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Abstract

3D joint angle is an important indicator in human gait analysis, and muscu-

loskeletal disease diagnosis and treatment. To accurately estimate 3D joint angle, a

Deep Learning approach, Residual ConvLSTM network with Contrastive Learning

(ResCoCo), is proposed in this study. A sequence shortening layer is introduced in

ResCoCo to discard part of the output sequence estimated by bi-directional LSTM

layers from incomplete context, and a residual block is used for network depth in-

crease. Contrastive learning is employed in ResCoCo to ensure robust and efficient

representation extraction.

The model is validated on the WEVAL dataset for 3D knee joint angle estima-

tion during walking. The experiment result shows that the sequence shortening layer

and residual block benefit the 3D joint angle estimation accuracy, while contrastive

learning increases the model resistance towards IMU-to-Segment (I2S) alignment and

sensor placement variations. Furthermore, the sensor configuration for the model

input is investigated. Using inertial data from two sensors as the model input is eco-

nomical while effective, and leads to good model robustness towards I2S alignment

and sensor placement variations, compared to using inertial data from a single sensor

or six sensors as the model input. The model is also compared with a model-driven

method. It is shown that ResCoCo not only provides accurate estimation accuracy
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along three rotation axes, but it is also free of calibration procedures, physical con-

straints or predefined anatomical models, compared to model-driven approaches.
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Chapter 1

Introduction

Knee joint angle estimation is an important indicator widely used in human gait

analysis, athlete performance assessment, musculoskeletal disease diagnosis, treat-

ment, progression monitoring, and rehabilitation evaluation [1, 2]. Detecting and

intervening in the gait abnormality can also decrease the falling risk of elderly adults

[3]. Specifically, joint angle-related indicators such as knee ranges of motion (ROM)

are important for total knee arthroplasty and frequently used for athlete performance

assessment [4]. Therefore, joint angle is an estimation objective of great value.

Optical Motion Capture (OMoCap) systems are the current gold standard for

joint angle estimation, but they are limited to the lab environment, expensive, and

complicated for daily use. Goniometers are the current norm in clinical practice to

measure joint angle. Although they are inexpensive and portable, trained examiners

are required under circumstances such as post-operative joint angle assessment [5].

To achieve long-term, user-friendly and inexpensive 3D joint angle estimation, inertial
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measurement units (IMUs) become increasingly popular. IMUs consist of accelerom-

eter and gyroscope for linear acceleration and angular velocity signal recording, re-

spectively. They are extensively embedded in equipment such as smart phones and

smart watches, thus accessible in daily life and for long-term usage.

There are two commonly used categories of IMU-based joint angle estimation

methods: model-driven and data-driven methods. Model-driven methods need pre-

defined anatomical models, and their accuracy is influenced by calibration procedures

or physical constraints. Meanwhile, data-driven methods only need inertial data and

ground truth joint angles and yield an end-to-end solution for joint angle estimation.

However, variations caused by subject diversity, sensor placement, and I2S alignment

lead to huge inertial sensor data distribution differences. The data-driven approach

performance tends to decrease with input data distribution variation [6, 7]. To face

this problem and exploit the advantages of data-driven methods, ResCoCo is proposed

in this study for IMU-based 3D knee joint rotation angle estimation.

1.1 Background

To describe 3D knee joint rotation, three anatomical planes of the human body

need to be defined, namely, the sagittal, frontal and transverse planes. The three

anatomical planes are mutually perpendicular and divide a human body into left/right,

anterior/posterior, and superior/posterior parts. As recommended by the Interna-

tional Society of Biomechanics (ISB), the Joint Coordinate System (JCS) can be

used to define the knee joint angle with three rotation axes [8], as shown in Fig. 1.1.

Knee flexion and extension are rotations in the sagittal plane around the x-axis; knee

abduction and adduction are rotations in the frontal plane around the y-axis; knee
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external and internal rotations are in the transverse plane around the z-axis. Among

the three, the knee joint has the largest range of motion (RoM) in flexion/extension

movements.

Figure 1.1: The human body anatomical planes and rotation axes to describe 3D
knee joint motions.

Knee joint angle can be defined as the differential orientation between the adjacent

bone-embedded anatomical frame (BAF), and can be derived from the orientation of

sensors on the proximal and distal segments relative to the global coordinate frame

and I2S alignment of these two sensors [8]. Specifically, to define the 3D knee joint

angle, the BAFs of the femur and tibia are represented as IJK and ijk respectively, and

the local coordinates of the thigh and shank sensors are UVW and uvw respectively, as

shown in Fig. 1.2. The orientation of femur or tibia BAF w.r.t. the global coordinate
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frame (XgYgZg) can be described as:

RGS
i = RGI

i ⊗RIS
i

i refers to the thigh or shank segment and RIS
i represents its I2S alignment in quater-

nion representation. The I2S alignment is assumed to be constant. RGI
i is the ori-

entation of the sensor on segment i w.r.t. the global coordinate in quaternion rep-

resentation. ⊗ corresponds to the quaternion multiplication operation. Knee joint

angle is the differential orientation between coordinates IJK and ijk. This joint an-

gle estimation procedure can be applied to other joints with a proximal and a distal

segments.

Figure 1.2: The coordinates frames used to define 3D knee joint angle, including the
local sensor frames, BAFs and global frame.
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1.2 Problem Statement

Is it possible to develop a data-driven model to accurately estimate the 3D knee

joint angle from IMU signals? What is the optimal input sensor configuration, taking

into consideration of the number of sensors and their placement? How does this

data-driven approach perform on 3D knee joint angle estimation, compared to the

model-driven method? How is the model generalization ability towards I2S alignment

and sensor placement variations, and how to improve its generalization ability?

1.3 Contribution

An IMU-based data-driven model, namely ResCoCo, is proposed for 3D joint

angle estimation in this study. The model consists of a backbone block and a resid-

ual block, and both blocks are ConvLSTM networks. It also has a sequence length

shortening layer after the bidirectional LSTM layer in the backbone block. ResCoCo

utilizes contrastive learning with a self-supervised training stage and a supervised

training stage. The main contributions of this study include:

• A Deep Learning model, ResCoCo, is proposed with a residual block to in-

crease network depth and a sequence length shortening layer to discard output

sequence from bidirectional LSTM layers with incomplete context.

• ResCoCo can accurately estimate 3D knee joint angle from inertial data dur-

ing walking without calibration procedure, physical constraints or predefined

anatomical model, compared with a data-driven method. ResCoCo has the po-

tential to be further applied to joints with complex motions, such as elbow and

ankle joints.
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• ResCoCo uses a contrastive learning framework, namely SimCLR, to extract

robust and effective input data representations and resist sensor placement and

I2S alignment variations.

• ResCoCo utilizes inertial data from a pair of IMUs, which is economical and

efficient, compared to using single or six IMUs as the model input.

1.4 Organization

The remaining dissertation is organized as follows. It discusses existing works

on I2S alignment, IMU-based joint angle estimation methods, and public lower-limb

kinematics datasets in Chapter 2. The methodology of the proposed data-driven

model ResCoCo is introduced in Chapter 3. The evaluation of the model-driven

baseline method and ResCoCo on 3D knee joint angle estimation is presented in

Chapter 4. Finally, the conclusion and future work are presented in Chapter 5.
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Chapter 2

Related Work

The representative works in 3D knee joint angle estimation are reviewed in this

chapter. Firstly, the existing I2S alignment assessment approaches are discussed

in Section 2.1 for its great influence on various joint angle estimation approaches.

Secondly, the existing 3D joint angle estimation approaches are reviewed in Section

2.2, including the model-driven methods and data-driven methods. Lastly, to evaluate

the 3D joint angle estimation approaches, public lower-limb gait kinematics datasets

are investigated and summarized in Section 2.3.

2.1 IMU to Segment Alignment

I2S alignment, also called I2S calibration, refers to the orientation of the sensor

relative to the body segment that the sensor is mounted on. It is important to

quantify joint motions as a component of the calibration-based model-driven joint

angle estimation procedure, while its variation causes the inertial data distribution

shift and degrades the data-driven method performance.
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To acquire I2S alignment, static pose calibration and functional calibration ap-

proaches are commonly used. Static pose calibration commonly requires subjects to

take a standing posture to determine the longitudinal axis of the segment coordi-

nate [9, 10]. Functional calibration allows arbitrary mounting directions of IMUs, yet

it requires the subject to take predefined calibration motions to determine different

axes of the segment BAFs [11, 12]. For example, Favre et al. proposed hip abduc-

tion/adduction and two passive calibration movements for I2S alignment estimation

[12]. Static calibration postures and predefined calibration movements can be used

together for I2S alignment estimation with better accuracy. Favre et al. used static

standing posture and hip abduction/adduction movement[13] to identify I2S align-

ment. However, typical I2S calibration procedures can be potentially problematic

in their validity and reliability as investigated in [14]. To avoid calibration proce-

dures for I2S estimation, Zimmermann et al. proposed a Deep Learning approach to

automatically solve the I2S alignment regression task with both generated and real

inertial sensor data [7].

2.2 3D Joint Angle Estimation

2.2.1 Model-driven Methods

Model-driven methods, also called kinematics-based methods, calculate joint an-

gle as the differential orientation between BAFs of adjacent body segments based on

IMU signals. They can be divided into assumed alignment methods, augmented data

methods, calibration-based methods, and calibration-free methods, depending on the

calibration procedure and data source [15]. Assumed alignment methods assume the
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local sensor frame is aligned with the anatomical frame of the body segment that

the sensor is attached to, and use the sensor orientation as the orientation of BAF

w.r.t. the global coordinate frame to derive joint angles [16, 17, 18, 19]. Augmented

data methods use other data sources such as the OMoCap system to estimate the I2S

alignment [20, 21, 22, 23].

Calibration-based methods are more accurate compared to assumed alignment

methods and require fewer data sources compared to the augmented data methods.

They exploit calibration procedures to estimate one or more anatomical axes of BAFs

in the local sensor frame, based on IMU recordings. As introduced in [15], they have

three major steps: the first step is to record the orientation of each sensor attached

to body segment w.r.t. the global coordinate; then to estimate the orientation of the

IMU w.r.t. the BAF of its respective body segment; lastly, to estimate the orientation

of BAFs of the proximal segment relative to that of the distal segment as the joint

angle. Estimation accuracy improvements are mainly made in these three major

steps. Takeda et al. proposed to use angular velocity for transitional acceleration and

gravitational acceleration estimation, and give the orientation of lower limb segments

based on the acceleration measurement[9]. Favre et al. proposed different calibration

postures and motions for better I2S alignment estimation accuracy [12, 13].

The calibration procedure relies on accurate operations, users’ mobility, and the

presence of experienced operators. Besides, the calibration accuracy strongly influ-

ences the joint angle estimation. In contrast, calibration-free methods avoid accurate

mounting or alignment procedures, thus their popularity is growing fast [24, 25, 26].

Calibration-free methods exploit physical constraints on joint motion. For example

in [27], motion parameters of the joint are derived from inertial data from IMUs on

9
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the adjacent segments. Based on the rigid body kinematics, the joint motion parame-

ters derived from different IMUs should be congruent all the time, and the congruent

constraint is used to build optimization objectives. The derived parameters including

joint rotation axes and the IMU positions are used for the joint angle estimation.

2.2.2 Data-driven Methods

Model-driven methods for 3D joint angle estimation are prone to errors because

of their strong dependency on the accurate predefined anatomical model, calibra-

tion procedures, anatomical parameter measurements, or physical constraints. The

calibration postures and movements are also not ideal for users with mobility dif-

ficulty, and the calibration accuracy can have inter- and intra-examiner differences.

Moreover, model-driven methods also cannot convey real-time estimation results.

The wide application of Deep Learning methods in Human Activity Recognition

(HAR) and time series prediction makes them potential alternatives for 3D joint

angle estimation [28, 29]. They do not require the definition of underlying anatomical

models nor calibration procedures while yielding instant estimation results. Findlow

et al. first applied a Generalized Regression Neural Network (GRNN) for 1D lower

limb joint kinematics estimation based on inertial data recorded from IMUs on the

foot and shank [6]. Luu et al. also used GRNN to estimate lower limb joint angle

waveform for gait pattern planning in the robotic gait rehabilitation [30]. To predict

dynamic lower limb data including joint kinetics and Ground Reaction Forces (GRFs),

Lim et al. used Artificial Neural Network (ANN) with the Center of Mass (CoM) as

the single IMU location [31]. Argent et al. explored Machine Learning algorithms

including linear regression, polynomial regression, decision tree regression and random

10
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forest regression for hip and knee joint angle estimation with the input from a single

IMU [5]. Dorschky et al. presented a method to create realistic inertial sensor data via

biomechanical simulation and used Convolutional Neural Network (CNN) to estimate

1D joint angles, joint moments, and GRFs during running and walking [32]. Conte

et al. investigated the estimation accuracy of Long Short-Term Memory (LSTM)

network, GRNN and nonlinear autoregressive network with exogenous inputs (NARX)

in modeling lower body joint angles in the sagittal plane with a single IMU on foot

[33]. The deepest neural network used in lower limb joint angle estimation is a deep

Convolutional Long Short-Term Memory network (DeepConvLSTM) proposed by

Hernandez et al. The model receives data from 5 sensors and achieves the average of

mean absolute error (MAE) of 3.6 (2.1)°across all lower limb joint angles [34].

All the aforementioned Deep Learning based joint angle estimation methods fo-

cus on knee flexion/extension angle estimation and neglect the importance of knee

rotations on frontal and transverse planes. Knee abduction/adduction and inter-

nal/external rotation angles are efficient objective markers in knee osteoarthritis and

running-related injury interventions [35, 36]. The reason for the research deficiency

can be that knee joint angles on frontal and transverse planes are more difficult to

acquire and estimate due to their smaller RoMs and they are more easily influenced

by noises caused by soft tissue movement. Deep Learning based 3D knee joint angle

estimation method was first proposed by Mundt et al. with a Fully-connected Feed-

forward Neural Network (FFNN) and a LSTM network. The models used simulated

inertial sensor data derived from OMoCap data to estimate 3D lower limb joint angles

and moments [37]. Rapp et al. proposed a hybrid Deep Learning and optimization

approach for 3D lower limb joint angle estimation with simulated data from virtual

11
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IMUs on shank and thigh [38]. However, the simulated data lacks real-world artifacts

such as noise induced by soft tissue movement and needs further validation before

being applied in the free-living scenarios. To face this problem, Mundt et al. collected

real inertial data and simulated sensor position and orientation in their later work [37]

and observed that the estimation accuracy was improved after dataset enlargement.

However, their sensor orientation and position simulation targeted at position and

orientation error compensation. The influence of sensor position and I2S alignment

variation and model robustness towards these variation were not further investigated.

2.3 Public Datasets

To validate ResCoCo for 3D knee joint angle estimation, public datasets with

lower limb gait kinematics recordings are searched and summarized in 2.1. Datasets

with both inertial sensor data and 3D knee joint angle recordings are limited in

number. The kinematic datasets containing both inertial sensor data and ground

truth 3D knee joint angles are mostly not qualified for this study. Specifically, the

inertial sensor data and 3D knee joint angle recordings do not overlap in the MoVi

dataset. The inertial data in [39] is not raw inertial data. The data-driven model

derived from it will require extra data pre-processing procedure and thus have lower

applicability.

WEVAL dataset is chosen for evaluation in this study. It is a lower-limb joint gait

kinematics dataset with both raw IMU signals and ground truth knee joint angles

derived from the OMoCap system. It is collected from 15 healthy young adults (7

females) with an average age of 26 (4) years and a body mass index of 22.6 (3.0)

kg/m2. All participants provided written informed consent. The ethical approval was

12
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provided by the institutional Ethics Review Board. The gait trials were collected as

barefoot, over-ground walking at each participant’s self-selected speed for 2 sessions

with 2-4 days in between. A standardized 22-marker Helen Hayes marker set and 12-

camera optoelectronic motion capture system (Motion Analysis Corp; 120 Hz) were

used to compute the criterion 3D knee joint kinematics using commercially available

software (Visual3D). Additionally, measurements from six IMUs (Shimmer3; 100 Hz)

on the thigh and the shank were collected simultaneously and synchronously. The

inertial sensor placement is shown in Fig. 2.1. The knee kinematics measurement

based on the OMoCap system was downsampled to 100 Hz and synchronized with

the inertial sensor data.

Figure 2.1: The IMU sensor placement on the lower body in WEVAL dataset. Dis-
ThShim is the abbreviation for distal thigh Shimmer IMU sensor; LatTibShim is
abbreviation for lateral tibia Shimmer IMU sensor. The other names follow the same
abbreviation convention.

13



M.Sc. Thesis Xijian Lou McMaster - Computer Science

Table 1: Review of public lower-limb kinematics datasets.

Dataset Subject Num-
ber Data Source Motions Knee Joint

DoF
Lower Limb IMU
Sensor Placement

MoVi [40] 90 OMoCap system, RGB video cameras,
and IMUs

21 daily motions and sports
movements 3D Shank and thigh

UT Foot-Mounted Iner-
tial Navigation Dataset
[41]

5 OMoCap system and IMUs Walking, running, crawling, and
stair-climbing None Foot

TotalCapture [42] 5 OMoCap system and IMUs Walking, acting, freestyle and a
range of other motions 1D Shank and thigh

LARa [43] 14 OMoCap system, RGB video cameras,
and IMUs Warehousing activities None Ankle

Camargo et al. [44] 22 OMoCap system, IMUs, EMG sensors,
goniometers and forceplates Walking and stair climbing 1D Shank and thigh

Opportunity [45] 4 Multiple sensor systems including IMUs,
pressure sensors and etc.

Daily activities and a scripted
sequence of activities None Knee

TNT15 [46] 5 RGB video cameras and IMUs Walking, running and three
other activities None Shank and thigh

Virginia Tech Natural
Motion Dataset [39] 17 Inertial Motion Capture System Daily activities and warehousing

activities 3D Shank and thigh

Gait Analysis Data Base
[47] 108 IMUs and EMG sensors Walking None Shank and thigh

Luo et al. [48] 30 IMUs Walking None Shank and thigh
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Chapter 3

Methodology

The data-driven 3D joint angle estimation approach proposed in this study,

namely ResCoCo, is generally a neural network under contrastive learning to esti-

mate 3D knee joint angles from inertial data.

The core architecture of ResCoCo is a feature extractor network. It takes in 3D

linear acceleration and angular velocity recorded by a pair of IMUs on the shank and

thigh. It is connected with a projection head, trained under self-supervised training,

and outputs inertial data representation. Afterwards, it is connected with a linear

head, and trained with supervision to estimate 3D knee joint angle. The feature

extractor network has a backbone block and a residual block. Both blocks are Con-

vLSTM networks. The residual block is inspired by the successful residual neural

network introduced by He et al. [49]. Residual neural networks acquire better accu-

racy compared to plain networks, because it allows considerably increased network

depth. It allows depth increase mainly by alleviating the gradient vanishing problem

and accuracy saturation problem, using skip connection for information to flow across

layers and ease the optimization process. The skip connection mechanism is shown in
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Fig. 3.1. Using the ConvLSTM network in the feature extractor network is because

it leverages the advantages of the convolutional layer and LSTM layer in spatial and

time domains together, and it is successfully applied in Human Activity Recognition

[50, 51, 52, 53].

Figure 3.1: The skip connection passes the identical mapping of the residual block
input. The block input is concatenated with the block output.

The reason for using contrastive learning is to explicitly capture invariant and dis-

entangled input data representations. Contrastive learning is a class of discriminative

approaches for representation learning. Representation learning the process to extract

efficient representations from raw input data, and it improves the model performance

on downstream tasks. Contrastive learning approaches learn representations by com-

paring different sample pairs. They have achieved promising performance in Natural

Language Processing (NLP) and Computer Vision (CV) [54, 55]. SimCLR is one

contrastive learning approach with great representation extraction efficiency proven

in Human Pose Estimation (HPE) and HAR [56, 57, 58]. Spurr et al. used SimCLR

in self-supervised hand pose estimation, encouraging equivariance and invariance in

feature representation for geometric and appearance transformation, respectively [57].

This inspired us to adapt SimCLR for efficient and robust representation extraction
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to resist sensor placement, I2S, and subject variation in 3D joint angle estimation.

The feature extractor network architecture is first introduced in Section 3.1, and

then the contrastive learning framework is presented in Section 3.2.

3.1 Feature Extractor Network

The feature extractor network architecture is shown in Fig. 3.2. The residual

block extracts the input inertial data features, then the extracted features are concate-

nated with identity mapping of the original network input and sent to the backbone

block. The residual block has four two-dimensional (2D) convolutional layers and one

bidirectional LSTM layer. The backbone block has seven 2D convolutional layers and

one bidirectional LSTM layer. 2D convolutional layers are utilized to extract spatial

features of the inertial sensor signals, because their convolution kernels have larger re-

ceptive fields, compared to 1D convolutional layers. Thus, the interrelated features of

3D linear acceleration and angular velocity can be extracted. The bidirectional LSTM

layers are used to model the temporal dynamics of the extracted features. They pro-

cess the extracted features in both forward and backward directions and learn the

context more thoroughly from the past and future of the signal. For both blocks, the

convolutional layers have 64 kernels with the shape of 3× 3. Padding is performed to

maintain the feature map shape. A Rectified Linear Unit (ReLU) activation function

is used after each convolutional layer. The bidirectional LSTM layers have 64 hidden

units and 2 hidden layers. After the bidirectional LSTM layer in the backbone block,

the feature map is flattened and inputted into a fully-connected layer, namely the se-

quence length shortening layer. During the self-supervised training stage, the feature

extractor network is connected to a fully-connected layer, namely the projection head,
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to project the feature map into input inertial data representation. During the super-

vised training stage, the feature extractor network is connected to a fully-connected

layer, namely the linear head, to project the feature map into the latent space for 3D

knee joint angle estimation.

Figure 3.2: The architecture of the feature extractor network and linear head for 3D
knee joint angle estimation.

The reason for using the sequence length shortening layer is to discard the output

sequence estimated from the bidirectional LSTM layer based on incomplete context.

When the feature extractor network without the length shortening layer is used for

end-to-end IMU-based 3D knee joint angles estimation on the WEVAL dataset, the

estimation error averaged across all estimation sequences is shown in Fig. 3.3. It can

be observed that when the model output sequence has the same length as the input

sequence, the front and end parts of the estimation sequence have higher MAE than

the middle part, especially on the sagittal and transverse planes. The reason can

be that the front and back parts of the input sequence have incomplete context for

the bidirectional recurrent layer to learn, thus leading to lower estimation accuracy.

Under such an assumption, discarding the front and back parts of the estimation se-

quence might be beneficial for estimation accuracy improvement. Inspired by this, the

bidirectional LSTM layer output length is modified by a sequence length shortening

layer and the optimal output length is investigated.
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Figure 3.3: Average mean absolute error (MAE) across all 3D knee joint angle estima-
tion sequences derived from ResCoCo without a length shortening layer, the model
input and output sequence have the same length.

3.2 Contrastive Learning

The core concept of the contrastive learning approach used in ResCoCo, namely

SimCLR, is to map similar pairs of data to be close in the embedding space and push

unrelated data pairs apart. It has a self-supervised training stage and a supervised

training stage. As shown in Fig. 3.4, for the self-supervised training stage, given

a set of inertial sensor data {xm}Mm=1, xm is processed with augmentation function

t(·) from augmentation set T , t ∈ T . Each stochastic data augmentation function

has two components: sensor placement randomization and I2S alignment simulation.

Each sample is processed by these two components sequentially. A positive data

pair {t(xm), t
′(xm)} is two different augmented views of the same sample xm and a

negative pair {t(xm), t
′ ′(xn)} is different augmented views of different samples tm and

tn . For the input dataset with M samples, two augmentations are applied on each

sample and there are 2M augmented samples in total. For each sample, there will

be one corresponding positive sample and 2(M-1) negative samples. All augmented

samples are projected into embedding space Z with a feature extractor network f(·)

for representation extraction and projection head g(·) to map representation to the
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space for contrastive loss calculation. The feature extractor network is introduced in

Section 3.1. The projection head is a fully-connected layer. The contrastive objective

function in use is NT-Xent. It aims to encourage positive pairs to be close and push

negative pairs apart in the latent space. It maximizes the agreement between all

positive pairs and minimizes the agreement between all negative pairs.

l1 = −log
exp(sim(zi, zj)/τ)∑2M

k=1 1[k ̸=i]exp(sim(zi, zk)/τ)
(3.1)

τ is temperature parameter, 1k ̸=i ∈ {0, 1} is an indicator function that equals to

1 iff k ̸= i. sim(u, v) = uTv/||u||||v|| is the cosine similarity between data pairs.

Figure 3.4: The architecture of ResCoCo. In the self-supervised training stage, each
input sample is augmented and processed by the feature extractor network and project
head. Agreement of positive pairs are maximized and agreement of negative pairs are
minimized. In the supervised training stage, the model input is processed with the
feature extractor network and linear head.

After the self-supervised training, the feature extractor network is trained under

a supervised training scheme. Both raw inertial sensor data and ground truth 3D

knee joint angles are used as the model input and label. The model input is inertial

sensor signals from a pair of IMU sensors, one on shank and one on thigh, represented

by 2D matrices xm for M windows, xm ∈ RL×(2×C)(m = 1, 2, . . . ,M). The window

length is L = 60 for sensor signals of 1 second. The sensor signals include 3D angular
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velocity aIi and linear acceleration wI
i , thus C = 6. xm is mapped to the model output

ym ∈ Rl×6(m = 1, 2, . . . ,M), which is the knee joint angles on three rotation planes

in 6D rotation representation for length l . The loss function in use is mean squared

error (MSE), calculating the distance between estimated and ground truth 3D knee

joint angles.

l2 =
1

M

M∑
m=1

(ym − ŷm)
2 (3.2)

6D rotation representation is used for 3D knee joint angle representation for its conti-

nuity. Generally, 3D, 4D or 9D rotation representations (i.e., Euler angles, quaternion,

and rotation matrix) can be used to represent 3D rotation. However, it is proven that

3D rotation in four or fewer dimension representations is discontinuous, while contin-

uous rotation representations potentially lead to better neural network performance

in practice [59]. To acquire continuous rotation representation efficiently and avoid

orthogonalization in calculation, Zhou et al. introduced 6D rotation representation

in [59]. 6D rotation representation is applied in ResCoCo to represent 3D knee joint

angles in the model output.

Two augmentation approaches used in contrastive learning are sensor placement

randomization and I2S alignment simulation. Specifically, each model input consists

of inertial data from a pair of sensors, one from the shank and the other from the

thigh. In the sensor placement randomization, the sensor placement is randomly

drawn and their inertial data is added to the training dataset. Note that the shank

sensor is randomly chosen from the three shank sensor placements and the thigh

sensor is randomly chosen from the three thigh sensor placements, as shown in Fig.

2.1. For the I2S alignment simulation, random rotation RII ′
m is applied to each sample

xm to simulate random I2S alignment, as introduced in Section 3.3, and the resulting
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rotated inertial data is added into the training dataset.

aI
′

m = aIm ·RII ′

m

wI ′

m = wI
m ·RII ′

m

(3.3)
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Chapter 4

Evaluation

To validate the data-driven method proposed in the last chapter, firstly the imple-

mentation of a baseline model-driven calibration-free method and the implementation

of ResCoCo are introduced in Section 4.1. These two models are evaluated on the

WEVAL dataset for knee joint angle estimation and the estimation result is presented

in Section 4.2. Firstly, the estimation result of the model-driven approach is presented

in Section 4.2.1. In Section 4.2.2, the overall performance of ResCoCo is introduced,

and an ablation study is conducted on each component of ResCoCo. The feature ex-

tractor network and its component are investigated, and the influence of contrastive

learning and the augmentation approaches are investigated. Lastly, the optimal input

sensor configuration, including sensor number and sensor placement, is studied.
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4.1 Implementation

4.1.1 Model-Driven Method Implementation

The knee joint angle estimation approach proposed in [27] is utilized as the base-

line model-driven approach in this study. The knee joint is assumed to be a hinge joint

with one Degree of Freedom (DoF) on the sagittal plane. 3D linear acceleration and

angular velocity are utilized for angle estimation to avoid magnetic field measurement

error caused by ferromagnetic materials and recorded by magnetometer. Generally,

the knee flexion/extension angle is estimated by fusing the knee joint angles derived

from linear acceleration and angular velocity. The estimation procedure is detailed

in Appendix A.1.

WEVAL dataset is used to validate the model-driven calibration-free method.

IMUs placed on proximal thigh and lateral tibia in Fig. 2.1 are utilized. To solve

the optimization problems in Equation A.4 and Equation A.9, Levenberg–Marquardt

algorithm is adopted. The optimization algorithm is repeated 100 times with different

random initial points. Experiment results with the smallest loss are saved. The weight

coefficient in Equation A.1 is set as 0.01.

4.1.2 ResCoCo Implementation

To evaluate the 3D knee joint angle estimation ability of ResCoCo, the WEVAL

dataset is divided into three parts: subject 1 to 12 for training, subject 13 for valida-

tion, and subject 14 and 15 for testing. Every experiment in Section 4.2 is repeated

three times and the experiment results are averaged. The temperature parameter τ
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in Equation 3.1 is set to 0.5. Adam optimizer is used for both self-supervised and su-

pervised training stages, and the learning rate is set to 10−3. The augmented dataset

size is empirically chosen and set to five times larger than the original dataset. The

rotation RII ′
m in Equation 3.3 is represented in extrinsic Euler angle. The range of

rotation on the three rotation axes is empirically chosen and set to [−60◦, 60◦].

To divide the input and label signals for the model with or without a sequence

length shortening layer, two sequence segmentation schemes are introduced and shown

in Fig. 4.1. In the first segmentation scheme, the input and label samples have the

same length L. In the second segmentation scheme, the input length L is no shorter

than the label length l. Under both segmentation schemes, the ground truth knee

joint angle sequences are segmented in a sliding-window scheme and have the same

total length. For example, if L = 60, l = 40, and both IMU and ground truth knee

joint angle sequence start from t0. The first input and label sample should be between

t10 and t70, under the first segmentation scheme. The first input sample should be

between t0 and t60, and the first label sample should be between t10 and t50, under

the second segmentation scheme. Therefore, the label sequences have the same total

length under two segmentation schemes, and the experiment result of models with or

without a sequence length shortening layer are comparable. The dataset is segmented

with scheme 1 to be used by models without a length shortening layer. The dataset

is segmented with scheme 2 to be used by models with a length shortening layer.

Both estimated and ground truth 3D knee joint angles are presented in 6D rotation

representation. The estimation results are transformed into Euler angle representation

as 3D knee joint angles.
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Figure 4.1: Two schemes to segment the input and label signals.

4.2 Estimation Result

4.2.1 Model-Driven Method Performance

The model-driven method acquires 1D knee joint angle estimation MAE and root

mean square error (RMSE) of 3.93◦ and 5.24◦, respectively. The standard deviation

for MAE across all subjects is 1.60◦ and the standard deviation for RMSE across all

subjects is 1.97◦. The MAE, RMSE of all subjects are reported in Table 4.1. The

estimated and ground truth knee joint angles are visualized in Fig. 4.2a.

It can be observed that the model-driven method has inter-subject performance

differences. It performs best on subject 15 and worst on subject 11. This can be due

to drift issues, noises caused by soft tissue movements, or the hinge joint assumption

of the knee joint. The drifting issue caused by gyroscope recordings leads to large

errors, as shown in Fig. 4.2b and Table 4.1.

The inaccuracy of the model-driven approach estimation results can be explained
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Table 4.1: Performance of the model-based calibration-free method on each subject.

Subject ID 1 2 3 4 5 6 7 8

MAE(◦) 4.38 3.27 2.11 4.79 2.48 2.84 3.18 3.40

RMSE(◦) 5.42 4.27 2.60 5.83 3.10 3.57 4.11 4.14

Subject ID 9 10 11 12 13 14 15

MAE(◦) 4.51 4.34 7.79 6.78 4.40 2.49 2.01

RMSE(◦) 5.71 5.21 9.87 8.17 5.32 3.10 2.56

(a) Estimated and ground truth knee joint
angle of Subject 15.

(b) Drift issue in the knee joint angle esti-
mation on Subject 11.

Figure 4.2: 1D knee joint angle estimation results of the model-driven calibration-free
method.

by that even though the knee joint angle estimated based on linear acceleration com-

pensates for the drift issue, the error caused by drift cannot be fully eliminated.

Besides, the estimation accuracy tends to be low if the position vectors are estimated

solely based on gait data, because the homogeneous walking pattern has small vari-

ation, thus the optimization results tend to fall into the local minimum, leading to

less accurate knee joint angle estimation result.
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4.2.2 ResCoCo Performance

Overall ResCoCo performance Using the complete ResCoCo framework with

contrastive learning can yield accurate 3D knee joint angle estimation results with

high robustness towards I2S alignment and sensor placement variations. The 3D knee

joint angle estimation accuracy (MAE(◦)) of ResCoCo is 4.71◦, 3.14◦ and 5.10◦ on

sagittal, frontal, and transverse planes, using randomly placed sensor pair, and is

3.18◦, 3.08◦ and 4.12◦ using the same sensor pair as in the supervised training stage.

The 1D knee joint angle estimation accuracy (MAE(◦)) of the baseline model-driven

approach is 3.94◦ on the sagittal plane. Since ResCoCo does not need calibration

procedures, physical constraints or a predefined anatomical model and can accurately

estimate knee joint angle on three rotation planes, it is a better solution compared

to the model-driven approach. ResCoCo uses inertial data from one pair of IMUs as

the model input, which yields an economical and efficient input sensor configuration

compared to using single or six sensors as the model input.

Optimal feature extractor network architecture To determine the best-

performing architecture of the feature extractor network, it is combined with linear

head, trained and tested directly with raw inertial data input and raw ground truth

knee joint angle. The raw inertial data is recorded from DisThShim and RTibShim

sensors, as shown in Fig. 2.1. This training and testing scheme is similar to other

data-driven methods [34, 37, 60].

As induced in Section 3.2, the sequence length modifying layer discards part of

the output sequence estimated by bidirectional LSTM layers from incomplete context

and leaves the highly accurate part. To acquire the best output sequence length, the

sequence length modifying layer is investigated and the resulting 3D knee joint angle
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Figure 4.3: 3D knee joint angle MAE(◦) of the proposed neural network with different
estimation sequence length.

estimation accuracy is shown in Fig. 4.3. It can be observed that decreasing the esti-

mation sequence length moderately from 60 frames to 40 frames can efficiently lift the

estimation accuracy, while keeping the total estimation sequence length unchanged.

The average MAEs across all output sequences is illustrated in Fig. 4.4. The average

MAEs across all estimation sequences are flatter, compared to those in Fig. 3.3. It

shows that using the length shortening layer is beneficial for balancing estimation

accuracy across the whole output sequence. Therefore, a length shortening layer is

used in ResCoCo to modify the feature map length from 60 frames to 40 frames per

window.

To validate each component of the feature extractor network, an ablation study

is conducted, and the resulting 3D knee joint angle estimation accuracy is listed in

Table 4.2. Firstly the length shortening layer and residual block are removed from the

feature extractor network, leading to a plain ConvLSTM network. Then the residual

block is added to this baseline model and the resulting model is evaluated. It can be

observed that residual block can improve the knee joint angle estimation accuracy,

especially along the x-axis and y-axis. Lastly, the feature extractor network with
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Figure 4.4: Average MAE across 3D knee joint angle estimation sequences from the
feature extractor network and linear head.

both the residual block and length shortening layer is evaluated. It can be observed

that the length shortening layer leads to a large performance improvement, especially

on the transverse plane. The estimated and ground truth 3D knee joint angles are

visualized in Fig. 4.5.

Table 4.2: Influence of each component of ResCoCo on the 3D knee joint angle
estimation accuracy (MAE(◦)). The estimation accuracy of each axis is normalized
with the knee motion range on that axis and recorded in parenthesis.

x-axis y-axis z-axis

Plain ConvLSTM Network 3.54 (0.05) 2.32 (0.13) 3.60 (0.13)

+ Residual Block 3.42 (0.05) 2.28 (0.13) 3.90 (0.14)

+ Length Shortening Layer
+ Residual Block 3.23 (0.05) 2.10 (0.12) 2.88 (0.10)

Influence of contrastive learning To investigate the influence of contrastive

learning and the model robustness towards variation, the complete ResCoCo is tested.

This model is first trained under self-supervised training and then fine-tuned under

supervision, with raw inertial data recorded by DisThShim and RTibShim IMUs
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Figure 4.5: Ground truth and 3D knee joint angles estimated by ResCoCo without
contrastive learning.

as in Fig. 2.1. To evaluate the model robustness towards sensor placement and I2S

alignment variation, models are tested with inertial data from randomly placed sensor

pairs with random or real I2S alignment.

As proven in [56], the batch size in self-supervised training greatly influences the

model performance, because more data pairs are produced for comparison in each

batch when the batch size is larger. Different batch sizes in self-supervised training

are investigated and the resulting 3D knee joint angle estimation accuracy of ResCoCo

is shown in Fig. 4.6. It can be observed that the large batch size can lift the estimation

accuracy and the accuracy does not further increase after reaching the batch size of

256. Thus the batch size is set to 256.

The ResCoCo with or without contrastive learning is tested with randomly placed

sensor pairs and simulated/real I2S alignment. The result is listed in Table 4.3.

It can be observed that training the neural network without contrastive learning

makes the network overfitted to one specific sensor placement and have drastically

performance drop when the sensor placement is randomized. The 3D knee joint

angle estimation accuracy increases on three rotation axes after applying contrastive

learning in ResCoCo. Training the model with contrastive learning greatly improves
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Figure 4.6: 3D knee joint angle MAE (◦) of ResCoCo with different batch size in
self-supervised training. Models are tested with inertial data from randomly placed
sensor pair and real I2S alignment.

the model resistance towards sensor placement and I2S alignment variation.

To further analyze the influence of augmentation approaches on the robustness

of ResCoCo, two augmentation approaches are split and used separately in the self-

supervised training stage. The remaining training procedure and augmented dataset

size stay the same. The experiment results are listed in Table 4.3. Using sensor place-

ment randomization as the only augmentation method in the self-supervised training

stage leads to similar estimation accuracy as only using I2S alignment simulation

as the augmentation approach. Combining sensor placement randomization and I2S

alignment simulation leads to the best estimation accuracy and model robustness,

especially on the sagittal plane. Therefore, both augmentation approaches force the

model to learn robust representations and resist different kinds of variations. Com-

bining these two augmentation approaches leads to the best model performance and

robustness.

One of the augmentation components in contrastive learning, I2S alignment simu-

lation is to apply a random rotation onto the input acceleration and angular velocity.
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Table 4.3: Influence of augmentation methods in the contrastive learning on the 3D
knee joint angle estimation accuracy (MAE(◦)) of ResCoCo. The estimation accuracy
of each axis is normalized with the knee motion range on that axis and recorded in
the parenthesis.

and Random I2S Alignment
On Random Sensor Placement

and Real I2S Alignment
On Random Sensor Placement

x-axis y-axis z-axis x-axis y-axis z-axis

w/o CL
ResCoCo

(0.15)
10.12

(0.21)
3.90

(0.23)
6.22

(0.10)
7.01

(0.18)
3.28

(0.19)
5.19

Randomization in CL
Placement

ResCoCo with Sensor

(0.12)
8.06

(0.20)
3.55

(0.22)
5.93

(0.08)
5.37

(0.17)
3.14

(0.19)
5.22

Simulation in CL
Alignment

ResCoCo with I2S

(0.13)
8.73

(0.19)
3.38

(0.21)
5.88

(0.10)
6.81

(0.18)
3.17

(0.17)
4.61

Methods in CL
Augmentation

ResCoCo with Two

(0.08)
5.35

(0.18)
3.26

(0.20)
5.36

(0.07)
4.71

(0.17)
3.14

(0.19)
5.10

This random rotation is represented by extrinsic Euler angles, and its range is em-

pirically chosen between −60◦ and 60◦ on three rotation axes. The rotation range of

simulated I2S alignment has been modified and the estimation accuracy of resulting

models is as shown in 4.4. The resulting model estimation accuracy and generaliza-

tion ability do not have obvious improvement. The I2S alignment can be simulated

more accurately in future work than applying random rotation with the same range

on three rotation axes.

Rotation range of the random rotation applied onto I2S alignment is changed

and performance of resulting ResCoCo is listed in Table 4.4.

ResCoCo utilized two augmentation approaches, sensor placement randomization
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Table 4.4: 3D knee joint angle estimation accuracy (MAE(◦)) of ResCoCo with dif-
ferent rotation range of the random rotation in I2S alignment simulation. They are
tested on inertial data from random placed sensor pair and real I2S alignment.

Rotation Range x-axis y-axis z-axis

[−60◦, 60◦]
4.71
(0.07)

3.14
(0.17)

5.10
(0.19)

[−120◦, 120◦]
4.52
(0.07)

3.62
(0.20)

5.43
(0.20)

[−180◦, 180◦]
4.11
(0.06)

3.28
(0.18)

5.58
(0.20)

and I2S alignment simulation, in the self-supervised training stage. There exists an-

other way of using these two augmentation approaches, which is to directly add the

augmented data to the training dataset and train the neural network under supervi-

sion. The estimation accuracy of the resulting model is listed in Table 4.5. Directly

augmenting the training dataset leads to better estimation accuracy and model ro-

bustness towards variations. However, it is less data-efficient, because it requires

ground truth 3D knee joint angle label. The ground truth 3D knee joint angle is de-

rived from OMoCap system recordings, which is cumbersome to collect and process,

and requires expensive lab environment and expertise. ResCoCo only requires IMU

recordings from different placements, which is easier and cheaper to acquire.

It can be observed that generally the knee joint angle estimation accuracy of all

models is lower on the transverse and frontal planes compared to the estimation ac-

curacy on the sagittal plane. This may be caused by a variety of factors. First, the

ground truth knee joint angles in the transverse and frontal planes may themselves
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Table 4.5: Comparison of 3D knee joint angle estimation accuracy (MAE(◦)) of the
feature extractor network trained with augmented training dataset, and ResCoCo
with augmentation approaches embedded in the CL framework.

and Random I2S Alignment
On Random Sensor Placement

and Real I2S Alignment
On Random Sensor Placement

x-axis y-axis z-axis x-axis y-axis z-axis

Trained with
Augmented
Training Dataset

3.86
(0.06)

2.75
(0.15)

4.87
(0.18)

2.39
(0.04)

2.58
(0.14)

4.20
(0.15)

Augmentation
Method Embed-
ded in CL

5.35
(0.08)

3.26
(0.18)

5.36
(0.20)

4.71
(0.07)

3.14
(0.17)

5.10
(0.19)

have potentially lower accuracy than knee joint angles in the sagittal plane. For exam-

ple, even small misplacement of joint markers on the transverse plane (e.g., markers

placed anterior or posterior to the joint centre) can have large effects on transverse

plane angles (e.g., 10mm misplacement can result in nearly 8° of transverse plane er-

ror) [61, 62]. Therefore, knee marker misplacement may be minor and undetectable,

but still causes noticeable differences in knee joint angle errors, making it difficult

for data-driven models to estimate these angles. Additionally, knee joint rotation

patterns in the transverse and frontal planes have more inter-subject variations than

those on the sagittal plane, making them more difficult to model.

The 3D knee joint angle estimation accuracy of ResCoCo is different across sub-

jects. The estimation accuracy on the two test subjects is listed separately in Table

4.6. It can be observed that that inter-subject differences can greatly influence the

model estimation accuracy and robustness towards subject variation needs to be fur-

ther improved.
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Table 4.6: 3D knee joint angle estimation accuracy (MAE(◦)) of ResCoCo on different
subjects.

and Random I2S Alignment
On Random Sensor Placement

and Real I2S Alignment
On Random Sensor Placement

x-axis y-axis z-axis x-axis y-axis z-axis

Subject 14 4.99
(0.07)

3.41
(0.19)

4.65
(0.17)

4.42
(0.07)

3.69
(0.20)

5.05
(0.18)

Subject 15 5.58
(0.08)

3.12
(0.17)

7.33
(0.27)

5.05
(0.07)

2.63
(0.15)

6.03
(0.22)

Sensor Configuration In the experiments above, the input of ResCoCo in the

supervised training stage is inertial data recorded by a pair of IMUs placed on the

right tibia and distal thigh. The sensor number can be reduced or increased, and the

sensor pair can have a different placements. To investigate the most efficient input

sensor configuration, the input sensor number and placement are investigated.

Firstly, the two-sensor setting is investigated. The model input is inertial data

recorded by one pair of sensor, one on the shank and the other on the thigh. The

self-supervised training stage stays the same. For the supervised training stage, the

model input is inertial data recorded by one certain pair of sensor. There are three

shank sensors and three thigh sensors, leading to nine sensor placement combinations

in total. The 3D knee joint angle estimation accuracy of models with different sensor

pair placements is listed in Table 4.7. All two-sensor models obtain similarly good

estimation results. Using IMUs on the right tibia and the distal thigh as the model

input in the supervised training stage leads to the best 3D knee joint angle estimation

accuracy with a MAE of 4.71◦, 3.14◦, 5.10◦ in the sagittal, frontal and transverse

planes, respectively.
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Table 4.7: Influence of sensor placement on the 3D knee joint angle estimation accu-
racy (MAE(◦)) with inertial data from two sensors as the model input. The estima-
tion accuracy of each axis is normalized with the knee motion range on that axis and
recorded in the parenthesis.

Placement
Sensor

and Random I2S Alignment
On Random Sensor Placement

and Real I2S Alignment
On Random Sensor Placement

x-axis y-axis z-axis x-axis y-axis z-axis

RTib
DisTh 5.35

(0.08)
3.26
(0.18)

5.36
(0.20)

4.71
(0.07)

3.14
(0.17)

5.10
(0.19)

RTib
AntTh 5.20

(0.08)
3.27
(0.18)

5.77
(0.21)

4.89
(0.07)

3.37
(0.19)

5.89
(0.22)

RTib
ProxTh 5.71

(0.08)
3.63
(0.20)

5.86
(0.21)

5.58
(0.08)

3.39
(0.19)

5.78
(0.21)

DisTib
DisTh 5.26

(0.08)
3.31
(0.18)

5.37
(0.20)

3.88
(0.06)

3.37
(0.19)

5.18
(0.19)

DisTib
AntTh 5.33

(0.08)
3.39
(0.19)

5.75
(0.21)

5.01
(0.07)

3.34
(0.19)

6.21
(0.23)

DisTib
ProxTh 5.75

(0.09)
3.57
(0.20)

5.55
(0.20)

4.60
(0.07)

3.80
(0.21)

5.99
(0.22)

LatTib
DisTh 6.35

(0.09)
3.86
(0.21)

6.10
(0.22)

5.60
(0.08)

3.85
(0.21)

5.72
(0.21)

LatTib
AntTh 5.94

(0.09)
3.87
(0.21)

6.11
(0.22)

5.82
(0.08)

3.57
(0.20)

5.96
(0.22)

LatTib
ProxTh 6.86

(0.10)
3.47
(0.19)

5.89
(0.21)

6.17
(0.09)

3.55
(0.20)

5.82
(0.21)

SD 0.53 0.22 0.26 0.67 0.21 0.35

Secondly, the one-sensor setting is investigated. The model input is inertial data

recorded by one sensor either on the shank or thigh. During the self-supervised
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training stage, the I2S alignment simulation augmentation method remains the same.

For the sensor placement randomization part, the sensor is randomly drawn from the

six sensors and its recording is added to the training dataset for augmentation. The

supervised training stage stays the same, except inertial data from only one certain

sensor is used as the model input. The 3D knee joint angle estimation accuracy of the

resulting models is listed in 4.8. Using IMU on the distal thigh as the model input

in the supervised training stage gives the best estimation accuracy with a MAE of

8.11◦, 3.73◦, 5.73◦ in the sagittal, frontal, and transverse planes, respectively.

The standard deviation of 3D knee joint angle estimation error across all two-

sensor models is lower than the standard deviation of estimation error across all

one-sensor models. It can be concluded that sensor placement modification does

not lead to large performance change when the model takes in inertial data from

two sensors. The two-sensor models have higher estimation accuracy and robustness

towards input sensor placement variation. The reason can be that a pair of sensors

bring comparatively more abundant and efficient information than in the one-sensor

situation.

Lastly, the six-sensor setting is investigated. During the self-supervised training

stage, the I2S alignment simulation procedure stays the same. Three thigh sensors

and three shank sensors are selected in sensor placement randomization, each thigh

sensor is randomly drawn from the three thigh sensors and each shank sensor is

randomly drawn from the three shank sensors. The resulting inertial data is added to

the training dataset for augmentation. The supervised training stage stays the same,

except inertial data from all six sensors is used as the model input. The 3D knee joint

angle estimation accuracy of the resulting model is listed in Table 4.9.

38



M.Sc. Thesis - Xijian Lou McMaster - Computer Science

Table 4.8: Influence of sensor placement on the 3D knee joint angle estimation accu-
racy (MAE(◦)) with inertial data from one sensor as the model input. The estimation
accuracy of each axis is normalized with the knee motion range on that axis and
recorded in the parenthesis.

Placement
Sensor

and Random I2S Alignment
On Random Sensor Placement

and Real I2S Alignment
On Random Sensor Placement

x-axis y-axis z-axis x-axis y-axis z-axis

RTib 10.53
(0.16)

4.22
(0.23)

6.13
(0.22)

10.47
(0.16)

4.31
(0.24)

6.10
(0.22)

DisTib 10.74
(0.16)

4.81
(0.27)

6.71
(0.25)

10.45
(0.15)

4.83
(0.27)

6.69
(0.24)

LatTib 8.49
(0.13)

4.15
(0.23)

6.36
(0.23)

8.79
(0.13)

4.13
(0.23)

6.43
(0.24)

DisTh 9.53
(0.14)

3.89
(0.22)

6.21
(0.23)

8.11
(0.12)

3.73
(0.21)

5.73
(0.21)

AntTh 12.22
(0.18)

3.79
(0.21)

6.84
(0.25)

9.82
(0.15)

3.61
(0.20)

6.52
(0.24)

ProxTh 10.39
(0.15)

3.90
(0.22)

6.05
(0.22)

8.65
(0.13)

3.75
(0.21)

5.83
(0.21)

SD 1.14 0.34 0.29 0.91 0.42 0.36

The best-performing one-sensor model, two-sensor model and six-sensor model are

selected and their estimation accuracy is illustrated in Fig. 4.7. Using inertial data

from six IMUs yields the best knee joint angle estimation accuracy along three axes

with random sensor placement and real/random I2S alignment, while using one IMU

yields the worst estimation accuracy. To evaluate the statistical significance of the

superiority of six-sensor or two-sensor models, we further obtain the MAEs of the one-

sensor, two-sensor and six-sensor models through leave-of-one-subject experiments of

every subject in the dataset. The resulting MAEs are then used to estimate p-values
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Table 4.9: Influence of sensor placement on the 3D knee joint angle estimation accu-
racy (MAE(◦)) with inertial data from six sensors as the model input. The estima-
tion accuracy of each axis is normalized with the knee motion range on that axis and
recorded in the parenthesis.

x-axis y-axis z-axis

and Real I2S Alignment
On Random Sensor Placement 4.37

(0.06)
2.99
(0.17)

4.96
(0.18)

and Random I2S Alignment
On Random Sensor Placement 4.72

(0.07)
3.09
(0.17)

5.22
(0.19)

Figure 4.7: 3D knee joint angle MAE (◦) of ResCoCo with different input sensor
number. Models are tested with real I2S alignment and randomized sensor pair
placement. The error bars represent standard deviation.

from t-test. The result is listed in Table 4.10. It can be observed that the one-sensor

model is statistically superior than the two-sensor model in joint angle estimation

in the sagittal plane. In contrast, the differences between the one-sensor and two-

sensor models in frontal and transverse planes and those between the two-sensor and

six-sensor models in all planes are statistically insignificant.

The reason can be that models with one sensor or two sensors as the input tend

to have deficient information for 3D knee joint angle estimation and learn the homo-

geneity of gait patterns across healthy individuals and have worse resistance towards
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Table 4.10: P-values of t-test on subject-wise MAEs of different models.

x-axis y-axis z-axis

Two-Sensor Model
One-Sensor Model and

4.25× 10−6 0.40 0.28

Six-Sensor Model
Two-Sensor Model and 0.74 0.30 0.96

variation. However, the best two-sensor model has close performance compared to

the six-sensor model, which makes it an efficient and economical alternative. Another

phenomenon worth noticing is that models with different input sensor configurations

generally yield better estimation results using inertial data with real I2S alignment,

compared to using inertial signals with simulated I2S alignment. It shows that the

models perform better estimating inertial data with the familiar I2S alignment pattern

as in the training dataset, and potentially need better generalization ability towards

I2S alignment pattern shift.
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Chapter 5

Conclusion and Future Work

An IMU-based data-driven 3D joint angle estimation approach, namely ResCoCo,

is proposed in this study. It uses a ConvLSTM network as the backbone model, uti-

lizes residual block for network depth increase; estimation sequence length shorten-

ing layer to discard output sequence estimated from incomplete context; contrastive

learning to increase the robustness of extracted representation. Two augmentation

approaches are proposed in contrastive learning, sensor placement randomization and

I2S alignment simulation. ResCoCo is validated for 3D knee joint angle estimation

with the kinematics dataset WEVAL. It has been proven that the sequence shorten-

ing layer and residual block result in model estimation accuracy increase. Contrastive

learning is beneficial for model robustness improvement towards sensor placement and

I2S alignment variations. ResCoCo can be applied to other complex joints such as

the elbow and ankle and further applied to full-body human pose estimation.

Furthermore, the sensor configuration for the model input is investigated. It has

been found that using inertial data recorded by six sensors as the data source leads to

the best estimation result and model generalization ability, compared to using single
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or two IMUs. Using a pair of IMUs as the model input is an economic alternative

with good estimation accuracy and model robustness.

ResCoCo does not require predefined anatomical model, calibration procedure,

physical constraint, or data source other than IMU, and yields accurate 3D knee joint

angle estimation results, compared to its model-driven counterpart with the same

IMU configuration. Therefore, ResCoCo is an efficient and economical 3D knee joint

angle estimation approach than data-driven methods.

ResCoCo has only been validated on walking data of healthy subjects. Its good

performance might benefit from stereotypical gait movement. It potentially needs

further improvement in its generalization ability on different motions. ResCoCo has

only been validated on two subjects in most of the experiments. Further investigation

of estimation accuracy and generalization ability of ResCoCo across different subjects

is needed in the future.
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Appendix A

Appendix

A.1 Model-Driven Method

A.1.1 Methodology Details

To estimate the knee joint flexion/extension angle, one IMU placed on thigh and

another placed on shank are used and noted as p, q respectively. The inertial data

collected by IMUs includes 3D linear acceleration ap, aq and 3D angular velocity gp, gq.

To avoid the magnetic disturbances caused by ferromagnetic materials, magnetometer

recordings are not used. The inertial data is recorded in sensor local coordinate

frames. Knee flexion/extension angle α(t) at time t is estimated by fusing the angles

estimated by accelerometers αacc and gyroscopes αgyro.

α(t) = w1αacc(t) + (1− w1)αgyro(t) (A.1)
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where w1 is the weight coefficient, w1 ∈ [0, 1]. The gyroscope provides angular ve-

locity estimation with potential error caused by drift, while accelerometer does not

have drift error cased by integration, yet its readings are less accurate. To com-

pensate the aforementioned errors, fusing the measurements from accelerometer and

gyroscope theoretically provides better accuracy. It has been found that fusing the

measurements through weight yields good results.

Knee flexion/extension angle αgyro derived from gyroscope is estimated by the

integration of relative angular velocities of thigh and shank around the knee flex-

ion/extension axis X. Since the detected angular velocities are in the sensor frames,

they need to be projected to the axis x first.

αgyro(t) =

∫ t

0

(gp(∆t)Xp − gq(∆t)Xq)d∆t (A.2)

gs represents the angular velocity recorded by the shank IMU or thigh IMU, s ∈ {p, q}.

The axis vector Xp and Xq in the frames of the corresponding sensor are estimated

based on the hinge joint assumption. That is, the knee is assumed to be a hinge joint

in daily movement since the movements of adduction/abduction and internal/external

rotation are relatively small compared to flexion/extension. Therefore, the projections

of angular velocities to the joint planes should be congruent at any time. The joint

planes are vertical to the knee joint axis.

||gp(t)×Xp|| = ||gq(t)×Xq||,∀t (A.3)
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Xp and Xq are optimized with the objective shown in Equation A.4.

min
Xp,Xq

∑
t

(||gp(t)×Xq|| − ||gp(t)×Xq||)2 (A.4)

The direction of the axes could be determined based on prior knowledge of sensor

mounting. Based on the axes Xp and Xq, two local joint planes fp and fq could be

derived.

fs = {xs, ys}, s ∈ {p, q}

xs = Xs × V

ys = Xs × xs

(A.5)

where V could be any 3× 1 vector that is not paralleled with Xp and Xq. fp and fq

show the orientations of the knee in the sensor frame.

Knee flexion/extension angle derived from accelerometer αacc is estimated by the

relative angles between accelerations aPp and aPq of the knee joints in the local plane

frames fp and fq.

αacc(t) = arccos
aPp

T · aPq
||app|| · ||apq||

(A.6)

To estimate aPp and aPq , the acceleration vectors of the knee joint is estimated first.

Then, they are projected to the joint planes in each local frame.

Sensor acceleration could be taken as the sum of the knee joint center acceleration

and acceleration due to the rotation of one sensor around the knee joint center.

Therefore, the knee joint acceleration could be estimated based on Equation A.7.

aks(t) = as(t)− gs(t)× (gs(t)× rs)− ġs(t)× rs, s ∈ {p, q} (A.7)
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where aks(t) denotes the knee joint acceleration in sensor frame p or q. ġs is the first

order derivative of the angular velocity. rs is the vector pointing to the sensor from

the knee joint center. rs is estimated through optimization. Then aks(t) is projected

to the local joint plane as shown in Equation A.8.

aPs (t) = [xT
s · aks(t), yTs · aks(t)]T (A.8)

aPs (t) is the knee joint acceleration w.r.t fp and fq. Thus the differential orientation

between aPp (t) and aPq (t) in Equation A.6 represents the angle between the thigh and

the shank at time t, given there is no relative movement between sensors and the

body segments.

To estimate ri in Equation A.7, the optimization objective is formulated as follow:

min
rp,rq

∑
t

(||akp(t)|| − ||akq(t)||)2 (A.9)
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