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Lay Abstract: 

 Every cell of the body has the opportunity to secrete molecules into the blood. 

These molecules: proteins, ribonucleic acids (RNAs), and deoxyribonucleic acids 

(DNAs), can be secreted freely, or within small membrane compartments called 

extracellular vesicles (EV). Specific molecules are secreted more or less by cells 

depending on changes to their immediate environment, such as disease in a particular 

organ. We leveraged this to the benefit of medical science in three separate scenarios: 1) 

using the molecular contents of EVs to determine when someone has prostate cancer, and 

at what stage; 2) examining RNAs of the blood to determine why so many with asthma 

also have depression or PTSD; 3) measuring RNAs in the blood and hippocampus of 

mice to better understand how certain bacteria in the gut can alleviate depression. This 

work illustrates the utility of blood in tackling many challenging problems within medical 

science.  
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Abstract: 

Every cell of the body has the opportunity to secrete molecules into the blood. 

These molecules: proteins, RNAs, and DNAs, can be secreted freely, or within 

extracellular vesicles (EV). The complement of specific molecules secreted by cells can 

vary in accordance with changes to their immediate environment, such as disease in a 

particular organ. Cells of the immune system which circulate in the blood may also 

change the rates at which they produce these molecules in response to a disease or 

unusual event occurring somewhere within the body. The full complement of proteins, 

RNAs, or DNAs from all sources within the blood can therefore be measured to garner 

information about disease states and communication between every tissue of the body. In 

this body of work, we leveraged this to address three separate challenges within medical 

science. First, we utilized blood as a source of biomarkers for disease and disease 

severity; isolating EVs from the blood of prostate cancer patients and healthy subjects 

and characterized their proteins with mass spectrometry to identify potential biomarkers 

for prostate cancer and its stages. Next, we explored the ability of blood to identify 

commonalities between distinct but often comorbid diseases; here we utilized publicly 

available datasets to identify transcripts or gene sets potentially facilitating the 

relationship between PTSD, MDD, and asthma. Finally, we utilized differential gene and 

gene sets expression to gain mechanistic insight into microbiota-gut-brain axis; 

investigating the hippocampus and blood of mice fed one of two psychobiotic bacteria: 

Lactobacillus rhamnosus JB1, Lactobacillus reuteri 6475. The analysis identified several 

mRNA expression differences potentially responsible for the mood-altering 
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characteristics of these psychobiotic bacteria. This body of work illustrates the utility of 

blood omics data for addressing many problems within medical science, and highlights 

the large scale of information stored within the blood. 
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Chapter 1: Introduction: 

1.1 The Blood  

 The survival of every cell and tissue in the body depends on the blood and 

circulatory system, which deliver oxygen and nutrients to their immediate environments, 

or, interstitial fluid (Pittman, 2011). Freshly oxygenated arterial blood satisfies this end, 

flowing from the heart through arteries to all tissues of the body to maintain homeostasis 

of the interstitial fluid (Pittman, 2011). Venous blood, on the other hand, flows from all 

tissues and cells of the body back through capillaries and veins to the heart, often with 

manifold molecular cargo secreted into the blood by those tissues and destined for other 

organs of the body (Pittman, 2011; Ross and Pawlina, 2003; Al Saleh et al., 2018). 

Venous blood enters the right atrium of the heart and via the right ventricle is pumped to 

the lungs to be re-oxygenated; freshly-oxygenated blood enters the left atrium and via the 

left ventricle is pumped to the rest of the body, carrying in it molecular cargo that 

traveled there in the venous blood (Betts, 2013). In this way, organs and tissues can 

transfer metabolites and other molecules to each other across the entire length of the body 

through circulation. Perhaps the most important example of this is seen in the digestive 

system, where food-derived molecular nutrients absorbed by enterocytes are secreted into 

submucosal blood vessels which feed into the superior and inferior mesenteric veins, 

these nutrients are pumped to the heart where they are then distributed throughout the 

body (Miron and Cristea, 2012; Ross and Pawlina, 2003; Kvietys, 2010). 

 A biomarker is a molecule or any measurable substance present in a particular 

circumstance, that serves as an indicator that a biological event is occurring (Strimbu and 
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Tavel, 2010). They are used currently, and are being developed to predict clinical 

outcomes such as the presence of a disease in the body, the stage or severity of a disease 

(ie. cancer), or outcomes following clinical procedure (Hampel et al., 2010; Devarakonda 

and Govindan, 2019; Al-Nedawi et al., 2019). Blood-based biomarkers are a popular 

choice for identifying diseases because collection of blood is relatively non-invasive 

compared with biopsy (Pittman, 2011; Pang et al., 2020). The blood is also an ideal place 

to look for biomarkers as previously mentioned, because it is constantly updated with 

secreted molecules of all types from tissues all over the body (Uhlen et al., 2015). 

Hypothetically, the information contained within the blood on the health status of every 

tissue and organ is comprehensive, and it is freely accessible provided one knows the 

type of molecule they are measuring, and have an instrument sensitive enough to find it.   

1.1.1 Extracellular Vesicles 

One of the ways in which cells secrete molecules into the blood is within 

extracellular vesicles (EV), an encompassing term that includes both microvesicles and 

exosomes. Both microvesicles and exosomes are small lipid capsules; but while 

microvesicles (200-1000 nm in diameter) are shed by direct budding from the cell 

membrane, exosomes (40-200 nm in diameter) are produced through invaginations in 

multivesicular bodies before the organelle fuses with the plasma membrane to release 

them (van Doormal et al., 2009). EVs are known to contain many types of molecular 

cargo including protein, miRNA, mRNA, and DNA (van Doormal et al., 2009). EV have 

been shown to contain many of the hallmark proteins and nucleic acids that their parent 

cells are known for, and they can carry out many of the same activities as their parent 
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cells, or to act biologically in their interest. For example, human prostate cancer cells will 

load their EV with many pro-inflammatory molecules to extend the influence of the 

tumour micro-environment throughout the body (Al Saleh et al., 2018). It was originally 

believed that EV were shed solely for the purpose of disposing of cellular waste, but it is 

now understood that they are also involved in capture and degradation of materials in 

multivesicular bodies, intercellular signaling, and even transfer of nuclear receptors and 

other proteins to different parts of the body (Karla et al., 2016; Al-Nedawi et al., 2008; 

Mir and Goettsch, 2020). This latter activity can be enhanced with tissue-specific 

integrins and tetraspanins embedded on the surface of EVs, which can determine the 

destination organ or tissue of the molecular cargo before even leaving its parent cell 

(Murphy et al, 2019; Lotvall et al., 2014 Hoshino et al., 2015). The brain is not off-limits 

for blood-based cargo delivery of EV, as they are also capable of crossing the blood-

brain-barrier (Matsumoto et al., 2017; Yang et al., 2015). 

 Although EV can be isolated from blood, their contents are de facto part of any 

whole blood analysis as well. Different molecular species fare differently free and in EV 

however. Proteins have been shown to be quite stable when free in the blood, and even in 

storage only modest and uniform degradation of proteins across the proteome is observed 

(Zimmerman, 2010). One concern of blood proteomics analysis is that proteins that are 

already high in abundance in the blood, such as albumin and immunoglobulins, obfuscate 

the measurement of a mass spectrometer and make it harder to detect lower abundance 

proteins (Adkins et al., 2002; Govorukhina et al., 2003). Many of these high abundance 

proteins are also more stable than other, lower abundance proteins, further adding to the 
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difficulty detecting the full complement of proteins (Zimmerman, 2010). Isolating 

circulating EV instead offers a work around for this, as when isolated correctly they 

contain a more even distribution of proteins with less albumin (Baranyai et al., 2015). 

Because EV also have a lipid bilayer membrane, they allow for transport and detection of 

transmembrane proteins in the blood as well (Cvjetkovic et al., 2016). DNA and miRNA 

are quite stable free in the blood as well (Huang et al., 2017; Enelund et al., 2017), and 

even blood mRNA, though the least stable of the bunch, has been shown to last up to 24 

hours ex vivo (Holford et al., 2008). In addition to still increased stability, analyzing EV 

encapsulated cargo can offer a unique look at which specific cell or tissue types the cargo 

came from as well as the tissue or cell types for which it is destined based on markers on 

the surface of the EV (van Doormal et al., 2009; Murphy et al, 2019; Lotvall et al., 2014 

Hoshino et al., 2015). 

1.1.2 Immune Cells 

 The last source of protein and nucleic acids in whole blood are blood and immune 

cells, including monocytes, macrophages, erythrocytes, lymphocytes, platelets, and 

granulocytes, which include neutrophils, eosinophils, and basophils (Dean, 2005). First 

looking at cells with innate immune function; neutrophils are the most abundant 

circulating immune cell, they patrol the bloodstream for dysfunction and threats (Rosales, 

2018). Neutrophils are capable of phagocytosing bacteria, removing them from the 

environment and degrading them within vesicles (Rosales, 2018). Neutrophils also play a 

significant role in wound healing, signaling to one another and forming cellular swarms 

around the site of the injury (Wilgus et al., 2013). The other granulocytes eosinophils and 
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basophils, along with mast cells (a type of leukocyte), help defend against parasites, and 

mediate the allergic response (Stone et al., 2011). Macrophages, a type of monocyte, are 

best known for their ingestion and degradation of bacteria, but in the absence of an 

immune response, they also play ‘housekeeping’ roles in that they recycle dead cells, and 

clear debris (Fond and Ravichandran, 2016). Also developing from monocytes, dendritic 

cells, which process large molecules from pathogens, allergens, and host cells to produce 

antigens, which dendritic cells then present to adaptive immune cells (Mellman and 

Steinman, 2001).  

Natural killer cells, a type of lymphocyte, identify and destroy both tumor cells 

and virus-infected cells (Anfossi et al., 2006; Vivier et al., 2008). They release granules 

that contain proteins that bring about apoptosis, and puncture target cells (Cullen and 

Martin, 2007). Other lymphocytes, B and T cells, comprise the adaptive immune system 

(Alberts et al., 2002). The dual functions of B cells are antigen presentation (similar to 

dendritic cells) to T cells, and antibody production (Rivera et al., 2001; Popi et al., 2016). 

Antibodies themselves are secreted into the blood in order to neutralize pathogens, or 

opsonize them, binding to them as part of a signaling pathway that allows macrophages 

to identify and destroy them (Roos et al., 2004). Although the binding arms of antibodies 

are unique to particular pathogens, they generally fall into several categories of 

immunoglobulins (Ig), IgA, IgM, IgE, IgG, and IgD, which have some different and 

some overlapping roles (Schroeder and Cavacini, 2010). IgA is necessary in the 

gastrointestinal tract for the neutralization process (Johansen et al., 1999), complement 

activation relies on IgM (Sharp et al., 2019), mast cells in the allergic and parasitic 
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responses are activated by IgE (Mukai et al., 2016), IgG plays a role in opsonization, 

complement activation, and neutralization (Mak and Saunders, 2006), and basophils are 

activated by IgD (Chen et al., 2009). Both these broad classes of antibodies, and the 

transcripts that code them are abundant in the blood, and easily detected.  

T cells have multiple functions and can be broadly classified as either CD8+ or 

CD4+, in accordance with the protein appearing on their surface (Olsen Saraiva Camara 

et al., 2012). T cells hosting CD8 are termed cytotoxic T cells and are essential for 

recognition and destruction of cancer cells and cells infected by virus (Janeway et al., 

2001). Like natural killer cells, CD8+ T cells also shed granules that bring about 

apoptosis in the target cells (Janeway et al., 2001). CD4+ T cells can be further classified 

as either a T helper cell: TH1, TH2, and TH17; or as a regulatory T cell 

(Treg)(Luckheeram et al., 2012). Immune responses against intracellular pathogens, and 

in particular, bacteria are coordinated by TH1 cells (Del Prete, 1992); TH2 cells alert 

granulocytes, B cells, and mast cells which helps mount an immune response against 

extracellular pathogens (Del Prete, 1992; Sokol et al., 2009), and TH17 cells not only 

recruit neutrophils, but activate non-immune and immune cells alike, with their secretion 

of interleukin-17 (IL-17)(Gaffen, 2009). Tregs mediate the activity of other T cells, both 

preventing immune responses against the cells and antigens of the host, and adverse 

immune activation in general (Luckheeram et al., 2012). 

Transcripts and molecules related to immune communication and signaling can 

also be found in the blood, including cytokines (Karsten et al., 2018). Small proteins with 

many functions, cytokines can be broken up into several categories, including: 
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interferons, which are required for the activation of immune cells (Zhang and An, 2007). 

Interferons can be further classified as either type I, which oversee antiviral immune 

responses; or type II, which are required for mounting a response to bacteria (Meurs et 

al., 1990; Lee and Ashkar, 2018). Interleukins, another class of cytokines, aid in 

activating inhibitory responses (Justiz Vaillant and Qurie, 2021), while chemokines 

recruit specific immune cells to a particular site for specific purposes (Oo and Adams, 

2010). In immune cell differentiation and development, cytokines called colony-

stimulating factors are necessary (Bezbradica et al., 2006); and in immune cell activation 

and proliferation, the tumor necrosis factor (TNF) cytokine family is essential (Mehta et 

al., 2018). TNF cytokines, as well as interferons, also play a big role in the activation of 

the inflammatory response seen frequently in the blood (Cantaert et al., 2010). Measuring 

the molecules of immune communication in the blood can give insight into the general 

immune response in a changing circumstance. 

Several immune cell surface receptors also play critical roles in immune cell 

communication; present on innate immune cells such as dendritic cells and macrophages, 

Toll-like receptors (TLRs) are essential for the inflammatory and innate immune 

response, as they recognize microbial antigens (Kawasaki and Kawai, 2014). T and B cell 

receptors are found on cells of the adaptive immune system and essential to that system, 

in that these receptors are all unique so as to be able to bind to nearly anything (Janeway 

et al., 2001). The genes that code T and B cell receptors are constantly mutating with less 

DNA repair than the rest of the genome, this allows them to be versatile and bind to any 

foreign antigen that may exist (Janeway et al., 2001). The major histocompatibility 
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complex (MHC) are the proteins that do the antigen presentation on cell surfaces, and are 

used to indicate whether a cell is foreign or host (Alberts et al., 2002). Viral antigens are 

presented by MHC class I proteins in nearly all cell types, and are then recognized by 

CD8+ T cells which kill infected cells in response if necessary (Alberts et al., 2002). 

Antigen presenting cells such as macrophages and dendritic cells are what primarily 

express MHC class II proteins, which present antigens to CD4+ T cells (Alberts et al., 

2002). 

Altered gene and protein expression in circulating immune cells is often 

indicative of disease state because these immune cells are involved in the response to 

disease (Hagai et al., 2018; Saleh et al., 2020; Danne et al., 2017). Gene expression 

within circulating immune cells has been posited as a robust biomarker system for certain 

diseases and treatment states, independent of the rest of blood gene expression (Wang et 

al., 2020; Lyons et al., 2017). Furthermore many immune cells have been shown to 

cross-talk between different cells and tissues of the body, including facilitating much of 

the communication between the gut and brain referred to as the gut-brain-axis (Deng et 

al., 2021; Elmentaite et al., 2019; Jacobson et al., 2021; Liu et al., 2020). There is also 

cross-talk between cancer cells and immune cells in the area immediately surrounding the 

tumour, known as the tumour microenvironment (Wang et al., 2019). With all these 

things considered, it is apparent that gene and protein expression secreted by, and within 

circulating immune cells offers a unique look into the disease and treatment states of the 

body. 
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1.2 Analyzing Omics Data 

At the cellular level, any of the manifold reasons mentioned above are sufficient 

for a protein or RNA to be either differentially expressed in immune cells, secreted into 

the blood  either directly or within EV. However, the biological purpose of this secretion 

does not need to be understood for a biomarker to be predictive of a disease state. Rather, 

the robust and consistent presence of a particular molecule in the blood during a 

particular disease or treatment condition can serve as an excellent jump off point for 

understanding the condition. This approach, often referred to as hypothesis-generating 

research (Hartwick and Barki, 1994), was made possible by the advent of high-

throughput techniques for assessing protein (ex. mass spectrometry) and nucleic acids 

(ex. next-generation sequencing, RNAseq, (whole genome) arrays).  

A common approach to analyzing omics data is to compare the proteome or 

transcriptome of biological models treated to an experimental condition, with the 

proteome or transcriptome of wild type biological models as a control. This approach 

generates a total snapshot of all the changes to the proteome or transcriptome that occur 

between groups and is called differential representation or differential expression 

analysis. High-throughput techniques generate data containing far more variables, nucleic 

acid or protein species, than more traditional analyses like quantitative polymerase chain 

reaction (qPCR) however, and therefore require different statistical analysis to prevent 

false positives from slipping through during analysis (Benjamini and Hochberg, 1995). 

For example, when measuring a small number if genes in qPCR, a t-test or ANOVA are 

sufficient to determine if a change in expression is significant (meaning that there is a 5% 
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or less chance that the groups could have been randomly sampled from a single normal 

distribution). In a high-throughput analysis, the number of variables in the analysis is so 

great that ANOVA and t-test are guaranteed to generate false positives. Instead adjusted 

p-values that generate a measure of a true false discovery rate are used. This method of 

generating Benjamini-Hochberg (BH) adjusted p-values can be expressed by:  

 

 Where p-values, ordered from small to large p(j), are multiplied by m = the total 

number of tests, and then divided by rank order. These values are then coerced into a 

non-decreasing sequence, and any p-values larger than 1 are made equal to 1 (Benjamini 

and Hochberg, 1995). Doing this corrects for the p-values <0.05 that one would expect to 

occur by chance in a single normal distribution, and with these adjusted p-values once 

again reflect the true false discovery rate (FDR), even with tens of thousands of variables. 

To illustrate the adjusted p-values, consider that all p-values were organized into 20 bins 

(0.00-0.05, 0.05-0.10… 0.95-1.00) that when taken from a single normal distribution, 

form a near-uniform distribution of p-values. Where there are two truly different 

experimental groups however, these bins of p-values form a skewed distribution, where 

there are disproportionately more significant p-values than non-significant. The p-value 

adjustment keeps only those p-values <0.05 that are ‘overflowing’ in their bin - that is to 

say, the most significant of the significant p-values. 

Differential expression analysis on omics data with a high number of variables 

can be performed with R code or through automated online tools that offer increased ease 
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with less control. In this thesis, both methods were used in three separate differential 

expression analysis of proteins and nucleic acids in whole blood. First, a comparison 

between prostate cancer patients at different stages of the disease, and healthy 

individuals, to identify potential cancer biomarkers; second, a comparison of mRNA in 

the blood of three comorbid diseases, asthma, major depressive disorder, and post-

traumatic stress disorder, to identify drivers of comorbidity. Finally, a comparison of 

mRNA in both the whole blood and hippocampus of mice fed one of two mood-altering 

bacteria, or a phosphate buffered saline (PBS) control. 

1.3 Blood-Based Biomarkers in Cancer 

 DNA was first detected in the blood of cancer patients in 1977 (Leon et al., 1977), 

and in 1994 this DNA was shown to harbor cancer-hallmark mutations (Sorenson et al., 

1994). The blood was at first thought to be a valuable alternative to detecting cancer 

through biopsy because the genetics in one section of a tumour are not indicative of the 

genetics of the tumour as a whole (Gerlinger et al., 2012; Yong, 2014). In fact, Gerlinger 

et al. (2012) found that cells found on one end of an individual kidney tumour only had 

one third of their mutations in common to cells at the other end, and that metastasized 

tumours differed still. When, over time, cancer cells from all parts of a tumour rupture 

and die, their molecular signature appears in the blood, leaving a more comprehensive 

signature of their mutant genome than could be seen looking at biopsy (Yong, 2014). A 

relatively non-invasive cancer biomarker detection system is also welcome, as many 

cancers are often not detected until it is too late (Incisive Health, 2014), while 

simultaneously, cancer patients often benefit more from an earlier treatment (Hamilton et 
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al., 2015). Cancer biomarkers are developed for many purposes beyond detection of 

cancer however, including determining the stage of the cancer and estimating its 

prognosis, and to detect response to and efficacy of a cancer treatment (Duffy, 2001; 

Duffy, 2013; Lennon et al., 2020; Bettegowda et al., 2014).  

Free circulating proteins are one of the most widely used biomarkers across many 

cancers, although naturally the specific proteins differ between cancers (Henry and 

Hayes, 2012). For example, in breast cancer, carcinoembryonic antigen (CEA), cancer 

antigen 15-3 (CA 15-3), the soluble form of the human epidermal growth factor receptor 

2 (HER2), and tissue polypeptide-specific antigen (TPS) (Di Gioia et al., 2016). Proteins, 

miRNAs and mRNAs from circulating EV have become more popular as cancer 

biomarkers in recent years, however, as they can be isolated from the blood prior to 

analysis, effectively lowering the sensitivity requirement for the measuring instrument, 

they can be used to detect cancer in earlier stages, and distinguish between different 

stages of tumour development (Lane et al., 2018; Melo et al., 2015; Hornick et al., 2015; 

Fu et al., 2018).  

Research articles and clinical trials suggesting the use of vesicular biomarkers for 

many types of cancer (lung, breast, prostate, pancreas, leukemia, general cancer, colon 

cancer, gastric cancer, glioma, oropharyngeal, thyroid, gallbladder, and melanoma) have 

been published or are ongoing, but at this point only one EV biomarker test kit has been 

approved by the U.S. food and drug administration for clinical use in detecting or 

characterizing cancer, specifically urine EV biomarkers for distinguishing high- and low-

grade prostate cancer (Zhao et al., 2019; Han et al., 2022). The main reason for this is 
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that, although the potential of EV as predictors of disease is apparent, there are many 

standardized procedures still to be developed (Zhao et al., 2019; Lane et al., 2018). While 

great effort has been made to standardize blood collection methods, sample storage, 

processing, and type, there is no consensus on quantification and isolation methods 

(Lotvall et al., 2014; Coumans et al., 2017; Witwer et al., 2013). The debate around 

quantification asks, should vesicle dose be characterized as total protein content of 

vesicles, number of vesicles, or vesicle number to protein ratio; and for isolation, 

ultracentrifugation or chromatography (Xu et al., 2016). 

Another school of thought seeks to replace the antiquated free circulating protein 

biomarkers with free circulating tumour DNA (ctDNA) (Duffy et al., 2018). The main 

advantage of ctDNA is that because it comes from burst tumour cells, it can be sequenced 

to give a very direct picture of the exact mutations from all parts of the tumour (Yong, 

2014; Pessoa et al., 2020); and because it is less invasive than biopsy, it can be repeated 

more easily to monitor the progression of tumour mutations in closer-to-real-time (Pessoa 

et al., 2020; Duffy et al., 2018). Like free circulating protein biomarkers, however, the 

total amount in the blood increases as tumour stage progresses, varying from 0.01% to 

>90% of all DNA in circulation (Wan et al., 2017). This makes ctDNA a good option for 

identifying the full complement of mutations in later stage cancers when it is easy to 

detect, but a poor option for diagnosing cancers at an early stage when it is difficult to 

detect (Pessoa et al., 2020). Although these procedures are still in development, in the 

near future, high-throughput measurements and analysis of biomarkers in the blood will 
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have life-changing impacts in the detection and stage assessment of cancer patients in a 

clinical setting. 

1.4 The Brain and Gut Microbiota Communicate Through Blood and Nerves 

Protozoa, fungi, viruses, and bacteria are among the 100 trillion microorganisms 

that live in the human gastrointestinal tract (Bull and Plummer, 2014; Rath and 

Dorrestein; 2012). The microbiome, sometimes thought of as the population of genomes 

in an environment, in the human gut is represented by 3 million genes (Valdez et al., 

2018). In that sense, the microbiome can therefore be considered a virtual organ, and the 

need for several host functions is replaced by the functional metabolites its genes encode 

(Bull and Plummer, 2014; Vyas and Ranganathan, 2012). Diet, drug intake, and other 

environmental factors, and to a lesser extent genetic factors dictate the biodiversity of the 

human gut microbiome (Goodrich et al., 2014; Rothschild et al., 2018). These factors 

result in different individuals possessing different species in their gut than others. 

         Native gut microbiota participate with their host in many biological processes, 

including: metabolism, drug efficacy, gene expression, the development of disease, and 

immunity (Wu and Wang, 2018). Intestinal bacteria help mediate proper brain and 

immune development via the microbiota-gut-brain axis (Yong et al., 2020). Lifestyle 

changes often proceed adverse changes in gut biodiversity that are thought to lead to 

conditions like obesity, schizophrenia, inflammatory bowel syndrome,  major depressive 

disorder, and Parkinson’s (Sherwin et al., 2016; Thursby and Juge, 2017; van de Guchte 

et al., 2018). The mediation of brain diseases by gut bacteria appear to occur through 

both the vagus nerve, and the circulatory system, in which immune cells and EV traveling 
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between gut and brain facilitate changes (Haas-Neill and Forsythe, 2020; Bharwani et al., 

2017; Bravo et al., 2011; Liu et al., 2020). 

Following host ingestion, some commensal bacterial species have been shown to 

alter brain, behaviour, and immune systems positively (Kandasamy et al., 2016; Alvarez 

et al., 2019; Mohsin et al., 2015; Bercik et al., 2011), and many of these same species are 

even known to produce neurotransmitters including GABA, serotonin, dopamine, and 

nor-epinephrine, although it remains unclear whether this latter activity influences the 

brain (Roshina, 2010; Lyte, 2011; Haas-Neill and Forsythe., 2020). Alone, Lactobacillus, 

a genus of anaerobe, produces a whole range of neurotransmitters; with single species 

such as Lactobacillus plantarum producing multiple neurotransmitters (Yong et al., 

2020). 

EV have been shown to have major involvement in communication between 

bacteria of the gut, and the brain (Summarized in Figure 1)(Haas-Neill and Forsythe, 

2020). Like their parent cells, EV derived from commensal bacteria stimulate the nervous 

system, module immunity, can enter into the blood and pass the blood brain barrier 

(BBB), carry psychoactive cargo, and have been shown to alter gene expression and 

behaviour without their parent cell (Kaparakis et al., 2010; Meganathan et al., 2020; Al-

Nedawi et al., 2015; Zakharzhevskaya et al., 2017; Choi et al., 2019). 

It is hypothesized that membrane vesicles (MV) released by probiotics cross into 

the circulation from the gut and travel with their psychoactive or behaviour altering cargo 

to the brain, as an additional mechanism of probiotic control over behaviour (Haas-Neill 

and Forsythe, 2020). It follows then, that some component of the immune cells and EV in 
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the blood are derived from gut or brain, and are involved, or representative of the 

crosstalk between the two.

 

Figure 1: The cognition and behaviour influencing pathways of commensal derived 

bacterial membrane vesicles. Image adapted from: Haas-Neill, S., and Forsythe, P. 

(2020). A budding relationship: Bacterial Extracellular Vesicles in the Microbiota-Gut-

Brain Axis. International Journal of Molecular Sciences. 21(23):8899. 

1.5 Blood Signatures of Mood Disorders 

 In recent years, evidence continues to suggest that a molecular signature of almost 

everything that happens in the body appears in the blood, and it appears that there could 

be blood biomarkers even for mood disorders, previously thought to be pathology 

exclusive to the brain (Le-Niculescu et al., 2009; Brand et al., 2015). Like cancer, mood 
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disorders are difficult to diagnose, and are frequently misdiagnosed. This is true of post 

traumatic stress disorder (PTSD), major depressive disorder (MDD), bipolar disorder, 

and borderline personality disorder (BPD) to name a few (Awad et al., 2007; Salzbrenner 

and Conaway, 2009). While in the case of cancer, the difficulty to diagnose is due to 

lacking a comprehensive understanding of the variation between cases, as well as 

symptoms remaining unrecognized until the disease has spiraled out of control (Yong, 

2014; Incisive Health, 2014; Al-Azri, 2016); in mood disorders, misdiagnosis is caused in 

part by inability to perform physical tests on the brain, and an incomplete understanding 

of what is causing the disorder (Philips and Kupfer, 2018; Manson, 1995; Avasthi and 

Ghosh, 2014; Rosen et al., 2018). Therefore, like in cancer, there has been great interest 

in identifying the signatures of mood disorders in the blood (Le-Niculescu et al., 2009; 

Brand et al., 2015).  

 There have been multiple research papers published toward the development of 

blood biomarkers for post-traumatic stress disorder (PTSD) (Rusch et al., 2019; Kuan et 

al., 2017), major depressive disorder (MDD) (Leday et al., 2017; Spijker et al., 2010), 

bipolar disorder (Le-Niculescu et al., 2021; Sagar and Pattanayak, 2017), schizophrenia 

(Panda et al., 2021; He et al., 2017), anxiety and stress (Humer et al., 2020; Los and 

Waszkiewicz, 2021). Many of these disorders are comorbid with each other, meaning that 

if a patient has one, they are more likely to also have another (Kaufman and Charney, 

2000; Nabavi et al., 2015). Mood disorders have also been shown to be comorbid with 

some diseases affecting the body beyond the brain as well (Sanna et al., 2013; 

Wisnivesky et al., 2021). Little work has been done to determine how many of the 
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molecules that comprise the blood signature of one of these mood disorders, also appear 

in their comorbid counterparts; although inflammatory molecules such as C-reactive 

protein (CRP) appear to be commonly regulated in the blood of multiple mood disorders, 

and anti-inflammatory medications have been seen to alleviate symptoms from multiple 

mood disorders (Chang and Chen, 2020) . Just as the blood may be a critical link between 

gut bacteria and mood disorders, its contents may also be worthy of study in 

understanding the root of comorbid disorders within the body. 

1.6 Purpose and Objectives of the Thesis 

 This body of work sought to accomplish three separate objectives in its use of 

omics data of a range of molecular species collected from the blood: 1) to improve the 

diagnosis and staging of prostate cancer, leading to a more accurate and less invasive 

clinical experience; 2) to identify the drivers of comorbid mood disorders, which may 

give insight into future treatments for comorbid patients that better address the root of the 

problem; and 3) to more comprehensively elucidate the mechanism by which mood-

altering bacteria of the gut influence the brain and behavior of mice, ultimately enhancing 

our understanding of the antidepressant mechanisms of gut microbiota. 

 To these ends, each of these objectives use differential expression analysis and 

gene set enrichment analysis on: 1) circulating vesicle derived protein; 2) total circulating 

mRNA (includes circulating immune cells & EVs); and 3) circulating and hippocampal 

mRNA. 
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Chapter 2: The role of blood circulating extracellular vesicle protein in 

characterization of prostate cancer  
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2.1 Abstract 

Prostate cancer (PCa) is the fifth leading cause of death in men globally. 

Prostate specific antigen (PSA) is still considered the gold standard biomarker test for 

PCa, despite its high rate of false positives and negatives that result in several 

inappropriate medical responses, including overtreatment. There is a critical need for 

other biomarkers for PCa. In this study, we collected extracellular vesicles (EV) from 

the blood plasma of patients with organ-confined, extracapsular-invading, and seminal 

vesicle-invading tumours, as well as from healthy subjects. We examined the protein 

content of these EV using Mass Spectrometry (MS). This in-depth proteomic analysis 

showed 10 distinct groups of proteins that are differently expressed in each group of 

patients compared to healthy subjects. We have identified a wide range of potential 

protein biomarker candidates for distinguishing healthy subjects from PCa patients, as 

well as for discerning vesicle cargo among the different tumour types. In practice, 

once verified, these biomarkers have the potential to be more accurate diagnostics for 

PCa than what currently exists, and may go beyond PSA in their potential to 

determine and monitor disease staging.  

 

 

 

 



21 

Ph.D Thesis – S. Haas-Neill; McMaster University – Medical Sciences 

 

   
 

2.2 Introduction 

Prostate cancer (PCa) has the fourth highest incidence rate among all cancers 

globally, with 1.1 million cases, and it is the fifth leading cause of cancer mortality in 

men (307,000 deaths in 2012) [1]. PCa is the second most diagnosed cancer after lung 

cancer, and it is more prevalent than lung cancer in the developed world (759,000 

cases compared to lung cancer’s 490,000 in 2012)[1]. In about 70% of patients with 

advanced PCa, bone metastases occur in multiple sites [2]. These metastases occur 

most commonly in the femur, skull, pelvis, ribs, spine, sternum, and humerus and can 

lead to fractures, reduced mobility, hypercalcemia, and severe bone pain [3, 1].   

Prostate specific antigen (PSA) has been measured in serum as the standard biomarker 

test for PCa [4]. The test has high sensitivity and, when performed routinely, leads to 

reduced mortality. It has low specificity, however, which in practice can lead to many 

false positives, including the mischaracterization of benign prostate hyperplasia as 

PCa [5-7]. There are currently no other accepted biomarkers for PCa detection and 

PSA continues to be used in the clinical setting [4]. When a blood level PSA of >4 

ng/mL is detected, a biopsy is recommended, but in 57.7% of these 10-12 core 

biopsies cancer is not detected [8, 9]. Exceptionally high levels of PSA are thought to 

reflect an increased risk of bone metastasis, but are a poor measure as these high 

levels can be detected independently of bone metastasis [4]. Based on these 

drawbacks, there is a serious need either for the PSA test to be improved or for the 

identification of new biomarkers capable of both more accurately differentiating 

between PCa patients and healthy subjects, and specifying metastatic potential. 
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Extracellular vesicles (EV) are small membrane compartments that are shed 

from both malignant and normal cells and are known to contain a cargo of proteins, 

RNAs and DNAs [10]. EV were originally believed to be shed from cells exclusively 

for the purpose of waste disposal, but have since been shown to be involved in a host 

of intercellular signalling pathways as well as the intercellular shuttling of functional 

cargo such as transcription factors [11-13]. We previously reported that EV in the 

blood of PCa patients contain diagnostic biomarkers for the disease and, therefore, 

have important potential as replacements for PSA testing in PCa diagnosis [14]. In 

support of their diagnostic potential, EV have been referred to as biomarker treasure 

chests for PCa, and have had this potential identified previously for the detection of 

ovarian and urogenital cancers [15-17]. It has also been reported that proteins found in 

exosomes collected from the urine of PCa patients are predictably different from those 

found in the exosomes of healthy urine [18]. Given the major gap in accurately 

measuring PCa development and metastasis, we examined the contents of 

extracellular vesicles extracted from patient blood plasma and characterized their 

protein content. These data were generated from four groups of six subjects, one 

healthy group, an organ confined PCa (OC) group, an extracapsular extending PCa 

(EC) group, and a seminal vesicle invading PCa (SI) group. Our data show that blood 

EV protein can be identified to distinguish between a PCa patient and a healthy male 

of the same age, and can also be used to discriminate between PCa patients at 

different stages of the disease. Upon further validation, EV could provide a simple, 



23 

Ph.D Thesis – S. Haas-Neill; McMaster University – Medical Sciences 

 

   
 

non-invasive and high specificity alternative to PSA to diagnose PCa and monitor its 

progression.  

2.3 Results 

2.3.1 Nanoparticle analysis  

The NanoSight analysis shows that EV circulating in the plasma of both PCa 

(Figure 1A) and healthy subjects (Figure 1B) are a homogenous population with a size 

range of 100-200 nm.  

 

Figure 1. Nanoparticle analysis shows the homogenous population of EV derived 

from patients and healthy subjects:  A) EV from OC PCa patient’s plasma. B) EV 

from plasma of a healthy subject.  

2.3.2 Proteomic analysis 

Six samples of EV protein from the blood plasma of patients possessing each 

tumour type (OC, EC, and SI) as well as six samples from healthy males were subjected 

to proteomic analysis. Healthy males’ blood plasma sample donors were of matching 



24 

Ph.D Thesis – S. Haas-Neill; McMaster University – Medical Sciences 

 

   
 

age (50-65) and had no previous history of cancer or benign tumour. A heatmap for the 

average expression of various EV proteins identified by the proteomic analysis is shown 

in Figure 2. Ten groups of proteins were identified by proteomics analysis: 

A) Group A proteins are those that are more expressed in the blood vesicles of 

healthy subjects but less so in the vesicles of patients of all tumour types. 

B) Group B proteins have mild-to-moderately increased expression in all groups 

but SI, which shows down-regulation of these proteins. 

C)   Group C proteins are up-regulated in EC patients but are down-regulated in all 

other groups. 

D)   Group D proteins are up-regulated in EC and SI patients but are mildly down-

regulated in healthy subjects and moderately down-regulated in OC patients. 

E) Group E proteins are up-regulated in SI patients but down-regulated in all other 

groups. 

F) Group F proteins are up-regulated in EC and SI patients but down-regulated (to 

a larger degree than group D) in healthy subjects and OC patients. 

G) Group G proteins are up-regulated in OC and EC patients but down-regulated 

in SI patients, and to a lesser degree down-regulated in healthy subjects. 

H) Group H proteins are up-regulated in OC patients but moderately down-

regulated in all other groups. 

I)   Group I proteins are moderately up-regulated in OC and SI patients, but largely 

down-regulated in healthy subjects and EC patients. 
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J)   Group J proteins follow the opposite pattern to group A, in that they are 

moderately up-regulated in patients of all tumour types and moderately down-regulated 

in healthy subjects. 

Information for the protein ID, name and molecular functions of the proteins from each 

group were summarized in (Table 1). Also, the table contains a comparison between 

these proteins’ expression in EV with their expression level reported in the literature on 

prostate or other types of cancer. Most of the previous literature shows the expression 

of these proteins in tumour tissues and not in EV, and very few of them contain an 

analysis that correlates these proteins with the OC, EC, and SI tumour types. This makes 

the comparison difficult for all groups but A and J in which the OC, EC, and SI PCa 

subtypes all show the same relative protein expression level. For example among 

various proteins in group A plasma EV proteins, which we found to be downregulated 

in PCa patients compared to healthy subjects, are pericentrin and Myb-binding protein 

1A - these proteins play role in microtubule organization during mitosis and meiosis, 

and engages with specific DNA binding proteins, respectively. The literature shows 

these proteins to be upregulated in prostate tumour endothelium and in the tumour itself, 

respectively [20, 21]. Two proteins selected from group B (upregulated in healthy, OC, 

EC, downregulated in SI), complement factor B (CFB) and retinol-binding protein 4 

(RBP4), which respectively are a component of the C3 or C5 convertase, and a mediator 

of retinol transport in the blood. The literature shows that CFB is upregulated in PCa 

tumours, and RBP4 was found to be upregulated in PC3 cells of xenographted mice [22, 

23]. This is not a perfect comparison due to the absence of tumour staging in the 
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literature. Of the proteins examined in Table 1, in groups C through I, the following 

were found to be overexpressed in some form of cancer: integrin-linked protein kinase 

[25]; glyceraldehyde-3-phosphate dehydrogenase [27]; dynein assembly factor 1, 

axonemal [30]; WD and tetratricopeptide repeats protein 1 [33]; C-reactive protein [40]; 

and runt-related transcription factor 1 [42]. Proteins in these groups found by literature 

to be downregulated in cancer include: LINE-1 type transposase domain-containing 

protein 1 [31], PR domain zinc finger protein 2 [32], glutathione peroxidase 3 [41], and 

Inter-alpha-trypsin inhibitor heavy chain H3 [45].  
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Figure 2. Proteomic analysis from the EV from the plasma of 6 healthy male 

plasma samples, 6 OC patient plasma samples, 6 EC patient plasma samples, and 

6 SI patient plasma samples. 150 µg of protein from the vesicle preparations were 

used for each group. The heat map shows a distinctive protein profile for each 
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stage of the disease, compared to healthy subjects. Ten clusters of proteins were 

identified that could discriminate between prostate cancer and healthy subjects, 

as well as distinguish the disease stage. The figure shows in principal that EV 

proteins could be used as biomarkers for each stage of tumour that could aid in 

diagnostic and prognostic information. 

The existence of these distinct groups suggests that EV from blood 

plasma possess different protein profiles between healthy and cancer subjects 

and, as such, have valuable potential as biomarkers for PCa diagnosis and 

progression tracking. To further illustrate this, we have created Venn diagrams 

that show, for comparative purposes, which proteins are unique to each subject 

type and which are shared by multiple subject types (Figure 3). When comparing 

vesicle proteins from healthy subjects and OC patients, there are 72 proteins 

expressed uniquely in the patients and 29 expressed uniquely in the healthy 

subjects, with 167 of the analyzed proteins being common to both (Figure 3A). 

Similarly, when comparing the other PCa sub-groups with healthy subjects, there 

are some proteins uniquely expressed in the patient vesicles, some uniquely 

expressed in the healthy vesicles, and a majority shared between them (Figure 

3B, C). When vesicle proteins from patients with different types of PCa were 

compared, we detected 57 proteins expressed uniquely in OC patients, 27 

expressed uniquely in EC patients, 13 expressed uniquely in SI patients, and 141 

common to all cancer types (Figure 3D).   
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Figure 3. Venn diagrams illustrating the number of proteins unique to each 

tumour type group compared to healthy vesicle protein expression (A, B, C), and 

expression common and unique to each tumour type (D). Any part of the circle 

not overlapping represents the number of proteins that could be used as 

biomarkers to make a particular distinction (ex. between healthy and SI, or 

between each tumour type). 

We also carried out a protein ontology analysis of protein function, 

localization preference, and the biological processes associated with all proteins 

detected across all samples (Figure 4). The three most common processes these 
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vesicle proteins were involved in were general binding (86 proteins), enzyme 

regulator activities (45 proteins), and miscellaneous molecular functions (95 

proteins) (Figure 4A). These three ‘functions’ alone account for over 80% of all 

molecular functions of proteins in the subject vesicles. The leading three fractions 

after the analysis of biological processes that all detected vesicle proteins were 

involved in are as follows: 100 proteins were involved in general biological 

processes, 100 in establishment of localization, and 100 in localization (Figure 

4B). These three ‘biological processes’ make up a smaller percentage of the total 

pool - about 36% - due to there being a greater number of biological process 

categories identified by the software. 100 proteins preferentially localize to a 

miscellaneous cellular component; 100 preferentially localize to an extracellular 

region; and 72 preferentially localize to the cytoplasm (Figure 4C). These three 

preferred targets for localization make up just over 50% of all the detected 

proteins across all samples. 
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Figure 4. Protein ontology analysis showing the number of EV proteins from all subject 

groups and categorized according to molecular functions (A), biological processes (B), 

and cellular components (C). 
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Protein 

ID 

Name Gro

up 

Function Prostate Cancer Literature Ref. 

Q9HCU

9 

BRMS1

_HUMA

N 

Breast cancer 

metastasis-

suppressor 1 

A  Represses 

transcriptional 

activation by NF-

kappa-B. 

Acts as a tumour suppressor 

in prostate cancer 

19 

O95613 

PCNT_

HUMA

N 

Pericentrin A  Aids in the 

establishment of 

organized 

microtubule arrays 

during meiosis and 

mitosis. 

Upregulated in tumour 

endothelium compared to 

healthy and is associated 

with angiogenesis. 

20 

Q9BQG

0 

MBB1A

_HUMA

N 

Myb-binding 

protein 1A 

A  Interacts  with 

sequence specific 

DNA-binding 

proteins.  

Upregulated in cancer cells, 

while negligibly expressed in 

healthy. Particularly 

overexpressed in castration 

resistant tumours. More 

associated with advanced 

stages of the disease. 

21 

P00751 

CFAB_

HUMA

N 

Complement 

factor B 

B  Component of the 

C5 or C3 

convertase. 

Upregulated in prostate 

cancer both in inflammatory 

and non-inflammatory 

conditions 

22 

P01042 

KNG1_

HUMA

N 

Kininogen-1 B   Kininogens inhibit 

thiol proteases. 

Inhibits migration and 

invasion of prostate cancer 

cell lines. 

23 
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P02753 

RET4_

HUMA

N 

Retinol-

binding protein 

4 

B  Mediates the 

transport of retinol 

in blood plasma. 

Upregulated in Prostate 

Cancer Cell Line 

xenographted mice 

24 

Q13418 

ILK_H

UMAN 

Integrin-linked 

protein kinase 

C  Regulates integrin-

mediated signal 

transduction. 

Up regulated as needed by 

tumours for angiogenesis 

25 

P23229 

ITGA6_

HUMA

N 

Integrin Alpha 

6 

C  Laminin receptor on 

platelets.  

Expression is associated with 

aggressive and invasive 

phenotype of prostate cancer 

26 

P04406 

G3P_H

UMAN 

Glyceraldehyd

e-3-phosphate 

dehydrogenase 

C  Plays a role in 

glycolysis and 

possesses nuclear 

functions.  

Increased in late stage 

prostate cancer 

27 

P00748 

FA12_H

UMAN 

Coagulation 

Factor XII 

D  Helps initiate 

fibrinolysis, blood 

coagulation, and 

bradykinin and 

angiotensin 

generation.  

Coagulation factor XII drives 

prostate cancer-associated 

venous thrombosis. 

28 

F1M3G

7 

AKP13_

HUMA

N 

A-kinase 

anchor protein 

13 

D  Assembles signaling 

complexes 

downstream of 

many G protein-

coupled receptors. 

Interacts with tissue 

transglutaminase, another 

protein found to be a good 

biomarker candidate, in 

prostate cancer. 

29 

Q8NEP

3 

DAAF1

_HUMA

N 

Dynein 

assembly 

factor 1, 

axonemal 

D  Stabilizes ciliary 

architecture.  

Overexpresion is associated 

with prostate cancer 

progression 

30 
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Q5T7N2 

L1TD1_

HUMA

N 

LINE-1 type 

transposase 

domain-

containing 

protein 1 

E  Binds single 

stranded RNA. 

Gene methylated in non-

small cell lung cancer 

(downregulated) 

31 

 

Q13029-

3 

PRDM2

_HUMA

N 

PR domain 

zinc finger 

protein 2 

E  Methylates 'Lys-9' 

of histone H3. 

Thought to be 

tumour suppressor. 

Downregulated or deleted in 

many tumour types: colon, 

liver, and breast. 

32 

Q8N5D

0-6 

WDTC1

_HUMA

N 

WD and 

tetratricopeptid

e repeats 

protein 1 

E  CUL4-DDB1 E3 

ubiquitin-protein 

ligase complex 

substrate receptor. 

Overexpressed in 

neuroblastoma. 

33 

P02654 

APOC1

_HUMA

N 

Apolipoprotein 

C-I 

F  Low density 

lipoprotein (LDL) 

receptor inhibitor. 

Not associated with prostate 

cancer incidence 

34 

Q96AQ

6-3 

PBIP1_

HUMA

N 

Pre-B-cell 

leukemia 

transcription 

factor-

interacting 

protein 1 

F  Pre-B-cell leukemia 

transcription factor 

(BPXs) regulator. 

Regulates VCP, high levels 

of which are associated with 

prostate cancer progression 

and re-occurrence in patients. 

35 

Q86YZ3 

HORN_

HUMA

N 

Hornerin F  Component of 

epidermal cell 

envelopes. 

Expressed in prostate cancer 36 

P19652 

A1AG2

_HUMA

N 

Alpha-1-acid 

glycoprotein 2 

G  Blood stream 

transport protein.  

Correlated with PSA levels 

in the blood in both cancer 

and non-cancer cases 

37 
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O75882 

ATRN_

HUMA

N 

Attractin G  Active in the initial 

inflammatory 

response and may 

regulate chemokine 

activity. 

Complex glycoforms of 

attractin have been found to 

be overexpressed in prostate 

cancer. 

38 

P25311 

ZA2G_

HUMA

N 

Zinc-alpha-2-

glycoprotein 

G  Stimulates lipid 

degradation in 

adipocytes . 

Has previously been 

identified as a good potential 

serum biomarker for prostate 

cancer. 

39 

P02741 

CRP_H

UMAN 

C-reactive 

protein 

H  Involved in several 

aspects of host 

defense. 

Higher levels are associated 

with poorer survival in 

prostate cancer 

40 

P22352 

GPX3_

HUMA

N 

Glutathione 

peroxidase 3 

H  Protects against 

oxidative damage. 

Expression is usually down-

regulated or halted in 

prostate cancer as it 

suppresses growth and 

metastasis. 

41 

Q01196 

RUNX1

_HUMA

N 

Runt-related 

transcription 

factor 1 

H  With CBFB, forms 

the complex core-

binding factor. 

Upregulated by fibroblasts in 

the prostate tumour 

microenvironment 

42 

P01023 

A2MG_

HUMA

N 

Alpha-2-

macroglobulin 

I   Inhibitor of all 

classes of 

proteinase. 

Is present in the blood of 

prostate cancer patients and 

has been found to be 

inversely correlated with 

PSA in the blood of patients 

with more advanced prostate 

cancer. 

43 
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P27169 

PON1_

HUMA

N 

Serum 

paraoxonase/ar

ylesterase 1 

I  Hydrolyzes  various 

organophosphorus 

insecticide 

metabolites.  

Has been reported to have 

increased activity in prostate 

cancer patients. 

44 

Q06033 

ITIH3_

HUMA

N 

Inter-alpha-

trypsin 

inhibitor heavy 

chain H3 

I  Carries and or aids 

in binding of  

hyaluronan. 

Downregulated in the 

majority of prostate cancers. 

45 

P19827 

ITIH1_

HUMA

N 

Inter-alpha-

trypsin 

inhibitor heavy 

chain H1 

J  Carries and or aids 

in binding of  

hyaluronan. 

Found by the same study as 

the other Inter-alpha-trypsin 

inhibitors to not be 

differentially expressed in 

prostate cancer. 

45 

P19823 

ITIH2_

HUMA

N 

Inter-alpha-

trypsin 

inhibitor heavy 

chain H2 

J  Thought to stimulate 

phagocytotic cells. 

Downregulated in 50% of 

prostate cancers. 

45 

Q14624 

ITIH4_

HUMA

N 

Inter-alpha-

trypsin 

inhibitor heavy 

chain H4 

J  Plays a role in 

trauma indiced 

inflammatory 

response.  

Downregulated in the 

majority of prostate cancers. 

45 

P02760 

AMBP_

HUMA

N 

AMBP J  Light chain of the 

inter-alpha-trypsin 

inhibitor. 

Upregulated in prostate 

cancer. 

45 

Table 1. Annotated list of proteins identifying their respective roles in prostate or other 

cancers in the literature. The table contains proteins with various expression levels, as in 

Figure 2, with information for the function and expression levels from the literature. 

Groups: A) Upregulated in healthy, and downregulated in all 3 cancer stages. B) 

Upregulated in healthy, OC, and EC, and downregulated in SI. C) Upregulated in EC, 

and downregulated in healthy, OC, and SI. D) Upregulated in EC and SI, and 

Downregulated in OC. H) Upregulated in OC, and downregulated in healthy, EC, and SI. 

I) Upregulated in OC and SI, and downregulated in healthy and EC. J) Upregulated in all 

cancer stages, and downregulated in healthy 
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2.4 Discussion 

This research highlights the potential for EV to be collected from the blood as 

biomarker-containing capsules for both the diagnosis of PCa and for making a 

determination of the patient’s prognosis. EV protein was able to discriminate between 

healthy subjects and cancer patients, as well as between tumour types. These potential 

EV biomarkers, after verification, could contend with PSA as the gold standard for PCa 

detection with a lower incidence of false positives and over-treatment. PSA is said to 

have the ability to ‘detect metastases’ in the sense that detecting it in abundance over 4 

ng/mL suggests that it is more likely that the patient’s cancer has metastasized to bone 

[4]. A higher PSA level as a test for metastasis is poor because it relies on arbitrary 

numerical values in PSA measurements, rather than biomarkers that actually reflect the 

biological change occurring within the cancer and or the body’s response to it. There are, 

in fact, a number of cancer-unrelated conditions and circumstances that are known to 

cause an abundance of blood PSA, including prostatitis, urinary tract infections, and 

benign prostate hyperplasia, as mentioned previously [44-48, 5]. While each of these 

biomarkers is not exclusively associated with cancer, elucidating a profile of vesicular 

biomarkers offers the most detailed picture of the unique problem. That some of these 

EV proteins (ex. PBIP1, and APOC2), are present in the vesicles of EC or SI tumour 

patients, exclusively, suggests that they are able to fulfill that unique role. The potential 

of these biomarkers becomes even more powerful when one considers that they may be 

measured together. Measuring multiple biomarkers together will always create a more 

accurate picture for diagnosis, leading to fewer false positives and negatives and to 
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pinpointing the nature of the tumour and its progression. Because EV can be isolated 

from the blood, they are also very valuable as a diagnostic tool due to their collection and 

analysis being less invasive than biopsy. For this reason, blood plasma EV, along with 

EV collected from urine as described in [18], have the potential to greatly increase 

patient comfort and well-being during the diagnostic process. 

Kim et al. [49] found pigment epithelium-derived factor (PEDF) and 

Immunoglobulin joining chain (IGJ) to be upregulated in EV collected from the urine of 

PCa patients. This is consistent with our finding that both proteins are overexpressed in 

OC and EC tumours (Figure 2). There are many other proteins from this and other urine 

EV studies [49, 50, 18] that we did not detect in blood EV, which suggests that EV from 

the blood plasma have different molecular make up from the EV in the urine. 

Table 1 illustrates the discrepancies between the level of expression we find in 

EV proteins and those previously reported in cells and tumour tissues. We found some 

EV proteins across all groups that have expression consistent with what was previously 

reported by others using cancer cells or tumour tissues (ex. AMBP, CFB, RBP4). We 

found other EV proteins whose expression is in contrast to what the literature describes 

for the cell (ITIH2, MBB1A, PCNT). Also, for many cases, cell expression of the vesicle 

protein could not be determined with current literature (ex. RET4). It is difficult to make 

biological assertions as to why the vesicle expression does or does not match cellular 

expression of proteins, as it is unknown if the cell is actively or passively loading the EV 

in each case. Cases where the cell overexpresses a given protein and that protein is found 

to be overexpressed also in the vesicles (ex. AMBP) may be due to passive loading of the 
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vesicle. AMBP is the light chain of the inter-alpha trypsin inhibitors (ITI) and we found 

it, along with the heavy chains ITIH1, ITIH2, and ITIH4, to be contained in group J EV, 

meaning they tend to be upregulated in all cancer EV, while ITIH3 is associated with the 

group I EV (upregulated in OC and SI subjects but downregulated in healthy and EC 

subjects). Hamm et al., 2008 found that ITIH1 was not differentially expressed between 

PCa and healthy cells, but that while AMBP was upregulated in PCa, ITIH2, ITIH3, and 

ITIH4 were all downregulated in PCa. The example of this protein family illustrates that 

there is no homogeneity of expression of certain proteins as between cells or tumours and 

vesicles (Figure 2).   

We found previously that PCa EV have the ability to transport nuclear receptors 

and other transcription factors (AR and EGFR, respectively) directly to the nucleus of 

other cells [13]. We have also suggested that this is potentially a mechanism by which 

PCa loses its sensitivity to androgen deprivation therapy (ADT). With this in mind, it is 

striking to observe what a large fraction of the proteins examined in this study are 

involved in localization and the establishment of localization, and to ask whether some 

large fraction of the vesicles released into the blood by PCa are meant to deliver 

functional cargo to distal sites in the body. The exact biological role of each of these 

proteins has not been characterized in this study, which sought to focus on markers, but 

is interesting and important for the understanding of EV tumour biology. 

In conclusion, extracellular vesicles collected from blood have the potential to be 

a less invasive, highly sensitive and specific source of PCa biomarkers that have the 

potential to outperform PSA's disease staging ability.   
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2.5 Materials and Methods  

2.5.1 Prostate cancer and healthy subjects 

Four groups of six subjects were used for each of the proteomics; the groups 

included one healthy group, and one group for each of the three different PCa stages. 

These three tumour types include organ-confined tumors (OC), tumours exhibiting 

extracapsular extension (EC), and tumours exhibiting seminal vesicle invasion (SI). 

Tumour subject samples, accompanied by full clinical and demographic information, 

were obtained from the Ontario Institute of Cancer Research tumor bank. Healthy subject 

samples were obtained thanks to St. Joseph’s Healthcare Hamilton, Ontario, Canada. 

This study received ethical approval from the Hamilton Integrated Research Ethics 

Board. 

2.5.2. Collection of Extracellular Vesicles from Blood Plasma 

Differential centrifugation, as described in (12, 13, 14, 30), was used to purify EV 

in plasma. In brief, 1 mL of plasma was diluted 1:1 in PBS to reduce viscosity and 

subjected to differential centrifugation at 2000 x g for 30 minutes at 4˚C, 12,000 x g for 

20 mins at 4˚C, and 100,000 x g for 2 hours at 4˚C. Pelleted extracellular vesicles were 

scraped from ultracentrifuge tubes and resuspended in 200 µL of PBS. 

2.5.3 Nanoparticles analysis 

EV collected from PCa patients and healthy subjects were subjected to 

nanoparticle analysis 262 using the NanoSight LM14C with an infusion rate of 80 and 

after being diluted 1:10.   
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2.5.4 Proteomics Sample Preparation 

EV were lysed in RIPA-buffer and protein concentration was assessed by 

Bradford assay (Bio-Rad 265 Laboratories Ltd., Mississauga, ON, Canada). Ten percent 

SDS-PAGE gels were loaded and run with 150 µg of vesicle protein from each subject 

sample, and stained with Coomassie blue (BioRad). After visualization, sample bands 

were excised from the gel of each patient and individually subjected to MS-based 

proteomics. Excised bands were dehydrated in 50% acetonitrile (ACN) and reconstituted 

in 50 mM ammonium bicarbonate containing 10 mM Tris-2-carboxyethyl phosphine 

before being vortexed at 37˚C for one hour. Sample alkylation was achieved with 

chloroacetamide at a final concentration of 55 mM and 1 µL of 0.1 mg/mL trypsin to 

perform digestion. Peptides were extracted in 90% ACN and were subjected to label-free 

quantification MS experiments using a Q-Exactive Plus Mass Spectrometer with 

collision-induced dissociation in a linear ion trap. PEAKS software (Bioinformatics 

Solutions Inc.) was used to convert MS data to peaks lists, and then to fit the data to the 

Human1302S database, assuming trypsin to be the digestion enzyme to perform MS/MS 

spectra analysis. A parent ion mass tolerance of 10.0 PPM (Monoisotopic) and a fragment 

ion mass tolerance of 0.0100 Da (Monoisotopic) were permitted during the database 

search. The variable modifications: deamination of asparagine and glutamine; oxidation 

of methionine; carbamidomethylation of cysteine; and phosphorylation of serine, 

threonine, and tyrosine were all specified in PEAKS. Proteins’ score and expectation 

values were used to determine protein match probabilities, and resolved protein identities 

were considered to be correct when they contained four unique peptides 282 and had a 
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score higher than the identity threshold at p<0.05. The proteomics analysis was repeated 3 

times for each sample. 
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3.1 Abstract 

 Asthma, an inflammatory disorder of the airways, is one of the most common 

chronic illnesses worldwide and is associated with significant morbidity. There is 

growing recognition of an association between asthma and mood disorders including 

post-traumatic stress disorder (PTSD) and major depressive disorder (MDD). Although 

there are several hypotheses regarding the relationship between asthma and mental 

health, there is little understanding of underlying mechanisms and causality. In the 

current study we utilized publicly available datasets of human blood mRNA collected 

from patients with severe and moderate asthma, MDD, and PTSD. We performed 

differential expression (DE) analysis and Gene Set Enrichment Analysis (GSEA) on 

diseased subjects against the healthy subjects from their respective datasets, compared the 

results between diseases, and validated DE genes and gene sets with 4 more independent 

datasets. Our analysis revealed that commonalities in blood transcriptomic changes were 

only found between the severe form of asthma and mood disorders. Gene expression 

commonly regulated in PTSD and severe asthma, included ORMDL3 a gene known to be 

associated with asthma risk and STX8, which is involved in TrkA signaling. We also 

identified several pathways commonly regulated to both MDD and severe asthma. This 

study reveals gene and pathway regulation that potentially drives the comorbidity 

between severe asthma, PTSD, and MDD and may serve as foci for future research aimed 

at gaining a better understanding of both the relationship between asthma and PTSD, and 

the pathophysiology of the individual disorders. 
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3.2 Introduction 

 Asthma is a chronic inflammatory disease of the airways associated with recurrent 

episodes of wheezing, shortness of breath, chest tightness, and coughing. Generally, 

asthma is characterized by reversible constriction of the airways in response to allergen, 

but it can also be triggered by viral infection, physical activity, stress, or a negative mood 

[1]. Asthma affects 300 million people worldwide and the World Health Organization has 

estimated that it is responsible for the loss of 15 million disability-adjusted life years 

(DALYs) annually [2,3]. Asthma is also the most common chronic disease in children 

[4].  

Epidemiological studies have shown significant association between asthma and 

mental health disorders, including anxiety, depression, panic attacks, and posttraumatic 

stress disorder (PTSD) [5,6,7,8,9,10].  

MDD, more commonly referred to as ‘depression’ is a mental health disorder 

characterized by a low self-esteem, mood, and enjoyment of activities [11].  

Studies have demonstrated consistent comorbidity between asthma and depression [7] 

and youth with asthma are close to twice as likely to have anxiety and depressive 

disorders as those without asthma [8]. The co-occurrence of an anxiety or depressive 

disorder is associated with poor symptom control, impaired quality of life and increased 

health care utilization. While many studies have focused on psychosocial factors linking 

asthma and depression there is evidence that there may be shared pathophysiological 

factors between the diseases. For example, in a large-scale study in adult twins the 

association between depression and asthma remained significant after controlling for 
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genetic and environmental factors [12].  However, the potential mechanisms and 

causality relating depression and asthma remain unclear [13,14,15]. 

PTSD is a mental health disorder that usually follows exposure to a traumatic event. The 

characteristic symptoms of PTSD include intrusive memories and nightmares, negative 

mood impaired cognition, avoidance behaviors, and changes to arousal behaviors such as 

increased irritability [16]. 

Clinical evidence supports a strong link between inflammatory conditions and 

PTSD with a particularly strong association between asthma and the prevalence and 

severity of PTSD [17,18]. A twin study of Vietnam war veterans found that those with 

the top quartile of PTSD scores were 2-fold more likely to have asthma than those in the 

lower quartile [6]. This association was shown not to be predicted by familial or genetic 

factors, smoking, depression, or demographic factors [6]. Wisnivesky et al., (2021) [5] 

found that 19% of world trade center rescue and recovery workers with asthma also had 

PTSD, 10 times the prevalence in the general population. PTSD is also one of the greatest 

risk factors for decreased quality-of-life related to asthma [17,18] and these poorer 

asthma outcomes do not appear to be due to differences in key asthma self-management 

behaviors [18]. Conversely, individuals with asthma prior to PTSD have been 

demonstrated to develop more aggravated asthma symptoms after the development of 

PTSD, while non-asthmatic subjects who develop PTSD have increased risk of adult 

onset asthma, suggesting a bidirectional relationship between these disorders [17]. 

 An attempt by Jiang et al., (2014) [7] to identify a mechanism behind the 

comorbidity of asthma and MDD suggested immune factors may underlie both disorders. 
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The investigation of 38 depression studies found that monocyte-derived, and other 

inflammatory cytokines (IL-1, IL-4, IL-6, and TNF) were significantly overexpressed in 

individuals with depression, while T cell derived cytokines (IL-10, and INF-γ) were 

uncorrelated with depression. Data comparing CD4+ T-cell expression in asthmatics with 

and without depression has also shown that 156 of 1448 total identified genes were 

differentially expressed in the depressed asthmatics group [19], suggesting that in 

circulating T-cells there is a unique transcriptomic profile for comorbid asthma and 

depression.  

Genome-wide association studies (GWAS) have identified some shared genetic 

traits between those with asthma and MDD [20,21]. In a cross-trait meta-analysis, Zhu et 

al. (2019) [20] identified 10 genomic loci shared between asthma and MDD and 

mendelian randomization identified a significant causal effect of MDD on asthma. The 

cross-trait meta-analysis performed by Cao et al., (2021) [21] identified 18 loci jointly 

associated between MDD and atopic diseases (asthma, eczema, and hay fever). Through 

Mendelian randomization analysis the investigators found that MDD confers a stronger 

causal effect on those atopic diseases than they confer on MDD.  

Similarly, in a meta-analysis by Nievergelt et al., (2019) [22], a pairwise genetic 

correlation demonstrated a high association between PTSD and asthma. Chronic stress, 

maternal stress, and more fundamentally, oxidative stress are also associated with severe 

asthma and increased asthma exacerbations [23,24,25,26]. Yan et al. 2021 [24] identified 

12 genes methylated in individuals with exposure to chronic stress and violence, that 

were then shown to be associated with atopic childhood asthma. Although these studies 
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were not looking at PTSD specifically, it is likely that genes associated with violence and 

chronic stress exposure would have close ties to those associated with PTSD. 

Here, we downloaded 5 publicly available datasets from GEO, each of which compare 

one of PTSD, MDD, or asthma (a very large dataset which we split randomly into 2 

datasets) blood transcription to that of healthy subjects. One dataset of each disease was 

used to explore genes and gene sets commonly shared between diseased subjects, and the 

other of each disease dataset was used to validate the genes and sets identified. Prior to 

conducting the investigation, we were interested in transcription specifically, as it 

facilitates functional change in the body and therefore we decided to compare the data to 

the hallmark, and C2 gene sets, which characterize canonical and curated changes in the 

body. Additionally, we hypothesized that as Jiang et al. (2014) [7] found immune factors 

involved in comorbidity, immune transcriptional changes commonly differentiated in 

whole blood would delineate the source of comorbidity. Immune factors have also been 

found partially responsible for cross talk between gut and brain in psycho-active probiotic 

treated mice exhibiting mood disorder-like symptoms [27,28,29]. For these reasons, we 

also compared these datasets to the C7 - immune signature gene set. 

With a deeper understanding of the established comorbidity between mental 

health disorders and asthma, may come tangible knowledge on how to combat the root 

cause of these diseases and an expectation for how treatment of one disorder might affect 

another. Therefore, the goal of this study was to expand on genome-wide association 

studies by using publicly available data to characterize transcriptomic similarities 
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between these disorders through analysis of genes and gene sets commonly differentially 

expressed between those suffering from the diseases and healthy subjects. 

 

3.3 Results 

3.3.1 Exploration of Commonly Differentially Expressed Genes: 

The 3 exploration datasets first underwent hierarchical clustering analysis, but 

there were no distinct clusters formed pertaining to diseased vs healthy subjects or along 

the lines of any other collected meta data. Principal component analysis was then used to 

check that no known variables could account for major differences that may arise during 

DE and GSEA analysis (Fig 1). There was no apparent grouping along PC1 or PC2 for 

any of the datasets, including for diseased vs healthy subjects (Fig 1). For the PTSD 

exploration cohort, 40.7% of the variance was accounted for by PC1, and 10.6% by PC2; 

for MDD, 16.8% of the variance was accounted for by PC1, and 6.2% by PC2; and for 

asthma, 22.7% of the variance was explained by PC1, and 10.0% by PC2. 
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Fig 1. Principal component analysis. (PCA) showing PC1 and PC2 in each of the 3 

disease exploration datasets. 

 

Differential expression analysis of each disease to control subjects from their 

respective datasets reveals significant differences in both genes being up- and 

downregulated in all diseases (Fig 2). The analysis identified 8,321, 208, 1,736, and 373 

genes significantly upregulated (adjusted p-value < 0.05; FC ≥ 1.5) in PTSD, MDD, 

severe asthma, and moderate asthma respectively, as compared to the corresponding 
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controls. 7,062, 294, 2,735, and 901 genes were found to be significantly downregulated 

(adjusted p-value < 0.05; FC ≤ -1.5) in the same comparisons respectively.  

 

 
Fig 2. mRNA from the blood of subjects with a disease (PTSD, MDD, severe asthma, 

and moderate asthma) were compared to blood mRNA from non-diseased subjects 

for each exploration cohort dataset. The vertical threshold denotes genes or transcripts 

that are statistically significant (adjusted p-value < 0.05) while the horizontal threshold 

denotes genes or transcripts with an absolute fold change greater than 1.5. Genes or 

transcripts that meet none of these criteria are black, one of these criteria are grey, and 

both are red. The red genes, found to be significant, are also shown next to their symbols. 

 

Significantly regulated (adjusted P-value < 0.05, |FC| ≥1.5) genes were compared 

between the exploration datasets for each disease. Genes found commonly to be regulated 
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in the same direction in patients relatively to the healthy controls for multiple diseases 

were plotted in (Fig 3).  

 

 
Fig 3. The number of genes differentially expressed from healthy subjects in the 

same direction between different diseases. The numbers within the different overlaps 

of the venn diagram are the number of genes significantly (adjusted P-value < 0.05) 

differentially expressed in both exploration datasets. For example, in the left ‘up’ panel, 

there are 22 genes in the PTSD and MDD exploration sets that are similarly significantly 

overexpressed, and in the right ‘down’ panel, there are 2 genes commonly 

underexpressed in all disease exploration datasets compared to their respective healthy 

controls. 

 

 

3.3.2 Exploration of Commonly Regulated Gene Sets: 

To detect the biological effect of more nuanced changes in all disease groups, 

Gene Set Enrichment Analysis (GSEA) was performed. GSEA compared expression of 

selected lists of genes (here termed “gene sets”) between diseased and healthy subjects in 

each dataset (Fig 4). Gene sets from the Hallmark, C2, and C7 collections were compared 

against. Hallmark gene sets are sets of genes that comprise 50 of the best studied 

signaling pathways in the body. The C2 gene sets, or curated gene sets, in addition to the 

well understood and mapped ‘KEGG pathways’, include other sets of genes found 

previously to be differentially expressed in literature. C7 gene sets are immune signature 

gene sets found previously to be differentially expressed in literature.  
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No Hallmark gene sets were enriched in the same direction between all 4 datasets. 3 C2 

gene sets were found to be upregulated in all 4 groups: 

REN_ALVEOLAR_RHABDOMYOSARCOMA_DN, 

JISON_SICKLE_CELL_DISEASE_UP, 

TAKEDA_TARGETS_OF_NUP98_HOXA9_FUSION_8D_DN, and 

REACTOME_NEUTROPHIL_DEGRANULATION. No C2 gene sets were commonly 

downregulated in all 4 groups. 65 C7 gene sets were commonly upregulated in all 4 

groups, but nothing was commonly downregulated in all 4 of those groups. 

 

3.3.3 Validation of Differentially Expressed Genes in independent transcriptomic 

datasets: 

 To challenge these findings, the ‘validation’ datasets for each of: MDD, PTSD, 

severe asthma, and moderate asthma underwent DE analysis with limma. No genes were 

found to be significantly regulated (adjusted P-value < 0.05) in the same directions for all 

4 sets as no individual genes were significantly differentially expressed in the MDD 

validation dataset. 2 genes were validated as upregulated in PTSD and severe asthma: 

STX8 (Adjusted p-values in PTSD exploration, PTSD validation, severe asthma 

exploration, severe asthma validation were: 1.6E-3, 1.8E-2, 2.6E-3, 3.7E-4) and 

ARHGAP24 (1.4E-2, 1.6E-2, 3.9E-2, 3.2E-2). Commonly downregulated to PTSD and 

severe asthma were ORMDL3 (2.2E-2, 1.9E-3, 2.7E-3, 3.9E-3), PTP4A3 (2.6E-3, 2.3E-2, 

4.5E-3, 5.2E-3), SHISA4 (1.1E-2, 4.4E-2, 9.8E-3, 6.2E-3), and TPPP3 (2.2E-2, 1.1E-2, 

3.1E-3, 2.7E-2). No differentially expressed genes were validated between PTSD and 
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moderate asthma in either direction, however. 582 genes were validated as significantly 

downregulated between moderate and severe asthma while no upregulated genes could be 

validated. 

 

3.3.4 Validation of Regulated Pathways in independent transcriptomic datasets: 

 The same datasets used to validate differentially expressed genes were used to 

validate gene sets and pathways identified as being commonly regulated in either 

direction in the exploration datasets. Interestingly, despite no genes being significantly 

differentially expressed in MDD patients vs healthy controls in the validation dataset, 

there were pathways identified as being significantly altered in severe asthma patients as 

compared to their corresponding controls (Table 1). 
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Fig 4. Gene set enrichment analysis. (GSEA) showing significantly (adjusted P-value < 

0.05) modified pathways between all 4 exploration datasets. Labels identify the gene sets 

being compared to and in which direction (left = upregulated, right = downregulated).  
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Table 1: Directionally validated pathway comparisons in the Hallmark, C2, and C7 

collections 

Direct

ion 

Compar

ison 

Enriched Gene Set Adjusted P-Values  

Up MDD 

and 

Severe 

Asthma 

C7 

GSE4748_CYANOBACTERIUM_LPSLIKE_VS_

LPS_AND_CYANOBACTERIUM_LPSLIKE_STI

M_DC_3H_DN 

MDD1 - 1.58e-11, 

MDD2 - 1.30e-2, 

S.Asthma1 - 5.49e-14, 

S.Asthma2 - 3.42e-12 

 

  GSE34205_HEALTHY_VS_RSV_INF_INFANT_

PBMC_DN 

MDD1 - 7.69e-12, 

MDD2 - 1.16e-2, 

S.Asthma1 - 1.79e-10, 

S.Asthma2 - 6.29e-10 

Down MDD 

and 

Severe 

Asthma 

C7 

GSE22886_NAIVE_BCELL_VS_NEUTROPHIL_

UP 

MDD1 - 1.30e-10, 

MDD2 - 2.61e-3, 

S.Asthma1 - 4.41e-7, 

S.Asthma2 - 2.27e-9 

  GSE34205_HEALTHY_VS_FLU_INF_INFANT_P

BMC_UP 

MDD1 - 4.69e-3, 

MDD2 - 2.26e-2, 

S.Asthma1 - 4.47e-3, 

S.Asthma2 - 9.99e-6 

  GSE22886_NEUTROPHIL_VS_MONOCYTE_DN MDD1 - 3.37e-2, 

MDD2 - 7.46e-8, 

S.Asthma1 - 3.74e-2,  

S.Asthma2 - 3.40e-3 

Down MDD 

and 

Severe 

Asthma 

C2 

JISON_SICKLE_CELL_DISEASE_DN MDD1 - 1.37e-8, 

MDD2 - 4.42e-2, 

S.Asthma1 - 4.44e-3, 

S.Asthma2 - 9.13e-5 

Directionally validated pathway comparisons in the Hallmark, C2, and C7 collections, 

following GSEA excluding comparison between severe and moderate asthma. 

 

 As may be expected, many pathways were found to be commonly modified 

between moderate and severe asthma when comparing against the C2 and C7 gene sets 

and although they are not the focus of this study on comorbidity, can be found listed in 

supplementary information (S1 Table). Barcode plots showing a more detailed cross-
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section of gene expression from the sets in Table 1 can be found in supplementary 

information (S1-S6). 

 Finally, we pooled all genes from each significantly differentially expressed set 

common to MDD and severe asthma (Table 1) and performed a STRING cluster analysis 

for proteins to determine if any other functional networks emerged. Two networks were 

examined, grouping genes enriched in both MDD and severe asthma compared to healthy 

subjects, as well as genes enriched in healthy subjects compared to MDD and severe 

asthma (Fig 5). Among many other associations, STRING analysis found that proteins 

encoded by the disease-enriched genes of the 

“GSE4748_CYANOBACTERIUM_LPSLIKE_VS_LPS_AND_CYANOBACTERIUM_

LPSLIKE_STIM_DC_3H_DN,” and 

“GSE34205_HEALTHY_VS_RSV_INF_INFANT_PBMC_DN” gene sets have been 

previously identified in literature in various roles - including modulation of immune 

function, cancer involvement, and more (Fig 5A)..  

Likewise, proteins encoded by the healthy subject-enriched genes of the 

“GSE22886_NAIVE_BCELL_VS_NEUTROPHIL_UP,” 

“GSE34205_HEALTHY_VS_FLU_INF_INFANT_PBMC_UP,” 

“GSE22886_NEUTROPHIL_VS_MONOCYTE_DN,” and 

“JISON_SICKLE_CELL_DISEASE_DN” gene sets have been shown involved in 

several functional enrichments including several facets of ribosome regulation, and MHC 

class II activity. 
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Fig 5. STRING analysis for proteins coded by genes. found A) enriched in the 

peripheral whole blood of both MDD and severe asthma patients compared to healthy 

subjects, and B), enriched in healthy subjects compared to both MDD and severe asthma 

patients. Only high confidence interactions between proteins are shown, and proteins that 

are not involved in a high confidence interaction do not appear. 
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3.4 Discussion 

While it is widely accepted that psychosocial factors affect asthma pathobiology 

in children and adults, there is little understanding of potential common biological 

pathways underlying comorbidity between asthma and mental health disorders. Previous 

reports based on GWAS studies were focusing on determination of shared genetic traits 

between Asthma, MDD and PTSD or on circulating levels of specific inflammatory 

cytokines to explore potential shared pathophysiology of these disorders. In an attempt to 

provide further insight into the comorbidity of these conditions and to identify target 

pathways for further investigation, we utilized publicly available data to assess 

similarities between asthma, MDD and PTSD at the transcriptomic level.   

As expected, asthma, MDD and PTSD were associated with many differentially 

expressed genes and gene sets, and, in comparing exploration cohorts, a number of these 

genes and gene sets were significantly regulated in the same direction in all diseases. 

Upon validation, commonalities in transcriptomic changes were restricted to comparisons 

between severe asthma and MDD or PTSD.  

In keeping with literature indicating a close association with regards to 

comorbidity and reciprocal enhancement of symptom severity [17,18], our cross-disease 

comparisons found the greatest transcriptomic level similarities between severe asthma 

and PTSD.  

With regard to commonly differentially expressed genes we found ORMDL3 to be 

downregulated in the blood of both PTSD and severe asthma subjects. ORMDL3 codes 

for a protein called “ORMDL sphingolipid biosynthesis regulator 3” which resides in the 



66 

Ph.D Thesis – S. Haas-Neill; McMaster University – Medical Sciences 

 

   
 

endoplasmic reticulum and is a regulator of sphingolipid synthesis [30]. ORMDL3 

requires precise expression to function correctly - under normal conditions it inhibits the 

rate limiting enzyme of sphingolipid biosynthesis, serine palmitoyl transferase (SPT) 

[30]. Downstream of uninhibited SPT activity, ceramide - the central sphingolipid 

metabolite - is produced and transported to the golgi [31]. Therefore, a knockdown of 

ORMDL3 can result in an abundance of ceramide [32]. When slightly overexpressed, 

ORMDL3 leads to a dearth of ceramide, however, when highly overexpressed, ORMDL3 

increases ceramide biosynthesis through the alternate, recycling/salvage pathway [33,34].  

Numerous GWAS have identified ORMDL3 as a potential susceptibility gene for 

asthma and polymorphisms controlling ORMDL3 expression have been associated with 

both asthma occurrence and exacerbation [34,35,36,37,38,39,40,41]. 

However, the mechanistic contribution of ORMDL3 to the pathogenesis of 

asthma remains unclear and experimental evidence suggests the relationship between 

ORMDL3 and asthma is complex. Studies in animal models of allergic airway 

inflammation have indicated that overexpression of ORMDL3 leads to increased 

ceramide levels and the accompanying ER stress leads to characteristic features of asthma 

including increased mucus production, an exacerbated inflammatory response, and 

airway hyperresponsiveness. Correspondingly, downregulation of  

ORMDL3 expression, and decreased ceramide levels, were demonstrated to significantly 

ameliorate asthmatic symptoms in a mouse model [42,43,44,45,46,47]. Furthermore, the 

expression of ORMDL3 in eosinophils seems to play a role in recruitment, attachment 

and activation of eosinophils in asthma [48]. However, seemingly conflicting evidence 
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suggests that decreased expression of ORMDL3 can also promote asthma symptoms.  

Selective knockdown of ORMDL3 in lung epithelial cells leads to airway 

hyperresponsiveness [49], while downregulation of ORMDL3 in mast cells, cells key to 

asthma pathogenesis, enhances antigen mediated expression of proinflammatory 

cytokines and production of prostaglandin D2 and promotes mast cell driven 

inflammation in vivo [50]. 

While, to our knowledge there have been no studies associating ORMDL3 and 

PTSD, ceramide is a precursor for complex sphingolipids that are highly abundant in 

neural cellular membranes and are regulators of brain homeostasis [51]. Ceramide has 

also been shown to promote stress-induced depression-like behavior in mice, and 

intervention with drugs that reduce hippocampal ceramide (amitriptyline and fluoxetine) 

rescued those behaviours [52,53].  

Upregulated in the blood of severe asthma and PTSD subjects were mRNA 

encoding Syntaxin 8 (STX8), and Rho GTPase Activating Protein 24 (ARHGAP24). 

STX8 is a t-SNARE protein (target soluble N-ethylmaleimide-sensitive factor attachment 

protein receptor) involved in diverse vesicle docking and membrane fusion events. STX8 

has been demonstrated to regulate the function of receptors and ion channels, including 

TrkA and CFTR. The TrkA receptor is transported from the golgi to the plasma 

membrane by STX8, a process which with nerve growth factor (NGF) stimulation 

promotes downstream TrkA signaling [54]. Interestingly, higher levels of TrkA 

expression have been identified in patients with allergic asthma [55], and although its role 

in asthma has not been fully elucidated, there are several proposed mechanisms by which 
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neurotrophin signaling exacerbates asthma [56]. Some evidence suggests neurotrophin 

signaling may modulate airway hyperactivity and bronchoconstrictor release, 

enhancement of airway contractility, as well as airway remodeling [56,57,58]. TrkA has 

also been previously implicated in PTSD, as NGF signaling via TrkA alleviated stress 

induced PTSD-like symptoms in mice [59]. In contrast to enhancing TrkA signaling, 

STX8 also interacts with CFTR to inhibit function and trafficking to the cell surface [60].  

CFTR is largely studied in relation to cystic fibrosis, however, impaired function of this 

ion channel has been associated with more severe or difficult to treat asthma [61,62,63]. 

While to our knowledge there has been no suggested relationship between CFTR and 

PTSD, the ion channel is expressed throughout the central nervous system [64].  

 ARHGAP24 converts the Rac-type GTPase into its inactive GDP-bound state 

which, downstream of Rho, suppresses actin remodelling [65]. Increased activation of 

RhoA/Rho-kinase is associated with airway hyper-responsiveness and smooth muscle 

contraction in asthma [66]. Cerebral RhoA activation is known to enhance fear memory 

which may have implications for PTSD [67]. So, in both asthma and PTSD, increased 

Rho activity is associated with increased pathology. It is curious then, that we find an 

inhibitor of its downstream activity differentially overexpressed in the blood of the 

diseased subjects. The reason for this would have to be elucidated by further research. 

Other genes commonly downregulated in severe asthma and PTSD were Protein 

Tyrosine Phosphatase 4A3 (PTP4A3), known for its role in stimulating progression from 

G1 to S phase in mitosis [68]; Shisa Family Member 4 (SHISA4), a transmembrane 

scaffold/adaptor protein [69]; and Tubulin Polymerization Promoting Protein Family 
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Member 3 (TPPP3), a regulator of microtubule dynamics [70]. To our knowledge, none 

of these proteins have previously been associated with asthma or PTSD and their 

identification here may warrant further investigation. 

 Neither ORMDL3, STX8, nor ARHGAP24 are discussed by Bigler et al., (2017) 

[71] in relation to the asthma datasets; nor are they identified in the PTSD dataset by 

Rusch et al., (2019) [72]. ARHGAP24 is discussed briefly in regards to PTSD in the 

validation data set, (Kuan et al., 2017) [73] as being a member of the PTSD-associated 

actin cytoskeleton pathway.  

 One of the gene sets 

“GSE34205_HEALTHY_VS_RSV_INF_INFANT_PBMC_DN'' refers to a list of genes 

found to be more highly expressed in peripheral blood mononuclear cells (PBMC) of 

infants with RSV (Respiratory syncytial virus) bronchiolitis [70] when compared to those 

of healthy subjects. We also found that 

“GSE34205_HEALTHY_VS_FLU_INF_INFANT_PBMC_UP,” a list of genes with 

decreased in expression infants with acute influenza compared to PBMCs of healthy 

subjects, was downregulated in both MDD and severe asthma [74]. These 2 congruent 

pieces of evidence suggest that the immune signature to respiratory infection in infants is 

similar to the immune signature of both asthma and MDD whole blood. In human airway 

epithelial cells Ioannidis et al. (2012) [74] found that comparing both influenza and RSV 

treatment to control exhibited DE reminiscent of a type I interferon immune signature 

and genes downstream of IFN-α/β were expressed abundantly in infected cells. Type I 

interferon signaling is known to be a contributing factor in some cases of both depression 
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and asthma [75,76,77,78].  

 Two additional gene sets we found downregulated in both MDD and severe 

asthma: “GSE22886_NAIVE_BCELL_VS_NEUTROPHIL_UP,” and 

“GSE22886_NEUTROPHIL_VS_MONOCYTE_DN'' were both compiled by Abbas et 

al. (2005) [79] to identify patterns in immune cell-specific expression in order to identify 

states of activation. The gene sets we identified as being underexpressed in MDD and 

severe asthma can be congruently explained by a reduction of neutrophil specific gene 

expression, or by an increase in naive B-cell and monocyte specific gene expression. The 

latter is perhaps more likely as neutrophils have been demonstrated to be activated in 

patients with MDD and asthma [80,81]. Furthermore, B cell homeostasis is altered in 

individuals with MDD and B cells play a crucial role in regulating the hyperactivity of 

airways in asthma [82,83,84,85]. Likewise, there is generally increased activity and larger 

numbers of monocytes in MDD and asthma compared to healthy subjects [86,87,88,89]. 

This highlights the possibility of enhanced B cell and monocyte activity playing a key 

role in comorbid asthma and MDD.    

 JISON_SICKLE_CELL_DISEASE_DN, found downregulated in the blood for 

both MDD and severe asthma, are genes previously found to be downregulated in 

peripheral blood mononuclear cells (PBMCs) in sickle-cell disease patients compared 

with non-diseased counterparts. Asthma is common in children with sickle cell disease 

and this comorbidity is becoming increasingly well documented [90]. In sickle cell, nitric 

oxide consumption mediated by plasma hemoglobin, ischemia-reperfusion injury, and the 

generation of free radicals activate an inflammatory stress response [90]. Jison et al. 
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(2004) [91], who discovered the gene set, found many of the genes differentially 

expressed within PBMCs were linked to inflammatory stress as well. To find these same 

genes underexpressed in two comorbid conditions suggests that the inflammatory stress 

response itself could be a driver behind comorbidity for sickle cell disease, MDD, and 

severe asthma.  

 The STRING analysis for proteins translated from the individual genes in the 

gene sets commonly regulated between MDD and severe asthma show that the genes 

upregulated in each of these diseases have several functional associations. By combining 

curated gene sets enriched in both diseases we gave the string analysis a more complete 

picture of all the systems that may be modified downstream of these blood transcriptional 

changes. In addition to basic biological processes, cellular compartments, molecular 

functions, and pathways, several smaller literature-backed gene sets were found in 

common. Examining the top 5 in descending order of strength our genes enriched in 

MDD and severe asthma, we observed matches to biomarkers for severe influenza 

infection (Adj. P-value = 2.2E-5) [92], genes associated with arthritis (Adj. P-value = 

1.5E-3) [93], respiratory distress syndrome phenotypes (Adj. P-value = 1.2E-2) [94], lung 

epithelial function in sepsis (Adj. P-value = 5.6E-6) [95], and myocardial infarction and 

neutrophil degranulation (Adj. P-value = 2.6E-4) [96]. Looking at the top 5 for genes 

enriched in healthy subjects compared to MDD and severe asthma we identified many 

matches associated with ribosomal regulation, and to a lesser extent immune function and 

anemia (Adj. P-values = 3.1E-9, 2.0E-4, 2.0E-4, 1.3E-3, 6.5E-3) [97,98,99,100,101]. This 

could suggest that there is less ribosomal regulation in MDD and severe asthma, and 
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further suggests that immune involvement could drive the relationship between these 

disorders.  

 Despite MDD being a major comorbidity in PTSD, and 440 immune signature 

gene sets commonly upregulated between the exploration datasets, no genes or gene sets 

were validated in this study when comparing MDD and PTSD. However, the 

neurobiology of the link between PTSD and MDD is unclear and it is entirely feasible 

that similarities in gene expression between the disorders is restricted to the CNS and are 

undetectable in the blood.  

It is notable that there were no validated genes or gene sets in common between 

mild/moderate asthma and either of the mental health disorders. This finding is consistent 

with the phenomenon that mental health disorders such as PTSD and MDD are correlated 

with more severe disease outcomes [102]. It may be that activation of specific genes or 

pathways that are involved in MDD or PTSD are also factors that contribute to the 

development of more severe asthma. In this regard, there is evidence to suggest that 

antidepressant treatment improved asthma symptoms in severe but not mild asthmatics 

with co-morbid depression.  

 Overall, with six parallel DGE analyses and GSEA on whole blood gene 

expression, we identified genes and gene set expression that potentially links severe 

asthma to both PTSD and MDD.  The gene sets commonly regulated between asthma and 

MDD, support previously suggested links between inflammation related immune factors 

and the two disorders [7]. Epidemiological evidence indicating that PTSD has a stronger 

association with asthma than other chronic inflammatory diseases [103,104] suggests that 
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the relationship is driven by more than common immune factors. Here we identify 6 

genes (2 upregulated in disease and 4 downregulated) being differentially expressed in 

both PTSD and asthma. Of particular note, our results identify mechanisms involving 

ceramide biosynthesis and SNARE regulated signaling pathways as potential targets for 

future research aimed at understanding both the relationship between PTSD and asthma 

and the pathophysiology of the individual disorders.   
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3.5 Methods 

3.5.1 Obtaining and Preprocessing Datasets: 

 Data were downloaded from the Gene Expression Omnibus (GEO) repository and 

preprocessed using the methods described by the respective authors associated with each 

dataset (Table 2). Specific blood RNA datasets were chosen over others on GEO due to 

there being among the few datasets on GEO that met the specific criteria of whole blood 

(rather than PBMCs, or biopsy), the specific diseases in question, and focused on mRNA 

(rather than total RNA or miRNA). Any remaining appropriate datasets on GEO were on 

different platforms. We decided against pooling these datasets since attempts to correct 

for technical variation forces data modification that can confound and obscure the true 

biological variation of interest, and increase the likelihood of generating erroneous 

results. Therefore, we preferred to select the largest available datasets that did not require 

pooling for a classic exploration and validation analysis.  

Rusch et al., (2019) [72] (preprocessed and raw data available at: 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81761) measured blood 

mRNA military service members, with and without PTSD. Only samples from the first 

time-point collection, rather than the follow up collection, were selected for analysis. 

Other information collected on the subjects included sex (63 male, 3 female), age (22-

49), and race. Kuan et al., (2017) [73] (preprocessed and raw data available at: 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE97356) measured blood 

mRNA in World Trade Center responders with PTSD currently, never, and in the past. 

Samples collected from subjects who never had PTSD or had PTSD at the time of the 
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collection were selected for further analysis. No other sample information was supplied 

with the dataset. Leday et al., (2017) [105] (preprocessed and raw data available at: 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE98793) pooled human blood 

mRNA data from two depression studies: the “Janssen–Brain Resource Company “study, 

and the “GlaxoSmithKline–High-Throughput Disease-specific target Identification 

Program” study into subjects with MDD, and without. Batch 1 and batch 2 were 

originally found to generate distinct groups in principal component analysis (PCA), and 

were batch corrected with the ‘removeBatchEffect’ function in limma package (Ritchie et 

al., 2015 [106]) in R. This dataset contained additional information, such as including 

gender (144 female, 48 male), age (31-72), and anxiety status (128 no, 64 yes). Spijker et 

al., (2010) [107] (preprocessed and raw data available at: 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19738) collected blood from 

subjects with and without MDD prior to and following stimulation with 

lipopolysaccharide (LPS), data which we excluded. Additional information in the dataset 

was age (21-63), gender (41 female, 26 male), and smoking status (20 non-smoking, 18 

quit smoking, 29 smoking). The Unbiased Biomarkers for the Prediction of Respiratory 

Disease Outcomes (U-BIOPRED) study dataset (Bigler et al., 2017) [71] (preprocessed 

and raw data available at: 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE69683) measured blood 

mRNA in subjects with moderate (lung function tests are 60-80% of expected value), 

severe (lung function tests are <60% of expected value), and no asthma. The dataset also 

contained information on gender of the patients (275 female, 223 male), smoking or non-
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smoking (410 non-smoking, 88 smoking). We randomly divided this dataset into an 

exploration and a validation cohort at a 2:1 ratio. Low expressed genes were filtered out 

prior to trimmed mean of M-values (TMM) normalization of the RNAseq dataset as it is 

more sensitive due to its single nucleotide resolution [108,109]. This was performed 

using the edgeR packages ‘filterByExpr’ function [110]. Data on race was only available 

in the Rusch et al., (2019), and Bigler et al., (2017) datasets and both studies had 

predominantly white caucasian participants (66% and 90%, respectively). 

 Seeing as not all datasets contained the same background information on their 

respective subjects, and because the purpose of this study was to detect commonalities 

between comorbid diseases that may exist robustly in a particular disease regardless of 

other variables, demographic information such as age, race, gender, and smoking status 

was not taken into consideration. 

 

Table 2: List of datasets used in this paper 

GSE 

# 

Platform 

(GPL) 

Source 

and 

Species 

Normal

ization 

Method 

Purpose Associated 

Publication 

# Samples # Genes / 

Variants  

GSE

8176

1 

GPL570 

(Array) 

Human 

whole 

blood 

mRNA 

RMA* PTSD 

Exploration 

Rusch et 

al., 2019 

27 - PTSD,  

39 - No 

PTSD 

44,134 

GSE

9735

6 

GPL111

54 

(RNAseq

) 

Human 

whole 

blood 

mRNA 

TMM PTSD 

Validation 

Kuan et al., 

2017 

82 - PTSD,  

201 - No 

PTSD 

15,112 

GSE

9879

3 

GPL570 

(Array) 

Human 

whole 

blood 

RNA 

RMA MDD 

Exploration 

Leday et 

al., 2018 

64 - MDD,  

32 - No 

MDD 

44,134 
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GSE

1973

8 

GPL684

8 (Array) 

Human 

whole 

blood 

RNA 

Quantil

e 

MDD 

Validation 

Spijker et 

al., 2010 

33 - MDD,  

34 - No 

MDD 

12,816 

GSE

6968

3 

GPL131

58 

(Array) 

Human 

whole 

blood 

RNA 

RMA Asthma 

Exploration 

and 

Validation 

Bigler et 

al., 2017 

After Split: 

 

Exploration:  

58 - Healthy,  

58 - 

Moderate, 

216 - Severe. 

 

Validation:  

28 - Healthy,  

20 - 

Moderate, 

128 - Severe  

41,791 

List of datasets used in this paper with a description of data type, preprocessing, number 

of genes and gene variants remaining in the dataset following preprocessing, and 

associated publications. * Robust multichip average (RMA) normalization. 

 

 Principal component analysis (PCA) was done in base R using the prcomp 

function, and after log transforming any RNAseq data before visualizing in ggplot2 

[111]. Venn diagrams were generated using the VennDiagram R package [112]. 

 

3.5.2 Differential Gene Expression: 

 Each dataset, including the split asthma datasets for both severe and moderate 

asthma, underwent differential gene expression analysis individually, comparing their 

disease to the respective control group (the non-disease group) from the same study. 

Analysis was performed using the limma package with multiple hypothesis correction 

and Benjamini-Hochberg FDR applied. Genes were considered to be differentially 

expressed with an adjusted p-value < 0.05 and |FC| ≥ 1.5. 
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3.5.3 Gene Set Enrichment Analysis: 

 3 MSigDB collections of gene sets  (v7.4) were downloaded from the GSEA 

website (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp): Hallmark  - well-defined 

biological states or processes, C2 - curated gene sets from PubMed publications and 

online pathway databases (including KEGG), and C7 - immunologic signature gene sets 

representative of immune and cell states.   

Fold change values generated by the differential expression analysis of diseased 

subjects vs healthy subjects were compared to each of the 3 collections via their entrez 

gene IDs using the Gage package in R [113]. Gage uses the differential expression output 

of all genes, not just those with significant fold change or p-value.  Barcode plots were 

generated using barcodeplot() function (limma package). Volcano plots were generated 

using the R package ‘EnhancedVolcano’ [114]. 
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3.7 Supplementary Information: 

S1 Table. Pathways commonly differentially regulated between severe and moderate 

asthma 

  Q. 

Explore 

S 

Q. 

Validate 

S 

Q. 

Explore 

M 

Q. 

Validate 

M 

C2 

Up 

     

 TAKEDA_TARGETS_OF_NUP98_H

OXA9_FUSION_10D_DN 

3.65E-4 1.06E-3 1.79E-2 1.80E-2 

 ALTEMEIER_RESPONSE_TO_LPS

_WITH_MECHANICAL_VENTILA

TION 

5.54E-3 4.43E-6 2.08E-4 4.84E-2 

 VERHAAK_AML_WITH_NPM1_M

UTATED_UP 

8.48E-7 1.42E-8 1.36E-6 8.29E-4 

 SMIRNOV_CIRCULATING_ENDO

THELIOCYTES_IN_CANCER_UP 

1.99E-6 1.72E-3 1.00E-4 1.75E-2 

 REN_ALVEOLAR_RHABDOMYOS

ARCOMA_DN 

3.09E-3 3.23E-2 9.36E-3 2.12E-2 

 JISON_SICKLE_CELL_DISEASE_U

P 

1.44E-3 1.15E-6 7.58E-5 1.35E-2 

 REACTOME_NEUTROPHIL_DEGR

ANULATION 

7.23E-20 1.20E-13 3.05E-7 1.54E-3 

C7 

Up 

     

 GSE10325_CD4_TCELL_VS_MYEL

OID_DN 

2.24E-5 2.24E-4 7.93E-7 1.61E-4 

 GSE10325_BCELL_VS_MYELOID_

DN 

3.83E-12 6.76E-10 1.15E-10 1.34E-3 
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 GSE10325_LUPUS_CD4_TCELL_V

S_LUPUS_MYELOID_DN 

4.13E-13 1.03E-8 3.27E-16 2.30E-2 

 GSE11057_NAIVE_CD4_VS_PBMC

_CD4_TCELL_DN 

1.98E-4 2.12E-3 1.05E-5 8.84E-5 

 GSE11057_CD4_EFF_MEM_VS_PB

MC_DN 

2.22E-3 4.71E-3 4.06E-5 8.84E-5 

 GSE11057_CD4_CENT_MEM_VS_P

BMC_DN 

8.59E-6 3.92E-2 8.42E-9 3.65E-3 

 GSE11057_PBMC_VS_MEM_CD4_

TCELL_UP 

2.00E-5 6.57E-3 8.51E-11 2.81E-4 

 GSE22886_NAIVE_TCELL_VS_DC

_DN 

1.13E-2 3.63E-2 1.26E-2 2.26E-4 

 GSE22886_NAIVE_TCELL_VS_MO

NOCYTE_DN 

4.13E-13 5.98E-10 5.20E-8 6.88E-4 

 GSE22886_NAIVE_CD8_TCELL_V

S_MONOCYTE_DN 

9.19E-12 7.10E-9 8.61E-8 2.50E-3 

 GSE22886_NAIVE_CD4_TCELL_V

S_MONOCYTE_DN 

4.99E-11 5.03E-11 1.35E-5 1.17E-4 

 GSE24634_TREG_VS_TCONV_POS

T_DAY3_IL4_CONVERSION_DN 

5.67E-3 9.80E-3 4.45E-3 4.52E-3 

 GSE24634_TREG_VS_TCONV_POS

T_DAY10_IL4_CONVERSION_DN 

6.69E-5 1.16E-3 2.71E-5 4.65E-3 

 GSE24634_IL4_VS_CTRL_TREATE

D_NAIVE_CD4_TCELL_DAY10_D

N 

5.34E-3 1.69E-4 1.59E-4 7.05E-3 

 GSE29618_BCELL_VS_MONOCYT

E_DN 

4.00E-9 1.50E-6 6.46E-6 1.50E-4 

 GSE29618_BCELL_VS_MDC_DN 1.67E-3 5.11E-3 2.63E-4 4.29E-3 

 GSE29618_MONOCYTE_VS_PDC_ 8.75E-12 1.23E-9 2.20E-8 2.27E-3 
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UP 

 GSE29618_MONOCYTE_VS_MDC_

UP 

1.72E-14 6.29E-11 3.69E-8 4.12E-4 

 GSE29618_PDC_VS_MDC_DN 6.04E-7 2.72E-6 1.83E-5 1.50E-2 

 GSE29618_BCELL_VS_MONOCYT

E_DAY7_FLU_VACCINE_DN 

4.91E-13 2.42E-7 9.08E-9 1.56E-2 

 GSE29618_BCELL_VS_MDC_DAY

7_FLU_VACCINE_DN 

2.37E-5 1.39E-3 4.42E-4 1.50E-2 

 GSE29618_MONOCYTE_VS_PDC_

DAY7_FLU_VACCINE_UP 

1.72E-14 4.18E-11 1.19E-9 1.82E-2 

 GSE29618_MONOCYTE_VS_MDC_

DAY7_FLU_VACCINE_UP 

2.15E-13 3.46E-10 5.79E-6 2.81E-4 

 GSE29618_PDC_VS_MDC_DAY7_F

LU_VACCINE_DN 

3.32E-6 3.48E-4 2.58E-6 6.48E-3 

 GSE3982_EOSINOPHIL_VS_EFF_

MEMORY_CD4_TCELL_UP 

3.59E-6 1.18E-4 3.00E-5 6.60E-4 

 GSE3982_EOSINOPHIL_VS_CENT

_MEMORY_CD4_TCELL_UP 

6.39E-8 1.51E-5 9.46E-6 2.67E-4 

 GSE3982_EOSINOPHIL_VS_NKCE

LL_UP 

3.41E-4 1.18E-4 3.46E-4 6.88E-4 

 GSE3982_BASOPHIL_VS_CENT_M

EMORY_CD4_TCELL_UP 

2.31E-5 4.40E-6 2.46E-2 6.97E-3 

 GSE34156_UNTREATED_VS_6H_T

LR1_TLR2_LIGAND_TREATED_M

ONOCYTE_UP 

1.15E-7 6.63E-7 5.01E-7 2.50E-3 

 GSE34156_UNTREATED_VS_24H_

NOD2_LIGAND_TREATED_MONO

CYTE_DN 

6.95E-6 3.01E-5 8.21E-7 1.90E-3 

 SCHERER_PBMC_APSV_WETVA 1.36E-4 3.46E-10 6.67E-9 4.38E-3 
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X_AGE_18_32YO_5_TO_7DY_UP 

 HOWARD_PBMC_INACT_MONOV

_INFLUENZA_A_INDONESIA_05_

2005_H5N1_AGE_19_39YO_AS03_

ADJUVANT_VS_BUFFER_1DY_UP 

2.23E-11 4.50E-24 5.33E-17 2.06E-3 

 NAKAYA_PBMC_FLUARIX_FLUV

IRIN_AGE_18_50YO_CORRELATE

D_WITH_HAI_28DY_RESPONSE_

AT_3DY_POSITIVE 

4.10E-15 1.14E-7 1.05E-9 1.03E-2 

 GSE22886_NAIVE_TCELL_VS_NE

UTROPHIL_DN 

1.72E-14 1.24E-12 1.31E-8 4.74E-2 

 GSE6269_HEALTHY_VS_STAPH_P

NEUMO_INF_PBMC_DN 

4.13E-13 1.49E-10 5.32E-6 3.51E-2 

 GSE34156_TLR1_TLR2_LIGAND_

VS_NOD2_AND_TLR1_TLR2_LIG

AND_24H_TREATED_MONOCYTE

_UP 

9.01E-9 3.16E-8 2.42E-8 6.97E-3 

 GSE34156_NOD2_LIGAND_VS_TL

R1_TLR2_LIGAND_6H_TREATED

_MONOCYTE_DN 

6.29E-10 2.20E-7 1.57E-7 3.46E-2 

 NAKAYA_PBMC_IMUVAC_MALE

_AGE_14_27YO_1D_POSTBOOST_

VS_0DY_PREIMM_TIV_UP 

1.36E-3 4.56E-4 2.25E-2 2.52E-2 

 FLETCHER_PBMC_BCG_10W_INF

ANT_PPD_STIMULATED_VS_UNS

TIMULATED_10W_DN 

9.57E-4 5.64E-3 1.85E-3 2.52E-2 

 GSE3982_EOSINOPHIL_VS_DC_U

P 

1.29E-2 1.36E-2 2.99E-2 2.52E-2 

 GSE3982_EOSINOPHIL_VS_TH2_U

P 

2.19E-2 3.79E-3 3.87E-2 7.22E-3 

C7      
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Down 

 GSE11057_CD4_CENT_MEM_VS_P

BMC_UP 

3.20E-5 3.24E-12 2.63E-2 1.62E-4 

 GSE11057_PBMC_VS_MEM_CD4_

TCELL_DN 

1.05E-4 1.72E-10 1.27E-3 8.02E-3 

 GSE22886_NAIVE_TCELL_VS_MO

NOCYTE_UP 

2.83E-14 1.91E-19 2.00E-4 4.00E-2 

 GSE22886_NAIVE_CD8_TCELL_V

S_DC_UP 

1.54E-3 4.35E-6 3.71E-2 2.22E-2 

 GSE22886_NAIVE_CD8_TCELL_V

S_MONOCYTE_UP 

4.24E-12 7.60E-11 1.68E-4 3.33E-2 

 GSE22886_NAIVE_CD4_TCELL_V

S_MONOCYTE_UP 

2.30E-9 1.95E-11 2.29E-4 2.22E-2 

Pathways commonly differentially regulated between severe and moderate asthma and 

adjusted P (Q) values for: severe asthma (S) and moderate asthma (M) exploration and 

validation cohorts.  
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S1 Figure. Validated gene set expression in 

“GSE4748_CYANOBACTERIUM_LPSLIKE_VS_LPS_AND_CYANOBACTERIUM_

LPSLIKE_STIM_DC_3H_DN.” A) Barcode plots showing cumulative individual genes 

in the gene set (as bars) for the exploration and validation datasets of MDD and severe 

asthma. Clusters of bars on one end represent individual genes that are differentially 

expressed in one direction or another within the gene set. B) A heatmap of differential 

expression of individual genes within the set for each of the exploration and validation 

MDD and severe asthma datasets.  
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S2 Figure. Validated gene set expression in 

“GSE34205_HEALTHY_VS_RSV_INF_INFANT_PBMC_DN.” A) Barcode plots 

showing cumulative individual genes in the gene set (as bars) for the exploration and 

validation datasets of MDD and severe asthma. Clusters of bars on one end represent 

individual genes that are differentially expressed in one direction or another within the 

gene set. B) A heatmap of differential expression of individual genes within the set for 

each of the exploration and validation MDD and severe asthma datasets.  
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S3 Figure. Validated gene set expression in 

“GSE22886_NAIVE_BCELL_VS_NEUTROPHIL_UP.” A) Barcode plots showing 

cumulative individual genes in the gene set (as bars) for the exploration and validation 

datasets of MDD and severe asthma. Clusters of bars on one end represent individual 

genes that are differentially expressed in one direction or another within the gene set. B) 

A heatmap of differential expression of individual genes within the set for each of the 

exploration and validation MDD and severe asthma datasets. 
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S4 Figure. Validated gene set expression in 

“GSE34205_HEALTHY_VS_FLU_INF_INFANT_PBMC_UP.” A) Barcode plots 

showing cumulative individual genes in the gene set (as bars) for the exploration and 

validation datasets of MDD and severe asthma. Clusters of bars on one end represent 

individual genes that are differentially expressed in one direction or another within the 

gene set. B) A heatmap of differential expression of individual genes within the set for 

each of the exploration and validation MDD and severe asthma datasets. 
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S5 Figure. Validated gene set expression in 

“GSE22886_NEUTROPHIL_VS_MONOCYTE_DN.” A) Barcode plots showing 

cumulative individual genes in the gene set (as bars) for the exploration and validation 

datasets of MDD and severe asthma. Clusters of bars on one end represent individual 

genes that are differentially expressed in one direction or another within the gene set. B) 

A heatmap of differential expression of individual genes within the set for each of the 

exploration and validation MDD and severe asthma datasets. 
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S6 Figure. Validated gene set expression in “JISON_SICKLE_CELL_DISEASE_DN.” 

A) Barcode plots showing cumulative individual genes in the gene set (as bars) for the 

exploration and validation datasets of MDD and severe asthma. Clusters of bars on one 

end represent individual genes that are differentially expressed in one direction or another 

within the gene set. B) A heatmap of differential expression of individual genes within 

the set for each of the exploration and validation MDD and severe asthma datasets. 
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Chapter 4: Effects of Two Distinct Psychoactive Microbes, Lacticaseibacillus 

rhamnosus JB-1 and Limosilactobacillus reuteri 6475, on Circulating and 

Hippocampal mRNA in Male Mice 
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4.1 Abstract:  

Discovery of the microbiota-gut–brain axis has led to proposed microbe-based 

therapeutic strategies in mental health, including the use of mood-altering bacterial species, 

termed psychobiotics. However, we still have limited understanding of the key signaling 

pathways engaged by specific organisms in modulating brain function, and evidence 

suggests that bacteria with broadly similar neuroactive and immunomodulatory actions can 

drive different behavioral outcomes. We sought to identify pathways distinguishing two 

psychoactive bacterial strains that seemingly engage similar gut–brain signaling pathways 

but have distinct effects on behaviour. We used RNAseq to identify mRNAs differentially 

expressed in the blood and hippocampus of mice following Lacticaseibacillus rhamnosus 

JB-1, and Limosilactobacillus reuteri 6475 treatment and performed Gene Set Enrichment 

Analysis (GSEA) to identify enrichment in pathway activity. L. rhamnosus, but not L. 

reuteri treatment altered several pathways in the blood and hippocampus, and the 

rhamnosus could be clearly distinguished based on mRNA profile. In particular, L. 

rhamnosus treatment modulated the activity of interferon signaling, JAK/STAT, and TNF-

alpha via NF-KB pathways. Our results highlight that psychobiotics can induce complex 

changes in host gene expression, and in understanding these changes, we may help fine-

tune selection of psychobiotics for treating mood disorders. 

Keywords: depression; stress; gut–brain-axis; JB-1; psychobiotics; mRNA; hippocampus; 

blood; microbiota 
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4.2 Introduction 

Anxiety and depression are two of the most common mood disorders in the western 

world becoming increasingly prevalent in millennials and adolescents [1,2]. The COVID-

19 pandemic only exacerbated the problem. Among adults in the UK the reported rate of 

depression symptoms nearly doubled from pre-to-post pandemic (10% to 19%), and in the 

US it nearly quadrupled (11% to 42%) [3]. Much attention has been given to the gut–brain-

axis in recent years as it is beginning to revolutionize our understanding and treatment of 

mental health disorders [4]. 

Numerous direct and indirect interactions between bacteria endemic to the gut, and 

the central nervous system characterize what is known as the microbiota-gut–brain axis 

[5]. The introduction of certain bacteria to the gut that modulate brain function, termed 

psychoactive-probiotics or psychobiotics, have been demonstrated to influence behaviour 

in animal models and mood/anxiety in humans [6,7]. One such potential psychobiotic is 

Lacticaseibacillus rhamnosus JB-1, which has previously been shown to reduce anxiety 

and depression-like behaviours in mice [8–10]. 

It is incompletely understood how JB-1 facilitates these cognitive and behavioural 

changes, although both the peripheral nervous system and the immune system are critical 

mediators [8,9,11]. Specifically, feeding of JB-1 was only able to alleviate the depression 

and anxiety-like behaviours of mice when the vagus nerve was intact [9]. Feeding of JB-1 

also results in modulation of the immune system and induces regulatory T cells, which 

have been demonstrated to be both necessary and sufficient to mediate the behavioral 

effects of the bacteria [8,11]. Other psychobiotics have been suggested to modulate 
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behaviour and cognition via the endocrine system, the release of soluble metabolites 

including neurotransmitters into circulation, and the release of bacterial membrane vesicles 

(MV) carrying similar metabolites and RNAs into circulation [12–15]. Up to this point 

however these mechanisms have not been demonstrated to be involved in the behavioural 

changes induced by L. rhamnosus JB-1. 

Limosilactobacillus reuteri 6475 (LR6475) is a probiotic bacteria that has 

previously been shown to modulate social behaviours; rescuing autism-spectrum-disorder-

like social deficits induced by a maternal high-fat diet in mice [16]. Mechanistically, 

LR6475 achieves this in a vagus-dependant manner and by boosting oxytocin levels 

[17,18]. LR6475 has also been shown to have efficacy in treating irritable bowel syndrome 

and increase bone density via T-lymphocyte regulation [19,20]. However, despite both JB-

1 and LR6475 engaging the vagus nerve and regulatory immune responses the bacteria 

have some distinct actions on behaviour with JB-1, but not LR6475, having antidepressant-

like effects in mice [21]. The reasons for the distinct behavioral effects of the bacteria are 

unclear. 

Here, in an attempt to identify potential pathways distinguishing two psychoactive 

bacterial strains that seemingly engage similar gut–brain signaling pathways but have 

distinct effects on behaviour, we compare transcriptomic changes in blood and 

hippocampus, a region of the brain responsible for memory and emotion and closely linked 

with depression [22–24], following feeding with JB-1 and LR6475. 
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4.3 Results 

4.3.1 Many mRNAs and Gene Sets Are Altered in the Blood of JB-1-Fed Mice, but Not 

LR6475-Fed: 

Principal component analysis (PCA) of normalized, filtered mRNA in the blood of 

mice shows no distinct groups between PBS and LR6475 fed mice; however, JB-1 fed mice 

differ greatly from the cluster PBS and LR6475-fed mice form along both PC 1 and 2 

(adonis p-value = 0.049) (Figure 1A). As the PCA indicates, many genes were found to be 

differentially expressed when comparing JB-1 to PBS-fed mice (Figure 1B) and a few-

when comparing JB-1 to LR6475 (Figure 1D); however, no genes were significantly 

differentially expressed between LR6475 and PBS-fed mice. FKBP1A was among the 

genes upregulated in the blood of JB-1-fed mice in both comparisons. 
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Figure 1. Differential expression analysis of mRNA measured by RNAseq in the blood of 
mice fed either Lacticaseibacillus rhamnosus JB-1, Limosilactobacillus reuteri 6475, or 
PBS. (A) Principal component analysis of all three treatment groups. (B) Volcano plot 
showing individual differentially expressed genes in a comparison of JB-1 vs. PBS-fed 
mice. (C) Volcano plot showing individual differentially expressed genes in a comparison 
of LR6475 vs. PBS-fed mice. (D) Volcano plot showing individual differentially expressed 
genes in a comparison of JB-1 vs. LR6475-fed mice. Genes with a positive log fold change 
are more highly expressed. 

To elucidate additional sources of grouping along PC1 and 2 in the blood, Gene Set 

Enrichment Analysis was performed, comparing KEGG and Hallmark gene set expression 

in JB-1-fed mice to LR6475 and to PBS-fed independently. LR6475 and PBS-fed mice 

were not compared as their groups were not distinct in PCA. Many pathways from both 

KEGG and Hallmark were found differentially expressed in both directions, in both JB-1 

comparisons, and are summarized in (Table 1). All of the pathways enriched in JB-1 vs. 
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PBS were common to the JB-1 vs. LR6475 comparison, with the exception of 

KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION, and 

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY which were 

enriched in PBS compared to JB-1 but did not appear significant in the JB-1 vs. LR6475 

comparison. 1 Hallmark pathway and 4 KEGG pathways were commonly enriched in JB-

1 for both comparisons, and 6 Hallmark and 8 KEGG pathways were commonly enriched 

in LR6475, and PBS compared to JB-1. Mouse gene names converted to human orthologs 

were used to visualize KEGG pathways in pathview - these figures were created for the 

blood mRNA JB-1 vs. PBS comparison and can be found in the supplementary figures 

(Supplementary Figure S1–S18). 

Table 1. Enriched pathways in JB-1 compared with PBS and compared with LR6475. The 
left column shows the relative direction of expression in JB-1 for each gene set and the 
right column shows the adjusted p-Value for each. Both JB-1 comparisons had nearly 
identical pathways and corresponding directions of expression, except for the last two 
entries on the table, which were significant only in the JB-1 vs. PBS comparison. 

Enriched In  
Pathway Name Adj.p-Val (JvC, 

JvR) 

JB-1 HALLMARK_OXIDATIVE_PHOSPHORYLATI

ON 

3.4 x 10-4, 3.4 x 

10-4 

JB-1 KEGG_OXIDATIVE_PHOSPHORYLATION 3.7 x 10-3, 9.9 x 

10-3 

JB-1 KEGG_PARKINSONS_DISEASE 1.3 x 10-2, 2.3 x 

10-2 

JB-1 KEGG_HUNTINGTONS_DISEASE 1.3 x 10-2, 2.3 x 

10-2 

JB-1 KEGG_ALZHEIMERS_DISEASE 2.1 x 10-2, 3.7 x 

10-2 

PBS HALLMARK_ALLOGRAFT_REJECTION 1.5 x 10-6, 2.7 x 

10-6 

PBS HALLMARK_INTERFERON_GAMMA_RESPO

NSE 

5.4 x 10-6, 8.9 x 

10-6 
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PBS HALLMARK_INFLAMMATORY_RESPONSE 4.6 x 10-3, 9.4 x 

10-3 

PBS HALLMARK_INTERFERON_ALPHA_RESPON

SE 

7.7 x 10-3, 8.3 x 

10-3 

PBS HALLMARK_TNFA_SIGNALLING_VIA_NFKB 3.2 x 10-2, 3.1 x 

10-2 

PBS HALLMARK_IL6_JAK_STAT3_SIGNALLING 3.2 x 10-2, 2.5 x 

10-2 

PBS KEGG_PRIMARY_IMMUNODEFICIENCY 1.5 x 10-3, 3.6 x 

10-3 

PBS KEGG_CYTOKINE_CYTOKINE_RECEPTOR_I

NTERACTION 

4.9 x 10-3, 9.2 x 

10-3 

PBS KEGG_JAK_STAT_SIGNALLING_PATHWAY 4.9 x 10-3, 8.0 x 

10-3 

PBS KEGG_CHEMOKINE_SIGNALLING_PATHWA

Y 

1.8 x 10-2, 1.0 x 

10-2 

PBS KEGG_HEMATOPOIETIC_CELL_LINEAGE 1.9 x 10-2, 1.0 x 

10-2 

PBS KEGG_B_CELL_RECEPTOR_SIGNALLING_P

ATHWAY 

1.9 x 10-2, 2.8 x 

10-2 

PBS KEGG_RIBOSOME 2.1 x 10-2, 6.7 x 

10-3 

PBS KEGG_T_CELL_RECEPTOR_SIGNALLING_P

ATHWAY 

2.2 x 10-2, 2.8 x 

10-2 

PBS KEGG_LEUKOCYTE_TRANSENDOTHELIAL_

MIGRATION 

3.8 x 10-2 

PBS KEGG_NATURAL_KILLER_CELL_MEDIATE

D_CYTOTOXICITY 

4.5 x 10-2 

 

4.3.2 Few mRNAs and Gene Sets Are Altered in the Hippocampus of Psychobiotic-Fed 

Mice: 

In the principal component analysis of normalized, filtered mRNA in the 

hippocampus of mice, JB-1 and LR6475-fed do not form distinct clusters from one another; 

however, both JB-1 and LR6475-fed mice differ from the PBS cluster formed along both 

PC1 and 2 (adonis p-value = 0.17) (Figure 2A). Only 2 genes, TPPP3 and SGK1 were 
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found to be differentially expressed when comparing JB-1 to PBS-fed mice (Figure 2B). 

When comparing JB-1 to LR6475, and LR6475 to PBS-fed mice (Figure 2C,D); however, 

no genes were found to be significantly differentially expressed. In order to identify sources 

of the group distinction for both PBS comparisons, Gene Set Enrichment Analysis was 

performed. 

 

Figure 2. Differential expression analysis of mRNA measured by RNAseq in the 
hippocampus of mice fed either Lacticaseibacillus rhamnosus JB-1, Limosilactobacillus 
reuteri 6475, or PBS. (A) Principal component analysis of all three treatment groups. (B) 
Volcano plot showing individual differentially expressed genes in a comparison of JB-1 
vs. PBS-fed mice. (C) Volcano plot showing individual differentially expressed genes in a 
comparison of LR6475 vs. PBS-fed mice. (D) Volcano plot showing individual 
differentially expressed genes in a comparison of JB-1 vs. LR6475-fed mice. Genes with a 
positive log fold change are more highly expressed. 
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Enrichment analysis of hippocampal mRNA following treatment was also poorly 

able to identify the source of PCA group distinction. No Hallmark pathways were found 

differentially expressed in any of the three comparisons. KEGG_RIBOSOME was 

enriched in the hippocampi of both JB-1 (adj.p-value = 1.3 x 10-4) and LR6475-fed mice 

(adj.p-value = 2.4 x 10-7) compared to PBS-fed mice, and 

KEGG_VIBRO_CHOLERAE_INFECTION was enriched in PBS compared to LR6475 

(adj.p-value = 1.6 x 10-2). With so few discerning features between individual gene 

expression and enrichment analysis, it remains unclear what is driving the distinction seen 

between PBS and the other treatment groups in the PCA. Additional PCs were checked (up 

to PC12) but none alone explain the distinction. 

4.3.3 Weighted Correlation Network Analysis Confirms Differences in Blood Expression 

between Feeding Groups: 

As a second line of evidence that JB-1, but not LR6475 has a unique impact on blood 

and hippocampal mRNA expression, we performed weighted correlation network analysis 

(WGCNA) which relies on unsupervised clustering of genes to construct a network with 

modules of commonly co-expressed genes. 

24 groups of genes were identified and mapped to the cluster dendogram (Figure 3A). 

There were several strong relationships identified when comparing these gene modules to 

the feed groups (traits) including statistically significant differences between JB-1 and 

PBS-fed mouse blood in the ‘black’ and ‘light green’ groups (Figure 3B). None of the 
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modules had a significant relationship with LR6475-fed mice, making it statistically 

indiscernible from PBS, which is consistent with the PCA (Figure 1A). 

 

Figure 3. Weighted correlation network analysis (WGCNA) of blood mRNA from mice 
fed one of JB-1, LR6475, or PBS. (A) Unsupervised cluster dendogram of commonly co-
expressed genes shown grouped into modules by colour. (B) Gene module and feed group 
relationships shown in a heatmap with relative expression level and p-value in brackets 
under it for each relationship. 

For hippocampal mRNA, 9 groups of genes were identified and mapped to a cluster 

dendrogram (Figure 4A). No statistically significant relationships between gene modules 

and feed group pairs were found (Figure 4B), which is consistent with the PCA (Figure 
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2A). Additionally, consistent with the PCA in Figure 2A is that JB-1 and LR6475 appear 

harder to distinguish on the heatmap, while PBS-fed mice appear distinct. There were also 

statistically significant associations between individual feed groups and gene modules: JB-

1 was associated with pink, while black, magenta, and green were associated with control. 

Again, LR6475 was not significantly associated in either direction with either gene module. 
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Figure 4. Weighted correlation network analysis (WGCNA) of hippocampal mRNA from 
mice fed one of JB-1, LR6475, or PBS. (A) Unsupervised cluster dendogram of commonly 
co-expressed genes shown grouped into modules by colour. (B) Gene module and feed 
group relationships shown in a heatmap with relative expression level and p-value in 
brackets under it for each relationship. 
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4.4 Discussion 

Here, we examined blood and hippocampal transcriptional changes induced by two 

lactobacillus species that have previously been demonstrated to have distinct effects on 

behaviour in mice [8–10,16,21]. This study identified clear transcriptomic changes in the 

blood, and to a lesser extent, the hippocampus following feeding with JB-1, but not 

LR6475. 

4.4.1 Inflammatory Response: 

Immunomodulatory actions have been described for both JB-1 and LR6475 and in 

the case of JB-1 these have been demonstrated to mediate effects on behaviour [8–10,16]. 

The current study identified transcriptomic changes reflective of immunomodulation. In 

particular, several genes involved in antigen presentation were enriched in the PBS and 

LR6475 vs. JB-1 (Figure 1B,D). Histocompatibility 2, class II antigen A, alpha (H2-Aa), a 

subunit of the major histocompatibility complex II (MHCII) enables peptide antigen 

binding activity, and it participates in the interferon-𝛾 response [25]. Additionally, enriched 

in the blood of PBS and LR6475 vs. JB-1 was gamma-interferon-inducible lysosomal thiol 

reductase (IFI30) an enzyme that reduces endocytic disulphide bonds to bring about 

production of MHC class II-restricted epitopes [26,27]. B-cell antigen receptor complex-

associated protein alpha chain and beta chain (CD79a and CD79b) were both enriched in 

the blood of PBS and LR6475 compared to JB-1-fed mice. These proteins cooperate, and 

are required for antigen presentation on B cells, as they facilitate the signal transduction 

cascade activated by an antigen binding to the B cell antigen receptor complex [28,29]. 
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There are several lines of evidence suggesting JB-1 has physiological effects similar to 

selective serotonin reuptake inhibitors (SSRIs) [10,21,30]. It is therefore interesting to note 

that SSRIs such as fluoxetine have also been shown to modulate antigen presentation, 

reducing co-stimulatory marker expression on dendritic cells and subsequent antigen 

induced T cell response [31]. 

We also observed marked changes in mRNA related interferon signaling with 

significant diminution of HALLMARK_INTERFERON_ALPHA_RESPONSE, 

HALLMARK_INTERFERON_GAMMA_RESPONSE, and 

HALLMARK_INFLAMMATORY_RESPONSE in the blood of mice treated with JB-1 in 

comparison to both PBS and reuteri 6475. The Interferons are known to play a role in the 

link between the immune system and mood disorders. INF-ɑ is used to treat hepatitis C and 

is associated with a 30–70% increased risk of emergent depression [32]. Interferon gamma 

(INF-γ) is also indicated to play a role in depression [33]. Patients with MDD demonstrate 

higher levels of INF-γ production by peripheral blood mononuclear cells [34] and 

successful antidepressant treatment decreases levels of this inflammatory cytokine while 

increasing regulatory IL-10 [35]. Furthermore INF-γ −/− mice demonstrate decreased 

anxiety- and depressive-like behaviors. More broadly, inflammatory cytokines including 

INF-γ are upregulated as part of the stress response, which in turn leads to activation of the 

microglia, hypothalamic-pituitary-adrenal (HPA) axis, and the sympathetic nervous system 

(SNS) [33]. Our observation of decreased INF-ɑ, INF-γ, and inflammatory pathway 

activity in the blood, indicates a broad anti-inflammatory effect of JB-1 and is consistent 

with our previous findings of increased regulatory T cells and inhibition of mast cell 
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degranulation [8,36,37]. Additional evidence for a general anti-inflammatory response to 

JB-1 is indicated by the decreased expression of the 

KEGG_T_CELL_RECEPTOR_SIGNALLING_PATHWAY in the blood of JB-1 treated 

mice compared to both LR6475 treated and control animals. The T cell receptor signaling 

pathway is critical for the activation of T lymphocytes (CD25+) which have previously 

been found elevated in the blood of depressed individuals [38]. The JB-1 associated 

differences in circulating gene expression of interferon signaling pathways was not 

observed in the hippocampus. 

HALLMARK_TNFA_SIGNALLING_VIA_NFKB was underexpressed in both 

JB1 blood comparisons. These are genes that are regulated by NF-KB in response to TNF-

𝞪. TNF-𝞪 signaling through NF-KB has previously been shown to activate microglia and 

increase neuroinflammation in mice showing depression-like behaviour [39]. Mice 

instilled with depressive-like behaviour via chronic unpredictable mild stress also showed 

heightened levels of inflammatory cytokines, and NF-KB in the prefrontal cortex and 

hippocampus, the signaling of which was associated with greater risk of depressive 

symptoms [40]. 

Finally, FKBP12, one of the genes increased in expression in the blood of JB-1-fed 

animals compared to the other treatment groups, is a known inhibitor of mTOR signaling 

[41]. This may be part of the anti-inflammatory response to JB-1, as mTOR controls 

immune cell activity as well through assisting the differentiation of T cells, and by 

regulating translation, modulating cytokine responses, macrophage migration and 

polarization, and antigen presentation [41–44]. 
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4.4.2 Cerebral Cortical Signaling: 

The Janus kinase/signal transducers and activators of transcription (JAK/STAT) 

signaling pathway controls several processes in the cerebral cortex and hippocampus, 

including microglial activation, synaptic plasticity, gliogenesis, and neurogenesis [45–47]. 

Here, we found it downregulated in the blood mRNA for both the Hallmark and KEGG 

gene sets (HALLMARK_IL6_JAK_STAT3_SIGNALING, 

KEGG_JAK_STAT_SIGNALING_PATHWAY). Al-Samhari et al. (2016) [48] found that 

treating rats with anti-oxidant precursor, N-acetylcysteine, inhibited STAT3 protein 

activation and led to reduced depression-like symptoms in rats (increased locomotor 

activity). This is one example of why it has been proposed that JAK/STAT pathway 

inhibitors could serve as good candidates for antidepressants [48,47]. The reduced 

expression of the JAK/STAT pathway in the blood of mice after JB1 feeding suggests this 

may be a previously unrecognized mechanism contributing to the antidepressant-like 

effects of the bacteria. 

Within all comparisons made, only two genes were significantly overexpressed in 

the hippocampus-TPPP3 and SGK1 which were altered in the JB-1 vs. PBS-fed 

comparison. Tubulin polymerization-promoting protein family member 3 (TPPP3) is a 

protein that regulates microtubule dynamics [49], and Serine/threonine-protein kinase 

Sg1k (SGK1) is a kinase that regulates a variety of ion channels, transcription factors, 

cellular enzymes, cell growth, membrane transporters, and is known to play a significant 

role in the stress response [50–53]. SGK1, is a negative regulator of VEGF and BDNF, has 

been shown to interact with NF-KB, RAN, mTOR, FOXO3A, and is increased in a human 
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hippocampal progenitor cell line during MDD, and decreased in the prefrontal cortex of 

PTSD patients [54–56]. Licznerski et al. (2015) [56] also found that in the hippocampus of 

foot-shock stressed rats, SGK1 mRNA was underexpressed, but the amount of 

hippocampal protein remained unchanged. Zhang et al. (2016) [57] found that in a chronic 

corticosterone (CORT) mouse model for anxiety and depression, glucocorticoid receptor 

levels were diminished, leading to an insufficient hippocampal neurogenesis. By treating 

mice with baicalin, they were able to restore hippocampal neurogenesis and reverse 

depression-like behaviours [57]. In their model, baicalin is thought to be undoing 

phosphorylation of SGK1, allowing it to phosphorylate the glucocorticoid receptor, 

encouraging translation to the nucleus, where it may promote neurogenesis. 

4.4.3 JB-1-Modulated Genes in the Blood: 

Several mRNAs were upregulated in the blood of JB1-fed mice compared to both 

LR6475 and PBS-fed mice. They were: FKBP1A, SNRPN, CELF4, GPM6B, APBB1, 

NCDN, RUNDC3A, CPE, and CLSTN1. 

Neuronal membrane glycoprotein gene (GPM6B) codes for a protein involved in 

bone formation and osteoblast function, as well as being a binding partner of the serotonin 

transporter (SERT) [58,59]. It has been suggested that GPM6B could play a role in 

regulating SERT cellular trafficking and activity, which could potentially have a broad 

impact on mood disorders [59,60]. It has also been found that GPM6B expression is 

severely reduced in the hippocampus of depressed suicides, and mechanistically, it has 
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been proposed that this lack of GPM6B in the hippocamus alters oligodendrocyte function 

to contribute to MDD [61,62].  

Carboxypeptidase E (CPE) codes for an exopeptidase that removes C-terminal 

lysine or arginine acids from peptides [63]. Rodriguiz et al. (2013) [63] found that a point 

mutation to the CPE gene induced anxiety-like behaviours in older mice, and depression-

like behaviours in mice of all ages. Anxiety-like behaviours were reversed following acute 

treatment with fluoxetine or diazapam, while depression-like behaviours were reversed 

with acute reboxetine administration, or prolonged treatment with bupropion or fluoxetine 

[63]. A similar mutation was discovered in an Alzheimer’s patient by Cheng et al. (2016) 

[64] and replicating the mutation in mice led to decreased neurogenesis in the 

hippocampus, decreased dendrites, impaired memory, and depression-like behaviour. 

Calsyntenin-1 (CLSTN1) codes for a protein that encourages vesicle association 

with KLC1 in axonal anterograde transport [65]. CLSTN1 has previously been found to be 

differentially hypermethylated in the blood of MDD patients (n = 118) compared to healthy 

subjects (n = 236) [66]. The mechanism by which CLSTN1 affects depression has yet to 

be elucidated, however Li et al. (2021) [67] confirmed that overexpression of CLSTN1 in 

the hippocampus of mice and rats increased anxiety and depression-like phenotypes. We 

did not find that JB1 altered hippocampal expression of CLSTN1, and it is interesting that 

we see it increased in the blood. As the differentially methylated DNA samples in Davies  

et al. (2014) [66] were collected from the blood, this suggests that a dearth of CLSTN1 

expression in the body is implicated in depression. 
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4.5 Materials and Methods 

4.5.1 Feeding and Tissue Collection: 

7–9-week-old male balb/c mice from Charles River Laboratories were orally 

gavaged with 200 µL of either Lacticaseibacillus rhamnosus JB-1 (2 × 10⁹), 

Limosilactobacillus reuteri 6475 (2 × 10⁹), or PBS (n = 5, 5, 5). Mice were gavaged once 

per day for 2 weeks and sacrificed 3 h after the last gavage. Trunk blood was collected and 

whole brains were flash frozen and stored. Later, hippocampi of alternating side half brains 

were isolated and stored for RNA isolation. 

4.5.2 RNA Isolation and Analysis: 

Total RNA was isolated from fresh whole blood using a PureLink RNA mini kit 

for total RNA isolation and using the manufacturer-recommended protocol for whole blood 

extraction. 

Total RNA from hippocampi was isolated first by homogenizing the tissue with 

mortar and pestle in lysis buffer, followed by up-down pipetting through a 27-gauge 

syringe. After the tissue was completely homogenized, the same PureLink RNA mini kit 

was used to extract total RNA using the manufacturer-recommended protocol for tissue 

extraction. 

Four samples from each gavage group, totaling at 12 samples for blood and 

hippocampus, underwent paired-end RNAseq (P3, 2 × 50 bp) on an illumina NextSeq for 

mRNA discovery and analysis. 
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4.5.3 Data Preprocessing and Differential Expression: 

Raw RNAseq data were adaptor trimmed and aligned using the ‘RNA-Seq 

Alignment’ app in Illumina BaseSpace which uses the Spliced Transcripts Alignment to a 

Reference (STAR) alignment method with the USCS mm10 refseq gene annotation file 

[68]. Next transcript expression of the annotation data was quantified by Salmon to produce 

count data [69] within the ‘RNA-Seq Alignment’ app, variant calling was performed by 

Strelka Variant caller [70], quality control metrics were performed by picard. Raw count 

data were downloaded, and differential expression was performed by using ‘DESeq2′ 

package in R [71], which automatically filters low expressed genes and normalizes the data 

by the geometric mean. Individual mRNAs were considered to be differentially expressed 

when they exhibited adjusted p-value < 0.05, and an |FC| > 1.5. p-values were adjusted 

using Benjamini–Hochberg method [72]. 

4.5.4 PCA: 

Percent variables and principal components were calculated using DESeq2′s 

plotPCA function on the list of internally normalized and filtered genes, and then graphed 

using ggplot2 [73]. 

4.5.5 Enrichment Analysis: 

Fold change and adjusted p-values values generated by DESeq2′s ‘results’ function 

were used by the generally applicable gage (gene-set enrichment for pathway analysis) 

package in R to generate enrichment results to the KEGG and Hallmark pathway gene sets 

[74]. KEGG pathway visualization was performed using the ‘pathview’ R package [75] 
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and shows relative expression of each gene in each differentially expressed pathway 

(determined by gage). Enrichment of a certain pathway was considered significant at 

Benjamini–Hochberg adjusted p-value < 0.05. 

 

4.5.6 Weighted Correlation Network Analysis: 

 To support the findings of the PCAs we conducted a weighted correlation network 

analysis using the ‘WGCNA’ package in R [76]. We used a power of 13 for blood RNA 

and merged close gene modules at a threshold of 0.05; and for hippocampal RNA, a power 

of 30 and merged close gene modules at a threshold of 0.04. Differences between groups 

of clustered genes were visualized in respect to each of the feeding groups using the 

‘labeledHeatmap’ function within the WGCNA package. 
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4.6 Conclusions 

Here, we identified several pathways and genes that may be associated with JB-1, 

treatment that may plausibly be related to the effects of these organisms on behavior, 

summarized in (Tables 2 and 3). Some are likely related to the previously described 

immunomodulatory effects of these organisms. In particular, the role interferon signaling 

pathways in mediating gut–brain signaling warrants further exploration. The lack of any 

significant modified pathways or genes following LR6475 is surprising. However, this 

study examined the direct effect of JB-1 and LR6475 on normal BALB/c mice, while this 

mouse strain has high trait anxiety it may be that the effects of LR6475 would only be 

observable following a stress challenge or in a pathological mood disorder model. 

Table 2. Differential expression of pathways relevant to depression, in depression, after 

established antidepressant treatment, and following JB-1 treatment in mice. The up and 

down arrows represent the direction of change in pathway expression in our findings and 

in literature. 

Pathway INF-𝞬/INF-𝞪 JAK/STAT TNF-𝞪 Via NF-KB 

Change in 

Depression 

↑ generally increased, 

but suboptimal 

expression has also 

been associated with 

depression [33,77,78] 

↑ activation in stress 

and depression in 

mice [79] 

↑ in prefrontal 

cortex and 

hippocampus of 

mice [40] 

Change in 

MDD 

Treatment 

↓ after treatment with 

either sertraline, 

clomipramine, or 

trazodone in human 

blood [35] 

↓ phosphorylation 

(activation) of Jak-3 

returned to normal in 

mice following 

Amitriptyline 

treatment [79] 

↓ SSRIs such as 

imipramine reduce 

TNF-𝞪 levels in rats 

[80] 

Blood 

Change 

Following 

JB-1 

↓ mRNA (5.4 x 10-6) 

(7.7 x 10-3) 

↓ mRNA (4.9 x 10-3)  ↓ mRNA (3.2 x 10-2) 
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Table 3. Differential expression of genes relevant to depression, in depression, after 
established antidepressant treatment, and following JB-1 treatment in mice. The up and 
down arrows represent the direction of change in pathway expression in our findings and 
in literature. 

Gene SGK1 GPM6B NCDN CLSTN1 

Change in 

Depression 

↓ in hippocampus 

of rats [56] 

↓ in the 

hippocampu

s of humans 

[60] 

↓ in CNS of 

mice [81] 

↓ in blood of 

humans [66], ↑ 

in 

hippocampus 

of rats and 

mice [67] 

Change in 

Depression 

Treatment 

↑ mRNA in 

hippocampus and 

prefrontal cortex of 

rats following 

icariin or baicalin 

treatment [82,83] 

N/A ↓ in 

hippocampus 

after ketamine 

treatment in rats 

[84] 

N/A 

Change 

Following 

JB-1 

↑ mRNA in 

hippocampus of 

mice (4.5 x 10-2) 

↑ mRNA in 

blood of 

mice (7.6 x 

10-4) 

↑ mRNA in 

blood of mice 

(8.5 x 10-3) 

↑ mRNA in 

blood of mice 

(1.6 x 10-2) 

There are certain limitations to the current study. The brains used in the study were 

not perfused following collection, and therefore could contain a small amount of blood 

from within capillaries in the hippocampus. Furthermore, only male mice were used, there 

is evidence that the outcome of gut–brain signaling can be sex dependent and thus sex 

comparisons would be worthy of examination in the future. This is particularly pertinent 

as in humans mental health disorders disproportionately affect women. Finally, WGCNA 

recommends 15 samples minimum for analysis and we performed the analysis with 12, 

which may have reduced the precision of the results. 

Overall, our results highlight that microbes labeled as psychobiotics, or potential 

psychobiotics, induce complex changes in systemic gene expression which are far from 

uniform between organisms. A better understanding of the many pathways impacted by 
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individual organisms may help develop more tailored microbe-based approaches to 

specific mental health issues. 
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4.8 Supplementary Information 

 

Supplementary Figure 1: Differentially expressed genes in the KEGG_RIBOSOME 

pathway in the blood of mice fed JB-1 compared to control.  
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Supplementary Figure 2: Differentially expressed genes in the 

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION pathway in the blood 

of mice fed JB-1 compared to control.  
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Supplementary Figure 3: Differentially expressed genes in the 

KEGG_CHEMOKINE_SIGNALING pathway in the blood of mice fed JB-1 compared 

to control.  
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Supplementary Figure 4: Differentially expressed genes in the 

KEGG_OSTEOBLAST_DIFFERENTIATION pathway in the blood of mice fed JB-1 

compared to control.  
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Supplementary Figure 5: Differentially expressed genes in the 

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION pathway in the blood of 

mice fed JB-1 compared to control.  
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Supplementary Figure 6: Differentially expressed genes in the 

KEGG_CYTOSOLIC_DNA_SENSING pathway in the blood of mice fed JB-1 

compared to control.  

 

 
Supplementary Figure 7: Differentially expressed genes in the 

KEGG_JAK_STAT_SIGNALING  pathway in the blood of mice fed JB-1 compared to 

control.  
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Supplementary Figure 8: Differentially expressed genes in the 

KEGG_HEMATOPOETIC_CELL_LINEAGE pathway in the blood of mice fed JB-1 

compared to control.  

 

 
Supplementary Figure 9: Differentially expressed genes in the 

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY pathway in the 

blood of mice fed JB-1 compared to control.  
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Supplementary Figure 10: Differentially expressed genes in the 

KEGG_T_CELL_RECEPTOR_SIGNALING pathway in the blood of mice fed JB-1 

compared to control.  
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Supplementary Figure 11: Differentially expressed genes in the 

KEGG_B_CELL_RECEPTOR_SIGNALING pathway in the blood of mice fed JB-1 

compared to control.  

 



144 

Ph.D Thesis – S. Haas-Neill; McMaster University – Medical Sciences 

 

   
 

 
Supplementary Figure 12: Differentially expressed genes in the 

KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION pathway in the blood 

of mice fed JB-1 compared to control.  
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Supplementary Figure 13: Differentially expressed genes in the KEGG PATHWAYS IN 

CANCER in the blood of mice fed JB-1 compared to control.  
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Supplementary Figure 14: Differentially expressed genes in the 

KEGG_CHRONIC_MYELOID_LEUKEMIA pathway in the blood of mice fed JB-1 

compared to control.  
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Supplementary Figure 15: Differentially expressed genes in the 

KEGG_ACUTE_MYELOID_LEUKEMIA pathway in the blood of mice fed JB-1 

compared to control.  
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Supplementary Figure 16: Differentially expressed genes in the 

KEGG_SMALL_CELL_LUNG_CANCER pathway in the blood of mice fed JB-1 

compared to control.  

 

 
Supplementary Figure 17: Differentially expressed genes in the 

KEGG_PRIMARY_IMMUNODEFICIENCY pathway in the blood of mice fed JB-1 

compared to control.  
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Supplementary Figure 18: Differentially expressed genes in the 

KEGG_OXIDATIVE_PHOSPHORYLATION pathway in the blood of mice fed JB-1 

compared to control.  
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Chapter 5: Discussion and Conclusion: 

These three separate studies were conducted examining blood 1) as a source of 

biomarkers, 2) to determine commonalities between comorbid diseases, and 3) in order to 

gain mechanistic insights. In each study differential expression and gene set enrichment 

analyses were performed on omics data from the blood or its components, illustrating the 

value of these types of analysis across different fields, as well as the seemingly universal 

utility of the blood for addressing challenges within medical science. Below, the results 

of each study are summarized, explaining the significance of the finding in the context of 

the study, and the contributions of each study to their fields are discussed.  

5.1 Circulating EV-Derived Prostate Cancer Biomarkers  

5.1.1 Summary of Results: 

 First, we identified that the majority of circulating EV in both prostate cancer 

patients, and healthy subjects were exosomes, while there were still some microvesicles. 

This is merely to show that there are no glaring differences between the types or quantity  

of EV isolated from the blood of cancer patients or healthy subjects. Within the 

circulating EV of prostate cancer patients, we identified 141 proteins that have the 

potential to act as biomarkers for prostate cancer, as they were found significantly more 

abundantly expressed in cancer patients but not in healthy subjects. Additionally we 

identified several proteins that appeared to be abundant exclusively within circulating EV 

of each of patients with organ confined tumours (57 proteins), extracapsular extending 

tumours (27 proteins), and seminal vesicle invading tumours (13 proteins). This suggests 

that circulating EV derived protein could also be used beyond a general diagnostic, to 
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further classify the stage of the prostate cancer. For general knowledge, a protein 

ontology analysis to assess the molecular function, biological process, and cellular 

component associated with all vesicular proteins, identified binding, localization, and 

extracellular localization, respectively, being the most abundant features, perhaps 

unsurprising for EV protein. Overall, many proteins were identified with the potential to 

act as biomarkers. 

5.1.2 Contribution to the Field: 

 In 2008, exosomes derived from VCaP and PC346 prostate cancer cell lines were 

isolated by Jansen et al (2008). They identified several proteins known to be upregulated 

in prostate cancer, and first proposed that prostate tumour derived exosomes could be 

valuable sources of biomarkers for the disease (Jansen et al., 2008). In 2009, EVs isolated 

from the urine of prostate cancer patients were shown to contain prostate cancer RNA 

biomarkers, TMPRSS2:ERG, and PCA3 (Nilsson et al., 2009). Several body fluids have 

since been found to contain prostate derived EV due to the prostates proximity to the 

bladder, and its role in reproductive function (Drake and Kislinger, 2014; Ramirez-

Garrastacho et al., 2022). These include blood, semen, and urine (Drake and Kislinger, 

2014; Ramirez-Garrastacho et al., 2022), and in the last 12 years each have been tested as 

a potential source for vesicular biomarkers for prostate cancer (Drake et al., 2010; 

Ramirez-Garrastacho et al., 2022). Of the three fluids, semen contains the highest 

prostate-derived EV, however its collection is fairly invasive and, in older men with 

prostatic disease, collection can be extremely challenging if not impossible (Drake et al., 

2010). Urine is the fluid least invasive to collect, however urine is highly dynamic, and 
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its concentration and composition vary in relation to diet, and fitness, which complicates 

the discovery and validation of biomarkers (Ramirez-Garrastacho et al., 2022). Blood is 

the fluid thought best suited to detecting metastatic prostate cancers via EVs (Ramirez-

Garrastacho et al., 2022), and it is from blood the majority of urinary EVs have been 

shown to originate (Erdbrugger et al., 2021). Blood collection is more invasive than urine 

collection however, and it contains cell debris and other non-EV particles that can be 

difficult to remove during EV isolation (Ramirez-Garrastacho et al., 2022). 13 prostate 

cancer EV biomarker papers with 50 patients or more were published from 2010 to 2017, 

and in 30% of them, blood was the selected biofluid, compared with 70% for urine 

(Campos-Fernandez et al., 2019). This suggests that urine is the most popular biofluid, 

however, we chose to work with blood EVs because, along with its other advantages, we 

were interested in being able to detect differences between the stages of prostate cancer, 

leading to metastasis.  

 There were several biomarker searches conducted from 2012 to 2017 (when our 

work was done) that investigated circulating vesicle protein. Khan et al. (2012) identified 

the prostate cancer associated protein, ‘survivin,’ significantly increased in EV derived 

from cancer patients when compared to those from healthy subjects. PTEN was also 

found within blood EVs of prostate cancer patients, but not in those of healthy subjects 

(Gabriel et al., 2013). Some preliminary work had also been done to examine the 

differences in circulating EV protein that may be associated with prostate cancer 

progression: Park et al. (2016) showed that circulating EV PSMA was in higher 

abundance in accordance with gleason score. Our work however was the first to compare 
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circulating vesicle protein  stage of the prostate cancer, as our samples came from 

patients with T2A, tumour confined to one lobe of the prostate; T3A, the tumour is 

expanding into the extracellular space; and T3B, the tumour has invaded the seminal 

vesicles. Similar studies on stage have been done looking at urine-derived EV protein, 

and found the same potential to differentiate between stages of prostate cancer, as well as 

metastatic vs non-metastatic (Sequeiros et al., 2017; Fujita et al., 2017; Bijnsdorp et al., 

2013), but to this day our work is the only that has used blood-derived EV protein to 

attempt to biomark the stage of non-metastatic cancers.  

Due to meta-analysis in the modern age, studies that repeat an experiment 

involving high-throughput data can also, still be beneficial to the field. With this in mind, 

the comparison between each tumour stage and healthy subjects is also valuable, albeit 

not novel. Another reason blood could be seen as more valuable than urine for collection 

and isolation of EV biomarkers, is that it can be used for many other types of cancers 

beyond prostate cancer. As discussed in the introduction, a lack of standardized collection 

methods for EVs is one of the major factors preventing their widespread use as biomarker 

vehicles. Blood vesicles have the unique potential to meet a standard across all cancer 

biomarkers, even if somewhat more invasive than urine collection. Perhaps in the future, 

our understanding of circulating vesicular biomarkers will be comprehensive enough that 

clinicians will prescribe an annual general cancer screen to detect multiple cancers with a 

single blood test. 
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5.2 mRNA Markers of Comorbidity Between Asthma, PTSD, and MDD 

5.2.1 Summary of Results: 

 For each of the asthma, MDD, and PTSD datasets, a PCA was performed 

revealing no distinct groups between any groups of variables, suggesting that any 

differences between diseased patients and healthy subjects in each dataset were not 

glaring, and also that there was no variance along any other groups from metadata. 

Differential expression analysis of exploration datasets revealed differentially expressed 

genes for each disease between disordered patients and healthy subjects. Many of these 

genes were found to be differentially expressed in the same direction in multiple diseases 

including every combination of severe asthma, moderate asthma, PTSD, MDD, as well as 

every combination of these diseases. This meant that they had the potential to be drivers 

of comorbidity between diseases, and were genes of interest for that reason.  

However, aside from genes commonly expressed in the blood of the asthma 

severities, only 6 genes could be validated, including: STX8, and ARHGAP24 

upregulated in the blood of patients with PTSD and severe asthma; and ORMDL3, 

PTP4A3, SHISA4, and TPPP3, which were downregulated in the blood of patients with 

either PTSD or severe asthma. A gene set enrichment analysis uncovered a number of 

gene sets, particularly from the C7- immune signature gene set catalog, commonly 

upregulated in several of the diseases, including 65 C7 gene sets shared between all 

diseases. 5 immune signature gene sets and 1 curated gene set were validated as being 

either up or downregulated in the blood of both MDD and severe asthma patients, 

including: 
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GSE4748_CYANOBACTERIUM_LPSLIKE_VS_LPS_AND_CYANOBACTERIUM_

LPSLIKE_STIM_DC_3H_DN, 

GSE34205_HEALTHY_VS_RSV_INF_INFANT_PBMC_DN, both more abundantly 

expressed, and GSE22886_NAIVE_BCELL_VS_NEUTROPHIL_UP, 

GSE34205_HEALTHY_VS_FLU_INF_INFANT_PBMC_UP, 

GSE22886_NEUTROPHIL_VS_MONOCYTE_DN, 

JISON_SICKLE_CELL_DISEASE_DN, all less abundantly expressed. These validated 

genes and gene sets could be drivers of, or associated with the comorbidity between 

diseases. STRING analysis was performed to identify networks of proteins coded by the 

genes in the differentially regulated gene sets between MDD and severe asthma. The 

analysis suggested multiple systems including translation and immune function may be 

altered differentially in MDD and severe asthma, which serves as an additional layer of 

evidence of their modulation in comorbidity. 

5.2.2 Contribution to the Field: 

 The scientific community has known of the comorbidity between asthma and 

mental health disorders for decades (Goodwin et al., 2007; Katon et al., 2007), but there 

is still lacking a comprehensive understanding of what drives this comorbidity. As 

mentioned above, there is some evidence that cytokine dysregulation (overexpression of 

protein) may be involved (Jiang et al., 2014), and that there may be some underlying 

genetic factors determined by GWAS (Zhu et al., 2019). In addition to these possibilities, 

based on epidemiological data, early life stress, glucocorticoid resistance, and autonomic 

nervous system dysregulation have been suggested as drivers of comorbidity between 
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asthma and MDD (Van Lieshout et al., 2009). Our study takes advantage of data gathered 

to examine circulating mRNA biomarkers measured in whole blood, to build on the next 

logical step after GWAS studies - to look at transcription underlying the comorbidity, 

rather than polymorphisms of the genes themselves. This type of exploration and 

validation analysis between independent datasets has never been used previously to 

assess the transcriptional similarities between these diseases, and many of the results 

corroborate known malfunctioning or misexpressed proteins in other literature (ex. 

ORMDL3 and ceramide)(Kornhuber and Gulbins, 2021; Miller et al., 2017). Many other 

genes and gene sets we found differentially expressed appear to be entirely novel 

findings, worthy of further investigation. 

 Most differentially expressed gene sets were from the immune signature (C7) 

collection of gene sets, which also supports the notion that immune involvement is 

critical to the development of comorbid asthma and mood disorders. Transcriptomic 

signatures in the blood differ enough to potentially act as biomarkers for mood disorders 

(Rusch et al., 2019; Leday et al., 2018). Therefore, immune cells circulating between 

blood and brain may not only be the carriers of these unique transcriptomic signatures, 

but may also be the mediators of asthma and mood disorder comorbidity.  

5.3 Blood and Hippocampal Expression of RNAs Following Psychobiotic Treatment 

5.3.1 Summary of Results: 

 A PCA of circulating mRNA in our mice showed PBS and LR6475-fed mice 

clustered together, and JB1 fed mice scattered far from them. To determine why blood 

expression in JB1 mice differed so greatly from the other feed groups, a differential 
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expression analysis was performed. As the PCA would suggest, dozens of individual 

mRNAs were found significantly different from PBS-fed mice, and close to a dozen 

mRNAs were also found differentially upregulated in JB1-fed mice compared to 

LR6475-fed. Many of these were upregulated in JB-fed mice in both comparisons, 

including: FKBP1A, SNRPN, CELF4, GPM6B, APBB1, NCDN, RUNDC3A, CPE, and 

CLSTN1. As anticipated, there were no individually expressed circulating mRNAs 

between LR6475 and PBS-fed mice. JB1-fed mice became further differentiated from the 

other feed groups after performing a gene set enrichment analysis, which revealed several 

differentially expressed Hallmark and KEGG gene sets, expressed in both directions and 

in most cases in both JB1 feed group comparisons.  

A PCA was performed on mRNA expression data in the hippocampus of these 

same mice, revealing a separation between PBS and psychobiotic fed mice clusters, with 

no clear distinction between LR6475 and JB1 fed mice. Some of the differences between 

PBS and JB1-fed mice could be explained by differential expression analysis of 

individual hippocampal genes, as two were found significantly upregulated in JB1-fed 

mice: TPPP3, and SGK1. Gene set enrichment analysis elucidated a bit more of the 

difference, as KEGG_RIBOSOME was enriched in the hippocampuses of both 

psychobiotic-fed mice compared to PBS-fed, and 

KEGG_VIBRO_CHOLERAE_INFECTION was also enriched in LR6475 vs PBS. This 

snapshot of ribonucleic acid expression in the blood and hippocampus of mice fed 

bacteria have helped to uncover some of the mechanisms behind how mood-altering 

bacteria may function. 
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Finally, a separate weighted correlation network analysis was conducted for both 

blood and hippocampal mRNA. In the blood, this revealed significant associations in two 

particular eigengenes with both JB1 and PBS, however no eigengenes were significantly 

associated with LR6475. In the hippocampus, JB1 and PBS had significant associations 

with eigengenes, but not the same ones. As in the blood, LR6475 was not significantly 

associated with any eigengenes. This analysis serves as a separate confirmation of 

differences between groups seen in the PCAs for blood and hippocampus, and is further 

justification for the results from the differential expression and enrichment analyses. 

5.3.2 Contribution to the Field: 

 In previous studies done by our group that identified the vagus nerve, and immune 

system as necessary for the behavioral effects of JB1, a small amount of expression data 

from the hippocampus was also collected (Bravo et al., 2011; Bharwani et al., 2017; Liu 

et al., 2020). This data revealed altered levels of GABA in different brain regions (Bravo 

et al., 2011). As this data was collected via qPCR, however, a limited number of 

interesting potentially differentially expressed genes went unobserved. This work is both 

the first, and most thorough analysis of transcription in the hippocampus of mice fed JB1, 

as well as the blood. It is a detailed look at what transcriptional changes occur system-

wide that may contribute to the anti-depressant and anti-anxiolytic effects seen after JB1 

feeding.  

 Some differential expression analysis studies have been performed examining the 

effects of LR6475 feeding in relation to bone density (Collins et al., 2016; Quach et al., 

2019). One study fed LR6475 to female mice, and examined differential transcript 
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expression in bone marrow and intestinal tissue (Collins et al., 2016). Quach et al. (2019) 

examined the differential expression of differentiating osteoclast cell line, RAW264.7 in 

the presence of LR6475. LR6475 has also been shown to regulate immune modulation 

and histamine production via expression of its gene rsiR (Hemarajata et al., 2013). Little 

is known about altered transcription induced by LR6475 feeding in the brain, although 

consumption has been shown to upregulate oxytocin in the hypothalamus (Buffington et 

al., 2016), which is thought to promote social behaviour by stimulating the mesolimbic 

dopamine reward system. Our work is the most thorough examination of LR6475 altered  

mRNA expression in the hippocampus and blood to date, and suggests that changes in 

social behaviour caused by LR6475 are not due to changes in transcription.  

 This comprehensive expression data, and detailed analysis of mRNA in the blood 

and hippocampus of mice fed two differently functioning psychobiotics serves the 

general understanding of the gut-brain axis as well, although it was not the focus of the 

study. Being able to compare the gene expression in mice after feeding mood-altering 

bacteria could prove valuable in future meta-analyses that seek to understand the brain, 

gut, and blood - through which they can communicate. 

5.4 Concluding Remarks 

 Here, I, with the help of my colleagues: identified protein biomarkers for prostate 

cancer stages within EV circulating in the blood; assessed potential drivers of 

comorbidity between asthma, PTSD, and MDD, via an examination of transcription 

within the blood; and characterized many differentially expressed transcripts that may 

play a role in the mood-altering of psychiobiotics, within the hippocampus and blood of 
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mice. This body of work spans several fields, but together, it illustrates the utility of high-

throughput omics data, the depth, and breadth of information that is contained within 

blood, and the versatility of that information for addressing manifold challenges within 

medical science.  
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