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Abstract

The number of statistical and mathematical credit risk models that financial institutions

use and manage due to international and domestic regulatory pressures in recent years

has steadily increased. This thesis examines the evolution of model risk management

and provides some guidance on how to effectively build and manage different bagging

and boosting machine learning techniques for estimating expected credit losses. It

examines the pros and cons of these machine learning models and benchmarks them

against more conventional models used in practice. It also examines methods for

improving their interpretability in order to gain comfort and acceptance from auditors

and regulators. To the best of this author’s knowledge, there are no academic

publications which review, compare, and provide effective model risk management

guidance on these machine learning techniques with the purpose of estimating expected

credit losses. This thesis is intended for academics, practitioners, auditors, and

regulators working in the model risk management and expected credit loss forecasting

space.
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Preface

This thesis provides an overview of the evolution of Model Risk Management (MRM)

in financial institutions to date and also reviews different modeling techniques used to

estimate a mortgage portfolio’s credit losses. I have had the fortunate opportunity

of completing this thesis while working full time at a bank and as a consultant in

Toronto and New York City, acquiring applied experience on the aforementioned topics.

In what follows, I have drawn both upon the most current academic and regulatory

publications, as well as my industry experience to describe how these publications are

interpreted and used in practice.

I began my PhD as a full time student with the intent of specializing in econometrics.

This inspired me to complete my Masters in Statistics while simultaneously completing

my economics comprehensive exams at McMaster University. Upon the completion of

my Masters in Statistics at McMaster, I originally accepted a PhD offer at Queens

University. But I instead decided to join TD Bank’s quantitative modeling department

in Toronto to gain applied econometrics/statistics experience.

While transitioning to the private sector, McMaster University agreed that if I stayed

to do my PhD in Economics there, they would create a part-time PhD program to

accommodate my situation. As such, I decided simultaneously to complete my PhD in

Economics at McMaster University part-time under the supervision of Jeffrey Racine,

who holds the McMaster Chair in Econometrics. Since I was hired to work in TD

Bank’s quantitative credit risk modeling department, it seemed practical to pursue a

thesis topic that aligned with this subject.

To summarize quickly my approximately 6 years of private sector experience that

occurred over the course of writing this thesis, I was promoted to Manager of MRM
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(bypassing the senior quantitative analyst role which is generally a precursor for the

role of manager) after only 5 months as a quantitative analyst at TD. After 18 months

at TD, I left the bank to join KPMG Canada’s Financial Risk Management consulting

team. After 18 months at KPMG Canada, I transferred to KPMG US’s Modeling

and Analytics Consulting team in New York, New York where I served for 2 years

as a manager. In October 2021 I was promoted to my current role as Director of

Modeling and Analytics Consulting in New York, New York, where I manage various

work streams with over 20 quantitative analysts and consultants. My experience to

date has largely focused on MRM, econometrics, and credit risk modeling.

This thesis consists of 3 chapters, where Chapter 1 provides an industry review of

the evolution of MRM and evaluates how to effectively account for, monitor, and

manage credit risk models in a financial institution. This process is illustrated via an

empirical demonstration using Freddie Mac’s loan performance data on a portion of

its single-family mortgage loans. The content in this chapter draws upon academic

literature, regulatory guidance & publications, and my experience consulting on these

topics at top tier financial institutions across the US, Canada, Europe, and Asia in

the private sector. Given the MRM space is still new terrain that many financial

institutions are still learning to navigate, this type of industry review has not been

performed and will benefit both practitioners and academics.

Chapters 2 and 3 dive deeper into the econometrics/statistics underpinning these

credit risk models, and respectively provides comparative assessments of credit risk

Probability of Default (PD) and Loss Given Default (LGD) modeling methodologies

for use in financial institutions. A key innovation of this chapter is to demonstrate the

utility of boosting and bagging machine learning techniques, both of which have been

underutilized in the credit risk modeling space. Readers will be able to implement
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these new models effectively in their work and will be equipped with the knowledge

to improve interpretability to a degree that satisfies auditors and regulators. They

will also gain insights into the historical background of financial modeling and thereby

understand more deeply the rationales behind them.

Holistically, these chapters offer new insights into the theory and practice of credit risk

modeling departments; they trace the historical and institutional factors leading to

their evolution; they consider the position they occupy in the institutional ecosystems

in which they are embedded; and they provide cutting edge insights into how leaders of

these departments can adopt unconventional strategies of machine learning quantitative

credit risk modeling to leverage their full potential.

First and foremost, I would like to thank my advisor Jeffrey Racine, who has supported

my unconventional journey since day one. I am also grateful for my committee members

John Maheu and Seungjin Han for their insightful feedback, comments, and suggestions.

I would also like to thank Denis O’Donoughue, who served as a mentor in the early

stages of my career and continues to do so. He supported my goal to complete my

PhD part-time when many others suggested otherwise. Finally, I want to thank my

parents, Margot and Steve Sexton, who have always been a moral compass in my life.

They are, of course, directly responsible for any errors or omissions herein.
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1 Chapter 1: Model Risk Management and Credit

Risk Modeling

1.1 Overview

Models are a ubiquitous part of life in the financial sector, and continue to grow in

number and complexity. Advances are constantly being made in econometric and

statistical theory while a rapidly expanding corpus of rules and regulations governing

their use requires vigilance and flexibility from modeling professionals. The tendency of

these rules to be vague demands that industry practitioners and institutions interpret

them independently and collectively. This results in what is called an “industry

standard,” or a set of practices that are known to modeling experts but not necessarily

to those from outside the industry. For these reasons, the modeling department may

appear to be a ‘black-box’ to those who are not practitioners working in the industry.

In what follows, this chapter provides an industry review of the evolution of Model Risk

Management (MRM), and outlines how effectively to account for1, monitor, and manage

a mortgage credit risk model2 in a financial institution. The collection and curation of

regulatory requirements governing the creation of an effective MRM function is still

an emerging field that many financial institutions are trying to understand, navigate,

and implement. Therefore, this type of detailed industry review and guidance is not

available, and will benefit both practitioners and academics who want to understand

the emerging MRM space and how it should be applied to a mortgage credit risk

model.
1The action or process of keeping financial accounts.
2This chapter defines a model as a quantitative method, system, or approach that applies statistical,

economic, financial, or mathematical theories, techniques, and assumptions to process input data
into quantitative estimates (FED 2011).

1
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For demonstrative purposes this chapter empirically examines a Probability of De-

fault (PD) model commonly used in the financial industry using Freddie Mac’s loan

performance credit data on a portion of fully amortizing fixed-rate mortgages that

Freddie Mac purchased or guaranteed from 1999 to 2019. Through this empirical

examination, I provide guidance on how financial institutions should choose, develop,

review, approve, monitor, and decommission a PD mortgage model. I also identify

key risk functions that impact each of the model life cycle stages, such as Model

Development (MD), Model Validation (MV), MRM, and Audit (internal and external).

PD models are widely used in the financial sector and are a fundamental component

in calculating credit portfolio’s Expected Credit Losses (ECL), which, when managed

properly, helps mitigate systemic risk.

Section 2 overviews key (global) stakeholders, regulatory guidelines, and historically

significant events that are important for understanding the current state of MRM.

Section 3 provides more granularity on MRM policies around credit risk models

reviewing in particular detail the background of global regulatory practices and credit

risk modeling methodology used to model ECL for the Advanced Internal Ratings-

based Approach (AIRB) outlined by the Basel Committee on Banking Supervision.

The AIRB ECL methodology implemented by financial institutions often resembles

the methodology used when forecasting ECL for IFRS-9 and CECL (the application

and purpose is, of course, quite different). While Section 2 and Section 3 historically

contextualizes the current state of MRM, Section 4 more thoroughly defines MRM and

discusses current state-of-the-art practices. Section 5 provides an empirical example of

a popular mortgage PD model development procedure, while Section 6 assesses the

model’s performance using objective statistical measures. Section 7 and 8 respectively

discuss procedures expected by regulators and auditors for model validation and

2
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performance monitoring. Section 9 concludes.

1.2 Historical Background

The banking industry is a fundamental component of the financial system and the

economy. It is a popular research topic in areas such as macroeconomics, business

cycles, monetary economics, and financial economics. The regulation, supervision and

risk management of banks is so important to the global economy that 60 central banks,

representing countries from around the world that together account for about 95%

of the world’s Gross Domestic Product (GDP) actively own and support the Bank

for International Settlements (BIS). The BIS is “an international organisation that

serves central banks and other financial authorities across the globe to build a greater

collective understanding of the world economy, fosters international cooperation among

them and supports them in the pursuit of global monetary and financial stability”

(Bank for International Settlements 2019). The BIS supports central bank cooperation

and provides an independent voice to sound policy making. It acts as a forum

for discussion and a platform for cooperation among policymakers. Through this

organization, participating central banks have agreed upon the Basel III international

regulatory framework for banks, which is an internationally agreed upon set of measures

developed in response to the financial crisis of 2007-2009. The Basel III standards are

minimum requirements that apply to internationally active banks, where members are

committed to implementing and applying standards in their jurisdiction within the

time frame established by the BIS Committee.

This section provides an overview of how the global economy manages monetary and

financial stability, with particular focus on credit risk models. It identifies key global

stakeholders and their roles, accords and regulatory guidelines, and historically signif-

3
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icant events that influenced the current state of MRM. These accords and regulations

safeguard consumers but restrict how financial intermediaries are able to construct

their quantitative analysis. Understanding these various accords and regulations is

therefore necessary before proceeding to the notion of “model risk management”, in

which mortgage loan default risk plays an important role.

A fundamental component of Basel III is the credit risk framework, which seeks

to improve the credibility in the calculation of risk-weighted-assets (RWAs) and

facilitate comparability of banks’ capital ratios (BIS 2018). In this framework, banks

adopt the advanced internal ratings based (IRB) approach, which often involves the

combination of a PD, loss given default (LGD), and an exposure at default (EAD)

model to calculate financial instruments’ ECL. Commercial banks’ credit portfolios

(e.g. mortgage, credit card, corporate, automobile, and sovereign) pose severe systemic

risk, which can be defined as the risk of an event which adversely affects a number

of systemically important intermediaries or markets including potentially related

infrastructures (Hartmann et al. 2009). The cause of a systemic risk can be either an

exogenous (outside the financial system) or endogenous (within the financial system

or economy at large) shock. The severity of a systemic risk or event is often measured

in terms of macroeconomic variables such as consumption, investment, and growth or

economic welfare (Hartmann et al. 2009). This chapter focuses on a mortgage PD

model because of the potential systemic impact the housing market has on economies,

its relevance in the recent 2007-2009 financial crisis, and its influence on regulatory

measures and MRM functions that unfolded afterward. This is discussed in more

detail below.

A well known systemic event is the financial crisis of 2007-2009 (commonly referred to

as the “Great Recession”), which has motivated significant changes in the banking
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industry in recent years (Gregory 2015). Because of the Great Recession, skepticism

surrounding the ability of credit risk models (such as PD, LGD, and EAD models)

to foresee potential risks inherent in credit portfolios has grown. Major banks were

taking excessive risks to generate profits for shareholders and employees without

holding a sufficient level of capital to survive such a crisis. In response, regulations

surrounding large financial institutions have tightened in order both to enhance a

firm’s ability to survive under a broad range of internal or external stresses, as well as

to reduce the impact on the financial system and broader economy in the event of a

firm’s failure or material weakness (Board of Governors of the Federal Reserve System

2012). Information is considered material if omitting, misstating or obscuring it could

reasonably be expected to influence the decisions that the primary users of general

purpose financial statements make on the basis of those financial statements, which

provide financial information about a specific reporting entity (IASB 2018). This is

an important definition, and is a primary consideration for financial auditors.

As financial institutions have become more sophisticated and complex, quantitative

models and analytical tools used for decision making purposes have proliferated and

become exponentially more critical. Current and upcoming global and domestic

regulatory guidelines that banks have to comply with include Basel Advanced IRB

(AIRB) (Bank for International Settlements 2019) discussed above, the Dodd-Frank

Act stress test (DFAST) (Board of Governors of the Federal Reserve System 2019b)

and Comprehensive Capital Analysis and Review (CCAR) (Board of Governors of

the Federal Reserve System 2019a) in the US, the International Financial Reporting

Standard (IFRS) 9 (IFRS 2018) published by the International Accounting Standards

Board (IASB), the Fundamental Review of the Trading Book (FRTB) (Committee

on Banking Supervision 2013), Current Expected Credit Losses (CECL, which is
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the US equivalent of IFRS-9), and IFRS 17 (IFRS 2017). Because these guidelines,

collectively, rely heavily on models, a bank’s model inventory must expand at a

dramatically increased rate over time. Large financial institutions have upwards of

thousands of actively used models which periodically require choosing, developing,

reviewing, approving and monitoring. What is more, each of them is often a time

consuming process requiring skilled, costly labor and pose a systemic economic risk

at the aggregate. Quantitative resources (i.e. qualified individuals with statistics,

mathematics, economics, computer science, and financial experience/knowledge) are

scarce and in high demand, creating concerns for senior management from a cost

sustainability perspective. Effectively managing these models is critical for managing

systemic risk, hence the ever increasing regulatory focus.

An effective and efficient MRM function can considerably reduce costs, risks, and

redundancies of labor efforts, while ensuring that each stage of a model’s life cycle abides

by governing regulation and internal/domestic/global policies. Globally, regulators

have recognized the importance of MRM and have issued supervisory guidelines such

as SR Letter 11-7 Supervisory Guidance on MRM (FED 2011) in the US and E-23

Enterprise-Wide MRM for Deposit-Taking Institutions (Office of the Superintendent of

Financial Institutions Canada 2017) in Canada. SR 11-7 is often considered a canonical

publication which has influenced similar government-published MRM guidelines across

the globe. Government enforcement of these guidelines has increased significantly in

recent years in response to problems. For example, McKinsey & Company reports one

financial institution suffering a loss of several hundred million dollars due to a coding

error in a defective risk model (Crespo et al. 2017). Another instance occurred when

improper MV and governance for a Value at Risk (VaR) model resulted in losses that

ran into the billions. Failing to abide by government model regulations can also result
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in costly yet avoidable fines (Federal Reserve Board 2011)3 (Federal Reserve Board

2017b)4.

Another major motivator for the increased scrutiny around MRM was the great

recession credit crisis (2007-2009). Two of the largest contributors to the Great

Recession, Fannie Mae and Freddie Mac, held $5.5 trillion in financial obligations,

which made up nearly half of all residential mortgage debt outstanding as of June

30th, 2008 (Frame 2015). Both entities are government sponsored enterprises (GSEs)

which were established in 1938 and 1970, respectively, to assist individuals in the

purchase of a home. They currently provide housing finance for home buyers and

renters in the US, while providing liquidity to the single-family market by purchasing

and guaranteeing mortgage loans. Between 2005 and 2007, Fannie Mae and Freddie

Mac acquired over $1.011 trillion in sub-prime and Alt-A loans (considered riskier

than prime but less risky than sub-prime), becoming the largest purchasers of AAA

tranches of these sub-prime pools (Peter and Charles 2009).

Some argue that simultaneously being a shareholder-owned company and a GSE

resulted in moral hazard. On one hand, the GSEs were motivated by the government

mission to support affordable housing through low mortgage interest rates. On the

other, the shareholders incentive was to capitalize on their government subsidy and

maximize profits (Peter and Charles 2009). With government support, accountability

for risk was largely shifted to taxpayers, not to shareholders. This reduced incentives

to appropriately assess and take risk. The decline in real estate values seen in 2007

resulted in many borrowers’ mortgage values to begin exceeding the value of their
3A $3 Million fine levied against BNY Mellon for improperly assigning a lower risk weighting to a

portfolio of assets, reducing the firm’s risk-based capital ratios.
4Deutsche Bank AG was required to pay a combined $156.6 million for unsafe and unsound

practices in the FX markets, as well as failure to maintain an adequate Volcker rule compliance
program prior to March 30, 2016.
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homes, which is considered as a necessary condition for mortgage default. Both agencies

witnessed huge losses, effectively leading to bankruptcy and ultimately resulting in

the Federal Housing Finance Agency (FHFA) placing both in conservatorship in 2008

(FHFA 2019).

During the Great Recession in the US between May 2007 and October 2009, over

7.5 million people lost their jobs, the unemployment rate rose from 4.4% to 10.1%,

long-term unemployment increased sharply, US GDP contracted 3.4%, nearly $11

trillion in household wealth vanished, and 4 million families lost their homes due to

foreclosure (Mamonov and Benbunan-Fich 2017) (Grusky, Western, and Wimer 2011).

Along with Fannie Mae and Freddie Mac’s conservatorship, other financial institutional

giants began failing due to the credit crisis. Much of the crisis was due to complex

mortgage packages such as mortgage backed securities (MBS), which were now owned

by financial institutions that did not originate them. Historical events such as the first

run on a bank (Northern Rock, a UK bank) in over a century occurred, which finally

resulted in state ownership of Northern Rock in 2008. In March 2008, Bear Stearns

was purchased by JP Morgan Chase for merely $2 a share (a historically low price

per share), assisted by the Treasury Secretary (Henry Paulson), Fed Chairman (Ben

Bernanke), and New York Fed President (Timothy Geithner). Lehman Brothers filed

for bankruptcy, Bank of America provided a $50 billion rescue of Merrill Lynch, and

American International Group (AIG), considered too big to fail, received $85 billion

in exchange for four-fifths ownership from the US government. By 2009, the crisis had

spread well beyond the US, resulting in what today is widely recognized as the largest

recession since the 1930s Great Depression. In July 2010, the Dodd-Frank Act was

signed into law by President Barack Obama, outlining rules and regulations designed

to help prevent a repeat of the Great Recession. SR 11-7 was published shortly after
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in 2011 to provide MRM guidance for financial institutions in the US. Requirements to

abide by global regulations have resulted in costly and massive restructuring in banks.

Ensuring that banks’ risk models effectively forecast an amount of capital required

to withstand different recessionary scenarios has become a huge focal point for fi-

nancial regulators. Similarly, the importance of accurate financial and accounting

estimates/forecasts has also significantly increased (see IFRS-9 and CECL accounting

standards for estimating allowances for credit losses). For retail credit risk, this often

requires a PD model in conjunction with a LGD model and EAD model. PD, LGD

and EAD models are used to estimate ECL under portfolio-specific conditions (often

macroeconomic) or long-run averages in order to determine allowances or provisions,

regulatory and internal stress testing, risk weights and capital calculations under the

AIRB framework, IFRS-9 and CECL accounting requirements. The AIRB approach

allows institutions to use their own internal measures for key drivers of credit risk as

primary inputs to the capital calculation, subject to meeting certain conditions and

subject to explicit supervisory approval (Basel Committee on Banking Supervision

2005).

1.3 Background on Global Regulation and Credit Risk

This section provides more granularity on credit and MRM policies and regulatory

requirements. These are canonical policies and requirements that heavily influence

how financial institutions build and manage credit risk models, and thus play a large

part in managing systemic risk. These globally recognized standards make financial

institutions comparable and measurable across participating countries.

Reserve capital at large, complex Bank Holding Companies (BHCs) protects the
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institution against unexpected losses such as default and also instills stability and

effective functioning of a country’s financial system (Board of Governors of the Federal

Reserve System 2013). The Federal Reserve’s Capital Plan Rule (CPR) and CCAR

show the increasing attention on large BHCs’ abilities to survive in severe economic

conditions in the US. The Federal Reserve’s Capital Plan Rule requires all top-tier

BHCs domiciled in the US with average total consolidated assets of $50 billion or more

($50 billion asset threshold) to develop and maintain a capital plan supported by a

robust process for assessing their capital adequacy (Federal Reserve Board 2017a).

MRM, a function designed to manage the enterprise-wide model risk, has transitioned

from a largely US centric issue (SR 11-7/OCC 2011-12 (FED 2011)) to a key emerging

theme across banks in the EU (e.g. CRD IV/CRR (EU-Kommission 2013) (parliament

2013) & Supervisory Review and Evaluation Process (SREP) (European Central Bank

2017), Targeted Review of Internal Models (TRIM) (European Central Bank 2019),

and Prudential Regulation Authority (PRA) Stress Test Model Management (Bank

of England Prudential Regulation Authority 2018)), Canada (E-23) (Office of the

Superintendent of Financial Institutions Canada 2017), and others.

Regulatory capital is broken into two tiers and is comprised of several elements.

Tier 1 (core) capital is comprised of common shares and retained earnings. Tier 2

(supplementary) capital is comprised of collective allowance and subordinated debt

issuance5. Regulatory capital exists so that a bank can absorb sufficient losses through

its shareholders’ equity rather than through customer deposits or other funding sources.

Unlike most companies, banks are in the business of issuing loans to individuals and

businesses; as such, if borrowers default on their loans, the bank loses money. Hence,

regulatory capital helps control the riskiness of banks and increases the stability of
5This is a very high level summary and the details vary by country.
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the financial system and the economy as a whole.

To determine a bank’s capital adequacy, the amount of regulatory capital a bank

holds needs to be compared to its asset base. This is done through minimum capital

ratios, which are enforced by a country’s regulator, who actively owns, supports, and

participates in the BIS. Inability to satisfy minimum ratios can restrict the institution

from performing certain activities such as making acquisitions, paying dividends to

shareholders, paying bonuses, and buying back shares. The core equity tier 1 ratio is

shown below:

Core Equity Tier 1 Ratio = Core Tier 1 Capital
RWA

, (1)

where RWA stands for Risk Weighted Assets. The risk weights assigned to assets are

outlined by the Basel Committee on Banking Supervision (BCBS), which is the primary

global standard setter for the prudential regulation of banks. The Committee was first

established in 1974 by the central bank Governors of the Group of Ten countries in

the aftermath of serious disturbances in international currency and banking markets

(BCBS 2018). The Committee was created to enhance financial stability by improving

the quality of banking supervision worldwide and to serve as a forum for regular

cooperation between its member countries on banking supervision. Capital adequacy

quickly became the main focus of the Committee’s activities. A brief timeline of the

Basel Accord is provided in Table 2 below.

There are currently revisions to Basel III, which are referred to in the industry as

Basel IV (although Basel IV technically does not exist). We will informally refer to

these revisions to Basel III as Basel IV in what follows. The guidance provided in

the Basel Accords are global standards; national regulators of financial institutions,
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Table 2: A Brief History of The Basel Accord
Date Event Description

July 1988 Basel I

A capital measurement system referred to as Basel
I: The Basel Capital Accord is established and
released to banks. The framework was introduced
to virtually all countries with active international
banks.

January 1996 Basel I amendments

The Committee issued the amendment to the capi-
tal accord to incorporate market risks. This was
designed to incorporate a capital requirement for
market risks arising from banks’ exposures to for-
eign exchange, traded debt securities, equities, com-
modities, and options. Another important amend-
ment was that banks could now use internal models
(value-at-risk models) to measure their market risk.

June 2004 Basel II

Basel II: the new capital framework is released,
which is comprised of three pillars: 1. minimum
capital requirements, which sought to develop and
expand the standardized rules set out in the 1988
Accord, 2. supervisory review of an institution’s
capital adequacy and internal assessment process,
and 3. effective use of disclosure as a lever to
strengthen market discipline and encourage sound
banking practices.

December 2010 Basel III

Following the 2007-2009 financial crisis, Basel III
was agreed upon, which revises and strengthens the
three pillars established in Basel II, and extends
it to several areas which were to be phased in
between 2013-2019. The Committee completed its
post-crisis reforms in 2017.
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however, are responsible for setting guidelines within their jurisdiction, setting a time

frame for implementation, and assessing the compliance of its member institutions

against the guidelines.

Issues surrounding the Basel I Accord led to the evolution of Basel II. Some of

the criticisms leading to the update were that there was insufficient sensitivity to

credit risk, did not account for loan maturity, and had limited granularity of risk

weights. Limitations resulted in Regulatory Capital Arbitrage (RCA) through the use

of securitization between assets with the same regulatory risk, but different economic

risks. This means that banks could artificially inflate the measures of capital appearing

in the numerator of regulatory capital ratios or artificially deflate the measures of

total risk appearing in the denominator. For further discussion on this issue, see

Jones (2000) (Jones 2000). The Basel II Accord Introduced the “3 Pillars” for capital

adequacy:

1. Minimum capital requirements.

2. Supervisory review, and

3. Market discipline.

Pillar I put more emphasis on a bank’s own internal methodologies - the Foundation or

Advanced Internal Ratings-Based (IRB) approach - which led to an increased demand

for quantitative analysts in the risk management space. A standardized approach

is also an option, which is based on external credit ratings, which applies fixed risk

weightings to assets. Pillar II requires banks to have an Institution’s Capital Adequacy

and Internal Review Process (ICAAP) in relation to their strategies, risk appetite,

and actual risk profile. Regulators are expected to review these ICAAP assessments.

Finally, Pillar III requires public disclosures by banks to assist users of the information

to better understand the risk profile.
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While Basel II was certainly an improvement over Basel I, the Great Recession

predictably led to further amendments. Basel III was an extension of the existing

Basel II framework and introduced new capital and liquidity standards. In particular,

it aimed to increase bank liquidity and decrease bank leverage (through more capital

and higher quality capital). It also attempted to eliminate/reduce RCA based on the

use of credit risk mitigants and minority-owned, non-consolidated subsidiaries. Capital

ratios are therefore a common topic during quarterly investor calls with big banks.

They help to assess stability, future financial performance, ability to pay dividends,

and the likelihood of the need to raise additional capital.

1.3.1 Background on Credit Modeling

This subsection provides an overview of fundamental credit risk modeling, particularly

those that calculate expected and unexpected losses. In the retail credit risk modeling

environment, calculating estimated Expected Loss (EL) helps determine allowances,

regulatory and internal stress testing, and capital calculations to create a capital

cushion for covering losses arising from defaulted loans. EL is also applied as part

of the risk premium charged to the borrower. The EL of a portfolio is assumed to

equal the proportion of obligors that might default within a given time frame (1 year

in the Basel context), multiplied by the outstanding exposure at default and once

more multiplied by the loss given default rate (i.e. the percentage of exposure that will

not be recovered by sale of collateral etc.) (Basel Committee on Banking Supervision

2005). While EL will typically account for the majority of capital held, additional

capital is often held to account for things like operational risks, possible emerging risks,

reputational risks, future earnings visibility, or any other risks determined through a

board, expert judgement, and oversight.
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Separate models are built to estimate the PD, LGD and EAD parameters, and the

expected loss can be defined as

EL = PD · LGD · EAD. (2)

For a portfolio consisting of n loans with borrower i, this equation can also be written

as

n∑
i=1

ELi =
n∑

i=1
PDi · LGDi · EADi. (3)

Underlying the model is a probability space (Ω, V, P ), where Ω is a sample space, V

represents the measurable events within the space, and P is a probability measure.

For a given account i, this formula essentially calculates the probability of defaulting

(PD), multiplies it by the loss the bank would expect to lose (LGD), which is often a

percentage between 0-100 (in some cases the losses may be less than 0 or exceed 100),

and multiplies this by the exposure the bank could potentially lose (EAD). It should

be noted that it is often assumed that the PD, LGD, and EAD in equation 2 and 3

are independent. In reality, this is highly unlikely. However, these are fundamental

equations in credit risk modeling. For a study showing the relationship between PD

and LGD see E.I. Altman et al. (Altman, Resti, and Sironi 2001). While modeling

without assuming independence is possible, for simplicity and to remain consistent with

what is commonly implemented in the industry, this chapter will assume independence.

The three factors mentioned above correspond to the risk parameters upon which the

Basel II IRB approach is built (Basel Committee on Banking Supervision 2005):

• PD per rating grade, which gives the average percentage of obligors that default
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in this rating grade in the course of one year (in the Basel context).

• EAD, which gives an estimate of the amount outstanding (drawn amounts plus

likely future drawdowns of yet undrawn lines) in case the borrower defaults.

• LGD, which gives the percentage of exposure the bank might lose in case the

borrower defaults. These losses are usually shown as a percentage of EAD, and

depend, among other factors, on the type and amount of collateral as well as

the type of borrower and the expected proceeds from the work-out of the assets.

A bank can expect to experience losses above EL which are usually referred to as

Unexpected Losses (UL). The costs associated with UL cannot be transferred to

the borrowers, because the market will not support prices sufficient to cover all the

unexpected losses. As a result, additional capital is needed to cover the risks during

peak losses. Banks have the incentive to minimize the capital held so that economic

resources can be directed to profitable investments, while holding sufficient capital in

order to meet its own debt obligations. The calculation of UL uses the exact same

risk parameters as the ones used to calculate EL, i.e., PD, LGD and EAD.

The amount of capital a bank should hold can be determined in a number of ways.

Capital is set to ensure that there is a very low, fixed probability of unexpected losses

exceeding the probability of bank insolvency. The likelihood that losses will exceed

the sum of EL and Unexpected Losses (UL), i.e., the likelihood a bank will not be

able to meet its own credit obligations by its profits and capital (Basel Committee

on Banking Supervision 2005), is set to maintain a supervisory fixed confidence level

under Basel II.

When loans within a portfolio have a low correlation, there is a less likely chance that

economic fluctuations will impact the entire portfolio. Banks’ capital management

will create internal policies to ensure consistency with regulatory requirements and
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recommendations under Basel III, including their own assessment of capital adequacy

as per Pillar 2 of Basel II. The discussion above provides a preliminary overview of the

governance, theory, and application of the fundamental PD, LGD and EAD parameter

calculations.

The methods used to determine EL on retail portfolios range across products and

banks. Since retail portfolios at large BHCs often have a large pool of accessible

internal data, external data is infrequently used, and more complex methods can be

utilized in comparison to (for example) wholesale portfolios. A common practice is

segmentation, which helps capture different distributions that may be observed across

accounts. Large BHCs often segment by lien position, risk characteristics such as credit

score, loan-to-value (LTV) ratio, collateral, underlying collateral information (Board

of Governors of the Federal Reserve System 2013), or delinquency status. Stronger

practices are able to capture exposures that react differently to risk drivers under

stressed conditions.

1.3.2 Qualitative Factors

Banks are becoming increasingly dependent on quantitative, model-based estimates.

However, historical experiences may not fully reflect an entity’s expectations about

the future and, as such, it is expected that management will make adjustments to

historical loss information to better reflect current economic conditions and forecasts

qualitatively (FASB 2016). Qualitative adjustments, or “qualitative factors”, should

always be considered by an entity and should be clearly outlined in a documented

qualitative framework/policy. This section is important to include to ensure the reader

is aware of the importance of considering and including replicable and reproduceable

qualitative frameworks that are used when there are limitations in the quantitative
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estimates.

The Financial Accounting Standards Board (FASB) in the US listed the following

thirteen examples of qualitative adjustments which an entity may consider. They are

commonly referred to as the thirteen Q-factors (also see ASC 326-20-55-4). Many FI’s

in the US use these Q-factors as a reference when building their qualitative frameworks:

1. The borrower’s financial condition, credit rating, credit score, asset quality, or

business prospects.

2. The borrower’s ability to make scheduled interest or principal payments.

3. The remaining payment terms of the financial asset(s).

4. The remaining time to maturity and the timing and extent of prepayments on

the financial asset(s).

5. The nature and volume of the entity’s financial asset(s).

6. The volume and severity of past due financial asset(s) and the volume and

severity of adversely classified or rated financial asset(s).

7. The value of underlying collateral on financial assets in which the collateral-

dependent practical expedient has not been utilized.

8. The entity’s lending policies and procedures, including changes in lending strate-

gies, underwriting standards, collection, writeoff, and recovery practices, as well

as knowledge of the borrower’s operations or the borrower’s standing in the

community.

9. The quality of the entity’s credit review system.

10. The experience, ability, and depth of the entity’s management, lending staff, and
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other relevant personnel.

11. The environmental factors of a borrower and the areas in which the entity’s

credit is concentrated, such as:

i.) Regulatory, legal, or technological environment to which the entity has

exposure.

ii.) Changes and expected changes in the general market condition of either the

geographical area or the industry to which the entity has exposure.

iii.) Changes and expected changes in international, national, regional, and local

economic and business conditions and developments in which the entity operates,

including the condition and expected condition of various market segments.

The Federal Reserve similarly lists 9 “universal” qualitative factors (The Office of

the Comptroller of and Currency 2020) (similarly see SR 06-17). In addition to

considering the Q-factors above, an entity’s qualitative framework should also include

model output imprecision considerations, as well as a structured process to calibrate

the quantitative model’s output based on actual loss experience. These qualitative

adjustments might be applied to two elements: qualitative adjustments based on recent

and near future observables, and qualitative adjustments based on model imprecision

or uncertainty. While these adjustments are qualitative in nature, it is often said that

the qualitative adjustments should be quantitatively supported. What this means is

that wherever possible, the qualitative adjustment should be defensible from thorough

research, statistics, and/or trends from peer banks in comparable markets and/or from

proxy datasets. While qualitative adjustments are a fundamental component of credit

risk modeling in financial institutions, for the purpose of this chapter, they lie beyond

our scope.
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1.4 Model Risk Management (MRM)

This section will provide an overview of MRM, which is an emerging and growing field

among financial institutions. As mentioned above, the current state of MRM is heavily

influenced by the events described in the previous sections. Domestic and global

regulators have recently published guidelines which require financial institutions to

manage models at an enterprise level. This is discussed in further detail below. Large

BHCs often have hundreds to thousands of actively used models, with the number of

models and their complexity growing exponentially. The number of models is growing

by 10 to 25 percent annually at large institutions according to an article by McKinsey

Company (Crespo et al. 2017). This model growth is fueled by the benefits observed

from utilizing quantitative methods made available through big data and advanced

analytic evolutions, along with pressures from regulatory requirements. While the

number of models continues to grow, these modeling tools range in complexity and

materiality, from sophisticated statistical techniques to much simpler and less-material

analytical methods.6 Models certainly have the ability to improve business decisions;

however, models have the risk of being improperly specified which may produce

inaccurate, inconsistent, and/or biased outputs. Even if a model is perfectly specified,

models entail the risk of potentially being used incorrectly or inappropriately.

An MRM function within a bank actively accounts for, manages, and assesses the

inherent risk associated with all model usage within the institution. A guiding principle

for managing model risk is the “effective challenge” of models, that is, critical analysis

by objective, informed parties who can identify model limitations and assumptions and
6Recall that we consider information to be material if omitting, misstating or obscuring it could

reasonably be expected to influence the decisions that the primary users of general purpose financial
statements make on the basis of those financial statements, which provide financial information about
a specific reporting entity.

20



Ph.D Thesis - S. Sexton; McMaster University - Economics

produce appropriate changes (FED 2011). As business units within a bank innovate and

grow, newly developed tools and models run the risk of going undetected (being used

within the bank without appropriate management and risk oversight) for validation

and monitoring purposes. As such, a proper level of oversight should ensure that

emerging models have a clear owner and are identified, tracked and elevated to model

status, or are appropriately decommissioned as characteristics change. Effectively

identifying model risk requires an inventory of all models, which is a powerful tool for

assessing the risk and required monitoring procedures. A centralized MRM function

helps set consistent bank-wide standards and avoids the duplication of research efforts.

New and emerging model risk also arises from changes within a Line of Business (LOB),

new initiatives, new products, mergers or acquisitions, or regulatory changes. These

models are not necessarily always built in-house and may be a vendor model, which is

often a ‘black-box’ (i.e., the inner workings of the model/system may be masked by

the vendor). Monitoring the activities discussed above is an evolving challenge for a

MRM function.

Once models are identified, banks should have an effective system that ensures the

levels of independent challenge and oversight correspond to the following key model

risk assessment considerations:

i. Materiality.

ii. Model complexity.

iii. The institution’s reliance on the model.

iv. Financial statement, external reporting, and regulatory impact.

v. The amount of model uncertainty.

vi. The model’s operational impact.

vii. Frequency of use.
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viii. The amount of manual intervention required.

Assessing the severity of these risk components can help determine the validation

activities that should be performed by a bank’s Line of Defense (LOD). What consti-

tutes a low risk vs a high risk model can be defined by each business unit based on

criteria that are relevant to their LOB and the types of tools used, while remaining in

line with a bank’s risk appetite. Admittedly, while the term “model complexity” is

commonly used in practice, what constitutes a complex model is not strictly defined.

Often analytical methods requiring statistical techniques such as regression, machine

learning, or financial mathematics are considered complex and will likely fall within

an MRM framework. For simplicity, we will refer to models as having low or high risk

over a spectrum. In reality, banks may use a more granular risk rating and assessment

system to determine the level of oversight and effective challenge required (such as

1-5, 1-10, 1-20, low medium or high). This should always be well documented. Models

which have low risk should not be expected to follow the same rigorous validation

efforts taken for high risk models. Models with low risk do not pose much of a threat

to a bank’s well-being during stable and recessionary economic periods, and allocating

large amounts of costly resources toward them is often unreasonable and unnecessary.

Determining these thresholds can be a difficult task and requires a combination of both

quantitative and qualitative expert judgement. While independently a model may

pose no threat, risk models collectively may signal risk if they show similar variable

sensitivities, rely on common assumptions, data or methodologies, or any other factors

that could affect several models adversely. Regulators expect a well documented,

transparent and objective risk rating methodology.

The labor within a MV division is costly. Low risk models may pose a limited threat

to a bank’s financial stability and, hence, should require minimal to no oversight by
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MV. Figure 1 shows a simplified visualization of a potential model’s materiality and

complexity assessment. Models falling in category A are very low risk and do not require

the full validation procedures typically performed by a MV risk function. Models in

category B are deemed risky enough that they require MV review and oversight. The

threshold is ideally determined by the LOB and confirmed with MV/MRM, which will

acknowledge that the level of model risk is low enough to require minimal involvement.

Models falling in category A still require testing activities performed by the LOB

to confirm the model is performing adequately and appropriately and is in line with

internal expectations and external regulatory requirements.

Figure 1: Level of Model Risk Management Oversight and Effective Challenge thresh-
olds

The following subsection will discuss in further detail a financial institution’s LOD,

which is the most common benchmark for assigning control and risk management

responsibilities to business functions in an organization (Arndorfer and Minto 2015).

1.4.1 Lines of Defence

Coordinating MRM responsibilities across financial departments and divisions is a

challenging task that requires a clear definition of responsibilities, authority, indepen-

dence, resources, and access to the board of directors. In most financial institutions,
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the “three lines of defense” model has been used to model the interaction between

corporate governance and internal control systems (Arndorfer and Minto 2015). The

three LOD defines three groups and their respective involvement in effective risk

management (The Institute of Internal Auditors (IIA) 2013). A summary of the three

LOD with a focus on modeling is outlined below.

1.4.1.1 First Line of Defence: Functions That Own and Manage Risk

The first LOD identifies, manages, and controls the ongoing operations of model risks.

In theory, those who are responsible for the basic control and risk from using a model

should be held accountable.

The three LOD model assumes individuals in the first line are likely most familiar with

the intricacies, inherent risks, and overall modeling environment, and are therefore

best suited to determine the design, theory, and logic underlying the model. They are

best suited to ensure the model is conceptually sound and functions appropriately.

As active users of the model, they are potentially best suited quickly to detect any

inherent weaknesses in the model, and are able to escalate and remedy any issues. The

Great Recession suggests that there was insufficient awareness of risks and control

procedures by risk-taking units, so this approach has been encouraged in recent practice

(Arndorfer and Minto 2015).

The first line should articulate a sound understanding of all limitations and conditions

and actively monitor their models on an ongoing basis to demonstrate adequate model

performance. This is often done through rigorous documentation, including statistical

and mathematical tests, simulations, and expert judgement.

1.4.1.2 Second Line of Defence: Functions That Oversee Risks
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The second LOD has seen considerable growth in response to tighter regulatory

requirements and more complex products and methodologies. This line is responsible

for setting standards, providing independent review, oversight, and effective challenge

to the first line. These functions include MRM and MV. MV (discussed in further

detail below) effectively challenges, oversees, and analyzes new and existing models

objectively and critically. Successful approval of a model results in continued use by

the line of business (first LOD). Thorough documentation is critical in demonstrating

an adequate understanding and description of the processes undertaken. MRM is

discussed above, and oversees the standards and guidelines for all three lines of defense.

1.4.1.3 Third Line of Defence: Functions That Provide Independent As-

surance

The modeling internal audit team is the third LOD and provides a final independent

oversight and challenge of the bank’s model risk function as a whole. The third line

validates the effectiveness of the first and second line. A visual summary outlined

by the Institute of Internal Auditors is displayed in Figure 2. In practice, the audit

function has to conduct at least once annually a risk assessment of the organisation and

identify business units or processes that exhibit a high level of residual risk (Arndorfer

and Minto 2015).
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Figure 2: The Three Lines of Defense Model in Effective Risk Management and Control

A four LOD model/concept is also sometimes used (Arndorfer and Minto 2015), where

external auditors and banking supervisors who provide a final level of assurance on

the governance and internal financial processes are considered the fourth line.

1.4.1.4 The Model Life Cycle

This subsection summarizes the typical ‘life’ of a new model, where each material model

follows a “model life cycle”. The life cycle is “a perpetual activity that is continually

refurbished and updated as the model evolves with the passage of time” (Office of the

Superintendent of Financial Institutions Canada 2017), involving a process such as

the following (Office of the Superintendent of Financial Institutions Canada 2017):

• The rational for modeling.

• Model development.

• Independent review (vetting, or sometimes referred to as an initial validation).

• Model approval.
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• Ongoing monitoring and review (validation), and

• Modification/decommission of the model.

The frequency of ongoing monitoring and review is dependent on how ‘risky’ the model

is, along the lines discussed above. While all models follow a model life cycle, models

falling in the A category in Figure 1 above should follow a less rigorous process than

those in category B. Models in category A potentially may not require as rigorous

vetting, ongoing monitoring, and review requirements, with more reliance on the LOB

and/or the risk management function within the LOB.

Quantitative methods in many cases allow for objective decision making, which

previously may have relied on expert judgement, e.g., decision making based on work

experience. Expert judgement is still extremely important due to the fact that modeling

by nature is a simplification of reality. It helps account for insufficient and imperfect

data, which may lead to improper representations of true population distributions and

characteristics.

The following section presents an empirical example of the model development process.

1.5 Model Development

The sections above provides the reader with a foundational understanding of the history

and evolution of MRM, with particular focus on its application to credit risk models.

This section provides an empirical example of a mortgage PD credit risk model, which

will give the reader a general idea of what procedures are taken in a credit risk model

development team within a FI. To provide the reader with a comprehensive idea of the

model life cycle as a whole, the other stages of the model life cycle are also discussed

and examined. Even practitioners within these FIs’ risk departments often do not
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have a full understanding of all model life cycle stages, or for that matter, of these

other departments, as risk departments are often siloed.

The level of risk inherent in the model development process is largely influenced by

the developer’s experience, education, training, work environment, and awareness of

existing and emerging risks/trends. Further, financial modeling is often an activity

that requires expert knowledge in multiple fields such as economics, finance, statistics,

mathematics, and computer science. To help manage these risks, the purpose for the

development of a model should be clear, and the suitability of the data, methodology,

required programming, expected marginal improvements to the business, and level of

additional oversight and monitoring should be taken into consideration. While these

guiding principles are theoretically useful at a high level, it is often helpful to see an

empirical example for demonstrative purposes. This section focuses on the development

of a PD mortgage credit risk model using Freddie Mac’s loan performance credit data on

a portion of fully amortizing fixed-rate mortgages the company purchased or guaranteed

from 1999 to 2019. The methodology is one commonly used by practitioners in credit

risk modeling.

Retail portfolios are often modeled either at the loan level or the portfolio/segment

level. A loan-level model has the benefit of providing information at the account

level and is generally the preferred method in the industry when data is available.

A portfolio-level model averages out the noise observed at the loan level; however, a

loan-level model theoretically should outperform a portfolio-level model simply because

more information is available. Smaller financial institutions with less systematic risk on

a domestic or global economy will be under less scrupulous regulatory requirements, at

which point portfolio-level modeling may be more common. The following subsections

will discuss the following model building stages in detail:
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1. Dataset background and relevance.

2. Model specification.

1.5.1 Dataset Background and Relevance

Freddie Mac is a GSE established in 1970 by Congress as a private company to help

ensure an affordable supply of mortgage funds throughout the US. Today this is done

by purchasing mortgage loans from lenders so that they are able to continue providing

loans to qualified borrowers. Freddie Mac’s publicly available Single-Family Fixed Rate

Mortgage Loan Performance dataset (“the data”) contains a subset of Fannie Mae’s

30-year (or less), fully amortizing, full documentation, single-family, conventional

fixed-rate mortgages. Excluded from the data are adjustable-rate mortgage loans,

balloon mortgage loans, initial interest, step rates, government-insured mortgage loans,

mortgages delivered under alternative agreements, mortgages associated with mortgage

revenue bonds purchased by Freddie Mac, and mortgages delivered to Freddie Mac

with credit enhancements other than primary mortgage insurance, with the exception

of certain lender-negotiated credit enhancements (Freddie Mac 2020). This dataset is

widely used and referenced among credit risk modeling practitioners in the industry, as

it was made public by Freddie Mac for the purpose of helping practitioners build more

accurate credit performance models in support of ongoing risk-sharing initiatives.

Two datasets are combined to build the full dataset used below: one containing

acquisition data and another that monitors the performance data on a monthly basis.

The full dataset contains mortgages originated between January 1st, 1999 and June

30th, 2019. The dataset is updated every quarter to include newly acquired mortgage

loans and any updates observed in performance. For the purpose of this empirical

demonstration, 6,000 loans from each origination quarter are sampled, and each loan’s
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performance is tracked across time. Federal Housing Finance Agency (FHSA) Housing

Price Index (HPI) data at the Three-Digit ZIP code level (Federal Housing Finance

Agency 2020) are used, as well as unemployment data from the Bureau of Labor

Statistics (Bureau of Labor Statistics 2020). The data is then split into an in-sample

training dataset, an out-of-sample (OOS) test dataset, and an out-of-time (OOT)

test dataset. OOS refers to a test dataset with the same date ranges as the training

dataset, while OOT refers to a test dataset with date ranges outside of the training

dataset. It is common to sample randomly 70% of the data for training the model

and use 30% for validating the model on the OOS test dataset. A hold-out period of

one year or greater is often used for the OOT test dataset and will be used for the

empirical portion of this chapter.

1.5.2 Model Specification

By way of illustration, common PD modeling approaches used in the industry are

linear regression analyses on default risk, logistic regression, optimization models of

default, vintage loss models, cohort loss models, decision trees, state transition models

and hazard models. For demonstrative purposes, this chapter looks at a variant of

the most commonly used logistic regression method, built on survival data, where the

dependent variable is a binary outcome; default (1) or non-default (0). To remain

consistent with Freddie Mac’s dataset, default is defined to have occurred when a

mortgage’s balance was reduced for the following reasons:

• Third party sale.

• Short sale or charge off.

• Repurchase prior to property disposition.

• Real Estate Owned (REO) disposition.
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• Note sale / reperforming sale.

The variable of interest is whether or not an account defaults within a one-year (12

month) window or does not. This is a common AIRB prediction window. A one-year

forward-looking default prediction is also a requirement for accounts that have not

experienced a Significant Increase in Credit Risk (SICR) in the IFRS-9 accounting

standard. For loans that have experienced a SICR since origination, under IFRS-9,

expected credit losses must be estimated over the lifetime of the loan. Under US

CECL guidance, credit losses over the lifetime of all loans must be estimated. For

the logistic model, let Yi represent the binary (Bernoulli) default dependent variable,

where Yi = 1 equals default (within 12 months), and Yi = 0 equals no default. Using

maximum likelihood, the parameters in the following equation can be estimated:

ln
(

pi

1 − pi

)
= β0 + β1x1,i + β2x2,i + ... + βmxm,i + ε, (4)

where xi, x2,i, ..., xm,i represent m explanatory variables, and pi = E[Yi|xi, x2,i, ..., xm,i]

is the expected value of Yi given xi, x2,i, ..., xm,i. The intercept β0 and β1, β2, ..., βm

are the respective logistic model coefficients.

For this particular use case, a Weight of Evidence (WOE) method is used, where each

variable is first discretized up to a maximum of 15 bins, and then the transformed

WOE values are used in place of the raw values for all cases in the bin range. This is

a common transformation used in the credit industry and in scorecard models and

is generally approved by validators and auditors (both internal and external). More

complexity may be expected for more material portfolios. Both the dependent logit

function and WOEs are in fact the log of probability odds. The WOE is calculated by

taking the log of the proportion of ‘goods’ (non-default) in an attribute divided by the
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proportion that are bad (default) in an attribute. The WOE of the jth attribute of

the ith characteristic is given by

wij = ln
(

pij

qij

)
, (5)

where pij is the proportion of those classified good in attribute j of characteristic i and

qij is the proportion of those classified bad in attribute j of characteristic i (Henley

and Hand 1996).

An important step in the model development process is variable selection. Variable

selection is the process of selecting the best set of predictors, which removes unnecessary

noise, collinearity, overfitting, computation cost and improves interpretability. It is

common to try to keep the number of independent variables to an interpretable amount

(between 5-15 for example). A common variable selection technique leveraging the

WOE is to use the Information Value (IV):

IV =
∑
i,j

(pij − qij) · wij, (6)

where wij is defined above. The information value demonstrates a variable’s ability to

discriminate between defaults and non-defaults. There are no universally accepted

thresholds; in practice, however, IV values below 0.02 are considered not useful for

prediction, values between 0.3 - 0.5 are considered strong predictors, and values above

0.5 are considered very strong. A visual display of the binning for the original LTV

variable is shown in Figure 3. The IV value for LTV is 0.27. A similar graph can be

found for each variable in the final model in the appendix.

Other common variable selection techniques are forward and/or backward stepwise
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Figure 3: Original Combined Loan-To-Value Weight of Evidence Bin Count and
Default Probabilities

regressions, decision trees, Least Absolute Shrinkage and Selection Operator (LASSO),

Single Variable Analysis (SVA), and expert judgement. The variable selection process

should be defendable and replicable. The dataset begins with 57 independent variables.

Variables including future information are removed (e.g., variables indicating whether

or not the loan will default in the future) or those that would not be available during

production, and a few others which are intuitively not reasonable independent variables,

which results in 44 variables. The two statistical variable selection techniques used

are backward stepwise regression and IV. The backward variable selection technique

begins with all the potential candidate variables. The algorithm selects a model based

on the Akaike Information Criterion (AIC) by removing one variable at each step.

Variables that are statistically most significant in both variable selection methods

and are also in line with expert judgement and business sense are chosen for the final

independent variable set.
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The final variables selected are summarized in Table 3 below. Descriptions are taken

directly from Freddie Mac’s formal descriptions.

To check for collinearity amongst independent variables, the Variance Inflation Factor

(VIF) is calculated for each variable, shown in Table 4. The VIF checks how much the

variance of an estimated regression coefficient increases if your independent variables

are correlated. While there is no universally accepted threshold for what constitutes a

high VIF, values below 5 generally indicate that there appears to be no indication of

multicollinearity. Sensitivity analysis, or ‘stress tests’, should also be performed, as

these are useful methods for assessing a financial institutions health under different

financial and macroeconomic conditions. As stated by the federal reserve, “They

provide a systematic, disciplined framework for assessing whether firms have adequate

capital to absorb losses and continue to fulfill their roles as financial intermediaries

under various economic scenarios” (Federal Reserve Board 2020).

1.6 Model Performance

This section evaluates the model’s performance using common statistical methods.

First, the Population Stability Index (PSI) test is performed on the OOS and OOT

dataset (or a “Characteristic Stability Index” when evaluating one variable). The PSI

provides a statistical method for determining whether there is a significant difference

in two variables’ distributions. It is a common test performed by an internal MV

team (second LOD), internal audit (third LOD), or an external auditor (fourth LOD)

to assess the appropriateness of a training dataset’s ability to capture underlying

characteristics of an OOS dataset or its continued performance in an OOT dataset. If

the PSI number is high, it may indicate that the training dataset is not representative

of the OOS or OOT dataset and may require further investigation, since the data used
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Table 3: Final Model Independent Variables
Variable Description

Delinquency Indicator A variable indicating whether the borrower is currently
delinquent or not.

HPI Change This is calculated as the origination HPI/current HPI.
This is done for each loan’s 3 digit zip code.

Occupancy Status Denotes whether the mortgage type is owner occupied,
second home, or an investment property.

Interest Rate The original note rate as indicated on the mortgage note.

Original Combined
Loan to Value (LTV)
Ratio

The ratio is obtained by dividing the original mortgage
loan amount on the note date plus any secondary mort-
gage loan amount disclosed by the Seller by the lesser of
the mortgaged property’s appraised value on the note
date or its purchase price.

Number of Borrowers The number of Borrower(s) who are obligated to repay
the mortgage note secured by the mortgaged property.

Credit Score (FICO)

A number, prepared by third parties, summarizing the
Borrower’s creditworthiness, which may be indicative of
the likelihood that the Borrower will timely repay future
obligations. Generally, the credit score disclosed is the
score known at the time of acquisition and is the score
used to originate the mortgage.

Property Type

Denotes whether the property type secured by the mort-
gage is a condominium, leasehold, planned unit develop-
ment (PUD), cooperative share, manufactured home, or
Single Family home.

Loan Age The number of months since the note origination month
of the mortgage.

Debt to Income (DTI)
Ratio

Disclosure of the debt to income ratio is based on (1) the
sum of the Borrower’s monthly debt payments, including
monthly housing expenses that incorporate the mortgage
payment the Borrower is making at the time of the
delivery of the mortgage loan to Freddie Mac, divided
by (2) the total monthly income used to underwrite the
loan as of the date of the origination of the such loan.

Original Value The value of the house, calculated by Original UPB /
LTV / 100.

Unemployment Rate The unemployment rate by state is used, lagged by 3
months.
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Table 4: Variance Inflation Factor Test for Multicollinearity

VIF
Delinquency Indicator 1.282
HPI Change 1.536
Occupancy Status 1.049
Interest Rate 1.138
Original Combined LTV 1.071

Number of Borrowers 1.053
Credit Score (FICO) 1.213
Property Type 1.035
Loan Age 1.202
DTI 1.051

Original Value 1.216
UR (3 month lag) 1.380

to develop the model may be different than the data to which the model is applied

to. The PSI is defined as follows (Yurdakul 2018). Let N be the sample size for the

training (or expected) dataset, and M be the sample size for the OOS and OOT (or

actual) dataset. Then we can express the PSI as follows:

PSI =
B∑

i=1

ni

N
− mi

M

 ·

ln
ni

N

− ln
mi

M


=

B∑
i=1

(p̂i − q̂i) · (ln(p̂i) − ln(q̂i)),
(7)

where ni and mi are counts in the ith bin, ∑ni = N , ∑mi = M , p̂i = ni/N , and

q̂i = mi/M . While there is no universally accepted threshold for what PSI value

indicates a significant difference/shift in the distribution of two datasets, industry

standard practice typically considers a PSI less than 0.10 to indicate that a small shift

could have occurred and, hence, that the training sample is appropriately representative
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of the testing dataset. A PSI between 0.10 and 0.25 indicates a moderate shift, which

will likely motivate further investigation for what may be causing the change in

distribution. Finally, a PSI value greater than 0.25 means a significant shift and notion

of overlap of distribution, which is often motivation for the model developer to acquire

a more relevant/recent training sample if possible. Note that it is necessary to check

and understand how the distributions between the training and test datasets differ,

because not all changes in distribution necessarily mean the model will perform poorly

on the test dataset (e.g., if the new data is now more heavily concentrated around the

training dataset mean or if no extrapolation along the x-domain is occurring). For

more discussion on this see (Taplin and Hunt 2019).

Given that most datasets have more than one variable (or “Key Risk Drivers”), it

is natural to ask which variables’ change in distribution will contribute most to a

potential deterioration in model performance. To be comprehensive, PSI is performed

on each variable in the model. In Figure 4, density plots for the interest rate variable

for the OOS and OOT datasets, respectively, are compared to the interest rate variable

density plot in the training dataset. The PSI value is also included in the graph.

As shown, the PSI for the OOS dataset interest rate is 0.03. This implies that there has

not been a significant difference/shift in the distribution. However, the OOT dataset

PSI is 1.56, indicating that there has been a significant change in distribution. While

there has been a change in distribution, the data is now concentrated more around

lower rates, which the model was still trained on. Given there has not been a shift in

distribution to values that the model was not trained on (for example, extrapolation

to higher rates previously unseen), there is no reason to believe there is a significant

deterioration in model performance in this instance. In this example, the model and

interest rate variable would be monitored closely in subsequent quarters to determine
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Figure 4: Interest Rate Training and Out-of-Sample Data Density Plots and Population
Stability Index Test Result

whether any persistent model deterioration is occurring.

The model performance will be investigated next on the OOS and OOT datasets

using the Receiver Operating Characteristic (ROC) curve, the Kolmogorov–Smirnov

(KS) test, and the Gini coefficient (other common monitoring approaches might use

internally determined performance threshold breaches). To properly describe these

tests, some preliminary definitions are first provided. For the problem at hand, the

model is built to predict either default (1) or non-default (0), where Y denotes the

outcome, and Ŷ denotes the prediction. Given the model estimate, there are four

potential outcomes:

i. True Positive (TP ): The model correctly predicted the loan would default

(Y = 1, Ŷ = 1).

ii. False Positive (FP ): The model predicted the loan would default, but the loan
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Figure 5: Interest Rate Training and Out-of-Time Density Data Plots and Population
Stability Index Test Result

remained performing (Y = 0, Ŷ = 1).

iii. True Negative (TN): The model correctly predicted the loan would remain

performing (Y = 0, Ŷ = 0).

iv. False Negative (FN): The model predicted the loan would remain performing,

but the loan defaulted (Y = 1, Ŷ = 0).

These four outcomes are used to calculate both the True Positive Rate (TPR) and the

False Negative Rate (FPR):

TPR = TP

TP + FN
(8)

FPR = FP

FP + TN
. (9)
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The logistic regression model, however, does not immediately provide a binary predic-

tion. For the predictor P̂r(Y = 1|X) and a classification threshold c, there is either

P̂r(Y = 1|X) ≤ c (i.e. non-default) or P̂r(Y = 1|X) > c (default).

Using the TPR(c) and FPR(c), the ROC curve can be calculated. The ROC curve is

a monotone increasing function that helps determine the discrimination ability of a

model by plotting the TPR against the FPR at various logistic regression classification

thresholds c. By considering any possible cut-off c, the ROC curve can be written as

(Calì and Longobardi 2015):

ROC(·) = {FPR(c), TPR(c), c ∈ [0, 1]}. (10)

The TPR and (1-TRN) are commonly referred to as the sensitivity and specificity,

respectively. The discrimination ability of a model is often determined based on the

area under the ROC curve (AUC), which is a value ranging from 0 to 1. An AUC equal

to 1 indicates the model perfectly predicts default and non-defaulted loans, depicted

by line A in Figure 6. Line C in Figure 6 represents an AUC equal to 0.5, which means

the model does no better than chance and is considered uninformative.
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Figure 6: Three Hypothetical (perfect = A, uninformative = C) Receiver Operating
Characteristic Curves

As test accuracy improves, the ROC curve will move toward line A, and AUC will

move closer to 1. The AUC can be defined as

AUC =
∫ 1

0
ROC(x)dx. (11)

The second model performance test we will be using is the Kolmogorov–Smirnov

(KS) test. The KS test statistic ranges from 0% to 100% and is able to determine

how different the TPR and FPR distributions are, where larger KS statistics imply

the model has a stronger discrimination ability. Measuring the maximum vertical

separation between two cumulative distributions TPR and FPR gives the KS statistic:

KS = max(TPR − FPR). (12)

The final performance statistic reported is the Gini test, also known as the Accuracy

Ratio (AR). It is a single number that represents the area under the cumulative lift

curve relative to the area under a uniform distribution. The lift curve measures the ef-
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fectiveness of the models predictions by calculating the percentage of correctly estimated

defaults, relative to a baseline ‘random’ diagonal line (the uniform distribution). The

AR is computed by sorting scores from a distribution from low to high, determining

the corresponding cumulative lift (Lorenz curve), or the Cumulative Accuracy Profile

(CAP) curve, computing the area between the cumulative uniform distribution and

the Lorenz curve on the interval [0, 1], and dividing the result by the area under the

cumulative uniform distribution on the same interval (Greene and Milne 2010). An

interesting relationship important to note is that the AR test is linearly related to the

AUC through the following equation:

AR = 2 × AUC − 1. (13)

While reporting both the AUC and AR may be redundant, it is still reported separately

for the benefit of the reader given they are both very common performance metrics.

The ROC curve, KS test, and AR test for both the OOS and OOT dataset are shown

below.

Figure 7 for both OOS and OOT show the empirical cumulative distribution function

(ECDF) of the model estimates for the actual non-defaulted accounts (Y = 0) and the

defaulted accounts (Y = 1), and the KS test is visualized by the black dotted vertical

line, representing the farthest distance between the two ECDFs.

Figure 8 plots the sensitivity (true positive rate) and specificity (true negative rate)

and calculates the area underneath this curve (the AUC).

Figure 9 plots the Cumulative Accuracy Profile (CAP) and its respective AR. Given

the small OOT sample size, the KS and CAP curves are less smooth than the

respective OOS tests. For this particular dataset and classification exercise, the model

42



Ph.D Thesis - S. Sexton; McMaster University - Economics

0.0 0.2 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PD Estimates

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Non−defaults
Defaults
KS 0.805

0.00 0.10 0.20 0.30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PD Estimates

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Non−defaults
Defaults
KS 0.724

Figure 7: Kolmogorov–Smirnov Model Performance Test on Out-of-Sample (left) and
Out-of-Time (right) Dataset
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Figure 8: Receiver Operating Characteristic and Respective Area Under the Curve
Model Performance Test on Out-of-Sample (left) and Out-of-Time (right) Dataset

is performing well both OOS and OOT.
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Figure 9: Cumulative Accuracy Profile Curve and Respective Accuracy Ratio Model
Performance Test on Out-of-Sample (left) and Out-of-Time (right) Dataset

1.7 Model Validation

Once the model has been developed and the procedures undertaken are well docu-

mented, the next stage in the model life cycle is model validation. As such, this section

provides a brief overview of what an internal/external auditor and/or regulator would

expect to see from a financial institution’s model validation risk function. Once model

development is complete, an initial model validation should be conducted where the

actions taken by the model validation team are thoroughly documented in a model

validation report. This is an independent verification process, which should include

back-testing, discriminatory power testing, and sensitivity testing. Model validation

findings should include detailed recommendations from the validation team to the

model owner/developer(s), and it should be clear what the severity level of each finding

is. Ultimately, the model validation report should state the final conclusion as to

whether the model is appropriate for its intended use. The model validation report

should identify clearly the tests performed (or re-performed) by the model validation
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team and those performed by the model developer. Once a model has passed an

initial model validation, there should be a periodic review (at least annually performed

by individuals independent of the model development process) which evaluates the

model’s performance and key model assumptions to determine whether the model is

still performing well, whether it remains appropriate for its intended use, or whether

another full model validation is required prior to the next scheduled model valida-

tion date. These ongoing validation activities help identify any changes in markets,

products, exposures, activities, clients, or business practices that might create model

limitations.

There are sometimes situations, sometimes referred to as ‘trigerring events’, which

result in a redevelopment or recalibration of a model. This could result either in

another full model validation, or in some cases a targeted (limited-scope) validation

outside the regularly scheduled validation periods. So as to help reduce the amount

of labor required for a full model validation, a targeted validation will only look at

certain aspects of the model. Changes in the model scope; data population; model

inputs, theory, or code; or changes to the economic environment are all examples of

situations which might warrant a re-validation (targeted or full).

As stated in SR Letter 11-7, “the rigor and sophistication of validation should be

commensurate with the bank’s overall use of models, the complexity and materiality

of its models, and the size and complexity of the bank’s operations”. This statement

alone is admittedly somewhat vague; however, a bank’s peers/competitors, auditors,

external consultants, and other relevant stakeholders help guide the appropriate level

of rigor and sophistication. SR Letter 11-7 identifies three core elements of an effective

validation framework:

• Evaluation of conceptual soundness, including developmental evidence, which
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involves assessing the quality of the model design and construction.

• Ongoing monitoring, including process verification and benchmarking. Once the

model is approved, this becomes a joint responsibility of model users, owners,

and validators.

• Outcomes analysis, including back-testing. This is a comparison of the model

predicted values to actual values. A variety of quantitative and qualitative tests

and analytical techniques can be used to measure performance. Clear model

performance thresholds, performance breaches, and methods for identifying

model deterioration should be documented. In the event that model outcomes

persistently fall outside the bank’s thresholds, model adjustments, recalibration,

or redevelopment may be needed.

1.8 Performance Monitoring

Once the model has passed the model validation process, it can go into production. This

section provides a brief overview of what an internal/external auditor and/or regulator

can expect to see from a financial institution’s model performance monitoring function.

It is expected that the model owner/developer perform regularly scheduled performance

monitoring, which generally evaluates whether the model is performing well, as intended,

with a frequency appropriate with the nature of the model (i.e., how often is the

model used, how often is new data available, what is the risk of the model, etc.). The

performance monitoring tests and their respective thresholds for acceptable levels of

error (through analysis of the distribution outcomes around expected or predicted

values (FED 2011)) should be outlined in a model monitoring framework/policy;

typically, it includes back-testing, methods for detecting distributional shifts in new

data, forecast accuracy, and coefficient stability. There are periods in time when a
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model may be performing poorly due to some explainable exogenous or endogenous

shock/force. As such, the models performance should be evaluated holistically, taking

into consideration all tests, thresholds, and performance over multiple periods when

assigning a model’s performance monitoring rating. Model performance monitoring

risk ratings vary across financial institutions, but traffic light systems (red, yellow, or

green) or numeric rating systems (.e.g., 1-5) are commonly used.

1.9 Model Decommission

Over time, a model may be decommissioned due to deterioration in performance,

obsolescence, or irrelevance. When a model is decommissioned, the model life cycle

often continues as a new one may replace the old. The decommissioned model may

often be used as a benchmark against the newly developed model for comparative

purposes. There should be appropriate policies and procedures in place to ensure all

relevant and impacted stakeholders are aware of an upcoming model decommission.

1.10 Conclusion

Globally there have been significant changes in financial institution’s quantitative

departments since the great recession of 2007-2008. This change was largely motivated

by many newly issued regulatory requirements and policies such as Basel Advanced

IRB (AIRB) (Bank for International Settlements 2019), the Dodd-Frank Act stress test

(DFAST) (Board of Governors of the Federal Reserve System 2019b) and Comprehen-

sive Capital Analysis and Review (CCAR) (Board of Governors of the Federal Reserve

System 2019a) in the US, the International Financial Reporting Standard (IFRS) 9

(IFRS 2018) published by the International Accounting Standards Board (IASB), the
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Fundamental Review of the Trading Book (FRTB) (Committee on Banking Supervi-

sion 2013), Current Expected Credit Losses (CECL, the US’s IFRS-9 equivalent), and

IFRS 17 (IFRS 2017), to name a few. The models developed in financial institutions’

quantitative departments are heavily dependent on these guidelines and others, which

makes developing theoretically sound econometric/mathematical models even more

complex.

Effective Model Risk Management (MRM) is a complex set of tasks that requires

a mastery of both econometric theory and the landscape of domestic and global

regulations. This chapter provides both practitioners and academics with holistic and

comprehensive guidance on navigating these challenges for a mortgage credit risk model.

It sets out the mathematic and historical principles that underpin the development of

a credit risk ECL mortgage model and builds upon it to offer practical guidance on

the implementation, use, validation, and monitoring procedures for an effective credit

risk modeling department. The reader is now familiar with the respective governance,

controls, policies, and procedures present at all stages of the MRM lifecycle. As a result,

they are better equipped to meet regulatory expectations while taking advantage of

industry best practices.
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2 Chapter 2: Ensemble Probability of Default

Credit Risk Methodologies

2.1 Introduction

Binary choice classification models are fundamental and widely used in the field of

study of economics. For example, in labor economics it helps analyze questions related

to whether individuals are employed vs not employed, or what factors affect those

who claim unemployment insurance vs those who do not. In health economics it helps

analyze factors which impact whether individuals have a commorbidity or not, which

factors lead to individuals dying or surviving, or whether individuals use a health

service or not. In educational economics it can help determine what characteristics

affect the likelihood of obtaining higher education. In financial economics, classification

models are extremely important for determining the likelihood that a loan or investment

will default, for detecting fraud, or detecting whether an amortizating loan will prepay

on its contract or not, to name a few common applications.

This chapter provides a comparative assessment of applied bagging and boosting

machine learning classification methods in Probability of Default (PD) credit risk

modeling. I demonstrate the utility of these methods by way of an empirical comparison

of their performance relative to a traditional benchmark model using Freddie Mac’s

loan performance data on a portion of its single-family mortgage loans. Bagging and

boosting methods are considered “ensemble” learning techniques. Ensemble methods

combine multiple classification estimates into a single weighted or unweighted estimate.

Those familiar with “combined forecasts” and “model averaging” will immediately

appreciate these approaches. While ensemble methods are among the most popular
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machine learning methods and often deliver the best results (Abellán and Castellano

2017), they are infrequently used in applied credit risk modeling. Methods for how

these so-called “black box” methods can be used and interpreted by and for risk

practitioners are also reviewed in this chapter. This is of particular interest for both

academics and practitioners, as there is still significant uncertainty as to how these

types of models can and should be integrated into the credit risk modeling industry.

To the best of this authors knowledge, there exists neither a benchmark/review of

these models, nor academic guidance on how effectively to implement a PD mortgage

credit risk model using these techniques accepted by model validators and auditors in

the financial industry.

Section 2 provides an overview of bagging and boosting ensemble methods with

particular focus on classification. Section 3 reviews the ensemble literature and its

application in credit risk. Section 4 reviews the dataset and develops a bagging model

and boosting model that can be applied in a credit risk framework and assesses the

practicality of each in turn. The WOE PD model in Chapter 1 is used as a benchmark

model for comparative purposes. Section 5 concludes.

2.2 Overview of Ensemble Methods

This section reviews the historical and theoretical background of ensemble classification

methodologies, with particular focus on bagging and boosting. Classical algorithms

rely on one model (“model selection”) for analysis. Generally speaking, ensemble

methods average different machine learning algorithms. Machine learning, as defined

in this study, uses data and algorithms to make classifications or predictions and to

uncover key insights within the data. We are aware of the plethora of other machine

learning techniques that could be used in this study such as neural networks, support
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vector machines, k-nearest neighbor, naive bayes classifier, to name a few. However,

given the increasing popularity of boosting and bagging methods due to their success

in machine learning competitions as well as their reputation for being some of the

most successful methods (Berk 2017), we direct our attention to boosting and bagging.

This chapter distinguishes between three classification algorithm methods (Lessmann,

Baesens, and Seow 2015), namely individual classifiers, homogeneous ensemble classi-

fiers, and heterogeneous ensemble classifiers:

• Individual classifiers: Individual classifiers pursue different objectives to develop

a single classification model. Some examples include k-nearest neighbor, linear

discriminant analysis, support vector machines, Classification and Regression

Trees (CART), neural networks (multilayer perceptron, radial basis function),

survival analysis, quadratic discriminant analysis, and logistic regression.

• Homogeneous Ensemble Classifiers: Homogeneous ensemble classifiers pool

the predictions of multiple base models (or ‘base selectors’) using the same

classification algorithm. This can be performed in either an independent (bagging)

or dependent (boosting) fashion. Bagging ensemble methods, for example, create

N homogeneous independent classifiers from N bootstrap samples of the original

data (Breiman 1996). Boosting ensemble methods, on the other hand, actively

try to force the added base model to change its hypothesis by changing the

distribution over the training examples as a function of the errors made by a

previously generated hypothesis (Freund, Schapire, and Hill 1996).

• Heterogeneous Ensemble Classifiers: Similar to the homogeneous classifier, het-

erogeneous ensemble classifiers combine multiple classification models but create

these models using different classification algorithms. The idea is that different
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algorithms have different views about the same data and can complement each

other. These are also referred to as a “stacking” approach. While stacking is

briefly discussed in this chapter, given the regulatory scrutiny on black-box credit

risk modeling techniques and time investment, stacking is not reviewed in the

same level of detail as homogeneous ensemble classifiers (bagging and boosting).

Generally speaking, the challenge with individual classifiers is choosing a single (best)

model from a set of models, the classical “model selection problem”. All models are

a subset of a general superset (overlapping) model which contains all submodels as

special cases (Hansen 2020). Since there are theoretically an infinite number of possible

submodels, the chance of locating the best, “correctly specified” parametric model is

essentially zero. By reusing the same dataset in multiple ways (i.e., ensemble methods),

we allow for multiple views of the same data, which as it turns out will always reduce

variance and inches us closer toward the best (“correct”) view. The challenge then

becomes a question of how best to control bias. Averaging several independently

trained regressions will never increase the expected error (Schapire and Freund 2012).

Unfortunately, this is not transitive to classification, majority vote ensembling (this

will be discussed in more detail below). The bias can be interpreted as the persistent

error that would remain even if we had an infinite number of independently trained

classifiers, while the variance measures the error due to fluctuations that are part of

generating a single classifier (Schapire and Freund 2012). The following subsections

respectively describe bagging, boosting, and stacking in further detail. We include

stacking in the discussion below for informative purposes as it is a natural extension of

bagging and boosting; however, this chapter directs attention to bagging and boosting

in later empirical sections.
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2.2.1 Bagging

This sub-section provides an overview of bootstrap aggregation, which is commonly

referred to as ‘bagging’. Bagging is a homogeneous ensemble method. Bagging is

performed by bootstrapping independently and identically distributed (i.i.d) sample

datasets with replacement B times of size n from a training dataset (refer to Efron

1979 for further discussion on bootstrapping theory (Efron 1979)). To generate a

bagging estimate, let m(x) = E[yi|xi = x] be an unknown conditional mean, and

let m̂(x) be the respective regression estimator. For each b bootstrapped dataset,

recalculate the same estimator m̂b(x) B times for each bootstrapped dataset. The

final bagging estimator of m(x) is

m̂bag(x) = 1
B

B∑
b=1

m̂b(x). (14)

For classification, instead of averaging the output, each classifier estimator m̂b(x)

output is collected and counted and the event with the highest number of counts is

the victor. Put simply, classification uses a vote instead of an average. Ties are broken

arbitrarily. This method works the same for both binary and multi-class classification.

Each bagging estimater b is independent of other bagged estimates, so in practice

parallel processing can be leveraged to reduce computational efforts. The bagging

equation for a classification problem is illustrated below:

m̂bag(x) = arg maxyεY

B∑
b=1

I(m̂b(x) = y), (15)

where I is an indicator. To explain in words, take a random sample of size N with

replacement from the data and create B bootstrap samples. Now consider the example
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where each estimator m̂b(x) is a binary classification estimating either 0 or 1. The

total number of 0s and 1s estimated from each b bootstrap estimator is counted, and

the algorithm will choose either 0 or 1 as its final classification based on whichever one

has occurred more than 50% of the time. The ensemble will only result in an error if

at least half its base classifiers make an error. The number of 0s and 1s estimated are

divided by the total number of B bootstraps to arrive at a percentage, or proportion.

It is important to note that the winning proportion is not an estimate of the probability

that the imputation or forecast is correct (Berk 2017).

Bagging has the benefit of reducing variance, though it comes at the cost of accentuating

bias. That is, if m̂(x) is biased, then bagging will increase the bias. Since bagging

reduces variance but increases bias, it is considered a good approach when the estimator

being bagged is known to have low bias and high variance. When this is the case, a

lower Mean Squared Error (MSE) can be achieved, which potentially makes bagging a

good approach for prediction (since it can be expressed as Bias2 + V ariance). While

bagging does reduce variance, this reduction may be small since the final bagging is

done on identically distributed but correlated bootstraps; each bootstrapped sample is

likely quite similar to each other and may result in similar classification decisions.

A commonly used modification of bagging known as the “random forest” technique is

designed further to reduce estimation variance. Random forests introduce additional

randomness and decreases dependence among each bootstrapped estimate, which helps

lower the variance. To create a random forest, bagging is applied to Classification and

Regression Trees (CART). CARTs, as their name suggests, are typically displayed in a

tree-like structure. They are machine learning algorithms that recursively partition

the data space and fits a simple prediction model within each partition (Loh 2011).

Classification trees are for dependent variables with finite unordered values, while
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regression trees are for continuous or ordered dependent variables.

Random forest makes three enhancements to the traditional bagging technique:

1. For each bootstrapped sample, a number of variables m < k are selected at

random for each CART estimator, where k represents all the variables in the

candidate variable set. It is recommended to set m = k/3 (Hansen 2020), which

is the default in the R RandomForest package for regression;
√

k is the default

for classification. Randomly selecting m variables from k candidate variables for

each bootstrap estimator helps prevent the CARTs from repeatedly choosing

the best predictors, which is what helps reduce correlation among the predictors

and, as a result, reduces the variance.

2. The dependent variable in the random forest bagging exercise is sampled with-

out replacement, whereas the independent variables are still resampled with

replacement.

3. The bagging averages are performed on the Out-of-Bag (OOB) cases (these are

described in further detail below).

Items 1, 2, and 3 above each decrease the dependence among the estimates, which is a

key determinant for how effective an ensemble of trees will be. These items help resolve

the issue of overfitting. Recall that in the random forest method, bagging is applied to

CARTs. Choosing or ‘tuning’ the optimal parameters while avoiding model overfitting

plays an important part in both the CART and random forest Out-of-Sample (OOS)

and/or Out-of-Time (OOT) test dataset performance. Some important parameters

which require tuning are listed below:

• The number of variables k.

• The subset of variables m (the maximum features).
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• The number of trees (the number of bootstraps B).

• The depth of each tree.

• The minimum number of observations required to be in a leaf node (which also

determines the minimum number of observations for a tree split).

In practice, parameters controlling the complexity and size of the tree should be

controlled in order to reduce computational memory consumption (generally speaking,

important ones to consider are m, B, and the minimum number of observations

required in a leaf). The number of trees should be at least several hundred, and it is

likely sufficient to have several thousand (Berk 2017). Breiman recommends starting

with the square root of k to choose m, then trying more or less to assess performance.

Unless the number of candidate variables k is large (say, greater than 100) it is likely

sufficient from a performance perspective to choose the subset of variables m to be 2 or

3, since there will be sufficient opportunity for each variable to weigh in as the number

of trees grows. There are other decisions that must be made (the splitting criterion,

leaf weights, sample size, etc.) that can add to the overall complexity. There are,

however, industry accepted defaults that can sometimes be leveraged and that often

perform well in practice (of course, they must still be understood and considered).

Tuning is both an art and a science, since knowing preemptively the best parameters

for performance on new, never-before-seen data is impossible.

One advantage of the bootstrap is that for each bootstrapped dataset of size n

(with replacement), each observation has the probability 1 − (1 − 1/n)n of being

selected at least once. As n → ∞, it can be shown that this probability approaches

1 − 1/e = 0.632, where e is Euler’s number. This means on average 63.2% of the

available observations will be in the bootstrapped dataset, leaving 36.8% omitted

observations (Efron and Tibshirani 1994). These omitted observations are referred to
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as the OOB observations. These OOB observations can be used for cross validation on

all the bagged CART models to determine the generalization error in the random forest.

In some instances, only the OOB estimates can be used in the bagging averaging

technique. For demonstrative purposes, an empirical example of a random forest will

be presented later in this document.

2.2.2 Boosting

This sub-section provides an overview of boosting, also known as Adaptive Resampling

and Combining (ARCing). Boosting is a homogeneous ensemble approach similar to

bagging. However, one primary difference is that while the training stage for bagging

can be done in parallel, boosting is done sequentially due to its dependency on the

previous iteration(s). For each bootstrapped sample in bagging, each observation

has the same probability of being randomly sampled (i.e., sampling is done with

replacement). For each subsequent sample in boosting, observations which were poorly

classified by the previous model(s) in the overall system are more likely to be sampled

(or assigned a larger weight). This is done so that the subsequent models which well

classify these previously misclassified observations can be identified, and then these

can be added to the system to improve overall performance.

Boosting combines base, weak learning algorithms and their respective models (or

classifiers) into a single learner whose overall predictions can become quite accurate.

The assumption is that the weak classifier’s MSEs are at least a little better than

a random guess. This is referred to as the weak learner assumption, and it is a

fundamental component of boosting. While the weak classifiers on their own may

perform poorly, boosting will sample (or assign weights to) the training datasets in

such a way that each new base classifer contributes something different than those
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preceding it. Boosting can be performed not only on weak learners, but also on well

performing learning algorithms (for example, using the C4.5 algorithm (Schapire and

Freund 2012)). In fact, when the base learners are trees used for classification problems,

more complex base learners perform better (Berk 2017). However, the important

takeaway is that boosting will improve performance as long as i) the weak learner

assumption holds, ii) there are sufficient data, and iii) the base classifiers are not overly

complex. To conceptualize how boosting works in a bit more detail, we will first direct

attention to adaptive boosting, or ‘AdaBoost’, which is a heavily researched algorithm

that won its discoverers the Godel Prize in 2003 (Freund and Schapire 1997).

AdaBoost takes as inputs a training dataset consisting of (x1, y1), . . . , (xm, ym), where

xi is observation i from the domain space X and yi is the respective classification

event taking values {−1, +1}. Each iteration uses the training dataset, which has a

distribution denoted Dt for each iteration t = 1, 2, ..., T , and weights Dt(i), where i

refers to the respective weight for observation i. In the first iteration, all observations

are assigned an equal weight of 1/n, where n is the number of observations in the

training dataset. As the algorithm progresses through each iteration t, the weights

are increased on the previously incorrectly classified observation(s) to represent the

importance of correctly classifying them on the current round. For each weak learner

estimate mt : X → {−1, +1} trained on dataset Dt(i) for i = 1, ..., m, the aim is to

select mt (a decision tree stump is commonly used in AdaBoost) which minimizes the

weighted error:

εt = Pri∼Dt [mt(xi) 6= yi]

=
∑

i:mt(xi)6=yi

Dt(i).
(16)
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The error εt represents the chance of mt misclassifying a randomly sampled observation

i from the distribution Dt. Recall that to satisfy the weak learner assumption, εt < 1/2

must hold (i.e., εt must be slightly better than random guessing).

The first iteration of D1 assigns equal weighting to each observation of 1/n. Once the

first classifier m1 is determined, we can calculate its measure of importance denoted

at using the following formula:

αt = 1
2ln

(1 − εt

εt

)
. (17)

From here, we can now calculate the new weights for Dt+1(i) using the following

formula:

Dt+1(i) = Dt(i)
Zt


e−αt if mt(xi) = yi

eαt if mt(xi) 6= yi

(18)

= Dt(i)exp(−αtytmt(xi))
Zt

, (19)

where Zt is a normalization factor chosen such that the probabilities sum to 1 (i.e., is

a proper distribution) (Freund, Schapire, and Avenue 1999). Note that this equation

holds when yt takes values {−1, +1}. There are different approaches to using these

weights at each iteration. One can randomly sample with replacement from Dt using

the newly calculated weights Dt+1(i) to create a new data sample Dt+1, which will

(likely) over-sample the misclassified observations and under-sample the correctly

classified ones from the previous estimator mt. This is called “boosting by resampling”.

A new estimator mt+1 is then calculated on the new distribution Dt+1, which is
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designed to focus on the difficult-to-classify observations. This process is continued T

times to create T estimators, at which point they are all combined to create a single

classifier mboost(x). Similar to bagging, this can be achieved by a simple weighted vote

of all the classifiers using the formula below. Alternatively, the weights can be applied

directly, which is called “boosting by reweighting”.

mboost(x) = sign
(

T∑
t=1

αtmt(x)
)

. (20)

We can think of αt as the coefficients for the linear combination used in this equation.

AdaBoost is fast, simple, and easy to implement in practice. It also only has one tuning

parameter, i.e., the number of rounds T . It can be shown that the in-sample training

error falls exponentially as a function of the number of weak classifiers. Boosting is also

known to be resistant to overfitting (which is beneficial for classification performance

on OOS/OOT data) (Freund, Schapire, and Avenue 1999); this is, however, not

guaranteed (i.e., performance may deteriorate on OOS/OOT data as the number of

base learners in the algorithm increase). During the development of any model, if

attention is solely concentrated on minimizing the training error, then the model may

overfit spurious patterns which appeared in the training data purely by chance and, as

a result, have poor generalization error. The model’s success is dependent on how well

the model fits the data, that it has sufficient data, and that it is simple (Schapire and

Freund 2012).

While not designed with this purpose in mind, AdaBoost is actually performing

coordinate descent while greedily minimizing an exponential loss function. At the time

it was a new, statistical way of thinking about AdaBoost (Breiman 1998) (Breiman

1999) (Friedman 2001) (Rätsch, Onoda, and Müller 2001) (Duffy and Helmbold 1999)
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(Mason et al. 1999). The exponential loss function does a good job of heavily penalizing

misclassified observations, and not penalizing the correctly classified observations.

Once it was recognized that AdaBoost is just coordinate descent optimizing a specific

(exponential) loss function, AdaBoost was then generalized to any loss function.

Formally, the algorithm minimizes a loss function L(λ1, . . . , λN), where λj represents

a specific weight for an estimator m̃j over the finite space M = m̃1, . . . , m̃N . Note

that we are using the notation m̃j instead of mt as described above in the AdaBoost

algorithm. Both m̃j and mt are from the same finite space M , where for any m̃j

there must be an equivalent mt. To draw parallels to the AdaBoost algorithm, the

exponential loss function we intend to minimize would be expressed as follows:

L(λ1, . . . , λN) = 1
m

m∑
i=1

exp(−yiFλ(xi)) (21)

= 1
m

m∑
i=1

exp
−yi

N∑
j=1

λjm̃j(xi)
 . (22)

In AdaBoost, each round t is essentially adjusting one of the weights λj; i.e., it is

minimizing the objective function L by iteratively descending along one coordinate

at a time (Schapire and Freund 2012). This concept can be extended to Gradient

Boosting (which uses gradient descent instead of coordinate descent), which adjusts

all the weights λ1, . . . , λN simultaneously during each iteration. The goal is then to

minimize L(F ), which in its general form is called “AnyBoost” or “gradient boosting”.

When each trained ensemble is performed on a subset of the training dataset, it is

referred to as “stochastic gradient boosting”, which has the benefits of potentially

improving the generalization of the model’s performance. Finally, if we consider also

using the second-order derivatives of the loss function and incorporate L1 and L2
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regularization, then we would be using the Extreme Gradient Boosting (XGBoost)

method (Chen and Guestrin 2016), which has been popularized in recent years due to

its success in machine learning competitions. An empirical example of XGBoost will

be presented later in this document for demonstrative purposes.

2.2.3 Stacking

This sub-section provides an overview of stacking. As was previously mentioned,

stacking is a heterogeneous ensemble classifier, which combines classification models

which were built using different classification algorithms. Each model in the ensemble

is trained on the same data. Various ensemble methods are used to create a suitable

subset of all possible models using some selection criteria. Stacking is a relatively

simple concept; namely, the combination of many models will likely do better than

one single classifier. The simplest approach to building a stacked ensemble is to

use the voting method. In a study by Lessman et al. (2015) which compares 41

different classifier methods and ranks their performance in credit risk probability of

default forecasting, heterogeneous stacking ensembles ranked in the top 11 (Lessmann,

Baesens, and Seow 2015). A shortfall of stacking is that the developer must build

multiple models, which is quite a timely and, hence, costly approach. There are ways of

implementing stacking procedures (refer to H2O AutoML automatic machine learning,

for example7). These approaches, however, tend to venture further into the black box

territory, which may encounter push-back from a validation and/or internal/external

audit team. There is also the argument that if a method is too easy to implement,

then there is the risk that the developer might make unknown errors.
7https://h2o.ai/.
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2.3 Literature Review

Estimating a financial instrument’s PD is an important procedure in banking and

is a fundamental component in forecasting Expected Capital Losses (ECL), which

ultimately helps manage systemic risk. As financial institutions become more sophisti-

cated and complex, the quantity and criticality of PD models used for decision making

purposes has increased exponentially. Current and upcoming global and domestic (US)

regulatory guidelines that banks have to comply with such as Basel Advanced IRB

(AIRB) (Bank for International Settlements 2019), the Dodd-Frank Act stress test

(DFAST) (Board of Governors of the Federal Reserve System 2019b), Comprehensive

Capital Analysis and Review (CCAR) (Board of Governors of the Federal Reserve

System 2019a), the International Financial Reporting Standard (IFRS) 9 (IFRS 2018)

published by the International Accounting Standards Board (IASB), Current Expected

Credit Loss (CECL, the US equivalent of IFRS-9), the Fundamental Review of the

Trading Book (FRTB) (Committee on Banking Supervision 2013), and IFRS 17 (IFRS

2017) rely heavily on models, thus increasing dramatically the rate at which a bank’s

model inventory grows over time and highlighting the necessity for robust models.

This section provides a review of the classification literature in credit risk modeling,

and provides some insight into what situations bagging, boosting, or stacking might

be best suited.

It is worth emphasizing that no single best “universal” method exists, since certain

approaches may be more suitable given the situation and resources available (data,

time, computational ability, experience, etc.). Benchmarking methods on a single

dataset may result in conflicting conclusions, since it fails to examine the robustness of

the models ability to generalize across different environments. It is also challenging to

get an objective comparison when benchmarking methodologies because the authors
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may unintentionally tune one approach more than another (Lessmann, Baesens, and

Seow 2015). This section attempts to provide an objective, theoretical review of

where methodologies tend to excel or fail. That being said, the empirical component

of this chapter is applied on a single, publicly available dataset, and is intended to

objectively analyze and compare the ease of implementation, interpretability, and its

overall suitability in applied credit risk modeling in industry, with the understanding

that failing to analyze on multiple datasets may limit our ability to assess these

methodologies ability to generalize across different environments.

2.3.1 Class Imbalance

We will first discuss the issue of “class imbalance”, which is prevalent in essentially

all credit portfolios. There are significantly more loans which do not default versus

those that do in credit portfolios, which is a well known phenomenon in industry, and

publicly available default rates are commonly published by Moody’s for reference.8

In machine learning techniques (as we have discussed thus far), methods may have a

tendency to improve the true negatives (in our case, increase the correctly classified

non-default loans) while also increasing the false negatives, rather than improve the

true positives, to improve overall accuracy (Galar et al. 2012). This, of course, would

give the misleading impression that the model is performing well. In practice, the

cost of misclassifying an abnormal (defaulted) example as a normal (non-defaulted)

example has a much higher cost than its converse.

To address the class imbalance issue one can under-sample the majority class (non-

default), over-sample the minority class (defaulted), or some combination of both. One

of the better known and utilized approaches is the Synthetic Minority Oversampling
8https://www.moodys.com/.
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Technique (SMOTE) (Chawla V. et al. 2002), which is well researched and has

demonstrated improvement in ensemble bagging and boosting classification methods

(Galar et al. 2012). Instead of oversampling from the minority group with replacement,

SMOTE over-samples by randomly selecting synthetic observations between all minority

class examples using the k Nearest Neighbors (kNN) approach. This allows for a larger

minority class decision boundary, which spreads into the majority class space. The

SMOTE technique can be extended to both bagging and boosting, and is naturally

called SMOTEBagging and SMOTEBoosting, respectively. These methods have been

shown to improve classification performance (Galar et al. 2012) and as such, the

SMOTE technique will be leveraged in the empirical exercise below.

2.3.2 When to Use Bagging and Boosting

An overview of how bagging, boosting, and stacking theoretically and mechanically

works is provided above. This section discusses the situations where each of these

approaches perform well or poorly. This is intended to provide practitioners with a

more comprehensive understanding of when bagging, boosting, and stacking might be

the most suitable method for a given application.

During a bagging procedure and under the right circumstances, if each single classifier

has a high variance, averaging will smooth the estimator and hence smooth and

reduce the variance (random forest is designed to reduce the variance even further).

Essentially, bagging will tend to cancel out idiosyncrasies observed in the data. For

this reason, bagging is largely viewed to be a variance reduction technique that reduces

generalization error - an important feature when forecasting. Another benefit is that

bagging allows for more complex classifiers in the ‘bag’, which normally have the risk of

overfitting and increasing generalization error. Bagging will help stabilize the classifier
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estimates. This is why the random forest approach discussed above performs so well

in practice. In addition, the random forest technique will not overfit as more trees

are grown (an important feature) (Breiman 2001). There are cases where bagging can

potentially reduce bias as well (see Section 4.3.7: Bagging and Bias in (Berk 2017)),

however, this is not typically the primary reason for opting to use a bagging technique.

A notable pitfall of bagging is that since there is no single classifier nor an average

classifier we can analyse and interpret, bagging is what is commonly referred to as

a ‘black box’ statistical procedure. This has huge consequences in many fields in

banking, where interpretability and justification for decision making and forecasts

are important, e.g., lending decisions, economic forecasts, or determining future risks

and losses. If a forecast or estimate cannot be rationalized or understood, there is a

risk there may be bias, idiosyncrasy, racism, ageism, etc., unintentionally driving the

estimate (as Berk notes, “statistical inference can certainly be useful, but are worse

than useless when a credible rationale cannot be provided” (Berk 2017)). While not

necessarily a limitation, bagging will differ from a single estimate only when the latter

is a non-linear or adaptive function of the data (Hastie, Tibshirani, and Friedman

2009) (for example, bagging a linear regression would not result in any added benefits).

Something for practitioners to be cognizant of, particularly in unbalanced data, is that

the underlying classifier m̂(x) should perform reasonably on its own when bagging.

If it performs poorly, bagging may result in worse estimates because the majority

vote will lean toward the majority class (i.e., non-default vs defaulted). In a similar

vein, if the base classifier persistently makes errors, bagging will simply continue to

reproduce these errors. In the unlikelihood that an individual classifier is relatively

stable, bagging may not be the best option as it has the potential to make things worse

(see Section 4.4.2: Sometimes Bagging can Make the Bias Worse in (Berk 2017)).
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Alternatively, if we are working with unstable classifiers like CART methods (which

are well known to have high variance), bagging is a very powerful and useful technique.

Overall, the random forest has proven to be one of the best forecasting tools out there.

As described by Berk, “if forecasting accuracy is one’s main performance criterion,

there are no other general purpose tools that have been shown to consistently perform

any better” (Berk 2017).

Along with random forests, AdaBoost and Gradient Boost (and its derivatives like

XGBoost) are considered some of the best off-the-shelf machine learning methods

out there. Boosting can be shown to reduce both variance and bias (Schapire and

Freund 2012). While bagging is appropriately considered a variance reduction tactic,

boosting can be an effective tool when the model has large bias and low variance. In

general, boosting will not perform well if there is i) insufficient data relative to the

complexity of the base classifiers, and ii) the training errors of the base classifiers grow

too quickly. In addition, boosting works particularly well with weak learners. If the

pool of independent variables is significant and the process generating the data is well

understood, a parametric regression may not benefit much from boosting and it will

have the added benefit of ease of interpretability. Boosting also suffers from the same

black box limitation as bagging, as does stacking.

2.4 An Empirical Comparison

This section provides an empirical comparison between bagging and boosting. In addi-

tion, the binomial logistic regression using the Weight-of-Evidence (WOE) technique

from Chapter 1 is included as a benchmark comparison model. For further details

on the WOE model development process, refer to Section “1.5 Model Development”.

Similarly, this chapter uses Freddie Mac’s Single-Family Fixed Rate Mortgage Loan
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Performance dataset (“the data”), where the final dataset and respective preparation

and cleaning procedures taken are identical to the ones described in detail in Chapter

1, Section “1.5.1 Dataset Background and Relevance”. The same 70% of the data is

randomly sampled for training the model, 30% is used for validating the model on the

OOS test dataset, and a hold-out period of one year is used for the OOT test dataset.

The variable of interest is whether an account defaults within a one-year (12 month)

window or does not.

It is important to keep in mind that only one dataset is being used. Using multiple

datasets would provide a more robust comparison of how well these methods perform

in different environments (e.g. one method may perform better on one dataset, while

another method may perform better on a different dataset). As such, in addition

to model performance, this section is intended to analyze and assess objectively the

ease of implementation, interpretability, and overall suitability of each methodology in

applied credit risk modeling in the industry. Each model begins with the same set of

independent variables.

Sub-sections 1 and 2 respectively presents the empirical model development of i) a

random forest (bagging) model, and ii) an XGBoost (boosting) model. Sub-section 3

summarizes the results of each method, including the benchmark WOE logistic model

from Chapter 1, and provides narrative on the pros and cons of each.

2.4.1 Random Forest Model Specification

This section describes the model development process undertaken for the random

forest bagging technique. One benefit of the random forest is that tuning the model is

rather simple when compared to, say, XGBoost.
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The tuning parameters chosen are listed below:

• The number of variables k: the variables used are the same as the ones used in

the benchmark model, i.e., k = 31. The intent is for each model to begin with

the same information set.

• The subset of variables m (the maximum features): The default m =
⌊√

k
⌋

= 5

is used to choose the subset of variables. The tuning process is described in more

detail below.

• The number of trees (the number of bootstraps B): The number of trees/boot-

straps is 501. The tuning process is described in more detail below.

• The depth of each tree: Trees are grown to the maximum possible, with no limit

on the node size.

• The minimum number of observations required to be in a leaf node: This also

determines the minimum number of observations for a tree split. No minimum

is set.

The subset of variables are tuned using m = 2, 3, 4, 5, 6, 7, 9, 11, 13. It is recommended

to use m =
⌊√

k
⌋

= 5 for classification as a benchmark, so values around this are run

to verify the optimal k. This tuning exercise is visualized in Figure 10 using the ROC

on the OOB values. This means that the optimal tuning parameter is chosen based

on whichever parameter has the highest ROC value when estimated on OOB values.

As Figure 10 shows, the optimal subset of variables for ROC performance is m = 4,

which is used in the final random forest model.

The second tuning parameter considered is the optimal number of trees to run. While

tuning the number of trees is not recommended (Probst and Boulesteix 2018), it is

still prudent to verify the stability of the probability estimations of all observations

and ensure there are monotonic improvements. What this means is we should expect
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Figure 10: Optimal Subset of Random Forest Variables m Tuning

the model error to decline as we increase the number of trees. If it increases, then

further investigation is required. It is observed that after 128 trees, there typically

is no significant gains in ROC performance (Oshiro, Perez, and Baranauskas 2012)

(Probst and Boulesteix 2018); this is observed here as well. The general consensus

is that in most cases more trees are better. The improvement for OOB error rate is

displayed in Figure 11.

A common critique of random forest models is that they are considered too opaque

to be used for prudent risk management; this is commonly referred to as a black

box. While analyzing each tree individually may indeed be unrealistic, very useful

information can be extracted from a random forest algorithm which should alleviate

the concerns credit modelers and respective management/stakeholders may have. The

following suggestions should provide practitioners with some guidance on how to

interpret their random forest model results, and how to be confident that their model
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Figure 11: Random Forest Error Rates on Training data

is performing as intended and will continue to do so.

After running the random forest model, each variable’s importance can be rank ordered.

This is done by determining how much the OOB model accuracy decreases when each

variable is excluded. Variables with a higher number are considered to be more

important. Practitioners can use this to ensure that the variable’s rank ordering is

intuitive and in line with industry expectations. Each variable’s importance, which

is determined by how much the model’s accuracy improves when including it in the

model using the mean decrease in accuracy on OOB data, is ordered by importance

as shown in Table 5. This method can also be used as an effective variable selection

technique.

Another consideration that credit risk practitioners consider important is the effect

each variable has on the dependent variable. In a regression, it is important that the

coefficient has the correct sign. For example, unemployment rates should intuitively

have a positive coefficient when modeling default rates, as we would expect default rates

71



Ph.D Thesis - S. Sexton; McMaster University - Economics

Table 5: Random Forest Error Rates on Training data

Variables Mean Decrease Accuracy
1 HPI Change 128.62
2 Credit Score (FICO) 118.95
3 Original Value 101.53
4 Last UPB 98.86
5 Current UPB 95.65

6 Original UPB 92.90
7 Property Type 91.87
8 DTI 85.36
9 OCTV 82.33
10 Loan Age 80.81

11 Occupancy Status 79.96
12 Interest Rate 79.51
13 Modification Flag 73.91
14 LTV 68.78
15 FTHB flag 65.19

16 Delinquency Status 63.85
17 Mortgage Insurance 62.95
18 Current Interest Rate 61.20
19 # of Borrowers 56.69
20 Number of Units 53.26

21 Loan Purpose 52.93
22 UR (L4) 50.33
23 Delinquency Indicator 47.44
24 Channel 43.75
25 UR (L3) 42.53

26 UR (L1) 41.68
27 UR 41.37
28 UR (L2) 41.27
29 Super Conforming Flag 8.57
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to be positively correlated with unemployment rates. With a random forest model,

partial dependence plots can be easily obtained, which gives a graphical depiction of

the marginal effect a variable has on the class probability (Friedman 2001). Partial

dependence functions can be used to help interpret black box models (Friedman 2001)

or put differently, any supervised learning model. Partial dependence plots on the four

most influential variables are displayed in Figure 12.
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Figure 12: Random Forest Partial Dependence Plots

The partial dependence plots show that larger increases in HPI relative to when a

house was first purchased result in a lower default probability (top left in Figure 12).

As credit scores improve, there is a decrease in default probability, and default rates

appear to be unaffected below 600 (top right in Figure 12). Default rates decrease

as the value of a house increases (bottom left in Figure 12), which is in line with

industry expectations since individuals who qualify for larger loans typically have

higher credit scores, higher salaries, and pay higher down payments. Similarly, higher

original UPBs have lower default rates (bottom right in Figure 12). This exercise
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can be performed on all variables in the random forest model, and helps provide risk

management professionals with the ability to assess whether the independent variables

have “correct” relationships with the dependent variable.

2.4.1.1 Random Forest Model Performance

This section evaluates the random forest model’s performance using the following

statistical methods on both the OOS and OOT datasets:

• The Receiver Operating Characteristic (ROC) curve.

• The Kolmogorov–Smirnov (KS) test.

• The Gini Coefficient (AR Test).

The ROC curve, KS test, and AR test for both the OOS and OOT dataset are shown

below:
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Figure 13: Kolmogorov–Smirnov Random Forest Model Performance Test on Out-of-
Sample (left) and Out-of-Time (right) Dataset

As presented in the KS, AUC, and AR test figures above, the model is performing
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Figure 14: Receiver Operating Characteristic and Respective Area Under the Curve
Random Forest Model Performance Test on Out-of-Sample (left) and Out-of-Time
(right) Dataset
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Figure 15: Cumulative Accuracy Profile Curve and Respective Accuracy Ratio Random
Forest Model Performance Test on Out-of-Sample (left) and Out-of-Time (right)
Dataset
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well both OOS and OOT.

2.4.2 XGBoost Model Specification

This section describes the model development process undertaken for the XGBoost

boosting technique. XGBoost tuning is more rigorous than random forest, and often

takes multiple iterations. The parameters which typically have the biggest effect on

model performance are the following:

• Learning Rate: the learning rate eta scales the contribution/improvement in

error of each tree by a factor of 0 < r < 1 when it is added to the current

approximation. Smaller values of r may result in better predictions, though at

the cost of more iterations to reach the optimum (i.e., more computation time).

Values are often below 0.3.

• Max Depth: The maximum depth determines the depth of a tree at each

iteration. The deeper the tree, the more complex the model becomes resulting

in potential over-fitting in the OOS and OOT datasets.

• Gamma: Gamma sets a minimum loss reduction that is required for a further

partition on a leaf node of the tree.

• Minimum Sum of Weight (Hessian) needed to Create a Node: Smaller values

allow for nodes with fewer samples which allows for more complex trees, but are

more likely to over-fit.

• Number of Rounds: The optimal number of rounds to perform.

For this model, the tuning parameters listed above are the ones tuned for this XGBoost

model. In the first tuning iteration, eta = 0.1, 0.05, 0.01 and maximum depths of
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depth = 2, 4, 6, 8 are considered. Both of these are visualized in Figure 16.
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Figure 16: Optimal XGBoost Learning Rate and Maximum Depth Tuning

Similarly, eta and gamma = 0, 0.25, 1 are considered and visualized in Figure 17.

While the optimal maximum depth is 8, the improvements from 4 to 8 are marginal.

Hence, to prevent over-fitting, an optimal depth of 4 is chosen. The optimal learning

rate is 0.1. Instead of checking to see whether learning rates beyond 0.1 perform better,

the number of iterations are increased instead (at the cost of increased computation).

Optimal gamma is 0, hence this is used going forward. Minimum sum of weight

(Hessian) needed to create a node values of 1, 3, and 5 are considered. Tuning shows 1

is optimal.

Finally, the optimal number of rounds are considered. If no improvement to the model

using the Root Mean Squared Error (RMSE) has occurred after 20 model iterations,

the algorithm terminates. The RMSE is calculated by comparing the models predicted

probability estimates using ŷ with the actual values in both the training and test
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Figure 17: Optimal XGBoost Learning Rate and Gamma Tuning

dataset (predicted vs actual). This helps prevent model over-fitting. The improvement

in RMSE model performance is presented in Figure 18, and the improvement in AUC

model performance is presented in Figure 19. The improvement in the test data for

both RMSE and AUC appears to approximately level off at 1500 rounds, which is

used in the final model.

Similar to the random forest model, a common critique of XGBoost models is that

they are considered to be a black box. However, also similar to the random forest

model, variables can be rank ordered by importance, and partial dependence plots

can also be obtained. Table 6 lists the variables in order by importance. The gain

represents the contribution of each variable to the model; higher values indicate the

variable is more important in the prediction. XGBoost can also be used as an effective

variable selection technique using this approach.
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Figure 18: XGBoost Optimal Number of Rounds Tuning Using RMSE
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Figure 19: XGBoost Optimal Number of Rounds Tuning Using AUC

Table 6: XGBoost Importance

Variable Gain

Delinquency Status 0.629
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Table 6: XGBoost Importance (continued)

Variable Gain

HPI Change 0.061

Interest Rate 0.037

Credit Score (FICO) 0.034

LTV 0.029

Current Interest Rate 0.022

DTI 0.020

Loan Age 0.018

Original Value 0.018

Mortgage Insurance 0.016

Current UPB 0.016

Occupancy Status 0.011

OCLTV 0.010

Original UPB 0.010

UR (L4) 0.009

Modification Flag 0.008

# of Borrowers 0.007

Property Type 0.007

UR 0.006

FTHB Flag 0.006

UR (L1) 0.005

UR (L2) 0.005
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Table 6: XGBoost Importance (continued)

Variable Gain

UR (L3) 0.005

Channel 0.004

Loan Purpose 0.003

Number of Units 0.003

Delinquency Indicator 0.000

The partial dependence plots for the top four most influential variables in the XGBoost

model are displayed in Figure 20. These give a graphical depiction of the marginal

effect a variable has on the class probability, and provides risk practitioners the ability

to interpret the effect a variable has on the variable of interest. Figure 20 shows that

default rates i) increase with delinquency status, ii) decrease as the change in HPI

since origination increases, iii) increase as interest rates increase, and iv) decrease as

credit scores increase. These are all in line with economic/business expectations.

2.4.2.1 XGBoost Model Performance

This section evaluates the XGBoost model’s performance using the following statistical

methods on both the OOS and OOT datasets:

• The Receiver Operating Characteristic (ROC) curve.

• The Kolmogorov–Smirnov (KS) test.

• The Gini Coefficient (AR Test).

The ROC curve, KS test, and AR test for both the OOS and OOT dataset are shown

81



Ph.D Thesis - S. Sexton; McMaster University - Economics

delq_sts

yh
at

−1

0

1

2

3

0 20 40 60 80 100

HPI.change

yh
at

−1.5

−1.0

−0.5

0.0

0.5

0.5 1.0 1.5 2.0 2.5

int_rt

yh
at

−1.0

−0.5

0.0

0.5

1.0

1.5

4 6 8 10

fico
yh

at

−0.4

−0.2

0.0

0.2

0.4

300 400 500 600 700 800

Figure 20: XGBoost Partial Dependence Plots
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Figure 21: Kolmogorov–Smirnov XGBoost Model Performance Test on Out-of-Sample
(left) and Out-of-Time (right) Dataset

As shown in the KS, AUC, and AR test figures above, the model is performing well
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Figure 22: Receiver Operating Characteristic and Respective Area Under the Curve
XGBoost Model Performance Test on Out-of-Sample (left) and Out-of-Time (right)
Dataset
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Figure 23: Cumulative Accuracy Profile Curve and Respective Accuracy Ratio XGBoost
Model Performance Test on Out-of-Sample (left) and Out-of-Time (right) Dataset
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Table 7: KS, AUC, and AR OOS Model Test Results Comparison

Test Logistic Regression Random Forest XGBoost
KS (OOS) 0.805 0.827 0.817
AUC (OOS) 0.951 0.962 0.96
AR (OOS) 0.901 0.925 0.921

Table 8: KS, AUC, and AR OOT Model Test Results Comparison

Test Logistic Regression Random Forest XGBoost
KS (OOT) 0.724 0.872 0.835
AUC (OOT) 0.917 0.975 0.967
AR (OOT) 0.834 0.95 0.935

both OOS and OOT.

2.4.3 Model Comparison

The previous sections provide an overview of the development process for a random

forest model and an XGBoost model. The OOS and OOT KS, AUC, and AR test

results for these models, including the benchmark WOE logistic model from Chapter 1

are summarized in Table 7 and Table 8, respectively.

The random forest and XGBoost models outperform the benchmark logistic regression

model in both the OOS and OOT dataset. The random forest and XGBoost perform

noticeably better in the OOT dataset, indicating that they may be better for general-

ization, and may have more reliable estimates for ongoing performance monitoring as

new OOT data continues to be appended. The random forest methodology performs

slightly better than XGBoost in OOS or OOT.
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2.5 Conclusion

While logistic regression is a popular and widely accepted method in the industry, this

chapter shows that the bagging and boosting methods clearly outperform a common and

popular logistic regression specification in the empirical exercise. Common arguments

against the usage of machine learning models is that they are “black boxes”. This,

however, can be resolved with variable importance rankings and partial dependence

plots. Partial dependence plots visualize the average partial relationship between

the dependent and independent variable(s), which is an important component in the

applicability and interpretability in credit risk modeling. PDPs do not capture the

potential heterogeneity across independent variable ranges, which is an assumption

a modeler may wish to analyse. Goldstein et al. (2015) proposed the Individual

Conditional Expectation (ICE) method, which is designed to visualize the relationship

between each observation and the dependent variable, which allows the reader to

identify potential heterogeneity more easily (Goldstein et al. 2014). While ensemble

methods are among the most popular machine learning methods and often have the

best results (Abellán and Castellano 2017), they are infrequently used in applied credit

risk modeling for the reasons above. The additional tests and graphs presented in this

chapter are a constructive step in the right direction to resolve the common critique

that bagging and boosting methods are considered too opaque to be used for prudent

risk management.
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3 Chapter 3: Benchmarking Ensemble and Tradi-

tional Loss Given Default Credit Risk Method-

ologies

3.1 Introduction

Fractional response variables commonly occur in many economic settings. Familiar

examples include the fraction of total weekly hours spent working, the proportion of

income spent on pension plans or charitable contributions (Papke and Wooldridge

1996), industry market shares, the proportion of students who pass standardized tests,

and the fraction of land allocated to agriculture (Papke and Wooldridge 2008). In

financial economics, a fundamental fractional response variable is the Loss Given

Default (LGD), which is the observed percentage, often bounded between 0 and 1, of

the actual exposure a financial institution can expect to lose in the event a borrower

defaults on their loan.

LGD is one of three main parameters used in determining a bank’s Expected Losses

(EL) under Basel II international regulations (Basel Committee on Banking Supervision

2005), along with the Probability of Default (PD) and Exposure at Default (EAD).

While PD models have been the focal point of credit scoring over the last 60 years, LGD

modelling was not addressed adequately until the introduction of Basel regulations

(Zhang and Thomas 2012). Basel II was implemented at the end of 2006 and requires

banks to use a more risk-sensitive method for calculating credit risk capital requirements

(Schuermann 2004). As a result, LGD has recently garnered research attention in both

academia and industry. Generally speaking, it is more challenging to build accurate

LGD consumer portfolio models than build PD models. Two reasons are i) the data
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are often right censored (debts are still being paid), and ii) borrowers typically have

different repayment patterns (Zhang and Thomas 2012). As such, LGD industry

models tend to have low predictive performance, particularly for consumer lending

portfolios (Loterman et al. 2012).

This chapter provides a comparative assessment of credit risk Loss Given Default

(LGD) modeling methodologies for use in financial institutions, with particular focus

on a retail single-family mortgage portfolio. An empirical comparison of these model

methodologies’ performance using Freddie Mac’s loan performance data on a portion

of its single-family mortgage loans is used for demonstrative purposes. This chapter

examines and compares the following four methods:

• Fractional response models (Papke and Wooldridge 1996) (Papke and Wooldridge

2008).

• A linear model.

• Random forest (Breiman 2001).

• XGBoost (Chen and Guestrin 2016).

For reasons this chapter provides, fractional response models are one of the most

commonly used approaches at top tier banks. The linear model is a widely used

method, despite the fact that its functional form is almost always misspecified when

modeling LGD (it is typically linear and additive, which is limiting). We examine

theoretically why that is, and empirically show an example of the linear model’s

performance shortcomings in practice, with the hopes of motivating practitioners to

consider less restrictive methods. Finally, while random forest and XGBoost models

have received ample attention in recent years, they are rarely used in practice for credit

risk modeling. This chapter explains why that is, and discusses when and how these

methods could be used effectively in credit risk modeling. This chapter is motivated
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to solve these problems, as well as to help fill the gap in limited LGD research and to

explore potential improvements to predictive modeling. This chapter is also intended to

provide practitioners and researchers with some guidance when choosing an appropriate

methodology for modeling credit risk LGD models, particularly in mortgage portfolios.

Section 2 provides some helpful background knowledge on credit risk LGD in a

banking environment. Section 3 reviews the methodological literature and industry

best practices, guided by regulatory feedback. Section 4 describes the data. Section

5 discusses the model development component, compares the performance of these

models, and summarizes the pros and cons of these methods. Section 6 concludes.

3.2 LGD Overview

Estimating financial instruments LGD (which is equal to 1 minus recoveries, which

are defined in more detail below) is an important procedure in banking and is a

fundamental component in forecasting Expected Losses (EL), which ultimately helps

manage systemic risk. Along with the estimation of PD, LGD estimates and forecasts

play a critical role in global and domestic (US) regulatory guidelines that banks must

comply with. For more detail on these regulatory guidelines, refer to Sections 1.2 - 1.3

in Chapter 1. LGD is defined as the observed percentage of the actual exposure lost

in the event of a borrower defaulting (Basel Committee on Banking Supervision 2005).

It is typically measured as a percentage of the EAD and is used together with PD to

estimate the EL (in currency amounts):

EL = PD · LGD · EAD (23)
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Larger and more mature banks will usually have separate quantitative models for

each PD, LGD, and EAD parameter, and often build these models at the loan

level, as opposed, for instance, to an aggregate estimate at the segment level, for

example. Segmentation is the act of dividing large and diverse financial portfolios

into smaller groups with similar characteristics. Losses technically only occur once a

loan has formally defaulted, which generally happens when any of the following occur

(Schuermann 2004):

• A loan is placed on non-accrual.

• A charge-off has already occurred.

• The obligor is more than 180 days past due (DPD)9.

• The obligor has filed for bankruptcy.

Once an account defaults, both its cash inflows (recoveries) and outflows (charge-offs)

are used to calculate the LGD. Charge-offs typically occur at the time of default

and equal the amount of debt the creditor estimates it will be unable to collect

from the borrower. Recoveries are observed in subsequent time periods, and are the

sum of the amount the bank is able to recover. Recoveries need to be discounted

appropriately back to the default date. There are three types of losses associated with

LGD (Schuermann 2004):

• The loss of principal.

• The carrying costs of non-performing loans, e.g., interest income foregone.

• Workout expenses (collections, legalities, etc.).

Depending on the loan and/or product, it sometimes takes many years for all recoveries

to be realized. A mortgage loan, for example, often takes 7 or more years to realize over
9Other retail exposures usually have a 120 DPD threshold and wholesale exposures have a 90

DPD threshold.
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90% of all recoveries, as it must go through legal processes, the sale of the property, etc.

This sometimes poses a challenge when building LGD models, because enough time

must pass before a sufficient amount of recoveries has been observed to get accurate

LGD values. Not waiting to observe a sufficient amount of recoveries would result

in an LGD value that has upward bias (i.e., LGDs would be lower if more time was

allocated to receive more recoveries). Choosing an appropriate ‘hold out’ period (i.e.,

how much time most pass before a sufficient amount of recoveries are realized) often

requires portfolio-specific analysis by the model developers.

Across most credit portfolios, general key factors driving significant differences in

LGDs are the capital structure, the presence and quality of the collateral, the industry,

and the timing of the business cycle (Schuermann 2004). These, where possible, should

be taken into consideration when modeling LGD percentages. Recoveries during

recessions are systematically lower in recessions and, as a result, LGDs are often

higher in such periods. Another important and commonly observed LGD characteristic

is that distributions are often bimodal; i.e., LGD percentages (usually between 0-

100%) are either relatively high or relatively low, and/or are skewed with modes

close to the boundary values. This means that assuming a normal distribution or

relying on ‘average’ LGD values might result in misleading estimates. Whether a

loan is secured or unsecured also plays an important role in LGD. However, for the

purposes of this chapter, the loans evaluated are all secured by the underlying mortgage

property (condominium, leasehold, planned unit development (PUD), cooperative

share, manufactured home, or single family home).
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3.3 LGD Methodology Overview

This section reviews the LGD methodological literature and industry best practices,

influenced by regulatory feedback. LGD models are often built using a single-step or a

two-step approach. Single-step techniques are discussed first; two-step approaches are

discussed second.

3.3.1 Single-Step LGD Methodology Review

Single-step methods typically model LGD as the dependent variable using a single

linear or non-linear regression/approach. While linear regression is commonly used,

conceptually it is not ideal because the dependent variable and the residuals will often

not be normally distributed and the dependent variable values are usually bounded at

0 (no loss) and 1 (100% loss), with a large portion of values near or at the bounds.

This results in unreliable confidence intervals and invalid hypothesis testing. Also,

the effects from any particular independent variable x cannot be constant through

the range of x (unless the range is limited), as this might result in estimates falling

outside the 0 and 1 bounds. Said another way, the drawbacks of using a linear model

for fractional data (where observations lie in [0, 1]) are analogous to the drawbacks of

the linear probability model for binary data (Papke and Wooldridge 1996). Another

approach which has received attention in recent years is the Frye Jacobs LGD modeling

approach, which includes PD as a function of LGD (Frye 2013). This review does not

assess methodologies that include PD as a function of LGD.

Non-linear techniques are often considered in an attempt to capture the non-linear

characteristics commonly found in LGDs. Loterman et al. (2012) reviewed 24 tech-

niques on 6 different loss datasets from major international banks and found that
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non-linear regression techniques like neural networks and Support Vector Machines

(SVM) clearly outperform traditional linear models (Loterman et al. 2012). Other

non-linear methods have been considered, such as regression trees (Bastos 2010),

zero-adjusted gamma models (to accommodate for the excess number of zeroes and

skewed nature of LGDs) (Tong, Mues, and Thomas 2013), SVMs, and Multivariate

Adaptive Regression Splines (MARS). One of the more prominent methods deployed

at top tier banks in the US, Canada, and Europe is “fractional logistic regression”,

which is a special case of the “fractional response model” literature (discussed in more

detail below) (Papke and Wooldridge 1996) (Papke and Wooldridge 2008).

Ensemble methods such as boosting and bagging are rarely used in banks’ credit risk

models. Sun & Zin (2016) show that an ensemble approach using stochastic gradient

boosting and random forests outperform a single decision tree when modeling LGD

(Sun and Jin 2016). They also conclude that these are likely more appropriate methods

for modeling LGD for credit risk portfolios than simple linear regression.

3.3.2 Two-Step LGD Methodology Review

When there is a large concentration of loans at the lower bound with 0% losses, or at

the upper bound with 100% losses, a two-step approach might be more appropriate

than a single stage approach. Two-step approaches use a combination of single-step

models, and will first model a discrete component using a binary or multinomial model

in order to separate/capture non-normal characteristics (e.g., the LGD concentration at

the bounds and/or the data skewness) and then will model the continuous component

second.

Choosing to model LGD as [0,1), (0,1], or [0,1] in one of the stages is up to the
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discretion of the developer (Ramalho, Ramalho, and Murteira 2011). To elaborate:

in the first stage, one could first estimate the likelihood of a loan falling at the lower

bound 0, the continuous (0,1) interval, and/or the upper bound 1. LGDs that have

three occurrences of either 0, being between 0 and 1, or 1 are categories with a natural

ordinal sequence and could be estimated using an ordinal or multinomial regression

(note that an ordinal model has proportional odds that assume the independent

variables have the same slopes for all categories, which is an assumption that needs

to be tested). The second stage would estimate the continuous [0,1] interval. The

expected value of the LGD for loan i is then calculated using the probabilities from

stage 1 and the predicted LGD in stage 2 (Li et al. 2014):

Ê(LGDi) = (0 · P̂ i
0) + ˆLGD

i

(stage 2) · (1 − P̂ i
0 − P̂ i

1) + (1 · P̂ i
1), (24)

where P̂ i
0 is the probability of loan i having LGD = 0, (1 − P̂ i

0 − P̂ i
1) is the probability

of LGD falling between 0 and 1, P̂ i
1 is the probability of LGD = 1, and ˆLGD

i

(stage 2) is

the predicted LGD in stage 2.

A common two-step approach is first to estimate whether the LGD is 0 (a full recovery)

or greater than 0, then to use a second model to estimate the non-zero LGDs (Loterman

et al. 2012). This approach is often used at top tier banks in the US, where the second

stage is a fractional logistic regression (discussed in more detail below). The first stage

is often a logistic regression. However, Tanoue et al. (2020) state that this could

result in biased and inconsistent results due to the non-linear relationships commonly

seen between the explanatory variables and the LGD dependent variable link function

(Tanoue, Yamashita, and Nagahata 2020). They propose that using machine learning

classification methods such as Support Vector Machines (SVM), neural networks, naive
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Bayes, k-nearest neighbor, or random forest in the first step will better capture these

non-linear relationships.

A two-step method proposed by Gurtler (2013) is first to model the probability of

whether a loan results in a write-off or a workout (i.e. the lender and borrower have

renegotiated the terms of the loan and the borrower is no longer in default), as

the underlying characteristics of each type of default are arguably quite different

(Gürtler and Hibbeln 2013). The second step would be to separately model the

LGDs of recovered loans and loans which are written off separately. As mentioned

above, another method first estimates whether the LGD is 0, 1, or between 0 and 1.

Possible first-stage link functions are logit, probit, cauchit, log-log, and complementary

log-log. Common second-stage methods are, similarly, logit, probit, cauchit, log-log,

complementary log-log, or beta regression. Linear regression is used quite often as well

(even though it is not perceived to be best practice) (Bellotti and Crook 2009).

Zhang and Thomas (2009) apply a classification tree algorithm first to segment

unsecured personal loans that defaulted for different reasons. They then use linear

regression and survival analysis to estimate LGD. This is beneficial because survival

models are able to handle censored data, so loans which are still in the recovery process

can be used, instead of having to wait until the recovery process is (nearly) complete

(Zhang and Thomas 2012).

Many banks opt to use the single-step approach in mortgage portfolios when there does

not seem to be a material improvement in performance when using the two-step model.

Li et al. (2014) show that more complex parametric methods (two-step, inflated

beta, Tobit, censored gamma, and two-tier gamma regressions) perform similarly to

less complex methods such as standard linear regression and single stage Fractional

Response Models (FRMs) (Li et al. 2014).
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The four families of models examined and compared in this chapter are:

• Fractional response models (Papke and Wooldridge 1996) (Papke and Wooldridge

2008).

• Random Forest (Breiman 2001).

• XGBoost (Chen and Guestrin 2016).

• A linear model.

As mentioned above, variations of the Fractional Response Model (FRM) are one of

the more commonly used methods at top tier banks in the US, Canada, and Europe,

particularly the fractional logistic regression, which is a special case of FRM. While

using random forests to model LGD in credit risk has been examined in academia,

to the best of this author’s knowledge and at the time of writing, it has yet to be

compared with FRMs, nor has it been compared using a mortgage portfolio. Similarly,

while stochastic gradient boosting has been reviewed for LGD credit risk modeling

(Sun and Jin 2016), its variant Extreme Gradient Boosting (XGBoost) has yet to be

examined for LGD in credit risk modeling. These three models are each discussed in

greater detail in the following subsections.

3.3.3 Fractional Response Models

FRMs are used to model fractional (or proportional) response variables, which take

on values in the standard unit interval [0, 1]. They were first introduced in Papke &

Wooldridge’s (1996) seminal paper, which includes an application to 401(k) participa-

tion rates. For loan i, the approach requires an assumption of the functional form of

the dependent variable y, given a set of predictors x:
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E(yi|xi) = G(xiβ), (25)

where

• G(·) is a non-linear function which typically takes on any cumulative distribution

function satisfying 0 ≤ G(·) ≤ 1,

• 0 ≤ yi ≤ 1 (which in our case is the LGD),

• xi is a 1 · k vector of the independent variables, and

• β is a vector of parameters to be estimated.

The logit model, where the Cumulative Distribution Function (CDF) is the logistic

function, is a common choice. Other popular choices are the cauchy, probit (standard

normal CDF), and the complementary loglog, which is asymmetric, and is used when

the probability of an event is very small or very large (Ramalho, Ramalho, and Murteira

2011). Note that the logit, probit, and cauchy are (vertically) symmetric around the

point 0.5 and approach 0 and 1 at the same rate. Papke & Wooldridge propose a

quasi-likelihood method (QLM) based on the Bernoulli log-likelihood function which

is given by the following equation:

LLi(β) = yilog[G(xiβ)] + (1 − yi)log[1 − G(xiβ)]. (26)

The Bernoulli distribution is a member of the linear exponential family (LEF) and, as

such, β can be estimated by:

θ̂ = arg max
N∑

i=1
LLi(θ), (27)
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which is consistent and asymptotically normal (Ramalho, Ramalho, and Murteira

2011). This form is often implemented as a weighted binary logistic regression. A

historically popular alternative was to model the log-odds ratio as a linear function:

E

(
log y

(1 − y) |x
)

= xβ. (28)

However, this only works if y lies strictly between zero and one. Adjustments are

possible, but not ideal (see Papke & Wooldridge 1996). This is particularly the case

when there is a large concentration of observations at the bounds, which is certainly

the case for LGD values.

This chapter focuses on Papke & Wooldridge’s (1996) QLM method mentioned above

due to its success and popularity in both academia and industry. The binary component

of the two-part model is estimated using logistic regression maximum likelihood, which

was chosen because it is by far the most commonly used approach in the industry and

will be most familiar and relevant to practitioners.

3.3.4 Random Forests

For a detailed overview of the Random Forest technique, the reader is referred to

Chapter 2. The primary difference with the Random Forest technique here, is that

the model is estimating a continuous variable that is bounded between 0% and 100%,

LGD, whereas the Random Forest model in Chapter 2 is estimating a binary outcome,

default vs non-default. An important thing to consider when estimating LGD (or

any continuous variable) is that by design Random Forests are unable to produce

estimates of y which are outside the range of y in the training dataset. As such, it

is important that if a Random Forest model is chosen, there should be a sufficient
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amount of y values across the full range of y the modeler would expect to see in the

training dataset. In the case of modeling LGD, the training dataset should have values

spanning the unit interval [0, 1].

3.3.5 XGBoost

This subsection provides a brief overview of Extreme Gradient Boost (XGBoost) (Chen

and Guestrin 2016), which is a special case of boosting or “Adaptive Resampling and

Combining” (ARCing). As described in greater detail in Chapter 2, XGBoost is a more

recent variation of gradient boosting and has received considerable attention in recent

years due to its success in machine learning competitions. Gradient boosting first

originated with AdaBoost (Freund and Schapire 1997), which performs coordinate de-

scent while greedily minimizing an exponential loss function (Breiman 1998), (Breiman

1999), (Friedman 2001), (Rätsch, Onoda, and Müller 2001), (Duffy and Helmbold

1999), (Mason et al. 1999). Friedman later generalized this exercise to the optimization

of any loss function using gradient descent (Friedman 2001), called gradient boosting.

When each trained ensemble is performed on a subset of the training dataset, it is

referred to as stochastic gradient boosting (Friedman 2002), which has the benefit of

potentially improving the generalization of the model’s performance. Boosting has

some similarities to bagging; however, one primary difference is that while the training

stage for bagging is done in parallel, boosting is done sequentially.

Finally, gradient boosting optimizes f(x) and makes use of its gradient f ′(x), whereas

XGBoost optimizes f(x) and makes use of both its gradient f ′(x) and its second deriva-

tive (“hessian” in a multivariate setting) f ′′(x)), and includes L1/L2 regularization.

Similar to other tree-based algorithms, XGBoost also struggles with extrapolation

outside the training dataset, so it is only good at making predictions on data on which
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it has previously been trained on.

3.3.6 Splines

This subsection reviews regression splines, which are commonly used in the industry to

capture non-linear effects of continuous explanatory variables in statistical regression

analysis. Splines are made up of two or more points, called ‘knots’, within a data range,

which are then connected using polynomial functions of different order. What defines

the type of splines is the type of polynomial, number of knots, the knot placement,

and whether to include a penalty function. Splines including a penalty function

are called smoothing splines and use the data points themselves as potential knots.

Splines omitting a penalty function are called regression splines and place the knots at

equidistant/equiquantile (varying widths but equally populated) points (Racine 2012).

This chapter omits the penalty function, as some practitioners believe it adds a degree

of additional complexity that might be unappealing in an applied setting (Perperoglou

et al. 2019). A common knot placement is the ‘quantile’ knot sequence, which places

the interior knots at the quantiles of the variables’ empirical distribution. This is done

instead of spacing the knots at equal distances. For a fixed knot sequence and fixed

polynomial degree d, the spline can be written in the following basis function format:

f(x) =
K+d+1∑

k=1
βkBk(x), (29)

where Bk are a set of basis functions defining the vector space, K is the number of

interior knots, and βk is the respective spline coefficients. Three of the more popular

spline basis are the truncated power series basis, the B-spline basis, and the natural

spline basis. As an example, using equation (29), a cubic spline truncated power series
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basis with three knots τ1, τ2, τ3 is presented in the following equation:

f(x) = β0 + β1x + β2x
2 + β3x

3 + β4(x − τ1)3 + β5(x − τ2)3 + β6(x − τ3)3. (30)

While the truncated power series basis is conceptually straightforward, its form can

lead to severe rounding errors with powers of large numbers (Hastie, Tibshirani,

and Friedman 2009). B-splines (De Boor 2001) are a computationally efficient and

equivalent (equivalent in the sense that the two bases span the same set of functions)

representation of the truncated power basis with numerical stability and serve as a

good alternative. B-splines are based on the following knot sequence:

ξ1 ≤ ... ≤ ξd ≤ ξd+1 < ξd+2 < ... < ξd+K+1 < ξd+K+2 ≤ ξd+K+3 ≤ ... ≤ ξ2d+K+2, (31)

where ξd+2 = τ1, …, ξd+K+1 = τK are the inner knots, and ξd+1 and ξd+K+2 are the lower

and upper boundary knots, respectively (Perperoglou et al. 2019). The additional

arbitrary end knots are required for the Cox de Boor recursion formula, which is

how B-splines are constructed. It is customary to set the arbitrary end knots to the

boundary knots (Hastie, Tibshirani, and Friedman 2009). The B-spline basis Bd
k(x)

(degree d and knot(s) k) is defined by the following recursive formula:

B0
k(x) =


1 ξk ≤ x < ξk+1

0 otherwise
(32)
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for degree zero, and

Bd
k(x) = x − ξk

ξk+d − ξk

Bd−1
k (x) − ξk+d+1 − x

ξk+d+1 − ξk+1
Bd−1

k+1(x) (33)

for d > 0, where k = 1, 2, ..., K + d + 1, and 0/0 = 0. It is essentially taking a

weighted average of the Bd−1
k (x) and Bd−1

k+1(x) functions. B-splines/polynomials have

the limitation that the variability (standard errors) of the predictions can increase

substantially at the boundaries of the data inputs. To address this issue, natural

splines enforce f ′′(x) = f ′′′(x) = 0 at each boundary such that the tails beyond the

boundary knots are linear.

When choosing the spline degree, cubic splines are the standard choice, since poly-

nomials with order greater than 3 are often indistinguishable, and orders of 1 and 2

are often considered too “jagged” (Perperoglou et al. 2019). Hastie et al. state that

there is seldom any good reason to go beyond a cubic spline unless one is interested

in smooth derivatives (Hastie, Tibshirani, and Friedman 2009). However, there are

situations where a higher degree might be more appropriate, depending on the Data

Generating Process (DGP). Increasing the number of knots might help improve fit,

though this runs the risk of overfitting the data and increasing the variance, and may

suffer from poor generalization. On the other hand, having too few knots may result

in a restrictive function with more bias.

3.4 The Data

The dataset chosen for the empirical component of this chapter is Freddie Mac’s

Single-Family Fixed Rate Mortgage Loan Performance dataset, which is similarly used
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in Chapter 1 and 2. Two datasets are combined to build the full dataset; one containing

acquisition data, and another which monitors on a monthly basis the performance

data. The full dataset contains mortgages originated between January 1st, 1999 and

June 30th, 2019. The dataset is updated every quarter to include newly acquired

mortgage loans, as well as any updates observed in performance. Only loans which

defaulted and have actual loss information are used in the final LGD dataset. In

addition, to allow for sufficient time for Loss Components (expenses and proceeds)

to be recorded, Freddie Mac implements a 90-day lag based on the Zero Balance

Date (the Zero Balance Date is the date the loan’s balance was reduced to zero. The

denominator in the LGD calculation is the total amount of UPB remaining on the

loan immediately prior to this) (Freddie Mac 2020). The resulting dataset has 19,864

observations. Federal Housing Finance Agency (FHSA) Housing Price Index (HPI)

data at the Three-Digit ZIP code level (Federal Housing Finance Agency 2020) are

included, as well as unemployment data from the Bureau of Labor Statistics (Bureau

of Labor Statistics 2020).

The data are split into an in-sample training dataset, an OOS test dataset, and an

OOT dataset. We hold out two years of OOT data, from May 2017 to May 2019. The

data from January, 1999 to May 2017 is split 70% for the training dataset and 30% for

the OOS testing dataset. The training, OOS, and OOT datasets have 12,227, 5,240,

and 2,397 observations, respectively.

In practice, as more data become available, banks will continue to monitor their model’s

performance on the newly observed OOT datasets. The frequency of monitoring

depends on things such as the model’s materiality, complexity, and purpose, among

other things. However, it is common to monitor on a quarterly or bi-annual basis for

e.g., CECL, CCAR, Basel capital, and IFRS-9 models.
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Actual Loss data, which are used to calculate LGD, are calculated using the following

equation (Freddie Mac 2020):

Actual Loss = (Default UPB - Net Sale Proceeds) +

Delinquent Accrued Interest - Expenses -

MI Recoveries - Non MI Recoveries,

(34)

where

Delinquent Accrued Interest = (Default UPB - Non Interest bearing UPB)×

min(Current Interest Rate - 0.35,

Current Interest Rate - Servicing Fee)×

(Months between last Principal &

Interest paid to date and zero balance date)×

30/360/100.
(35)

Note that the 35 bps is used as a proxy for the servicing fee when the servicing fee is

not available. The 30/360 is an assumption that each month has 30 days and that

the calendar year has 360 days. It is then further divided by 100 to convert it from a

percentage to a decimal. Using Actual loss, LGD is calculated in the following way:

LGD = Actual Loss
Defaulted UPB

, (36)

where Defaulted UPB is the amount of total UPB remaining on the loan immediately
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prior to default, or the Exposure at Default (EAD).

For modeling purposes, LGD is often floored and capped at 0% and 100%. In some

cases, LGD values above 100% can occur, which would mean the losses are beyond the

initial investment from the FI. This could occur if the asset has depreciated in value

(e.g., a loss of principal, property damages, etc.) or if workout expenses are excessive.

Similarly, LGD values can also be negative if, for instance, the property has significantly

appreciated in value since the FI’s initial investment. If the percentage of LGD values

below or above 0% and 100% are low (say, less than 10%), then they may be viewed

as outliers. Some may argue that outliers should be removed from a dataset. However,

practitioners are often interested in determining whether a loan will result in a 0%

loss or a 100% loss, and values below and above 0% and 100%, respectively, contain

valuable information that likely can help train the model to identify these loans. When

the majority of defaulted loans LGD fall within the 0% to 100% range, practitioners

will often prefer estimates to be restricted to this range as well, and developing models

that predict values outside this range may result in estimates that are not in line with

industry accounting, finance, and/or risk departments’ expectations.

The distribution of LGD in this dataset is shown in Figure 24, where the dotted

lines indicate 0% and 100%. There are 6.8% and 6.2% loans, which fall above and

below the upper and lower bounds, respectively. Only 0.48% of LGD values are above

1.5, and 0.08% are above 2. The maximum LGD is 6.63, which is causing the long

tail observed in Figure 24. After introducing the lower and upper bound of 0% and

100%, respectively, the first quantile, second quantile, and median of the dataset are

unchanged. The mean has a minor change from 45.18% to 44.11%. This implies the

characteristics of the distribution are largely preserved after the floor and cap are

implemented. For the reasons discussed above, a lower and upper bound of 0% and
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100% are used.
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Figure 24: Loss Given Default Distribution

Figure 25 shows the distribution with the 0% and 100% floor and cap. The bimodal

distribution commonly observed in LGD values is seen in this figure. For the remainder

of this chapter, any references to LGD will pertain to the floored and capped LGD,

unless explicitly stated otherwise.

Table 9 shows the number of LGD observations, and the LGD median, mean, and

standard deviation by the default year. Since the dataset consists of mortgage loans

originating in 1999, there are very few defaulted loans in the earlier years, which is

expected in mortgage portfolios. We see a spike in defaults in the recessionary years

after 2009 which is also in line with industry expectations and economic theory. For

example, recessions typically have higher unemployment, which results in borrowers

having less disposable income and therefore are more likely to miss mortgage amorti-

zation payments, leading ultimately to default. The increase in unemployment rates
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Figure 25: Loss Given Default Distribution with 0 percent Floor and 100 percent Cap

typically lag behind the observed increase in defaults, as borrowers typically have

enough disposable income to continue to make amortization payments for a quarter or

two. We also see an increase in the LGD mean and median during these years. The

lower LGD rates in more current years are likely due to accounts resolving faster and

receiving more recoveries due to strong housing price growth. It is common to remove

some of the more recent years of LGD data in order to allow sufficient time for the

defaulted loans to resolve.

Alternatively, Table 10 shows the number of LGD observations, and the LGD median,

mean, and standard deviation by the loan origination year. As we can see, the

number of defaults decreases significantly in more recent years, which is in line with

industry expectations, given newly originated loans typically have a lower likelihood of

defaulting in the earlier years of their origination. Note that in both Table 9 and 10,

the standard deviation is relatively high, which indicates that there is a wide range of
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Table 9: LGD Summary Statistics, by Loan Default Year

Default Year Count Median Mean Std
2000 5 0.24 15.58 21.46
2001 55 0.88 7.47 15.32
2002 160 3.16 14.07 22.80
2003 244 5.24 15.41 22.39
2004 334 7.59 18.51 24.55

2005 342 15.12 23.07 25.28
2006 318 13.71 24.69 28.29
2007 308 15.64 26.32 29.21
2008 520 30.62 36.18 31.16
2009 1087 40.19 41.27 27.70

2010 2095 48.36 48.35 27.79
2011 2630 53.53 53.04 26.36
2012 2853 51.69 51.77 27.60
2013 2029 49.03 50.49 29.21
2014 1803 54.29 55.05 30.17

2015 1335 56.24 56.81 29.84
2016 1031 51.67 52.60 32.39
2017 1010 10.76 27.14 31.57
2018 1366 7.85 17.47 25.54
2019 339 6.71 13.21 21.51
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Table 10: LGD Summary Statistics, by Loan Origination Year

Origination Year Count Median Mean Std
1999 490 11.56 26.99 32.90
2000 623 12.91 27.71 32.44
2001 738 28.84 37.68 35.25
2002 866 37.78 42.00 34.85
2003 1144 36.03 40.04 32.10

2004 1744 37.58 41.12 31.74
2005 2518 43.23 44.11 29.47
2006 3848 50.82 49.53 29.05
2007 4459 47.63 48.15 29.69
2008 2567 43.76 45.79 31.78

2009 440 34.31 39.05 29.48
2010 177 33.77 36.77 28.56
2011 93 19.77 28.87 29.97
2012 30 33.74 33.65 29.79
2013 37 14.94 18.23 19.27

2014 49 22.42 30.14 30.18
2015 21 9.25 19.16 23.40
2016 11 2.01 9.17 14.88
2017 7 2.49 6.23 11.00
2018 2 4.28 4.28 0.12

LGD values across these time horizons.

There also appears to be a clear upward trend in LGD until 2017. Figure 26 shows the

average LGD percentage and the weighted LGD across time, by quarter. Both appear

to follow a similar trend. In addition, Figure 26 also shows the trend of both the

numerator (actual losses) and the denominator (balance remaining at default) in the

weighted LGD calculation. Both actually have downward trends after the recession

around 2012, which is as expected. The reason we see the continuous upward trend

in the actual average LGD percentage and weighted LGD is that the denominator

in the LGD calculation is decreasing at a faster rate than the numerator. In 2017,
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actual losses continue to decrease, and the balance at default begins to increase again,

resulting in the decreasing LGD visible after 2017.
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Figure 26: Balance Weighted Loss Given Default, Unweighted LGD, Actual Losses,
and Balance at Default Trends

The box plots in Figure 27 and Figure 28 provide some insight into the relationships

some of the categorical variables in the dataset have with LGD. The box plots in each

figure are ordered by mean LGD from smallest to largest. It appears that Occupancy

Status (Primary Residence = P, Investment Property = I, Secondary Home = S), First

Time Home Buyer, Number of Units, Property Type (Condo = CO, Planned Unit

Development = PU, Manufactured Household = MH, Single Family = SF, Co-op =

CP), Loan Purpose (Purchase = P, Refinance Cash Out = C, Refinance No Cash Out

= N)10, and Number of Borrowers are all able to discriminate LGD characteristics.

However, the boxplots all overlap, indicating that they do not perfectly discriminate.
10A Cash-out Refinance mortgage loan is a mortgage loan in which the use of the loan amount is

not limited to specific purposes.
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Figure 27: Boxplots of Important Variables and Loss Given Default
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Figure 28: Boxplots of Important Variables and Loss Given Default (Continued)
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In addition to the boxplot analysis on the categorical variables, the graphs in Figure

29 plot the average LGD across different numeric variables in the dataset. This

helps visualize and interpret the relationship that these variables have with LGD as

they increase. For example, we can see that as the change in HPI since origination

(1-quarter lag) increases, LGD has a downward trend, which aligns with economic

intuition. Similarly, as unemployment rate increases, LGD appears to increase. While

the Pearson correlation only captures linear relationships, we have included it in each

graph, despite there being non-linear relationships (such as loan age). The next section

walks us through the model development process.
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Figure 29: Numeric Variables Relationship with Loss Given Default

3.5 Model Development

This section provides an overview of the development process undertaken for each

model, summarizes the results, and compares their performance. When comparing
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model performance, Root Mean Squared Error (RMSE) and Mean Absolute Error

(MAE) are used. Here, RMSE is calculated using the models predicted values and

the test and training actual values. The lower the error rate, the better the model

performance. In addition to model performance, this section attempts objectively to

analyze and assess the ease of implementation, interpretability, and overall suitability

of each methodology in applied credit risk LGD modeling.

3.5.1 Variable Selection

Each model begins with the same independent variable set, which is prescreened only

to include variables in line with industry expectations and economic/finance theory.

For the FRMs and the linear model, backward stepwise regression is used for variable

selection. The random forest and XGBoost methods use the entire set of predictors in

their models. Variable selection is the process of selecting the best set of predictors,

which removes unnecessary noise, collinearity11, overfitting, computation cost and

improves interpretability. We expect the model to have intuitive and well-fit estimates,

and we expect the variables to have coefficient signs that are in line with economic

theory and statistical significance. It is common to keep the number of independent

variables to an interpretable amount, such as 5-15.

B-splines are used for binning the continuous independent variables prior to variable

selection for the FRMs. As discussed above, splines are a powerful way to capture

non-linear relationships. For example, logistic regression assumes a linear relationship

between the independent variable and the log odds. If the relationship is non-linear,

then the regression may be mispecified. Splines are an effective way to address this

issue.
11Multicollinearity is tested using the Variance Inflation Factor (VIF).
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The dataset begins with 30 independent variables. Variables including future informa-

tion are removed (e.g., recovery amounts, expenses, legal costs, taxes, etc.), and only

variables that are in line with industry expectations and economic/finance theory are

kept. Note that balance at default information is not included in the models, since

this would not be known during production in practice. This results in 18 independent

variables. These variables are listed in the appendix (the descriptions are taken directly

from Freddie Macs data user guide) (Freddie Mac 2020).

3.5.2 Results

This section presents the results and compares the performance of the different LGD

modeling methods discussed above. The variable selection process for each model

begins with the same 18 independent variables. The random forest and XGBoost

models use all 18 independent variables. The RMSE and MAE model performance on

the training, OOS, and OOT datasets is presented in Tables 11, 12, and 13, respectively.

Note that RMSE and MAE are calculated using the predicted and actual values from

the training and test datasets. Each table is ordered by RMSE from lowest to highest.

As we can see, the XGBoost model performs best in both the training and OOS test

dataset, followed by the random forest model. The naive linear model is also included

for reference, and ranks third in terms of MRSE and MAE performance in the training

and OOS dataset. The four fractional response models’ performance closely follows,

and are all very similar to each other in the training and OOS test dataset performance.

A fractional logistic model without splines is also included as a reference point.

Interestingly, the FRMs with B-splines all perform better than XGBoost, Random

Forest, and the Linear Model in the OOT dataset, with the 2-step FRM performing

best. Each model’s OOS and OOT averaged predicted LGD values by quarter are
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plotted against actual values in Figure 30 and Figure 31 to better understand where

the strengths and shortfalls may be occurring, and to determine whether the models

are able to capture the trends. The predicted LGD values are the dashed lines and the

actual LGD values are the solid lines. Everything to the right of the solid vertical black

line (May 2017) is the OOT test dataset, and everything to the left is the OOS test

dataset. In this particular case, it appears that the FRMs with B-splines are better

than the other models at capturing the peaks and troughs in both the OOS and OOT

test datasets, which is important when choosing a model in credit risk departments.

The OOT test dataset succeeds in visualizing the shortfalls of using a linear model.

As we can see, the linear model predictions fall well below 0% in the OOT test dataset

(and also in the first quarter of the OOS test dataset), which results in the high model

RMSE and MAE. As discussed above, this is not in line with industry expectations

for predicted or observed LGD percentages. While a floor and cap could be assigned

to the model forecasts (a floor of 0% and cap of 100%, as an example), this does

not resolve the underlying weaknesses associated with using a linear model in this

situation. Hence, the linear model is not recommended.

While the XGBoost and Random Forest models perform well on the training and OOS

test datasets, one limitation discussed above is that these methods are limited to data

they were trained on. As such, if the training dataset LGD values do not sufficiently

span a full 0-100% range, interpolating and extrapolating LGD forecasts in OOS or

OOT test datasets will not be adequately predicted. This situation is actually quite

likely to occur in banking stress tests, where different recessionary macroeconomic

scenarios are provided by regulators and the macroeconomic variables are then fed

through the models, and it is expected that the models will adequately predict the

respective LGD values in these hypothetical scenarios. The inability to do so will
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Table 11: Model Performance on Training Dataset, Ordered by RMSE

Models RMSE MAE
XGBoost 0.2110 0.1688
Random Forest 0.2312 0.1860
Linear Model 0.2409 0.1940
2-Step FRM (logistic/logistic) 0.2455 0.1984
Fractional Probit 0.2461 0.1992

Fractional Logit (No Splines) 0.2463 0.1994
Fractional Logit 0.2476 0.1996
Fractional c-loglog 0.2482 0.2003

Table 12: Model Performance on OOS Dataset, Ordered by RMSE

Models RMSE MAE
XGBoost 0.2245 0.1785
Random Forest 0.2276 0.1827
Linear Model 0.2393 0.1915
Fractional Probit 0.2424 0.1954
2-Step FRM (logistic/logistic) 0.2427 0.1955

Fractional Logit 0.2431 0.1955
Fractional c-loglog 0.2438 0.1965
Fractional Logit (No Splines) 0.2440 0.1965

likely be heavily scrutinized by regulators. This is one argument for why models like

XGBoost and Random Forest are not used in banking credit risk models.

With respect to the FRMs, it appears that the two-step method does add some

lift in performance, but only slightly. This marginal improvement in performance

is sometimes deemed unnecessary in practice when compared to a slightly more

interpretable and easier-to-implement method like the one-step FRMs.
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Table 13: Model Performance on OOT Dataset, Ordered by RMSE

Models RMSE MAE
2-Step FRM (logistic/logistic) 0.2643 0.1652
Fractional c-loglog 0.2680 0.1646
Fractional Logit 0.2705 0.1669
Fractional Probit 0.2726 0.1708
XGBoost 0.2911 0.2543

Random Forest 0.3184 0.2915
Fractional Logit (No Splines) 0.3673 0.3198
Linear Model 0.3707 0.2911
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Figure 30: Model Predicted vs Actual Plots on OOS and OOT Data

3.6 Conclusion

This chapter compares various econometric models with the purpose of estimating and

forecasting LGD percentages, which are bounded between 0% and 100%. In particular,

we examine various one-step and two-step Fractional Response, XGBoost, Random
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Figure 31: Model Predicted vs Actual Plots on OOS and OOT Data (Continued)

Forest, and linear models. Our findings indicate that the Fractional Response Models

(FRMs) using splines have the lowest RMSE and MAE test statistics in the OOT test

datasets, and appear to best capture peak and trough trends in the observed LGD

data when compared to the other models. The two-step FRM performs slightly better

than the one-step FRMs. However, the marginal improvement in performance might

not be worth the added complexity for a practitioner, given how similar the one-step

FRMs are in performance (in this particular dataset and example).

The XGBoost and Random Forest models have the lowest RMSE and MAE in the

training and OOS test dataset, though their ability to generalize in the OOT test

dataset seems to fall short compared to the FRMs. By design, XGBoost and Random

Forests are limited in their ability to forecast outside the range of the dependent

variable (LGD) in the training dataset, which means that if a practitioner intends to

use one of these approaches, the training dataset dependent variable must sufficiently
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cover the range of values we expect and intend to see when forecasting, with sufficient

data. In addition, tree-based methods might also not be appropriate for credit risk

stress testing exercises, which are intended to feed recessionary-like macroeconomic

scenarios (which might extrapolate in the independent variable domain) into the

models to determine how overall expected losses and respective parameters like PD,

LGD, and EAD will be impacted. The inability to do so may be heavily scrutinized

by regulators.

The linear model is a widely used econometric method for estimating LGDs, despite

the fact that its functional form is almost always misspecified. This particular dataset

successfully highlights one major limitation: its inability to bound its estimates between

0% and 100%. This results in the linear model having the highest RMSE value in the

OOT test dataset. While practitioners will often enforce a lower and upper bound of

0% and 100%, respectively, it is more suitable simply to choose a model designed to

handle fractional values such as FRMs.
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4 Appendix A

4.1 Weight of Evidence (WOE) Tests

0.111

0.517

0e+00

1e+06

2e+06

3e+06

0.0

0.5

1.0

1.5

2.0

−170.386 327.921
Weight of Evidence

B
in

 C
ou

nt P
D

 (%
)

Figure 32: Delinquency Indicator Weight of Evidence Bin Count and Default Proba-
bilities
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Figure 33: HPI Change Weight of Evidence Bin Count and Default Probabilities
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Figure 34: Occupancy Status Weight of Evidence Bin Count and Default Probabilities
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Figure 35: Interest Rate Weight of Evidence Bin Count and Default Probabilities
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Figure 36: Original Combined LTV Weight of Evidence Bin Count and Default
Probabilities
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Figure 37: Number of Borrowers Weight of Evidence Bin Count and Default Probabil-
ities
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Figure 38: Credit Score (FICO) Weight of Evidence Bin Count and Default Probabili-
ties
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Figure 39: Property Type Weight of Evidence Bin Count and Default Probabilities
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Figure 40: Loan Age Weight of Evidence Bin Count and Default Probabilities
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Figure 41: DTI Weight of Evidence Bin Count and Default Probabilities
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Figure 42: Original Value Weight of Evidence Bin Count and Default Probabilities

124



Ph.D Thesis - S. Sexton; McMaster University - Economics

0.184

0.444

0

500000

1000000

1500000

2000000

0.0

0.5

1.0

1.5

2.0

−64.646 47.137
Weight of Evidence

B
in

 C
ou

nt P
D

 (%
)

Figure 43: Unemployment Rate (3 month lag) Weight of Evidence Bin Count and
Default Probabilities

4.2 Population Stability Index (PSI) tests
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Figure 44: HPI Change Training and Out-of-Sample Dataset Bin Distribution, and
Population Stability Index Test Result

5 Appendix B

Table 14: Candidate Variable List

Variable Description

Credit Score A number, prepared by third parties, summarizing the borrower’s

creditworthiness, which may be indicative of the likelihood that the

borrower will timely repay future obligations. Generally, the credit

score disclosed is the score known at the time of acquisition and is the

score used to originate the mortgage.
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Table 14: Candidate Variable List (continued)

Variable Description

First Time

Homebuyer

Flag

Indicates whether the Borrower, or one of a group of Borrowers, is an

individual who (1) is purchasing the mortgaged property, (2) will

reside in the mortgaged property as a primary residence, and (3) had

no ownership interest (sole or joint) in a residential property during

the three-year period preceding the date of the purchase of the

mortgaged property.

Mortgage

Insurance

Percentage

The percentage of loss coverage on the loan, at the time of Freddie

Mac’s purchase of the mortgage loan, that a mortgage insurer is

providing to cover losses incurred as a result of a default on the loan

Number of

Units

Denotes whether the mortgage is a one-, two-, three-, or four-unit

property.

Occupancy

Status

Denotes whether the mortgage type is owner occupied, a second home,

or an investment property.

127



Ph.D Thesis - S. Sexton; McMaster University - Economics

Table 14: Candidate Variable List (continued)

Variable Description

Combined

Loan to Value

In the case of a purchase mortgage loan, the ratio is obtained by

dividing the original mortgage loan amount on the note date plus any

secondary mortgage loan amount disclosed by the Seller by the lesser

of the mortgaged property’s appraised value on the note date or its

purchase price. In the case of a refinanced mortgage loan, the ratio is

obtained by dividing the original mortgage loan amount on the note

date plus any secondary mortgage loan amount disclosed by the Seller

by the mortgaged property’s appraised value on the note date. If the

secondary financing amount disclosed by the Seller includes a home

equity line of credit, then the CLTV calculation reflects the disbursed

amount at closing of the first lien mortgage loan, not the maximum

loan amount available under the home equity line of credit. In the case

of a seasoned mortgage loan, if the Seller cannot warrant that the

value of the mortgaged property has not declined since the note date,

Freddie Mac requires that the Seller must provide a new appraisal

value, which is used in the CLTV calculation. In certain cases, where

the Seller delivered a loan to Freddie Mac with a special code

indicating additional secondary mortgage loan amounts, those amounts

may have been included in the CLTV calculation.
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Table 14: Candidate Variable List (continued)

Variable Description

Debt to

Income Ratio

Disclosure of the debt to income ratio is based on (1) the sum of the

borrower’s monthly debt payments, including monthly housing

expenses that incorporate the mortgage payment the borrower is

making at the time of the delivery of the mortgage loan to Freddie

Mac, divided by (2) the total monthly income used to underwrite the

loan as of the date of the origination of the such loan.

Original

Unpaid

Balance

The original Unpaid Balance on the loan.

Original

Interest Rate

The original note rate as indicated on the mortgage note.

Channel Disclosure indicates whether a Broker or Correspondent originated or

was involved in the origination of the mortgage loan.

Property

Type

Denotes whether the property type secured by the mortgage is a

condominium, leasehold, planned unit development (PUD),

cooperative share, manufactured home, or Single Family home.

Loan Purpose Indicates whether the mortgage loan is a Cashout Refinance mortgage,

No Cash-out Refinance mortgage, or a Purchase mortgage.

Number of

Borrowers

The number of Borrower(s) who are obligated to repay the mortgage

note secured by the mortgaged property.

Original

Home Value

Value of the home at loan origination.
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Table 14: Candidate Variable List (continued)

Variable Description

Loan Age The number of months since the note origination month of the

mortgage.

Current

Interest Rate

The current interest rate on the mortgage note, taking into account

any loan modifications.

Unemploy-

ment

Rate

The unemployment rate in the state of the loan.

Housing Price

Index Change

The change in the HPI since the origination of the loan.

130



Ph.D Thesis - S. Sexton; McMaster University - Economics

2e−04

0.00

0.05

0.10

0.15

0 50 100 150
Original Combined LTV

y

dataset

Train

OOS

Figure 45: Original Combined LTV Training and Out-of-Sample Dataset Bin Distribu-
tion, and Population Stability Index Test Result
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Figure 46: Credit Score (FICO) Training and Out-of-Sample Dataset Bin Distribution,
and Population Stability Index Test Result
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Figure 47: Property Type Training and Out-of-Sample Dataset Bin Distribution, and
Population Stability Index Test Result
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Figure 48: Loan Age Training and Out-of-Sample Dataset Bin Distribution, and
Population Stability Index Test Result
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Figure 49: DTI Ratio Training and Out-of-Sample Dataset Bin Distribution, and
Population Stability Index Test Result
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Figure 50: Original Home Value Training and Out-of-Sample Dataset Bin Distribution,
and Population Stability Index Test Result
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Figure 51: Unemployment Rate (3 month lag) Training and Out-of-Sample Dataset
Bin Distribution, and Population Stability Index Test Result
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Figure 52: HPI Change Training and Out-of-Time Dataset Bin Distribution, and
Population Stability Index Test Result
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Figure 53: Original Combined LTV Training and Out-of-Time Dataset Bin Distribution,
and Population Stability Index Test Result
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Figure 54: Credit Score (FICO) Training and Out-of-Time Dataset Bin Distribution,
and Population Stability Index Test Result
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Figure 55: Loan Age Training and Out-of-Time Dataset Bin Distribution, and Popula-
tion Stability Index Test Result
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Figure 56: DTI Ratio Training and Out-of-Time Dataset Bin Distribution, and
Population Stability Index Test Result
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Figure 57: Original Home Value Training and Out-of-Time Dataset Bin Distribution,
and Population Stability Index Test Result
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Figure 58: Unemployment Rate (3 month lag) Training and Out-of-Time Dataset Bin
Distribution, and Population Stability Index Test Result
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