
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SIMULATION OF SOLUTE TRANSPORT IN FRACTURED AQUIFERS 

 

 

 

 

 

 

 



i 

 

 

 

 

 

 

 

 

 

DEVELOPMENT OF SOLUTIONS FOR RAPID SIMULATION OF SOLUTE 

TRANSPORT IN FRACTURED AQUIFERS 

 

 

 

 

 

 

By MOHAMED MAHMOUD KHAFAGY, B.SC., M.SC. 

 

 

 

 

 

 

A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the 

Requirements for the Degree Doctor of Philosophy 

 

 

 

McMaster University © Copyright by Mohamed Khafagy, October 2022 

 

 

 

 



ii 

 

 

 

 

 

 

 

McMaster University DOCTOR OF PHILOSOPHY (2022) Hamilton, Ontario (Civil 

Engineering) 

 

 

 

 

TITLE: Development of Solutions for Rapid Simulation of Solute Transport in Fractured 

Aquifers 

AUTHOR: Mohamed Mahmoud Khafagy Mahmoud, B.Sc., M.Sc. (Cairo University) 

SUPERVISORS: Professor S. E. Dickson-Anderson and Professor W. El-Dakhakhni 

NUMBER OF PAGES: xxii, 191 

 

 

 



iii 

Lay Abstract 

Aquifer pollution by various contaminants is an issue of concern across Canada. It has been well-

established that fractured aquifers can be highly susceptible to contamination. Contaminants are 

primarily transported through fractures over a period of decades or longer; however, storage occurs 

in the surrounding rock matrix. Contaminant transport models are important tools for 

understanding field conditions and developing aquifer management and remediation strategies. 

Unfortunately, currently available modeling approaches either lack accuracy or require extensive 

computational resources when applied to field-scale problems. The goal of this study is to develop 

a suite of modeling tools that are accurate and efficient enough to capture solute transport processes 

in fractured aquifers occurring at the field scale. 
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Abstract 

Understanding the flow and transport of contaminants in fractured rocks play a fundamental role 

in geo-environmental problems since subsurface contamination poses a serious threat to human 

health and the environment. Therefore, it is imperative to understand solute transport in these 

environments; models are an important tool in the advancement of our understanding. Aquifers in 

which the flow pattern is dominated by a network of connected fractures present challenges with 

respect to modeling due to the high degree of heterogeneity in fracture density and geometry. The 

goal of this research is to develop a suite of modeling tools that are accurate, computationally 

stable, and efficient enough to simulate solute transport in complex, discrete fracture networks 

(DFNs). Four research objectives have been designed to achieve this goal: (1) develop a 

computationally efficient analytical model for simulating two-dimensional spatial and temporal 

solute transport in discrete fracture networks (DFNs), (2) develop a closed-form solution 

describing the classical advection-dispersion equation for simulating reactive transport in single, 

parallel-plate fractures under a range of conditions, (3) develop a numerical model (based on the 

closed-form solution developed in Objective 2) to simulate solute transport in small-scale (~350 

m × 350 m) discrete fracture networks considering mass exchange between the fracture and 

surrounding matrix, and (4) upscale the frameworks developed in Objectives 1 and 3 to develop 

an accurate and computationally efficient numerical model simulating solute transport in field-

scale fracture networks . The developed analytical model (Objective 1) provides a useful reference 

tool for the verification of numerical dual-porosity fracture network simulations. The other 

developed numerical approaches (Objectives 2, 3, and 4) advance solute transport behavior 

predictions in fractured environments as they are both simpler and more computationally efficient 

than currently adopted techniques, which is particularly important for simulating fracture networks 

at the macroscopic scale.  
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1 

Chapter 1: Introduction 

More than 50% of the global population relies on groundwater for their potable water supply, and 

30% rely on groundwater as their sole source of potable water (Döring, 2020). Increasing 

population and industrialization have resulted in increasing demands for energy and potable water. 

Related activities, such as radioactive waste disposal (e.g., Alzamel et al., 2022; Karolytė et al., 

2022; Malkovsky and Yudintsev, 2022), percolation of leachate from landfills (e.g., Brunella and 

Raffaele, 2022; Javahershenas et al., 2022; Wang et al., 2022), salt water intrusion (e.g., Luo et 

al., 2022; Tran et al., 2022; Yuan et al., 2022), oil spills (e.g., Kalibatiene and Burmakova, 2022; 

Mallants et al., 2022; Scanlon et al., 2022), exploitation of petroleum (e.g., Demenev et al., 2022; 

Li et al., 2022; Wei et al., 2022), gas and geothermal reservoirs (e.g., Morais et al., 2022; Ryu et 

al., 2022; Zhao et al., 2022), and seepage from mining operations (e.g., Adamovic et al., 2022; 

Singha et al., 2022; Xu et al., 2022) have resulted in increasing groundwater contamination. As 

near-surface groundwater supplies become depleted or contaminated, deeper supplies, which often 

exist in fractured rock formations, must be accessed. As such, there is an increased interest in 

understanding the processes associated with groundwater flow and solute transport in fractured 

rock aquifers. 

The mechanisms governing solute transport in fractures include advection, dispersion, diffusion, 

sorption, radioactive decay, and a range of chemical and biological reactions. The principal 

mechanisms for solute transport in fractures are advection and hydrodynamic dispersion (due to 

high permeability and low storage capacity), whereas the surrounding matrix is primarily 
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accessible by diffusion (due to low permeability and high storage capacity) (Bishop et al., 2020; 

Chen and Zhan, 2018; Hyman et al., 2019; Zhou et al., 2017). Fractured aquifers are often very 

heterogeneous due to the sparse and irregular nature of discrete fractures, which impacts flow 

pathways and affects transport process. There have been extensive contributions to the literature 

over the last few decades regarding flow and solute transport through either single fractures or 

fracture networks through analytical solutions and numerical models. 

1.1. Analytical Solutions and Numerical Modelling 

Analytical models have gained much attention, as they can provide valuable insights into 

fundamental physical phenomena and are computationally efficient over a wide range of time 

scales required for performance assessments of radioactive waste repositories. Several analytical 

solutions have been developed to simulate solute transport in single fractures. Although analytical 

models have provided important insights into solute transport behavior in fractured rock, they lack 

in obtaining closed-form solutions for complex fracture network geometries, however they require 

numerical tools to obtain the transport solution. 

Numerical modelling is an efficient tool that approximates the process-based mathematical 

formulations that describe the coupled behavior of flow and transport in fracture network domain. 

In general, the numerical models for solute transport in fractured aquifer are based on different 

representation concepts of fractures and matrix in the aquifer (Bear, 1993; Neuman, 2005). These 

models are mathematical equations which translate the conceptual model that describes the main 

geological and hydrogeological features of the fractured porous media that control the fluid flow 
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and transport behaviours in the system (Hawez et al., 2021). The development of conceptual 

models for flow and transport in fractured rocks is a significant research problem for subsurface 

contamination (Lei et al., 2019). Many numerical models have been presented to describe fractured 

porous media, which can be divided into four categories: (1) stochastic continuum approaches 

(Hammond et al., 2014; Lichtner et al., 2015; Trinchero et al., 2017), (2) fracture continuum (FC) 

models (Ahmed et al., 2019; Dong et al., 2019; Jackson et al., 2000; Kalinina et al., 2014; Khoei 

et al., 2020; L. Wang et al., 2020), (3) discrete fracture network (DFN) models (Feng et al., 2020; 

Jiang et al., 2021; Yao et al., 2020), and (4) discrete fracture- matrix (DFM) models (Chen et al., 

2020; Flemisch et al., 2018; Sandve et al., 2012; Sweeney et al., 2020). 

1.1.1 Stochastic Continuum (SC) and Fracture Continuum (FC) Models 

SC and FC models represent the fracture network using an equivalent porous medium with 

different scales. The SC models state that both fracture and matrix are either in the same domain 

(single continuum approach) where fractured permeability is adapted by one continuum or are 

represented as two separate continuums (dual continuum approach), such as with dual porosity 

and dual permeability values. The fluctuation of permeability tensor in space and its orientation 

might vary, based on the fracture properties and network. On the other hand, FC models utilize a 

small scale finite difference discretization to preserve fracture network details for solving fluid 

flow by assigning a conductivity value for each grid cells representing the rock matrix and those 

representing fractures (Ahmed et al., 2019; Botros et al., 2008; Reeves et al., 2008). The 

conductivity of the cells representing the rock matrix is assigned orders of magnitude less than that 
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representing fractures which restricts fluid flow to the fracture cells (Reeves et al., 2008). 

In general, SC models are computationally less demanding than FC models; nonetheless, the effect 

of fracture geometry is not incorporated explicitly (i.e., fracture length, orientation, aperture 

variations, density), which reduces the accuracy of these models. However, FC models use a 

correction factor to preserve the total flux along the whole area of study (e.g., Ahmed et al., 2019). 

1.1.2 Discrete Fractures Models 

Unlike the continuum models, the discrete fractures models explicitly define the fractures 

individually and model the fractured media as interacting fractures and rock matrix. It is necessary 

to simulate flow and solute transport in the natural fracture network explicitly with respect to their 

geometry in order to capture the heterogeneity in the system of fractures. There are two types of 

discrete fractures models in the literature, the first is the discrete fracture network (DFN) model 

which neglects matrix diffusion, and the second is the discrete fracture-matrix (DFM) model which 

considers matrix diffusion. A body of literature has solved the coupled groundwater flow and 

solute transport in fractured rock based on the DFN approach in order to advance the understanding 

of the influence of various mechanisms affecting transport processes media. Several different 

numerical modelling approaches have been applied, including: intermediate mesh generation 

(Blessent et al., 2009); partial differential equation (PDE) based constraint optimization approach 

(Berrone et al., 2018); finite element method (Hu et al., 2022); random walk particle tracking 

(Khafagy et al., 2020); and time-domain particle tracking (Trinchero et al., 2020). In the DFM 

model, the fracture and the matrix are treated differently. After gridding, the fracture is represented 



 
 
 
Ph.D. Thesis - M. Khafagy; McMaster University - Civil Engineering. 

5 

as an element that is one dimension lower than the matrix element. For example, the fracture is 

represented as a polygon in 3D grids, whereas it is represented as a line segment in 2D grids. 

Irregular grids are used in DFM models to represent the randomness of fracture positions. In 

general, it is evident that, DFN modelling is a widely accepted concept for simulating groundwater 

flow and solute transport (Hawez et al., 2021). However, it becomes challenging to model a large-

scale fracture network and incorporate the influence of local aperture variations. On the other hand, 

the DEM model has a high accuracy of the results as the model captures most of the fracture 

properties. However, the computing cost is extremely high when the scale of the fracture network 

is large, which limits its application to small-scale simulations. In conclusion, different types of 

fracture network models demonstrate different strengths in various aspects, but each technique has 

its own drawbacks, as listed in Table 1-1 which provides a detailed comparison of distinct fracture 

network models. 

 

 



 
 
 
Ph.D. Thesis - M. Khafagy; McMaster University - Civil Engineering. 

6 

Table 1-1: Comparison between various numerical modelling of fractured rocks. 

Numerical Methods Input Parameters Advantages Limitations 

Continuum 

model 

Stochastic 

Properties of 

fractures and 

matrix. 

• Reduces geometrical complexity. 

• Suitable for large scale of application. 

• Uses deterministic or stochastic models. 

• Implicit generation of system. 

• Valid only for using REV. 

• Uniform value of porosity and 

permeability. 

Fracture 

Properties of 

fractures, fracture 

sets and matrix 

blocks. 

• Explicit generation of the effect of each 

individual fractures. 

• Conforming structured mesh. 

• Intensive computational time. 

• Correction factors are required in flow 

and solute transport simulations for 

accurate results. 

Discrete 

fractures model 

 

Without 

matrix 

diffusion 

Properties of 

fractures and 

fracture sets. 

• Explicit generation of the effect of each 

individual fracture. 

• Most popular and accurate numerical 

modelling. 

• Rock matrix is impermeable. 

• Intensive computational time. 

With 

matrix 

diffusion 

Properties of 

fractures, fracture 

sets and matrix 

blocks. 

• No need for fluid exchange term 

between fracture and matrix interface. 

• Explicit generation of the effect of each 

individual fracture. 

• Intensive computational time. 

• Conforming unstructured mesh. 

• Can found only by stochastic and 

probabilistic models. 
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1.2. Research Objectives 

The goal of this research is to develop a suite of accurate and computationally stable modeling 

tools that overcome the limitations of current approaches to simulate solute transport in complex 

DFNs. Four research objectives have been designed to achieve this goal:  

1. Develop a computationally efficient analytical model to simulate two-dimensional spatial 

and temporal solute transport in discrete fracture networks (DFNs): A computationally 

efficient analytical network (AN) model is developed to simulate two-dimensional spatial and 

temporal distribution of a solute considering advection and hydrodynamic dispersion within the 

fractures, matrix diffusion, sorption onto the fracture walls and in the matrix, and first order 

decay for one constituent. 

2. Develop a closed-form solution to simulate reactive transport in single, parallel-plate 

fractures under a range of conditions: An accurate, closed-form data-driven solution is 

developed to predict solute transport in single, parallel-plate fractures as a function of the 

parameters that describe relevant physical and chemical processes. The MGGP model is 

employed to obtain an accurate relationship between the hydraulic, geological, and chemical 

parameters of the fracture-matrix system as inputs and an ensemble of breakthrough curves as 

outputs. The developed solution is substantially more computational efficiency than current 

methods (i.e., numerical and analytical approaches). 

3. Develop a numerical model (based on the closed-form solution developed in Objective 2) 

to simulate solute transport in small-scale (~40,000 m2) discrete fracture networks 
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considering mass exchange between the fracture and surrounding matrix: A numerical 

model is developed to predict solute transport in discrete fracture networks to provide an 

understanding of how to address the longitudinal diffusion in the matrix by employing fracture 

dispersivity correction factor to approximate the results that considers the 2-dimentional matrix 

diffusion. 

4. Upscale the frameworks developed in Objectives 1 and 3 to develop an accurate and 

computationally efficient numerical model simulating solute transport in field-scale 

fracture networks: The upscaled Fracture Network (UFN) model is developed to accurately 

capture solute transport processes occurring at the macro scale in saturated fracture networks. 

The developed Upscaled Fracture Network (UFN) model generates representative flow 

channels (FCs) employing random walk particle tracking (RWPT) to obtain the solute migration 

scheme in the micro scale DFN to achieve upscaling. 

1.3. Layout of the Dissertation 

The dissertation is organized as follows: 

Chapter (1): This chapter provides an introduction including a brief background on studies carried 

out on solute transport from the literature, problem definition, objectives of the study, and thesis 

outline. 

Chapter (2): This chapter provides a computationally efficient analytical network (AN) model for 

simulating solute transport in discrete fracture networks (DFNs). The AN model simulates two-

dimensional spatial and temporal solute distribution and considers the mechanisms of advection 
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and hydrodynamic dispersion within the fractures, matrix diffusion, sorption onto the fracture 

walls and in the matrix, and first order decay for one constituent. Previously developed analytical 

solutions for a single fracture are implemented in the developed model, and a transfer function 

approach is applied to extend these solutions to a DFN. Mass sharing at fracture intersections is 

calculated using the complete mixing and stream-tube methods. The AN model was verified 

against numerical models based on random walk methods for a range of properties in two fracture 

networks. The sensitivity of the mass sharing methods was investigated for Peclet numbers ranging 

from 𝑷𝒆 = 3×10-6 - 380. The AN model provides a reference tool for the verification of numerical 

dual-porosity fracture network simulations. 

Chapter (3): This chapter presents an approximate a solution of the classical advection-dispersion 

equation for reactive transport in single, parallel-plate fractures using multi-gene genetic 

programming approach. The approach is employed to obtain an accurate relationship between the 

hydraulic, geologic, and chemical parameters of the fracture-matrix system as inputs and an 

ensemble of breakthrough curves as outputs. This approach is simpler and computationally more 

efficient than currently adopted methods and therefore it advances solute transport behavior 

predictions especially when the simulation increases from that of a single fracture to a network. 

Chapter (4): This chapter discusses the development of a numerical model to simulate spatial and 

temporal solute transport in discrete fracture networks with implementing the mass exchange 

between the fracture and the surrounding matrix. The developed model considers three 

mechanisms: advection and dispersion along the fracture, molecular diffusion within the fracture 

and into the matrix, and adsorption within the matrix. The developed model predictions are 
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compared to those of an existing analytical model and a computational fluid dynamics (CFD) 

model employing Navier Stokes equations. The model will facilitate solute transport simulations 

in complex fracture networks as a result of the pronounced computational efficiency in predicting 

solute transport. 

Chapter (5): This chapter presents the development of an Upscaled Fracture Network (UFN) 

model employing random walk particle tracking (RWPT) in a DFN. The UFN model accurately 

captures solute transport processes occurring at the macroscopic scale in saturated fracture 

networks. The UFN model involves discretizing a complex fracture network into elementary 

volumes, within which both representative solute transport flow channels and their corresponding 

breakthrough curves were identified. This identified flow channels were then employed to 

construct the residence time at the macroscopic scale. The UFN model represents a significant 

advancement in simulating solute transport in complex, regional aquifers due to its computational 

efficiency, simple implementation, and high level of accuracy. 

Chapter (6): A summary of the developed models along with the different analyses conducted 

within the dissertation are presented, and the main contribution to the literature is listed. 

 

  



 
 
 
Ph.D. Thesis - M. Khafagy; McMaster University - Civil Engineering. 

11 

1.4. References 

Adamovic, D., Ishiyama, D., Kawaraya, H., Ogawa, Y., & Stevanovic, Z. (2022). Geochemical 

characteristics and estimation of groundwater pollution in catchment areas of Timok and Pek 

Rivers, Eastern Serbia: Determination of early-stage groundwater pollution in mining areas. 

Groundwater for Sustainable Development, 16(December 2021), 100719. 

https://doi.org/10.1016/j.gsd.2021.100719 

Ahmed, M. I., Abd-Elmegeed, M. A., & Hassan, A. E. (2019). Modelling transport in fractured 

media using the fracture continuum approach. Arabian Journal of Geosciences, 12(5). 

https://doi.org/10.1007/s12517-019-4314-3 

Alzamel, M., Haruna, S., & Fall, M. (2022). Saturated hydraulic conductivity of bentonite–sand 

barrier material for nuclear waste repository: effects of physical, mechanical thermal and 

chemical factors. Environmental Earth Sciences, 81(7), 1–13. 

https://doi.org/10.1007/s12665-022-10358-0 

Bear, J. (1993). Flow and Contaminant Transport in Fractured Rock. In Flow and Contaminant 

Transport in Fractured Rock. https://doi.org/10.1016/c2009-0-29127-6 

Berrone, S., Fidelibus, C., Pieraccini, S., Scialò, S., & Vicini, F. (2018). Unsteady advection-

diffusion simulations in complex Discrete Fracture Networks with an optimization approach. 

Journal of Hydrology, 566(September), 332–345. 

https://doi.org/10.1016/j.jhydrol.2018.09.031 

Bishop, P., Persaud, E., Levison, J., Parker, B., & Novakowski, K. (2020). Inferring flow pathways 

between bedrock boreholes using the hydraulic response to borehole liner installation. Journal 



 
 
 
Ph.D. Thesis - M. Khafagy; McMaster University - Civil Engineering. 

12 

of Hydrology, 580(May 2019), 124267. https://doi.org/10.1016/j.jhydrol.2019.124267 

Blessent, D., Therrien, R., & MacQuarrie, K. (2009). Coupling geological and numerical models 

to simulate groundwater flow and contaminant transport in fractured media. Computers and 

Geosciences, 35(9), 1897–1906. https://doi.org/10.1016/j.cageo.2008.12.008 

Botros, F. E., Hassan, A. E., Reeves, D. M., & Pohll, G. (2008). On mapping fracture networks 

onto continuum. Water Resources Research, 44(8), 1–17. 

https://doi.org/10.1029/2007WR006092 

Brunella, R., & Raffaele, B. (2022). Tritium as a tool to assess leachate contamination: An example 

from Conversano landfill (Southern Italy). Journal of Geochemical Exploration, 

235(November 2021), 106939. https://doi.org/10.1016/j.gexplo.2021.106939 

Chen, K., & Zhan, H. (2018). A Green’s function method for two-dimensional reactive solute 

transport in a parallel fracture-matrix system. Journal of Contaminant Hydrology, 213, 15–

21. https://doi.org/10.1016/j.jconhyd.2018.03.006 

Chen, Y., Wang, H., Wang, Y., & Ma, G. (2020). Numerical evaluation of a fracture acidizing 

treatment in a three-dimensional fractured carbonate reservoir. Journal of Natural Gas 

Science and Engineering, 81(May), 103440. https://doi.org/10.1016/j.jngse.2020.103440 

Demenev, A., Maksimovich, N., Khmurchik, V., Rogovskiy, G., Rogovskiy, A., & Baryshnikov, 

A. (2022). Field Test of In Situ Groundwater Treatment Applying Oxygen Diffusion and 

Bioaugmentation Methods in an Area with Sustained Total Petroleum Hydrocarbon (TPH) 

Contaminant Flow. Water, 14(2), 192. https://doi.org/10.3390/w14020192 

Dong, Z., Li, W., Lei, G., Wang, H., & Wang, C. (2019). Embedded discrete fracture modeling as 



 
 
 
Ph.D. Thesis - M. Khafagy; McMaster University - Civil Engineering. 

13 

a method to upscale permeability for fractured reservoirs. Energies, 12(5). 

https://doi.org/10.3390/en12050812 

Döring, S. (2020). Come rain, or come wells: How access to groundwater affects communal 

violence. Political Geography, 76(September 2019), 102073. 

https://doi.org/10.1016/j.polgeo.2019.102073 

Feng, S., Wang, H., Cui, Y., Ye, Y., Liu, Y., Li, X., Wang, H., & Yang, R. (2020). Fractal discrete 

fracture network model for the analysis of radon migration in fractured media. Computers 

and Geotechnics, 128(August), 103810. https://doi.org/10.1016/j.compgeo.2020.103810 

Flemisch, B., Berre, I., Boon, W., Fumagalli, A., Schwenck, N., Scotti, A., Stefansson, I., & 

Tatomir, A. (2018). Benchmarks for single-phase flow in fractured porous media. Advances 

in Water Resources, 111(January 2017), 239–258. 

https://doi.org/10.1016/j.advwatres.2017.10.036 

Hammond, G. E., Lichtner, P. C., & Mills, R. T. (2014). Evaluating the performance of parallel 

subsurface simulators: An illustrative example with PFLOTRAN. Water Resources Research, 

50(1), 208–228. https://doi.org/10.1002/2012WR013483 

Hawez, H. K., Sanaee, R., & Faisal, N. H. (2021). A critical review on coupled geomechanics and 

fluid flow in naturally fractured reservoirs. Journal of Natural Gas Science and Engineering, 

95(July), 104150. https://doi.org/10.1016/j.jngse.2021.104150 

Hu, Y., Xu, W., Zhan, L., Zou, L., & Chen, Y. (2022). Modeling of solute transport in a fracture-

matrix system with a three-dimensional discrete fracture network. Journal of Hydrology, 

605(September 2021), 127333. https://doi.org/10.1016/j.jhydrol.2021.127333 



 
 
 
Ph.D. Thesis - M. Khafagy; McMaster University - Civil Engineering. 

14 

Hyman, J. D., Rajaram, H., Srinivasan, S., Makedonska, N., Karra, S., Viswanathan, H., & 

Srinivasan, G. (2019). Matrix Diffusion in Fractured Media: New Insights Into Power Law 

Scaling of Breakthrough Curves. Geophysical Research Letters, 46(23), 13785–13795. 

https://doi.org/10.1029/2019GL085454 

Jackson, C. P., Hoch, A. R., & Todman, S. (2000). Self-consistency of a heterogeneous continuum 

porous medium representation of a fractured medium. Water Resources Research, 36(1), 

189–202. https://doi.org/10.1029/1999WR900249 

Javahershenas, M., Nabizadeh, R., Alimohammadi, M., & Mahvi, A. H. (2022). The effects of 

Lahijan landfill leachate on the quality of surface and groundwater resources. International 

Journal of Environmental Analytical Chemistry, 102(2), 558–574. 

https://doi.org/10.1080/03067319.2020.1724984 

Jiang, L., Liu, J., Liu, T., & Yang, D. (2021). Semi-analytical modeling of transient pressure 

behaviour for fractured horizontal wells in a tight formation with fractal-like discrete fracture 

network. Journal of Petroleum Science and Engineering, 197(September 2020), 107937. 

https://doi.org/10.1016/j.petrol.2020.107937 

Kalibatiene, D., & Burmakova, A. (2022). Fuzzy Model for Predicting Contamination of the 

Geological Environment During an Accidental Oil Spill. International Journal of Fuzzy 

Systems, 24(1), 425–439. https://doi.org/10.1007/s40815-021-01145-3 

Kalinina, E. A., Klise, K. A., McKenna, S. A., Hadgu, T., & Lowry, T. S. (2014). Applications of 

fractured continuum model to enhanced geothermal system heat extraction problems. 

SpringerPlus, 3(1), 110. https://doi.org/10.1186/2193-1801-3-110 



 
 
 
Ph.D. Thesis - M. Khafagy; McMaster University - Civil Engineering. 

15 

Karolytė, R., Warr, O., van Heerden, E., Flude, S., de Lange, F., Webb, S., Ballentine, C. J., & 

Sherwood Lollar, B. (2022). The role of porosity in H2/He production ratios in fracture fluids 

from the Witwatersrand Basin, South Africa. Chemical Geology, 595(March). 

https://doi.org/10.1016/j.chemgeo.2022.120788 

Khafagy, M. M., Abd-Elmegeed, M. A., & Hassan, A. E. (2020). Simulation of reactive transport 

in fractured geologic media using random-walk particle tracking method. Arabian Journal of 

Geosciences, 13(2). https://doi.org/10.1007/s12517-019-4952-5 

Khoei, A. R., Salehi Sichani, A., & Hosseini, N. (2020). Modeling of reactive acid transport in 

fractured porous media with the Extended–FEM based on Darcy-Brinkman-Forchheimer 

framework. Computers and Geotechnics, 128(July), 103778. 

https://doi.org/10.1016/j.compgeo.2020.103778 

Lei, G., Liao, Q., & Zhang, D. (2019). A new analytical model for flow in acidized fractured-

vuggy porous media. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-

44802-2 

Li, R., Xiao, X., Zhao, Y., Tu, B., & Zhu, X. (2022). Characteristics of the Archaeal Communities 

in Petroleum Hydrocarbon-Contaminated Groundwater. Water, Air, & Soil Pollution, 233(3), 

69. https://doi.org/10.1007/s11270-022-05544-6 

Lichtner, P. C., Hammond, G. E., Lu, C., Karra, S., Bisht, G., Andre, B., Mills, R., & Kumar, J. 

(2015). PFLOTRAN User Manual: A Massively Parallel Reactive Flow and Transport Model 

for Describing Surface and Subsurface Processes. https://doi.org/10.2172/1168703 

Luo, M., Zhang, Y., Li, H., Hu, W., Xiao, K., Yu, S., Zheng, C., & Wang, X. (2022). Pollution 



 
 
 
Ph.D. Thesis - M. Khafagy; McMaster University - Civil Engineering. 

16 

assessment and sources of dissolved heavy metals in coastal water of a highly urbanized 

coastal area: The role of groundwater discharge. Science of the Total Environment, 807, 

151070. https://doi.org/10.1016/j.scitotenv.2021.151070 

Malkovsky, V., & Yudintsev, S. (2022). Numerical analysis of safety of a borehole repository for 

vitrified high-level nuclear waste. Progress in Nuclear Energy, 144(November 2021), 

104075. https://doi.org/10.1016/j.pnucene.2021.104075 

Mallants, D., Kirby, J., Golding, L., Apte, S., & Williams, M. (2022). Modelling the attenuation 

of flowback chemicals for a soil-groundwater pathway from a hypothetical spill accident. 

Science of the Total Environment, 806, 150686. 

https://doi.org/10.1016/j.scitotenv.2021.150686 

Morais, T. A., Ladd, B., Fleming, N. A., & Ryan, M. C. (2022). Free-Phase Gas Detection in 

Groundwater Wells via Water Pressure and Continuous Field Parameters. Groundwater, 

60(2), 262–274. https://doi.org/10.1111/gwat.13135 

Neuman, S. P. (2005). Trends, prospects and challenges in quantifying flow and transport through 

fractured rocks. Hydrogeology Journal, 13(1), 124–147. https://doi.org/10.1007/s10040-004-

0397-2 

Reeves, D. M., Benson, D. A., & Meerschaert, M. M. (2008). Transport of conservative solutes in 

simulated fracture networks: 1. Synthetic data generation. Water Resources Research, 44(5), 

1–10. https://doi.org/10.1029/2007WR006069 

Ryu, H. S., Kim, H., Lee, J. Y., Kaown, D., & Lee, K. K. (2022). Abnormal groundwater levels 

and microbial communities in the Pohang Enhanced Geothermal System site wells pre- and 



 
 
 
Ph.D. Thesis - M. Khafagy; McMaster University - Civil Engineering. 

17 

post-Mw 5.5 earthquake in Korea. Science of the Total Environment, 810, 152305. 

https://doi.org/10.1016/j.scitotenv.2021.152305 

Sandve, T. H., Berre, I., & Nordbotten, J. M. (2012). An efficient multi-point flux approximation 

method for Discrete Fracture-Matrix simulations. Journal of Computational Physics, 231(9), 

3784–3800. https://doi.org/10.1016/j.jcp.2012.01.023 

Scanlon, B. R., Reedy, R. C., & Wolaver, B. D. (2022). Assessing cumulative water impacts from 

shale oil and gas production: Permian Basin case study. Science of the Total Environment, 

811, 152306. https://doi.org/10.1016/j.scitotenv.2021.152306 

Singha, S. S., Singha, S., Pasupuleti, S., & Venkatesh, A. S. (2022). Knowledge-driven and 

machine learning decision tree-based approach for assessment of geospatial variation of 

groundwater quality around coal mining regions, Korba district, Central India. Environmental 

Earth Sciences, 81(2), 1–13. https://doi.org/10.1007/s12665-021-10147-1 

Sweeney, M. R., Gable, C. W., Karra, S., Stauffer, P. H., Pawar, R. J., & Hyman, J. D. (2020). 

Upscaled discrete fracture matrix model (UDFM): an octree-refined continuum 

representation of fractured porous media. Computational Geosciences, 24(1), 293–310. 

https://doi.org/10.1007/s10596-019-09921-9 

Tran, D. A., Tsujimura, M., Pham, H. V., Nguyen, T. V., Ho, L. H., Le Vo, P., Ha, K. Q., Dang, 

T. D., Van Binh, D., & Doan, Q. Van. (2022). Intensified salinity intrusion in coastal aquifers 

due to groundwater overextraction: a case study in the Mekong Delta, Vietnam. 

Environmental Science and Pollution Research, 29(6), 8996–9010. 

https://doi.org/10.1007/s11356-021-16282-3 



 
 
 
Ph.D. Thesis - M. Khafagy; McMaster University - Civil Engineering. 

18 

Trinchero, P., Painter, S. L., Poteri, A., Sanglas, J., Cvetkovic, V., & Selroos, J. O. (2020). A 

Particle-Based Conditional Sampling Scheme for the Simulation of Transport in Fractured 

Rock With Diffusion Into Stagnant Water and Rock Matrix. Water Resources Research, 

56(4), 1–18. https://doi.org/10.1029/2019WR026958 

Trinchero, P., Puigdomenech, I., Molinero, J., Ebrahimi, H., Gylling, B., Svensson, U., Bosbach, 

D., & Deissmann, G. (2017). Continuum-based DFN-consistent numerical framework for the 

simulation of oxygen infiltration into fractured crystalline rocks. Journal of Contaminant 

Hydrology, 200(February), 60–69. https://doi.org/10.1016/j.jconhyd.2017.04.001 

Wang, H., Jiang, Z., Xu, W., Wang, R., & Xie, W. (2022). Physical model test on deformation and 

failure mechanism of deposit landslide under gradient rainfall. Bulletin of Engineering 

Geology and the Environment, 81(1), 1–14. https://doi.org/10.1007/s10064-021-02566-y 

Wang, L., Mou, J., Mo, S., Zhao, B., Liu, Z., & Tian, X. (2020). Modeling matrix acidizing in 

naturally fractured carbonate reservoirs. Journal of Petroleum Science and Engineering, 

186(October 2019), 106685. https://doi.org/10.1016/j.petrol.2019.106685 

Wei, K. H., Ma, J., Xi, B. D., Yu, M. Da, Cui, J., Chen, B. L., Li, Y., Gu, Q. B., & He, X. S. (2022). 

Recent progress on in-situ chemical oxidation for the remediation of petroleum contaminated 

soil and groundwater. Journal of Hazardous Materials, 432(March), 128738. 

https://doi.org/10.1016/j.jhazmat.2022.128738 

Xu, J., Gui, H., Xia, Y., Zhao, H., Li, C., Chen, J., Wang, C., & Chen, C. (2022). Study on 

hydrogeochemical connection and water quality assessment of subsidence lake and shallow 

groundwater in Luling coal-mining area of the Huaibei coalfield, Eastern China. Water 



 
 
 
Ph.D. Thesis - M. Khafagy; McMaster University - Civil Engineering. 

19 

Supply, 22(2), 1735–1750. https://doi.org/10.2166/ws.2021.314 

Yao, W., Mostafa, S., Yang, Z., & Xu, G. (2020). Role of natural fractures characteristics on the 

performance of hydraulic fracturing for deep energy extraction using discrete fracture 

network (DFN). Engineering Fracture Mechanics, 230(February), 106962. 

https://doi.org/10.1016/j.engfracmech.2020.106962 

Yuan, J., Xu, F., & Zheng, T. (2022). The genesis of saline geothermal groundwater in the coastal 

area of Guangdong Province: Insight from hydrochemical and isotopic analysis. Journal of 

Hydrology, 605(August 2021), 127345. https://doi.org/10.1016/j.jhydrol.2021.127345 

Zhao, Z., Lin, Y.-F., Stumpf, A., & Wang, X. (2022). Assessing impacts of groundwater on 

geothermal heat exchangers: A review of methodology and modeling. Renewable Energy, 

190, 121–147. https://doi.org/10.1016/j.renene.2022.03.089 

Zhou, R., Zhan, H., & Chen, K. (2017). Reactive solute transport in a filled single fracture-matrix 

system under unilateral and radial flows. Advances in Water Resources, 104, 183–194. 

https://doi.org/10.1016/j.advwatres.2017.03.022 

 

  



 
 
 
Ph.D. Thesis - M. Khafagy; McMaster University - Civil Engineering. 

20 

Chapter 2: Analytical Model for Solute Transport in Discrete Fracture Networks: 2D 

Spatiotemporal Solution with Matrix Diffusion 

This chapter describes a computationally efficient analytical network (AN) model for simulating 

solute transport in discrete fracture networks (DFNs). The AN model simulates two-dimensional 

spatial and temporal solute distribution and considers the mechanisms of advection and 

hydrodynamic dispersion within the fractures, matrix diffusion, sorption onto the fracture walls 

and in the matrix, and first order decay for one constituent. Previously developed analytical 

solutions for a single fracture are implemented in the developed model, and a transfer function 

approach is applied to extend these solutions to a DFN. Mass sharing at fracture intersections is 

calculated using the complete mixing and stream-tube methods. The AN model was verified 

against numerical models based on random walk methods for a range of properties in two fracture 

networks. The sensitivity of the mass sharing methods was investigated for Peclet numbers ranging 

from 𝑷𝒆 = 3×10-6 - 380. The AN model provides a reference tool for the verification of numerical 

dual-porosity fracture network simulations. 
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Abstract 

A computationally efficient analytical network (AN) model simulating solute transport in 

discrete fracture networks (DFNs) is developed. The model simulates two-dimensional spatial and 

temporal distribution of a solute considering advection and hydrodynamic dispersion within the 

fractures, matrix diffusion, sorption onto the fracture walls and in the matrix, and first order decay 

for one constituent. The AN model is based on previously developed analytical solutions for a 

single fracture, and a transfer function approach is applied to extend these solutions to a DFN. 

Mass sharing at fracture intersections is calculated using the complete mixing and stream-tube 

methods. The AN model was verified against numerical models based on the time domain random 

walk and random walk particle tracking methods using two different fracture networks with a 

range of properties. In all cases, the AN model solutions showed excellent agreement with the 

numerical model solutions. The sensitivity of the mass sharing methods to the dominant transport 

mechanism (i.e., advection or diffusion) was investigated for Peclet numbers ranging from 𝑃𝑒 = 

3×10-6 - 380. Both mass sharing methods give the same results when the transport processes are 

advection-dominated and matrix diffusion is considered; however, attention must be paid to the 

mass sharing method employed under other conditions, particularly when the fracture density is 

small. The AN model was at least 97% more efficient than the numerical models used in this work, 

and this efficiency will only increase with network complexity. The AN model provides a useful 

reference tool for the verification of numerical dual-porosity fracture network simulations. 

Key words: solute transport, discrete fracture network, matrix diffusion, dual porosity, analytical model  
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2.1. Introduction 

More than 50% of the global population relies on groundwater for their potable water supply, and 

30% rely on groundwater as their sole source of potable water (Döring, 2020). As groundwater 

resources become increasingly compromised, there is a growing need to access deeper water 

resources that are often present in fractured bedrock formations. As a result, the dependency on 

fractured rock aquifers as a primary water supply is increasing (Bondu et al. 2016; Marshall et al. 

2019; Dippenaar, van Rooy, and Diamond 2019; Rao and Latha 2019; Bishop et al. 2020). 

However, these aquifers are also vulnerable to contamination as fractures represent particularly 

effective pathways for solute transport due to their high permeabilities relative to the surrounding 

rock matrix (Frampton et al. 2019). While mathematical modeling facilitates the development of 

effective management and monitoring strategies needed to protect groundwater supplies (Thakur 

et al., 2020), the strong heterogeneities in fractured rock aquifers have made it challenging to 

develop accurate solute transport models in these environments (Tsang et al. 2015). For example, 

safety assessments of deep geological repositories (DGRs) for nuclear waste storage rely on the 

earliest arrival time of radioactive contamination, requiring long-term prediction of low-

concentration radionuclide migration. The earliest arrival time is sensitive to the heterogeneity of 

the system, which can only be reflected in modeling approaches that describe as much as possible 

of the aquifer features (i.e., explicit fractures and their orientations) and therefore preserve the 

properties of the flow pathway. Given this, a significant body of research has emerged over the 

past four decades focused on improving our understanding of solute transport in fractured media 

(Trinchero et al., 2020). Despite this, groundwater flow and solute transport in fractured aquifers 
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have been identified among the most significant groundwater knowledge gaps in Canada (Jarrahi 

et al. 2019). There is a need to address this gap given the prevalence of these aquifers (e.g., 70% 

of the regional aquifers in Canada exist in fractured rock formations (Rivera, 2005)), and our 

increasing reliance on them (Bondu et al. 2018). 

The development of accurate transport models in fractured media is based on considering the 

mechanisms occurring within the fracture itself, as well as interactions between the fracture and 

surrounding stagnant zones (matrix). The dominant processes within the fracture include 

advection, dispersion, adsorption, and growth/decay, all of which are described by the classical 

advection-dispersion equation (ADE). However, solutes may also diffuse into the surrounding 

matrix (i.e., matrix diffusion) within which adsorption or decay may occur, and which often has 

large storage capacities. 

Several analytical solutions have been developed to simulate solute transport in a single fracture 

with smooth, parallel plate walls. These models use mechanical dispersion (i.e., resulting from 

spatial velocity variations and diffusion) to represent spreading caused by the Poiseuille velocity 

distribution and non-uniform flow (e.g., Bear 1972; Sudicky and Frind 1982; Sudicky and Frind 

1984; Houseworth et al. 2013). Bear (1972) developed a simple analytical solution for solute 

transport in a single fracture with an impermeable matrix. Sudicky and Frind (1982) also developed 

an analytical solution for solute transport in a single fracture, but considered matrix diffusion. 

Specifically, their solution considers: i) advective transport along the fracture; ii) longitudinal 

mechanical dispersion within the fracture; iii) adsorption onto the fracture wall; iv) adsorption 
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within the matrix; v) first-order decay for a single constituent, vi) molecular diffusion within the 

fracture along the direction of flow, and vii) molecular diffusion between fracture and porous 

matrix. Sudicky and Frind (1984) extended the work of Sudicky and Frind (1982) to consider the 

transport of two constituents subject to first-order decay. 

Numerical approaches have also been employed to simulate solute transport in fractures; these 

models are categorized according to the approach—continuum and discrete fracture network 

(DFN). The continuum approach assumes that the fracture network scale and connectivity 

characteristics are such that the network can be approximated by a continuum. The DFN approach 

requires an explicit representation of the system, including: i) the fractures as discrete attributes 

with flow-carrying abilities, and, ii) the matrix with significant storage capacity (Long et al., 1982). 

While the DFN approach typically yields more accurate results since it considers the geometric 

complexity of the system (Cacas et al. 1990; Park et al. 2001; Frampton and Cvetkovic 2010, 2011; 

De Dreuzy, Méheust, and Pichot 2012; Lang, Paluszny, and Zimmerman 2014; Hyman et al. 2015, 

2016; Maillot et al. 2016; Somogyvári et al. 2017), the computational costs are extensive due to 

the large number of input parameters required to describe the properties of each fracture and 

intersection in the network. Additionally, specific geometries and fracture properties are rarely 

known in field-scale problems. 

To overcome this issue, different numerical approaches are commonly used to solve the ADE in 

fractures, including Eulerian, or grid-based, and Lagrangian, or particle tracking. The most 

common Lagrangian approach is the random walk particle tracking (RWPT) method, which 
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represents the solute mass with a large number of particles. At each time step, each particle 

experiences different displacements comprised of a deterministic component (representing 

advection) and a stochastic component (representing dispersion). The number of particles used 

controls the accuracy of the solution, where an infinite number of particles results in the solution 

of the ADE. The time steps must be small enough such that the velocity and dispersion coefficients 

do not change significantly in consecutive time steps. The other common Lagrangian approach is 

the time domain random-walk (TDRW) method that was inspired by the Random Walk method. 

The TDRW method calculates the solute breakthrough curve (BTC) at a given point based on the 

difference in residence times of each particle within the fracture (Cvetkovic et al. 2014; Bodin 

2015; Roubinet et al. 2017). Trinchero et al. (2020) presented a flexible algorithm based on TDRW 

to simulate solute transport in single fractures with diffusion into stagnant zones and the 

surrounding matrix. This algorithm is based on a stepwise Monte Carlo sampling that first samples 

the particle retention in the fracture conditioned with a related hydrodynamic control parameter. 

Second, it defines the total time in the rock matrix conditioned with a transport resistance value 

that accounts for the total time in fracture. Their approach is based on precomputed retention time 

distributions stored in look-up tables. At the network scale, Bodin et al. (2003) presented a 

numerical solution using the time domain random walk (TDRW) method in discrete fracture 

networks. Their solution is based on representing the fracture network by a set of parallel 

(elementary) paths for the transport of solute particles. The solution incorporates advection, 

longitudinal dispersion, sorption, and first-order decay, and was shown to be accurate at Peclet 

numbers up to 10, but inaccurate beyond this. Khafagy et al. (2020) implemented a 2D solution of 
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a DFN using RWPT to simulate matrix diffusion and reactive processes along the fracture walls 

and within the matrix. Their solution implemented matrix diffusion using particle transfer 

probabilities between the fracture and the matrix developed by Pan and Bodvarsson (2002) and 

Pan et al. (2005).  

The aforementioned random walk-based models are computationally intensive, particularly when 

matrix diffusion, adsorption, and decay are considered, as they require the release of a large 

number of particles to achieve accurate results. While accurate solutions under these conditions 

can be obtained using analytical methods, which are much less computationally intensive, these 

solutions are only available at the scale of a single fracture. To date, no analytical modeling scheme 

that includes both connectivity between fractures and their surrounding matrix has been reported 

in the literature. Furthermore, few numerical fracture network models have employed the transfer 

function approach (i.e., Bodin et al. 2003; Frampton and Cvetkovic 2011; Cherubini, Giasi, and 

Pastore 2014). This involves spitting the network into all possible elementary solute pathways to 

express solute transferred along each pathway (e.g., Bodin et al. 2003). However, this approach is 

only able to predict the breakthrough curve at the fracture outlet; it cannot provide the spatial 

distribution of solute within the network. Therefore, the goal of the current study is to develop an 

analytical network model (AN) for reactive solute transport in a two-dimensional fracture network 

that is able to predict both the effluent concentration profile and the spatial distribution of solute 

in the fracture network and surrounding matrix. The AN considers any fracture spacing and 

incorporates advection, mechanical dispersion, molecular diffusion within the fracture and into the 

matrix, adsorption on the fracture walls and within the matrix, and first-order decay.  
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2.2. Model Development 

The 2D AN model for fracture networks developed in this work is based on two analytical solutions 

for solute transport in a single, parallel plate fracture. Single fractures are assembled to form a 

network, and mass is partitioned at the intersections. The transfer function approach is applied to 

calculate the BTC on the downstream side of each intersection using mass sharing at the 

intersection as the inlet boundary condition.  

The AN model considers advection, hydrodynamic dispersion, sorption, radioactive decay, and 

matrix diffusion (Fig. 2-1), or a combination of these, and therefore implements two previously 

developed analytical solutions for solute transport in 1D fractures i.e., Bear (1972), and Sudicky 

and Frind (1982). Although both of these solutions consider the same transport mechanisms, the 

Sudicky and Frind (1982) solution requires the implementation of matrix diffusion while the Bear 

(1972) solution cannot simulate matrix diffusion. The relevant transport processes in a 1D fracture-

matrix system are described by two differential equations, describing the fracture and the matrix, 

respectively, coupled as follows: 

𝜕𝑐

𝜕𝑡
+

𝑣

𝑅

𝜕𝑐

𝜕𝑧
−

𝐷

𝑅

𝜕2𝑐

𝜕𝑧2
+ 𝜆𝑐 −

𝜃𝐷′

𝑏𝑅

𝜕𝑐′

𝜕𝑥
|

𝑥=𝑏

= 0 
(2-1) 

where 𝑧 [L] is the fracture length, 𝑥 [L] is the coordinate perpendicular to the fracture axis with the 

origin at the centerline of the fracture [L], 𝑣 [L/T] is groundwater velocity in the fracture, which 

can be impacted by fracture orientation, 2𝑏 [L] is the aperture width, 𝐷 [L2/T] is the hydrodynamic 

dispersion coefficient along the fracture, 𝐷′ [L2/T] is the diffusion coefficient in the porous matrix, 
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𝑅 [-] is the retardation coefficient, 𝜃 [-] is the matrix porosity, 𝑡 [T] is the time, and 𝜆 [T−1] is the 

first-order decay constant defined as: 

𝜆 =
𝑙𝑛 2

𝑡1/2
  

(2-2)  

where 𝑡1/2 [T] is the half-life of the solute. 

 

Fig. 2-1: Schematic of a single fracture illustrating the solute growth/decay and sorption 

processes. 

 

Bear (1972) and Sudicky and Frind (1982) proposed analytical solutions to Eq. (2-1). The details 

of the two analytical solutions are given in Appendix A. While the BTC resulting from Sudicky 

and Frind (1982) solution (Eq. (A.1.3)) is based on a constant concentration at the inlet boundary 

(Type 1), the resulting BTC must be converted to an equivalent discrete curve with an 
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instantaneous injection at the inlet boundary (Type 2) in order to apply the solute mass transfer 

approach in each fracture. This is achieved by numerically differentiating the resulting BTC as 

follows: 

𝐶𝐼 =
𝜕𝐶𝐶

𝜕𝑡
× 𝑑𝑡 (2-3) 

where 𝐶𝐼 [M/L3] is the concentration from the instantaneous injection BTC and 𝐶𝐶 [M/L3] is the 

concentration from the constant concentration BTC. The resulting BTC gives the solute 

concentration relative to its initial concentration. To solve solute transport as a function of mass 

concentration rather than mass injected, the discrete BTC obtained from Bear (1972) solution (Eq. 

(A.1.1)) is modified based on the relationship between the one-dimensional mass flux due to 

advection and the initial concentration (Fetter et al. 2018): 

𝐹𝑥 = 𝑣 𝜃𝑓 𝐶𝑜 (2-4) 

where 𝐹𝑥 [M/L2 ∙ T] is defined as the mass flux, and 𝜃𝑓 [-] is the porosity within the fracture (i.e., 

1). The solution developed by Bear (1972) (Eq. (A.1.1)) can then be modified to solve solute 

transport as a function of the relative concentration based on Eq. (2-4): 

𝐶

𝐶𝑜
=

𝑧

√4𝜋
𝐷
𝑅 𝑡3

𝑒𝑥𝑝 (−
(𝑧 −

𝑣
𝑅

𝑡)
2

4
𝐷
𝑅 𝑡

) 𝑒𝑥𝑝 (−𝜆𝑡) (2-5) 

 Eq. (2-5) gives the effluent BTC based on an instantaneous injection at inlet boundary, and can 

be converted to give the effluent BTC based on Type 1 boundary condition using Eq. (2-3). 
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The solute mass sharing at intersections is calculated using both the complete mixing (CM) method 

developed by Smith and Schwartz (1984) and the stream tube (ST) method developed by Endo et 

al. (1984). The CM method assumes that the residence time at the intersection is sufficient to allow 

spatial homogenization through molecular diffusion, and therefore solute concentrations in the 

downstream fractures are proportional to their discharges (Fig. 2-2a). Mass conservation at an 

intersection is calculated by: 

∑ 𝐶𝑖𝑄𝑖

𝑁

𝑖=1

= ∑ 𝐶𝑗𝑄𝑗

𝑀

𝑗=1

 (2-6) 

where the subscripts 𝑖 and 𝑗 represent the upstream and downstream fractures, respectively, 𝑁 and 

𝑀  represent the number of upstream and downstream fractures, respectively, and 𝑄𝑗  is the 

discharge in the downstream fracture 𝑗. The percent of the solute mass entering each downstream 

fracture is determined as follows: 

𝑃𝑘 =
𝑄𝑘

∑ 𝑄𝑗
𝑀
𝑗=1

 (2-7) 

where 𝑃𝑘  is the percent of solute mass from the upstream intersection entering a downstream 

fracture 𝑘. 
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Fig. 2-2: Schematic diagram illustrating mixing at intersections within a fracture 

network for (a) the CM method; and (b) the ST method. 

 

The ST method assumes that solute flows along streamlines into the downstream fractures, and 

the solution is homogenized within the downstream fracture through forced mixing (Fig. 2-2b). 

At the intersection, the solute is divided based on the mass percentage of the relative discharge 

between the upstream and downstream fractures: 

If 𝑄𝑖 ≤ 𝑄𝑗  {   
𝑃𝑖𝑗 = 1

𝑃𝑖𝑘 = 0
 (2-8𝑎) 

If 𝑄𝑖 > 𝑄𝑗  {   
𝑃𝑖𝑗 =

𝑄𝑗

𝑄𝑖

𝑃𝑖𝑘 =
𝑄𝑖−𝑄𝑗

𝑄𝑖

 (2-8𝑏) 
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where 𝑃𝑖𝑗 is the mass percentage from an upstream fracture 𝑖 entering its contiguous downstream 

fracture 𝑗, 𝑃𝑖𝑘 is the mass percentage from an upstream fracture 𝑖 entering the other downstream 

fracture 𝑘, and 𝑄𝑖 is the discharge through the upstream fracture 𝑖.  

The BTC at each upstream intersection is divided among the downstream fractures based on their 

corresponding mass percentage to calculate the influent concentration BTC for each downstream 

fracture. The final effluent BTC for the downstream fracture is then determined by numerically 

applying a transfer function approach between influent concentration BTCs (as calculated via mass 

sharing at the intersection) and the mass transfer probability of reaching the fracture outlet based 

on the pulse injection: 

𝐶𝑓𝑖𝑛𝑎𝑙(𝑡) = (𝐶1 ∗ 𝐶2)(𝑡) = ∫ 𝐶1(𝜏) ∙
𝑡

0

𝐶2(𝑡 − 𝜏)𝑑𝜏  (2-9) 

where 𝐶1 [M/L3] is the solute concentration at the fracture inlet at time 𝜏, 𝐶2 [-] is the mass transfer 

probability of reaching the fracture outlet shifted by 𝑡, and 𝐶𝑓𝑖𝑛𝑎𝑙(𝑡) [M/L3] is the solute 

concentration at the fracture outlet. 

The CM and ST mixing approaches were assessed by comparing their network effluent BTCs 

obtained under a range of Peclet numbers (𝑃𝑒), defined as follows (Zafarani and Detwiler, 2013): 

𝑃𝑒 =
𝑉∗2𝑏̅̅ ̅

𝐷∗
 (2-10) 

where 𝑉∗ [L/T] is the characteristic velocity at the intersection defined as 
�̅�

2𝑏̅̅̅̅  𝑊
, �̅� [L3/T] is the 
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average volumetric flow rate of the upstream fractures 1 and 2, and 2𝑏̅̅ ̅ [L] is the average upstream 

aperture size. The network 𝑃𝑒 was taken as the mean 𝑃𝑒 from each intersection.  

2.3. Model Verification 

Results from the AN model simulations are subsequently compared to those from TDRW (Bodin 

et al. 2003) and RWPT simulations (Khafagy et al. 2020). The TDRW model calculates the 

residence time of each particle in each fracture within an elementary path. The residence time for 

each particle in the elementary path is then determined by summing the residence time in each 

fracture within the path. The details of the TDRW model implementation are included in 

Supplementary file A. The RWPT model uses transfer probabilities to incorporate matrix diffusion 

and reactive processes between the aqueous and sorbed phases. The details of the RWPT model 

implementation are included in Supplementary file B. 

The efficiency of the developed AN model was demonstrated using two synthetic fracture 

networks. The first network, FN1, was presented by Bodin et al. (2003), and sits within a 

350  m  x  350 m square domain (Fig. 2-3a). It includes 123 fractures with two different 

orientations; 77 fractures are hydraulically active and 46 are dead-end fractures. There is a 1 m 

head difference between the west and east boundaries, with flow from west to east. The north and 

south boundaries represent no-flow boundaries. The second network, FN2, has a much higher 

fracture density and has the same domain size and boundary conditions as FN1 (Fig. 2-3b). FN2 

was generated using statistical distribution functions based on fracture density, orientation and 

length, and aperture size. The fracture density is 0.449 m/m2 and the network contains two equally 
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distributed orientation sets in the probability density – (40° - 50°) and (130° - 140°). There are 

12,884 hydraulically active fractures and 199 dead-end fractures in FN2. 

 

Fig. 2-3: Synthetic fracture networks for model verification. Solid lines represent 

hydraulically active fractures, while dashed lines represent dead-end fractures.  

 

Three verification cases were run, each with different transport processes (Table 2-1). The TDRW 

model was used to verify cases 1 and 2 since it can simulate decay, while the RWPT model was 

used to verify case 3 since it can simulate matrix diffusion. In all three cases, the solute was injected 

along the west boundary using a constant injection boundary condition, and the solute mass was 

divided between the inlet fractures based on the proportion of total flow, which was calculated 

using the cubic law. Table 2-1 shows the fracture network properties used in each verification 



 
 
 
Ph.D. Thesis - M. Khafagy; McMaster University - Civil Engineering. 

35 

case. There were 10,000 particles released in the numerical simulations for the FN1 and 100,000 

particles released in FN2, as more particles are required due to the higher fracture density in FN2. 

In Case 3, the flowrate range is 6𝑥10−10 − 4𝑥10−8 𝑚3/𝑠𝑒𝑐 resulting in the 𝑃𝑒 at the intersections 

ranging from 0.6 to 38 (𝑃�̅� =  18). 

Table 2-1: Properties of the DFN for the cases used in the verification. 

Case 

𝛼 

(m) 

2𝑏 (m) 

2𝐵 

(m) 

𝐷∗ 

(m2/sec) 

𝑡1/2 

(day) 

𝑅 𝑅’ 𝜃𝑚   

Mass 

Sharing 

Method 

FN 

1 

1 0.00025 

n/a 0 n/a 1, 4 0 0 n/a CM, ST 

1, 

2 

2 n/a 0 20, 40 1 0 0 n/a CM, ST 1 

3 1 1 x 10-9 n/a 1 

1, 2, 

3, 4 

0.1 0.25 CM 1 

 

2.4. Results and Discussion 

The effluent BTCs calculated by the AN model for Case 1 (Table 2-1) and a Type 1 boundary 

condition are plotted against those obtained from the TDRW model for both FN1 and FN2 (Fig. 

2-4a and Fig. 2-4b, respectively). The AN model results presented in Fig. 2-4 were calculated 

using both the CM and ST mass sharing methods. The results show excellent agreement between 

the AN model and the TDRW model for both FN1 and FN2. In FN1, the CM approach results in 
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slightly higher dispersion, with the solute mass reaching the east boundary approximately 15% 

earlier. The higher dispersion calculated by the CM method is due to the assumption of complete 

mixing within the intersection. This is in contrast to the ST method in which mass advects along 

streamlines and mixing occurs within the downstream fractures resulting in less dispersion. It is 

noteworthy that this phenomenon is not observable in FN2 as the large number of intersections in 

this network have a smoothing effect on dispersion. 

 

 

Fig. 2-4: BTCs for Case 1 (𝒕𝟏/𝟐 = n/a; 𝑹 = 1 or 4;  = 0; 𝑫∗ = 0 m2/sec) calculated using both 

CN and ST mass sharing methods in (a) FN1, and (b) FN2 with a Type 1 boundary 

condition. Lines represent and symbols represent AN and TDRW model simulations, 

respectively. 
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The effluent BTCs calculated by the AN model for Case 2 (Table 2-1) and a Type 1 boundary 

condition in FN1 are plotted against those obtained from the TDRW model in Fig. 2-5 for both the 

CM and ST methods of mass sharing at the intersections. These results highlight the impact of 

decay, and show excellent agreement between the AN and TDRW models for the range of half-

lives investigated. Similar to Case 1, these results show that the CM method results in slightly 

higher dispersion than the ST method, with arrival times approximately 15% earlier. Additionally, 

the ST method results in more decay than the CM method for solutes with the same half-life, 

resulting in approximately 9% less mass reaching the east boundary for 𝑡1/2 = 20 days. This 

discrepancy decreases as 𝑡1/2 increases, with approximately 2% less mass reaching the east 

boundary at 𝑡1/2 = 40 days. This is likely a result of the later arrival times associated with the ST 

method, allowing the solute more opportunity to decay. 
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Fig. 2-5: BTCs for Case 2 (𝒕𝟏/𝟐 = 20 or 40 days; 𝑹 = 1;  = 0; 𝑫∗ = 0 m2/sec) calculated 

using both CM and ST mass sharing methods in FN1 with a Type 1 boundary condition. 

Lines represent AN model and symbols represent TDRW model. 

 

The effluent BTCs calculated by the AN model for Case 3 (Table 2-1) and a Type 1 boundary 

condition in FN1 are plotted against those obtained from the RWPT model in Fig. 2-6 using the 

CM method of mass sharing at the intersections. The flowrate range is 6𝑥10−10 − 4𝑥10−8 m3/sec 

resulting in the 𝑃𝑒 at the intersections ranging from 0.6 to 38 (𝑃�̅� =  18). These results highlight 

the impacts of matrix diffusion and retardation within the matrix and show excellent agreement 

between the AN and RWPT models. 
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Fig. 2-6: BTCs for Case 3 (𝒕𝟏/𝟐 = n/a; 𝑹 = 1;  = 0.1; 𝑫∗ = 1 x 10-9 m2/sec) calculated using 

the CM mass sharing method in FN1 with a Type 1 boundary condition, and 𝑷𝒆
̅̅̅̅  = 18 at the 

network intersections. Lines and symbols represent AN and RWPT model simulations, 

respectively. 

 

The AN model is able to calculate the complete spatial and temporal distribution of mass in the 

fracture network. The BTCs calculated by the AN model in FN1 at intersections A and B are shown 

in Fig. 2-7 for Case 1 with a conservative tracer (Table 2-1), using the CM method of mass sharing 

at intersections, for both Type 1 and Type 2 boundary conditions. Two solute peaks are observed 

at both intersection A and B as each of these intersections have multiple upstream solute transport 

pathways. Additionally, intersection A experiences earlier mass arrival and a higher peak 
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concentration than intersection B. This is expected as dispersion increases with travel time and 

distance, and intersection B is located downstream of A; thus, the solute has experienced more 

dispersion by the time it arrives at B. 

 

Fig. 2-7: BTCs calculated for Case 1 (𝒕𝟏/𝟐 = n/a; 𝑹 = 1;  = 0; 𝑫∗ = 0 m2/sec) by the AN 

model at intersections A and B (see Fig. 2-3) using the CM mass sharing method in FN1 for 

(a) Type 1 and (b) Type 2 boundary conditions. 

 

The impact of 𝑃𝑒 on the mass sharing method applied at the intersections was investigated for a 

conservative tracer in FN1 under a Type 2 boundary condition both considering and excluding 

matrix diffusion (Fig. 2-8). At the low range, 𝑃𝑒 was varied between 3 × 10−6 − 2 × 10−4 at the 

intersections (𝑃�̅� =  9 × 10−5) by changing 𝑄 (3 × 10−13 − 2 × 10−11 m3/sec) such that the ratio 

(𝐷/𝐷∗) approached 1.0 (1 − 1.8; 𝐷∗ = 1 × 10−7 m2/sec) to ensure that diffusion dominated over 
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advection. When diffusion dominates (i.e., 𝑃𝑒 is small), the mass sharing method impacts the shape 

of the BTC regardless of the presence of matrix diffusion (Fig. 2-8a, b). Similar to case 1, the CM 

method produces slightly higher dispersion than the ST method and thus earlier arrival times and 

lower peak concentrations (for a pulse injection). These results support those of (Mourzenko et al., 

2002) who investigated the applicability of the CM and ST mass sharing methods at a single 

intersection for a range of 𝑃𝑒 in the absence of matrix diffusion. They also found differences 

between predictions based on the CM and ST mass sharing methods at low 𝑃𝑒, and concluded that 

the CM method is more accurate under these conditions. At the high range, 𝑃𝑒 was varied between 

6 − 380 at the intersections (𝑃�̅� =  178) by changing 𝑄 (6 × 10−10 − 4 × 10−8 m3/sec) such that 

the ratio (𝐷/𝐷∗) was much larger than 1.0 (2.5 × 104  − 1.5 × 106, 𝐷∗ = 1 × 10−10 m2/sec) to 

ensure that advection dominates over diffusion. When advection dominates (i.e., 𝑃𝑒 is high), the 

CM method causes slightly more dispersion than the ST method (Fig. 2-8c), but not to the degree 

that it does at low values of 𝑃𝑒 (i.e., Fig. 2-7a). Note that the differences between the BTCs in Fig. 

2-8c are also a result of different solute transport pathways associated with the CM and ST mass 

sharing methods due to the differences in mass distribution at the intersections. These results also 

agree with those of  (Mourzenko et al., 2002) who also observed significant differences between 

the CM and ST mass sharing methods at high 𝑃𝑒, and concluded that the ST method is more 

appropriate under these conditions. When matrix diffusion is considered at high 𝑃𝑒 (Fig. 2-8d), the 

impact of the mass sharing method on dispersion is more pronounced at early times (i.e., rising 

limb) when the mass has primarily experienced advection within the fractures; however, this 

difference is dampened over time as a result of matrix diffusion. 
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Fig. 2-8: BTCs calculated using the AN model for Case 1 (𝒕𝟏/𝟐 = n/a; 𝑹 = 1;  = 0.1; 𝑫∗ = 

𝟏 × 𝟏𝟎−𝟕 or 𝟏 × 𝟏𝟎−𝟏𝟎 m2/sec) using both the CM and ST mass sharing methods in FN1 

based on a Type 2 boundary conditions for (a) no matrix diffusion and 𝑷𝒆
̅̅̅̅  = 𝟗 × 𝟏𝟎−𝟓 at 

the intersections, (b) matrix diffusion and 𝑷𝒆
̅̅̅̅  = 𝟗 × 𝟏𝟎−𝟓 at the intersections, (c) no matrix 

diffusion and 𝑷𝒆
̅̅̅̅  = 𝟏𝟕𝟖 at the intersections, and (d) matrix diffusion and 𝑷𝒆

̅̅̅̅  = 𝟏𝟕𝟖 at the 

intersections. 
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The impact of the number of particles released on the convergence of the TDRW and RWPT 

models was investigated by comparing the effluent BTCs simulated by the AN model (Cases 1 

and 3 without adsorption (Table 2-1)) in FN1 against those obtained from the TDRW (Type 2 

boundary condition; CM mass sharing) and RWPT (Type 1 boundary condition; CM mass sharing) 

models with 10,000, 100,000, and 500,000 particles released (Fig. 2-9). The results show that, 

even in FN1 which is a relatively simple network, 10,000 particles are not sufficient to converge 

on the solution accurately. Note that the network and individual fracture parameters and conditions 

for the simulation shown in Fig. 2-9a are the same as those used by Bodin et al., (2003). 

 

Fig. 2-9: BTCs calculated using the CM mass sharing method in FN1 comparing AN 

simulations to TDRW and RWPT simulations with different numbers of particles released 

for (a) Case 1 with a Type 2 boundary condition (𝒕𝟏/𝟐 = n/a; 𝑹 = 1;  = 0; 𝑫∗ = 0 m2/sec) 

and (b) Case 3 with a Type 1 boundary condition (𝒕𝟏/𝟐 = n/a; 𝑹 = 1; 𝑹′ = 1;  = 0.1; 𝑫∗ = 1 x 

10-9 m2/sec).  
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The AN model arrived at a solution in approximately 1% and 3% of the time required for FN1 to 

arrive at solutions using the TDRW (disregarding matrix diffusion with 500,000 particles) and 

RWPT approaches (including matrix diffusion with 5,000 particles), respectively. This emphasizes 

the computational efficiency of the AN model, which will become more pronounced as the 

complexity of the fracture network increases and more solute particles are required for accurate 

results using the TDRW and RWPT approaches. 

2.5. Conclusion 

An analytical network (AN) model is developed to simulate solute transport in two-dimensional 

fracture networks considering advection and dispersion within the fracture, sorption on the fracture 

walls and within the matrix, matrix diffusion, and first-order decay. Mass sharing at intersections 

was handled using both the complete mixing (CM) and stream-tube (ST) methods, and the 

performance of these methods was compared under a range of 𝑃𝑒. The transfer function approach 

was applied to calculate solute transport in each fracture using the output from the mass sharing 

scheme as the upstream boundary condition. The AN model enables calculation of the complete 

spatial and temporal distribution of mass in the fracture network, and therefore a useful application 

is the simulation of transport behavior at multiple locations in heterogeneous fractured rock 

aquifers. Additionally, the AN model is the only analytical network model that considers fracture-

matrix interactions and can therefore be a useful reference model for the verification of numerical 

solutions in dual porosity systems. 

The AN model performed well when compared with simulations from TDRW and RWPT-based 
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numerical models in two different fracture networks – one with a high fracture density and one 

with a lower fracture density. The CM method results in slightly higher dispersion than the ST 

approach for the network with low fracture density due to the assumption of complete mixing at 

the intersection. While this phenomenon occurs consistently at each intersection, it is not 

observable in the densely fractured network as the large number of intersections in this network 

has a smoothing effect on dispersion. The ST mass sharing method results in more decay than the 

CM method for solutes with the same half-life. This is likely a result of the later arrival times 

associated with the ST method, allowing the solute more opportunity to decay.  

It was also found that when 𝑃𝑒 is small, the mass sharing method impacts the shape of the BTC 

regardless of the presence of matrix diffusion, with the CM method producing higher dispersion 

than the ST method. This result was also observed at high values of 𝑃𝑒 in the absence of matrix 

diffusion, although the differences between the CM and ST BTCs is less pronounced under these 

conditions. When matrix diffusion is considered at high 𝑃𝑒, the increased dispersion caused by the 

CM approach is only observable at early times, as the effect is dampened by matrix diffusion. 

Finally, the developed AN model arrived at a solution in FN1 network in less than 1% and 3% of 

the time required for the TDRW (without matrix diffusion) and RWPT (with matrix diffusion) 

approaches, respectively, emphasizing the computational efficiency of the AN model. The impact 

of this efficiency will become more apparent in larger, more complex networks. 
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Chapter 3: Multi-Gene Genetic Programming Solution for Simulating Solute 

Transport in Fractures 

This chapter presents an approximate solution of the classical advection-dispersion equation for 

reactive transport in single, parallel-plate fractures using multi-gene genetic programming 

approach. The approach is employed to obtain an accurate relationship between the hydraulic, 

geologic, and chemical parameters of the fracture-matrix system as inputs and an ensemble of 

breakthrough curves as outputs. This approach is simpler and computationally more efficient than 

currently adopted methods and therefore it advances solute transport behavior predictions 

especially when the simulation increases from that of a single fracture to a network. 
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Abstract 

In lieu of process-based models, evolutionary artificial intelligence techniques can yield accurate 

expressions describing complex phenomena. In the current study, a closed-form solution is 

developed to predict solute transport in a fracture-matrix system as a function of the parameters 

that describe relevant physical and chemical processes. The study adopts a multi-gene genetic 

programming approach to approximate a solution of the classical advection-dispersion equation 

for reactive transport in single, parallel-plate fractures. The approach is employed to obtain an 

accurate relationship between the hydraulic, geological, and chemical parameters of the fracture-

matrix system as inputs and an ensemble of breakthrough curves as outputs. Solutions generated 

by the developed model showed good agreement with those of corresponding analytical and 

numerical models. Computationally, the developed approach is highly efficient, particularly when 

compared with the analytical solution, which typically requires relatively fine discretization to 

calculate the long-tailed breakthrough curves. Therefore, future work could extend the developed 

model to simulate field-scale networks and include additional and more complex transport 

phenomena. Thus, this approach advances solute transport behavior predictions through being 

simpler and computationally more efficient than currently adopted techniques, which is important 

as the scale of simulation increases from that of a single fracture to a network. 

Keywords: Closed-form solution, Fractured rock, Matrix diffusion, Multi-Gene genetic 

programming, Solute transport   
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3.1. Introduction 

Improper handling and disposal of hazardous material have led to the contamination of thousands 

of aquifers globally, resulting in extensive dissolved plumes and the diffusion of dissolved 

compounds into low permeability zones (e.g., rock matrix) (Muskus and Falta, 2018). Once a 

compound enters a low permeability zone, the options for remedial strategies are limited and 

reverse diffusion results in plume persistence. Dual-porosity models are required to couple the 

fracture and matrix systems to account for the transfer of groundwater and solute mass between 

them. Such models are challenging as one source of porosity (i.e., fracture) provides the 

transmissive path for transport with little storage, and the other (i.e., matrix) provides most of the 

storage capacity but its conductivity is minimal (Trinchero et al., 2020; Trinchero and Iraola, 

2020). Neretnieks (1980) presented an analytical solution for solute transport in dual-porosity 

systems based on similar solutions for heat transport (Carslaw and Jaeger, 1959), which considers 

an infinite rock matrix and neglects longitudinal dispersion in the fracture. Subsequently, the 

solution was generalized by Tang et al. (1981) who implemented in-plane dispersion, and Sudicky 

and Frind (1982) who considered a finite rock matrix. More recently, other researchers (Cvetkovic, 

2010; Mahmoudzadeh et al., 2013; Neretnieks, 2006) extended these analytical solutions through 

the incorporation of additional mechanisms and phenomena. Neretnieks (2006) developed a 

mathematical model that accounts for diffusion from the flowing zone into a stagnant layer 

adjacent to the fracture through which solutes can diffuse into the rock matrix. In addition, they 

considered reversible diffusion in both the stagnant layer and the matrix. They conceptualized the 

fractures as both tube-like and slit-like channels, and considered the presence of intersecting 
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fractures, but they did not consider mixing at fracture intersections. These solutions are useful for 

modelling solute transport in complex three-dimensional networks that consist of a large number 

of fractures with different properties and widely varying flow rates. Mahmoudzadeh et al. (2013) 

extended Neretnieks' (2006) work through exploring various contributions of the matrix and 

stagnant layer, and their relative significance on solute transport in fractured rocks. Their analytical 

model accounted for diffusion between the fracture and an adjacent matrix composed of different 

geological layers (limited layered matrix) through implementing a stepped diffusion process from 

the flowing water through the stagnant layer and subsequently the adjacent matrix. The model can 

be extended to describe contaminant transport in heterogeneous fractured media consisting of 

different fracture and matrix characteristics. They found that in narrow fractures, the stagnant 

water layer and adjacent rock matrix may lead to considerable retardation. Their work 

recommended accounting for both the stagnant layer and at least two matrix layers when assessing 

the performance and safety of deep geological repositories for spent nuclear fuel, as the stagnant 

water layer allows the solutes to access a larger fracture surface from which to diffuse into the 

rock. Furthermore, equilibrium between the fracture and matrix was found to be reached more 

rapidly when the matrix is composed of layers of altered rock and coating as opposed to being 

intact since the former is more porous (Moreno and Crawford, 2009). Cvetkovic (2010) conducted 

short- and long-term tracer studies at the Äspö Hard Rock Laboratory site (Sweden) to examine 

the impact of heterogeneity of the rim zone (altered rock), which experienced decreasing porosity. 

They concluded that the macroscopic effects of the rim zone microstructure must be considered in 

order to extrapolate retention properties to larger scales and longer times (Neuman, 2005). 
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Matrix retention is often described using retention time distributions, which are in turn derived 

from the above discussed analytical solutions for transport in a single fracture (e.g., Cvetkovic, 

2010; Sudicky & Frind, 1982; Tang et al., 1981). These retention time distributions are typically 

precomputed and included in look-up tables. As these solutions consider additional mechanisms 

and phenomena under wider ranges of conditions, the lookup tables are more computationally 

intensive due to the large number of values in each table and thus require multivariate interpolation 

methods. It is for these reasons that numerical approaches are considered attractive alternatives to 

complex analytical solutions for simulating contaminant fate and transport phenomena (e.g. 

Hammond, Lichtner, and Rockhold 2011; Iraola et al. 2019; Stein et al. 2017). In this respect, 

random walk methods are particularly appealing as they are not vulnerable to numerical dispersion, 

they are able to accommodate complex model parameterizations, and they are numerically efficient 

(Khafagy et al., 2020; Noetinger et al., 2016; Painter et al., 2008). Some researchers have 

implemented mass retention in the matrix within random walk simulations using retention time 

distributions derived from analytical solutions for transport in a single fracture ( e.g., Cvetkovic, 

2010; Sudicky and Frind, 1982; Tang et al., 1981). However, process-based models of fractured 

systems (i.e., mass balance, advection, dispersion, chemical reactions) are generally 

computationally intensive. Moreover, dual-porosity systems are highly nonlinear due to the 

difference in time scales between the fracture and matrix. As a result, numerical simulation of 

dual-porosity systems requires even more extensive time and resources. 

Appropriately trained data-driven models have recently been proposed as an alternative approach 

to simulating complex physical and geochemical processes in fractured media (Esfahani and Datta, 
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2016). When validated, such models may substantially decrease computational time and improve 

feasibility and reliability of solute transport simulations. Such models can generally specify the 

relationship between input patterns (e.g., mass flux at system boundaries, hydraulic, geological, 

and chemical properties) and output patterns (i.e., solute spatiotemporal concentration variation 

within the system).  

Genetic Programming (GP) techniques, inspired by biological evolution, were first proposed by 

Koza (1994). Compared to other machine learning methods, the key advantage of GP lies in its 

ability to optimize both the variables and constants of the candidate models, while being free of 

the constraints imposed by initial model structure definitions. To reach a solution, GP initially 

generates a random population, using various functions and terminals assigned by the user. At each 

subsequent generation, a new population is created by selecting the best generation, defined by the 

most accurate relationship between the independent and dependent variables (Heydari et al., 2016; 

Sheikh Khozani et al., 2020) (i.e., best gene). GP is a robust method with several advantages over 

other commonly employed data-driven methods (e.g., artificial neural networks) (Hadi and 

Tombul, 2018), including: 1) generation of explicit expressions or “glass box” models, 2) 

automatic discovery of model structure utilizing given data, 3) adaptive, evolutionary ability to  

generate global solutions without becoming trapped in local optima, and 4) not requiring any 

specific prior domain knowledge. As such, GP has been applied widely in water resource-related 

research, including hydrogeologic (Aryafar et al., 2019; Cianflone et al., 2017; Esfahani and Datta, 

2016; Sadat-Noori et al., 2020), river stage (Ghorbani et al., 2018; Hadi and Tombul, 2018; Mehr 

and Gandomi, 2021), real-time wave forecasting (Kambekar and Deo, 2014), water quality (Jamei 
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et al., 2020), and rainfall-runoff modelling (Chadalawada et al., 2020; Heřmanovský et al., 2017). 

Multi-gene genetic programming (MGGP) advances GP through linearly combining low-depth 

GP blocks to improve the accuracy of solutions evolved by single-gene GP. Additionally, MGGP 

develops less complex models than single-gene GP as it uses fewer functions (Gandomi et al., 

2015). Although MGGP is being adopted quickly, its use in water resource applications is not yet 

ubiquitous. A recent review of GP applications in hydrology found that the MGGP variant was 

used in nine of 142 papers (Danandeh Mehr et al., 2018). 

The purpose of this study is to provide an accurate, closed-form data-driven solution (describing 

reactive solute transport in single, saturated fractures with matrix diffusion) that is substantially 

more computationally efficient than current methods (i.e., numerical and analytical approaches). 

MGGP is employed to obtain an accurate relationship between the coefficients of the lognormal 

distributions that describe an ensemble of breakthrough curves (BTC) as outputs (i.e., dependent 

variable), and the hydraulic, geological, and chemical parameters of the fracture-matrix system as 

inputs (i.e., independent variable). This more computationally efficient model will facilitate the 

simulation of complex, network-scale problems. 

3.2. Model Development 

A dataset was generated containing an ensemble of BTCs using an analytical solution developed 

by Sudicky and Frind (1982), based on a set of input parameters that span a specified range for the 

hydraulic, geological, and chemical properties. Subsequently, MGGP is used to generate a solution 

that accurately describe the relationship between the inputs (i.e., hydraulic, geological, and 
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chemical properties) and the outputs (i.e., parameters of the lognormal distribution describing the 

BTC ensemble). 

The analytical solution (Sudicky and Frind, 1982) simulates solute transport in one-dimensional 

fractures with a constant concentration at the inlet boundary. The solution considers advection, 

molecular diffusion and mechanical dispersion within the fracture, lateral matrix diffusion, 

adsorption within the matrix and on the fracture wall, and decay, and provides the BTCs at a 

specified distance from the injection source (see Appendix A for further details). 

3.2.1 Dataset 

The dataset consists of the BTCs calculated using Eq. (A.2.1) with the parameter values listed in 

Table 3-1, which provide a possible 352,800 combinations of hydraulic, geological, and chemical 

properties. The ranges of these properties are selected to represent the values most commonly 

observed in recent literature (as referenced in Table 3-1). The integrals in Eq. (A.2.1) were solved 

numerically using a scanning procedure to determine the numerically significant ranges of 𝜺 and 

𝛏. Subsequently, the midpoint rule was employed to discretize the integration function into 50,000 

and 1,000 connected rectangles for  𝜺  and 𝛏 , respectively, within the significant range. This 

approach is expected to result in more efficient integration with minimal loss in accuracy as each 

integral is only discretized within the significant range. However, even with this discretization 

procedure, it would take many years to conduct all of these simulations on a typical PC. As such, 

the Shared Hierarchical Academic Research Computing Network (SHARCNET) was used. The 
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input file for the script contains approximately 350 sub input files which are distributed amongst 

three computing clusters to generate the BTCs via parallel processing. 

Table 3-1: Range of values for fracture and solute properties. 

3𝑳  

(m) 

1𝑽 

(m/day) 

𝑫∗ = 1x10-n  

(m2/sec) 

2𝟐𝒃  

(µm) 

𝟐𝑩  

(m) 

3𝜶  

(m) 

4𝜽 

(-) 

1, 5, 10, 

50, 100, 

500, 

1000 

1, 5, 10, 

50, 100, 

500, 

1000, 

5000 

n = 12, 10, 8, 

6, 4, 3 

1, 5, 10, 50, 

100, 500, 

1000, 5000 

0.5, 1, 2, 

5, 10, 20 

0.1, 0.5, 

1, 5, 10 

0.005, 

0.01, 

0.05, 

0.1, 0.5 

1Based on Worthington and Foley, (2021); Guimerà and Carrera, (2000); Wang et al., (2018) 

2Based on Wang et al., (2020); Medici et al., (2019); Ren et al., (2018) 

3Based on Zech et al., (2015) 

4Based on Worthington and Foley, (2021); Zhou et al., (2007) 

where 𝑳 [𝐿] is the fracture length, 𝑽 [𝐿/𝑇] is groundwater velocity in the fracture, 𝑫∗ [𝐿2/𝑇] is the 

molecular diffusion coefficient for the solute in water, 𝟐𝒃 [𝐿] is the aperture width, 𝟐𝑩 [𝐿] is the 

distance between centerline of two fractures, 𝜶 [𝐿] is the dispersivity, and 𝜽 [-] is the matrix 

porosity. 

A lognormal distribution was fit to each BTC using non-linear least squares regression, and the 

best fitting parameters were calculated by minimizing the root mean square error (RMSE) between 

the analytical solution BTC and the corresponding lognormal distribution as follows: 
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𝑹𝑴𝑺𝑬 = √∑ (𝑪𝟏,𝒊 − 𝑪𝟐,𝒊)
𝟐𝒏

𝒊=𝟏

𝒏
 

(3-1) 

where 𝑪𝟏,𝒊 and 𝑪𝟐,𝒊 are the solute concentrations calculated at the fracture outlet at a specified time 

(𝒊), obtained from the analytical solution and the appropriate lognormal distribution, respectively, 

and 𝒏 is the number of concentration points on the curve used in this analysis. 

Matrix retardation is implemented in the PDF and CDF of the lognormal distribution by dividing 

the time, t, by the retardation coefficient (𝑹𝒎) (Khafagy et al. 2020; Zhang et al. 2012) as follows: 

PDF:     
1

𝑡

𝑅𝑚
𝜎√2𝜋

exp (−
[𝑙𝑛 (

𝑡

𝑅𝑚
)−𝜇]

2

2𝜎2 ) 
(3-2) 

CDF:     
1

2
+

1

2
erf (−

𝑙𝑛 (
𝑡

𝑅𝑚
)−𝜇

√2𝜎
) 

(3-3) 

where 𝝁 [ln (𝑇)] is the mean, 𝝈 [ln (𝑇)] is the standard deviation, and 𝒕 [𝑇] is the solute arrival 

time at the outlet. The matrix tortuosity (𝝉) is accounted for in the matrix diffusion coefficient, Dm, 

which is obtained by multiplying the molecular diffusion coefficient, 𝑫∗, by 𝝉.  

3.2.2 Multi-gene Genetic Programming 

Evolutionary Algorithms (EAs) are capable of approximately simulating complex models 

effectively using stochastic search methods. GP models are a class of EAs considers elements 

composed from either a function (tree) or terminal (leaf) set. Function sets may include arithmetic 

operators (+, -, ×, or ÷), mathematical functions (sin, cos, tanh, ln, etc.), Boolean operators (AND, 

OR, NOT, etc.), logical expressions (IF or THEN) or any other suitable functions defined by the 
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user, whereas terminal sets include variables, constants, or both (Fig. 3-1). The GP tree is randomly 

formed from chosen functions and terminals. The root node is functional and has one or more 

branches extending from it that end in terminal nodes. 

 

  

Fig. 3-1: Example of a multigene symbolic model. 

 

Initially, a set of GP trees are randomly generated using functions and terminals determined by the 

user. The number of GP trees initially generated forms the initial population size (initial GP gene) 

and is based on the maximum allowable number of genes as defined by the user. MGGP models 

provide solutions through a linear combination of the individual genes (sub-genes). A sub-gene is 

a mathematical solution linking some or all of the input and output parameters, and each sub-gene 

forms a part of the solution for its generation (Fig. 3-1). The multi-gene model shown in Fig. 3-1 

predicts an output variable (𝑦) using input variables 𝑥1, 𝑥2, and 𝑥3. This model structure contains 

non-linear terms (i.e., sine and square root) but is linear in terms of the coefficients 𝑐0, 𝑐1, and 𝑐2. 
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The linear combination of these genes is referred to as a multi-gene; the linear coefficients (weights 

of genes) and the model bias are obtained from the training data using ordinary least squares 

regression.  

The initial population of the MGGP model is generated from individuals that contain randomly 

evolved genes, and similar to the standard GP model, the MGGP population is subjected to 

evolution mechanisms (i.e., reproduction, crossover, mutation, and architecture-altering 

operations) to generate an enhanced generation. The evolved (improved) population replaces the 

existing population. These evolutionary mechanisms mimic biological evolution (natural 

selection) processes reflecting “survival of the fittest”. However, some special crossover 

mechanisms, in addition to the standard evolution mechanisms, are introduced to allow exchange 

of genes (mutation) between individuals. The mutation operation provides six methods for 

mutation between genes: (1) sub-tree mutation; (2) mutation of constants using an additive 

Gaussian perturbation; (3) substitution of a randomly selected input node with another randomly 

selected input node; (4) set a randomly selected constant to zero; (5) substitute a randomly selected 

constant with another randomly generated constant; and (6) set a randomly selected constant to 

one. The evolutionary mechanisms are grouped into categories referred to as events and set by the 

user in the form of probabilities, such that the sum of reproduction, crossover, and mutation 

probabilities is 1. The reader is referred to (Searson et al., 2010) for a more detailed explanation 

of MGGP and the evolutionary mechanisms. 

The fitness function describes the accuracy between the individual (input) and the target output 

and is evaluated by an objective function that is pre-defined by the user (e.g., r2, RMSE). GP 
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continues to produce new generations until it reaches a specified termination criterion based on 

either the desired fitness function or a maximum number of generations as defined by the user. It 

is important to consider the trade-off between accuracy and complexity in MGGP model 

development, which are influenced by the maximum depth of the GP tree that reflects the number 

of nodes, and the maximum allowable number of genes as specified by the user, respectively. Fig. 

3-2 shows the flowchart of the MGGP method for obtaining the best-fit model. 

 

 

Fig. 3-2: MGGP flowchart. 

 

Two MGGP models were developed in this work to establish a closed-form solution reflecting the 

relationships between the hydraulic, geological, and chemical parameters (i.e., input variables) and 

lognormal distribution parameters (i.e., mean (𝜇𝑜) and standard deviation (𝜎𝑜)) as output variables. 

In this study, the GPTIPS toolbox (Searson et al., 2010) for MATLAB (version 2021a)  was used 
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to develop the MGGP models based on the parameters and settings in Table 3-2. The data were 

classified into training (80%), validation (10%) and testing (10%) sets to avoid overfitting. K-fold 

cross-validation was conducted using the training and validation datasets with 500 realizations to 

ensure model robustness. In each of the 500 realizations, the training and validation sets (i.e., 90% 

of the dataset) are divided into nine folds such that eight folds (i.e., 80% of the dataset) are used 

to train the MGGP model and one fold (i.e., 10% of the dataset) is used to validate the trained 

model. The fitness of each model was determined based on the minimized objective function, 

which was the RMSE between the predicted and actual values of the lognormal distribution 

parameters with a termination value of 0.0002. If the objective function did not reach the 

termination value, the optimal model was achieved when the MGGP procedure reached 1000 

generations (Table 3-2). The “best” model from the 500 realizations was selected based on the 

lowest RMSE. This process was repeated until either the fitness termination value (0.0002) or the 

maximum number of generations (1000) was reached. The testing dataset was then used to select 

a single optimal MGGP model from the “best” models representing each generation to minimize 

individual effects of random data assignment to folds, and to ensure the model was not overfit. 

This optimal MGGP model is hereafter referred to as the single fracture solute transport (MGGP 

SF-ST) model. It must be noted that increasing the MGGP model accuracy, by specifying the 

population size and maximum number of generations, leads to increasing model complexity. As 

such, there is a trade-off between model accuracy and complexity, the latter of which is controlled 

by specifying the maximum number of genes and the tree depth. This trade-off was achieved herein 

by limiting both the maximum number of generations and population size to 1000 (for accuracy) 
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and the maximum tree depth and maximum number of genes to five and 10, respectively (to 

minimize model complexity). 

 

Table 3-2: Parameter and setting for best MGGP models. 

Parameter Setting 

Population size 1000 

Maximum number of 

generations 

1000 

Maximum number of genes 10 

Maximum tree depth 5 

Maximum sub-tree depth 2 

Selection type Tournament 

Tournament size 10 

Reproduction events 0.05 

Crossover events 0.85 

Mutation events 0.1 

Ephemeral random constants -100 to 100 

Function set +, -, ×, /, power, ln, sqrt, exp 
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The closed-form solution generated using MGGP will develop 𝝁𝒑 and 𝝈𝒑 that can be implemented 

in Eq. (3-2 ) and Eq. (3-3 ) to calculate the BTCs for pulse and constant solute injections, 

respectively. A sensitivity analysis was conducted using variance-based global sensitivity analysis 

to identify the level of influence of each input variable on the model by calculating their total 

sensitivity indices. The indices are calculated by generating a random value (uniformly distributed) 

for each variable within the specified range in the model and considering the contribution of the 

other variables on the simulation. Ten thousand samples are generated for each variable using a 

quasi-random Monte Carlo simulation to calculate the total sensitivity indices. 

The MGGP SF-ST model was verified against both the analytical solution (Eq. (A.2.1)) and the 

random walk particle tracking (RWPT) model described by Khafagy et al., (2020) with an 

instantaneous release of 10,000 particles at the upstream end of the fracture. The hydraulic, 

geological, and chemical properties used in the validation process are 𝑳 = 30 m; 𝑽 = 1 m/day; 𝑫∗ 

= 1×10-9 m2/sec; 𝟐𝒃 = 80 µm; 𝟐𝑩 = 1 m; 𝜶 = 1 m; 𝜽 = 0.1; 𝝉 = 1; 𝑹 = 1; and 𝑹𝒎 = 1, 2, 3, where 

𝑹 [-] is the retardation coefficient in the fracture. 

3.3. Results and Discussion 

The final dataset contained 101,740 BTCs of the potential 352,800 parameter combinations. While 

some of the BTCs generated required more refined discretization of the analytical solution (Eq. 

(A.2.1)) for the parameter combinations they represent, the computational time required for all 

352,800 possible parameter combinations exceeded the computational time available through 

SHARCNET. Thus, the remaining 251,060 BTCs were not generated. Nevertheless, the 101,740 
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BTCs that form the dataset are based on the full range of all parameters listed in Table 3-2, and 

thus the volume and range of data generated are sufficient to implement MGGP. In parallel to the 

dataset generation, it was important to determine which combinations of parameters required 

further discretization. As such, the parameter combinations for the BTCs in the final dataset were 

visualized through a network graph (i.e., nodes and edges) using the network analysis software 

Gephi (version 0.9.2) (Fig. 3-3). The nodes are identified as the hydraulic, geological, and 

chemical property values and the edges are connections between the nodes that form a unique set 

of parameter combinations representing a BTC. The line (edge) thickness between each two nodes 

in Fig. 3-3 is based on the weighted adjacency, and represents the number of BTCs generated 

based on combinations of the two nodes. For example, the properties 2𝐵 and 𝐿 = 1000m have a 

thinner edge than 2𝐵 and 𝐿 = 1m (Fig. 3-3) indicating fewer BTCs were generated using the 

former combination. The nodes are sized based on their degree centrality, which reflects the 

number of connections to other nodes. Properties with similar weighted adjacency and degree 

centrality for all values investigated were combined into a single node (i.e., 2𝐵, 𝛼, and 𝜃). Note 

that Fig. 3-3 shows only the links that all properties share with  2𝐵 , 𝛼 , and 𝜃  to maintain 

readability of the figure.  

 



 
 
 
Ph.D. Thesis - M. Khafagy; McMaster University - Civil Engineering. 

73 

 

Fig. 3-3: Network analysis based on weighted adjacency representing the final dataset. 

 

Fig. 3-3 shows that the weighted adjacency (i.e., number of BTCs generated) decreases with 

increasing velocity, increasing fracture length, decreasing molecular diffusion coefficient, and 

increasing aperture size. This is because the 𝜺 and 𝝃 curves (Appendix A), which describe the 

integrals in Eq. (A.2.1), tend to be more complex within these parameter ranges. This is 

demonstrated in Fig. 3-4, which shows the concentration vs. log(𝜺) curves for two select cases 

(Cases A and B) from the network analysis (Fig. 3-3), each discretized into 50,000 points. A log-



 
 
 
Ph.D. Thesis - M. Khafagy; McMaster University - Civil Engineering. 

74 

scale was chosen because the discretization is not the same among curves; it decreases with 

increasing 𝜺. The parameters in Case A were selected to reflect a combination with a low weighted 

adjacency, indicating that finer  discretization is typically required to generate an accurate 𝜺 curve 

for this parameter combination (𝐿 = 0.5 m; 𝑉 = 0.1 m/day; 𝐷∗ = 1×10-6 m2/sec; 2𝑏 = 0.001 µm; 

2𝐵 = 1 m; 𝛼 = 10 m; 𝜃 = 0.1; 𝜏 = 1; 𝑅 = 1; 𝑅𝑚 = 1). These parameter combinations also typically 

resulted in long-tailed breakthrough curves generally due to a very small diffusion coefficient 

(~<1×10-10 m2/sec) with a corresponding high velocity (~>10 m/day). The parameters in Case B 

were selected to reflect a high weighted adjacency, indicating that the discretization applied 

normally generated an accurate 𝜺 curve for this parameter combination (𝐿 = 50 m; 𝑉 = 5 m/day; 

𝐷∗ = 1×10-9 m2/sec; 2𝑏 = 10 µm; 2𝐵 = 1 m; 𝛼 = 1 m; 𝜃 = 0.1; 𝜏 = 1; 𝑅 = 1; 𝑅𝑚 = 1). As a result, 

Case B was generated for the dataset, but Case A was not as there were not sufficient computing 

resources to implement the additional discretization required for all similar cases in the dataset. 
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Fig. 3-4: Solute concentration vs log(𝜺) at 𝐭 = 𝟓 × 𝟏𝟎𝟒 years for case A and 𝐭 = 𝟒𝟓𝟎 years 

for case B. Case A represents a parameter combination for which the midpoint rule 

requires additional discretization (i.e., more than 50,000 points) to generate an accurate 

curve defining the 𝜺 integral. Case B represents a parameter combination for which the 

midpoint rule with the prescribed 50,000 discretization points can generate an accurate 

curve defining the 𝜺 integral. 
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The RMSE and r2 for the lognormal distribution describing each BTC generated for the dataset 

(i.e., 101,740 BTCs) exhibit excellent accuracy compared to the analytical solution. The median 

and highest RMSE are approximately 0.0051 and 0.023, respectively, and the median and lowest 

r2 values are approximately 0.9995 and 0.9932, respectively (Fig. 3-5). 

 

 

Fig. 3-5: Boxplot of (a) RMSE and (b) r2 for the generated BTCs using lognormal 

distribution. 

 

3.3.1 MGGP Model Structure and Evaluation 

MGGP was employed to develop a relationship considering various combinations of fracture 

properties (i.e., 𝐿 , 𝑉 , 𝐷∗ , 2𝑏 , 2𝐵 , 𝛼 , and 𝜃 ) and the parameters describing the lognormal 

distribution of the generated dataset (i.e., 𝜇𝑜  and 𝜎𝑜 ). The best set of variable combinations, 

represented by 𝑋1 to 𝑋7, was selected considering the most accurate relationship between those 
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combinations and the parameters describing the lognormal distribution of the generated dataset 

(i.e., 𝜇𝑜 and 𝜎𝑜). This relationship, hereafter referred to as the MGGP SF-ST model, is described 

by the expressions for 𝜇𝑝 and 𝜎𝑝 in in Eqs. (3-4) and (3-5): 

 

𝜇𝑝 = 0.0431 𝑋4 − 0.999 𝑋2 − 0.224 𝑋1 − 0.542 𝑒(𝑋7−𝑋1−𝑋3) − 0.267 𝑒−𝑒−𝑋1

+ 0.0431 𝑒−𝑋3
2

+ 0.267 𝑒𝑋7 − 0.903 √𝑋3 + 𝑋4 + 𝑒−𝑒−𝑋4

− 8.81 × 10−6 (𝑋5 + 𝑋1)2 − 0.812 √𝑋3 + 𝑒−𝑒−𝑋4

− 0.143 𝑒(−𝑋1−𝑋3) (2 𝑋1 + 2 𝑋3 + 𝑋3
2)

+ 0.174 √(𝑋7 − 𝑋1)2 + 𝑋1
2 + 𝑋3

2 + 0.0862 √𝑋1

− 0.402 √3 𝑋1 + 𝑒−𝑋1 + 𝑒−𝑋4 + 1.94 

(3-4) 

𝜎𝑝 = 1.16 𝑒
(−𝑋3

0.5 √𝑋4)
− 1.01 𝑒(−𝑋1−√𝑋3) + 0.947 𝑒−𝑒−𝑋4 − 0.0573 𝑋3 𝑙𝑛(√𝑋3)

− 0.00105 𝑋1 𝑒(−𝑋3) + 0.00209 𝑋4  𝑒(−𝑋3) + 1.31 √𝑋3 𝑒−𝑒−𝑋1

+ 3.07 √𝑒(−𝑋1) −  3.91 𝑒(−𝑋1)
1
4

+ 3.84 × 10−6 (𝑋4 − 𝑋1 + √𝑋6)(𝑋4 − 𝑋1 + 𝑋3
2)

+ 3.35 × 10−6 𝑋1 𝑋3 (𝑋1 − 𝑋3)(𝑋3 − 𝑒(−𝑋3)) + 1.05 

(3-5) 
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where: 

𝑿𝟏 =
𝑽 𝟐𝒃 𝟐𝑩

𝑳 𝑫∗ 𝜽
 

 

𝑿𝟐 = 𝐥𝐧 (
𝑽 𝟐𝒃 

𝑳 𝟐𝑩 𝜽
) 

 

𝑿𝟑 =
𝜶

𝑳
 𝑿𝟒 =

𝑫∗

𝑽 𝑳
 

𝑿𝟓 = 𝒍𝒏 (𝑳) 𝑋6 = 𝐷∗ 𝑋7 = 2𝑏  

where 𝑉  is in meters/year, 𝐿 is in meters, 𝐷∗ is in meters2/year, 2𝐵 is in meters, 2𝑏 is in meters, 

𝛼 is in meters. The effluent BTC represents normalized concentration versus years and is obtained 

by substituting Eqs. (3-4) and (3-5) into either Eq. (3-2) or Eq. (3-3) for pulse or constant 

injections, respectively. Note that the MGGP technique is empirical, and thus the resulting MGGP 

SF-ST model is not dimensionally consistent – attention must thus be paid to utilize the correct 

input and output units (e.g., Hadi and Tombul, 2018; Jamei et al., 2020; Yan et al., 2021). It is also 

worth noting the physical meanings of some variable combinations. Specifically, 𝑋1 represents a 

modified Péclet number (𝑃𝑒) for the matrix, 𝑋3 represents the unique correlation between 

dispersivity and fracture length that has been observed in lab experiments (e.g., Zech et al., 2015), 

and 𝑋4 is the reciprocal of 𝑃𝑒 in the fracture.  

Fig. 3-6 and Fig. 3-7 show the MGGP tree structures of each gene in the generated expressions 

for the mean and standard deviation, respectively. Each expression was developed from seven 

input variables (i.e., 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7), and has ten genes and a bias as shown in Eq. (3-4) 

(mean) and Eq. (3-5) (standard deviation). 
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Fig. 3-6: MGGP tree structure representing the expression for 𝝁𝒑. 

  

Fig. 3-7: MGGP tree structure representing the expression for 𝝈𝒑. 
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Table 3-3 shows the Pearson correlation coefficients (𝒓) between the input variables (𝑋1 to 𝑋7) 

and the coefficients of the lognormal distributions from the dataset (i.e., 𝜇𝑜 and 𝜎𝑜). 

 

Table 3-3: Pearson correlation coefficients (𝒓) between input and output parameters. 

Lognormal distributions 

coefficients 

𝑿𝟏 𝑿2 𝑿3 𝑿4 𝑿5 𝑿6 𝑿7 

Mean -0.18 -0.56 -0.21 -0.09 0.39 -0.19 -0.26 

Standard deviation 0.47 0.11 0.49 0.08 -0.51 -0.25 -0.04 

 

The best fitness RMSE values are plotted against MGGP generation for the expressions 

representing 𝜇𝑝 and 𝜎𝑝 (Fig. 3-8). This analysis shows that the model accuracy is not significantly 

improved beyond 290 and 220 generations for expressions representing 𝜇𝑝 and 𝜎𝑝, respectively. 

The selected models representing 𝜇𝑝  and 𝜎𝑝  have RMSEs of 0.0493 and 0.0425, respectively, 

which correspond to generations 870 and 842, respectively. While the selected model accuracies 

are slightly lower than those achieved by models with a larger number of generations, they were 

chosen to balance accuracy with complexity. 
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Fig. 3-8: Best fitness (RMSE) versus generation number for (a) 𝝁𝒑 and (b) 𝝈𝒑 components 

of the MGGP models. 

 

Fig. 3-9 compares the BTCs predicted by the MGGP SF-ST model (Eqs. (3-4) and (3-5)) to the 

observed “best fitting” lognormal BTCs for all 101,740 datapoints in the dataset. The observed 

and predicted 𝜇 and 𝜎 for the entire dataset achieved r2 = 0.9998 and r2 = 0.9974, respectively. 

Note that of the 101,740 data points, only ~18,847 (18%) have a 𝜎 greater than two. 
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Fig. 3-9: Observed versus predicted values of (a) 𝝁 and (b) 𝝈 of the lognormal distribution. 

Blue dots represent training and validation data, and red dots represent testing data. 

Points A, B, and C represent BTCs with overpredicted, well-predicted, and underpredicted 

𝝈, respectively. 

 

Fig. 3-9b shows that of the BTCs with 𝜎 greater than two, the MGGP SF-ST model both over- 

and under-estimates 𝜎 values. Values of 𝜎 greater than two are associated with long-tailed BTCs, 

for which the analytical solution typically requires additional discretization to achieve sufficient 

accuracy. In this dataset, curves with a large dispersion (i.e., >2) represent a small fraction of the 

total number of curves (~18%). Fig. 3-10 shows the specific BTCs associated with points A, B, 

and C in Fig. 3-9 to demonstrate the model sensitivity to the range of standard deviation residuals. 
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The comparison between the observed and predicted BTCs shows very good agreement, even for 

the cases in which 𝜎 is overestimated or underestimated (i.e., cases a and c, respectively). 

 

Fig. 3-10: Observed and predicted BTCs for (a) overestimated, (b) well-estimated, and (c) 

underestimated 𝝈 of the lognormal distribution (points A, B, and C, respectively, from Fig. 

3-9). 

 

The MGGP SF-ST model is assessed using non-parametric statistical tests at a 95% confidence 

level to compare the mean and variance of 𝜇𝑝 and 𝜎𝑝  with that of 𝜇𝑜  and 𝜎𝑜 . Specifically, the 

Wilcoxon rank-sum method (Bickel and Lehmann, 1975; Conover and Iman, 1980) evaluates the 

difference between the means of the observed and predicted parameters, whereas Levene’s test 

(Levene, 1960) evaluates the difference between the variances of the observed and predicted 

parameters.  The complete dataset (training, validation, and testing sets) is used for these statistical 

tests. With respect to the difference between the observed and predicted means, the p-values at the 

95% confidence level are above 0.05 (Table 3-4) indicating that the model error is insignificant. 
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The calculated p-values for difference between the variances are also above 0.05 at the 95% 

confidence level (Table 3-4), indicating that the MGGP SF-ST model variability is not 

significantly different from the observed data. Thus, the MGGP SF-ST model is able to predict the 

observed data at a 95% confidence level. 

 

Table 3-4: p-values for Wilcoxon rank-sum and Levene’s tests (95% confidence level). 

Comparison of observed and 

predicted lognormal distribution 

coefficients 

p-value 

(Wilcoxon rank-sum 

test) 

p-value 

(Levene’s test) 

Mean (𝝁𝒐, 𝝁𝒑)  0.471  0.809 

Standard Deviation (𝝈𝒐, 𝝈𝒑)  0.128  0.2 

 

A residual analysis was performed to ensure that the relationship between the genes and lognormal 

parameters is linear (i.e., the MGGP SF-ST model is linear) and the residuals are independent (Fig. 

3-11). The box and whisker plots showing residuals from the training and validation datasets and 

testing dataset show that they are all mostly clustered around zero and are approximately normally 

distributed, indicating that the model is independent of the residuals and therefore valid. The box 

and whisker plots also show that 𝜇 residuals from the testing dataset have a slightly higher standard 

deviation and median (e.g., standard deviation = 0.1044, median = 0.0303) than those from the 

training and validation datasets (e.g., standard deviation = 0.0542, median = - 0.005). However, 

these parameters are within an acceptable range for all datasets.  
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Fig. 3-11: Box and whisker plots of residuals for the lognormal distribution parameters (a) 

𝝁 and (b) 𝝈. 

 

Fig. 3-12 illustrates the influence of each input variable on the MGGP SF-ST model using the 

variance-based global sensitivity analysis. The results show that 𝑋1, 𝑋2, and 𝑋4 have the greatest 

impact on the 𝜇 expression, while 𝑋1 and 𝑋3 have the greatest impact on the 𝜎 expression. 
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Fig. 3-12: Sensitivity of the MGGP SF-ST (𝝁𝒑 and 𝝈𝒑) model to each of the input variables 

(𝑿𝟏 to 𝑿𝟕). 

 

3.3.2 MGGP Model Verification 

The comparisons between the MGGP SF-ST model, analytical solution, and RWPT simulations 

show excellent agreement, with the MGGP SF-ST model predicting slightly later arrival times (~ 

1.3% later on average based on 𝑡50) than the analytical solution (Fig. 3-13). The MGGP SF-ST 

demonstrated excellent computational efficiency; it can predict the BTC for any combination of 

fracture properties (within the developed model parameter range) in less than one second through 

MATLAB (version 2021a). In comparison, the analytical solution and RWPT-based models 
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compute the same BTCs in the order of hours, in part due to the fact that the analytical solution 

typically requires more refined discretization to calculate the long-tailed BTCs. This efficiency 

becomes extremely important as the scale of a problem increases from that of a single fracture to 

a network, as it will be magnified. 

 

 

Fig. 3-13: MGGP SF-ST model (circles) vs analytical solution (asterisks) vs RWPT model 

(squares) for transport in a single fracture. 
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3.4. Conclusion 

MGGP was employed to develop a closed-form solution (MGGP SF-ST model) to simulate 

reactive transport in a single, parallel plate fracture under a range of hydraulic, geological and 

chemical conditions for either a constant concentration or pulse injection at the inlet. The model 

was developed based on a large dataset of BTCs (101,740 datapoints) generated from a published 

analytical solution for solute transport in a single fracture under a range of conditions (i.e., velocity, 

dispersion along the fracture, molecular diffusion within the fracture and into the matrix, and 

adsorption within the matrix). A network graph was created to visualize the combinations of 

parameters for which BTCs were generated in the dataset. This analysis showed that the analytical 

solution for certain parameter combinations (typically those that result in long-tailed BTCs) 

require more refined discretization, which facilitated the generation of BTC for the full range of 

parameter combinations. The dataset was split into training, validation, and testing datasets and 

MGGP was employed to develop the model due to the nonlinear relationship between the model 

inputs (𝑋1 to 𝑋7) and outputs (i.e., 𝜇𝑜 and 𝜎𝑜). A lognormal distribution was fit to each curve in 

the dataset (best-fitting curves) and the parameters (i.e., 𝜇𝑜  and 𝜎𝑜 ) were compared to those 

predicted by the MGGP SF-ST model (i.e., 𝜇𝑝 and 𝜎𝑝). The plot of the observed versus predicted 

𝜇 and 𝜎 for the entire dataset (Fig. 3-9) achieved r2 values of 0.9998 and 0.9974, respectively. 

The MGGP SF-ST model was evaluated through nonparametric tests and an examination of the 

residuals. Wilcoxon rank-sum and Levene’s tests were used to assesses the differences between 

the means and variances of the of the observed and predicted parameters, respectively, at the 95% 

confidence level and found the model errors to be insignificant. The residual analysis confirmed 
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that the relationship between the genes and lognormal parameters is linear and the residuals are 

independent. The MGGP SF-ST model was then validated against an analytical solution and a 

RWPT-based model, and the comparisons showed good agreement between all three models. The 

MGGP SF-ST model represents an important contribution as it is relatively easy to implement and 

provides a computationally efficient tool relative to existing analytical solutions and numerical 

models. This is particularly important as simulations increase in complexity and scale (i.e., from a 

single fracture to a network). 
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Chapter 4: A Rapid, Simplified, Hybrid Modeling Approach for Simulating Solute 

Transport in Discrete Fracture Networks 

This chapter discusses the development of a numerical model to simulate spatial and temporal 

solute transport in discrete fracture networks with implementing the mass exchange between the 

fracture and the surrounding matrix. The developed model considers three mechanisms: advection 

and dispersion along the fracture, molecular diffusion within the fracture and into the matrix, and 

adsorption within the matrix. The developed model predictions are compared to those of an 

existing analytical model and a computational fluid dynamics (CFD) model employing Navier 

Stokes equations. The model will facilitate solute transport simulations in complex fracture 

networks as a result of the pronounced computational efficiency in predicting solute transport. 
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Abstract 

In this paper, a hybrid model is developed to simulate the transport of solute in discrete fracture 

networks. The mass exchange between the fracture and the surrounding matrix is implemented. 

The developed model considers three mechanisms: advection and dispersion along the fracture, 

molecular diffusion within the fracture and into the matrix, and adsorption within the matrix. 

Furthermore, the developed model can predict solute transport at fracture intersections and at the 

discrete fracture network outlet for both constant and pulse injections at inlet boundaries. The 

developed model predictions are compared to those of an existing analytical model and the results 

indicated the former is approximately 250 times faster than the later, and this efficiency increases 

with network complexity. In addition, the developed model is compared to a computational fluid 

dynamics (CFD) model, employing Navier Stokes equations, and the comparison indicates the 

former has a lower dispersion compared to the latter. Nonetheless, the developed model can 

approximately predict the solute transport as the CFD model when assuming a higher value of 

dispersivity. Finally, the results in a high fracture density DFN indicated that the large diffusion 

coefficient, small fracture aperture, and high fracture spacings reduce the solute migration at a 

fractured medium. 

Key words: solute transport, discrete fracture network, matrix diffusion, dual porosity 
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4.1. Introduction 

Fractured porous media formations are critically important for multiple sectors, including potable 

water supply (e.g., Makungo et al., 2021; Nakayama et al., 2021), agriculture (e.g., Ju et al., 2020; 

Mahmoud et al., 2021; Paradis et al., 2018), oil and gas recovery (e.g., Ahmed et al., 2015; 

Alexandrov et al., 2020; Jongkittinarukorn et al., 2021; Li et al., 2021), carbon sequestration (e.g., 

Zakharova et al., 2020; Sharma et al., 2021; Wu et al., 2021; Nguyen et al., 2021), geothermal 

energy supply (e.g., Akdas and Onur, 2022; Eidesgaard et al., 2019; Schill et al., 2017; Wei et al., 

2021), and radioactive waste management (e.g., Chittenden et al., 2016; Metcalfe et al., 2021; 

Stein et al., 2017; Watson et al., 2016). As such, increasing efforts have been devoted to the study 

of fractured rock environments over the past few decades. A good understanding of the physical 

processes that influence groundwater flow and solute transport in these environments is key to 

understand the compound and intersecting impacts on groundwater quantity and quality that result 

from these competing needs. 

Solute transport through fractured formations is influenced by spatial heterogeneities from the 

macro-scale to the micro-scale, the confounding effects of which are characterized by the effective 

dispersion coefficient (𝐷). More specifically, 𝐷 represents the collective solute spreading due to i) 

velocity variations across the fracture length caused by surface roughness; ii) macro-dispersion 

resulting from spatial heterogeneities that cause flow channeling; and iii) the Poiseuille velocity 

profile across the fracture aperture due to friction at the fracture walls (Taylor dispersion) (Wang 

and Cardenas, 2014; Detwiler et al., 2000; Wang et al., 2020; Khafagy et al., 2022a): 
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𝐷 = 𝜏𝐷∗ + 𝐷𝑚𝑎𝑐𝑟𝑜 + 𝐷𝑇𝑎𝑦𝑙𝑜𝑟 (4-1) 

where 𝜏 [-] is tortuosity, 𝐷∗ [𝐿2/𝑇] is the molecular diffusion coefficient, 𝐷𝑚𝑎𝑐𝑟𝑜 [𝐿2/𝑇] is the 

macro-dispersion coefficient, and 𝐷𝑇𝑎𝑦𝑙𝑜𝑟 [𝐿2/𝑇] is the Taylor dispersion coefficient. As the Peclet 

number (𝑃𝑒 [-]) increases, the dominance of each term in Eq. (4-1) increases; molecular diffusion 

(𝜏𝐷∗) dominates at low 𝑃𝑒 (10-3 to 10-1), macro-dispersion dominates at intermediate 𝑃𝑒 (10-1 to 

103), and Taylor dispersion dominates at high 𝑃𝑒 (>103) (Wang 2014). 

The porous matrix is orders of magnitude less conductive than the fractures (Iraola et al., 2019), 

but represents a majority of the reservoir storage capacity (Berre et al., 2019; Hawez et al., 2021). 

Solutes enter the matrix by molecular diffusion, which results in higher solute residence times 

(retardation) and more retention due to the large surface area. Consequently, the breakthrough 

curves (BTCs) in these systems have much more pronounced tails compared to their 

unconsolidated formations. 

Discrete fracture network (DFN) modelling explicitly represents the geometry of relevant fractures 

(Hu et al., 2022), and is a conditionally accurate approach for simulating flow and transport in 

fractured rock systems (Viswanathan et al., 2018). In recent years, the DFN approach has been 

widely used to model flow and transport in fractured media due to the improved integration of 

accurate geological, fracture geometry, and aquifer parameters into these models (Dong et al., 

2018; Feng et al., 2020; Maillot et al., 2016). While the geometric complexity of fractures in 

consolidated porous media make it practically impossible to obtain their true structure (Jing et al., 
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2013), their geometric properties (e.g., location, length, orientation, aperture) can be represented 

by a statistical distribution (Liu et al., 2015; Miao et al., 2015; Sornette et al., 1990). The 

consideration of the detailed fracture geometry and connectivity in the network results in a more 

accurate representation and robust predictive simulation of flow and transport compared to the 

continuum approach, which parameterizes the continuum model parameters (e.g., permeability) 

(Hyman et al., 2019; Iraola et al., 2019). However, the DFN approach is typically implemented at 

significantly smaller scales than the continuum approach because it is computationally intensive 

due to the large number of flow and transport parameters required for the simulation (Larsson et 

al., 2013). 

A substantial body of literature has been developed over the past decade investigating solute 

transport using DFN approach (e.g., Howroyd and Novakowski, 2022; Hu et al., 2022; Lei et al., 

2017; Zhou et al., 2017; Zhu et al., 2016). For these approaches to be simple and feasible, they 

assume that i) diffusion in the matrix occurs only in the transverse direction (i.e., perpendicular to 

flow), and ii) transverse dispersion in the fracture is negligible due to relatively rapid mixing within 

the small aperture. However, fracture-matrix systems exist in which these assumptions are not 

valid. For example, transverse dispersion plays an important role in karst aquifers where apertures 

are large (Mohammadi et al., 2021). Rezaei and Zare, (2016) found that the influence of 

longitudinal (i.e., parallel to flow) diffusion in the matrix depends on the fracture-matrix spacing 

and the Peclet number. Chen et al., (2018) also investigated the influence of diffusion in parallel 

fracture-matrix systems and found that: i) incorrect estimates of longitudinal diffusion lead to 

overestimation the concentration near the fracture inlet and underestimation of the concentration 
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near the fracture outlet when the Peclet number is small (𝑃𝑒 ≤10−3); ii) increasing the ratio of 

transverse diffusion in the matrix to that in the fracture increases the mass flux between the fracture 

and the matrix (Zhu et al., 2016); and iii) retardation and first-order decay in the matrix reduce the 

effect of longitudinal diffusion in the matrix to the point where it may be negligible. Somogyvári 

et al., (2017) modeled conservative tracer transport neglecting matrix diffusion using a finite 

difference model. They identified the main transport pathways in the network through evolving 

the network variants by geometry updates to fit the experimental tracer data during calibration. 

Despite these efforts towards the study of solute transport in fracture-matrix systems using the 

DFN approach, the application of DFNs is still at an early stage. 

The goal of this study is to develop an accurate and efficient model to simulate solute transport 

through single fractures to improve the overall understanding of solute transport, and particularly 

to quantify the dispersion coefficient used in the advection–dispersion equation. To achieve this 

goal, a numerical model is developed to simulate solute transport in a two-dimensional DFN that 

considers one-dimensional (transverse) diffusion in the surrounding matrix. 

4.2. Model Development 

Solving the classical advection-dispersion equation (ADE) directly within fractures while 

considering interactions with the surrounding matrix remains challenging. This is not only because 

the solution requires significant computational resources, but also because the ADE suffers from 

numerical dispersion in the high-Peclet-number (𝑃𝑒) regime (Wang et al., 2020). To minimize 

computational resources required without risking numerical dispersion, the developed numerical 
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network model is based on a closed-form solution that approximate the ADE solution (Khafagy et 

al., 2022b) in single fractures. Complete mixing is assumed at fracture intersections, and the 

transfer function approach is then applied numerically, using the midpoint rule for integration, to 

calculate the BTC on the downstream side of each fracture intersection. This BTC is then applied 

as the inlet boundary condition in the downstream fractures (Khafagy et al., 2022a). 

The closed-form solutions represent the relationship between the hydraulic, geological, and 

chemical parameters of the fracture-matrix system as inputs and an ensemble of BTCs as outputs 

(See Section 3.2). This solution was obtained by employing the multi-gene genetic programming 

(MGGP) approach (Khafagy et al., 2022b), and consider advection, longitudinal mechanical 

dispersion and molecular diffusion within the fracture, transverse molecular diffusion into and 

within the matrix, and adsorption within the matrix for a single, parallel plate fracture-matrix 

system. The solution is available for either a constant concentration (Type 1) or pulse injection 

(Type 2) at the inlet boundary. The BTCs which are described by the probability density function 

(PDF) and the cumulative distribution function (CDF) of the lognormal distribution, respectively, 

are (Khafagy et al., 2022b): 

PDF:     
1

𝑡

𝑅𝑚
𝜎√2𝜋

exp (−
[𝑙𝑛 (

𝑡

𝑅𝑚
)−µ]

2

2𝜎2 ) 
  

(4-2)  

CDF:     
1

2
+

1

2
erf (−

𝑙𝑛 (
𝑡

𝑅𝑚
)−µ

√2𝜎
) 

(4-3) 
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where 𝜇 is the mean, 𝜎 is the standard deviation, 𝑡 [T] is the solute arrival time at the outlet in 

years, and 𝑅𝑚  [-] is the retardation in the matrix. The expressions for the mean and standard 

deviation, respectively, are: 

𝜇 = 0.0431 𝑋4 − 0.999 𝑋2 − 0.224 𝑋1 − 0.542 𝑒(𝑋7−𝑋1−𝑋3) − 0.267 𝑒−𝑒−𝑋1

+ 0.0431 𝑒−𝑋3
2

+ 0.267 𝑒𝑋7 − 0.903 √𝑋3 + 𝑋4 + 𝑒−𝑒−𝑋4

− 8.81 × 10−6 (𝑋5 + 𝑋1)2 − 0.812 √𝑋3 + 𝑒−𝑒−𝑋4

− 0.143 𝑒(−𝑋1−𝑋3) (2 𝑋1 + 2 𝑋3 + 𝑋3
2)

+ 0.174 √(𝑋7 − 𝑋1)2 + 𝑋1
2 + 𝑋3

2 + 0.0862 √𝑋1

− 0.402 √3 𝑋1 + 𝑒−𝑋1 + 𝑒−𝑋4 + 1.94 

(4-4) 

𝜎 = 1.16 𝑒
(−𝑋3

0.5 √𝑋4)
− 1.01 𝑒(−𝑋1−√𝑋3) + 0.947 𝑒−𝑒−𝑋4 − 0.0573 𝑋3 𝑙𝑛(√𝑋3)

− 0.00105 𝑋1 𝑒(−𝑋3) + 0.00209 𝑋4  𝑒(−𝑋3) + 1.31 √𝑋3 𝑒−𝑒−𝑋1

+ 3.07 √𝑒(−𝑋1) −  3.91 𝑒(−𝑋1)
1
4

+ 3.84 × 10−6 (𝑋4 − 𝑋1 + √𝑋6)(𝑋4 − 𝑋1 + 𝑋3
2)

+ 3.35 × 10−6 𝑋1 𝑋3 (𝑋1 − 𝑋3)(𝑋3 − 𝑒(−𝑋3)) + 1.05 

(4-5) 

where: 

𝑿𝟏 =
𝑽 𝟐𝒃 𝟐𝑩

𝑳 𝑫∗ 𝜽
 

 

𝑿𝟐 = 𝐥𝐧 (
𝑽 𝟐𝒃 

𝑳 𝟐𝑩 𝜽
) 

 

𝑿𝟑 =
𝜶

𝑳
 𝑿𝟒 =

𝑫∗

𝑽 𝑳
 

𝑿𝟓 = 𝒍𝒏 (𝑳) 𝑋6 = 𝐷∗ 𝑋7 = 2𝑏  

and 𝑉 [L/T] is the average velocity in the fracture, 2𝑏 [L] is the aperture size, 2𝐵 [L] is the spacing 

between the fractures, 𝐷∗ [L2/T] is the molecular diffusion coefficient for the solute in water, ∝

[L] is the longitudinal dispersivity, 𝜏 [-] is the matrix tortuosity, and 𝜃 [-] is the matrix porosity. 

Further details are provided in Khafagy et al., (2022b). 
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The single fracture BTCs are connected across the network using the framework proposed by 

Khafagy et al., (2022a). At each intersection in the network, the effluent BTCs for the upstream 

fractures based on a Type 2 influent boundary condition (BC) are summed to obtain the BTC at 

the intersection. Subsequently, solute mixing and mass redistribution at fracture intersections are 

handled using the complete mixing (CM) method, which has been widely adopted for modeling 

solute transport in DFNs (e.g., Bodin et al., 2007; Cvetkovic and Frampton, 2012; Frampton et al., 

2019; Zhao et al., 2013, 2011; Zou et al., 2017). Once the solute mass at an intersection has been 

partitioned between the downstream fractures, connectivity is established between the upstream 

and downstream fractures by setting the inlet boundary of each downstream fracture as the injected 

BTC based on the mass partitioned to that fracture. The final effluent BTC for the downstream 

fracture is then determined by numerically applying a transfer function approach between influent 

BTCs and the mass transfer probability of reaching the fracture outlet based on a Type 2 influent 

BC as follows: 

𝐶𝑓𝑖𝑛𝑎𝑙(𝑡) = ∫ 𝐶1(𝜏)
∞

0

𝐶2(𝑡 − 𝜏)𝑑𝜏  
(4-6) 

where, 𝐶1 [M/L3] is the solute concentration at time τ at the fracture inlet, 𝐶2 [-] is the mass transfer 

probability of reaching the fracture outlet shifted by 𝑡, and 𝐶𝑓𝑖𝑛𝑎𝑙 [M/L3] is the solute concentration 

at the fracture outlet after applying the transfer function approach between the solute 

concentrations at the fracture inlet and outlet. The model is developed using MATLAB. 

The developed model calculates the solute mass at fracture intersections over time. To preserve 
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the solute mass balance in the network, the mass retained in the matrix block associated with each 

fracture is considered over time, and was calculated as the difference in mass within the fracture 

between the outlet and inlet, and the coordinates of this mass are assumed to be distributed equally 

along the fracture length. 

4.3. Model Verification and Validation 

The developed model was verified by comparing simulation results to those obtained from the 

analytical network (AN) model developed by Khafagy et al., (2022a) using the CM method of 

mass sharing at intersections. Solute transport in the AN model is based on two analytical solutions 

(i.e., Bear, 1972; Sudicky and Frind, 1982) that consider advection and longitudinal hydrodynamic 

dispersion within the fractures, transverse matrix diffusion, sorption in the matrix, and first-order 

decay for a single constituent. A synthetic two-dimensional fracture network (DFN1) is used to 

demonstrate the efficiency of the developed model. DFN1 sits within a square domain of 350 m x 

350 m (Fig. 4-1) with two equally distributed orientation sets in the probability density – (40° - 

50°) and (130° - 140°) and a fracture density of 0.078 m/m2 (the sum of the fracture lengths divided 

by the fracture network area). DFN1 includes 355 hydraulically active fractures and 92 dead-end 

fractures. The flow is from west to east with a 1 m head difference across these boundaries, with 

the north and south boundaries representing no-flow boundaries. 
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Fig. 4-1: Synthetic fracture network (DFN1) for model verification. Solid lines represent 

hydraulically active fractures, while dashed lines represent dead-end fractures. 

 

The verification was conducted based on Cases 1 and 2 (Table 4-1) considering advection and 

hydrodynamic dispersion within the fractures, matrix diffusion, and sorption in the matrix. In these 

simulations, solute was injected along the west boundary using Type 1 and Type 2 influent 

boundary conditions, and the solute mass was divided between the inlet fractures based on their 

proportional volumetric flow rates. 

Table 4-1: Properties of the DFN for the Cases used in the verification and validation. 

Case 
𝛼 

(m) 

2𝑏 

(𝜇m) 

2𝐵 

(m) 

𝐷∗ 

(m2/sec) 

𝑅𝑚 

(-) 

𝜃 

(-) 

𝜏 

(-) 

𝐷𝑒 

(m2/sec) 

𝜆 

(day-1) 

Mass 

Sharing 

Method 

1 

5 250 

1 

1 × 10−7 

1 - 5 

0.1 1 1 × 10−7 n/a CM 2 1 - 5 
1 

3 13.7 

Notes: 

1. 𝐷𝑒 = 𝜏𝐷∗ is the effective diffusion coefficient 

2. 𝜆 is the first-order decay constant 
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The developed model was then compared to simulation results from a computational fluid 

dynamics (CFD) model to understand the impact of neglecting longitudinal diffusion in the matrix. 

The comparison was based on DFN1 (Fig. 4-1) using transport parameters for Case 3 (Table 4-1). 

COMSOL Multiphysics 5.5 (Zimmerman, 2006) was employed  to sequentially solve the Navier-

Stokes equations (to simulate fluid flow within the fractures), and the advection dispersion 

equation (to simulate solute transport across the entire domain, i.e., fractures and matrix). The 

Navier-Stokes equations describe single-phase, steady flow for an incompressible fluid under 

isothermal conditions: 

𝜌(𝑢 ∙ ∇𝑢) = −∇𝑝 + 𝜇∇2𝑢 (4-7) 

∇ ∙ 𝑢 = 0 (4-8) 

where 𝑢 is the velocity vector, 𝑝 is the total pressure, 𝜌 is the fluid density (𝜌 = 1000 kg/m3 for 

water), and 𝜇 is the fluid viscosity (𝜇 = 1×10-3 Pas for water). The hydraulic gradient applied was 

consistent with that used for the verification simulations (0.0029 m/m). The solute transport 

processes considered in the CFD model are governed by the advection dispersion equation written 

as: 

𝜕𝜃𝑐

𝜕𝑡
+ 𝑢 ∙ 𝛻𝑐 − 𝛻 ∙ 𝜃𝐷∗(𝛻𝑐) = 0 (4-9) 

where 𝑐 [M/L3] is the solute concentration in the fluid phase, 𝑢 [L/T] is fluid velocity, and  

𝐷∗ [L2/T] is the molecular diffusion coefficient. In these simulations, dispersion results from 
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variations in the velocity field calculated by the Navier-Stokes equations. The network domain in 

the CFD model is discretized into 44,454 tetrahedral elements. The mesh size was selected to be 

coarse (~5 m) for the matrix domain, and finer (~0.5 m) near fracture intersections to capture the 

steep diffusion gradient (Fig. 4-2). The CFD model simulated DFN1 as a 3-D domain, with a unit 

width in the z-direction, and no-flow boundaries on either side in the z-direction (Fig. 4-1).  

 

 

Fig. 4-2: CFD model discretization scheme for DFN1 (Fig. 4-1). 

 

To visualize the spatial distribution of solute calculated by the developed model, each fracture in 

the network is discretized into 20 segments and the solute concentration at the fracture outlet is 

assigned to each segment. The network domain is then discretized into 100 × 100 mesh grids and 

the solute mass within each grid block is summed and plotted. 

As the diffusion process across the fracture-matrix interface is affected by the shape of the matrix 
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block, 2𝐵̅̅̅̅  is estimated by multiplying the fracture spacing by a shape factor (1 − 𝜆), where, 𝜆 is a 

dimensionless shape function that is approximately equal to 1/3 for the case of a matrix with a 

finite thickness (Zhang et al., 2013). Therefore, 2𝐵̅̅̅̅  is estimated to be 66% of the average fracture 

length (𝐿𝑓
̅̅ ̅ = 20.76 m) which is approximated as the arithmetic mean of all fractures’ lengths in the 

network and consequently 2𝐵̅̅̅̅  = 13.7 m. The developed model assumes a constant fracture spacing 

for all fractures in the network (2𝐵̅̅̅̅ = 13.7m) for comparison with the CFD model. 

Following verification and validation in DFN1, the impact of fracture and matrix properties (i.e., 

diffusion, dispersivity, fracture aperture, and average fracture spacing) were investigated through 

simulations conducted in a second discrete fracture network, DFN2, with a much higher fracture 

density (Fig. 4-3). DFN2 was first presented by Khafagy et al., (2022a), and has the same domain 

size, fracture orientations, and boundary conditions as DFN1. DFN2 includes 13,083 fractures with 

two different orientations; 12,884 fractures are hydraulically active, 199 are dead-end fractures, 

and the fracture density is 0.449 m/m2. 
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Fig. 4-3: High fracture density DFN (DFN2) used for the simulation of spatial and temporal 

solute mass. 

 

4.4. Results and Discussion 

The effluent BTCs calculated by the developed model for Case 1 parameters (𝛼 = 5 m; 2𝑏 = 250 

µm; 2𝐵 = 1 m; 𝐷∗ = 1×10-7 m2/sec; 𝑅𝑚 = 1 - 3;   = 0.1; 𝜏 = 1) (Table 4-1) under both Type 1 and 

Type 2 influent boundary conditions in DFN1 using the CM method of mass sharing at 

intersections are plotted against those obtained from the AN model in Fig. 4-4. The comparison 

shows an excellent agreement between the developed model and the AN model for DFN1 for both 

influent boundary conditions. It is noteworthy that matrix retardation (𝑅𝑚) does not impact the 

accuracy of the AN model. 
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Fig. 4-4: BTCs for Case 1 (𝜶 = 5 m; 𝟐𝒃 = 250 µm; 𝟐𝑩 = 1 m; 𝑫∗ = 1×10-7 m2/sec; 𝑹𝒎 = 1 - 

3;   = 0.1; 𝝉 = 1) for (a) Type 1 and (b) Type 2 boundary conditions – lines represent AN 

model and symbols represent the developed model. 

 

The developed model was used to calculate effluent BTCs in DFN1 for Case 2 parameters (𝛼 = 5 

m; 2𝑏 = 250 µm; 2𝐵 = 1 - 3 m; 𝐷∗ = 1×10-7 m2/sec; 𝑅𝑚 = 1;   = 0.1; 𝜏 = 1) (Table 4-1), which 

excludes matrix retardation (i.e., 𝑅𝑚 = 1), under Type 1 and Type 2 influent boundary conditions. 

These were compared to results obtained from the AN model under the same conditions (Fig. 4-5). 

The comparison shows good agreement between the developed model and the AN model for 

DFN1, with the exception that the developed model has a slightly higher solute retention (by 

~3.4%), with a slightly lower concentration peak for the Type 2 BC (by ~6%) compared to the AN 

model.  
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Fig. 4-5: BTCs for Case 2 (𝜶 = 5 m; 𝟐𝒃 = 250 µm; 𝟐𝑩 = 1 - 3 m; 𝑫∗ = 1×10-7 m2/sec; 𝑹𝒎 = 

1;   = 0.1; 𝝉 = 1) for (a) Type 1 and (b) Type 2 boundary conditions – lines represent AN 

model and symbols represent the developed model. 

 

The developed model simulations are then compared against those from the CFD model in DFN1 

for Case 3 parameters (𝛼 = 5 m; 2𝑏 = 250 µm; 2𝐵 = 13.7 m; 𝐷∗ = 1×10-7 m2/sec; 𝑅𝑚 = 1;   = 0.1; 

𝜏 = 1), excluding matrix retardation (i.e., 𝑅𝑚 = 1), based on a Type 1 BC (Fig. 4-6). This 

comparison shows that when only transverse matrix dispersion is considered, the developed model 

significantly underrepresents dispersion. This is because when longitudinal matrix dispersion is 

neglected, reverse matrix diffusion (i.e., from the matrix back into the fracture) must occur at the 

same location as the original diffusion into the matrix. However, in real life applications, reverse 

matrix diffusion occurs at a location downstream of the original diffusion into the matrix as 

captured by the CFD model. Thus, the discrepancy between the developed and CFD models 
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demonstrates that longitudinal matrix diffusion is important. The developed model can 

approximate the results from the CFD model if a fracture dispersivity correction factor is employed 

to compensate for neglecting longitudinal diffusion in the matrix. In these simulations, the 

dispersivity correction factor was four (i.e., the validated longitudinal fracture dispersivity was 

four times that of the actual longitudinal dispersivity in the CFD model). However, the magnitude 

of the fracture dispersivity correction factor is dependent on several factors, including porewater 

velocity, fracture density, and fracture orientation. At low porewater velocities, transport is 

dominated by diffusion. Constituents will have more opportunity to diffuse into the matrix 

resulting in a larger dispersivity correction factor. Increasing fracture density results in shorter 

distances within the matrix for transverse diffusion to occur before reaching an adjacent fracture, 

where longitudinal diffusion will occur. This will result in smaller dispersivity correction factors. 

Finally, varying fracture orientations (with transverse matrix dispersion) results in a larger range 

of dispersivity directions, and therefore a smaller dispersivity correction factor. Given the range 

of parameters that affect the magnitude of the dispersivity correction factor, and the complexity of 

natural fracture networks, more research is required to determine the appropriate correction factor 

under a range of circumstances. 
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Fig. 4-6: BTCs for Case 3 (𝜶 = 5 m; 𝟐𝒃 = 250 µm; 𝟐𝑩 = 13.7 m; 𝑫∗ = 1×10-7 m2/sec; 𝑹𝒎 = 1; 

  = 0.1; 𝝉 = 1) for Type 1 BC calculated by the CFD model and the developed model. 

 

The spatial distribution of the solute concentration calculated by the validated developed model 

for Type 1 BC in DFN2 using Case 3 parameters (2𝑏 = 250 µm; 2𝐵 = 13.7 m; 𝐷∗ = 1×10-7 m2/sec; 

𝑅𝑚 = 1;   = 0.1; 𝜏 = 1) using 𝛼 = 25 m after 475 years is plotted alongside that obtained from the 

CFD model in Fig. 4-7. The comparison shows good agreement between the two models; however, 

the developed model fails to capture the solute concentration within the matrix blocks as it 

simulates solute transport in discrete fractures and interpolates the mass stored in the matrix based 

on adjacent fractures. 
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Fig. 4-7: Spatial distribution of the solute concentration in DFN1 after 475 years from the 

time of release. Simulations are conducted using parameters for Case 3 (𝜶 = 25 m; 𝟐𝒃 = 

250 µm; 𝟐𝑩 = 13.7 m; 𝑫∗ = 1×10-7 m2/sec; 𝑹𝒎 = 1;   = 0.1; 𝝉 = 1) based on constant release 

(Type 1 BC) represented by (a) the CFD model using COMSOL and (b) the developed 

model. 

 

The spatial distribution of the solute mass simulated by the developed model for an injected mass 

of 10 kg in DFN2 using Case 1 parameters (Table 4-1; 𝑅𝑚 = 1 and 5) under a Type 2 influent BC 

is shown in Fig. 4-8. The results show that solute migration within the network is significantly 

slower when matrix diffusion is considered. When the retardation coefficient is large (𝑅𝑚 = 5), the 

retention time in the matrix is larger relative to the fractures. This results in less longitudinal 

dispersion and higher peak concentrations in the fracture.  
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Fig. 4-8: Spatial distribution of the solute mass in DFN 2 at 20, 40, 60, and 80 years from 

the time of release. Simulations are conducted using parameters for Case 1 (𝜶 = 5 m; 𝟐𝒃 = 

250 µm; 𝟐𝑩 = 1 m; 𝑫∗ = 1×10-7 m2/sec; 𝑹𝒎 = 1 and 5;   = 0.1; 𝝉 = 1) based on a 10 kg pulse 

release (Type 2 BC). 
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The impacts of diffusion, dispersivity, fracture aperture, and fracture spacing are assessed through 

multiple simulations conducted in DFN2 under a Type 2 BC for an injected mass of 10 kg. Each 

parameter is perturbed individually, and the results are compared to a base simulation using Case 

1 parameters (α = 5 m; 2b = 250 µm; 2B = 1 m; D∗ = 1×10-7 m2/sec; Rm = 1;   = 0.1; τ = 1) (Fig. 

4-9a).  The spatial distribution of mass based on changing the molecular diffusion coefficient 

(D∗ = 1 × 10−9 m2/sec), dispersivity ( = 10 m), fracture aperture (2𝑏 = 400 μm), and fracture 

spacing (2𝐵 = 0.5 m) at 𝑡 = 20 years are presented in Fig. 4-9a, b, c, and d, respectively. It is 

observed that decreasing the effective diffusion coefficient facilitates mass migration (Fig. 4-9a), 

as lesser mass can diffuse into the matrix. The lower 𝑫∗ also results in higher dispersion within 

the fracture, as lesser mass moves into the matrix. Increasing dispersivity causes slightly higher 

dispersion in the fracture (Fig. 4-9c). Increasing the fracture aperture, and decreasing the effective 

fracture spacing, lead to faster solute migration (Fig. 4-9d and Fig. 4-9e). The plume’s centre of 

mass is about 80 m more advanced for the large fracture aperture case, and about 120 m more 

advanced for the small fracture spacing case. 
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Fig. 4-9: Effect of changing 𝑫∗, 𝜶, 𝟐𝒃, and 𝟐𝑩 on the spatial distribution of the solute mass 

in DFN2 (i.e., fractures and matrix). Panel (a) represents the base case at t = 20 years based 

on Case 1 parameters (𝜶 = 5 m; 𝟐𝒃 = 250 µm; 𝟐𝑩 = 1 m; 𝑫∗ = 1×10-7 m2/sec; 𝑹𝒎 = 1;   = 

0.1; 𝝉 = 1) under a Type 2 BC. Individual parameters are perturbed in panels (b) 𝑫∗ = 

1×10-9 m2/sec, (c) 𝜶 = 10 m, (d) 𝟐𝒃 = 400 µm, and (e) 𝟐𝑩 = 0.5 m. 
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The AN model predicts solute transport in DFN1 on the order of hours to arrive at a solution for 

Case 3 under Types 1 and 2 BCs (Fig. 4-4), while the developed model predicts the solute transport 

in the order of seconds for the same case. Therefore, the developed model solves the solute 

transport in approximately 250 times faster than the AN model—which was already shown to be 

an improvement over traditional time domain random walk and random walk particle tracking 

models (Khafagy et al., 2022a). 

4.5. Conclusion 

In this article, a hybrid model is developed to simulate the solute transport in fracture networks 

based on an extension of a MGGP solution for solute transport in a single fracture. The extension 

is achieved by applying the CM method for solute mass sharing at fracture intersections to form a 

solute injected BTC for each fracture inlet as an inlet BC in this fracture. Subsequently, the transfer 

function approach was applied between the injected BTC and the effluent BTC for the downstream 

fracture based on Type 2 BC. The developed model considers three mechanisms, with the ability 

of predicting solute transport at fracture intersections and at the network outlet for Type 1 and 

Type 2 BC. These mechanisms include advection and dispersion along the fracture; molecular 

diffusion within the fracture and into the matrix; and adsorption within the matrix 

The model is compared to the analytical network (AN) model developed by Khafagy et al., (2022a) 

for DFN1 and the results indicated the developed model is approximately 250 times faster than the 

AN model. Furthermore, the model efficiency in predicting solute transport increases with network 

complexity compared to the AN model and other numerical models (i.e., TDRW and RWPT 
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approaches) (Khafagy et al., 2022a). Subsequently, the developed model is compared to the CFD 

model based on Navier Stokes equations for DFN1 and the comparison shows that the developed 

model has an obvious low dispersion compared to the CFD model. However, the developed model 

can approximately predict the solute transport as the CFD model when assuming a higher value of 

dispersivity which is highly affected by the fracture density in the fracture network. The high value 

of dispersivity in the developed model causes more solute dispersion that may overcome the 

neglection of the longitudinal matrix diffusion which is considered in the CFD model. However, 

it must be noted that these conclusions have been observed in the case studies proposed here (i.e., 

the DFN1) and the scaled value of dispersivity may be different for other fracture and matrix 

properties, especially, fracture orientations, fracture density. Finally, the numerical results of the 

DFN2 indicated that the low diffusion coefficient causes a long tail BTC at the outflow boundary 

of the network with smaller retention time of most of the solute, while small fracture aperture and 

large effective fracture spacings hinder the solute migration within the fracture network. Overall, 

the developed model will facilitate rapid simulations of solute transport in complex DFNs, while 

other models are computationally intensive to simulate the solute transport in such networks. 
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Chapter 5: Computationally efficient upscaled model for simulating solute transport 

in complex large-scale fracture networks 

This chapter presents the development of an Upscaled Fracture Network (UFN) model employing 

random walk particle tracking (RWPT) in a DFN. The UFN model accurately captures solute 

transport processes occurring at the macroscopic scale in saturated fracture networks. The UFN 

model involves discretizing a complex fracture network into elementary volumes, within which 

both representative solute transport flow channels and their corresponding breakthrough curves 

were identified. This identified flow channels were then employed to construct the residence time 

at the macroscopic scale. The UFN model represents a significant advancement in simulating 

solute transport in complex, regional aquifers due to its computational efficiency, simple 

implementation, and high level of accuracy. 
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Abstract 

Currently, the most common approaches for simulating solute transport in fractured aquifers are 

the continuum and the discrete fracture network (DFN) methods. However, continuum approaches 

often lack accuracy due to averaging, whereas DFN approaches may be computationally 

prohibitive for large-scale fracture networks. To address these challenges, this study presents an 

Upscaled Fracture Network (UFN) model, developed using random walk particle tracking 

(RWPT) in a DFN. The UFN model discretizes a complex fracture network into elementary 

volumes, within which the representative solute transport flow channels are identified, and their 

corresponding breakthrough curves are calculated. The identified flow channels within each 

elementary volume are collectively employed to construct the residence time at the macro-scale. 

Validated using RWPT DFN-based approaches, the UFN model can accurately capture solute 

transport processes occurring at the macro scale in saturated fracture networks, and represents a 

significant advancement in simulating solute transport in complex, regional aquifers due to its 

computational efficiency, simple implementation, and high level of accuracy. 

Key words: Discrete fracture networks, Subsurface transport, Upscaling, Particle tracking.  
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5.1. Introduction 

Solute transport modeling through fracture networks is of extreme importance to predict 

groundwater system behaviors (Sweeney et al., 2020) due to the rising global concern on 

subsurface contamination and pollution due to escalation in various engineering operations such 

as radioactive waste disposal (e.g., Alzamel et al., 2022; Karolytė et al., 2022; Malkovsky and 

Yudintsev, 2022), percolation of leachate from landfills (e.g., Brunella and Raffaele, 2022; 

Javahershenas et al., 2022; Wang et al., 2022), coastal water intrusion (e.g., Luo et al., 2022; Tran 

et al., 2022; Yuan et al., 2022), oil spill (e.g., Kalibatiene and Burmakova, 2022; Mallants et al., 

2022; Scanlon et al., 2022), exploitation of petroleum (e.g., Demenev et al., 2022; Li et al., 2022; 

Wei et al., 2022), gas and geothermal reservoirs (e.g., Morais et al., 2022; Ryu et al., 2022; Zhao 

et al., 2022), fluid pressure studies in deforming the rock (e.g., An et al., 2022; Wang et al., 2022), 

seepage process in mining and dams (e.g., Adamovic et al., 2022; Singha et al., 2022; Xu et al., 

2022) etc. Various modeling approaches have been employed, which can be broadly divided into 

continuum (single or multiple) and discrete fracture models (Zhang et al., 2022). In single-

continuum (equivalent parameters-based) models, individual fracture properties are translated into 

those of an equivalent porous medium without considering the surrounding matrix. On the other 

hand, multiple-continuum models (e.g., dual-continuum), allow for the approximate description of 

transport phenomena at large scales with the consideration of the surrounding matrix as a different 

continuum. However, these models may fail to capture non-Fickian features that small-scale 

models are able to (Benke and Painter, 2003; Painter et al., 2002). Such multiple-continuum 

models assume uniform dispersion — an assumption that may not always be valid in fractured 
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networks where flow and transport occur in discrete channels (Benke and Painter, 2003; Painter et 

al., 2002) and may reflect an inaccurate relationship between dispersivity (𝛼) and scale (Bechtold 

et al., 2011). Additionally, continuum approaches may result in significant biases in when more 

heterogeneous fracture network geometries exist (Viswanathan et al., 2018).  

Discrete fracture approaches reduce these biases by considering heterogeneous fracture 

geometries. Numerous discrete fracture approaches have been developed, which can be divided 

into three categories: 1) the discrete fracture network (DFN) model (Feng et al., 2020; Jiang et al., 

2021; Khafagy et al., 2022, 2020; Yao et al., 2020); 2) the discrete fracture-matrix (DFM) model 

(Chen et al., 2020; Flemisch et al., 2018; Ma et al., 2018; Sandve et al., 2012; Sweeney et al., 

2020); and, 3) the continuum fracture (CF) model (Dong et al., 2019; Khoei et al., 2020; L. Wang 

et al., 2020; Wu et al., 2022). 

In the DFN approach, fracture geometry and hydraulic parameters are explicitly represented either 

as lines in two dimensions or planar polygons in three dimensions (Hyman et al., 2019; Maillot et 

al., 2016), which allow handling the high degree of complexity and heterogeneity of the networks 

(Sweeney et al., 2020). DFN models have been used to simulate a variety of important problems 

such as unconventional oil and gas extraction and nuclear waste repositories, which are 

representative of environments with relatively low fracture densities. (Follin et al. 2014; Cuss et 

al. 2015; Wang et al. 2016; Day-Lewis et al. 2017; Zhang et al. 2017; Bishop et al. 2020). These 

methods solve the flow and transport equations in individual fractures considering both anisotropy 

and stochasticity (Dippenaar et al., 2019; Wang et al., 2018); however, they do not consider 
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fracture-matrix interactions. Despite their known accuracy and robustness, DFN models are highly 

complex and computationally demanding compared to continuum models, which limit their 

adoption for macro-scale analyses (Iraola et al., 2019; Trinchero and Iraola, 2020). This is 

particularly true for 3D DFN models. 

In contrast to DFN modeling, DFM models provide explicit representations of both the fracture 

network and surrounding porous matrix (Berre et al., 2019). DFM models are relatively new 

compared to DFN and continuum models, and thus require further development to facilitate their 

implementation (Sweeney et al., 2020). In general, a DFM model seeks to represent the fracture 

network as (𝑛 −  1)-dimension features coupled with a (𝑛)-dimensional mesh representing the 

rock matrix. For example, a fracture can be represented as a polygon in a 3D grid, or a segment in 

a 2D grid. In addition, the fracture geometry must coincide with the matrix grid, where, due to the 

fracture spatial randomness, irregular grids must be employed in the DFM model. Since the 

fracture is distinct from the matrix, most of fracture parameters can be captured by the DFM model, 

and therefore the model accuracy is enhanced compared to DFN approaches. Nonetheless, one of 

the disadvantages of DFM models lies in the inability to handle stochastically generated networks 

with low angle fractures intersections. Additionally, meshing challenges materialize when two 

fractures in close proximity do not intersect (Berre et al., 2019). The primary challenges associated 

with modeling solute transport at the macro scale are underpinned by the ability to represent 

transport in fractures through coupling transport in fractures with transport in the surrounding 

matrix while preserving complex network geometries. Furthermore, the meshes associated with 

DFM models are inherently multidimensional, which further complicates solving the governing 
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equations of flow and transport. Therefore, at the macro scale, the computational cost of DFM 

model simulations is not justifiable— limiting the use of DFM models in such applications.  

Both the DFN and DFM models are discrete models with a key feature being the distinction 

between the fracture and the matrix. However, fractures can also be deemed a special case of 

porous rock matrix in which the porosity and permeability are very high. With this understanding, 

fractures can be treated as a porous medium in DFM models, where the fractures are considered 

zones of high porosity and permeability compared to the matrix zones (Ahmed et al., 2019). As a 

result, a uniform grid size can be used in the model, resulting in a significantly reduced 

computational cost than DFN and DFM models. However, detailed fracture mapping and 

characterization to obtain the data required for these models is often not feasible due to the high 

degree of network complexity and heterogeneity. As such, information on geometric 

characteristics is typically obtained based on probability distributions and correlation functions 

(Wang et al. 2020). As such, there is a critical need for methods to bridge the spatial-scale gap 

between the typical DFN and regional scales. 

5.2. Objectives 

In this paper, we describe a new approach for regional-scale simulation of transport in fractured 

rock based on upscaling the results from DFN simulations. Specifically, we use particle tracking 

in relatively small DFN domains to extract the relevant information required to identify flow and 

transport pathways (i.e., flow channels (FC)), and thus conduct transport simulations at the macro 

scale. The developed Upscaled Fracture Network (UFN) model generates representative FCs 
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employing random walk particle tracking (RWPT) to obtain the solute migration behavior in a 

representative micro-scale DFN to achieve upscaling. 

5.3. Model Development 

The UFN model calculates solute transport in a micro-scale fracture network, which is then 

upscaled to a macro-scale network, and potentially to a regional-scale network. The UFN model 

development requires the flow boundary conditions to be downscaled from the regional-scale 

aquifer to the micro-scale. The first stage of the model (Fig. 5-1) involves dividing the micro-scale 

network into equal elementary volumes and a RWPT-based model is used to simulate solute 

transport to generate simple representative flow channels (FCs) at the micro scale. In the second 

stage of the model (Fig. 5-1), the representative FCs are upscaled to the macro-scale network. The 

third and final stage of the model involves simulating solute transport at the macro scale, based on 

the upscaled FCs, using the RWPT model. The rationale behind the UFN model development is 

that it is easier to obtain an accurate rapid solution at smaller scales and sequentially upscale the 

results than it is to obtain a solution directly at a larger scale. 
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Fig. 5-1: Illustration of the model at different scales (i.e., micro, macro, and regional 

network scales). Note the FCs (identified by red arrows) are upscaled from the micro to 

macro to regional scales. 
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5.3.1 Steady State Flow Simulation 

The steady state flow solution is obtained, at the scale of interest, in the DFN prior to simulating 

solute transport. The solute in the RWPT-based model is represented as particles that are injected 

at specified locations and migrate along individual fractures within the network. The transport 

mechanisms considered in this RWPT model are advection and dispersion. For simulating flow 

and transport in 2D DFNs, fractures are represented as line segments and are generated by 

sampling values for position, orientation, length, and aperture from statistical probability 

distributions. The DFN used in the simulations conducted here is shown in Fig. 5-2, and the 

distributions and other parameters used for the simulation setup are provided in Table 5-1 (Ahmed 

et al., 2019). Once the fracture network is created, fracture intersections are identified. Since we 

are simulating a fully saturated network, flow is considered to only occur through the set of 

fractures that are hydraulically connected to the inflow and outflow boundaries. Therefore, any 

fracture disjointed from the flow system is removed, which results in only maintaining the 

conductive fractures in the network. Subsequently, by assuming conservation of mass at each 

fracture intersection, flow balance equations can be employed. The latter results in a system of 

linear pressure equations, where the pressure at each intersection is unknown, whereas the 

transmissivity between each pair of intersections is known and obtained from the characteristics 

of the fracture segment connecting the two intersections. By enforcing a boundary condition in the 

form of a pressure gradient (Fig. 5-2) across two or more intersections (0.01 m/m), the system of 

flow equations can be solved, and subsequently the pressure at every internal intersection in the 

system can be established. 
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Fig. 5-2: The macro scale network used in the simulation showing the hydraulic head along 

each boundary (i.e., quadrilateral). All dead-end and isolated fractures have been removed. 

 

The flow between intersections depends on how transmissivity in the fracture is calculated. Steady 

state flow and a linear pressure drop between each pair of connecting intersections was assumed, 

so that the equation governing flow presents the one-dimensional version of the Navier-Stokes 

equations (cubic law) (Snow, 1965). 

𝑸 =
(𝟐𝒃)𝟑∆𝒑

𝟏𝟐𝝁𝒍
 (5-1) 

where 𝑄 is flow through the fracture, 2𝑏 is the aperture, 𝜇 is the fluid viscosity, and ∆𝑝 is the local 

pressure drop along the fracture with length 𝑙. This equation assumes steady-state, laminar flow 

through parallel plates, an averaged velocity profile across the aperture, and isothermal conditions. 
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Table 5-1: Simulation parameters  

Parameter Values/Distributions 

Domain size 1000 × 1000 m2 

Hydraulic gradient 0.01 m/m 

Fracture density 1.26 m/m2 

Fracture property  Values/Distributions 

Position Uniform throughout domain 

Fracture orientation Uniform over all angles 

Fracture length (𝒍) Lognormally distributed 

with 

𝐸(𝑙𝑛(𝒍))  =  10 

𝑉𝑎𝑟(𝑙𝑛(𝒍))  =  0.1 

(𝒍 in units of m) 

Fracture aperture 0.00025 m 

Dispersivity 1 m and 5 m 

 

The micro-scale network (200 × 200 m2) is then extracted from the macro-scale network (1000 × 

1000 m2) to calculate flow for the parameters shown in Table 5-1. 

5.3.2 Solute Transport Using RWPT 

The transport of particles is simulated in the micro-scale network using the RWPT model 

developed by (Khafagy et al., 2020), which is able to consider any combination of the following 

solute transport processes: advection, hydrodynamic dispersion, sorption on the fracture walls, 

sorption in the matrix, and matrix diffusion. The RWPT model is a solution for the advection-

dispersion equation in fracture-matrix systems as follows: 

𝝏𝒄

𝝏𝒕
+

𝒗

𝑹

𝝏𝒄

𝝏𝒛
−

𝑫

𝑹

𝝏𝟐𝒄

𝝏𝒛𝟐
+ 𝝀𝒄 −

𝜽𝑫′

𝒃𝑹

𝝏𝒄′

𝝏𝒙
|

𝒙=𝒃

= 𝟎 (5-2) 

where 𝑐 and 𝑐′ [M/L3] are the concentrations of solute in fracture and porous matrix, respectively, 
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𝑧 [L] is the fracture length, 𝑥 [L] is the coordinate perpendicular to the fracture axis with the origin 

at the centerline of the fracture [𝐿], 𝑣 [L/T] is groundwater velocity in the fracture, 2𝑏 [L] is the 

aperture width, 𝐷 [L2/T] is the hydrodynamic dispersion coefficient along the fracture, 𝐷′ 

[L2/T] is the diffusion coefficient in the porous matrix, 𝑅 [-] is the retardation coefficient due to 

sorption on the fracture walls, 𝜃 [-] is the matrix porosity, and 𝑡 [T] is the time. 

In the fracture network, the solute mass sharing at intersections is calculated using the complete 

mixing (CM) method developed by Berkowitz, Naumann, and Smith (1994). In general, the effect 

of the choice of mixing rule on overall transport behaviour in the random networks considered 

here is rather minimal (Park et al., 2001). The CM method assumes that the BTC at the intersection 

is sufficient to allow spatial homogenization through molecular diffusion, and therefore solute 

concentrations in the downstream fractures are proportional to their discharges (Fig. 2a). Mass 

conservation at any fracture intersection, based on the CM method, is calculated by: 

∑ 𝒄𝒊𝑸𝒊

𝑵

𝒊=𝟏

= ∑ 𝒄𝒋𝑸𝒋

𝑴

𝒋=𝟏

 (5-3) 

where the subscripts 𝑖 and 𝑗 represent the upstream and downstream fractures, respectively, and 𝑁 

and 𝑀 represent the number of upstream and downstream fractures, respectively. The percent of 

the solute mass entering each downstream fracture is determined as follows: 

𝑷𝒌 =
𝑸𝒌

∑ 𝑸𝒋
𝑴
𝒋=𝟏

 (5-4) 

where 𝑃𝑘 is the percent of solute mass from the upstream intersection entering a downstream 

fracture 𝑘. 
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5.3.3 Upscaling the Fracture Network Model 

Based on the above rationale, the first stage of the UFN model development is focused on dividing 

the micro-scale network (~200 m x 200 m) into equal elementary volumes (EV-FNs) (~50 m x 50 

m) such that the fracture density in one EV-FN is sufficient to represent the network properties. 

Fig. 5-3 shows the micro-scale network divided into equal EV-FNs such that the number of EV-

FNs in the micro-scale network is equal to the number of EV-FNs in the macro scale network (~ 

1 km x 1 km).  

 

 

Fig. 5-3: The macro- and micro-network scales showing the EV-FNs in the macro scale in 

green, the EV-FNs in the micro scale in blue, and the FCs in red. 
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Subsequently, the solute transport migration is obtained at the micro-scale network using a RWPT-

based model (see section 5.3.2) in a DFN (Fig. 5-4) by simulating the solute mass entering and 

leaving each EV-FN for a downscaled solute inlet boundary from the macro-scale to the micro-

scale network. The calculated solute masses crossing the boundaries of each EV-FN are then used 

to generate representative FCs (Fig. 5-4) that represent the solute migration in the entire micro-

scale network. Additionally, the mass ratios within each EV (microscale) were evaluated and 

assigned to the corresponding FC (macroscale). For illustration, Fig. 5-4 shows an example of the 

micro-scale network discretized into equal EV-FNs with solute released on the left boundary 

between 𝑦 = 80 and 120 m. 

 

 

Fig. 5-4: An example for the micro scale network showing the FCs in blue EV-FNs. The 

purple EV-FCs describe the solute retention in the flow channels. 
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The second stage of the UFN model development upscales the FCs to the macro-scale network—

essentially replacing each micro-scale network by a series of corresponding FCs. At this point, 

RWPT is then applied to the individual FC within the macroscale (recall that each FC represents 

a complete microscale network) to calculate the mass transfer probability. Fig. 5-5 shows the EV-

FCs corresponding to all five possible FC directions are obtained from the macro-scale network. 

Each FC in the FC-based network is either the length of the EV-FN (Fig. 5-5a,b,c) or the length 

that connects the boundary midpoint to the adjacent boundary midpoint (boundary length ×
√2

2
) 

(Fig. 5-5d,e). For example, Fig. 5-5a shows solute migrating from left to right through the FC. 

The corresponding mass transfer probability is calculated at the effluent (right) boundary of the 

FC (which coincides with the right boundary of the EV-FN). The evaluated mass transfer 

probabilities are then retained in a look-up table. Note that five possible FCs are considered when 

the flow direction is from left to right; however, three more FCs are possible if flow from right to 

left is considered but this flow direction is beyond the scope of this work. 
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Fig. 5-5: The EV-FCs with corresponding BTCs (in the micro-scale network) for all five 

possible FCs in case the flow direction is from left to right (i.e., solute transport directions). 

Solute is released along the influent (red) boundary, and the BTC is calculated at the 

effluent (blue) boundary. 

 

The third and final stage of the model development involves obtaining the solute transport solution 

in the macro scale. To calculate the breakthrough curve (BTC) in the inlet FCs outlets, the injected 

solute mass ratio of the inlet FC is multiplied by the mass transfer probability of reaching the FC 

outlet. Then, the resulting breakthrough curve (BTC) at the FC intersection is multiplied by the 

solute mass ratio of the downstream FC to evaluate the proportional BTC influent to such FC. 
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Then, the mass transfer approach is numerically applied between the proportional BTC at each FC 

intersection and the mass transfer probability of reaching the FC outlet to calculate the macro-scale 

BTC at each downstream FC intersection to calculate the final effluent BTC in the downstream 

FCs: 

𝐶𝑓𝑖𝑛𝑎𝑙(𝑡) = (𝐶1 ∗ 𝐶2)(𝑡) = ∫ 𝐶1(𝜏) ∙
𝑡

0

𝐶2(𝑡 − 𝜏)𝑑𝜏  (5-5) 

where 𝐶1 [M/L3] is the solute concentration at the inlet of the FC at time 𝜏, 𝐶2 [-] is the mass 

transfer probability of reaching the FC outlet shifted by 𝑡, and 𝐶𝑓𝑖𝑛𝑎𝑙(𝑡) [M/L3] is the final effluent 

BTC for the FC. Finally, during applying the mass transfer approach, the effluent BTCs for the 

upstream FCs in each intersection in the FCs-based network are coupled to calculate the Final BTC 

at each intersection. 

5.1. Results and Discussion 

This section starts by presenting the solute masses in the EV-FNs calculated by the RWPT model. 

The comparison between the UFN model and the RWPT model are then plotted to validate the 

UFN model in the micro-scale network, and the impact of the EV-FN size was investigated. 

Finally, mass distribution is calculated using the UFN model in the macro scale network. 

5.4.1 Model Validation 

The BTCs from the RWPT-based model (Khafagy et al., 2020) (i.e., used to establish the simplified 

FC-based network) were compared to the BTCs obtained from the UFC model (i.e., using the FC-

based network approach) to verify the validity of the UFN model approach. The fracture network 
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properties used in the UFN and RWPT model simulations for validation purposes are shown in 

Table 5-1. In these simulations, the solute was injected (i.e., 5,000 particles) along the entire west 

boundary using a pulse boundary condition, and the resulting BTCs from each EV-FC were 

converted to represent a constant concentration at the inlet boundary using the method described 

by Khafagy et al., (2022a). Fig. 5-6 shows the FC-based network obtained from the RWPT 

simulation and the corresponding solute mass fractions for 𝛼 = 1 m (Fig. 5-6a) and 𝛼 = 5 m (Fig. 

5-6b). 

 

 

Fig. 5-6: FC-based networks and solute masses corresponding to the micro scale network 

(Fig. 5-3b) for (a) 𝜶 = 1 m and (b) 𝜶 = 5 m. 

 

The effluent BTCs calculated by the UFN model validation simulations (i.e., model parameters in 

Table 5-1) (converted to simulate a Type 1 boundary condition) are plotted against those obtained 
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from the RWPT-based model in Fig. 5-7 for the  micro scale network shown in Fig. 5-3b. The 

results show good agreement between the UFN and RWPT results at all three effluent boundaries 

(i.e., north, east, and south) for both dispersivity values (i.e., 𝛼 = 1 m and 𝛼 = 5 m). At the East 

boundary, 𝑟2 is 0.9923 for 𝛼 = 1 m, whereas 𝑟2 is 0.9998 for 𝛼 = 5 m. The BTC at the east 

boundary results in slightly longer retention time, with the solute mass reaching the east boundary 

approximately 6% later. The UFN model shows that sequential correlation of the BTCs along the 

generated FCs accurately reproduces the results of DFN simulations and provides a practical and 

easily implementable alternative to continuum transport models. 

 

Fig. 5-7: BTCs from model validation runs (i.e., network properties in Table 5-1 in the 

micro-scale network (Fig. 5-3b) with a Type 1 boundary condition for 𝜶 = 1 m and 𝜶 = 5 m. 

Solid blue lines represent the RWPT model and dashed red lines represent the UFN model. 
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5.4.2 Impact of EV-FN Size 

The impact of the EV-FN size was investigated by comparing the effluent BTCs simulated by the 

UFN model for the network properties in Table 5-1 in the micro-scale network against those 

obtained from the RWPT model with 5,000 particles released. Fig. 5-8 shows the RMSE of BTCs 

for each EV-FN size at effluent boundaries (east, north, and south boundaries) for 𝛼 = 1 m. The 

results show that the RMSE for the east boundary is significantly larger than those of the north and 

south boundaries; this is because most of the solute mass reached the east boundary (~ 88%). In 

general, the RMSE increases as the EV-FN length decreases. For the network properties used in 

these simulations, and if a RMSE threshold of 0.05 is applied, then the EV-FN fails to represent 

the macro-scale network properties when its length is less than 33 m. Note that the EV-FN can be 

estimated prior to using the identified FC-based network at the macro or network scales by pre-

calculating the RMSE for the micro-scale network. 
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Fig. 5-8: RMSE versus EV-FN size for the BTCs at effluent boundaries of the UFN model 

for 𝜶 = 1 m. 

 

5.4.3 Mass Distribution using the UFN model 

The UFN model can calculate the spatial and temporal distribution of mass in each EV-FN 

boundary in the macro scale network. The BTCs calculated by the UFN model at the north, east, 

and south effluent boundaries are shown in Fig. 5-9 for the network properties in Table 5-1 

(converted to simulate a Type 1 boundary condition). Most of the solute mass reached the east 

boundary (~ 88%) due to the horizontal hydraulic gradient in the fracture network, whereas the 

remainder of the solute mass reached the north and south boundaries due to the hydrodynamic 

dispersion within the network. Increasing the dispersivity from 1 to 5 resulted in more mass 

spreading at the east boundary, a decrease in the fraction of mass exiting at the north boundary, 

and an increase in the fraction of mass exiting at the south boundary. 
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Fig. 5-9: BTCs calculated for network properties in Table 2-1 calculated by the UFN model 

at effluent boundaries in the  macro scale network (Fig. 2-3) for Type 1 boundary 

condition. Lines and dashed lines represent simulations for 𝜶 = 1 m and 𝜶 = 5 m, 

respectively. 

 

Note that if the direction of the macroscopic gradient varies significantly over the larger region of 

interest, similar subdivision may also be needed. This would, of course, require a separate set of 

DFN simulations to obtain the transport solution using the UFN model in each modeled subregion. 

The UFN model arrived at a solution in approximately 15% of the time required for the macro 

scale network (Fig. 5-2) to arrive at solutions using the RWPT approach only if the same number 

of released particles (5,000 particles in this study) in micro- scale fracture network (i.e., the small 
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FN (Fig. 5-3b)). The RWPT model requires at least five times more released particles to obtain 

accurate BTCs. Furthermore, the RWPT model requires higher computational resources than 

typical PC to obtain the transport solution in the macro scale network due to the large number of 

fractures in the network. This emphasizes the computational efficiency of the developed UFN 

model, which will become more pronounced as the scale and complexity of the fracture network 

increases and more solute particles are required for accurate results using the RWPT approach. 

Another new aspect of this work is that the UFN model is extremely simple to implement, and the 

simulation executes very quickly. The UFN model does not yield the same level of insight that can 

be obtained through analytical methods, and we regard the approach as a practical tool that can be 

used to estimate transport at a given site. 

5.2. Conclusion 

In conclusion, direct upscaling of DFN simulations provides an alternative to site-scale continuum 

transport models. The suggested procedure is to first perform small scale DFN simulations 

utilizing hydraulic, geologic, and chemical information on the fracture network, and then use the 

results collected from these DFN simulations to obtain transport results at larger scales. This 

approach avoids volume averaging and other assumptions inherent in the continuum approach, and 

preserves solute migration observed in DFN simulations. It also allows relevant transport and 

retention processes to be incorporated directly (e.g., advection and dispersion, matrix diffusion, 

sorption onto the fracture walls and in the matrix, and radioactive decay). The results presented 

here demonstrate that advection and dispersion can be included in the model at the macro scale 
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with relatively modest computational effort. The UNM model performed well when compared 

with simulations from the RWPT-based numerical model in the small FN. The UNM model is 

computationally efficient, arriving at a solution in approximately 25% of the time required for the 

RWPT model with 5,000 particles released. The impact of this efficiency will become more 

apparent when more particles are released, and in larger, more complex networks. 

A key finding of this study is that the size of EV-FNs, which are used to estimate the FC-based 

network, impact the accuracy of the BTCs. The EV-FNs must be larger than the representative EV 

to preserve the network properties. Two straightforward modifications of the upscaling approach 

may be needed for applications. The method assumes that the DFN is homogeneous such that the 

FC-based network is representative of the larger region of interest. This would not be true if the 

statistical properties of the networks vary significantly over the larger region of interest. Such non-

stationarity is not uncommon and can be addressed in applications by simply dividing the larger 

region of interest into subregions with approximately constant network properties in each. For 

anisotropic networks, the transport solution may also depend on the direction of macroscopic 

gradient relative to the principal directions of the network. If the direction of the macroscopic 

gradient varies significantly over the larger region of interest, similar subdivision may also be 

needed. This would, of course, require a separate set of DFN simulations to obtain the transport 

solution in each modeled subregion. 
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Chapter 6: Summary and Conclusions 

The main goal of this dissertation is to develop efficient numerical models that describe solute 

transport in complex, field-scale fractured aquifers.  Four research objectives have been designed 

to achieve this goal: (1) develop a computationally efficient analytical model for simulating two-

dimensional spatial and temporal solute transport in discrete fracture networks (DFNs), (2) develop 

a closed-form solution describing the classical advection-dispersion equation for simulating 

reactive transport in single, parallel-plate fractures under a range of conditions, (3) develop a 

numerical model (based on the closed-form solution developed in Objective 2) to simulate solute 

transport in small-scale (~350 m × 350 m) discrete fracture networks considering mass exchange 

between the fracture and surrounding matrix, and (4) upscale the frameworks developed in 

Objectives 1 and 3 to develop an accurate and computationally efficient numerical model 

simulating solute transport in field-scale fracture networks . 

The first Objective is presented in Chapter 2. An analytical network (AN) model is developed to 

simulate solute transport in two-dimensional fracture networks considering advection and 

dispersion within the fracture, sorption on the fracture walls and within the matrix, matrix 

diffusion, and first-order decay. the complete mixing (CM) and stream-tube (ST) methods are used 

for mass sharing at intersections, and the performance of these methods was compared under a 

range of Peclet numbers (𝑃𝑒). The transfer function approach was applied to calculate solute 

transport in each fracture using the output from the mass sharing scheme as the upstream boundary 

condition. Based on the work presented in chapter 2, it can be concluded that: 

• It was also found that when 𝑃𝑒 is small, the mass sharing method impacts the shape of the BTC 
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regardless of the presence of matrix diffusion, with the CM method producing higher 

dispersion than the ST method. 

• The differences between the CM and ST BTCs are less pronounced under high values of 𝑃𝑒 in 

the absence of matrix diffusion. 

• When matrix diffusion is considered at high 𝑃𝑒, the increased dispersion caused by the CM 

approach is only observable at early times, as the effect is dampened by matrix diffusion. 

• The developed AN model arrived at a solution in FN1 network in less than 1% and 3% of the 

time required for the TDRW (without matrix diffusion) and RWPT (with matrix diffusion) 

approaches. 

The second Objective is presented in Chapter 3. A closed-form solution (MGGP SF-ST model) is 

developed employing MGGP to simulate reactive transport in a single, parallel plate fracture under 

a range of hydraulic, geological and chemical conditions for either a constant concentration or 

pulse injection at the inlet. The model was developed based on a large dataset of BTCs (101,740 

datapoints) generated from a published analytical solution for solute transport in a single fracture 

under a range of conditions (i.e., velocity, dispersion along the fracture, molecular diffusion within 

the fracture and into the matrix, and adsorption within the matrix). Based on the work presented 

in chapter 3, it can be concluded that: 

• The MGGP SF-ST model represents an important contribution as it is relatively easy to 

implement and provides a computationally efficient tool relative to existing analytical solutions 

and numerical models. 

• The MGGP SF-ST model advances solute transport behavior predictions especially when the 
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scale of simulation increases from that of a single fracture to a network. 

The third Objective is presented in Chapter 4. A numerical model is developed to simulate the 

solute transport in fracture networks based on an extension of the MGGP SF-ST model for solute 

transport in a single fracture considering advection and dispersion along the fracture; molecular 

diffusion within the fracture and into the matrix; and, adsorption within the matrix for Type 1 and 

Type 2 BC. The extension is achieved by applying the CM method for solute mass sharing at 

fracture intersections to form a solute injected BTC for each fracture inlet as an inlet BC in this 

fracture. Based on the work presented in chapter 4, it can be concluded that: 

• The developed model can approximately predict the solute transport as the CFD model when 

assuming a higher value of dispersivity which is highly affected by the fracture density in the 

fracture network. 

• The numerical results of the DFN2 indicated that the low diffusion coefficient causes a long 

tail BTC at the outflow boundary of the network with smaller retention time of most of the 

solute, while small fracture aperture and large effective fracture spacings hinder the solute 

migration within the fracture network. 

• The developed model will facilitate rapid simulations of solute transport in complex DFNs, 

while other models are computationally intensive to simulate the solute transport in such 

networks. 

The fourth Objective is presented in Chapter 5. An upscaled fracture network (UFN) model is 

developed employing RWPT approach in a DFN. The UFN model accurately captures solute 

transport processes occurring at the macro scale fracture networks. The model involved 
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discretizing a complex fracture network into elementary volumes, within which both 

representative solute transport flow channels and their corresponding breakthrough curves were 

identified. Based on the work presented in chapter 5, it can be concluded that: 

• The size of elementary volumes, which are used to estimate the flow channel-based network, 

are an important control on the breakthrough curves. The elementary volumes must be larger 

than the representative elementary volume to preserve the network properties. 

• The UFN model assumes that the DFN is homogeneous such that the flow channel-based 

network is representative of the larger region of interest. 

• The fluctuating statistical properties of the networks over the larger region of interest require 

a separate set of DFN simulations to obtain the transport solution in each modeled subregion. 
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Appendix 1 

Bear (1972) proposed an analytical solution to Eq. (2-1) neglecting the matrix (i.e., the fifth 

term in Eq. (2-1)). Their solution gives the concentration at the outlet boundary under a pulse 

injection at the fracture inlet and considers advection and hydrodynamic dispersion within the 

fracture, sorption on the fracture walls, and first-order decay: 

𝐶 =
𝑚𝑜𝑧

2𝑏 𝑊 𝑣√4𝜋
𝐷
𝑅 𝑡3

𝑒𝑥𝑝 (−
(𝑧 −

𝑣
𝑅 𝑡)

2

4
𝐷
𝑅 𝑡

) 𝑒𝑥𝑝 (−𝜆𝑡) (A.1.1) 

where 𝑚𝑜 [M] is the mass injected, 𝑊 [L] is the fracture width, and 𝑅 is the retardation coefficient 

due to sorption on the fracture walls represented by the linear adsorption isotherm (Freeze and 

Cherry, 1980): 

𝑅 = 1 +
𝐾𝑓

𝑏
  (A.1.2)  

where 𝐾𝑓 [𝐿] is the fracture distribution coefficient. 

Sudicky and Frind (1982) proposed an analytical solution to Eq. (2-1) for a constant 

concentration boundary at the inlet considering matrix diffusion (i.e., the fifth term in Eq. (2-1)), 

advection and hydrodynamic dispersion in the fracture, molecular diffusion into the matrix, 

adsorption onto the walls and within the matrix, and first-order decay: 
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𝐶

𝐶𝑜
=

2

𝜋
3
2

𝑒𝑥𝑝(𝑣𝑧) ∫ 𝑒𝑥𝑝 [−𝜉2 −
𝑣2𝑧2

4𝜉2
−

𝑅𝜆𝑧2

4𝐷𝜉2
] ∙ ∫

𝜀

𝜆2+
𝜀4

4

𝑒𝑥𝑝(𝜀𝑅) ∙
∞

0

∞

𝑙

{𝑒𝑥𝑝(−𝜆𝑇) [
𝜀2

2
𝑠𝑖𝑛(𝜀𝑙)|𝑇 − 𝜆 𝑐𝑜𝑠(𝜀𝑙)|𝑇] +

𝜀2

2
𝑠𝑖𝑛(𝛺) + 𝜆 𝑐𝑜𝑠(𝛺)} 𝑑𝜀 𝑑𝜉  (A.1.3) 

where 

 

𝑌 =
𝑣2𝐾2𝑧2

4𝐴 𝜉2
 𝐾2 =

4𝑅𝐷

𝑉2
 

𝛺 =
𝑌𝜀

2
(

𝑠𝑖𝑛ℎ(𝜎𝜀) + 𝑠𝑖𝑛(𝜎𝜀)

𝑐𝑜𝑠ℎ(𝜎𝜀) + 𝑐𝑜𝑠(𝜎𝜀)
) 𝛺′ = 𝛺 +

𝑅𝑧2𝜀2

8𝜉2
 

𝜎 = 𝐺(𝐵 − 𝑏) 𝐺 = √
𝑅′

𝐷′
 

𝐴 =
𝑏𝑅

𝜃√𝑅′𝐷′
 𝐷 = 𝛼𝐿𝑉 + 𝐷∗ 

𝐷′ = 𝜏𝐷∗ 𝑣 =
𝑉

2𝐷
 

𝜀𝑙 =
𝜀2𝑡

2
−

𝑌𝜀

2
(

𝑠𝑖𝑛ℎ(𝜎𝜀) + 𝑠𝑖𝑛(𝜎𝜀)

𝑐𝑜𝑠ℎ(𝜎𝜀) + 𝑐𝑜𝑠(𝜎𝜀)
) 𝜀𝑅 =

𝑌𝜀

2
(

𝑠𝑖𝑛ℎ(𝜎𝜀) − 𝑠𝑖𝑛(𝜎𝜀)

𝑐𝑜𝑠ℎ(𝜎𝜀) + 𝑐𝑜𝑠(𝜎𝜀)
) 

𝑇 = 𝑡 −
𝑅𝑧2

4𝐷𝜉2
       𝑇 ≥ 0  

and where 𝐶𝑜 [M/L3] is the source concentration, 2𝐵 [L] is the spacing between the centerlines of 
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the fractures, 𝑅′ [-] is the retardation coefficient in the matrix, 𝐷∗ [L2/T] is the molecular diffusion 

coefficient for the solute in water, 𝛼𝐿 [L] is the dispersivity, 𝜏 [-] is the matrix tortuosity, and 𝑅′ is 

the matrix retardation coefficient due to sorption and is represented by the linear adsorption 

isotherm (Freeze and Cherry, 1980): 

𝑅′ = 1 +
𝜌𝑏

𝜃
𝐾𝑚  (A.1.4)  

where 𝜌𝑏 [M/L3] is the bulk density of the porous matrix, and 𝐾𝑚 [L3/M] is the matrix distribution 

coefficient. 
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Appendix 2 

Sudicky and Frind (1982) proposed an analytical solution for a constant concentration 

boundary at the inlet considering matrix diffusion, advection and hydrodynamic dispersion in the 

fracture, molecular diffusion into the matrix, adsorption onto the walls and within the matrix, and 

first-order decay: 

𝐶

𝐶𝑜
=

2

𝜋
3
2

𝑒𝑥𝑝(𝑣𝑧) ∫ 𝑒𝑥𝑝 [−𝜉2 −
𝑣2𝑧2

4𝜉2
−

𝑅𝜆𝑧2

4𝐷𝜉2
] ∙ ∫

𝜀

𝜆2+
𝜀4

4

𝑒𝑥𝑝(𝜀𝑅) ∙
∞

0

∞

𝑙

{𝑒𝑥𝑝(−𝜆𝑇) [
𝜀2

2
𝑠𝑖𝑛(𝜀𝑙)|𝑇 − 𝜆 𝑐𝑜𝑠(𝜀𝑙)|𝑇] +

𝜀2

2
𝑠𝑖𝑛(𝛺) + 𝜆 𝑐𝑜𝑠(𝛺)} 𝑑𝜀 𝑑𝜉  (A.2.1) 

where 

 

𝑌 =
𝑣2𝐾2𝑧2

4𝐴 𝜉2
 𝐾2 =

4𝑅𝐷

𝑉2
 

𝛺 =
𝑌𝜀

2
(

𝑠𝑖𝑛ℎ(𝜎𝜀) + 𝑠𝑖𝑛(𝜎𝜀)

𝑐𝑜𝑠ℎ(𝜎𝜀) + 𝑐𝑜𝑠(𝜎𝜀)
) 𝛺′ = 𝛺 +

𝑅𝑧2𝜀2

8𝜉2
 

𝜎 = 𝐺(𝐵 − 𝑏) 𝐺 = √
𝑅𝑚

𝐷𝑚
 

𝐴 =
𝑏𝑅

𝜃√𝑅𝑚𝐷𝑚

 𝐷 = 𝛼𝐿𝑉 + 𝐷∗ 
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𝐷𝑚 = 𝜏𝐷∗ 𝑣 =
𝑉

2𝐷
 

𝜀𝑙 =
𝜀2𝑡

2
−

𝑌𝜀

2
(

𝑠𝑖𝑛ℎ(𝜎𝜀) + 𝑠𝑖𝑛(𝜎𝜀)

𝑐𝑜𝑠ℎ(𝜎𝜀) + 𝑐𝑜𝑠(𝜎𝜀)
) 𝜀𝑅 =

𝑌𝜀

2
(

𝑠𝑖𝑛ℎ(𝜎𝜀) − 𝑠𝑖𝑛(𝜎𝜀)

𝑐𝑜𝑠ℎ(𝜎𝜀) + 𝑐𝑜𝑠(𝜎𝜀)
) 

𝑇 = 𝑡 −
𝑅𝑧2

4𝐷𝜉2
       𝑇 ≥ 0 𝑅 = 1 +

𝐾𝑓

𝑏
 

𝑅𝑚 = 1 +
𝜌𝑏

𝜃
𝐾𝑚 𝜆 =

𝑙𝑛 2

𝑡1/2
 

where z [L] is the fracture length, t [T] is the time, Co [M/L3] is the source concentration, V [L/T] 

is groundwater velocity in the fracture, b [L] is half of the aperture width, B [L] is half of the 

distance between centerline of two fractures, D∗ [L2/T] is the molecular diffusion coefficient for 

the solute in water, D [L2/T] is the hydrodynamic dispersion coefficient along the fracture, Dm 

[L2/T] is the diffusion coefficient in the porous matrix, αL [L] is the dispersivity, τ [-] is the matrix 

tortuosity, θ [-] is the matrix porosity, λ [T−1] is the first-order decay constant, t1/2 [T] is the half-

life of the solute, R [-] and Rm [-] are retardation coefficients in the fracture and matrix, 

respectively, based on linear adsorption isotherms as represented by Freeze and Cherry (1980), Kf 

[L] is the fracture distribution coefficient, ρb [M/L3] is the bulk density of the porous matrix, and 

Km [L3/M] is the distribution coefficient of the porous matrix. 
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Supplementary Data A (TDRW-Based Model) 

The TDRW-based model used in this research is based on that developed by Bodin et al., (2003). 

The model simulates solute transport in fracture networks using a Lagrangian time domain random 

walk (TDRW) approach that combines the merits of both the random walk (RW) and particle 

tracking (PT) methods. Specifically, RW accounts for stochastic processes in the system, and PT 

calculates the length of time required for a particle to migrate from the upstream to downstream 

nodes (i.e., along a single fracture). Unlike PT which allows the particle to migrate a certain 

distance within a specified time step, RW allows a particle to migrate from the upstream to 

downstream nodes in a single step. At the network scale, a set of particles is injected at an inlet 

boundary and tracked through the network until they exit at the outlet boundary. The solution 

divides the fracture network into a set of parallel (elementary) pathways, and a portion of the 

particles released at the inlet boundary is assigned to each elementary pathway based on the 

relative discharge in that pathway. The TDRW algorithm is applied to the individual particles and 

accounts for the stochastic processes that they experience. Solute breakthrough curves are 

calculated based on the residence time distribution of all particles in the network. The mean and 

variance of particle travel times for an elementary displacement of length 𝑑𝑥 is: 

𝜇𝑡(𝑑𝑥) =
𝑅

𝑣2
(𝑣 +

𝜕𝐷

𝜕𝑥
) 𝑑𝑥 (S. 1.1) 

𝜎𝑡
2(𝑑𝑥) = 𝑅2

2𝐷

𝑣3
𝑑𝑥 (S. 1.2) 

where 𝜇𝑡 [T] and 𝜎𝑡
2 [T2] are the mean and variance of the particle travel time distribution, 𝑣 [L/T] 
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is groundwater velocity in the fracture, 𝐷 [L2/T] is the hydrodynamic dispersion coefficient along 

the fracture, and 𝑅 [-] is the retardation coefficient due to sorption on the fracture walls. 

The particle motion along an elementary pathway of length 𝐿 [L] can be considered as a series of 

independent steps, and therefore the means and variances are additive (Rasmuson, 1985; Bodin et 

al., 2003c). Thus, the mean and variance of the particle travel time distribution for an elementary 

pathway can be written as: 

𝜇𝑡 =
𝑅

𝑣2
∫ (𝑣 +

𝜕𝐷

𝜕𝑥
) 𝑑𝑥

𝐿

0

=
𝑅

𝑣2
(𝑣𝐿 + ∫

𝜕𝐷

𝜕𝑥
𝑑𝑥

𝐿

0

) (S. 1.3) 

𝜎𝑡
2 =

2𝑅2

𝑣3
∫ 𝐷 𝑑𝑥

𝐿

0

 (S. 1.4) 

For Péclet numbers (𝑃𝑒 = 𝑣 𝐿/𝐷) [-] larger than 10, it can be shown that the travel time distribution 

is lognormal (Bodin et al., 2003). Therefore, the stochastic calculation of travel times for individual 

particles over an elementary pathway is given by: 

𝑙𝑛(∆𝑡𝑓) = 𝜇𝑙𝑛 + 𝑍𝑁 𝜎𝑙𝑛 (S. 1.5) 

𝜇𝑙𝑛 = 𝑙𝑛 (𝜇𝑡/√1 + 𝜎𝑡
2/𝜇𝑡

2) (S. 1.6) 

𝜎𝑙𝑛
2 = 𝑙𝑛(1 + 𝜎𝑡

2/𝜇𝑡
2) (S. 1.7) 

where 𝛥𝑡𝑓 [L] is the time for particle f to travel along an elementary pathway, 𝜇𝑙𝑛 and 𝜎𝑙𝑛
2  are the 

mean variance of the log transform, and 𝑍𝑁 is a random number drawn from a normal distribution. 
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Note that the TDRW method enables a scale-dependent dispersion coefficient provided that the 

spatial derivative in Eq. (S.1.3) is calculable. If indexes 𝑛 and 𝑛 + 1 refer to the upstream and 

downstream nodes of an elementary pathway of length 𝐿, the particle travel time in this pathway 

can be written as: 

𝑡𝑛+1 − 𝑡𝑛 = ∆𝑡𝑓 = 𝑒𝑥𝑝(𝜇𝑙𝑛 + 𝑍𝑁 𝜎𝑙𝑛) (S. 1.8) 

Despite the simplicity of this technique, it does have limitations. In fracture networks, 𝑃𝑒 can be 

less than 10, either locally in short fracture segments, or in elementary pathways with low flow 

velocities. The assumption of a lognormal travel time distribution in these bonds is flawed and 

yields inaccurate results. Bodin et al. (2003) proposed an empirical correction of Eq. (S.1.6) to 

preserve accuracy where 𝑃𝑒 < 10. This correction is as follows: 

𝜇𝑙𝑛
′ = 𝛽 𝜇𝑙𝑛 = (1 −

1

33𝑃𝑒
) 𝑙𝑛 (

𝜇𝑡

√1 + 𝜎𝑡
2/𝜇𝑡

2
) (S. 1.9) 

where 𝜇𝑙𝑛
′  is the corrected mean of the log transform, and 𝛽 [-] is the empirical correction factor. 
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Supplementary Data B (RWPT-Based Model) 

The random walk particle tracking method (RWPT) involves the release of a large number of 

representative particles at the inlet boundary of a domain. For each particle, advective transport is 

simulated using a stepwise deterministic process, and dispersive transport using a stochastic 

process (e.g., LaBolle et al. 1996; Masciopinto 1999; Hassan and Mohamed 2003; Langevin 2003; 

Reeves et al. 2008; Masciopinto et al. 2010; Cadini et al. 2012; Willmann et al. 2013). Based on 

this, the spatial location of each particle is calculated after each time step as follows (Tompson and 

Gelhar, 1990): 

𝑋𝑡+𝛥𝑡 = 𝑋𝑡 + [𝑉(𝑋𝑡, 𝑡) + 𝛻 ∙ 𝑑(𝑉(𝑋𝑡, 𝑡))]∆𝑡 + [2𝑑(𝑉(𝑋𝑡, 𝑡))∆𝑡]1/2 ∙ 𝑍 (S. 2.1)  

where 𝑋𝑡+𝛥𝑡 [L] is the position of the particle at time 𝑡 + 𝛥𝑡, 𝑋𝑡 [L] is the position of the particle 

at time 𝑡, 𝑉(𝑋𝑡, 𝑡) [L/T] is the velocity vector of the particle at position 𝑋𝑡 and time 𝑡, 𝑑 [L2/T] is 

the local-scale dispersion tensor at 𝑋𝑡 and time 𝑡, ∆𝑡 [T] is the time step, and 𝑍 is a tensor of 

random numbers drawn from a normal distribution with a mean of zero and a unit variance. 

In order to apply this technique within discrete fracture networks (DFNs), the DFN must be 

conceptualized as a network of interconnected one-dimensional pipes (Bodin et al. 2003; Bodin et 

al. 2007). The RWPT model considered in this work considers the following processes: 

1. Advection and mechanical dispersion along the fractures. 

2. Diffusion into the matrix. 

3. Reactive process within the matrix. 
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4. Reactive process on the fracture walls. 

The fluid velocity in the fracture, 𝑉𝑓 [L/T], is obtained from: 

𝑉𝑓 =
𝑇𝑓 𝑑ℎ

𝑛 𝑏 𝑑𝑙
 (S. 2.2)  

where 𝑇𝑓 [L2/T] is the transmissivity, 𝑛 [-] is the porosity, 𝑏 [L] is fracture’s aperture size, and 
𝑑ℎ

𝑑𝑙
 

is the hydraulic gradient. A particle with velocity 𝑣 [L/T] located in a fracture oriented at an angle 

𝜃 (Fig. S.2.1) migrates some distance, ∆𝒍 [L], due to advection and dispersion. This is calculated 

using the RWPT method represented as follows: 

∆𝑙 = 𝑣 ∆𝑡 + √2 𝑑 ∆𝑡 𝑍 (S. 2.3)  

where ∆𝑡 [T] is the time step, 𝑑 [L2/T] is hydrodynamic dispersion coefficient, and 𝑍 is a random 

number drawn from a normal distribution with zero mean and unit variance. The dispersion 

coefficient is related to the velocity through the dispersivity, 𝛼 [L] as follows: 

𝑑 = 𝛼 𝑣 + 𝐷∗ (S. 2.4)  
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Fig S.2.1: Fracture geometry and properties. The solid arrows represent direction of flow 

and particle migration, the dashed lines are parallel plate representations of fractures, and 

the circles represent particles.  

 

The new particle location can be obtained from: 

𝑋𝑝_𝑛𝑒𝑤 = 𝑋𝑝_𝑜𝑙𝑑 + 𝑑𝑙 𝑐𝑜𝑠(𝜃) (S. 2.5)  

𝑌𝑝_𝑛𝑒𝑤 = 𝑌𝑝_𝑜𝑙𝑑 + 𝑑𝑙 𝑠𝑖𝑛(𝜃) (S. 2.6)  

where 𝑋𝑝_𝑛𝑒𝑤 [L] and 𝑋𝑝_𝑜𝑙𝑑  [L] are the new and old x-coordinates, respectively, and 𝑌𝑝_𝑛𝑒𝑤 [L] 

and 𝑌𝑝_𝑜𝑙𝑑 [L] are new and old y-coordinates, respectively. 

The above equation and RWPT technique described are valid within the fracture length (i.e., as 

long as the particle has not reached the end node). Once a particle reaches the end node (i.e., 
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fracture intersection), a mass sharing technique is applied to determine the probability distribution 

for the particle’s new location with respect to the multiple downstream fractures. Park and Lee 

(1999) proposed the use of the perfect mixing approach, and estimated the particle transition 

probability between all downstream fractures based on relative discharge. The probability that the 

particle enters each downstream fracture is determined as follows: 

𝑃𝑗 =
𝑄𝑗

∑ 𝑄𝑘
𝑁
𝑘=1

 (𝑆. 2.7) 

where 𝑃𝑗  is the fraction of solute mass from the upstream intersection entering a downstream 

fracture 𝑗 , 𝑄𝑗  [L3/T] is the discharge in downstream fracture 𝑗 , and 𝑁  is the total number of 

downstream fractures. Fig. S.2.1 shows a particle just upstream of the intersection of three 

fractures. When a particle is near to an intersection (i.e., either upstream or downstream), its 

location at the next time step is subject to one of the following three possibilities. The first 

possibility is that particle step is small enough such that it does not reach either an upstream or 

downstream intersection and remains in the same fracture. The second possibility is that particle 

step is exactly equal to the distance to an upstream or downstream intersection. In this case the 

particle will move to the intersection and remain there until the next time step. The third possibility 

is when the particle step is larger than the distance to the fracture intersection. In this case, the 

particle will move to the intersection in time ∆𝑡1, which is less than the time step, ∆𝑡, as follows:  

∆𝑡1  =
𝐿𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 

𝑑𝑙
  ∆𝑡 (S. 2.8)  

where 𝐿𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  [L] is the distance from the current particle location to the fracture intersection. 
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The remaining time (∆𝑡2 = ∆𝑡 − ∆𝑡1) is then be used to move the particle from the intersection 

into a fracture that is selected based on the transition probability (Eq. (S.2.7)). The location within 

the new fracture is determined as follows:  

𝑑𝑙2 = 𝑉𝑖 ∆𝑡2  + √2 𝑑 ∆𝑡2 𝑍 (S. 2.9)  

where 𝑉𝑖 [L/T] is the new particle velocity, and 𝑑𝑖 [L2/T] is the new particle hydrodynamic 

dispersion coefficient based on the new fracture’s velocity 𝑉𝑖, 𝑍 is a random number taken from a 

normal distribution with zero mean and unit variance.  

Incorporating Diffusion Process 

There are two main required steps to incorporate the matrix diffusion process into the RWPT-

based transport model: 

1. Calculate the transfer probabilities of both solute particles moving from the fracture to the 

matrix and from the matrix to the fracture. 

2. Calculate the diffusion distance for particles moving from the fracture to the matrix. 

Matrix Diffusion Step 1: Transfer Probabilities 

The particle transfer probabilities developed by Pan and Bodvarsson (2002) are used in this 

RWPT-based model as follows: 

𝑃𝑓𝑚 =
𝐹𝑓𝑚

𝑄𝑓 + 𝐹𝑓𝑚
[1 − 𝑒𝑥𝑝 (−

∆𝑡

𝜏𝑓
)] (S. 2.10) 
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𝑃𝑚𝑓 =
𝐹𝑚𝑓

𝑄𝑚 + 𝐹𝑚𝑓
[1 − 𝑒𝑥𝑝 (−

∆𝑡

𝜏𝑚
)]   (S. 2.11)  

𝐹𝑓𝑚 = 𝑚𝑎𝑥(𝑞𝑓𝑚𝐴𝑓𝑚, 0) +
𝐷𝑚𝐴𝑓𝑚

𝑆𝑓𝑚
 (S. 2.12) 

𝐹𝑚𝑓 = 𝑚𝑎𝑥(−𝑞𝑓𝑚𝐴𝑓𝑚, 0) +
𝐷𝑚𝐴𝑓𝑚

𝑆𝑓𝑚
 (S. 2.13) 

𝑄𝑓 = ∑ [𝑚𝑎𝑥(𝑞𝑓𝐴𝑖, 0) +
𝐷𝑓𝑖𝐴𝑖

𝑆𝑖
]

𝑁

𝑖=1

 (S. 2.14) 

𝑄𝑚 = ∑ [𝑚𝑎𝑥(𝑞𝑚𝐴𝑖 , 0) +
𝐷𝑚𝑖𝐴𝑖

𝑆𝑖
]

𝑁

𝑖=1

 (S. 2.15) 

𝜏𝑓 =
𝑉𝑓𝑅𝑓

𝐹𝑓𝑚 + 𝑄𝑓
 (S. 2.16) 

𝜏𝑚 =
𝑉𝑚𝑅𝑚

𝐹𝑚𝑓 + 𝑄𝑚
 (S. 2.17) 

where 𝑃𝑓𝑚 and 𝑃𝑚𝑓 are the diffusion probabilities for particles moving from the fracture to the 

matrix and from the matrix to the fracture, respectively, 𝐹 [L3/T] is the strength of the advection 

and dispersion/diffusion processes across the fracture-matrix interface, 𝑄 [L3/T] is the strength of 

advection and dispersion/diffusion processes through the interfaces to adjacent grid cells in the 

same continuum, 𝜏𝑓 and 𝜏𝑚 [T] are the characteristic times of the fracture continuum and the 
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matrix continuum, respectively, ∆𝑡 [T] is the time step, 𝐴𝑓𝑚 and 𝐴𝑖  [L/T] represent the areas of 

the fracture-matrix interface within the grid cell and the interface adjacent to the 𝑖𝑡ℎ cell, 

respectively, 𝑞𝑓𝑚 and 𝑞𝑖  [L/T] represent the fluid flux across the fracture-matrix interface within 

the grid cell and the interface adjacent to the 𝑖𝑡ℎ grid cell, respectively, 𝐷𝑚, 𝐷𝑓𝑖 and 𝐷𝑚𝑖  [L2/T] 

are effective dispersion coefficients in the matrix within the grid cell, the fracture continuum at the 

interface of the 𝑖𝑡ℎ adjacent cell, and the matrix continuum at the interface of the 𝑖𝑡ℎ adjacent cell, 

respectively, 𝑆𝑖 [L] is the distance between the centers of the cell and the 𝑖𝑡ℎ adjacent cell, 𝑆𝑓𝑚 [L] 

is the characteristic length of the fracture-matrix system, and 𝑉𝑚 [L3] is the total matrix volume. 

Pan and Bodvarsson (2002) developed equations describing the activity range to have the ability 

of capturing the transient features of the diffusion depth into the matrix for a certain pulse. The 

probabilities developed by Liu, Bodvarsson, and Pan (2000) use the total matrix volume 𝑉𝑚 and 

the fixed characteristic distance 𝑆𝑓𝑚 regardless of the time. In reality, the full matrix volume and 

the characteristic distance are time dependent. The following equations describing the activity 

range: 

𝑉𝑚(𝑡𝑃) = 𝑉𝑚

𝐵∗(𝑡𝑃)

𝐵
   (S. 2.18)  

𝑆𝑓𝑚(𝑡𝑃) = 𝑆𝑓𝑚

𝐵∗(𝑡𝑃)

𝐵
   (S. 2.19)  
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𝐵∗(𝑡𝑃) = 𝑚𝑖𝑛 (4√4√4𝐷′𝑡𝑃

𝑅′
 , 𝐵) (S. 2.20)  

where 𝑡𝑃 [T] is the time elapsed from the pulse injection, which can be considered as the particle’s 

age in the dual-continuum particle tracking method, 2𝐵 [L] is the fracture spacing, 𝐵∗(𝑡𝑃) [L] is 

the activity range, 𝐷′ [L2/T] is the diffusion coefficient in the matrix, and 𝑅′ [-] is the retardation 

factor for sorption in the matrix. 

Matrix Diffusion Step 2: Migration into the Matrix 

Subsequent to the transfer probabilites determining which particles will diffuse into the matrix, the 

following equation determines the distance that a particle will diffuse into the matrix (𝑑𝑙′ [L]): 

𝑑𝑙′ = 𝑏 + 𝐵 × 𝑈′ (S. 2.21)  

where 𝑏 [L] is half of the aperture, 𝐵 [L] is matrix length, 𝑈′ [0,1] is a random number taken from 

a standard uniform distribution. Fig. S.2.1 shows a particle moving a distance 𝑑𝑙′ into the matrix. 

Sorption 

Sorption in the matrix 

The reactive transport problem is represented by the Advection-Dispersion Equation with the 

addition of the sorption term as shown in the following equations: 

𝜕𝐶

𝜕𝑡
+

𝜕𝑆

𝜕𝑡
= ∇ ∙ (𝑑 ∙ ∇𝐶) − ∇ ∙ (𝑉𝐶) = 0  (S. 2.22)  
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𝜕𝑆

𝜕𝑡
= 𝐾𝑟(𝐾𝑑𝐶 − 𝑆) = 𝐾𝑓𝐶 − 𝐾𝑏𝑆 

(S. 2.23)  

where 𝐶 [M/L3] is the aqueous phase concentration, 𝑆 [M/L3] is the sorbed phase concentration, 

𝑉 [L/T] is the velocity vector, 𝑑 [L2/T] is the local scale dispersion tensor, 𝐾𝑑 [-] is the partition 

coefficient, 𝐾𝑟 [T−1] is the reaction rate coefficient, 𝐾𝑓 [T−1] is a forward rate coefficient, and 

𝐾𝑏 [T−1] is a backward rate coefficient. 

Kinzelbach (1988) and Valocchi and Quinodoz (1989) presented a detailed discussion on using 

the RWPT technique for simulating transport of kinetically sorbing solutes with deterministic 

reaction rate coefficients for a one dimensional flow field. The RWPT model used in this work 

builds on their methodology, simulating the transport of kinetically sorbing solutes with 

deterministic reaction rate coefficients in a two-dimensional flow field. 

In the RWPT model, the particle moves between the aqueous phase (state 1) and the sorbed phase 

(state 2). At any instant in time, the particle exists in one of these two states. Each particle is 

assigned a state variable 𝑌(𝑡), where 𝑌(𝑡) = 1 for the aqueous phase and 𝑌(𝑡) = 2 for the sorbed 

phase. Initially all particles are assumed to be in the aqueous phase. The advection - dispersion 

steps are only applied to particles in the aqueous phase. At the end of each time step, the particles 

may change their phase according to two transitional probabilities, 𝑃1,2 and 𝑃2,1. 

𝑃1,2 = 𝐾𝑓  ×  Δ𝑡 (S. 2.24)  

𝑃2,1 = 𝐾𝑏  ×  Δ𝑡 (S. 2.25)  
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where 𝑃1,2 is the probability that a particle changes its state from the aqueous to sorbed phase, 𝑃2,1 

is the probability that the particle changes its state from the sorbed to aqueous phase, and Δ𝑡 [T] is 

the time step. 

At the end of each time step a uniform random distribution 𝑋 [0,1] is drawn for each particle. The 

final state, 𝑌(𝑡 + Δ𝑡), is adjusted according to Eq. (S.2.26) for particles in the aqueous phase, and 

according to Eq. (S.2.27) for particles in the sorbed phase. 

𝑌(𝑡 + Δ𝑡) = {
2, 𝑋 < 𝑃1,2

1, 𝑋 ≥ 𝑃1,2
 (S. 2.26)  

𝑌(𝑡 + Δ𝑡) = {
1, 𝑋 < 𝑃2,1

2, 𝑋 ≥ 𝑃2,1
 

(S. 2.27)  

where 𝑌(𝑡 + Δ𝑡) is the updated state of the particle after time step Δ𝑡. This process is repeated at 

each time step. Sorption acts to retard the particles; the average retardation factor for sorption in 

the matrix can be calculated as: 

𝑅′ = 1 +
𝐾𝑓

𝐾𝑏
 (S. 2.28)  

Sorption on fracture walls 

The reactive transport problem on fracture walls is represented by the following equation: 

𝜕𝑆

𝜕𝑡
= 𝐾𝑓𝐶 − 𝐾𝑏𝑆 = 𝐾𝑓 (𝐶 −

1

𝐾𝑎
𝑆) (S. 2.29)  

where 𝐶 [M/L3] is the aqueous phase concentration, 𝑆 [M/L3] is the sorbed phase concentration, 
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and 𝐾𝑎 [L] is the fracture distribution coefficient (𝐾𝑎 = 𝐾𝑓/𝐾𝑏). The retardation factor of sorption 

on the fracture wall can be calculated as: 

𝑅 = 1 +
𝐾𝑎

𝑏
 (S. 2.30)  

where 𝑅 is the retardation factor due to sorption on the fracture wall. Eqs. (S.2.24 – S.2.27) and 

Eq. (S.2.30) may be implemented using either the forward and backward rate 

coefficients, 𝐾𝑓 and 𝐾𝑏, or the retardation factor, 𝑅, as input data. 
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