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Lay Abstract 
 

Respiratory tract infections are a leading cause of death and one of the main reasons to seek 

primary care. Both historically and in the present day, respiratory tract infections remain a 

massive socioeconomic burden. Current diagnostics fail to quickly identify a respiratory tract 

infection's etiology, and prognosis, leading to suboptimal patient care and the over prescription 

of antibiotics. Advanced tools used in academia and research, including next-generation -omics 

sequencing and metagenomics, have capabilities to identify all nucleic acid material in a sample 

- including host RNA- which offers potential to improve the diagnosing of respiratory tract 

infections. However, these technologies have not been integrated into routine care due to 

economic, technical, and logistical barriers. We explored host RNA (transcriptomics), looking at 

antiviral interferon-stimulated genes for their potential as a biomarker of viral infection amenable 

to point-of-care testing platforms from non-invasive sample types.  
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Abstract 
 

Background: Respiratory tract infections are responsible for millions of deaths annually. 

Interferon-stimulated genes (ISGs) play a significant role in fighting off viral respiratory tract 

infections in the antiviral defence system. Measuring extracellular protein products of ISGs 

could be potential biomarkers of viral infection. Although, the feasibility and performance of 

ISGs as functional and robust clinical biomarkers from a non-invasive sample format remains 

unknown. 

 

Methods: Three ISGs, CXCL10, CXCL11, and TNFSF10, were examined in in-vivo and in-vitro 

gene expression datasets (RNA-sequencing and microarray) infected with common respiratory 

tract infections (Rhinovirus, Respiratory syncytial virus, influenza A and SARS-CoV-2) samples 

and compared to negative controls. Using qualitative selection criteria of 1) elevated presence in 

at least one dataset with viral infection, 2) secreted protein product, and 3) commercially 

available antibodies for detection, CXCL10, CXCL11 and TNFSF10 gene expression levels were 

assessed. A correlation analysis was performed with SARS-CoV-2 infection severity and gene 

expression kinetics. CXCL10 was subsequently validated at the protein level in saliva as a 

prerequisite for developing a host-response LFA. 

 

Results: CXCL10 and CXCL11 upregulation were positively correlated with RSV compared to 

control (p < 0.05). CXCL10/CXCL11/TNFSF10 were not different between samples collected 

from RV infected subjects relative to controls (p > 0.05). No significant association was found 

with influenza A for all three genes. CXCL10/CXCL11/TNFSF10 upregulation was positively 

correlated with SARS-CoV-2 infection compared to control (p < 0.001). CXCL10 expression 

correlated with COVID-19 viral load. CXCL10 was chosen as a lead biomarker candidate based 

on these analyses that included different virus infections, time-courses, and measures of severity. 

CXCL10 was not detected at the protein level in healthy saliva but was elevated in saliva from 

COVID-19 patients. A CXCL10 LFA was developed with a sensitivity of 2 ng/ml in a buffer and 

artificial saliva. 

 

Conclusion: We establish and validate the potential of developing rapid test techniques to 

examine host immune response from a bioinformatic approach to developing a prototype rapid 

test with capabilities to be used in point-of-care settings. 
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Chapter 1: Introduction: 

 
1.1 The Field of Diagnostics: A Brief History and Looking to the Future 

 

A diagnosis is defined as "the act of identifying a disease from its signs and symptoms."1 

Historically the diagnosis of respiratory diseases and infections relied heavily on clinical clues, 

such as a cough, fever and wheeze, while today, diagnostics encompass a comprehensive range 

of functional measurements (e.g. spirometry), advanced imaging techniques (e.g. CT or MRI) 

and molecular laboratory methods.2,3 In the context of respiratory tract infections, molecular lab 

methods are essential tools for identifying the presence of pathogens that can lead to the 

development or worsening of lung health and disease. Polymerase chain reaction (PCR) methods 

are clinically useful and implemented widely, allowing for a highly sensitive method to diagnose 

viral and bacterial pathogens with multiplexed molecular assays4. It should be noted that the 

discovery of PCR in 1985 by Dr. Kary B. Mullis5 was an advance now widely used and cost-

effective but carries limitations of breadth of analysis. For example, PCR is a highly sensitive 

assay, which means any form of contamination may lead to false positive results.6 This was 

observed during the SARS-CoV-2 pandemic, as PCR results could remain positive for months 

after infection and could not discriminate between active or remnant viral RNA from the original 

infection.7 Nucleic acid sequencing has the potential to overcome the limitations of PCR and be 

widely adopted as costs decrease and infrastructure becomes more readily available. 

Incorporating advanced molecular technologies for diagnostic tests, including nucleic acid 

sequencing, into the healthcare system requires a systematic approach involving scientific, 

economic, and social considerations that challenge the present state to introduce a future state. 

 

The present state: 

The current workflow to diagnose a respiratory infection varies depending on 

where a person seeks medical attention and the severity of the illness. Standard 

practice involves identifying symptoms, a physical examination and past 

medical history.8 In some cases, diagnostic techniques such as a rapid antigen 

test, sputum or blood culture, PCR testing and radiological examination may 

be performed. 8 The empirical prescription of antibiotics may be prescribed 

based on clinical suspicion.9 The determination of the causative agent has a 

heavy emphasis on the pathogen and rarely integration of biomarkers of host 

immune response. However, in some viral infections, immunopathology may 

drive more damage than direct viral injury.10 In addition, some bacterial 

respiratory pathogens are commensals from the microbiome, making it difficult 

to distinguish the causative agent. Current practices may lead to the 

inappropriate prescription of antibiotics, contributing to antimicrobial 

resistance. In addition, to repeat visits to physicians and suboptimal treatment. 

 

A future state?  

I invite you to envision an "ultimate diagnostic test" for respiratory infections. 

Imagine that from a single self-administered swab taken by an individual at 

home could be run on a countertop-based device to identify all microorganisms 

and host metagenomic information. All living microorganisms, including all 

commensals part of the microbiome, pathogenic organisms, including viruses, 
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bacteria, and fungi, and associated antimicrobial genes could be identified. In 

addition, the host transcriptome would be analyzed revealing biomarkers of 

inflammation and immunopathology. Host biomarkers would provide 

personalized insights into an individual’s response to any pathogens present or 

perturbation of native microbiome. Additional archived host genome data from 

prior healthcare interactions could be integrated with host responses and 

microbial profiling, with single nucleotide polymorphisms or other variants 

informing host responses. Combining all these data parameters into an 

algorithm to provide the right treatment(s), at the right time, to the right 

person. In this future diagnostic state where relevant scientific, economic, and 

social considerations have been addressed, society experiences increased 

quality of life and efficient delivery of optimized care. This future can only 

happen if we believe it can happen. 

 

In this transition from present state to future state, we must take steps, and all cannot be 

completed at once. A logical step from lone detection of pathogens is the merging with 

simultaneous measurement of host responses for the identification of diagnostic or prognostic 

biomarkers.  

 

In general, host biomarkers may use a variety of biological characteristics, including genetic, 

transcriptomics or proteomics, to diagnose a disease.11 Host biomarkers can be used to subtype 

groups of patients on a mutual underlying biological mechanism and molecular heterogeneity12 

or determine optimal treatment methods.11 Specifically looking at respiratory infections, host 

biomarkers offer significant potential benefits for several reasons. Using host biomarkers could 

help discriminate bacterial and viral infections, aiding in better treatment and reducing the 

unnecessary prescription of antibiotics.13 Host biomarkers can also determine disease 

progression and severity14 and active and latent tuberculosis infection.15 Host biomarkers 

subtyping groups of patients off molecular heterogeneity could lead to the development of 

companion diagnostic tests to identify patient populations with improved to certain drugs.16 

Lastly, host biomarkers of respiratory infection shed light on the drivers of immunopathology. 

This could serve as a tool in drug discovery research to help identify the pathways causing the 

majority of the damage. This opens the possibility of developing host-directed treatment to 

“ameliorate immunopathology”.17 Collectively, the above real-world examples with clinical 

utility support a step towards integrating host-biomarker detection for improving the 

management of respiratory tract infections in a “future state”.  

 

1.2 Market Assessment for Respiratory Tract Infection Host-biomarker Diagnostics 

 

We concede that a "future state" faces headwinds that are beyond scientific and technical 

advances and must consider marketplace realities influenced by economics, social norms, and 

personnel skilled in the relevant arts. Market research is able to inform on these important 

variables that influence the adoption of innovative technologies. Combining market research 

training and exploration with laboratory research is an integrated approach to match R&D 

activities with market pain points. To aid in R&D activities, market research during this thesis 

included activities within the Lab2Market (L2M) program run by Toronto Metropolitan 

University (previously Ryerson University) and Mitacs. The program's goal was to explore the 
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commercial viability of our academic research through market research interviews and 

conversations with stakeholders in the field. The topic examined throughout the L2M program 

was "A combination host-pathogen rapid diagnostic for decentralized monitoring of respiratory 

infections." Over 25 interviews were conducted with key players in the field of clinical 

diagnostics, including ER physicians, family physicians, diagnostic device manufacturers, 

scientific consultants, and several others (Figure 1.1A). Interview notes from all the discussions 

were combined in an infographic (Figure 1.1B) highlighting the key themes and topics 

discussed. 

  
Figure 1.1 Summary of Lab2Market Program A) Stakeholders in clinical diagnostics interviewed for 

qualitative market research through the Lab2Market (L2M) Program. B) Word Cloud generated from 25 

market research interview notes. Created using https://www.wordclouds.com/ 

https://www.wordclouds.com/


MSc. Thesis – D. Mikkelsen; McMaster University – Medical Sciences 

 

 4 

The program's original purpose was to gain a broader understanding of the path to market for 

host-biomarker based technologies monitoring respiratory tract infections. However, the 

conversations naturally revealed systemic challenges within Canada's healthcare system and the 

field of molecular diagnostics. The findings discovered through the L2M program helped 

provide a solid foundation on diagnostics through hearing first-hand experiences. This guided 

future work completed throughout this project, emphasizing clinical applications. We were 

interested in the physician's perspective on the clinical utility of a host biomarker for respiratory 

infections. While one physician we spoke to thought it was interesting, they highlighted how 

limited funding is within Canadian hospitals and the importance of considering economic 

implications and change to existing workflows. They emphasized several issues concerning 

electronic medical record integration and patient communication. The concept of a combination 

host-pathogen diagnostic test for respiratory infections was far more complex and specific than 

the pain points that physicians were facing day to day. Another issue highlighted through these 

interviews was that a diagnostic providing a "maybe" or suggestive answer is not very useful in 

the emergency room. They referred to concerns regarding SARS-CoV-2 rapid tests 

demonstrating that if a host biomarker was integrated into clinical care, it would need to prove 

clinical utility, a topic that is addressed more comprehensively in the discussion of this thesis. 

 

If host-biomarkers were integrated into clinics, the testing platform would need to integrate with 

existing diagnostics workflow and infrastructure. One interview highlighted that Canada lacks 

facilities or equipment to do routine genome (or transcriptome) sequencing for common 

respiratory infections. The current workflow to diagnose respiratory infections is to use 

traditional microbial culture methods or run specific tests with select panels for biomarkers of 

interest, such as PCR. Whole genome sequencing is routinely used for public health surveillance 

measures in Canada, including for SARs-CoV-2 variant tracking 18 and foodborne pathogens 

outbreaks such as E. coli O157:H7.19 In some instances, whole genome sequencing is utilized 

clinically for rare diseases and cancer. However, whole genome (or transcriptome) sequencing is 

not routinely used to diagnose acute respiratory infections; it is mainly reserved for research 

purposes. 

 

The direct costs of routine sequencing would likely be greater than what is currently budgeted 

for diagnostic workflows. For example, metagenomics next-generation sequencing using 

respiratory samples can cost anywhere from $500 - $2500 USD per sample.20 Not to mention the 

cost of the sequencing platform itself, data analysis and infrastructure to handle the large 

amounts of data generated from each sample. In addition, the turnaround time can take 1-10 days 
20; when dealing with a critically ill patient, ten days is too long to wait to prescribe antibiotics. 

For that reason of cost and turnaround time, we explored a decentralized healthcare method via a 

point-of-care test and pursued the development of a host biomarker lateral flow assay (LFA). 

 

1.3 Point-of-care Technologies and the Rapid Adoption of Lateral Flow Assay Technology 

 

An LFA is a paper-based detection technology that can identify the presence of an analyte within 

a sample.21 An LFA is typically composed of a strip which contains a sample pad, conjugate 

release pad, a membrane with antibodies and an adsorbent pad and is occasionally housed within 

a plastic cartridge.21 A sample is placed on the sample pad, and through capillary action, the 

sample travels down the strip where the sample is exposed to conjugate antibodies, which may or 
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may not bind to the sample depending on if the analyte is in the sample. The sample continues 

travelling down the trip to the test line, which will display the result, and the control line, which 

indicates to the user that the liquid successfully moved through the strip.21 One of the most 

commonly used LFA tests is the pregnancy test which identifies human chorionic gonadotropin 

(HCG) in urine (Patent: US4313734A.22,23 More recently, the COVID-19 pandemic introduced a 

variety of LFAs detecting SARS-CoV-2 antigens and host immunoglobulins.24,25 The widespread 

roll-out has led to rapid tests being used in schools, workplaces, and homes, which has begun to 

normalize the concept of self-testing at the point of need.  

 

The main advantages of LFAs are that they are easy to use, inexpensive and have a rapid 

turnaround time. The average LFA test takes anywhere from 5 to 30 minutes to complete and can 

usually be used without any additional laboratory equipment.21,26 Together, these qualities make 

LFA a great point of care tool in healthcare in decentralized diagnostics, which is especially 

useful in remote locations. As mentioned before, the COVID-19 pandemic increased the use of 

LFAs as they became a common household name. This was advantageous for their use as people 

became familiar with how to operate LFAs and global supply chains are in place to develop these 

technologies at scale.  

 

Through the L2M program, the interviews with clinical diagnostics stakeholders revealed some 

disadvantages and concerns regarding LFAs, mainly regarding SARS-COV-2 rapid antigen tests. 

The first concern was regarding the sensitivity of SARS-CoV-2 rapid tests. A systematic review 

found that SARS-CoV-2 rapid tests, on average, have a sensitivity of 58.1% in asymptomatic 

people and 72% in symptomatic people.27 They observed that the sensitivity of the tests 

increased during the first week of symptoms and in those with a high Ct (cycle threshold) value 

from the RT-PCR test, which can indicate a higher viral load.28  

 

During our conversation with an ER physician, he stated: 

 

 "Specificity is not good enough for this purpose – Nasopharyngeal PCR swabs are more 

accurate so advice would be to wait to formal test and not give rapid test / What is the 

point of a rapid test if a result confirmation is required anyways? -SM".  

 

Due to the low sensitivity of SARS-CoV-2 rapid tests, confirmatory PCR tests are often required. 

The argument challenges the clinical utility of SARS-CoV-2 rapid tests in an environment where 

life-or-death decisions are made. However, it does not negate the use of this technology for 

public health surveillance in general settings such as schools and workplaces. Several 

jurisdictions within Canada29 and globally 30 throughout the pandemic employed SARS-CoV-2 

asymptomatic detection strategies using rapid antigen LFAs. Within the EU, Liverpool 

conducted a pilot program to determine whether it prevented SARS-CoV-2 transmission. The 

results found that the asymptomatic screening program reduced cases by 21% and 

hospitalizations by 32% during the pilot31 providing evidence for the utility of SARS-CoV-2 

rapid tests in community settings. It also suggests that this approach could be relevant for other 

respiratory tract infections.  

 

The last disadvantage of an LFA test is that the final result, the test line, is interpreted manually, 

which is subjective. The subjective interpretation of positive and negative results by the human 
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eye can dampen sensitivity and specificity, and the documentation of results is not automated or 

digitized.32 For example, Figure 1.2 illustrates how often the search term "faint line covid test" 

was searched on Google from 2019 to 2022. Since rapid test results are self-reported, the 

interpretation of a "faint line" being positive or negative plays a role in the sensitivity and 

specificity of the diagnostic test. It is estimated 30.9% of adults have hyperopia, also called 

farsightedness, where nearby objects appear blurry,33 furthering the need for an unbiased 

interpretation of the LFA result.  

 

 
Figure 1.2 Subjective Interpretation of LFA. A Google Trends “Interest over time” for the search term “faint line 

on covid test” from October 2019 to September 2022. Y axis numbers represent Google search interest relative to 

the highest point on the chart for the given time. Value = 100 is peak popularity for the term. Value = 50 means that 

the term is half as popular. Value = 0 means not enough data for this term. Data source: Google Trends34 B Example 

of a faint test line on Abbott Panbio COVID-19 Ag SARS-CoV-2 Rapid test.  
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Several companies addressed these limitations by developing LFA reader devices that offer an 

automated readout of the LFA test such as the BD Veritor™ Plus Analyzer.32,35 The benefits of 

an LFA readout device are that it offers an objective interpretation, may interpret multiplex tests 

and quantitative readouts and can provide an automated data management tool integrating with 

the clinical workflows.32 Although adding an expense of purchasing a readout device and some 

require connection to power or a computer, this impedes the low-cost and portable aspect of the 

LFAs.32  

 

In parallel to developing host-biomarker based diagnostics for respiratory tract infections, we 

addressed this gap by developing VisuFlow©: an open-source cloud framework for smartphone-

based LFA diagnostics – improving the interpretation and documentation of results (Figure 1.3). 

It should be noted that the development of VisuFlow© was not the primary focus of the thesis. It 

attempted to address the multiple pain points regarding LFA interpretation and archiving 

discovered during market research. Previous work using Samsung SM-P585 tablets and deep 

learning classified HIV rapid tests and performed better than the standard human eye 

interpretation by health care staff.36 This could be very useful in low-middle income countries in 

which LFA readers are not accessible, but health care staff have access to smartphones or 

tablets.36 It is estimated global smartphone adoption in 2021 was 68% and is estimated to 

increase to 81% by 2025.37 Smartphone camera technology advancements have continually 

improved the number of megapixels, allowing for higher quality photos each year.38 Thus, using 

existing smartphones as image-capturing devices for LFA interpretation and data management 

may be helpful in low-resource settings. In contrast, specific features of LFA readout devices, 

such as uniform lighting conditions and higher image capturing requirements, leave a strong use 

case for standardized LFA reader devices. Over the course of this thesis, several smartphone 

LFA reading applications have also been developed such as Abbott’s BinaxNOW™ SARS-CoV-

2 LFA can be used with their NAVICA smartphone application 39 in addition to existing 

applications such as BBI Solutions’ Novarum™ platform.40  
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Figure 1.3. VisuFlow©: An open-source cloud framework for smartphone-based LFA diagnostics – 

improving the interpretation and documentation of LFA results. Front-end user interface (client end) for 

smartphone application and validation of the sensitivity/specificity and backend admin dashboard. 

Development of VisuFlow was completed by Manjot Hunjan and Alex Wu. 
 

Another drawback of most SARS-CoV-2 LFAs is that they do not include any insight into the 

host response, such as disease outcome and severity. The concept of testing host molecular 

biomarkers is not entirely novel. Host biomarker-responsive LFAs have historically been used in 

clinical settings such as the Quidel Triage® D-Dimer Test, which quantifies D-dimer levels for 

the diagnosis of a pulmonary embolism and/or deep vein thrombosis (DVT) 41 or the pregnancy 

test mentioned previously.22,23 

 

Through the L2M program, the topic of regulation, validation and clinical utility were mentioned 

frequently. The path to approval by governing regulatory boards such as the Food and Drug 

Administration (FDA) and Health Canada is a rigorous but vital step in developing a clinical 

diagnostic test. The diagnostic test must demonstrate analytical validity, clinical validity and 

clinical utility.16 Demonstrating analytical validity determines how well a test can detect a 

specific biomarker. Analytical validity would determine the assay's detection limit, the 

reproducibility of results, and analytical sensitivity and specificity 16. The next step is 

determining the clinical validity, specifying how well the test can predict a clinical diagnosis or 

disease16. Last, the clinical utility is determined. Clinical utility focuses on how the diagnostic 

can improve the standard of care and allow health care professionals to make more informed 
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decisions. How can the diagnostic assimilate into the clinical workflow? Social, economic, and 

ethical considerations are also factored into play during this step. As a result, the development, 

validation, and regulatory approval of a novel diagnostic test require a lot of time and money. An 

in-vitro diagnostic device, on average, may cost $34 million and take six years to reach market 

approval.42,43 

 

Canada is in a challenging ecosystem for innovative diagnostics since the health care system is 

publicly paid, and there is limited funding. This may impede the adoption of novel diagnostics as 

more pressing demands, such as labour shortages and baseline operations, take precedence. This 

emphasizes the need to demonstrate clinical benefit clearly; without that, the technology will 

likely not be adopted into standard care. 

 

In conclusion, the L2M qualitative research taught us a great deal of information. It provided a 

high-level view of the status of clinical diagnostics in Canada. Host-based diagnostics offer great 

potential to improve the standard of care for acute respiratory infections by discriminating 

between viral or bacterial infections, active or latent infections, or prognosis of disease severity. 

We focused on LFA testing platforms which offer a low-cost point-of-care technology. However, 

the L2M program highlighted concerns of sensitivity and clinical use of LFA tests with respect 

to SARS-CoV-2. The conversations revealed more about government regulations and clinical 

pain points than the genes and proteins involved in my thesis research. 

 

 

1.4 Open Science and the Influence on Academic and Industrial R&D in Respiratory Tract 

Infections 

 

In 2021, the United Nations Educational, Scientific and Cultural Organization (UNESCO) 

published a recommendation on Open Science at their General Conference in Paris, defining 

open science as: 

 

"an inclusive construct that combines various movements and practices aiming to make 

multilingual scientific knowledge openly available, accessible and reusable for everyone,  

to increase scientific collaborations and sharing of information for the benefits of science 

and society, and to open the processes of scientific knowledge creation, evaluation and 

communication to societal actors beyond the traditional scientific community." 44  

 

Open science is an initiative that includes four main components 45,46: 

1) open access to data  

2) open data sharing 

3) open-source code and sharing of procedures and methodologies and  

4) open peer review 

 

Canada's Tri-agency (CIHR, NSERC and SSHRC) has followed suit with UNESCO's 

recommendations and adopted this policy which requires recipients of their funds to have open 

access to publications for 12 months after publication.47 In addition, CIHR has requested that 

molecular data be deposited into proper repositories when publishing research.47 In addition, the 
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US recently committed to requiring all taxpayer-funded work to be open access by 2025, in 

addition to data from these papers.48,49 

 

The field of genomics and -omics research has been a pioneer of open science through open-

source data-sharing initiatives for several years, dating back to the Human Genome Project, 

which was completed in 2003.50 Since then, there have been numerous open access public 

repositories, including GenBank ®, NCBI Gene Expression Omnibus (GEO)51, Sequence Read 

Archive (SRA), Human Cell Atlas52, Comprehensive Antibiotic Resistance Database (CARD)53, 

Harmonizome54 and many more.  

 

There are several advantages to open data sharing in research. First, researchers across the globe 

can reuse data to verify results or conduct further analysis.48 Scientists can quickly test 

hypotheses and save resources. Open data sharing in research can also provide larger sample 

sizes. This is especially useful within the field of artificial intelligence, which requires large 

datasets to train algorithms.55  

 

Some caveats to open science and sharing publicly available datasets are as follows. The EU 

Horizon Europe requests that shared data be findable, accessible, interoperable, and reusable 

(FAIR).46,48 Many researchers have expressed a strong interest in accessing publicly available 

data.56 Yet, many do not share data due to a lack of time, limited rights to share data, and 

inadequate infrastructure.56 Metadata is only useful if the industry's terms and language are 

consistent and agreed upon. This has motivated the implementation of "ontologies" when 

building open science databases which are defined as "systematic representations of knowledge 

that can be used to integrate and analyze large amounts of heterogeneous data".57 

  

These classifications can properly label heterogenous, ad-hoc clinical data into labelled groups, 

which helps to address inconsistencies when combining large datasets.57 Another hurdle within 

open data sharing is data privacy concerns for research participants. While this can be over with 

informed consent from patients, requesting permission for future consent for further experiments 

and anonymizing data58, there have been instances where a patient's anonymity has been 

compromised and could be re-identified through genomic data.59 This highlights the importance 

of controlling access to certain databases and informing research participants of potential risks 59.  

 

The COVID-19 pandemic expedited the use of open data platforms and open access to 

publications.60 Open science transitioned from an optional task to a compulsory action for global 

collaboration. On January 30th, 2020, at the Institut Pasteur, the SARS-Cov-2 genome was 

released 61 from there, enormous research efforts were undertaken in a wide range of disciplines, 

including diagnostics and therapeutics, collaborating with worldwide expertise to combat the 

pandemic. By March 2020, Pfizer announced its partnership with the German company, 

BioNTech, to co-develop the BNT162b2 (Comirnaty®) mRNA Covid-19 vaccine, which was 

estimated to have prevented over 110,000 deaths in the USA.62,63 Examples of open data 

platforms released during COVID-19 include John Hopkins Corona Virus Resource Center, Our 

World in Data COVID-19, Nextstrain, GISAID, COVID-19 Genes Cornell and several COVID-

19 waste water surveillance platforms.18,64–69 In addition, COVID-19 allowed for several host 

genome and transcriptome datasets from blood and nasopharyngeal swabs.64,70–72 There has been 

an increase in host-RNA sequencing datasets measuring differential gene expression between 
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groups with infections and controls from clinical samples.64,73–75 Combining open science and 

access to RNA-sequencing data comparing differentially expressed genes (DEGs) would allow 

large study populations to validate mRNA signatures for specific infections. As stated above, 

establishing reference standards in RNA-sequencing methods and consistency in metadata 

labelling is essential to combine findings from multiple host-transcriptomic immune response 

studies. 

 

In conclusion, open science and data-sharing initiatives are essential to scientific collaboration 

and innovation. Some view it as a moral obligation to provide Canadian taxpayers with the 

scientific information generated from tax-paying dollars. However, providing adequate 

infrastructure to handle data and using consistent terminologies and ontologies are essential to 

make the shared data useful. In addition, the privacy and consent of research participants must be 

protected. 

 

1.5 Conclusion and Presentation of Thesis Proposal 

 

Integrating these concepts, the field of diagnostics for respiratory infections faces many 

challenges in the present day, placing a burden on society. Nonetheless, there is plenty of 

opportunity to drive improvements and advancements through novel research and the advent of 

next-generation sequencing (NGS). Advances in academic research have demonstrated the 

capability of characterizing one's microbiome, including pathogenic and commensal organisms 

and their host transcriptome from one swab.76 This presents the opportunity to characterize 

pathogenic viruses, bacteria and fungi alongside the host microbiome and host biomarkers of 

inflammation and response to therapeutics— moving away from the inappropriate prescription of 

antibiotics and suboptimal treatment advancing toward the reality of personalized medicine.  

 

The host transcriptome, in particular, is often under looked. At the same time, the emphasis is 

placed on pathogen detection, but host immunopathology may play a more significant part in 

viral infections than previously thought. While this all seems compelling, through our market 

research and conversations with stakeholders within the field, several barriers exist to the clinical 

implementation of NGS for respiratory infections. First, the cost of NGS far exceeds the public 

funding in Canada for ARI diagnostics. Second, alternative testing platforms such as LFAs 

struggle with low sensitivity of LFAs and are not always clinically useful. LFAs on the market 

do not provide intel into the host immune response. 

 

Open science is a great tool to progress scientific research, saving time and resources. However, 

this is only useful when there is consistency in data, and it is findable, accessible, interoperable 

and reusable (FAIR).46 The COVID-19 pandemic revealed just how vital open science is – 

having the SARS-CoV-2 genome released in early 2020 and 12 months later, a vaccine was 

developed, saving over 100,000 lives. 

 

Incorporating these ideas, we hypothesized that host-expressed genes involved in the antiviral 

response are an effective biomarker of viral infection. Utilizing the breadth of data released 

during the COVID-19 pandemic through open science, RNA-sequencing and microarray gene 

expression datasets of viral infection were screened from upper respiratory tract infection 

samples. The expression patterns of three antiviral genes, CXCL10, CXCL11, and TNFSF10, 
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were determined for multiple respiratory tract infections: respiratory syncytial virus, rhinovirus, 

influenza A and SARS-CoV-2 in respiratory mucosa samples. The gene expression patterns 

suggested that CXCL10 and CXCL11 elevations were consistent for multiple viruses, correlated 

with higher SARS-CoV-2 viral load, and had a lower variance throughout COVID-19 infection 

compared to TNFSF10. Mass-spectrometry demonstrated that CXCL10 protein was absent in 

healthy individuals' saliva samples. SARS-CoV-2 infected individuals indicated significant 

elevations in CXCL10 protein concentration in saliva. Subsequently, a prototype LFA for 

CXCL10 protein was developed with a sensitivity of 2ng/ml in human saliva for potential 

downstream applications in monitoring host-biomarkers in respiratory tract infections. 
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2.1 Introduction 
  

Prior to COVID-19, lower respiratory infections ranked as the 4th leading cause of death 

responsible for ~ 2.6 million deaths annually.1 The majority of these deaths occurred in children 

under five years old and those over the age of 70.1 The COVID-19 pandemic has increased the 

global burden of disease attributable to respiratory infections, with > 6 million fatalities as of 

July 2022 2 with age functioning as a significant risk factor that has spared children from the 

greatest morbidity and mortality.3   

 

The morbidity and mortality associated with respiratory tract infections are dominant aspects that 

contribute to a global burden calculation, but these measures must also be considered in 

conjunction with the economic costs.4 Economic costs of respiratory infections can be broken 

down into direct and indirect costs. Direct costs of respiratory infections are incurred through 

interactions with the healthcare system and may include physician visits and medication costs. 

Indirect costs may include absenteeism for patients and caregivers.5 Total costs of pneumonia 

and acute lower respiratory infections exceed $25 billion annually in the European Union for a 

population of ~450 million people.6 Extrapolating these costs on a global population level 

estimates ~$400 billion in annual costs across all jurisdictions. When including COVID-19, these 

costs are much higher. On a global scale, the economic burden of COVID-19 led to a -3.1 % 

decrease (equal to -$2.4 trillion USD) in the annual global GDP7, with total estimates potentially 

as high as $16 trillion USD.8 The COVID-19 pandemic demonstrated that in dire circumstances, 

respiratory infections can cause unprecedented global economic recession and massive 

disruptions to global supply chains.9 While the economy has begun to recover from COVID-19, 

the risk of novel emerging infectious diseases and SARS-CoV-2 variants of concern remains 

high. The significant direct and indirect costs of respiratory infections warrant the development 

of a diverse set of approaches that can help mitigate economic burden.   

 

Diversity in respiratory tract virus infections exists with differential impacts on morbidity, 

mortality, and economic burden. Across common respiratory tract viral infections, the young, 

elderly, individuals with chronic respiratory diseases, and pregnant mothers have elevated risks 

for morbidity and mortality.10 Common viral respiratory tract pathogens include rhinoviruses 

(RV), respiratory syncytial virus (RSV), influenza (FluA and FluB), and coronaviruses.3,11 

Depending on the pathogen, respiratory viral infections may vary in presentation from a mild 

illness restricted to upper airways that is self-resolving (RV)12 to acute respiratory distress 

syndrome that requires ventilation and is associated with fatalities (SARS-CoV-2).3 Globally it 

has been estimated that 2% of all deaths related to respiratory dysfunction are associated with 

influenza causing approximately ~400 000 deaths every year.13 RV cause relatively mild illness 

in the majority of the population; although they contribute to a substantial number of medical 

visits and absent days of work every year as increased morbidity is observed in 

immunocompromised individuals.14 RV infections contribute to a substantial number of acute 

asthma exacerbations in the community.15 RSV is common viral infection in children under 5 

years old that is associated with hospitalizations and wheeze.16,17 In a longitudinal study design 

of 92 children,18 all but one individual had an RSV infection prior to age 2, suggesting that a 

large proportion of children have the potential to be infected with RSV. In 2015, there were 

approximately 33 million RSV infections globally which resulted in three million 

hospitalizations and just under 60,000 deaths in children younger than 5 years old.19 Both RV 
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and RSV infections pose as a risk factor for subsequent development of wheeze and childhood 

asthma.20,21 Understanding core mechanisms common to respiratory tract viral pathogenesis and 

host-responses to infections may provide biomarkers for at-risk patient populations that guide 

interventions aimed at reducing morbidity, mortality, and economic costs.   

 

To combat respiratory tract viral infections, the respiratory mucosa participates in a wide range 

of innate and adaptive immune responses to control and eliminate pathogens. Innate immune 

responses of the respiratory mucosa are initiated by germ-line encoded pattern recognition 

receptors (PRRs) that bind to molecular motifs that are associated with extrinsic pathogen 

associated molecular patterns (PAMPS) or intrinsic damage associated molecular patterns 

(DAMPS). PRR recognition of non-self PAMPS or self-DAMPS initiates intracellular signaling 

cascades that upregulate host-defence mechanisms defined by temporally specific gene 

expression patterns.22 Although these processes are broadly applicable to all respiratory tract 

viral infections, diversity in host responses exist and are influenced by the infectious pathogen 

and its ability to subvert host immune responses in attempt to replicate and spread.23,24 Core-host 

innate immune responses that are shared between respiratory tract viral infections may provide 

diagnostic and prognostic potential beyond simple pathogen detection alone.25,26 Importantly, 

host innate immune responses are not merely beneficial and can be attributed to pulmonary 

damage via uncontrolled by inflammation and immunopathology.27  

 

The dominant innate immune response induced upon respiratory tract viral infection and 

downstream of PRR signaling is the induction of interferon stimulated genes (ISGs) through 

Type I and Type III interferons.24 When a virus enters the respiratory system, viral PAMPs are 

recognized by the hosts’ PRRs, and this triggers the production of interferons (type I and III) and 

actives the interferon antiviral response. Type I IFNs act in a paracrine and endocrine fashion 

through the Type I IFN receptor (IFNAR) while Type III IFNs signal through IFNLR1.24  

Downstream signaling from these receptors merges on JAK family of kinases and STAT family 

of transcription factors, leading to transcriptional activation.28 The interferon antiviral response 

induces a number of different ISGs that generate protein products that inhibit distinct parts of 

viral life cycles. 24,28 Aspects that the interferon antiviral response may coordinate include 

cellular defences to virus binding, internalization, replication, packaging, and release. 

Importantly, in conjunction with ISG products produced within the cell to combat viral life cycle, 

other ISG products are released outside the cell to signal to non-infected cells in the local and 

systemic environment. Secreted ISG protein products that are also chemokines may provide 

early biomarker signals that are prognostic for respiratory tract viral infections. Three of these 

chemokines include TNFSF10 (TRAIL) and the CXC chemokines: CXCL10 and CXCL11 

which are all induced by interferon. Previous research has found these three proteins 

CXCL10/CXCL11/TNFSF10 to be induced by several respiratory viral infections both in-vitro 

and in-vivo experiments.29–31 

 

CXCL10, also called interferon-γ inducible protein 10 kDa (IP-10), is a secreted ISG and plays a 

key role in fighting viral infections.32(p10) This chemokine has been shown to have altered mRNA 

expression levels in RV, RSV, and SARS-CoV-2 infections.33–35 In addition, serum samples 

revealed high levels of CXCL10 protein in H5N1 influenza infection and SARS-CoV-2.36,37 

Recently, Lorè et al37 showed CXCL10 serum levels were a robust predictor of COVID-19 

outcomes, with higher levels being related to increased mortality. CXCL11, also known as C-X-
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C motif chemokine ligand 11, is another chemokine which shares the same CXCR3 receptor as 

CXCL10 and is also secreted.38 Both CXCL10 and CXCL11 are induced by interferon-γ and 

play a role in recruitment of T cells and natural killer (NK) cells as part of the immune 

response.38. CXCL11 has shown a similar trend in up-regulated in SARS-CoV-2 infections in-

vitro 39 and in-vivo.35,40 Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), from 

the gene TNFSF10, is a secreted protein which can induce apoptosis and plays a role in the 

immune response to destroy virally infected cells.41 TNFSF10 has been found to be up regulated 

during viral infection.42 Together, these three genes CXCL10, CXCL11 and TNFSF10 are 

cytokines that are also stimulated by the IFN response and may be useful biomarkers for 

respiratory tract viral infections. 

  

Respiratory tract infections caused by viruses have sought a massive burden on health care 

system for years – although the recent COVID-19 pandemic has exacerbated this exponentially. 

COVID has ushered in a new acceptance of rapid diagnostics that includes lateral flow assays 

(LFAs) being used outside hospitals such as schools and workplaces. LFAs are useful for testing 

directly on-site rather than operating through a centralized testing laboratory. The advantages of 

LFA tests are that they are quick, inexpensive, and easy to use. Although, due to lower 

sensitivity and specificity, they are typically preferred as a screening method and require a 

confirmation test such as PCR.43 SARS-CoV-2 rapid tests such as the Abbott Pan Bio detect the 

SARS-CoV-2 pathogen but do not provide any insight into the individual’s host response and 

disease trajectory. However, Roche’s Elecsys® IL-6 test uses electrochemiluminescence 

immunoassay to quantify IL-6 levels in blood with potential applications for identifying severe 

disease in COVID-19 patients.44,45 Leveraging LFA technology for detection of biomarkers 

prognostic of respiratory tract infection may provide opportunities to intervene selectively and 

aggressively in those most at risk of poor outcomes.  

 

ISGs play a major role in the antiviral defense and measuring extracellular protein products of 

ISGs could be potential biomarkers of infection. CXCL10, CXCL11 and TNFSF10 are involved 

in the antiviral immune response during a variety of respiratory infections. However, the 

feasibility and performance of these ISGs as useful and measurable clinical biomarkers from an 

easily accessible sample format remains unknown. In the present study, we had the overarching 

objective of defining the expression patterns of the secreted ISG products CXCL10, CXCL11, 

and TNFSF10 for multiple respiratory tract infections including RSV, RV, influenza A and 

SARS-CoV-2 in respiratory mucosa samples to inform the development of a host-biomarker 

point of care LFA tool. Gene expression levels from upper airway samples suggested that 

CXCL10 and CXCL11 elevations were consistent across multiple viruses, correlated with higher 

SARS-CoV-2 viral load and had the lower variance over course of COVID-19 infection 

compared to TNFSF10. Deep proteomic profiling using mass-spectrometry revealed CXCL10 

was absent in oral samples from healthy individuals. CXCL10 levels were measured from the 

saliva of SARS-CoV-2 infected individuals and showed significant elevations in CXCL10 

protein concentration. We proceeded to develop a prototype LFA for CXCL10 protein with a 

sensitivity of 2ng/ml in human saliva. Our work provides a foundation for further exploration of 

CXCL10 as a host biomarker relevant in respiratory tract viral infections with potential 

diagnostic and prognostic value.  

 

 



MSc. Thesis – D. Mikkelsen; McMaster University – Medical Sciences 

 

 24 

2.2 Materials and Methods 

 

2.2.1 Human ethics: Procurement of nasopharyngeal swab (NPS) and saliva samples from 

consented study subjects was approved by Hamilton integrated Research Ethics Board (HiREB 

4914T and 5099T).  

 

2.2.2 Data Resources: A combination of publicly available gene and protein datasets (Table 1) 

and in-house generated gene datasets from Hamilton Regional Laboratory Medicine Program 

and Sunnybrook Hospital were used for present study.  

 

Table 2.1 Publicly Available Data Resources Accessed for Analysis 

Data Resource and Citation Corresponding 

Figure 

Sample 

Type 

Gene 

Expression 

Method 

Data Composition and Notes 

Harmonizome - 

https://maayanlab.cloud/Harmonizome/ 

Citation Link: 

https://pubmed.ncbi.nlm.nih.gov/27374120/ 

Figure 2.1  Various  Multiple 

microarray 

platforms 

366 sets of genes differentially expressed following virus 

perturbations from the GEO Signatures of Differentially 

Expressed Genes for Viral Infections dataset. 

  

mRNA expression profiles in cell lines or tissues: Calu-3 
cells, HAE cultures, see supplementary for all.  

Host Gene Expression in Nasal and Blood 

Samples for the Diagnosis of Viral 

Respiratory Infection 

Citation Link: 
https://pubmed.ncbi.nlm.nih.gov/30339221/ 

  

GSE117827 

Figure 2.2 Nasal mid-

turbinate 

swab 

Microarray- 

Affymetrix 

Human 

Clariom-D 
Chips 

  

  

Total n = 24 

n = 6 Control 

n = 6 Respiratory Syncytial Virus 

n = 12 Rhinovirus 
Control = children (3mo-18years) having ambulatory surgery 

for nonacute conditions 

Cases = children (3mo-18years) hospitalized for acute 

respiratory illness positive with positive results only for a 
single virus using BioFire FilmArray Respiratory Panel 

In vivo antiviral host response to SARS-

CoV-2 by viral load, sex, and age.  

Citation Link: 

https://pubmed.ncbi.nlm.nih.gov/32898168/ 
GSE152075 

Figure 2.2 Nasopharyn

geal swabs  

RNA-

sequencing 

  

Total n = 484. Subjects with suspected SARS-CoV-2 

infection underwent an nasopharyngeal swab based RT-PCR 

test for the SARS-CoV2 N1 gene 

n = 54 SARS-CoV-2 PCR test negative 
n = 430 SARS-CoV-2 PCR test positive 

Upper airway gene expression 

differentiates COVID-19 from other acute 
respiratory illnesses and reveals 

suppression of innate immune responses by 

SARS-CoV-2 

Citation Link: 

https://pubmed.ncbi.nlm.nih.gov/33203890/ 
GSE156063 

Figure 2.2 Nasopharyn

geal swabs 

RNA-

sequencing 
  

  

Total n = 234. Subjects were under investigation for 

suspected SARS-CoV-2 infection.  
n = 100 non-viral acute respiratory illnesses (ARIs) 

n = 41 SARS-CoV-2 PCR test negative 

n = 93 SARS-CoV-2 PCR test positive  

Shotgun transcriptome, spatial omics, and 

isothermal profiling of SARS-CoV-2 

infection reveals unique host responses, 

viral diversification, and drug interactions 
Citation Link: 

https://pubmed.ncbi.nlm.nih.gov/33712587/ 

and https://covidgenes.weill.cornell.edu/  

dbGaP Study Accession: phs002258.v1.p1 

Figure 2.3  Nasopharyn

geal swabs 

RNA-

sequencing 

Total n = 735. Subjects were under investigation for 

suspected SARS-CoV-2 infection.  

n = 519 SARS-CoV-2 PCR test negative  

n = 216 SARS-CoV-2 PCR test positive  

Ultra-deep and quantitative saliva proteome 
reveals dynamics of the oral microbiome 

Citation Link: 

https://pubmed.ncbi.nlm.nih.gov/27102203/ 

Figure 2.5 Oral swabs  Mass 
spectrometry

-based 

proteomics 

Total n = 8  
n = 4 female 

n = 4 male 

  

All subjects were healthy, non-smoking healthy individuals 

aged 24 to 40 years with Caucasian backgrounds and 
assessed at two times during the day (morning and evening). 

 

 

 

https://maayanlab.cloud/Harmonizome/
https://pubmed.ncbi.nlm.nih.gov/27374120/
https://pubmed.ncbi.nlm.nih.gov/30339221/
https://pubmed.ncbi.nlm.nih.gov/32898168/
https://pubmed.ncbi.nlm.nih.gov/33203890/
https://pubmed.ncbi.nlm.nih.gov/33712587/
https://covidgenes.weill.cornell.edu/
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2.2.3 Overview of Publicly Available Accessed Datasets:  

 

In-vitro cell culture experiments: In-vitro, pre-processed transcriptomic datasets were examined 

using the Harmonizome resource46 (https://maayanlab.cloud/Harmonizome/.  From 

Harmonizome, the dataset labelled “GEO Signatures of Differentially Expressed Genes for Viral 

Infections” was accessed for hypothesis testing for elevations in CXCL10, CXCL11, and 

TNFSF10 following viral exposure in vitro from a variety of experimental conditions. The “GEO 

Signatures of Differentially Expressed Genes for Viral Infections” dataset contained 366 

individual datasets of mRNA expression profiles using microarray technology for cell lines or 

tissues after viral infection. These were filtered down to 199 microarray datasets as all non-

human experiments and non-respiratory viruses were excluded. The remaining 199 datasets came 

from 17 GSE studies including the following viruses: influenza A, human coronavirus, SARS-

CoV like virus isolated from bats, a mouse-adapted SARS-coronavirus, SARS-CoV mutant 

strain that does not express the accessory protein open reading frame 6 (delta ORF6), human 

metapneumovirus, wild-type infectious clone-derived SARS-CoV, measles, RSV and RV, with 

time points ranging from 0- 96 hours post inoculation. In-vitro cell systems included but were 

not limited to Calu-3, HAE, and A549 cell lines (Supplementary Table 1). From the 199 

microarray datasets, the studies in which CXCL10, CXCL11 and TNFSF10 were in the top 300 or 

bottom 300 differentially expressed were counted. The log fold change and number of datasets 

were plotted using Graph Pad Prism. This Harmonizome method of data retrieval is a 

conservative representation of the number of datasets where the candidate genes are 

differentially regulated as they must be in the top or bottom 300 log fold changed genes. Three 

representative housekeeping genes ACTB, TUBB and GADPH were analyzed in parallel as a  

frame of reference.   

 

Upper Airway Sampling: Four datasets of upper airway swabs (NPS or nasal mid-turbinate) 

samples were curated to determine CXCL10, CXCL11 and TNFSF10 gene expression under 

different respiratory viral infections. Host transcriptomic data on RV and RSV infections were 

from pediatric populations between 3 months and 18 years admitted to hospital for acute 

respiratory illness and had confirmed PCR detection of pathogen.47 All included subjects had not 

received any immunosuppressants for 30 days or antibiotics for 7 days. Control subjects were of 

same age but present in the hospital setting for ambulatory surgery for non-acute conditions. 

Microarray gene expression analysis was performed on the mid-turbinate nasal swab with data 

retrieved from GSE117827. A total of n = 6 RSV positive (2 males, 4 females), n = 12 RV 

positive (8 males and 4 females) and n = 6 negative control (6 males) samples were analyzed 

with mean age 31 months +/- 39 months (standard deviation). 

Host transcriptomic data on SARS-CoV-2 infections were from adult populations from three 

studies that each had distinct subject enrolment strategies and demographics available. In the first 

dataset, a total of n = 430 SARS-CoV-2 positive (176 males. 201 females, 53 unknown) with 

median age 54 years (range 2-98) and n = 54 negative control (30 males, 24 females) median age 

46.5 years (range 12-90) year samples were analyzed from GSE152075.35 For the second dataset, 

a total of n = 93 SARS-CoV-2 positive (no other pathogenic respiratory virus) (50 females, 43 

unknown) with mean age 47 years, n = 41 other viral ARI (19 females, 22 unknown) mean age 

51 years and 100 non-viral ARI (55 females, 45 unknown) mean age 57 years samples were 

analyzed from GSE156063.48 For the third dataset, SARS-CoV-2 status was determined by RT-

PCR and other respiratory virus were detected by metagenomic next generation sequencing. The 

https://maayanlab.cloud/Harmonizome/
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non-viral ARI group included bacterial RTIs and other non-infectious respiratory diseases. A 

total of n = 216 SARS-CoV-2 and n = 519 negative samples were analyzed from Genotypes and 

Phenotypes dbGAP (accession #38851 and ID phs002258.v1.p1).40 To determine the association 

between positive SARS-CoV-2 status and CXCL10, CXCL11 and TNFSF10 expression, 

GSE152075 and GSE156063 were accessed. To determine the association between SARS-CoV-

2 viral load and CXCL10, CXCL11 and TNFSF10 expression a web portal for an RNA-

sequencing dataset was accessed (https://covidgenes.weill.cornell.edu/). We extracted the log2 

fold change and q values for CXCL10, CXCL11 and TNFSF10 for positive vs negative 

comparison group and “Viral Level Continuous” comparison group using SVA correction and 

included all reads. “Viral Level Continuous” comparison group converted SARS-CoV-2 qRT-

PCR cycle threshold (Ct) values into a continuous variable by converting Ct values where Ct of 

15 is equal 1.0 and a Ct over 40 is taken as 0. The goal of this was to determine if CXCL10, 

CXC11 or TNFSF10 gene expression correlated with SARS-CoV-2 viral load. 

Oral Sampling: To determine the expression level of CXCL10, CXCL11, and TNFSF10 at the 

protein level in healthy individuals, an ultra-deep liquid chromatography-mass spectrometry-

based analysis of the human saliva proteome was accessed that included 8 subjects (4 males and 

4 females) (PXD 003028).49 All subjects were healthy and asymptomatic with no oral 

inflammation, pathologies, or prescribed medications. Each subject was sampled twice, once in 

the morning and once after breakfast. An aliquot of the morning sample underwent an additional 

fractionation step for deeper analysis.  

 

2.2.4 Overview of Analysis of In-House Datasets:   

 

Upper Airway Sampling: Three datasets of NPS upper airway samples were generated to 

determine CXCL10, CXCL11 and TNFSF10 gene expression under influenza A and SARS-CoV-

2 infection. For influenza A infections, NPS samples from patients suspected of respiratory tract 

infection were collected in the first 6 months of 2020 through the Hamilton Regional Laboratory 

Medicine Program (HRLMP) during COVID-19 screening. NPS swabs (Copan, Italia) were 

collected and stored in universal transport media prior to multiplex PCR analysis for a panel of 

respiratory tract infections. A total of n = 8 influenza A positive (5 males, 3 females) and n = 14 

negative control (7 males, 7 females) samples were analyzed with mean age 78.2 +/- 11.9 

(standard deviation). For comparison of fatal and non-fatal SARS-CoV-2 infections, NPS 

samples from positive for COVID-19 were collected in the first 6 months of 2020 through the 

Sunnybrook Hospital and Research Institute during regional COVID-19 testing programs. NPS 

swabs (Copan, Italia) were collected and stored in universal transport media prior to RNA 

isolation. A total of n = 6 fatal (5 males, 1 female) and n = 19 non-fatal (9 males, 10 females) 

samples were analyzed with mean age 62.4 +/- 21.6 (standard deviation). For determining the 

variability of CXCL10, CXCL11, and TNFSF10 over time following a positive SARS-CoV-2 

test, PCR confirmed COVID-19 positive patients underwent repeated NPS sampling followed by 

storage in McMaster Molecular Media and RNA isolation. A total of n = 6 subjects (5 females, 1 

male – 72.8 years mean age +/-13.3 years) were analyzed over the period in which each subject 

was an inpatient (range from 12 to 26 days). All RNA isolation was performed using New 

England Biolabs Monarch Total RNA Miniprep Kit according to manufacturer directions. RNA 

concentration and integrity number was assessed by Agilent Bioanalzyer according to 

manufacturer directions. Gene expression profiling was performed using the Human Clariom D 

microarray assay (Applied Biosystems).  

https://covidgenes.weill.cornell.edu/
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Oral sampling: To determine the suitability for measuring CXCL10 protein in saliva as a 

surrogate for CXCL10 gene in upper airway samples, we assessed CXCL10 protein by multiplex 

cytokine array (Eve Technologies, Calgary, Alberta) in COVID-19 inpatients processed by the 

Hamilton Regional Laboratory Medicine Program. Neat saliva samples were provided from 

SARS-CoV-2 positive inpatients (n = 3) and SARS-CoV-2 negative healthy controls (n = 6). 

Samples were spun down at 1000g for 5 minutes to pellet the mucus in samples with a 

supernatant isolated for downstream analysis and kept frozen at -80°C until use. Saliva cytokine 

levels were quantified using Human Cytokine Array / Chemokine Array 71-plex (Eve 

Technologies, Calgary, Alberta, Canada).  

 

2.2.5 Bioinformatic Processing and Statistical Analysis: 

 

For microarray datasets, raw intensity values and annotation data were downloaded. Probe 

definition files for the Clariom D human microarray chip were retrieved from Bioconductor and 

probes were annotated with Ensembl IDs in R (version 4.1.0). All gene expression data from a 

given study were unified into a single data matrix that was then normalized by robust multiarray 

average (RMA) normalization. Normalized expression levels for CXCL10, CXCL11, and 

TNFSF10 were extracted. 

 

For RNA-seq datasets, raw count values and annotation data were downloaded directly from the 

corresponding author’s GitHub. Counts were normalized using the limma package in R (version 

3.14) with the design matrix including virus, sex, and age annotation data. Normalized 

expression levels for CXCL10, CXCL11, and TNFSF10 were extracted. Differential expression 

analysis was performed using the DESeq2 package in R (version 3.14).  

Gene expression levels were tested for significant differences between viral infections or other 

phenotypic data of interest via pairwise Student’s t-tests with Benjamini–Hochberg multiple 

testing correction or via ANOVA followed by Tukey Honest Significant Difference post-hoc 

tests using the stats R package (version 3.6.2). Gene expression box plots were generated with 

GraphPad Prism 9 (GraphPad Software Inc., USA) and heat maps were generated using 

pheatmap R package (version 1.0.12). For heat maps, normalized expression levels are scaled by 

gene. Gene expression box plots were expressed as mean and standard errors of the mean (SEM) 

with unpaired t-tests performed to compare the means of two groups. Where three groups were 

compared, a one-way ANOVA was performed with a Bonferroni correction for multiple 

comparisons. To determine variance in CXCL10, CXCL11, and TNFSF10 gene expression over 

time with SARS-CoV-2 infection, the host gene of interest was expressed as percent change 

from first period of inpatient sampling (set as time=0) for each individual patient. Line graphs 

and box plots were generated with GraphPad Prism 9 (GraphPad Software Inc., USA). 

Differences were considered statistically significant when p < 0.05. 

To assess protein levels in healthy human saliva, quantitative proteomic data corresponding to 

ProteomeXchange dataset PXD003028 49 were downloaded from the MaxQB Database.50 

Reverse hits, common contaminants including keratins, and low confidence hits were removed, 

and data consistency verified using Pearson's correlation analysis within the Perseus platform.51 

Label free quantification intensities were subsequently summed to give a robust read-out for 

average protein levels for the 5551 proteins quantified. More than 95% proteins were identified 

in at least 3 samples, and nearly 80% across all 8 samples.  
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2.2.6 CXCL10 LFA Prototype Development:  

 

Antibody pair selection process: Commercially available antibodies and reagents were selected 

for assay development to ensure reproducibility and robustness between labs. Antibody pairs for 

the detection of CXCL10 were identified from commercially available sources that were 

amenable to ELISA applications. A recombinant anti-human CXCL10 mouse IgG-monoclonal 

(MAB2661), anti-mouse IgG goat-polyclonal (AF-266-NA), and recombinant CXCL0 protein 

(Product 266-IP) were selected from R&D Systems (Toronto, Ontario, Canada). 

 

Conjugation of monoclonal CXCL10 antibody to 40nm gold: Conjugation was performed by 

using an N-Hydroxysuccinimide (NHS) coupling kit from Cytodiagnostics following 

manufacturer directions (Product CGN5K-40-2, Burlington, Ontario, Canada). Briefly, the 

monoclonal CXCL10 antibody was rehydrated in the supplied Protein Resuspension Buffer to a 

final concentration of 0.5 mg/mL. A single conjugation reaction was performed by the addition 

of the supplied Reaction Buffer and CXCL10 solution to the lyophilized NHS-activated gold 

nanoparticle pellet. The reaction was gently mixed for 1 hr before adding 10 μL of the supplied 

Quencher Solution followed by 10 μL of 10% bovine serum albumin. The 40 nm gold conjugate 

was pelleted by centrifugation (1300x g); the supernatant was removed, and 1 mL of Conjugate 

Buffer was added to resuspend and wash the conjugate before re-centrifugation to pellet the 

product. After removing the supernatant, the product was resuspended, and the OD adjusted to 

10 using the provided Conjugate Buffer. 

 

Preparation of lateral flow dipsticks: A control line solution (150uL) was prepared using 0.2 

mg/mL of the anti-mouse IgG antibody reconstituted in a capture buffer (10 mM HEPES, pH 

7.4, 0.1% BSA, 0.5% Methanol). The test line solution (150uL) was prepared with polyclonal 

CXCL10 antibody at 0.1 mg/mL in capture buffer. Hi-FlowTM Plus 135 (Catalog 

#HF135MC100, 60mm x 301 mm) nitrocellulose membranes were purchased from EMD 

Millipore Corporation, Burlington Massachusetts. The test and control solutions were striped in 

parallel across the non-pre-treated nitrocellulose membranes using a syringe pump set to 

2.2mL/min connected Claremont Bio’s Automated Lateral Flow Reagent Dispenser set to 3V. 

The resulting membranes were allowed to fully dry at room temperature for 18 hours before 

assembly with the wicking pad (Cellulose fibre sample pad, product #CFSP223000, purchased 

from EMD Millipore; Billerica, Massachusetts, USA) and cut into 4 mm wide strips by a 

CM5000 Guillotine Cutter. Batches of approximately 150 completed LF strips were made and 

stored at room temperature for up to 6 months without loss of sensitivity (data not shown).  

 

Lateral flow sensitivity testing: Solutions for LFA sensitivity testing were prepared with 90% (by 

volume) lateral flow buffer (10mM HEPES, 150 mM NaCl, 0.1% Tween-20, 1% BSA, and 0.5% 

PEG 8000) and 10% (1 OD final concentration) monoclonal anti-human CXCL10 antibody 

40nm gold conjugate. Standards of known concentration were generated by adding recombinant 

CXCL10 to Reconstitution Buffer (1X PBS pH 7.4, 0.1% bovine serum albumin) to generate 50, 

20, 10, 5, and 2 ng/mL final concentrations along with a 0 ng/mL negative control. 

Solutions for LFA testing with artificial saliva (product #1700-0316, ASTM E2721-16 with 

Mucin, pH 7.0; Pickering Laboratories, Mountain View, California, USA) were prepared with 

45% (by volume) lateral flow buffer and 45% artificial saliva. Monoclonal anti-human CXCL10 

antibody 40nm gold conjugate was added to a final concentration of 1 OD (or 10% by volume). 
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Standards of known concentration were generated by adding recombinant CXCL10 to 

Reconstitution Buffer (1X PBS pH 7.4, 0.1% BSA) to generate 400, 50, 20, 10 and 5 ng/mL final 

concentrations along with a 0 ng/mL negative control. For sensitivity studies in ideal buffer or 

artificial saliva, five unique replicates of standards were generated with 50ul of the solutions 

added to a 96-well plate. The solution was allowed to flow completely through the dipstick for 

15 min and imaged with band intensity quantification performed using an IUL IPeak lateral flow 

strip reader (Product # 100033000; Barcelona, Spain) programmed to identify test and control 

bands. 

 

Testing of LFA with human saliva from healthy subjects: Saliva was collected from healthy 

subjects with no symptoms of upper or lower respiratory tract infections. Subjects were asked to 

wash their mouth with water and discard into a sink, followed by 5 minutes of collection of 5 ml 

of collection (whichever came first). Samples were analyzed as is without centrifugation to 

represent a real-world point of care setting. Aliquots from 7 individuals were generated to create 

neat samples and CXCL10 spiked samples (10 ng/ml). LFAs were completed by adding 50ul of 

sample to a 96 well plate followed by insertion of the dipstick for 15 minutes with qualitative 

visualization and photo capture completed. 
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2.3 Results 

 

To first investigate the potential association between CXCL10, CXCL11, and TNFSF10 with 

viral infection, pre-processed transcriptomic datasets were examined using the Harmonizome 

resource (https://maayanlab.cloud/Harmonizome/)46. 366 processed microarray datasets under 

the category "GEO Signatures of Differentially Expressed Genes for Viral Infections"52,53 were 

curated and filtered to include only datasets from experiments that used respiratory viruses and 

in-vitro human samples (Figure 2.1A). This filtering reduced the total number of GSE studies to 

17 and corresponding microarray datasets to 199. From the 17 different studies, two were from a 

single time-point and the remaining 15 of the studies were time-series data. A variety of 

respiratory tract viral pathogens were used in the datasets including influenza A, SARS-CoV 

variants, human metapneumovirus, measles, RSV and RV (See Supplementary Table 1). The 

Harmonizome database extracted 600 differentially expressed genes following viral infection for 

each of the 199 microarray datasets which included the top 300 log2 fold change genes with 

increased expression and bottom 300 log2 fold genes with decreased expression. Of the 199 

datasets, there was significantly more datasets with upregulation of CXCL10, CXCL11, and 

TNFSF10 gene transcript relative to datasets where these genes were downregulated. CXCL10 

was found to be significantly up-regulated in 39 datasets and down-regulated in 1(Figure 2.1B). 

CXCL11 was up-regulated in 33 datasets. TNFSF10 was up-regulated in 36 datasets and down-

regulated in 3. Among the three genes, CXCL10 was up regulated in the greatest number of viral 

infection datasets. The common housekeeping genes GAPDH, TUBB and ACTB were analyzed 

in all 199 datasets to provide context for the observed upregulation of CXCL10, CXCL11, and 

TNFSF10 (Figure 2.1C). The three housekeeping genes showed altered expression in fewer 

datasets than for CXCL10, CXCL11, and TNFSF10. These results provide evidence that 

CXCL10, CXCL11, and TNFSF10 are up-regulated agnostic to human cell type and pathogen 

type when filtered for human respiratory tract viral infections and provided a rationale to explore 

the candidates further with in-vivo samples of patients with clinically diagnosed respiratory viral 

infections.  
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Figure 2.1: CXCL10, CXCL11 and TNFSF10 show increased expression in-vitro after viral infection. A: Pre-

processed transcriptomic datasets using the Harmonizome (Rouillard et al46) database of processed microarray 

datasets under the category "GEO Signatures of Differentially Expressed Genes for Viral Infections" (Edgar et al52; 

Barrett et al53) was accessed for hypothesis testing elevations in CXCL10, CXCL11, and TNFSF10 following viral 

exposure in vitro from a variety of experimental conditions. Dataset contained 366 individual datasets of mRNA 

expression profiles using microarray technology. All non-human experiments and non-respiratory viruses were 

excluded which filtered down to 199 microarray datasets. The studies in which gene appeared to be at top 300 or 

bottom 300 differentially expressed were counted. Datasets included but not limited to Calu-3 cell lines, HAE 

cultures infected with respiratory viruses including but not limited to FluA, SARS-CoV and Human 

metapneumovirus. B: CXCL10 was found to be up-regulated in 39 independent viral infection datasets, and down-

regulated in one. CXCL11 was up regulated in 33 viral infection datasets. TNFSF10 was up-regulated in 36 and 

down-regulated in 3. C: Housekeeping genes GAPDH, TUBB and ACTB were analyzed in all 199 and showed 

different expression levels in fewer datasets than for CXCL10, CXCL11, and TNFSF10. GADPH was found to be 

up-regulated in 1 independent viral infection datasets, and down-regulated in 6. TUBB was down in 3 viral infection 

datasets. ACTB was up-regulated in 5 and down-regulated in 9.  
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To interrogate the expression of CXCL10, CXCL11, and TNFSF10 in clinical samples, we 

analyzed a combination of publicly available and in-house datasets from upper airway samples 

taken during studies of respiratory tract infections that included RSV, RV, influenza A and 

SARS-CoV-2 with corresponding non-infected negative controls (Figure 2.2A). CXCL10 and 

CXCL11 were up-regulated with RSV infection relative to non-infected controls (Figure 2.2B – 

orange bars, p < 0.05) and to samples from RV infected subjects (p < 0.05). CXCL10, CXCL11 

and TNFSF10 were not different between NPS samples collected from RV infected subjects 

relative to non-infected controls (Figure 2.2B – blue bars, p > 0.05). No significant difference 

was found between NPS samples from influenza A infected individuals relative to non-infected 

controls for CXCL10, CXCL11 and TNFSF10 (Figure 2.2C, p > 0.05). With the COVID-19 

pandemic, a variety of studies from SARS-CoV-2 infected subjects and non-infected controls 

have become publicly available. Probing a dataset by Lieberman et al35, we observed increases in 

CXCL10, CXCL11 and TNFSF10 in upper airway samples from SARS-CoV-2 infected subjects 

compared to non-infected negative controls (Figure 2.2D, p < 0.001). Similarly, analyzing data 

from Mick et al48, we observed increases in CXCL10, CXCL11 and TNFSF10 in samples from 

SARS-CoV-2 infected subjects compared to non-infected negative controls (Figure 2.2E, p < 

0.001). Collectively, these data from multiple respiratory tract viral infections suggest that 

CXCL10, CXCL11 and TNFSF10 positively correlate with infection status, with a robust and 

validated increase observed during SARS-CoV-2 infection.  
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Figure 2.2. CXCL10, CXCL11 and TNFSF10 gene expression in nasopharyngeal swab and nasal mid-turbinate samples of positive vs negative 

collected from subjects with different viral respiratory tract infections including SARS-Cov-2, FluA, Respiratory Syncytial Virus (RSV), 

Rhinovirus (RV). B: From Yu et al47 GSE117827:  CXCL10, CXCL11 and TNFSF10 gene expression compared from the mid-turbinate nasal swab of 

pediatric subjects with RSV, RV and negative controls. Clustered heatmap of log2 expression levels annotated by symptomatic, sex and infection with blue 
representing decreased expression and red increased expression. On the right, boxplot of RMA normalized expression (log2) (n=24). No significant 

difference when comparing RV infected NPS to healthy control gene expression for CXCL10, CXCL11 and TNFSF10 (p > 

0.05). CXCL10 and CXCL11 up-regulation was positively correlated with RSV when compared to control (p=0.016, p=0.006). Comparing Respiratory 

Syncytial Virus (RSV) to Rhinovirus (RV) infected NPS, CXCL10 and CXCL11 were significantly up-regulated in the RSV group (p=0.02, 
p=0.02). C: Hamilton Regional Laboratory Medicine Program (HRLMP) microarray data: CXCL10, CXCL11 and TNFSF10 gene expression was 

compared from NPS of subjects with influenza A (FluA) and negative controls. Clustered heatmap of log2 expression levels annotated by sex and infection 
status with blue representing decreased expression and red increased expression. On the right, boxplot of RMA normalized expression (log2) (n=22). No 

significant difference between CXCL10, CXCL11 and TNFSF10 expression in FluA infection compared to negative control (p> 0.05). D: From Lieberman 
et al35 GSE152075:  CXCL10, CXCL11 and TNFSF10 gene expression was compared from the NPS of individuals with suspected SARS-CoV-2 infection. 

Clustered heatmap of log2 expression levels annotated by sex and infection status with blue representing decreased expression and red increased 
expression. On the right, boxplot of RMA normalized expression (log2) (n=484). CXCL10, CXCL11 and TNFSF10 expression significantly up-regulated 

SARS-CoV-2 infection compared to those who tested negative (p<0.001). E: From Mick et al48-GSE156063: CXCL10, CXCL11 and TNFSF10 gene 
expression was compared from the NPS of subjects SARS-CoV-2 positive, SARS-CoV-2 negative but positive for another respiratory virus and no 

respiratory virus detected by metagenomic next generation sequencing (i.e. non-viral ARI such as bacterial infection). Clustered heatmap of log2 
expression levels annotated by sex and infection status with blue representing decreased expression and red increased expression. On the right, boxplot of 

RMA normalized expression (log2) (n=234). CXCL10, CXCL11 and TNFSF10 expression was significantly up-regulated SARS-Cov-2 infection compared 
to healthy control (p<0.001). * = p < 0.05, ** p< 0.01 and *** = p < 0.001.  
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The observation that elevations in CXCL10, CXCL11 and TNFSF10 transcripts from upper 

airway swab samples strongly associated with COVID-19 infection, prompted further 

exploration with additional SARS-CoV-2 study samples with data features of viral load and 

mortality (Figure 2.3A). Using a dataset from 735 subjects (519 PCR confirmed SARS-CoV-2 

negative and 216 PCR confirmed SARS-CoV-2 positive) that included metadata on Ct cycle for 

indication of viral load, we observed that CXCL10, CXCL11 and TNFSF10 gene expression 

showed trends for increasing with greater SARS-CoV-2 viral load quantified by PCR Ct value 

(Figure 2.3B). Pooling all SARS-CoV-2 positive samples together and comparing to SARS-

CoV-2 negative samples, CXCL10 showed an upregulation of log2 fold change of 3.4 (q value = 

7.38E-31), CXCL11 showed an upregulation of 2.9 (q value = 4.43E-22) and TNFSF10 showed 

an upregulation of 1.0 (q value = 9.39E-23). Conversion of RT-PCR cycle threshold (Ct) values 

into a continuous variable showed highly significant correlations for the three candidate 

biomarkers (CXCL10 - q value = 1.23E-54, CXCL11 - q value =5.17 E-47, and TNFSF10 - q 

value = 4.26E-38). Individuals who tested positive for other respiratory viral infections, under 

subclass “Other viral infection” appeared to also correlate with higher expression of CXCL10, 

CXCL11 and TNFSF10 (Figure 2.3B – pink bar for metadata on virus subclass), although no 

metadata on the other infection status was available.  

 

As viral load may not be an accurate indicator of infection severity in COVID-19 54,55, we 

quantified CXCL10, CXCL11 and TNFSF10 transcript levels in fatal COVID-19 inpatients via 

microarray gene chip. Using a dataset of 25 subjects (19 PCR confirmed SARS-CoV-2 positive 

survivors and 6 PCR confirmed SARS-CoV-2 positive deaths) the mean RMA gene expression 

value for fatal vs non-fatal COVID cases was 4.3 (SD 1.8) vs 3.5 (SD 1.11) for CXCL10, 3.7 (SD 

0.4) vs 3.3 (SD 0.4) for CXCL11 and 6.0 (SD 1.5) vs 6.3 (SD 0.8) for TNFSF10. In this limited 

sample size, mean values were higher in COVID-19 fatal cases for CXCL10 and CXCL11 but 

were not significantly different (Figure 2.3C, p > 0.05). No trends were observed for TNFSF10.  
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Figure 2.3: The CXCL10/CXCL11/TNFSF10 gene signature in nasopharyngeal swab samples is positively 

correlated with SARS-CoV-2 Viral Load. A: SARS-CoV-2 viral sequencing reads and qPCR cycle thresholds 

correlate with the CXCL10/CXCL11/TNFSF10 gene signature. (N=735). The “Viral Level Continuous” comparison 

group converted qRT-PCR cycle threshold (Ct) values into a continuous variable by inverting CT values where Ct = 

15 is equal to 1.0 and a Ct > 40 is 0, CXCL10 showed an upregulation of log2 fold change of 6.2 (q value = 1.23E-

54), CXCL11 showed an upregulation of log2 fold change of 6.0 (q value =5.17 E-47) and TNFSF10 showed an 

upregulation of log2 fold change of 1.9 (q value = 4.26E-38).  Data and Figure from Butler et al. 2021 - For research 

purposes only. All rights reserved. © Mason Lab and Weill Cornell Medicine, 2020, Cem Meydan @ Mason Lab). 

B: Mortality of COVID-19 patients is associated with an elevated CXCL10/CXCL11/TNFSF10 gene signature at 

the time of original patient sampling. No significant correlation was found (p > 0.05). 
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A limitation of leveraging swab samples at the time of diagnosis and examining host responses is 

that all samples are not collected at the same time during the course of infection. As host 

responses and antiviral responses will vary throughout an infection, we set out to quantify 

CXCL10, CXCL11, and TNFSF10 gene expression and variance over the course of SARS-CoV-2 

infection by serial NPS sampling over the period of hospitalization. Using an inpatient cohort of 

6 subjects (5 females, 1 male – 72.8 years mean age +/-13.3 years), serial samples were collected 

when study subjects felt well enough to provide a sample (Figure 2.4A). CXCL10, CXCL11 and 

TNFSF10 transcripts were quantified in all samples provided until the patient was discharged 

from the inpatient unit (range from 12 to 26 days). Variance for CXCL10 was 0.213, CXCL11 

was 0.172, and TNFSF10 was 1.679 (Figure 2.4B-C). The variance for each gene was calculated 

per patient and averaged for each gene, with statistically lower variance observed for CXCL10 

and CXCL11, with both of these genes having lower variance than TNFSF10 (p < 0.05). The data 

from the studies analyzed thus far suggest that CXCL10 and CXCL11 are elevated with SARS-

CoV-2 infection, track with viral copy number, and are stable throughout the progression of 

COVID-19 infection. These data suggest that CXCL10 and CXCL11 may be relevant 

biomarkers that could be useful for tracking respiratory tract viral infections.  
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Figure 2.4: CXCL10/CXCL11/TNFSF10 gene signature expression over the course of COVID-19 infection as 

measured by serial nasopharyngeal swab sampling over period of hospitalization and subsequent daily sampling.  A: 

CXCL10. B: CXCL11. C: TNFSF10. n = 6 independent patients.  COV005 = 5 measurements, COV006 =  3 

measurements, COV007 =  5 measurements, COV010 =  6 measurements, COV011 =  10 measurements, COV013 

=  11 measurements. Data is expressed as % change from first inpatient sampling (set as time=0). To determine 

which gene fluctuated the least of the course sampling, the variance of RMA values for CXCL10/CXCL11/TNFSF10 

were calculated for each patient and averaged. CXCL11 mean variance = 0.172, CXCL10 variance = 0.213 and 

TNFSF10 variance = 1.679).  
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The data presented identify that CXCL10 gene demonstrates the greatest magnitude of change 

during SARS-COV-2 infection in upper airway samples collected via NPS. NPS are not 

routinely self-administered and present a problematic sampling site for at-home or healthcare 

resource deficient settings56. NPS collected during viral screening are frequently stored in 

transport medias that are optimized for nucleic acid stabilization and isolation relative to protein 

stability.57 Oral sampling has emerged during the COVID-19 pandemic as a useful surrogate for 

the upper respiratory tract that can be performed by non-healthcare professionals at point of 

care/need that is amenable to both nucleic acid or protein detection strategies.58 We therefore 

explored the utility of detecting CXCL10 protein in oral sampling using saliva collections as a 

sample format. To be a useful biomarker for monitoring respiratory tract infections, CXCL10 

protein should not be detectable in healthy subject samples. Using a mass spectrometry-based 

proteomics dataset from 8 subjects (4 males and 4 females) that were sampled immediately when 

waking and again after first meal, we probed the healthy saliva proteome for CXCL10 (Figure 

2.5A). In a list of 5551 proteins identified by label free quantification (Figure 2.5B and 

Supplement Data) CXCL10 protein was not found at any ranking. A table of the 15 most 

abundant identified proteins lists amylase as the top hit, confirming our analysis pipeline (Figure 

2.5C). We next quantified the expression of CXCL10 protein in the saliva from a cohort of PCR-

confirmed COVID-19 inpatients and healthy un-infected controls. The mean concentration of 

CXCL10 was 86.4 pg/ml (sd = 109.6) in healthy saliva and 1186.6 pg/ml (sd= 1252.3) in 

COVID-19 inpatients (Figure 2.5D, p < 0.05).  
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Figure 2.5: CXCL10 protein is not present in healthy saliva samples and elevated during infection in saliva from 

COVID-19 patients. A: From Grassl et al49 ultra deep analysis of the healthy saliva proteome, the CXCL10 protein 

was not found amongst the list of 5562 proteins (Supplementary data). B: CXCL10 Levels in Saliva of SARS-CoV-

2 in Hospitalized COVID-19 patients quantified in using Human Cytokine Array / Chemokine Array 71-plex (Eve 

Technologies, Calgary, Alberta, Canada). Healthy volunteers were used as the control group. Mean concentration of 

CXCL10 was 86.43 pg/ml (sd = 109.6, n=6) in healthy saliva, and mean of 1186.65 pg/ml sd= 1252.34 in Covid-19 

patients. COVID-19 group showed a significantly greater CXCL10 concentration (p < 0.05).  CXCL10 Protein 

Structures generated using https://www.uniprot.org/. 

 

https://www.uniprot.org/
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The low levels of CXCL10 protein in saliva of healthy subjects but elevated levels in COVID-19 

subjects is amenable to conventional LFA development that detects the upregulation of a 

mediator of interest. LFAs have become widely accepted tools for self-testing during COVID-19 

and represent a technology platform useful for at-home and healthcare deficient settings. 

Therefore, we next pursued the development of an open-source CXCL10 LFA using 

commercially available reagents (Figure 2.6A). A recombinant anti-human CXCL10 mouse 

IgG-monoclonal and anti-mouse IgG goat-polyclonal were selected as an antibody pair for 

CXCL10 detection. Assay development was validated in ideal buffer demonstrating a sensitivity 

of 2ng/ml (Figure 2.6B-C). Assay testing in commercially available artificial saliva reproduced 

the sensitivity of 2ng/ml (Figure 2.6D-E). Lastly, the assay detected 10ng/ml CXCL10 protein 

spiked into real human saliva from healthy controls that was not detected in control /non-spiked 

samples from the same donors (Figure 2.6F). These results demonstrate the sensitivity of an 

open-source CXCL10 LFA prototype for self-administered point of care saliva testing with 

potential applications in respiratory tract viral infection monitoring.  
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Figure 2.6: CXCL10 protein detection is feasible in fresh human saliva 

A: Overview of development and testing 

B-C: Sensitivity development and validation in ideal buffer (see methods). Limit of detection of CXCL10 using a 

hand-help reader. A positive signal is generated at 2ng/mL with n=5. 

D-E: Sensitivity test in artificial saliva (see methods) 

F: Real world testing in human saliva from healthy control without (neat) and with (spiked) CXCL10 addition.  

CXCL10 Protein Structures generated using https://www.uniprot.org/. 

 

 

https://www.uniprot.org/
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2.4 Discussion 

 

ISGs play a key role in defence against viral infections and measuring their expression levels 

during respiratory infections may provide diagnostic and prognostic information beyond 

measurement of a pathogen alone. In the present paper, we characterize three ISGs of interest 

that result in secreted protein products amenable to extracellular detection strategies: CXCL10, 

CXCL11 and TNFSF10. We quantify CXCL10, CXCL11 and TNFSF10 expression levels in the 

context of multiple respiratory tract viral pathogens including RSV, RV, influenza A and SARS-

CoV-2. Gene expression levels from upper airway samples suggested that CXCL10 elevations 

were consistent across multiple viruses, had qualitative positive trends with measures of severity 

of infection (e.g., viral load), and had the lowest variance over course of COVID-19 infection of 

the three candidates examined. To transition from upper airway samples collected by a 

healthcare professional to a self-collected sample format, we next explored CXCL10 levels in 

oral samples. Deep proteomic profiling of healthy human saliva suggested low to absent levels of 

CXCL10 protein in healthy subjects. In contrast, saliva from SARS-CoV-2 infected individuals 

resulted in elevations in CXCL10. Leveraging the relative binary behaviour of CXCL10 in 

healthy vs SARS-CoV-2 infected sample groups, we developed a prototype LFA for CXCL10 

protein with a sensitivity of 2ng/ml in human saliva. Collectively, our work adds to the growing 

importance of examining host biomarkers during respiratory tract infections for diagnostic and 

prognostic value and demonstrates the feasibility of using self-administered qualitative LFA 

detection methods.   

 

Our study used a combination of publicly available datasets and de novo generated datasets. 

Consequently, the results are heavily dependent on the annotation of the data provided for each 

study. Differences in study design and the definition of control groups may contribute to 

potential biases and limitations in the data. Commercially available or bespoke PCR-based 

respiratory panels were used in several of the studies to annotate positive and negative subjects 

in individuals suspected of respiratory tract viral infection. PCR-based detection strategies can 

diagnose several viruses simultaneously while having greater challenges for diagnosing bacterial 

respiratory infections.59 The challenges with bacterial diagnostic decisions in the respiratory tract 

are rooted into the commensal nature of bacteria in the nasopharynx such as Streptococcus 

pneumoniae60 and Haemophilus influenzae.61 For example, up to 10% of adults are carriers of 

Streptococcus pneumoniae,60 creating a challenge to determine whether this organism is causing 

pathology or a part of the individual’s microbiome. The potential for viral and bacterial co-

infections or presence of complex commensal communities can create limitations in analyzing 

data where only viral infection status is provided. Any underlying virus or bacterial respiratory 

tract infection would impact host gene expression patterns that may include CXCL10, CXCL11, 

and TNFSF10. Furthermore, studies focused only on a single virus may not report the outcomes 

for other viruses detected in a multi-plex PCR assay. The publicly available COVID-19 negative 

labelled samples were generated during routine public SARS-CoV-2 testing campaigns. As a 

result, although an individual may be labelled as SARS-CoV-2 negative, they may have had an 

underlying viral or bacterial infection not quantified and recorded. Although the incidence of 

influenza A was low during COVID-19,62,63 there remained the possibility that other respiratory 

tract viral or bacterial infections were present in individuals that tested negative for SARS-CoV-

2.40 In Lieberman et al35, patients suspected of SARS-CoV-2 infection were confirmed by RT-
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PCR result while those testing negative became the controls although no confirmations for other 

viral or bacterial respiratory tract infections were performed. Mick et al48 took a distinct 

approach by using metagenomic RNA-sequencing and separating their cohort into three groups – 

1) SARS-CoV-2 positive - no other viral RTI 2) SARS-CoV-2 negative - positive for another virus 

and 3) SARS-CoV-2 negative - no other RTI viruses detected. Metagenomic RNA-sequencing 

can simultaneously identify host genes and microbial RNA and can allow for an unbiased 

approach to labelling control groups and create further transparency when sharing data 

publicly.64 Metagenomic molecular diagnostic strategies have been optimized for upper airway 

samples and are likely to be useful strategies moving forward with host-pathogen diagnostic 

approaches and be informative for future pandemics.65 

 

A variety of publicly available datasets and databases exist and are increasing in accessibility. 

Notable examples of databases include the NCBI resources Gene Expression Omnibus, the 

Broad Institute’s Connectivity Map, and the Cancer Genome Atlas. The diversity of these 

databases has been consolidated in meta-databases to attempt to harmonize publicly available 

resources. Harmonizome is a publicly accessible meta-database of 112 datasets from 65 

resources (https://maayanlab.cloud/Harmonizome/about). We leveraged the consolidation 

performed by Harmonizome to determine the expression of CXCL10, CXCL11, and TNFSF10 

across transcriptomic datasets defined by “GEO Signatures of Differentially Expressed Genes for 

Viral Infections”. Annotation of the datasets under this search term revealed some non-human 

datasets and datasets derived from non-respiratory tract viral infections, which were 

subsequently removed to maintain focus on host-biomarkers to respiratory tract infections. A 

limitation of the datasets curated by Harmonizome is that they are pre-clinical studies that 

include multiple different viruses from multiple different cell-lines in addition to different time-

points post-infection. Despite the potential for extensive variation in experimental conditions 

between datasets, a significant signal for an increase in CXCL10, CXCL11, and TNFSF10 was 

observed across the meta-database, without observing the same for three common housekeeping 

genes, ACTB, GADPH and TUBB. Although Harmonizome contains multiple datasets and 

databases, an absence of well-annotated samples from respiratory tract viral infections in humans 

required additional dataset generation and curation to extend and validate observations of 

CXCL10, CXCL11, and TNFSF10 elevations. 

 

NPS and mid-turbinate swabs are clinical standard sampling strategies for analysis of respiratory 

tract viral infections and are amenable to PCR and transcriptomic based readouts.56,65,66 

Historically, the small sample amounts collected from upper airway swabs have limited the 

ability to perform transcriptomic analysis which resulted in a focus on multi-plex PCR 

technologies.67 The development of microarray technologies for small amounts of input material 

and the reduction in sequencing costs that affords greater sequencing depth have increased 

accessibility to transcriptomics. Prior to COVID-19 pandemic, relatively few studies of 

respiratory tract viral infections capitalized on technological advances for transcriptomics on 

upper airway samples. A seminal study demonstrating the ability to perform unbiased 

transcriptomics on upper airway samples was performed on a pediatric cohort of individuals with 

suspected and subsequent confirmation of respiratory tract infection via PCR.47 We explored this 

publicly available host transcriptomic dataset from a cohort of 24 subjects. Independent of data 

that defines the time of initial infection, CXCL10 and CXCL11 up-regulation was positively 

correlated with RSV infection when compared to control. In contrast to RSV, no significant 

https://maayanlab.cloud/Harmonizome/about
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differences were observed for CXCL10, CXCL11 and TNFSF10 when comparing upper airway 

swabs from RV infected individuals to controls. The small sample size of this study precludes 

drawing conclusions about the absence of signal for our candidate host biomarkers with RV 

infection. Related to sample sizes of publicly available host-transcriptomic datasets from upper 

airway samples, the COVID-19 pandemic catalyzed the mass adoption of molecular sequencing 

technologies and has subsequently demonstrated the feasibility and utility of taking this 

approach, laying the foundations for a future state of deep host-pathogen diagnostics.35,40,48,65 A 

limitation of leveraging clinical samples taken during diagnostic processes for research purposes 

is that there is lack of control over the time of initial infection, which could impact host gene 

expression signatures, particularly of ISGs which are time-sensitive.23 This limitation may be 

overcome in the future with specific research study designs that could include prospectively 

following cohorts in a surveillance design to capture natural infections 67 or controlled human 

studies with viral challenges 68 with informed sample size calculations made based on the 

emerging publicly available datasets. 

 

The presence of an elevated host biomarker during a confirmed respiratory tract viral infection 

may provide utility in determining stratifying those individuals at risk of morbidity and 

mortality, which could help inform treatment options at the time of first diagnosis.25,26 To 

explore the possibility that either CXCL10, CXCL11 and TNFSF10 could function as a 

prognostic biomarker for disease severity, we explored expression levels in the context of SARS-

CoV-2 viral copy number and COVID-19 mortality as datasets from other respiratory tract viral 

infections and viral copy are not publicly available. CXCL10 and CXCL11 have been shown to 

significantly increase in expression in NPS samples from SARS-CoV-2 patients compared with 

control69. Using a large publicly available host transcriptomic dataset with PCR confirmed 

SARS-CoV-2 positive cases and reported Ct values, CXCL10, CXCL11 and TNFSF10 are 

quantitatively observed to correlate with viral copy number 

(https://covidgenes.weill.cornell.edu/). The correlation between SARS-CoV-2 viral load in nasal 

samples tracking with severe disease has been supported in most but not all cases. In a 

prospective study, lower Ct values (higher viral load) correlated with severe disease in 

hospitalized patients. Although, there was no significant correlation between lower Ct values 

(higher viral load) for the risk of being hospitalized for SARS-COV-2 when adjusted for the time 

of symptoms onset.54 A longitudinal study found increased SARS-CoV-2 viral load correlated 

with a higher risk of death, and increased inflammatory markers CRP and IL-6.55 Conversion of 

viral copy Ct value to a continuous variable (>40 = 0, <15 = 1) resulted in a statistically 

significant correlation between CXCL10, CXCL11 and TNFSF10 and amount of virus present. 

Despite the reports that SARS-CoV-2 viral copy number may relate to severity of COVID-19 

disease, differences in the measure of severity and the populations chosen in independent studies 

have contributed to ambiguous conclusions. In addition to viral copy number, host responses 

have been measured throughout the COVID-19 pandemic and have been demonstrated to have 

predictive value for determining severity. Indeed, host responses to SARS-CoV-2 infection 

including serum IL-6 and C-Reactive Protein have been evaluated and demonstrated prognostic 

value in triaging COVID-19 patients.70,71 In parallel to analyses relating viral copy number to 

host responses, we investigated death as an unambiguous measure of severity. In a cohort of 25 

intensive care unit admitted subjects, each with PCR-confirmed SARS-CoV-2 infection, the 

upper airway swab sample taken at time of diagnosis showed no significant differences in 

magnitude of CXCL10, CXCL11 and TNFSF10 gene transcript between fatal and non-fatal 
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COVID-19 cases. Previous research in blood samples of COVID-19 patients looked at 53 

potential biomarkers and found CXCL10 as the best predictor of death.37 They also observed that 

CXCL10 levels were increased in patients with ICU care compared to without ICU and CXCL10 

levels decreased in COVID-19 survivors who were discharged from the hospital.37 This study 

used a different sample type, blood, in addition, to determine CXCL10 levels, they used Bio-Plex 

Pro™ Human Cytokine 27-plex, which determined CXCL10 protein concentrations. In addition 

to Lorè et al37, several other studies using blood samples found CXCL10 was associated with 

COVID-19 disease severity.72,73 These data suggest that focusing on blood as the sample type 

may provide a greater differentiating signature than upper airway gene transcripts. To date, point 

of care blood sampling for host biomarkers has received little traction in the infectious disease 

space. In contrast, self-administered LFAs for detection of protein in oral and upper airway 

samples provide a strategy for implementing point of care monitoring of host biomarkers 

relevant in respiratory tract infections.   

 

The significant limitation of being blind to the time-point of initial infection is intrinsic to cross-

sectional studies performed on individuals during initial diagnosis. To overcome this limitation, 

time-series studies may be performed to capture natural infections in the community, or the time 

course of infection can be monitored once an individual is admitted to the healthcare system, 

with admission becoming a baseline for the given study subject.67 We took this secondary 

approach of defining baseline as the time of hospital admission and analyzed the variance in 

CXCL10, CXCL11 and TNFSF10 over the course of hospitalization. Analysis of variance for 

each biomarker in study subjects repeatedly sampled during their hospitalization was completed 

with each individual’s expression levels at admission functioning as their baseline. We 

quantified variance for each gene over time to identify which candidate may function as a more 

robust measure of host response to SARS-CoV-2 infection that is independent of the time of first 

sampling and diagnosis. The observation that CXCL10 and CXCL11 had lower variance over 

TNFSF10 supported excluding the latter as a robust biomarker stable throughout the course of an 

infection. The stability of CXCL10 and CXCL11 that we observed in upper airway samples has 

been observed in serial blood and serum samples from COVID-19 patients.72,73 Previous in-vitro 

studies found CXCL10 and CXCL11 expression in SARS-CoV-2 infected Calu-3 human lung 

cells peaked at 72 hours post infection.39 CXCL10 showed greater log fold change and remained 

significantly elevated from 12-72 hours post-infection and CXCL11 elevated 18-72 hours post-

infection.39 Collectively, these data support the utility of CXCL10 protein as a prognostic 

biomarker for COVID-19 and provided a rationale for our focus on this mediator for downstream 

LFA development for self-administered testing.   

 

Self-administered saliva testing for respiratory tract viral infections has become a reality through 

the COVID-19 pandemic.58 The qualitative nature of LFA has been challenged in the popular 

and academic circles 74(p20) with the net result being the widespread adoption of the technology 

on a global scale to provide a degree of diagnostic capacity previously not available to the 

general public. The possibility that other saliva-based tests relevant in infectious disease may 

emerge has therefore increased and may include host biomarkers of clinical importance.75 The 

qualitative nature of LFAs requires a clear binary response of presence and absence for the test to 

be practical. Our a priori decision to characterize CXCL10, CXCL11, and TNFSF10 were based 

on the assumption of their extracellular secretion with infection and low levels during times of 

no infection. Using a deep proteomic profiling of healthy human saliva from males and females 
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with repeated measures, CXCL10 was not identified in a list of 5551 proteins detected with 95% 

of the proteins identified in at least 3 samples and nearly 80% across all 8 samples. In contrast to 

deep proteomic profiling, we used a multiplex cytokine array from Eve Technologies and were 

able to detect CXCL10 with a mean concentration of 86.43 pg/ml (sd = 109.6, n = 6) in saliva 

from healthy subjects. Although these data may appear in conflict, an alternative explanation is 

that even deep proteomic profiling may not achieve the sensitivity of commercially available 

established multiplex cytokine arrays. Importantly, an elevation in CXCL10 protein was 

observed when analyzing saliva samples from COVID-19 infected subjects. The observed 

elevation of saliva CXCL10 protein provides a rationale to explore LFA technology for point of 

care detection and provides guidance on the sensitivity requirements for distinguishing samples 

from negative non-infected individuals and positive SARS-CoV-2 infected individuals. 

Leveraging commercially available reagents for LFA development including detection and 

capture antibodies, nitrocellulose membranes, and absorbent wicking material, we developed a 

prototype CXCL10 protein detection assay with a sensitivity of 2 ng/ml in artificial and healthy 

saliva. To our knowledge, this was the first CXCL10 LFA designed for human saliva samples. A 

previous study developed an CXCL10 LFA for amniotic fluid as a marker of intra-amniotic 

inflammation with sensitivity of 100 pg/ml (0.1 ng/ml).76 This study was able to achieve greater 

sensitivity, suggesting that the prototype presented could be optimized for detection of CXCL10 

levels relevant during respiratory tract infections but not during periods of health. Importantly, if 

the sensitivity of a CXCL10 LFA were to be reduced to a level that can detect protein in healthy 

subjects, the utility of the test would be reduced as it would not help differentiate elevated levels 

of CXCL10 that may predict COVID-19 severity. Consistent with this requirement, CXCL10 

protein levels peaked at around 60 ng/ml on day 2 of RV infection in adult nasal lavages samples 

which is within the range of our prototype CXCL10 LFA.33 It was also observed the 

concentration of CXCL10 measured with ELISA on the day of intubation from infants with RSV 

to be around 33 ng/ml from bronchoalveolar lavage samples 31 which is also within the range of 

our CXCL10 LFA.  

 

Our characterization of CXCL10 gene expression in several datasets and development of a 

prototype CXCL10 responsive LFA amenable to saliva sampling represent first steps in a 

process towards biomarker validation and demonstration of clinical utility. Future utility could 

include examining the ability of CXCL10 protein levels in saliva to aid in discrimination of viral 

vs. bacterial respiratory tract infections, which would aid in rapid decision making for antibiotic 

administration as part of antibiotic stewardship practices. Future studies from clinically 

phenotyped subjects with respiratory tract bacterial infections in the absence of viral infections 

or bacterial/viral co-infections are required for this important research question to be answered. 

Perhaps closer to the clinic due could be the for the prognosis of COVID-19 during SARS-CoV-

2 infection. Previous research has found CXCL10 to play key role in predicting ICU admission 

using blood samples.37,72,73 To validate CXCL10 in saliva as a biomarker of SARS-CoV-2 

severity, further longitudinal research into time series data would be required. This would need 

to prove that CXCL10 levels are increased in a time frame where appropriate intervention is 

possible. It would not be useful to measure CXCL10 to predict severity if there are other more 

obvious clinical symptoms already present.  
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To conclude, we present data that characterizes CXCL10, CXCL11 and TNFSF10 gene 

expression in upper airway samples from individuals with respiratory tract viral infections. We 

provide a justification that CXCL10 protein product is amenable to LFA testing in a point of care 

setting. Further clinical validation of CXCL10 gene and protein as a biomarker of respiratory 

tract viral infections is required and should be complemented with study cohorts that include 

bacterial infections in the absence of viral infections. The utility of measuring CXCL10 at the 

point of care for diagnostic and prognostic purposes will grow as the appreciation that both host 

and pathogen molecular markers are important for optimal clinical care and healthcare system 

utilization. 
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Chapter 3: Discussion and Future Directions: 
 

3.1 Thesis Manuscript Limitations and Strengths 

 

Historically, respiratory tract infections were common causes of socioeconomic stagnation. 

Pathogens such as the Spanish Flu, pneumonia, and tuberculosis had devastating and prolonged 

effects on populations throughout the world.1,2 These infections, and many others like them, were 

responsible for the deaths of millions of people, recessions, and a depreciated standard of living. 

While significant improvements in modern medicine and the discovery of penicillin and other 

antibiotics have relieved the effects of these diseases, the recent impact of the COVID-19 

pandemic has exposed major shortcomings in our collective understanding and ability to treat 

viral respiratory infections. Even prior to the pandemic, respiratory tract infections were reported 

as the dominant clinician-reported reasons for visiting primary care globally.3 The human body is 

equipped with defence mechanisms to prevent respiratory tract viral infections structurally 

through the epithelium barrier and molecularly through an antiviral defence system, including 

the induction of ISGs. ISGs are a crucial part of the viral defence system. Biomarkers of 

respiratory tract infections have historically focused on the etiological cause of infection, 

although much of the morbidity and mortality is driven by the host-pathological response. Thus, 

ISGs in mucosal sites were explored for their role in viral defence and potential application as a 

host-biomarker of viral infection. 

 

Our aim was to determine host biomarkers indicative of viral respiratory tract infections 

amenable to LFA testing. Data mining was performed on in-house, and publicly available 

datasets from RSV, RV, influenza A and SARS-CoV-2 infected patient nasopharyngeal swab 

samples and compared to negative controls. Using a qualitative selection criteria that included 

elevated presence in at least one dataset with viral infection, a protein product that is secreted, 

and that had antibodies commercially available for detection, CXCL10, CXCL11 and TNFSF10 

gene expression levels were assessed, and a correlation analysis was performed with infection 

severity and time course. CXCL10 and CXCL11 upregulation was positively correlated with RSV 

compared to control (p = 0.016, p = 0.006). No significant association was found with influenza 

A or RV for all three genes. CXCL10/CXCL11/TNFSF10 upregulation was positively correlated 

with SARS-CoV-2 infection compared to control (p < 0.001). CXCL10 expression correlated 

with COVID-19 severity.  CXCL10 was chosen as a lead biomarker candidate based on these 

multiple analyses that included different virus infections, time-courses, and measures of severity.  

CXCL10 was subsequently validated at the protein level in saliva as a prerequisite for 

developing a host-response LFA amenable to non-invasive, self-collection of samples by a non-

expert. CXCL10 was not detected at the protein level in healthy saliva but was elevated in saliva 

from COVID-19 patients. A CXCL10 LFA was developed with a sensitivity of 2 ng/ml in a 

buffer and artificial saliva. 

 

Interdisciplinary research is required to progress from patient engagement, clinical sample 

collection, pathogen diagnosis, transcriptomics, biomarker identification, and point-of-care 

diagnostic development. For the research in this thesis to be completed, engagement from 

consented patients, clinicians, clinical research coordinators, biomedical researchers, 

bioinformaticians, software developers, and industry partners was required. The interdisciplinary 

nature enables a breadth of study that cannot be achieved in isolation. However, this must be 
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balanced by the challenges of ensuring adequate depth in each discipline. The collaborative and 

integrative nature of the participants involved in this research included individuals from two 

hospitals, Sunnybrook Health Sciences Centre and at St. Joseph’s Healthcare, two university 

labs, Hirota Lab at McMaster University and Doxey Lab at University of Waterloo, and a 

biotechnology company, Cytodiagnostics, for the co-development of saliva CXCL10 LFA. 

Beyond our direct resources for the project, indirect resources were procured from public 

databases and included large open-science datasets from the COVID-19 pandemic that enabled 

sample sizes (N =718 SARS-CoV-2 RNA-seq NPS) that would not have been achievable in 

isolation. Lastly, to provide the market-level assessment of any R&D activities in the lab, 

primary and secondary market research was performed via the Ryerson-Mitacs Lab2Market 

program to inform the end-to-end approach and context of clinical utility during early biomarker 

discovery research. Factors such as clinical utility, economics and the advantage of point-of-care 

testing platforms were explored. The arrangement and management of this constellation of 

resources posed both a challenge and an opportunity for the presented thesis, with the ultimate 

outcome demonstrating the ability for graduate studies to increase in both breadth (e.g., market 

analysis to prototype diagnostic) and depth (e.g., large sample size of well-phenotyped clinical 

samples) if non-traditional sources of data and partnerships are pursued.  

 

Several limitations of our research must be mentioned for areas of future improvement and/or 

critical interpretation of the presented data. The first is the small sample sizes used for measuring 

gene expression from NPS in datasets that were curated from in-house and public resources.  

Specifically for the RSV, RV (n = 6 Control, n = 6 RSV, n = 12 RV) and FluA infected 

individuals (n = 8 FluA positive, n = 14 negative control), the sample sizes were small and may 

have influenced the ability to detect a signal in candidate ISG biomarkers. RNA is dynamic and 

prone to laboratory batch effects and can be compounded by intrinsic donor-to-donor variability 

in responses to respiratory tract infections 4; therefore, a sample size of 6 may be unlikely to 

yield reproducible results.5 A directly generated dataset (Sunnybrook Health Sciences Centre) 

assessing COVID-19 mortality was also a small sample size (n = 6 fatal, n = 19 not fatal) that 

limited the ability to confirm or refute a relationship with CXCL10, CXCL11 and TNFSF10 gene 

expression levels. To address this limitation, we took the indirect approach and curated a 

publicly available dataset6 to analyze the relationship between viral load (Ct. threshold) and 

mortality with a much larger sample size of N = 735. Moving forward, a balance between using 

directly generating in-house data from well-phenotyped patients and publicly available datasets 

is likely to gain traction as the approach provides economic and time-efficiencies for 

independent confirmation of in-house data or testing of hypotheses. Integral to this occurring will 

be the quality of annotation of publicly available data and ease of access. 

 

Small sample sizes were not limited to gene expression studies and were also a limitation for the 

CXCL10 analysis in the saliva of SARS-CoV-2 hospitalized COVID-19 patients. While the 

COVID-19 group showed a significantly greater CXCL10 concentration (p < 0.05), the data was 

asymmetrical. Two data points from the SARS-CoV-2 group in the figure appear to be far larger 

compared to the other four (see Figure 2.5B from thesis manuscript). Future studies should 

increase the sample size to determine if there are different clusters of COVID-19 patients in the 

context of CXLC10 levels and whether these clusters correlate with clinical outcomes. 

Unfortunately, the samples were collected during an early period of the COVID-19 pandemic 

prior to vaccinations, and it is unclear how samples collected post vaccination or from 
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individuals with prior history of SARS-CoV-2 infection will impact the CXCL10 levels. Simply 

increasing the sample size may address this limitation, but important metadata on patient 

vaccination status, variant the individual is infected with, and how many prior infections the 

individual has had, should also be collected in this post-COVID. Directly related to the CXCL10 

detection in saliva via LFA, varying concentrations of CXCL10 through patient clusters (low 

CXCL10/COVID-19 group vs high CXCL10/COVID-19 group) presents a problem when using 

an LFA platform since it provides a binary result with a minimum limit of detection. Given the 

data distribution observed in Figure 2.5B, an optimal cut-off concentration of CXCL10 using a 

different technology platform may be a more appropriate testing platform.  

 

Another limitation encountered during this research project was the unbalanced study 

demographics. The population in each analysis group was not matched for sex, age, smoking 

status, or race which could lead to confounding variables. For example, the RSV and RV7 gene 

expression data was from children (3mo – 18yr), and SARS-CoV-2 gene expression data6,8,9 was 

mainly from adults. There may be variables due to age differences that could affect expression 

levels of CXCL10/CXCL11/TNFSF10, separate from the focus of different viral infections. For 

example, in plasma samples, CXCL10 levels have been found to be significantly higher in older 

adults compared to younger adults.10 In the future, with a stricter study design, study 

demographics could be more evenly matched to address the limitation.  

 

Another limitation of the study was inconsistent technology platforms. Some gene expression 

data used microarray (Clariom™ D Assay), and others used RNA-sequencing technology 

(Illumina NextSeq or NovaSeq). Using incompatible technology platforms inhibits the ability to 

merge the datasets, which is why Figure 2.2 in the thesis manuscript separated each study into 

different figures, as it is not technically feasible to directly merge microarray and RNA-seq data 

into one analysis. RNA-seq is a more robust platform for differential gene expression analysis 11 

due to the fact it has a broader range and can detect low abundance transcripts with higher 

sensitivity than microarray methods.12 However, microarray technologies remain popular due to 

their cost and more straightforward analysis methods.13 

 

Publicly available datasets provide opportunities for efficient secondary analysis by groups 

beyond the original authors, but this requires awareness that the data annotation, handling of 

specimens and technology platforms used may differ between studies. In the thesis manuscript, 

Figure 2.2 annotations and labelling of metadata slightly varied between control groups.  For 

example, Mick et al8 separated the SARS-CoV-2 negative cohort into 1) SARS-CoV-2 negative 

but positive for another respiratory virus and 2) SARS-CoV-2 negative with no other virus 

detected (non-viral ARIs). Other studies simply separated SARS-CoV-2 positive and negative. In 

addition, in the saliva SARS-CoV-2 CXCL10 analysis, the control group was healthy volunteers, 

which is not a clinically relevant study population. It is unlikely to encounter healthy people 

seeking medical care, more likely only those with a suspected respiratory infection. Lastly, there 

was variable quality of samples as there was no uniform procedure for handling, storage, 

technology platforms and analysis. Together these limitations can lead to bias, confounding 

factors, and inconstancies in the data.   

 

Looking ahead at future directions for this project, more experimental research is required to 

further verify and validate the utility of CXCL10 as a biomarker of respiratory tract viral 
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infections. Specifically, correlating saliva CXCL10 with COVID-19 severity would require a 

prospective study with time-series measurements in well-phenotyped cases and controls, with a 

focus on in-patients as these are the most at risk for death. To determine if any saliva CXCL10 

levels were specifically associated with COVID-19 severity, controls should include non-

infected individuals, and hospitalized individuals infected with influenza or other acute non-

infectious cases (e.g., trauma). The key for this study would be the detailed collection of study 

subject metadata that may track with saliva CXCL10 levels (e.g., vaccination status, variant 

infected with, number of infections).  With the limited resources, funding, and budget available, 

this project attempted to view biomarker discovery from an end-to-end approach. Through 

utilizing the unique opportunity of SARS-CoV-2, it harnessed the wide range of publicly 

available datasets in addition to in-house datasets provided by local hospitals. The project also 

used a collaborative approach by partnering with another university laboratory and a 

biotechnology company. Our opinion is that this collaborative and interdisciplinary approach 

should continue to book-end the required prospective clinical study.  

 

3.2 Path to Validation of Host Biomarker 

 

This study observed several parameters, including in-vitro gene expression in relation to viral 

infection, viral load and SARS-CoV-2 mortality, and hospitalization. In addition, proteins found 

in healthy saliva and CXCL10 protein concentration in healthy and COVID-19-infected 

individuals were observed. Lastly, it was determined if the biomarker CXCL10 is amenable to 

LFA testing. The National Biomarker Alliance states in their best practices guidelines to clearly 

define the clinical question and that the sample type and context must be studied in context to the 

claimed clinical utility.14 This project was exploratory and investigated several questions, but 

moving forward, a more defined clinical question must be stated.  

 

Is CXCL10 correlated with a viral infection? What virus? Compared to what control group? 

Is CXCL10 prognostic of SARS-CoV-2 severity? What endpoint measures severity?  

 

The following steps to further develop this biomarker include analytical and clinical validation. 

Preferrable in a prospective blinded multi-centre study using sampling and analytical guidelines 

with defined guidelines and standard operating procedures (SOPs). Most of all, does the clinical 

question attempt to address an unmet need?15 Can it help physicians answer questions and lead to 

improved decision-making? These items will be discussed in further detail (see Table 3.1 - Case 

Study: IL-6 as a prognostic biomarker for COVID-19), and how host biomarkers have the 

power to change the standard of care in infectious diseases with applications to discriminate viral 

and bacterial infections and the prognosis of infection. 

 

The typical steps to validation in a biomarker development pipeline are shown in Figure 3.1. 

Several items should be considered during the study design: what disease, how many patients, 

matched controls, the sample type (blood, saliva, etc.), the class of molecule (mRNA, protein 

etc.), presence or absence (i.e., protein concentration cut off or positive/negative), profile of 

several biomarkers or just one (Figure 3.3).16 Roche’s Elecsys IL-6 assay assists in identifying 

severe inflammatory responses to COVID-19. The path to validation is explained and could be 

used as a model for a prognostic host biomarker for COVID-19. 
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Figure 3.1 Biomarker Development Pipeline. Adapted from Bime et al17 “The acute respiratory distress 

syndrome biomarker pipeline: crippling gaps between discovery and clinical utility”& Byron et al18 

“Translating RNA sequencing into clinical diagnostics: opportunities and challenges.” 

 

1. Biomarker Discovery 

 

During this phase, samples are screened for candidate biomarkers for an association with the 

disease 17. Thousands of candidate biomarkers may be considered. Within host transcriptome 

studies, differential expression analysis is used to identify signatures of differentially expressed 

genes across different conditions or disease states.19 Visualization of all genes can be performed 

with a volcano plot (Figure 3.2), highlighting those genes passing thresholds for fold change and 

statistical significance. Genes that have large fold changes and statistical significance between 

experimental groups become high priority candidates of interest.   

 

 
 
Figure 3.2: Volcano plot of RNA sequencing analysis of host transcriptomic responses in healthy control and 

patients with culture positive bacterial infected nasopharyngeal swab samples.  Grey = non-significant, blue = 

statistically significantly different from healthy control (-Log10 P>2). Green = Log2 fold change (FC) relative to 

healthy control but not statistically significant, Red = Log2 fold change relative to healthy control and statistically 

significant.  Unpublished data from Hirota/Doxey Labs. 
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2. Analytical and Clinical Validation 

 

The next phase in the biomarker development pipeline is analytical validation. The assay 

performance is determined in specific samples 17 here, one could test the sample using different 

platforms. Clinical validation determines the ability of the assay to predict clinical phenotypes.18  

The levels of detection (sensitivity) are also defined with known standards (positive and 

negative) validated within the assay. Specificity may be explored by analyzing samples spiked 

with common household (e.g., mouthwash, nasal spray) and medical reagents (corticosteroids, 

NSAIDs) to ensure these do not interfere with assay performance. Independent cohorts from 

multiple research sites are often deployed in this component of biomarker validation, as inter-site 

and inter-user variability must be considered as part of analytical validation. Within these 

independent cohorts, clinical validation of the original observation made in the discovery cohort 

can be confirmed. A variety of metrics may be used to calculate the clinical validity of diagnostic 

tests, including the positive and negative predictive values. A positive predictive value (PPV) 

determines the probability subjects with a positive test will have the disease/outcome, and a 

negative predictive value (NPV) determines the probability that subjects with a negative test 

will not have the disease/outcome.18 

 

3. Clinical Utility  

 

After the performance of the assay is assessed for how well is can identify a biomarker in a 

sample, and the associated phenotype, clinical utility is assessed. This step factors in the existing 

clinical workflow, economics, social and ethical considerations. How does the biomarker assay 

ultimately improve clinical outcomes and inform better decisions for health care practitioners 

and guide treatment options.17,18 

 

4. Regulatory Qualification and Approval 

 

The last but typically most challenging step is gaining Regulatory Qualification and Approval. 

There are two main paths to achieve regulatory approval with the FDA for a diagnostic – an in-

vitro diagnostic with 510(k) or a laboratory-developed test (LDT).17 As mentioned in the 

introduction, the average in-vitro diagnostic device costs $34 M and takes 6 years reach market 

approval.20,21 With increasing inflationary pressures since this report, costs have continued to 

increase and show no signs of plateauing for receiving regulatory approval. The COVID-19 

pandemic was an unprecedented time for regulatory qualification and approval. Most SARS-

CoV-2 diagnostics were approved in record time (> 2 years) and granted emergency use 

authorization, including several SARS-CoV-2 rapid antigen tests22 and Roche's Elecsys IL-6 

IVD assay.23 
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Table 3.1 Case Study: IL-6 as a prognostic biomarker for COVID-19. IL-6 as a predictive biomarker for 

COVID-19 death24 and risk of intubation.25  

 

Case Study: IL-6 as a prognostic biomarker for COVID-19  

 

An example of a clinically validated and approved prognostic biomarker of viral infection is the cytokine IL-6. 

Serum IL-6 levels were found to be predictive of severe COVID-19 and the associated cytokine storm.26 

Roche’s Elecsys IL-6 electrochemiluminescence immunoassay rapidly identifies serum of plasma IL-6 

concentrations.23 The two studies below examine circulating IL-6 levels in COVID-19 patients. Its path to 

validation can serve as a potential template for designing other studies of prognostic biomarkers of viral 

infection severity. 

 

IL-6 as a predictive biomarker for COVID-19 death: Zhang et al24 

This retrospective institutional study measured serum IL-6 during a hospital stay. Patients were 

stratified as common (n = 366), severe (n = 411), or critical (n =124) based on existing guidelines. 

Serum IL-6 concentrations predictive of death were calculated. They found that serum IL-6 

concentrations higher than 37.65 pg/ml were predictive of death (sensitivity = 91.7%, specificity 

95.7%). In addition, the study prescribed tocilizumab (IL-6 receptor blockade) to 16 patients and 

found no significant differences in disease outcomes compared to matched counterparts.  

 

IL-6 and of risk of intubation: Herold et al25 

IL-6 was validated in an initial(n=40) and validation (n=49) cohort to predict the need for mechanical 

ventilation during SARS-CoV-2 infection. Through this study, IL-6 concentrations from hospitalized 

SARS-Cov-2 patients were determined at assessment, and over their stay in the hospital, with the 

endpoint defined as respiratory failure requiring mechanical ventilation. IL-6 levels at assessment 

(>35 pg/ml) and maximal values over hospital stay (>80 pg/ml) predicted the need for intubation. 

Area under curve (AUC) values and optimal cut-off concentrations were calculated. In addition, the 

negative and positive predictive values were calculated. The study found Roche’s Elecsys IL-6 

demonstrated an effective aid in determining hospitalized patients at risk for mechanical ventilation. 

To demonstrate its clinical performance, 49 PCR-positive patients enrolled in the emergency room. 

Using the Elecsys IL-6 assay with a cut-off of IL-6 > 35pg/ml was able to identify 16/19 patients that 

required intubation.  

 

The FDA approved Roche’s Elecsys IL-6 to identify hospitalized COVID-19 patients' risk of intubation with 

mechanical ventilation from serum or plasma.23 Roche acknowledged that this test should be used alongside 

other clinical parameters.23 
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Figure 3.3 Study Design Biomarker Development: best practices and flaws). Adapted from: Barker et al,14 

Drabovich et al,15 Issaq and Veenstra16 and Bime et al.17 

 

 

3.3 Hypothetical Study to Validate CXCL10 as a Biomarker of Respiratory Tract Infection 

from Mucosal Sampling 

 

CXCL10 as a biomarker of viral infection (Figure 3.4A) 

 

Figure 3.4A outlines a study design to validate CXCL10 protein levels in saliva to discriminate 

between viral or bacterial infections. The clinical utility of discriminating between a viral and 

bacterial infection could aid in decision making to prescribe antibiotics. CXCL10 levels could be 

potentially used to identify a viral infection or suggest bacterial infection and the need for 

antibiotics.  

 

The MeMed Opportunity study27 used TRAIL, CRP and CXCL10 to discriminate between 

bacterial and virial respiratory tract infections. The double blind, multi-centre validation study 

tested the performance of the assay in children aged 2-60 months. They assessed 577 children 

with suspected acute respiratory infection (n = 71 bacterial, n = 435 viral). Since there is no 

universally gold standard to determine the cause of an acute respiratory infection, a diagnosis 

was made based off a panel of three pediatricians with all available laboratory and clinical data. 

The diagnosis was separated into unanimous agreement, majority or inconclusive by the results 

from the pediatricians. The results showed the TRAIL, CRP and CXCL10 assay was 

successfully able to identify bacterial infections from viral (sensitivity = 86.7%, specificity = 

91.1%) and can aid in antimicrobial stewardship.27  
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Following a similar study design to the MeMed Opportunity study 27 patients would need to be 

enrolled suspect of acute respiratory infection, and diagnosed as bacterial or viral, confirmed by 

an expert panel of clinicians and by laboratory methods. Patients with inconclusive results would 

not be included. CXCL10 levels should be measured upon admission, and ROC curve could 

determine the optimal cut-off concentration to be used, suggestive of viral, bacterial, or unknown 

(Figure 3.4A). The performance of this test could be measured against current markers of 

inflammation, similar to the MeMed Opportunity study, which used C-reactive protein and 

procalcitonin. The main difference between our study, is using saliva instead of blood, and only a 

single biomarker.  

 

CXCL10 as a biomarker of disease severity (Figure 3.4B) 

 

A different study design would be required if one wanted to validate association between 

COVID-19 disease severity and CXCL10 saliva protein concentrations (Figure 3.4B). Patients 

who are hospitalized for COVID-19 would be enrolled with positive PCR tests. Patients would 

be stratified based on mild, moderate, severe, or critical illness based off the NIH guidelines.28 

CXCL10 concentration in saliva would be measured upon admission and subsequent days spent 

in the hospital to determine CXCL10 kinetics. Endpoints defined as discharged, continued 

hospitalization (within time frame of the study) and death; ROC curve could determine the 

optimal cut-off concentration to be used predictive of each COVID-19 outcome.  
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Figure 3.4 Study Design to Validate CXCL10 levels in saliva correlation A Bacterial / Viral Infection   B with 

SARS-COV-2 mortality. Definition of COVID-19 Severity by National Insitiue of Health.28  

  



MSc. Thesis – D. Mikkelsen; McMaster University – Medical Sciences 

 

 65 

3.4 Host-biomarkers Changing the Standard of Care in Respiratory Infections 

 

The applications of using a host in respiratory infections span greater than discriminating 

between viral and bacterial infections. There is potential to define molecular signatures of 

disease in heterogeneous syndromes such as ARDS.17,29 This can assist in removing bias in 

clinical trials and identifying responders to certain drugs. In addition, host biomarkers can be 

used to develop new drug targets that can ameliorate immunopathology.30 This was observed in 

Zhang study, which prescribed tocilizumab (IL-6 receptor blockade) to 16 patients and measured 

to IL-6 serum levels.24 Most of these patients showed increased in IL-6 levels after receiving 

tocilizumab but no improvements in survival outcomes was observed.24 In addition, there may be 

anti-inflammatory cytokines and molecules which help to augment immunity.30 Lastly, host 

biomarkers can be applied as a prognostic biomarker and allow for early intervention. 

 

The barrier to clinical implementation 

 

As discussed in the introduction, the current state of medical care is decades away from 

implementing host biomarkers into point of need diagnostics performed by non-healthcare 

professionals. The fraction of biomarker candidates that reach regulatory approval is very slim. 

In cancer research, less than 1% of candidate biomarkers published successfully enter clinical 

practice.31 Referred to as the “valley of death,” 32 this discrepancy between researched biomarker 

candidates and approved clinical biomarkers is real. Most biomarker discovery occurs within 

university laboratories similar to this project, and few have the resources to continue clinical 

validation and achieve regulatory approval.14 A wealth of papers within the acute respiratory 

infection space attempt to answer the same question and identify a molecular signature indicative 

of viral or bacterial infection. Perhaps different classes of molecules and different sample types, 

still, they were all looking for panels that discriminated between viral and bacterial infection in 

respiratory infections.27,33–35  

 

In light of open science and the open sharing of data, it may be valuable to generate a database 

for host response biomarkers to infections. Researchers could deposit data from their study 

provided uniform specimens, technology platforms and terminology are used. Through this 

study, we attempted to use existing databases such as NCBI GEO. However, limitations of 

different study designs, the definition of control groups and specimen quality prevented the 

ability to merge all findings together. However, if national and international scientific 

communities (Like the National Biomarker Alliance) worked together to build a reliable 

database, it would require guidelines and SOPs to ensure uniform sample handling and 

technology platforms are used. The CARD database is an example of a database that this could 

emulate. Perhaps, an ontology with a clear definition of relationships would help to address ad-

hoc data and variability between studies. A database may also help to address the issue of 

insufficient sample sizes, prevent researchers from repeating the same experiments and allow 

smaller university laboratories to access big data. Ultimately make the best use of investments, 

resources, and patient samples.14   
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Success stories and looking to the future 

 

Through the timespan of this thesis, host-based diagnostics have made significant progress and 

gained further attention. Since January 2021, when this project began, millions of dollars have 

been funded companies in the space of host-based diagnostics for infectious diseases, including 

Inflammatix and MeMed. These host-biomarkers assays are valuable economically and can 

improve patient care. 

 

As mentioned above, MeMed BV® measures TRAIL, IP-10, and CRP in serum samples to 

differentiate bacterial from viral infection in 15 minutes.36 Progressing from the OPPORUNITY 

study27, a clinical trial was conducted in 2020 to determine the diagnostic performance of 

MeMed BV®. The test’s performance was determined in pediatric and adult patients (n=1384) in 

MeMed’s Apollo clinical trial (NCT04690569). The MeMed BV® IVD test (510(k): K210254) 

gained CE mark at the June 202037 and FDA approval in September 2021.38 As of 2022, 

Maimonides Medical Center in Brooklyn, NY and Maccabi Healthcare Services in Israel 

announced they are integrating MeMed BV® as part of routine care.39,40  

 

“The new test [MeMed BV®] is a groundbreaking technology that allows for a faster and 

more accurate diagnosis in community medicine. The test is intended for use in cases 

where there is uncertainty around the origin of an infection – whether it is bacterial or 

viral – and the usual auxiliary tests are not sufficient. The test is especially beneficial in 

children and elderly patients who are at higher risk of medical deterioration if a 

bacterial infection is not treated in time. We have no doubt that this test can save lives." 

-      Dr. Miri Mizrahi Reuven (Head of Maccabi's health division)40 

 

 

Aside from respiratory infections, another company, Inflammatix, has been working on 

TriVerity, a host-biomarker test to identify bacterial or viral causes in Sepsis patients in the ICU, 

aiming to identify the “presence, type and severity” of infection. The TriVerity assay is done 

using blood samples, with an mRNA panel of 29 genes, to determine the cause of infection 

(bacterial or viral) and disease outcome.41 The company received $102 million funding for its 

Series D funding in March 2021.42 However, none of their tests have reached FDA clearance. 

 

Collectively, these success stories demonstrate the potential value that lies within host 

biomarkers being used in infectious disease diagnostics. The pathway to validation appears to be 

a long and expensive journey. However, these will lead to improved patient care. As said 

previously, most biomarkers research will never reach regulatory approval. Hopefully, MeMed’s 

journey and study designs can pave the way for other host biomarkers where the current 

practices and tests fail to serve patients and healthcare practitioners. 
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3.5 Conclusion  

 

Our goal was to determine host biomarkers indicative of viral respiratory tract infections. This 

thesis strived to take advantage of the wealth of open-access research published during the 

COVID-19 pandemic utilizing local partnerships and publicly available research. We explored 

ISGs for their potential as a biomarker from mucosal samples and found significant results for 

CXCL10 as a biomarker of viral infection. A prototype point of care CXCL10 responsive LFA 

was developed. By researching other host biomarkers and conducting market research through 

the L2M program, validating these biomarkers and reaching regulatory clearance is a 

complicated journey requiring compressive large-scale study designs and clinical trials. 
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Appendices 
 

 
Supplementary Table 1: Data from Harmonizome used in Figure 1. Consisted of 199 datasets 

came from 17 GSE studies including the following viruses Influenza A, Human coronavirus, 

SARS-CoV like virus isolated from bats, A mouse-adapted SARS-coronavirus, SARS-CoV 

mutant strain that does not express the accessory protein open reading frame 6 (delta ORF6), 

Human metapneumovirus, Wild-type infectious clone-derived SARS-CoV, Measles, RSV and 

Rhinovirus and time points ranging from 0- 96 hours post inoculation. In-vitro cell systems 

included but were not limited to Calu-3, HAE, and A549 cell lines  

 

Study (GSE)

Number of 

Microarray 

Datasets 

Cell Line Virus 

980 2
Human CD14+ 

monocytes
Measles 

3397 2

Human 

bronchial 

epithelial cells 

(BEAS-2B cells)

RSV

8961 5 A549 cells HMPV

17400 3 2B4 SARS-CoV, DHOV

28166 6 Calu-3 cells H5N1 Avian Influenza Virus

28904 1 B2B and 16HBE Rhinovirus

32138 1

airway 

epithelial cell 

cultures

FluA or RSV

33267 22 2B4 cells icSARS CoV or the icSARS deltaORF6 mutant.

37571 9 Calu-3 cells A/CA/04/2009 Influenza 

37827 19 2B4 cells  icSARS CoV or the icSARS deltaORF6 mutant.

40844 13 Calu-3 cells H1N1 influenza virus A/Netherlands/602/2009

43203 14 Calu-3 Influenza viruses

43204 7 Calu-3 cells
S1trunc124: A/Vietnam/1203-CIP048_RG4/2004 (H5N1) or 

WT: A/Vietnam/1203/2004 (H5N1)

45042 4
Calu-3 2B4 

cells 
Human Coronavirus EMC 2012 (HCoV-EMC)

47960 32 HAE cultures  SARS-CoV, SARS-dORF6 or SARS-BatSRBD

47961 26 HAE cultures. SARS-CoV, SARS-dORF6 and SARS-BatSRBD

47962 33 HAE cultures. SARS-CoV, SARS-dORF6 and SARS-BatSRBD
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