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Abstract
In this thesis, we study the unconventional superconductivity in Sr2RuO4 (SRO)
and related systems. The superconducting state in SRO remains a puzzle after
more than 28 years of study. Early experiments had pointed toward a topological
non-trivial time-reversal symmetry breaking (TRSB) chiral p-wave order. This
pairing candidate has attracted a large amount of attention, partly in relation to
the possibility of topological quantum computation, and has stimulated studies
on higher chirality superconducting systems. In the first part of this thesis, we
study the spontaneous edge current in chiral d- and f -wave superconductors. We
show that these currents, which vanish in the continuum limit at zero temperature,
are generally non-vanishing but tiny, compared to the simplest chiral p-wave case.
In the presence of strong surface roughness, the direction of the edge current in
the chiral d-wave case can be reversed, compared with that of a specular ideal
surface with specular scattering. However, it is shown that this current reversal is
non-universal beyond the continuum limit.

The chiral p-wave scenario in SRO is overturned by recent Knight shift mea-
surements, highlighting the importance of exploring different pairing symmetries
for SRO. Recently, dx2−y2 ± igx2−y2(xy), s′ ± idxy and mixed helical p-wave pair-
ings have been proposed as order parameter candidates. However, the stability
of these states, especially of the dx2−y2 ± ig pairing, remains unclear. In the sec-
ond part of the thesis, we study the leading superconducting instabilities in SRO
in the presence of sizable atomic spin-orbit coupling (SOC), non-local SOC, and
non-local interactions. We find that it is difficult to stabilize chiral p-wave pairing
in SRO models; this is because, among the triplet p-wave states, the atomic SOC
favors helical states over the chiral state. The presence of both dx2−y2- and g-wave
pairings, including a dx2−y2 ± ig state, is found when the second nearest neighbor
(in-plane) repulsions, together with orbital-anisotropy of the non-local interactions
and/or the B2g channel non-local SOC are included. We further analyze the prop-
erties, such as nodal structures, in-plane field spin-susceptibility, and spontaneous
edge current, of the realized dx2−y2 ± ig pairing and find that this state is more
compatible with existing experimental measurements than the s′ ± idxy and the
mixed helical p-wave proposals.
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Chapter 1

Introduction

1.1 Historical introduction

Superconductivity has been one of the most extensively studied quantum me-
chanical phenomena in condensed matter physics since its discovery in 1911 by
Kamerlingh-Onnes, who observed the resistivity of mercury becoming unmeasur-
ably small below temperatures of 4.2K. [1] Subsequently, superconductivity was
shown to appear in a wide range of metals. [2] However, there was no satisfac-
tory microscopic theory of this phenomenon until the advent of the celebrated
Bardeen-Schrieffer-Cooper (BCS) theory in the 1950s. [3]

In the BCS theory, superconductivity is a condensate of electron pairs, called
Cooper pairs, which form due to even a weak attraction among electrons close
to the Fermi surface. [4] In the particular model that BCS solved, the attrac-
tion is mediated by electron-phonon coupling and the resulting Cooper pairs are
in a spin-singlet state with vanishing relative orbital angular momentum, i.e. an
s-wave pairing state. [3] This theory particularly successfully described the proper-
ties of superconductors discovered at that time, commonly known as conventional
superconductors.

Since the 1970s, several systems have been discovered to exhibit Cooper pairing
beyond the original BCS description, i.e. unconventional Cooper pairing. The
discovery of superfluidity in 3He in 1971 provided the first example and started
the era of unconventional superconductivity. [5, 6] The pairing state in liquid 3He
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is in a spin-triplet state with relative angular momentum 1, called the p-wave
state. Its pairing mechanism is non-phononic, arising from van der Waals and spin-
fluctuations mediated interactions. [6, 7] Many unconventional superconductors
have since been discovered. Particularly, the discovery of high-temperature (high-
Tc) superconductivity in cuprate compounds in the 1980s [8] popularised the field
of unconventional superconductivity. Later, the Cooper pair wave function in the
cuprates was found to have dx2−y2-wave symmetry. [9, 10, 11]

It is believed that electron-electron interactions play an essential role in sta-
bilizing the higher angular momentum pairings. [12, 13, 14] Electrons in metals
interact primarily by the Coulomb interaction, which is repulsive at short dis-
tances but can be attractive at longer distances. [14] In principle, the p-, d-, or
f - wave pairing with higher angular momentum can exist since their wave func-
tions vanish at short distances, evading the short-distance repulsion. The exact
mechanism for superconductivity originating from the Coulomb interaction can
be rather complex. To date, no controlled many-body perturbation method (be-
yond infinitesimal interaction strength [15]) has been developed to address this
issue. [16]

In this thesis, we will study an actual example of unconventional supercon-
ductors, Sr2RuO4 (SRO). Superconductivity in this material was discovered by
Maeno et al in 1994. [17] Since then, it has been subjected to extensive experi-
mental and theoretical studies. Therefore, in the following, we will aim to review
a limited subset of the literature. For more detailed reviews, one can refer to
Refs. [19, 20, 18, 21, 22, 23, 24, 25, 26, 27, 28].

SRO has the same layered perovskite structure as some of the cuprates (in
Fig. 1.1), but it is quite distinct from the cuprates in both the normal and the su-
perconducting states. [18] In many respects, SRO is an ideal testbed for microscopic
theories of unconventional superconductivity. SRO behaves like a Fermi liquid be-
low about 30K, but with considerable mass and susceptibility enhancements, indi-
cating strong electron correlations. [18] The SRO samples are extremely clean, so
the complicating factors associated with disorder or doping can often be ignored in
theoretical and experimental studies. Also, because such high-quality single crys-
tals are available, [29] the normal state Fermi liquid and Fermi surface (FS) sheets
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Figure 1.1: Layered perovskite structure of SRO and the high-Tc
family La2−xBaxCuO4. Adapted from [Y. Maeno, T. M. Rice, and
M. Sigrist, Physics Today 54, 1, 42 (2001)], with the permission of
the American Institute of Physics.

are characterized with unprecedented accuracy and precision. [30, 31, 20, 32, 18]
SRO becomes superconducting below 1.5K with a mean-field, BCS-like transi-
tion. [18] The transition temperature, Tc, is extremely sensitive to non-magnetic
impurities, as expected for unconventional superconductivity where the super-
conducting gap averages to zero around the FS. [33, 18] These have led to the
widespread belief that SRO is soluble within the capacity of established theoret-
ical frameworks and experimental techniques. Nevertheless, despite tremendous
efforts over the past 28 years, an order parameter (OP) compatible with all the
key experimental observations is still lacking.

Indeed, many experiments appear to infer contradictory conclusions regard-
ing the pairing symmetry in SRO. For example, broken time-reversal symme-
try (TRS) in the superconducting state has been observed in multiple experi-
ments, [34, 35, 36] however, direct searches for the spontaneous edge currents
expected in a broken TRS superconducting state (discussed below) all return null
results. [37, 38, 39, 40] Also, the evidence of a two-component superconducting OP
(discussed in Chap.2), [34, 35, 41, 42, 43, 44] is challenging to reconcile with the
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absence of splitting in the superconducting transition temperature in specific heat
measurements under uniaxial strain [45]. These contradictions pose challenges for
both theorists and experimentalists.

Another feature that complicates theoretical studies for SRO is its multi-orbital
nature. SRO has three FS sheets (shown in Fig.1.2), which are highly two-
dimensional, reflecting the large anisotropy of this material. [18] Among them,
the quasi-two-dimensional (2D) band, labelled as the γ-band, arises primarily
from Ru dxy orbitals, whereas the dxz and dyz orbitals form two quasi-1D bands
which hybridize to give the α and β bands. [30] The presence of sizable spin-
orbit coupling (SOC), which entangles the three orbital degrees of freedom with
spin [46, 47, 48, 49, 50, 32, 51, 52], further complicates the microscopic analysis.

Figure 1.2: The three sheets of the FS of SRO, labeled α, β and
γ, are shown in the ab plane from high-resolution ARPES measure-
ments. Figure adapted from [A. Tamai et al., Phys. Rev. X 9,
021048 (2019)] under the terms of the Creative Commmons Attri-
bution 4.0 International license.
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1.2 Chiral superconductivity and spontaneous edge
currents

Shortly after the discovery of superconductivity in SRO, it was proposed that the
material has a spin-triplet odd-parity p-wave pairing that is a 2D analog of one of
the pairing states in superfluid 3He. [53, 54] Evidence of this proposal came first in
nuclear magnetic resonance (NMR) Knight shift measurements [55, 56] and sepa-
rately in a polarized neutron scattering measurement [57], which both suggested
an unchanged in-plane field spin susceptibility below Tc. The absence of a drop
in the spin susceptibility points to spin-triplet pairing.[6] The odd-parity feature
was later supported by a Josephson interference measurement. [58] These obser-
vations, combined with the further reports of broken TRS in the superconducting
state in muon spin relaxation (µSR) [34] and polar Kerr effect[35] measurements,
point toward chiral p-wave, px ± ipy, order in SRO. The “±” in the chiral order
corresponds to two degenerate chiralities.

A chiral px ± ipy pairing has several striking properties. [59] It spontaneously
breaks TRS due to the fact that its Cooper pairs carry nonzero angular momen-
tum Lz = ±~, where ~ is Planck’s constant. This topologically non-trivial state
supports localized states at the sample edges which are robust against local per-
turbations since they are protected by the topology of the bulk gap. The existence
of the edge modes leads naturally to the expectation of spontaneous edge cur-
rents, the direction of which typically depends on the sign of chirality. [60] As a
triplet superconductor, additional exotic properties arise from the spin degrees of
freedom (the spin structures are discussed in more detail below), including, for
example, half-quantum vortices (HQVs). [6, 59] These HQVs support zero-energy
Majorana modes at vortex cores. [59] The HQV-Majorana mode composites obey
non-Abelian braiding statistics when moved around each other [61] which has at-
tracted great interest for its potential applications in quantum computing [62].
(For more details, one can refer to Refs. [59, 25] and references therein.)

There are other materials that could potentially exhibit chiral superconductivity
besides SRO. SrPtAs [63] and doped Graphene [64] are two examples for possible
chiral d-wave superconductors. Recently, UTe2 has been proposed to be a 3D chiral
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triplet superconductor. [65] Other uranium-based heavy fermion compounds, such
as URu2Si2 and UPt3, may also support 3D chiral superconductivity with higher
angular momentum. [25].

Given how highly anisotropic SRO is, 2D models are commonly employed to
describe its electronic and superconducting properties. In the continuum limit, the
orbital part of the superconducting gap function of a 2D chiral superconductor is
described as,

∆k = ∆0

(
kx ± iky
kF

)|m|
= ∆0

(
k

kF

)|m|
eimθk , (1.1)

where m denotes the orbital angular momentum of the Cooper pairs, e.g. m = ±1,
±2, and ±3 for chiral p-, d-, and f -wave superconductors, respectively. ∆0 is the
magnitude of the gap, θk is the angle of wavevector k with respect to the x-axis
and kF is the Fermi wavevector. The quantized orbital angular momentum m

coincides with the Chern number, C, a topological number given by the winding
of the chiral OP around the FS [66, 67]:

C ≡ 1
4π

∫
d2kĥ ·

(
∂kxĥ× ∂ky ĥ

)
= m, (1.2)

where h = (Re[∆(k)],−Im[∆(k)], ε(k)− µ) and ĥ = h/|h|, with ε(k) − µ the
normal state single-particle dispersion relative to the chemical potential, µ. The
sign of the Chern number depends on the chirality and the sign of the charge
carriers.

The Chern number counts the number of chiral edge modes in a chiral super-
conductor. [68, 69] A direct consequence of these edge modes is the spontaneous
edge current. However, the chiral edge current itself is not topologically protected
and can strongly depend on microscopic details [68, 69, 70, 71, 72], since charge
is not conserved in a superconducting state. Furthermore, the bulk states also
contribute to the edge current.[60]

For the simple chiral p-wave order and a single isotropic conduction band, the
edge current is substantial [73, 60, 74]. Neglecting screening effects, the total
edge current, which is localized within a coherence length of the edge, is given by
J tot = eEF/4π, where e is the electron charge, EF = k2

F/2m∗ in the continuum
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limit and m∗ is the fermion mass. [60, 74, 68, 69] This result is consistent with
the prediction of a macroscopic angular momentum of 〈Ltot

z 〉 = N~/2, for N elec-
trons. [60] The substantial edge current would be screened by diamagnetic screen-
ing currents with different length scales, generating spatially varying magnetic
fields. [75] These magnetic fields are expected to be detected by high-sensitivity
magnetic scanning microscopy experiments, [76] but direct searches for them have
all returned null results and have placed a strict upper bound on their magnitude
that is about three orders of magnitude smaller than the simplest chiral p-wave
prediction. [37, 38, 39, 40] Over the years, a significant amount of work has at-
tempted to reconcile the chiral p-wave order with the absence of edge currents in
SRO. Finite temperature [60, 74], gap anisotropy [77, 69], surface disorder [78, 79]
and other surface effects [80, 81, 82, 77] have been raised for reductions in the
current.

In contrast to the chiral p-wave case, the edge currents in higher chirality su-
perconductors are less studied. In the absence of Meissner screening, Refs. [68, 69]
showed that the total currents of the higher chirality superconductors vanish in
the semiclassical continuum limit at zero temperature, T = 0. On the other hand,
Ref. [83] found a non-zero current for chiral d-wave in the presence of surface rough-
ness and also noted that the direction of the current flow was reversed compared
to the specular surface case.

In Chapter 3, we study the effects of finite temperature, Meissner screening, and
surface roughness on edge currents in 2D chiral d- and f - wave superconductors
within the quasi-classical approximation. We show that the total edge currents in
the higher chirality superconductors are non-zero at finite T or with rough surfaces,
although they may vanish at T = 0 with a specular surface. We also show that
the current reversal observed in Ref.[83] in the presence of surface roughness is
non-universal beyond the continuum limit.

Our results can be extended to 3D chiral superconductors since the total edge
current depends only on the projection of the Cooper pair relative orbital angular
momentum Lz. [68, 72] For example, the edge current for the 3D chiral d-wave
state, kz(kx ± iky), is closely related to the chiral p-wave case in 2D.
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1.3 Spin-orbit coupling and pseudospin-triplet pair-
ings

Although multiple early experiments point toward chiral p-wave order in SRO, this
state is difficult to reconcile with several other experiments. A prominent example
is the absence of spontaneous edge current that has been discussed in Sec. 1.2. Also,
splitting of the superconducting transition temperature, Tc, in the presence of an
in-plane magnetic field or a uniaxial strain [84, 85, 86] is expected but not found.
Furthermore, the in-plane upper critical field appears to be Pauli-limited, [87]
which is not expected for triplet pairing, as one has with chiral p-wave. [88, 89, 90,
91] While some of these discrepancies can be explained within the chiral p-wave
framework by invoking microscopic details or sample imperfection, this proposal
is strongly challenged by recent revised Knight shift measurements [92, 93, 94]. In
contrast to previous measurements [55], a substantial spin susceptibility drop in
the presence of an in-plane field in the superconducting state is reported and is
further confirmed by a polarized neutron scattering study [95]. This observation
rules out chiral p-wave order, and reopens the debate regarding the symmetry of
the superconducting OP in SRO. [27, 28, 96, 97, 98]

Which of the triplet states is more favorable in SRO had been a long-standing
and unanswered question. By convention, a triplet OP can be described by a
d-vector as, [99]

∆̂(k) =
 ∆↑↑ ∆↑↓

∆↓↑ ∆↓↓

 =
 −dx(k) + idy(k) dz(k)

dz(k) dx(k) + idy(k)

 , (1.3)

where
d(k) = 1

2
(
∆↓↓ −∆↑↑,−i(∆↓↓ + ∆↑↑),∆↑↓ + ∆↓↑

)
. (1.4)

∆ss′(k) is the OP with spin indices s and s′. The Pauli exclusion principle neces-
sarily implies odd parity for the spatial wave function of a triplet Cooper pair, i.e.
d(k) = −d(−k). The direction of the d-vector denotes the direction along which
the spin of the Cooper pair state has zero spin projection.

In conjunction with the tetragonal crystal lattice structure of SRO, the d-vector
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has to belong to one of the five odd-parity irreducible representations (irreps.) of
the underlying D4h point group as shown in the last five rows in Table. 2.1. The
odd-parity irreps. can be split into two groups. The four 1D irreps. give helical
pairings with in-plane d(k) and do not break TRS; the 2D irrep. supports two
chiral states ẑ(kx ± iky) with out-of-plane d(k) and spontaneously broken TRS.

In the absence of SOC, and in the weak-coupling limit, all these helical and
chiral p-wave states are degenerate since spin rotation symmetry is preserved. [100]
The d-vector could be the linear combination of all these states, allowing it to
rotate freely. The degeneracy can be lifted through the spin fluctuation feedback
effect due to the superconducting condensate or through the normal state SOC
effect. The feedback effect has been used to stabilize the 3He A phase [6]. However,
this effect is subdominant in SRO since it only appears at fourth-order terms in
a Ginzburg-Landau free energy expansion, while the SOC effect can split Tcs at
quadratic order [100]

How SOC pins the d-vector, thereby favoring one of the triplet states in SRO,
has been investigated previously in Refs. [100, 101, 102, 103, 46, 104, 48, 105, 51,
106, 107, 108], but is not fully understood. There are also conflicting statements
regarding the degeneracy among different p-wave pairing states. For example, An-
nett et al.[46], using a mean-field approach, showed that the chiral p-wave state is
unlikely to be stabilized, since 〈L · S〉 = 0, unless spin-dependent pairing interac-
tions are included. Yanase et al.[103], pointed out that SOC itself is insufficient to
lift the degeneracy. They stabilized the chiral p-wave order by solving Eliashberg
equations only for the γ band. Scaffidi et al.[51] found that chiral p-wave, helical
p-wave, or a singlet state is favored depending on the details of the interactions
using a weak-coupling renormalization group (RG) analysis. This work differs in
some conclusions from the mean-field analysis of Ref. [46]. Furthermore, the weak-
coupling RG analysis of Ref. [51] gives comparable gaps on all three bands, unlike
in Ref. [103].

In Chapter 4, we present a complete analysis to address this issue. We show
that chiral p-wave pairing is difficult to stabilize in SRO models; while helical
states are generally dominant over chiral. As a result, accidentally degenerate
helical states can be stabilized. Such pairings are recently proposed by Huang
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et al.[96] from a phenomenological analysis to explain several key observations in
SRO, including the intrinsic Hall and Kerr effects [59], the absence of spontaneous
edge currents [37, 38, 39, 40], and the substantial Knight shift drop [92, 93, 94].
In Chap. 5, we further study the properties of the realized mixed helical state, to
see if it can be reconciled with the experiments.

In the above discussion, spin has been discussed as a good quantum number.
However, this is not the case in the presence of SOC. It is always possible to define
a pseudospin and classify a pairing state into a pseudospin singlet or triplet pairing
state due to the preserved time-reversal and inversion symmetries, which ensure a
twofold degeneracy at each k point in the Brillouin zone (BZ). [109, 52] In most
circumstances, one can transfer to the pseudospin settings by replacing spin with
pseudospin. For the sake of simplicity, we often drop the (pseudo)spin and call
(pseudo)spin singlet/triplet pairings as singlet/triplet pairings.

1.4 Accidentally degenerate dx2−y2+igxy(x2−y2) pair-
ing in the presence of longer range interac-
tions

Recently, the debate regarding the symmetry of the superconducting OP in SRO
has substantially heated up since the chiral p-wave scenario, which has been dom-
inant in the past two decades, is ruled out by the revised Knight shift measure-
ments. [92, 93, 94] However, identifying the pairing symmetry in SRO is rather
challenging, as there have been a large number of experiments on the supercon-
ducting state in SRO, and some observations seem contradictory. [23, 26, 27, 28]
It is possible that some observations may have an alternative interpretation or
may be due to extrinsic effects. One practical strategy is to focus on a subset of
experiments with clear implications and reconcile as many of them as possible. In
Chap. 2, we briefly introduce some experiments in this subset that are relevant to
determining the superconducting OP in SRO.

Recently, an accidentally degenerate dx2−y2 ± igxy(x2−y2) pairing was proposed
from a phenomenological standpoint [27, 110] to account for a wide variety of the
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experimental results for SRO. For example, a dx2−y2 + ig pairing state sponta-
neously breaks TRS [34, 35, 36] and has symmetry-protected vertical line nodes
in the (1,1,0) direction that are consistent with the experimental observations in
Refs. [111, 112, 113]. It is also compatible with the observed discontinuity in the
c66 elastic modulus[42, 43], NMR Knight shift measurements data [92, 93, 94], neu-
tron scattering data [114] and splitting of superconducting and TRSB transitions
under uniaxial strain [44].

However, the settlement of this proposal seems delicate in many aspects. First,
this pairing state, as well as all other proposals with coexisting OP components
associated with two distinct 1D irreps. in D4h point group (in Table. 2.1), requires
fine-tuning so that Tc ≈ Ttrsb. A recent study[115] shows that this requirement
can be somewhat relaxed by considering inhomogeneous states, where, for exam-
ple, the second OP is induced by inhomogeneous strains near dislocations. In
addition, such inhomogeneous states [116, 115] may provide a route to explain the
observation of HQVs [117] and the absence of a measurable heat capacity anomaly
at the TRSB transition [45].

The second concern lies in the stability of the g-wave component. The dx2−y2

state is found to be stable in previous studies of SRO models with on-site Coulomb
interactions using different approaches, including the asymptotically exact weak-
coupling RG [51, 106, 108, 52], random phase approximation (RPA) [106, 107, 52,
118, 119], and functional RG approach [120, 121]. However, no previous study of
SRO has found the g-wave state. This is because g-wave pairing has a quite high
angular momentum. For example, within a single band model on a 2D square
lattice, g-wave pairing wave functions are non-vanishing only at distances longer
than the third-neighbour sites. [122]

Thus, the most vexing question for this scenario is how these two symmetry-
distinct components can be near degenerate without the need for fine-tuning to
form a homogeneous or inhomogeneous TRSB OP. In Chap.5, we study the key
effects that stabilize both dx2−y2 and g-wave, including the dx2−y2 + ig pairing. We
show that non-local Coulomb repulsions and non-local SOC with B2g symmetry
are crucial to stabilizing the dx2−y2 + ig pairing. We further analyze the properties,
including nodal structures, spin susceptibility, and spontaneous edge current, of
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the realized dx2−y2 + ig state, and find that this state is in better agreement with
the experiments than the realized s′ + idxy, and mixed helical pairings.

1.5 Outline of this thesis

The remainder of this thesis is organized as follows. In Chap.2, we briefly introduce
some important experimental measurements on SRO and their interpretations.
In Chap.3, we focus on 2D higher chirality superconductors in the continuum
limit and study the spontaneous edge current in these systems in the presence of
finite temperature, Meissner screening, and surface roughness effects. In Chap.4
and Chap.5, we focus on the pairing mechanism and pairing symmetry in SRO.
How SOC lifts the degeneracy among different triplet p-wave pairing states is
analyzed in Chap.4. The stability and the properties of dx2−y2 + ig pairing in
the presence of longer-range interactions are discussed in Chap.5. In Chap.6, we
provide some general conclusions and outlook for future related work. Finally,
some details are left to the appendices, including the quasiclassical Eilenberger
formalism for chiral superconductors in App.A, the Ginzburg-Landau analysis of
the SOC effect on triplet p-wave states in App.B and the derivation of the RPA
effective interaction in the Cooper pairing channel in the presence of both local
and longer-range interactions in App.C.

12



Chapter 2

Experimental results on the
superconducting state in SRO

This chapter briefly discusses some key experiments on the superconducting state
of SRO and their interpretations. For more detailed reviews, one can refer to
Refs. [23, 26, 27, 28].

2.1 Cooper pair spin state

The spin structure of a Cooper pair can be distinguished by spin susceptibility
measurements. [123] In a singlet superconductor, the spin susceptibility, χ, drops
as the temperature is lowered through Tc for any direction of the applied field,
whereas, for a triplet superconductor, it drops if the applied field is parallel to
the direction of zero-spin projection of the Cooper pairs. More specifically, in the
absence of SOC and with a single band, the residual in-plane spin susceptibility,
χ(T = 0)/χn, is 0 for singlet states; while it is 1/2 for helical states and 1 for
chiral states. [123] Although there is no experiment that measures χ directly and
quantitatively, the Knight shift measurements in NMR experiments can give us
information on the behavior of χ(T ).

The revised NMR Knight shift measurements [92, 93] report a significant in-
plane Knight shift drop below Tc. This implies a substantial drop of in-plane χ
which rules out chiral p-wave order. Ref. [94] further estimates the upper bound
for the residual is χ(T = 0)/χn < 10%, a value that contradicts triplet pairings
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of any sort. We also note that Refs. [28, 96] argue that the helical scenario is
still viable in the sense that the exact temperature dependence of χ(T )/χn is still
unclear.

2.2 Broken time-reversal symmetry

Shortly after the discovery of superconductivity in SRO, evidence of TRSB in
SRO was found in muon spin resonance (µSR) experiments, where muon relaxation
consistent with additional weak internal magnetic fields below Tc was observed.[34]
Later, polar Kerr effect measurements observed a nonzero Kerr angle below Tc,
providing strong and direct evidence for TRSB superconductivity.[35]. Further
support comes from a Josephson interferometry measurement.[36].

The observations of TRSB superconductivity put a strong constraint on possible
OPs: the OP has two degenerate components that presumably form a complex gap
function. A multi-component pairing is realized if its two components belong to
the 2D irreps. of the crystal point symmetry group (in Table 2.1), such as spin-
triplet px ± ipy pairing with Eu symmetry and spin-singlet dxz ± idyz pairing (Eg
symmetry). Another possibility is coexisting OPs associated with distinct 1D
irreps. (in Table 2.1), which usually requires fine-tuning.

Spontaneous equilibrium currents at the edges of the sample, in the absence
of any externally applied fields, are generally expected due to the broken TRS.
However, searches for the magnetic fields produced by the predicted edge currents
have all returned null results [37, 38, 39, 40], as discussed in Sec.1.2 in Chap.1.

2.3 Discontinuity in elastic moduli across Tc
Measurements of changes in the elastic moduli near Tc using resonant ultrasound
spectroscopy [42] provide symmetry-related constraints on possible OPs in SRO.
Elastic moduli are second derivatives with respect to the strain, εΓ, of the thermo-
dynamic free energy, F : cΓ = ∂2F/∂ε2Γ. For a two-component superconducting
OP: ∆ = (∆x,∆y), the leading order coupling has the following form in the
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irrep. Basis function dimension
A1g d0(k) = 1, k2

x + k2
y 1

A2g d0(k) = k2
x − k2

y 1
B1g d0(k) = kxky 1
B2g d0(k) = (k2

x − k2
y)kxky 1

Eg d0(k) = kz(kx, ky) 2
A1u d(k) = x̂kx + ŷky 1
A2u d(k) = x̂ky − ŷkx 1
B1u d(k) = x̂kx − ŷky 1
B2u d(k) = x̂ky + ŷkx 1
Eu d(k) = ẑ(kx, ky) 2

Table 2.1: Irreps. of the D4h point group. Even-parity repre-
sentations (subscript g) are described by a scalar d0 OP, whereas
odd-parity (subscript u) OPs are described by a vector d. The unit
vectors x̂, ŷ and ẑ are along the crystal directions a, b and c. The
OPs, except for the Eg states, are given for 2D models. Eu and Eg
irreps. support two chiral states that spontaneously break TRS.

Ginzburg-Landau free energy, [42]

δF =
(
g1εA1g,1 + g2εA1g,2

)
|∆|2 + g4εB1g

(
|∆x|2 − |∆y|2

)
+ g5εB2g

(
∆∗x∆y + ∆x∆∗y

)
,

(2.1)
where gi is the coupling constant. The independent elements of strain can be
classified by irreps. of D4h as, εA1g,1 = (εxx + εyy), εA1g,2 = εzz, εB1g = (εxx − εyy),
εB2g = 2εxy. These couplings lead to discontinuities in the associated shear elastic
moduli at Tc, depending on the bilinear OP components they couple to. A one-
component OP can only couple to εA1g strains, while coupling between OPs and
B1g and B2g strains can be allowed for two-component OPs.

Recent ultrasound data report a discontinuity at Tc in the elastic modulus c66

associated with shear B2g (εxy) strain, but no discontinuity in the elastic modu-
lus (c11 − c12)/2 associated with B1g (εx2−y2) strain.[42, 124] These observations
are most straightforwardly associated with a two-component OP that produces
bilinears in the B2g channel and has no bilinear components in the B1g channel.
Table 2.2 summarizes the experimental consequences of two-component OPs in ul-
trasound attenuation experiments. An accidental degeneracy between A1g(u) and
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degeneracy product couples to c66 couple to c11−c12
2

A1g(u) ⊕A2g(u) A2g No No
A1g(u) ⊕B1g(u) B1g No Yes
A1g(u) ⊕B2g(u) B2g Yes No
A2g(u) ⊕B1g(u) B2g Yes No
A2g(u) ⊕B2g(u) B1g No Yes
B1g(u) ⊕B2g(u) A2g No No

{A1g(u), A2g(u), B1g(u), B2g(u)} ⊕ Eg(u) Eg No No
Eg(u) ⊕ Eg(u) {A1g, A2g, B1g, B2g} Yes Yes

Table 2.2: Binary products of (accidentally) degenerate irreps.
in the D4h point group. Here we only consider degeneracy within
even- or odd-parity irreps.. The last two columns indicate whether
the binary product allows for coupling to the c66 and (c11 − c12)/2
modes in ultrasound attenuation experiments. The degenerate pair-
ings that are compatible with the recent ultrasound attenuation
experiments [42, 124] are highlighted in gray.

B2g(u) or between A2g(u) and B1g(u) (highlighted in gray) is consistent with the
experimental observations.

2.4 Uniaxial strain response of Tc
Measurements of the strain response of Tc in SRO also reveal crucial information
about the symmetry of the superconducting OP. Experiments with an in-plane
uniaxial strain with B1g symmetry, εx2−y2 , find that Tc is quadratic in εx2−y2 ,
Tc ∝ ε2x2−y2 , instead of linear, Tc ∝ |εx2−y2|. [84, 85, 86]

The εx2−y2 strain breaks x ↔ y symmetry in the D4h point group of the crys-
tal, reducting it to D2h. We can make the following correspondence of Irreps:
{AD4h

1 , BD4h
1 } → AD2h , {AD4h

2 , BD4h
2 } → BD2h

1 , and ED4h → {BD2h
2 , BD2h

3 }. This
mapping suggests that there is no splitting of the superconducting transition in
the presence of εx2−y2 , i.e. no cusp of Tc, if the two OP components belong to
{AD4h

i , BD4h
i } irreps., i = {1, 2}, since they belong to the same irrep. in D2h. Thus,

an accidental degeneracy between AD4h

1g(u) and BD4h

1g(u) or between AD4h

2g(u) and BD4h

2g(u)

can be consistent with the εx2−y2 strain experiment. However, these degeneracies
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are inconsistent with ultrasound measurements, as they disallow discontinuity in
the shear elastic moduli c66 (see Table 2.2).

According to Ref.[27], the dx2−y2 + ig(x2−y2)xy pairing, which is an accidental
degeneracy between BD4h

1g and AD4h
2g irreps., can be compatible with the uniaxial

strain experiments. This is because the g-wave component vanishes at the van
Hove points, such that proximity to the Lifshitz transition favors dx2−y2-wave over
g-wave. The εx2−y2 strain moves the γ-band FS of SRO closer to the van Hove
points [125] and lifts the accidental degeneracy between the dx2−y2 and g-wave com-
ponents, resulting in a single dx2−y2-wave pairing state. As a result, the dependence
of Tc is a smooth and non-singular function of εx2−y2 . Similarly, AD4h

1g(u) ± iB
D4h

2g(u)

and AD4h
2u ±iBD4h

1u pairings can also explain uniaxial strain experiments, as they are
composed of two OP components, one of which vanishes at the van Hove points,
while the other does not.

2.5 Nodal structures

Low-lying excitations in the superconducting state of SRO have been confirmed
by multiple experimental probes. Specific heat measurements find that Ce/T is
perfectly linear in T , i.e. Ce/T ∝ T , at low temperatures, where Ce is the
electronic specific heat. [126, 127, 111, 128, 129] This observation corresponds to
quasiparticles excited from line nodes in k-space and is consistent with the thermal
conductivity measurements in Refs. [130, 112]. Recent scanning tunneling micro-
scope (STM) studies[113] further support this conclusion. It is possible that these
observations can be explained by lines of deep gap minima. [108] The experiment
estimates of the gap minima are less than 3% of the total gap. [131, 112, 132]

The precise location (in k-space) of the lines of nodes or minima remains un-
clear. Deguchi et al. [111] proposed vertical line nodes in the (1,0,0) direction
based on field-dependent specific heat measurements, while similar measurements
by Kittaka et al. [129] suggest horizontal line nodes. On the other hand, the ther-
mal conductivity experiments and the STM data support vertical nodes in the
(1,1,0) direction.[112, 113]
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2.6 Summary

Here we summarize the constraints on the OP from the experiments discussed
above.

• The superconducting OP has two components forming a complex OP that
spontaneously breaks TRS.

• The revised Knight shift measurements are strongly suggestive of a spin-
singlet order parameter.

• Ultrasound and (1,0,0) uniaxial strain measurements can be explained by
accidental degeneracy between A1g(u) and B2g(u) or between B1g(u) and A2g(u)

irreps..

• The superconducting OP has lines of nodes or extremely deep gap minima,
which is less than 3% of the total gap.
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Chapter 3

Spontaneous edge current in
higher chirality superconductors

3.1 Preface

Spontaneous edge currents in chiral p-wave superconductors have been studied
extensively. These studies were motivated by attempts to reconcile the early theo-
retical prediction of a significant edge current [75] with the null result observed in
experiments on SRO[37, 38, 39], which was thought to support chiral p-wave super-
conductivity. In contrast, similar studies on chiral d- and f -wave superconductors
are relatively rare. Previous studies[68, 70, 71] have shown that edge currents in
higher chirality superconductors vanish in the semiclassical continuum limit, in
stark contrast to the chiral p-wave case. Here, we expand on previous studies on
the edge current in chiral d- and f -wave superconductors by including the effects
of finite temperature, Meissner screening, and surface disorder. In general, these
effects can all reduce the edge current in the chiral p-wave case. [60, 74, 75, 78, 79]

For simplicity, we assume the superconductor is two-dimensional with a single
cylindrical Fermi surface. We use a quasi-classical Green function formalism, which
allows us to determine the superconducting OP and edge current self-consistently
and which has been widely used to study inhomogeneity in superconductors. [133,
134, 135, 136, 75] (See Appendix A for details.) Semiclassical analysis, Ginzburg-
Landau analysis, and lattice BdG calculations are also employed in our study.
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We find that, in general, the edge currents in chiral d- and f -wave superconduc-
tors are quite small, compare to the analogous chiral p-wave case. As a result, the
Meissner screening effects are much weaker in higher chirality superconductors.
In the absence of Meissner screening, the integrated current is non-zero at finite
temperature, T , and maximized near Tc/2, where Tc is the transition temperature,
although it vanishes at T = 0. Our work provides an explanation for this unusual
temperature dependence. Surface roughness suppresses the edge current in the
chiral f -wave superconductor, while it can invert the direction of the current flow
in the chiral d-wave case. However, we find that this current inversion is not uni-
versal beyond the continuum limit and can depend on microscopic details, such as
the surface orientation and the chemical potential of the sample.

Experimentally, direct searches for edge currents have been intensively con-
ducted on SRO, while other chiral superconducting candidate materials are less
studied. [25] Scanning SQUID measurements of PrOs4Sb12, a 3D chiral d-wave
pairing candidate, also return null results. [38] As more and more candidates for
higher chirality superconductivity become available, such as SrAsPt [63], doped
Graphene [64] and UPt3 [25], similar searches for edge currents may be under-
taken. Our results, especially the finite temperature behavior of the integrated
current and the non-universal aspect of the current inversion in the presence of
disorder in the chiral d-wave pairing case, could be important for understanding
these materials.

3.2 Publication
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I. INTRODUCTION

Chiral superconductors spontaneously break time-reversal
symmetry and support chiral Majorana edge modes [1–3]. As a
consequence, there are spontaneous supercurrents generated at
edges. Although the number of chiral edge modes is protected
by topology [4], the edge currents are not topologically pro-
tected and can strongly depend on microscopic details [5–8],
since charge is not conserved in a superconducting state, in
contrast to a quantum Hall state.

Edge currents, as well as the related total orbital angular
momentum of Cooper pairs, have been studied extensively for
chiral p-wave superconductors [5–9]. The major motivation
is to reconcile the theoretical prediction of a large edge
current [10] with the null result observed in scanning probe
measurement on Sr2RuO4 [11–13], which is believed to be
a chiral p-wave superconductor [2,3,14]. Theoretical studies
have shown that, in the absence of Meissner screening, the
integrated current is substantial at T = 0 [6,15–18] and de-
creases rapidly as T increases [16,18]. Previous studies [5,7,8]
have shown that spontaneous supercurrents in higher chirality
superconductors are different from the chiral p-wave case. In
particular, the integrated edge currents of the higher chirality
superconductors vanish in the semiclassical continuum limit,
in stark contrast to the chiral p-wave case [5]. These studies
focused on T = 0 and neglected Meissner screening. More
recently, Ref. [19] studied finite temperature and screening
effects on edge currents for higher chirality superconductors
in a mesoscopic system (a very narrow cylinder).

In this paper, we generalize the study in Ref. [19] to
a half-infinite system, where these effects can be separated
from finite size effects and also examine more closely the
explanation for and robustness of current inversion due to
disorder. Following Refs. [10,19], we study the edge currents in
the continuum limit for a quasi-two-dimensional chiral super-
conductor using the quasiclassical Eilenberger equations [20].
Interestingly, we find that, without Meissner screening, the
integrated edge currents for higher chirality superconductors
are nonzero at finite T , unlike at T = 0, although they are much

smaller than the current of the chiral p-wave case. This finite
temperature current is a consequence of the superconducting
order-parameter variations near a surface.

In Refs. [21–24], it has been shown that surface roughness,
together with band structure effects, can lead to substantial
suppression of the edge current in a chiral p-wave super-
conductor and potentially account for the null result of edge
currents in Sr2RuO4 experiments. Here we study rough surface
effects on higher chirality superconductors by introducing an
impurity self-energy in the quasiclassical Green’s function. As
in Ref. [19], we find the edge current direction is reversed
due to strong surface roughness for chiral d-wave pairing in
the continuum limit. However, our calculations together with
a Ginzburg-Landau (GL) analysis, suggest a physically more
transparent explanation for the current inversion. We ascribe
the inversion to a strong disorder induced subdominant s-wave
component near the interface between the rough surface regime
and the bulk. Near the interface, the original dx2−y2 and idxy

components have almost identical spatial variation, due to the
surface and disorder, and their contribution to the current is
almost zero. On the other hand, the induced s-wave component
is real and can combine with the idxy component to give a
sizable current near the interface if the s-wave channel is not
too repulsive. The current resulting from the s + idxy pairing
is opposite in direction to that near the specular surface.

However, the current inversion is nonuniversal beyond the
continuum limit. This is supported by self-consistent lattice
Bogoliubov-de Gennes (BdG) calculations, where we explic-
itly show that the existence of the current inversion depends
on edge orientation and chemical potential or band structure
effects.

The rest of the paper is organized as follows: In Sec. II
we outline the self-consistent Eilenberger formalism. Then
we present our results of the edge currents for a specular
surface without and with Meissner screening in Secs. III
and IV, respectively. Section V contains the results with
surface roughness. Section VI contains the discussion and
conclusions.

2469-9950/2018/98(9)/094501(10) 094501-1 ©2018 American Physical Society
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II. FORMALISM

We consider a semi-infinite (x > 0) quasi-2d superconduc-
tor with a cylindrical Fermi surface independent of kz. The
system is described by the following Eilenberger equation [20]:

−ivFx

d

dx
ĝ(θk, x; ωn) = [Ĥ (θk, x; ωn), ĝ(θk, x; ωn)], (1)

valid if the characteristic length scale considered is much
longer than the Fermi wavelength. Here, ĝ(θk, x; ωn) is the
quasiclassical Green’s function, θk is defined by the direction
of the quasiparticle momentum, k = kF (cos θk, sin θk ), and
ωn = (2n + 1)πT is the Matsubara frequency. The Green’s
function does not depend on the magnitude of the momentum
k as all high-energy information involving |k| �= kF has been
integrated out. Furthermore, since there is no variation along
z, this coordinate is not shown in ĝ. As usual, in the Nambu
particle-hole space, ĝ(θk, x; ωn) is a 2×2 matrix

ĝ(θk, x; ωn) =
(

g(θk, x; ωn) if (θk, x; ωn)
−if̄ (θk, x; ωn) −g(θk, x; ωn)

)
, (2)

where g and f are the normal and anomalous parts, re-
spectively. The two components satisfy the normalization
relation g2(θk, x; ωn) + f (θk, x; ωn)f̄ (θk, x; ωn) = 1, which
is a consequence of ĝ2(θk, x; ωn) being a position independent
constant along the quasiparticle trajectory within the Eilen-
berger quasiclassical formalism. On the right hand side of
Eq. (1), Ĥ (θk, x; ωn) is given by

Ĥ (θk, x; ωn) =
(

iωn − evFy
Ay (x) −�(θk, x)

�∗(θk, x) −iωn + evFy
Ay (x)

)
,

(3)

where, Ay (x) is the y component of the vector potential
satisfying ∇×A = Bz(x)ẑ. Bz(x) is the local magnetic field,
which can either be generated by the spontaneous edge current
or applied externally. Here, we only consider the spontaneous
field and a gauge is chosen such that Ax (x) ≡ 0. The Fermi
velocities in Eqs. (1) and (3) are defined as vF = (vFx, vFy ) =
vF (cos θk, sin θk ).

The off-diagonal component �(θk, x) in Eq. (3) is the chiral
superconducting order parameter. For chiral m-wave pairing,
it is given by �(θk, x) = �1(x) cos(m θk ) + �2(x) sin(m θk ).
We choose �1(x) to be real and �2(x) to be purely imaginary
in the bulk such that the order parameter is chiral. �1 and
�2 are determined self-consistently from the following gap
equations:

�1(x) = πT NF V
∑

|ωn|<ωc

〈2 cos(mθk )f (θk, x; ωn)〉, (4a)

�2(x) = πT NF V
∑

|ωn|<ωc

〈2 sin(mθk )f (θk, x; ωn)〉. (4b)

〈. . . 〉 = 1
2π

∫ π

−π
dθk(. . . ); ωc is the pairing energy cutoff;

NF is the normal state density of states at the Fermi energy;
and V is the pairing interaction strength. The dimensionless
attractive interaction strength NF V is connected to the super-
conducting transition temperature Tc by

1

NF V
= log

T

Tc

+
∑

n,|ωn|�ωc

1

n − 1/2
, (5)

which becomes T independent in the weak coupling limit T �
Tc � ωc. We will use this equation for NF V in terms of Tc and
ωc and rescale all energy quantities by Tc. In this way, we do
not need to explicitly specify the value of NF V .

We use the Riccati parametrization [25] to solve for the
Green’s function matrix, ĝ. The current density Jy (x) is

Jy (x) = −evF NF T
∑

|ωn|<ωc

(−iπ )〈sin(θk )g(θk, x; ωn)〉. (6)

The spontaneous current, Jy (x), gives rise to a local field,
Bz(x), which can be calculated from the Maxwell equation:

dBz(x)

dx
= −μJy (x), (7)

where the permeability, μ, is related to the penetration depth
λL =

√
m/e2μn, n is the normal state electron density and

m (−e) is the electron mass (charge). To include Meissner
screening in a self-consistent manner, we solve the Eilenberger
equation together with the above Maxwell equation simulta-
neously.

Lastly, we consider the effect of surface roughness modeled
by adding a disorder-induced self-energy, �̂, to Ĥ in Eq. (1).
Then �̂ can be calculated within the self-consistent Born
approximation from the Green’s function,

�̂(x; ωn) = i

2τ (x)
〈ĝ(θk, x; ωn)〉. (8)

Here τ (x) is the local x-dependent mean free time. As a model
of roughness near the surface, we take 1/τ (x) to be maximum
at x = 0 and to decay to zero into the bulk. Note that �̂(x; ωn)
does not depend on the angle θk, which is a consequence of
the assumption that locally the disorder scattering is isotropic.

We solve the above coupled equations for the Riccati
parameters, �1, �2, Ay , and �̂ simultaneously by iteration
until a stable self-consistent solution for all parameters is
achieved.

III. EDGE CURRENTS WITHOUT MEISSNER SCREENING
AND SURFACE ROUGHNESS

We first consider the edge currents without Meissner screen-
ing and surface roughness and focus primarily on the finite
temperature results.

The spatial profiles of the T = 0 edge currents are similar
to those obtained in Ref. [19], although not identical because
of the finite system size in Ref. [19], and can be found in
Appendix A. From Figs. 7(e) and 7(f), we see that the edge
current Jy (x) is finite for the chiral d- and f -wave pairings,
although the integrated current is zero. At first glance, this
seems to contradict the weak coupling GL result [5]:

Jy (x) ∝ k3 (�2∂x�
∗
1 − c.c.) − k4 (�∗

1∂x�2 − c.c.), (9)

where k3 = k4 = 0 for all non-p-wave chiral pairing. However,
there is no contradiction since Eq. (9) only accounts for the
lowest order contribution in the GL expansion. Higher order
terms, such as �∗

1∂
3
x�2 − c.c., can lead to a small current
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FIG. 1. Temperature dependence of the integrated edge current,
Iy (T ), for chiral d- (red open circles) and f - (green triangles) waves
with the self-consistently determined superconducting order parame-
ter. The black dots (open circles) are numerical results for chiral d (f )-
wave with a uniform order parameter �1(x ) = �2(x ) ≡ �(bulk). Iy

is scaled by J0ξ0, where J0 = evF NF Tc and ξ0 = vF /π�(bulk) is
the zero temperature coherence length.

density. Note that Eq. (9) implies a current along y when the
order parameter, �(θk, x), has a spatial phase variation along
x. This transverse response results from the two-component
chiral nature of the order parameter, as discussed in detail in
Refs. [6,26].

At finite T , the total integrated current (or more precisely,
the current per-unit length along the z direction for the quasi-2d

system), Iy ≡ ∫ ∞
0 Jy (x)dx, for a chiral p-wave superconduc-

tor decreases monotonically with T and vanishes at the super-
conducting transition temperature Tc [16,18]. The temperature
dependence for chiral d- and f -wave superconductors is quite
different, as shown in Fig. 1. Although Iy (T ) = 0 at both
T = 0 and T = Tc, it is nonzero at 0 < T < Tc and reaches
its maximum just below T = Tc/2. By contrast, as found in
Ref. [5], for a uniform superconducting order parameter, i.e.,
�1(x) = �2(x) ≡ �(bulk), Iy (T ) ≡ 0 for any T . This result
can be derived from an analytical treatment of the Eilenberger
equation (see Appendix B) and a semiclassical BdG analysis.
The spatially varying order parameter is crucial for the nonzero
Iy at finite T .

To understand the above results, we first consider the case
of a uniform superconducting order parameter. In this case,
the edge state dispersion can be obtained from a semiclassical
BdG analysis, as given in Refs. [5,27]. It is determined by
the enhanced component of the order parameter and for our
geometry given by the following piecewise function [5]:

E(j )(θk ) =
{

(−1)(j−1)�0 cos(mθk ), if m = even,

(−1)j�0 sin(mθk ), if m = odd,
(10)

for −π/2 + (j − 1)π/m � θk < −π/2 + jπ/m, where the
edge state branch number j = 1, 2, . . . , m. For the chiral
d-wave case there are two edge state branches (see Fig. 2) and
their dispersions, in terms of ky = kF sin θk, are E(j )(ky ) =
±�0(k2

F − 2k2
y )/k2

F . At T = 0, only the states with E(j )(θk )

-0.1

-0.05

0

0.05

0.1

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

E
/t

ky/π

uniform
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FIG. 2. Edge state energy dispersion for chiral d-wave pairing
obtained from BdG calculations with a self-consistently determined
superconducting order parameter (solid red lines) and a uniform order
parameter (dashed black lines). The shaded regimes represent dense
bulk energy spectra, whose details are not shown here. Inside the
bulk superconducting gap, there are two edge state energy dispersions
crossing E = 0 at ky = ±kF /

√
2.

� 0 are occupied and their contribution to the edge current
is [5]

Iy (T = 0) ∝
m∑

j=1

∫
�(−E(j )(θk )) ky dky (11a)

∝
∫

�(−E(1)(θk ))

⎧⎨
⎩

m∑
j=1

sin

(
2θk + (j − 1)

2π

m

)⎫⎬
⎭dθk

(11b)

= 0, (11c)

where �(x) is the Heaviside step function and from the first
line to the second we have used the periodicity of E(j )(θk ),
E(j )(θk ) = E(j+1)(θk + π/m).

The last equality comes from the fact that the { · · · } factor in
Eq. (11b) vanishes identically for any |m| �= 1. Hence the zero
Iy (T = 0) is a consequence of the exact cancellation between
the m branch contributions. Notice that the cancellation is
between m different ky states, one from each of the m edge
state branches for any allowed energy E, and it is independent
of the zero-temperature occupation number �(x). At finite T ,
Iy (T ) is still given by the above integral in Eqs. (11a) and (11b)
except that �(x) is replaced by the Fermi-Dirac distribution,
nF (x) = 1/(ex/T + 1), and the gap magnitude is T dependent.
Since the factor {· · · } ≡ 0 in Eq. (11b) is independent of T ,
we reach the conclusion that Iy (T ) ≡ 0 for any |m| �= 1, if the
order parameter is uniform, in agreement with the results in
Fig. 1. We should emphasize that the edge currents not only
come from edge states but also from bulk scattering states. In
the following, for qualitative understanding, we only focus on
the edge state contributions. However, in Appendix B, we show
that if the order parameter is uniform, the bulk contribution of
Iy (T ) also vanishes at all T .
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Next we consider the case with �1 and �2 determined self-
consistently. When the x-dependence of the superconducting
order parameter near the surface is taken into account, E(j )(θk )
is no longer given by Eq. (10) and Iy (T = 0) cannot be
expressed as Eq. (11b). However, the m integrals in Eq. (11a)
still cancel at T = 0 because they only depend on the lower
and upper ky limits of each integral but not the details of
E(j )(θk ). These ky values remain the same as in the uniform
order parameter case and only depend on kF or m, because
the lower ky limit is determined by the starting θk point
of each branch dispersion, E(j )(θk ), while the upper limit
by E(j )(θk ) = 0.1 This is also confirmed for the chiral d-
wave case by self-consistent BdG, as shown in Fig. 2. As a
consequence, from Eq. (11a), Iy (T = 0) = 0 remains. This
result is consistent with Refs. [5,7], where Iy (T = 0) was
shown to be of order O(�/EF ) for chiral d- or f -waves; in
the semiclassical approximation, �/EF → 0 (implicit in the
Eilenberger formalism), and, consequently, Iy (T = 0) = 0.

At finite T , edge states with E(j )(θk ) > 0 also contribute to
the current due to thermal population and the entire E(j )(θk )
dispersion matters. Since E(j )(θk ) is no longer given by
Eq. (10) and Iy (T ) cannot be written in the form of Eq. (11b),
the exact cancellation between them branches breaks down and
gives rise to the nonzero Iy at finite T in Fig. 1. As T → Tc, one
approaches equal occupation of all edge states, which results
in zero current. The competition between the two factors,
the imbalance between the m different edge state branches
and the thermal degradation of currents as one approaches
Tc, results in the Iy (T ) peak around T = Tc/2 in Fig. 1.
These results could have implications for future experiments on
possible higher chirality superconductors, as discussed in the
conclusions.

We also note that in Fig. 1, as T → Tc, Iy (T ) vanishes
faster than Iy (T ) ∝ Tc − T , in stark contrast to the chiral
p-wave case [16,18]. The difference comes from the fact
that the lowest order nonzero contribution to the edge current
density for higher chirality superconductors comes from terms,
which involve higher order spatial derivatives than those in
Eq. (9) for chiral p-wave. For example, for chiral d-wave,
two of these terms are �∗

1∂
3
x�2 − c.c., which predict a scaling

of the current density Jy ∝ �(T )2/ξ (T )3 for T � Tc. Here
�(T ) and ξ (T ) is the temperature-dependent gap magnitude
and coherence length, respectively. This leads to Iy (T ) ∝
Jyξ (T ) ∝ (T − Tc )2 for T near Tc.2

Although we have focused on higher chirality supercon-
ductors in the above, the same conclusion that the self-
consistency of the order parameter does not change the

1At these ky (or θk) points, edge states for positive chirality are de-
generate in energy with those of negative chirality, which occurs when
one component of the order parameter,�(θk, x ) = �1(x ) cos(mθk ) +
�2(x ) sin(mθk ), vanishes for a general x. Therefore, the degenerate
ky (or θk) points are completely fixed by the pairing symmetry of the
two components, either cos(mθk ) = 0 or sin(mθk ) = 0, regardless of
whether �1 and �2 are uniform or self-consistently determined.

2In Fig. 1, the T dependence of Iy (T ) for chiral d-wave may slightly
deviate from the quadratic prediction at T ≈ Tc due to the finite θk-
and x-grid sizes used in numerics and the diverging ξ (T ) as T → Tc.

-0.05

0

0.05

0.1

0.15

(a)

-0.008

0

0.008

0.016

(b)

-0.003

0

0.003

0.006

0 5 10 15
x/ξ0

(c)

Jy
Bz
Ay

Jy
Bz
Ay

Jy
Bz
Ay

FIG. 3. (a)–(c) Spatial dependencies of the edge current density,
Jy (x ), induced magnetic field, Bz(x ), and vector potential, Ay (x ),
with Meissner screening taken into account for chiral p-, d- and f -
wave pairings, respectively. GL ratio κ ≡ λL/ξ0 = 2.5. Jy (x ), Ay (x )
and Bz(x ) are scaled by J0 = evF NF Tc, �(bulk)/evF and Bc =
�0/2

√
2πξ0λL, respectively, where �0 = h/2e and T = 0.02Tc.

Iy (T = 0) but has an effect on the finite temperature Iy (T )
applies to the chiral p-wave case as well. Since, for the
chiral p-wave case, Iy (T ) is already large for a uniform order
parameter, the self-consistency of the order parameter only
changes the finite temperature result by a relatively small
amount.

Finally, in a more general lattice model with anisotropy,
Iy (T = 0) does not need to vanish for higher chiralities.
The above argument breaks down, since the ky positions of
E(j )(ky ) = 0 are not protected by any bulk band topology.

IV. MEISSNER SCREENING EFFECT
ON THE EDGE CURRENTS

Meissner screening is included by solving the Eilenberger
equations and the Maxwell equation simultaneously and self-
consistently. The results are shown in Fig. 3. As expected,
the induced magnetic field Bz(x) vanishes into the bulk in
all cases. Comparing Figs. 3(a)–3(c) with Figs. 7(d)–7(f)
(in Appendix A) we see that, although screening reduces
the edge current magnitude by a significant fraction in the
chiral p-wave case, the magnitude of the edge currents in the
higher chirality cases is much less affected. This is expected
since the unscreened edge currents for higher chirality have
contributions from different edge state branches with different
signs as well as spatial variations at different length scales
(see Appendix A, Fig. 8). The resulting oscillating (with
sign changes) unscreened current is, effectively, partially self-
screened. Screening also introduces one additional node in the
spatial dependence of Jy (x) for all chiral pairing channels due
to the different length scales of the diamagnetic current (λ) and
the spontaneous current (ξ0).
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FIG. 4. (a)–(c) Spatial dependence of �1 and Im(�2) in the
presence of surface roughness for chiral p-, d- and f -waves, respec-
tively. (d)–(f) Spatial dependence of the edge current Jy (x ) and the
induced Bz(x ) in the presence of surface roughness for different chiral
pairing channels. The effective rough regime with width W = 5ξ0 is
shaded in grey. The strength of the roughness is characterized by
the shortest mean free path, 
p ≡ vF τ (x = 0), in the rough regime,
which is ξ0/
p = 1.0 for the results shown. The two order parameter
components have been already scaled by their bulk values. Meissner
screening is not taken into account. T = 0.02Tc.

V. ROUGH SURFACE EFFECT

We now discuss the effect of the surface roughness on
the edge currents. The surface roughness is modeled with a
spatially dependent local scattering rate given by

1

τ (x)
= 1

τ (0)

(
1 − tanh[(x − W )/ξ0]

2

)
, (12)

which is maximal at x = 0 and decays into the bulk. W is the
effective width of the rough regime.

To simplify the discussion, we first ignore Meissner screen-
ing. The order parameter and edge current density computed
are shown in Fig. 4 for different pairing channels and strong
surface roughness with a local mean free path 
p ≡ vF τ (x =
0) = ξ0. The superconductivity is completely suppressed at
the vacuum-superconductor interface and is nonzero in the
rough regime only near x = W , where the surface roughness
gradually disappears.

Aside from a suppression of the edge current, the most
prominent feature in Fig. 4(e) is that the edge current for
the chiral d-wave pairing case flows in a direction opposite
to that of the specular surface [see Fig. 7(e)], while the
edge current direction of odd-angular momentum channels
remains unaltered in the presence of the surface roughness.
The edge current inversion for the chiral d-wave pairing has
been observed and discussed in Refs. [19,28] previously. The
explanation there is that the outer edge current of the clean
system, the positive part of Jy (x) in Fig. 7(e), is suppressed by
surface roughness because it is closer to x = 0, while the inner
current, the negative part of Jy (x) in Fig. 7(e), survives. The net
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FIG. 5. Comparison of Jy (x ) obtained with (solid black line)
and without (dashed red line) the off-diagonal impurity self energy,
�o.d., discussed in the text. The current from the GL free-energy
analysis in Eq. (18) (blue open circles) is plotted. Green line with
dots shows that the inverted current is greatly reduced when an
s-wave repulsive interaction Vs = −5Vd is present. Here Vd is the
bulk d-wave attractive interaction.

result is then a current direction inversion. In the following, we
provide an alternative explanation for the current inversion near
x = W for the chiral d-wave pairing and analyze the robustness
of this effect.

We ascribe the currents near x = W in Fig. 4(e) to
a disorder-induced s-wave pairing self-energy. Namely,
�̂(x; ωn) defined in Eq. (8) has a nonzero component off-
diagonal in particle-hole space. Let us denote it as �o.d.(x; ωn).
�o.d. has s-wave symmetry and is independent of θk. Nu-
merically if we set �o.d.(x; ωn) ≡ 0 by hand, i.e., drop the
off-diagonal term in calculating �̂ from Eq. (8), then the
current near x = W is almost completely suppressed, as shown
in Fig. 5.

Effectively, we can interpret �o.d. as an additional s-wave
“order parameter”, �s , induced by the disorder. This is possible
because, although �o.d. depends on the Matsubara frequency,
ωn, it is even in ωn in the even parity d + id pairing case; on
the contrary, if the bulk pairing has an odd parity, then �o.d.

is an odd function of ωn. The s-wave pairing self-energy term
is allowed to mix with the original order parameter, which is
non-s-wave, because the edge breaks inversion symmetry.

From Eq. (8), we see that the s-wave �o.d. comes from
the anomalous Green’s function f (θk, x; ωn) having a nonzero
s-wave component. This s-wave component is subdominant to
the bulk d + id pairing and induced by the suppression of the
d + id pairing near x = W , which is in turn due to the edge
and the disorder. In weak-coupling GL theory, this can be seen
from the following mixed gradient term [29,30] in free energy:

+4A4(Dx�
∗
s Dx�1 + c.c.), (13)

derived in Appendix D. Here A4 > 0, Dx ≡ vF

2 ∂x and �s is
the subdominant s-wave order parameter induced near x = W .
This term favors a nonzero �s where �1 has a spatial variation,
which is most significant near x = W . The sign of �s can be
determined by minimizing Eq. (13). Given that �1 is real and
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∂x�1 > 0 near x = W (see Fig. 4), �s is real as well and also
∂x�s < 0, which leads to �s > 0 since �s = 0 in the bulk. In
other words, the sign of �s is the same as that of �1.

Using �s , we can now understand the spontaneous current
Jy (x) near x = W in Fig. 5. Since the spatial variations of
�1 and �2 are almost identical near x = W , the spontaneous
current due to the original d + id components is greatly
suppressed. As a consequence, the current mainly comes from
the s + idxy pairing components. This current can be derived
from another mixed gradient term [29,30] in the GL free
energy:

Fmix ≡ +A4 v2
F {∂x�2∂y�

∗
s + ∂y�2∂x�

∗
s + c.c}. (14)

For the half-infinite geometry, the spontaneous current is along
y direction. Jy can be obtained by minimal coupling Fmix to
the vector potential Ay and taking a functional derivative of
Fmix with respect to Ay . The result is

Jy ∝ −2e i {�2∂x�
∗
s − �∗

s ∂x�2 − c.c.}, (15)

with a positive proportionality constant. e > 0 is the magnitude
of an electron charge. To a good approximation, the spatial
variation of �s follows that of the local scattering rate since
�s ∼ �o.d. ∝ 1/τ (x). So we can take

�s (x) = �s sgn(�1)
τ (0)

τ (x)
, (16)

where �s > 0 is the overall magnitude and we have made
the sign dependence of �s on sgn(�1) explicit. Here �1 is
the bulk value of the dx2−y2 component order parameter. The
spatial variation of the idxy in Fig. 4(b) can be approximated
by

�2(x) = i Im(�2)
tanh[(x − W )/
h] + 1

2
, (17)

where 
h is the healing length of the idxy component near
x = W and it can be roughly taken as the maximal local mean
free path: 
h ≈ 
p = ξ0. Then from the expression of Jy in
Eq. (15) we have

Jy (x) = −J0 sgn(�1 Im(�2)) sech2 x − W

ξ0
, (18)

where J0 > 0 is a constant that sets the maximal |Jy (x)|
magnitude. Using J0 ≈ 0.04, this gives a current profile in
Fig. 5 (open circles) very similar to that from the numerical
Eilenberger solution (black solid line). Note that Jy (x) is
still odd in the chirality of the d + id order parameter, as
expected. The dependence on sgn(�1) is inherited from the
disorder-induced �s (x).

The GL explanation presented here, as well as the lattice
BdG results, depends only on frequency-independent order
parameters and their spatial derivatives, but in the Eilenberger
calculation the spontaneous current can also be related to
odd-frequency pairing components of the anomalous Green’s
functions [19]. The odd-frequency pairing appears as deriva-
tives of an order parameter in the GL analysis after the
frequency is integrated over. So the two, GL and Eilenberger
odd frequency pairing, are connected, but the GL analysis is
physically more transparent. For instance, the GL formulation
shows that the current inversion depends not only on the
presence of �s but also on the relative phase between �s
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FIG. 6. Spatial dependencies of Jy (x ), Bz(x ), and Ay (x ) with
Meissner screening for chiral p-, d- and f -wave pairing (from top
to bottom), in the presence of a rough surface in a region of width
W = 5ξ0 and with 
p = ξ0.

and the bulk d + id order parameter components. The phase
is determined in GL by minimizing the free-energy term in
Eq. (13). Also, for a spontaneous edge current discussion the
frequency independent GL analysis seems more natural.

The noninversion of current in the chiral p-wave case
[Fig. 4(d)] can also be understood within the GL framework.
In the chiral p-wave case, without strong surface roughness,
the GL current is dominated by Jy ∝ k3(�2∂x�

∗
1 − c.c.) −

k4(�∗
1∂x�2 − c.c.) with coefficients k3, k4 > 0 [5]. This re-

mains true in the presence of strong surface disorder as disorder
does not introduce any new frequency-independent order
parameters since �o.d.(ωn) is completely odd in frequency.
Disorder enhances the order parameter derivative term ∂x�1,
that also has an s-wave symmetry. Due to this enhancement,
the magnitude of k3 and k4 become different (k3 = k4 without
surface disorder) such that k3(�2∂x�

∗
1 − c.c.) dominates the

current. Then, with the spatial profiles of �1 and �2 given in
Fig. 4(a), it is easy to see thatJy remains positive in the presence
of strong surface roughness, so there is no current inversion.
The current in the chiral f -wave case can be understood
similarly, but the analysis is more involved as order parameter
derivatives higher than the first order are needed and therefore
we do not elaborate on this here.

However, we should emphasize that the edge current
inversion seen for chiral d-wave pairing in the continuum
limit is not universal. Away from the continuum limit, the
direction of the current can depend on surface orientation and
microscopic details. For example, for chiral d-wave pairing on
a triangular lattice, with the edge along the zigzag direction
and the chemical potential near half-filling (see Appendix C),
the current in the absence of disorder is opposite to that in the
continuum limit. In this case, there is no current inversion due
to the surface disorder. Furthermore, since the current inversion
requires an induced s-wave component, even in the continuum
limit with strong edge disorder, the effect is reduced if the s-
wave channel is repulsive. In physical systems, unconventional
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pairing is usually accompanied by a sufficiently strong short-
range Coulomb interaction that leads to repulsive interactions
in the s-wave channel. In Fig. 5 (green line with dots), we show
the result of including s-wave repulsion self-consistently.

Finally, we discuss the effect of Meissner screening, which
so far has been neglected. Figure 6 shows the Jy (x), Bz(x),
and Ay (x) obtained in the presence of Meissner screening. The
major effect of the Meissner screening is to induce an additional
sign change in Jy (x) due to the diamagnetic current such that
the total integrated current

∫ ∞
0 Jy (x)dx ∝ Bz(x = ∞) = 0, as

required by Eq. (7).

VI. CONCLUSION

To summarize, we have considered the effects of finite
temperature, Meissner screening, and surface roughness on the
spontaneous edge current for higher chirality superconductors
in the continuum limit using the quasiclassical Eilenberger
formalism. We find that the integrated edge current for higher
chirality superconductors is finite at finite T , although it
vanishes at T = 0 [5]. It achieves its maximum near T = Tc/2.
The self-consistency of the superconducting order parameter
was found to be crucial for understanding this temperature
dependence. We also find that Meissner screening effects on
the edge current are much weaker for the higher chirality
superconductor, compared with that for the chiral p-wave
case.

Furthermore, we have studied the rough surface effects on
the edge current by modeling the surface roughness as an
effective disorder scattering. Similar to Ref. [19], we have
found that the edge current direction is inverted by the surface
roughness in the chiral d-wave case. We ascribe the inverted
edge current to a disorder induced subdominant s-wave pairing
“order parameter” in the rough surface regime and explain the
current inversion using the GL analysis.

However, we find that this current inversion is not universal
beyond the continuum limit and can depend on microscopic
details, such as the surface orientation and the filling level
of the sample, as seen from our self-consistent lattice BdG
calculations. Furthermore, since the current inversion requires
the presence of an induced s-wave order parameter, the effect
is suppressed by any repulsion in the s-wave channel. In
general, s-wave repulsion is expected to be quite large for most
unconventional superconductors. Consequently, the primary
feature of edge currents in disordered chiral d-wave (as well
as higher chirality) superconductors is that they are expected
to be quite small, relative to the analogous chiral p-wave case,
and the direction of the current is sensitive to microscopic
details.

Experimentally, a direct study of the edge currents has
been conducted only for the chiral p-wave superconductor
candidate material Sr2RuO4 so far. However, as more and more
candidate materials for higher chirality superconductivity, such
as SrAsPt, doped Graphene, UPt3, and URu2Si2, become avail-
able, similar searches for edge currents may be undertaken.
Our results, especially the finite temperature behavior of the
integrated current Iy (T ) and the nonuniversal aspect of the
current inversion in the presence of disorder in the chiral
d-wave pairing case, could be important for understanding
these materials.
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APPENDIX A: SPATIAL PROFILE OF THE EDGE
CURRENT WITHOUT MEISSNER SCREENING

In this Appendix, we show the spatial profiles of the T =0
spontaneous edge currents for different pairing channels. Since
at T = 0, the number of Matsubara frequencies in the numer-
ical calculation diverges, we use T = 0.02Tc to approximate
T = 0. Unless specified otherwise, the pairing energy cutoff
is chosen to be ωc = 10Tc. The spatial profile of the pairing
components are shown in Figs. 7(a)–7(c). In all cases, the
pairing component that is odd under kx → −kx drops to zero at
the edge while the other component (even under x inversion),
is enhanced near the edge [10].

Figures 7(d)–7(f) show the spatial profile of the spontaneous
edge current density and the induced local magnetic field.
For chiral m-wave pairing, the current density changes sign
|m| − 1 times along the x direction [the second sign change
for the chiral f -wave can not be resolved in Fig. 7(f) because
the current magnitude is too small]. This results from the
|m| branches of edge states carrying the edge current with
different signs and different length scales (see Fig. 8 for the
chiral d-wave pairing, for example). Since chiral p-wave has
a single edge mode, its edge current does not change sign and
the integrated edge current can be sizable; while for higher
chirality, the integrated edge current is negligible due to the
multiple sign changes and vanishes at T = 0. This fact has
been emphasized in previous studies [5,7]. The edge currents
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FIG. 7. (a)–(c) Spatial dependence of �1 and Im(�2) with spec-
ular surface for chiral p-, d- and f -waves, respectively. (d)–(f)
Spatial dependence of the edge current Jy (x ) and the induced Bz(x )
with specular surface for different chiral pairing channels. Note the
different vertical scales in (d)–(f). Meissner screening is not taken
into account. T = 0.02Tc.
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FIG. 8. Decomposition of the current density for the chiral d-
wave pairing into different branches (i.e., different ky ranges). Inset:
edge state energy dispersion for a chiral d-wave superconductor
obtained from a lattice BdG calculation; the horizontal axis is ky/π ;
the two blue solid lines are edge state dispersions while the grey
shaded regime represent the bulk state energy spectrum.

are carried not only by the chiral Majorana edge modes but also
by the bulk scattering states, which partially cancel the edge
mode current [17]. However, for a qualitative understanding
of the edge current, one often can focus on the edge mode
contributions only.

Figures 7(d)–7(f) also shows that the bulk magnetic field
induced by the edge current vanishes at T = 0 for chiral d- and
f -waves. This is consistent with the total current integrating
to zero at T = 0.

APPENDIX B: INTEGRATED EDGE CURRENTS
FOR A UNIFORM SUPERCONDUCTING ORDER

PARAMETER AND NO SCREENING

For a uniform superconducting order parameter and
no vector potential A, the Eilenberger equation can be
solved analytically [6,10,18,31–33]. Decomposing the qua-
siclassical Green’s function matrix ĝ in terms of Nambu
particle-hole Pauli matrices, we can write ĝ = g1τ̂1 + g2τ̂2 +
g3τ̂3, with [6,18,32]

g3(θk, x; ωn) = ωn

λ
+ �1

λ

ωn�1 − isλ�2

ω2
n + �2

2

e
−2 λ

|vFx
| x, (B1)

where s ≡ sgn(vFx
) = sgn(cos θk ), and λ = √

ω2
n + �2, �1 ≡

�1(θk ) and �2 ≡ �2(θk ) are the vanishing and enhanced
superconducting order parameter components, respectively.
For example, for chiral p-wave, �(θk ) = �(cos θk + i sin θk ),
�1 = � cos θk, and �2 = � sin θk; while for chiral d-wave,
�(θk ) = �(cos 2θk + i sin 2θk ), �1 = � sin 2θk while �2 =
� cos 2θk. Note that the definitions of �1 and �2 here are
different from those used elsewhere in the paper.

The local current density Jy (x, T ) can be computed from
Eq. (6) with the energy cutoff ωc sent to infinity and the
integrated current is Iy (T ) = ∫ ∞

0 Jy (x, T )dx. In Ref. [5],
it was shown that Iy (T = 0) = 0 for any nonchiral-p-wave

pairing. Here we give the expression of Iy (T ). This finite T

expression of Iy (T ) has been derived for the chiral p-wave
pairing in Ref. [18]. Our derivations parallel those and we only
give the final result here:

Iy (T )

eNF v2
F /8

= 2

〈
vFx

vF

vFy

vF

�1�2

{
π

tanh
( |�2|

2T

)
|�1||�2|

− 2
∫ ∞

0
dy

tanh
( |�|

2T
cosh y

)
�2

2 sinh2 y + �2
1 cosh2 y

}〉
θk

.

(B2)

Inside the { · · · }, the first term comes from a complex contour
integral around the pole on the complex ωn plane at ωn =
i|�2|, and represents the edge mode contribution; while the
second term originates from the branch cut on the complex
ωn plane running from ωn = i|�| to ωn = i∞. The branch
cut contribution comes from the bulk scattering states with
quasiparticle energies � |�|. In general, the two contributions
can both be nonzero.

In Eq. (B2), whether Iy (T ) = 0 or not is solely determined
by the rotational symmetry of the integrand with respect
to θk. For pairing with �k = �(cos mθk + i sin mθk ), in the
integrand of Eq. (B2), the combination of �1�2{ · · · } is
invariant under 2|m|−fold rotation of θk; on the other hand,
the velocity product vFx

vFy
is twofold rotation symmetric.

Hence, the entire integrand can be decomposed into a sum
of two terms which are invariant under either 2|m| + 2 or
2|m| − 2 fold θk rotation. Since the integral vanishes as long
as 2|m| + 2 �= 0 and 2|m| − 2 �= 0, we conclude that, for any
|m| �= 1, Iy (T ) ≡ 0 at any finite T , for the case of a uniform
superconducting order parameter.

Although the above results in this section are derived
for a uniform order parameter, we note that, at T = 0,
the bulk scattering state contribution of Iy (T = 0), I bulk

y ,
remains zero even when the order parameter is self-
consistently determined. This is because I bulk

y can be written

as I bulk
y ∝ ∫ π/2

−π/2 Qm(θk ) sin θk cos θkdθk [5], where the factor
sin θk cos θkdθk comes from kydky and Qm(θk ) is the accu-
mulated charge near the surface due to the phase shift of all
filled bulk scattering states at θk. As shown in Refs. [17,34],
Qm(θk ) only depends on the asymptotic phase of the order
parameter in the bulk, which is unaffected by the presence of
the surface. Therefore, I bulk

y (T = 0) = 0 remains even when
the spatial variations of the order parameter near the surface is
taken into account.

APPENDIX C: SELF-CONSISTENT BDG CALCULATION
OF EDGE CURRENT WITH SURFACE ROUGHNESS

FOR CHIRAL d-WAVE PAIRING

Here, we show that the current inversion due to the surface
roughness seen in the continuum limit for the chiral d-wave
pairing is nonuniversal and is not always present when lattice
effects are included. The existence of the current inversion
depends on microscopic details, such as the edge orientation,
band structure and carrier doping levels.
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We consider a two-dimensional triangular lattice with the
following BdG Hamiltonian

H =
∑
〈r,r′〉

[−tc†
rcr′ + �r,r′c

†
r′c

†
r + h.c.] −

∑
r

μrc
†
rcr, (C1)

where 〈r, r′〉 means only nearest-neighbor (NN) hopping,
t , and pairing, �r,r′ , are considered and μr is the local
chemical potential. For the clean system without edges,
the normal state energy dispersion is given by εk =
−2t[cos kx + 2 cos(

√
3ky/2) cos (kx/2)], where the lattice

spacing is set to unity. We have chosen the x direction along
one of the three lattice bond directions.

The chiral d-wave superconducting order parame-
ter is defined on each NN bond, r+r′

2 , as �r,r′ =
�( r+r′

2 )ei 2 Arg[(x ′−x)+i(y ′−y)]. Without edges and disorder,
�( r+r′

2 ) ≡ �0 (a constant), and the order parameter in
k space is �k = �0[cos kx − cos(

√
3ky/2) cos (kx/2)] +

i�0

√
3 sin(

√
3ky/2) sin(kx/2). In the presence of edges, the

order-parameter magnitude �( r+r′
2 ) becomes position depen-

dent; however, we keep the phase ei 2 Arg[(x ′−x)+i(y ′−y)] the same
to ensure the pairing is chiral d-wave. �r,r′ is determined self-
consistently within BdG (details can be found in Refs. [6,23]).

Surface roughness is modeled by adding a random impurity
potential V

imp
r (μr = μ + V

imp
r ) to sites within a width W of

the edge. The impurity density in the rough regime is nimp =
0.2 per lattice site and V

imp
r is uniformly distributed in the

range [−V imp, V imp]. The current calculated is averaged over
different impurity configurations.

We consider two different types of edges of the triangular
lattice, straight and zigzag, and use periodic boundary condi-
tions for the direction parallel to the edges. The current along
each type of edge, denoted as J‖, is calculated for two different
filling levels, μ = 0 (half-filling) and μ = −3t ; the results are
shown in Fig. 9. For straight edges, there is an edge current
inversion due to the surface roughness at both μ = 0t and
μ = −3t ; while for zigzag edges, the current inversion is seen
only at μ = −3t , not at μ = 0. In the specular surface (right
edge of Fig. 9) case, the μ = 0 edge current of the straight
edge and that of the zigzag edge flow in opposite directions.
Similar results have been observed for chiral p-wave pairing
in Ref. [35]. Consequently, the direction of the current for an
ideal edge and the presence of current inversion due to disorder
both are sensitive to microscopic details.

APPENDIX D: GINZBURG-LANDAU ANALYSIS OF
dx2− y2 + i dx y WITH SUB-DOMINANT s-WAVE PAIRING

To understand the role in current reversal of subdominant
s-wave pairing �s induced near the surface of the dx2−y2 + idxy

superconductor, we derive the GL free energy from the anoma-
lous Green’s functions, f and f̄ , obtained from the Eilenberger
equations. For the half-infinite plane, the derivation closely
follows that for px + ipy pairing in Ref. [10]. Hence, in the
following, we only give key steps that are different from
Ref. [10].

The GL free energy is an expansion in terms of

|�|
T

≡ max{|�s |, |�1|, |�2|}
T

,
D

T
≡ |vFx |∂x

T
, (D1)
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FIG. 9. Edge currents for the chiral d-wave pairing obtained
from self-consistent BdG on a triangular lattice with different edge
directions and chemical potentials. The shaded regime on the left
has surface roughness, while the right surface is specular without
disorder. We choose the rough regime width to be W = 5 lattice sites.
A relatively larger temperature T = 0.1Tc has been chosen to reduce
the Friedel oscillations in the current. The impurity potential strength,
V imp = 15t , and the impurity density, nimp = 0.2 per site, are large
such that the effective local mean free path is short, same as in the
Eilenberger calculation, where current reversal is seen.

near T = Tc, where both ratios are small. However, we expect
qualitative features, such as the relative phase of �s , to survive
at low temperature. f and f̄ can be expanded in powers of
|�|/T and D/T and has been done up to the fifth order in
Eq. (A.6) of Ref. [10]. The derivation here becomes different
starting at the form of the order parameter

� = �s + �1 cos 2θk + �2 sin 2θk, (D2)

where �s ,�1, and �2 are the θk independent parts of the
s, dx2−y2 , and idxy order parameters. They are complex and
spatially dependent. They satisfy the following BCS gap
equations,

⎛
⎝�s

�1

�2

⎞
⎠ = πT

∑
0<ωn<ωc

∫ π

−π

dθk

2π

⎛
⎝ Vs

2Vd cos 2θk

2Vd sin 2θk

⎞
⎠[f (θk, x; ωn)

+ f̄ ∗(θk, x; ωn)], (D3)

where Vs > 0 and Vd > 0 are the attractive interactions for
s and d + id, respectively. Substituting the expressions of f

and f̄ from Eq. (A6) of Ref. [10] into the above BCS gap
equations, we obtain three coupled equations for �s ,�1, and
�2 up to third order in the total power of |�|/T and D/T .
These equations should be reproduced by the GL free-energy
F through a Euler-Lagrange equation [10].
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Omitting derivation details, the final results for F are F ∝ F2 + F4 with

F4 = +4A4
{|�s |4 + 3

8 (|�1|4 + |�2|4) + 2|�s |2(|�1|2 + |�2|2) + 1
2 |�1|2|�2|2

+ 1
2 (�∗

s )2
[
�2

1 + �2
2

] + 1
2�2

s [(�∗
1 )2 + (�∗

2 )2] + 1
8

[
�2

2(�∗
1 )2 + (�∗

2 )2�2
1

]
+ 2|Dx�s |2 + |Dx�1|2 + |Dx�2|2 + (Dx�

∗
s Dx�1 + Dx�sDx�

∗
1 )

}
, (D4a)

with Dx ≡ vF

2 ∂x and A4 ≡ 1
4

23−1
23

ζ (3)
(πT )2 . Here ζ (z) is the Rie-

mann zeta function. F2 is the second-order term which is not
shown, as it is irrelevant to our discussion. In F4, the last term
involves mixed gradients of �s and �1. This term has been
discussed in Refs. [29,30,36]. This term can induce a nonzero
�s where ∂x�1 �= 0 and determines the phase of �s relative
to �1 and �2. In addition to the mixed gradient term, there are
other terms in F4, such as �2

s (�∗
1 )2 + c.c., that can also affect

the phase of �s . However, they are higher order for a small,
spatially varying �s .

There are additional mixed gradients terms that are absent
for a y-translational invariant system. However, they enter

in the current and can be obtained from the one in F4 by
fourfold rotation symmetries or can be derived as in Ref. [36].
From Ref. [36], these additional mixed gradient terms
are

−4A4(Dy�
∗
s Dy�1 + Dy�sDy�

∗
1 ),

+ 4A4(Dx�
∗
s Dy�2 + Dy�

∗
s Dx�2 + c.c.). (D5)

The important terms for the spontaneous current discussion
in the main text are those from the second line. Other
mixed gradient terms do not contribute a spontaneous current
along the y direction for the half-infinite geometry that we
considered.

[1] C. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113 (2013).
[2] C. Kallin, Rep. Prog. Phys. 75, 042501 (2012).
[3] C. Kallin and J. Berlinsky, Rep. Prog. Phys. 79, 054502 (2016).
[4] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[5] W. Huang, E. Taylor, and C. Kallin, Phys. Rev. B 90, 224519

(2014).
[6] W. Huang, S. Lederer, E. Taylor, and C. Kallin, Phys. Rev. B 91,

094507 (2015).
[7] Y. Tada, W. Nie, and M. Oshikawa, Phys. Rev. Lett. 114, 195301

(2015).
[8] G. E. Volovik, JETP Lett. 100, 742 (2015).
[9] T. Scaffidi and S. H. Simon, Phys. Rev. Lett. 115, 087003 (2015).

[10] M. Matsumoto and M. Sigrist, J. Phys. Soc. Jpn. 68, 994 (1999).
[11] J. R. Kirtley, C. Kallin, C. W. Hicks, E.-A. Kim, Y. Liu, K. A.

Moler, Y. Maeno, and K. D. Nelson, Phys. Rev. B 76, 014526
(2007).

[12] C. W. Hicks, J. R. Kirtley, T. M. Lippman, N. C. Koshnick, M. E.
Huber, Y. Maeno, W. M. Yuhasz, M. B. Maple, and K. A. Moler,
Phys. Rev. B 81, 214501 (2010).

[13] P. J. Curran, S. J. Bending, W. M. Desoky, A. S. Gibbs, S. L.
Lee, and A. P. Mackenzie, Phys. Rev. B 89, 144504 (2014).

[14] A. P. Mackenzie, T. Scaffidi, C. W. Hicks, and Y. Maeno,
Quantum Mater. 2, 40 (2017).

[15] M. Ishikawa, Prog. Theor. Phys. 57, 1836 (1977).
[16] T. Kita, J. Phys. Soc. Jpn. 67, 216 (1998).
[17] M. Stone and R. Roy, Phys. Rev. B 69, 184511 (2004).

[18] J. A. Sauls, Phys. Rev. B 84, 214509 (2011).
[19] S.-I. Suzuki and Y. Asano, Phys. Rev. B 94, 155302 (2016).
[20] G. Eilenberger, Z. Phys. A Hadrons Nucl. 214, 195 (1968).
[21] P. E. C. Ashby and C. Kallin, Phys. Rev. B 79, 224509 (2009).
[22] Y. Nagato, S. Higashitani, and K. Nagai, J. Phys. Soc. Jpn. 80,

113706 (2011).
[23] S. Lederer, W. Huang, E. Taylor, S. Raghu, and C. Kallin,

Phys. Rev. B 90, 134521 (2014).
[24] S. V. Bakurskiy, N. V. Klenov, I. I. Soloviev, M. Y. Kupriyanov,

and A. A. Golubov, Supercond. Sci. Technol. 30, 044005 (2017).
[25] N. Schopohl, arXiv:cond-mat/9804064 (1998).
[26] M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).
[27] B. Horovitz and A. Golub, Phys. Rev. B 68, 214503 (2003).
[28] S.-I. Suzuki and Y. Asano, J. Phys.: Conf. Ser. 807, 102001

(2017).
[29] P. I. Soininen, C. Kallin, and A. J. Berlinsky, Phys. Rev. B 50,

13883 (1994).
[30] A. J. Berlinsky, A. L. Fetter, M. Franz, C. Kallin, and P. I.

Soininen, Phys. Rev. Lett. 75, 2200 (1995).
[31] M. Matsumoto and H. Shiba, J. Phys. Soc. Jpn. 64, 3384 (1995).
[32] M. Matsumoto and H. Shiba, J. Phys. Soc. Jpn. 64, 4867 (1995).
[33] M. Matsumoto and H. Shiba, J. Phys. Soc. Jpn. 65, 2194 (1996).
[34] J. Goldstone and F. Wilczek, Phys. Rev. Lett. 47, 986 (1981).
[35] A. Bouhon and M. Sigrist, Phys. Rev. B 90, 220511 (2014).
[36] Q.-H. Wang, Z. D. Wang, and Q. Li, Phys. Rev. B 60, 15364

(1999).

094501-10

Ph.D. Thesis – Xin Wang McMaster University – Physics & Astronomy

30



Chapter 4

Spin-orbit coupling and
spin-triplet pairing symmetry in
Sr2RuO4

4.1 Preface

Spin-orbit coupling (SOC) plays a crucial role in determining the pseudospin-
triplet pairing states, an issue of importance to superconducting SRO, where the
pairing symmetry is still an open question. A systematic and complete treatment
of this issue in SRO has been lacking. Here we present a thorough study of how
SOC lifts the degeneracy among different p-wave pairing states in a widely used
microscopic model for SRO.

We first present a complete Ginzburg-Landau (GL) free energy analysis of the
SOC effect on the pseudospin-triplet state for a general 2D model with D4h point
group. The presence of SOC breaks both the full pseudospin SU(2) rotation and
spatial D4h symmetries. As a result, there are five possible SOC-induced GL free
energy terms in quadratic order of the superconducting OP. See Appendix B for
details. Depending on the symmetries of detailed microscopic models, some of
these terms may or may not appear.

We then focus on a widely used 2D microscopic model for SRO and identify
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the terms that lift the degeneracy among different p-wave states based on a sym-
metry analysis. A theme that emerges from this study is that the breaking of
SU(2) rotation symmetry in pseudospin space depends on not only the presence
of SOC but also other ingredients of the microscopic Hamiltonian, for example,
the interorbital hybridization, t′′′, and/or Hund’s coupling, J . We find that the
dominant pairing is always helical rather than chiral. The analytic results are
further supported by our weak-coupling RG and RPA numerical calculations. In
addition, our numerical calculations show that nodal s′- or dx2−y2-wave pairing
would take over the helical state beyond the weak-coupling limit.

We also generalize our analysis to a 3D model for SRO and show that the
interorbital hybridizations, in addition to the t′′′ in the 2D model, do not help
stabilize chiral p-wave pairing states.

Our analysis resolves the discrepancies regarding the relative stability between
helical and chiral p-wave pairing states in previous studies. Since the analysis
is based on the symmetries of the model, it can provide a guide to future stud-
ies. Subsequent studies on the leading superconducting instabilities of SRO in
Refs.[118, 97, 137, 119, 138] based on similar SRO models in both 2D and 3D are
consistent with this study. Furthermore, our analysis can be adapted to study the
effect of SOC on other multi-orbital spin-triplet superconductors.

4.2 Publication
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Spin-orbit coupling (SOC) plays a crucial role in determining the spin structure of an odd parity psedospin-
triplet Cooper pairing state. Here, we present a thorough study of how SOC lifts the degeneracy among
different p-wave pseudospin-triplet pairing states in a widely used microscopic model for Sr2RuO4, combining a
Ginzburg-Landau (GL) free energy expansion, a symmetry analysis of the model, and numerical weak-coupling
renormalization group (RG) and random phase approximation (RPA) calculations. These analyses are then used
to critically re-examine previous numerical results on the stability of chiral p-wave pairing. The symmetry
analysis can serve as a guide for future studies, especially numerical calculations, on the pairing instability
in Sr2RuO4 and can be useful for studying other multiband spin-triplet superconductors where SOC plays an
important role.

DOI: 10.1103/PhysRevB.101.064507

I. INTRODUCTION

Understanding an unconventional superconductor requires
identifying and understanding both its superconducting order
parameter symmetry and the pairing mechanism. The two
are intimately connected. In Sr2RuO4, both of these are still
not well understood. Early experiments, including muon spin
relaxation [1], NMR [2], Polar Kerr effect [3] measurements,
point toward a spin-triplet chiral p-wave pairing [4,5], which
is a two-dimensional (2D) analog of the A phase of helium
3He [6] and is potentially useful for topological quantum
computing [7,8].

However, it is difficult to reconcile the spin-triplet chiral
p-wave picture with several other experiments [9]. Chiral edge
currents have been predicted for the chiral p-wave pairing
state but not detected [10,11]; splitting of the superconduct-
ing transition temperature Tc in the presence of an in-plane
magnetic field or a uniaxial strain [12,13] is expected but not
found. Recent NMR experiments [14,15] report a significant
drop of the spin susceptibility in the superconducting phase
measured in an in-plane magnetic field, which contradicts
previous measurements [2] and suggest either spin-triplet
helical or singlet pairing, although strong spin-orbit coupling
[16,17] can complicate the interpretation of the experimental
data.

Most theoretical studies [18,19] on the pairing mechanism
are connected to spin or charge fluctuation mediated super-
conductivity, inspired by work on 3He [6]. However, spin
fluctuations in Sr2RuO4 are complicated due to the multior-
bital nature of its normal state. The normal state of Sr2RuO4

contains two quasi-1D α and β bands, derived mainly from
the Ru t2g dxz, dyz orbitals, and one quasi-2D band from the dxy

orbital. Although early on it was proposed that the supercon-
ductivity is dominated by one set of the three bands [20], more
recent calculations suggest that superconductivity on the three
bands is comparable and indicate that the three orbitals should

be treated simultaneously. A further complication in a micro-
scopic analysis comes from the sizable spin-orbit coupling
(SOC) which entangles the three orbital degrees of freedom
with spin. The effect of SOC on the normal state Fermi
surface (FS) has been emphasized previously in Ref. [16] and
was recently found to be larger than previously thought [17].
However, the effect of SOC on the superconducting state is
still poorly understood.

Understanding the effect of SOC on the superconducting
phase is crucial to address the relative stability of chiral
p-wave and helical p-wave pairing states. This is because
in the absence of SOC, and in the weak-coupling limit, all
spin-triplet p-wave pairing states are degenerate due to the
unbroken spin rotation symmetry [21]. A mechanism to lift
the degeneracy in the absence of SOC is to consider the
spin fluctuation feedback effect due to the superconducting
condensate itself, which spontaneously breaks the spin ro-
tation symmetry and modifies the pairing interaction. This
mechanism is responsible for the stability of the 3He A phase
[6] and has been used to stabilize the chiral state in theories
of Sr2RuO4. However, in a Ginzburg-Landau free energy
expansion in terms of the superconducting order parameter
near Tc, the feedback effect only appears at fourth-order; while
the SOC effect can split Tc of different spin triplet states at
quadratic order [21]. Therefore it is important to understand
how the normal state SOC affects the stability of different
pairing states.

The effect of SOC on the spin triplet pairing states in
Sr2RuO4 has been studied previously in Refs. [21–28] semi-
analytically to various degrees and included in different nu-
merical calculations [18,29–31], using different models and
approaches. However, a systematic and more complete treat-
ment is lacking. Also, conflicting statements have been made
regarding the degeneracy among different p-wave pairing
states in the presence of SOC. In this paper, we present
a complete Ginzburg-Landau free energy analysis of the
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SOC effect on the superconducting state at quadratic order
in the order parameter. Then we focus on a 2D three-band
microscopic model with SOC and identify the terms that
lift the degeneracy among different p-wave states based on
a symmetry analysis of the model. The results are supple-
mented with numerical weak-coupling RG and RPA calcu-
lations [18,26]. This model has been adopted in different
numerical calculations [18,24,26,27,29–33] under different
approximations to determine the dominant pairing instability
for Sr2RuO4. Our analysis shows that some of the previous
numerical results obtained in certain parameter regimes are
incorrect. Since our results are obtained largely based on
symmetries of the model, they also apply beyond weak-
coupling and provide a guide to future numerical calculations.
Furthermore, some of the conclusions and analysis here can
be applied to other multiband spin-triplet superconductors,
where SOC is important for the pairing.

The rest of the paper is organized as follows. In Sec. II,
a complete GL analysis of SOC effects on triplet states is
presented. In Sec. III, we study the SOC induced GL free
energy terms for Sr2RuO4 based on a widely studied 2D three-
band microscopic model using analytical symmetry analyses
and numerical weak-coupling RG calculations. In Sec. IV, we
reexamine the chiral p-wave instability in Sr2RuO4, where we
provide a new phase diagram calculated within the RPA for
the microscopic model, and also generalize the 2D analysis
to 3D. Sec. V contains our conclusions. Some details of the
derivations are relegated to Appendices, including details on
the extension of this work to 3D models of Sr2RuO4.

II. GENERAL GINZBURG-LANDAU ANALYSIS

In the presence of SOC, spin is not a good quantum
number. However, time reversal and inversion symmetries still
ensure a twofold degeneracy at each k point in the Brillouin
zone, which can be used to define a pseudospin and to classify
all possible pairing states into pseudospin singlet and triplet
sectors. Here, we focus on pseudospin triplet p-wave pairing
states.

For a general pseudospin triplet state the order parameter
is a 2 × 2 matrix,

�̂(k) ≡
∑

μ={x,y,z}

∑
j={x,y}

dμ
j σμiσy ψ j (k). (1)

where σμ are Pauli matrices in pseudospin space; ψ j (k) are
two basis functions in k space that transform like kx and ky

under the D4h point group.
In the absence of SOC, the GL free energy at quadratic

order in the superconducting order parameter is

f 0
2 = α0(T )

〈
1

2
Tr[�̂†(k)�̂(k)]

〉
FS

(2a)

= α0(T )
∑

μ={x,y,z}

∑
j={x,y}

|dμ
j |2, (2b)

where the superscript “0” indicates quantities defined for zero
SOC. α0(T ) ∝ (T 0

c − T ) and 〈· · · 〉FS means averaged over the
FS. The trace, Tr[· · · ], is performed in pseudospin space.

In general, the presence of SOC breaks both the full
pseudospin SU(2) rotation and spatial D4h symmetries. The

TABLE I. All possible SOC induced GL free energy terms at
quadratic order in �̂ for pseudospin triplet pairing states of a 2D
model. For 3D models there are additional terms, which can be found
in Appendix C.

GL terms Expressions in terms of dμ
j

f SOC,1
2 |dz

x |2 + |dz
y |2

f SOC,2
2 (dx

x )∗dy
y + (dy

y )∗dx
x

f SOC,3
2 (dx

y )∗dy
x + (dy

x )∗dx
y

f SOC,4
2 |dx

x |2 + |dy
y |2

f SOC,5
2 |dy

x |2 + |dx
y |2

remaining symmetry group for a 2D model of Sr2RuO4 is
DL̂+Ŝ

4h ⊗ U (1)C , where DL̂+Ŝ
4h is the D4h point group whose

symmetry operations act simultaneously on the spatial k and
pseudospin spaces. U(1)C is the charge U(1) gauge symmetry.
Time-reversal and inversion symmetries are also assumed,
although they might be spontaneously broken in the ground
state. To derive the most general form of the GL free energy
terms at quadratic order we consider all possible contractions
of (dμ

i )∗dν
j , viewed as a rank-4 tensor, such that the contracted

results are a scalar that is invariant under all symmetry opera-
tions of DL̂+Ŝ

4h ⊗ U (1)C . This leads to five terms in the GL free
energy, which are tabulated in Table I. Details of the derivation
can be found in Appendix A.

We can also write the SOC induced terms in terms of
�̂. When the pseudospin rotation symmetry is broken, order
parameter products other than �̂†�̂, such as �̂†σi� and
�̂†σi�σ j , can also appear in Eq. (2a) [34]. Considering all
such combinations that are invariant under the symmetry
group DL̂+Ŝ

4h ⊗ U (1)C leads to the same conclusion that there
are five independent terms in the GL free energy at quadratic
order. The results can be found in Table IV of Appendix A.

Some of the terms in Table I have been identified previ-
ously [21–26,28], but Table I provides the most complete form
of all possible SOC induced terms at quadratic order. These
terms in general lift the degeneracy among different p-wave
states, which belong to the five irreducible representations of
the D4h group and are classified in Table II. Depending on
the symmetries of microscopic models, some of these terms
may or may not appear. In the following, we focus on a
particular 2D three-band interaction model [18], identify the

TABLE II. Irreducible representations (irrep.) of the DL̂+Ŝ
4h point

group. The order parameters are given for 2D models. Only the
pseudospin triplet p-wave pairing states are considered. The first four
irrep., {A1u, A2u, B1u, B2u}, give helical pairings that do not break time
reversal symmetry; while the Eu irrep. supports two chiral states,
ẑ(kx ± iky ), that spontaneously break time reversal symmetry.

irrep. Order parameter

A1u d(k) = x̂kx + ŷky

A2u d(k) = x̂ky − ŷkx

B1u d(k) = x̂kx − ŷky

B2u d(k) = x̂ky + ŷkx

Eu d(k) = ẑ(kx, ky )
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SOC induced terms, and analyze how they affect the relative
stability of different p-wave pairing states.

III. MICROSCOPIC DETERMINATION OF THE SOC
INDUCED TERMS

We consider the microscopic model Hamiltonian,

H = HK + V, (3)

where HK is the kinetic energy part that gives rise to the
normal state Fermi surfaces, and V is the interaction. In
addition to hopping terms, HK contains a SOC term, which,
written in k space, is

2ηL · S = η
∑

	,m,n=1,2,3

iε	mnc†
k,m,sσ

	
ss′ck,n,s′ , (4)

where {1, 2, 3} = {dyz, dxz, dxy} orbitals, and {s, s′} are the
actual spins, not the pseudospins to be defined below. ε	mn is
the fully antisymmetric tensor and η is the SOC strength. c†

(c) is the electron creation (annihilation) operator.
Following Ref. [18], we write HK in the basis �(k) =

[ck,1,↑; ck,2,↑; ck,3,↓; ck,1,↓; ck,2,↓; ck,3,↑]T , such that it is block
diagonal

HK (k) =
(

H↑↑(k) 0
0 H↓↓(k)

)
, (5)

where

Hss(k) =
⎛
⎝ εyz(k) g(k) + isη −sη

g(k) − isη εxz(k) iη
−sη −iη εxy(k)

⎞
⎠. (6)

εyz, εxz, and εxy describe intraorbital hoppings; while g(k) is
the only interorbital hopping for a 2D model.

The interaction [18] we consider is a multiorbital on-site
Kanamori-Hubbard type interaction

V = U

2

∑
i,a

ni,a,↑ni,a,↓ + U ′

2

∑
i,a �=b,s,s′

ni,a,sni,b,s′

+ J

2

∑
i,a �=b,s,s′

c†
iasc

†
ibs′cias′cibs

+ J ′

2

∑
i,a �=b,s �=s′

c†
iasc

†
ias′cibs′cibs. (7)

ni,a,s ≡ c†
i,a,sci,a,s is the spin and orbital resolved electron den-

sity operator at site i. U (U ′) is the intraorbital (interorbital)
repulsive Hubbard interaction. J is the Hund’s coupling, and
J ′ the pair hopping. The Hund’s coupling term can be also
written as [35] −J

∑
i,a �=b(Si,a · Si,b + ni,ani,b/4), where Si,a is

the orbital resolved electron spin vector operator at site i and
ni,a = ni,a,↑ + ni,a,↓. The Kanamori-Hubbard interaction V is
derived from the Coulomb interaction and is invariant under
SO(3) rotations in the t2g d-orbital space, provided J ′ = J
and U ′ = U − 2J [35]. Crystal field splitting in Sr2RuO4 in
general lowers the symmetry of the interaction in the orbital
space, which, however, does not affect our following discus-
sions. Each of the four terms of V is SU(2) spin rotational
invariant. The repulsive V can give rise to Cooper pairing
instabilities in non-s-wave channels [36].

A. Hamiltonian in the pseudospin basis

Using a†
i,a,σ (ai,a,σ ) for electron creation (annihilation)

operators with the pseudospin σ and orbital a at site i, we
define

(a†
i,1,σ , a†

i,2,σ , a†
i,3,σ ) ≡ (c†

i,1,σ , c†
i,2,σ , c†

i,3,σ̄ ), (8)

where σ̄ =↓ (↑) if σ =↑ (↓). Written in the pseudospin
basis, �̃(k) = [ak,1,↑; ak,2,↑; ak,3,↑; ak,1,↓; ak,2,↓; ak,3,↓]T , the
kinetic energy part HK (k) remains the same as in Eq. (6),
whose H↑↑ (H↓↓) block can be identified with pseudospin ↑
(↓).

Rewriting the interaction V in Eq. (7) in terms of {a†, a}
and denoting the new interaction by Ṽ , we have

Ṽ = ṼU + ṼU ′ + ṼJ + ṼJ ′ , (9)

where

ṼU = U

2

∑
i,a

ni,a,↑ni,a,↓, (10a)

ṼU ′ = U ′ − J/2

2

∑
i,a �=b,σ,σ ′

ni,a,σ ni,b,σ ′ , (10b)

ṼJ = −J
∑

i

⎧⎨
⎩
∑
a �=b

Si,a · Si,b − 2
∑

a={1,2}

[
Sy

i,aSy
i,3+ Sz

i,aSz
i,3

]⎫⎬⎭,

(10c)

ṼJ ′ = J ′

2

∑
i,σ �=σ ′

⎧⎨
⎩

∑
a �=b={1,2}

−
∑

a �=b={2,3}
−

∑
a �=b={1,3}

⎫⎬
⎭

a†
iaσ a†

iaσ ′aibσ ′aibσ . (10d)

In these equations, all operators are in terms of {a†, a}:
ni,a,↑ = a†

i,a,↑ai,a,↑, etc. In the following, we identify the terms

in the Hamiltonian HK + Ṽ that breaks the pseudospin rota-
tional symmetry.

B. Degeneracy at g(k) = J = J′ = 0

Although the presence of HSOC breaks spin rotation sym-
metry in the normal state, it does not necessarily lead to a
symmetry breaking in the pseudospin space and, therefore,
the degeneracy among different pseudospin triplet p-wave
pairing states may remain intact. In the current model, this
is the case when both g(k) ≡ 0 and J = J ′ = 0. This has been
pointed out previously in Ref. [24] by a direct expansion of the
effective interaction in the Cooper pairing channel in terms of
the SOC constant η up to quadratic order. Here, we provide a
proof purely based on symmetry.

First notice that HK can be brought into a pseudospin
SU(2) invariant form by the following unitary transformation
(written in the k space)

U : {a†
k,1,↓, ak,1,↓} → {−a†

k,1,↓,−ak,1,↓}, (11)

if there is no interorbital hopping term, i.e., g(k) ≡ 0 in
Eq. (6). In this case, under the U transformation,

H̃K ≡ U†HKU = H↑↑ ⊗ σ0, (12)

where σ0 is the identity matrix in the pseudospin space.
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When J = J ′ = 0, the U transformation leaves Ṽ in Eq. (9)
unchanged, which is pseudospin SU(2) rotational invariant
since Ṽ and V share the same form. Therefore, if both g(k) ≡
0 and J = J ′ = 0, the whole microscopic Hamiltonian after
the U transformation,

H̃ = H̃K + Ṽ , (13)

is pseudospin SU(2) invariant. Consequently, all p-wave pseu-
dospin triplet pairing states resulting from the microscopic
Hamiltonian are degenerate. This conclusion does not depend
on how the microscopic model is treated, i.e., whether the
pairing states are calculated in weak-coupling RG [18], RPA
[29,30], or other methods.

C. SOC induced terms due to finite g(k) but with J = J′ = 0

When g(k) �= 0, after the U transformation, the kinetic
energy part of the Hamiltonian can be written as H̃K + δH̃K

with H̃K given in Eq. (12) and

δH̃K (k) ≡ 2g(k)
{
Sz

12(k) + H.c.
}
, (14)

where Sz
12(k) ≡ 1/2

∑
σ,σ ′ a†

k,1,σ
σ z

σ,σ ′ak,2,σ ′ is the interorbital
pseudospin operator along the z direction. For g(k), to be
specific, we consider the nearest-neighbor interorbital hy-
bridization as in Ref. [18], g(k) = −4t ′′′ sin kx sin ky, where
t ′′′ is the corresponding hopping integral.

Clearly, δH̃K (k) breaks the full pseudospin rotational sym-
metry. It contributes to the GL free energy a term which, to
the first order in t ′′′/t , is

δF = 〈δH̃K (k)〉 = a2
[

f SOC,2
2 − f SOC,3

2

]
. (15)

a2 ∝ t ′′′/t , and the expressions of f SOC,2
2 and f SOC,3

2 are given
in Table I. The average 〈· · · 〉 is performed in a mean-field
p-wave pairing state obtained at t ′′′ = 0 and over the k space.
In arriving at this equation, we have used: (1) because of
the sin kx sin ky dependence in g(k), only (dμ

x )∗dν
y type terms

can appear in δF so that 〈· · · 〉 does not vanish after the
k average; (2) δH̃K (k) has a remaining symmetry in the
pseudospin space; it is invariant under pseudospin rotations
about the z axis. Written in terms of the components of the
�̂ matrix, δF = a2(−i/2){�↑↑,x�

∗
↑↑,y − �↓↓,x�

∗
↓↓,y − c.c.}.

The subscript ‘x’ indicates that the quantity transforms as kx

under the spatial D4h group. This term has been identified in
Refs. [24,28] using a quite different approach. Our derivation
makes the microscopic symmetry origin of the term manifest.

Since δF in Eq. (15) preserves the pseudospin rotation
symmetry in the xy plane, it splits the four p-wave helical
states into two groups, {A1u, A2u} and {B1u, B2u}. The two
states in each group are related to each other by a fourfold
pseudospin rotation about z. To leading order in t ′′′/t , the
splitting of Tc between the two groups is δTc ∝ |a2| ∝ |t ′′′/t |.
Since δF does not have any term that splits chiral states from
helical states, the transition temperature of the chiral states,
T Eu

c , stays half way in between that of the two helical state
groups, T A1u/A2u

c and T B1u/B2u
c . We confirm these conclusions

with a numerical weak-coupling RG calculation following
Refs. [18,26]. The results are shown in Fig. 1. At larger t ′′′/t ,
the splitting between helical and chiral states has deviations
from the linear dependence on t ′′′/t arising from higher
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(|λ
H
e

−|
|λ

C
h
|)

×
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3

t /t

A1u/A2u

B1u/B2u

FIG. 1. Differences between eigenvalues of the effective two-
particle interaction in the Cooper pairing channel computed within
weak-coupling RG. Thin black lines are guides for the eye to show
the linear behavior at small t ′′′/t . λHe (λCh) is the eigenvalue for p-
wave helical (chiral) pairing states. The splitting, δTc, of Tc between
chiral and helical states is given by δTc/Tc ∝ (|λHe| − |λCh|), to linear
order in δTc/Tc. The normal state band parameters, other than t ′′′ and
η, here and elsewhere, are identical to those in Ref. [18]. Here, we
choose η = 0.1t and J/U = 0.

order contributions of δH̃K (k) to δF , which lead to terms,
f SOC,4
2 + f SOC,5

2 and f SOC,1
2 , in δF . These terms leave the

degeneracy in each of two helical state groups intact since the
pseudospin rotational symmetry around z remains; however,
they make the relation T Eu

c = {T A1u/A2u
c + T B1u/B2u

c }/2 only an
approximation. Since in Sr2RuO4, |t ′′′|/t ∼ η/t is small, we
expect T Eu

c ≈ {T A1u/A2u
c + T B1u/B2u

c }/2 to hold, as seen in Fig. 1.
One conclusion of the above analysis is that the chiral

pairing states are never stabilized by the t ′′′ induced terms.
A similar conclusion was obtained in Ref. [25] for a different
interaction model within a mean-field analysis.

Since the relative stability between chiral and helical states
will be affected by other SOC induced terms, which will be
analyzed in detail in Sec. III D, it is important to understand
the SOC dependence of δF in Eq. (15). Following Ref. [25],
we go back to the original Hamiltonian before the U trans-
formation in terms of actual spin. To linear order in η/t , the
change of the GL free energy due to nonzero SOC is given
by δF = 2η〈L · S〉, where the average 〈· · · 〉 is evaluated in
a mean field pairing state obtained at zero SOC. From the
analysis of δH̃K (k) in pseudospin space, we know that δF is
invariant under pseudospin rotations about z; it is also invari-
ant under actual spin rotations about z since the pseudospin
and actual spin z directions are the same. Therefore, in 〈L · S〉,
〈LxSx + LySy〉 ≡ 0. Hence,

δF = 2η〈LzSz〉 = iη{n↑↑
12 − n↓↓

12 − n↑↑
21 + n↓↓

21 }, (16)

where n↑↑
12 ≡ ∑

i〈c†
i1↑ci2↑〉 are the single-particle density ma-

trices off-diagonal in the orbital index. At zero order in η,
the mean field Hamiltonian for the chiral pairing states are
symmetric with respect to spin ↑↔↓. Consequently, the linear
in η term in δF vanishes and δF ∼ O(η2). On the other hand,
for the four helical pairing states, δF ∼ O(η) in general, if
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the superconducting order parameters on the α and β bands
are not identically zero when η = 0. This linear dependence
has been emphasized in Ref. [25].

We calculate the η dependence of δF for our model in
weak-coupling RG. In the case of J = 0, we actually find that
δF ∝ (η/t )2 rather than ∝η/t . This comes from a complete
decoupling between the α + β and γ bands when J = J ′ =
η = 0, which makes all the density matrices in Eq. (16)
identically zero and invalidates the above argument for the
linear in η dependence (for details see Appendix B). When
J �= 0, the three bands are coupled and, indeed, we find the
leading η/t dependence of δF linear, as shown in Fig. 5.

To summarize, the presence of g(k) and η induces a
pseudospin SU(2) symmetry breaking term in the GL free
energy, given in Eq. (15), which lifts the degeneracy among
different p-wave states. This term always favors helical states
over the chiral states. It is invariant under the pseudospin
rotations along z that preserves the degeneracy between A1u

and A2u, and that between B1u and B2u. The splitting between
the two helical state groups is δTc ∝ t ′′′η/t , to leading order in
t ′′′/t and η/t . In the special case of J = J ′ = 0, the splitting
is ∝t ′′′η2/t2. Interestingly, the necessary ingredients, t ′′′ and
η, for the splitting identified here are the same as those
responsible for a spin Hall effect discussed in Ref. [37],
suggesting that the two may be intimately connected.

D. SOC induced terms due to finite J = J′ but with g(k) ≡ 0

In this section, we analyze the pseudospin rotational break-
ing terms due to finite J and η, while keeping g(k) ≡ 0.

1. Pseudospin SU(2) breaking terms

When J �= 0, applying the U transformation in Eq. (11) to
Ṽ in Eq. (9) changes the form of Ṽ and leads to

˜̃V ≡ U†Ṽ U = ˜̃V inv + ˜̃V J + ˜̃V J ′ , (17)

where ˜̃V inv = U† (ṼU + ṼU ′ ) U = ṼU + ṼU ′ is still pseu-
dospin SU(2) invariant. The other two terms are

˜̃V J = U†ṼJU = −J
∑

i

{[
Sx

i2Sx
i3 + Sy

i1Sy
i3 + Sz

i1Sz
i2

]
− [

Sx
i1Sx

i2 + Sx
i1Sx

i3 + Sy
i1Sy

i2 + Sy
i2Sy

i3 + Sz
i1Sz

i3 + Sz
i2Sz

i3

]}
,

(18a)

˜̃V J ′= U†ṼJ ′U= J ′

2

∑
i,σ �=σ ′

⎧⎨
⎩−

∑
a �=b={1,2}

−
∑

a �=b={2,3}
+

∑
a �=b={1,3}

⎫⎬
⎭

× a†
iaσ a†

iaσ ′aibσ ′aibσ . (18b)

The U transformation shifts the SOC induced effect of
spin rotational symmetry breaking from the kinetic energy
part of the Hamiltonian to the interaction part. Note that the
kinetic energy part becomes pseudospin SU(2) invariant after
the transformation. Since each term of the original interaction
V in Eq. (7) is SU(2) spin rotational invariant, we can identify
the pseudospin SU(2) rotational symmetry breaking terms in

˜̃V as

δ˜̃V = −2J
∑

i

[
Sx

i2Sx
i3 + Sy

i1Sy
i3 + Sz

i1Sz
i2

]
+ J ′ ∑

i,σ �=σ ′

∑
a �=b={1,3}

a†
iaσ a†

iaσ ′aibσ ′aibσ . (19)

In this equation the J ′ term alone does not lift the degen-
eracy among different p-wave pairing states. This can be
proved within weak-coupling RG and RPA approximations
by examining diagramatic contributions to helical and chiral
states at each order in interaction. There is a one-to-one
correspondence between the two contributions that contain J ′,
if J = 0. This result is consistent with Ref. [24], where a direct
perturbation, up to second order in both interaction and SOC,
shows that the SOC induced terms to the effective interaction
in the Cooper pairing channel necessarily depend on J when
g(k) ≡ 0. We have also verified the above conclusion in our
numerical weak-coupling RG and RPA calculations. There-
fore, within linear order in J (= J ′), we can drop the J ′ term
in Eq. (19).

2. GL free energy terms due to δ
˜

˜V

δ˜̃V in Eq. (19) does not completely break the pseudospin
SU(2) rotational symmetry. Mirror reflections about the xz
and yz planes, denoted as MŜ

xz and MŜ
yz respectively, leave

δ˜̃V invariant. This holds even if the J ′ term in Eq. (19) is
taken into account. MŜ

xz and MŜ
yz are therefore symmetries

of the whole microscopic Hamiltonian. In Table I, the only
terms compatible with these symmetries are f SOC,1

2 , f SOC,4
2 ,

and f SOC,5
2 . Therefore, in general, the GL free energy due to

δ˜̃V is given by

δF = a1 f SOC,1
2 + a4 f SOC,4

2 + a5 f SOC,5
2

= 2a1 + a4 + a5

4

[
f SOC,1
2 + f SOC,4

2 + f SOC,5
2

]
+ 2a1 − a4 − a5

4

(
f SOC,1
2 − f SOC,4

2 − f SOC,5
2

)
+ a4 − a5

2

(
f SOC,4
2 − f SOC,5

2

)
, (20)

where {a1, a4, a5} are three coefficients that shift the Tc

away from T 0
c . In δF , ( f SOC,1

2 + f SOC,4
2 + f SOC,5

2 ) is trivial
and shifts the Tc of all p-wave pairing states equally. To
leading order in J/U , {a1, a4, a5} ∝ J .1( f SOC,1

2 − f SOC,4
2 −

1The leading order contribution to δF in a weak-coupling theory

comes from a second order perturbation result, δF = 〈˜̃V inv G̃4 δ˜̃V 〉,
which is second order in ˜̃V but first order in J/U . Here, 〈· · · 〉 means
being averaged in a mean-field p-wave pairing state obtained at
J = 0, and G̃4 is the four-point Green’s function defined for the
normal state Hamiltonian after the U transformation, H̃K given in

Eq. (12). Note that the first order perturbation contribution, 〈δ˜̃V 〉, is
identically zero for a p-wave pairing state because the interaction

δ˜̃V is purely on-site. However, because the pseudospin rotational

symmetry property of δF is completely dictated by δ˜̃V , in the main
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FIG. 2. J/U dependence of the splitting between helical and
chiral p-wave pairing states in weak-coupling RG. t ′′′ = 0 and η =
0.1t . The splitting is linear in J/U at small J/U . Note that the two
helical states, {A2u, B2u}, are almost degenerate with the chiral state,
which is accidental and not robust to band parameter changes.

f SOC,5
2 ) splits the chiral state away from helical ones, while

( f SOC,4
2 − f SOC,5

2 ) breaks the degeneracy among the four heli-
cal p-wave states, splitting them into two groups, {A1u, B1u}
and {A2u, B2u}. Within each group the two states are con-
nected by MŜ

xz and MŜ
yz, and therefore remain degenerate.

In terms of the components of the order parameter matrix
�̂, f SOC,4

2 − f SOC,5
2 = (−1/2){[�∗

↑↑,x�↓↓,x − �∗
↑↑,y�↓↓,y] +

c.c.}. This term was identified in Refs. [24,28] using a direct
expansion in the SOC, while our analyses here are based on
symmetries of the model.

Again, it is important to understand the SOC dependence
of δF in Eq. (20). For that we go back to the original
Hamiltonian written in terms of the actual spin. As mentioned
previously, the linear order in η/t contribution to the GL free
energy comes from δF = 2η〈L · S〉, where S is the actual
spin operator, not pseudospin. However, 〈L · S〉 ≡ 0 because
of the three remaining mirror reflection symmetries in the
pseudospin space, {MŜ

xz,MŜ
yz,MŜ

xy}, which imply the same
symmetries for the actual spin, since the {x, y, z} directions
are identical in the pseudospin and actual spin spaces. On the
other hand, these symmetries do not prohibit a second order
in η/t term, δF ∝ 〈(2η L · S)2 · · · 〉, where · · · here stands
for η independent operators that have a dimension of energy
inverse. Therefore, in Eq. (20), the GL expansion coefficients
{a1, a4, a5} ∝ (η/t )2 to leading order in η/t .

3. Numerical results

We confirm the above conclusions with weak-coupling
RG calculations, where the details of the calculation follow
Refs. [18,26]. Figure 2 shows the numerical results of the
splitting between helical and chiral states as a function of J/U
for fixed η/t = 0.1. At J/U = 0, all p-wave pairing states are

text we simply focused on δ˜̃V , rather than the more complicated˜̃V inv G̃4 δ˜̃V

0
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FIG. 3. η/t dependence of the splitting between helical and
chiral states in weak-coupling RG. t ′′′ = 0 and J/U = 0.06. The
splitting is ∝(η/t )2 to leading order in η/t . Again, due to the
near-degeneracy between the {A2u, B2u} and chiral states for these
band parameters, the quadratic dependence of the splitting in η/t is
difficult to discern.

degenerate, even though η �= 0, consistent with the conclusion
obtained in Sec. III B. At finite J/U , the degeneracy between
chiral and helical states is lifted. The four helical states are
split into two groups of two degenerate states. The splitting
of Tc between the chiral states and the {A1u, B1u} group is
indeed ∝J/U to leading order, as predicted. Interestingly, the
other group, {A2u, B2u}, remains almost degenerate with the
chiral states even at finite J/U , which is, however, not robust
to changes of normal state band dispersions.

Figure 3 shows our weak-coupling RG results for the
SOC dependence of |λHe| − |λCh|. Within numerical errors,
|λHe| − |λCh| ∝ (η/t )2, in agreement with the above analyti-
cal analysis.

A summary of the main results obtained in this section
is: finite J = J ′ and η induce pseudospin rotational breaking
terms in the GL free energy as given in Eq. (20), which
lift the degeneracy among different p-wave pairing states.
The splitting of Tc between different p-wave states is δTc ∝
(J/U ) η2/t , to leading order in J/U and η/t . The degener-
acy between A1u and B1u, and that between A2u and B2u,
remains due to pseudospin mirror reflection symmetries in
the xz and yz planes. The terms in Eq. (20) can favor either
chiral or helical states, depending on the magnitudes of the
two coefficients, (2a1 − a4 − a5)/4 and (a4 − a5)/2, which
in turn depend on the normal state band structures. If a1 <

min{a4, a5}, then (2a1 − a4 − a5)/4 < −|a4 − a5|/4 and the
chiral states are stabilized.

E. Results for both g(k) �= 0 and J �= 0

When both g(k) and J = J ′ are nonzero, the SOC induced
GL free energy is given by the sum of Eqs. (15) and (20).
However, the GL free energy expansion coefficients for each
f SOC, j
2 are different from those in Eqs. (15) and (20) because

of additional contributions that depend on both t ′′′ and J . The
degeneracy among all p-wave pairing states is lifted except
the one between the two chiral states with opposite chirality
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FIG. 4. J/U dependence of the splitting between different helical
and chiral p-wave states. t ′′′ = 0.01t and η = 0.1t . The splitting
at small J/U is dominated by the linear in t ′′′ effect discussed in
Sec. III C, which always stabilizes helical states.

within the Eu representation, as seen in Fig. 4. Because of the
near-degeneracy seen in Fig. 2, the splitting between A2u (or
B2u) and chiral states is dominated by the t ′′′ term at small
J/U . An implication is that, with both J and t ′′′ present, the
dominant p-wave pairing state in the small J/U and t ′′′/t
parameter space regime will be always helical, rather than
chiral, regardless of whether the splitting, |λHe| − |λCh|, for
the other two helical states, {A1u, B1u}, is ∝AJ/U with a
positive slope A > 0, as seen in Fig. 4, or with A < 0. When
t ′′′/t becomes larger, the splitting between {A2u, B2u} and
chiral states can pick up a significant J/U linear dependence
because of cross dependent terms.

Some of the conclusions derived in Secs. III C and III D
still hold when both t ′′′ and J are present. For example, the
leading SOC dependence of the splitting between different p-
wave pairing states is linear due to the g(k) induced terms,
as shown in Fig. 5. These terms are ∝t ′′′η/t2 to leading order
in t ′′′/t .
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FIG. 5. η/t dependence of the splitting between helical and chi-
ral p-wave states in weak-coupling RG. t ′′′ = 0.1t and J/U = 0.11.
The leading SOC dependence is linear at small η/t .

FIG. 6. Phase diagram obtained within RPA for different J/U
and U/t . The RPA breaks down in the “NA” regime. The three
intraorbital hoppings in Eq. (6) are εxz(yz)(k) = −2t cos kx(y) −
2t⊥ cos ky(x) − μ, εxy(k) = −2t ′(cos kx + cos kx ) − 4t ′′ cos kx cos ky

− 2t ′′′′(cos 2kx + cos 2kx ) − μ. We choose the band parame-
ters, (t, t⊥, t ′, t ′′, t ′′′, t ′′′′, μ, η) = (1, 0.1, 0.8, 0.3, 0.05, −0.015,

1.075, 0.2), such that the resulting Fermi surfaces fit recent ARPES
data [17].

IV. STABILITY OF CHIRAL p-WAVE PAIRING

The analysis of Sec. III shows that, within the current 2D
three-band model with an on-site Kanamori-Hubbard inter-
action, the dominant pairing is always helical, rather than
chiral, at small J/U and U/t where p-wave pairing is favored
within the weak-coupling approximation [18,29,31]. On the
other hand, at large J/U , pseudospin singlet pairing takes over
[18,29,31]. Therefore we expect the phase diagram, in the
parameter space spanned by J/U and U/t , to be dominated
by helical p-wave and singlet pairing states for physical band
parameters describing Sr2RuO4, where interorbital hybridiza-
tion between dxz and dyz orbitals can not be neglected. This
expectation is confirmed by our RPA calculations, which
give the phase diagram shown in Fig. 6. Details of the RPA
calculation follow those found in Refs. [29,30]. The RPA
breaks down for U/t � O(1) due to an instability inherent in
this approximation, 2 but can give reliable results even beyond
the weak-coupling regime, U/t � 1 [38]. In Fig. 6, there is
no trace of chiral pairing even at an intermediate value of
J/U . In this phase diagram, the helical state order parameter
realized is d(k) = x̂kx + ŷky (A1u), and the s and dx2−y2 wave
order parameters belong to the irreducible representation A1g

and B1g, respectively, of the D4h group. However, they are not
simple lowest harmonic functions, but are highly anisotropic,
similar to those found in Refs. [18,29]. In each phase of
the phase diagram, the ratio of the gap magnitude on differ-
ent bands depends on both J/U and U/t . However, unlike

2The eigenvalue of the effective interaction in the Cooper pairing
channel, λ, diverges where RPA breaks down and for Fig. 6, we cut
off the phase diagram at (t/U )2|λ| = 0.2. The boundary is insensitive
to the choice of a cutoff [provided it is �O(1)], since λ diverges
rapidly in this region
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Ref. [18] where the α + β always dominate when the favored
pairing symmetry is helical, we find that the dominant band in
the helical phase is γ when both J/U and U/t are small, while
it changes to α + β at larger J/U or U/t .

Since chiral p-wave pairing states have been previously
found in various numerical calculations using the same model
[18,24,29,30], we comment on these. In Ref. [24], the domi-
nant pairing instability was calculated by solving Eliashberg
equations with an effective pairing interaction derived from a
perturbation theory up to second order in the bare interaction.
Chiral p-wave was found to be the dominant channel when the
Eliashberg equations were solved only for the γ band, while
the coupling between γ and α + β bands due to the effective
interaction was neglected. However, this coupling can have
significant effects on the ratio between the gap magnitudes
of the two sets of bands [18,29], which in turn can impact
the relative stability between helical and chiral p-wave pairing
states. This can explain the difference between our numerical
results and those in Ref. [24]. Ref. [18] is a weak-coupling
RG calculation, where chiral p-wave states have been found
near J/U = 0 with a nonzero t ′′′/t = 0.01. However, this is
inconsistent with our analytical analyses of the t ′′′ effect in
Sec. III C and also inconsistent with our numerical results in
Fig. 6. Reference [29] is an RPA calculation based on the same
model. The phase diagrams obtained in the weak-coupling
limit are similar to those in Ref. [18]. In particular, there is
a significant portion of the phase diagram at small J/U and
U/t , where chiral p-wave pairing dominates. However, we
note that Eq. (S13) of Ref. [29] takes the real part of the
effective interaction. In the presence of SOC, this suppresses
the t ′′′ induced terms that we have identified in Eq. (15),
which favors helical over chiral states. This may explain the
discrepancy between our RPA phase diagram in Fig. 6 and
those in Ref. [29]. In Ref. [30], a similar RPA calculation was
performed at relatively large U for different Fermi surface
geometries. Chiral p-wave pairing has been found only at
large SOC for the Fermi surface geometry where the γ band
touches the zone boundary. However, in that calculation, the
interorbital hybridization t ′′′ was set to zero, which completely
leaves out the terms in Eq. (15). Physically we do not ex-
pect this hybridization to be vanishingly small, given that
it is between orbitals on two next-nearest neighboring sites.
Including a small t ′′′ = 0.01t suppresses the chiral p-wave
pairing, giving way to helical states. We have verified this with
RPA calculations in a parameter regime that overlaps with
those of Ref. [30] and found results that are consistent with
our analytical analysis. Furthermore, we find the stability of
chiral p-wave in this parameter regime requires fine-tuning,
in that a small change in parameters renders this phase unsta-
ble.

Given the difficulty of stabilizing a chiral p-wave state
within the current model, we wonder what ingredients can
favor a chiral p-wave state if we go beyond this model. There
are at least two possibilities to consider: (1) three-dimensional
effects on the normal state Fermi surface; (2) longer range
off-site interactions.

In a 3D model with the same on-site Kanamori-Hubbard
interaction, like the one used in Ref. [31], two additional
interorbital hybridization terms appear in the normal state
Hamiltonian, txz,xy (tyz,xy) between dxz (dyz) and dxy orbitals,

in addition to the t ′′′ that we have already considered. The
two interlayer hybridizations txz,xy and tyz,xy, combined with
the finite SOC, can mix an out-of-plane component kz(x̂, ŷ)
in the d(k) vector of the chiral p-wave pairing state within
the Eu representation [14,39,40], which shifts the Tc of the
chiral p-wave state. However, this mixing is small because
of its dependence on small parameters η/t and tz/t , where
tz ≡ max{|tyz,xy|, |txz,xy|}. The mixing vanishes if either η = 0
or tz = 0 so that, to leading order in η/t and tz/t , it is ∝ηtz/t2.
The resulted critical temperature shift from the mixing can
be estimated by a second order nondegenerate perturbation
theory and the result is δTc/Tc ∝ (ηtz/t2)2. Detailed discus-
sions can be found in Appendix C. This shift is negligible
compared to the effects of other SOC induced terms on Tc

that we discussed in Sec. III. Therefore we ignore the possible
mixing in the following.

Then we can easily generalize our 2D analyses to the
3D model. If we set all interorbital hybridizations and J to
zero, the same derivations as in Sec. III B lead to the same
conclusion that all p-wave pairing states remain degenerate
even with η �= 0. Note that in this case there is no mixing be-
tween the in-plane and out-of-plane pairings because the full
pseudospin SU(2) symmetry is still preserved. SOC induced
terms by each interorbital hybridization can be analyzed
similarly following Sec. III C. The two additional hybridiza-
tions, txz,xy and tyz,xy, add two additional terms to the δH̃K (k)
in Eq. (14) that are ∝txz,xy sin kz/2 cos kx/2 sin ky/2 · · · and
∝tyz,xy sin kz/2 cos ky/2 sin kx/2 · · · , respectively [31]. How-
ever, the leading order GL free energy from these two terms
vanish in δF = 〈δH̃K (k)〉 after the k average, since we have
ignored a possible mixing of the out-of-plane pz pairing
component, and the odd kz dependence of those two terms
can not be compensated by any other term in the mean field
Hamiltonian of a px or py pairing state. Therefore, to linear
order in txz,xy/t or tyz,xy/t , which are expected to be even
smaller than t ′′′/t , we can drop those additional hybridizations
in the normal state Hamiltonian. Then the analyses of the t ′′′
and J induced terms are identical to those in Sec. III C and
III D. Therefore the conclusions obtained in the 2D analysis
can be directly applied to the 3D model. In other words, the
three-dimensional effect of the FS does not help stabilize a
chiral p-wave pairing state, consistent with the 3D weak-
coupling RG numerical results obtained in Ref. [31], where
helical states have been found to dominate over chiral p-wave
pairing at J/U all the way up to J/U = 0.2.

Another possibility is to consider longer-range off-site
interaction models [23,41]. Reference [23] considered such
a model with attractive nearest neighbor interactions, and, in-
deed, chiral p-wave pairing states were found to be stabilized
in some regime of the pairing interaction parameter space.
However, the solutions were obtained under the assumption
that the p-wave pseudospin triplet channel is favored over
singlet channels. In Ref. [41], the authors studied a nearest
neighbor version of the Kanamori-Hubbard interaction model,
and found that p-wave pseudospin triplet states are more
stable than singlet channels for certain choice of interaction
parameters; on the other hand, the relative stability among dif-
ferent p-wave pairing states has been completely ignored by
simply assuming that chiral p-wave pairing states are favored
over helical states. In both cases, further investigations beyond
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the assumptions made here would be needed to establish the
stability of chiral p-wave states.

V. CONCLUSIONS

We have conducted a thorough study of the effect of
SOC on the relative stability of different p-wave pairing
states for a widely used microscopic model for Sr2RuO4.
Our analysis combines a general GL free energy expansion
with an analytical study of the symmetry of the microscopic
model Hamiltonian. We give the most general form of the
SOC induced quadratic GL terms that break the pseudospin
SU(2) rotation symmetry, identify the relevant GL terms for
the microscopic model, and examine their effects on lifting
the degeneracy among different p-wave pairing states. The
analytical results are further supported by our weak-coupling
RG and RPA numerical calculations.

A theme that emerges from this study is that the breaking
of SU(2) rotation symmetry in pseudospin space can be quite
different from that in the actual spin space; this was also
pointed out in Ref. [24]. The former depends on not only the
presence of SOC but also other ingredients of the microscopic
Hamiltonian, which in the current model are the interorbital
hybridization t ′′′, Hund’s coupling J , and/or pair hopping.
The additional dependence on t ′′′ and J significantly reduces
the splitting among different p-wave states for Sr2RuO4 since
both t ′′′/t and J/U are small. In the parameter space regime
relevant to Sr2RuO4, with finite but small t ′′′/t and small
J/U , we find that the finite t ′′′ effect tends to dominate and
always stabilizes helical states over the chiral ones. We have
also generalized our analysis to a 3D model and shown that
the existence of interorbital hybridizations, in addition to the
t ′′′ that already exists in 2D models, does not help stabilize
the chiral p-wave pairing states, in agreement with the recent
numerical study [31]. On the other hand, including longer-
range interactions may or may not make the chiral states more
favorable and requires further investigation.

Our analysis has resolved some conflicts among different
results on the relative stability between helical and chiral
p-wave pairing states in the literature. Since the analysis is
largely based on the symmetries of the model and independent
of how the model is treated, it also serves as a guide for
future studies, both analytical and numerical. Furthermore, the
analysis presented here can be adapted to study the effect of
SOC on other multiorbital pseudospin triplet superconductors.

An outstanding issue in Sr2RuO4 is to reconcile theory
with the observations of broken time-reversal symmetry [1,3]
and a jump in the shear modulus c66 [42]. Although a chiral
p-wave state can explain both, here we discuss possible alter-
native explanations with helical states.

Given the small splitting among different helical states
found here and in previous works [18,29,31,43], a possibility
to consider is a pair of accidentally or nearly degenerate
helical states. If the two states are close enough to degeneracy,
such a pair can lead to either coexistence of different helical
state domains [14,44] or a homogeneous time reversal break-
ing state [44–46], depending on microscopic interactions. A
previous analysis of quartic GL terms [47] suggests that a
homogeneous time reversal symmetry breaking state is almost
impossible unless the system is very near or right at the degen-

eracy point. Moreover, except right at the degeneracy point,
this scenario requires two phase transitions with different Tc,
which is not observed experimentally. Nevertheless, if two al-
most degenerate helical orders do form a homogeneous state,
this can lead to a jump in c66 if the two mixed representations
are {A1u, B2u} or {A2u, B1u} [43]. However, within the models
studied in this paper, our analysis in Sec. III suggests that
residual symmetries in pseudospin space do not naturally lead
to a degeneracy between A1u (A2u) and B2u (B1u).

In the case of coexistence of domains, time reversal break-
ing is possible at domain walls where two different helical
order parameters coexist. However, since the order parameter
mixing is local, the resulted coupling to external probes, such
as light in a Polar Kerr measurement [3] and the shear strain
εxy in an ultrasound measurement [42], is also local, which
makes it unlikely to be able to account for the experiments.
So a theoretical explanation of both broken time-reversal
symmetry and a jump in c66 is highly constrained. Further in-
vestigations, both experimentally and theoretically, are needed
to better assess the possibility of reconciling the experiments
with helical ordered states.

Note added. Recently, Ref. [30] was updated with addi-
tional calculations on the effects of the interorbital hybridiza-
tion t ′′′. Their new results are consistent with our analysis.

ACKNOWLEDGMENTS

We would like to thank Sung-Sik Lee, Wen Huang, and
Thomas Scaffidi for useful discussions. This research is sup-
ported by the National Science and Engineering Research
Council of Canada (NSERC) and the Canadian Institute for
Advanced Research (CIFAR). This work was made possible
by the facilities of the Shared Hierarchical Academic Re-
search Computing Network (SHARCNET:www.sharcnet.ca)
and Compute/Calcul Canada.

APPENDIX A: SOC INDUCED GL FREE ENERGY TERMS
AT QUADRATIC ORDER FOR 2D MODELS

As mentioned in the main text, the remaining symme-
try group in the presence of SOC is DL̂+Ŝ

4h ⊗ U (1)C for a
2D model. To derive all possible GL free energy terms at
quadratic order for the pseudospin triplet pairing states, we
contract the rank-4 tensor, (dμ

i )∗dν
j , to a scalar such that it is

invariant under all symmetry operations of the above group.
For 2D models, the xy-plane mirror reflection symmetry of
DL̂+Ŝ

4h , denoted as MŜ
xy, is operative only on the pseudospin

since there is no kz. MŜ
xy requires that, in (dμ

i )∗dν
j , either

{μ, ν} = {x, y} or μ = ν = z.
For the case of {μ, ν} = {x, y}, there are only four possible

independent contractions, given in Table III. With μ = ν = z
the only possible contraction is∑

i j={x,y}
δi j

(
dz

i

)∗
dz

j = ∣∣dz
x

∣∣2 + ∣∣dz
y

∣∣2
. (A1)

Linear combinations of the four terms from Table III and
the one in Eq. (A1) gives the five terms in Table I of the main
text. The above SOC induced free energy terms can be also
rewritten in terms of the order parameter matrix �̂. Rewriting
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TABLE III. All possible contractions of (dμ
i )∗dν

j that are in-

variant under the DL̂+Ŝ
4h ⊗ U (1)C group for {μ, ν} = {x, y}. For 2D

models, {i, j} = {x, y}.

Different contractions Results∑
μνi j={x,y} δμiδν j (dμ

i )∗dν
j

∑
i j={x,y}(d

i
i )∗d j

j∑
μνi j={x,y} δμ jδνi (dμ

i )∗dν
j

∑
i j={x,y}(d

j
i )∗di

j∑
μνi j={x,y} δμνδi j (dμ

i )∗dν
j

∑
i j={x,y}(d

j
i )∗d j

i∑
μνi j={x,y} δμiδi jδ jν (dμ

i )∗dν
j |dx

x |2 + |dy
y |2

the five terms in Table I using Eq. (1) and linearly recombining
them gives the five independent terms in Table IV, from which
we see that order parameter products other than �̂†�̂, such as
�̂σi�̂ and �̂σi�̂σ j , also appear in the free energy expansion,
due to the broken pseudospin SU(2) symmetry [34].

APPENDIX B: SOC DEPENDENCE OF THE SPLITTING
BETWEEN HELICAL AND CHIRAL STATES WHEN

J = J′ = 0

The η dependence of δF for the 2D model at J = J ′ = 0
is calculated in weak-coupling RG and shown in Fig. 7. As
mentioned in the main text, we find that the splitting between
helical states has a quadratic dependence on η for small η at
J/U = 0. This result can be understood as follows. When both
η = 0 and J ′ = J = 0, the two-particle effective interaction
has no coupling between α + β bands, which consist of the
dxz and dyz orbitals, and the γ band, if only intraband pairing
is considered as in the weak-coupling RG [18]. Then the
pairing lives purely on the γ band since that band has a
larger density of states. Therefore, at zero order in η, all
the off-diagonal density matrices in Eq. (17) are identically
zero. As a consequence, δF ∼ O(η2). However, in general,
we expect the three bands to be coupled even when η = 0 if
the pair hopping J ′ �= 0. In that case, δF picks up a linear in η

term, as seen in Fig. 5. The η linear term is likely to dominate
over the η2 term since its estimated J/U for Sr2RuO4 is about
0.1 (see Ref. [18] and the references therein). Note that even
a small J/U can strongly couple the three bands together
such that order parameter magnitudes on the three bands are
comparable [18]. This is largely because the normal state

TABLE IV. All possible SOC induced GL free energy terms at
quadratic order in �̂ for the pseudospin triplet pairing states in a 2D
model. �̂x is the part of the order parameter matrix �̂ that transforms
like kx under the spatial D4h group. The trace Tr is performed in the
pseudospin space. Note that, in this table, f SOC,E

2 is allowed because
the pseudospin Pauli matrix σz is even under the xy-plane mirror
reflection MŜ

xy.

GL terms Expressions in terms of �̂

f SOC,A
2 Tr[�̂†

xσz�̂xσz] + Tr[�̂†
yσz�̂yσz]

f SOC,B
2 Tr[�̂†

yσx�̂yσx] − Tr[�̂†
xσy�̂xσy]

f SOC,C
2 Tr[�̂†

xσx�̂xσx] − Tr[�̂†
yσy�̂yσy]

f SOC,D
2 Tr[�̂†

xσx�̂yσy] − Tr[�̂†
yσy�̂xσx]

f SOC,E
2 i {Tr[�̂†

xσz�̂y] − Tr[�̂†
yσz�̂x]}
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FIG. 7. η/t dependence of the splitting between helical and
chiral p-wave pairing states in weak-coupling RG. t ′′′ = 0.1t and
J = 0. The splittings are ∝(η/t )2 to leading order in η.

density of states of the α + β bands is comparable to that of
the γ band.

APPENDIX C: SOC INDUCED GL FREE ENERGY TERMS
AT QUADRATIC ORDER FOR 3D MODELS

For a 3D model that depends on kz, in addition to the
basis functions given in Table II, an out-of-plane pairing
component, with the basis function d(k) = ẑkz for the A1u and
d(k) = kz (x̂, ŷ) for the Eu representation, is also allowed by
symmetry [14,39,40]. In the presence of SOC and interlayer
coupling, in general, the vector d(k) of the Eu (but not the
A1u; see below) representation is a mixture of the in-plane and
out-of-plane pairing components, which leads to more GL free
energy terms at quadratic order in �̂.

To obtain these GL free energy terms, we follow the 2D
derivations outlined in Appendix A. The only difference is
that, for 3D models, the xy-plane mirror reflection, ML̂+Ŝ

xy ,
now operates on both the k and pseudospin. Besides the terms
in Table I, we also get

f SOC,6
2 = ∣∣dz

z

∣∣2
, (C1a)

f SOC,7
2 = ∣∣dx

z

∣∣2 + ∣∣dy
z

∣∣2
, (C1b)

f SOC,8
2 =

∑
j={x,y}

[(
dz

j

)∗
d j

z + c.c.
]
, (C1c)

f SOC,9
2 =

∑
j={x,y}

i
[(

dz
j

)∗
d j

z − c.c.
]
. (C1d)

f SOC,6
2 and f SOC,7

2 describe the free energy contributions
from the d(k) = ẑkz and d(k) = kz (x̂, ŷ) pairings, respec-
tively. They exist even without SOC. However, f SOC,6

2 and
f SOC,7
2 are irrelevant to our current discussions since the Tc

of the out-of-plane pairings are expected to be much smaller
than that of the in-plane components for Sr2RuO4, which is
highly quasi-2D. The other two GL terms, f SOC,8

2 and f SOC,9
2 ,

describe the coupling between the in-plane d(k) = ẑ (kx, ky )
and out-of-plane d(k) = kz (x̂, ŷ) components within the same
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Eu representation. Their appearance requires finite SOC to
break the full psedospin rotational symmetry. Note that such
a coupling does not exist for the A1u representation.

The mixing of the out-of-plane component to the in-plane
chiral p-wave pairing state in Eu leads to a shift of the Tc

away from its zero SOC value, T 0
c . On the other hand, the

helical p-wave states are unaffected by the mixing; therefore,
the degeneracy among different p-wave states is in general
lifted due to the shift. Hence it is important to understand
the magnitude of this shift, and compare it to the effect of
other SOC induced GL terms on Tc that we have discussed in
Sec. III of the main text.

To that end, we first analyze the dependence of the GL
coefficients associated with f SOC,8

2 and f SOC,9
2 , a8 and a9,

on small parameters of the model that we consider [31].
Spin rotation symmetry breaking requires that, to leading
order in η, {a8, a9} ∝ η/t . Since the terms in f SOC,8

2 and
f SOC,9
2 transform like kxkz or kykz under spatial rotations,

the two GL coefficients necessarily come from a k space

average 〈· · · kxkz〉 or 〈· · · kykz〉, which is nonzero only if
the kxkz or kykz dependence is compensated by interlayer
hopping terms such as tyz,xy sin kx/2 sin kz/2 cos ky/2 or
txz,xy sin ky/2 sin kz/2 cos kx/2. As a consequence, to lead-
ing order in tyz,xy/t and txz,xy/t , {a8, a9} ∝ tz/t , where tz =
max{|tyz,xy|, |txz,xy|}. Combing the η/t and tz/t dependence,
we have {a8, a9} ∝ T 0

c (η tz )/t2, where T 0
c is a characteristic

pairing temperature scale for zero SOC.
Now consider the Tc shift of the chiral p-wave pairing

state due to the mixing. As mentioned above, we expect that,
for Sr2RuO4, the Tc of the in-plane and out-of-plane pairing
components in the Eu representation, Tc,in and Tc,out, satisfy
Tc,in � Tc,out. So the Tc shift of the in-plane chiral p-wave
pairing state due to the mixing can be well estimated from a
second order non-degenerate perturbation theory, i.e., δTc ≈
max{|a8|2, |a9|2}/(Tc,in − Tc,out ), which leads to δTc/Tc ∝
(η tz )2/t4. This shift is negligible compared with the contri-
butions from other SOC induced terms that we have discussed
in the main text, since η/t ∼ 0.1 and |tz/t | � 0.1 for Sr2RuO4.

[1] G. Luke, Y. Fudamoto, K. Kojima, M. Larkin, J. Merrin, B.
Nachumi, Y. Uemura, Y. Maeno, Z. Mao, Y. Mori et al., Nature
(London) 394, 558 (1998).

[2] K. Ishida, H. Mukuda, Y. Kitaoka, K. Asayama, Z. Mao, Y.
Mori, and Y. Maeno, Nature (London) 396, 658 (1998).

[3] J. Xia, Y. Maeno, P. T. Beyersdorf, M. M. Fejer, and A.
Kapitulnik, Phys. Rev. Lett. 97, 167002 (2006).

[4] A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657 (2003).
[5] C. Kallin and J. Berlinsky, Rep. Prog. Phys. 79, 054502 (2016).
[6] A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).
[7] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[8] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[9] A. P. Mackenzie, T. Scaffidi, C. W. Hicks, and Y. Maeno,

Quantum Materials 2, 40 (2017).
[10] M. Matsumoto and M. Sigrist, J. Phys. Soc. Jpn. 68, 994 (1999).
[11] J. R. Kirtley, C. Kallin, C. W. Hicks, E.-A. Kim, Y. Liu, K. A.

Moler, Y. Maeno, and K. D. Nelson, Phys. Rev. B 76, 014526
(2007).

[12] C. W. Hicks, D. O. Brodsky, E. A. Yelland, A. S. Gibbs, J. A. N.
Bruin, M. E. Barber, S. D. Edkins, K. Nishimura, S. Yonezawa,
Y. Maeno, and A. P. Mackenzie, Science 344, 283 (2014).

[13] A. Steppke, L. Zhao, M. E. Barber, T. Scaffidi, F. Jerzembeck,
H. Rosner, A. S. Gibbs, Y. Maeno, S. H. Simon, A. P.
Mackenzie, and C. W. Hicks, Science 355, eaaf9398 (2017).

[14] A. Pustogow, Y. Luo, A. Chronister, Y.-S. Su, D. Sokolov, F.
Jerzembeck, A. Mackenzie, C. Hicks, N. Kikugawa, S. Raghu
et al., Nature (London) 574, 72 (2019).

[15] K. Ishida, M. Manago, and Y. Maeno, arXiv:1907.12236.
[16] M. W. Haverkort, I. S. Elfimov, L. H. Tjeng, G. A. Sawatzky,

and A. Damascelli, Phys. Rev. Lett. 101, 026406 (2008).
[17] A. Tamai, M. Zingl, E. Rozbicki, E. Cappelli, S. Riccò, A. de

la Torre, S. McKeown Walker, F. Y. Bruno, P. D. C. King, W.
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Chapter 5

Higher angular momentum
pairing states in Sr2RuO4 in the
presence of longer-range
interactions

5.1 Preface

Recently, TRSB dx2−y2 ± igxy(x2−y2) pairing with symmetry-rotected vertical line
nodes along the (1,1,0) direction was proposed as an order parameter candidate
from a phenomenological analysis. [27] This OP can be compatible with a wide
variety of key experiments. [27] However, the stability of this state, especially of
the g-wave component, in SRO is unclear. As far as we know, no g-wave pairing
has been found in previous studies of SRO [120, 51, 106, 139, 107, 108, 121, 52, 118,
119], except in studies of orbital pairings that include sizable interband pairing.

Previous studies on the single-band Hubbard model found that both dx2−y2-
and g-wave are dominant and nearly degenerate in the weak coupling limit when
nearest-neighbor (NN) Coulomb interactions, V NN, are included. [122] A recent
study [97] extends this analysis to a multi-band SRO model and finds that neither
dx2−y2 nor g-wave pairing is favored within RPA. Instead, they suggest a TRSB
s′ + idxy solution with gap minima near (1,1,0) which, like dx2−y2 + ig order, can
explain the NMR Knight shift and ultrasound data. (s′ labels nodal s-wave states.)
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However, the model employed in Ref.[97] does not capture the orbital dependence
of the longer-range interactions, which is not negligible in SRO.

Another effect that may help stabilize the g-wave state is the B2g channel SOC,
ηB2g . [140, 98] ηB2g involves in-plane next-nearest neighbor (NNN) Ru sites and
is allowed by symmetry in the presence of the atomic SOC and the inter-orbital
hybridizations between dxz and dyz orbitals. [140] It is expected to be the leading
SOC term beyond the atomic SOC in SRO as it can utilize the intermediate p-
orbitals through several hopping channels. The effect of ηB2g is explored in Ref.[98]
within the so-called Hund’s coupling mean-field approach where superconducting
pairings are generated by attractive on-site interactions due to strong Hund’s cou-
pling. Both dx2−y2- and g-, including a dx2−y2 + ig, are stabilized in the presence
of a strong ηB2g , ηB2g/η & 0.4. It has been pointed out that Hund’s pairings are,
in general, less favored than spin-fluctuation pairings in SRO due to its nesting
features in Refs. [119, 137]. Thus, it is important to study the effects of ηB2g more
generally.

In this chapter, we study the stability of the dx2−y2- and gxy(x2−y2)-wave states,
as well as dx2−y2 ± igxy(x2−y2), in SRO models in the presence of longer-range
interactions within RPA. (See Appendix C for details.) We find that the inclusion
of in-plane NNN Coulomb repulsions, together with ηB2g and/or orbital-anisotropy
of the non-local interactions, can have a significant impact on the stability of
both dx2−y2- and g-wave pairing channels. As a result, accidentally degenerate
or near degenerate dx2−y2 + ig can be stable for a specific range of parameters.
We further study the properties, such as nodal structures, in-plane field spin-
susceptibility, and spontaneous edge current, of the realized dx2−y2 +ig pairing. We
find that, compared with the realized s′+ idxy [97] and mixed helical pairings [96],
the dx2−y2 + ig pairing is more compatible with existing experiments. [112, 113, 92,
93, 37, 38, 39] Our study identifies the critical effects that stabilize the dx2−y2 + ig

state, which has been somewhat discounted relative to other states like s′ + idxy

in previous studies.

5.2 Publication
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The superconducting symmetry of Sr2RuO4 remains a puzzle. Time-reversal symmetry breaking dx2−y2 +
igxy(x2−y2 ) pairing has been proposed for reconciling multiple key experiments. However, its stability remains
unclear. In this work, we theoretically study the superconducting instabilities in Sr2RuO4, including the effects
of spin-orbit coupling (SOC), in the presence of both local and longer-range interactions within a random-phase
approximation. We show that the inclusion of second-nearest-neighbor repulsions, together with nonlocal SOC
in the B2g channel or orbital-anisotropy of the nonlocal interactions, can have a significant impact on the stability
of both dx2−y2 - and g-wave pairing channels. We analyze the properties, such as Knight shift and spontaneous
edge current, of the realized dx2−y2 + ig, s′ + idxy, and mixed helical pairings in different parameter spaces, and
we find that the dx2−y2 + ig solution is in better agreement with the experimental data.

DOI: 10.1103/PhysRevB.106.134512

I. INTRODUCTION

The nature of the unconventional superconductivity in
Sr2RuO4 (SRO) remains an outstanding open question after
more than 27 years of study, despite this material being sim-
pler than the high-temperature cuprates in many respects. The
samples are clean, and superconductivity condenses from a
well-defined Fermi liquid normal state so that it is natural to
take an itinerant-electron perspective, where superconductiv-
ity is an instability of the Fermi surface (FS). However, despite
intense efforts, an order parameter (OP) that is consistent with
all the key experimental observations is lacking.

A multicomponent OP is inferred from a variety of ex-
periments, including muon spin rotation (μSR) [1,2], polar
Kerr [3], Josephson relation [4], and ultrasound measurements
[5–7]. The multicomponents can be degenerate by symmetry,
belonging to the two-dimensional irreducible representations
(irrep.) of the crystal point symmetry group, or be degenerate
accidentally, belonging to two distinct one-dimensional irreps.

Possible symmetry-related OPs for a crystal with D4h

symmetry are spin-triplet px ± ipy with Eu symmetry and
spin-singlet dxz ± idyz (Eg). Both are difficult to reconcile
with experiments. The px ± ipy pairing is inconsistent with
the significant drop of the in-plane Knight shift below Tc

observed in recent NMR experiments [8,9]. The dxz ± idyz

has symmetry-protected horizontal line nodes at kz = 0 that
conflict with thermal conductivity and scanning tunneling
microscopy (STM) studies, where vertical line nodes are in-
dicated [10,11]. In addition, it would produce a jump in the
elastic modulus associated with shear B1g strain, which is not
observed in experiments [5]. Indeed, no dxz ± idyz pairing has
been found in microscopic calculations for SRO [12,13] ex-
cept in studies of orbital pairings that include sizable interband
pairing [14,15]. We briefly discuss interband pairing in the
conclusions.

The above difficulties associated with the symmetry-
related OPs focused attention on the accidental degeneracy
scenario, even though it usually requires fine-tuning. The need
for fine-tuning can be somewhat relaxed by considering in-
homogeneous states, where, for example, the second OP is
induced by inhomogeneous strains near dislocations [16,17].
This scenario is consistent with recent μSR [2] and ultrasound
attenuation measurements [7].

Recently, a time-reversal symmetry breaking (TRSB)
dx2−y2 ± igxy(x2−y2 ) pairing with symmetry-protected vertical
line nodes has been proposed to explain multiple key experi-
ments [18,19]. Although dx2−y2 -wave is stable in SRO models
in the presence of on-site interactions [20–27], g-wave is not
favored. It has been suggested that the g-wave state may be
stabilized by longer-range interactions based on studies of
single-band Hubbard models [28,29]. A recent study [27]
found that neither dx2−y2 - nor g-wave pairing is favored in SRO
in the presence of orbital-isotropic longer-range Coulomb
repulsions. Instead, an s′ + idxy solution was suggested with
gap minima near (1,1,0), which, like dx2−y2 + ig order, is
also consistent with NMR and ultrasound measurements (s′
labels nodal s-wave states). The calculations in Ref. [27] are
performed in an intermediate Hubbard-U regime, U ≈ 1.1t ,
where t is the primary hopping amplitude.

It was recently reported in Ref. [15] that the g-wave pairing
could be stabilized in SRO by strong nonlocal SOC in the
B2g channel (ηB2g) within the so-called Hund’s coupling mean-
field approach. In this framework, superconducting pairings
are generated by attractive on-site interactions due to strong
Hund’s coupling. However, Refs. [13,30] suggested that, in
general, Hund’s pairing is less favored than spin-fluctuation
pairing in SRO due to its nesting features. Therefore, it is of
interest to study the effects of ηB2g in SRO more generally.

In this work, we study the superconducting instabilities
in the presence of both local and longer-range Coulomb
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repulsions in SRO in a realistic multiorbital model, with local
and nonlocal SOC, over a range of U and other interac-
tion parameters, including the effects of orbital anisotropies.
One focus is identifying the effects that stabilize g-wave. In
this paper, the effective interactions are treated within the
random-phase approximation (RPA). Our studies include both
the weak-coupling limit and finite-U RPA. While RPA in-
cludes some higher-order scatterings associated with finite
interactions and has been shown to agree with other meth-
ods for a one-band model [31], it is unclear whether RPA
provides a more accurate description for SRO beyond weak
coupling.

We find that nearest-neighbor (NN) Coulomb repulsion,
V NN, combined with next-nearest-neighbor (NNN) repulsion,
V NNN, promotes g-wave pairing. Depending on the strength of
U , g-wave pairing becomes the leading or the first subleading
pairing for a substantial range of V NN and V NNN. ηB2g and
orbital anisotropies of V NN and V NNN can further stabilize
the g-wave phase. Although dx2−y2 pairing is not favored in
the presence of orbital-independent V NN and V NNN, it can
be stabilized by the effects of ηB2g and longer-range inter-
action anisotropies. As a result, accidentally/near-degenerate
dx2−y2 and g pairing can be obtained at the phase bound-
aries in certain parameter spaces. We also study the physical
properties of the realized dx2−y2 ± ig pairing and compare it
with another two recently proposed pairing candidates: the
s′ ± idxy [27] and a mixed helical pairing [32]. We find that
the dx2−y2 + ig is somewhat in better agreement with the
experiments.

The paper is organized as follows. The microscopic model
and method employed are discussed in Sec. II and the re-
sults of our RPA calculations are presented in Sec. III. The
physical properties of the possible two-component OPs are
discussed in Sec. IV. Section V contains our conclusions and
further discussion, including a brief discussion of interband
pairing that is found in some studies of SRO [15,33]. Finally,
some details are left to Appendixes, including the deriva-
tion of the effective interactions in Appendix A, the effects
of V NN in Appendix B, the more detailed analysis of the
stability of dx2−y2 - and g-wave pairing in Appendix C, and
the general effects of longer-range interaction anisotropies in
Appendix D.

II. MODEL AND METHOD

We consider the microscopic model Hamiltonian for the
three conduction bands of SRO,

H = HK + Hint, (1)

where HK is the kinetic energy part that gives rise to the
normal state FSs, and Hint is the interaction.

HK can be written in the basis �(k) = [ck,1,↑;
ck,2,↑; ck,3,↓; ck,1,↓; ck,2,↓; ck,3,↑]T , so that it is block-diagonal,

ĤK (k) =
(

H↑↑(k) 0

0 H↓↓(k)

)
, (2)

where {1, 2, 3} = {dyz, dxz, dxy} orbitals, and c†(c) is the elec-
tron creation (annihilation) operator,

Hss(k) =

⎛⎜⎜⎝
εyz,k gk + isη −sη − iη

B2g

k

gk − isη εxz,k iη + sη
B2g

k

−sη + iη
B2g

k −iη + sη
B2g

k εxy,k

⎞⎟⎟⎠,

(3)

with s = 1 (−1) for spin ↑ (↓). εyz(xz),k = −2t cos ky(x) −
2t⊥ cos kx(y) − μ and εxy,k = −2t ′(cos kx + cos ky) −
4t ′′ cos kx cos ky − μc describe intraorbital hoppings;
gk = −4t ′′′ sin kx sin ky is the hopping between dxz and

dyz orbitals. η is the atomic SOC, and η
B2g

k = 4ηB2g sin kx sin ky

is the nonlocal SOC in the B2g channel. Diagonalizing
ĤK gives three doubly degenerate energy bands labeled
by band index, {α, β, γ }, and pseudospin, σ =↑ (↓).
The band parameters are (t, t⊥, t ′′′, t ′, t ′′, μ, μc ) =
(1, 0.11, 0.05, 0.8, 0.32, 1.05, 1.1)t , which capture the
overall band structure and FS sheets of SRO. For now, the
magnitudes of η and ηB2g are left undetermined and will be
suitability varied to analyze the effects of SOC. The resulting
FSs for two different values of the SOC parameters are shown
in Fig. 9 in Appendix C.

The interaction Hamiltonian (with on-site and longer-range
interactions) is

Hint = U

2

∑
i,a

nia↑nia↓ + U ′

2

∑
i,a �=b,s,s′

niasnibs′

+ J

2

∑
i,a �=b,s,s′

c†
iasc

†
ibs′cias′cibs

+ J ′

2

∑
i,a �=b,s �=s′

c†
iasc

†
ias′cibs′cibs (4a)

+
∑

i,δ={±x̂,±ŷ},a,b,s,s′

V NN
ab,δ

2
ni,a,sni+δ,b,s′

+
∑

i,δ={±x̂±ŷ},a,b,s,s′

V NNN
ab,δ

2
ni,a,sni+δ,b,s′ , (4b)

where ni,a,s ≡ c†
i,a,sci,a,s is the spin- and orbital-resolved elec-

tron density operator at site i. Equation (4a) describes the
on-site interaction, where U (U ′) is the intra- (inter)orbital re-
pulsive Hubbard interaction, J is the Hund’s coupling, and J ′
is the pair hopping. Equation (4b) describes the longer-range
interactions, where V NN

ab,δ (V NNN
ab,δ ) is the NN (NNN) Coulomb

repulsion.
For simplicity, we take J ′ = J and U ′ = U − 2J [SO(3)

symmetry] [34] and ignore the dxy/z anisotropy due to hy-
bridization with oxygen orbitals [35,36], but we will briefly
comment on the effect of this anisotropy in Sec. V. V NN

ab,δ and
V NNN

ab,δ are t2g orbital-dependent, and their orbital-anisotropies
are defined as

αab,δ ≡ V NN
ab,δ

V NN
11,x̂

− 1 ≡ V NN
ab,δ

V NN
− 1, (5)

βab,δ ≡ V NNN
ab,δ

V NNN
11,x̂+ŷ

− 1 ≡ V NNN
ab,δ

V NNN
− 1, (6)
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where V NN
11,x̂ (V NNN

11,x̂+ŷ) is the intraorbital interaction between two
NN (NNN) dyz orbitals with δ = x̂ (δ = x̂ + ŷ). {αab,δ} = 0
({βab,δ} = 0) describes the orbital-isotropic V NN (V NNN) case.
From rotation symmetry in the t2g orbital space, there are six
free orbital-anisotropy parameters: α33, α23,±x̂, α12, β33, β13,
and β12. Here, and in the following, we drop the subscript δ in
α33,δ , α12,δ , and βab,δ as these parameters are δ-independent.
Following from symmetry,

α22,±ŷ = α11,±x̂ = 0, (7a)

α33 = α22,±x̂ = α11,±ŷ, (7b)

α12 = α23,±ŷ = α13,±x̂, (7c)

α23,±x̂ = α13,±ŷ, (7d)

and

β11 = β22 = 0, (8a)

β13 = β23. (8b)

To study the superconducting instabilities, we obtain effec-
tive pairing vertices within the RPA. Taking the static limit,
the effective interaction in the orbital basis reads

Veff = 1

4

∑
k,k′

[
(k, k′)]ã1ã2
ã3ã4

c†
k,ã1

c†
−k,ã3

c−k′,ã4 ck′,ã2 , (9)

where ã1 = {a1, s1} is a composite index that labels both or-
bital and spin, and

[
(k, k′)]ã1ã2
ã3ã4

=
∑
δ,δ′

∑
i, j={1,2}

[(
eik·δ 0

0 eik·δ

)
[W̃ (δ)]ã1ã2

ã3ã4

(
e−ik′ ·δ 0

0 eik′ ·δ

)
(10a)

−
(

eik·δ 0

0 eik·δ

)
[W̃ (δ)χRPA(k, k′; δ, δ′)W̃ (δ′)]ã1ã2

ã3ã4

(
e−ik′ ·δ′

0

0 eik′ ·δ′

)
(10b)

+
(

eik·δ 0

0 eik·δ

)
[W̃ (δ)χRPA(k,−k′; δ, δ′)W̃ (δ′)]ã1ã4

ã3ã2

(
eik′ ·δ′

0

0 e−ik′ ·δ′

)]
i j

. (10c)

Here,

χRPA(k, k′; δ, δ′) = 1

1 + χ (k, k′; δ, δ′)W̃ (δ′)
χ (k, k′; δ, δ′) (11)

is a generalized δ-dependent RPA particle-hole susceptibility matrix, with χ (k, k′; δ, δ′) the corresponding bare susceptibility,
whose matrix element is

χ
b̃1b̃2

b̃3b̃4
(k, k′; δ, δ′) =

∑
p

∑
α,β

nF
(
ξα

p

)− nF
(
ξ

β

p−(k−k′ )

)
ξ

β

p−(k−k′ ) − ξα
p

F b̃1b̃2

b̃3b̃4
(α, β; p, k − k′)

(
e−ik′ ·δ+ik·δ′

e−ik′ ·δ+ip·δ′

e−ip·δ+ik·δ′
e−ip·(δ−δ′ )

)
. (12)

F b̃1b̃2

b̃3b̃4
(α, β; p, q) is the form factor associated with the band-to-orbital transformations,

F b̃1b̃2

b̃3b̃4
(α, β; p, q) = ψα

b̃2
(p)
[
ψα

b̃3
(p)
]∗[

ψ
β

b̃1
(p − q)

]∗
ψ

β

b̃4
(p − q). (13)

In these equations, α and β are energy band labels (including
the pseudospin). ξα

k is the αth band dispersion, ψα

b̃
(k) is the

corresponding matrix element of the orbital-to-band transfor-
mation, and nF is the Fermi-Dirac distribution function. W̃ (δ)
is the bare interaction, Hint, written in k-space but with its k-
dependence peeled off and absorbed into the definition of the
susceptibility χ , which reduces the computational complexity.
(Similar methods have been introduced in Ref. [27].) This is
achieved by introducing a redundant 2 × 2 subspace, indexed
by {i, j} in Eq. (10). More details can be found in Appendix A.
W̃ , χ , and χRPA are N × N matrices for given momenta with
N = 6 × 6 × 9 × 2, where 6 × 6 comes from the two sets of
composite indices {ã1, ã2}, each of which consists of three
orbitals ⊗ two spin species, nine from the label of neighbor-
ing sites δ = {0, x̂, ŷ, −x̂, −ŷ, x̂ + ŷ, −x̂ + ŷ, −x̂ − ŷ, x̂ −
ŷ}, and two from the additional subspace label i = {1, 2}.
Equation (12) will be evaluated at low temperatures where
χ is temperature-independent and using a sufficiently large
k-mesh in the first Brillouin zone [29]. Throughout this work,

we choose kBT = 0.001t and a 512 × 512 grid mesh for the
integration.

Transforming Veff in Eq. (9) to the band basis leads to

Veff =
∑
k,k′

∑
α,β


αβ (k, k′)c†
α (k)c†

α (−k)cβ (−k′)cβ (k′), (14)

where


αβ (k, k′) = 1

4

∑
ãi



ã1ã2
ã3ã4

(k, k′)
[
ψα

ã1
(k)
]∗[

ψα
ã3

(−k)
]∗

× ψ
β
ã4

(−k′)ψβ
ã2

(k′). (15)

Note that we have used 
 for both the orbital- and band-basis
effective interaction, which are distinguished by their indices.
Projecting 
αβ onto the FS, one can determine the supercon-
ducting instabilities by solving the following BCS linearized
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gap equation [21]:∑
β

∫
Sβ

dk′
‖

|Sβ |g(kα, k′
β )ψ (k′

β ) = λψ (kα ), (16)

where

g(kα, k′
β ) =

√
ρα v̄F,α

vF (kα )

αβ (kα, k′

β )

√
ρβ v̄F,β

vF (k′
β )

, (17)

and λ = ρVeff , where ρ is the density of states at the Fermi
level [37]. In Eq. (16), all momenta are defined on the FS. Sβ

is the FS of the βth band, which is a one-dimensional contour
for our two-dimensional calculations; |Sβ | is its corresponding
area (or contour length). ρα is the density of states of the αth
band, and the average of the norm of the Fermi velocity is
given by v̄−1

F,α = ∫
Sα

dk‖
|Sα |v

−1
F (kα ). After discretizing Eq. (16), it

becomes a matrix equation to be solved numerically. To get
good convergence, we discretize the FS contours with ∼1000
equally spaced points. Alternatively, one can take an easier
method by discretizing the whole first Brillouin zone, but only
keeping states that lie within a thin energy window from the
Fermi level. However, as pointed out in Ref. [38], a much
larger number of points is then required for the same level
of accuracy.

The critical temperature, Tc, is determined by the most
negative eigenvalue, λ, through Tc ∼ We−1/|λ|, where W is
of the order of the bandwidth. The superconducting gap is

�(kα ) ∝
√

vF (kα )

ρα v̄F,α

ψ (kα ), (18)

where �(kα ) can be written in the pseudospin basis as

�(kα ) =
(

�↑↑ �↑↓
�↓↑ �↓↓

)
(19)

for a given kα point on one of the three FS sheets.

III. PAIRING RESULTS IN THE PRESENCE
OF LONGER-RANGE INTERACTIONS

We first ignore the effects of nonlocal SOC, ηB2g = 0,
but we include a sizable atomic SOC of η/t = 0.2. Simi-
lar calculations have been conducted in several theoretical
works with only local interactions, where s′-, dx2−y2 -, heli-
cal, or chiral pairing is obtained depending on microscopic
details [22,24,26]. As in Ref. [27], we investigate the ef-

fects of orbital-independent NN Coulomb repulsions, V NN, in
Appendix B. We include a wide range of Hubbard-U from
weak to intermediate coupling, i.e., U/t ∈ (10−4, 1.1), as U
can strongly influence the leading pairing within the RPA
[22,26,31]. Hund’s coupling is set as J/U = 0.2 as obtained
via the constrained local-density approximation [39] and the
constrained RPA [36]. The size of V NN for SRO is not clear.
For cuprates with identical crystal structures, V NN/U is about
[40] 0.2, and this value was used in Ref. [27]. As Ru 4d
orbitals are more extended than Cu 3d orbitals, V NN/U for
SRO may be larger. One finds V NN/U ≈ 0.38 from integrals
over Slater-type Ru d orbitals where screening effects and
hybridizations between the Ru d and oxygen p orbitals are
neglected [41]. By comparison, the same calculation for Cu
dx2−y2 orbitals gives V NN/U ≈ 0.22, suggesting the effects of
hybridization and screening in the cuprates essentially cancel
each other. Guided by this analysis, we perform calculations
for SRO in the range of V NN/U ∈ (0, 0.4). We find that V NN

has little effect in stabilizing g-wave pairing and tends to
destabilize the dx2−y2 -wave phase. However, it favors helical
pairing in the weak-U regime, and dxy-wave at intermediate
values of U . As a result, s′ + idxy, dx2−y2 + idxy, or a mixed
helical state can be obtained (at phase boundaries) in different
regimes of the interaction parameter space (see Fig. 7 in
Appendix B).

Our results for intermediate-U are in rough agreement with
Ref. [27], except for the absence of the dxy phase there. We
find the dxy state may be overtaken by s′ if we increase T or
decrease NFS, the number of patching points used to solve
the linearized gap equation. The sensitivity to temperature,
even at relatively low temperatures, has been noted previously
in the context of similar RPA calculations [42]. In all our
calculations, we choose a sufficiently low temperature for the
susceptibility calculations so that the results no longer change
with decreasing temperature.

In this section, we focus on the superconducting instabili-
ties in the presence of both V NN and V NNN. We first ignore the
effects of orbital anisotropies of V NN and V NNN. The ratio of
V NNN/V NN can be roughly estimated through integrals over
Ru 4d orbitals, as discussed above for V NN/U , which gives
V NNN/V NN ∼ 0.7. This neglects hybridization and screening,
the combined effect of which likely reduces V NNN/V NN. Our
calculations will focus on the range of V NNN/V NN ∈ (0, 0.7).

Nonzero V NN and V NNN produce a correction, δ
(k, k′),
to the effective pairing interaction. For weak V NN and V NNN,
δ
(k, k′) is dominated by the bare-V NN and V NNN contribu-
tions, which can be schematically written as

δ
(1)(k, k′) ∼ V NN[cos (kx − k′
x ) + cos (ky − k′

y)]Fo→b(k, k′) + 2V NNN cos (kx − k′
x ) cos (ky − k′

y)Fo→b(k, k′) (20a)

=
∑
�,i

(
gNN

�,i + gNNN
�,i

)
[φ�,i(k)]∗φ�,i(k′), (20b)

where φ�,i denotes the ith lattice harmonic of irrep. � in the D4h group and gNN(NNN)
�,i is the corresponding pairing interaction

strength. In the presence of SOC, Fo→b, the form factor associated with orbital-to-band transformation, carries nontrivial
pseudospin structures [see Eq. (15)], which are omitted here for a qualitative discussion.

In the single-band case, Fo→b(k, k′) = 1 and δ
(1)(k, k′)
can be greatly simplified. gNNN

�, j is nonzero and repul-
sive only for NNN harmonics in the � = {A1g, B2g, Eu} =
{s′, dxy, p} irrep. with eigenfunctions φs′,2 = cos kx cos ky,
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FIG. 1. Superconducting instabilities as a function of V NNN/V NN

for (a) U/t = 10−4 and (b) U/t = 0.8, where helical and s′-wave is
favored at V NNN = 0, respectively. Only the largest eigenvalue (in
magnitude) of each irrep. is shown. η/t = 0.2, ηB2g = 0, J/U = 0.2,
and V NN/U = 0.25.

φdxy,2 = sin kx sin ky, and φpx(y),2 = cos ky(x) sin kx(y) [28]. Sim-
ilarly, as discussed in Appendix B and in Ref. [28], gNN

�,i

is repulsive for φs′,1 = cos kx + cos ky, φdx2−y2 ,1 = cos kx −
cos ky, and φpx/y,1 = sin kx/y. In summary, δ
(1) has repul-
sive components in all the pairing channels except for
g-wave. In the multiband model with SOC, our numeri-
cal results show that δ
(1) remains repulsive as long as
J/U � 1/3 and also has small components in the g-wave
channel.

For sizable V NN and V NNN, the second-order correction,
δ
(2), becomes important. δ
(2) usually involves higher an-
gular harmonics and can be attractive due to fluctuations.
For example, V NN(k, k′)χ̃ (k − k′)V NNN(k, k′) is one of the
second-order correction terms from the bubble diagram in
Fig. 6(b), where χ̃ represents the bubble; the expansion of this
term into angular harmonics contains the g-wave component
with basis functions such as φg,4(k) = φdxy,2(k)φdx2−y2 ,1(k) =
sin kx sin ky(cos kx − cos ky) for the single band case. This ar-
gument applies even in the presence of multiorbitals and SOC.
Thus, g-wave can be promoted by the combined effects of V NN

and V NNN.
Figure 1 shows the effects of V NNN on the leading super-

conducting instability in each irrep. in the case of V NN/U =
0.25 for (a) U/t = 10−4 and (b) U/t = 0.8, where helical and
s′-wave is favored without V NNN/V NN, respectively. One sees
that g-wave pairing is enhanced by V NNN. In the weak-U case,

FIG. 2. (a) Effects of ηB2g/η on the superconducting instabilities
in different channels for U/t = 0.8,V NN/U = 0.25,V NNN/V NN =
0.65. (b) Evolutions of the leading superconducting instabilities as a
function of anisotropy parameter α33 for ηB2g/η = 0.2, where α33 =
0 represents the isotropic longer-range interaction case in (a). Other
anisotropy parameters are chosen as (α23,±x̂, α12, β33, β13, β12) =
(1, 0.4, 0.33, 0.17, 0)α33.

the g-wave state becomes the leading order at V NNN/V NN �
0.2, as other pairing channels are largely suppressed by the
bare and repulsive V NN and V NNN. An s′ + ig pairing can be
obtained close to the multicritical point (i.e., V NNN/V NN ≈
0.2), where the s′- and g-wave channels are near-degenerate.
For intermediate U , g-wave order becomes the first subleading
pairing for a substantial range of V NNN/V NN, V NNN/V NN �
0.3, whereas dxy-wave pairing is dominant. We also find that
s′-wave pairing is significantly suppressed by V NNN-induced
corrections at the RPA level, in contrast to the case studied
in Ref. [13], where the suppression effect is moderate. In
summary, g-wave is the leading or the first subleading pairing
for a broad range of U , V NN, and V NNN (not shown), while
dx2−y2 -wave is not favored.

ηB2g can strongly impact the higher angular momentum
pairings as it involves NNN Ru sites. Figure 2(a) shows the
superconducting instabilities as a function of ηB2g/η in the in-
termediate U case (V NN/U = 0.25 and V NNN/V NN = 0.65),
where g-wave is the first subleading order at ηB2g = 0. ηB2g/η

is increased by decreasing η linearly while increasing ηB2g ,
so that the sum of η and ηB2g is constant [15]. The chemical
potential for the dxy orbitals is adjusted, μ̃c = μc + δμc, to fit
the ARPES data [43]. In Fig. 2(a), we find that both dx2−y2 -
and g-wave pairings are dominant and near/accidentally de-
generate at ηB2g/η � 0.3. The very close overlap of these
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two states for ηB2g/η � 0.3 is accidental. In general, we find
dx2−y2 - and g-wave states are the first two leading pairings in
the range of V NN/U ∈ (0.2, 0.3) and V NNN/V NN > 0.5 (in
Fig. 11 of Appendix C). Also, for the weak-U case, dx2−y2 and
g-wave are found to be the first two leading channels at a much
smaller ηB2g/η, ηB2g/η > 0.15 (see Fig. 13 in Appendix C).

We note that the required ηB2g/η for the presence of both
dx2−y2 and g-wave phase is much larger than the density
functional theory (DFT) estimate ∼0.02 [15]. However, it
has been pointed out that SOC is underestimated in the DFT
calculations and can be further enhanced by correlation effects
[35,43–46]. In addition, in the following, we will show that
this value can be reduced by including longer-range interac-
tion anisotropies.

The dx2−y2 + ig pairing stabilized by ηB2g is also observed
in a recent study using a mean-field approach, although a
much larger ηB2g/η � 0.45 is required there [15]. In addi-
tion, our RPA calculations find that nonzero V NN and V NNN

are necessary to obtain the dx2−y2 + ig-wave phase, unlike in
Ref. [15].

We further consider the effects of the longer-range interac-
tion anisotropies. The magnitudes of the orbital-anisotropies,
defined in Eqs. (5) and (6), largely depend on the spread of the
d-orbitals. We can roughly estimate the anisotropy parameters
through integrals over Ru 4d Slater-type orbitals, where we
find that the largest orbital anisotropy parameter, α33, is about
0.12. As discussed above, such estimations do not include
the hybridization and screening effects. These effects substan-
tially enhance the interaction anisotropies in HgBa2CuO4. For
example, the NN interaction for Cu dx2−y2 -orbitals is about
25% larger than that for d3z2−r2 -orbitals according to Ref. [47],
while a direct Slater integral gives only 3%. Similarly, the
hybridization and screening effects may also enhance the esti-
mates in SRO. In comparison to HgBa2CuO4, the orbitals are
larger (which should increase the hybridization) but the Ru-O
bonds are substantially less anisotropic in different crystal
directions (which decreases the enhancement). Consequently,
in the absence of a detailed calculation, we treat the anisotropy
as a variable parameter. Figure 2(b) shows the superconduct-
ing instabilities as a function of α33 in the case of ηB2g/η =
0.2. The relative magnitudes of other parameters are cho-
sen as (α23,±x̂, α12, β33, β13, β12) = (1, 0.4, 0.33, 0.17, 0)α33,
based on rough estimates through Ru t2g Slater-type orbitals
integrals. (Details can be found in Appendix D.) The t2g

orbital-anisotropy increases the stability of the g-wave so that
it becomes the leading order for α33 � 0.36. We note that the
required α33 to stabilize the g-wave is much larger than its
Slater orbital estimate, 0.12. However, this does not need to
be an obstruction since we also found that the required α33

can be much smaller in some parts of the parameter space, for
example, with larger V NN and V NNN and/or in the weak-U
regime (not shown). Furthermore, as discussed above, the
actual α33 is expected to be larger than our simple estimate.
Although dx2−y2 -wave pairing is not favored, it is promoted
relative to the dxy-channel, suggesting that the dx2−y2 phase
can be enlarged by orbital anisotropies. More discussion on
the anisotropy effects are shown in Appendix D, where, in
particular, we find that α33 helps to stabilize g-wave pairing,
and β33 favors dx2−y2 -wave for finite-U .

IV. PROPERTIES OF THE STABLE PAIRING STATES

In Sec. III, we show that dx2−y2 - and g-wave pairing can
be favored in SRO by the effects of longer-range interac-
tions and ηB2g . Consequently, at certain parameters, dx2−y2 + ig
pairing can be realized. In this section, we explore the gap
structure, spin susceptibility, and spontaneous edge current of
dx2−y2 + ig pairing using the stable OP configurations found
at the phase boundary: (ηB2g/η,U/t,V NN/U,V NNN/V NN) =
(0.3, 0.8, 0.25, 0.65), to see if it can be compatible with
experiments on SRO. In addition, we also compare these
properties of dx2−y2 + ig pairing to those of two other re-
cently proposed pairings, s′ + idxy and mixed helical pairing,
which are obtained at (ηB2g/η,U/t,V NN/U,V NNN/V NN) =
(0, 0.8, 0.05, 0) and (0,0.0001,0.15,0), respectively. The sta-
bility of the latter two TRSB pairing candidates is discussed in
Appendix B with nonzero V NN. The s′ + idxy can be obtained
for a finite-U , as in Ref. [27], while the mixed helical pairings
are realized in the weak-U limit. We also find that the splitting
between helical pairings in B1u and B2u (or A1u and A2u) is
rather small throughout V NN ∈ (0, 0.3) in the weak-U limit
as shown in Fig. 8 (in Appendix B). The result at V NN = 0,
i.e., with only on-site interactions, is consistent with previous
studies both in 2D [26] and in 3D [12].

A. Gap structure

The gaps are of similar size on all bands and exhibit
strong gap anisotropy with multiple nodes or near-nodes on
the FS for all three pairings (shown in Fig. 3). We find
|�|min/|�|max ∼ 10% [48] in the realized s′ + idxy and mixed
helical states. Since the experiment estimate of |�|min/|�|max

is � 3% [10,49], further fine-tuning of the interaction param-
eters is needed to make the s′ + idxy and the mixed helical
states compatible with the experiments. In agreement with the
previous studies [21,22,24,27], the locations of the minima
are slightly off the kx = ±ky diagonal lines and are robust
against the change of interaction parameters. Thus, future
experiments on the precise location of the nodes or near-nodes
can help in identifying the pairing symmetry.

B. Spin susceptibility and Knight shift

Recent NMR measurements reveal a substantial in-plane
Knight shift drop below Tc [8,9], which is most straightfor-
wardly explained by spin-singlet pairings. It has been argued
that spin-triplet helical pairings could also be consistent with
the susceptibility drop [32].

Figure 4 shows the calculated spin susceptibility as a
function of temperature for the three pairings. The residual
χ (T = 0) is roughly similar for all three pairings due to SOC,
which mixes spin-singlet and -triplet states. χ (T = 0)/χn is
about 28%, 23%, and 50% for the dx2−y2 + ig, s′ + idxy, and
mixed helical pairing, respectively. Taking into account ex-
perimental precision along with vortex and disorder effects,
the s′ + idxy and dx2−y2 + ig pairings are in better agreement
with the experiments. It might be difficult to clearly dis-
tinguish these two pairings in Knight shift measurements,
especially if the s′ + idxy had extremely deep gap minima, i.e.,
|�|min/|�|max < 3%, which is expected to increase the resid-
ual spin susceptibility. Nevertheless, the calculated χ (T =
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FIG. 3. Gap function profiles of three TRSB solutions (a) dx2−y2 + ig, (b) s′ + idxy, and (c) mixed-helical, along the three FS contours in
one quadrant of the first BZ. The FS contour of each band is parametrized by the angle of the vector kF = kF (θ )(cos θ, sin θ ). Angle θ is
measured from (π, π ) for the α band, and from (0, 0) for β and γ bands. The three states are obtained at phase boundaries where their two
respective components are degenerate. The band/interaction parameters for the phase boundaries are (ηB2g/η,U/t,V NN/U,V NNN/V NN ) =
(a) (0.3, 0.8, 0.25, 0.65), (b) (0, 0.8, 0.05, 0), and (c) (0, 0.0001, 0.15, 0). Note, for the nonunitary mixed-helical pairing, because
|�↓↓| � |�↑↑|, only the latter is shown.

0)/χn is much higher than the upper bound of 10% suggested
by the experiments [51]. We note that the experimental inter-
pretations are complicated by the difficulties in disentangling
the orbital and spin contributions. Our results for the s′ + idxy

pairing are consistent with Ref. [27].

C. Spontaneous edge current

A TRSB superconducting state may support finite spon-
taneous edge currents, which are expected to be detected by
high sensitivity magnetic scanning microscopy. Experiments
on SRO show no evidence for such edge currents, suggesting
that the current is either absent or too tiny to be resolved
[53–55]. It has been pointed out that the spontaneous edge cur-
rent can be dramatically reduced by gap anisotropies [52,56],
indicating that the three pairings may be reconciled with the
null results in experiments, although often fine-tuning is re-
quired.

The spontaneous edge current for the dx2−y2 + ig and s′ +
idxy pairings is sensitive to the edge orientation: the current

FIG. 4. The temperature dependence of the spin susceptibility
(normalized by the normal state value χn) for the three OP pairings,
calculated in the presence of a small Zeeman field in the x-direction
and with Fermi-liquid corrections [9,50] included. We set kBTc =
0.005t , and the maximum magnitude of the gap is |�|max = 0.015t .
These calculations follow those in Ref. [12].

is generally finite at (1, 0, 0) surfaces and vanishes at (1,
1, 0) surfaces. For the mixed helical pairing, the current is
independent of the edge orientation. As shown in Fig. 5, the
predicted edge currents at the (1, 0, 0) surfaces, Jy(x), for
the three pairings are much smaller than the simple chiral
p-wave case. In addition, there is a sign change in Jy(x)
for the dx2−y2 + ig pairing, which significantly reduces the
total integrated edge current, Iy = ∫

dxJy(x). In particular,
this current is compatible with the experiments [53], since

I
dx2−y2 +ig
y /Ichiral−p

y ≈ 0.6%, where Ichiral−p
y is the simple chiral

p-wave result [57]. This current ratio is 19% and 36% for the
s′ + idxy and mixed helical pairings, respectively. The larger
current reduction in the dx2−y2 + ig state is a result of the
higher angular harmonics in the gap functions and should be
robust since it comes from an intrinsic property of the bulk
superconducting state. We note that the s′ + idxy and mixed
helical pairings may also support edge currents smaller than
the measurable limit, however this would need fine-tuning.

FIG. 5. Distribution of zero-temperature spontaneous edge cur-
rent for the three pairings compared with simple chiral p-wave.
A superconducting region of width LS = 800 sites was taken with
surface along (1,0,0). We set kBTc = 0.005t , and the maximum mag-
nitude of the gap is |�|max = 0.015t . These calculations follow those
in Ref. [52], and lattice constant is defined to be unity.
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Our results for the mixed helical pairing are in rough agree-
ment with Ref. [32].

V. CONCLUSIONS

Within the RPA, we find that both dx2−y2 - and g-wave can
be stabilized by the effects of longer-range interactions and
ηB2g , and that accidentally/near-degenerate dx2−y2 + ig can be
stable for a specific range of parameters. We also calculate
the physical properties of the realized dx2−y2 + ig state and
compare it with the realized s′ + idxy [27] and mixed helical
pairings [32]. We find that, although the s′ + idxy pairing is
as competitive as the dx2−y2 + ig, and is better than the mixed
helical pairing, in explaining the spin susceptibility data [8,9],
the dx2−y2 + ig state is more compatible with experimental
evidence of the existence of nodes/near-nodes [10,11] and the
absence of spontaneous edge current [53–55] than the other
two proposals.

Since Tc ∼ e−1/|λ|, the TRSB phase would occur only
when the interaction parameters are tuned essentially right at

the phase boundaries, where T
dx2−y2

c ≈ T g
c . As pointed out in

Refs. [16,17], the relative stability of the dx2−y2 - and g-wave
states can be sensitive to local strains, so that in the presence of
such strains, one may have coexisting domains of g-wave and
dx2−y2 -wave order. In this case, time-reversal symmetry can
be broken at domain walls between different strain regions
[16]. Reference [17] shows that strain-inhomogeneities can
couple a single-component primary OP, e.g., dx2−y2 (g)-wave,
to a subleading pairing state, e.g., g (dx2−y2 )-wave, and break
time-reversal symmetry. As perfect degeneracy of the dx2−y2

and g-wave is not required, the dx2−y2 + ig state is expected
to be stabilized in a broader parameter regime compared to a
homogeneous dx2−y2 + ig state. Recent studies show that the
inhomogeneous TRSB domain walls may provide a route to
explaining the observation of half-quantum vortices [16], heat
capacity [58], and ultrasound attenuation measurements [7]
on SRO. Our calculations suggest that even modest strains
may be sufficient for such a scenario since we find dx2−y2

and g-wave to be the first two leading orders over a range of
parameters.

The RPA formalism we employed here is limited to small
values of the Coulomb interaction, U � O(t ), it neglects
correlation effects away from the FS, and it neglects many
diagrams in calculating the effective interaction. Thus, the
RPA approach may not adequately capture the physics of SRO
with typical estimates of U ∼ O(eV ) ∼ 10t [35,36,59,60]. A
recent study [31] compares the weak-coupling RG, RPA, and
dynamical cluster approximation (DCA) approaches within
the single-band Hubbard model, and it finds good agreement
among these approaches, in the region where they can be com-
pared, suggesting a smooth crossover in pairing states within
the Hubbard model from weak to strong coupling. While such
an analysis has not been done for the multiband case, it sug-
gests that the RPA approach can provide valuable insight into
superconducting pairings in SRO. We believe that some of the
observations about the effects of interaction-anisotropy and
ηB2g in our RPA calculations will survive at strong coupling
since they are independent of the strength of U . Also, beyond
the weak-U limit, correlation effects away from the FS can be
important to the superconducting instabilities. For example,

the RPA approach may underestimate the stability of dx2−y2

pairing by not adequately accounting for the effect of the van
Hove singularity away from, but near, the FS of the γ band.
Thus, the functional RG approach [20,61] with longer-range
interactions would be of interest since it can be employed in
the sizable U -regime and it treats states away from the FS
more accurately.

The superconducting pairings discussed above are classi-
fied according to the irrep. of the point group of the lattice in
the band basis. Recently, it was argued that the above analysis
of the pairing function is insufficient [62–64]. Instead, some
recent studies of SRO focus on the orbital basis approach and
propose specific interorbital pairings [15,33]. Reference [33]
finds an odd frequency interorbital singlet pairing is favored
by solving the linearized Eliashberg equation. Using a mean-
field approach, Ref. [15] finds stable interorbital dx2−y2 + ig
pairing at J/U > 1/3. Transforming these interorbital pair-
ings into the band basis, one finds that they both support
substantial interband pairing away from the FS. By contrast,
the approach we take ignores interband pairing.

The relative size of intraband and interband pairing in SRO
is an open question. However, since the minimum energy
difference between electron states on different bands and with
opposite momentum is much larger than the superconducting
pairing energy in SRO, one might expect interband pairing
to be small. For example, interband pairing might be re-
duced by finite frequency effects that are usually ignored in
weak-coupling formalisms. In any case, one does not expect
interband pairing to significantly impact the relative stability
of different pairing states close to Tc, since interband pairing
does not open up a gap anywhere on the FS. In particular,
interband pairing only contributes in order �2/EF to the
pairing gap at the FSs. Nevertheless, interband pairing can
be important for some properties, including the polar Kerr
effect [3], which has been measured at high frequencies where
all superconducting contributions are of order (�/EF )2 or
smaller. While the approach of Ref. [33] could, in principle,
address the size of interband pairing, the calculations are
restricted to temperatures �300 K, not only well above Tc, but
also above the temperature where a well-defined FS emerges.
One would likely need to go to much lower temperatures to
reliably capture the relative size of intraband and interband
pairing. Since the presence of substantial interband pairing
could impact the interpretation of some experiments, this is
an interesting avenue for future studies.

Lastly, we comment on the effects of dxy/z anisotropy we
have neglected throughout this paper. In the crystal field with
D4h symmetry, the Ru t2g states split into an eg doublet (dxz,
dyz) and a b2g singlet (dxy). As the RuO bond in the c-direction
is elongated, dxy orbitals are more spread out than (dxz, dyz )
orbitals, suggesting stronger interactions for dxy orbitals. This
anisotropy would slightly suppress g-wave pairing. However,
it will not significantly affect our key results, as it is very
small in SRO, i.e., the spread of the dxy orbital is larger than
(dxz, dyz ) by about 7% [35,36].
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APPENDIX A: SUSCEPTIBILITY AND EFFECTIVE INTERACTION

In this Appendix, we show the derivation of the effective interaction in the Cooper pair channel that takes into account on-site,
NN, and NNN interactions. The bare interaction Hamiltonian is defined in Eq. (4), and it can be rewritten in a more compact
form as

Hint = 1

4

∑
i,δ,ãi

(
[W1(δ)]ã1ã2

ã3ã4
c†

i,ã1
c†

i+δ,ã3
ci+δ,ã4 ci,ã2 + [W2(δ)]ã1ã2

ã3ã4
c†

i,ã1
c†

i+δ,ã3
ci,ã4 ci+δ,ã2

)
. (A1)

ã j = {a j, s j} is a composite index that labels both orbital (a j) and spin (s j). [W1(δ)]ã1,ã2
ã3,ã4

has the following nonzero elements:

[W1(0)]as,as
as̄,as̄ = U, [W1(0)]as,as

bs̄,bs̄ = U ′, [W1(0)]as,bs
as̄,bs̄ = J ′, [W1(0)]as,bs

bs̄,as̄ = J, [W1(0)]as,as
bs,bs = U ′ − J, (A2a)

[W1(δ �= 0)]as,as
as̄,as̄ = [W1(δ �= 0)]as,as

as,as = Vaa,δ, [W1(δ �= 0)]as,as
bs̄,bs̄ = [W1(δ �= 0)]as,as

bs,bs = Vab,δ, (A2b)

where a �= b and s̄ = −s. W2(δ) is related to W1(δ) such that the whole interaction matrix coefficient is antisymmetric with
respect to exchanges of indices of two creation or annihilation operators in Hint:

[W2(δ)]ã1,ã4
ã3,ã2

= [W2(δ)]ã3,ã2
ã1,ã4

= −[W1(δ)]ã1,ã2
ã3,ã4

= −[W1(δ)]ã3,ã4
ã1,ã2

. (A3)

[W1(δ)]ã1,ã2
ã3,ã4

(and, similarly, [W2(δ)]ã1,ã2
ã3,ã4

) is a 36 × 36 matrix, for each value of δ, with (ã1, ã2) its row index and (ã3, ã4) the
column index.

By Fourier transformation of the interaction, we obtain

Hint (k) = 1

4

∑
ki,ãi

∑
δ

[W (k1, k2; k3, k4, δ)]ã1ã2
ã3ã4

c†
k1,ã1

c†
k3,ã3

ck4,ã4 ck2,ã2 , (A4)

where

[W (k1, k2; k3, k4, δ)]ã1ã2
ã3ã4

=
∑

i, j={1,2}

⎡⎢⎢⎢⎢⎢⎢⎣
(

eik1·δ 0

0 eik1·δ

)([
W1(δ)

]ã1ã2

ã3ã4
0

0
[
W2(δ)

]ã1ã2

ã3ã4

)
︸ ︷︷ ︸

[W̃ (δ)]
ã1 ã2
ã3 ã4

(
e−ik2·δ 0

0 e−ik4·δ

)
⎤⎥⎥⎥⎥⎥⎥⎦

i j

. (A5)

Here, we introduce an additional but redundant 2 × 2 subspace, and the sum is taken over all the matrix elements in this subspace.
In the form of Eq. (A5), the momenta dependence of the bare interaction is factored out, which can facilitate our derivation of
the RPA effective interactions, as will become clear in the following.

In the presence of longer-range interactions, the bare interaction depends on the momentum transfer, k1 − k2 and k1 − k4.
As a result, in deriving the effective interaction, the interaction vertex in the higher-order diagrams involves the internal loop
momentum p, unlike the on-site interaction case where the bare interaction is momentum-independent [21,22,24]. The additional
p-dependence poses a challenge for writing diagrammatic contributions to the RPA effective interaction as a simple geometric
and algebraic sum. This computational complexity can be reduced by factoring out the p-dependence in the interaction vertex
and absorbing it into the definition of particle-hole susceptibility as in Ref. [27]. We follow a similar approach to that in Ref. [27]
except that we start with the antisymmetrized bare interaction. This parametrization of the interaction will prove convenient in
the following derivation of the RPA effective interaction.

The exchange of the spin and orbital fluctuations can induce attractions responsible for superconductivity, even if the bare
interaction is repulsive. To take into account this effect, one calculates the effective electron-electron interaction, [
(k, k′)]ã1ã2

ã3ã4

in Eq. (9), by summing up one-particle irreducible diagrams of different orders in the bare interaction, Eq. (A4). The first-order
contribution [shown in Fig. 6(a)] is

[
(k, k′)(1)]ã1ã2
ã3ã4

=
∑

δ

∑
i, j={1,2}

[(
eik·δ 0

0 eik·δ

)
[W̃ (δ)]ã1ã2

ã3ã4

(
e−ik′ ·δ 0

0 eik′ ·δ

)]
i j

. (A6)

The two second-order diagrams are shown in Figs. 6(b) and 6(c). The contribution of the bubble diagram is expressed as

[
(k, k′)(2,bubble)]ã1ã2
ã3ã4

= −
∑
δ,δ′

∑
b̃i

∑
p

[W (k, k′; p − (k − k′), p, δ)]ã1ã2

b̃1b̃2

∑
α,β

nF
(
ξα

p

)− nF
(
ξ

β

p−(k−k′ )

)
ξ

β

p−(k−k′ ) − ξα
p

×F b̃1b̃2

b̃3b̃4
(α, β; p, k − k′)[W (p, p − (k − k′); −k,−k′, δ′)]b̃3b̃4

ã3ã4
(A7)
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FIG. 6. The first- and second-order diagrams which contribute to the effective interaction in the Cooper pair channel. Note that each
interaction line carries four joint composite indices ãi = (ai, si ). The internal momentum label, p, is a short-hand notation for frequency and
momentum, both of which need to be summed over; on the other hand, for the external momenta, k and k′, we only consider zero frequency,
i.e., the retardation effect in the effective pairing interaction is neglected.

= −
∑
δ,δ′

∑
i, j={1,2}

[(
eik·δ 0

0 eik·δ

)
[W̃ (δ)χ (k, k′; δ, δ′)W̃ (δ′)]ã1ã2

ã3ã4

(
e−ik′ ·δ′

0

0 eik′ ·δ′

)]
i j

. (A8)

[χ (k, k′; δ, δ′)]b̃1b̃2

b̃3b̃4
is the bare susceptibility defined in Eq. (12). ξ

α(β )
k is the α(β )-band dispersion, nF is the Fermi-Dirac

distribution function, and F b̃1b̃2

b̃3b̃4
(α, β; p, q) is the form factor associated with the band-to-orbital transformations given in

Eq. (13). From Eqs. (A7) and (A8), the p dependence in the interaction vertices, [W (k, k′; p − (k − k′), p, δ)] and [W (p, p −
(k − k′); −k,−k′, δ′)], is factorized and absorbed into the integrand of [χ (k, k′; δ, δ′)].

Similarly, the ladder diagram contribution is

[
(k, k′)(2,ladder)]ã1ã2
ã3ã4

=
∑
δ,δ′

∑
i, j={1,2}

[(
eik·δ 0

0 eik·δ

)[
W̃ (δ)χ (k,−k′; δ, δ′)W̃ (δ′)

]ã1ã4

ã3ã2

(
eik′ ·δ′

0

0 e−ik′ ·δ′

)]
i j

. (A9)

Notice that [
(k, k′)(2,ladder)]ã1ã2
ã3ã4

= −[
(k,−k′)(2,bubble)]ã1ã4
ã3ã2

. As a result, the effective interaction at the order of (U/t )2 satisfies
the same antisymmetric property as the bare interaction in Eq. (A4). The effective interaction vertex at the RPA level [in Eq. (10)]
is obtained by summing up the bare interaction in Eq. (A6), and a geometric series of the bubble and ladder diagrams. The latter
contribution takes a form similar to Eqs. (A8) and (A9), except that the susceptibility χ is replaced by χRPA, given in Eq. (11).
Note that, not only the usual particle-hole bubble and ladder contributions but the vertex corrections consisting of admixtures
of the bubble and ladder vertices [66], all of which are summed to infinite order, are included, since the bare interaction is
antisymmetrized.

APPENDIX B: SUPERCONDUCTING INSTABILITIES
IN THE PRESENCE OF NN COULOMB REPULSION

In this Appendix, we explore the superconducting insta-
bilities in the presence of the on-site Kanamori-Hubbard
interaction, U , and NN Coulomb repulsion, V NN. To deduce
the general behavior, we perform calculations from weak to
intermediate strength of U . The effects of ηB2g and longer-
range anisotropies are neglected here.

For comparison, we first briefly summarize the results with
U only [22,24,26,67]. It has been pointed out that the interplay
of the bare-U interaction and fluctuations mediated interac-
tions is nontrivial in determining the leading superconducting
pairing within the RPA [22,67]. In a multiorbital model with
SOC, the bare-U interaction is repulsive in the even-parity s′-,
dx2−y2 -, and dxy-wave channels, but it does not affect g-wave
or odd-parity pairings. On the other hand, fluctuation-induced
interactions favor s′- and dx2−y2 -wave pairings [22]. Thus, as
U crosses from the weak- to the intermediate-coupling regime
and the bare U becomes relatively less important, the domi-
nant pairing changes from a helical to an s′- or dx2−y2 -wave
[22,26].

When V NN is taken into account, it produces a correction,
δ
(k, k′), to the effective pairing interaction. At the bare-V NN

level, δ
(1)(k, k′) has the following schematic form:

δ
(1) ∼ V NN[cos (kx − k′
x ) + cos (ky − k′

y)]Fo→b(k, k′)

=
∑
�

∑
i

gNN
�,i [φ�,i(k)]∗φ�,i(k′), (B1)

where φ�,i is the ith lattice harmonic of irrep. � in the
D4h group, with gNN

�,i the corresponding pairing interaction
strength. Note that, in the presence of SOC, Fo→b(k, k′),
the form factor associated with the orbital-to-band transfor-
mation, is in general a complex matrix in the pseudospin
subspace (whose dependence is omitted here for a qualitative
discussion). In the single-band Hubbard model, as discussed
in Refs. [28,29], Fo→b(k, k′) = 1; gNN

�,i is repulsive in the s-,
dx2−y2 -, and p-wave channels, while it is zero for both the
dxy- and g-wave channels. In the multiorbital case with a
finite SOC, our numerical results show that δ
(1) also contains
small repulsive components in the dxy- and g-wave channels,
induced by the nontrivial form factor Fo→b(k, k′).
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FIG. 7. Leading superconducting instability phase diagram as a
function of log10(U/t ) and orbital-isotropic V NN. “NA” corresponds
to the regime where the RPA susceptibility diverges and where RPA
breaks down. η/t = 0.2, ηB2g/η = 0, and J/U = 0.2.

Higher-order contributions to δ
(k, k′) due to V NN

are again induced by particle-hole fluctuations in spin,
charge, and orbitals, and they can be either attractive
or repulsive. They can make significant contributions to
certain otherwise suppressed channels. For example, ex-
panding the second-order correction term in the form of
V NN(k, k′)χ̃ (k, k′)V NN(k, k′), where χ̃ represents the bub-
ble in Fig. 6(b), into different harmonic channels shows
that this term has a substantial weight in the dxy-wave
channel.

Figure 7 shows the phase diagram for the leading su-
perconducting instability as a function of the dimensionless
interaction parameters U/t and V NN/U . V NN stabilizes the
helical state in the weak-U regime and dxy-wave pairing at
intermediate U . As a result, TRSB s′ + idx2−y2 , s′ + idxy,
dx2−y2 + idxy, mixed helical, or mixed parity s′ + ip pairing
can be obtained at the phase boundaries. However, g-wave
pairing is not favored. The phase diagram is roughly robust
against the change of η and J/U . In the following, we discuss
two limiting U cases in detail.

We first consider the weak-U limit and take U/t = 10−4,
where s′-wave is leading for V NN = 0. The evolutions of the
superconducting instabilities as a function of V NN are shown
in Fig. 8. The leading eigenvalue in all the pairing channels

FIG. 8. Evolution of the largest eigenvalue (in magnitude) of
the linearized gap equation, Eq. (16), in selected leading irrep. as
a function of V NN/U for (a) U/t = 10−4 and (b) U/t = 0.8. (Some
subleading irreps. are not shown.)

FIG. 9. Fermi surfaces for the tight-binding model given in
Eq. (3) with SOC parameters: (η, ηB2g ) = (a) (0.2, 0)t and
(b) (0.154, 0.046)t . μ̃c is adjusted to 1.14t for (b).

shown is slightly suppressed at small V NN; helical pairings
are promoted when V NN/U � 0.05. In the latter case, the
corresponding helical gap functions we obtained are similar to
those obtained in the absence of V NN in the previous studies
[21,22,61].

A noticeable feature in Fig. 8(a) is that, independent of
V NN/U , the splitting between helical pairings in the B1u and
B2u (or A1u and A2u) irrep. is rather small, making it reasonable
to consider accidentally degenerate helical pairings B1u + iB2u

(or A1u + iA2u). These pairings are proposed in Ref. [32] to
explain some observations in SRO, including the intrinsic Hall
and Kerr effects, the absence of observable spontaneous edge
current, and the substantial Knight shift drop using simple
gap functions without any microscopic details. We revisit the
B1u + iB2u state obtained at V NN/U = 0.15 in Sec. IV to see
if it can reconcile with the experiments.

Figure 8(b) shows an intermediate U case, U/t = 0.8,
where dx2−y2 is slightly leading without V NN. The leading
superconducting instabilities in most of the pairing channels,
including g-wave, are enhanced, due to the enhancement of
χRPA. Either the s′- or dxy-solution dominates over other chan-
nels depending on the value of V NN. Similar results were
recently reported in Ref. [27], where s′ + idxy pairing is pro-
posed. We discuss the properties of the s′ + idxy pairing at
V NN/U = 0.05 in Sec. IV.

FIG. 10. Leading superconducting instabilities as a function of
log(U/t ) for (a) V NN/U = 0.1 and (b) V NN/U = 0.25. V NNN/V NN =
0.65.
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FIG. 11. Leading superconducting instabilities as (a) V NN/U
and (b) V NNN/V NN is varied. ηB2g/η = 0.3. The case at V NN/U =
0.25,V NNN/V NN = 0.65 is shown in Fig. 2(a).

APPENDIX C: STABILITY OF dx2−y2 AND g-WAVE
PAIRING IN THE PRESENCE OF LONGER-RANGE

INTERACTIONS AND ηB2g

In Sec. III, we show that both dx2−y2 - and g-wave pair-
ing can be stabilized at ηB2g/η � 0.3 in the intermediate
U case (U = 0.8,V NN/U = 0.25,V NNN/V NN = 0.65). [See
Fig. 2(a).] In this Appendix, we show that this is a robust result
relevant for a large region of parameter space. The resulting
FSs for two distinct SOC parameter values are shown in Fig. 9.
The orbital anisotropies, which can further promote the dx2−y2 -
and g-wave phase, are neglected here.

Before we focus on a detailed case, we first give a gen-
eral picture of the evolutions of the g-wave superconducting
instability for a wide range of U in the presence of sizable
V NNN (in Fig. 10). We find that g-wave pairing becomes
dominant in the weak-U limit when longer-range interactions
are included and is less favored for finite U , as observed in
Fig. 1. However, the dependence of the leading pairing and
of the g-wave state on U is nonmonotonic. Another important
piece of information we can get from Fig. 10 is that, for a
given U , the g-wave can always become the leading or the first
subleading pairing in the parameter space of V NN and V NNN.
For the latter case, it can be further promoted by the effects
of ηB2g and interaction-anisotropies, as discussed in the main
text.

We then consider the case at ηB2g/η = 0.3 where the dx2−y2

state is slightly dominant and the g-wave is the first subleading
channel. As shown in Figs. 11 and 12, dx2−y2 - and g-wave

FIG. 12. Superconducting instabilities vs J/U in the ηB2g/η =
0.3 case (U/t = 0.8, V NN/U = 0.25, V NNN/V NN = 0.65).

FIG. 13. Effects of ηB2g/η on the superconducting instabilities
in different channels for U/t = 0.0001, V NN/U = 0.25, V NNN/

V NN = 0.2.

are the first two leading pairings in the range of V NN/U ∈
(0.2, 0.3), V NNN/V NN > 0.5, and J/U ∈ (0.16, 0.24). The
dx2−y2 and g-wave phase can be larger by increasing ηB2g or
including longer-range interaction anisotropies.

Figure 13 shows the effects of ηB2g/η in the weak-U case
(U/t = 10−4,V NN/U = 0.25,V NNN/V NN = 0.2), where the
g-wave is slightly dominant at ηB2g/η = 0. We find that dx2−y2 -
and g-wave become the first two leading pairings at ηB2g/η �
0.15.

APPENDIX D: EFFECTS OF ORBITAL ANISOTROPIES
OF THE LONGER-RANGE INTERACTIONS

Orbital anisotropies of the longer-range interactions can
significantly impact the leading superconducting instabilities.
In particular, they help to stabilize the g- and dx2−y2 -wave
state [in Fig. 2(b)]. In this Appendix, we show that anisotropy
parameters α33 and β33 [defined in Eqs. (5) and (6)] are crucial
to stabilizing the g- and dx2−y2 -wave state, respectively. The
effects of ηB2g are not included.

Rough estimates of the orbital-anisotropy parameters
through integrals over Ru 4d-t2g Slater-type orbitals are
shown in Table I. The largest anisotropy parameter α33,

TABLE I. Effects of orbital-anisotropy parameters on different
pairing channels (last six columns) for finite-U . ↑ ( ↓ or −) means
that the eigenvalue (magnitude) of that pairing channel is enhanced
(suppressed or barely changed). ↑↑ indicates that the eigenvalue of
that channel is more enhanced than those with ↑. The second column
gives the estimates of the parameters through integrals over Ru 4d-t2g

Slater-type orbitals.

Effects

Parameter Estimate s′ dx2−y2 dxy g helical chiral

α33 0.12 ↑↑ ↑↑ ↑ ↑↑ ↑↑ ↑↑
α23,x 0.11 ↑ ↑ ↑ ↑ ↑ ↑
α12 0.05 − − ↓ − ↑ ↑
β33 0.04 ↑↑ ↑↑ − − ↑ ↑
β13 0.02 − − ↑ ↑ ↑↑ ↑↑
β12 0.002 − − ↑ ↑ ↑ ↑
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which quantifies the NN interactions for dxy-orbitals (or
dxz-orbitals along the x-direction) relative to that for dxz-
orbitals along the y-direction, is about 0.12. As discussed in
Sec. III, this value is underestimated because the hybridiza-
tion effects are neglected. However, Table I can still indicate
how those parameters compare with each other. For ex-
ample, (α23,x, α12, β33, β13, β12) ≈ (1, 0.4, 0.33, 0.17, 0)α33,
and this is the ratio used in the main text.

Table I shows the effects of the anisotropy parameters on
different pairing channels for finite-U . See the caption for
explanations of notation (arrows and dash). For example, α33

tends to significantly enhance all the pairing channels except
dxy. As a consequence, dxy is surpassed by g-wave or helical
at large α33 [shown in Fig. 14(a)]. In addition, β33 is critical
to stabilizing dx2−y2 -pairing. As shown in Fig. 14(b), dx2−y2 -
wave pairing is favored at β33 > 0.7. In the weak-U limit,
the anisotropies tend to favor the g-wave state (not shown),
because the enhancement effects on other pairing channels,

FIG. 14. Evolutions of the superconducting instability as a func-
tion of (a) α33 and (b) β33. U/t = 0.8,V NN/U = 0.25,V NNN/V NN =
0.65. Other anisotropy parameters are set to zero. α33(β33) = 0 de-
scribes the orbital-isotropic case in Fig. 1.

as discussed above, are generally canceled out by the bare
interactions.
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Chapter 6

Conclusions

In this thesis, we have focused on the problems associated with unconventional
superconductivity in SRO and related materials.

In Chap.3, we focused on an extraordinary class of unconventional supercon-
ductors: chiral superconductors. [25] In particular, we studied the spontaneous
edge current in chiral d- and f -wave superconductors. While it had previously
been shown that in the absence of Meissner screening, these currents vanish in
the continuum limit at zero temperature, [68, 69] we showed that in general (at
finite temperature and/or beyond the continuum limit) the edge currents are non-
vanishing but tiny in comparison to that in the analogous chiral p-wave case. We
also found that, as in the chiral p-wave case, [78, 79] the magnitude of the edge
currents in chiral f -wave superconductors is suppressed by surface roughness. In
this regard, the chiral d-wave superconductor is special. In chiral d-wave, surface
roughness can either reverse the direction of the current flow or, like the p- (f -)
wave case, reduce the magnitude of the current density, depending on the micro-
scopic details, such as the edge orientation, the band structure, and the strength
of the surface roughness. These results are important for experimental studies on
materials that support higher chirality superconductivity, such as SrAsPt, doped
Graphene, and UPt3. [63, 64, 25]

In Chap.4 and Chap.5, we delved into the pairing mechanism and pairing sym-
metry in SRO. The effect of atomic SOC on different triplet p-wave channels is
discussed in Chap.4. In this study, we first presented a complete Ginzburg Landau
free energy analysis of the SOC effect for a general multi-band model (both 2D
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and 3D). Then we studied the case of SRO, combining a symmetry analysis with
numerical weak-coupling RG and RPA calculations. We found that the splitting
among the p-wave pairings depends on not only the presence of SOC, but also
other ingredients of the microscopic Hamiltonian. In general, chiral p-wave pair-
ing is difficult to stabilize in SRO. Moreover, helical pairing, nodal s′- or dx2−y2

pairing can be obtained depending on the details of the interactions.

Lastly, we studied the superconducting instabilities in SRO in the presence of
non-local interactions and non-local SOC in Chap.5. One focus of this work is
identifying the effects that stabilize dx2−y2 + igxy(x2−y2) pairing in SRO models.
We found that both dx2−y2- and g-wave pairing are obtained in the presence of
sizable NNN interaction with orbital anisotropy of the longer-range interactions
or with B2g channel SOC or both. As a result, an accidentally degenerate or
near degenerate dx2−y2 + ig state can be stable in specific parameter spaces. We
also showed that the dx2−y2 + ig pairing is better in explaining the existence of
nodes/near-nodes and the absence of spontaneous edge current than the s′ + idxy

and mixed helical pairing proposals.

The RPA formalism we employed in this thesis is limited to small values of
the Coulomb interaction, U . O(t). In most real materials structurally similar to
SRO, typical estimates of U fall in the O(eV ) range, i.e. U ∼ 10t. In addition,
the RPA formalism neglects correlations away from the FS and many diagrams in
calculating the effective interaction. These effects can have a significant impact be-
yond the weak coupling limit. For example, the dx2−y2 pairing may be discounted,
if the effect of the van Hove singularity close to the FS of the γ band is not ad-
equately taken into account. A recent study [141] compares the weak coupling
RG, RPA, and dynamical cluster approximation (DCA) approaches within the
single band Hubbard model and finds good agreement among these approaches, in
the region where they can be compared, suggesting a smooth crossover in pairing
states within the Hubbard model from weak to strong coupling. Thus, it is reason-
able to expect the RPA approach to provide valuable insight into superconducting
pairings in SRO. Nevertheless, in light of the multi-band nature of SRO, it would
be of interest to study the stability of the dx2−y2 + igxy(x2−y2) pairing state using
functional RG [120, 142], since it can be employed in the sizable U -regime and it
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treats states away from the FS more accurately.

The superconducting pairings discussed in this thesis are considered as an in-
stability of the FS and are classified according to the irreps. of the point group
of the lattice in the band basis. In the presence of SOC or other orbital mix-
ing hybridizations, the orbital and spin characteristics of a pairing are compli-
cated. Therefore, it was suggested that the above analysis of the pairing func-
tion labelled by band indices is insufficient. An extended classification of the
allowed order parameters in the orbital basis has been introduced in recent stud-
ies. [143, 144, 145, 28] Multiple inter-orbital pairings have been proposed based
on orbital basis approaches. [146, 140, 98] When transformed into the band basis,
all these pairings support sizable interband pairing, which has been ignored in our
studies.

Since the interorbital coupling terms that give rise to the band structure near
the Fermi energy is much larger than the superconducting pairing energy in SRO,
one might expect interband pairing to be small compared to intraband pairing.
Also, interband pairing is not expected to significantly impact the relative stability
of different pairing states close to Tc, as it does not open up a gap on the FS.
However, the interband pairing can be important for some properties, including
the polar Kerr effect [35], which has been measured at high frequencies where
all superconducting contributions are of order (∆/EF )2 or smaller. Thus, it is
interesting to address the relative size of intraband and interband pairing in SRO.

This issue can be addressed in the current RPA formalism by including effective
interaction terms, such as V eff

ababc
†
a,kc

†
b,−kcb,−qca,q, where a 6= b are band indices and k

and q are electron wavevectors in the BZ, instead of being constrained on the FSs.
These effective interaction terms can give rise to interband pairings. Thus, one
can calculate intra- and inter-band pairings by solving the linearized gap equation.
This would be a significantly larger numerical calculation because of the removal
of the restriction to momenta on the FS, but it would be an exciting avenue for
future work.
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Appendix A

Quasiclassical Eilenberger theory

In Chapter 3, we studied the spontaneous edge currents in higher chirality super-
conductors using the quasiclassical Eilenberger formalism. This approach, devel-
oped by Schopohl, et al [133], has been applied to the vortex [133, 134, 135, 136]
and the boundary problems. [75, 74] Here we give a brief description of this frame-
work. For more details, one can refer to Refs. [147, 148, 149].

The chiral superconducting OP is described by,

∆̂ (r, r′) =

∆(r, r′) iσ̂y for a spin-singlet chiral pairing,

(∆(r, r′)σ̂z) iσ̂y for a spin-triplet chiral pairing,
(A.1)

where σ̂ is the Pauli spin matrix. ∆(r, r′) describes the orbital part of the super-
conducting gap function, which for a translationally invariant system would be a
function of r− r′ only.

The Bogoliubov-de Gennes equations that describe the inhomogeneous states
can be expressed in a 2× 2 matrix form as,

∫
dr′

 δ (r− r′)H (r′) ∆ (r, r′)
(−1)S∆∗ (r, r′) −δ (r− r′)H∗ (r′)

 uα (r′)
vα (r′)

 = Eα

 uα(r)
vα(r)

 .
(A.2)

Here, uα(r) and vα(r) are the quasiparticle and quasihole wave functions. H(r) =
[−i∇+eA(r)]2/2m−µ is the kinetic energy of an electron. e is the electron charge
and A is the vector potential. S is the spin angular momentum. For convenience,
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the Planck constant, ~, the Boltzmann constant, kB, and the speed of light, c, are
all taken to be unity.

Eq. A.2 is associated with two characteristic length scales: the Fermi wave-
length, k−1

F , and the coherence length of the Cooper pairs, ξ ∼ ~vF/∆. ∆
is the bulk superconducting gap, and vF is the Fermi velocity. Since the self-
consistent pair potential varies only on the scale of ξ, where ξ � k−1

F , one can
apply the Andreev approximation, i.e. factoring the fast and slow spatial varia-
tions, as [150, 151]

 uα(r)
vα(r)

 =
 ūα (kF, r)
v̄α (kF, r)

 eikF·r, (A.3)

Retaining leading-order terms in kF ξ0, we obtain, −ivF · ∇+ evF ·A(r) ∆ (kF, r)
−∆∗ (kF, r) ivF · ∇+ evF ·A(r)

ψα (kF, r) = Eαψα (kF, r) ,

(A.4)

where, ψα (kF, r) =
 ūα (kF, r)
v̄α (kF, r)

. Eq.(A.4) is the same for both singlet and

triplet pairings, since ∆ (−kF, r) = −∆ (kF, r) for triplet pairings, while ∆ (−kF, r) =
∆ (kF, r) for singlet pairings.

The corresponding Eilenberger transport equation is,

ivF·∇ĝ (kF, ωn, r)+
 iωn − evF ·A(r) −∆ (kF, r)

∆∗ (kF, r) −iωn + evF ·A(r)

 , ĝ (kF, ωn, r)
 = 0,

(A.5)
where the quasi-classical Green function is defined as,

ĝ (kF, ωn, r) =
 g (kF, ωn, r) if (kF, ωn, r)
−if̄ (kF, ωn, r) −g (kF, ωn, r)

 . (A.6)

ωn = (2n+ 1)πT is the Matsubara frequency with n being an integer. g and f are
the normal and anomalous parts of the quasi-classical Green function, respectively,
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satisfying the normalization relation: g2 (kF, ωn, r) + f (kF, ωn, r) f̄ (kF, ωn, r) = 1.

The Eilenberger equation, Eq.(A.5), is difficult to solve directly, as g, f , and
f † are coupled with each other. However, the equation can be decoupled into two
scalar Riccati-type differential equations using the Riccati parametrization. (For
more details, refer to Ref. [152].) The Riccati equations can be calculated self-
consistently using initial conditions, boundary conditions, superconducting gap
equations, and Maxwell equations. For more details, one can refer to [75, 153].
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Appendix B

Ginzburg-Landau analysis of the
SOC effect on triplet p-wave
pairings

In Chap.4, we show that SOC can induce five Ginzburg-Landau (GL) terms at
quadratic order in the order parameter for triplet p-wave states of a 2D model.
Here we provide details of the derivations.

A1 GL free energy in the absence of SOC

In general, the triplet superconducting OP can be written in the following form,

∆̂(k) ≡
∑

µ={x,y,z}

∑
j={x,y}

dµj σµiσ2 ψj(k) (B.1)

=
∑

j={x,y}
∆̂jψj(k), (B.2)

where σ is Pauli matrix; ψj(k) are two basis functions in k-space that transform
like kx and ky under the D4h point group. ∆̂j is defined as [7]

∆̂j =
∆↑↑,j ∆↑↓,j

∆↓↑,j ∆↓↓,j

 . (B.3)
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In the absence of SOC, the GL free energy is invariant under theD4h point group
and SU(2) spin rotation. Rotational invariance in spin space implies that only
products terms of the type (∆̂∆̂†)n can appear in the GL free energy expansion [7]:

f 0
2 = α(T − T 0

c ) 1
2Tr[∆̂†∆̂] (B.4)

= α(T − T 0
c ) 1

2Tr[∆̂†x∆̂x + ∆̂†y∆̂y] (B.5)

= α(T − T 0
c ) 1

2
∑

j={x,y}

(
|∆↑↑,j|2 + |∆↓↓,j|2 + |∆↑↓,j|2 + |∆↓↑,j|2

)
(B.6)

= α(T − T 0
c )

∑
µ={x,y,z}

∑
j={x,y}

|dµj |2. (B.7)

Where the superscript “0” indicates quantities defined for zero SOC, and the sub-
script “2” denotes the order of terms in ∆̂. The trace, Tr[· · · ], is taken over the
spin space.

Following Ref. [13, 154], the GL free energy at fourth-order in ∆̂ is,

f 0
4 = β1

4

{
Tr[∆̂†x∆̂x + ∆̂†y∆̂y]

}2

+ β2

4

{
Tr[∆̂x∆̂†y − ∆̂†x∆̂y]

}2

+ β3

2 Tr[∆̂x∆̂†x]Tr[∆̂†y∆̂y].

(B.8)

Note that the fourth-order terms are different from those for 3He. [7] This is because
the model we consider for SRO is 2D with D4h symmetry; while 3He is 3D with
SO(2) symmetry. [155]

A2 SOC induced GL free energy terms

The presence of SOC generally breaks both the full pseudospin SU(2) rotation
and spatial D4h symmetries, so that the GL free energy is only invariant under
a simultaneous rotation in both spin and spatial spaces. This leads to additional
terms in the GL free energy. To write down all possible SOC-induced GL free
energy terms at second order in ∆̂, we start with the following quadratic term,

fµνij = (dµi )∗dνj , (B.9)
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which is a rank-4 tensor. {i, j} = {1, 2} for spatial indices and {µ, ν} = {1, 2, 3}
for spin.

The remaining symmetry of fµνij in the presence of SOC is DL̂+Ŝ
4h ⊗U(1)C⊗MŜ

xy.
DL̂+Ŝ

4h is the D4h point group whose symmetry operations act simultaneously on
the spatial k and pseudospin spaces, U(1)C is the charge U(1) gauge symmetry,
and MŜ

xy is the xy-plane mirror reflection in the pseudospin space. In order for
fµνij to be invariant under symmetry operations of the above group, we need to
contract fµνij to a scalar.

The mirror reflection symmetryMŜ
xy requires that {µ, ν} = {x, y} or µ = ν = z.

For {µ, ν} = {x, y}, the possible contractions are,

∑
µν

∑
ij

δµiδνj f
µν
ij =

∑
i,j={x,y}

(dii)∗d
j
j = |dxx|2 + |dyy|2 + (dxx)∗dyy + (dyy)∗dxx, (B.10a)

∑
µν

∑
ij

δµjδνi f
µν
ij =

∑
i,j={x,y}

(dji )∗dij = |dxx|2 + |dyy|2 + (dyx)∗dxy + (dxy)∗dyx, (B.10b)

∑
µν

∑
ij

δµνδij f
µν
ij =

∑
i,j={x,y}

(dji )∗d
j
i = |dxx|2 + |dyy|2 + |dyx|2 + |dxy |2, (B.10c)

∑
µν

∑
ij

δµiδijδjν f
µν
ij = |dxx|2 + |dyy|2. (B.10d)

For µ = ν = z, there is only one possible contraction,

∑
i,j={1,2}

δij f
zz
ij = |dzx|2 + |dzy|2. (B.11)

We can get the five SOC-induced GL free energy terms shown in Table 1 of
Chap. 4, by combining Eq. (B.10) and Eq. (B.11)

We can also write these terms in terms of ∆̂. In the absence of SOC, only
(∆̂†∆̂)n terms can appear in the GL free energy expansion; Tr{∆̂†iσj∆̂k} and
Tr{∆̂†iσj∆̂kσ`} terms, with {j, `} 6= 0 can appear with SOC. The five free energy
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terms can be rewritten as,

fSOC,12 = 1
4
∑
i=1,2

{
Tr
{

∆̂†iσ1∆̂iσ1
}
− Tr

{
∆̂†iσ2∆̂iσ2

}}
(B.12)

fSOC,22 = 1
4

{[
Tr[∆̂†1σ1∆̂2σ2] + Tr[∆̂†2σ1∆̂1σ2]

]
+ i

[
εijTr{∆̂†iσ3∆̂j} − c.c.

]}
,

(B.13)

fSOC,32 = 1
4

{[
Tr[∆̂†1σ1∆̂2σ2] + Tr[∆̂†2σ1∆̂1σ2]

]
− i

[
εijTr{∆̂†iσ3∆̂j} − c.c.

]}
,

(B.14)

fSOC,42 = 1
8

{
2
{

Tr
{

∆̂†1σ3∆̂1σ3
}

+ Tr
{

∆̂†2σ3∆̂2σ3
}}

+ Tr
{

∆̂†2σ1∆̂2σ1
}

+ Tr
{

∆̂†2σ2∆̂2σ2
}
− Tr

{
∆̂†1σ1∆̂1σ1

}
− Tr

{
∆̂†1σ2∆̂1σ2

}}
(B.15)

fSOC,52 = 1
8

{
2
{

Tr
{

∆̂†1σ3∆̂1σ3
}

+ Tr
{

∆̂†2σ3∆̂2σ3
}}

+ Tr
{

∆̂†1σ1∆̂1σ1
}

+ Tr
{

∆̂†1σ2∆̂1σ2
}
− Tr

{
∆̂†2σ1∆̂2σ1

}
− Tr

{
∆̂†2σ2∆̂2σ2

}}
.

(B.16)
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Appendix C

RPA effective interaction in the
presence of both local and
longer-range interactions

In Chap. 4 and Chap. 5, we study the superconducting instabilities in SRO mod-
els within RPA, where the effective pairing vertex is calculated by summing up
infinite orders of diagrams of bubble and ladder topology. This approach has been
successfully applied to different multi-orbital systems in the presence of local in-
teractions, such as iron-based superconductors [156], and SRO[106, 107]. In this
appendix, we present a detailed derivation of the RPA effective interaction in the
presence of longer-range interactions, as given in Chap.5.

A1 Coulomb interactions

The bare interaction Hamiltonian is defined in Eq. 4 of Chap. 5 and can be rewrit-
ten in a more compact form as,

Hint = 1
4
∑
i,δ,ãj

(
[W1(δ)]ã1ã4

ã3ã2
c†i,ã1c

†
i+δ,ã3ci+δ,ã4ci,ã2 + [W2(δ)]ã1ã4

ã3ã2
c†i,ã1c

†
i+δ,ã3ci,ã4ci+δ,ã2

)
.

(C.1)

ãj = {aj, sj} is a composite index that labels both orbital (aj) and spin (sj).
δ = {0, x̂, ŷ,−x̂,−ŷ, x̂ + ŷ,−x̂ + ŷ,−x̂ − ŷ, x̂− ŷ} for the lattice vector between
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sites. [W1(δ)]ã1ã2
ã3ã4

and its symmetry-related partner [W2(δ)]ã1ã2
ã3ã4

are block diagonal
matrix with 36 × 36 sub-matrix for each value of δ, with the following non-zero
elements,

[W1(δ = 0)]a1s,a4,s̄
a3s̄,a2s

=



U, a1 = a2 = a3 = a4;
U ′, a1 = a2 6= a3 = a4;
J ′, a1 = a3 6= a2 = a4;
J, a1 = a4 6= a2 = a3;

(C.2a)

[W1(δ = 0)]a1s,a4s
a3s,a2s

= U ′ − J, a1 = a2 6= a3 = a4; (C.2b)

[W2(δ = 0)]a1s,a4s
a3s̄,a2s̄

=



−U, a1 = a2 = a3 = a4;
−J, a1 = a2 6= a3 = a4;
−J ′, a1 = a3 6= a2 = a4;
−U ′, a1 = a4 6= a2 = a3;

(C.2c)

[W2(δ = 0)]a1s,a4s
a3s,a2s

= −U ′ + J, a1 = a4 6= a2 = a3; (C.2d)

[W1(δ 6= 0)]a1s,a4s̄
a3s̄,a2s

=
 Va1a1,δ, a1 = a2 = a3 = a4;
Va1a3,δ, a1 = a2 6= a3 = a4;

(C.3a)

[W1(δ 6= 0)]a1s,a4s
a3s,a2s

=
 Va1a1,δ, a1 = a2 = a3 = a4;
Va1a3,δ, a1 = a2 6= a3 = a4;

(C.3b)

[W2(δ 6= 0)]a1s,a4s
a3s̄,a2s̄

=
 −Va1a1,δ, a1 = a2 = a3 = a4;
−Va1a3,δ, a1 = a4 6= a2 = a3;

(C.3c)

[W2(δ 6= 0)]a1s,a4s
a3s,a2s

=
 −Va1a1,δ, a1 = a4 = a2 = a3;
−Va1a3,δ, a1 = a4 6= a2 = a3,

(C.3d)

where s̄ = −s.

By Fourier transformation of the interaction, we get,

Hint = 1
4
∑
δ

∑
ki,ãi

[W (k1,k2;k3,k4, δ)]ã1ã4
ã3ã2

c†k1,ã1
c†k3,ã3

ck4,ã4ck2,ã2 . (C.4)
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The interaction matrix, [W (k1,k2;k3,k4, δ)]ã1ã4
ã3ã2

, is defined as,

[W (k1,k2;k3,k4, δ)]ã1ã4
ã3ã2

= ei(k1−k2)·δ [W1(δ)]ã1ã4
ã3ã2

+ ei(k1−k4)·δ [W2(δ)]ã1ã4
ã3ã2

(C.5)

=
∑

l,m={1,2}


 eik1·δ 0

0 eik1·δ

 [W1(δ)]ã1ã4
ã3ã2

0
0 [W2(δ)]ã1ã4

ã3ã2


︸ ︷︷ ︸

[W̃ (δ)]ã1ã4
ã3ã2

 e−ik2·δ 0
0 e−ik4·δ



lm

.

(C.6)

The sum is taken over all the matrix elements in a 2×2 subspace that we have
introduced to factorize out the momenta dependence of the bare interaction, asso-
ciated with momentum transfer q = k1 − k4 and q = k1 − k2. This can facilitate
our derivation of the RPA effective interactions, as will become clear in the follow-
ing. The coefficient of interaction matrix [W (k1,k2;k3,k4, δ)]ã1ã4

ã3ã2
is antisymmetric

with respect to exchanges of indices of two creation or annihilation operators in
Hint,

[W (k1,k2;k3,k4, δ)]ã1ã2
ã3ã4

= [W (k3,k4;k1,k2, δ)]ã3ã4
ã1ã2

= − [W (k3,k2;k1,k4, δ)]ã3ã2
ã1ã4

(C.7)
= − [W (k1,k4;k3,k2, δ)]ã1ã4

ã3ã2
.

A2 Spin susceptibility and effective interactions
within RPA

The effective electron-electron interaction can be attractive due to the exchange
of spin and orbital fluctuations, even though the bare interaction is repulsive. To
account for this effect, one calculates the effective interaction by summing up two-
particle irreducible diagrams of different orders in the bare interaction, Eq. (C.6).
More specifically, a tree diagram and a geometric series of the ladder and bubble
diagrams are included in the RPA formalism.
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A2.1 Tree diagram contribution

The tree diagram (shown in Fig. A3.1) contribution to the effective interaction is,

[Γ(1)(k,k′)]ã1ã4
ã3ã2 =

∑
l,m={1,2}

 eik·δ 0
0 eik·δ

 [W̃ (δ)]ã1ã4
ã3ã2

 e−ik
′·δ 0

0 eik
′·δ


lm

.

(C.8)

 

𝑘′, 𝑎̃2 𝑘, 𝑎̃1 

−𝑘, 𝑎̃3 −𝑘′, 𝑎̃4 

Figure A3.1: The first-order diagram that contributes to the ef-
fective interaction in the Cooper pair channel. Note that each in-
teraction line carries four joint composite indices ãi = {ai; si}.
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A2.2 Ladder diagrams
Following standard Feynman rules, we can write down the second-order ladder
diagram (shown in Fig. A3.2 (A)) contribution as,

[Γ(2)
lad(k,k

′)]ã1ã2
ã3ã4

=
∑
δ1,δ2

∑
p

∑
b̃i

[
W (k,−k′; p− (k + k′),p, δ1)

]ã1ã2

b̃1b̃2

×
{
− T

∑
n

Gb̃4b̃1
(iωn,p− (k + k′))Gb̃2b̃3

(iωn,p)
}

[W (p,p− (k + k′);−k,k′, δ2)]b̃3b̃4
ã3ã4

(C.9a)

=
∑
δ1,δ2

∑
p

∑
b̃i

(
[W1(δ1)]ã1ã2

b̃1b̃2
ei(k+k′)·δ1 + [W2(δ1)]ã1ã2

b̃1b̃2
ei(k−p)·δ1

)

×
∑
α,β

nF
(
ξαp
)
− nF

(
ξβp−(k+k′)

)
ξβp−(k+k′) − ξαp

F b̃1b̃2
b̃3b̃4

(α, β; p,k + k′)

×
(

[W1(δ2)]b̃3b̃4
ã3ã4

ei(k+k′)·δ2 + [W2(δ2)]b̃3b̃4
ã3ã4

ei(p−k′)·δ2
)

(C.9b)

=
∑
δ1,δ2

∑
b̃i

∑
lm

[(
eik·δ1 0

0 eik·δ1

)(
W1(δ1) 0

0 W2(δ1)

)
×

∑
p

∑
α,β

nF
(
ξαp
)
− nF

(
ξβp−(k+k′)

)
ξβp−(k+k′) − ξαp

F b̃1b̃2
b̃3b̃4

(
α, β; p,k + k′

)( eik
′·δ1 0
0 e−ip·δ1

)(
1 1
1 1

)(
eik·δ2 0

0 eip·δ2

)
︸ ︷︷ ︸

[χ(k,−k′;δ1,δ2)]b̃1 b̃2
b̃3 b̃4

×

(
W1(δ2) 0

0 W2(δ2)

)(
eik

′·δ2 0
0 e−ik

′·δ2

)]
lm

(C.9c)

=
∑
δ1,δ2

∑
b̃i

∑
lm

[(
eik·δ1 0

0 eik·δ1

)
[W̃ (δ1)]ã1ã2

b̃1b̃2
×
[
χ
(
k,−k′; δ1, δ2

)]b̃1b̃2

b̃3b̃4
× [W̃ (δ2)]b̃3b̃4

ã3ã4

(
eik

′·δ2 0
0 e−ik

′·δ2

)]
lm

.

(C.9d)

Here, [χ(k,−k′; δ1, δ2)]b̃1b̃2
b̃3b̃4

is a generalized δ-dependent bare susceptibility ma-
trix. F b̃1b̃2

b̃3b̃4
(α, β;p,q) = ψα

b̃2
(p)[ψα

b̃3
(p)]∗[ψβ

b̃1
(p−q)]∗ψβ

b̃4
(p−q), and is the form fac-

tor associated with the band-to-orbital transformations In these equations, α and β
are energy band labels (including the pseudospin). ξαk is the α-th band dispersion,
ψα
b̃
(k) is the corresponding matrix element of the orbital-to-band transformation,

and nF is the Fermi-Dirac distribution function. W̃ (δ) and χ(k,−k′; δ1, δ2) are
N × N matrices for given momenta with N = 6 × 6 × 9 × 2, where 6 × 6 comes
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from the two sets of composite indices {ã1, ã2}, each of which consists of 3 orbitals
⊗ 2 spin species, 9 from the label of neighboring sites δ = {0, x̂, ŷ, −x̂, −ŷ, x̂+
ŷ, −x̂+ ŷ, −x̂− ŷ, x̂− ŷ}, and 2 from the additional subspace label l = {1, 2}.

 

𝑘′, 𝑎̃4  𝑘, 𝑎̃1  

−𝑘, 𝑎̃3  −𝑘′, 𝑎̃2  

𝑝 

𝑝 − (𝑘 + 𝑘′) 

 𝑏̃1  

 𝑏̃2  

 𝑏̃4  

 𝑏̃3  

 𝛿1   𝛿2  

(a)

 

𝑘′, 𝑎̃4 𝑘, 𝑎̃1 

−𝑘, 𝑎̃3 −𝑘′, 𝑎̃2 

𝑝1 

𝑝1 − (𝑘 + 𝑘′) 

 𝑏̃1 

 𝑏̃2 

 𝑏̃5 

 𝑏̃6 

 𝛿1  𝛿2  𝛿3 

 𝑏̃8 

 𝑏̃7 𝑝2 

𝑝2 − (𝑘 + 𝑘′) 

 𝑏̃4 

 𝑏̃3 

(b)

Figure A3.2: The second and the third order ladder diagrams.
The internal momentum label, p, is a short-hand notation for fre-
quency and momentum, both of which need to be summed over; on
the other hand, for the external momenta, k and k′, we only con-
sider zero frequency, i. e. retardation effect in the effective pairing
interaction is neglected.

Similarly, the third-order ladder diagram (shown in Fig.A3.2 (B)) is,

[Γ(3)
lad(k,k

′)]ã1ã2
ã3ã4

=
∑

δ1,δ2,δ3

∑
p1,p2

∑
b̃i

[
W (k,−k′; p1 − (k + k′),p1, δ1)

]ã1ã2

b̃1b̃2

×
{
− T

∑
n

Gb̃4b̃1
(iωn,p1 − (k + k′))Gb̃2b̃3

(iωn,p1)
}
×
[
W (p1,p1 − (k + k′); p2 − (k + k′),p2, δ2)

]b̃3b̃4

b̃5b̃6

×
{
− T

∑
n

Gb̃8b̃5
(iωn,p2 − (k + k′))Gb̃6b̃7

(iωn,p2)
}
× [W (p2,p2 − (k + k′);−k,k′, δ3)]b̃7b̃8

ã3ã4

(C.10a)

=
∑

δ1,δ2,δ3

∑
b̃i

∑
lm

[(
eik·δ1 0

0 eik·δ1

)
× [W̃ (δ1)]ã1ã2

b̃1b̃2
×
[
χ(k,k′; δ1, δ2)

]b̃1,b̃2

b̃3,b̃4

× [W̃ (δ2)]b̃3b̃4
b̃5b̃6
×
[
χ(k,k′; δ2, δ3)

]b̃5,b̃6

b̃7,b̃8
× [W̃ (δ3)]b̃7b̃8

ã3ã4
×

(
eik

′·δ3 0
0 e−ik

′·δ3

)]
lm

. (C.10b)
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In summary, the ladder series can be calculated through a geometric sum form,

[ΓRPAlad (k,k′)]ã1ã2
ã3ã4

≡
∑
δ1,δ2

∑
l,m={1,2}

 eik·δ1 0
0 eik·δ1

 [W̃ (δ1)χRPA (k,−k′; δ1, δ2) W̃ (δ2)]ã1ã2
ã3ã4

 eik
′·δ2 0
0 e−ik

′·δ2


lm

,

(C.11)

where χRPA is the generalized RPA spin susceptibility defined as,

χRPA(k,−k′; δ1, δ2) = χ(k,−k′; δ1, δ2) 1
1− W̃χ(k,−k′; δ1, δ2)

. (C.12)

A2.3 Bubble diagrams

In a multi-orbital RPA calculation, as long as the bare interaction matrix vertex
used is anti-symmetrized, there is a one-to-one correspondence between diagrams
in the ladder and bubble series:

[ΓRPAbubble(k,k′)]ã1ã4
ã3ã2 = −[ΓRPAlad (k,−k′)]ã1ã2

ã3ã4 . (C.13)

In other words, the bubble sum is the anti-symmetrized ladder sum. This relation
holds order by order in the bare interaction. To see that is the case for the 2nd
order interaction, one can refer to Ref.[109]. This relation guarantees that the
total effective interaction computed in the RPA is fully anti-symmetrized, as the
bare interaction is.

A2.4 Summary

The total RPA effective interaction in Eq.10 of Chap. 5 can be obtained by sum-
ming up the bare interaction contribution in Eq. (C.8), and a geometric series of
the ladder and bubble diagrams (in Eqs. (C.11) and (C.13)).

77



Ph.D. Thesis – Xin Wang McMaster University – Physics & Astronomy

 

𝑘, 𝑎̃1 𝑘′, 𝑎̃2 

−𝑘, 𝑎̃3 −𝑘′, 𝑎̃4 

𝑏̃1 𝑏̃2 

𝑏̃4 𝑏̃3 

𝑝 − (𝑘 − 𝑘′) 𝑝 

(a)

 

𝑘, 𝑎̃1 𝑘′, 𝑎̃2 

−𝑘, 𝑎̃3 −𝑘′, 𝑎̃4 

𝑏̃1 𝑏̃2 

𝑏̃4 𝑏̃3 

𝑝 − (𝑘 − 𝑘′) 𝑝 

𝑐̃1 𝑐̃2 

𝑐̃4 𝑐̃3 

𝑝′ − (𝑘 − 𝑘′) 𝑝′ 

(b)

Figure A3.3: The second and the third order bubble diagrams.
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