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Abstract

This thesis studies three important topics in modeling financial volatility. First, the jump cluster-

ing in ex post variance and its implications on forecasting, second, the underlying distribution of

stochastic volatility and third, the role of non-Gaussian multivariate return distribution combined

with a realized GARCH framework.

The first chapter is on variance jumps. Financial markets present unexpected and large jumps,

due to unobserved news flow. I focus on modeling the ex post variance jumps, their time-

dependent arrivals and their sizes. I use a discrete-time bivariate model, with two autoregressive

components which capture the long and short-run memory of the ex post variance measures. I

estimate contemporaneous and time-dependent jumps in the log-measures of realized variance

and bipower variation. The results from S&P500 show that the variance jumps are frequent

and persistent. I examine the ability of jumps to forecast returns and ex post variance densities

over horizons of up to 50 days out-of-sample. Modeling jumps significantly improves ex post

variance density forecasts for all horizons and improves forecasts of the returns density.

In the second chapter I explore the empirical non-Gaussian features of stochastic volatility.

The standard assumption in a stochastic volatility specification is typically a restrictive Gaussian

AR(1) structure. I drop this assumption and instead I assume that latent log-volatility follows

an infinite mixture of normals with a Dirichlet process prior. The ex post measure of realized

variance is used as a source of information to help identify the unknown distribution of log-

volatility. Results from major stock indices show strong evidence of non-Gaussian distributional

behaviour of volatility. The proposed framework captures asymmetry and thick tails in returns

as well as realized variance. In out-of-sample forecasting, the new model provides improved

density forecasts for returns, negative returns and log-realized variance.
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In the third chapter a new approach for multivariate realized GARCH models is proposed.

Two new extensions that have non-Gaussian innovations are developed. The first one is a para-

metric version, with multivariate-t innovations. The second one is a nonparametric approxima-

tion of the return distribution using an infinite mixture of multivariate normals given a Dirichlet

process prior. The proposed models are based on the assumption that the realized covariance

follows an Inverse Wishart distribution with conditional mean set to the conditional covariance

of returns. The benefits of the proposed models are demonstrated from density forecasting and

portfolio applications. Results from two equity datasets indicate that modeling the tail behaviour

improves return density forecasting compared to the Gaussian assumption. The proposed mod-

els produce the least volatile global minimum variance portfolios out-of-sample and provide

improved forecasts of Value-at-Risk and Expected Shortfall.
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Introduction

This thesis is formed from three studies on financial volatility models. The studies have two com-

mon characteristics. First, they focus on joint models of financial returns and ex post measures

of (co)variance. Second, they use parametric or semiparametric methods to explore deviations

of the financial data from the Gaussian distribution. The emphasis of the newly developed time

series models is to provide improvements in forecasting the distribution of returns. Also it is

shown that modeling the non-Gaussian features of financial data is important for risk manage-

ment and portfolio formation.

Modeling financial volatility is of high importance in the areas of asset pricing, portfolio

optimization, risk measurement and management. However, volatility is unobserved in financial

markets. It has to be estimated based on return observations. The most popular way to cap-

ture the unobserved volatility is with parametric models. The Autoregressive Conditional Het-

eroskedasticity (ARCH) framework introduced by Engle (1982) is the cornerstone of volatility

models. Numerous extensions of this model have been introduced with the most popular being

the GARCH of Bollerslev (1986). The key characteristic of these models and their extensions is

that future variance is conditional and known based on past return information. Another para-

metric model based approach is the class of stochastic volatility models, introduced by Taylor

(1982). In these, future volatility is unknown conditional on past information.

During the last two decades, the availability of high-frequency (intraday) returns gave access

to nonparametric measures of ex post variance. The simplest measure is the realized variance

which is defined as the summation of squared high-frequency returns for a fixed time interval.

For instance, daily realized variance is constructed from high-frequency (e.g. 5-10 minutes) in-

traday returns. Realized variance was firstly used empirically by Andersen and Bollerslev (1998)

xiv



and was formalized econometrically by Barndorff-Nielsen and Shephard (2002a). They show

that in a frictionless market, realized variance consistently estimates the underlying quadratic

return variation.

In the first chapter of this thesis I focus on modeling the jumps of the ex post variance

measures. Due to the nature of the financial markets, the unexpected news flow information

causes prices to jump. Chan and Gray (2018) have shown that ex post variance presents jumps

which are the impact of macroeconomic news announcements. Caporin et al. (2015) model ex

post variance jumps and show that they can be explained by the credit default swap rates and the

variance risk premium.

The contribution of the first chapter is on the forecasting benefits of modeling jump cluster-

ing in ex post variance. I use a bivariate discrete-time model from Maheu and McCurdy (2011),

for returns and ex post variance. The model has two autoregressive components to capture the

long and short-run persistence observed empirically in ex post variance. I extend this model by

estimating contemporaneous and time-dependent ex post variance jumps with the methodology

of Maheu and McCurdy (2008). The newly developed model captures: variance shocks, asym-

metry and thick tails in the ex post variance distribution and thick tails in the return distribution.

I use the new model to estimate time-dependent variance jumps in the S&P500 equity in-

dex. I test empirically two ex post variance measures: realized variance and bipower variation

(Barndorff-Nielsen and Shephard 2004). Between the two measures, realized variance gives

better forecasts of returns. The results show large and persistent variance jumps which occur at

least once in a week.

Modeling the time-dependent variance jumps provides improvements in forecasting returns

and variance. I test the predictive power of the new model for out-of-sample horizons of up to

50 days. I focus on forecasting the whole density of returns and ex post variance. The results

show that the time-dependent variance jumps provide significant improvements in forecasting

the ex post variance density, for all horizons, and improve forecasts of the return density.
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The ex post measures of variance are a useful source of information to improve parametric

conditional variance estimation. Engle (2002b) used the lagged realized variance in a GARCH

equation and showed that it contains significant information, more than lagged squared returns,

for the conditional variance construction. Hansen et al. (2012) jointly model returns and realized

variance to improve the GARCH constructed variance. Takahashi et al. (2009) use realized

variance along with returns to help the estimation of stochastic volatility.

The second chapter of the thesis, is a semiparametric extension of the framework by Taka-

hashi et al. (2009), to capture non-Gaussian features of returns and stochastic volatility. Jensen

and Maheu (2010) have extended the discrete-time stochastic volatility model with a Dirichlet

Process (Ferguson 1973) mixture of infinite normal kernels which captures the underlying un-

known return distribution. Jensen and Maheu (2014) use the Dirichlet Process mixture to capture

the asymmetric feedback of returns and stochastic volatility. Their model shows the existence of

non-Gaussian features in stochastic volatility but does not include ex post variance data which

are highly informative about returns variance.

In the second chapter, I use a Dirichlet Process mixture model of infinite normal kernels along

with realized variance data to provide a flexible framework for estimating stochastic volatility.

The newly develop model can capture asymmetry and thick tails in the distribution of returns

and stochastic volatility. The model is empirically tested on major equity indices and the results

show strong non-Gaussian behaviour in the estimated volatility. The plots of estimated time

varying volatility of volatility show that this gives the model the necessary flexibility to capture

shocks in realized variance, as well as extreme returns.

Predictive density plots of volatility show strong evidence of asymmetry and thick tails. Inter-

estingly, the flexible volatility estimation captures asymmetry and tails of ex post variance. This

is validated by out-of-sample forecasts, in which the proposed model outperforms the benchmark

of Takahashi et al. (2009) in forecasting realized variance. The new model shows improvement

in risk measurement as it performs better in forecasting the most volatile equity returns. Due to
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the flexible mixture, estimation assigns more probability mass to the far left side of the return

density than the benchmarks. For most of the series tested it produces better density forecasts

when returns are negative or exceed losses of 1%.

The third chapter of the thesis is a study on modeling the covariance of financial returns

with non-Gaussian extensions of multivariate realized GARCH models. For several decades

multivariate extensions of the GARCH framework have been the workhorse models in estimat-

ing the conditional covariance of asset returns for portfolio and risk management applications.

Recently, the ex post measures of covariance and correlation have been used by Hansen et al.

(2014), Gorgi et al. (2019) and Archakova et al. (2019) to improve the construction of condi-

tional covariance with GARCH models. However, they do not account for asymmetry and thick

tails that are empirically observed in returns.

In the third chapter, I use a new approach to jointly model returns and realized covariance

in a multivariate GARCH framework. The realized covariance is assumed to follow an Inverse

Wishart distribution, an assumption based on the findings of Jin and Maheu (2016). For the

returns distributional assumption, I use the multivariate Gaussian kernel and I also develop two

new extensions that capture the empirically observed non-Gaussian features in returns. The first

one is a multivariate Student-t distribution to capture thick tails in returns distribution. The

second one is an approximation of the underlying returns distribution with a Dirichlet Process

mixture of infinite multivariate normal kernels.

I apply the new models to two different equity datasets. The results show the existence

of thick tails but little evidence of asymmetry in both datasets. The proposed models provide

improved out-of-sample return forecasts. Compared to standard multivariate GARCH models,

which do not include realized covariance information, the developed realized GARCH models

give better return density forecasts. The two non-Gaussian specifications outperform the Gaus-

sian assumption in forecasting the density of returns and realized covariance.

I test the models on financial applications which focus on risk measurement and portfolio

xvii



optimization. For an equal weight portfolio investment, the novel models outperform the bench-

marks in forecasting Value-at-Risk and Expected Shortfall. The non-Gaussian models, improve

the construction of the global minimum variance portfolio since they produce portfolio weights

which give the least volatile realized returns. These results highlight the importance of non-

Gaussian return distributional assumptions and realized covariance information in portfolio risk

management.

The thesis is organized as follows: Chapter 1 is the the first essay, on modeling jumps in ex

post variance, Chapter 2 is the second essay, on the semiparametric stochastic volatility, Chapter

3 is the third essay, on the non-Gaussian multivariate realized GARCH models, while Chapter 4

concludes.

xviii



Chapter 1

Modeling jumps in ex post variance.

Does it improve density forecasts?

1.1 Introduction

Financial asset prices present unexpected and large discontinuities defined as jumps, due to un-

expected news flow in the market. In this chapter, I focus on modeling jumps in ex post variance.

I extend a bivariate model for returns and ex post variance in which I model contemporaneous

and time varying jumps in the ex post measures of realized variance (RV) and bipower variation

(BP). Results show frequent and persistent variance jumps. I test the ability of jumps to forecast

returns and variance densities over horizons of up to 50 days out-of-sample. The heterogeneous

jumps provide improvements in return density forecasting and strongly improve ex post variance

density forecasts.

The jumps in financial returns have been extensively studied in the literature. The framework

proposed by Press (1967) is the basic jump model used in finance. It accounts for multiple price

jumps in a single period. The jumps arrive under a Poisson counting process and their size is

independently normally distributed. This model has the capability to capture asymmetry and

thick tails in returns. Oldfield Jr et al. (1977) extend the framework with autoregressive jump

sizes. Chan and Maheu (2002) develop a discrete-time Poisson jump model with autoregressive

1
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jump intensity (ARJI) and conditional jump dynamics combined with a GARCH specification

(Engle 1982; Bollerslev 1986) for return volatility. The ARJI model has also been used by Ma-

heu and McCurdy (2004), Chan and Feng (2012) and Maheu et al. (2013). These studies identify

a form of dependence in the jump arrival times.

A simplification of the Poisson jump model was introduced by Ball and Torous (1983). They

model stock price jumps, from news arrivals, with a Bernoulli jump process. The key character-

istic of this specification is that only one significant jump is allowed per period. Johannes et al.

(1999) found that the probability of a jump in equity indices depends on past jumps and the

absolute value of returns. They also provide a methodology for extracting the jump times and

sizes. Maheu and McCurdy (2008) show that a heterogeneous jump specification can explain the

dynamics of conditional return distribution better than the standard variance models: GARCH

and stochastic volatility (SV) (Taylor 1994).

Apart from returns, financial volatility is also characterized by instantaneous and persistent

movements. Eraker et al. (2003) extend the continuous-time SV models to include Bernoulli

jump processes in returns and latent volatility. They find strong jump evidence in both. Eraker

(2004) extends these models with state dependent jump arrivals.

The development of the realized variance (RV) estimators provides consistent and model-

free ex post data of the latent variance. The above models that have been used to estimate

return jumps can also be used to estimate ex post variance jumps. Caporin et al. (2015) use

the ARJI framework to estimate jumps in the bipower realized range. They also find that these

ex post variance jumps can be explained by the credit default swap rates and the variance risk

premium. Chan and Gray (2018) estimate volatility jumps and show that these coincide with

news announcements.

How important are variance jumps to forecasts? What the literature is missing so far is a

study for the forecasting information of the variance jumps. With this work I intend to estimate

time-varying ex post variance jumps and examine if they provide improved returns and variance
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forecasts. I focus on the financial index of S&P500 and predicting the whole distribution of

returns and variance.

I use the 2 Component - Observable Stochastic Variance (2Comp-OSV) model of Maheu

and McCurdy (2011) to capture the time series dynamics of ex post variance. Typically, the

Heterogeneous Autoregressive (HAR) model of Corsi (2009) is used to capture the time depen-

dence of the ex post variance measures. This simple time series model explains ex post variance

movements based on its daily, weekly and monthly past values. Studies which use extensions

of the HAR model are from Andersen et al. (2007), Bollerslev et al. (2009), Andersen et al.

(2011), Corsi et al. (2012), Corsi and Renò (2012) and Caporin et al. (2015). Maheu and Mc-

Curdy (2011) find that their 2Comp-OSV, which uses long and short-run conditional variance

components, explains RV better than a HAR equation and provides improved return density

forecasts. The 2Comp-OSV is a suitable framework for multiperiod forecasts of variance and

returns.

I extend the 2Comp-OSV to include time-varying ex post variance jumps. The focus of this

chapter is only on the variance jumps and an extension with return jumps is left for future work. I

use the heterogeneous Poisson jump model of Maheu and McCurdy (2008) to estimate variance

jumps, their sizes and time-dependent arrivals. The distinct characteristic of this model is that

jump arrivals are governed by a stochastic autoregressive process. This can be interpreted as the

unobserved news arrival in the market. It has the capability to model jump persistence and jump

clusters. The proposed model can explain the conditional distribution of ex post variance, by

capturing tails and asymmetry. It also allows a thick tailed distribution for the returns.

I test empirically two ex post variance measures, realized variance and bipower variation.

Results show that between the two measures, realized variance produces better return forecasts. I

find large and persistent jumps in both the realized measures of S&P500 volatility. The proposed

heterogeneous jump model shows that variance jumps appear at least once per week. A restricted

version with constant jump intensity shows variance jumps on average once per week. Predictive

3

http://www.mcmaster.ca/


Doctor of Philosophy– Efthymios NIKOLAKOPOULOS McMaster University– Finance

density estimation of log RV and BP shows that the two ex post measures have non-Gaussian

distribution. I find strong thick tails and minor evidence of asymmetry. The heterogeneous jump

model shows thick tails in returns distribution.

I examine the predictive performance of the jumps by multiperiod density forecasts over

horizons of up to 50 days out-of-sample. The results show that the modelled heterogeneous

jumps significantly improve ex post variance density forecasts for all the horizons. They also

provide improvements in forecasting the returns density.

The chapter is organized as follows: Section 1.2 is a brief introduction to the ex post variance

measures used, Section 1.3 presents the specification of the proposed models, their estimation

steps and the forecasting process, Section 1.4 presents the empirical application results and

Section 1.5 concludes.

1.2 Ex post variance

The ex post variance of an asset’s returns is estimated with the nonparametric realized measures.

Realized variance (RV) is the simplest measure. The important papers that provide a foundation

of the theory and application of RV are from Andersen et al. (2001a), Andersen et al. (2001b),

Barndorff-Nielsen and Shephard (2002a), Barndorff-Nielsen and Shephard (2002b) and Ander-

sen et al. (2003). The theoretical foundation starts with a continuous-time stochastic volatility

model. Including a jump component, as Press (1967), then the logarithmic asset price at time t,

pt, evolves under the following process

dpt = µtdt+ σtdWt + ξtdqt, (1.1)

where µt and σt(σt > 0) are the stochastic drift and diffusion processes, Wt is a standard

Brownian motion, qt is a Poisson process, uncorrelated with Wt, with Prob [dqt = 1] = λ,

Prob [dqt = 0] = 1 − λ and ξt is the jump size. Under (1.1) jumps are finite, rare and their

frequency depends on λ. The daily continuously compounded logarithmic return at time t, rt, is
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defined as

rt = pt − pt−1 =
∫ t

t−1
µτdτ +

∫ t

t−1
στdWτ +

∑
t−1<τ<t|dq=1

ξτ (1.2)

and the quadratic return variation is defined as the summation of integrated variance (IV) and

the cumulative squared return jump (RJ) term

QVt = IVt + RJt =
∫ t

t−1
σ2

τdτ +
∑

t−1≤τ≤t|dq=1
ξ2

τ (1.3)

For day t, given intraday returns rt,i, i = 1, ..., n, Barndorff-Nielsen and Shephard (2002a)

and Andersen et al. (2003) show that QVt can be approximated by the realized variance (RV)

estimator defined as

RVt =
n∑

i=1
r2

t,i → QVt, as n → ∞. (1.4)

RVt is a consistent estimator of QVt under no market microstructure noise. In practice, high-

frequency returns contain market microstructure noise which makes RVt biased and inconsistent,

as Zhang et al. (2005), Hansen and Lunde (2006) and Bandi and Russell (2008) document.

A popular way to overcome noise in RVt is the use of subsampling as proposed by Zhang et

al. (2005). With this statistical technique, the grid of available intraday observations is separated

into multiple subgrids. For each subgrid, an estimator of realized variance is calculated. Then,

RVt is set as an average of the subgrid estimators. This gives an approximately unbiased RVt.

Aït-Sahalia and Mancini (2008) show that RVt from subsampling outperforms the simple one,

from the summation of squared log returns, in contained bias, variance, RMSE and forecasting.

A measure of the integrated return variance is proposed by Barndorff-Nielsen and Shephard

(2004) who define the realized bipower variation (BP) which is an approximation to IVt and is
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calculated as

BPt ≡ π

2

n∑
i=2

|rt,i||rt,i−1| → IVt, as n → ∞. (1.5)

BPt is robust to return jumps unlike RVt which contains the return jump information. By sub-

tracting BPt from RVt, return jumps are indirectly estimated. I use both measures to estimate ex

post variance jumps and test empirically which measure gives better return density forecasts.

1.3 Model specification

As discussed in the introduction of the chapter, I use a bivariate discrete-time model specifica-

tion, of returns and ex post variance. This integrated framework would enable modeling jumps

(shocks) in the variance dynamics and examine how these affect (multiperiod) forecasts of ex

post variance and returns.

The study of Maheu and McCurdy (2011) showed that a bivariate framework with con-

ditional variance components (Maheu and McCurdy 2007) outperforms models with a HAR

specification for logRV. The variance components decay at different rates which helps to capture

long and short-run variance dependence. I use their proposed 2Comp-OSV model as the basis

of this work. For the rest of this chapter I use the notation of 2Comp-RM with RM being the

realized measure of variance examined in the applications, RV and BP. The 2Comp-RM model

is defined as

rt = µ+
√

RMtut, ut ∼ NID(0, 1), (1.6)

logRMt = ω +
2∑

i=1
ϕici,t + ρut−1 + σvt, vt ∼ NID(0, 1), (1.7)

ci,t = (1 − αi)logRMt−1 + αici,t−1, 0 < αi < 1, i = 1, 2, α1 > α2, (1.8)

with rt being the log returns at time t, t = 1, ..., T , that follow a normal distribution with mean
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µ and variance RMt. RMt is the realized measure of ex post variance at time t. Eq.(1.7) sets

a Gaussian assumption for the natural logarithm (log) of RM with a constant variance σ2. The

mean of logRM is a structure based on the 2 conditional components ci,t with different decay

rates αi with α1 > α2.

Parameter ρ captures the feedback due to return shocks, which is often called leverage effect.

The parameter is expected to have a negative sign. This implies that a return drop will cause

increase in future variance and vice versa.

The 2Comp-RM model has a parsimonious and convenient specification. It can produce

mean-reverting forecasts for returns and variance. Also, is suitable for multiperiod forecasts

as done by Maheu and McCurdy (2011). They show that this specification outperforms other

functions in the realized measure equation, in return density forecasting. One of these other

functions is the HAR specification of Corsi (2009), which is typically used to model RM.

2Comp-RM can be estimated by standard Likelihood Maximization (MLE). In the following

sections, I extend the 2Comp-RM to include jumps in logRM. I estimate these jumps under a

Bayesian framework and hence I use the same for the 2Comp-RM. The estimation of model

parameters in θ = {µ, ω, ϕ1, ϕ2, α1, α2, ρ, σ
2} is done by collecting a large sample (R) of

draws {θ}R
l=1 from the posterior density. These draws are used for inference. For instance,

from {µ}R
l=1, posterior moments can be calculated such as the posterior mean E(µ|IT ) =

R−1∑R
l=1 µ

(l) with IT = {r1:T , logRM1:T }.

Under the Bayes rule, model parameters in θ have the following posterior density

p(θ|IT ) ∝ p(θ)
T∏

t=1
N(rt|µ,RMt) N

(
logRMt

∣∣∣ω +
2∑

i=1
ϕici,t + ρut−1, σ

2
)
, i = 1, 2, (1.9)

with p(.) being the prior density and N(.|) the normal density. In this chapter, I use as prior the

multivariate normal distribution, N(0k, 100 × Ik), with k being the number of parameters in θ

and Ik the identity matrix. The prior is uninformative in order to let the data drive the model

estimation. The posterior in (1.9) does not have a known form. To estimate the parameters, I
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collect {θ(l)}R
l=1 draws from the above posterior with a random walk Metropolis-Hastings (MH)

algorithm with a thick tailed proposal θ
′

which is from

h(θ′) ∼


N(θ(l−1), κV̂h), with probability p = 0.9,

N(θ(l−1), 10κV̂h), with probability 1 − p.

(1.10)

where V̂h is the inverse Hessian matrix evaluated at the posterior mode θ̂, which is computed

once at the beginning of estimation. Scaling V̂h by κ helps to achieve a desired acceptance rate

around 0.2-0.4 and explore the posterior. The draw θ′ is accepted with probability

min
{
p(θ′ |IT )/p(θ(l−1)|IT ), 1

}
. (1.11)

Draws which do not satisfy: 0 < ϕi, < 1, 0 < αi < 1, α1 > α2 and σ2 > 0 are rejected.

1.3.1 Heterogeneous variance jumps

As described in Section 1.2, return jumps are assumed to follow a Poisson process. This means

that multiple jumps can occur from t − 1 to t. A parsimonious discrete model for returns with

an autoregressive Poisson jump process has been developed by Chan and Maheu (2002). Their

model has been used by Caporin et al. (2015) to estimate jumps in bipower variation.

In this chapter I focus only on the ex post variance jumps. I extend the 2Comp-RM to include

ex post variance jumps which arrive according to a heterogeneous Bernoulli process. The jump

intensity is governed by a latent and stochastic autoregressive process. This can capture jump

clustering and nests non-persistent (iid) jumps.

I use the model by Maheu and McCurdy (2008) to estimate ex post variance heterogeneous

8

http://www.mcmaster.ca/


Doctor of Philosophy– Efthymios NIKOLAKOPOULOS McMaster University– Finance

(time-dependent) jumps (HJ) in the 2Comp-RM. Conditional on IT , the proposed 2Comp-RM-

HJ model is specified as follows

rt = µ+
√

RMtut, ut ∼ NID(0, 1), (1.12)

logRMt = ω +
2∑

i=1
ϕici,t + ρut−1 + Jtξt + σvt, vt ∼ NID(0, 1), (1.13)

ci,t = (1 − αi)logRMt−1 + αici,t−1, 0 < αi < 1, i = 1, 2, α1 > α2, (1.14)

ξt ∼ NID(µξ, σ
2
ξ ), Jt ∈ {0, 1}, (1.15)

P(Jt = 1|zt) = λt and P(Jt = 0|zt) = 1 − λt, (1.16)

λt = exp (zt)
1 + exp (zt)

, (1.17)

zt = γ0 + γ1zt−1 + et, et ∼ NID(0, 1). (1.18)

Jt is the jump indicator and ξt is the jump size which follows an independent normal distribution

but can also be extended to have conditional mean and variance. The true Jt and ξt are unob-

served. They are estimated using data information. If the data indicate a jump, then the posterior

mean of Jt would be estimated close to 1. If there is no jump, the posterior mean of Jt would

be approximately 0. In some occasions there is not a strong jump/no-jump signal from the data

which will give E(Jt|IT ) ∈ (0, 1).

λt is the time-varying jump intensity which is governed by the latent autoregressive process

zt. Conditional on zt a jump occurrence follows a Bernoulli distribution with probability λt.

The logistic function in (1.17) ensures that zt is mapped in the interval (0,1) for λt. zt can be

interpreted as the unobserved news flow into the market that impact the return variance. AR(1)

parameter γ1 captures the jump persistence and lies inside the unit circle, |γ1| < 1.

Since RMt is treated as an observable measure of variance, the 2Comp-RM-HJ model can

also stand without the equation (1.12). Its purpose is to examine the effect of persistent variance

jumps in forecasting the returns density. The jump component in (1.13) would produce different

predictive density for logRM, than the Gaussian 2Comp-RM, since it can capture asymmetry
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and thick tails. This can be seen by the first two conditional moments of logRMt which, given

the information set It−1 = {(r1,RM1), ..., (rt−1,RMt−1)} and zt, are

E(logRMt|It−1, zt) = ω +
2∑

i=1
ϕici,t + ρut−1 + λtµξ, (1.19)

Var(logRMt|It−1, zt) = σ2 + λtσ
2
ξ . (1.20)

Through the asymmetric and thick tailed forecasts of RM, the model is capable of producing

thicker tailed return forecasts, compared to the 2Comp-RM.

Estimation

Conditional on the information set IT and zt, the t−th likelihood component of (1.13) is as a

2-state normal mixture model

p(logRMt|IT , zt) =
1∑

j=0
N

(
logRMt

∣∣∣∣∣ω +
2∑

i=1
ϕici,t + ρut−1 + jµξ, σ

2 + jσ2
ξ

)
P(Jt = j|zt).

(1.21)

To estimate the model, we need to augment the parameters Θ = {θ, µξ, σ
2
ξ , γ}, where γ =

{γ0, γ1} and θ = {µ, ω, ϕ1, ϕ2, α1, α2, ρ, σ
2}, with the latent vectors of the jump sizes ξ =

{ξ1, ..., ξT }, the jump indicators J = {J1, ..., JT } and the jump intensities z = {z1, ..., zT }.

These latent vectors need to be integrated out and this cannot be done with MLE. Alternatively,

by applying the Bayes rule, we can get the following posterior density of the model parameters

p(Θ, ξ, J, z|IT ) ∝ p(r|logRM,Θ, ξ, J, z) p(logRM|r,Θ, ξ, J, z) p(ξ, J, z|Θ) p(Θ). (1.22)

By augmenting the parameter space with the auxiliary vectors I can estimate the jumps and ob-

tain smoothed estimates of them from the posterior. Since there are no analytical results for

the posterior in (1.22), I use Markov chain Monte Carlo (MCMC) techniques to get draws from
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it. The MCMC methods deliver a set of posterior draws from a series of conditional distribu-

tions. This allows a straightforward estimation with a set of conditional steps. By collecting

a large sample (R) of posterior draws for {Θ, ξ, J, z}R
l=1 we can draw inference for the model

parameters.

The draws of {Θ, ξ, J, z} from the posterior are obtained through the following steps:

1. sample p(θ|Θ−θ, r, logRM, z)

2. sample p(µξ|σ2
ξ , ξ)

3. sample p(σ2
ξ |µξ, ξ)

4. sample p(ξt|σ2, µξ, σ
2
ξ , Jt, yt), t = 1, ..., T .

5. sample p(Jt|σ2, ξt, λt, yt), t = 1, ..., T .

6. sample p(zt|z−t, γ, Jt), t = 1, ..., T .

7. sample p(γ|Θ−γ , z)

Details of the sampling steps are in appendix A1.

1.3.2 Independent variance jumps

I also develop a restricted version of the 2Comp-RM-HJ, in which jump arrivals in RM are

independent. In this version, there is no jump persistence and jumps arrive randomly, with a
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fixed probability λ. The 2Comp-RM-IJ (Independent Jumps) is defined as

rt = µ+
√

RMtut, ut ∼ NID(0, 1), (1.23)

logRMt = ω +
2∑

i=1
ϕici,t + ρut−1 + Jtξt + vt, vt ∼ NID(0, σ2), (1.24)

ci,t = (1 − αi)logRMt−1 + αici,t−1, 0 < αi < 1, i = 1, 2, α1 > α2, (1.25)

ξt ∼ NID(µξ, σ
2
ξ ), Jt ∈ {0, 1}, (1.26)

P(Jt = 1) = λ and P(Jt = 0) = 1 − λ, λ ∈ (0, 1). (1.27)

This jump model sets a Bernoulli (2-state) mixture of normal densities in logRMt. It can capture

thick tails and asymmetry in ex post variance. A simplified version of this jump structure has

been introduced by Ball and Torous (1983) and applied to stock returns.

Estimation

Similar to the estimation of the 2Comp-RM-HJ model, conditional on It−1, the t−th likelihood

component of (1.24) is as a 2-state normal mixture model

p(logRMt|Θ, λ) =
1∑

j=0
N

(
logRMt

∣∣∣∣∣ω +
2∑

i=1
ϕici,t + ρut−1 + jµξ, σ

2 + jσ2
ξ

)
P(Jt = j|zt).

(1.28)

To estimate the model, we need to augment the parameters Θ = {θ, µξ, σ
2
ξ , λ}, where θ =

{µ, ω, ϕ1, ϕ2, α1, α2, ρ, σ
2}. Following the Bayes rule, the model parameters have the following

posterior

p(Θ, ξ, J, λ|IT ) ∝ p(r|logRM,Θ, ξ, J, λ) p(logRM|r,Θ, ξ, J, λ) p(ξ, J, λ|Θ) p(Θ). (1.29)

To collect MCMC draws for {Θ, ξ, J}R
l=1 from the above posterior I iterate through the following

steps:
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1. sample p(θ|Θ−θ, r, logRM)

2. sample p(µξ|σ2
ξ , ξ)

3. sample p(σ2
ξ |µξ, ξ)

4. sample p(ξt|σ2, µξ, σ
2
ξ , Jt, yt), t = 1, ..., T .

5. sample p(Jt|σ2, ξt, λ, yt), t = 1, ..., T .

6. sample p(λ|J).

The steps 1-5 are the same with the 2Comp-RM-HJ estimation steps with a constant intensity λ.

Details of the sampling steps are in appendix A1.

1.3.3 Density forecasting

To examine the forecasting benefits of the modelled variance jumps, I focus on density fore-

casts. The target measure to estimate for the model comparison is the predictive likelihood, as

suggested by Geweke (1994). For the following, I discuss the 2Comp-RM-HJ model but the

computations can easily be modified for 2Comp-RM with no jumps and for 2Comp-RM-IJ with

constant jump intensity λ.

Given the posterior draws Ψ = {Θ(l), z(l)}R
l=1, conditional on the information set It =

{(r1,RM1), ..., (rt,RMt)}, the predictive density of logRM can be approximated as

p̂(logRMt+1|It,Ψ) =
∫
p(logRMt+1|It,Θ, zt) p(Θ, zt|It) dΘ dzt (1.30)

=
∫
p(logRMt+1|It,Θ, zt+1) p(zt+1|zt,Θ) p(Θ, zt|It) dΘ dzt dzt+1

(1.31)

≈ 1
R

R∑
l=1

1
M

M∑
m=1

p
(

logRMt+1
∣∣Θ(l), z

(m)
t+1 , z

(l)
t , It

)
(1.32)
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where l is the lth posterior draw from (1.22), l = 1, ..., R, and M simulated values of zt+1 with

m = 1, ...,M . The density of logRMt+1 is

p
(

logRMt+1
∣∣Θ(l), z

(m)
t+1 , z

(l)
t , It

)
= λ

(m)
t+1 N

(
logRMt+1

∣∣∣ω(l) +
2∑

i=1
ϕ

(l)
i c

(l)
i,t+1 + ρ(l)ut + µ

(l)
ξ , σ2(l) + σ

2(l)
ξ

)

+
(
1 − λ

(m)
t+1

)
N

(
logRMt+1

∣∣∣ω(l) +
2∑

i=1
ϕ

(l)
i c

(l)
i,t+1 + ρ(l)ut, σ

2(l)
)
,

(1.33)

with λ
(m)
t+1 =

exp
(
z

(m)
t+1

)
1 + exp

(
z

(m)
t+1

) , (1.34)

z
(m)
t+1 = γ

(l)
0 + γ

(l)
1 z

(l)
t + et+1, et+1 ∼ N(0, 1), (1.35)

c
(l)
i,t+1 = (1 − α

(l)
i )logRMt + α

(l)
i c

(l)
i,t , i = 1, 2, (1.36)

and ut =
(
rt − µ(l)

)
/
√

RMt. (1.37)

Similarly, the predictive density of returns can be approximated as

p̂
(
rt+1|R̂Mt+1, It,Ψ

)
=
∫
p(rt+1|RMt+1, It,Θ) p

(
logRMt+1,Θ, zt|It

)
dlogRMt+1 dΘ dzt

(1.38)

≈ 1
R

R∑
l=1

1
M

M∑
m=1

N
(
rt+1

∣∣∣µ(l), R̂M
(m)
t+1

)
, (1.39)

where R̂M
(m)
t+1 = exp(x) and x is drawn as

x ∼ λ
(m)
t+1 N

(
ω(l) +

2∑
i=1

ϕ
(l)
i c

(l)
i,t+1 + ρ(l)ut + µ

(l)
ξ , σ2(l) + σ

2(l)
ξ

)

+
(
1 − λ

(m)
t+1

)
N

(
ω(l) +

2∑
i=1

ϕ
(l)
i c

(l)
i,t+1 + ρ(l)ut, σ

2(l)
)

(1.40)

The predictive densities are the building blocks for the calculation of the predictive likelihood

(PL) with which I evaluate each model’s forecasting ability out-of-sample. Specifically, for each
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model, by performing a set of τ (with 1 < τ < T ), recursive posterior estimations, the log pre-

dictive likelihood of logRMT −τ+1, ..., logRMT , is the summation of individual log-predictive

densities of each estimation

logPLv(logRMT −τ+1:T |IT ,Ψ) =
T −1∑

t=T −τ

log
(
p̂(logRMt+1|It,Ψ

)
), (1.41)

where the predictive density is given from (1.32). Similarly, the log predictive likelihood for

returns, rT −τ+1, ..., rT , is calculated observation by observation as

logPLr(rT −τ+1:T |RMt+1, IT ,Ψ) =
T −1∑

t=T −τ

log
(
p̂
(
rt+1|R̂Mt+1, It,Ψ

))
, (1.42)

with the density given from (1.39).

The model structure of 2Comp-RM along with the heterogeneous jump process specifica-

tion, are suitable for multiperiod forecasts. For different forecasting horizons h, h = 1, ...,H ,

the density forecasts are evaluated over an identical set τ of out-of-sample realized measures

logRMT −τ+1, ..., logRMT and returns rT −τ+1, ..., rT . The cumulative log predictive likeli-

hoods for logRM and returns for a forecasting horizon h, are calculated as

logPLh,v(logRMT −τ+1:T |IT ,Ψ) =
T −h∑

t=T −τ−h

log
(
p̂h(logRMt+h|It,Ψ)

)
, (1.43)

logPLh,r(rT −τ+1:T |IT ,Ψ) =
T −h∑

t=T −τ−h

log
(
p̂h(rt+h|R̂Mt+h, It,Ψ)

)
. (1.44)

The following steps are used to calculate the above cumulative likelihoods:

1. Conditional on It = {(r1,RM1), ..., (rt,RMt)}, obtain a posterior draw (l) of Ψ =

{Θ, z}

2. For h = 1, ...,H repeat:
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(a) Simulate M values of z(m)
t+h = γ

(l)
0 + γ

(l)
1 z

(m)
t+h−1 + vt+h, vt+h ∼ N(0, 1), m =

1, ...,M .

(b) Propagate c(m)
i,t+h = (1 − α

(l)
i )logR̂M

(m)
t+h−1 + α

(l)
i c

(m)
i,t+h−1.

(c) Evaluate p(m)
h

(
logRMt+h|It,Θ, z(m)

t+h, c
(m)
i,t+h

)
and save the result.

(d) Simulate R̂M
(m)
t+h = exp(x) with x drawn from the jump/no-jump mixture in (1.40).

(e) Evaluate p(m)
h

(
rt+h|R̂M

(m)
t+h, It,Θ

)
and save the result.

(f) Simulate r̂(m)
t+h ∼ N

(
µ(l), R̂M

(m)
t+h

)
.

(g) Save û(m)
t+h =

(
r̂

(m)
t+h − µ(l)

)
/

√
R̂M

(m)
t+h.

3. Save p(l)
h (logRMt+h|It,Ψ) = 1

M

∑M
m=1 p

(m)
h

(
logRMt+h|It,Θ, z(m)

t+h, c
(m)
i,t+h

)
and

p
(l)
h

(
rt+h|R̂Mt+h, It,Ψ

)
= 1

M

∑M
m=1 p

(m)
h

(
rt+h|R̂M

(m)
t+h, It,Θ

)
.

After repeating the above steps R times we can calculate the predictive likelihoods

p̂h(logRMt+h|It,Ψ) = 1
R

R∑
l=1

p
(l)
h (logRMt+h|It,Ψ), (1.45)

p̂h(rt+h|R̂Mt+h, It,Ψ) = 1
R

R∑
l=1

p
(l)
h

(
rt+h|R̂Mt+h, It,Ψ

)
, (1.46)

which are used to calculate the cumulative log predictive likelihoods in (1.43) and (1.44).

1.4 Empirical application

1.4.1 Data

Data are daily open-to-close log returns of S&P500 Index (SPX) and the ex post variance mea-

sures of realized variance (RV) and bipower variation (BP) for the period: January 3rd, 2000 -

December 31st, 2021 (5,515 daily observations). Summary statistics are in Table 1.1. The data

are obtained from Oxford-Man Institute’s Realized Library of Heber et al. (2009). The realized
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measures have been calculated from 5-minute returns using subsampling in order to reduce the

market microstructure noise. The returns have been converted to percentages while RV and BP

data have been scaled by 1002 .

1.4.2 Selection of priors

For the application of the models, I select uninformative priors, in order to let the data drive the

parameter estimation. Returns mean has a normal prior, µ ∼ N(0, 100). The same is for the con-

stant of logRM, ω ∼ N(0, 100) and the leverage effect, ρ ∼ N(0, 100). Variance component pa-

rameters have restricted normal priors, ϕi ∼ N(0, 100)1{0<ϕi<1} and αi ∼ N(0, 100)1{0<αi<1},

i = 1, 2, with α1 > α2, for identification. The variance parameter σ2 has an inverse gamma

prior, σ2 ∼ IG(3/2, 1/2).

For the jump size, the mean has a normal prior, µξ ∼ N(0, 100) and the variance is from,

σ2
ξ ∼ IG(3/2, 1/2). The constant jump intensity parameter has a beta prior, λ ∼ B(1, 1). Lastly,

the parameters in γ have a bivariate normal prior, γ ∼ N(0, 100 × I2)1{|γ1|<1}.

1.4.3 Posterior estimation results

Results fromR = 10, 000 MCMC posterior draws, after 5, 000 burnin, for SPX-RV and SPX-BP

are in Tables 1.2 and 1.3.

Regarding the variance jumps, the jump intensity λ, from 2Comp-RM-IJ, is 0.2359 in RV

and 0.2141 in BP. This means one variance jump per week, on average. The unconditional zt of

2Comp-RM-HJ, calculated from posterior means, is −0.947 for RV and −0.617 for BP. The un-

conditional jump intensity, calculated from the posterior average of λts, is approximately 0.4082

for RV and 0.4509 for BP. It is more likely to observe a jump in BP variation of S&P500 since

its jumps are more persistent. The AR(1) parameter γ1, which captures the jump persistence, is

estimated as 0.9799 in BP and 0.957 in RV.
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The frequent and persistent variance jumps are not only due to a volatile market. There

are frequent variance drops as well. Figures 1.1 and 1.2 display the modelled jumps (size,

occurrence, intensity) in RV and BP from the 2Comp-RM-HJ model. The jumps have a low

but significantly positive mean, µξ, 0.0988 in RV and 0.0457 in BP. The model is capable of

estimating both positive and negative variance discontinuities. The 2Comp-RM-IJ model puts

more focus on the positive variance shocks. It estimates jumps with average size 0.2833 in RV

and 0.2020 in BP. Based on the theoretical foundation of the two measures, the modelled jumps

in BP are shocks in the variance. In RV they are shocks in variance and/or returns.

The time-dependent specification of the 2Comp-RM-HJ, provides less volatile estimation

of the jumps, compared to the constant jump probability. Specifically, the estimated jumps

in logRV, from the 2Comp-RM-HJ, have a variance, σ2
ξ , of 0.3748 which is significantly less

than the estimated variance of 0.4257, from the 2Comp-RM-IJ. Similarly, the independent jump

variance of logBP is 0.4009 and drops to 0.3244 in the heterogeneous jump specification.

The modelled contemporaneous jumps improve the ex post variance data fit. The variance

parameter, σ2, of logRV is 0.3453 in the Gaussian specification, without jumps. With modelled

independent jumps, σ2 drops to 0.2328 and with heterogeneous jumps declines further to 0.1903.

Similar results are observed for the variance of logBP.

Figures 1.3 and 1.4 display the conditional components of RV and BP respectively. Com-

ponent c1 is the smooth one and captures the long-run movements of variance. It is persistent

with its coefficient α1 estimated from 0.7965 to 0.826 in RV and from 0.7849 to 0.815 in BP.

The second variance component captures the short-run variance dynamics and is less persistent.

The coefficient α2 is estimated from 0.3605 to 0.4029 in RV and from 0.2766 to 0.3039 in BP.

This component is strongly affected by the lag of the realized measure. In the models has been

imposed the restriction of ϕ1 = ϕ2 as this has been found to give the best forecasts, similar to

the findings of Maheu and McCurdy (2011).
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1.4.4 Forecasting results

Regarding the forecasted distribution of the realized measures, Figures 1.5 and 1.6 display the

models one-step ahead out-of-sample logarithmic predictive densities from the full sample pos-

terior estimation. For both the realized measures, the jump models show deviations from the

Gaussian shape produced by the 2Comp-RM model. Both logRV and logBP have thick tails and

asymmetry. These findings support the results of Barndorff-Nielsen and Shephard (2002a) that

empirically RV is not log-normally distributed.

By forecasting the realized measures one-step ahead we can see how the probability of

variance jumps impact the market return predictive density. The 2Comp-RM-HJ, with time-

dependent jump probability, accounts for thick tails in returns log predictive density, compared

to the Gaussian benchmark 2Comp-RM. A constant jump probability, in the 2Comp-RM-IJ,

does not affect the tails of the returns predictive distribution.

The impact of the modelled ex post variance jumps in forecasting is demonstrated by density

forecasts of 500 out-of-sample daily observations from December 30th, 2019 to December 31st,

2021. I test the models on multiperiod forecasts with horizons of up to 50 days ahead. For each

run, I collect R = 10, 000 posterior draws after 5, 000 burnin and set M = 100. Tables 1.4 and

1.5 report the cumulative log predictive likelihoods of market SPX returns, logRV and logBP

for the forecasting horizons h = 1, 5, 10, 50. Figures 1.7 and 1.8 display the cumulative log

predictive likelihoods for all the forecasting horizons h.

The modelled ex post variance jumps provide improved density forecasts of the realized

measures. The flexible 2Comp-RM-HJ gives the best forecasts of both logRV and logBP for

all the forecasting horizons. The 2Comp-RM-IJ gives the second best forecasts. These results

highlight the importance of accounting for volatility shocks in variance forecasts. Since both

jump models are mixtures of normals the results validate that the logarithmic ex post variance is

not normally distributed.

The modelled heterogeneous jumps in ex post variance give improvements in return density
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forecasts. When RV is used as the observable variance, all models give marginally the same

returns predictive likelihoods in one-step ahead forecasts (h = 1). For longer horizons, 2Comp-

RM-HJ performs the best among the models. When BP is used as the observable variance,

2Comp-RM-HJ outperforms the rest in return forecasts for the forecasting horizons of up to

30 days. The empirical comparison between the two realized measures shows that RV gives

marginally better return predictive likelihoods compared to BP.

The 2Comp-RM-IJ model is similar to the 2Comp with a two-mixture of normals used

by Maheu and McCurdy (2011). Their model does not provide improved forecasts of S&P500

returns compared to the Gaussian specification. Their results are validated here since the inde-

pendent variance jumps do not provide improved return forecasts compared to the benchmark

2Comp-RM model. However, the results from the 2Comp-RM-HJ show that a time-varying

mixture in the ex post variance can improve density forecasts. Variance jumps are found to be

persistent and modeling this improves the forecasting of returns and ex post variance distribu-

tion.

1.5 Concluding remarks

In this Chapter I model the contemporaneous jumps of the S&P500 ex post variance. These

jumps are the impact of the unobserved news flow in the market. The jumps are heterogeneous.

They are modelled with a time-varying intensity which is driven by a latent autoregressive pro-

cess. I use a bivariate model framework for the market returns and observable variance. The

model uses two conditional variance components to capture the long and short-run memory of

the ex post variance measures. I examine two ex post measures, realized variance and bipower

variation.

The results show significant and frequent variance jumps, which occur at least once per week.

The jumps are highly persistent and they improve the ex post variance data fit. The proposed
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model shows that ex post variance is a mixture of normals with thick tails. This mixture in

observable variance results in an empirically thick tailed density for returns.

The models are tested on density forecasting. I examine their out-of-sample performance

in multiperiod forecasts over horizons of up to 50 days. The heterogeneous jumps provide

improved density forecasts of ex post variance measures for all the horizons. When BP is used

as the variance measure, the heterogeneous jumps provide improved return forecasts. When

RV is used, the heterogeneous jumps improve return forecasts for the horizons longer than a

single day. Between the two realized measures, RV gives marginally better return predictive

likelihoods compared to BP.

21

http://www.mcmaster.ca/


Doctor of Philosophy– Efthymios NIKOLAKOPOULOS McMaster University– Finance

TABLE 1.1: Summary statistics of SPX

Mean Variance Skewness Kurtosis Min Max
rt 0.0076 1.2396 −0.2289 11.3874 −9.3511 10.2202

RVt 1.0855 6.7016 11.0013 205.2279 0.0122 77.4774
logRVt −0.6943 1.3112 0.3762 3.3814 −4.4079 4.3500

BPt 0.8931 4.8610 10.6917 176.2002 0.0106 60.1815
logBPt −0.8929 1.2868 0.4333 3.4402 −4.5506 4.0974

The data are for the period: January 3rd, 2000 - December 31st, 2021, 5,515 daily
observations.
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TABLE 1.2: Posterior estimation results for SPX-RV data.

RM = RV 2Comp-RV 2Comp-RV-IJ 2Comp-RV-HJ

Mean 95% D.I. Mean 95% D.I. Mean 95% D.I.

µ 0.0943 [ 0.080, 0.108] 0.0938 [ 0.079, 0.107] 0.0949 [ 0.083, 0.105]

ω −0.0458 [−0.064,−0.028] −0.1033 [−0.132,−0.076] −0.0774 [−0.093,−0.050]

ϕ1 0.4731 [ 0.464, 0.481] 0.4786 [ 0.470, 0.487] 0.4790 [ 0.472, 0.487]

ϕ2 0.4731 0.4786 0.4790

α1 0.7965 [ 0.758, 0.830] 0.8247 [ 0.792, 0.853] 0.8260 [ 0.806, 0.850]

α2 0.3605 [ 0.308, 0.414] 0.3641 [ 0.316, 0.413] 0.4029 [ 0.362, 0.438]

ρ −0.1418 [−0.157,−0.127] −0.1425 [−0.158,−0.129] −0.1412 [−0.152,−0.129]

σ2 0.3453 [ 0.332, 0.358] 0.2328 [ 0.204, 0.257] 0.1903 [ 0.179, 0.207]

µξ 0.2833 [ 0.178, 0.399] 0.0988 [ 0.043, 0.153]

σ2
ξ 0.4257 [ 0.335, 0.549] 0.3748 [ 0.318, 0.438]

λ 0.2359 [ 0.151, 0.341]

γ0 −0.0407 [−0.090, 0.001]

γ1 0.9570 [ 0.929, 0.976]

Notes: Results are from 10,000 MCMC posterior draws, after 5,000 burnin sweeps. ϕ1 = ϕ2 during
model estimation as it has been found to give improved density forecasts of the ex post variance.
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TABLE 1.3: Posterior estimation results for SPX-BP data.

RM = BP 2Comp-BP 2Comp-BP-IJ 2Comp-BP-HJ

Mean 95% D.I. Mean 95% D.I. Mean 95% D.I.

µ 0.1139 [ 0.100, 0.127] 0.1141 [ 0.101, 0.128] 0.1118 [ 0.100, 0.126]

ω −0.0542 [−0.076,−0.033] −0.0843 [−0.112,−0.059] −0.0645 [−0.087,−0.040]

ϕ1 0.4737 [ 0.466, 0.482] 0.4803 [ 0.472, 0.489] 0.4795 [ 0.473, 0.487]

ϕ2 0.4737 0.4803 0.4795

α1 0.7849 [ 0.751, 0.815] 0.8136 [ 0.783, 0.839] 0.8150 [ 0.788, 0.853]

α2 0.2766 [ 0.222, 0.335] 0.2754 [ 0.219, 0.332] 0.3039 [ 0.252, 0.356]

ρ −0.1022 [−0.115,−0.089] −0.1026 [−0.116,−0.090] −0.0991 [−0.113,−0.088]

σ2 0.3150 [ 0.304, 0.328] 0.2248 [ 0.199, 0.254] 0.1682 [ 0.155, 0.182]

µξ 0.2020 [ 0.104, 0.330] 0.0457 [ 0.004, 0.088]

σ2
ξ 0.4009 [ 0.302, 0.529] 0.3244 [ 0.290, 0.362]

λ 0.2141 [ 0.118, 0.324]

γ0 −0.0124 [−0.042, 0.018]

γ1 0.9799 [ 0.973, 0.987]

Notes: Results are from 10,000 MCMC posterior draws, after 5,000 burnin sweeps. ϕ1 = ϕ2 during
model estimation as it has been found to give improved density forecasts of the ex post variance.
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FIGURE 1.1: Estimated jumps in SPX-RV from the 2Comp-RV-HJ model.

From top to bottom: SPX returns (black), logRV (blue), estimated jump size ξt

(green), jump indication Jt (red) and estimated jump intensity λt (purple).
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FIGURE 1.2: Estimated jumps in SPX-BP from the 2Comp-BP-HJ model.

From top to bottom: SPX returns (black), logBP (blue), estimated jump size ξt

(green), jump indication Jt (red) and estimated jump intensity λt (purple).
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(a) Realized Variance component c1

(b) Realized Variance component c2

FIGURE 1.3: (a) long-run and (b) short-run variance components of SPX-RV.
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(a) Bipower Variation component c1

(b) Bipower Variation component c2

FIGURE 1.4: (a) long-run and (b) short-run variance components of SPX-BP.
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(a) SPX returns

(b) SPX logRV

FIGURE 1.5: One-step ahead log predictive densities for SPX (a) returns and
(b) logRV. The densities are calculated by evaluating grids with the full sample
posterior draws.
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(a) SPX returns

(b) SPX logBP

FIGURE 1.6: One-step ahead log predictive densities for SPX (a) returns and
(b) logBP. The densities are calculated by evaluating grids with the full sample
posterior draws.
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TABLE 1.4: Cumulative log predictive likelihoods of out-of-sample forecasts for SPX returns and logRV on
different forecasting horizons h.

h = 1 h = 5 h = 10 h = 50
RM = RV returns logRV returns logRV returns logRV returns logRV

2Comp-RV −590.81 −547.69 −657.81 −745.76 −684.89 −819.69 −744.15 −965.06

2Comp-RV-IJ −591.11 −544.50 −658.65 −724.32 −686.52 −790.16 −752.41 −938.49

2Comp-RV-HJ −591.09 −536.43 −654.79 −709.89 −678.86 −770.98 −739.52 −907.17

Notes: The likelihood evaluations are on the period: 30/12/2019 - 31/12/2021 (500 out-of-sample forecasts).

TABLE 1.5: Cumulative log predictive likelihoods of out-of-sample forecasts for SPX returns and logBP on
different forecasting horizons h.

h = 1 h = 5 h = 10 h = 50
RM = BP returns logBP returns logBP returns logBP returns logBP

2Comp-BP −592.53 −584.93 −665.66 −774.29 −695.20 −849.30 −753.25 −990.91

2Comp-BP-IJ −592.66 −582.44 −667.86 −756.21 −698.84 −827.02 −773.79 −981.56

2Comp-BP-HJ −590.97 −554.15 −659.22 −727.53 −683.34 −792.85 −751.12 −949.99

Notes: The likelihood evaluations are on the period: 30/12/2019 - 31/12/2021 (500 out-of-sample forecasts).
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(a) SPX returns

(b) SPX logRV

FIGURE 1.7: h-ahead cumulative log predictive likelihoods for SPX (a) re-
turns and (b) logRV. The likelihood evaluations are on the out-of-sample period:
30/12/2019 - 31/12/2021 (500 daily observations).
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(a) SPX returns

(b) SPX logBP

FIGURE 1.8: h-ahead cumulative log predictive likelihoods for SPX (a) re-
turns and (b) logBP. The likelihood evaluations are on the out-of-sample period:
30/12/2019 - 31/12/2021 (500 daily observations).
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Chapter 2

Is stochastic volatility Gaussian? A

Bayesian semiparametric analysis

2.1 Introduction

In this chapter a new semiparametric stochastic volatility model is proposed in which the latent

log-volatility has a flexible distributional assumption. I use a Dirichlet process mixture model

to approximate volatility’s underlying distribution. To improve the identification process I use

the ex post measure of realized variance. I find strong evidence on non-Gaussian distribution in

the stochastic volatility of equity indices. The model also captures asymmetry and tails of log-

realized variance and returns. In out-of-sample forecasting the new model provides improved

density forecasts for returns, negative returns and log-realized variance.

There are two main approaches in modeling the volatility of financial returns. The first is the

(G)ARCH-type models (Engle 1982; Bollerslev 1986). In these the volatilty is assumed to be

deterministic and conditional on past return information. The second approach is the stochastic

volatility (SV) models introduced by Taylor (1982). These differ than GARCH models since

they assume stochastic and latent variance given past information. SV models treat volatility as

the impact of an unobserved news flow process. Kim et al. (1998) develop a Bayesian approach

to estimate the discrete time SV model.
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In the simplest form SV models assume that returns are a continuous mixture of normals

governed by their latent log-volatility which follows an AR(1) process. Early parametric exten-

sions of the SV models focus on the non-Gaussian features of the return distribution. Mahieu

and Schotman (1998) use a finite mixture of normals for return density modeling. Liesenfeld

and Jung (2000) use normal mixtures and Student-t assumption on return innovations. Chib et

al. (2002) use Student-t errors and a jump component. Durham (2006) uses two SV processes to

model the return variance. Abanto-Valle et al. (2010) and Nakajima and Omori (2012) also focus

on modeling the tail behaviour of returns. In the above studies the volatility equation remains a

parametric AR(1) specification.

Jensen and Maheu (2010) develop a semiparametric SV model in which the return variance

is decomposed into two parts. One is a parametric SV and the second is an infinite mixture of

normals with a Dirichlet process (DP) prior (Ferguson 1973). This model can approximate the

underlying continuous return distribution while capturing the volatilty clustering with the SV

part. Other semiparametric SV models have been developed from Delatola and Griffin (2011),

Yu (2012), Delatola and Griffin (2013), Jensen and Maheu (2014) and Zaharieva et al. (2020) in

a multivariate framework.

A different extension of the SV models was introduced by So et al. (1998) who estimated

the latent volatility under a finite number of regimes. Regime-switching SVs have also been

applied by Kalimipalli and Susmel (2004) and Vo (2009). Vo (2009) extend the SV-DPM model

of Jensen and Maheu (2010) by making the constant of volatility equation a two-state Markov-

switching variable. Li et al. (2022) use an infinite hidden Markov mixture instead of the inde-

pendent Dirichlet process mixture (DPM) in return innovations. These studies indicate that a

Gaussian AR(1) structure of latent volatility is a strong assumption.

In this work I explore the non-Gaussian features of stochastic volatility. I drop the restric-

tive assumption of normal innovations in the volatility equation. Instead, I estimate latent log-

volatility semiparametrically with a DPM model. I use an infinite mixture of normals in the
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constant and the variance of stochastic volatility. This enables to capture shocks, jumps and

clustering that occur in return variance. A similar infinite mixture has been used by Jensen and

Maheu (2014). The model I develop has two differences. First, I include the mean of returns in

the mixture. This allows the model to capture asymmetry and thick tails of the return distribu-

tion. Second, to improve the identification of latent volatility I use realized variance (RV) data

as an extra source of information along with returns.

RV data, calculated from high-frequency returns, is more informative than squared returns

about their variance. Takahashi et al. (2009) first used RV data to assist the volatility estimation

in SV. Other studies that incorporate RV data are from Yamauchi and Omori (2020) in the multi-

variate SV, along with realized correlation data, Liu (2021) who models returns and logRV with

DPM and Hansen et al. (2012) in the GARCH model. I extend the framework of Takahashi et al.

(2009) to a model with a DPM mixture in the latent volatility equation and the returns mean.

The model application on major equity indices shows strong non-Gaussian behaviour in the

estimated volatility. Results indicate that latent volatility is a mixture of at least 4 normal clus-

ters. The plots of estimated time varying volatility of volatility shows that this gives the model

the necessary flexibility to capture variance shocks, in RV, as well as extreme returns.

Predictive density plots of volatility show strong evidence of asymmetry and thick tails. In-

terestingly, the flexible volatility estimation captures asymmetry and tails of logRV data. This is

validated by out-of-sample forecasting, in which the proposed model outperforms the Gaussian

benchmark in logRV density forecasts. The new model performs better in forecasting the most

volatile equity returns. Due to the flexible mixture it assigns more probability mass to the far left

side of the return density than the Gaussian benchmark. For most of the series tested it produces

better density forecasts when returns are negative and exceed losses of 1%. This is important in

risk management applications and these will be examined in future work.

The chapter is organized as follows: Section 2.2 is a brief discussion on RV, Section 2.3

presents the proposed model, its estimation steps and the forecasting process, Section 2.4 is the
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empirical application and in Section 2.5 are the concluding remarks.

2.2 Realized variance

The ex post variance of an asset’s return is estimated with the nonparametric realized mea-

sures. Realized variance is the simplest measure. The important papers that provide a foun-

dation of the theory and application of RV are from Andersen et al. (2001a), Andersen et al.

(2001b), Barndorff-Nielsen and Shephard (2002a), Barndorff-Nielsen and Shephard (2002b)

and Andersen et al. (2003). The theoretical foundation starts with a continuous-time stochastic

volatility model. The simplest form, without jumps, is discussed here, however the proposed

model can capture return jumps. The logarithmic asset price at time t, pt, evolves under the

following process

dpt = µtdt+ σtdWt, (2.1)

where µt and σt(σt > 0) are the stochastic drift and the diffusion processWt is a standard Brow-

nian motion. The daily continuously compounded logarithmic return at time t, rt, is defined as

rt = pt − pt−1 =
∫ t

t−1
µτdτ +

∫ t

t−1
στdWτ (2.2)

and the quadratic return variation is the integrated variance (IV)

QVt ≡ IVt =
∫ t

t−1
σ2

τdτ (2.3)

For day t, given intraday returns rt,i, i = 1, ..., n, Barndorff-Nielsen and Shephard (2002a) and

Andersen et al. (2003) show that QVt can be approximated by the RV estimator defined as

RVt =
n∑

i=1
r2

t,i → QVt, as n → ∞. (2.4)
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RVt is a consistent estimator of QVt under no market microstructure noise. In practice, high-

frequency returns contain microstructure noise which makes RVt biased and inconsistent, as

Zhang et al. (2005), Hansen and Lunde (2006) and Bandi and Russell (2008) document.

A popular way to overcome noise in RVt is the use of subsampling as proposed by Zhang

et al. (2005). With this statistical technique, the grid of available intraday observations is sep-

arated into multiple subgrids. For each subgrid, an estimator of realized variance is calculated.

Then, RVt is set as an average of the subgrid estimators. This gives an approximately unbi-

ased RVt. Aït-Sahalia and Mancini (2008) show that RVt from subsampling outperforms the

simple one, from the summation of squared log returns, in contained bias, variance, RMSE and

forecasting.

2.3 Model specification

To examine the distributional behaviour of stochastic volatility, I develop an SV model where

log-volatility does not follow the standard Gaussian AR(1) process which is usually adopted in

literature. Instead, I estimate it under the assumption of an infinite mixture of normals, given

a Dirichlet process (DP) prior, of Ferguson (1973). This flexible mixture framework has the

ability to approximate any underlying continuous distribution.

I extend the framework proposed by Takahashi et al. (2009) which uses RV data to help the

estimation of stochastic volatility. I include a Dirichlet process mixture (DPM) in the mean, the

variance of stochastic volatility and the returns mean. That way the model has the flexibility to

estimate volatility under a free distributional assumption and also capture the asymmetry and

thick tails of returns distribution. The proposed model offers a parsimonious way to include ex

post variance information and extend the SV-DPM of Jensen and Maheu (2010).
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Conditional on the information set It−1 = {(r1, logRV1), ..., (rt−1, logRVt−1)} the RSV-

DPM-V (Realized SV with DPM in Volatility) model has the following hierarchical specification

rt = mt + exp(ht/2)ut, ut ∼ NID(0, 1), (2.5)

logRVt = c+ dht + bzt, zt ∼ NID(0, 1), (2.6)

ht = gt + δht−1 + vtet, et ∼ NID(0, 1), (2.7)

mt, gt, v
2
t |G iid∼ G, (2.8)

G|G0, α ∼ DP(α,G0), (2.9)

G0(mt, gt, v
2
t ) ≡ N(m0, u

2
0) − N(g0, q

2
0) − IG(v0, s0), (2.10)

with model parameters: θ = {β, b2, δ, α}, β = {c, d}.

rt are log returns at time t, t = 1, ..., T and logRVt denotes the natural logarithm of the

returns realized variance at time t. ht is the stochastic log-volatility of returns at time t. (2.5)

and (2.6) are usually referred as measurement equations. (2.6) uses logRVt as informational

signal to assist the estimation of stochastic volatility. Parameter d captures deviations between

ht and logRVt due to market frictions and is expected to be close to 1. Takahashi et al. (2009)

restrict d = 1. My results show this to be a strict assumption since I find d to be close but

significantly different than 1.

Eq.(2.8)-(2.10) place in infinite mixture of normals in returns and log-volatility. The mixing

parameters are returns mean mt, stochastic volatility constant gt and volatility of volatility vt.

Stochastic volatility specification in (2.7) is an extension of the one used by So et al. (1998)

who use a 3-state Markovian mixture in the volatility constant. In this specification the path

dependence of volatility is not explicitly stated.

The mixture parameters, mt, gt and vt, are distributed according to the latent G which is

nonparametrically modelled with a DP prior. A draw from a DP, G ∼ DP(α,G0), is almost

surely a discrete distribution and has two parameters, the base measure G0 and the precision
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parameter α > 0. The DP is centred around G0 since E[G] = G0 and the precision parameter

α determines how close is G to G0 since Var[G] = G0[1 − G0]/(α + 1). In this case the base

measure of DP in (2.10) is a normal-normal-inverse gamma (N-N-IG) prior.

G has a support of infinite distributions. Let µ = {µ1, µ2, ...}, γ = {γ1, γ2, ...} and σ2
t =

{σ2
1, σ

2
2, ...} denote the unique points of support in G with

µj
iid∼ N(m0, u

2
0), j = 1, 2, ... (2.11)

γj
iid∼ N(g0, q

2
0), j = 1, 2, ... (2.12)

σ2
j

iid∼ IG(v0, s0), j = 1, 2, ... (2.13)

The conditional distributions of returns and volatility have the following stick-breaking repre-

sentation of Sethuraman (1994),

p(rt|It−1, ht,W, µ) =
∞∑

j=1
wjN (rt|µj , exp(ht)) , (2.14)

p(ht|It−1,W, γ, σ
2) =

∞∑
j=1

wjN
(
ht|γj + δht−1, σ

2
j

)
, (2.15)

where W = {w1, w2, ...} is the infinite set of weights associated with the mixing normal densi-

ties, with
∑∞

j=1wj = 1 and a stick-breaking prior which is generated as

w1 = v1, wj = vj

j−1∏
l=1

(1 − vl), j > 1, (2.16)

vj
iid∼ B(1, α). (2.17)

where B(.) denotes the Beta distribution. A finite set {(r1, h1), ..., (rT , hT )} will be associated

with a finite set {(m1, g1, v
2
t ), ..., (mT , gT , v

2
T )} of draws from G in (2.8). The DPM allows

data clustering in identical sets of (mt, gt, v
2
t ). This truncates the infinite mixture into a finite

one with k unique clusters, {µj , γj , σ
2
j }k

j=1, k < T . This means that the model learns from the

data and uses a mixture of k normal kernels to approximate the underlying data distribution.
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The flexible nonparametric DPM framework nests different parametric specifications. The

precision parameter α controls the number of mixture clusters. When α → 0 then w1 = 1,

wj = 0, ∀j > 1 and stochastic volatility will follow a Gaussian AR(1) with variance σ2
1 . In this

case RSV-DPM-V will be equivalent with the proposed RSV-N of Takahashi et al. (2009).

2.3.1 Estimation

A straightforward method to estimate DPM models is by using the stick-breaking formulation

and the slice sampler by Walker (2007) and Kalli et al. (2011), which truncates the infinite

mixture into a finite number κ, κ ≤ k < T , of unique clusters, {µj , γj , σ
2
j }κ

j=1, with at least

one data observation assigned in each cluster. To do so, the parameter space is expanded by

introducing two latent vectors. The first one is a cluster or state indicator s1:T = {s1, ...sT }

which maps each set (rt, ht) to a cluster j. The second auxiliary vector u1:T = {u1, ...uT }, with

ut ∈ (0, 1), helps to convert the infinite sum in (2.14) and (2.15) into a finite mixture.

The joint posterior of the RSV-DPM-V model p({µj , γj , σ
2
j }∞

j=1, s1:T , u1:T , h1:T , θ|IT ) is

proportional to

p(θ)p(w1:k)
k∏

j=1
p(µj , γj , σ

2
j )

×
T∏

t=1
1 {ut < wst} N (rt|µst , exp(ht)) N

(
logRVt|c+ dht, b

2
)

N
(
ht|γst + δht−1, σ

2
st

)
.

(2.18)

with the first line being the prior and the second one the likelihood. 1{.} is the indicator function

and k is the smallest positive integer that satisfies the condition
∑k

j=1wj > 1 − min(u1:T ).

The above posterior does not have a known form. To sample the parameters and estimate the

stochastic volatility I follow standard Markov chain Monte Carlo (MCMC) techniques to sample

from a series of conditional distributions. This allows a straightforward estimation with a set of

conditional steps.
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At first, I initialize θ, k, w1:k, s1:T , µ1:k, γ1:k, σ
2
1:k, α and h1:T . Then I collect a large num-

ber of posterior draws {θ(i), k(i), s
(i)
1:T , µ

(i)
1:k, γ

(i)
1:k, σ

2(i)
1:k , α

(i), h
(i)
1:T }R

i=1 by iterating through the

following MCMC steps:

1. Sample ht, t = 1, ..., T from p(ht|h−t, r1:T , logRV1:T , θ, µ1:k, γ1:k, σ
2
1:k, s1:T ).

2. Sample δ from p(δ|h1:T , γ1:k, σ
2
1:k, s1:T ).

3. Sample µ1:k from p(µ1:k|r1:T , h1:T , s1:T ) , γ1:k from p(γ1:k|r1:T , h1:T , σ
2
1:k, s1:T , δ)

and σ2
1:k from p(σ2

1:k|r1:T , h1:T , γ1:k, s1:T , δ).

4. Update w1:k, u1:T , k|s1:T .

5. Sample st, t = 1, ..., T from p(st|r1:T , logRV1:T , h1:T , θ, µ1:k, γ1:k, σ
2
1:k, w1:k, u1:T , k).

6. Sample α from p(α|κ, T ) with κ being the number of active clusters.

7. Sample β from p(β|logRV1:T , h1:T , b
2) and b2 from p(b2|logRV1:T , h1:T , β).

Details of the sampling steps are in the appendix A2. Repeating the above steps R times, after

discarding R0 burnin sweeps, I get the posterior draws for inference.

2.3.2 Benchmark models

As benchmark models I use the RSV-N of Takahashi et al. (2009) which has a normal innova-

tions in returns and stochastic volatility. This is defined as

rt = µ+ exp(ht/2)ut, ut ∼ NID(0, 1), (2.19)

logRVt = c+ dht + bzt, zt ∼ NID(0, 1), (2.20)

ht = γ + δht−1 + σvet, et ∼ NID(0, 1). (2.21)

The second benchmark used is the SV-DPM of Jensen and Maheu (2010) which approxi-

mates the return distribution with an infinite mixture of normal kernels and a Gaussian AR(1)
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stochastic volatility. This has the following hierarchical form

rt = mt + λt exp(ht/2)ut, ut ∼ NID(0, 1), (2.22)

ht = δht−1 + σvet, et ∼ NID(0, 1), (2.23)

mt, λ
2
t |G iid∼ G, (2.24)

G|G0, α ∼ DP(α,G0), (2.25)

G0(mt, λ
2
t ) ≡ N(m0, u

2
0) − IG(vl, sl). (2.26)

The SV-DPM is a natural benchmark to the RSV-DPM-V without logRVt signal to show the

importance of RVt.

2.3.3 Predictive density

In this section I present the prediction process for the RSV-DPM-V model since it nests the

benchmark specifications. In forecasting the whole distribution of a variable, such as returns,

the measure of interest is the predictive density p(rt+1|It). The out-of-sample predictive density

plots for p(ht+1|It,RSV-DPM-V) can give a visualization of the stochastic volatility’s underly-

ing distribution.

The key task when forecasting with DPM models is to integrate out the uncertainty about

the future state of the mixture parameters. Conditional on It = {r1:t, logRV1:t}, the predictive

density of returns, logRV and log-stochastic volatility can be approximated with the use of R
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posterior draws as

p(rt+1|It, ht+1) ≈ 1
R

R∑
i=1

N
(
rt+1

∣∣∣µ(i)
s

(i)
t+1
, exp

(
h

(i)
t+1

))
, (2.27)

p(logRVt+1|It, ht+1) ≈ 1
R

R∑
i=1

N
(

logRVt+1

∣∣∣c(i) + b(i)h
(i)
t+1, b

2(i)
)
, (2.28)

p(ht+1|It) ≈ 1
R

R∑
i=1

N
(
ht+1

∣∣∣γ(i)
s

(i)
t+1

+ δ(i)h
(i)
t , σ

2(i)
s

(i)
t+1

)
, (2.29)

where s
(i)
t+1 =


j, if

∑j−1
l=0 w

(i)
l < ϕ <

∑j
l=0w

(i)
l ,

k(i) + 1, if ϕ ≥
∑k(i)

l=0 w
(i)
l ,

(2.30)

with w(i)
o = 0, j ≤ k(i), ϕ ∼ U(0, 1) and ht+1 is simulated as

h
(i)
t+1 ∼ N

(
γ

(i)
s

(i)
t+1

+ δ(i)h
(i)
t , σ

2(i)
s

(i)
t+1

)
. (2.31)

The above means that the future value of s(i)
t+1 is one of the existing clusters with probability

equal to the associated weights and there is a nonzero probability of introducing a new cluster(
µ

(i)
k(i)+1, γ

(i)
k(i)+1, σ

2(i)
k(i)+1

)
from the base measure G0.

To test a model’s forecasting ability, the predictive density calculations are used to evalu-

ate out-of-sample realizations of the modelled variables and construct the predictive likelihood.

Specifically, for each model, by performing a set of τ (with 1 < τ < T ), recursive posterior

estimations, the log predictive likelihood of rT −τ+1:T , from each model, is the summation of

individual log predictive densities of each estimation

logPL(rT −τ+1:T |IT ) =
T −1∑

t=T −τ

log (p(rt+1|It, ht+1)) . (2.32)

Similarly, the log predictive likelihood of logRVT −τ+1:T can be calculated as

logPL(logRVT −τ+1:T |IT ) =
T −1∑

t=T −τ

log
(
p(logRVt+1|It, ht+1)

)
. (2.33)
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The difference between two log predictive likelihoods, from two different models (logPL1 −

logPL2), gives the log Bayes Factor (logBF) (Kass and Raftery 1995) and shows the significance

in their density forecasting performance. A rough guide to the values of logBF = logPL1 −

logPL2, is as follows: 0 − 1 not worth more than a bare mention, 1 − 3 positive evidence for

model 1, 3 − 5 strong evidence for model 1 and > 5 very strong evidence for model 1.

The proposed RSV-DPM-V model has the ability to accommodate extreme return events

due to the flexibility in estimating the latent volatility. This is important for risk management

applications where forecasting the left tail of the distribution is often the task of interest. I

test the model’s ability to forecast extreme return events with the predictive density for specific

distributional regions. For a value η, with η ∈ R, the predictive density of rt+1 < η is defined

as

p(rt+1|rt+1 < η, It) = p(rt+1|It)1 {rt+1 < η}∫ η
−∞ p(rt+1|It)drt+1

≈ 1
R

R∑
i=1

N
(
rt+1

∣∣∣µ(i)
s

(i)
t+1
, exp

(
h

(i)
t+1

))
1 {rt+1 < η}

Φ
((

η − µ
(i)
s

(i)
t+1

)
/ exp

(
h

(i)
t+1/2

)) , (2.34)

where Φ(.) denotes the standard Gaussian c.d.f. The denominator in (2.34) is an integrating

constant ensuring that the predictive density integrates to one. The cumulative log-predictive

likelihood can be calculated as of (2.32), conditional on rt+1 < η.

2.4 Empirical application

2.4.1 Data

Data are the daily open-to-close log returns of: DAX, FTSE (FTSE 100) and SPX (S&P500)

indices and their ex post variance measure of realized variance (RV). Summary statistics are

in Table 2.1. The data are obtained from Oxford-Man Institute’s Realized Library of Heber
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et al. (2009). RV is calculated from 5-minute returns using subsampling in order to reduce the

microstructure noise. The returns have been converted to percentages and RV data have been

scaled by 1002.

2.4.2 Selection of priors

The base measure of DPM, G0, for the return mean is set around zero, G0(µj) ≡ N(0, 0.1).

The same is for the constant of log-volatility with G0(γj) ≡ N(0, 0.1). For the volatility of

volatility I use G0(σ2
j ) ≡ IG(5/2, 1/2). In the benchmarks I use µ ∼ N(0, 0.1), γ ∼ N(0, 0.1)

and σ2
v ∼ IG(5/2, 1/2). In the SV-DPM I use G0(λ2

j ) ≡ IG(10/2, 10/2). The precision

parameter of DPM has a Gamma prior, α ∼ Γ(2, 8), following Jensen and Maheu (2010). For

the measurement equation parameters I use: β ∼ N(β0, B0) with β0 = [0 1]′, B0 = 100 × I2

and b2 ∼ IG(5/2, 1/2). AR(1) parameter is from δ ∼ N(0.9, 0.01)1{|δ| < 1}.

2.4.3 Posterior estimation results

Results from 10,000 MCMC posterior draws, after 5,000 burnin, for DAX, FTSE and SPX are

in Tables 2.2, 2.3 and 2.4. The key result for all the data series is that RSV-DPM-V shows a

mixture of normals in volatility. The model uses on average 4.53 clusters for DAX, 5.64 clusters

for FTSE and 4.34 clusters for SPX data. SV-DPM model has a broader range in the number of

clusters. It uses more clusters for DAX, 9.6, and SPX, 7.45, and less clusters for FTSE, 2.44.

In the measurement equations between RSV-N and RSV-DPM-V, the constant c is consis-

tently estimated at −0.174 for DAX, −0.457 for FTSE and −0.699 for SPX. These values are

close to the sample means of logRV data in Table 2.1. Noticeable is the decline in variance b2

in RSV-DPM-V compared to the benchmark RSV-N. In DAX is 0.145 from 0.1616, in FTSE is

0.2 from 0.22 and in SPX is 0.18 from 0.183. This indicates the effect of the flexible mixture

in latent volatility which helps to estimate ht closer to logRVt compared to the Gaussian RSV,

especially for the more volatile series of DAX and FTSE. Coefficient d is slightly declined in

RSV-DPM-V for DAX and FTSE, and has a minor increase for SPX.
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The effect of the volatility mixture is clear in the posterior estimation of ht. In Figures 2.1

and 2.2 for the series DAX and FTSE, RSV-DPM-V is able to estimate the latent volatility closer

to the outlier values of logRV, compared to the restricted Gaussian RSV-N. The volatility mixture

effect is less obvious in SPX.

The flexibility of the volatility mixture is clear in the Figures 2.4, 2.5 and 2.6. In these it can

be seen the time-varying returns mean, volatility constant and volatility of volatility. The RSV-

DPM-V seems to capture efficiently, return and variance jumps as well as volatility clustering.

The key difference of RSV-DPM-V from the models in literature such as the SV-DPM of Jensen

and Maheu (2010) is that the variance of volatility σ2
t is in fact time-varying. This accommodates

shocks and jumps in latent variance. Especially for DAX and FTSE, E(σ2
st

|RSV-DPM-V) has

rare extreme spikes which are associated with bursts in logRV. For SPX, which is less volatile

than the other two series, volatility of volatility is time-varying as well, but at a smaller range.

2.4.4 Forecasting results

The posterior estimation results and plots show that stochastic volatility has a time changing

variance, indicating a non-Gaussian structure. Predictive density plots validate that stochastic

volatility from RSV-DPM-V is not Gaussian. It is clear for all the data series in Figures 2.7, 2.8

and 2.9 that p(hT +1|IT ) is different than a Gaussian shape. It has strong asymmetry and thick

tails. Moreover, from the p(logRVT +1|IT ) plots can be seen that the flexibility of RSV-DPM-V

in the estimation of ht captures the non-Gaussian features of logRV. The empirical skewness and

excess kurtosis of returns are also captured by the RSV-DPM-V as seen in all the p(rT +1|IT )

plots.

How does the capture of volatility’s non-Gaussian features impact the return modeling? Does

it improve density forecasts? This is answered by the cumulative log predictive likelihood results

of 500 daily out-of-sample predictions, from recursive posterior estimations, in Table 2.5. For

DAX, the RSV-DPM-V model outperforms both benchmarks in forecasting returns and logRV.

For FTSE, RSV-DPM-V is better that RSV-N in forecasting logRV and second best in predicting
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return density. SV-DPM is marginally the best, with a logBF of 1.95 compared to RSV-DPM-V.

For SPX, RSV-DPM-V outperforms again RSV-N in forecasting logRV. RSV-N is marginally

better than RSV-DPM-V in return density forecasting with a logBF of 1.23. The fact that for all

series RSV-DPM-V is better in predicting logRV density than RSV-N, validates that the flexible

estimation of ht helps to better model the non-Gaussian features of logRV.

Some insight to the forecasting results of Table 2.5 is given in Figures 2.10, 2.11 and 2.12.

These show how the logBFs of the RSV-DPM-V model against the benchmarks change through-

out the out-of-sample forecasting period. In returns density forecasting, RSV-DPM-V model

tends to perform better when returns have large negative drops. This indicates the model’s flexi-

bility to account for variance and returns shocks. This is also shown in logRV density forecasting

where RSV-DPM-V performs better than RSV-N in periods of high variance such as during the

start of the pandemic in March 2020.

I also test the proposed model on the ability to forecast the left region of the return distri-

bution. This is an important task in financial risk management. I calculate the cumulative log

predictive likelihood based on the region predictive density in (2.34), for out-of-sample returns

less than 0 and −1. The results are in Table 2.6. For DAX, RSV-DPM-V is the best model in

forecasting negative returns and second best when returns are less than −1%, following closely

SV-DPM. RSV-DPM-V is better than both benchmarks in predicting the left side returns of

FTSE. For the least volatile series of SPX, RSV-N is the best at forecasting negative returns and

performs close to RSV-DPM-V when returns are less than −1%.

The proposed RSV-DPM-V identifies non-Gaussian volatility features for all the data series.

In forecasting, RSV-DPM-V seems to perform well for the more volatile series of DAX and

FTSE, compared to SPX in which is close to the Gaussian framework of RSV-N. A model

application to individual stocks, which tend to be more volatile than indices, is left for future

work. Also, due to its flexibility in variance estimation and in the left tail prediction, RSV-DPM-

V can be used for Value-at-Risk and Expected Shortfall forecasts.
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2.5 Concluding remarks

This chapter explores the empirical distributional features of stochastic volatility. A new semi-

parametric SV model is proposed where latent log-volatility has no underlying assumption about

its distribution. Instead is estimated as an infinite mixture of normal with a Dirichlet process

prior. RV information is used to assist the estimation of the unobserved volatility. The model

includes in the mixture the returns mean which gives the ability to capture the underlying return

density.

Results from three equity indices indicate that stochastic volatility is not Gaussian. It is

a mixture of normals and reveals strong evidence of asymmetry and thick tails. The flexible

mixture estimation of volatility helps to capture non-Gaussian features in logRV and returns.

In out-of-sample forecasting, the proposed model outperform the benchmarks in logRV density

predictions. In return forecasting the proposed model performs the best for the most volatile

series. It also assigns higher probability mass to negative returns for the two most volatile series.

When returns are less than −1% the proposed model gives better forecasts for two of the three

examined series.
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TABLE 2.1: Summary statistics

DAX Mean Variance Skewness Kurtosis Min Max

rt −0.0277 1.5343 −0.1313 8.3761 −9.4122 9.9934

RVt 1.5914 8.2967 7.7525 102.1241 0.0414 58.8347

logRVt −0.1642 1.0871 0.4308 3.2182 −3.1842 4.0747

Data period: January 3rd, 2000 - December 31st, 2021, 5,574 days.

FTSE Mean Variance Skewness Kurtosis Min Max

rt −0.0028 1.3268 −0.3702 10.3209 −10.2995 9.3872

RVt 1.2045 8.4831 15.8272 415.6667 0.0133 106.0012

logRVt −0.4569 1.0166 0.5833 3.6644 −4.3182 4.6635

Data period: January 4th, 2000 - December 31st, 2021, 5,547 days.

SPX Mean Variance Skewness Kurtosis Min Max

rt 0.0076 1.2396 −0.2289 11.3874 −9.3511 10.2202

RVt 1.0855 6.7016 11.0013 205.2279 0.0122 77.4774

logRVt −0.6943 1.3112 0.3762 3.3814 −4.4079 4.3500

Data period: January 3rd, 2000 - December 31st, 2021, 5,515 days.
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TABLE 2.2: Posterior estimation results for DAX.

SV-DPM RSV-N RSV-DPM-V

Mean 95% D.I. Mean 95% D.I. Mean 95% D.I.

µ 0.0574 [ 0.053, 0.062]

c −0.1739 [−0.185,−0.163] −0.1738 [−0.184, −0.164]

d 0.9652 [ 0.951, 0.980] 0.9629 [ 0.949, 0.977]

b2 0.1616 [ 0.152, 0.172] 0.1450 [ 0.136, 0.154]

γ −0.0008 [−0.008, 0.006]

δ 0.9849 [ 0.978, 0.991] 0.9669 [ 0.959, 0.975] 0.9649 [ 0.957, 0.973]

σ2
v 0.0373 [ 0.027, 0.049] 0.0649 [ 0.055, 0.075]

α 0.6477 [ 0.225, 1.256] 0.3928 [ 0.099, 0.918]

κ 9.6135 [ 5.000, 16.000] 4.5828 [ 3.000, 8.000]

Notes: Results are from 10,000 MCMC posterior draws, after 5,000 burnin. α is the presicion parameter of the
DPM and κ is the number of active normal clusters.
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TABLE 2.3: Posterior estimation results for FTSE.

SV-DPM RSV-N RSV-DPM-V

Mean 95% D.I. Mean 95% D.I. Mean 95% D.I.

µ 0.0499 [ 0.046, 0.054]

c −0.4572 [−0.470, −0.445] −0.4572 [−0.469,−0.445]

d 0.9618 [ 0.944, 0.980] 0.9533 [ 0.936, 0.970]

b2 0.2203 [ 0.209, 0.233] 0.2001 [ 0.188, 0.212]

γ −0.0008 [−0.007, 0.005]

δ 0.9773 [ 0.969, 0.985] 0.9654 [ 0.957, 0.974] 0.9561 [ 0.946, 0.965]

σ2
v 0.0439 [ 0.032, 0.057] 0.0589 [ 0.050, 0.068]

α 0.2047 [ 0.021, 0.629] 0.4836 [ 0.112, 1.123]

κ 2.4433 [ 1.000, 8.000] 5.6436 [ 3.000, 10.000]

Notes: Results are from 10,000 MCMC posterior draws, after 5,000 burnin. α is the presicion parameter of the
DPM and κ is the number of active normal clusters.
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TABLE 2.4: Posterior estimation results for SPX.

SV-DPM RSV-N RSV-DPM-V

Mean 95% D.I. Mean 95% D.I. Mean 95% D.I.

µ 0.0736 [ 0.070, 0.077]

c −0.6989 [−0.710, −0.688] −0.6990 [−0.710, −0.688]

d 0.9527 [ 0.937, 0.968] 0.9561 [ 0.941, 0.971]

b2 0.1832 [ 0.171, 0.196] 0.1801 [ 0.168, 0.192]

γ −0.0007 [−0.010, 0.008]

δ 0.9828 [ 0.976, 0.989] 0.9545 [ 0.945, 0.964] 0.9581 [ 0.949, 0.967]

σ2
v 0.0514 [ 0.039, 0.068] 0.1105 [ 0.096, 0.126]

α 0.5151 [ 0.141, 1.096] 0.3723 [ 0.094, 0.880]

κ 7.4500 [ 3.000, 14.000] 4.3404 [ 3.000, 8.000]

Notes: Results are from 10,000 MCMC posterior draws, after 5,000 burnin. α is the presicion parameter of the
DPM and κ is the number of active normal clusters.
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FIGURE 2.1: DAX logRV and estimated log-volatility: E(ht|IT ).

(a) E(ht|IT ) from the models: RSV-DPM-V and RSV-N.

(b) E(ht|IT ) from the models: RSV-DPM-V and SV-DPM.
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FIGURE 2.2: FTSE logRV and estimated log-volatility: E(ht|IT ).

(a) E(ht|IT ) from the models: RSV-DPM-V and RSV-N.

(b) E(ht|IT ) from the models: RSV-DPM-V and SV-DPM.
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FIGURE 2.3: SPX logRV and estimated log-volatility: E(ht|IT ).

(a) E(ht|IT ) from the models: RSV-DPM-V and RSV-N.

(b) E(ht|IT ) from the models: RSV-DPM-V and SV-DPM.
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FIGURE 2.4: Mixture parameters for DAX.

From top to bottom: DAX returns (black), estimated return mean
E(µst

|IT ,RSV-DPM-V) (blue), DAX logRV (black), estimated st. vol. con-
stant E(γst

|IT ,RSV-DPM-V) (green) and estimated volatility of volatility
E(σ2

st
|IT ,RSV-DPM-V) (red).
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FIGURE 2.5: Mixture parameters for FTSE.

From top to bottom: FTSE returns (black), estimated return mean
E(µst

|IT ,RSV-DPM-V) (blue), FTSE logRV (black), estimated st. vol. con-
stant E(γst

|IT ,RSV-DPM-V) (green) and estimated volatility of volatility
E(σ2

st
|IT ,RSV-DPM-V) (red).
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FIGURE 2.6: Mixture parameters for SPX.

From top to bottom: SPX returns (black), estimated return mean
E(µst

|IT ,RSV-DPM-V) (blue), SPX logRV (black), estimated st. vol. con-
stant E(γst

|IT ,RSV-DPM-V) (green) and estimated volatility of volatility
E(σ2

st
|IT ,RSV-DPM-V) (red).
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(a) Log predictive density of DAX returns: log p(rT +1|IT )

(b) Log predictive density of DAX logRV: log p(logRVT +1|IT )

(c) Log predictive density of DAX stochastic log-volatility: log p(hT +1|IT )

FIGURE 2.7: Log predictive densities of (a) DAX returns, (b) DAX logRV and
(c) DAX stochastic log-volatility from RSV-N and RSV-DPM-V.
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(a) Log predictive density of FTSE returns: log p(rT +1|IT )

(b) Log predictive density of FTSE logRV: log p(logRVT +1|IT )

(c) Log predictive density of FTSE stochastic log-volatility: log p(hT +1|IT )

FIGURE 2.8: Log predictive densities of (a) FTSE returns, (b) FTSE logRV
and (c) FTSE stochastic log-volatility from RSV-N and RSV-DPM-V.

61

http://www.mcmaster.ca/


Doctor of Philosophy– Efthymios NIKOLAKOPOULOS McMaster University– Finance

(a) Log predictive density of SPX returns: log p(rT +1|IT )

(b) Log predictive density of SPX logRV: log p(logRVT +1|IT )

(c) Log predictive density of SPX stochastic log-volatility: log p(hT +1|IT )

FIGURE 2.9: Log predictive densities of (a) SPX returns, (b) SPX logRV and
(c) SPX stochastic log-volatility from RSV-N and RSV-DPM-V..
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TABLE 2.5: Density forecasting results.

DAX FTSE SPX

returns logRV returns logRV returns logRV

SV-DPM −642.55 −749.89 −620.05

RSV-N −630.12 −433.62 −752.59 −602.36 −609.49 −538.98

RSV-DPM-V −626.71 −429.09 −751.84 −588.77 −610.76 −533.36

Forecasts (τ ) 500 500 500

Time period 08/01/2020 - 31/12/2021 08/01/2020 - 31/12/2021 30/12/2019 - 31/12/2021

Notes: This table displays the cumulative log predictive likelihood (logPL) of returns and logRV. Bold values are
the best among the models.
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(a) DAX returns and cumulative logBF of RSV-DPM-V against the benchmarks.

(b) DAX logRV and cumulative logBF of RSV-DPM-V against RSV-N.

FIGURE 2.10: (a) DAX returns (top) and cumulative logBF of RSV-DPM-V vs
SV-DPM and RSV-DPM-V vs RSV-N (bottom).
(b) DAX logRV (top) and cumulative logBF of RSV-DPM-V vs RSV-N (bot-
tom).
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(a) FTSE returns and cumulative logBF of RSV-DPM-V against the bench-
marks.

(b) FTSE logRV and cumulative logBF of RSV-DPM-V against RSV-N.

FIGURE 2.11: (a) FTSE returns (top) and cumulative logBF of RSV-DPM-V
vs SV-DPM and RSV-DPM-V vs RSV-N (bottom).
(b) FTSE logRV (top) and cumulative logBF of RSV-DPM-V vs RSV-N (bot-
tom).
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(a) SPX returns and cumulative logBF of RSV-DPM-V against the benchmarks.

(b) SPX logRV and cumulative logBF of RSV-DPM-V against RSV-N.

FIGURE 2.12: (a) SPX returns (top) and cumulative logBF of RSV-DPM-V vs
SV-DPM and RSV-DPM-V vs RSV-N (bottom).
(b) SPX logRV (top) and cumulative logBF of RSV-DPM-V vs RSV-N (bottom).
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TABLE 2.6: Return density region forecasting results.

DAX FTSE SPX

η (%): −1 0 −1 0 −1 0

SV-DPM −46.88 −162.06 −86.32 −208.47 −57.90 −156.84

RSV-N −52.74 −159.82 −84.73 −205.43 −52.62 −135.51

RSV-DPM-V −47.43 −153.64 −79.07 −200.73 −52.21 −137.04

Forecasts (τ ) 60 233 72 232 57 219

Time period 08/01/2020 - 31/12/2021 08/01/2020 - 31/12/2021 30/12/2019 - 31/12/2021

Notes: This table displays the cumulative region log predictive likelihood (logPL). It is constructed by the region
predictive densities: p(rt+1|rt+1 < η, It), for η = {−1, 0}. The chosen regions are negative returns (rt+1 < 0)
and more than a 1% loss (rt+1 < −1). Bold values are the best among the models.
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Chapter 3

The role of non-Gaussian innovations

in multivariate realized GARCH

models

3.1 Introduction

This chapter explores the impact of non-Gaussian innovations in multivariate realized GARCH

(MRGARCH) models that use realized covariance (RC) information in the construction of the

conditional return covariance. A new approach is proposed to jointly model returns and RC in

a multivariate GARCH framework. The empirical non-Gaussian features of returns are captured

with two novel models. The first one is a parametric version with multivariate-t innovations. The

second one is a nonparametric approximation of the return distribution using an infinite mixture

of multivariate normals, given a Dirichlet process (DP) prior. The proposed models are based

on the assumption that RC follows an Inverse Wishart (IW) distribution with conditional mean

set to the conditional covariance of returns. The benefits of the proposed models are addressed

with forecasting and portfolio risk management applications.

Modeling the covariance of asset returns is important in portfolio optimization, asset pric-

ing and risk management. Typically, multivariate extensions of GARCH models (Engle 1982;
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Bollerslev 1986) are used to estimate the conditional covariance. Due to the complexity of multi-

variate modeling different specifications have been proposed in literature. The most popular have

been the model of Bollerslev et al. (1988), the Dynamic Conditional Correlation (DCC) model

proposed by Engle (2002a) and restricted versions of the BEKK model of Baba et al. (1990)

and Engle and Kroner (1995). A comprehensive study on the multivariate GARCH (MGARCH)

models is from Bauwens et al. (2006). All these models are based on low frequency (daily,

weekly, monthly) squared returns to construct the conditional covariance.

Realized measures of covariance, based on high frequency returns1, have been used to im-

prove the construction of conditional covariance matrices. The realized beta GARCH of Hansen

et al. (2014) is a bivariate model that captures the dynamics of conditional variances and cor-

relations in a DCC framework which links logarithmic realized and conditional measures with

linear measurement equations. Under the same framework, the multivariate realized GARCH

model of Archakova et al. (2019) is the generalization of realized GARCH models, estimated

with a two-step method. Gorgi et al. (2019) developed the realized Wishart GARCH, a multivari-

ate model where RC is assumed to have a Wishart distribution with mean that incorporates the

conditional covariance matrix which is constructed from a score-GARCH specification. Other

models based on RC have been found to perform better than standard MGARCH in forecasting

multivariate return distributions as shown by Noureldin et al. (2012) and Jin and Maheu (2013).

RC has also been used as extra data information to improve multivariate stochastic volatility

models by Shirota et al. (2017) and Yamauchi and Omori (2020).

Concerning the return distribution, the Gaussian assumption is typically used in the above

models. This is an unrealistic assumption given the fact that empirically returns have negative-

skewed distribution with thick tails. Diamantopoulos and Vrontos (2010) proposed an MGARCH

model with Student-t innovations, a specification that would capture thick tails but it still remains

symmetric. Jensen and Maheu (2013) proposed a vector-diagonal semiparametric MGARCH
1For instance, daily realized covariance matrices are constructed from high-frequency (e.g. 5-minute) intraday

returns.
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with no distributional assumption where instead returns follow an infinite mixture of normals

using a Dirichlet process prior. This flexible specification can approximate any continuous re-

turn distribution and yield better density forecasts than parametric models.

Combining realized measures along with thick tails for returns improves covariance model-

ing. Opschoor et al. (2018) extended the HEAVY model of Noureldin et al. (2012) by accounting

for thick tails in modeling RC, using the matrix-F distribution, along with Student-t distributed

returns. Jin and Maheu (2016) model RC using infinite mixtures of IW kernels. This results

in a mixture of Student-t kernels in the conditional return distribution. These models provide

better returns density forecasts. In this chapter I extend the MRGARCH models with several

non-Gaussian return distributional assumptions.

This chapter makes three contributions. First, a Bayesian general framework is developed

for MRGARCH models. I model daily returns along with dailyRC which is used as a signal for

the conditional covariance. In contrast to Hansen et al. (2014) and Archakova et al. (2019) who

breakdown the covariance modeling in univariate linear specifications, I jointly model the RC

elements with an IW density. My approach on modeling RC is closer to the realized Wishart-

GARCH of Gorgi et al. (2019) but with two important differences. The first one is that, compared

to Wishart, the IW distribution provides a better fit for realized covariance matrices, with major

forecasting benefits, as shown by Jin and Maheu (2016). The second one is that the conditional

covariance in my framework is built with a vector-diagonal asymmetric MGARCH extension

which, compared to the restricted score-GARCH of Gorgi et al. (2019), allows for richer dy-

namics in the conditional covariance.

The proposed MRGARCH specification captures the asymmetric volatility feedback in a par-

simonious way. The framework is a multivariate extension of the asymmetric GARCH of Engle

and Ng (1993). This helps to capture the leverage effect in the MGARCH specification without

the use of parametric leverage functions as Hansen et al. (2014) and Archakova et al. (2019). I

find that a leverage effect captured through lag returns provides incremental information for the
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conditional covariance of returns.

The second contribution is that the proposed general MRGARCH framework is extended to

accommodate thick tails and asymmetry in returns. Two new models are developed that drop the

restrictive Gaussian assumption. The first one has a parametric multivariate-t distribution which

captures the thick tails observed in returns. The second one has no underlying assumption but

instead models the latent return distribution using a nonparametric infinite mixture of normals.

This specification is an extension of the models developed by Jensen and Maheu (2013), and

is flexible enough to approximate any continuous distribution and to capture thick tails and

asymmetry in returns.

Results from two equity datasets show deviations from the Gaussian assumption for the re-

turns. I find significant thick tails but little evidence of asymmetry in the return density of my

data. The new proposed semiparametric MRGARCH specification can produce covariance ma-

trices closer to RC, than the parametric models, and this is reflected with improved forecasts of

RC density. In addition, modeling the tails gives major improvements in forecasting the return

density.

The third contribution is the portfolio risk management applications of the MRGARCH mod-

els. For an equal weight investment, I examine the ability of the proposed models to forecast

Value-at-Risk and Expected Shortfall, out-of-sample. I use the loss function from Fissler and

Ziegel (2016) and Patton et al. (2019), to evaluate the models performance on jointly forecasting

the aforementioned tail risk measures. The proposed semiparametric models consistently pro-

duce the best or the second best forecasts of the two measures. The benefits of non-Gaussian

innovations in MRGARCH models are also shown from forming minimum variance portfolios.

The new MRGARCH models which accommodate thick tails have the lowest out-of-sample

portfolio variance.

The chapter is organized as follows: section 3.2 briefly presents the setup of RC, in section

3.3 is the model description along with the estimation process and the density forecasting setup,
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section 3.4 contains the empirical applications and section 3.5 concludes.

3.2 Realized Covariance

Realized measures of covariation are based on high-frequency (intraday) data to estimate the la-

tent low-frequency (daily) covariance matrix. They are multivariate extensions of realized vari-

ance measures, Andersen and Bollerslev (1998) and Barndorff-Nielsen and Shephard (2002a).

For a trading day t, we can have Q high frequency observations for the n-length vector

of logarithmic asset prices pt,i, i = 1, ..., Q. Based on these, high-frequency log returns are

calculated as

rt,i = pt,i − pt,i−1, (3.1)

with rt,i ∈ Rn being the return vector for n series at time i of day t. Given these intraday returns,

the nonparametric estimator of realized covariance (RC), for day t, is

RCt =
Q∑

i=1
rt,ir

′
t,i, (3.2)

with RCt ∈ Rn×n being a positive definite symmetric matrix where the diagonal elements con-

sist the realized variance estimators and the off-diagonal elements are the realized covariances.

Banrdorff-Nielsen and Shephard (2004) show that, under no market microstructure noise, when

Q → ∞ , RCt converges to the quadratic covariation, which is equal to the conditional return

covariance according to Andersen et al. (2003).

The multivariate realized kernel of Barndorff-Nielsen et al. (2011) gives estimations robust

to microstructure noise. Calculating RCt by averaging on different subsampled estimations

(subsampling) can reduce the noise from the high-frequency returns.
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3.2.1 Data

I use the data of Noureldin et al. (2012), consisting of two different sets of daily open-to-close

equity log returns, obtained from Oxford-Man Institute Realized Library. The first one consists

of International Business Machines (IBM), Microsoft (MSFT) and Exxon Mobil (XOM) (n = 3

series) while the second one includes American Express (AXP), DuPont (DD), General Electric

(GE) and Coca-Cola (KO) (n = 4 series). Datasets are from 2242 trading days for the sample

period from February 1st, 2001 to December 31st, 2009. Realized measures of variance and

covariance are calculated from open-to-close 5-minute returns, with subsampling using 1-minute

returns for each trading day. Returns have been converted to percentages and RC matrices have

been scaled by 1002. Summary statistics are in Tables 3.1 and 3.2.

3.3 Multivariate realized GARCH

The models developed in this work have the vector-diagonal form of Ding and Engle (2001)

but other MGARCH specifications could be used. An extension of their specification is used to

allow for volatility feedback similar to the asymmetric GARCH of Engle and Ng (1993). Maheu

and Shamsi Zamenjani (2021) use a similar MGARCH framework.

3.3.1 Gaussian innovations

MRGARCH-N: This proposed fully parametric multivariate realized GARCH model is an ex-

tension of the parametric MGARCH models to includeRC information. RCt is calculated from

intraday high-frequency prices, and serves as a signal for the conditional return covariance. In-

stead of calculating conditional covariance solely based on (daily) squared returns, RC is used

as extra data information. Given the information set It−1 = {r1:t−1, RC1:t−1} available at day
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t− 1, the MRGARCH-N model is specified as

rt|It−1 ∼ Nn(µ,Ht), (3.3)

RCt|It−1 ∼ IWn

(
ν, (ν − n− 1)H1/2

t V
(
H

1/2
t

)′
)
, ν > n+ 1, (3.4)

Ht = Ω +A⊙ (rt−1 − λ)(rt−1 − λ)′ +B ⊙Ht−1 + C ⊙RCt−1, (3.5)

where rt is a n × 1 vector of log returns at time t (trading day) for n data series. Nn(µ,Ht)

denotes the multivariate normal distribution with µ being the length n mean vector and Ht

the n × n covariance matrix, at time t, with n(n + 1)/2 unique elements. Conditional return

covariance from (3.3) is Cov(rt|It−1) = Ht.

Symbol ⊙ is the Hadamard product. Parameters in (3.5) are parameterized as A = a (a)′,

B = b (b)′ and C = c (c)′ where a, b, c and λ are length n vectors with λ being a nonlinear

asymmetric response effect to covariance which can be considered as a multivariate version of

the asymmetric GARCH model of Engle and Ng (1993). Ω is an n×n positive definite parameter

matrix.

Eq.(3.4) is called measurement equation and models the joint dependence between rt and

RCt. The measurement assumption is that RCt follows the Inverse Wishart distribution, with

ν degrees of freedom and scale matrix (ν − n − 1)H1/2
t V

(
H

1/2
t

)′
. H

1/2
t is the Cholesky

decomposition of Ht. The conditional mean of RCt is

E[RCt|It−1] =
(ν − n− 1)H1/2

t V
(
H

1/2
t

)′

(ν − n− 1) = H
1/2
t V

(
H

1/2
t

)′
, (3.6)

with V being an n× n positive definite parameter matrix which completes the model as it helps

to capture deviations between RCt and Ht. This makes the measurement equation flexible to

adjust to possible noise contained in RCt. If there is no market microstructure noise in RCt, V

would be approximately equal to an identity matrix and RCt is an unbiased estimator of return

covariance, E[RCt|It−1] = Ht.
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The degree of freedom parameter ν controls the dispersion of the IW distribution. From the

above it can be seen that the scale matrix of IW distribution is positive definite as long as V and

Ht are positive definite and ν > n+ 1. These conditions are ensured during model estimation.

Regarding the estimation of the positive definite matrix Ω, I use covariance targeting. Let

Σ̄ being the sample returns covariance matrix and µ̄ the sample returns mean vector. For the

derivation of targeting I assume that conditional covariance is stationary, E(Ht) = Σ̄, and set

V ≡ In. During the model estimation, Ω is targeted as2

Ω = Σ̄ ⊙
(
ιι′ −A −B − C

)
−A ⊙ (µ̄− λ) (µ̄− λ)′ . (3.7)

Compared to the existing multivariate realized GARCH models in literature, the proposed

specification of MRGARCH-N has three key differences. First, the model developed by Ar-

chakova et al. (2019) link log realized and conditional moments through a set of n(n + 1)/2

linear measurement equations. MRGARCH-N model jointly links RCt in (3.4) to the full con-

ditional covariance matrix. This parsimoniously allows full dependence between the RCt and

Ht elements. The approach is similar to Gorgi et al. (2019). However, they assume that RCt

follows a Wishart distribution. Empirical evidence, from Jin and Maheu (2016), show that an IW

assumption, as in (3.4), is a better fit for realized covariance matrices, compared to a Wishart.

Second, Gorgi et al. (2019) use a score-GARCH framework for the construction of condi-

tional covariance. MRGARCH-N has a standard MGARCH construction of conditional covari-

ance, which is a multivariate extension of the GARCH-X model of Engle (2002b). This allows

to estimate different effects, through GARCH parameters, among variances and covariances.

The third key difference is on modeling the asymmetry (leverage) effect between returns and

covariance. Archakova et al. (2019) use two parametric leverage functions to capture the effect.

In MRGARCH-N, the effect is parsimoniously captured by the vector λ. The use of lag RC

in (3.5), is expected to reduce the magnitude of parameters a, based on the empirical results
2Details in appendix A4
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of Engle (2002b) and Hansen et al. (2012). They found ARCH parameters to be insignificant. I

find that λ has an estimation trade-off with a parameters, which are empirically significant.

Estimation

To estimate MRGARCH-N, I follow Bayesian analysis for the model parameters in θ = {µ, a, b, c, λ, ν}

and V , with the following posterior density

p(θ, V |IT ) ∝ p(θ)p(V )
T∏

t=1
Nn (rt|µ,Ht) IWn

(
RCt

∣∣∣ν, (ν − n− 1)H1/2
t V

(
H

1/2
t

)′
)
,

(3.8)

where Nn(.|) denotes the multivariate normal density and IWn(.|) the IW density, both of di-

mension n. p(.) denotes the prior density of parameters. I simulate the parameters by collecting

{θ(i)}R
i=1 and {V (i)}R

i=1, draws from the above posterior. Posterior means are calculated as

E(θ|IT ) = R−1∑R
i=1 θ

(i). The above posterior does not have a known form. To draw from it, I

initialize θ(0) and V (0), and iterate, R times, the following Markov chain Monte Carlo (MCMC)

steps:

1. Draw θ(i) with a random walk Metropolis-Hastings (MH) algorithm with proposal θ
′

which is from

h(θ′) ∼ N(θ(i−1), ςV̂h), (3.9)

where V̂h is the inverse Hessian matrix evaluated at the posterior mode θ̂, which is com-

puted once at the beginning of estimation. Scaling V̂h by ς helps to achieve a desired

acceptance rate. The draw θ′ is accepted with probability

min
{
p(θ′ |IT )/p(θ(i−1)|IT ), 1

}
, (3.10)

with p(.|IT ) the posterior given in (3.8). If θ′ is rejected then θ(i) = θ(i−1). Setting ς as
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0.3 - 0.5 gives an acceptance frequency around 0.2 - 0.4 in the MH step. This allows the

sampler to fully explore the posterior. For every θ(i), Ω(i) is calculated as in (3.7). Only

posterior draws that result in positive definite Ω(i) and H(i)
1:T are accepted.

2. Draw V (i)|H(i)
1:T , RC1:T , ν

(i) with a Gibbs sampler. Given a Wishart prior, V ∼ Wn

(
ψ0, ψ

−1
0 In

)
,

the posterior is

p(V |RC1:T , H1:T , ν) ∝ p(V )p(RC1:T |V,H1:T , ν)

∝ Wn

(
V |ψ0, ψ

−1
0 In

) T∏
t=1

IWn

(
RCt

∣∣∣ν, (ν − n− 1)H1/2
t V

(
H

1/2
t

)′
)

∼ Wn(νp,Ψp), (3.11)

with νp = ψ0+Tν and Ψp =
[
(ψ−1

0 In)−1 + (ν − n− 1)
∑T

t=1

(
H

1/2
t

)′
RC−1

t H
1/2
t

]−1
.

3.3.2 Thick tailed innovations

Empirically, Gaussian innovations is a restrictive assumption for financial returns Richardson

and Smith (1993) and Ding and Engle (2001). A more flexible distributional assumption that

can capture extreme tails is a better fit for the financial returns. Here the MRGARCH-N is

extended to accommodate thick tails in distribution.

MRGARCH-t: This novel fully parametric model allows returns to follow a thick tailed

multivariate Student-t distribution. Given the information set It−1 available at time t − 1, the

MRGARCH-t model is specified as

rt|It−1 ∼ tn(µ,Ht, ζ), ζ > 2, (3.12)

RCt|It−1 ∼ IWn

(
ν, (ν − n− 1) ζ

ζ − 2H
1/2
t V

(
H

1/2
t

)′
)
, ν > n+ 1, (3.13)

Ht = Ω +A⊙ (rt−1 − λ)(rt−1 − λ)′ +B ⊙Ht−1 + C ⊙RCt−1. (3.14)
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Model notation and parameterization is the same as in MRGARCH-N. tn(µ,Ht, ζ) is the multi-

variate Student-t (St-t) distribution of dimension n with mean µ, scale matrix Ht and degree of

freedom ζ. Conditional return covariance from (3.12) is Cov(rt|It−1) = ζ
ζ−2Ht. From (3.13),

the conditional mean of RCt is related with the returns conditional covariance through

E(RCt|It−1) =
(ν − n− 1) ζ

ζ−2H
1/2
t V

(
H

1/2
t

)′

ν − n− 1 = ζ

ζ − 2H
1/2
t V

(
H

1/2
t

)′
. (3.15)

If there is no market microstructure noise inRCt, V would be approximately equal to an identity

matrix and RCt is an unbiased estimator of return covariance, E[RCt|It−1] = Cov(rt|It−1) =
ζ

ζ−2Ht. I assume covariance stationarity, E(Ht) = Σ̄, and set V ≡ In, to use covariance

targeting 3 for Ω as

Ω = Σ̄ ⊙
(
ιι′ − ζ

ζ − 2A −B − ζ

ζ − 2C
)

−A ⊙ (µ̄− λ) (µ̄− λ)′ . (3.16)

MRGARCH-t nests MRGARCH-N, as if the t degree of freedom ζ → ∞ then the conditional

return distribution becomes Gaussian. The posterior inference of ζ in MRGARCH-t helps to

explore the tail behaviour of return distribution when modelled along with RC.

Estimation

Estimation for MRGARCH-t is similar to MRGARCH-N. Parameters in vector θ = {µ, a, b, c, λ, ζ, ν}

and V have the following posterior density

p(θ, V |IT ) ∝ p(θ)p(V )
T∏

t=1
tn(rt|µ,Ht, ζ) IWn

(
RCt

∣∣∣ν, (ν − n− 1) ζ

ζ − 2H
1/2
t V

(
H

1/2
t

)′
)
,

(3.17)

where tn(.|) denotes the multivatriate-t density of dimension n. The above posterior does not

have a known form. To draw from it, I initialize θ(0) and V (0), and iterate,R times, the following
3Details in appendix A4
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MCMC steps:

1. Get a new draw θ(i) from the above posterior with a random walk MH algorithm with

proposal θ
′

which is from h(θ′) ∼ N(θ(i−1), ςV̂h), with V̂h the inverse Hessian matrix

evaluated at the posterior mode θ̂. The draw is accepted with probability

min
{
p(θ′ |IT )/p(θ(i−1)|IT ), 1

}
, (3.18)

where p(.|IT ) is the posterior in (3.17). For every θ(i), Ω(i) is calculated as in (3.16).

Only posterior draws that result in positive definite Ω(i) and H(i)
1:T are accepted.

2. Given prior V ∼ W
(
ψ0, ψ

−1
0 In

)
, draw V (i)|H(i)

1:T , RC1:T , ν, ζ with a Gibbs sampler as

p(V |RC1:T , H1:T , ν) ∝ p(V )p(RC1:T |V,H1:T , ν, ζ)

∼ W(νp,Ψp), (3.19)

with νp = ψ0+Tν and Ψp =
[
(ψ−1

0 In)−1 + (ν − n− 1) ζ
ζ−2

∑T
t=1

(
H

1/2
t

)′
RC−1

t H
1/2
t

]−1
.

3.3.3 Semiparametric approach

Empirically returns have tails thicker than the normal distribution and are not symmetric. This

means that the symmetric distributional assumption of parametric models, such as normal or

Student-t, is too restrictive. Jensen and Maheu (2013) proposed an extension of parametric

MGARCH models where the return distribution is nonparametrically modelled under an infi-

nite mixture of normals with a Dirichlet Process (DP) prior of Ferguson (1973). Any underlying

continuous multivariate distribution can be approximated without having to specify its unknown

form.

Unlike parametric MGARCH models which assume that the covariance at time t,Ht, is com-

pletely determined by information of t−1, the model proposed by Jensen and Maheu (2013) has

a two component covariance, a GARCH constructed one and a scale matrix from the DP prior.
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In a similar way, I extend the MRGARCH-N model to a semiparametric version that combines

the RC enhanced GARCH constructed covariance and the nonparametric approximation of the

underlying return distribution that a DP mixture (DPM) offers.

MRGARCH-DPM: This novel semiparametric multivariate realized GARCH model, has the

following hirerchical form

rt|It−1, Ht,mt, Lt ∼ Nn

(
mt, H

1/2
t Lt

(
H

1/2
t

)′)
, (3.20)

mt, Lt|G
iid∼ G, (3.21)

G|G0, α ∼ DP(α,G0), (3.22)

G0(mt, Lt) ≡ Nn(m0,M0) − IWn(ν0, (ν0 − n− 1)V0), ν0 > n+ 1, (3.23)

RCt|It−1 ∼ IWn

(
ν, (ν − n− 1)H1/2

t V
(
H

1/2
t

)′
)
, ν > n+ 1, (3.24)

Ht = Ω +A⊙ (rt−1 − λ)(rt−1 − λ)′ +B ⊙Ht−1 + C ⊙RCt−1. (3.25)

Eq.(3.20)-(3.23) place an infinite mixture of multivariate normals on the return distribution. The

mixing is on the mean vector of returns,mt, and their covariance component, Lt. Lt is a positive

definite matrix which scales Ht to yield a better approximation of the data density. The mixing

moments mt, Lt are distributed according to the latent G which is nonparametrically modeled

from a DP prior. A draw from a DP, G ∼ DP(α,G0), is almost surely a discrete distribution

and has two parameters, the base measure G0 and the precision parameter α > 0. The DP is

centred around G0 since E[G] = G0 and the precision parameter α determines how close is G

to G0 since Var[G] = G0[1 − G0]/(α + 1). In this case the base measure of DP in (3.23) is a

normal-Inverse Wishart (N − IW) prior.

Sethuraman (1994) uses the stick-breaking representation for the infinite mixture of distri-

butions in the DP. The MRGARCH-DPM model in (3.20)-(3.23) can be written as

p(rt|It−1, Ht,M,Λ,W ) =
∞∑

j=1
wj Nn

(
rt

∣∣∣µj , H
1/2
t Λj

(
H

1/2
t

)′
)
, (3.26)
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where W = {w1, w2, ...} is the infinite set of weights associated with the normal kernels, with∑∞
j=1wj = 1 and stick-breaking prior generated as

w1 = v1, wj = vj

j−1∏
l=1

(1 − vl), j > 1, (3.27)

vj
iid∼ B(1, α). (3.28)

where B(.) denotes the Beta distribution. Let M = {µ1, µ2, ...} and Λ = {Λ1,Λ2, ...} denote

the unique points of support in G. A given dataset r1:T = {r1, ..., rT } will be associated with a

finite set {(m1, L1), ..., (mT , LT )} of draws fromG in (3.21). By construction the DPM permits

data to cluster under identical sets of (mt, Lt). This allows pooling data into a finite number of

k unique clusters, {(µj ,Λj)}k
j=1, with k < T .

MRGARCH-DPM nests the parametric models MRGARCH-N and MRGARCH-t. The pre-

cision parameter α controls the number of clusters in the mixture. When α → 0 then w1 = 1,

wj = 0, ∀j > 1, and returns follow a multivariate normal distribution with mean µ1 and covari-

ance scale Λ1. When α → ∞, then G → G0 and if µj = µ, is constant ∀j , returns follow a

multivariate Student-t distribution.

Covariance of returns is semiparametric and has two components, the parametric conditional

Ht and the nonparametric Λj . The latter helps in capturing shocks that occur in day t. Typically,

the base measure would be set so as E[Λ] = In. If there are no shocks, then rt would have

Λj = In and Cov(rt|It−1) = Ht. Ht is the connection between rt and RCt. The conditional

mean of RCt is

E[RCt|It−1] = H
1/2
t V

(
H

1/2
t

)′
. (3.29)

If there is no market microstructure noise in RCt, V would be approximately equal to an iden-

tity matrix and E[RCt|It−1] = Ht. If there is no shock in day t and no noise in RCt then

Cov(rt|It−1) = E[RCt|It−1] = Ht. MRGARCH-DPM though, has the flexibility to capture
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shocks observed in returns and noise in RC.

In Ht construction I assume covariance stationarity, E(Ht) = Σ̄, and set V ≡ In, to derive

the covariance targeting 4 for Ω which is

Ω = Σ̄ ⊙
(
ιι′ −A −B − C

)
−A ⊙ (µ̄− λ) (µ̄− λ)′ . (3.30)

Estimation of MRGARCH-DPM

In order to make estimation feasible I use the stick-breaking formulation and the slice sampler

by Walker (2007) and Kalli et al. (2011), to truncate the infinite normals into a finite number k,

k < T , with the associated unique normal clusters {(µj ,Λj)}k
j=1. To do so, the parameters are

expanded by the introduction of two latent vectors. The first one is a cluster or state indicator

s1:T = {s1, ...sT } which maps each observation rt to a normal cluster j. The second auxiliary

vector u1:T = {u1, ...uT }, with ut ∈ (0, 1), helps to convert the infinite sum into a finite mixture.

ut is defined such that the joint density of (rt, ut) is

f(rt, ut|It−1,M,Λ,W ) =
∞∑

j=1
1 {ut < wj} Nn

(
rt

∣∣∣µj , H
1/2
t Λj

(
H

1/2
t

)′
)
, (3.31)

where 1{.} is an indicator function. Slice variable ut makes the set {ut < wj}∞
j=1 finite. In-

tegrating (3.31) over ut would give the desired density of rt. Conditional on H1:T , the full

likelihood of returns is

p(r1:T , s1:T , u1:T |H1:T , µ1:k,Λ1:k, w1:k) =
T∏

t=1
1 {ut < wst} Nn

(
rt

∣∣∣µst , H
1/2
t Λst

(
H

1/2
t

)′
)
.

(3.32)

4Details in appendix A4
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The posterior density of MRGARCH-DPM parameters is proportional to

p(θ)p(w1:k)p(u1:T )p(s1:T )p(α)p(V )
k∏

j=1
p(µj)p(Λj)

×
T∏

t=1
1 {ut < wst} Nn

(
rt

∣∣∣µst , H
1/2
t Λst

(
H

1/2
t

)′
)

IWn

(
RCt

∣∣∣ν, (ν − n− 1)H1/2
t V

(
H

1/2
t

)′
)
,

(3.33)

with θ = {a, b, c, λ, ν} and k being the smallest positive integer that satisfies the condition∑k
j=1wj > 1 − min(u1:T ). The posterior does not have a known form. To sample from

it, I initialize θ, k, w1:k, s1:T , µ1:k,Λ1:k, V, α and take posterior draws through the following

conditional distributions:

1. Sample µ1:k,Λ1:k|r1:T , H1:T , s1:T .

2. Update w1:k|s1:T , α with a stick-breaking process.

3. Sample the slice vector u1:T |w1:k, s1:T .

4. Update k as the smallest integer that satisfies:
∑k

j=1wj > 1 − min(u1:T ).

5. Sample s1:T |r1:T , H1:T , µ1:k,Λ1:k, w1:k, α.

6. Sample α|T, κ. κ

7. Sample θ|r1:T , RC1:T , V, µ1:k,Λ1:k, w1:k, s1:T .

8. Sample V |RC1:T , H1:T , ν.

Details are provided in A3. Repeating the above steps R times, with R0 burnin sweeps, I get the

posterior draws for inference.

3.3.4 Restricted MRGARCH-DPM

I also develop a restricted version of MRGARCH-DPM, in which the mean vector of returns is

constant and not included in the mixture.

83

http://www.mcmaster.ca/


Doctor of Philosophy– Efthymios NIKOLAKOPOULOS McMaster University– Finance

MRGARCH-DPM-Λ: This semiparametric MRGARCH model has the following hierarchical

form

rt|It−1, Ht, Lt ∼ Nn

(
µ,H

1/2
t Lt

(
H

1/2
t

)′)
, (3.34)

Lt|G
iid∼ G, (3.35)

G|G0, α ∼ DP(α,G0), (3.36)

G0(Lt) ≡ IWn(ν0, (ν0 − n− 1)V0), ν0 > n+ 1 (3.37)

RCt|It−1 ∼ IWn

(
ν, (ν − n− 1)H1/2

t V
(
H

1/2
t

)′
)
, ν > n+ 1, (3.38)

Ht = Ω +A⊙ (rt−1 − λ)(rt−1 − λ)′ +B ⊙Ht−1 + C ⊙RCt−1. (3.39)

The model has the following Sethuraman (1994) representation

p(rt|It−1, Ht,Λ,W ) =
∞∑

j=1
wj Nn

(
rt

∣∣∣µ,H1/2
t Λj

(
H

1/2
t

)′
)
. (3.40)

This model captures the thick tails of the return distribution and hence nests both the proposed

parametric specifications. When α → 0 then w1 = 1, wj = 0, ∀j > 1, MRGARCH-DPM-Λ

is equivalent to MRGARCH-N, returns follow a multivariate normal distribution with mean µ

and covariance scale Λ1. When α → ∞, then G → G0, returns follow a multivariate Student-t

distribution and MRGARCH-DPM-Λ is equivalent to MRGARCH-t.

MRGARCH-DPM-Λ estimation is the same as for MRGARCH-DPM described in Section

3.3.3 with a constant vector µ which is estimated in the MH step 7, in which the parameter block

is θ = {µ, a, b, c, λ, ν} and they have the following posterior

p(θ|IT ,Λ1:k, s1:k, V ) ∝ p(θ)
T∏

t=1
Nn

(
rt

∣∣∣µ,H1/2
t Λst

(
H

1/2
t

)′
)

× IWn

(
RCt

∣∣∣ν, (ν − n− 1)H1/2
t V

(
H

1/2
t

)′
)
. (3.41)
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Approximation of predictive density with MRGARCH-DPM-Λ is done as in MRGARCH-DPM,

described in the following Section 3.3.5, with the use of draws {µ(i)}R
i=1 from the above poste-

rior in (3.41).

3.3.5 Predictive density

For the parametric models, MRGARCH-N and MRGARCH-t, their posterior draws {θ(i)}R
i=1

can be used to approximate the predictive return density as

p(rt+1|It) ≈ 1
R

R∑
i=1

fn

(
rt+1

∣∣It, θ
(i)
)
, (3.42)

with fn(.|) being the n dimension multivariate p.d.f. (normal or St-t) associated with each

model’s return density assumption.

The key task when forecasting with DPM models is to integrate out the uncertainty about the

future state of the modelled series. Conditional on It = {r1:t, RC1:t}, Ht+1 can be calculated

from (3.25) and the predictive density of MRGARCH-DPM can be approximated as

p(rt+1|It, µ1:k,Λ1:k, s1:k, w1:k) ≈ 1
R

R∑
i=1

Nn

(
rt+1

∣∣∣µ(i)
s

(i)
t+1
, H

1/2(i)
t+1 Λ(i)

s
(i)
t+1

(
H

1/2(i)
t+1

)′
)
, (3.43)

where s
(i)
t+1 =


j, if

∑j−1
l=0 w

(i)
l < ϕ <

∑j
l=0w

(i)
l ,

k(i) + 1, if ϕ ≥
∑k(i)

l=0 w
(i)
l ,

(3.44)

with w(i)
o = 0, j ≤ k(i) and ϕ ∼ U(0, 1). The above means that the future value of s(i)

t+1 is one

of the existing clusters with probability equal to the associated weights and there is a nonzero

probability of introducing a new normal cluster
(
µ

(i)
k(i)+1,Λ

(i)
k(i)+1

)
from the base measure G0.

The predictive return covariance integrates out the uncertainty about the covariance of returns
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for the next period by using posterior draws as

Cov(rt+1|It) = E[rt+1(rt+1)′|It] − E(rt+1|It)[E(rt+1|It)]′

≈ 1
R

R∑
i=1

[
H

1/2(i)
t+1 Λ(i)

st+1

(
H

1/2(i)
t+1

)′
+ µ(i)

st+1

(
µ(i)

st+1

)′
]

−
(

1
R

R∑
i=1

µ(i)
st+1

)(
1
R

R∑
i=1

µ(i)
st+1

)′

.

(3.45)

For the proposed models, conditional on Ht+1, the predictive density of RCt+1 can be ap-

proximated as

p(RCt+1|It) ≈ 1
R

R∑
i=1

IWn

(
RCt+1

∣∣It, H
(i)
t+1

)
, (3.46)

where IWn (.|) is the Inverse Wishart p.d.f with degree of freedom ν(i) and scale matrix based

on each model’s specification.

The predictive density is the key measure to calculate the value of predictive likelihood (PL)

and evaluate each model’s forecasting ability out-of-sample. Specifically, for each model, by

performing a set of τ (with 1 < τ < T ), recursive posterior estimations, the log predictive

likelihood of rT −τ+1:T , from each model, is the summation of individual log predictive densities

of each estimation

logPLr(rT −τ+1:T |IT ) =
T −1∑

t=T −τ

log (p(rt+1|It)) . (3.47)

Similarly, the log predictive likelihood of RCT −τ+1:T is calculated as

logPLRC(RCT −τ+1:T |IT ) =
T −1∑

t=T −τ

log (p(RCt+1|It)) . (3.48)

The models’ performance on forecasting the covariance of returns can be measured by the root
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mean squared forecast error (RMSFE) of the matrix (Frobenius) norm difference between out-

of-sample RCt+1 and the forecasted covariance of returns

RMSFERC = 1
T − τ + 1

T −1∑
t=T −τ

∣∣∣∣RCt+1 − Cov(rt+1|It)
∣∣∣∣, (3.49)

where Cov(rt+1|It) is the estimated predictive covariance matrix based on each model’s return

distributional assumption, Cov(rt+1|It) ≡ E(Ht+1) for multivariate normal, Cov(rt+1|It) ≡

E( ζ
ζ−2Ht+1) for multivariate-t or DPM approximation from (3.45).

It is often of interest to forecast portfolio returns and multivariate GARCH models are typi-

cally used for these applications. For a given set of portfolio weights ω, with ι′ω = 1, portfolio

returns are rp
t+1 = ω′rt+1, with rp

t+1 ∈ R and rt+1 ∈ Rn. The conditional portfolio return

density can be approximated as

p(rp
t+1|It, ω) ≈ 1

R

R∑
i=1

f1
(
rp

t+1
∣∣It, H

(i)
t+1, ω

)
, (3.50)

with f1(.|) being a univariate p.d.f. based on each model’s return distributional assumption:

N
(
.
∣∣ω′µ(i), ω′H

(i)
t+1ω

)
, t
(
.
∣∣ω′µ(i), ω′H

(i)
t+1ω, ζ

(i)
)

or N
(
.
∣∣∣ω′µ

(i)
s

(i)
t+1
, ω′H

1/2(i)
t+1 Λ(i)

s
(i)
t+1

(
H

1/2(i)
t+1

)′
ω

)
for DPM models. Using the predictive density, the forecasting ability of each model can be eval-

uated, for a set of τ recursive posterior estimations, with the portfolio log predictive likelihood

for rp
T −τ+1:T is calculated as

logPLp(rp
T −τ+1:T |IT ) =

T −1∑
t=T −τ

log
(
p(rp

t+1|It, ω)
)
. (3.51)

The proposed MRGARCH models due to their flexibility can be used to forecast certain areas of

the portfolio predictive density such as the tails (Diks et al. (2011)). For a value η, with η ∈ R,
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the portfolio predictive density of rp
t+1 < η is defined as

p(rp
t+1|rp

t+1 < η, It) =
p(rp

t+1|It)1
{
rp

t+1 < η
}∫ η

−∞ p(rp
t+1|It)drp

t+1

≈ 1
R

R∑
i=1

f1
(
rp

t+1
∣∣It
)

1
{
rp

t+1 < η
}

Φ
((
η − µ

p(i)
t+1|t

)
/σ

p(i)
t+1|t

) , (3.52)

with µp
t+1|t ≡ E

(
rp

t+1|It
)

and µp(i)
t+1|t = ω′µ(i)(normal, St-t and DPM-Λ), or ω′µ

(i)
s

(i)
t+1

(DPM),

σ2p
t+1|t ≡ Var

(
rp

t+1|It
)

and σ2p(i)
t+1|t = ω′H

(i)
t+1ω (normal), ω′ ζ(i)

ζ(i)−2H
(i)
t+1ω (Student-t) or

ω′H
1/2(i)
t+1 Λ(i)

s
(i)
t+1

(
H

1/2(i)
t+1

)′
ω (DPM). Φ(.) denotes the associated c.d.f. of univariate standard

distribution of each model’s assumption: normal or St-t, with ζ(i) degrees of freedom. The

denominator in (3.52) is an integration constant ensuring that the predictive density integrates to

one.

3.3.6 Benchmark models

The proposed MRGARCH models are compared with the following MGARCH models that do

not include RC in their specification.

MGARCH-N: This parametric model has a Gaussian assumption for the multivariate return

distribution and includes an asymmetric leverage effect in covariance. It is defined as

rt|r1:t−1 ∼ Nn(µ,Ht), (3.53)

Ht = Ω + a(a′) ⊙ (rt−1 − λ)(rt−1 − λ)′ + b(b′) ⊙Ht−1. (3.54)

MGARCH-t: This parametric model has the multivariate-t assumption for the return distri-

bution and can capture the extreme tails that empirically are observed in financial returns. It is

an extension of the model proposed by Diamantopoulos and Vrontos (2010) and the benchmark

of Jensen and Maheu (2013), to include asymmetric leverage effect. This specification is also
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used as a benchmark from Maheu and Shamsi Zamenjani (2021) and is defined as

rt|r1:t−1 ∼ tn(µ,Ht, ζ), ζ > 2, (3.55)

Ht = Ω + a(a′) ⊙ (rt−1 − λ)(rt−1 − λ)′ + b(b′) ⊙Ht−1. (3.56)

MGARCH-DPM: This semiparametric MGARCH model, developed by Jensen and Maheu

(2013), has no underlying distributional assumption for returns but instead, it uses an infinite

mixture of normals to approximate their unknown density. This gives the flexibility to capture

the asymmetry and the extreme tail behaviour observed in returns. The specification used here

is proposed by Maheu and Shamsi Zamenjani (2021) and is defined as

rt|r1:t−1, Ht,mt, Lt ∼ Nn

(
mt, H

1/2
t Lt

(
H

1/2
t

)′)
, (3.57)

mt, Lt|G
iid∼ G, (3.58)

G|G0, α ∼ DP(α,G0), (3.59)

G0(mt, Lt) ≡ Nn(m0,M0) − IWn(ν0, (ν0 − n− 1)V0), ν0 > n+ 1 (3.60)

Ht = Ω + a(a′) ⊙ (rt−1 − λ)(rt−1 − λ)′ + b(b′) ⊙Ht−1. (3.61)

MGARCH-DPM-Λ: This semiparametric model, developed by Jensen and Maheu (2013),

is a restricted version of MGARCH-DPM, with a constant return mean vector. The specification

used here is the following

rt|r1:t−1, Ht,mt, Lt ∼ Nn

(
µ,H

1/2
t Lt

(
H

1/2
t

)′)
, (3.62)

Lt|G
iid∼ G, (3.63)

G|G0, α ∼ DP(α,G0), (3.64)

G0(Lt) ≡ IWn(ν0, (ν0 − n− 1)V0), ν0 > n+ 1, (3.65)

Ht = Ω + a(a′) ⊙ (rt−1 − λ)(rt−1 − λ)′ + b(b′) ⊙Ht−1. (3.66)
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3.4 Empirical applications

3.4.1 Selection of priors

For MRGARCH-N, the mean vector of returns µ is from an independent normal prior µ ∼

Nn(0, 0.1×In), with In being the identity matrix of dimension n. For the measurement equation,

the IW degree of freedom parameter has an exponential prior ν ∼ Exp(n + 10), with E(ν) =

n + 10. Matrix V has a Wishart prior, V ∼ Wn(n + 10, (n + 10)−1 × In) with E(V ) = In.

MRGARCH parameters {a, b, c, λ} have an independent normal prior, Nn(0, 100 × In). To

ensure model identification, draws which do not satisfy a1 ≥ 0, b1 ≥ 0, c1 ≥ 0 and positive

definite Ω andH1:T are rejected. For MRGARCH-t are used the above priors for the parameters.

The Student-t degree of freedom has a uniform prior, ζ ∼ U(2, 100).

For the DPM models, the parameters in measurement equation and MRGARCH construction

are the same as in MRGARCH-N. The base measure of DPM, G0, for the return mean is set

around zero, E(µ) = 0, with m0 = 0 and M0 = 0.1 × In. For DPM-Λ, µ ∼ Nn(0, 0.1 × In).

The scaling covariance matrices Λ are centred around the identity matrix, E(Λ) = In, by setting

V0 = (ν0 −n− 1)In making Λ ∼ IWn(ν0, (ν0 −n− 1)In). I use ν0 = n+ 10, but other values

of it do not affect the results. The precision parameter of DPM has a Gamma prior, α ∼ Γ(2, 8),

following Jensen and Maheu (2013).

3.4.2 Posterior estimation results

Results from 10,000 MCMC posterior draws, after 5,000 burnin, for IBM-MSFT-XOM are in

Tables 3.3. Similar results are observed for the AXP-DD-GE-KO dataset.

IncorporatingRC information, results in a change of all GARCH parameter values. RCt−1 is

highly significant in the conditional covariance construction with c parameters ranging in 0.443-

0.478 for MRGARCH-t and 0.517-0.529 for the rest MRGARCH models. The other structural

parameters, a and b significantly differ between the benchmarks MGARCH and MRGARCH
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that include RC. The values of b range from 0.964 to 0.976 for MGARCH and drop to 0.825-

0.833 in MRGARCH models. Parameters in a for MGARCH have values from 0.184 to 0.235

and for MRGARCH decline to 0.1-0.145. Parameters in λ for MGARCH have values from 0.26

to 0.42. For MRGARCH models they rise to 0.6-0.92. This trade-off between a and λ captures

the information from return shocks to construct future covariance. Parameters in Ω increase in

MRGARCH models compared to their associated benchmarks. This is the effect of RC in the

long-run unconditional covariance.

Regarding the shape of the multivariate return distribution, MGARCH-t indicates thick tails,

with degree of freedom parameter ζ being on average 9.113 for IBM-MSFT-XOM. Including

RC information, in the MRGARCH-t model, makes the tails thicker with the average ζ equal to

7.18 and helps to estimate it more consistently, with a smaller 95% density interval range.

The DPM models show that a finite mixture of normals is required to approximate the under-

lying return distribution. Without RC, MGARCH-DPM uses on average 4.96 normal clusters

to approximate return density while with RC, MRGARCH-DPM uses 5.58 clusters. DPM-

Λ models, which have a mixture only in covariance, use more clusters, on average 9.7-10.7.

Figure 3.1 displays the daily out-of-sample predictive density of equal weight portfolio (EWP)

returns constructed by the data. For both datasets the proposed models indicate thicker tails than

the Gaussian model. MRGARCH-DPM shows minor evidence of asymmetry in returns.

In the measurement equation, the IW degree of freedom has a consistent value around 15.7,

across the models. The matrix V , which scales the conditional mean of RC1:T , is close to the

prior mean, the identity matrix. This suggests that RC is near to an unbiased estimation of the

covariance of returns, as constructed by the MRGARCH models.

Figure 3.2, displays the log determinant of the conditional covariance matrices produced

from the full sample posterior estimations. Models with constant return mean µ are displayed.

The proposed models produce covariance matrices with determinant closer to the RC. The

MRGARCH-DPM-Λ is the most flexible model in producing covariance matrices that follow
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the dynamics of RC. This is validated from the forecasting results when measuring the RMSFE

of RC.

3.4.3 Forecasting results

The results from recursively forecasting out-of-sample returns and RC are presented in Ta-

ble 3.4. Model performance is measured by RMSFE for the mean and logPL for the density

forecasting. When comparing two models, logPL difference of 5 and above indicates strong

evidence of better density forecasting performance. Also, this comparison favours parsimonious

specifications unless complex models provide an improved data description.

Comparing the two groups, MGARCH and MRGARCH forecast results displayed in Table

3.4, the MRGARCH models have lower RMSFE of RC than the MGARCH ones. This means

that MRGARCH models produce conditional covariance matrices closer toRC. Because of that

they have better performance in forecasting the return density, as indicated by their larger log

predictive likelihood values.

Interestingly, the models that accommodate thick tails outperform the Gaussian ones for

both datasets. Parametric MRGARCH-t gives the best return density forecasting along with

MRGARCH-DPM-Λ. Noteworthy, the MRGARCH models with DPM help to construct the

closest conditional covariance matrices to RC. This supports the indications from Figure 3.2.

The DPM models also perform the best at forecasting the RC density. All the models perform

similarly in forecasting the mean of returns, as indicated by their close RMSFE values.

These results contribute to the existing literature of MRGARCH models and are of high im-

portance as they indicate that the Gaussian assumption is too restrictive. modeling the distribu-

tion of returns with the nonparametric DPM not only significantly improves density forecasting,

compared to a Gaussian assumption, but also improves predictive covariance forecasts.
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3.4.4 Portfolio applications

The models here are tested on their out-of-sample density forecasting as explained in Section

3.3.5. The key result from Table 3.5 is that MRGARCH models outperform the MGARCH ones

in forecasting the portfolio density. However, among the MRGARCH models none strongly

stands out. For IBM-MSFT-XOM, MRGARCH-DPM-Λ and MRGARCH-t produce marginally

better logPL than MRGARCH-N. For AXP-DD-GE-KO, MRGARCH-N, MRGARCH-DPM-Λ

and MRGARCH-DPM have marginally larger logPL than MRGARCH-t. Forecasting the tail

density when portfolio returns are less than -1.0%, MRGARCH-N has the largest logPL value,

followed closely by the rest of the MRGARCH models.

The effect of improved conditional covariance construction and the impact of non-Gaussian

innovations is further explored with portfolio applications that put emphasis on risk manage-

ment, tail events and construction of minimum variance portfolios.

Portfolio tail risk measures

The proposed MRGARCH models, due to their flexibility and their emphasis on the tails of the

return distribution, can be more accurate in calculating risk measures of high importance for the

areas of investments and risk management. The models are tested on their ability to forecast the

tail risk measures of Value-at-Risk (VaR) and Expected Shortfall (ES).

VaR is a quantile measure based on a confidence level ϵ. Given an investment time interval

(day, week, etc), VaR is the least potential loss that could happen to an investment ϵ% of the

time intervals. For the simple case of one period portfolio forecasting, VaRϵ
t+1 is defined as

Prob
[
rp

t+1 ≤ VaRϵ
t+1
∣∣It
]

= ϵ (3.67)

where rp
t+1 is the portfolio return realization rp

t+1 = ω′rt+1, with rp
t+1 ∈ R, rt+1 ∈ Rn and

ι′ω = 1. VaR does not consider the magnitude of the potential loss. This is better accessed by
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ES which is the measure of expected loss conditional on exceeding the VaR value. The ESϵ
t+1 is

ESϵ
t+1 = E

[
rp

t+1
∣∣rp

t+1 ≤ VaRϵ
t+1, It

]
(3.68)

To explore the impact of RC information on forecasting VaR and ES, I consider the EWP

(equal weight portfolio) of each dataset and perform the following steps for the models in test:

1. For each of the τ forecasting periods, simulate R values of rt+1|It:

(a) Given the posterior draws {θ(i)}R
i=1, constructH(i)

t+1 according to each model’s spec-

ification.

(b) Simulate r(i)
t+1
∣∣H(i)

t+1 from each model’s return distributional assumption, multivari-

ate normal or Student-t. For the DPM, r(i)
t+1
∣∣H(i)

t+1, s
(i)
t+1 comes from a multivariate

normal draw with s(i)
t+1 drawn as in (3.44).

2. For each vector in {r(i)
t+1}R

i=1, compute the portfolio returns rp(i)
t+1 = ω′r

(i)
t+1 with ω =

(1/n, ..., 1/n)′.

3. The ⌊ϵR⌋-th least value of
{
r

p(i)
t+1

}R

i=1
is the VaRϵ

t+1.

4. ESϵ
t+1 =

∑R

i=1 rp
t+11

{
r

p(i)
t+1≤VaRϵ

t+1

}
∑R

i=1 1
{

r
p(i)
t+1≤VaRϵ

t+1

} .

I calculate the VaR and ES for the confidence levels: ϵ = 0.01, 0.05 and 0.1. Figures 3.3

and 3.4 display the forecasted 1% (ϵ = 0.01) VaR and ES from the models with a parametric

return mean vector. In the figures is noticeable the effect of RC. There are two obvious trends

in the forecasted measures which are with and without RC. Models with RC produce more

flexible forecasts especially in the volatile period from Oct 2008 to Jan 2009. As expected, the

models with t-distributed innovations, produce forecasts larger in magnitude than the Gaussian

ones. DPM models are more flexible, their forecasts are mostly between the two parametric ones
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for the more volatile portfolio of AXP-DD-GE-KO while for IBM-MSFT-XOM, which is less

volatile, DPM gives forecasts close to the Gaussian one.

To evaluate the forecasts of VaR is typically used the Violation Rate (V R), as in Chen et al.

(2012) for instance. V R measures the frequency that realized returns are less than the forecasted

VaR, for the whole forecasting period and is calculated as

V Rϵ = 1
ϵτ

T −1∑
t=T −τ

1
{
rp

t+1 ≤ VaRϵ
t+1
}
. (3.69)

V Rϵ is standardized by the rate ϵ so as the models that give V R closer to one are those which

perform the best in forecasting VaR.

V R results are displayed in Table 3.6. The benchmark MGARCH-DPM-Λ has the best

V R for VaR0.01 of IBM-MSFT-XOM and for VaR0.05 of AXP-DD-GE-KO. For the rest, MR-

GARCH models have the best rates. MRGARCH model with DPM have consistently rates close

to one for every dataset and VaR level.

Evaluating forecasts of ES is not as straightforward as for VaR. Fissler and Ziegel (2016)

propose a class of loss functions that are minimized with the joint true VaR and ES. The ben-

efit of these functions is that there is no need for a distributional assumption, unlike other ES

evaluations such as the ones used from Chen et al. (2012) and Gerlach and Chen (2015). I use

the function which is derived by Patton et al. (2019), from the aforementioned class, in order to

simultaneously evaluate the forecasts of VaR and ES from the models in test. For the realized

returns and the forecasted VaR and ES, the loss function is defined as

L(rp
t+1,VaRϵ

t+1,ESϵ
t+1, ϵ) = − 1

ϵESϵ
t+1

1
{
rp

t+1 ≤ VaRϵ
t+1
} (

VaRϵ
t+1 − rp

t+1
)

+
VaRϵ

t+1
ESϵ

t+1
+ log

(
−ESϵ

t+1
)

− 1,

(3.70)

with the true VaR and ES being the solution of minimizing it,

(
VaRϵ

t+1,ESϵ
t+1
)

= arg minE
[
L(rp

t+1,VaRϵ
t+1,ESϵ

t+1, ϵ)|It
]
. (3.71)
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Thus, from the considered models, the ones that would give the least average loss function values

would produce the best forecasts of VaR and ES.

In Table 3.7 are displayed the average out-of-sample losses from (3.70) for the forecasted

measures of VaR and ES. MRGARCH models have consistently smaller values than the bench-

marks. This is a clear indication thatRC improves the forecasting of the risk measures. MRGARCH-

N gives the least losses when ϵ = 0.01 for IBM-MSFT-XOM and when ϵ = 0.1 for AXP-DD-

GE-KO. MRGARCH-DPM-Λ is the best when ϵ = 0.1 for IBM-MSFT-XOM and for the rest,

measures from MRGARCH-DPM give the least losses. Combined with the results from Table

3.6, the last two models, MRGARCH-DPM-Λ and MRGARCH-DPM, that offer the most flex-

ible conditional return covariance, are the ones that consistently produce the best or the second

best forecasts about the risk measures of VaR and ES.

Global minimum variance portfolio

In this Section the models are tested on portfolio optimization. I focus on the Global Minimum

Variance portfolio (GMVP) problem in which the conditional covariance is the target of the

optimization. As addressed by Engle and Colacito (2006) the GMVP weights that are produced

from the true conditional covariance give the lowest portfolio variance compared to any other

model GMVP weights.

Given the information set It, available at time t, for n risky assets, investors, who follow

a dynamic GMVP investment strategy, are interested in accurate forecasts of the covariance

matrix, Cov(rt+1|It). Based on that, they can adjust their GMVP weights for time t + 1 by

solving the following problem

min
ωt+1|t∈Rn

{
σ2p

t+1|t = (ωt+1|t)′Cov(rt+1|It)ωt+1|t
}

(3.72)

s.t. ι′ωt+1|t = 1. (3.73)
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where ωt+1|t is the portfolio weights vector constructed for period t + 1 given information It.

The solution to the problem is

ωGMV
t+1|t = Cov(rt+1|It)−1ι

(ι)′Cov(rt+1|It)ι
. (3.74)

At the end of the day t + 1, they realize their return from their position and the information

set is expanded to It+1 so they can readjust portfolio weights for the next day and so on. The

estimation of Cov(rt+1|It) from each MRGARCH model is described in Section 3.3.5.

Models are tested on their GMVP performance out-of-sample. For a given number of days

τ (with 1 < τ < T ), the sample portfolio returns variance, σ2p, of the realized portfolio returns

{rp
t }T

t=T −τ+1, from each model is calculated as

σ2p = 1
τ

T∑
t=T −τ+1

(rp
t − r̄p)2

.

where r̄p is the mean of {rp
t }T

t=T −τ+1.

Table 3.8 displays the out-of-sample results for the GMVPs constructed from the models

in test. There are two key takeaways from these results. First, MRGARCH models consis-

tently produce lower variance out-of-sample GMVPs than the MGARCH benchmarks. This

validates the importance of RC signal for the conditional covariance construction. Second,

for the MRGARCH models, Gaussian assumption is restrictive. The least volatile GMVPs are

from MRGARCH-DPM(-Λ) for IBM-MSFT-XOM and from MRGARCH-t for AXP-DD-GE-

KO. This shows that both RC information and modeling tail behaviour are required in order to

achieve the least volatile portfolios out-of-sample and hence to get closer to the true conditional

covariance, as Engle and Colacito (2006) have shown.
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3.5 Concluding remarks

This study addresses the role of non-Gaussian innovations in the multivariate realized GARCH

models. A new approach is used with the assumption that the Realized Covariance follows an In-

verse Wishart distribution with conditional mean the constructed conditional return covariance.

The multivariate return distribution is explored with a parametric Student-t specification and a

nonparametric extension with an independent infinite mixture of multivariate normals given a

Dirichlet process prior.

Results from two different equity datasets highlight the strong significance of RC in the

construction of conditional covariance. The asymmetry and thick tails of the return distribution

are captured by the flexible DPM specification which can produce covariance matrices closer

to RC, than the parametric models, and this is reflected in improved forecasts of its density.

modeling the tail behaviour gives major return forecasting benefits compared to the Gaussian

assumption.

Testing the MRGARCH models in portfolio risk management applications show the impor-

tance of non-Gaussian innovations. Specifically, in forecasting the risk measures of VaR and ES,

the flexible semiparametric specification of MRGARCH-DPM models, consistently produce the

best or the second best out-of-sample forecasts, for a set of confidence levels. In portfolio op-

timization, the models are tested on producing GMVP weights. The out-of-sample variance of

the realized GMVP returns show that MRGARCH models and especially the ones with non-

Gaussian innovations give the least volatile global minimum variance portfolios.
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TABLE 3.1: Summary statistics of IBM, MSFT and XOM.

Sample returns Sample returns covariance Mean of RC matrices

Mean Skewness Kurtosis IBM MSFT XOM IBM MSFT XOM

IBM −0.0002 0.010 6.301 1.689 1.935

MSFT 0.0004 0.243 6.129 1.156 2.060 1.116 2.460

XOM 0.0002 −0.191 11.637 0.781 0.871 1.667 0.874 0.974 2.072

Notes: This table displays the summary statistics of IBM, MSFT and XOM sample for the period: 1/2/2001
- 31/12/2009 (2242 trading days).

TABLE 3.2: Summary statistics of AXP, DD, GE and KO.

Sample returns Sample returns covariance Mean of RC matrices

Mean Skewness Kurtosis AXP DD GE KO AXP DD GE KO

AXP −0.0002 0.317 11.245 4.343 4.419

DD −0.0014 0.028 7.243 1.725 2.108 1.457 2.530

GE 0.0008 0.217 10.954 2.070 1.355 2.676 1.760 1.289 3.194

KO 0.0009 0.104 6.913 0.892 0.628 0.759 1.131 0.853 0.729 0.824 1.415

Notes: This table displays the summary statistics of AXP, DD, GE and KO sample for the period: 1/2/2001 - 31/12/2009
(2242 trading days).
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FIGURE 3.1: Log predictive density of the EWP returns.

(a) IBM-MSFT-XOM

(b) AXP-DD-GE-KO

Notes: The density is calculated by evaluating a grid of one-day-ahead returns
with the full sample posterior draws.
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FIGURE 3.2: Log determinant of estimated Covariance matrices.

(a) IBM-MSFT-XOM

(b) AXP-DD-GE-KO
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TABLE 3.4: Forecasting results.

IBM-MSFT-XOM AXP-DD-GE-KO

returns Realized Covariance returns Realized Covariance

RMSFE logPL RMSFE logPL RMSFE logPL RMSFE logPL

MGARCH-N 1.6575 −1417.60 4.0079 2.6483 −2407.09 14.515

MGARCH-t 1.6571 −1408.31 4.1726 2.6484 −2378.44 15.577

MGARCH-DPM-Λ 1.6576 −1410.76 3.8932 2.6486 −2377.17 14.128

MGARCH-DPM 1.6571 −1412.95 3.8698 2.6493 −2381.29 14.053

MRGARCH-N 1.6575 −1396.13 3.1765 −1038.56 2.6498 −2364.35 9.8772 −3749.95

MRGARCH-t 1.6572 −1386.73 3.2113 −1038.79 2.6491 −2343.03 9.9644 −3752.71

MRGARCH-DPM-Λ 1.6577 −1387.43 3.1139 −1037.98 2.6493 −2344.84 9.8258 −3747.94

MRGARCH-DPM 1.6581 −1388.40 3.1211 −1038.18 2.6501 −2355.12 9.7138 −3747.71

Time period 23/10/2008 - 31/12/2009 23/10/2008 - 31/12/2009

Out-of-sample forecasts (τ ) 300 300

Notes: This table displays the root mean squared forecast error (RMSFE) and the cumulative log predictive likelihood
(logPL) of returns (r) and realized covariance (RC). Bold values are the best among the models.
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TABLE 3.5: Portfolio forecasting results.

EWP of IBM-MSFT-XOM EWP of AXP-DD-GE-KO

RMSFE logPL Tail logPL RMSFE logPL Tail logPL

MGARCH-N 1.4534 −458.65 −44.57 2.0811 −592.78 −98.93

MGARCH-t 1.4529 −456.88 −44.88 2.0812 −594.60 −99.11

MGARCH-DPM-Λ 1.4535 −455.37 −44.62 2.0814 −590.41 −98.83

MGARCH-DPM 1.4531 −456.24 −44.93 2.0822 −592.08 −99.22

MRGARCH-N 1.4534 −452.49 −42.69 2.0826 −578.22 −96.76

MRGARCH-t 1.4529 −449.83 −43.87 2.0819 −580.59 −97.55

MRGARCH-DPM-Λ 1.4536 −449.64 −43.17 2.0822 −578.56 −97.01

MRGARCH-DPM 1.4540 −450.59 −43.18 2.0829 −578.89 −97.13

Out-of-sample forecasts (τ ) 300 45 300 74

Time period 23/10/2008 - 31/12/2009 23/10/2008 - 31/12/2009

Notes: This table displays the equal weights portfolio (EWP) root mean squared forecast error (RMSFE) of
its returns and the cumulative log-predictive likelihoods (logPL) of its density. Tail predictive likelihood is:
p(rp

t+1|rp
t+1 < η, It), for η = −1.0. Bold values are the best among the models.
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FIGURE 3.3: Realized returns, forecasted 1% Value-at-Risk (top) and 1% Ex-
pected Shortfall (bottom) for the EWP of IBM-MSFT-XOM.
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FIGURE 3.4: Realized returns, forecasted 1% Value-at-Risk (top) and 1% Ex-
pected Shortfall (bottom) for the EWP of AXP-DD-GE-KO.
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TABLE 3.6: VaR violation rates.

IBM-MSFT-XOM AXP-DD-GE-KO

Value-at-Risk level (ϵ): 0.01 0.05 0.1 0.01 0.05 0.1

MGARCH-N 1.667 0.533 0.800 0.667 0.933 0.733

MGARCH-t 0.667 0.533 0.833 0.333 0.933 0.767

MGARCH-DPM-Λ 1.000 0.733 0.833 0.333 1.000 0.867

MGARCH-DPM 1.667 0.667 0.833 0.667 1.067 0.833

MRGARCH-N 0.667 0.800 0.767 1.000 1.067 1.067

MRGARCH-t 0.333 0.867 0.967 0.667 1.200 1.167

MRGARCH-DPM-Λ 1.333 1.000 0.967 1.000 1.067 1.133

MRGARCH-DPM 1.333 0.933 0.967 1.000 1.200 1.100

Time period 23/10/2008 - 31/12/2009

Out-of-sample forecasts (τ ) 300

Notes: This table displays the violation rates (V R) of VaR calculated from the models for
EWPs. Bold indicates the V R values closest to one, among the models. The V R is calcu-
lated as: 1

ϵτ

∑T −1
t=T −τ 1

{
rp

t+1 ≤ VaRϵ
t+1
}

.
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TABLE 3.7: Average out-of-sample losses.

IBM-MSFT-XOM AXP-DD-GE-KO

Level (ϵ): 0.01 0.05 0.1 0.01 0.05 0.1

MGARCH-N 1.174 0.897 0.700 1.630 1.374 1.185

MGARCH-t 1.191 0.903 0.697 1.666 1.384 1.191

MGARCH-DPM-Λ 1.167 0.876 0.688 1.624 1.368 1.173

MGARCH-DPM 1.181 0.871 0.686 1.626 1.373 1.178

MRGARCH-N 1.066 0.839 0.663 1.564 1.261 1.092

MRGARCH-t 1.142 0.839 0.655 1.581 1.266 1.100

MRGARCH-DPM-Λ 1.069 0.829 0.648 1.570 1.263 1.096

MRGARCH-DPM 1.082 0.829 0.652 1.540 1.257 1.095

Time period 23/10/2008 - 31/12/2009

Out-of-sample forecasts (τ ) 300

Notes: This table displays the average out-of-sample losses calulated as:
1
τ

∑T −1
t=T −τ L(rp

t+1,VaRϵ
t+1,ESϵ

t+1, ϵ). The lowest values among the models are in bold.
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TABLE 3.8: Average out-of-sample variance of GMVP returns.

IBM-MSFT-XOM AXP-DD-GE-KO

MGARCH-N 2.1531 2.0441

MGARCH-t 2.0942 2.0071

MGARCH-DPM-Λ 2.1355 2.0256

MGARCH-DPM 2.1329 2.0405

MRGARCH-N 1.9661 1.9020

MRGARCH-t 1.9651 1.9000

MRGARCH-DPM-Λ 1.9643 1.9215

MRGARCH-DPM 1.9643 1.9245

Equal weights portfolio 2.0942 4.3231

Time period 23/10/2008- 31/12/2009

Out-of-sample forecasts 300

Notes: This table displays the sample variance (σ2p) of the realized GMV port-
folio returns. Bold indicates the lowest values among the models.
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Chapter 4

Conclusion

This thesis contributes to three areas of financial volatility modeling in which the ex post mea-

sures of variance or covariance are used. The presented studies show that using parametric or

semiparametric non-Gaussian assumptions for financial returns and variance, provides statistical

benefits in density forecasting and improves risk measurement.

The first study is on modeling jumps in ex post variance, their size and time-dependent ar-

rival. The focus is on the forecasting benefits that the modelled jumps provide for the predictive

distribution of returns and ex post variance. The study extends a joint model of returns and ex

post variance with two autoregressive components to capture the short and long-run variance

persistence.

The heterogeneous variance jumps model is applied on the financial index of S&P500 and

the results show frequent and persistent variance jumps which occur at least once per week.

Modeling variance jumps significantly improves ex post variance and returns density forecasts

for forecasting horizons of up to 50 days out-of-sample.

The second study explores the empirical non-Gaussian features of stochastic volatility. A

new semiparametric approach is proposed to estimate the discrete-time stochastic volatility with

a Dirichlet Process mixture of infinite normal kernels. The new model has the ability to capture

jumps, asymmetry and thick-tails in returns, realized and stochastic volatility.
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The new semiparametric stochastic volatility model is applied to a group of equity indices.

The results show strong evidence of non-Gaussian behaviour in volatility and returns for all the

tested series. In out-of-sample forecasting, the new semiparametric approach gives improved

density forecasts of log-realized variance compared to the Gaussian benchmark. In risk mea-

surement forecasting, the new flexible estimation of stochastic volatility gives improve return

density forecasts and can allocate more probability mass to negative returns and to losses larger

than 1%.

In the third study, a new approach is proposed for multivariate realized GARCH models. Two

new extensions are developed which capture the empirically observed non-Gaussian behaviour

of financial returns. The first one is a multivariate Student-t assumption which captures the thick-

tails in returns distribution. The second one is a nonparametric approximation of the underlying

return density with a Dirichlet Process mixture of infinite multivariate normal kernels.

The models application into two different equity datasets, of 3 and 4 stock returns, shows the

major forecasting benefits of the non-Gaussian innovations. The proposed models, outperform

the benchmarks in returns and realized covariance density forecasts. In portfolio applications,

the non-Gaussian multivariate realized GARCH models, improve the forecasting of the equal

weight portfolio Value-at-Risk and Expected Shortfall. Finally, it is shown that they can pro-

duce the least volatile global minimum variance portfolios. This indicates that the proposed

frameworks estimate the returns covariance closer to the unknown true covariance.
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Appendix A

A1 Sampling steps of 2Comp-RM-HJ

The algorithm for estimating the 2Comp-RM-HJ model in 1.3.1 is:

1. The parameters θ = {µ, ω, ϕ1, ϕ2, α1, α2, ρ, σ
2} of the 2Comp-RM model have the con-

ditional posterior density which is proportional to

p(θ)
T∏

t=1
N (rt|µ,RMt)

1∑
j=0

N

(
logRMt

∣∣∣∣∣ω +
2∑

i=1
ϕici,t + ρut−1 + jµξ, σ

2 + jσ2
ξ

)
P(Jt = j|zt),

(A.1)

with p(θ) being the prior density and the rest is the data likelihood. The above posterior

does not have a standard form. To get posterior draws, I use a random walk MH algorithm

with proposal θ
′

which is from the following thick-tailed distribution

h(θ′) ∼


N(θ(l−1), κ× Ik), with probability p = 0.9,

N(θ(l−1), 10κ× Ik), with probability 1 − p,

(A.2)

with k being the number of parameters in vector θ. The draw θ′ is accepted with prob-

ability: min
{
p(θ′ |IT )/p(θ(l−1)|IT ), 1

}
. Draws which do not satisfy: 0 < ϕi, < 1,

0 < αi < 1, i = 1, 2, α1 > α2 and σ2 > 0 are rejected.
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Conditional on θ, define y = y1, ..., yT , where

yt ≡ logRMt −
(
ω +

2∑
i=1

ϕici,t + ρut−1

)
(A.3)

which based on eq.(1.13) has the following form

yt = Jtξt + σvt, vt ∼ NID(0, 1). (A.4)

2. Jump size follows a normal distribution, ξt ∼ N(µξ, σ
2
ξ ). This is essentially a linear model

with only a constant. Following the Bayes theorem, the mean has a conjugate normal prior

p(µξ) ∼ N(m0, v
2
0), and its conditional posterior is

p(µξ|σ2
ξ , ξ) ∝ p(ξ|µξ, σ

2
ξ )p(µξ)

∼ N(M,V −1) (A.5)

V = σ−2
ξ T + v−2

0

M = V −1(σ−2
ξ T ξ̄ +m0v

−2
0 )

where ξ̄ is the mean of jump size vector ξ.

3. For the variance, I use a conjugate inverse gamma prior, p(σ2
ξ ) ∼ IG(v0/2, s0/2), and its

conditional posterior is

p(σ2
ξ |µξ, ξ) ∼ IG

(
T + v0

2 ,

∑T
t=1(ξt − µξ)2 + s0

2

)
. (A.6)
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4. Jump size ξt, has a conjugate prior, p(ξt) ∼ N(µξ, σ
2
ξ ), and its conditional posterior is

p(ξt|σ2, µξ, σ
2
ξ , Jt, yt) ∝ p(ξt|µξ, σ

2
ξ ) p(yt|σ2, ξt, Jt), t = 1, ..., T

∼ N(a,A−1) (A.7)

A = σ−2Jt + σ−2
ξ

a = A−1
[
σ−2Jt (yt) + µξσ

−2
ξ

]

If there is no jump, Jt = 0, then the posterior is identical to the prior. If there is a jump,

Jt = 1, then posterior contains information about the jump size.

5. Jump indicator, Jt, t = 1, ..., T , is a Bernoulli variable with associated probabilities λt.

Its conditional posterior has two outcomes, Jt ∈ {0, 1}, with probabilities

p(Jt = 0|σ2, ξt, λt, yt) ∝ p(yt|σ2, ξt) p(Jt = 0|λt)

∝ exp
(
−0.5σ−2(yt)2

)
(1 − λt) (A.8)

p(Jt = 1|σ2, ξt, λt, yt) ∝ p(yt|σ2, ξt) p(Jt = 1|λt)

∝ exp
(
−0.5σ−2(yt − ξt)2

)
λt (A.9)

6. To get the latent process z, I use a single move sampler based on the one from Kim

et al. (1998) for the stochastic volatility models. By applying the Bayes rule twice, the

conditional posterior of zt, t = 1, ..., T, is

p(zt|z−t, Jt, γ) ∝ p(Jt|zt) p(zt|z−t, γ)

∝ p(Jt|zt) p(zt+1|zt, γ) p(zt|zt−1, γ). (A.10)
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The above posterior does not have a known form. I use an MH step to sample from it. In

eq.(A.10), the last two densities can be combined as

p(zt|z−t, γ) ∝ p(zt+1|zt, γ) p(zt|zt−1, γ) ∝ N(µh, δ
2) (A.11)

with µh
γ0(1 − γ1) + γ1(zt+1 + zt−1)

1 + γ2
1

and δ2 = 1
1 + γ2

1
.

To draw from the posterior in (A.10), I draw the candidate z′ from q(z′|z−t, γ) ∼ N(µh, δ
2)

and accept the draw with probability

min
{
p(z′|z−t, Jt, γ)/q(z′|z−t, γ)
p(zt|z−t, Jt, γ)/q(zt|z−t, γ) , 1

}
. (A.12)

If the draw is accepted then z(l)
t = z′, otherwise z(l)

t = z
(l−1)
t . In the sampler, z(l)

0 ∼

N(z̄, 1), with z̄ = γ
(l)
0

1−γ
(l)
1

.

7. Conditional on z we have the linear model

zt = Xtγ + et, et ∼ N(0, 1) (A.13)

where γ = γ0, γ1 and Xt = [1 zt−1]. The parameters in γ, have a conjugate bivariate

normal prior p(γ) ∼ N(a0, B0) and are sampled from

p(γ|Θ−γ , z) ∼ p(γ)
T∏

t=1
p(zt|Θ−γ , γ) (A.14)

∼ N(mg, Vg) (A.15)

with Vg =
(
X

′
X +B−1

0

)−1

mg = V −1
g

(
X ′z +B−1

0 a0
)
.

Draws of γ are accepted if |γ1| < 1.

The steps 1-5 for estimating the 2Comp-RM-IJ model in 1.3.2 are the same as the steps of
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2Comp-RM-HJ with a constant jump intensity λ. To sample λ in 6, I assume a conjugate Beta

prior, p(λ) ∼ B(aλ, bλ). Its conditional posterior is

p(λ|J) ∝ p(J |λ)p(λ) (A.16)

∼ B

(
aλ +

T∑
t=1

Jt, T + bλ −
T∑

t=1
Jt

)
. (A.17)

A2 Sampling steps of RSV-DPM-V

The algorithm for estimating the RSV-DPM-V model in 2.3.1 is:

1. To estimate the stochastic volatility vector h1:T I use a single move sampler based on

the work of Kim et al. (1998). Following the Bayes rule twice, the conditional posterior

p(ht|h−t, rt, logRVt, θ, µ1:k, γ1:k, σ
2
1:k, s1:T ) is proportional to

p(rt|µst , ht) p(logRVt|ht, β, b
2) p(ht|h−t, δ, γst

, σ2
st

) (A.18)

p(rt|µst , ht) p(logRVt|ht, β, b
2) p(ht|ht−1, δ, γst

, σ2
st

) p(ht+1|ht, δ, γst+1 , σ
2
st+1)

(A.19)

p(rt|µst , ht) p(logRVt|ht, β, b
2) fN(ht|h̄, v2

h) (A.20)

p(rt|µst , ht) fN(ht|Mh, V ) (A.21)

with fN(.) being the normal density. The posterior in (A.19) has an unknown form. By

combining the last two densities we get that p(ht|h−t, δ, γst
, σ2

st
) ∝ fN(ht|h̄, v2

h) with

h̄ =
δσ2

st
(ht+1 − γst+1) + σ2

st+1(δht−1 + γst)
σ2

st+1 + δ2σ2
st

(A.22)

v2
h =

σ2
st
σ2

st+1

σ2
st+1 + δ2σ2

st

(A.23)
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Using the logRV data in (A.20) we get that ht|h−t, logRVt, θ, γ1:k, σ
2
1:k, s1:T ∼ N(Mh, V )

with

Mh = d(logRVt − c)v2
h + h̄v2

h

d2v2
h + b2 (A.24)

V = b2v2
h

d2v2
h + b2 (A.25)

The posterior in (A.21) does not have a known form so a Metropolis-Hastings (MH) al-

gorithm is used to sample from it. The proposal distribution is found following the results

of Kim et al. (1998). They show that exp(−ht) is bounded and

p(rt|µst , ht) ∝ f(rt, ht, µst) = exp{−.5ht − .5 exp(−ht)(rt − µst)2} (A.26)

≤ exp{−.5ht − .5 exp(−Mh)(rt − µst)2(1 +Mh − ht)}

(A.27)

= g(rt, ht, µst ,Mh) (A.28)

Combining this with (A.21) we get the proposal

p(rt|µst , ht) fN(ht|Mh, V ) ≤ g(rt, ht, µst ,Mh)fN(ht|Mh, V ) ∝ fN(ht|M,V ) (A.29)

withM = Mh+.5V ((rt−µst)2 exp(Mh)−1). The candidate h′
t ∼ N(M,V ) is accepted

as a draw of ht with probability

min
{
p(h′

t|h−t, rt, logRVt, θ, µ1:k, γ1:k, σ
2
1:k, s1:T )/ N(h′

t|M,V )
p(ht|h−t, rt, logRVt, θ, µ1:k, γ1:k, σ

2
1:k, s1:T )/ N(ht|M,V )

, 1
}
. (A.30)
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2. AR(1) parameter δ has a normal prior, p(δ) ∼ N(mδ, vδ)1{|δ| < 1}. Its conditional

posterior is

p(δ|h1:T , γ1:k, σ
2
1:k, s1:T ) ∝ N(Mδ, Vδ) (A.31)

with Vδ = vδ

vδ
∑T

t=2 h
2
t−1σ

−2
t + 1

(A.32)

and Mδ = Vδ

(
T∑

t=2
ht−1(ht − γst)σ−2

st
+mδ/vδ

)
. (A.33)

3. The mixing parameters are drawn from linear model conjugate priors

(a) p(µj) ∼ N(m0, u
2
0), j = 1, ..., k. Its conditional posterior is proportional to

p(µj |r1:T , h1:T , st = j) ∝ p(µj)
∏

t:st=j

p(rt|µj , ht) (A.34)

∝ N
(
mµ, v

−1
µ

)
(A.35)

with vµ =
∑

t:st=j

exp(−ht) + u−2
0 (A.36)

and mµ = v−1
µ

 ∑
t:st=j

rt exp(−ht) +m0u
−2
0

 . (A.37)

(b) p(γj) ∼ N(g0, q
2
0), j = 1, ..., k. Its conditional posterior is proportional to

p(γj |h1:T , δ, σ
2
j , st = j) ∝ p(γj)

∏
t:st=j

p(ht|γj , δ, σ
2
j ) (A.38)

∝ N
(
mγ , v

2
γ

)
(A.39)

with v2
γ =

σ2
j q

2
0

njq2
0 + σ2

j

(A.40)

and mγ = v2
γ

σ−2
j

∑
t:st=j

(ht − δht−1) + g0q
−2
0

 , (A.41)

where nj =
∑

t:st=j 1{st = j}, is the number of observations in the cluster j.
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(c) p(σ2
j ) ∼ IG(v0/2, s0/2), j = 1, ..., k. Its conditional posterior is proportional to

p(σ2
j |h1:T , δ, γj , st = j) ∝ p(σ2

j )
∏

t:st=j

p(ht|γj , δ, σ
2
j ) (A.42)

∝ IG

.5 (nj + v0) , .5

 ∑
t:st=j

(ht − γj − δht−1)2 + s0

 .
(A.43)

4. (a) Update the mixture weights in w1:k|s1:T , α with a stick-breaking process as

vj |s1:T , α ∼ B

(
1 +

T∑
t=1

1 {st = j} , α+
T∑

t=1
1{st > j}

)
, (A.44)

w1 = v1, wj = vj

j−1∏
l=1

(1 − vl), j = 2, ..., k. (A.45)

(b) Update the slice vector u1:T |w1:k, s1:T from a uniform draw as: ut|w1:k, s1:T ∼

U(0, wst).

(c) Update the number of mixture clusters k to the smallest positive integer that satisfies:∑k
j=1wj > 1 − min(u1:T ). If new clusters are needed to satisfy the inequality, their

mean and covariance are drawn from the base measure (N-N-IG) in (2.10).

5. Each element st of the vector s1:T takes an integer value j which is drawn from a multi-

nomial distribution with probabilities

p(st = j|r1:T , h1:T , µ1:k, γ1:k, σ
2
1:k, w1:k, α) ∝ 1 {ut < wj} N (rt|µj , exp(ht))

× N
(
ht|γj + δht−1, σ

2
j

)
,

(A.46)

for j = 1, ..., k. The number of active clusters κ, can be calculated as the ones with at

least one assigned data observation.
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6. Draw the DPM precision parameter α with a gamma prior α ∼ Γ(a0, b0) following the

two steps algorithm of Escobar and West (1995):

i. draw the random variable ξ|α, κ ∼ B(α+ 1, T ).

ii. sample α from

α|ξ ∼ πξΓ(a0 + κ, b0 − log(ξ)) + (1 − πξ)Γ(a0 + κ− 1, b0 − log(ξ)),

with πξ

1−πξ
= a0+κ−1

T (b0−log(ξ)) .

7. Conditional on h, the measurement equation is the following linear model

yt = Xtβ + bzt, zt ∼ N(0, 1), (A.47)

with yt = logRVt, Xt = [1 ht] and β = [c d]′.

(a) p(β) ∼ N(β0, B0), β0 is a 2 × 1 vector and B0 a 2 × 2 matrix. Its conditional

posterior is proportional to

p(β|y1:T , X1:T , b
2) ∝ p(β)

T∏
t=1

p(yt|Xtβ, b
2) (A.48)

∝ N
(
M,V −1

)
(A.49)

with V = b−2X ′X +B−1
0 (A.50)

and M = V −1
(
b−2X ′y +B−1

0 β0
)
. (A.51)

(b) p(b2) ∼ IG(ν0/2, ς0/2). Its conditional posterior is proportional to

p(b2|y1:T , X1:T , β) ∝ p(b2)
T∏

t=1
p(yt|Xtβ, b

2) (A.52)

∝ IG
(
.5 (T + ν0) , .5

(
(y −Xβ)′(y −Xβ) + ς0

))
. (A.53)
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A3 Sampling steps of MRGARCH-DPM

1. Draw the state-dependent mean vectors and covariance matrices µ1:k,Λ1:k|r1:T , H1:T , s1:T

from linear model conjugate priors with Gibbs sampling as

Λj |r1:T , H1:T , s1:T , µj ∼ IWn

ν0 + nj , V0 +
∑

t:st=j

(
H

−1/2
t (rt − µj)

) (
H

−1/2
t (rt − µj)

)′
 ,

(A.54)

µj |r1:T , H1:T , s1:T ,Λj ∼ Nn(µ̃, Ṽ ), (A.55)

with Ṽ =

M−1
0 +

∑
t:st=j

(H−1/2
t )′Λ−1

j H
−1/2
t

−1

,

µ̃ = Ṽ

 ∑
t:st=j

(H−1/2
t )′Λ−1

j H
−1/2
t rt +M−1

0 µ0

 , nj =
T∑

i=1
1 {st = j} and j = 1, ..., k.

2. Update the mixture weights in w1:k|s1:T , α with a stick-breaking process as

vj |s1:T , α ∼ B

(
1 +

T∑
t=1

1 {st = j} , α+
T∑

t=1
1{st > j}

)
, (A.56)

w1 = v1, wj = vj

j−1∏
l=1

(1 − vl), j = 2, ..., k. (A.57)

3. Update the slice vector u1:T |w1:k, s1:T from a uniform draw as: ut|w1:k, s1:T ∼ U(0, wst).

4. Update the number of mixture clusters k to the smallest positive integer that satisfies:∑k
j=1wj > 1−min(u1:T ). If new clusters are needed to satisfy the inequality, their mean

and covariance are drawn from the base measure.
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5. Sample the vector s1:T |r1:T , H1:T , µ1:k,Λ1:k, w1:k, α, from a multinominal distribution

with probabilities

p(st = j|r1:T , H1:T , µ1:k,Λ1:k, w1:k) ∝ 1 {ut < wj} Nn

(
rt

∣∣∣µj , H
1/2
t Λj

(
H

1/2
t

)′
)
,

(A.58)

for j = 1, ..., k. The number of active clusters κ, can be calculated as the ones with at

least one assigned data observation.

6. Draw the DPM precision parameter α with a gamma prior α ∼ Γ(a0, b0) following the

two steps algorithm of Escobar and West (1995):

i. draw the random variable ξ|α, κ ∼ B(α+ 1, T ).

ii. sample α from

α|ξ ∼ πξΓ(a0 + κ, b0 − log(ξ)) + (1 − πξ)Γ(a0 + κ− 1, b0 − log(ξ)),

with πξ

1−πξ
= a0+κ−1

T (b0−log(ξ)) .

7. MRGARCH parameters in θ = {a, b, c, λ, ν} have the following conditional posterior

p(θ|IT , µ1:k,Λ1:k, s1:k, V ) ∝ p(θ)
T∏

t=1
Nn

(
rt

∣∣∣µst , H
1/2
t Λst

(
H

1/2
t

)′
)

× IWn

(
RCt

∣∣∣ν, (ν − n− 1)H1/2
t V

(
H

1/2
t

)′
)
,

(A.59)

which does not have a standard form. A random walk MH algorithm is used to take a new

draw θ(i) from the above posterior, with proposal θ
′
which is from h(θ′) ∼ N(θ(i−1), ςV̂h),

with V̂h the inverse Hessian matrix evaluated at the posterior mode θ̂. The draw is accepted
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with probability

min
{
p(θ′ |IT )/p(θ(i−1)|IT ), 1

}
, (A.60)

where p(.|IT ) is the posterior in (A.59). For every θ(i), Ω(i) is calculated as in (3.30).

Only posterior draws that result in positive definite Ω(i) and H(i)
1:T are accepted.

8. Update scale matrix V |RC1:T , H1:T , ν from a conjugate Wishart prior, with a Gibbs draw

as

p(V |RC1:T , H1:T , ν) ∝ p(V )p(RC1:T |V,H1:T , ν)

∼ Wn(νp,Ψp),

with νp = ψ0 + Tν and Ψp =
[
Ψ−1

0 + (ν − n− 1)
∑T

t=1

(
H

1/2
t

)′
RC−1

t H
1/2
t

]−1
.

A4 Covariance targeting

Let µ̄ be the population mean which is estimated by the sample mean and Σ̄ be the population

covariance matrix estimated by the sample covariance matrix. I set V ≡ In, and assume that the

conditional covariance matrix is stationary and equal to the sample covariance matrix, E(H1) =
... = E(HT ) = Σ̄. Instead of drawing Ω, from the posterior, I use the posterior draws (i) of the

other parameters in θ to derive covariance targeting as

MRGARCH-N:

E(Ht) = Ω + A ⊙ E
{

[(rt−1 − µ̄) + (µ̄ − λ)] [(rt−1 − µ̄) + (µ̄ − λ)]′
}

+ B ⊙ E(Ht−1) + C ⊙ E(RCt−1)

= Ω + A ⊙ E
[
(rt−1 − µ̄)(rt−1 − µ̄)′]+ A ⊙ E

[
(µ̄ − λ)(µ̄ − λ)′]+ B ⊙ E(Ht−1) + C ⊙ E

[
H

1/2
t V

(
H

1/2
t

)′]
= Ω + A ⊙ E(Ht−1) + A ⊙ E

[
(µ̄ − λ)(µ̄ − λ)′]+ B ⊙ E(Ht−1) + C ⊙ E(Ht−1)

⇒ Ω(i) = Σ̄ ⊙
(
ιι′ − A(i) − B(i) − C(i))− A(i) ⊙

(
µ̄ − λ(i)) (µ̄ − λ(i))′

(A.61)
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MRGARCH-t:

E(Ht) = Ω + A ⊙ E
{

[(rt−1 − µ̄) + (µ̄ − λ)] [(rt−1 − µ̄) + (µ̄ − λ)]′
}

+ B ⊙ E(Ht−1) + C ⊙ E(RCt−1)

= Ω + A ⊙ E
[
(rt−1 − µ̄)(rt−1 − µ̄)′]+ A ⊙ E

[
(µ̄ − λ)(µ̄ − λ)′]+ B ⊙ E(Ht−1) + C ⊙ E

[
ζ

ζ − 2H
1/2
t V

(
H

1/2
t

)′
]

= Ω + A ⊙ E
(

ζ

ζ − 2Ht−1

)
+ A ⊙ E

[
(µ̄ − λ)(µ̄ − λ)′]+ B ⊙ E(Ht−1) + C ⊙ E

(
ζ

ζ − 2Ht−1

)
⇒ Ω(i) = Σ̄ ⊙

(
ιι′ − ζ

ζ − 2A(i) − B(i) − ζ

ζ − 2C(i)
)

− A(i) ⊙
(
µ̄ − λ(i)) (µ̄ − λ(i))′

(A.62)

The DPM base measure of L is set such as E(L) = In.

MRGARCH-DPM / MRGARCH-DPM-Λ :

E(Ht) = Ω + A ⊙ E
{

[(rt−1 − µ̄) + (µ̄ − λ)] [(rt−1 − µ̄) + (µ̄ − λ)]′
}

+ B ⊙ E(Ht−1) + C ⊙ E(RCt−1)

= Ω + A ⊙ E
[

H
1/2
t Lt

(
H

1/2
t

)′]
+ A ⊙ E

[
(µ̄ − λ)(µ̄ − λ)′]+ B ⊙ E(Ht−1) + C ⊙ E

[
H

1/2
t V

(
H

1/2
t

)′]
= Ω + A ⊙ E(Ht−1) + A ⊙ E

[
(µ̄ − λ)(µ̄ − λ)′]+ B ⊙ E(Ht−1) + C ⊙ E(Ht−1)

⇒ Ω(i) = Σ̄ ⊙
(
ιι′ − A(i) − B(i) − C(i))− A(i) ⊙

(
µ̄ − λ(i)) (µ̄ − λ(i))′

(A.63)

For the MGARCH benchmarks apply the same results, for each associated distributional as-

sumption, with the use of C = 0n.

124

http://www.mcmaster.ca/


Bibliography

Abanto-Valle, C. A., Bandyopadhyay, D., Lachos, V. H., and Enriquez, I. (2010). Robust Bayesian

analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distribu-

tions. Computational Statistics & Data Analysis 54(12), 2883–2898.

Aït-Sahalia, Y. and Mancini, L. (2008). Out of sample forecasts of quadratic variation. Journal

of Econometrics 147(1), 17–33.

Andersen, T. G. and Bollerslev, T. (1998). Answering the skeptics: Yes, standard volatility mod-

els do provide accurate forecasts. International Economic Review, 885–905.

Andersen, T. G., Bollerslev, T., and Diebold, F. X. (2007). Roughing it up: Including jump

components in the measurement, modeling, and forecasting of return volatility. The Review

of Economics and Statistics 89(4), 701–720.

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Ebens, H. (2001a). The distribution of real-

ized stock return volatility. Journal of Financial Economics 61(1), 43–76.

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2001b). The distribution of realized

exchange rate volatility. Journal of the American Statistical Association 96(453), 42–55.

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2003). Modeling and forecasting

realized volatility. Econometrica 71(2), 579–625.

Andersen, T. G., Bollerslev, T., and Huang, X. (2011). A reduced form framework for modeling

volatility of speculative prices based on realized variation measures. Journal of Economet-

rics 160(1), 176–189.

Archakova, I., Hansen, P. R., and Lunde, A. (2019). A Multivariate Realized GARCH Model.

125



Bibliography

Baba, Y., Engle, R. F., Kraft, D. F., and Kroner, K. F. (1990). Multivariate simultaneous gener-

alized ARCH. Manuscript, University of California, San Diego, Department of Economics.

Ball, C. A. and Torous, W. N. (1983). A simplified jump process for common stock returns.

Journal of Financial and Quantitative analysis 18(1), 53–65.

Bandi, F. M. and Russell, J. R. (2008). Microstructure noise, realized variance, and optimal

sampling. The Review of Economic Studies 75(2), 339–369.

Banrdorff-Nielsen, O. and Shephard, N. (2004). Econometric analysis of realized covariation:

high frequency covariance, regression and correlation in financial economics. Econometrica

72, 885–925.

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2011). Multivariate re-

alised kernels: consistent positive semi-definite estimators of the covariation of equity prices

with noise and non-synchronous trading. Journal of Econometrics 162(2), 149–169.

Barndorff-Nielsen, O. E. and Shephard, N. (2002a). Econometric analysis of realized volatility

and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 64(2), 253–280.

Barndorff-Nielsen, O. E. and Shephard, N. (2002b). Estimating quadratic variation using real-

ized variance. Journal of Applied Econometrics 17(5), 457–477.

Barndorff-Nielsen, O. E. and Shephard, N. (2004). Power and bipower variation with stochastic

volatility and jumps. Journal of Financial Econometrics 2(1), 1–37.

Bauwens, L., Laurent, S., and Rombouts, J. V. (2006). Multivariate GARCH models: a survey.

Journal of Applied Econometrics 21(1), 79–109.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econo-

metrics 31(3), 307–327.

Bollerslev, T., Engle, R. F., and Wooldridge, J. M. (1988). A capital asset pricing model with

time-varying covariances. Journal of Political Economy 96(1), 116–131.

126



Bibliography

Bollerslev, T., Kretschmer, U., Pigorsch, C., and Tauchen, G. (2009). A discrete-time model

for daily S & P500 returns and realized variations: Jumps and leverage effects. Journal of

Econometrics 150(2), 151–166.

Caporin, M., Rossi, E., and Magistris, P. S. d. (2015). Volatility jumps and their economic deter-

minants. Journal of Financial Econometrics 14(1), 29–80.

Chan, K. F. and Gray, P. (2018). Volatility jumps and macroeconomic news announcements.

Journal of Futures Markets 38(8), 881–897.

Chan, W. H. and Maheu, J. M. (2002). Conditional jump dynamics in stock market returns.

Journal of Business & Economic Statistics 20(3), 377–389.

Chan, W. H. and Feng, L. (2012). Time-varying jump risk premia in stock index futures returns.

Journal of Futures Markets 32(7), 639–659.

Chen, Q., Gerlach, R., and Lu, Z. (2012). Bayesian Value-at-Risk and expected shortfall fore-

casting via the asymmetric Laplace distribution. Computational Statistics & Data Analysis

56(11), 3498–3516.

Chib, S., Nardari, F., and Shephard, N. (2002). Markov chain Monte Carlo methods for stochastic

volatility models. Journal of Econometrics 108(2), 281–316.

Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of

Financial Econometrics 7(2), 174–196.

Corsi, F., Audrino, F., and Renó, R. (2012). HAR modeling for realized volatility forecasting.

Corsi, F. and Renò, R. (2012). Discrete-time volatility forecasting with persistent leverage effect

and the link with continuous-time volatility modeling. Journal of Business & Economic

Statistics 30(3), 368–380.

Delatola, E.-I. and Griffin, J. E. (2011). Bayesian nonparametric modelling of the return distri-

bution with stochastic volatility. Bayesian Analysis 6(4), 901–926.

Delatola, E.-I. and Griffin, J. E. (2013). A Bayesian semiparametric model for volatility with a

leverage effect. Computational Statistics & Data Analysis 60, 97–110.

127



Bibliography

Diamantopoulos, K. and Vrontos, I. D. (2010). A student-t full factor multivariate GARCH

model. Computational Economics 35(1), 63.

Diks, C., Panchenko, V., and Van Dijk, D. (2011). Likelihood-based scoring rules for comparing

density forecasts in tails. Journal of Econometrics 163(2), 215–230.

Ding, Z. and Engle, R. F. (2001). Large scale conditional covariance matrix modeling, estimation

and testing.

Durham, G. B. (2006). Monte Carlo methods for estimating, smoothing, and filtering one-and

two-factor stochastic volatility models. Journal of Econometrics 133(1), 273–305.

Engle, R. (2002a). Dynamic conditional correlation: A simple class of multivariate general-

ized autoregressive conditional heteroskedasticity models. Journal of Business & Economic

Statistics 20(3), 339–350.

Engle, R. (2002b). New frontiers for ARCH models. Journal of Applied Econometrics 17(5), 425–

446.

Engle, R. and Colacito, R. (2006). Testing and valuing dynamic correlations for asset allocation.

Journal of Business & Economic Statistics 24(2), 238–253.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance

of United Kingdom inflation. Econometrica: Journal of the Econometric Society, 987–1007.

Engle, R. F. and Kroner, K. F. (1995). Multivariate simultaneous generalized ARCH. Economet-

ric Theory, 122–150.

Engle, R. F. and Ng, V. K. (1993). Measuring and testing the impact of news on volatility. The

Journal of Finance 48(5), 1749–1778.

Eraker, B. (2004). Do stock prices and volatility jump? Reconciling evidence from spot and

option prices. The Journal of Finance 59(3), 1367–1403.

Eraker, B., Johannes, M., and Polson, N. (2003). The impact of jumps in volatility and returns.

The Journal of Finance 58(3), 1269–1300.

Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures.

Journal of the American Statistical Association 90(430), 577–588.

128



Bibliography

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. The Annals of

Statistics, 209–230.

Fissler, T. and Ziegel, J. F. (2016). Higher order elicitability and Osband’s principle. The Annals

of Statistics 44(4), 1680–1707.

Gerlach, R. and Chen, C. W. (2015). Bayesian expected shortfall forecasting incorporating the

intraday range. Journal of Financial Econometrics 14(1), 128–158.

Geweke, J. (1994). Bayesian comparison of econometric models. Tech. rep. Citeseer.

Gorgi, P., Hansen, P. R., Janus, P., and Koopman, S. J. (2019). Realized Wishart-GARCH: A

score-driven multi-asset volatility model. Journal of Financial Econometrics 17(1), 1–32.

Hansen, P. R. and Lunde, A. (2006). Realized variance and market microstructure noise. Journal

of Business & Economic Statistics 24(2), 127–161.

Hansen, P. R., Huang, Z., and Shek, H. H. (2012). Realized GARCH: a joint model for returns

and realized measures of volatility. Journal of Applied Econometrics 27(6), 877–906.

Hansen, P. R., Lunde, A., and Voev, V. (2014). Realized beta GARCH: A multivariate GARCH

model with realized measures of volatility. Journal of Applied Econometrics 29(5), 774–

799.

Heber, G., Lunde, A., Shephard, N., and Sheppard, K. (2009). Oxford-Man Institute’s Realized

Library, version 0.1.

Jensen, M. J. and Maheu, J. M. (2010). Bayesian semiparametric stochastic volatility modeling.

Journal of Econometrics 157(2), 306–316.

Jensen, M. J. and Maheu, J. M. (2013). Bayesian semiparametric multivariate GARCH model-

ing. Journal of Econometrics 176(1), 3–17.

Jensen, M. J. and Maheu, J. M. (2014). Estimating a semiparametric asymmetric stochastic

volatility model with a Dirichlet process mixture. Journal of Econometrics 178, 523–538.

Jin, X. and Maheu, J. M. (2013). Modeling realized covariances and returns. Journal of Financial

Econometrics 11(2), 335–369.

129



Bibliography

Jin, X. and Maheu, J. M. (2016). Bayesian semiparametric modeling of realized covariance

matrices. Journal of Econometrics 192(1), 19–39.

Johannes, M., Kumar, R., and Polson, N. G. (1999). State dependent jump models: How do US

equity indices jump. Woking Paper, University of Chicago.

Kalimipalli, M. and Susmel, R. (2004). Regime-switching stochastic volatility and short-term

interest rates. Journal of Empirical Finance 11(3), 309–329.

Kalli, M., Griffin, J. E., and Walker, S. G. (2011). Slice sampling mixture models. Statistics and

Computing 21(1), 93–105.

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Asso-

ciation 90(430), 773–795.

Kim, S., Shephard, N., and Chib, S. (1998). Stochastic volatility: likelihood inference and com-

parison with ARCH models. The Review of Economic Studies 65(3), 361–393.

Li, C., Maheu, J. M., and Yang, Q. (2022). An Infinite Hidden Markov Model with Stochastic

Volatility.

Liesenfeld, R. and Jung, R. C. (2000). Stochastic volatility models: conditional normality versus

heavy-tailed distributions. Journal of Applied Econometrics 15(2), 137–160.

Liu, J. (2021). A Bayesian Semiparametric Realized Stochastic Volatility Model. Journal of Risk

and Financial Management 14(12), 617.

Maheu, J. M. and McCurdy, T. H. (2004). News arrival, jump dynamics, and volatility compo-

nents for individual stock returns. The Journal of Finance 59(2), 755–793.

Maheu, J. M. and McCurdy, T. H. (2007). Components of market risk and return. Journal of

Financial Econometrics 5(4), 560–590.

Maheu, J. M. and McCurdy, T. H. (2008). Modeling foreign exchange rates with jumps. In:

Forecasting in the Presence of Structural Breaks and Model Uncertainty. Emerald Group

Publishing Limited.

Maheu, J. M. and McCurdy, T. H. (2011). Do high-frequency measures of volatility improve

forecasts of return distributions? Journal of Econometrics 160(1), 69–76.

130



Bibliography

Maheu, J. M., McCurdy, T. H., and Zhao, X. (2013). Do jumps contribute to the dynamics of the

equity premium? Journal of Financial Economics 110(2), 457–477.

Maheu, J. M. and Shamsi Zamenjani, A. (2021). Nonparametric dynamic conditional beta. Jour-

nal of Financial Econometrics 19(4), 583–613.

Mahieu, R. J. and Schotman, P. C. (1998). An empirical application of stochastic volatility mod-

els. Journal of Applied Econometrics 13(4), 333–360.

Nakajima, J. and Omori, Y. (2012). Stochastic volatility model with leverage and asymmetrically

heavy-tailed error using GH skew Student’s t-distribution. Computational Statistics & Data

Analysis 56(11), 3690–3704.

Noureldin, D., Shephard, N., and Sheppard, K. (2012). Multivariate high-frequency-based volatil-

ity (HEAVY) models. Journal of Applied Econometrics 27(6), 907–933.

Oldfield Jr, G. S., Rogalski, R. J., and Jarrow, R. A. (1977). An autoregressive jump process for

common stock returns. Journal of Financial Economics 5(3), 389–418.

Opschoor, A., Janus, P., Lucas, A., and Van Dijk, D. (2018). New HEAVY models for fat-tailed

realized covariances and returns. Journal of Business & Economic Statistics 36(4), 643–657.

Patton, A. J., Ziegel, J. F., and Chen, R. (2019). Dynamic semiparametric models for expected

shortfall (and value-at-risk). Journal of Econometrics 211(2), 388–413.

Press, S. J. (1967). A compound events model for security prices. Journal of Business, 317–335.

Richardson, M. and Smith, T. (1993). A test for multivariate normality in stock returns. Journal

of Business, 295–321.

Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 639–650.

Shirota, S., Omori, Y., Lopes, H. F., and Piao, H. (2017). Cholesky realized stochastic volatility

model. Econometrics and Statistics 3, 34–59.

So, M. E. P., Lam, K., and Li, W. K. (1998). A stochastic volatility model with Markov switching.

Journal of Business & Economic Statistics 16(2), 244–253.

131



Bibliography

Takahashi, M., Omori, Y., and Watanabe, T. (2009). Estimating stochastic volatility models us-

ing daily returns and realized volatility simultaneously. Computational Statistics & Data

Analysis 53(6), 2404–2426.

Taylor, S. J. (1994). Modeling stochastic volatility: A review and comparative study. Mathemat-

ical Finance 4(2), 183–204.

Taylor, S. J. (1982). Financial returns modelled by the product of two stochastic processes-a

study of the daily sugar prices 1961-75. Time Series Analysis: Theory and Practice 1, 203–

226.

Vo, M. T. (2009). Regime-switching stochastic volatility: Evidence from the crude oil market.

Energy Economics 31(5), 779–788.

Walker, S. G. (2007). Sampling the Dirichlet mixture model with slices. Communications in

Statistics — Simulation and Computation® 36(1), 45–54.

Yamauchi, Y. and Omori, Y. (2020). Multivariate stochastic volatility model with realized volatil-

ities and pairwise realized correlations. Journal of Business & Economic Statistics 38(4), 839–

855.

Yu, J. (2012). A semiparametric stochastic volatility model. Journal of Econometrics 167(2), 473–

482.

Zaharieva, M. D., Trede, M., and Wilfling, B. (2020). Bayesian semiparametric multivariate

stochastic volatility with application. Econometric Reviews 39(9), 947–970.

Zhang, L., Mykland, P. A., and Aıt-Sahalia, Y. (2005). A tale of two time scales: Determin-

ing integrated volatility with noisy high-frequency data. Journal of the American Statistical

Association 100(472), 1394–1411.

132


	Abstract
	Acknowledgements
	Declaration of Authorship
	Introduction
	 Modeling jumps in ex post variance. Does it improve density forecasts? 
	Introduction
	Ex post variance
	Model specification
	Heterogeneous variance jumps
	Independent variance jumps
	Density forecasting

	Empirical application
	Data
	Selection of priors
	Posterior estimation results
	Forecasting results

	Concluding remarks

	 Is stochastic volatility Gaussian? A Bayesian semiparametric analysis 
	Introduction
	Realized variance
	Model specification
	Estimation
	Benchmark models
	Predictive density

	Empirical application
	Data
	Selection of priors
	Posterior estimation results
	Forecasting results

	Concluding remarks

	The role of non-Gaussian innovations in multivariate realized GARCH models
	Introduction
	Realized Covariance
	Data

	Multivariate realized GARCH
	Gaussian innovations
	Thick tailed innovations
	Semiparametric approach
	Restricted MRGARCH-DPM
	Predictive density
	Benchmark models

	Empirical applications
	Selection of priors
	Posterior estimation results
	Forecasting results
	Portfolio applications

	Concluding remarks

	Conclusion
	
	Sampling steps of 2Comp-RM-HJ
	Sampling steps of RSV-DPM-V
	Sampling steps of MRGARCH-DPM
	Covariance targeting

	Bibliography

