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Abstract

Medical imaging segmentation can help health workers analyze and examine abnormal
changes in an organ or in tissue due to injury or disease, without invading the patient’s
body. The application of deep learning makes this process more efficient. There are many
studies have been presented in this field, especially in the segmentation of liver, heart, kid-
ney and lung with very successful results. However, there are still many challenges of
using deep learning on other organs’ segmentation, such as the aorta. This report presents
the feasibility of using deep learning on aortic segmentation. Firstly, we explored different
methods for generating accurate ground-truth segmentation as training data, concluded the
average time cost for each scan is around 3 hours. Secondly, we compared to the segmen-
tation result of kidney using a large training set, analyzed the practical constraints which
prevent us for getting an equivalently good result, including the training time (on the order
of hundreds of hours), and the cost for accessing the computing hardware is also on the
order of thousands of US dollars. These practical constraints are usually not disclosed by
those successful studies, but are crucial for those researchers who would like to perform the
deep learning approach to the medical image segmentation. This report summarizes these
challenges and provides lessons learned for future practitioners.
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Chapter 1

Introduction

Medical Imaging (MI) plays a crucial role in medical diagnosis and case analysis. As
a noninvasive procedure, it does not involve the puncturing of the skin or an incision, or
the introduction into the body of foreign objects or materials. This non-invasive diagno-
sis method can effectively check the pathological formations in the patient body without
wounding the patient [3].

Segmentation is one of the most important and popular tasks in MI analysis. It is a
process of extracting the Regions Of Interest (ROIs) from 3D image data, such as from
Magnetic Resonance Imaging (MRI) or Computed Tomography (CT) scans [4]. As a hot
field of research, it not only attracts researchers and scientists working in the medical and
health field, but also those in the field of computer vision, and computer graphics because
of their interest in image processing and modeling. The countless efforts of these frontline
researchers have made great contributions to the implementation of new medical image-
processing algorithms. The segmentation of organs from medical images gives health
workers the possibility of using a quantitative diagnostic result to analyze the clinical pa-
rameters, such as volume and shape, providing great improvement in diagnostic efficiency
and accuracy.

X-ray, Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and ultra-
sound are four major classes of MI equipments that help clinicians diagnose diseases. With
the rapid development of deep learning, medical image processing based on deep neural
networks has become one of the most focused research topics. Prior arts have already
studied the deep learning neural network based implementations of liver and liver-tumor
segmentation [5] [6], brain and brain-tumor segmentation [7] [8], lung segmentation [9],
heart segmentation [10], etc. However, segmentation of many other organs using deep
learning are still unaddressed. This is due to the difficulty of feature representation, in ad-
dition, the raw data obtained from these MI equipments generally has the issue of blur, low
contrast, inconsistency, etc.
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1.1 Objective

In this study, we will explore the feasibility of using deep learning algorithms for aortic
medical image segmentation and reproduce some existing deep learning network based
segmentation implementations on other open access datasets. At the same time, the report
will serve as a software design of a deep learning neural network architecture to generate
a trained model using pre-labeled ground truth aortic segmentation dataset. Ideally, we
would like the model to perform a segmentation task on new chest CT data, generating
segmentation masks for each image slice and ultimately building its 3D geometry. We
will analyze the challenges and difficulties encountered in this process, to summarize the
technical and practical difficulties in the clinical application of deep learning algorithms in
the field of MI, and what needs to be done in the future.

1.2 Background

Figure 1.1: Example of 2D RGB image

Typically, when we talk about the image data, we are referring to the RGB data obtained
from visible light, like photos captured by cameras. These are two-dimensional images are
represented by a 3D array: [height, width, channel], in which channel represents the
dimension the color information as an example show in Figure 1.1. We can also add depth
information to these images, we call them RGB-D images (2.5-dimensional images), RGB-
D images are not true 3D, because the way they encode is that each pixel has a distance
information between the image plane and the corresponding object in the RGB image. 3D
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Figure 1.2: Example of 3D image stored as point cloud data

images are obtained from Lidar or structured light, and they are stored as point cloud data or
voxel (Volume Pixel) data as shown in Figure 1.2. In image processing, they are all referred
to as natural images because they are all generated from visible light. Medical images also
have 2D or 3D data, normally generated by the computation of the reflections of X-ray,
ultrasound or magnetic resonance. The objects of these images are basically derived from
human or animal tissues. In this document, we focus on 3D medical images. Most MI data
are in the form of a sequence of image files, for example, computed tomography (CT) scan,
are sequences of files storing gray-level data values called CT numbers, or the Hounsfield
scale, which represents the relative radio-density the detectors received.

HU = 1000× µ−µwater

µwater −µair

where µwater and µair are respectively the linear attenuation coefficients of water and air.

In general, medical images belong to the sub-category of images, so there is no prob-
lem in applying the method of image segmentation to them. But before that, it is necessary
to understand the difference between image segmentation and image semantic segmenta-
tion. The more commonly heard term is image semantic segmentation, that is, assigning
a specified label to each pixel in the image (pixel-level category prediction problem). MI
segmentation belong to the category of image semantic segmentation. In summary, MI
segmentation is the process of classifying pixels into groups that correspond to the same
tissue type with special semantic information (such as tumors (Figure 1.3), organs (Figure
1.4), blood vessels (Figure 1.5, etc.)), but the number of categories of medical image seg-
mentation is generally not as large as natural image semantic segmentation. For example,
VOC2012 [11] contains 20 categories and a background category, but many medical image
segmentation problems are binary classification problems.
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Figure 1.3: Brain tumor segmentation (Generated using method in Chapter 3)

Figure 1.4: Liver segmentation (Generated using method in Chapter 3)

Before implementing this software, there are some challenges for getting and prepro-
cessing the training data:

• We have to pre-process the aorta training data. The ground truth labelling MI data
for the aorta is hard to obtain. We could not find an open source library.

• In addition, medical images (2D and 3D) generally have a high resolution, and cur-
rent GPUs cannot directly and efficiently process the entire image. Therefore, it is
generally necessary to crop the image into small images for processing, which in turn
restricts the model from correctly capturing spatial information and spatial relations.

• Different types of medical equipment will generate unique and difficult-to-detect
noise patterns (deviations), which will reduce the accuracy of model inference and
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make it difficult to apply the model to different types of equipment.

• Another potential difficulty in the field of medical image segmentation is the lack of
a large amount of accurately labeled data, which encourages researchers to explore
semi-supervised and unsupervised models.

Figure 1.5: Segmentation of the arch of aorta from one slice of CT scan (Generated using
method in Chapter 3)

1.3 Problem Statement

According to the World Health Organization, cardiovascular disease is a leading cause
of mortality worldwide, killing an estimated 17.9 million people each year [12]. Cardiovas-
cular disease refers to a group of heart and vascular disorders that includes coronary heart
disease, cerebrovascular disease, rheumatic heart disease, and other conditions. Among
various cardiovascular diseases, aortic disease are a group of conditions affecting the aorta.

The aorta is the main blood vessel that supplies blood to the body as shown in Figure
1.6. It runs from the heart down through the chest and abdomen. As people grow older,
the wall of the aorta can become weak. if the walls expand they can develop into Aortic
aneurysm (AA) and dissection (AD). This type of disease doesn’t usually have any symp-
toms, but both are life-threatening [13]. Large aneurysms are rare, but they can be very
serious. Left untreated, the wall of the aorta can become very weak and could burst. Ac-
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Figure 1.6: Aorta position in human body

cording to the CDC’s Aortic Aneurysm Fact Sheet [14] [15], an estimated 200,000 persons
in the United States are diagnosed with abdominal aortic aneurysms each year. Because
many people have no symptoms, it is believed that more than one million people have an
undetected abdominal aortic aneurysm. If this symptom can be detected during screening
or testing for other reasons, the patient can receive treatment before the aneurysm becomes
larger, This brings the needs of a quick and accurate way to do MI diagnosis for AA.

However, segmentation of an aortic aneurysm still remains difficult. Manual segmen-
tation is a time-consuming method that is unsuitable for regular and reoccurring use. To
solve this restriction, numerous automated aortic aneurysm segmentation strategies, such
as edge detection-based methods, partial differential equation methods, and graph parti-
tioning methods, have been developed. However, due to significant pixel resemblance to
nearby tissue and a lack of color information in the medical picture, automated segmenta-
tion of aortic aneurysm is problematic [17], limiting the prior work from being applied to
tough instances.

There are some studies using deep learning to detect AA, for instance DeepAAA from
JT Lu, R Brooks et al [18], which uses a modified 3D U-Net combined with ellipse fitting
that performs aorta segmentation and AAA detection. However, a full 3D reconstruction
of the aorta using deep learning still remains difficult. This is probably due to the lack of
labeled data sets and the complexity of organs’ structure inside the abdomen. Compare
to other autonomous segmentation approaches, deep learning may seem simpler and more
flexible, but it requires more labeled data during training, and once the trained model gener-
ates, how it actually works is opaque (so-called “black boxes”). This limits the widespread
adoption of deep learning in clinical practice.

7
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Figure 1.7: AA is a chronic dilatation of the whole vessel wall[16]

In the following chapters of the report, we will explore several deep learning algorithms,
as well as the required preliminary work, and compare the final results, analyze the research
resources required for similar projects, and its clinical feasibility. Chapter 2 provides some
technical concepts that are used in this project. Chapter 3 introduces the preparation work
for the training dataset. Chapter 4 shows the deep learning architecture and the training
algorithms, as well as the prediction results generated from the trained model. Chapter 5
is going to analyze the effort and the clinical feasibility for this project, Chapter 6 contains
conclusions.

8



Chapter 2

Background

This chapter will briefly introduce some technical concepts involved in this project,
mainly image processing, deep learning algorithms, 3D geometric reconstruction, and mod-
els for determining the accuracy of results. Current progress on deep learning algorithms
for image segmentation will also be summarize.

2.1 Image Annotation

In general, image segmentation groups similar areas or segments of an image under
their respective class labels. It is a subfield of computer vision and digital image processing.
However, for MI segmentation, it can also be treated of as pixel-wise classification, since
for each pixel in the input image we label whether it is part of a segmentation mask. If
the pixel is part of the segmentation mask, we label it 1, otherwise we label it 0. In other
words, we want to input an image and then output a decision of a category for every pixel
in that image.

Supervised learning uses labeled training data and test data, which has strict require-
ments on the accuracy of data labeling. This means that the quality of the training data
determines the quality of the model generated by the machine learning algorithm. Usually,
the training data used for supervised learning has very high labeling accuracy; however, to
obtain the high accuracy of the training data, these labels are often done by purely manual
work.

Most medical equipment is able to generate the DICOM format images. DICOM is
standard image format for medical-imaging information and related data. It consists of the
image slices and associated metadata of the patient info. However, for image annotation
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purpose, we are only interested in the image slices content. For research and commercial
purpose, it is vital to remove sensitive patient information stored in the DICOM files to
protect the patient’s privacy.

2.2 Training Algorithm

The most commonly used artificial neural network for imagery processing is Convolu-
tional Neural Network (CNN). UNet, which evolved from the traditional CNN, is used for
biomedical image segmentation. This section will briefly introduce some concepts of these
two networks.

2.2.1 CNN [1]

A CNN consists of one or more convolutional layers and a top fully connected layer
(corresponding to a classical neural network), as well as associated weights and a pooling
layer. This structure enables convolutional neural networks to exploit the two-dimensional
structure of the input data. Compared to other deep learning structures, convolutional neu-
ral networks can give better results in image and speech recognition.

Figure 2.1: Visualization of CNN structure [19]

As shown in the Figure 2.1, there are three main components for a CNN, Convolutional
Layer (CONV), Pooling Layer (POOL), and Fully-Connected Layer (FC). The first two
layers are the main differences between CNN and a regular neural network.

• CONV: contains a set of filters (or kernels), parameters of which are to be learned. In
this layer, an image with dimension X ×Y ×Z will be processed by a filter with size
F and stride S (Stride is a parameter of the neural network’s filter that modifies the

10
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amount of movement over the image), then the image abstracted to a size O, called a
feature map or an activation map.

• POOL: A pooling layer (POOL) is a down-sampling operation, usually applied after
a CONV, with some spatial invariance. For example, max pooling and average pool-
ing are a special kind of pooling that take maximum and average values, respectively.

• FC: Regular multi-layer perceptron neural network.

CNN transforms the original pixel valued image to a final classification model. The
parameters in the CONV/FC layer will be trained with some optimization algorithms, for
example:

Figure 2.2: Example of CNN architecture. [19]

2.2.2 UNet [2]

As we saw from the previous CNN example, traditional CNN is mostly used for image
classification, where the input is an image and output is one label. However, for medical
images, it is required to do the pixel level classification in order to produce a image mask or
a segmentation. Therefore, the input and output should have the same dimensions. Luck-
ily, medical images only have one channel of color information, meaning that the third
dimension of the input image size is 1 in most cases.

11
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Figure 2.3: UNet architecture

1 [ [ 2 5 5 , 1 0 ] , [ 2 3 4 , 1 2 ] ] # each number i s a p i x e l

Listing 2.1: input image size 2×2

If we set the threshold of a pixel value of above 100 to label 1, below 100 to 0, the
output will have the same size, in this value:

1 [ [ 1 , 0 ] , [ 1 , 0 ] ] # C o n s i d e r we a r e u s i n g b i n a r y c l a s s i f i c a t i o n

Listing 2.2: input image size 2×2

From Figure 2.3, we may have a clue why this CNN variant network is named as UNet,
it has a ”U” shape. This symmetric shape consists of a contracting path (involves a general
convolution process) and an expansive path (a series of up-convolutions and connections
with high-resolution features from contracting paths). The network has a total of 23 con-
volutional layers. A python implementation can be found in Appendix A.

12
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2.3 Metrics for Semantic Segmentation Model Accuracy

For semantic segmentation, the goal is to predict the mask within the ROI. But how
do we know that our segmentation model is performing well? Obviously, we cannot rely
on human visual inspection to judge the accuracy of the prediction results. Such metrics
lack objectivity and are time-consuming and labor-intensive; therefore, automation of these
metrics is needed. This project mainly uses two method for the model evaluation: pixel
accuracy and Dice coefficient (F1 score).

2.3.1 Pixel Accuracy

Figure 2.4: Pixel Accuracy of 90%

Pixel Accuracy is the percentage of pixels in an image that are correctly classified, as
shown in this equation:

PA =
∑

k
i=1 nii

∑
k
i=1 ti

where nii is the total number of pixels both classified and labeled as class i. ti is the total
number of pixels labeled as class i.

This might be the most intuitive metrics for evaluating the model, however, there are
some problems. As we mentioned earlier, for many medical images, the area ratio of

13
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the object of interest in these images is not high, in other words, most of the pixels are
background, (unlabeled area). This is called class imbalance. For most MI segmentation,
class imbalance is inevitable. For example in Figure 2.4, where the left figure is the ground
truth.

The pixel accuracy for a completely black image is 90%. Which means that high pixel
accuracy does not imply an excellent segmentation capabilities.

2.3.2 Dice Score

Consider an MI segmentation task, with class i as the object of interest, and class j
as the background. The dice score is a measure of how similar the ground truth object
and predicted object are. In other words, it is the size of overlap of the two segmentations
divided by the total size of the two objects:

Dice Score =
2× (∑nii +∑n j j)

2× (∑nii +∑n j j)+∑ni j +∑n ji

In which nii and n j j are the total number of pixels both classified and labeled as class
i or j (True positive), ni j is the total number of pixels should be class j but is classified as
class i (False positive), n ji is the total number of pixels should be class i but is classified as
class j (False negative). Simplify above expression:

Dice Score =
2×|Mask i∩Mask j|
|Mask i|+ |Mask j|

We can quickly calculate the dice score for two images shown in Figure 2.4 using below
code:

1 i m p o r t cv2
2 i m p o r t numpy as np
3

4 # l o a d images
5 y p r e d = cv2 . imread ( ’ segment . png ’ )
6 y t r u e = cv2 . imread ( ’ b l a c k 0 3 0 . png ’ )
7

8 # Dice s i m i l a r i t y f u n c t i o n
9 d e f d i c e ( pred , t r u e , k = 1) :

10 i n t e r s e c t i o n = np . sum ( p red [ t r u e ==k ] ) * 2 . 0
11 d i c e = i n t e r s e c t i o n / ( np . sum ( p red ) + np . sum ( t r u e ) )
12 r e t u r n d i c e
13

14 d i c e s c o r e = d i c e ( y pred , y t r u e , k = 1)

14
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15 p r i n t ( ” Dice S i m i l a r i t y : {} ” . f o r m a t ( d i c e s c o r e ) )

Listing 2.3: Calculate dice score

and the output with Dice Similarity: 0.0, which means those two images are completely
different.

2.4 Literature Review

With the rapid development and tremendous progress in deep learning algorithms, re-
searchers and medical workers have created many clinical applications based on these al-
gorithms. Medical workers use these applications on the MI diagnostic analysis for various
different diseases, including diseases related to the brain, heart, liver and lung. The fol-
lowing literatures are some profound achievements made by researchers in recent years. It
proves the feasibility of deep learning in the field of medical image segmentation.

• Brain Disease

– Deep learning algorithm has great potential in stroke lesion segmentation. Chen
et al.[20] use CNN for a fully automatic acute ischemic lesions segmentation
with an average Dice score of 0.67. Liu et al [21] uses U-shaped network (Res-
CNN) and achieve a Dice score of 0.742.

– Deep learning also shown great promise in accurate detection of intracranial
aneurysms. In a study from Stember et al. [22], they use CNN based U-net to
train 250 MRA maximum intensity projection (MIP) images, the model identi-
fies aneurysms in 85/86 (98.8% of) testing set cases, and also correctly predicts
the area trend for the set of aneurysms. Ueda et al. [23] utilize ResNet for this
task and achieve a sensitivity of 91%–93% improving aneurysm detection by
4.8%–13% for internal and external test datasets, respectively.

– Recent studies also make good progress on the fully automatic brain tumor
segmentation using CNN as shown in Havaeia et al. [24]. In addition, the
work from Ranjbarzadeh et al. [25] present a promising segmentation result on
the BRATS 2018 dataset, achieves a mean whole tumor, enhancing tumor, and
tumor core dice scores of 0.9203, 0.9113 and 0.8726, respectively.

• Heart Disease

– A number of CNN variant deep networks are presented for cardiac structures
segmentation, in which AtriaNet developed by Xiong et al [26] achieves a Dice

15
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score of 0.940 and 0.942 for the left atrial epicardium and endocardium, respec-
tively..
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Chapter 3

Datasets Preparation

Using deep learning method to get 3D models from 2D images already has promising
implementations on camera based images [27]. Normally analysts uses convolutional neu-
ral networks (CNN) to generate features from these images, and then uses other deep neural
network models like generative adversarial network (GAN) for 3D reconstruction. In this
paper [28], they use an encoder and decoder method to map features from 2D images to
their ground-truth 3D models. The encoder computes a set of features for the decoder to re-
cover the 3D shape of the object. The decoder is responsible for transforming information
of 2D feature maps into 3D volumes. Both are built by many layers of CNN.

Medical imaging doesn’t have important information of camera parameters, light and
shadows, which are used in traditional computer vision method. Moreover, there is a lack of
ground-truth 3D models as training sets. Therefore, having high-accuracy training datasets
is crucial for the deep learning projects working with medical images.

However, obtaining the ground truth training data from the raw data that is generated
from the medical equipment is not an easy task. Converting DICOM to PNG format while
preserving the image slices sequence order is a common approach for MI Annotation. The
annotation should generate a one-to-one mapping between the PNG file and its segmen-
tation mask file. For MI annotation, it is essentially a binary classification problem, the
segmentation mask file only has two regions, the labeled area (annotated in white color,
high brightness), and the unlabeled area (annotated in black color, zero brightness).

An unsupervised learning approach is an alternative. Since it doesn’t require labeled
data as training sets. In this case, there is no need for ground-truth 3D models. In fact,
ground-truth 3D data is difficult and expensive to collect even for real-world objects as
needed to train camera based images with supervised learning. There is an attempt to use
unsupervised learning to get 3D structure from 2D camera based images [29], which uses
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conditional generative models with latent variables. This approach will not be explained in
detail in this report. Due to the limitation of research resources, we have not had the oppor-
tunity to do research in this direction. This project mainly uses the method of supervised
learning and leaves the unsupervised learning as future work.

We obtained 6 upper chest CT images for this project, all of them are stored in DICOM
format. Since the pixel information in the DICOM file is stored as binary data, we need to
convert the file formate to visualize the image slices and convert them to a 3D numpy array
(2D image) or 4D numpy array (3D image) for image processing, ans described in the next
section.

3.1 Convert DICOM slices to PNG

There are many ways to visualize DICOM files. One package that we chose is called
pydicom. This is a pure Python package that is designed to manipulate data elements in
DICOM files with python code.

First, load the DICOM files:
1 i m p o r t pydicom
2 i m p o r t numpy as np
3 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
4 i m p o r t s y s
5 i m p o r t g lob
6 from PIL i m p o r t Image as im
7

8 # l o a d t h e DICOM f i l e s
9 f i l e s = [ ]

10 p a t h = ’ / Use r s / yanxuanm / Downloads / CT p a t i e n t d a t a sample / 4 3 6 8 1 2 8 3 / * . dcm ’
11 p r i n t ( ’ g lob : {} ’ . f o r m a t ( p a t h ) )
12 f o r fname i n g lob . g lob ( pa th , r e c u r s i v e = F a l s e ) :
13 f i l e s . append ( pydicom . dcmread ( fname ) )
14

15 p r i n t ( ” f i l e c o u n t : {} ” . f o r m a t ( l e n ( f i l e s ) ) )

Listing 3.1: Load the DICOM files

We are using a DICOM series with 1128 slices for our example.

Some CT scans may contain scout views slices, which are a survey of the region of
interest used by the technician to select the area of dedicated image acquisition. These
slices don’t have location info and generally are not used for diagnostic purposes, so we
can safely skip them.

1 # s k i p f i l e s wi th no S l i c e L o c a t i o n ( eg s c o u t v iews )
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2 s l i c e s = [ ]
3 s k i p c o u n t = 0
4

5 f o r f i n f i l e s :
6 i f h a s a t t r ( f , ’ S l i c e L o c a t i o n ’ ) :
7 s l i c e s . append ( f )
8 e l s e :
9 s k i p c o u n t = s k i p c o u n t + 1

10

11 p r i n t ( ” sk ipped , no S l i c e L o c a t i o n : {} ” . f o r m a t ( s k i p c o u n t ) )

Listing 3.2: Skip files with no slice Location

In our sample dataset, there are no scout view images. All the 1128 slices contains
spatial information. The spatial information of each slice is stored in the metadata of the
DICOM series, including the physical distances between each slice, and even the distance
between two pixels. It is also essential that we keep the right order of these slices.

1 # e n s u r e t h e y a r e i n t h e c o r r e c t o r d e r
2 s l i c e s = s o r t e d ( s l i c e s , key=lambda s : s . S l i c e L o c a t i o n )
3

4 # p i x e l a s p e c t s , assuming a l l s l i c e s a r e t h e same
5 ps = s l i c e s [ 0 ] . P i x e l S p a c i n g
6 s s = s l i c e s [ 0 ] . S l i c e T h i c k n e s s
7 a x a s p e c t = ps [ 1 ] / ps [ 0 ]
8 s a g a s p e c t = ps [ 1 ] / s s
9 c o r a s p e c t = s s / ps [ 0 ]

Listing 3.3: Sort the slices and record spatial info

Now we have the spatial information stored, we may proceed with converting the DI-
COM to a Numpy array. Once the data is stored in Numpy array, we can visualize the data
using PNG format images.

1 # c r e a t e 3D a r r a y
2 img shape = l i s t ( s l i c e s [ 0 ] . p i x e l a r r a y . shape )
3 img shape . append ( l e n ( s l i c e s ) )
4 img3d = np . z e r o s ( img shape )
5

6 # f i l l 3D a r r a y wi th t h e images from t h e f i l e s
7 f o r i , s i n enumera t e ( s l i c e s ) :
8 img2d = s . p i x e l a r r a y
9 img3d [ : , : , i ] = img2d

10 t h r e s h o l d = 1290 # A d j u s t a s needed
11 i m a g e 2 d s c a l e d = ( np . maximum ( img2d , 64) / ( np . amax ( img2d ) +

t h r e s h o l d ) ) * 255 .0
12

13 d a t a = im . f r o m a r r a y ( i m a g e 2 d s c a l e d )
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14 i f d a t a . mode == ’F ’ :
15 d a t a = d a t a . c o n v e r t ( ’RGB’ )
16 d a t a . s ave ( ’ gfg dummy pic {0} . png ’ . f o r m a t ( i ) )

Listing 3.4: Store DICOM info to Numpy array

This will convert all 1128 slices of DICOM images to PNG Figure 3.1, and the indices
are sorted with the corresponded location.

Figure 3.1: Sample PNG file

We can also visualize the Numpy arrays Figure 3.2:
1 # p l o t 3 o r t h o g o n a l s l i c e s
2 a1 = p l t . s u b p l o t ( 2 , 2 , 1 )
3 p l t . imshow ( img3d [ : , : , img shape [ 2 ] / / 2 ] )
4 a1 . s e t a s p e c t ( a x a s p e c t )
5

6 a2 = p l t . s u b p l o t ( 2 , 2 , 2 )
7 p l t . imshow ( img3d [ : , img shape [ 1 ] / / 2 , : ] )
8 a2 . s e t a s p e c t ( s a g a s p e c t )
9

10 a3 = p l t . s u b p l o t ( 2 , 2 , 3 )
11 p l t . imshow ( img3d [ img shape [ 0 ] / / 2 , : , : ] . T )
12 a3 . s e t a s p e c t ( c o r a s p e c t )
13

14 p l t . show ( )

Listing 3.5: plot 3 orthogonal slices
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Figure 3.2: Plot 3 orthogonal slices

3.2 Training and Test Data Set

To use supervised learning algorithm for MI segmentation, we need to have access to
sufficiently large, well-curated training data sets. However, preparation of such data is a
tedious and time-consuming process. In fact, the lack of annotated data has been a major
obstacle for this project for a very long time. So far, this project has only had access to
only 6 upper chest CT MI data sets. This is not likely to be enough data for supervised
learning. Ideally, we would like to have more than one hundred labeled datasets. KiTS19
has a training set of 210 cross sectional CT images and a test set of 90 CT images [30]
[31]. LiTS17 has a training data set of 130 CT scans and the test data set 70 CT scans [32].
There are many objective reasons for the paucity of date. The reasons are all the common
pain points in the general preparation of medical imaging data for development of deep
learning models.

• Data sharing and storage systems are complex and expensive, and many hospitals
do not have the spare funds to support such facilities. Therefore, it is very difficult
for medical AI researchers to query a good amount of representative data.
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• For the purposes of research and reproducible results, MI data used in the research
projects are often publicly accessible. Having patient data publicly available through
such repositories may constitute a breach of personal privacy if the data is not prop-
erly di-identified. There are existing software for automating the process of removing
sensitive information from the MI data; however, this research [33] indicates that it is
extremely difficult to eliminate all protected health information from DICOM images
using automated software while retaining all useful information.

• Data transfer. To download data from the host server, and then upload to a shared
drive can be time-consuming. This step heavily depend on the speed of ISP network
service provide.

• Data labelling is a challenge. The quality of annotated data is an essential part to
the supervised deep learning frameworks. It can determine if the training process is
able to generate a good image classification model. This is the hardest and most time-
consuming step for the data preparation. It often needs to be done manually to ensure
the accuracy of the labeling. Annotators often follows certain guideline and operates
in a best-guess manner [34]. However, considering that there are usually hundreds
of DICOM slices in one CT scan, manual annotation can become unrealistic and
unpractical.

3.3 Approaches for Data Labelling

This project explored several approaches to obtain high-quality annotated data. Includ-
ing the use of existing MI segmentation software, for example ITK-snap, ParaView, 3D
slicer, etc. And the use of script programs based on Simple-ITK library. Our goal is to
generate PNG files that are annotation masks for each DICOM slice. Specifically, given
a chest radiographic image (Figure 3.3 left), the idea is to predict a mask that shows the
position of the aorta in an image (Figure 3.3 right).

3.3.1 Using ITK-snap

ITK-snap is an interactive software that provides the functionality for automatic and
manual segmentation. This software can read the entire MI scan DICOM series, and show
the images in an interactive 3D view, as show in Figure 3.4. Using ITK-snap to do manual
segmentation requires assigning labels to each voxel in the structure. It has a tool help user
to draw polygons on top of the axial, sagittal and coronal slice windows and then paint the
closed polygons slice by slice. We can see that manual segmentation is time-consuming
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Figure 3.3: Sample Image and Upper Aorta Segmentation Mask

and not efficient, the user needs to draw polygons on every slice, which means large amount
of repetitive work.

Luckily, ITK-snap also has the ability to do automatic segmentation, with very little
human interaction. By manually adjust the image upper and lower threshold values, we
can isolate the region we are interested in. We can then manually place bubbles that are
then expanded to fill up the entire structure.

Figure 3.4: ITK-snap 3D view main window and threshold

However, using ITK cannot generate the PNG masks for each slice. It generates the
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Figure 3.5: ITK-snap bubbles and 3D reconstruction

3D geometric structure of the segmentation. However, we can use scripts to map this 3D
structure to each 2D slice. We have 6 CT DICOM series image for this project, and we
use ITK-snap to generate 3D structures for all of them as shown in Figure 3.6. These 3D
structures can be stored in NIFTI format with shape [num-slices, height, width], slice
thicknesses range from 1mm to 5mm.

Figure 3.6: 3D Structure of Aorta for 6 CTs

For example, we process the case 00000 dataset, and map the 3D ground truth structure
to 2D masks. First, we load the files:

1 BASE IMG PATH=os . p a t h . j o i n ( ’ ’ , ’ / c o n t e n t / d r i v e / MyDrive / d a t a s e t /
c a s e 0 0 0 0 0 ’ )

2 g lob ( os . p a t h . j o i n ( BASE IMG PATH , ’ * ’ ) )
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3 a l l i m a g e s = g lob ( os . p a t h . j o i n ( BASE IMG PATH , ’ imaging * ’ ) )
4 a l l m a s k s = [ x . r e p l a c e ( ’ imaging ’ , ’ s e g m e n t a t i o n ’ ) f o r x i n a l l i m a g e s ]
5 p r i n t ( l e n ( a l l i m a g e s ) , ’ ma tch ing f i l e s found : ’ , a l l i m a g e s [ 0 ] , a l l m a s k s

[ 0 ] )
6

7 # Should p r i n t message : 1 match ing f i l e s found : / c o n t e n t / d r i v e / MyDrive
/ d a t a s e t / c a s e 0 0 0 0 0 / imag ing 00000 . n i i . gz / c o n t e n t / d r i v e / MyDrive /
d a t a s e t / c a s e 0 0 0 0 0 / s e g m e n t a t i o n 0 0 0 0 0 . n i i . gz

Listing 3.6: Load NIFTI file

Figure 3.7: Mask mapping

Then we can visualize the corresponding raw image and mask image using this script:
1 %m a t p l o t l i b i n l i n e
2 i m p o r t n i b a b e l a s n i b
3

4 t e s t i m a g e = n i b . l o a d ( a l l i m a g e s [ 0 ] ) . g e t d a t a ( )
5 t e s t m a s k = n i b . l o a d ( a l l m a s k s [ 0 ] ) . g e t d a t a ( )
6 f i g , ( ax1 , ax2 ) = p l t . s u b p l o t s ( 1 , 2 , f i g s i z e = ( 1 2 , 6 ) )
7 ax1 . imshow ( t e s t i m a g e [ t e s t i m a g e . shape [ 1 ] / / 2 ] . s q u e e z e ( a x i s =2) )
8 ax1 . s e t t i t l e ( ’ Image ’ )
9 ax2 . imshow ( t e s t m a s k [ t e s t i m a g e . shape [ 1 ] / / 2 ] , o r i g i n = ’ lower ’ )
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Figure 3.8: Another projection view

10 ax2 . s e t t i t l e ( ’Mask ’ )

Listing 3.7: 2D mask mapping

We can obtain the one to one mapping of the raw data and mask image as shown in Figure
3.7.

It’s also very easy to change the projection view by swapping the axes as shown in
Figure 3.8.

1 t e s t i m a g e = n i b . l o a d ( a l l i m a g e s [ 0 ] ) . g e t d a t a ( )
2 t e s t i m a g e =np . swapaxes ( t e s t i m a g e , 0 , 2 )
3 t e s t m a s k = n i b . l o a d ( a l l m a s k s [ 0 ] ) . g e t d a t a ( )
4 t e s t m a s k =np . swapaxes ( t e s t m a s k , 0 , 2 )
5 f i g , ( ax1 , ax2 ) = p l t . s u b p l o t s ( 1 , 2 , f i g s i z e = ( 1 2 , 6 ) )
6 ax1 . imshow ( t e s t i m a g e [ t e s t i m a g e . shape [ 1 ] / / 2 + 1 0 ] . s q u e e z e ( a x i s =2) )
7 ax1 . s e t t i t l e ( ’ Image ’ )
8 ax2 . imshow ( t e s t m a s k [ t e s t i m a g e . shape [ 1 ] / / 2 + 1 0 ] , o r i g i n = ’ lower ’ )
9 ax2 . s e t t i t l e ( ’Mask ’ )

Listing 3.8: Change a view angle

We can easily generate more one to one mappings using this method:
1 t e s t i m a g e = n i b . l o a d ( a l l i m a g e s [ 0 ] ) . g e t d a t a ( )
2 t e s t m a s k = n i b . l o a d ( a l l m a s k s [ 0 ] ) . g e t d a t a ( )
3 f i g , axs = p l t . s u b p l o t s ( 1 0 , 1 0 , f i g s i z e = ( 5 0 , 50) )
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Figure 3.9: Mask mapping
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4

5 f o r i , ax i n z i p ( r a n g e ( 2 0 1 ) , axs . r a v e l ( ) ) :
6 i f i % 2 == 0 :
7 ax . imshow ( t e s t i m a g e [ t e s t i m a g e . shape [ 1 ] / / 2 + ( i / / 2 ) −40] . s q u e e z e (

a x i s =2) )
8 ax1 . s e t t i t l e ( ’ Image ’ )
9 e l s e :

10 ax . imshow ( t e s t m a s k [ t e s t i m a g e . shape [ 1 ] / / 2 + ( i / / 2 ) −40] , o r i g i n = ’
lower ’ )

11 ax . s e t t i t l e ( ’Mask ’ )

Listing 3.9: Generate more masks mapping

The results are shown in Figure 3.9

From visual inspection of the ground truth data generated by this method, we conclude
it to be relatively reliable.

3.3.2 Using SimpleITK

The official introduction to SimpleITK states: SimpleITK is an image analysis toolkit
with many components supporting general filtering operations, image segmentation and
registration [35]. The implementations for this method can be found in Appendix C. Figure
3.10 are the mask generated by this method.

Using SimpleITK requires us to carefully place some seeds within the segmented area.
It will use this seed as a growth point for the highlighted threshold region. Code implemen-
tations can be found in Appendix B. After the segmentation, we can map each slices of the
results to a black background PNG file.

1 f o r i i n t r a n g e ( c u r v e s e e d [ 2 ] , c r o p p e d i m a g e s [ c t n u m b e r ] . GetDepth ( ) ) :
2

3 # pe r fo rm s e g m e n t a t i o n on s l i c e i
4 seg , t o t a l c o o r d , c e n t r e , l , u , s e e d s = c i r c l e f i l t e r a r c h ( i ,

c e n t r e p r e v i o u s , s e e d s p r e v i o u s , ” c ropped ” )
5

6 # d e t e r m i n e whe the r t h e s i z e o f t h i s s l i c e ” q u a l i f i e s ” i t t o be
a c c u r a t e

7 # i f ( ( t o t a l c o o r d > 1 / f a c t o r s i z e * o r i g i n a l s i z e ) and ( t o t a l c o o r d
< f a c t o r s i z e * o r i g i n a l s i z e ) and ( t o t a l c o o r d < 2* p r e v i o u s s i z e ) ) :

8 c o u n t e r = 0
9 new image cropped [ : , : , i ] = ( seg >0) | new image cropped [ : , : , i ]

10 i f ( i %5==0) :
11 p r i n t ( c r o p p e d i m a g e s [ c t n u m b e r ] . GetDepth ( ) − i )
12 myshow ( s i t k . L a b e l O v e r l a y ( b l a c k i m a g e s [ : , : , i ] , seg >0) )
13
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Figure 3.10: Mask generated from SimpleITK

14 s i t k . Wri te Image ( s i t k . L a b e l O v e r l a y ( b l a c k i m a g e s [ : , : , i ] , seg >0) , os .
p a t h . j o i n ( ” o u t p u t ” , ’ {0 :04 d } . t i f f ’ . f o r m a t ( c r o p p e d i m a g e s [ c t n u m b e r ] .
GetDepth ( ) − i ) ) )

15 f o r j i n r a n g e ( 3 ) :
16 wi th Image ( f i l e n a m e = os . p a t h . j o i n ( ” o u t p u t ” , ’ {0 :04 d } . t i f f ’ .

f o r m a t ( c r o p p e d i m a g e s [ c t n u m b e r ] . GetDepth ( ) − i ) ) ) a s image png :
17 image png . f o r m a t = ’ png ’
18 image png . s ave ( f i l e n a m e =os . p a t h . j o i n ( ” o u t p u t / png ” , ’ {0 :04 d } .

png ’ . f o r m a t ( ( c r o p p e d i m a g e s [ c t n u m b e r ] . GetDepth ( ) − i ) *3− j ) ) )
19

20 # Image . f r o m a r r a y ( image png ) . s ave ( os . p a t h . j o i n ( ” o u t p u t / png ” , ’{} . png
’ . f o r m a t ( c r o p p e d i m a g e s [ c t n u m b e r ] . GetDepth ( ) − i ) ) )

Listing 3.10: Mapping each slices segmentation results to a black background PNG file.

However, there is a problem with this approach. To get more accurate segmentation
results, the raw data of the CT scans will be converted to float 32 images and stored in tiff
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format.
1 s i t k . Show ( c r o p p e d i m a g e s [ c t n u m b e r ] )
2

3 f o r i i n r a n g e ( 3 7 6 ) :
4

5 s i t k . Wri te Image ( s i t k . Cas t ( c r o p p e d i m a g e s [ c t n u m b e r ] [ : , : , i ] , \
6 s i t k . s i t k F l o a t 3 2 ) , \
7 os . p a t h . j o i n ( ” i n p u t ” , ’ {} . t i f f ’ . f o r m a t ( i ) ) )

Listing 3.11: Convert raw data to tiff file

This means the training data sets will have float images. This will significantly increasing
the computational requirements for this project. Although we can cast those float format
images to integer format, some information will be lost and eventually cause distortion.
Below Figure 3.11 are the comparisons of a same slice displayed in float format and cast
down in integer format.

Figure 3.11: Left side is slice in tiff format, right side is cast to integer format

Base on the above discussion, this project uses ITK-snap for generating ground truth
training datasets.
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Chapter 4

Architecture and Training Algorithms

The training uses the MIScnn pipeline [36], MIScnn features an open model interface to
load and switch between the provided state-of-the-art CNN models like the U-Net model
we mentioned previously. This training pipeline also requires that training datasets be
arranged in a specific structure as shown below.

In the previous section we discussed how to obtain the ground truth data set. After
ensuring that each slice of each CT scan has a good mask, we reconstruct the 3D structure
of the aorta from the mask information and store it in a NIfTI file.

Training datasets are arranged in this structure, each case folder contains one CT scan
raw data (imageing.nii.gz) and it’s ground truth labeled data (segmentation.nii.gz).

data
case_00000

| imaging.nii.gz
| segmentation.nii.gz

case_00001
| imaging.nii.gz
| segmentation.nii.gz
...

case_00005
| imaging.nii.gz

segmentation.nii.gz

This chapter introduces the training process and the steps of the setup training pipeline.
First, we need to establish the data I/O interface, let the pipeline consume the training
datasets that we provided. Then it is necessary to configure the data augmentation to pre-
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vent overfitting. After that, we can select a neural network model for training. Finally, we
perform the validation process for the training model.

4.1 Establish Data I/O

The first step in the MIScnn pipeline is to establish a Data I/O. MIScnn offers the
utilization of custom Data I/O interfaces for fast integration of a specific data structure into
the pipeline. In the preparation stage, we already encoded the Aorta scans in 3D NIfTI
format, therefore we deploy a Data I/O class with the NIfTI interface for handling the
NIfTI format. Since this segmentation is binary, we initialize the NIfTI I/O interface and
configure the images as one channel (gray-scale) and 2 segmentation classes (background,
Aorta), as shown in the following code.

1 # L i b r a r y i m p o r t
2 from miscnn . d a t a l o a d i n g . i n t e r f a c e s . n i f t i i o \
3 i m p o r t N I F T I i n t e r f a c e
4 from miscnn . d a t a l o a d i n g . d a t a i o i m p o r t Data IO
5

6 # I n i t i a l i z e t h e NIfTI I /O i n t e r f a c e and c o n f i g u r e t h e images as one
c h a n n e l ( g r a y s c a l e ) and t h r e e s e g m e n t a t i o n c l a s s e s ( background ,
Aro ta )

7 i n t e r f a c e = N I F T I i n t e r f a c e ( p a t t e r n =” c a s e 0 0 [0 −9]* ” ,
8 c h a n n e l s =1 , c l a s s e s =2)
9

10 # S p e c i f y t h e Aor t a d a t a d i r e c t o r y
11 d a t a p a t h = ” / u40 / yanx24 / Documents / d a t a s e t ”
12 # C r e a t e t h e Data I /O o b j e c t
13 d a t a i o = Data IO ( i n t e r f a c e , d a t a p a t h )

Listing 4.1: MIScnn Data I/O

4.2 Create and Configure a Data Augmentation class

After the Data I/O Interface initialization, the Data Augmentation class can be con-
figured. Data augmentation is a way to reduce overfitting on models, where we increase
the amount of training data using information only in our training data. A Preprocessor
object with default parameters automatically initialize a Data Augmentation class with de-
fault values, but here we initialize it by hand to illustrate the exact workflow of the MIScnn
pipeline.
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The parameters for the Data Augmentation configure which augmentation techniques
should be applied to the data set. Since the training sets is very small, we have to increase
the amount of data by adding slightly modified copies of already existing data using these
augmentation techniques. In this case, we are using all possible augmentation techniques
to run extensive data augmentation and avoid overfitting [37].

1 # L i b r a r y i m p o r t
2 from miscnn . p r o c e s s i n g . d a t a a u g m e n t a t i o n i m p o r t Da ta Augmen ta t i on
3

4 # C r e a t e and c o n f i g u r e t h e Data Augmenta t ion c l a s s
5 d a t a a u g = Da ta Augmen ta t i on ( c y c l e s =2 , s c a l i n g =True , r o t a t i o n s =True ,

e l a s t i c d e f o r m =True , m i r r o r =True ,
6 b r i g h t n e s s =True , c o n t r a s t =True , gamma=True ,

g a u s s i a n n o i s e =True )

Listing 4.2: Data Augmentation

4.3 Select Sub-functions for Preprocessing

For the Preprocessor class, we define which Sub-functions we want to execute on our
data set. Sub-functions are pre- and post-processing functions that will be applied on the
data to boost performance. It is possible to add already provided Sub-functions from MIS-
cnn or implement custom Sub-functions and pass these to the MIScnn pipeline.

Here, we initialize three state-of-the-art preprocessing methods.

• Pixel Value Normalization: Pixel values are normalized through the Z-Score for-
mula.

• Clipping: Pixel value ranges are clipped according to a provided min/max value.
In this project, for each CT image, each pixel is assigned a value of grayscale level
between 0 and 255.

• Resampling: MRT and CT images can have different voxel spacings (slice thick-
ness). Therefore, a normalization of these voxel spacings to a common scale is re-
quired. The resampling process also lead to a smaller image size. MIScnn provides
resampling subfunctions. Note, this resampling is depended on the input datasets.
We need to first read the metadata of the CT scan DICOM to determine the optimal
voxel spacing. These step is recommended to perform on each of the CT scans.

We are adding all Sub-function objects to a list, which we then be passed to the Prepro-
cessor class.
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1 # L i b r a r y i m p o r t s
2 from miscnn . p r o c e s s i n g . s u b f u n c t i o n s . n o r m a l i z a t i o n i m p o r t N o r m a l i z a t i o n
3 from miscnn . p r o c e s s i n g . s u b f u n c t i o n s . c l i p p i n g i m p o r t C l i p p i n g
4 from miscnn . p r o c e s s i n g . s u b f u n c t i o n s . r e s a m p l i n g i m p o r t Resampl ing
5

6 # C r e a t e a p i x e l v a l u e n o r m a l i z a t i o n S u b f u n c t i o n t h r o u g h Z− Score
7 s f n o r m a l i z e = N o r m a l i z a t i o n ( mode= ’ z− s c o r e ’ )
8 # C r e a t e a c l i p p i n g S u b f u n c t i o n between 10 and 255
9 s f c l i p p i n g = C l i p p i n g ( min =10 , max=255)

10 # C r e a t e a r e s a m p l i n g S u b f u n c t i o n t o v o x e l s p a c i n g 1 . 6 2 x 1 . 6 2 x 1 . 6 2
11 s f r e s a m p l e = Resampl ing ( ( 1 . 6 2 , 1 . 6 2 , 1 . 6 2 ) )
12

13 s u b f u n c t i o n s = [ s f c l i p p i n g , s f n o r m a l i z e ]

Listing 4.3: Sub-function for preprocessing

4.4 Create a Neural Network Model

With the preparation work done, we can config the Neural network.

To show the simplicity and performance of MIScnn, we stick with the simple 3D U-Net
Architecture for our Neural Network, without any special tricks or optimizations. For train-
ing, we are using the Dice-Crossentropy (sum of soft Dice and categorical crossentropy) as
loss, but also passing the soft Dice and the Tversky Loss as additional metrics for perfor-
mance evaluation. The choice of these metrics is based on this article: Generalizing Dice
and cross entropy-based losses to handle class imbalanced medical image segmentation
[38].

With the batch queue size and number of workers, we are able to specify the parallel
prepared batches and the number of threads for multiprocess batch generation, as follows:

1 # L i b r a r y i m p o r t
2 from miscnn . n e u r a l n e t w o r k . model i m p o r t Neura l Ne twork
3 from miscnn . n e u r a l n e t w o r k . m e t r i c s i m p o r t d i c e s o f t , d i c e c r o s s e n t r o p y ,

t v e r s k y l o s s
4

5 # C r e a t e t h e Ne ur a l Network model
6 model = Neura l Ne twork ( p r e p r o c e s s o r =pp , l o s s = t v e r s k y l o s s , m e t r i c s =[

d i c e s o f t , d i c e c r o s s e n t r o p y ] ,
7 b a t c h q u e u e s i z e =3 , worke r s =3)

Listing 4.4: Create a Neural Network model
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Figure 4.1: Fold 0

4.5 Perform a 3-fold Cross-Validation

We now run the cross validation function and define the number of k-folds as 3. Due to
computational resources constraints, the number of epochs and iterations as 100 and 100,
respectively. The training process with these parameters will take more than 300 hours
using a RTX 2070 GPU (Table 5.2).

For summary, a cross-validation runs the training and prediction process several times
with different combinations of data set parts. Therefore, this step takes long time. The cb lr
and cb es are Callback parameters, which indexes to automatically reduce the learning rate,
if no loss improvement happens in the last 20 epochs.

1 # L i b r a r y i m p o r t
2 from miscnn . e v a l u a t i o n . c r o s s v a l i d a t i o n i m p o r t c r o s s v a l i d a t i o n
3 # Run c r o s s − v a l i d a t i o n f u n c t i o n
4 c r o s s v a l i d a t i o n ( v a l i d a t i o n s a m p l e s , model , k f o l d =3 , epochs =100 ,

i t e r a t i o n s =100 ,
5 e v a l u a t i o n p a t h =” e v a l u a t i o n ” , d r a w f i g u r e s =True ,

c a l l b a c k s =[ c b l r , c b e s ] )

Listing 4.5: 3-fold Cross-Validation

4.6 Results

Ideally, we would like to see the validation for loss reach below 0.5, and the dice cross
entropy converges below 1. However, from Figure 4.1, 4.2 and 4.3, the dice score for
all three folds are around 0.3, validation loss still above 2. These metrics are all above
the desired values. Moreover, Figure 4.4 shows the prediction of a test data set using the
trained model. The result is not accurate in details, but it still roughly reflects the general
shape and the location of the aorta. Such a result is expected as this training set has only
6 images. We believe that with enough training data, this training network can generate a
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Figure 4.2: Fold 1

Figure 4.3: Fold 2

Figure 4.4: Prediction for 3D geometry from the training model
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Figure 4.5: Fold 0 for KiTS19

Figure 4.6: Fold 1 for KiTS19

good prediction model. However, for various reasons explained earlier, it is not feasible
to obtain more images of the aorta, so to test this conjecture, we can only use the existing
data of other organs as the training set. Specifically, we test our approach applied to kidney
segmentation.

Figure 4.5, 4.6 and 4.7 show the training loss and dice score for Kidney Tumor Seg-
mentation Challenge 2019 (KITS19) data set [31], this data set has a training set of 210
cross-sectional CT images and a test set of 90 CT images. Compare to Figure 4.1, 4.2 and
4.3, with larger training sets and more training iterations, we are getting higher dice score
and lower validation loss. Both validation loss and cross entropy are 10-times better than
the aorta results, and dice score also increased about 3 times.
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Figure 4.7: Fold 2 for KiTS19

Figure 4.8: Prediction for 3D geometry from the KiTS19 training model
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Chapter 5

Challenges and Constraints

This chapter is going to analyze the challenges and difficulties encountered in the previ-
ous chapters, Our goal is to summarize the technical and practical difficulties in the clinical
application of deep learning algorithms in the field of MI. We especially highlight the fea-
sibility problems that may be encountered by small research teams with limited resource
and funding support.

5.1 Data Annotation

Generating ground truth data is the most tedious and time-consuming process for this
project. Even with the automation features of ITK-snap, it still requires around 3 hours of
single person manual work for one CT-scan images as shown in Table 5.1, since each CT
scan has hundreds of image slices. Analyzing each slice’s mask is necessary for ground
truth accuracy. This means that getting the optimal number (assuming with 100 scans of
training datasets and 20 scans of testing datasets) of CT scans for the datasets requires
hundreds of hours of data labeling, equivalent to 9 weeks of work. Such workload is
impractical for a small research group with a tight deadline.

Effort break down/scan Average Time in Minutes
Select ROI 15

Manual Segmentation 40
Exam Results 120

Grouping Raw Data with Labeled Data 5
Total 180

Table 5.1: Effort break down for processing one CT scan
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5.2 Computational Resources

To speed up the training process, we use two training machines to compute some tasks
that can be processed separately. One of the machines was assembled by the researchers
themselves, another one is a McMaster University server.

5.2.1 Cost

Personal device: Note: These hardware devices were purchased in mid-2021, at a time
when cryptocurrencies were skyrocketing and chips were in short supply [39], This may
have inflated the costs. Shown in Table 5.2. Detailed specs for the GPU shown in Figure
5.1.

Assembly Components Cost (in CAD)
CPU AMD Ryzen R9 5950x 16 Cores 1130
GPU GeForce RTX 2070 SUPER 800

Motherboard X570 AORUS ELITE 330
Power Corsair RMX Series, RM850x, 850 Watt 190

Memory Corsair Vengeance LPX 32GB (2 X 16GB) 150
Total 2600

Table 5.2: Cost for assembled training machine

Figure 5.1: Specs for Personal device’s GPU

McMaster University DL Server: Hardware configuration for the server is shown in
Table 5.3. The GPU specs is shown in Figure 5.2. The research team did not pay to use the
school’s servers, however, to reflect the training costs of other potential research teams that
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do not have the privilege to utilize universities resources, we calculated the price of cloud
computing (AWS) with the similar configuration.

Assembly Components
CPU Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
GPU Tesla P100 x 4

Memory 64GB

Table 5.3: Configurations of McMaster University DL Server

Figure 5.2: Specs for University Server’s GPU

AWS EC2 instance p3.8xlarge has the similar configurations (shown as 5.4)as the DL
server. In next subsection, we provided the training time with 6 CT scans of training data
on the DL server, which was around 170 hours (1.7 hours per epoch). This translates to a
total cost of $2080 USD per run. Of course the training time will continue to increase as
the training dataset gets larger. Estimation of this is based on the training time of 6 images
of KiTTS19, which takes about half hour for each epoch, knowing that with 210 images of
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training data, it takes 14.17 hours, assume the training time increase proportionally, with
the same amount of training data for the aorta, each epoch will take:

1.7× (14.17/0.5) = 48.178 hour (5.1)

Instance Size GPUs - Tesla V100 Pricing in USD [40]
p3.2xlarge 1 $3.06 per hour
p3.8xlarge 4 $12.24 per hour

p3.16xlarge 8 $24.48 per hour

Table 5.4: Amazon EC2 P3 – Machine Learning and HPC - AWS

5.2.2 Training Time

On personal device, running 100 epochs, each epoch with 100 iterations:

Epoch 1/100
Iteration 3/100 [=>............] - ETA: 2:54:15 - loss: 2.2282

- dice_soft: 0.2574
- dice_crossentropy: 3.2986

This shows that for each epoch, the training time is around 3 hours. The total training time
is roughly 300 hours.

On the server, running 100 epochs, each epoch with 100 iterations::

Epoch 1/100
Iteration 1/100 [>.............] - ETA: 1:42:32 - loss: 2.2982

- dice_soft: 0.2724
- dice_crossentropy: 3.1456

This shows that for each epoch, the training time is around 1.7 hours. The total training
time is roughly 170 hours. However, this result is when the training dataset has only 6 CT
scans. If we would like to train a dataset with hundreds of CT scans, it will increase the
training time significantly as estimated in the equation 5.1.

By comparison, training with KiTS19, on personal device:

Epoch 1/100
100/100 [===========] - 50957s 510s/step - loss: 2.0408 - dice_soft: 0.3201

- dice_crossentropy: 3.4498 - val_loss: 2.0064
- val_dice_soft: 0.3310 - val_dice_crossentropy: 1.7724
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Each epoch takes 51k seconds, that’s about 14.17 hours. With similar results for the server.

5.3 Getting More Data

As mentioned in previous chapters, the research team did not have enough raw data to
construct a good training set. Due to the lack of open source databases as raw data, we can
only obtain the data directly from the university hospital’s database. But this approach is not
applicable to a large scale, because these data generally contain private patient information,
which means not only a lot of procedural approvals, but also data desensitization.
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Chapter 6

Conclusion

In this project, we explored the practical feasibility of deep learning methods for aortic
segmentation from CT scans. We tried different approaches for generating high quality
training datasets from raw DICOM images, then applied these data to the MIScnn pipeline
for training. As shown in Figure 4.4, even though the prediction results are not very accu-
rate in details, it still roughly reflects the general shape and the location of the aorta in the
ROI. Such result was expected and acceptable based on the training datasets only having
6 CT scans. In addition, we also performed the training process on KiTS19, compared
with the prediction from the trained model, and the result was very promising (as shown in
Figure 4.8), this demonstrates the effectiveness of deep learning for medical image segmen-
tation, and showed the importance of having enough data to train a deep learning model.

Through this project, we also summarized and quantified the challenges and constraints
encountered, provided a lesson learned to the future research groups with limited resources,
outlining some difficulties they would like to address first in similar projects. Specifically,
the time and effort in data labeling suggests that researchers may need dedicated annotators
to process the desired data. For this project, each CT scan cost around 3 hours to generate
an accurate ground-truth segmentation. If the dataset has hundreds of scans (a reasonable
amount for deep learning), the annotation process will be months of work. Also, the com-
putational resources may also be very costly for a research team, a low-profile training
device for this project still cost more than 2000 CAD. Whether you choose to build your
own training machine or rent computing resources from a cloud computing company, the
cost usually on the order of tens of thousands of dollars. Moreover, even we trained with
relatively powerful AI server, the training time is still around several hundreds hours per
run. Finally, getting sufficient medical imaging data from hospitals often introduces more
complex approval mechanisms and processes such as data desensitization, which will lead
to an increase in work to the research team.
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Knowing that the biggest difficulty for this project was labeling the data and getting
more data, in the future, we may want to have an infrastructure for hospitals to share their
desensitized data to the research groups, or explore the possibility of using unsupervised
deep learning for medical image analysis.
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inisi, T. Das, H. Delingette, Ç. Demiralp, C. R. Durst, M. Dojat, S. Doyle, J. Festa, F.

46

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://arxiv.org/abs/1505.04597
https://en.wikipedia.org/wiki/Minimally_invasive_procedure
https://en.wikipedia.org/wiki/Minimally_invasive_procedure
https://www.synopsys.com/glossary/what-is-medical-image-segmentation.html#:~:text=Medical%20image%20segmentation%20involves%20the,Computed%20Tomography%20(CT)%20scans.
https://www.synopsys.com/glossary/what-is-medical-image-segmentation.html#:~:text=Medical%20image%20segmentation%20involves%20the,Computed%20Tomography%20(CT)%20scans.
https://www.synopsys.com/glossary/what-is-medical-image-segmentation.html#:~:text=Medical%20image%20segmentation%20involves%20the,Computed%20Tomography%20(CT)%20scans.


MEng Report - Xuanming Yan - McMaster - Computing and Software

Forbes, E. Geremia, B. Glocker, P. Golland, X. Guo, A. Hamamci, K. M. Iftekharud-
din, R. Jena, N. M. John, E. Konukoglu, D. Lashkari, J. A. Mariz, R. Meier, S. Pereira,
D. Precup, S. J. Price, T. R. Raviv, S. M. S. Reza, M. Ryan, D. Sarikaya, L. Schwartz,
H. -C. Shin, J. Shotton, C. A. Silva, N. Sousa, N. K. Subbanna, G. Szekely, T. J. Tay-
lor, O. M. Thomas, N. J. Tustison, G. Unal, F. Vasseur, M. Wintermark, D. H. Ye, L.
Zhao, B. Zhao, D. Zikic, M. Prastawa, M. Reyes, and K. Van Leemput, “The multi-
modal brain tumor image segmentation benchmark (BRATS),” IEEE Transactions on
Medical Imaging, vol. 34, no. 10, pp. 1993–2024, Oct. 2015.

[8] V. Cherukuri, P. Ssenyonga, B. C. Warf, A. V. Kulkarni, V. Monga, and S. J. Schiff,
“Learning based segmentation of CT brain images: Application to postoperative hy-
drocephalic scans,” IEEE Trans Biomed Eng, vol. 65, no. 8, pp. 1871–1884, Dec.
2017.

[9] S. Wang, M. Zhou, Z. Liu, Z. Liu, D. Gu, Y. Zang, D. Dong, O. Gevaert, and J. Tian,
“Central focused convolutional neural networks: Developing a data-driven model for
lung nodule segmentation,” Med Image Anal, vol. 40, pp. 172–183, Jun. 2017.

[10] A Study on Heart Segmentation Using Deep Learning Algorithm for MRI Scans, 2019.

[11] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisser-
man, “The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results,”
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html.

[12] M. Forouzanfar, A. Afshin, L. Alexander, H. Anderson, Z. Bhutta, S. Biryukov,
M. Brauer, R. Burnett, K. Cercy, F. Charlson, A. Cohen, L. Dandona, K. Estep,
A. Ferrari, J. Frostad, N. Fullman, P. Gething, W. Godwin, M. Griswold, and C. Mur-
ray, “Global, regional, and national comparative risk assessment of 79 behavioural,
environmental and occupational, and metabolic risks or clusters of risks, 1990–2015:
a systematic analysis for the global burden of disease study 2015,” The Lancet, vol.
388, pp. 1659–1724, 10 2016.

[13] R. Erbel, V. Aboyans, C. Boileau, E. Bossone, R. D. Bartolomeo, H. Eggebrecht,
A. Evangelista, V. Falk, H. Frank, O. Gaemperli, M. GrabenwÃ¶ger, A. Haverich,
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Appendix A

Python implementation of UNet

1 d e f b u i l d m o d e l ( i n p u t l a y e r , s t a r t n e u r o n s ) :
2 conv1 = Conv2D ( s t a r t n e u r o n s *1 , ( 3 , 3 ) , a c t i v a t i o n =” r e l u ” , padd ing =” same ” ) ( i n p u t l a y e r )
3 conv1 = Conv2D ( s t a r t n e u r o n s *1 , ( 3 , 3 ) , a c t i v a t i o n =” r e l u ” , padd ing =” same ” ) ( conv1 )
4 poo l1 = MaxPooling2D ( ( 2 , 2 ) ) ( conv1 )
5 poo l1 = Dropout ( 0 . 2 5 ) ( poo l1 )
6

7 conv2 = Conv2D ( s t a r t n e u r o n s *2 , ( 3 , 3 ) , a c t i v a t i o n =” r e l u ” , padd ing =” same ” ) ( poo l1 )
8 conv2 = Conv2D ( s t a r t n e u r o n s *2 , ( 3 , 3 ) , a c t i v a t i o n =” r e l u ” , padd ing =” same ” ) ( conv2 )
9 poo l2 = MaxPooling2D ( ( 2 , 2 ) ) ( conv2 )

10 poo l2 = Dropout ( 0 . 5 ) ( poo l2 )
11

12 conv3 = Conv2D ( s t a r t n e u r o n s *4 , ( 3 , 3 ) , a c t i v a t i o n =” r e l u ” , padd ing =” same ” ) ( poo l2 )
13 conv3 = Conv2D ( s t a r t n e u r o n s *4 , ( 3 , 3 ) , a c t i v a t i o n =” r e l u ” , padd ing =” same ” ) ( conv3 )
14 poo l3 = MaxPooling2D ( ( 2 , 2 ) ) ( conv3 )
15 poo l3 = Dropout ( 0 . 5 ) ( poo l3 )
16

17 conv4 = Conv2D ( s t a r t n e u r o n s *8 , ( 3 , 3 ) , a c t i v a t i o n =” r e l u ” , padd ing =” same ” ) ( poo l3 )
18 conv4 = Conv2D ( s t a r t n e u r o n s *8 , ( 3 , 3 ) , a c t i v a t i o n =” r e l u ” , padd ing =” same ” ) ( conv4 )
19 poo l4 = MaxPooling2D ( ( 2 , 2 ) ) ( conv4 )
20 poo l4 = Dropout ( 0 . 5 ) ( poo l4 )
21

22 # Middle
23 convm = Conv2D ( s t a r t n e u r o n s *16 , ( 3 , 3 ) , a c t i v a t i o n =” r e l u ” , padd ing =” same ” ) ( poo l4 )
24 convm = Conv2D ( s t a r t n e u r o n s *16 , ( 3 , 3 ) , a c t i v a t i o n =” r e l u ” , padd ing =” same ” ) ( convm )
25

26 deconv4 = Conv2DTranspose ( s t a r t n e u r o n s *8 , ( 3 , 3 ) , s t r i d e s = ( 2 , 2 ) , padd ing =” same ” ) (
convm )

27 uconv4 = c o n c a t e n a t e ( [ deconv4 , conv4 ] )
28 uconv4 = Dropout ( 0 . 5 ) ( uconv4 )
29 uconv4 = Conv2D ( s t a r t n e u r o n s *8 , ( 3 , 3 ) , a c t i v a t i o n =” r e l u ” , padd ing =” same ” ) ( uconv4 )
30 uconv4 = Conv2D ( s t a r t n e u r o n s *8 , ( 3 , 3 ) , a c t i v a t i o n =” r e l u ” , padd ing =” same ” ) ( uconv4 )
31

32 deconv3 = Conv2DTranspose ( s t a r t n e u r o n s * 4 , ( 3 , 3 ) , s t r i d e s = ( 2 , 2 ) , padd ing =” same ” ) (
uconv4 )

33 uconv3 = c o n c a t e n a t e ( [ deconv3 , conv3 ] )
34 uconv3 = Dropout ( 0 . 5 ) ( uconv3 )
35 uconv3 = Conv2D ( s t a r t n e u r o n s *4 , ( 3 , 3 ) , a c t i v a t i o n =” r e l u ” , padd ing =” same ” ) ( uconv3 )
36 uconv3 = Conv2D ( s t a r t n e u r o n s *4 , ( 3 , 3 ) , a c t i v a t i o n =” r e l u ” , padd ing =” same ” ) ( uconv3 )
37
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38 deconv2 = Conv2DTranspose ( s t a r t n e u r o n s * 2 , ( 3 , 3 ) , s t r i d e s = ( 2 , 2 ) , padd ing =” same ” ) (
uconv3 )

39 uconv2 = c o n c a t e n a t e ( [ deconv2 , conv2 ] )
40 uconv2 = Dropout ( 0 . 5 ) ( uconv2 )
41 uconv2 = Conv2D ( s t a r t n e u r o n s *2 , ( 3 , 3 ) , a c t i v a t i o n =” r e l u ” , padd ing =” same ” ) ( uconv2 )
42 uconv2 = Conv2D ( s t a r t n e u r o n s *2 , ( 3 , 3 ) , a c t i v a t i o n =” r e l u ” , padd ing =” same ” ) ( uconv2 )
43

44 deconv1 = Conv2DTranspose ( s t a r t n e u r o n s * 1 , ( 3 , 3 ) , s t r i d e s = ( 2 , 2 ) , padd ing =” same ” ) (
uconv2 )

45 uconv1 = c o n c a t e n a t e ( [ deconv1 , conv1 ] )
46 uconv1 = Dropout ( 0 . 5 ) ( uconv1 )
47 uconv1 = Conv2D ( s t a r t n e u r o n s *1 , ( 3 , 3 ) , a c t i v a t i o n =” r e l u ” , padd ing =” same ” ) ( uconv1 )
48 uconv1 = Conv2D ( s t a r t n e u r o n s *1 , ( 3 , 3 ) , a c t i v a t i o n =” r e l u ” , padd ing =” same ” ) ( uconv1 )
49

50 o u t p u t l a y e r = Conv2D ( 1 , ( 1 , 1 ) , padd ing =” same ” , a c t i v a t i o n =” s igmoid ” ) ( uconv1 )
51

52 r e t u r n o u t p u t l a y e r
53

54 i n p u t l a y e r = I n p u t ( ( i m g s i z e t a r g e t , i m g s i z e t a r g e t , 1 ) )
55 o u t p u t l a y e r = b u i l d m o d e l ( i n p u t l a y e r , 16)

Listing A.1: input image size 2×2
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Appendix B

Aorta Segmenting Function

1 d e f c i r c l e f i l t e r ( i , c e n t r e , i m a g e t y p e = ” r e g ” ) :
2 # s e t s l i c e
3 i f ( i m a g e t y p e == ” 255 ” ) :
4 i m g S l i c e = images 255 [ c t n u m b e r ] [ : , : , i ]
5 e l i f ( i m a g e t y p e == ” c ropped ” ) :
6 i m g S l i c e = c r o p p e d i m a g e s [ c t n u m b e r ] [ : , : , i ]
7 e l i f ( i m a g e t y p e == ” c r o p p e d 2 5 5 ” ) :
8 i m g S l i c e = c r o p p e d i m a g e s 2 5 5 [ c t n u m b e r ] [ : , : , i ]
9 e l i f ( i m a g e t y p e == ” r e g ” ) :

10 i m g S l i c e = images [ c t n u m b e r ] [ : , : , i ]
11

12 # re − n o r m a l i z e
13 i f ( n o r m a l i z e ) :
14 i m g S l i c e = s i t k . Cas t ( s i t k . R e s c a l e I n t e n s i t y ( i m g S l i c e ) , s i t k . s i t k U I n t 8 )
15

16 # make new image f o r p u t t i n g seed i n
17 s e g 2 d = s i t k . Image ( i m g S l i c e . G e t S i z e ( ) , s i t k . s i t k U I n t 8 )
18 s e g 2 d . C o p y I n f o r m a t i o n ( i m g S l i c e )
19

20 # add o r i g i n a l s eed and a d d i t i o n a l s e e d s t h r e e p i x e l s a p a r t
21 s p a c i n g = 3
22 f o r j i n r a n g e ( −1 ,2 ) :
23 one = c e n t r e [ 0 ] + s p a c i n g * j
24 two = c e n t r e [ 1 ]
25 s e g 2 d [ ( one , two ) ] = 1
26

27 s e g 2 d = s i t k . B i n a r y D i l a t e ( seg 2d , [ 3 ] * 2 )
28

29 # d e t e r m i n e t h r e s h o l d v a l u e s based on seed l o c a t i o n
30 s t a t s = s i t k . L a b e l S t a t i s t i c s I m a g e F i l t e r ( )
31 s t a t s . Execu te ( imgS l i ce , s e g 2 d )
32

33 f a c t o r = 3 . 5
34 l o w e r t h r e s h o l d = s t a t s . GetMean ( 1 ) − f a c t o r * s t a t s . GetSigma ( 1 )
35 u p p e r t h r e s h o l d = s t a t s . GetMean ( 1 ) + f a c t o r * s t a t s . GetSigma ( 1 )
36

37 # use f i l t e r t o a p p l y t h r e s h o l d t o image
38 i n i t l s = s i t k . S ignedMaurerDis tanceMap ( seg 2d , i n s i d e I s P o s i t i v e =True , use ImageSpac ing =

True )
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39

40 # segment t h e a o r t a u s i n g t h e seed v a l u e s and t h r e s h o l d v a l u e s
41 l s F i l t e r = s i t k . T h r e s h o l d S e g m e n t a t i o n L e v e l S e t I m a g e F i l t e r ( )
42 l s F i l t e r . Se tL owe rT hre sho ld ( l o w e r t h r e s h o l d )
43 l s F i l t e r . S e t U p p e r T h r e s h o l d ( u p p e r t h r e s h o l d )
44 l s F i l t e r . SetMaximumRMSError ( 0 . 0 2 )
45 l s F i l t e r . S e t N u m b e r O f I t e r a t i o n s ( 1 0 0 0 )
46 l s F i l t e r . S e t C u r v a t u r e S c a l i n g ( . 5 )
47 l s F i l t e r . S e t P r o p a g a t i o n S c a l i n g ( 1 )
48 l s F i l t e r . R e v e r s e E x p a n s i o n D i r e c t i o n O n ( )
49 l s = l s F i l t e r . Execu te ( i n i t l s , s i t k . Cas t ( imgS l i ce , s i t k . s i t k F l o a t 3 2 ) )
50

51 # a s s i g n s e g m e n t a t i o n t o f u l l y s e g s l i c e
52 i f ( w h i t e c i r c l e s ) :
53 f u l l y s e g s l i c e = l s >0
54 e l s e :
55 i f ( i m a g e t y p e == ” 255 ” o r i m a g e t y p e == ” r e g ” ) :
56 f u l l y s e g s l i c e = s i t k . L a b e l O v e r l a y ( images 255 [ c t n u m b e r ] [ : , : , i ] , l s >0)
57 e l s e :
58 f u l l y s e g s l i c e = s i t k . L a b e l O v e r l a y ( c r o p p e d i m a g e s [ c t n u m b e r ] [ : , : , i ] , l s >0)
59

60 # g e t a r r a y from s e g m e n t a t i o n
61 nda = s i t k . GetArrayFromImage ( l s >0)
62

63 # c a l c u l a t e a v e r a g e x and a v e r a g e y v a l u e s , t o g e t t h e new c e n t r e v a l u e
64 avg x = 0
65 avg y = 0
66 t o t a l c o o r d = 0
67

68 f o r x i n r a n g e ( l e n ( nda ) ) :
69 f o r y i n r a n g e ( l e n ( nda [ 0 ] ) ) :
70 i f ( nda [ x ] [ y ]==1) :
71 avg x += x
72 avg y += y
73 t o t a l c o o r d +=1
74

75 c e n t r e n e w = ( i n t ( avg y / t o t a l c o o r d ) , i n t ( avg x / t o t a l c o o r d ) )
76

77 r e t u r n f u l l y s e g s l i c e , t o t a l c o o r d , c e n t r e n e w , l o w e r t h r e s h o l d , u p p e r t h r e s h o l d

Listing B.1: Aorta Segmenting Function
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Appendix C

SimpleITK for Aorta segmentation

This is work from Kailin, modified her work to generate training data.
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Overview
The goal of this algorithm is to fully segment the thoracic aorta. A diagram of the thoracic aorta
is shown below.

Image from the Cleveland Clinic

This algorithm consists of five main sections:
1. Setup - cropping the image and performing contrast enhancement
2. Axial Segmentation - segmenting the aorta axially. This is a two step process.

a. The descending aorta is segmented first.
b. The ascending aorta and aortic arch are segmented second.

Both the descending and ascending segmentations require a user-entered seed value.
3. Sagittal Segmentation - segmenting the aorta sagittally to smooth out the existing

segmentation
4. Frontal Segmentation - segmenting the aorta frontally to smooth out the existing

segmentation
5. Output - exporting the segmentation as a VTK file that can be viewed in Paraview.

This algorithm was tested in Jupyter Labs using Python 3.9.4. The code can be found in the
master branch of the GeomRecon repository under People > Kailin > src > circle-method.ipynb.
The following document will outline this algorithm in more detail. You can also follow along using
the comments in the Jupyter Notebook file.



General Flowchart
Below is a more visual representation of the algorithm explained above.



Detailed Description of Processes
Several of the processes in the “General Flowchart” are described below.

Manually input index and size of cropped CT
To determine these values, you can open the cropped CT in ITK-Snap. In ITK-Snap, you can
visualize a region of interest by clicking the "active contour" button in the Main Toolbar - it looks
like a snake. You can then drag the red dotted line to the appropriate size. The "Position" values
correspond with the indexes or index variable. This is the point closest to the right, anterior,
inferior corner. "Size" corresponds to the sizes or size variable.

Increase Contrast of Cropped CT
1. Apply histogram equalization (HE) to the cropped CT to increase contrast

a. The HE algorithm flattens the image into an array. At this point, the elements in
the array (i.e., the intensities), are likely within a small range. Next, a mapping
table is created. The elements in the array are spread across this table to get a
wider range of intensities. The array is turned back into an image. This increases
the contrast of the image.

2. Apply a median filter to the cropped CT to reduce noise
a. Ahmed and Nordin, at the School of Computer Science at University Kebangsaan

Malaysia, recommended the use of a median filter to reduce noise after
performing contrast enhancement.
[https://thescipub.com/pdf/jcssp.2011.1831.1838.pdf]

b. The aorta segmentation algorithm uses the built-in median filter provided by
SimpleITK



Select Voxel & Segment the Descending Aorta Along the Axial Plane
Below is a more detailed flowchart of the descending aorta segmentation algorithm.



Segment forwards & detect whether the aortic curve has been reached
Below is an even more detailed flowchart describing the forward segmentation algorithm.



The “segment around pixel on current slice” represents a function that accepts the image slice
and the centre of gravity of the previous image.

The function assigns the centre of gravity as a seed and assigns two other seeds nearby. It
calculates the upper and lower threshold based on the mean and sigma intensities of the given
slice:

lower_threshold = stats.GetMean(1)-factor*stats.GetSigma(1)
upper_threshold = stats.GetMean(1)+factor*stats.GetSigma(1)

It then creates a Euclidean image of the CT slice using the
SignedMaurerDistanceMapImageFilter.  Next, it applies the
ThresholdSegmentationLevelSetImageFilter on the Euclidean image, using the threshold values
to segment around the seeds.

The function calculates the size and centre of gravity of the segmented image by counting the
pixels.

The function returns the segmented slice, size, new centre of gravity, and threshold values.

Segment backwards & detect whether the bottom has been reached
Same as segment forwards, except instead of increasing current slice by one, decrease current
slice by one.

Select Voxel & Segment the Ascending Aorta Along the Axial Plane
This is virtually the same as Select Voxel & Segment the Descending Aorta Along the Axial
Plane. Here are a few of the differences:

Comparison between Descending and Ascending Aorta Functions

Descending Aorta Ascending Aorta

- To determine the threshold values,
circle_filter (the descending
aorta function) accepts a centre value
(x,y) for each axial slice. Centre acts
as a seed value. The function “creates”
two additional seeds 3 pixels to the left
and right of the centre. Thus,
circle_filter uses 3 closely

- To determine the threshold values,
circle_filter_arch (the
ascending aorta function) accepts a
list of seeds, in addition to a centre
value (x,y) for each axial slice. It uses
the seeds and the centre value to
calculate the threshold values.

- After it gets the next segmentation, it



spaced seed values to calculate the
threshold values.

finds the next seed values. It does this
by getting a point 25% outwards from
the centre value in the x, y, -x, and
-y directions. (By 25% I mean 25% of
width/height of segmentation).

- I chose to use a more robust seed
value approach for the ascending
aorta because
circle_filter_arch is
responsible for segmenting the aortic
arch. Since we are segmenting axially,
the aortic arch is a long, peanut
shape. 3 closely spaced seed values
would not achieve accurate threshold
values. This method gives us seeds
that are further spaced apart from one
another.

- When segmenting towards the aorta,
the descending aorta stops once it is 4
times the size of the original size.

- When segmenting towards the aorta,
the ascending aorta stops once it is 4
times the size of the original size. This
is because of the long, peanut shape
mentioned earlier. Instead, it bases
most of the calculations on the
previous image size

- The algorithm (for the ascending aorta
towards the arch) also changes the
factor_size_overlap value
depending on whether it has gotten to
the peanut shape section and whether
the peanut has started decreasing in
size.

- If it has gotten to the peanut shape
and the ascending aorta segmentation
has started to overlap with the
descending aorta segmentation,
factor_size_overlap is
increased to accommodate for the
rapidly growing size

- If the peanut size is decreasing,
factor_size_overlap will also
decrease to avoid over segmentation

Segment the entire aorta along the sagittal plane
This process segments the aorta sagittally to smooth out the existing segmentation. The sagittal
segmentation section takes the current segmented image and iterates through every sagittal



slice. If there is a decent number of “segmented pixels” under a given slice from the previous
axial segmentation, the algorithm uses all the points on that slice as seed values. These seed
values are used to determine the threshold values and create a new segmentation. If the new,
sagittal segmentation has any new pixels that the axial segmentation did not, the new pixels will
be added to the axial segmentation.

Segment the entire aorta along the frontal plane
Segment the aorta frontally to further smooth out the existing segmentation. It uses the same
logic as the sagittal segmentation.

* Note: I created a variable called faulty that is assigned to 1 if the image is likely inadequate.
Faulty is assigned to 0 if it is likely adequate. Faulty is determined during the ascending
aorta section of the algorithm. If the size of the axial peanut reaches 2 times the original size of
the aortic circle, the image is likely to be adequate for the algorithm to work. Similarly, if the
ascending aorta segmentations meet the descending aorta segmentations, the image is likely to
be adequate.
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