1)-\mathrm{F}(10 \mathrm{~A})$	$91.1(5)$	$\mathrm{F}(13)-\mathrm{As}(2)-\mathrm{F}(14 \mathrm{~A})$	$87.6(2)$
$\mathrm{F}(10)-\mathrm{As}(1)-\mathrm{F}(10 \mathrm{~A})$	$91.8(7)$	$\mathrm{F}(14)-\mathrm{As}(2)-\mathrm{F}(14 \mathrm{~A})$	$85.6(4)$

Figure A1.1. (a) A packing diagram showing the X-ray crystal structure of $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$ (1) viewed along the c-axis of the unit cell. (b) The structural unit in the X-ray crystal structure of $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$ (1) showing both orientations of the disordered $\left[\mathrm{AsF}_{6}\right]^{-}$anion. Thermal ellipsoids are drawn at the 50% probability level.

Figure A1.2. A packing diagram showing the X-ray crystal structure of $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right)_{2} \cdot \mathrm{XeF}_{4}(\mathbf{2})$ viewed along the a-axis of the unit cell; thermal ellipsoids are drawn at the 50% probability level.

Figure A1.3. The structural unit in the X-ray crystal structure of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{SbF}_{6}\right]$ (3). Thermal ellipsoids are drawn at the 50% probability level.

Figure A1.4. (a) A portion of the X -ray crystal structure of $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$ (4) showing the coordination environment around the xenon atom of $\mathrm{Xe}_{(2)} \mathrm{F}_{4}$. A structural diagram depicting the coordination environment around $\mathrm{Xe}_{(1)} \mathrm{F}_{4}$ in 4 is provided in Figure 3.3. (b) A portion of the X -ray crystal structure of $\mathrm{XeF}_{4} \cdot \mathrm{XeF}_{2}$ (5) showing the coordination environment of XeF_{4}. Thermal ellipsoids are drawn at the 50% probability level.

Figure A1.5. (a) A packing diagram showing the X -ray crystal structure of $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$ (4) viewed along the c-axis of the unit cell. (b) A packing diagram showing the X-ray crystal structure of $\mathrm{XeF}_{4} \cdot \mathrm{XeF}_{2}(5)$ viewed along the c-axis of the unit cell. Thermal ellipsoids are drawn at the 50% probability level.

Figure A1.6. A packing diagram showing the X-ray crystal structure of XeF_{4} (6) viewed along the c-axis of the unit cell; thermal ellipsoids are drawn at the 50% probability level.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry
a

C

Figure A1.7. The structural units in the X -ray crystal structures of (a) $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$ (4), (b) $\mathrm{XeF}_{4} \cdot \mathrm{XeF}_{2}$, (5) and (c) XeF_{4} (6). Thermal ellipsoids are drawn at the 50% probability level.

Figure A1.8. A packing diagram showing the X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right]$ (7)
viewed along the a-axis of the unit cell. Thermal ellipsoids are drawn at the 50% probability level.

Figure A1.9. The coordination environments around $\mathrm{Xe}(1)$ and $\mathrm{Xe}(2)$ in the X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right]$ (7). Thermal ellipsoids are drawn at the 50% probability level.

X-ray Crystallography (continued)

$\boldsymbol{X e F}_{4}$ (6). A low-precision RT single-crystal X-ray diffraction (SCXRD) structure of XeF4 was reported in 1963. ${ }^{[88]}$ In the same year, a RT single-crystal neutron diffraction study of XeF_{4} reported significantly more precise $\mathrm{Xe}-\mathrm{F}$ bond lengths (1.951(2) and $1.954(2) \AA$) and cis- $\mathrm{F}-\mathrm{Xe}-\mathrm{F}$ bond angles $\left(90.0(1)^{\mathrm{o}}\right){ }^{[\mathrm{S9]}]}$ In both cases, the local symmetry of XeF_{4} was C_{i} due to crystallographic site-symmetry lowering, with $\mathrm{Xe}-\mathrm{F}$ bond lengths and cis- $\mathrm{F}-$ $\mathrm{Xe}-\mathrm{F}$ bond angles that are equal within $\pm 3 \sigma$. In both studies, the structure was described as a molecular solid comprised of square-planar XeF_{4} molecules. In 1996, very precise Xe-F bond lengths were obtained for gas-phase XeF_{4} by high-resolution gas-phase infrared spectroscopy $\left(1.93487(3) \AA, D_{4 h}\right) .{ }^{[S 10]}$ The present work reports the highprecision, LT SCXRD structure of XeF_{4}. Xenon tetrafluoride crystallizes in the same space group at LT (Figures A1.6 and A1.7c) and RT. However, in the present study, the Xe-F bond lengths (1.9449(6) and $1.9509(6) \AA$) and cis-F-Xe-F bond angles (89.74(3) and $\left.90.26(3)^{\circ}\right)$ are significantly different within $\pm 3 \sigma$. The Xe-F bond lengths of crystalline XeF_{4} are longer than those of gas-phase XeF_{4} due to long Xe ---F intermolecular contacts (3.1507(6) and $3.1962(6) \AA$) in the crystal lattice (Table A1.6), where the longer $\mathrm{Xe}-\mathrm{F}$ bonds correspond to shorter $\mathrm{Xe}---\mathrm{F}$ contacts and the shorter $\mathrm{Xe}-\mathrm{F}$ bonds correspond to longer Xe---F contacts.
 in 1974. ${ }^{[12]}$ The structure was solved in the $P 2{ }_{1} / \mathrm{c}$ space group and consisted of well isolated dimeric structural units in which each $\left[\mathrm{XeF}_{5}\right]^{+}$cation forms one short $\mathrm{Xe}---\mathrm{F}_{\mathrm{As}}$ secondary bond $(2.65(2) \AA)$ to the fluorine atom of one of the two $\left[\mathrm{AsF}_{6}\right]^{-}$anions and two
longer $\mathrm{Xe}---\mathrm{F}_{\mathrm{As}}$ secondary bonds (2.73(2) and 2.83(2) \AA) to two fluorine atoms of the second $\left[\mathrm{AsF}_{6}\right]^{-}$anion in the dimeric unit. ${ }^{[\mathrm{S} 12]}$ In contrast, the present unit cell consists of two crystallographically inequivalent $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{AsF}_{6}\right]^{-}$that are extensively bridged through $\mathrm{Xe}---\mathrm{F}_{\mathrm{As}}$ secondary bonds so that they form columns along the a-axis that are diagonally linked in the $b c$-plane (Figure A1.8). The $\left[\mathrm{Xe}_{(1)} \mathrm{F}_{5}\right]^{+}$cation forms three short Xe $---\mathrm{F}_{\text {As }}$ secondary bonds (2.615(6), 2.615(6), and $2.796(6) \AA$) to three fluorine atoms of neighboring $\left[\mathrm{As}_{(1)} \mathrm{F}_{6}\right]^{-}$and $\left[\mathrm{As}_{(2)} \mathrm{F}_{6}\right]^{-}$anions, whereas the $\left[\mathrm{Xe}_{(2)} \mathrm{F}_{5}\right]^{+}$cation forms two shorter symmetry-related $\mathrm{Xe}---\mathrm{F}_{\mathrm{As}}$ secondary bonds ($2 \times 2.705(5) \AA$) with two fluorine atoms of a single $\left[\mathrm{As}_{(2)} \mathrm{F}_{6}\right]^{-}$anion, and two longer symmetry-related Xe--- F_{As} secondary bonds $(2 \times 2.767(6) \AA)$ with two fluorine atoms of two different neighboring $\left[\mathrm{As}_{(1)} \mathrm{F}_{6}\right]^{-}$ anions (Figure A1.9).

The primary bond lengths and bond angles of $\left[\mathrm{XeF}_{5}\right]^{+}$in 7 (Table A1.7) are comparable to those of other fluoro- and oxyfluoro-anion salts of $\left[\mathrm{XeF}_{5}\right]^{+}$, e.g., $\left[\mathrm{XeF}_{5}\right]_{3}\left[\mathrm{Ti}_{4} \mathrm{~F}_{19}\right],{ }^{[\mathrm{S} 12]} \quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{PdF}_{6}\right],{ }^{[\mathrm{S} 13]} \quad\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right],{ }^{[\mathrm{S} 11]} \quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{NiF}_{6}\right],{ }^{[\mathrm{S} 14]}$ $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{SbF}_{6}\right] \cdot \mathrm{XeOF}_{4},{ }^{[\mathrm{S} 15]} \quad\left[\mathrm{XeF}_{5}\right]\left[\mathrm{PtF}_{6}\right],{ }^{[\mathrm{S} 16]} \quad\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AgF}_{4}\right],{ }^{[\mathrm{S} 17]} \quad\left[\mathrm{XeF}_{5}\right]\left[\mathrm{CrF}_{5}\right] \cdot \mathrm{XeF}_{4},{ }^{[\mathrm{S} 18]}$ $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{OsO}_{3} \mathrm{~F}_{3}\right],{ }^{[\mathrm{S} 19]} \quad\left[\mathrm{XeF}_{5}\right]\left[\mu-\mathrm{F}\left(\mathrm{OsO}_{3} \mathrm{~F}_{2}\right)_{2}\right],{ }^{[\mathrm{S} 19]} \quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4},{ }^{[\mathrm{S} 20]}$ $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right],{ }^{[\mathrm{S} 20]} \quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF},{ }^{[\mathrm{S} 20]} \quad\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4},{ }^{[\mathrm{S} 20]}$ and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4},{ }^{[\mathrm{S} 20]}$ and are not discussed further.

Raman Spectroscopy (continued)

$\left[\mathrm{FKrFXeF}_{[} / \mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{Kr} \mathrm{F}_{2} \cdot 2 \mathrm{HF}$ (1).
[FKrFXeF $]^{+}$. The vibrational modes of gas-phase $[\mathrm{FKrFXeF}]^{+}$under C_{s} symmetry belong to the irreducible representations $\Gamma=7 \mathrm{~A}^{\prime}+2 \mathrm{~A}^{\prime \prime}$, where the A^{\prime} and $\mathrm{A}^{\prime \prime}$ modes are Raman- and infrared-active. The A^{\prime} and $\mathrm{A}^{\prime \prime}$ irreducible representations of gas-phase $[\mathrm{FKrFXeF}]^{+}$correlate to A^{\prime} and $\mathrm{A}^{\prime \prime}$ irreducible representations under the C_{s} site symmetry in the solid state. When correlated to the unit cell symmetry of $\mathbf{1}\left(D_{2 \mathrm{~h}}\right)$, each vibrationally coupled A^{\prime} mode splits into two Raman-active bands, A_{g} and $\mathrm{B}_{1 \mathrm{~g}}$, and two infrared-active bands, $\mathrm{B}_{2 \mathrm{u}}$ and $\mathrm{B}_{3 \mathrm{u}}$. Each $\mathrm{A}^{\prime \prime}$ mode splits into two Raman-active bands, $\mathrm{B}_{2 \mathrm{~g}}$ and $\mathrm{B}_{3 \mathrm{~g}}$, and two infrared-active bands, A_{u} and $\mathrm{B}_{1 \mathrm{u}}$ (Figure A1.10).

Figure A1.10. Factor-group analysis of $[\mathrm{FKrFXeF}]^{+}$in $\mathbf{1}^{[a]}$

[a] The external modes are not treated in this analysis. [b] The vibrational irreducible representation for gas-phase $[\mathrm{FKrFXeF}]^{+}\left(C_{\mathrm{s}}\right)$ is $\Gamma=7 \mathrm{~A}^{\prime}+2 \mathrm{~A}^{\prime \prime}$. [c] The $\sigma(x y)$-plane of gas-phase $[\mathrm{FKrFXeF}]^{+}\left(C_{\mathrm{s}}\right)$ is maintained under the crystal site symmetry of $\mathbf{1}\left(C_{\mathrm{s}}\right)$ and was selected to correlate the crystal site symmetry to the unit cell symmetry $\left(D_{2 \mathrm{~h}}\right)$. [d] Space group; Pbam, $Z=4$.
[$\left.\boldsymbol{A s F} \boldsymbol{F}_{6}\right]^{-}$. The $\left[\mathrm{AsF}_{6}\right]^{-}$bands of $\mathbf{1}$ were assigned by comparison with $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right],{ }^{[\mathrm{S} 3]}$ $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right] \cdot n \mathrm{KrF}_{2},{ }^{[\mathrm{S} 3]}$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right] .{ }^{[\mathrm{S} 21]} \mathrm{All}\left[\mathrm{AsF}_{6}\right]^{-}$bands are split into two or more bands in the Raman spectrum of $\mathbf{1}$. To account for these splittings, a factor-group analysis based on the X-ray crystal structure of $\mathbf{1}$ was carried out using the "correlation method" ${ }^{[\text {[S22] }}$ (Figure A1.11).

Six vibrational modes are predicted for gas-phase $\left[\mathrm{AsF}_{6}\right]^{-}$under O_{h} symmetry. The vibrations belong to the irreducible representations $\Gamma=A_{1 g}+E_{g}+T_{2 g}+2 T_{1 u}+T_{2 u}$, where the $\mathrm{A}_{1 \mathrm{~g}}, \mathrm{Eg}_{\mathrm{g}}$, and $\mathrm{T}_{2 \mathrm{~g}}$ modes are Raman-active, the $\mathrm{T}_{1 \mathrm{l}}$ modes are infrared-active, and the $\mathrm{T}_{2 \mathrm{u}}$ mode is inactive. All irreducible representations of $\left[\mathrm{AsF}_{6}\right]^{-}$under O_{h} symmetry correlate to A^{\prime} and $\mathrm{A}^{\prime \prime}$ irreducible representations under the C_{s} crystal site symmetry of [AsF $\left.{ }_{6}\right]^{-}$in $\mathbf{1}$. When correlated to the $D_{2 \mathrm{~h}}$ unit cell symmetry of $\mathbf{1}$, each vibrationally coupled A^{\prime} mode splits into two Raman-active bands, A_{g} and $\mathrm{B}_{1 \mathrm{~g}}$, and two infrared-active bands, $\mathrm{B}_{2 \mathrm{u}}$ and $\mathrm{B}_{3 \mathrm{u}}$. The $\mathrm{A}^{\prime \prime}$ modes also split into two Raman-active bands, $\mathrm{B}_{2 \mathrm{~g}}$ and $\mathrm{B}_{3 \mathrm{~g}}$, and two infrared-active bands, A_{u} and B_{lu}. Band splittings were resolved for $v_{1}\left(\mathrm{~A}_{1 \mathrm{~g}}\right)$, $v_{2}\left(\mathrm{E}_{\mathrm{g}}\right), v_{3}\left(\mathrm{~T}_{2 \mathrm{~g}}\right), v_{4}\left(\mathrm{~T}_{1 \mathrm{u}}\right)$, and $v_{5}\left(\mathrm{~T}_{1 \mathrm{u}}\right)$ (Table A1.8).

Figure A1.11. Factor-group analysis of $\left[\mathrm{AsF}_{6}\right]^{-}$in $1^{[a]}$

[a] The external modes are not treated in this analysis. [b] The vibrational irreducible representation for gas-phase $\left[\operatorname{AsF}_{6}\right]^{-}\left(O_{\mathrm{h}}\right)$ is $\Gamma=\mathrm{A}_{1 \mathrm{~g}}+\mathrm{E}_{\mathrm{g}}+\mathrm{T}_{2 \mathrm{~g}}+2 \mathrm{~T}_{1 \mathrm{u}}+\mathrm{T}_{2 \mathrm{u}} .[\mathrm{c}] \mathrm{A} \sigma_{d}$-plane $(\sigma(x y))$ of the gas-phase $\left[\mathrm{AsF}_{6}\right]^{-}$anion $\left(O_{\mathrm{h}}\right)$ is maintained under the crystal site symmetry of $\mathbf{1}\left(C_{\mathrm{s}}\right)$ and was selected for correlation of the crystal site symmetry to the unit cell symmetry $\left(D_{2 h}\right)$. [d] Space group; $\operatorname{Pbam,} Z=4$.
$\boldsymbol{K r} \boldsymbol{F}_{2}$. The $\boldsymbol{v}_{\mathrm{s}}(\mathrm{Kr}-\mathrm{F})$ mode of cocrystallized KrF_{2} in $\mathbf{1}$ was observed at $464 \mathrm{~cm}^{-1}$. Although the factor-group analysis of KrF_{2} in $\mathbf{1}$ (Figure A1.12) predicts that this mode is split, band splitting was not resolved.

Figure A1.12. Factor-group analysis of KrF_{2} in $1^{\text {[a] }}$

[a] The external modes have not been treated in this analysis. [b] The vibrational irreducible representation for gas-phase $\mathrm{KrF}_{2}\left(D_{\infty h}\right)$ is $\Gamma=\Sigma_{\mathrm{g}}{ }^{+}+\Sigma_{\mathrm{u}}{ }^{-}+\Pi_{\mathrm{u}}$. [c] A $C_{2}{ }^{\prime \prime}$-axis $\left(C_{2}(z)\right)$ of gas-phase $\mathrm{KrF}_{2}\left(D_{\text {oh }}\right)$ is maintained under the crystal site symmetry of $\mathbf{1}\left(C_{2 \mathrm{~h}}\right)$ and was selected to correlate the crystal site symmetry to the unit cell symmetry $\left(D_{2 \mathrm{~h}}\right)$. [d] Space group; Pbam, $Z=4$. There are $0.5 \mathrm{KrF}_{2}$ molecules in the formula unit of $\mathbf{1}$, which gives rise to two KrF_{2} molecules in the unit cell.

Table A1.8. Experimental Raman frequencies, intensities, and general assignments for [$\left.\mathrm{AsF}_{6}\right]^{-}$in [FKrFXeF$]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$ (1)

[a] Frequencies are given in cm^{-1}. The $v_{\mathrm{s}}(\mathrm{Kr}-\mathrm{F})$ mode of cocrystallized KrF_{2} in 1 was observed at $464(90)$ cm^{-1}. Weak bands and shoulders were observed at 174(sh), 183(sh), 330(8), 366(5), 567(sh), 594(sh), $600(\mathrm{sh}), 610(\mathrm{sh})$, and $680(\mathrm{sh}) \mathrm{cm}^{-1}$ and $503(3), 506(3)$, and $546(\mathrm{sh}) \mathrm{cm}^{-1}$ that were assigned to $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]{ }^{[33]}$ and XeF_{4} (4), respectively, which formed from the redox decomposition of $\mathbf{1}$. The lattice modes of $\mathbf{1},\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]$, and $\mathrm{XeF}_{4}(4)$ were observed at $95(\mathrm{sh}), 97(\mathrm{sh}), 101(8), 104(8), 106(8), 109(\mathrm{sh})$, $111(\mathrm{sh}), 115(10), 117(13), 120(13), 122(\mathrm{sh}), 124(\mathrm{sh}), 127(\mathrm{sh}), 130(3)$, and $133(3) \mathrm{cm}^{-1}$. Values in parentheses denote relative Raman intensities. Abbreviations denote shoulder (sh) and not observed (n.o.). The Raman spectrum was recorded in a FEP sample tube at $-150^{\circ} \mathrm{C}$ using 1064-nm excitation under frozen aHF. [b] Assignments are made under O_{h} symmetry for the $\left[\mathrm{AsF}_{6}\right]^{-}$anion. [c] The band overlaps with a $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]$ band .
$\left(\left[\mathrm{Kr}_{2} \boldsymbol{F}_{3}\right]\left[\boldsymbol{A s} \boldsymbol{F}_{6}\right]\right)_{2} \cdot \boldsymbol{X e F}_{4}$ (2). The solid-state, LT Raman spectrum of $\mathbf{2}$ is reproduced in Figure A1.13. The vibrational assignments for $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$were made by comparison with (a) the calculated gas-phase vibrational frequencies and Raman intensities of the energyminimize geometry of $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$(Table A1.9) and (b) the experimental frequencies of $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$in $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right],{ }^{[\mathrm{S} 3]}\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right] \cdot n \mathrm{KrF}_{2},{ }^{[\mathrm{S} 3]}$ and $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{SbF}_{6}\right] .{ }^{[\mathrm{S3}]}$ The $\left[\mathrm{AsF}_{6}\right]^{-}$ bands of $\mathbf{2}$ were assigned under O_{h} symmetry by comparison with those observed in the latter salts (Table A1.9, footnote b). The bands of cocrystallized XeF_{4} in $\mathbf{2}$ were assigned under $D_{4 \mathrm{~h}}$ symmetry by comparison with $\mathrm{XeF}_{4},{ }^{[\mathrm{S} 23]} \mathrm{XeF}_{4} \cdot \mathrm{XeF}_{2},{ }^{[\mathrm{[} 23]}$ and $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$. Several bands in the Raman spectrum of 2 are split into two or more components. To account for these splittings, factor-group analyses based on the X-ray crystal structure of 2 were carried out using the "correlation method" ${ }^{[522]}$ (Figures A1.14-A1.16).

Figure A1.13. Raman spectrum of $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right) 2 \cdot \mathrm{XeF}_{4}(2)$ recorded at $-150{ }^{\circ} \mathrm{C}$ under frozen aHF using 1064-nm excitation. The symbols denote bands assigned to $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$ (1) ($)$, bands assigned to $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$ (4) (§), bands assigned to $\mathrm{XeF}_{4}(\mathbf{6})(\ddagger)$, FEP sample tube bands $\left({ }^{*}\right)$, and an instrumental artifact (\dagger).

Table A1.9. Experimental Raman frequencies and calculated vibrational frequencies, intensities, and assignments for $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$in $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right)_{2} \cdot \mathrm{XeF}_{4}(\mathbf{2})$

expt ${ }^{[a, b]}$	calcd ${ }^{\text {a,c] }]}$		assgnts ${ }^{[d]}$
	B2PLYP-D3 ${ }^{[\mathrm{ec}}$	B3PW91 GD3BJ ${ }^{[f]}$	
600(100)	616(216)[10]	648(181)[10]	$v_{1}\left(\mathrm{~A}_{1}\right), v\left(\mathrm{NgF}_{\mathrm{t}}\right)+v\left(\mathrm{Ng}^{\prime} \mathrm{F}_{\mathrm{t}}\right)$
$\begin{aligned} & 564(\mathrm{sh}) \\ & 561(24)^{[\mathrm{g}]} \end{aligned}$	589(16)[230]	627(15)[236]	$v_{7}\left(\mathrm{~B}_{2}\right), v\left(\mathrm{NgF}_{t}\right)-v\left(\mathrm{Ng}^{\prime} \mathrm{F}^{\prime}\right)$
455(4)	426(<1)[583]	431(<1)[437]	$v_{8}\left(\mathrm{~B}_{2}\right), v\left(\mathrm{NgF}_{\mathrm{b}}\right)-v\left(\mathrm{Ng}^{\prime} \mathrm{F}_{\mathrm{b}}\right)$
$\begin{aligned} & 335(7) \\ & 331(9) \end{aligned}$	$280(20)[12]$	302(11)[13]	$v_{2}\left(\mathrm{~A}_{1}\right), v\left(\mathrm{NgF}_{\mathrm{b}}\right)+v\left(\mathrm{Ng}^{\prime} \mathrm{F}_{\mathrm{b}}\right)$
199(4)	203(0)[12]	203(<0.1)[12]	$\mathrm{v}_{6}\left(\mathrm{~B}_{1}\right), \delta\left(\mathrm{F}_{t} \mathrm{NgF}_{\mathrm{b}}\right)_{\text {i.p. }}-\delta\left(\mathrm{F}_{t}^{\prime} \mathrm{Ng}^{\prime} \mathrm{F}_{\mathrm{b}}\right)_{\text {i.p. }}$.
$188(13){ }^{[8]}$	166(2)[0]	164(3)[0]	$v_{5}\left(\mathrm{~A}_{2}\right), \delta\left(\mathrm{F}_{\mathrm{t}} \mathrm{NgF}_{\mathrm{b}}\right)_{\text {o.o. }}+\delta\left(\mathrm{F}^{\prime} \mathrm{Ng}^{\prime} \mathrm{F}_{\mathrm{b}}\right)_{\text {o.o.p. }}$
$180(6)^{[g]}$	164(7)[<1]	167(3)[<1]	$v_{3}\left(\mathrm{~A}_{1}\right), \delta\left(\mathrm{F}_{\mathrm{t}} \mathrm{NgF}_{\mathrm{b}}\right)_{\text {i.p. }}+\delta\left(\mathrm{F}^{\prime} \mathrm{Ng}^{\prime} \mathrm{F}_{\mathrm{F}}\right)_{\text {i.p. }}$
$176(4)^{[g]}$	163(2)[2]	162(2)[<1]	$v_{9}\left(\mathrm{~B}_{2}\right), \delta\left(\mathrm{F}_{\mathrm{t}} \mathrm{NgF}_{\mathrm{b}}\right)_{\text {i.p. }}-\delta\left(\mathrm{F}_{t}^{\prime} \mathrm{Ng}^{\prime} \mathrm{F}_{\mathrm{b}}\right)_{\text {ip }}$.
n.o.	$36(5)[<0.1]$	42(5)[<1]	$\mathrm{v}_{4}\left(\mathrm{~A}_{1}\right), \delta\left(\mathrm{NgF}_{\mathrm{b}} \mathrm{Ng}^{\prime}\right)$

[a] Frequencies are given in cm^{-1}. [b] Values in parentheses denote relative Raman intensities. Abbreviations denote shoulder (sh), not observed (n.o.). The Raman spectrum was recorded in a FEP sample tube at $-150{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation under frozen aHF. The $v(\mathrm{Xe}-\mathrm{F})$ bands of cocrystallized XeF_{4} in 2 were observed at: $\mathrm{v}_{3}\left(\mathrm{~B}_{2 \mathrm{~g}}\right) ; 500(4)$ and $509(\mathrm{sh}) \mathrm{cm}^{-1}$, and $v_{1}\left(\mathrm{~A}_{1 \mathrm{~g}}\right) ; 540(15) \mathrm{cm}^{-1}$. The [$\left.\mathrm{AsF}_{6}\right]^{-}$bands of 2 were observed at: $v_{5}\left(\mathrm{~T}_{2 \mathrm{~g}}\right) ; 360(\mathrm{sh}), 366(4), 370(4)$ and $376(4) \mathrm{cm}^{-1}, v_{2}\left(\mathrm{E}_{\mathrm{g}}\right) ; 570(7), 582(7), 588(6)$, and $591(6) \mathrm{cm}^{-1}, v_{1}\left(\mathrm{~A}_{1 \mathrm{~g}}\right) ; 685(13) \mathrm{cm}^{-1}$, and $\left.v_{3}\left(\mathrm{~T}_{1 \mathrm{u}}\right)\right) ; 690(4) \mathrm{cm}^{-1}$. Weak bands and shoulders were observed at $562(\mathrm{sh}), 576(6), 578(\mathrm{sh}), 580(6), 585(\mathrm{sh}), 598(\mathrm{sh})$, and $606(\mathrm{sh}) \mathrm{cm}^{-1}$ that were assigned to $[\mathrm{FKrFXeF}]\left[\mathrm{AsF}_{6}\right] \cdot 0.5 \mathrm{KrF}_{2} \cdot 2 \mathrm{HF}$ (1). Bands and shoulders were also observed at 219(4), 221(4), 507(26), 544 (39), and $549(31) \mathrm{cm}^{-}$that were assigned to $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}(4)^{1}$, and $503(28), 549(31)$, and $554(\mathrm{sh}) \mathrm{cm}^{-1}$ that were assigned to XeF_{4}. Lattice modes corresponding to the mixture of the aforementioned compounds were observed at 101(7), 103(7), 113(7), 116(7), 118(7), 120(7), 124(6), and 130(4) cm^{-1}. [c] Values in parentheses and square brackets denote calculated Raman intensities ($\AA^{4} \mathrm{amu}^{-1}$) and infrared intensities (km mol^{-1}), respectively. [d] Assignments are for the energy-minimized geometry of $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}\left(C_{2 v}\right)$ calculated using the B2PLYP-D3 and B3PW91-GD3BJ methods. Abbreviations denote stretch (v), bend (δ), in-plane (i.p.), out-of-plane (o.o.p.), terminal fluorine $\left(\mathrm{F}_{\mathrm{t}}\right)$, bridging fluorine (F_{b}). [e] The Def2-TZVPD ($\mathrm{F}, \mathrm{Kr}, \mathrm{Xe}$) basis set was used. [f] The aug-ccpVDZ(-PP)(F, Kr)/aug-ccpVTZ(-PP) (Xe) basis sets were used. [g] This band overlaps with a band of $\mathbf{1}$.
$\left[K_{2} \boldsymbol{F}_{3}\right]^{+}$. Nine vibrational modes are predicted for gas-phase $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$under $C_{2 \mathrm{v}}$ symmetry. The vibrations belong to the irreducible representations $\Gamma=4 \mathrm{~A}_{1}+3 \mathrm{~B}_{1}+\mathrm{A}_{2}+$ B_{2}, where the A_{1}, B_{1}, and B_{2} modes are both Raman- and infrared-active, and the A_{2} mode is Raman-active. In the factor-group analysis, all irreducible representations of gasphase $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$under $C_{2 \mathrm{v}}$ symmetry correlate to A irreducible representations under the C_{1} crystal site symmetry of $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$in $\mathbf{2}$. When correlated to its unit cell symmetry, $C_{2 \mathrm{~h}}$, each vibrationally coupled A mode splits into two Raman active bands, A_{g} and B_{g}, and into two infrared-active bands, A_{u} and B_{u}. Band splittings were only resolved for the $v_{7}\left(\mathrm{~B}_{2}\right)$ and $v_{2}\left(\mathrm{~A}_{1}\right)$ bands (Table A1.9).

The calculated vibrational displacements reveal the $v\left(\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}\right)$ and $v\left(\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}\right)$ modes of $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$are strongly coupled, giving rise to four modes, $v_{1}\left(\mathrm{~A}_{1}\right), v_{7}\left(\mathrm{~B}_{1}\right), v_{8}\left(\mathrm{~B}_{2}\right)$, and $v_{2}\left(\mathrm{~A}_{1}\right)$. The in-phase coupled $v_{1}\left(\mathrm{~A}_{1}\right)$ mode $\left[v\left(\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}\right)+v\left(\mathrm{Ng}^{\prime}-\mathrm{F}_{\mathrm{t}}\right)\right]$, occurs at higher frequency (exptl, $600 \mathrm{~cm}^{-1}$; calcd, $616 \mathrm{~cm}^{-1}$) than the out-of-phase coupled $v_{7}\left(\mathrm{~B}_{1}\right)$ mode $\left[v\left(\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}\right)-v\left(\mathrm{Ng}^{\prime}-\mathrm{F}_{\mathrm{t}}\right)\right]$ (exptl, $561,564 \mathrm{~cm}^{-1}$; calcd, $\left.589 \mathrm{~cm}^{-1}\right)$, whereas the out-of-phase coupled bridge $v_{8}\left(\mathrm{~B}_{2}\right)$ mode, $\left[v\left(\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}\right)-v\left(\mathrm{Ng}^{\prime}-\mathrm{F}_{\mathrm{b}}\right)\right]$ (exptl, $455 \mathrm{~cm}^{-1}$; calcd, $\left.426 \mathrm{~cm}^{-1}\right)$, occurs at higher frequency than the in-phase coupled bridge $v_{2}\left(\mathrm{~A}_{1}\right)$ mode $\left[v\left(\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}\right)+\right.$ $\left.v\left(\mathrm{Ng}^{\prime}-\mathrm{F}_{\mathrm{b}}\right)\right]$ (exptl, 331, $335 \mathrm{~cm}^{-1}$; calcd, $280 \mathrm{~cm}^{-1}$).

The calculated in- and out-of-plane coupled deformation modes are in good agreement with experiment (Table A1.9). The in-plane $v_{4}\left(\mathrm{~A}_{1}\right)$ mode, $\delta\left(\mathrm{NgFF}_{b} \mathrm{Ng}^{\prime}\right)$, is predicted to occur at very low frequency $\left(36 \mathrm{~cm}^{-1}\right)$ and was not observed. The potential energy surface corresponding to this bend has been previously described as "flat",
indicating that the $\mathrm{Kr}---\mathrm{F}_{\mathrm{b}}---\mathrm{Kr}$ bond angle of $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$is highly deformable and may be influenced by secondary bonding interactions within the crystal lattice. ${ }^{[53]}$

Figure A1.14. Factor-group analysis of $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$in $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right)_{2} \cdot \mathrm{XeF}_{4}(\mathbf{2})^{[a]}$

free $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+[0]}$	crystal site ${ }^{[\mathrm{cc]}}$	unit cell $^{[\mathrm{dc]}}$	activity
$\mathrm{C}_{2 v}$	C_{1}	$C_{2 h}$	

[a] The external modes are not treated in this analysis. [b] The vibrational irreducible representation for gas-phase $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$is $\Gamma=4 \mathrm{~A}_{1}+3 \mathrm{~B}_{1}+\mathrm{A}_{2}+\mathrm{B}_{2}$. [c] All atoms of $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$ occupy general positions in the crystal structure of 2. [d] Space group; $P 2_{1} / n, Z=2$. There are two $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$cations in the formula unit of $\mathbf{2}$, giving rise to four cations in the unit cell.
$\left.{ }^{[\boldsymbol{A s F}} \boldsymbol{F}_{6}\right]^{-}$. In the factor-group analysis, all irreducible representations of gas-phase $\left[\mathrm{AsF}_{6}\right]^{-}$ under O_{h} symmetry correlate to A irreducible representations under the C_{1} crystal site symmetry of the $\left[\mathrm{AsF}_{6}\right]^{-}$ion in $\mathbf{2}$. When correlated to its unit cell symmetry, $C_{2 \mathrm{~h}}$, each vibrationally coupled A mode splits into two Raman-active bands, A_{g} and Bg_{g}, and two infrared-active bands, A_{u} and B_{u}. Band splittings were only resolved on the $v_{2}\left(\mathrm{Eg}_{\mathrm{g}}\right)$ and $v_{5}\left(\mathrm{~T}_{2 \mathrm{~g}}\right)$ bands (Table A1.9, footnote b).

Figure A1.15. Factor-group analysis of $\left[\mathrm{AsF}_{6}\right]^{-}$in $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right) 2 \cdot \mathrm{XeF}_{4}(\mathbf{2})^{[a]}$

[a] The external modes are not treated in this analysis. [b] The vibrational irreducible representation for gas-phase $\left[\operatorname{AsF}_{6}\right]^{-}\left(O_{\mathrm{h}}\right)$ is $\Gamma=\mathrm{A}_{1 \mathrm{~g}}+\mathrm{E}_{\mathrm{g}}+\mathrm{T}_{2 \mathrm{~g}}+2 \mathrm{~T}_{1 \mathrm{u}}+\mathrm{T}_{2 \mathrm{u}}$. [c] All atoms of [AsF $\left.{ }_{6}\right]^{-}$occupy general positions in the crystal structure of 2. [d] Space group; $P 2_{1} / n, Z=2$. There are two $\left[\mathrm{AsF}_{6}\right]^{-}$anions in the formula unit of $\mathbf{2}$, giving rise to four anions in the unit cell.
$\boldsymbol{X e F} \boldsymbol{F}_{4}$. Seven vibrational modes are predicted for gas-phase XeF_{4} under $D_{4 \mathrm{~h}}$ symmetry. The vibrations belong to the irreducible representations $\Gamma=\mathrm{A}_{1 \mathrm{~g}}+\mathrm{B}_{1 \mathrm{~g}}+\mathrm{B}_{2 \mathrm{~g}}+\mathrm{A}_{2 \mathrm{u}}+\mathrm{B}_{2 \mathrm{u}}+$ $2 \mathrm{E}_{\mathrm{u}}$, where the $\mathrm{A}_{1 \mathrm{~g}}, \mathrm{~B}_{1 \mathrm{~g}}$, and $\mathrm{B}_{2 \mathrm{~g}}$ modes are Raman-active, the $\mathrm{A}_{2 \mathrm{u}}$ and E_{u} modes are infrared-active, and the $B_{2 u}$ mode is inactive. The gerade and ungerade irreducible representations of gas-phase XeF_{4} under $D_{4 \mathrm{~h}}$ symmetry correlate to A_{g} and A_{u} irreducible
representations, respectively, under the C_{i} crystal site symmetry of XeF_{4} in 2. When correlated to its unit cell symmetry, $D_{2 \mathrm{~h}}$, each vibrationally coupled A_{g} mode splits into two Raman-active bands, A_{g} and B_{g}, and each A_{u} band splits into two infrared-active components, A_{u} and B_{u}. Band splitting was resolved for the $v_{3}\left(B_{2 g}\right)$ band (500/509 cm ${ }^{-1}$) in the Raman spectrum of $\mathbf{2}$. The unsplit $v_{1}\left(\mathrm{~A}_{1 \mathrm{~g}}\right)$ band was observed at $540 \mathrm{~cm}^{-1}$, but the $v_{2}\left(B_{1 g}\right)$ band was not observed.

Figure A1.16. Factor-group analysis of cocrystallized XeF_{4} in $\left(\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{AsF}_{6}\right]\right)_{2} \cdot \mathrm{XeF}_{4}$ (2) [a]

free $\mathrm{XeF}_{4}{ }^{[b]}$	crystal site ${ }^{[\mathrm{cc]}}$	unit cell $^{[d]}$	activity
$D_{4 h}$	C_{i}	$C_{2 h}$	

[a] The external modes are not treated in this analysis. [b] The vibrational irreducible representation for gas-phase $\mathrm{XeF}_{4}\left(D_{4 \mathrm{~h}}\right)$ is $\Gamma=\mathrm{A}_{1 \mathrm{~g}}+\mathrm{B}_{1 \mathrm{~g}}+\mathrm{B}_{2 \mathrm{~g}}+\mathrm{A}_{2 \mathrm{u}}+\mathrm{B}_{2 \mathrm{u}}+2 \mathrm{E}_{\mathrm{u}}$. [c] The inversion center of gas-phase $\mathrm{XeF}_{4}\left(D_{4 \mathrm{~h}}\right)$ is maintained under the crystal site symmetry of $2\left(C_{\mathrm{i}}\right)$ and was used to correlate the crystal site symmetry to the unit cell symmetry $\left(D_{2 \mathrm{~h}}\right)$. [d] Space group; $P 2_{1} / n, Z=2$.
$\boldsymbol{X e F}_{4} \cdot \mathbf{K r} \boldsymbol{F}_{2}$ (4). The Raman spectrum of $\mathbf{4}$ (Figure A1.17) can be analyzed as the composite of the vibrational spectra of XeF_{4} and KrF_{2}, in accordance with the weak Xe --F secondary bonding interactions observed its crystal structure.

Figure A1.17. Raman spectrum of $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$ (4) recorded at $-150{ }^{\circ} \mathrm{C}$ under frozen CFCl_{3} using 1064-nm excitation. The symbols denote bands assigned to $\mathrm{XeF}_{4}(\S), \mathrm{CFCl}_{3}$ (\ddagger), the $\nu_{1}\left(\Sigma_{\mathrm{g}}{ }^{+}\right)$band of $\alpha-\mathrm{KrF}_{2}\left({ }^{*}\right)$, and an instrumental artifact (\dagger).

Table A1.10. Raman frequencies, intensities, and assignments for $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}$ (4)

[a] The Raman spectrum was recorded in an FEP sample tube at $-150{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation under frozen CFCl_{3}. Frequencies are given in cm^{-1}. Values in parentheses denote relative Raman intensities. Abbreviations denotes stretch (v). Weak shoulders were observed at 215(sh), $503(\mathrm{sh})$, and $553(\mathrm{sh}) \mathrm{cm}^{-1}$ that were assigned to $\mathrm{XeF}_{4} .{ }^{[523]}$ Bands observed at $129(\mathrm{sh})$, 246(50), 294(sh), 352(33), 398(39), 531(16), 534(56), 536(99), 817(10), 822(9), 830(6), 839(8), 1065(2), 1076(4), 1634(<1), and 2098(<1) cm^{-1} were assigned to CFCl_{3}. [b] Assignments for XeF_{4} and KrF_{2} were made under $D_{4 \mathrm{~h}}$ and $\mathrm{D}_{\infty \mathrm{h}}$ symmetry, respectively. [c] The band overlaps with a XeF_{4} band. [d] The band overlaps with a $\beta-\mathrm{KrF}_{2}$ band.
$\boldsymbol{K r} \boldsymbol{F}_{2}$. The band of cocrystallized $\mathrm{KrF}_{2}\left(469 \mathrm{~cm}^{-1}\right)$ in 4 was assigned to the $v_{\mathrm{s}}(\mathrm{Kr}-\mathrm{F})$ mode by comparison with $\alpha-\mathrm{KrF}_{2}\left(465 \mathrm{~cm}^{-1}\right),{ }^{[\mathrm{S} 2]} \beta-\mathrm{KrF}_{2}\left(468,469 \mathrm{~cm}^{-1}\right),{ }^{[\mathrm{S} 2]}$ and cocrystallized KrF_{2} in $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]\left[\mathrm{PnF}_{6}\right] \cdot n \mathrm{KrF}_{2}\left(\mathrm{Sb}: 456 \mathrm{~cm}^{-1}\right.$; As: $462 \mathrm{~cm}^{-1}$). ${ }^{[\mathrm{S} 3]}$ Although the factor-group analysis predicts this mode should be split (Figure A1.18), the band splitting was not resolved.

Figure A1.18. Factor-group analysis of KrF_{2} in $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}(4){ }^{[a]}$

[a] The external modes are not treated in this analysis. [b] The vibrational irreducible representation for gas-phase $\mathrm{KrF}_{2}\left(D_{\infty \mathrm{h}}\right)$ is $\Gamma=\Sigma_{\mathrm{g}}{ }^{+}+\Sigma_{\mathrm{u}}^{-}+\pi_{\mathrm{u}}$. [c] The $C_{2}(y)$ axis of gas-phase KrF_{2} ($D_{\propto h}$) is maintained under the crystal site symmetry $\left(C_{2}\right)$ and was selected for correlation of the crystal site symmetry to the unit cell symmetry $\left(D_{2 h}\right)$. [d] Space group; Cmce, $Z=8$. The number of molecules contributing to the total number of lattice vibrations for a C-centered unit cell is equal to Z divided by two (ref. S22, pp. 2-4).
$\boldsymbol{X e F}_{4}$. Bands of cocrystallized XeF_{4} in 4 were assigned under $D_{4 \mathrm{~h}}$ symmetry by comparison with $\mathrm{XeF}_{4}{ }^{[523]}$ and $\mathrm{XeF}_{4} \cdot \mathrm{XeF}_{2} .{ }^{[\mathrm{S} 23]}$ All the XeF_{4} bands of 4 are split into two components $\left(v_{1}\left(\mathrm{~A}_{1 \mathrm{~g}}\right), 543 / 548 \mathrm{~cm}^{-1}, v_{3}\left(\mathrm{~B}_{2 \mathrm{~g}}\right), 505 / 507 \mathrm{~cm}^{-1}, v_{2}\left(\mathrm{~B}_{1 \mathrm{~g}}\right), 223 / 229 \mathrm{~cm}^{-1}\right)$ contrary to what was observed for $\mathrm{XeF}_{4} \cdot \mathrm{XeF}_{2}\left(\mathrm{v}_{1}\left(\mathrm{~A}_{1 \mathrm{~g}}\right), 548 \mathrm{~cm}^{-1}, \mathrm{v}_{3}\left(\mathrm{~B}_{2 \mathrm{~g}}\right), 508\right.$ or $511 \mathrm{~cm}^{-}$ $\left.{ }^{1}, v_{2}\left(\mathrm{~B}_{1 \mathrm{~g}}\right), 219 \mathrm{~cm}^{-1}\right) \cdot{ }^{[\mathrm{S} 23]}$ A factor-group analysis was carried out (Figure A1.19) to account for band splitting. In the factor-group analysis of 4, the symmetry of gas-phase XeF_{4} ($D_{4 \mathrm{~h}}$ symmetry) is lowered under its crystal site symmetry to $C_{2 \mathrm{~h}}$. When correlated to the unit cell symmetry, $D_{2 h}$, the $v_{1}\left(\mathrm{~A}_{1 \mathrm{~g}}\right), v_{2}\left(\mathrm{~B}_{1 \mathrm{~g}}\right)$, and $v_{3}\left(\mathrm{~B}_{2 \mathrm{~g}}\right)$ bands of XeF_{4} are each predicted to split into two Raman-active bands; these splittings were observed in the Raman spectrum (Table A1.10).

Figure A1.19. Factor-group analysis of XeF_{4} in $\mathrm{XeF}_{4} \cdot \mathrm{KrF}_{2}(4){ }^{[a]}$

free $\mathrm{XeF}_{4}{ }^{[0]}$	crystal site $^{[\mathrm{cc]}}$	unit cell ${ }^{[\mathrm{dc]}}$	activity
$D_{4 h}$	$C_{2 h}$	$D_{2 h}$	

[a] The external modes are treated in this analysis. [b] The vibrational irreducible representation for gas-phase $\mathrm{XeF}_{4}\left(D_{4 \mathrm{~h}}\right)$ is $\Gamma=\mathrm{A}_{1 \mathrm{~g}}+\mathrm{B}_{1 \mathrm{~g}}+\mathrm{B}_{2 \mathrm{~g}}+\mathrm{A}_{2 \mathrm{u}}+\mathrm{B}_{2 \mathrm{u}}+2 \mathrm{E}_{\mathrm{u}}$. [c] The $C_{2}(x)$-axis of gas-phase $\mathrm{XeF}_{4}\left(D_{4 \mathrm{~h}}\right)$ is maintained under the crystal site symmetry $\left(C_{2 \mathrm{~h}}\right)$ and was selected for correlation of the crystal site symmetry to the unit cell symmetry $\left(D_{2 \mathrm{~h}}\right)$. [d] Space group; Cmce, $Z=8$. The number of molecules contributing to the total number of lattice vibrations for a C-centered unit cell is equal to Z divided by two (ref. S22, pp. 2-4).
$\left[\left(\boldsymbol{F}_{5} \boldsymbol{X e}\right)_{2}(\boldsymbol{\mu}-\boldsymbol{F K r F})\left(\boldsymbol{A s} \boldsymbol{F}_{6}\right)_{2}\right]$. The solid-state, LT Raman spectrum of $\left[\left(\mathrm{F}_{5} \mathrm{Xe}\right)_{2}(\mu-\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{2}\right]$ is shown in Figure A1.20. The spectrum has bands (Table A1.11) that are very similar to those assigned to $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{AsF}_{6}\right]^{-}$in $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right]$ and $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{n} \mathrm{AsF}_{6}\right](n=1,2),{ }^{[5]}$ as well as a strong band at $485 \mathrm{~cm}^{-1}$ that is intermediate with respect to the $v\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}\right)$ and $v\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}\right)$ stretching frequencies of [$\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}$] (454 and $533 \mathrm{~cm}^{-1}$) and $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{2} \mathrm{AsF}_{6}\right]$ (466, 472/474 and 543, $564 / 567 \mathrm{~cm}^{-1}$). The $485 \mathrm{~cm}^{-1}$ band is slightly shifted to higher frequency than the symmetric $v_{\mathrm{s}}(\mathrm{Kr}-\mathrm{F})$ stretching modes of $\alpha-\mathrm{KrF}_{2}\left(465 \mathrm{~cm}^{-1}\right)^{[2]}$ and $\beta-\mathrm{KrF}_{2}\left(468,469 \mathrm{~cm}^{-1}\right),{ }^{[2]}$ and those of the symmetrically bridged KrF_{2} in $\mathrm{KrF}_{2} \cdot 2 \mathrm{CrOF}_{4}\left(465 \mathrm{~cm}^{-1}\right)^{[24]}$ and $\mathrm{Hg}\left(\mathrm{OTeF}_{5}\right)_{2} \cdot 1.5 \mathrm{KrF}_{2}(468$ $\left.\mathrm{cm}^{-1}\right) \cdot{ }^{[25]}$ The observation of a single $v(\mathrm{Ng}-\mathrm{F})$ stretching band in the Raman spectrum is consistent with a symmetrically bridged KrF_{2} ligand that is similar to the known XeF_{2} bridged analogue, $\left[\left(\mathrm{F}_{5} \mathrm{Xe}\right)_{2}(\mu-\mathrm{FXeF})\left(\mathrm{AsF}_{6}\right)_{2}\right] .{ }^{[26]}$ Although not observed in the latter complex, shifts to higher frequency relative to $\mathrm{XeF}_{2}\left(496 \mathrm{~cm}^{-1}\right)^{[27]}$ have been reported for the $v_{\mathrm{s}}(\mathrm{Xe}-\mathrm{F})$ bands of the symmetrically bridged XeF_{2} molecules in $\left[\mathrm{Ca}(\mathrm{FXeF})_{5}\left(\mathrm{PF}_{6}\right)_{2}\right]$ $\left(522 \mathrm{~cm}^{-1}\right),{ }^{[28]}\left[\mathrm{Cd}(\mathrm{FXeF})_{5}\left(\mathrm{PF}_{6}\right)_{2}\right]\left(521 \mathrm{~cm}^{-1}\right),{ }^{[28]}\left[\mathrm{Sr}_{3}\left(\mathrm{FXeF}_{3}\right)_{3}\left(\mathrm{PF}_{6}\right)_{2}\right]\left(532 \mathrm{~cm}^{-1}\right),{ }^{[29]}$ $\left[\mathrm{Pb}_{3}(\mathrm{FXeF})_{3}\left(\mathrm{PF}_{6}\right)_{2}\right]\left(513 \mathrm{~cm}^{-1}\right),{ }^{[29]}$ and $\left[\mathrm{Ba}(\mathrm{FXeF})_{4}\left(\mathrm{PF}_{6}\right)_{2}\right]\left(525 \mathrm{~cm}^{-1}\right) .{ }^{[30]}$

Figure A1.20. Raman spectrum of a solid mixture of $\left[\left(\mathrm{F}_{5} \mathrm{Xe}\right)_{2}(\mu-\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{2}\right]$ (Table A1.11), $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right],\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right], \mathrm{XeF}_{4}$, and $\left[\mathrm{O}_{2}\right]\left[\mathrm{AsF}_{6}\right]$, formed from the redox decomposition of 1 in aHF, and recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. The symbols denote bands assigned to $\left[\left(\mathrm{F}_{5} \mathrm{Xe}\right)_{2}(\mu-\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{2}\right](\ddagger)$, FEP sample tube bands $\left(^{*}\right)$, and an instrumental artifact (\dagger). Band assignments for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right],{ }^{[55]}$ $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right],{ }^{[\mathrm{S} 5]} \mathrm{XeF}_{4},{ }^{[\mathrm{S} 23]}$ and $\left[\mathrm{O}_{2}\right]\left[\mathrm{AsF}_{6}\right]{ }^{[\mathrm{S} 4]}$ are given, along with their relative intensities, in Table A1.2.

Table A1.11. Raman frequencies, intensities, and assignments for $\left[\left(\mathrm{F}_{5} \mathrm{Xe}\right)_{2}(\mu-\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{2}\right]$

exptl ${ }^{\text {[a] }}$	assgnts ${ }^{[b]}$		
	$\left[\mathrm{XeF}_{5}\right]^{+}$	$\left[\mathrm{AsF}_{6}{ }^{-}\right.$	KrF_{2}
748(9)			
740(5)		$v\left(\mathrm{~T},{ }^{\text {a }}\right.$	
723(sh)			
708(1)			
$685(16){ }^{\text {[c] }}$		$v_{1}\left(\mathrm{~A}_{1 \mathrm{~g}}\right)$	
669(19)	$v_{1}\left(\mathrm{~A}_{1}\right)$		
$661(15){ }^{[c]}$	$v_{7}(\mathrm{E})$		
$625(100)^{[d]}$	$v_{2}\left(\mathrm{~A}_{1}\right)$		
598(sh)	$v_{4}\left(\mathrm{~B}_{1}\right)$		
567(3)			
$564(2)^{[\mathrm{cc]}} \quad \mathrm{v}_{2}(\mathrm{Eg})$			
559(3)			
485(69) $v_{s}(\mathrm{Kr}-\mathrm{F})$			
417(sh)	$v_{8}(\mathrm{E})$		
405(sh)			
402(sh)		$v_{5}\left(\mathrm{~T}_{1 \mathrm{u}}\right)$	
397(4)			
389(6)			
381(1)		$v_{3}\left(\mathrm{~T}_{2 \mathrm{~g}}\right)$	
373 (6) ${ }^{\text {[e] }}$			
347(5)	$v_{3}\left(\mathrm{~A}_{1}\right)$		
$302(7)^{\text {[e] }}$	$v{ }_{6}\left(\mathrm{~B}_{2}\right)$		
265(1)	$v_{s}\left(\mathrm{~B}_{1}\right)$		

continued...

Table A1.11. (continued) [a] Frequencies are given in cm^{-1}. Lattice modes of $\left[\left(\mathrm{F}_{5} \mathrm{Xe}\right)_{2}(\mu-\mathrm{FKrF})\left(\mathrm{AsF}_{6}\right)_{2}\right]$ were observed at $103(4), 107(4), 112(4), 115(\mathrm{sh}), 120(\mathrm{sh}), 123(\mathrm{sh}), 125(\mathrm{sh}), 134(\mathrm{sh}), 137(11), 144(\mathrm{sh})$ and $150(\mathrm{sh}) \mathrm{cm}^{-1}$. Values in parentheses denote relative Raman intensities. Abbreviations denote shoulder (sh). The Raman spectrum was recorded in a FEP sample tube at $-150{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation on a dry crystalline sample. [b] Assignments are made under $D_{4 h}$ symmetry for the $\left[\mathrm{XeF}_{5}\right]^{+}$cation, O_{h} symmetry for the $\left[\mathrm{AsF}_{6}\right]^{-}$anion, and $D_{\text {oh }}$ symmetry for KrF_{2}. [c] The band overlaps with a band of $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF}) \mathrm{AsF}_{6}\right]$. [d] The band overlaps with a $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{AsF}_{6}\right]$ band. [e] The band overlaps with an FEP sample tube band.

Computational Results (continued)

Quantum-chemical calculations have been used to assess the bonding in $[\mathrm{FKrFXeF}]^{+}$, $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$, and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$. The NgF_{2} molecules and $[\mathrm{NgF}]^{+}$cations were also calculated for comparison. The DFT functionals, B3LYP, PBE1PBE, and B3PW91, all with and without inclusion of GD3BJ dispersion, and the B2PLYP-D3, APFD, and WB97XD functionals, which include dispersion, were employed using the Def2-TZVPD, aug-cc-$\mathrm{pVDZ}(-\mathrm{PP})$, and/or aug-cc-pVTZ(-PP) basis sets. All calculations resulted in stationary points with all frequencies real (Tables A1.12- A1.15). Statistical analyses were carried out to determine which levels of theory best reproduce the experimental $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Ng}--$ F_{b} bond lengths and the $\mathrm{Ng}---\mathrm{F}_{\mathrm{b}}--\mathrm{Ng}$ and $\mathrm{F}_{\mathrm{r}}-\mathrm{Ng}--\mathrm{F}_{\mathrm{b}}$ bond angles of $[\mathrm{FKrFXeF}]^{+}$, $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$, and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$and their vibrational frequencies and intensities. The analyses showed that the B2PLYP-D3/Def2-TZVPD ($\mathrm{F}, \mathrm{Kr}, \mathrm{Xe}$) level of theory gave the best agreement with experiment, followed by B3PW91-D3/aug-ccpVDZ(-PP) (F, Kr)/aug-$\operatorname{ccpVTZ}(-\mathrm{PP})(\mathrm{Xe})$. Although the $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$cations had been previously studied by computational methods, ${ }^{[S 3]}$ the calculations were repeated for $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$at the aforementioned levels of theory to enable valid comparisons to be made
among the $[\mathrm{FKrFXeF}]^{+},\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$, and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$cations. The calculated geometrical parameters of the $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}$cations were compared with the most precise experimental values currently available (Table 3.2). The NBO (Tables A1.16 and A1.17), QTAIM (Tables A1.18 and A1.19, Figure A1.21), ELF, and MEPS analyses were also carried out at the B2PLYP-D3/Def2-TZVPD and B3PW91-D3/aug-ccpVDZ(-PP)/aug-ccpVTZ(-PP) levels of theory. The ensuing discussions refer to B2PLYP-D3/Def2-TZVPD values.

Atoms in a Molecule (AIM) Analyses

In general, indicators of bond covalency are provided by several AIM properties evaluated at the bond critical points ${ }^{[531]}$ (see Tables A1.18, A1.19). Significantly negative values for the Laplacian of electron density $\left(\nabla^{2} \rho_{\mathrm{b}}\right)$ and the Cremer-Kraka total energy density $\left(H_{\mathrm{b}}\right)$, and densities of all electrons $\left(\rho_{\mathrm{b}}\right)$ greater than 0.2 au are associated with strong covalent bonding. In the case of polar-covalent bonds, it has been shown that the signs or the small absolute values of the above properties can be ambiguous, and it is necessary to consider the combined properties in order to characterize the nature of the bond. ${ }^{[S 31]}$ The bond delocalization indices (δ), which provide the number of electron pairs shared by two atoms, are also considered in this study. Contour maps of the charge densities showing the bond paths, intersections of atomic surfaces, and the charge density contour maps of the Laplacian distributions $\left(\nabla^{2} \rho\right)$ are provided for $[\mathrm{FKrFXeF}]^{+},\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}$, NgF_{2}, and $[\mathrm{NgF}]^{+}$(Figure A1.21).

The small positive $\rho_{\mathrm{b}}\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}, 0.137-0.200 \mathrm{au} ; \mathrm{Xe}-\mathrm{F}_{\mathrm{t}}, 0.121-0.161 \mathrm{au}\right)$ and $\nabla^{2} \rho_{\mathrm{b}}$ values $\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}, 0.051-0.237 \mathrm{au} ; \mathrm{Xe}-\mathrm{F}_{\mathrm{t}}, 0.225-0.248 \mathrm{au}\right)$ of the $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ bonds in $[\mathrm{NgF}]^{+}$, $\mathrm{NgF}_{2},[\mathrm{FKrFXeF}]^{+}$, and $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}$are consistent with polar-covalent bonds. This

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

description is supported by their delocalization indices $\delta\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}, 0.742-1.089 \mathrm{au} ; \mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\right.$, $0.759-1.035 \mathrm{au}$; and by their very small negative H_{b}-values $\left(\mathrm{Kr}-\mathrm{F}_{\mathrm{t}},-0.141\right.$ to -0.0061 au ; $\mathrm{Xe}-\mathrm{F}_{\mathrm{t}},-0.096$ to $\left.-0.056 \mathrm{au}\right)$. The corresponding values for the $\mathrm{Ng}---\mathrm{F}_{\mathrm{b}}$ bridge bonds of $[\mathrm{FKrFXeF}]^{+}$and $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}$are notably smaller than their $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ values and consistent with their greater ionic characters; $\rho_{\mathrm{b}}\left(\mathrm{Kr}--\mathrm{F}_{\mathrm{b}}, 0.081,0.084 \mathrm{au} ; \mathrm{Xe}--\mathrm{F}_{\mathrm{b}}, 0.067,0.070 \mathrm{au}\right), \delta$ $\left(\mathrm{Kr}---\mathrm{F}_{\mathrm{b}}, 0.472,0.457 \mathrm{au} ; \mathrm{Xe}---\mathrm{F}_{\mathrm{b}}, 0.435,0.449 \mathrm{au}\right)$, and $H_{b}\left(\mathrm{Kr}---\mathrm{F}_{\mathrm{b}},-0.018,-0.016 \mathrm{au}\right.$; $\left.\mathrm{Xe}---\mathrm{F}_{\mathrm{b}},-0.015,-0.014 \mathrm{au}\right)$. The $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Ng}---\mathrm{F}_{\mathrm{b}}$ bond properties are consistent with their relative $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Ng}--\mathrm{F}_{\mathrm{b}}$ bond lengths and Wiberg bond indices. Likewise, the AIM parameters of $[\mathrm{FKrFXeF}]^{+}$and $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}$are in accordance with $\mathrm{Kr}-\mathrm{F}_{t / b}$ bonds that are more covalent than $\mathrm{Xe}-\mathrm{F}_{t / \mathrm{b}}$ bonds.

The Kr and/or Xe valence electron lone pair (VELP) charge densities are readily discernible on the contour maps of $\nabla^{2} \rho$ (Figure A1.21). The charge densities of the Kr and/or Xe VELPS combine to form tori around the Kr and/or Xe atoms (see ELF Analyses). The tori lie in planes that are perpendicular to the molecular planes of $[\mathrm{FKrFXeF}]^{+},\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}, \mathrm{NgF}_{2}$, and $[\mathrm{NgF}]^{+}$so that the plane of the charge density contour map depicted in Figure A1.21 passes through each torus to give two VELP charge concentrations on either side of the Ng cores. The tori of $[\mathrm{NgF}]^{+}$cations are off-center, which conform with the perturbations of the toroidal $\mathrm{V}(\mathrm{Ng})$ basins observed in their ELF isosurface plots (vide infra). In all cases, the F-atom VELP charge densities are nearly spherical. A common feature in the plots of the Laplacian distributions of $[\mathrm{FKrFXeF}]^{+}$ and $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}$is that the F_{b} and Ng contours are not joined or are very weakly joined, whereas contour lines enclosing F_{t} and Kr and/or Xe are clearly visible. This is in
accordance with more covalent terminal $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ bonds relative to the $\mathrm{Ng}--\mathrm{F}_{\mathrm{b}}$ bridge bonds. Contour lines enclosing F_{t} and Ng are also visible for NgF_{2} and $[\mathrm{NgF}]^{+}$.

Electron Localization Function (ELF) Analyses

ELF analyses ${ }^{[\mathrm{S} 32, \mathrm{~S} 33]}$ were carried out for $[\mathrm{FKrFXeF}]^{+}\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}, \mathrm{NgF}_{2}$, and $[\mathrm{NgF}]^{+}$to visualize the behaviors of the Ng VELPs of these species. In the ensuing discussion, the abbreviations denote atomic basin populations, $\bar{N}[\mathrm{~A}]$; electron localization function, $\eta(\mathbf{r})$; core basin, $\mathrm{C}(\mathrm{A})$; monosynaptic valence basin, $\mathrm{V}(\mathrm{A})$; and closed isosurface, $\eta(\mathbf{r})=f$, where $\eta(\mathbf{r})$ is defined as the isosurface contour. ELF parameters are provided in Tables A1.18 and A1.19 and ELF isosurface plots are shown for the localization domains of $[\mathrm{FKrFXeF}]^{+}\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}, \mathrm{NgF}_{2}$, and $[\mathrm{NgF}]^{+}$in Figures 3.5, A1.22 and A1.23.

The ELF population analyses (Tables A1.18 and A1.19) are in agreement with the QTAIM results (vide supra). The ELF basin populations of the Kr and Xe cores are comparable for $[\mathrm{FKrFXeF}]^{+},\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}, \mathrm{NgF}_{2}$, and $[\mathrm{NgF}]^{+}$. In all cases, the Kr and Xe core populations are close to the ideal core population of the Kr atom, $[\mathrm{Ar}] 3 \mathrm{~d}^{10}=28 \mathrm{e}$ and Xe atom, $[\mathrm{Kr}] 4 \mathrm{~d}^{10}=46 \mathrm{e}$. The ELF valence population analyses suggest an interpretation of the bonding in terms of a significant delocalization of electron density between the valence shells of the Ng atoms and those of its neighboring F atoms.

The ELF analyses of $[\mathrm{FKrFXeF}]^{+},\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}, \mathrm{NgF}_{2}$, and $[\mathrm{NgF}]^{+}$only display monosynaptic Ng and F valence basins, in accordance with the polar-covalent characters of their bonds. The toroidal shapes of their Ng valence basins result from the combination of the three valence electron lone pair domains of Ng , with the atomic core electron basin $(\mathrm{C}(\mathrm{Ng}))$ lying at the center of the torus. The small perturbations of the toroidal $\mathrm{V}(\mathrm{Ng})$
basins of $[\mathrm{FKrFXeF}]^{+}$and $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}$arise from accommodation of the $\mathrm{V}(\mathrm{Ng})$ basins to the asymmetries of their immediate environments (Figures 3.5 and A1.22). ${ }^{[534-S 36]}$ Similar toroidal-shaped valence basins have been noted for $\mathrm{XeF}_{2},{ }^{[\mathrm{S} 34, \mathrm{~S} 37]}\left[\mathrm{XeF}_{3}\right]^{-},{ }^{[\mathrm{S} 37]}$ $\left[\mathrm{XeOTeF}_{5}\right]\left[\mathrm{Sb}\left(\mathrm{OTeF}_{5}\right)_{6}\right] \cdot \mathrm{SO}_{2} \mathrm{ClF},{ }^{[\mathrm{S} 38]}$ and for the $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}$ or Xe) ligands of $\left[\mathrm{BrOF}_{2}\right]\left[\mathrm{AsF}_{6}\right] \cdot 2 \mathrm{NgF}_{2},{ }^{[\mathrm{S} 34, \mathrm{~S} 35]} \quad \mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4},{ }^{[\mathrm{S} 24]} \quad \mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF} 4,{ }^{[\mathrm{S} 24]}$ and $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FKrF})_{n} \mathrm{AsF}_{6}\right](n=1,2){ }^{[\mathrm{S} 5]}$

The $\mathrm{V}(\mathrm{Ng})$ basin perturbations of the $[\mathrm{NgF}]^{+}$cations are noteworthy because the VSEPR rules ${ }^{[539]}$ predict a trigonal pyramidal AXE_{3} arrangement of one electron bond pair (X) and three VELPS (E), where A is the Ng atom. Owing to strong mutual repulsions among the VELPS of Ng , the toroidal shape of the $\mathrm{V}(\mathrm{Ng})$ basin is maintained, with only a slightly closed toroidal hole on the side of the $\mathrm{V}(\mathrm{Ng})$ basin opposite the $\mathrm{Ng}-\mathrm{F}$ bond. Correspondingly, a region of high electrostatic potential also occurs opposite to the $\mathrm{Ng}-\mathrm{F}$ bond in the molecular electrostatic potential surfaces (MEPS) of $[\mathrm{KrF}]^{+}$and $[\mathrm{XeF}]^{+}$ (vide infra).

The localization domain reduction tree diagrams ${ }^{[S 40]}$ provide the hierarchies of the ELF basins and the corresponding basin separation values ($f_{\text {sep }}$) for $[\mathrm{FKrFXeF}]^{+}\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}$, NgF_{2}, and $[\mathrm{NgF}]^{+}$(Figures A1.24-A1.26). The ELF reduction of localization diagrams of $[\mathrm{FKrFXeF}]^{+},\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$, and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$reveal that the three cations initially separate at the same value $\left(f_{\text {sep }}=0.10\right)$ into $\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}$ and/or $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}} f$-localization domains. In $[\mathrm{FKrFXeF}]^{+}$, the core basin of Kr separates at a lower value $\left(f_{\text {sep }}=0.15\right)$ than the core basin of $\mathrm{Xe}\left(f_{\text {sep }}\right.$ $=0.23)$, and the $\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathrm{b}}$ and $\mathrm{F}_{\mathrm{t}} \mathrm{XeF} f$-localization domains ultimately separate into $\mathrm{V}(\mathrm{Ng})$ and $\mathrm{V}\left(\mathrm{F}_{\mathrm{b} / t}\right)$ basins at $f_{\text {sep }}$ values $(\mathrm{Kr}, 0.26(\mathrm{~b})$ and $0.49(\mathrm{t}) ; \mathrm{Xe}, 0.21(\mathrm{~b})$ and $0.35(\mathrm{t}))$ that are
similar to those encountered for $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}(0.25(\mathrm{~b})$ and $0.49(\mathrm{t}))$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}(0.22(\mathrm{~b})$ and $0.34(\mathrm{t})$). In all cases, the separations of the $\mathrm{V}(\mathrm{Ng})$ and $\mathrm{V}\left(\mathrm{F}_{\mathrm{t}}\right)$ valence basins occur at much higher $f_{\text {sep }}$ values than the $\mathrm{V}(\mathrm{Ng})$ and $\mathrm{V}\left(\mathrm{F}_{\mathrm{b}}\right)$ valence basins, which is consistent with Ng_{-} F_{t} bonds that are more covalent than the $\mathrm{Ng}---\mathrm{F}_{\mathrm{b}}$ bonds. The $f_{\text {sep }}$ values are also consistent with $\mathrm{Kr}-\mathrm{F}_{\mathrm{t} / \mathrm{b}}$ bonds that are more covalent than $\mathrm{Xe}-\mathrm{F}_{\mathrm{t} / \mathrm{b}}$ bonds. The $\mathrm{V}(\mathrm{Ng})$ and $\mathrm{V}\left(\mathrm{F}_{\mathrm{t}}\right)$ basins in $[\mathrm{FKrFXeF}]^{+}$and $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}$separate at $f_{\text {sep }}$ values similar to those of $[\mathrm{NgF}]^{+}(\mathrm{Kr}$, $0.51 ; \mathrm{Xe}, 0.36)$. These results are also consistent with the Wiberg bond indices obtained from NBO analyses (Table A1.16 and A1.17) and the QTAIM analyses (Table A1.18 and A1.19).

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A1.12. Calculated geometrical parameters and key frequencies for $[\mathrm{FKrFXeF}]^{+}$

	$\mathbf{X e}-\mathrm{F}_{\mathrm{t}}$	Xe---F	$\mathbf{K r - - - F ~} \mathbf{F}_{\mathbf{b}}$	$\mathbf{K r}-\mathrm{F}_{\mathbf{t}}$	$\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\text {b }}$	$\mathrm{XeF}_{\mathrm{b}} \mathrm{Kr}$	$\mathrm{F}_{\mathrm{t}} \mathrm{KrF}_{\mathbf{b}}$	\mathbf{v}_{1}	\mathbf{v}_{2}	v3	v4
B3LYP											
aVDZa	1.951	2.249	2.092	1.823	177.64	148.39	178.11	622	603	418	250
aVTZa	1.925	2.235	2.081	1.798	178.23	154.45	178.58	625	606	422	232
aVTDZa	1.928	2.242	2.091	1.823	177.79	149.80	178.27	622	602	416	244
Def2TZVP	1.917	2.237	2.092	1.799	178.09	152.97	178.46	620	601	409	234
B3LYP-D3 ${ }^{\text {a] }}$											
aVDZa	1.951	2.245	2.089	1.824	177.76	144.65	178.25	621	603	420	263
aVTZa	1.924	2.230	2.078	1.798	178.08	151.26	178.49	625	606	423	243
aVTDZa	1.928	2.237	2.089	1.823	177.81	146.24	178.30	622	602	417	257
Def2TZVP	1.917	2.232	2.089	1.799	178.00	149.95	178.39	620	601	410	244
PBE1PBE											
aVDZa	1.930	2.222	2.067	1.797	177.84	147.66	178.18	654	632	435	264
aVTZa	1.902	2.205	2.055	1.770	178.42	154.56	178.62	661	638	435	243
aVTDZa	1.907	2.213	2.067	1.797	177.97	149.18	178.31	655	632	431	258
Def2TZVP	1.895	2.207	2.065	1.771	178.30	153.06	178.54	657	634	422	245
PBE1PBE-D3 ${ }^{[a]}$											
aVDZa	1.930	2.220	2.066	1.797	177.89	146.00	178.25	654	632	436	270
aVTZa	1.902	2.203	2.053	1.770	178.37	153.16	178.59	661	637	436	247
aVTDZa	1.907	2.212	2.066	1.797	177.97	147.72	178.31	654	632	432	263
Def2TZVP	1.895	2.205	2.063	1.771	178.29	151.57	178.53	657	634	423	251
B3PW91											
aVDZa	1.939	2.232	2.077	1.809	177.65	146.00	178.10	637	617	425	264
aVTZa	1.912	2.216	2.065	1.783	178.11	152.20	178.44	643	622	427	244
aVTDZa	1.916	2.224	2.076	1.809	177.73	147.68	178.17	638	618	422	257
Def2TZVP	1.905	2.218	2.075	1.784	178.00	150.82	178.36	638	618	414	247
aVDZa	1.939	2.228	2.074	1.809	177.78	142.66	178.24	639	618	428	277
aVTZa	1.912	2.212	2.062	1.783	178.05	148.99	178.41	643	621	429	256
aVTDZa	1.916	2.220	2.074	1.809	177.83	144.08	178.31	639	618	424	270
Def2TZVP	1.905	2.214	2.072	1.784	177.98	147.52	178.35	636	617	417	259
B2PLYPD3											
aVDZa	1.947	2.245	2.081	1.826	177.90	143.92	178.30	612	594	433	265
aVTZa	1.917	2.225	2.066	1.795	178.27	151.60	178.56	620	603	436	244
aVTDZa	1.926	2.238	2.081	1.826	177.98	145.08	178.36	612	594	431	260
Def2TZVP	1.912	2.232	2.075	1.797	178.18	149.89	178.49	613	596	422	247
APFD											
aVDZa	1.934	2.221	2.067	1.802	177.92	142.39	178.32	649	626	433	282
aVTZa	1.906	2.205	2.055	1.775	178.20	149.43	178.50	653	630	434	258
aVTDZa	1.911	2.214	2.067	1.802	177.99	143.88	178.38	648	626	430	275
Def2TZVP	1.899	2.207	2.066	1.776	181.87	147.97	181.57	647	626	422	261
wB97XD											
aVDZa	1.927	2.231	2.074	1.790	178.34	151.78	178.54	662	644	423	249

[a] The GD3BJ dispersion was used.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

aVDZa	1.952	2.232	178.54	149.57	610	599	422	237
aVTZa	1.926	2.216	180.00	169.35	614	604	428	183
aVTDZa	1.930	2.224	178.79	151.81	612	601	413	229
Def2TZVP	1.919	2.219	180.00	166.68	611	600	415	186
PBE1PBE								
aVDZa	1.932	2.211	178.62	152.38	639	628	431	235
aVTZa	1.904	2.194	179.30	168.40	645	634	434	194
aVTDZa	1.909	2.203	178.85	155.97	640	629	422	223
Def2TZVP	1.896	2.197	179.08	164.52	642	631	421	199
PBE1PBE-D3 ${ }^{[a]}$								
aVDZa	1.932	2.209	178.60	150.48	640	628	432	243
aVTZa	1.904	2.192	179.11	164.61	645	634	436	202
aVTDZa	1.909	2.201	178.84	153.38	641	630	422	232
Def2TZVP	1.897	2.196	178.95	159.14	642	631	421	214
B3PW91								
aVDZa	1.941	2.221	178.47	150.92	625	614	424	236
aVTZa	1.913	2.204	178.97	163.68	629	619	428	199
aVTDZa	1.918	2.213	178.73	154.03	626	615	416	225
Def2TZVP	1.906	2.208	178.83	158.73	626	615	414	209
B3PW91-D3 ${ }^{\left[{ }^{[a]}\right.}$								
aVDZa	1.941	2.217	178.44	147.40	626	614	427	250
aVTZa	1.914	2.201	178.87	154.81	630	619	426	225
aVTDZa	1.918	2.209	178.69	149.74	628	616	417	241
Def2TZVP	1.906	2.204	178.78	152.09	628	616	413	231
B2PLYPD3								
aVDZa	1.949	2.227	178.66	151.64	609	598	428	232
aVTZa	1.919	2.207	179.31	167.72	611	601	430	201
aVTDZa	1.928	2.219	178.87	153.28	609	598	419	227
Def2TZVP	1.914	2.213	179.07	162.58	610	600	416	200
APFD								
aVDZa	1.935	2.210	178.51	147.10	634	623	431	254
aVTZa	1.908	2.194	178.94	155.58	639	628	431	226
aVTDZa	1.913	2.202	178.75	149.46	636	625	420	245
Def2TZVP	1.901	2.197	178.85	152.41	637	625	416	233
wB97XD								
aVDZa	1.929	2.220	178.96	159.99	651	640	428	211

[a] The GD3BJ dispersion was used.

Table A1.14. Calculated geometrical parameters and key frequencies for $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$

	$\mathbf{K r}-\mathbf{F}_{\mathbf{t}}$	$\mathbf{K r}--\mathbf{F}_{\mathbf{b}}$	$\mathbf{F}_{\mathbf{t}} \mathbf{K r F}_{\mathbf{b}}$	$\mathbf{K r F}_{\mathbf{b}} \mathbf{K r}$	$\mathbf{v}_{\mathbf{1}}$	$\mathbf{v}_{\mathbf{6}}$	$\mathbf{v}_{\mathbf{7}}$	$\mathbf{v}_{\mathbf{2}}$
B3LYP								
aVDZa	1.821	2.104	177.69	142.41	630	609	422	279
aVTZa	1.795	2.093	177.86	147.78	631	610	421	261
aVTDZa $_{\text {Def2TZVP }}$	1.821	2.104	177.69	142.41	630	609	422	279
B3LYP-D3 $^{[\text {a] }] ~}$	1.797	2.103	177.80	147.02	625	603	409	261

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

aVDZa	1.821	2.101	177.79	139.93	631	610	425	289
aVTZa	1.795	2.090	177.91	144.93	631	610	424	272
aVTDZa	1.821	2.101	177.79	139.93	631	610	425	289
Def2TZVP	1.797	2.100	177.90	144.14	625	603	412	272
PBE1PBE								
aVDZa	1.795	2.078	177.83	142.09	663	642	437	293
aVTZa	1.768	2.064	178.03	148.36	668	647	436	273
aVTDZa	1.795	2.078	177.83	142.09	663	642	437	293
Def2TZVP	1.769	2.074	177.99	147.40	663	641	424	274
PBE1PBE-D3 ${ }^{\left[{ }^{\text {a] }}\right.}$								
aVDZa	1.795	2.076	177.88	141.00	664	642	438	298
aVTZa	1.768	2.063	178.04	147.18	668	646	438	278
aVTDZa	1.795	2.076	177.88	141.00	664	642	438	298
Def2TZVP	1.769	2.072	178.00	146.12	663	641	425	279
B3PW91								
aVDZa	1.806	2.088	177.72	140.57	647	626	429	293
aVTZa	1.780	2.075	177.85	145.67	649	628	428	276
aVTDZa	1.806	2.088	177.72	140.57	647	626	429	293
Def2TZVPD	1.782	2.085	177.82	144.83	644	621	416	276
B3PW91-D3 ${ }^{\left[{ }^{\text {a] }}\right.}$								
aVDZa	1.806	2.085	177.81	138.34	648	627	431	302
aVTZa	1.780	2.073	177.91	143.16	650	628	430	285
aVTDZa	1.806	2.085	177.81	138.34	648	627	431	302
Def2TZVPD	1.782	2.082	177.91	142.24	645	622	419	286
B2PLYPD3								
aVDZa	1.823	2.098	177.81	137.62	615	589	439	295
aVTZa	1.792	2.082	177.96	143.31	622	597	439	279
aVTDZa	1.823	2.098	177.81	137.62	615	589	439	295
Def2TZVP	1.795	2.092	177.95	142.12	616	589	426	280
APFD								
aVDZa	1.799	2.078	177.92	138.14	658	636	436	306
aVTZa	1.773	2.065	178.01	143.64	661	639	436	288
aVTDZa	1.799	2.078	177.92	138.14	658	636	436	306
Def2TZVPD	1.774	2.075	178.01	142.75	656	633	424	288
wB97XD								
aVDZa	1.789	2.085	178.08	146.09	667	646	413	275

[a] The GD3BJ dispersion was used.

Table A1.15. Calculated geometrical parameters and frequencies for $[\mathrm{NgF}]^{+}$and NgF_{2}

	$[\mathbf{N g F}]^{+}$	
	$\mathrm{Kr}-\mathrm{F}$	v_{1}
B2PLYP-D3/Def2TZVP	1.737	$693(9)[<1]$
B3PW91-D3/aVTDZa ${ }^{[a]}$	1.755	$701(10)[<1]$
		Xe-F
B2PLYP-D3/Def2TZVP	1.873	$656(11)[6]$

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

B3PW91-D3/aVTDZa ${ }^{[a]}$	1.878	671(11)[7]		
NgF_{2}				
	Kr-F	v_{1}	v_{2}	v_{3}
B2PLYP-D3/Def2TZVP	1.897	578(0)[235]	460(51)[0]	234(0)[13]
B3PW91-D3/aVTDZa ${ }^{[a]}$	1.895	605(0)[13]	505(51)[0]	235(0)[13]
	Xe-F	V_{1}	v_{2}	V3
B2PLYP-D3/Def2TZVP	2.002	544(0)[245]	499(54)[0]	208(0)[16]
B3PW91-D3/aVTDZa ${ }^{[a]}$	2.002	558(0)[245]	517(44)[0]	208(0)[15]

[a] The GD3BJ dispersion was used.

Table A1.16. Natural population analysis (NPA) charges, Wiberg valences, and Wiberg bond indices for $[\mathrm{FKrFXeF}]^{+}\left(C_{\mathrm{s}}\right)$, and $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}\left(C_{2 \mathrm{v}}\right)(\mathrm{Ng}=\mathrm{Xe}, \mathrm{Kr})$

B2PLYP-D3/Def2-TZVPD (F, Kr, Xe)

[FKrFXeF] ${ }^{+}$					$\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$					$\left[\mathrm{Kr}_{2} \mathbf{F}_{3}\right]^{+}$				
Bond Indices		NPA Charges [Valences]			Bond Indices		NPA Charges [Valences]			Bond Indices		NPA Charges [Valences]		
$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}(\mathrm{Xe})}$	0.720	Xe	1.341	[0.934]	$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$	0.714	Xe	1.343	[0.931]					
$\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$	0.196	Kr	1.144	[1.040]	$\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$	0.200						Kr	1.143	[1.039]
$\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}$	0.234	$\mathrm{F}_{\mathrm{t} \text { (Xe) }}$	-0.475	[0.792]			F_{t}	-0.480	[0.786]	$\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}$	0.227			
$\mathrm{Kr}-\mathrm{F}_{\mathrm{t}(\mathrm{Kr})}$	0.790	F_{b}	-0.679	[0.591]			F_{b}	-0.725	[0.516]	$\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$	0.797	F_{b}	-0.639	[0.658]
		$\mathrm{F}_{\mathrm{t}(\mathrm{Kr})}$	-0.330	[0.909]								F_{t}	-0.323	[0.914]
		$\sum_{\left[\mathrm{FKrFXeF]}^{+}\right.}$	1.001				$\sum \sum_{\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}}$	1.001				$\sum\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$	1.001	
Ng---Ng	0.009				Ng---Ng	0.010				$\mathrm{Ng}--\mathrm{Ng}$	0.008			

B3PW91-GD3BJ/aug-cepVDZ(-PP) (F, Kr)/aug-cepVTZ(-PP) (Xe)

[FKrFXeF] $^{+}$					$\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$					$\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$				
Bond Indices		NPA Charges [Valences]			Bond Indices		NPA Charges [Valences]			Bond Indices		NPA Charges [Valences]		
$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}(\mathrm{Xe})}$	0.737	Xe	1.249	[1.014]	$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$	0.730	Xe	1.247	[1.010]					
$\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$	0.252	Kr	1.051	[1.066]	$\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$	0.257						Kr	1.054	[1.066]
$\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}$	0.286	$\mathrm{F}_{\mathrm{t} \text { (Xe) }}$	-0.430	[0.836]			F_{t}	-0.437	[0.830]	$\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}$	0.280			
$\mathrm{Kr}-\mathrm{F}_{\mathrm{t}(\mathrm{Kr})}$	0.758	F_{b}	-0.562	[0.762]			F_{b}	-0.620	[0.676]	$\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$	0.766	F_{b}	-0.509	[0.844]
		$\mathrm{F}_{\mathrm{t}(\mathrm{Kr})}$	-0.307	[0.926]								F_{t}	-0.299	[0.931]
		$\sum_{\left[\mathrm{FKrFXeF}^{+}\right.}{ }^{+}$	1.001				$\sum_{\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}}$	1.003				$\sum \sum_{\left.\mid K_{2} \mathbf{F}_{3}\right]^{+}}$	1.001	
Ng---Ng	0.013				Ng---Ng	0.013				Ng---N	0.011			

Table A1.17. Natural population analysis (NPA) charges, Wiberg valences, and Wiberg bond indices for $[\mathrm{NgF}]^{+}\left(C_{\infty v}\right)$ and $\mathrm{NgF}_{2}\left(D_{\infty \mathrm{h}}\right)(\mathrm{Ng}=\mathrm{Xe}, \mathrm{Kr})$

B2PLYP-D3/Def2-TZVPD (F, Kr, Xe)

Bond Indices		NPA Charges [Valences]			Bond Indices		NPA Charges [Valences]		
$[\mathrm{XeF}]^{+}$					$[\mathrm{KrF}]^{+}$				
$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$	0.896	Xe	1.348	[0.896]	$\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$	0.993	Kr	1.166	[0.993]
		F_{t}	-0.348	[0.896]			F_{t}	-0.166	[0.993]
		$\sum_{[\mathbf{X e F}]^{+}}$	0.000				$\sum_{[\mathbf{K r F}]^{+}}$	0.000	
XeF_{2}					$\mathbf{K r F}{ }_{2}$				
$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$	0.499	Xe	1.276	[0.997]	$\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$	0.544	Kr	1.071	[1.089]
$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$	0.499	F_{t}	-0.638	[0.608]	$\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$	0.544	F_{t}	-0.536	[0.723]
		F_{t}	-0.638	[0.608]			F_{t}	-0.536	[0.723]
		$\sum \mathrm{XeF}_{2}$	0.000				$\sum \mathrm{KrF}_{2}$	-0.001	

B3PW91-GD3BJ/aug-ccpVDZ(-PP) (F, Kr)/aug-ccpVTZ(-PP) (Xe)

Bond Indices		NPA Charges [Valences]			Bond Indices		NPA Charges [Valences]		
$[\mathrm{XeF}]^{+}$					${ }^{\mathbf{K r F F}}{ }^{+}$				
$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$	0.926	Xe	1.310	[0.926]	$\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$	0.999	Kr	1.147	[0.999]
		F_{t}	-0.310	[0.926]			F_{t}	-0.147	[0.999]
		$\sum_{[\mathbf{X e F}]^{+}}$	0.000				$\sum_{[\mathbf{K r F]}}{ }^{+}$	0.000	
XeF_{2}					$\mathbf{K r F}{ }_{2}$				
$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$	0.538	Xe	1.164	[1.077]	$\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$	0.550	Kr	0.974	[1.101]
$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$	0.538	F_{t}	-0.582	[0.676]	$\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$	0.550	F_{t}	-0.487	[0.777]
		F_{t}	-0.582	[0.676]			F_{t}	-0.487	[0.777]
		$\sum \mathrm{XeFF}_{2}$	0.000				$\sum \mathrm{KrF}_{2}$	0.000	

Table A1.18. QTAIM density of all electrons $\left(\rho_{\mathrm{b}}\right)$, Laplacian of electron density $\left(\nabla^{2} \rho_{\mathrm{b}}\right)$, energy density $\left(H_{\mathrm{b}}\right)$, QTAIM delocalization Indices (δ), QTAIM atomic populations (\bar{N}), and ELF basin populations $(\bar{N}[\mathrm{~A}])$ for $[\mathrm{FKrFXeF}]^{+}\left(C_{\mathrm{s}}\right)$ and $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}\left(C_{2 \mathrm{v}}\right)(\mathrm{Ng}=\mathrm{Xe}, \mathrm{Kr}){ }^{[\mathrm{a}]}$

B2PLYP-D3/Def2-TZVPD (F, Kr, Xe)

Bond	$\rho_{\text {b }}$	$\nabla^{2} \rho_{b}$	$H_{\text {b }}$	δ	\bar{N}		$\bar{N}[\mathbf{A}]$	
[FKrFXeF] ${ }^{+}$								
$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}(\mathrm{Xe})}$	0.148	0.248	-0.083	0.908	$\bar{N}(\mathrm{Xe})$	52.69	$\bar{N}[\mathrm{C}(\mathrm{Xe})]^{[\mathrm{b}]}$	46.87
$\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$	0.067	0.190	-0.014	0.435	$\bar{N}(\mathrm{Kr})$	34.94	$\bar{N}[\mathrm{~V}(\mathrm{Xe})]$	6.80
$\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}$	0.084	0.237	-0.018	0.472	$\bar{N}\left(\mathrm{~F}_{\mathrm{t}(\mathrm{Xe})}\right)$	9.47	$\bar{N}[\mathrm{C}(\mathrm{Kr})]$	27.79
$\mathrm{Kr}-\mathrm{F}_{\mathrm{t}(\mathrm{Kr})}$	0.174	0.144	-0.104	0.912	$\bar{N}\left(\mathrm{~F}_{\mathrm{b}}\right)$	9.59	$\bar{N}[\mathrm{~V}(\mathrm{Kr})$]	6.93
					$\bar{N}\left(\mathrm{~F}_{\mathrm{t}(\mathrm{Kr})}\right)$	9.31		2.15
							$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}(\mathrm{Xe})}\right)\right]$	7.45
							$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{b}}\right)\right]$	2.13
							$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{b}}\right)\right]$	7.42
							$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}(\mathrm{Kr})}\right)\right]$	2.14
							$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}(\mathrm{Kr})}\right)\right]$	7.31
$\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$								
$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$	0.147	0.248	-0.082	0.904	$\bar{N}(\mathrm{Xe})$	52.69	$\bar{N}[\mathrm{C}(\mathrm{Xe})]^{[\mathrm{c}]}$	46.28
$\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$	0.070	0.195	-0.015	0.449	$\bar{N}\left(\mathrm{~F}_{\mathrm{t}}\right)$	9.48	$\bar{N}[\mathrm{~V}(\mathrm{Xe})]$	6.80
					$\bar{N}\left(\mathrm{~F}_{\mathrm{b}}\right)$	9.66	$\bar{N}\left[\mathrm{C}^{\left(\mathrm{F}_{\mathrm{t}(\mathrm{Xe})}\right)}{ }^{\text {a }}\right.$]	2.15
							$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}(\mathrm{Xe})}\right)\right]$	7.46
							$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{b}}\right)\right]$	2.13
							$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{b}}\right)\right]$	7.50
$\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$								
$\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}$	0.081	0.232	-0.016	0.457	$\bar{N}(\mathrm{Kr})$	34.94	$\bar{N}[\mathrm{C}(\mathrm{Kr})$]	27.77
$\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$	0.175	0.141	-0.105	0.917	$\bar{N}\left(\mathrm{~F}_{\mathrm{t}}\right)$	9.30	$\bar{N}[\mathrm{~V}(\mathrm{Kr})$]	6.93
					$\bar{N}\left(\mathrm{~F}_{\mathrm{b}}\right)$	9.52	$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}(\mathrm{Kr})}\right)\right]$	2.14
							$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}(\mathrm{Kr})}\right)\right]$	7.30
							$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{b}}\right)\right]$	2.14
							$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{b}}\right)\right]$	7.35

Table A1.18. (continued)

B3PW91-GD3BJ/aug-cepVDZ(-PP) (F, Kr)/aug-ccpVTZ(-PP) (Xe)

Bond	$\rho_{\text {b }}$	$\nabla^{2} \rho_{\text {b }}$	$H_{\text {b }}$	δ	\bar{N}		$\bar{N}[\mathbf{A}]$	
[FKrFXeF$]^{+}$								
$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}(\mathrm{Xe})}$	0.144	0.292	-0.065	1.072	$\bar{N}(\mathrm{Xe})$	52.73	$\bar{N}[\mathrm{C}(\mathrm{Xe})]^{[\mathrm{b}]}$	47.39
$\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$	0.069	0.198	-0.011	0.517	$\bar{N}(\mathrm{Kr})$	34.96	$\bar{N}[\mathrm{~V}(\mathrm{Xe})]$	6.85
$\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}$	0.082	0.253	-0.010	0.547	$\bar{N}\left(\mathrm{~F}_{\mathrm{t}(\mathrm{Xe})}\right)$	9.45	$\bar{N}[\mathrm{C}(\mathrm{Kr})]$	27.25
$\mathrm{Kr}-\mathrm{F}_{\mathrm{t}(\mathrm{Kr})}$	0.160	0.258	-0.065	1.078	$\bar{N}\left(\mathrm{~F}_{\mathrm{b}}\right)$	9.56	$\bar{N}[\mathrm{~V}(\mathrm{Kr})]$	7.02
					$\bar{N}\left(\mathrm{~F}_{\mathrm{t}(\mathrm{Krr})}\right)$	9.31	$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}(\mathrm{Xe})}\right)\right]$	2.15
							$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}(\mathrm{Xe})}\right)\right]$	7.44
							$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{b}}\right)\right]$	2.16
							$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{b}}\right)\right]$	7.38
							$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}(\mathrm{Kr})}\right)\right]$	2.15
							$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}(\mathrm{Kr})}\right)\right]$	7.21
$\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$								
$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$	0.143	0.292	-0.065	1.066	$\bar{N}(\mathrm{Xe})$	52.73	$\bar{N}[\mathrm{C}(\mathrm{Xe})]^{[\mathrm{c}]}$	46.25
$\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$	0.071	0.203	-0.012	0.529	$\bar{N}\left(\mathrm{~F}_{\mathrm{t}}\right)$	9.46	$\bar{N}[\mathrm{~V}(\mathrm{Xe})]$	6.85
					$\bar{N}\left(\mathrm{~F}_{\mathrm{b}}\right)$	9.62	$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}(\mathrm{Xe})}\right)\right]$	2.16
							$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}(\mathrm{Xe})}\right)\right]$	7.44
							$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{b}}\right)\right]$	2.16
							$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{b}}\right)\right]$	7.44
$\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$								
$\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}$	0.079	0.247	-0.009	0.535	$\bar{N}(\mathrm{Kr})$	34.96	$\bar{N}[\mathrm{C}(\mathrm{Kr})]$	27.80
$\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$	0.161	0.256	-0.066	1.086	$\bar{N}\left(\mathrm{~F}_{\mathrm{t}}\right)$	9.30	$\bar{N}[\mathrm{~V}(\mathrm{Kr})]$	7.01
					$\bar{N}\left(\mathrm{~F}_{\mathrm{b}}\right)$	9.49	$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}(\mathrm{Kr})}\right)\right]$	2.16
							$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}(\mathrm{Kr})}\right)\right]$	7.19
							$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{b}}\right)\right]$	2.16
							$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{b}}\right)\right]$	7.32

[a] The atomic unit (au) for $\nabla^{2} \rho_{\mathrm{b}}$ is $e / a_{0}{ }^{5}\left(1 \mathrm{au}=24.098\right.$ e $\left.\AA^{-5}\right)$. The au for ρ_{b} is $e / a_{0}{ }^{3}(1 \mathrm{au}$ $\left.=6.748 \mathrm{e} \AA^{-3}\right)$. The au for H is $e^{2} / a_{0}{ }^{4}\left(1 \mathrm{au}=E_{\mathrm{h}} / a_{0}{ }^{3}=6.748 E_{\mathrm{h}} / \AA^{3}\right)$. $a_{0}=$ Bohr radius $=$ $0.52918 \AA . \quad e=$ charge on an electron. $E_{\mathrm{h}}=$ hartree $=e^{2} / a_{0} .[\mathrm{b}] \bar{N}[\mathrm{C}(\mathrm{Xe})]=117-$ $\left\{\bar{N}[\mathrm{C}(\mathrm{Kr})]+\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}(\mathrm{Xe})}\right)\right]+\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{b}}\right)\right]+\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}(\mathrm{Kr})}\right)\right]+\bar{N}[\mathrm{~V}(\mathrm{Xe})]+\bar{N}[\mathrm{~V}(\mathrm{Kr})]+\right.$ $\left.\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}(\mathrm{Xe})}\right)\right]+\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{b}}\right)\right]+\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}(\mathrm{Kr})}\right)\right]\right\} \cdot[\mathrm{c}] \bar{N}[\mathrm{C}(\mathrm{Xe})]=135-\left\{2 \mathrm{x} \bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}(\mathrm{Xe})}\right)\right]+\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{b}}\right)\right]\right.$ $\left.+2 \mathrm{x} \bar{N}[\mathrm{~V}(\mathrm{Xe})]+2 \mathrm{x} \bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}(\mathrm{Xe})}\right)\right]+\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{b}}\right)\right]\right\}$.

Table A1.19. QTAIM density of all electrons $\left(\rho_{\mathrm{b}}\right)$, Laplacian of electron density $\left(\nabla^{2} \rho_{\mathrm{b}}\right)$, energy density $\left(H_{\mathrm{b}}\right)$, QTAIM delocalization indices (δ), QTAIM atomic populations (\bar{N}), and ELF basin populations $(\bar{N}[\mathrm{~A}])$ in $[\mathrm{NgF}]^{+}\left(C_{\infty v}\right)$ and $\mathrm{NgF}_{2}\left(D_{\infty \mathrm{oh}}\right)(\mathrm{Ng}=\mathrm{Xe}, \mathrm{Kr})^{[\mathrm{a}]}$

B2PLYP-D3/Def2-TZVPD (F, Kr, Xe)

Bond	ρ_{b}	$\nabla^{2} \delta_{\mathrm{b}}$	H_{b}	δ	\bar{N}	$\bar{N}[\mathrm{~A}]$

	$[\mathbf{X e F}]^{+}$									
$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$	0.161	0.256	-0.096	1.035	$\bar{N}(\mathrm{Xe})$	52.64	$\bar{N}[\mathrm{C}(\mathrm{Xe})]^{[b]}$	46.76		
					$\bar{N}\left(\mathrm{~F}_{\mathrm{t}}\right)$	9.36	$\bar{N}[\mathrm{~V}(\mathrm{Xe})]$	6.72		
						$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}}\right)\right]$	2.15			
						$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}}\right)\right]$	7.37			

	$\left[\mathbf{K r F}^{+}\right.$							
$\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$	0.200	0.051	-0.141	1.089	$\bar{N}(\mathrm{Kr})$	34.84	$\bar{N}[\mathrm{C}(\mathrm{Kr})]$	27.30
					$\bar{N}\left(\mathrm{~F}_{\mathrm{t}}\right)$	9.16	$\bar{N}[\mathrm{~V}(\mathrm{Kr})]$	7.13
						$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}}\right)\right]$	2.13	
						$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}}\right)\right]$	6.86	

	$\mathbf{X e F}_{2}$							
$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$	0.121	0.225	-0.056	0.759	$\bar{N}(\mathrm{Xe})$	52.78	$\bar{N}[\mathrm{C}(\mathrm{Xe})]{ }^{[\mathrm{cc}]}$	45.81
$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$	0.121	0.225	-0.056	0.759	$\bar{N}\left(\mathrm{~F}_{\mathrm{t}}\right)$	9.61	$\bar{N}[\mathrm{~V}(\mathrm{Xe})]$	6.86
					$\bar{N}\left(\mathrm{~F}_{\mathrm{t}}\right)$	9.61	$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}}\right)\right]$	2.12
						$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}}\right)\right]$	7.54	
						$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}}\right)\right]$	2.12	
					$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}}\right)\right]$	7.54		

	$\mathbf{K r F}_{2}$							
$\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$	0.137	0.222	-0.061	0.742	$\bar{N}(\mathrm{Kr})$	35.05	$\bar{N}[\mathrm{C}(\mathrm{Kr})]$	27.19
$\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$	0.137	0.222	-0.061	0.742	$\bar{N}\left(\mathrm{~F}_{\mathrm{t}}\right)$	9.48	$\bar{N}[\mathrm{~V}(\mathrm{Kr})]$	7.20
					$\bar{N}\left(\mathrm{~F}_{\mathrm{t}}\right)$	9.48	$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}}\right)\right]$	2.14
							$\bar{N}\left[\mathrm{~F}\left(\mathrm{~F}_{\mathrm{t}}\right)\right]$	7.32
						$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}}\right)\right]$	2.14	
						$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}}\right)\right]$	7.32	

Table A1.19. (continued)

B3PW91-GD3BJ/aug-ccpVDZ(-PP) (F, Kr)/aug-ccpVTZ(-PP) (Xe)

Bond	$\rho_{\text {b }}$	$\nabla^{2} \rho_{b}$	$H_{\text {b }}$	δ	\bar{N}		$\bar{N}[\mathbf{A}]$	
$\left.{ }^{\text {[XeF }}\right]^{+}$								
$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$	0.157	0.298	-0.076	1.247	$\bar{N}(\mathrm{Xe})$	52.66	$\bar{N}[\mathrm{C}(\mathrm{Xe})]^{[\mathrm{b}]}$	46.76
					$\bar{N}\left(\mathrm{~F}_{\mathrm{t}}\right)$	9.34	$\bar{N}[\mathrm{~V}(\mathrm{Xe})]$	6.75
							$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}}\right)\right]$	2.14
							$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}}\right)\right]$	7.38
$[\mathrm{KrF}]^{+}$								
$\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$	0.179	0.200	-0.085	1.301	$\bar{N}(\mathrm{Kr})$	34.85	$\bar{N}[\mathrm{C}(\mathrm{Kr})$]	27.29
					$\bar{N}\left(\mathrm{~F}_{\mathrm{t}}\right)$	9.15	$\bar{N}[\mathrm{~V}(\mathrm{Kr})]$	7.10
							$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}}\right)\right]$	2.14
							$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}}\right)\right]$	6.87
$\mathbf{X e F}_{2}$								
$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$	0.119	0.263	-0.044	0.892	$\bar{N}(\mathrm{Xe})$	52.81	$\bar{N}[\mathrm{C}(\mathrm{Xe})]^{[\mathrm{c}]}$	45.77
$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$	0.119	0.263	-0.044	0.892	$\bar{N}\left(\mathrm{~F}_{\mathrm{t}}\right)$	9.59	$\bar{N}[\mathrm{~V}(\mathrm{Xe})]$	6.91
					$\bar{N}\left(\mathrm{~F}_{\mathrm{t}}\right)$	9.59	$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}}\right)\right]$	2.16
							$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}}\right)\right]$	7.50
							$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}}\right)\right]$	2.16
							$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}}\right)\right]$	7.50
$\mathbf{K r F}{ }_{2}$								
$\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$	0.137	0.222	-0.061	0.886	$\bar{N}(\mathrm{Kr})$	35.04	$\bar{N}[\mathrm{C}(\mathrm{Kr})$]	27.11
$\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$	0.137	0.222	-0.061	0.886	$\bar{N}\left(\mathrm{~F}_{\mathrm{t}}\right)$	9.48	$\bar{N}[\mathrm{~V}(\mathrm{Kr})$]	7.17
					$\bar{N}\left(\mathrm{~F}_{\mathrm{t}}\right)$	9.48	$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}}\right)\right]$	2.14
							$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}}\right)\right]$	7.32
							$\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}}\right)\right]$	2.14
							$\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}}\right)\right]$	7.32

[a] The atomic unit (au) for $\nabla^{2} \rho_{\mathrm{b}}$ is $e / a_{0}{ }^{5}\left(1 \mathrm{au}=24.098\right.$ e $\left.\AA^{-5}\right)$. The au for ρ_{b} is $e / a_{0}{ }^{3}(1 \mathrm{au}$ $=6.748$ e $\left.\AA^{-3}\right)$. The au for H is $e^{2} / a_{0}^{4}\left(1 \mathrm{au}=E_{\mathrm{h}} / a_{0}{ }^{3}=6.748 E_{\mathrm{h}} / \AA^{3}\right)$. $a_{0}=$ Bohr radius $=$ $0.52918 \AA . \quad e=$ charge on an electron. $E_{\mathrm{h}}=$ hartree $=e^{2} / a_{0} .[\mathrm{b}] \bar{N}[\mathrm{C}(\mathrm{Xe})]=63-$ $\left\{\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}}\right)\right]+\bar{N}[\mathrm{~V}(\mathrm{Xe})]+\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}}\right)\right]\right\} .[\mathrm{c}] \bar{N}[\mathrm{C}(\mathrm{Xe})]=72-\left\{2 \mathrm{x} \bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{t}}\right)\right]+\bar{N}\left[\mathrm{C}\left(\mathrm{F}_{\mathrm{b}}\right)\right]+\right.$ $\left.\bar{N}[\mathrm{~V}(\mathrm{Xe})]+2 \mathrm{x} \bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}(\mathrm{Xe})}\right)\right]+\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{b}}\right)\right]\right\}$.

Figure A1.21. Contour maps of the charge density showing the bond paths and the intersection of the interatomic surfaces (top) and charge density contour maps of the Laplacian distribution (bottom) in $[\mathrm{FKrFXeF}]^{+},\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+},[\mathrm{NgF}]^{+}$and $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}$, $\mathrm{Xe})$. The nuclear positions in the contour maps of the charge density are identical to those in the contour maps of the Laplacian distribution. The contour values start at ± 0.001 a.u. and increase in the order $\pm 2 \times 10^{n}, \pm 4 \times 10^{n}$, and $\pm 8 \times 10^{n}$ with n starting at -3 and increasing in increments of 1 to give a maximum contour value of 8×10^{6} with several additional contour values on the contour maps of the Laplacian distribution $\left([\mathrm{FKrFXeF}]^{+}\right.$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}: \pm 0.072, \pm 0.07, \pm 0.06, \pm 0.05, \pm 0.03$ a.u.; $[\mathrm{XeF}]^{+}: \pm 0.07, \pm 0.06, \pm 0.055$, $\pm 0.05, \pm 0.045, \pm 0.038, \pm 0.035, \pm 0.0347$ a.u.; $\mathrm{XeF}_{2}: \pm 0.069, \pm 0.065, \pm 0.060, \pm 0.05$, $\pm 0.032, \pm 0.025$ a.u.). Bond critical points are denoted by blue dots. Solid blue contours denote positive and dashed red contours denote negative values of $\nabla^{2} \rho$.

[FKrFXeF] ${ }^{+}$

$[\mathrm{KrF}]^{+}$

$$
\eta(r)=0.60
$$

$\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$

$[\mathrm{XeF}]^{+}$

XeF_{2}

Figure A1.23. ELF isosurface plots at $\eta(\mathbf{r})=0.60$ (B2PLYP-D3/Def2-TZVPD) for $[\mathrm{FKrFXeF}]^{+},\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+},[\mathrm{NgF}]^{+}$, and $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Xe}, \mathrm{Kr})$. Color code: red = core; blue $=$ monosynaptic basin. Two orientations are shown for the $\left[\mathrm{Ng}_{2} \mathrm{~F}_{3}\right]^{+}$cations and NgF_{2}, and three orientations are shown for the $[\mathrm{NgF}]^{+}$cations.

$[\mathrm{KrF}]^{+}\left(C_{\infty v}\right)$
$\left[\mathrm{FKrFXeF}^{+}\left(\mathrm{C}_{s}\right)\right.$

$$
0.23\left[\begin{array}{l}
0.21-\left[\begin{array}{l}
\mathrm{V}(\mathrm{Xe}) \\
\mathrm{V}\left(\mathrm{~F}_{\mathrm{b}}\right)
\end{array}\right. \\
\mathrm{c}(\mathrm{Xe}) \\
0.35-\left[\begin{array}{l}
\mathrm{V}(\mathrm{Xe}) \\
\mathrm{V}\left(\mathrm{~F}_{\mathrm{t}(\mathrm{Xe}}\right)
\end{array}\right.
\end{array}\right.
$$

Figure A1.24. ELF reduction of the localization diagrams (B2PLYP-D3/Def2-TZVPD) for $[\mathrm{FKrFXeF}]^{+}, \mathrm{NgF}_{2}$, and $[\mathrm{NgF}]^{+}$showing the ordering of localization nodes and the boundary isosurface values, $\eta(\mathbf{r})$ (also referred to as $f_{\text {sep-}}$-values), at which the reducible domains split.

$\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}\left(\mathrm{C}_{2 \mathrm{v}}\right)$

$\mathrm{XeF}_{2}\left(\boldsymbol{D}_{\alpha h}\right)$

$\left[\mathrm{XeF}^{+}{ }^{\left(C_{\alpha v}\right)}\right.$

Figure A1.25. ELF reduction of the localization diagrams (B2PLYP-D3/Def2-TZVPD) for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}, \mathrm{XeF}_{2}$, and $[\mathrm{XeF}]^{+}$showing the ordering of localization nodes and the boundary isosurface values, $\eta(\mathbf{r})$ (also referred to as $f_{\text {sep-values), at which the reducible }}$ domains split.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

$\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}\left(\mathrm{C}_{2 \mathrm{v}}\right)$

$\operatorname{KrF}_{2}\left(D_{\alpha h}\right)$

$\left[\mathrm{KrF}^{+}\left(C_{x v}\right)\right.$

Figure A1.26. ELF reduction of the localization diagrams (B2PLYP-D3/Def2-TZVPD) for $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}, \mathrm{KrF}_{2}$, and $[\mathrm{KrF}]^{+}$showing the ordering of localization nodes and the boundary isosurface values, $\eta(\mathbf{r})$ (also referred to as $f_{\text {sep }}$-values), at which the reducible domains split.

Figure A1.27. The calculated molecular electrostatic potentials of the $[\mathrm{FKrFXeF}]^{+}$cation at the 0.001 e $a_{0}{ }^{-3}$ isosurface, where the extrema of selected electrostatic potentials are indicated by arrows. The optimized geometries and MEPS were calculated at the B2PLYP-D3/Def2-TZVPD level of theory.

$$
\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}
$$

Figure A1.28. The calculated molecular electrostatic potentials of the $\left[\mathrm{Kr}_{2} \mathrm{~F}_{3}\right]^{+}$cation at the $0.001 \mathrm{e} a_{0}{ }^{-3}$ isosurface, where the extrema of selected electrostatic potentials are indicated by arrows. The optimized geometries and MEPS were calculated at the B2PLYP-D3/Def2-TZVPD level of theory.

$\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$

Figure A1.29. The calculated molecular electrostatic potentials of the $\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$cation at the 0.001 e $a_{0}{ }^{-3}$ isosurface, where the extrema of selected electrostatic potentials are indicated by arrows. The optimized geometries and MEPS were calculated at the B2PLYP-D3/Def2-TZVPD level of theory.

$\left[\mathrm{KrF]}{ }^{+}\right.$

[XeF$]^{+}$

Figure A1.30. Calculated molecular electrostatic potentials at the 0.001 e $a_{0}{ }^{-3}$ isosurfaces of the $[\mathrm{NgF}]^{+}$cations ($\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe}$), where the extrema of selected electrostatic potentials are indicated by arrows. The optimized geometries and MEPS were calculated at the B2PLYP-D3/Def2-TZVPD level of theory.

Figure A1.31. Calculated molecular electrostatic potentials at the $0.001 \mathrm{e} a_{0}{ }^{-3}$ isosurfaces of $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$. The extrema of selected electrostatic potentials are indicated by arrows. The optimized geometries and MEPS were calculated at the B2PLYP-D3/Def2TZVPD level of theory.

References

[S1] Elliot, H. S. A.; Lehmann, J. F.; Mercier, H. P. A.; Jenkins, D. B.; Schrobilgen, G. J. Inorg. Chem. 2010, 49, 8504-8523.
[S2] Mukhtar, M. A-.; Holloway, J. H.; Hope, E. G.; Schrobilgen, G. J. J. Chem. Soc. Dalton Trans. 1991, 2831-2834.
[S3] Lehmann, J. F.; Dixon, D. A.; Schrobilgen, G. J. Inorg. Chem. 2001, 40, 30023017, and references therein.
[S4] Griffiths, J. E.; Sunder, W. A. J. Chem. Phys. 1982, 77, 1087-1092.
[S5] Lozinšek, M.; Mercier, H. P. A.; Schrobilgen, G. J. Angew. Chem. Int. Ed. 2021, 60, 8149-8156.
[S6] Burns, J. H. J. Phys. Chem. 1963, 67, 536.
[S7] Burns, J. H.; Ellison, R. D.; Levy, H. A. J. Phys. Chem. 1963, 67, 1569-1570.
[S8] Ibers, J. A.; Hamilton, W. C. Science, 1963, 139, 106-107.
[S9] Burns, H. H.; Agron, P. A.; Levy, H. A. Science, 1963, 139, 1208-1209.
[S10] Bürger, H.; Ma, S.; Breidung, J.; Thiel, W. J. Chem. Phys. 1996, 104, 4945-4953.
[S11] Bartlett, N.; DeBoer, B. G.; Hollander, F. J.; Sladky, F. O.; Templeton, D. H.; Zalkin, A. Inorg. Chem. 1974, 13, 780-785.
[S12] Mazej, Z.; Goreshnik, E. Eur. J. Inorg. Chem. 2009, 29, 4503-4506.
[S13] Leary, K.; Templeton, D. H.; Zalkin, A.; Bartlett, N. Inorg. Chem. 1973, 12, 1726-1730.
[S14] Jesih, A.; Lutar, K.; Leban, I.; Žemva, B. Eur. J. Solid State Inorg. Chem. 1991, 28, 829-840.
[S15] Pointner, B. E.; Suontamo, R. J.; Schrobilgen, G. J. Inorg. Chem. 2006, 45, 15171534.
[S16] Bartlett, N.; Einstein, F.; Stewart, D. F.; Trotter, J. J. Chem. Soc. (A), 1967, 11901193.
[S17] Lutar, K.; Jesih, A.; Leban, I.; Žemva, B.; Bartlett, N. Inorg. Chem. 1989, 28, 3467-3471.
[S18] Mazej, Z.; Darriet, J.; Grannec, J.; Lutar, K.; Tressaud, A.; Žemva, B. J. Fluor. Chem. 1999, 99, 25-28.
[S19] Hughes, M. J.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 2010, 49, 35013515.
[S20] Goettel, J. T.; Bortolus, M. R.; Stuart, D. G.; Mercier, H. P. A.; Schrobilgen, G. J. Chem. Eur. J. 2019, 25, 15815-15829.
[S21] Fir, B. A.; Gerken, M.; Pointner, B. E.; Mercier, H. P. A.; Dixon, D. A.; Schrobilgen, G. J. J. Fluor. Chem. 2000, 105, 159-167, and references therein.
[S22] Fateley, W. G.; Dollish, F. R.; McDevitt, N. T.; Bentley, F. F. Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation Method, Wiley, New York, 1972.
[S23] Adams, C. J. J. Raman Spectrosc. 1974, 2, 391-397.
[S24] Mercier, H. P. A.; Breddemann, U.; Brock, D. S.; Bortolus, M. R.; Schrobilgen, G. J. Chem. Eur. J. 2019, 25, 12105-12119.
[S25] Debackere, J. R.; Mercier, H. P. A.; Schrobilgen, G. J. J. Am. Chem. Soc. 2014, 136, 3888-3903.
[S26] Žemva, B.; Jesih, A.; Templeton, D. H.; Zalkin, A.; Cheetham, A. K.; Bartlett, N. J. Am. Chem. Soc. 1987, 109, 7420-7427.
[S27] Tramšek, M.; Žemva, B. Acta. Chem. Slov. 2006, 53, 105-116.
[S28] Bunič, T.; Tavčar, G.; Tramšek, M.; Žemva, B. Inorg. Chem. 2006, 45, 10381042.
[S29] Bunič, T.; Tramšek, M.; Goreshnik, E.; Tavčar, G.; Žemva, B. Inorg. Chem. 2007, 46, 5276-5282.
[S30] Bunič, T.; Tramšek, M.; Goreshnik, E.; Žemva, B. Inorg. Chem. 2008, 10, 15111516.
[S31] Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press, Oxford, 1990.
[S32] Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397-5403.
[S33] Silvi, B.; Savin, A. Nature, 1994, 371, 683-686.
[S34] Brock, D. S.; Casalis de Pury, J. J.; Mercier, H. P. A.; Schrobilgen, G. J.; Silvi, B. Inorg. Chem. 2010, 49, 6673-6689.
[S35] Brock, D. S.; Casalis de Pury, J. J.; Mercier, H. P. A.; Schrobilgen, G. J.; Silvi, B. J. Am. Chem. Soc. 2010, 132, 3533-3542.
[S36] Ivanova, M. V.; Mercier, H. P. A.; Schrobilgen, G. J. J. Am. Chem. Soc. 2015, 137, 13398-13413.
[S37] Vasdev, N.; Moran, M. D.; Tuononen, H. M.; Chirakal, R.; Suontamo, R. J.; Bain, A. D.; Schrobilgen, G. J. Inorg. Chem. 2010, 49, 8997-9004.
[S38] Mercier, H. P. A.; Moran, M. D.; Sanders, J. C. P.; Schrobilgen, G. J.; Suontamo, R. J. Inorg. Chem. 2005, 44, 49-60.
[S39] Gillespie, R. J.; Hargittai, I. The VSEPR Model of Molecular Geometry; Allyn and Bacon: Boston, MA, 1991.
[S40] Savin, A.; Silvi, B.; Colonna, F. Can. J. Chem. 1996, 74, 1088-1096.

APPENDIX 2

CHAPTER 4 Supporting Information

Syntheses and Structural Characterizations of the $\mathbf{C l}(\mathbf{V})$ Coordination Complex,

$\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$, and $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$

Adapted with permission from: Bortolus, M. R.; Ellwanger, M.; Haner, J.;
Schrobilgen, G. J. J. Fluor. Chem. 2021, 250, 109814.
Table of Contents

Table of Contents		Page(s)
Table A2.1	Experimental bond angles for $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1) and $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (2) and calculated bond angles for $\left(\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}\right)^{-}\left(\mathbf{2}^{\prime}\right)$	424
Figure A2.1	A packing diagram showing the X-ray crystal structure of $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (2)	426
Figure A2.2	Raman spectrum of $\alpha-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ recorded at $-150{ }^{\circ} \mathrm{C}$	427
Figure A2.3	Factor-group analysis for $\left[\mathrm{ClO}_{2}\right]^{+}$in $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF} \mathrm{F}_{6}\right]$ (1)	428
Figure A2.4	Factor-group analysis for $\left[\mathrm{AsF}_{6}\right]^{-}$in $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1)	429
Raman Spectroscopy (continued); β-[$\left.\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1)		430
Raman Spectroscopy (continued); $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (2)		430
Table A2.2	Experimental Raman frequencies and intensities for $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (2), and calculated vibrational frequencies, intensities, and assignments for the hypothetical $\left(\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}\right)^{-}\left(\mathbf{2}^{\prime}\right)$ anion.	432
Figure A2.5	Factor-group Analysis of [$\left.\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (2)	436
Table A2.3	Calculated geometric parameters for $\left[\mathrm{XO}_{2}\right]^{+}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$	436
Table A2.4	Calculated vibrational frequencies, intensities, and assignments for $\left[\mathrm{XO}_{2}\right]^{+}(\mathrm{X}=$ $\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$	437
Table A2.5	Calculated geometrical parameters and frequencies for XeF_{2}	437
Table A2.6	Natural population analysis (NPA) charges, valence indices, and Wiberg bond indices for $\left(\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}\right)^{-}\left(\mathbf{2}^{\prime}\right)$	438
Table A2.7	Natural population analysis (NPA) charges, Wiberg valences, and Wiberg bond indices for $\left[\mathrm{XO}_{2}\right]^{+}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$	439
Table A2.8	Natural population analysis (NPA) charges, Wiberg valences, and Wiberg bond indices for XeF_{2}	439
References		440

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A2.1. Experimental bond angles for β - $\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1) and $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right](\mathbf{2})$ and calculated ${ }^{[a]}$ bond angles for $\left(\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}\right)^{-}\left(\mathbf{2}^{\prime}\right)$

$\begin{gathered} \beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right] \\ \text { exptl } \end{gathered}$		$\begin{aligned} & \qquad\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right] \\ & \text { exptl } \\ & \text { Bond Angles }(\mathrm{deg}) \end{aligned}$		$\underset{\text { calcd }{ }^{[\mathrm{aj}]}}{\left(\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}\right)}$
$\mathrm{O}(1)-\mathrm{Cl}(1)-\mathrm{O}(2)$	119.2(2)	$\mathrm{O}(1)-\mathrm{Cl}(1)-\mathrm{O}(2)$	118.8(1)	115.87
$\mathrm{O}(1)-\mathrm{Cl}(1)--\mathrm{F}(1)$	95.6(2)	$\mathrm{O}(1)-\mathrm{Cl}(1)--\mathrm{F}(1 \mathrm{~A})$	92.34(3)	86.57
$\mathrm{O}(1)-\mathrm{Cl}(1)--\mathrm{F}(2 \mathrm{~A})$	85.1(2)	$\mathrm{O}(1)-\mathrm{Cl}(1)--\mathrm{F}(4)$	149.69(6)	154.61
$\mathrm{O}(1)-\mathrm{Cl}(1)--\mathrm{F}(3 \mathrm{~A})$	154.2(2)	$\mathrm{O}(1)-\mathrm{Cl}(1)--\mathrm{F}(4 \mathrm{~A})$	149.69(6)	154.61
$\mathrm{O}(1)-\mathrm{Cl}(1)--\mathrm{F}(6 \mathrm{~A})$	95.8(2)	$\mathrm{O}(1)-\mathrm{Cl}(1)--\mathrm{F}(5)$	92.34(3)	93.02
$\mathrm{O}(2)-\mathrm{Cl}(1)---\mathrm{F}(1)$	97.9(2)	$\mathrm{O}(1)-\mathrm{Cl}(1)--\mathrm{F}(5 \mathrm{~A})$	92.34(3)	93.02
$\mathrm{O}(2)-\mathrm{Cl}(1)--\mathrm{F}(2 \mathrm{~A})$	155.5(2)	$\mathrm{O}(2)-\mathrm{Cl}(1)--\mathrm{F}(1 \mathrm{~A})$	153.99(8)	157.56
$\mathrm{O}(2)-\mathrm{Cl}(1)--\mathrm{F}(3 \mathrm{~A})$	85.5(2)	$\mathrm{O}(2)-\mathrm{Cl}(1)---\mathrm{F}(4)$	81.76(7)	75.30
$\mathrm{O}(2)-\mathrm{Cl}(1)--\mathrm{F}(6 \mathrm{~A})$	92.4(2)	$\mathrm{O}(2)-\mathrm{Cl}(1)--\mathrm{F}(4 \mathrm{~A})$	81.76(7)	75.30
$\mathrm{F}(1)--\mathrm{Cl}(1)--\mathrm{F}(2 \mathrm{~A})$	74.5(1)	$\mathrm{O}(2)-\mathrm{Cl}(1)--\mathrm{F}(5)$	97.16(3)	100.85
$\mathrm{F}(1)--\mathrm{Cl}(1)--\mathrm{F}(3 \mathrm{~A})$	87.5(1)	$\mathrm{O}(2)-\mathrm{Cl}(1)--\mathrm{F}(5 \mathrm{~A})$	97.16(3)	100.85
$\mathrm{F}(1)--\mathrm{Cl}(1)--\mathrm{F}(6 \mathrm{~A})$	158.4(1)	$\mathrm{F}(4)--\mathrm{Cl}(1)--\mathrm{F}(4 \mathrm{~A})$	46.78(4)	47.08
$\mathrm{F}(2 \mathrm{~A})--\mathrm{Cl}(1)--\mathrm{F}(3 \mathrm{~A})$	71.1(1)	$\mathrm{F}(4)---\mathrm{Cl}(1)---\mathrm{F}(5)$	107.74(3)	61.84
$\mathrm{F}(2 \mathrm{~A})--\mathrm{Cl}(1)--\mathrm{F}(6 \mathrm{~A})$	88.3(1)	$\mathrm{F}(4)--\mathrm{Cl}(1)--\mathrm{F}(5 \mathrm{~A})$	61.46(3)	107.67
$\mathrm{F}(3 \mathrm{~A})--\mathrm{Cl}(1)--\mathrm{F}(6 \mathrm{~A})$	74.4(1)	$\mathrm{F}(4 \mathrm{~A})--\mathrm{Cl}(1)--\mathrm{F}(5)$	61.46(3)	61.61
$\mathrm{F}(1)-\mathrm{As}(1)-\mathrm{F}(2)$	90.1(2)	$\mathrm{F}(4 \mathrm{~A})---\mathrm{Cl}(1)--\mathrm{F}(5 \mathrm{~A})$	107.74(3)	107.67
$\mathrm{F}(1)-\mathrm{As}(1)-\mathrm{F}(3)$	178.0(2)	$\mathrm{F}(5)--\mathrm{Cl}(1)--\mathrm{F}(5 \mathrm{~A})$	160.46(5)	152.17
$\mathrm{F}(1)-\mathrm{As}(1)-\mathrm{F}(4)$	89.9(2)	$\mathrm{F}(1)-\mathrm{As}(1)-\mathrm{F}(2)$	90.23(6)	90.86
$\mathrm{F}(1)-\mathrm{As}(1)-\mathrm{F}(5)$	90.6(2)	$\mathrm{F}(1)-\mathrm{As}(1)-\mathrm{F}(2 \mathrm{~A})$	90.23(6)	90.86
$\mathrm{F}(1)-\mathrm{As}(1)-\mathrm{F}(6)$	89.4(2)	$\mathrm{F}(1)-\mathrm{As}(1)-\mathrm{F}(3)$	179.2(1)	177.48
$\mathrm{F}(2)-\mathrm{As}(1)-\mathrm{F}(3)$	89.1(2)	$\mathrm{F}(1)-\mathrm{As}(1)-\mathrm{F}(4)$	89.53(6)	88.98
$\mathrm{F}(2)-\mathrm{As}(1)-\mathrm{F}(4)$	178.9(2)	$F(1)-\mathrm{As}(1)-\mathrm{F}(4 \mathrm{~A})$	89.53(6)	88.98
$\mathrm{F}(2)-\mathrm{As}(1)-\mathrm{F}(5)$	90.3(2)	$\mathrm{F}(2)-\mathrm{As}(1)-\mathrm{F}(2 \mathrm{~A})$	92.1(1)	92.07
$\mathrm{F}(2)-\mathrm{As}(1)-\mathrm{F}(6)$	88.7(2)	$\mathrm{F}(2)-\mathrm{As}(1)-\mathrm{F}(3)$	90.36(7)	90.89
$\mathrm{F}(3)-\mathrm{As}(1)-\mathrm{F}(4)$	90.9(2)	$F(2)-\mathrm{As}(1)-\mathrm{F}(4)$	178.11(7)	177.68
$\mathrm{F}(3)-\mathrm{As}(1)-\mathrm{F}(5)$	91.3(2)	$F(2)-\mathrm{As}(1)-\mathrm{F}(4 \mathrm{~A})$	89.83(6)	90.25
$\mathrm{F}(3)-\mathrm{As}(1)-\mathrm{F}(6)$	88.7(2)	$\mathrm{F}(2 \mathrm{~A})-\mathrm{As}(1)-\mathrm{F}(3)$	90.36(7)	90.89
$\mathrm{F}(4)-\mathrm{As}(1)-\mathrm{F}(5)$	90.8(2)	$\mathrm{F}(2 \mathrm{~A})-\mathrm{As}(1)-\mathrm{F}(4)$	89.83(6)	90.25
$\mathrm{F}(4)-\mathrm{As}(1)-\mathrm{F}(6)$	90.2(2)	$\mathrm{F}(2 \mathrm{~A})-\mathrm{As}(1)-\mathrm{F}(4 \mathrm{~A})$	178.11(7)	177.68
$\mathrm{F}(5)-\mathrm{As}(1)-\mathrm{F}(6)$	179.0(2)	$\mathrm{F}(3)-\mathrm{As}(1)-\mathrm{F}(4)$	89.86(6)	89.20
		$\mathrm{F}(3)-\mathrm{As}(1)-\mathrm{F}(4 \mathrm{~A})$	89.86(6)	89.20
		$F(4)-\mathrm{As}(1)-\mathrm{F}(4 \mathrm{~A})$	88.30(8)	87.43
		$\mathrm{F}(5)-\mathrm{Xe}(1)-\mathrm{F}(6)$	179.47(5)	175.60
		$\mathrm{Xe}(1)-\mathrm{F}(5)---\mathrm{Cl}(1)$	125.45(4)	126.94
		$\mathrm{F}(1 \mathrm{~A})-\mathrm{As}(1 \mathrm{~A})-\mathrm{F}(2 \mathrm{~B})$		88.44
		$\mathrm{F}(1 \mathrm{~A})-\mathrm{As}(1 \mathrm{~A})-\mathrm{F}(2 \mathrm{BA})$		88.44
		$F(1 A)-A s(1 A)-F(3 A)$		179.75
		$\mathrm{F}(1 \mathrm{~A})-\mathrm{As}(1 \mathrm{~A})-\mathrm{F}(4 \mathrm{~B})$		88.26

Table A2.1. (continued)

$\begin{gathered} \beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right] \\ \text { exptl } \end{gathered}$	$\begin{gathered} {\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]} \\ \text { exptl } \\ \text { Bond Angles (deg) } \\ \hline \end{gathered}$	$\underset{\text { calcd }{ }^{[\mathrm{a}]}}{\left(\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}\right)}$
	$\mathrm{F}(1 \mathrm{~A})-\mathrm{As}(1 \mathrm{~A})-\mathrm{F}(4 \mathrm{BA})$	88.26
	$\mathrm{F}(2 \mathrm{~B})-\mathrm{As}(1 \mathrm{~A})-\mathrm{F}(2 \mathrm{BA})$	90.53
	$F(2 B)-A s(1 A)-F(3 A)$	91.74
	$F(2 B)-A s(1 A)-F(4 B)$	176.69
	$\mathrm{F}(2 \mathrm{~B})-\mathrm{As}(1 \mathrm{~A})-\mathrm{F}(4 \mathrm{BA})$	89.62
	$\mathrm{F}(2 \mathrm{BA})-\mathrm{As}(1 \mathrm{~A})-\mathrm{F}(3 \mathrm{~A})$	91.74
	$\mathrm{F}(2 \mathrm{BA})-\mathrm{As}(1 \mathrm{~A})-\mathrm{F}(4 \mathrm{~B})$	89.62
	$F(2 B A)-A s(1 A)-F(4 B A)$	176.69
	$F(3 A)-A s(1 A)-F(4 B)$	91.56
	$F(3 A)-A s(1 A)-F(4 B A)$	91.56
	$\mathrm{F}(4 \mathrm{~B})-\mathrm{As}(1 \mathrm{~A})-\mathrm{F}(4 \mathrm{BA})$	90.04

[a] B3LYP/Def2-TZVPD.

Figure A2.1. A packing diagram showing the X-ray crystal structure of $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (2) viewed along the b-axis of the unit cell; thermal ellipsoids are drawn at the 50\% probability level.

Figure A2.2. Raman spectrum of $\alpha-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ recorded on a dry powder at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. The symbols denote FEP sample tube bands (*) and an instrumental artifact (\dagger).

Figure A2.3. Factor-group analysis for $\left[\mathrm{ClO}_{2}\right]^{+}$in $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right](\mathbf{1})^{[a]}$

${ }^{[a]}$ The external modes have not been treated in this analysis. ${ }^{[b]}$ The vibrational irreducible representation for gas-phase $\left[\mathrm{ClO}_{2}\right]^{+}\left(C_{2 \mathrm{v}}\right)$ is $\Gamma=2 \mathrm{~A}_{1}+\mathrm{A}_{2}{ }^{[\mathrm{cc}]}$ Space group; $P c, \mathrm{Z}=2$.

Figure A2.4. Factor-group analysis for $\left[\mathrm{AsF}_{6}\right]^{-}$in $\beta-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right](\mathbf{1})^{[\mathrm{a}]}$

free $\left[\mathrm{AsF}_{6}\right]^{-[b]}$	crystal site ${ }^{[\mathrm{cc]}}$	unit cell ${ }^{[c]}$	activity
O_{h}	C_{1}	C_{s}	

${ }^{[a]}$ The external modes have not been treated in this analysis. ${ }^{[b]}$ The vibrational irreducible representation for gas-phase $\left[\mathrm{AsF}_{6}\right]^{-}\left(O_{\mathrm{h}}\right)$ is $\Gamma=\mathrm{A}_{1 \mathrm{~g}}+\mathrm{Eg}_{\mathrm{g}}+\mathrm{T}_{2 \mathrm{~g}}+2 \mathrm{~T}_{1 \mathrm{u}}+\mathrm{T}_{2 \mathrm{u}}{ }^{[\mathrm{cc}]}$ Space group; $P c, Z=2$.

Raman Spectroscopy (continued)

$\boldsymbol{\beta}-\left[\mathrm{ClO}_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (1). The gas-phase symmetries of $\left[\mathrm{ClO}_{2}\right]^{+}\left(C_{2 \mathrm{v}}\right)$ and $\left[\mathrm{AsF}_{6}\right]^{-}\left(O_{\mathrm{h}}\right)$ are lowered to C_{1} site symmetry in the crystal structure of $\mathbf{1}$, so that all vibrational modes of both ions are Raman and infrared active. Although this accounts for the observation of [$\left.\mathrm{AsF}_{6}\right]^{-}$bands that are derived from ungerade modes in the Raman spectrum, it does not account for splitting of the non-degenerate cation and anion modes. The latter splittings result from vibrational couplings within the unit cell. To account for these splittings, separate factor-group analyses for $\left[\mathrm{ClO}_{2}\right]^{+}$and $\left[\mathrm{AsF}_{6}\right]^{-}$using the "correlation method" ${ }^{[\mathrm{S} 1]}$ and the X-ray crystal structure of $\mathbf{1}$ (Figures A2.2 and A2.3) were carried out.

The vibrational modes of gas-phase $\left[\mathrm{ClO}_{2}\right]^{+}\left(C_{2 \mathrm{v}}\right)$ belong to the irreducible representations $\Gamma=2 \mathrm{~A}_{1}+\mathrm{B}_{2}$, where the A_{1} and B_{2} modes are both Raman- and IR-active in the gas phase. The A_{1} and B_{2} irreducible representations correlate to A irreducible representations under C_{1} site symmetry in the solid state. When correlated to the unit cell symmetry $\left(C_{\mathrm{s}}\right)$, each vibrationally coupled A mode splits into a A^{\prime} and a $\mathrm{A}^{\prime \prime}$ mode for a total of $3 \mathrm{~A}^{\prime}$ and $3 \mathrm{~A}^{\prime \prime}$ modes that are both Raman- and IR-active,

All irreducible representations of gas-phase $\left[\mathrm{AsF}_{6}\right]^{-}\left(O_{\mathrm{h}}\right), \Gamma=\mathrm{A}_{1 \mathrm{~g}}+\mathrm{E}_{\mathrm{g}}+\mathrm{T}_{2 \mathrm{~g}}+$ $2 \mathrm{~T}_{1 \mathrm{u}}+\mathrm{T}_{2 \mathrm{u}}$, correlate to A irreducible representations under the crystal site symmetry $\left(C_{1}\right)$ of $\left[\mathrm{AsF}_{6}\right]^{-}$. When correlated to the unit cell symmetry $\left(C_{\mathrm{s}}\right)$, each vibrationally coupled A mode splits into two Raman- and two IR-active A^{\prime} and $\mathrm{A}^{\prime \prime}$ modes to give $15 \mathrm{~A}^{\prime}$ and $15 \mathrm{~A}^{\prime \prime}$ modes.
$\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (2). A total of 42 vibrational modes are predicted for $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]$ (2) based on $C_{\text {s }}$ symmetry in its X-ray crystal structure. The

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry
vibrations belong to the irreducible representations $\Gamma=24 \mathrm{~A}^{\prime}+18 \mathrm{~A}^{\prime \prime}$, where the modes are both Raman- and IR-active. The latter modes correlate to A^{\prime} and $\mathrm{A}^{\prime \prime}$ irreducible representations under C_{s} site symmetry in the solid state. When correlated to the unit cell symmetry $\left(C_{2 v}\right)$, each vibrationally coupled A^{\prime} mode splits into an A_{1} and a B_{2} component that are both Raman and infrared active; and each coupled $\mathrm{A}^{\prime \prime}$ mode splits into an A_{2} (Raman-active) and a B_{1} (Raman- and IR-active) component to give a total of 84 Ramanactive modes and 66 IR-active modes.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A2.2. Experimental Raman frequencies and intensities for $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right][\mathrm{AsF} 6]$ (2), ${ }^{[\mathrm{a}]}$ and calculated ${ }^{[\mathrm{b}]}$ vibrational frequencies, intensities, and assignments for the Hypothetical $\left(\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}\right)^{-}\left(\mathbf{2}^{\prime}\right)$ anion

$\begin{gathered} \mathbf{2}^{[\mathrm{a}]} \quad \Delta v \end{gathered}$	2^{\prime}		assgnts ${ }^{[c]}$		
	${ }^{35} \mathrm{Cl}$ calcd ${ }^{[b]}$	${ }^{37} \mathrm{Cl} \mathrm{calcd}{ }^{\text {b }]}$	Δv		$\left[\operatorname{AsF}_{6}\right]^{-}\left(O_{\mathrm{h}}\right)$
$\left.\begin{array}{l} 1315.9(11) \\ 1301.2(9) \end{array}\right\} 14.7$	1335.6(16)[139]	1320.9(16)[134]	14.7	$\left[v\left(\mathrm{Cl}-\mathrm{O}_{1}\right)-v\left(\mathrm{Cl}-\mathrm{O}_{2}\right)\right]$	
$\left.\begin{array}{l} 1077.2(100) \\ 1071.2(32) \end{array}\right\} 6.0$	1133.0(237)[64]	1126.3(236)[61]	6.7	$\left[v\left(\mathrm{Cl}-\mathrm{O}_{1}\right)+v\left(\mathrm{Cl}-\mathrm{O}_{2}\right)\right]$	
$1071.2(32) \quad\}$	702.3(<1)[205]	702.3(<1)[205]		$v\left(\mathrm{As}_{1}-\mathrm{F}_{3}\right)-v\left(\mathrm{As}_{1}-\mathrm{F}_{1}\right) \quad 7$	
701.9(5)	696.5(1)[270]	696.5(1)[269]		$\left[v\left(\mathrm{As}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~B}}\right)+v\left(\mathrm{As}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{BA}}\right)\right]-\left[v\left(\mathrm{As}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{BA}}\right)+v\left(\mathrm{As}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~B}}\right)\right]$	
699.4(5)	693.6(5)[172]	693.6(5)[172]		$\left[v\left(\mathrm{As}_{1 A}-\mathrm{F}_{2 \mathrm{~B}}\right)+v\left(\mathrm{As}_{1 A}-\mathrm{F}_{2 \mathrm{BA}}\right)\right]-\left[v\left(\mathrm{As}_{1 A}-\mathrm{F}_{4 \mathrm{~B}}\right)+v\left(\mathrm{As}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{BA}}\right)\right]$	
692.1(3)	690.4(7)[19]	690.4(7)[19]		$v\left(\mathrm{As}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{As}_{1}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{As}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)$	
	686.0(<1)[339]	686.0(<1)[339]		$\left[v\left(\mathrm{As}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{As}_{1}-\mathrm{F}_{2 \mathrm{~A}}\right)\right]-v\left(\mathrm{As}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)$	
	684.0(1)[114]	684.0(1)[113]		$\left.\left[v\left(\mathrm{As}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{As}_{1}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{As}_{1}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{As}_{1}-\mathrm{F}_{4}\right)\right] \quad\right]$	
685.6(sh)	648.6(29)[32]	648.6(29)[32]			([$\left.\mathrm{AsF}_{6}\right]^{-}$)
683.5(36)	646.8(5)[77]	646.8(5)[77]		$\left.v\left(\mathrm{As}_{1}-\mathrm{F}\right)-v\left(\mathrm{As}_{1 A}-\mathrm{F}\right) \quad\right\}$	
$\left.\begin{array}{l} 578.9(14) \\ 576.3(14) \end{array}\right\}$	564.1(3)[1]	564.1(3)[1]		$v\left(\mathrm{As}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~B}}\right)+v\left(\mathrm{As}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~B}}\right)-v\left(\mathrm{As}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{BA}}\right)+v\left(\mathrm{As}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{BA}}\right)$	$v_{2}\left(\mathrm{E}_{\mathrm{g}}\right)\left(\left[\mathrm{AsF}_{6}\right]^{-}\right)$
539.4(sh)	562.0(6)[9]	561.5(6)[13]	0.5	$\left[v\left(\mathrm{As}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{As}_{1}-\mathrm{F}_{3}\right)\right]-\left[v\left(\mathrm{As}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{As}_{1}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{As}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{As}_{1}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{O}_{1} \mathrm{ClO}_{2}\right)_{\mathrm{i} . \mathrm{p} .}\right]_{\text {small }}$	
536.1(39)	551.0(4)[18]	548.7(8)[18]	2.3	$\delta(\mathrm{OClO})_{\text {i.p. }}$	
530.9(55)	545.5(9)[8]	545.4(29)[192]	0.1	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{As}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{As}_{1}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{As}_{1}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{As}_{1}-\mathrm{F}_{4}\right)\right]$	
519.0(98)	542.2(33)[198]	541.5(26)[186]	0.7	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{O}_{1} \mathrm{ClO}_{2}\right)_{\mathrm{i} \text {.p. }}\right]_{\text {small }}$	
481.1(11)	535.9(11)[71]	535.9(11)[72]		$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{As}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{As}_{1}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{As}_{1}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{As}_{1}-\mathrm{F}_{4}\right)\right]$	
464.2(11)	520.7(4)[28]	520.3(4)[28]	0.4	$\left[v\left(\mathrm{As}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)+v\left(\mathrm{As}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{O}_{1} \mathrm{ClO}_{2}\right)_{\text {i.p. }}\right]_{\text {small }}$	
446.7(30)	440.0(3)[241]	440.0(3)[242]		$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]$	
$\left.\begin{array}{l} 439.4(23) \\ 435.6(\mathrm{sh}) \end{array}\right\}$ continued...	426.9(2)[84]	426.0(2)[95]	0.9	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{O}_{1} \mathrm{ClO}_{2}\right)_{\text {o.o.p. }}\right]_{\text {small }}$	

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A2.2. (continued)

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A2.2. (continued)

2	2'			assgnts ${ }^{[d]}$
expt1 ${ }^{[8]}$	${ }^{35} \mathrm{Cl} \mathrm{calcd}{ }^{[b]}$	${ }^{37} \mathrm{Cl} \mathrm{calcd}{ }^{[b]}$	$\Delta v^{[c]}$	
	155.8(<1)[<1]	155.5(<1)[<1]	0.3	
	132.9(1)[5]	131.9(1)[4]		
	127.2(4)[7]	126.5(3)[7]	0.7	
	116.8(2)[27]	116.3(2)[27]	0.5	
	$103.0(5)[<1]$	103.0(5)[<1]		
	82.6(1)[<1]	82.5(1)[<1]	0.1	
	71.7(3)[2]	71.6(3)[2]	0.1	
	66.9(<1)[15]	66.6(<1)[15]	0.3	
	61.4(2)[<1]	61.3(2)[<1]	0.1	
	$52.6(<0.1)[<1]$	$52.6(<0.1)[<1]$		
	52.4(<1)[2]	52.3(<1)[2]	0.1	Deformation modes
	49.6(<1)[3]	49.6(<1)[3]		
	$43.0(<1)[<1]$	$43.0(<1)[<1]$		
	$36.4(<1)[2]$	$36.4(<1)[2]$		
	$29.3(<1)[<1]$	$29.3(<0.1)[<1]$		
	$29.3(<0.1)[<1]$	$29.3(<1)[<1]$		
	18.2(<0.1)[<1]	18.2(<1)[<1]		
	14.9(<1)[1]	14.9(<1)[1]		
	13.2(<1)[1]	13.2(<0.1)[<1]		
	$11.8(<0.1)[<1]$	$11.8(<0.1)[<1]$		
	$-22.6(<1)[<0.1]$	$-22.6(<0.1)[<1]$		

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A2.2. (continued) [a] The Raman spectrum was recorded on dry crystals in a FEP sample tube at $-150{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. Lattice modes were observed at $101.6(7), 111.4(20), 113.7(20), 120.0(25), 133.5(16), 137.6(18)$, and $144.1(23) \mathrm{cm}^{-1}$. Values in parentheses denote relative Raman intensities. Abbreviations denote shoulder (sh). [b] B3LYP/Def2-TZVPD. The atom labeling scheme is the same as that shown in Figure 2b. Values in parentheses and square brackets denote calculated Raman intensities $\left(\AA^{4} \mathrm{amu}^{-1}\right)$ and infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$), respectively. [c] $\Delta v^{35 / 37}=v\left({ }^{35} \mathrm{Cl}\right)-v\left({ }^{37} \mathrm{Cl}\right)$. [d] Assignments are made under O_{h} symmetry for the [AsF6] ${ }^{-}$anion in this table. Abbreviations denote stretch (v), bend (δ), symmetric (s), asymmetric (as), equatorial (eq), axial (ax), in-plane (i.p.), and out-of-plane (o.o.p.). The "plane" refers to the $b c$-mirror plane in the crystal structure of $\mathbf{2}$ which the $\left[\mathrm{ClO}_{2}\right]^{+}$cation lies in.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Figure A2.5. Factor-group analysis of $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right](\mathbf{2})^{[a]}$

${ }^{[a]}$ The external modes have not been treated in this analysis. ${ }^{[b]}$ The vibrational irreducible representation for $\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right](2)\left(C_{\mathrm{s}}\right)$ is $\Gamma=24 \mathrm{~A}^{\prime}+18 \mathrm{~A}^{\prime \prime} .{ }^{[\mathrm{c}]}$ Space group; $C m c 2_{1}, Z=4$. The number of molecules contributing to the total number of vibrational modes for a C-centered unit cell is equal to ${ }^{Z} / 2$ (ref. S1, pp. 2-4).

Table A2.3. Calculated ${ }^{[a]}$ geometric parameters for $\left[\mathrm{XO}_{2}\right]^{+}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})\left(C_{2 \mathrm{v}}\right)$

	$\left[\mathrm{ClO}_{2}\right]^{+[\mathrm{bl}]}$	$\underset{[\mathrm{b}]}{\left[\mathrm{BrO}_{2}\right]^{+}}$	$\left[\mathbf{I O}_{2}\right]^{+[\mathrm{b}]}$
Bond Lengths (\AA)			
X-O (${ }^{\text {a }}$)	1.4090	1.5884	1.7606
Bond Angles (deg)			
$\mathrm{O}-\mathrm{X}-\mathrm{O}\left({ }^{\circ}\right.$)	121.49	115.51	110.25

[a] B3LYP/Def2-TZVPD.

Table A2.4. Calculated ${ }^{[a]}$ vibrational frequencies, intensities, and assignments for $\left[\mathrm{XO}_{2}\right]^{+}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$

	$\left[\mathbf{C l O}_{2}\right]^{+}[\mathbf{b}]$	$\mathbf{\Delta v}^{[\mathbf{b}]}$	$\left[\mathbf{B r O}_{2}\right]^{+}[\mathbf{b}]$	$\boldsymbol{\Delta} \boldsymbol{v}^{[\mathbf{b}]}$	$\left[\mathbf{I O}_{2}\right]^{+} \mathbf{[b]}$	assgnts $\left(\boldsymbol{C}_{\mathbf{2}} \mathbf{v}{ }^{[\mathrm{c}]}\right.$
${ }^{35} \mathrm{Cl} /{ }^{79} \mathrm{Br}$	$1382.3(5)[68]$		$1028.8(8)[22]$			
${ }^{37} \mathrm{Cl} /{ }^{81} \mathrm{Br}$	$1366.8(5)[65]$	15.5	$1026.0(7)[22]$	2.8	$923(11)[16]$	$v_{3}\left(\mathrm{~B}_{1}\right), v_{a s}\left(\mathrm{XO}_{2}\right)$
${ }^{35} \mathrm{Cl} /{ }^{79} \mathrm{Br}$	$1119.2(30)[6]$		$949.8(32)[<0.1]$			
${ }^{37} \mathrm{Cl} /{ }^{81} \mathrm{Br}$	$1113.3(30)[6]$	5.9	$948.5(32)[<0.1]$	1.3	$887(37)[<0.1]$	$v_{1}\left(\mathrm{~A}_{1}\right), v_{s}\left(\mathrm{XO}_{2}\right)$
${ }^{35} \mathrm{Cl} /{ }^{79} \mathrm{Br}$	$521.8(2)[21]$		$364.6(3)[13]$			
${ }^{37} \mathrm{Cl} /{ }^{81} \mathrm{Br}$	$517.7(2)[20]$	4.1	$363.8(3)[13]$	0.8	$294(4)[13]$	$v_{2}\left(\mathrm{~A}_{1}\right), \delta(\mathrm{OXO})$

[a] B3LYP/Def2-TZVPD. [b] Frequencies are given in cm^{-1}. Values in parentheses and square brackets denote calculated Raman intensities $\left(\AA^{4} \mathrm{amu}^{-1}\right)$ and infrared intensities $\left(\mathrm{km} \mathrm{mol}^{-1}\right)$, respectively. [c] Abbreviations denote stretch (v), and bend (δ).

Table A2.5. Calculated ${ }^{[a]}$ geometrical parameters and frequencies for XeF_{2}

$\mathrm{Xe}-\mathrm{F}$	$v_{1}{ }^{[\mathrm{b}]}$	$v_{2}{ }^{[\mathrm{b}]}$	$v_{3}{ }^{[\mathrm{b}]}$
2.0065	$541(0)[248]$	$503(47)[0]$	$205(0)[16]$

[a] B3LYP/Def2-TZVPD. [b] Frequencies are given in cm^{-1}. Values in parentheses and square brackets denote calculated Raman intensities $\left(\AA^{4} \mathrm{amu}^{-1}\right)$ and infrared intensities $\left(\mathrm{km} \mathrm{mol}^{-1}\right)$, respectively.

Table A2.6. Natural population analysis (NPA) charges, valence indices, and Wiberg bond indices for $\left(\left[\mathrm{O}_{2} \mathrm{Cl}(\mathrm{FXeF})_{2}\right]\left[\mathrm{AsF}_{6}\right]_{2}\right)^{-[a]}$

Bond Indices		NPA Charges [Valence Indices]		
Cl1-O1	1.559	Cl1	1.895	[3.320]
Cl1-O2	1.559	O1	-0.541	[2.069]
C11---F5	0.081	O2	-0.540	[2.070]
Cl1---F5A	0.081			
Cl1---F1A	0.012			
Cl1---F4	0.004			
C11---F4A	0.004			
		$\sum{ }_{\left[\mathrm{ClO}_{2}{ }^{+}\right.}{ }^{+}$	0.814	
As1-F1	0.544	As1	2.804	[3.165]
As1-F2	0.549	F1	-0.621	[0.659]
As1-F2A	0.549	F2	-0.618	[0.663]
As1-F3	0.542	F2A	-0.618	[0.663]
As1-F4	0.488	F3	-0.623	[0.657]
As1-F4A	0.488	F4	-0.659	[0.606]
		F4A	-0.659	[0.606]
		$\sum{ }^{\text {las }}{ }_{(1)} \mathrm{F}_{6} \mathrm{l}^{-}$	-0.994	
As1A-F1A	0.458	As1A	2.801	[3.167]
As1A-F2B	0.540	F1A	-0.674	[0.589]
As1A-F2BA	0.540	F2B	-0.624	[0.656]
As1A-F3A	0.556	F2BA	-0.624	[0.656]
As1A-F4B	0.534	F3A	-0.614	[0.670]
As1A-F4BA	0.534	F4B	-0.628	[0.650]
		F4BA	-0.628	[0.650]
		$\sum{ }^{\text {As }}{ }_{(1 \mathbf{A})}{ }^{\mathbf{F}} \mathbf{6}^{-}$	-0.991	
Xe1-F5	0.391	Xe1	1.274	[0.999]
Xe1-F6	0.582	F5	-0.561	[0.670]
		F6	-0.627	[0.701]
		$\sum \mathrm{Xe}_{(1)} \mathbf{F}_{\mathbf{2}}$	0.086	
Xe1A-F5A	0.391	Xe1A	1.274	[0.999]
Xe1A-F6A	0.582	F5A	-0.561	[0.670]
		F6A	-0.627	[0.701]
		$\sum \mathrm{Xe}{ }_{(1 \mathbf{A})} \mathrm{F}_{2}$	0.086	
		$\sum_{\text {total }}$	-0.999	

[a] B3LYP/Def2-TZVPD.

Table A2.7. Natural population analysis (NPA) charges, Wiberg valences, and Wiberg bond indices for $\left[\mathrm{XO}_{2}\right]^{+}\left(C_{2 \mathrm{v}}\right)(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})^{[\mathrm{a}]}$

Bond Indices		NPA Charges [Valences]		
[$\left.\mathrm{ClO}_{2}\right]^{+}$				
$\mathrm{Cl}-\mathrm{O}$	1.659	Cl	1.789	[3.317]
$\mathrm{Cl}-\mathrm{O}$	1.659	O	-0.394	[2.202]
		O	-0.394	[2.202]
		$\sum{ }_{\left[\mathrm{ClO}_{2}\right]^{+}}$	1.001	
$\left[\mathrm{BrO}_{2}\right]^{+}$				
$\mathrm{Br}-\mathrm{O}$	1.539	Br	2.001	[3.078]
$\mathrm{Br}-\mathrm{O}$	1.539	O	-0.500	[2.073]
		O	-0.500	[2.073]
		$\sum_{\left[\mathrm{BrO}_{2}\right]^{+}}$	1.001	
$\left[\mathbf{I O}_{2}\right]^{+}$				
$\mathrm{I}-\mathrm{O}$	1.504	I	2.347	[3.008]
I-O	1.504	O	-0.673	[1.930]
		O	-0.673	[1.930]
		$\sum_{\left[\left\|O_{2}\right\|^{+}\right.}$	1.001	

[a] B3LYP/Def2-TZVPD.

Table A2.8. Natural population analysis (NPA) charges, Wiberg valences, and Wiberg bond indices for $\mathrm{XeF}_{2}\left(D_{\infty h}\right)^{[\mathrm{ad}}$

Bond Indices							NPA Charges [Valences]			
		XeF $_{2}$								
$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$	0.518	Xe	1.207	$[1.037]$						
$\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$	0.518	$\mathrm{~F}_{\mathrm{t}}$	-0.604	$[0.650]$						
		F_{t}	-0.604	$[0.650]$						
		$\mathrm{XXeF}_{\mathbf{2}}$	$-\mathbf{0 . 0 0 1}$							

[a] B3LYP/Def2-TZVPD.

References

[1] Fateley, W. G.; Dollish, F. R.; McDevitt, N. T.; Bentley, F. F. Infrared and Raman selection rules for molecular and lattice vibrations: The Correlation Method, Wiley, New York, 1972.

APPENDIX 3

Chapter 6 Supporting Information

Syntheses and Structural Characterizations of
$\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- $\left.(\mu \text {-OIrF4) })_{3}\right]$ and the Coordination Complex, F5Ir---OCIF

Table A3.1. Experimental geometric parameters for $\left[\mathrm{ClO}_{2}\right]_{2}\left[\right.$ cyclo- $\left.\left(\mu \text { - } \mathrm{OIrF}_{4}\right)_{3}\right]$

	Bond Lengths (\AA)		
$\mathrm{Cl}(1)-\mathrm{O}(1)$	$1.409(3)$	$\operatorname{Ir}(1)-\mathrm{O}(3)$	$1.861(2)$
$\mathrm{Cl}(1)-\mathrm{O}(2)$	$1.409(3)$	$\operatorname{Ir}(1)-\mathrm{F}(1)$	$1.883(2)$
$\mathrm{Cl}(1)--\mathrm{F}(1 \mathrm{~A})$	$3.106(2)$	$\operatorname{Ir}(2)-\mathrm{F}(2)$	$1.910(2)$
$\mathrm{Cl}(1)--\mathrm{F}(2)$	$2.557(2)$	$\operatorname{Ir}(2)-\mathrm{O}(3)$	$1.851(2)$
$\mathrm{Cl}(1)--\mathrm{F}(3 \mathrm{~B})$	$2.548(2)$	$\operatorname{Ir}(2)-\mathrm{O}(4)$	$1.8479(13)$
$\mathrm{Cl}(1)--\mathrm{F}(7 \mathrm{C})$	$2.588(2)$	$\operatorname{Ir}(2)-\mathrm{F}(3)$	$1.923(2)$
$\mathrm{Cl}(1)--\mathrm{F}(5 \mathrm{D})$	$2.722(2)$	$\operatorname{Ir}(2)-\mathrm{F}(4)$	$1.911(2)$
$\mathrm{Cl}(1)--\mathrm{F}(6)$	$3.174(2)$	$\operatorname{Ir}(2)-\mathrm{F}(5)$	$1.895(2)$
		$\operatorname{Ir}(2)-\mathrm{F}(6)$	$1.884(2)$

Bond Angles (${ }^{\circ}$)			
$\mathrm{O}(1)-\mathrm{Cl}(1)-\mathrm{O}(2)$	118.7(2)	$\mathrm{F}(1)-\mathrm{Ir}(1)-\mathrm{F}(1 \mathrm{~A})$	86.70(14)
$\mathrm{O}(1)-\mathrm{Cl}(1)--\mathrm{F}(1 \mathrm{~A})$	60.71(13)	$\mathrm{F}(1)-\operatorname{Ir}(1)-\mathrm{F}(2)$	86.82(9)
$\mathrm{O}(1)-\mathrm{Cl}(1)--\mathrm{F}(2)$	89.65(14)	$\mathrm{F}(1)-\operatorname{Ir}(1)-\mathrm{F}(2 \mathrm{~A})$	88.59(10)
$\mathrm{O}(1)-\mathrm{Cl}(1)--\mathrm{F}(3 \mathrm{~B})$	91.96(13)	$\mathrm{F}(1 \mathrm{~A})-\mathrm{Ir}(1)-\mathrm{F}(2)$	88.59(10)
$\mathrm{O}(1)-\mathrm{Cl}(1)--\mathrm{F}(7 \mathrm{C})$	86.62(14)	$\mathrm{F}(1 \mathrm{~A})-\operatorname{Ir}(1)-\mathrm{F}(2 \mathrm{~A})$	86.82(09)
$\mathrm{O}(1)-\mathrm{Cl}(1)--\mathrm{F}(5 \mathrm{D})$	151.48(14)	$\mathrm{F}(2)-\mathrm{Ir}(1)-\mathrm{F}(2 \mathrm{~A})$	173.69(14)
$\mathrm{O}(1)-\mathrm{Cl}(1)--\mathrm{F}(6)$	111.55(13)	$\mathrm{O}(3)-\mathrm{Ir}(2)-\mathrm{O}(4)$	94.19(14)
$\mathrm{O}(2)-\mathrm{Cl}(1)--\mathrm{F}(1 \mathrm{~A})$	82.90(14)	$\mathrm{O}(3)-\mathrm{Ir}(2)-\mathrm{F}(3)$	90.12(10)
$\mathrm{O}(2)-\mathrm{Cl}(1)--\mathrm{F}(2)$	117.36(13)	$\mathrm{O}(3)-\mathrm{Ir}(2)-\mathrm{F}(4)$	174.26(10)
$\mathrm{O}(2)-\mathrm{Cl}(1)--\mathrm{F}(3 \mathrm{~B})$	91.97(13)	$\mathrm{O}(3)-\operatorname{Ir}(2)-\mathrm{F}(5)$	93.86(11)
$\mathrm{O}(2)-\mathrm{Cl}(1)--\mathrm{F}(7 \mathrm{C})$	148.16(15)	$\mathrm{O}(3)-\operatorname{Ir}(2)-\mathrm{F}(6)$	90.41(11)
$\mathrm{O}(2)-\mathrm{Cl}(1)--\mathrm{F}(5 \mathrm{D})$	82.66(14)	$\mathrm{O}(4)-\operatorname{Ir}(2)-\mathrm{F}(3)$	175.22(14)
$\mathrm{O}(2)-\mathrm{Cl}(1)--\mathrm{F}(6)$	54.90(12)	$\mathrm{O}(4)-\operatorname{Ir}(2)-\mathrm{F}(4)$	90.61(13)
		$\mathrm{O}(4)-\operatorname{Ir}(2)-\mathrm{F}(5)$	92.11(8)
$\mathrm{O}(3)-\mathrm{Ir}(1)-\mathrm{O}(3 \mathrm{~A})$	92.49(16)	$\mathrm{O}(4)-\mathrm{Tr}(2)-\mathrm{F}(6)$	93.75(8)
$\mathrm{O}(3)-\operatorname{Ir}(1)-\mathrm{F}(1)$	177.00(11)	$F(3)-\operatorname{Ir}(2)-\mathrm{F}(4)$	85.19(9)
$\mathrm{O}(3)-\operatorname{Ir}(1)-\mathrm{F}(1 \mathrm{~A})$	90.41(10)	$F(3)-\operatorname{Ir}(2)-\mathrm{F}(5)$	85.55(10)
$\mathrm{O}(3)-\operatorname{Ir}(1)-\mathrm{F}(2)$	93.90(10)	$F(3)-\operatorname{Ir}(2)-\mathrm{F}(6)$	88.26(11)
$\mathrm{O}(3)-\operatorname{Ir}(1)-\mathrm{F}(2 \mathrm{~A})$	90.47(10)	$F(4)-\operatorname{Ir}(2)-\mathrm{F}(5)$	89.09(10)
$\mathrm{O}(3 \mathrm{~A})-\operatorname{Ir}(1)-\mathrm{F}(1)$	90.41(10)	$F(4)-\operatorname{Ir}(2)-\mathrm{F}(6)$	86.14(10)
$\mathrm{O}(3 \mathrm{~A})-\mathrm{Ir}(1)-\mathrm{F}(1 \mathrm{~A})$	177.00(11)	$F(5)-\operatorname{Ir}(2)-\mathrm{F}(6)$	172.48(10)
$\mathrm{O}(3 \mathrm{~A})-\operatorname{Ir}(1)-\mathrm{F}(2)$	90.47(10)	$\operatorname{Ir}(1)-\mathrm{O}(3)-\operatorname{Ir}(2)$	141.62(15)
$\mathrm{O}(3 \mathrm{~A})-\mathrm{Ir}(1)-\mathrm{F}(2 \mathrm{~A})$	93.90(10)	$\operatorname{Ir}(2)-\mathrm{O}(4)-\operatorname{Ir}(2 \mathrm{~A})$	142.1(2)
$\operatorname{Ir}(1)-\mathrm{O}(3)-\mathrm{Ir}(2)-\mathrm{O}(4)$	-38.1(2)	$\operatorname{Ir}(2)-\mathrm{O}(4)-\operatorname{Ir}(2 \mathrm{~A})-\mathrm{O}(3 \mathrm{~A})$	11.94(8)

[a] The labeling scheme is the same as in Figure 6.3.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A3.2. Calculated ${ }^{[4]}$ geometric parameters for $\left[\text { cyclo- }\left(\mu \text { - }-\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}\left(C_{1}\right)$

	Bond Lengths (\AA)		
$\operatorname{Ir}(1)-\mathrm{O}(3)$	1.851	$\operatorname{Ir}(1)-\mathrm{O}(3 \mathrm{~A})$	1.851
$\operatorname{Ir}(1)-\mathrm{F}(1)$	1.895	$\operatorname{Ir}(1)-\mathrm{F}(1 \mathrm{~A})$	1.895
$\operatorname{Ir}(1)-\mathrm{F}(2)$	1.897	$\operatorname{Ir}(1)-\mathrm{F}(2 \mathrm{~A})$	1.886
$\operatorname{Ir}(2)-\mathrm{O}(3)$	1.897	$\operatorname{Ir}(2 \mathrm{~A})-\mathrm{O}(3 \mathrm{~A})$	1.897
$\operatorname{Ir}(2)-\mathrm{O}(4)$	1.873	$\operatorname{Ir}(2 \mathrm{~A})-\mathrm{O}(4)$	1.872
$\operatorname{Ir}(2)-\mathrm{F}(3)$	1.879	$\operatorname{Ir}(2 \mathrm{~A})-\mathrm{F}(3 \mathrm{~A})$	1.879
$\operatorname{Ir}(2)-\mathrm{F}(4)$	1.900	$\operatorname{Ir}(2 \mathrm{~A})-\mathrm{F}(4 \mathrm{~A})$	1.900
$\operatorname{Ir}(2)-\mathrm{F}(5)$	1.882	$\operatorname{Ir}(2 \mathrm{~A})-\mathrm{F}(5 \mathrm{~A})$	1.888
$\operatorname{Ir}(2)-\mathrm{F}(6)$	1.888	$\operatorname{Ir}(2 \mathrm{~A})-\mathrm{F}(6 \mathrm{~A})$	1.882

Bond Angles (${ }^{\circ}$)			
$\mathrm{O}(3)-\operatorname{Ir}(1)-\mathrm{O}(3 \mathrm{~A})$	92.37	$F(3)-\operatorname{Ir}(2)-F(4)$	88.36
$\mathrm{O}(3)-\operatorname{Ir}(1)-\mathrm{F}(1)$	177.36	$F(3)-\operatorname{Ir}(2)-F(5)$	87.67
$\mathrm{O}(3)-\mathrm{Ir}(1)-\mathrm{F}(1 \mathrm{~A})$	90.06	$F(3)-\operatorname{Ir}(2)-F(6)$	89.05
$\mathrm{O}(3)-\operatorname{Ir}(1)-\mathrm{F}(2)$	92.95	$F(4)-\operatorname{Ir}(2)-F(5)$	88.36
$\mathrm{O}(3)-\operatorname{Ir}(1)-\mathrm{F}(2 \mathrm{~A})$	90.71	$F(4)-\operatorname{Ir}(2)-F(6)$	88.07
$\mathrm{O}(3 \mathrm{~A})-\operatorname{Ir}(1)-\mathrm{F}(1)$	90.04	$F(5)-\operatorname{Ir}(2)-F(6)$	175.22
$\mathrm{O}(3 \mathrm{~A})-\mathrm{Ir}(1)-\mathrm{F}(1 \mathrm{~A})$	177.34	$\operatorname{Ir}(1)-\mathrm{O}(3)-\operatorname{Ir}(2)$	141.36
$\mathrm{O}(3 \mathrm{~A})-\operatorname{Ir}(1)-\mathrm{F}(2)$	92.95	$\operatorname{Ir}(2)-\mathrm{O}(4)-\operatorname{Ir}(2 \mathrm{~A})$	140.50
$\mathrm{O}(3 \mathrm{~A})-\mathrm{Ir}(1)-\mathrm{F}(2 \mathrm{~A})$	90.71	$\mathrm{O}(3 \mathrm{~A})-\operatorname{Ir}(2 \mathrm{~A})-\mathrm{O}(4)$	90.32
$\mathrm{F}(1)-\operatorname{Ir}(1)-\mathrm{F}(1 \mathrm{~A})$	87.51	$\mathrm{O}(3 \mathrm{~A})-\mathrm{Ir}(2 \mathrm{~A})-\mathrm{F}(3 \mathrm{~A})$	89.47
$F(1)-\operatorname{Ir}(1)-F(2)$	87.99	$\mathrm{O}(3 \mathrm{~A})-\operatorname{Ir}(2 \mathrm{~A})-\mathrm{F}(4 \mathrm{~A})$	177.39
$F(1)-\operatorname{Ir}(1)-\mathrm{F}(2 \mathrm{~A})$	88.18	$\mathrm{O}(3 \mathrm{~A})-\mathrm{Ir}(2 \mathrm{~A})-\mathrm{F}(5 \mathrm{~A})$	90.45
$\mathrm{F}(1 \mathrm{~A})-\operatorname{Ir}(1)-\mathrm{F}(2)$	88.00	$\mathrm{O}(3 \mathrm{~A})-\mathrm{Ir}(2 \mathrm{~A})-\mathrm{F}(6 \mathrm{~A})$	93.00
$\mathrm{F}(1 \mathrm{~A})-\mathrm{Ir}(1)-\mathrm{F}(2 \mathrm{~A})$	88.18	$\mathrm{O}(4)-\operatorname{Ir}(2 \mathrm{~A})-\mathrm{F}(3 \mathrm{~A})$	178.17
$\mathrm{F}(2)-\operatorname{Ir}(1)-\mathrm{F}(2 \mathrm{~A})$	174.71	$\mathrm{O}(4)-\operatorname{Ir}(2 \mathrm{~A})-\mathrm{F}(4 \mathrm{~A})$	91.90
$\mathrm{O}(3)-\mathrm{Ir}(2)-\mathrm{O}(4)$	90.30	$\mathrm{O}(4)-\operatorname{Ir}(2 \mathrm{~A})-\mathrm{F}(5 \mathrm{~A})$	92.77
$\mathrm{O}(3)-\operatorname{Ir}(2)-\mathrm{F}(3)$	89.48	$\mathrm{O}(4)-\operatorname{Ir}(2 \mathrm{~A})-\mathrm{F}(6 \mathrm{~A})$	90.53
$\mathrm{O}(3)-\operatorname{Ir}(2)-\mathrm{F}(4)$	177.41	$\mathrm{F}(3 \mathrm{~A})-\mathrm{Ir}(2 \mathrm{~A})-\mathrm{F}(4 \mathrm{~A})$	88.36
$\mathrm{O}(3)-\operatorname{Ir}(2)-\mathrm{F}(5)$	92.99	$F(3 A)-\operatorname{Ir}(2 A)-F(5 A)$	89.05
$\mathrm{O}(3)-\operatorname{Ir}(2)-\mathrm{F}(6)$	90.45	$\mathrm{F}(3 \mathrm{~A})-\operatorname{Ir}(2 \mathrm{~A})-\mathrm{F}(6 \mathrm{~A})$	87.67
$\mathrm{O}(4)-\operatorname{Ir}(2)-\mathrm{F}(3)$	178.17	$\mathrm{F}(4 \mathrm{~A})-\operatorname{Ir}(2 \mathrm{~A})-\mathrm{F}(5 \mathrm{~A})$	88.07
$\mathrm{O}(4)-\operatorname{Ir}(2)-\mathrm{F}(4)$	91.90	$\mathrm{F}(4 \mathrm{~A})-\operatorname{Ir}(2 \mathrm{~A})-\mathrm{F}(6 \mathrm{~A})$	88.36
$\mathrm{O}(4)-\mathrm{Ir}(2)-\mathrm{F}(5)$	90.52	$\mathrm{F}(5 \mathrm{~A})-\operatorname{Ir}(2 \mathrm{~A})-\mathrm{F}(6 \mathrm{~A})$	175.22
$\mathrm{O}(4)-\operatorname{Ir}(2)-\mathrm{F}(6)$	92.77	$\operatorname{Ir}(1)-\mathrm{O}(3 \mathrm{~A})-\operatorname{Ir}(2 \mathrm{~A})$	141.34
$\operatorname{Ir}(1)-\mathrm{O}(3)-\mathrm{Ir}(2)-\mathrm{O}(4)$	-47.12	$\operatorname{Ir}(2)-\mathrm{O}(4)-\operatorname{Ir}(2 \mathrm{~A})-\mathrm{O}(3 \mathrm{~A})$	11.55

[a] uPBE1PBE/aug-cc-pVTZ(Ir)-Def2TZPVD-(O, F). The labeling scheme is the same as in Figure 6.3.

Table A3.3. Experimental and calculated geometric parameters for $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}^{[a]}$

Bond Angles (${ }^{\circ}$)							
$\mathrm{O}(1)-\mathrm{Cl}(1)-\mathrm{F}(1)$	106.7(2)	106.67	108.39	$\mathrm{O}(2)-\mathrm{Cl}(2)-\mathrm{F}(7)$	105.0(2)	106.67	108.39
$\mathrm{O}(1)--\mathrm{Ir}(1)-\mathrm{F}(2)$	90.71(15)	85.68	85.65	$\mathrm{O}(2)--\mathrm{Ir}(2)-\mathrm{F}(8)$	88.93(14)	85.68	85.65
$\mathrm{O}(1)--\mathrm{Ir}(1)-\mathrm{F}(3)$	87.87(15)	86.77	87.29	$\mathrm{O}(2)---\operatorname{Ir}(2)-\mathrm{F}(9)$	90.14(14)	86.77	87.29
$\mathrm{O}(1)---\operatorname{Ir}(1)-\mathrm{F}(4)$	87.18(15)	92.42	89.36	$\mathrm{O}(2)---\mathrm{Ir}(2)-\mathrm{F}(10)$	88.62(14)	92.42	89.36
$\mathrm{O}(1)--\mathrm{Ir}(1)-\mathrm{F}(5)$	90.52(16)	85.77	87.81	$\mathrm{O}(2)--\mathrm{Ir}(2)-\mathrm{F}(11)$	88.33(15)	85.77	87.81
$\mathrm{O}(1)--\mathrm{Ir}(1)-\mathrm{F}(6)$	178.12(16)	178.91	178.17	$\mathrm{O}(2)--\mathrm{Ir}(2)-\mathrm{F}(12)$	178.54(14)	178.91	178.17
$\mathrm{F}(2)-\operatorname{Ir}(1)-\mathrm{F}(3)$	89.68(15)	88.88	87.82	$\mathrm{F}(8)-\mathrm{Ir}(2)-\mathrm{F}(9)$	89.78(16)	88.88	87.82
$F(2)-\operatorname{Ir}(1)-\mathrm{F}(4)$	177.87(15)	177.87	174.92	$\mathrm{F}(8)-\operatorname{Ir}(2)-\mathrm{F}(10)$	177.20(14)	177.87	174.92
$F(2)-\operatorname{Ir}(1)-\mathrm{F}(5)$	90.47(16)	89.61	91.12	$\mathrm{F}(8)-\operatorname{Ir}(2)-\mathrm{F}(11)$	90.00(15)	89.61	91.12
$\mathrm{F}(2)-\operatorname{Ir}(1)-\mathrm{F}(6)$	90.89(15)	93.55	92.53	$F(8)-\operatorname{Ir}(2)-\mathrm{F}(12)$	92.51(15)	93.55	92.53
$F(3)-\operatorname{Ir}(1)-\mathrm{F}(4)$	89.98(15)	90.05	91.05	$\mathrm{F}(9)-\operatorname{Ir}(2)-\mathrm{F}(10)$	91.59(15)	90.05	91.05
$F(3)-\operatorname{Ir}(1)-\mathrm{F}(5)$	178.39(15)	172.48	175.05	$\mathrm{F}(9)-\operatorname{Ir}(2)-\mathrm{F}(11)$	178.46(15)	172.48	175.05
$\mathrm{F}(3)-\operatorname{Ir}(1)-\mathrm{F}(6)$	91.14(15)	93.99	87.82	$\mathrm{F}(9)-\operatorname{Ir}(2)-\mathrm{F}(12)$	90.08(14)	93.99	87.82
$\mathrm{F}(4)-\operatorname{Ir}(1)-\mathrm{F}(5)$	89.81(16)	91.21	92.79	$\mathrm{F}(10)-\mathrm{Ir}(2)-\mathrm{F}(11)$	88.57(14)	91.21	92.79
$\mathrm{F}(4)-\operatorname{Ir}(1)-\mathrm{F}(6)$	91.22(15)	88.37	89.58	$F(10)-\operatorname{Ir}(2)-\mathrm{F}(12)$	89.93(14)	88.37	89.58
$\mathrm{F}(5)-\operatorname{Ir}(1)-\mathrm{F}(6)$	90.46(16)	93.46	92.47	$\mathrm{F}(11)-\mathrm{Ir}(2)-\mathrm{F}(12)$	91.45(15)	93.46	92.47
$\mathrm{Cl}(1)-\mathrm{O}(1)--\mathrm{Hr}(1)$	120.4(2)	116.47	92.09	$\mathrm{Cl}(2)-\mathrm{O}(2)---\operatorname{Ir}(2)$	119.8(2)	116.47	92.09
Dihedral angles $\left(^{\circ}\right.$)							
$\mathrm{Cl}(1)-\mathrm{O}(1)---\mathrm{Ir}(1)-\mathrm{F}(2)$	11.0(3)	41.75	52.68	$\mathrm{Cl}(2)-\mathrm{O}(2)---\mathrm{Ir}(2)-\mathrm{F}(8)$	22.1(2)	41.75	52.68

[a] The labeling scheme is the same as shown in Figure 6.5. [b] uPBE1PBE/aug-cc-pVTZ-pp(Ir)-Def2-TZVPD-(O, F, $\mathrm{Cl})$. [c] PBE0-D4/TZ2P. The calculation also includes collinear SOC.

Table A3.4. Calculated geometric parameters for gas-phase OClF

	Gaussian $^{[\mathrm{ab}]}$	ADF $^{[\mathrm{b}]}$
Cl-O	1.4752	1.4851
Cl-F	1.6647	1.6800
O-Cl-F	110.24	110.57

[a] PBE1PBE/Def2-SVP-(F, O, Cl). [b] PBE0-D4/TZ2P. The calculation also includes collinear SOC.

Table A3.5. Calculated geometric parameters ${ }^{[\mathrm{ab]}}$ for $\operatorname{IrF}_{5}\left(C_{2 \mathrm{v}}\right)^{[\mathrm{b}]}$ and $\operatorname{IrF}_{5}\left(C_{4 \mathrm{v}}\right)^{[\mathrm{c}]}$

	Gaussian ${ }^{[b]}$ Bond Lengths (\AA)	ADF $^{[\mathrm{c}]}$
$\operatorname{Ir}(1)-\mathrm{F}(1)$	1.8168	1.8358
$\operatorname{Ir}(1)-\mathrm{F}(2)$	1.8240	1.8453
$\operatorname{Ir}(1)-\mathrm{F}(3)$	1.8750	1.8453
$\operatorname{Ir}(1)-\mathrm{F}(4)$	1.8240	1.8453
$\operatorname{Ir}(1)-\mathrm{F}(5)$	1.8750	1.8453
Bond Angles $\left({ }^{\circ}\right)$		
$\mathrm{F}(1)-\operatorname{Ir}(1)-\mathrm{F}(2)$	98.16	94.22
$\mathrm{~F}(1)-\operatorname{Ir}(1)-\mathrm{F}(3)$	91.34	94.22
$\mathrm{~F}(1)-\operatorname{Ir}(1)-\mathrm{F}(4)$	98.16	94.22
$\mathrm{~F}(1)-\operatorname{Ir}(1)-\mathrm{F}(5)$	91.34	94.22
$\mathrm{~F}(2)-\operatorname{Ir}(1)-\mathrm{F}(3)$	89.81	89.69
$\mathrm{~F}(2)-\operatorname{Ir}(1)-\mathrm{F}(4)$	163.67	171.56
$\mathrm{~F}(2)-\operatorname{Ir}(1)-\mathrm{F}(5)$	89.81	89.69
$\mathrm{~F}(3)-\operatorname{Ir}(1)-\mathrm{F}(4)$	89.81	89.69
$\mathrm{~F}(3)-\operatorname{Ir}(1)-\mathrm{F}(5)$	177.31	171.56
$\mathrm{~F}(4)-\operatorname{Ir}(1)-\mathrm{F}(5)$	89.81	89.69

[a] The labeling scheme is the same as shown in Figure A3.3. [b] uPBE1PBE/aug-cc-pVTZ-pp(Ir)-Def2-TZVPD-(F). [c] PBE0-D4/TZ2P. The calculation also includes collinear SOC.

Figure A3.1. A packing diagram showing the X-ray crystallographic unit cell of $\mathrm{F}_{5} \mathrm{Ir}$--OCIF (2) viewed along the a-axis. Thermal ellipsoids are drawn at the 50% probability level.

Figure A3.2. The second structural unit in the X-ray crystal structure of $\mathrm{F}_{5} \mathrm{Ir}-\mathrm{-}$-OClF (2). The first structural unit is provided in Figure 6.5. Thermal ellipsoids are drawn at the 50% probability level and secondary $\mathrm{Ir}---\mathrm{O}$ and $\mathrm{Cl}---\mathrm{F}$ bonds are indicated by dashed lines.

Figure A3.3. Calculated gas-phase geometry of $\operatorname{IrF}_{5}\left(C_{2 v}\right)$. uPBE1PBE/aug-cc-pVTZ-pp(Ir)-Def2-TZVPD-(F).

Figure A3.4. Calculated gas-phase geometry of OCIF $\left(C_{\mathrm{s}}\right)$. PBE1PBE/Def2-TZVPD-(O, Cl, F).

Table A3.6. Calculated ${ }^{[a]}$ vibrational frequencies, ${ }^{[b]}$ intensities, and assignments for OClF

	assgnts $^{[\mathrm{b}]}$
$1114(15)[82]$	$v(\mathrm{Cl}-\mathrm{O})$
$670(14)[130]$	$v(\mathrm{Cl}-\mathrm{F})$
$338(4)[8]$	$\delta(\mathrm{OClF})$

[a] PBE1PBE/Def2-TZVPD-(O, F, Cl). [b] Values in parentheses and square brackets denote calculated Raman intensities $\left(\AA^{4} \mathrm{amu}^{-1}\right)$ and infrared intensities $\left(\mathrm{km} \mathrm{mol}^{-1}\right)$, respectively.

Table A3.7. Calculated ${ }^{[a]}$ vibrational frequencies, ${ }^{[b]}$ intensities, and assignments for IrF_{5} $\left(C_{2 \mathrm{v}}\right)$

	assgnts ${ }^{[b]}$
745(21)[16]	$v\left(\mathrm{Ir}-\mathrm{F}_{1}\right)$
$726(<1)[194]$	$v\left(\mathrm{Ir}-\mathrm{F}_{1}\right)-v\left(\mathrm{Ir}-\mathrm{F}_{3}\right)$
719(22)[18]	$v\left(\mathrm{Ir}-\mathrm{F}_{1}\right)-v\left(\mathrm{Ir}-\mathrm{F}_{2-5}\right)$
684(<1)[210]	$v\left(\mathrm{Ir}-\mathrm{F}_{2}\right)-v\left(\mathrm{Ir}-\mathrm{F}_{4}\right)$
657(9)[<1]	$[v($ Ir-F2 $)+v($ Ir-F 4$)]-[v($ Ir-F 2$)+v($ Ir-F 4$)]$
$270(<1)[8]$	$\delta\left(\mathrm{F}_{2} \mathrm{IrF}_{4}\right)$
$256(<1)[12]$	$\delta_{\text {umb }}\left(\mathrm{IrF}_{4 \mathrm{eq}}\right)$
227(<1)[13]	$\delta\left(\mathrm{F}_{3} \mathrm{IrF}_{5}\right)$
224(2)[0]	$\delta\left(\mathrm{F}_{2} \mathrm{IrF}_{3}\right)-\delta\left(\mathrm{F}_{4} \mathrm{IrF} \mathrm{F}_{5}\right)$
169(<1)[1]	$\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{IrF}_{4}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{3} \mathrm{IrF} \mathrm{F}_{5}\right)$
118(2)[<1]	$\delta\left(\mathrm{F}_{1} \mathrm{IrF}_{2}\right)-\delta\left(\mathrm{F}_{1} \mathrm{IrF} \mathrm{F}_{4}\right)$
85(1)[3]	$\delta\left(\mathrm{F}_{1} \mathrm{IrF}_{3}\right)-\delta\left(\mathrm{F}_{1} \mathrm{IrF} \mathrm{F}_{5}\right)$

[a] uPBE1PBE/aug-cc-pVTZ-pp(Ir)-Def2-TZVPD-(F). [b] Values in parentheses and square brackets denote calculated Raman intensities $\left(\AA^{4} \mathrm{amu}^{-1}\right)$ and infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$), respectively. The atom labeling scheme is the same as in Figure A3.3.

Table A3.8. Calculated ${ }^{[a]}$ vibrational frequencies, ${ }^{[b]}$ intensities, and assignments for $\mathrm{F}_{5} \mathrm{Ir}$ ---OClF

	assgnts ${ }^{[\mathrm{b}]}$
$972(28)[93]$	$v\left(\mathrm{Cl}_{1}-\mathrm{O}_{1}\right)$
$742(121)[137]$	$v\left(\mathrm{Cl}_{1}-\mathrm{F}_{2}\right)$
$714(16)[172]$	$v\left(\mathrm{Ir}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Ir}_{1}-\mathrm{F}_{6}\right)$
$701(5)[135]$	$\left[v\left(\mathrm{Ir}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Cl}_{1}-\mathrm{F}_{2}\right)\right]-\left[v\left(\mathrm{Ir}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Ir}_{1}-\mathrm{F}_{3}\right)\right]$
$685(18)[28]$	$v\left(\mathrm{Ir}_{1}-\mathrm{F}_{6}\right)-\left[v\left(\mathrm{Ir}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Ir}_{1}-\mathrm{F}_{4}\right)\right]$
$668(2)[153]$	$v\left(\mathrm{Ir}_{1}-\mathrm{F}_{2}\right)-v\left(\mathrm{Ir}_{1}-\mathrm{F}_{4}\right)$
$623(7)[17]$	$\left[v\left(\mathrm{Ir}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Ir}_{1}-\mathrm{F}_{4}\right)\right]-\left[v\left(\mathrm{Ir}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Ir}_{1}-\mathrm{F}_{5}\right)\right]$
$473(24)[16]$	$v\left(\mathrm{Ir}_{1}---\mathrm{O}_{1}\right)$
$369(3)[11]$	$\delta\left(\mathrm{O}_{1} \mathrm{Cl}_{1} \mathrm{~F}_{1}\right)$
$299(<1)[13]$	$\delta_{\mathrm{umb}}\left(\mathrm{IrF}_{4 \mathrm{eq}}\right)$
$270(<1)[6]$	$\delta\left(\mathrm{F}_{2} \mathrm{Ir}_{1} \mathrm{~F}_{4}\right)+\delta\left(\mathrm{F}_{3} \mathrm{Ir}_{1} \mathrm{~F}_{5}\right)$
$243(1)[10]$	$\delta\left(\mathrm{F}_{3} \mathrm{Ir}_{1} \mathrm{~F}_{5}\right)+\delta\left(\mathrm{F}_{5} \mathrm{Ir}_{1} \mathrm{~F}_{6}\right)$
$236(<1)[8]$	$\delta\left(\mathrm{F}_{3} \mathrm{Ir}_{1} \mathrm{~F}_{5}\right)-\delta\left(\mathrm{F}_{6} \mathrm{Ir}_{1} \mathrm{O}_{1}\right)$
$225(3)[<1]$	$\delta\left(\mathrm{F}_{3} \mathrm{Ir}_{1} \mathrm{~F}_{4}\right)-\delta\left(\mathrm{F}_{2} \mathrm{Ir}_{1} \mathrm{~F}_{5}\right)$
$206(<1)[2]$	$\rho_{\mathrm{t}}\left(\mathrm{F}_{2} \mathrm{Ir}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{4} \mathrm{Ir}_{1} \mathrm{~F}_{5}\right)$
$199(2)[<1]$	$\delta\left(\mathrm{F}_{4} \mathrm{Ir}_{1} \mathrm{~F}_{6}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{2} \mathrm{Ir}_{1} \mathrm{~F}_{5}\right)$
$187(3)[1]$	$\rho_{\mathrm{t}}\left(\mathrm{F}_{4} \mathrm{Ir}_{1} \mathrm{~F}_{5}\right)$
$162(<1)[<1]$	$\rho_{\mathrm{w}}\left(\mathrm{F}_{6} \mathrm{Ir}_{1} \mathrm{O}_{1}\right)$
$106(<1)[5]$	$\delta\left(\mathrm{Cl}_{1} \mathrm{O}_{1} \mathrm{Ir}_{1}\right)$
$82(1)[2]$	$\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{Cl}_{1} \mathrm{~F}_{1}\right)+\rho_{\mathrm{r}}\left(\mathrm{IrF}_{5}\right)$
$52(<1)[<1]$	$\rho_{\mathrm{r}}\left(\mathrm{O}_{1} \mathrm{Cl}_{1} \mathrm{~F}_{1}\right)+\rho_{\mathrm{r}}\left(\mathrm{IrF}_{5}\right)$

[a] uPBE1PBE/aug-cc-pVTZ-pp(Ir)-Def2-TZVPD-(O, F, Cl). [b] Values in parentheses and square brackets denote calculated Raman intensities ($\AA^{4} \mathrm{amu}^{-1}$) and infrared intensities (km mol^{-1}), respectively. The atom labeling scheme is the same as in Figure 6.5.

Table A3.9. Wiberg bond indices, natural population analysis (NPA) charges, and valence indices for OClF

Bond Indices			NPA Charges [Valence Indices]	
$\mathrm{Cl}-\mathrm{O}$	1.519	Cl	1.081	$[2.199]$
$\mathrm{Cl}-\mathrm{F}$	0.679	O	-0.667	$[1.734]$
		F	-0.414	$[0.894]$
		Locif	$\mathbf{0 . 0 0 0}$	

[a] PBE1PBE/Def2-TZVPD-(O, F, Cl).

Table A3.10. Wiberg bond indices, natural population analysis (NPA) charges, and valence indices for $\mathrm{IrF}_{5}\left(C_{2 \mathrm{v}}\right)$

Bond Indices			NPA Charges [Valence Indices]	
Ir1-F1	0.857	Ir1	2.212	$[3.519]$
Ir1-F2	0.730	F1	-0.345	$[1.006]$
Ir1-F3	0.601	F2	-0.421	$[0.994]$
Ir1-F4	0.730	F3	-0.512	$[0.834]$
Ir1-F5	0.601	F4	-0.421	$[0.994]$
		F5	-0.512	$[0.834]$
		$\sum_{\text {IrF5 }}$	$\mathbf{0 . 0 0 1}$	

[a] uPBE1PBE/aug-cc-pVTZ-pp(Ir)-Def2-TZVPD-(F). The atom labeling scheme is the same as in Figure A3.3.

Table A3.11. Wiberg bond indices, natural population analysis (NPA) charges, and valence indices for $\left[\text { cyclo- }\left(\mu-\mathrm{OIrF}_{4}\right)_{3}\right]^{2-}\left(C_{1}\right)$

Bond Indices			NPA Charges [Valence Indices]		
Ir1-O3	0.852	Ir1	2.042	$[4.102]$	
Ir1-O3A	0.852	Ir2	2.032	$[3.937]$	
Ir1-F1	0.513	Ir2A	2.032	$[3.937]$	
Ir1-F1A	0.513	F1	-0.541	$[0.801]$	
Ir1-F2	0.523	F1A	-0.541	$[0.801]$	
Ir1-F2A	0.543	F2	-0.542	$[0.793]$	
Ir2-O3	0.683	F2A	-0.521	$[0.824]$	
Ir2-O4	0.765	F3	-0.516	$[0.842]$	
Ir2-F3	0.556	F3A	-0.516	$[0.842]$	
Ir2-F4	0.500	F4	-0.550	$[0.776]$	
Ir2-F5	0.565	F4A	-0.550	$[0.776]$	
Ir2-F6	0.579	F5	-0.521	$[0.825]$	
Ir2A-O3A	0.684	F5A	-0.507	$[0.846]$	
Ir2A-O4	0.766	F6	-0.507	$[0.847]$	
Ir2A-F3A	0.556	F6A	-0.521	$[0.825]$	
Ir2A-F4A	0.500	O3	-0.581	$[2.106]$	
Ir2A-F5A	0.579	O3A	-0.580	$[2.106]$	
Ir2A-F6A	0.565	O4	-0.613	$[2.088]$	
		Etotal	$-\mathbf{2 . 0 0 1}$		

[a] uPBE1PBE/aug-cc-pVTZ-pp(Ir)-Def2-TZVPD-(O, F). The atom labeling scheme is the same as in Figure 6.3.

Table A3.12. Wiberg bond indices, natural population analysis (NPA) charges, and valence indices for $\mathrm{F}_{5} \mathrm{Ir}---\mathrm{OClF}$

Bond Indices		NPA Charges [Valence Indices]		
Ir1-F2	0.547	Ir1	2.099	[3.651]
Ir1-F3	0.675	F2	-0.545	[0.789]
Ir1-F4	0.616	F3	-0.456	[0.945]
Ir 1-F5	0.719	F4	-0.496	[0.853]
Ir1-F6	0.703	F5	-0.418	[0.999]
Ir1---O1	0.338	F6	-0.424	[0.943]
		$\sum \mathrm{IrF5}$	-0.240	
Cl1-O1	1.287	Cl 1	1.210	[2.166]
Cl1-F1	0.794	O1	-0.634	[1.940]
Cl1---F2	0.140	F1	-0.336	[0.974]
Cl1---F3	0.050	$\sum \mathrm{OClF}$	0.240	
		$\sum_{\text {total }}$	-0.000	

[a] uPBE1PBE/aug-cc-pVTZ-pp(Ir)-Def2-TZVPD-(O, Cl, F). The atom labeling scheme is the same as in Figure 6.5.

APPENDIX 4

Chapter 7 Supporting Information

Noble-Gas Difluoride Complexes of $\mathrm{MOF}_{4}(\mathrm{M}=\mathbf{M o}, \mathbf{W}) ; \mathbf{N g F}_{2} \cdot \mathrm{MOF}_{4}(\mathbf{N g}=\mathbf{K r}, \mathbf{X e})$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$; and the HF Solvate, $\left[-\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}--(\mu-\mathrm{F}) \mathrm{H}--\right]_{\infty}$

Adapted with permission from: Bortolus, M. R.; Mercier, H. P. A.; Brock, D. S.;
Schrobilgen, G. J. Chem. Eur. J. 2022, 28, e202103729.
Table of ContentsPage(s)
Syntheses, Properties, and Crystal Growth (continued) 457
Figure A4.1 Raman spectrum $\left(-150{ }^{\circ} \mathrm{C}\right)$ of $\left[--\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---(\mu-\mathrm{F}) \mathrm{H}--\right]_{\infty}$ 458
Table A4.1 Experimental Raman frequencies and intensities; and tentative 459assignments for $\left[--\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---(\mu-\mathrm{F}) \mathrm{H}--\right]_{\infty}$
Figure A4.2 The X-ray crystal structures (near-eclipsed conformations) of 460$\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}, \mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}$, and $\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$, and theircalculated structures (staggered conformations)
Table A4.2 Experimental and calculated geometric parameters of 461$\mathrm{KrF}_{2} \cdot \mathrm{MOF}_{4}$ ($\mathrm{M}=\mathrm{Mo}, \mathrm{W}$)
Table A4.3 Experimental and calculated geometric parameters of 462$\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$
Figure A4.3 The X-ray crystal structure of $\mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}$ and its calculated 463geometry
Table A4.4 Experimental and calculated geometric parameters for 464
$\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$
Table A4.5 Experimental geometric parameters of $\left[--\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---\right.$ 466 $(\mu-F) H--]_{\infty}$
Figure A4.4 Raman spectra $\left(-150{ }^{\circ} \mathrm{C}\right)$ of $\mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}$ and $\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$ 467
Figure A4.5 Raman spectra $\left(-150{ }^{\circ} \mathrm{C}\right)$ of $\mathrm{XeF}_{2} \cdot 2 \mathrm{MoOF}_{4}$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}$ 468
Raman Discussion (continued) 469
Table A4.6 Experimental (Raman) and calculated vibrational frequencies, 473intensities, and assignments for $\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$ and $\mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}$
Table A4.7 Experimental (Raman) and calculated vibrational frequencies, 476 intensities, and assignments for $\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$ and $\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$
\(\left.$$
\begin{array}{lll}\text { Table A4.8 } & \begin{array}{l}\text { Experimental (Raman) and calculated vibrational frequencies, } \\
\text { intensities, and assignments for } \mathrm{XeF}_{2} \cdot 2 \mathrm{MoOF}_{4} \text { and }\end{array}
$$ \& 478

\& \mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}\end{array}\right]\)| | |
| :--- | :--- |
| Figure A4.6 | Factor-group analyses for $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; \mathrm{M}=\mathrm{Mo}$, |
| | $\mathrm{W})$ |

Table A4.10 Laplacian of electron density $\left(\nabla^{2} \rho_{\mathrm{b}}\right)$, the density of all electrons 492 $\left(\rho_{\mathrm{b}}\right)$, the energy density $\left(H_{\mathrm{b}}\right)$, delocalization indices (δ), QTAIM atomic populations (\bar{N}), and ELF basin populations (\bar{N}) for $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}, \mathrm{NgF}_{2}$, and $\mathrm{MOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; \mathrm{M}=\mathrm{Mo}, \mathrm{W})$
Table A4.11 Laplacian of electron density $\left(\nabla^{2} \rho_{\mathrm{b}}\right)$, the density of all electrons 495 $\left(\rho_{\mathrm{b}}\right)$, the energy density $\left(H_{\mathrm{b}}\right)$, delocalization indices (δ), QTAIM atomic populations (\bar{N}), and elf basin populations (\bar{N}) for $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}, \mathrm{XeF}_{2}$, and $\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$
Figure A4.8 ELF isosurface plots for $\mathrm{NgF}_{2}, \mathrm{MOF}_{4}, \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$, and 500 $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; \mathrm{M}=\mathrm{Mo}, \mathrm{W})$
Figure A4.9 Reduction of localization diagrams for $\mathrm{MOF}_{4}\left(C_{4 v}\right), \mathrm{NgF}_{2} \quad 501$ $\left(D_{\infty h}\right), \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}\left(C_{s}\right)$, and $\mathrm{NgF}_{2} \cdot 2 \mathrm{MOF}_{4}\left(C_{1}\right)(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe}$; $\mathrm{M}=\mathrm{Mo}, \mathrm{W})$
Figure A4.10 The molecular electrostatic potential surfaces (MEPS) 505 isosurfaces of $\mathrm{MOF}_{4}, \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}, \mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$, and NgF_{2} ($\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; \mathrm{M}=\mathrm{Mo}, \mathrm{W}, \mathrm{Cr}$)
Table A4.12 Calculated geometric parameters for $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; 506$ $\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}$)
Table A4.13 Calculated geometric parameters for $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}$, 507 W)

Table A4.14 Calculated geometric parameters for $\mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \quad 508$ Xe)
Table A4.15 Calculated geometric parameters for $\mathrm{CrOF}_{4}, \mathrm{MOF}_{4}$, and 509 $\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$
Table of Contents (continued) Page(s)
Energy Decomposition Analyses (EDA) (continued) 510
Table A4.16 EDA of the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bonds in $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe}$; 511
M = Mo, W)Table A4.17 EDA of the $\mathrm{Cr}--\mathrm{F}_{\mathrm{b}}$ and $\mathrm{M}--\mathrm{F}_{\mathrm{b}}$ bonds in $\mathrm{F}_{4} \mathrm{OCr}--\mathrm{FNgF}--512-\mathrm{CrOF}_{4}$ and $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{M}\left(\mathrm{OF}_{3}\right) \mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime} \mathrm{OF}_{4}((\mathrm{Ng}=\mathrm{Kr}$, Xe ;$\mathrm{M}=\mathrm{Mo}$, W)
Table A4.18 EDA of the $\mathrm{M}^{\prime}---\mathrm{F}_{\mathrm{b}}{ }^{\prime}$ bond in $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---$ 512$\mathrm{M}^{\prime} \mathrm{OF}_{4}$ ($\mathrm{M}=\mathrm{Mo}, \mathrm{W}$)Natural Orbitals for Chemical Valence (ETS-NOCV) Analyses514
(continued)
Figure A4.11 The major orbital contribution to the $\mathrm{Cr}---\mathrm{F}_{\mathrm{b}}$ bond in the 517ETS-NOCV analysis of $\mathrm{KrF}_{2} \cdot \mathrm{CrOF}_{4}$Figure A4.12 The second most significant orbital contribution to the518Mo--- F_{b} bond in the ETS-NOCV analysis of$\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$
Table A4.19 ETS-NOCV analysis for the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bonds of 519
$\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; \mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$
Table A4.20 ETS-NOCV analysis for the $\mathrm{Cr}---\mathrm{F}_{\mathrm{b}}$ bonds of $\mathrm{F}_{4} \mathrm{OCr}---$ 520$\mathrm{F}_{\mathrm{b}}-\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}---\mathrm{CrOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$
Table A4.21 ETS-NOCV analysis for the $\mathrm{M}^{\prime}---\mathrm{F}_{\mathrm{b}}{ }^{\prime}$ bonds of $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---$ 520
$\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}--\mathrm{M}^{\prime} \mathrm{OF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$
Figure A4.13 The major orbital contribution to the $\mathrm{Cr}---\mathrm{F}_{\mathrm{b}}$ bond in the 521
ETS-NOCV analysis of $\mathrm{F}_{4} \mathrm{OCr}---\mathrm{F}_{\mathrm{b}}-\mathrm{Kr}^{2}-\mathrm{F}_{\mathrm{b}}---\mathrm{CrOF}_{4}$
Figure A4.14 The most significant orbital contribution to the $\mathrm{Cr}--\mathrm{F}_{\mathrm{b}}$ 522bonds in the ETS-NOCV analysis of $\mathrm{F}_{4} \mathrm{OCr}---\mathrm{F}_{\mathrm{b}}-\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}-$--CrOF4
Figure A4.15 The second most significant orbital contribution to the 523
$\mathrm{Cr}---\mathrm{F}_{\mathrm{b}}$ bonds in the ETS-NOCV analysis of $\mathrm{F}_{4} \mathrm{OCr}---$ $\mathrm{F}_{\mathrm{b}}-\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}---\mathrm{CrOF}_{4}$
Figure A4.16 The major orbital contribution to the Mo--- F_{b} bond in the 524
ETS-NOCV analysis of $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{Mo}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---$ $\mathrm{Mo}^{\prime} \mathrm{OF}_{4}$
Figure A4.17 The major orbital contribution to the $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bond in the 525ETS-NOCV analysis of $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{W}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{W}^{\prime} \mathrm{OF}_{4}$
References 526

Syntheses, Properties, and Crystal Growth

 molar mixture of $\mathrm{XeF}_{2}, \mathrm{MoOF}_{4}$, and WOF_{4} in a melt $\left(65^{\circ} \mathrm{C}\right)$ and in CFCl_{3} solution (RT) only yielded colorless, needle-shaped crystals of $\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$ and $\left(\mathrm{MoOF}_{4}\right)_{4}$, which were confirmed by LT Raman spectroscopy and unit cell determinations.
$\left[-\left(\mathbf{F}_{4} \mathbf{O M o}\right)\left(\boldsymbol{\mu}_{3} \mathbf{- F}\right) \mathbf{H}--(\boldsymbol{\mu} \mathbf{- F}) \mathbf{H}--\right]_{\infty}(\mathbf{7})$. In an attempt to synthesize $\mathrm{KrF}_{2} \cdot 2 \mathrm{MoOF}_{4}$, two equiv. of MoOF_{4} and one equiv. of KrF_{2} were allowed to react in aHF solvent at $-35^{\circ} \mathrm{C}$, followed by immediate quenching at $-196{ }^{\circ} \mathrm{C}$. The sample was warmed to $-78{ }^{\circ} \mathrm{C}$, whereupon two distinct white precipitates formed. When allowed to stand at $-78^{\circ} \mathrm{C}$ for ca. 4 h , the precipitates formed discrete layers in the FEP reaction vessel. The Raman spectrum of the bottom layer was consistent with the known $\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$ complex, ${ }^{[\mathrm{S} 1]}$ whereas the Raman spectrum of the top layer exhibited two new $v(\mathrm{Mo}-\mathrm{O})$ stretching bands (1031, $1041 \mathrm{~cm}^{-1}$) and several new $v(\mathrm{Mo}-\mathrm{F})$ stretching bands (657, 688, 702, 715 cm^{-1}).

Following redissolution of the precipitates at $-35^{\circ} \mathrm{C}$, crystals were grown by slow cooling from -35 to $-65{ }^{\circ} \mathrm{C}$ over ca. 6 h and were mounted for SCXRD. The bulk crystalline sample was comprised of nearly equal amounts of $\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$ and the HF solvate, $\left[--\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---(\mu-\mathrm{F}) \mathrm{H}--\right]_{\infty}$ (7), which were confirmed by unit cell determinations and SCXRD (7). A sample of MoOF_{4} was dissolved in aHF at RT [Eq. (A4.1)], and the Raman spectrum of the resulting white precipitate was obtained at -150 ${ }^{\circ} \mathrm{C}$, which was identical to the spectrum of the sample that yielded crystalline [-$\left.\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---(\mu-\mathrm{F}) \mathrm{H}--\right]_{\infty}$ (Figure A4.1 and Table A4.1).

$$
\begin{equation*}
\mathrm{MoOF}_{4}+2 \mathrm{HF} \rightarrow\left[--\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---(\mu-\mathrm{F}) \mathrm{H}--\right]_{\infty} \tag{A4.1}
\end{equation*}
$$

Attempted Synthesis of $\left[-\left(\mathbf{F}_{4} \mathbf{O W}\right)\left(\boldsymbol{\mu}_{3}-\mathbf{F}\right) \mathbf{H}--(\boldsymbol{\mu}-\mathbf{F}) \mathbf{H}-\right]_{\infty}$. Reaction of WOF_{4} with aHF at room temperature over a period of ca. 10 min followed by slow removal aHF solvent at $-78{ }^{\circ} \mathrm{C}$ yielded a white precipitate which was shown by LT $\left(-150{ }^{\circ} \mathrm{C}\right)$ Raman spectroscopy to correspond to unreacted WOF_{4}.

Figure A4.1. Raman spectrum of $\left[--\left(\mathrm{F}_{4} \mathrm{OMO}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---(\mu-\mathrm{F}) \mathrm{H}--\right]_{\infty}$ recorded at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. The symbols denote FEP sample tube bands (*) and an instrumental artifact (\dagger).

Table A4.1. Experimental Raman frequencies and intensities, and tentative assignments for $\left[--\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---(\mu-\mathrm{F}) \mathrm{H}--\right]_{\infty}$

assgnts	
1041(38)	
1031(100)	$v(\mathrm{Mo}-\mathrm{O})$
715(29)	$\left[v\left(\mathrm{Mo}-\mathrm{F}_{1}\right)+v\left(\mathrm{Mo}-\mathrm{F}_{4}\right)\right]-\left[v\left(\mathrm{Mo}-\mathrm{F}_{2}\right)+v\left(\mathrm{Mo}-\mathrm{F}_{3}\right)\right]$
702(34)	$\left[v\left(\mathrm{Mo}-\mathrm{F}_{1}\right)+v\left(\mathrm{Mo}-\mathrm{F}_{2}\right)\right]$
688(16)	$\left[v\left(\mathrm{Mo}-\mathrm{F}_{1}\right)+v\left(\mathrm{Mo}-\mathrm{F}_{2}\right)\right]$
657(22)	$\left[\nu\left(\mathrm{Mo}^{-\mathrm{F}_{3}}\right)+v\left(\mathrm{Mo}-\mathrm{F}_{4}\right)\right]$
511(2)	$v\left(\mathrm{Mo}-\mathrm{F}_{(\mathrm{HF})}\right)$
325(27)	$\left[\delta\left(\mathrm{F}_{1} \mathrm{MoF}_{4}\right)+\delta\left(\mathrm{F}_{2} \mathrm{MoF}_{3}\right)\right]$
316(43)	$\left[\delta\left(\mathrm{OMoF}_{1} \mathrm{~F}_{2}\right)-\delta\left(\mathrm{OMoF}_{3} \mathrm{~F}_{4}\right)\right]$
301(23)	$\left[\delta\left(\mathrm{OMoF}_{2} \mathrm{~F}_{3}\right)-\delta\left(\mathrm{OMoF}_{1} \mathrm{~F}_{4}\right)\right]$
252(7)	$\delta\left(\mathrm{MoF}_{(4)}\right)_{\text {umb }}$
220(5)	$\left[\delta\left(\mathrm{F}_{1} \mathrm{MoF}_{2}\right)-\delta\left(\mathrm{F}_{3} \mathrm{MoF}_{4}\right)\right]$
173(2)	$\left[\delta\left(\mathrm{F}_{1} \mathrm{MoF}_{4}\right)-\delta\left(\mathrm{F}_{2} \mathrm{MoF}_{3}\right)\right.$]

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Figure A4.2. The X-ray crystal structures (left, near-eclipsed conformations) of (a) $\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$, (b) $\mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}$, and (c) $\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$, with thermal ellipsoids drawn at the 50% probability level, and their structures calculated at the APFD/Def2TZVPD level of theory (right, staggered conformations).

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A4.2. Experimental and calculated geometric parameters for $\mathrm{KrF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$

	$\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$			$\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$		
	exptl	calcd $\left(C_{s}\right)^{\left[{ }^{[]]}\right.}$		exptl	calcd $\left(C_{s}\right)^{\left[{ }^{[]]}\right.}$	
		APFD	B3LYP		APFD	B3LYP
	Bond Lengths (\AA)					
$\mathrm{M}(1)-\mathrm{O}(1)$	$1.6508(12)$	1.643	1.654	1.679(3)	1.674	1.684
$\mathrm{M}(1)-\mathrm{F}(1)$	1.8444(9)	1.833	1.848	1.853(2)	1.849	1.863
$\mathrm{M}(1)-\mathrm{F}(2)$	1.8562(8)	1.833	1.848	1.856(2)	1.849	1.863
$\mathrm{M}(1)-\mathrm{F}(3)$	1.8400(9)	1.853	1.864	1.852(2)	1.868	1.879
$\mathrm{M}(1)-\mathrm{F}(4)$	1.8425(9)	1.853	1.864	1.8620(19)	1.868	1.879
$\mathrm{M}(1)--\mathrm{F}(5)$	2.2473(9)	2.416	2.461	2.217(2)	2.405	2.411
$\mathrm{Kr}(1)-\mathrm{F}(5)$	1.9653(9)	1.926	1.945	1.989(2)	1.935	1.957
$\mathrm{Kr}(1)-\mathrm{F}(6)$	1.8202(9)	1.834	1.857	1.805(2)	1.829	1.850
	Bond Angles (deg)					
$\mathrm{F}(5)-\mathrm{Kr}(1)-\mathrm{F}(6)$	179.19(5)	178.8	178.8	178.84(11)	178.8	178.7
$\mathrm{Kr}(1)-\mathrm{F}(5)--\mathrm{M}(1)$	134.33(5)	114.2	120.9	135.22(12)	114.5	122.0
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(1)$	100.60(6)	102.6	102.5	100.68(13)	102.2	102.0
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(2)$	99.65(5)	102.6	102.5	99.75(13)	102.2	102.0
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(3)$	101.21(6)	102.2	102.2	100.85(14)	101.9	101.7
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(4)$	99.91(5)	102.2	102.2	99.49(12)	101.9	101.7
$\mathrm{O}(1)-\mathrm{M}(1)---\mathrm{F}(5)$	177.87(5)	178.1	178.6	177.91(12)	177.9	178.6
$\mathrm{F}(1)-\mathrm{M}(1)-\mathrm{F}(2)$	87.26(4)	88.7	88.5	89.22(12)	88.8	88.6
$\mathrm{F}(1)-\mathrm{M}(1)-\mathrm{F}(3)$	158.14(5)	155.2	155.3	158.44(12)	155.8	156.2
$F(1)-M(1)-F(4)$	89.57(5)	87.6	87.6	87.30(11)	87.7	87.8
$F(1)-M(1)---F(5)$	77.28(4)	78.8	78.5	77.37(10)	79.2	79.0
$\mathrm{F}(2)-\mathrm{M}(1)-\mathrm{F}(3)$	87.73(4)	87.6	87.6	88.37(12)	87.7	87.8
$F(2)-\mathrm{M}(1)-\mathrm{F}(4)$	160.44(5)	155.2	155.3	160.76(11)	155.8	156.2
$F(2)-M(1)---F(5)$	80.09(4)	78.8	78.5	81.04(11)	79.2	79.0
$\mathrm{F}(3)-\mathrm{M}(1)-\mathrm{F}(4)$	88.07(5)	85.6	85.9	87.95(11)	85.7	86.1
$F(3)-M(1)---F(5)$	80.90(4)	76.5	76.8	81.09(10)	76.6	77.3
F(4)-M(1)---F(5)	80.39(4)	76.5	76.8	79.73(9)	76.6	77.3
	Dihedral Angles (deg)					
$\mathrm{Kr}-\mathrm{F}_{(5)}--\mathrm{M}-\mathrm{F}_{(1)}$	14.34(7)	44.3	44.4	16.1(2)	44.4	44.4
	Intermolecular Contacts (\AA)					
$\mathrm{O} \cdots \mathrm{F}$	3.021(3)			3.033(6)		
$F \cdots \mathrm{~F}$	2.732(2)			2.731(5)		

[a] Calculated at the APFD/Def2-TZVPD and B3LYP/aVTZ(-PP)(Xe)/Def2-TZVPD(O, F)/def2-TZVPD(-PP)(Mo, W) levels of theory.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A4.3. Experimental and calculated geometric parameters for $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$
$\mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}$

	exptl	calcd $\left(C_{s}\right)^{\left[a^{[]}\right.}$		exptl	calcd $\left(C_{s}\right)^{\left[{ }^{[]]}\right.}$	
		APFD	B3LYP		APFD	B3LYP
	Bond Lengths (\AA)					
$\mathrm{M}(1)-\mathrm{O}(1)$	$1.6492(14)$	1.643	1.654	1.677(3)	1.676	1.685
$\mathrm{M}(1)-\mathrm{F}(1)$	1.8479(12)	1.833	1.848	1.858(3)	1.849	1.863
$\mathrm{M}(1)-\mathrm{F}(2)$	$1.8435(12)$	1.833	1.848	1.850(3)	1.849	1.863
$\mathrm{M}(1)-\mathrm{F}(3)$	$1.8396(12)$	1.856	1.866	1.846(3)	1.870	1.881
$\mathrm{M}(1)-\mathrm{F}(4)$	1.8524(11)	1.856	1.866	1.862(3)	1.870	1.881
$\mathrm{M}(1)--\mathrm{F}(5)$	2.2352(12)	2.389	2.420	2.199(3)	2.378	2.375
$\mathrm{Xe}(1)-\mathrm{F}(5)$	2.0813(12)	2.048	2.072	2.102(3)	2.058	2.085
$\mathrm{Xe}(1)-\mathrm{F}(6)$	1.9369(12)	1.955	1.981	1.929(3)	1.951	1.975
Bond Angles (deg)						
$\mathrm{F}(5)-\mathrm{Xe}(1)-\mathrm{F}(6)$	178.35(6)	178.3	178.6	178.32(15)	178.3	178.5
Xe(1)-F(5)---M(1)	148.09(7)	116.8	125.1	150.57(18)	117.2	126.1
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(1)$	100.03(7)	102.4	102.1	100.10(16)	102.0	101.7
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(2)$	100.00(7)	102.4	102.1	100.43(17)	102.0	101.7
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(3)$	100.46(7)	101.9	101.8	99.71(16)	101.6	101.3
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(4)$	98.45(6)	101.9	101.8	98.02(15)	101.6	101.3
$\mathrm{O}(1)-\mathrm{M}(1)---\mathrm{F}(5)$	178.09(6)	177.7	178.4	178.12(15)	177.5	178.3
$\mathrm{F}(1)-\mathrm{M}(1)-\mathrm{F}(2)$	89.28(6)	89.0	88.7	89.36(15)	89.0	88.8
$\mathrm{F}(1)-\mathrm{M}(1)-\mathrm{F}(3)$	159.47(6)	155.7	156.0	160.14(14)	156.3	156.9
$\mathrm{F}(1)-\mathrm{M}(1)-\mathrm{F}(4)$	88.09(6)	87.7	87.7	87.39(14)	87.8	87.9
$F(1)-M(1)---F(5)$	78.45(5)	79.3	79.0	78.98(13)	79.7	79.5
$\mathrm{F}(2)-\mathrm{M}(1)-\mathrm{F}(3)$	88.37(6)	87.7	87.7	88.45(15)	87.8	87.9
$\mathrm{F}(2)-\mathrm{M}(1)-\mathrm{F}(4)$	161.54(6)	155.7	156.0	161.56(15)	156.3	156.9
$F(2)-\mathrm{M}(1)--\mathrm{F}(5)$	81.18(6)	79.3	79.0	81.24(14)	79.7	79.5
$\mathrm{F}(3)-\mathrm{M}(1)-\mathrm{F}(4)$	87.72(6)	85.6	86.0	88.46(13)	85.6	86.2
$F(3)-M(1)---F(5)$	81.03(6)	76.5	77.1	81.18(14)	76.6	77.4
F(4)-M(1)---F(5)	80.39(5)	76.5	77.1	80.32(13)	76.6	77.4
Dihedral Angles (deg)						
$\mathrm{Xe}-\mathrm{F}_{(5)}---\mathrm{M}-\mathrm{F}_{(1)}$	7.55(6)	44.3	44.4	5.9(2)	44.3	44.4
Intermolecular Contacts (\AA)						
O $\cdots \mathrm{F}$	3.021(3)			3.033(6)		
$F \cdots \mathrm{~F}$	2.732(2)			2.731(5)		

[a] Calculated at the APFD/Def2-TZVPD and B3LYP/aVTZ(-PP)(Xe)/Def2-TZVPD(O, F)/def2TZVPD (-PP)(Mo, W) levels of theory.

Figure A4.3. The X -ray crystal structure (top) of $\mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}$ and its calculated geometry (bottom, APFD/def2TZVPD level of theory). Thermal ellipsoids are drawn at the 50% probability level.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A4.4. Experimental and calculated parameters for $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$

	$\mathrm{XeF}_{2} \cdot \mathbf{2 M O O F}_{4}$			$\mathrm{XeF}_{2} \cdot \mathbf{2 W O F}_{4}$		
	exptl	calcd ($C_{\text {S }}{ }^{\left[{ }^{\text {a] }}\right.}$		exptl	calcd $\left(C_{\mathrm{i}}\right)^{[\text {a] }}$	
		APFD	B3LYP		APFD	B3LYP
	Bond Lengths (\AA)					
$\mathrm{Xe}(1)-\mathrm{F}(5)$	$2.1153(10)$	2.059	2.090	$2.136(4)$	2.072	2.110
$\mathrm{Xe}(1)-\mathrm{F}(6)$	$1.9283(10)$	1.950	1.973	$1.922(4)$	1.944	1.966
$\mathrm{M}(1)--\mathrm{F}(5)$	2.1980 (9)	2.339	2.355	$2.177(4)$	2.321	2.305
$\mathrm{M}(1)-\mathrm{O}(1)$	1.6461(12)	1.640	1.651	1.660(5)	1.672	1.682
$\mathrm{M}(1)-\mathrm{F}(1)$	1.8285(10)	1.822	1.839	1.828(4)	1.842	1.855
$\mathrm{M}(1)-\mathrm{F}(2)$	1.8208(10)	1.827	1.842	1.825(4)	1.846	1.855
$\mathrm{M}(1)-\mathrm{F}(3)$	1.8456(10)	1.849	1.860	1.848(4)	1.859	1.874
$\mathrm{M}(1)-\mathrm{F}(4)$	1.9350(10)	1.897	1.907	1.929(4)	1.909	1.930
$\mathrm{M}(2)--\mathrm{F}(4)$	2.2990 (10)	2.426	2.520	2.313(4)	2.416	2.450
$\mathrm{M}(2)-\mathrm{O}(2)$	1.6432(12)	1.642	1.653	1.662(6)	1.673	1.682
$\mathrm{M}(2)-\mathrm{F}(7)$	1.8398(12)	1.837	1.850	1.837(5)	1.851	1.865
$\mathrm{M}(2)-\mathrm{F}(8)$	1.8370(13)	1.861	1.870	1.841(5)	1.873	1.887
$\mathrm{M}(2)-\mathrm{F}(9)$	$1.8238(12)$	1.838	1.851	1.835(5)	1.855	1.866
$\mathrm{M}(2)-\mathrm{F}(10)$	1.8315(12)	1.835	1.846	1.839(5)	1.847	1.860
	Bond Angles (deg)					
$\mathrm{F}(5)-\mathrm{Xe}(1)-\mathrm{F}(6)$	178.85(4)	178.4	178.5	178.06(19)	177.9	178.2
$\mathrm{Xe}(1)-\mathrm{F}(5)--\mathrm{M}(1)$	130.84(5)	125.6	131.7	131.70(19)	123.8	133.9
$\mathrm{O}(1)-\mathrm{M}(1)--\mathrm{F}(5)$	177.42(5)	178.5	178.7	176.9(2)	179.1	178.5
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(1)$	100.74(6)	102.2	102.4	101.0(2)	101.8	101.7
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(2)$	99.57(6)	101.2	100.7	99.3(2)	100.9	100.2
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(3)$	99.21(5)	101.9	101.9	98.8(2)	101.5	101.3
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(4)$	96.23(5)	99.3	99.1	96.4(2)	99.33	98.7
$\mathrm{F}(1)-\mathrm{M}(1)-\mathrm{F}(2)$	92.16(5)	90.9	90.3	92.5(2)	90.8	90.7
$\mathrm{F}(1)-\mathrm{M}(1)-\mathrm{F}(3)$	158.51(5)	155.4	155.4	158.6(2)	156.4	156.7
$\mathrm{F}(1)-\mathrm{M}(1)-\mathrm{F}(4)$	85.78(5)	86.8	86.9	85.8(2)	86.7	86.7
$\mathrm{F}(2)-\mathrm{M}(1)-\mathrm{F}(3)$	92.30(5)	88.9	88.9	92.3(2)	89.5	89.3
$\mathrm{F}(2)-\mathrm{M}(1)-\mathrm{F}(4)$	164.18(5)	159.4	160.1	164.3(2)	159.7	161.0
$\mathrm{F}(3)-\mathrm{M}(1)-\mathrm{F}(4)$	84.22(5)	84.9	85.6	84.0(2)	85.9	85.8
$\mathrm{F}(5)--\mathrm{M}(1)-\mathrm{F}(1)$	79.91(4)	78.6	78.3	80.27(17)	78.7	79.1
$F(5)--M(1)-F(2)$	82.88(4)	80.0	80.4	83.51(19)	79.8	81.0
$\mathrm{F}(5)--\mathrm{M}(1)-\mathrm{F}(3)$	79.81(4)	77.2	77.3	79.54(16)	78.0	77.9
$\mathrm{F}(5)--\mathrm{M}(1)-\mathrm{F}(4)$	81.31(4)	79.5	79.8	80.80(18)	80.0	80.0

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A4.4. (continued)

	$\mathrm{XeF}_{2} \cdot \mathbf{2 M o O F} 4$			$\mathrm{XeF}_{2} \cdot \mathbf{2} \mathrm{WOF}_{4}$		
	exptl	$\operatorname{calcd}\left(C_{\mathrm{s}}\right)^{[a]}$		exptl	$\operatorname{calcd}\left(C_{\mathrm{i}}\right)^{[a]}$	
		APFD	B3LYP		APFD	B3LYP
	Bond Angles (deg)					
$\mathrm{O}(2)-\mathrm{M}(2)--\mathrm{F}(4)$	178.51(6)	179.6	179.1	178.5(2)	179.5	179.3
$\mathrm{O}(2)-\mathrm{M}(2)-\mathrm{F}(7)$	100.09(6)	102.6	102.5	100.1(3)	102.2	102.0
$\mathrm{O}(2)-\mathrm{M}(2)-\mathrm{F}(8)$	99.81(6)	101.6	102.2	100.9(3)	101.3	101.4
$\mathrm{O}(2)-\mathrm{M}(2)-\mathrm{F}(9)$	100.94(7)	102.0	102.9	101.8(3)	102.0	102.0
$\mathrm{O}(2)-\mathrm{M}(2)-\mathrm{F}(10)$	100.08(6)	102.5	102.6	100.6(3)	102.0	102.0
$\mathrm{F}(4)--\mathrm{M}(2)-\mathrm{F}(7)$	79.51(5)	77.2	76.6	78.9(2)	77.3	77.9
$\mathrm{F}(4)--\mathrm{M}(2)-\mathrm{F}(8)$	78.75(5)	78.1	77.6	78.0(2)	78.8	77.9
$F(4)---M(2)-F(9)$	79.46(5)	78.1	78.0	79.3(2)	78.4	78.2
$F(4)---M(2)-F(10)$	81.35(5)	77.8	77.6	80.5(2)	77.9	78.6
$F(7)-\mathrm{M}(2)-\mathrm{F}(8)$	88.06(7)	86.6	86.7	88.1(3)	86.8	86.8
$\mathrm{F}(7)-\mathrm{M}(2)-\mathrm{F}(9)$	158.97(6)	155.3	154.6	158.2(3)	155.6	156.0
$\mathrm{F}(7)-\mathrm{M}(2)-\mathrm{F}(10)$	87.89(7)	88.5	88.2	87.9(3)	88.8	88.5
$F(8)-\mathrm{M}(2)-\mathrm{F}(9)$	88.25(7)	86.4	86.3	87.7(3)	86.2	86.6
$\mathrm{F}(8)-\mathrm{M}(2)-\mathrm{F}(10)$	160.10(6)	155.9	155.2	158.5(2)	156.7	156.6
$\mathrm{F}(9)-\mathrm{M}(2)-\mathrm{F}(10)$	88.57(7)	88.2	88.1	88.2(3)	88.4	88.5
$\mathrm{Mo}(1)-\mathrm{F}(4)--\mathrm{M}(2)$	159.02(6)	145.8	131.4	159.5(2)	145.6	164.8
	Dihedral Angles (deg)					
$\mathrm{Xe}-\mathrm{F}_{(5)}---\mathrm{M}-\mathrm{F}_{(3)}$	7.19(7)	1.4	3.5	$2.3(3)$	24.1	2.6
	Intermolecular Contacts (\AA)					
$\mathrm{O} \cdots \mathrm{F}$	2.929(2)			2.912(4)		
$\mathrm{F} \cdots \mathrm{F}$	2.828(2)			2.867(4)		

[a] Calculated at the APFD/def2-TZVPD and B3LYP/aVTZ(-PP)(Xe)/Def2-TZVPD(O, F)/def2-TZVPD(-PP)(Mo, W) levels of theory.

Table A4.5. Experimental geometric parameters for $\left[--\left(\mathrm{F}_{4} \mathrm{OMo}\right)\left(\mu_{3}-\mathrm{F}\right) \mathrm{H}---(\mu-\mathrm{F}) \mathrm{H}--\right]_{\infty}$

Bond Lengths (\AA)	
Mo(1)-O(1)	$1.6500(19)$
$\mathrm{Mo}(1)-\mathrm{F}(1)$	$1.8541(14)$
$\mathrm{Mo}(1)-\mathrm{F}(2)$	$1.8875(14)$
$\mathrm{Mo}(1)-\mathrm{F}(3)$	$1.8427(14)$
$\mathrm{Mo}(1)-\mathrm{F}(4)$	$1.8456(15)$
$\mathrm{Mo}(1)---\mathrm{F}(5)$	$2.1527(14)$
$\mathrm{F}(5)--\mathrm{F}(6)$	$2.511(2)$
	$\quad \mathrm{Bond}$ Angles (deg)
$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{F}(1)$	$99.46(8)$
$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{F}(2)$	$97.03(8)$
$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{F}(3)$	$98.60(9)$
$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{F}(4)$	$98.69(9)$
$\mathrm{O}(1)-\mathrm{Mo}(1)--\mathrm{F}(5)$	$179.54(8)$
$\mathrm{F}(1)-\mathrm{Mo}(1)-\mathrm{F}(2)$	$86.84(7)$
$\mathrm{F}(1)-\mathrm{Mo}(1)-\mathrm{F}(3)$	$161.59(7)$
$\mathrm{F}(1)-\mathrm{Mo}(1)-\mathrm{F}(4)$	$89.88(7)$
$\mathrm{F}(1)-\mathrm{Mo}(1)---\mathrm{F}(5)$	$80.58(6)$
$\mathrm{F}(2)-\mathrm{Mo}(1)-\mathrm{F}(3)$	$87.41(7)$
$\mathrm{F}(2)-\mathrm{Mo}(1)-\mathrm{F}(4)$	$164.26(7)$
$\mathrm{F}(2)-\mathrm{Mo}(1)---\mathrm{F}(5)$	$82.51(6)$
$\mathrm{F}(3)-\mathrm{Mo}(1)-\mathrm{F}(4)$	$90.93(8)$
$\mathrm{F}(3)-\mathrm{Mo}(1)---\mathrm{F}(5)$	$81.33(6)$
$\mathrm{F}(4)-\mathrm{Mo}(1)---\mathrm{F}(5)$	$81.76(6)$
$\mathrm{Mo}(1)---\mathrm{F}(5)---\mathrm{F}(6)$	$110.91(6)$
$\mathrm{O} \cdots \mathrm{F}$	$2.859(2)$
$\mathrm{F} \cdots \mathrm{F}$	$2.664(2)$

Figure A4.4. Raman spectra of (a) $\mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}$ and (b) $\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$ recorded at -150 ${ }^{\circ} \mathrm{C}$ using 1064-nm excitation. The symbols denote FEP sample tube bands (*) and an instrumental artifact (\dagger).

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Figure A4.5. Raman spectra of (a) $\mathrm{XeF}_{2} \cdot 2 \mathrm{MoOF}_{4}$ and (b) $\mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}$ recorded at $-150{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. The symbols denote FEP sample tube bands $\left(^{*}\right)$ and an instrumental artifact (\dagger).

Raman Discussion (continued)

The Raman spectra of $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; \mathrm{M}=\mathrm{Mo}, \mathrm{W})$ (Figures A4.4 and A4.5) have been re-examined in this work to provide more precise descriptions and assignments of the vibrational modes based on the calculated vibrational frequencies and atomic displacements of $\mathbf{1}^{\prime} \mathbf{- 6} \mathbf{6}^{\prime}$ (Tables A4.6-A4.8).

In a prior study, ${ }^{[\mathrm{S} 1]}$ the assignments of the Raman spectra of $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ were based on the observed geometry in the crystal structure of $\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$, which was the only crystal structure of a Group 6 oxide tetrafluoride complex with a noble-gas fluoride then available, ${ }^{[\mathrm{S} 2]}$ whereas the Raman spectra of $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ were assigned assuming a trans, trans-isomer deduced from solution ${ }^{19} \mathrm{~F}$ NMR studies. ${ }^{[\mathrm{S} 1, \mathrm{~S} 3]}$ The vibrational assignments were mainly made by comparison with assignments for $\mathrm{MOF}_{4},\left[\mathrm{MOF}_{5}\right]^{-}$, $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-},\left[\mathrm{Xe}_{2} \mathrm{~F}_{3}\right]^{+}$, and NgF_{2} that were available at that time. The present Raman assignments for $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ were made by comparison with the calculated gas-phase vibrational frequencies and Raman intensities for their energyminimized geometries. The calculated gas-phase geometries of $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ correspond to the cis, trans-isomers observed in their crystal structures. The vibrational assignments for $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ were also aided by comparison with the experimental and calculated vibrational frequencies of the chromium analogue, $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4} \cdot{ }^{[54]}$ Notable improvements relating to the assignments of stretching and deformation modes that involve the NgF_{2} ligands of $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ have been made in the present study. Overall, the vibrational frequency trends are well reproduced by the
calculations. Only the main contributions to the vibrational modes are considered in the following discussion.
$\boldsymbol{N g} \boldsymbol{F}_{2} \cdot \mathbf{M O F}_{4}(\mathbf{N g}=\boldsymbol{K r}, \boldsymbol{X e} ; \mathbf{M}=\mathbf{M o}, \boldsymbol{W})$. The previously published Raman spectra of $\mathrm{KrF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ were recorded at $-196{ }^{\circ} \mathrm{C}^{[\mathrm{S} 1]}$ and are of very good quality and showed many of the vibrational bands that are predicted to be weak as well as many of the predicted factor-group splittings (vide infra and Tables A4.6 and A4.7). The published Raman spectra of $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ were also of very good quality, although they were recorded at $-108{ }^{\circ} \mathrm{C} \cdot{ }^{[\mathrm{S} 1]}$ They were also recorded at $-150{ }^{\circ} \mathrm{C}$ in the present work, which improved the Raman spectra of these complexes (Figures A4.4a and A4.4b, Tables A4.6 and A4.7).

The splittings observed on many of the $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ bands were originally correctly attributed to factor-group splittings based on the crystal structure of $\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4} \cdot{ }^{[\mathrm{S} 2]}$ Determinations of the isotypic crystal structures of $\mathrm{KrF}_{2} \cdot \mathrm{MOF}_{4}$ and $\mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}$ in the present study confirmed the previously published vibrational assignments and their factor-group splittings (vide infra).

In accordance with the calculated vibrational frequencies, the $v(\mathrm{Mo}-\mathrm{O})$ and $v(\mathrm{~W}-$ O) stretching bands occur at essentially the same frequencies in $\mathrm{NgF}_{2} \cdot \mathrm{MoOF}_{4}$ (calcd: $1090(\mathrm{Kr})$ and $1089(\mathrm{Xe}) \mathrm{cm}^{-1}$; exptl: $1025 / 1034(\mathrm{Kr})$ and $\left.1022 / 1035(\mathrm{Xe}) \mathrm{cm}^{-1}\right)$ and $\mathrm{NgF}_{2} \cdot \mathrm{WOF}_{4}$ (calcd: $1068(\mathrm{Kr})$ and $1067(\mathrm{Xe}) \mathrm{cm}^{-1}$; exptl: 1034/1041 (Kr) and $\left.1030 / 1041(\mathrm{Xe}) \mathrm{cm}^{-1}\right)$. Although the $v(\mathrm{Mo}-\mathrm{O})$ stretches are expected to occur at higher frequencies than the $v(\mathrm{~W}-\mathrm{O})$ stretches, in accordance with the calculated bond length

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

trend, $\mathrm{Mo}-\mathrm{O}<\mathrm{W}-\mathrm{O}$, and the relative atomic masses of Mo and W ; the $v(\mathrm{Mo}-\mathrm{O})$ stretches occur at lower frequencies than the $v(\mathrm{~W}-\mathrm{O})$ stretches.

The $v\left(\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}\right)$ and $v\left(\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}\right)$ stretching frequencies occur at similar frequencies in $\mathrm{KrF}_{2} \cdot \mathrm{MOF}_{4}$ (calcd: 580 and 477 (Mo), and 583 and $470(\mathrm{~W}) \mathrm{cm}^{-1}$; exptl: 566/579 and $462 / 479$ (Mo), and 571/581 and 450/469 (W) cm ${ }^{-1}$) and in $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ (calcd: 551 and 472 (Mo), and 556 and 462 (W) cm ${ }^{-1}$; exptl: 562/567 and 449/466 (Mo) and 571/574 and $\left.437 / 466(\mathrm{~W}) \mathrm{cm}^{-1}\right)$ complexes. These frequencies are in the same range as those of $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4} \cdot{ }^{[\mathrm{S} 4]}$ In the earlier Raman spectroscopic study of the $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ complexes, ${ }^{[S 1]}$ (i) the bands at $462,466,450$, and $458 \mathrm{~cm}^{-1}$ were misassigned to $v\left(\mathrm{M}-\mathrm{F}_{\mathrm{ax}}\right)$; instead, they are one of the two components of the factor-group split $v\left(\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}\right)$ bands and (ii) one component of the factor-group split $v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\right)$ band of $\mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}$ at $567 \mathrm{~cm}^{-1}$ has now been reassigned, and occurs at lower frequency than was previously reported ($575 \mathrm{~cm}^{-1}$). The most intense component of the factor-group split $v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}\right)$ band is observed at $562 \mathrm{~cm}^{-1}$ compared to $566 \mathrm{~cm}^{-1}$ in the previous study.

Coordination of NgF_{2} to MOF_{4} results in in-plane, $\delta\left(\mathrm{F}_{5} \mathrm{NgF}_{6}\right)_{\text {i.p. }}$, and out-of-plane, $\delta\left(\mathrm{F}_{5} \mathrm{NgF}_{6}\right)_{\text {o.o.p., }}$ bending modes that are expected to be very weak. Only $\delta\left(\mathrm{F}_{5} \mathrm{XeF}_{6}\right)_{\text {i.p. }}$ (277 (Mo) and $\left.274(\mathrm{~W}) \mathrm{cm}^{-1}\right)$ and $\delta\left(\mathrm{F}_{5} \mathrm{XeF}_{6}\right)_{\text {o.o.p. }}\left(241(\mathrm{~W}) \mathrm{cm}^{-1}\right)$ were observed, in good agreement with their calculated values (288,286 , and $239 \mathrm{~cm}^{-1}$, respectively). Most bands below $300 \mathrm{~cm}^{-1}$ were incorrectly assigned in the earlier study. ${ }^{[\mathrm{S} 1]}$

XeF $_{2} \cdot \mathbf{2 M O F}_{4}(\boldsymbol{M}=\mathbf{M o}, \boldsymbol{W})$. Acquisition of new Raman spectra at $-150{ }^{\circ} \mathrm{C}$ for $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ in the present study compared to $-109{ }^{\circ} \mathrm{C}(\mathrm{Mo})$ and $-100{ }^{\circ} \mathrm{C}$ (W) in the previous study, ${ }^{[\mathrm{S} 1]}$ resulted in enhanced spectral resolution. In accordance with
the predicted factor-group splittings (Figures A4.5a and A4.5b, and Table A4.8), most of the bands in the $-150{ }^{\circ} \mathrm{C}$ spectra of $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ are flanked by shoulders.

Table A4.6. Experimental (Raman) and calculated vibrational frequencies, intensities, and assignments for $\mathrm{NgF}_{2} \cdot \mathrm{MoOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$

continued ...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A4.6. (continued)

continued ...

Table A4.6. (continued) [a] Frequencies are given in cm^{-1}. [b] Values in parentheses denote relative Raman intensities. The abbreviation denotes a shoulder (sh). [c] Values in parentheses and square brackets denote calculated Raman intensities ($\AA^{4} \mathrm{amu}^{-1}$) and infrared intensities $\left(\mathrm{km} \mathrm{mol}^{-1}\right)$, respectively. Assignments are for the energy-minimized gas-phase geometry $\left(C_{\mathrm{s}}\right)$ calculated using the APFD/def2TZVPD ($\mathrm{O}, \mathrm{F}, \mathrm{Kr}$)/def2-TZVPD(-PP)(Mo, Xe) and the B3LYP/aVTZ(-PP)(Kr, Xe)/Def2-TZVPD(O, F)/def2-TZVPD(-PP)(Mo) levels of theory. [d] Abbreviations denote stretch (v), bend (δ), rock (ρ_{r}), twist (ρ_{t}), and wag (ρ_{w}), umbrella (umb), $\mathrm{MoOF}_{(4)}\left(\mathrm{Mo}_{1} \mathrm{O}_{1} \mathrm{~F}_{1} \mathrm{~F}_{2} \mathrm{~F}_{3} \mathrm{~F}_{4}\right.$), inplane (i.p.), and out-of-plane (o.o.p.). Bond elongations and angle openings are denoted by plus (+) signs, and bond contractions and angle compressions are denoted by minus (-) signs. The in-plane and out-of-plane bending modes are relative to the $\mathrm{O}_{1} \mathrm{Mo}_{1} \mathrm{~F}_{5} \mathrm{Ng}_{1} \mathrm{~F}_{6}$-plane, where the atom labeling scheme corresponds to that used in Figure A4.2. [e] From ref [S1]; the frequencies have been reassigned. Bands previously observed at $546(3)$ and $509(0.5) \mathrm{cm}^{-1}$ were previously assigned to $\mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}$ but were not observed in the present work. [f] Present work. The Raman spectrum was recorded in an FEP sample tube at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. [g] The band may overlap with an FEP sample tube band.

Table A4.7. Experimental (Raman) and calculated vibrational frequencies, intensities, and assignments for $\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$ and $\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$

$\mathrm{KrF}_{\mathbf{2}} \cdot \mathrm{WOF}_{4}$					$\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$			
$\operatorname{expt}{ }^{[a, b]}$	calcd ${ }^{[a, c]}$			assgnts $\left(C_{\mathrm{s}}\right)^{[d]}$	calcd ${ }^{[a, b]}$		$\operatorname{expt}\left[^{[a, c]}\right.$	
[e]	APFD	B3LYP			APFD	B3LYP	[e]	[f]
$\begin{aligned} & 1041(8) \\ & 1034(45) \end{aligned}$	1093(41)[153]	1068(47)[147]	A^{\prime}	$v(\mathrm{~W}-\mathrm{O})$	1092(41)[158]	1067(48)[153]	$\left\{\begin{array}{l} 1043(14) \\ 1033(56) \end{array}\right.$	$\begin{aligned} & 1041(21) \\ & 1030(76) \end{aligned}$
$\begin{aligned} & 712(4) \\ & 706(18) \end{aligned}$	723(13)[55]	704(14)[51]	A^{\prime}	$\left[v\left(\mathrm{~W}-\mathrm{F}_{1}\right)+v\left(\mathrm{~W}-\mathrm{F}_{2}\right)\right]+\left[v\left(\mathrm{~W}-\mathrm{F}_{3}\right)+v\left(\mathrm{~W}-\mathrm{F}_{4}\right)\right]_{\text {small }}$	723(13)[57]	703(13)[53]	$\left\{\begin{array}{l} 714(6) \\ 706(8) \end{array}\right.$	$\begin{aligned} & 712(7) \\ & 705(23) \end{aligned}$
	688(<1)[206]	671(<1)[208]	$\mathrm{A}^{\prime \prime}$	$\left[v\left(\mathrm{~W}-\mathrm{F}_{1}\right)+v\left(\mathrm{~W}-\mathrm{F}_{4}\right)\right]-\left[v\left(\mathrm{~W}-\mathrm{F}_{2}\right)+v\left(\mathrm{~W}-\mathrm{F}_{3}\right)\right]$	687(<1)[197]	669(<1)[204]		
	$679(<1)[242]$	$664(<1)[231]$	A^{\prime}	$\left[v\left(\mathrm{~W}-\mathrm{F}_{3}\right)+v\left(\mathrm{~W}-\mathrm{F}_{4}\right)\right]-\left[v\left(\mathrm{~W}-\mathrm{F}_{1}\right)+v\left(\mathrm{~W}-\mathrm{F}_{2}\right)\right]_{\text {small }}$	$676(<1)[231]$	661(<1)[224]		
611(3)	628(2)[19]	614(3)[14]	$\mathrm{A}^{\prime \prime}$	$\left[v\left(\mathrm{~W}-\mathrm{F}_{1}\right)+v\left(\mathrm{~W}-\mathrm{F}_{3}\right)\right]-\left[v\left(\mathrm{~W}-\mathrm{F}_{2}\right)+v\left(\mathrm{~W}-\mathrm{F}_{4}\right)\right]$	625(2)[21]	611(2)[16]	618(4)	616(5)
$\begin{aligned} & 581(45) \\ & 571(100) \end{aligned}$	603(23)[205]	583(24)[210]	A^{\prime}	$v\left(\mathrm{Ng}-\mathrm{F}_{6}\right)-v(\mathrm{Kr}-\mathrm{F} 5)_{\text {small }}$	576(31)[146]	556(36)[146]	$\left\{\begin{array}{l}577(83) \\ 573(100)\end{array}\right.$	$\begin{aligned} & 574(93) \\ & 571(100) \end{aligned}$
$\begin{aligned} & 469(17) \\ & 450(42) \end{aligned}$	490(40)[90]	470(55)[87]	A^{\prime}	$\left[v\left(\mathrm{Ng}-\mathrm{F}_{5}\right)-v\left(\mathrm{~W}-\mathrm{F}_{5}\right)\right]$	479(21)[152]	462(32)[161]	$\left\{\begin{array}{l}458(8) \\ 439(11)\end{array}\right.$	$\begin{aligned} & 466(7) \\ & 437(10) \end{aligned}$
312(16)	318(2)[1]	$312(2)[<1]$	A^{\prime}	$\left[\delta\left(\mathrm{F}_{1} \mathrm{WF}_{4}\right)+\delta\left(\mathrm{F}_{2} \mathrm{WF}_{3}\right)\right]$	316(2)[2]	$310(2)[<1]$	320(17)	$\left\{\begin{array}{l}322(12) \\ 319(13)\end{array}\right.$
301(12)	$\begin{aligned} & 307(2)[12] \\ & 310(3)[6] \end{aligned}$	$\begin{aligned} & 310(4)[8] \\ & 308(3)[7] \end{aligned}$	A^{\prime} $\mathrm{A}^{\prime \prime}$	$\begin{aligned} & {\left[\delta\left(\mathrm{OWF}_{1} \mathrm{~F}_{2}\right)-\delta\left(\mathrm{OWF}_{3} \mathrm{~F}_{4}\right)\right]} \\ & {\left[\delta\left(\mathrm{OWF}_{2} \mathrm{~F}_{3}\right)-\delta\left(\mathrm{OWF}_{1} \mathrm{~F}_{4}\right)\right]} \end{aligned}$	$\begin{aligned} & 321(3)[13] \\ & 310(3)[7] \end{aligned}$	$\begin{aligned} & 311(4)[8] \\ & 309(3)[7] \end{aligned}$	$\} 311, s h$	309(7)
[g]	326(3)[22]	293(2)[11]	A^{\prime}	$\delta\left(\mathrm{F}_{5} \mathrm{NgF}_{6}\right)_{\text {i.p. }}-\left(\delta\left(\mathrm{WF}_{(4)}\right)_{\text {umb }}\right)_{\text {small }}$	304(2)[15]	286(1)[10]	274(1)	
	252(<1)[69]	$240(<1)$ [79]	A^{\prime}	$\delta\left(\mathrm{WF}_{(4)}\right)_{\mathrm{umb}}+\left(\delta\left(\mathrm{F}_{5} \mathrm{NgF}_{6}\right)_{\mathrm{i} . \mathrm{p} .}\right)_{\text {small }}$	$250(<1)[81]$	$235(<1)[89]$	$248(<1)$	
	$258(<0.1)[21]$	$247(<0.1)[23]$	$\mathrm{A}^{\prime \prime}$	$\delta\left(\mathrm{F}_{5} \mathrm{NgF}_{6}\right)_{\text {o.o.p. }}-\left[\delta\left(\mathrm{F}_{1} \mathrm{WF}_{4}\right)-\delta\left(\mathrm{F}_{2} \mathrm{WF}_{3}\right)\right]_{\text {small }}$	$243(<0.1)[27]$	$239(<0.1)[27]$	241(<1)	
221(4)	$224(<1)[11]$	$220(<1)[13]$	A^{\prime}	$\left[\delta\left(\mathrm{F}_{1} \mathrm{WF}_{2}\right)-\delta\left(\mathrm{F}_{3} \mathrm{WF}_{4}\right)\right]$	$222(<1)[11]$	$216(<1)[19]$	$\left\{\begin{array}{l}206(1) \\ 202(1)\end{array}\right.$	$\begin{aligned} & 207(1) \\ & 202(1) \end{aligned}$
206(2)	$217(<1)[6]$	212(<1)[3]	$\mathrm{A}^{\prime \prime}$	$\left[\delta\left(\mathrm{F}_{1} \mathrm{WF}_{4}\right)-\delta\left(\mathrm{F}_{2} \mathrm{WF}_{3}\right)\right]+\left(\delta\left(\mathrm{F}_{5} \mathrm{NgF}_{6}\right)_{\text {o.o.p. }}\right)_{\text {small }}$	$205(<1)[<1]$	199(<1)[<1]		199(1)

Table A4.7. (continued)

$\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$					$\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$			
158(6)	$169(<1)[<1]$	$160(<1)[<1]$	A"	$\left[\rho_{t}\left(\mathrm{~F}_{1} \mathrm{WF}_{2}\right)-\rho_{t}\left(\mathrm{~F}_{3} \mathrm{WF}_{4}\right)\right]$	$168(<1)[<1]$	$162(<1)[<1]$	153(14)	$\left\{\begin{array}{l}158, \text { sh } \\ 153(12)\end{array}\right.$
144(8)	161(2)[4]	138(3)[10]	A^{\prime}	$\rho_{\mathrm{r}}\left(\mathrm{F}_{5} \mathrm{NgF}_{6}\right)$	142(2)[2]	129(2)[5]	139(6)	138(5)
	$121(<1)[<1]$	118(1)[1]	$\mathrm{A}^{\prime \prime}$	$\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{5} \mathrm{NgF}_{6}\right)-\rho_{\mathrm{t}}\left(\mathrm{WOF}_{(4)}\right)\right.$]	$119(<1)[1]$	118(<1)[2]	127(3)	127(2)
	$108[<1)[<1]$	103(<1)[1]	A^{\prime}	$\rho_{\mathrm{r}}\left(\mathrm{WOFF}_{(4)}\right)$	$106[<1)[<1]$	101(<1)[<1]		
	$60(1)[<1]$	44(1) [<1]	A^{\prime}	$\delta\left(\mathrm{WF}_{5} \mathrm{Ng}\right)_{\text {i.p. }}$	$59(<1)[<1]$	$41(<1)[<1]$		
	$36(1)[<0.1]$	16(1)[<0.1]	$\mathrm{A}^{\prime \prime}$	$\left[\rho_{t}\left(\mathrm{~F}_{5} \mathrm{NgF}_{6}\right)+\rho_{\mathrm{t}}\left(\mathrm{WOF}_{(4)}\right)\right]$	$36(<1)[<0.1]$	$16(<1)[<0.1]$		
172(18)				lattice modes			$\begin{aligned} & 70(5) \\ & 53(18) \\ & 35(25) \\ & 30, \text { sh } \end{aligned}$	

[a] Frequencies are given in cm^{-1}. [b] Values in parentheses denote relative Raman intensities. The abbreviation denotes a shoulder (sh). [c] Values in parentheses and square brackets denote calculated Raman intensities ($\AA^{4} \mathrm{amu}^{-1}$) and infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$), respectively. Assignments are for the energy-minimized gas-phase geometry $\left(C_{\mathrm{s}}\right)$ calculated at the $\operatorname{APFD} /$ def2-TZVPD $(\mathrm{O}, \mathrm{F}, \mathrm{Kr}) /$ def2TZVPD (-PP)(W, Xe) and B3LYP/aVTZ(-PP)(Kr, Xe)/Def2-TZVPD(O, F)/def2-TZVPD(-PP)(W) levels of theory. [d] Abbreviations denote stretch (v), bend (δ), rock (ρ_{r}), twist (ρ_{t}), and wag (ρ_{w}), umbrella (umb), $\mathrm{WOF}_{(4)}\left(\mathrm{W}_{1} \mathrm{O}_{1} \mathrm{~F}_{1} \mathrm{~F}_{2} \mathrm{~F}_{3} \mathrm{~F}_{4}\right)$, in-plane (i.p.), and out-of-plane (o.o.p.). Bond elongations and angle openings are denoted by plus (+) signs, and bond contractions and angle compressions are denoted by minus (-) signs. The in-plane and out-of-plane bending modes are relative to the $\mathrm{O}_{1} \mathrm{~W}_{1} \mathrm{~F}_{5} \mathrm{Kr}_{1} \mathrm{~F}_{6}$-plane, where the atom labeling scheme corresponds to that used in Figure 1. [e] From ref [S1]; the frequencies have been reassigned. Previously reported bands at 544(5) and $504(4) \mathrm{cm}^{-1}$ were assigned to $\mathrm{KrF}_{2} \cdot$ WOF $_{4}$ but were not observed in the present work. [f] Present work. The Raman spectrum was recorded in an FEP sample tube at $-150^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. [g] The band may overlap with an FEP sample tube band.

Table A4.8. Experimental (Raman) and calculated vibrational frequencies, intensities, and assignments for $\mathrm{XeF}_{2} \cdot 2 \mathrm{MoOF}_{4}$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}$

$\mathrm{XeF}_{2} \cdot \mathbf{2 M o O F}_{4}$					$\mathbf{X e F}_{2} \cdot \mathbf{2} \mathrm{WOF}_{4}$			
$\operatorname{exptt}{ }^{[a, b]}$		calcd $^{\left[\frac{1 a, c]}{}\right.}$		assgnts ${ }^{[d]}$	calcd ${ }^{[a, b]}$		expt ${ }^{[a, c]}$	
[e]	[f]	APFD	B3LYP		APFD	B3LYP	[g]	[f]
1036(53)	1039(43)	1122(65)[104]	1094(69)[111]	$\left[v\left(\mathrm{M}_{1}-\mathrm{O}_{1}\right)+v\left(\mathrm{M}_{2}-\mathrm{O}_{2}\right)\right]$	1098(56)[105]	1073(67)[102]	$\left\{\begin{array}{l}1053, \mathrm{sh} \\ 1050(89)\end{array}\right.$	1052(50)
1028(22)	1030(20)	1119(18)[257]	1092(21)[224]	$\left[v\left(\mathrm{M}_{1}-\mathrm{O}_{1}\right)-\mathrm{v}\left(\mathrm{M}_{2}-\mathrm{O}_{2}\right)\right]$	1094(22)[192]	1070(21)[179]	$\left\{\begin{array}{l}1044, \mathrm{sh} \\ 1041(34)\end{array}\right.$	1044(24)
724(3)	726(4)	735(7)[349]	716(7)[354]	$\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{M}_{1}-\mathrm{F}_{3}\right)\right]+\left[v\left(\mathrm{M}_{2}-\mathrm{F}_{9}\right)-v\left(\mathrm{M}_{2}-\mathrm{F}_{7}\right)\right]$	730(4)[75]	711(7)[71]	$\left\{\begin{array}{l}719(35) \\ 716(28)\end{array}\right.$	720(26)
$\begin{aligned} & 714(38) \\ & 708(11) \end{aligned}$	$\begin{aligned} & 715(37) \\ & 711, \text { sh } \end{aligned}$	726(4)[216]	708(4)[194]	$\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{M}_{1}-\mathrm{F}_{1}\right)\right]-\left[v\left(\mathrm{M}_{2}-\mathrm{F}_{10}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{9}\right)\right]$	726(21)[60]	707(21)[70]		
$\begin{aligned} & 700, \text { sh } \\ & 698(20) \end{aligned}$	700(20)	719(14)[97]	704(14)[125]	$\begin{aligned} & {\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{M}_{1}-\mathrm{F}_{3}\right)\right]+\left[v\left(\mathrm{M}_{2}-\mathrm{F}_{7}\right)-v\left(\mathrm{M}_{2}-\mathrm{F}_{9}\right)\right]+} \\ & v\left(\mathrm{M}_{2}-\mathrm{F}_{10}\right) \end{aligned}$	702(1)[337]	685(1)[348]	682(1)	684(1)
$\begin{aligned} & 685, \text { sh } \\ & 682(6) \end{aligned}$	684(8)	716(8)[179]	698(5)[135]	$\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{M}_{1}-\mathrm{F}_{2}\right)-v\left(\mathrm{M}_{1}-\mathrm{F}_{3}\right)\right]+v\left(\mathrm{M}_{2}-\mathrm{F}_{9}\right)$	691(<1)[177]	674(<1)[102]	$\left\{\begin{array}{l}673, \mathrm{sh} \\ 670(3)\end{array}\right.$	672(3)
$\begin{aligned} & 671, \text { sh } \\ & 668(8) \end{aligned}$	669(8)	699(2)[139]	683(4)[142]	$\left[v\left(\mathrm{M}_{2}-\mathrm{F}_{9}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{7}\right)\right]+\left[v\left(\mathrm{M}_{2}-\mathrm{F}_{8}\right)-v\left(\mathrm{M}_{2}-\mathrm{F}_{10}\right)\right]$	682(1)[105]	665(1)[144]	658(1)	662(1)
$\begin{aligned} & 655(9) \\ & 651, \text { sh } \end{aligned}$	656(9)	680(5)[237]	661(7)[226]	$\begin{aligned} & {\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{M}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{M}_{1}-\mathrm{F}_{3}\right)\right]-} \\ & {\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{4}\right)-v\left(\mathrm{M}_{2}-\mathrm{F}_{4}\right)\right]_{\text {small }}} \end{aligned}$	671(1)[174]	653(2)[153]	$\left\{\begin{array}{l}625, \mathrm{sh} \\ 621(4)\end{array}\right.$	624(3)
$\begin{aligned} & \text { 597, sh } \\ & 589(8) \end{aligned}$	593(7)	611(2)[22]	595(3)[16]	$\left[v\left(\mathrm{M}_{2}-\mathrm{F}_{9}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{7}\right)\right]-\left[v\left(\mathrm{M}_{2}-\mathrm{F}_{8}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{10}\right)\right]$	630(1)[50]	612(2)[46]		
$\begin{aligned} & 527, \text { sh } \\ & 525(3) \end{aligned}$	528(2)	589(5)[69]	$564(9)[126]^{[\mathrm{h}]}$	$\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{4}\right)-v\left(\mathrm{M}_{2}-\mathrm{F}_{4}\right)\right]$	598(3)[126]	563(15)[153] ${ }^{\text {[}]}$	$\left\{\begin{array}{l}537(2) \\ 535, \text { sh }\end{array}\right.$	541(1)
$\begin{aligned} & 574, \text { sh } \\ & 572(100) \end{aligned}$	575(100)	576(34)[153]	557(35)[129]	$v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)$	583(37)[143]	$567(34)[169]^{[j]}$	$\left\{\begin{array}{l} 585, \mathrm{sh} \\ 581(100) \end{array}\right.$	585(100)

continued ...

Table A4.8. (continued)

$\mathrm{XeF}_{2} \cdot \mathbf{2 M o O F}_{4}$					$\mathrm{XeF}_{2} \cdot \mathbf{2 W O F}_{4}$			
421(9)	422(9)	485(20)[164]	460(29)[161]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)-v\left(\mathrm{M}_{1}-\mathrm{F}_{5}\right)\right]$	474(18)[187]	445(27)[196]	408(5)	409(5)
$\begin{aligned} & 325(15) \\ & 321(14) \end{aligned}$	324, sh	323(1)[4]	316(2)[2]	$\left[\delta\left(\mathrm{F}_{8} \mathrm{M}_{2} \mathrm{~F}_{7}\right)+\delta\left(\mathrm{F}_{9} \mathrm{M}_{2} \mathrm{~F}_{10}\right)\right] / \delta\left(\mathrm{O}_{2} \mathrm{M}_{2} \mathrm{~F}_{4}\right)$	319(2)[1]	312(1)[<1]	$\left\{\begin{array}{l}334, \text { sh } \\ 332(6)\end{array}\right.$	332(4)
316, sh		321(3)[6]	316(2)[1]	$\begin{aligned} & {\left[\delta\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{1}\right)-\delta\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{3}\right)\right]+} \\ & {\left[\delta\left(\mathrm{O}_{2} \mathrm{M}_{2} \mathrm{~F}_{9}\right)-\delta\left(\mathrm{O}_{2} \mathrm{M}_{2} \mathrm{~F}_{7}\right)\right]_{\text {small }}} \end{aligned}$	324(1)[14]	315(3)[3]	$\left\{\begin{array}{l}323(16) \\ 321, s h\end{array}\right.$	324(12)
313(23)	314(20)	318(2)[3]	315(1)[8]	$\left[\delta\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{2}\right)-\delta\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{4}\right)\right]+\left[\delta\left(\mathrm{O}_{2} \mathrm{M}_{2} \mathrm{F9}\right)-\delta\left(\mathrm{O}_{2} \mathrm{M}_{2} \mathrm{~F}_{7}\right)\right]$	316(1)[3]	314(1)[5]	314(20)	317(28)
310, sh		313(3)[10]	313(2)[11]	$\begin{aligned} & {\left[\delta\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{2} \mathrm{~F}_{3}\right)-\delta\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{1} \mathrm{~F}_{4}\right)\right]+} \\ & {\left[\delta\left(\mathrm{O}_{2} \mathrm{M}_{2} \mathrm{~F}_{9} \mathrm{~F}_{10}\right)-\delta\left(\mathrm{O}_{2} \mathrm{M}_{2} \mathrm{~F}_{8} \mathrm{~F}_{7}\right)\right]} \end{aligned}$	308(3)[13]	313(1)[8]	$\left\{\begin{array}{l}308(16) \\ 305, \mathrm{sh}\end{array}\right.$	310(15)
306 , sh		315(4)[9]	312(5)[8]	$\left[\delta\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{2}\right)-\delta\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{4}\right)\right]+\left[\delta\left(\mathrm{O}_{2} \mathrm{M}_{2} \mathrm{~F}_{8}\right)-\delta\left(\mathrm{O}_{2} \mathrm{M}_{2} \mathrm{~F}_{10}\right)\right]$	311(3)[9]	309(5)[9]		
297(9)	298(10)	324(2)[5]	308(3)[<1]	$\left[\delta\left(\mathrm{F}_{2} \mathrm{M}_{1} \mathrm{~F}_{3}\right)+\delta\left(\mathrm{F}_{1} \mathrm{M}_{1} \mathrm{~F}_{4}\right)\right]$	$323(2)[<1]$	303(3)[4]	$\left\{\begin{array}{l}297(6) \\ 295, \mathrm{sh}\end{array}\right.$	299(6)
$\begin{aligned} & 278, \text { sh } \\ & 275(1) \end{aligned}$	276(1)	311(1)[10]	288(<1)[10]	$\delta\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)_{\text {i.p. }}+\delta\left(\mathrm{M}_{1} \mathrm{~F}_{(4)}\right)_{\mathrm{umb}}$	306(2)[10]	287(1)[13]		270(<1)
268(<1)		$267(<1)[12]$	$260(<1)$ [58]	$\delta\left(\mathrm{M}_{2} \mathrm{~F}_{(4)}\right)$ umb	256(<1)[24]	$248(<1)[29]$		
$\begin{aligned} & 261, \text { sh } \\ & 258(2) \end{aligned}$	259(2)	$276(<1)[84]$	251(<1)[43]	$\left[\delta\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)_{\text {i.p. }}-\delta\left(\mathrm{M}_{1} \mathrm{~F}_{(4)}\right)_{\mathrm{umb}}\right]$	265(<1)[64]	249(<1)[70]	248(1)	251(<1)
$\begin{aligned} & 235(6) \\ & 232, \mathrm{sh} \end{aligned}$	236(6)	$246(<1)[46]$	238(<1)[66]	$\delta\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)_{\text {o.o.p. }}+\delta\left(\mathrm{M}_{1} \mathrm{~F}_{1} \mathrm{~F}_{2} \mathrm{~F}_{3}\right)$	$236(<1)[41]$	231(<1)[82]	$\left\{\begin{array}{l}237(1) \\ 235(3)\end{array}\right.$	236(3)
		241(<1)[18]	234(<1)[24]	$\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{M}_{1} \mathrm{~F}_{4}\right)+\left[\delta\left(\mathrm{F}_{8} \mathrm{M}_{2} \mathrm{~F}_{7}\right)-\delta\left(\mathrm{F}_{9} \mathrm{M}_{2} \mathrm{~F}_{10}\right)\right]$	$240(<1)[32]$	232(<1)[22]	$\left\{\begin{array}{l}230(2) \\ 228, \mathrm{sh}\end{array}\right.$	
227(4)	230, sh	$225(<1)[14]$	223(1)[3]	$\left[\delta\left(\mathrm{F}_{8} \mathrm{M}_{2} \mathrm{~F}_{9}\right)-\delta\left(\mathrm{F}_{10} \mathrm{M}_{2} \mathrm{~F}_{7}\right)\right]$	$220(<1)[13]$	$217(<1)[3]$	225(2)	226(3)
$\begin{aligned} & 213, \text { sh } \\ & 210(4) \end{aligned}$	212(4)	219(<1)[3]	213(<1)[3]	$\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{M}_{1} \mathrm{~F}_{4}\right)-\left[\delta\left(\mathrm{F}_{8} \mathrm{M}_{2} \mathrm{~F}_{7}\right)-\delta\left(\mathrm{F}_{9} \mathrm{M}_{2} \mathrm{~F}_{10}\right)\right]$	214(<1)[6]	209(<1)[3]	$\left\{\begin{array}{l}210, \mathrm{sh} \\ 207(2)\end{array}\right.$	208(3)
$\begin{aligned} & 196(2) \\ & 192(1) \end{aligned}$	$\begin{aligned} & 198(2) \\ & 193(1) \end{aligned}$	$203(<1)[5]$	196(<1)[<1]	$\delta\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)_{\text {o.o.p. }}-\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{M}_{1} \mathrm{~F}_{3}\right)$	$200(<0.1)[12]$	192(<1)[1]	$\left\{\begin{array}{l}201(1) \\ 193(1)\end{array}\right.$	196, sh

continued ...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A4.8. (continued)

$\mathrm{XeF}_{2} \cdot \mathbf{2 M o O F}{ }_{4}$					$\mathbf{X e F}_{2} \cdot \mathbf{2} \mathrm{WOF}_{4}$			
$\begin{aligned} & 173, \text { sh } \\ & 171(<1) \end{aligned}$	170(1)	187(<1)[4]	170(<1)[2]	$\left[\rho_{t}\left(\mathrm{~F}_{1} \mathrm{M}_{1} \mathrm{~F}_{2}\right)-\rho_{t}\left(\mathrm{~F}_{3} \mathrm{M}_{1} \mathrm{~F}_{4}\right)\right]$	192(<1)[3]	181(<1)[4]		
156(9)	156(10)	152(<1)[<0.1]	$144(<1)[<0.1]$	$\left[\rho_{t}\left(\mathrm{~F}_{9} \mathrm{M}_{2} \mathrm{~F}_{10}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{8} \mathrm{M}_{2} \mathrm{~F}_{7}\right)\right]$	159(<1)[<0.1]	$154(<1)[<0.1]$	153(9) 149, sh	154(9)
$\begin{aligned} & 146(3) \\ & 141(3) \end{aligned}$	142(4)	148(1)[2]	133(1)[4]	$\rho_{\mathrm{r}}\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)+\rho_{\mathrm{r}}\left(\mathrm{M}_{1} \mathrm{O}_{1} \mathrm{~F}_{(4)}\right)$ small	146(1)[2]	134(1)[3]	142(4) 139, sh	144(5)
$\begin{aligned} & 122, \text { sh } \\ & 120(1) \end{aligned}$		130(<1)[1]	121(<1)[2]	$\left[\rho_{t}\left(\mathrm{M}_{1} \mathrm{O}_{1} \mathrm{~F}_{(4)}\right)-\rho_{t}\left(\mathrm{~F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)\right]$	$130(<1)[<1]$	124(1)[1]		
111(2)	111(3)	$126(<1)[<1]$	114(<1)[1]	$\rho_{\mathrm{r}}\left(\mathrm{M}_{1} \mathrm{O}_{1} \mathrm{~F}_{(4)}\right)_{\text {i.p. }}$	$123(<1)[<1]$	$117(<1)[<1]$	111(2)	
		$100(<1)[2]$	$88(<1)[1]$	$\left[\rho_{t}\left(\mathrm{M}_{1} \mathrm{O}_{1} \mathrm{~F}_{(4)}\right)-\rho_{\mathrm{t}}\left(\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{(4)}\right)\right]$	$99(<1)[<1]$	$91(<0.1)[<1]$		
		$83(<1)[<1]$	84(<1)[1]	$\left[\rho_{t}\left(\mathrm{~F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)+\rho_{\mathrm{r}}\left(\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{(4)}\right)\right]$	$82(<1)[<1]$	$86(<1)[<1]$		
		$95(<1)[2]$	67(<1)[5]	$\delta\left(\mathrm{M}_{1} \mathrm{O}_{1} \mathrm{~F}_{(4)}\right) / \delta\left(\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{(4)}\right)$	$90(<0.1)[2]$	$66(<0.1)[6]$		
		$60(<1)[<1]$	$43(<1)[<1]$	$\delta\left(\mathrm{M}_{1} \mathrm{~F}_{5} \mathrm{Xe}_{1}\right)_{\text {i.p. }}$.	58(<1)[1]	$42(<1)[<1]$		
		55(<0.1)[<1]	$33(<1)[<1]$	$\delta\left(\mathrm{M}_{1} \mathrm{~F}_{4} \mathrm{Mo}_{2}\right)_{\mathrm{i} \text {.p. }}$.	$55(<1)[<1]$	$35(<0.1)[<1]$		
		$373(<1)[<0.1]$	$22(1)[<0.1]$	$\rho_{t}\left(\mathrm{~F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)+\rho_{\mathrm{t}}\left(\mathrm{M}_{1} \mathrm{O}_{1} \mathrm{~F}_{2} \mathrm{~F}_{4}\right)$	$41(<1)[<0.1]$	$26(1)[<0.1]$		
		$15(<1)[<0.1]$	$13(<0.1)[<0.1]$	$\rho_{(}\left(\mathrm{M}_{2} \mathrm{~F}_{(4)}\right)$	$17(<1)[<0.1]$	$8(<0.1)[[<0.1]$		
		$23(<0.1)[<0.1]$	12(<0.1)[<0.1]	$\left[\rho_{(}\left(\mathrm{M}_{1} \mathrm{~F}_{(4)}\right)+\rho_{\mathrm{t}}\left(\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{(4)}\right)\right]$	$23(<0.1)[<0.1]$	$15(<0.1)[<0.1]$		
99(2)	$\begin{aligned} & 99(2) \\ & 68(12) \end{aligned}$			lattice modes			105(2)	66(15)

continued ...

Table A4.8. (continued) [a] Frequencies are given in cm^{-1}. [b] Values in parentheses denote relative Raman intensities. The abbreviation denotes a shoulder (sh). [c] Values in parentheses and square brackets denote calculated Raman intensities (\AA^{4} amu ${ }^{-1}$) and infrared intensities $\left(\mathrm{km} \mathrm{mol}^{-1}\right)$, respectively. [d] Assignments are for the energy-minimized gas-phase geometry $\left(C_{1}\right)$ calculated at the APFD/def2$\operatorname{TZVPD}(\mathrm{O}, \mathrm{F}) /$ def2-TZVPD $(-\mathrm{PP})(\mathrm{Mo}, \mathrm{W}, \mathrm{Xe})$ and B3LYP/aVTZ(-PP)(Xe)/Def2-TZVPD(O, F)/def2-TZVPD(--PP)(Mo,W) levels of theory. Abbreviations denote stretch (v), bend (δ), rock (ρ_{r}), twist (ρ_{t}), and wag (ρ_{w}), umbrella (umb), $M_{1} F_{(4)}\left(M_{1} F_{3} F_{4} F_{5} F_{6}\right), M_{2} F_{(4)}$ $\left(\mathrm{M}_{2} \mathrm{~F}_{7} \mathrm{~F}_{8} \mathrm{~F}_{9} \mathrm{~F}_{10}\right.$), in-plane (i.p.), and out-of-plane (o.o.p.). Bond elongations and angle openings are denoted by plus (+) signs; and bond contractions and angle compressions are denoted by minus (-) signs. The in-plane and out-of-plane bending modes are relative to the $\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}$-plane, where the atom labeling scheme corresponds to those used in Figures 7.2 and A4.3. [e] Present work. The Raman spectrum was recorded in an FEP sample tube at $-150{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. Weak bands previously reported at $546(1)$ and $504(<1) \mathrm{cm}^{-1}$ were not observed in the present spectrum. [f] From ref [S1]. The bands at $750,734,388$, and $382 \mathrm{~cm}^{-1}$ reported in the Raman spectrum of $\mathrm{XeF}_{2} \cdot 2 \mathrm{MoOF}_{4}$ were incorrectly assigned and are now reassigned to FEP sample tube bands. The band at $298 \mathrm{~cm}^{-1}$ was correctly assigned but overlaps with an FEP sample tube band. [g] Present work. The Raman spectrum was recorded in an FEP sample tube at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. In addition to bands due to $\mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}$, weak bands were observed at $1030(1)$, $575(\mathrm{sh})$, and $571(3) \mathrm{cm}^{-1}$ that are assigned to $\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$. $[\mathrm{h}]\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{6}\right)-v\left(\mathrm{M}_{2}-\mathrm{F}_{6}\right)\right]-\left[v\left(\mathrm{Mo}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Mo}_{1}-\mathrm{F}_{5}\right)\right]_{\text {small. }} .[\mathrm{i}]\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{6}\right)-v\left(\mathrm{M}_{2}-\mathrm{F}_{6}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\right.\right.$ $\left.\left.\mathrm{F}_{1}\right)\right]_{\text {small. }}[\mathrm{j}] v\left(\mathrm{Xe}_{1}-\mathrm{F}_{1}\right)+\left[v\left(\mathrm{~W}_{1}-\mathrm{F}_{6}\right)-v\left(\mathrm{~W}_{2}-\mathrm{F}_{6}\right)\right]_{\text {small. }}$.

Figure A4.6. Factor-group analyses for $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; \mathrm{M}=\mathrm{Mo}, \mathrm{W})^{[\mathrm{a}]}$

free $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}{ }^{[b]}$	crystal site	unit cell ${ }^{[\mathrm{cl}}$
C_{s}	C_{1}	$C_{2 h}$

[a] The external modes have not been treated in this analysis. [b] The irreducible vibrational representation of gas-phase $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ is $\Gamma=13 \mathrm{~A}^{\prime}+8 \mathrm{~A}^{\prime}$. [c] Space group; $P 2_{1} / c, Z=4$.
$\boldsymbol{N g F}_{2} \cdot \mathbf{M O F}_{4}(\boldsymbol{M}=\mathbf{M o}, \boldsymbol{W})$. Twenty-one vibrational modes are predicted for gas-phase $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ under C_{s} symmetry. The vibrations belong to the irreducible representations $\Gamma=13 \mathrm{~A}^{\prime}+8 \mathrm{~A}^{\prime \prime}$, where the A^{\prime} and $\mathrm{A}^{\prime \prime}$ modes are Raman- and infrared-active. The A^{\prime} and A" irreducible representations of $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ under C_{s} symmetry in the gas phase correlate to A irreducible representations under C_{1} site symmetry in the solid state. When correlated to its unit cell symmetry, the vibrationally coupled modes of $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ split into $21 \mathrm{~A}_{\mathrm{g}}$ and B_{g} Raman-active bands and $21 \mathrm{~A}_{\mathrm{u}}$ and B_{u} infrared-active bands when correlated to $C_{2 h}$ crystal symmetry (Figure A4.6). The factor-group splittings observed in the Raman spectra are listed in Tables A4.6 and A4.7.

Figure A4.7. Factor-group analyses for $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})^{[\mathrm{a}]}$

[a] The external modes have not been treated in this analysis. [b] The vibrational irreducible representation for gas-phase $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ is $\Gamma=39 \mathrm{~A}$. [c] Space group; Pbcn, $Z=8$.
$\mathrm{XeF}_{2} \cdot \mathbf{2 M O F}_{4}(\boldsymbol{M}=\mathbf{M o}, \boldsymbol{W})$. Thirty-nine vibrational modes are predicted for gas-phase $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ under C_{1} symmetry. The vibrations belong to the irreducible representations $\Gamma=39 \mathrm{~A}$, where the A modes are Raman- and infrared-active. The A representations of gas-phase $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ correlate to A representations under C_{1} site symmetry in the solid state. When correlated to the crystal symmetry $\left(D_{2 \mathrm{~h}}\right)$, each of the 39 modes splits into Raman-active $\mathrm{A}_{\mathrm{g}}, \mathrm{B}_{1 \mathrm{~g}}, \mathrm{~B}_{2 \mathrm{~g}}$, and $\mathrm{B}_{3 \mathrm{~g}}$ components and infrared-active $A_{u}, B_{1 u}, B_{2 u}$, and $B_{3 u}$ components (Figure A4.7). The factor-group splittings observed in the Raman spectra are listed in Table A4.8.

Computational Results (continued)

Calculated Geometries

$\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ and $\mathrm{XeF}_{2} \cdot \mathbf{2 M O F} \mathbf{M O}_{4}(\mathbf{N g}=\mathrm{Kr}, \mathrm{Xe} ; \mathbf{M}=\mathbf{M o}, \boldsymbol{W})$. The starting geometries used for the energy optimizations of $\mathbf{1 '}^{\prime}-\mathbf{4}$ ' were the crystallographic geometries, where the $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ complexes adopt a near-eclipsed conformation. As observed for $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4},{ }^{[\mathrm{S} 4]}$ the energy-minimized gas-phase geometries correspond to staggered conformations (C_{s} symmetry), with all vibrational frequencies real (Figures 7.1 and A4.2). As a consequence, the $\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}--\mathrm{M}-\mathrm{F}_{(1)}$ dihedral angles are the geometric parameters that differ the most from experiment (exptl: $\angle \mathrm{Kr}-\mathrm{F}_{\mathrm{b}}--\mathrm{Mo}-\mathrm{F}_{(1)}, 14.34(2)^{\mathrm{o}}$; $\angle \mathrm{Kr}-\mathrm{F}_{\mathrm{b}}---\mathrm{W}-\mathrm{F}_{(1)}, \quad 16.1(2)^{\mathrm{o}}, \quad \angle \mathrm{Xe}-\mathrm{F}_{\mathrm{b}}--\mathrm{Mo}-\mathrm{F}_{(1)}, \quad 7.55(6)^{\mathrm{o}} ; \quad \angle \mathrm{Xe}-\mathrm{F}_{\mathrm{b}---\mathrm{W}-\mathrm{F}_{(1)}, \quad 5.9(2)^{\mathrm{o}} ;}$; calcd: $\angle \mathrm{Kr}-\mathrm{F}_{\mathrm{b}}--\mathrm{Mo}-\mathrm{F}_{(1)}, 44.3^{\circ} ; \quad \angle \mathrm{Kr}-\mathrm{F}_{\mathrm{b}}---\mathrm{W}-\mathrm{F}_{(1)}, 44.4^{\circ}, \quad \angle \mathrm{Xe}-\mathrm{F}_{\mathrm{b}}---\mathrm{Mo}-\mathrm{F}_{(1)}, 44.3^{\circ}$; $\left.\angle \mathrm{Xe}-\mathrm{F}_{\mathrm{b}}---\mathrm{W}-\mathrm{F}_{(1)}, 44.4^{\circ}\right)$. The starting geometries used for the energy optimizations of 5^{\prime} and $\mathbf{6}^{\prime}$ were the crystallographic geometries where the $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ complexes adopt
 that is only retained in the energy-minimized geometry of $5^{\prime}\left(\angle \mathrm{Xe}-\mathrm{F}_{\mathrm{b}}--\mathrm{Mo}-\mathrm{F}_{(3)}, 1.4^{\circ}\right.$; $\left.\angle \mathrm{Xe}-\mathrm{F}_{\mathrm{b}}---\mathrm{W}-\mathrm{F}_{(3)}, 24.1^{\circ}\right)$ (Figures 7.2 and A 4.3).

As observed in their crystal structures, the calculated $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ bonds (calcd: $\mathbf{1}^{\mathbf{1}}$, 1.834; 2', 1.829, 3', 1.955; 4', 1.951, 5', 1.950; 6', $1.944 \AA$ Å; exptl: 1, 1.8202(9); 2, $1.805(2), \mathbf{3}, 1.9369(12) ; \mathbf{4}, 1.929(3), \mathbf{5}, 1.9283(10) ; \mathbf{6}, 1.922(4) \AA)$ are shorter than the $\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}$ bonds (calcd: $\mathbf{1 '}^{\prime}, 1.926 ; \mathbf{2}^{\mathbf{\prime}}, 1.935, \mathbf{3}^{\prime}, 2.048 ; \mathbf{4}^{\prime}, 2.058, \mathbf{5}^{\prime}, 2.059 ; \mathbf{6}^{\mathbf{\prime}}, 2.072 \AA$ Á; exptl: 1, $1.9653(9) ; \mathbf{2}, 1.989(2), \mathbf{3}, 2.0813(12) ; \mathbf{4}, 2.102(3), \mathbf{5}, 2.1153(10) ; \mathbf{6}, 2.136(4) \AA)$. The
bond length trend, $\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}<\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}<\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$, is also reproduced. The average calculated $\mathrm{Ng}-\mathrm{F}_{\mathrm{t} / \mathrm{b}}$ bond lengths are very similar to the calculated bond lengths of free $\mathrm{NgF}_{2}(\mathrm{Kr}, 1.869 ; \mathrm{Xe}, 1.986 \AA)$.

The calculated $\mathrm{F}_{\mathrm{t}}-\mathrm{Ng}--\mathrm{F}_{\mathrm{b}}$ bond angles are nearly linear, as observed experimentally. The calculated $\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}-\mathbf{-} \mathrm{M}$ bond angles of $\mathbf{1}^{\prime}-\mathbf{4}^{\prime}$ are slightly underestimated (calcd: $\mathbf{1}^{\prime}, 114.2 ; \mathbf{2}^{\mathbf{\prime}}, 114.5, \mathbf{3}^{\mathbf{\prime}}, 116.8 ; \mathbf{4}^{\prime}, 117.2^{\circ}$; exptl: $\mathbf{1}, 134.33(5) ; \mathbf{2}$, $\left.135.22(12), \mathbf{3}, 148.09(7) ; \mathbf{4}, 150.57(18)^{\circ}\right)$, whereas the agreement is slightly better for $\mathbf{5}^{\prime}$ and $\mathbf{6}^{\prime}$ (calcd: $\mathbf{5}^{\prime}$, 125.6; $\mathbf{6}^{\mathbf{\prime}}, 123.8^{\circ}$; exptl: 5, 130.84(5); 6, 131.70(19) ${ }^{\circ}$). As previously noted, ${ }^{[S 4]}$ these angles are highly deformable, having very low calculated $\delta\left(\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}---\mathrm{M}\right)$ frequencies (Tables A4.6-A4.8) and are therefore likely to be influenced by crystal packing.

The Mo- $\mathrm{O} / \mathrm{W}-\mathrm{O}$ and $\mathrm{Mo}-\mathrm{F} / \mathrm{W}-\mathrm{F}$ bond lengths of $\mathbf{1}^{\prime}-\mathbf{4}^{\prime}$ are nearly equal in both the $\mathrm{NgF}_{2} \cdot \mathrm{MoOF}_{4}$ and $\mathrm{NgF}_{2} \cdot \mathrm{WOF}_{4}$ complexes, with the two Mo-F/W-F bonds proximate to the Ng atom being somewhat longer than those that are further away (Tables A4.2 and A4.3). This trend is not evident in the experimental structures because of their different conformations. In contrast, 5 and 6, which display similar calculated and experimental conformations, the $\mathrm{M}_{(1)}-\mathrm{F}_{(1)}$ bond, which is the terminal fluorine atom closest to the Xe atom, is longer than the other two terminal $\mathrm{M}_{(1)}-\mathrm{F}_{\mathrm{t}}$ bonds (Table A4.4). Other experimental trends are well reproduced by the calculations: $\mathrm{Mo}---\mathrm{F}_{\mathrm{b}}>\mathrm{W}---\mathrm{F}_{\mathrm{b}}, \mathrm{Mo}-\mathrm{O}<$ $\mathrm{W}-\mathrm{O}$, and $\mathrm{Mo}-\mathrm{F}_{\mathrm{t}}<\mathrm{W}-\mathrm{F}_{\mathrm{t}}$.

The asymmetry observed for the bridge bonds in the $\left(\mathrm{F}_{3} \mathrm{O}\right) \mathrm{M}_{(1)}-\mathrm{F}_{(6)}--\mathrm{M}_{(2)} \mathrm{OF}_{4}$ moiety, $\mathrm{M}_{(2)}--\mathrm{F}_{(6)}>\mathrm{M}_{(1)}-\mathrm{F}_{(4)},(\mathbf{5}, 2.2990(10)$ and $1.9350(10) \AA ; \mathbf{6}, 2.313(4)$ and $1.929(4)$
\AA) is reproduced ($\mathbf{5}^{\prime}, 2.426$ and $1.897 \AA ; \mathbf{6}^{\prime}, 2.416$ and $1.909 \AA$), as well as the $\mathrm{M}_{(1)}-\mathrm{F}_{(6)--}$ $-\mathrm{M}_{(2)}$ bond angle (calcd: $\mathbf{5}^{\prime}, 145.8 ; \mathbf{6}^{\prime}, 145.6^{\circ}$; exptl: 5, 159.02(6); 6, 159.5(2) ${ }^{\circ}$).

Atoms in Molecules (AIM) Analyses

In an AIM analysis, bond covalency may be assessed by evaluating the Laplacian of electron density $\left(\nabla^{2} \rho_{b}\right)$, Cremer-Kraka total energy density $\left(H_{b}\right)$, the densities of all electrons $\left(\rho_{b}\right)$, and the bond delocalization indices (δ) at bond critical points. ${ }^{[55]}$ The chemical bonding in $\mathrm{NgF}_{2} \cdot n \mathrm{CrOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; n=1,2)$ has previously been described by AIM analyses, which revealed that the $\mathrm{Cr}-\mathrm{O}$ bonds have significant double bond character, the $\mathrm{Cr}-\mathrm{F}$ and $\mathrm{Ng}-\mathrm{F}$ bonds are highly polar covalent in nature, with coordination of NgF_{2} to CrOF_{4} resulting in enhanced polarization of the $\mathrm{Ng}-\mathrm{F}$ and $\mathrm{Cr}-\mathrm{F}$ bonds and the formation of a primarily electrostatic $\mathrm{Cr}---\mathrm{F}_{\mathrm{b}}$ bond. ${ }^{[\mathrm{S} 4]}$

The $\mathrm{M}-\mathrm{O}$ bonds of $\mathrm{MOF}_{4}, \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ have large positive $\nabla^{2} \rho_{b}(0.958-1.070), \rho_{b}(0.309-0.423), \delta(1.920-2.100)$, and negative H_{b} (-0.244 to -0.265), consistent with significant double bond character. The $\mathrm{M}-\mathrm{F}$ bonds have smaller $\nabla^{2} \rho_{b}(0.713-0.984), \rho_{b}(0.143-0.262)$, and $\delta(0.615-0.959)$ values and less negative H_{b}-values (-0.048 to -0.077) than for the $\mathrm{M}-\mathrm{O}$ bonds that are consistent with their highly polar-covalent characters. As observed in $\mathrm{NgF}_{2} \cdot n \mathrm{CrOF}_{4},{ }^{[\mathrm{S} 4]}$ the two $\mathrm{M}-\mathrm{F}$ bonds orientated towards the Ng atoms in $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ show decreased ρ_{b}, H_{b}, and δ values and slightly increased $\nabla^{2} \rho_{b}$ values that are consistent with their polarcovalent characters. Coordination of MOF_{4} to $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ to give $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}--$ $-\mathrm{M}^{\prime} \mathrm{OF}_{4}$ significantly polarizes the $\mathrm{M}-\mathrm{F}_{\mathrm{b}}{ }^{\prime}$ bond, resulting in decreased $\nabla^{2} \rho_{b}, \rho_{b}, \delta$, and less
negative H_{b} values relative to the $\mathrm{M}-\mathrm{F}_{\mathrm{t}}$ bonds of $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$. Opposite trends are observed for the AIM properties of the $\mathrm{M}-\mathrm{O}$ bonds in $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$, which indicate coordination of $\mathrm{M}^{\prime} \mathrm{OF}_{4}$ strengthens the $\mathrm{M}-\mathrm{O}$ double bonds.

The AIM parameters of the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bonds of the $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ complexes have small positive $\nabla^{2} \rho_{b}, \rho_{b}$, and δ values, in addition to small positive or negative values of H_{b}, consistent with primarily electrostatic σ-hole type interactions (Tables A4.10 and A4.11). The $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bonds become more covalent upon descending Group 6, as evidenced by their increasing Laplacian of electron densities $\left(\nabla^{2} \rho_{b}: \mathrm{Cr},(\mathrm{Kr}) 0.135,(\mathrm{Xe}) 0.148 ;{ }^{[S 4]}\right.$ Mo, (Kr) 0.171, (Xe) 0.183; W, (Kr) 0.222, (Xe) 0.237), densities of all electrons (ρ_{b} : Cr , (Kr) 0.028, (Xe) 0.030; ${ }^{[54]} \mathrm{Mo}$, (Kr) 0.035, (Xe) 0.038; W, (Kr) 0.069, (Xe) 0.073), and delocalization densities $\left(\delta: \mathrm{Cr},(\mathrm{Kr}) 0.084,(\mathrm{Xe}) 0.093 ;{ }^{[54]} \mathrm{Mo},(\mathrm{Kr}) 0.122\right.$, (Xe) 0.131; W, (Kr) $0.206,(\mathrm{Xe}) 0.219)$. Coordination of $\mathrm{M}^{\prime} \mathrm{OF}_{4}$ to $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ to give $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{b}--\mathrm{M}\left(\mathrm{OF}_{3}\right)-$ $\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime} \mathrm{OF}_{4}$ results in primarily electrostatic $\mathrm{M}^{\prime}---\mathrm{F}_{\mathrm{b}}$ bonds that are weaker than the $\mathrm{M}---$ F_{b} bonds of $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}\left(\nabla^{2} \rho_{b}: \mathrm{Mo}, 0.162, \mathrm{~W}, 0.220 ; \rho_{b}: \mathrm{Mo}, 0.032, \mathrm{~W}, 0.064 ; \delta: \mathrm{Mo}\right.$, $\left.0.104, \mathrm{~W}, 0.180 ; H_{b}: \mathrm{Mo}, 0.003, \mathrm{~W},-3.0 \times 10^{-4}\right)$.

The $\mathrm{Ng}-\mathrm{F}$ AIM properties of the terminally coordinated NgF_{2} ligands of $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ (Tables A 4.10 and A 4.11) show their $\mathrm{Ng}-\mathrm{F}$ bond polarizations relative to free NgF_{2} are comparable to those of $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4},{ }^{[S 4]}$ $\left[\mathrm{F}_{2} \mathrm{OBr}(\mathrm{FNgF})_{2}\right]\left[\mathrm{AsF}_{6}\right],{ }^{[\mathrm{S} 6, \mathrm{~S} 7]}$ and $\left[\mathrm{F}_{5} \mathrm{Xe}(\mathrm{FNgF})_{n}\right]\left[\mathrm{AsF}_{6}\right] \quad(n=1,2) .{ }^{[\mathrm{S}, \mathrm{S} 9]}$ Upon coordination, ρ_{b}, and δ decrease for $\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}$ and increase for $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$, whereas H_{b} decreases for $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ and increases for $\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}$. Coordination also increases and decreases $\nabla^{2} \rho_{b}$ for the $\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}$ and $\mathrm{Kr}-\mathrm{F}_{\mathrm{t}}$ bonds in $\mathrm{KrF}_{2} \cdot \mathrm{MOF}_{4}$, respectively, relative to KrF_{2}. The opposite
behavior is observed for the $\nabla^{2} \rho_{b}$ values of the $\mathrm{Xe}-\mathrm{F}$ bonds in $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ relative to XeF_{2}. Similar trends have been noted for the $\mathrm{Ng}-\mathrm{F}$ bonds in $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4} \cdot{ }^{[54]}$ In all instances, the AIM properties of the $\mathrm{Ng}-\mathrm{F}_{\mathrm{t}}$ and $\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}$ bonds bracket those of free NgF_{2}. The NgF_{2} molecules in $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ become increasingly more polarized upon descending Group 6 as the fluoride-ion affinities (FIAs) of MOF_{4} and $\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\left(\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime} \mathrm{OF}_{4}\right)$ increase, consistent with relative FIAs for MOF_{4} and $\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime} \mathrm{OF}_{4}$ that follow the order $\mathrm{CrOF}_{4}<\mathrm{MoOF}_{4}<\mathrm{WOF}_{4} \leq \mathrm{Mo}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---$ $\mathrm{Mo}^{\prime} \mathrm{OF}_{4}<\mathrm{W}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{W}^{\prime} \mathrm{OF}_{4}$.

Electron Localization Function (ELF) Analyses

ELF analyses were carried out for $\mathrm{MOF}_{4}, \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$. ELF parameters are provided in Tables A4.10 and A4.11 and ELF isosurface plots are shown for the localization domains of $\mathrm{MOF}_{4}, \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ (Figure A4.8). In the ensuing discussion and figures, the abbreviations denote atomic basin populations, $\bar{N}[\mathrm{~A}]$; electron localization function, $\eta(\mathbf{r})$; core basin, $\mathrm{C}(\mathrm{A})$; monosynaptic valence basin, $\mathrm{V}(\mathrm{A})$; and closed isosurface, $\eta(\mathbf{r})=f$, where $\eta(\mathbf{r})$ is defined as the isosurface contour. Because the Def2-TZVPD basis set does not separate the sub-valence and valence electrons, they cannot be distinguished by ELF.

The ELF valence basins of $\mathrm{MOF}_{4}, \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ are monosynaptic, consistent with the highly polar-covalent nature of the bonding in these compounds. Coordination of NgF_{2} to MOF_{4} results in a perturbation of the toroidal $\mathrm{V}(\mathrm{Ng})$ basins similar to those in $\mathrm{NgF}_{2} \cdot n \mathrm{CrOF}_{4},{ }^{[\mathrm{S} 4]}$ where bond critical points are observed
between the $\mathrm{V}(\mathrm{Ng})$ basins and the equatorial $\mathrm{V}(\mathrm{F})$ basins of complexed MOF_{4}. These perturbations become even more significant in $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$, where the toroidal $\mathrm{V}(\mathrm{Xe})$ basin must also accommodate the $\mathrm{V}(\mathrm{F})$ basins of complexed $\mathrm{M}^{\prime} \mathrm{OF}_{4}$.

The $\bar{N}[\mathrm{C}(\mathrm{Ng})], \bar{N}[\mathrm{C}(\mathrm{F})]$, and $\bar{N}[\mathrm{C}(\mathrm{O})]$ ELF core basin populations are close to the ideal core charges, and do not vary significantly upon coordination. Coordination of NgF_{2} to MOF_{4} increases $\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{b}}\right)\right]$ and $\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}}\right)\right]$ relative to NgF_{2} following the order $\mathrm{Cr}<\mathrm{Mo}<$ W , whereas coordination of $\mathrm{M}^{\prime} \mathrm{OF}_{4}$ to $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ to give $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime} \mathrm{OF}_{4}$ results in no change for $\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{b}}\right)\right]$ (Mo), a small increase for $\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{b}}\right)\right]$ (W), no change for $\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{t}}\right)\right](\mathrm{Mo}, \mathrm{W})$, and increases for $\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{b}}{ }^{\prime}\right)\right](\mathrm{Mo}, \mathrm{W})$.

The localization domain reduction tree diagrams for $\mathrm{MOF}_{4}, \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$, and $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime} \mathrm{OF}_{4}$ (Figure A4.9) provide the hierarchies of ELF basins and the corresponding basin separation values $\left(f_{\text {sep }}\right)$. The ELF reduction of the localization diagrams of $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ follow a similar order to those described for $\mathrm{NgF}_{2} \cdot n \mathrm{CrOF}_{4},{ }^{[S 4]}$ and are not discussed. Upon descending Group 6, the $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ complexes separate into NgF_{2} and $\mathrm{MOF}_{4} f$-localization domains in the order $\mathrm{Cr}<\mathrm{Mo}<\mathrm{W}$, consistent with the relative degrees of $\mathrm{M}--\mathrm{F}_{\mathrm{b}}$ bond covalency, which increase in the same order. In the $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime} \mathrm{OF}_{4}$ complexes, $\mathrm{M}^{\prime} \mathrm{OF}_{4}$ separates from $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ at significantly lower $f_{\text {sep }}$-values ($\mathrm{Mo}, 0.05 ; \mathrm{W}, 0.06$) than $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}\left(f_{\text {sep }}: \mathrm{Mo}, 0.08 ; \mathrm{W}\right.$, 0.09) into XeF_{2} and MOF_{4}, in accordance with the relative bond strengths, $\mathrm{M}---\mathrm{F}_{\mathrm{b}}>\mathrm{M}^{\prime}---$ $\mathrm{F}_{\mathrm{b}}{ }^{\prime}$.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A4.9. Natural Population Analysis (NPA) charges, wiberg valences, and wiberg bond indices for $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}, \mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}, \mathrm{MOF}_{4}$, and $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; \mathrm{M}=\mathrm{Mo} \text {, W })^{[\mathrm{a}]}$

$\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$					$\mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}$				
Bond Indices		NPA Charges [Valences]			Bond Indices		NPA Charges [Valences]		
Kr1-F5	0.452	Kr1	1.060	[1.087]	Xe1-F5	0.410	Xe1	1.256	[1.005]
Kr1-F6	0.625	F5	-0.541	[0.781]	Xe1-F6	0.581	F5	-0.621	[0.681]
		F6	-0.449	[0.816]			F6	-0.561	[0.702]
		$\sum \mathrm{KrF}_{2}$	0.070				$\sum \mathrm{XeF}{ }_{2}$	0.074	
Mo1---F5	0.101	Mo1	2.274	[4.995]	Mo1---F5	0.109	Mol	2.274	[4.997]
Mo1-F1	0.757	F1	-0.456	[0.991]	Mo1-F1	0.759	F1	-0.456	[0.992]
Mo1-F2	0.757	F2	-0.456	[0.991]	Mo1-F2	0.759	F2	-0.456	[0.992]
Mo1-F3	0.702	F3	-0.497	[0.924]	Mo1-F3	0.697	F3	-0.500	[0.919]
Mo1-F4	0.702	F4	-0.497	[0.924]	Mo1-F4	0.697	F4	-0.500	[0.919]
Mo1-O1	1.971	O1	-0.437	[2.350]	Mo1-O1	1.973	O1	-0.436	[2.352]
		$\sum \mathrm{MoOF}_{4}$	-0.070				$\sum \mathrm{MoOF}_{4}$	-0.074	
$\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$					$\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$				
Bond Indices		NPA Charges [Valences]			Bond Indices		NPA Charges [Valences]		
Kr1-F5	0.438	Kr1	1.064	[1.086]	Xe1-F5	0.397	Xe1	1.258	[1.001]
Kr1-F6	0.637	F5	-0.550	[0.772]	Xe1-F6	0.591	F5	-0.627	[0.674]
		F6	-0.442	[0.823]			F6	-0.554	[0.709]
		$\sum \mathrm{KrF}_{2}$	0.072				$\sum \mathrm{XeF}_{2}$	0.077	
W1---F5	0.110	W1	2.498	[4.897]	W1---F5	0.117	W1	2.498	[4.897]
W1-F1	0.745	F1	-0.486	[0.940]	Cr1-F1	0.746	F1	-0.485	[0.940]
W1-F2	0.745	F2	-0.486	[0.940]	Cr1-F2	0.746	F2	-0.485	[0.940]
W1-F3	0.694	F3	-0.522	[0.879]	Cr1-F3	0.688	F3	-0.525	[0.874]
W1-F4	0.694	F4	-0.522	[0.879]	Cr1-F4	0.688	F4	-0.525	[0.874]
W1-O1	1.907	O1	-0.556	[2.223]	Cr1-O1	1.908	O1	-0.555	[2.224]
		$\sum \mathrm{WOF}_{4}$	-0.074				$\sum \mathrm{WOF}_{4}$	-0.077	
$\mathrm{XeF}_{2} \cdot 2 \mathrm{MoOF}_{4}$					$\mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}$				
Bond Indices		NPA Charges [Valences]			Bond Indices		NPA Charges [Valences]		
Xe1-F5	0.387	Xe1	1.268	[0.998]	Xe1-F5	0.368	Xe1	1.272	[0.993]
Xe1-F6	0.592	F5	-0.625	[0.684]	Xe1-F6	0.606	F5	-0.632	[0.675]
		F6	-0.553	[0.711]			F6	-0.544	[0.721]
		$\sum \mathrm{XeF}{ }_{2}$	0.090				$\sum \mathrm{XeF}{ }_{2}$	0.096	
Mo1-F1	0.727	Mol	2.278	[4.994]	W1-F1	0.715	W1	2.506	[4.889]
Mo1-F2	0.761	F1	-0.478	[0.955]	W1-F2	0.757	F1	-0.506	[0.907]
Mo1-F3	0.783	F2	-0.455	[0.991]	W1-F3	0.768	F2	-0.480	[0.947]
Mol---F4	0.579	F3	-0.437	[1.023]	W1---F4	0.557	F3	-0.469	[0.968]
Mo1---F5	0.128	F4	-0.534	[0.889]	W1---F5	0.141	F4	-0.560	[0.839]
Mo1-O1	2.002	O1	-0.408	[2.378]	W1-O1	1.939	O1	-0.527	[2.253]
Mo2---F4	0.086	Mo2	2.279	[4.990]	W2---F4	0.092	W2	2.504	[4.890]
Mo2-F7	0.748	F7	-0.461	[0.981]	W2-F7	0.739	F7	-0.489	[0.933]
Mo2-F8	0.679	F8	-0.513	[0.900]	W2-F8	0.667	F8	-0.540	[0.852]
Mo2-F9	0.740	F9	-0.469	[0.971]	W2-F9	0.726	F9	-0.499	[0.918]
Mo2-F10	0.758	F10	-0.455	[0.991]	W2-F10	0.749	F10	-0.482	[0.944]
Mo2-O2	1.971	O2	-0.437	[2.349]	W2-O2	1.910	O2	-0.554	[2.223]
		$\sum 2 \mathrm{MoOF}_{4}$	-0.090				$\sum 2 \mathrm{WOF}_{4}$	-0.096	

continued ...

Table A4.9. (continued)

$\mathrm{KrF}_{2}{ }^{[\mathrm{b}]}$					$\mathrm{XeF}_{2}{ }^{[\mathrm{b}]}$				
Bond Indices		NPA Charges [Valences]			Bond Indices		NPA Charges [Valences]		
$\mathrm{Kr}-\mathrm{F}$	0.555	Kr	1.018	[1.109]	Xe-F	0.521	Xe	1.210	[1.042]
		F	-0.509	[0.757]			F	-0.605	[0.650]
		$\sum \mathrm{KrF}_{2}$	0.000				$\sum \mathrm{XeF}_{2}$	0.000	

MoOF_{4}					WOF_{4}				
Bond	dices	NPA Charges [Valences]			Bond Indices		NPA Charges [Valences]		
Mo1-F1	0.743	Mol	2.322	[4.921]	W1-F1	0.737	W1	2.534	[4.839]
Mo1-F2	0.743	F1	-0.466	[0.972]	W1-F2	0.737	F1	-0.491	[0.928]
Mo1-F3	0.743	F2	-0.466	[0.972]	W1-F3	0.737	F2	-0.491	[0.928]
Mo1-F4	0.743	F3	-0.466	[0.972]	W1-F4	0.737	F3	-0.491	[0.928]
Mo1-O1	1.947	F4	-0.466	[0.972]	W1-O1	1.892	F4	-0.491	[0.928]
		O1	-0.457	[2.321]			O1	-0.568	[2.201]
		$\sum \mathrm{MoOF}$	0.000				$\sum \mathrm{WOF}_{4}$	0.000	

[a] Calculated at the APFD/Def2-TZVPD $(\mathrm{O}, \mathrm{F}) / \mathrm{Def} 2-\mathrm{TZVPD}(-\mathrm{PP})(\mathrm{Mo}, \mathrm{W}, \mathrm{Kr}, \mathrm{Xe})$ level of theory. [b] From ref [S4].

Table A4.10. Laplacian of electron density $\left(\nabla^{2} \rho_{\mathrm{b}}\right)$, the density of all electrons $\left(\rho_{\mathrm{b}}\right)$, the energy density $\left(H_{\mathrm{b}}\right)$, delocalization indices (δ), QTAIM atomic populations (\bar{N}), and ELF basin populations (\bar{N}) for $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}, \mathrm{NgF}_{2}$, and $\mathrm{MOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; \mathrm{M}=\mathrm{Mo} \text {, W })^{[\mathrm{a}, \mathrm{b}]}$

	$\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$	$\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$	$\mathbf{K r F}{ }_{2}$	$\mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}$	$\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$	XeF_{2}	MoOF_{4}	WOF_{4}
$\nabla^{2} \rho^{\text {b }}{ }^{\left[{ }^{[\mathrm{c}]}\right.}$								
Ng1-F6	0.188	0.179	0.210	0.243	0.245	0.233		
Ng1-F5	0.229	0.234	0.210	0.220	0.218	0.233		
M1---F5	0.171	0.222		0.183	0.237			
M1-F1	0.768	0.978		0.769	0.979		0.758	0.974
M1-F2	0.768	0.978		0.769	0.979		0.758	0.974
M1-F3	0.721	0.924		0.716	0.918		0.758	0.974
M1-F4	0.721	0.924		0.716	0.918		0.758	0.974
M1-O1	0.998	1.070		1.000	1.070		0.958	1.030
$\rho_{\text {b }}{ }^{[d]}$								
Ng1-F6	0.159	0.162	0.147	0.134	0.136	0.126		
Ng1-F5	0.126	0.124	0.147	0.108	0.106	0.126		
M1---F5	0.035	0.069		0.038	0.073			
M1-F1	0.170	0.258		0.170	0.258		0.170	0.258
M1-F2	0.170	0.258		0.170	0.258		0.170	0.258
M1-F3	0.161	0.246		0.160	0.245		0.170	0.258
M1-F4	0.161	0.246		0.160	0.245		0.170	0.258
M1-O1	0.310	0.422		0.309	0.421		0.312	0.423
$\boldsymbol{H}_{\mathrm{b}}{ }^{\text {[e] }}$								
Ng1-F6	-0.084	-0.089	-0.071	-0.069	-0.701	-0.061		
Ng1-F5	-0.050	-0.049	-0.071	-0.044	-0.421	-0.061		
M1---F5	0.002	-0.002		0.002	-0.003			
M1-F1	-0.069	-0.074		-0.069	-0.074		-0.070	-0.074
M1-F2	-0.069	-0.074		-0.069	-0.074		-0.070	-0.074
M1-F3	-0.063	-0.068		-0.062	-0.067		-0.070	-0.074
M1-F4	-0.063	-0.068		-0.062	-0.067		-0.070	-0.074
M1-O1	-0.244	-0.260		-0.244	-0.259		-0.247	-0.265

continued ...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A4.10. (continued)

	$\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$	$\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$	$\mathbf{K r F}_{2}$	$\mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}$	$\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$	XeF_{2}	MoOF4	WOF_{4}
Delocalization Indices								
$\delta(\mathrm{Ng} 1-\mathrm{F} 6)$	0.972	0.987	0.912	0.943	0.951	0.892		
$\delta(\mathrm{Ng} 1-\mathrm{F} 5)$	0.768	0.754	0.912	0.741	0.722	0.892		
δ (M1---F5)	0.122	0.206		0.131	0.219			
$\delta(\mathrm{M} 1-\mathrm{F} 1)$	0.784	0.938		0.785	0.938		0.792	0.948
$\delta(\mathrm{M} 1-\mathrm{F} 2)$	0.784	0.938		0.785	0.938		0.792	0.948
$\delta(\mathrm{M} 1-\mathrm{F} 3)$	0.730	0.883		0.724	0.876		0.792	0.948
$\delta(\mathrm{M} 1-\mathrm{F} 4)$	0.730	0.883		0.724	0.876		0.792	0.948
δ (M1-O1)	1.929	2.097		1.929	2.098		1.930	2.114
QTAIM Atomic								
Populations								
$\bar{N}(\mathrm{Ng} 1)$	34.96	34.98	35.02	52.73	52.73	52.77		
\bar{N} (F6)	9.44	9.43	9.49	9.58	9.57	9.61		
\bar{N} (F5)	9.55	9.65	9.49	9.65	9.75	9.61		
$\bar{N}(\mathrm{M} 1)$	39.96	69.61		38.96	69.61		38.99	69.72
$\bar{N}(\mathrm{~F} 1)$	9.58	9.82		9.58	9.82		9.58	9.82
$\bar{N}(\mathrm{~F} 2)$	9.58	9.82		9.58	9.82		9.58	9.82
$\bar{N}(\mathrm{~F} 3)$	9.61	9.84		9.62	9.84		9.58	9.82
$\bar{N}(\mathrm{~F} 4)$	9.61	9.84		9.62	9.84		9.58	9.82
$\bar{N}(\mathrm{O} 1)$	8.67	9.00		8.68	8.99		8.68	8.99

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A4.10. (continued)

	$\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$	$\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$	$\mathbf{K r F}{ }_{2}$	$\mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}$	$\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$	XeF_{2}	MoOF_{4}	WOF4
ELF Basin Populations ${ }^{[f]}$								
$\bar{N}[\mathrm{C}(\mathrm{Ng} 1)]^{[g . h]}$	27.88	27.69	28.06	45.81	45.81	45.61		
$\bar{N}[\mathrm{~V}(\mathrm{Ng} 1)]$	7.03	7.03	7.03	6.82	6.83	6.83		
$\bar{N}[\mathrm{C}$ (F6) $]$	2.15	2.13	2.13	2.15	2.13	2.14		
$\bar{N}[\mathrm{~V}$ (F6) $]$	7.39	7.39	7.34	7.52	7.53	7.54		
$\bar{N}[\mathrm{C}$ (F5) $]$	2.15	2.14	2.13	2.15	2.15	2.14		
$\bar{N}[\mathrm{~V}$ (F5) $]$	7.40	7.61	7.34	7.55	7.76	7.54		
$\bar{N}[\mathrm{C}(\mathrm{F} 1)]$	2.16	2.15		2.16	2.15		2.14	2.14
$\bar{N}[\mathrm{~V}(\mathrm{~F} 1)]$	7.54	8.20		7.54	8.21		7.54	8.23
$\bar{N}[\mathrm{C}$ (F2) $]$	2.16	2.15		2.16	2.15		2.14	2.14
$\bar{N}[\mathrm{~V}$ (F2) $]$	7.54	8.20		7.54	8.21		7.54	8.23
$\bar{N}[\mathrm{C}$ (F3) $]$	2.15	2.15		2.15	2.15		2.14	2.14
$\bar{N}[\mathrm{~V}(\mathrm{~F} 3)]$	7.56	8.19		7.56	8.19		7.54	8.23
$\bar{N}[\mathrm{C}(\mathrm{F} 4)]$	2.15	2.15		2.15	2.15		2.14	2.14
$\bar{N}[\mathrm{~V}(\mathrm{~F} 4)]$	7.56	8.19		7.56	8.19		7.54	8.23
$\bar{N}[\mathrm{C}(\mathrm{O} 1)]$	2.13	2.13		2.13	2.13		2.12	2.13
$\bar{N}[\mathrm{~V}(\mathrm{O} 1)]$	6.88	8.10		6.88	8.10		6.88	8.11

${ }^{[\mathrm{a}]}$ APFD/Def2-TZVPD level of theory. ${ }^{[b]}$ See Figures 7.1 and A4.2 for the atom labeling schemes. ${ }^{[\mathrm{cc}]}$ The atomic unit (au) for $\nabla^{2} \rho \mathrm{~b}$ is $e / a 0^{5}\left(1 \mathrm{au}=24.098 \mathrm{e} \AA^{-5}\right)$. ${ }^{[d]} \mathrm{The} \mathrm{au}$ for ρ_{b} is $e / a_{0}{ }^{3}\left(1 \mathrm{au}=6.748\right.$ e $\AA^{-3}, a_{0}=$ Bohr radius $=0.52918 \AA, e=$ charge on an electron). ${ }^{[\mathrm{e}]}$ The total energy density of Cremer and Kraka $\left(H_{\mathrm{b}}\right)$ is defined as the sum of G_{b} and V_{b}, in which G_{b} is the Lagrangian kinetic energy and V_{b} is the potential energy density. The au for H_{b} is $e^{2} / a_{0}{ }^{4}\left(1 \mathrm{au}=E_{\mathrm{h}} / a_{0}{ }^{3}=6.748 E_{\mathrm{h}} / \AA^{3}, E_{\mathrm{h}}=\right.$ hartree $\left.=e^{2} / a_{0}\right)$. In covalent bonds, G_{b} is dominated by V_{b}, which gives a negative value for $H_{\mathrm{b}}{ }^{[f]}$ Because the Def2-TZVPD basis set does not separate the sub-valence and valence electrons, they cannot be distinguished by ELF. Consequently, $\bar{N}[\mathrm{C}(\mathrm{M})]$ and $\bar{N}[\mathrm{~V}(\mathrm{M})](\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ are not reported. ${ }^{[\mathrm{g}]} \bar{N}[\mathrm{C}(\mathrm{Kr})]=54-\bar{N}[\mathrm{~V}(\mathrm{Kr})]-\Sigma \bar{N}\left[\left(\mathrm{~F}_{5,6}\right)\right]-\Sigma \bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{5,6}\right)\right] .{ }^{[\mathrm{h}]}$ $\bar{N}[\mathrm{C}(\mathrm{Xe})]=72-\bar{N}[\mathrm{~V}(\mathrm{Xe})]-\Sigma \bar{N}\left[\mathrm{C}\left(\mathrm{F}_{5,6}\right)\right]-\Sigma \bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{5,6}\right)\right]$.

Table A4.11. Laplacian of electron density $\left(\nabla^{2} \rho_{\mathrm{b}}\right)$, the density of all electrons $\left(\rho_{\mathrm{b}}\right)$, the energy density $\left(H_{\mathrm{b}}\right)$, delocalization indices (δ), QTAIM atomic populations (N), and ELF basin populations (N) for $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}, \mathrm{XeF}_{2}$, and $\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})^{[\mathrm{a}, \mathrm{b}]}$

	$\mathrm{XeF}_{2} \cdot \mathbf{2 M o O F} 4$	$\mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}$	XeF_{2}	MoOF4	WOF_{4}
$\nabla^{2} \rho_{\mathrm{b}}{ }^{[\mathrm{c}]}$					
Ng1-F6	0.245	0.248	0.233		
Ng1-F5	0.220	0.218	0.233		
M1---F5	0.209	0.272			
M1-F1	0.788	0.100		0.758	0.974
M1-F2	0.768	0.981		0.758	0.974
M1-F3	0.743	0.950		0.758	0.974
M1-F4	0.657	0.831		0.758	0.974
M1-O1	1.019	1.090		0.958	1.030
M2---F4	0.162	0.220			
M2-F7	0.713	0.912			
M2-F8	0.754	0.960			
M2-F9	0.771	0.973			
M2-F10	0.761	0.984			
M2-O2	0.992	1.060			
$\rho_{\mathrm{b}}{ }^{\text {[d] }}$					
Ng1-F6	0.136	0.138	0.126		
Ng1-F5	0.105	0.101	0.126		
M1---F5	0.044	0.083			
M1-F1	0.173	0.262		0.170	0.258
M1-F2	0.170	0.260		0.170	0.258
M1-F3	0.165	0.251		0.170	0.258
M1-F4	0.143	0.220		0.170	0.258
M1-O1	0.312	0.424		0.312	0.423
M2---F4	0.032	0.064			
M2-F7	0.159	0.242			
M2-F8	0.168	0.254			
M2-F9	0.170	0.257			
M2-F10	0.169	0.259			
M2-O2	0.310	0.423			

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A4.11. (continued)

	$\mathrm{XeF}_{2} \cdot \mathbf{2 M o O F} 4$	$\mathrm{XeF}_{2} \cdot \mathbf{2 W O F}_{4}$	XeF_{2}	MoOF_{4}	WOF_{4}
$\boldsymbol{H}_{\mathbf{b}}{ }^{\text {[e] }}$					
Ng1-F6	-0.070	-0.072	-0.606		
Ng1-F5	-0.042	-0.039	-0.606		
M1---F5	0.0004	-0.005			
M1-F1	-0.072	-0.077		-0.070	-0.074
M1-F2	-0.069	-0.075		-0.070	-0.074
M1-F3	-0.066	-0.071		-0.070	-0.074
M1-F4	-0.048	-0.052		-0.070	-0.074
M1-O1	-0.247	-0.263		-0.247	-0.265
M2---F4	0.003	-0.00003			
M2-F7	-0.060	-0.065			
M2-F8	-0.067	-0.072			
M2-F9	-0.069	-0.073			
M2-F10	-0.068	-0.075			
M2-O2	-0.245	-0.262			
Delocalization Indices					
$\delta(\mathrm{Ng} 1-\mathrm{F} 6)$	0.953	0.964	0.892		
$\delta(\mathrm{Ng} 1-\mathrm{F} 5)$	0.712	0.685	0.892		
δ (M1---F5)	0.152	0.252			
$\delta(\mathrm{M} 1-\mathrm{F} 1)$	0.807	0.959		0.792	0.948
$\delta(\mathrm{M} 1-\mathrm{F} 2)$	0.783	0.943		0.792	0.948
$\delta(\mathrm{M} 1-\mathrm{F} 3)$	0.752	0.903		0.792	0.948
$\delta(\mathrm{M} 1-\mathrm{F} 4)$	0.615	0.739		0.792	0.948
$\delta(\mathrm{M} 1-\mathrm{O} 1)$	1.941	2.118		1.930	2.114
$\delta(\mathrm{M} 2--\mathrm{F} 4)$	0.104	0.180			
$\delta(\mathrm{M} 2-\mathrm{F} 7)$	0.711	0.859			
$\delta(\mathrm{M} 2-\mathrm{F} 8)$	0.768	0.918			
$\delta(\mathrm{M} 2-\mathrm{F} 9)$	0.786	0.942			
$\delta(\mathrm{M} 2-\mathrm{F} 10)$	0.777	0.932			
$\delta(\mathrm{M} 2-\mathrm{O} 2)$	1.920	2.100			

continued ...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A4.11. (continued)

	$\mathrm{XeF}_{2} \cdot \mathbf{2 M o O F} 4$	$\mathrm{XeF}_{2} \cdot \mathrm{2WOF}_{4}$	XeF_{2}	MoOF_{4}	WOF_{4}
QTAIM Atomic Populations					
$\bar{N}(\mathrm{Ng} 1)$	52.71	52.72	52.77		
\bar{N} (F5)	9.66	9.77	9.61		
\bar{N} (F6)	9.57	9.56	9.61		
$\bar{N}(\mathrm{M} 1)$	38.94	69.60		38.99	69.72
$\bar{N}(\mathrm{~F} 1)$	9.57	9.81		9.58	9.82
\bar{N} (F2)	9.59	9.82		9.58	9.82
\bar{N} (F3)	9.60	9.83		9.58	9.82
\bar{N} (F4)	9.66	9.96		9.58	9.82
$\bar{N}(\mathrm{O} 1)$	8.67	8.97		8.68	8.99
\bar{N} (M2)	38.94	69.61			
\bar{N} (F7)	9.63	9.86			
\bar{N} (F8)	9.59	9.83			
\bar{N} (F9)	9.58	9.82			
$\bar{N}(\mathrm{~F} 10)$	9.59	9.83			
$\bar{N}(\mathrm{O} 2)$	8.69	8.99			

continued ...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A4.11. (continued)

	$\mathrm{XeF}_{2} \cdot \mathbf{2 M o O F} 4$	$\mathrm{XeF}_{2} \cdot \mathbf{2 W O F}_{4}$	XeF_{2}	MoOF_{4}	WOF_{4}
ELF Basin Populations ${ }^{[f]}$					
$\bar{N}[\mathrm{C}(\mathrm{Ng} 1)]^{[\mathrm{g}, \mathrm{h]}}$	45.83	45.55	45.61		
$\bar{N}[\mathrm{~V}(\mathrm{Ng} 1)]$	6.81	6.83	6.83		
$\bar{N}[\mathrm{C}(\mathrm{F} 5)]$	2.15	2.15	2.24		
$\bar{N}[\mathrm{~V}(\mathrm{~F} 5)]$	7.55	7.80	7.54		
$\bar{N}[\mathrm{C}(\mathrm{F} 6)]$	2.14	2.15	2.14		
$\bar{N}[\mathrm{~V}(\mathrm{~F} 6)]$	7.52	7.52	7.54		
$\bar{N}[\mathrm{C}(\mathrm{F} 1)]$	2.14	2.15		2.14	2.14
$\bar{N}[\mathrm{~V}(\mathrm{~F} 1)]$	7.53	8.21		7.54	8.23
$\bar{N}[\mathrm{C}(\mathrm{F} 2)]$	2.15	2.14		2.14	2.14
$\bar{N}[\mathrm{~V}(\mathrm{~F} 2)]$	7.54	8.20		7.54	8.23
$\bar{N}[\mathrm{C}(\mathrm{F} 3)]$	2.15	2.15		2.14	2.14
$\bar{N}[\mathrm{~V}(\mathrm{~F} 3)]$	7.55	8.19		7.54	8.23
$\bar{N}[\mathrm{C}(\mathrm{F} 4)]$	2.15	2.15		2.14	2.14
$\bar{N}[\mathrm{~V}(\mathrm{~F} 4)]$	7.60	8.34		7.54	8.23
$\bar{N}[\mathrm{C}(\mathrm{O} 1)]$	2.13	2.13		2.12	2.13
$\bar{N}[\mathrm{~V}(\mathrm{O} 1)]$	6.87	8.09		6.88	8.11

continued ...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A4.11. (continued)

	$\mathrm{XeF}_{2} \cdot 2 \mathrm{MoOF}_{4}$	$\mathrm{XeF}_{2} \cdot \mathbf{2 W O F}$
$\bar{N}[\mathrm{C}(\mathrm{F} 7)]$	2.15	2.15
$\bar{N}[\mathrm{~V}(\mathrm{~F} 7)]$	7.57	8.20
$\bar{N}[\mathrm{C}(\mathrm{F})$]	2.15	2.16
$\bar{N}[\mathrm{~V}(\mathrm{~F} 8)]$	7.55	8.20
$\bar{N}[\mathrm{C}(\mathrm{F} 9)]$	2.15	2.15
$\bar{N}[\mathrm{~V}(\mathrm{~F} 9)]$	7.54	8.20
$\bar{N}[\mathrm{C}(\mathrm{F} 10)]$	2.15	2.15
$\bar{N}[\mathrm{~V}(\mathrm{~F} 10)]$	7.54	8.21
$\bar{N}[\mathrm{C}(\mathrm{O} 2)]$	2.13	2.13
$\bar{N}[\mathrm{~V}(\mathrm{O} 2)]$	6.89	8.11

${ }^{[a]}$ APFD/Def2-TZVPD level of theory. ${ }^{[b]}$ See Figures 7.2 and A4.3 for the atom labeling schemes. ${ }^{[c]}$ The atomic unit (au) for $\nabla^{2} \rho_{\mathrm{b}}$ is $e / a_{0}{ }^{5}(1 \mathrm{au}=24.098$ $\left.\mathrm{e} \AA^{-5}\right)$. ${ }^{[\mathrm{d}]}$ The au for ρ_{b} is $e / a_{0}{ }^{3}\left(1 \mathrm{au}=6.748 \mathrm{e} \AA^{-3}, a_{0}=\right.$ Bohr radius $=0.52918 \AA, e=$ charge on an electron $)$. ${ }^{\text {e] }}$ The total energy density of Cremer and Kraka $\left(H_{\mathrm{b}}\right)$ is defined as the sum of G_{b} and V_{b}, in which G_{b} is the Lagrangian kinetic energy and V_{b} is the potential energy density. The au for H_{b} is $e^{2} / a_{0}{ }^{4}$ ($1 \mathrm{au}=E_{\mathrm{h}} / a_{0}{ }^{3}=6.748 E_{\mathrm{h}} / \AA^{3}, E_{\mathrm{h}}=$ hartree $=e^{2} / a_{0}$). In covalent bonds, G_{b} is dominated by V_{b}, which gives a negative value for H_{b}. ${ }^{[f]}$ Because the Def2TZVPD basis set does not separate the sub-valence and valence electrons, they cannot be distinguished by ELF. Consequently, $\bar{N}[\mathrm{C}(\mathrm{M})]$ and $\bar{N}[\mathrm{~V}(\mathrm{M})]$ (M $=\mathrm{Mo}, \mathrm{W}$) are not reported. ${ }^{[\mathrm{g}]} \bar{N}[\mathrm{C}(\mathrm{Kr})]=54-\bar{N}[\mathrm{~V}(\mathrm{Kr})]-\Sigma \bar{N}\left[\left(\mathrm{~F}_{5,6}\right)\right]-\Sigma \bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{5,6}\right)\right] .{ }^{\mathrm{h}]} \bar{N}[\mathrm{C}(\mathrm{Xe})]=72-\bar{N}[\mathrm{~V}(\mathrm{Xe})]-\Sigma \bar{N}\left[\mathrm{C}\left(\mathrm{F}_{5,6}\right)\right]-\Sigma \bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{5,6}\right)\right]$.

Figure A4.8. ELF isosurface plots, $\eta(\mathrm{r})=0.60(\mathrm{APFD} / \mathrm{Def} 2-\mathrm{TZVPD})$, for $\mathrm{NgF}_{2}, \mathrm{MOF}_{4}, \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}(\mathrm{Ng}=$ Kr , Xe ; $\mathrm{M}=\mathrm{Mo}$, W).

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Figure A4.9. Reduction of localization diagrams for $\mathrm{MOF}_{4}\left(C_{4 v}\right), \mathrm{NgF}_{2}\left(D_{\infty}\right), \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}\left(C_{s}\right)$, and $\mathrm{NgF}_{2} \cdot 2 \mathrm{MOF}_{4}\left(C_{1}\right)(\mathrm{Ng}=\mathrm{Kr}$, $\mathrm{Xe} ; \mathrm{M}=\mathrm{Mo}, \mathrm{W}$; see below) which show the ordering of localization nodes and the boundary isosurface values, $\eta(\mathrm{r})$, at which the reproducible domains separate. Calculated at the APFD/Def2-TZVPD level of theory; the atom numbering schemes correspond to those used in Figures 7.1, 7.2, A4.2, and A4.3.

$\mathrm{MoOF}_{4}\left(\mathrm{C}_{4 \mathrm{v}}\right)$
continued ...

$\mathrm{WOF}_{4}\left(C_{4 v}\right)$

$\operatorname{KrF}_{2}\left(D_{\alpha_{n}}\right)$

$\mathrm{XeF}_{2}\left(D_{\text {oh }}\right)$

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

$\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}\left(\mathrm{C}_{s}\right)$

$\mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}\left(C_{s}\right)$
continued ...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

$\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}\left(\mathrm{C}_{5}\right)$

$\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}\left(C_{s}\right)$
continued ...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Figure A4.10. The molecular electrostatic potential surfaces (MEPS) calculated at the $0.001 \mathrm{e} \cdot a_{0}{ }^{-3}$ isosurfaces of $\mathrm{MOF}_{4}, \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$, and $\mathrm{NgF}_{2}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; \mathrm{M}=\mathrm{Mo}, \mathrm{W}, \mathrm{Cr})$, $\mathrm{XeF}_{2} \cdot 2 \mathrm{MoOF}_{4}$ and $\mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}$. Selected electrostatic potential extrema are indicated by arrows. The optimized geometries and MEPs were calculated at the APFD/Def2-TZVPD ($\mathrm{F}, \mathrm{O}, \mathrm{Mo}, \mathrm{W}, \mathrm{Kr}, \mathrm{Xe}$) level of theory.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A4.12. Calculated ${ }^{[a]}$ geometric parameters for $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; \mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$

	$\mathrm{KrF}_{2} \cdot \mathrm{CrOF}_{4}$	$\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$	$\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$	$\mathrm{XeF}_{2} \cdot \mathrm{CrOF}_{4}$	$\mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}$	$\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$
Bond lengths (\AA)						
$\mathrm{M}(1)-\mathrm{O}(1)$	1.5096	1.6424	1.6685	1.5098	1.6429	1.6692
$\mathrm{M}(1)-\mathrm{F}(1)$	1.7283	1.8581	1.8634	1.7308	1.8555	1.8654
$\mathrm{M}(1)-\mathrm{F}(2)$	1.7120	1.8454	1.8464	1.7129	1.8366	1.8466
$\mathrm{M}(1)-\mathrm{F}(3)$	1.7120	1.8352	1.8464	1.7129	1.8366	1.8466
$\mathrm{M}(1)-\mathrm{F}(4)$	1.7283	1.8405	1.8634	1.7308	1.8555	1.8654
M(1)---F(5)	2.5790	2.4132	2.3805	2.5071	2.3752	2.3514
$\mathrm{Ng}(1)-\mathrm{F}(5)$	1.9052	1.9313	1.9431	2.0161	2.0487	2.0599
$\mathrm{Ng}(1)-\mathrm{F}(6)$	1.8584	1.8401	1.8351	1.9689	1.9536	1.9496
Bond angles (deg)						
$\mathrm{F}(5)-\mathrm{Ng}(1)-\mathrm{F}(6)$	179.43	178.71	178.73	178.83	178.52	178.16
$\mathrm{Ng}(1)-\mathrm{F}(5)--\mathrm{M}(1)$	114.03	122.35	119.15	120.45	122.86	123.68
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(1)$	103.06	102.47	101.93	102.63	101.72	101.52
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(2)$	103.31	101.80	102.24	103.02	102.08	102.07
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(3)$	103.31	102.61	102.24	103.02	102.08	102.07
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(4)$	103.06	101.98	101.93	102.63	101.72	101.52
$\mathrm{O}(1)-\mathrm{M}(1)--\mathrm{F}(5)$	178.89	179.37	178.43	179.17	178.36	177.80
$\mathrm{F}(1)-\mathrm{M}(1)-\mathrm{F}(2)$	87.08	86.25	87.71	87.24	87.75	87.81
$\mathrm{F}(1)-\mathrm{M}(1)-\mathrm{F}(3)$	153.61	154.92	155.78	154.33	156.14	156.36
$\mathrm{F}(1)-\mathrm{M}(1)-\mathrm{F}(4)$	86.00	86.86	85.80	86.00	85.93	86.01
$\mathrm{F}(1)-\mathrm{M}(1)--\mathrm{F}(5)$	76.15	77.14	76.94	76.78	77.10	76.91
$\mathrm{F}(2)-\mathrm{M}(1)-\mathrm{F}(3)$	87.90	88.18	88.73	88.23	88.81	88.79
$\mathrm{F}(2)-\mathrm{M}(1)-\mathrm{F}(4)$	153.61	156.15	155.78	154.33	156.14	156.36
$\mathrm{F}(2)-\mathrm{M}(1)-\mathrm{F}(5)$	77.47	77.70	78.86	77.57	79.06	79.47
$\mathrm{F}(3)-\mathrm{M}(1)-\mathrm{F}(4)$	87.08	88.46	87.71	87.24	87.75	87.81
$\mathrm{F}(3)-\mathrm{M}(1)--\mathrm{F}(5)$	77.47	77.78	78.86	77.57	79.06	79.47
F(4)-M(1)---F(5)	76.15	78.52	76.94	76.78	77.10	76.91
Dihedral Angles (deg)						
$\mathrm{Ng}-\mathrm{F}_{(5)}--\mathrm{M}-\mathrm{F}_{(1)}$	44.62	13.14	44.33	44.47	44.36	44.45

[a] Calculated at the PBE0-D4/TZ2P level of theory.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A4.13. Calculated ${ }^{[\text {a] }]}$ geometric parameters for $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}$, W)

	$\mathrm{XeF}_{2} \cdot 2 \mathrm{MoOF}_{4}$	$\mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}$		$\mathrm{XeF}_{2} \cdot 2 \mathrm{MoOF}_{4}$	$\mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}$
	Bond lengths (\AA)				
$\mathrm{Ng}(1)-\mathrm{F}(5)$	2.0664	2.0773	$\mathrm{M}(2)-\mathrm{O}(2)$	1.6418	1.6669
$\mathrm{Ng}(1)-\mathrm{F}(6)$	1.9463	1.9411	$\mathrm{M}(2)-\mathrm{F}(7)$	1.8378	1.8460
M(1)---F(5)	2.3069	2.2820	$\mathrm{M}(2)-\mathrm{F}(8)$	1.8616	1.8704
$\mathrm{M}(1)-\mathrm{O}(1)$	1.6399	1.6663	$\mathrm{M}(2)-\mathrm{F}(9)$	1.8418	1.8528
$\mathrm{M}(1)-\mathrm{F}(1)$	1.8473	1.8570	$\mathrm{M}(2)-\mathrm{F}(10)$	1.8343	1.8432
$\mathrm{M}(1)-\mathrm{F}(2)$	1.8315	1.8408	M(2)---F(4)	2.4315	2.4170
$\mathrm{M}(1)-\mathrm{F}(3)$	1.8280	1.8377			
$\mathrm{M}(1)-\mathrm{F}(4)$	1.9006	1.9126			
	Bond angles (deg)				
$\mathrm{F}(5)-\mathrm{Ng}(1)-\mathrm{F}(6)$	177.68	178.05	$\mathrm{O}(2)-\mathrm{M}(2)--\mathrm{F}(4)$	179.29	179.40
$\mathrm{Ng}(1)-\mathrm{F}(5)--\mathrm{M}(1)$	132.18	133.02	$\mathrm{O}(2)-\mathrm{M}(2)-\mathrm{F}(7)$	102.30	102.30
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(1)$	101.75	101.57	$\mathrm{O}(2)-\mathrm{M}(2)-\mathrm{F}(8)$	101.31	101.38
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(2)$	100.90	100.57	$\mathrm{O}(2)-\mathrm{M}(2)-\mathrm{F}(9)$	102.35	102.22
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(3)$	102.02	101.82	$\mathrm{O}(2)-\mathrm{M}(2)-\mathrm{F}(10)$	102.21	102.25
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(4)$	98.89	99.11	$\mathrm{F}(7)-\mathrm{M}(2)--\mathrm{F}(4)$	77.14	77.36
$\mathrm{O}(1)-\mathrm{M}(1)--\mathrm{F}(5)$	178.34	178.60	$\mathrm{F}(7)-\mathrm{M}(2)-\mathrm{F}(8)$	86.86	87.12
$\mathrm{F}(1)-\mathrm{M}(1)-\mathrm{F}(2)$	88.67	89.11	$\mathrm{F}(7)-\mathrm{M}(2)-\mathrm{F}(9)$	155.24	155.38
$\mathrm{F}(1)-\mathrm{M}(1)-\mathrm{F}(3)$	155.90	156.23	$\mathrm{F}(7)-\mathrm{M}(2)-\mathrm{F}(10)$	88.82	88.91
$\mathrm{F}(1)-\mathrm{M}(1)-\mathrm{F}(4)$	85.68	85.59	$\mathrm{F}(8)-\mathrm{M}(2)--\mathrm{F}(4)$	78.25	78.12
$\mathrm{F}(1)-\mathrm{M}(1)-\mathrm{F}(5)$	77.75	77.92	$\mathrm{F}(8)-\mathrm{M}(2)-\mathrm{F}(9)$	86.05	85.88
$\mathrm{F}(2)-\mathrm{M}(1)-\mathrm{F}(3)$	90.64	90.74	$\mathrm{F}(8)-\mathrm{M}(2)-\mathrm{F}(10)$	156.47	156.35
$\mathrm{F}(2)-\mathrm{M}(1)-\mathrm{F}(4)$	160.13	160.27	$\mathrm{F}(9)-\mathrm{M}(2)--\mathrm{F}(4)$	78.20	78.11
$\mathrm{F}(2)-\mathrm{M}(1)-\mathrm{F}(5)$	80.69	80.74	$\mathrm{F}(9)-\mathrm{M}(2)-\mathrm{F}(10)$	88.29	88.12
$F(3)-M(1)-\mathrm{F}(4)$	86.87	86.60	F(10)-M(2)---F(4)	78.24	78.26
$\mathrm{F}(3)-\mathrm{M}(1)-\mathrm{F}(5)$	78.37	78.60	M(1)-F(4)---M(2)	179.29	179.40
$\mathrm{F}(4)-\mathrm{M}(1)-\mathrm{F}(5)$	79.51	79.57			
Dihedral angles (deg)					
$\mathrm{Ng}-\mathrm{F}_{(5)}-\mathrm{-M}-\mathrm{F}_{(1)}$	12.26	14.98			

[a] Calculated at the PBE0-D4/TZ2P level of theory.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A4.14. Calculated ${ }^{[a]}$ geometric parameters for $\mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})$

	$\mathrm{KrF}_{2} \cdot 2 \mathrm{CrOF}_{4}$	$\mathrm{XeF}_{2} \cdot 2 \mathrm{CrOF}_{4}$		$\mathrm{KrF}_{2} \cdot 2 \mathrm{CrOF}_{4}$	$\mathrm{XeF}_{2} \cdot 2 \mathrm{CrOF}_{4}$
	Bond lengths (\AA)				
$\mathrm{Ng}(1)-\mathrm{F}(5)$	1.8831	1.9970	$\mathrm{M}(2)-\mathrm{O}(2)$	1.5092	1.5093
$\mathrm{Ng}(1)-\mathrm{F}(6)$	1.8831	1.9970	$\mathrm{M}(2)-\mathrm{F}(7)$	1.7249	1.7276
$\mathrm{M}(1)--\mathrm{F}(5)$	2.6764	2.6029	$\mathrm{M}(2)-\mathrm{F}(8)$	1.7129	1.7123
$\mathrm{M}(1)-\mathrm{O}(1)$	1.5092	1.5093	$\mathrm{M}(2)-\mathrm{F}(9)$	1.7127	1.7126
$\mathrm{M}(1)-\mathrm{F}(1)$	1.7249	1.7276	$\mathrm{M}(2)-\mathrm{F}(10)$	1.7253	1.7284
$\mathrm{M}(1)-\mathrm{F}(2)$	1.7129	1.7123	M(2)---F(6)	2.6764	2.6029
$\mathrm{M}(1)-\mathrm{F}(3)$	1.7127	1.7126			
$\mathrm{M}(1)-\mathrm{F}(4)$	1.7253	1.7284			
			Bond angles (deg)		
$\mathrm{Ng}(1)-\mathrm{F}(5)---\mathrm{M}(1)$	110.36	115.36	$\mathrm{Ng}(1)-\mathrm{F}(6)---\mathrm{M}(2)$	110.36	115.36
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(1)$	103.60	103.19	$\mathrm{O}(2)-\mathrm{M}(2)--\mathrm{F}(6)$	178.61	178.69
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(2)$	103.74	103.49	$\mathrm{O}(2)-\mathrm{M}(2)-\mathrm{F}(7)$	103.60	103.19
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(3)$	103.76	103.51	$\mathrm{O}(2)-\mathrm{M}(2)-\mathrm{F}(8)$	103.74	103.49
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(4)$	103.53	103.21	$\mathrm{O}(2)-\mathrm{M}(2)-\mathrm{F}(9)$	103.76	103.51
$\mathrm{O}(1)-\mathrm{M}(1)---\mathrm{F}(5)$	178.61	178.69	$\mathrm{O}(2)-\mathrm{M}(2)-\mathrm{F}(10)$	103.53	103.21
$\mathrm{F}(1)-\mathrm{M}(1)-\mathrm{F}(2)$	86.91	87.00	$\mathrm{F}(7)-\mathrm{M}(2)--\mathrm{F}(6)$	75.52	75.89
$\mathrm{F}(1)-\mathrm{M}(1)-\mathrm{F}(3)$	152.62	153.28	$\mathrm{F}(7)-\mathrm{M}(2)-\mathrm{F}(8)$	86.91	87.00
$\mathrm{F}(1)-\mathrm{M}(1)-\mathrm{F}(4)$	86.07	86.01	$\mathrm{F}(7)-\mathrm{M}(2)-\mathrm{F}(9)$	152.62	153.28
$F(1)-M(1)---F(5)$	75.52	75.89	$\mathrm{F}(7)-\mathrm{M}(2)-\mathrm{F}(10)$	86.07	86.01
$\mathrm{F}(2)-\mathrm{M}(1)-\mathrm{F}(3)$	87.43	87.80	$\mathrm{F}(8)-\mathrm{M}(2)--\mathrm{F}(6)$	77.33	77.44
$\mathrm{F}(2)-\mathrm{M}(1)-\mathrm{F}(4)$	152.72	153.28	$\mathrm{F}(8)-\mathrm{M}(2)-\mathrm{F}(9)$	87.43	87.80
$F(2)-M(1)---F(5)$	77.33	77.44	$\mathrm{F}(8)-\mathrm{M}(2)-\mathrm{F}(10)$	152.72	153.28
$\mathrm{F}(3)-\mathrm{M}(1)-\mathrm{F}(4)$	86.80	86.96	$\mathrm{F}(9)-\mathrm{M}(2)--\mathrm{F}(6)$	77.10	77.40
$F(3)-M(1)---F(5)$	77.10	77.40	$\mathrm{F}(9)-\mathrm{M}(2)-\mathrm{F}(10)$	86.80	86.96
$F(4)-M(1)---F(5)$	75.39	75.85	$\mathrm{F}(10)-\mathrm{M}(2)--\mathrm{F}(6)$	75.39	75.85
$\mathrm{F}(5)-\mathrm{Ng}(1)-\mathrm{F}(6)$	179.85	179.46			
Dihedral angles (deg)					
$\mathrm{Ng}-\mathrm{F}_{(5)}---\mathrm{M}_{(1)}-\mathrm{F}_{(1)}$	44.27	43.49	$\mathrm{Ng}-\mathrm{F}_{(6)}---\mathrm{M}_{(2)}-\mathrm{F}_{(7)}$	44.27	43.49

[a] Calculated at the PBE0-D4/TZ2P level of theory.

Table A4.15. Calculated ${ }^{[a]}$ geometric parameters for $\mathrm{CrOF}_{4}, \mathrm{MOF}_{4}$, and $\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$

	CrOF_{4}	MoOF_{4}	WOF_{4}	$\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F} 8$	$\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}$
Bond lengths (\AA)					
$\mathrm{M}(1)-\mathrm{O}(1)$	1.5096	1.6411	1.6665	1.6375	1.6627
$\mathrm{M}(1)-\mathrm{F}(1)$	1.7153	1.8359	1.8448	1.8251	1.8370
$\mathrm{M}(1)-\mathrm{F}(2)$	1.7153	1.8359	1.8448	1.8268	1.8340
$\mathrm{M}(1)-\mathrm{F}(3)$	1.7153	1.8359	1.8448	1.8272	1.8351
$\mathrm{M}(1)-\mathrm{F}(4)$	1.7153	1.8359	1.8448	1.8761	1.8883
$\mathrm{M}(2)--\mathrm{F}(4)$				2.5813	2.5524
$\mathrm{M}(2)-\mathrm{O}(2)$				1.6411	1.6664
$\mathrm{M}(2)-\mathrm{F}(5)$				1.8382	1.8515
$\mathrm{M}(2)-\mathrm{F}(6)$				1.8459	1.8553
$\mathrm{M}(2)-\mathrm{F}(7)$				1.8417	1.8477
$\mathrm{M}(2)-\mathrm{F}(8)$				1.8363	1.8458
Bond angles (deg)					
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(1)$	105.02	105.49	105.32	106.97	106.64
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(2)$	105.02	105.49	105.32	103.62	103.93
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(3)$	105.02	105.49	105.32	106.82	106.41
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(4)$	105.02	105.49	105.32	102.69	103.26
$\mathrm{F}(1)-\mathrm{M}(1)-\mathrm{F}(2)$	86.15	85.91	86.00	87.54	87.30
$F(1)-M(1)-F(3)$	149.97	149.02	149.35	146.10	146.82
$F(1)-M(1)-F(4)$	86.15	85.91	86.00	85.26	84.65
$\mathrm{F}(2)-\mathrm{M}(1)-\mathrm{F}(3)$	86.15	85.91	86.00	87.24	87.63
$\mathrm{F}(2)-\mathrm{M}(1)-\mathrm{F}(4)$	149.97	149.02	149.35	153.68	152.80
$\mathrm{F}(3)-\mathrm{M}(1)-\mathrm{F}(4)$	86.15	85.91	86.00	84.79	85.07
$\mathrm{O}(2)-\mathrm{M}(2)---\mathrm{F}(4)$				178.42	179.34
$\mathrm{O}(2)-\mathrm{M}(2)-\mathrm{F}(5)$				103.60	103.47
$\mathrm{O}(2)-\mathrm{M}(2)-\mathrm{F}(6)$				103.30	103.22
$\mathrm{O}(2)-\mathrm{M}(2)-\mathrm{F}(7)$				103.32	103.30
$\mathrm{O}(2)-\mathrm{M}(2)-\mathrm{F}(8)$				103.69	103.28
$F(4)--M(2)-F(5)$				76.87	76.08
$F(4)--\mathrm{M}(2)-\mathrm{F}(6)$				75.20	76.29
$F(4)--M(2)-F(7)$				76.19	77.15
$F(4)--\mathrm{M}(2)-\mathrm{F}(8)$				77.82	77.20
$\mathrm{F}(5)-\mathrm{M}(2)-\mathrm{F}(6)$				86.12	86.07
$\mathrm{F}(5)-\mathrm{M}(2)-\mathrm{F}(7)$				153.06	153.22
$\mathrm{F}(5)-\mathrm{M}(2)-\mathrm{F}(8)$				87.16	86.76
$\mathrm{F}(6)-\mathrm{M}(2)-\mathrm{F}(7)$				86.82	87.41
$\mathrm{F}(6)-\mathrm{M}(2)-\mathrm{F}(8)$				153.01	153.48
$\mathrm{F}(7)-\mathrm{M}(2)-\mathrm{F}(8)$				87.44	87.59
$\mathrm{M}(1)-\mathrm{F}(4)--\mathrm{M}(2)$				151.53	151.31

[a] Calculated at the PBE0-D4/TZ2P level of theory.

Energy Decomposition Analyses (EDA)

The energy decomposition analysis (EDA) method developed by Ziegler and Rauk ${ }^{[S 10]}$ provides a quantitative interpretation of chemical bonding. The instantaneous interaction energy, $\Delta \mathrm{E}_{\text {int }}$, between two fragments A and B in molecule AB is described by (1) the quasiclassical electrostatic interaction energy between the charge densities of the fragments, $\Delta \mathrm{E}_{\text {elstat }}$, (2) the exchange repulsion between fragments due to the Pauli principle, $\Delta \mathrm{E}_{\text {Pauli, }}$ and (3) the energy gain due to orbital mixing (covalency) between the fragments, $\Delta \mathrm{E}_{\text {orb }}$, in addition to a dispersion term, $\Delta E_{\text {disp }}$, when dispersion energy corrections are included in the calculation (Eq A4.1).

$$
\begin{equation*}
\Delta E_{\text {int }}=\Delta E_{\text {Pauli }}+\Delta E_{\text {elstat }}+\Delta E_{\text {orb }}+\Delta E_{\text {disp }} \tag{A4.1}
\end{equation*}
$$

The total energy that is required to distort and electronically excite fragments A and B from their equilibrium geometries and wave functions to the states they possess in AB is the preparation energy, $\Delta \mathrm{E}_{\text {prep }}$. The sum of the interaction energy and preparation energy provides the bond dissociation energy, D_{E}, for the A-B bond (Eq A4.2).

$$
\begin{equation*}
-D_{\mathrm{E}}=\Delta E_{\text {int }}+\Delta E_{\text {prep }} \tag{A4.2}
\end{equation*}
$$

Because $\Delta \mathrm{E}_{\text {prep }}$ and $\Delta \mathrm{E}_{\text {Pauli }}$ are positive, the stabilization of AB requires that the absolute value of the sum of the $\Delta \mathrm{E}_{\text {elstat }}, \Delta \mathrm{E}_{\text {orb }}$, and $\Delta \mathrm{E}_{\text {disp }}$ terms exceeds the sum of the $\Delta \mathrm{E}_{\text {prep }}$ and $\Delta \mathrm{E}_{\text {Pauli }}$ terms. In general, the parameters described by the EDA method provide useful information related to ionicity, covalency, aromaticity, donation or backdonation, and hybridization. ${ }^{[S 11]}$

The bonding in gas-phase $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}, \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}, \mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF}_{4}$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; \mathrm{M}=\mathrm{Mo}, \mathrm{W})$ was analyzed by the EDA method at the PBE0-

D4/TZ2P level of theory (Tables A4.12-A4.18). The $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}$ and $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ complexes were described in terms of two fragments, NgF_{2} and CrOF_{4} or MOF_{4}, the $\mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF}_{4}$ complexes were described in terms of three fragments, $\mathrm{NgF}_{2}, \mathrm{CrOF}_{4}$, and $\mathrm{Cr}^{\prime} \mathrm{OF}_{4}$, and the $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ complexes were described as either (1) XeF_{2} and $\mathrm{M}\left(\mathrm{OF}_{3}\right)-$ $\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime} \mathrm{OF}_{4}$, or (2) $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{MOF}_{4}$ and $\mathrm{M}^{\prime} \mathrm{OF}_{4}$.

Table A4.16. EDA of the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bonds in $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; \mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})^{[\mathrm{a}]}$

	$\mathrm{KrF}_{2} \cdot \mathrm{CrOF}_{4}$	$\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$	$\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$
$\Delta E_{\text {int }}$	-29.83	-53.79	-63.67
$\Delta E_{\text {orb }}{ }^{[\mathrm{b}]}$	-22.10 (27.4\%)	-52.53 (35.0\%)	-66.23 (35.8\%)
$\Delta E_{\text {elstat }}{ }^{\text {[b] }}$	-50.82 (63.1\%)	-90.33 (60.1\%)	-110.81 (59.9\%)
$\Delta E_{\text {disp }}{ }^{[\mathrm{b}]}$	-7.62 (9.5\%)	-7.38 (4.9\%)	-8.07 (4.3\%)
$\Delta E_{\text {Pauli }}$	50.7	96.45	121.43
Total $\Delta E_{\text {prep }}{ }^{[\mathrm{cc}]}$	4.64	11.17	14.49
$\Delta E_{\text {prep }}\left(\mathrm{NgF}_{2}\right)$	1.13	3.85	5.32
$\Delta E_{\text {prep }}\left(\mathrm{MOF}_{4}\right)$	3.51	7.32	9.17
$-D_{E}$	-25.18	-42.61	-49.18
	$\mathrm{XeF}_{2} \cdot \mathrm{CrOF}_{4}$	$\mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}$	$\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$
$\Delta E_{\text {int }}$	-34.88	-62.57	-72.12
$\Delta E_{\text {orb }}{ }^{\text {[b] }]}$	-26.11 (26.9\%)	-58.37 (33.3\%)	-71.24 (34.4\%)
$\Delta E_{\text {elstat }}{ }^{\text {[b] }}$	-62.12 (64.1\%)	-107.94 (61.7\%)	-126.87 (61.2\%)
$\Delta E_{\text {disp }}{ }^{[\mathrm{b}]}$	-8.73 (9.0\%)	-8.73 (5.0\%)	-9.13 (4.4\%)
$\Delta E_{\text {Pauli }}$	62.07	112.47	135.12
Total $\Delta E_{\text {prep }}{ }^{[\mathrm{cc}]}$	6.45	13.69	16.95
$\Delta E_{\text {prep }}\left(\mathrm{NgF}_{2}\right)$	1.67	4.86	6.36
$\Delta E_{\text {prep }}\left(\mathrm{MOF}_{4}\right)$	4.77	8.83	10.59
$-D_{E}$	-28.43	-48.88	-55.17

[a] Calculated at the PBE0-D4/TZ2P level of theory. Values are given in $\mathrm{kJ} \mathrm{mol}^{-1}$. [b] Values in parentheses give the percentage of attractive interactions. [c] Total $\Delta \mathrm{E}_{\text {prep }}\left(\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}\right)=\Delta \mathrm{E}_{\text {prep }}\left(\mathrm{NgF}_{2}\right)+\Delta \mathrm{E}_{\text {prep }}\left(\mathrm{MOF}_{4}\right)$ where $\mathrm{Ng}=\mathrm{Kr}$, Xe and $\mathrm{M}=\mathrm{Cr}$, Mo, W.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A4.17. EDA of the $\mathrm{Cr}---\mathrm{F}_{\mathrm{b}}$ and $\mathrm{M}--\mathrm{F}_{\mathrm{b}}$ bonds in $\mathrm{F}_{4} \mathrm{OCr}---\mathrm{FNgF}---\mathrm{CrOF}_{4}$ and $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}--\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}--\mathrm{M}^{\prime} \mathrm{OF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe} ; \mathrm{M}=\mathrm{Mo}, \mathrm{W})^{[\mathrm{a}]}$

	$\mathrm{KrF}_{2} \cdot \mathbf{2 C r O F} 4$	$\mathrm{XeF}_{2} \cdot \mathrm{2CrOF}_{4}$	$\mathrm{XeF}_{2} \cdot \mathbf{2 M o O F} 4$	$\mathrm{XeF}_{2} \cdot 2 \mathrm{WOF}_{4}$
$\Delta E_{\text {int }}$	-52.36	-60.26	-88.20	-101.87
$\Delta E_{\text {orb }}{ }^{\text {[b] }}$	-32.66 (24.6\%)	-39.73 (35.0\%)	-80.74 (35.5\%)	-97.82 (36.5\%)
$\Delta E_{\text {elstat }}{ }^{[b]}$	-81.67 (61.6\%)	-102.75 (63.6\%)	-133.71 (58.8\%)	-156.07 (58.3\%)
$\Delta E_{\text {disp }}{ }^{[\mathrm{b}]}$	-18.24 (13.8\%)	-19.03 (11.8\%)	-13.07 (5.7\%)	-14.03 (5.2\%)
$\Delta E_{\text {Pauli }}$	80.21	101.25	139.33	166.04
Total $\Delta E_{\text {prep }}{ }^{[\mathrm{c}]}$	4.35	6.82	21.65	26.42
$\Delta E_{\text {prep }}\left(\mathrm{NgF}_{2}\right)$	0.25	0.88	7.45	9.13
$\Delta E_{\text {prep }}\left(\mathrm{CrOF}_{4}\right)$	2.05	2.97		
$\Delta \mathrm{E}_{\text {prep }}\left(\mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF}_{4}\right)$	4.35	6.82		
$\Delta E_{\text {prep }}\left(\mathrm{M}(\mathrm{O}) \mathrm{F}_{3} \mathrm{~F}_{\left.\mathrm{b}^{\prime}---\mathrm{M}^{\prime}(\mathrm{O}) \mathrm{F}_{4}\right)}\right.$			14.19	17.29
$-D_{E}$	-48.01	-53.44	-66.55	-75.45

[a] Calculated at the PBE0-D4/TZ2P level of theory. Values are given in $\mathrm{kJ} \mathrm{mol}^{-1}$. [b] Values in parentheses give the percentage of attractive interactions. [c] Total $\Delta \mathrm{E}_{\text {prep }}\left(\mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF}_{4}\right)=\Delta \mathrm{E}_{\text {prep }}\left(\mathrm{NgF}_{2}\right)+2 \Delta \mathrm{E}_{\text {prep }}\left(\mathrm{CrOF}_{4}\right)$ and total $\Delta \mathrm{E}_{\text {prep }}\left(\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}\right)=\Delta \mathrm{E}_{\text {prep }}\left(\mathrm{XeF}_{2}\right)+\Delta \mathrm{E}_{\text {prep }}\left(\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime} \mathrm{OF}_{4}\right)$, where $\mathrm{Ng}=\mathrm{Kr}$, Xe and $\mathrm{M}=$ Mo, W.

Table A4.18. EDA of the $\mathrm{M}^{\prime}---\mathrm{F}_{\mathrm{b}}{ }^{\prime}$ bond in $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}^{\prime}}---\mathrm{M}^{\prime} \mathrm{OF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})^{[\mathrm{a}]}$

	$\mathrm{F}_{\mathbf{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{Mo}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}^{\prime}}$---Mo ${ }^{\prime} \mathrm{OF}_{4}$	$\mathrm{F}_{\mathbf{t}} \mathrm{XeF}_{\mathrm{b}}-\mathrm{-} \mathbf{W}\left(\mathrm{OF}_{3}\right)-\mathrm{F}^{\prime}{ }^{\prime}--\mathrm{W}^{\prime} \mathrm{OF}_{4}$
$\Delta E_{\text {int }}$	-59.62	-67.78
$\Delta E_{\text {orb }}{ }^{\text {[b] }}$	-48.43 (24.6\%)	-56.27 (35.0\%)
$\Delta E_{\text {elstat }}{ }^{\text {b] }}$	-82.67 (61.6\%)	-95.76 (63.6\%)
$\Delta E_{\text {disp }}{ }^{[\mathrm{b}]}$	-14.07 (13.8\%)	-15.44 (11.8\%)
$\Delta E_{\text {Pauli }}$	85.55	99.69
Total $\Delta E_{\text {prep }}{ }^{\text {[c] }}$	16.67	19.97
$\Delta E_{\text {prep }}\left(\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{MOF}_{4}\right)$	8.46	10.59
$\Delta E_{\text {prep }}\left(\mathrm{M}^{\prime} \mathrm{OF}_{4}\right)$	8.21	9.38
$-D_{E}$	-42.95	-47.81

[a] Calculated using the PBE0-D4/TZ2P level of theory. Values are given in $\mathrm{kJ} \mathrm{mol}^{-1}$. [b] Values in parentheses give the percentage of attractive interactions. [c] Total $\Delta \mathrm{E}_{\text {prep }}\left(\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime} \mathrm{OF}_{4}\right)=$ $\Delta \mathrm{E}_{\text {prep }}\left(\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{MOF}_{4}\right)+\Delta \mathrm{E}_{\text {prep }}\left(\mathrm{M}^{\prime} \mathrm{OF}_{4}\right)$, where $\mathrm{M}=\mathrm{Mo}, \mathrm{W}$.

Trends observed among the EDA terms of the $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}, \mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$, $\mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF}_{4}$, and $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ complexes upon descending groups 6 and 18 of the Periodic Table provide a quantitative assessment of their relative $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ and $\mathrm{M}^{\prime}---\mathrm{F}_{\mathrm{b}}{ }^{\prime}$ bond strengths. Moving down Group 18 from Kr to Xe or Group 6 from Cr to

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Mo or W results in more negative $\Delta \mathrm{E}_{\text {elstat }}, \Delta \mathrm{E}_{\text {orb }}$, and $\Delta \mathrm{E}_{\text {disp }}$ terms and more positive $\Delta \mathrm{E}_{\text {Pauli }}$ terms, resulting in a more negative $\Delta \mathrm{E}_{\text {int }}$ value overall. Prior AIM, ELF, and NBO analyses of $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}$ have shown that the $\mathrm{C}---\mathrm{F}_{\mathrm{b}}$ bonds are primarily electrostatic in nature, however the non-linear $\mathrm{Cr}---\mathrm{F}_{\mathrm{b}}-\mathrm{Ng}$ bond angles in their crystal structures suggested the presence of a significant degree of covalency (orbital mixing). ${ }^{[54]}$ In this study, the EDA method quantitatively shows that orbital mixing comprises 26.9-35.8\% of the total attractive contributions of the $\mathrm{Cr}--\mathrm{F}_{\mathrm{b}}$ and $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bonds in $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}$ and $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$. Preparation energies $\left(\Delta \mathrm{E}_{\text {prep }}\right)$ also become more positive upon descending Groups 6 and 18, consistent with greater distortions of the fragments from their equilibrium geometries, and bond dissociation energies become more negative because $\Delta \mathrm{E}_{\text {int }}$ terms decrease faster than $\Delta \mathrm{E}_{\text {prep }}$ terms increase. These trends indicate that the $\mathrm{M}---$ F_{b} bonds strengthen upon descending a group, in accordance with the relative fluoride-ion donor strengths of $\mathrm{NgF}_{2}(\mathrm{Kr}<\mathrm{Xe})^{[54]}$ and fluoride-ion affinities of the Group 6 oxide tetrafluorides $(\mathrm{Cr}<\mathrm{Mo}<\mathrm{W}) .{ }^{[\mathrm{S} 12]}$

To provide a quantitative comparison of the $\mathrm{Cr}---\mathrm{F}_{\mathrm{b}}$ bond strengths in $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}$ and $\mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF}_{4}$, the EDA terms of $\mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF}_{4}$ were divided by two to give the relative contributions for both symmetry-related $\mathrm{Cr}---\mathrm{F}_{\mathrm{b}}$ bonds. Symmetric bridging of two CrOF_{4} molecules to a NgF_{2} molecule results in weaker $\mathrm{Cr}--\mathrm{F}_{\mathrm{b}}$ bonding interactions with less negative $\Delta \mathrm{E}_{\text {elstat }}, \Delta \mathrm{E}_{\text {orb }}, \Delta \mathrm{E}_{\text {disp }}$ terms, less positive $\Delta \mathrm{E}_{\text {prep }}$ and $\Delta \mathrm{E}_{\text {Pauli }}$ terms, and smaller bond dissociation energies. These observations are consistent with conclusions drawn from previously published crystallographic, Raman, and quantum-chemical (ELF, NBO, and MEPS) analyses. ${ }^{[54]}$ In contrast, the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bonds of $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ are stronger
than those of $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$, which further corroborates the relative fluoride-ion affinities of MOF_{4} and $\mathrm{M}(\mathrm{O}) \mathrm{F}_{3} \mathrm{~F}_{\mathrm{b}^{\prime}---\mathrm{M}^{\prime}(\mathrm{O}) \mathrm{F}_{4}: \mathrm{CrOF}_{4}<\mathrm{MoOF}_{4}<\mathrm{WOF}_{4} \approx \mathrm{Mo}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{Mo}^{\prime} \mathrm{OF}_{4} \lll<r}$ $\mathrm{W}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{W}^{\prime} \mathrm{OF}_{4}$. The EDA also confirm that the $\mathrm{M}^{\prime}---\mathrm{F}_{\mathrm{b}}{ }^{\prime}$ bonds of $\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}^{\prime}---}$ $\mathrm{M}^{\prime} \mathrm{OF}_{4}$ are weaker than but analogous to the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bonds of $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ which are best described as predominantly electrostatic with small but significant degrees of covalency. The covalencies of these bonds likely account for the non-linear $\mathrm{M}-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{M}^{\prime}$ bond angles in the crystal structures of $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$.

Extended Transition State Natural Orbitals for Chemical Valence (ETS-NOCV)

Analyses

Recent advances combine the Energy Decomposition Analysis (EDA) partitioning scheme with the Natural Orbital for Chemical Valence (NOCV) method developed by Mitoraj and Michalak ${ }^{[S 13]}$ to give the ETS-NOCV method. The latter method divides the orbital interactions described by the EDA method into pairwise contributions of the most relevant fragment MOs. In an NOCV analysis, the difference between the electron densities of the interacting fragments before and after bond formation gives the deformation density, $\Delta \rho$, which is expressed in terms of pairs of NOCV eigenfunctions, Ψ_{k} and $\Psi_{-\mathrm{k}}$, and their eigenvalues, v_{k} and $\nu_{-\mathrm{k}}$, which have the same absolute value but opposite sign. The total charge deformation, $\Delta \rho(r)$, is the sum of pairwise contributions from NOCV orbitals which may be visualized to show changes in electronic structure upon bond formation. The total orbital interaction term from the EDA method, $\Delta \mathrm{E}_{\text {orb }}$, is derived from the sum of pairwise orbital interaction energies, $\Delta \mathrm{E}^{\mathrm{k}}{ }_{\mathrm{orb}}$, associated with $\Delta \rho_{\mathrm{k}}(r)$, which are obtained from the diagonal transition-state Kohn-Sham matrix elements
of the corresponding NOCV orbitals. Visual inspection of $\Delta \mathrm{E}^{\mathrm{k}}{ }_{\text {orb }}$ allows assignment to a particular type of orbital interaction, i.e., σ, π, or δ. The eigenvalues, v_{k} and v_{-k}, measure the amount of electron density that is deformed by an interaction and provide the corresponding energy gain. The ETS-NOCV method therefore enables quantitative comparisons of the relative strengths of different types of covalent bonds. The results from this analysis, however, cannot be compared with numerical values derived from other EDA methods such as the Block-Localized Wave (BLW) function or Generalized Product Function (GPF) analyses. ${ }^{[S 11]}$

In the ETS-NOCV analysis of $\mathrm{KrF}_{2} \cdot \mathrm{CrOF}_{4}$, a breakdown of the $\Delta \mathrm{E}_{\text {orb }}$ contributions into pairwise contributions shows there is only one significant interaction between KrF_{2} and CrOF_{4}, i.e., σ-donation from the HOMO and $\mathrm{HOMO}-2$ SFOs of the KrF_{2} ligand into the $\mathrm{LUMO}+3$ and $\mathrm{LUMO}+8 \mathrm{SFOs}^{2} \mathrm{CrOF}_{4}\left(\Psi_{1 /-1}= \pm 0.15216\right)$ to give an energy gain of $-12.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (Table A4.19). The changes in electronic structure that result from pairwise orbital interactions are shown in Figure A4.11. The analogous interaction is observed for $\mathrm{XeF}_{2} \cdot \mathrm{CrOF}_{4}$, where the charge delocalization $\left(\Psi_{1 /-1}= \pm\right.$ 0.17089) and energy gain ($-15.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$) are somewhat greater. Sigma-bonding in $\mathrm{NgF}_{2} \cdot \mathrm{MoOF}_{4}$ and $\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$ occurs between the HOMO, HOMO-1, and HOMO-2 SFOs of coordinated NgF_{2} and the LUMO +3 SFO of MOF_{4}, whereas in the case of $\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$, the $\mathrm{HOMO}-1$ SFO of XeF_{2} does not contribute significantly to the interaction (Table A4.19). The $\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$ complex is particularly noteworthy because it exhibits a second significant σ-type bonding interaction from the HOMO-6 SFO of MoOF_{4} into the $\mathrm{HOMO}-6 \mathrm{SFO}$ of $\mathrm{KrF}_{2}\left(-8.6 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (Table A4.19, Figures 7.5 and

A4.12). Although it is likely that similar interactions occur for the remaining $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ complexes, their individual energetic contributions do not meet the threshold energy requirement ($>8.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$) needed to be described by the ETS-NOCV method. ${ }^{[S 13]}$

Analyses of the $\mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF}_{4}$ complexes show that the $\mathrm{Cr}---\mathrm{F}_{\mathrm{b}}$ bonding interactions are best described as σ-type donations that are analogous to, but weaker than those of $\mathrm{NgF}_{2} \cdot \mathrm{CrOF}_{4}$ and are not discussed further (Figures A4.13-A4.15, Table A4.20). A breakdown of the contributions to $\Delta \mathrm{E}_{\text {orb }}$ in the ETS-NOCV analysis of the $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---$ $\mathrm{Mo}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{Mo}^{\prime} \mathrm{OF}_{4}$ complex shows that there is only one σ-type electron donation from the $\mathrm{HOMO}-5 \mathrm{SFO}$ of $\mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}$ into the $\mathrm{LUMO}+3 \mathrm{SFO}$ of $\mathrm{Mo}^{\prime} \mathrm{OF}_{4}\left(\mathrm{Mo}, \Psi_{1 /-1}=\right.$ ± 0.19567), corresponding to an energy gain of $-28.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (Figure A4.16, Table A4.21). The deformation density shows electron density is primarily transferred from the Mo and F atoms of MoOF_{4} to $\mathrm{Mo}^{\prime} \mathrm{OF}_{4}$. Individual energy contributions from the remaining orbital interactions do not meet the threshold energy requirement (vide supra). A similar σ-type donation from the $\mathrm{HOMO}-7$ and $\mathrm{HOMO}-8 \mathrm{SFOs}$ of $\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$ into the $\mathrm{LUMO}+3 \mathrm{SFO}$ of $\mathrm{W}^{\prime}(\mathrm{O}) \mathrm{F}_{4}\left(\Psi_{1 /-1}= \pm 0.20476,-32.3 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ occurs for $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---$ $\mathrm{W}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{W}^{\prime} \mathrm{OF}_{4}$ (Figure A4.17, Table A4.21). These interactions are somewhat weaker than those of the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bonds of the $\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$ complexes.

Figure A4.11. The major orbital contribution to the $\mathrm{Cr}---\mathrm{F}_{\mathrm{b}}$ bond in the ETS-NOCV analysis of $\mathrm{KrF}_{2} \cdot \mathrm{CrOF}_{4}$ (PBE0-D4/TZ2P level of theory). The isosurface values used for orbital depictions are: KrF_{2} SFOs (0.03 a.u.), CrOF4 SFOs (0.05 a.u.), NOCV pairs (0.03 a.u.), and deformation densities (0.0002 a.u.). Contributions of the SFOs to the NOCV pairs are given in square brackets. Relative phases of SFOs and NOCV pairs are indicated in light blue and orange. The colors of the deformation densities indicate increased electron density (blue) and decreased electron density (red) relative to the parent fragments. The fragment orbitals, NOCV pairs, and deformation density pairs are viewed perpendicular to the ($\mathrm{Kr}, \mathrm{Fb}_{\mathrm{b}}, \mathrm{Cr}$)-plane.

Figure A4.12. The second most significant orbital contribution to the Mo--- F_{b} bond in the ETS-NOCV analysis of $\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$ (PBE0-D4/TZ2P level of theory). The isosurface values used for orbital depictions are: KrF_{2} SFOs (0.03 a.u.), MoOF_{4} SFOs ($0.03 \mathrm{a} . u$.), NOCV pairs ($0.03 \mathrm{a} . u$.), and deformation densities ($0.0003 \mathrm{a} . u$.). Contributions of the SFOs to the NOCV pairs are given in square brackets. Relative phases of SFOs are indicated in light blue and orange. The colors of the deformation densities indicate increased electron density (blue) and decreased electron density (red) relative to the parent fragments. The fragment orbitals, NOCV pairs, and deformation density pairs are viewed perpendicular to the ($\mathrm{Kr}, \mathrm{F}_{\mathrm{b}}, \mathrm{Mo}$)plane. The most significant orbital contribution is provided in Figure 7.5.

Table A4.19. ETS-NOCV analyses for the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bonds of $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe}$; $\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})^{[\mathrm{a}]}$

	$\mathrm{KrF}_{2} \cdot \mathrm{CrOF}_{4}$	$\mathrm{KrF}_{2} \cdot \mathrm{MoOF}_{4}$		$\mathrm{KrF}_{2} \cdot \mathrm{WOF}_{4}$
		$\begin{array}{r} \mathrm{M} \\ \text { Contr } \end{array}$	$\begin{array}{lr} \mathrm{Mi} \\ \text { tion } & \text { Contri } \end{array}$	
KrF_{2}				
$\Delta \rho\left(4 \pi_{\mathrm{u}}\right)$	-0.01659	-0.02587		-0.03476
$\Delta \rho(2 \pi \mathrm{~g})$	-0.01121	-0.01106		-0.01637
$\Delta \rho\left(8 \sigma_{\mathrm{g}}\right)$		-0.01149		-0.01426
$\Delta \rho\left(4 \sigma_{u}\right)$			0.01117	
MOF_{4}				
$\Delta \rho($ LUMO+3)	0.01908	0.04907		0.06472
$\Delta \rho($ LUMO+8)	0.01424			
$\Delta \rho($ HOMO-6)			-0.01079	
$\Psi_{1 /-1}$	0.15216	0.22091	0.11636	0.23953
Energy ($\mathrm{kJ} \mathrm{mol}^{-1}$)	-12.7	-32.9	-8.6	-40.6
	$\mathrm{XeF}_{2} \cdot \mathrm{CrOF}_{4}$		$\mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4}$	$\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$
$\mathbf{X e F}_{2}$				
$\Delta \rho\left(4 \pi_{\mathrm{u}}\right)$	-0.02396		-0.01949	-0.02187
$\Delta \rho\left(2 \pi_{\mathrm{g}}\right)$	-0.01121		-0.01870	-0.02333
$\Delta \rho\left(8 \sigma_{\mathrm{g}}\right)$				-0.01524
MOF_{4}				
$\Delta \rho($ LUMO +3$)$	0.02396		0.04995	0.06199
$\Delta \rho($ LUMO+8)	0.01225			
$\Psi_{1 /-1}$	0.17089		0.23180	0.24840
Energy ($\mathrm{kJ} \mathrm{mol}^{-1}$)	-15.7		-36.5	-44.0

[a] Calculated at the PBE0-D4/TZ2P level of theory. Values are given in $\mathrm{kJ} \mathrm{mol}^{-1}$. The $\mathrm{NgF}_{2} \cdot \mathrm{MOF}_{4}$ complexes are described in terms of two fragments: NgF_{2} and CrOF_{4} or MOF_{4}.

Table A4.20. ETS-NOCV analyses for the $\mathrm{Cr}---\mathrm{F}_{\mathrm{b}}$ bonds of $\mathrm{F}_{4} \mathrm{OCr}---\mathrm{F}_{\mathrm{b}}-\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}---\mathrm{CrOF}_{4}$ $(\mathrm{Ng}=\mathrm{Kr}, \mathrm{Xe})^{[\mathrm{a}]}$

	$\underset{\mathrm{Kr}}{\mathrm{~F}_{4} \mathrm{OCr}--\mathrm{F}_{\mathrm{b}}-\mathrm{Ng}-\mathrm{F}_{\mathrm{b}}--\mathrm{CrOF}_{4}} \mathrm{Xe}$		
		Major	Minor
NgF_{2}			
$\Delta \rho$ (HOMO)	-0.01838	-0.01813	
$\Delta \rho($ HOMO -3$)$			-0.01916
$2 \mathrm{CrOF}_{4}$			
$\Delta \rho($ LUMO +9$)$	0.01459	0.01956	
$\Delta \rho($ LUMO +21$)$		0.01191	
$\Delta \rho($ LUMO +10$)$			0.01426
$\Psi_{1 /-1}$	0.13100	0.15284	0.12974
Energy ($\mathrm{kJ} \mathrm{mol}^{-1}$)	-9.4	-11.9	-10.5

[a] Calculated at the PBE0-D4/TZ2P level of theory. Values are given in $\mathrm{kJ} \mathrm{mol}^{-1}$. The $\mathrm{NgF}_{2} \cdot 2 \mathrm{CrOF}_{4}$ complexes are described in terms of two fragments: NgF_{2} and $\left(2 \mathrm{CrOF}_{4}\right)$; see Figures A4.13-A4.15.

Table A4.21. ETS-NOCV analyses for the $\mathrm{M}^{\prime}---\mathrm{F}_{\mathrm{b}}{ }^{\prime}$ bonds of $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{M}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---$ $\mathrm{M}^{\prime} \mathrm{OF}_{4}(\mathrm{M}=\mathrm{Mo}, \mathrm{W})^{[a]}$

$\mathrm{XeF}_{2} \cdot \mathrm{MOF}_{4}$		
$\Delta \rho($ HOMO-5)	-0.01727	
$\Delta \rho($ HOMO-7)		-0.01011
$\Delta \rho($ HOMO-8)		-0.01321
$\mathrm{M}^{\prime} \mathrm{OF}_{4}$		
$\Delta \rho($ LUMO +3$)$	0.04153	0.04705
$\Psi_{1 /-1}$	0.19567	0.20476
Energy ($\mathrm{kJ} \mathrm{mol}^{\mathbf{- 1}}$)	-28.0	-32.3

[a] Calculated at the PBE0-D4/TZ2P level of theory. Values are given in $\mathrm{kJ} \mathrm{mol}^{-1}$. The $\mathrm{XeF}_{2} \cdot 2 \mathrm{MOF}_{4}$ complexes are described in terms of two fragments: $\mathrm{F}_{4} \mathrm{XeF}_{\mathrm{b}}---\mathrm{MOF}_{4}$ and $\mathrm{M}^{\prime} \mathrm{OF}_{4}$.

Symmetry-adapted Fragment Orbital (SFO) Contributions

NOCV Pairs

Ψ_{1}

Ψ_{-1}

Deformation Density of NOCV Pair

$\Delta \rho=-0.13100^{*} \Psi_{-1}{ }^{2}+0.13100^{*} \Psi^{2}$
$-9.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Figure A4.13. The major orbital contribution to the $\mathrm{Cr}---\mathrm{F}_{\mathrm{b}}$ bonds in the ETS-NOCV analysis of $\mathrm{F}_{4} \mathrm{OCr}---\mathrm{F}_{\mathrm{b}}-\mathrm{Kr}-\mathrm{F}_{\mathrm{b}}---\mathrm{CrOF}_{4}$ (PBE0-D4/TZ2P level of theory). The isosurface values used for orbital depictions are: $2 \mathrm{CrOF}_{4} \mathrm{SFOs}$ ($0.03 \mathrm{a} . \mathrm{u}$), , $\mathrm{KrF}_{2} \mathrm{SFOs}$ (0.03 a.u.), NOCV pairs (0.03 a.u.), and deformation densities (0.0002 a.u.). Contributions of the SFOs to the NOCV pairs are given in square brackets. Relative phases of SFOs and NOCV pairs are indicated in light blue and orange. The colors of the deformation densities indicate increased electron density (blue) and decreased electron density (red) relative to the parent fragments. The fragment orbitals, NOCV pairs, and deformation density pairs are viewed perpendicular to the $(\mathrm{Kr}, \mathrm{Fb}, \mathrm{Cr})-$ plane.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Figure A4.14. The most significant orbital contribution to the $\mathrm{Cr}--\mathrm{F}_{\mathrm{b}}$ bonds in the ETS-NOCV analysis of $\mathrm{F}_{4} \mathrm{OCr}---\mathrm{F}_{\mathrm{b}}-\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}-$ $--\mathrm{CrOF}_{4}$ (PBE0-D4/TZ2P level of theory). The isosurface values used for orbital depictions are: $2 \mathrm{CrOF}_{4} \mathrm{SFOs}$ (0.03 a.u.), XeF_{2} SFOs (0.03 a.u.), NOCV pairs (0.03 a.u.), and deformation densities (0.0002 a.u.). Contributions of the SFOs to the NOCV pairs are given in square brackets. Relative phases of SFOs and NOCV pairs are indicated in light blue and orange. The colors of the deformation densities indicate increased electron density (blue) and decreased electron density (red) relative to the parent fragments. The fragment orbitals, NOCV pairs, and deformation density pairs are viewed perpendicular to the $(\mathrm{Xe}, \mathrm{Fb}, \mathrm{Cr})-$ plane.

Symmetry-adapted Fragment Orbital (SFO) Contributions

Deformation Density of NOCV Pair

$$
\Delta \rho=-0.12974^{*} \Psi_{-1}^{2}+0.12974^{*} \Psi^{2}
$$

-10.5 $\mathrm{kJ} \mathrm{mol}^{-1}$

Figure A4.15. The second most significant orbital contribution to the $\mathrm{Cr}--\mathrm{F}_{\mathrm{b}}$ bonds in the ETS-NOCV analysis of $\mathrm{F}_{4} \mathrm{OCr}--\mathrm{F}_{\mathrm{b}}-$ $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}---\mathrm{CrOF}_{4}$ (PBE0-D4/TZ2P level of theory). The isosurface values used for orbital depictions are: $2 \mathrm{CrOF}_{4}$ SFOs (0.03 a.u.), XeF_{2} SFOs (0.03 a.u.), NOCV pairs (0.03 a.u.), and deformation densities (0.0002 a.u.). Contributions of the SFOs to the NOCV pairs are given in square brackets. Relative phases of SFOs and NOCV pairs are indicated in light blue and orange. The colors of the deformation densities indicate increased electron density (blue) and decreased electron density (red) relative to the parent fragments. The fragment orbitals, NOCV pairs, and deformation density pairs are viewed perpendicular to the ($\mathrm{Xe}, \mathrm{F}_{\mathrm{b}}$, Cr)-plane.

Symmetry-adapted Fragment Orbital (SFO) Contributions

Figure A4.16. The major orbital contribution to the $\mathrm{Mo}---\mathrm{F}_{\mathrm{b}}$ bond in the ETS-NOCV analysis of $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{Mo}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---$ $\mathrm{Mo}^{\prime} \mathrm{OF}_{4}$ (PBE0-D4/TZ2P level of theory). The isosurface values used for orbital depictions are: $\mathrm{XeF}_{2} \cdot \mathrm{MoOF}_{4} \mathrm{SFOs}$ (0.03 a.u.), MoOF_{4} SFOs ($0.03 \mathrm{a} . \mathrm{u}$.), NOCV pairs ($0.03 \mathrm{a} . \mathrm{u}$.), and deformation densities (0.0003 a.u.). Contributions of the SFOs to the NOCV pairs are given in square brackets. Relative phases of SFOs and NOCV pairs are indicated in light blue and orange. The colors of the deformation densities indicate increased electron density (blue) and decreased electron density (red) relative to the parent fragments. The fragment orbitals, NOCV pairs, and deformation density pairs are viewed perpendicular to the (Mo, $\mathrm{F}_{\mathrm{b}}{ }^{\prime}$, Mo')-plane.

Figure A4.17. The major orbital contribution to the $\mathrm{W}---\mathrm{Fb}_{\mathrm{b}}$ bond in the ETS-NOCV analysis of $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}--\mathrm{W}\left(\mathrm{OF}_{3}\right)-\mathrm{F}_{\mathrm{b}}{ }^{\prime}---\mathrm{W}^{\prime} \mathrm{OF}_{4}$ (PBE0-D4/TZ2P level of theory). The isosurface values used for orbital depictions are: $\mathrm{XeF}_{2} \cdot \mathrm{WOF}_{4}$ SFOs (0.03 a.u.), WOF_{4} SFOs (0.03 a.u.), NOCV pairs (0.03 a.u.), and deformation densities (0.0003 a.u.). Contributions of the SFOs to the NOCV pairs are given in square brackets. Relative phases of SFOs and NOCV pairs are indicated in light blue and orange. The colors of the deformation densities indicate increased electron density (blue) and decreased electron density (red) relative to the parent fragments. The fragment orbitals, NOCV pairs, and deformation density pairs are viewed perpendicular to the ($\mathrm{W}, \mathrm{F}_{\mathrm{b}}{ }^{\prime}, \mathrm{W}^{\prime}$)-plane.

References

[S1] Holloway, J. H.; Schrobilgen, G. J. Inorg. Chem. 1981, 20, 3363-3368.
[S2] Tucker, P. A.; Taylor, P. A.; Holloway, J. H.; Russell, D. R. Acta Crystallogr. 1975, B31, 906-908.
[S3] Holloway, J. H.; Schrobilgen, G. J. Inorg. Chem. 1980, 19, 2632-2640.
[S4] Mercier, H. P. A.; Breddemann, U.; Brock, D. S.; Bortolus, M. R.; Schrobilgen, G. J. Chem. Eur. J. 2019, 25, 12105-12119.
[S5] Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press, Oxford, 1990.
[S6] Brock, D. S.; Casalis de Pury, J. J.; Mercier, H. P. A.; Schrobilgen, G. J.; Silvi, B. Inorg. Chem. 2010, 49, 6673-6689.
[S7] Brock, D. S.; Casalis de Pury, J. J.; Mercier, H. P. A.; Schrobilgen, G. J.; Silvi, B. J. Am. Chem. Soc. 2010, 132, 3533-3542.
[S8] Lozinšek, M.; Mercier, H. P. A.; Schrobilgen, G. J. Angew. Chem. Int. Ed. 2021, 60, 8149-8156; Angew. Chem. 2021, 133, 8230-8237.
[S9] Žemva, B.; Jesih, A.; Templeton, D. H.; Zalkin, A.; Cheetham, A. K.; Bartlett, N. J. Am. Chem. Soc. 1987, 109, 7420-7427.
[S10] Ziegler, T.; Rauk, A. Theor. Chim. Acta 1977, 46, 1-10.
[S11] Zhao, L.; Hopffgarten, M.; Andrada, D. M.; Frenking, G. WIREs Comput. Mol. Sci. 2018, 8, 1345.
[S12] Craciun, R.; Dixon, D. A. private communication.
[S13] Mitoraj, M. P.; Michalak, A.; Ziegler, T. J. Chem. Theory Comput. 2009, 5, 962975.

APPENDIX 5

CHAPTER 8 Supporting Information

Synthesis, Structure, and Bonding of a Xe(IV) Transition-Metal Coordination Complex, $\mathrm{F}_{3} \mathrm{XeF}_{b---\mathrm{WOF}_{4}}$

Adapted with permission from: Bortolus, M. R.; Mercier, H. P. A.; Schrobilgen, G. J. Angew. Chem. Int. Ed. 2022, 61, e202211699.

Table of Contents		Page(s)
Figure A5.1	A packing diagram showing the X-ray crystal structure of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$	530
Table A5.1	Experimental and calculated geometric parameters for $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$, and calculated geometric parameters for XeF_{4}, and WOF_{4}	531
Figure A5.2	An alternative view of the crystal structure of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ and its calculated gas-phase geometry.	532
Figure A5.3	The Raman spectrum of a crystalline mixture of $\mathrm{F}_{3} \mathrm{XeF}_{b}---\mathrm{WOF}_{4}, \mathrm{XeF}_{4}$, and WOF_{4}	533
Table A5.2	Experimental and calculated frequencies, intensities, and assignments for $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$	534
Table A5.3	Observed and calculated frequencies, intensities, and assignments for XeF_{4}	536
Table A5.4	Observed and calculated frequencies, intensities, and assignments for crystalline $\left(\mathrm{WOF}_{4}\right)_{4}$; calculated frequencies and intensities for gas-phase WOF_{4}.	537
Natural Atomic Orbital (NAO) and Natural Bond Orbital (NBO) Analyses		538
Table A5.5	Wiberg bond indices, Natural Population Analysis (NPA) charges, and valence indices for $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}, \mathrm{XeF}_{4}$, and WOF_{4}	539
Electron Localization Function (ELF) Analyses		540
Figure A5.4	Reduction of localization diagrams for $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}, \mathrm{XeF}_{4}$, and WOF_{4} showing the ordering of localization nodes and the boundary isosurface values, $\eta(\mathrm{r})$, at which the reproducible domains separate	541
Table A5.6	Laplacian of electron density $\left(\nabla^{2} \rho_{\mathrm{b}}\right)$, the density of all electrons $\left(\rho_{\mathrm{b}}\right)$, the energy density $\left(H_{\mathrm{b}}\right)$, delocalization indices (δ), QTAIM atomic populations (\bar{N}), and ELF basin populations (\bar{N}) of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}, \mathrm{XeF}_{4}$, and WOF 4	542
Atoms in Molecules (AIM) Analyses		544
Energy Decomposition Analyses (EDA)		546
Table A5.7	Energy decomposition analyses of the $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bond in $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{MOF}_{4}(\mathrm{M}=$ $\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}$)	548
Extended Transition State Natural Orbitals for Chemical Valence (ETS-NOCV) Analysis		549
Table A5.8	Calculated geometric parameters of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{MOF}_{4}$ and the hypothetical $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo})$ coordination complexes	550
References		551

Figure A5.1. A packing diagram showing the X -ray crystal structure of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ viewed along the a-axis of the crystallographic unit cell; thermal ellipsoids are drawn at the 50% probability level.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A5.1. Experimental and calculated geometric parameters for $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$, and calculated geometric parameters for XeF_{4}, and WOF_{4}

	$\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}-\mathrm{CWOF}_{4}{ }^{[a]}$			XeF_{4}		WOF_{4}	
	exptl	$\mathrm{DFT}^{\left[{ }^{[b]}\right.}$	$\mathrm{ADF}^{[\mathrm{c}]}$	$\mathrm{DFT}^{\left[{ }^{[b]}\right.}$	$\mathrm{ADF}^{[\mathrm{c}]}$	$\mathrm{DFT}^{[\mathrm{b}]}$	$\mathrm{ADF}^{\left[{ }^{[c]}\right.}$
Bond Lengths (\AA)							
$\mathrm{Xe}(1)-\mathrm{F}(1)$	$1.872(5)$	1.911	1.915	1.944	1.946		
$\mathrm{Xe}(1)-\mathrm{F}(2)$	$1.912(5)$	1.931	1.934	1.944	1.946		
$\mathrm{Xe}(1)-\mathrm{F}(3)$	$1.917(5)$	1.931	1.934	1.944	1.946		
$\mathrm{Xe}(1)-\mathrm{F}(4)$	2.068(5)	2.034	2.028	1.944	1.946		
W(1)---F(4)	2.239(5)	2.430	2.455				
$\mathrm{W}(1)-\mathrm{F}(5)$	1.842(4)	1.870	1.862			1.849	1.845
$\mathrm{W}(1)-\mathrm{F}(6)$	1.844(4)	1.870	1.862			1.849	1.845
$\mathrm{W}(1)-\mathrm{F}(7)$	1.840(4)	1.846	1.844			1.849	1.845
$\mathrm{W}(1)-\mathrm{F}(8)$	1.850(4)	1.846	1.844			1.849	1.845
$\mathrm{W}(1)-\mathrm{O}(1)$	$1.665(5)$	1.673	1.667			1.673	1.667
$\mathrm{F}(1) \cdots \mathrm{F}(1 \mathrm{~A})$	2.609(5)						
Xe---F(7A)	3.043 (5)						
Xe---F(8A)	$3.080(5)$						
Xe---F(5A)	$3.093(5)$						
Xe---F(6A)	$3.120(5)$						
Bond Angles (${ }^{(}{ }^{\text {) }}$							
$\mathrm{F}(1)-\mathrm{Xe}(1)-\mathrm{F}(2)$	87.7(2)	88.1	88.4	90.0	90.0		
$\mathrm{F}(1)-\mathrm{Xe}(1)-\mathrm{F}(3)$	87.3(2)	88.1	88.4	90.0	90.0		
$\mathrm{F}(1)-\mathrm{Xe}(1)-\mathrm{F}(4)$	178.5(2)	178.9	179.6	180.0	180.0		
$F(2)-\mathrm{Xe}(1)-\mathrm{F}(3)$	175.0(2)	175.9	176.5	180.0	180.0		
$F(2)-\mathrm{Xe}(1)-\mathrm{F}(4)$	93.6(2)	91.9	91.6	90.0	90.0		
$\mathrm{F}(3)-\mathrm{Xe}(1)-\mathrm{F}(4)$	91.4(2)	91.9	91.6	90.0	90.0		
Xe(1)-F(4)---W(1)	145.2(2)	114.5	122.6				
$\mathrm{O}(1)-\mathrm{W}(1)--\mathrm{F}(4)$	179.2(2)	176.9	177.7				
$\mathrm{O}(1)-\mathrm{W}(1)-\mathrm{F}(5)$	100.2(2)	102.6	102.8			105.0	105.3
$\mathrm{O}(1)-\mathrm{W}(1)-\mathrm{F}(6)$	100.3(2)	102.3	102.7			105.0	105.3
$\mathrm{O}(1)-\mathrm{W}(1)-\mathrm{F}(7)$	100.0(2)	102.3	102.7			105.0	105.3
$\mathrm{O}(1)-\mathrm{W}(1)-\mathrm{F}(8)$	100.3(2)	102.6	102.8			105.0	105.3
F(6)-W(1)---F(4)	79.9(2)	75.5	75.7				
$\mathrm{F}(6)-\mathrm{W}(1)-\mathrm{F}(7)$	88.6(2)	87.7	87.5			86.1	86.0
$\mathrm{F}(6)-\mathrm{W}(1)-\mathrm{F}(8)$	159.4(2)	155.0	154.5			149.9	149.4
$\mathrm{F}(6)-\mathrm{W}(1)-\mathrm{F}(5)$	87.4(2)	84.7	85.1			86.1	86.0
$F(7)-W(1)---F(4)$	79.2(2)	79.6	78.8				
$\mathrm{F}(7)-\mathrm{W}(1)-\mathrm{F}(8)$	88.7(2)	89.2	88.7			86.1	86.0
$\mathrm{F}(7)-\mathrm{W}(1)-\mathrm{F}(5)$	159.8(2)	155.0	154.5			149.9	149.4
$\mathrm{F}(8)-\mathrm{W}(1)--\mathrm{F}(4)$	79.5(2)	79.6	78.8				
$\mathrm{F}(8)-\mathrm{W}(1)-\mathrm{F}(5)$	88.1(2)	87.7	87.5			86.1	86.0
$F(5)-W(1)---F(4)$	80.5(2)	75.5	75.7				
Dihedral Angle (${ }^{\circ}$)							

[a] The labeling scheme corresponds to that used in Figure 8.1. [b] APFD/Def2-TZVPD. [c] PBE0-
D4/TZ2P.

Figure A5.2. Alternative views of (a) the structural unit in the X-ray crystal structure of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$, viewed perpendicular to the $\mathrm{O}(1)-\mathrm{W}(1)-\mathrm{F}(4)-\mathrm{Xe}(1)-\mathrm{F}(1)$-plane; thermal ellipsoids are drawn at the 50% probability level; and (b) the calculated geometry (APFD/Def2-TZVPD) of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$, viewed perpendicular to the $\mathrm{O}(1)-\mathrm{W}(1)-\mathrm{F}(4)-$ $\mathrm{Xe}(1)-\mathrm{F}(1)$-plane. Also see Figure 8.1.

Figure A5.3. The Raman spectrum of a mixture of crystalline $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}, \mathrm{XeF}_{4}$, and $\left(\mathrm{WOF}_{4}\right) 4$ recorded at $-150{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. Symbols denote bands assigned to $\mathrm{F}_{3} \mathrm{XeF}_{b}--$ WOF $_{4}(\dagger)$, FEP sample tube bands $\left(^{*}\right.$), and an instrumental $\operatorname{artifact}(\ddagger)$. Unmarked bands corresponding to XeF_{4} and $\left(\mathrm{WOF}_{4}\right) 4$ are listed in footnote [a] of Table A5.2.

Table A5.2. Experimental and calculated frequencies, intensities, and assignments for $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---$ WOF_{4}

$\operatorname{expt1}{ }^{[2]}$	calcd $^{[b]}$	assgnts ${ }^{[c]}$
1044(83)	1096(39)[150]	v (W-O)
712(36)	727(12)[60]	$\left[v\left(\mathrm{~W}-\mathrm{F}_{5}\right)+v\left(\mathrm{~W}-\mathrm{F}_{6}\right)\right]+\left[v\left(\mathrm{~W}-\mathrm{F}_{7}\right)+v\left(\mathrm{~W}-\mathrm{F}_{8}\right)\right]$
	693(<0.1)[223]	$\left[v\left(\mathrm{~W}-\mathrm{F}_{5}\right)+v\left(\mathrm{~W}-\mathrm{F}_{6}\right)\right]-\left[v\left(\mathrm{~W}-\mathrm{F}_{7}\right)+v\left(\mathrm{~W}-\mathrm{F}_{8}\right)\right]$
	681(<1)[228]	$\left[v\left(\mathrm{~W}-\mathrm{F}_{5}\right)+v\left(\mathrm{~W}-\mathrm{F}_{6}\right)\right]-\left[v\left(\mathrm{~W}-\mathrm{F}_{7}\right)+v\left(\mathrm{~W}-\mathrm{F}_{8}\right)\right]_{\text {small }}$
637(5)	631(2)[85]	$\left[v\left(\mathrm{~W}-\mathrm{F}_{5}\right)-v\left(\mathrm{~W}-\mathrm{F}_{6}\right)\right]+\left[v\left(\mathrm{~W}-\mathrm{F}_{7}\right)-v\left(\mathrm{~W}-\mathrm{F}_{8}\right)\right]_{\text {small }}$
614(100)	604(32)[152]	$v\left(\mathrm{Xe}-\mathrm{F}_{1}\right)$
610(sh)	$600(<1)[127]$	$\left[v\left(\mathrm{Xe}-\mathrm{F}_{2}\right)-v\left(\mathrm{Xe}-\mathrm{F}_{3}\right)\right]+\left[v\left(\mathrm{~W}-\mathrm{F}_{5}\right)-v\left(\mathrm{~W}-\mathrm{F}_{6}\right)\right]_{\text {small }}$
580(27)	564(26)[31]	$\left[v\left(\mathrm{Xe}-\mathrm{F}_{2}\right)+v\left(\mathrm{Xe}-\mathrm{F}_{3}\right)\right]$
422(13)	472(17)[132]	$v\left(\mathrm{Xe}-\mathrm{F}_{4}\right)$
331(24)	333(2)[32]	$\left[\delta_{\text {umb }}\left(\mathrm{XeF}_{1} \mathrm{~F}_{2} \mathrm{~F}_{3} \mathrm{~F}_{4}\right)\right]+\delta\left(\mathrm{OWF}_{5} \mathrm{~F}_{6}\right)_{\text {i.p. small }}$
315(35)	321(1)[5]	$\left[\delta\left(\mathrm{F}_{6} \mathrm{WF}_{7}\right)+\delta\left(\mathrm{F}_{5} \mathrm{WF}_{8}\right)\right]$
302(sh)	309(2)[8]	$\left[\delta\left(\mathrm{OWF}_{6} \mathrm{~F}_{7}\right)_{\text {o.o.p. }}-\delta\left(\mathrm{OWF}_{8} \mathrm{~F}_{5}\right)_{\text {o.o.p. }}\right.$.
296(sh)	307(3)[13]	$\left[\delta\left(\mathrm{OWF}_{5} \mathrm{~F}_{6}\right)_{\text {i.p. }}-\delta\left(\mathrm{OWF}_{7} \mathrm{~F}_{8}\right)_{\text {i.p. }}\right.$. $]$
265(4)	257(<1)[68]	$\delta_{\text {umb }}\left(\mathrm{WF}_{5} \mathrm{~F}_{6} \mathrm{~F}_{7} \mathrm{~F}_{8}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{XeF}_{3}\right)_{\text {i.p. }}$.
248(sh)	239(1)[2]	$\left[\delta\left(\mathrm{F}_{1} \mathrm{XeF}_{2}\right)+\delta\left(\mathrm{F}_{3} \mathrm{XeF}_{4}\right)\right]$
	$226(<1)[13]$	$\left[\delta\left(\mathrm{F}_{6} \mathrm{WF}_{7}\right)-\delta\left(\mathrm{F}_{8} \mathrm{WF}_{5}\right)\right]+\left[\delta\left(\mathrm{F}_{1} \mathrm{XeF}_{2}\right)-\delta\left(\mathrm{F}_{1} \mathrm{XeF}_{3}\right)\right]$
	$226(<1)[18]$	$\left[\delta\left(\mathrm{F}_{5} \mathrm{WF}_{6}\right)-\delta\left(\mathrm{F}_{7} \mathrm{WF}_{8}\right)\right]$
	221(1)[10]	$\rho_{t}\left(\mathrm{~F}_{1} \mathrm{XeF}_{2}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{XeF}_{3}\right)$
200(1)	186(<1)[<1]	$\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{7} \mathrm{WF}_{8}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{5} \mathrm{WF}_{6}\right)\right]+\delta\left(\mathrm{F}_{1} \mathrm{XeF}_{4}\right)$
161(8)	$153(<1)[1]$	$\delta\left(\mathrm{F}_{2} \mathrm{XeF}_{3}\right)$
156(sh)	$150(<1)[<1]$	$\left[\rho_{t}\left(\mathrm{~F}_{7} \mathrm{WF}_{8}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{5} \mathrm{WF}_{6}\right)\right]-\delta\left(\mathrm{F}_{1} \mathrm{XeF}_{4}\right)$
	127(1)[1]	$\rho_{t}\left(\mathrm{~F}_{1} \mathrm{XeF}_{4}\right)$
	$97(<1)[<1]$	$\rho_{\mathrm{r}}\left(\mathrm{WOF}_{(4)}\right)$
	$85(<1)[<1]$	$\left[\rho_{\mathrm{r}}\left(\mathrm{XeF}_{1} \mathrm{~F}_{2} \mathrm{~F}_{3}\right)+\rho_{\mathrm{t}}\left(\mathrm{WOF}_{(4)}\right)\right]$
	$61(<1)[<1]$	$\delta\left(\mathrm{WF}_{4} \mathrm{Xe}\right)$
	57(1)[<1]	$\left[\rho_{t}\left(\mathrm{~F}_{2} \mathrm{XeF}_{3}\right)-\rho_{\mathrm{t}}\left(\mathrm{WOF}_{(4)}\right)_{\text {small }}\right]$
	$28(<1)[<1]$	$\left[\rho_{\mathrm{r}}\left(\mathrm{WF}_{(4)}\right)-\rho_{\mathrm{r}}\left(\mathrm{XeF}_{(4)}\right)\right.$]

continued ...

Table A5.2. (continued)
[a] The Raman spectrum of a dry crystalline sample was recorded in an FEP sample tube at -150 ${ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Frequencies are given in cm^{-1}. Values in parentheses denote relative Raman intensities. The abbreviation, sh, denotes a shoulder. Additional bands were observed and assigned to $\mathrm{XeF}_{4}\left(214(6), 239(6), 503(123), 505(\mathrm{sh}), 544(214)\right.$, and $553(37) \mathrm{cm}^{-1}$) and $\left(\mathrm{WOF}_{4}\right) 4$ (311(sh), 315(sh), 331(sh), 517(5), 659(6), 725(52), 742(14), and 1056(70) cm^{-1}). Bands at $112(17), 119(\mathrm{sh}), 126(\mathrm{sh})$, and $182(5) \mathrm{cm}^{-1}$ are tentatively assigned to lattice modes. [b] Values in parentheses and square brackets denote calculated Raman intensities ($\AA^{4} \mathrm{amu}^{-1}$) and infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$), respectively. [c] Assignments are for the energy-minimized gas-phase geometry $\left(C_{\mathrm{s}}\right)$ calculated at the APFD/def2-TZVPD level of theory. The atom labeling scheme corresponds to that used in Figure 8.1. Abbreviations denote stretch (v), bend (δ), rock (ρ_{r}), twist (ρ_{t}), and wag (ρ_{w}), umbrella (umb), $\mathrm{XeF}_{(4)}\left(\mathrm{XeF}_{1} \mathrm{~F}_{2} \mathrm{~F}_{3} \mathrm{~F}_{4}\right)$, $\mathrm{WOF}_{(4)}\left(\mathrm{W}_{1} \mathrm{O}_{1} \mathrm{~F}_{5} \mathrm{~F}_{6} \mathrm{~F}_{7} \mathrm{~F}_{8}\right)$, in-plane (i.p.), and out-of-plane (o.o.p.). Bond elongations and angle openings are denoted by plus (+) signs, and bond contractions and angle compressions are denoted by minus (-) signs. The in-plane and out-of-plane bending modes are relative to the $\mathrm{O}_{1} \mathrm{~W}_{1} \mathrm{~F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{1}$-plane.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A5.3. Observed and calculated frequencies, intensities, and assignments for XeF_{4}

exptl ${ }^{[a]}$	calcd $^{[b]}$	assgnts ${ }^{[\text {c] }}$
	$\left.\begin{array}{c} 590(0)[289] \\ 590(0)[289] \end{array}\right\}$	$v_{6}\left(E_{u}\right)$
$\left.\begin{array}{l}553(17) \\ 544(100)\end{array}\right\} 570(49)[0] \quad v_{1}\left(\mathrm{~A}_{1 \mathrm{~g}}\right)$		
$\left.\begin{array}{l} 505(\mathrm{sh}) \\ 503(57) \end{array}\right\}$	$525(26)[0]$	$v_{4}\left(\mathrm{~B}_{1 \mathrm{~g}}\right)$
	292(0)[33]	$v_{3}\left(\mathrm{~A}_{2 \mathrm{u}}\right)$
$\left.\begin{array}{l} 239(6)^{[d]} \\ 214(3) \end{array}\right\}$	$\} 218(3)[0]$	$v_{2}\left(\mathrm{~B}_{2 \mathrm{~g}}\right)$
	166(0)[0]	$v_{5}\left(\mathrm{~B}_{2 \mathrm{u}}\right)$
	$\left.\begin{array}{l} 153(0)[1] \\ 153(0)[1] \end{array}\right\}$	$v_{7}\left(\mathrm{E}_{\mathrm{u}}\right)$

[a] The Raman spectrum of XeF_{4} was obtained from a dry crystalline mixture of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}$--$-\mathrm{WOF}_{4}, \mathrm{XeF}_{4}$, and $\left(\mathrm{WOF}_{4}\right)_{4}$ in an FEP sample tube at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Frequencies are given in cm^{-1} and values in parentheses denote relative Raman intensities. The abbreviation, sh, denotes a shoulder. [b] APFD/Def2-TZVPD. Values in parentheses and square brackets denote calculated Raman intensities ($\AA^{4} \mathrm{amu}^{-1}$) and infrared intensities $\left[\mathrm{km} \mathrm{mol}^{-1}\right]$, respectively. [c] Assignments for XeF_{4} were made under $D_{4 \mathrm{~h}}$ symmetry. [d] The band overlaps with a $\left(\mathrm{WOF}_{4}\right)_{4}$ band.

Table A5.4. Observed and calculated frequencies, intensities, and assignments for crystalline $\left(\mathrm{WOF}_{4}\right)_{4}$; and calculated frequencies and intensities for gas-phase WOF_{4}

(WOF4)4 (s)	$\mathrm{WOF}_{4}(\mathrm{~g})$	
exptl ${ }^{[0]}$	calcd ($\left.C_{4 v}\right)^{[b]}$	assgnts ($\left.C_{4 v}\right)^{[\mathrm{cc]}}$
1056(100)	1096(24)[105]	$v_{1}\left(A_{1}\right)$
$\begin{aligned} & 742(20) \\ & 725(52) \end{aligned}$	737(15)[46]	$\mathrm{v}_{2}\left(\mathrm{~A}_{1}\right)$
	$\begin{gathered} 704(<1)[227] \\ 704(<1)[227] \end{gathered}$	$v_{7}(\mathrm{E})$
$\begin{aligned} & 659(6) \\ & 517(5) \end{aligned}$	648(3)[0]	$v_{5}\left(\mathrm{~B}_{2}\right)$
331(sh)	336(2)[0]	$v_{4}\left(\mathrm{~B}_{1}\right)$
315(sh)	299(2)[7]	$\mathrm{v}_{8}(\mathrm{E})$
311(sh)	299(2)[7]	
$239(6)^{[d]}$	242(<1)[12]	$v_{3}\left(A_{1}\right)$
	237(<1)[21]	$v_{9}(\mathrm{E})$
	$237(<1)[21]$	
	$99(<1)[0]$	$v_{6}\left(\mathrm{~B}_{2}\right)$

[a] The Raman spectrum of $\left(\mathrm{WOF}_{4}\right)_{4}$ was obtained from a dry crystalline mixture of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}, \mathrm{XeF}_{4}$, and $\left(\mathrm{WOF}_{4}\right)_{4}$ in an FEP sample tube at $-150{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. Frequencies are given in cm^{-1}. Values in parentheses denote relative Raman intensities. The abbreviation denotes a shoulder (sh). [b] APFD/Def2-TZVPD. Values in parentheses and square brackets denote calculated Raman intensities ($\AA^{4} \mathrm{amu}^{-1}$) and infrared intensities $\left(\mathrm{km} \mathrm{mol}^{-1}\right)$, respectively. [c] Assignments for the WOF_{4} moiety were made under $C_{4 \mathrm{v}}$ symmetry. [d] The band overlaps with a XeF_{4} band.

Quantum-chemical Calculations

Natural Atomic Orbital (NAO) and Natural Bond Orbital (NBO) Analyses

The NAO and NBO analyses of $\mathrm{XeF}_{4}, \mathrm{WOF}_{4}$, and $\mathrm{F}_{3} \mathrm{XeF}_{b}---\mathrm{WOF}_{4}$ show that coordination of XeF_{4} to WOF_{4} results in significant polarity changes for the $\mathrm{Xe}-\mathrm{F}, \mathrm{W}-\mathrm{F}$, and $\mathrm{W}-\mathrm{O}$ bonds of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ (Table A5.5). The degree of charge transfer (± 0.064) from XeF_{4} to WOF_{4} is somewhat less than for $\mathrm{FNgF}_{\mathrm{b}}---\mathrm{WOF}_{4}(\mathrm{Xe}, \pm 0.077 ; \mathrm{Kr}$, $\pm 0.074),{ }^{[1]}$ in accordance with the relative fluorobasicities of the noble-gas fluorides, $\mathrm{KrF}_{2} \approx \mathrm{XeF}_{2}>\mathrm{XeF}_{4}$. The atom charges, Wiberg bond indices, and valences of the F atoms bonded to Xe in $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ reflect the relative $\mathrm{Xe}-\mathrm{F}$ bond covalences, $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$ $<\mathrm{Xe}-\mathrm{F}_{2,3}<\mathrm{Xe}-\mathrm{F}_{1}$. The $\mathrm{W}-\mathrm{F}_{5,6}$ bonds of WOF_{4} that are proximate to XeF_{4} in $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---$ WOF $_{4}$ are polarized by the high charge on Xe(IV), +2.332 (also see AIM and ELF Analyses), and are therefore somewhat less covalent than the $\mathrm{W}-\mathrm{F}_{7,8}$ bonds that are farthest from the $\mathrm{Xe}(\mathrm{IV})$ atom. The $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$ and $\mathrm{Xe}-\mathrm{F}_{1-3}$ Wiberg bond indices of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---$ WOF_{4} are respectively lower and higher than those of XeF_{4}, in accordance with their relative bond covalences. The Wiberg bond index of the $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bond (0.097) is somewhat less than those calculated for the $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bonds of $\mathrm{FNgFF}_{\mathrm{b}}---\mathrm{WOF}_{4}(\mathrm{Xe}, 0.117$; $\mathrm{Kr}, 0.110),{ }^{[51]}$ in accordance with the lower fluorobasicity of XeF_{4} relative to NgF_{2}. The $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bond is best described as a primarily electrostatic σ-hole bond with a smaller, but significant degree of covalency. The covalent component accounts for the non-linear Xe-$\mathrm{F}_{\mathrm{b}}---\mathrm{W}$ angle calculated for the gas-phase structure $\left(114.5^{\circ}\right)$ and, in part, for the nonlinear $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}---\mathrm{W}$ angle observed in the X-ray crystal structure (145.2(2) ${ }^{\circ}$).

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A5.5. Wiberg bond indices, natural population analysis (NPA) charges, and valence indices for $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}{ }^{[\mathrm{aa}]}$

$\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}-\ldots-\mathrm{WOF}_{4}\left(C_{s}\right)}$					$\mathrm{XeF}_{4}\left(\mathrm{D}_{4 \mathrm{~h}}\right)$				
Bond Indices			NPA Charges [Valence Indices]		Bond Indices			NPA [Valence	Charges Indices]
Xe1-F1	0.598	Xe1	2.332	[2.139]	Xe1-F1	0.541	Xe1	2.301	[2.165]
Xe1-F2	0.561	F1	-0.528	[0.768]	Xe1-F2	0.541	F1	-0.575	[0.715]
Xe1-F3	0.561	F2	-0.560	[0.738]	Xe1-F3	0.541	F2	-0.575	[0.715]
Xe1-F4	0.406	F3	-0.560	[0.738]	Xe1-F4	0.541	F3	-0.575	[0.715]
		F4	-0.620	[0.689]			F4	-0.575	[0.715]
		$\sum \mathrm{XeF}_{4}$	0.064				$\sum \mathrm{XeF}_{4}$	0.000	
					$\mathrm{WOF}_{4}\left(C_{4 v}\right)$				
W1---F4	0.097	W1	2.512	[4.883]	W1-F5	0.737	W1	2.534	[4.839]
W1-F5	0.685	F5	-0.528	[0.870]	W1-F6	0.737	F5	-0.491	[0.928]
W1-F6	0.685	F6	-0.528	[0.870]	W1-F7	0.737	F6	-0.491	[0.928]
W1-F7	0.750	F7	-0.483	[0.943]	W1-F8	0.737	F7	-0.491	[0.928]
W1-F8	0.750	F8	-0.483	[0.943]	W1-O1	1.892	F8	-0.491	[0.928]
W1-O1	1.911	O1	-0.554	[2.224]			O1	-0.569	[2.201]
		$\sum \mathrm{WOF}_{4}$	-0.064				$\sum \mathrm{WOF}_{4}$	0.001	

[a] APFD/Def2-TZVPD. [b] See Figure 8.1 for the atom labeling schemes.

Electron Localization Function (ELF) Analyses

ELF analyses were carried out for $\mathrm{XeF}_{4}, \mathrm{WOF}_{4}$, and $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$. ELF parameters are provided in Table A5.6 and ELF isosurface plots are depicted in Figure 8.2. In the ensuing discussion and Figures 8.2 and A5.4, the following denote atomic basin populations, $\bar{N}[\mathrm{~A}]$; electron localization function, $\eta(\mathrm{r})$; core basin, C(A); monosynaptic valence basin, $\mathrm{V}(\mathrm{A})$; and closed isosurface, where $\eta(\mathrm{r})=f$ and $\eta(\mathrm{r})$ is defined as the isosurface contour. The Def2-TZVPD basis set only explicitly represents the 4s, 5p, 5d, and 5 s electrons of W , consequently, discrimination of sub-valence and valence electrons for these atoms cannot be achieved by ELF.

The $\bar{N}[\mathrm{C}(\mathrm{Xe})], \bar{N}[\mathrm{C}(\mathrm{F})]$, and $\bar{N}[\mathrm{C}(\mathrm{O})]$ ELF core basin populations are close to the ideal charges, and hardly change upon complex formation. The ELF valence basin populations, $\bar{N}[\mathrm{~V}(\mathrm{~F})]$ and $\bar{N}[\mathrm{~V}(\mathrm{O})]$, also do not vary significantly upon coordination, including $\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{b}}\right)\right]$ (7.58 versus 7.59 in free XeF_{4}). This contrasts with the $\mathrm{FXeF}_{\mathrm{b}}--$ WOF_{4} and $\mathrm{FXe}-\mathrm{F}_{\mathrm{b}}--\mathrm{W}\left(\mathrm{OF}_{3}\right)-\mathrm{Fb}_{\mathrm{b}}{ }^{\prime}--\mathrm{W}^{\prime} \mathrm{OF}_{4}$ complexes which show significant increases in their $\bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{\mathrm{b}}\right)\right]$ basin populations relative to those of XeF_{2} (7.76 and 7.80 versus 7.54 in free $\left.\mathrm{XeF}_{2}\right),{ }^{[\mathrm{S} 1]}$ consistent with the lower fluorobasicity of XeF_{4}.

The localization domain reduction tree diagrams for $\mathrm{XeF}_{4}, \mathrm{WOF}_{4}$, and $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}--$ WOF_{4} (Figure A5.4) provide the hierarchies of ELF basins and the corresponding basin separation values for the basin isosurfaces $\left(f_{\text {sep }}\right)$. The ELF reduction of the localization diagram of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ separates into XeF_{4} and WOF_{4} domains at $f_{\text {sep }}=0.07$, which is somewhat less than that of $\mathrm{FXeF}_{\mathrm{b}}--\mathrm{WOF}_{4}(0.08)^{[\mathrm{S} 1]}$ and consistent with the relative fluorobasicities, $\mathrm{XeF}_{2}>\mathrm{XeF}_{4}$, and their relative $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bond covalencies. The valence
basins separate in order of increasing covalency of their Xe-F bonds; $\mathrm{V}\left(\mathrm{F}_{\mathrm{b}}\right)<\mathrm{V}\left(\mathrm{F}_{2,3}\right)<$ $\mathrm{V}\left(\mathrm{F}_{1}\right)$, in accordance with the AIM and NBO analyses (vide supra). The core and valence basins of the F_{5} and F_{6} atoms of coordinated WOF_{4} that are proximate to the XeF_{4} moiety separate prior to F_{7} and F_{8}, which are directed away from XeF_{4} (also see NBO, NAO, and AIM Analyses). The O and W valence basins separate last, consistent with the double bond character of the $\mathrm{W}-\mathrm{O}$ bond.

$$
\begin{aligned}
& 0.11-\underbrace{\mathrm{C}(\mathrm{~F})}_{0.27}-\begin{array}{l}
\mathrm{C}(\mathrm{Xe}) \\
0.36 \mathrm{~V}(\mathrm{~F}) \mathrm{V}(\mathrm{Xe})
\end{array} \\
& 0.12-\left[\begin{array}{l}
C(O), C(F) \\
0.23-\underbrace{}_{0.37} V(F), V(W), V(W)
\end{array}\right. \\
& \mathrm{WOF}_{4}\left(C_{4 \mathrm{v}}\right) \\
& \mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}\left(C_{\mathrm{s}}\right)
\end{aligned}
$$

Figure A5.4. Reduction of localization diagrams for $\mathrm{WOF}_{4}, \mathrm{XeF}_{4}$, and $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ showing the ordering of localization nodes and the boundary isosurface values, $\eta(\mathrm{r})$, at which the reproducible domains separate. The atom numbering scheme corresponds to that used in Figure 8.1. The APFD/Def2-TZVPD level of theory was used.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A5.6. Laplacian of electron density $\left(\nabla^{2} \rho_{\mathrm{b}}\right)$, the density of all electrons $\left(\rho_{\mathrm{b}}\right)$, the energy density $\left(H_{\mathrm{b}}\right)$, delocalization indices (δ), QTAIM atomic populations (\bar{N}), and ELF basin populations (\bar{N}) of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---$ WOF $_{4}$, XeF_{4}, and $\mathrm{WOF}_{4}{ }^{[\mathrm{a}, \mathrm{b}]}$

	$\mathrm{F}_{3} \mathrm{XeF}_{\text {b}}$--- $^{\text {WOF }} 4$	XeF_{4}	WOF_{4}
$\nabla^{2} \boldsymbol{\rho}_{\mathbf{b}}{ }^{[\mathrm{c}]}$			
Xe1-F1	0.259	0.251	
Xe1-F2	0.261	0.251	
Xe1-F3	0.261	0.251	
Xe1-F4	0.223	0.251	
W1---F4	0.210		
W1-F5	0.918		0.974
W1-F6	0.918		0.974
W1-F7	0.988		0.974
W1-F8	0.988		0.974
W1-O1	1.066		1.030
$\rho_{\text {b }}{ }^{\text {[d] }}$			
Xe1-F1	0.152	0.142	
Xe1-F2	0.146	0.142	
Xe1-F3	0.146	0.142	
Xe1-F4	0.116	0.142	
W1---F4	0.065		
W1-F5	0.245		0.258
W1-F6	0.245		0.258
W1-F7	0.260		0.258
W1-F8	0.260		0.258
W1-O1	0.423		0.423
$\boldsymbol{H}_{\mathrm{b}}{ }^{\text {[e] }}$			
Xe1-F1	-0.087	-0.076	
Xe1-F2	-0.080	-0.076	
Xe1-F3	-0.080	-0.076	
Xe1-F4	-0.050	-0.076	
W1---F4	-0.001		
W1-F5	-0.067		-0.074
W1-F6	-0.067		-0.074
W1-F7	-0.075		-0.074
W1-F8	-0.075		-0.074
W1-O1	-0.262		-0.265
δ			
Xe1-F1	0.875	0.839	
Xe1-F2	0.854	0.839	
Xe1-F3	0.854	0.839	
Xe1-F4	0.679	0.839	
W1---F4	0.192		
W1-F5	0.875		0.948
W1-F6	0.875		0.948
W1-F7	0.947		0.948
W1-F8	0.947		0.948
W1-O1	2.105		2.114

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A5.6. (continued...)

	$\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}$---WOF4	XeF_{4}	WOF4
QTAIM Atom Populations			
$\bar{N}(\mathrm{Xe} 1)$	51.65	51.66	
$\bar{N}(\mathrm{~F} 1)$	9.55	9.58	
$\bar{N}(\mathrm{~F} 2)$	9.57	9.58	
$\bar{N}(\mathrm{~F} 3)$	9.57	9.58	
$\bar{N}(\mathrm{~F} 4)$	9.72	9.58	
$\bar{N}(\mathrm{~W} 1)$	69.62		69.72
\bar{N} (F5)	9.84		9.82
$\bar{N}(\mathrm{~F} 6)$	9.84		9.82
$\bar{N}(\mathrm{~F} 7)$	9.82		9.82
$\bar{N}(\mathrm{~F} 8)$	9.82		9.82
$\bar{N}(\mathrm{O} 1)$	8.99		8.99

ELF Basin Populations ${ }^{[f]}$

$\bar{N}[\mathrm{C}(\mathrm{Xe} 1)]^{[\mathrm{g}]}$	45.87	45.95
$\bar{N}[\mathrm{~V}(\mathrm{Xe} 1)]$	5.21	5.17
$\bar{N}[\mathrm{C}(\mathrm{F} 1)]$	2.15	2.13
$\bar{N}[\mathrm{~V}(\mathrm{~F} 1)]$	7.58	7.59
$\bar{N}[\mathrm{C}(\mathrm{F} 2)]$	2.15	2.13
$\bar{N}[\mathrm{~V}(\mathrm{~F} 2)]$	7.58	7.59
$\bar{N}[\mathrm{C}(\mathrm{F})]$	2.15	2.13
$\bar{N}[\mathrm{~V}(\mathrm{~F} 3)]$	7.58	7.59
$\bar{N}[\mathrm{C}(\mathrm{F} 4)]$	2.15	2.13
$\bar{N}[\mathrm{~V}(\mathrm{~F} 4)]$	7.58	7.59

$\bar{N}[\mathrm{C}(\mathrm{F} 5)]$	2.15	2.14
$\bar{N}[\mathrm{~V}(\mathrm{~F} 5)]$	8.18	8.23
$\bar{N}[\mathrm{C}(\mathrm{F} 6)]$	2.15	2.14
$\bar{N}[\mathrm{~V}(\mathrm{~F} 6)]$	8.18	8.23
$\bar{N}[\mathrm{C}(\mathrm{F} 7)]$	2.15	2.14
$\bar{N}[\mathrm{~V}(\mathrm{~F} 7)]$	8.20	8.23
$\bar{N}[\mathrm{C}(\mathrm{F} 8)]$	2.15	2.14
$\bar{N}[\mathrm{~V}(\mathrm{~F} 8)]$	8.20	8.23
$\bar{N}[\mathrm{C}(\mathrm{O})]$	2.13	2.13
$\bar{N}[\mathrm{~V}(\mathrm{O} 1)]$	8.11	8.11

continued...
[a] APFD/Def2-TZVPD. [b] See Figure 8.1 for the atom labeling scheme. [c] The atomic unit (au) for $\nabla^{2} \rho_{\mathrm{b}}$ is $e / a_{0}{ }^{5}\left(1 \mathrm{au}=24.098 \mathrm{e} \AA^{-5}\right)$. [d] The au for ρ_{b} is $e / a_{0}{ }^{3}\left(1 \mathrm{au}=6.748\right.$ e $\AA^{-3}, a_{0}=$ Bohr radius $=0.52918 \AA, e$ $=$ charge on an electron). [e] The total energy density of Cremer and Kraka $\left(H_{\mathrm{b}}\right)$ is defined as the sum of G_{b} and V_{b}, in which G_{b} is the Lagrangian kinetic energy and V_{b} is the potential energy density. The au for H_{b} is $e^{2} / a_{0}{ }^{4}\left(1 \mathrm{au}=E_{\mathrm{h}} / a_{0}{ }^{3}=6.748 E_{\mathrm{h}} / \AA^{3}, E_{\mathrm{h}}=\right.$ hartree $\left.=e^{2} / a_{0}\right)$. In covalent bonds, G_{b} is dominated by V_{b}, which gives a negative value for H_{b}. [f] The Def2-TZVPD basis set only explicitly represents the $4 \mathrm{~s}, 5 \mathrm{p}, 5 \mathrm{~d}$, and 5s electrons of W , so the separation of sub-valence and valence electrons cannot be detected by ELF. Consequently, $\bar{N}[\mathrm{C}(\mathrm{W})]$ and $\bar{N}[\mathrm{~V}(\mathrm{~W})]$ are not reported. $[\mathrm{g}] \bar{N}[\mathrm{C}(\mathrm{Xe})]=90-\bar{N}[\mathrm{~V}(\mathrm{Xe})]-\Sigma \bar{N}\left[\mathrm{C}\left(\mathrm{F}_{1-4}\right)\right]-$ $\Sigma \bar{N}\left[\mathrm{~V}\left(\mathrm{~F}_{1-4}\right)\right]$.

Atoms in Molecules (AIM) Analyses

Bond covalency in an AIM analysis is assessed at bond critical points by evaluating the Laplacian of electron density $\left(\nabla^{2} \rho_{b}\right)$, Cremer-Kraka total energy density $\left(H_{b}\right)$, the densities of all electrons $\left(\rho_{b}\right)$, and the bond delocalization indices $(\delta) .{ }^{[\mathrm{S} 2]}$ The AIM properties of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ were calculated at the APFD/Def2-TZVPD level of theory to enable comparisons with the published values of $\mathrm{FXeF}_{\mathrm{b}}---\mathrm{WOF}_{4}{ }^{[\mathrm{S} 1]}$ The AIM properties for the $\mathrm{Xe}-\mathrm{F}, \mathrm{W}-\mathrm{O}$, and $\mathrm{W}-\mathrm{F}$ bonds of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ (Table A5.6) show enhanced bond polarizations upon complex formation that are analogous to those described for $\mathrm{FXeF}_{\mathrm{b}}---\mathrm{WOF}_{4}{ }^{[\mathrm{S} 1]}$

The $\mathrm{Xe}-\mathrm{F}$ bonds in $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ are polar-covalent, as indicated by their small positive ρ_{b} - and $\nabla^{2} \rho_{\mathrm{b}}$-values, very small negative H_{b}-values, and their delocalization indices, $\delta_{\text {Xe-F. }}$. Although these values are similar to those of free XeF_{4}, several changes occur upon coordination, The most notable changes are those for $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$, where $\rho_{\mathrm{b}}(0.116$
$\mathrm{au}), \nabla^{2} \rho_{\mathrm{b}}(0.223 \mathrm{au})$, and $\delta_{\mathrm{Xe}-\mathrm{Fb}}(0.679 \mathrm{au})$ decrease and $H_{\mathrm{b}}(-0.050 \mathrm{au})$ increases relative to free $\mathrm{XeF}_{4}\left(0.142,0.251,0.839,-0.076 \mathrm{au}\right.$, respectively), indicating that the $\mathrm{Xe}---\mathrm{F}_{\mathrm{b}}$ bond of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ is more ionic. The opposite trend is observed for the $\mathrm{Xe}-\mathrm{F}_{1}$ bond ($0.152,0.259,0.875,-0.080 \mathrm{au}$, respectively), which indicates the $\mathrm{Xe}-\mathrm{F}_{1}$ bond covalency has increased. Similar trends have been observed for the $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$ and $\mathrm{Xe}-\mathrm{F}_{\mathrm{t}}$ bonds of $\mathrm{F}_{\mathrm{t}} \mathrm{XeF}_{\mathrm{b}}---\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ upon coordination of XeF_{2} to $\mathrm{MOF}_{4}{ }^{[\mathrm{S} 1, \mathrm{~S} 3]}$ In contrast, the AIM properties of $\mathrm{Xe}-\mathrm{F}_{\mathrm{ax}}(0.146,0.261,0.854,-0.076 \mathrm{au}$, respectively) are little affected by coordination. The $\mathrm{Xe}-\mathrm{F}_{1}, \mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$, and $\mathrm{Xe}-\mathrm{F}_{2,3}$ bond properties of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---$ WOF $_{4}$ are consistent with their associated bond lengths and respective Wiberg indices (Table A5.5) and valence bond descriptions in which one of the two orthogonal 3-center 2-electron bonded $\mathrm{F}-\mathrm{Xe}-\mathrm{F}$ moieties of XeF_{4} deformed by coordination to WOF_{4}, resulting in an elongated $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$ bond and a contracted $\mathrm{Xe}-\mathrm{F}_{1}$ bond trans to the $\mathrm{Xe}-\mathrm{F}_{\mathrm{b}}$ bond. The NBO and AIM properties and bond lengths of the $\mathrm{F}_{2}-\mathrm{Xe}-\mathrm{F}_{3}$ moiety are less affected by coordination.

The AIM properties of the $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bond in $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ are consistent with weak $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ covalent bonding, i.e., very small positive values of $\rho_{\mathrm{b}}(0.065 \mathrm{au}), \nabla^{2} \rho_{\mathrm{b}}$ $(0.210 \mathrm{au}), \delta_{\mathrm{W}--\mathrm{Fb}}(0.192 \mathrm{au})$, and a small negative H_{b}-value $\left(-0.10 \times 10^{-3} \mathrm{au}\right)$, which are in accordance with a predominantly electrostatic $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bond (see MEPS). The latter AIM properties are all less than those of the $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bond in $\mathrm{FXeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ (0.073, $0.237,0.219,-0.30$ au, respectively), which indicates the $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bond of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ is significantly less covalent than that of $\mathrm{FXeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$.

The large charge density $\left(\rho_{\mathrm{b}}, 0.423 \mathrm{au}\right)$ and large negative energy density $\left(H_{\mathrm{b}}\right.$, $-0.262 \mathrm{au})$ for the $\mathrm{W}-\mathrm{O}$ bond of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ indicate strong, shared interactions. The large positive electron densities $\left(\nabla^{2} \rho_{\mathrm{b}}, 1.066 \mathrm{au}\right)$ are indicative of substantial polarization of electron density from tungsten to oxygen and a short, strongly covalent $\mathrm{W}=\mathrm{O}$ bond. The charge and energy densities of the $\mathrm{W}-\mathrm{O}$ bond remain essentially unchanged upon XeF_{4} coordination, whereas the $\nabla^{2} \rho_{\mathrm{b}}$ increases slightly. The $\delta_{\mathrm{W}-\mathrm{o}}$ value (2.105) is close to the formal bond order (Table A5.6) and is consistent with the covalent character of the $\mathrm{W}=\mathrm{O}$ bond. The H_{b}-values of the $\mathrm{W}-\mathrm{F}$ bonds are significantly less negative, which is consistent with considerably less shared density in these bonds than in the $\mathrm{W}=\mathrm{O}$ double bond.

Upon coordination, the AIM properties, $\rho_{\mathrm{b}}, \nabla^{2} \rho_{\mathrm{b}}, \delta_{\mathrm{W}-\mathrm{F}}$, and H_{b}, of the two W-F ${ }_{5,6}$ bonds that are proximate to the Xe atom change more $(0.245,0.918,0.875,-0.067 \mathrm{au}$, respectively) when compared with those of free $\mathrm{WOF}_{4}(0.258,0.974,0.948,-0.074 \mathrm{au})$. In contrast, the AIM properties of the $\mathrm{W}-\mathrm{F}_{7,8}$ bonds, which are farther from XeF_{4}, are little affected by coordination $(0.260,0.988,0.947,-0.075 \mathrm{au})$. The changes are consistent with more polar-covalent characters for the $\mathrm{W}-\mathrm{F}_{5,6}$ bonds proximate to the Xe atom (also see NBO, NAO, and ELF Analyses). Similar behavior has been noted for $\mathrm{FXeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ upon coordination of XeF_{2} to $\mathrm{WOF}_{4} .{ }^{[\mathrm{S} 1]}$

Energy Decomposition Analyses

The energy decomposition analysis (EDA) method developed by Ziegler and Rauk ${ }^{[S 4]}$ provides a quantitative interpretation of chemical bonds. The instantaneous interaction
energy, $\Delta E_{\text {int }}$, between two fragments A and B in the molecule AB is described by (1) the quasiclassical electrostatic interaction energy between the charge densities of the fragments, $\Delta E_{\text {elstat }}$, (2) the exchange repulsion between fragments due to the Pauli principle, $\Delta E_{\text {Pauli, }}$ (3) the energy gain due to orbital mixing (covalency) between the fragments, ΔE_{orb}, and (4) a dispersion term, $\Delta E_{\text {disp }}$, when dispersion energy corrections are included in the calculation (Eq A5.1).

$$
\begin{equation*}
\Delta E_{\text {int }}=\Delta E_{\text {Pauli }}+\Delta E_{\text {elstat }}+\Delta E_{\text {orb }}+\Delta E_{\text {disp }} \tag{A5.1}
\end{equation*}
$$

The total energy that is required to distort and electronically excite fragments A and B from their equilibrium geometries and wave functions to the states they possess in the molecule AB is the preparation energy, $\Delta E_{\text {prep }}$, where the sum of the interaction energy and preparation energy provides $-D_{E},(\operatorname{Eq} \mathbf{A 5 . 2})$ where D_{E} is the bond dissociation energy for the $\mathrm{A}-\mathrm{B}$ bond.

$$
\begin{equation*}
-D_{\mathrm{E}}=\Delta E_{\mathrm{int}}+\Delta E_{\mathrm{prep}} \tag{A5.2}
\end{equation*}
$$

Because $\Delta E_{\text {prep }}$ and $\Delta E_{\text {Pauli }}$ are always positive, the stabilization of molecule AB requires that the absolute value of the sum of the $\Delta E_{\text {elstat, }}, \Delta \mathrm{E}_{\text {orb }}$, and $\Delta E_{\text {disp }}$ terms exceeds the sum of the $\Delta E_{\text {prep }}$ and $\Delta E_{\text {Pauli }}$ terms. The parameters described by the EDA method provide useful information regarding discussions of ionicity, covalency, aromaticity, donation, back donation, and hybridization. ${ }^{\text {[S5] }}$

The bonding in gas-phase $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ was analyzed using EDA, calculated at the hybrid PBE0 level of theory using the TZ2P basis set with Grimme4 dispersion (Table A5.7). The coordination complex was described in terms of two fragments, XeF_{4} and WOF_{4},
to obtain a quantitative breakdown of the relative bonding contributions that comprise the $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bonding interaction.

The EDA analysis shows that the $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bond is primarily electrostatic (57.4\%), with a significant contribution from orbital mixing (35.4\%) of the total attractive interactions. The orbital and electrostatic bonding components, and corresponding bond association energy, $-D_{\mathrm{E}}$, for the $\mathrm{W}---\mathrm{F}_{\mathrm{b}}$ bond of $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{WOF}_{4}$ are significantly less negative than for the known FNgF---WOF 4_{4} coordination complexes ${ }^{[\mathrm{S} 1]}$ (Table A5.7) and the more negative than the hypothetical $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo})$ complexes (Table A5.7).

Table A5.7. Energy decomposition analyses of the $\mathrm{M}---\mathrm{F}_{\mathrm{b}}$ bond in $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}}---\mathrm{MOF}_{4}(\mathrm{M}=$ $\mathrm{Cr}, \mathrm{Mo}, \mathrm{W} ; C_{\mathrm{s}}$ point symmetry) ${ }^{[\mathrm{a}]}$

	Cr	Mo	W
$\Delta E_{\text {int }}$	-24.25	-42.64	-49.03
$\Delta E_{\text {orb }}{ }^{[\mathrm{b}]}$	$-17.02(26.6 \%)$	$-39.89(33.8 \%)$	$-52.15(35.4 \%)$
$\Delta E_{\text {elstat }}{ }^{[\mathrm{b}]}$	$-37.14(57.9 \%)$	$-68.03(57.7 \%)$	$-84.32(57.4 \%)$
$\Delta E_{\text {disp }}{ }^{\text {[b] }}$	$-9.93(15.5 \%)$	$-9.97(8.5 \%)$	$-10.64(7.2 \%)$
$\Delta E_{\text {Pauli }}$	39.84	75.25	98.08
Total $\Delta E_{\text {prep }^{[\mathrm{cc]}}}$	3.31	9.71	12.13
$\Delta E_{\text {prep }}$ XeF $_{4}$	1.26	5.02	6.65
$\Delta E_{\text {prep }}$ MOF $_{4}$	2.05	4.69	5.48
D_{E}	20.94	32.93	36.90

[a] Calculated using the PBE0-D4/TZ2P level of theory. Values are given in $\mathrm{kJ} \mathrm{mol}^{-1}$. [b] Values in parentheses give the percentages of attractive interactions. [c] Total $\Delta E_{\text {prep }}$ $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}---\mathrm{MOF}_{4}=\left(\Delta E_{\text {prep }} \mathrm{XeF}_{4}\right)+\left(\Delta E_{\text {prep }} \mathrm{MOF}_{4}\right) ~}^{\text {. }}$

Extended-Transition-State Natural Orbitals for Chemical Valence (ETS-NOCV)

Analysis

The ETS-NOCV analysis ${ }^{[56]}$ partitions the total orbital interaction described by the EDA method into pairwise contributions of fragment molecular orbitals, called symmetry fragment orbitals (SFOs). The difference between the electron densities of the interacting fragments before and after bond formation is represented by the deformation density term, $\Delta \rho$, which is expressed in terms of pairs of NOCV eigenfunctions; Ψ_{k} and $\Psi_{-\mathrm{k}}$ that have eigenvalues, v_{k} and $v_{-\mathrm{k}}$, which possess the same absolute value but opposite sign. The total charge deformation, visualized in Figure 8.4, shows the change in electronic structure upon bond formation, so that visual inspection of the NOCVs allows assignment to a particular type of interaction (σ, π, δ), where the eigenvalues, v_{k} and $\nu_{-\mathrm{k}}$, provide quantitative means to compare the relative amount of electron density that is deformed by an interaction and the energy gain $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ associated with the interaction.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A5.8. Calculated ${ }^{[a]}$ geometric parameters for $\mathrm{F}_{3} \mathrm{XeF}_{b}---\mathrm{WOF}_{4}$ and the hypothetical $\mathrm{F}_{3} \mathrm{XeF}_{\mathrm{b}---\mathrm{MOF}_{4}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}) \text { coordination complexes }\left(C_{\mathrm{s}} \text { point symmetry }\right) ~}^{\text {s }}$

Bond Lengths (\mathbf{A})			
	Cr	Mo	W
$\mathrm{Xe}(1)-\mathrm{F}(1)$	1.9335	1.9187	1.9153
$\mathrm{Xe}(1)-\mathrm{F}(2)$	1.9428	1.9362	1.9337
$\mathrm{Xe}(1)-\mathrm{F}(3)$	1.9428	1.9362	1.9337
$\mathrm{Xe}(1)-\mathrm{F}(4)$	1.9767	2.0153	2.0284
$\mathrm{M}(1)--\mathrm{F}(4)$	2.6751	2.5016	2.4552
$\mathrm{M}(1)-\mathrm{F}(5)$	1.7281	1.8525	1.8624
$\mathrm{M}(1)-\mathrm{F}(6)$	1.7281	1.8525	1.8624
$\mathrm{M}(1)-\mathrm{F}(7)$	1.7100	1.8333	1.8435
$\mathrm{M}(1)-\mathrm{F}(8)$	1.7100	1.8333	1.8435
$\mathrm{M}(1)-\mathrm{O}(1)$	1.5088	1.6412	1.6669
Bond angles (${ }^{\circ}$)			
$\mathrm{F}(1)-\mathrm{Xe}(1)-\mathrm{F}(2)$	89.33	88.42	88.40
$\mathrm{F}(1)-\mathrm{Xe}(1)-\mathrm{F}(3)$	89.33	88.42	88.40
$\mathrm{F}(1)-\mathrm{Xe}(1)-\mathrm{F}(4)$	178.83	179.30	179.58
$F(2)-\mathrm{Xe}(1)-\mathrm{F}(3)$	178.65	176.62	176.48
$F(2)-\mathrm{Xe}(1)-\mathrm{F}(4)$	90.66	91.57	91.59
$F(3)-\mathrm{Xe}(1)-\mathrm{F}(4)$	90.66	91.57	91.59
$\mathrm{Xe}(1)-\mathrm{F}(4)--\mathrm{W}(1)$	116.90	122.53	122.64
$\mathrm{O}(1)-\mathrm{M}(1)---\mathrm{F}(4)$	177.60	177.50	177.71
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(5)$	103.59	102.83	102.67
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(6)$	103.59	102.83	102.67
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(7)$	103.87	103.15	102.80
$\mathrm{O}(1)-\mathrm{M}(1)-\mathrm{F}(8)$	103.87	103.15	102.80
$F(5)-\mathrm{M}(1)--\mathrm{F}(4)$	74.70	75.38	75.68
$\mathrm{F}(5)-\mathrm{M}(1)-\mathrm{F}(6)$	85.45	85.00	85.10
$F(5)-M(1)-F(7)$	152.50	153.95	154.46
$\mathrm{F}(5)-\mathrm{M}(1)-\mathrm{F}(8)$	86.88	87.40	87.54
$F(6)-\mathrm{M}(1)--\mathrm{F}(4)$	74.70	75.38	75.68
$\mathrm{F}(6)-\mathrm{M}(1)-\mathrm{F}(7)$	86.88	87.40	87.54
$\mathrm{F}(6)-\mathrm{M}(1)-\mathrm{F}(8)$	152.50	153.95	154.46
$F(7)-\mathrm{M}(1)--\mathrm{F}(4)$	77.81	78.60	78.80
$\mathrm{F}(7)-\mathrm{M}(1)-\mathrm{F}(8)$	87.87	88.61	88.66
$F(8)-M(1)---F(4)$	77.81	78.60	78.80
Dihedral Angles (${ }^{(}$)			
$\mathrm{F}(5)-\mathrm{M}-\mathrm{Xe}-\mathrm{F}(2)$	35.98	37.15	37.25

[a] PBE0-D4/TZ2P.

References

[S1] Bortolus, M. R.; Mercier, H. P. A.; Brock, D. S.; Schrobilgen, G. J. Chem. Eur. J. 2022, 28, e202103729.
[S2] Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press, Oxford, 1990.
[S3] Mercier, H. P. A.; Breddemann, U.; Brock, D. S.; Bortolus, M. R.; Schrobilgen, G. J. Chem. Eur. J. 2019, 25, 12105-12119.
[S4] Ziegler, T.; Rauk, A. Theor. Chim. Acta 1977, 46, 1-10.
[S5] Zhao, L.; Hopffgarten, M.; Andrada, D. M.; Frenking, G. WIREs Comput. Mol. Sci. 2018, 8, 1345.
[S6] Mitoraj, M. P.; Michalak, A.; Ziegler, T. J. Chem. Theory Comput. 2009, 5, 962975.

APPENDIX 6

CHAPTER 9 Supporting Information

Chromium Oxide Tetrafluoride and Its Reactions with Xenon Hexafluoride; the $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$Salts of the $\left[\mathrm{Cr}^{\mathrm{VI}} \mathrm{OF}_{5}\right]^{-},\left[\mathrm{Cr}^{\mathrm{V}} \mathrm{OF}_{5}\right]^{2-},\left[\mathrm{Cr}_{2} \mathbf{V}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$, and $\left[\mathrm{Cr}^{\mathrm{IV}} \mathrm{F}_{6}\right]^{2-}$ Anions

Adapted with permission from: Goettel, J. T.; Bortolus, M. R.; Stuart, D. G.; Mercier, H. P. A.; Schrobilgen, G. J. Chem. Eur. J. 2019, 25, 15815-15829.

Table A6.1. Raman frequencies and intensities for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}(6), \mathrm{CrOF}_{4},\left[\mathrm{CrOF}_{5}\right]^{-}$, and products of the reaction between XeF_{6} and CrOF_{4} (1:1) at various temperatures ${ }^{[a]}$

$\mathrm{CrOF}_{4}{ }^{\text {b] }}$	$\left[\mathrm{CrOF}_{5}\right]^{-}$in	$\left[\mathrm{CrOF}_{5}\right]^{-}$in	Compd. (6) ${ }^{[\mathrm{e}, \mathrm{f}]}$	3 $\mathrm{XeF}_{6}+\mathbf{3 C r O F}_{4}$			$\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}(6)+1 / 2 \mathrm{~F}_{2}{ }^{\text {gl }}$			
				$-30{ }^{\circ} \mathbf{C}^{[,, h, i]}$	$-16{ }^{\circ} \mathrm{C}^{[\mathrm{e}, \mathrm{h}, \mathrm{j} \mathrm{l}}$	$0{ }^{\circ} \mathbf{C}^{[e, t, k]}$	$15^{\circ} \mathrm{C}^{[e, \mathrm{e}, \mathrm{l}]}$	$18^{\circ}{ }^{[(2, h, m]}$	RT ${ }^{\text {[e, }, \text { h,m] }}$	$\mathbf{R T}^{\text {[}{ }^{\text {e, h,m] }} \text {] }}$
			1001(33)					1001, sh	1001(14)	1001(31)
995(29)				997(27)	997(6)	998(8)	996(16)	996(15)		
	[955]	993, vs [980, s]		951(10)	951(21)	951(21)	951(19)	951(19)	951(18)	951(3)
792(4)				792(3)	790(1)	793(1)	792(2)	791(1)	792(1)	
			750, sh							751, sh
			$746(3)$							746(1)
										726(1)
716(7)	[720]			716, sh	715(2)	715(3)	715(7)	715(4)	715(6)	
	\uparrow		707(8)							$707(6)$
702(31)	T			702(26)	702(4)	703(6)	702(17)	703(12)	702(12)	$701, \text { sh }$
			700, sh							
								692, sh		
688(22)				689(16)	689(2)	689(3)	688(12)	688(7)	688(9)	
	[n]		675(100)		677(4)	676(5)	675(19)	675(20)	675(32)	675(100)
			$672, \text { sh }$							$672, \text { sh }$
663(15)			$662(33)$	$664(14)$			663(16)	$663(11)$	662(18)	$662(34)$
			659 , sh							659(31)
655, sh	\downarrow									
	$[650]$		650(17)	652, sh	651(63)	651(71)	651, sh	651, sh	651, sh	651(24)
647(100)				649(100)	649, sh	649, sh	648(77)	649(72)	648(64)	
			644(12)							
		613, s		640(49)	640(100)	640(100)	640(100)	640(100)	640(100)	641, sh
			634(14)							634(21)
				632(29)	632(63)	632(63)	633(61)	633(61)	$633(59)$	
				628, sh	628, sh	628, sh	628, sh	628(16)	628, sh	
			608, sh	609(4)	609(9)	609(10)	609(13)	609(10)	608(14)	608, sh
			604(31)					$604, \text { sh }$		604(28)
			597(37)							597(36)
			595, sh							595, sh
				591(14)	591(29)	591(31)	592(33)	592(31)	592(34)	
			587, sh	587(16)	587(31)	587(33)	587(33)	587(32)	587(33)	587, sh
			584(32)	584(16)	584(33)	584(33)	584(35)	584(36)	584(37)	584(34) ${ }^{[0]}$
			576, sh							576, sh
		577, m		568(7)	568(16)	568(16)	568(17)	568(16)	568(17)	568, sh
			555(12)					555(2)	555(4)	555(10)
530(2)										

continued ...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A6.1. (continued)

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A6.1. (continued)

Table A6.1. (continued)
${ }^{[a]}$ Frequencies are given in cm^{-1}. Abbreviations denote shoulder (sh), broad (br), very broad (vbr), very strong (vs), strong (s), medium (m), medium weak (mw). Values in parentheses denote relative Raman intensities. Bolded values denote $\left[\mathrm{CrOF}_{5}\right]^{-}$bands. ${ }^{[b]}$ Raman frequencies and relative intensities from ref. [4]. ${ }^{[c]}$ Infrared frequencies and intensities (in square brackets) from ref. [4]. ${ }^{[d]}$ Raman and infrared frequencies and intensities (infrared values are in square brackets) from ref. [6]. ${ }^{[\mathrm{ec}]}$ The Raman spectrum was recorded in an FEP sample tube using 1064-nm excitation. ${ }^{[f]}$ The Raman spectrum was recorded in an FEP sample tube on the dry crystalline compound at $-140{ }^{\circ} \mathrm{C}$. Unit cell determinations showed that crystals taken from this sample were compound (6). ${ }^{[g]}$ Bolded frequencies are assigned to [$\left.\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ bands. The remaining bands are assigned to CrOF_{4} and compound (6) by comparison with values given in columns 1 and 4 of this Table. The frequencies of the $\left[\mathrm{CrOF}_{5}\right]^{-}$anion bands were assigned by comparison with the calculated frequencies: $v(\mathrm{Cr}-\mathrm{O}), 1127 \mathrm{~cm}^{-1} ;\left[v_{\mathrm{s}}\left(\mathrm{Cr}^{\left(-\mathrm{F}_{4 \mathrm{e}}\right)}+v\left(\mathrm{Cr}^{2}-\mathrm{F}_{\mathrm{ax}}\right)\right], 659 \mathrm{~cm}^{-1} ; v_{\mathrm{as}}\left(\mathrm{Cr}-\mathrm{F}_{4 \mathrm{e}}\right)\right.$ and $v\left(\mathrm{Cr}-\mathrm{Fax}_{\mathrm{ax}}\right), 513$ and $494 \mathrm{~cm}^{-1} ;\left[\delta\left(\mathrm{OCrF}_{\mathrm{e}}\right)+\right.$ $\left.\delta\left(\mathrm{FeCrF}_{\mathrm{ax}}\right)\right], 380 \mathrm{~cm}^{-1} ;\left[\delta\left(\mathrm{F}_{\mathrm{e}} \mathrm{CrF}_{\mathrm{e}}\right)+\delta\left(\mathrm{FeCrF}_{\mathrm{e}}\right)\right], 346 \mathrm{~cm}^{-1} ;\left[\rho_{\mathrm{w}}\left(\mathrm{OCrF}_{\mathrm{ax}}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{\mathrm{e}} \mathrm{CrF}_{\mathrm{e}}\right)\right], 320 \mathrm{~cm}^{-1} ;\left[\rho_{\mathrm{t}}\left(\mathrm{FeCrF}_{\mathrm{e}}\right)+\rho_{\mathrm{t}}\left(\mathrm{FeCrF}_{\mathrm{e}}\right)\right]$, $226 \mathrm{~cm}^{-1}$ (see Computational Results). ${ }^{[h]}$ Reaction conditions are provided in the Results and Discussion section of the manuscript under "Syntheses; $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ (6) and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ ". Spectra were recorded at: ${ }^{[\mathrm{i}]}$ $-91{ }^{\circ} \mathrm{C},{ }^{[\mathrm{j}]}-96{ }^{\circ} \mathrm{C},{ }^{[\mathrm{k}]}-92{ }^{\circ} \mathrm{C},{ }^{[1]}-135{ }^{\circ} \mathrm{C}$, and ${ }^{[\mathrm{m}]}-120^{\circ} \mathrm{C}$. ${ }^{[\mathrm{n}]}$ A broad band was observed between 650 and $720 \mathrm{~cm}^{-1}$ (ref. [4]). ${ }^{[0]}$ This band overlaps with a band of compound (6).

Figure A6.1. Raman spectrum obtained after an equimolar mixture of XeF_{6} and CrOF_{4} had been warmed to $-16{ }^{\circ} \mathrm{C}$ and then quenched at $-196^{\circ} \mathrm{C}$ (see Results and Discussion; Syntheses, $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF} \mathrm{F}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ (6) and Table A6.1). The spectrum was recorded at $-150^{\circ} \mathrm{C}$ using 1064-nm excitation. The symbols denote; (\dagger) an instrumental artifact, $\left({ }^{*}\right)$ FEP sample tube bands, and (§) bands assigned to the $\left[\mathrm{CrOF}_{5}\right]^{-}$anion.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A6.2. Experimental geometric parameters for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}$ (1)

Bond Lengths and Contacts (\AA)			
$\mathrm{Cr}(2)-\mathrm{O}(1)$	1.571(4)	$\mathrm{Cr}(2)-\mathrm{F}(6)$	1.749(3)
$\mathrm{Cr}(2)-\mathrm{F}(4)$	$1.753(3)$	$\mathrm{Cr}(2)-\mathrm{F}(7)$	1.740 (3)
$\mathrm{Cr}(2)-\mathrm{F}(5)$	1.752(3)	$\mathrm{Cr}(2)--\mathrm{F}(1)$	2.216 (3)
$\mathrm{Xe}(1)-\mathrm{F}(8)$	1.852(3)	$\mathrm{Xe}(1)-\mathrm{F}(12)$	1.825 (3)
$\mathrm{Xe}(1)-\mathrm{F}(9)$	1.855(3)	$\mathrm{Xe}(1)--\mathrm{F}(2)$	2.447(3)
$\mathrm{Xe}(1)-\mathrm{F}(10)$	1.851(3)	$\mathrm{Xe}(1)--\mathrm{F}(3 \mathrm{~A})$	$2.436(3)$
$\mathrm{Xe}(1)-\mathrm{F}(11)$	1.854(3)	Xe(1)---F(4)	3.084(3)
		Xe(1)---F(5A)	3.044(3)
Bond Angles (deg)			
$\mathrm{O}(1)-\mathrm{Cr}(2)-\mathrm{F}(4)$	98.1(2)	$\mathrm{F}(4)-\mathrm{Cr}(2)--\mathrm{F}(1)$	81.8(1)
$\mathrm{O}(1)-\mathrm{Cr}(2)-\mathrm{F}(5)$	98.2(2)	$\mathrm{F}(5)-\mathrm{Cr}(2)-\mathrm{F}(6)$	88.0(2)
$\mathrm{O}(1)-\mathrm{Cr}(2)-\mathrm{F}(6)$	99.4(2)	$\mathrm{F}(5)-\mathrm{Cr}(2)-\mathrm{F}(7)$	162.5(2)
$\mathrm{O}(1)-\mathrm{Cr}(2)-\mathrm{F}(7)$	99.3(2)	$\mathrm{F}(5)-\mathrm{Cr}(2)--\mathrm{F}(1)$	81.5(1)
$\mathrm{O}(1)-\mathrm{Cr}(2)--\mathrm{F}(1)$	179.7(2)	$\mathrm{F}(6)-\mathrm{Cr}(2)-\mathrm{F}(7)$	88.2(2)
$\mathrm{F}(4)-\mathrm{Cr}(2)-\mathrm{F}(5)$	90.2(2)	$\mathrm{F}(6)-\mathrm{Cr}(2)--\mathrm{F}(1)$	80.8(1)
$\mathrm{F}(4)-\mathrm{Cr}(2)-\mathrm{F}(6)$	162.5(2)	$\mathrm{F}(7)-\mathrm{Cr}(2)--\mathrm{F}(1)$	81.0(1)
$\mathrm{F}(4)-\mathrm{Cr}(2)-\mathrm{F}(7)$	88.3(2)	$\mathrm{Cr}(1)-\mathrm{F}(1)--\mathrm{Cr}(2)$	143.4(2)
$F(12)-\mathrm{Xe}(1)-\mathrm{F}(8)$	78.8(2)	$\mathrm{F}(8)-\mathrm{Xe}(1)-\mathrm{F}(10)$	158.0(2)
$F(12)-X e(1)-F(9)$	79.4(2)	$F(8)-\mathrm{Xe}(1)-\mathrm{F}(11)$	87.3(2)
$F(12)-\mathrm{Xe}(1)-\mathrm{F}(10)$	79.3(2)	$F(8)-\mathrm{Xe}(1)-\mathrm{F}(9)$	89.3(2)
$\mathrm{F}(12)-\mathrm{Xe}(1)-\mathrm{F}(11)$	78.6(2)	$F(8)-\mathrm{Xe}(1)--\mathrm{F}(3 \mathrm{~A})$	122.9(1)
$F(12)-X e(1)---F(2)$	140.8(1)	$F(8)-X e(1)---F(2)$	74.1(1)
$F(12)-X e(1)---F(3 A)$	144.0(1)	$F(10)-\mathrm{Xe}(1)-\mathrm{F}(11)$	88.4(1)
$F(9)-X e(1)-F(10)$	86.8(2)	$F(10)-X e(1)---F(3 A)$	76.4(1)
$F(9)-X e(1)-F(11)$	158.0(2)	$F(10)-X e(1)--\mathrm{F}(2)$	124.8(1)
$F(9)-X e(1)--\mathrm{F}(3 \mathrm{~A})$	124.7(1)	$F(11)-X e(1)---F(3 A)$	74.6(1)
$F(9)-X e(1)---F(2)$	72.6(1)	$F(11)-X e(1)--\mathrm{F}(2)$	126.9(1)
$\mathrm{Cr}(1)-\mathrm{F}(3)-\mathrm{Xe}(1 \mathrm{~A})$	145.3(2)	$F(3 A)---X e(1)---F(2)$	75.19(9)
$\mathrm{Cr}(1)-\mathrm{F}(2)-\mathrm{Xe}(1)$	162.4(2)		

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A6.3. Experimental geometric parameters for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{CrF}_{6}\right]$ (2)

	Bond Lengths and Contacts (\AA)		
$\mathrm{Xe}(1)-\mathrm{F}(1)$	$1.862(6)$	$\mathrm{Xe}(2)-\mathrm{F}(6)$	$1.863(6)$
$\mathrm{Xe}(1)-\mathrm{F}(2)$	$1.855(6)$	$\mathrm{Xe}(2)-\mathrm{F}(7)$	$1.856(6)$
$\mathrm{Xe}(1)-\mathrm{F}(3)$	$1.860(6)$	$\mathrm{Xe}(2)-\mathrm{F}(8)$	$1.863(6)$
$\mathrm{Xe}(1)-\mathrm{F}(4)$	$1.877(6)$	$\mathrm{Xe}(2)-\mathrm{F}(9)$	$1.858(6)$
$\mathrm{Xe}(1)-\mathrm{F}(5)$	$1.833(6)$	$\mathrm{Xe}(2)-\mathrm{F}(10)$	$1.833(6)$
$\mathrm{Xe}(1)-\mathrm{F}(11)$	$2.262(6)$	$\mathrm{Xe}(2)-\mathrm{F}(11)$	$2.250(6)$
$\mathrm{Xe}(1)--\mathrm{F}(12)$	$2.588(6)$	$\mathrm{Xe}(2)---\mathrm{F}(13)$	$2.583(6)$
$\mathrm{Xe}(1)--\mathrm{F}(14)$	$2.711(5)$	$\mathrm{Xe}(2)--\mathrm{F}(14)$	$2.712(5)$

Bond Angles (deg)			
$\mathrm{F}(1)-\mathrm{Xe}(1)-\mathrm{F}(2)$	86.0(3)	$\mathrm{F}(6)-\mathrm{Xe}(2)-\mathrm{F}(7)$	86.3(3)
$\mathrm{F}(1)-\mathrm{Xe}(1)-\mathrm{F}(3)$	160.0(3)	$\mathrm{F}(6)-\mathrm{Xe}(2)-\mathrm{F}(8)$	153.5(3)
$\mathrm{F}(1)-\mathrm{Xe}(1)-\mathrm{F}(4)$	91.4(3)	$\mathrm{F}(6)-\mathrm{Xe}(2)-\mathrm{F}(9)$	84.4(3)
$\mathrm{F}(1)-\mathrm{Xe}(1)-\mathrm{F}(5)$	79.7(3)	$\mathrm{F}(6)-\mathrm{Xe}(2)-\mathrm{F}(10)$	76.5(3)
$\mathrm{F}(1)-\mathrm{Xe}(1)-\mathrm{F}(11)$	85.9(3)	$\mathrm{F}(6)-\mathrm{Xe}(2)-\mathrm{F}(11)$	72.0(3)
$F(1)-X e(1)---F(12)$	125.7(2)	$F(6)-X e(2)---F(13)$	129.5(2)
$F(1)-X e(1)---F(14)$	69.04(3)	$F(6)-X e(2)---F(14)$	133.4(3)
$\mathrm{F}(2)-\mathrm{Xe}(1)-\mathrm{F}(3)$	84.7(3)	$\mathrm{F}(7)-\mathrm{Xe}(2)-\mathrm{F}(8)$	90.3(3)
$\mathrm{F}(2)-\mathrm{Xe}(1)-\mathrm{F}(4)$	154.2(3)	$\mathrm{F}(7)-\mathrm{Xe}(2)-\mathrm{F}(9)$	159.7(3)
$F(2)-\mathrm{Xe}(1)-\mathrm{F}(5)$	76.9(3)	$F(7)-\mathrm{Xe}(2)-\mathrm{F}(10)$	79.8(3)
$F(2)-X e(1)-F(11)$	71.4(2)	$\mathrm{F}(7)-\mathrm{Xe}(2)-\mathrm{F}(11)$	86.5(2)
$F(2)-X e(1)---F(12)$	129.1(7)	$F(7)-X e(2)---F(13)$	126.2(2)
$F(2)-X e(1)---F(14)$	132.7(3)	$F(7)-X e(2)---F(14)$	69.5(3)
$F(3)-\mathrm{Xe}(1)-\mathrm{F}(4)$	89.3(3)	$\mathrm{F}(8)-\mathrm{Xe}(2)-\mathrm{F}(9)$	90.0(3)
$F(3)-\mathrm{Xe}(1)-\mathrm{F}(5)$	80.9(3)	$\mathrm{F}(8)-\mathrm{Xe}(2)-\mathrm{F}(10)$	77.0(3)
$F(3)-X e(1)-F(11)$	107.8(3)	$\mathrm{F}(8)-\mathrm{Xe}(2)-\mathrm{F}(11)$	134.1(2)
$F(3)-X e(1)---F(12)$	73.4(2)	$F(8)-X e(2)---F(13)$	72.5(2)
$F(3)-X e(1)---F(14)$	129.3(3)	$F(8)-X e(2)---F(14)$	68.6(3)
$F(4)-\mathrm{Xe}(1)-\mathrm{F}(5)$	77.4(3)	$\mathrm{F}(9)-\mathrm{Xe}(2)-\mathrm{F}(10)$	80.5(3)
$F(4)-X e(1)-F(11)$	134.1(2)	$F(9)-\mathrm{Xe}(2)-\mathrm{F}(11)$	107.6(3)
$F(4)-X e(1)---F(12)$	72.3(2)	$F(9)-X e(2)---F(13)$	72.9(2)
$F(4)-X e(1)--\mathrm{F}(14)$	69.0(3)	$F(9)-X e(2)---F(14)$	128.9(3)
$F(5)-X e(1)-F(11)$	145.9(3)	$F(10)-\mathrm{Xe}(2)-\mathrm{F}(11)$	146.3(3)
$F(5)-X e(1)--\mathrm{F}(12)$	140.0(3)	$F(10)-X e(2)---F(13)$	139.1(2)
$F(5)-X e(1)--\mathrm{F}(14)$	132.6(3)	$F(10)-X e(2)---F(14)$	132.9(3)
$F(11)-X e(1)---F(12)$	72.6(2)	$F(11)-X e(2)---F(13)$	72.9(2)
$F(11)-X e(1)---F(14)$	67.4(3)	$F(11)-X e(2)---F(14)$	67.5(3)
F(12)---Xe(1)---F(14)	56.7(3)	F(13)---Xe(2)---F(14)	56.7(3)

Table A6.4. Experimental geometric parameters for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]$ (3) and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF}(4)$

Bond Angles (deg)					
$\mathrm{F}(5)-\mathrm{Xe}(1)-\mathrm{F}(6)$	$89.40(5)$	$85.34(4)$	$\mathrm{F}(7)-\mathrm{Xe}(1)-\mathrm{F}(8)$	$85.53(5)$	$90.90(4)$
$\mathrm{F}(5)-\mathrm{Xe}(1)-\mathrm{F}(7)$	$155.99(5)$	$157.94(4)$	$\mathrm{F}(7)-\mathrm{Xe}(1)-\mathrm{F}(9)$	$78.16(5)$	$78.86(4)$
$\mathrm{F}(5)-\mathrm{Xe}(1)-\mathrm{F}(8)$	$86.19(5)$	$87.51(4)$	$\mathrm{F}(7)-\mathrm{Xe}(1)--\mathrm{F}(4)$	$130.23(4)$	$76.77(4)$
$\mathrm{F}(5)-\mathrm{Xe}(1)-\mathrm{F}(9)$	$78.15(5)$	$79.23(4)$	$\mathrm{F}(7)-\mathrm{Xe}(1)--\mathrm{F}(2 \mathrm{~A})$	$125.60(4)$	$128.93(4)$
$\mathrm{F}(5)-\mathrm{Xe}(1)--\mathrm{F}(4)$	$72.14(4)$	$120.82(4)$	$\mathrm{F}(7)-\mathrm{Xe}(1)--\mathrm{F}(2 \mathrm{~B})$	$74.59(4)$	
$\mathrm{F}(5)-\mathrm{Xe}(1)--\mathrm{F}(2 \mathrm{~A})$	$68.42(4)$	$72.24(3)$	$\mathrm{F}(7)-\mathrm{Xe}(1)--\mathrm{F}(3 \mathrm{~B})$	$66.52(4)$	
$\mathrm{F}(5)-\mathrm{Xe}(1)--\mathrm{F}(2 \mathrm{~B})$	$124.77(4)$		$\mathrm{F}(7)-\mathrm{Xe}(1)--\mathrm{F}(1 \mathrm{~A})$		$128.86(3)$
$\mathrm{F}(5)-\mathrm{Xe}(1)--\mathrm{F}(3 \mathrm{~B})$	$134.60(4)$		$\mathrm{F}(7)-\mathrm{Xe}(1)--\mathrm{F}(11 \mathrm{~A})$		$65.52(3)$
$\mathrm{F}(5)-\mathrm{Xe}(1)--\mathrm{F}(1 \mathrm{~A})$		$66.47(3)$	$\mathrm{F}(8)-\mathrm{Xe}(1)-\mathrm{F}(9)$	$79.01(5)$	$78.95(4)$
$\mathrm{F}(5)-\mathrm{Xe}(1)--\mathrm{F}(11 \mathrm{~A})$		$132.66(4)$	$\mathrm{F}(8)-\mathrm{Xe}(1)--\mathrm{F}(4)$	$125.44(4)$	$128.27(4)$
$\mathrm{F}(6)-\mathrm{Xe}(1)-\mathrm{F}(7)$	$89.56(5)$	$87.95(4)$	$\mathrm{F}(8)-\mathrm{Xe}(1)--\mathrm{F}(2 \mathrm{~A})$	$61.27(4)$	$78.62(4)$
$\mathrm{F}(6)-\mathrm{Xe}(1)-\mathrm{F}(8)$	$157.20(4)$	$157.80(4)$	$\mathrm{F}(8)-\mathrm{Xe}(1)--\mathrm{F}(2 \mathrm{~B})$	$75.77(4)$	
$\mathrm{F}(6)-\mathrm{Xe}(1)-\mathrm{F}(9)$	$78.18(5)$	$79.08(4)$	$\mathrm{F}(8)-\mathrm{Xe}(1)--\mathrm{F}(3 \mathrm{~B})$	$127.87(4)$	
$\mathrm{F}(6)-\mathrm{Xe}(1)--\mathrm{F}(4)$	$73.84(4)$	$72.91(4)$	$\mathrm{F}(8)-\mathrm{Xe}(1)--\mathrm{F}(1 \mathrm{~A})$		$129.41(3)$
$\mathrm{F}(6)-\mathrm{Xe}(1)--\mathrm{F}(2 \mathrm{~A})$	$136.66(4)$	$118.74(4)$	$\mathrm{F}(8)-\mathrm{Xe}(1)--\mathrm{F}(11 \mathrm{~A})$		$66.56(3)$
$\mathrm{F}(6)-\mathrm{Xe}(1)--\mathrm{F}(2 \mathrm{~B})$	$124.22(4)$		$\mathrm{F}(9)-\mathrm{Xe}(1)--\mathrm{F}(4)$	$138.91(4)$	$143.19(4)$
$\mathrm{F}(6)-\mathrm{Xe}(1)--\mathrm{F}(3 \mathrm{~B})$	$69.21(4)$		$\mathrm{F}(9)-\mathrm{Xe}(1)--\mathrm{F}(2 \mathrm{~A})$	$128.52(4)$	$144.19(4)$
$\mathrm{F}(6)-\mathrm{Xe}(1)--\mathrm{F}(1 \mathrm{~A})$		$65.83(3)$	$\mathrm{F}(9)-\mathrm{Xe}(1)--\mathrm{F}(2 \mathrm{~B})$	$143.95(4)$	
$\mathrm{F}(6)-\mathrm{Xe}(1)--\mathrm{F}(11 \mathrm{~A})$		$131.82(3)$	$\mathrm{F}(9)-\mathrm{Xe}(1)--\mathrm{F}(3 \mathrm{~B})$	$131.12(4)$	
$\mathrm{Cr}(1)-\mathrm{F}(4)--\mathrm{Xe}(1)$	$156.70(4)$	$132.05(4)$	$\mathrm{F}(9)-\mathrm{Xe}(1)--\mathrm{F}(1 \mathrm{~A})$		$131.81(4)$
$\mathrm{Cr}(1)-\mathrm{F}(2 \mathrm{~A})---\mathrm{Xe}(1)$	$132.93(4)$	$121.60(4)$	$\mathrm{F}(9)-\mathrm{Xe}(1)--\mathrm{F}(11 \mathrm{~A})$		$128.71(4)$

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A6.5. Experimental and calculated geometric parameters for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ (5)

	exptl	calcd $^{[a]}$		exptl	calcd $^{[a]}$
		nd Leng	d Contacts (\AA)		
$\mathrm{Xe}(1)-\mathrm{F}(5)$	1.855(1)	1.930	$\mathrm{Xe}(1)--\mathrm{F}(2 \mathrm{~A})$	2.518(1)	2.449
$\mathrm{Xe}(1)-\mathrm{F}(6)$	1.850(1)	1.924	Xe(1)---F(4)	2.475(1)	2.410
$\mathrm{Xe}(1)-\mathrm{F}(7)$	1.852(1)	1.925	$\mathrm{Xe}(1)--\mathrm{F}(1 \mathrm{~A})$	3.039(1)	3.291
$\mathrm{Xe}(1)-\mathrm{F}(8)$	1.856(1)	1.928	Xe(1)---F(12)	3.262(1)	2.733
$\mathrm{Xe}(1)-\mathrm{F}(9)$	1.814(1)	1.907			
$\mathrm{Xe}(2)-\mathrm{O}(2)$	1.711(2)	1.772	$\mathrm{Xe}(2)--\mathrm{F}(2 \mathrm{~A})$	2.986(1)	2.958
$\mathrm{Xe}(2)-\mathrm{F}(10)$	1.898(1)	1.949	Xe(2)---F(1)	2.968(1)	2.956
$\mathrm{Xe}(2)-\mathrm{F}(11)$	1.907(1)	1.963	$\mathrm{Xe}(2)--\mathrm{F}(3 \mathrm{~A})$	3.337(1)	3.169
$\mathrm{Xe}(2)-\mathrm{F}(12)$	1.933(1)	2.029	Xe(2)---F(4)	3.496(1)	3.567
$\mathrm{Xe}(2)-\mathrm{F}(13)$	1.900(1)	1.955			
		Bon	les (deg)		
$\mathrm{F}(9)-\mathrm{Xe}(1)-\mathrm{F}(5)$	80.58(7)	79.81	$\mathrm{F}(5)-\mathrm{Xe}(1)-\mathrm{F}(6)$	87.51(7)	84.98
$\mathrm{F}(9)-\mathrm{Xe}(1)-\mathrm{F}(6)$	79.86(7)	79.19	$F(5)-\mathrm{Xe}(1)-\mathrm{F}(7)$	160.78(6)	159.08
$\mathrm{F}(9)-\mathrm{Xe}(1)-\mathrm{F}(7)$	80.20(6)	79.47	$F(5)-\mathrm{Xe}(1)-\mathrm{F}(8)$	88.56(6)	87.76
$\mathrm{F}(9)-\mathrm{Xe}(1)-\mathrm{F}(8)$	80.00(7)	78.71	$F(6)-\mathrm{Xe}(1)-\mathrm{F}(7)$	89.63(7)	88.38
$F(9)-\mathrm{Xe}(1)--\mathrm{F}(1 \mathrm{~A})$	135.67(6)	133.64	$F(6)-\mathrm{Xe}(1)-\mathrm{F}(8)$	159.85(6)	157.63
$F(9)-\mathrm{Xe}(1)--\mathrm{F}(2 \mathrm{~A})$	145.17(6)	143.81	$F(7)-\mathrm{Xe}(1)-\mathrm{F}(8)$	87.61(6)	90.97
$F(9)-X e(1)---F(4)$	145.46(6)	144.79	$F(9)-X e(1)--\mathrm{F}(12)$	130.15(6)	131.19
$\mathrm{O}(2)-\mathrm{Xe}(2)-\mathrm{F}(10)$	91.45(9)	92.95	$F(10)-\mathrm{Xe}(2)-\mathrm{F}(11)$	88.94(7)	89.93
$\mathrm{O}(2)-\mathrm{Xe}(2)-\mathrm{F}(11)$	90.07(8)	90.40	$F(10)-\mathrm{Xe}(2)-\mathrm{F}(12)$	179.03(6)	176.89
$\mathrm{O}(2)-\mathrm{Xe}(2)-\mathrm{F}(12)$	89.52(8)	89.81	$F(10)-\mathrm{Xe}(2)-\mathrm{F}(13)$	89.65(8)	90.16
$\mathrm{O}(2)-\mathrm{Xe}(2)-\mathrm{F}(13)$	90.00(9)	90.56	$F(11)-\mathrm{Xe}(2)-\mathrm{F}(12)$	91.00(6)	89.62
$\mathrm{O}(2)-\mathrm{Xe}(2)-\mathrm{F}(1)$	155.96(7)	154.97	$\mathrm{F}(11)-\mathrm{Xe}(2)-\mathrm{F}(13)$	178.59(7)	178.71
$\mathrm{O}(2)-\mathrm{Xe}(2)-\mathrm{F}(2 \mathrm{~A})$	147.57(7)	143.79	$F(12)-\mathrm{Xe}(2)-\mathrm{F}(13)$	90.41(7)	91.25
$\mathrm{O}(2)-\mathrm{Xe}(2)-\mathrm{F}(3 \mathrm{~A})$	146.34(7)	151.60	$\mathrm{O}(2)-\mathrm{Xe}(2)-\mathrm{F}(4)$	130.27(7)	125.85

${ }^{[a]}$ The PBE1PBE/aug-ccpVDZ (Xe)-Def2-SVP (F, O, Cr) level was used.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A6.6. Experimental and calculated geometric parameters for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ (6)

	exptl	calcd ${ }^{[a]}$		exptl	calcd ${ }^{[a]}$
		Bond Len	Contacts (\AA)		
$\mathrm{Cr}(2)-\mathrm{O}(3)$	1.547(2)	1.499	$\mathrm{Cr}(3)-\mathrm{O}(2)$	1.530(3)	1.499
$\mathrm{Cr}(2)-\mathrm{F}(26)$	1.740 (2)	1.713	$\mathrm{Cr}(3)-\mathrm{F}(22)$	1.740(2)	1.712
$\mathrm{Cr}(2)-\mathrm{F}(27)$	1.741(2)	1.717	$\mathrm{Cr}(3)-\mathrm{F}(23)$	1.746(2)	1.710
$\mathrm{Cr}(2)-\mathrm{F}(28)$	1.740 (2)	1.708	$\mathrm{Cr}(3)-\mathrm{F}(24)$	1.732(2)	1.707
$\mathrm{Cr}(2)-\mathrm{F}(29)$	1.741(2)	1.711	$\mathrm{Cr}(3)-\mathrm{F}(25)$	1.736(3)	1.719
$\mathrm{Cr}(2)--\mathrm{F}(3)$	2.393(2)	2.514	$\mathrm{Cr}(3)--\mathrm{F}(4)$	2.483(2)	2.530
$\mathrm{Xe}(1)-\mathrm{F}(10)$	1.814(2)	1.910	$\mathrm{Xe}(1)-\mathrm{F}(9)$	1.847(2)	1.929
$\mathrm{Xe}(1)-\mathrm{F}(6)$	1.859(2)	1.935	Xe(1)---F(1)	2.463(2)	2.351
$\mathrm{Xe}(1)-\mathrm{F}(7)$	1.862(2)	1.930	Xe(1)---F(3)	2.632(2)	2.573
$\mathrm{Xe}(1)-\mathrm{F}(8)$	1.860(2)	1.931	Xe(1)---F(4)	2.624(2)	2.618
$\mathrm{Xe}(2)-\mathrm{F}(12)$	1.825(2)	1.914	$\mathrm{Xe}(3)-\mathrm{F}(21)$	1.833(2)	1.912
$\mathrm{Xe}(2)-\mathrm{F}(11)$	1.868(2)	1.943	$\mathrm{Xe}(3)-\mathrm{F}(19)$	1.879(2)	1.940
$\mathrm{Xe}(2)-\mathrm{F}(13)$	1.865(2)	1.935	$\mathrm{Xe}(3)-\mathrm{F}(20)$	1.868(2)	1.940
$\mathrm{Xe}(2)-\mathrm{F}(14)$	1.856(2)	1.930	$\mathrm{Xe}(3)-\mathrm{F}(18)$	1.852(2)	1.931
$\mathrm{Xe}(2)-\mathrm{F}(15)$	1.858(2)	1.931	$\mathrm{Xe}(3)-\mathrm{F}(17)$	1.852(2)	1.932
$\mathrm{Xe}(2)-\mathrm{F}(16)$	2.333(2)	2.282	$\mathrm{Xe}(3)-\mathrm{F}(16)$	2.247(2)	2.249
$\mathrm{Xe}(2)--\mathrm{F}(2)$	2.575(2)	2.464	Xe(3)---F(5)	2.660(2)	2.436
Xe(2)---F(1)	2.822(2)	2.752	Xe(3)---F(1)	2.826(2)	3.047
Bond Angles (deg)					
O3-Cr2-F26	100.9(1)	103.13	O2-Cr3-F22	100.92(1)	103.11
O3-Cr2-F27	100.4(1)	103.25	O2-Cr3-F23	100.42(1)	103.31
O3-Cr2-F28	101.4(1)	103.17	O2-Cr3-F24	101.28(1)	103.13
O3-Cr2-F29	100.4(1)	103.28	O2-Cr3-F25	100.46(1)	103.19
O3-Cr2---F3	178.4(1)	179.01	O2-Cr3---F4	178.42(1)	178.15
F26-Cr2-F27	88.2(1)	86.44	F22-Cr3-F23	88.45(1)	87.38
F26-Cr2-F28	157.8(1)	153.70	F22-Cr3-F24	157.79(9)	153.75
F26-Cr2-F29	88.5(1)	87.16	F22-Cr3-F25	88.28(1)	86.56
F26-Cr2---F3	78.00(8)	75.92	F22-Cr3---F4	78.00(8)	75.11
F27-Cr2-F28	88.4(1)	87.00	F23-Cr3-F24	86.90(1)	86.79
F27-Cr2-F29	159.2(1)	153.46	F23-Cr3-F25	159.11(1)	153.50
F27-Cr2---F3	78.48(8)	76.50	F23-Cr3---F4	80.75(8)	77.25
F28-Cr2-F29	86.9(1)	87.42	F24-Cr3-F25	88.38(9)	86.79
F28-Cr2---F3	79.81(9)	77.79	F24-Cr3---F4	79.82(8)	78.64
F29-Cr2---F3	80.73(8)	76.97	F25-Cr3---F4	78.39(8)	76.26
F10-Xe1-F6	79.12(9)	78.59	F7-Xe1-F9	159.67(9)	160.27
F10-Xe1-F7	79.78(9)	80.61	F7-Xe1---F1	93.17(9)	101.30
F10-Xe1-F8	79.60(9)	78.70	F7-Xe1---F3	71.14(8)	72.11
F10-Xe1-F9	80.39(9)	80.43	F7-Xe1---F4	127.62(8)	127.47

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A6.6. (continued)

	exptl	calcd ${ }^{[a]}$		exptl	calcd ${ }^{[a]}$
Bond Angles (deg)					
F10-Xe1---F1	151.50(8)	150.85	F8-Xe1-9	85.8(1)	85.82
F10-Xe1---F3	139.56(8)	143.13	F8-Xe1---F1	72.37(8)	72.55
F10-Xe1---F4	143.87(8)	139.92	F8-Xe1---F3	124.42(8)	121.92
F6-Xe1-F7	91.39(9)	90.18	F8-Xe1---F4	120.40(8)	125.80
F6-Xe1-F8	158.67(9)	157.26	F9-Xe1---F1	102.19(8)	92.64
F6-Xe1-F9	89.24(9)	91.40	F9-Xe1---F3	128.31(7)	127.34
F6-Xe1---F1	128.96(7)	130.17	F9-Xe1---F4	72.27(7)	71.67
F6-Xe1---F3	74.25(7)	77.21	F1---Xe1---F3	59.59(6)	61.37
F6-Xe1---F4	77.39(7)	74.03	F1---Xe1---F4	60.11(6)	60.48
F7-Xe1-F8	85.2(1)	85.15	F3---Xe1---F4	56.52(6)	55.71
F12-Xe2-F11	78.41(9)	78.00	F21-Xe3-F19	78.31(9)	79.05
F12-Xe2-F13	79.14(9)	80.12	F21-Xe3-F20	78.65(9)	80.23
F12-Xe2-F14	78.66(9)	78.44	F21-Xe3-F18	78.2(1)	79.23
F12-Xe2-F15	78.63(9)	79.67	F21-Xe3-F17	78.44(9)	79.99
F12-Xe2-F16	142.11(8)	144.84	F21-Xe3-F16	140.80(8)	146.34
F12-Xe2---F2	140.76(7)	142.27	F21-Xe3---F5	145.80(8)	142.42
F11-Xe2-F13	88.01(9)	89.78	F19-Xe3-F20	87.3(1)	91.62
F11-Xe2-F14	156.97(8)	156.33	F19-Xe3-F18	156.40(9)	158.28
F11-Xe2-F15	88.74(9)	89.54	F19-Xe3-F17	86.3(1)	87.43
F11-Xe2-F16	129.24(8)	130.78	F19-Xe3-F16	127.95(8)	125.91
F11-Xe2---F2	73.79(7)	78.95	F19-Xe3---F5	86.89(7)	77.25
F13-Xe2-F14	85.64(9)	83.99	F20-Xe3-F18	86.2(1)	84.90
F13-Xe2-F15	157.74(9)	159.46	F20-Xe3-F17	157.01(9)	160.01
F13-Xe2-F16	121.24(8)	114.57	F20-Xe3-F16	124.96(8)	116.78
F13-Xe2---F2	72.83(7)	70.32	F20-Xe3---F5	69.94(7)	71.77
F14-Xe2-F15	85.64(9)	88.47	F18-Xe3-F17	91.0(1)	88.63
F14-Xe2-F16	72.24(8)	72.05	F18-Xe3-F16	73.51(8)	74.08
F14-Xe2---F2	124.80(8)	119.70	F18-Xe3---F5	111.93(8)	121.41
F15-Xe2-F16	77.06(8)	80.84	F17-Xe3-F16	75.56(8)	79.24
F15-Xe2---F2	127.04(7)	129.53	F17-Xe3---F5	131.59(7)	127.18
F16-Xe2---F2	76.93(6)	71.27	F16-Xe3---F5	71.56(6)	70.67
Xe2-F16-Xe3	135.79(9)	140.08			

${ }^{[a]}$ The PBE1PBE/aug-ccpVDZ (Xe)-Def2-SVP (F, O, Cr) level was used.

Figure A6.2. A packing diagram showing the chain structure in the X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}(\mathbf{1})$ viewed along the b-axis of the unit cell; thermal ellipsoids are drawn at the 50% probability level.

Figure A6.3. A packing diagram showing the chain structure in the X-ray crystal structure of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]_{2}\left[\mathrm{CrF}_{6}\right]$ (2) viewed along the b-axis of the unit cell; thermal ellipsoids are drawn at the 50% probability level.

Figure A6.4. A packing diagram showing the chain structure in the X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]$ (3) viewed along the b-axis of the unit cell; thermal ellipsoids are drawn at the 50% probability level.

Figure A6.5. A packing diagram showing the chain structure in the X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{HF}$ (4) viewed along the b-axis of the unit cell; thermal ellipsoids are drawn at the 50% probability level.

Figure A6.6. A packing diagram showing the X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}(5)$ viewed along the a-axis of the unit cell; thermal ellipsoids are drawn at the 50% probability level.

Figure A6.7. A packing diagram showing the X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}(6)$ viewed along the c-axis of the unit cell; thermal ellipsoids are drawn at the 50% probability level.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A6.7. Experimental (Raman) and calculated vibrational frequencies, intensities, and assignments for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ (5)

expt ${ }^{[\underline{a}, \mathrm{~b}]}$	calcd ${ }^{[a, c]}$	assgnts ${ }^{[d]}$
1026(17)	1206(56)[0]	$v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)$
	1204(0)[206]	$v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)$
922(34)	857(66)[0]	$v\left(\mathrm{Xe}_{2}-\mathrm{O}_{2}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)$
	857(0)[50]	$v\left(\mathrm{Xe}_{2}-\mathrm{O}_{2}\right)-v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)$
	731(0)[397]	$v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)-v\left(\mathrm{Cr}_{1 A}-\mathrm{F}_{3 A}\right)$
700(22)	720(11)[0]	$v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 A}\right)$
677(44)	$\left\{\begin{array}{l}667(9)[0] \\ 666(14)[0]\end{array}\right.$	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 A}\right)-v\left(\mathrm{Xe}_{14}-\mathrm{F}_{88}\right)\right]$
	$\{666(14)[0]$	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 A}\right)-v\left(\mathrm{Xe}_{1 \text { A }}-\mathrm{F}_{7 A}\right)\right]$
653(9)	$\left\{\begin{array}{l}669(0)[406] \\ 665(0)[305]\end{array}\right.$	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]-\left[v\left(\mathrm{Xe}_{1{ }_{1 A}}-\mathrm{F}_{5 A}\right)-v\left(\mathrm{Xe}_{1 A}-\mathrm{F}_{7 A}\right)\right]$
	$\{665(0)[305]$	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 A}\right)-v\left(\mathrm{Xe}_{1 A}-\mathrm{F}_{8 A}\right)\right]$
	651(0)[11]	$v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9 A}\right)$
668(63)	642(174)[0]	$v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)$
591(4)	$\left\{\begin{array}{l}636(0)[263] \\ 632(2)[0]\end{array}\right.$	$\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)-v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)\right]-\left[v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)-v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{13 \mathrm{~A}}\right)\right]$
	$\{632(2)[0]$	$\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)-v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)\right]+\left[v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{11} \mathrm{~A}\right)-v\left(\mathrm{Xe}_{2 A}-\mathrm{F}_{13} \mathrm{~A}\right)\right]$
617(69)	[$619(0)[661]$	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9}\right)\right]-\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{10}\right)-v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)\right]$
	610(4)[0]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9 A}\right)\right]-\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{10}\right)+\mathrm{v}\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)\right]_{\text {small }}$
	$\{601(0)[77]$	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4 \mathrm{e}}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{c}} \mathrm{e}\right)\right]+\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{10}\right)-v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)\right]$
606(46)	598(20)[0]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4 \mathrm{e}}\right)\right]+\left[v\left(\mathrm{Xe}_{14}-\mathrm{F}_{9 \mathrm{~A}}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{c}} \mathrm{c}\right)\right]+\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{10}\right)-v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)\right]_{\text {mall }}$
	[582(0)[5]	$\left\{\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)\right]\right\}-\left\{\left[v\left(\mathrm{Xe}_{1 A}-\mathrm{F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{14}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 A}\right)+v\left(\mathrm{Xe}_{14}-\mathrm{F}_{8 A}\right)\right]\right\}$
580(14)	582(4)[0]	$\left\{\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)\right]\right\}+\left\{\left[v\left(\mathrm{Xe}_{1 A}-\mathrm{F}_{5 A}\right)+v\left(\mathrm{Xe}_{1 A}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1 A}-\mathrm{F}_{6 A}\right)+v\left(\mathrm{Xe}_{1 A}-\mathrm{F}_{8 A}\right)\right]\right\}$
$562(32)$ $553(34)$	$\} 572(27)[0]$	$v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{14}-\mathrm{F}_{1 A}\right)$
547(62)	559(0)[52]	$\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)\right]-\left[v\left(\mathrm{Xe}_{24}-\mathrm{F}_{14}\right)+v\left(\mathrm{Xe}_{24}-\mathrm{F}_{13}{ }^{\text {a }}\right.\right.$) $]$
544(100)	553(61)[0]	$\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)\right]+\left[v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 A}-\mathrm{F}_{13 \mathrm{~A}}\right)\right]$
539, sh	$551(0)$ [592]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)\right]-\left[v\left(\mathrm{Cr}_{1 A}-\mathrm{F}_{4 \mathrm{~A}}\right)-v\left(\mathrm{Cr}_{1 A}-\mathrm{F}_{2 \mathrm{~A}}\right)\right]$
523(29)	509(10)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Cr}_{14}-\mathrm{F}_{4 A}\right)\right]+\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)\right]$
511(9)	499(0)[53]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)\right]-\left[v\left(\mathrm{Cr}_{1 A}-\mathrm{F}_{3 A}\right)-v\left(\mathrm{Cr}_{1 A}-\mathrm{F}_{1 A}\right)\right]$

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A6.7. (continued)

$\operatorname{exptl}^{[a, b]}$	calcd ${ }^{[a, c]}$	assgnts ${ }^{[d]}$
$507(21)$	491(52)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{14}-\mathrm{F}_{2 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)\right]$
	483(0)[143]	[$\left.v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)-v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)\right]$
503(57)	467(20)[0]	$\left\{\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)\right]+\left[v\left(\mathrm{Cr}_{14}-\mathrm{F}_{4 A}\right)+\mathrm{v}\left(\mathrm{Cr}_{1 A}-\mathrm{F}_{2 \mathrm{~A}}\right)\right]\right\}-\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)-v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)\right]$
405(6)	456(0)[14]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)\right]$
	${ }^{374(0)[32]}$	$\left\{\left[\delta\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{O}_{1}\right)-\delta\left(\mathrm{F}_{4} \mathrm{Cr}_{1} \mathrm{O}_{1}\right)\right] / \rho\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)\right\}-\left\{\left[\delta\left(\mathrm{F}_{2 A} \mathrm{Cr}_{14} \mathrm{O}_{1 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{4 A} \mathrm{Cr}_{14} \mathrm{O}_{1 A}\right)\right] / \rho\left(\mathrm{F}_{1 A} \mathrm{Cr}_{14} \mathrm{~F}_{3 A}\right)\right\}$
$\begin{aligned} & 398(5) \\ & 375(12) \\ & 370(11) \end{aligned}$	369(3)[0]	$\left[v\left(\mathrm{Cr}_{1} \mathrm{~F}_{1}\right)+v\left(\mathrm{Cr}_{1} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{1}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]$
	$\{365(3)[0]$	$\left[\delta\left(\mathrm{F}_{3} \mathrm{Cr}_{1} \mathrm{O}_{1}\right)+\delta\left(\mathrm{F}_{3 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right] /\left[\delta\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{O}_{1}\right)+\delta\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]$
	358(3)[0]	$\left[\delta\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{O}_{1}\right)+\delta\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right] /\left[\rho\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{O}_{1}\right)+\rho\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]$
	[359(0)[26]	$\left[\delta\left(\mathrm{F}_{3} \mathrm{Cr}_{1} \mathrm{O}_{1}\right)+\delta\left(\mathrm{F}_{3 \mathrm{~A}} \mathrm{Cr}_{1 A} \mathrm{O}_{1 A}\right)\right] /\left[\delta\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{2}\right)+\delta\left(\mathrm{F}_{14} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{2 \mathrm{~A}}\right)\right]$
$\begin{aligned} & 349(11) \\ & 341(8) \end{aligned}$	355(0)[13]	$\left[\delta\left(\mathrm{F}_{9} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)-\delta\left(\mathrm{F}_{9} \mathrm{Xe}_{1} \mathrm{~F}_{8}\right)\right]-\left[\delta\left(\mathrm{F}_{9 A} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{9 A} \mathrm{Xe}_{14} \mathrm{~F}_{8 A}\right)\right]$
	354(2)[0]	$\left[\delta\left(\mathrm{F}_{9} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)-\delta\left(\mathrm{F}_{9} \mathrm{Xe}_{1} \mathrm{~F}_{8}\right)\right]+\left[\delta\left(\mathrm{F}_{9 A} \mathrm{Xe}_{1 /} \mathrm{F}_{6 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{9 A} \mathrm{Xe}_{1 /} \mathrm{F}_{8 \mathrm{~A}}\right)\right]$
	344(3)[0]	$\left[\delta\left(\mathrm{F}_{9} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)-\delta\left(\mathrm{F}_{9} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)\right]+\left[\delta\left(\mathrm{F}_{9 \mathrm{~A}} \mathrm{Xe} \mathrm{l}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{9 A} \mathrm{Xe}_{1{ }_{1}} \mathrm{~F}_{7 \mathrm{~A}}\right)\right]$
	343(0)[8]	$\left[\delta\left(\mathrm{F}_{9} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)-\delta\left(\mathrm{F}_{9} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)\right]-\left[\delta\left(\mathrm{F}_{94} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{9 \mathrm{~A}} \mathrm{Xe}_{14} \mathrm{~F}_{7 \mathrm{~A}} \mathrm{~A}\right)\right]$
	338(0)[24]	$\left[\delta\left(\mathrm{F}_{3} \mathrm{Cr}_{1} \mathrm{O}_{1}\right)-\delta\left(\mathrm{F}_{3 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right] /\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{O}_{1}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{1 A} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{1 A}\right)\right]$
	336(6)[0]	$\left[\delta\left(\mathrm{F}_{11} \mathrm{Xe}_{2} \mathrm{O}_{2}\right)-\delta\left(\mathrm{F}_{13} \mathrm{Xe}_{2} \mathrm{O}_{2}\right)\right]+\left[\delta\left(\mathrm{F}_{11 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{13 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]$
	$334(0)$ [10]	$\left[\delta\left(\mathrm{F}_{11} \mathrm{Xe}_{2} \mathrm{O}_{2}\right)-\delta\left(\mathrm{F}_{13} \mathrm{Xe}_{2} \mathrm{O}_{2}\right)\right]-\left[\delta\left(\mathrm{F}_{11} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{13 \mathrm{~A}} \mathrm{Xe}_{22} \mathrm{O}_{2 \mathrm{~A}}\right)\right]$
	333(3)[0]	$\left[\delta\left(\mathrm{F}_{3} \mathrm{Cr}_{1} \mathrm{O}_{1}\right)+\delta\left(\mathrm{F}_{3 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right] /\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{O}_{1}\right)+\rho_{w}\left(\mathrm{~F}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]$
	321(0)[62]	$\left[\delta\left(\mathrm{F}_{10} \mathrm{Xe}_{2} \mathrm{O}_{2}\right)-\delta\left(\mathrm{F}_{12} \mathrm{Xe}_{2} \mathrm{O}_{2}\right)\right]-\left[\delta\left(\mathrm{F}_{10 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{12 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]$
323(6)	322(7)[0]	$\left[\delta\left(\mathrm{F}_{10} \mathrm{Xe}_{2} \mathrm{O}_{2}\right)-\delta\left(\mathrm{F}_{12} \mathrm{Xe}_{2} \mathrm{O}_{2}\right)\right]+\left[\delta\left(\mathrm{F}_{10 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{12 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]$
	317(6)[0]	$\delta_{\text {umb }}\left(\mathrm{Xe}_{1} \mathrm{~F}_{4 \mathrm{c}}\right)+\delta_{\text {umb }}\left(\mathrm{Xe}_{1 \text { A }} \mathrm{F}_{4 \mathrm{c}^{\prime}}\right)$
	314(0)[84]	$\delta_{\text {umb }}\left(\mathrm{XeF}_{4 \mathrm{ce}}\right)-\delta_{\text {umb }}\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{ce}}\right)$
276(6)	307(0)[1]	$\left.\left[\delta\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{O}_{1}\right)-\delta\left(\mathrm{F}_{5} \mathrm{Cr}_{1} \mathrm{O}_{1}\right)\right]-\left[\delta\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{5 A} \mathrm{Cr}_{14} \mathrm{O}_{1 \mathrm{~A}}\right)\right]\right\} /\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)-\rho_{w}\left(\mathrm{~F}_{1 A} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$
	297(0)[94]	$\left[\delta\left(\mathrm{F}_{3} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)-\delta\left(\mathrm{F}_{3 \mathrm{~A}} \mathrm{Cr}_{14} \mathrm{~F}_{4 \mathrm{~A}}\right)\right]$
266 (3)	277(1)[0]	$\left[\rho_{w}\left(\mathrm{~F}_{4} \mathrm{Cr}_{1} \mathrm{O}_{1}\right)+\rho_{w}\left(\mathrm{~F}_{4 A} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]$
	277(3)[0]	$\delta_{\text {umb }}\left(\mathrm{Xe}_{2} \mathrm{~F}_{4}\right)+\delta_{\text {umb }}\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}^{\prime}}\right)$
	274(0)[186]	$\delta_{\text {umb }}\left(\mathrm{Xe}_{2} \mathrm{~F}_{4}\right)-\delta_{\text {umb }}\left(\mathrm{Xe}_{2} \mathrm{~F}_{4 A^{\prime}}\right)$
252(3)	257(3)[0]	$\left[\delta\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)+\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{8}\right)\right]+\left[\delta\left(\mathrm{F}_{6 A} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{5 A} \mathrm{Xe}_{1{ }_{1 A}} \mathrm{~F}_{8 A}\right)\right]$
	252(0)[4]	$\left[\delta\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)+\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{8}\right)\right]-\left[\delta\left(\mathrm{F}_{6 A} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{5 A} \mathrm{Xe}_{1 /} \mathrm{F}_{8 \mathrm{~A}}\right)\right]$
243(3)	251(2)[0]	$\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{O}_{\mathrm{l}}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{1 A} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}}\right)\right]$

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A6.7. (continued)

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A6.7. (continued)

expt ${ }^{[a, b]}$	calcd ${ }^{[a, c]}$		assgnts ${ }^{[d]}$
72(3)	78(2)[0]		
	75(<1)[0]		
	66(0)[4]		
	$60(<1)[0]$		
	60(0)[3]		
	$55(<1)[0]$		
	$47(<1)[0]$		
	43(0)[5]	coupled deformation modes	
	$41(<1)[0]$		
	42(0)[3]		
	$30(<1)[0]$		
	$30(0)$ [2]		
	$21(<1)[0]$		
	$18(0)[<1]$		
	$9(0)[<1]$		

${ }^{[a]}$ Frequencies are given in $\mathrm{cm}^{-1} .{ }^{[b]}$ Values in parentheses denote relative Raman intensities. The Raman spectrum was recorded on the dry crystalline compound in an FEP sample tube at $-140{ }^{\circ} \mathrm{C}$. Several crystals were subsequently shown to be compound (5) by a single-crystal X-ray structure determination and crystallographic unit cell determinations. Weak, unassigned bands were also observed at 763(2), 806(2), 959(2), 973(5), 1001(10), $1006(3)$, and $1009(5) \mathrm{cm}^{-1}$. ${ }^{[\mathrm{cc}]}$ Values in parentheses and square brackets denote calculated Raman intensities $\left(\AA^{4} \mathrm{amu}^{-1}\right)$ and infrared intensities (km mol $^{-1}$), respectively. ${ }^{[d]}$ Assignments are for the energy-minimized geometry $\left(C_{\mathrm{i}}\right)$ calculated using the uPBE1PBE/aug-ccpVDZ (Xe)-Def2-SVP (F, O, Cr) level of theory. Abbreviations denote stretch (v), bend (δ), twist (ρ_{t}), and wag (ρ_{w}), umbrella (umb), $\mathrm{Xe}_{1} \mathrm{~F}_{4 \mathrm{e}}\left(\mathrm{Xe}_{1} \mathrm{~F}_{5} \mathrm{~F}_{6} \mathrm{~F}_{7} \mathrm{~F}_{8}\right)$, $\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{4 e^{\prime}}$ $\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right), \mathrm{Xe}_{2} \mathrm{~F}_{4}\left(\mathrm{Xe}_{2} \mathrm{~F}_{10} \mathrm{~F}_{11} \mathrm{~F}_{12} \mathrm{~F}_{13}\right)$, and $\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}^{\prime}}\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{10 \mathrm{~A}} \mathrm{~F}_{11 \mathrm{~A}} \mathrm{~F}_{12 \mathrm{~A}} \mathrm{~F}_{13 \mathrm{~A}}\right)$. The atom labeling scheme corresponds to that used in Figure 9.5.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A6.8. Experimental (Raman) and calculated vibrational frequencies, intensities, and assignments for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right] \cdot 2 \mathrm{CrOF}_{4}$ (6)

exp	calcd $^{[b, ~ c] ~}$	assgnts ${ }^{[d]}$
1000(33)	[1232(40)[173]	$v\left(\mathrm{Cr}_{3}-\mathrm{O}_{2}\right)+v\left(\mathrm{Cr}_{2}-\mathrm{O}_{3}\right)$
	$\{1230(26)[204]$	$v\left(\mathrm{Cr}_{3}-\mathrm{O}_{2}\right)-v\left(\mathrm{Cr}_{2}-\mathrm{O}_{3}\right)$
	1192(41)[102]	$v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)$
750, sh 746(3) 727(3) 707(8) 700, sh	[762(2)[222]	$\left[v\left(\mathrm{Cr}_{3}-\mathrm{F}_{24}\right)-v\left(\mathrm{Cr}_{3}-\mathrm{F}_{22}\right)\right]+\left[v\left(\mathrm{Cr}_{2}-\mathrm{F}_{28}\right)-v\left(\mathrm{Cr}_{2}-\mathrm{F}_{26}\right)\right]$
	752(<0.1)[214]	$\left[v\left(\mathrm{Cr}_{3}-\mathrm{F}_{24}\right)-v\left(\mathrm{Cr}_{3}-\mathrm{F}_{22}\right)\right]-\left[v\left(\mathrm{Cr}_{2}-\mathrm{F}_{28}\right)-v\left(\mathrm{Cr}_{2}-\mathrm{F}_{26}\right)\right]$
	$\{750(<1](400)$	$\left[v\left(\mathrm{Cr}_{3}-\mathrm{F}_{23}\right)-v\left(\mathrm{Cr}_{3}-\mathrm{F}_{25}\right)\right]+\left[v\left(\mathrm{Cr}_{2}-\mathrm{F}_{29}\right)-v\left(\mathrm{Cr}_{2}-\mathrm{F}_{27}\right)\right]$
	745(<1)[18]	$\left[v\left(\mathrm{Cr}_{3}-\mathrm{F}_{23}\right)-v\left(\mathrm{Cr}_{3}-\mathrm{F}_{25}\right)\right]-\left[v\left(\mathrm{Cr}_{2}-\mathrm{F}_{29}\right)-v\left(\mathrm{Cr}_{2}-\mathrm{F}_{27}\right)\right]$
	723(23)[24]	$\left[v\left(\mathrm{Cr}_{3}-\mathrm{F}_{24}\right)+v\left(\mathrm{Cr}_{3}-\mathrm{F}_{22}\right)\right]+\left[v\left(\mathrm{Cr}_{3}-\mathrm{F}_{23}\right)+v\left(\mathrm{Cr}_{2}-\mathrm{F}_{25}\right)\right]+\left[v\left(\mathrm{Cr}_{2}-\mathrm{F}_{28}\right)+v\left(\mathrm{Cr}_{2}-\mathrm{F}_{26}\right)\right]+\left[v\left(\mathrm{Cr}_{2}-\mathrm{F}_{29}\right)+v\left(\mathrm{Cr}_{2}-\mathrm{F}_{27}\right)\right]$
	[722(<1)[48]	$\left[v\left(\mathrm{Cr}_{3}-\mathrm{F}_{24}\right)+v\left(\mathrm{Cr}_{3}-\mathrm{F}_{22}\right)\right]+\left[v\left(\mathrm{Cr}_{3}-\mathrm{F}_{23}\right)+v\left(\mathrm{Cr}_{3}-\mathrm{F}_{25}\right)\right]-\left[v\left(\mathrm{Cr}_{2}-\mathrm{F}_{28}\right)+v\left(\mathrm{Cr}_{2}-\mathrm{F}_{26}\right)\right]+\left[v\left(\mathrm{Cr}_{2}-\mathrm{F}_{29}\right)+v\left(\mathrm{Cr}_{2}-\mathrm{F}_{27}\right)\right]$
$\begin{aligned} & 675(100) \\ & 662(33) \end{aligned}$	644(136)[49]	$\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{21}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{10}\right)\right]$
	$\{639(30)[119]$	$v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{10}\right)$
	$\{633(11)[116]$	
$\begin{aligned} & 659, \text { sh } \\ & 650(17) \\ & 644(12) \\ & 634(14) \end{aligned}$	[668(7)[258]	
	666(8)[242]	
	654(13)[25]	
	644(15)[49]	
	661(7)[396]	
	653(9)[73]	
608, sh	[602(7)[106]	$\left\{\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{5}\right)\right]+\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4}\right)\right]\right\}+\left\{\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{21}\right)\right]-\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{20}\right)\right]\right\}$
604(31)	$\{596(4)[54]$	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]-\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4}\right)\right] /\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)-v\left(\mathrm{Xe}_{3}-\mathrm{F}_{21}\right)\right] / v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{e}}\left(\left[\mathrm{XeF} \mathrm{F}_{111^{+}}\right)\right)_{\text {co.op. }}\right.$
597(37)	593(3)[29]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4}\right)\right]+\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)\right]+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{10}\right)-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)\right]$
595, sh	[587(50)[3]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4}\right)\right]+\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4}\right)\right]-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{10}\right)+\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)\right]$
587, sh	[578(9)[15]	
	575(5)[17]	$\left.v\left(\mathrm{Cr}_{3}-\mathrm{F}_{24}\right)+v\left(\mathrm{Cr}_{3}-\mathrm{F}_{22}\right)\right]-\left[v\left(\mathrm{Cr}_{3}-\mathrm{F}_{25}\right)+v\left(\mathrm{Cr}_{3}-\mathrm{F}_{23}\right)\right] / v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{e}}\left(\left[\mathrm{XeF} \mathrm{F}_{111}\right)^{+}\right)\right)_{\mathrm{i}}$.
584(32)	574(7)[6]	$\left.v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{e}}(\mathrm{Xefefj}]^{+}\right)\right)_{\text {o.o.p }}$.
	$\{574(7)[23]$	$\left.\left[v\left(\mathrm{Cr}_{2}-\mathrm{F}_{29}\right)+v\left(\mathrm{Cr}_{2}-\mathrm{F}_{27}\right)\right]-\left[v\left(\mathrm{Cr}_{2}-\mathrm{F}_{26}\right)+v\left(\mathrm{Cr}_{2}-\mathrm{F}_{28}\right)\right] / v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{c}([\mathrm{Xe2}} \mathrm{F}_{11]^{+}}\right)\right)_{\text {o.op. }}$.
576, sh	572(10)[11]	$v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{e}}\left(\mathrm{Xe} 2 \mathrm{~F}_{111}{ }^{+}\right)_{\text {O.o.p. }}\right.$.
555(12)	570(19)[41]	
	[562(14)[172]	
470(4)	469(10)[34]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4}\right)\right]-\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]-\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{3}-\mathrm{F}_{4}\right)\right]+\left[v\left(\mathrm{Xe}_{3}-\mathrm{F}_{5}\right)+v\left(\mathrm{Cr}_{2}-\mathrm{F}_{3}\right)\right]$

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A6.8. (continued)

exptl ${ }^{[a, b]} \operatorname{calcd}^{[b, c]}$			assgnts ${ }^{[d]}$	
419(6)	413(1)[<0.1]			
	$\left[\begin{array}{l}413(1)[<1] \\ 389(4)[58]\end{array}\right.$		$\left[\delta\left(\mathrm{F}_{24} \mathrm{Cr}_{3} \mathrm{~F}_{25}\right)+\delta\left(\mathrm{F}_{23} \mathrm{Cr}_{5} \mathrm{~F}_{22}\right)\right]-\left[\delta\left(\mathrm{F}_{28} \mathrm{Cr}_{2} \mathrm{~F}_{27}\right)+\delta\left(\mathrm{F}_{26} \mathrm{Cr}_{2} \mathrm{~F}_{29}\right)\right]$	
411(5)	$389(4)[58]$ $383(3)[9]$	$\left[\delta\left(\mathrm{O}_{2} \mathrm{Cr}_{3} \mathrm{~F}_{22}\right)-\delta\left(\mathrm{O}_{2} \mathrm{Cr}_{3} \mathrm{~F}_{24}\right)\right]$		
	382(3)[9]	${ }^{\text {che }}$		
400(4)	$\left\{\begin{array}{l}380(3)[13]\end{array}\right.$			
	380(3)[3]	$\left[\delta\left(\mathrm{O}_{3} \mathrm{Cr}_{2} \mathrm{~F}_{29}\right)-\delta\left(\mathrm{O}_{3} \mathrm{Cr}_{2} \mathrm{~F}_{27}\right)\right]+\left[\delta\left(\mathrm{O}_{2} \mathrm{Cr}_{3} \mathrm{~F}_{23}\right)-\delta\left(\mathrm{O}_{2} \mathrm{Cr}_{3} \mathrm{~F}_{25}\right)\right]$		
$\begin{aligned} & 375, \text { sh } \\ & 372(8) \end{aligned}$	367(2)[122]	$\delta\left(\mathrm{FXeF}_{\left(\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}\right)}\right.$		
	365(3)[63]	$\left[\delta\left(\mathrm{Cr}_{1} \mathrm{~F}_{1} \mathrm{~F}_{2} \mathrm{~F}_{5}\right)+\left[\delta\left(\mathrm{F}_{8} \mathrm{Xe}_{1} \mathrm{~F}_{10}\right)-\delta\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{10}\right)\right]\right.$		
		$\delta\left(\mathrm{Cr}_{1} \mathrm{O}_{1} \mathrm{~F}_{3} \mathrm{~F}_{4}\right)$		
$\begin{aligned} & 351(19) \\ & 343, \text { sh } \end{aligned}$	$\left[\begin{array}{l}354(4)[60] \\ 350(3)[42]\end{array}\right.$			
		$\delta_{\text {umb }}\left[\mathrm{Cr}_{3} \mathrm{~F}_{4 \mathrm{cc}}\right] / \delta\left(\mathrm{FXeF}_{\left(\left[\mathrm{XeF}_{2} \mathrm{~F}_{11}\right]^{+}\right)}\right) / \delta\left(\mathrm{FXeF}_{\left(\left[\mathrm{XeFF}_{5}{ }^{+}\right)\right.}\right)$		
	349(5)[5]	$\delta_{\text {umb }}\left[\mathrm{Cr}_{2} \mathrm{~F}_{4 \mathrm{e}}\right] / \delta\left(\mathrm{FXeF}_{\left(\left[\mathrm{Xe} 2 \mathrm{~F}_{11]^{+}}\right)\right.}\right) / \delta\left(\mathrm{FXeF}_{\left([\mathrm{XeF5} 5]^{+}\right.}\right)$		
	346(1)[12]	$\delta_{\text {umbl }}\left[\mathrm{Cr}_{2} \mathrm{~F}_{4 \mathrm{e}}\right] / \delta\left(\mathrm{FXeF}_{\left(\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}\right)}\right)$		
	[344(1)[24]	$\delta_{\text {umb }}\left[\mathrm{Cr}_{3} \mathrm{~F}_{4 \mathrm{c}}\right]+\delta_{\text {umb }}\left[\mathrm{Cr}_{2} \mathrm{~F}_{4 \mathrm{c}}\right] / \delta\left(\mathrm{FXeF}_{\left(\left[\mathrm{XX}_{2} \mathrm{~F}_{11]^{+}}\right)\right.}\right) / \delta\left(\mathrm{FXeF}_{\left(\left[\mathrm{XeFFF}_{5}\right]^{+}\right)}\right)$		
	$\int^{341(<1)[54]}$	$\delta\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)-\delta\left(\mathrm{F}_{4} \mathrm{Cr}_{1} \mathrm{~F}_{5}\right)_{\text {smal }} / \rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{1}\right)$		
	$337(<1)[2]$	$\delta\left(\mathrm{FXeF}_{\left(\left[\mathrm{XeF}_{2} \mathrm{~F}_{11}\right]^{+}\right)}\right)$		
	332(2)[17]			
	331(3)[11]	$\delta\left(\mathrm{FXeF}_{\left(\left[\mathrm{Xe}_{2} \mathrm{~F} 1\right]^{+}\right)}\right)$		
325, sh	328(1)[31]	$\delta\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)_{\text {small }}-\delta\left(\mathrm{F}_{4} \mathrm{Cr}_{1} \mathrm{~F}_{5}\right) / \rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{1}\right)$		
319(5)	$\{327(3)[22]$	$\delta\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{5}\right)-\delta\left(\mathrm{F}_{4} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right) / \rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{1}\right)$		
	311(1)[122]	$\delta_{\text {umb }}\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$		
305, sh	306(2)[21]	$\delta_{\text {umb }}\left[\mathrm{XeF}_{5}\right]^{+} / \delta\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{5}\right)+\delta\left(\mathrm{F}_{4} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)$		
298, sh	297(1)[1]	$\delta\left(\mathrm{Cr}_{2} \mathrm{O}_{3} \mathrm{~F}_{4 \mathrm{c}}\right)-\delta\left(\mathrm{Cr}_{3} \mathrm{O}_{2} \mathrm{~F}_{4 \mathrm{c}}\right)$		
293(6)	293(2)[26]	$\delta\left(\mathrm{Cr}_{2} \mathrm{O}_{3} \mathrm{~F}_{4 \mathrm{c}}\right)+\delta\left(\mathrm{Cr}_{3} \mathrm{O}_{2} \mathrm{~F}_{4 \mathrm{c}}\right)$		
288, sh	289(2)[4]	$\delta\left(\mathrm{Cr}_{2} \mathrm{O}_{3} \mathrm{~F}_{4 \mathrm{c}}\right)-\delta\left(\mathrm{Cr}_{3} \mathrm{O}_{2} \mathrm{~F}_{4 \mathrm{c}}\right)$		
	286(3)[3]			
	285(2)[4]			
271, sh	276(1)[35]			
266(8)	269(2)[45]			
262, sh	258(<1)[6]	coupled deformation modes		
258, sh	256(1)[10]			
250(3)	$254(2)[6]$ $246(0)[5]$			

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A6.8. (continued)

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A6.8. (continued)

${ }^{[a]}$ Frequencies are given in $\mathrm{cm}^{-1} .{ }^{[b]}$ Values in parentheses denote relative Raman intensities. The Raman spectrum was recorded on the dry crystalline compound in an FEP sample tube at $-140{ }^{\circ} \mathrm{C}$. Several crystals were subsequently shown to be compound (6) by a single-crystal X-ray structure determination and crystallographic unit cell determinations. ${ }^{[c]}$ Values in parentheses and square brackets denote calculated Raman intensities ($\AA^{4} \mathrm{amu}^{-1}$) and infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$), respectively. ${ }^{[d]}$ Assignments are for the energy-minimized geometry (C_{1}) calculated using the uPBE1PBE/augccpVDZ (Xe)-Def2-SVP (F, O, Cr) level of theory. Abbreviations denote stretch (v), bend (δ), and wag (ρ_{w}), umbrella (umb), out-of-phase (o.o.p.), inphase (i.p.), F equatorial $\left(\mathrm{F}_{\mathrm{e}}\right)$. The atom labeling scheme corresponds to that used in Figure 9.6.

Figure A6.8. Raman spectrum obtained from the product resulting from the reaction of $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{CrF}_{6}\right] \cdot 2 \mathrm{CrOF}_{4}$ (1) with excess XeF_{6} at $30{ }^{\circ} \mathrm{C}$ in a melt. The spectrum of the resulting product was recorded at $-150{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. The dagger (\dagger) denotes an instrumental artefact and asterisks (*) denote FEP sample tube bands. The product bands (FEP sample tube lines are not included) and their relative intensities are: 1002(3), 710(sh), 675(sh), $667(<1), 658(\mathrm{sh}, \mathrm{br}), 645(100), 639(12), 632(\mathrm{sh}), 621(\mathrm{sh}), 618(8), 609(11), 600(12), 594(\mathrm{sh})$, 590(34), 580(sh), 578(30), 554(<1), 518(<1), 484(<1), 434(2), 386(<1), 372(4), 351(2), 328(2), $309(1), 261(\mathrm{sh}), 251(1), 232(1), 200(1, \mathrm{br}), 154(1), 144(1), 118(\mathrm{sh}), 111(1, \mathrm{br})$, and $102(1) \mathrm{cm}^{-1}$.

Figure A6.9. Factor-group analysis for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}{ }^{[\mathrm{a}]}$

${ }^{[a]}$ The external modes have not been treated in this analysis. ${ }^{[b]}$ The vibrational irreducible representation for gas-phase $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ is $\Gamma=51 \mathrm{Ag}_{\mathrm{g}}+51 \mathrm{~A}_{\mathrm{u}}{ }^{[\mathrm{cc}]}$ Space group; $P \overline{1}, \mathrm{Z}=1$.

Table A6.9. Calculated geometric parameters for $\mathrm{Cr}^{\mathrm{VI}} \mathrm{OF}_{4},\left[\mathrm{Cr}^{\mathrm{VI}} \mathrm{OF}_{5}\right]^{-}$, $\left[\mathrm{Cr}^{\mathrm{V}} \mathrm{OF}_{5}\right]^{2-}$, and $\left[\mathrm{Cr}^{\mathrm{V}} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$

	$\begin{gathered} \mathrm{CrOF}_{4}{ }^{[\mathrm{a}]} \\ \mathrm{C}_{4 \mathrm{v}} \\ \hline \end{gathered}$	$\left[\mathrm{CrOF}_{\mathrm{Cv}}\right]^{-[\mathrm{al}]}$	$\underset{C_{4 v}}{\left[\mathrm{CrOF}_{5}\right]^{2-[b]}}$	$\begin{gathered} {\left[\mathrm{Cr}_{2} \mathbf{O}_{2} \mathbf{F}_{8}\right]^{2-[\mathrm{b}, \mathrm{c}]}} \\ \boldsymbol{C}_{2} \end{gathered}$
Cr-O	1.499	1.540	1.559	1.526
Cr-F1	1.705	1.762	1.844	1.827
Cr-F2	1.705	1.762	1.844	1.771
Cr-F3	1.705	1.762	1.844	1.779
Cr-F4	1.705	1.762	1.844	1.771
Cr-F5		1.823	1.887	
Cr-F1A				2.373
$\mathrm{O}-\mathrm{Cr}-\mathrm{F} 1$	104.95	94.25	94.21	100.79
$\mathrm{O}-\mathrm{Cr}-\mathrm{F} 2$	104.95	94.25	94.21	100.95
O-Cr-F3	104.95	94.25	94.21	102.63
$\mathrm{O}-\mathrm{Cr}-\mathrm{F} 4$	104.95	94.25	94.21	100.95
O-Cr-F5		180.00	180.00	
O-Cr-F1A				172.19
F1-Cr-F2	86.18	89.69	89.69	88.53
F1-Cr-F3	150.10	171.50	171.58	156.58
F1-Cr-F4	86.18	89.69	89.69	88.53
F1-Cr-F5		85.75	85.79	
F1-Cr-F1A				71.40
F2-Cr-F3	86.18	89.69	89.69	87.05
F2-Cr-F4	150.10	171.50	171.58	158.07
F2-Cr-F5		85.75	85.79	
F2-Cr-F1A				79.24
F3-Cr-F4	86.18	89.69	89.69	87.05
F3-Cr-F5		85.75	85.79	
F3-Cr-F1A				85.18
F4-Cr-F5		85.75	85.79	
F4-Cr-F1A				79.24

${ }^{[a]}$ The PBE1PBE/aug-ccpVDZ (Xe)-Def2-SVP (F, O, Cr) level of theory was used. ${ }^{[b]}$ The uPBE1PBE/aug-ccpVDZ (Xe)-Def2-SVP (F, O, Cr) level of theory was used. ${ }^{[c]}$ The $\mathrm{Cr} \cdots \mathrm{Cr}$ distance was fixed at the value calculated for the $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ ion-pair (3.43 Å).

Table A6.10. Calculated ${ }^{[a]}$ vibrational frequencies and intensities for $\mathrm{Cr}^{\mathrm{VI}} \mathrm{OF}_{4}$, $\left[\mathrm{Cr}^{\mathrm{VI}} \mathrm{OF}_{5}\right]^{-},\left[\mathrm{Cr}^{\mathrm{V}} \mathrm{OF}_{5}\right]^{2-}$, and $\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right]^{2-}$

$\begin{gathered} \mathrm{CrOF}_{4}^{[\mathrm{b}]} \\ \mathrm{C}_{4 \mathrm{v}} \\ \hline \end{gathered}$	$\begin{gathered} {\left[\mathrm{CrOF}_{5}\right]^{-[\mathrm{b}]}} \\ C_{4 \mathrm{v}} \\ \hline \end{gathered}$	$\begin{aligned} & {\left[\mathrm{CrOF}_{5}\right]^{2-}[\mathrm{c}]} \\ & \mathrm{C}_{4 \mathrm{v}} \end{aligned}$	$\begin{gathered} {\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathbf{F}_{8}\right]^{2-[\mathrm{c}, \mathrm{~d}]}} \\ C_{2} \\ \hline \end{gathered}$
1233(13)[111]	1127(13)[230]	1009(63)[199]	1148(79)[0]
776(<1)[226]	659(21)[41]	565(15)[63]	1141(0)[461]
741(18)[22]	$633(<0.1)[278]$	544(<0.1)[302]	702(0)[448]
585(6)[0]	513(6)[0]	439(3)[0]	$667(<0.1)[0]$
429(2)[0]	494(7)[53]	406(2)[56]	657(0)[352]
372(2)[11]	381(<1)[7]	360(3)[10]	647(11)[0]
352(2)[7]	380(4)[8]	$329(<1)[4]$	620(0)[221]
$300(2)[14]$	346(3)[0]	312(1)[<1]	610(15)[0]
$116(<1)[0]$	$320(<0.1)$ [38$]$	279(3)[0]	502(<0.1)[17]
	$226(<1)[0]$	202(<0.1)[0]	502(7)[<0.1]
	$111(<1)[1]$	$158(<1)[5]$	387(0)[6]
			385(4)[0]
			377(3)[0]
			373(0)[5]
			358(4)[0]
			333(0)[1]
			332(4)[0]
			298(0)[49]
			296(0)[<1]
			270(5)[0]
			251(3)[0]
			245(0)[22]
			195(0)[4]
			192(<1)[0]
			$155(<1)[0]$
			$115(<1)[0]$
			84(0)[4]
			81(0)[<1]
			$80(<1)[0]$
			$69(0)[<1]$

${ }^{[a]}$ Values in parentheses and square brackets denote calculated Raman intensities (\AA^{4} amu^{-1}) and infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$), respectively. ${ }^{[\mathrm{b}]}$ The PBE1PBE/aug-ccpVDZ (Xe)-Def2-SVP (F, O, Cr) level of theory was used. ${ }^{[c]}$ The uPBE1PBE/aug-ccpVDZ (Xe)-Def2-SVP (F, O, Cr) level of theory was used. ${ }^{[d]} \mathrm{The} \mathrm{Cr} \cdots \mathrm{Cr}$ distance was fixed at the value calculated for the $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{8}\right] \cdot 2 \mathrm{XeOF}_{4}$ ion pair ($3.43 \AA$).

APPENDIX 7

CHAPTER 10 Supporting Information

 Syntheses and Structural Characterizations of $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{\mathbf{2 -}}$ and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{\mathbf{2 -}}$ SaltsTable A7.1. Experimental and calculated $\left(C_{2 \mathrm{~h}}\right)$ geometric parameters for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]\left(\mathbf{1 , 1} \mathbf{1}^{\prime}\right)$

	exptl (1)	calcd (1')		exptl (1)	calcd (1')
$\mathrm{Cr}(1)-\mathrm{O}(1)$	1.585(5)	1.520	$\mathrm{Xe}(1)-\mathrm{F}(5)$	1.876(5)	1.878
$\mathrm{Cr}(1)-\mathrm{O}(2)$	1.590(5)	1.520	$\mathrm{Xe}(1)-\mathrm{F}(6)$	1.868(5)	1.880
$\mathrm{Cr}(1)-\mathrm{F}(1)$	2.082(5)	2.135	$\mathrm{Xe}(1)-\mathrm{F}(7)$	1.864(4)	1.880
$\mathrm{Cr}(1)-\mathrm{F}(1 \mathrm{~A})$	2.065(4)	2.135	$\mathrm{Xe}(1)-\mathrm{F}(8)$	1.820(3)	1.850
$\mathrm{Cr}(1)-\mathrm{F}(2)$	1.861(4)	1.831	Xe(1)---F(3)	2.410(5)	2.421
$\mathrm{Cr}(1)-\mathrm{F}(3)$	1.870(4)	1.831	Xe(1)---F(2A)	2.430 (5)	2.421
$\mathrm{Xe}(1)-\mathrm{F}(4)$	1.874(5)	1.878	Xe(1)---F(1A)	2.762(3)	2.522
Bond Angles (deg)					
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{O}(2)$	104.5(2)	105.5	$\mathrm{F}(2)-\mathrm{Cr}(1)-\mathrm{F}(3)$	163.23(15)	156.4
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(1)$	163.4(2)	160.9	$\mathrm{Cr}(1)-\mathrm{F}(1)-\mathrm{Cr}(1 \mathrm{~A})$	108.71(14)	110.0
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(1 \mathrm{~A})$	93.4(2)	92.7	$\mathrm{Cr}(1)-\mathrm{F}(3)--\mathrm{Xe}(1)$	120.5(2)	117.0
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	94.2(2)	95.6	$\mathrm{Cr}(1 \mathrm{~A})-\mathrm{F}(2 \mathrm{~A})--\mathrm{Xe}(1)$	120.1(2)	117.0
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$	96.0(2)	98.7	$F(4)-\mathrm{Xe}(1)-\mathrm{F}(5)$	90.53(16)	90.9
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(1)$	91.5(3)	92.7	$\mathrm{F}(4)-\mathrm{Xe}(1)-\mathrm{F}(6)$	158.6(2)	157.4
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(1 \mathrm{~A})$	161.2(3)	160.9	$F(4)-\mathrm{Xe}(1)-\mathrm{F}(7)$	88.4(2)	88.0
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(2)$	97.1(2)	98.7	$F(4)-\mathrm{Xe}(1)-\mathrm{F}(8)$	79.1(2)	78.6
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(3)$	93.2(2)	95.6	$F(5)-\mathrm{Xe}(1)-\mathrm{F}(6)$	88.8(2)	88.0
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(1 \mathrm{~A})$	71.29(14)	70.0	$F(5)-\mathrm{Xe}(1)-\mathrm{F}(7)$	158.2(2)	157.4
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	79.18(18)	75.5	$F(5)-\mathrm{Xe}(1)-\mathrm{F}(8)$	79.1(2)	78.6
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$	87.36(18)	85.1	$F(6)-\mathrm{Xe}(1)-\mathrm{F}(7)$	84.41(16)	84.6
$\mathrm{F}(1 \mathrm{~A})-\mathrm{Cr}(1)-\mathrm{F}(2)$	87.31(18)	85.1	$F(6)-\mathrm{Xe}(1)-\mathrm{F}(8)$	79.8(2)	79.1
$\mathrm{F}(1 \mathrm{~A})-\mathrm{Cr}(1)-\mathrm{F}(3)$	78.85(18)	75.5	$\mathrm{F}(7)-\mathrm{Xe}(1)-\mathrm{F}(8)$	79.4(2)	79.1

[a] The PBE1PBE/Def2-SVP level of theory was used.

Table A7.2. Experimental and calculated ($C_{2 \mathrm{~h}}$) geometric parameters for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}\left(\mathbf{2}, \mathbf{2}^{\prime}\right)$

	exptl (2)	calcd ($\mathbf{2}^{\prime}$)		exptl (2)	calcd (2')
Bond Lengths and Contacts (\AA)					
$\mathrm{Cr}(1)-\mathrm{O}(1)$	$1.5765(11)$	1.5202	$\mathrm{F}(10) \cdots \mathrm{F}(1)$	2.4774(15)	2.4090
$\mathrm{Cr}(1)-\mathrm{O}(2)$	1.5822(11)	1.5202	$\mathrm{Xe}(1)-\mathrm{F}(4)$	1.8564(10)	1.8774
$\mathrm{Cr}(1)-\mathrm{F}(1)$	$2.1146(9)$	2.1501	$\mathrm{Xe}(1)-\mathrm{F}(5)$	1.8557(9)	1.8774
$\mathrm{Cr}(1)-\mathrm{F}(1 \mathrm{~A})$	2.1314(9)	2.1501	$\mathrm{Xe}(1)-\mathrm{F}(6)$	1.8505(10)	1.8699
$\mathrm{Cr}(1)-\mathrm{F}(2)$	1.8509(9)	1.8180	$\mathrm{Xe}(1)-\mathrm{F}(7)$	1.8562(9)	1.8699
$\mathrm{Cr}(1)-\mathrm{F}(3)$	1.8451(9)	1.8180	$\mathrm{Xe}(1)-\mathrm{F}(8)$	1.8200(10)	1.8489
$\mathrm{F}(9)-\mathrm{H}(9)$	0.77(4)	0.9814	Xe(1)---F(3)	$2.4795(9)$	2.4798
$\mathrm{F}(9) \cdots \mathrm{F}(10)$	2.5431(17)	2.4025	Xe(1)---F(2A)	2.4813(9)	2.4798
$\mathrm{F}(10)-\mathrm{H}(10)$	0.73(11)	0.9732	Xe(1)---F(9) ${ }_{\text {H }}$	2.7868(11)	2.4771
			Xe(1)---F(1)	3.1624(9)	3.1502
Bond Angles (deg)					
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{O}(2)$	104.82(6)	105.74	$\mathrm{F}(2)-\mathrm{Cr}(1)-\mathrm{F}(3)$	159.29(4)	154.37
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(1)$	161.65(5)	161.71	$\mathrm{Cr}(1)-\mathrm{F}(1)-\mathrm{Cr}(1 \mathrm{~A})$	110.24(5)	110.70
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(1 \mathrm{~A})$	91.40(5)	92.50	$\mathrm{Cr}(1)-\mathrm{F}(3)--\mathrm{Xe}(1)$	129.66(5)	132.02
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	95.12(5)	96.94	$\mathrm{Cr}(1 \mathrm{~A})-\mathrm{F}(2 \mathrm{~A})--\mathrm{Xe}(1)$	130.01(5)	132.02
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$	97.66(5)	98.45	$\mathrm{H}(9)-\mathrm{F}(9)--\mathrm{Xe}(1)$	112.43(5)	116.90
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(1)$	93.43(5)	92.50	$\mathrm{F}(4)-\mathrm{Xe}(1)-\mathrm{F}(5)$	85.32(5)	85.75
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(1 \mathrm{~A})$	163.75(5)	161.71	$\mathrm{F}(4)-\mathrm{Xe}(1)-\mathrm{F}(6)$	158.24(5)	156.89
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(2)$	96.67(5)	98.45	$F(4)-\mathrm{Xe}(1)-\mathrm{F}(7)$	88.00(5)	86.56
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(3)$	95.73(5)	96.94	$\mathrm{F}(4)-\mathrm{Xe}(1)-\mathrm{F}(8)$	$79.29(5)$	78.77
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(1 \mathrm{~A})$	70.39(4)	69.30	$F(5)-\mathrm{Xe}(1)-\mathrm{F}(6)$	87.25(5)	86.56
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	80.67(4)	78.70	$F(5)-\mathrm{Xe}(1)-\mathrm{F}(7)$	158.48(5)	156.89
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$	82.09(4)	80.27	$\mathrm{F}(5)-\mathrm{Xe}(1)-\mathrm{F}(8)$	79.59(5)	78.77
$\mathrm{F}(1 \mathrm{~A})-\mathrm{Cr}(1)-\mathrm{F}(2)$	82.59(4)	80.27	$F(6)-\mathrm{Xe}(1)-\mathrm{F}(7)$	91.52(5)	92.11
$\mathrm{F}(1 \mathrm{~A})-\mathrm{Cr}(1)-\mathrm{F}(3)$	80.87(4)	78.70	$F(6)-\mathrm{Xe}(1)-\mathrm{F}(8)$	79.26(5)	78.37
			$F(7)-\mathrm{Xe}(1)-\mathrm{F}(8)$	79.07(5)	78.37

[a] The PBE1PBE/Def2-SVP level of theory was used.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A7.3. Experimental and calculated $\left(C_{2 h}\right)$ geometric parameters for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}(\mathbf{3 , 3})$

	exptl (3)	calcd ($\mathbf{3}^{\prime}$)		exptl (3)	calcd (3')		exptl (3)	calcd (3')		
Bond Lengths and Contacts (\AA)										
$\mathrm{Cr}(1)-\mathrm{O}(1)$			1.5822(10)	1.5185	$\mathrm{Xe}(1)-\mathrm{F}(6)$	1.8512(9)	1.8679	$\mathrm{Xe}(2)-\mathrm{O}(3)$	1.7068(11)	1.7066
$\mathrm{Cr}(1)-\mathrm{O}(2)$	$1.5758(10)$	1.5185	$\mathrm{Xe}(1)-\mathrm{F}(7)$	1.8493(9)	1.8679	$\mathrm{Xe}(2)-\mathrm{F}(9)$	1.9024(10)	1.9130		
$\mathrm{Cr}(1)-\mathrm{F}(1)$	2.0660(8)	2.1499	$\mathrm{Xe}(1)-\mathrm{F}(8)$	1.8186(9)	1.8415	$\mathrm{Xe}(2)-\mathrm{F}(10)$	$1.9202(9)$	1.9355		
$\mathrm{Cr}(1)-\mathrm{F}(1 \mathrm{~A})$	2.1337(8)	2.1499	Xe(1)---F(2A)	2.4790 (9)	2.4642	$\mathrm{Xe}(2)-\mathrm{F}(11)$	1.9070(9)	1.9130		
$\mathrm{Cr}(1)-\mathrm{F}(2)$	1.8488(8)	1.8281	Xe(1)---F(3)	2.4842(8)	2.4642	$\mathrm{Xe}(2)-\mathrm{F}(12)$	1.9008(9)	1.9093		
$\mathrm{Cr}(1)-\mathrm{F}(3)$	1.8668(8)	1.8281	Xe(1)---F(1)	2.8592(9)	2.6655	$\mathrm{Xe}(2)--\mathrm{F}(1 \mathrm{~A})$	2.9965(8)	2.9894		
$\mathrm{Xe}(1)-\mathrm{F}(4)$	1.8542(9)	1.8712	Xe(1)---F(10)	3.3940 (11)	3.3951	Xe(2)---F(3)	$3.0036(9)$	3.1128		
$\mathrm{Xe}(1)-\mathrm{F}(5)$	1.8527(10)	1.8712				Xe(2)---F(2A)	3.2685(9)	3.1128		

Bond Angles (deg)								
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{O}(2)$	104.69(6)	105.64	$\mathrm{F}(1 \mathrm{~A})-\mathrm{Cr}(1)-\mathrm{F}(3)$	83.16(3)	82.26	$\mathrm{F}(5)-\mathrm{Xe}(1)-\mathrm{F}(8)$	79.53(5)	79.27
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(1)$	160.23(5)	161.59	$\mathrm{F}(2)-\mathrm{Cr}(1)-\mathrm{F}(3)$	159.47(4)	154.15	$\mathrm{F}(6)-\mathrm{Xe}(2)-\mathrm{F}(7)$	87.22(5)	86.36
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(1 \mathrm{~A})$	90.00(5)	92.44	$\mathrm{Cr}(1)-\mathrm{F}(1)-\mathrm{Cr}(1 \mathrm{~A})$	109.31(4)	110.23	$\mathrm{F}(6)-\mathrm{Xe}(2)-\mathrm{F}(8)$	79.85(5)	79.66
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	97.00(5)	96.90	$\mathrm{Cr}(1)-\mathrm{F}(3)--\mathrm{Xe}(1)$	110.68(3)	119.11	$\mathrm{F}(7)-\mathrm{Xe}(2)-\mathrm{F}(8)$	80.05(5)	79.66
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$	94.26(5)	98.64	$\mathrm{Cr}(1 \mathrm{~A})-\mathrm{F}(2 \mathrm{~A})--\mathrm{Xe}(1)$	121.20(4)	119.11	$\mathrm{O}(3)-\mathrm{Xe}(2)-\mathrm{F}(9)$	90.08(6)	90.97
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(1)$	94.75(5)	92.44	$\mathrm{Cr}(1)-\mathrm{F}(1)--\mathrm{Xe}(1)$	99.49(3)	100.41	$\mathrm{O}(3)-\mathrm{Xe}(2)-\mathrm{F}(10)$	90.24(6)	90.76
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(1 \mathrm{~A})$	165.26(5)	161.59	$\mathrm{Cr}(1)-\mathrm{F}(3)--\mathrm{Xe}(2)$	106.65(3)	108.51	$\mathrm{O}(3)-\mathrm{Xe}(2)-\mathrm{F}(11)$	90.23(6)	90.97
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(2)$	96.93(5)	98.64	$\mathrm{F}(4)-\mathrm{Xe}(1)-\mathrm{F}(5)$	88.80(5)	90.19	$\mathrm{O}(4)-\mathrm{Xe}(2)-\mathrm{F}(12)$	91.19(6)	91.78
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(3)$	96.73(5)	96.90	$\mathrm{F}(4)-\mathrm{Xe}(1)-\mathrm{F}(6)$	159.46(4)	158.83	$\mathrm{F}(9)-\mathrm{Xe}(2)-\mathrm{F}(10)$	90.18(5)	91.13
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(1 \mathrm{~A})$	70.69(4)	69.77	$\mathrm{F}(4)-\mathrm{Xe}(1)-\mathrm{F}(7)$	88.45(5)	87.88	$\mathrm{F}(9)-\mathrm{Xe}(2)-\mathrm{F}(11)$	178.38(5)	177.00
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	84.03(4)	82.26	$\mathrm{F}(4)-\mathrm{Xe}(1)-\mathrm{F}(8)$	79.63(5)	79.27	$F(9)-\mathrm{Xe}(2)-\mathrm{F}(12)$	90.09(5)	88.82
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$	79.63(3)	76.56	$\mathrm{F}(5)-\mathrm{Xe}(1)-\mathrm{F}(6)$	88.29(5)	87.88	$\mathrm{F}(10)-\mathrm{Xe}(2)-\mathrm{F}(11)$	91.41(5)	91.13
$\mathrm{F}(1 \mathrm{~A})-\mathrm{Cr}(1)-\mathrm{F}(2)$	79.74(3)	76.56	$F(5)-\mathrm{Xe}(1)-\mathrm{F}(7)$	159.55(4)	158.83	$F(10)-\mathrm{Xe}(2)-\mathrm{F}(12)$	178.54(5)	177.46
						$\mathrm{F}(11)-\mathrm{Xe}(2)-\mathrm{F}(12)$	88.31(5)	88.82

[a] The PBE1PBE/Def2-SVP level of theory was used.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A7.4. Experimental geometric parameters for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ (4)

Bond lengths (\AA)					
$\mathrm{Cr}(1)-\mathrm{O}(1)$	1.504(16)	$\mathrm{Xe}(1)-\mathrm{F}(9)$	1.787(13)	Xe(2)---F(1)	2.417(11)
$\mathrm{Cr}(1)-\mathrm{O}(2)$	$1.595(16)$	Xe(1)---F(1)	2.414(12)	$\mathrm{Xe}(2)--\mathrm{F}(4)$	2.779(12)
$\mathrm{Cr}(1)-\mathrm{F}(1)$	$2.105(12)$	Xe(1)---F(2)	2.447(12)	$\mathrm{Xe}(3)-\mathrm{F}(15)$	1.914(13)
$\mathrm{Cr}(1)-\mathrm{F}(2)$	2.081(13)	Xe(1)---F(3)	2.687(14)	$\mathrm{Xe}(3)-\mathrm{F}(16)$	$1.835(12)$
$\mathrm{Cr}(1)-\mathrm{F}(3)$	1.812(14)	$\mathrm{Xe}(2)-\mathrm{F}(10)$	$1.795(14)$	$\mathrm{Xe}(3)-\mathrm{F}(17)$	1.845(12)
$\mathrm{Cr}(1)-\mathrm{F}(4)$	1.838(13)	$\mathrm{Xe}(2)-\mathrm{F}(11)$	$1.909(14)$	$\mathrm{Xe}(3)-\mathrm{F}(18)$	1.864(13)
$\mathrm{Xe}(1)-\mathrm{F}(5)$	1.941(16)	$\mathrm{Xe}(2)-\mathrm{F}(12)$	1.899(14)	$\mathrm{Xe}(3)-\mathrm{F}(19)$	$1.826(12)$
$\mathrm{Xe}(1)-\mathrm{F}(6)$	$1.865(14)$	$\mathrm{Xe}(2)-\mathrm{F}(13)$	1.788(15)	Xe(3)---F(20)	2.266 (12)
$\mathrm{Xe}(1)-\mathrm{F}(7)$	$1.776(16)$	$\mathrm{Xe}(2)-\mathrm{F}(14)$	1.749(14)	Xe(3)---F(2)	2.544(13)
$\mathrm{Xe}(1)-\mathrm{F}(8)$	1.857(16)	Xe(2)---F(20)	2.368(13)	Xe(3)---F(4)	2.830(13)
Bond angles (${ }^{\circ}$)					
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{O}(2)$	101.2(11)	$\mathrm{F}(7)-\mathrm{Xe}(1)--\mathrm{F}(2)$	76.0(6)	$\mathrm{F}(13)-\mathrm{Xe}(2)-\mathrm{F}(14)$	79.9(8)
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(1)$	94.3(9)	$F(7)-X e(1)---F(3)$	129.2(6)	$F(14)-X e(2)---F(20)$	139.6(6)
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	169.8(9)	$F(7)-\mathrm{Xe}(1)-\mathrm{F}(8)$	89.3(8)	$F(14)-X e(2)--\mathrm{F}(1)$	148.1(6)
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$	103.1(10)	$F(7)-\mathrm{Xe}(1)-\mathrm{F}(9)$	79.0(7)	$F(14)-X e(2)--\mathrm{F}(4)$	137.4(6)
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(4)$	97.4(9)	$F(8)-X e(1)---F(1)$	127.8(6)	$F(15)-X e(3)---F(20)$	129.5(5)
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(1)$	164.5(8)	$F(8)-X e(1)--\mathrm{F}(2)$	81.2(6)	$F(15)-X e(3)---F(2)$	74.4(5)
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(2)$	89.0(8)	$F(8)-X e(1)--\mathrm{F}(3)$	70.8(7)	$F(15)-X e(3)--\mathrm{F}(4)$	68.4(5)
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(3)$	98.8(8)	$F(8)-\mathrm{Xe}(1)-\mathrm{F}(9)$	75.7(8)	$F(15)-\mathrm{Xe}(3)-\mathrm{F}(16)$	88.4(5)
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(4)$	98.2(8)	$F(9)-X e(1)---F(1)$	149.9(6)	$F(15)-\mathrm{Xe}(3)-\mathrm{F}(17)$	155.0(5)
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	75.5(5)	$F(9)-X e(1)---F(2)$	146.0(6)	$F(15)-\mathrm{Xe}(3)-\mathrm{F}(18)$	87.7(6)
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$	78.0(5)	$F(9)-X e(1)---F(3)$	134.5(6)	$F(15)-\mathrm{Xe}(3)-\mathrm{F}(19)$	79.1(6)
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(4)$	79.1(5)	$F(10)-X e(2)---F(20)$	130.2(5)	$F(16)-X e(3)---F(20)$	83.4(5)
$\mathrm{F}(2)-\mathrm{Cr}(1)-\mathrm{F}(3)$	75.6(6)	$F(10)-X e(2)---F(1)$	81.5(6)	$F(16)-X e(3)--\mathrm{F}(2)$	128.9(5)
$\mathrm{F}(2)-\mathrm{Cr}(1)-\mathrm{F}(4)$	80.4(6)	$F(10)-X e(2)--\mathrm{F}(4)$	68.9(5)	$F(16)-X e(3)---F(4)$	72.8(5)
$\mathrm{F}(3)-\mathrm{Cr}(1)-\mathrm{F}(4)$	150.2(6)	$F(10)-\mathrm{Xe}(2)-\mathrm{F}(11)$	88.0(7)	$F(16)-\mathrm{Xe}(3)-\mathrm{F}(17)$	88.5(5)
$F(5)-X e(1)---F(1)$	81.1(6)	$F(10)-\mathrm{Xe}(2)-\mathrm{F}(12)$	156.1(7)	$F(16)-\mathrm{Xe}(3)-\mathrm{F}(18)$	155.1(6)
$F(5)-X e(1)---F(2)$	124.3(6)	$F(10)-\mathrm{Xe}(2)-\mathrm{F}(13)$	91.3(8)	$F(16)-X e(3)-F(19)$	78.5(6)
$F(5)-X e(1)---F(3)$	69.6(6)	$F(10)-\mathrm{Xe}(2)-\mathrm{F}(14)$	81.6(7)	$F(17)-X e(3)---F(20)$	74.7(5)
$\mathrm{F}(5)-\mathrm{Xe}(1)-\mathrm{F}(6)$	86.4(7)	$F(11)-X e(2)---F(20)$	78.2(6)	$F(17)-X e(3)---F(2)$	125.5(5)
$F(5)-\mathrm{Xe}(1)-\mathrm{F}(7)$	159.2(7)	$F(11)-X e(2)--\mathrm{F}(1)$	127.1(5)	$F(17)-\mathrm{Xe}(3)--\mathrm{F}(4)$	133.7(5)
$\mathrm{F}(5)-\mathrm{Xe}(1)-\mathrm{F}(8)$	89.5(7)	$F(11)-X e(2)---F(4)$	70.3(5)	$F(17)-\mathrm{Xe}(3)-\mathrm{F}(18)$	84.8(6)
$F(5)-\mathrm{Xe}(1)-\mathrm{F}(9)$	80.6(7)	$F(11)-\mathrm{Xe}(2)-\mathrm{F}(12)$	85.7(7)	$F(17)-\mathrm{Xe}(3)-\mathrm{F}(19)$	75.9(6)
F(6)-Xe(1)---F(1)	71.4(5)	$\mathrm{F}(11)-\mathrm{Xe}(2)-\mathrm{F}(13)$	158.8(7)	$F(18)-X e(3)---F(20)$	117.6(5)
$F(6)-X e(1)---F(2)$	117.5(6)	$F(11)-\mathrm{Xe}(2)-\mathrm{F}(14)$	79.0(7)	$F(18)-\mathrm{Xe}(3)--\mathrm{F}(2)$	73.4(5)
$F(6)-X e(1)---F(3)$	125.9(6)	$F(12)-X e(2)---F(20)$	70.7(6)	$F(18)-X e(3)---F(4)$	127.8(5)
$\mathrm{F}(6)-\mathrm{Xe}(1)-\mathrm{F}(7)$	87.4(7)	$F(12)-X e(2)--\mathrm{F}(1)$	120.3(6)	$\mathrm{F}(18)-\mathrm{Xe}(3)-\mathrm{F}(19)$	76.6(6)
$F(6)-\mathrm{Xe}(1)-\mathrm{F}(8)$	159.5(7)	$F(12)-\mathrm{Xe}(2)--\mathrm{F}(4)$	129.5(6)	$F(19)-X e(3)---F(20)$	145.7(5)
$F(6)-\mathrm{Xe}(1)-\mathrm{F}(9)$	83.8(7)	$F(12)-\mathrm{Xe}(2)-\mathrm{F}(13)$	86.5(8)	$F(19)-X e(3)--\mathrm{F}(2)$	140.3(5)
$F(7)-X e(1)---F(1)$	115.6(6)	$F(12)-\mathrm{Xe}(2)-\mathrm{F}(14)$	74.7(7)	$F(19)-X e(3)---F(4)$	136.6(5)
		$F(13)-X e(2)---F(20)$	117.5(7)		
		$F(13)-\mathrm{Xe}(2)--\mathrm{F}(1)$	73.7(6)		
		F(13)-Xe(2)---F(4)	128.8(6)		

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A7.4. (continued) Experimental geometric parameters for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ (4)

Bond lengths (\AA)					
$\mathrm{Cr}(2)-\mathrm{O}(3)$	$1.560(16)$	$\mathrm{Xe}(4)-\mathrm{F}(29)$	$1.827(14)$	$\mathrm{Xe}(5)--\mathrm{F}(21)$	$2.419(11)$
$\mathrm{Cr}(2)-\mathrm{O}(4)$	$1.520(17)$	$\mathrm{Xe}(4)--\mathrm{F}(21)$	$2.453(12)$	$\mathrm{Xe}(5)--\mathrm{F}(24)$	$2.838(12)$
$\mathrm{Cr}(2)-\mathrm{F}(21)$	$2.178(12)$	$\mathrm{Xe}(4)--\mathrm{F}(22)$	$2.438(11)$	$\mathrm{Xe}(6)-\mathrm{F}(35)$	$1.833(15)$
$\mathrm{Cr}(2)-\mathrm{F}(22)$	$2.146(12)$	$\mathrm{Xe}(4)--\mathrm{F}(23)$	$2.695(15)$	$\mathrm{Xe}(6)-\mathrm{F}(36)$	$1.826(13)$
$\mathrm{Cr}(2)-\mathrm{F}(23)$	$1.834(14)$	$\mathrm{Xe}(5)-\mathrm{F}(30)$	$1.844(11)$	$\mathrm{Xe}(6)-\mathrm{F}(37)$	$1.868(13)$
$\mathrm{Cr}(2)-\mathrm{F}(24)$	$1.823(12)$	$\mathrm{Xe}(5)-\mathrm{F}(31)$	$1.844(11)$	$\mathrm{Xe}(6)-\mathrm{F}(38)$	$1.852(14)$
$\mathrm{Xe}(4)-\mathrm{F}(25)$	$1.856(16)$	$\mathrm{Xe}(5)-\mathrm{F}(32)$	$1.884(13)$	$\mathrm{Xe}(6)-\mathrm{F}(39)$	$1.876(14)$
$\mathrm{Xe}(4)-\mathrm{F}(26)$	$1.758(16)$	$\mathrm{Xe}(5)-\mathrm{F}(33)$	$1.906(11)$	$\mathrm{Xe}(6)--\mathrm{F}(40)$	$2.357(12)$
$\mathrm{Xe}(4)-\mathrm{F}(27)$	$1.810(16)$	$\mathrm{Xe}(5)-\mathrm{F}(34)$	$1.857(12)$	$\mathrm{Xe}(6)--\mathrm{F}(22)$	$2.502(11)$
$\mathrm{Xe}(4)-\mathrm{F}(28)$	$1.899(16)$	$\mathrm{Xe}(5)--\mathrm{F}(40)$	$2.296(12)$	$\mathrm{Xe}(6)--\mathrm{F}(24)$	$2.822(12)$

Bond angles (${ }^{\circ}$)					
$\mathrm{O}(3)-\mathrm{Cr}(2)-\mathrm{O}(4)$	107.2(10)	F(27)-Xe(4)---F(22)	73.1(6)	F(33)-Xe(5)---F(24)	125.4(4)
$\mathrm{O}(3)-\mathrm{Cr}(2)-\mathrm{F}(21)$	90.4(8)	$F(27)-\mathrm{Xe}(4)--\mathrm{F}(23)$	126.0(6)	$\mathrm{F}(33)-\mathrm{Xe}(5)-\mathrm{F}(34)$	80.3(5)
$\mathrm{O}(3)-\mathrm{Cr}(2)-\mathrm{F}(22)$	164.3(7)	$\mathrm{F}(27)-\mathrm{Xe}(4)-\mathrm{F}(28)$	86.9(8)	$F(34)-\mathrm{Xe}(5)--\mathrm{F}(40)$	146.6(5)
$\mathrm{O}(3)-\mathrm{Cr}(2)-\mathrm{F}(23)$	104.2(9)	$F(27)-\mathrm{Xe}(4)-\mathrm{F}(29)$	80.9(8)	$\mathrm{F}(34)-\mathrm{Xe}(5)--\mathrm{F}(21)$	141.8(5)
$\mathrm{O}(3)-\mathrm{Cr}(2)-\mathrm{F}(24)$	96.3(8)	F(28)-Xe(4)---F(21)	126.1(6)	F(34)-Xe(5)---F(24)	134.8(5)
$\mathrm{O}(4)-\mathrm{Cr}(2)-\mathrm{F}(21)$	162.0(8)	$F(28)-\mathrm{Xe}(4)--\mathrm{F}(22)$	80.6(6)	$\mathrm{F}(35)-\mathrm{Xe}(6)--\mathrm{F}(40)$	128.4(6)
$\mathrm{O}(4)-\mathrm{Cr}(2)-\mathrm{F}(22)$	88.5(7)	$F(28)-\mathrm{Xe}(4)--\mathrm{F}(23)$	69.6(6)	$\mathrm{F}(35)-\mathrm{Xe}(6)--\mathrm{F}(22)$	78.6(6)
$\mathrm{O}(4)-\mathrm{Cr}(2)-\mathrm{F}(23)$	96.2(10)	$\mathrm{F}(28)-\mathrm{Xe}(4)-\mathrm{F}(29)$	76.5(8)	$\mathrm{F}(35)-\mathrm{Xe}(6)--\mathrm{F}(24)$	68.0(5)
$\mathrm{O}(4)-\mathrm{Cr}(2)-\mathrm{F}(24)$	104.1(9)	F(29)-Xe(4)---F(21)	149.3(6)	$\mathrm{F}(35)-\mathrm{Xe}(6)-\mathrm{F}(36)$	88.8(7)
$\mathrm{F}(21)-\mathrm{Cr}(2)-\mathrm{F}(22)$	74.0(5)	F(29)-Xe(4)---F(22)	146.1(6)	$\mathrm{F}(35)-\mathrm{Xe}(6)-\mathrm{F}(37)$	156.8(6)
$\mathrm{F}(21)-\mathrm{Cr}(2)-\mathrm{F}(23)$	75.4(6)	F(29)-Xe(4)---F(23)	133.9(6)	$\mathrm{F}(35)-\mathrm{Xe}(6)-\mathrm{F}(38)$	87.9(7)
$\mathrm{F}(21)-\mathrm{Cr}(2)-\mathrm{F}(24)$	77.0(5)	F(30)-Xe(5)---F(40)	128.4(5)	$\mathrm{F}(35)-\mathrm{Xe}(6)-\mathrm{F}(39)$	79.9(7)
$\mathrm{F}(22)-\mathrm{Cr}(2)-\mathrm{F}(23)$	74.4(5)	F(30)-Xe(5)---F(21)	77.8(5)	$\mathrm{F}(36)-\mathrm{Xe}(6)--\mathrm{F}(40)$	79.3(5)
$\mathrm{F}(22)-\mathrm{Cr}(2)-\mathrm{F}(24)$	78.4(5)	F(30)-Xe(5)---F(24)	67.7(5)	F(36)-Xe(6)---F(22)	127.4(5)
$\mathrm{F}(23)-\mathrm{Cr}(2)-\mathrm{F}(24)$	145.4(6)	$\mathrm{F}(30)-\mathrm{Xe}(5)-\mathrm{F}(31)$	88.9(5)	$\mathrm{F}(36)-\mathrm{Xe}(6)--\mathrm{F}(24)$	71.8(5)
$\mathrm{F}(25)-\mathrm{Xe}(4)--\mathrm{F}(21)$	81.4(6)	$\mathrm{F}(30)-\mathrm{Xe}(5)-\mathrm{F}(32)$	158.2(5)	$\mathrm{F}(36)-\mathrm{Xe}(6)-\mathrm{F}(37)$	88.9(7)
F(25)-Xe(4)---F(22)	128.5(6)	$\mathrm{F}(30)-\mathrm{Xe}(5)-\mathrm{F}(33)$	89.6(5)	$\mathrm{F}(36)-\mathrm{Xe}(6)-\mathrm{F}(38)$	158.2(6)
F(25)-Xe(4)---F(23)	73.4(6)	$\mathrm{F}(30)-\mathrm{Xe}(5)-\mathrm{F}(34)$	77.2(5)	$\mathrm{F}(36)-\mathrm{Xe}(6)-\mathrm{F}(39)$	80.8(7)
$\mathrm{F}(25)-\mathrm{Xe}(4)-\mathrm{F}(26)$	90.7(8)	F(31)-Xe(5)---F(40)	79.8(5)	$\mathrm{F}(37)-\mathrm{Xe}(6)--\mathrm{F}(40)$	73.7(5)
$\mathrm{F}(25)-\mathrm{Xe}(4)-\mathrm{F}(27)$	157.8(7)	F(31)-Xe(5)---F(21)	128.0(4)	$\mathrm{F}(37)-\mathrm{Xe}(6)--\mathrm{F}(22)$	120.4(5)
$\mathrm{F}(25)-\mathrm{Xe}(4)-\mathrm{F}(28)$	91.4(8)	$F(31)-\mathrm{Xe}(5)--\mathrm{F}(24)$	72.1(4)	$F(37)-\mathrm{Xe}(6)--\mathrm{F}(24)$	132.6(5)
$\mathrm{F}(25)-\mathrm{Xe}(4)-\mathrm{F}(29)$	77.2(8)	$\mathrm{F}(31)-\mathrm{Xe}(5)-\mathrm{F}(32)$	88.3(5)	$\mathrm{F}(37)-\mathrm{Xe}(6)-\mathrm{F}(38)$	85.8(6)
$\mathrm{F}(26)-\mathrm{Xe}(4)--\mathrm{F}(21)$	75.0(6)	$\mathrm{F}(31)-\mathrm{Xe}(5)-\mathrm{F}(33)$	159.9(5)	$\mathrm{F}(37)-\mathrm{Xe}(6)-\mathrm{F}(39)$	77.0(6)
$\mathrm{F}(26)-\mathrm{Xe}(4)--\mathrm{F}(22)$	113.9(6)	$\mathrm{F}(31)-\mathrm{Xe}(5)-\mathrm{F}(34)$	79.8(5)	F(38)-Xe(6)---F(40)	119.1(6)
$\mathrm{F}(26)-\mathrm{Xe}(4)--\mathrm{F}(23)$	130.9(6)	F(32)-Xe(5)---F(40)	72.3(5)	F(38)-Xe(6)---F(22)	72.8(5)
$\mathrm{F}(26)-\mathrm{Xe}(4)-\mathrm{F}(27)$	83.2(8)	F(32)-Xe(5)---F(21)	120.3(5)	F(38)-Xe(6)---F(24)	126.2(5)
$\mathrm{F}(26)-\mathrm{Xe}(4)-\mathrm{F}(28)$	158.9(7)	$F(32)-\mathrm{Xe}(5)--\mathrm{F}(24)$	131.4(5)	$F(38)-\mathrm{Xe}(6)-\mathrm{F}(39)$	77.5(7)
$\mathrm{F}(26)-\mathrm{Xe}(4)-\mathrm{F}(29)$	83.5(7)	$\mathrm{F}(32)-\mathrm{Xe}(5)-\mathrm{F}(33)$	85.6(5)	F(39)-Xe(6)---F(40)	144.6(6)
F(27)-Xe(4)---F(21)	117.2(6)	$\mathrm{F}(32)-\mathrm{Xe}(5)-\mathrm{F}(34)$	81.0(5)	$\mathrm{F}(39)-\mathrm{Xe}(6)--\mathrm{F}(22)$	143.6(5)
		F(33)-Xe(5)---F(40)	116.3(5)	F(39)-Xe(6)---F(24)	137.5(6)
		F(33)-Xe(5)---F(21)	71.1(5)		

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A7.5. Calculated geometric parameters for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]\left(4^{\prime}\right)\left(C_{\mathrm{s}}\right)$

	Bond lengths and contacts (\AA)		
$\mathrm{Cr}(1)-\mathrm{O}(1)$	1.520	$\mathrm{Xe}(2)-\mathrm{F}(11)$	1.880
$\mathrm{Cr}(1)-\mathrm{O}(2)$	1.520	$\mathrm{Xe}(2)-\mathrm{F}(12)$	1.878
$\mathrm{Cr}(1)-\mathrm{F}(1)$	2.208	$\mathrm{Xe}(2)-\mathrm{F}(13)$	1.885
$\mathrm{Cr}(1)-\mathrm{F}(2)$	2.208	$\mathrm{Xe}(2)-\mathrm{F}(14)$	1.853
$\mathrm{Cr}(1)-\mathrm{F}(3)$	1.797	$\mathrm{Xe}(2)--\mathrm{F}(20)$	2.285
$\mathrm{Cr}(1)-\mathrm{F}(4)$	1.799	$\mathrm{Xe}(2)--\mathrm{F}(1)$	2.398
$\mathrm{Xe}(1)-\mathrm{F}(5)$	1.879	$\mathrm{Xe}(2)--\mathrm{F}(4)$	2.857
$\mathrm{Xe}(1)-\mathrm{F}(6)$	1.891	$\mathrm{Xe}(3)-\mathrm{F}(15)$	1.891
$\mathrm{Xe}(1)-\mathrm{F}(7)$	1.891	$\mathrm{Xe}(3)-\mathrm{F}(16)$	1.880
$\mathrm{Xe}(1)-\mathrm{F}(8)$	1.879	$\mathrm{Xe}(3)-\mathrm{F}(17)$	1.878
$\mathrm{Xe}(1)-\mathrm{F}(9)$	1.851	$\mathrm{Xe}(3)-\mathrm{F}(18)$	1.885
$\mathrm{Xe}(1)--\mathrm{F}(1)$	2.387	$\mathrm{Xe}(3)--\mathrm{F}(19)$	1.853
$\mathrm{Xe}(1)--\mathrm{F}(2)$	2.387	$\mathrm{Xe}(3)---\mathrm{F}(2)$	2.398
$\mathrm{Xe}(1)--\mathrm{F}(3)$	2.536	$\mathrm{Xe}(3)--\mathrm{F}(4)$	2.857
$\mathrm{Xe}(2)-\mathrm{F}(10)$	1.891	$\mathrm{Xe}(3)-\mathrm{F}(20)$	2.285

	Bond angles (deg)		
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{O}(2)$	105.4	$\mathrm{~F}(6)-\mathrm{Xe}(1)-\mathrm{F}(7)$	84.1
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(1)$	91.3	$\mathrm{~F}(6)-\mathrm{Xe}(1)-\mathrm{F}(8)$	157.4
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	163.2	$\mathrm{~F}(6)-\mathrm{Xe}(1)-\mathrm{F}(9)$	78.8
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$	100.6	$\mathrm{~F}(7)-\mathrm{Xe}(1)-\mathrm{F}(8)$	88.0
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(4)$	100.8	$\mathrm{~F}(7)-\mathrm{Xe}(1)-\mathrm{F}(9)$	78.8
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(1)$	163.2	$\mathrm{~F}(8)-\mathrm{Xe}(1)-\mathrm{F}(9)$	78.8
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(2)$	91.3	$\mathrm{~F}(10)-\mathrm{Xe}(2)-\mathrm{F}(11)$	88.6
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(3)$	100.6	$\mathrm{~F}(10)-\mathrm{Xe}(2)-\mathrm{F}(12)$	157.3
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(4)$	100.8	$\mathrm{~F}(10)-\mathrm{Xe}(2)-\mathrm{F}(13)$	89.5
$\mathrm{~F}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	71.9	$\mathrm{~F}(10)-\mathrm{Xe}(2)-\mathrm{F}(14)$	78.6
$\mathrm{~F}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$	74.4	$\mathrm{~F}(10)-\mathrm{Xe}(2)--\mathrm{F}(20)$	128.3
$\mathrm{~F}(1)-\mathrm{Cr}(1)-\mathrm{F}(4)$	76.8	$\mathrm{~F}(11)-\mathrm{Xe}(2)-\mathrm{F}(12)$	89.0
$\mathrm{~F}(2)-\mathrm{Cr}(1)-\mathrm{F}(3)$	74.4	$\mathrm{~F}(11)-\mathrm{Xe}(2)-\mathrm{F}(13)$	158.7
$\mathrm{~F}(2)-\mathrm{Cr}(1)-\mathrm{F}(4)$	76.8	$\mathrm{~F}(11)-\mathrm{Xe}(2)-\mathrm{F}(14)$	79.2
$\mathrm{~F}(3)-\mathrm{Cr}(1)-\mathrm{F}(4)$	144.2	$\mathrm{~F}(11)-\mathrm{Xe}(2)--\mathrm{F}(20)$	79.8
$\mathrm{Cr}(1)-\mathrm{F}(1)---\mathrm{Xe}(1)$	97.7	$\mathrm{~F}(12)-\mathrm{Xe}(2)-\mathrm{F}(13)$	84.6
$\mathrm{Cr}(1)-\mathrm{F}(2)--\mathrm{Xe}(1)$	97.7	$\mathrm{~F}(12)-\mathrm{Xe}(2)-\mathrm{F}(14)$	78.8
$\mathrm{Cr}(1)-\mathrm{F}(3)---\mathrm{Xe}(1)$	104.8	$\mathrm{~F}(12)-\mathrm{Xe}(2)--\mathrm{F}(20)$	73.3
$\mathrm{~F}(5)-\mathrm{Xe}(1)-\mathrm{F}(6)$	88.0	$\mathrm{~F}(13)-\mathrm{Xe}(2)-\mathrm{F}(14)$	79.6
$\mathrm{~F}(5)-\mathrm{Xe}(1)-\mathrm{F}(7)$	157.4	$\mathrm{~F}(13)-\mathrm{Xe}(2)---\mathrm{F}(20)$	117.4
$\mathrm{~F}(5)-\mathrm{Xe}(1)-\mathrm{F}(8)$	91.2	$\mathrm{~F}(14)-\mathrm{Xe}(2)--\mathrm{F}(20)$	145.1
$\mathrm{~F}(5)-\mathrm{Xe}(1)-\mathrm{F}(9)$	78.8		

continued...

Table A7.5. (continued...) Calculated geometric parameters for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]\left(4^{\prime}\right)\left(C_{\mathrm{s}}\right)$

Bond angles (deg)			
$\mathrm{F}(15)-\mathrm{Xe}(3)-\mathrm{F}(16)$	88.6	$\mathrm{~F}(16)-\mathrm{Xe}(3)--\mathrm{F}(20)$	79.8
$\mathrm{~F}(15)-\mathrm{Xe}(3)-\mathrm{F}(17)$	157.3	$\mathrm{~F}(17)-\mathrm{Xe}(3)-\mathrm{F}(18)$	84.6
$\mathrm{~F}(15)-\mathrm{Xe}(3)-\mathrm{F}(18)$	89.5	$\mathrm{~F}(17)-\mathrm{Xe}(3)-\mathrm{F}(19)$	78.8
$\mathrm{~F}(15)-\mathrm{Xe}(3)-\mathrm{F}(19)$	78.6	$\mathrm{~F}(17)-\mathrm{Xe}(3)--\mathrm{F}(20)$	73.3
$\mathrm{~F}(15)-\mathrm{Xe}(3)--\mathrm{F}(20)$	128.3	$\mathrm{~F}(18)-\mathrm{Xe}(3)-\mathrm{F}(19)$	79.6
$\mathrm{~F}(16)-\mathrm{Xe}(3)-\mathrm{F}(17)$	89.0	$\mathrm{~F}(18)-\mathrm{Xe}(3)--\mathrm{F}(20)$	117.4
$\mathrm{~F}(16)-\mathrm{Xe}(3)-\mathrm{F}(18)$	158.7	$\mathrm{~F}(19)-\mathrm{Xe}(3)--\mathrm{F}(20)$	145.1
$\mathrm{~F}(16)-\mathrm{Xe}(3)-\mathrm{F}(19)$	79.2		

[a] The PBE1PBE/Def2-SVP level of theory was used.

Table A7.6. Experimenta ${ }^{[a]}$ and calculated ${ }^{[b]}$ vibrational frequencies, intensities, and assignments ${ }^{\left[{ }^{[\mathrm{c}]}\right.}$ for

$\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$ (1 and $\mathbf{1}^{\prime}$)		
$\text { exptI }{ }^{[a]}$	$\text { calcd }^{[b]}$	assgnts ($\left.\boldsymbol{C}_{2 \mathrm{~h}}\right)^{[\mathrm{c}, \mathrm{d}]}$
940(57)	1182(51)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{O}_{2}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)\right]$
	1173(0)[192]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{O}_{2}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)\right]$
	1165(0)[309]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{O}_{2}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)\right]$
919(25)	1148(39)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{O}_{2}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)\right]$
	666(0)[220]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)\right]$
	663(0)[433]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+\right.} \\ & \left.v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right] \end{aligned}$
655(100)	661(135)[0]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8} \mathrm{~A}\right)\right]$
644(13)	661(9)[0]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)+\right.} \\ & \left.v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)\right] \end{aligned}$
628(11)	659(14)[0]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)+\right.} \\ & \left.v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right] \end{aligned}$
	657(0)[350]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)+\right.} \\ & \left.v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)\right] \end{aligned}$
	611(0)[113]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+\right.} \\ & \left.v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right] \end{aligned}$
600(57)	608(22)[0]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)+\right.} \\ & \left.v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)\right] \end{aligned}$
	591(0)[<1]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+\right.} \\ & \left.v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)\right] \end{aligned}$
584(37)	591(20)[0]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)+\right.} \\ & \left.v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right] \end{aligned}$
	579(0)[125]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]_{\text {small }}$
534(31)	565(52)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]_{\text {small }}$
	557(0)[530]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]$
520(5)	520(8)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2 \mathrm{~A}}\right)\right]$
445(3)	481(4)[0]	$\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]_{\text {small }}+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]_{\text {small }}$
	478(0)[11]	$\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]_{\text {small }}-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]_{\text {small }}$

Table A7.6. (continued) Experimental ${ }^{[a]}$ and calculated ${ }^{[b]}$ vibrational frequencies, intensities, and assignments ${ }^{[c]}$ for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$ (1 and $\mathbf{1}^{\prime}$)

exptl ${ }^{[a]}$	calcd $^{[b]}$	assgnts $\left(C_{2 h}\right)^{[c, d]}$
408(sh)	$\int 410(2)$ [0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]$
	[404(6) [0]	$\left[\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{5} \mathrm{~F}_{6} \mathrm{~F}_{8}\right)+\delta\left(\mathrm{Xe}_{1} \mathrm{~F} \mathrm{~F}_{5 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]$
404(11)	[401(0)[25]	$\left[\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{6} \mathrm{~F}_{7} \mathrm{~F}_{8}\right)-\delta\left(\mathrm{Xe}_{14} \mathrm{~F}_{6 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right)\right]$
	401(0)[16]	$\left[\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{5} \mathrm{~F}_{6} \mathrm{~F}_{8}\right)-\delta\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right)\right]$
	399(3)[0]	$\left[\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{6} \mathrm{~F}_{7} \mathrm{~F}_{8}\right)+\delta\left(\mathrm{Xe}_{14} \mathrm{~F}_{6 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right)\right]$
401(sh)	[395(0)[134]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{3}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{2}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]$
	390(1)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]-\left[\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{5} \mathrm{~F}_{6} \mathrm{~F}_{8}\right)+\delta\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right)\right]$
	374(0)[3]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 A} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$
356(5)	371(0)[21]	$\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\rho_{\mathrm{w}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{1 \mathrm{~A}}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]$
	- 368(3)[0]	$\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{1 \mathrm{~A}}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{t}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]+\left[\rho_{t}\left(\mathrm{~F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]_{\text {small }}$
	[363(3)[0]	$\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]$
343(5)	353(0)[24]	$\left[\delta_{\text {umb }}\left(\mathrm{Xe}_{1} \mathrm{~F}_{4-7}\right)-\delta_{\text {umb }}\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}-7 \mathrm{~A}}\right)\right]$
	352(3)[0]	$\delta_{\text {umb }}\left(\mathrm{Xe}_{1} \mathrm{~F}_{4-7}\right)+\delta_{\text {umb }}\left(\mathrm{Xe}_{14} \mathrm{~F}_{4 \mathrm{~A}-7 \mathrm{~A}}\right)$
	330(0)[58]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)\right]+\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]_{\text {small }}$
296(11)	$330(0)$ [294]	$\left[\rho_{\mathrm{r}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\rho_{\mathrm{r}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$
	294(2)[0]	$\left[\delta\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\delta\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$
	287(0)[5]	$\left[\delta\left(\mathrm{F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)+\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)\right]+\left[\delta\left(\mathrm{F}_{4 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)\right]$
274(5)	286(0)[14]	$\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\rho_{\mathrm{t}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)-\delta\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right]\right.$
	275(3)[0]	$\left[\rho_{t}\left(\mathrm{~F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{1 \mathrm{~A}}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)+\delta\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\delta\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]_{\text {small }}$
	$267(<1)[0]$	$\left[\rho_{t}\left(\mathrm{~F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)+\rho_{t}\left(\mathrm{~F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)\right]+\left[\rho_{t}\left(\mathrm{~F}_{4 \mathrm{~A}} \mathrm{Xe}_{14} \mathrm{~F}_{5 \mathrm{~A}}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{Xe}_{1} \mathrm{~F} \mathrm{~F}_{7 \mathrm{~A}}\right)\right]$
242(1)	261(1)[0]	$\left[\rho_{t}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{t}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]-\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{1 \mathrm{~A}}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]$
	$258(0)[<1]$	$\left[\rho_{t}\left(\mathrm{~F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)\right]-\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{4 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)\right]$
226(4)	$231(<1)[0]$	$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]$
	231(0)[19]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$
	$225(<1)[0]$	$\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)\right]+\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{4 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{Xe}_{14} \mathrm{~F}_{7 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$
	204(0)[<1]	$\left[\delta\left(\mathrm{F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)-\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)\right]-\left[\delta\left(\mathrm{F}_{4 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{5 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)\right]$
191(4)	197(1)[0]	$\left[\delta\left(\mathrm{F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)-\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)\right]+\left[\delta\left(\mathrm{F}_{4 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{5 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{r}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{2} \mathrm{Cr}_{14} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A7.6. (continued) Experimental ${ }^{[a]}$ and calculated ${ }^{[b]}$ vibrational frequencies, intensities, and assignments ${ }^{[c]}$ for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$ (1 and $\left.\mathbf{1}^{\prime}\right)$

exptl. ${ }^{\text {[a] }}$	calcd. ${ }^{[b]}$	assgnts ($\left.C_{2 \mathrm{~h}}\right)^{[\mathrm{c}, \mathrm{d}]}$
184(1)	196(<1)[0]	
	192(0)[37]	
	175(0)[86]	
178(1)	167(2)[0]	
148(5)	146(2)[0]	
	$140(0)[<1]$	
	136(0)[<1]	
136(2)	133(<1)[0]	
	129(0)[15]	
	116(0)[1]	deformation and lattice modes
124(1)	$115(<1)[0]$	
115(4)	$114(<1)[0]$	
	114(0)[1]	
	73(0)[<1]	
	72(<1)[0]	
	54(<1)[0]	
	$30(0)[<1]$	
	$29(0)[<1]$	
	$27(<1)[0]$	

continued...

Table A7.6. (continued) [a] Frequencies are given in cm^{-1}. Values in parentheses denote relative Raman intensities. Abbreviations denote shoulder (sh). The Raman spectrum was recorded under frozen aHF solution at $-150{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation on a mixture of solid $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$ (1), $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$ (2), and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ (3), where $\mathbf{1}$ was the dominant species. Weak bands and shoulders assigned to 3 were observed at 951(2), 926(sh), 665(5), 611(sh), and $563(3) \mathrm{cm}^{-1}$. Bands of $\mathbf{3}$ also overlap with the following bands of $1: 655(100), 600(57)$, and $534(31) \mathrm{cm}^{-1}$. A weak band assigned to 2 was observed at $613(5) \mathrm{cm}^{-1}$. Bands of 2 also overlap with the following bands of 1: 940(57), 655(100), 644(13), $600(57), 584(37)$, and $534(31) \mathrm{cm}^{-1}$. [b] Values in parentheses and square brackets denote calculated Raman intensities (\AA^{4} amu^{-1}) and infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$), respectively. [c] Assignments are for the energy-minimized geometry of $\mathbf{1}^{\prime}\left(C_{2 \mathrm{~h}}\right)$ calculated at the PBE1PBE/Def2-SVP (F, O, Cr, Xe) level of theory. [d] Abbreviations denote stretch (v), bend (δ), rock (ρ_{r}), twist $\left(\rho_{\mathrm{t}}\right)$, wag $\left(\rho_{\mathrm{w}}\right)$, umbrella (umb). The atom labeling scheme corresponds to that used in Figure 10.1.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A7.7. Experimental ${ }^{[a]}$ and calculated ${ }^{[b]}$ vibrational frequencies, intensities, and assignments ${ }^{[\mathrm{cc}]}$ for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$ (2 and $\mathbf{2}^{\prime}$)

exptl ${ }^{[a]}$	calcd $^{[b]}$	assgnts ($\left.\boldsymbol{C}_{\text {2h }}\right)^{[\mathrm{c}, \mathrm{d}]}$
951(31)	3250(51)[0]	$\left[v\left(\mathrm{~F}_{9}-\mathrm{H}_{9}\right)-v\left(\mathrm{~F}_{10}-\mathrm{H}_{10}\right)\right]+\left[v\left(\mathrm{~F}_{9 \mathrm{~A}}-\mathrm{H}_{9 \mathrm{~A}}\right)-v\left(\mathrm{~F}_{10 \mathrm{~A}}-\mathrm{H}_{10 \mathrm{~A}}\right)\right]$
	3241(0)[2694]	$\left[v\left(\mathrm{~F}_{9}-\mathrm{H}_{9}\right)-v\left(\mathrm{~F}_{10}-\mathrm{H}_{10}\right)\right]-\left[v\left(\mathrm{~F}_{9 \mathrm{~A}}-\mathrm{H}_{9 \mathrm{~A}}\right)-v\left(\mathrm{~F}_{10 \mathrm{~A}}-\mathrm{H}_{10 \mathrm{~A}}\right)\right]$
	2896(133)[0]	$\left[v\left(\mathrm{~F}_{9}-\mathrm{H}_{9}\right)+v\left(\mathrm{~F}_{10}-\mathrm{H}_{10}\right)\right]+\left[v\left(\mathrm{~F}_{9 \mathrm{~A}}-\mathrm{H}_{9 \mathrm{~A}}\right)+v\left(\mathrm{~F}_{10 \mathrm{~A}}-\mathrm{H}_{10 \mathrm{~A}}\right)\right]$
	2895(0)[3373]	$\left[v\left(\mathrm{~F}_{9}-\mathrm{H}_{9}\right)+v\left(\mathrm{~F}_{10}-\mathrm{H}_{10}\right)\right]-\left[v\left(\mathrm{~F}_{9 \mathrm{~A}}-\mathrm{H}_{9 \mathrm{~A}}\right)+v\left(\mathrm{~F}_{10 \mathrm{~A}}-\mathrm{H}_{10 \mathrm{~A}}\right)\right]$
	1189(35)[0]	$\left[\delta\left(\mathrm{H}_{9} \mathrm{~F}_{10} \mathrm{H}_{10}\right)+\delta\left(\mathrm{H}_{9 \mathrm{~A}} \mathrm{~F}_{10 \mathrm{~A}} \mathrm{H}_{10 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{O}_{2}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)\right]$
	1175(0)[206]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{O}_{2}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)\right]$
	1169(0)[685]	$\left[\delta\left(\mathrm{H}_{9} \mathrm{~F}_{10} \mathrm{H}_{10}\right)-\delta\left(\mathrm{H}_{9 \mathrm{~A}} \mathrm{~F}_{10 \mathrm{~A}} \mathrm{H}_{10 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{O}_{2}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)\right]$
	1165(0)[28]	$\left[\delta\left(\mathrm{H}_{9} \mathrm{~F}_{10} \mathrm{H}_{10}\right)-\delta\left(\mathrm{H}_{9 \mathrm{~A}} \mathrm{~F}_{10 \mathrm{~A}} \mathrm{H}_{10 \mathrm{~A}}\right)\right]$
933(13)	1164(22)[0]	$\left[\delta\left(\mathrm{H}_{9} \mathrm{~F}_{10} \mathrm{H}_{10}\right)+\delta\left(\mathrm{H}_{9} \mathrm{~F}_{10 \mathrm{~A}} \mathrm{H}_{10 \mathrm{~A}}\right)\right]$
912(7)	1153(32)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{O}_{2}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)\right]$
	958(0)[324]	$\left[\rho_{\mathrm{w}}\left(\mathrm{H}_{9} \mathrm{~F}_{10} \mathrm{H}_{10}\right)-\rho_{\mathrm{w}}\left(\mathrm{H}_{9} \mathrm{~F}_{10 \mathrm{~A}} \mathrm{H}_{10 \mathrm{~A}}\right)\right]$
	944(<1)[0]	$\left[\rho_{\mathrm{w}}\left(\mathrm{H}_{9} \mathrm{~F}_{10} \mathrm{H}_{10}\right)+\rho_{\mathrm{w}}\left(\mathrm{H}_{9} \mathrm{~F}_{10 \mathrm{~A}} \mathrm{H}_{10 \mathrm{~A}}\right)\right]$
	884(0)[155]	[$\rho_{\mathrm{r}}\left(\mathrm{H}_{9} \mathrm{~F}_{10} \mathrm{H}_{10}\right)-\rho_{\mathrm{r}}\left(\mathrm{H}_{9 \mathrm{~A}} \mathrm{~F}_{10 \mathrm{~A}} \mathrm{H}_{10 \mathrm{~A}}\right)$]
745(4)	883(1)[0]	$\left[\rho_{\mathrm{r}}\left(\mathrm{H}_{9} \mathrm{~F}_{10} \mathrm{H}_{10}\right)+\rho_{\mathrm{r}}\left(\mathrm{H}_{9} \mathrm{~F}_{10 \mathrm{~A}} \mathrm{H}_{10 \mathrm{~A}}\right)\right]$
	845(0)[127]	$\left[\rho_{\mathrm{t}}\left(\mathrm{H}_{9} \mathrm{~F}_{10} \mathrm{H}_{10}\right)-\rho_{\mathrm{t}}\left(\mathrm{H}_{9 \mathrm{~A}} \mathrm{~F}_{10 \mathrm{~A}} \mathrm{H}_{10 \mathrm{~A}}\right)\right]$
	844(<1)[0]	$\left[\rho_{\mathrm{t}}\left(\mathrm{H}_{9} \mathrm{~F}_{10} \mathrm{H}_{10}\right)+\rho_{\mathrm{t}}\left(\mathrm{H}_{9 \mathrm{~A}} \mathrm{~F}_{10 \mathrm{~A}} \mathrm{H}_{10 \mathrm{~A}}\right)\right]$
	668(0)[326]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]$
671(sh)	668(9)[0]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]$
	667(0)[99]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)\right]$ (${ }^{\text {a }}$
659(100)	666(92)[0]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]$
	663(0)[392]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]$
646(19)	660(38)[0]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]$
	615(0)[252]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4-7}\right)-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}-7 \mathrm{~A}}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]$
613(52)	611(14)[0]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4-7}\right)-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}-7 \mathrm{~A}}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]$
	$596(0)$ [19]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]$
599(84)	595(24)[0]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]$

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A7.7. (continued) Experimental ${ }^{[a]}$ and calculated ${ }^{[b]}$ vibrational frequencies, intensities, and assignments ${ }^{[c]}$ for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}^{2}$ (2 and $\mathbf{2}^{\prime}$)

exptl ${ }^{[a]}$	calcd ${ }^{[b]}$	assgnts $\left(C_{2 h}\right)^{[\underline{c}, \mathrm{~d}]}$
585(25)	585(0)[129]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]_{\text {small }}$
	575(73)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]_{\text {small }}$
	565(0)[664]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4-7}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}-7 \mathrm{~A}}\right)\right]_{\text {small }}$
540(39)	521(13)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]$
439(4)	483(8) [0]	$\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]_{\text {small }}+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]_{\text {small }}$
	474(0)[13]	$\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]_{\text {small }}-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]_{\text {small }}$
433(sh)	466(2)[0]	$\left[v\left(\mathrm{~F}_{1}-\mathrm{H}_{10}\right)+v\left(\mathrm{~F}_{1 \mathrm{~A}}-\mathrm{H}_{10 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{~F}_{10}-\mathrm{H}_{9}\right)+v\left(\mathrm{~F}_{10 \mathrm{~A}}-\mathrm{H}_{9 \mathrm{~A}}\right)\right]$
	459(0)[45]	$\left[v\left(\mathrm{~F}_{1}-\mathrm{H}_{10}\right)-v\left(\mathrm{~F}_{1 \mathrm{~A}}-\mathrm{H}_{10 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{~F}_{10}-\mathrm{H}_{9}\right)-v\left(\mathrm{~F}_{10 \mathrm{~A}}-\mathrm{H}_{9 \mathrm{~A}}\right)\right]$
409(10)	410(3)[0]	$\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{5} \mathrm{~F}_{6} \mathrm{~F}_{8}\right)+\delta\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right)$
	$410(0)$ [15]	$\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{5} \mathrm{~F}_{6} \mathrm{~F}_{8}\right)-\delta\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right)$
405(7)	407(2)[0]	$\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{6} \mathrm{~F}_{7} \mathrm{~F}_{8}\right)+\delta\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right)$
	405(0)[35]	$\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{6} \mathrm{~F}_{7} \mathrm{~F}_{8}\right)-\delta\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right)$
397(sh)	$396(5)[0]$	$\left[v\left(\mathrm{~F}_{10}-\mathrm{H}_{9}\right)+v\left(\mathrm{~F}_{10 \mathrm{~A}}-\mathrm{H}_{9 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{4} \mathrm{~F}_{5} \mathrm{~F}_{8}\right)+\delta\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]_{\text {small }}+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]_{\text {small }}$
	382(0)[27]	$\left[v\left(\mathrm{~F}_{10}-\mathrm{H}_{9}\right)+v\left(\mathrm{~F}_{10 \mathrm{~A}}-\mathrm{H}_{9 \mathrm{~A}}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{1 \mathrm{~A}}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\rho_{\mathrm{w}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]$
	378(0)[42]	$\left[v\left(\mathrm{~F}_{10}-\mathrm{H}_{9}\right)+v\left(\mathrm{~F}_{10 \mathrm{~A}}-\mathrm{H}_{9 \mathrm{~A}}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{1 \mathrm{~A}}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\rho_{\mathrm{w}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}} \mathrm{~A}\right)\right]$
	[373(2)[0]	$\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]_{\text {small }}+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]_{\text {small }}$
339(5)	- 365(2)[0]	$\left[\delta_{\text {umb }}\left(\mathrm{Xe}_{1} \mathrm{~F}_{4-7}\right)+\delta_{\text {umb }}\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}-7 \mathrm{~A}}\right)\right]-\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{1 \mathrm{~A}}\right)-\rho_{t}\left(\mathrm{~F}_{1} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]$
	[362(3)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{t}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]_{\text {small }}+\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]_{\text {small }}$
331(2)	353(2)[0]	$\left[\delta_{\text {umb }}\left(\mathrm{Xe}_{1} \mathrm{~F}_{4-7}\right)+\delta_{\text {umb }}\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}-7 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{1 \mathrm{~A}}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]$
	$353(0)$ [113]	[$\left.\delta_{\text {umb }}\left(\mathrm{Xe}_{1} \mathrm{~F}_{4-7}\right)-\delta_{\text {umb }}\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}-7 \mathrm{~A}}\right)\right]$
	$342(0)[<1]$	$\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\rho_{\mathrm{t}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[\rho_{t}\left(\mathrm{~F}_{3} \mathrm{Xe}_{1} \mathrm{~F}_{2 \mathrm{~A}}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{2} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$
	$336(0)[172]$	$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{r}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\rho_{\mathrm{r}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]$
	327(0)[5]	$\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\rho_{\mathrm{t}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{3} \mathrm{Xe}_{1} \mathrm{~F}_{2 \mathrm{~A}}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{2} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$
304(6)	306(3)[0]	$\left[\rho_{t}\left(\mathrm{~F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{1 \mathrm{~A}}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{r}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]$
	291(0)[14]	$\left[\delta\left(\mathrm{F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)+\delta\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)\right]-\left[\delta\left(\mathrm{F}_{4 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)\right]$
	$288(<1)[0]$	$\left[\delta\left(\mathrm{F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)+\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)\right]+\left[\delta\left(\mathrm{F}_{4 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{5 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)\right]$
	$279(<1)[0]$	$\left[\rho_{t}\left(\mathrm{~F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)\right]+\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{4 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)\right]$
	270(0)[3]	$\left[\rho_{t}\left(\mathrm{~F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)\right]-\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{4 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)\right]$
261(2)	265(2)[0]	$\left[\delta\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\delta\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A7.7. (continued) Experimental ${ }^{[a]}$ and calculated ${ }^{[b]}$ vibrational frequencies, intensities, and assignments ${ }^{[\mathrm{cc]}}$ for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}^{2}$ (2 and $\mathbf{2}^{\prime}$)

$\operatorname{exptl}{ }^{[a]}$	calcd ${ }^{[b]}$	assgnts ($\left.C_{2 h}\right)^{[\mathbf{c}, \mathrm{d}]}$
	265(0)[33]	[$\left.\rho_{\mathrm{r}}\left(\mathrm{F}_{9} \mathrm{H}_{9} \mathrm{~F}_{10}\right)-\rho_{\mathrm{r}}\left(\mathrm{F}_{9 \mathrm{~A}} \mathrm{H}_{9 \mathrm{~A}} \mathrm{~F}_{10 \mathrm{~A}}\right)\right]$
	258(0)[28]	$\left[\delta\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)-\delta\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$
	241(0)[22]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]-\left[\rho_{\mathrm{r}}\left(\mathrm{F}_{1} \mathrm{H}_{10} \mathrm{~F}_{10}\right)-\rho_{\mathrm{r}}\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{H}_{10 \mathrm{~A}} \mathrm{~F}_{10 \mathrm{~A}}\right)\right]$
244(1)	$237(<1)[0]$	$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]$
232(3)	$223(<1)[0]$	$\left[\delta\left(\mathrm{F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)-\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)\right]+\left[\delta\left(\mathrm{F}_{4 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{5 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)\right]$
232(3)	$223(<1)[0]$	$v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)$
	217(0)[<1]	$\left[\delta\left(\mathrm{F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)-\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)\right]-\left[\delta\left(\mathrm{F}_{4 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{5 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)\right]$
210(2)	214(2)[0]	$\left[\delta\left(\mathrm{F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)-\delta\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)\right]+\left[\delta\left(\mathrm{F}_{4 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)\right]$
	$211(0)[<1]$	$\left[\delta\left(\mathrm{F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)-\delta\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)\right]-\left[\delta\left(\mathrm{F}_{4 \mathrm{~A}} \mathrm{Xe}_{11} \mathrm{~F}_{5 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)\right]$
	203(0)[26]	
	$202(<1)[0]$	
187(3)	191(<1)[0]	
	180(0)[<1]	
172(1)	$173(<1)[0]$	
	161(0)[36]	
168(2)	$156(<1)[0]$	
	146(0)[1]	
	142(<1)[0]	Deformation and lattice modes
	140(0)[14]	
121(4)	134(<1)[0]	
	$130(<1)[0]$	
	130(0)[5]	
	108(0)[<1]	
	106(0)[2]	
114(3)	$100(<1)[0]$	
	$95(<1)[0]$	

continued...

Table A7.7. (continued) Experimental ${ }^{[a]}$ and calculated ${ }^{[b]}$ vibrational frequencies, intensities, and assignments ${ }^{[\mathrm{cl}]}$ for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$ (2 and $\mathbf{2}^{\prime}$)

calcd $^{[\mathbf{b}]}$	assgnts $\left(\boldsymbol{C}_{\mathbf{2 h}}\right)^{[\mathbf{c}, \mathbf{d}]}$
$94(0)[23]$	
$71(0)[0]$	
$70(<1)[0]$	
$59(<1)[0]$	
$48(<1)[0]$	deformation modes
$47(<1)[0]$	
$44(0)[<1]$	
$41(0)[<1]$	
$25(0)[<1]$	

Table A7.7. (continued) [a] Frequencies are given in cm^{-1}. Values in parentheses denote relative Raman intensities. Abbreviations denote shoulder (sh). The Raman spectrum was recorded under frozen aHF solution at $-150{ }^{\circ} \mathrm{C}$ using 1064-nm excitation on a mixture of solid $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$ (1), $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$ (2), and $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ (3), where $\mathbf{2}$ was dominant. Bands and shoulders assigned to 1 were observed at 941(24), 918(10), 628(5), 642(sh), 531(19), 520(sh), 444(sh), 225(sh), 191(2), and 148(2) cm^{-1}. Bands of 1 also overlap with the following bands of 2: 646(19), 599(84), 585(25), and $405(7) \mathrm{cm}^{-1}$. Bands and shoulders assigned to 3 were observed at 926(7), 665(sh), 563(11), 531(19), 373(2), 365(2), and $238(2) \mathrm{cm}^{-1}$. Bands of $\mathbf{3}$ also overlap with the following bands of 2: 951(31), $613(52), 599(84), 540(39)$, and $405(7) \mathrm{cm}^{-1}$. [b] Values in parentheses and square brackets denote calculated Raman intensities ($\AA^{4} \mathrm{amu}^{-1}$) and infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$), respectively. [c] Assignments are for the energy-minimized geometry of 2' $\left(C_{2 \mathrm{~h}}\right)$ calculated at the PBE1PBE/Def2-SVP (F, O, Cr, Xe) level of theory. [d] Abbreviations denote stretch (v), bend (δ), rock (ρ_{r}), twist (ρ_{t}), wag (ρ_{w}), umbrella (umb). The atom labeling scheme corresponds to that used in Figure 10.2.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A7.8. Experimental ${ }^{[a]}$ and calculated ${ }^{[b]}$ vibrational frequencies, intensities, and assignments ${ }^{[\mathrm{cb]}}$ for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}(\mathbf{3}$ and 3^{\prime})

exptI ${ }^{[2]}$	calcd ${ }^{[b]}$	assgnts ($C_{2 \mathrm{~h}}{ }^{[\mathrm{c}, \mathrm{d}]}$
951(50)	1185(44)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{O}_{2}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)\right]$
	1177(0)]157]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{O}_{2}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)\right]$
	1168(0)[304]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{O}_{2}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)\right]$
922(34)	1151(28)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{O}_{2}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)\right]$
926(49)	969(53)[0]	$v\left(\mathrm{Xe}_{2}-\mathrm{O}_{3}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{O}_{3 \mathrm{~A}}\right)$
	968(0)[91]	$v\left(\mathrm{Xe}_{2}-\mathrm{O}_{3}\right)-v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{O}_{3 \mathrm{~A}}\right)$
	678(0)[513]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]$
	676(0)[345]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]$
665(100)	670(111)[0]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 A}\right)\right]$
655(41)	[675(22)[0]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 A}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 A}\right)\right]$
	[674(7)[0]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{64}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]$
	670(0)[220]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 A}\right)\right]$
	630(0)[277]	$\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{9}\right)-v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)\right]-\left[v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)-v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)\right]$
	629(0)[647]	$\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{10}\right)-v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)\right]-\left[v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)-v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)\right]$
	$627(<1)[0]$	$\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{9}\right)-v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)\right]+\left[v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)-v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)\right]$
611(87)	618(22)[0]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]-} \\ & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)\right]} \end{aligned}$
	617(0)[45]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]-} \\ & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)\right]} \end{aligned}$
	611(3)[0]	$\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{10}\right)-v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)\right]+\left[v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)-v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)\right]$
602(65)	$603(0)[<1]$	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{14}-\mathrm{F}_{6 A}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]$
	603(17)[0]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]$

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A7.8. (continued) Experimental ${ }^{[a]}$ and calculated ${ }^{[b]}$ vibrational frequencies, intensities, and assignments ${ }^{[c]}$ for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}\left(\mathbf{3}\right.$ and $\left.\mathbf{3}^{\prime}\right)$

exptl ${ }^{[a]}$	calcd ${ }^{[b]}$	$\operatorname{assgnts}\left(C_{2 h}\right)^{[\mathbf{c}, \mathrm{d}]}$
591(7)	577(0)[50]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]_{\text {small }}$
	576(12)[0]	$\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)\right]+\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{9}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)\right]+\left[v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)\right]$
	576(0)[26]	$\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)\right]+\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{9}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)\right]-\left[v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{9 A}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)\right]$
563(95)	569(65)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]_{\text {small }}$
	558(0)[232]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]$
542(28)	528(4)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]$
	535(0)[12]	$\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)\right]-\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{9}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)\right]-\left[v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{9 A}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)\right]$
531(69)	535(13)[0]	$\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)\right]-\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{9}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)\right]+\left[v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)\right]$
440(3)	481(4) [0]	$\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]_{\text {small }}+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]_{\text {small }}$
	478(0)[7]	$\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]_{\text {small }}-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]_{\text {small }}$
405(12)	[401(6)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]$
	[400(4)[0]	$\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{4} \mathrm{~F}_{7} \mathrm{~F}_{8}\right)+\delta\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right)$
	398(0)[13]	$\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{4} \mathrm{~F}_{7} \mathrm{~F}_{8}\right)+\delta\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right)$
	397(0)[26]	$\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{4} \mathrm{~F}_{5} \mathrm{~F}_{8}\right)+\delta\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right)$
398(3)	396(3)[0]	$\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{6} \mathrm{~F}_{7} \mathrm{~F}_{8}\right)+\delta\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right)$
373(15)	$384(2)[0]$	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{r}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]_{\text {small }}$
	$383(0)[63]$	$\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\rho_{\mathrm{w}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]$
	372(0)[10]	$\left[\delta\left(\mathrm{O}_{3} \mathrm{Xe}_{2} \mathrm{~F}_{9}\right)-\delta\left(\mathrm{O}_{3} \mathrm{Xe}_{2} \mathrm{~F}_{11}\right)\right]-\left[\delta\left(\mathrm{O}_{3 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{9 \mathrm{~A}}\right)-\delta\left(\mathrm{O}_{3 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{11 \mathrm{~A}}\right)\right]$
366(13)	$372(5)[0]$	$\left[\delta\left(\mathrm{O}_{3} \mathrm{Xe}_{2} \mathrm{~F}_{9}\right)-\delta\left(\mathrm{O}_{3} \mathrm{Xe}_{2} \mathrm{~F}_{11}\right)\right]+\left[\delta\left(\mathrm{O}_{3 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{9 \mathrm{~A}}\right)-\delta\left(\mathrm{O}_{3 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{11 \mathrm{~A}}\right)\right]$
	367(0)[27]	$\left[\delta\left(\mathrm{O}_{3} \mathrm{Xe}_{2} \mathrm{~F}_{10}\right)-\delta\left(\mathrm{O}_{3} \mathrm{Xe}_{2} \mathrm{~F}_{12}\right)\right]-\left[\delta\left(\mathrm{O}_{3 \mathrm{~A}} \mathrm{Xe}_{2} \mathrm{~F}_{10 \mathrm{~A}}\right)-\delta\left(\mathrm{O}_{3 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{12 \mathrm{~A}}\right)\right]$

continued...

Table A7.8. (continued) Experimental ${ }^{[a]}$ and calculated ${ }^{[b]}$ vibrational frequencies, intensities, and assignments ${ }^{[c]}$ for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}\left(\mathbf{3}\right.$ and $\left.\mathbf{3}^{\prime}\right)$

exptl ${ }^{[a]}$	calcd ${ }^{[b]}$	assgnts $\left(\boldsymbol{C}_{\mathbf{2 h}}\right)^{[\mathrm{c}, \mathrm{d}]}$
353(5)	[365(7)[0]	$\left[\delta\left(\mathrm{O}_{3} \mathrm{Xe}_{2} \mathrm{~F}_{10}\right)-\delta\left(\mathrm{O}_{3} \mathrm{Xe}_{2} \mathrm{~F}_{12}\right)\right]+\left[\delta\left(\mathrm{O}_{3 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{10 \mathrm{~A}}\right)-\delta\left(\mathrm{O}_{3 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{12 \mathrm{~A}}\right)\right]$
	364(6)[0]	$\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\rho_{\mathrm{t}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Cr}_{1} \mathrm{~F}_{1}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{1}\right)\right]$
	3 364(0)[16]	$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{1 \mathrm{~A}}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{O}_{3} \mathrm{Xe}_{2} \mathrm{~F}_{10}\right)-\delta\left(\mathrm{O}_{3} \mathrm{Xe}_{2} \mathrm{~F}_{12}\right)\right]-\left[\delta\left(\mathrm{O}_{3 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{10 \mathrm{~A}}\right)-\delta\left(\mathrm{O}_{3 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{12 \mathrm{~A}}\right)\right]$
	360(3)[0]	$\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]_{\text {small }}+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]_{\text {small }}$
344(7)	[358(0) $[<1]$	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]$
	350(1)[0]	$\delta_{\text {umb }}\left(\mathrm{Xe}_{1} \mathrm{~F}_{4-7}\right)+\delta_{\text {umb }}\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}-7 \mathrm{~A}}\right)$
	$\{347(0)[44]$	$\left[\delta_{\text {umb }}\left(\mathrm{Xe}_{1} \mathrm{~F}_{4-7}\right)-\delta_{\text {umb }}\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}-7 \mathrm{~A}}\right)\right.$]
	331(0)[231]	$\left[\delta_{\text {umb }}\left(\mathrm{Xe}_{1} \mathrm{~F}_{4-7}\right)-\delta_{\text {umb }}\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}-7 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{r}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\rho_{\mathrm{r}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$
	[327(0)[23]	$\begin{aligned} & {\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]-\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{t}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]-\left[\rho_{\mathrm{t}}\left(\mathrm{~F}_{3 \mathrm{~A}} \mathrm{Xe}_{1} \mathrm{~F}_{2}\right)\right]+} \\ & \left.\rho_{\mathrm{t}}\left(\mathrm{~F}_{2 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{3}\right)\right] \end{aligned}$
295(13)	300(2)[0]	$\delta_{\text {umb }}\left(\mathrm{Xe}_{2} \mathrm{~F}_{9-12}\right)+\delta_{\text {umb }}\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{9 \mathrm{~A}-12 \mathrm{~A}}\right)$
	294(0)[173]	$\delta_{\text {umb }}\left(\mathrm{Xe}_{2} \mathrm{~F}_{9-12}\right)-\delta_{\text {umb }}\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{9}{ }_{\text {A }-12 \mathrm{~A}}\right)$
	292(2)[0]	$\left[\delta\left(\mathrm{F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)+\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)\right]+\left[\delta\left(\mathrm{F}_{4 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{5 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\delta\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]_{\text {small }}$
	286(0)[8]	$\left[\delta\left(\mathrm{F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)+\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)\right]+\left[\delta\left(\mathrm{F}_{4 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)\right]$
275(7)	281(0)[21]	$\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\rho_{\mathrm{t}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]-\left[\delta\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)-\delta\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$
	272(2)[0]	$\left[\delta\left(\mathrm{F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)+\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)\right]+\left[\delta\left(\mathrm{F}_{4 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{5 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\delta\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$
	$258(<1)[0]$	$\left[\rho_{t}\left(\mathrm{~F}_{4} \mathrm{Xe} \mathrm{e}_{1} \mathrm{~F}_{5}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)\right]+\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{4 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)\right]$
239(7)	252(0)[<1]	$\left[\rho_{t}\left(\mathrm{~F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)-\rho_{t}\left(\mathrm{~F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)\right]-\left[\rho_{t}\left(\mathrm{~F}_{4 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)\right]$
	$245(<1)[0]$	$\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{t}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]-\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{1 \mathrm{~A}}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]$
	241(0)[24]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]$
231(4)	$239(<1)[0]$	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]_{\text {small }}$
	$231(0)[<1]$	$\left[\delta\left(\mathrm{F}_{9} \mathrm{Xe}_{2} \mathrm{~F}_{12}\right)+\delta\left(\mathrm{F}_{10} \mathrm{Xe}_{1} \mathrm{~F}_{11}\right)\right]+\left[\delta\left(\mathrm{F}_{9 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{10 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{11 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{12 \mathrm{~A}}\right)\right]$
222(4)	228(2)[0]	$\left[\delta\left(\mathrm{F}_{9} \mathrm{Xe}_{2} \mathrm{~F}_{12}\right)+\delta\left(\mathrm{F}_{10} \mathrm{Xe}_{2} \mathrm{~F}_{11}\right)\right]+\left[\delta\left(\mathrm{F}_{9 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{12 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{10 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{11 \mathrm{~A}}\right)\right]$

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A7.8. (continued) Experimental ${ }^{[a]}$ and calculated ${ }^{[b]}$ vibrational frequencies, intensities, and assignments ${ }^{[6]}$ for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ ($\mathbf{3}$ and $\mathbf{3}^{\prime}$)

exptl ${ }^{[2]}$	calcd ${ }^{[b]}$	assgnts ($C_{2 \mathrm{~h}}{ }^{[\mathrm{c}, \mathrm{d}]}$
	223(<1)[0]	deformation and lattice modes
	$209(0)[<1]$	
	$205(<1)[0]$	
	204(0)[2]	
	199(<1)[0]	
	194(<1)[0]	
	191(0)[2]	
193(2)	174(2)[0]	
184(2)	171(0)[39]	
173(3)	164(<1)[0]	
161(1)	164(0)[<1]	
133(3)	163(<1)[0]	
123(4)	161(0)[20]	
109(3)	143(0)[2]	
	139(0) [<1]	
	137(0)[0]	
	125(0)[33]	
	122(0)[<1]	
	$122(<1)[0]$	
	$117(<1)[0]$	
	110(0)[2]	
	103(<1)[0]	

continued...

Table A7.8. (continued) Experimental ${ }^{[a]}$ and calculated ${ }^{[b]}$ vibrational frequencies, intensities, and assignments ${ }^{[6]}$ for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}\left(\mathbf{3}\right.$ and $\left.\mathbf{3}^{\prime}\right)$

calcd ${ }^{[\mathbf{b}]}$	assgnts $\left(\boldsymbol{C}_{\mathbf{2 h}}\right)^{[\text {c,d] }}$
$77(<1)[0]$	
$77(0)[<1]$	
$74(0)[<1]$	
$70(<1)[0]$	
$68(0)[<1]$	
$67(<1)[0]$	
$66(<1)[0]$	
$62(0)[2]$	
$60(<1)[0]$	
$48(0)[<1]$	
$45(<1)[0]$	
$43(<1)[0]$	
$37(0)[<1]$	
$25(0)[1]$	
$22(<1)[0]$	
$17(0)[1]$	
$14(0)[<1]$	
$13(<1)[0]$	

Table A7.8. [a] Frequencies are given in cm^{-1}. Values in parentheses denote relative Raman intensities. The Raman spectrum was recorded on a sample of solid $\mathbf{3}$ under frozen aHF solution at $-150^{\circ} \mathrm{C}$ using 1064-nm excitation. [b] Values in parentheses and square brackets denote calculated Raman intensities ($\AA^{4} \mathrm{amu}^{-1}$) and infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$), respectively. [c] Assignments are for the energy-minimized geometry of $\mathbf{3}^{\prime}\left(C_{2 h}\right)$ calculated at the PBE1PBE/Def2-SVP (F, O, Cr, Xe) level of theory. [d] Abbreviations denote stretch (v), bend (δ), rock $\left(\rho_{\mathrm{r}}\right)$, twist $\left(\rho_{\mathrm{t}}\right)$, wag (ρ_{w}), umbrella (umb). The atom labeling scheme corresponds to that used in Figure 10.3.

Table A7.9. Experimental ${ }^{[a]}$ and calculated ${ }^{[b]}$ vibrational frequencies, intensities, and assignments ${ }^{[\mathrm{cc}]}$ for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ (4 and $\mathbf{4}^{\prime}$)

exptl ${ }^{[a]}$	calcd $^{[b]}$	assgnts ($\left.C_{\text {s }}\right)^{[\mathrm{c}, \mathrm{d}]}$
954(14)	1183(22)[108]	$v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{O}_{2}\right)$
950(9)	1164(16)[166]	$v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{O}_{2}\right)$
654(100)	667(117)[14]	$\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{16}\right)\right]+\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{14}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{19}\right)\right]+\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)\right]+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)$
642(16)	669(18)[305]	$\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{16}\right)\right]-\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{18}\right)\right]$
629(8)	665(10)[500]	$\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{15}\right)\right]-\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{17}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)\right]$
620(10)	661(14)[207]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)\right]+\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{16}\right)\right]-\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)\right.} \\ & \left.+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{18}\right)\right] \end{aligned}$
596(35)	$\left\{\begin{array}{l}653(24)[326] \\ 652(10)[13]\end{array}\right.$	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)\right]+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)-\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{14}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{19}\right)\right]} \\ & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)+\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{17}\right)\right]-} \\ & {\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{15}\right)\right]+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)_{\text {small }}} \end{aligned}$
	$\left[\begin{array}{l} 651(20)[184] \\ 644(5)[102] \\ 634(<1)[1] \end{array}\right.$	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{14}\right)\right]-\left[v\left(\mathrm{Xe}_{3}-\mathrm{F}_{17}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{19}\right)\right]} \\ & {\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{14}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{17}\right)\right]-\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{15}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{19}\right)\right]} \\ & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]+\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{18}\right)\right]-\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)\right.} \\ & \left.+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{16}\right)\right] \end{aligned}$
587(35)	$\left\{\begin{array}{l} 606(5)[24] \\ 603(9)[24] \\ 601(2)[1] \end{array}\right.$	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)\right]-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)} \\ & {\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)\right]+\left[v\left(\mathrm{Xe}_{3}-\mathrm{F}_{15}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{16}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{17}\right)\right.} \\ & \left.+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{18}\right)\right]-\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{14}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{19}\right)\right]-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4}\right) \\ & {\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)-v\left(\mathrm{Xe}_{2}-\mathrm{F}_{14}\right)\right]-\left[v\left(\mathrm{Xe}_{3}-\mathrm{F}_{15}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{16}\right)\right.} \\ & \left.+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{17}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{18}\right)-v\left(\mathrm{Xe}_{3}-\mathrm{F}_{19}\right)\right] \end{aligned}$
579(20)	591(34)[57]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F} 4\right)\right]+\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)\right]+\left[v\left(\mathrm{Xe}_{3}-\mathrm{F}_{16}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{18}\right)\right]$

Table A7.9. (continued) Experimental ${ }^{[a]}$ and calculated ${ }^{[b]}$ vibrational frequencies, intensities, and assignments ${ }^{[c]}$ for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ (4 and $\mathbf{4}^{\prime}$)

exptl ${ }^{[2]}$	calcd $^{[b]}$	assgnts ($\left.\boldsymbol{C}_{\mathrm{s}}\right)^{[\mathrm{c}, \mathrm{d}]}$
573(21)	587(4)[15]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4}\right)\right]+\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]-\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)\right]-\left[v\left(\mathrm{Xe}_{3}-\mathrm{F}_{15}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{17}\right)\right]$
	584(5)[<1]	$\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)\right]+\left[v\left(\mathrm{Xe}_{3}-\mathrm{F}_{16}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{18}\right)\right]-\left[v\left(\mathrm{Xe}_{3}-\mathrm{F}_{15}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{17}\right)\right]-\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)\right]$
	582(24)[5]	$\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)\right]+\left[v\left(\mathrm{Xe}_{3}-\mathrm{F}_{15}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{17}\right)\right]-\left[v\left(\mathrm{Xe}_{3}-\mathrm{F}_{15}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{17}\right)\right]-\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)\right]$
		$+\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)$
557(8)	580(10)[3]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)\right]$
441(3)	483(3)[2]	$\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)$
	[401(2)[36]	$\left[\delta\left(\mathrm{F}_{12} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)-\delta\left(\mathrm{F}_{10} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)\right]+\left[\delta\left(\mathrm{F}_{15} \mathrm{Xe}_{3} \mathrm{~F}_{19}\right)-\delta\left(\mathrm{F}_{17} \mathrm{Xe}_{3} \mathrm{~F}_{19}\right)\right]+\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{20}\right)-v\left(\mathrm{Xe}_{3}-\mathrm{F}_{20}\right)\right]_{\text {small }}$
	400(3)[27]	$\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{9} \mathrm{~F}_{6} \mathrm{~F}_{7}\right)$
408(4)	398(2)[10]	$\left[\delta\left(\mathrm{F}_{12} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)-\delta\left(\mathrm{F}_{10} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)\right]-\left[\delta\left(\mathrm{F}_{15} \mathrm{Xe}_{3} \mathrm{~F}_{19}\right)-\delta\left(\mathrm{F}_{17} \mathrm{Xe}_{3} \mathrm{~F}_{19}\right)\right]+\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{9} \mathrm{~F}_{5} \mathrm{~F}_{8}\right)_{\text {small }}$
	397(1)[23]	$\left[\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{9} \mathrm{~F}_{5} \mathrm{~F}_{6}\right)-\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{9} \mathrm{~F}_{7} \mathrm{~F}_{8}\right)\right]$
	394(2)[142]	$\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{9} \mathrm{~F}_{5} \mathrm{~F}_{8}\right)+\left[\delta\left(\mathrm{F}_{12} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)+\delta\left(\mathrm{F}_{17} \mathrm{Xe}_{3} \mathrm{~F}_{19}\right)\right]+\delta\left(\mathrm{Cr}_{1} \mathrm{~F}_{1} \mathrm{~F}_{2} \mathrm{~F}_{3}\right)$
373(3)	$\{386(<1)[4]$	$\left[\delta\left(\mathrm{F}_{13} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)-\delta\left(\mathrm{F}_{11} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)\right]+\left[\delta\left(\mathrm{F}_{16} \mathrm{Xe}_{3} \mathrm{~F}_{19}\right)-\delta\left(\mathrm{F}_{18} \mathrm{Xe}_{3} \mathrm{~F}_{19}\right)\right]$
	[382(3)[45]	$\left[\delta\left(\mathrm{F}_{11} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)+\delta\left(\mathrm{F}_{16} \mathrm{Xe}_{3} \mathrm{~F}_{19}\right)\right]+\delta\left(\mathrm{Cr}_{1} \mathrm{~F}_{1} \mathrm{~F}_{2} \mathrm{~F}_{3}\right)$
358(3)	[374(2)[201]	$\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{2}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{3} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)\right]+\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{20}\right)-v\left(\mathrm{Xe}_{3}-\mathrm{F}_{20}\right)\right]$
	[365(2)[<1]	$\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{3} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)\right.$]
334(2)	361(2)[19]	$\rho_{\mathrm{r}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{2}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{3} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)$
323(2)	359(3)[44]	$\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{3} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)+\left[\delta_{\text {umb }}\left(\mathrm{Xe}_{2} \mathrm{~F}_{10-13}\right)+\delta_{\text {umb }}\left(\mathrm{Xe}_{3} \mathrm{~F}_{15-18}\right)\right)$
	[$348(2)[<1]$	$\delta\left(\mathrm{Cr}_{1} \mathrm{~F}_{1} \mathrm{~F}_{2} \mathrm{~F}_{4}\right)$
303(2)	- 346(3)[121]	$\delta_{\text {umb }}\left(\mathrm{Xe}_{1} \mathrm{~F}_{5-8}\right)+\left[\delta\left(\mathrm{F}_{3} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{2}\right)\right]$
	[338(<1)[148]	$\delta_{\text {umb }}\left(\mathrm{Xe}_{2} \mathrm{~F}_{10-13}\right)-\delta_{\text {umb }}\left(\mathrm{Xe}_{3} \mathrm{~F}_{15-18}\right)$
294(6)	316(2)[123]	$\rho_{t}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{3} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)+\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{20}\right)-v\left(\mathrm{Xe}_{3}-\mathrm{F}_{20}\right)\right]$
283(3)	305(2)[48]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)\right]+\delta\left(\mathrm{F}_{3} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)$
	$296(<1)[6]$	$\delta\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{2}\right)+\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{20}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{20}\right)\right]$
279(3)	287(1)[37]	$\left[\delta\left(\mathrm{F}_{10} \mathrm{Xe}_{2} \mathrm{~F}_{13}\right)+\delta\left(\mathrm{F}_{11} \mathrm{Xe}_{2} \mathrm{~F}_{12}\right)\right]+\left[\delta\left(\mathrm{F}_{15} \mathrm{Xe}_{3} \mathrm{~F}_{18}\right)+\delta\left(\mathrm{F}_{16} \mathrm{Xe}_{3} \mathrm{~F}_{17}\right)\right]+\delta\left(\mathrm{F}_{3} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)$

continued...

Table A7.9. (continued) Experimental ${ }^{[a]}$ and calculated ${ }^{[b]}$ vibrational frequencies, intensities, and assignments ${ }^{[c]}$ for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ (4 and $\mathbf{4}^{\prime}$)

$\operatorname{exptl}{ }^{[a]}$	calcd $^{[b]}$	assgnts ($\left.C_{5}\right)^{[\mathrm{c}, \mathrm{d}]}$
255(1)	281(2)[8]	$\left[\delta\left(\mathrm{F}_{18} \mathrm{Xe}_{3} \mathrm{~F}_{20}\right)-\delta\left(\mathrm{F}_{13} \mathrm{Xe}_{2} \mathrm{~F}_{20}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{3} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{2}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)\right]_{\text {small }}$
249(1)	275(1)[3]	$\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)+\delta\left(\mathrm{F}_{7} \mathrm{Xe}_{1} \mathrm{~F}_{8}\right)$
	274(<1)[5]	$\begin{aligned} & {\left[\rho_{\mathrm{t}}\left(\mathrm{~F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)-\left[\rho_{\mathrm{t}}\left(\mathrm{~F}_{7} \mathrm{Xe}_{1} \mathrm{~F}_{8}\right)\right]+\left[\delta\left(\mathrm{F}_{10} \mathrm{Xe}_{2} \mathrm{~F}_{11}\right)+\delta\left(\mathrm{F}_{12} \mathrm{Xe}_{2} \mathrm{~F}_{13}\right)\right]+\left[\delta\left(\mathrm{F}_{15} \mathrm{Xe}_{3} \mathrm{~F}_{18}\right)+\delta\left(\mathrm{F}_{16} \mathrm{Xe}_{3} \mathrm{~F}_{17}\right)\right]+\right.} \\ & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{2}\right)\right]} \end{aligned}$
	$265(<1)[23]$	$\left[\delta\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{2}\right)-\delta\left(\mathrm{F}_{3} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)\right]+\left[\delta\left(\mathrm{F}_{11} \mathrm{Xe}_{2} \mathrm{~F}_{12}\right)+\delta\left(\mathrm{F}_{10} \mathrm{Xe}_{2} \mathrm{~F}_{13}\right)\right]+\left[\delta\left(\mathrm{F}_{16} \mathrm{Xe}_{3} \mathrm{~F}_{17}\right)+\delta\left(\mathrm{F}_{15} \mathrm{Xe}_{3} \mathrm{~F}_{18}\right)\right]$
	$262(<1)[5]$	$\begin{aligned} & {\left[\rho_{\mathrm{t}}\left(\mathrm{~F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)-\rho_{\mathrm{t}}\left(\mathrm{~F}_{7} \mathrm{Xe}_{1} \mathrm{~F}_{8}\right)\right]+\left[\delta\left(\mathrm{F}_{10} \mathrm{Xe}_{2} \mathrm{~F}_{11}\right)+\delta\left(\mathrm{F}_{12} \mathrm{Xe}_{2} \mathrm{~F}_{13}\right)\right]+\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\rho_{\mathrm{t}}\left(\mathrm{~F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{2}\right)\right]+} \\ & {\left[\delta\left(\mathrm{F}_{15} \mathrm{Xe}_{3} \mathrm{~F}_{16}\right)+\delta\left(\mathrm{F}_{17} \mathrm{Xe}_{3} \mathrm{~F}_{18}\right)\right]} \end{aligned}$
	$247(<1)[4]$	$\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{2}\right)$
	$\{243(1)[8]$	$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{10} \mathrm{Xe}_{2} \mathrm{~F}_{20}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{11} \mathrm{Xe}_{2} \mathrm{~F}_{12}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{15} \mathrm{Xe}_{3} \mathrm{~F}_{20}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{16} \mathrm{Xe}_{3} \mathrm{~F}_{17}\right)\right]$
225(1)	$[235(<1)[8]$	$\begin{aligned} & {\left[\rho_{\mathrm{t}}\left(\mathrm{~F}_{10} \mathrm{Xe}_{2} \mathrm{~F}_{13}\right)-\rho_{\mathrm{t}}\left(\mathrm{~F}_{11} \mathrm{Xe}_{2} \mathrm{~F}_{12}\right)\right]+\left[\rho_{\mathrm{t}}\left(\mathrm{~F}_{16} \mathrm{Xe}_{3} \mathrm{~F}_{17}\right)-\rho_{\mathrm{t}}\left(\mathrm{~F}_{15} \mathrm{Xe}_{3} \mathrm{~F}_{18}\right)\right]+\rho_{\mathrm{r}}\left(\mathrm{~F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{2}\right)+\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)\right.} \\ & \left.-\rho_{\mathrm{w}}\left(\mathrm{~F}_{3} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)\right]_{\text {small }} \end{aligned}$
201(3)	$\int 216(<1)[2]$	$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{3} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{2}\right)\right]+\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{8}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)\right]$
	$\{213(<1)[2]$	$v\left(\mathrm{Xe}_{2}-\mathrm{F}_{20}\right)+v\left(\mathrm{Xe}_{3}-\mathrm{F}_{20}\right)$
	201(<1)[7]	
	$199(<1)[<1]$	
	194(<1) [3]	deformation and lattice modes
182(1)	$192(<1)[<1]$	
	$181(<1)[<1]$	

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A7.9. (continued) Experimental ${ }^{[a]}$ and calculated ${ }^{[b]}$ vibrational frequencies, intensities, and assignments ${ }^{[c]}$ for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]$ (4 and $\mathbf{4}^{\prime}$)

expti ${ }^{[a]}$	calcd $^{[b]}$	$\operatorname{assgnts}\left(C_{\mathrm{s}}\right)^{[\mathrm{c}, \mathrm{d}]}$
153(1)	160(<1)[4]	
147(1)	156(<1)[18]	
139(1)	146(1)[4]	
122(1)	135(<1)[3]	
	$125(<1)[2]$	
111(1)	$120(1)[<1]$	
	108(<1) [$<1]$	
	108(<1)[<1]	
	104(<1)[1]	
	101 $(<1)[<1]$	deformation and lattice modes
	$93(<1)[<1]$	
	$79(<1)[2]$	
	$69(<1)[<1]$	
	$69(<1)[<1]$	
	$50(<1)[<1]$	
	$48(<1)[<1]$	
	$37(<1)[<1]$	
	$32(<1)[<1]$	
	$22(<1)[<1]$	

continued...

Table A7.9. (continued) [a] Frequencies are given in cm^{-1}. Values in parentheses denote relative Raman intensities. The Raman spectrum was recorded on dry crystalline 4 at $-150^{\circ} \mathrm{C}$ using 1064-nm excitation. [b] Values in parentheses and square brackets denote calculated Raman intensities $\left(\AA^{4} \mathrm{amu}^{-1}\right)$ and infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$), respectively. [c] Assignments are for the energy-minimized geometry of $\mathbf{4}^{\prime}\left(C_{\mathrm{s}}\right)$ calculated at the PBE1PBE/Def2-SVP (F, O, Cr, Xe) level of theory. [d] Abbreviations denote stretch (v), bend (δ), rock $\left(\rho_{\mathrm{r}}\right)$, twist $\left(\rho_{\mathrm{t}}\right)$, wag $\left(\rho_{\mathrm{w}}\right)$, and umbrella (umb). The atom labeling scheme corresponds to that used in Figure 10.5.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A7.10. Calculated geometric parameters for $\mathrm{CrO}_{2} \mathrm{~F}_{2}\left(C_{2 \mathrm{v}}\right),\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}\left(C_{2 \mathrm{~h}}\right)$, and $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}\left(C_{2 \mathrm{v}}\right)^{[\mathrm{ar}]}$

	$\underset{\text { Lengths }}{\mathrm{CrO}_{2} \mathrm{~F}_{2}}$	$\begin{aligned} & {\left[\mathrm{Crr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}} \\ & \text { ontacts }(\AA) \end{aligned}$	$\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$
$\mathrm{Cr}(1)-\mathrm{O}(1)$	1.5249	1.5515	1.5702
$\mathrm{Cr}(1)-\mathrm{O}(2)$	1.5249	1.5515	1.5702
$\mathrm{Cr}(1)-\mathrm{F}(1)$	1.6847	2.0683	1.9303
$\mathrm{Cr}(1)-\mathrm{F}(2)$	1.6847	1.7805	1.9303
$\mathrm{Cr}(1)-\mathrm{F}(3)$		1.7805	1.8555
$\mathrm{Cr}(1)-\mathrm{F}(4)$			1.8555
Bond Angles (deg)			
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{O}(2)$	108.20	105.17	102.85
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(1)$	109.60	162.91	88.70
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	109.60	95.86	168.46
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$		95.87	93.51
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(4)$			93.51
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(1)$	109.60	91.92	168.46
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(2)$	109.60	95.87	88.70
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(3)$		95.86	93.51
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{F}(4)$			93.51
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	110.20	82.13	79.76
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$		82.13	85.68
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(4)$			85.68
$\mathrm{F}(2)-\mathrm{Cr}(1)-\mathrm{F}(3)$		160.64	85.68
$\mathrm{F}(2)-\mathrm{Cr}(1)-\mathrm{F}(4)$			85.68
$\mathrm{F}(3)-\mathrm{Cr}(1)-\mathrm{F}(4)$			168.73
$\mathrm{Cr}(1)-\mathrm{F}(1)-\mathrm{Cr}(1 \mathrm{~A})$		109.00	

[a] The PBE1PBE/Def2-SVP (F, O, Cr) level of theory was used.

Table A7.11. Calculated geometric parameters for $\left[\mathrm{XeF}_{5}\right]^{+}\left(C_{4 \mathrm{v}}\right)$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}\left(C_{2}\right)^{[\mathrm{ar}]}$

	$\left[\mathrm{XeF}_{5}\right]^{+}$ Bond lengths (\AA)	$\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$
$\mathrm{Xe}(1)-\mathrm{F}(1)$	1.839	1.874
$\mathrm{Xe}(1)-\mathrm{F}(2)$	1.839	1.856
$\mathrm{Xe}(1)-\mathrm{F}(3)$	1.839	1.856
$\mathrm{Xe}(1)-\mathrm{F}(4)$	1.839	1.874
$\mathrm{Xe}(1)-\mathrm{F}(5)$	1.807	1.823
$\mathrm{Xe}(1)-\mathrm{F}(6)$		2.293
Bond angles $\left({ }^{\circ}\right)$		
$\mathrm{F}(1)-\mathrm{Xe}(1)-\mathrm{F}(2)$	89.20	88.05
$\mathrm{~F}(1)-\mathrm{Xe}(1)-\mathrm{F}(3)$	166.44	164.14
$\mathrm{~F}(1)-\mathrm{Xe}(1)-\mathrm{F}(4)$	89.20	90.99
$\mathrm{~F}(1)-\mathrm{Xe}(1)-\mathrm{F}(5)$	83.22	82.21
$\mathrm{~F}(1)-\mathrm{Xe}(1)-\mathrm{F}(6)$		114.59
$\mathrm{~F}(2)-\mathrm{Xe}(1)-\mathrm{F}(3)$	89.20	88.31
$\mathrm{~F}(2)-\mathrm{Xe}(1)-\mathrm{F}(4)$	166.44	163.90
$\mathrm{~F}(2)-\mathrm{Xe}(1)-\mathrm{F}(5)$	83.22	81.87
$\mathrm{~F}(2)-\mathrm{Xe}(1)-\mathrm{F}(6)$		79.41
$\mathrm{~F}(3)-\mathrm{Xe}(1)-\mathrm{F}(4)$	89.20	88.25
$\mathrm{~F}(3)-\mathrm{Xe}(1)-\mathrm{F}(5)$	83.22	81.99
$\mathrm{~F}(3)-\mathrm{Xe}(1)-\mathrm{F}(6)$		79.84
$\mathrm{~F}(4)-\mathrm{Xe}(1)-\mathrm{F}(5)$	83.22	82.08
$\mathrm{~F}(4)-\mathrm{Xe}(1)-\mathrm{F}(6)$		115.39
$\mathrm{~F}(5)-\mathrm{Xe}(1)-\mathrm{F}(6)$		154.18

[a] The PBE1PBE/Def2-SVP (F, Xe) level of theory was used.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A7.11. Calculated ${ }^{[a]}$ vibrational frequencies, ${ }^{[b]}$ intensities, and assignments ${ }^{[c]}$ for $\mathrm{CrO}_{2} \mathrm{~F}_{2}$

calcd ${ }^{[\mathbf{a}, \mathbf{b}]}$	assgnts $\left(\boldsymbol{C}_{2 \mathrm{v}}\right)^{[\mathbf{c l}]}$
$1186(7)[185]$	$v\left(\mathrm{Cr}-\mathrm{O}_{1}\right)-v\left(\mathrm{Cr}-\mathrm{O}_{2}\right)$
$1182(17)[89]$	$v\left(\mathrm{Cr}-\mathrm{O}_{1}\right)+v\left(\mathrm{Cr}-\mathrm{O}_{2}\right)$
$832(2)[155]$	$v\left(\mathrm{Cr}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}-\mathrm{F}_{2}\right)$
$780(9)[69]$	$v\left(\mathrm{Cr}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}-\mathrm{F}_{2}\right)$
$448(4)[<1]$	$\delta\left(\mathrm{O}_{1} \mathrm{CrO}_{2}\right)$
$337(1)[11]$	$\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{CrO}_{2}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{1} \mathrm{CrF}_{2}\right)$
$311(8)[2]$	$\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{CrF}_{2}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{1} \mathrm{CrO}_{2}\right)$
$298(4)[0]$	$\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{CrO}_{2}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{CrF}_{2}\right)$
$229(2)[6]$	$\delta\left(\mathrm{F}_{1} \mathrm{CrF}_{2}\right)$

[a] The PBE1PBE/Def2-SVP (F, O, Cr) level of theory was used. [b] Values in parentheses and square brackets denote calculated Raman intensities $\left(\AA^{4} \mathrm{amu}^{-1}\right)$ and infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$), respectively. [c] Abbreviations denote stretch (v), bend (δ), rock $\left(\rho_{\mathrm{r}}\right)$, twist $\left(\rho_{\mathrm{t}}\right)$, and wag $\left(\rho_{\mathrm{w}}\right)$.

Table A7.12. Calculated ${ }^{[a]}$ vibrational frequencies, ${ }^{[b]}$ intensities, and assignments ${ }^{[\mathrm{cc]}}$ for $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}$

calcd ${ }^{[a, b]}$	assgnts ($\left.C_{2 v}\right)^{[\mathrm{cc}]}$
1058(27)[190]	$v\left(\mathrm{Cr}^{-} \mathrm{O}_{1}\right)+v\left(\mathrm{Cr}-\mathrm{O}_{2}\right)$
1042(9)[356]	$v\left(\mathrm{Cr}^{-} \mathrm{O}_{1}\right)-v\left(\mathrm{Cr}-\mathrm{O}_{2}\right)$
558(11)[85]	$\left[v\left(\mathrm{Cr}^{-} \mathrm{F}_{1}\right)+v\left(\mathrm{Cr}-\mathrm{F}_{2}\right)\right]+\left[v\left(\mathrm{Cr}-\mathrm{F}_{3}\right)+v(\mathrm{Cr}-\mathrm{F} 4)\right]$
501(<1)[255]	$v\left(\mathrm{Cr}-\mathrm{F}_{3}\right)-v\left(\mathrm{Cr}-\mathrm{F}_{4}\right)$
453(5)[1]	$\delta\left(\mathrm{O}_{1} \mathrm{CrO}_{2}\right)$
404(3)[32]	$\left[v\left(\mathrm{Cr}^{-} \mathrm{F}_{1}\right)+v\left(\mathrm{Cr}-\mathrm{F}_{2}\right)\right]-\left[v\left(\mathrm{Cr}^{-} \mathrm{F}_{3}\right)+v\left(\mathrm{Cr}-\mathrm{F}_{4}\right)\right]$
397(<1)[17]	$\left[v\left(\mathrm{Cr}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}-\mathrm{F}_{2}\right)\right]+\rho_{\mathrm{r}}\left(\mathrm{O}_{1} \mathrm{CrO}_{2}\right)$
361(2)[60]	$\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{CrO}_{2}\right)$
340(5)[0]	$\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{CrO}_{2}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{CrF}_{2}\right)\right]+\rho_{\mathrm{t}}\left(\mathrm{F}_{3} \mathrm{CrF}_{4}\right)$
$336(3)[52]$	$\left[\rho_{\mathrm{r}}\left(\mathrm{O}_{1} \mathrm{CrO}_{2}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{1} \mathrm{CrF}_{2}\right)\right]-\rho_{\mathrm{w}}\left(\mathrm{F}_{3} \mathrm{CrF}_{4}\right)$
$335(1)[<1]$	$\delta\left(\mathrm{F}_{1} \mathrm{CrF}_{2}\right)+\delta\left(\mathrm{F}_{3} \mathrm{CrF}_{4}\right)_{\text {small }}$
298(2)[3]	$\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{CrF}_{2}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{3} \mathrm{CrF}_{4}\right)$
$220(<1)[3]$	$\delta\left(\mathrm{F}_{3} \mathrm{CrF}_{4}\right)-\delta\left(\mathrm{F}_{1} \mathrm{CrF}_{2}\right)_{\text {small }}$
192(<1)[6]	$\left[\rho_{\mathrm{r}}\left(\mathrm{O}_{1} \mathrm{CrO}_{2}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{1} \mathrm{CrF}_{2}\right)\right]+\rho_{\mathrm{w}}\left(\mathrm{F}_{3} \mathrm{CrF}_{4}\right)$
122(<1)[0]	$\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{CrO}_{2}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{CrF}_{2}\right)$

[a] The PBE1PBE/Def2-SVP (F, O, Cr) level of theory was used. [b] Values in parentheses and square brackets denote calculated Raman intensities $\left(\AA^{4} \mathrm{amu}^{-1}\right)$ and infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$), respectively. [c] Abbreviations denote stretch (v), bend (δ), rock $\left(\rho_{\mathrm{r}}\right)$, twist $\left(\rho_{\mathrm{t}}\right)$, and wag $\left(\rho_{\mathrm{w}}\right)$.

Table A7.13. Calculated ${ }^{[a]}$ vibrational frequencies, ${ }^{[b]}$ intensities, and assignments ${ }^{[c]}$ for $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$

$\text { calcd }^{[a, b]}$	assgnts ($\left.C_{2 \mathrm{~h}}\right)^{[\mathrm{cc}}$
1106(66)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{O}_{2}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)\right]$
1106(0)[520]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{O}_{2}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)\right]$
1085(0)[431]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{O}_{2}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)\right]$
1075(46)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{O}_{2}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)\right]$
646(0)[417]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]$
605(0)[116]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]$
$602(<1)[0]$	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]$
602(19)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]$
476(6) [0]	$\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]$
466(0)[8]	$\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]$
414(1)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]$
400(0)[56]	[$\left.\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\rho_{\mathrm{w}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]$
396(3)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{r}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]_{\text {small }}$
393(6)[0]	$\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]$
388(0)[119]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]$
366(7)[0]	$\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{t}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]+\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{1 \mathrm{~A}}\right)$
$361(0)[16]$	$\left[\rho_{\mathrm{r}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\rho_{\mathrm{r}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$
$349(0)[<1]$	$\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{1 \mathrm{~A}}\right)+\left[\rho_{\mathrm{r}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)-\rho_{\mathrm{r}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$
344(0)[0]	$\left[\rho_{t}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\rho_{\mathrm{t}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$
275(4)[0]	$\delta\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\delta\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)$
258(0)[10]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]_{\text {small }}$

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A7.13. (continued) Calculated ${ }^{[a]}$ vibrational frequencies, ${ }^{[b]}$ intensities, and assignments ${ }^{[c]}$ for $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}$

calcd $^{[\mathrm{a}, \mathrm{b}]}$	assgnts $\left(\boldsymbol{C}_{2 \mathbf{h}}\right)^{[\mathbf{c l}}$
$245(0)[46]$	$\left[\delta\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)-\delta\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$
$241(1)[0]$	$\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{t}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]-\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{1 \mathrm{~A}}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]$
$210(1)[0]$	$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]_{\text {small }}-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]_{\text {small }}$
$204(1)[0]$	$\left[\rho_{\mathrm{r}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right.$
$180(2)[0]$	$\delta\left(\mathrm{Cr}_{1} \mathrm{~F}_{1} \mathrm{Cr}_{1 \mathrm{~A}}\right)+\delta\left(\mathrm{Cr}_{1} \mathrm{~F}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}}\right)$
$132(0)[<1]$	$\left[\rho_{\mathrm{r}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\rho_{\mathrm{r}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]$
$101(0)[2]$	$\left[\rho_{\mathrm{r}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)-\rho_{\mathrm{r}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]+\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{1 \mathrm{~A}}\right)$
$91(0)[0]$	$\left[\rho_{\mathrm{t}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)-\rho_{\mathrm{t}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]_{\text {small }}$
$-46(<1)[0]$	$\left[\rho_{\mathrm{r}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{O}_{2}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}}\right)\right]+\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{1 \mathrm{~A}}\right)$

[a] The PBE1PBE/Def2-SVP (F, O, Cr) level of theory was used. [b] Values in parentheses and square brackets denote calculated Raman intensities $\left(\AA^{4}\right.$ amu^{-1}) and infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$), respectively. [c] Abbreviations denote stretch (v), bend (δ), rock $\left(\rho_{\mathrm{r}}\right)$, twist (ρ_{t}), and wag (ρ_{w}).

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A7.14. Calculated ${ }^{[\mathrm{ab}}$ vibrational frequencies, ${ }^{[\mathrm{bb}]}$ intensities, and assignments ${ }^{[\mathrm{cc]}}$ for $\left[\mathrm{XeF}_{5}\right]^{+}$

calcd ${ }^{[\mathrm{a}, \mathrm{b}]}$	assgnts $\left(\boldsymbol{C}_{4 \mathbf{v}}\right)^{[\mathbf{c c}]}$
$731(<1)[157]$	$v\left(\mathrm{Xe}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{3}\right)$
$731(<1)[157]$	$v\left(\mathrm{Xe}_{1}-\mathrm{F}_{2}\right)-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)$
$707(12)[29]$	$v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)$
$659(23)[<1]$	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)\right]-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)$
$651(14)[0]$	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{3}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)\right]$
$372(2)[11]$	$\delta\left(\mathrm{F}_{1} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)-\delta\left(\mathrm{F}_{3} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)$
$372(2)[11]$	$\delta\left(\mathrm{F}_{2} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)-\delta\left(\mathrm{F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)$
$331(<1)[38]$	$\delta_{\mathrm{umb}}\left(\mathrm{Xe}_{1} \mathrm{~F}_{1-4}\right)$
$289(3)[0]$	$\delta\left(\mathrm{F}_{1} \mathrm{Xe}_{1} \mathrm{~F}_{2}\right)+\delta\left(\mathrm{F}_{3} \mathrm{Xe}_{1} \mathrm{~F}_{4}\right)$
$213(<1)[0]$	$\rho_{\mathrm{t}}\left(\mathrm{F}_{1} \mathrm{Xe}_{1} \mathrm{~F}_{2}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{3} \mathrm{Xe}_{1} \mathrm{~F}_{4}\right)$
$209(<1)[4]$	$\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Xe}_{1} \mathrm{~F}_{3}\right)$
$209(<1)[4]$	$\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{Xe}_{1} \mathrm{~F}_{4}\right)$

[a] The PBE1PBE/Def2-SVP (F, Xe) level of theory was used. [b] Values in parentheses and square brackets denote calculated Raman intensities $\left(\AA^{4} \mathrm{amu}^{-1}\right)$ and infrared intensities $\left(\mathrm{km} \mathrm{mol}^{-1}\right)$, respectively. [c] Abbreviations denote stretch (v), bend (δ), umbrella mode (δ_{umb}), twist $\left(\rho_{\mathrm{t}}\right)$, and wag (ρ_{w}).

Table A7.15. Calculated ${ }^{[a]}$ vibrational frequencies, ${ }^{[b]}$ intensities, and assignments ${ }^{\left[{ }^{[b]}\right]}$ for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$

calcd $^{[a, b]}$	assgnts ($\left.C_{4 v}\right)^{\text {cl }]}$
696(83)[39]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)+\right.} \\ & \left.\left.v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]\right] \end{aligned}$
694(<1)[350]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{2}\right)-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]$
693(35)[220]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)\right]-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{1}\right)+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)\right]$
686(10)[11]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)\right]-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{1}\right)-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{1 A}-\mathrm{F}_{2 \mathrm{~A}}\right)\right]$
686(6)[2]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{2}\right)-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)\right]$
682(<1)[312]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)+\right.} \\ & \left.\left.v\left(\mathrm{~F}_{4 \mathrm{~A}}\right)\right]\right] \end{aligned}$
630(5)[6]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+\right.} \\ & \left.v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)\right] \end{aligned}$
630(46)[3]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+\right.} \\ & \left.v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right] \end{aligned}$
612(10)[7]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{3}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{3 A}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]$
612(21)[1]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{3}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 A}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]$
$371(66)[<1]$	$\left[\delta\left(\mathrm{F}_{1} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)-\delta\left(\mathrm{F}_{3} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)\right]-\left[\delta\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{4 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)\right]$
369(2)[8]	$\left[\delta\left(\mathrm{F}_{1} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)-\delta\left(\mathrm{F}_{3} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)\right]+\left[\delta\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Xe} \mathrm{l}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{4 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)\right]$
$368(<1)[20]$	$\left[\delta\left(\mathrm{F}_{2} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)-\delta\left(\mathrm{F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)\right]+\left[\delta\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{3 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)\right]$
$366(<1)[5]$	$\left[\delta\left(\mathrm{F}_{2} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)-\delta\left(\mathrm{F}_{4} \mathrm{Xe} \mathrm{e}_{1} \mathrm{~F}_{5}\right)\right]-\left[\delta\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{3 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)\right]$
$328(<1)[568]$	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)\right]+\left[\delta_{\mathrm{umb}}\left(\mathrm{Xe}_{1} \mathrm{~F}_{1-4}\right)-\delta_{\text {umb }}\left(\mathrm{Xe}_{1 A} \mathrm{~F}_{1 \mathrm{~A}-4 \mathrm{~A}}\right)\right]$
325(16)[9]	$\left[\delta_{\text {umb }}\left(\mathrm{Xe}_{1} \mathrm{~F}_{1-4}\right)+\delta_{\text {umb }}\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}-4 \mathrm{~A}}\right)\right]$
301(<1)[24]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)\right]-\left[\delta_{\mathrm{umb}}\left(\mathrm{Xe}_{1} \mathrm{~F}_{1-4}\right)-\delta_{\mathrm{umb}}\left(\mathrm{Xe}_{1 \perp} \mathrm{~F}_{1 \mathrm{~A}-4 \mathrm{~A}}\right)\right]$
277(2)[2]	$\left[\delta\left(\mathrm{F}_{1} \mathrm{Xe}_{1} \mathrm{~F}_{2}\right)+\delta\left(\mathrm{F}_{3} \mathrm{Xe}_{1} \mathrm{~F}_{4}\right)+\delta\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{2} \mathrm{Xe}_{1 /} \mathrm{F}_{3 \mathrm{~A}}\right)\right]$

continued...

Table A7.15. (continued) Calculated ${ }^{[a]}$ Raman frequencies, ${ }^{[b]}$ intensities, and assignments ${ }^{[6]}$ for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$

$\text { calcd }^{[a, b]}$	assgnts ($\left.C_{4 v}\right)^{[\mathrm{cc]}}$
274(2)[9]	$\left[\delta\left(\mathrm{F}_{1} \mathrm{Xe}_{1} \mathrm{~F}_{2}\right)+\delta\left(\mathrm{F}_{3} \mathrm{Xe}_{1} \mathrm{~F}_{4}\right)+\delta\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{2 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{3 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)\right]$
$230(<1)[1]$	$\left[\rho_{t}\left(\mathrm{~F}_{1} X \mathrm{e}_{1} \mathrm{~F}_{2}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{3} \mathrm{Xe} \mathrm{e}_{1} \mathrm{~F}_{4}\right)\right]-\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{1 \mathrm{~A}} X \mathrm{e}_{1 \mathrm{~A}} \mathrm{~F}_{2 \mathrm{~A}}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{3 \mathrm{~A}} X \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)\right]$
$223(<1)[1]$	$\rho_{\mathrm{t}}\left(\mathrm{F}_{1} X \mathrm{Xe}_{1} \mathrm{~F}_{2}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{3} X \mathrm{e}_{1} \mathrm{~F}_{4}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{1 \mathrm{~A}} X \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{2 \mathrm{~A}}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{3 \mathrm{~A}} X \mathrm{e}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)$
197(<1)[2]	$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Xe}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{Xe} \mathrm{e}_{1} \mathrm{~F}_{4}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)\right]$
196(<1) [<1]	$\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Xe}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{Xe}_{1} \mathrm{~F}_{4}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)$
190(<1)[7]	$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Xe}_{1} \mathrm{~F}_{3}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{Xe}_{1} \mathrm{~F}_{4}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)\right]$
180(<1)[10]	$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Xe}_{1} \mathrm{~F}_{3}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{Xe} \mathrm{e}_{1} \mathrm{~F}_{4}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{2 \mathrm{~A}} X \mathrm{Se}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)\right]$
170(2)[3]	$v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)$
122(<1)[4]	$\delta\left(\mathrm{F}_{2} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)-\delta\left(\mathrm{F}_{3 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{6}\right)$
$96(<1)[<1]$	$\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{1} \mathrm{~F}_{2} \mathrm{~F}_{6}\right)+\delta\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}} \mathrm{~F}_{2 \mathrm{~A}} \mathrm{~F}_{6}\right)$
$62(<1)[<1]$	$\rho_{\mathrm{r}}\left(\mathrm{Xe}_{1} \mathrm{~F}_{1} \mathrm{~F}_{3} \mathrm{~F}_{5}\right)-\rho_{\mathrm{r}}\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{2 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)$
$46(1)[<1]$	$\rho_{\mathrm{r}}\left(\mathrm{Xe}_{1} \mathrm{~F}_{2} \mathrm{~F}_{4} \mathrm{~F}_{5}\right)-\rho_{\mathrm{r}}\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)$
$24(<1)[<1]$	$\rho_{\mathrm{r}}\left(\mathrm{Xe}_{1} \mathrm{~F}_{1} \mathrm{~F}_{3} \mathrm{~F}_{5}\right)+\rho_{\mathrm{r}}\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{2 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)$
$18(<1)[<1]$	$\rho_{\mathrm{r}}\left(\mathrm{Xe}_{1} \mathrm{~F}_{2} \mathrm{~F}_{4} \mathrm{~F}_{5}\right)+\rho_{\mathrm{r}}\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)$
$9(<1)[<1]$	$\rho_{\mathrm{r}}\left(\mathrm{F}_{1} \mathrm{Xe} \mathrm{e}_{1} \mathrm{~F}_{2}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{3} \mathrm{Xe}_{1} \mathrm{~F}_{4}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{2 \mathrm{~A}}\right)+\rho_{\mathrm{r}}\left(\mathrm{F}_{3 \mathrm{~A}} X \mathrm{e}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)$

[a] The PBE1PBE/Def2-SVP (F, Xe) level of theory was used. [b] Values in parentheses and square brackets denote calculated Raman intensities $\left(\AA^{4} \mathrm{amu}^{-1}\right)$ and infrared intensities $\left(\mathrm{km} \mathrm{mol}^{-1}\right)$, respectively. [c] Abbreviations denote stretch (v), bend (δ), umbrella mode $\left(\delta_{\mathrm{umb}}\right)$, twist $\left(\rho_{\mathrm{t}}\right)$, and wag $\left(\rho_{\mathrm{w}}\right)$.

Figure A7.1. Factor-Group Analysis of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{[\mathrm{ax}}$

[a] The external modes have not been treated in this analysis. [b] The vibrational irreducible representation for gas-phase $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]$ is $\Gamma=18 \mathrm{~A}_{\mathrm{g}}+15 \mathrm{~B}_{\mathrm{g}}+14 \mathrm{~A}_{\mathrm{u}}+$ $19 \mathrm{~B}_{\mathrm{u}}$. [c] Space group; $P 2_{1} / \mathrm{n}, \mathrm{Z}=2$.

Figure A7.2. Factor-Group Analysis of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}^{[\mathrm{a}]}$

[a] The external modes have not been treated in this analysis. [b] The vibrational irreducible representation for gas-phase $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$ is $\Gamma=26 \mathrm{Ag}_{\mathrm{g}}+19 \mathrm{~B}_{\mathrm{g}}+19$ $\mathrm{A}_{\mathrm{u}}+26 \mathrm{~B}_{\mathrm{u}}$. [c] Space group; $P 2_{1} / \mathrm{c}, \mathrm{Z}=2$.

Figure A7.3. Factor-Group Analysis of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}{ }^{[a]}$

[a] The external modes have not been treated in this analysis. [b] The vibrational irreducible representation for gas-phase $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}$ is $\Gamma=29 \mathrm{Ag}_{\mathrm{g}}+21 \mathrm{~B}_{\mathrm{g}}+$ $22 \mathrm{~A}_{\mathrm{u}}+30 \mathrm{~B}_{\mathrm{u}}$. [c] Space group; $P \overline{1}, \mathrm{Z}=2$.

Figure A7.4. Factor-Group Analysis of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{[\mathrm{a}]}$

[a] The external modes have not been treated in this analysis. [b] The vibrational irreducible representation for gas-phase $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}$ is $\Gamma=39 \mathrm{~A}^{\prime}+33 \mathrm{~A}^{\prime \prime}[\mathrm{c}]$ Space group; $P 2 / c, Z=8$.

Figure A7.5. Calculated geometry of $\mathrm{CrO}_{2} \mathrm{~F}_{2}\left(\mathrm{C}_{2 \mathrm{v}}\right)($ PBE1PBE/Def2-SVP-(F, $\mathrm{O}, \mathrm{Cr})$). See Table A7.10 for bond lengths and bond angles.

Figure A7.6. Calculated geometry of $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}\left(C_{2 \mathrm{~h}}\right)(\mathrm{PBE} 1 \mathrm{PBE} / \mathrm{Def} 2-\mathrm{SVP}-(\mathrm{F}, \mathrm{O}, \mathrm{Cr})$). See Table A7.10 for bond lengths and bond angles.

Figure A7.7. Calculated geometry of $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}\left(C_{2 \mathrm{v}}\right)(\mathrm{PBE} 1 \mathrm{PBE} / \mathrm{Def2-SVP-(F}, \mathrm{O}, \mathrm{Cr)})$. See Table A7.10 for bond lengths and bond angles.

Figure A7.8. Calculated geometry of $\left[\mathrm{XeF}_{5}\right]^{+}$(PBE1PBE/Def2-SVP-(F, Xe)). See Table A7.11 for bond lengths and bond angles.

Figure A7.9. Calculated geometry of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$(PBE1PBE/Def2-SVP-(F, Xe)). See Table A7.11 for bond lengths and bond angles.

Table A7.16. Wiberg bond indices, Natural Population Analysis (NPA) Charges, and Valence Indices for $\mathrm{CrO}_{2} \mathrm{~F}_{2}\left(C_{2 \mathrm{v}}\right)^{[\mathrm{ax]}}$

Bond Indices				NPA Charges [Valence Indices]	
$\mathrm{Cr}-\mathrm{O}$	1.913	Cr	1.220	$[5.371]$	
$\mathrm{Cr}-\mathrm{F}$	0.773	O	-0.241	$[2.512]$	
		F	-0.369	$[1.124]$	
		\sum CrO2F2	$\mathbf{0 . 0 0 0}$		

[a] The PBE1PBE/Def2-SVP (O, F, Cl) level of theory was used. The sum \sum cro2f2 $=\mathrm{Cr}+2(\mathrm{O}+$ F).

Table A7.17. Wiberg bond indices, Natural Population Analysis (NPA) Charges, and Valence Indices for $\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]^{2-}\left(\mathrm{C}_{2 \mathrm{~h}}\right)^{[\mathrm{a}]}$

Bond Indices			NPA Charges [Valence Indices]		
$\mathrm{Cr} 1-\mathrm{O} 1$	1.860	Cr1	1.051	$[5.582]$	
$\mathrm{Cr} 1-\mathrm{O} 2$	1.860	O1	-0.302	$[2.473]$	
$\mathrm{Cr} 1-\mathrm{F} 1$	0.268	O2	-0.302	$[2.473]$	
$\mathrm{Cr} 1-\mathrm{F} 2$	0.654	F1	-0.552	$[0.838]$	
$\mathrm{Cr} 1-\mathrm{F} 3$	0.654	F2	-0.448	$[0.978]$	
		F3	-0.448	$[0.978]$	
		$\sum_{\text {lCr2O4F6]2- }}$	$\mathbf{- 2 . 0 0 2}$		

[a] The PBE1PBE/Def2-SVP $(\mathrm{O}, \mathrm{F}, \mathrm{Cl})$ level of theory was used. The labeling scheme is the same as in Figure A7.6. The sum $\sum_{|C r 2 O 4 F 6| 2-}=2\left(\mathrm{Cr}_{1}+\mathrm{O}_{1}+\mathrm{O}_{2}+\mathrm{F}_{1}+\mathrm{F}_{2}+\mathrm{F}_{3}\right)$.

Table A7.18. Wiberg bond indices, Natural Population Analysis (NPA) Charges, and Valence Indices for $\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]^{2-}\left(\mathrm{C}_{2 \mathrm{v}}\right)^{[a]}$

Bond Indices				NPA Charges [Valence Indices]	
$\mathrm{Cr}-\mathrm{O}$	1.809	Cr	1.036	$[5.617]$	
$\mathrm{Cr}-\mathrm{F}_{1,2}$	0.460	O	-0.361	$[2.406]$	
$\mathrm{Cr}-\mathrm{F}_{3,4}$	0.540	$\mathrm{~F}_{1,2}$	-0.604	$[0.726]$	
		$\mathrm{F}_{3,4}$	-0.553	$[0.794]$	
		$\sum_{[\text {[CrO2F4]2- }}$	$-\mathbf{2 . 0 0 0}$		

[a] The PBE1PBE/Def2-SVP (O, F, Cl) level of theory was used. The labeling scheme is the same as in Figure A7.7. The sum $\sum_{\mid \text {Cro2F4|2- }}=\mathrm{Cr}+2\left(\mathrm{O}+\mathrm{F}_{1,2}+\mathrm{F}_{3,4}\right)$.

Table A7.19. Wiberg bond indices, natural population analysis (NPA) charges, and valence indices for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right]\left(\mathbf{1}^{\prime}\right)\left(C_{2 \mathrm{~h}}\right)^{[a]}$

Bond Indices			NPA Charges [Valence Indices]		
Xe1-F4	0.615	Xe1	3.192	$[3.384]$	
Xe1-F5	0.609	F4	-0.490	$[0.850]$	
Xe1-F6	0.609	F5	-0.495	$[0.841]$	
Xe1-F7	0.615	F6	-0.495	$[0.841]$	
Xe1-F8	0.617	F7	-0.490	$[0.850]$	
Xe1---F1	0.085	F8	-0.463	$[0.859]$	
Xe1---F2	0.108				
Xe1---F3A	0.108	$\sum_{\text {[XeF5] }+}$	$\mathbf{0 . 7 5 9}$		
Cr1-O1	2.037	Cr1	1.067	$[5.526]$	
Cr1-O2	2.037	O1	-0.114	$[2.609]$	
Cr1-F1	0.203	O2	-0.114	$[2.609]$	
Cr1-F2	0.506	F1	-0.601	$[0.908]$	
Cr1-F3	0.506	F2	-0.499	$[0.841]$	
		F3	-0.499	$[0.841]$	
		\sum [Cr204F662-	$\mathbf{- 1 . 5 2 0}$		
		$\sum_{\text {total }}$	$\mathbf{- 0 . 0 0 2}$		

[a] The PBE1PBE/Def2-SVP (F, O, Cr, Xe) level of theory was used. The sums, $\sum_{[\text {XeF5 }]^{+}}=\mathrm{Xe}_{1}+$ $\mathrm{F}_{4}+\mathrm{F}_{5}+\mathrm{F}_{6}+\mathrm{F}_{7}+\mathrm{F}_{8}, \sum_{\left[\mathrm{Cr} 2 \mathrm{O} \mathrm{FF}_{6}\right]^{-}}=2\left(\mathrm{Cr}_{1}+\mathrm{O}_{1}+\mathrm{O}_{2}+\mathrm{F}_{1}+\mathrm{F}_{2}+\mathrm{F}_{3}\right)$, and $\sum_{\text {total }}=2 \sum_{[\text {XeF5 } \mid+}+$ $\sum_{|\mathrm{Cr} 204 \mathrm{FG}| 2-}$. The labeling scheme is the same as in Figure 10.1.

Table A7.20. Wiberg bond indices, natural population analysis (NPA) charges, and valence indices for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 4 \mathrm{HF}\left(\mathbf{2}^{\prime}\right)\left(C_{2 \mathrm{~h}}\right)$

Bond Indices		NPA Charges [Valence Indices]		
Xe1-F4	0.608	Xe1	3.204	[3.378]
Xe1-F5	0.624	F4	-0.496	[0.840]
Xe1-F6	0.624	F5	-0.484	[0.854]
Xe1-F7	0.608	F6	-0.484	[0.854]
Xe1-F8	0.618	F7	-0.496	[0.840]
Xe1---F1	0.011	F8	-0.462	[0.859]
Xe1---F2	0.084			
Xe1---F3A	0.084			
Xe1---F9	0.103	$\sum[\text { [} 2 F 5]^{+}$	0.782	
Cr1-O1	2.041	Cr1	1.068	[5.516]
Cr1-O2	2.041	O1	-0.107	[2.618]
Cr1-F1	0.181	O2	-0.107	[2.618]
Cr1-F2	0.515	F1	-0.617	[0.738]
Cr1-F3	0.515	F2	-0.507	[0.897]
		F3	-0.507	[0.897]
		$\sum\left[{ }^{\text {Cr2O4F6] }}\right.$ -	-1.554	
H9-F9	0.515	H1	0.576	[0.675]
H(10)---F(10)	0.148	F6	-0.589	[0.714]
		$\sum \mathrm{HF}(\mathbf{1})$	-0.013	
H10-F10	0.536	H2	0.571	[0.680]
F(1)---H(2)	0.131	F7	-0.564	[0.753]
		$\sum \mathrm{HF}(\mathbf{2})$	0.007	
		$\sum_{\text {total }}$	-0.002	

[a] The PBE1PBE/Def2-SVP (F, O, Cr, Xe) level of theory was used. The sums, $\sum_{[\text {Xef5 }]_{+}}=\mathrm{Xe}_{1}+$ $\mathrm{F}_{4}+\mathrm{F}_{5}+\mathrm{F}_{6}+\mathrm{F}_{7}+\mathrm{F}_{8}, \sum_{\left.|\mathbf{C r 2 O 4 F}|\right|_{2-}}=2\left(\mathrm{Cr}_{1}+\mathrm{O}_{1}+\mathrm{O}_{2}+\mathrm{F}_{1}+\mathrm{F}_{2}+\mathrm{F}_{3}\right)$, and $\sum_{\text {total }}=2\left(\sum_{\mid \text {XeF5 }\left.\right|^{+}}+\right.$ $\sum_{\mathbf{H F}(\mathbf{1})}+\sum_{\mathbf{H F}(2))}+\sum_{|\mathbf{C r 2 O 4 F G |}| 2-}$. The labeling scheme is the same as in Figure 10.2.

Table A7.21. Wiberg bond indices, natural population analysis (NPA) charges, and valence indices for $\left[\mathrm{XeF}_{5}\right]_{2}\left[\mathrm{Cr}_{2} \mathrm{O}_{4} \mathrm{~F}_{6}\right] \cdot 2 \mathrm{XeOF}_{4}\left(\mathbf{3}^{\prime}\right)\left(C_{2 \mathrm{~h}}\right)^{[\mathrm{a}]}$

Bond Indices		NPA Charges [Valence Indices]		
Xe1-F4	0.620	Xe1	3.198	[3.381]
Xe1-F5	0.625	F4	-0.486	[0.856]
Xe1-F6	0.625	F5	-0.483	[0.857]
Xe1-F7	0.620	F6	-0.483	[0.857]
Xe1-F8	0.627	F7	-0.486	[0.856]
Xe1---F1	0.061	F8	-0.453	[0.856]
Xe1---F2	0.090			
Xe1---F3A	0.090	$\sum\left[\right.$ [${ }^{\text {FF5] }}+$	0.807	
Cr1-O1	2.053	Cr1	1.051	[5.534]
Cr1-O2	2.053	O1	-0.093	[2.627]
Cr1-F1	0.188	O2	-0.093	[2.627]
Cr1-F2	0.501	F1	-0.637	[0.702]
Cr1-F3	0.501	F2	-0.515	[0.886]
		F3	-0.515	[0.886]
		$\sum_{[C r 204 F 6 \mid 2-~}^{\text {- }}$	-1.604	
Xe2-O3	1.306	Xe2	3.040	[3.435]
Xe2-F9	0.500	O3	-0.817	[1.670]
Xe2-F10	0.530	F9	-0.575	[0.737]
Xe2-F11	0.530	F10	-0.552	[0.769]
Xe2-F12	0.534	F11	-0.552	[0.769]
Xe2---F1	0.016	F12	-0.550	[0.768]
Xe2---F2	0.007			
		$\sum \mathrm{XeOF4}$	-0.006	
		$\sum_{\text {total }}$	-0.002	

[a] The PBE1PBE/Def2-SVP (F, O, Cr, Xe) level of theory was used. The sums, $\sum_{[\mathrm{XeFs}]^{+}}=\mathrm{Xe}_{1}+$ $\mathrm{F}_{4}+\mathrm{F}_{5}+\mathrm{F}_{6}+\mathrm{F}_{7}+\mathrm{F}_{8}, \sum_{|\mathrm{Cr} 204 \mathrm{~F}|]_{2}-}=2\left(\mathrm{Cr}_{1}+\mathrm{O}_{1}+\mathrm{O}_{2}+\mathrm{F}_{1}+\mathrm{F}_{2}+\mathrm{F}_{3}\right)$, and $\sum_{\text {total }}=2\left(\sum_{|\mathrm{XeF5}|+}+\right.$

Table A7.22. Wiberg bond indices, natural population analysis (NPA) charges, and valence indices for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrO}_{2} \mathrm{~F}_{4}\right]\left(4^{\prime}\right)\left(C_{\mathrm{s}}\right)^{[\mathrm{a}]}$

Bond Indices		NPA Charges [Valence Indices]		
Xe1-F5	0.612	Xe1	3.183	$[3.389]$
Xe1-F6	0.589	F5	-0.492	$[0.847]$
Xe1-F7	0.589	F6	-0.511	$[0.819]$
Xe1-F8	0.612	F7	-0.511	$[0.819]$
Xe1-F9	0.617	F8	-0.492	$[0.847]$
Xe1---F1	0.134	F9	-0.465	$[0.857]$
Xe1---F2	0.134	$\sum_{[\text {XeF5] }+}$	$\mathbf{0 . 7 1 2}$	
Xe1---F3	0.079			
Xe2-F10	0.596	Xe2	3.186	$[3.387]$
Xe2-F11	0.608	F10	-0.503	$[0.836]$
Xe2-F12	0.611	F11	-0.496	$[0.841]$
Xe2-F13	0.603	F12	-0.493	$[0.841]$
Xe2-F14	0.613	F13	-0.501	$[0.834]$
Xe2---F20	0.184	F14	-0.468	$[0.854]$
Xe2---F1	0.125	F20	-0.689	$[0.857]$
Xe2---F4	0.026	$\sum_{[\text {Xe2F11] }+}$	$\mathbf{0 . 7 6 1}$	
Cr1-O1	2.024	Cr1	1.070	$[5.513]$
Cr1-O2	2.024	O1	-0.123	$[2.612]$
Cr1-F1	0.151	O2	-0.123	$[2.612]$
Cr1-F2	0.151	F1	-0.665	$[0.642]$
Cr1-F3	0.568	F2	-0.665	$[0.642]$
Cr1-F4	0.566	F3	-0.468	$[0.956]$
		F4	-0.498	$[0.910]$
		$\sum_{[\text {[CrO2F412- }}$	$\mathbf{- 1 . 4 7 2}$	
		$\sum_{\text {total }}$	$\mathbf{0 . 0 0 1}$	

[a] The PBE1PBE/Def2-SVP (F, O, Cr, Xe) level of theory was used. The sums, $\sum_{[\text {XeF5] }}=\mathrm{Xe}_{1}+$ $\mathrm{F}_{4}+\mathrm{F}_{5}+\mathrm{F}_{6}+\mathrm{F}_{7}+\mathrm{F}_{8}$, and $\sum_{[\mathbf{X} 2 \mathbf{F} \mathbf{F 1]}+}=2\left(\mathrm{Xe}_{2}+\mathrm{F}_{10}+\mathrm{F}_{11}+\mathrm{F}_{12}+\mathrm{F}_{13}+\mathrm{F}_{14}\right)+\mathrm{F}_{20}$. The labeling scheme is the same as in Figure 10.5.

APPENDIX 8

CHAPTER 11 Supporting Information

Group 6 Oxyfluoro-anion Salts of $\left[\mathrm{XeF}_{5}\right]^{+}$and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$; Syntheses and Structures of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right](\mathbf{M}=\mathbf{M o}, \mathbf{W}),\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]\left(\mathbf{M}^{\prime}=\mathbf{C r}, \mathbf{M o}, \mathbf{W}\right)$, $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$, and $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$

Adapted with permission from: Bortolus, M. R.; Mercier, H. P. A.; Schrobilgen, G. J. Chem. Eur. J. 2020, 26, 8935-8950.

LIST OF FIGURES page
A8.1. The X-ray crystal structure of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ (4).................................... 629
A8.2. The X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ (6).................................... 630
A8.3. The X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$ (7).............................. 631
A8.4. Packing diagram for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$ (2).. 639
A8.5. Packing diagram for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$ (3)... 640

A8.7. Raman spectrum of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ (4).. 642
A8.8. Raman spectrum of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{5}\right]$ (6)... 643
A8.9. Raman spectrum of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$ (7)....................................... 644
A8.10. Factor-Group Analysis for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right](\mathrm{M}=\mathrm{Mo}, \mathrm{W}) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.

A8.12. Factor-Group Analysis for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right](\mathrm{M}=\mathrm{Mo}, \mathrm{W}) \ldots \ldots \ldots \ldots \ldots \ldots$.
A8.13. Calculated gas-phase geometries for $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-} \&\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}\left(\mathrm{M}^{\prime}=\mathrm{Cr}, \mathrm{Mo}\right.$,
\qquad
A8.14. Calculated geometries for $\left.\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right] \&\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}\right\}_{2} \ldots \ldots \ldots \ldots$.
A8.15. MEPS contours for $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ calculated at 0.001 e bohr ${ }^{-3}$ isosurfaces showing the lowest electrostatic potentials located at the intersection of the $\mathrm{F}_{\mathrm{ax}} \& \mathrm{~F}_{\text {eq }}$ isosurfaces.. 677
A8.16. MEPS contour for $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2}$ calculated at the 0.001 e bohr $^{-3}$ isosurface678
A8.17. MEPS contour for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right](\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ calculated at the $0.001 \mathrm{e}^{\mathrm{b}} \mathrm{bohr}^{-3}$ isosurface

LIST OF TABLES

A8.1. Experimental \& calculated geometric parameters for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$in $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ (1) \& $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2}\left(\mathbf{1}^{\prime}\right)$ 632
A8.2. Experimental geometric parameters for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$ (2) 633
A8.3. Experimental \& calculated geometric parameters for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$in $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$ (3 and $\mathbf{3}^{\prime}$) 634
A8.4. Experimental \& calculated geometric parameters for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$in $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ (4 and $\mathbf{4}^{\prime}$) 635
A8.5. Experimental \& calculated geometric parameters for $\left[\mathrm{XeF}_{5}\right]^{+}$in $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ (5
A8.6. Experimental geometric parameters for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$ (7) 638A8.7. Experimental Raman frequencies \& calculated vibrational frequencies, intensities,$\&$ assignments for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right](\mathbf{1}) \&\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2}\left(\mathbf{1}^{\prime}\right)$645
A8.8. Experimental Raman frequencies and calculated vibrational frequencies, intensities,\& assignments for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$ ($\mathbf{3}$ and $\mathbf{3}^{\prime}$) \& [$\left.\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ (4 and 4’)652
A8.9. Experimental Raman frequencies \& calculated vibrational frequencies, intensities, \& assignments for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right](5),\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right](6),\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}\left(\mathbf{5}^{\prime}\right)$, $\&\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}\left(\mathbf{6}^{\prime}\right)$ 656
A8.10. Calculated ${ }^{[a]}$ vibrational frequencies, intensities, \& assignments for $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}\left(\mathrm{M}^{\prime}\right.$
$=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ 664
A8.11. Calculated vibrational frequencies, intensities, \& assignments for $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}\left(\mathrm{M}^{\prime}\right.$ $=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ 665
A8.12. Experimental vibrational frequencies, intensities, \& assignments for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$ (7). 667
A8.13. Calculated geometric parameters for $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}\left(\mathrm{M}^{\prime}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}\right) \&$ $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$ 670

A8.14. Calculated geometric parameters for $\mathrm{M}^{\prime} \mathrm{OF}_{4}\left(\mathrm{M}^{\prime}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}\right) \ldots \ldots \ldots \ldots \ldots$.
A8.15. Calculated vibrational frequencies, intensities, \& assignments for $\mathrm{M}^{\prime} \mathrm{OF}_{4}\left(\mathrm{M}^{\prime}=\mathrm{Cr}\right.$,
Mo, W) 672

A8.16. Natural Population Analysis (NPA) charges, valence indices, \& Wiberg bond indices for $\mathrm{M}^{\prime} \mathrm{OF}_{4}\left(\mathrm{M}^{\prime}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}\right),\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-},\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\} 2,\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right](\mathrm{M}$ $=\mathrm{Mo}, \mathrm{W}),\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}, \&\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$.674

Figure A8.1. The X-ray crystal structure of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ (4), with thermal ellipsoids drawn at the 50% probability level. Secondary Xe---F and W---F bonding interactions are indicated by dashed lines.

Figure A8.2. The X-ray crystal structure of the dimeric unit of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ (6) with thermal ellipsoids drawn at the 50% probability level. The $\left[\mathrm{XeF}_{5}\right]^{+}$cations have been faded to emphasize the anion. Secondary Xe---F and W---F bonding interactions are indicated by dashed lines.

Figure A8.3. The structural unit in the X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$ (7) with thermal ellipsoids drawn at the 50% probability level. The two orientations of the disordered XeOF_{4} molecule in the cocrystal are shown. Secondary Xe---F and W---F bonding interactions are indicated by dashed lines.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.1. Experimental and calculated geometric parameters for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$in $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ (1) and $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2}\left(\mathbf{1}^{\prime}\right)\left(C_{\mathrm{i}}\right)$

	1	1^{\prime}		1	1^{\prime}
	exptl	Bond Lengths (\AA)	ths (\AA)	exptl	calcd ${ }^{[a]}$
Xe(1)---F(5)	2.5065(9)	2.433	$\mathrm{Xe}(2)--\mathrm{F}(5 \mathrm{~A})$	2.5687(9)	2.434
$\mathrm{Xe}(1)-\mathrm{F}(6)$	1.8330(9)	1.857	$\mathrm{Xe}(2)-\mathrm{F}(11)$	2.2167(9)	2.246
$\mathrm{Xe}(1)-\mathrm{F}(7)$	1.8700 (9)	1.882	$\mathrm{Xe}(2)-\mathrm{F}(12)$	1.840(1)	1.857
$\mathrm{Xe}(1)-\mathrm{F}(8)$	1.869(1)	1.890	$\mathrm{Xe}(2)-\mathrm{F}(13)$	$1.859(1)$	1.881
$\mathrm{Xe}(1)-\mathrm{F}(9)$	1.8604(9)	1.881	$\mathrm{Xe}(2)-\mathrm{F}(14)$	1.884(1)	1.890
$\mathrm{Xe}(1)-\mathrm{F}(10)$	1.8633(9)	1.881	$\mathrm{Xe}(2)-\mathrm{F}(15)$	1.877(1)	1.883
$\mathrm{Xe}(1)-\mathrm{F}(11)$	$2.2778(9)$	2.247	$\mathrm{Xe}(2)-\mathrm{F}(16)$	1.859(1)	1.881
Xe(1)---F(1)	2.862(1)	2.849	Xe(2)---F(3A)	2.814(1)	2.850

	Bond Angles (deg)				
$\mathrm{F}(5)---\mathrm{Xe}(1)-\mathrm{F}(6)$	$143.86(4)$	144.1	$\mathrm{~F}(5 \mathrm{~A})--\mathrm{Xe}(2)-\mathrm{F}(12)$	$143.33(4)$	143.9
$\mathrm{~F}(5)--\mathrm{Xe}(1)-\mathrm{F}(7)$	$74.93(4)$	75.9	$\mathrm{~F}(5 \mathrm{~A})--\mathrm{Xe}(2)-\mathrm{F}(13)$	$124.89(4)$	124.9
$\mathrm{~F}(5)--\mathrm{Xe}(1)-\mathrm{F}(8)$	$76.65(4)$	76.3	$\mathrm{~F}(5 \mathrm{~A})--\mathrm{Xe}(2)-\mathrm{F}(14)$	$75.77(4)$	76.0
$\mathrm{~F}(5)--\mathrm{Xe}(1)-\mathrm{F}(9)$	$125.14(4)$	125.0	$\mathrm{~F}(5 \mathrm{~A})--\mathrm{Xe}(2)-\mathrm{F}(15)$	$75.59(4)$	75.9
$\mathrm{~F}(5)--\mathrm{Xe}(1)-\mathrm{F}(10)$	$123.41(4)$	123.4	$\mathrm{~F}(5 \mathrm{~A})--\mathrm{Xe}(2)-\mathrm{F}(16)$	$124.88(4)$	123.8
$\mathrm{~F}(5)---\mathrm{Xe}(1)-\mathrm{F}(11)$	$74.84(3)$	72.8	$\mathrm{~F}(11)-\mathrm{Xe}(2)-\mathrm{F}(12)$	$144.56(4)$	143.1
$\mathrm{~F}(6)-\mathrm{Xe}(1)-\mathrm{F}(7)$	$79.13(5)$	79.0	$\mathrm{~F}(11)-\mathrm{Xe}(2)-\mathrm{F}(13)$	$79.39(4)$	77.6
$\mathrm{~F}(6)-\mathrm{Xe}(1)-\mathrm{F}(8)$	$78.29(5)$	78.2	$\mathrm{~F}(11)-\mathrm{Xe}(2)-\mathrm{F}(14)$	$130.23(4)$	128.6
$\mathrm{~F}(6)-\mathrm{Xe}(1)-\mathrm{F}(9)$	$78.72(5)$	78.6	$\mathrm{~F}(11)-\mathrm{Xe}(2)-\mathrm{F}(15)$	$116.93(5)$	120.4
$\mathrm{~F}(6)-\mathrm{Xe}(1)-\mathrm{F}(10)$	$78.16(5)$	78.3	$\mathrm{~F}(11)-\mathrm{Xe}(2)-\mathrm{F}(16)$	$73.39(4)$	73.6
$\mathrm{~F}(6)-\mathrm{Xe}(1)-\mathrm{F}(11)$	$141.19(4)$	143.0	$\mathrm{~F}(12)-\mathrm{Xe}(2)-\mathrm{F}(13)$	$79.14(6)$	78.6
$\mathrm{~F}(7)-\mathrm{Xe}(1)-\mathrm{F}(8)$	$89.27(6)$	89.3	$\mathrm{~F}(12)-\mathrm{Xe}(2)-\mathrm{F}(14)$	$77.38(5)$	78.2
$\mathrm{~F}(7)-\mathrm{Xe}(1)-\mathrm{F}(9)$	$157.84(5)$	157.5	$\mathrm{~F}(12)-\mathrm{Xe}(2)-\mathrm{F}(15)$	$79.64(6)$	79.0
$\mathrm{~F}(7)-\mathrm{Xe}(1)-\mathrm{F}(10)$	$85.08(5)$	84.1	$\mathrm{~F}(12)-\mathrm{Xe}(2)-\mathrm{F}(16)$	$77.99(5)$	78.3
$\mathrm{~F}(7)-\mathrm{Xe}(1)-\mathrm{F}(11)$	$122.63(5)$	120.6	$\mathrm{~F}(13)-\mathrm{Xe}(2)-\mathrm{F}(14)$	$89.69(5)$	88.2
$\mathrm{~F}(8)-\mathrm{Xe}(1)-\mathrm{F}(9)$	$87.09(5)$	88.3	$\mathrm{~F}(13)-\mathrm{Xe}(2)-\mathrm{F}(15)$	$158.43(5)$	157.5
$\mathrm{~F}(8)-\mathrm{Xe}(1)-\mathrm{F}(10)$	$156.42(5)$	156.4	$\mathrm{~F}(13)-\mathrm{Xe}(2)-\mathrm{F}(16)$	$87.98(5)$	89.2
$\mathrm{~F}(8)-\mathrm{Xe}(1)-\mathrm{F}(11)$	$128.35(4)$	128.6	$\mathrm{~F}(14)-\mathrm{Xe}(2)-\mathrm{F}(15)$	$89.42(6)$	89.4
$\mathrm{~F}(9)-\mathrm{Xe}(1)-\mathrm{F}(10)$	$89.57(5)$	89.3	$\mathrm{~F}(14)-\mathrm{Xe}(2)-\mathrm{F}(16)$	$155.26(5)$	156.3
$\mathrm{~F}(9)-\mathrm{Xe}(1)-\mathrm{F}(11)$	$75.74(4)$	77.6	$\mathrm{~F}(15)-\mathrm{Xe}(2)-\mathrm{F}(16)$	$83.89(5)$	84.0
$\mathrm{~F}(10)-\mathrm{Xe}(1)-\mathrm{F}(11)$	$72.97(4)$	73.5	$\mathrm{Xe}(1)-\mathrm{F}(11)-\mathrm{Xe}(2)$	$162.92(5)$	160.9
$\mathrm{~F}(5 \mathrm{~A})---\mathrm{Xe}(2)-\mathrm{F}(11)$	$71.82(3)$	72.9	$\mathrm{Xe}(1)---\mathrm{F}(5)--\mathrm{Xe}(2)$	$137.75(3)$	140.7

${ }^{[a]}$ The PBE1PBE/Def2-SVP (F, O, Cr, Xe) level of theory was used.

Table A8.2. Experimental geometric parameters for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}(\mathbf{2})$

	Bond Lengths $(\AA \AA)$		
$\mathrm{Cr}(1)-\mathrm{O}(1)$	$1.5547(9)$	$\mathrm{Xe}(1)--\mathrm{F}(6)$	$2.4231(7)$
$\mathrm{Cr}(1)-\mathrm{F}(1)$	$1.7444(8)$	$\mathrm{Xe}(1)--\mathrm{F}(6 \mathrm{~A})$	$2.4320(7)$
$\mathrm{Cr}(1)-\mathrm{F}(2)$	$1.7794(8)$	$\mathrm{Xe}(1)-\mathrm{F}(7)$	$1.8579(7)$
$\mathrm{Cr}(1)-\mathrm{F}(3)$	$1.7384(8)$	$\mathrm{Xe}(1)-\mathrm{F}(8)$	$1.8657(7)$
$\mathrm{Cr}(1)-\mathrm{F}(4)$	$1.7305(8)$	$\mathrm{Xe}(1)-\mathrm{F}(9)$	$1.8657(7)$
$\mathrm{Cr}(1)--\mathrm{F}(5)$	$2.2378(7)$	$\mathrm{Xe}(1)-\mathrm{F}(10)$	$1.8528(7)$
$\mathrm{F}(5)--\mathrm{F}(6)$	$2.386(1)$	$\mathrm{Xe}(1)-\mathrm{F}(11)$	$1.8191(7)$
$\mathrm{F}(5)-\mathrm{H}(1)$	$0.74(3)$	$\mathrm{Xe}(1)--\mathrm{F}(2 \mathrm{~A})$	$3.0592(8)$
$\mathrm{F}(6)-\mathrm{H}(1)$	$1.65(3)$	$\mathrm{Xe}(1 \mathrm{~A})--\mathrm{F}(2)$	$3.1707(8)$

Bond Angles (deg)			
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(1)$	$99.45(5)$	$\mathrm{F}(6)--\mathrm{Xe}(1)-\mathrm{F}(10)$	$121.43(3)$
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	$98.82(5)$	$\mathrm{F}(6)---\mathrm{Xe}(1)-\mathrm{F}(11)$	$145.53(3)$
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$	$100.13(5)$	$\mathrm{F}(6 \mathrm{~A})--\mathrm{Xe}(1)-\mathrm{F}(7)$	$122.97(3)$
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{F}(4)$	$99.71(5)$	$\mathrm{F}(6 \mathrm{~A})--\mathrm{Xe}(1)-\mathrm{F}(8)$	$122.62(3)$
$\mathrm{O}(1)-\mathrm{Cr}(1)---\mathrm{F}(5)$	$178.89(5)$	$\mathrm{F}(6 \mathrm{~A})---\mathrm{Xe}(1)-\mathrm{F}(9)$	$75.90(3)$
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(2)$	$86.97(4)$	$\mathrm{F}(6 \mathrm{~A})--\mathrm{Xe}(1)-\mathrm{F}(10)$	$76.09(3)$
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(3)$	$160.28(4)$	$\mathrm{F}(6 \mathrm{~A})--\mathrm{Xe}(1)-\mathrm{F}(11)$	$145.66(3)$
$\mathrm{F}(1)-\mathrm{Cr}(1)-\mathrm{F}(4)$	$89.83(5)$	$\mathrm{F}(7)-\mathrm{Xe}(1)-\mathrm{F}(8)$	$88.75(4)$
$\mathrm{F}(1)-\mathrm{Cr}(1)--\mathrm{F}(5)$	$81.52(4)$	$\mathrm{F}(7)-\mathrm{Xe}(1)-\mathrm{F}(9)$	$158.86(4)$
$\mathrm{F}(2)-\mathrm{Cr}(1)-\mathrm{F}(3)$	$87.78(4)$	$\mathrm{F}(7)-\mathrm{Xe}(1)-\mathrm{F}(10)$	$87.46(4)$
$\mathrm{F}(2)-\mathrm{Cr}(1)-\mathrm{F}(4)$	$161.47(4)$	$\mathrm{F}(7)-\mathrm{Xe}(1)-\mathrm{F}(11)$	$79.52(4)$
$\mathrm{F}(2)-\mathrm{Cr}(1)--\mathrm{F}(5)$	$80.66(4)$	$\mathrm{F}(8)-\mathrm{Xe}(1)-\mathrm{F}(9)$	$87.69(4)$
$\mathrm{F}(3)-\mathrm{Cr}(1)-\mathrm{F}(4)$	$89.15(4)$	$\mathrm{F}(8)-\mathrm{Xe}(1)-\mathrm{F}(10)$	$159.10(4)$
$\mathrm{F}(3)-\mathrm{Cr}(1)--\mathrm{F}(5)$	$78.88(3)$	$\mathrm{F}(8)-\mathrm{Xe}(1)-\mathrm{F}(11)$	$79.25(4)$
$\mathrm{F}(4)-\mathrm{Cr}(1)--\mathrm{F}(5)$	$80.82(4)$	$\mathrm{F}(9)-\mathrm{Xe}(1)-\mathrm{F}(10)$	$88.48(4)$
$\mathrm{Cr}(1)---\mathrm{F}(5)--\mathrm{F}(6)$	$128.62(4)$	$\mathrm{F}(9)-\mathrm{Xe}(1)-\mathrm{F}(11)$	$79.34(4)$
$\mathrm{Xe}(1)--\mathrm{F}(6)---\mathrm{Xe}(1 \mathrm{~A})$	$111.19(2)$	$\mathrm{F}(10)-\mathrm{Xe}(1)-\mathrm{F}(11)$	$79.85(4)$
$\mathrm{Xe}(1)---\mathrm{F}(6)--\mathrm{F}(5)$	$129.35(3)$	$\mathrm{H}(1)-\mathrm{F}(5)-\mathrm{Cr}(1)$	$124(3)$
$\mathrm{F}(6)--\mathrm{Xe}(1)---\mathrm{F}(6 \mathrm{~A})$	$68.81(2)$	$\mathrm{H}(1)-\mathrm{F}(6)-\mathrm{Xe}(1)$	$126(1)$
$\mathrm{F}(6)---\mathrm{Xe}(1)-\mathrm{F}(7)$	$75.18(3)$	$\mathrm{H}(1)-\mathrm{F}(6)-\mathrm{Xe}(1 \mathrm{~A})$	$120(1)$
$\mathrm{F}(6)---\mathrm{Xe}(1)-\mathrm{F}(8)$	$77.19(3)$	$\mathrm{F}(5)-\mathrm{H}(1)-\mathrm{F}(6)$	$170(3)$
$\mathrm{F}(6)--\mathrm{Xe}(1)-\mathrm{F}(9)$	$124.09(3)$		

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.3. Experimental and calculated geometric parameters for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$in $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$ (3 and $\mathbf{3}^{\prime}\left(C_{1}\right)$)

	3	31		3	3'
	exptl			exptl	calcd ${ }^{[a]}$
	Bond Lengths (\AA)				
$\mathrm{Xe}(1)--\mathrm{F}(5)$	2.348(2)	2.251	$\mathrm{Xe}(2)--\mathrm{F}(1)$	2.640(2)	2.547
$\mathrm{Xe}(1)-\mathrm{F}(6)$	1.860 (3)	1.876	$\mathrm{Xe}(2)-\mathrm{F}(11)$	2.170(2)	2.171
$\mathrm{Xe}(1)-\mathrm{F}(7)$	$1.866(3)$	1.879	$\mathrm{Xe}(2)-\mathrm{F}(12)$	1.843(2)	1.871
$\mathrm{Xe}(1)-\mathrm{F}(8)$	1.869(2)	1.893	$\mathrm{Xe}(2)-\mathrm{F}(13)$	1.853(2)	1.869
$\mathrm{Xe}(1)-\mathrm{F}(9)$	$1.866(3)$	1.892	$\mathrm{Xe}(2)-\mathrm{F}(14)$	1.890(2)	1.894
$\mathrm{Xe}(1)-\mathrm{F}(10)$	1.821(2)	1.852	$\mathrm{Xe}(2)-\mathrm{F}(15)$	1.882(3)	1.905
$\mathrm{Xe}(1)-\mathrm{F}(11)$	$2.356(2)$	2.373	$\mathrm{Xe}(2)-\mathrm{F}(16)$	1.832(2)	1.850
Xe(1)---F(2)	2.969(3)	-------	Xe(2)---F(4)	3.072(2)	-------
Bond Angles (deg)					
$F(5)--\mathrm{Xe}(1)-\mathrm{F}(6)$	73.1(1)	75.0	$\mathrm{F}(1)--\mathrm{Xe}(2)-\mathrm{F}(11)$	74.62(8)	71.3
$F(5)---X e(1)-F(7)$	76.4(1)	77.2	$F(1)---X e(2)-F(12)$	125.9(1)	125.3
$F(5)--\mathrm{Xe}(1)-\mathrm{F}(8)$	126.9(1)	124.1	$F(1)--\mathrm{Xe}(2)-\mathrm{F}(13)$	129.4(1)	126.1
$F(5)---X e(1)-F(9)$	121.6(1)	120.8	$F(1)--\mathrm{Xe}(2)-\mathrm{F}(14)$	73.6(1)	73.0
$F(5)--$ Xe(1)-F(10)	143.1(1)	145.3	$F(1)--\mathrm{Xe}(2)-\mathrm{F}(15)$	70.1(1)	73.6
$F(5)---X e(1)-\mathrm{F}(11)$	74.33(8)	72.0	$F(1)---X e(2)-F(16)$	137.4(1)	140.4
$\mathrm{F}(6)-\mathrm{Xe}(1)-\mathrm{F}(7)$	89.9(2)	89.3	$\mathrm{F}(11)-\mathrm{Xe}(2)-\mathrm{F}(12)$	75.3(1)	80.1
$\mathrm{F}(6)-\mathrm{Xe}(1)-\mathrm{F}(8)$	158.3(1)	158.7	$\mathrm{F}(11)-\mathrm{Xe}(2)-\mathrm{F}(13)$	80.2(1)	75.6
$F(6)-\mathrm{Xe}(1)-\mathrm{F}(9)$	84.9(1)	85.3	$\mathrm{F}(11)-\mathrm{Xe}(2)-\mathrm{F}(14)$	126.3(1)	115.5
$F(6)-\mathrm{Xe}(1)-\mathrm{F}(10)$	79.5(1)	79.4	$F(11)-\mathrm{Xe}(2)-\mathrm{F}(15)$	116.1(1)	124.9
$F(6)-\mathrm{Xe}(1)-\mathrm{F}(11)$	121.3(1)	123.2	$\mathrm{F}(11)-\mathrm{Xe}(2)-\mathrm{F}(16)$	147.5(1)	148.2
$F(7)-\mathrm{Xe}(1)-\mathrm{F}(8)$	87.5(1)	86.4	$F(12)-\mathrm{Xe}(2)-\mathrm{F}(13)$	87.4(1)	87.9
$\mathrm{F}(7)-\mathrm{Xe}(1)-\mathrm{F}(9)$	158.3(1)	158.8	$\mathrm{F}(12)-\mathrm{Xe}(2)-\mathrm{F}(14)$	156.6(1)	160.4
$\mathrm{F}(7)-\mathrm{Xe}(1)-\mathrm{F}(10)$	79.3(1)	79.4	$F(12)-\mathrm{Xe}(2)-\mathrm{F}(15)$	84.6(1)	87.4
$F(7)-\mathrm{Xe}(1)-\mathrm{F}(11)$	127.1(1)	125.3	$F(12)-\mathrm{Xe}(2)-\mathrm{F}(16)$	78.4(1)	80.3
$\mathrm{F}(8)-\mathrm{Xe}(1)-\mathrm{F}(9)$	89.6(1)	91.2	$F(13)-\mathrm{Xe}(2)-\mathrm{F}(14)$	88.0(1)	85.0
$F(8)-\mathrm{Xe}(1)-\mathrm{F}(10)$	78.8(1)	79.3	$F(13)-\mathrm{Xe}(2)-\mathrm{F}(15)$	159.0(1)	157.7
$F(8)-\mathrm{Xe}(1)-\mathrm{F}(11)$	76.5(1)	75.5	$F(13)-\mathrm{Xe}(2)-\mathrm{F}(16)$	79.8(1)	78.9
$F(9)-X e(1)-F(10)$	79.0(1)	79.4	$F(14)-X e(2)-F(15)$	91.7(1)	92.3
$F(9)-\mathrm{Xe}(1)-\mathrm{F}(11)$	72.8(1)	74.1	$F(14)-\mathrm{Xe}(2)-\mathrm{F}(16)$	78.2(1)	80.4
$\mathrm{F}(10)-\mathrm{Xe}(1)-\mathrm{F}(11)$	142.3(1)	142.6	$F(15)-\mathrm{Xe}(2)-\mathrm{F}(16)$	79.6(1)	78.7
			$\mathrm{Xe}(1)-\mathrm{F}(11)-\mathrm{Xe}(2)$	163.8(1)	152.3

${ }^{[a]}$ The PBE1PBE/Def2-SVP (F, O, Mo, Xe) level of theory was used.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.4. Experimental and calculated geometric parameters for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$in $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ (4 and $\mathbf{4}^{\prime}\left(C_{1}\right)$)

	4	4'		4	4^{\prime}
	exptl	calcd ${ }^{\text {[a] }}$		exptl	calcd ${ }^{[a]}$
	Bond Lengths (\AA)				
Xe(1)---F(5)	2.404(2)	2.266	Xe(2)---F(1)	2.661(2)	2.546
$\mathrm{Xe}(1)-\mathrm{F}(6)$	1.870(2)	1.880	$\mathrm{Xe}(2)-\mathrm{F}(11)$	2.186(2)	2.183
$\mathrm{Xe}(1)-\mathrm{F}(7)$	1.865(2)	1.877	$\mathrm{Xe}(2)-\mathrm{F}(12)$	1.851(2)	1.869
$\mathrm{Xe}(1)-\mathrm{F}(8)$	1.859(2)	1.890	$\mathrm{Xe}(2)-\mathrm{F}(13)$	1.849(2)	1.871
$\mathrm{Xe}(1)-\mathrm{F}(9)$	1.868(2)	1.890	$\mathrm{Xe}(2)-\mathrm{F}(14)$	1.882(2)	1.902
$\mathrm{Xe}(1)-\mathrm{F}(10)$	1.820(2)	1.851	$\mathrm{Xe}(2)-\mathrm{F}(15)$	1.891(2)	1.891
$\mathrm{Xe}(1)-\mathrm{F}(11)$	2.340(2)	2.357	$\mathrm{Xe}(2)-\mathrm{F}(16)$	1.832(2)	1.849
Xe(1)---F(2)	3.057(2)	---------	Xe(2)---F(4)	2.966(2)	---------

	Bond Angles (deg)				
$\mathrm{F}(5)---\mathrm{Xe}(1)-\mathrm{F}(6)$	$76.03(9)$	76.8	$\mathrm{~F}(1)--\mathrm{Xe}(2)-\mathrm{F}(11)$	$73.73(8)$	71.2
$\mathrm{~F}(5)--\mathrm{Xe}(1)-\mathrm{F}(7)$	$72.51(9)$	75.1	$\mathrm{~F}(1)--\mathrm{Xe}(2)-\mathrm{F}(12)$	$129.46(8)$	125.8
$\mathrm{~F}(5)--\mathrm{Xe}(1)-\mathrm{F}(8)$	$121.8(1)$	121.3	$\mathrm{~F}(1)--\mathrm{Xe}(2)-\mathrm{F}(13)$	$125.37(9)$	125.3
$\mathrm{~F}(5)--\mathrm{Xe}(1)-\mathrm{F}(9)$	$127.02(9)$	123.8	$\mathrm{~F}(1)---\mathrm{Xe}(2)-\mathrm{F}(14)$	$69.88(9)$	73.8
$\mathrm{~F}(5)--\mathrm{Xe}(1)-\mathrm{F}(10)$	$142.7(1)$	145.1	$\mathrm{~F}(1)--\mathrm{Xe}(2)-\mathrm{F}(15)$	$73.74(8)$	73.0
$\mathrm{~F}(5)--\mathrm{Xe}(1)-\mathrm{F}(11)$	$73.79(8)$	71.6	$\mathrm{~F}(1)--\mathrm{Xe}(2)-\mathrm{F}(16)$	$137.53(9)$	140.6
$\mathrm{~F}(6)-\mathrm{Xe}(1)-\mathrm{F}(7)$	$90.2(1)$	89.7	$\mathrm{~F}(11)-\mathrm{Xe}(2)-\mathrm{F}(12)$	$80.90(9)$	75.4
$\mathrm{~F}(6)-\mathrm{Xe}(1)-\mathrm{F}(8)$	$158.5(1)$	159.0	$\mathrm{~F}(11)-\mathrm{Xe}(2)-\mathrm{F}(13)$	$75.1(1)$	80.0
$\mathrm{~F}(6)-\mathrm{Xe}(1)-\mathrm{F}(9)$	$87.7(1)$	86.2	$\mathrm{~F}(11)-\mathrm{Xe}(2)-\mathrm{F}(14)$	$115.2(1)$	125.2
$\mathrm{~F}(6)-\mathrm{Xe}(1)-\mathrm{F}(10)$	$79.5(1)$	79.6	$\mathrm{~F}(11)-\mathrm{Xe}(2)-\mathrm{F}(15)$	$126.4(1)$	115.6
$\mathrm{~F}(6)-\mathrm{Xe}(1)-\mathrm{F}(11)$	$126.8(1)$	124.3	$\mathrm{~F}(11)-\mathrm{Xe}(2)-\mathrm{F}(16)$	$148.2(1)$	148.0
$\mathrm{~F}(7)-\mathrm{Xe}(1)-\mathrm{F}(8)$	$84.9(1)$	85.5	$\mathrm{~F}(12)-\mathrm{Xe}(2)-\mathrm{F}(13)$	$87.3(1)$	88.0
$\mathrm{~F}(7)-\mathrm{Xe}(1)-\mathrm{F}(9)$	$158.9(1)$	158.8	$\mathrm{~F}(12)-\mathrm{Xe}(2)-\mathrm{F}(14)$	$159.3(1)$	157.7
$\mathrm{~F}(7)-\mathrm{Xe}(1)-\mathrm{F}(10)$	$79.9(1)$	79.5	$\mathrm{~F}(12)-\mathrm{Xe}(2)-\mathrm{F}(15)$	$88.3(1)$	85.0
$\mathrm{~F}(7)-\mathrm{Xe}(1)-\mathrm{F}(11)$	$120.1(1)$	123.2	$\mathrm{~F}(12)-\mathrm{Xe}(2)-\mathrm{F}(16)$	$80.0(1)$	78.9
$\mathrm{~F}(8)-\mathrm{Xe}(1)-\mathrm{F}(9)$	$89.4(1)$	90.9	$\mathrm{~F}(13)-\mathrm{Xe}(2)-\mathrm{F}(14)$	$84.8(1)$	87.5
$\mathrm{~F}(8)-\mathrm{Xe}(1)-\mathrm{F}(10)$	$79.0(1)$	79.5	$\mathrm{~F}(13)-\mathrm{Xe}(2)-\mathrm{F}(15)$	$157.0(1)$	160.5
$\mathrm{~F}(8)-\mathrm{Xe}(1)-\mathrm{F}(11)$	$73.06(9)$	74.7	$\mathrm{~F}(13)-\mathrm{Xe}(2)-\mathrm{F}(16)$	$78.8(1)$	80.3
$\mathrm{~F}(9)-\mathrm{Xe}(1)-\mathrm{F}(10)$	$79.1(1)$	79.4	$\mathrm{~F}(14)-\mathrm{Xe}(2)-\mathrm{F}(15)$	$91.5(1)$	92.1
$\mathrm{~F}(9)-\mathrm{Xe}(1)-\mathrm{F}(11)$	$77.17(9)$	75.5	$\mathrm{~F}(14)-\mathrm{Xe}(2)-\mathrm{F}(16)$	$79.8(1)$	78.8
$\mathrm{~F}(10)-\mathrm{Xe}(1)-\mathrm{F}(11)$	$143.2(1)$	143.3	$\mathrm{~F}(15)-\mathrm{Xe}(2)-\mathrm{F}(16)$	$78.2(1)$	80.5

${ }^{[a]}$ The PBE1PBE/Def2-SVP (F, O, W, Xe) level of theory was used.

Table A8.5. Experimental and calculated ${ }^{[a]}$ geometric parameters for $\left[\mathrm{XeF}_{5}\right]^{+}$in $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ $(\mathrm{M}=\mathrm{Mo}(\mathbf{5}), \mathrm{W}(6))$ and $\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}\left(\mathrm{M}=\mathrm{Mo}\left(\mathbf{5}^{\prime}\right)\left(C_{2 \mathrm{~h}}\right), \mathrm{W}\left(\mathbf{6}^{\prime}\right)\left(C_{2}\right)\right)$

	$\mathbf{5}$		$\mathbf{5}^{\prime}$			$\mathbf{6}$
	exptl Bond Lengths (\AA)	calcd		exptl	calcd	
$\mathrm{Xe}(1)-\mathrm{F}(10)$	$1.8415(8)$	1.859		$1.836(5)$	1.860	
$\mathrm{Xe}(1)-\mathrm{F}(11)$	$1.8433(9)$	1.860		$1.837(5)$	1.858	
$\mathrm{Xe}(1)-\mathrm{F}(12)$	$1.8420(8)$	1.861		$1.835(4)$	1.859	
$\mathrm{Xe}(1)-\mathrm{F}(13)$	$1.8375(9)$	1.860		$1.849(5)$	1.858	
$\mathrm{Xe}(1)-\mathrm{F}(14)$	$1.8167(8)$	1.844		$1.813(4)$	1.842	
$\mathrm{Xe}(1)--\mathrm{F}(8)$	$2.6438(9)$	2.638		$2.677(5)$	2.657	
$\mathrm{Xe}(1)--\mathrm{F}(9 \mathrm{~A})$	$2.6553(8)$	2.645		$2.681(5)$	2.650	
$\mathrm{Xe}(1)--\mathrm{F}(4 \mathrm{~A})$	$2.8987(9)$	2.642		$2.888(5)$	2.645	
$\mathrm{Xe}(1)--\mathrm{F}(3)$	$2.9828(9)$	2.635		$2.990(5)$	2.652	

Bond Angles (deg)				
F(3)---Xe(1)---F(4A)	$82.54(3)$	92.0	$94.2(2)$	91.8
F(3)---Xe(1)---F(8)	$59.60(3)$	61.7	$59.5(2)$	61.8
F(3)---Xe(1)---F(9A)	$59.81(3)$	60.6	$59.6(2)$	60.5
F(3)---Xe(1)-F(10)	$70.27(3)$	69.0	$66.0(2)$	69.1
F(3)---Xe(1)-F(11)	$71.62(4)$	68.7	$66.0(2)$	68.6
F(3)---Xe(1)-F(12)	$127.44(3)$	129.4	$129.1(2)$	129.1
F(3)---Xe(1)-F(13)	$125.30(3)$	129.8	$129.6(2)$	129.8
F(3)---Xe(1)-F(14)	$138.42(4)$	133.9	$132.2(2)$	134.1
F(4A)---Xe(1)---F(8)	$59.67(3)$	60.6	$59.8(2)$	60.5
F(4A)---Xe(1)---F(9A)	$59.24(3)$	61.8	$58.6(2)$	61.8
F(4A)---Xe(1)-F(10)	$125.57(3)$	129.1	$128.7(2)$	129.1
F(4A)---Xe(1)-F(11)	$126.04(3)$	129.9	$128.1(2)$	129.8
F(4A)---Xe(1)-F(12)	$71.02(3)$	69.3	$67.9(2)$	69.1
F(4A)---Xe(1)-F(13)	$70.83(3)$	68.4	$67.0(2)$	68.6
F(4A)---Xe(1)-F(14)	$139.02(4)$	134.1	$133.6(2)$	134.1
F(8)---Xe(1)---F(9A)	$95.30(3)$	92.1	$82.6(2)$	92.2
F(8)---Xe(1)-F(10)	$65.90(3)$	69.0	$69.8(2)$	69.0
F(8)---Xe(1)-F(11)	$130.07(4)$	129.9	$125.0(2)$	129.9
F(8)---Xe(1)-F(12)	$129.16(3)$	129.4	$127.7(2)$	129.1
F(8)---Xe(1)-F(13)	$65.70(3)$	68.7	$71.6(2)$	68.5
F(8)---Xe(1)-F(14)	$131.45(4)$	133.9	$138.3(2)$	133.9
F(9A)---Xe(1)-F(10)	$129.03(3)$	129.1	$125.5(2)$	129.2
F(9A)---Xe(1)-F(11)	$66.82(3)$	68.6	$70.4(2)$	68.5
F(9A)---Xe(1)-F(12)	$67.63(3)$	69.3	$71.0(2)$	69.0

continued ...

Table A8.5. (continued)

$\mathrm{F}(9 \mathrm{~A})--\mathrm{Xe}(1)-\mathrm{F}(13)$	$129.02(3)$	129.9	$125.6(2)$	129.9
$\mathrm{~F}(9 \mathrm{~A})--\mathrm{Xe}(1)-\mathrm{F}(14)$	$133.24(4)$	134.1	$139.1(2)$	133.9
$\mathrm{~F}(10)-\mathrm{Xe}(1)-\mathrm{F}(11)$	$89.21(4)$	87.8	$88.1(2)$	87.7
$\mathrm{~F}(10)-\mathrm{Xe}(1)-\mathrm{F}(12)$	$159.78(4)$	157.0	$160.0(2)$	157.3
$\mathrm{~F}(10)-\mathrm{Xe}(1)-\mathrm{F}(13)$	$87.56(4)$	87.8	$89.3(2)$	87.7
$\mathrm{~F}(10)-\mathrm{Xe}(1)-\mathrm{F}(14)$	$79.87(4)$	78.5	$80.2(2)$	78.7
$\mathrm{~F}(11)-\mathrm{Xe}(1)-\mathrm{F}(12)$	$88.25(4)$	87.7	$87.7(2)$	87.8
$\mathrm{~F}(11)-\mathrm{Xe}(1)-\mathrm{F}(13)$	$159.98(4)$	157.0	$160.7(2)$	157.2
$\mathrm{~F}(11)-\mathrm{Xe}(1)-\mathrm{F}(14)$	$79.90(4)$	78.5	$80.7(3)$	78.6
$\mathrm{~F}(12)-\mathrm{Xe}(1)-\mathrm{F}(13)$	$88.00(4)$	87.7	$88.2(2)$	87.8
$\mathrm{~F}(12)-\mathrm{Xe}(1)-\mathrm{F}(14)$	$79.94(4)$	78.5	$79.8(2)$	78.7
$\mathrm{~F}(13)-\mathrm{Xe}(1)-\mathrm{F}(14)$	$80.08(4)$	78.5	$80.0(2)$	78.6
$\mathrm{M}(1)-\mathrm{F}(5)-\mathrm{M}(2)$	$147.40(4)$	148.2	$147.7(2)$	148.9
$\mathrm{M}(1)-\mathrm{F}(3)--\mathrm{Xe}(1)$	$148.22(4)$	168.9	$148.0(2)$	165.7
$\mathrm{M}(1 \mathrm{~A})-\mathrm{F}(4 \mathrm{~A})--\mathrm{Xe}(1 \mathrm{~A})$	$164.14(4)$	158.7	$161.0(2)$	169.9
$\mathrm{M}(2 \mathrm{~A})-\mathrm{F}(9 \mathrm{~A})---\mathrm{Xe}(1 \mathrm{~A})$	$159.89(4)$	158.8	$164.5(2)$	169.7
$\mathrm{M}(2)-\mathrm{F}(8)---\mathrm{Xe}(1)$	$147.14(4)$	168.8	$148.6(2)$	165.8

${ }^{[a]}$ The PBE1PBE/Def2-SVP (F, O, Mo, W, Xe) level of theory was used.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.6. Experimental geometric parameters for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}(7)$

Bond Lengths (\AA)					
$\mathrm{W}(1)-\mathrm{O}(1)$	$1.686(5)$	Xe(1)---F(2A)	3.131(3)	$\mathrm{Xe}(2)-\mathrm{F}(8 \mathrm{~A})$	1.881(7)
$\mathrm{W}(1)-\mathrm{F}(1)$	1.862(4)	$\mathrm{Xe}(1)-\mathrm{F}(5)$	1.853(3)	$\mathrm{Xe}(2)-\mathrm{F}(9)$	1.881(8)
$\mathrm{W}(1)-\mathrm{F}(2)$	1.864(3)	$\mathrm{Xe}(1)-\mathrm{F}(5 \mathrm{~A})$	1.853(3)	Xe(2)-F(9A)	1.881(8)
$\mathrm{W}(1)-\mathrm{F}(2 \mathrm{~A})$	1.864(3)	$\mathrm{Xe}(1)-\mathrm{F}(6)$	1.855(3)	$\mathrm{Xe}(2)-\mathrm{F}(8 \mathrm{~B})$	1.921(7)
$W(1)-F(3)$	1.890 (4)	$\mathrm{Xe}(1)-\mathrm{F}(6 \mathrm{~A})$	1.855(3)	$\mathrm{Xe}(2)-\mathrm{F}(8 \mathrm{AB})$	1.921(7)
$\mathrm{W}(1)-\mathrm{F}(4)$	2.063(4)	$\mathrm{Xe}(1)-\mathrm{F}(7)$	1.811(4)	$\mathrm{Xe}(2)-\mathrm{F}(9 \mathrm{~B})$	1.920(8)
Xe(1)---F(4)	2.357(4)	$\mathrm{Xe}(2)-\mathrm{O}(2)$	$1.698(5)$	$\mathrm{Xe}(2)-\mathrm{F}(9 \mathrm{AB})$	1.920(8)
Xe(1)---F(3)	2.689(4)	$\mathrm{Xe}(2)-\mathrm{F}(8)$	1.881(7)	Xe(2)---F(1)	2.890(7)
Xe(1)---F(2)	3.131(3)				
Bond Angles (deg)					
$\mathrm{O}(1)-\mathrm{W}(1)-\mathrm{F}(1)$	95.8(2)	$\mathrm{F}(4)--\mathrm{Xe}(1)-\mathrm{F}(7)$	145.0(3)	$\mathrm{F}(8)-\mathrm{Xe}(2)-\mathrm{F}(9)$	92.2(7)
$\mathrm{O}(1)-\mathrm{W}(1)-\mathrm{F}(2)$	97.81(9)	$\mathrm{F}(3 \mathrm{~A})--\mathrm{Xe}(1)-\mathrm{F}(5)$	124.7(2)	$\mathrm{F}(8)-\mathrm{Xe}(2)-\mathrm{F}(9 \mathrm{AB})$	178.3(3)
$\mathrm{O}(1)-\mathrm{W}(1)-\mathrm{F}(2 \mathrm{~A})$	97.81(9)	$F(3 A)--\mathrm{Xe}(1)-\mathrm{F}(5 \mathrm{~A})$	124.7(2)	$\mathrm{F}(8)-\mathrm{Xe}(2)-\mathrm{O}(2)$	88.0(2)
$\mathrm{O}(1)-\mathrm{W}(1)-\mathrm{F}(3)$	98.4(2)	$F(3 A)---X e(1)-F(6)$	72.5(2)	$\mathrm{F}(8 \mathrm{AB})-\mathrm{Xe}(2)-\mathrm{F}(9)$	176.8(4)
$\mathrm{O}(1)-\mathrm{W}(1)-\mathrm{F}(4)$	178.8(2)	$F(3 A)--\mathrm{Xe}(1)-\mathrm{F}(6 \mathrm{~A})$	72.5(2)	$\mathrm{F}(8 \mathrm{AB})-\mathrm{Xe}(2)-\mathrm{F}(9 \mathrm{AB})$	88.3(3)
$\mathrm{F}(1)-\mathrm{W}(1)-\mathrm{F}(2)$	89.3(1)	$F(3 A)---X e(1)-F(7)$	141.6(3)	$\mathrm{F}(8 \mathrm{AB})-\mathrm{Xe}(2)-\mathrm{O}(2)$	94.0(2)
$F(1)-W(1)-F(2 A)$	89.3(1)	$F(5)-\mathrm{Xe}(1)-\mathrm{F}(5 \mathrm{~A})$	88.6(4)	$\mathrm{F}(9)-\mathrm{Xe}(2)-\mathrm{F}(9 \mathrm{AB})$	89.4(4)
$\mathrm{F}(1)-\mathrm{W}(1)-\mathrm{F}(3)$	165.8(2)	$F(5)-\mathrm{Xe}(1)-\mathrm{F}(6)$	88.1(3)	$\mathrm{F}(9)-\mathrm{Xe}(2)-\mathrm{O}(2)$	88.2(4)
$\mathrm{F}(1)-\mathrm{W}(1)-\mathrm{F}(4)$	82.9(2)	$F(5)-X e(1)-F(6 A)$	160.1(3)	$\mathrm{F}(9 \mathrm{AB})-\mathrm{Xe}(2)-\mathrm{O}(2)$	92.5(3)
$F(2)-W(1)-F(2 A)$	164.4(2)	$F(5)-\mathrm{Xe}(1)-\mathrm{F}(7)$	79.9(3)	$\mathrm{F}(1)---\mathrm{Xe}(2)-\mathrm{F}(8 \mathrm{~B})$	98.6(1)
$\mathrm{F}(2)-\mathrm{W}(1)-\mathrm{F}(3)$	88.8(1)	$\mathrm{F}(5 \mathrm{~A})-\mathrm{Xe}(1)-\mathrm{F}(6)$	160.1(3)	$F(1)--\mathrm{Xe}(2)-\mathrm{F}(8 \mathrm{AB})$	109.3(4)
$\mathrm{F}(2)-\mathrm{W}(1)-\mathrm{F}(4)$	82.20(9)	$F(5 A)-X e(1)-F(6 A)$	88.1(3)	$F(1)---\mathrm{Xe}(2)-\mathrm{F}(9 \mathrm{~B})$	78.5(4)
$F(2 A)-W(1)-F(3)$	88.8(1)	$F(5 A)-X e(1)-F(7)$	79.9(3)	$F(1)---X e(2)-F(9 A B)$	70.5(1)
$F(2 A)-W(1)-F(4)$	82.20(9)	$F(6)-X e(1)-F(6 A)$	88.4(4)	$F(8 B)-\mathrm{Xe}(2)-\mathrm{F}(8 \mathrm{~A})$	90.1(6)
$\mathrm{F}(3)-\mathrm{W}(1)-\mathrm{F}(4)$	82.9(2)	$F(6)-\mathrm{Xe}(1)-\mathrm{F}(7)$	80.3(3)	$\mathrm{F}(8 \mathrm{~B})-\mathrm{Xe}(2)-\mathrm{F}(9 \mathrm{~B})$	176.8(4)
$\mathrm{W}(1)-\mathrm{F}(4)---\mathrm{Xe}(1)$	148.6(3)	$F(6 \mathrm{~A})-\mathrm{Xe}(1)-\mathrm{F}(7)$	80.3(3)	$F(8 B)-\mathrm{Xe}(2)-\mathrm{F}(9 \mathrm{~A})$	88.2(3)
$\mathrm{W}(1)-\mathrm{F}(3)--\mathrm{Xe}(1 \mathrm{~A})$	158.1(4)	$F(1)--\mathrm{Xe}(2)-\mathrm{F}(8)$	109.3(4)	$\mathrm{F}(8 \mathrm{~B})-\mathrm{Xe}(2)-\mathrm{O}(2)$	94.0(2)
$\mathrm{W}(1)-\mathrm{F}(1)--\mathrm{Xe}(2)$	164.0(4)	$F(1)---\mathrm{Xe}(2)-\mathrm{F}(8 \mathrm{~A})$	98.6(1)	$\mathrm{F}(8 \mathrm{~A})-\mathrm{Xe}(2)-\mathrm{F}(9 \mathrm{~B})$	178.3(3)
F(4)---Xe(1)---F(3A)	73.4(2)	$F(1)--\mathrm{Xe}(2)-\mathrm{F}(9)$	78.5(4)	$\mathrm{F}(8 \mathrm{~A})-\mathrm{Xe}(2)-\mathrm{F}(9 \mathrm{~A})$	92.2(3)
$F(4)--\mathrm{Xe}(1)-\mathrm{F}(5)$	75.3(2)	$F(1)---\mathrm{Xe}(2)-\mathrm{F}(9 \mathrm{~A})$	70.5(1)	$\mathrm{F}(8 \mathrm{~A})-\mathrm{Xe}(2)-\mathrm{O}(2)$	88.0(3)
$F(4)--\mathrm{Xe}(1)-\mathrm{F}(5 \mathrm{~A})$	75.3(2)	$\mathrm{F}(1)--\mathrm{Xe}(2)-\mathrm{O}(2)$	158.3(4)	$\mathrm{F}(9 \mathrm{~B})-\mathrm{Xe}(2)-\mathrm{F}(9 \mathrm{~A})$	89.4(4)
$F(4)--\mathrm{Xe}(1)-\mathrm{F}(6)$	122.6(2)	$\mathrm{F}(8)-\mathrm{Xe}(2)-\mathrm{F}(8 \mathrm{AB})$	90.1(6)	$\mathrm{F}(9 \mathrm{~B})-\mathrm{Xe}(2)-\mathrm{O}(2)$	92.5(3)
F(4)---Xe(1)-F(6A)	122.6(2)			$\mathrm{F}(9 \mathrm{~A})-\mathrm{Xe}(2)-\mathrm{O}(2)$	88.2(3)

Figure A8.4. A packing diagram showing the X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{HF}_{2}\right] \cdot \mathrm{CrOF}_{4}$ (2) viewed along the b-axis of the unit cell; thermal ellipsoids are drawn at the 50% probability level.

Figure A8.5. A packing diagram showing the X-ray crystal structure of [$\left.\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$ (3) viewed along the a-axis of the unit cell; thermal ellipsoids are drawn at the 50% probability level. The packing diagram of isotypic 4 is not shown.

Figure A8.6. A packing diagram showing the X-ray crystal structure of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}(7)$ viewed along the a-axis of the unit cell; thermal ellipsoids are drawn at the 50% probability level.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Figure A8.7. Raman spectrum of crystalline $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ (4) recorded at $-140{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Symbols denote an instrumental artifact (\dagger), FEP sample tube bands $\left(^{*}\right)$ and bands assigned to a trace amount of XeOF_{4} impurity (\ddagger).

Figure A8.8. Raman spectrum of crystalline $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ (6) recorded at $-140{ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Symbols denote an instrumental artifact (\dagger) and FEP sample tube bands (*).

Figure A8.9. Raman spectrum of crystalline $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}$ (7) recorded at -140 ${ }^{\circ} \mathrm{C}$ using 1064-nm excitation. Symbols denote an instrumental artifact (\dagger), FEP sample tube bands $\left(^{*}\right)$, Raman bands assigned to $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ (\ddagger) impurities, and a $\mathrm{W}-\mathrm{O}$ stretching band tentatively assigned to the $\left[\mathrm{WOF}_{6}\right]^{2-}$ salt of $\left[\mathrm{XeF}_{5}\right]^{+}$or $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}(\S)$. The latter band was assigned by comparison to the $v(\mathrm{~W}-\mathrm{O})$ stretching band reported for $\left[\mathrm{NO}_{2}\left[\mathrm{WOF}_{6}\right]\right.$ in Inorg. Chem. 1975, 14, 1822-1830.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.7. Experimental Raman frequencies and calculated ${ }^{[a]}$ vibrational frequencies, intensities, and assignments for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right](\mathbf{1})$ and $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2}\left(\mathbf{1}^{\prime}\right)$

$1^{[a, b]}$	$1^{\text {, }}$ [a,c]	assgnts ($\left.C_{i}\right)^{[d]}$
951(19)	1225(63)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)\right]$
	1225(0)[339]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{O}_{1}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)\right]$
	750(0)[510]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2} \mathrm{~A}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)\right]$
715(3)	750(6)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)\right]$
	706(0)[631]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)\right]$
677(4)	$699(<1)[0]$	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3} \mathrm{~A}\right)\right]-\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)\right]$
$652(55)^{[\mathrm{e}]}$	698(22)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4 \mathrm{eq}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{eq}}\right)\right]$
	696(0)[124]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4 \mathrm{eq}}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{eq}}\right)\right]$
$652(55)^{[\mathrm{e}]}$	672(30)[0]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{13 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{15}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{15 \mathrm{~A}}\right)\right]$
	669(0)[639]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{15 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{15}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{13 \mathrm{~A}}\right)\right]$
640(100)	659(241)[0]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2} \mathrm{~A}-\mathrm{F}_{12 \mathrm{~A}}\right)\right]$
	654(0)[110]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{14}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{15}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{13 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{16 \mathrm{~A}}\right)\right]-} \\ & \left.\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{16}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{14 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{15 \mathrm{~A}}\right)\right]\right] \end{aligned}$
	651(0)[91]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{14}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{14 \mathrm{~A}}\right)\right]$
	646(0)[468]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{16}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{14 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{15 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{16 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{14}\right)+v\left(\mathrm{Xe}_{2}-\right.\right.} \\ & \left.\left.\mathrm{F}_{15}\right)\right] \end{aligned}$
	646(0)[388]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)+\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{13 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{16 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)+\right.} \\ & \left.\left.v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{16}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)\right]\right] \end{aligned}$
627(15)	644(12)[0]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+\left(\mathrm{Xe}_{2}-\mathrm{F}_{14}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{14 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{10}\right)+\left(\mathrm{Xe}_{2}-\mathrm{F}_{16}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{16 \mathrm{~A}}\right)\right]$
633(64)	643(56)[0]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)\right]$
	637(0)[6]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)+\left(\mathrm{Xe}_{1}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{15}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{16}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{13 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)+\right.} \\ & \left.v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{15 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{16 \mathrm{~A}}\right)\right] \end{aligned}$

continued...

Table A8.7. (continued)

$1{ }^{[a, b]}$	1, ${ }^{[a, c]}$	assgnts ($\left.C_{i}\right)^{[d]}$
610(10)	634(9)[0]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)+\left(\mathrm{Xe}_{1}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{14}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{13 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{14 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)+\right.} \\ & \left.v\left(\mathrm{Xe}_{2}-\mathrm{F}_{15}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{16}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{15 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{16 \mathrm{~A}}\right)\right] \end{aligned}$
608(10)	628(2)[0]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)+\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{16}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{13 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{16 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{10}\right)+\right.} \\ & \left.v\left(\mathrm{Xe}_{2}-\mathrm{F}_{14}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{15}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{14 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{15 \mathrm{~A}}\right)\right] \end{aligned}$
	603(0)[33]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{15}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)+\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)+\right.} \\ & \left.v\left(\mathrm{Xe}_{15 \mathrm{~A}}\right)\right] \end{aligned}$
592(32)	599(33)[0]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{15}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)+\right.} \\ & \left.v\left(\mathrm{Fe}_{13 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{15 \mathrm{~A}}\right)\right] \end{aligned}$
587(32)	599(5)[0]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+\left(\mathrm{Xe}_{2}-\mathrm{F}_{4 \mathrm{eq}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{49 q}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4 \mathrm{eq}}\right)+\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)+v\left(\mathrm{Xe}_{14}-\mathrm{F}_{4 \mathrm{eq}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)\right]$
	595(0)[1]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{eq}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{eq}}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4 \mathrm{eq}}\right)+\left(\mathrm{Xe}_{2}-\mathrm{F}_{4 \mathrm{eq}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)\right]$
	587(0)[1]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{14}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{16}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{13 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{15 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+\right.} \\ & \left.v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{15}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{14 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{16 \mathrm{~A}}\right)\right] \end{aligned}$
584(39)	585(41)[0]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{15}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{14 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{16 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+\right.} \\ & \left.v\left(\mathrm{Xe}_{2}-\mathrm{F}_{14}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{16}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{13 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{15 \mathrm{~A}}\right)\right] \end{aligned}$
568(22)	582(11)[0]	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{14}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{16}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{13 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{15 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+\right.} \\ & \left.v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{15}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{14 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{16 \mathrm{~A}}\right)\right] \end{aligned}$
	$581(0)[<0.1]$	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{15}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{14 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{16 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+\right.} \\ & \left.v\left(\mathrm{Xe}_{2}-\mathrm{F}_{14}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{16}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{13 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{15 \mathrm{~A}}\right)\right] \end{aligned}$
527(3)	556(0)[24]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2} \mathrm{~A}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]$
	553(8)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]$
	410(0)[88]	$\left[\delta\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{10}\right)+\delta\left(\mathrm{F}_{12 \mathrm{~A}} \mathrm{Xe}_{2} \mathrm{~F}_{16 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{11} \mathrm{Xe}_{2} \mathrm{~F}_{16}\right)\right]-\left[\delta\left(\mathrm{F}_{6} \mathrm{Xe}_{14} \mathrm{~F}_{8 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{12} \mathrm{Xe}_{2} \mathrm{~F}_{16}\right)+\delta\left(\mathrm{F}_{11 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{16 \mathrm{~A}}\right)\right]$
421, sh	406(4)[0]	$\left[\delta\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{10}\right)-\delta\left(\mathrm{F}_{12} \mathrm{Xe}_{2} \mathrm{~F}_{16}\right)\right]+\left[\delta\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{10 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{12 \mathrm{~A}} \mathrm{Xe}_{2} \mathrm{~F}_{16 \mathrm{~A}}\right)\right]$
419(3)	405(4)[0]	$\left[\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{6} \mathrm{~F}_{7} \mathrm{~F}_{10}\right)+\delta\left(\mathrm{Xe}_{2} \mathrm{~F}_{12} \mathrm{~F}_{15} \mathrm{~F}_{16}\right)+\delta\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{6} \mathrm{~F}_{7 \mathrm{~A}} \mathrm{~F}_{10 \mathrm{~A}}\right)+\delta\left(\mathrm{Xe}_{2} \mathrm{~F}_{12 \mathrm{~A}} \mathrm{~F}_{15 \mathrm{~A}} \mathrm{~F}_{16 \mathrm{~A}}\right)\right.$
	403(0)[3]	$\left[\delta\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{10}\right)+\delta\left(\mathrm{F}_{12} \mathrm{Xe}_{2} \mathrm{~F}_{16}\right)\right]-\left[\delta\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{Xe}_{14} \mathrm{~F}_{10 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{12 \mathrm{~A}} \mathrm{Xe}_{2} \mathrm{~F}_{16 \mathrm{~A}}\right)\right]$

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.7. (continued)

$1{ }^{[a, b]}$	$1{ }^{\text {[}}$ [, c]	$\text { assgnts }\left(C_{i}\right)^{[d]}$
407(2)	401(4)[0]	$\left[\delta\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{2}\right)+\delta\left(\mathrm{F}_{3} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)\right]+\left[\delta\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{2} \mathrm{~A}\right)+\delta\left(\mathrm{F}_{3 \mathrm{~A}} \mathrm{Cr}_{11} \mathrm{~F}_{4 \mathrm{~A}}\right)\right]$
	399(0)[142]	$\left[\delta\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)-\delta\left(\mathrm{F}_{12} \mathrm{Xe}_{2} \mathrm{~F}_{15}\right)\right]-\left[\delta\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{12 \mathrm{~A}} \mathrm{Xe}{ }_{2 \mathrm{~A}} \mathrm{~F}_{15 \mathrm{~A}}\right)\right]$
	398(0)[<0.1]	$\left[\delta\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{2}\right)+\delta\left(\mathrm{F}_{3} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)\right]-\left[\delta\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{2} \mathrm{~A}\right)+\delta\left(\mathrm{F}_{3 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)\right]$
	396(2)[0]	$\left[\delta\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{9}\right)+\delta\left(\mathrm{F}_{12} \mathrm{Xe}_{2} \mathrm{~F}_{13}\right)+\delta\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{9 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{12 \mathrm{~A}} \mathrm{Xe}_{22} \mathrm{~F}_{13 \mathrm{~A}}\right)\right]$
371(7)	394(0)[11]	$\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)+\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{2} \mathrm{~A}\right)\right]-\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{2}\right)+\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1} \mathrm{~F}_{44}\right)\right]$
	393(5)[0]	$\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)+\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)\right]-\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{2}\right)+\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{2 \mathrm{~A}}\right)\right]$
	392(0)[47]	$\left[\delta\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{9}\right)+\delta\left(\mathrm{F}_{12} \mathrm{Xe}_{2} \mathrm{~F}_{13}\right)\right]-\left[\delta\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{9 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{12 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{13 \mathrm{~A}}\right)\right]$
	391(<1)[0]	$\left[\delta\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)-\delta\left(\mathrm{F}_{12} \mathrm{Xe}_{2} \mathrm{~F}_{13}\right)\right]+\left[\delta\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{12 \mathrm{~A}} \mathrm{Xe}{ }_{2 \mathrm{~A}} \mathrm{~F}_{13 \mathrm{~A}}\right)\right]$
365, sh$362(12)$	377(0)[22]	$\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{1}\right)+\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 A} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]-\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]$
	377(7)[0]	$\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{1}\right)+\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)\right]-\left[\delta\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$
	373(9)[0]	$\left[\delta_{\text {umb }}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{4 \text { eq }}\right)+\delta_{\text {umb }}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{eq}}\right)\right]$
	374(0)[34]	$\left[\delta_{\text {umb }}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{4 \mathrm{eq}}\right)-\delta_{\text {umb }}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1} \mathrm{~F}_{4 \mathrm{eq}}\right)\right]$
350(5)	360(6)[0]	$\left[\delta_{\mathrm{umb}}\left(\mathrm{Xe}_{1} \mathrm{~F}_{4 \mathrm{eq}}\right)+\delta_{\mathrm{umb}}\left(\mathrm{Xe}_{2} \mathrm{~F}_{4 \mathrm{eq}}\right)\right]+\left[\delta_{\mathrm{umb}}\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{eq}}\right)+\delta_{\mathrm{umb}}\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{eq}}\right)\right]$
		$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)\right]$
	353(0)[86]	$\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{11} \mathrm{~A}\right)\right]+\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{5}\right)-v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]$
341(6)	352(0)[30]	$\left[\delta_{\text {umb }}\left(\mathrm{Xe}_{1} \mathrm{~F}_{4 \mathrm{eq}}\right)+\delta_{\text {umb }}\left(\mathrm{Xe}_{2} \mathrm{~F}_{4 \text { eq }}\right)\right]-\left[\delta_{\text {umb }}\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{4 \text { eq }}\right)+\delta_{\text {umb }}\left(\mathrm{Xe}_{2} \mathrm{AF}_{4 \text { eq }}\right)\right]$
	346(0)[666]	$\left[\delta_{\text {umb }}\left(\mathrm{Xe}_{1} \mathrm{~F}_{4 \text { eq }}\right)+\delta_{\text {umb }}\left(\mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{4 \text { eq }}\right)\right]-\left[\delta_{\text {umb }}\left(\mathrm{Xe}_{2} \mathrm{~F}_{4 \mathrm{eq}}\right)+\delta_{\text {umb }}\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{eq}}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)\right]$
	$341(<1)[0]$	$\left[\delta_{\text {umb }}\left(\mathrm{Xe}_{1} \mathrm{~F}_{4 \text { eq }}\right)+\delta_{\text {umb }}\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{eq}}\right)\right]-\left[\delta_{\text {umb }}\left(\mathrm{Xe}_{2} \mathrm{~F}_{4 \mathrm{eq}}\right)+\delta_{\text {umb }}\left(\mathrm{Xe}_{2} \mathrm{~F}_{4 \text { eq }}\right)\right]$
	329(0)[383]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{5}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{54}\right)\right]$

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.7. (continued)

$1{ }^{[a, b]}$	1, ${ }^{[\mathrm{a}, \mathrm{c}]}$	assgnts ($\left.C_{i}\right)^{[d]}$
	$318(0)[<0.1]$	$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Cr}_{1 A} \mathrm{~F}_{3 \mathrm{~A}}\right)\right] /\left[\delta\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{5}\right)+\delta\left(\mathrm{F}_{5} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)\right]+\left[\delta\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{5 \mathrm{~A}} \mathrm{Cr}_{1 A} \mathrm{~F}_{4 \mathrm{~A}}\right)\right]$
323(5)	318(7)[0]	$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{14} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right] /\left\{\left[\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{11}\right)+\delta\left(\mathrm{F}_{11} \mathrm{Xe} \mathrm{F}_{5} \mathrm{~A}\right)\right]+\left[\delta\left(\mathrm{F}_{5 \mathrm{~A}} \mathrm{Xe}{ }_{1 \mathrm{~A}} \mathrm{~F}_{11 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{11 \mathrm{~A}} \mathrm{Xe}_{2} \mathrm{~F}_{5}\right)\right]\right\}_{\text {small }}$
314(4)	301(4)[0]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)\right]$
312 sh	293(3)[0]	$\left[\delta\left(\mathrm{F}_{7} \mathrm{Xe}_{1} \mathrm{~F}_{8}\right)+\delta\left(\mathrm{F}_{9} \mathrm{Xe}_{1} \mathrm{~F}_{10}\right)\right]+\left[\delta\left(\mathrm{F}_{14} \mathrm{Xe}_{2} \mathrm{~F}_{15}\right)+\delta\left(\mathrm{F}_{13} \mathrm{Xe}_{2} \mathrm{~F}_{16}\right)\right]+\left[\delta\left(\mathrm{F}_{7 \mathrm{~A}} \mathrm{Xe}_{1 A} \mathrm{~F}_{8 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{9 \mathrm{~A}} \mathrm{Xe}_{14} \mathrm{~F}_{10 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{F}_{14 \mathrm{~A}} \mathrm{Xe}_{2} \mathrm{~F}_{15 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{13 \mathrm{~A}} \mathrm{Xe}_{2} \mathrm{~F}_{16 \mathrm{~A}}\right)\right]$
	292(0)[34]	$\left[\delta\left(\mathrm{F}_{7} \mathrm{Xe}_{1} \mathrm{~F}_{8}\right)+\delta\left(\mathrm{F}_{9} \mathrm{Xe}_{1} \mathrm{~F}_{10}\right)\right]+\left[\delta\left(\mathrm{F}_{14} \mathrm{Xe}_{2} \mathrm{~F}_{15}\right)+\delta\left(\mathrm{F}_{13} \mathrm{Xe}_{2} \mathrm{~F}_{16}\right)\right]+\left[\delta\left(\mathrm{F}_{7 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{10 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{8 \mathrm{~A}} \mathrm{Xe}_{14} \mathrm{~F}_{9 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{F}_{13 \mathrm{~A}} \mathrm{Xe}_{2} \mathrm{~F}_{14 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{15 \mathrm{~A}} \mathrm{Xe}_{2} \mathrm{~F}_{16 \mathrm{~A}}\right)\right]$
	291(0)[19]	$\left[\delta\left(\mathrm{F}_{10} \mathrm{Xe}_{1} \mathrm{~F}_{11}\right)-\delta\left(\mathrm{F}_{11} \mathrm{Xe}_{2} \mathrm{~F}_{16}\right)\right]-\left[\delta\left(\mathrm{F}_{10 \mathrm{~A}} \mathrm{Xe}_{2} \mathrm{~F}_{11 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{11 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{16 \mathrm{~A}}\right)\right] /\left[\delta\left(\mathrm{F}_{7} \mathrm{Xe}_{1} \mathrm{~F}_{5}\right)+\delta\left(\mathrm{F}_{7 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{F}_{15} \mathrm{Xe}_{2} \mathrm{~F}_{5 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{15 \mathrm{~A}} \mathrm{Xe} 2 \mathrm{~F}_{2 \mathrm{~A}} \mathrm{~F}_{5}\right)\right]$
	274(0)[22]	$\left[\delta\left(\mathrm{F}_{7} \mathrm{Xe}_{1} \mathrm{~F}_{8}\right)+\delta\left(\mathrm{F}_{9} \mathrm{Xe}_{1} \mathrm{~F}_{10}\right)+\delta\left(\mathrm{F}_{13} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)+\delta\left(\mathrm{F}_{15} \mathrm{Xe}_{2} \mathrm{~F}_{16}\right)\right]-\left[\delta\left(\mathrm{F}_{7 \mathrm{~A}} \mathrm{Xe}_{14} \mathrm{~F}_{8 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{9} \mathrm{Xe}_{12} \mathrm{~F}_{10 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{13 \mathrm{~A}} \mathrm{Xe}_{2} \mathrm{~F}_{14 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{15 \mathrm{~A}} \mathrm{Xe}_{2} \mathrm{~F}_{16 \mathrm{~A}} \mathrm{~F}^{2}\right)\right]$
278, sh	274(1)[0]	$\left[\delta\left(\mathrm{F}_{7} \mathrm{Xe}_{1} \mathrm{~F}_{8}\right)+\delta\left(\mathrm{F}_{9} \mathrm{Xe}_{1} \mathrm{~F}_{10}\right)+\delta\left(\mathrm{F}_{13} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)+\delta\left(\mathrm{F}_{15} \mathrm{Xe}_{2} \mathrm{~F}_{16}\right)\right]+\left[\delta\left(\mathrm{F}_{7 \mathrm{~A}} \mathrm{Xe}_{14} \mathrm{~F}_{8 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{9 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{10 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{13 \mathrm{~A}} \mathrm{Xe}_{2} \mathrm{~F}_{14 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{15 \mathrm{~A}} \mathrm{Xe}_{2} \mathrm{~F}_{16 \mathrm{~A}}\right)\right]$
275(2)	273(4)[0]	$\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{7} \mathrm{Xe}_{1} \mathrm{~F}_{10}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{15} \mathrm{Xe}_{2} \mathrm{~F}_{16}\right)\right]-\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{7 \mathrm{~A}} \mathrm{Xe}{ }_{1 \mathrm{~A}} \mathrm{~F}_{10 \mathrm{~A}}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{15 \mathrm{~A}} \mathrm{Xe} \mathrm{e}_{2} \mathrm{~F}_{16 \mathrm{~A}}\right)\right]$
261(2)	261(4)[0]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)\right]$
259(2)	258(3)[0]	
	255(0)[2]	$\begin{aligned} & {\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{7} \mathrm{Xe}_{1} \mathrm{~F}_{9}\right)+\rho_{\mathrm{w}}\left(\mathrm{~F}_{8} \mathrm{Xe}_{1} \mathrm{~F}_{10}\right)+\rho_{\mathrm{w}}\left(\mathrm{~F}_{13} \mathrm{Xe}_{2} \mathrm{~F}_{15}\right)+\rho_{\mathrm{w}}\left(\mathrm{~F}_{14 \mathrm{Xe}}^{2} \mathrm{~F}_{16}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{7 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{9 \mathrm{~A}}\right)+\rho_{\mathrm{w}}\left(\mathrm{~F}_{8 \mathrm{~A}} \mathrm{Xe}_{1 A} \mathrm{~F}_{10 \mathrm{~A}}\right)+\rho_{\mathrm{w}}\left(\mathrm{~F}_{13 \mathrm{~A}} \mathrm{Ke}_{24 \mathrm{~A}} \mathrm{~F}_{15 \mathrm{~A}}\right)+\right.} \\ & \left.\left.\mathrm{F}_{24} \mathrm{~F}_{16 \mathrm{~A}}\right)\right] \end{aligned}$
	251(0)[30]	$\left[\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{8}\right)+\delta\left(\mathrm{F}_{5 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right)\right]-\left[\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{2} \mathrm{~F}_{14 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{5 \mathrm{~A}} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)\right]$
	249(0)[31]	$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{7} \mathrm{Xe}_{1} \mathrm{~F}_{11}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{11} \mathrm{Xe}_{2} \mathrm{~F}_{15}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{7 \mathrm{~A}} \mathrm{Xe}_{11} \mathrm{~F}_{11 \mathrm{~A}}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{11 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}} \mathrm{~F}_{15 \mathrm{~A}}\right)\right]$
238(2)	246(2)[0]	$\left[\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{11}\right)+\delta\left(\mathrm{F}_{11} \mathrm{Xe}_{2} \mathrm{~F}_{5 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{F}_{5 \mathrm{~A}} \mathrm{Xe}_{11} \mathrm{~F}_{11 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{11 \mathrm{~A}} \mathrm{Xe}_{2} \mathrm{~F}_{5}\right)\right]$
	238(0)[68]	$\left[\delta\left(\mathrm{F}_{11} \mathrm{Xe}_{2} \mathrm{~F}_{5 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{11} \mathrm{XX}_{2} \mathrm{AF}_{5}\right)\right.$
	227(0)[13]	$\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{5}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)\right]$
233(2)	227(3)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]$

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.7. (continued)

$1{ }^{[a, b]}$	1, ${ }^{[a, c]}$	assgnts ($\left.C_{i}\right)^{[d]}$
	$221(<1)[0]$	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{11}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)-v\left(\mathrm{Xe}_{2}-\mathrm{F}_{5}\right)\right]+\left[v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)-v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]$
	216(0)[4]	$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 A} \mathrm{~F}_{4 \mathrm{~A}}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Cr}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)\right]$
	212(<1)[0]	$\left[\rho_{t}\left(\mathrm{~F}_{7} \mathrm{Xe}_{1} \mathrm{~F}_{8}\right)+\rho_{t}\left(\mathrm{~F}_{9} \mathrm{Xe}_{1} \mathrm{~F}_{10}\right)+\rho_{t}\left(\mathrm{~F}_{13} \mathrm{Xe}_{2} \mathrm{~F}_{16}\right)+\rho_{t}\left(\mathrm{~F}_{14} \mathrm{Xe}_{2} \mathrm{~F}_{15}\right)\right]+\left[\rho_{t}\left(\mathrm{~F}_{7 \mathrm{~A}} \mathrm{Xe}_{14} \mathrm{~F}_{8 \mathrm{~A}}\right)+\rho_{t}\left(\mathrm{~F}_{9 A} \mathrm{Xe}_{14} \mathrm{~F}_{10 \mathrm{~A}}\right)+\rho_{t}\left(\mathrm{~F}_{13 \mathrm{~A}} \mathrm{Xe}_{2} \mathrm{~F}_{16 \mathrm{~A}}\right)+\rho_{t}\left(\mathrm{~F}_{14 \mathrm{~A}} \mathrm{Xe}_{22} \mathrm{~F}_{15 \mathrm{~A}}\right)\right]$
216(3)	209(5)[0]	$\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{Cr}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{Cr}_{1 A} \mathrm{~F}_{4 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{Cr}_{1} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]_{\text {small }}$
203(1)	208(0)[13]	$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{7} \mathrm{Xe} \mathrm{l}_{1} \mathrm{~F}_{9}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{13} \mathrm{Xe}_{2} \mathrm{~F}_{15}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{7 \mathrm{a}} \mathrm{Xe}_{1 \mathrm{a}} \mathrm{F}_{9 \mathrm{a}}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{13 \mathrm{a}} \mathrm{Xe}_{22} \mathrm{~F}_{15 \mathrm{a}}\right)\right]$
	204(0)[<1]	$\left[\delta\left(\mathrm{F}_{8} \mathrm{Xe} \mathrm{e}_{1} \mathrm{~F}_{9}\right)-\delta\left(\mathrm{F}_{13 \mathrm{~A}} \mathrm{Xe}_{2} \mathrm{~F}_{14 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{F}_{13} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)-\delta\left(\mathrm{F}_{8 \mathrm{~A}} \mathrm{Xe}_{14} \mathrm{~F}_{9 \mathrm{~A}}\right)\right]$
	201(3)[0]	$\left[\delta\left(\mathrm{F}_{8} \mathrm{Xe} \mathrm{l}_{1} \mathrm{~F}_{9}\right)-\delta\left(\mathrm{F}_{13 \mathrm{~A}} \mathrm{Xe}_{2} \mathrm{~F}_{14 \mathrm{~A}}\right)\right]-\left[\delta\left(\mathrm{F}_{13} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)-\delta\left(\mathrm{F}_{8 \mathrm{~A}} \mathrm{Xe}_{14} \mathrm{~F}_{9 \mathrm{~A}}\right)\right]$
	201(0)[3]	$\left[\delta\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}} \mathrm{Xe} \mathrm{e}_{2}\right)-\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{5} \mathrm{Xe} 2 \mathrm{~A}\right)\right]$
	197(1)[0]	
174(2)	190(0)[<1]	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{2 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)\right]$
	$182(<1)[0]$	$\left[\left(\mathrm{F}_{8} \mathrm{Xe}_{1} \mathrm{~F}_{11}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{8 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{11 \mathrm{~A}}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{11} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{11 \mathrm{~A}} \mathrm{Xe}_{2} \mathrm{~F}_{14 \mathrm{~A}}\right)\right]$
	180(0) [1]	$\left[\rho_{t}\left(\mathrm{~F}_{8} \mathrm{Xe}_{1} \mathrm{~F}_{10}\right)+\rho_{t}\left(\mathrm{~F}_{14 \mathrm{~A}} \mathrm{Xe}_{22} \mathrm{~F}_{16 \mathrm{~A}}\right)+\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{11} \mathrm{Xe}_{2}\right)\right]-\left[\rho_{t}\left(\mathrm{~F}_{8 A} \mathrm{Xe} \mathrm{l}_{1 \mathrm{~A}} \mathrm{~F}_{10 \mathrm{~A}}\right)+\rho_{t}\left(\mathrm{~F}_{14} \mathrm{Xe}_{2} \mathrm{~F}_{16}\right)+\delta\left(\mathrm{Xe}_{14} \mathrm{~F}_{11 \mathrm{~A}} \mathrm{Xe}_{2 \mathrm{~A}}\right)\right]$
	168(2)[0]	$\left[\delta\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}} \mathrm{Xe}_{2}\right)+\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{5} \mathrm{Xe} 2 \mathrm{~A}\right)\right]+\left[\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{11} \mathrm{Xe}_{2}\right)+\delta\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{11 \mathrm{~A}} \mathrm{Xe}_{22}\right)\right]$
	$137(<1)[0]$	
	$121(0)[6]$	coupled deformation modes
	$\begin{aligned} & 120(0)[27] \\ & 114(0)[2] \\ & 114(<1)[0] \end{aligned}$	

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.7. (continued)

$1^{[a, b]}$	$1^{\text {, }}$ [a,c]		assgnts ($\left.C_{\mathbf{i}}\right)^{[d]}$
	113(<1)[0]		
	108(<1)[0]		
	107(<1)[0]		
	103(0)[<1]		
	102(0)[2]		
	94(<1)[0]		
	94(<1)[0]		
	87(0)[1]		
	$86(0)[<1]$		
	$77(<0.1)[0]$		
	$76(<1)[0]$		
	$72(0)[<1]$	upled deformation modes	
	$60(0)[<0.1]$	ered deformation modes	
	58(<1)[0]		
	56(<1)[0]		
	50(0)[2]		
	$47(0)[<0.1]$		
	$45(<1)[0]$		
	$38(<0.1)[0]$		
	$35(<1)[0]$		
	$34(0)[<1]$		
	$26(0)[<0.1]$		
	11(<1 [0]		
	$-4(0)[<0.1]$		
	inued...		

Table A8.7. (continued)
[a] Frequencies are given in cm^{-1} and anion frequencies and mode descriptions are gray-highlighted. [b] Values in parentheses denote relative Raman intensities. Abbreviations denote shoulder (sh). The Raman spectrum was recorded in a FEP sample tube at $-150^{\circ} \mathrm{C}$ using 1064-nm excitation. A weak band and a shoulder were also observed at 1006(2), 667(6), 658(sh), and $374(\mathrm{sh}) \mathrm{cm}^{-1}$ and were tentatively assigned to a Cr oxide fluoride reduction product. [c] Values in parentheses and square brackets denote calculated Raman intensities $\left(\AA^{4} \mathrm{amu}^{-1}\right)$ and infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$), respectively. [d] Assignments are for the energy-minimized geometry $\left(C_{i}\right)$ calculated using the PBE1PBE/Def2-SVP (F, O, Cr, Xe) levels of theory. [e] This band is attributed to overlapping $v\left(\mathrm{Cr}^{-}-\mathrm{F}_{4 \mathrm{eq}}\right)$ and $v\left(\mathrm{Xe}-\mathrm{F}_{\mathrm{eq}}\right)$ stretching modes. Abbreviations denote stretch (v), bend (δ), rock $\left(\rho_{\mathrm{r}}\right)$, twist $\left(\rho_{\mathrm{t}}\right)$, wag $\left(\rho_{\mathrm{w}}\right)$, umbrella (umb), and equatorial (eq). Bond elongations and angle openings are denoted by plus (+) signs, and bond contractions and angle compressions are denoted by minus (-) signs. The atom labeling scheme corresponds to that used in Figure 11.9.

Table A8.8. Experimental Raman frequencies and calculated vibrational frequencies, intensities, and assignments for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$ ($\mathbf{3}$ and $\mathbf{3}^{\prime}$) and $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ (4 and $\mathbf{4}^{\prime}$)

3, ${ }^{[a, b]}$	$3^{[a, c]}$	$\operatorname{assgnts}\left(C_{1}\right)^{\text {[d] }}$	$4^{[a, c, d]}$	4, ${ }^{\text {a, b] }}$
1087(30)[186]	1002(31)	$v\left(\mathrm{M}_{1}-\mathrm{O}_{1}\right)$	1015(48)	1060(30)[160]
733(12)[195]	698, sh	$\left[v\left(\mathrm{Mo}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Mo}_{1}-\mathrm{F}_{3}\right)_{\text {small }}\right] / /\left[v\left(\mathrm{~W}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{~W}_{1}-\mathrm{F}_{3}\right)\right]$	703, sh	717(15)[99]
727(5)[216]	695(35)	$\left[v\left(\mathrm{Mo}_{1}-\mathrm{F}_{3}\right)-v\left(\mathrm{Mo}_{1}-\mathrm{F}_{2}\right)_{\text {small }}\right] / /\left[v\left(\mathrm{~W}_{1}-\mathrm{F}_{3}\right)-v\left(\mathrm{~W}_{1}-\mathrm{F}_{2}\right)\right]$	700(17)	705(2)[212]
668(50)[65]		$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{14}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{16}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)\right]-} \\ & v\left(\mathrm{M}_{1}-\mathrm{F}_{4}\right) \text { small } \end{aligned}$		669(47)[108]
664(34)[201]	664(76)	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{16}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{14}\right)\right]$	664(100)	666(48)[162]
661(6)[307]		$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)\right]+\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)-v\left(\mathrm{Xe}_{2}-\mathrm{F}_{15}\right)\right]$		662(7)[282]
654(26)[142]	650(43)	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)_{\text {small }}\right]-v\left(\mathrm{Xe}_{2}-\mathrm{F}_{16}\right)_{\text {small }}$	653, sh	656(27)[127]
652(7)[80]	$644(31)$	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)\right]+\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{14}\right)\right]_{\text {small }}-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{2}-\right.\right.} \\ & \left.\left.\mathrm{F}_{12}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{14}\right)\right]_{\text {small }} \end{aligned}$	$651(39)$	654(6)[97]
645(4)[228]		$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{15}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{16}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)\right]+} \\ & v\left(\mathrm{M}_{1}-\mathrm{F}_{4}\right)_{\text {small }} \end{aligned}$		647(3)[250]
637(21)[130]	$\begin{aligned} & 626(44) \\ & 623, \text { sh } \end{aligned}$	$\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{M}_{1}-\mathrm{F}_{1}\right)_{\text {small }}\right]$	$\begin{aligned} & 630(30) \\ & 626(28) \end{aligned}$	637(12)[127]
604(5)[7]	$\begin{aligned} & 618, \text { sh } \\ & 613(15) \end{aligned}$	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4 \mathrm{eq}}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{16}\right)\right]-\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{4 \mathrm{eq}}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{10}\right)\right]$	$\begin{aligned} & 619, \text { sh } \\ & 613, \text { sh } \end{aligned}$	606(5)[7]
601(35)[5]	$\begin{aligned} & 601, \text { sh } \\ & 599(80) \end{aligned}$	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4 \mathrm{eq}}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{4 \mathrm{eq}}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{16}\right)\right]$	600(59)	603(34)[5]
583(13)[2]	$\begin{aligned} & 585(100) \\ & 581, \text { sh } \end{aligned}$	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{6}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{7}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9}\right)\right]$	$\begin{aligned} & 588(69) \\ & 585, \text { sh } \end{aligned}$	585(14)[<1]
579(11)[19]	$\begin{aligned} & 569, \text { sh } \\ & 566(31) \end{aligned}$	$\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{13}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{15}\right)\right]-\left[v\left(\mathrm{Xe}_{2}-\mathrm{F}_{12}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{14}\right)\right]$	$\begin{aligned} & 573(12) \\ & 562(22) \end{aligned}$	582(10)[20]

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.8. (continued)

3, ${ }^{[a, b]}$	$3{ }^{[a, c]}$	assgnts ($\left.C_{1}\right)^{[d]}$	$4{ }^{[a, c, d]}$	4, ${ }^{[a, b]}$
525(8)[98]	$\begin{aligned} & 538(7) \\ & 535(6) \end{aligned}$	$\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{Xe}_{2}-\mathrm{F}_{1}\right)\right]-v\left(\mathrm{M}_{1}-\mathrm{F}_{4}\right)$	$\begin{aligned} & 554, \text { sh } \\ & 545(5) \end{aligned}$	538(9)[114]
405(5)[307]	412(4)	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)-v\left(\mathrm{M}_{1}-\mathrm{F}_{5}\right)\right]+\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{11}\right)-v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)\right]+\left[\delta\left(\mathrm{F}_{13} \mathrm{Xe}_{2} \mathrm{~F}_{16}\right)-\right.} \\ & \left.\delta\left(\mathrm{F}_{15} \mathrm{Xe}_{2} \mathrm{~F}_{16}\right)\right]_{\text {small }} \end{aligned}$	411(6)	411(3)[388]
394(1)[21]	402(3)	$\left[\delta\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{10}\right)-\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{6}\right)\right]+\left[\delta\left(\mathrm{F}_{13} \mathrm{Xe}_{2} \mathrm{~F}_{16}\right)-\delta\left(\mathrm{F}_{15} \mathrm{Xe}_{2} \mathrm{~F}_{16}\right)\right]$	402(4)	396(1)[11]
388(<1)[64]	$\begin{aligned} & 393 \text {, sh } \\ & 391, \text { sh } \end{aligned}$	$\left[\delta\left(\mathrm{F}_{9} \mathrm{Xe}_{1} \mathrm{~F}_{10}\right)-\delta\left(\mathrm{F}_{7} \mathrm{Xe}_{1} \mathrm{~F}_{10}\right)\right]+\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)-v\left(\mathrm{M}_{1}-\mathrm{F}_{5}\right)\right]$	$\begin{aligned} & 392, \text { sh } \\ & 390, \text { sh } \end{aligned}$	389(<1)[30]
381(3)[137]	384, sh	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{11}\right)-v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)\right]+\left[\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{10} \mathrm{~F}_{8} \mathrm{~F}_{9}\right)-\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{10} \mathrm{~F}_{6} \mathrm{~F}_{7}\right)\right]$		381(2)[98]
371(1)[22]		$\left[\delta\left(\mathrm{F}_{12} \mathrm{Xe}_{2} \mathrm{~F}_{16}\right)-\delta\left(\mathrm{F}_{16} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)\right]$		$373(<1)[6]$
359(9)[71]	361, sh	$\left[\delta_{\text {umb }}\left(\mathrm{Xe}_{1} \mathrm{~F}_{4 \mathrm{eq}}\right)+\delta_{\text {umb }}\left(\mathrm{Xe}_{2} \mathrm{~F}_{4 \mathrm{eq}}\right)\right]$	362, sh	355(10)[88]
350(5)[94]	358(6)	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{M}_{1}-\mathrm{F}_{5}\right)\right]+\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{11}\right)-v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)\right]-\delta\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{4}\right)$	358(5)	349(3)[142]
$335(<1)[6]$		$\delta_{\text {umb }}\left(\mathrm{Xe}_{2} \mathrm{~F}_{4 \mathrm{eq}}\right)+\delta\left(\mathrm{F}_{1} \mathrm{M}_{1} \mathrm{~F}_{4}\right)$		$335(<1)[7]$
326(3)[41]	323, sh	$\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{1}\right)\right]-\delta_{\text {umb }}\left(\mathrm{Xe}_{1} \mathrm{~F}_{4 \text { eq }}\right)-\rho_{t}\left(\mathrm{~F}_{1} \mathrm{M}_{1} \mathrm{~F}_{11}\right)-\delta\left(\mathrm{F}_{5} \mathrm{M}_{1} \mathrm{~F}_{4}\right)$	327, sh	325(3)[57]
320(4)[50]	319(15)	$\delta\left(\mathrm{MoO}_{1} \mathrm{~F}_{1} \mathrm{~F}_{2}\right)$	301(8)	308(6)[54]
312(4)[36]	301, sh	$\delta\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{3}\right)$	324(9)	319(3)[15]
294(3)[22]	290, sh	$\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{5}\right) / \rho_{\mathrm{t}}\left(\mathrm{F}_{2} \mathrm{M}_{1} \mathrm{~F}_{4}\right) / \delta\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)$	290, sh	286(2)[30]
280(2)[18]	276(9)	$\left[\delta\left(\mathrm{F}_{12} \mathrm{Xe}_{2} \mathrm{~F}_{13}\right)+\delta\left(\mathrm{F}_{14} \mathrm{Xe}_{2} \mathrm{~F}_{15}\right)\right]$	265(5)	277(2)[17]
273(2)[13]	271, sh	$\left[\delta\left(\mathrm{F}_{8} \mathrm{Xe}_{1} \mathrm{~F}_{9}\right)+\delta\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{7}\right)\right]$	260, sh	271(3)[7]
268(<0.1)[1]		$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{2}-\mathrm{F}_{11}\right)\right] /\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{8}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{12} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)\right]$		265(<1)[4]

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.8. (continued)

$3^{\text {, }}{ }^{[a, b]}$	$3^{[a, c]}$	assgnts ($\left.C_{1}\right)^{[d]}$	$4{ }^{[a, c, d]}$	$4^{\text {, }}$ [a,b]
261(2)[33]		$\delta_{\text {umb }}\left(\mathrm{M}_{1} \mathrm{~F}_{4 \mathrm{eq}}\right)+\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{13} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)-\rho_{\mathrm{t}}\left(\mathrm{F}_{12} \mathrm{Xe}_{2} \mathrm{~F}_{15}\right)\right]$		254(<1)[41]
252(2)[20]		$\delta\left(\mathrm{F}_{3} \mathrm{M}_{1} \mathrm{~F}_{4}\right)+\delta\left(\mathrm{F}_{8} \mathrm{Xe}_{1} \mathrm{~F}_{9}\right)$		247(1)[10]
$240(<1)[2]$		$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{7} \mathrm{Xe} \mathrm{IF}_{1} \mathrm{~F}_{9}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{8}\right)\right]+\rho_{\mathrm{w}}\left(\mathrm{F}_{11} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)$		238(1)[11]
230(2)[25]	223(3)	$\left[\rho_{t}\left(\mathrm{~F}_{6} \mathrm{Xe} 1 \mathrm{~F}_{8}\right)+\rho_{t}\left(\mathrm{~F}_{11} \mathrm{Xe} \mathrm{F}_{1} \mathrm{~F}_{9}\right)\right]-\left[\rho_{\mathrm{t}}\left(\mathrm{F}_{12} \mathrm{Xe}_{2} \mathrm{~F}_{15}\right)+\rho_{t}\left(\mathrm{~F}_{11} \mathrm{Xe}_{2} \mathrm{~F}_{13}\right)\right]$	223(2)	230(1)[25]
211(<1)[4]		$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{M}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{M}_{1} \mathrm{~F}_{4}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{7} \mathrm{Xe}_{1} \mathrm{~F}_{9}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{8}\right)\right]$		209(<0.1)[4]
209(<1)[3]		$\rho_{\mathrm{w}}\left(\mathrm{F}_{7} \mathrm{Xe}_{1} \mathrm{~F}_{9}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{12} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)+\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{M}_{1} \mathrm{~F}_{3}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{M}_{1} \mathrm{~F}_{4}\right)\right]$		206(<1)[4]
$206(<1)[<1]$	201(4)	$\begin{aligned} & {\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{8}\right)-\rho_{\mathrm{w}}\left(\mathrm{~F}_{7} \mathrm{Xe}_{1} \mathrm{~F}_{9}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{13} \mathrm{Xe}_{2} \mathrm{~F}_{15}\right)-\rho_{\mathrm{w}}\left(\mathrm{~F}_{12} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{1} \mathrm{M}_{1} \mathrm{~F}_{3}\right)-\right.} \\ & \left.\rho_{\mathrm{w}}\left(\mathrm{~F}_{2} \mathrm{M}_{1} \mathrm{~F}_{4}\right)\right]_{\text {smal }} \end{aligned}$		$205(<1)[<1]$
196(<1)[<1]		$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{8}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{14} \mathrm{Xe}_{2} \mathrm{~F}_{15}\right)\right]+\rho_{\mathrm{t}}\left(\mathrm{F}_{3} \mathrm{M}_{1} \mathrm{~F}_{4}\right)$	193(2)	193(<1)[2]
187(<1)[1]		$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{M}_{1} \mathrm{~F}_{3}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{M}_{1} \mathrm{~F}_{4}\right)\right] / \delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{11}\right)$		183(<1)[3]
174(<1)[5]	171(6)	$\left[\delta\left(\mathrm{F}_{7} \mathrm{Xe}_{1} \mathrm{~F}_{11}\right)+\delta\left(\mathrm{F}_{1} \mathrm{Xe}_{2} \mathrm{~F}_{11}\right)\right]$	171(4)	171(<1)[4]
$161(<1)[<1]$		$\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{5}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{M}_{1} \mathrm{~F}_{4}\right)\right]+\left[\rho_{t}\left(\mathrm{~F}_{11} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{13} \mathrm{Xe}_{2} \mathrm{~F}_{15}\right)\right]+\delta\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{11}\right)$		159(<1)[2]
$141(<1)[2]$		$\rho_{\mathrm{t}}\left(\mathrm{F}_{5} \mathrm{Xe}_{1} \mathrm{~F}_{11}\right)+\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{6} \mathrm{Xe}_{1} \mathrm{~F}_{8}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{13} \mathrm{Xe}_{2} \mathrm{~F}_{15}\right)\right]$		141(<1)[2]
126(<1)[6]	127(4)	$\rho_{\mathrm{r}}\left(\mathrm{M}_{1} \mathrm{O}_{1} \mathrm{~F}_{1} \mathrm{~F}_{2}\right)$	121(4)	121(<1)[4]
109(<1)[1]		$\left[\rho_{\mathrm{r}}\left(\mathrm{Xe}_{1} \mathrm{~F}_{7} \mathrm{~F}_{9} \mathrm{~F}_{10}\right)-\rho_{\mathrm{r}}\left(\mathrm{Xe}_{2} \mathrm{~F}_{13} \mathrm{~F}_{16} \mathrm{~F}_{15}\right)\right]-\rho_{\mathrm{r}}\left(\mathrm{M}_{1} \mathrm{~F}_{1} \mathrm{O}_{1} \mathrm{~F}_{3}\right)$		105(<1) [$<1]$
102(<1)[3]		$\rho_{t}\left(\mathrm{Xe}_{1} \mathrm{~F}_{10} \mathrm{~F}_{4 \mathrm{eq}}\right)$		$100(<1)[3]$
$89(<1)[<1]$		$\rho_{t}\left(\mathrm{Xe}_{2} \mathrm{~F}_{16} \mathrm{~F}_{4 \mathrm{eq}}\right)$		$89(<1)[<1]$
$88(<1)[<1]$		$\delta\left(\mathrm{Xe}_{1} \mathrm{~F}_{11} \mathrm{Xe}_{2}\right)$		$83(<1)[<1]$

Table A8.8. (continued)

$3^{\text {, }}{ }^{[a, b]}$	$3^{[\mathrm{a}, \mathrm{c}]}$	assgnts ($\left.C_{1}\right)^{[d]}$	$4^{[a, c, d]}$	$4^{[a, b]}$
$78(<1)[<1]$				$78(<1)[<1]$
$67(<1)[<0.1]$				$68(<1)[<1]$
$60(<1)[<1]$				$58(<1)[<1]$
$49(<1)[<0.1]$		coupled deformation modes		$47(<0.1)[<0.1]$
$36(<0.1)[<0.1]$				$34(<0.1)[<0.1]$
$27(<1)[<1]$				$21(<1)[<1]$
$16(<0.1)[<0.1]$				$8(<0.1)[<0.1]$

[a] Frequencies are given in cm^{-1} and anion frequencies and mode descriptions are gray-highlighted. [b] Values in parentheses and square brackets denote calculated Raman intensities $\left(\AA^{4} \mathrm{amu}^{-1}\right)$ and infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$), respectively. [c] Values in parentheses denote relative Raman intensities. Abbreviations denote shoulder (sh). The Raman spectrum was recorded in a FEP sample tube at $-150{ }^{\circ} \mathrm{C}(\mathrm{Mo})$ and $-110^{\circ} \mathrm{C}(\mathrm{W})$ using 1064-nm excitation. [d] Assignments are for the energy-minimized geometry $\left(C_{1}\right)$ calculated using the PBE1PBE/Def2-SVP (F, O, M, Xe) level of theory. Abbreviations denote stretch (v), bend (δ), rock (ρ_{r}), twist $\left(\rho_{\mathrm{t}}\right)$, wag $\left(\rho_{\mathrm{w}}\right)$, umbrella (umb), and equatorial (eq). Bond elongations and angle openings are denoted by plus (+) signs, and bond contractions and angle compressions are denoted by minus (-) signs. The atom labeling scheme corresponds to those used in Figure 11.10. [d] The bands observed at $565(23)$ and $917(1) \mathrm{cm}^{-1}$ are attributed to small amount of XeOF_{4} immpurity. Unassigned weak bands were observed at $506(2)$ and $503(3) \mathrm{cm}^{-1}$.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.9. Experimental Raman frequencies and calculated vibrational frequencies, intensities, and assignments for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right](\mathbf{5})$, $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right](\mathbf{6}),\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}\left(\mathbf{5}^{\prime}\right)\left(C_{2 h}\right)$, and $\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}\left(\mathbf{6}^{\prime}\right)\left(C_{2}\right)$

$5{ }^{\text {, }}$ [a,b]	$5^{[a, c]}$	assgnts ($\left.C_{1}\right)^{[d]}$	$6^{[a, c]}$	6, ${ }^{[a, b]}$
1123(88)[0]	1023(63)	$\left[v\left(\mathrm{M}_{1}-\mathrm{O}_{1}\right)+v\left(\mathrm{M}_{2}-\mathrm{O}_{2}\right)\right]+\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)+v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)\right]$	1040(100)	1103 (85)[<0.1]
$1117(0)[50]$		$\left[v\left(\mathrm{M}_{1}-\mathrm{O}_{1}\right)+v\left(\mathrm{M}_{2}-\mathrm{O}_{2}\right)\right]-\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)+v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)\right]$		1099(<0.1)[40]
1111(0)[640]		$\left[v\left(\mathrm{M}_{1}-\mathrm{O}_{1}\right)-v\left(\mathrm{M}_{2}-\mathrm{O}_{2}\right)\right]-\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)-v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)\right]$		1095(<0.1)[528]
1102(2)[0]	1009(8)	$\left[v\left(\mathrm{M}_{1}-\mathrm{O}_{1}\right)-v\left(\mathrm{M}_{2}-\mathrm{O}_{2}\right)\right]+\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{O}_{1 \mathrm{~A}}\right)-v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{O}_{2 \mathrm{~A}}\right)\right]$	1027(22)	1088(1)[<0.1]
750(43)[0]	720(49)	$\begin{aligned} & {\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{M}_{1}-\mathrm{F}_{2}\right)\right]+\left[v\left(\mathrm{M}_{2}-\mathrm{F}_{6}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{7}\right)\right]+\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)+v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)\right]+} \\ & {\left[v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)+v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]} \end{aligned}$	716(61)	743(42)[<0.1]
742(0)[957]]		$\begin{aligned} & \left\{\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{M}_{1}-\mathrm{F}_{2}\right)\right]+\left[v\left(\mathrm{M}_{2}-\mathrm{F}_{6}\right)-v\left(\mathrm{M}_{2}-\mathrm{F}_{7}\right)\right]\right\}-\left\{\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)-v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)\right]+\right. \\ & \left.\left[v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)-v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]\right\} \end{aligned}$		724(0)[695)
741(0)[7]		$\begin{aligned} & \left\{\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{M}_{1}-\mathrm{F}_{2}\right)\right]-\left[v\left(\mathrm{M}_{2}-\mathrm{F}_{6}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{7}\right)\right]\right\}-\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)+v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)\right]- \\ & \left.\left[v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)+v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]\right\} \end{aligned}$		741(<0.1)[33]
740(0)[623]		$\begin{aligned} & \left\{\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{M}_{1}-\mathrm{F}_{2}\right)\right]+\left[v\left(\mathrm{M}_{2}-\mathrm{F}_{6}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{7}\right)\right]\right\}-\left\{\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)+v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)\right]+\right. \\ & \left.\left[v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)+v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]\right\} \end{aligned}$		738(<0.1)[354]
735(5)[0]	713(38)	$\begin{aligned} & \left\{\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{M}_{1}-\mathrm{F}_{2}\right)\right]-\left[v\left(\mathrm{M}_{2}-\mathrm{F}_{6}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{7}\right)\right]\right\}+\left\{\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)+v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)\right]-\right. \\ & \left.\left.\left[v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)+v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]\right\}\right\} \end{aligned}$	711(8)	736(4)[<0.1]
729(5)[0]	694(14)	$\begin{aligned} & \left.\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{M}_{1}-\mathrm{F}_{2}\right)\right]+\left[v\left(\mathrm{M}_{2}-\mathrm{F}_{6}\right)-v\left(\mathrm{M}_{2}-\mathrm{F}_{7}\right)\right]\right\}+\left\{\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)-v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)\right]+\right. \\ & \left.\left[v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)-v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]\right\} \end{aligned}$	701(13)	719(7)[<0.1]
$722(<1)[0]$		$\begin{aligned} & \left\{\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{M}_{1}-\mathrm{F}_{2}\right)\right]-\left[v\left(\mathrm{M}_{2}-\mathrm{F}_{6}\right)-v\left(\mathrm{M}_{2}-\mathrm{F}_{7}\right)\right]\right\}+\left\{\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)-v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)\right]-\right. \\ & \left.\left[v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)-v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]\right\} \end{aligned}$		712(1)[<0.1]
$716(0)[<0.1]$		$\begin{aligned} & \left\{\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{M}_{1}-\mathrm{F}_{2}\right)\right]-\left[v\left(\mathrm{M}_{2}-\mathrm{F}_{6}\right)-v\left(\mathrm{M}_{2}-\mathrm{F}_{7}\right)\right]\right\}-\left\{\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{1 \mathrm{~A}}\right)-v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{2 \mathrm{~A}}\right)\right]-\right. \\ & \left.\left.\left[v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{~A}}\right)-v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{7 \mathrm{~A}}\right)\right]\right\}\right\} \end{aligned}$		$710(<0.1)[<0.1]$
685(0)[282]		$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{10}\right)-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{12}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)-v\left(\mathrm{Xe}_{14}-\mathrm{F}_{12 \mathrm{~A}}\right)\right]$		688(<0.1)[246]
683 (0)[249]		$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{11}\right)-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{13}\right)\right]-\left[v\left(\mathrm{Xe}_{1 A}-\mathrm{F}_{11} \mathrm{~A}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{13 \mathrm{~A}}\right)\right]$		685(<0.1)[282]

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.9. (continued)

5, ${ }^{[a, b]}$	$5^{[a, c]}$	assgnts $\left(C_{1}\right)^{[d]}$	$6^{[a, c]}$	$6^{\text {, }}{ }^{\text {a,b] }}$
682(12)[0]	679(11)	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{14}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{14 \mathrm{~A}}\right)\right]+\left\{\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{12}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\right.\right.\right.} \\ & \left.\left.\left.\mathrm{F}_{12 \mathrm{~A}}\right)\right]\right\}+\left\{\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{13}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{13 \mathrm{~A}}\right)\right]\right\}+\left\{\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{3}\right)+\right.\right. \\ & \left.\left.v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)\right]+\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9 \mathrm{~A}}\right)\right]\right\}+\left\{\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4}\right)\right.\right. \\ & \left.\left.+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9}\right)\right]\right\}- \\ & \left.\left.\left.\left\{\left[v \mathrm{M}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{8}\right)\right]+\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)\right]\right\}-\left\{\left[v\left(\mathrm{M}_{2}-\mathrm{F}_{9}\right)\right]\right\}-\mathrm{M}_{3 \mathrm{~A}}\right)+v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)\right]+ \\ & {\left[v \mathrm{M}_{1}\right)} \end{aligned}$	683(35)	684(27)[<0.1]
678(4)[0]	672(3)	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{11}\right)-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{13}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{13 \mathrm{~A}}\right)\right]$	662, sh	684(3)[<0.1]
676(5)[0]	658(3)	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{10}\right)-v\left(\mathrm{Xe}_{1}-\mathrm{F}_{12}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)-v\left(\mathrm{Xe}_{14}-\mathrm{F}_{12}{ }^{2}\right)\right]$	660(8)	679(2)[<0.1]
671(0)[121]		$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{14}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{14 \mathrm{~A}}\right)\right]$		675(<0.1)[48]
648(90)[0]	632(100)	$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{14}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{14 \mathrm{~A}}\right)\right]-\left\{\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)\right]+\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9 \mathrm{~A}}\right)\right]\right\}$ $\left\{\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9}\right)\right]\right\}+\left\{\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{M}_{2 \mathrm{~A}}-\right.\right.\right.$ $\left.\left.\left.\left.\left.\mathrm{F}_{9 \mathrm{~A}}\right)\right]+\left[v \mathrm{M}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{9}\right)\right]\right\}+\left\{\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)\right]+\left[v \mathrm{M}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{8}\right)\right]\right\}$	633(58)	649(62)[<0.1]
631(0)[825]		$\begin{aligned} & \left\{\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]\right\}+\left\{\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4}\right)\right]\right. \\ & \left.-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{FF}_{9}\right)\right]\right\}-\left\{\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{9 A}\right)\right]-\left[v\left(\mathrm{M}_{2}-\mathrm{F}_{8}\right)+v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]\right\} \\ & -\left\{\left[v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)+v\left(\mathrm{M}_{1}-\mathrm{F}_{4}\right)\right]-\left\{\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{9}\right)\right]\right\}-\left\{\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{5}\right)-v\left(\mathrm{M}_{2}-\mathrm{F}_{5}\right)\right]-\right.\right. \\ & \left.-\left[v\left(\mathrm{~F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]\right\} \end{aligned}$		627(<0.1)[741]
624(0)[780]		$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{14}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{14 \mathrm{~A}}\right)\right]-\left\{\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9}\right)\right]\right\}} \\ & +\left\{\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{9}\right)\right]\right\} \end{aligned}$		$620(<0.1)[1010]$
620(6)[0]	646(24)	$\begin{aligned} & \left\{\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9 \mathrm{~A}}\right)\right]\right\}+\left\{\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4}\right)\right]\right. \\ & \left.-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9}\right)\right]\right\}-\left\{\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{M}_{2}-\mathrm{F}_{8}\right)+v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)\right]\right\} \\ & -\left\{\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{M}_{1}-\mathrm{F}_{4}\right)\right]-\left[v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{9}\right)\right]\right\}-\left\{\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{5}\right)-v\left(\mathrm{M}_{2}-\mathrm{F}_{5}\right)\right]+\right. \\ & \left.\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)-v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]\right\} \end{aligned}$	643(13)	615(4)[3]

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.9. (continued)

$5{ }^{\text {, }}{ }^{\text {a,b] }}$	$5^{[a, c]}$	assgnts ($\left.C_{1}\right)^{[d]}$	$6{ }^{[a, c]}$	6, ${ }^{[a, b]}$
618(0)[291]		$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{14}\right)-v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{14 \mathrm{~A}}\right)\right]-\left\{\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)\right]-\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)\right]\right\}++} \\ & \left\{\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{8}\right)\right]-\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)\right]\right\}-\left\{\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{12}\right)\right]-\right. \\ & \left.\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)\right]\right\} \end{aligned}$		630(<0.1)[357]
611(18)[0]	619(41)	$\begin{aligned} & \left\{\left[v\left(\operatorname{Xe}_{1}-F_{10}\right)+v\left(\operatorname{Xel}_{1}-F_{12}\right)\right]+\left[v\left(\operatorname{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)+v\left(\operatorname{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)\right]\right\}-\left\{\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{13}\right)\right]+\right. \\ & {\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{13 \mathrm{~A}}\right)\right]} \end{aligned}$	619(40)	$612(18)[<0.1]$
610(0)[3]		$\begin{aligned} & \left\{\left[v\left(\operatorname{Xe}_{1}-F_{10}\right)+v\left(\operatorname{Xe}_{1}-F_{12}\right)\right]-\left[v\left(\operatorname{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)+v\left(\operatorname{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)\right]\right\}+\left\{\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{13}\right)\right]-\right. \\ & \left.\left.\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)+v\left(\operatorname{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{13 \mathrm{~A}}\right)\right]\right\}\right\} \end{aligned}$		612(<0.1)[2]
602(92)[0]	601(23)	$\begin{aligned} & {\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{14}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{14 \mathrm{~A}}\right)\right]-\left\{\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{10}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{12}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{10 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{12 \mathrm{~A}}\right)\right]\right\}-} \\ & \left\{\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{11}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{13}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{11 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{13 \mathrm{~A}}\right)\right]\right\} \end{aligned}$	601(14)	604(80)[<0.1]
580(0)[277]		$\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{14}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{14 \mathrm{~A}}\right)\right]+\left\{\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)\right]+\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9 \mathrm{~A}}\right)\right]\right\}+$ $\left\{\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F} 9\right)\right]\right\}-\left\{\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)\right]+\right.$ $\left.\left.\left.\left[v \mathrm{M}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{9}\right)\right]\right\}-\left\{\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)\right]+\left[v \mathrm{M}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{8}\right)\right]\right\}$	593(3)	597(<0.1)[218]
529(17)[0]	556(7)	$\begin{aligned} & \left\{\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]\right\}-\left\{\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4}\right)\right]-\right. \\ & \left.\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9}\right)\right]\right\}-\left\{\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{M}_{2}-\mathrm{F}_{8}\right)+v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]\right\}+ \\ & \left\{\left[v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)+v\left(\mathrm{M}_{1}-\mathrm{F}_{4}\right)\right]-\left\{\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{9}\right)\right]\right\}\right. \end{aligned}$	549(8)	545(27)[<0.1]
523(32)[0]	523(6)	$\begin{aligned} & \left\{\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)\right]+\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)\right]\right\}-\left\{\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9 \mathrm{~A}}\right)\right]+\right. \\ & \left.\left.\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9}\right)\right]\right\}-\left\{\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)\right]+\left[v \mathrm{M}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{8}\right)\right]\right\}+ \\ & \left.\left\{\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)+v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)\right]+\left[v \mathrm{M}_{1}-\mathrm{F}_{4}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{9}\right)\right]\right\} \end{aligned}$		555(15)[<0.1]
512(0)[1]		$\left\{\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{Xe}_{1}-\mathrm{F}_{8}\right)+v\left(\mathrm{Xe}_{1}-\mathrm{F}_{9 \mathrm{~A}}\right)\right]\right\}-\left\{\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{4}\right)\right]-\right.$ $\left.\left[v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)+v\left(\mathrm{Xe}_{1 \mathrm{~A}}-\mathrm{F}_{9}\right)\right]\right\}-\left\{\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{4 \mathrm{~A}}\right)\right]-\left[v\left(\mathrm{M}_{2}-\mathrm{F}_{8}\right)+v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{9 \mathrm{~A}}\right)\right]\right\}+$ $\left\{\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{3 \mathrm{~A}}\right)+v\left(\mathrm{M}_{1}-\mathrm{F}_{4}\right)\right]-\left[v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{8 \mathrm{~A}}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{9}\right)\right]\right\}$		$537(<0.1)[<0.1]$

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.9. (continued)

$5{ }^{\text {, }}$ [a,b]	$5{ }^{[a, c]}$	assgnts ($\left.C_{1}\right)^{[d]}$	$6^{[a, c]}$	6, ${ }^{[a, b]}$
447(0)[153]		$\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{5}\right)-v\left(\mathrm{M}_{2}-\mathrm{F}_{5}\right)\right]-\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)-v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]$		$466(<0.1)[181]$
440(<1)[0]		$\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{5}\right)-v\left(\mathrm{M}_{2}-\mathrm{F}_{5}\right)\right]+\left[v\left(\mathrm{M}_{1 A}-\mathrm{F}_{5 A}\right)-v\left(\mathrm{M}_{2 A}-\mathrm{F}_{5 A}\right)\right]$		$459(<1)[<0.1]$
416(0)[18]		$\left[\delta\left(\mathrm{F}_{10} \mathrm{Xe}_{1} \mathrm{~F}_{14}\right)-\delta\left(\mathrm{F}_{12} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)\right]-\left[\delta\left(\mathrm{F}_{10 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{14 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{12 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{14 \mathrm{~A}}\right)\right]$		415(<0.1)[18]
416(3)[0]	419(8)	$\left[\delta\left(\mathrm{F}_{11} \mathrm{Xe}_{1} \mathrm{~F}_{14}\right)-\delta\left(\mathrm{F}_{13} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)\right]+\left[\delta\left(\mathrm{F}_{11} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{14 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{13 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{14 \mathrm{~A}}\right)\right]$	412(8)	416(3)[<0.1]
416(0)[8]		$\left[\delta\left(\mathrm{F}_{11} \mathrm{Xe}_{1} \mathrm{~F}_{14}\right)-\delta\left(\mathrm{F}_{13} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)\right]-\left[\delta\left(\mathrm{F}_{11 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{14 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{13 \mathrm{~A}} \mathrm{Xe}{ }_{1 \mathrm{~A}} \mathrm{~F}_{14 \mathrm{~A}}\right)\right]$		416(<0.1)[11]
416(3)[0]	409(4)	$\left[\delta\left(\mathrm{F}_{10} \mathrm{Xe}_{1} \mathrm{~F}_{14}\right)-\delta\left(\mathrm{F}_{12} \mathrm{Xe}_{2} \mathrm{~F}_{14}\right)\right]+\left[\delta\left(\mathrm{F}_{10 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{14 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{12 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{14 \mathrm{~A}}\right)\right]$	407(6)	415(3)[<0.1]
363(2)[0]	360(1)	$\left[\delta_{\text {umb }}\left(\mathrm{Xe}_{1} \mathrm{~F}_{4 \mathrm{eq}}\right)+\delta_{\text {umb }}\left(\mathrm{Xe}_{1} \mathrm{~F}_{4 \mathrm{eq}}\right)\right]$	360(1)	363(1)[0]
359(0)[250]		$\left[\delta_{u m b}\left(\mathrm{Xe}_{1} \mathrm{~F}_{4 \mathrm{eq}}\right)-\delta_{\text {umb }}\left(\mathrm{Xe}_{1}{ }_{\text {A }} \mathrm{F}_{4 \mathrm{eq}}\right)\right.$]		$360(0)$ [240]
347(5)[0]	335(7)	$\left\{\left[\delta\left(\mathrm{M}_{1} \mathrm{O}_{1} \mathrm{~F}_{3} \mathrm{~F}_{4}\right)-\delta\left(\mathrm{M}_{1} \mathrm{~F}_{5} \mathrm{~F}_{8} \mathrm{~F}_{9}\right)\right]+\left[\delta\left(\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{8} \mathrm{~F}_{9}\right)-\delta\left(\mathrm{M}_{2} \mathrm{~F}_{5} \mathrm{~F}_{8} \mathrm{~F}_{9}\right)\right]\right\}+\left\{\left[\delta\left(\mathrm{M}_{1 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{~F}_{3} \mathrm{~F}_{4 \mathrm{~A}}\right)-\right.\right.$ $\left.\left.\delta\left(\mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}} \mathrm{~F}_{9 \mathrm{~A}}\right)\right]+\left[\delta\left(\mathrm{M}_{2 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}} \mathrm{~F}_{9 \mathrm{~A}}\right)-\delta\left(\mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}} \mathrm{~F}_{9 \mathrm{~A}}\right)\right]\right\}$	339(6)	351(3)[0]
$343(0)[<1]$		$\begin{aligned} & \left\{\left[\delta\left(\mathrm{M}_{1} \mathrm{O}_{1} \mathrm{~F}_{3} \mathrm{~F}_{4}\right)-\delta\left(\mathrm{M}_{1} \mathrm{~F}_{5} \mathrm{~F}_{8} \mathrm{~F}_{9}\right)\right]+\left[\delta\left(\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{8} \mathrm{~F}_{9}\right)-\delta\left(\mathrm{M}_{2} \mathrm{~F}_{5} \mathrm{~F}_{8} \mathrm{~F}_{9}\right)\right]\right\}-\left\{\left[\delta\left(\mathrm{M}_{1 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)-\right.\right. \\ & \left.\left.\delta\left(\mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}} \mathrm{~F}_{9 \mathrm{~A}}\right)\right]+\left[\left(\mathrm{M}_{2 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}} \mathrm{~F}_{9 \mathrm{~A}}\right)-\delta\left(\mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}} \mathrm{~F}_{9 \mathrm{~A}}\right)\right]\right\} \end{aligned}$		$346(0)[<1]$
$337(0)[<1]$		$\left[\delta\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{5}\right)+\delta\left(\mathrm{O}_{2} \mathrm{M}_{2} \mathrm{~F}_{5}\right)\right]-\left[\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{M}_{11} \mathrm{~F}_{5 \mathrm{~A}}\right)-\delta\left(\mathrm{O}_{2 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)\right]$		$340(0)[<0.1]$
$333(<1)[0]$		$\left[\delta\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{5}\right)+\delta\left(\mathrm{O}_{2} \mathrm{M}_{2} \mathrm{~F}_{5}\right)\right]+\left[\delta\left(\mathrm{O}_{14} \mathrm{M}_{11} \mathrm{~F}_{5 \mathrm{~A}}\right)-\delta\left(\mathrm{O}_{2 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)\right]$		$335(<1)[0]$
$329(0)[<1]$		$\left[\delta\left(\mathrm{M}_{1} \mathrm{O}_{1} \mathrm{~F}_{3} \mathrm{~F}_{4}\right)-\delta\left(\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{8} \mathrm{~F}_{9}\right)\right]-\left[\delta\left(\mathrm{M}_{1 \mathrm{~A}} \mathrm{O}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)-\delta\left(\mathrm{M}_{2} \mathrm{O}_{2 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}} \mathrm{~F}_{9} \mathrm{~A}\right)\right]$		$327(0)[<1]$
325(3)[0]		$\left[\delta\left(\mathrm{F}_{3} \mathrm{M}_{1} \mathrm{~F}_{4}\right)+\delta\left(\mathrm{F}_{8} \mathrm{M}_{2} \mathrm{~F}_{9}\right)\right]+\left[\delta\left(\mathrm{F}_{3 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{8 \mathrm{~A}} \mathrm{M}_{22} \mathrm{~F}_{9 \mathrm{~A}}\right)\right]$		323(3)[0]
322(7)[0]	320(25)	$\left[\delta\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{2}\right)-\delta\left(\mathrm{O}_{2} \mathrm{M}_{2} \mathrm{~F} 7\right)\right]+\left[\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{M}_{11} \mathrm{~F}_{2} \mathrm{~A}\right)-\delta\left(\mathrm{O}_{2 \mathrm{~A}} \mathrm{M}_{2} \mathrm{AF}_{7 \mathrm{~A}}\right)\right]$	323(26)	$320(7)[<0.1]$
321(1)[0]		$\left[\delta_{\text {umb }}\left(\mathrm{M}_{1} \mathrm{~F}_{4 \text { eq }}\right)+\delta_{\text {umb }}\left(\mathrm{M}_{2} \mathrm{~F}_{4 \text { eq }}\right)\right]+\left[\delta_{\text {umb }}\left(\mathrm{M}_{11} \mathrm{~F}_{4 \mathrm{eq}}\right)+\delta_{\text {umb }}\left(\mathrm{M}_{2 A} \mathrm{~F}_{4 \text { eq }}\right)\right]$		$302(<1)[0]$
319(9)[0]	312(27)	$\left[\delta\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{1}\right)-\delta\left(\mathrm{O}_{2} \mathrm{M}_{2} \mathrm{~F}_{6}\right)\right]+\left[\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{1 \mathrm{~A}}\right)-\delta\left(\mathrm{O}_{2 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{6 \mathrm{~A}}\right)\right]$	313(16)	$315(8)[<0.1]$

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.9. (continued)

$5^{\text {, }}{ }^{[a, b]}$	$5{ }^{[a, c]}$	assgnts ($\left.C_{1}\right)^{[d]}$	$6{ }^{[a, c]}$	$6^{\text {, }}$ [a,b]
$319(0)[<0.1]$		$\left[\delta\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{2}\right)-\delta\left(\mathrm{O}_{2} \mathrm{M}_{2} \mathrm{~F}_{7}\right)\right]-\left[\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{M}_{11} \mathrm{~F}_{2 \mathrm{~A}}\right)-\delta\left(\mathrm{O}_{2 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)\right]$		$317(<0.1)[<0.1]$
317(0)[1]		$\left[\delta_{\text {umb }}\left(\mathrm{M}_{1} \mathrm{~F}_{4 \mathrm{eq}}\right)+\delta_{\text {umb }}\left(\mathrm{M}_{2} \mathrm{~F}_{4 \text { eq }}\right)\right]-\left[\delta_{\text {umb }}\left(\mathrm{M}_{11} \mathrm{~F}_{4 \text { eq }}\right)+\delta_{\text {umb }}\left(\mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{eq}}\right)\right]$		291(<0.1)[2]
308(0)[8]		$\begin{aligned} & \left\{\left[\delta\left(\mathrm{F}_{1} \mathrm{M}_{1} \mathrm{~F}_{4}\right)+\delta\left(\mathrm{F}_{2} \mathrm{M}_{1} \mathrm{~F}_{3}\right)\right]-\left[\delta\left(\mathrm{F}_{7} \mathrm{M}_{2} \mathrm{~F}_{8}\right)+\delta\left(\mathrm{F}_{6} \mathrm{M}_{2} \mathrm{~F}_{9}\right)\right]\right\}-\left\{\left[\delta\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]-\right. \\ & \left.\left[\delta\left(\mathrm{F}_{7 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{9 \mathrm{~A}}\right)\right]\right\} /\left[\delta\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}\right)-\delta\left(\mathrm{O}_{2} \mathrm{M}_{2} \mathrm{~F}_{5}\right)\right]+\left[\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)-\right. \\ & \left.\left.\delta\left(\mathrm{O}_{2 \mathrm{~A}}\right)\right]\right] \end{aligned}$		$306(<1)[<0.1]$
$306(<1)[0]$	305(14)	$\left[\delta\left(\mathrm{F}_{11} \mathrm{Xe}_{1} \mathrm{~F}_{12}\right)+\delta\left(\mathrm{F}_{10} \mathrm{Xe}_{2} \mathrm{~F}_{13}\right)\right]+\left[\delta\left(\mathrm{F}_{11 \mathrm{~A}} \mathrm{Xe}_{11} \mathrm{~F}_{12 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{10 \mathrm{~A}} \mathrm{Xe}_{1} \mathrm{~F}_{13 \mathrm{~A}}\right)\right]$	308(22)	306(<0.1)[2]
305(0)[64]		$\left[\delta\left(\mathrm{F}_{3} \mathrm{M}_{1} \mathrm{~F}_{4}\right)+\delta\left(\mathrm{F}_{8} \mathrm{M}_{2} \mathrm{~F}_{9}\right)\right]-\left[\delta\left(\mathrm{F}_{3 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{8 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{9 \mathrm{~A}}\right)\right]$		$303(<0.1)[24]$
297(0)[81]		$\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{5}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{2} \mathrm{M}_{2} \mathrm{~F} 5\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{M}_{11} \mathrm{~F}_{5} \mathrm{~A}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{2 \mathrm{~A}} \mathrm{M}_{2} \mathrm{~F}_{5} \mathrm{~A}\right)\right]$		288(<0.1)[65]
$295(0)[<1]$		$\left[\delta\left(\mathrm{F}_{11} \mathrm{Xe}_{1} \mathrm{~F}_{12}\right)+\delta\left(\mathrm{F}_{10} \mathrm{Xe}_{2} \mathrm{~F}_{13}\right)\right]-\left[\delta\left(\mathrm{F}_{11 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{12 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{10 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{13 \mathrm{~A}}\right)\right]$		297(0)[<0.1]
291(3)[0]		$\left[\delta\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{5}\right)+\delta\left(\mathrm{O}_{2} \mathrm{M}_{2} \mathrm{~F}_{5}\right)\right]+\left[\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)+\delta\left(\mathrm{O}_{2 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)\right]$		283(2)[0]
288(0)[77]		$\left[\delta\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{5}\right)+\delta\left(\mathrm{O}_{2} \mathrm{M}_{2} \mathrm{~F} 5\right)\right]-\left[\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{M}_{11} \mathrm{~F}_{5 \mathrm{~A}}\right)+\delta\left(\mathrm{O}_{2 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)\right]$		277(<0.1)[122]
285(<1)[0]		$\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{5}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{2} \mathrm{M}_{2} \mathrm{~F}_{5}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{M}_{11} \mathrm{~F}_{5} \mathrm{~A}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{2 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)\right]$		272(<1)[0]
283(2)[0]		$\begin{aligned} & {\left[\delta\left(\mathrm{F}_{11} \mathrm{Xe}_{1} \mathrm{~F}_{12}\right)+\delta\left(\mathrm{F}_{10} \mathrm{Xe}_{2} \mathrm{~F}_{13}\right)\right]+\left[\delta\left(\mathrm{F}_{11 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{12 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{10 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{13 \mathrm{~A}}\right)\right]+\left\{\left[\delta\left(\mathrm{F}_{1} \mathrm{M}_{1} \mathrm{~F}_{4}\right)+\right.\right.} \\ & \left.\left.\delta\left(\mathrm{F}_{2} \mathrm{M}_{1} \mathrm{~F}_{3}\right)\right]-\left[\delta\left(\mathrm{F}_{7} \mathrm{M}_{2} \mathrm{~F}_{8}\right)+\delta\left(\mathrm{F}_{6} \mathrm{M}_{2} \mathrm{~F}_{9}\right)\right]\right\}+\left\{\left[\delta\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)+\delta\left(\mathrm{F}_{2 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]-\left[\delta\left(\mathrm{F}_{7 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right)\right.\right. \\ & \left.\left.\left.+\mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{9 \mathrm{~A}}\right)\right]\right\} \end{aligned}$		282(2)[<0.1]
279(0)[173]		$\left[\delta_{\text {umb }}\left(\mathrm{M}_{1} \mathrm{~F}_{4 \mathrm{eq}}\right)-\delta_{\text {umb }}\left(\mathrm{M}_{2} \mathrm{~F}_{4 \text { eq }}\right)\right]-\left[\delta_{u m b}\left(\mathrm{M}_{11} \mathrm{~F}_{4 \text { eq }}\right)-\delta_{\text {umb }}\left(\mathrm{M}_{2} \mathrm{~F}_{4 \text { eq }}\right)\right]$		268(0)[58]
273(0)[18]		$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{10} \mathrm{Xe}_{1} \mathrm{~F}_{12}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{11} \mathrm{Xe}_{1} \mathrm{~F}_{13}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{10 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{12 \mathrm{~A}}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{11 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{13 \mathrm{~A}}\right)\right]$		$267(<1)[<0.1]$
271(<1)[0]				$266(<0.1)[175]$
257(1)[0]		$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{9} \mathrm{Xe} \mathrm{e}_{1} \mathrm{~F}_{8 \mathrm{~A}}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{33}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{4} \mathrm{Xe}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{9} \mathrm{AXe}{ }_{1 \mathrm{~A}} \mathrm{~F}_{8}\right)\right]$		$248(<1)[<0.1]$
$245(<1)[0]$		$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{9} \mathrm{Xe}_{1} \mathrm{~F}_{8 \mathrm{~A}}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{4} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{4 \mathrm{~A}} \mathrm{Xe}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{9 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{8}\right)\right]$		$240(<0.1)[<0.1]$

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.9. (continued)

5, ${ }^{[\mathrm{a}, \mathrm{b}]}$	$5{ }^{[a, c]}$	assgnts ($\left.C_{1}\right)^{[d]}$	$6^{[a, c]}$	$6^{\text {, }}{ }^{[a, b]}$
236(<0.1)[0]	232(3)	$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{11} \mathrm{Xe}_{1} \mathrm{~F}_{13}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{11 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{13 \mathrm{~A}}\right)\right]$		$236(<0.1)[<0.1]$
$230(0)[<1]$		$\begin{aligned} & {\left[\delta\left(\mathrm{F}_{1} \mathrm{M}_{1} \mathrm{~F}_{2}\right)-\delta\left(\mathrm{F}_{6} \mathrm{M}_{2} \mathrm{~F}_{7}\right)\right]-\left[\delta\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{2 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)\right] /\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{10} \mathrm{Xe}_{1} \mathrm{~F}_{12}\right)-\right.} \\ & \left.\rho_{\mathrm{w}}\left(\mathrm{~F}_{10 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{12 \mathrm{~A}}\right)\right] \end{aligned}$		226(<0.1)[2]
228(0)[28]		$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{11} \mathrm{Xe}_{1} \mathrm{~F}_{13}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{11} \mathrm{Xe}_{1} \mathrm{~F}_{13 \mathrm{~A}}\right)\right]$		228(0)[31]
222(0)[1]		$\left.\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{M}_{1} \mathrm{~F}_{4}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{7} \mathrm{M}_{2} \mathrm{~F}_{9}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{7 \mathrm{~A}} \mathrm{M}_{2} \mathrm{~F}_{9} \mathrm{~A}\right)\right]\right\}$		208(<0.1)[<1]
$216(<1)[0]$	218(3)	$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{11} \mathrm{Xe}_{1} \mathrm{~F}_{13}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{11 \mathrm{~A}} \mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{13 \mathrm{~A}}\right)\right]$		$212(<0.1)[<0.1]$
$216(0)[<0.1]$		$\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{10} \mathrm{Xe}_{1} \mathrm{~F}_{12}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{10} \mathrm{Xe}_{1} \mathrm{~F}_{12} \mathrm{~A}\right)\right]$		209(<0.1)[2]
214(0)[7]		$\begin{aligned} & \left\{\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{1} \mathrm{M}_{1} \mathrm{~F}_{3}\right)-\rho_{\mathrm{w}}\left(\mathrm{~F}_{2} \mathrm{M}_{1} \mathrm{~F}_{4}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{6} \mathrm{M}_{2} \mathrm{~F}_{8}\right)-\rho_{\mathrm{w}}\left(\mathrm{~F}_{7} \mathrm{M}_{2} \mathrm{~F}_{9}\right)\right]\right\}-\left\{\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{1 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)-\right.\right. \\ & \left.\left.\left.\rho_{\mathrm{w}}\left(\mathrm{~F}_{2 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{4 A}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{6 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right)-\rho_{\mathrm{w}}\left(\mathrm{~F}_{7 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{9 \mathrm{~A}}\right)\right]\right\}\right\} \end{aligned}$		216(0)[12]
$213(<1)[0]$	213(4)	$\begin{aligned} & \left\{\left[\delta\left(\mathrm{F}_{1} \mathrm{M}_{1} \mathrm{~F}_{2}\right)-\delta\left(\mathrm{F}_{3} \mathrm{M}_{1} \mathrm{~F}_{4}\right)\right]-\left[\delta\left(\mathrm{F}_{6} \mathrm{M}_{2} \mathrm{~F}_{7}\right)-\delta\left(\mathrm{F}_{8} \mathrm{M}_{2} \mathrm{~F}_{9}\right)\right]\right\}+\left\{\left[\delta\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{2 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{3 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)\right]-\right. \\ & \left.\left[\delta\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{8 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{9 \mathrm{AA}}\right)\right]\right\} \end{aligned}$		204(<1)[0]
206(2)[0]	209(4)	$\begin{aligned} & \left\{\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{1} \mathrm{M}_{1} \mathrm{~F}_{3}\right)-\rho_{\mathrm{w}}\left(\mathrm{~F}_{2} \mathrm{M}_{1} \mathrm{~F}_{4}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{6} \mathrm{M}_{2} \mathrm{~F}_{8}\right)-\rho_{\mathrm{w}}\left(\mathrm{~F}_{7} \mathrm{M}_{2} \mathrm{~F}_{9}\right)\right]\right\}+\left\{\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{1 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)-\right.\right. \\ & \left.\left.\rho_{\mathrm{w}}\left(\mathrm{~F}_{2 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{6 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right)-\rho_{\mathrm{w}}\left(\mathrm{~F}_{7 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{9 \mathrm{~A}}\right)\right]\right\} \end{aligned}$	210(4)	202(2)[0]
200(1)[0]	202(3)		202(4)	$201(<1)[<0.1]$
199(1)[0]	199(3)	$\begin{aligned} & \left\{\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{1} \mathrm{M}_{1} \mathrm{~F}_{3}\right)-\rho_{\mathrm{w}}\left(\mathrm{~F}_{2} \mathrm{M}_{1} \mathrm{~F}_{4}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{6} \mathrm{M}_{2} \mathrm{~F}_{8}\right)-\rho_{\mathrm{w}}\left(\mathrm{~F}_{7} \mathrm{M}_{2} \mathrm{~F}_{9}\right)\right]\right\}+\left\{\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{1 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)-\right.\right. \\ & \left.\left.\rho_{\mathrm{w}}\left(\mathrm{~F}_{2 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{6 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right)-\rho_{\mathrm{w}}\left(\mathrm{~F}_{7 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{9} \mathrm{~A}\right)\right]\right\} \end{aligned}$	187(5)	198(<1)[<0.1]
193(0)[4]		$\begin{aligned} & \left\{\left[\delta\left(\mathrm{F}_{1} \mathrm{M}_{1} \mathrm{~F}_{2}\right)-\delta\left(\mathrm{F}_{3} \mathrm{M}_{1} \mathrm{~F}_{4}\right)\right]+\left[\delta\left(\mathrm{F}_{6} \mathrm{M}_{2} \mathrm{~F}_{7}\right)-\delta\left(\mathrm{F}_{8} \mathrm{M}_{2} \mathrm{~F}_{9}\right)\right]\right\}-\left\{\left[\delta\left(\mathrm{F}_{1 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{2 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{3 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)\right]+\right. \\ & \left.\left[\delta\left(\mathrm{F}_{6 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{7 \mathrm{~A}}\right)-\delta\left(\mathrm{F}_{8 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{9 \mathrm{~A}}\right)\right]\right\} /\left\{\left[\left(\mathrm{O}_{2 \mathrm{~A}} \mathrm{O}_{2 \mathrm{~A}} \mathrm{O}_{5 \mathrm{~A}}\right)\right]\right\} \\ & \left.\delta\left(\mathrm{O}_{1} \mathrm{O}_{5}\right)+\delta\left(\mathrm{O}_{2} \mathrm{M}_{2} \mathrm{~F}_{5}\right)\right]-\left[\delta\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)+\right. \\ & \text { and } \end{aligned}$		189(0)[10]
189(0)[19]		$\begin{aligned} & \left\{\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{1} \mathrm{M}_{1} \mathrm{~F}_{3}\right)-\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{5}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{6} \mathrm{M}_{2} \mathrm{~F}_{8}\right)-\rho_{\mathrm{w}}\left(\mathrm{O}_{2} \mathrm{M}_{2} \mathrm{~F}_{5}\right)\right]\right\}-\left\{\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{1 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)-\right.\right. \\ & \left.\left.\left.\rho_{\mathrm{w}}\left(\mathrm{O}_{1 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{6 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right)-\rho_{\mathrm{w}}\left(\mathrm{O}_{2 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)\right]\right]\right\} \end{aligned}$		191(0)[16]

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.9. (continued)

$5,{ }^{[a, b]}$	$5{ }^{[a, c]}$	assgnts ($\left.C_{1}\right)^{[d]}$	$6^{[a, c]}$	$6{ }^{[a, b]}$
189(0)[<0.1]		$\begin{aligned} & \left\{\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{1} \mathrm{M}_{1} \mathrm{~F}_{3}\right)-\rho_{\mathrm{w}}\left(\mathrm{~F}_{2} \mathrm{M}_{1} \mathrm{~F}_{4}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{6} \mathrm{M}_{2} \mathrm{~F}_{8}\right)-\rho_{\mathrm{w}}\left(\mathrm{~F}_{7} \mathrm{M}_{2} \mathrm{~F}_{9}\right)\right]\right\}-\left\{\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{1 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{3 \mathrm{~A}}\right)-\right.\right. \\ & \left.\left.\rho_{\mathrm{w}}\left(\mathrm{~F}_{2 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{~A}}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{6 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{8 \mathrm{~A}}\right)-\rho_{\mathrm{w}}\left(\mathrm{~F}_{7 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{9 \mathrm{~A}}\right)\right]\right\} \end{aligned}$		$192(<0.1)[<0.1]$
$179(<0.1)[0]$		$\left\{\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{4} \mathrm{M}_{1} \mathrm{~F}_{5}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{8} \mathrm{M}_{2} \mathrm{~F}_{5}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{4 \mathrm{~A}} \mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{8 \mathrm{~A}} \mathrm{M}_{2 \mathrm{~A}} \mathrm{~F}_{5 \mathrm{~A}}\right)\right]\right\}$		$177(<0.1)[<0.1]$
$140(<0.1)[0]$	135(3)	$\left[\rho_{t}\left(\mathrm{Xe}_{1} \mathrm{~F}_{11} \mathrm{~F}_{14} \mathrm{~F}_{13}\right)-\rho_{t}\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{11 \mathrm{~A}} \mathrm{~F}_{14 \mathrm{~A}} \mathrm{~F}_{13 \mathrm{~A}}\right)\right.$]		$136(<0.1)[<0.1]$
140(0)[9]		$\left[\rho_{\mathrm{r}}\left(\mathrm{Xe}_{1} \mathrm{~F}_{10} \mathrm{~F}_{14} \mathrm{~F}_{12}\right)-\rho_{\mathrm{r}}\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{10 \mathrm{~A}} \mathrm{~F}_{14 \mathrm{~A}} \mathrm{~F}_{12 \mathrm{~A}}\right)\right.$]		137(<0.1)[5]
136(0)[<1]		$\left[\rho_{\mathrm{t}}\left(\mathrm{Xe}_{1} \mathrm{~F}_{11} \mathrm{~F}_{14} \mathrm{~F}_{13}\right)-\rho_{\mathrm{t}}\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{11 \mathrm{~A}} \mathrm{~F}_{14 \mathrm{~A}} \mathrm{~F}_{13 \mathrm{~A}}\right)\right]$		132(0)[<1]
131(<1)[0]	131(4)	$\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{5}\right)\right]+\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)+v\left(\mathrm{M}_{2 \mathrm{~A}}-\mathrm{F}_{5 \mathrm{~A}}\right)\right]$	127(5)	$122(<0.1)[<0.1]$
128(0)[6]		$\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{5}\right)+v\left(\mathrm{M}_{2}-\mathrm{F}_{5}\right)\right]-\left[v\left(\mathrm{M}_{1 \mathrm{~A}}-\mathrm{F}_{5} \mathrm{~A}\right)+v\left(\mathrm{M}_{2} \mathrm{~A}-\mathrm{F}_{5} \mathrm{~A}\right)\right]$	121(6)	$116(<1)[0]$
$125(<1)[0]$	126(4)	$\left[\rho_{\mathrm{r}}\left(\mathrm{Xe}_{1} \mathrm{~F}_{10} \mathrm{~F}_{14} \mathrm{~F}_{12}\right)+\rho_{\mathrm{r}}\left(\mathrm{Xe}_{1 \mathrm{~A}} \mathrm{~F}_{10 \mathrm{~A}} \mathrm{~F}_{14 \mathrm{~A}} \mathrm{~F}_{12 \mathrm{~A}}\right)\right]$		$116(<0.1)[<0.1]$
$120(<0.1)[0]$	120(6)	$\left\{\left[\rho_{r}\left(\mathrm{M}_{1} \mathrm{~F}_{4 \mathrm{eq}}\right)+\rho_{\mathrm{r}}\left(\mathrm{M}_{2} \mathrm{~F}_{4 \mathrm{eq}}\right)\right]-\left[\rho_{\mathrm{r}}\left(\mathrm{M}_{1 \mathrm{~A}} \mathrm{~F}_{4 \mathrm{eq}_{\mathrm{A}}}\right)+\rho_{\mathrm{r}}\left(\mathrm{M}_{2 A} \mathrm{~F}_{4 \mathrm{eq}_{\mathrm{A}}}\right)\right]\right\} /\left[\rho_{\mathrm{r}}\left(\mathrm{Xe}_{1} \mathrm{~F}_{4 \mathrm{eq}}\right)+\rho_{\mathrm{r}}\left(\mathrm{Xe}_{1 A} \mathrm{~F}_{4 \mathrm{eq}_{\mathrm{A}}}\right)\right]$		$113(0)[<1]$
120(0) [19]			[115(0)[14]
$119(0)[2]$				$111(0)[2]$
$110(0)[<1]$				$105(<1)[<0.1]$
109(<1)[0]				$104(<0.1)[<0.1]$
93(<0.1)[0]				$87(<0.1)[<0.1]$
89(<0.1)[0]		coupled deformation modes		$87(<0.1)[0]$
$86(0)[<0.1]$				$83(<0.1)[<0.1]$
83(0)[1]				81(<0.1)[3]
$79(<0.10)[0]$				$78(<0.1)[<0.1]$
$77(<0.1)[0]$				$77(<0.1)[<0.1]$

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.9. (continued)

$5^{\text {[}}$ [a,b]	$5{ }^{[a, c]}$	$\operatorname{assgnts}\left(C_{1}\right)^{\text {[d] }}$	$6^{[a, c]}$	$6^{\text {, }}{ }^{[a, b]}$
72(0)[3]	7		[72(0)[2]
72(<0.10)[0]				$72(<0.1)[<0.1]$
67(0)[9]				63(0)[8]
61(0)[2]				54(<0.1)[4]
54(<1)[0]				51(0)[11]
52(0)[1]				$50(<0.1)[<1]$
50(0) [9]		coupled deformation modes		$48(<1)[<0.1]$
$50(<1)[0]$				$47(<1)[<0.1]$
42(<0.1)[0]				$40(<0.1)[<0.1]$
27(<0.1)[0]				$25(0)[<1]$
26(0) [<1]				$24(<0.1)[<0.1]$
19(<0.1)[0]				$11(<0.1)[<0.1]$
$11(0)[<0.1]$				$6(<0.1)[0]$

[a] Frequencies are given in cm^{-1} and anion frequencies and mode descriptions are gray-highlighted. [b] Values in parentheses and square brackets denote calculated Raman intensities $\left(\AA^{4} \mathrm{amu}^{-1}\right)$ and infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$), respectively. [c] Values in parentheses denote relative Raman intensities. Abbreviations denote shoulder (sh) and broad (br). The Raman spectrum was recorded in a FEP sample tube at -155 (Mo) and -150 (W) ${ }^{\circ} \mathrm{C}$ using 1064-nm excitation. [d] Assignments are for the energy-minimized geometry (C_{1}) calculated using the PBE1PBE/Def2-SVP (F, O, M, Xe) levels of theory. Abbreviations denote stretch (v), bend (δ), rock $\left(\rho_{r}\right)$, twist $\left(\rho_{t}\right)$, wag $\left(\rho_{w}\right)$, umbrella (umb), equatorial (eq), axial (ax), in-plane (i.p.), and out-of-plane (o.o.p.). Bond elongations and angle openings are denoted by plus $(+$) signs, and bond contractions and angle compressions are denoted by minus (-) signs. The in-plane and out-of-plane bending modes are relative to the XYZT-plane, where the atom labeling scheme corresponds to that used in Figure 11.11.

Table A8.10. Calculated ${ }^{[a]}$ vibrational frequencies, intensities, and assignments for $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}\left(\mathrm{M}^{\prime}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}\right)$

$\left[\mathrm{CrOF}_{5}\right]^{-[\mathrm{b}]}$	$\left[\mathrm{MoOFF}_{5}{ }^{-[\mathrm{b}]}\right.$	$\left[\mathrm{WOF}_{5}\right]^{-[\mathrm{bl]}}$		assgnts ($\left.C_{4 v}\right)^{[c]}$
1127(13)[230]	1018(20)[232]	994(22)[200]	A_{1}	$v\left(\mathrm{M}^{\prime}-\mathrm{O}\right)$
659(21)[40]	664(17)[54]	673(13)[46]	A_{1}	$v\left(\mathrm{M}^{\prime}-\mathrm{F}_{4 \mathrm{eq}}\right)+v\left(\mathrm{M}^{\prime}-\mathrm{F}_{\text {ax }}\right)_{\text {small }}$
634(<0.1)[278]	671(<0.1)[292]	$649(<0.1)[251]$	E	$v\left(\mathrm{M}^{\prime}-\mathrm{F}_{1}\right)-v\left(\mathrm{M}^{\prime}-\mathrm{F}_{3}\right)$
514(6) [0]	580(3) [0]	605(2)[0]	B_{2}	$\left[v\left(\mathrm{M}^{\prime}-\mathrm{F}_{1}\right)+v\left(\mathrm{M}^{\prime}-\mathrm{F}_{3}\right)\right]-\left[v\left(\mathrm{M}^{\prime}-\mathrm{F}_{2}\right)+v\left(\mathrm{M}^{\prime}-\mathrm{F}_{4}\right)\right]$
492(7)[54] ${ }^{\text {[d] }}$	$556(2)[79]^{\text {[d] }}$	565(<1)[96]	A_{1}	$v\left(\mathrm{M}^{\prime}-\mathrm{F}_{\mathrm{ax}}\right)$
$381(<1)[7]$	292(<1)[15]	$269(<0.1)$ [22]	A_{1}	$\delta_{\text {umb }}\left(\mathrm{M}^{\prime}-\mathrm{F}_{4 \text { eq }}\right)$
380(4) [8]	324(4)[5]	325(4)[5]	E	$\delta\left(\mathrm{OM}^{\prime} \mathrm{F}_{3}\right)+\delta\left(\mathrm{F}_{1} \mathrm{M}^{\prime} \mathrm{F}_{5}\right)$
346(3)[0]	278(3)[0]	275(2)[0]	B_{1}	$\delta\left(\mathrm{F}_{1} \mathrm{M}^{\prime} \mathrm{F}_{2}\right)+\delta\left(\mathrm{F}_{3} \mathrm{M}^{\prime} \mathrm{F}_{4}\right)$
$320(<0.1)$ [38]	241(<0.1)[39]	222(<0.1)[48]	E	$\rho_{\mathrm{w}}\left(\mathrm{OM}^{\prime} \mathrm{F}_{5}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{M}^{\prime} \mathrm{F}_{4}\right)$
$225(<1)[0]$	190(<0.1)[0]	187(<0.1)[0]	B_{2}	$\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{M}^{\prime} \mathrm{F}_{3}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{M}^{\prime} \mathrm{F}_{4}\right)$
112(<1)[1]	$95(<1)[<1]$	$93(<1)[<1]$	E	$\rho_{\mathrm{w}}\left(\mathrm{OM}^{\prime} \mathrm{F}_{5}\right)-\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{M}^{\prime} \mathrm{F}_{4}\right)$

[a] Frequencies are given in cm^{-1}. [b] Values in parentheses and square brackets denote calculated Raman intensities $\left(\AA^{4} \mathrm{amu}^{-}\right.$ ${ }^{1}$) and infrared intensities ($\mathrm{km} \mathrm{mol}^{-1}$), respectively. The PBE1PBE/Def2-SVP (F, O, M') level of theory was used. [c] Abbreviations denote stretch (v), bend (δ), wag (ρ_{w}), umbrella (umb), equatorial (eq), axial (ax). Bond elongations and angle openings are denoted by plus $(+)$ signs, and bond contractions and angle compressions are denoted by minus (-) signs. The atoms labeling scheme corresponds to that used in Figure A8.13. [d] These modes also have a small contribution from $v\left(\mathrm{M}^{\prime}-\right.$ $\mathrm{F}_{4 \mathrm{eq}}$).

Table A8.11. Calculated vibrational frequencies, intensities, and assignments for $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$.

$\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-[\mathrm{a}, \mathrm{b}]}$	$\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathbf{F} 9\right]^{-[a, b]}$	$\left[W_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-[\mathrm{a}, \mathrm{b}]}$	assgnts ($\left.C_{4}\right)^{[\mathrm{cc]}}$
1177(65)[0]	1069(70)[<0.1]	1073(65)[<0.1]	A $\quad v\left(\mathrm{M}^{\prime}{ }_{1}-\mathrm{O}_{1}\right)+v\left(\mathrm{M}^{\prime}{ }_{2}-\mathrm{O}_{2}\right)$
1150(0)[630]	1053(<0.1)[499]	1068(<0.1)[409]	A $\quad v\left(\mathrm{M}^{\prime}{ }_{1}-\mathrm{O}_{1}\right)-v\left(\mathrm{M}^{\prime}{ }_{2}-\mathrm{O}_{2}\right)$
710(0)[477]	714(0)[508]	695(0)[479]	$\mathrm{E} \quad\left[v\left(\mathrm{M}^{\prime}{ }_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{M}^{\prime}{ }_{1}-\mathrm{F}_{2}\right)\right]-\left[v\left(\mathrm{M}^{\prime}{ }_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{M}_{1}{ }_{1}-\mathrm{F}_{4}\right)\right]+\left[v\left(\mathrm{M}^{\prime}{ }_{2}-\mathrm{F}_{6}\right)-v\left(\mathrm{M}^{\prime}-\mathrm{F}_{8}\right)\right]$
$688(<0.1)[<0.1]$	$698(<0.1)[<0.1]$	$679(<0.1)[<0.1]$	$\begin{array}{ll} \mathrm{E} & {\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)-v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]+\left[v\left(\mathrm{Cr}_{2}-\mathrm{F}_{6}\right)+v\left(\mathrm{Cr}_{2}-\mathrm{F}_{9}\right)\right]-\left[v\left(\mathrm{Cr}_{2}-\mathrm{F}_{7}\right)+v\left(\mathrm{Cr}_{2}-\mathrm{F}_{8}\right)\right] / /\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{1}\right)+\right.} \\ & \left.v\left(\mathrm{M}_{1}-\mathrm{F}_{2}\right)\right]-\left[v\left(\mathrm{M}_{1}-\mathrm{F}_{3}\right)+v\left(\mathrm{M}_{1}-\mathrm{F}_{4}\right)\right]-\left[v\left(\mathrm{M}_{2}-\mathrm{F}_{6}\right)-v\left(\mathrm{M}_{2}-\mathrm{F}_{8}\right)\right] \end{array}$
689(<0.1)[77]	687(<0.1)[94]	716(<0.1)[90]	A $\quad v\left(\mathrm{M}^{\prime} 1-\mathrm{F}_{4 \mathrm{eq}}\right)-v\left(\mathrm{M}^{\prime} 2-\mathrm{F}_{4 \mathrm{eq}}\right)$
680(52)[<0.1]	680(32)[<0.1]	712(21)[<0.1]	A $\quad v\left(\mathrm{M}_{1}^{\prime}-\mathrm{F}_{4 \mathrm{eq}}\right)+v\left(\mathrm{M}_{2}^{\prime}-\mathrm{F}_{4 \mathrm{eq}}\right)$
551(6)[0]	607(3)[0]	649(2)[0]	$\begin{array}{ll} \mathrm{B} \quad & {\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]+\left[v\left(\mathrm{Cr}_{2}-\mathrm{F}_{6}\right)+v\left(\mathrm{Cr}_{2}-\mathrm{F}_{8}\right)\right]-\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4}\right)\right]-\left[v\left(\mathrm{Cr}_{2}-\mathrm{F}_{7}\right)+\right.} \\ & \left.v\left(\mathrm{Cr}_{2}-\mathrm{F}_{9}\right)\right] / /\left[v\left(\mathrm{Mo}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Mo}_{1}-\mathrm{F}_{3}\right)\right]+\left[v\left(\mathrm{Mo}_{2}-\mathrm{F}_{6}\right)+v\left(\mathrm{Mo}_{2}-\mathrm{F}_{8}\right)\right]-\left[v\left(\mathrm{Mo}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Mo}_{1}-\right.\right. \\ & \left.\left.\mathrm{F}_{4}\right)\right]-\left[v\left(\mathrm{Mo}_{2}-\mathrm{F}_{7}\right)+v\left(\mathrm{Mo}_{2}-\mathrm{F}_{9}\right)\right] / / \\ & {\left[v\left(\mathrm{~W}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{~W}_{1}-\mathrm{F}_{3}\right)\right]-\left[v\left(\mathrm{~W}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{~W}_{1}-\mathrm{F}_{4}\right)\right]} \end{array}$
550(5)[0]	606(2)[0]	649(2)[0]	$\begin{array}{ll} \mathrm{B} \quad & {\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{3}\right)\right]+\left[v\left(\mathrm{Cr}_{2}-\mathrm{F}_{7}\right)+v\left(\mathrm{Cr}_{2}-\mathrm{F}_{9}\right)\right]-\left[v\left(\mathrm{Cr}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Cr}_{1}-\mathrm{F}_{4}\right)\right]-\left[v\left(\mathrm{Cr}_{2}-\mathrm{F}_{6}\right)+\right.} \\ & \left.v\left(\mathrm{Cr}_{2}-\mathrm{F}_{8}\right)\right] / /\left[v\left(\mathrm{Mo}_{1}-\mathrm{F}_{1}\right)+v\left(\mathrm{Mo}_{1}-\mathrm{F}_{3}\right)\right]+\left[v\left(\mathrm{Mo}_{2}-\mathrm{F}_{7}\right)+v\left(\mathrm{Mo}_{2}-\mathrm{F}_{9}\right)\right]-\left[v\left(\mathrm{Mo}_{1}-\mathrm{F}_{2}\right)+v\left(\mathrm{Mo}_{1}-\right.\right. \\ & \left.\left.\mathrm{F}_{4}\right)\right]-\left[v\left(\mathrm{Mo}_{2}-\mathrm{F}_{6}\right)+v\left(\mathrm{Mo}_{2}-\mathrm{F}_{8}\right)\right] / / \\ & {\left[v\left(\mathrm{~W}_{2}-\mathrm{F}_{7}\right)+v\left(\mathrm{~W}_{2}-\mathrm{F}_{9}\right)\right]-\left[v\left(\mathrm{~W}_{2}-\mathrm{F}_{6}\right)+v\left(\mathrm{~W}_{2}-\mathrm{F}_{8}\right)\right]} \end{array}$
459(0)[130]	468(0)[311]	484(0)[332]	A $\quad\left[v\left(\mathrm{M}^{\prime} 1-\mathrm{F}_{5}\right)-v\left(\mathrm{M}^{\prime}-\mathrm{F}_{5}\right)\right]$
$389(<0.1)[35]$	$326(<0.1)[15]$	336(0)[13]	E $\quad \delta\left(\mathrm{O}_{1} \mathrm{M}^{\prime} \mathrm{F}_{5}\right)-\left[\delta\left(\mathrm{O}_{2} \mathrm{M}^{\prime} \mathrm{F}_{6}\right)-\delta\left(\mathrm{F}_{8} \mathrm{M}^{\prime} \mathrm{F}_{5}\right)\right]$
$386(8)[<0.1]$	$318(8)[<0.1]$	325(6)[0]	$\mathrm{E} \quad\left[\delta\left(\mathrm{O}_{1} \mathrm{M}^{\prime} \mathrm{F}_{5}\right)-\delta\left(\mathrm{O}_{1} \mathrm{M}^{\prime} \mathrm{F}_{4}\right)\right]+\left[\delta\left(\mathrm{O}_{2} \mathrm{M}^{\prime} \mathrm{F}_{6}\right)-\delta\left(\mathrm{F}_{8} \mathrm{M}^{\prime} \mathrm{F}_{5}\right)\right]$
$376(5)[<0.1]$	298(1)[<0.1]	$278(<1)[<0.1]$	A $\delta_{\text {umb }}\left(\mathrm{M}^{\prime} \mathrm{F}_{4 \mathrm{eq}}\right)+\delta_{\text {umb }}\left(\mathrm{M}^{\prime} \mathrm{F}_{4 \text { eq }}\right)$
375(2)[0]	294(3)[0]	300(2)[0]	B $\left[\delta\left(\mathrm{F}_{2} \mathrm{M}^{\prime} \mathrm{F}_{3}\right)+\delta\left(\mathrm{F}_{1} \mathrm{M}^{\prime} \mathrm{F}_{4}\right)\right]+\left[\delta\left(\mathrm{F}_{7} \mathrm{M}^{\prime} \mathrm{F}_{8}\right)+\delta\left(\mathrm{F}_{6} \mathrm{M}_{2} \mathrm{~F}_{9}\right)\right]$
374(2)[0]	294(2)[0]	300(2)[0]	B $\quad\left[\delta\left(\mathrm{F}_{2} \mathrm{M}^{\prime} \mathrm{F}_{3}\right)+\delta\left(\mathrm{F}_{1} \mathrm{M}^{\prime} \mathrm{F}_{4}\right)\right]-\left[\delta\left(\mathrm{F}_{7} \mathrm{M}^{\prime} \mathrm{F}_{8}\right)+\delta\left(\mathrm{F}_{6} \mathrm{M}_{2} \mathrm{~F}_{9}\right)\right]$
350(0)[8]	272(0)[37]	270(0)[49]	E $\quad\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{M}^{\prime} \mathrm{F}_{5}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{2} \mathrm{M}^{\prime} \mathrm{F}_{5}\right)\right]+\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{M}^{\prime} \mathrm{F}_{3}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{6} \mathrm{M}_{2} \mathrm{~F}_{8}\right)\right]$
$278(3)[<0.1]$	$210(1)[<0.1]$	206(<1)[0]	E $\quad \rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{M}^{\prime} \mathrm{F}_{3}\right)+\rho_{t}\left(\mathrm{~F}_{8} \mathrm{M}_{2} \mathrm{~F}_{9}\right)+\rho_{\mathrm{t}}\left(\mathrm{F}_{6} \mathrm{M}^{\prime} \mathrm{F}_{7}\right)$
271(0)[364]	253(0)[164]	242(0)[146]	A $\delta_{\text {umb }}\left(\mathrm{M}^{\prime} \mathrm{F}_{4 \mathrm{eq}}\right)-\delta_{\text {umb }}\left(\mathrm{M}^{\prime} \mathrm{F}_{4 \mathrm{eq}}\right)$

continued...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.11. (continued)

$\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-[\mathrm{a}, \mathrm{b}]}$	$\left[\mathrm{Mo}_{2} \mathbf{O}_{2} \mathbf{F}_{9}\right]^{-[\mathrm{a}, \mathrm{b}]}$	$\left[W_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-[\mathrm{a}, \mathrm{b}]}$		assgnts ($\left.C_{4}\right)^{\text {[c] }}$
206(1)[0]	169(<1)[0]	176(<0.1)[0]	B	$\begin{aligned} & {\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{w}}\left(\mathrm{~F}_{7} \mathrm{Cr}_{2} \mathrm{~F}_{9}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)+\rho_{\mathrm{w}}\left(\mathrm{~F}_{6} \mathrm{Cr}_{2} \mathrm{~F}_{8}\right)\right] / /\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{1} \mathrm{Mo}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{w}}\left(\mathrm{~F}_{7} \mathrm{Mo}_{2} \mathrm{~F}_{9}\right)\right]} \\ & -\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{2} \mathrm{Mo}_{1} \mathrm{~F}_{4}\right)+\rho_{\mathrm{w}}\left(\mathrm{~F}_{6} \mathrm{Mo}_{2} \mathrm{~F}_{8}\right)\right] / /\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{7} \mathrm{~W}_{2} \mathrm{~F}_{9}\right)-\rho_{\mathrm{w}}\left(\mathrm{~F}_{6} \mathrm{~W}_{2} \mathrm{~F}_{8}\right)\right] \end{aligned}$
204(<1)[0]	170(<1)[0]	176(<0.1)[0]	B	$\begin{aligned} & {\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{1} \mathrm{Cr}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{w}}\left(\mathrm{~F}_{6} \mathrm{Cr}_{2} \mathrm{~F}_{8}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{2} \mathrm{Cr}_{1} \mathrm{~F}_{4}\right)+\rho_{\mathrm{w}}\left(\mathrm{~F}_{7} \mathrm{Cr}_{2} \mathrm{~F}_{9}\right)\right] / /\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{1} \mathrm{Mo}_{1} \mathrm{~F}_{3}\right)+\rho_{\mathrm{w}}\left(\mathrm{~F}_{6} \mathrm{Mo}_{2} \mathrm{~F}_{8}\right)\right]} \\ & -\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{2} \mathrm{Mo}_{1} \mathrm{~F}_{4}\right)+\rho_{\mathrm{w}}\left(\mathrm{~F}_{7} \mathrm{Mo}_{2} \mathrm{~F}_{9}\right)\right] / /\left[\rho_{\mathrm{w}}\left(\mathrm{~F}_{1} \mathrm{~W}_{1} \mathrm{~F}_{3}\right)-\rho_{\mathrm{w}}\left(\mathrm{~F}_{2} \mathrm{~W}_{1} \mathrm{~F}_{4}\right)\right] \end{aligned}$
200(0)[3]	155(0)[4]	164(0)[5]	E	$\left[\rho_{\mathrm{w}}\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{5}\right)+\rho_{\mathrm{w}}\left(\mathrm{O}_{2} \mathrm{M}_{2}^{\prime} \mathrm{F}_{5}\right)\right]-\left[\rho_{\mathrm{w}}\left(\mathrm{F}_{2} \mathrm{M}_{1}^{\prime} \mathrm{F}_{4}\right)+\rho_{\mathrm{w}}\left(\mathrm{F}_{7} \mathrm{M}_{2}^{\prime} \mathrm{F}_{9}\right)\right]$
134(2)[0]	$123(<1)[0]$	108(<0.1)[0]	A	$\left[v\left(\mathrm{M}^{\prime} 1-\mathrm{F}_{5}\right)+v\left(\mathrm{M}^{\prime} 2-\mathrm{F}_{5}\right)\right]$
$127(<0.1)[<0.1]$	$94(<0.1)[0]$	$97(<0.1)[0]$	E	$\rho_{\mathrm{r}}\left(\mathrm{O}_{1} \mathrm{M}^{\prime} \mathrm{F}_{4 \mathrm{eq}}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{2} \mathrm{M}^{\prime} \mathrm{F}_{4 \mathrm{4eq}}\right)$
11(0)[0]	11(0)[0]	4(0)[0]	A	$\left[\rho_{t}\left(\mathrm{M}_{1} \mathrm{~F}_{4 \mathrm{eq}}\right)-\rho_{\mathrm{t}}\left(\mathrm{M}_{2} \mathrm{~F}_{4 \mathrm{eq}}\right)\right]$
$-24(0)[2]$	14(0)[<1]	13(0)[<0.1]	E	$\left[\rho_{\mathrm{r}}\left(\mathrm{O}_{1} \mathrm{M}_{1} \mathrm{~F}_{1} \mathrm{~F}_{3} \mathrm{~F}_{5}\right)+\rho_{\mathrm{r}}\left(\mathrm{O}_{2} \mathrm{M}_{2} \mathrm{~F}_{6} \mathrm{~F}_{8} \mathrm{~F}_{5}\right)\right]$

[a] Frequencies are given in cm^{-1}. [b] Values in parentheses and square brackets denote calculated Raman intensities ($\AA^{4} \mathrm{amu}^{-1}$) and infrared intensities $\left(\mathrm{km} \mathrm{mol}^{-1}\right)$, respectively. The PBE1PBE/Def2-SVP (F, O, M') level of theory was used. [c] Abbreviations denote stretch (v), bend (δ), rock (ρ_{r}), twist $\left(\rho_{\mathrm{t}}\right)$, wag $\left(\rho_{\mathrm{w}}\right)$, umbrella (umb), equatorial (eq), and axial (ax). Bond elongations and angle openings are denoted by plus $(+)$ signs, and bond contractions and angle compressions are denoted by minus (-) signs. The atom labeling scheme corresponds to that used in Figure A8.13.

Table A8.12. Experimental vibrational frequencies, intensities, and assignments for $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right] \cdot \mathrm{XeOF}_{4}(7)$
$7^{[\mathrm{a}, \mathrm{b}]}$ assgnts

1014(68)	$v(\mathrm{~W}-\mathrm{O})$ of $\left[\mathrm{WOF}_{5}\right]^{-}$
921(45)	$v(\mathrm{Xe}-\mathrm{O})$ of XeOF_{4}
$\begin{aligned} & 718(6) \\ & 691(15) \end{aligned}$	$v(\mathrm{~W}-\mathrm{F})$ of $\left[\mathrm{WOF}_{5}\right]^{-}$
$\begin{aligned} & \text { 681, sh } \\ & 679(66) \end{aligned}$	$v(\mathrm{~W}-\mathrm{F})$ of $\left[\mathrm{WOFF}_{5}\right]^{-} / v(\mathrm{Xe}-\mathrm{F})$ of $\left[\mathrm{XeF}_{5}\right]^{+}$
667(6)	$v(\mathrm{Xe}-\mathrm{F})$ of $\left[\mathrm{XeF}_{5}\right]^{+}$
643(7)	$v(\mathrm{~W}-\mathrm{F})$ of $\left[\mathrm{WOF}_{5}\right]^{-} / v(\mathrm{Xe}-\mathrm{F})$ of $\left[\mathrm{XeFF}_{5}\right]^{+}$
$\begin{aligned} & 611(96) \\ & 600(53) \end{aligned}$	$v(\mathrm{Xe}-\mathrm{F})$ of $\left[\mathrm{XeFF}_{5}\right]^{+}$
574(100)	$v(\mathrm{Xe}-\mathrm{F})$ of XeOF_{4}
$\begin{aligned} & 569, \text { sh } \\ & 561(5) \end{aligned}$	$v(\mathrm{~W}-\mathrm{F})$ of $\left[\mathrm{WOF}_{5}\right]^{-} / v(\mathrm{Xe}-\mathrm{F})$ of $\left[\mathrm{XeF}_{5}\right]^{+}$
540(70)	$v(\mathrm{Xe}-\mathrm{F})$ of XeOF_{4}
406(10)	$v(\mathrm{Xe}-\mathrm{F})$ of $\left[\mathrm{XeF}_{5}\right]^{+}$
371(16)	$\delta(\mathrm{OXeF})$ of XeOF_{4}
$\begin{aligned} & 356(5) \\ & 334, \text { sh } \\ & 327(11) \\ & 303(17) \\ & 296(7) \\ & 264(4) \\ & 235(12) \\ & 173(4) \\ & 119(7) \end{aligned}$	deformation modes of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{WOF}_{5}\right]$ and XeOF_{4}

[a] Frequencies are given in cm^{-1}. [b] Values in parentheses denote relative Raman intensities. Abbreviations denote shoulder (sh). The Raman spectrum was recorded in a FEP sample tube at $-110{ }^{\circ} \mathrm{C}$ using $1064-\mathrm{nm}$ excitation. The band observed at $1039(6) \mathrm{cm}^{-1}$ is attributed to trace amount of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ impurity, and the band observed at $987(4) \mathrm{cm}^{-1}$ was tentatively assigned to the $\mathrm{W}-\mathrm{O}$ stretching band of $\mathrm{a}\left[\mathrm{WOF}_{6}\right]^{2-}$ salt of $\left[\mathrm{XeF}_{5}\right]^{+}$or $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}$.

Figure A8.10. Factor-Group Analysis of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right](\mathrm{M}=\mathrm{Mo}, \mathrm{W})^{[\mathrm{a}]}$

[a] The external modes have not been treated in this analysis. [b] The vibrational irreducible representation for gas-phase $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right]$ is $\Gamma=54 \mathrm{~A}$. [c] Space group; $P 2{ }_{1} / \mathrm{n}, \mathrm{Z}=4$.

Figure A8.11. Factor-Group Analysis of $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]^{[\mathrm{a}]}$

[a] The external modes have not been treated in this analysis. [b] The vibrational irreducible representation for gas-phase $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]$ is $\Gamma=54 \mathrm{~A}$. [c] Space group; $P 1, \mathrm{Z}=2$.

Figure A8.12. Factor-Group Analysis of $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right](\mathrm{M}=\mathrm{Mo}, \mathrm{W})^{[\mathrm{a}]}$

[a] The external modes have not been treated in this analysis. [b] The vibrational irreducible representation for gas-phase $\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]$ is $\Gamma=51 \mathrm{~A}$. [c] Space group; $P 1, \mathrm{Z}=2$.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.13. Calculated ${ }^{[a]}$ geometric parameters for $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}\left(C_{4 \mathrm{v}}\right)$ and $\left[\mathrm{M}_{2}^{\prime} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}\left(C_{4}\right)\left(\mathrm{M}^{\prime}=\mathrm{Cr}, \mathrm{Mo}\right.$, W)

	$\left[\mathrm{CrOF}_{5}\right]^{-}$	[$\mathrm{MoOFF}_{5}{ }^{-}$	[WOF5] ${ }^{-}$	$\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$	$\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$	$\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$
M'1-O1	1.540	1.702	1.729	1.519	1.678	1.689
M'1-F1	1.761	1.893	1.908	1.731	1.873	1.871
M'1-F2	1.761	1.893	1.908	1.731	1.873	1.871
M'1-F3	1.761	1.893	1.908	1.731	1.873	1.871
M'1-F4	1.761	1.893	1.908	1.731	1.873	1.871
M'1-F5	1.824	1.955	1.972	2.026	2.125	2.129
M'2-O2				1.519	1.678	1.689
M'2-F5				2.026	2.125	2.129
M'2-F6				1.731	1.873	1.871
M'2-F7				1.731	1.873	1.871
M'2-F8				1.731	1.873	1.871
M'2-F9				1.731	1.873	1.871
O1-M'1-F1	94.3	94.5	94.7	97.5	97.4	97.6
O1-M'1-F2	94.3	94.5	94.7	97.5	97.4	97.6
O1-M'1-F3	94.3	94.5	94.7	97.5	97.4	97.6
O1-M'1-F4	94.3	94.5	94.7	97.5	97.4	97.6
O1-M'1-F5	180.0	180.0	180.0	180.0	180.0	180.0
O2-M'2-F5				180.0	180.0	180.0
O2-M'2-F6				97.5	97.4	97.6
O2-M'2-F7				97.5	97.4	97.6
O2-M'2-F8				97.5	97.4	97.6
O2-M'2-F9				97.5	97.4	97.6
F1-M'1-F2	85.7	85.5	85.3	89.0	89.1	89.0
F1-M'1-F3	85.7	85.5	85.3	165.0	165.3	164.9
F1-M'1-F4	85.7	85.5	85.3	89.0	89.1	89.0
F1-M'1-F5	85.7	85.5	85.3	82.5	82.6	82.5
F2-M'1-F3	85.7	85.5	85.3	89.0	89.1	89.0
F2-M'1-F4	85.7	85.5	85.3	165.0	165.3	164.9
F2-M'1-F5	85.7	85.5	85.3	82.5	82.6	82.5
F3-M'1-F4	85.7	85.5	85.3	89.0	89.1	89.0
F3-M'1-F5	85.7	85.5	85.3	82.5	82.6	82.5
F4-M'1-F5	85.7	85.5	85.3	82.5	82.6	82.5
F5-M'1-F6				82.5	82.6	82.5
F5-M'1-F7				82.5	82.6	82.5
F5-M'1-F8				82.5	82.6	82.5
F5-M'1-F9				82.5	82.6	82.5
F6-M'1-F7				89.0	89.1	89.0
F6-M'1-F8				165.0	165.3	164.9
F6-M'1-F9				89.0	89.1	89.0
F7-M'1-F8				89.0	89.1	89.0
F7-M'1-F9				165.0	165.3	164.9
F8-M'1-F9				89.0	89.1	89.0

[a] The PBE1PBE/Def2-SVP (F, O, M') level of theory was used.

Figure A8.13. The calculated gas-phase geometries of (a) the $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}$and (b) the $\left[\mathrm{M}_{2}{ }_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$anions $\left(\mathrm{M}^{\prime}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}\right)$. The PBE1PBE/Def2-SVP $\left(\mathrm{F}, \mathrm{O}, \mathrm{M}^{\prime}\right)$ level of theory was used.

Table A8.14. Calculated ${ }^{[a]}$ geometric parameters for $\mathrm{M}^{\prime} \mathrm{OF}_{4}\left(\mathrm{M}^{\prime}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}\right)\left(C_{4 \mathrm{v}}\right)$.

	CrOF_{4}	MoOF4 $_{4}$	WOF $_{4}$
M'1-O1	1.499	1.656	1.683
M'1-F1	1.705	1.854	1.872
O1-M'1-F1	104.9	105.1	105.0
F1-M'1-F2	86.2	86.1	86.2

[a] The PBE1PBE/Def2-SVP (F, O, M') level of theory was used.

Table A8.15. Calculated ${ }^{[a]}$ vibrational frequencies, intensities, and assignments for $\mathrm{M}^{\prime} \mathrm{OF}_{4}\left(\mathrm{M}^{\prime}=\mathrm{Cr}, \mathrm{Mo}\right.$, W)

$\mathrm{CrOF}_{4}{ }^{[\mathrm{b}]}$	$\mathrm{MoOF}_{4}{ }^{[\mathrm{b}]}$	$\mathrm{WOF}_{4}{ }^{[\mathrm{b}]}$		assgnts ($\left.C_{4 v}\right)^{[c]}$
1233(13)[111]	1108(16)[126]	1079(17)[110]	A_{1}	$v\left(\mathrm{M}^{\prime}-\mathrm{O}\right)$
$775(<1)[226]$	$746(<1)[228]$	715(<1)[195]	E	$v\left(\mathrm{M}^{\prime}-\mathrm{F}_{1}\right)-v\left(\mathrm{M}^{\prime}-\mathrm{F}_{3}\right)$
740(18)[22]	723(16)[32]	727(14)[33]	A_{1}	$v\left(\mathrm{M}^{\prime}-\mathrm{F}_{4 \mathrm{eq}}\right)$
585(6)[0]	632(3)[0]	654(3)[0]	B_{2}	$\begin{aligned} & {\left[v\left(\mathrm{M}^{\prime}-\mathrm{F}_{1}\right)+v\left(\mathrm{M}^{\prime}-\mathrm{F}_{3}\right)\right]-} \\ & {\left[v\left(\mathrm{M}^{\prime}-\mathrm{F}_{2}\right)+v\left(\mathrm{M}^{\prime}-\mathrm{F}_{4}\right)\right]} \end{aligned}$
429(2)[0]	330(3)[0]	322(3)[0]	B_{1}	$\delta\left(\mathrm{F}_{1} \mathrm{M}^{\prime} \mathrm{F}_{2}\right)+\delta\left(\mathrm{F}_{3} \mathrm{M}^{\prime} \mathrm{F}_{4}\right)$
372(2)[11]	299(3)[7]	297(3)[7]	E	$\delta\left(\mathrm{OM}^{\prime} \mathrm{F}_{1}\right)-\delta\left(\mathrm{O}_{1} \mathrm{M}^{\prime} \mathrm{F}_{3}\right)$
352(2)[7]	263(1)[16]	$240(<1)$ [16]	A_{1}	$\delta_{\text {umb }}\left(\mathrm{M}^{\prime}-\mathrm{F}_{4 \mathrm{eq}}\right)$
300(2)[14]	$236(<1)[20]$	$223(<1)[24]$	E	$\rho_{\mathrm{w}}\left(\mathrm{F}_{1} \mathrm{M}^{\prime} \mathrm{F}_{3}\right)$
$117(<1)[0]$	101(<1)[0]	108(<1)[0]	B_{2}	$\rho_{t}\left(F_{1} M^{\prime} F_{2}\right)-\rho_{t}\left(F_{3} M^{\prime} F_{4}\right)$

[a] Frequencies are given in cm^{-1}. [b] Values in parentheses and square brackets denote calculated Raman intensities $\left(\AA^{4} \mathrm{amu}^{-1}\right)$ and infrared intensities $\left(\mathrm{km} \mathrm{mol}^{-1}\right)$, respectively. The PBE1PBE/Def2-SVP (F, O, M') level of theory was used. [c] Abbreviations denote stretch (v), bend (δ), wag (ρ_{w}), umbrella (umb), equatorial (eq), and axial (ax). Bond elongations and angle openings are denoted by plus (+) signs, and bond contractions and angle compressions are denoted by minus (-) signs. The atom labeling scheme corresponds to that used in Figure A8.13. [d] These modes also have a small contribution from $v\left(\mathrm{M}^{\prime}-\mathrm{F}_{4 \mathrm{eq}}\right)$.

Figure A8.14. The calculated gas-phase geometries of (a) $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$ and (b) $\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}$. The PBE1PBE/Def2-SVP (F, O, W, Xe) level of theory was used.

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.16. Natural Population Analysis (NPA) Charges, Valence Indices, and Wiberg Bond Indices ${ }^{[a]}$ for $\mathrm{M}^{\prime} \mathrm{OF}_{4}\left(\mathrm{M}^{\prime}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}\right)$,
$\left[\mathrm{MOF}_{5}\right]^{-},\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2},\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right](\mathrm{M}=\mathrm{Mo}, \mathrm{W}),\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}$, and $\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$

$\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2}$					$\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MoOF}_{5}\right]$				
Bond Indices		NPA Charges [Valence Indices]			Bond Indices		NPA Charges [Valence Indices]		
Cr1---F5	0.125	Cr1	1.173	[5.500]	Mo1---F5	0.278	Mol	2.176	[5.154]
Cr1-F1	0.765	F1	-0.340	[1.167]	Mo1-F1	0.560	F1	-0.552	[0.836]
Cr1-F2	0.797	F2	-0.325	[1.198]	Mo1-F2	0.815	F2	-0.417	[1.058]
Cr1-F3	0.765	F3	-0.341	[1.167]	Mo1-F3	0.814	F3	-0.419	[1.054]
Cr1-F4	0.881	F4	-0.256	[1.297]	Mo1-F4	0.670	F4	-0.515	[0.704]
Cr1-O1	2.134	F5	-0.686	[0.601]	Mo1-O1	1.986	F5	-0.627	
		O1	0.006	[2.744]			$\begin{aligned} & \mathrm{O} 1 \\ & \sum_{\left[\mathrm{MoOF}_{5}\right]^{-}} \end{aligned}$	$\begin{array}{ll} -0.422 & {[2.369]} \\ -\mathbf{0 . 7 7 6} & \end{array}$	[2.369]
		$\sum_{\mid \mathrm{CrOF}_{5}{ }^{\text {- }} \text { - }}$	-0.769						
Xe1---F5	0.127	Xe1	3.191	[3.385]	Xe1---F5	0.207	Xe1	3.187	[3.386]
Xe1-F6	0.608	F6	-0.471	[0.849]	Xe1-F6	0.613	F6	-0.491	[0.844]
Xe1-F7	0.600	F7	-0.503	[0.832]	Xe1-F7	0.610	F7	-0.492	[0.845]
Xe1-F8	0.596	F8	-0.503	[0.834]	Xe1-F8	0.595	F8	-0.508	[0.828]
Xe1-F9	0.607	F9	-0.496	[0.839]	Xe1-F9	0.596	F9	-0.506	[0.830]
Xe1-F10	0.606	F10	-0.496	[0.836]	Xe1-F10	0.615	F10	-0.467	[0.855]
Xe1-F11	0.190	F11	-0.675	[0.601]	Xe1-F11	0.123	F11	-0.677	[0.597]
Xe1---F1	0.020	Xe2	3.191	[3.385]	Xe1---F4	0.006	Xe2	3.184	[3.390]
Xe2---F5a	0.128	F12	-0.471	[0.849]	Xe2-F11	0.262	F12	-0.487	[0.849]
Xe2-F11	0.189	F13	-0.496	[0.839]	Xe2-F12	0.619	F13	-0.483	[0.849]
Xe2-F12	0.608	F14	-0.503	[0.834]	Xe2-F13	0.620	F14	-0.507	[0.832]
Xe2-F13	0.607	F15	-0.503	[0.832]	Xe2-F14	0.597	F15	-0.515	[0.823]
Xe2-F14	0.597	F16	-0.496	[0.836]	Xe2-F15	0.581	F16	-0.463	[0.859]
Xe2-F15	0.600	$\sum_{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}}{ }^{+}$	0.769		Xe2-F16	0.619	$\sum_{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}}{ }^{+}$	0.776	
Xe2-F16	0.606				Xe2---F1	0.064			
Xe2---F3a	0.020				Xe2---F4	0.008			
		[$\left.\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{WOF}_{5}\right]$			$\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}$				
Bond Indices		NPA Charges [Valence Indices]			Bond Indices		NPA Charges [Valence Indices]		
W1---F5	0.282	W1	2.504	[4.949]	Mo1---F5	0.282	Mol	2.255	[5.119]
W1-F1	0.537	F1	-0.586	[0.777]	Mo1-F1	0.813	F1	-0.427	[1.041]
W1-F2	0.774	F2	-0.472	[0.967]	Mo1-F2	0.807	F2	-0.431	[1.035]
W1-F3	0.776	F3	-0.472	[0.967]	Mo1-F3	0.591	F3	-0.553	[0.837]
W1-F4	0.647	F4	-0.554	[0.831]	Mo1-F4	0.599	F4	-0.548	[0.845]
W1-O1	1.901	F5	-0.644	[0.674]	Mo1-O1	1.990	F5	-0.596	[0.774]
		$\mathrm{O} 1$	-0.567	[2.212]	Mo2---F5	0.282	O1	-0.437	[2.356]
		$\sum_{\text {[} \text { Wof }_{5}{ }^{\text {I }} \text { - }}$	-0.791		Mo2-F6	0.813	Mo2	2.255	[5.119]
Xe1---F5	0.191	Xe1	3.190	[3.386]	Mo2-F7	0.807	F6	-0.427	[1.041]
Xe1-F6	0.610	F6	-0.492	[0.845]	Mo2-F8	0.591	F7	-0.431	[1.035]
Xe1-F7	0.613	F7	-0.491	[0.845]	Mo2-F9	0.599	F8	-0.553	[0.837]
Xe1-F8	0.599	F8	-0.504	[0.831]	Mo2-O2	1.990	F9	-0.548	[0.845]
Xe1-F9	0.598	F9	-0.505	[0.830]			O2	-0.437	[2.356]
Xe1-F10	0.617	F10	-0.465	[0.857]			$\sum_{\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}}$	-0.878	
Xe1-F11	0.130	F11	-0.681	[0.590]	Xe1-F10	0.636	Xe1	3.232	[3.349]
Xe1---F4	0.004	Xe2	3.187	[3.390]	Xel-F11	0.635	F10	-0.475	[0.865]
Xe2-F11	0.250	F12	-0.483	[0.849]	Xe1-F12	0.637	F11	-0.476	[0.863]
Xe2-F12	0.621	F13	-0.487	[0.850]	Xe1-F13	0.635	F12	-0.474	[0.866]
Xe2-F13	0.620	F14	-0.512	[0.827]	Xel-F14	0.623	F13	-0.476	[0.863]
Xe2-F14	0.585	F15	-0.504	[0.835]	Xe1---F3	0.042	F14	-0.453	[0.867]
Xe2-F15	0.600	F16	-0.462	[0.860]	Xe1---F4a	0.042	$\sum_{\left[\mathrm{XeF}_{5}\right]^{+}}$	0.878	
Xe2-F16	0.620	$\sum_{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]^{+}}$	0.791		Xe1---F8	0.042			
Xe2---F1	0.063				Xe1---F9a	0.042			
Xe2---F4	0.008								

continued ...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.16. (continued)

$\left\{\left[\mathrm{XeF}_{5}\right]\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]\right\}_{2}$					CrOF_{4}				
Bond Indices		NPA Charges [Valence Indices]			Bond Indices		NPA Charges [Valence Indices]		
W1---F5	0.272	W1	2.595	[4.901]	Cr1-F1	0.838	Cr1	1.243	[5.417]
W1-F1	0.771	F1	-0.483	[0.948]	$\mathrm{Cr} 1-\mathrm{F} 2$	0.838	F1	-0.296	[1.232]
W1-F2	0.772	F2	-0.482	[0.949]	Cr1-F3	0.838	F2	-0.296	[1.232]
W1-F3	0.573	F3	-0.586	[0.778]	Cr1-F4	0.838	F3	-0.296	[1.232]
W1-F4	0.573	F4	-0.587	[0.777]	Cr1-O1	2.066	F4	-0.296	[1.232]
W1-O1	1.902	F5	-0.626	[0.719]			O1	-0.061	[2.687]
W2---F5	0.272	O1	-0.587	[2.194]			$\sum \mathrm{CrOF}_{4}$	0	
W2-F6	0.770	W2	2.595	[4.901]					
W2-F7	0.772	F6	-0.483	[0.948]					
W2-F8	0.574	F7	-0.482	[0.950]					
W2-F9	0.572	F8	-0.586	[0.779]					
W2-O2	1.902	F9	-0.587	[0.776]					
		O2	-0.587	[2.194]					
		$\sum\left[W_{2} \mathrm{O}_{2} \mathrm{~F}_{9} \mathrm{l}^{-}\right.$	-0.886						
Xe1-F10	0.638	Xe1	3.234	[3.348]					
Xe1-F11	0.639	F10	-0.474	[0.866]					
Xe1-F12	0.636	F11	-0.474	[0.867]					
Xe1-F13	0.639	F12	-0.475	[0.865]					
Xe1-F14	0.625	F13	-0.474	[0.867]					
Xe1---F3	0.040	F14	-0.451	[0.870]					
Xe1---F4a	0.039	$\sum\left[\mathrm{XeF}_{5}\right]^{+}$	0.886						
Xe1---F8	0.039								
Xe1---F9a	0.038								

MoOF_{4}					WOF_{4}				
Bond Indices		NPA Charges [Valence Indices]			Bond Indices		NPA Charges [Valence Indices]		
Mo1-F1	0.765	Mol	2.300	[5.012]	W1-F1	0.735	W1	2.607	[4.825]
Mo1-F2	0.765	F1	-0.456	[0.993]	W1-F2	0.735	F1	-0.502	[0.917]
Mo1-F3	0.765	F2	-0.456	[0.993]	W1-F3	0.735	F2	-0.502	[0.917]
Mo1-F4	0.765	F3	-0.456	[0.993]	W1-F4	0.735	F3	-0.502	[0.917]
Mo1-O1	1.952	F4	-0.456	[0.993]	W1-O1	1.887	F4	-0.502	[0.917]
		O1	-0.475	[2.317]			O1	-0.601	[2.176]
		$\sum \mathrm{MoO}$	0				$\sum \mathrm{WOF}_{4}$	0	

$\left.{ }^{\text {[}} \mathrm{CrOF} 5\right]^{-}$					[$\mathrm{MoOFF}_{5}{ }^{-}$				
Bond Indices		NPA Charges [Valence Indices]			Bond Indices		NPA Charges [Valence Indices]		
Cr1---F5	0.600	Cr 1	1.078	[5.547]	Mo1---F5	0.582	Mo1	2.123	[5.228]
Cr1-F1	0.741	F1	-0.376	[1.101]	Mol-F1	0.706	F1	-0.502	[0.915]
Cr1-F2	0.741	F2	-0.376	[1.101]	Mo1-F2	0.706	F2	-0.502	[0.915]
Cr1-F3	0.741	F3	-0.376	[1.101]	Mo1-F3	0.706	F3	-0.502	[0.915]
Cr1-F4	0.741	F4	-0.376	[1.101]	Mo1-F4	0.706	F4	-0.502	[0.915]
Cr1-O1	1.983	F5	-0.449	[1.006]	Mo1-O1	1.822	F5	-0.562	[0.817]
		O1	-0.123	[2.642]			O1	-0.555	[2.229]
		$\sum_{l / \mathrm{Cr}}$	-1.000				$\sum\left[\mathrm{MoOF}_{5}\right]^{-}$	-1.000	

continued ...

Ph.D. Thesis - M. R. Bortolus; McMaster University - Chemistry

Table A8.16. (continued)

[$\mathrm{WOF}_{5}{ }^{-}$					$\left[\mathrm{Cr}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$				
Bond Indices		NPA Charges [Valence Indices]			Bond Indices		NPA Charges [Valence Indices]		
W1---F5	0.557	W1	2.465	[5.013]	Cr1---F5	0.270	Cr 1	1.124	[5.530]
W1-F1	0.679	F1	-0.542	[0.847]	Cr1-F1	0.799	F1	-0.319	[1.197]
W1-F2	0.679	F2	-0.542	[0.847]	$\mathrm{Cr} 1-\mathrm{F} 2$	0.799	F2	-0.319	[1.197]
W1-F3	0.679	F3	-0.542	[0.847]	Cr1-F3	0.799	F3	-0.319	[1.197]
W1-F4	0.679	F4	-0.542	[0.847]	Cr1-F4	0.799	F4	-0.319	[1.197]
W 1-O1	1.740	F5	-0.603	[0.747]	Cr1-O1	2.052	O1	-0.081	[2.680]
		O1	-0.695	[2.068]	Cr2---F5	0.270	F5	-0.531	[0.885]
		$\sum\left[\mathrm{WOF}_{5}{ }^{-}\right.$	-1.000		Cr2-F6	0.799	Cr 2	1.124	[5.530]
					Cr2-F7	0.799	F6	-0.319	[1.197]
					Cr2-F8	0.799	F7	-0.319	[1.197]
					Cr2-F9	0.799	F8	-0.319	[1.197]
					Cr2-O2	2.052	F9	-0.319	[1.197]
							O2	-0.081	[2.680]
							$\sum\left[\mathrm{Cr}_{2} \mathrm{O}_{\mathbf{2}} \mathrm{F}_{\mathbf{9}}\right]^{-}$	-1.000	
$\left[\mathrm{M}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$					$\left[\mathrm{W}_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$				
Bond Indices		NPA Charges [Valence Indices]			Bond Indices		NPA Charges [Valence Indices]		
Mo1---F5	0.289	Mo1	2.179	[5.168]	W1---F5	0.276	W1	2.587	[4.932]
Mo1-F1	0.740	F1	-0.472	[0.968]	W1-F1	0.706	F1	-0.527	[0.874]
Mol-F2	0.740	F2	-0.472	[0.968]	W1-F2	0.706	F2	-0.527	[0.874]
Mo1-F3	0.740	F3	-0.472	[0.968]	W1-F3	0.706	F3	-0.527	[0.874]
Mo1-F4	0.740	F4	-0.472	[0.968]	W1-F4	0.706	F4	-0.527	[0.874]
Mo1-O1	1.907	O1	-0.501	[2.289]	W1-O1	1.818	O1	-0.666	[2.107]
Mo2---F5	0.289	F5	-0.583	[0.797]	W2---F5	0.276	F5	-0.624	[0.722]
Mo2-F6	0.740	Mo2	2.179	[5.168]	W2-F6	0.706	W2	2.587	[4.932]
Mo2-F7	0.740	F6	-0.472	[0.968]	W2-F7	0.706	F6	-0.527	[0.874]
Mo2-F8	0.740	F7	-0.472	[0.968]	W2-F8	0.706	F7	-0.527	[0.874]
Mo2-F9	0.740	F8	-0.472	[0.968]	W2-F9	0.706	F8	-0.527	[0.874]
Mo2-O2	1.907	F9	-0.472	[0.968]	W2-O2	1.818	F9	-0.527	[0.874]
		O2	-0.501	[2.289]			O2	-0.666	[2.107]
		$\sum\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~F}\right.$	-1.000				$\sum\left[W_{2} \mathrm{O}_{2} \mathrm{~F}_{9}\right]^{-}$	-1.000	

[a] Calculated at the PBE1PBE/Def2-SVP (F, O, Cr, Mo, W, Xe) level of theory.

Figure A8.15. Molecular electrostatic potential surface (MEPS) contours calculated at $0.001 \mathrm{e} \mathrm{bohr}^{-3}$ isosurfaces for $\left[\mathrm{M}^{\prime} \mathrm{OF}_{5}\right]^{-}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$. The lowest electrostatic potentials (indicated by arrows) are located at the intersections of the F_{ax} and F_{eq} isosurfaces. The optimized geometries and MEPs were calculated at the PBE1PBE/Def2SVP (O, F, M') level of theory.

Figure A8.16. Molecular electrostatic potential surface (MEPS) contours calculated at the $0.001 \mathrm{e} \mathrm{bohr}^{-3}$ isosurface for $\left\{\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{CrOF}_{5}\right]\right\}_{2}$. The arrow indicates the lowest EP on the isosurface of an exposed F_{eq} atom in the $\left[\mathrm{CrOF}_{5}\right]^{-}$anion. The optimized geometries and MEPs were calculated at the PBE1PBE/Def2-SVP (O, F, Cr, Xe) level of theory.

Figure A8.17. Molecular electrostatic potential surface (MEPS) contours calculated at the $0.001 \mathrm{e} \mathrm{bohr}^{-3}$ isosurface for $\left[\mathrm{Xe}_{2} \mathrm{~F}_{11}\right]\left[\mathrm{MOF}_{5}\right](\mathrm{M}=\mathrm{Mo}, \mathrm{W})$. The lowest electrostatic potential extrema for one exposed F_{eq} atom in each $\left[\mathrm{MOF}_{5}\right]^{-}$anion are indicated by arrows. The optimized geometries and MEPs were calculated at the PBE1PBE/Def2-SVP (O, F, M, Xe) level of theory.

