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Abstract

Anomaly detection for videos serves an important role in real-world applications.

There are two types of anomaly detection for videos: anomalous video detection and

anomalous event detection. Anomalous video detection is related to organizing video

resources, which enables video-sharing platforms or public sectors to focus on the

entire video belonging to the certain category; anomalous event detection in videos is

applicable in the scenarios like monitoring in smart homes, smart cities and Internet

of Things, which allows surveillance cameras to upload events of interest only so as

to suppress the network traffic and reduce storage space in the cloud.

The two types of anomaly detection for videos are challenging. Due to the un-

availability of abnormal samples, it is a cumbersome task to train an end-to-end

deep supervised learning model. Meanwhile, video data representation is challenging

because of the unstructured scheme of video contents. In this paper, we propose

different methods for the two tasks. For anomalous video detection, we propose

a LSTM-autoencoder-based adversarial learning model (VidAnomaly) without ab-

normal samples in the training stage. LSTM-autoencoder learns the temporal de-

pendence of the input sequence and reconstructs the input sequence for adversarial

learning. In the inference stage, for a given input abnormal sample, the model poorly
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reconstructs the sample and the reconstruction error would be high because the pro-

posed model is trained merely on normal samples and its parameters are only suitable

for reconstructing normal samples. Based on the high reconstruction error, we detect

abnormal samples. For anomalous event detection in videos, we propose Onsite Event

Detection (OED), a system that enables real-time event detection on edge. OED first

trains a transformer-based autoencoder to learn the spatial-temporal representation

of video data observed recently. Then it gains the ability to differentiate eccentric data

patterns of events from routine. OED also features an updating strategy that adapts

to the changing environment dynamically. As such, OED is capable of continuously

detecting events of interest in video streams.

We evaluate our approaches on different datasets in various scenarios (anomalous

video detection and anomalous event detection in videos). The experimental results

show that our approaches are effective and superior to other methods.
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Chapter 1

Introduction

With the advancement of deep generative models (e.g., the variational autoencoder

(VAE) (Kingma and Welling, 2014), generative adversarial networks (GANs) (Good-

fellow et al., 2014), and Long Short Term memory networks (LSTMs) (Sherstin-

sky, 2020)), unsupervised representation learning has become an important domain.

Anomaly detection is one of the well-known sub-domains of unsupervised learning

in the machine learning and data mining. Anomaly detection for videos is challeng-

ing because of the high dimensional structure, combined with the non-local temporal

variations among frames.

Anomaly detection is an unsupervised learning task in which the aim is to identify

abnormal patterns that are infrequent or rare events. In addition, abnormal samples

are rarely available to train an end-to-end supervised learning network to separate

normal samples from the anomalous ones. This is a complex task since the training

data is unbalanced, i.e., class of normal samples comprises frequently occurring ob-

jects and regular foreground movements while the anomalous class includes a variety
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of unusual events and unseen objects. Due to the fact that abnormal samples are ab-

sent during training, poorly sampled or not well defined, the training data containing

no anomalies are made available in the training stage. Then, the model is built with

the training data representing the normal samples, while detecting anomalous sam-

ples in the inference stage. Hence, we resort to unsupervised learning to implement

the anomaly detection.

Given a set of training samples without anomalies, our goal is to design a model to

learn a feature representation capturing the distribution of normal samples that are

by definition frequent or regular events. Any deviations from this normal distribution

are identified by measuring the approximation error geometrically in a vector space

or the posterior probability of a given model. An approximation error indicates an

abnormal pattern or event.

1.1 Background

1.1.1 Anomaly Detection

Anomaly detection is an unsupervised pattern recognition task, which is also defined

under different statistical models. The normal behavior is characterized through a

number of samples and a statistical model is built with the normal samples that is able

to generalize well on unseen samples. The distribution of normal samples is obtained

through the training samples xi ∈ Xtrain, by building a model fΩ to minimize the

reconstruction error over all the training samples:

Ω∗ = arg min
Ω

∑
xi∈Xtrain

‖fΩ(xi)− xi‖2 (1.1.1)
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The deviation of the test samples xj ∈ Xtest under this trained model is evaluated

as the anomaly score, i.e., s(xj) = ‖fΩ∗(xj)− xj‖2, used as a measure of deviation.

The anomalous samples are poorly approximated by the trained model fΩ∗ since

fΩ∗ is trained on normal samples. Anomalous detection is achieved by evaluating a

threshold based on the anomaly score. If sj > Tthresh, the anomaly is detected. The

threshold is a parameter and the variation of the threshold is related to the detection

performance.

(a) Normal frames (b) Abnormal frames

Figure 1.1: Samples of normal and abnormal events in videos.

For anomalous event detection in videos, we take the surveillance camera for

example. Usually, the background of the videos remains static, while the foreground

is moving objects such as pedestrians, traffic, etc. The anomalous video events are

those which deviate from routines in appearance and motion patterns. Figure 1.1

demonstrates a few scenes where the vehicles, bicycles, skateboarders, wheelchairs,

3
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etc. are prohibited in an area. We use red boxes to mark these illegal objects. If a

frame with any prohibited object, we know that an anomalous event occurs.

1.1.2 Representation Learning for Video Anomaly Detection

Videos are high dimensional data with both spatial-structure and temporal correla-

tions (i.e., spatiotemporal information). A key problem is to find an effective rep-

resentation of a video clip to capture the features of interest in anomaly detection.

Representation learning builds a parameterized model to map an input sample to a

lower dimension vector, which is then used to reconstruct the output sample.

Representation learning for reconstruction. There are many methods to

represent the different linear and non-linear transformations, such as Principal com-

ponent analysis (PCA) and Autoencoders (AEs). They model the normal events in

surveillance videos and abnormal samples represent any deviations that are poorly

reconstructed.

Representation learning for predicting the frame. A video clip consists of

a sequence of frames and the frames are temporal correlated, so it is important to

take the advantages of temporal information among the frames. The goal of recon-

struction is to learn a generative model that successfully reconstructs video frames,

while predictive model is to predict the current frame or its encoded representation

using the past frames. One example is the convolutional LSTM model.

Generative models. Generative models include Variational Autoencoders (VAE),

Generative Adversarial Networks (GANs) and Adversarially trained AutoEncoders

(AAE). They are able to model the likelihood of normal samples in videos in an end-

to-end deep learning framework without abnormal samples in the training stage. An

4
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important common aspect in all these models is representation learning. This means

that the feature extraction of input training data is a key component for the task of

anomaly detection.

1.1.3 Reconstruction Models

Given an input training video Xtrain ∈ RN∗d, N is the number of frames and d = r ∗ c

denotes the number of pixels per frame. d is also the dimensionality of each vector

corresponding to the frame. Reconstruction models focus on reducing the reconstruc-

tion error for normal samples, including the Principal Component Analysis (PCA),

Convolutional AutoEncoder (ConvAE), and Contractive AutoEncoders (CtractAE).

Principal Component Analysis. The goal of PCA is to find the directions

of maximal variance in the training data. In the case of videos, PCA is to model

the spatial correlation for pixel values that are components of the vector representing

a frame at a particular time instant. A set of orthogonal projections de-correlate

the features in the training set using input training matrix X that has zero mean:

min
WTW=I

∥∥X − (XW )W T
∥∥2

F
, where W TW = I represents an orthonormal reconstruc-

tion of the input X. The projection XW is a vector in a lower dimensional space.

Each frame is associated with continual optical flow magnitude, learning atomic mo-

tion patterns with standard PCA on the training set, and evaluating reconstruction

error on the test optical flow magnitude.

Autoencoders. An autoencoder is a type of artificial neural network used to

learn efficient codings of unlabeled data (unsupervised learning) and trained by back-

propagation. It provides an alternative to PCA for dimensionality reduction by re-

ducing the reconstruction error on the training set as shown in Figure 1.2.

5
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Figure 1.2: Autoencoder with three layers: input layer, output layer and single
hidden layer.

It takes an input in the input layer and maps the input to the latent space rep-

resentation in the hidden layer. The autoencoder performs a non-linear point-wise

transform of the input with activation functions, such as rectified linear unit (ReLU)

and sigmoid. The reconstruction error is obtained by calculating the deviation be-

tween the input and the output.

1.2 Objective and Scope

Upon the study of anomaly detection for videos, we make several observations that

heavily affect the detection accuracy. First of all, although the deep supervised learn-

ing models show good performance in computer vision tasks, these models are only

6
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applicable when the events of interest (i.e., positive events) are clearly defined and

training samples are correctly labeled with appropriate percentage of positive events.

Therefore, it is a cumbersome task to train an end-to-end deep supervised learning

model if without high quality labeled samples. Second, autoencoder is an unsuper-

vised learning model, so it doesn’t require abnormal samples for training and is able

to capture the distribution of normal samples in the training stage. The architec-

ture based on autoencoder is beneficial for achieving unsupervised learning. Third,

the long-range temporal information is important for anomaly detection for videos.

Extending the temporal dimension of 3D CNNs to accommodate longer video clips

(Varol et al., 2018) or using sparse selection approaches (Wang et al., 2016; Lan et

al., 2017; Zolfaghari et al., 2018) are both effective ways to enable networks to study

the long-range temporal information. However, both fail to preserve the temporal

information of the entire video since the input size (length of video clips) is limited.

Fourth, current anomaly detection approaches mainly focus on the accuracy using

high-performance computers. In practice, we prefer to filter out irrelevant contents

and only transmit the events of interests on the edge computing devices.

Given the above observations and issues, the objective of this research is to explore

and develop new approaches that achieve anomaly detection for videos in unsuper-

vised learning manner. The aim is to reduce the dependency on large manually an-

notated collections of videos, helping the research in anomaly detection become more

feasible for those with limited computing resources. To develop new approaches, the

following questions should be answered.

1. Since long-range temporal information is important for videos, it is difficult to

preserve the temporal information of the entire video for anomalous video detection.

7
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Simple 1D/3D convolution fails to fully preserve the temporal information since they

only accept the fixed-size input. CNN+RNN model could accept the inputs with

various sizes, but it would severely overfit. Would it be possible to use the compact

representation to encode the temporal evolution of the frames of the video, thereby

capturing the dynamics from the whole video?

2. An reason to make the representation and modeling of video data very chal-

lenging is that anomalies are highly contextual and hard to be well defined. It leads

to the unavailability of abnormal samples. therefore, we cannot rely on supervised

learning to catch the abnormal events. Is it possible to train an effective model to

represent the normal samples in the training stage without abnormalities and then

use the trained model to detect anomalies in the inference stage? Then, based on the

high reconstruction error and the big difference for given samples, abnormal samples

will be detected.

3. With the development of surveillance systems, millions of video cameras have

been deployed for security and safety purposes. These always-on cameras continuously

record large volumes of video data. However, large segments of videos only contain

background or irrelevant contents. Would it be possible to achieve real-time to detect

abnormal events therefore suppressing the network traffic and reducing storage space

based on the proposed method?

1.3 Contributions

The main contribution of this thesis shall be the investigation of two types of anomaly

detection for videos. We focus on anomalous video detection and anomalous event

8
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detection in videos. More specifically, in this work we make the following contribu-

tions:

1. We propose a LSTM-autoencoder-based adversarial learning model for anoma-

lous video detection without abnormal samples in the training stage. To represent

video data with temporal and spatial information, we adopt multiple dynamic images

which contain the temporal evolution of video frames and represent the video contents

at the level of the image pixels. Multiple dynamic images are viewed as the input

sequence with temporal and spatial information and achieve dimension reduction of

original video data. In the inference stage, if a given abnormal sample is fed to the

model, the reconstruction error will be high because the proposed model is trained

merely on normal samples and its parameters are only suitable for reconstructing

normal samples. Based on the high construction error, we will be able to detect

abnormal samples.

2. We propose Onsite Event Detection (OED), a system that enables real-time

event detection on edge. OED first trains a transformer-based autoencoder in ad-

versarial learning to learn the spatial-temporal representation of video data observed

recently. Then it gains the ability to differentiate eccentric data patterns of events

from routine. OED also features an updating strategy that adapts to the changing

environment dynamically. As such, OED is capable of continuously detecting events

in video streams.

3. We achieve an unsupervised learning manner in adversarial training for both

tasks. There are two networks in the proposed architecture reinforcing each other,

and after training the model reconstructs the normal samples more accurately with

a small reconstruction error.

9
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1.4 Outline

This thesis is organized as follows. We present the proposed method for anomalous

video detection, as well as the experiment results in chapter 2. The proposed vision

transformer based framework for anomalous event detection in videos is described in

chapter 3. We conclude the thesis in chapter 4.
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Chapter 2

VidAnomaly:

LSTM-autoencoder-based

Adversarial Learning for

Anomalous Video Detection with

Multiple Dynamic Images

2.1 Citation and Main Contributor

Li, Shusheng, and Wenbo He. ”VidAnomaly: LSTM-Autoencoder-Based Adversarial

Learning for One-Class Video Classification With Multiple Dynamic Images.” 2019

IEEE International Conference on Big Data (Big Data), acceptance rate of full paper

is 19%, December 2019, Los Angeles, USA.
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The main contributor to this paper is the first author - Shusheng Li (contributes

more than 80%).

2.2 Copyright

Published with permission from IEEE Xplore.

2.3 Abstract

Anomalous video detection serves an important role when abnormal videos are absent

during training, poorly sampled or not well defined. However, anomalous video detec-

tion is challenging. Due to the unavailability of abnormal samples, it is a cumbersome

task to train an end-to-end deep supervised learning model. Meanwhile, video data

representation is challenging because of the unstructured scheme of video contents.

To represent video data with temporal and spatial information, we propose multiple

dynamic images in our task because dynamic image encodes the temporal evolution

of video frames and represents video contents at the level of the image pixels. Mul-

tiple dynamic images are viewed as the input sequence with temporal and spatial

information and achieve dimension reduction of original video data.

In this paper, we propose a LSTM-autoencoder-based adversarial learning model

for anomalous video detection (“VidAnomaly”) without abnormal samples in the

training stage. Our architecture is composed of three sub-networks. LSTM-autoencoder

network (R) learns the temporal dependence of the input sequence and reconstructs

the input sequence for the discriminator network (D) to achieve adversarial learn-

ing. The novelty of the proposed model is that we add an additional LSTM-encoder
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network (A) to obtain the latent representation of the reconstructed sequence. Mini-

mizing the distance between the two latent representations from R and A benefits the

model to further capture the training data distribution because it forces the LSTM-

autoencoder network to yield an essential representation of training samples in latent

space. In the inference stage, for a given abnormal sample as the input, the model

poorly reconstructs the input abnormal sample and the reconstruction error would

be high because the proposed model is trained merely on normal samples and its

parameters are only suitable for reconstructing normal samples. Based on the high

reconstruction error, we detect abnormal samples. The experimental results show

that VidAnomaly learns the distribution of normal samples effectively and is superior

to other methods.

2.4 Introduction

In recent years videos have become one of the most dominant forms of big data on

the Internet. This is achieved by rapid advances in multimedia technologies and the

proliferation of online video hosting and sharing services (Chen et al., 2016) such as

Youtube, Vimeo, Metacafe, etc. According to the Cisco Visual Networking Index

(Barnett et al., 2018), IP video traffic will account for 82% of all IP traffic by 2022,

up from 75% in 2017.

The explosion of video is accompanied with how to manage and organize the

tremendous video resources. Anomalous video detection serves an important role

in organizing video resources. Anomalous video detection can be illustrated in the

context of one-class video detection (Gardner et al., 2006; Khan and Madden, 2014),

aiming to establish the models to classify the normal samples from the abnormal ones
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when the abnormal class is absent, poorly sampled or not well-defined (Sabokrou

et al., 2018). Anomalous video detection is suitable in the following two scenarios:

• Abnormal class is complex. Anomaly detection is different from the classifica-

tion task in which there is a determined number of category in the classification

task. For anomaly detection, the samples that differ from the normal ones are

considered as the abnormalities, so that there are too many abnormal cases and

the number of the category is unpredictable in advance. Also, it is not possible

to label all types of anomalous class. This limits the typical classification ap-

proaches for anomaly detection. For example, video-sharing platforms focus on

the specific video contents such as fire disaster, wedding ceremony, etc., when

these kinds of video contents become the issue in the news because heavily rec-

ommending the hot video contents obtains a high click-through rate. However,

there are too many abnormal cases and the categories of video contents can be

up to thousands of classes (Lee et al., 2018). It is expensive and cumbersome

to label the video data accurately and labeling all types of abnormal videos is

impossible. The task of anomalous video detection is to efficiently model such

problems.

• Abnormal samples are insufficient. The typical classification requires exten-

sive supervised training using large amounts of annotated data. However, for

anomaly detection, abnormal samples are insufficient for training because they

are difficult to be collected, while normal samples are easy to be obtained and

sufficient. For example, in areas like ATM room, server room, etc., there may be

security problems such as robbery, destroying the machines, etc. The abnormal

cases are not common but pose a security threat. On the other hand, normal
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cases are not difficult to be collected. Due to the insufficient size of abnormal

samples, training an end-to-end deep supervised learning model is cumbersome.

The above-mentioned examples show that anomalous video detection provides the

service for video-sharing platforms and benefits video analytics in government, public

sector and society in general.

In this paper, we focus on anomalous video detection when abnormal videos are

complex or insufficient. However, anomalous video detection is challenging. Com-

pared with other forms of multimedia such as audio, images, etc., videos are more

information-abundant and complicated. Video data provide both temporal and spa-

tial information, which is beneficial for the description and analysis of video contents.

Meanwhile, video data belong to unstructured data so that the information either

does not have a pre-defined data model or is not organized in a pre-defined manner.

This results in irregularities, making it difficult in organization, understanding, clas-

sification, and retrieve. Nevertheless, understanding video contents is the first step

of anomalous video detection.

To efficiently and accurately understand the contents of videos in computer vision,

video feature representation is a critical process, which maps various video contents to

digital contents. Much effort has been made on video representation. Recently, the

learnable representations such as deep convolutional neural networks (CNNs) have

achieved good performance in many video understanding tasks. As the frames in

the video can be viewed as a set of independent and static images, the approaches

(Krizhevsky et al., 2012) packed a short sequence of video into an array of images

and then fed them into CNNs. Another improvement (Ji et al., 2012) is extending

CNNs to replace 2D filters with 3D ones, which extracts temporal features. However,
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a downside of CNN-based video representation methods is that they only capture the

local changes within a small time window and fail to capture long-term dynamic pat-

terns associated with a certain of video content. Besides, in our task, the correlation

among consecutive video frames (temporal information) is significant, which further

strengthens the understanding of video contents. CNN-based video representation

that only captures temporal features in a small time window is not suitable for our

task.

The above-mentioned limitations are common in CNN-based feature representa-

tion. To address these issues, we introduce dynamic image (Bilen et al., 2016) in our

task. Dynamic image is a novel compact representation of the video. This compact

representation is able to encode the temporal evolution of the frames of the video,

thereby capturing the dynamics from the whole video. Dynamic image represents

the video content at the level of image pixels so that the spatial information is also

preserved. Profiling the whole video based on visual characteristic instead of interme-

diate feature vector is helpful for the follow-up processes in our framework because

visual characteristic is more appropriate to be processed by deep learning models.

Another advantage is that the extraction of dynamic image is simple and efficient

and it makes the original video data to achieve dimension reduction for reducing the

redundance.

However, summarizing the video contents in a single image may result in only

a few samples for training. The model for anomalous video detection also requires

sufficient normal samples for training. Therefore, we propose video data augmentation

in our task. In addition to increasing the number of training samples, video data

augmentation aids in reducing the effects of overfitting (Karpathy et al., 2014) and
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being more robust against noise (Sabokrou et al., 2018). We propose two simple and

efficient methods for video data augmentation: a) Directly adding a Gaussian noise

to the existing training samples. This corrupts the training samples and enables our

proposed anomalous video detection model to be more robust to noise. b) Spatial

augmentation of training samples. This is the same as images (Krizhevsky et al.,

2012), resampling the video frames and flipping them randomly.

Summarizing an entire video sequence into a dynamic image may suffer from

temporal and spatial information loss, especially for a very long video clip. For a

very long video clip, the whole video sequence summarized in a single dynamic image

is difficult and plenty of temporal and spatial information may be neglected. To

address this limitation, we propose to extract multiple dynamic images from a given

video sequence. In detail, we segregate the given video into segments and then extract

the dynamic images from every segment. Multiple dynamic images provide a fixed

number of dynamic images for each video, which also benefits deep learning models

that process sequences of data (containing temporal information) like long short-term

memory (LSTM).

In recent years, anomaly detection has made significant progress. The common

methods for anomaly detection are based on proximity, distance, or nearest neighbor.

For example, the previous research focalizes on distance-based approaches for anomaly

detection using K nearest neighbor distance-based methods (Campos et al., 2016).

17



Ph.D. Thesis - S. Li McMaster University – Computer Science

However, as the number of dimensionality increases, especially for even ultrahigh-

dimensional data, proximity, distance, and nearest neighbor become less meaning-

ful (Kriegel et al., 2008). The distance-based methods also increase the computa-

tional burden for anomaly detection in high dimensional data. Hence, much pre-

vious work has focused on dimensionality reduction based anomaly detection, such

as PCA based multivariate scheme (Camacho et al., 2016), non-linear dimension-

ality reduction based autoencoder (Sakurada and Yairi, 2014), etc. Nevertheless,

these approaches fail to keep the essentiality of samples because they only use simple

distributions like isotropic Gaussian distribution, resulting in poor performance on

anomaly detection.

In this paper, we propose adversarial learning system for anomalous video de-

tection by capturing essential features of high dimensional training data in the low-

dimension latent space. Adversarial learning like generative adversarial networks

(GANs) has the ability to efficiently learn the training data distribution and preserve

the essentiality of the data. This is because the architecture of adversarial learning

allows it to directly model the real-world unstructured data based on a data-driven

scheme in adversarial mechanism.

The training samples in our task are multiple dynamic images that are the se-

quences. Therefore, unlike most of the adversarial learning architectures using CNN-

like structure (Akcay et al., 2018), we propose LSTM-autoencoder-based adversarial

learning to process the sequences of the input data, which captures the training data

distribution effectively and further preserves the temporal and spatial information

of the input sequence. Different from the work (Sabokrou et al., 2018) where two
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networks of GAN are used for anomalous video detection, our proposed architec-

ture is composed of three-subnetworks and the novelty is that we add the additional

LSTM-encoder network to obtain the latent representation of the reconstructed se-

quence. Minimizing the distance between the two latent representations from LSTM-

autoencoder network and the additional LSTM-encoder network aids in capturing the

training data distribution and detecting abnormalities during the inference stage.

In this paper, we propose LSTM-autoencoder-based adversarial learning for anoma-

lous video detection with multiple dynamic images (“VidAnomaly”). VidAnomaly

proceeds by extracting multiple dynamic images from the training samples and then

training the LSTM-autoencoder-based adversarial learning model. This model is

trained only on normal samples that belong to the target class and then its param-

eters are not suitable for reconstructing abnormal samples. In the inference phase,

when the input is an abnormal sample, the proposed model fails to reconstruct the

abnormal sample accurately, because the parameters in this model are only suitable

for reconstructing normal samples. Based on the high reconstruction error and the big

difference between the two latent representations, we can distinguish the abnormal

samples.

Our system “VidAnomaly” is designed to tackle the main challenges of anomalous

video detection and has the following advantages. First, we propose to use video data

augmentation, which does not only increase the number of video data but also allows

our proposed method to be more robust to noise and avoid overfitting. Second, we

propose to extract multiple dynamic images from a given video to profile the video

with temporal and spatial information. Dynamic image is characterized by the tem-

poral evolution of the frames of the video. However, summarizing the whole video
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into a single dynamic image may result in critical information loss, especially for a

very long video clip. Therefore, we break the video into segments and then extract

multiple dynamic images from each segment. Third, we propose LSTM-autoencoder-

based adversarial learning to encode and decode the training samples based on the

data-driven scheme. This further aids in preserving temporal information and yield-

ing a low-dimension latent representation of the input data. Fourth, the novelty of

the proposed model is that in addition to minimizing the distance between the input

samples and the reconstructed samples in original space, we minimize the distance be-

tween the two low-dimension latent representation from LSTM-autoencoder network

and the additional LSTM-encoder network in latent space. The additional LSTM-

encoder network helps to learn to encode the normal samples during the training

phase. This has the best possible representation of normal samples that could lead

to their reconstruction. Fifth, we propose adversarial learning model for anomalous

video detection without abnormal samples for training. In the training phase, the

proposed adversarial model is trained merely on the normal samples and captures

the distribution of normal samples, so that its parameters are only suitable for re-

constructing the normal samples. In the inference phase, for the abnormal sample

as the input, the model is confused and unable to reconstruct the input accurately.

Therefore, the reconstruction of the input is very different from the original input. In

this way, the abnormal sample is detected.

The rest of this chapter is organized as follows. A brief review on related work is

given in Section 2.5. Section 2.6 introduces preliminaries for dynamic image, LSTM,

and GAN. The proposed system is described in Section 2.7. Section 2.8 presents the

experimental results. Section 2.9 concludes the chapter.
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2.5 Related work

One-class video classification via adversarial learning is closely related to video rep-

resentation, anomaly/outlier detection, self-representation, and adversarial learning.

Video representation. Video representation is one of the most important steps

in video classification, retrieve, and understanding. In the literature, several methods

have been proposed. Traditionally, encoding frames according to low-level features,

such as HOG (Dalal and Triggs, 2005), SIFT (Lowe, 2004), and so on. However, these

feature descriptors often suffer from appearance variations of dynamic scenes and

objects (Chang et al., 2017). Deep CNNs have improved dramatically the performance

in representing videos and can be broken into two categories. The first category

considers the video as a stream of individual frames (Yue-Hei Ng et al., 2015) or

as a short and smooth transition among frames (Simonyan and Zisserman, 2014).

The other category is to replace 2D filters with 3D ones by extending CNNs (i.e.

3D CNNs) (Tran et al., 2015; Simonyan and Zisserman, 2014; Gkioxari and Malik,

2015), which extracts the temporal information within a small window. However, the

disadvantage of these CNN-based video representations are unaware of the dynamics

of the video and fail to capture long-term dynamic patterns associated with a certain

of video content. Therefore, we propose to use dynamic image (Bilen et al., 2016) to

encode the temporal evolution of the frames in the video.

Anomaly/outlier detection. Anomaly or outlier detection has received tremen-

dous attention because of numerous practical applications. We focalize on the most

related work that applies machine learning models for anomaly detection. The au-

thor in (Gaddam et al., 2007) utilized ID3 decision tree learning method to detect

abnormal samples in computer networks. Abe et al. (Abe et al., 2006) viewed the
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anomaly detection problem as a classification problem and proposed supervised ac-

tive learning for such a problem. Ashfaq et al. (Ashfaq et al., 2017) presented a

fuzziness based semi-supervised learning by for intrusion detection system. However,

due to the insufficient sizes or unavailability of abnormal data, training an end-to-

end machine learning network is not straightforward and effective. In this work, we

propose adversarial learning-based anomaly detection framework, the advantage of

which is that there is no need for abnormal samples in training. Meanwhile, it is able

to distinguish between normal and abnormal samples in the inference phase.

Self-representation. It has been shown that self-representation (e.g. auto-

encoder) is a useful tool for anomaly detection (Xu et al., 2015; Sabokrou et al.,

2016). It is assumed that the input samples are reconstructed using the samples from

the target class. If the reconstruction error is high, it indicates that the testing sample

is more probably abnormal. In our task, the training samples are multiple dynamic

images with the temporal information, so we propose to use LSTM-autoencoder-based

architecture to reconstruct the sequence of the input.

Adversarial learning. The most representative adversarial learning method is

generative adversarial networks (GANs) (Goodfellow et al., 2014) in recent years,

because it has shown huge success in generating data. GANs has also been widely

used to capture the potential latent representation of the training data based on

auto-encoder architecture (Chang et al., 2017; Ghasedi et al., 2019). GANs is based

on a two-player game between two networks, i.e., a discriminator and a generator,

introduced by Goodfellow and co-authors in (Goodfellow et al., 2014). The generator

is to generate the real-world data (e.g. images) and is trained to fool the discriminator

as much as possible. The discriminator takes true data and generated data and tries
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to discriminate true data from the generated data as well as possible. In order to

generate the data similar to true data, the generator has to capture the training

data distribution effectively and accurately so that it is able to generate the data

almost the same as true data. In this process, GANs obtains a low-dimension vector

(representation) to characterize the original training data. In our task, we propose

GAN-like architecture for anomalous video detection, making full use of the ability

to generate a low-dimension latent representation.

2.6 Preliminaries

2.6.1 Dynamic Image

Dynamic image is a novel compact representation of videos. The main advantage of

dynamic image is to encode the temporal evolution of the frames of the video. Videos

comprise a large majority of the visual data with temporal and spatial information.

Dynamic image is able to summarize the video content in a single image.

Long-term dynamics and temporal patterns are very crucial cues for the recogni-

tion of actions (Fernando et al., 2016a, 2015, 2016b; Hoai and Zisserman, 2014; Ryoo

et al., 2015). However, it is challenging to represent complex long term dynamics, par-

ticularly compact representations that can be processed efficiently. Several effective

representations of long-term dynamics have been obtained through temporal pooling

of frame features in a video. Dynamic image is a new long-term pooling operator and

it is simple, efficient, yet powerful for compact representation of videos.

Some examples of dynamic images are shown in Figure 2.1. We can observe that
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Figure 2.1: A few examples of dynamic images that summarize the appearance and
dynamics of videos, encoding the temporal evolution of the frames. The examples

are from (Bilen et al., 2016)
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the dynamic images focus mainly on the acting objects. On the other hand, back-

ground pixels tend to be averaged away. Hence, the pixels in the dynamic image focus

on the motion of the obvious contents in videos. This means that they may contain

the information necessary to video understanding. In addition, dynamic images are

different for actions of different speeds. Dynamic images are similar to some other

imaging effects that convey motion and time, such as motion blur or panning as shown

in Figure 2.4. Dynamic images capture the time and motion (temporal information)

by integrating and reordering the pixel values over time.

The first step of constructing dynamic image is to represent a video as a ranking

function for its frames I1, I2, ..., IT , where T is the length of the video. the novelty of

(Bilen et al., 2016) is that Ψ(It) is directly the RGB image pixels, instead of the local

features (e.g. HOG, SIFT, MBH) extracted from every video frame. Although this

idea is simple, the final representation is the format of a single still image because

of the idea. In detail, Ψ(It) denotes an operator that stacks the RGB component

of every pixel for video frame It on a large vector. Ψ(It) can be also incorporate a

simple non-linear kernel, such as the square root function. The time average of these

video frames up to time t can be written as follows:

At =
1

t

t∑
i=1

Ψ(Ii) (2.6.1)

The ranking function for its frames associates to each time t a score S(t|P ) = 〈P,At〉,

where P is a vector of parameters. The scores reflect the rank of the frames in the

given video. To keep the order, later video frames have larger scores, i.e., q > t ⇒

S(q|P ) > S(t|P ). The parameters P is obtained by solving a convex optimization
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problem based RankSVM (Smola and Schölkopf, 2004) formulation:

F (P ) = 2
T (T−1)

∑
q>t

max{0, 1− S(q|P ) + S(t|P )}+ λ
2
‖P‖

2

(2.6.2)

P ∗ = ρ(I1, I2, ..., IT ; Ψ) = arg min
P

F (P ) (2.6.3)

where first term in the objective function (2.6.2) is a hinge-loss which counts how

many pairs q > t are incorrectly ranked by the scoring function. The second term

of (2.6.2) is the quadratic regularize for SVMs. Equation (2.6.3) defines a function

ρ(I1, I2, ..., IT ; Ψ) that represents a video to a single vector of parameters P ∗. The

most important advantage of the vector is that it has the same number of elements

as an individual video frame, which means that the final representation of the given

video can be transformed to the format of a 2D image. In this way, we directly adopt

deep learning models at the level of the image pixels instead of intermediate feature

representation.

2.6.2 Long Short Term Memory

2D or 3D CNNs fail to capture enough temporal information because they only cap-

ture the local changes within a small time window which is not meaningful for videos

with longer-term patterns. Video data have a more abundant and rich source of vi-

sual information compared with images, i.e., both temporal and spatial information

in the video. Therefore, learning a good representation with temporal gains a better

understanding of the content of videos. Long Short Term Memory (LSTM) achieves

good performance in recent years to represent video sequences since the architecture
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of LSTM consists of a forget gate, input and output gates, and a memory cell. LSTM

operates as follows. The first step in LSTM is to decide what information is forgotten

from the cell state. A sigmoid function in the “forget gate” makes the decision, which

has two external sources, i.e., the current frame xt and the previous hidden states

ht−1. The output of the “forget gate” is a number with the range between 0 and 1

associated with the previous cell state ct−1, where 1 represents “completely keep the

cell state”, while 0 represents ”completely remove it”. The “forget gate” is formalized

as follows:

ft = σ(Wf · [ht−1, xt] + bf ) (2.6.4)

The next step is to update the input information, called “input gate” that receives

inputs:

It = σ(Wi · [ht−1, xt] + bi) (2.6.5)

Then, the old cell state Ct−1 is updated into the new cell state Ct. This step is

associated with the “forget gate” and the tanh non-linearity as follows:

Ct = ft ∗ Ct−1 + It ∗ tanh(WC · [ht−1, xt] + bC) (2.6.6)

Finally, “output gate” is based on the cell state. The final output is obtained by

multiplying the activation and is updated by:

Ot = σ(Wo · [ht−1, xt] + bo) (2.6.7)
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ht = Ot ∗ tanh(Ct) (2.6.8)

The key advantage of LSTM over recurrent neural networks (RNN) is that the cell

state is optimized in the forget gate where the unimportant information is removed.

In this work, we propose to use LSTM autoencoder to reconstruct the sequences of

the input, thus obtaining the effective latent representation and reconstructed data

for adversarial learning. The detail is presented in Section 2.7.

2.6.3 GANs for anomaly detection

GANs have shown outstanding success in the field of generating data introduced in

(Goodfellow et al., 2014). The standard GAN is formulated as a two-player game in

the adversarial network, which is composed of two networks, i.e., a generator G and a

discriminator D. The generator takes a random input of z and p(z) is the distribution

of z. The aim of the generator is to generate realistic data (e.g. images) that tries to

follow the same distribution as the true data p(x). The discriminator takes true and

generated data and tries to discriminate them as well as possible, while the generator

is trained to fool the discriminator as much as possible. The two networks are learned

in a two-player min-max game. Hence, the loss function of GANs is formulated as:

min
G

max
D

(Ex∼p(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))]) (2.6.9)

The goal of the generator is to fool the discriminator, while the goal of the discrim-

inator is to distinguish between true and generated data. Therefore, the generator

is forced to learn the distribution of true data, while the discriminator finds the
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boundaries between the true and generated data distribution.

Figure 2.2: Bidirectional GAN (BiGAN) (Donahue et al., 2016) extends the GAN
framework.

Bidirectional GAN (Donahue et al., 2016) extends the GAN framework as shown

in Figure 2.2, which includes an encoder that learns the inverse of the generator. The

Bidirectional GAN (BiGAN) learns a mapping simultaneously from latent space to

data and vice versa in the training stage. The encoder is a non-linear function and

the discriminator learns to classify real and fake samples.

Anomaly detection using GANs is an attractive research field. Schlegl et al.

(Schlegl et al., 2017) were the first to propose such a concept. They propose AnoGAN

based on a standard GAN, with training only on normal samples to learn a mapping

from the latent space representation to the realistic sample. After that, this learned

representation maps unseen samples back to the latent space. Training on normal

samples only makes the generator to learn the distribution of normal samples. Af-

ter training, the model learns how to generate normal samples. When an abnormal

sample is fed into the model, the model poorly reconstructs the sample. Hence, the

difference between the input samples and the reconstructed ones will highlight the
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anomalies. The two steps of training and identifying anomalies are illustrated in

Figure 2.3.

Figure 2.3: AnoGAN (Schlegl et al., 2017). The model is trained on normal
samples. The reconstructed image is used to identify anomalies.

The contributions of AnoGAN are showing that GANs can be used for anomaly

detection and introducing a new mapping scheme from latent space to input sample

space. However, there are also disadvantages. It requires optimization steps for each

new input and the objective does not take into account the inverse mapping learning.

To improve performance of AnoGAN, Zenati et al. proposed (Zenati et al., 2018)

a BiGAN-based method. EGBAD (Efficient GAN-Based Anomaly Detection) out-

performs AnoGAN execution time, bringing the BiGAN structure to the anomaly
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detection. EGBAD tries to solve the disadvantages of AnoGAN by learning an en-

coder to map input samples to their latent representation during the training. The

main contribution of the EGBAD is to compute the anomaly score without optimiza-

tion steps for each new input during the inference.

Our proposed GAN-based anomaly detection consists of three networks, a dis-

criminator, a generator, and an additional encoder. Besides, instead of mapping the

random input z into the data sample, we propose to use LSTM-autoencoder to encode

and decode the input data, obtaining the reconstructed data for the discriminator

network to achieve adversarial learning. The novelty is that we add an additional

LSTM-encoder to further aids in capturing the distribution of training data. We

present the detail in Section 2.7.

2.7 System Design of “VidAnomly”

In this section, we first present the overview of “VidAnomly” in Section 2.7.1. Next,

details about training for LSTM-autoencoder-based adversarial network are given in

Section 2.7.2. Section 2.7.3 explains how anomalous video detection works.

2.7.1 The overview of “VidAnomly”

“VidAnomaly” system includes three parts: 1) preprocessing module, 2) training

module and 3) anomalous video detection module.

Preprocessing module. As summarizing the video content in dynamic images

leads to not enough videos available for training, we propose video data augmentation

to increase the number of training samples. This also reduces the effects of overfitting
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Figure 2.4: The workflow of the training. (a) Original video. (b) A fixed number of
segments of the (a). (c) Extracting multiple dynamic images from (b). (d)

LSTM-autoencoder-based adversarial network that is shown in Figure 2.6 in detail.
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and allows the system to be more robust against noise. We propose to use two

simple yet effective methods for video data augmentation: adding noise to the training

samples and spatial augmentation of training samples.

Let X be the existing training samples and a Gaussian noise η is added to them.

We obtain the increased training samples (X + η). This data augmentation makes

the system robust to noise and distortions in the training stage. Figure 2.5 shows the

example of adding a Gaussian noise to the existing sample, after which the existing

sample is corrupted.

(a) (b)

Figure 2.5: Adding noise to the training sample. (a) Original video frame. (b) The
frame with noise.

Spatial augmentation of training samples reduces the effects of overfitting (Karpa-

thy et al., 2014). we first crop the center regions of all video frames and then resize

them to the size of 252×256. After that, we randomly resample 192×192 region and

finally randomly flip the frames horizontally with 50% probability. Based on these

two methods for video data augmentation, there are enough video data for training.

To address the limitation that summarizing the whole video into a dynamic image

may result in the temporal and spatial information loss, we propose to extract multiple

dynamic images from a given video sequence. In detail, we segregate the given video
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into snippets and then extract the dynamic images from every snippet. In this way,

we also obtain a fixed number of dynamic images for each video, which benefits LSTM

to process the sequence.

Training module. We propose LSTM-autoencoder-based adversarial learning

model for anomalous video detection. Our idea is to design an end-to-end model

for anomalous video detection in an adversarial scheme that has three subnetworks,

i.e., the LSTM-autoencoder network, the discriminator network, and an additional

LSTM-encoder network. Unlike the standard GANs where the generator network is

to synthesize realistic data from the random input z to fool the discriminator, here we

propose LSTM-autoencoder network (R) to replace the generator network, yielding

a low-dimension latent representation of the normal samples and reconstructing the

input sample for the discrimination task. The main advantage is to capture the normal

data distribution effectively and then it is helpful for abnormal data detection. For a

given abnormal sample, the reconstruction error would be high because the LSTM-

autoencoder is only suitable for reconstructing the normal samples.

Another novel aspect is that we add an additional LSTM-encoder network to

further enhance the adversariality because we minimize the distance between the two

latent low-dimension latent representations obtained from the LSTM-autoencoder

network and the additional LSTM-encoder network. This also allows the model to

further capture the training data distribution. The difference between the two latent

representations works as the abnormality detector. If the difference is high, the input

sample is detected as an abnormality. Detailed descriptions are presented in the

following subsections.

Anomalous video detection module. After training, the LSTM-autoencoder
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Figure 2.6: The architecture of the proposed LSTM-autoencoder-based adversarial
network. It contains LSTM-autoencoder network, an additional LSTM-encoder
network, and discriminator network. The input sequence (X) is obtained from

multiple dynamic images. The encoder RE based on LSTM reads the input
sequence and learns the low-dimension latent representation z, after which the

LSTM-decoder RD reconstruct the input sequence. The discriminator network D
distinguishes the original input sequence and the reconstructed sequence (X̃) as the

real or the fake. The additional encoder network A has the same structure of RE

with different parameters, yielding the latent representation z̃ of X̃. Minimizing the
distance between z and z̃ is beneficial to capture the distribution of normal samples

effectively.
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network is only suitable to reconstruct the normal samples because its parameters are

obtained by training normal samples only. For a given abnormal sample as the input in

the inference stage, the LSTM-autoencoder network fails to reconstruct it accurately

and the reconstruction error would be very high. Hence, the input is very different

from the reconstructed data. The additional LSTM-encoder network further encodes

the reconstructed data into latent representation, so that the difference between the

input and the reconstructed data is enlarged. Based on the reconstruction error, we

detect the abnormal samples and achieve anomalous video detection.

2.7.2 Training for LSTM-autoencoder-based adversarial net-

work

The workflow of the training. Figure 2.4 illustrates the workflow of the training

process. In Figure 2.4, (a) is the normal samples in the format of video sequences.

Considering that summarizing the whole video sequence into a single dynamic image

may lead to the temporal and spatial information loss, we segregate the video into

a fixed number of segments as shown in Figure 2.4 (b). Then, we extract multiple

dynamic images from every segment and the multiple dynamic images are shown in

Figure 2.4 (c), which extract the temporal evolution of the frames of the video. We

feed the multiple dynamic images as the sequences into LSTM-autoencoder-based

adversarial network in Figure 2.4 (d). Next, we present the detail of the proposed

LSTM-autoencoder-based adversarial network.

The architecture of LSTM-autoencoder-based adversarial network. Fig-

ure 2.6 shows the architecture of LSTM-autoencoder-based adversarial network. The

proposed LSTM-autoencoder-based adversarial learning model is composed of three
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subnetworks: the LSTM-autoencoder network (R), the discriminator network (D),

and an additional LSTM-encoder network (A). The input in the training stage is

only normal samples.

LSTM-autoencoder network (R). First sub-network is the LSTM-autoencoder

network for reconstructing the input sample, which includes the LSTM-encoder (RE)

and the LSTM-decoder (RD). RE takes the normal samples as the input. We

denote an input sequence (multiple dynamic images from the same segment) as

X = {x1,x2,...,xn}, where n is the length of the sequence and xi(i = 1, 2, ..., n) is

every dynamic image. For LSTM-encoder, n is also the time steps and H i
E is the hid-

den state of RE that is computed from the current input dynamic image and previous

states. After encoding, the low-dimension latent representation of the input sequence

is obtained and used to reconstruct the target sequence X̃= {x′1, x′2, ..., x′n} that is

the same as the input sequence but in reverse order (Srivastava et al., 2015). The final

state HL
E of the LSTM encoder is the latent representation which is the initial state

for LSTM-decoder. RE and RD are jointly trained to reconstruct the input sequence

X as X̃ and yield the latent representation z. R encodes the input sequence into a

low-dimension latent representation z and then yields the reconstructed sequence X̃.

The LSTM-autoencoder network aims to minimize the L1 distance between X and

X̃ as follows:

LR = EX∼p(X)‖X −R(X)‖1 (2.7.1)

where R(X) is the reconstructed sequence X̃.

Discriminator network (D). The second sub-network is the discriminator net-

work D for distinguishing between the input sequence X and the constructed sequence
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X̃. The structure is the same as the LSTM-encoder but the parameters are different.

The output is connected to a softmax layer for discriminating the real or the fake

(input sequence or reconstructed sequence). D allows the whole network to achieve

adversarial scheme and the loss function is:

LD = EX∼p(X)

∥∥F (X)− EX∼p(X)F (R(X))
∥∥

2
(2.7.2)

Additional LSTM-encoder network (A). The third sub-network is the addi-

tional LSTM-encoder network (A) that encodes the reconstructed sequence X̃ to a

low-dimension latent representation z̃. It has the same process as the LSTM-encoder

RE but different parameters, and the dimension of z̃ is the same as that of z for com-

parison. The additional LSTM-encoder network is novel because it further enables

R to reconstruct the input sequence and capture the distribution of the normal sam-

ples. The two latent representations are used in the objective function to minimize

the encoder loss:

LA = EX∼p(X)‖RE(X)− A(R(X))‖1 (2.7.3)

where A(R(X)) is the latent representation (z̃) of reconstructed sequence and RE(X)

is the latent representation (z) of the input sequence.

Equation (2.7.3) is also used in the inference stage. For a given abnormal sample as

the input, the additional LSTM-encoder network further enlarges the reconstruction

error. Because of the high difference (calculated by (2.7.3)) between z and z̃, the

input sample is defined as a abnormal one.

38



Ph.D. Thesis - S. Li McMaster University – Computer Science

The objective function for LSTM-autoencoder-based adversarial net-

work. The objective function combines three loss functions corresponding to the

three sub-networks (Akcay et al., 2018):

L = wRLR + wDLD + wALA (2.7.4)

where wR, wD and wA are the weighting parameters. LR, LD and LA represent the

three loss functions corresponding to the three subnetworks, respectively.

2.7.3 Anomalous video detection

In the training stage, our proposed adversarial model is trained on normal samples

without abnormal samples and after training its parameters are only suitable for

reconstructing normal samples. During the classification stage, both normal and ab-

normal samples are fed into the model. (1) For abnormal samples as the inputs, R

poorly reconstructs them and after the additional LSTM-encoder (A) the reconstruc-

tion error is enlarged. Based on the high difference (calculated by (2.7.3)) between z

and z̃, the input samples are defined as abnormal ones. (2) For normal samples as the

inputs, the constructed samples are very similar to the inputs, so the reconstruction

error is low. Based on the similarity between z and z̃, the input samples are defined

as v ones.

The anomalous video detection (AVD) can be formulated by using RE and A as:

AVD(X) =


Normal Class if Φ(z, z̃) > ξ,

Abnormal Class otherwise.

(2.7.5)
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where ξ is a pre-defined threshold and Φ(z, z̃) = ‖z − z̃‖1

2.8 Experiments

In this section, our proposed system “VidAnomaly” is evaluated on two different

datasets. The performance results are analyzed and are compared with other meth-

ods. We adopt the following well-known metrics: accuracy, precision, recall and F1

score for the system performance evaluation.

2.8.1 Dataset description

Basketball Baseball

Wedding reception Beach

Figure 2.7: A few examples of the CCV dataset.
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We evaluate VidAnomaly on Colunbia Consumer Video Database (CCV) (Jiang

et al., 2011) and e-Lab Video Dataset (e-VDS) (Culurciello and Canziani, 2017).

CCV dataset. The CCV dataset contains 9,317 YouTube videos over 20 seman-

tic categories. The dataset was collected to be related to consumer’s interest and

originality of video content without post-editing. For the video contents, the dataset

includes events (e.g. basketball, swimming, etc), objects (dog, cat, and bird) and

scenes like beach and playground. There is a baseline system using features such

as SIFT and STIP for evaluation, so the feature extraction from every video is pro-

vided. Each category has at least 200 videos. Some examples of the CCV dataset

are shown in Figure 2.7. We randomly choose categories as the normal class and a

certain number of abnormal samples are randomly selected from other categories.

Plant Shoes Soda-can

Figure 2.8: Sample categories of the e-VDS dataset.

e-VDS dataset. The e-VDS dataset contains 2050 videos with 35 classes, which

was collected from the real-world scenario with 10 seconds each. The dataset focuses

on objects such as bicycle, car, sofa, etc. Every category has at least 37 videos and the

raw data is directly provided. Sample categories of the e-VDS dataset are illustrated
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in Figure 2.8. We also randomly choose categories as the normal class and randomly

select other categories as the abnormal samples.

2.8.2 Implementation details

To balance the computational burden and accuracy, we segregate the original video

into 9 segments and then extract multiple dynamic image from every segment. The

LSTM-autoencoder-based adversarial network is trained by ADAM (Kingma and Ba,

2014) optimizer. Each LSTM has 1024 units. The learning rate of ADAM is set to

0.0002, and momentums β1 = 0.5, β2 = 0.999.

2.8.3 Competing methods

To evaluate the perfomance of VidAnomaly, we compare it with existing methods.

DSEBMs. Deep structured energy based models (DSEBMs) (Zhai et al., 2016)

is a state-of-the-art deep learning method based on the energy function for anomaly

detection.

VAE. Variational Auto Encoder (VAE) (An and Cho, 2015) is a deep generative

model for anomaly detection. An et al. proposed to utilize the generative charac-

teristics of the variational autoencoder for deriving the reconstruction of the data to

detect anomalies.

AnoGan. Schlegl et al. (Schlegl et al., 2017) proposed to use deep generative

adversarial networks for anomaly detection. By concurrently training the two models,

i.e., a generative model and a discriminator, anomalies are identified on unseen data

based on unsupervised training of a model on normal data.

EGBAD. Zenati et al. (Zenati et al., 2018) leveraged GAN for anomaly detection,
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and achieved state-of-the-art performance on different datasets.

2.8.4 Ablation study

Dynamic image. Dynamic image in VidAnomaly system summarizes the video

segments into a visual representation in the format of 2D image and extracts the

temporal evolution information of the frames in the video.

We compare VidAnomaly with and without dynamic image. For VidAnomaly

without dynamic image, we select video frames with a constant time interval. As

shown in Table 2.1, VidAnomaly without dynamic image is denoted as VidAnomaly

(DI-) and VidAnomaly (DI-) fails to achieve good performance, becasue selecting

video frames with a constant time interval resulting in the temporal and critical

information loss.

Methods Accuracy Precision Recall F1

VidAnomaly (DI-) 0.8726 0.8312 0.8612 0.8459
VidAnomaly (LS-) 0.8406 0.8011 0.8212 0.8110
VidAnomaly 0.9416 0.9031 0.8845 0.8937

Table 2.1: Ablation Study of VidAnomaly on e-VDS dataset.

Therefore, we propose to extract dynamic image as an intermediate step to ob-

tain temporal evolution information. Benefiting from dynamic image, VidAnomaly

achieves better performance than that without dynamic image. This experiment

validates the effectiveness and necessity of dynamic image for video representation,

improving the performance of the system.

LSTM-autoencoder. LSTM-autoencoder further preserves the temporal infor-

mation of the sequence and yields the low-dimension latent representation of the input
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sequence. The representation is also used to reconstruct the input sequence and the

reconstructed sequence is fed into the discriminator network to achieve adversarial

learning. LSTM-autoencoder plays an important role in VidAnomaly.

To study the importance of LSTM-autoencoder in VidAnomaly, we compare Vi-

dAnomaly without (denoted as vidAnomaly (LS-)) and with LSTM-autoencoder as

shown Table 2.1. We adopt CNNs to extract the feature of multiple dynamic im-

ages. Since the correlation of the input sequence is not used, VidAnomaly without

LSTM-autoencoder degrades the performance of the system.

2.8.5 Comparison of different methods

Methods Accuracy Precision Recall F1

DSEBMs 0.8393 0.7953 0.8121 0.8036
VAE 0.8535 0.8125 0.8332 0.8227
AnoGan 0.8926 0.8756 0.8521 0.8636
EGBAD 0.9032 0.8842 0.8636 0.8737
Ours 0.9416 0.9031 0.8845 0.8937

Table 2.2: Performance evaluation on e-VDS dataset.

We show the comparison of different methods and the performance evaluation

in Table 2.2 and Table 2.3. The experimental results clearly illustrate that Vi-

dAnomaly achieves superior performance over other methods. In particular, our

proposed method achieves a high accuracy of around 0.94 on e-VDS dataset. More-

over, the accuracy and F1 score for CCV dataset are highest in these methods. CCV

dataset is more complicated because of longer video clips and similar scenes in normal

and abnormal samples. This indicates the potential use of VidAnomaly in practice.

Although DSEBMs works well on multiple datasets, VidAnomaly still outperforms.
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This is because we make full use of the latent representations both from the LSTM-

autoencoder network and the additional LSTM-encoder to detect anomalies. VAE

provides acceptable performance on some certain datasets. However, the main prob-

lem is that the fixed parametrization is usually oversimplified compared to the true

complex distribution of real-world data. This is not a problem of VidAnomaly because

the LSTM-autoencoder is forced to make the reconstructed samples to follow the dis-

tribution of true data and the model is more hierarchical. AnoGan and EGBAD, in

most cases, reach good performance. However, its overall performance is still not as

good as that of VidAnomaly, because the additional LSTM-encoder network further

makes the reconstruction error to be enlarged. In this way, the difference between

the two latent representations from LSTM-autoencoder network and the additional

LSTM-encoder is very high for abnormal samples.

Methods Accuracy Precision Recall F1

DSEBMs 0.8026 0.7432 0.7018 0.7219
VAE 0.7812 0.7022 0.642 0.6707
AnoGan 0.8211 0.7132 0.7563 0.7341
EGBAD 0.8132 0.7412 0.7023 0.7212
Ours 0.8303 0.7508 0.7326 0.7416

Table 2.3: Performance evaluation on CCV dataset.

2.8.6 Further analysis

In this subsection, we further demonstrate the reconstruction results for abnormal

samples and the distribution of the anomaly scores during the inference phase. This

allows us to better understand how VidAnomaly separates the abnormal samples from

the normal ones.
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Figure 2.9 illustrates how the LSTM-autoencoder reconstructs the abnormal sam-

ples. For any given abnormal sample that does not follow the distribution of target

class, R is confused and reconstructs the abnormal sample with an unseen distri-

bution. In this case, the LSTM-autoencoder fails to reconstruct the given abnormal

sample accurately because the model is trained on normal samples and its parameters

are only suitable for reconstructing the normal samples. In Figure 2.9, the normality

is the car and the first row is abnormal samples (watch, barcode, and chair). The

second row is the results of reconstruction and we can see that the LSTM-autoencoder

poorly reconstructs them and the reconstructed results are still similar to the normal

samples. Based on the high reconstruction error, the abnormal samples are detected.

Figure 2.10 provides the distribution of the anomaly scores during the inference

stage. We can observe how the normal samples are distinguished from the abnormal

ones. The range of the anomaly score is from 0 to 1 and the score obtained by the

difference between the two latent representations from RE and A, where 0 represents

the reconstructed sequence is the same as the input sequence and the input sample

is absolutely normal, while 1 represents the input sample is absolutely abnormal.

The hard-to-decide cases lie in the reject region, which requires human intervention.

Figure 2.10 (a) shows the anomaly scores on the e-VDS dataset and Figure 2.10 (b)

provides the anomaly score on the CCV dataset. It can be seen that the reject region

is larger on CCV dataset, which means that the CCV dataset is more complicated

and there are more normal samples and abnormal samples that are difficult to distin-

guish in this dataset. Although there are small overlaps, the normals and abnormals

are distinguished in most of data with good performance. This further shows the

effectiveness of VidAnormaly on anomalous video detection.
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(a) (b) (c)

Figure 2.9: The results of reconstruction for abnormal samples. The first row is the
example of input dynamic image. The second row shows the results of

reconstruction. The normality is car. Based on the high reconstruction error, the
abnormal samples are detected.

Target class Reject region Abnormal class

(a)

(b)

0 1

Figure 2.10: Distribution of the scores for both normal and abnormal test samples.
The blue squares are normal samples, while the red “×” represents the abnormal

samples. (a) The scores for e-VDS dataset. (b) The scores for CCV dataset.

47



Ph.D. Thesis - S. Li McMaster University – Computer Science

2.9 Conclusion

In this paper, we propose and develop a LSTM-autoencoder-based adversarial learn-

ing system, called VidAnomaly. Rather than directly processing every video frame

or extracting feature vectors from video, we introduce dynamic image to summa-

rize the video contents into a 2D image that encodes the temporal evolution and

preserve spatial information of the video content. To keep the temporal informa-

tion as much as possible, we segregate the video into segments and extract multiple

dynamic images from them. Without the abnormal samples in the training stage,

we propose LSTM-autoencoder-based adversarial learning network. The input in our

task is the sequence and LSTM-autoencoder yields the low-dimension latent represen-

tation and reconstruct the input sequence for the discriminator network to achieve

adversarial learning. The novelty of LSTM-autoencoder-based adversarial learning

network is to add an additional LSTM-encoder network that encoders the recon-

structed sequence to obtain the latent representation. The difference between the

two latent representation is further enlarged when the input is abnormal samples.

LSTM-autoencoder-based adversarial learning network is trained on normal samples

only and its parameter is only suitable for reconstructing normal samples. In the in-

ference stage, for a given abnormal sample, the model poorly reconstructs the input

sample and the reconstruction error would be high. Based on the high reconstruction

error, we achieve anomalous video detection without abnormalities in the training

stage. Experiments and analysis corroborate that different parts of VidAnomaly play

a vital role in anomalous video detection.
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Chapter 3

OED: Onsite Event Detection from

Surveillance Videos Based on

Vision Transformer in Adversarial

Learning

3.1 Abstract

With the increasing deployment of surveillance cameras, large volumes of video data

are continuously recorded. This puts great pressure on network and storage resources,

and it is infeasible to transmit all video data from cameras to the cloud servers.

Instead, we prefer to filter out irrelevant contents and only transmit the events of

interests on the edge computing devices, so as to suppress the network traffic and

reduce storage space. The existing approaches usually rely on pre-trained models
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to detect events. However, it is hard to enumerate all events of interest beforehand.

Obtaining suitable training data is also challenging. Therefore, the pre-trained model

is not reliable or practical. In this paper, we propose Onsite Event Detection (OED), a

system that enables real-time event detection on edge. OED first trains a transformer-

based autoencoder in adversarial learning to learn the spatial-temporal representation

of video data observed recently. Then it gains the ability to differentiate eccentric data

patterns of events from routine. OED also features an updating strategy that adapts

to the changing environment dynamically. As such, OED is capable of continuously

detecting events in video streams. Experimental results show that OED effectively

and efficiently detects events and substantially saves bandwidth.

3.2 Introduction

With the development of surveillance systems, millions of video cameras have been

deployed (Barrett, 2013) for security and safety purposes. These always-on cameras

continuously record large volumes of video data. Surveillance videos are uploaded to

cloud servers to be processed and analyzed. However, large segments of videos only

contain background or irrelevant contents such as empty streets, static scenes, sway-

ing tree leaves or moving but noisy routines. These video contents are meaningless

but place severe stress on network resources. People are usually interested in video

contents containing events of interest which are defined as activities or behaviors that

deviate from the routine. These events are also environmentally dependent (e.g., a car

appearing in an empty street is an event, while the regular traffic flow on the highway

is not). Our key observation is that surveillance video is highly redundant, contain-

ing a large number of frames with temporal similarity. It brings new opportunities
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to significantly reduce bandwidth usage.

In recent years, ”Edge Computing” has attracted much attention from researchers,

and it pushes the computation and storage resources closer to the location where

it is needed. In addition, edge computing also improves response times and saves

bandwidth (Xiao et al., 2019). With the advancement of IoT and its application

in smart cities, a huge number of terminal devices are deployed around the streets,

highways and factories for security surveillance. As illustrated in Figure 3.1, the

various edge devices are deployed and concurrently controlled by the cloud server.

In the existing and advanced surveillance system, the distributed monitors obtain

images or videos, sending a large volume of surveillance videos to cloud servers or

data centers, which brings problems including increasing the bandwidth consumption,

backbone network congestion, affecting real-time analysis, etc.

We anticipate that Onsite Event Detection from surveillance videos based on

vision transformer in adversarial learning will be widely applicable in the scenarios

like monitoring in smart homes, smart cities and Internet of Things due to real-time

analysis and in-situ detection capacity.

Despite its practical values, event detection on edge encounters several critical

challenges:

• Limited edge computing resources. Edge computing devices usually have limited

processing power compared to resource-rich data centers. Since running the

vision pipeline is typically computationally expensive, how to efficiently detect

events on edge is challenging.

• Requirements of online reliable detection. There are diverse events captured by

cameras, reflecting what is happening in daily life. Servers are expected to get
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Figure 3.1: Real-time surveillance video analysis using edge computing.
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access to all the useful information for generating different real-time insights

(e.g., traffic monitoring, people tracking, activity inference). It is nontrivial to

identify events accurately and in an online manner.

• Changing environment in surveillance. In real-world scenarios, a single cam-

era may capture the changing environment. For example, the background is

different after rain or snow; the traffic flow on the highway increases a lot at

rush hour; the color of tree leaves changes gradually from spring to autumn.

The detector should dynamically adapt to the changing environment in video

streams.

• Ambiguous definition of anomaly events. For example, the use of bicycles and

vehicles could be illegal in a pedestrian-only area but are legal and normal in

other scenarios. The detection of anomaly events is on a case-by-case basis.

• Dependence on highly-curated datasets. There are not sufficient annotated ab-

normal samples due to the rare occurrences of anomalies in real-life situations.

Besides, anomalous events are unbounded in real-world situations, so it is almost

impossible to collect all kinds of anomalies.

In this paper, we aim to achieve efficient video event detection and filter out

irrelevant contents on edge devices. In our system, the large amount of video data

do not have to be uploaded to the cloud servers or data centers. By uploading only

necessary data to servers, we significantly reduce the bandwidth consumption without

sacrificing the surveillance performance, hence it incurs low backbone bandwidth

consumption and latency.
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The existing approaches (Canel et al., 2019; Wang et al., 2018a) rely on pre-

trained models to detect specific events in a supervised way. Since it is challenging to

enumerate all events of interest, the pre-trained models may leave out undefined but

relevant events. Recently, many studies have investigated abnormal events detection

that is based on an autoencoder in videos (Zhao et al., 2017; Hasan et al., 2016; Zhao

et al., 2011), which achieves good performance.

Our architecture is based on an autoencoder in unsupervised learning. It learns

the normal pattern via an autoencoder and then reconstructs normal events with

a small reconstruction error before detection in the training stage. We obtain the

trained model in the training stage and abnormal events are detected based on a large

reconstruction error in the inference stage. Therefore, OED with an autoencoder is

able to perform online reliable detection and rely less on the datasets. This is because

only normal samples are required to learn a model to represent normal events in the

training stage. Thus, there is no need to collect abnormal samples for training.

Also, the normal and abnormal events are defined without ambiguousness since we

only collect enough normal events for training and the events that do not belong to

normal events are abnormal.

We notice that the autoencoder with convolutional neural networks (CNNs) (Le-

Cun et al., 1989) is currently dominating in anomaly detection in computer vision

tasks (Li and He, 2019; Sabokrou et al., 2018; Ionescu et al., 2019). However, there

are a few inherent limitations of convolution operators in video tasks (Bertasius et al.,

2021). 1) CNNs have strong inductive biases like local connectivity and translation

equivariance. 2) Kernels of convolution are specifically designed to obtain short-range

spatial and temporal information, so it is difficult to capture long-range dependencies
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that extend beyond the receptive field among video frames.

To address the issues above, we propose Vision Transformer autoencoder to pro-

cess videos for our task. Vision Transformer (ViT) has shown competitive perfor-

mance on computer vision tasks such as object detection (Beal et al., 2020), action

recognition in video (Bertasius et al., 2021), multitask pretraining Chen et al. (2021).

ViT without using convolution or pooling is based on Transformer (Vaswani et al.,

2017) and it outperforms CNNs if the dataset for pretraining is large enough (Doso-

vitskiy et al., 2020). ViT (Dosovitskiy et al., 2020) interprets an image as a sequence

of tokens (analogous to words in natural language processing (NLP)), which achieves

comparable classification accuracy with smaller computational budgets on the Ima-

geNet (Deng et al., 2009). ViT relies on globally-contextualized representation with

self-attention pattern and demonstrating advantages in non-local contextual depen-

dencies (Lee et al., 2021) and efficiency. Recent work in the still image domain (Carion

et al., 2020; Dosovitskiy et al., 2020; Zhao et al., 2020) has shown that ViTs are faster

at training and inference than CNNs, enabling better learning capacities for the same

computational budget. In our task, the aim is to establish an efficient and real-time

system for abnormal video event detection and saving bandwidth on edge. Therefore,

the architecture based on ViT autoencoder is more applicable to our system.

Another problem of autoencoder-based methods is that it is difficult to guarantee

that larger reconstruction errors for abnormal events necessarily happen using trained

model Liu et al. (2018) because as the complexity of the images increase, it is diffi-

cult for autoencoders to obtain high-quality reconstruction and reconstructed images

start to get blurry (Wang et al., 2018b). Therefore, we propose to integrate genera-

tive adversarial networks (GAN) into our system to establish GAN-style autoencoder
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architecture for enlarging the reconstruction errors for abnormal samples. The adver-

sarial learning mechanism is beneficial for capturing the normal data distribution as

much as possible in the training stage by distinguishing between input data and re-

constructed one. After adversarial training, the ViT-based autoencoder reconstructs

the normal samples with a minimum reconstruction error to successfully fool the dis-

criminator. Based on this, the ViT-based autoencoder only learns the distribution of

normal samples and the reconstruction error corresponding to normal events is small.

In the inference stage, reconstruction errors corresponding to abnormal events would

be large enough to be detected. Hence, we achieve an unsupervised learning manner

by adversarial training (only normal samples are required for training).

Besides, OED continuously updates the model using new observations, allowing it

to adapt to new event patterns dynamically in the environment. Updating has little

time cost because re-training the model with a small number of training samples only

takes fewer iterations to converge. As such, OED executes on edge with only CPU

power. It detects up to 90% events and reduces bandwidth consumption by 2 to 15

times depending on surveillance scenarios and parameter selection.

We summarize the following components to address the challenges of our task:

(1) We propose and build a real-time surveillance system based on ViT autoencoder

in adversarial learning, which improves response times and saves bandwidth. (2)

The system architecture coherently integrates ViT-based autoencoder to model the

temporal correlation among frames based on an unsupervised manner, defining the

normal and abnormal samples without ambiguousness, which also performs online

reliable detection and relies less on the highly-curated datasets. (3) Our system

“OED” continuously updates the model using new observations with little time cost
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for adapting to the dynamical environment in various surveillance scenarios.

The rest of this chapter is organized as follows. A brief review on related work

is given in Section 3.3. Section 3.4 presents the design and model for OED system.

Section 3.5 explains the implementation details and demonstrates the experimental

results. Finally, the conclusion follows in Section 3.6.

3.3 Related Work

Researchers have explored efficient use of bandwidth on camera networks (Pakha

et al., 2018; Zhang et al., 2015; Chen et al., 2015). Zhang et al. (Zhang et al., 2015)

designed a wireless distributed surveillance system that minimizes bandwidth usage

through object-based frame selection and content-aware traffic schedule. However,

this system was designed to suppress redundancy among cameras in a cluster. Re-

dundant data from individual cameras are not compressed. Pakha et al. (Pakha

et al., 2018) proposed protocols to optimize bandwidth using superposition coding.

The protocols entrust servers to decide what/when to upload from cameras. Although

it saves bandwidth significantly, the delay cannot be estimated because of the itera-

tive communication workflow and server-side latency. In contrast, our work aims to

save bandwidth by detecting events of interest and transmitting detected events only.

Efforts have been made to filter relevant events on edge. Pre-trained models are

generally used for detecting specific events. Canel et al. (Canel et al., 2019) designed

an edge-to-cloud system using edge filters to upload only relevant video frames. They

utilized “micro-classifiers” to detect events on edge nodes. Wang et al. (Wang et al.,

2018a) explored an early discard strategy to select frames to send between the drone

and a cloudlet. This system performs detection using DNNs and classifiers (SVMs) for
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each task. Our work shares their strategy of discarding irrelevant frames for saving

bandwidth. However, since it is not possible to enumerate all events beforehand,

pre-trained model are not suitable to detect generic events of interest.

Previous works on video anomaly detection are also relevant to our work. Zhao

et al. (Zhao et al., 2011) proposed a sparse coding approach with the hand-crafted

feature to detect unusual events in videos. However, their work is built on low-level

features, and are not in a setting of edge computing. Hasan et al. (Hasan et al.,

2016) leveraged a fully convolutional autoencoder to learn regularity across the video

data. Further, 3D convolutional autoencoder (Zhao et al., 2017) and convolutional

LSTM autoencoder (Chong and Tay, 2017) have been used to learn spatio-temporal

normal patterns. Hinami et al. (Hinami et al., 2017) explored joint detection of

abnormal events in videos by plugging the CNN model into anomaly detectors. These

approaches have not explored online detection, requiring the video data to train the

model beforehand.

Recently, autoencoders have also been applied to other video processing tasks such

as video summarization (Zhang et al., 2018; Cai et al., 2018; Mahasseni et al., 2017),

video highlight detection (Yang et al., 2015), and video representation (Srivastava

et al., 2015). For instance, Zhang et al. (Zhang et al., 2018) proposed to generate

short video summaries by employing computationally expensive object detection and

tracking to obtain super-segmented “motion clips”, and then processing with an online

motion autoencoder. With different application scenarios, we here explore the efficient

architecture to detect events of interest and filter out the irrelevant events.

Our method is more closely related to leveraging self-attention as a substitute for

convolution (Ren et al., 2018; Cordonnier et al., 2019; Zhao et al., 2020). In these
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work, they use individual pixels as queries. To keep a low memory and an accept-

able computational cost, they must restrict the scope of self-attention to locality or

employ global self-attention on heavily downsized versions of the image. An alter-

native strategy is Vision Transformers (Dosovitskiy et al., 2020) which were shown

to produce outstanding results image classification. ViT has been recently adopted

for video generation (Weissenborn et al., 2019). We note that ViT has been used

on top of convolutional feature maps for action localization and recognition (Girdhar

et al., 2019), video classification (Wang et al., 2018c), and group activity recognition

(Gavrilyuk et al., 2020).

Figure 3.2: The structure of ViT (Dosovitskiy et al., 2020).

Vision Transformer (ViT) (Dosovitskiy et al., 2020) is a pure transformer directly

applicable to image classification task using the sequences of image patches. Figure

3.2 shows the structure of ViT. To handle 2D images, the image is projected into a
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sequence of flattened 2D patches. Because the transformer has fixed widths in all

of its layers, a trainable linear projection maps the vectorized patch to the given

dimension, the output of which is the patch embeddings.

Figure 3.3: The structure of ViT in image processing (the image from (Han et al.,
2022)).

A simple way to apply ViT model for the image generation task is to directly

change the structure from CNNs to vision transformers. Jiang et al. (Jiang et al.,

2021) proposed TransGAN based on GAN with the ViT architecture. Different from

classification or detection tasks, the outputs of the model are images. Figure 3.3 shows

using transformers for generation task. The images are first encoded to a sequence of

image patches and the ViT encoder takes the sequence as input, enabling the decoder

to successfully generate desired images. The GAN-based models directly learn a
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decoder to generate image patches using linear projection. On the other hand, the

transformer-based models train an auto-encoder for images and use an auto-regression

ViT model to predict the image patches. A meaningful application for future research

is to design different architectures for various image processing tasks. In this paper,

we extend the ViT to anomaly detection in videos by integrating autoencoder in

adversarial learning for anomaly detection.

3.4 System Design

To detect the events of interest on edge devices, we present a system called OED,

shown in Figure 3.4. Different from the video filtering approaches based on frame-by-

frame processing (Wang et al., 2018a; Canel et al., 2019), OED takes an entire video

clip as input to detect events. Therefore the temporal information of events is best

preserved. Meanwhile, processing an entire clip at once is more efficient than frame-

by-frame processing. We set the clip length as 10 seconds, which is large enough to

capture an event in a clip, and small enough so that frames of event detected account

for a significant portion in a clip (Blair and Robertson, 2015; Doshi and Yilmaz,

2020).

3.4.1 ViT-based Autoencoder

An autoencoder neural network is an unsupervised learning model. It is trained to

set the output equal to the input Ng et al. (2011). The autoencoder is usually used

to learn a compressed representation of data. An autoencoder is organized into an

encoder function and a decoder function, parameterized by θ and θ′. The encoder

74



Ph.D. Thesis - S. Li McMaster University – Computer Science

Clips

ViT a in adversarial learning in Fig. 2utoencoder

Decomposing each frame into non-overlapping patches

Figure 3.4: Overall system pipeline. Video clips are obtained from the camera and
then we decompose each frame into non-overlapping patches (Dosovitskiy et al.,

2020). The patches are flattened into vectors which are fed into ViT-based
autoencoder in adversarial learning (as shown in Figure 3.5) for training. Finally,
abnormal events detected by the trained model from new video data are uploaded

to the severs.
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Linear Projection of Flattened Patches

Vision Transformer

MLP

Real frame vs. Reconstructed frame

{
ViT-based autoencoder

{
Discriminator

f(.)

Figure 3.5: Overview of ViT-based autoencoder in adversarial learning. We take one
frame as an example to show the process in training. Both the autoencoder network

and the discriminator network are designed based on ViT. The two networks
reinforce each other and they are in adversarial learning and unsupervised manner.
The ViT-based autoencoder learns to reconstruct the normal samples and tries to
fool the discriminator so that it speculates that the reconstructed sample is the

original one. On the other hand, the discriminator distinguishes the original samples
from reconstructed ones and is familiar with the concept of normal samples.
Therefore, the discriminator will reject the reconstructed samples. The two

networks play a game, and after training the ViT-based autoencoder reconstructs
the normal samples with a minimum reconstruction error to successfully fool the
discriminator. The two networks both learn the distribution of normal samples.
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function h = fθ(x) first maps the input vector x to a latent space representation.

Then, the decoder function produces the output r = gθ′(h) with the same number of

the input vectors. The learning process is to minimize the following loss function by

applying backpropagation with stochastic gradient descent (SGD):

1

n

n∑
i=1

L(xi, gθ′(fθ(x
i))) (3.4.1)

where each xi represents a training sample. In general, L is defined as the mean

squared error.

Convolutional autoencoder has been widely used in computer vision tasks (An

and Cho, 2015; Li and He, 2019; Liu et al., 2018; Doshi and Yilmaz, 2020). However,

as mentioned in the Introduction, there are a few inherent limitations of convolution

operators in video tasks. Therefore, We propose ViT-based autoencoder in our archi-

tecture to capture long-range dependencies in videos and reduce the computational

burden. The self-attention pattern in the ViT-based autoencoder captures both local

and global long-range dependencies in videos by directly comparing feature activa-

tions at all space-time locations. This extends beyond the receptive field of traditional

convolutional filters. Furthermore, unlike (Dosovitskiy et al., 2020), our work is based

on unsupervised learning, i.e., only normal samples are required in the training stage,

so there is no supervised information guiding the learning process. Hence, instead of

general neural networks (e.g., for classification), ViT-based autoencoder is capable to

ensure the intrinsic information to be preserved, thus achieving unsupervised learning

manner.

Formally, given a video clip X ∈ RH×W×3×F consisting of F frames of size H ×

W in 3 channels (RGB). The standard Transformer takes a 1D sequence of token
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embeddings as input in the field of NLP(Dosovitskiy et al., 2020). To handle 2D

frames in videos, a frame is decomposed into N non-overlapping patches and the size

of each patch is P × P , so a frame has N patches (N = HW/P 2). The patches are

flatten into vectors x(p,t) ∈ R3×P 2
, where p is spatial locations and t denotes the index

over frames (p = 1, 2, ..., N and t = 1, 2, ..., F ).

Next, we linearly map each patch into an embedding vector z
(0)
(p,t) ∈ RD with a

learnable matrix E ∈ RD×3×P 2
(Dosovitskiy et al., 2020):

z
(0)
(p,t) = Ex(p,t) + epos(p,t) (3.4.2)

where epos(p,t) ∈ RD represents a learnable positional embedding for encoding the spatial

and temporal position of each patch. z
(0)
(p,t) (p = 1, 2, ..., N and t = 1, 2, ..., F ) denotes

the input to the Transformer.

For reconstruction, unlike CNN-based autoencoder that requires encoder and ex-

pensive decoder with convolutional and transposed convolution layers, the decoder

of ViT-based autoencoder is implemented with simple linear layers. The ViT-based

autoencoder is trained to reconstruct the input by the output tokens from the trans-

former. Fig. 3.5 shows the architecture of ViT-based autoencoder. “Vision Trans-

former” calculates the temporal attention by comparing each patch to all the patches

in the same spatial location among other frames (Bertasius et al., 2021).

The objective of the ViT-based autoencoder is to reconstruct the original frame.

For this task, we use the L1-loss between the original and the reconstructed frames.
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Given input video frames Z = { z1, ..., zN}, ViT-based autoencoder sequentially out-

puts the reconstruction Y = { y1, ..., yN} where yt ≈ zt, t = 1 to N . The reconstruc-

tion error of the Z is formulated by:

Lreconstruction(Z) =
n∑
t=1

‖zt − yt‖2 (3.4.3)

3.4.2 ViT-based autoencoder in adversarial learning

Autoencoder has the ability to represent data patterns by training with observed

video data. Anomaly events to be detected usually contain eccentric or unusual

data patterns, which are not expected to be faithfully reconstructed by the learned

autoencoder. In other words, the learned autoencoder is able to differentiate events

from the routine. So we train an autoencoder to represent the current routine, and

detect events by checking reconstruction errors from the autoencoder.

However, autoencoder-based methods cannot always guarantee a larger recon-

struction error for abnormalities due to the indiscriminative feature learning in the

training stage (Liu et al., 2018). Autoencoders are not that efficient compared to

GANs in reconstructing an image. As the complexity of the images increase, it is

difficult for autoencoders to obtain high-quality reconstruction and images start to

get blurry (Wang et al., 2018b).

To overcome the drawback of autoencoders, we propose ViT-based autoencoder in

adversarial learning in our architecture. Figure 3.5 illustrates our architecture, which

includes the ViT-based autoencoder network and the discriminator network. The two

networks reinforce each other. The ViT-based autoencoder network refines the input

and gradually injects discriminative samples into the learning process to make the
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normal and abnormal samples more separable for the discriminator network. In the

training stage, the training data is composed of only the normal samples. Then, the

ViT-based autoencoder learns to reconstruct the normal samples and tries to fool the

discriminator. Whereas, the discriminator learns to distinguish input samples from

reconstructed ones. In this way, the discriminator learns merely the concept charac-

terized by the space of normal samples, giving feedback to the ViT-based autoencoder.

On the other hand, the ViT-based autoencoder learns to efficiently reconstruct the

normal samples, while for abnormal samples it fails to reconstruct the input accu-

rately. Thus, the abnormalities are detected in the inference stage. Based on this, we

achieve an unsupervised learning design in our system without abnormalities in the

training stage.

In addition, the GAN-style methods are always unstable (model collapse and

non-convergence) due to the imbalance of capability between the generator and the

discriminator in training (Chen et al., 2020). ViT-based autoencoder in adversarial

learning balances the autoencoder and the discriminator, leading to a more stable

training process with lower training loss and high-quality reconstruction.

The discriminator network distinguishes between the input frames X and the

reconstructed frames X̃. The structure is the same as the ViT-encoder but the

parameters are different. We append a 1-hidden-layer Multi-layer Perceptron (MLP)

for discriminating the real frame or the reconstructed one. This network allows the

whole model to achieve an adversarial scheme. The loss function is:

LD =
∥∥∥f(X)− f(X̃)

∥∥∥
2

(3.4.4)

where f(.) is a function that outputs an intermediate layer of the discriminator.

80



Ph.D. Thesis - S. Li McMaster University – Computer Science

The objective function for ViT-based autoencoder in adversarial learning combines

the two loss functions:

Loverall = wRLreconstruction + wDLD (3.4.5)

where wR and wD are the weighting parameters. Lreconstruction and LD represent the

two loss functions.

3.4.3 Event Detection

Once the model is trained, we compute the reconstruction error e(x) = Lreconstruction(x)

of the video data for events detection. In the runtime, each video clip is input to the

trained model, and the model outputs reconstruction errors. As the model identifies

the majority of events, the output indicates the normal behavior. The reconstruc-

tion error indicates the probability of the input approaching the normal behavior. A

smaller reconstruction error would imply that the input is normal.

In operation, we calculate the event score using the reconstruction errors. The

event score is compared with a threshold for each real-time input. An event score

lower than the threshold would be considered as normalities; otherwise, it is abnor-

mal. For the threshold selection, we use Peaks-Over-Threshold (POT) (Siffer et al.,

2017). Given a set of historical event scores, there are two steps: 1) POT filters

out samples below a specific low quantile of the entire population, fits these samples

with a Generalized Pareto Distribution (GPD), and obtains the GPD function; 2) it

determines the threshold using the function and an anomalous quantile among the

entire population.

We then normalize the reconstruction error of video clips in the video to calculate
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event scores:

s(x) =
e(x)−minxe(x)

maxxe(x)
(3.4.6)

Event scores are used to detect events of interest and the range is [0,1]. A video clip

that contains events should have a high event score. A lower event score indicates no

presence of abnormal events. In real-time system, we set the minxe(x) and maxxe(x)

according to historical data because future video data is unknown.

3.4.4 Model Updating

The proposed OED system identifies an event based on recent observations. As an

analogy, a speeding car on the highway can be detected based on the observation

of regular flow in the past few minutes. Hence, the model should be able to rep-

resent the recent pattern of the video contents. We propose to use sliding window

updating strategy for OED. As shown in Figure 3.6, when OED scans through the

video stream for event detection, the ViT autoencoder is continuously updated using

several previous observations.

Figure 3.6: Updating strategy. Using previously observed data to re-train the model
when the reconstruction error is larger than a threshold.

Specifically, given a video V = {Xi}Ni=1, the ViT-based autoencoder is trained

with initial portion of the video to gain the essential reconstruction ability. For
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model updating at t-th video clip, the model is re-trained using m previous observed

clips with the learning objective:

1

m

m∑
i=1

Lreconstruction(Xt−i) (3.4.7)

For efficiency consideration, we update the model only when the reconstruction

error is larger than a threshold. Since the model has already been initialized and only

a small number of training samples are needed for updating, the re-training process

usually takes fewer iterations to converge, which has little time cost. Moreover, the

updating strategy enables OED to adapt to new trends dynamically in changing

surveillance environment.

3.5 Experiments

In this section, we conduct experiments to demonstrate that OED significantly re-

duces bandwidth usage while maintaining good accuracy. We also evaluate the effec-

tiveness of the updating strategy and the time cost.

3.5.1 Datasets

We collected 1630 video clips from surveillance videos in three different scenarios:

neighbourhood street, subway station and industrial park. Each video clip is captured

at a different time with a constant length of 10s. We annotated each video clip with

the binary label {1, 0} to indicate whether it contains events or not. Details about

datasets are as follows:
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Arthur Street has 180 video clips which record street views captured from

a street camera deployment. There are 63 clips containing events. The dataset is

downloaded from Youtube with a resolution of 640 × 360. Annotated events include

walking pedestrians and passing vehicles. Background colour change is also recorded

in this dataset.

Subway Exit / Entrance has 935 video clips. 358 clips contain events. This

dataset consists of more than 2 hours long surveillance videos captured from a subway

station with a resolution of 480 × 360. One video monitors the subway exit and the

other monitors the subway entrance. The dataset is provided by (Adam et al., 2008).

Annotated events include: entering the entrance; coming out from the exit; waiting,

talking and walking around; train coming; getting on/off the train.

Industrial Park consists of the video collected from a camera deployment in

an industrial park with a resolution of 352 × 288. There are totally 515 video clips.

19 clips contain events, reflecting the typical outdoor surveillance scenario. The

background in videos involves swaying tree leaves, shadows and lighting changes.

Events in this dataset are very rare, which are mainly caused by bicycles, pedestrians

and animals.

3.5.2 Setup

All frames are resized to 224×224 and the patch size is 16×16. OED is implemented

in Python and trained on a workstation with core i7-7700k 4.20GHz processor and

32GB RAM using Ubuntu system with graphics card GeForce GTX 1080. In our

experiment, after training, we only use a quad-core Intel CPU that is representative

of an edge node. All experiments are conducted using TensorFlow (Abadi et al.,
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2016).

Recall Precision F1 Score Uploaded Fraction Events Fraction
Arthur Street 0.91 0.60 0.72 0.56 0.37
Subway Exit 0.89 0.68 0.77 0.60 0.46

Subway Entrance 0.91 0.82 0.86 0.68 0.62
Industrial Park 0.79 0.41 0.54 0.07 0.04

Table 3.1: Accuracy and uploaded clip fraction on three datasets

Figure 3.7: Event scores of a video sequence from Arthur Street dataset. Blue parts
is detected event clips at a chosen threshold. The left image shows “passing vehicle”

and the right image shows “walking kid”.

3.5.3 System Performance

Performance Indicators

To evaluate the performance of event detection and bandwidth saving, we adopt the

similar evaluation strategies in (Wang et al., 2018a; Canel et al., 2019). The classic
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computer vision task metrics, precision, recall and F1 score are used to measure the

event detection accuracy. Precision determines what fraction of bandwidth is used to

send data with events. A poor precision indicates detection results contain too many

false positives, which result in overload for bandwidth. Recall is the fraction of events

that are successfully retrieved. Since we do not want to miss important information

such as suspicious behaviors, a practicable approach is to achieve a higher recall and

a slightly lower precision. F1 score is the harmonic mean of the precision and recall,

using as an overall measure of the accuracy. For bandwidth saving, we are interested

in the average bandwidth demand, which is calculated as the total volume of uploaded

data divided by the video duration.

Events Detection Accuracy

The output of OED is the event score of the current video clip, as shown in Figure 3.7.

Up to 90%) can be detected. Figure 3.8 relates the uploaded clips fraction with recall

and precision on different surveillance scenarios. This figure also shows the trade-off

between event recall and precision. It allows us to evaluate how many fractions of

clips need to be uploaded to achieve good accuracy.

Events occur very frequently in Arthur Street and Subway Exit/Entrance datasets.

There are about half of the clips containing events. When uploading about 60% of

clips, OED is able to achieve a high recall while keeping a good precision. The

majority of events are detected, and most of the uploaded clips are true positives.

For Industrial Park dataset, recall is good even only upload 7% of video clips. It

indicates bandwidth is saved impressively. But achieving a better recall may lead to

a slightly lower precision. Table 3.1 provides quantitative results on events detection
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Figure 3.8: Relation between events recall, precision and uploaded clips fraction.
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accuracy. Up to 90% of events are correctly detected, while only uploading 7% to

68% of the video clips depending on different surveillance scenarios.

ViT-based autoencoder in adversarial learning enables our system to capture the

normal data distribution as much as possible in the training stage, thus enlarging the

reconstruction errors for abnormal samples in the inference stage. Therefore, OED

achievers adversarial mechanism, making high-quality reconstruction based on ViT

autoencoder. We compare OED with and without adversarial learning. For OED

without adversarial learning, we only use ViT autoencoder. As shown in Table 3.2,

OED without adversarial learning fails to achieve good performance because autoen-

coder without adversarial training results in low reconstruction errors for abnormal

data. We observe that the recall is further improved (F1 score from 0.81 to 0.86).

Therefore, we propose adversarial learning in our architecture to enlarge the recon-

Methods Recall Precision F1 Score
Without adversarial learning 0.87 0.77 0.81
With adversarial learning 0.91 0.82 0.86

Table 3.2: Recall, precision and F1 scores without and with adversarial learning on
“Subway Entrance” dataset

struction errors for abnormalities in the inference stage. Benefiting from adversarial

learning, OED achieves better performance than that without adversarial learning.

This experiment validates the effectiveness and necessity of adversarial learning for

capture the normal data distribution, improving the performance of our system.

Furthermore, we show the comparison of different methods and the performance

evaluation in Table 3.3. Traditionally, the features of video clips are extracted from
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Methods Recall Precicion F1 Score
MobileNet with (Srivastava et al., 2015) 0.85 0.65 0.74
MobileNet with VAE 0.82 0.61 0.70
Ours 0.89 0.68 0.77

Table 3.3: Recall, precision and F1 scores for different methods on “Subway Exit”
dataset

the higher layer of CNNs. Because our system is real-time event detection on edge.

Therefore, we also use MobileNet (Howard et al., 2017) to extract features from each

frame. Compared with other complicated models, MobileNet has fewer model param-

eters and the feature is extracted in the terminal devices for edge computing. Each

frame feature is a 1024-dimensional vector and extracted from the fully connected

layer of pre-trained MobileNet. After that, feature vectors are used as the inputs.

The method based on Long Short-Term Memory (LSTM) autoencoder (Srivastava

et al., 2015) with MobileNet learns spatio-temporal normal patterns for detection.

However, different from CNNs that is capable of convolution (weight-sharing and

local-connectivity), ViT relies on globally-contextualized representation, replacing al-

together the convolution operator with self-attention patterns and demonstrating ad-

vantages in non-local contextual dependencies. Therefore, ViT captures long-range

dependencies that extend beyond the receptive field among video frames.

Variational Auto Encoder (VAE) (An and Cho, 2015) is a deep generative model

for anomaly detection. An et al. proposed to utilize the generative characteristics

of the variational autoencoder for deriving the reconstruction of the data to detect

anomalies. However, the main problem is that the fixed parametrization of VAE is

oversimplified compared to the true complex distribution of real-world data. This is

not a problem of ViT-based autoencoder because it is forced to make the reconstructed
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samples to follow the distribution of true data and the model is more hierarchical.

Saving Bandwidth

We demonstrate that OED achieves the goal of saving network bandwidth while

keeping a good accuracy. Specifically, performing filtering with OED can reduce

average bandwidth consumption by 2 to 15 times compared with uploading all video

data to servers. In our evaluation, average bandwidth is the total uploaded video

data divided by the original video duration. Figure 3.9 shows results on five video

data. In this figure, we evaluate two techniques for uploading video from the edge:

run OED on the edge, and then select event clips to upload; Directly upload full video

data.

The amounts of bandwidth saved also depend on the rarity of events. The lower

the frequency of events in the video, the more bandwidth OED will save. Experi-

mental results show that filtering on Industrial Park saves more bandwidth than the

other surveillance scenarios.

3.5.4 Evaluation of Updating Strategy

OED uses an updating strategy for event detection. The model is updated using

previous observations when reconstruction error is larger than a threshold. In this

section, we evaluate the effectiveness of the updating strategy, which is designed to

capture the change of routines in the video. We compare our approach with one using

offline initially trained model throughout the entire video. Specifically, the approach

without the updating strategy only trains the model using the first 16 clips of video

before the detection process.
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Figure 3.9: Bandwidth saving of OED with same accuracy on Table 3.1. A: Arthur
Street; B: Subway Exit; C: Subway Entrance; D: Industrial Park.
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Recall Precision
(Update / No Update) (Update / No Update)

Arthur Street 0.91 / 0.57 0.60 / 0.54
Subway Exit 0.89 / 0.56 0.72 / 0.42

Subway Entrance 0.91 / 0.65 0.73 / 0.55
Industrial Park 0.79 / 0.41 0.41 / 0.30

Table 3.4: Comparison of events detection accuracy: updating vs. no updating.

Figure 3.10 shows clip reconstruction errors with the above two approaches on

Arthur Street dataset. We demonstrate that the approach with the updating strategy

effectively adapts to environmental changes in the video. At 85-th video clip, the

background color changes to black and white, which causes a large reconstruction

error on both approaches. The approach with updating strategy adapts to the new

trends immediately, while the other one fails to detect events thereafter. Besides, the

model without updating strategy cannot avoid concept drift in a gradually changing

surveillance environment.

We also compare the event detection accuracy of the two approaches when setting

the same uploaded clip fraction in Table 3.4. The model with updating strategy

performs favorably against the other approach in all datasets, showing its effectiveness

in event detection.

3.5.5 Time Cost

Since our approach is edge-based, only limited computational resources are available.

We evaluate the efficiency of OED by observing the processing time. Table 3.5 shows

the processing time of OED. Tvideo is the duration of the original video. T1 is the

ViT-based autoencoder time. T2 is the time spent on initial training. T3 represents
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Figure 3.10: Clip reconstruction errors on Arthur Street dataset with the updating
strategy and without the updating strategy. The background color in the video

changes at the clip number of 85. Higher values indicate events in clips.
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the time for model updating and event detection. T = T1 + T2 + T3 is the total

processing time. From the results in the table, we can get the following observations:

(1) Vision transformer T1 is the most time-consuming part. The complexity of T1

appears to be linear with regard to the video duration. (2) Initial training time T2

is typically short because only small number of clips are used for training. (3) The

updating and event detection time T3 is nonlinear with the video duration because

the updating frequency is depending on surveillance scenarios. (4) For all scenarios,

the total processing time T is much smaller than the video length Tvideo. At run time,

we run our system on a CPU that is representative of an edge node and the processing

time is about 85fps (frames per second) on the surveillance scenarios. That means

OED qualifies for real-time task processing.

T1 T2 T3 T Tvideo
Arthur Street 5.16 2.71 2.96 10.83 30.50
Subway Exit 8.44 1.64 6.09 16.17 43.27

Subway Entrance 19.48 3.48 14.71 37.64 96.17
Industrial Park 14.55 2.58 7.76 24.89 85.92

Table 3.5: Processing time (minutes) of OED.

3.5.6 Visualization

We visualize the detection results of our approach in this section. Figure 3.11 shows

some results on Arthur Street dataset. Most detected events are caused by moving

objects of interest in a quiet environment, such as pedestrians walking down the side-

walk (Figure 3.11(a)), the fast passing vehicle (Figure 3.11(b)), adults and children

going out of the building (Figure 3.11(c)). It also illustrates that background color
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changes in the video do not affect event detection (Figure 3.11(c)). Several missing

events are due to small or distant objects such as a man in the distance (Figure

3.11(d)).

Figure 3.11: Visualization of events in Arthur Street dataset. (c) and (d) are
captured after background color changes.

Figure 3.12 displays the results in Subway Exit/Entrance dataset. Most of the

detected events are typical daily happening activities: walking to the entrance (Figure

3.12(a)), walking out from the exit (Figure 5(b)). We also illustrate detected unusual

activities such as without payment (Figure 3.12(c)) and wrong walking direction

(Figure 3.12(d)). These two unusual events have higher event scores (0.53 and 0.6)
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than other detected ones (mostly between 0.1 to 0.3).

Figure 3.12: Visualization of events in Subway Exit/Entrance dataset.

For Industrial Park dataset, events are very rare. We visualize some detected

events in Figure 3.13: walking around (Figure 3.13(a)) and riding the bicycle (Figure

3.13(b)). False detected events are mainly resulted from nuisance sources such as

lights and shadows.
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Figure 3.13: Visualization of events in Industrial Park dataset.

3.6 Conclusion

We studied the problem of event detection in surveillance videos. We present an

efficient and effective system OED that only uploads event clips to servers to save

bandwidth. OED learns video patterns from recently observed data based on ViT-

based autoencoder in an unsupervised manner, so it gains the ability to differentiate

events from routine. ViT-based autoencoder system is trained on normal samples

only and its parameters are only suitable for reconstructing normal ones. In the

inference stage, for a given anomaly sample, the model poorly reconstructs the input

sample and the reconstruction error would be high. The high error indicates the

input sample is abnormal. Based on this, we achieve unsupervised learning design in

our system without abnormal samples in the training stage. The updating strategy

enables OED to adapt to new trends in videos dynamically. Evaluations demonstrate

that OED reduces bandwidth usage significantly while maintaining a good event

detection accuracy.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

Video data is challenging to represent and model due to its high dimensionality, noise,

and a huge variety of events among frames. Anomalies are also highly contextual.

The core problem for anomaly detection for videos is learning the discriminative video

descriptor with only normal samples in the training stage. The descriptor should pre-

serve both spatial and temporal information thus can be easily detected. To generate

the discriminative video descriptor, the following questions should be answered. 1.

How to preserve the entire temporal information of videos with various lengths. 2.

How to capture the distribution of training data. 3. How to detect anomalies us-

ing video descriptors. In this thesis, we try to answer these questions and propose

effective methods that preserve the temporal information of the entire video. Mean-

while, for anomaly detection for videos, the end-to-end supervised learning methods

are only applicable to labeled video data where events of interest are clearly defined.

Furthermore, the cost of labeling every type of event is extremely high. Even so,
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it is not possible to cover every past and future events. The recorded video data is

likely not long enough to capture all types of activities, especially abnormal events

which rarely or never occurred. Our approaches achieve unsupervised learning based

on reconstruction and adversarial learning.

There are two types of anomaly detection for videos: anomalous video detection

and anomalous event detection in videos. Anomalous video detection is related to

organizing video resources, which enables video-sharing platforms or public sectors

to focus on the specific video contents and filter unconsidered ones; anomalous event

detection in videos is applicable in the scenarios like monitoring in smart homes, smart

cities and Internet of Things, which allows surveillance cameras to upload events of

interest so as to suppress the network traffic and reduce storage space in the cloud.

We first propose and develop a LSTM-autoencoder-based adversarial learning sys-

tem, called VidAnomaly. Rather than directly processing every video frame or ex-

tracting feature vectors from video, we introduce dynamic image to summarize the

video contents into a 2D image that encodes the temporal evolution and preserve

spatial information of the video content. To keep the temporal information as much

as possible, we segregate the video into segments and extract multiple dynamic im-

ages from them. Without the abnormal samples in the training stage, we propose

LSTM-autoencoder-based adversarial learning network. The input in our task is the

sequence and LSTM-autoencoder yields the low-dimension latent representation and

reconstructs the input sequence for the discriminator network to achieve adversar-

ial learning. The novelty of LSTM-autoencoder-based adversarial learning network

is to add an additional LSTM-encoder network that encoders the reconstructed se-

quence to obtain the latent representation. The difference between the two latent
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representations is further enlarged when the input is abnormal samples. LSTM-

autoencoder-based adversarial learning network is trained on normal samples only

and its parameter is only suitable for reconstructing normal samples. In the inference

stage, for a given abnormal sample, the model poorly reconstructs the input sample

and the reconstruction error would be high. Based on this, we achieve anomalous

video detection without abnormal ones in the training stage.

For anomalous event detection in videos, we present an efficient and effective

system OED that only uploads event clips to servers to save bandwidth. OED learns

video patterns from recently observed data based on ViT-based autoencoder in an

unsupervised manner, so it gains the ability to differentiate events from routine. The

updating strategy enables OED to adapt to new trends in videos dynamically.

4.2 Future Work

The first future work is evaluating the MLP-Mixer embedding into our architecture.

Much effort has been made recently to attempt to replace self-attention with Multiple

Layer Perceptron (MLP). This is because the fully-connected layer is also able to

model the long-range dependencies. The MLP-Mixer architecture, a competitive but

conceptually and technically simple alternative, indicates that self-attention may not

be a must-have. MLP-Mixer is based entirely on MLPs and relies only on basic

matrix multiplication routines. Different from the convolution operation in CNNs,

MLPMixer repeats implementation of Layer Norm and MLP either in spatial locations

or feature channels. The long-term dependencies of the images are covered. The MLP-

Mixer thus has great potential to be beneficial for capturing the global dependencies.
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