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Abstract
In this thesis, we study the asymptotic behaviour and applications of a class of time
series with varying coefficients. More specifically, we establish the large deviation prin-
ciples and the moderate deviation principles for the first-order autoregressive models.
The ADF and KPSS, two different methods, are then used to test the stationarity and
conintegration of the annual average temperature series for the hemispheric, continental,
and individual cities. We confirm that these series adhere to varying coefficient model.
Finally, we examine some regions’ extreme rainfall series and show that they should
follow the ARCH model.

Keywords: Central Limit Theorem, Large Deviation Principle, ADF, KPSS, Varying
Coefficient Autoregressive Model, Cointegration
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Chapter 1

Introduction

Time series analysis is a statistical method for processing dynamic data based on stochas-

tic process theory and mathematical statistics. It has become a standard statistical

method in many industries and is widely used in many fields of social and natural sci-

ences such as economics, finance, meteorology, and astronomy. One of the main topics

of our discussion as a time series model is its stationarity. When performing regression

analysis on non-stationary time series, we will reach some incorrect conclusions, which is

known as the "Spurious Regression" problem. This means that the two series are linked

but not causally. Currently, the most common method for testing time series stationar-

ity is to estimate the time series coefficients.

Because of its simple structure, an autoregressive time series, particularly of order one

which is denoted by AR(1), has received a lot of attention recently. In the case of an

AR(1) process with a fixed coefficient, the model is as follows:

Yt = ϕYt−1 + εt, t = 1, 2, ..., T
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where ϕ ∈ R is unknown. (Yt)0≤t≤T is observed and (εt)0≤t≤T is a sequence of centred,

independent and identically distributed random variables valued in R. The value of ϕ

determines the stationarity of this process:

1. If |ϕ| < 1, the process {Yt} is a stationary process;

2. If |ϕ| ≥ 1, the process {Yt} is a non-stationary process.

More specifically, if ϕ = 1, the process is called the Unit Root process.

There is one estimator of ϕ which is widely used in times series analysis. It is called the

least squares estimator:

ϕ̂ =
∑T

t=1 YtYt−1∑T
t=1 Y 2

t−1

Over the past three decades, there have been many studies on the asymptotic behaviour

of ϕ̂ when the sample size becomes large. If the series is a stationary process, the asymp-

totic distribution of ϕ̂ should follow the central limit theorem. But if the series is not

stationary, the asymptotic distribution of ϕ̂ will be different. Dickey and Fuller[9] have

been at the forefront of this research. In 1979, they firstly provided the asymptotic

distribution result for least squares estimator ϕ̂ when the value of ϕ is equal to one.

Because the parameters have different asymptotic distributions in different cases, we

can use the hypothesis testing method to determine whether the time series parameters

meet the above conditions using the p-value to confirm whether the series is stationary

or not. This method is also known as the Dickey-Fuller method. Phillips[20] applied

this method to the case in 1986, allowing for weakly dependent and heterogeneously dis-

tributed innovations. Concurrently, many researchers have provided the large deviation
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theory of the least squares estimator for this model, which goes a step further in helping

us understand the estimator’s asymptotic behaviour when it is close to the actual value.

Bercu[1, 3] established the large deviation principle in the AR(1) with stationary and

non-stationary cases first. Miao and Shen[29] established the moderate deviation prin-

ciple for the least squares estimator in the stationary AR(1) process in 2009. Large and

moderate deviation results provide refined information on the central limit theorem and

the law of large numbers.

Recent studies have considered models where the regression coefficients depend on the

sample size. In other words, one would update the regression coefficients as more obser-

vations become available. The first known model, the varying coefficient model (VCM)

was introduced by Hastie and Tibshirani[13] to allow the regression coefficients to vary

systematically and smoothly in more than one dimension. VCMs are useful tools in

applied work in economics as they can be used to model parameter heterogeneity in a

general way. The varying coefficient model allows for a significant impact on the dy-

namic structure of the data and some flexibility in the volatility features, which are

not available in a fixed coefficient model. For example, Hong and Lee[14] used a vary-

ing coefficient model to forecast nonlinearity in the conditional mean of exchange rate

changes, allowing the autoregressive coefficients to vary with investment positions. Li

and Chen[28] also built a varying coefficient functional autoregressive model for US Trea-

sury bonds, which characterises non-constant dependence between functional predictors

and functional responses using a time-varying operator. Because of the unique structure

3



of the varying coefficient model, the time series’ stationarity may change as the coeffi-

cient changes. Park[19] discovered that some econometric models with time series have

weak unit roots, which are roots that are close to unity. Consider the following AR(1)

process:

Yt(n) = ϕnYt−1(n) + εt, t = 1, 2, ..., n (1.1)

where ϕn = 1 − γ
an

, γ is a positive constant and {an} is a sequence of constants which

increases to infinity. When the number of observations is small, the coefficient in this

model is strictly less than one, and the series is stationary. However, the nature of this

series will change as the number of data points increases. If we simply judge whether

the time series is stationary based on the estimator’s asymptotic distribution, the result

may be incorrect.

In recent years, there has been a lot of activity in the research on the relationships

between temperatures/extreme rainfalls and global warming. One obvious question is

whether the varying coefficient models can be used in this context. As we all know, the

greenhouse effect can cause significant changes in temperature and rainfall. Stern and

Kaufmann[23] demonstrated that the unit root should be present in global and hemi-

spheric annual temperature time series from 1850 to 2000. However, if we only test

these time series with data from 1850 to 1900, we will find that they do not contain

unit root. As a result, we believe that the coefficient of these time series will change

over time and that it should be formulated through a varying coefficient model. There-

fore, understanding the asymptotic behaviour of the estimator will significantly aid our

future tests of such models. Chan and Wei[4] provided the asymptotic distribution of

4



the least squares estimator of the varying coefficient model (1.1) with the form of ϕT as

ϕT = 1 − 1
aT

.

The contributions of this thesis are two folds. The first main result established in this

thesis is the large and moderate deviation results for least squares estimators with the

coefficient ϕT in the form of 1 − 1
f(T ) . For the large deviation principle of the estima-

tor, it can be shown that the result is the same as the critical case. In contrast, for

the moderate deviation principle, we need additional conditions. The rate function is

also different from the fixed-parameter model. We gain a more refined understanding of

the asymptotic behaviour of the model’s estimators as a result of these findings. The

application of varying coefficient models in data analysis for temperature and extreme

rainfalls is the second main result. It turns out that the annual average temperature

series of different regions follow the varying coefficient autoregressive model. Since the

extreme rainfalls data is localized, the random noise is dominant and the VCM does not

seem to be appropriate. The situation is expected to change if the data is not localized.

In Chapter 2, we introduce some definitions and developments in probability theory, such

as the law of large numbers, the central limit theorem, and the large deviation principle.

Both theories were developed first for independently and identically distributed variable

sequences. However, when certain conditions are met, variables that are not independent

or differently distributed still satisfy the central limit theorem and the large deviation

principle.

5



In Chapter 3, we define time series and introduce stationarity. Then, based on the dis-

tinction between stationary and non-stationary time series models, we present some spe-

cial time series models. Following that, we introduce the ordinary least squares estima-

tion in the AR(1) model and discuss some asymptotic results. We also present two differ-

ent methods for testing the stationarity of time series: Augmented Dickey–Fuller(ADF)

Test and Kwiatkowski–Phillips–Schmidt–Shin(KPSS) Test. The theory of cointegration

is then introduced, which allows us to perform a combinatorial analysis of nonstationary

time series. Finally, we present the heteroscedastic time series model, which enables the

residual sequence of time series to satisfy the conditional variance structure.

The first main result will be presented in Chapter 4. We start with a definition of the

VCM. Then, in the varying coefficient AR(1) model, we present the asymptotic theory of

the OLS estimator, including the central limit theorem and the large deviation principle.

We first prove the existence of upper and lower bounds for the large deviation in the

large deviation principle section. The limit of these two bounds is used to demonstrate

that they converge to the same value. Second, we derive the OLS estimator’s moderate

deviation principle.

We will present the second main result in Chapter 5. We will examine annual average

temperature and extreme rainfall data from a variety of locations. It will be shown that

the annual average temperature of most countries and cities follows the varying coeffi-

cient autoregressive model using various statistical methods. However, the test results

for the extreme rainfall data do not match what we expected. We found that the se-

ries’ characteristics do not match to the varying coefficient after testing them. We are

6



unsure of its development trend due to a lack of data. Furthermore, we can only find

data for individual stations and not average data for a country or region. As a result,

it is impossible to confirm the actual rainfall sequence model. However, we examined

the residual series of the extreme rainfall and discovered that for some locations, the

residuals exhibit heteroscedasticity.

7



Chapter 2

Asymptotic Theory in Probability
Theory

Asymptotic theory is an integral part of probability theory. Many results become the

foundations for statistical inference. In this chapter, we present the necessary definitions

and discuss closely related results on the law of large numbers, the central limit theorem,

the large deviation principle, and the moderate deviation principle.

2.1 Law of Large Numbers

Let (Ω, F , P ) be a probability space and (R, B) be the one dimensional Euclidean mea-

surable space with the Borel σ-field B.

Theorem 2.1.1 (One Dimension Weak Law of Large Numbers) Let X1, X2, ... be a

sequence of i.i.d. random variables on probability space (Ω, F , P ) with finite expectation

µ and covariance σ2 < ∞, then

X̄n := X1 + X2 + · · · + Xn

n
P→ µ

where X̄n is called the sample mean and P→ denotes convergence in probability.
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According to the law, the average of random variables should be close to the expected

value as n approaches infinity.

2.2 Central Limit Theorem

Theorem 2.2.1 (Central Limit Theorem) Let X1, X2, ..., Xn be a sequence of indepen-

dent and identically distributed, real-valued random variables with mean µ and covariance

σ2 < ∞ on probability space (Ω, F , P ), then

Zn :=
√

n(X̄n − µ)
σ

D−→ N(0, 1)

where D→ denotes convergence in distribution.

The central limit theorem (CLT) establishes that, in many situations, when independent

random variables are summed up, their properly normalized sum tends toward a normal

distribution even if the original variables themselves are not normally distributed. In

some cases, the random variables may not be identically distributed. As a result, we

have a more general theorem known as the Lindeberg-Feller Central Limit Theorem.

Theorem 2.2.2 Suppose that X1, X2, ... are independent random variables on probabil-

ity space (Ω, F , P ) such that E[Xi] = µi and V ar[Xi] = σ2
i < ∞. Also let s2

n :=
∑n

i=1 σ2
i .

If this sequence of independent random variable Xi satisfies the Lindeberg’s condition:

lim
n→∞

1
s2

n

n∑
i=1

E[(Xi − µi)1|Xi−µi|>εsn
] = 0

9



for all ε > 0, then

Zn :=
∑n

i=1(Xi − µi)
sn

D−→ N(0, 1)

Furthermore, if the sequence of random variables Xi are not independent, we have a

more general theorem which is called the Martingale Difference Central Limit Theorem.

Definition 2.2.1 Let {Xn} and {Yn} be sequences of random variables on probability

space (Ω, F , P ). We said that {Xn} are martingale differences with respect to {Yn} if

Xn = f(yn, yn−1, ...)

for some function f and

E[Xn+1|Yn, Yn−1, ...] = 0

Theorem 2.2.3 Let {Xn} be martingale differences with respect to {Yn}. Suppose that

{Xn} obeys the conditional Lindeberge condition, namely, for any ε > 0

lim
n→∞

1
s2

n

n∑
i=1

E[X2
i 1|Xi|>εsn

|Yi−1, Yi−2, ...] = 0

and

lim
n→∞

1
s2

n

n∑
i=1

E[X2
i |Yi−1, Yi−2, ...] = 1

then

X1 + X2 + · · · + Xn

n
D→ N(0, 1)

10



2.3 Large Deviation Principle

Let {Pε} be a family of probability measures on the measurable space (R, B). Large

deviation principle characterizes the limiting behavior of the family of probability mea-

sures {Pε} in terms of a rate function as ε → 0. The behavior is shown by asymptotic

upper and lower exponential bounds on the values that Pε assigns to measurable subsets

of X . To provide the complete large deviation principle, we firstly introduce some basic

definitions.

Definition 2.3.1 A rate function I is a lower semi-continues mapping

I : X → [0, ∞].

A good rate function is a rate function for which all the level sets ΨI(α) ≜ {x : I(x) ≤ α}

are compact subsets of R. The effective domain of I, denoted DI , is the set of points in

X of finite rate, namely,

DI
∆= {x : I(x) < ∞}

Note that if X is a metric space, the lower semicontinuity property may be checked on

sequences, i.e., I is lower semicontinuous if and only if lim infxn→x I(xn) ≥ I(x) for all

x ∈ X . A consequence of a rate function being good is that its infimum is achieved over

closed sets.

Now, we can provide the formal definition of the large deviation principle (LDP) and

the moderate deviation principle (MDP).

11



Definition 2.3.2 Let {Pε} be a family of probability measures on the measurable space

(X , BX ) which satisfies the large deviation principle with a rate function I if for all

Γ ∈ BX , Γ̄, the closure of Γ and Γ◦, the interior of Γ satisfies

− inf
x∈Γ◦

I(x) ≤ lim inf
ε→0

ε log µε(Γ) ≤ lim sup
ε→0

ε log µε(Γ) ≤ − inf
x∈Γ̄

I(x)

The right and left hand sides of above equation are referred to as the upper and lower

bounds, respectively. Since µε(X ) = 1 for all ε, it is necessary that infx∈X I(x) = 0

for the upper bound to hold. When I is a good rate function, it means that there

exists at least one point x which can satisfies the equation I(x) = 0. In many cases,

a countable family of measures Pn is considered. Then the LDP corresponds to the

following statement

Definition 2.3.3 A sequence of random variables (Xn) with the probability space (Ω, F , P )

satisfies an Large Deviation Principle with speed an and rate function I if an → ∞ and

for each A ∈ B

lim inf
n→∞

1
an

log P (Xn ∈ A) ≥ − inf
x∈A◦

I(x)

lim sup
n→∞

1
an

log P (Xn ∈ A) ≤ − inf
x∈Ā

I(x)

where A◦ and Ā denote the interior and the closure of A, respectively.

12



Let (an) be a sequence of increasing positive numbers satisfying 1 = o(a2
n) and a2

n = o(n),

an → ∞,
an√

n
→ 0

Definition 2.3.4 (Moderate Deviation Principle). We say that a sequence of random

variables (Xn)n≥1 on the probability space (Ω, F , P ) satisfies an MDP with speed a2
n such

that the inequalities in definition 2.3.3 hold, and the rate function I : X → [0, ∞) if the

sequence (
√

nMn

an
)n satisfies an LDP with speed a2

n and rate function I.

2.3.1 Cramér’s Theorem

In the Large Deviations Principle, the most classical result is Cramér’s Theorem. It was

established in Cramér[7], which concerns the large deviation principal associated with

the empirical mean of independent and identically distributed random variables valued

in a finite d−dimensional space. Specifically for dimension one, considering the empirical

mean

Ŝn = 1
n

n∑
j=1

Xj

where X1, ..., Xn, ... are independent and identically distributed one dimensional ran-

dom variables with X1 distributed according to the probability law P . The logarithmic

moment generating function associated with the law P is defined as

Λ(λ) = log E[eλX1 ].

13



We also call Λ(·) as the cumulant generating function. It has the following properties:

Proposition 2.3.1 Suppose that λ is the cumulant generating function of a random

variable X, then Λ(λ) has the following properties:

1. Λ(0) = 0;

2. Λ(λ) > −∞ for all λ;

3. Λ is convex;

4. Λ is a continuous function.

To get the rate function, we consider the Fenchel-Legendre transformation of the cumu-

lant generating function Λ(λ) below:

Definition 2.3.5 The Fenchel-Legendre transform of Λ(λ) is

Λ∗(x) := sup
λ∈R

{λx − Λ(λ)}

where DΛ∗ := {x ∈ R : Λ∗(x) < ∞} is the domain of Λ∗.

Proposition 2.3.2 Suppose that Λ∗ is the Fenchel-Legendre transform of the cumulant

generating function of a random variable X, then Λ∗(x) has the following properties:

1. Λ∗(x) ≥ 0 for all x

2. Λ∗ is convex

3. Λ∗ is lower semicontinuous.

We now present the first fundamental large deviation result.

14



Theorem 2.3.1 (Cramér′s Theorem) For every closed subset F ⊂ R,

lim sup
n→∞

1
n

log P (Ŝn ∈ F ) ≤ − inf
x∈F

Λ∗(x)

and for every open subset G ⊂ R,

lim inf
n→∞

1
n

log P (Ŝn ∈ G) ≥ − inf
x∈G

Λ∗(x)

2.3.2 Gärtner Ellis Theorem

Cramér’s Theorem is limited to the i.i.d cases. However, the large deviation theorem

can be extended to the non-i.i.d. case. Consider a sequence of random variables Xn ∈ R,

where Xn possesses the law Pn and logarithmic moment generating function

Λn(λ) = log E[eλXn ]

The existence of a limit of properly scaled logarithmic moment generating functions

indicates that Pn may satisfy the LDP. Specifically, the following assumption is imposed

throughout this section.

Assumption 2.3.1 For each λ ∈ R, the logarithmic moment generating function, de-

fined as the limit

Λ(λ) = lim
n→∞

1
n

Λn(nλ)
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exists as an extended real number. Further, the origin belongs to the interior of DΛ =

{λ ∈ R : Λ(λ) < ∞}.

In particular, if Pn is the law governing the empirical mean Ŝn of i.i.d. random variables

Xi ∈ R, then for every n ∈ N

1
n

Λn(nλ) = Λ(λ) = log E[eλX1 ]

and assumption 2.3.1 holds whenever 0 ∈ D◦
Λ which is the interior of DΛ.

Let Λ∗(·) be the Fenchel-Legendre transform of Λ(·) with DΛ∗ = {x ∈ R : Λ∗(x) < ∞}.

Definition 2.3.6 y ∈ R is an exposed point of Λ∗ if for some λ ∈ R and all x ̸= y,

λy − Λ∗(y) > λx − Λ∗(x)

λ in above equation is called an exposing hyperplane.

Definition 2.3.7 A convex function Λ : R → (−∞, ∞] is essentially smooth if

1. D◦
Λ is non-empty;

2. Λ(·) is differentiable throughout D◦
Λ;

3. Λ(·) is steep, namely, limn→∞ |▽Λ(λn)| = ∞ whenever {λn} is a sequence in D◦
Λ

converging to a boundary point of D◦
Λ.

Theorem 2.3.2 (Gärtner-Ellis)[8] Let Assumption 2.3.1 hold. Then the followings

hold.
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1. For any closed set F

lim sup
n→∞

1
n

log Pn(F ) ≤ − inf
x∈F

Λ∗(x)

2. For any open set G

lim inf
n→∞

1
n

log Pn(G) ≥ − inf
x∈G

⋂
F

Λ∗(x)

where F is the set of exposed points of Λ∗ whose exposing hyperplane belongs to

D◦
Λ

3. If Λ is an essentially smooth, lower semicontinuous function, then the LDP holds

with the good rate function Λ∗(·).
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Chapter 3

Topics on Time Series

A time series is a collection of random variables that are indexed in time. It can range

between −∞ and +∞. Time series can be found in many fields, including climatology,

economics, and finance. This chapter will define time series and discuss some special

time series models.

3.1 Definition of Time Series

Definition 3.1.1 A time series model for the observed data {xt} is a specification of

the joint distributions of a sequence of random variables {Xt} of which {xt} is postulated

to be a realization.

Some statistical characteristics must be provided for a time series in order to describe

its properties. There are three main quantity features:

Definition 3.1.2 (Mean function) For a stochastic process {Xt : t = 0, ±1, ±2, ...}, the

mean function is defined by

µt = E[Xt], t = 0, ±1, ±2, ...

18



Definition 3.1.3 (Autocovariance function) The autocovariance function γt,s is defined

as

γt,s = Cov(Xt, Xs) for t, s = 0, ±1, ±2, ...

Definition 3.1.4 (Autocorrelation function) The autocorrelation function(ACF) ρt,s is

defined as

ρt,s = Corr(Xt, Xs) for t, s = 0, ±1, ±2, ...

where

Corr(X, Y ) = Cov(X, Y )√
V ar(X)V ar(Y )

In order to conduct statistical inferences based on observed records, it is necessary to

make some assumptions on the underlying time series. The most critical assumption is

that the series should be stationary time series. Intuitively, "Stationary" means that the

statistical characteristics of a series, mean and autocorrelation do not change over time.

Definition 3.1.5 A time series {Xt} is said to be weakly (or second-order) stationary

if

1. The mean function is constant over time: µt = E[Xt] = c where c is any constant;

2. The autocorrelation function ρt,t−k = ρ0,k for all time t and lag k.

For a weakly stationary time series, the variance of the series can be represented as

γt,t = γ0
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and its autocorrelation function can be represented as

ρk = γk

γ0

3.2 Long Memory Time Series

We can divide time series into long memory and short memory series based on the

structure of the corresponding ACF.

Definition 3.2.1 Suppose {Xt} is a stationary time series with autocorelation function

ρτ . If ρτ satisfies

lim
n→∞

n∑
τ=−n

|ρτ | < ∞

then {Xt} is called a short memory time series.

Therefore, it is easy to show that the ACF is an even function and for every k ∈ N we

have |ρk| ≤ 1. The ACF decreases rapidly as k increases for a short memory time series,

but slowly as k increases for a long memory time series.

3.2.1 R/S Test

We can use the R/S test to determine whether a time series is a long memory time series.

Suppose {Xt} is a time series. The sample mean of n observations is defined as

X̄n = 1
n

n∑
i=1

Xi
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The R/S test statistic is defined as

Qn = R(n)
S(n)

where

R(n) = max
1≤k≤n

k∑
j=1

(Xj − X̄n) − min
1≤k≤n

k∑
j=1

(Xj − X̄n)

and

S(n) = [ 1
n

n∑
j=1

(Xj − X̄n)2]
1
2 .

When n → ∞, it can be shown that

H = lim
n→∞

log Qn

log n

If H ≤ 0.5, it means that the time series {Xt} is a short memory time series, but if

H > 0.5, the series will be a long memory time series.

3.3 Model for Stationary Time Series

3.3.1 White Noise Process

The first example of stationary time series is the white noise process.

Definition 3.3.1 A stochastic process {Xt}, with mean zero is said to be a white noise

process, if all variables in the process are assumed to be uncorrelated with mean 0 and

variance σ2. If all variables in the process are assumed to be independent and identically
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distributed with mean 0 and variance σ2, then {Xt} is called independent white noise

process. Furthermore, if all variables in the process are independent and identically

distributed as normal with mean zero and variance σ2, then {Xt} is called Gaussian

white noise process.

3.3.2 Autoregressive Model

Autoregressive model is a special time series model which is widely used in economics

and weather. It captures the linear relationship between the series at a certain time t

and the series values at the previous p time.

Definition 3.3.2 A stochastic process, {Xt}, with zero mean is said to be an autore-

gressive process of order p, AR(p), if it can be represented as

Xt =
p∑

i=1
ϕiXt−i + εt

where {εt} is a white noise process. And its AR characteristic polynomial is defined as

ϕ(x) = 1 − ϕ1x − ϕ2x2 − · · · − ϕpxp

Furthermore, when ϕ(x) = 0, it is called an AR characteristic equation.

If the value p = 1, the model will be called the first-order autoregressive process:
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Definition 3.3.3 A stochastic process, {Xt}, with zero mean is said to be an autore-

gressive process of order 1, AR(1), if it can be represented as

Xt = ϕXt−1 + εt

where {εt} is a white noise process. And its AR characteristic polynomial is represented

as

ϕ(x) = 1 − ϕx

Theorem 3.3.1 For an AR process, it is weakly stationary if and only if the roots of

the AR characteristic equation exceed 1 in absolute value.

As a result of Theorem 3.3.1, we can obtain the following result.

Theorem 3.3.2 For an AR(1) process, it is an stationary process if and only if |ϕ| < 1.

3.3.3 Moving Average Model

The moving average model is a linear model of the white noise process that is defined

as follows:

Definition 3.3.4 A stochastic process, {Xt}, with zero mean is said to be an moving

average process of order q, MA(p), if it can be represented as

Xt = εt + θ1εt−1 + · · · + θqεt−q

where {εt} is a white noise process.
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3.3.4 Mixed Autoregressive Moving Average Model

When we assume that the series is partly autoregressive and partly moving average,

we obtain a very general time series model known as the mixed autoregressive moving

average model.

Definition 3.3.5 A stochastic process, {Xt}, with zero mean is said to be an mixed

autoregressive moving average model of orders p and q, ARMA(p, q), if it can be repre-

sented as

Xt = ϕ1Xt−1 + ϕ2Xt−2 + · · · + ϕpXt−p + εt + θ1εt−1 + · · · + θqεt−q

where {εt} is a white noise process.

The stationarity of the ARMA process is determined by its AR components, and we

have the following theorem.

Theorem 3.3.3 For an ARMA process, it is weakly stationary if and only if the roots

of the AR characteristic equation exceed 1 in absolute value.

3.4 Model for Non-Stationary Time Series

3.4.1 Wiener Process

Definition 3.4.1 A stochastic process {W (t)} is called a wiener process if it satisfies

the following four conditions:

1. W (0) = 0
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2. W (t) has independent increments: for every t > 0, the future increments W (t +

u) − W (t), u ≥ 0 are independent of the past values W (s), s ≤ t

3. W (t) has Gaussian increments: W (t + u) − W (t) ∼ N(0, σ2u) where σ > 0 is a

constant.

4. W (t) has continuous paths: W (t) is continuous in t.

Based on above definition, we could find that

V ar(W (t)) = tσ2

It is clear that the variance of the process depends on time and will go to infinity with

time t → ∞. Therefore, the Wiener process is not stationary. If we let t = 1, 2, ... ∈ N,

then we could find

εt := W (t) − W (t − 1) ∼ N(0, σ2) (3.1)

which means that the increments of wiener process {εt} is a Gaussian white noise process

and it is a stationary process.

Definition 3.4.2 If W (t) is a wiener process with mean zero and variance t, then

B(t) = W (t) − t

T
W (T )

is called a Brownian bridge for t ∈ [0, T ].
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3.4.2 Integrated Series

Definition 3.4.3 A series with no deterministic component which has a stationary,

ARMA representation after differencing d times, is said to be integrated of order d,

denoted Xt ∼ I(d).

For ease of exposition, only the values d = 0 and d = 1 will be considered in much of

the paper. For d = 0, {Xt} will be a stationary series which is referred to as an I(0) or

a "level stationary" process. For d = 1, the change of {Xt} will be a stationary series.

Therefore, the process {Xt} is referred to as an I(1) process. A process that requires

differencing twice to achieve stationarity is referred to as an I(2) process. There are

substantial differences in appearance between I(0) series and I(1) series.

1. If Xt ∼ I(0)

(a) Variance of Xt is finite;

(b) Autocorrelation ρk decrease steadily in magnitude for large enough k.

2. If Xt ∼ I(1)

(a) Variance of Xt goes to infinity as t goes to infinity;

(b) Autocorrelation ρk goes to 1 for all k as t → ∞.

For a first-order autoregressive model, we already know that the model is stationary

only when |ϕ| < 1, and when ϕ = 1, the model will be an I(1) process. We also name it

as Unit Root process. The first difference of this model will be the white noise process,

which is stationary.
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3.5 Parameter Estimation

For an AR(1) process, the value of ϕ plays a vital role. Because its value determines

the stationarity of the process. To estimate its value, least squares method is a most

common way which could provide an unbiased estimator. According to the structure of

AR(1) model, we can provide the asymptotic distribution of least squares estimator ϕ̂

under the stationary and non-stationary case.

3.5.1 Ordinary Least Squares Estimation

For an AR(1) process {Yt} where

Yt = ϕYt−1 + εt, t = 1, 2, ..., T (3.2)

and

1. εt is a Gaussian white noise process;

2. Y0 = y0 which is any fixed constant;

3. y1, y2, ..., yT are observed values of {Yt}t=1,2,..,T .

By Ordinary Least Squares (OLS) method, we could estimate the value of ϕ by

ϕ̂T =
∑T

t=1 Yt−1Yt∑T
t=1 Y 2

t−1
(3.3)
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Theorem 3.5.1 In AR(1) process, the least squares estimator ϕ̂T in equation (3.3) is

an unbiased estimator of ϕ with variance σ2∑T

t=1 y2
t−1

.

The difference between estimator ϕ̂ and the true value ϕ is as follows:

ϕ̂T − ϕ =
∑T

t=1 Yt−1εt∑T
t=1 Y 2

t−1

3.5.2 Asymptotic Distribution of Estimator

First of all, based on the Definition 2.2.1, it is easy to show that {Yt−1εt} is a martingale

difference with respect to {εt}. Therefore, we can prove that the least squares estima-

tor ϕ̂T satisfies the law of large number and central limit theorem under some specific

conditions.

Theorem 3.5.2 (Weak Law of Large Numbers) For a first order Autoregressive model

{Yt}, if |ϕ| < 1, the ordinary least squares estimator ϕ̂T converges in probability to ϕ.

Theorem 3.5.3 For an AR(1) process in equation (3.2) with |ϕ| < 1, (ϕ̂T − ϕ) satisfies

the Linderberg’s condition so that

τT :=
(
∑T

t=1 Y 2
t−1)

1
2

σ
(ϕ̂T − ϕ) D−→ N(0, 1)

When ϕ = 1, AR(1) process is an integrated I(1) series. The first difference of this model

will be the white noise process {εt}. We can get the following asymptotic distribution

from [21]:
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1. T − 1
2

∑T
t=1 εt

D→ σW (1)

2. T − 3
2

∑T
t=1 Yt−1

D→ σ
∫ 1

0 W (r)dr

3. T −2 ∑T
t=1 Y 2

t−1
D→ σ2 ∫ 1

0 W (r)2dr

4. T −1 ∑T
t=1 Yt−1εt

D→ 1
2σ2(W 2(1) − 1)

5. T
3
2

∑T
t=1 tεt

D→ σ
∫ 1

0 rdW (r)

6. T − 5
2

∑T
t=1 tYt−1

D→ σ
∫ 1

0 rW (r)dr

where σ2 is the variance of εt. Based on above result, we could get the following result:

Theorem 3.5.4 For an AR(1) process in equation (3.2) with ϕ = 1

τT
D−→

1
2(W 2(1) − 1)

(
∫ 1

0 W 2(r)dr)1/2

Therefore, based on the above two theorems, the statistic τT will converge to a standard

normal distribution if the process is stationary. But when process is non-stationary, the

variable τT will converge to a lévy process which is a stochastic process with independent,

stationary increments. Based on the asymptotic distribution of τT , we can determine

whether the value of ϕ is less than or equal to one.

3.5.3 Large Deviation Principle

In previous sections, it has been shown that the least squares estimator ϕ̂ is an unbiased

estimator. This estimator ϕ̂ should converge to its true value ϕ. But there still should

be a probability that the estimator ϕ̂ is far from its true value. We can use the large
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deviation principle to find the probability of the event that the estimator is far from its

true value.

Theorem 3.5.5 [3] For an AR(1) process in equation (3.2) with |ϕ| < 1, the law of the

Yule-Walker estimator ϕ̃T =
∑T

t=1 Yt−1Yt∑T

t=0 Y 2
t

satisfies a large deviation principle with speed

T and good rate function

I(x) =


1
2 log(1+ϕ2−2ϕx

1−x2 ) if x ∈ [−1, 1]

∞ otherwise

Theorem 3.5.6 [29] Suppose that the moderate deviation scale (bT ) is a sequence of

positive numbers satisfying

bT → ∞,
bT√

T
→ 0 as T → ∞

Then
√

T
bT

(ϕ̂T − ϕ) as well as
√

T
bT

(ϕ̃T − ϕ) satisfie the large deviation principle with speed

b2
T and rate function

I(x) = x2

2(1 − ϕ2)

For the unit root process, even the process is non-stationary, the Yule-Walker estimator

ϕ̂T still satisfies the large deviation principle:

Theorem 3.5.7 [1] For an AR(1) process in equation (3.2), if ϕ = 1, the law of the

Yule-Walker estimator ϕ̃T satisfies a large deviation principle with speed T and good rate
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function

I(x) =


1
2 log( 2

1+x) if x ∈ (−1, 1]

∞ otherwise

and if ϕ = −1, the law of the Yule-Walker estimator ϕ̃T satisfies a large deviation

principle with speed T and good rate function

I(x) =


1
2 log( 2

1−x) if x ∈ [−1, 1)

∞ otherwise

Based on above theorems, we can find that the rate function could help us determine

how fast the estimator converges.

3.6 Deterministic Trend

A trending mean is a common stationarity violation. For non-stationary series with a

trending mean, there are two popular models. The first is known as trend stationary.

That is, the mean trend is deterministic. The residual series is a stationary stochastic

process after the trend is estimated and removed from the data. The second is known

as a stochastic trend. This indicates that the mean trend is stochastic. A stationary

stochastic process is obtained by differencing the series d times. The distinction between

deterministic and stochastic trends has significant implications for a process’s long-term

behaviour. In the long run, a time series with a deterministic trend will always revert

to the trend. However, if the series has a stochastic trend, it will never recover from
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system shocks. The Mann-Kendall test is the most commonly used test in time series to

determine deterministic trend.

3.6.1 Mann-Kendall Test

The Mann-Kendall test is a test which is commonly employed to detect monotonic

trends in series of environmental data, climate data or hydrological data. The null

hypothesis, H0, is that the data come from a population with independent realizations

and are identically distributed. The alternative hypothesis, H1, is that the data follow

a monotonic trend. The Mann-Kendall test statistic is calculated according to:

S =
n−1∑
k=1

n∑
j=k+1

sgn(Yj − Yk)

with

sgn(x) =



1 if x > 0

0 if x = 0

−1 if x < 0

where n is the length of the sample, Xi and Xj are from k = 1, 2, ..., n − 1 and j =

k + 1, k + 2, ..., n. If n is bigger than 9, statistic S approximates to normal distribution.

The mean of S is equal to zero and the variance of S can be acquired as follows:

V ar(S) = n(n − 1)(2n + 5)
18
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Then the test statistic Z is denoted by

Z =



S−1√
V ar(S)

if S > 0

0 if S = 0

S+1√
V ar(S)

if S < 0

If Z > 0, it indicates an increasing trend, and vice versa. Given a confidence level α,

the sequential data would be supposed to experience statistically significant trend if

|Z| > Z1− α
2

where Z1− α
2

is the corresponding value of P−value that is equal to α
2 following the

standard normal distribution.

3.7 Test for Stationarity

There are two most common methods to test the stochastic stationarity of the time

series: Dickey-Fuller Test and KPSS Test.

3.7.1 Dickey-Fuller Test

The Dickey-Fuller test in statistics tests the null hypothesis that a unit root exists in

an autoregressive time series model. The alternative hypothesis varies depending on the

version of the test used, but it is typically stationarity or trend-stationarity. The test

was created in 1979 by statisticians David Dickey and Wayne Fuller[9] and is named
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after them.

Consider an AR(1) process

Xt = ϕXt−1 + εt, X0 = 0, t = 1, 2, ..., T

where εt is a Gaussian white noise process. The regression model can be written as

∆Xt = (ϕ − 1)Xt−1 + εt = δXt−1 + εt

where ∆ is the first difference operator such that

∆Xt := Xt − Xt−1

and δ = ϕ − 1. This model can be estimated and testing for a unit root is equivalent

to testing δ = 0. When δ = 0, it is equivalent to that ϕ = 1. It means that the series

contain a unit root. As we show in the previous section, for an AR(1) process, the

statistic τT has different asymptotic distribution under stationary and non-stationary

conditions. In this test, the null hypothesis of DF test is H0 : ϕ = 1 which means the

series {Xt} is a unit root process. Therefore, we could construct the following two test

statistic:

1. T (ϕ̂ − ϕ)

2. tT = ϕ̂−ϕ

S(ϕ̂)

where S(ϕ̂) represents the standard deviation of the estimator ϕ̂. With large sample
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size, if the process is a stationary process, then the distribution of tT should follow

a standard normal distribution. Otherwise, if |ϕ| = 1, the test statistic will follow a

stochastic process which is shown in the Theorem 3.5.4.

There are three main versions of the test:

1. Tests for a unit root:

∆Xt = δXt−1 + εt

2. Test for a unit root with constant:

∆Xt = a0 + δXt−1 + εt

3. Test for a unit root with constant and deterministic time trend:

∆Xt = a0 + a1t + δXt−1 + εt

Each version of the test has different asymptotic distribution under the null hypothesis:

For situation 1:

T (ϕ̂ − 1) = T −1 ∑T
t=1 YtYt−1

T −2 ∑T
t=1 Y 2

t−1

and

tT = ϕ̂ − 1
S(ϕ̂)

= ϕ̂ − 1
Sε(

∑T
t=1 Y 2

t−1)− 1
2
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where

S2
ε = 1

T − 1

T∑
t=1

(Yt − ϕ̂Yt−1)2.

When T → ∞, it can be shown that

tT
D→

1
2(W 2(1) − 1)

(
∫ 1

0 W 2(r)dr)
1
2

T (ϕ̂ − 1) D→
1
2(W 2(1) − 1)∫ 1

0 W 2(r)dr

For situation 2, the null hypothesis is that a0 = 0 and ϕ = 1 and the least squares

estimator of a0 and ϕ can be represented by

â0

ϕ̂

 =

 T
∑T

t=1 Yt−1∑T
t=1 Yt−1

∑T
t=1 Y 2

t−1


−1 

∑T
t=1 Yt−1∑T

t=1 Yt−1Yt



when null hypothesis is true, it can be shown that

 â0

ϕ̂ − 1

 =

 T
∑T

t=1 Yt−1∑T
t=1 Yt−1

∑T
t=1 Y 2

t−1


−1 

∑T
t=1 εt∑T

t=1 Yt−1εt



and

 T
1
2 â0

T (ϕ̂ − 1)

 =

 1 T − 3
2

∑T
t=1 Yt−1

T − 3
2

∑T
t=1 Yt−1 T −2 ∑T

t=1 Y 2
t−1


−1  T − 1

2
∑T

t=1 εt

T −1 ∑T
t=1 Yt−1εt


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If T → ∞, it can be shown that

 1 T − 3
2

∑T
t=1 Yt−1

T − 3
2

∑T
t=1 Yt−1 T −2 ∑T

t=1 Y 2
t−1

 D→

 1 σ
∫ 1

0 W (r)dr

σ
∫ 1

0 W (r)dr σ2 ∫ 1
0 W 2(r)dr



=

1 0

0 σ

 ×

 1
∫ 1

0 W (r)dr

∫ 1
0 W (r)dr

∫ 1
0 W 2(r)dr



×

1 0

0 σ



and

 T − 1
2

∑T
t=1 εt

T −1 ∑T
t=1 Yt−1εt

 D→

 σW (1)

1
2σ2(W 2(1) − 1)



=

σ 0

0 σ2


 W (1)

1
2(W 2(1) − 1)



Therefore, under null hypothesis

T (ϕ̂ − 1) D→
1
2(W 2(1) − 1) − W (1)

∫ 1
0 W (r)dr∫ 1

0 W 2(r)dr − (
∫ 1

0 W (r)dr)2

and

S2(ϕ̂) = S2
ε

[
0 1

]  T
∑T

t=1 Yt−1∑T
t=1 Yt−1

∑T
t=1 Y 2

t−1


−1 0

1


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where S2
ε is the least squares estimator of variance of {εt} which is represented as

S2
ε = 1

T − 2

T∑
t=1

(Yt − â0 − ϕ̂Yt−1)2

Furthermore,

T 2S2(ϕ̂) = S2
ε

[
0 1

]  T
∑T

t=1 Yt−1∑T
t=1 Yt−1

∑T
t=1 Y 2

t−1


−1 T − 1

2 0

0 T


0

1



= S2
ε

[
0 1

]  1 T − 3
2

∑T
t=1 Yt−1

T − 3
2

∑T
t=1 Yt−1 T −2 ∑T

t=1 Y 2
t−1


−1 0

1



Since S2
ε is a consistent estimator of σ2, it can be shown that

T 2S2(ϕ̂) D→ 1∫ 1
0 W 2(r)dr − (

∫ 1
0 W (r)dr)2

Therefore, we can get

tT
D→

1
2(W 2(1) − 1) − W (1)

∫ 1
0 W (r)dr

{
∫ 1

0 W 2(r)dr − (
∫ 1

0 W (r)dr)2}
1
2

For situation 3, the null hypothesis is that a1 = 0 and ρ = 1. The model can be

represented as

Yt = θT Zt−1 + εt
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where

Zt =


1

Yt − a0t

t



θ =


a0 + a1

ϕ

a1 + ϕ0



The least squares estimator of vector θ can be represented as

θ̂ = (
T∑

t=2
Zt−1ZT

t−1)−1
T∑

t=2
YtZt−1

We define

TT =


T

1
2 0 0

0 T 0

0 0 T
3
2


It can be shown that

TT (θ̂ − θ) = V −1
T ϕT

where

VT = T −1
T

T∑
t=2

Zt−1ZT
t−1T −1

T

ϕT = T −1
T

T∑
t=2

Zt−1εt
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Under the null hypothesis, it can be shown that

VT,1,1 = T −1
T∑

t=2
1 → 1

VT,1,2 = T − 3
2

T∑
t=2

St−1
D→ σ

∫ 1

0
W (r)dr

VT,1,3 = T −2
T∑

t=2
(t − 1) → 1

2

VT,2,2 = T −2
T∑

t=2
S2

t−1
D→ σ2

∫ 1

0
(W (r))2dr

VT,2,3 = T − 5
2

T∑
t=2

(t − 1)St−1
D→ σ

∫ 1

0
rW (r)dr

VT,3,3 = T −3
T∑

t=2
(t − 1)2 → 1

3

and

ϕT,1 = T − 1
2

T∑
t=2

εt
D→ σW (1)

ϕT,2 = T −1
T∑

t=2
St−1ut

D→ σ2

2 [(W (1))2 − 1]

ϕT,3 = T − 3
2

T∑
t=2

(t − 1)εt
D→ σ

∫ 1

0
rdW (r)

where

St =
t∑

t=1
εt
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Therefore, it is easy to find that

tT = (S2
ε VT,2,2)− 1

2 T (ϕ̂ − 1)

T (ϕ̂ − 1) = (V −1
T ϕT )2

when T → ∞, we can get

tT
D→

√
3|A|−

1
2 {1

3W (1)
∫ 1

0
W (r)dr − W (1)

∫ 1

0
rW (r)dr

+ 1
12(W 2(1) − 1) + 2

∫ 1

0
W (r)dr

∫ 1

0
rW (r)dr − (

∫ 1

0
W (r)dr)2}

T (ϕ̂ − 1) D→ 1
|A|

{1
6W (1)

∫ 1

0
W (r)dr − 1

2W (1)
∫ 1

0
rW (r)dr

+ 1
24(W 2(1) − 1) +

∫ 1

0
W (r)dr

∫ 1

0
W (r)dr

∫ 1

0
rW (r)dr

−1
2(

∫ 1

0
W (r)dr)2}

where

|A| = 1
12

∫ 1

0
W 2(r)dr +

∫ 1

0
W (r)dr

∫ 1

0
rW (r)dr − (

∫ 1

0
rW (r)dr)2 − 1

3(
∫ 1

0
W (r)dr)2

For above three situations, we can find that the asymptotic distribution of tT and T (ϕ̂−1)

do not depend on the variance of εt. By the Monte Carlo method, we could get the critical

value of the above three versions’ tests. The augmented Dickey-Fuller test (ADF test)

is an extension of the Dickey-Fuller test that can be used to test the stationarity of
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the higher-order autoregressive model. This method can also be applied to the ARMA

model and is known as the Said-Dickey Test. For hypothesis testing, we can use the same

table of critical values as the Dickey-Fuller test statistic for augmented Dickey-Fuller and

Said-Dickey tests.

3.7.2 KPSS Test

KPSS test was firstly provided in 1992 by Kwiatkowski, Phillips, Schmidt and Shin[16].

Contrary to Dickey-Fuller test, the presense of a unit root is not the null hypothesis but

the alternative. For a time series {Xt}, it can be represented as follows:

Xt = µ + αt + Ut

where {Ut} is the difference of {Xt} and its deterministic trend {µ + αt}. The process

{Ut} can be represented as:

Ut = Rt + ϵt

where {Rt} is a random walk process which is independent with {ϵt} and it can be

represented as follows:

Rt = Rt−1 + ξt

where {ξt} is a Gaussian white noise which is independent with {ϵt}.

If the variance of {ξt} is equal to zero, then there is no random walk in the series {Xt}

and the series is a trend stationary process. To construct the statistic, we firstly define
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the partial sum process St as follows:

St =
t∑

i=1
et, t = 1, 2, ..., T

where et = Xt − X̄.

Secondly, we define the "long-run variance" as

σ2 = lim
T →∞

E[S2
T ]

T

which will enter into the asymptotic distribution of the test statistics. We can find a

consistent estimator of σ2, say s2(l) which is constructed from the residuals et:

s2(l) = 1
T

T∑
t=1

e2
t + 2 1

T

l∑
s=1

w(s, l)
T∑

t=s+1
etet−s

where

w(s, l) = 1 − s

l + 1

So we can build a test statistic as

η =
∑T

t=1 S2
t

Ts2(l)

If the process is a stationary time series with constant mean, the asymptotic distribution

of η will be as

η
D→

∫ 1

0
V (r)2dr
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where V (r) is a standard Brownian bridge: V (r) = W (r) − rW (1). If the process is a

trend stationary series, then

η
D→

∫ 1

0
V2(r)2dr

where V2(r) is a second level Brownian bridge which is given by

V2(r) = W (r) + (2r − 3r2)W (1) + (−6r + 6r2)
∫ 1

0
W (s)ds

If the process is a non-stationary series, the test statistic η will diverge.

3.8 Cointegration

Many traditional asymptotic theories based on the least squares method are based on

series stationarity, whereas many actual time series are not. When we perform regression

analysis on non-stationary time series, we will arrive at some incorrect conclusions, which

we refer to as the "Spurious Regression" problem.

3.8.1 Spurious Regression Problem

Consider the following two time series:

Xt = Xt−1 + ut, t = 1, 2, ..., T

Yt = Yt−1 + vt, t = 1, 2, ..., T
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where {ut} and {vt} are Gaussian white noise processes. The processes {Xt} and {Yt}

are uncorrelated. Since there is no influence from {Xt} on {Yt}, if we do the regression

from {Yt} on {Xt}, the relation can be represented as follows

Yt = β0 + β1Xt + εt, t = 1, 2, ..., T

where β1 should be zero. Since {ut} and {vt} are Gaussian white noises, it can be shown

that when T → ∞,

1. 1
T

3
2

∑T
t=1 Yt

D→ σu
∫ 1

0 Wu(r)dr

2. 1
T

3
2

∑T
t=1 Xt

D→ σu
∫ 1

0 Wv(r)dr

3. 1
T 2

∑T
t=1 Y 2

t
D→ σ2

u

∫ 1
0 (Wu(r))2dr

4. 1
T 2

∑T
t=1 X2

t
D→ σ2

v

∫ 1
0 (Wu(r))2dr

where σu and σv are the standard deviations of white noise process {ut} and {vt}. Based

on above results, it is known[16] that

1. 1
T 2

∑T
t=1(Yt − Ȳ )2 D→ σ2

u[
∫ 1

0 (Wu(r))2dr − (
∫ 1

0 (Wu(r))dr)2]

2. 1
T 2

∑T
t=1(Xt − X̄)2 D→ σ2

u[
∫ 1

0 (Wv(r))2dr − (
∫ 1

0 (Wv(r))dr)2]

3. 1
T 2

∑T
t=1 YtXt

D→ σuσv
∫ 1

0 Wu(r)Wv(r)dr
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Therefore, we can get the asymptotic distribution of β̂1, the OLS estimator of β1, as

follows:

β̂1 =
∑T

t=1(Yt − Ȳ )(Xt − X̄)∑T
t=1(Xt − X̄)2

D→ σu

σv
ξ

where

ξ =
∫ 1

0 Wu(i)Wv(i)di −
∫ 1

0 Wu(i)di ·
∫ 1

0 Wv(i)di∫ 1
0 (Wv(i))2di − (

∫ 1
0 Wv(i)di)2

We can also find that the value of β̂1 does not converge to the constant zero when T → ∞.

As a result, the asymptotic theory based on least squares estimation is predicated on the

assumption that the time series of the regression variable is stationary, and regression

that does not satisfy stationarity may result in spurious regression.

3.8.2 Test for Cointegration

Since most time series are nonstationary, we usually transform them into stationary time

series. The most common method is to differentiate the time series in order to make

it stationary. However, this method discards some important long-term information.

Engle and Granger[11] introduced the cointegration theory in 1987, which can reflect

the equilibrium relationship of two or more nonstationary time series.

Definition 3.8.1 The components of the vector time series {Xt} are said to be cointe-

grated of order d, b, denoted Xt ∼ CI(d, b), if

1. all components of Xt are I(d)
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2. there exists a non zero vector α so that

Zt = αT Xt ∼ I(d − b), b > 0

where the vector α is called the cointegrating vector.

The Engle-Granger Two-Step method begins by generating residuals based on the static

regression, which are then tested for the presence of unit roots. To test for stationar-

ity in time series, it employs the Augmented Dickey-Fuller Test (ADF) or other tests.

The Engle-Granger method will demonstrate residual stationarity if the time series are

cointegrated.

3.9 Time Series Models of Heteroscedasticity

Time series with the following characteristics are common in some macroeconomic and

financial fields: After removing the influence of deterministic non-stationary factors, the

fluctuation of the residual series is stationary in most periods, but the fluctuation will

remain significant at times and small at others, indicating a volatility cluster effect.

This means that the variance of white noise is not constant in this model. Engle[10] first

proposed the autoregressive conditional heteroscedasticity (ARCH) model for modeling

the changing variance of a time series.
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3.9.1 Definition of ARCH model

Definition 3.9.1 A pth order autoregressive conditional heteroskedasticity(ARCH) pro-

cess is a model for the residual process where {rt} satisfying:

1. rt = σtεt

2. σ2
t = ω +

∑p
i=1 αir

2
t−i

where ω is any constant and {εt} is a Gaussian white noise process with zero mean and

variance of one.

It is not uncommon that p needs to be very big in order to capture all the serial correlation

in r2
t . The generalized ARCH or GARCH mdoel is a parsimonious alternative to an

ARCH(p) model.

Definition 3.9.2 A GARCH(p,q) is a model for the residual process {rt} satisfying:

1. rt = σtεt

2. σ2
t = ω +

∑p
i=1 αir

2
t−i +

∑q
j=1 βjσ2

t−j

where ω is any constant and {εt} is a Gaussian white noise process with zero mean and

variance of one.

3.9.2 Test for ARCH model

The Ljung-Box test is commonly used to determine whether a residual series is an ARCH

process. The Ljung-Box test’s null hypothesis is that the squared residual process is

white noise. The squared residual process is autocorrelated, according to the alternative
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hypothesis. The test statistics is

Q := n(n + 2)
h∑

k=1

ρ̂2
k

n − k

where n is the sample size, ρ̂2
k is the sample autocorrelation at lag k, and h is the number

of lags being tested. Under the null hypothesis, the statistic Q asymptotically follows

a χ2
h. For a significance level α, the critical region for rejection of the hypothesis of

randomness is:

Q > χ2
1−α,h
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Chapter 4

Varying Coefficient
Autoregreessive Model

In contrast to the fixed coefficient autoregressive model, the varying coefficient autore-

gressive model allows the coefficients in the model to vary over time. Consider the

following Gaussian AR(1) process:

Xt(T ) = ϕT Xt−1(T ) + εt, t = 1, 2, ..., T

where ϕT = 1 − γ
aT

, γ is a positive constant and {aT } is a sequence of constants which

increases to infinity.

When we only have a few observations and the value of n is small in this model, the value

of ϕT is strictly less than one. As a result, this model represents a weakly stationary

process. However, as the number of observations increases, the value of ϕT approaches

one, transforming this weakly stationary AR(1) process into a unit root process. As a

result, in this chapter, we will present the asymptotic theory of the OLS estimator of

the varying coefficient model with the form ϕT = 1 − 1
T .
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4.1 Asymptotic Distribution of OLS estimator

When T goes to infinity, the value of ϕT will go to one, and the process will become

a unit root process. The variance of ϕ̂T will go to infinity. As a result, it will fail the

central limit theorem because it will not satisfy the Linderberg condition. However, we

could find the limit distribution of the estimator ϕ̂T as follows:

Theorem 4.1.1 [22] Let ϕT = 1 − 1
T . For t = 1, 2, ...T , suppose {Xt} satisfies the

AR(1) model

Xt(T ) = ϕT Xt−1(T ) + εt, X0(T ) = 0 for all T (4.1)

and {εt} is a i.i.d. white noise process where the variance is equal to σ2 < ∞. Then, as

T → ∞, the least squares estimator ϕ̂T will converge to 1 in probability.

Theorem 4.1.2 [4] Let ϕT = 1− γ
T . For t = 1, 2, ...T , suppose {Xt} satisfies the AR(1)

model

Xt(T ) = ϕT Xt−1(T ) + εt, X0(T ) = 0 for all T

and {εt} is a i.i.d. white noise process where the variance is equal to σ2 < ∞. Then, as

T → ∞

τT = (
T∑

t=1
X2

t−1)1/2(ϕ̂T − ϕ) D−→ ζ(γ)

where

ζ(γ) =
∫ 1

0
W (r)
1+br dW (r)

(
∫ 1

0 ( W (r)
(1+br))2dr)1/2

b = e2γ − 1
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and {W (r) : 0 ≤ r ≤ 1} is a standard Brownian motion.

As a special case, ϕT = 1 − 1
T is the case where γ = 1.

4.2 Large Deviation Principle

Before we present the large deviation principle of the varying coefficient AR(1) process,

one proposition must be introduced.

Proposition 4.2.1 [27] Let a, n, τ ∈ R, and Mn(τ, a, b) denotes the tridiagonal matrix

Mn(τ, a, b) :=



a b 0 · · ·

b a b · · ·

· · · · · · · · · · · ·

· · · b a b

· · · 0 b a − τ


(4.2)

If a2 > 4b2, then

det Mn(τ, a, b) = (λ2 − τ)λn
2 − (λ1 − τ)λn

1
λ2 − λ1

(4.3)

where

1. 2λ1 = a −
√

a2 − 4b2

2. 2λ2 = a +
√

a2 − 4b2

We are now ready to state our large deviation result.
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Theorem 4.2.1 For an AR(1) process in equation (4.1) with ϕT = 1 − 1
T , the law of

the Yule-Walker estimator ϕ̃T − ϕT satisfies the large deviation principle with speed T

and good rate function

I(r) =


1
2 log( 2

2+r ) r ∈ (−2, 0]

+∞ otherwise

The law of the Least Squares estimator ϕ̂T − ϕT satisfies the upper and lower estimate

with

lim sup
T →∞

1
T

log P (ϕ̂T − ϕT ≤ r) = lim inf
T →∞

1
T

log P (ϕ̂T − ϕT < r) = −I(r)

where

I(r) = 1
2 log( 2

2 + r
), r ∈ (−1.5, 0]

When r ∈ (−1.5, 0]c, the law of the least squares estimator ϕ̂T − ϕT satisfies the upper

estimate with

lim sup
T →∞

1
T

log P (ϕ̂T − ϕT ≤ r) = −I(r)

where

I(r) = 1
2 log | − 2r − 1|

Remark: To establish a full large deviation principle for ϕ̂T − ϕT , one needs to have the

lower estimate for r ∈ (−1.5, 0]c.
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Proof: First of all, define the vector XT = [X1(T ), ..., XT (T )]T and the joint p.d.f of

vector XT is as follows

f(xT
T ) = 1

(2πσ2)
T
2

exp{− 1
2σ2

T∑
i=1

(xi − ϕT xi−1)2}

For the convenience of calculation, we assume that the variance of {εt} is equal to one

and the covariance matrix of random vector XT is

ΣT =



1 ϕT · · · ϕT
T

ϕT ϕ2
T + 1 · · · · · ·

· · · · · · · · · · · ·

ϕT
T · · · · · · ϕ2T

T + ϕ
2(T −1)
T + · · · + 1



For all r ∈ R, we have

P (ϕ̃T − ϕT ≤ r) = P (
T∑

t=1
Xt(T )Xt−1(T ) − r

T∑
t=0

X2
t (T ) ≤ 0)

= P (XT
T (AT − rB)XT ≤ 0)

where

1. XT
T = (X1(T ), X2(T ), ..., XT (T ))
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2.

AT := −1
2



2ϕT −1 0 · · · · · · · · · · · ·

−1 2ϕT −1 · · · · · · · · · · · ·

0 −1 2ϕT · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · −1 2ϕT −1

· · · · · · · · · · · · 0 −1 2ϕT


3.

B :=



1 0 · · · · · · · · · · · · · · ·

0 1 0 · · · · · · · · · · · ·

0 0 1 · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · 0 1 0

· · · · · · · · · · · · 0 0 1


By Chernoff inequality, we get

P (XT
T (AT − rB)XT ≤ 0)

≤ inft<0 E[exp{t(XT
T (AT − rB)XT )}]

Now we set

ZT (r) = XT
T (AT − rB)XT
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According to [24] equation 2.8, based on the joint distribution of random vector XT , we

could find the m.g.f. of ZT (r) which is

MZT (r)(t) =E[exp{tZT (r)}]

=D(T )− 1
2

where D(T ) is the determinant of matrix DT

DT :=



p(T ) q(T ) 0 · · · · · · · · · · · ·

q(T ) p(T ) q(T ) · · · · · · · · · · · ·

0 q(T ) p(T ) q(T ) · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · q(T ) p(T ) q(T )

· · · · · · · · · · · · 0 q(T ) τ(T )



and

p(T ) =1 + ϕ2
T + 2rt + 2ϕT t

q(T ) = − ϕT − t

τ(T ) =p(T ) − ϕ2
T

Based on above results, we have

1. λ2(T ) ≥ 1

2. p(T )2 > 4q(T )2
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where

1. λ1(T ) = p(T )−
√

p(T )2−4q(T )2

2

2. λ2(T ) = p(T )+
√

p(T )2−4q(T )2

2

Then the c.g.f of ZT (r) is

log E[etZT (r)] = −1
2 log D(T )

Therefore, we could get

1
T

log P (ϕ̃T − ϕT ≤ r) ≤ 1
T

log E[etZT (r)]

= − 1
2T

log D(T )

Based on the Proposition 4.2.1 equation 4.2 and 4.3, we could get

D(T ) = (λ2(T ) − ϕ2
T )λ2(T )T − (λ1(T ) − ϕ2

T )λ1(T )T

λ2(T ) − λ1(T )

Then we can get

log D(T ) = T log λ2(T ) + log( λ2(T ) − ϕ2
T

λ2(T ) − λ1(T )) + log(1 − η(T )ρ(T )T )

where

1. η(T ) = λ1(T )−ϕ2
T

λ2(T )−ϕ2
T

2. ρ(T ) = λ1(T )
λ2(T )
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Since

ρ(T ) < 1

Therefore, it can be shown that

lim
T →∞

1 − η(T )ρ(T )T = 1

Furthermore,

D(T − 1)
D(T ) = 1

λ2(T ) − (λ2(T ) − λ1(T )
λ2(T )λ1(T ) ) η(T )ρ(T )T

1 − η(T )ρ(T )T

When T → ∞,

p(T ) → p = 2 + 2rt + 2t

q(T ) → q = −1 − t

and λ1(T ) and λ2(T ) will converge to the constant if we fix the value of r and t. Therefore,

we have

lim
T →∞

1
T

D(T − 1)
D(T ) = 0

Therefore,

lim
T →∞

1
T

log D(T ) = lim
T →∞

1
T

(T log λ2(T ) + log( λ2(T ) − ϕ2
T

λ2(T ) − λ1(T )) + log(1 − η(T )ρ(T )T ))

= lim
T →∞

log λ2(T )
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Putting all these together, we obtain

lim
T →∞

1
T

log P (ϕ̃T − ϕT ≤ r) ≤ lim
T →∞

− 1
2T

log D(T ) = L(t)

where

L(t) = −1
2 log λ2

and

λ2 = 1
2(2 + 2rt + 2t +

√
(2 + 2rt + 2t)2 − 4(−1 − t)2)

Now we use Girsanov theorem to define a new probability measure QT . Let us set

LT (t) = 1
T

log E[etZT (r)]

Then we could define the new probability measure QT such that

dQT

dP
= exp{tZT (r) − TLT (t)}

Under the new probability measure QT , for a fixed point y ∈ (−2, r),

P (ϕ̃T − ϕT < r) =P (ZT (r) < 0)

=P (ZT (r)
T

< 0)

≥P (ZT (r)
T

∈ (y − ε, y + ε))

=EQT
[exp{−tZT (r) + TLT (t)}1 ZT (r)

T
∈(y−ε,y+ε)]

59



Therefore, we have

1
T

log P (ϕ̃T − ϕT < r) ≥ LT (t) − ty − |t|ε + 1
T

log QT (ZT (r)
T

∈ (y − ε, y + ε))

where

y = L′(t)

Since

L′(t) = −1
2

1
λ2

(1
2((2r + 2) + 1√

p2 − 4q2 (2p(2r + 2) + 8q)))

It can be shown that L′(t) ∈ R. Therefore,

lim infT →∞
1
T log P (ϕ̃T − ϕT < r)

≥ L(t) − ty + limε→0 lim infT →∞
1
T log QT (ZT (r)

T ∈ (y − ε, y + ε))

≥ −L∗(y) + limε→0 lim infT →∞
1
T log QT (ZT (r)

T ∈ (y − ε, y + ε))

where

L∗(y) = ty − L(t)

If we define L̃(·) = L(· + t) − L(t), under the new probability measure QT , for every

λ ∈ R, we have

L̃T (t) = LT (λ + t) − LT (t) → L̃(t)

Define

L̃∗(x) = sup
λ∈R

(λx − L̃(λ)) = L∗(x) − tx + L(t)
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In particular,

lim sup
T →∞

1
T

log QT (ZT (r)
T

∈ (y − ε, y + ε)c) ≤ − inf
x∈(y−ε,y+ε)c

L̃∗(x) = −L̃∗(x0)

for some x0 ̸= y. Since y is an exposed point of L∗, and L∗(y) ≥ ty − L(t), so we have

L̃∗(x0) ≥ [L∗(x0) − tx0] − [L∗(y) − ty] > 0

Thus, for every ε > 0,

lim sup
T →∞

1
T

log QT (ZT (r)
T

∈ (y − ε, y + ε)c) < 0

and it implies that QT (ZT (r)
T ∈ (y−ε, y+ε)c) → 0 and hence QT (ZT (r)

T ∈ (y−ε, y+ε)) →

1. According to [2] corollary 5.10, we take the first derivative of L(t) with respect to t.

tr = r

r + 2 , for r ∈ (−2, 0)

such that

L′(tr) = 0

And we can find that

L′′(tr) > 0

Let t → tr

lim inf
T →∞

1
T

log P (ϕ̃T − ϕT < r) ≥ lim
T →∞

LT (tr) = L(tr)
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We also know that

P (ϕ̃T − ϕT < r + ε)

= P ((ϕ̃T − ϕT ≤ r − ε)
⋃

(ϕ̃T − ϕT ∈ (r − ε, r + ε)))

≤ 2 max{P (ϕ̃T − ϕT ≤ r − ε), P (ϕ̃T − ϕT ∈ (r − ε, r + ε)}

Since P (ϕ̃T − ϕT < r + ε) > P (ϕ̃T − ϕT ≤ r − ε), we can find

lim
T →∞

1
T

log P (ϕ̃T − ϕT < r))

= lim
ε→0

lim
T →∞

1
T

log P (ϕ̃T − ϕT < r + ε))

= lim
ε→0

lim
T →∞

1
T

log P (ϕ̃T − ϕT ∈ (r − ε, r + ε))

We take tr into λ2,

I(r) = 1
2 log( 2

2 + r
)

Since |ϕ̃T | ≤ 1, we have

I(r) = +∞, r ∈ (−2, 0]c

If we replace the estimator by least squares estimator, we can get the similar result when

r ∈ (−1.5, 0]. When r ∈ (−1.5, 0]c, by the sharp study of the domain, t = 2r. Therefore,

the law of the least squares estimator ϕ̂T − ϕT satisfies the upper estimate with

I(r) = log | − 2r − 1|
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For the lower estimate, other arguments are required. The proof is complete.

4.3 Moderate Deviation Principle of Varying Coefficient

AR(1) model

Before we can establish the moderate deviation principle of varying coefficient models,

we must first define and prove some theorems.

Definition 4.3.1 Let m be a given positive integer, a sequence (Zn)n≥1 of strictly sta-

tionary random variables is called m−dependent if for every k ≥ 1 the two collections

{Z1, ..., Zk} and {Zk+m, Zk+m+1, ...} are independent.

Theorem 4.3.1 [6] Let (Zn)n≥1 be a stationary sequence of m−dependent random vari-

ables taking values in Rd, such that

E[eα|Z1|] < ∞ for some α > 0

then for all λ ∈ Rd

lim
n→∞

1
b2

n

log E[eb2
n<λ, 1√

nbn

∑n

k=1(Zk−E[Zk])>] = 1
2 lim

n→∞
1
n

E < λ,
n∑

k=1
(Zk − E[Zk]) >2

= 1
2(E < λ, Z1 >2

+2
m+1∑
k=2

E < λ, Z1 >< λ, Zk >)

Theorem 4.3.2 [18] For each k = 1, 2, ..., let n = n(k) and m = m(k) be specified and

let {Xk
1 , ..., Xk

n} be a sequence of strict stationary m−dependent random variables with
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zero means such that

sup
k

E[exp{α|Xk
1 |}] < ∞ for some α > 0

In addition, we assume that

1. there exists a constant 0 < σ2 < ∞, such that

lim
k→∞

m−1V ar[Xk
1 + · · · + Xk

n] = σ2

and

lim
k→∞

m−1
m∑

i=1
iE[Xk

1 Xk
i+1] = 0

2. as k → ∞(i.e., n → ∞), the moderate deviation scale (bn) is a sequence of positive

numbers satisfying,

bn → ∞,
bnm2
√

n
→ 0

Then for any r > 0, we have

lim
k→∞

1
b2

n

log P ( 1
bn

√
n

|
n∑

i=1
Xk

i | ≥ r) = − r2

2σ2

We must also add some constraints to this model in order to follow the moderate de-

viation principle of the varying coefficient AR(1) model. Consider the following model:
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Xt(T ) = ϕT Xt−1(T ) + εt (4.4)

where

1. t = 1, 2, ..., T

2. ϕT = 1 − 1
f(T ) , f(T ) > 0 and f(T ) → ∞ as T → ∞

3. The sequence of {εt} is i.i.d. with mean zero and finite variance σ2
ε

There are two assumptions

Assumption 4.3.1 1. {εt} is a sequence of centered i.i.d. random variables with

mean zero and finite variance σ2
ε and there exists α > 0 such that

E(eα|ε0|2) < ∞

2. the moderate deviation scale (bT ) satisfies

bT → ∞
√

T

bT
→ ∞

√
T

bT f(T )
3
2

→ ∞

Remark: If f(T ) is form with T α for some α > 0, the domain of validity of the speed of

the MDP will be 1 < bT < T
1
2 (1−3α) <

√
T .
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The moderate deviation principle obtained in this thesis is as follow.

Theorem 4.3.3 For an AR(1) process in equation (4.4) with ϕT = 1 − 1
f(T ) , under the

assumption 4.3.1, the law of the least squares estimator |ϕ̂T − ϕT | satisfies a moderate

deviation principle with speed b2
T and good rate function

I(r) =


r2

2 r ≥ 0

∞ otherwise

Proof: When time T is fixed, the time series {Xt(T )} is stationary. Therefore, the

distribution of Xt+l(T )Xt(T ) is the same with Xl(T )X0(T ). So we set

Cl : = E(Xi+l(T )Xi(T )) = E(Xl(T )X0(T ))

C∗
T,l : =

∑T −l
i=1 Xi+l(T )Xi(T )

T − l

Then we can see that

E(C∗
T,l) = Cl

Let us set

Zi,l = Xi+l(T )Xi(T ) − Cl

Ui,l = ϕT Xi+l−1(T )εi + ϕT Xi−1(T )εi+l + εi+lεi − ϕl
T σ2

ε
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We could get

Zi,l = ϕ2
T Zi−1,l + Ui,l

C∗
T,l − Cl = (1 − R)−1(ŪT,l) + (1 − R)−1R(Z0,l − ZT −l,l

T − l
) (4.5)

where

1. R is a linear operator:

R : x → ϕ2
T x

2.

ŪT,l =
∑T −l

i=1 Ui,l

T − l

For the second part (1 − R)−1R(Z0,l−ZT −l,l

T −l ) in equation (4.5), we have the following

result

P (|Z0,l − ZT −l,l| >
rbT

√
T − l√

1 − ϕ2
T

) = P (|Xl(T )X0(T ) − XT (T )XT −l(T )| >
rbT

√
T − l√

1 − ϕ2
T

)

≤ 2P (|Xl(T )X0(T )| >
rbT

√
T − l

2
√

1 − ϕ2
T

)

≤ 4P (|X0(T )|2 >
rbT

√
T − l

2
√

1 − ϕ2
T

)

Since

|X0(T )|2 = |
∞∑

p=0
ϕp

T ε−p|2 ≤ (
∞∑

p=0
|ϕp

T ||ε−p|)2 = K2
ϕT

(
∞∑

p=0

|ϕp
T |

KϕT

|ε−p|)2
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where KϕT
= f(T ) and

P (|X0(T )|2 >
rbT

√
T − l

2
√

1 − ϕ2
T

) ≤ P (K2
ϕT

(
∞∑

p=0

|ϕp
T |

KϕT

|ε−p|)2 >
rbT

√
T − l

2
√

1 − ϕ2
T

))

≤ P (K2
ϕT

∞∑
p=0

|ϕp
T |

KϕT

|ε−p|2 >
rbT

√
T − l

2
√

1 − ϕ2
T

))

≤ P (
∞∑

p=0

|ϕp
T |

KϕT

α|ε−p|2 >
α

K2
ϕT

rbT

√
T − l

2
√

1 − ϕ2
T

)

≤ exp{− α

K2
ϕT

rbT

√
T − l

2
√

1 − ϕ2
T

}
∞∏

p=0
E((eα|ε0|2)

|ϕT |p

KϕT )

≤ exp{− α

K2
ϕT

rbT

√
T − l

2
√

1 − ϕ2
T

}E(eα|ε0|2)

From above results, we could get

P (|Z0,l − ZT −l,l| >
rbT

√
T − l√

1 − ϕ2
T

) ≤ 4 exp{−α
rbT

√
T − l

2K2
ϕT

√
1 − ϕ2

T

}E(eα|ε0|2)

Since (1 − R)−1 is the linear operator, based on the assumption 4.3.1, we could get

lim
T →∞

sup 1
b2

T −l

log P (
√

T − l
√

1 − ϕ2
T

bT −l

|(1 − R)−1R(Z0,l − ZT −l,l)|
T − l

> r) = −∞

which means that Z0,l and ZT −l,l are equal in probability, as T → ∞.

Secondly, for all T ≥ 1, 0 ≤ l ≤ M , 1 ≤ i ≤ T − l, m ≥ 2M and m ≥ l, set

Xi−1,m(T ) = εi−1 + ϕT εi−2 + ... + ϕm−2
T εi−m+1 =

m−2∑
j=0

ϕj
T εi−1−j
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and

Ui,l,m(T ) = ϕT Xi+l−1,m(T )εi + ϕT Xi−1.m(T )εi+l + εi+lεi − ϕl
T σ2

ε

=
m−1∑
j=1

ϕj
T εi+l−jεi +

m−1∑
j=1

ϕj
T εi+lεi−j + εi+lεi − ϕl

T σ2
ε

For any 0 ≤ l ≤ M and 1 ≤ i ≤ T − l, it is easy to show that

E[Ui,l,m(T )] = 0

Since E[Ui,0,m(T )|Fi−1] = 0 and Uj,0,m(T ) is measurable with respect to Fi−1, when

i ̸= j, we can get

E[Ui,0,m(T )Uj,0,m(T )] = E[Ui,0,m(T )E(Uj,0,m(T )|Fi−1)] = 0

When l ̸= 0 and i > j, let

δ1,i,l =
m−1∑
j=1

ϕj
T εi+l−jεk

δ2,i,l =
m−1∑
j=1

ϕj
T εi+lεi−j

It can be shown that

E[Ui,l,m(T )|Fi+l−1] = δ1,i,l − ϕl
T E[ε2

0]
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therefore, we have

E[Ui,l,m(T )Uj,l,m(T )] = E[Uj,l,m(δ1,i,l − ϕl
T E[ε2

0])] = E[Uj,l,m(T )δ1,i,l]

Let A1 = {j + l > i}, A2 = {j + l = i}. Therefore, we have

E[δ1,i,lδ1,j,l] =(ϕl
T E[ε2

0])2(1 + 1A1)

E[δ1,i,lδ2,j,l] =(E[ε2
0])21A2

m−1−2l∑
q=1

ϕ2q+2l
T

E[δ1,i,lεj+lεj ] =(ϕl
T E[ε2

0])21A2

E[δ1,i,l]ϕl
T E[ε2

0] =(ϕl
T E[ε2

0])2

Finally,

E[Ui,l,m(T )Uj,l,m(T )] = θ2l
T (E[ε2

0])2(1A1 +
m−1−2l∑

q=0
θ2q

T 1A2)

Let m := m(T ) denote the subsequence of T such that m(1 − θT ) → ∞ as n → ∞.

When l ̸= 0,

lim
n→∞

1 − θ2
T

m

m∑
i=1

iE[U1,l,m(T )Ui+1,l,m(T )] = 0
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and

V ar[U1,l,m(T ) + · · · + Um,l,m(T )] =
m∑

i=1
E[Ui,l,m(T )2]

+2
m−1∑
i=1

m∑
q=i+1

E[Ui,l,m(T )Uq,l,m(T )]

=
m∑

i=1
E[Ui,l,m(T )2]

+2
m−l∑
i=1

i+l∑
q=i+1

E[Ui,l,m(T )Uq,l,m(T )]

= mθ2l
T E[ε4

0] + (m + [2(m − l)l − 2m]θ2l
T )(E[ε2

0])2

+(2m
m−1∑
j=1

θ2j
T + 2(m − l)θ2l

T

m−1−2l∑
j=1

θ2j
T )(E[ε2

0])2

Therefore, when T → ∞, we have

lim
T →∞

1 − θ2
T

m
V ar[U1,l,m(T ) + · · · + Um,l,m(T )] = 4(E[ε2

0])2

When l = 0, it can be shown that

lim
T →∞

1 − θ2
T

m

m∑
i=1

iE[U1,0,m(T )Ui+1,0,m(T )] = 0

and

V ar[U1,0,m(T ) + · · · + Um,0,m(T )] =
m∑

i=1
E[Ui,0,m(T )2]

= mE[ε4
0] + (E[ε2

0])2[4
m−1∑
j=1

θ2j
T − 1]
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Therefore, we have

lim
T →∞

1 − θ2
T

m
V ar[U1,0,m(T ) + · · · + Um,0,m(T )] = 4(E[ε2

0])2

Let

−→
U i,m = (Ui,l,m(T ))0≤l≤T

Therefore, we could find that {
−→
U i,m}i≥1 is a strictly stationary sequence with (T + m)-

dependent structure and we could set

ŪT −l,l,m = 1
T − l

T −l∑
i=1

Ui,l,m(T ) and QT −l,l,m = (ŪT −l,l,m)0≤l≤T

The next step is to show that the process
√

T −l
bT −l

ŪT −l,l,m is b2
T −l-exponentially good ap-

proximation of the sequence {
√

T −l
bT −l

ŪT −l,l}.

For all p ≥ 0, i ≥ 1, we set

Wi,p = ϕp
T

|ϕp
T |

εi−pεi

Lemma 4.3.1 [17] If Assumption 4.3.1 condition 1 holds, then, there exists α0 > 0 and

β0 > 0 such that, for all p ≥ 1, T ≥ 1 and t ≥ 0,

P (max
j≤T

|
j∑

k=1
Wi,p| ≥ t) ≤ 36 exp{− t2

α0T + β0t
}
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Since

|
T −l∑
i=1

(Ui,l(T ) − Ui,l,m(T ))| =|
T −l∑
i=1

[ϕT (Xi+l−1(T ) − Xi+l−1,m(T ))εi

+ ϕT (Xi−1(T ) − Xi−1,m(T ))εi+l]|

≤|
T −l∑
i=1

[ϕT (Xi+l−1(T ) − Xi+l−1,m(T ))εi]|

+ |
T −l∑
i=1

[ϕT (Xi−1(T ) − Xi−1,m(T ))εi+l]|

and

Xi+l−1(T ) − Xi+l−1,m(T ) =
∞∑

p=m−1
ϕp

T εi+l−1−p = ϕm−1
T (

∞∑
p=0

ϕp
T εi+l−m−p)

therefore

|
T −l∑
i=1

ϕT (Xi+l−1(T ) − Xi+l−1,m(T )εi| = |
∞∑

p=0

T −l∑
i=1

ϕm
T (ϕp

T εi+l−m−pεi)|

≤ |ϕm
T |

∞∑
p=0

|ϕp
T ||

T −l∑
i=1

Wi,m+p−l|

Now we set

K1 :=
∞∑

p=0
(p + 1)|ϕp

T | ≤ ∞

and

tm,p(r) = r(p + 1)
2K1|ϕm

T |
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Based on Lemma 4.3.1, we could get

P ( max
j≤T −l

|
j∑

i=1
ϕT (Xi+l−1(T ) − Xi+l−1,m(T ))εi| >

rbT −l

√
T − l

2
√

1 − ϕ2
T

)

≤P (
∞∑

p=0
(p + 1) |ϕp

T |
p + 1 max

j≤T −l
|

T −l∑
i=1

Wi,m+p−l| >
∞∑

p=0
(p + 1)|ϕp

T | rbT −l

√
T − l

2K1|ϕm
T |

√
1 − ϕ2

T

)

≤
∞∑

p=0
P ( max

j≤T −l
|

j∑
i=1

Wi,m+p−l| >
(p + 1)rbT −l

√
T − l

2K1|ϕm
T |

√
1 − ϕ2

T

)

≤36
∞∑

p=0
exp{−

b2
T −lt

2
m,p(r)

α0 + β0tm,p(r) bT −l√
T −l

}

But by the assumption of bT −l, there exists constants N ∈ N+, A, B > 0, such that for

all T − l ≥ N , m ≥ 1 and l ≥ 0,
√

T −l
bT −l

≥ 1, and we could get

t2
m,p(r)

α0 + β0tm,p(r) bT −l√
T −l

≥ c(r) p + 1
|ϕm

T |
√

1 − ϕ2
T

and c(r) := r2

Ar + B

Hence, we could get

P ( max
j≤T −l

|
j∑

i=1
ϕT (Xi+l−1(T ) − Xi+l−1,m(T ))εi| >

rbT −l

√
T − l

2
√

1 − ϕ2
T

)

≤ 36
∞∑

p=0
exp{−b2

T −l

c(r)
|ϕm

T |
√

1 − ϕ2
T

(p + 1)}

So combine above results, we could get

lim sup
m→∞

lim sup
T →∞

1
b2

T −l

log P (
√

T − l
√

1 − ϕ2
T

bT −l
|Ūn,l − Ūn,l.m| > r) = −∞
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which means that the process
√

T −l
√

1−ϕ2
T

bT −l
ŪT −l,l,m is b2

T −l-exponentially good approxi-

mation of the sequence {
√

T −l
√

1−ϕ2
T

bT −l
ŪT −l,l}. Based on theorem 4.3.2, we can show that

P (
√

T −l
√

1−ϕ2
T

bT −l
QT −l,l,m ∈ A) satisfies the large deviation principle with speed b2

T −l. Since

QT −l = {ŪT −l,l} can be approximated by QT −l,l,m, it implies that P (
√

T −l
√

1−ϕ2
T

bT −l
QT −l ∈

A) satisfies the large deviation principle with speed b2
T −l. Therefore, it means that

P (
√

T −l(1−ϕ2
T )

3
2

bT −l
(C∗

T,l − Cl) ∈ A) satisfies the large deviation principle.

Secondly, we will show that
√

T

bT

√
1−ϕ2

T

(ϕ̂T −ϕT ) satisfies the moderate deviation principle.

Let us set

rT =
√

T

bT

√
1 − ϕ2

T

(ϕ̂T − ϕT )

RT = 1√
1 − ϕ2

T

√
TbT

∑T
i=1(Xi(T )Xi−1(T ) − ϕT Xi−1(T )2)

E(X0(T )2)

The main idea is to show that rT and RT are equal in probability. We can show that

rT − RT =
√

T

bT

√
1 − ϕ2

T

(ϕ̂T − ϕT ) − 1√
1 − ϕ2

T

√
TbT

∑T
i=1(Xi(T )Xi−1(T ) − ϕT Xi−1(T )2)

E(X0(T )2)

= 1√
1 − ϕ2

T bT

√
T

[T
∑T

i=1(Xi(T )Xi−1(T ) − ϕT Xi−1(T )2)∑T
i=1 Xi−1(T )2

−
∑T

i=1(Xi(T )Xi−1(T ) − ϕT Xi−1(T )2)
E(X0(T )2) ]

= 1√
1 − ϕ2

T bT

√
T

[
∑T

i=1(Xi(T )Xi−1(T ) − ϕT Xi−1(T )2)
E(X0(T ))2 ][E(X0(T )2) − 1

T

T∑
i=1

Xi−1(T )2]

× T∑T
i=1 Xi−1(T )2
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Therefore

P (|rT − RT | > r) ≤P (| 1√
1 − ϕ2

T bT

√
T

∑T
i=1(Xi(T )Xi−1(T ) − ϕT Xi−1(T )2)

E(X0(T )2) | ≥ L
√

δr)

+ P (|E(X0(T )2) − 1
T

T∑
i=1

Xi−1(T )2| ≥
√

δr

L
)

+ P (| T∑T
i=1 Xi−1(T )2

| >
1
δ

)

For δ, r sufficiently small but fixed, the first term at the right hand side above is negligible

by the moderate deviation principle of RT by letting L → ∞. The second and third terms

are negligible by the moderate deviation principle of (1−ϕ2
T )

3
2

√
T bT

∑T
i=1(Xi(T )2 − E[X2

0 ]).

Since ∑T
i=1(Xi(T )Xi−1(T ) − ϕT Xi−1(T )2)

E(X0(T )2)

is a martingale with stationary differences and Rn satisfies the MDP with the speed b2
T

and with the rate function

I(r) = sup
λ

(λr − 1
2E(λX1(T )X0(T ) − ϕT X0(T )2√

1 − ϕ2
T E(X0(T )2)

))2

Since

X1(T )X0(T ) − ϕT X0(T )2 = X0(T )(X1(T ) − ϕT X0(T )) = X0(T )ε1
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We then can calculate

E(λX1(T )X0(T ) − ϕT X0(T )2√
1 − ϕ2

T E(X0(T )2)
))2 = E(λ X0(T )ε1√

1 − ϕ2
T E(X0(T )2)

)2

= λ2 1
1 − ϕ2

T

E( X0(T )ε1
E(X0(T )2))2

= λ2

Therefore, we could get the rate function as follows

I(r) = r2

2

When r < 0, |ϕ̂T − ϕT | > r is always true. Therefore,

I(r) = +∞

and the proof is complete.
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Chapter 5

Applications of Varying
Coefficient Models

As we can see in Chapter 3, the ADF and KPSS tests use different statistics to de-

termine a time series’ stationarity. Some applications of these two tests will be made

in this chapter. After confirming the stochastic trend of each time series, we perform

cointegration tests to see if the linear combinations of these series are stationary.

5.1 Temperature Series

Temperatures in many cities have changed significantly over the last 100 years as a result

of the greenhouse gas effect. Analysing and forecasting various countries’ or cities’ aver-

age temperature series will assist us in warning about and controlling extreme weather

events. Detecting trends in time series and assessing their magnitude and statistical

significance is also an important task in geophysical research.

Woodward and Gray[25, 26] investigated whether a stochastic trend exists in global aver-

age temperature series. Fatichi et al[12] used the KPSS method to examine temperature

time series for trend stationery and difference stationary behaviours. They confirmed

78



an increase in uncertainty when there are pronounced stochastic trends in the data. In

2016, Chang et al.[5] also analyzed the time series of global average temperature anomaly

distributions to identify and estimate persistent features in climate change. They used

a formal test for functional unit roots in the distributions’ time series.

We retrieved average annual temperature data from the U.S. Department of Energy

website[15] and Berkelery Earth website (http : //berkeleyearth.org/). The data can be

divided into four categories: global data, hemispheric data, continental data, and data

for individual cities. We performed a structural analysis on the aforementioned datasets

and discovered that the majority of them should follow a varying coefficient model.

5.1.1 Global Annual Temperature Series

We examined global annual average temperature data from 1900 to 2010. The time

series contains 111 observed values, which are shown in Figure 5.1.
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Figure 5.1: Global Annual Average Temperature Time Series

Figure 5.1 clearly shows that the series has an increasing trend. The Mann-Kendall test

also confirms this result. It satisfies the third situation of the ADF test, which is that

the time series contains constant and time trend terms, according to the unit root test

introduced in Chapter 3. Based on this result, we employ two distinct methods to test

for the stochastic trend in this series: ADF and KPSS. The outcome is shown in Table

5.1.

Table 5.1: Stochastic Trend Test of Global Temperature Series

No. Region Period ADF result P-Value (ADF) KPSS result P-Value (KPSS)

1 Global 1900-2000 Unit Root 0.3572 Unit Root 0.0293

2 Global 1900-2010 Unit Root 0.8305 Unit Root 0.0148

We used two different time intervals for testing to confirm whether this time series will

change with time and whether its stationarity will change as well. Table 5.1 shows that
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by varying the time interval, the ADF and KPSS tests can provide the same conclusion

for the global average temperature series, i.e., it has a unit root.

5.1.2 Hemispheric Annual Temperature Series

We also examined annual average temperature data from the Northern and Southern

Hemispheres from 1900 to 2010. Each time series contains 111 observed values, which

are shown in Figure 5.2.

Figure 5.2: Hemispheric Annual Average Temperature

Figure 5.2 clearly shows that they both have an increasing trend. The Mann-Kendall

test also confirms this result. As a result, the constant and time trend terms should be

included in the ARMA models for these two time series. Based on this result, we used

two different methods, ADF and KPSS, to test for the stochastic trend in these two

series. The outcome is shown in Table 5.2.
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Table 5.2: Stochastic Trend Test of Hemispheric Temperature Series

No. Region ADF result P-Value (ADF) KPSS result P-Value (KPSS)

1 Southern Hemisphere Trend Stationary 1.39 × 10−9 Unit Root 0.01

2 Northern Hemisphere Unit Root 0.3269 Unit Root 0.01831

Table 5.2 shows that ADF and KPSS tests could give the same conclusion for the North-

ern Hemisphere’s average temperature series, which has a unit root. However, the test

result for the Southern Hemisphere series is different. The ADF test method demon-

strates that the Southern Hemisphere’s annual average temperature series does not con-

tain a unit root. But the KPSS method reveals that the series has a unit root. We ran

the tests again for the series with data from various time intervals. The ADF and KPSS

tests first assisted us in identifying the stochastic trend in these series. The ARMA

models for these series was then chosen using the AIC criterion. These series can be

represented by ARMA models under trend stationary conditions using the AIC criterion.

The ordinary least squares method was used to estimate the AR component coefficients.

Table 5.3 displays the regression result.

Table 5.3: Southern Hemisphere Temperature Series Estimation Results

No. Region Time Period Model Estimated Value of AR coefficient

1 Southern Hemisphere 1900-2000 ARMA(1,2) 0.9883

2 Southern Hemisphere 1900-2001 ARMA(1,2) 0.9887

3 Southern Hemisphere 1900-2002 ARMA(1,2) 0.9910

4 Southern Hemisphere 1900-2003 ARMA(1,2) 0.9921

5 Southern Hemisphere 1900-2004 ARMA(1,2) 0.9916
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The results in Table 5.3 show that increasing the number of observations from 101 to 105

brings the series’ AR component coefficient closer to one. When the amount of observed

data is small, however, the coefficient of the AR component is strictly less than one;

thus, ADF and KPSS tests will show that the series is a trend stationary series with no

unit root. When we increase the number of observations, the estimated coefficient value

of the AR component approaches one but remains less than one. As a result, based on

the ADF method, the test still suggests that the time series does not contain a unit

root, which explains why the ADF test’s p-value is less than 0.05. The KPSS method

demonstrates that the series contains a stochastic trend. Based on the above analysis,

we have enough evidence to believe that the series can be well represented by a varying

coefficient model. It will eventually become a unit root process as time passes.

We used linear regression to obtain a long-term equilibrium relationship between the

two hemispheric temperature series after confirming that both series contain unit roots.

The relationship is based on data from 1900 to 2000, with each series containing 101

observations. To test the residual series to see if it is stationary or containing any trend,

we used the ADF test method. We discovered that the long-term equilibrium residual

between the two hemispheres is a stationary series. Thus, according to the Engle-Granger

cointegration testing method, the two hemispheric temperature series are cointegrated.

Equation 5.1 depicts their long-term equilibrium relationship.

Southern Hemispheret = −0.0472 + 0.7791 × Northern Hemispheret (5.1)
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The coefficient in front of the Northern Hemisphere term is a positive number, indicat-

ing that the two temperature series have a positive relationship. It is simple to see that

when the temperature of one hemisphere rises, the temperature of the other hemisphere

rises as well. Between the two time series, the linear correlation coefficient is 0.8390. We

also used this long-term equilibrium relationship to predict Southern Hemisphere’s tem-

peratures from 2001 to 2010 based on Northern Hemisphere’s temperatures observed in

the corresponding years, and then compared the predicted values to the actual observed

values. Figure 5.3 depicts the final results.

Figure 5.3: Predicted Values versus Actual Observed Values

Figure 5.3 shows that the observed temperature fluctuations can be reasonably predicted

from year to year. This prediction has a mean squared error of only 0.023.
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5.1.3 Continental Annual Average Temperature Series

The annual average temperature of each continent is the third object to be studied. We

analyzed the annual average temperature of six continents from 1900 to 2010, with 111

observations for each time series. Figure 5.4 depicts the temperature series for each

continent.

(a) Africa (b) Asia

(c) Europe (d) Oceania
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(e) North America (f) South America

Figure 5.4: Continental Annual Average Temperature Series

It is also clear that they all have an increasing trend. Mann-Kendall test confirmed

that all of the continental average temperature series contain a deterministic increasing

trend. We tested the existence of stochastic trend in the above time series using ADF

and KPSS tests. The results are summarised in Table 5.4.

Table 5.4: Stochastic Trend Test of Continental Temperature Series

No. Region P-Value (ADF) ADF result P-Value (KPSS) KPSS result

1 North America 7.29 × 10−10 Trend Stationary 0.0451 Unit Root

2 Asia 3.52 × 10−5 Trend Stationary 0.0124 Unit Root

3 Europe 7.30 × 10−6 Trend Stationary 0.1 Trend Stationary

4 South America 1.63 × 10−9 Trend Stationary 0.0163 Unit Root

5 Oceania 0.5771 Unit Root 0.01 Unit Root

6 Africa 0.0223 Trend Stationary 0.0164 Unit Root

As can be seen from Table 5.4, North America, Asia, South America and Africa have

different test results when the two different tests were used. So we used the AIC criterion

to select the ARMA models for these time series with observations from two different
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time intervals. North America, Asia and Africa have ARMA models where the AR

component is with first order, and estimation results are presented in Table 5.5.

Table 5.5: Continental Temperature Series Estimation Result

No. Region Time Period Model Estimated Value of AR component

1 North America 1900-2000 ARMA(1,2) 0.9573

2 North America 1900-2010 ARMA(1,1) 0.9789

3 Asia 1900-2000 ARMA(1,1) 0.9866

4 Asia 1900-2010 ARMA(1,1) 0.9919

5 Africa 1900-2000 ARMA(1,2) 0.9827

6 Africa 1900-2010 ARMA(1,3) 0.99

As the length of the observation time increases, so does the number of observed data,

and the estimated AR coefficient approaches to one. This confirms that the time series

in these three regions should follow varying coefficient time series models. And we should

be able to confirm that the annual average temperature series in North America, Asia,

Oceania, and Africa are nonstationary time series with unit roots. We will not do much

analysis for the annual average temperature series in South America because the order

of the AR component exceeds 1 as determined by the AIC criterion.

After confirming that the continental series, with the exception of Europe, contain unit

roots, we used linear regression to obtain the long-term equilibrium relationships between

the continents excluding Europe based on data from 1900 to 2000, with 101 observations

for each series. The ADF method is used to test the residual series obtained from

the regression analysis. Through testing, we discovered that the long-term equilibrium
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residuals between eight pairs of continents are stationary series.

Figure 5.5: Continental Temperature Series Cointegration Test Results

We can confirm that there are cointegration relationships between those eight pairs of

continents based on the results shown in Figure 5.5. Figure 5.5 depicts the cointegration

test statistics as a heatmap, while Table 5.6 lists in detail the long-term equilibrium

relationships.
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Table 5.6: Long-Term Equilibrium Relationships

No. Continents Relationship

1 Africa and Asia Africat = 0.0219 + 0.5451 × Asiat

2 South America and Asia South Americat = −0.0817 + 0.5693 × Asiat

3 Oceania and Asia Oceaniat = −0.0438 + 0.6184 × Asiat

4 Africa and North America Africat = 0.0150 + 0.4819 × North Americat

5 Oceania and South America Oceaniat = 0.0287 + 0.8506 × South Americat

6 South America and North America South Americat = −0.0861 + 0.4335 × North Americat

7 Africa and South America Africat = 0.0897 + 0.8074 × South Americat

8 Asia and North America Asiat = 0.0057 + 0.4210 × North Americat

According to Table 5.6, all coefficients in front of the predictor continent are positive.

It means that as the temperature of one continent rises, so will the temperature of the

other. This demonstrates that the Earth’s temperature rise is a global phenomenon,

not just a regional phenomenon. The heatmap in Figure 5.5 also shows that there is

no cointegration relationship between North America and Oceania, and no cointegration

relationship between Oceania and Africa. The residual series of their linear combination

is not stationary, as demonstrated by the EG two-step method and confirmed by the

ADF test. Afterwards, we used the long-term equilibrium relationships to forecast the

temperatures of each continent for the next ten years, from 2001 to 2010, and the results

are shown in Figure 5.6.
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(a) African Prediction based on Asian observa-

tion

(b) African Prediction based on North Ameri-

can observation

(c) African Prediction based on South Ameri-

can observation

(d) Asian Prediction based on North American

observation

(e) Oceanian Prediction based on Asian obser-

vation

(f) Oceanian Prediction based on South Amer-

ican observation
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(g) South American Prediction based on Asian

observation

(h) South American Prediction based on North

American observation

Figure 5.6: Continents’ Predicted versus Observed Values

The Mean Squared Errors (MSEs) of these predictions were also calculated and are

presented in Table 5.7.

Table 5.7: Mean squared Errors of Continents’ Temperature Predictions

No. Region 1 Region 2 MSE Score

1 Africa Asia 0.1679

2 South America Asia 0.0448

3 Oceania Asia 0.0678

4 Africa North America 0.2521

5 Oceania South America 0.0713

6 South America North America 0.1219

7 Africa South America 0.1466

8 Asia North America 0.5525

Table 5.7 shows that the majority of the predictions are relatively accurate with MSE
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values around 0.1. However, the forecast results for Africa and North America, as well

as Asia and North America, are relatively poor when compared to the other sets. Figure

5.7 depicts the residual series of these two sets.

(a) Residual Series of Linear Combination be-

tween Africa and North America

(b) Residual Series of Linear Combination be-

tween Asia and North America

Figure 5.7: Residual Series for the sets of Africa and North America as
well as Asia and North America

Figure 5.7 shows that the residual series from the sets of Africa and North America, as

well as Asia and North America, have an increasing trend. This demonstrates that the

warming trends in Africa and Asia are more prominent than those in North America.

This linear growth trend in residuals, however, cannot be confirmed due to a insufficient

amount of data. That is why when using the ADF test on the residual series, it still

yields a stationary result. As the number of observations grows, the ADF test on the

residuals may reveal that the residuals are no longer stationary, and those two sets of

long-term equilibrium relationships may not hold.
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5.1.4 Individual Cities’ Annual Average Temperature Series

Each city’s data set includes 111 observations. To test the stationarity of these series,

we continue to use the ADF and KPSS methods. It can be demonstrated that 9 cities’

annual average temperature series are non-stationary with unit roots, 58 cities’ average

temperature series are trend stationary, and 31 cities’ ADF and KPSS test results differ

from each other.

Table 5.8: Test Results for Cities Where Both ADF and KPSS Indicate
the Existence of Unit Roots

No. City P-Value (ADF) ADF result P-Value (KPSS) KPSS result

1 Luanda 0.4090 Unit Root 0.0292 Unit Root

2 Karachi 0.9602 Unit Root 0.0465 Unit Root

3 Dar es SalaamDar 0.2456 Unit Root 0.0179 Unit Root

4 Chengdu 0.1711 Unit Root 0.01 Unit Root

5 Abidjan 0.2292 Unit Root 0.0110 Unit Root

6 Mexico 0.1086 Unit Root 0.0134 Unit Root

7 Kinshasa 0.5015 Unit Root 0.0449 Unit Root

8 Addis Abeba 0.9071 Unit Root 0.01 Unit Root

9 Lagos 0.6670 Unit Root 0.0337 Unit Root
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Table 5.9: Test Results for Cities Where Both ADF and KPSS Indicate
that the Series are Trend Stationary

No. City P-Value (ADF) ADF result P-Value (KPSS) KPSS result

1 Chicago 1.56 × 10−13 Trend Stationary 0.1 Trend Stationary

2 Berlin 8.80 × 10−8 Trend Stationary 0.1 Trend Stationary

3 Kiev 0.0019 Trend Stationary 0.1 Trend Stationary

4 Rome 0.0005 Trend Stationary 0.1 Trend Stationary

5 Jiddah 7.55 × 10−10 Trend Stationary 0.1 Trend Stationary

6 Kanpur 2.79 × 10−6 Trend Stationary 0.1 Trend Stationary

7 Guangzhou 6.63×10−13 Trend Stationary 0.1 Trend Stationary

8 Moscow 1.95×10−7 Trend Stationary 0.1 Trend Stationary

9 Mashhad 7.36×10−6 Trend Stationary 0.0831 Trend Stationary

10 Casablanca 0.0365 Trend Stationary 0.1 Trend Stationary

11 Nagoya 2.52×10−12 Trend Stationary 0.1 Trend Stationary

12 Seoul 2.57×10−14 Trend Stationary 0.1 Trend Stationary

13 New York 8.32×10−15 Trend Stationary 0.1 Trend Stationary

14 Nagpur 1.69×10−8 Trend Stationary 0.1 Trend Stationary

15 Jakarta 4.99×10−12 Trend Stationary 0.1 Trend Stationary

16 Kabul 3.66×10−12 Trend Stationary 0.1 Trend Stationary

17 Umm Durman 5.41×10−6 Trend Stationary 0.0810 Trend Stationary

18 Paris 0.0046 Trend Stationary 0.1 Trend Stationary

19 Santiago 8.41×10−9 Trend Stationary 0.0820 Trend Stationary

20 Manila 1.79×10−12 Trend Stationary 0.0744 Trend Stationary

21 Montreal 3.22×10−15 Trend Stationary 0.1 Trend Stationary

22 Baghdad 6.84×10−13 Trend Stationary 0.1 Trend Stationary

23 Calcutta 2.95×10−5 Trend Stationary 0.1 Trend Stationary

24 Lima 3.95×10−11 Trend Stationary 0.1 Trend Stationary

25 Tianjin 7.78×10−11 Trend Stationary 0.1 Trend Stationary
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No. City P-Value (ADF) ADF result P-Value (KPSS) KPSS result

26 Tangshan 1.43×10−10 Trend Stationary 0.0976 Trend Stationary

27 Aleppo 6.41×10−11 Trend Stationary 0.1 Trend Stationary

28 Harare 1.65×10−11 Trend Stationary 0.1 Trend Stationary

29 Santo Domingo 1.30×10−9 Trend Stationary 0.1 Trend Stationary

30 Saint Petersburg 6.45×10−121 Trend Stationary 0.1 Trend Stationary

31 Beijing 7.78×10−11 Trend Stationary 0.1 Trend Stationary

32 Riyadh 2.45×10−11 Trend Stationary 0.1 Trend Stationary

33 Lahore 2.73×10−7 Trend Stationary 0.1 Trend Stationary

34 London 7.88×10−11 Trend Stationary 0.1 Trend Stationary

35 Toronto 2.00×10−14 Trend Stationary 0.1 Trend Stationary

36 Madrid 0.0001 Trend Stationary 0.0696 Trend Stationary

37 Lakhnau 2.79×10−6 Trend Stationary 0.1 Trend Stationary

38 Hyderabad 6.92×10−11 Trend Stationary 0.0708 Trend Stationary

39 Singapore 3.10×10−8 Trend Stationary 0.1 Trend Stationary

40 Rangoon 2.38×10−12 Trend Stationary 0.1 Trend Stationary

41 Istanbul 3.31×10−10 Trend Stationary 0.1 Trend Stationary

42 Delhi 1.32×10−9 Trend Stationary 0.1 Trend Stationary

43 Faisalabad 2.73×10−7 Trend Stationary 0.1 Trend Stationary

44 Taipei 1.46×10−11 Trend Stationary 0.1 Trend Stationary

45 Dhaka 2.20×10−11 Trend Stationary 0.1 Trend Stationary

46 Cape Town 1.84×10−7 Trend Stationary 0.0668 Trend Stationary

47 Jinan 1.75×10−11 Trend Stationary 0.0987 Trend Stationary

48 Ankara 2.20×10−10 Trend Stationary 0.1 Trend Stationary

49 Cali 1.69×10−11 Trend Stationary 0.1 Trend Stationary

50 New Delhi 1.32×10−9 Trend Stationary 0.1 Trend Stationary

51 Jaipur 9.07×10−5 Trend Stationary 0.1 Trend Stationary

52 Tokyo 1.58×10−11 Trend Stationary 0.1 Trend Stationary
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No. City P-Value (ADF) ADF result P-Value (KPSS) KPSS result

53 Wuhan 6.95×10−11 Trend Stationary 0.0545 Trend Stationary

54 Surabaya 2.96×10−14 Trend Stationary 0.1 Trend Stationary

55 Taiyuan 4.60×10−10 Trend Stationary 0.1 Trend Stationary

56 Bogota 1.67×10−10 Trend Stationary 0.1 Trend Stationary

57 Los Angeles 6.84×10−12 Trend Stationary 0.1 Trend Stationary

58 Durban 1.27×10−11 Trend Stationary 0.0837 Trend Stationary

Table 5.10: Test Results for Cities Where ADF and KPSS Test Results
are Different

No. City P-Value (ADF) ADF result P-Value (KPSS) KPSS result

1 Ibadan 1.37×10−6 Trend Stationary 0.0252 Unit Root

2 Alexandria 2.22×10−10 Trend Stationary 0.0259 Unit Root

3 Madras 2.34×10−11 Trend Stationary 0.0231 Unit Root

4 Dalian 1.10×10−12 Trend Stationary 0.0498 Unit Root

5 Melbourne 1.43×10−11 Trend Stationary 0.0195 Unit Root

6 Belo Horizonte 0.0052 Trend Stationary 0.01 Unit Root

7 Harbin 6.71×10−13 Trend Stationary 0.0148 Unit Root

8 Bangalore 0.0001 Trend Stationary 0.01 Unit Root

9 Izmir 7.75×10−9 Trend Stationary 0.0382 Unit Root

10 Chongqing 6.08×10−10 Trend Stationary 0.01 Unit Root

11 Shenyang 9.54×10−13 Trend Stationary 0.0464 Unit Root

12 Kano 1.61×10−8 Trend Stationary 0.0374 Unit Root

13 Shanghai 3.79×10−12 Trend Stationary 0.03423 Unit Root

14 Nanjing 3.79×10−11 Trend Stationary 0.0368 Unit Root

15 Gizeh 1.89×10−11 Trend Stationary 0.0302 Unit Root

16 Bangkok 3.72×10−10 Trend Stationary 0.0374 Unit Root
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No. City P-Value (ADF) ADF result P-Value (KPSS) KPSS result

17 Sao Paulo 6.04×10−17 Trend Stationary 0.0228 Unit Root

18 Xian 4.72×10−8 Trend Stationary 0.0464 Unit Root

19 Surat 1.42×10−12 Trend Stationary 0.0426 Unit Root

20 Ho Chi Minh City 4.05×10−8 Trend Stationary 0.0178 Unit Root

21 Salvador 1.73×10−10 Trend Stationary 0.01 Unit Root

22 Sydney 7.02×10−12 Trend Stationary 0.0137 Unit Root

23 Fortaleza 2.03×10−10 Trend Stationary 0.0196 Unit Root

24 Cairo 1.89×10−11 Trend Stationary 0.0302 Unit Root

25 Dakar 5.39×10−10 Trend Stationary 0.01 Unit Root

26 Rio de Janeiro 0.0001 Trend Stationary 0.0244 Unit Root

27 Bombay 6.14×10−12 Trend Stationary 0.0317 Unit Root

28 Changchun 9.73×10−13 Trend Stationary 0.0209 Unit Root

29 Brasilia 1.22×10−10 Trend Stationary 0.01 Unit Root

30 Mogadishu 1.30×10−7 Trend Stationary 0.0242 Unit Root

31 Ahmadabad 4.38×10−7 Trend Stationary 0.04359 Unit Root

We used the same approach to examine the stationarity characteristics of the series for

the 31 cities in Table 5.10. We can confirm that they all adhere to the ARMA model.

Due to the large number of cities in Table 5.10 and the more complex AR components of

some time series, we only selected 8 cities from China and present the regression results

in Table 5.11.
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Table 5.11: Chinese Cities’ Temperature Series Estimation Results

No. City Time Period Model Estimated Coefficient of the AR component

1 Dalian 1900-2000 ARMA(1,1) 0.9809

2 Dalian 1900-2010 ARMA(1,1) 0.9825

3 Harbin 1900-2000 ARMA(1,1) 0.9786

4 Harbin 1900-2010 ARMA(1,1) 0.9844

5 Chongqing 1900-2000 ARMA(1,1) 0.9497

6 Chongqing 1900-2010 ARMA(1,1) 0.9667

7 Shenyang 1900-2000 ARMA(1,1) 0.9805

8 Shenyang 1900-2010 ARMA(1,1) 0.9847

9 Shanghai 1900-2000 ARMA(1,1) 0.9737

10 Shanghai 1900-2010 ARMA(1,1) 0.9846

11 Nanjing 1900-2000 ARMA(1,1) 0.9654

12 Nanjing 1900-2010 ARMA(1,1) 0.9814

13 Xian 1900-2000 ARMA(1,2) 0.9343

14 Xian 1900-2010 ARMA(1,2) 0.9732

15 Changchun 1900-2000 ARMA(1,1) 0.9787

16 Changchun 1900-2010 ARMA(1,1) 0.9849

Table 5.11 shows that the average temperature series for the eight cities are all ARMA

series with AR components of order one. If data from 1900 to 2000 are used, the

estimated coefficient value of the AR component is already quite close to one. When we

extended the time interval so that it ends in 2010 instead of 2000, with the number of

observations increased from 101 to 111, the estimated coefficient value was even closer

to one. These additional evidences demonstrate that varying coefficient models can
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adequately represent all these series. As time intervals increase, the existence of unit

roots becomes clearer. As a result, the eight Chinese series should all be nonstationary

series with unit roots. Following confirmation of the above time series’ stationarity, we

used the EG two-step method to test the cointegration relationship between the eight

Chinese cities’ series, and the results are shown in Figure 5.8.

Figure 5.8: Chinese Cities’ Cointegration Test results

Figure 5.8 shows that the majority of the cities’ annual average temperature series are

cointegrated and have long-term equilibrium relationships between them. Table 5.12
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summarises the long-term equilibrium relationships derived from linear regression anal-

ysis.

Table 5.12: Long-Term Equilibrium Relationships between Chinese
Cities’ Temperatures

No. Region Relationship

1 Changchun and Harbin Changchunt = −0.0325 + 0.9270 × Harbint

2 Chongqing and Xian Xiant = 0.0573 + 0.9520 × Chongqingt

3 Shanghai and Nanjing Nanjingt = 0.0091 + 0.9840 × Shanghait

4 Dalian and Harbin Harbint = 0.0908 + 1.1316 × Daliant

5 Nanjing and Xian Xiant = 0.0070 + 0.7641 × Nanjingt

6 Shanghai and Xian Xiant = 0.0120 + 0.7268 × Shanghait

7 Chongqing and Nanjing Nanjingt = 0.0190 + 0.8062 × Chongqingt

8 Chongqing and Shanghai Shanghait = 0.0056 + 0.7765 × Chongqingt

9 Dalian and Xian Xiant = −0.0585 + 0.4598 × Daliant

10 Shenyang and Shanghai Shanghait = −0.0862 + 0.4586 × Shenyangt

11 Shanghai and Changchun Changchunt = 0.1663 + 1.0576 × Shanghait

12 Shenyang and Nanjing Nanjingt = −0.0756 + 0.4705 × Shenyangt

13 Dalian and Shenyang Shenyangt = −0.0157 + 1.0877 × Daliant

14 Shenyang and Xian Xiant = −0.0508 + 0.3655 × Shenyangt

15 Nanjing and Changchun Changchunt = 0.1523 + 1.0116 × Nanjingt

16 Chongqing and Shenyang Shenyangt = 0.0819 + 0.5948 × Chongqingt

17 Shenyang and Changchun Changchunt = 0.0649 + 1.0701 × Shenyang

18 Dalian and Changchun Changchunt = 0.0484 + 1.1542 × Daliant

19 Chongqing and Changchun Changchunt = 0.1417 + 0.5348 × Chongqingt

20 Xian and Changchun Changchunt = 0.1158 + 0.7041 × Xiant

21 Harbin and Shenyang Shenyangt = −0.0751 + 0.7409 × Harbint
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We also used the obtained long-term equilibrium relationships to forecast each city’s

temperature from 2001 to 2010 and compared them to the actual observed values. MSEs

(mean squared errors) were also computed, and the results are shown in Table 5.13.

Table 5.13: Mean squared Errors of Individual Cities’ Predictions

No. City 1 City 2 MSE

1 Harbin Changchun 0.0274

2 Chongqing Xian 0.1232

3 Shanghai Nanjing 0.0020

4 Dalian Harbin 0.2494

5 Nanjing Xian 0.0535

6 Shanghai Xian 0.0577

7 Chongqing Nanjing 0.3765

8 Chongqing Shanghai 0.3831

9 Dalian Xian 0.3099

10 Shenyang Shanghai 0.4341

11 Shanghai Changchun 0.4105

12 Shenyang Nanjing 0.4601

13 Dalian Shenyang 0.0364

14 Shenyang Xian 0.3871

15 Nanjing Changchun 0.4306

16 Chongqing Shenyang 0.6314

17 Shenyang Changchun 0.1038

18 Dalian Changchun 0.1868

19 Chongqing Changchun 1.4077

20 Xian Changchun 1.0768

21 Harbin Shenyang 0.0502
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Table 5.13 shows that the majority of the predictions are reasonably accurate. However,

using the equilibrium relationships, the forecast results for two pairs, Chongqing versus

Changchun and Xian versus Changchun, are relatively poor compared to the other pairs.

By comparing the residuals of these two pairs of equilibrium relationships, we discovered

that the residual series of both pairs have an increasing trend. This demonstrates that

Chongqing and Xian’s growth trends are more prominent than Changchun’s. However,

due to the lack of available data, this linear growth trend in residuals cannot be con-

firmed. That is why when using the ADF test on the residuals, it still yields a stationary

result, leading to the final conclusion that the two pairs are cointegrated. As a result,

we can expect this long-term equilibrium relationship to break down as the number of

observations increases. We can also use the EG two-step method to perform a cointe-

gration test on other cities’ average temperature series. We might get results similar to

what we have seen for Chinese cities.

5.1.5 Tests of Cointegration between Temperature Series Averaged at

Different Spatial Scales

Previous cointegration tests confirmed the existence of cointegration relationships be-

tween the temperature series averaged at the same spatial scales. For example, averaged

at the continental scale, we confirmed that Asia’s annual average temperature series is

cointegrated with Africa’s annual average temperature series; averaged at the individ-

ual city’s scale, we confirmed that the annual average temperature of Dalian, China

is cointegrated with that of Xian, China. In addition, we also ran cointegration tests
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between the annual average temperature series spatially averaged at different scales; for

example, between globally averaged series and continentally averaged series, between

continentally averaged series and individual cities’ series, and so on. Using the same

EG two-step method, we confirmed that the globally averaged temperature series is

cointegrated with the temperature series averaged over the Northern Hemisphere. But

the cointegration between the global annual average temperature series and that of the

Southern hemisphere cannot be confirmed because the stochastic trend in the southern

hemisphere is weak.

Between the hemispheric temperature series and continental temperature series, such

as between the temperature series of Northern Hemisphere and North America, coin-

tegration relationships were also found. Between the continental and individual city’s

temperature series, such as between Harbin, China and Asia, cointegration relationships

were found to exist as well. It was also confirmed that some long-term equilibrium

cointegration relationships exist between the globally averaged annual average tempera-

ture and continentally averaged annual average temperature series. We also performed

cointegration tests on global annual average temperature and individual city’s annual

average temperature series. It was confirmed that the global average temperature series

has cointegration relationships with the annual average temperature series of the eight

Chinese cities listed in Table 5.11. All these additional cointegration tests demonstrated

that integrated temperature series, whether they are spatially averaged at the global,

hemispheric, continental, or individual city scales, are almost all cointegrated. This im-

plies that the stochastic trends contained in all the temperature series may be caused
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by the same physical processes.

5.2 Extreme Rainfall Time Series

We analyzed extreme rainfall records for several Canadian cities and plotted them as

time series to see if they are stationary. We obtained extreme rainfall data for 11 cities

over a period of about 50 years from the Government of Canada’s website (https :

//climate.weather.gc.ca/). Figure 5.9 depicts the extreme rainfall series for each cities.

(a) Thunder Bay (b) Sarnia

(c) Calgary Int Airport (d) Vancouver Int Airport
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(e) Winnipeg (f) Victoria

(g) Windsor (h) Sault Ste Marie

(i) Toronto Int Airport (j) Toronto City

(k) Regina Int Airport

Figure 5.9: Canadian Extreme Rainfall Series105



To begin, in some cities where data was missing in specific years, we used the Forward

method to fill in the gaps. The Forward method fills missing values with previous data.

We then used the Mann-Kendall test to test for deterministic trend. It was shown that

none of them have a deterministic trend. Afterwards, the ADF and KPSS methods were

used to test for stochastic trend. According to the KPSS test, all series are stationary.

However, the ADF test results for two cities’ extreme rainfall time series differ from that

of the KPSS test. The detailed test results for the two cities are summarized in Table

5.14.

Table 5.14: Extreme Rainfall Stochastic Trend Test Results

No. City P-Value (ADF) ADF result P-Value (KPSS) KPSS result

1 Victoria International Airport 0.2862 Unit Root 0.1 stationary
2 Sarnia 0.3863 Unit Root 0.1 stationary

When we used the AIC criterion to validate their ARMA models, we discovered that their

residual series may have ARCH characteristics. That is why we performed additional

analysis on these two time series.

To begin, we validated the ARMA models of these two series using the AIC criterion.

The results are shown in Table 5.15.

Table 5.15: Extreme Rainfall Regression Results

No. City Model

1 Victoria International Airport white noise
2 Sarnia AR(1)

Secondly, we used the AR(1) model to regress Sarnia’s time series and obtained the

residual series. The squared residual series meets the ARCH model’s characteristics.

This was confirmed using the Ljung-Box test. Thirdly, we used the AIC criterion to
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confirm that Sarnia’s extreme rainfall residual process fits the GARCH(1,1) model shown

below.

rt = σtεt

σ2
t = 2.3264 + 1.1574 × 10−12r2

t−1 + σ2
t−1

The above results show that the residuals of Sarnia’s time series are not independent,

and the coefficient of σ is positive, indicating that the variance of the random error in

the time series increases with time. It means that the time series is becoming more

unpredictable. We conducted the Ljung-Box test for other locations’ extreme rainfall

series as well, it revealed that all other locations’ extreme rainfall series are white noise.

107



Chapter 6

Summary and Conclusions

6.1 Summary

This thesis focuses on the application of the large deviation principle to varying coeffi-

cient autoregressive models of order one, particularly in the case where ϕT = 1− 1
T . The

process will transition from stationary to non-stationary with T → ∞. Stationarity test

methods such as ADF and KPSS may not work in these types of models because they

are only applicable when the coefficient is fixed. According to the large deviation princi-

ple, if the estimator’s probability is far from its actual value with constant distance, the

probability will follow the rate function described in Chapter 4. This allows us to better

understand the asymptotic behaviour of this estimator and thus how it converges when

numerically simulated. Many time series in the actual dataset, particularly temperature

series, follow the varying coefficient autoregressive model. By comparing the estimated

coefficient values of the model with different observation periods, we can see that the

estimator approaches one as the number of observations increases. In many cases, we

may believe that the time series changes from stationary to non-stationary because it

has a sudden change point at a specific moment or period, resulting in the change of
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state. However, when we examined the regional temperature series, we discovered that

it has been increasing since the beginning and has not changed significantly in a long

time. The difference in trend identification results is caused by the fact that the time

series follow varying coefficient models.

6.2 Future Research

First, we believe that dynamic change models, rather than simply using breakpoints

to reflect possible significant state changes in the sequence, would better represent the

regional annual average temperature series. We discovered that the annual average tem-

perature in many regions is rising, but the differenced time series is stationary. As a

result, we believe that the likelihood of a sudden change in a short period is very low,

and that the series itself has been affected at some point. This impact does not have

a significant impact in a short period of time, but it has a profound effect over time,

similar to what we call long memory time series.

Second, when it comes to actual data, the model we fit for each series is more com-

plex than simple autoregressive models. The ARMA model, rather than the simple AR

process, should be used by the majority of them. As a result, the large and moderate

deviation principle for ARMA models with varying coefficients may be pursued in the

future.

We discovered that most time series are displayed as white noise series when we pro-

cessed the extreme rainfall series, which is due to an insufficient number of observations.
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However, we discovered that the residuals of some of the extreme rainfall series are se-

rially dependent on each other. As a result, more data should be collected to confirm

whether there are any deterministic trends in the series and whether they are autore-

gressive. Furthermore, we know that rainfall and temperature have a specific physical

relationship. However, because we have not yet determined whether the time series of

extreme precipitation contain unit roots through diagnosis, we are unable to conduct a

cointegration analysis between extreme precipitation and regional average temperature.

As a result, we may conduct additional research on the rainfall sequence in the future

to confirm whether it meets the characteristics of the varying coefficient model and then

perform a cointegration analysis.
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Appendix A

Chapter 6 Supplement

A1 Stationarity Test Code
1 # Trend Test

de f mk_test ( data ) :
3 re turn mk. o r i g i n a l _ t e s t ( data , alpha = 0 . 0 5 ) [ 0 ]

5 # ADF t e s t
de f adf_test ( data ) :

7 i f ( mk_test ( data ) == ’ i n c r e a s i n g ’ ) or ( mk_test ( data ) == ’ dec r ea s ing ’ ) :
d f t e s t = a d f u l l e r ( data , r e g r e s s i o n = " ct " , auto lag="AIC" )

9 output = [ ]
output . append ( d f t e s t [ 1 ] )

11 i f d f t e s t [ 1 ] > 0 . 0 5 :
output . append ( "Non−s t a t i o n a r y " )

13 e l s e :
output . append ( " Stat i onary " )

15 re turn output
e l s e :

17 d f t e s t = a d f u l l e r ( data , r e g r e s s i o n = " c " , auto lag="AIC" )
output = [ ]

19 output . append ( d f t e s t [ 1 ] )
i f d f t e s t [ 1 ] > 0 . 0 5 :

21 output . append ( "Non−s t a t i o n a r y " )
e l s e :

23 output . append ( " Stat i onary " )
re turn output

25

de f adf_test_2 ( data ) :
27 d f t e s t = a d f u l l e r ( data , r e g r e s s i o n = " nc " , auto lag="AIC" )

output = [ ]
29 output . append ( d f t e s t [ 1 ] )

i f d f t e s t [ 1 ] > 0 . 0 5 :
31 output . append ( "Non−s t a t i o n a r y " )

e l s e :
33 output . append ( " Stat i onary " )

re turn output
35

# KPSS t e s t
37 de f kpss_test ( data ) :
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i f ( mk_test ( data ) == ’ i n c r e a s i n g ’ ) or ( mk_test ( data ) == ’ dec r ea s ing ’ ) :
39 k p s s t e s t = kpss ( data , r e g r e s s i o n = ’ ct ’ , n l ags=" auto " )

output = [ ]
41 output . append ( k p s s t e s t [ 1 ] )

i f k p s s t e s t [ 1 ] > 0 . 0 5 :
43 output . append ( " Stat i onary " )

e l s e :
45 output . append ( "Non−s t a t i o n a r y " )

re turn output
47 e l s e :

k p s s t e s t = kpss ( data , r e g r e s s i o n = ’ c ’ , n lags=" auto " )
49 output = [ ]

output . append ( k p s s t e s t [ 1 ] )
51 i f k p s s t e s t [ 1 ] > 0 . 0 5 :

output . append ( " Stat i onary " )
53 e l s e :

output . append ( "Non−s t a t i o n a r y " )
55 re turn output

57 de f kpss_test_2 ( data ) :
k p s s t e s t = kpss ( data , r e g r e s s i o n = ’ c ’ , n lags=" auto " )

59 output = [ ]
output . append ( k p s s t e s t [ 1 ] )

61 i f k p s s t e s t [ 1 ] > 0 . 0 5 :
output . append ( " Stat i onary " )

63 e l s e :
output . append ( "Non−s t a t i o n a r y " )

65 re turn output

67 # White Noise t e s t
de f white_noise_test ( data ) :

69 r e s u l t = acorr_ljungbox ( data . values , l a g s =[6 , 1 2 ] , return_df=True )
i f r e s u l t . l o c [ 6 , ’ lb_pvalue ’ ] < 0 . 0 5 :

71 re turn ’ not white n o i s e ’
e l s e :

73 re turn ’ white n o i s e ’

A2 Cointegration Test Code
1 # Def ine EG two s t ep s method

de f f ind_co integra ted_pa i r s ( data ) :
3 n = data . shape [ 1 ]

score_matrix = np . z e r o s ( ( n , n ) )
5 pvalue_matrix = np . ones ( ( n , n ) )

keys = data . keys ( )
7 p a i r s = [ ]

9 f o r i in range (n) :
f o r j in range ( i +1, n) :

11 S1 = data [ keys [ i ] ]
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S2 = data [ keys [ j ] ]
13 r e s u l t = c o i n t ( S1 , S2 , trend = " ct " , method = ’ aeg ’ )

s c o r e = r e s u l t [ 0 ]
15 pvalue = r e s u l t [ 1 ]

score_matrix [ i , j ] = s c o r e
17 pvalue_matrix [ i , j ] = pvalue

i f pvalue < 0 . 0 5 :
19 #p r i n t ( ( keys [ i ] , keys [ j ] ) , pvalue )

p a i r s . append ( ( keys [ i ] , keys [ j ] , pvalue ) )
21 re turn score_matrix , pvalue_matrix , p a i r s

23 # Return p−va lues o f each pa i r ’ s t e s t and draw the heat map
score s , pvalues , p a i r s = f ind_co integ ra ted_pa i r s (DF)

25

import seaborn
27 f i g , ax = p l t . subp lo t s ( f i g s i z e =(12 ,10) )

heatmap = seaborn . heatmap ( pvalues , x t i c k l a b e l s=DF. keys ( ) , y t i c k l a b e l s=DF.
keys ( ) , annot=True , cmap="YlGnBu" , mask = ( pvalues >= 0 . 0 5 ) )

29 heatmap . f i g u r e . s a v e f i g ( ’ heatmap . png ’ , dpi = 600)

113



Bibliography

[1] B. Bercu. On large deviations in the Gaussian autoregressive process: stable, un-
stable and explosive cases. Bernoulli (2001), 299–316.

[2] B. Bercu, F. Gamboa, and M. Lavielle. Sharp large deviations for Gaussian quadratic
forms with applications. ESAIM: Probability and Statistics 4 (2000), 1–24.

[3] B. Bercu, F. Gamboa, and A. Rouault. Large deviations for quadratic forms of
stationary Gaussian processes. Stochastic Processes and their Applications 71(1)
(1997), 75–90.

[4] N. H. Chan and C.-Z. Wei. Asymptotic inference for nearly nonstationary AR (1)
processes. The Annals of Statistics (1987), 1050–1063.

[5] Y. Chang, R. K. Kaufmann, C. S. Kim, J. I. Miller, J. Y. Park, and S. Park.
Evaluating trends in time series of distributions: A spatial fingerprint of human
effects on climate. Journal of Econometrics 214(1) (2020), 274–294.

[6] X. Chen. Moderate deviations for m-dependent random variables with Banach
space values. Statistics & probability letters 35(2) (1997), 123–134.

[7] H. Cramér. Sur un nouveau théoreme-limite de la théorie des probabilités. Actual.
Sci. Ind. 736 (1938), 5–23.

[8] A. Dembo and O. Zeitouni. Large deviations techniques and applications. Springer,
1998.

[9] D. A. Dickey and W. A. Fuller. Distribution of the estimators for autoregres-
sive time series with a unit root. Journal of the American statistical association
74(366a) (1979), 427–431.

[10] R. F. Engle. Autoregressive conditional heteroscedasticity with estimates of the
variance of United Kingdom inflation. Econometrica: Journal of the econometric
society (1982), 987–1007.

[11] R. F. Engle and C. W. Granger. Co-integration and error correction: representa-
tion, estimation, and testing. Econometrica: journal of the Econometric Society
(1987), 251–276.

[12] S. Fatichi, S. Barbosa, E. Caporali, and M. Silva. Deterministic versus stochastic
trends: Detection and challenges. Journal of Geophysical Research: Atmospheres
114(D18) (2009).

[13] T. Hastie and R. Tibshirani. Varying-coefficient models. Journal of the Royal Sta-
tistical Society: Series B (Methodological) 55(4) (1993), 757–779.

114



Bibliography

[14] Y. Hong and T.-H. Lee. Inference on predictability of foreign exchange rates via
generalized spectrum and nonlinear time series models. Review of Economics and
Statistics 85(4) (2003), 1048–1062.

[15] P. Jones, D. Parker, T. Osborn, and K. Briffa. Global and hemispheric tempera-
ture anomalies–land and marine instrumental records. U.S. Department of Energy
Office of Scientific and Technical Information (2006).

[16] D. Kwiatkowski, P. C. Phillips, P. Schmidt, and Y. Shin. Testing the null hypothesis
of stationarity against the alternative of a unit root: How sure are we that economic
time series have a unit root? Journal of Econometrics 54(1-3) (1992), 159–178.

[17] A. Mas and L. Menneteau. Large and moderate deviations for infinite-dimensional
autoregressive processes. Journal of Multivariate Analysis 87(2) (2003), 241–260.

[18] Y. Miao and G. Yang. A moderate deviation principle for m-dependent random
variables with unbounded m. Acta applicandae mathematicae 104(2) (2008), 191–
199.

[19] J. Y. Park. Weak Unit Roots (2003).
[20] P. C. Phillips. Understanding spurious regressions in econometrics. Journal of

Econometrics 33(3) (1986), 311–340.
[21] P. C. Phillips. Time series regression with a unit root. Econometrica: Journal of

the Econometric Society (1987), 277–301.
[22] P. C. Phillips. Regression theory for near-integrated time series. Econometrica:

Journal of the Econometric Society (1988), 1021–1043.
[23] D. I. Stern and R. K. Kaufmann. Detecting a global warming signal in hemi-

spheric temperature series: Astructural time series analysis. Climatic Change 47(4)
(2000), 411–438.

[24] J. S. White. The limiting distribution of the serial correlation coefficient in the
explosive case. The Annals of Mathematical Statistics (1958), 1188–1197.

[25] W. A. Woodward and H. L. Gray. Global warming and the problem of testing for
trend in time series data. Journal of Climate 6(5) (1993), 953–962.

[26] W. A. Woodward and H. Gray. Selecting a model for detecting the presence of a
trend. Journal of Climate 8(8) (1995), 1929–1937.

[27] J. Worms. Large and moderate deviations upper bounds for the Gaussian autore-
gressive process. Statistics & probability letters 51(3) (2001), 235–243.

[28] M. Xu, J. Li, and Y. Chen. Varying coefficient functional autoregressive model with
application to the US treasuries. Journal of Multivariate Analysis 159 (2017), 168–
183.

[29] M. Yu and S. Si. Moderate deviation principle for autoregressive processes. Journal
of Multivariate Analysis 100(9) (2009), 1952–1961.

115


	Abstract
	Acknowledgements
	Declaration of Authorship
	Introduction
	Asymptotic Theory in Probability Theory
	Law of Large Numbers
	Central Limit Theorem
	Large Deviation Principle
	Cramér's Theorem
	Gärtner Ellis Theorem


	Topics on Time Series
	Definition of Time Series
	Long Memory Time Series
	R/S Test

	Model for Stationary Time Series
	White Noise Process
	Autoregressive Model
	Moving Average Model
	Mixed Autoregressive Moving Average Model

	Model for Non-Stationary Time Series
	Wiener Process
	Integrated Series

	Parameter Estimation
	Ordinary Least Squares Estimation
	Asymptotic Distribution of Estimator
	Large Deviation Principle

	Deterministic Trend
	Mann-Kendall Test

	Test for Stationarity
	Dickey-Fuller Test
	KPSS Test

	Cointegration
	Spurious Regression Problem
	Test for Cointegration

	Time Series Models of Heteroscedasticity
	Definition of ARCH model
	Test for ARCH model


	Varying Coefficient Autoregreessive Model
	Asymptotic Distribution of OLS estimator
	Large Deviation Principle
	Moderate Deviation Principle of Varying Coefficient AR(1) model

	Applications of Varying Coefficient Models
	Temperature Series
	Global Annual Temperature Series
	Hemispheric Annual Temperature Series
	Continental Annual Average Temperature Series
	Individual Cities' Annual Average Temperature Series
	Tests of Cointegration between Temperature Series Averaged at Different Spatial Scales

	Extreme Rainfall Time Series

	Summary and Conclusions
	Summary
	Future Research

	Chapter 6 Supplement
	Stationarity Test Code
	Cointegration Test Code

	Bibliography

