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Abstract

Clustering, also known as unsupervised classification, is a foundational machine learn-

ing technique and is used to find underlying group structures in data. There are many

well-established model-based techniques to analyze either categorical or continuous

data in the clustering paradigm. However, there is a relative paucity of work for

mixed-type data, especially mixed data where the continuous variables exhibit skew-

ness and heavy tails. In this thesis, different methodologies and models are presented

for analyzing asymmetric and mixed-typed data. The first method is a mixture model

for analyzing asymmetric mixed-type data. The second is modelling contaminated

mixed-type data and identifying potential outliers. Lastly, model averaging tech-

niques are developed for skewed-data based on Occam’s window and parsimonious

mixture models. The expectation-maximization algorithm is used here to estimate

the model parameters. Both real and simulated data are used for illustration.
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Chapter 1

Introduction

1.1 Motivation

With the amount of data collected every day, data mining techniques such as cluster-

ing and classification are rapidly developed. Clustering, also known as unsupervised

classification, is a fundamental machine learning — or statistical learning — tech-

nique that is used in many fields of science. The goal of cluster analysis is to gather n

observations into clusters or groups based on similarities. In the clustering paradigm,

there are many methods for performing cluster analysis. In general, these methods

are either distance-based or model-based methods. In the former, the objects will be

put in one group if the distance between them is small, whereas, in the latter case,

the objects will be assigned to a certain group if they have the same distribution.

1
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1.2 Overview

A lot of work has been done to model either categorical or continuous data using clus-

tering and classification. However, many real data sets are of mixed-type. Mixed-type

data contains two or more types of variables, where a type might be categorical, ordi-

nal, count, continuous, etc. There has been a little work done on mixed data. Browne

and McNicholas (2012) used a latent variable model to model mixed data. That ap-

proach is based on Bartholomew and Knott (1999) and considers as a generalization

of the latent model.

Most of the studies that proposed to model mixed-type data, including Browne and

McNicholas (2012), use the normal distribution to perform classification or clustering

methods. In addition, in real data applications, there are many situations where

the normal distribution is not an appropriate model. That is because the normal

distribution is unable to capture the potentially sizeable skewness and/or the tail-

heaviness characteristic within real data.

Due to the lack of work in the literature in the area of mixed-type data cluster

analysis and the move to non-Gaussian mixture model, we present in this thesis the

following approaches:

• A mixture approach for skewed mixed-type data is introduced. This model

is an extension of the Gaussian mixed-type mixture model for unsupervised

classification. In this mixture, an asymmetric distribution, namely the skew-t

distribution is used. This model provides a better fit than Gaussian mixed-type

mixture and results in a more accurate statistical analysis when skewness is

exhibited in the data.

2
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• A mixture of contaminated distributions to identify “outliers” or atypical points

in mixed-type data is proposed. The contaminated Gaussian distribution is used

along with latent models to develop the proposed model. This mixture gives

promising results in different simulation scenarios and real applications to detect

atypical points and fits better than the competing Gaussian mixture model for

mixed-type data.

• A family of parsimonious variance-gamma mixture models is developed based

on the eigenvalue decomposition of the scale component matrix. Then, two

model averaging approaches are introduced for averaging a set of models. In

the first method, we average the a posteriori probabilities and, in the second,

we average the parameter estimates of models within Occam’s window.

1.3 Outline

1.3.1 Chapter 2

Chapter 2 will present background information on latent variable models and model-

based clustering. Next, the expectation-maximization (EM) algorithm, where differ-

ent convergence criteria — or stopping rules — are discussed. In addition, methods

for model selection and performance assessment for model-based clustering are dis-

cussed.

1.3.2 Chapters 3

In this chapter, we introduce and discuss in detail a mixture model for clustering

skewed mixed-type data. In our model, we assume there is skewness in the contin-

uous variable, and we use the skew-t distribution to model the continuous variable.

3
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Parameter estimation and derivations of the E-step and M-step for each type of

variable are outlined. The mixture of the mixed typed skew-t model is applied to

simulated and real data.

1.3.3 Chapter 4

A mixture model for mixed-type data that can handle potential outliers or atypi-

cal points is proposed. The contaminated Gaussian distribution, along with factor

analysis and mixture models, are used together to develop contaminated mixture

models for mixed-type data. Parameter estimation and model performance assess-

ment methods are carried out through the EM algorithm and adjusted Rand index

(ARI), respectively. To demonstrate the performance of our model, we use simulated

and real data.

1.3.4 Chapter 5

We discuss model averaging methods for skewed data using the variance-gamma par-

simonious models and Occam’s window. Herein, we used two modelling averaging

techniques that are based on averaging the model parameters and averaging poste-

rior probabilities. We use the ARI and the misclassification rate for merging mixture

components and matching components, respectively, as needed.

1.3.5 Chapter 6

The final chapter summarizes this thesis and outlines directions for future work.

4



Chapter 2

Background

2.1 Latent Variable Models

There are two types of variables in statistics: manifest (observed) variables and latent

(unobserved) variables. The latter is hidden or not directly observed but can be

inferred by a statistical model called a latent variable model. Latent variable models

are classified into four different types (Bartholomew and Knott, 1999). Table 2.1

shows the four types of model, which are based on the nature of the manifest and the

latent variables.

Table 2.1: Summary table of latent variable models similar to that given by
Bartholomew and Knott (1999).

Manifest
Metrical Categorical

Latent
Metrical Factor analysis Latent trait analysis

Categorical Latent profile analysis Latent class analysis

By using latent variable models, we solve two problems. One is to reduce the

5
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dimensionality of data, and the other is to explain the underlying structure. The

latter problem can be seen more in areas such as psychology, medicine, and social

sciences.

Now, assume that the data has p-dimensional variables x = (x1, x2, ..., xp)
′ which

are conditionally independent given q latent variables y where q < p. Then, the

density function of the p-dimensional random vector x can be expressed as

f(x) =

∫ p∏
j=1

gi(xi|y)h(y)dy. (2.1)

2.1.1 Factor Analysis

Factor analysis was first used in psychology by Spearman (1904). Later, Bartlett

(1953) and Lawley and Maxwell (1962) introduced it in statistical terms. It is a

technique that is used to reduce the dimension of a large number of observed variables

when the manifest variables are continuous. Suppose that we have p-dimensional

observed variables X1, . . . ,Xn; then we can reduce the number of variables by using

q-dimensional latent variables, where q < p. The generative model of factor analysis

can be written as

Xi = µ+ ΛUi + εi (2.2)

for i = 1, ..., n, where Λ is p×q matrix called the factor loading matrix, Ui ∼ N(0, Iq),

εi ∼ N(0,Ψ), for some p × p diagonal matrix Ψ, and Ui and εi are independent of

each other. Under the factor analysis model, the observed Xi is normally distributed

with mean µ and covariance ΛΛ
′
+ Ψ. It can shown the joint distribution between

6
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the factors Ui and the observed variable Xi can be written as

Xi

Ui

 ∼ N


µ

0

 ,
ΛΛ

′
+ Ψ Λ

Λ
′

Iq


 (2.3)

and thus the the conditional distribution of the factors Ui given the observed variable

Xi can be given by

Ui | Xi ∼ N (β(Xi − µ), I− βΛ) (2.4)

where β = Λ
′
(ΛΛ

′
+ Ψ)−1.

2.1.2 Latent Trait Analysis

Latent trait analysis is a model that can be used to model binary or multivariate cat-

egorical data. Latent trait analysis assumes that there are q-dimensional continuous

latent variables y that can describe the underlying behaviour of K categorical levels

within each observation (Bartholomew and Knott, 1999). The generative model can

be written as

p(xi) =

∫
p(xi|yi)p(yi)dyi, (2.5)

where p(xi|yi) is the conditional distribution of xi given yi, i.e.,

p(xi|yi) =
K∏
k=1

(πk)
xik(1− πk(yi))1−xik .

Note that the response function is the logistic function, i.e.,

πk(yi) = p(xik = 1|yi) =
1

1 + exp[−bk + w′kyi]
,

7
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where bk and wk are the model parameters that are known as the intercept and the

slope parameters, respectively.

2.1.3 Latent Class Analysis and Latent Profile Analysis

Latent class analysis (LCA) and latent profile analysis (LPA) are used to model cat-

egorical and continuous data, respectively (Jason and Glenwick, 2016). LCA and

LPA are both used to identify the hidden subgroups from observed data. In both

approaches, we assume that there is a categorical latent variable with different lev-

els where each level represents a class that consists of all observations that share a

similarity. These classes are known as latent profiles in LPA and latent classes in

LCA.

One major difference between LCA and LPA is the shape of the latent classes. In

LCA, the shape of the latent classes depends on the local independence assumption

(i.e., within each class, the variables are independent). In contrast, this assumption

is not necessary in LPA; however, imposing a restriction on the variance-covariance

matrix can have an effect on the shape of latent classes. (Vermunt and Magidson,

2002). Overall, both LPA and LCA have a lot of similarities and are considered a

special case of finite mixture models in the cluster analysis paradigm. The LCA model

can be seen as a binomial mixture model, whereas the LPA is a Gaussian mixture

model (Robertson and Kaptein, 2016). There has been a great amount of work

to introduce the concepts of LCA and LPA as well as applications and extensions,

e.g., Lazarsfeld and Henry (1968), Clogg and Goodman (1984), McCutcheon (1987),

Bartholomew and Knott (1999), Vermunt and Magidson (2002), Vermunt (2003),

Collins and Lanza (2009).

8
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2.2 Mixture Models in Cluster Analysis

2.2.1 Finite Mixture Model

Cluster analysis is an unsupervised technique that gathers observations with similar-

ities such as distribution and distance into the same group (cluster). In model-based

clustering, the data are modelled assuming that each observation belongs to a cluster

and each cluster is a probability density. Using a finite mixture model allows tractable

parameter estimation as well as the ultimate classifications of each observation into a

cluster (component). A finite mixture model is convex linear combination of a finite

number of probability density functions. The density function of the finite mixture

model can be written as

f(x|ϑ) =
G∑
g=1

πgfg(x|θg), (2.6)

where ϑ = (π1, ..., πG,θ1, ....θG), G is the number of components, π1, ..., πG is a vector

of positive mixing proportions that sum to 1, and fg(x|θg) is the gth component

density. The component distributions can be of any form, continuous or discrete,

such as normal (Gaussian), t, Bernoulli, Poisson, etc.

2.2.2 Gaussian Mixture Model

The most well-known mixture model in cluster analysis is the Gaussian mixture

model. It has received a lot of attention in literature and its application is well-

developed in the field of model-based clustering (e.g., Wolfe, 1963; Banfield and

Raftery, 1993; McNicholas and Murphy, 2008). In the Gaussian mixture model,

we assume that each cluster is normally distributed, each with a distinct mean and

9
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covariance matrix. Thus (2.6) becomes

f(x|θg) =
G∑
g=1

πg
1√

(2π)p|Σg|
exp

{
− 1

2
(x− µg)′Σ−1g (x− µg)

}
(2.7)

where θg = {πg,µg,Σg}Gg=1.

2.2.3 Mixture of Factor Analyzers Model

After the introduction of the Gaussian mixture model for clustering, it showed promis-

ing results in comparison with the distance-based clustering methods such as k-means

or hierarchical clustering (e.g., MacQueen et al., 1967; Hartigan and Wong, 1979;

Fowlkes and Mallows, 1983). However, the Gaussian mixture model is inadequate

when clusters are skewed and/or heavy tailed. Furthermore, when the number of vari-

ables is large, the Gaussian mixture model can lead to over-parametrization. With

these limitations, the mixtures of factor analyzers was introduced. Within each clus-

ter, a local factor analysis model is used, which results in local dimension reduction.

In each group g, we assume that the observations Xi can be modelled using a q-

dimension vector of latent variables Uig analogously to the factor analysis model.

The mixture of factor analyzers model is given by

Xi = µg + ΛgUig + εig (2.8)

with probability πig, for i = 1, ..., n, where Λg is p×q matrix called the factor loadings

matrix, Uig ∼ N(0, Iq), εig ∼ N(0,Ψg), for some p× p diagonal matrix Ψg, and Uig

and εig are independently distributed and independent of each other. The density of

10
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the mixture of factor analyzers model is

f(xi|θg) =
G∑
g=1

πgφ(xi|µg,ΛgΛ
′

g + Ψg). (2.9)

There has been a lot work done on the mixture of factor analyzers model and related

approaches, e.g., Ghahramani et al. (1996), Tipping and Bishop (1999), Yoshida et al.

(2004), Lin (2010), Andrews and Mcnicholas (2011), and Murray et al. (2014).

2.2.4 Mixture of Latent Trait Analyzers Model

Latent trait analyzers have been widely used for the analysis of categorical data in

cluster analysis. This method is based on the latent trait model approach where

the latent variable is continuous. Gollini and Murphy (2014) introduced mixture

of latent trait analyzers (MLTA) model for binary categorical data. Herein, the

conditional distribution of an observation xi belonging to group g can be represented

by the latent trait model with parameters bkg and wkg and the latent variable Yi has

Gaussian distribution. This model not only helps to identify the group membership

of an observation but also helps to accommodate the dependency within each cluster.

The MLTA model can be written as

p(xi|yi) =
G∑
g=1

ηg

∫
y

p(xi|yi, zig = 1)p(yi)dyi (2.10)

where

p(xi|yi, zig = 1) =
K∏
k=1

[πkg(yi)]
xik [1− πkg(yi)]1−xik

11



PhD Thesis - Eman Mohammed S. Alamer McMaster - Mathematics and Statistics

and

πkg(yi) = p(xik = 1|yi, zig = 1) =
1

1 + exp[−bkg + w′kgyi]
.

Tang et al. (2015) introduced the mixture of latent trait models with common

slope parameters (MLCT), where the model is developed using latent traits, and

then applied it on binary data and high-dimensional binary data. The MLCT model

assume that, for K binary response variables, there is a q-dimensional latent variable

Y for each component g and all latent traits have the same slop parameters W =

(w1, ..., wk). The MLCT can be written as

p(xi|yig) =
G∑
g=1

ηg

∫
yg

p(xi|yig, zig = 1)p(yig)dyig, (2.11)

where ηg is the gth mixing proportion,

p(xi|yig, zig = 1) =
K∏
k=1

[πkg[yig]
xik [1− πkg(yig)]1−xik ,

and

πkg(yig) = p(xik = 1|yig, zig = 1) =
1

1 + exp[−w′kyig]
.

2.2.5 Mixture Model for Mixed-type Data

Most work that has been done in the clustering paradigm to model the mixed-type

data is based on combing two latent models into one single model. This idea comes

from generalizing the approach of Bartholomew and Knott (1999) by assuming the

manifest X1, . . . , Xn are conditionally independent given the latent variables. The
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approaches of Muthen and Asparouhov (2006), Vermunt (2007), Browne and McNi-

cholas (2012), McParland and Gormley (2016) and Amiri et al. (2018) are based on

either combining latent trait and factor analysis for the analysis of mixed-type data

or replacing the latent trait with latent class model and choosing the latent variable

to be standard Gaussian distribution. Suppose that there are p observed variables,

where the first c columns are metrical variables and p−c categorical variables (binary,

ordinal or nominal), then mixture model for mixed-type has the form

f(xi|θg) =
G∑
g=1

πg

[∫
y

p∏
j=1

f1(xij|yig,θjg)h(yig)dyig

]
(2.12)

for i = 1, ..., n where f1(·) is the density of the conditional distribution of the observed

variable given the latent variables y and h(·) is the density of the latent variable.

2.3 Parameter Estimation

2.3.1 Expectation-Maximization Algorithm

The expectation-maximization (EM) algorithm (Dempster et al., 1977) is an iterative

method to estimate parameters when the data are not complete. It has two steps:

the expectation step (E-step) and the maximization step (M-step). In both steps, the

complete-data log-likelihood, which includes the observed and unobservable values,

is used. The E-step calculates the conditional expected value of the complete-data

log-likelihood, whereas the M-step consists of maximizing the conditional expectation

from the E-step with respect to the model parameters. The two steps are repeated

until convergence. In cluster analysis, the incompleteness in the data comes from
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the missing labels (group memberships) and, in some cases, the latent variables. For

i = 1, . . . , n, and g = 1, 2, . . . , G, the group memberships denoted by z1, . . . , zn,

where zi = zi1, . . . , ziG is an indicator to the group membership of observation i,

where zig = 1 if the observation xi is in component g and zig = 0 otherwise.

2.3.2 Stopping Criterion

Some of the well-known methods for determining the convergence of the EM algorithm

are based on Aitken’s acceleration (Aitken, 1926). In one such stopping criterion, the

log-likelihood at each iteration is estimated to determines the convergence of the EM

algorithm. At iteration t, the Aitken acceleration is

a(t) =
l(t+1) − l(t)

l(t) − l(t−1)
, (2.13)

where l(t) is the log-likelihood at iteration t. Böhning et al. (1994) define the asymp-

totic estimate of log-likelihood by

l(t+1)
∞ = l(t) +

l(t+1 − l(t)

1− a(t)
. (2.14)

At iteration t, Lindsay (1995) suggested that the EM algorithm will converge when

the difference between the asymptotic log-likelihood and the observed log-likelihood

is small such that

l(t)∞ − l(t) < ε, (2.15)

where ε is very small and the difference is positive.
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2.4 Model Selection and Performance Assessment

2.4.1 Bayesian Information Criterion

There are different techniques to choose the best model in cluster analysis. The

Bayesian information criterion (BIC; Schwarz et al., 1978) is the most widely used

model selection criteria in model-based clustering. It can be calculated from the

following equation

BIC = 2l(ϑ̂)− p log n, (2.16)

where l(ϑ̂) is the maximized log-likelihood, p is the number of free parameters to

be estimated, and n is the number of observations. When we compare different

models, the model with the largest BIC is chosen. The BIC is not only used as a

model selection criterion but also helps to select the number of components G and

the number of latent variables q. Keribin (2000) and Kass and Wasserman (1995)

discussed the theoretical justifications to use the BIC as a model selection criterion in

model-based clustering, whereas Fraley and Raftery (2002), Raftery and Dean (2006)

and McNicholas and Murphy (2008) provide practical justifications.

2.4.2 Adjusted Rand Index

In cluster analysis, the labels are unknown or we assume that the (true) labels are

unknown. However, in illustrative examples, we have usually known the labels and we

can use them to assess the performance of clustering techniques. Hubert and Arabie

(1985) proposed the adjusted Rand index (ARI) to measure the performance of the

clustering. It compares two different partitions in the dataset and has the following
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general form

index - expected index

maximum index - expected index
,

where “index” refers to the Rand index (Rand, 1971). The expected value of ARI

under random classification is 0 and value of 1 for perfect classification.

2.5 Variance-Mean Mixtures

Suppose there is a k-variate random vector X defined in terms of a variance-mean

mixture. Then X has a probability density function of the form

f(x) =

∫ ∞
0

φk(x|µ+ wα, wΣ)h(w|θ)dw,

where W is a random variable W > 0 that has density function h(w|θ), and φk(·) is

the density function of the k-variate Gaussian distribution. Equivalently, X can be

written in the form

X = µ+Wα+
√
WV, (2.17)

where µ is a location parameter, α is the skewness, V has a multivariate Gaussian

distribution with mean 0 and covariance matrix Σ, W has density function h(w|θ),

and W and V are independent. By changing the distribution of W , we can use

the variance-mean mixture representation to obtain other multivariate distributions

(McNicholas, 2016). For example, when W ∼ IG (ν/2, ν/2), we can obtain the multi-

variate skew-t distribution with ν degrees of freedom, where IG(·) denotes the inverse
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Gamma distribution and has density function

f(w|α, β) =
βα

Γ(α)
w−α−1 exp

{
−β
w

}
.

Similarly, we can use to obtain the variance-gamma distribution by letting the dis-

tribution of W in (2.17) be from a gamma with shape and scale parameter λ, ψ/2,

where the density function of gamma distribution is

f(w|α, β) =
βα

Γ(α)
wα−1 exp{−βw}.

The variance-mean mixture representation used widely in model-based clustering and

classification methods, e.g., Murray et al. (2014) use skew-t, and McNicholas et al.

(2017) use variance-gamma distribution.

2.6 Non-Gaussian Distributions

2.6.1 Generalized Inverse Gaussian Distribution

A random variable X follows a Generalized Inverse Gaussian (GIG) distribution

(Good, 1953), if its density function written as

f(x | a, b, λ) =
(a/b)

λ
2 xλ−1

2Kλ(
√
ab)

exp

{
−ax+ b/x

2

}
,

where (a, b) ∈ R+, λ ∈ R and Kλ(u) is the modified Bessel function of the third kind

defined as

Kλ(u) =
1

2

∫ ∞
0

xλ−1 exp

{
−u

2

(
x+

1

x

)}
dx.
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The GIG distribution has important tractable expectations that is used for parameter

estimation in different skewed data e.g.,

E(X) =

√
b

a

Kλ+1(
√
ab)

Kλ(
√
ab)

, (2.18)

E (1/X) =

√
a

b

Kλ+1(
√
ab)

Kλ(
√
ab)

− 2λ

b
, (2.19)

E(logX) = log

(√
b

a

)
+

1

Kλ(
√
ab)

∂

∂λ
Kλ(
√
ab). (2.20)

2.6.2 Generalized Hyperbolic Distribution

Following McNeil et al. (2015) parametrizations for the generalized hyperbolic distri-

bution (GHD), a p-dimensional random variable X said to have GHD if it has density

function of form

f(x|ϑ) =

[
χ+ (x− µ)

′
Σ−1(x− µ)

ψ +αΣ−1α

](λ−p/2)/2

×
[ψ/χ]λ/2K(λ−p/2)

(√
[ψ +αΣ−1α] [ χ+ (x− µ)′Σ−1(x− µ)]

)
(2π)

p
2 |Σ| 12Kλ(

√
χψ) exp(x− µ)′Σ−1α

,

where ϑ = (λ, χ, ψ,µ,Σ,α), λ > 0 is the index parameter, χ, ψ are concentration

parameters, µ,α ∈ Rp are the location and skewness parameter, and K(·) is the

modified Bessel function of the third kind.
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Chapter 3

Mixture for Skewed Mixed-type

Data

3.1 Introduction

In this chapter, we will introduce a mixture approach for skewed mixed-type data

by extending the mixture of mixed-type data approach that has been introduced by

Browne and McNicholas (2012). This extension allows for the presence of skewness

in the continuous variables. This model uses the skew-t factor analysis model and

the latent trait model. The factor analysis model is used to model the continuous

variables, whereas the latent trait model is for the categorical variables. This chapter

is arranged as follows. Details of the development of density and the likelihoods of the

proposed model are presented. Next, we outline the parameter estimation procedure

using the EM algorithm and computational consideration. The chapter concludes

with the application of our model that is applied to simulated and real data and a

summary section.
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3.2 Skew-t Factor Analyzers

The density of a p-dimensional random vector X following a skew-t distribution (St)

is

f(x|µ,Σ,α, ν) =

[
ν + δ(x,µ|Σ)

α′Σ−1α

](−ν−p)/4
νν/2K−ν−p

(√
[α′Σ−1α][ν + δ(x,µ|Σ)]

)
× 1

(2π)p/2 |Σ|1/2 Γ(ν/2)2ν/2−1 exp {(µ− x)′Σ−1α}
,

where µ is the location parameter , Σ is the scale matrix, α is the skewness parameter,

ν is the degrees of freedom, and K(·) is the modified Bessel function of the third kind.

Let X ∼ St(µ,Σ,α, ν) denotes that the p-dimensional random vector X follows

a skew-t distribution. Then we can generate the random variable X via combining a

random variableWi ∼ IG(ν/2, ν/2), where IG denotes the inverse-gamma distribution

with the latent V ∼ N (0,Σ) via

X = µ+Wα+
√
WV.

It is easy to show that Xi | wi ∼ N (µ + wiα, wiΣ). Now, from Bayes’ theorem we

get

f(w | x) =
f(x | w)g(w)

f(x)

=

[
ψ +α′Σ−1α

ν + δ(x,µ|Σ)

](ν−p/2)/2
1

2Kν−p/2

(√
[ν +α′Σ−1α][ν + δ(x,µ|Σ)]

)
× wν−p/2−1 exp{−

[
w(ψ +α′Σ−1α+ (ν + δ(x,µ|Σ))/w

]
/2}

so that Wi | (Xi = x) ∼ GIG(α′Σ−1α, ν+δ(x,µ|Σ),−(ν+p)/2) where GIG denotes
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the generalized inverse Gaussian distribution. Using a factor analysis model, we can

rewrite X as

Xi = µ+Wiα+ V∗i (3.1)

where

V∗i = ΛY + εi (3.2)

where Λ is a matrix of factor loadings, Y ∼ t(ν) is a q-dimensional latent variable and

Yi | wi ∼ N (0, wiIq) , ε | wi ∼ N (0, wiΨ) where is Ψ = dig(ψ1, ..., ψp). Substituting

(3.2) in (3.1), the skew-t factor analysis model can be written as

Xi = µ+Wiα+ ΛYi + εi. (3.3)

Then it is easy to show Xi ∼ St(µ,ΛΛ′ + Ψ,α, ν) and Xi | yi, wi ∼ N (µ + wiα +

Λyi, wiΨ).

3.3 Mixture Model for Skewed-t Mixed-type Data

Suppose that we have mixed-type data with i rows and p columns. Without loss

of generality, let the first c columns be the categorical variables, and the remaining

p − c columns be continuous variables. Assume we have p-dimensional observed

variables Xi = (Xi1, . . . , Xip) and q-dimensional latent variables Yi with q < p.

In our model, we assume that the observed variables are independent given latent

variables. Furthermore, let Wi as defined before be another latent variable and then

assume that Yi | wi ∼ N (0, wiIq).

Now, if the manifest variable Xij is categorical with levels 0, 1, 2, . . . Kj − 1, then
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the conditional distribution is Bernoulli with success probability

g1(xij = k|yi, wi,θj) =

∏Kj−1
k=0 [exp{ηjk + τ ′jkyi}]xij(k)

1 +
∑Kj−1

k=0 exp{ηjk + τ ′jkyi}
, (3.4)

where xij(k) = 1 if xij is in category k and 0 otherwise.

If the observed variable Xij is continuous and follows a skew-t distribution, the

conditional density is similar to conditional density that is derived from skew-t factor

analysers

g1(xij|yi, wi,θj) =
1√

2πwiψj
exp

{
− 1

2wiψj
(xij − µj − λjyi − wiαj)2

}
, (3.5)

where µj and αj are the jth element of µ and α, respectively, and λj is the jth row

of Λ.

Combining both density functions from the continuous and the categorical ob-

served variables, we can extend (2.1) as follows

f(x|ϑ) =

∫
y

∫
w

p∏
j=1

g1(xij|yi, wi,θj)g2(yi|wi)g3(wi)dwidyi. (3.6)

Now applying model-based cluster analysis methodology, we can write the mixture

model of latent variables for mixed-type data as

f(x|ϑ) =
G∑
g=1

πg

[∫
y

∫
w

p∏
j=1

g1(xij|yig, wig,θjg)g2(yig|wig)g3(wig)dwigdyig

]
(3.7)

where ϑ denotes all model parameters.
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3.3.1 Parameter Estimation

Parameter estimation is carried out within the EM algorithm. We start by initial-

izing the parameters µg,αg,ΛgΨg, νg, ηg, and τg for g = 1, . . . , G. Then, the EM

algorithm alternates between E-step and the M-steps until convergence. In the E-

step, we calculate the conditional expectation of the complete-data log-likelihood.

The complete-data consists of the labels z1, . . . , zn, the latent variables yi, . . . ,yn

and w1, . . . , wn along with the observed data. The complete-data log-likelihood has

the form

lc(ϑ) = L1 + L2 + L3 + L4 + L5, (3.8)

where

L1 =
n∑
i=1

G∑
g=1

zig log πg,

L2 =
n∑
i=1

G∑
g=1

c∑
j=1

zig

log

Kj−1∏
k=0

[exp{ηjkg + τ ′jkgyig}]xij(k)


− log

1 +

Kj−1∑
k=0

exp{ηjkg + τ ′jkgyig}

 ,

L3 =
n∑
i=1

G∑
g=1

p∑
j=c+1

zig

[
1

2
log 2π +

1

2
log

(
1

wig

)
−2 logψjg −

1

2wigψjg
(xij − µjg − λjgyig − wigαjg)2

]
,

L4 =
n∑
i=1

G∑
g=1

zig

[
q

2
log

(
1

wig

)
+
q

2
log

(
1

2π

)
+

1

2wig
yigy

′
ig

]
,
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L5 =
n∑
i=1

G∑
g=1

zig

[
νg
2

log
νg
2

+ log
1

Γ(νg
2

)
+ (

νg
2
− 1) logwig −

1

wig

νg
2

]
.

The following expectations are needed to estimate and update the latent and the

labels:

1. E[Zig|xi] = πgf(xi|θg)∑G
h=1 πhf(xi|θh)

=: ẑig

2. E[Wig|xi, Zig = 1] =: aig

E[Wig|xi, Zig = 1] =

∫
w

wig
f(xi, wig)

f(xi)
dwig.

3. E[1/Wig|xi, Zig = 1] =: big and E[logWig|xi, Zig = 1] =: cig can be calculated

from the conditional expectation of a function of W

E[g(Wig)|xi, Zig = 1] =

∫
w

g(wig)
f(xi, wig)

f(xi)
dwig.

4. E[Yig|xi, Zig = 1] =: e1ig

E[Yig|xi, Zig = 1] =

∫
y

yig
f(xi,yig)

f(xi)
dyig.

5. E[(1/Wig)Yig|xi, Zig = 1] = E[g(Wig)E[Yig|xi, wig, Zig = 1]|xi] =: e2ig

=

∫
w

{
g(wig)

f(xi, wig)

f(xi)

[∫
y

yig
f(xi,yig, wig)

f(xi, wig)
dyig

]}
dwig.

6. E[(1/Wig)YigY
′
ig|xi, Zig = 1] = E[g(Wig)E[YigY

′
ig|xi, wig, Zig = 1]|xi] =: E3ig

=

∫
w

{
g(wig)

f(xi, wig)

f(xi)

[∫
y

yigy
′
ig

f(xi,yig, wig)

f(xi, wig)
dyig

]}
dwig,
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where

f(xi,yig, wig) =

p∏
j=1

g1(xi|yi, wig,θjg)g2(yig|wig)g3(wig),

f(xi,yig) =

∫
w

f(xi,yig, wig)dwig,

f(xi, wig) =

∫
y

f(xi,yig, wig)dyig.

Note that all the integrals do not have a closed form when the data are mixed-type

and must be solved numerically.

In the M-step, we maximize the expected value of the complete log-likelihood to

update the parameters in our model. The update for the mixing proportions is given

by

π̂g =
ng
n
,

where ng =
∑n

i=1 ẑig.

If the manifest variable Xi is continuous, then the update for the parameters

µg,αg,Λg, Ψg, νg are analogous to the updates in factor analysis methodology.

µ̂g =

∑n
i=1 xiẑig(ābig − 1)∑n
i=1 ẑig(ābig − 1)

, α̂g =

∑n
i=1 ẑigxi(b̄g − big)∑n
i=1 ẑig(ābig − 1)

,

where ng =
∑n

i=1 ẑig,

āg =

∑n
i=1 ẑigaig
ng

, b̄g =

∑n
i=1 ẑigbig
ng

,

Λ̂g =

{
n∑
i=1

ẑig[(xi − µ̂g)e
′

2ig − α̂ge
′

1ig]

}{
n∑
i=1

ẑigE
′

3ig

}−1
,
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Ψ̂g =
1∑n
i=1 ẑig

dig

{
n∑
i=1

ẑig[big(xi − µ̂g)(xi − µ̂g)
′ − 2α̂g(xi − µ̂g)

′
+ aigα̂gα̂

′

g

−2(xi − µ̂g)e
′

2igΛ̂
′

g + 2α̂ge
′

1igΛ̂
′

g + Λ̂gE3igΛ̂
′

g]
}
.

The update for the degree of freedom ν can be calculated by solving the following

equation:

(
n∑
i=1

ẑig

)[
log

(
ν̂newg

2

)
− ϕ

(
ν̂newg

2

)
+ 1

]
−

n∑
i=1

ẑig (cig − big) = 0

where ϕ(·) is the digamma function.

Now, if the observed variable Xi is categorical, then the update for the parameters

ηg, τg can be obtained by by numerically solving the following system of non-linear

equations:

n∑
i=1

ẑig

∫
y

(1,yig) [xij(k)− g(xij = k|yig, wig,θjg)]h(yi|xi)dyig = 0.

3.3.2 Computational Considerations

Numerical calculation problems

We encounter two problems, one related to calculating the expectations in the E-

step and one in the M-step, specifically in the update for the categorical variable

parameters. To overcome the first problem, we use some R packages to calculate and

approximate the numerical integral such as cubature and calculus (Narasimhan

et al., 2021; Guidotti, 2020). For the latter issue, we use numerical methods such as

Newton–Raphson from nleqslv package to compute the solution of the non-linear
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system of the equations (Hasselman and Hasselman, 2018).

Initialization

As the EM algorithm is sensitive to the starting value, it is important to choose a

starting value that helps to get a better estimator and speed the convergence. For

the group membership zig, we use soft values that are randomly generated from a

uniform over the interval (0,1). For the continuous variable parameters: µg are based

on calculating the weighted mean of zig, the degrees of freedom vg = 30, the loading

factor matrix Λg a p×q matrix of ones, and p×p identity matrix for Ψg. We follow the

initialization recommendation for the logistic and multinomial regression to initialize

categorical variable parameters so that ηg = 0, τg = 0.

Number of Free Parameters

Number of free parameters that will be used to calculate the BIC is based on the num-

ber of free parameters in p1-dimensional continuous and p2-dimensional categorical

variables. Hence, the number of free parameters in the MMSM model is

(G− 1) + 2Gp1 +G+G

[
p1q −

1

2
q(q − 1)

]
+Gp1 +G

[
p2q −

1

2
q(q − 1)

]
+Gp2.

3.4 Simulation

Two simulations are performed to illustrate the accuracy of our model. We first

simulate data sets from our mixture model with two groups and n = 100, 200, 400

observations per group. In the first simulation, the two mixture components are very

well separated whereas in the second simulation there is an overlap between clusters.
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Figure 3.1 shows an illustration of one of the simulated data sets from each simulation.

We fit different models to the simulated data by varying the number of groups G and

the dimension of the latent variables q. We then calculate the ARI and BIC for each

scenario and choose the best model based on the highest BIC.

Table 3.1 and Table 3.2 display the result for the the true value of the model

parameters as well as their mean and standard error for simulation studies 1 and 2,

respectively. We can notice that the sample size has an effect on the parameter

estimation. As the sample size increases, the mean of the parameter gets closer to

the true parameter and the standard deviation decreases.

Table 3.3 presents the number of groups that is chosen by the BIC and the number

of latent factors q. From Table 3.3 , we notice that the average ARI values are higher

when the groups are well separated. It also picks the correct number of groups and

the number of latent factors more often than when the groups are overlap. From both

simulations, we can see there is an effect of sample size on ARI. As we increased the

sample size, the ARI values increase too.

3.5 Australian Institute of Sport Data

The Australian Institute of Sport (AIS) data is a well-known data set that is used

to illustrate the performance of mixtures of skewed distributions (e.g., Murray et al.,

2014). The data frame has 202 observations on 13 continuous variables. The variables

represent 13 body measurements for 102 males and 100 females. Since all the variables

are numerical, we categorize the hemoglobin concentration (HGB) variable as follows:

If the HGB is between 12 and 17.4, it is normal; otherwise, it is not. Our analysis

also considers body fat percentage (PBF) and body mass index (BMI).
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Figure 3.1: Example of one of the simulated data set from (a) Simulation 1 , (b) Simula-

tion 2.
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Table 3.3: The number of times that the BIC correctly chose the number of groups
G, factors q and the average ARI for simulation 1 and simulation 2 .

n Simulation 1 Simulation 2

G q ARI G q ARI

100 25 25 1.00 23 24 0.81
200 25 25 0.99 24 25 0.86
400 25 25 1.00 24 25 0.90

We fit our model (MMSM) to see whether it can distinguish between male and

female athletes. We compare this to the model proposed by Browne and McNicholas

(2012), fit to the same data. Both model were fit with number of component G =

1, ..., 5 and latent factor q = 1, 2. Based on the highest BIC (−2333.070), our model

chooses the correct number of groups G = 2 and has ARI = 0.847. The best fit via

Browne and McNicholas (2012) model gives three components with BIC = −2338.973

and ARI = 0.701. Hence, our model performs better on these data than the approach

of Browne and McNicholas (2012). The classification performance of each of these

models is shown in Table 3.4. Figure 3.2 represents the clustering results for the

MMGM (a) and MMSM (b) mixture models on the AIS data; the blue and pink

colours highlight the predicted group memberships for the male and female athletes.

We can see that there are more mislabelled points in the MMGM that in MMSM.

Table 3.4: Clustering results for the chosen MMSM and MMGM models for the AIS
data.

MMSM MMGM

1 2 1 2 3

Female 98 2 1 92 7
Male 6 96 83 5 14
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(a)

(b)

Figure 3.2: The AIS data with predicted group memberships by (a) MMGM , (b) MMSM.
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3.6 Summary

A mixture approach for mixed-type data has been introduced where the continuous

variables are assumed to jointly follow a skewed-t distribution.This model was de-

veloped based on the factor analysis model and latent trait model. Two simulation

studies were conducted to assess the performance of our model. The mixture com-

ponents in the first simulation were far whereas in the second they were close and

overlapped. Model fitting and parameter estimation was carried via the EM algo-

rithm. The E-step calculation was carried out using numerical integration due to

complexity of the model and there is no closed form for all the integrations.

We applied our model to AIS data to distinguish between male and female athletes

and compared our model performance with the approach of Browne and McNicholas

(2012). Our model performed better than the Browne and McNicholas (2012) model

and chose the correct group.
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Chapter 4

Mixture for Contaminated

Mixed-type Data

4.1 Introduction

Real data is usually considered contaminated data. The contamination can be in

the form of outliers, noise, and/or extreme points. It is one of the challenging issues

in statistical learning methods, especially for model-based clustering methods. The

presence of outliers can effect parameter estimation, lead to overfitting by increasing

the number of groups, and/or lead to misclassifications.

Atypical or “outlier” points can be mild or gross atypical observations (Ritter,

2014). Mild outliers are far from, or sampled from a different population than, the

assumed model and we can model them by using flexible or heavy-tailed distribution

such as the t-distribution. On the other hand, gross outliers are points that are far

away from any of the clusters and cannot be modelled by any distribution. In the

presence of gross outliers, trimming those observations is one way to handle them.
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There has been a great amount of work to handle gross outliers in cluster analysis,

e.g.,Cuesta-Albertos et al. (1997), Garcia-Escudero and Gordaliza (1999), Gallegos

and Ritter (2005), and Ruwet et al. (2013).

4.2 Contaminated Gaussian Distribution

The Gaussian scale mixture model is a unimodal, and elliptically symmetric model

with heavy tails (Watanabe and Yamaguchi, 2003):

∫ ∞
0

fMN(x;µ,∆/w)dH(w), (4.1)

where fMN(·) is density function of multivariate normal with mean µ and covariance

matrix ∆/w and H(·) is a probability density (or mass) function. We can drive

different heavy-tailed distribution by changing the distribution ofW . WhenW follows

a gamma distribution with scale and shape parameters ν/2, we obtain t distribution.

Now, let W a dichotomous random variable with probability mass function

h(w;α, η) = α
w−1/η
1−1/η (1− α)

1−w
1−1/η , (4.2)

where

W =


1 with probability α,

1
η

with probability (1− α).
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Then substituting 4.2 in 4.1, we obtain contaminated Gaussian distribution. A m-

variate random vector X from contaminated Gaussian distribution will has a proba-

bility density function (pdf) of the form

fMCN(x;µ,∆, α, η) = αfMN(x;µ,∆) + (1− α)fMN(x;µ, η∆) (4.3)

where fMN(x;µ,∆) ∼ Nm(µ,∆), fMN(x;µ, η∆) ∼ Nm(µ,η∆), α ∈ (0.5, 1) repre-

sent the proportion of good points and η > 1 is the degree of contamination (Tukey,

1960). From the pdf of contaminated Gaussian distribution, we can see that this is a

Gaussian mixture with two components. Where the first represent the good compo-

nent with prior probability α and the second is for the “bad” component with (1−α)

prior probability. When α and η tend to one, 4.3 becomes the multivariate Gaussian

distribution with mean µ and m×m covariance matrix ∆.

The contaminated Gaussian distribution not only model a data with atypical

points but also able to detect them. Once the parameters µ,∆, α, η are estimated,

we can calculate a posteriori probability of a generic observation xi to determine

whether xi is typical or atypical point. The a posteriori probability can be calculated

from the following

P (xi is good|ϑ̂) =
α̂fMN(x; µ̂, ∆̂)

fMCN(x; µ̂, ∆̂, α̂, η̂)
. (4.4)

If the above probability is > 0.5, then xi is considered typical observation.
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4.3 Contaminated Gaussian Factor Analyzers

A t-factor analysis model proposed by McLachlan et al. (2007) to model data with

atypical observations; however, it can not detect the bad points. A contaminated

factor analyzers introduced by Punzo and McNicholas (2014). This model is an

extinction of the well known Gaussian factor analysis model (see 2.2.3) that helps to

capture and identify outliers in a given data and improve the robustness. Herein, the

contaminated Gaussian factor assumes that the joint distribution of a m-dimensional

observed variables X1, . . . , Xn, and q-dimensional latent variables Yi is

Xi

Yi

 ∼ CNm+q


µ

0

 ,
ΛΛ

′
+ Ψ Λ

Λ
′

Iq

 , α, η
 , (4.5)

where CNm+q(·) denote multivariate contaminated Gaussian distribution, Λ is the

factor loading with dimension m× q, Ψ is m×m a diagonal matrix, and Iq is q × q

identity matrix.

Now, using representation of the contaminated Gaussian distribution that is dis-

cussed in Section 4.2, we can write the joint pdf (4.5) given Wi = wi as

Xi,Yi | Wi = wi ∼ Nm+q(µ
?,∆?/wi), (4.6)

where

µ? =

µ
0

 ,
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∆? =

ΛΛ
′
+ Ψ Λ

Λ
′

Iq

 ,
and Wi ∼ C(α, η). Then,

Xi|wi ∼ Nm(µ, (ΛΛ′ + Ψ)/wi),

Yi|wi ∼ Nq(0, Iq/wi),

εi|wi ∼ Nm(0,Ψ/wi),

and so

Xi ∼ CNm(µ, (ΛΛ′ + Ψ), α, η),

Yi ∼ CN q(0, Iq, α, η),

εi ∼ CNm(0,Ψ, α, η).

Unlike the usual Gaussian factor analysis, the independence between the factor Yi and

the error εi terms no longer holds; however, they remain unconditionally uncorrelated.

It can easily show that uncorrelated relation from eq:contfa by conditioning on w.
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4.4 Mixture Model for Contaminated Mixed-type

Data

4.4.1 Model

In this section, we propose a finite mixture of contaminated mixed-type data as modi-

fication to the approach of Browne and McNicholas (2012) to detect the occurrence of

the atypical points. We developed our model by following the approach that is used

by (Punzo and McNicholas, 2016). Analogously, we used the contaminated normal

distribution along with two types of latent models to identify the bad points.

Now, assume we have mixed-type data with i rows and p columns. Without loss

of generality, let the first c columns be the categorical variables, and the remaining

p − c columns be continuous variables. For p-dimensional observed variables Xi =

(Xi1, ..., Xip)
′ there exists q-dimensional latent variables Yi with q < p. In our model,

we assume that the observed variables are independent given the latent variables.

Furthermore, let Wi be as defined in (4.2) be another latent variable. Then, Yi | wi ∼

Np(0, Iq/wi).

If the manifest variable Xij is categorical with levels 0, 1, 2, . . . Kj − 1, then the

conditional distribution is Bernoulli with success probability

g1(xij = k|yi, wi,θj) =

∏Kj−1
k=0 [exp{βjk + τ ′jkyi}]xij(k)

1 +
∑Kj−1

k=0 exp{βjk + τ ′jkyi}
, (4.7)

where xij(k) = 1 if xij is in category k and 0 otherwise.
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If the manifest variables Xij are continuous, we can use a factor analysis repre-

sentation to write

Xi = µ+ ΛYi + εi (4.8)

where Λ is a matrix of factor loadings, ε ∼ N (0,Ψ), Yi ∼ N (0, Iq), and Ψ =

diag(ψ1, ..., ψp).

Now, using the assumption that Wi ∼ C(α, η), it follows that

Xi|wi ∼ N (µ, (ΛΛ′ + Ψ)/wi)

and hence Xi ∼ CN p(µ, (ΛΛ′ + Ψ), α, η). Then the conditional density of Xij given

the latent variables can be written as

g1(xij = k|yi, wi,θj) = Xi|yi, wi ∼ N (µ+ Λyi,Ψ/wi). (4.9)

Combining both density functions from (4.7) and (4.9), the density in (2.1) can be

extended as follows:

f(xi) =

∫
y

∑
w

p∏
j=1

g1(xij|yi, wi,θj)g2(yi|wi)h(wi)dyi. (4.10)

The mixture model for contaminated mixed-type data (MMCM) has density of the

form

f(x|ϑ) =
G∑
g=1

πg

[∫
y

∑
w

p∏
j=1

g1(xij|yig, wig,θjg)g2(yig|wig)h(wig)dyig

]
, (4.11)

where ϑ denotes all model parameters.

41



PhD Thesis - Eman Mohammed S. Alamer McMaster - Mathematics and Statistics

4.4.2 Likelihoods

Using a linear transformation of W , let the indicator variable V be given by

V =
w − 1/η

1− 1/η

and, therefore, the density of W in (4.2) can be written as

h(v,θ) = αv(1− α)(1−v) (4.12)

V =


1 with probability α,

0 with probability (1− α).

Thus, the observed log-likelihood for the MMCM model is

l(ϑ|x1, ...,xn) =
n∑
i=1

log

{
G∑
g=1

πg

[∫
y

∑
v

p∏
j=1

g1(xij|yi, vig,θj)g2(yig|vig)h(vig)dyig

]}
.

In the MMCM model, there are three sources of incomplete data: the group

memberships, the classification of the type of observation, and the latent variables.

We will use zi to donate group memberships, and vi for the type of each observation

so that if vig = 1 if observation i in component g is typical and vig = 0 if observation

i in component g is atypical. Therefore, the complete-data log-likelihood for the

MMCM model is given by

lc(ϑ) = L1 + L2 + L3 + L4 + L5, (4.13)
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where

L1 =
n∑
i=1

G∑
g=1

zig log πg,

L2 =
n∑
i=1

G∑
g=1

zig [vig logαg + (1− vig) log(1− αg)] ,

L3 =
n∑
i=1

G∑
g=1

c∑
j=1

zig

log

Kj−1∏
k=0

[exp{βjkg + τ ′jkgyig}]xij(k)


− log

1 +

Kj−1∑
k=0

exp{βjkg + τ ′jkgyig}

 ,

L4 = C − 1

2

n∑
i=1

G∑
g=1

p(1− vig) log ηg −
1

2

n∑
i=1

G∑
g=1

zig log |Ψg|

− 1

2

n∑
i=1

G∑
g=1

zig

(
vig +

1− vig
ηg

)[
tr
{

(xi − µg)
′
Ψ−1g (xi − µg)

}
−2tr

{
(xi − µg)

′
Ψ−1g Λgyig

}
+ tr

{
Λgyigy

′

igΨ
−1
g Λ

′

g

}]
,

L5 =
n∑
i=1

G∑
g=1

zig

C − q

2
(1− vig) log ηg −

(
vig +

1−vig
ηg

)
2

yigy
′
ig

 .

4.4.3 Parameter Estimation

Parameter estimation is carried out within the EM algorithm as described below.

1. Initialization: Initialize the mode parameters µg, αg, ηg,ΛgΨg, βg, and τg.

2. E Step:
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(a) E[Zig|xi] = πgf(xi|θg)∑G
h=1 πhf(xi|θh)

=: ẑig.

(b) E[Vig|xi, Zig = 1]

=
αg
∫

yig

∏p
j=1 g1(xi|yi, vig = 1,θjg)g2(yig|vig = 1)dyig

f(xi|θg)
=: v̂ig.

(c) E[Zig

(
Vig +

1−Vig
ηg

)
Yig|xi]

=

∫
y

zig

(
vig +

1− vig
ηg

)
yig

f(xi,yig)

f(xi)
dyig =: e1ig.

(d) E[Zig

(
Vig +

1−Vig
ηg

)
YigY

′
ig|xi]

=

∫
y

zig

(
vig +

1− vig
ηg

)
yigy

′
ig

f(xi,yig)

f(xi)
dyig =: E2ig.

where

f(xi,yig) =
∑
v

p∏
j=1

g1(xij|yig, vig,θjg)g2(yig|vig)h(vig)

= αg

p∏
j=1

g1(xi|yig, vig = 1,θjg)g2(yig|vig = 1)

+ (1− αg)
p∏
j=1

g1(xi|yig, vig = 0,θjg)g2(yig|vig = 0),

f(xi|ϑ) = αg

∫
yig

p∏
j=1

g1(xi|yig, vig = 1,θjg)g2(yig|vig = 1)dyig

+(1− αg)
∫

yig

p∏
j=1

g1(xi|yig, vig = 0,θjg)g2(yig|vig = 0)dyig.

All the expectations are calculated and solved numerically since the integrals
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do not have a closed form when the data are mixed-type.

3. M step: Maximizing the exceptions in step 2.

π̂g =

∑n
i=1 ẑig
n

,

α̂g = max

{
α∗,

∑n
i=1 ẑigv̂ig∑n
i=1 ẑig

}
, α∗ = 0.5,

The updated for the parameters (βg, τg) can be calculated by solving the fol-

lowing non-linear system of equation:

n∑
i=1

ẑig

{∫
yig

(1,yig)[xij(k)− g1(xij = k|yig,θjg)]h(yig|xi)dyig

}
,

µ̂g =

∑n
i=1

(
v̂ig +

1−v̂ig
η̂g

)
xiẑig∑n

i=1

(
v̂ig +

1−v̂ig
η̂g

)
ẑig

,

Λ̂g =

{
n∑
i=1

(xi − µ̂g)e
′

1ig

}{
n∑
i=1

E2ig

}−1
,

Ψ̂g =
1∑n
i=1 ẑig

dig

{
n∑
i=1

[
ẑig

(
v̂ig +

1− v̂ig
η̂g

)
(xi − µ̂g)(xi − µ̂g)

′

−2(xi − µ̂g)e
′

1igΛ̂
′

g + Λ̂gE2igΛ̂
′

g

]}
,

η̂g = max

{
η∗,

∑n
i=1 ẑig(1− v̂ig)(xi − µ̂g)

′
(Ψ̂g)

−1(xi − µ̂g)
p
∑n

i=1 ẑig(1− v̂ig)

}
, η∗ = 1.001.

4. Check for convergence: If converged, stop; otherwise, repeat steps 2–3 until

convergence.
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4.4.4 Computational Considerations

Numerical Integration and Initialization

As mentioned in the previous section, all the integrals can not be simplified and writ-

ten in closed form due to the complexity of the model. We used numerical integration

methods similar to the one we outlined in Section 3.3.2.

The starting values play an important role when we use the EM algorithm. The

choice of initialization can help to speed-up convergence and obtain a closer value to

the true parameter. The initial values for the group membership zig are initialized by

generating uniform random numbers over the interval (0,1) and then standardizing

to ensure
∑G

g=1 zig = 1. We then use zig to calculate the mean component µg. The

initial values for Λg and Ψg as well as the categorical variable parameters, so that

βg = 0, τg = 0, are discussed in Section 3.3.2. For the contamination parameters

α and η, we follow the initialization recommendation from Punzo and McNicholas

(2016). At iteration t = 0, α0
g = 0.999 and η0g = 1.001 , where g = 1, 2, ..., G.

Number of Free Parameters

The MMCM has m free parameters that can be calculated from the following

(G− 1) +Gp1 +G

[
p1q −

1

2
q(q − 1)

]
+Gp1 + 2G+G

[
p2q −

1

2
q(q − 1)

]
+Gp2,

where p1 is the number of continues variables and p2 denotes the categorical variables,

and G is the number of clusters.
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4.5 Simulation

Five simulation cases were considered to assess the performance and the behaviour

of the MMCM model. We simulate two components from each case then we fit the

MMCM model. The sample size that we used is n = 50, 100, 200 per group to assess

the effect of the sample size in each simulation study.

1. Each component from contaminated normal distribution with α1 = 0.90, α2 =

0.80, and η1 = 20, η2 = 30.

2. Both clusters are normally distributed.

3. Two t-distributed groups with degree of freedom ν1 = 4, ν2 = 60.

4. Gaussian clusters with 5% of the data are replaced with noise generated from

uniform (−15, 15).

5. Gaussian clusters with a perturbed observation. One observation from each

group is randomly selected then a constant c ∈ {4, 8, 12, 16} is added to that

observation.

The common parameters in all simulation studies cases are:

π1 = 0.5, µ1 =

−5

−5

 , Σ1,=

 0.48 −0.17

−0.17 1.14

 , β1 = 1, τ1 = 0

π2 = 0.5, µ1 =

5

5

 Σ2,=

1.39 0.27

0.27 0.16

 , β2 = −1, τ2 = 0
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Figure 4.1 is pair plots for one of the 25 simulated data sets from each simulation

scenario, where the blue and red points represent the typical points and the green

with alien shape are atypical points. In all simulation study, we fit MMCM and

MMGM model with different latent q = 1, 2, and G = 1, 2, 3, 4. Then we use BIC

and ARI to compare the performance of our model with MMGM model.

4.5.1 Simulation Results

A general pattern we noticed among all simulation scenarios is that sample size indeed

has an effect on the accuracy of parameter estimation and the ARI values. There is

a positive relationship between the sample size and parameter estimations and with

the ARI; as the sample size increases, the value of estimations and ARI improve.

Table 4.1 displays results for scenario 1, where each group has atypical points.

Herein, we noticed that the MMCM performed better than MMGM, and the param-

eter estimates are closer to the true parameters. Not only the values of the parameters

are better when we fit MMCM, but also the BIC and ARI values are better, as shown

in Table 4.2.

The results under scenario 2, where the first table is a summary of parameter

estimates and the second table contains the average of BIC and ARI values under

MMCM and MMGM are reported in Tables 4.3 and 4.4. As expected, both models did

well in this scenario; however, the MMCM has slightly higher mean ARI than MMGM.

This indicates that when the data follow a Gaussian distribution, the MMCM can do

same as or better than MMGM.

Table 4.5 reports the results for scenario 3 when both clusters are generated using

t-distribution. From Table 4.6, the results are not too surprising that MMGM has the
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(a) (b)

(c) (d)

(e)

Figure 4.1: Example of one of the simulated data sets from (a) scenario 1, (b) scenario 2,

(c) scenario 3, (d) scenario 4, and (e) scenario 5.

49



PhD Thesis - Eman Mohammed S. Alamer McMaster - Mathematics and Statistics

Table 4.1: The means and the standard deviations from simulation scenario 1.

Parameters MMCM MMGM

Means Standard deviations Means Standard deviations

n
=

5
0

µ1 (−5.0393,−4.9681)′ (0.1173, 0.1741)′ (−4.9983,−4.9230)′ (0.1988, 0.2372)′

µ2 (5.0525, 5.0059)
′

(0.2311, 0.0952)′ (5.2107, 5.0349)′ (0.3984, 0.1473)′

β1 0.9413 0.3464 0.8651 0.2679
β2 −1.1242 0.3753 −1.1357 0.3316
τ1 −0.3100 0.4773 −0.3094 0.2914
τ1 −0.1610 0.5956 −0.1622 0.4161

n
=

1
0
0

µ1 (−4.9780,−4.9719)′ (0.0748, 0.1145)′ (−4.9880,−4.9679)′ (0.1068794, 0.1946200)′

µ2 (5.0309, 5.0047)
′

(0.1438, 0.047)′ (5.0905, 5.0336)
′

(0.2912813, 0.0962062)′

β1 1.10343 0.2292 1.0438 0.2028
β2 −1.0852 0.5465 −0.9827 0.1810
τ1 −0.2182 1.0100 −0.4140 0.2190
τ1 −0.0228 0.5574 −0.0376 0.2990

n
=

2
0
0

µ1 (−4.9987,−5.0144)′ (0.0388, 0.0676)′ (−4.9843,−5.0093)′ (0.0916, 0.1854)′

µ2 (4.9682, 4.9854)′ (0.1151, 0.0401)′ (4.8988, 4.9903)′ (0.2042, 0.0726)′

β1 0.9951 0.2241 1.0114 0.1799
β2 -1.0079 0.2230 -1.0089 0.1889
τ1 -0.1893 0.9389 -0.4649 0.2959
τ1 -0.0212 0.4728 -0.0259 0.2468

Table 4.2: The average of ARI, BIC values for the MMCM and MMGM models on
contaminated Gaussian clusters.

n MMCM MMGM

ARI BIC ARI BIC

50 0.9615 -1101.8730 0.8215 -1155.6451
100 0.9604 -2009.0872 0.8216 -2074.6815
200 0.9657 -3813.4944 0.7858 -3936.4231
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Table 4.3: The means and the standard deviations from simulation scenario 2.

Parameters MMCM MMGM

Means Standard deviations Means Standard deviations

n
=

5
0

µ1 (−4.9856− 5.0501)′ (0.1024, 0.1586)′ (−4.9854,−5.0503)′ (0.1023, 0.1586)′

µ2 (5.0107, 5.0005)′ (0.2220, 0.0585)′ (5.0101, 5.0005)′ (0.2215, 0.0585)′

β1 1.0169 0.3313 0.9904 0.3436
β2 -1.0253 0.3838 -1.0213 0.3827
τ1 -0.4715 0.3244 -0.3108 0.2189
τ1 -0.1926 0.2947 -0.1807 0.2767

n
=

1
0
0

µ1 (−4.9999,−5.0101)′ (0.0665, 0.1224)′ (−4.9999,−5.0104)′ (0.0665, 0.1225)′

µ2 (5.04774.9965)′ (0.1132, 0.0393)′ (5.0479, 4.9966)′ (0.1129, 0.0392)′

β1 1.0527 0.2634 1.0479 0.2606
β2 -0.9939 0.2066 -0.9864 0.2051
τ1 -0.3691 0.1466 -0.3386 0.1334
τ1 -0.3725 0.1727 -0.3073 0.1817

n
=

2
0
0

µ1 (−4.9931,−5.0074)′ (0.0603, 0.066)′ (−5.0022,−5.01681)′ (0.0484, 0.0547)′

µ2 (4.9689, 4.9723)′ (0.1367, 0.0898)′ (4.9869, 4.9899)′ (0.0851, 0.0250)′

β1 1.0136 0.2200 1.0110 0.1988
β2 -1.0183 0.1907 -1.0321 0.1632
τ1 -0.4825 0.2012 -0.3303 0.1387
τ1 -0.1680 0.3352 -0.0907 0.2087

Table 4.4: The average of ARI, BIC values for the MMCM and MMGM models on
Gaussian clusters.

n MMCM MMGM

ARI BIC ARI BIC

50 0.9396 -932.0885 0.9322 -944.9336
100 0.9410 -1478.2177 0.9365 -1492.3082
200 0.9718 -3232.9921 0.9661 -3318.6522
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best mean BIC considering that the number of free parameters is less than MMCM

and one of the components has a degree of freedom of 60 (i.e., effectively a Gaussian

component). However, the MMCM has the best mean ARI values indicating that it

can correctly assign observation to the correct grope when component or the data are

non-Gaussian.

Table 4.5: The true parameters, value the means and the standard deviations from
simulation scenario 3.

Parameters MMCM MMGM

Means Standard deviations Means Standard deviations

n
=

5
0

µ1 (−4.9718,−5.0396)′ (0.1381, 0.2428)′ (−4.9661,−5.03995)′ (0.1391, 0.2507)′

µ2 (4.9832, 5.0036)′ (0.2147, 0.0637)′ (4.9583, 4.995)′ (0.2214, 0.0687)′

β1 1.1393 0.4767 1.1241 0.4638
β2 -1.3047 0.3390 -1.2834 0.3171
τ1 -0.51873 0.3190 -0.4856 0.3506
τ1 -0.3581 0.3817 -0.3292 0.3496

n
=

1
0
0

µ1 (−4.8539,−4.8284)′ (0.8145, 0.8214)′ (−5.0233,−4.9910)′ (0.0945, 0.1317)′

µ2 (4.8307, 4.8231)′ (0.8656, 0.8457)′ (5.0051, 4.9900)′ (0.0952, 0.0712)′

β1 1.1659 0.3809 1.1310 0.2226
β2 -1.1286 0.2883 -1.1075 0.3168
τ1 -0.7778 0.5896 -0.4001 0.1744
τ1 -0.6864 0.6699 -0.2774 0.2689

n
=

2
0
0

µ1 (−4.9930,−4.9909)′ (0.04953, 0.0967)′ (−4.9847,−4.9838)′ (0.0630, 0.1031)′

µ2 (4.9978, 5.0041)′ (0.0829, 0.0313)′ (4.9946, 4.9930)′ (0.0859, 0.0474)′

β1 1.0689 0.2099 1.0346 0.1929
β2 -0.9060 0.4704 -1.0061 0.1414
τ1 -0.4526 0.1789 -0.3934 0.1774
τ1 -0.0017 0.1801 -0.0370 0.2439

Under scenario 4, the effect of how far atypical points are from the rest of typical

points in each component can be noticed from the simulation results presented in the

Tables 4.7, 4.8, 4.9, and 4.10. We can see the further the point from the component,

the values for the ARI gets higher. In all cases in this scenario, we can see that the

MMCM also fits better than MMGM.
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Table 4.6: The of ARI, BIC values for the MMCM and MMGM models on t-
distributed clusters.

n MMCM MMGM

ARI BIC ARI BIC

50 0.9960 -1082 0.8624 -1018
100 0.9371 -1910 0.7071 -1754
200 0.9516 -3468 0.9042 -3370

Table 4.7: The means and the standard deviations from simulation scenario 4(a).

Parameters MMCM MMGM

Means Standard deviations Means Standard deviations

n
=

5
0

µ1 (−4.9800,−5.0431)′ (0.1180, 0.1624)′ (−4.9140,−4.9780)′ (0.11500, 0.15840)′

µ2 (4.9870, 4.9871)′ (0.1682, 0.0652)′ (5.0500, 5.0500)′ (0.1662, 0.0692)′

β1 0.9707 0.3390 1.0060 0.3530
β2 -0.9918 0.3460 -1.0360 0.3837
τ1 -0.3393 0.2889 -0.2478 0.4676
τ1 -0.2205 0.4221 -0.1570 0.4653

n
=

1
0
0

µ1 (−4.9944,−5.0101)′ (0.0674, 0.1202)′ (−4.9670,−4.9800)′ (0.0656, 0.1214)′

µ2 (5.0112, 5.0100)′ (0.0961, 0.0312)′ (5.0430, 5.0410)′ (0.0951, 0.0300)′

β1 1.0700 0.2631 1.0640 0.2557
β2 -0.8873 0.4563 -0.9711 0.2004
τ1 -0.405 0.2113 -0.3779 0.2134
τ1 -0.2651 0.2236 -0.2252 0.2513

n
=

2
0
0

µ1 (−4.9810,−4.9960)′ (0.1175, 0.1031)′ (−4.9830,−4.9980)′ (0.0484, 0.0554)′

µ2 (4.9710, 4.9731)′ (0.1626, 0.1333)′ (5.0160, 5.0170)′ (0.0802, 0.0250)′

β1 1.032 0 0.2630 1.0360 0.2244
β2 -0.9175 0.4562 -1.0280 0.1552
τ1 -0.4682 0.1927 -0.4144 0.2367
τ1 -0.1496 0.1845 -0.0679 0.1559

Table 4.8: The of ARI, BIC values for the MMCM and MMGM models on perturbed
Gaussian clusters-a.

n MMCM MMGM

ARI BIC ARI BIC

50 0.9165 -969 0.9063 -1008
100 0.9761 -1721 0.9380 -1759
200 0.9404 -3268 0.9468 -3202
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Table 4.9: The means and the standard deviations from simulation scenario 4(d).

Parameters MMCM MMGM

Means Standard deviations Means Standard deviations

n
=

5
0

µ1 (−4.9990,−5.043)′ (0.1435, 0.1352)′ (−4.5150,−4.5700)′ (0.2998, 0.2824)′

µ2 (5.0840, 5.0250)′ (0.3919, 0.1032)′ (5.2020, 5.1940)′ (0.2364, 0.1654)′

β1 0.8962 3.1180 0.9800 0.3534
β2 -1.0203 3.4850 -1.029 0.4004
τ1 -0.2165 3.0400 -0.3213 0.2708
τ1 -0.2202 2.8460 0.1123 0.5657

n
=

1
0
0

µ1 (−4.9770,−4.9940)′ (0.0894, 0.1285)′ (−4.7470,−4.7590)′ (0.1440, 0.1848)′

µ2 (5.0090, 5.0080)′ (0.1021, 0.0307)′ (5.1070, 5.1040)′ (0.1270, 0.0888)′

β1 1.0860 0.2719 1.088 0.2477
β2 -0.9638 0.5462 -0.9549 0.2209
τ1 -0.1597 0.5139 -0.3708 0.1978
τ1 0.0305 0.7832 0.0315 0.3433

n
=

2
0
0

µ1 (−4.9830,−4.9980)′ (0.0500, 0.0622)′ (−4.8730,−4.8870)′ (0.0848, 0.0794)′

µ2 (4.9988, 4.9980)′ (0.0787, 0.0252)′ (5.0330, 5.0320)′ (0.0863, 0.0460)′

β1 1.0520 0.2174 1.0640 0.2152
β2 -0.9399 0.4729 -1.020 0.1509
τ1 -0.2012 0.4300 -0.4442 0.1744
τ1 -0.0809 0.2825 -0.0926 0.1844

Table 4.10: The of ARI, BIC values for the MMCM and MMGM models on perturbed
Gaussian clusters-d.

n MMCM MMGM

ARI BIC ARI BIC

50 0.9497 -987.5 0.9367 -1052
100 0.9594 -1730 0.9440 -1985
200 0.9600 -3159 0.9522 -3590
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The final simulation scenario results are reported in Table 4.11 and 4.12. Looking

at those tables, we draw a similar conclusion to scenario 1, where the MMCM performs

better than MMGM.

Table 4.11: The means and the standard deviations from simulation scenario 5.

Parameters MMCM MMGM

Means Standard deviations Means Standard deviations

n
=

5
0

µ1 (−4.9780,−5.0540)′ (0.0998, 0.1490)′ (−4.7550,−4.9950)′ (0.6251, 0.3487)′

µ2 (5.0130, 4.9990)′ (0.2329, 0.0528)′ (4.9730, 4.930)′ (0.6560, 0.2904)′

β1 1.0410 0.3511 0.8963 0.3938
β2 -0.9943 0.6421 -0.9388 0.4483
τ1 -0.3696 0.4780 -0.3704 0.3558
τ1 -0.2671 0.6989 -0.2950 0.2723

n
=

1
0
0

µ1 (−5.0000,−4.9980)′ (0.0690, 0.1194)′ (−4.900,−4.9360)′ (0.2134, 0.2308)′

µ2 (5.0480, 4.9980)′ (0.1203, 0.0406)′ (5.0170, 4.9180)′ (0.2375, 0.2010)′

β1 1.0840 0.2823 0.9972 0.2484
β2 -0.9999 0.5344 -0.9514 0.2373
τ1 -0.3078 0.4347 -0.3130 0.2351
τ1 -0.2047 0.2894 -0.3200 0.2418

n
=

2
0
0

µ1 (−5.0010,−5.0070)′ (0.0497, 0.0628)′ (−4.8740,−4.8900)′ (0.6462, 0.6775)′

µ2 (4.9930, 4.9900)′ (0.0782, 0.0251)′ (4.9010, 4.9300)′ (0.2640, 0.2160)′

β1 1.0400 0.2015 0.9619 0.1967
β2 -0.9839 0.6188 -0.9803 0.1938
τ1 -0.2111 0.5222 -0.3671 0.2118
τ1 -0.2035 0.4901 -0.3874 0.3134

Table 4.13 addresses some properties of contamination parameters η and α along

with comparing the performance of MMCM in detecting atypical points in each simu-

lation scenario. It can be noticed that in scenario 1, the η and α are getting closer to

the true parameters as the sample size increases. In the second scenario, we can see

that η has the lowest values, and α has the largest values among all simulations. This

could be interpreted as the absence of the atypical points in the data. The values of η

are also affected by how far the atypical points are from the rest of the component ob-

servations, i.e., the larger value of η, the further is the point. For example, in scenario
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Table 4.12: The of ARI, BIC values for the MMCM and MMGM models on Gaussian
with noise clusters.

n MMCM MMGM

ARI BIC ARI BIC

50 0.8865 -1120 0.8713 -1186
100 0.8946 -1847 0.8804 -1934
200 0.8953 -3981 0.8952 -3984

4(a) when we add 4 to a randomly chosen point η1 = 19.850 whereas η1 = 179.78 in

4(d) when we add 16.

Now, to evaluate the performance of MMCM in detecting atypical points, we

calculate the true positive rate and the false positive rate. The first rate is to measure

the proportion of atypical points that is correctly detected and labelled as typical

points, whereas the second rate measures the proportion of falsely labelled typical or

“good” points as atypical points. In scenarios that do not have atypical points, such

as the second and the third, the MMCM never mistakenly labelled good points as

atypical points. In scenarios where are atypical points in the data, in general the true

positive rate increase and the false positive rate decrease as the sample size increase.

4.6 Real Data

Possums in Australia and New Guinea

We use the possum dataset from R package DAAG to illustrate the performance of the

MMCM model. The data frame with nine morphometric measurements of n = 104

Australia possums that can be found in Southern Victoria or other sites. There are
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Table 4.13: The mean values of η, α, rate of correctly detected atypical points and
the rate of falsely detected atypical points for MMCM across all simulation scenarios.

Parameters Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
a b c d

n
=

5
0

η1 18.560 1.0020 7.4710 19.850 25.600 113.40 179.78 90.300
η2 14.510 2.4040 3.5840 39.460 52.830 139.10 125.68 43.750
α1 0.8487 0.9941 0.9529 0.9706 0.9713 0.9873 0.9425 0.9325
α2 0.7827 0.9946 0.9950 0.9765 0.9799 0.9793 0.8491 0.9469
CD 0.7286 - - 0.7800 0.8400 0.8430 0.9200 0.9619
FD 0.0105 0.0000 0.0000 0.0033 0.0008 0.0000 0.0000 0.0025

n
=

1
0
0

η1 19.444 1.0020 6.5510 29.960 63.420 88.150 332.30 97.290
η2 26.734 1.002 1.8600 1.0010 41.830 176.95 272.00 74.620
α1 0.8532 0.9974 0.9389 0.9830 0.9913 0.9869 0.9868 0.9465
α2 0.7881 0.9972 0.9963 0.9863 0.9878 0.9941 0.9888 0.9386
CD 0.7395 - - 0.8000 0.8600 0.8800 1.0000 0.9788
FD 0.0140 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0013

n
=

2
0
0

η1 20.698 1.1190 8.8000 22.520 62.880 69.950 523.90 78.480
η2 29.242 1.0010 5.4550 35.890 98.210 168.35 658.50 191.58
α1 0.8554 0.9938 0.9503 0.9890 0.9891 0.9769 0.9911 0.9484
α2 0.8388 0.9973 0.9437 0.9941 0.9959 0.9935 0.9949 0.9439
CD 0.8029 - - 0.8200 0.8710 0.9000 1.0000 0.9881
FD 0.0170 0.0000 0.0000 0.0009 0.0003 0.0003 0.0003 0.0101

three missing values that are removed, and so the new sample size for this data is

n = 101. Now, looking at Figure 4.2, we can see that there is a good separation

in tail length (tail), foot length (footlgth) and ear conch length (earconch) among

the sites (pop). For illustration, we use three continuous variables, which are tail,

footlgtha and earconch and one categorical variable, sex, in our analysis. Then, the

MMCM and the MMGM models were fitted to see which model could distinguish

between Southern Victoria’s possums and other regions’ possums. Both models were

fitted with G = 1, . . . , 5 components , and q = 1, 2, 3 latent factors. Using the BIC

and ARI to evaluate the performance of each model, MMCM performs better than

MMGM. The best model from MMCM model has BIC = −1131.3901 and ARI = 1,

whereas MMGM has BIC = −1133.5920 and ARI= 0.9604.

A perturbed version of the data is created to further investigate the effect of the

presence of atypical points on the model performance. We add atypical points to that
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Table 4.14: Clustering results, BIC, and ARI for the chosen MMCM and MMGM
models for the Possums data.

MMCM MMGM

1 2 1 2

Southern Victoria 43 0 43 0
Others 0 58 1 57

data by copying the last three observations from the others component and adding

a constant c = 10 to them. Then we fit the MMCM and the MMGS models with

different G and q and compare their performance. We also check if the MMCM

correctly labels those new observations as atypical points or not. The results in

Table 4.15 highlight that the MMCM model has lager BIC and higher ARI than the

MMGM model. We also notice that our model identifies all three atypical points

correctly (see Table 4.16).

Table 4.15: Clustering results for the chosen MMCM and MMGM models for the
perturbed Possums data.

MMCM MMGM

1 2 1 2

Southern Victoria 43 0 43 0
Others 1 60 3 58

BIC −1196.3260 −1207.3961
ARI 0.9615 0.8868

Table 4.16: Clustering results for the chosen MMCM models for the perturbed Pos-
sums data.

1 2 Atypical

Southern Victoria 43 0 0
Others 0 58 3
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4.7 Summary

A mixture of contaminated Gaussian mixed-type distributions has been introduced in

this chapter. This model is based on a mixture of Gaussian mixed-type data. Herein,

we extend that mixture by using the contaminated Gaussian distribution along with

factor analysis and latent trait models. We discussed in detail the derivation of

the parameters estimates, which was carried via the EM algorithm. Five simulation

superiors are considered to test our model’s performance in different situations. We

fit our model and the competing model MMGM and use the ARI and BIC to measure

both models’ performance. In each case, we find some interesting properties of the

model’s parameters, namely η and α and how their values could be an indication of

the absence or the presence of the atypical points and how far or close those points are.

Finally, we fit the MMCM and MMGM to the original possum data and a modified

version of possum data. In both versions of the data, our model MMCM fit better

and correctly identified all the atypical points.
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Chapter 5

Model Averaging for Skewed Data

5.1 Introduction

In this chapter, model averaging methods for skewed data are proposed. Specifically,

we present a model averaging approach for a family of parsimonious variance-gamma

distributions. Herein, we follow and extend Wei and McNicholas (2015) approach for

mixture model averaging. This chapter is organized as follows. In Section 5.2, a brief

literature review of existing methods is presented. In Section 5.3, we discuss in detail

our methodology. Simulation studies and real data applications to demonstrate our

methods in Sections 5.4 and 5.5, respectively. Finally, a summary section where we

discuss all the presented work.
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5.2 Background

5.2.1 Gaussian Parsimonious Mixture Models

In Section 2.2.2, we discuss one of the well-known mixture model the GMM. This

model has in total

(G− 1) +Gp+
1

2
Gp(p+ 1)

free parameters, where G− 1 are the number of free parameters from mixing propor-

tions π1, ..., πG, Gp from the location parameter, and Gp(p + 1)/2 from the compo-

nent covariances Σ1, ...,ΣG. The component covariances account for a large number

of free parameters compared to the other parameters. Thus, Banfield and Raftery

(1993) introduced parsimony in the GMM by imposing constraints on the decomposed

component covariance matrices. The covariance decomposition uses the eigenvalue

decomposition of the form

Σg = λgΓgAgΓ
′

g,

where λg is a constant, Γg is an orthonormal matrix of eigenvectors, and Ag is a diago-

nal matrix of eigenvalues with determinant 1.The parameters in above decomposition

has a geometric interpretation as follows: λg control the volume, Γg the shape, and

Ag the orientation of the cluster.

Celeux and Govaert (1995) extended the work of Banfield and Raftery (1993)

and introduced 14 Gaussian parsimonious clustering models (GPCM) by imposing

different combinations of the constraints λg = λ, Γg = Γ, Γg = Ip, Ag = A, and

Ag = Ip (Table 5.1). Those models are categorized into three categories: spherical

(EII, VII), diagonal (EEI, EVI, VEI, VVI), and the rest are general. It can be
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noticed that from Table 5.1 that the number of free parameters of some component

covariance matrices is reduced; however, there are eight models have a number of free

parameters that is quadratic in p. An alternative approach is proposed by McNicholas

and Murphy (2008, 2010) based extending the mixture of factor analyzers model. For

more details, see McNicholas (2016).

Different R packages are available that implement GPCM family and for other

parsimonious mixture model families, one of which is mixture (Pocuca et al., 2021).

Similar to the regular GMM models, parameter estimation for the GPCM is carried

through the EM algorithm (see Section 2.3.1), or a variant of EM, and the BIC is

commonly used to select the best model, as discussed in 2.4.1

Table 5.1: Nomenclature, covariance decomposition for G components, and the number of

free parameters in the covariance for each member of the GPCM family for p dimensional

data.

Model
Volume
λg = λ

Shape
Ag = A

Orientation
Γg = Γ

Covariance
Decomposition

Number of
Covariance Parameters

EII Equal Identity Identity λI 1
VII Variable Identity Identity λgI G
EEI Equal Equal Identity λA p
VEI Variable Equal Identity λgA G+ (p− 1)
EVI Equal Variable Identity λAg Gp− (G+ 1)
VVI Variable Variable Identity λgAg Gp

EEE Equal Equal Equal λΓAΓ
′

p(p+ 1)/2

VEE Variable Equal Equal λgΓAΓ
′

p(p+ 1)/2 + (G− 1)

EVE Equal Variable Equal λΓAgΓ
′

p(p+ 1)/2− (G− 1)(p− 1)

VVE Variable Variable Equal λgΓAgΓ
′

p(p+ 1)/2 + (G− 1)p

EEV Equal Equal Variable λΓgAΓ
′
g Gp(p+ 1)/2− (G− 1)p

VEV Variable Equal Variable λgΓgAΓ
′
g Gp(p+ 1)/2− (G− 1)(p− 1)

EVV Equal Variable Variable λΓgAgΓ
′
g Gp(p+ 1)/2− (G− 1)

VVV Variable Variable Variable λgΓgAgΓ
′
g Gp(p+ 1)/2
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5.2.2 Merging Components

In model-based clustering, specifically in the Gaussian mixture model, the number of

clusters is generally taken as equivalent to the number of mixture components for a

given dataset. This is correct if the density of the clusters is Gaussian and they are

well separated. However, in real applications, clusters are often overlapped and can

not be modelled by the Gaussian mixture, especially with skewed or heavily tail data.

Fitting a Gaussian mixture to non-Gaussian data will often result in an overestimation

issue, i.e., the number of clusters is larger than the number of true groups. Thus,

several components can be a posteriori merged into one cluster. Different merging

approaches have been proposed in model-based clustering. Baudry et al. (2010) and

Hennig (2010) merge the components hierarchically. The merging criterion used by

Baudry et al. (2010) is based on the entropy criteria, whereas Hennig (2010) used

aggregation criteria such as unimodality or misclassification probabilities.

Wei and McNicholas (2015) developed a merging method that is based on the

ARI. Herein, different merging combinations will be considered then the ARI will

be calculated between a reference model and each merging combination. The best

merging combination will be the one that has the largest ARI value. The authors use

Occam’s window (see Section 5.2.3) to find a set of models then perform the model

averaging approaches. They consider the following two cases to identify the reference

model:

• Case I: The reference model is the one that has the largest BIC among all

models in Occam’s window. Models within Occam’s window with fewer number

of components than the reference model will be discarded.
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• Case II: The reference model is the one that has the least number of compo-

nents among all models in Occam’s window.

In both cases, merging is performed if any model in Occam’s window has more com-

ponents than the reference model. The two cases will be the same if the model with

the largest BIC also has the lowest number of components.

5.2.3 Bayesian Model Averaging

After fitting a set of mixture models, it is common to use some criteria to choose the

“best” model. One of the commonly used selection methods is the BIC. When the

best model is chosen, all other models will be ignored without taking into account

the additional uncertainty that would have resulted from ignoring other models. This

approach will result in different issues when the difference between the values of the

criteria for two or more models is “small”. Model averaging methods such as Bayesian

model averaging (BMA; Hoeting et al., 1999) take into account the uncertainty issue

by taking the average of parameter estimates of different models.

Borrowing the notation from Hoeting et al. (1999), suppose we have a given data

D, a set of models M1, ...,MK and a quantity of interest ∆. Then the posterior

distribution of ∆ given D is

pr(∆ | D) =
K∑
k=1

pr(∆ | Mk, D)pr(Mk | D), (5.1)

where pr(∆ | Mk, D) represent the the posterior density of ∆ under modelMk , and
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pr(Mk | D) is the posterior probability for model Mk that is given by

pr(Mk | D) =
pr(D | Mk)pr(Mk)∑K
i=1 pr(D | Mi)pr(Mi)

, (5.2)

where

pr(D | Mk) =

∫
pr(D | θk,Mk)pr(θk | Mi)dθk. (5.3)

where θk parameters of Mk, pr(θk | Mi) and pr(Mk) are the prior density and the

prior probability for θk and model Mk, respectively.

It has been shown that BMA can provide better predictions than a single model;

however, some computational difficulties are encountered with BMA (Madigan and

Raftery, 1994). One issue is that the number of the models to be summed in (5.1)

can be very large. Another issue is that the calculation of the posterior probability

can be complicated due to the high-dimensional integrals in (5.3). To overcome the

first issue, Madigan and Raftery (1994) use Occam’s window to select a set of models

such that any model that has not included Occam’s window

{
Mk :

maxl{pr(Ml | D)}
pr(Mk | D)

≤ c

}
(5.4)

will be discarded, where c is positive constant. Analogous to p-value = 0.05, Madigan

and Raftery (1994) proposed using c = 20.

The second issue can be addressed by approximating the integral in (5.3). This

can be done by using the BIC (Dasgupta and Raftery, 1998), i.e,

pr(D | Mk) ≈ exp

{
1

2
BICk

}
, (5.5)
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where BICk is the BIC for model Mk. Therefore, (5.2) can be written as

pr(Mk | D) ≈
exp

{
1
2
BICk

}∑K
i=1 exp

{
1
2
BICi

} , (5.6)

and Occam’s window is

{Mk : maxl{BICl} − BICk ≤ 2 log c} (5.7)

5.2.4 Variance-gamma Distribution

The variance-gamma (VG) distribution is a skewed continuous distribution, which is

also known as the generalised Laplace distribution (GAL) or Bessel function (BF)

distribution. The VG density can be derived as a special case of the generalized

hyperbolic distribution by setting the index parameter λ > 0, and concentration

parameters χ → 1 Kotz et al. (2001). A p-dimensional random random vector X

following the VG distribution has a probability density function of the form:

fVG(x|ϑ) =

(
δ(x;µ,Σ)

ρ(α,Σ) + 2γ

) γ−p/2
2

×
2γγK(γ− p2)

(√
[ρ(α,Σ) + 2γ] [δ(x;µ,Σ)]

)
(2π)

p
2 |Σ| 12 Γ(γ) exp {(x− µ)′Σ−1α)}

,

where δ(X;µ,Σ) = (x − µ)′Σ−1(x − µ), ρ(α,Σ) = α′Σ−1α,γ > 0 is the degrees

of freedom, µ is the location parameter , Σ is the scale matrix, α is the skewness

parameter, K(·) is the modified Bessel function of the third kind.

We can also obtain the density of VG by using the representation of the variance-

mean mixtures (2.17) by letting W ∼ Gamma(λ, ψ/2) (McNicholas et al., 2017).
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5.2.5 A Mixture of Variance Gamma Distributions

McNicholas et al. (2017) introduced a mixture of variance-gamma factor analyzers

model and the some properties of the variance-mean mixtures representation. Let

X ∼ VG(µ,Σ,α, λ, ψ) denote that the p-dimensional random vector X follows a VG

distribution. Then the random variable X can be generated by combining a random

variable Wi ∼ G(λ, ψ/2), where G denotes a gamma distribution, with the latent

V ∼ N (0,Σ) via

X = µ+Wα+
√
WV. (5.8)

It is easy to show that Xi | wi ∼ N (µ+wiα, wiΣ). Now, let γ = λ = ψ/2. Then, by

Bayes’ theorem, it follows thatWi | (Xi = x) ∼ GIG(2γ+α′Σ−1α, δ(x,µ|Σ), γ−p/2).

Then the density of mixture of variance-gamma distributions is

fMVG(x|ϑ) =
G∑
g=1

πgfV G(x | µg,Σg,αg, γg). (5.9)

To derive the density of mixture of VG factor analyzers, let V = ΛY + εi. Then, X

in 5.8 can be written

Xi = µ+Wiα+
√
Wi(ΛYi + εi), (5.10)

where Λ is a matrix of factor loadings, Y is a q-dimensional latent variables and

ε | wi ∼ N (0, wiΨ) and Ψ = dig(ψ1, ..., ψp). Then, it follows that Xi |wi ∼ N (µ +

wiα, wi(ΛΛ
′
+ Ψ)).
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Now, applying model-based cluster analysis methodology, the density of the mix-

ture of variance-gamma factor analyzers (MVGFA) is given by

fMVGFA(x|ϑ) =
G∑
g=1

πgfV G(x | µg,ΛgΛ
′

g + Ψg,αg, γg), (5.11)

where ϑ denotes all model parameters. Parameter estimation is carried out through

the alternating expectation-conditional maximization (AECM) algorithm (Meng and

Van Dyk, 1997). The AECM is a variant of the EM algorithm that allow different

complete-data at each stage (McLachlan and Krishnan, 2007).

5.3 Methodology

5.3.1 Parsimonious VG Family

As disused in Section 5.2.3, we can use the eigenvalue decomposition to write the

component scale matrix in the following form

Σg = λgΓgAgΓ
′

g (5.12)

where λg is a constant Γg is an orthonormal matrix of eigenvectors, and Ag is a

diagonal matrix of eigenvalues with determinant 1. To drive the parsimonious VG

(ParVG) family of models, we can adapt the GPCM approach (Celeux and Govaert,

1995) by imposing different combinations of the constraints such as λg = λ, Γg = Γ,

Γg = Ip, Ag = A, and Ag = Ip to the eigen-decomposition of the component scale

matrices. Similar to the GPCM family, the ParVG family will also contain 14 models

but it is based on scale matrix structure. Accordingly, the destiny of parsimonious
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VG mixtures can be written as

fParVG(x|ϑ) =
G∑
g=1

πgfV G(x | µg, λgΓgAgΓ
′

g,αg, γg), (5.13)

Note that the nomenclature, the scale matrix structure and the number of free pa-

rameters for each model from the ParVG family are similar to the GPCM models

presented in Table 5.1.

5.3.2 Merging Mixture Components

As mentioned before, merging competent helps to tackle the over-estimation issue

that results from fitting non-elliptical mixture models into elliptical data. Herein, we

will follow Wei and McNicholas (2015) merging approach, where the ARI is used to

choose the best merging.

Suppose that we fit a VG mixture model with G-components, and we want to

merge them into H components, where H < G. Then, the density of the mixture after

merging is equivalent to the original model and considered as another representation

of it, i.e.,

f(x) =
S∑
i=1

π?j f
?
i (x) =

G∑
g=1

πgfVG(x | µg,Σg,αg, γg), (5.14)

where π?i is one of or the sum of two or more of the mixing proportions proportion,

f ?i (·) is one of or a mixture of different component densities

fVG(x | µ1,Σ1,α1, γ1), . . . , fVG(x | µG,ΣG,αG, γG).

To illustrate the above idea of merging, suppose G = 4 and H = 3; then f ?1 (x)
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could be a linear combination of the first two VG components, f ?2 (x) and f ?3 (x) are the

third and the forth VG components or f ?1 (x) is a linear combination of the second and

the fourth VG components and f ?2 (x) and f ?3 (x) are the first and the third components

or any other combinations. Finding all the combinations is useful for calculating the

possibility of merging but it never provides a way to choose the best combination.

Following the approach that was proposed by Wei and McNicholas (2015), we can

find the best merging.

Suppose that the reference model has H components and a model that has been

chosen using Occam’s window has G components. Here, we want to merge G com-

ponents into H components, where H < G. As in Wei and McNicholas (2015), the

merging procedure will be explained below through an example.

1. Generate a combination matrix A that has dimension
(
G
H

)
×G, where each row

is a subset of G.

For example, let G = {1, 2, ..., 5} denote the components in a model from Oc-

cam’s window, and let H = {a, b, c} denote the components in the reference

model. Herein, we want to merge 5 components into 3 components. The di-

mension of A is
(
5
3

)
× 5 = 10× 3. Suppose the fifth row from A is a5 = (1, 4, 5),

then it means that competent 1 assigned to new component a, competent 4 as-

signed to new component b and competent 5 assigned to new component c. The

reaming components {2, 3} will be merged with the same or different component

from {1, 4, 5}.

2. Generate a permutation matrix B, where B is H(G−H)× (G−H) and each row

is a subset from H. Herein, we calculate all merging possibilities to assign the

reaming components from A.
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Continuing with our example, B is of size 9 × 2. The reaming components

from step 1 example is {2, 3} can be merged to according to one of the B

row. Suppose b3 = (a, c), then {2, 3} will be merged with components 1 and 5

respectively such that the Occam’s window model’s components after merging

become {a, b, c} = {1 ∪ 2, 4, 5 ∪ 3}.

3. Calculate the ARI’s matrix C of size
(
G
H

)
× H(G−H). Each entry in C is an

ARI value calculated between the label from reference model and label from

the model after merging.

For example, from the first two steps we get merging that is based on the fifth

row in matrix A and the third row in matrix B. If we calculate the ARI value

for this merging, then it will be sorted in the fifth row and the third column

of C.

4. Choose the best merging combination based on the largest ARI value in C.

5.3.3 Averaging A Posteriori Probabilities

In model-based clustering paradigm, the component membership of observation xi

is denoted by zig where zig = 1 if observation xi belongs to component g and zig =

0 otherwise. It is common to use a posteriori probabilities to get the predicted

classifications, which can be obtained after estimation of the model parameters from

the following equation:

ẑig :=
π̂gfVG(xi | µ̂g, Σ̂g, α̂g, γ̂g)∑G
h=1 π̂hfVG(xi | µ̂h, Σ̂h, α̂h, γ̂h)

. (5.15)
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Usually, we harden ẑig to obtain the predicted classifications via maximum a posteriori

(MAP) probabilities, where MAP(ẑig) = 1 if maxh{ẑig} is occurring in group h = g

and MAP(ẑig) = 0 otherwise.

In the averaging approach framework used by Wei and McNicholas (2015), if we

merge components in any model in Occam’s window, the a posteriori probabilities

after merging are denoted by ẑ?ij, for j = 1, . . . , H, will be the sum of some of ẑig. For

example, if we merge the first three components, then ẑ?i1 = ẑi1 + ẑi2 + ẑi3.

Now to perform the average a posteriori probabilities (AAP); first, we need to

identify which model to consider from Occam’s window based on the reference model

from Case I or Case II and do any necessary merging. Then calculate the weighted

average of the a posteriori probabilities for each observation i and harden them to

get the predicted classifications, where the weight for each model from M1, . . . ,MK

can be calculated from (5.6).

5.3.4 Model Averaging

This approach is a direct averaging method where we average parameters of models

chosen within Occam’s window. Unlike the AAP method, the merging criterion in

the model averaging (MA) method cannot be applied. Thus, we cannot use Case

I or Case II discussed in 5.2.2 to identify the reference model and which models to

consider. In the MA method, the reference model is the model that has the largest

BIC value and we only consider models that have the same number of components

as the reference model to perform MA.

Suppose there are k models in Occam’s window that have same number of com-

ponents in the reference model. Then, to preform the MA method, we will calculate
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the a weighted average of the parameter estimates for each parameter as follows.

π̄g =
K∑
k=1

pr(Mk | D)π̂kg, π̂kg =

∑n
i=1 ẑig∑G

g=1

∑n
i=1 ẑig

,

µ̄g =
K∑
k=1

pr(Mk | D)µ̂kg,

Σ̄g =
K∑
k=1

pr(Mk | D)Σ̂kg,

ᾱg =
K∑
k=1

pr(Mk | D)α̂kg,

γ̄g =
K∑
k=1

pr(Mk | D)γ̂kg,

where pr(Mk | D) is the model weights that can be calculated from (5.6). Then,

we need to compute the averaged a posteriori probabilities z̄ig that is based on the

averaged parameter estimates such that

z̄ig =
π̄gfVG(xi | µ̄g, Σ̄g, ᾱg, γ̄g)∑G
h=1 π̄hfVG(xi | µ̄h, Σ̄h, ᾱh, γ̄h)

. (5.16)

Once the z̄ig’s are calculated, we harden them via maximum a posteriori probabilities

to get the predicted classifications.

5.3.5 Matching Components

One common issue in mixture models analysis is label switching, and there have been

different solutions proposed to solve this issue (Stephens, 2000). For both averaging

approaches that we introduce here, it is important to correctly match components
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among models according to the reference model. Herein, we use the ARI and mis-

classification rate as criteria to match components. Components are matched based

on the highest ARI and lowest misclassification rate.

Suppose we choose a certain number of models from Occam’s window and do the

necessary merging. We aim to match the components across those models before

using any averaging methods. At this stage, all the models have the same number of

components as the reference model. For simplicity, let the reference model have four

components, and the corresponding label of the components are a, b, c, d. Suppose

there is a model that also has four components with the following labels b, a, d, c. We

notice that component 1, 2, 3, 4 has a different label than the reference model. The

following steps are used to match and relabel the components in a given model.

1. Calculate all the possibilities for re-labelling the components by generating a

permutation matrix A of size 24 × 4. Each row in this matrix represents one

possible match. For, example a3 = (c, a, b, d), then component 1, 2, 3 and 4 will

be relabelled as c, a, b, d, respectively.

2. Calculate the ARI and the misclassification rate between the label from the

reference model and the new label that we get from each row in matrix A and

recorded in the 24× 2 matrix B.

3. Choose the best match that is based on the one that has the largest ARI value

and the lowest misclassification rate.
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5.4 Simulation

Different simulation scenarios are considered to assess the performance of the averag-

ing methods. In all simulations, we use the gpcm() and vgpcm() functions from the R

package mixture to fit the GPCM and ParVG models over G = 1, . . . , 10. The ARI is

used to compare the classification performance between GPCM and ParVG models

before and after applying the averaging approaches.

• Scenario I: 25 datasets were simulated from VG with 4 components that are

well separated. All components have equal sample size n = 150 and number of

variables p = 2. Figure 4.1-(a) is a pairs plot for one of the simulated datasets

from this scenario.

We can notice that, from Table 5.2, the classification performances of ParVG

models after applying both averaging approaches are increased more than GPCM

models. In the ParVG models, the average ARI of MA is slightly higher than

both APP cases, whereas, in the GPCM, APP Case II has the highest ARI

value.

Table 5.2: The means and the standard deviations of ARI values for the best model,
averaging a posteriori probabilities (AAP), and model averaging (MA) from simula-
tion scenario 1.

ParVG GPCM

ARI Best APP MA Best APP MA

Case I Case II Case I Case II

Mean 0.9739 0.9833 0.9939 0.9948 0.6805 0.7270 0.7293 0.7177
Std. Deviation 0.0438 0.0295 0.0143 0.0090 0.0528 0.0581 0.0701 0.0885

• Scenario II: We generate 25 data sets using genRandomClust() function from the
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(a)

(b)

(c)

Figure 5.1: Example of one of the simulated data sets from (a) scenario 1, (b) scenario 2,

(c) scenario 3.
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R package clusterGeneration (Qiu and Joe, 2020). We generate 4 components

that are overlapped (see Figure 5.1-(b)) with the following setting: the number

of variables numNonNoisy=3, the separation between clusters sepVal=0.03 , and

sample size n = 400.

As expected, both GPCM and ParVG have similar average ARI for the best

model due to the high degree of overlap between the components. After applying

the averaging approaches on both families of models, the APP method Case II

leads to improvement in classification performance. However, averaging the

ParVG models shows more improvement from 0.8469 to 0.9732, compared to

the GPCM from 0.8862 to 0.8883.

Table 5.3: The means and the standard deviations of ARI values for the best model,
averaging a posteriori probabilities (AAP), and model averaging (MA) from simula-
tion scenario 2.

ParVG GPCM

ARI Best APP MA Best APP MA

Case I Case II Case I Case II

Mean 0.8469 0.8708 0.9723 0.8699 0.8862 0.8634 0.8883 0.8442
Std. Deviation 0.0372 0.0325 0.0301 0.0421 0.0312 0.0716 0.0311 0.0798

• Scenario III: We simulate 25 data sets with four components with a total number

of observations 500 and the number of variables p = 2. One component with

150 observations from Gaussian distribution, one from VG with n = 150 and

two triangles shape components from a uniform distribution, with each having

100 observations.

From Table 5.4, as expected, the ParVG models not only fit better but also show

more improvement after averaging compared to the GPCMs. In the ParVG
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models, the AAP Case I method increases the classification performance from

0.9136 to 0.9708. However, in GPCM, the MA method helped to improve the

average ARI from 0.7667 to 0.8651.

Table 5.4: The means and the standard deviations of ARI values for the best model,
averaging a posteriori probabilities (AAP), and model averaging (MA) from simula-
tion scenario 3.

ParVG GPCM

ARI Best APP MA Best APP MA

Case I Case II Case I Case II

Mean 0.9136 0.9708 0.9291 0.9202 0.7667 0.7839 0.8202 0.8651
Std. Deviation 0.0453 0.01494 0.0423 0.0206 0.0630 0.0348 0.0579 0.0624

5.5 Real Data Examples

5.5.1 Coffee data

The coffee data can be found in pgmm R package. It has 43 observations, and 12

variables represent the chemical constituents of two types of coffee (Arabica and

Robusta) from different countries. For this analysis, we considered the following

variables: Free Acid, Fat, Caffeine, Trigonelline, Chlorogenic Acid, Neochlorogenic

Acid, and Isochlorogenic Acid. The ParVg and GPCM models are fitted to this data

data for G = 1, ..., 10 component.

For the ParVG, the VEI model with G = 2 is the best model that is chosen based

on the BIC (−688.3675) and has ARI (0.3601), whereas for the GPCM the best

mode is VEI with BIC = −682.8923 and ARI = 0.3732 (Table 5.5). After applying

the averaging methods, we notice that both families have perfect classification with
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ARI = 1.

Table 5.5: Models that are chosen by Occam’s window, along with the number of
components, the weight for each model, BIC, and ARI values for the best model,
from AAP and MA for the coffee data set.

ParVG

Occam’s window Pr(Mi | D) ARI values

Model BIC G Best APP MA

VEI -688.3675 2 0.7442 0.3601 1 1
VII -690.5036 2 0.2558

GPCM

Occam’s window Pr(Mi | D) ARI values

Model BIC G Best APP MA

VEI -682.8923 3 0.7762 0.3732 1 -
VEI -685.3796 2 0.2238

5.5.2 Hormone data

Disclaimer: This data is used to demonstrate the averaging methodologies

ONLY. We are not trying to make any assumption or conclusion about

any group.

The hormone data is available in faraway R package. It contains the sexual orien-

tation of 26 males and the concentration of two hormones (androgen and estrogen).

Using the mixture package, we fit the ParVG and GPCM models for G = 1, ..., 10 and

then apply the averaging approaches on a set of models within Occam’s window.

In the ParVG family, the APP Case I significantly improved the classification

performance from −0.0372 to 0.6977. However, in the GPCM, none of the averaging

methods help to improve the ARI values and remain the same. If we ignore all models
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with only one component, we get a slight increase in the ARI value to 0.0587 from

the MA method and 0.0152 from APP Case I.

5.5.3 Cathedral data

The Cathedral data is freely available in the faraway package, and it comprises the

height and width that are measured in feet of two cathedral nave styles (Romanesque

and Gothic) for 25 churches in England. Similar to the previous examples, both

families of models are fitted for G = 1, ..., 10.

The VEV and the EEE are the best models selected by the BIC for the ParVG

and the GPCM, respectively. In ParVG, two models fall in Occam’s window with the

same number of components but, in GPCM, twelve models are chosen with different

components (Table 5.7). Both averaging approaches result in some improvement in

the classification performance compared to the best model. However, the MA method

gives higher ARI values than the APP approach. The ARI in ParVG increased from

0.0726 to 0.3214, and the GPCM from −0.0037 to −0.0333.

5.5.4 AIS data

The AIS data that has been used in Section 3.5 is used here to illustrate the model

averaging techniques. The following variables are used: haemoglobin concentration

(hg), body mass index (bmi), and percentage body fat (pcBfat). The ParVG and

GPCM are fitted to the AIS data for G = 1, . . . , 10.

The ParVG VEI model has been chosen using the BIC as the best model (BIC =

−2784.1750), and it has three components with ARI = 0.7755, and GPCM the best

model is VVE with BIC = −2811.0190 and ARI lower than the ParVG (0.6963).
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Table 5.6: Models that are chosen by Occam’s window, along with the number of
components, the weight for each model, BIC, and ARI values for the best model,
from AAP and MA for the hormone data set.

ParVG

Occam’s window Pr(Mi | D) ARI values

Model BIC G Case I/ MA Case II Best APP MA

Case I Case II

VEV -154.6879 3 0.6566 0.5879 -0.0372 0.6977 0.3535 0.1133
VII -155.1414 2 0.3074
VII -156.4340 3 0.3434 0.1047

GPCM

Occam’s window Pr(Mi | D) ARI values

Model BIC G MA CaseI/Case II Best APP MA

Case I Case II

EII -163.3608 1 0.2237 0.2175 0.0000 0.0000 0.0000 0.0000
VII -163.3608 1 0.2237 0.2175
EEI -165.6811 1 0.0701 0.0682
EVI -165.6811 1 0.0701 0.0682
VEI -165.6811 1 0.0701 0.0682
VVI -165.6811 1 0.0701 0.0682
EEE -167.1293 1 0.0340 0.0330
VEE -167.1293 1 0.0340 0.0330
EEV -167.1293 1 0.0340 0.0330
EVV -167.1293 1 0.0340 0.0330
VEV -167.1293 1 0.0340 0.0330
VVV -167.1293 1 0.0340 0.0330
VVE -167.1293 1 0.0340 0.0330
EVE -167.1293 1 0.0340 0.0330
EEI -168.7945 2 0.0144
EII -168.9209 2 0.0135
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Table 5.7: Models that are chosen by Occam’s window, along with the number of
components, the weight for each model, BIC, and ARI values for the best model,
from AAP and MA for the cathedral data set.

ParVG

Occam’s window Pr(Mi | D) ARI values

Model BIC G MA/ Case I/ Case II Best APP MA

Case I Case II

VEV -136.9548 2 0.6242 0.0726 0.2226 0.3214
EEV -137.9694 2 0.3758

GPCM

Occam’s window Pr(Mi | D) ARI values

Model BIC G Case I/ MA Case II Best APP MA

Case I Case II

EEE -142.6224 2 0.7097 0.1156 -0.0037 -0.0586 0.0000 -0.0333
EEE -142.822 1 0.1046
VEE -142.8220 1 0.1046
EVE -142.822 1 0.1046
EEV -142.8220 1 0.1046
VVE -142.8220 1 0.1046
EVV -142.8220 1 0.1046
VEV -142.8220 1 0.1046
VVV -142.8220 1 0.1046
VEE -145.3386 2 0.1825 0.0297
VEV -147.5532 2 0.0603 0.0098
VVE -148.0303 2 0.0475 0.0077
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Occam’s window chose two models in ParVG with a different number of components;

one model has three components, and the other one has two. Hence, only APP Case

II is used, and we merge the best model’s components into two components. This

leads to an increase in the ARI value to 0.8471. In the GPCM, two models fall in

Occam’s window with the same number of components. The MA and APP method

is used without merging since all models have the same number of components and

it slightly improve the classification performance (Table 5.8).

Table 5.8: Models that are chosen by Occam’s window, along with the number of
components, the weight for each model, BIC, and ARI values for the best model,
from AAP and MA for the AIS data set.

ParVG

Occam’s window Pr(Mi | D) ARI values

Model BIC G Best APP MA

VEI -2784.1750 3 0.8281 0.7755 0.8471 -
EEI -2787.3190 2 0.1719

GPCM

Occam’s window Pr(Mi | D) ARI values

Model BIC G Best APP MA

VVE -2811.0190 3 0.9012 0.6963 0.7033 0.6867
VVV -2815.4400 3 0.0988

5.5.5 Pottery data

The Pottry2 data, which is available from heplots package, contains a chemical com-

position of 48 Romano-British potteries from three different regions. We considers

five variables in this analysis: amount of iron oxide (Fe), amount of magnesium ox-

ide (Mg), amount of calcium oxide (Ca), amount of sodium oxide (Na), and amount
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of potassium oxide (K). We fit the data using the ParVG and GPCM families for

G = 1, . . . , 10.

From the ParVG family, three models fall in Occam’s window: the first is VEV

with three components, and the second and the third is EVI with two and three

components, respectively. When we performed the APP Case I and MA methods,

no merging was required because all models had G = 3 components whereas, in the

APP Case II, we merged components of the models that have more than two compo-

nents. All the averaging methods result in a great improvement in the classification

performance compared to the best model (Table 5.9). However, APP Case II has the

highest ARI (0.9512). Since only two models from the GPCM family fall in Occam’s

window with a different number of components, only APP Case II is performed. From

Table 5.9, we can see a slight increase in the ARI value from 0.8853 to 0.8881.

Table 5.9: Models that are chosen by Occam’s window, along with the number of
components, the weight for each model, BIC, and ARI values for the best model,
from AAP and MA for the Pottery data set.

ParVG

Occam’s window Pr(Mi | D) ARI values

Model BIC G Case I/ MA Case II Best APP MA

Case I Case II

VEI -363.0794 3 0.9009 0.9511 0.6352 0.9512 0.7151 0.8280
EVI -368.7517 2 0.0528
EVI -369.0153 3 0.0463 0.0489

GPCM

Occam’s window Pr(Mi | D) ARI values

Model BIC G Case I/ MA Case II Best APP MA

Case I Case II

VVI -309.4076 4 - 0.5643 0.8853 - 0.8881 -
VVI -309.9249 3 - 0.4357
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5.6 Summary

In this chapter, we introduced a family of parsimonious VG mixture models. The

eigenvalue decomposition of the component scale matrix was used to develop the

ParVG family. We used the ParVG family to introduce two model averaging ap-

proaches that are analogues of the work of Wei and McNicholas (2015). The first

approach is based on averaging the model parameters, and the second on averaging

the a posteriori probabilities. In both approaches, we follow Wei and McNicholas

(2015) in choosing the number of models to be averaged based on Occam’s window

and use the ARI as a criterion to merge components. A method to tackle the label

switching issue, which is a common issue in cluster analysis, has been introduced.

Herein, we use the ARI and the misclassification rate to match components across all

models with the reference model.

Simulated and real datasets are used here to illustrate our methods. Based on

our simulation results and the real data sets, we noticed that in most cases, the AAP

averaging method tends to perform better than the MA and the best models. In

general, there is an improvement in the classification performance after using some

or all averaging methods, but not all the improvements are significant.
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Chapter 6

Conclusions

6.1 Discussion

In this thesis, we proposed different unsupervised machine learning methods to model

skewed and mixed-type data. A mixture for skewed-t mixed-type data, a mixture for

contaminated mixed-type data, and a model averaging method for skewed data.

In chapter 3, we discussed the derivation of the mixture model for skewed-t mixed-

type data. Herein, we use latent variable models to jointly model the mixed-type data

by assuming that the observed variables are independent given the latent variables.

Furthermore, the continuous variables are assumed to jointly follow a skew-t distri-

bution.

In chapter 4, a mixture of contaminated mixed-type data is introduced to handle

atypical “bad” points in clustering mixed-type data. We fit our model to different

simulation scenarios along with real data to demonstrate the performance of our

model. The result indicates that, in the presence of atypical observations, the model

performs better than the normal mixed-type model.
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In chapter 5, we introduced a family of parsimonious VG mixtures. Two model

averaging methods (APP and MA) for skewed data are developed based on the BMA

framework, Occam’s razor and BIC. In both approaches, we match the components

based on the misclassification rate and ARI. When merging components is required,

we use the ARI to choose the best merging.

6.2 Future Work

Due to the paucity of work that has been done on clustering mixed-type data, there

are endless possibilities to expand such methods. Our methods can be extended to

other distributions. For instance, one can use another skewed distribution for the

continuous such as the variance-gamma or one could use the Poisson distribution for

the discrete variable.

Modern data gets more complex due to the “big data” phenomenon, and tra-

ditional methods developed for data mining are hard to apply to high-dimensional

longitudinal data. Thus, expanding the methods that we developed in this thesis

to high-dimensional or longitudinal data. This can be done by using a mixture of

matrix variate distributions model and expand the proposed methodologies in the

literature, e.g., Bouveyron et al. (2007), Anderlucci and Viroli (2015), Gallaugher

and McNicholas (2018).

Furthermore, not only methodological developments are needed but also compu-

tational developments such as developing packages for different language programs

such as R or Julia. The complexity and the numerical calculation come up with a

price that needs high-performance computing. This problem can be tackled through

implementing the method in different languages such as Julia.
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Appendix A

Parameters updates for MMSM

model

If the manifest variable Xij is categorical with levels 0, 1, 2, . . . Kj − 1, then the com-

plete log-likelihood is

L2 =
n∑
i=1

ẑig log g1(xij = k|wig,yig,θjg)

where

g1(xij = k|yi, wi,θj) =

∏Kj−1
k=0 [exp{ηjk + τ ′jkyi}]xij(k)

1 +
∑Kj−1

k=0 exp{ηjk + τ ′jkyi}
,

where xij(k) = 1 if xij is in category k and 0 otherwise.
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Now, differentiating the conditional expected value of L2 with respect to η

∂L2

∂ηjkg
E

[
n∑
i=1

ẑig log g1(xij = k|wig,yig,θjg)

]
= E

[
n∑
i=1

∂L2

∂ηjkg
ẑig log g1(xij = k|wig,yig,θjg)

]

= E

[
n∑
i=1

ẑig [xij(k)− g1(xij = k|yig, wig,θjg)]

]

=
n∑
i=1

ẑig

∫
y

[xij(k)− g1(xij = k|yig, wig,θjg)]

× h(yig|xi)dyig

Similarly, differentiating the conditional expected value of L2 with respect to τ

∂L2

∂τjkg
E

[
n∑
i=1

ẑig log g1(xij = k|wig,yig,θjg)

]
= E

[
n∑
i=1

∂L2

∂τjkg
ẑig log g1(xij = k|wig,yig,θjg)

]

=
n∑
i=1

ẑig

∫
y

yig [xij(k)− g1(xij = k|yig, wig,θjg)]

× h(yig|xi)dyig

Thus, the updated for the parameters (ηg, τg) can be calculated by solving the fol-

lowing equation:

n∑
i=1

ẑig

∫
y

(1,yig) [xij(k)− g1(xij = k|yig, wig,θjg)]h(yi|xi)dyig = 0

If the manifest variable Xij is continuous, then the conditional expected value of the
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complete log-likelihood is

L∗3 =
1

2

n∑
i=1

G∑
g=1

ẑig log(2π) +
1

2

n∑
i=1

G∑
g=1

ẑig log

(
1

wig

)
− 1

2

n∑
i=1

G∑
g=1

ẑig log |Ψg|

− 1

2

n∑
i=1

G∑
g=1

ẑig

[
bigtr

{
(xij − µg)(xij − µg)

′
Ψ−1g

}
− 2tr

{
(xij − µg)α

′

gΨ
−1
g

}
+aigtr

{
αgα

′

gΨ
−1
g

}
− 2tr

{
(xij − µg)

′
Ψ−1g Λge2ig

}
+ 2tr

{
α
′

gΨ
−1
g Λge1ig

}
+2tr

{
ΛgE3igΛ

′

gΨ
−1
g

}]
.

Differentiating L∗3 with respect to Λg then with respect to Ψ−1g give S1(Λg,Ψg) and

S2(Λg,Ψg) respectively

S1(Λg,Ψg) =
∂L∗3
∂Λg

= −1

2

n∑
i=1

[
−2Ψ−1g (xi − µ̂g)e

′

1ig + Ψ−1g Λg(E
′

3ig +E3ig)
]

S2(Λg,Ψg) =
∂L∗3
∂Ψg

=
1

2

n∑
i=1

ẑigΨg −
1

2

{
n∑
i=1

ẑig

[
big(xi − µ̂g)(xi − µ̂g)

′ − 2α̂g(xi − µ̂g)
′

+aigα̂gα̂
′

g − 2(xi − µ̂g)e
′

2igΛ
′

g + 2α̂ge
′

1igΛ
′

g + ΛgE3igΛ
′

g

]}
.

Now, solving S1(Λ̂g, Ψ̂g) = 0 and S2(Λ̂g, Ψ̂g) = 0 gives

Λ̂g =

{
n∑
i=1

ẑig

[
(xi − µ̂g)e

′

2ig − α̂ge
′

1ig

]}{ n∑
i=1

ẑigE
′

3ig

}−1
,

Ψ̂g =
1∑n
i=1 ẑig

dig

{
n∑
i=1

ẑig

[
big(xi − µ̂g)(xi − µ̂g)

′ − 2α̂g(xi − µ̂g)
′
+ aigα̂gα̂

′

g

−2(xi − µ̂g)e
′

2igΛ̂
′

g + 2α̂ge
′

1igΛ̂
′

g + Λ̂gE3igΛ̂
′

g

]}
.
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Appendix B

Parameters updates for MMCM

model

The updates for categorical variables are similar to the updates in MMSM model (see

Appendix A.

The updates for continuous variables are derived by differentiating the conditional

expected value of L4 with respect of parameter of interest. The conditional expected

value of L4 is

Q1 = C − 1

2

n∑
i=1

G∑
g=1

ẑig log |Ψg| −
1

2

n∑
i=1

G∑
g=1

[
ẑig

(
v̂ig +

1− v̂ig
ηg

)
tr
{

(xi − µ̂g)
′
Ψ−1g

(xi − µ̂g)} − 2tr
{

(xi − µ̂g)
′
Ψ−1g Λge1ig

}
+ tr

{
ΛgE2igΨ

−1
g Λ

′

g

}]
Differentiating Q1 with respect to Λg then with respect to Ψ−1g gives

S1(Λg,Ψg) =
∂Q1

∂Λg

= −1

2

n∑
i=1

[−2Ψ−1g (xi − µ̂g)e
′

1ig + Ψ−1g Λg(E
′

2ig +E2ig)]
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S2(Λg,Ψg) =
∂Q1

∂Ψg

=
1

2

n∑
i=1

ẑigΨg −
1

2

n∑
i=1

[
ẑig

(
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g + ΛgE2igΛ
′

g

]

Solving S1(Λ̂g, Ψ̂g) = 0 and S2(Λ̂g, Ψ̂g) = 0 gives

Λ̂g =

{
n∑
i=1

(xi − µ̂g)e
′

1ig

}{
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i=1

E2ig

}−1

Ψ̂g =
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]}
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Appendix C

Computational timing for

simulation

The following tables show the time to run each simulation per dataset. Note that

we run the simulation in parallel with the following machine specifications Cpu: 80,

memory: 190000M in Linux x86 64.

Table C.1: Average run-times in second per dataset for simulation in section 3.4.

n Simulation 1 Simulation 2

100 214946.22 268515.01
200 403612.79 535370.32
400 773007.43 835940.57
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Table C.2: Average run-times in second per dataset for simulation in section 4.5.

Simulation n MMCM MMGM

Scenario 1
50 213733.59 2545.20
100 309559.38 3448.08
200 560028.39 6896.16

Scenario 2
50 63249.36 2233.80
100 71996.64 5525.49
200 302947.64 14141.30

Scenario 3
50 68749.71 1220.40
100 121952.41 1314.00
200 265654.36 2302.20

Scenario 4-a
50 58887.64 17946.00
100 219895.32 32646.60
200 275771.52 55511.73

Scenario 4-b
50 4332.00 20847.57
100 196260.00 31186.80
200 216286.57 57231.59

Scenario 4-c
50 3319.20 10567.54
100 119308.10 39112.20
200 173731.30 105938.54

Scenario 4-d
50 3670.20 19571.38
100 165066.70 23310.00
200 239419.88 40754.20

Scenario 5
50 3720.60 774.00
100 4818.60 6809.40
200 8868.60 7666.20
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