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Abstract

Benefiting from hardware development, deep learning (DL) has become a popular research

area in recent decades. Convolutional neural network (CNN) is a critical deep learning

tool that has been utilized in many computer vision problems. Moreover, the data-driven

approach has unleashed CNN’s potential in acquiring impressive learning ability with

minimum human supervision. Therefore, many computer vision problems are brought into

the spotlight again. In this thesis, we investigate the application of deep-learning-based

methods, particularly the role of deep learning features, in two representative visual tasks:

image retrieval and image inpainting.

Image retrieval aims to find in a dataset images similar to a query image. In the

proposed image retrieval method, we use canonical correlation analysis to explore the

relationship between matching and non-matching features from pre-trained CNN, and

generate compact transformed features. The level of similarity between two images is

determined by a hypothesis test regarding the joint distribution of transformed image

feature pairs. The proposed approach is benchmarked against three popular statistical

analysis methods, Linear Discriminant Analysis (LDA), Principal Component Analysis

with whitening (PCAw), and Supervised Principal Component Analysis (SPCA). Our

approach is shown to achieve competitive retrieval performances on Oxford5k, Paris6k,
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ROxford, andRParis datasets.

Moreover, an image inpainting framework is proposed to reconstruct the corrupted

region in an image progressively. Specifically, we design a feature extraction network

inspired by Gaussian and Laplacian pyramid, which is usually used to decompose the

image into different frequency components. Furthermore, we use a two-branch iterative

inpainting network to progressively recover the corrupted region on high and low-frequency

features respectively and fuse both high and low-frequency features from each iteration.

Moreover, an enhancement model is introduced to employ neighbouring iterations’ features

to further improve intermediate iterations’ features. The proposed network is evaluated on

popular image inpainting datasets such as Paris Streetview, Celeba, and Place2. Extensive

experiments prove the validity of the proposed method in this thesis, and demonstrate the

competitive performance against the state-of-the-art.

iii



To all love I have received during this greatest journey in my life.

iv



Acknowledgements

Firstly, I would like to express sincere gratitude to my supervisor Dr. Jun Chen. Without

him, I cannot accomplish any of the presented works in this thesis. His knowledgeable

guidance and kind character have become a beacon in my academic journey. He is not only

the best professor I have ever met but also a role model I will always look up to in my life.

To my committee member, I would like to thank Dr. Sorina Dumitrescu, Dr.

Ratnasingham Tharmarasa and Dr. Jian-Kang Zhang who have provided me with academic

suggestions for my work all these years. Sadly, Dr. Jian-Kang Zhang passed away last year,

but I always remember his kindness during my committee meetings.

To my friends who are beside me during this journey, I would like to thank Xiaohong,

Huan, Zhihao, Siyao, Jingjing, Wei, and Liangyan who support me academically and

emotionally. I think our friendship is precious because it has accompanied us through a

meaningful time.

Last but not least, I would like to thank my family for their continuous love and

encouragement. Their unconditional and endless support help me survive the most difficult

period while completing this thesis.

v



Contents

Abstract ii

Acknowledgements v

Abbreviations x

1 Introductions 1

1.1 Feature Engineering in Machine Learning . . . . . . . . . . . . . . . . . . 1

1.2 Deep Learning-Based Computer Vision . . . . . . . . . . . . . . . . . . . 3

1.3 Feature Extraction for Deep Learning-Based Computer Vision . . . . . . . 6

1.4 Feature Transformation for Deep Learning-Based Computer Vision . . . . 7

1.5 Contributions and Thesis Organization . . . . . . . . . . . . . . . . . . . . 10

2 Image Retrieval via Canonical Correlation Analysis and Binary Hypothesis

Testing 21

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

vi



2.A Chernoff Information Between Two 2-Dimensional Gaussian Distributions . 58

3 Progressive with Purpose: Guiding Progressive Inpainting DNNs through

Context and Structure 70

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Proposed Inpainting Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.6 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4 Conclusion and Future Work 112

4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

vii



List of Figures

2.1 Modified VGG16 for feature extraction. . . . . . . . . . . . . . . . . . . . 26

2.2 Block diagram of the proposed method. . . . . . . . . . . . . . . . . . . . 28

2.3 Profile of the diagonal elements of Λ and Π (i.e., c(M)
t and c

(N)
t , where

t ∈ {1, 2, . . . , 512}) using AVE features. The CCA training was performed

on the 120k-SfM dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Profile of sorted diagonal elements of Λ and Π (i.e., c̃(M)
t and c̃

(N)
t , where

t ∈ {1, 2, . . . , 512}) using AVE features. The CCA training was performed

on the 120k-SfM dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 2D visualization of matrix Π. . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6 3D visualization of matrix Π. . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7 A graphical description of the proposed solution. It shows all three stages

and detail their main components and elements. . . . . . . . . . . . . . . . 81

3.8 Visual results on Paris StreetView. . . . . . . . . . . . . . . . . . . . . . . 95

3.9 Visual results on CelebA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.10 Visual results on Place2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

viii



List of Tables

2.1 Examples of matching/non-matching pairs. . . . . . . . . . . . . . . . . . 40

2.2 Performance comparison of the baseline, S-CCA, and G-CCA on

Oxford5k,ROxford, Paris6k, andRParis without dimension reduction. . . 49

2.3 Evaluation results from 30k-SfM on Oxford5k, ROxford, Paris6k, and

RParis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4 Evaluation results from 120k-SfM on Oxford5k, ROxford, Paris6k, and

RParis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5 Image retrieval comparison of PCAw, SPCA, and G-CCA. . . . . . . . . . 54

2.6 Image retrieval comparison of PCAw, SPCA, and G-CCA. . . . . . . . . . 55

2.7 Image retrieval comparison of PCAw, MLDA, and G-CCA. . . . . . . . . . 56

3.8 Numerical comparisons on three datasets. . . . . . . . . . . . . . . . . . . 93

3.9 Ablation study results on the Paris Streetview Dataset based on network

structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.10 Ablation study results on the Paris Streetview Dataset based on loss function 101

ix



Abbreviations

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

CV Computer Vision

GT Ground Truth

DNN Deep Neural Network

CNN Convolution Neutral Network

PSNR Peak Signal-to-Noise Ratio

SSIM Structural Similarity Index Measure

mAP mean Average Precision

SOTA State of the Art

x



mAP mean Average Precision

AP Average Precision

SOTA State of the Art

CCA Canonical Correlation Analysis

PCA Principle Correlation Analysis

LDA Linear Discriminative Analysis

SPCA Supervised Principle Correlation Analysis

G-CCA Gaussian similarity - Canonical Correlation Analysis

S-CCA Scalar similarity - Canonical Correlation Analysis

SIFT Scale-invariant feature detection

RNN Recurrent Neutral Network

BN Batch Normalization

CI Chernoff Information

SD Standard Deviation

GLE Gaussian-Laplacian feature Extractor

xi



R Real number

GAN Generative Adversarial Network

CBIR Content-Based Image Retrieval

xii



Chapter 1

Introductions

1.1 Feature Engineering in Machine Learning

Feature engineering [42] focuses on extracting useful information from raw data and

transforming extracted information to a favourable domain to improve models’ learning

ability. In traditional machine learning [40], the algorithms’ performance largely depends

on the training data. However, the collected raw data cannot be directly utilized by the

machine learning algorithms due to information redundancy, inconsistent scaling, or other

problems existing in features. The above challenging problems are essentially the focus of

feature engineering. Therefore, it is clear that feature engineering plays an essential role in

the pipeline of machine learning.

To be specific, we illustrate the effectiveness of feature engineering in machine learning

from three aspects: (1) Feature cleaning [45] is a process that filters out redundant or

harmful information to the performance of the algorithm. In image processing and voice

recognition tasks, frequency-based filter is one of the commonly used techniques to remove

noise from raw data. In particular, Gaussian kernel-based filter is an image processing
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tool to smooth the image and remove noise. Furthermore, image cropping and resizing is

another approach to remove irrelative object in image retrieval tasks. Speech recognition

tasks generally use noise reduction algorithms to eliminate background noise. Besides,

text retrieval tasks do not need a profound understanding of the sentences, and clean

data by using stopwords [49] which indicate meaningless words to the content of the

sentence, like article. (2) Feature extraction [47] is the first bridge between cleaned data

and machine learning algorithms. Because of the original form of clearned data, the

machine learning algorithm can not process them directly. Therefore, the feature extraction

plays an important role in connecting cleaned data and machine learning algorithms.

Here we illustrate several feature extraction techniques used in deep learning tasks. The

One hot coding is a very basic feature extraction process used for categorical variables

data which can represent information in text format. Similar to text type of data, the

voice recognition task firstly converts audio data into the frequency domain, and maps

each vocabulary from each character into unique character labels. In image processing

tasks, there are a large number of methods to detect features from images. For instance,

Harris Corner Detection [50] uses Gaussian window function to extract features from

image corners and edges. Scale-Invariant Feature Detection (SIFT) [33] is a classic

feature extraction method to obtain key points which can express robust features from

images. More recently, deep CNN is used to extract images features on both low and high

dimensions. (3) Feature transformation [47] further maps extracted features into a domain

suitable for machine learning algorithms. For example, feature values may vary over a

wide range, which causes performance degradation. Feature scaling is a typical feature

transformation that normalizes independent features, including standardization, scaling to

unit length and more. On the other hand, feature dimension [48] is another variable that

2
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can affect performance. Because of information redundancy, it is often unnecessary to

employ features of full dimensions. Otherwise, the performance may get harmed, or the

algorithm may become inefficient. Here we simply list three classic dimensional reduction

tools used in machine learning Principle Component Analysis (PCA) [39] [31], selecting

most significant components based on eigenvalues, is a dimensional reduction tool used for

many machine learning algorithms. Linear Discriminant Analysis (LDA) [51] is another

popular dimensional reduction based on maximizing the distance between means of the

each classes. Canonical Correlation Analysis (CCA) [52] can find a projection pair that

reduces the vector dimension and maximizes the correlation between two sets of random

variables.

In this thesis, we present several feature extraction and feature transformation methods

based on deep learning, and verify the performance of the proposed methods on image

processing tasks.

1.2 Deep Learning-Based Computer Vision

Deep learning [38] is a subfield of machine learning that employs techniques founded

on artificial neural networks and representation learning. The Convolutional Neural

Network (CNN) is the deep learning’s most fundamental techniques that largely develop

the deep learning-based computer vision in many areas. In the following of this section, we

discuss the working process of CNN and its applications in deep learning-based computer

vision.

Convolutional Neural Network (CNN) [37] is a very popular and powerful deep

learning tool in image processing, and consists of pooling layers, fully connected layers

and convolutional layers, which play the main role. The convolutional layers apply
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convolution operation with trainable kernels on RGB images. After going through a

succession of convolutional layers, the image is converted into a representation of 3D

array, so-called features which are classified into low and high-dimensional features.

In deep-learning-based computer vision, low dimensional features refer to contextual

information, while high dimensional features refer to image structure. The CNN has been

used as a feature extractor in many deep learning methods for computer vision tasks like

image classification and object detection.

Benefiting from the CNN’s feature extraction process with end-to-end training strategy,

deep learning-based computer vision has achieved significant progress in many topics.

Specifically for image classification, a fundamental task among computer vision, have

developed rapidly during the period that CNN initially get explored. Innumerable works

[5, 10, 36, 46] emerged, and propose many deep learning network architectures which have

profound influence on other related topics. For instance, encoder-like CNN structure is

firstly used for image classification’s feature extraction process, and turns out to be effective

in feature extraction for almost all deep learning-based computer vision tasks [24] [17] [24]

[21]. Next, we go through the remarkable progress in deep learning-based image retrieval

and image inpainting.

Nowadays, the deep learning-based image retrieval has made significant contribution

for content-based image retrieval (CBIR) which is a very important subfield in image

retrieval. Here we summarize the contribution from three aspects: network architectures,

feature extraction, and feature enhancement. The notabilities of network architectures

mainly reflect on depth and width. The network with more layers [35] have been verified

that have better learning ability. The network’s width refers to number of channels in

kernel. In [22], it shows that widening the residual block can provider better performance

4
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and shorten training time. The innovation about feature extraction focus on three sides:

extracting local features from intermediate convolutional layers [20], extracting global

features from last several fully-connected layers [19] and fusions of local and global

features [12]. The feature enhancement can improve image retrieval’s performance and

efficiency, and enrich the representative information from extracted feature. For example,

some approaches [15] [18] prove that the local features can be embed into global features,

and enhance the extracted features. Besides, feature dimension reduction approaches [28]

can further refine the extracted features, and improve the image retrieval efficiency.

Besides, deep learning-based image inpainting techniques [14] [16] also develop

rapidly under the influence of deep learning. Here we summarize the contribution from

two aspects: additional input information, feature fusion. Additional inputs include edge

maps, structure maps, and segmentation maps. In some works [11] [10] [11], the proposed

approaches use edge and structure maps as inputs which provide extra information, or guide

the intermediate output layers with multi-scale segmentation maps. On the other hand, the

feature fusion also play a important role in image inpainting. For example, the progressive

inpainting works [17] [12] [6] [16] [12] propose several progressive feature fusion network

that fuse feature during multi-stages in the inpainting process. The proposed feature fusion

framework shows competitive performance against one or two stage inpainting method [24]

[10].

In the next two sections, we discuss the importance of feature extraction and feature

transformation, and their applications in deep learning-based computer vision tasks.
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1.3 Feature Extraction for Deep Learning-Based

Computer Vision

Most deep learning techniques utilize deep convolutional neural network (CNN) to

generate desirable outputs based on back propagation algorithms. This characteristic allows

deep CNN to learn the mapping from input to ground truth with minimum supervision, and

makes the feature extraction process become trainable along with the network. Especially

in deep learning-based computer vision, the feature extraction process can be directly

applied on three dimensional image, and generates feature vectors for many computer

vision tasks.

Here we briefly mention several types of deep CNN-based feature extraction networks

for computer vision tasks: (1) VGG-16 [46] is a famous feature extraction network for

image classification. The autoencoder-inspired network structure includes 13 convolutional

layers, 5 max-pooling layers and 3 fully connected layers. The sub-network that excludes

fully connected layers is usually used as a feature extraction network. (2) MobileNet-v2 [2]

is a light-weight feature extraction network that runs on mobile devices for object detection.

It employs depthwise convolution and pointwise convolution. In depthwise convolution,

one kernel is only used for convolutional operation on one channel of the feature map.

Consequently, there are two disadvantages: the channel number of the output feature map

is the same as that of the input, and the features at the same location but from different

channels do not get integrated effectively. Pointwise convolution solves these problems by

using multiple kernels with the size of 1×1 so that the features from depthwise convolution

are combined via weighted sum. (3) GoogLeNet [1] is one of the most used feature

extraction networks for computer vision tasks. It consists of multiple inception blocks
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with multiple kernels of different sizes. This enables feature extraction on multiple scales,

which provides better performance. Above networks are used in many computer vision

tasks like image classification, object detection and video understanding.

Transformer [44] [29] is a new kind of deep learning network, which is built based

on self-attention mechanism. Specifically, the transformer commonly includes two parts:

encoder and decoder. Unlike the deep CNN, position encoding vector are usually provided

to the input of encoder. Therefore, the transformer [53] not only take the image patches as

input but also the information about pixels’coordinates in computer vision. Compared with

CNN, transformer have a stronger ability to extract features from whole images. This is

because the multi-head attention mechanism uses scaled dot-product attention to investigate

each pixel’s relationship with surrounding pixels in a larger receptive field than deep CNN.

The receptive field of CNN is limited by kernel size. However, the transformer is harder to

train compared with CNN due to the gradient vanishing issue.

In this thesis, we build all proposed methods based on deep CNN. Specifically, we

develop an image retrieval method using features from VGG-16 in Chapter 2, and propose

a feature extraction network for image inpainting tasks in Chapter 3.

1.4 Feature Transformation for Deep Learning-Based

Computer Vision

In deep learning, feature transformation is another important factor in the performance

of deep learning models. Especially for deep CNN, the feature produced by initial network

weights and learning algorithm settings can significantly impact the training process of

very deep network. To address this problem, batch normalization [43] is used during

7
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the network training. On the other hand, the attention mechanism has an effect on

the deep learning feature transformation which enhances the valuable features among

the original feature maps. Besides, the CNN architecture plays an important role in

feature transformation because of end-to-end training strategy. Last, the classic dimension

reduction algorithms have been proved to be useful in many machine learning models, and

can be embedded in the deep learning networks, and provide better performance because

of deep learning’s end-to-end training strategy. In this section, we discuss the above three

feature transformation techniques used in deep learning tasks.

Firstly, batch normalization (BN) is a proven technology for training deep neural

networks. During training, the varying distribution of inputs to each layer makes the

training process slow and hard to converge. To stabilize each layer’s input, batch

normalization is applied right after the convolutional layer; it calculates the running

mean and standard deviation of the layer’s output based on each batch. Besides, batch

normalization has additional parameters to scale and shift the normalized output. After

training, the calculated parameters are fixed for further testing. Batch normalization can

significantly reduce the training time and stabilize the training process.

Secondly, attention [44] is another popular technique for transforming feature. There

are many methods to obtain feature attention in deep-learning-based computer vision.

Specifically, there are two popular attention mechanism in computer vision: soft attention

and hard attention [27]. The soft attention [17] is derived based on the global attention

where all image patches are given the attention scores, and varies between 0 and 1; however,

hard attention only consider one image patch at once, and generate the attention scores as

0 or 1. The most common method is calculating the similarity between each pair of feature

points in the same channel, so the obtained similarity reflects the relationship between

8
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feature points. This similarity is the so-called attention score which can be used as the

weight of feature points. The attention scores are embedded in the transformed features by

applying the weighted sum to the original features.

Next, the characteristics of CNN enables the arising of various model architectures

which play an important role in feature transformation. In theory, deep CNN with more

layers usually have better learning ability to transform features to desirable manifold.

However, the deep CNN was hard to train because of vanishing gradients which caused

by feature transforming during the training process. Therefore, ResNet [35] solves this

problem by employing the residual learning so that the usage of deeper network is largely

expanded. Besides, generative adversarial network (GAN) [34] also introduce a novel

deep learning model to the deep learning-based image generation tasks [23] [3]. The

GAN is usually consisted of two sub-modules: generator learns to generate more similar

images with ground truth while discriminator learn to distinguish the ground truth from

lots of generated images. This learning strategy helps to find suitable domain for feature

transformation.

Moreover, the deep learning networks bring the classic algorithms back to spotlight

again. Here we discuss several feature transformation techniques [28] [30] [31] that

combines with deep learning networks. The LDA aims to find a projection that maximizes

the between-class distance and minimizes the within-class distance. In deep LDA [28],

it simplifies the LDA algorithm into a eigenvalue maximization problem which can be

treated as the target function in deep learning. Compared with DNN that is trained with

categorical cross entropy, the deep LDA has better performance in image classification

tasks. For deep CCA [30], it utilizes two deep networks to learn from two different inputs.

The goal of deep CCA is to jointly learn parameters from both inputs, and maximizing the

9
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correlation between two inputs. The experimental results show better performance than the

classic CCA, and proves again that traditional methods can be further improved under deep

learning techniques.

In this thesis, we present a CCA-based feature dimension reduction technique for image

retrieval in Chapter 2, and a feature transformation framework with attention and batch

normalization for image inpainting in Chapter 3.

1.5 Contributions and Thesis Organization

This sandwich thesis follows the terms and regulations of McMaster University,

including three published/unpublished works that present several feature extraction and

feature transformation techniques. The contributions to each work are outlined in the

preface of Chapter 2 and Chapter 3. The reference information for these two works is

listed below:

• Kangdi Shi, Xiaohong Liu, Muhammad Alrabeiah, Xintong Guo, Jie Lin, Huan Liu,

and Jun Chen. ”Image Retrieval via Canonical Correlation Analysis and Binary

Hypothesis Testing.” Information 13, no. 3 (2022): 106.

• Kangdi Shi, Muhammad Alrabeiah and Jun Chen. ”Progressive with Purpose:

Guiding Progressive Inpainting DNNs through Context and Structure.” Submitted

to IEEE Access.

The rest of this thesis is organized as follows:

Chapter 2: The details of the proposed CCA-based dimension reduction method for

deep learning features and its application to image retrieval.

10
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Chapter 3: The details of the proposed progressive image inpainting method based on

designed feature extraction network and image inpainting framework.

Chapter 4: The conclusion of this thesis and the discussion of future work.

11
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Chapter 2

Image Retrieval via Canonical

Correlation Analysis and Binary

Hypothesis Testing

2.1 Abstract

Canonical Correlation Analysis (CCA) is a classic multivariate statistical technique,

which can be used to find a projection pair that maximally captures the correlation between

two sets of random variables. The present paper introduces a CCA-based approach for

image retrieval. It capitalizes on feature maps induced by two images under comparison

through a pre-trained Convolutional Neural Network (CNN) and leverages basis vectors

identified through CCA, together with an element-wise selection method based on a

Chernoff-information-related criterion, to produce compact transformed image features;

a binary hypothesis test regarding the joint distribution of transformed feature pair is
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then employed to measure the similarity between two images. The proposed approach

is benchmarked against two alternative statistical methods, Linear Discriminant Analysis

(LDA) and Principal Component Analysis with whitening (PCAw). Our CCA-based

approach is shown to achieve highly competitive retrieval performances on standard

datasets, which include, among others, Oxford5k and Paris6k.

2.2 Introduction

The past two decades have witnessed an explosive growth of online image databases.

This growth paves the way for the development of visual-data-driven applications, but

at the same time poses a major challenge to the Content-Based Image Retrieval (CBIR)

technology [1].

Traditional approaches to CBIR mostly rely on the exploitation of handcrafted scale-

and orientation-invariant image features [2–6], which have achieved varying degrees of

success. Recent advances [7, 8] in Deep Learning (DL) for image classification and object

detection have generated significant interests in bringing Convolutional Neural Networks

(CNNs) to bear upon CBIR. Although CNN models are usually trained for purposes

different from CBIR, it is known [9] that features extracted from modern deep CNNs,

commonly referred to as DL features, have great potential in this respect as well. Retrieval

methods utilizing DL features can generally be divided into two categories: without/with

fine-tuning the CNN model [10]. The early application of CNN to CBIR almost exclusively

resorts to methods in the first category, which use Off-The-Shelf (OTS) CNNs (i.e.,

popular pre-trained CNNs) for feature extraction (see, e.g., [11–14]). A main advantage

of such methods is the low implementation cost [15, 16], which is largely attributed to

the direct adoption of pre-trained CNNs. Performance-wise, they are comparable to the
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state-of-the-art traditional methods that rely on handcrafted features. In contrast, many

recent methods, such as [17–19], belong to the second category, which take advantage

of the fine-tuning gain to enhance the discriminatory power of the extracted DL features.

A top representative from this category is the end-to-end learning framework proposed

in [20]. It outperforms most existing traditional and OTS-CNN-based methods on standard

testing datasets; however, this performance improvement comes at the cost of training a

complex triple-branched CNN using a large dataset, which might not always be affordable

in practice.

Many preprocessing methods have been developed with the goal of better utilizing

DL features for image retrieval, among which Principal Component Analysis with

whitening [21] (PCAw) and Linear Discriminant Analysis [22] (LDA) are arguably most

well known. Despite being extremely popular, PCA and LDA have their respective

weaknesses: the dimensionality reduction in PCA often leads to the elimination of critical

principal components with a small contribution rate while the performance of LDA tends

to suffer from decreasing differences between mismatched features. As such, there is

great need for a preprocessing method with improved robustness against dimensionality

reduction and enhanced sensitivity to feature mismatch. In this work, we aim to put forward

a potential solution with desired properties by bringing Canonical Correlation Analysis

(CCA) [23] into the picture.

CCA is a multivariate technique for elucidating the associations among two sets of

variables. It can be used to identify a projection pair of a given dimension that maximally

captures the correlation between the two sets. The applications of CCA are too numerous

to list. In cross-modality matching/retrieval alone, extensive investigations have been

carried out as evidenced by a growing body of literature, from those based on handcrafted
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features [24] to the more recent ones that make use of DL features [25–27]. There is also

some related development on the theoretical front (see, e.g., [28, 29]).

Motivated by the consideration of computational efficiency and affordability as well

as the weaknesses inherent in the existing preprocessing methods, we develop and present

in this paper a new image retrieval method based on OTS deep CNNs. Our method is

built primarily upon CCA, but has several notable differences from the related works. For

the purpose of dimensionality reduction (i.e., feature compression), the proposed method

employs a basis-vector selection technique, which invokes a Chernoff-information-based

criterion to rank how discriminative the basis vectors are. Both the basis vectors and

their ranking are learned from a training set, which consists of features extracted from a

pre-trained CNN—the neural network itself is not retrained/finetuned in our work. Given

a new pair of features, the ranked basis vectors are used to perform transformation and

compression. This is followed by a binary hypothesis test on the joint distribution of pairs

of transformed features, which yields a matching score that can be leveraged to identify

top candidates for retrieval. We show via extensive experimental results that the proposed

CCA-based method is able to deliver highly competitive results on standard datasets, which

include, among others, Oxford5k and Parise6k.

This paper is organized as follows. The proposed CCA-based preprocessing method

along with the associated matching procedure is detailed in Section 2.3. Section 2.4

includes the experimental results and the relevant discussions. We close the paper in

Section 2.5 with some concluding remarks.
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2.3 Proposed Method

The proposed image retrieval method utilizes CCA in an essential way. It leverages

a training dataset of features extracted from a pre-trained CNN model (see Figure 2.1) to

learn a set of canonical vectors, which serve as the basis vectors of the feature space. These

vectors are used to project the features of a pair of images into a new space, in which a

Chernoff-information-based selection method is applied to identify the most discriminative

elements of the transformed features. Such elements then undergo a binary hypothesis test

to measure the similarity between the features and, consequently, the two images. This

process is expounded in the following four subsections (see also Figure 2.2).
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Figure 2.1: Modified VGG16 for feature extraction.
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2.3.1 Image Pre-Processing and Feature Extraction

The CNN model adopted in this work for feature extraction is VGG16 [30]. It takes an

input image of maximum size 1024 × 1024 and produces 512 feature maps of maximum

size 32 × 32 from its very last pooling layer. A single feature element is extracted

from each feature map via pooling. A 512-dimensional vector, which resulted from the

concatenation of these elements, is converted, through centralization and normalization

(here centralization is performed by subtracting the mean (computed based on the training

set) while normalization yields a unit-length vector), to a global feature vector, which serves

as a compact representation of the image.
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Figure 2.2: Block diagram of the proposed method.

28



Ph.D. Thesis - K.Shi McMaster University - Electrical & Computer Engineering

2.3.2 Correlation Analysis and Canonical Vectors

At the heart of the proposed method lies so-called canonical vectors, which are learned

from a large training set of matching and non-matching image features in a manner inspired

by CCA. The learning process consists of the following steps.

Step 1 : Construct two raw matching matrices

X(RM) = [x1,x2, . . . ,xL],

Y(RM) = [y1,y2, . . . ,yL],

where L is the number of raw matching pairs, xl and yl for l ∈ {1, 2, ..., L} are a

pair of global feature vectors representing two matching images (here “matching images”

means images from the same class while “non-matching images” means images from

different classes).

Using the raw matching pairs X(RM) and Y(RM), a pair of matching-feature matrices

is formed:

X(M) = [x1,y1,x2,y2, ...yL,xL],

Y(M) = [y1,x1,y2,x2, ...,xL,yL].

The total number of training pairs is 2L after feature order flipped. This is performed

to ensure that in Equation (2.3.2.1) below, the diagonal blocks are identical and symmetric,

so are the off-diagonal blocks. The size of both X(M) and Y(M) is 512× 2L. The training

data matrix of matching features H(M) is constructed by stacking X(M) on Y(M):
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H(M) =

[
X(M)

Y(M)

]
(1024×2L)

.

The estimated covariance matrix of matching features is given by

Φ(M) =
1

2L− 1
H(M)(H(M))T

=
1

2L− 1

[
X(M)

Y(M)

][
X(M)

Y(M)

]T

=

[
Σ

(M)
XX Σ

(M)
XY

Σ
(M)
Y X Σ

(M)
Y Y

]
, (2.3.2.1)

where

Σ
(M)
XX =

X(M)(X(M))T

2L− 1
, Σ

(M)
Y Y =

Y(M)(Y(M))T

2L− 1
,

Σ
(M)
XY = Σ

(M)
Y X =

X(M)(Y(M))T

2L− 1
=

Y(M)(X(M))T

2L− 1
.

Step 2: Randomly permuting the columns of one of the raw feature matrices, say from

Y(RM) to Y(RN), yields two raw non-matching matrices. More specifically, we construct

two raw non-matching matrices by successively associating each column of X(RM) with a

randomly selected (without replacement) non-matching column from Y(RM). For example,

X(RN) = [x1,x2, . . . ,xL],

Y(RN) = [y3,y7, . . . ,yL−4].
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Based on these two raw non-matching matrices, the feature order flipping is performed

to generate X(N) and Y(N):

X(N) = [x1,y3,x2,y7, ...,xL,yL−4],

Y(N) = [y3,x1,y7,x2, ...,yL−4,xL].

With a procedure similar to that of step 1, we can estimate the covariance matrix Φ(N)

for non-matching features H(N):

Φ(N) =
1

2L− 1
H(N)(H(N))T

=
1

2L− 1

[
X(N)

Y(N)

][
X(N)

Y(N)

]T

=

[
Σ

(N)
XX Σ

(N)
XY

Σ
(N)
Y X Σ

(N)
Y Y

]
. (2.3.2.2)

Note that

Σ
(N)
XX = Σ

(N)
Y Y = Σ

(M)
XX = Σ

(M)
Y Y = Σauto,

for they are the covariances of sets of random image features. As in Equation (2.3.2.1),

the diagonal blocks in Equation (2.3.2.2) are also identical and symmetric, so are the

off-diagonal blocks.
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Step 3: Since Σauto is positive definite, it follows that Θ− 1
2 is well defined, where

Θ =

[
Σauto 0

0 Σauto

]
.

We can multiply both covariance matrices, Φ(M) and Φ(N), on the left and right by Θ− 1
2 to

de-correlate their diagonal blocks:

Φ̂(M) = Θ− 1
2Φ(M)Θ− 1

2 =

[
I J(M)

J(M) I

]
,

Φ̂(N) = Θ− 1
2Φ(N)Θ− 1

2 =

[
I J(N)

J(N) I

]
,

where

J(M) = Σ
− 1

2
autoΣ

(M)
XY Σ

− 1
2

auto = Σ
− 1

2
autoΣ

(M)
Y XΣ

− 1
2

auto,

J(N) = Σ
− 1

2
autoΣ

(N)
XYΣ

− 1
2

auto = Σ
− 1

2
autoΣ

(N)
Y XΣ

− 1
2

auto.

Step 4: Apply eigen-decomposition [31] on J(M):

J(M) = UΛUT ,

where U is a unitary matrix, and Λ is a diagonal matrix with the diagonal entries being the

eigenvalues of J(M). The columns of U are exactly the sought-after canonical vectors. The

blockwise left- and right-multiplication of both Φ̂(M) and Φ̂(N) by UT and U, respectively,

gives the following pair of matrices:
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[
UTU UTJ(M)U

UTJ(M)U UTU

]
=

[
I Λ

Λ I

]
, (2.3.2.3)[

UTU UTJ(N)U

UTJ(N)U UTU

]
=

[
I Π

Π I

]
, (2.3.2.4)

where Π = UTJ(N)U. The off-diagonal block Λ in Equation (2.3.2.3) is a diagonal matrix

whereas Π in Equation (2.3.2.4) is not necessarily so. Nevertheless, it will be seen that in

practice Π is often close to a zero matrix (as two non-matching image features tend to be

uncorrelated) and thus is approximately diagonal as well.

2.3.3 Chernoff Information for Canonical Vector Selection

Chernoff information (CI) was originally introduced for finding the upper bound for

error probability of Bayesian 2-class classification problem, and has [32, 33] been proven

to be effective for measuring the distance between any two distributions from the same

exponential family. Specifically, the Chernoff information is equivalent to calculating the

KL divergence between middle distribution and anyone of given distributions. In this

section, we illustrate the approach of selecting discriminative canonical vectors by using

chernoff information.

Note that the learned canonical vectors of matching image features form an orthonormal

basis of R512. These vectors are not necessarily equally useful for the purpose of measuring

the similarity between two feature vectors of an unknown pair of images; therefore, it is of

considerable interest to quantify how discriminative each canonical vector is. To this end,

the off-diagonal blocks of the covariance matrix of non-matching image features can be

brought into play. Evaluating Chernoff information with respect to the diagonal elements
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of both Λ and Π yields a ranking of the most different diagonal element pairs, which can

be used to guide the selection of canonical vectors.

Define the following set of 2× 2 matrices

S
(M)
t =

[
1 c

(M)
t

c
(M)
t 1

]
,

S
(N)
t =

[
1 c

(N)
t

c
(N)
t 1

]
,

using matching coefficient c(M)
t = [Λ]tt and non-matching coefficient c(N)

t = [Π]tt, t ∈

{1, 2, . . . , 512}, determined by the diagonal elements of Λ and Π:

Λ =


c
(M)
1 0 . . . 0

0 c
(M)
2 . . . 0

...
... . . . ...

0 0 . . . c
(M)
512

 ,

Π =


c
(N)
1 π1,2 . . . π1,512

π2,1 c
(N)
2 . . . π2,512

...
... . . . ...

π512,1 π512,2 . . . c
(N)
512

 .

Now let S(λt)
t = (λt(S

(M)
t )−1 + (1− λt)(S

(N)
t )−1)−1, λt ∈ [0, 1] and define
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D(S
(λt)
t ||S(M)

t ) =
1

2
loge
|S(M)

t |
|S(λt)

t |
+

1

2
tr((S

(M)
t )−1S

(λt)
t )− 1,

D(S
(λt)
t ||S(N)

t ) =
1

2
loge
|S(N)

t |
|S(λt)

t |
+

1

2
tr((S

(N)
t )−1S

(λt)
t )− 1,

where tr(·) is the trace operator. Kullback–Leibler divergence is a special case of

Bregman divergence, and can be used to calculate the statistical distance between any

two distributions. Let λt = λ∗
t be the solution of D(S

(λt)
t ||S(M)

t ) = D(S
(λt)
t ||S(N)

t ). The

Chernoff information CI(S
(M)
t ||S(N)

t ) is defined as

CI(S
(M)
t ||S(N)

t ) = D(S
(λ∗

t )
t ||S(M)

t ) = D(S
(λ∗

t )
t ||S(N)

t ).

An expression for individual λ∗
t is derived in Appendix 2.A.

Given λ∗
t , CI of all pairs (S

(M)
t ,S

(N)
t ) can be evaluated, leading to a ranking

(greater CI corresponds to higher rank) of the most different pairs of diagonal elements

(c
(M)
t , c

(N)
t ) and, consequently, the most discriminative canonical vectors of U. Let the

k most discriminative vectors serve as the columns of the new canonical vector matrix

Ũ . Moreover, select the top k different pairs of diagonal elements (c̃
(M)
i , c̃

(N)
i ) and the

corresponding (S̃
(M)
i , S̃

(N)
i ), where i ∈ {1, 2, . . . , k}.

2.3.4 Similarity Measurement

The selected canonical vectors can be leveraged to measure the similarity between an

arbitrary pair of images through a binary hypothesis test. Let (xr,yc) be an arbitrary

pair of global feature vectors. The exact joint distribution of (xr,yc) likely varies from
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one dataset to another and does not admit an explicit characterization. Here we make

the simplifying assumption that xr and yc are jointly Gaussian. Specifically, we assume

that (xr,yc) ∼ N (0,Φ(M)) if they come from two matching images, and (xr,yc) ∼

N (0,Φ(N)) otherwise, where N (0,Σ) denotes a multivariate Gaussian distribution [34]

with mean 0 and covariance matrix Σ. Given (xr,yc), the transformed feature vectors are

computed as follows:

w = [w1, w2, . . . , wk]
T = ŨTΣ

− 1
2

autoxr,

v = [v1, v2, . . . , vk]
T = ŨTΣ

− 1
2

autoyc.

Since Λ is a diagonal matrix, it follows that (w1, v1), (w2, v2), . . . , (wk, vk) are mutually

independent with (wi, vi) ∼ N (0, S̃
(M)
i ) for i ∈ {1, 2, . . . , k} in the case where (xr,yc) is

a matching pair. We shall further assume that Π is also a diagonal matrix, which is justified

by the fact that in practice Π is often very close to a zero matrix (see Figure 2.5 and 2.6 for

some empirical evidences). As a consequence, (w1, v1), (w2, v2), . . . , (wk, vk) are mutually

independent with (wi, vi) ∼ N (0, S̃
(N)
i ) for i ∈ {1, 2, . . . , k} in the case where (xr,yc) is

a non-matching pair. To check whether the given two images match or not, one can perform

a binary hypothesis test regarding the underlying distribution of (w,v): ⊗k
i=1N (0, S̃

(M)
i )

vs. ⊗k
i=1N (0, S̃

(N)
i ).

Note that N (0, S̃
(M)
i ) has probability density
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PM(wi, vi) =
e

− 1
2

[
wi vi

] 1 c̃
(M)
i

c̃
(M)
i 1


−1wi

vi


√√√√(2π)2

∣∣∣∣∣ 1 c̃
(M)
i

c̃
(M)
i 1

∣∣∣∣∣
(2.3.4.1)

while N (0, S̃
(N)
i ) has probability density

PN(wi, vi) =
e

− 1
2

[
wi vi

] 1 c̃
(N)
i

c̃
(N)
i 1


−1wi

vi


√√√√(2π)2

∣∣∣∣∣ 1 c̃
(N)
i

c̃
(N)
i 1

∣∣∣∣∣
. (2.3.4.2)

We are now in a position to conduct a binary hypothesis test based on the confidence

score given below:

scoreG = log
⊗n

i=1PM(wi, vi)

⊗n
i=1PN(wi, vi)

=
k∑

i=1

log
PM(wi, vi)

PN(wi, vi)
. (2.3.4.3)

Substituting Equations (2.3.4.1) and (2.3.4.2) into Equation (2.3.4.3) gives

scoreG =
k∑

i=1

(logPM(wi, vi)− logPN(wi, vi))

=
k∑

i=1

(
− w2

i − 2wivic̃
(M)
i + v2i

2π

√
(1− (c̃

(M)
i )2)

+
w2

i − 2wivic̃
(N)
i + v2i

2π

√
(1− (c̃

(N)
i )2)

+ log

√
1− (c̃

(N)
i )2√

1− (c̃
(M)
i )2

)
,
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which is equivalent to

k∑
i=1

(
− w2

i − 2wivic̃
(M)
i + v2i√

(1− (c̃
(M)
i )2)

+
w2

i − 2wivic̃
(N)
i + v2i√

(1− (c̃
(N)
i )2)

)
(2.3.4.4)

as the log term and the scalar 2π have no effect on rankings. This confidence score reflects

the degree of similarity between the two given images. The higher the score is, the more

likely the images match each other.

2.4 Experimental Results

2.4.1 Training Datasets

We resort to two datasets for training, namely, 120k-Structure from Motion (120k-SfM)

and 30k-Structure from Motion (30k-SfM) [35]. Both are preprocessed to eliminate

overlaps with the evaluation datasets. A succinct description of these two datasets can

be found below:

120k-Structure from Motion 120k-Structure from Motion (120k-SfM) dataset is

constructed from the one used in the work of Schonberger et al. [36], which contains 713

3D models with nearly 120k images. The maximum size of each image is 1024×1024. The

original dataset includes all image from Oxford5k and Paris6k. Those images are removed

to avoid overlaps (in total 98 clusters are eliminated).

30k-Structure from Motion 30k-Structure from Motion (30k-SfM) dataset is a subset

of 120k-SfM, which contains approximately 30k images and 551 classes. The maximum

size of images are resized to 362× 362.

Each dataset serves its own purpose; 30k-SfM is a small dataset while 120k-SfM is a
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big one. This enables us to investigate the pros and cons of different datasets in terms of

their sizes. Compared to 30k-SfM, 120k-SfM supplies richer features to be explored by the

methods being tested.

2.4.2 Training Details

Using each dataset, two lists of matching and non-matching pairs of images are created

for training—feature space analysis not CNN training. Table 2.1 shows some examples

of matching and non-matching pairs. Specifically, we randomly select 10,960 raw pairs

from 30k-SfM and 58,502 raw pairs from 120k-SfM. We double the number matching and

non-matching pairs by simultaneously using each raw pair and its flipped version to ensure

that the diagonal/off-diagonal blocks of the data covariances in Equations (2.3.2.1) and

(2.3.2.2) are identical and symmetric. This could also be seen from Table 2.1: each pair is

used twice but with its image order flipped.
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Table 2.1: Examples of matching/non-matching pairs.

Matching Pair

Non-Matching Pair
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The feature vector of a given image is extracted from the very last pooling layer

of a pre-trained VGG16 via one of the following three pooling strategies: Global Max

(MAC) pooling, Global Average (AVE) pooling, and global Standard Deviation (SD)

pooling (global Max (MAC) pooling, Global Average (AVE) pooling, and global Standard

Deviation (SD) pooling compute, respectively, the maximum value, the average value, and

the standard deviation of the feature map in each channel). We conducted separate training

for each of these strategies in order to compare performances.

For benchmarking, the proposed method (G-CCA) and its variant (S-CCA) were trained

along with three alternative feature-space analysis methods, i.e., PCAw [21], Supervised

PCA (SPCA) [37] and Multiclass LDA (MLDA) [38]. G-CCA is depicted in Figure 2.2

while S-CCA is the same as G-CCA except that in the final step the scalar similarity

measure is used instead (namely, in the last block of Figure 2.2, scoreG is replaced with

scoreS = wT · v . PCAw infers a basis matrix of the feature space from the covariance

matrix of the training image features. This basis matrix is used to whiten and compress new

image features, which are then leveraged to make a matching/non-matching decision based

on the scalar similarity measure. See [12] for a detailed description of the PCAw method

and its performance. Furthermore, we compared the proposed method with SPCA, which

is a weighted PCA method. It uses a Laplacian matrix to characterize the relationship

among the classes in the dataset. We implement SPCA by following the steps in [39]. As

to LDA [40], its application to image retrieval has also been thoroughly investigated [41],

which is hardly surprising given its popularity in statistical analysis. Here we use its variant

MLDA [38] as a competing feature-space analysis method. MLDA is trained using the

classes provided by both training datasets. It derives a set of projection vectors that offer

the best linear separation of the classes (full separation is achievable if the classes are
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linearly separable, otherwise, MLDA produces some overlaps between the classes). These

projection vectors are employed to transform and compress (in the sense of dimensionality

reduction) new feature vectors. Scalar similarity is then evaluated for the transformed

features to determine whether or not they match.

2.4.3 Implementation Details

In the experiment, we compare G-CCA, S-CCA with PCAw, SPCA, and MLDA. The

G-CCA and S-CCA are presented in this paper while the PCAw, SPCA, and MLDA are

implemented by following procedures in [21,38,39]. Here, we discuss some detailed issues

in the implementation.

Firstly, S-CCA, PCAw, SPCA, and MLDA use scalar similarity score to calculate the

confidence score while G-CCA uses the proposed score in Equation (2.3.4.4). Secondly,

for all these methods, the feature vectors are obtained via MAC, AVE, and SD pooling,

and centralization and normalization are performed. Thirdly, the performance comparisons

are conducted for eight dimensions: 512, 450, 400, 300, 200, 100, 50, and 25. Lastly,

we calculate the scores between the query image and each image in the test dataset, and

obtain the image retrieval results by ranking scores from high to low. All the methods are

evaluated by the mean Average Precision (mAP) (we calculatethe mAP without enforcing

the monotonicity for Precision (Recall) relationship). which can be formulated as follows:

mAP =

∑m
i=1APi

m
with APi =

n∑
k=1

P (k)∆r(k),

where APi is the average precision for the i-th query image, m is the total number of query

images, and n is the total number of images in the testing dataset, P (k) is the precision of
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top k results, and ∆r(k) = R(k)−R(k−1) with R(k) being the recall of top k results. For

calculating the precision P (K) and recall R(k), the positive labels for each query image

are provided by the test datasets.
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Figure 2.3: Profile of the diagonal elements of Λ and Π (i.e., c(M)
t and c

(N)
t , where t ∈ {1, 2, . . . , 512}) using AVE

features. The CCA training was performed on the 120k-SfM dataset.
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Figure 2.4: Profile of sorted diagonal elements of Λ and Π (i.e., c̃(M)
t and c̃

(N)
t , where t ∈ {1, 2, . . . , 512}) using AVE

features. The CCA training was performed on the 120k-SfM dataset.
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2.4.4 Evaluation Datasets and Details

Four datasets, namely, Oxford5k [42], Paris6k [44], ROxford [43], and RParis [43],

are used to assess the performance of each retrieval method. As the first two datasets are

contained in the large raw 120k-SfM dataset, they are excluded from the training dataset

via preprocessing. The last two datasets contain new annotations and more difficult query

images, and consequently create more challenges for image retrieval; therefore, they can

help test the reliability of our approach. A short description of each dataset is given below.

Oxford5k Oxford5k dataset contains 5063 images and 55 query images for 11 different

buildings. It is annotated with bounding boxes for the main objects.

ROxfordROxford dataset contains 4993 images and 70 query images for 11 different

buildings. Query images are excluded from the retrieval images. Same as Oxford5k, it is

annotated with bounding boxes for the main objects.

Paris6k Paris6k dataset contains 6412 images and 55 query images for 11 different

buildings. It is also annotated with bounding boxes.

RParis RParis dataset contains 6322 images and 70 query images for 11 different

buildings. Query images are excluded from the retrieval images. Same as Paris6k, it is

annotated with bounding boxes.

The performance of each retrieval method is evaluated using mean Average Precision

(mAP) [42]. The positive labels of each query image are provided by the datasets. The

standard evaluation protocol is followed for Oxford5k and Paris6k. As for the ROxford

and RParis datasets, the medium protocol setups in [43] are adopted. We crop all the

query images with the provided bounding boxes before feeding them to VGG16. Each

method undergoes training and evaluation twice. The first training used the small dataset,

30k-SfM, followed by evaluation. Then it was trained with the large dataset, 120k-SfM,
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before evaluation. This enables us to study the effect of dataset size and diversity on the

methods under comparison.

2.4.5 Performance Evaluation and Analysis

Before getting into the performance evaluation of the proposed method, it is useful

to have some insights about how discriminative the canonical vectors are. Figures 2.3

and 2.4 show the profile of the diagonal elements of the off-diagonal blocks in

Equations (2.3.2.3) and (2.3.2.4). It can be seen that the values of c(N)
t fluctuate around zero

whereas those of c(M)
t range between −0.1 and 0.9. This observation suggests that there

exists a set of canonical vectors that can effectively tell apart matching from non-matching

pairs of images. This is shown in the rest of this subsection.

Table 2.2 reports the baseline performances of MAC, AVE, and SD without

dimensionality reduction. Specifically, for these baselines, we directly calculate the scalar

similarity between the pooling features (after centralization and normalization) of the

query image and each image in the testing dataset. In the evaluation, we consider the

proposed method (G-CCA) and its variant with Gaussian-distribution-based hypothesis

testing replaced by scalar similarity (S-CCA). From Table 2.2, we observe that G-CCA

achieves better performance than S-CCA in most cases except for Paris6k and AVE on

RParis.
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Figure 2.5: 2D visualization of matrix Π.
Figure 2.6: 3D visualization of

matrix Π.
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Table 2.2: Performance comparison of the baseline, S-CCA, and G-CCA on Oxford5k,
ROxford, Paris6k, andRParis without dimension reduction.

Method Oxford5k ROxford Paris6k RParis

MAC 0.5296 0.3295 0.7455 0.5122

S-CCA + MAC 0.5800 0.3575 0.7726 0.5408

G-CCA + MAC 0.6275 0.3996 0.7455 0.5939

AVE 0.5312 0.2884 0.6467 0.4653

S-CCA + AVE 0.6845 0.4303 0.7845 0.5936

G-CCA + AVE 0.7146 0.4444 0.7507 0.5812

SD 0.6095 0.3834 0.7355 0.5311

S-CCA + SD 0.6943 0.4503 0.8191 0.6199

G-CCA + SD 0.7419 0.4806 0.8164 0.6403

1 The evaluation results are based on 120k-SfM. 2 For the same type of features, the best performances are

highlighted in bold.
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By considering three different pooling strategies, three image retrieval methods are

trained on the 30k-SfM dataset and evaluated on all four test sets. Table 2.3 provides

a comprehensive depiction of the experimental results for each retrieval method with

different pooling strategies and feature dimensionality choices (compression levels). The

results for MLDA are not reported there, for MLDA cannot be trained on the 30k-SfM

dataset, which is a consequence of the fact that the difference between classes is too small

as far as MLDA training is concerned. From Table 2.3, four observations can be made.

The first is regarding the effect of the pooling strategy. Specifically, SD pooling appears

to result in the most competitive performance for all methods at every choice of feature

dimensionality. The reason behind this phenomenon is that the standard deviation can be

considered as square root of the power of signal in discrete time domain, and provide more

representative information compared with MAC and AVE. while MAC renders G-CCA

superior to SPCA and PCAw at low dimensions over all test sets. The second observation is

that for MAC, AVE, and SD pooling strategies, the proposed method outperforms PCAw at

low feature dimensionality. As such, the proposed method is a better choice for producing

compact features than PCAw regardless of the pooling strategy. The last observation is that

G-CCA is more robust against dimensionality reduction than S-CCA.

The performance of the proposed method can be improved by replacing 30k-SfM with

120k-SfM, which is a larger training set. Table 2.4 shows the corresponding evaluation

results for all the methods with different pooling strategies and dimensionality choices (the

only exception is SPCA for which the training on 120k-SfM is computationally infeasible

as its Laplacian matrix is too large to be stored on our computer). It is clear that the

increased-size training set leads to an improved mAP performance on all test sets and for

all pooling strategies. It is also interesting to note that the proposed method outperforms
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all others on Oxford5k. This uniform superiority across all dimensions is only attained on

Paris6k using SD pooling. Although AVE and MAC improve mAP, they cause G-CCA to

lose its edge at high dimensions on Paris6k. In contrast, with SD pooling, the proposed

method retains its dominating performance at all feature dimensions. On ROxford and

RParis, the performance of G-CCA is better than MLDA at almost all dimensions with

MAC. G-CCA almost outperforms PCAw in every dimensions with all three pooling

strategies.

Based on Tables 2.3 and 2.4, there are three notable advantages of G-CCA over

MLDA, PCAw, and SPCA. The first is that the CCA-based methods can be trained using

datasets with small differences between classes whereas MLDA cannot be trained on

such datasets. The second advantage is that G-CCA typically shows a more graceful

performance degradation than PCAw after dimensionality reduction. The last is that SPCA

can not be trained on large datasets as compared with G-CCA.

Tables 2.5–2.7 present some retrieval results for visual illustration. In Table 2.5,

a query image from the Oxford5k set is presented to PCAw, SPCA, and G-CCA, trained

on the 30k-SfM set, while in Tables 2.6 and 2.7, a query image from the Oxford5k set

is presented to PCAw, MLDA, and G-CCA, trained on the 120k-SfM set. We list top 10

matches for each method with each list ranked using the matching score associated with the

corresponding method. Tables 2.5 and 2.6 show the top 10 retrieved images for different

methods with SD pooling while Table 2.7 gives examples for G-CCA with different pooling

strategies.
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Table 2.3: Evaluation results from 30k-SfM on Oxford5k,ROxford, Paris6k, andRParis.

Oxford5k

Dim MAC AVE SD
SPCA PCAw S-CCA G-CCA SPCA PCAw S-CCA G-CCA SPCA PCAw S-CCA G-CCA

25 0.3589 0.3555 0.2431 0.3873 0.4474 0.4443 0.3091 0.4873 0.4757 0.4838 0.3439 0.4979
50 0.4412 0.4258 0.3174 0.4487 0.4930 0.4933 0.3782 0.5127 0.5086 0.5074 0.4403 0.5690

100 0.5016 0.5027 0.4122 0.5043 0.5599 0.5697 0.5447 0.6034 0.6002 0.6041 0.5191 0.6164
200 0.5628 0.5583 0.4818 0.5501 0.6083 0.6086 0.6157 0.6445 0.6635 0.6619 0.6280 0.6772
300 0.5723 0.5672 0.5280 0.5379 0.6416 0.6307 0.6428 0.6552 0.6753 0.6736 0.6513 0.6830
400 0.5728 0.5715 0.5505 0.5405 0.6517 0.6385 0.6373 0.6525 0.6811 0.6811 0.6703 0.6745
450 0.5670 0.5654 0.5609 0.5364 0.6544 0.6422 0.6393 0.6538 0.6839 0.6849 0.6740 0.6746
512 0.5615 0.5601 0.5580 0.5363 0.6506 0.6388 0.6493 0.6537 0.6766 0.6763 0.6764 0.6743

ROxford

Dim MAC AVE SD
SPCA PCAw S-CCA G-CCA SPCA PCAw S-CCA G-CCA SPCA PCAw S-CCA G-CCA

25 0.2070 0.2226 0.1495 0.2276 0.2702 0.2709 0.1939 0.2590 0.2883 0.2856 0.2116 0.3031
50 0.2823 0.2771 0.1886 0.2914 0.2731 0.2757 0.2206 0.2876 0.3117 0.3123 0.2590 0.3485

100 0.3259 0.3281 0.2484 0.3282 0.3304 0.3197 0.3083 0.3372 0.3885 0.3795 0.3007 0.3848
200 0.3462 0.3545 0.3071 0.3569 0.3569 0.3531 0.3759 0.4002 0.4399 0.4368 0.4021 0.4417
300 0.3595 0.3593 0.3290 0.3413 0.3901 0.3771 0.3911 0.4057 0.4507 0.4420 0.4173 0.4484
400 0.3576 0.3568 0.3424 0.3400 0.3905 0.3796 0.3798 0.4065 0.4526 0.4381 0.4454 0.4538
450 0.3551 0.3544 0.3466 0.3398 0.4002 0.3772 0.3876 0.4052 0.4498 0.4382 0.4435 0.4499
512 0.3442 0.3469 0.3444 0.3396 0.4042 0.3767 0.3963 0.4077 0.4417 0.4383 0.4412 0.4419

Paris

Dim MAC AVE SD
SPCA PCAw S-CCA G-CCA SPCA PCAw S-CCA G-CCA SPCA PCAw S-CCA G-CCA

25 0.4878 0.5084 0.4133 0.5464 0.4944 0.4330 0.4182 0.4990 0.5633 0.5858 0.4758 0.5969
50 0.6027 0.6208 0.5391 0.6347 0.5692 0.5893 0.5898 0.6153 0.6415 0.6555 0.6084 0.6746

100 0.6691 0.6750 0.5848 0.6808 0.6441 0.6736 0.6559 0.6790 0.7290 0.7267 0.6988 0.7426
200 0.7035 0.6942 0.6384 0.7166 0.6931 0.6994 0.7049 0.7106 0.7719 0.7620 0.7501 0.7811
300 0.7004 0.6980 0.6701 0.7067 0.7109 0.7328 0.7297 0.7118 0.7834 0.7819 0.7739 0.7892
400 0.7076 0.7057 0.6893 0.7052 0.7375 0.7586 0.7418 0.7120 0.8010 0.7970 0.7885 0.7867
450 0.7091 0.7073 0.6964 0.7027 0.7482 0.7679 0.7472 0.7130 0.8067 0.8066 0.7969 0.7871
512 0.7032 0.7060 0.7039 0.7029 0.7508 0.7732 0.7520 0.7133 0.8020 0.8031 0.8036 0.7874

RParis

Dim MAC AVE SD
SPCA PCAw S-CCA G-CCA SPCA PCAw S-CCA G-CCA SPCA PCAw S-CCA G-CCA

25 0.3966 0.3944 0.3225 0.4212 0.3877 0.3981 0.3085 0.4212 0.4361 0.4410 0.3602 0.4433
50 0.4725 0.4738 0.4063 0.4781 0.4354 0.4442 0.4385 0.4538 0.5006 0.5015 0.4524 0.5056

100 0.5007 0.5021 0.4311 0.5106 0.4820 0.4886 0.4946 0.5082 0.5457 0.5501 0.5258 0.5653
200 0.5183 0.5182 0.4668 0.5370 0.5118 0.5129 0.5302 0.5355 0.5822 0.5827 0.5635 0.5985
300 0.5206 0.5200 0.4894 0.5285 0.5281 0.5306 0.5507 0.5377 0.5966 0.5964 0.5829 0.6045
400 0.5224 0.5219 0.5040 0.5272 0.5504 0.5507 0.5577 0.5379 0.6064 0.6070 0.5958 0.6024
450 0.5222 0.5200 0.5109 0.5255 0.5587 0.5590 0.5620 0.5383 0.6119 0.6121 0.6013 0.6027
512 0.5169 0.5168 0.5154 0.5256 0.5579 0.5588 0.5646 0.5384 0.6051 0.6067 0.6048 0.6028

1 The best performances in each dimension are highlighted in bold.
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Table 2.4: Evaluation results from 120k-SfM on Oxford5k,ROxford, Paris6k, andRParis.

Oxford5k

Dim MAC AVE SD
MLDA PCAw S-CCA G-CCA MLDA PCAw S-CCA G-CCA MLDA PCAw S-CCA G-CCA

25 0.3603 0.3906 0.2677 0.4019 0.4758 0.4266 0.2644 0.4821 0.4759 0.4790 0.3400 0.5212
50 0.4760 0.4319 0.3802 0.4987 0.5612 0.5033 0.4293 0.5572 0.5375 0.5355 0.4667 0.5956

100 0.5157 0.5275 0.4537 0.5481 0.6017 0.5756 0.5529 0.6402 0.6429 0.6240 0.5593 0.6688
200 0.5887 0.5453 0.5562 0.6231 0.6571 0.6437 0.6498 0.6964 0.6861 0.6410 0.6620 0.7244
300 0.6028 0.5669 0.5697 0.6306 0.6643 0.6474 0.6658 0.7102 0.7030 0.6711 0.6754 0.7382
400 0.5974 0.5810 0.5768 0.6275 0.6688 0.6681 0.6758 0.7139 0.7020 0.6970 0.6864 0.7422
450 0.5939 0.5840 0.5820 0.6279 0.6678 0.6728 0.6781 0.7144 0.6972 0.6986 0.6939 0.7412
512 0.5868 0.5799 0.5800 0.6275 0.6613 0.6711 0.6845 0.7146 0.6958 0.6946 0.6943 0.7419

ROxford

Dim MAC AVE SD
MLDA PCAw S-CCA G-CCA MLDA PCAw S-CCA G-CCA MLDA PCAw S-CCA G-CCA

25 0.2330 0.2503 0.1543 0.2459 0.2712 0.2533 0.1422 0.2441 0.2666 0.3037 0.1782 0.2853
50 0.2989 0.2664 0.2366 0.3025 0.3522 0.2802 0.2337 0.3366 0.3418 0.3357 0.2636 0.3254

100 0.3470 0.3521 0.2724 0.3437 0.3981 0.3318 0.3412 0.4290 0.4002 0.4075 0.3269 0.4073
200 0.3924 0.3510 0.3482 0.3991 0.4324 0.3911 0.3913 0.4411 0.4497 0.4192 0.4085 0.4622
300 0.4006 0.3557 0.3497 0.3986 0.4404 0.3920 0.4056 0.4430 0.4645 0.4454 0.4335 0.4796
400 0.3964 0.3625 0.3526 0.4001 0.4412 0.4106 0.4215 0.4462 0.4673 0.4609 0.4429 0.4812
450 0.3941 0.3613 0.3587 0.3998 0.4363 0.4159 0.4215 0.4443 0.4624 0.4604 0.4394 0.4807
512 0.3881 0.3570 0.3575 0.3996 0.4267 0.4136 0.4303 0.4444 0.4597 0.4501 0.4503 0.4806

Paris6k

Dim MAC AVE SD
MLDA PCAw S-CCA G-CCA MLDA PCAw S-CCA G-CCA MLDA PCAw S-CCA G-CCA

25 0.5781 0.4878 0.5109 0.6270 0.5553 0.5013 0.4442 0.5693 0.6204 0.5543 0.5269 0.6611
50 0.6384 0.6153 0.5416 0.6679 0.6362 0.5893 0.5467 0.6314 0.6900 0.6575 0.5935 0.6968

100 0.6916 0.6788 0.6226 0.7339 0.6994 0.6736 0.6657 0.6910 0.7502 0.7313 0.7105 0.7641
200 0.7244 0.7124 0.6765 0.7674 0.7162 0.6994 0.7220 0.7491 0.7845 0.7842 0.7760 0.8043
300 0.7493 0.7214 0.6900 0.7719 0.7299 0.7328 0.7538 0.7491 0.8030 00.8046 0.7973 0.8160
400 0.7548 0.7230 0.7146 0.7729 0.7247 0.7586 0.7729 0.7507 0.8042 0.8143 0.8067 0.8164
450 0.7540 0.7222 0.7729 0.7455 0.7197 0.7679 0.7775 0.7508 0.8003 0.8144 0.8096 0.8161
512 0.7549 0.7288 0.7726 0.7455 0.7111 0.7732 0.7845 0.7507 0.7971 0.8159 0.8164 0.8191

RParis

Dim MAC AVE SD
MLDA PCAw S-CCA G-CCA MLDA PCAw S-CCA G-CCA MLDA PCAw S-CCA G-CCA

25 0.4321 0.3728 0.3956 0.4787 0.4524 0.3745 0.3607 0.4455 0.4817 0.4136 0.4075 0.5032
50 0.4910 0.4685 0.4214 0.5156 0.4944 0.4495 0.4229 0.4877 0.5373 0.4998 0.4611 0.5415

100 0.5339 0.5096 0.4681 0.5631 0.5003 0.5101 0.5052 0.5340 0.5796 0.5596 0.5472 0.5970
200 0.5526 0.5346 0.5066 0.5910 0.5656 0.5310 0.5437 0.5678 0.6066 0.6002 0.5928 0.6317
300 0.5520 0.5425 0.5124 0.5942 0.5809 0.5566 0.5639 0.5799 0.6195 0.6156 0.6021 0.6408
400 0.5437 0.5406 0.5282 0.5941 0.5843 0.5738 0.5824 0.5857 0.6165 0.6228 0.6072 0.6401
450 0.5399 0.5369 0.5313 0.5941 0.5829 0.5796 0.5844 0.5813 0.6136 0.6187 0.6118 0.6401
512 0.5333 0.5387 0.5408 0.5939 0.5830 0.5828 0.5936 0.5812 0.6093 0.6178 0.6199 0.6403

1 The best performances in each dimension are highlighted in bold.
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Table 2.5: Image retrieval comparison of PCAw, SPCA, and G-CCA.

Query TOP 10 Retrieved Images

A

B

C

1 Top 10 retrieved images from Oxford5k. (A) SD + PCAw. (B) SD + SPCA (C) SD + G-CCA.
2 Correct images are bounded with green boxes, wrong images are bounded with red boxes.
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Table 2.6: Image retrieval comparison of PCAw, SPCA, and G-CCA.

Query TOP 10 Retrieved Images

A

B

C

1 Top 10 retrieved images from Oxford5k. (A) SD + PCAw. (B) SD + SPCA (C) SD + G-CCA.
2 Correct images are bounded with green boxes, wrong images are bounded with red boxes.

55



Ph.D
.T

hesis
-K

.Shi
M

cM
asterU

niversity
-E

lectrical&
C

om
puterE

ngineering

Table 2.7: Image retrieval comparison of PCAw, MLDA, and G-CCA.

Query TOP 10 Retrieved Images

A

B

C

1 Top 10 retrieved images from Oxford5k. (A) SD + PCAw. (B) SD + MLDA (C) SD + G-CCA.
2 Correct images are bounded with green boxes, wrong images are bounded with red boxes.
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2.5 Conclusions

In view of the success of DL in image classification, a CCA-based method is proposed

to exploit DL features for image retrieval applications. By adopting an OTS CNN without

fine-tuning, it achieves good retrieval accuracy with a minimal computational overhead. As

shown by the experimental results on standard evaluation datasets, the proposed method

is performance-wise competitive against traditional and other OTS-CNN-based methods.

Moreover, it exhibits improved robustness against dimensionality reduction and enhanced

sensitivity to feature mismatch.
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2.A Chernoff Information Between Two 2-Dimensional

Gaussian Distributions

For notational simplicity, we suppress subscript t in the following derivation. Consider

S(M) =

[
1 c(M)

c(M) 1

]
, S(N) =

[
1 c(N)

c(N) 1

]
,

where c(M) and c(N) are two corresponding coefficients. Let S(λ) = (λ(S(M))−1 + (1− λ)

(S(N))−1)−1, λ ∈ [0, 1]. Now we proceed to find the solution λ = λ∗ of the equation

D(S(λ)||S(M)) = D(S(λ)||S(N)).

Note that

D(S(λ)||S(M)) = D(S(λ)||S(N))

⇔ loge
|S(M)|
|S(N)| = tr(((S(N))−1 − (S(M))−1)S(λ)).

We have

((S(N))−1 − (S(M))−1)S(λ)

=
1

λ
((λ(S(M))−1S(N) + (1− λ)I)−1 − I).

It can be verified that
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(λ(S(M))−1S(N) + (1− λ)I)−1

=
1

θ

λ(1−c(M)c(N))

1−(c(M))2
+ 1− λ λ(c(M)−c(N))

1−(cM )2

λ(c(M)−c(N))

1−(c(M))2
λ(1−c(M)c(N))

1−(c(M))2
+ 1− λ

 ,

where

θ = −(c(N) − c(M))2

1− (c(M))2
λ2 +

2c(M)(c(M) − c(N))

1− (c(M))2
λ+ 1.

As a consequence,

tr(((S(N))−1 − (S(M))−1)S(λ))

=
2

θ

((c(N) − c(M))2

1− (c(M))2
λ+

c(M)(c(N) − c(M))

1− (c(M))2

)
.

Therefore , λ = λ∗ is a root in [0, 1] of the following quadratic equation:

αλ2 + βλ+ γ = 0, (2.A.0.1)

where
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α =
(c(N) − c(M))2

1− (c(M))2
loge
|S(M)|
|S(N)| ,

β =
2(c(N) − c(M))2

1− (c(M))2
− 2c(M)(c(M) − c(N))

1− (c(M))2
loge
|S(M)|
|S(N)| ,

γ =
2c(M)(c(N) − c(M))

1− (c(M))2
− loge

|S(M)|
|S(N)| .

We shall show that Equation (2.A.0.1) has a unique root in [0, 1], which is given by

λ∗ =
−β +

√
β2 − 4αγ

2α
. (2.A.0.2)

Clearly, Equation (2.A.0.1) must have a root in [0, 1] since D(S(λ)||S(M))|λ=0 > 0,

D(S(λ)||S(N))|λ=1 > 0, and D(S(λ)||S(M))|λ=1 = D(S(λ)||S(N))|λ=0 = 0. So it remains to

prove the uniqueness of this root.

First consider the case (c(N))2 > (c(M))2. It is clear that α > 0 and

γ =
2c(M)(c(N) − c(M))

1− (c(M))2
− loge

|S(M)|
|S(N)|

=
2c(M)(c(N) − c(M))

1− (c(M))2
− loge

1− (c(M))2

1− (c(N))2

≤ 2c(M)(c(N) − c(M))

1− (c(M))2
− (c(N))2 − (c(M))2

1− (c(M))2

= −(c(N) − c(M))2

1− (c(M))2

< 0,

where the first inequality is due to loge x ≥ x−1
x

. Therefore, the two roots of Equation

(2.A.0.1) must be of different signs, which implies that there exists a unique root in [0, 1]
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with the expression given by Equation (2.A.0.2).

Next consider the case (c(N))2 < (c(M))2. Define λ = 1− λ. Equation (2.A.0.1) can be

written equivalently as

α(1− λ)2 + β(1− λ) + γ = 0,

i.e.,

αλ
2 − (2α + β)λ+ (α + β + γ) = 0. (2.A.0.3)

Note that

2α + β

=
2(c(N) − c(M))2

1− (c(M))2
− 2c(N)(c(M) − c(N))

1− (c(M))2
loge
|S(M)|
|S(N)|

and

α + β + γ

=
2c(N)(c(N) − c(M))

1− (c(M))2
− 1− (c(N))2

1− (c(M))2
loge
|S(M)|
|S(N)| .

Therefore, Equation (2.A.0.3) can be rewritten as
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αλ
2
+ βλ+ γ = 0, (2.A.0.4)

where

α =
(c(M) − c(N))2

1− (c(N))2
loge
|S(N)|
|S(M)| ,

β =
2(c(M) − c(N))2

1− (c(N))2
− 2c(N)(c(N) − c(M))

1− (c(N))2
loge
|S(N)|
|S(M)| ,

γ =
2c(N)(c(M) − c(N))

1− (c(N))2
− loge

|S(N)|
|S(M)| .

A similar argument to that for the case (c(N))2 > (c(M))2 can be used to prove that

Equation (2.A.0.4) has one root in [0, 1] and the other root in (−∞, 0). This implies that

Equation (2.A.0.1) must have one root in [0, 1] and the other root in (1,∞); the one in [0, 1]

must be given by Equation (2.A.0.2) (note that α < 0 when (c(N))2 < (c(M))2). ...
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Chapter 3

Progressive with Purpose: Guiding

Progressive Inpainting DNNs through

Context and Structure

3.1 Abstract

The advent of deep learning in the past decade has significantly helped advance image

inpainting. Although achieving promising performance, deep learning-based inpainting

algorithms still struggle from the distortion caused by the fusion of structural and contextual

features, which are commonly obtained from, respectively, deep and shallow layers of a

convolutional encoder. Motivated by this observation, we propose a novel progressive

inpainting network that maintains the structural and contextual integrity of a processed

image. More specifically, inspired by the Gaussian and Laplacian pyramids, the core

of the proposed network is a feature extraction module named GLE. Stacking GLE
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modules enables the network to extract image features from different image frequency

components. This ability is important to maintain structural and contextual integrity,

for high frequency components correspond to structural information while low frequency

components correspond to contextual information. The proposed network utilizes the

GLE features to progressively fill in missing regions in a corrupted image in an iterative

manner. Our benchmarking experiments demonstrate that the proposed method achieves

clear improvement in performance over many state-of-the-art inpainting algorithms.

3.2 Introduction

Image inpainting is the task of restoring missing patches of pixels in an image [1, 2].

As the name suggests, inpainting targets filling in missing parts of an image (i.e., image

holes) with contextually meaningful information so that the image can be restored to its

original form. This could be a quite difficult task for machines, for it is an ill-posed inverse

problem [8]. It requires not only the ability to predict what is missing, but also whether it

fits within the context of the image or not. Thus, a key to attaining satisfying inpainting

results is to ensure that the reconstructed pixels are consistent with the uncorrupted region

and exhibit coherence in both structure and texture.

As a main remedy for restoring image quality, inpainting is of great importance

nowadays, for modern societies are increasingly reliant on visual content with images as its

building block, from surveillance systems to autonomous vehicles, media streaming, and

conference calls. Storing, displaying, and exchanging huge amount of images make them

prone to damages, one of which is missing pixels (image holes). It is thus unsurprising to

see increasing research interest in inpainting within the computer vision community.
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3.2.1 Motivation

Many image inpainting techniques have been proposed over the past two decades.

They could loosely be grouped into two major categories: traditional and modern. The

main defining difference between the two categories is the use of deep learning. The

traditional category of techniques could collectively be divided into two sub-categories

[8]: exemplar-based and diffusion-based. The former approach [9] searches for the

best matching patches from known regions and pastes them into missing regions. Such

techniques have high computational cost for patch searching and generate unrealistic

results due to the lack of perspective transformation. The diffusion-based techniques,

on the other hand, recreate a missing region with features from its surrounding known

region. Although diffusion-based techniques are more efficient than their exemplar-based

counterparts, they result in over-smoothed inpainting results because of regularization

based on partial-differential equations.

The advent of deep learning in computer vision has created a surge of inpainting

techniques that utilize Deep Neural Networks (DNNs). Although those techniques

exhibit some overlap with the traditional diffusion-based techniques, they define the

state-of-the-art in inpainting, and, therefore, merit a category of their own. Most of the early

works on inpainting with deep learning, like [10] [11], follow a two-stage approach, which

firstly learns the image structure from a given edge/structure map of corrupted image, then

refines the missing region with a texture generator. However, two-stage image inpainting

methods usually cause artifacts due to their limited ability to recover both structure and

texture.

To deal with those artifacts, progressive inpainting techniques have been explored.

They rely on the idea that not all predicted pixels in a region plagued with artifacts are
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defective; some are good predictions that could be utilized to improve the re-generated

region and weed out the artifacts. Hence, those techniques fill in the missing holes

by iterating over the image and learning from previously-predicted pixels. Examples

of such technique are the full-resolution residual network proposed by Guo et al., [12]

and the iterative confidence feedback network proposed by Zheng et al., [13]. Despite

the improvement they provide over two-stage techniques, the performance of progressive

techniques is still prone to artifacts. This could be traced back to the inexplicit modeling of

structure and texture in those techniques.

Fusing structure and texture awareness with progressive inpainting is arguably the most

promising approach to overcoming visual artifacts, which we shall follow in this paper.

Developing structure and texture-aware algorithms has been explored recently in Guo et

al., [14]. Two different but coupled autoencoders are trained with structure and texture

constraints to fill in holes in corrupted images. The results are encouraging, but the

algorithm can cause distortion in deep parts of the hole due to one-stage feature fusion.

This could be overcome by incorporating progressive inpainting into the learning process.

3.2.2 Contribution

In an attempt to bring together progressive learning and fusion of texture and structure,

this paper presents a Gaussian-Laplacian feature Extraction (GLE) module. The main

contributions of the proposed architecture are summarized below:

• GLE Module: Inspired by image pyramid, we propose a GLE module to obtain

features from high and low image frequency components. Those components

provide texture information (low-frequency components) and structure information

(high-frequency components). The GLE module leverages those multi-frequency
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components to learn textural and structural features.

• Iterative Reinpainting Component: A progressive reinpainting component is

developed such that it gradually fills in the corrupted regions of an image. It utilizes

features learned by the GLE modules from different frequency components to fill in

the outer edge of the corrupted regions iteratively until the region is restored.

• Benchmarking and Evaluation Experiments: Various experiments are designed

to evaluate the performance of the proposed architecture and show the benefits of

the GLE module and the reinpainting component. The experiments also compare

the proposed inpainting algorithm to some state-of-the-art algorithms to situate its

contribution to the inpainting problem.

3.2.3 Paper organization

The organization of this paper is shown as follows. Section II reviews works that are

related to our method. Section III details the architecture of the proposed progressive

image inpainting network. Sections IV and V illustrate the experimental setup and the

experimental results. Section VI concludes this paper.

3.3 Related Work

The proposed solution is developed on top of a rich literature of image inpainting with

deep learning. To facilitate the discussion, the following two subsections will review some

concepts related to the proposed solution. They should lay the necessary groundwork for

the detailed description in Section 3.4
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3.3.1 Variants of Texture and Structure Inpainting

Inpainting based on texture and structure has been attempted in various forms in

the literature. The concepts of style and content have been introduced in [3], which

could be viewed as derivatives of texture and structures, respectively. They are used to

build a two-stage inpainting DNN. In the first, two encoders extract style and content

latent information separately, and the second stage synthesize a full image from that

information. Semantic segmentation masks are another alternative that helps capture

structure information. They have been utilized in [4–6] as a way to guide texture generation.

In all those papers, an encoder network learns to generate a latent representation of the

corrupted image that captures the structure. It does so by pushing the decoder network to

recover not only the inpainted image but also its segmentation mask. The three papers differ

in the details of how to encode a corrupted image and generate a structurally consistent

image.

3.3.2 Progressive Image Inpainting

Progressive image inpainting, as the name suggests, aims to recover images gradually

by utilizing features from undamaged and recently recovered regions. Overall, algorithms

following this approach could be grouped in two broad categories: (i) contextual

information-based algorithms, and (ii) structural constraints-based algorithm. Both are

briefly reviewed below.

Contextual information-based algorithms rely mainly on CNN features extracted from

input images to restore damaged regions. As a pioneer of the contextual features-based

algorithms, Hsu et al., [15] propose using several deep convolutional networks to learn

progressive inpainting from multiple image scales, from low to high resolution images.
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Zhang et al., [16] recognize how inpainting lends itself to recurrent modelling; they

propose to use several generative networks inter-connected with LSTM module, which

progressively fills in the missing region of an image. More recently, Li et al., [17]

extend that analogy further. They propose a recurrent feature reasoning module with

knowledge-consistent attention, which can progressively enhance the details in masked

regions.

Compared with their contextual information-based counterparts, the structural

constraints-based algorithms take advantage of additional external structural constraints

provided by edge detection algorithms. The algorithms in [18] [19] utilize contour or

edge maps as a guide for image completion. To progressively complete the image, Li et

al., [20] propose a U-net that recovers the edge maps while inpainting images progressively.

These approaches, collectively, seek to tackle image inpainting by introducing structural

constraints, yet their performance remains limited by a lack of information for recovering

deeper pixels in the missing regions.

3.3.3 Gaussian and Laplacian Pyramid

A classical approach to image inpainting is centered around the idea of building

multi-scale image pyramids, in which inpainting is done progressively from one scale to

another—commonly from smallest to largest scale. Those pyramids are usually called

Gaussian or Laplacian pyramids based on the type of filters used to generate them.

Specifically, let G denote the Gaussian smooth operator, Iτ express the input image to the

τth level of Gaussian pyramid. Q denotes upsmpling operation, D denotes downsampling

operation. The formulas for the output images Gτ , Fτ of τth Gaussian pyramid and
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Laplacian pyramid are

Gτ = D(G(Iτ )) (3.3.3.1)

Fτ = Iτ −Q(Gτ ) (3.3.3.2)

Inpainting algorithms using Gaussian and Laplacian pyramids could roughly be clustered

into three groups: inpainting on multiple Gaussian pyramids [21], inpainting on multiple

Laplacian pyramids pyramids [22] [23], and inpainting on multiple Gaussian and Laplacian

[23].

The difference between the first and the second group is in how the inpainting algorithm

is applied on different image pyramids. For instance, Farid et al., [21] first generate

multiple Gaussian pyramids until most missing pixels are eliminated by the smoothing

operation. Then, their algorithm copies and pastes the missing pixels from the small-scale

image (top of the pyramid) to the large-scale images (bottom of the pyramid). In contrast,

[22] utilizes Laplacian pyramid with patch search to recover missing pixels from small to

large scale images in the pyramid. Because of the limitation of exemplar-based methods,

both kinds of methods suffer from unrealistic inpainting results.

Benefiting from the combination of structure and texture, the third inpainting group

(i.e., algorithms relying on multiple Gaussian and Laplacian pyramids) usually achieve

better performance than their counterparts relying only on one of the two pyramids.

However, the additional cost from inpainting both Pyramids is relatively high compared

to that of the former two groups.

77



Ph.D. Thesis - K.Shi McMaster University - Electrical & Computer Engineering

3.4 Proposed Inpainting Algorithm

Like a person solving a jigsaw puzzle, an inpainting algorithm should fill in the

missing regions by gradually piecing pixels together while keeping an eye on context and

structure. Progressive algorithms, as mentioned earlier, restore missing pixels gradually

using undamaged and recently recovered pixels, yet they do not jointly maintain contextual

and structural information. This observation fuels the work in this paper; a Deep neural

Network (DNN) is designed such that it progressively inpaints with the purpose of

maintaining structure and context information. Hence, it is described as being progressive

with purpose.

The idea behind the proposed algorithm is to break down the inpainting task into three

main stages, namely feature extraction (first stage), iterative inpainting (second stage), and

enhancing and reconstruction (third stage). The first stage is aimed to extract multi-level

features from the corrupted image, which mimics, to some extent, feature extraction from

image pyramids used in classical inpainting algorithms such as [21, 22]. The multi-level

features capture contextual and structural information. They are fed to the iterative

inpainting stage, which attempts to recover some of the missing information gradually

over several iterations. Each one generates a pair of feature volumes. The pairs are passed

to the enhancement and reconstruction stage to enhance the recovered information, fuse

them into one feature volume, and reconstruct the complete image. The architecture of the

proposed algorithm is depicted in Figure 3.7.

The architecture is detailed in the following four subsections. The first one presents a

formal description of how progressive inpainting restores missing pixels. The following

three are a deep-dive into the three stages of the proposed architecture, describing the inner

workings of each stage. Finally, the last subsection presents the loss function used to train
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the architecture.

3.4.1 Rationale Behind the Proposed Algorithm

Let a be the original image, and b be the corrupted image. We denote the conditional

probability distribution of the original image given the corrupted image by pA|B. Image

inpainting can be formulated as a maximum a posterior (MAP) estimation problem:

âmap = argmax
â

pA|B(â|b).

Let m be the ground truth of the corrupted region, n and c be the valid region and corrupted

region of the corrupted image, then a = m ∪ n, b = c ∪ n. Note that the conditional

distribution of m given n, denoted by pM|N, is a projected version of pA|B and can be

learned from the training dataset. The MAP estimation of a based on b can be reduced to

the MAP estimation of m based on n:

m̂map = argmax
m̂

pM|N(m̂|n).

Clearly, we have

âmap = m̂map ∪ n.

Our algorithm aims to produce an approximate version of m̂map.

We divide the corrupted region into T concentric regions, and progressively recover the

corrupted region in an inward manner from the 1th to the Tth concentric region.

Let m̃(τ)
r denote the inpainted rth concentric region at the τth step. The process proceeds

as follows. At the τth step (with τ from 1 to T ), we generate m̃(τ)
τ based on the valid region
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n and the τ −1 inpainted concentric regions m̃(τ−1)
r (1 ≤ r ≤ τ −1) from the τ −1th step*,

then refine m̃
(τ−1)
r (1 ≤ r ≤ τ − 1) to m̃

(τ)
r (1 ≤ r ≤ τ − 1), respectively.

At the end of the Tth step, we collected m̃
(τ)
r (1 ≤ τ ≤ T , 1 ≤ r ≤ τ ) generated

throughout the process and perform an enhancement. Specifically, for τ from 1 to T−1, we

leverage ∪τ−1
r=1m̃

(τ−1)
r (which is void when τ = 1) and ∪τ

r=1m̃
(τ+1)
r , together with the valid

region n, to enhance ∪τr=1m̃
(τ)
r . More precisely, for each τ , the enhancement is carried out

in two parts separately: ∪τ−1
r=1m̃

(τ)
r is enhanced based on ∪τ−1

r=1m̃
(τ−1)
r and ∪τ−1

r=1m̃
(τ+1)
r while

m̃
(τ)
τ is enhanced based on m̃

(τ+1)
τ . It is also worth mentioning that in our implementation,

we decompose n into low-level information l and high-level information h using a feature

extraction network. Let m̂τ denote the enhanced version† of ∪τr=1m̃
(τ)
r (1 ≤ τ ≤ T ). Our

algorithm produces ∪T
τ=1m̂τ as an approximation of m̂map.

*when τ = 1, there is no inpainted region available, but only the valid region n.
†Note that m̂T = ∪Tr=1m̃

(T )
r since no enhancement is performed when τ = T .
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Concat
⌧ + 1

<latexit sha1_base64="00T22ELOxwnuop2sUubRSjOobXU=">AAAB7XicdVDJSgNBEK2JW4xb1KOXxiAIwjBjAppb0IvHCGaBZAg9nZ6kTU/30N0jhCH/4MWDIl79H2/+jZ1FcH1Q8Hiviqp6YcKZNp737uSWlldW1/LrhY3Nre2d4u5eU8tUEdogkkvVDrGmnAnaMMxw2k4UxXHIaSscXU791h1VmklxY8YJDWI8ECxiBBsrNbsGpyd+r1jy3Gq1XK5U0W/iu94MJVig3iu+dfuSpDEVhnCsdcf3EhNkWBlGOJ0UuqmmCSYjPKAdSwWOqQ6y2bUTdGSVPoqksiUMmqlfJzIcaz2OQ9sZYzPUP72p+JfXSU10HmRMJKmhgswXRSlHRqLp66jPFCWGjy3BRDF7KyJDrDAxNqCCDeHzU/Q/aZ66ftk9va6UaheLOPJwAIdwDD6cQQ2uoA4NIHAL9/AIT450Hpxn52XemnMWM/vwDc7rB5wDjys=</latexit>

⌧,
<latexit sha1_base64="34lvCzdFTmBkg84roiP3mYvLgLI=">AAAB7HicdVDJSgNBEK2JW4xb1KOXxiB4kGGygOYW9OIxglkgGUJPpydp0tMzdNcIIeQbvHhQxKsf5M2/sbMIrg8KHu9VUVUvSKQw6HnvTmZldW19I7uZ29re2d3L7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjq5nfuuPaiFjd4jjhfkQHSoSCUbRSo4s0PevlC55brZbLlSr5TYquN0cBlqj38m/dfszSiCtkkhrTKXoJ+hOqUTDJp7luanhC2YgOeMdSRSNu/Mn82Ck5sUqfhLG2pZDM1a8TExoZM44C2xlRHJqf3kz8y+ukGF74E6GSFLlii0VhKgnGZPY56QvNGcqxJZRpYW8lbEg1ZWjzydkQPj8l/5NmyS2W3dJNpVC7XMaRhSM4hlMowjnU4Brq0AAGAu7hEZ4c5Tw4z87LojXjLGcO4Ruc1w8sho7x</latexit>

Concat
⌧ + 1

<latexit sha1_base64="00T22ELOxwnuop2sUubRSjOobXU=">AAAB7XicdVDJSgNBEK2JW4xb1KOXxiAIwjBjAppb0IvHCGaBZAg9nZ6kTU/30N0jhCH/4MWDIl79H2/+jZ1FcH1Q8Hiviqp6YcKZNp737uSWlldW1/LrhY3Nre2d4u5eU8tUEdogkkvVDrGmnAnaMMxw2k4UxXHIaSscXU791h1VmklxY8YJDWI8ECxiBBsrNbsGpyd+r1jy3Gq1XK5U0W/iu94MJVig3iu+dfuSpDEVhnCsdcf3EhNkWBlGOJ0UuqmmCSYjPKAdSwWOqQ6y2bUTdGSVPoqksiUMmqlfJzIcaz2OQ9sZYzPUP72p+JfXSU10HmRMJKmhgswXRSlHRqLp66jPFCWGjy3BRDF7KyJDrDAxNqCCDeHzU/Q/aZ66ftk9va6UaheLOPJwAIdwDD6cQQ2uoA4NIHAL9/AIT450Hpxn52XemnMWM/vwDc7rB5wDjys=</latexit>

⌧,
<latexit sha1_base64="34lvCzdFTmBkg84roiP3mYvLgLI=">AAAB7HicdVDJSgNBEK2JW4xb1KOXxiB4kGGygOYW9OIxglkgGUJPpydp0tMzdNcIIeQbvHhQxKsf5M2/sbMIrg8KHu9VUVUvSKQw6HnvTmZldW19I7uZ29re2d3L7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjq5nfuuPaiFjd4jjhfkQHSoSCUbRSo4s0PevlC55brZbLlSr5TYquN0cBlqj38m/dfszSiCtkkhrTKXoJ+hOqUTDJp7luanhC2YgOeMdSRSNu/Mn82Ck5sUqfhLG2pZDM1a8TExoZM44C2xlRHJqf3kz8y+ukGF74E6GSFLlii0VhKgnGZPY56QvNGcqxJZRpYW8lbEg1ZWjzydkQPj8l/5NmyS2W3dJNpVC7XMaRhSM4hlMowjnU4Brq0AAGAu7hEZ4c5Tw4z87LojXjLGcO4Ruc1w8sho7x</latexit>

Concat
⌧,

<latexit sha1_base64="34lvCzdFTmBkg84roiP3mYvLgLI=">AAAB7HicdVDJSgNBEK2JW4xb1KOXxiB4kGGygOYW9OIxglkgGUJPpydp0tMzdNcIIeQbvHhQxKsf5M2/sbMIrg8KHu9VUVUvSKQw6HnvTmZldW19I7uZ29re2d3L7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjq5nfuuPaiFjd4jjhfkQHSoSCUbRSo4s0PevlC55brZbLlSr5TYquN0cBlqj38m/dfszSiCtkkhrTKXoJ+hOqUTDJp7luanhC2YgOeMdSRSNu/Mn82Ck5sUqfhLG2pZDM1a8TExoZM44C2xlRHJqf3kz8y+ukGF74E6GSFLlii0VhKgnGZPY56QvNGcqxJZRpYW8lbEg1ZWjzydkQPj8l/5NmyS2W3dJNpVC7XMaRhSM4hlMowjnU4Brq0AAGAu7hEZ4c5Tw4z87LojXjLGcO4Ruc1w8sho7x</latexit>

⌧ � 1,
<latexit sha1_base64="/Tl4a2ZsJd4SCsJlPjUsAFM8iMM=">AAAB7nicdVDJSgNBEK1xjXGLevTSGAQPOswkAc0t6MVjBLNAMoSeTk/SpGehu0YIQz7CiwdFvPo93vwbO4vg+qDg8V4VVfX8RAqNjvNuLS2vrK6t5zbym1vbO7uFvf2mjlPFeIPFMlZtn2ouRcQbKFDydqI4DX3JW/7oauq37rjSIo5ucZxwL6SDSASCUTRSq4s0PXNPe4WiY1er5XKlSn4T13ZmKMIC9V7hrduPWRryCJmkWndcJ0EvowoFk3yS76aaJ5SN6IB3DI1oyLWXzc6dkGOj9EkQK1MRkpn6dSKjodbj0DedIcWh/ulNxb+8TorBhZeJKEmRR2y+KEglwZhMfyd9oThDOTaEMiXMrYQNqaIMTUJ5E8Lnp+R/0izZbtku3VSKtctFHDk4hCM4ARfOoQbXUIcGMBjBPTzCk5VYD9az9TJvXbIWMwfwDdbrBwi+j2M=</latexit>

⌧ + 1
<latexit sha1_base64="00T22ELOxwnuop2sUubRSjOobXU=">AAAB7XicdVDJSgNBEK2JW4xb1KOXxiAIwjBjAppb0IvHCGaBZAg9nZ6kTU/30N0jhCH/4MWDIl79H2/+jZ1FcH1Q8Hiviqp6YcKZNp737uSWlldW1/LrhY3Nre2d4u5eU8tUEdogkkvVDrGmnAnaMMxw2k4UxXHIaSscXU791h1VmklxY8YJDWI8ECxiBBsrNbsGpyd+r1jy3Gq1XK5U0W/iu94MJVig3iu+dfuSpDEVhnCsdcf3EhNkWBlGOJ0UuqmmCSYjPKAdSwWOqQ6y2bUTdGSVPoqksiUMmqlfJzIcaz2OQ9sZYzPUP72p+JfXSU10HmRMJKmhgswXRSlHRqLp66jPFCWGjy3BRDF7KyJDrDAxNqCCDeHzU/Q/aZ66ftk9va6UaheLOPJwAIdwDD6cQQ2uoA4NIHAL9/AIT450Hpxn52XemnMWM/vwDc7rB5wDjys=</latexit>

Concatenate two 
sub-volumes

Concatenate three 
sub-volumes

H̃(⌧)
<latexit sha1_base64="5zy5NqMu1IuH/zUWJmaQ9jNrc1E=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSxC3ZSkCrosuumygn1AE8pkMmmHTh7M3Agl1I2/4saFIm79C3f+jZM2C209cOFwzr3ce4+XCK7Asr6NldW19Y3N0lZ5e2d3b988OOyoOJWUtWksYtnziGKCR6wNHATrJZKR0BOs641vc7/7wKTicXQPk4S5IRlGPOCUgJYG5rETEhh5QeYAFz7DzSmuOkDS84FZsWrWDHiZ2AWpoAKtgfnl+DFNQxYBFUSpvm0l4GZEAqeCTctOqlhC6JgMWV/TiIRMudnsgyk+04qPg1jqigDP1N8TGQmVmoSe7szvVYteLv7n9VMIrt2MR0kKLKLzRUEqMMQ4jwP7XDIKYqIJoZLrWzEdEUko6NDKOgR78eVl0qnX7Ita/e6y0rgp4iihE3SKqshGV6iBmqiF2oiiR/SMXtGb8WS8GO/Gx7x1xShmjtAfGJ8/l6KWUg==</latexit>

H̃(⌧ � 1)
<latexit sha1_base64="t3eqoOSesNvhGpZg1QUvOPbNVyg=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBahLixJFXRZdNNlBfuAJpTJdNIOnTyYuRFKKLjxV9y4UMStP+HOv3HSZqGtBy4czrmXe+/xYsEVWNa3UVhZXVvfKG6WtrZ3dvfM/YO2ihJJWYtGIpJdjygmeMhawEGwbiwZCTzBOt74NvM7D0wqHoX3MImZG5BhyH1OCWipbx45AYGR56cOcDFguDHFFQdIcm6f9c2yVbVmwMvEzkkZ5Wj2zS9nENEkYCFQQZTq2VYMbkokcCrYtOQkisWEjsmQ9TQNScCUm85+mOJTrQywH0ldIeCZ+nsiJYFSk8DTndnFatHLxP+8XgL+tZvyME6AhXS+yE8EhghngeABl4yCmGhCqOT6VkxHRBIKOraSDsFefHmZtGtV+6Jau7ss12/yOIroGJ2gCrLRFaqjBmqiFqLoET2jV/RmPBkvxrvxMW8tGPnMIfoD4/MHgiyWxA==</latexit>

H̃(⌧ � 1)
<latexit sha1_base64="t3eqoOSesNvhGpZg1QUvOPbNVyg=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBahLixJFXRZdNNlBfuAJpTJdNIOnTyYuRFKKLjxV9y4UMStP+HOv3HSZqGtBy4czrmXe+/xYsEVWNa3UVhZXVvfKG6WtrZ3dvfM/YO2ihJJWYtGIpJdjygmeMhawEGwbiwZCTzBOt74NvM7D0wqHoX3MImZG5BhyH1OCWipbx45AYGR56cOcDFguDHFFQdIcm6f9c2yVbVmwMvEzkkZ5Wj2zS9nENEkYCFQQZTq2VYMbkokcCrYtOQkisWEjsmQ9TQNScCUm85+mOJTrQywH0ldIeCZ+nsiJYFSk8DTndnFatHLxP+8XgL+tZvyME6AhXS+yE8EhghngeABl4yCmGhCqOT6VkxHRBIKOraSDsFefHmZtGtV+6Jau7ss12/yOIroGJ2gCrLRFaqjBmqiFqLoET2jV/RmPBkvxrvxMW8tGPnMIfoD4/MHgiyWxA==</latexit>

P. Conv.

P. Conv.
Partial Conv. Layer 
kernel= 3, stride= 
padding= 1 

I1
<latexit sha1_base64="03YTnctVOAeDuic/gdbRjgu2Bik=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFN7qrYB8wHUomzbShmWRIMkIZ+hluXCji1q9x59+YaWehrQcCh3PuJeeeMOFMG9f9dkpr6xubW+Xtys7u3v5B9fCoo2WqCG0TyaXqhVhTzgRtG2Y47SWK4jjktBtObnO/+0SVZlI8mmlCgxiPBIsYwcZKfj/GZhxG6H7gDao1t+7OgVaJV5AaFGgNql/9oSRpTIUhHGvte25iggwrwwins0o/1TTBZIJH1LdU4JjqIJtHnqEzqwxRJJV9wqC5+nsjw7HW0zi0k3lEvezl4n+en5roOsiYSFJDBVl8FKUcGYny+9GQKUoMn1qCiWI2KyJjrDAxtqWKLcFbPnmVdBp176LeeLisNW+KOspwAqdwDh5cQRPuoAVtICDhGV7hzTHOi/PufCxGS06xcwx/4Hz+AHHSkLM=</latexit>

F4
<latexit sha1_base64="buzuWY0uisk0ID9WU1ByKwTK09k=">AAAB8nicbVDLSgMxFL3js9ZX1aWbYBFclZla0GVREJcV7AOmQ8mkmTY0kwxJRihDP8ONC0Xc+jXu/Bsz7Sy09UDgcM695NwTJpxp47rfztr6xubWdmmnvLu3f3BYOTruaJkqQttEcql6IdaUM0HbhhlOe4miOA457YaT29zvPlGlmRSPZprQIMYjwSJGsLGS34+xGYcRuhs0BpWqW3PnQKvEK0gVCrQGla/+UJI0psIQjrX2PTcxQYaVYYTTWbmfappgMsEj6lsqcEx1kM0jz9C5VYYokso+YdBc/b2R4VjraRzayTyiXvZy8T/PT010HWRMJKmhgiw+ilKOjET5/WjIFCWGTy3BRDGbFZExVpgY21LZluAtn7xKOvWad1mrPzSqzZuijhKcwhlcgAdX0IR7aEEbCEh4hld4c4zz4rw7H4vRNafYOYE/cD5/AHHMkLM=</latexit>

F5
<latexit sha1_base64="k619TNEm9o2dj/OEL1sH6sfIgvk=">AAAB8nicbVDLSgMxFL3js9ZX1aWbYBFclZmq6LIoiMsK9gHToWTSTBuaSYYkI5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu4JE860cd1vZ2V1bX1js7RV3t7Z3duvHBy2tUwVoS0iuVTdEGvKmaAtwwyn3URRHIecdsLxbe53nqjSTIpHM0loEOOhYBEj2FjJ78XYjMII3fUv+5WqW3NnQMvEK0gVCjT7la/eQJI0psIQjrX2PTcxQYaVYYTTabmXappgMsZD6lsqcEx1kM0iT9GpVQYokso+YdBM/b2R4VjrSRzayTyiXvRy8T/PT010HWRMJKmhgsw/ilKOjET5/WjAFCWGTyzBRDGbFZERVpgY21LZluAtnrxM2vWad16rP1xUGzdFHSU4hhM4Aw+uoAH30IQWEJDwDK/w5hjnxXl3PuajK06xcwR/4Hz+AHNQkLQ=</latexit>

F6
<latexit sha1_base64="/bdtSRzfHa7cXlZU+1ACyp0jZKY=">AAAB8nicbVDLSgMxFL3js9ZX1aWbYBFclZkq6rIoiMsK9gHToWTSTBuaSYYkI5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu4JE860cd1vZ2V1bX1js7RV3t7Z3duvHBy2tUwVoS0iuVTdEGvKmaAtwwyn3URRHIecdsLxbe53nqjSTIpHM0loEOOhYBEj2FjJ78XYjMII3fUv+5WqW3NnQMvEK0gVCjT7la/eQJI0psIQjrX2PTcxQYaVYYTTabmXappgMsZD6lsqcEx1kM0iT9GpVQYokso+YdBM/b2R4VjrSRzayTyiXvRy8T/PT010HWRMJKmhgsw/ilKOjET5/WjAFCWGTyzBRDGbFZERVpgY21LZluAtnrxM2vWad16rP1xUGzdFHSU4hhM4Aw+uoAH30IQWEJDwDK/w5hjnxXl3PuajK06xcwR/4Hz+AHTUkLU=</latexit>

F3
<latexit sha1_base64="G5bDnQOC8vtRJGclM7ciihukL9g=">AAAB8nicbVBNSwMxFHxbv2r9qnr0EiyCp7LbCnosCuKxgq2F7VKyabYNzSZLkhXK0p/hxYMiXv013vw3Zts9aOtAYJh5j8ybMOFMG9f9dkpr6xubW+Xtys7u3v5B9fCoq2WqCO0QyaXqhVhTzgTtGGY47SWK4jjk9DGc3OT+4xNVmknxYKYJDWI8EixiBBsr+f0Ym3EYodtBc1CtuXV3DrRKvILUoEB7UP3qDyVJYyoM4Vhr33MTE2RYGUY4nVX6qaYJJhM8or6lAsdUB9k88gydWWWIIqnsEwbN1d8bGY61nsahncwj6mUvF//z/NREV0HGRJIaKsjioyjlyEiU34+GTFFi+NQSTBSzWREZY4WJsS1VbAne8smrpNuoe8164/6i1rou6ijDCZzCOXhwCS24gzZ0gICEZ3iFN8c4L86787EYLTnFzjH8gfP5A3BIkLI=</latexit>

F2
<latexit sha1_base64="zi8qKMJpLZyjkXbBjGA5oknIWsI=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjNV0GVREJcV7AOmQ8mkmTY0kwzJHaEM/Qw3LhRx69e482/MtLPQ1gOBwzn3knNPmAhuwHW/ndLa+sbmVnm7srO7t39QPTzqGJVqytpUCaV7ITFMcMnawEGwXqIZiUPBuuHkNve7T0wbruQjTBMWxGQkecQpASv5/ZjAOIzw3aAxqNbcujsHXiVeQWqoQGtQ/eoPFU1jJoEKYozvuQkEGdHAqWCzSj81LCF0QkbMt1SSmJkgm0ee4TOrDHGktH0S8Fz9vZGR2JhpHNrJPKJZ9nLxP89PIboOMi6TFJiki4+iVGBQOL8fD7lmFMTUEkI1t1kxHRNNKNiWKrYEb/nkVdJp1L2LeuPhsta8KeoooxN0is6Rh65QE92jFmojihR6Rq/ozQHnxXl3PhajJafYOUZ/4Hz+AG7EkLE=</latexit>

F1
<latexit sha1_base64="FB+ezWqDQRaClbfPMua8Y/S1Mms=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFQVxWsA+YDiWTZtrQTDIkGaEM/Qw3LhRx69e482/MtLPQ1gOBwzn3knNPmHCmjet+O6W19Y3NrfJ2ZWd3b/+genjU0TJVhLaJ5FL1QqwpZ4K2DTOc9hJFcRxy2g0nt7nffaJKMykezTShQYxHgkWMYGMlvx9jMw4jdDfwBtWaW3fnQKvEK0gNCrQG1a/+UJI0psIQjrX2PTcxQYaVYYTTWaWfappgMsEj6lsqcEx1kM0jz9CZVYYokso+YdBc/b2R4VjraRzayTyiXvZy8T/PT010HWRMJKmhgiw+ilKOjET5/WjIFCWGTy3BRDGbFZExVpgY21LFluAtn7xKOo26d1FvPFzWmjdFHWU4gVM4Bw+uoAn30II2EJDwDK/w5hjnxXl3PhajJafYOYY/cD5/AG1AkLA=</latexit>

Freinp
<latexit sha1_base64="r5r3L9nolDX9Y8dtb1wfUHPyfQA=">AAACAXicbVDLSgNBEJyNrxhfUS+Cl8EgeAq7UdBjUBCPEcwDkhBmJ73JkNkHM71iWNaLv+LFgyJe/Qtv/o2TZA+aWDBQVHUzXeVGUmi07W8rt7S8srqWXy9sbG5t7xR39xo6jBWHOg9lqFou0yBFAHUUKKEVKWC+K6Hpjq4mfvMelBZhcIfjCLo+GwTCE5yhkXrFg47PcOh69LqXdBAeMFEggihNe8WSXbanoIvEyUiJZKj1il+dfshjHwLkkmndduwIuwlTKLiEtNCJNUSMj9gA2oYGzAfdTaYJUnpslD71QmVegHSq/t5ImK/12HfN5ORePe9NxP+8dozeRTcxiWKEgM8+8mJJMaSTOmhfKOAox4YwroS5lfIhU4yjKa1gSnDmIy+SRqXsnJYrt2el6mVWR54ckiNyQhxyTqrkhtRInXDySJ7JK3mznqwX6936mI3mrGxnn/yB9fkDMwWXYQ==</latexit>

GLE

I4
<latexit sha1_base64="ycaEpn6/vD6a19DGPSH/uTUgTmU=">AAAB8nicbVDLSgMxFL3js9ZX1aWbYBFclZla0GXRje4q2AdMh5JJM21oJhmSjFCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTDjTxnW/nbX1jc2t7dJOeXdv/+CwcnTc0TJVhLaJ5FL1QqwpZ4K2DTOc9hJFcRxy2g0nt7nffaJKMykezTShQYxHgkWMYGMlvx9jMw4jdD9oDCpVt+bOgVaJV5AqFGgNKl/9oSRpTIUhHGvte25iggwrwwins3I/1TTBZIJH1LdU4JjqIJtHnqFzqwxRJJV9wqC5+nsjw7HW0zi0k3lEvezl4n+en5roOsiYSFJDBVl8FKUcGYny+9GQKUoMn1qCiWI2KyJjrDAxtqWyLcFbPnmVdOo177JWf2hUmzdFHSU4hTO4AA+uoAl30II2EJDwDK/w5hjnxXl3Phaja06xcwJ/4Hz+AHZekLY=</latexit>

Figure 3.7: A graphical description of the proposed solution. It shows all three stages and detail their main components
and elements.
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3.4.2 Feature Extraction Stage

The feature extraction stage is inspired by Gaussian and Laplacian pyramids. The main

component of this stage is a sequence of convolution, Gaussian smoothing, upsampling,

another convolution, and subtraction. This sequence will be henceforth referred to as the

GLE module. As shown in the first column of Figure 3.7, the input is first passed through

a convolutional layer with 64 kernels, and a ReLU activation function. Next, the generated

feature continue passing through a convolutional layer with a number of kernels that is

double the number of input channels. Each kernel has a 7 × 7 height and width, 2 × 2

stride, and 3 × 3 padding. It results in a reduced size feature that is then blurred using

a 3 × 3 Gaussian kernel moving with a stride of 1 and implementing a padding of 1 to

maintain the spatial dimensions fixed. The smoothed feature is passed to the next feature

module and to the upsampling layer, as well. It is upsampled using nearest neighbor to

recover the original input size before it is passed through the second convolutional layer.

This convolution is characterized with the same hyper-parameters as those of the first one,

but it has half the number of kernels recovering the same number of channels as that of

the input tensor. The output feature map is produced by subtracting the original input from

the feature map coming from the second convolutional layer. Let Iτ−1 denotes the input

feature maps of τth GLE module, G denotes the gaussian smoothing operation, Up denotes

the upsample operation, ΛGs denotes the weights of the convolutional layer before the

Gaussian smoothing operation, and ΛUp denotes the weights of convolution layer after the

upsample operation. The GLE module can be expressed as

Fτ = Iτ−1 −ΛQ(Q(G(ΛG(Iτ−1)))), (3.4.2.1)
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where τ ∈ {1, 2, ..., 5}. Fτ denotes output feature maps from τth GLE module. The F6 is

generated right after the gaussian smooth layer of 5th GLE module.

To produce various levels of features, this stage is designed to have 5 GLE modules

stacked consecutively, each one feeds into the next. A corrupted image, one with missing

pixels and denoted by Iin in Figure 3.7, a corrupted structural image Istruc used in [10] and

a binary mask Min are the input to the first module, and the output is the blurred feature

volume I1 as well as the difference feature volume F1. I1 has half the height and width

of the input image and double the number of channels, and it is passed to the next GLE

module. F1, on the other hand, is buffered to construct the feature pyramid output that

represents the output of the feature extraction stage. The pyramid is formed by stacking the

difference-feature volumes generated by each GLE module, namely F1, . . . ,F6.

3.4.3 Iterative Inpainting Stage

This is the second stage of the proposed solution, which is based on the concept of

progressive inpainting. The main elements of this stage are partial convolution, regular

convolution, and feature attention. These elements make up two parallel branches, in which

features are processed iteratively. The following three subsections detail the inner workings

of this stage.

Partial Convolution

Partial convolution is a fundamental tool to fill the irregular holes in deep learning-based

image inpainting and keep track of the unfilled regions of the image. To see how a partial

convolution layer accomplishes this, let Wk ∈ RC×H′×W ′ denote the weight tensor of the

k-th kernel in a partial convolution layer, Xi,j ∈ RC×H′×W ′ denote the input feature patch
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extracted from the input tensor Xin ∈ RC×H×W centered around (i, j)-th pixel, where C,

H ′ and W ′ are, respectively, the number of channels, height, and width of the patch and C,

H and W are, respectively, the number of channels, height, and width of the input tensor.

Also, let H̃i,j denote a H ′ ×W ′ binary patch centered around the (i, j)-th pixel, and Hi,j

is a C ×H ′ ×W ′ binary tensor formed by stacking C copies of the matrix H̃i,j . Then, the

(i, j)-th value of the k-th output feature map, i.e., yi,j,k, produced by a partial convolution

layer—before activation—is given by

yi,j,k =


g(Wk,Xi,j,Hi,j) + b,

∑
C,H′,W ′ Hi,j > 0,

0, otherwise,
(3.4.3.1)

where g(Wk,Xi,j,Hi,j) is defined as

∑
C,H′,W ′

Wk ⊙ (Xi,j ⊙Hi,j)

∑
C,H′,W ′(1)∑
C,H′,W ′ Hi,j

, (3.4.3.2)

1 is a C×H ′×W ′ tensor of all ones, and b ∈ R is the bias associated with the k-th kernel.

Following a partial convolution is a mask update to make sure that the mask is keeping up

with the updated feature map coming out of the partial convolution. Let the full mask be

given by

H̃ =


h11 . . . h1W

... . . . ...

hH1 . . . hHW

 , (3.4.3.3)

where H and W are, respectively, the height and width of the mask such that H ≫ H ′ and

W ≫ W ′, and H̃i,j is a sub-matrix forming a block in H̃ centered around (i, j)-th pixel.

This mask is updated by convolving an all one kernel with the mask. Let U be a H ′ ×W ′
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kernel of all ones. Then, the updated mask is given by

H̃new = H̃previous ∗U, (3.4.3.4)

where ∗ is the convolution operation with a stride equal to that of the partial convolution

kernel. More about partial convolution could be found in [24].

Feature Attention

For any feature volume F ∈ RC×H×W , an attention tensor could be generated using

cosine similarity and softmax. Let fi,j and fi′ ,j′ denote pair of feature values at location i, j

and i
′ ,j ′ . Then, their cosine similarity is computed as follows:

zi,j,i′ ,j′ = ⟨
fi,j
∥fi,j∥

,
fi′ ,j′

∥fi′ ,j′∥
⟩, (3.4.3.5)

where zi,j,i′ ,j′ denotes the cosine similarity score between the fi,j and fi′ ,j′
‡. Let Zi,j ∈

RH×W denotes the score matrix of a feature vector at location i, j and all C-dimensional

feature vectors in F. The softmax function is applied across the height and width to

generate the attention score of location i, j in F. Formally, this is expressed as follows:

Ẑi,j = sfm(Zi,j), (3.4.3.6)

where Ẑi,j ∈ RH×W . The final feature volume F has an attention tensor Ẑ ∈ RHW×H×W

formed by stacking HW score maps Ẑi,j . Based on the calculated score map, we reuse

the feature patches from the input of feature attention module as de-convolutional filters to

‡fi,j is a feature vector with size 1× 1× C at position i, j from a feature volume with size H ×W × C.
fi,j and fi′ ,j′ have the same size, and ∥fi,j∥ and ∥fi′ ,j′∥ are the second norms of those vectors.
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reconstruct the new feature map.

Putting It All Together

Iterative inpainting is built on top of the feature extraction stage with the feature

pyramid as its input. This is illustrated in the middle column of Figure 3.7. The

pyramid is first split into two halves; feature maps coming from the first three feature

modules (i.e., the first three from the input side) are concatenated to form the feature

volume Flow ∈ RCin×Hin×Win with Cin channels, Hin height, and Win width. Feature

maps coming from the last three feature modules form another feature volume denoted

Fhigh ∈ RCin×Hin×Win . Those two volumes are sent down two different but parallel iterative

branches that have the same composition of layers. Both start with two partial convolutions

with leaky ReLU activations, followed by a feature attention module. The specifications of

each layer are detailed at the bottom of the middle column of Figure 3.7.

Each branch processes the input volume iteratively, which is done as follows. Let τ

represent a time index for the iterative process. Both Flow(0) or Fhigh(0) goes through

the partial convolutions and the attention module, making up the first iteration (τ = 1).

The outputs, denoted Flow(τ + 1) and Fhigh(τ + 1), are used to initialize the next iteration

as well as construct a new feature volume. A copy of Flow(τ + 1) and Fhigh(τ + 1) is

sent back to the input to undergo the next iteration. Another copy is sent forward to a

concatenation operation to form part of a new feature volume denoted Fcat. This keeps on

going for T iterations (τ ∈ {1, 2, . . . , T}) until Fcat is complete, i.e., a tensor of dimensions

Ccat × Hcat × Wcat where Ccat = 2TCin is formed. This tensor is, finally, passed to a

convolution layer with leaky ReLU activation, which generates the intermediate feature

volume Fint.
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Remark: Please note that the Fint feature volume comprises Cint = Ccat = 2TCin

feature maps, which could be split into T sub-volumes. This is important for the sake of

the third and final stage of the proposed architecture.

3.4.4 Enhancement and Reconstruction Stage

Reinpainting Component

The main idea behind the reinpainting component is to re-enhance the fused feature

sub-volumes in Fint. This is done along two branches that process two different

concatenations of feature sub-volumes from Fint. See Figure 3.7. Let Fint(τ) represent

the τ -th sub-volume in Fint, where τ ∈ {1, . . . , T − 1}. The first branch concatenates

Fint(τ − 1), Fint(τ), and Fint(τ + 1) and passes them into three convolutional layers with

ReLU activations. The result is multiplied with the updated mask of iteration τ − 1 from

the second stage, i.e., H̃(τ − 1), to eliminate the negative effect of the unfilled region in

each iteration.

The second branch is symmetric with the first, but focuses on different sub-volumes.

It concatenates Fint(τ) and Fint(τ + 1) and passes them through three convolutional layers

with ReLU activations. The result here is multiplied with the difference of two updated

masks from iterations τ and τ − 1, i.e., H̃(τ)− H̃(τ − 1), which only contains information

from the intersection region between Fint(τ) and Fint(τ−1). The results of the two branches

are combined with the sub-volume Fint(τ) to produce a new sub-volume Freinp(τ).

Reconstruction Component

The reinpainting model outputs a feature volume Freinp that is fed to the reconstruction

component. This is the final component of the proposed architecture, and it is responsible
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for producing the complete image. A visualization of the reconstruction component is

illustrated in the left panel of Fig. 3.7. This component adopts the feature merging module

from [17] which fuses the feature group based on the filled locations in each iteration.

The merge module feeds into three upsampling layers followed by a partial convolution

layer, three residual blocks, and a sequence of three convolutional layers. The complete

architecture is summarized in Algorithm 1 §.

Algorithm 1 The Proposed Inpainting Network
Input Input image Iin,

Input structural Istruc, Input mask Min,
Total number of iteration T

Output Recovered image Iout

1: Fhigh(0),Flow(0), H̃(0)← GLE(Iin, Istruc,Min)
2: FeaturePool← {Fhigh(0),Flow(0)}
3: τ ← 0
4: if τ ≤ T then
5: Flow(τ + 1), H̃(τ + 1)← I(Flow(τ), H̃(τ))
6: Fhigh(τ + 1), H̃(τ + 1)← I(Fhigh(τ), H̃(τ))
7: Fint(τ + 1)← FeatureFuse(Fhigh(τ + 1),Flow(τ + 1))
8: τ ← τ + 1
9: end if

10: τ ← 1
11: if τ ≤ T − 1 then
12: F = {Fint(τ − 1),Fint(τ),Fint(τ + 1)
13: H = {H̃(τ − 1), H̃(τ), H̃(τ + 1)}
14: Freinp(τ)← RI(F,H) + Fint(τ)
15: FeaturePool← FeaturePool + {Freinp(τ)}
16: τ ← τ + 1
17: end if
18: Fmerged ← FeatureMerge(FeaturePool)
19: Iout ← Reconstruction(Fmerged)
20: return Iout

§To simplify the notation in Algorithm 1, We use I to express Iterative Inpainting Module, use RI to
express Re-Inpainting Module
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3.4.5 Loss Functions

This section describes the loss functions for training the proposed inpainting network.

It is a composite loss with multiple terms accounting for different aspects that the proposed

algorithm needs to maintain. Perceptual loss and style loss are two of those terms that are

popular for solving image generation problems. They are calculated using groundtruth and

output feature maps obtained from a pretrained VGG model [25]. Groundtruth features

are those produced by the max-pooling layers of the VGG network when the input is the

complete groundtruth image whereas output features are those obtained from the same

pooling layers but with the restored image as an input. Formally, the perceptual loss is

given by

Lperc =
N∑
θ=1

1

HθWθCθ

|ϕgt
θ − ϕout

θ |1, (3.4.5.1)

and the style loss is given by

Lsty =
N∑
θ=1

1

Cθ × Cθ

∣∣∣∣ 1

HθWθCθ

(ϕgt
θ (ϕ

gt
θ )

T

−ϕout
θ (ϕout

θ )T )

∣∣∣∣
1

,

(3.4.5.2)

where ϕgt
θ denotes the vectorized groundtruth feature map from the θth pooling layer of

VGG-16, ϕout
θ denotes the vectorized output feature map from the θth pooling layer of

pretrained VGG-16, and Cθ, Hθ, and Wθ are, respectively, the number of channels, height,

and width of the θth feature map.

The third term of the composite loss is the total variation loss, which enforces

smoothness in the region of predicted pixels (i.e., the holes) [24, 26]. Formally, this term
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is formulated as follows. Let Ii,jout denote the pixel value of output image at location i, j,

N denote the total number of elements in the output image, R denote the set of pixels

surrounding a corrupted pixel Ii,jout. The total variation loss is given by

Ltv =
∑

(i,j)∈R,(i,j+1)∈R

|I i,j+1 − I i,j|1
N

+
∑

(i,j)∈R,(i+1,j)∈R

|I i+1,j − I i,j|1
N

.

(3.4.5.3)

The last two terms in the composite loss are first norms of the difference between

the output and groundtruth images. Let Iout denote the output image from the proposed

algorithm, Igt denote the ground truth image, and H̃gt denote the groundtruth mask of the

image. The two terms are, then, given by

Lvalid = |Iout ⊙ H̃gt − Igt ⊙ H̃gt|1, (3.4.5.4)

Lhole = |Iout ⊙ (1− H̃gt)− Igt ⊙ (1− H̃gt)|1, (3.4.5.5)

where Lvalid expresses the first norm loss between undamaged region of the output image

and the ground truth image, and Lhole expresses the first norm loss between filled region of

the output image and the ground truth image. The composite loss, as the name suggests, is

a weighted sum of all the above terms

L = λvalidLvalid + λholeLhole + λpercLperc

+λstyleLstyle + λtvLtv,

(3.4.5.6)

where λvalid, λhole, λperc, λstyle, and λtv are all hyper-parameters scaling the contribution of

each of their respective terms to the composite loss.
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3.5 Experimental Setup

The proposed algorithm needs to be put to test in order to demonstrate its performance.

This section presents the experimental setup adopted to evaluate its performance. It

describes the development datasets, the implementation details, and the benchmark

algorithms.

3.5.1 Datasets

Four development datasets are adopted here:

• Paris Streetview Dataset [27] is collected from Google StreetView, a large-scale

dataset that includes street images for 12 cities across the world. This dataset contains

15000 images, 14900 images for training, and 100 for testing.

• Large-scale CelebFaces Attributes (CelebA) Dataset [28] is a well-known and

publicly available face recognition dataset. It includes around 200K celebrity images

representing 10000 different identities, all of which have a wide range of posture

variations. This dataset contains 202599 images, 162770 images for training, 19867

images for validation, and 19962 images for testing.

• Place2 Dataset [28] This dataset contains 8 million images which are collected from

365 scene categories, like streets, indoor rooms and so on.

• NVIDIA Irregular Mask Dataset Dataset [29] is a popular irregular mask

dataset. This dataset contains 12000 irregular masks which are randomly drawn

by individuals. The mask ratio of the dataset is uniformly distributed on 0.0∼0.1,
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0.1∼0.2, 0.2∼0.3, 0.3∼0.4, 0.4∼0.5, and 0.5∼0.6. Each mask ratio class has 1000

masks with and without border.
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Table 3.8: Numerical comparisons on three datasets.

PSNR SSIM Mean l1
Mask Ratio 10-20% 30-40% 40-50% 50-60% 10-20% 30-40% 40-50% 50-60% 10-20% 30-40% 40-50% 50-60%

PVS

PIC 29.02 24.82 23.71 19.61 0.930 0.795 0.757 0.524 0.0134 0.0327 0.0429 0.0785
PC 30.42 25.35 23.86 21.47 0.933 0.825 0.763 0.628 0.1001 0.0253 0.0373 0.0612
EC 30.83 25.94 24.03 21.76 0.945 0.849 0.781 0.653 0.0084 0.0220 0.0297 0.0578

PRVS 30.87 26.21 24.11 21.94 0.952 0.857 0.794 0.665 0.0085 0.0217 0.0288 0.0567
RFR 31.74 26.35 24.56 22.43 0.954 0.864 0.811 0.687 0.0076 0.0211 0.0280 0.0543

MDEFE 31.11 26.23 24.18 22.17 0.954 0.859 0.806 0.674 0.0081 0.0217 0.0287 0.0549
Ours 31.99 26.86 25.04 22.61 0.964 0.889 0.833 0.721 0.0073 0.0192 0.0268 0.0485

Celeba

PIC 30.69 24.65 21.40 19.16 0.965 0.875 0.739 0.667 0.0094 0.0258 0.0433 0.0756
PC 32.72 26.59 24.24 22.03 0.970 0.915 0.864 0.782 0.0062 0.0181 0.0269 0.0537
EC 32.47 26.61 24.43 21.42 0.974 0.921 0.873 0.746 0.0065 0.0185 0.0260 0.0564

PRVS 33.12 27.05 24.82 22.32 0.977 0.928 0.883 0.793 0.0059 0.0169 0.0252 0.0493
RFR 33.58 27.62 25.48 22.59 0.980 0.931 0.896 0.822 0.0057 0.0161 0.0224 0.0482

MDEFE 33.20 27.21 24.97 22.44 0.976 0.925 0.879 0.814 0.0059 0.0167 0.0251 0.0509
Ours 33.82 27.93 25.92 22.76 0.984 0.945 0.915 0.834 0.0053 0.0150 0.0213 0.0359

Place2

PIC 26.67 21.24 19.13 17.27 0.931 0.761 0.656 0.499 0.0137 0.0342 0.0573 0.0953
PC 26.84 22.25 20.09 18.33 0.935 0.768 0.722 0.538 0.0131 0.0312 0.0475 0.0861
EC 27.02 22.41 20.35 18.41 0.934 0.811 0.745 0.531 0.0135 0.0309 0.0447 0.0846

PRVS 27.35 22.73 20.51 18.72 0.937 0.825 0.773 0.569 0.0140 0.0293 0.0423 0.0769
RFR 27.90 23.27 21.34 18.87 0.945 0.837 0.782 0.589 0.0114 0.0284 0.0402 0.0726

MDEFE 27.55 22.92 21.01 18.65 0.941 0.832 0.775 0.582 0.0126 0.0297 0.0411 0.0737
Ours 28.89 23.66 21.94 19.59 0.957 0.864 0.800 0.667 0.0099 0.0266 0.0368 0.0552

1 The best performances are highlighted in bold.
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3.5.2 Implementation Details

The proposed algorithm is trained with batch size of 4 on two NVIDIA 1080 TITANs.

We use corrupted images, structural maps, and irregular holes as inputs, which are resized

to 256 × 256. Adam [30] optimizer is used to train the network. The training is conducted

with a learning rate of 10−4, and the network is fine-tuned with a learning rate of 10−5. The

network is trained on Paris and CelebA Dataset for 40 epochs and fine-tuned for 20 epochs.

On Place2 Dataset, the network is trained for 200 epochs and fine-tuned for 100 epochs.

During the fine-tuning, only the weights of batch normalization layers are frozen while the

rest are adjusted. The hyper-parameters of the loss function are set to λvalid = 1, λhole = 6,

λperc = 0.05, λstyle = 120, and λtv = 0.1.
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(a) Input (b) PIC (c) PC (d) EC (e) PRVS (f) RFR (g) Ours (h) GT

Figure 3.8: Visual results on Paris StreetView.
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(a) Input (b) PIC (c) PC (d) EC (e) PRVS (f) RFR (g) Ours (h) GT

Figure 3.9: Visual results on CelebA.
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(a) Input (b) PIC (c) PC (d) EC (e) PRVS (f) RFR (g) Ours (h) GT

Figure 3.10: Visual results on Place2.
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3.5.3 Benchmark Algorithms and Evaluation Metrics

The proposed algorithm is compared to five state-of-the-art methods, namely PIC

[31], PC [24], PRVS [20], EC [11] and RFR [17]. We use PIC as baseline which is a

probabilistically principled framework in image inpainting. PC is a fundamental technique

that can be considered as another baseline in image inpainting. EC is a two-stage image

inpainting method based on the edge recovering method. PRVS and RFR belong to the

family of progressively image inpainting. The PRVS progressively recover the image

structural information while RFR recover the image contextual information. Those five

algorithms are henceforth referred to as the benchmark algorithms. The proposed algorithm

is compared to all five using three metrics, which are Peak Signal-to-Noise Ratio (PSNR),

Structural Similarity Index (SSIM) and mean first norm loss (L1).

3.6 Evaluation Results

The performance of the proposed algorithm is evaluated in this section using the

setup described in Section 3.5. The evaluation starts with quantitative analysis where the

proposed algorithm is benchmarked to others. Then, a qualitative analysis follows. It

presents a comparison of the quality of inpainted images between the proposed algorithm

and the benchmark algorithms. Finally, this section is concluded with an ablation analysis

illustrating the value of each novel component in the proposed network.

3.6.1 Quantitative Analysis

The proposed algorithm is compared to the benchmark algorithms on the basis of

PSNR, SSIM, and L1 loss. Table 3.8 presents the comparison results on the Paris
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StreetView, CelebA, and Place2 datasets. It presents the results for different choices of

masking percentage (i.e., mask ratio). The performance of the proposed algorithm stands

out throughout the table; despite the slim margin in some cases, its performance could be

argued to best all other competing algorithms on all three datasets.

3.6.2 Qualitative Analysis

The above quantitative results are translated into visual analysis to demonstrate the

inpainting quality of the proposed algorithm. This is done through a few examples from

three datasets, namely Paris StreetView, CelebA, and Place2 datasets. Fig. 3.8, 3.9 and

3.10 show three corrupted images, their groundtruth, the inpainted images by the proposed

and benchmark algorithms. The proposed algorithm can generate realistic details and

structures. Specifically, in the top row of Fig. 3.8, the window produced by the proposed

algorithm is clearer than those produced by other methods. Further evidence could be seen

in the top row of Fig. 3.9 and both rows of Fig. 3.10. In the former, the hair strands atop

the man’s forehead are better defined and clearer in the image produced by the proposed

algorithm compared to those produced by the benchmark algorithms; they look similar to

those strands depicted in the groundtruth image. Both rows of Fig.3.10 show artifacts in

the inpainted region by benchmark algorithms while the proposed algorithm does not suffer

from such artifacts, producing a more pleasing image to the eye.
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Table 3.9: Ablation study results on the Paris Streetview Dataset based on network structure

Ablation setting PSNR SSIM Mean l1
Reinpainting-1 Reinpainting-2 GLE 10-20% 30-40% 40-50% 10-20% 30-40% 40-50% 10-20% 30-40% 40-50%

% % % 31.82 26.70 24.83 0.9632 0.8858 0.8276 0.0074 0.0196 0.0277
% % ! 31.90 26.76 24.86 0.9637 0.8859 0.8285 0.0073 0.0195 0.0275
% ! % 31.92 26.83 24.93 0.9638 0.8886 0.8314 0.0073 0.0193 0.0272
! % % 31.93 26.83 24.92 0.9640 0.8887 0.8312 0.0073 0.0192 0.0272
! % ! 31.95 26.84 24.96 0.9641 0.8888 0.8317 0.0073 0.0192 0.0271
% ! ! 31.99 26.86 25.04 0.9642 0.8890 0.8330 0.0073 0.0192 0.0268
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Table 3.10: Ablation study results on the Paris Streetview Dataset based on loss function

Ablation setting PSNR SSIM Mean l1
Lvalid & Lhole Lperc & Lstyle Ltv 10-20% 30-40% 40-50% 10-20% 30-40% 40-50% 10-20% 30-40% 40-50%

! % % 31.72 26.61 24.85 0.9604 0.8817 0.8237 0.0072 0.0193 0.0270
% ! % 31.69 26.72 24.96 0.9599 0.8830 0.8254 0.0079 0.0200 0.0278
! ! % 31.86 26.70 24.92 0.9616 0.8823 0.8223 0.0076 0.0199 0.0279
! ! ! 31.99 26.86 25.04 0.9642 0.8890 0.8330 0.0073 0.0192 0.0268

101



Ph.D. Thesis - K.Shi McMaster University - Electrical & Computer Engineering

3.6.3 Ablation Analysis on Proposed Architecture

The proposed architecture is closely examined to get a better understanding of the

role of the novel components. More to the point, the GLE module and the reinpainting

component are novel parts that set the proposed architecture apart form the other inpainting

algorithms. Therefore, this section will focus on shedding some light on their roles in the

inpainting process. The objective is to address the question: how much of an impact do the

GLE module and the reinpainting component have on the performance of the algorithm?

This is going to be done in three experiments. The first has the two parts removed and the

performance of the remaining architecture is evaluated. This helps establish the baseline

results. The other two experiments examine the impact of adding each of the two parts, i.e.,

GLE and reinpainting, separately on the inpainting performance. The results of the three

experiments are shown below.

Removing the GLE Module and Reinpainting Component

The GLE module and reinpainting component are both removed from the proposed

architecture. To avoid jeopardizing the capacity of the proposed model, the GLE module is

removed by stripping away the Gaussian smoothing and upsampling layers making a direct

path from the first to the second convolution layers of the module.

Removing both parts chips away from the inpainting performance of the architecture.

This is evident in Table 3.9; with all three metrics, the table shows a clear degradation in

performance on the Paris StreetView dataset when the architecture is trained and tested

without the GLE module and the reinpainting component.
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Removing the GLE Module

Using the same removal strategy in the above section (Section 3.6.3), the GLE module

is removed in this experiment while keeping the reinpainting component. The result of

doing so is a slight improvement in the performance compared to the baseline case, i.e.,

no GLE and reinpainting, as Table 3.9 shows. However, the performance is still worse

compared to having both parts plugged in. The results of this experiment could be used to

argue for the value of the GLE module; it helps the proposed architecture extract expressive

features from different frequency components of the image.

Removing the Reinpainting Component

Using the same removing strategy once again, the reinpainting component is removed

while keeping the GLE module. It is hypothesized that reinpainting has the ability to fill

larger holes by accessing features from neighboring iterations. The results in Table 3.9

verify that hypothesis to some extent; removing the reinpainting component degrades the

performance of the architecture despite the presence of the GLE module.

Value of progression for reinpainting

The hypothesis about the reinpainting component being able to fill large holes is further

examined here. More to the point, it will be argued that accessing sub-volumes from

different iterations (i.e., Fint(τ − 1) and Fint(τ + 1)) has added value to the inpainting

process. This is first done by restricting the input to the re-inpainting component to only

the τ -th feature sub-volume, i.e., Fint(τ). Then, two experiments are conducted with and

without the GLE components.

• The GLE modules are removed as described in Section 3.6.3. The performance in
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this case is very close to that of removing the whole reinpainting component. This is

indicated in Table 3.9 under Reinpainting-2. This verifies that the Fint(τ) and H̃(τ)

can not provide more useful information for the reinpainting process. The redundant

information even sightly causes the performance to degrade.

• The GLE modules are put back and the experiment is repeated again. Again, the

results, shown in Table 3.9, further verify that the input features from neighbouring

iterations are useful for enhancing the re-inpainting results.

3.6.4 Ablation Analysis on Loss Function

The performance of the proposed method is further investigated based on each

component of the loss function. The ablation study settings for ablation studies on loss

function are into three parts: Lvalid and Lhole monitors the L1 loss on reconstructed region

and the inpainted region, Lperc and Lstyle minimize the differences on the feature level,

Ltv penetrates the noises in the inpainting results. In the following three experiments, we

present the ablation results in Table 3.10 and verify the effectiveness of each part of the

loss function.

Using Lvalid and Lhole

Using Lvalid and Lhole as the only terms of the loss functions, we observe that the mean

l1 is slightly better compared to the final results; however, the PSNR and SSIM are not

satisfactory especially for the case of corrupted images with large holes. The undesirable

performance indicates that the loss has to account for the semantic information in the

inpainted image.
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Using Lperc and Lstyle

onstructing the loss function using Lperc and Lstyle alone, we observe an improvement

in the PSNR and SSIM for large holes. The performance shows the role and effectiveness

of Lperc and Lstyle in discovering semantic information in the valid region; however, the

mean l1 loss increases significantly due to the lack of Lvalid and Lhole.

Using Lvalid, Lhole, Lperc and Lstyle

After using the Lvalid, Lhole, Lperc and Lstyle as loss functions, the PSNR, SSIM and

mean l1 enhance in the low mask ratio. On the other hand, the PSNR and SSIM are slightly

worse than that of using Lperc and Lstyle. The existing noises may be generated by loss

functions from the pixel level and feature level, and cause this situation. To eliminate such

noise, the Ltv is finally added to the loss function and improves performance.After using

the Lvalid, Lhole, Lperc and Lstyle as loss functions, the PSNR, SSIM and mean l1 enhance

in the low mask ratio. On the other hand, the PSNR and SSIM are slightly worse than that

of using Lperc and Lstyle. The existing noises may be generated by loss functions from the

pixel level and feature level, and cause this situation. To eliminate such noise, the Ltv is

finally added to the loss function and improves performance.

3.7 Conclusion

This paper introduces a three-stage neural network architecture that is able to

progressively inpaint corrupted images while maintaining their structural and contextual

integrity. In its core is a novel Gaussian-Laplacian feature Extraction (GLE) module.

Stacking GLE modules constructs the first stage of the architecture and enables the
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network to build a feature pyramid of different frequency components, disintegrating

structural (high frequency) and contextual (low frequency) information. The feature

pyramid is the key for structurally- and contextually-aware progressive inpainting; low-

and high-frequency components are iteratively but separately inpainted and fused in the

second stage. The third, and final, stage enhances the fused features before it reconstructs

the inpainted image. Experimental results and benchmarking show that the three-stage

architecture is able to restore fine details in the corrupted region, outperforming the

state-of-the-art algorithms. Ablation experiments reveal that the GLE module and the

reinpainting component are responsible for the superior performance of the proposed

architecture.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

This thesis presents several feature extraction and feature transformation techniques

based on deep CNNs, and apply them to computer vision problems like image retrieval and

image inpainting.

In Chapter 2, we present a CCA-based dimension reduction method for deep learning

features, and apply it to image retrieval. The proposed method uses Canonical Correlation

Analysis as a powerful tool to find a projection pair that maximally captures the correlation

between two sets of random variables. This characteristic makes it suitable for image

retrieval, which requires the evaluation of similarity between two images. The proposed

method consists of three parts: 1) Correlation analysis and canonical vectors. This part is

motivated by traditional CCA, and finds the projector matrix to maximize the correlation

between two image feature vectors. 2) Feature element selection. This part is inspired by

Chernoff information which is used to find a symmetric distance between two distributions.

Benefiting from this idea, we can choose the most different feature points, and use them for
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similarity comparison. 3) Similarity measurement. The multivariate Gaussian distribution

is used to calculate the similarity between two images. Extensive comparison experiments

and ablation studies are conducted to demonstrate the superior performance against other

dimension reduction methods like PCA, LDA, and SPCA, and the effectiveness of each

part of the proposed method.

In Chapter 3, we present a feature extraction network and a feature transformation

framework with attention for image inpainting. Overall, the proposed method includes

three novelties: 1) Gaussian and Laplacian Pyramid motivated feature extraction

network. Compared with the traditional encoder-structured feature extractor, the proposed

network can generate better contextual and structural information for image inpainting.

2) A two-branch inpainting network simultaneously utilizes contextual and structural

information to progressively recover the image. 3) A reinpainting network, which is

appended to the proposed two-branch inpainting network, enhances the intermediate

features during the progressive inpainting process. The experimental results validate the

superiority of employing contextual and structural information on progressive inpainting

as well as the effectiveness of image inpainting framework design.

4.2 Future Work

Even though the proposed methods have achieved superior performance compared with

other SOTA approaches, some improvements can still be made to increase the model’s

efficiency and performance.

The proposed method in the first work is built on pre-trained VGG-16 without further

training. To improve the performance, we can realize the proposed method using an

end-to-end trainable CCA network. Specifically, a two-branch convolutional neural
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network is used to extract feature vectors from two input images. The ground truth can

be made to suit network training using one-shot coding. And the feature selection based

Chernoff Information can be replaced with feature attention techniques which has been

widely used in many deep learning tasks. The potential difficulties include maintaining the

storage space for feature vectors which are used to deriving matching and non-matching

coefficients, and making all formulas differentiable in the algorithm. Theoretically, the

proposed method could be converted into a deep learning model which can take advantage

of end-to-end training. In theory, end-to-end training can boost the model’s performance in

deep learning.

In the second work, Gaussian and Laplacian Pyramid motivated feature extraction

network can be re-designed to reduce the number of parameters and increase model

efficiency. For example, we can use Gaussian and Laplacian Pyramid algorithms to

generate multi-scale sub-images directly and remove some convolutional layers as well

as all Gaussian smooth layers in the feature extraction network. These sub-images are

used to guide the feature extraction process. Specifically, we use a lightweight-shared

network to project extracted features into 3-dimensional images that are supervised by the

multi-scale sub-images. Therefore, the extracted features can represent the sub-images in

high dimensions. The idea of progressive inpainting is now applied to each sub-image.

The resulting sub-images are then used to recover the original image via the Gaussian

and Laplacian Pyramid. In detail, we simply use partial convolutional layers to recover

each sub-images on the feature level, and rebuild the original image by passing recovered

features through a reconstruction network with the same settings of the feature extraction

network. Moreover, generative adversarial network is another powerful tool in many image

synthesis tasks, and typically offers better image generation ability. In consideration of
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model efficiency, we choose not to use it in our method. Nevertheless, the trade-off between

performance and model efficiency is an interesting problem to consider.
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