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Abstract

Deep learning, usually built upon artificial neural networks, was proposed in 1943,

but poor computational capability restricted its development at that time. With the

advancement of computer architecture and chip design, deep learning gains sufficient

computational power and has revolutionized many areas in computer vision. As a

fundamental research area of computer vision, video enhancement often serves as the

first step of many modern vision systems and facilitates numerous downstream vision

tasks. This thesis provides a comprehensive study of video enhancement, especially

in the sense of video frame interpolation and space-time video super-resolution.

For video frame interpolation, two novel methods, named GDConvNet and VFIT,

are proposed. In GDConvNet, a novel mechanism named generalized deformable

convolution is introduced in order to overcome the inaccuracy flow estimation issue

in the flow-based methods and the rigidity issue of kernel shape in the kernel-based

methods. This mechanism can effectively learn motion information in a data-driven

manner and freely select sampling points in space-time. Our GDConvNet, built upon

this mechanism, is shown to achieve the state-of-the-art performance. As for VFIT,

the concept of local attention is firstly introduced to video interpolation, and a novel

space-time separation window-based self-attention scheme is further devised, which

not only saves costs but acts as a regularization term to improve the performance.
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Based on the new scheme, VFIT is presented as the first Transformer-based video

frame interpolation framework. In addition, a multi-scale frame synthesis scheme is

developed to fully realize the potential of Transformers. Extensive experiments on a

variety of benchmark datasets demonstrate the superiority and liability of VFIT.

For space-time video super-resolution, a novel unconstrained space-time video

super-resolution network is proposed to solve the common issues of the existing meth-

ods that either fail to explore the intrinsic relationship between temporal and spatial

information or lack flexibility in the choice of final temporal/spatial resolution. To

this end, several new ideas are introduced, such as integration of multi-level represen-

tations and generalized pixshuffle. Various experiments validate the proposed method

in terms of its complete freedom in choosing output resolution, as well as superior

performance over the state-of-the-art methods.
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Chapter 1

Introduction

1.1 Video Enhancement

The spatial and temporal resolutions of a video is usually limited by the camera,

specifically, the spatial resolution is determined by the total number of sensors, and

the temporal resolution is dependent on the frame-rate and exposure time of the

camera. Therefore, high-definition video quality and affordability of the camera form

a trade-off for many end-users. The need for visually-pleasing video quality and low

camera cost naturally calls for video enhancement, which aims at increasing spatial

and temporal resolutions of a given video without resorting to any hardware upgrades.

Video enhancement is a fundamental research area as it can be used in a wide range

of applications including medical imaging [1], surveillance [2] and even some high-

level vision applications [3] as a pre-processing step to improve the quality of the

corresponding data. In general, video enhancement can be divided into three major

categories: Video Super-Resolution (VSR), Video Frame Interpolation (VFI), and

Space-Time Video Super-Resolution (STVSR).
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VSR aims at recovering high-resolution (HR) frames from corresponding low-

resolution (LR) given frames by increasing the number of pixels in the spatial do-

main. As an advantage over single-image super-resolution (SISR), VSR has access to

multiple highly-related but misaligned frames, leading to a better visual performance

than SISR. However, how to effectively aggregate information from nearby frames

becomes an extra challenge for VSR. Typical VSR methods first extract features

from the input frames, and then send them to the reconstruction network to generate

super-resolved frames after proper alignment and fusion. By elaborately designing

each module and carefully finetuning the overall network, typical VSR methods have

been shown to generate satisfactory results in terms of efficiency and effectiveness on

various datasets.

The goal of VFI is to synthesize intermediate frames from the given input frames,

which can temporally upsample low-frame rate videos to higher-frame rate ones.

There are two major categories of video interpolation methods: kernel-based and

flow-based methods. Kernel-based methods generate intermediate frames by employ-

ing a set of spatial-adaptive convolution kernels to convolve with the input frames

while flow-based methods achieve this goal by warping pixels from the given frames

according to associated optical flows. These two categories of VFI methods are proved

to be effective and reliable even though they reply on different approaches.

Distinct from VFI and VSR that only focus on one aspect of video, STVSR

seeks to simultaneously increase the temporal frame rate and the spatial resolution

of a given video, which is regarded as unifying VFI and VSR into one framework.

A straightforward way is to directly combine state-of-the-art VFI methods and VSR

methods, termed two-stage methods. However, the performance of two-stage methods

2
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is limited since the intrinsic relationship between temporal and spatial information is

barely exploited. Moreover, the computational complexity of the two-stage methods

is extremely high since state-of-the-art VFI and VSR methods are already compu-

tationally intensive and likely involve many redundant operations (e.g ., extracting

features). To solve this problem, many one-stage methods have been proposed, which

behave better than two-stage methods in terms of both performance and costs.

1.2 Deep Learning

Deep learning is usually based on Artificial Neural Networks (ANN), which was firstly

proposed in 1943 [4] and designed to imitate biological neural networks. Through

stacking multiple layers where each layer acts as a simple non-linear transformation,

the ANN is able to approximate relative complex transformation. Moreover, ’deep’

here emphasizes the number of stacked layers can be extremely huge (e.g ., 1000). As

such, the DNN is believed to have the capability of achieving arbitrary non-linear

transformation.

Although DNN has the potential of approximating arbitrary transformation, a

careful tuning process from the initial state is needed and this process is often termed

as ’training’. The training process usually takes an enormous amount of calculations,

which is unaffordable for the hardware of the last century. That is the main reason

why ANN was proposed early but no significant breakthrough was made. Recently,

with the development of modern Cpu (e.g ., Intel Core series) and Gpu (e.g ., Nvidia

series), sufficient computational power becomes available. In 2012, AlexNet [5], a

deeper version of LeNet [6] which had been proposed in the last century, broke multiple

AI records with a significant margin, which attracted many researchers’ attention.

3
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Later, as more researchers join the area, more large-scale datasets are constructed

and more advanced algorithms are presented, which make significant contributions to

the development of the modern AI area.

In general, there are four typical categories of neural network in deep learning:

1. Fully Connected Neural Network (FCN);

2. Convolutional Neural Network (CNN);

3. Recurrent Neural network (RNN).

4. Transformer.

FCN, also known as multi-layer perception machine (MLP), is composed of multi-

ple layers of neurons, where the neurons from consecutive layers are fully-connected,

leading to a better capability of learning complex transformations but with a large

model size and computational complexity. FCN has been utilized in many tasks

including, among others, fraud detection [7], e-mail span filtering [8], and sales fore-

casting [9].

Different from FCN, CNN replaces the fully-connected neurons with sparse con-

volutional kernels, thus dramatically reducing the total number of parameters and

computational complexity. Since the kernel-based scheme is particularly suited to

process array-like data (e.g ., images), CNN has been successfully applied in the area

of computer vision (CV). The typical applications of CNN in CV include image clas-

sification [10], image segmentation [11], object detection [12], facial recognition [13],

etc.

As to RNN, it can be regarded as a recursive variant of FCN, where the out-

put layer of the previous time-step is recursively connected to the input layer of the

4
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current time-step and the hidden layers are recurrently connected along the time-

steps. This characteristic allows RNN to memorize previous information, thus is

widely used in the areas of natural language processing (NLP), handwriting recogni-

tion [14], and time series analysis. However, the transmitted hidden information may

attenuate or even vanish when the time-steps are too long, causing the short-term

memory problem. To address this problem, Gated Recurrent Units (GRU) [15] and

Long Short-Term Memory (LSTM) [16] are proposed, where the various gates are

introduced to keep hidden information from the far time-step still effective.

Recently, [17] proposes a novel network architecture, named Transformer, which

provides an additional choice besides the above three. The new architecture purely

relies on the self-attention mechanism and has shown promising results in the NLP

area. Motivated by the success in the NLP area, researchers seek to adapt transformer

into the CV area and have gained noticeable success, such as in the area of image

classification [18] and image processing [19].

Since the focus of this thesis is on the applications of deep learning to video

enhancement, CNN and Transformer are chosen as the basic backbone.

1.3 Contributions and Thesis Organization

This thesis contributes to video enhancement based on deep learning, which is com-

posed of three articles in a sandwich thesis format following the terms and regulations

of McMaster University. The reference information of these three articles is listed be-

low:

1. Zhihao Shi, Xiaohong Liu, Kangdi Shi, Linhui Dai, and Jun Chen. Video
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frame interpolation via generalized deformable convolution. In IEEE Transac-

tions on Multimedia, 2021.

2. Zhihao Shi, Xiangyu Xu, Xiaohong Liu, Jun Chen, and Ming-Hsuan Yang.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2022.

3. Zhihao Shi, Xiaohong Liu, Chengqi Li, Linhui Dai, Jun Chen, Timothy N.

Davidson, and Jiying Zhao. Learning for Unconstrained Space-Time Video

Super-Resolution. In IEEE Transactions on Broadcasting, 2021.

The first two articles belong to the topic of video frame interpolation, and the last

article focuses on space-time video super-resolution.

More specifically, the first article is to tackle the VFI task, named Generalized De-

formable Convolution Network. A novel mechanism named generalized deformable

convolution is proposed, which can effectively learn motion information in a data-

driven manner and freely select sampling points in space-time. Furthermore, a new

video frame interpolation method is developed based on this mechanism. The exten-

sive experiments demonstrate that the new method performs favorably against the

state-of-the-art, especially when dealing with complex motions.

The second article is also about VFI, but pays attention to designing network

backbone. In contrast to existing methods for video interpolation that heavily rely

on deep convolution neural networks, a Transformer-based video interpolation frame-

work is proposed, which allows content-aware aggregation weights and considers long-

range dependencies with the self-attention operations. Moreover, a multi-scale frame

synthesis scheme is developed to further improve the performance. Extensive ex-

periments demonstrate the proposed model performs favorably against the state-
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of-the-art methods both quantitatively and qualitatively on a variety of benchmark

datasets.

As for the last article, it focuses on realizing VFI and VSR simultaneously, i.e.,

STVSR. An unconstrained one-stage space-time video super-resolution network is

proposed, which can effectively exploit space-time correlation to boost performance.

Moreover, it has complete freedom in adjusting the temporal frame rate and spa-

tial resolution. Extensive experiments demonstrate that the proposed method not

only outperforms the state-of-the-art but also requires far fewer parameters and less

running time.
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Chapter 2

Video Frame Interpolation via

Generalized Deformable

Convolution

2.1 Abstract

Video frame interpolation aims at synthesizing intermediate frames from nearby

source frames while maintaining spatial and temporal consistencies. The existing

deep-learning-based video frame interpolation methods can be roughly divided into

two categories: flow-based methods and kernel-based methods. The performance of

flow-based methods is often jeopardized by the inaccuracy of flow map estimation due

to oversimplified motion models, while that of kernel-based methods tends to be con-

strained by the rigidity of kernel shape. To address these performance-limiting issues,

a novel mechanism named generalized deformable convolution is proposed, which

can effectively learn motion information in a data-driven manner and freely select
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sampling points in space-time. We further develop a new video frame interpolation

method based on this mechanism. Our extensive experiments demonstrate that the

new method performs favorably against the state-of-the-art, especially when dealing

with complex motions. Code is available at https://github.com/zhshi0816/GDConvNet.

2.2 Introduction

In recent years, owing to the hardware development and the availability of large-

scale datasets, deep learning has achieved promising results in many computer vision

and multimedia tasks [1] including, among others, super-resolution [2–4], optical flow

estimation [5, 6], image dehazing [7, 8], action recognition [9], and VFI [10–13]. VFI

is a classic problem in the multimedia area and has received significant attention

with the rapid growth of streaming videos. It aims at synthesizing intermediate

frames from nearby sources while maintaining spatial and temporal consistencies.

VFI has two main use cases; one is to perform error concealment at the decoder

side [10,11], and the other one is to increase the frame rate of a given video for better

visual performance [12,13]. In general, VFI methods can be roughly divided into two

categories: flow-based methods and kernel-based methods.

Flow-based methods generate the value of each pixel in the target intermediate

frame by finding an associated optical flow. Accurate estimation of the flow map is

essential for producing desirable VFI results. However, in some cases with complex

motions, it is hard to obtain an accurate flow map regardless whether traditional

methods [14–16] or deep-learning-based methods [6,17–19] are employed. Flow-based

methods [1,11,20–22] typically adopt a linear model with the oversimplified assump-

tion of uniform motion between neighboring frames. Recently, a more sophisticated
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approach was proposed in [23] for estimating motion trajectories, where the naive

linear model is replaced by a more accurate quadratic model that can take advantage

of latent motion information by simultaneously exploiting four consecutive frames.

Nevertheless, it is conceivable that the complexities and irregularities of real-world

motions cannot be completely captured by a simple mathematical model. Moreover,

the pixel-level displacement performed in flow-based methods is inherently inade-

quate for handling diffusion and dispersion effects, especially when such effects are

not negligible over the time interval between two consecutive frames.

Kernel-based methods directly generate the target intermediate frame by applying

spatially-adaptive convolution kernels to the given frames. They circumvent the need

for flow map estimation and consequently are not susceptible to the associated issues.

On the other hand, the rigidity of the kernel shape [24,25] severely limits the types of

motions that such methods can handle. Indeed, one may need to choose a very large

kernel size to ensure enough coverage, which is highly inefficient. As a partial remedy,

reference [21] proposes adaptive deployment of convolution kernels guided by flow

maps, but nevertheless, the receptive field is still constrained by the predetermined

kernel shape. More recently, reference [12] introduces a new approach known as

AdaCoF, which utilizes spatially-adaptive deformable convolution (DConv) to select

suitable sampling points needed for synthesizing each target pixel. Although this

approach eliminates the constraint on the kernel shape in the spatial domain, it does

not fully exploit the degrees of freedom available in whole space-time.

In summary, flow-based methods and kernel-based methods have their respective

limitations. For flow-based methods, even with the aid of sophisticated mathematical

14



Ph.D. Thesis – Z. Shi McMaster University – Electrical & Computer Engineering

(a) (b)

(c)

Figure 2.1: Illustration of (a) conventional convolution with 3× 3× 4 = 36 sampling
points, (b) GDConv with the same number of sampling points, and (c) visualization
of interpolating one frame with GDConv.

models, flow map estimation is still a challenging task due to the intricacies of inter-

frame motion trajectories. For kernel-based methods, the predetermined kernel shape

lacks the flexibility to cope with a great variety of motions in terms of range and

pattern. While recent innovations have alleviated the rigidity issue to a certain extent,

much remains to be done.

The main contribution of this paper is a new approach to VFI that overcomes the

hurdles of the aforementioned methods and retains their desirable properties. The key

mechanism underlying the proposed approach is generalized deformable convolution

(GDConv). An illustration of the difference between conventional convolution and our

GDConv in terms of the freedom to select sampling points can be found in Fig. 2.1(a)

and (b). Fig. 2.1(c) provides a rough idea of how GDConv can be leveraged for VFI:
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each pixel (e.g., the blue one) in the target intermediate frame is synthesized based

on the corresponding sampling points (the red ones). It is worth noting that as the

sampling points are allowed to move freely in the continuous space-time, the receptive

field of GDConv is basically unconstrained, making it possible to handle all kinds of

motions (say, large motions). Moreover, GDConv does not directly adopt a predeter-

mined mathematical model (e.g., linear or quadratic model) for motion estimation.

Instead, it is trained to learn real-world motion trajectories and patterns via a data-

driven approach. In our design, GDConv is encapsulated in a generalized deformable

convolution module (GDCM). We integrate two GDCMs with several other modules,

including the source extraction module (SEM), the context extraction module (CEM)

and the post-processing module (PM), to form a generalized deformable convolution

network (GDConvNet) for VFI. Our extensive experimental results demonstrate that

owing to the effective design, the proposed GDConvNet performs favorably against

the current state-of-the-art.

2.3 Generalized Deformable Convolution Network

The overall architecture of GDConvNet is shown in Fig. 2.2. Given a video clip

that consists of T + 1 source frames1 I0, I1, · · · , IT , the task of GDConvNet is to

synthesize an intermediate frame It, t ∈ [0, T ]. To this end, it first generates source

features through SEM and extracts context maps C0, C1, · · · , CT through CEM

from I0, I1, · · · , IT . The input frames and context maps are then warped by two

separate GDCMs according to the same source features. Finally, the warped frame

1 For notional simplicity, we assume that the source frames are equally spaced in time. However,
the proposed framework can in fact handle the unequal spacing case as well.
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Figure 2.2: Illustration of the architecture of GDConvNet with T = 3. Here I0, · · · , I3

are input frames and C0, · · · , C3 are their respective context maps; 4xin and 4yin are
spatial offsets (horizontal and vertical) for support point; 4xn, 4yn and 4zn are
spatial offsets and temporal parameters for sampling points; 4mn is the modulation
terms; I ′t is a tentative prediction of the target frame It while C ′t denotes the predicted
context map of It; Ît is the final output.

I ′t and the warped context map C ′t are fed into the PM to produce the VFI result

Ît, which is an approximation2 of It. The proposed network accomplishes the VFI

task by employing a novel GDConv mechanism. Now we proceed to give a detailed

description of each module in Fig. 2.2, with a special emphasis on the GDCM where

the GDConv mechanism is realized.

2.3.1 Generalized Deformable Convolution Module

The input to the GDCM consists of the T + 1 source frames I0, I1, · · · , IT (or the

context maps C0, C1, · · · , CT ) and the source features. As shown in Fig. 2.2, three

different kinds of feature maps, which represent three different types of adaptive

parameters, are generated through three different convolution layers, respectively.

2The accuracy of this approximation can be evaluated by using objective image quality metrics
(to be detailed later) or subjective criteria.
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(a) (b)

(c) (d)

Figure 2.3: Illustration of (a) conventional convolution, (b) AdaCoF, (c) basic GD-
Conv, (d) advanced GDConv with T = 1. Here target pixels, sampling points, support
points, and neighboring grid points are denoted by yellow, red, green, and blue dots,
respectively. For AdaCoF, the value of each sampling point is specified via bilinear
interpolation of its four neighboring grid points. For basic GDConv, the value of each
sampling point is determined by its two support points via linear interpolation, or
equivalently, by its eight associated grid points via trilinear interpolation. Advanced
GDConv further removes the constraint that the support points need to be spatially
aligned with the corresponding sampling point and allows more general numerical
interpolation methods.

They are then fed to GDConv along with the source frames I0, I1, · · · , IT (or the

context maps C0, C1, · · · , CT ) to synthesize I ′t (or C ′t). Since the two GDCMs

are almost identical, here we only describe the upper one in detail. Moreover, as

the operations on the three color channels are the same, we simply regard Ii as a

single-channel image. For ease of exposition, we first give a brief review of VFI

techniques based on conventional convolution [24] and AdaCoF [12], and then outline

the improvements offered by the proposed GDConv.

Conventional convolution is employed in [24] for VFI. This can be formulated as:

I ′t(x, y) =
T∑
i=0

M∑
m=1

W i
m(x, y) · Ii(x+ xm, y + ym), (2.3.1)
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where W i
m(x, y) is a spatially-adaptive convolution weight, and {(xm, ym)}Nm=1 is a col-

lection of pre-defined convolution sampling offsets. Fig. 2.3(a) provides an illustration

for the special case with T = 1, M = 9 and {(xm, ym)}Mm=1 = {(−1,−1), (−1, 0), · · · , (1, 1)}.

Ideally, the object (pixel) movement should be confined within the coverage of the con-

volution kernel. As such, in the presence of large motions, this approach is memory-

inefficient due to the need for a large number of sampling points to ensure sufficient

coverage.

The inefficiency of conventional convolution is largely a consequence of the pre-

defined kernel shape (typically, a rectangular grid). AdaCoF [12] addresses this issue

by adopting spatially-adaptive deformable convolution, resulting in the following for-

mulation:

I ′t(x, y) =
T∑
i=0

M∑
m=1

W i
m(x, y) · Ii(x+4αi

m, y +4βi
m), (2.3.2)

where {(4αi
m,4βi

m)}Mm=1 is a collection of adaptive sampling offsets. In the case

where 4αi
m and 4βi

m are not integers, Ii(x + 4αi
m, y + 4βi

m) is specified through

bilinear interpolation. As a result of the introduction of adaptive sampling offsets, the

kernel shape becomes adjustable, as shown in Fig. 2.3(b). For this reason, AdaCoF is

able to cope with large motions using a relatively small number of sampling points. On

the other hand, AdaCoF only exploits the degrees of freedom in the spatial domain.

As a result, the sampling points are evenly split among the input frames. However,

this is clearly suboptimal since the frames that are closer to the target intermediate

frame in the temporal domain are more relevant and consequently should be allocated

with more sampling points.

We shall develop a mechanism that enables flexible allocation of the sampling
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Figure 2.4: Construction of function I for the special case T = 3 with a sampling
point (x+4xn, y+4yn, zn), its associated support points (x+4xin, y+4yin, i), i ∈
{0, 1, 2, 3}, and their neighboring grid points highlighted in red, green, and blue,
respectively.

points across the input frames. In fact, we go one step further by allowing the sam-

pling points to be freely distributed in whole space-time. The key idea is to associate

each sampling point with an adaptive temporal parameter zn ∈ [0, T ], leading to the

following formulation:

I ′t(x, y) =
N∑

n=1

Wn(x, y) · I(x+4xn, y +4yn, zn). (2.3.3)

Here, I is a function (defined on a 3D space) obtained via a judicious extension of

I0, I1, · · · , IT to be detailed below (see Fig. 2.4 for an illustration of the special case

in which T = 3). Note that zn is allowed to be any real number in [0, T ] to facilitate

end-to-end training. If zn is an integer, we set I(x + 4xn, y + 4yn, zn) = Izn(x +

4xn, y+4yn). (Following [12,26,27], in the case where4xn and4yn are not integers,

Izn(x+4xn, y +4yn) is specified via bilinear interpolation of four neighboring grid

points.) It can be seen that Eq. (2.3.3) reduces to Eq. (2.3.2) when N = (T+1)M and

each value in {0, 1, · · · , T} is taken by the same number of zn. Now it remains to deal

with non-integer valued zn, which occurs when the associated sampling point is not
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exactly located on an input frame. One simple solution is to set I(x+4xn, y+4yn, zn)

as (dzne − zn) · (I(x+4xn, y +4yn, bznc) + (zn − bznc) · I(x+4xn, y +4yn, dzne).

(See Fig. 2.3(c) for an illustration of the special case in which T = 1.) More generally,

we attach a set of support points (x + 4xin, y + 4yin, i), i ∈ {0, 1, · · · , T}, to each

sampling point (x +4xn, y +4yn, zn), and use their values I(x +4xin, y +4yin, i)

(denoted as sin for short), i ∈ {0, 1, · · · , T}, and their relative positions, to specify

I(x+4xn, y+4yn, zn) (denoted as sn for short) via a numerical interpolation function

G:

sn = G(4xn,4yn, zn, {sin,4xin,4yin}Ti=0). (2.3.4)

Illustrations of special cases with T = 1 and T = 3 can be found in Fig. 2.3(d)

and Fig. 2.4, respectively. Note that each support point has its own adaptive spatial

offset (4xin,4yin), which is not necessarily the same as (4xn,4yn). Moreover, there

is considerable freedom in the choice of G as long as the differentiability condition

needed for end-to-end training is satisfied. We will discuss several candidate numerical

interpolation methods in Section 2.5.3. Finally, inspired by modulated deformable

convolution [27], we rewrite Eq. (2.3.3) in the following equivalent form:

I ′t(x, y) =
N∑

n=1

Wn · I(x+4xn, y +4yn, zn) · 4mn(x, y), (2.3.5)

where 4mn(x, y) ∈ [0, 1] is an adaptive modulation term.

As illustrated in Fig. 2.2, three types of feature maps are generated in GDCM via

three different convolution layers. The first 2(T + 1)N feature maps represent the

spatial offsets (horizontal and vertical) for the support points (i.e., 4xin, 4yin), and

the next 3N feature maps represent the spatial offsets and temporal parameters for
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Figure 2.5: Illustration of the architecture of SEM.

the sampling points (i.e., 4xn, 4yn, zn), and the last N feature maps represent the

modulation terms (i.e., 4mn). We set the initial values of the adaptive parameters

4xn, 4yn, zn, 4mn, 4xin and 4yin as 0, 0, 0, 1, 0, and 0, respectively.

2.3.2 Other Modules

Now we proceed to give a brief description of the remaining modules in the proposed

GDConvNet.

Source Extraction Module: As shown in Fig. 2.5, we adopt the FPN backbone [28]

to generate hierarchical features. In the bottom-up pathway, there are three levels

(each consisting of two residual blocks and one convolution layer) and the associated

feature maps (which are of different scales) are denoted as S1, S2, and S3. The input

P3 to the top level of the top-down pathway is generated from S3 through a pyramid

pooling module [29]. P3 is then upsampled and merged with S2 via element-wise

addition to generate P2, which is further upsampled and merged with S1 to generate

P1. Finally, P2 and P3 are upsampled and concatenated with P1 to form the output.

Context Extraction Module: It is demonstrated in [30] that context information

is very important for VFI. We use one convolution layer and two residual blocks [31]

to sequentially extract contextual features. A SEblock [32] is then used to rearrange
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these feature maps, and finally its output is smoothed by a convolution layer.

Post-Processing Module: To refine the warped image, we adopt the GridDe-

hazeNet architecture [33], where each row is associated with a different scale and

contains five RDB blocks [34], while each column can be considered as a bridge

connecting different scales through downsampling or upsampling modules. (which

decrease or increase the size of feature maps by a factor of two.) Instead of employing

the hard attention mechanism in [33], we use SEBlocks [32] to adaptively rebalance

the incoming information flows at the junctions of GridDehazeNet.

2.4 Understanding Generalized Deformable Con-

volution in VFI

In this section, we shall place generalized deformable convolution in a board context

and explain why it is an effective mechanism for VFI.

2.4.1 Related Works

Generalized deformable convolution is conceptually related to several existing ideas

in the literature.

Deformable Convolution: There are many works on variants of conventional con-

volution with improved performance, including active convolution [35], dynamic fil-

ter [36], atrous convolution [37], among others. A culminating achievement of this

line of research is deformable convolution [26, 27]. Our generalized deformable con-

volution degenerates to conventional deformable convolution [26, 27] if the temporal

dimension is not present, and its basic form, shown in Fig. 2.3(c), can be viewed as
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a 3D-version of deformable convolution.

Non-Local Network: In deep learning, non-locality means that the receptive field

is not restricted to a certain local region and can capture long-range context infor-

mation. The receptive field of conventional convolution is typically a fixed grid and

consequently is local in nature. Significant efforts have been devoted to addressing

this issue [29,37–39]. Arguably the most successful one is [39], which takes all possible

spatial positions into consideration. However, this comes at the cost of high memory

usage. In contrast, generalized deformable convolution is memory-efficient as it is

able to achieve non-local coverage and capture long-range context information with

a relatively small kernel by adaptively and intelligently selecting sampling points in

space-time.

Attention Mechanism: An attention mechanism enables differentiated treatment

of different input features according to their relative importance, which has shown to

yield significant performance gain in many vision tasks. Traditionally, it can be di-

vided into spatial-wise attention [40] and channel-wise/temporal-wise attention [32].

Recently, there have also been attempts [41,42] to combine these two types of atten-

tion. Nevertheless, in these approaches the spatial-wise and channel-wise/temporal-

wise attention maps are still generated separately. It is interesting to note that gen-

eralized deformable convolution offers a natural way to consolidate these two types of

attention by suitably modulating the sampling points at different locations in space-

time.

Non-Linearity: The conventional approach to increasing the non-linearity of con-

volutional neural networks [43–45] is by stacking more non-linear modules [45, 46].
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Figure 2.6: Illustration of (a) flow-based VFI pipeline and (b) kernel-based VFI
pipeline.

However, it has been recognized that a more effective approach is to allow the func-

tionalities of constituent modules to be input-dependent [32, 40, 47]. From this per-

spective, generalized deformable convolution converts a linear convolution operation

into a highly non-linear operation by adaptively adjusting its kernel according to the

input, and by doing so it yields enhanced learning capabilities.

2.4.2 Comparison with State-of-the-Art VFI Algorithms

The state-of-the-art VFI methods can be divided into two categories: flow-based

methods and kernel-based methods. For illustrative purposes, we shall consider the

simple scenario where two source frames I1 and I2 are used to predict one target

frame I1.5, unless specified otherwise.

Flow-based: These methods admit a common mathematical formulation as follows:

I
′

1.5←1(x, y) = I1(x+4u1, y +4v1), (2.4.1)

or

I
′

1.5←2(x, y) = I2(x+4u2, y +4v2), (2.4.2)

where (4u1,4v1) and (4u2,4v2) are respectively optical flow fields from I1.5 to I1

and I2, while I
′
1.5←1 and I

′
1.5←2 denote the warped images from each direction. The
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pipeline of flow-based methods is illustrated in Fig. 2.6(a). First, two input frames

are used to estimate optical flow maps, typically with the help of traditional optical

flow estimation methods [14–16] or convolution neural network [6,17–19]. The input

frames are then warped according to these optical flow maps. Finally, blending and

post-processing operations are performed to generate the final output. The linear

motion model is widely adopted in flow map estimation. However, this model is not

accurate for describing accelerated and curvilinear motions. To handle such complex

motions, a quadratic model is proposed in [23], where (4u1,4v1) and (4u2,4v2)

are estimated based on four frames I0, I1, I2, and I3 instead of just I1 and I2. To

understand the connection with our method, it is instructive to consider a special

case of Eq. (2.3.5) with N = 1, where z1 = 1, (4x1,4y1) = (4x1
1,4y1

1), or z1 = 2,

(4x1,4y1) = (4x2
1,4y2

1):

I
′

1.5←1(x, y) = W1 · I(x+4x1, y +4y1, 1) · 4m1

= W1 · I1(x+4x1
1, y +4y1

1) · 4m1,

(2.4.3)

or

I
′

1.5←2(x, y) = W1 · I(x+4x1, y +4y1, 2) · 4m1

= W1 · I2(x+4x2
1, y +4y2

1) · 4m1.

(2.4.4)

One can readily recover Eq. (2.4.1) and Eq. (2.4.2) from Eq. (2.4.3) and Eq. (2.4.4)

by setting W1 = 4m1 = 1 and interpreting (4xi1,4yi1) as (4ui,4vi), i = 1, 2.

Similarly to the case with (4u1,4v1) and (4u2,4v2) in [23], the estimation of the

offsets (4x1
1,4y1

1) and (4x2
1,4y2

1) can also benefit from more than two source frames.

More importantly, in our method, the offset estimation does not directly resort to any

predetermined mathematical model and is carried out in a completely data-driven
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manner. As such, it can cope with real-world motions more flexibly and accurately.

Furthermore, for the general version of our method, the number of sampling points

can be set to be greater than 1 (i.e., N > 1), which, together with the freedom

in choosing the space-time coordinates of the sampling points and the relaxation

of the constraint (4xn,4yn) = (4xin,4yin), makes it possible to capture complex

diffusion and dispersion effects. Finally, we would like to point out that the space-

time numerical interpolation operation in our method plays a role similar to that

of the blending operation in some existing flow-based methods [13, 20, 22] (see also

Fig. 2.6(a)), but requires fewer parameters, as it is performed at the sampling point

level.

Kernel-based: These methods [12, 24, 25] generate two sets of spatially-adaptive

convolution kernels and use them to convolve with source frame patches to get the

predicted target frames I
′
1.5←1, I

′
1.5←2 from two sides, which are then blended at the

pixel level to get final VFI result:

Î1.5(x, y) = I
′

1.5←1(x, y) + I
′

1.5←2(x, y)

= K1(x, y) ∗ I1(x, y) +K2(x, y) ∗ I2(x, y).

(2.4.5)

The pipeline of kernel-based methods is shown in Fig. 2.6(b). Note that in the

presence of complex motions, the technique in [24] and [25] need to adopt large kernels

(specifically, the size of convolutional kernels used in [24] and [25] are 41 × 41 and

51 × 51, respectively) to ensure sufficient coverage, which is inflexible and memory-

inefficient. AdaCoF [12] addresses this issue by adopting deformable convolution.

Nevertheless, the sampling points in AdaCoF are only spatially adaptive. In contrast,

the proposed method can make more effective use of the sampling points by freely
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exploring space-time (not just in the spatial domain). As such, it often suffices to

employ small kernels, even when dealing with very complex motions. Our method

also has the additional advantage of blending images at the sampling point level (in

the form of space-time numerical interpolation), which is more efficient than blending

at the pixel level in kernel-based methods.

2.5 Four-Frame VFI Experiments

Due to its flexibility, our method can leverage an arbitrary number of frames for VFI.

Here we focus on the four-frame VFI case. The experimental results for two-frame

VFI will be presented in Section 2.6.

2.5.1 Implementation Details

We use four source frames I0, I1, I2, and I3 to synthesize the target frame I1.5. In

GDConv, the number of sampling points for each warped pixel is set to 25. The loss

function, the training dataset, and the training strategy are described below.

Loss Function: In addition to the supervision provided at the output end, we

introduce intermediate supervision to ensure proper training of the GDCM (which

is the key component of GDConvNet). Note that without intermediate supervision,

we have no direct control of the training of the GDCM due to the fact that the

downstream post-processing module, which is a relatively large and complex network,

tends to dilute the impact of the supervisory signal. The overall loss function can be
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formulated as:

L = Lr + λLw

=
∑
x

||Ît(x)− IGT (x)||1 + λ
∑
x

||I ′

t(x)− IGT (x)||1,
(2.5.1)

where IGT is the ground-truth frame, and λ is a hyper-parameter to balance the

warped loss Lw and the refined loss Lr. (Experimentally, we found that λ = 0.5 yields

the best performance.) We use the `1 norm instead of the `2 norm because the latter

is known to produce blurry results in image synthesis tasks. Following [12,21,22,48],

we use the Charbonnier Function Φ(x) =
√
x2 + ε2 to smoothly approximate the `1

norm and set ε = 10−6.

Training DataSet: The Vimeo90k Septuplet training dataset [13] is used to train

our model. This training dataset is composed of 64, 612 seven-frame sequences with

a resolution of 256×448. We use the first, the third, the fifth, and the seventh frames

(corresponding to I0, I1, I2, and I3 in our notation, respectively) of each sequence to

predict the fourth one (corresponding to I1.5). We randomly crop image patches of

size 256× 256 for training. Horizontal and vertical flipping, as well as temporal order

reversal, are performed for data augmentation.

Training Strategy: Different from [13, 21, 22], our network can be trained from

scratch without relying on any pre-trained model. We adopt the Adam optimizer [49],

where β1 and β2 are set as the default values 0.9 and 0.999, respectively. We set the

training batch size as 8 and train our network for 14 epochs (nearly 11, 300 iterations)

in total. The initial learning rate is set as 10−3, and the learning rate is reduced by

a factor of two every 4 epochs for the first 8 epochs and by a factor of five every

2 epochs for the last 6 epochs. The training is carried out on four NVIDIA GTX
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Table 2.1: The statistics of pixel displacement within different datasets. This table
shows the average pixel displacement, the percentage of pixels with displacement
larger than 15, 20 and 25 respectively for three datasets.

Dataset avg disp. > 15 > 20 > 25
Vimeo90k Dataset 6.1 9.1% 5.0% 3.0%

Gopro Dataset 6.1 7.0% 2.7% 1.0%
Adobe240 Dataset 8.2 13.0% 9.0% 6.1%

1080Ti GPUs, and takes about 58 hours to converge.

2.5.2 Evaluation Datasets

The following three datasets are used for performance evaluation.

Vimeo90K Septuplet Test Set [13]: This dataset consists of 7, 824 video se-

quences, each with 7 frames. As in the case of the Vimeo90K Septuplet training

dataset, the first, the third, the fifth, and the seventh frames of each sequence

are leveraged to synthesize the fourth one. The image resolution of this dataset

is 256× 448.

Gopro Dataset [50]: This dataset is composed of 33 high-resolution videos recorded

by hand-held cameras. The frame rate of each video is 240 fps, and the image res-

olution is 720 × 1, 280. The dataset was released in an image format, consisting of

a total of 35, 782 images. We successively group every 25 consecutive images as a

test sequence, and resize the images to 360 × 480. Finally, 1, 392 test sequences are

selected. For each sequence, the first, the ninth, the seventeenth, and the twenty-fifth

frames (corresponding to I0, I1, I2, and I3, respectively) are used to synthesize the

thirteenth frame (corresponding to I1.5). This dataset is rich with non-linear camera

motions and dynamic object motions, posing significant challenges to VFI methods

in these respects.
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Adobe240 Dataset [51]: This dataset consists of 133 240 fps videos in total, where

the resolution of each video is 720× 1, 280. These videos are recorded by hand-held

cameras, and mainly contain outdoor scenes. Different from the Gopro dataset, this

dataset is released in a video format. We extract 7, 479 non-overlapped test sequences,

each with 25 frames. This dataset is rich with large motions. Indeed, it has the largest

average pixel displacement among the three datasets under consideration according

to Table. 2.1. Therefore, it can be used to examine the strength of a VFI method in

handling such motions.

2.5.3 Numerical Interpolation Methods

As described in Section 2.3.1, a numerical interpolation function G is used to specify

the value sn = I(x + 4xn, y + 4yn, zn) of a sampling point in accordance with

its position and the corresponding support points sin = I(x + 4xin, y + 4yin, i),

i ∈ {0, 1, · · · , T}, when it does not exactly lie on an input frame (i.e., when zn is

not an integer). In principle, any numerical interpolation function satisfying the

differentiability condition can be leveraged for this purpose. However, different nu-

merical interpolation functions may generate different values for the same sampling

point and consequently lead to different final outputs. Therefore, it is important to

understand how the choice of the numerical interpolation function affects the overall

system performance. To this end, we investigate the following representatives: lin-

ear interpolation, 3D and 1D versions of inverse-distance-weighted interpolation, and

polynomial interpolation.
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Table 2.2: Quantitative comparisons of GDConvNet with different numerical inter-
polation methods on Viemo-90k test dataset, Gopro dataset, and Adobe240 dataset.

Method
#Parameters Vimeo-90k Gopro Adobe240

(million) PSNR SSIM PSNR SSIM PSNR SSIM
Ours-Linear 5.1 34.96 0.9534 30.06 0.9092 34.20 0.9422
Ours-3D Inv 5.1 35.01 0.9535 30.12 0.9099 34.27 0.9427
Ours-1D Inv 5.1 35.08 0.9541 30.16 0.9099 34.36 0.9436
Ours-Poly 5.1 35.58 0.9580 30.49 0.9180 34.53 0.9456

Ours-Poly-clamping 5.1 35.10 0.9548 30.18 0.9072 34.33 0.9442

2.5.3.1 Linear Interpolation

This is one of the simplest interpolation methods. It can be be formulated as:

sn =
T∑
i=0

max(0, 1− |zn − i|) · sin. (2.5.2)

Note that even if T > 1, only two adjacent support points are taken into consider-

ation in Eq. (2.5.2) for interpolating sn. (The maximum operation suppresses the

contribution of other support points.) We regard this interpolation method as the

baseline in comparisons.

2.5.3.2 3D Version of Inverse-Distance-Weighted Interpolation (3D Inv)

In contrast to linear interpolation, this method makes use of all support points (see

Fig. 2.4) as follows:

sn =

∑T
i=0 wi · sin∑T

i=0wi

, (2.5.3)
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where wi = 1/((dix)2 + (diy)
2 + (diz)

2), dix = |4xn −4xin|/H, diy = |4yn −4yin|/W ,

and diz = |zn− i|/T . The quantitative comparisons in Table 2.2 indicate that leverag-

ing all support points instead of just two adjacent points yields better performance.

Table 2.3 shows the means of (dix)2, (diy)
2, and (diz)

2 (averaged over i), denoted as

(dx)2, (dy)
2 and (dz)

2, respectively. It is clear that (dx)2 and (dy)
2 are about two

orders of magnitude smaller than (dz)
2. This implies that it might suffice to set

the weights based on the temporal information alone, which naturally suggests the

following interpolation method.

Table 2.3: Mean of the squared distance.

(dx)2 (dy)
2 (dz)

2

0.0025 0.0010 0.2009

2.5.3.3 1D Version of Inverse-Distance-Weighted Interpolation (1D Inv)

Setting wi = 1/(diz)
2 in Eq. (2.5.3) leads to the 1D version of inverse distance weighted

interpolation (see Fig. 2.7(a) for an example with T = 3). The quantitative results

of this interpolation method are shown in Table 2.2. Somewhat surprisingly, the 1D

version slightly outperforms its 3D counterpart. The reason is that focusing on the

dominant dimension enables more effective use of the training data and consequently

yields more accurate VFI results. This suggests that it might be possible to further

improve the performance by employing more advanced 1D interpolation methods.
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(a) (b)

Figure 2.7: Illustration of (a) 1D version of inverse distance weighted interpolation and
(b) polynomial interpolation with support points highlighted in red. Here s0

n = 0.6,
s1
n = 0.8, s2

n = 0.05, and s3
n = 0.4, respectively.

2.5.3.4 Polynomial Interpolation (Poly)

This method uses a polynomial function of degree T to perform interpolation. More

specifically, we have:

G = a0 + a1zn + · · ·+ aT z
T
n , z ∈ [0, T ], (2.5.4)

where the coefficients a0, a1, · · · , and aT can be uniquely determined by jointly solving

T + 1 linear equations G|zn=i = sin, i ∈ {0, 1, · · · , T}. It should be emphasized that

sampling points and their associated support points are still selected in 3D space-

time even if a 1D interpolation method is adopted; as such, the overall method is

intrinsically 3D.

Fig. 2.7(b) provides an example of polynomial interpolation with T = 3. In

contrast to 1D Inv, polynomial interpolation is able to generate values beyond the

upper and lower limits of sin, i ∈ {0, 1, · · · , T}. This extra freedom might be the

reason why polynomial interpolation leads to 0.5 dB improvement over 1D Inv as
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Table 2.4: The statistical distribution of sampling points beyond limits.

Method Beyond Upper Beyond Lower

Upper GDCM 10.8% 22.6%
Lower GDCM 9.3% 10.0%

shown in Table 2.2.

To provide supporting evidence for our conjecture, we count the number of sam-

pling points whose values are beyond the upper or lower limit. As shown in Table 2.4,

for the upper GDCM used to synthesize intermediate frame I ′t, there are 10.8% and

22.6% sampling points beyond the upper limit and lower limit respectively. As for

the lower GDCM used to predict the context map C ′t, 9.3% and 10.0% points are

beyond the upper limit and the lower limit, respectively. We then clamp those values

to their associated limits and reevaluate the model on the test datasets. As shown

in Table 2.2, indeed, forcing the values of sampling points to stay in the range set by

support points jeopardizes the performance.

Fig. 2.8 provides visual examples of the results. It can be seen that compared

to 1D inv, standard polynomial interpolation provides a better reconstruction in the

texture regions, which usually contain a fair amount of sampling points beyond limits.

In contrast, clamped polynomial interpolation performs considerably worse than the

standard one in these regions. Similar phenomena can be observed for images in

different datasets. In summary, polynomial interpolation is able to generate sampling

points beyond upper and lower limits, and these sampling points contribute positively

to the synthesis of the texture regions of the images, which helps to improve the overall

performance.
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(a) ground truth (b) ER map w/o clamping

(c) ER map w clamping (d) Distribution map

Figure 2.8: Visualization of (a) ground truth, (b) error residual (ER) map generated
by GDConvNet with standard polynomial (c) error residual map generated by GD-
ConvNet with clamped polynomial, (d) distribution map of sampling points beyond
limits. The error residual map is calculated by ER = MSE1 inv −MSEpoly, where
MSE1 inv denotes the mean squared error map between the ground truth and the
result generated by GDConvNet with 1D Inv, and MSEpoly is similarly defined for
polynomial interpolation.

2.5.4 Comparison with the State-of-the-Art

We compare our best-performing GDConvNet (Ours-Poly) with the state-of-the-art

VFI algorithms on the aforementioned three evaluation datasets. Specifically, the

following ones are chosen for comparison: the phase-based method (Phase) [52], sep-

arable adaptive convolution (SepConv) [25], deep voxel flow (DVF) [19], SuperSlomo

(Slomo) [20], quadratic video interpolation (QVI) [23], and adaptive collaboration of

flows (AdaCoF) [12]. Since these methods just use two frames (I1, I2) to synthesize
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Table 2.5: Quantitative comparisons of different VFI methods on Vimeo90K Septulet
test set, Gopro dataset and Adobe240 dataset, where the first place and second place
are highlighted in red and blue, respectively.

Method
#Parameters Vimeo90K Gopro Adobe240

(million) PSNR SSIM PSNR SSIM PSNR SSIM
Ours-Poly 5.1 35.58 0.9580 30.49 0.9180 34.53 0.9456
Ours-Poly* 5.1 35.01 0.9558 30.12 0.9100 34.12 0.9422
AdaCoF 21.8 33.92 0.9453 28.45 0.8734 33.17 0.9305
QVI 29.2 35.19 0.9563 30.24 0.9230 33.06 0.9393
Slomo 39.6 33.73 0.9453 28.50 0.8827 31.94 0.9264

SepConv 21.6 33.65 0.9435 28.66 0.8798 33.41 0.9349
DVF 3.8 30.79 0.8912 25.13 0.7633 22.33 0.6159
Phase − 30.52 0.8854 26.17 0.8135 31.20 0.8930

the target frame3, we also provide a degraded version of our method (Ours-Poly*)

with 4 frames (I0, I1, I2, I3) for offset generation and 2 frames (I1, I2) for target

frame prediction. For fair comparison, DVF, Slomo, QVI, and AdaCoF are retrained

on our training dataset. As the SepConv training code is not available, we choose to

directly evaluate the original SepConv model.

In Table 2.5, we quantitatively compare our method with the state-of-the-art

methods on the evaluation datasets under two well-known objective image quality

metrics, PSNR and SSIM. It can be seen that although it suffers from some perfor-

mance degradation with respect to Ours-Poly, Ours-Poly* still performs on par with

QVI (which is 6 times as large as Ours-Poly* in terms of model size) and surpasses

other methods by a visible margin. As for Ours-Poly, it shows a significant improve-

ment over its degraded counterpart due to the complete freedom in exploiting the

given frames, and ranks consistently at the top in Table 2.5 (except for the Gopro

dataset on which it comes in a close second in terms of the SSIM value). Overall, our

3Although 4 frames are employed in QVI, only 2 of them are directly involved in predicting the
target frame.
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method has a clear advantage under joint consideration of cost and performance.

Fig. 2.9 shows some qualitative comparisons. It can be seen that our method

produces clearer and sharper results. For example, on the first row, our method is

capable of generating smooth edges around the hand compared with that of Phase,

DVF, SepConv, Slomo, QVI, and AdaCoF.

2.5.5 Ablation Study

In our ablation studies, we adopt polynomial interpolation and consider a simplified

version of GDConvNet in which the CEM and the associated GDCM, as well as the

PM, are removed. This simplification greatly reduces the training time and, more

importantly, enables us to focus on the most essential aspects of GDConvNet.

2.5.5.1 Generalized Deformable Convolution Module

In order to validate the effectiveness of our design, we compare the proposed GDConv

with DConv (more precisely, spatially-adaptive DConv or modulated DConv) adopted

by [12], as well as several variants of GDConv.

Table 2.6: Comparisons of DConv, GDConv with different numbers of sampling
points, and some variants of GDConv.

Method Sampling points PSNR SSIM
DConv 25 32.82 0.9236
GDConv 1 33.40 0.9342
GDConv 9 33.98 0.9414
GDConv 25 34.20 0.9436
GDConv 36 34.17 0.9430

Variant (a) 25 32.99 0.9274
Variant (b) 25 33.24 0.9310
Variant (c) 25 33.92 0.9410
Variant (d) 25 34.06 0.9418
Variant (e) 25 34.20 0.9436
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(a)

(b)

(c)

(d)

Figure 2.10: Visualization of sampling points in GDCM when t = 1.5. Here ((a), (b))
and ((c), (d)) illustrate two different pixels in a same target intermediate frame and
their associated sampling points respectively. It can be seen that sampling points are
not exclusively located between I1 and I2. Indeed, there are some between I1 and I2,
and some between I2 and I3. This indicates that the information from I1 and I2 is
more significant for synthesizing It, but I0 and I3 also contribute to the synthesized
result.

Superiority of GDConv over DConv: As mentioned earlier, the proposed GD-

Conv is able to fully exploit the given source frames in accordance with their relevance

to the target intermediate frame in terms of temporal distance. In contrast, the per-

formance of DConv is limited by the inflexibility in choosing the number of sampling

points from each source frame. For instance, consider the case where 4 consecutive

frames are used for VFI and the convolution kernel size is set to 3. DConv is con-

strained to select 9 sampling points from each frame. This is inefficient from the
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perspective of resource allocation since the source frames closer to the target inter-

mediate frame in time are conceivably more informative and should receive more

attention. In this sense, the proposed GDConv is more desirable as it is endowed

with complete freedom to select sampling points in space-time. Specifically, in GD-

Conv, the number of sampling points in each frame is adjustable according to the

significance of that frame in synthesis. More importantly, sampling points are not

even required to lie exactly on the source frames, and are allowed to be anywhere in

the spatio-temporal domain specified by their associated parameters 4xn, 4yn and

zn (see Fig. 2.10 for some visual results). This mechanism is especially important for

VFI since it is better suited to cope with complex and irregular inter-frame motions.

In Table 2.6, we provide quantitative comparisons of DConv and GDConv. Here the

number of input source frames is 4. In GDConv, the number of sampling points is

set to 36. For fair comparison, the kernel size in DConv is chosen to be 3; thus, there

are 3 × 3 × 4 = 36 sampling points in total, as well. It is evident that the proposed

GDConv achieves better performance in terms of the PSNR and SSIM metrics.

Importance of Spatio-Temporal Freedom: We consider the following 4 variants

of GDConv to illustrate the importance of spatio-temporal freedom for sampling

points.

(a) No spatio-temporal freedom: (4xin,4yin), i ∈ {0, 1, 2, 3}, are identical and fixed

to be a distinct point in a 5× 5 grid {(−2,−2), (−2,−1), · · · , (2, 2)}}, and zn = 1.5.

(b) Limited spatial freedom, no temporal freedom: (4xin,4yin), i ∈ {0, 1, 2, 3}, are

identical but adaptive, and zn = 1.5.

(c) Limited spatial freedom, complete temporal freedom: (4xin,4yin), i ∈ {0, 1, 2, 3},

are identical but adaptive, and zn is adaptive.
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(d) Complete spatial freedom, no temporal freedom: (4xin,4yin), i ∈ {0, 1, 2, 3}, can

be different from each other and are individually adaptive, and zn = 1.5.

(e) Complete spatio-temporal freedom: (4xin,4yin), i ∈ {0, 1, 2, 3}, can be different

from each other and are individually adaptive, and zn is also adaptive.

The results of the experiment are shown in Table 2.6. One can easily find that

the performance rises progressively with the availability of every additional degree

of freedom. It is worth noting that the temporal parameter zn is better interpreted

as being effective time instead of physical time. Indeed, forcing zn = 1.5 limits the

degrees of freedom and jeopardizes the performance.

Choice of the Number of Sampling Points: We further investigate how to choose

the number of sampling points in GDConv. As shown in Table 2.6, as the number of

sampling points increases, the performance improves initially, but becomes saturated

eventually. In particular, using more than 36 sampling points does not further enhance

the quality of synthesized frames.

2.5.5.2 Input Length and Offset Generation

Table 2.7: Comparisons for different numbers of reference frames (with the number
of generation frames set to be the same as that of reference frame).

Reference Frames PSNR SSIM
I1, I2 33.69 0.9416

I0, I1, I2 33.97 0.9427
I0, I1, I2, I3 34.20 0.9436

So far, except for the degraded version in Section 2.5.4, we have assumed that all

4 source frames I0, I1, I2, and I3 participate in generating offsets (as well as zn and

4mn) and in predicting the target intermediate frame I1.5. It is interesting to study

how the proposed method performs if one only utilizes a subset of source frames. In
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Table 2.8: Comparisons for different numbers of generation frames (with the reference
frames fixed to be I1 and I2).

Generation Frames PSNR SSIM
I1, I2 33.69 0.9416

I0, I1, I2 33.84 0.9418
I0, I1, I2, I3 34.05 0.9434

fact, our framework is flexible enough to allow the use of different subsets of source

frames for offset generation and frame prediction separately. For clarity, we shall refer

to source frames used for generating offsets as generation frames and those directly

involved in predicting the target intermediate frame as reference frames. For example,

if we use I0, I1, I2 to generate offsets for I1 and I2, which are subsequently leveraged

to predict I1.5, then I0, I1, I2 are generation frames while the latter two are reference

frames. We first study the scenario with the same subset of source frames used for

both purposes. It is clear from Table 2.7 that the VFI result improves progressively

with the increase in the number of reference frames (as well as generation frames).

We further investigate the scenario where reference frames and generation references

are not necessarily the same. Specifically, we fix I1 and I2 to be reference frames,

and consider various combinations of generation frames. It can be seen from Table

2.8 that increasing the number of generation frames leads to better performance.

This is consistent with a similar finding regarding flow-based methods: namely, it

is profitable to have three or more generation frames as that opens the door for

exploiting higher-order approximation of motion trajectories (instead of relying on

linear approximation, which is basically the only available choice in the case with

just two generation frames). Finally, comparing the corresponding rows in Table 2.7

and Table 2.8 reveals that VFI can also benefit from an increase in the number of

reference frames (when the number of generation frames is fixed).
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(a) Ours (b) QVI

Figure 2.11: Visualization of failure cases.

2.5.6 Failure Case Analysis

Our method is trained in a purely data-driven manner to learn motion estimation.

As such, it is able to handle complex motion patterns that cannot be characterized by

simple mathematical models. On the other hand, the success of our method depends

critically on the quality of the training dataset, which should ideally contain extensive

motion patterns to ensure sufficient coverage. The performance of our method tends

to degenerate when the motion patterns encountered in the evaluation dataset deviate

significantly from those in the training dataset. Fig. 2.11 provides some examples

where object motions are atypical with respect to the training dataset. It can be

seen that the VFI results produced by our method are somewhat blurry (albeit still
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slightly better than those of QVI, which is the best known mathematical-model-based

method).

2.6 Two-Frames VFI Experiments

As described earlier, our method is able to handle an arbitrary number of frames. To

substantiate this claim, here we conduct two-frame VFI experiments (i.e., using I0

and I1 to predict I0.5).

2.6.1 Implementation Details

We adopt polynomial interpolation (or linear interpolation) and set the number of

sampling points for each warped pixel to be 25 in GDConv. The training dataset and

the training strategy are described below.

Training Dataset: The Vimeo90k interpolation training dataset [13] is used to

train our model. This training dataset is composed of 51, 312 triplets with resolution

256 × 448. We use the first frame and the third frame (corresponding to I0 and I1,

respectively) of each triplet to predict the second one (corresponding to I0.5). We

randomly crop image patches of size 256 × 256 for training. Horizontal and vertical

flipping, as well as temporal order reversal, are performed for data augmentation.

Training Strategy: This is the same as the four-frame case, except that we train

our network for 20 epochs in total. The initial learning rate remains to be 10−3, and

the learning rate is reduced by a factor of two every 4 epochs for the first 12 epochs

and by a factor of five every 4 epochs for the last 8 epochs. The whole training process

takes about 3 days on our hardware.
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2.6.2 Evaluation Datasets

Following [21], we evaluate the proposed GDConvNet on three public datasets (Vimeo90k

Interpolation Test Set [13], UCF101 Test Dataset [53], and Middlebury-Other Dataset

[54]) and compare it with the state-of-the-art.

Vimeo90k Interpolation Test Set [13]: This dataset consists of 3, 782 video se-

quences, each with 3 frames. As in the case of the Vimeo90K interpolation training

dataset, the first frame and the third frame of each sequence are leveraged to synthe-

size the second one. The image resolution of this dataset is 256× 448.

UCF101 Test Dataset [53]: The UCF101 dataset contains 379 triplets with a large

variety of human actions. The image resolution of this dataset is 256× 256.

Middlebury-Other Dataset [54]: The Middlebury-Other dataset is another com-

monly used benchmark for VFI, which contains 12 triplets in total. Most of the

images in this dataset are of resolution 640× 480. Again, we use the first frame and

the third frame to predict the second one.

2.6.3 Experimental Results

We compare our GDConvNet with the state-of-the-art VFI algorithms on the afore-

mentioned datasets. Specifically, the following ones are chosen for comparison: MIND

[55], DVF [19], SepConv [25], CtxSyn [30], ToFlow [13], SuperSlomo [20], MEMC-

Net [22], DAIN [21], and AdaCoF [12].

In Table 2.9, we quantitatively compare our method with the state-of-the-art on

Vimeo90k and UCF101 under PSNR and SSIM, while Interpolation Error [44] (IE)

is used as the performance measure for the Middlebury-Other dataset. It can be
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Table 2.9: Quantitative comparisons on Vimeo90K interpolation test set, UCF101
dataset and Middlebury-Other dataset, where the first place and second place are
highlighted in red and blue, respectively.

Method
#Parameters UCF101 Vimeo90K Middlebury

(million) PSNR SSIM PSNR SSIM IE
MIND 7.60 33.93 0.9661 33.50 0.9429 3.35
DVF 3.80 34.12 0.9631 31.54 0.9462 7.75

ToFlow 1.07 34.58 0.9667 33.73 0.9682 2.51
SepConv-Lf 21.6 34.69 0.9655 33.45 0.9674 2.44
SepConv-L1 21.6 34.78 0.9669 33.79 0.9702 2.27
MEMC-Net 70.3 34.96 0.9682 34.29 0.9739 2.12

DAIN 24.0 34.99 0.9683 34.71 0.9756 2.04
AdaCoF 21.8 34.99 0.9682 33.43 0.9677 2.43
Ours 5.6 35.16 0.9683 34.99 0.9750 2.03

seen that the proposed method performs favorably against those under considera-

tion. Overall, our method has a clear advantage under joint consideration of cost and

performance. In particular, although DAIN [21] also shows very competitive perfor-

mance, its model size is about 5 times that of our model. In addition, our method

can be trained from scratch, while DAIN [21] needs to rely on a pre-trained model.

2.7 Conclusion

In this paper, a new mechanism named generalized deformable convolution is pro-

posed to tackle the VFI problem. This mechanism unifies the essential ideas under-

lying flow-based and kernel-based methods and resolves some performance-limiting

issues. It should be noted that the proposed mechanism is largely generic in nature,

and is potentially applicable to a wide range of problems, especially those involving
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video data (e.g., video super-resolution, enhancement, and quality mapping). Explor-

ing such applications is an endeavor well worth undertaking.
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Chapter 3

Video Frame Interpolation

Transformer

3.1 Abstract

Existing methods for video interpolation heavily rely on deep convolution neural

networks, and thus suffer from their intrinsic limitations, such as content-agnostic

kernel weights and restricted receptive field. To address these issues, we propose a

Transformer-based video interpolation framework that allows content-aware aggrega-

tion weights and considers long-range dependencies with the self-attention operations.

To avoid the high computational cost of global self-attention, we introduce the con-

cept of local attention into video interpolation and extend it to the spatial-temporal

domain. Furthermore, we propose a space-time separation strategy to save memory

usage, which also improves performance. In addition, we develop a multi-scale frame

synthesis scheme to fully realize the potential of Transformers. Extensive experiments
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demonstrate the proposed model performs favorably against the state-of-the-art meth-

ods both quantitatively and qualitatively on a variety of benchmark datasets. The

code and models will be released at: https://github.com/zhshi0816/Video-Frame-

Interpolation-Transformer

3.2 Introduction

VFI aims to temporally upsample an input video by synthesizing new frames between

existing ones. It is a fundamental problem in computer vision that involves the un-

derstanding of motions, structures, and natural image distributions, which facilitates

numerous downstream applications, such as image restoration [1,2], virtual reality [3],

and medical imaging [4].

Most of the state-of-the-art VFI methods are based on deep CNNs [5–12]. While

achieving the state-of-the-art performance, these CNN-based architectures usually

suffer from two major drawbacks. First, the convolution layer is content-agnostic,

where the same kernels are used to convolve with different locations of different in-

puts. While this design can serve as a desirable inductive bias for image recognition

models to acquire translational equivalence [13], it is not always suitable for video in-

terpolation which involves a complex motion-compensation process that is spatially-

variant and content-dependent. Thus, adopting CNN backbones may restrict the

ability of adaptive motion modeling and potentially limits further development of

video interpolation models.

Second, capturing long-range dependencies is of central importance in video inter-

polation for which large motion fields pose the most prominent challenges. However,
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Figure 3.1: Comparison of performance and model size using the Vimeo-90K
dataset [14]. VFIT outperforms the state-of-the-art methods with fewer parameters.
VFIT-S and VFIT-B denote the proposed small and base models.

most CNNs [7, 12] usually employ small convolution kernels (typically 3×3 as sug-

gested by VGG [15]), which is inefficient in exploiting long-range information and

thus less effective in synthesizing high-quality video frames. While it seems an easy

fix to use larger kernels in the convolution layer, it significantly increases the number

of model parameters and computational cost, thereby leading to poor local minimums

in training without proper regularizations. Moreover, simply stacking multiple small

kernel layers for a larger receptive field does not fully resolve this problem either, as

distant dependencies cannot be effectively learned in a multi-hop fashion [16].

On the other hand, Transformers [17], which are initially designed for NLP to

efficiently model long-range dependencies between input and output, naturally over-

come the above drawbacks of CNN-based algorithms, and are in particular suitable

for the task of video interpolation. Motivated by the success in NLP, several methods

recently adapt Transformers to computer vision and demonstrate promising results
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on various tasks, such as image classification [18, 19], semantic segmentation [20],

object detection [21], and 3D reconstruction [22]. Nevertheless, how to effectively

apply Transformers to video interpolation that involves an extra temporal dimension

remains an open yet challenging problem.

In this work, we propose the Video Frame Interpolation Transformer (VFIT) for

effective video interpolation. Compared with typical Transformers [18, 21, 23] where

the basic modules are largely borrowed from the original NLP model [17], there are

three distinguished designs in the proposed VFIT to generate photo-realistic and

temporally-coherent frames. First, the original Transformer [17] is based on a self-

attention layer that interacts with the input elements (e.g., pixels) globally. As this

global operation has quadratic complexity with regard to the number of elements,

directly applying it to our task leads to extremely high memory and computational

cost due to the high-dimensionality nature of videos. Several methods [23, 24] cir-

cumvent this problem by dividing the feature maps into patches and treating each

patch as a new element in the self-attention. However, this strategy cannot model

fine-grained dependencies between pixels inside each patch which are important for

synthesizing realistic details. Moreover, it may introduce edge artifacts around patch

borders. In contrast, we introduce the local attention mechanism of Swin [25] into

VFIT to address the complexity issue while retaining the capability of modeling long-

range dependencies with its shift-window scheme. We demonstrate that with proper

development and adaptation, the local attention mechanism originally used for image

recognition can effectively improve the video interpolation performance with a smaller

amount of parameters as shown in Figure 3.1.

Second, the original local attention mechanism [25] is only suitable for image
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input and cannot be easily used for the video interpolation task where an extra

temporal dimension is involved. To address this issue, we generalize the concept

of local attention to spatial-temporal domain, which leads to the Spatial-Temporal

Swin attention layer (STS) that is compatible with videos. However, this simple

extension could lead to memory issues when using large window sizes. To make our

model more memory efficient, we further devise a space-time separable version of

STS, called Sep-STS, by factorizing the spatial-temporal self-attention. Interestingly,

Sep-STS not only effectively reduces memory usage but also considerably improves

video interpolation performance.

To exploit the full potential of our Sep-STS, we propose a new multi-scale kernel-

prediction framework which can better handle multi-scale motion and structures in

diverse videos, and generates high-quality video interpolation results in a coarse-to-

fine manner. The proposed VFIT is concise, flexible, light-weight, high-performing,

fast, and memory-efficient. As shown in Figure 3.1, a small model (VFIT-S) already

outperforms the state-of-the-art FLAVR method [26] by 0.18 dB with only 17.7% of

its parameters, while our base model (VFIT-B) achieves 0.66 dB improvement with

68.4% of its parameters.

3.3 Related Work

Video frame interpolation. Existing VFI methods can be broadly classified into

three categories: flow-based [9–12], kernel-based [5–7,27], and direct-regression-based

methods [4].

The flow-based methods [9–12] generate intermediate frames by warping pixels
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from the source images according to predicted optical flow. Although these meth-

ods perform well, they are usually based on simplified motion assumptions such as

linear [9] and quadratic [12], limiting their performance in many real-world scenarios

where the assumptions are violated.

Unlike the flow-based approaches, the kernel-based methods [5–7,27] do not rely on

any prescribed assumptions and thus generalize better to diverse videos. For example,

SepConv [6] predicts adaptive separable kernels to aggregate source pixels of the input,

and AdaCoF [7] learns deformable spatially-variant kernels that are used to convolve

with the input frames to produce the target frame. However, these approaches usually

apply the kernel prediction modules at one scale and thereby cannot effectively handle

complex motions and structures that could appear in different scales. Moreover, these

CNN-based methods do not account for long-range dependency among pixels. In

contrast, we propose a multi-scale Transformer-based kernel prediction module, which

achieves higher-quality results for video interpolation as will be shown in Section 3.5.

Recently, Kalluri et al . [26] propose a CNN model to directly regress the target

frame, which achieves the state-of-the-art results. As shown in Figure 3.1, the pro-

posed VFIT outperforms this method by a clear margin with fewer parameters, which

clearly shows the advantages of Transformers in video interpolation.

Vision Transformer. Transformers have recently been applied to various vision

tasks, such as image classification [18, 25], object detection [21], semantic segmenta-

tion [20], 3D reconstruction [22], and image restoration [23]. Nevertheless, it has not

been exploited for VFI. In this work, we propose VFIT that achieves the state-of-

the-art performance with a light-weight model. To overcome the high computational

cost caused by global self-attention, we introduce the local attention mechanism of
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Swin [25] to avoid the complexity issues while retaining the ability of long-range de-

pendency modeling. One recent work [28] also uses the local attention for low-level

vision tasks. However, it only considers image input and cannot deal with videos

which are more challenging to handle due to the extra temporal dimension. In con-

trast, we extend the concept of local attention to the spatial-temporal domain to

enable Transformer-based video interpolation, and propose a space-time separation

strategy which not only saves memory usage but also acts as an effective regularization

for performance gains.

3.4 Proposed Method

Figure 3.2 shows an overview of the proposed model. Similar to existing methods [5,

6, 12, 26], to synthesize an intermediate frame I0.5, we use its T neighboring frames

I{−(bT
2
c−1),··· ,0,1,··· ,dT

2
e} as the input. Specifically, the input frames are I−1, I0, I1, I2

when T is 4.

The proposed VFIT consists of three modules: shallow feature embedding, deep

feature learning, and final frame synthesis. First, the embedding layer takes the

input frames and generates shallow features for the deep feature learning module.

Similar to [25], the shallow embedding is realized with a convolution layer, where we

adopt the 3D convolution rather than its 2D counterpart in [25] to better encode the

spatial-temporal features of the input sequence. Next, we feed the shallow features

to the deep module to extract hierarchical feature representations {F l, l = 0, 1, 2} to

capture the multi-scale motion information (Section 3.4.1). Finally, an intermediate

frame Î0.5 can be generated by the frame synthesis blocks (SynBlocks in Figure 3.2)

using the deep features F l (Section 3.4.2).

64



Ph.D. Thesis – Z. Shi McMaster University – Electrical & Computer Engineering

Unb
ind

DCon
v

DCon
v

SynBlock

 

 

Element-wise  
Add

Element-wise 
Multiply

Embedding 
Layer 

Convolution 
stride=1 

Convolution 
stride=2 

Sep-STS 
Block 

Deconvolution 
stride=2 

SynBlock

SynBlock

SynBlock
Input Frame Feature Flow Mask Prediction 

Figure 3.2: Overview of the proposed VFIT. We first use an embedding layer to trans-
form input frames into shallow features, followed by a Transformer-based encoder-
decoder network to extract deep hierarchical features. These features together with
the input frames are fed to a multi-scale frame synthesis network that is composed
of three SynBlocks to obtain the final output. “↓ n” and “↑ n” denote downsam-
pling and upsampling by a factor of n, respectively. “DConv” represents deformable
convolution [29]. Please find more detailed explanations in the text of Section 3.4.

3.4.1 Learning Deep Features

As shown in Figure 3.2, we use a Transformer-based encoder-decoder architecture for

learning features. The encoder is composed of four stages, where each stage starts

with a 3D convolution layer using a stride of 2 to downsample the input features,

and the downsampling layer is followed by several Sep-STS blocks which are the

main components of our framework. For the decoder, we use a light-weight structure

that only has three 3D deconvolution layers with a stride of 2 to upsample the low-

resolution feature maps. Note that we only resize the spatial dimension of the features

throughout our network and leave the temporal size unchanged. Next, we provide

more explanations about the proposed Sep-STS block.

Local attention. Existing Transformers [17,18,21] mainly adopt a global attention

mechanism to aggregate information from the input, which could cause extremely

high memory and computational cost for VFI. A straightforward solution to this
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Figure 3.3: Illustration of different local partition strategies. (a) Regular and shifted
partitions for spatial-temporal cubes of STS. (b) Regular and shifted partitions for
spatial windows of Sep-STS. (c) Temporal vector partition for Sep-STS.

problem is to directly divide the feature maps into patches and treat each patch as a

new element in the global attention [23,24]. This strategy is equivalent to aggressively

downsampling the input with pixel shuffle [30] (downsampling factor equals to the

patch size) and cannot well reconstruct high-quality image details which require fine-

grained dependency modeling between pixels.

In this work, we introduce the local attention mechanism of Swin Transformer [25],

which can effectively address the above issues. First, as the self-attention of Swin is

computed inside local windows, it naturally avoids the heavy computational burden

of global attentions. Second, Swin employs a shifted-window partition strategy to

connect different local regions, and alternatively using regular and shifted-window

partitions enables long-range dependency modeling. Nevertheless, this method is

designed for image applications and cannot be easily applied to videos.

Spatial-temporal local attention. To make the Swin Transformer compatible with

video inputs, we generalize the local attention mechanism to spatial-temporal space

and propose the STS attention. As shown in Figure 3.3(a), the STS is conceptually

similar to Swin but involves an extra temporal dimension.

Given an input feature of size C × T × H ×W where C, T , H, W respectively

represent the channel, time, height, and width dimensions, we first partition it to HW
M2
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non-overlapped 3D sub-cubes with the shape of each cube as T×M×M (Figure 3.3(a)-

left) and then perform standard multi-head self-attention (MSA) on each sub-cube.

Note that each element of this cube is a C-dimensional feature vector, and we omit

the channel dimension when describing the partition strategies for simplicity. Once

all the sub-cubes are processed, we merge them back to recover the original shape

of the input. In order to bridge connections across neighboring cubes, we adopt a

shifted-cube partition strategy, which shifts the cubes to top-left by (bM
2
c, bM

2
c) pixels

(Figure 3.3 (a-right).

Separation of space and time. Although the above STS can handle video inputs,

it may suffer from memory issues when dealing with large cube sizes, i.e., large T or

M . To alleviate this issue, we propose the Sep-STS by separating the spatial-temporal

computations into space and time.

First, for the computation in space, given an input feature map with a size of

C ×T ×H ×W , we first partition it into THW
M2 non-overlapped 2D sub-windows with

a size of M×M as shown in Figure 3.3(b)-left, and then perform the standard MSA for

each sub-window. For connecting different windows, as we restrict our computations

in 2D here, we simply use the shifted window partition strategy of the Swin for each

frame as shown in Figure 3.3(b)-right.

Second, for the computation in the temporal dimension, we reshape the input

feature map into HW temporal vectors with a length of T as shown in Figure 3.3(c)

and perform MSA inside each vector such that the dependencies across frames can be

modeled. This step complements the self-attention in the spatial domain, and thus

the two operations need to be used together to process videos.

Sep-STS block. Based on the Sep-STS attention, we devise our main component,
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Figure 3.4: Illustration of the Sep-STS block. The Spatial MSA and Temporal MSA
represent the multi-head self-attentions in spatial and temporal local windows, re-
spectively (Section 3.4.1).

the Sep-STS block, which is composed of separated spatial and temporal attention

modules as well as an MLP (Figure 3.4). The MLP adopts a two-layer structure and

uses the GELU function [31] for activation. Similar to [25], we apply Layer Normaliza-

tion (LN) [32] and residual connections [33] in this block to stabilize training. Similar

to Swin, the regular and shifted partitions are employed alternatively for consecutive

Sep-STS blocks to model long-range spatial-temporal dependencies.

Memory usage. The Sep-STS attention factorizes a computationally expensive

operation into two lighter operations in space and time, which effectively lessens the

memory usage reducing from O((TMM) ·THW ) of the STS to O((T +MM) ·THW )

of our Sep-STS.

During training, compared to the STS baseline, we observe a 26.2% GPU memory

reduction by using our Sep-STS. As the window size MM is usually much larger than

the number of input frames T , this reduction ratio essentially relies on T which we

set as 4 by default following the settings of the state-of-the-art algorithms [12,26,34].

Since the proposed framework is flexible and can be used for arbitrary number of

frames, the Sep-STS can potentially give more significant memory reduction for a

larger T . In addition, the space-time separation strategy can also reduce the com-

putational cost similar to the memory usage. However, as the Sep-STS is naively

implemented with two separate PyTorch [35] layers in our experiments, its run-time

is in fact similar to that of the STS. Optimizing its implementation with a customized
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CUDA kernel will be part of our future work.

Discussions. In this work, we explore the concept of local attention for Transformer-

based video interpolation. Similar concepts have been adopted in other recent meth-

ods but with different forms and goals. For image recognition, Hu et al . [36] first

propose a local relation network to adaptively determine aggregation weights in a lo-

cal region for the center query pixel. Ramachandran et al . [37] propose a stand-alone

self-attention network which uses vector-based attention to improve the aggregation

weights but still shares the same spatial arrangement as the local relation network

for image classification and object detection. Further, Liu et al . [25] build upon the

success of local attention models and develop an efficient spatial arrangement Swin

where the local window does not need to be centered at the query.

Nevertheless, these algorithms are designed for images, and less attention is paid to

exploiting local attention mechanisms for videos due to difficulties caused by the extra

temporal dimension. In addition, existing methods mainly focus on image recognition

tasks that are generally seen as high-level vision tasks, while in this work we emphasize

more on motion modeling and appearance reconstruction. In this work, we focus on

the temporal extension of local attention modules for effective VFI. We explore the

space-time separable local attention, which is in spirit similar to MobileNet [38] that

improves a standard convolution by factorizing it into a depthwise convolution and

a pointwise convolution. Furthermore, we propose a multi-scale kernel-prediction

framework to fully exploit the features learned by local attention, as introduced next.
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3.4.2 Frame Synthesis

With the features from the proposed encoder-decoder network, our VFIT synthe-

sizes the output image by predicting spatially-variant kernels to adaptively fuse the

source frames. Different from existing kernel-based video interpolation methods [5–7],

we propose a multi-scale kernel-prediction framework using the hierarchical feature

{F l, l = 0, 1, 2} as shown in Figure 3.2.

The frame synthesis network of VFIT is composed of three SynBlocks that make

predictions at different scales, and each SynBlock is a kernel prediction network.

VFIT fuses these multi-scale predictions to generate the final result by:

Î l0.5 = fup(Î l+1
0.5 ) +Ol, (3.4.1)

Ol = f l
syn(F l, I l{−(bT

2
c−1),··· ,dT

2
e}), (3.4.2)

where l = 0, 1, 2 represent different scales from fine to coarse, and fup denotes the

bilinear upsampling function. The synthesized frame at a finer scale Î l0.5 can be

obtained by merging the upsampled output from the coarse scale (fup(Î l+1
0.5 )) and the

prediction of the current SynBlock (Ol). The output at the finest scale Î0
0.5 is the final

result of our VFIT, i.e., Î0.5 = Î0
0.5, and the initial value Î3

0.5 = 0. Here, f l
syn is the

l-th SynBlock which takes the spatial-temporal feature F l and the frame sequence

I l{−(bT
2
c−1),··· ,dT

2
e} as input, and I lt represents a frame It downsampled by a factor of

2l with bilinear interpolation, where I0
t is equivalent to the original frame without

downsampling.

SynBlock. Given the input feature map F l ∈ RC×T×H×W , the SynBlock generates its

prediction at the l-th scale by estimating a set of deformable kernels [29] to aggregate
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the information from the source frames.

As illustrated in Figure 3.2, we first unbind F l at the temporal dimension to get T

separate feature maps for all input frames, denoted as F l
{−(bT

2
c−1),··· ,dT

2
e}, and for each

frame t, F l
t ∈ RC×H×W . Then we feed F l

t into three small 2D CNNs to obtain the per-

pixel deformable kernels for frame I lt , including the kernel weights W l
t ∈ RK×H×W ,

horizontal offsets αl
t ∈ RK×H×W , and vertical offsets βl

t ∈ RK×H×W , where K is the

number of sampling locations of each kernel.

With the predicted kernels we obtain the output of the SynBlock at location (x, y)

for frame t as:

Ol
t(x, y) =

K∑
k=1

W l
t (k, x, y)I lt(x+ αl

t(k, x, y), y + βl
t(k, x, y)),

which aggregates neighboring pixels around (x, y) with adaptive weights W similar

to [29].

Finally, we generate the output at scale l by blending Ol
t of all frames with learned

masks. Specifically, we concatenate the feature maps F l
{−(bT

2
c−1),··· ,dT

2
e} at the channel

dimension and send the concatenated features to a small 2D CNN to produce T

blending masks M l
{−(bT

2
c−1),··· ,dT

2
e}. Note that we use a softmax function as the last

layer of the CNN to normalize the masks along the temporal dimension. The final

output of the SynBlock f l
syn is generated by:

Ol =
∑
t

M l
t ·Ol

t. (3.4.3)
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3.5 Experimental Results

We show the main experimental results in this section.

3.5.1 Implementation Details

Network. As shown in Figure 3.2, the VFIT encoder consists of four stages that

have 2, 2, 6, and 2 Sep-STS blocks, respectively. The skip connections between the

encoder and decoder are realized with concatenation. For all three SynBlocks, we set

the deformable kernel size as K = 5 × 5. We present two variants of VFIT: a base

model VFIT-B and a small one VFIT-S, where the model size of VFIT-S is about 25%

of VFIT-B. The two models use the same architecture, and the only difference is the

channel dimension of each stage, where we shrink the channels by half for VFIT-S.

Training. For training our network, we employ a simple `1 loss: ||I0.5 − Î0.5||, where

I0.5 is the ground truth. We use the AdaMax optimizer [39] with β1 = 0.9, β2 = 0.999.

The training batch size is set as 4. We train the models for 100 epochs, where the

learning rate is initially set as 2e−4 and gradually decayed to 1e−6.

Dataset. Similar to [26], we adopt the Vimeo-90K septuplet training set [14] to

learn our models, which consists of 64612 seven-frame sequences with a resolution of

448× 256. The first, third, fifth, and seventh frames of each sequence correspond to

I−1, I0, I1, I2 in Figure 3.2 and are used to predict the fourth frame corresponding to

I0.5. For data augmentation, we randomly crop 256×256 image patches from frames,

and perform horizontal and vertical flipping, as well as temporal order reverse.

We evaluate the models on the widely-used benchmark datasets, including the

Vimeo-90K septuplet test set [14], UCF101 dataset [40], and DAVIS dataset [41].
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Table 3.1: Quantitative comparisons on the Vimeo-90K, UCF101, and DAVIS
datasets. Numbers in bold indicate the best performance and underscored numbers
indicate the second best.

Method # Parameters (M)
Vimeo-90K UCF101 DAVIS

PSNR (↑) SSIM (↑) PSNR (↑) SSIM (↑) PSNR (↑) SSIM (↑)

SuperSloMo [9] 39.6 32.90 0.957 32.33 0.960 25.65 0.857
DAIN [11] 24.0 33.35 0.945 31.64 0.957 26.12 0.870
SepConv [6] 21.6 33.60 0.944 31.97 0.943 26.21 0.857
BMBC [10] 11.0 34.76 0.965 32.61 0.955 26.42 0.868
CAIN [42] 42.8 34.83 0.970 32.52 0.968 27.21 0.873
AdaCoF [7] 21.8 35.40 0.971 32.71 0.969 26.49 0.866
QVI [12] 29.2 35.15 0.971 32.89 0.970 27.17 0.874

SoftSplat [43] 7.7 35.76 0.972 32.89 0.970 27.42 0.878
FLAVR [26] 42.4 36.30 0.975 33.33 0.971 27.44 0.874
VFIT-S 7.5 36.48 0.976 33.36 0.971 27.92 0.885
VFIT-B 29.0 36.96 0.978 33.44 0.971 28.09 0.888

Following [12,26], we report performance on 100 quintuples generated from UCF101

and 2847 quintuples from DAVIS.

3.5.2 Evaluation against the State of the Arts

We evaluate the proposed algorithm against the state-of-the-art video interpolation

methods: SepConv [6], DAIN [11], SuperSloMo [9], CAIN [42], BMBC [10], AdaCoF

[7], SoftSplat [43], QVI [12], and FLAVR [26]. Among these methods, SuperSloMo,

DAIN, CAIN, QVI, AdaCoF, and FLAVR are trained on the same training data

as our models. For SepConv and BMBC, as the training code is not available, we

directly use the pre-trained models for evaluation. The results of SoftSplat [43] are

kindly provided by the authors.

We show quantitative evaluations in Table 3.1 where the PSNR and SSIM [44] are

used for image quality assessment similar to previous works. Thanks to the learning

capacity of the Sep-STS block, the proposed VFIT achieves better performance than
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Table 3.2: Run-time of evaluated methods in seconds per frame. The models are
tested on a desktop with an Intel Core i7-8700K CPU and an NVIDIA GTX 2080 Ti
GPU. The results are averaged on the Vimeo-90K dataset.

Method BMBC QVI FLAVR VFIT-S VFIT-B

Run-time 0.57 0.08 0.15 0.08 0.14

the evaluated CNN-based methods, demonstrating the superiority of using Trans-

formers for video interpolation. Specifically, with only 7.5M parameters, the VFIT-S

is able to outperform FLAVR, the best video interpolation method to date, on all

the evaluated datasets. Furthermore, the VFIT-B achieves more significant improve-

ments over FLAVR (0.66 dB on Vimeo-90K and 0.65 dB on DAVIS). Since the videos

of UCF101 have relatively low qualities with low image resolutions and slow motion

as explained in [12], our performance gain is less significant. Note that the large

improvement of the VFIT comes solely from the architecture design without relying

on any external information, which differs sharply from several prior works [11,12,43]

that use pre-trained optical flow and/or depth models and thus implicitly benefit

from additional motion and/or depth labels.

In addition, we provide qualitative comparisons in Figure 3.5, where the proposed

VFIT generates visually more pleasing results with clearer structures and fewer dis-

tortions than the baseline approaches. Moreover, to evaluate the accuracy of the

interpolation results, we show overlaps of the interpolated frame and the correspond-

ing ground truth in Figure 3.6. The overlapped images of VFIT are much clearer

than the baselines, i.e. closer to the ground truth, indicating better capabilities of

VFIT in motion modeling.

We also present the run-time of our method in Table 3.2. The run-time perfor-

mance of the VFIT is on par with the best performing CNN-based algorithms, which
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Overlayed QVI SoftSplat FLAVR VFIT-S VFIT-B GT

Figure 3.5: Qualitative comparisons against the state-of-the-art video interpolation
algorithms. The VFIT generates higher-quality results with clearer structures and
fewer distortions.

Overlayed QVI SoftSplat FLAVR VFIT-S VFIT-B GT

Figure 3.6: Overlap of interpolated frames and the corresponding ground truth, where
a clearer overlapped image indicates a more accurate prediction. Note that for the
second example, as the predictions of the baseline methods and the ground truth are
not well aligned, the overlap of the red and white regions presents a blurry pink color.

facilitates its deployment in vision applications.

3.5.3 Ablation Study

We conduct the ablation studies on the Vimeo-90K dataset. As we notice that the

training process converges quickly in the early training stage where differences be-

tween models can already be distinguished, we train all models in this study for 20

epochs to accelerate the development and concentrate on the most essential parts of

VFIT.

Local attention. In contrast to our model which introduces the local attention
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Table 3.3: Effectiveness of the proposed Sep-STS block.

Method PSNR SSIM #Parameters (M)

VFIT-B 36.02 0.975 29.0
VFIT-STS 35.84 0.974 29.1
VFIT-CNN 35.82 0.973 65.4
VFIT-Global 35.18 0.971 42.4

M = 4 35.82 0.974 29.0
M = 6 35.90 0.974 29.0
M = 8 36.02 0.975 29.0
M = 10 35.93 0.974 29.0

Table 3.4: Comparison with the base models under different motion conditions.

Method Fast Medium Slow

VFIT-B 33.23/0.954 35.91/0.976 38.36/0.987
VFIT-STS 32.91/0.950 35.77/0.975 38.27/0.987
VFIT-CNN 32.80/0.950 35.75/0.975 38.26/0.987
VFIT-Global 32.15/0.945 35.10/0.972 37.62/0.985

mechanism, several recent methods [23,24] follow the basic structure of conventional

Transformers in NLP to use global attention for vision applications, where the high

computational cost of the global attention is circumvented by dividing input into

patches and redefining each patch as a new element in self-attention. In our exper-

iments, we also try this strategy by replacing each Sep-STS block of VFIT-B with

a patch-based global-attention block, which is called VFIT-Global. As shown in Ta-

ble 3.3, the result of VFIT-Global is lower than VFIT-B by as large as 0.84 dB, which

emphasizes the essential role of local attention in Transformer-based VFI.

Sep-STS. To further validate the effectiveness of the Sep-STS block, we compare

our VFIT-B with its two variants: 1) VFIT-CNN where all the Sep-STS blocks are

replaced by convolutional ResBlocks [33], and each ResBlock is composed of two 3D

convolution layers; and 2) VFIT-STS where the Sep-STS block is replaced by its

inseparable counterpart, i.e., the STS block.
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As shown in Table 3.3, while VFIT-CNN uses more than two times parameters of

VFIT-STS, these two models achieve similar results, demonstrating the advantages of

using Transformers for video interpolation. Further, our base model VFIT-B, which

uses the proposed Sep-STS as the building block, obtains even better performance

than the VFIT-STS. It should be emphasized that the performance gain is significant

as the Sep-STS block is initially designed to reduce memory usage as discussed in

Section 3.4.1. This can be attributed to that the self-attention of the large-size sub-

cubes in STS is relatively difficult to learn, and the space-time separation in Sep-STS

can serve as a low-rank regularization [45] to remedy this issue.

To better analyze the performance of our models, we further compare with the

baselines under different motion conditions. Following [46, 47], we split the Vimeo-

90K test set into fast, medium, and slow motions, respectively. Table 3.4 shows

VFIT-B outperforms VFIT-CNN by 0.43 dB on fast motion, 0.16 dB on medium

motion, and 0.10 dB on slow motion, highlighting the exceptional capability of the

proposed Sep-STS in handling challenging large-motion scenarios. We also provide

interpolated frames from a video with fast motion in Figure 3.7 for comparisons.

To analyze the effect of different window size of the Sep-STS, we evaluate the

VFIT-B with M = 4, 6, 8, 10, respectively. Table 3.3 shows, our model performs

better as the window size is increased until M > 8. Thus, we choose M = 8 as our

default setting in this work.

Multi-scale frame synthesis. As introduced in Section 3.4.2, we propose a multi-

scale kernel-prediction network for final frame synthesis. To verify the effectiveness

of this design, we experiment with a single-scale variant of the VFIT, called VFIT-

Single, by removing the second and third SynBlocks in Figure 3.2. This single-scale
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(a) Overlayed (b) GT (c) GT-Patch

(d) VFIT-CNN (e) VFIT-STS (f) VFIT-B

Figure 3.7: Interpolated frames from a video with fast motion. VFIT-CNN produces
severe ghosting artifacts due to it incapability of handling large motion, while the
result of VFIT-STS appears blurry. In contrast, the VFIT-B generates a higher-
quality intermediate frame closer to the ground truth.

strategy is essentially similar to the ordinary kernel-prediction networks in [5–7]. The

PSNR achieved by VFIT-Single is 35.54 dB, which is 0.48 dB lower than our base

model VFIT-B. The large performance gap shows the importance of the multi-scale

framework for fully realizing the potential of Transformers.

Note that we only apply the loss function to the final output, i.e., the finest level

output Î0
0.5 of the multi-scale framework as introduced in Section 3.5.1. Alternatively,

one may consider adding supervision to all-scale outputs of the network. However,

we empirically find this scheme does not perform well.

Resizing modules. As illustrated in Figure 3.2, we use 3D convolution and decon-

volution layers for downsampling and upsampling the feature maps. Motivated by

the performance gain of our Sep-STS over CNN-based models, it is of great interest

to explore the use of Transformer layers as the resizing modules for VFI.
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Table 3.5: Comparison with Transformer-based resizing modules.

Method PSNR SSIM Run-time (s)

VFIT-B 36.02 0.975 0.14
VFIT-TD 35.92 0.974 0.17
VFIT-TU 35.97 0.974 0.20

To answer this question, we adopt the method in [48] which introduces a Transformer-

based resizing module for video classification by downsampling the query of the self-

attention layer. To enable Transformer-based upsampling, we extend the idea in [48]

by upsampling the query with bilinear interpolation. We respectively replace the

convolution and deconvolution layers of VFIT-B with these Transformer-based down-

sampling and upsampling modules, and refer to the two variants as VFIT-TD and

VFIT-TU. As shown in Table 3.5, both VFIT-TD and VFIT-TU perform slightly

worse than our base model with degraded run-time performance, indicating that the

current designs of Transformer-based resizing operations in computer vision are less

effective for complex motion modeling. This is a limitation of our current work, which

will be an interesting problem for future research.

3.6 Conclusion

In this paper, we propose a parameter, memory, and runtime efficient VFIT frame-

work for VFI with the state-of-the-art performance. A significant part of our effort

focuses on extending the local attention mechanism to the spatial-temporal space,

and this module can be integrated in other video processing tasks. In addition, we

demonstrate the effectiveness of a novel space-time separation scheme, which implies

the necessity of well-structured regularizations in video Transformers. The architec-

ture of VFIT is simple and compact, which can be effectively applied to numerous
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downstream vision tasks.
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Chapter 4

Learning for Unconstrained

Space-Time Video

Super-Resolution

4.1 Abstract

Recent years have seen considerable research activities devoted to video enhancement

that simultaneously increases temporal frame rate and spatial resolution. However,

the existing methods either fail to explore the intrinsic relationship between temporal

and spatial information or lack flexibility in the choice of final temporal/spatial reso-

lution. In this work, we propose an unconstrained space-time video super-resolution

network, which can effectively exploit space-time correlation to boost performance.

Moreover, it has complete freedom in adjusting the temporal frame rate and spatial

resolution through the use of the optical flow technique and a generalized pixelshuffle

operation. Our extensive experiments demonstrate that the proposed method not
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only outperforms the state-of-the-art, but also requires far fewer parameters and less

running time.

4.2 Introduction

Recently, we have witnessed the popularization of Ultra-High-Definition TeleVision

(UHDTV) and the rising of UHD TV shows in broadcasting. However, despite new

media contents can be filmed by the advanced UHD recorder, remaking a large quan-

tity of existed ones is impractical, leading to the overall short supply. VSR technolo-

gies provide a promising way to reconstruct HR videos from their LR counterparts.

Furthermore, while watching sport events on TV, one may playback the fleeting mo-

ments with slow motion. VFI is one of the solutions that can temporally increase the

frame rate of the broadcast videos.

In this paper, STVSR, the combination of VSR [1–7] and VFI [8–19], is mainly

researched that aims at increasing spatial resolution and temporal frame rate simul-

taneously. The traditional approaches to STVSR [20–23] typically rely on strong

assumptions or hand-crafted priors, and consequently are only suited to specific sce-

narios. The advent of deep learning has revolutionized many areas in computer

vision, including, among others, image super-resolution [24,25], image quality assess-

ment [26], image deblurring [27], image compression [28], and video coding [29]. In

particular, it enables the development of data-driven approaches to VFI and Super-

Resolution (SR) that can capitalize on the learning capability of neural networks

as opposed to relying on prescribed rules. STVSR also naturally benefits from this

advancement since it can be realized via a direct combination of VFI and SR. Specif-

ically, one can first use VFI to increase the temporal frame rate, then leverage SR to
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enhance the spatial resolution. Moreover, the State-Of-The-Art (SOTA) VFI and SR

methods (e.g., the flow-based VFI methods [11–16] and the meta-learning-based SR

methods [30]) have the freedom to adjust the frame rate and the spatial resolution,

respectively. As a consequence, the resulting two-stage scheme is able to perform un-

constrained STVSR. However, as pointed out in [31, 32], this two-stage scheme does

not take advantage of the intrinsic relationship between temporal and spatial informa-

tion, which limits the highest resolution that can be potentially achieved. In addition,

performing STVSR in a two-stage fashion tends to be highly inefficient since VFI and

SR are computationally intensive by themselves and likely involve many operations

that can be shared.

To tackle these problems, two recent works [31, 32] have proposed a one-stage

approach to STVSR by consolidating VFI and SR. This boosts performance by a large

margin, while involving far fewer parameters and incurring less computational cost.

However, this gain comes at a price. Indeed, compared to its two-stage counterpart,

the new approach in [31,32] lacks flexibility in the choice of the final temporal/spatial

resolution. Specifically, in the temporal domain, the CNN employed to synthesize the

intermediate frame (based on two input frames) is tailored to a particular target time.

As for the spatial domain, due to the use of the pixelshuffle layer [33] or deconvolution

layer, it is impossible to adjust the up-sampling factor without modifying or retraining

the network. Besides, the intrinsic limitation of these two layers renders fractional

up-sampling factors unrealizable.

A natural question that arises here is whether the performance of the one-stage

scheme can be retained without compromising flexibility? We offer an affirmative an-

swer in this work by proposing an Unconstrained Space-Time Video Super-Resolution
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Network (USTVSRNet), which is able to increase the temporal/spatial resolution of a

given video by an arbitrary factor. For temporal interpolation, the optical flow tech-

nique is adopted to ensure the desired flexibility in the temporal resolution. More-

over, different from [31, 32], where the intermediate frame is synthesized at the fea-

ture level, we make predictions at both the image and feature levels, which leads to

a noticeable performance improvement. As to spatial up-sampling, we introduce a

Generalized Pixelshuffle Layer (GPL) that can project low-dimensional features to

a high-dimensional space with the dimension ratio freely chosen. In addition, we

construct a Scale-Attentive Residual Dense Block (SARDB) to generate scale-aware

features. Due to the innovative features of our design, USTVSRNet is capable of up-

sampling frames by an arbitrary factor with a single model. Our experimental results

will show that the proposed method outperforms the SOTA two-stage methods, and

does so with significantly lower computational cost.

The main contributions of this paper are as follows: (1) We propose a novel uncon-

strained STVSR method, which possesses the strengths of the SOTA one-stage and

two-stage approaches while avoiding their drawbacks. (2) To realize unconstrained

STVSR, several new mechanisms are introduced, including, integrating image-level

and feature-level information to improve the quality of the synthesized intermediate

frame, generalizing the Standard Pixelshuffle Layer (SPL) to increase the degrees of

freedom in terms of up-sampling factor, and generating scale-aware features to make

the network more adaptive. (3) Even when evaluated for particular temporal/spatial

resolutions, the performance of the proposed unconstrained STVSR method remains

highly competitive and outperforms the SOTA one-stage methods on various datasets.
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4.3 Related Work

4.3.1 Video Frame Interpolation

The goal of VFI is to increase the frame rate by synthesizing intermediate frames

while maintaining spatial and temporal consistencies with the given video frames.

There are two major categories of video interpolation methods: kernel-based and

flow-based methods.

As a pioneer of the kernel-based method, reference [18] employs a rigid spatially-

adaptive convolution kernel to generate each target pixel. Naturally, very large kernels

are needed for covering large motions, which leads to a substantial memory overhead.

Reference [19] replaces regular 2D convolution kernels with pairs of 1D kernels to

reduce the memory overhead. Even though that reduction is significant, the method

cannot handle motions that are larger than the kernel size. To solve this problem,

AdaCoF [17] breaks the rigid limitation of the regular convolution kernel and proposes

a 2D deformable spatially-adaptive convolution scheme for VFI. Later, GDConvNet,

introduced in [34], further exploited the degrees of freedom available in the three

dimension of space-time, which improves the performance significantly. While kernel-

based methods show promise, the time-oblivious nature of the convolution kernels

means that the temporal information in the intermediate frames needs to be built

into kernel-based methods in the design phase and cannot be easily adjusted during

implementation.

In contrast, flow-based methods [12–16] generate the value of each pixel in the

target intermediate frame according to an associated optical flow. Specifically, they

first use the input frames to estimate source optical flows with the help of an optical
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flow estimation network [35–38]. They then convert the source optical flows into the

associated ones with respect to the intermediate time t. Finally, the input frames are

warped to the target frame according to these optical flows. As such, these methods

have the inherent ability to perform interpolation with respect to an arbitrary time.

Flow-based methods [12–15] typically adopt a linear model to convert the source

optical flows. Recently, a quadratic model was proposed in [16], and preliminary

results suggest that it may be able to better estimate the optical flows by exploiting

four consecutive frames. For simplicity, in the present paper we will focus on the

linear model, which involves two consecutive frames. It is straightforward to extend

our work to incorporate higher-order models.

4.3.2 Super Resolution

SR has two main branches: SISR and video super-resolution, which aim at recovering

a visually pleasing high-resolution image and video, respectively.

In terms of SISR, an end-to-end network which maps the interpolated LR images

to HR ones was proposed in [39], and was enhanced by increasing network depth or

stacking more complicated modules in [40–43]. However, all of these methods need to

pre-compute an interpolated LR image before applying convolution neural networks,

which significantly increases the computational complexity. To avoid the inefficient

pre-computing process, the deconvolution layer and SPL, proposed by [44] and [33]

receptively, enable the networks to directly output HR images from LR images, which

dramatically reduces the computational complexity, and contributes to recovery of

more fine-grained details.

On the other hand, the deconvolution layer and SPL also make it possible for VSR
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networks [2, 4–6, 45, 46] to output HR videos from LR ones directly. The processing

pipeline of the SOTA VSR methods is roughly as follows: extract features from

the reference frame and neighboring frames, then feed them (after proper alignment

and fusion) into a reconstruction network to generate a super-resolved frame. By

employing a deconvolution layer or an SPL in the reconstruction network, the SOTA

VSR methods have been shown to generate satisfactory results in terms of efficiency

and effectiveness on various datasets.

Although the SOTA SISR and VSR methods have performed satisfactorily on

many datasets, they lack flexibility in adjusting the resolution of the final output.

This is due to the intrinsic limitations of the deconvolution layer and the SPL. Re-

cently, the meta-up-sample module proposed by [30] enables up-sampling by an ar-

bitrary factor using a single model. Its refined version, known as the scale-aware

up-sampling module [47], can better address the resulting memory overhead issues,

but the underlying mechanism remains the same.

Unlike [30, 47], in the method proposed herein, we will generalize the SPL to

release it from the constraints on the up-sampling factors. It will be shown that the

new mechanism performs on par with, or slightly better than, SPL in terms of fixed

scale up-sampling, and delivers better performance than that in [30, 47] in terms of

up-sampling by arbitrary factors.

4.3.3 Space-Time Video Super-Resolution

Distinct from the separated operations of VFI and VSR, in a STVSR system we seek

to simultaneously increase the temporal frame rate and the spatial resolution of a

given video. This line of research was initiated in [48]. As the STVSR operation is a
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highly ill-posed inverse problem, due to the inadequacy of the available information,

traditional methods [20–23] often resort to some hand-crafted priors or artificially-

imposed constraints. For instance, reference [20] adopts a space-time directional

smoothness prior and reference [21] makes a hypothesis that there is no great change in

illumination for the static regions. As a result, these methods cannot cope with many

real-world scenarios. In addition, the optimization for these methods is extremely

computational inefficient (e.g., the processing speed for [21] is about 1 min/frame).

With the aid of deep learning, it is now possible to develop data-driven assumption-

free STVSR methods. One simple way to do that is to realize STVSR via sequential

execution of deep-learning-based VFI and SR. However, this two-stage scheme is sub-

optimal since it is susceptible to error accumulation and makes no use of space-time

correlation. In addition, a direct combination of VFI and SR without any consolida-

tion is clearly inefficient in terms of the running cost.

In view of the problems with the two-stage approach, some one-stage STVSR

methods [31,32] have been proposed, which are able to offer improved performance at

a reduced cost. While they are highly innovative, these newly-proposed methods [31,

32], have two major limitations. Firstly, due to the use of a CNN to directly synthesize

the intermediate frames, the temporal position of such frames is not adjustable after

training. Secondly, there is no freedom to choose the spatial up-sampling factors

to be different from those set in the training phase, nor to accommodate fractional

factors. The main motivation of the present work is to remove these two limitations

and realize unconstrained STVSR.

After posting a preprint of this submission on arXiv [49], we become aware of

a concurrent and independent work [50], which addresses the temporal inflexibility
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Figure 4.1: Illustration of the architecture of USTVSRNet.

problem using so-called TMBlock. But the spatial domain issue remains unsolved

in [50]. A performance comparison is included in Section 4.6 of this submission.

4.4 Unconstrained Space-Time Video Super-Resolution

Network

The goal of the proposed USTVSRNet is to transform a low-resolution low-frame-rate

(LFR) video into a high-resolution high-frame-rate (HFR) one. Specifically, given two

LR input frames (IL0 and IL1 ), an arbitrary target time t ∈ [0, 1], and an arbitrary

spatial up-sampling factor s ∈ [1,+∞), the goal is to synthesize an intermediate HR

frame IHt with H = sL. The overall architecture of USTVSRNet is shown in Fig. 4.1,

which mainly consists of 4 sub-networks: a Frame Interpolation Network (FINet),

a Feature Extractor, a Enhancement Network (EnhanceNet), and a Reconstruction

Network.

As illustrated in Fig. 4.1, first a LR intermediate frame ÎLt is constructed by the

FINet based on neighboring source frames (IL0 and IL1 ) and bidirectional optical flows

(ft→0 and ft→1). Then the features FL
0 , FL

t and FL
1 are generated through the feature

extractor from IL0 , ÎLt and IL1 respectively. Next, FL
t is enhanced to EL

t at the feature
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level through the enhancement network, and, finally, EL
t is fed into the reconstruction

network to produce a high-resolution frame ÎHt as an approximation of IHt . The details

of each steps are outlined below.

4.4.1 Frame Interpolation Network

Given IL0 and IL1 , the FINet is employed to generate a coarse prediction ÎLt as the

reference frame, which will be used in conjunction with the feature-level prediction

to produce the final reconstruction. In principle, any flow-based VFI algorithm can

serve this purpose. However, the SOTA systems [12–14, 16] often involve complex

designs (e.g., depth information [13], quadratic model [16]), and consequently are not

very efficient as a component of a larger system. For this reason, we consider a simple

design for the FINet.

First a light-weight optical flow estimation network (PWCNet [38]) is utilized to

estimate the bidirectional flows f0→1 and f1→0. They are then passed to the flow

reverse layer [16] to predict backward flows ft→0 and ft→1. Specifically, we have

ft→0 = FR(f0→t), (4.4.1)

where f0→t = t ∗ f0→1, and FR denotes the flow reverse operation [16]; ft→1 can be

computed in a similar way. Finally the reference frame is synthesized as:

ÎLt =
(1− t) ·B · g(IL0 , ft→0) + t · (1−B) · g(IL1 , ft→1)

(1− t) ·B + t · (1−B)
, (4.4.2)

where B is a blending mask generated by a small CNN [12, 16, 51], and g(·) denotes

the warping function.
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Figure 4.2: Illustration of the architecture of EnhanceNet.

4.4.2 Feature Extractor

The frame features FL
0 , FL

t and FL
1 are extracted from IL0 , ÎLt and IL1 , respectively,

through a feature extractor, which is composed of a convolution layer and several

residual blocks [52].

4.4.3 Enhancement Network

As illustrated in Fig. 4.2, the inputs to the enhancement network consist of the three

extracted feature maps FL
0 , FL

t , FL
1 as well as the pre-computed bidirectional optical

flows ft→0, ft→1. The goal of this sub-network is threefold: 1) leverage the source

frame features (FL
0 and FL

1 ) and the bidirectional optical flows (ft→0 and ft→1) to

predict the features of the intermediate frame F
′L
t ; 2) refine the generated reference

frame at the feature level to alleviate the error accumulation problem as the coarse

prediction ÎLt obtained in the first stage tends to have many artifacts; 3) fuse the

source frames to the intermediate frame for better reconstruction under the guidance

of ft→0, ft→1. The operation of the enhancement network can be expressed as:

M = NetM(ft→0, ft→1), (4.4.3)
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F
′L
t = Netp(F

L
0 , F

L
1 ,M), (4.4.4)

EL
t = Netr(F

L
t , F

′L
t ), (4.4.5)

where NetM , Netp, and Netr are composed of several residual blocks and a convolution

layer, and M denotes the motion features extracted from ft→0 and ft→1 through NetM .

4.4.4 Reconstruction Network

The reconstruction network is designed using the residual dense network [43] as the

backbone. We replace the SPL with a novel GPL described below, making it possible

to up-sample low-resolution features by an arbitrary scale factor s. Moreover, we

substitute one out of every K RDBs with our newly constructed SARDB, which

is able to generate scale-adaptive features and contribute positively to the overall

performance.

4.4.4.1 Generalized Pixelshuffle Layer

a new GPL is proposed to address the lack of flexibility in the SPL. Here we describe

both the SPL and the GPL in parallel and highlight their differences.

The goal of the SPL and the GPL is to convert input feature maps of size Cin ×

H ×W to output feature maps of size Cout × sH × sW for some scale factor s (s is

allowed to be fractional for GPL but not for SPL). They both proceed in three steps:

Widen Input Features: The input feature maps are transformed via convolution

to the intermediate feature maps T of size Cmid ×H ×W . Note that Cmid must be
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(a)

(b)

Figure 4.3: Examples of the standard and generalized pixelshuffle layers, where (a)
shows the standard layer while Cin = 2, Cint = 4, Cout = 1, and s = 2; (b) shows the
generalized pixshuffle layer while Cin = 2, Cint = 4, Cout = 2, s = 1.5, and pc = 0.

equal to s2Cout for SPL, but can be an arbitrary positive integer for GPL.

Location Projection: Each spatial position on the output feature maps (i, j), i ∈

[0, sH − 1], j ∈ [0, sW − 1] is projected to (i′, j′) = ( i
s
, j
s
) on the intermediate feature

maps.

Feature Mapping: Sample features from the intermediate feature maps T for each

3D output position (i, j, c), c ∈ [0, Cout − 1] on the output feature maps according to

a certain rule. Specifically, for SPL, the rule can be formulated as follows according

to [33]:

SPL(T )i,j,c = Tbi′c,bj′c,Cout·s·mod(i,s)+Cout·s·mod(j,s)+c. (4.4.6)
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A concrete example can be found in Fig. 4.3 (a). In contrast, for GPL, we propose

to sample using

GPL(T )i,j,c = Tbi′c,bj′c,pc+4pc , (4.4.7)

where pc is a pre-determined channel position and 4pc denotes an adaptive offset

predicted by a small fully connected network with (i′ − bi′c, j′ − bj′c, 1/s) as input

(which is inspired by [30]). Note that we associate each 3D output position with

a 4pc, resulting in sH · sW · Cout offsets in total. In the case where pc + 4pc is

not an integer, the sampling value Tbi′c,bj′c,pc+4pc can be computed using a linear

interpolation function:

Tbi′c,bj′c,pc+4pc =
Cout−1∑
i=0

max(0, 1− |pc +4pc − i|) · Tbi′c,bj′c,i. (4.4.8)

By designing so, the sampling position (bi′c, bj′c, pc+4pc) on the intermediate feature

maps is capable of moving along the channel direction to sample the needed feature.

We provide a concrete example in Fig. 4.3 (b)

From Eqs. (4.4.6)-(4.4.7) and Fig. 4.3, we have two observations: 1) the proposed

GPL not only achieves unconstrained up-sampling of feature maps but also has the

capability to freely specify the channel dimension of the intermediate feature maps;

2) the GPL degenerates to the SPL if we set Cmid = s2Cout, pc = Cout · r ·mod(i, s) +

Cout · r ·mod(j, s) + c, and force 4pc = 0. From these two points, it can be seen that

the proposed GPL is a generalized version of the SPL with more degrees of freedom

that can be fruitfully explored.

In our implementation, we set pc = c · Cmid

Cout
+ Cmid/Cout−1

2
. As such, the initial

sampling positions are evenly distributed along the channel direction, which makes
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Figure 4.4: Illustration of the SARDB architecture.

it possible to capture features as diverse as possible. We initialize 4pc with 0 and

set the learning rate of the small fully connected layer to be the same as the global

learning rate.

4.4.4.2 Scale-Attentive Residual Dense Block

As pointed out in [47], the features generated by SR networks can be divided into

scale-independent ones and scale-dependent ones, and the latter should be adapted

to different scales. However, the scale-aware adaptation module introduced by [47] is

built solely upon the spatial-wise attention mechanism, and makes no use of channel-

wise attention [53]. With this observation, we propose SARDB to exploit the available

degrees of freedom more thoroughly.

The architecture of the proposed SARDB is shown in Fig. 4.4. The features F

output by the LFF [43] are fed into several convolution layers to generate spatial

attention map Ms and channel attention map Mc respectively. Then, the scale-aware

convolution [47] is employed to convert the features F into scale-dependent features

Fd, which are then modulated by Ms and Mc by broadcasting and multiplication.
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The above operations can be expressed as follows:

Fd = Sconv(F ),

Mc = Netc(F ),

Ms = Nets(F ),

Fo = Fd �Mc �Ms + F.

(4.4.9)

Finally, the results from the upper branch Fo and lower branches x are merged to

produce scale-adaptive features.

4.5 Experiments For Unconstrained Space-Time

Video Super-Resolution

Unconstrained STVSR methods can flexibly adjust the temporal frame rate and the

spatial resolution of the output video. In this section, we discuss the unconstrained

STVSR. The experiment for fixed STVSR will be presented in Section 4.6.

4.5.1 Implementation Details

In our experiments, we explore the performance for different values of the target time

t and the up-sampling factor s. We let t vary from 0 to 1 with a step size of 0.125,

and s vary from 1 to 4 with a step of 0.5. During the implementation, we set K = 4

and Cmid = 5Cin = 5Cout = 5 × 64 respectively. The adopted loss function, training

dataset, and training strategy are described below.
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4.5.1.1 Loss Function

We employ two loss terms to train our network, being L1 loss and perceptual loss [54],

respectively:

Reconstruction Loss: The L1 loss is used to measure the difference between the

prediction and the ground-truth in a per-pixel manner, and can be formulated as

follows:

L1 =
∑
x

||ÎHt (x)− IHt (x)||1. (4.5.1)

The L2 loss can also be used, but it is widely known in the image synthesis area that

the L2 loss could lead to blurry results to a certain degree. Following [17,55], we adopt

Charbonnier penalty function [56] to optimize L1 loss function and set ε = 10−6.

Perceptual Loss: Different from the per-pixel loss, the perceptual loss seeks to

measure the difference from a global visual view, which has been shown effective in

generating visually realistic images. The perceptual loss often leverages multi-scale

feature maps extracted from a pre-trained network to quantify the difference. Here,

we adopt VGG-16 [57] as the pre-trained network, and use feature maps from the

last layer of each of the first three stages to measure the difference (i.e., Conv1 2,

Conv2 2 and Conv3 3). The loss can be expressed in the following form:

Lp =
3∑

i=1

||Φi(Î
H
t )− Φi(I

H
t )||22, (4.5.2)

where Φi(I
H
t ), i = 1, 2, 3 are the aforementioned three feature maps corresponding to

IHt while Φi(Î
H
t ) corresponds to ÎHt .

Overall Loss: By combining the L1 loss and the perceptual loss, the overall loss can
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be defined as:

L = L1 + λLp, (4.5.3)

where λ is a hyper-parameter to balance the L1 loss term and the perceptual loss

term. Experimentally, we find setting λ = 0.04 reaches the best performance.

4.5.1.2 Training Dataset

Adobe-240 dataset [58] consists of 133 handheld recorded videos, which mainly con-

tain outdoor scenes. The frame rate of each video is 240 fps, with spatial resolution as

720×1, 280. From this set, 103 videos are randomly selected to construct our training

dataset. That set is formed by successively grouping every 9 consecutive frames, and

resizing them to 360×640 to form a training sequence IH0 , I
H
0.125, · · · , IH1 . In this way,

we obtain 10, 895 sequences in total. The LR frames are generated through bicubic

down-sampling from the HR frames. We randomly crop image patches of size 56×56

from the LR frames for training. Horizontal/vertical flipping as well as temporal

order reversal is performed for data augmentation.

4.5.1.3 Training Strategy

During the training phase, t and s are randomly selected to build each training batch.

The image patches within a single batch share the same t and s. We adopt the Adam

optimizer [59] with a batch size of 18, where β1 and β2 are set to the default values

0.9 and 0.999, respectively. We train our network for 30 epochs in total with the

initial learning rate set to 10−4, and the learning rate is reduced by a factor of 10

at epoch 20. The training is carried out on two NVIDIA GTX 2080Ti GPUs, which

takes about one day to converge.
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Figure 4.5: Quantitative comparisons of unconstrained STVSR methods on Adobe240
dataset.

4.5.2 Evaluation Dataset

4.5.2.1 Adobe Testing Dataset [58]

We treat the remaining 30 videos of the Adobe-240 dataset as an evaluation dataset.

As in the case of the training dataset, we successively group every 9 consecutive

frames (resized to 360 × 640), resulting in 2, 560 test sequences. For each sequence,

the LR frames are generated from the HR ones via bicubic down-sampling.
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Figure 4.6: Quantitative comparisons of unconstrained STVSR methods on Gopro
dataset.

4.5.2.2 Gopro Testing Dataset [60]

This dataset contains 11 videos recorded by a hand-held camera. The frame rate

of each video is 240 fps, and the image resolution is 720 × 1, 280. The dataset is

released in image format with a total of 12, 221 images. We successively group every 9

consecutive images as a test sequence. In this way, 1, 355 test sequences are generated.
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DAIN+Bicubic DAIN+MetaSR BMBC+Bicubic BMBC+MetaSR USTVSRNet GT

Figure 4.7: Qualitative comparisons of different Unconstrained STVSR algorithms.

4.5.3 Comparisons to SOTA methods

To the best of our knowledge, there is no one-stage method of this kind in the liter-

ature. So we only consider two-stage methods composed of SOTA unconstrained

VFI methods (BMBC [61] and DAIN [13]) and SOTA SISR methods (since the

code of [47] is not publicly available, we choose to use Meta-SR [30]). Here we

set t = 0, 0.125, · · · , 1 and s = 1, 1.5, · · · , 4 respectively.

Fig. 4.5 and Fig. 4.6 show (a)-(c) PSNR scores for different temporal positions with
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Table 4.1: Model size and running time comparisons with s = 4, where the model
size is reported in millions (M) and the running time is reported in second (s) per
frame.

Method #Parameters (M) Runtime (s)
USTVSRNet 12 0.12
BMBC + Meta-SR 33 0.34
BMBC + Bicubic 11 0.21
DAIN+Meta-SR 46 0.35
DAIN+Bicubic 24 0.18

s = 2.5, 3.5, 4.0, (d)-(f) PSNR scores for different scale factors with t = 0.375, 0.500, 0.625,

on the Adobe240 and Gopro testing datasets, respectively. More results can be found

in the supplementary materials. According to the experimental results, we make two

observations: 1) the usage of more advanced VFI or SR methods contribute to better

predicted results. For example, although BMBC+MetaSR and DAIN+MetaSR are

both equipped with the same SR method, the former performs better than the latter

due to the fact that BMBC is more advanced than DAIN; 2) compared to two-stage

methods, the proposed method has better performance and is much more stable. This

is due to the fact that the components of the two-stage methods work in isolation

and cannot exploit the relationships between behavior in space and time.

Fig. 4.7 shows some qualitative comparisons with t = 0.5 and s = 4. It can be

seen that the proposed method tends to generate more visually appealing results than

the others. For instance, the proposed USTVSRNet yields sharper and clearer strips

in the first row of Fig. 4.7; the leaves and the flower pattern generated by our method

are much clearer than others in the second and the third rows, respectively.

Tab. 4.1 provides comparisons between these methods in terms of model size and

running time. Since two-stage methods are simple concatenations of the VFI and SR

algorithms, they tend to be overweight and slow. In contrast, the proposed method is
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Table 4.2: Quantitative results of ablation study regarding FINet and EnhanceNet
with s = 1, 2, 3, 4, where PSNR and SSIM scores are averaged over t.

Method
s = 1 s = 2 s = 3 s = 4

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
(a) 31.44 0.9140 30.09 0.8949 27.82 0.8357 26.42 0.7767
(b) 32.02 0.9249 29.81 0.8882 27.38 0.8182 25.99 0.7550
(c) 32.39 0.9270 30.85 0.9078 28.44 0.8542 26.83 0.7945

more compact and efficient. Specifically, compared to the best performing two-stage

method, namely BMBC + Meta-SR, the proposed USTVSRNet only has about 1/4

of size and takes half time to reconstruct one frame.

4.5.4 Ablation Study

(a) t = 0.25 w/o FINet (b) t = 0.75 w/o FINet

(c) w/o EnhanceNet (d) w/ EnhanceNet

Figure 4.8: Qualitative results of ablation study regarding FINet and EnhanceNet.
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4.5.4.1 Effectiveness of image-level and feature-level interpolation

To validate the effectiveness of the image-level and feature-level interpolation, we

consider the following three variants: a) USTVSRNet without FINet (where the

flow estimation and reverse network are still preserved to generate optical flows for

EnhanceNet). For this variant, we directly pass F
′L
t to the reconstruction network;

b) USTVSRNet without EnhanceNet. For this variant, FL
t is directly fed into the

reconstruction network; c) the complete network. We only provide the average scores

over t with s = 1, 2, 3, 4 in Tab. 4.2 due to paper space limitation (Noted we excluded

t = 0, 1 for s = 1). However, we observe similar results for different values of s.

From Tab. 4.2 (a) and (c), we can make the following two observations: 1) interpo-

lating at the image level in addition to the feature level does contribute positively to

the final reconstruction. It is expected that the performance can be improved further

if more advanced VFI methods are adopted; 2) even without the explicit image-level

prediction by FINet, the network still retains some, albeit reduced, ability to gener-

ate intermediate frames for different target times, owing to the implicit feature-level

synthesis in EnhanceNet. A visual example is illustrated in Figs. 4.8 (a-b), in which

two frames for different times are generated through USTVSRNet without FINet.

As can be seen from Tab. 4.2 (b-c), removing EnhanceNet degrades the perfor-

mance in terms of PSNR and SSIM. Indeed, in addition to the loss of feature-level

interpolation, removing EnhanceNet deprives the system of the ability to refine the

reference frame and gain information from the source frames for reconstruction, which

leads to unsatisfactory results, as shown in Figs. 4.8 (c-d).
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4.5.4.2 Effectiveness of GPL and SARDB

We next demonstrate the effectiveness of the GPL and SARDB. Since the reconstruc-

tion network is functionally orthogonal to the other three sub-networks, we repurpose

it as an SISR network. The following experiments are based on the SISR network

and the RDN [43] is adopted as the backbone. The Vimeo90K dataset is commonly

used in the SR area, thus we adopt this dataset in this part. We first demonstrate

the effectiveness of the GPL and then SARDB.

Comparison with SPL: As we stated in the previous section, the proposed GPL is

a generalized version of the SPL. Here we compare them in terms of the fixed scale

up-sampling. The baseline is RDN, which employs the SPL at the end of the network

to upscale features by a fixed scale factor. We will denote this system by S-RDN.

Then, we replace the SPL by the proposed GPL to obtain a system called G-RDN.

We evaluate each method on up-sampling factors r = 2, 3, 4, respectively. For each

scale factor, the baseline RDN needs to be modified and re-trained. In contrast, for

G-RDN, there is no need to modify the network structure. For fair comparisons, we

also train it on each scale factor. The experiment results can be found in Tab. 4.3.

Table 4.3: Comparisons between SPL and GPL in terms of the fixed scale up-sampling
on the Vimeo90k dataset.

Method scale-factor PSNR SSIM Runtime
S-RDN ×2 40.81 0.9780 0.13
G-RDN ×2 40.84 0.9780 0.15
S-RDN ×3 36.27 0.9465 0.07
G-RDN ×3 36.30 0.9468 0.09
S-RDN ×4 33.88 0.9162 0.05
G-RDN ×4 33.90 0.9161 0.07

As we can see from Tab. 4.3, G-RDN achieves slightly better results than S-RDN

at all scales with a negligible running time increase (except for ×4 up-sampling on
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which G-RDN performs a little worse in terms of the SSIM value), which implies

the performance of the GPL is on par or marginally better than that of the SPL in

the scenario of fixed scale up-sampling. More importantly, compared to the SPL,

the GPL enables the network to have the capability to perform unconstrained up-

sampling task (will be demonstrated in the next), instead of restricted to certain

specific scaling factors. Therefore, from these two aspects, the GPL can be considered

as a generalized version of the SPL.

Comparison with unconstrained up-sampling methods: Different from con-

strained counterparts, unconstrained methods are able to upscale an image by an

arbitrary factor within a single model. For this part, we compare the GPL with cer-

tain unconstrained up-sampling modules. Since only a few methods concentrate on

arbitrary scale factor upsampling, we need to design several baseline systems. The fol-

lowing three baselines are taken into consideration: 1) the first baseline directly adopt

the bicubic interpolation technique to up-sample images, denoted as Bicubic; 2) we

first use a standard RDN to up-sample a image by k times (k is a fixed integer), then

resize the up-sampled image to the desired size with bicubic interpolation, denoted as

I-RDN(×k); 3) we replace the SPL of RDN with the bicubic interpolation method,

which means that bicubic interpolation is used to upscale the feature maps, denoted

as Bi-RDN. In addition, we also compare with the SOTA unconstrained up-sampling

method, Meta-RDN [30], which is the same as Bi-RDN and G-RDN except for the

final up-sampling module. Bi-RDN, Meta-RDN, and G-RDN are trained with the

same unconstrained training strategy. Tab. 4.4 shows the evaluation results, which

are averaged over s ∈ [1, 4].

Tab. 4.4 illustrates the effectiveness of the proposed GPL. It has a clear advantage
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Table 4.4: Comparisons for different unconstrained upscale methods on Vimeo90k
dataset.

Method PSNR SSIM Runtime
Bicubic 37.41 0.9282 0.02

I-RDN(×2) 38.25 0.9548 0.16
I-RDN(×4) 38.02 0.9578 0.17
Bi-RDN 40.37 0.9586 0.17

Meta-RDN 40.72 0.9578 0.20
G-RDN 40.90 0.9590 0.18

over other methods in terms of PSNR and SSIM. In particular, GPL outperforms the

SOTA up-sampling module, Meta-Upscale, by about 0.18 dB and has a faster running

speed.

(a) FG-RDN (b) G-RDN

Figure 4.9: Qualitative results of ablation study regarding channel dimension freedom.

Importance of channel direction freedom: To illustrate the importance of chan-

nel direction freedom, we consider the following variant: we keep other components

the same as G-RDN except for forcing 4pc = 0, in which the sampling position

cannot move along the channel direction. This system is denoted by FG-RDN. The
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Table 4.5: Comparisons of FG-RDN and G-RDN with different Cmid.

Method dimension PSNR SSIM Runtime
FG-RDN 5× 64 39.37 0.9525 0.17
G-RDN 1× 64 40.78 0.9587 0.18
G-RDN 3× 64 40.86 0.9589 0.18
G-RDN 5× 64 40.90 0.9590 0.18
G-RDN 7× 64 40.90 0.9590 0.18

experimental results can be found in Tab. 4.5, where one can easily find freedom of

channel direction that leads to better reconstruction results. Indeed, if ∆pc = 0, then

the local feature vectors of the output feature maps will become identical, which tends

to generate blurry results or jagged edges. A visual example can be found in Fig. 4.9.

Specifically, consider two different output positions on the output feature maps (i1, j1)

and (i2, j2). If they are projected to the same location on the intermediate feature

maps bi′1c, bj′1c = bi′2c, bj′2c, their output feature vectors GPL(T )i1,j1 and GPL(T )i2,j2

will be exactly the same according to Eq. (4.4.7) (due to ∆pc = 0), which limits the

diversity of the output feature maps. From another point of view, forcing 4pc = 0

corresponds to using the nearest interpolation to up-sample the feature maps. Nat-

urally, its performance is not as good as that of G-RDN, and it is even worse than

Bi-RDN (since bicubic interpolation is superior to nearest interpolation in nature).

Therefore, the channel direction freedom plays an important role in the GPL.

Choice of Cmid: For the all experiments above, we set Cmid = 5Cin = 5Cout =

5 × 64. Now, we investigate how to choose the channel dimension of intermediate

feature maps Cmid. We fix Cin = Cout = 64 and vary Cmid. Tab. 4.5 shows the

results, which are averaged over s ∈ [1, 4]. As shown in Tab. 4.5, as the dimension

increases, the performance improves initially, but eventually becomes saturated. In

particular, setting Cmid to more than 7× 64 does not further improve the quality of
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the reconstructed HR image.

Effectiveness of SARDB: We finally investigate the contribution of the SARDB.

Two networks are trained and evaluated on scale factor r ∈ [1, 4]: one with SARDB;

the other one with RDB. We experimentally find that the scale-dependent features

generated by SARDB improve the performance by 0.28 dB and 0.0012 in terms of

PSNR and SSIM, respectively, with negligible increasing in the running cost.

4.6 Experiments For Fixed Space-Time Video Super-

Resolution

Different from unconstrained STVSR, in fixed STVSR the temporal frame rate and

the spatial resolution are not adjustable without retraining or modifying the network.

Some experimental comparisons with fixed STVSR are provided below.

4.6.1 Implementation Details

In this section, t can only vary among {0, 0.5, 1} and s is set to 4, which means

the network can only up-sample a video by ×2 and ×4 times in terms of temporal

and spatial resolutions, respectively. As in the previous section, we set K = 4 and

Cmid = 5Cin = 5Cout = 5 × 64. The training dataset and training strategy are

described below.

4.6.1.1 Training Dataset

Same as [31], the Vimeo90k Triplet Training Dataset [11] is adopted to train our

model, where we have 51, 312 sequences in total and the image resolution is 256×448.
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Within each sequence, the first, the second and the third frames are treated as IH0 ,

IH0.5 and IH1 , respectively. Similarly, we use the bicubic down-sampling method to

generate LR images from HR ones. We also perform horizontal and vertical flips, as

well as temporal order reversal, for data augmentation.

4.6.1.2 Training Strategy

For each training iteration, t is randomly selected from {0, 0.5, 1} and s is set as 4 to

construct the corresponding training batch. The Adam optimizer is adopted with a

batch size of 24. We train the network for 25 epochs in total, with the initial learning

rate as 10−4. The learning rate is reduced by ×2 times at every 8 epochs for the

first 16 epochs and by ×5 times every 3 epochs for the last 9 epochs. The training

is carried out on two NVIDIA GTX 2080Ti GPUs, which takes about one day to

converge.

4.6.2 Evaluation Dataset

4.6.2.1 Adobe Testing Dataset and Gopro Testing Dataset

The Adobe Testing Dataset and the Gopro Dataset from the previous section are

directly used as the two evaluation datasets for this section. There are 2, 560 and

1, 355 sequences in the Adobe dataset and the Gopro dataset, respectively, each with

9 frames. We only use the first, the fifth and the last frame of each sequence to

compare different algorithms.
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4.6.2.2 Vimeo90k Triplet Testing Dataset [11]

This dataset consists of 3, 782 video sequences, each with 3 frames. The image reso-

lution of this dataset is 256× 448. The first, second, and third frames in each video

sequence are treated as IH0 , IH0.5, and IH1 respectively.

4.6.3 Comparisons to SOTA Methods

Here the STARNet [31], Zooming SloMo [32], and TMNet [50] are chosen as represen-

tatives of one-stage fixed STVSR methods. For fair comparison, they are retrained

on our training dataset using the same strategy. As to two-stage methods, we com-

bine pre-trained SOTA VFI methods (AdaCoF [17] and BMBC [61]) and SR methods

(RSDN [6], RBPN [3] and DBPN [42] are chosen as representatives of the VSR and

SISR methods, respectively).

We quantitatively compare our method with the chosen one-stage and two-stage

methods under two well-known objective image quality metrics (PSNR and SSIM).

The scores of the center frame and the average scores over all three frames are pro-

vided in Tab. 4.6. It can be seen that the proposed method ranks consistently at

the top performance-wise, and comes in a close second in terms of the number of

parameters. The two-stage methods not only suffer from large model size, but also

lack competitiveness in performance since the constituent VFI and SR techniques are

constrained to work in isolation. Although STARNet, Zooming SloMo, and TMNet

are capable of handling diverse space-temporal patterns and improve the performance

significantly, they are still behind the proposed method by a visible gap.
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4.7 Conclusion

In summary, we have proposed an unconstrained STVSR method that has the free-

dom to arbitrarily adjust the temporal frame rate and spatial resolution of the output

video. Beyond using the optical flow technique for temporal interpolation, several new

ideas are introduced, which include the generalized pixelshuffle operation for upsam-

pling, a refined mechanism to generate scale-adaptive features, and the integration of

image-level and feature-level representations. Despite their excellent performance, it

is conceivable that these new ideas could be further developed to yield even better

performance. Moreover, there could well be likely alternative approaches to realizing

unconstrained STVSR. In this sense, our work should be viewed as a stepping-stone

towards a full-fledged framework for AI-enabled STVSR.
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Chapter 5

Conclusion

5.1 Conclusion

In this thesis, deep learning based video enhancement has been researched, where

the first two articles focus on video frame interpolation and the last one deals with

space-time video super-resolution.

More specifically, in the first article, a new mechanism named generalized de-

formable convolution is proposed, which unifies the essential ideas underlying flow-

based and kernel-based methods and resolves some performance-limiting issues. Fur-

thermore, a new VFI network is developed based on the mechanism, which surpasses

the performance of the state-of-the-arts.

The second article successfully adapts Transformer to VFI, where a novel space-

time separation window-based self-attention scheme is devised. Based on this scheme,

a parameter, memory, and run-time efficient VFIT framework with state-of-the-art

performance is presented. The architecture of VFIT is simple and compact, which

can be effectively applied to numerous downstream vision tasks.
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Last but not least, the third article proposes a one-staged unconstrained STVSR

method that has complete freedom to arbitrarily adjust the temporal frame rate

and spatial resolution of the output video. Meanwhile, the network is able to fully

exploit the intrinsic relations between space and time, offering significant diversity

gain over two-stage methods. The proposed USTVSRNet is unified, flexible, and

performance-wise competitive, which sets a solid cornerstone for realizing full-fledged

unconstrained STVSR.
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