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Abstract

As datasets from virtually all fields of endeavour continue to grow in size and com-

plexity, the curse of dimensionality cannot be overlooked. Researchers in model-based

clustering have recognized the need for effective dimension reduction techniques; as

a result, many such algorithms exist to date. These algorithms, however, are often

specific to Gaussian clustering problems and break down in the presence of skew-

ness. We present a novel skewed variable selection algorithm that utilizes the Manly

transformation mixture model to select variables based on their ability to separate

clusters. We compare our approach with other asymmetric and normal variable se-

lection methods using simulated and real-world datasets. We find that the proposed

algorithm is suitable for dimension reduction in the presence of skewness.
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Chapter 1

Introduction

Variable selection refers to the process by which informative variables are retained

and uninformative variables are removed. Eliminating uninformative variables can

improve both model fitting and model interpretability. As such, much research has

been conducted on variable selection across statistical domains. One such domain is

that of model-based clustering and classification. The need for dimension reduction is

evident for clustering and classification problems as noisy data can hide key features,

such as groupings. We know that dimension reduction should happen in tandem with

data clustering rather than before clustering (Steinley and Brusco, 2011; Bouveyron

and Brunet-Saumard, 2014). As such, variable selection methods that are embedded

into clustering and classification algorithms are essential. Many such algorithms exist

for Gaussian clustering algorithms; the same cannot be said for skewed clustering

methods.

In this paper, we study the effect that skewness has on existing variable selection

algorithms for classification and clustering and introduce a skewed extension to the

popular variable selection method VSCC (Andrews and McNicholas, 2014), which is

1
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available as the vscc package (Andrews and McNicholas, 2013) for R (R Core Team,

2022). We compare this extension to a skewed extension of the clustvarsel algorithm

(Wallace et al., 2018), using both real data and simulated data in Chapter 4. In

Chapter 2, we briefly discuss existing variable selection algorithms and methods for

skewed model-based clustering. We introduce our skewed extension to the VSCC

algorithm and discuss data analysis details in Chapter 3. Lastly, in Chapter 5, we

include a discussion of results and provide suggestions for future work.

2



Chapter 2

Background

2.1 Finite Mixture Models

Finite mixture models arise from the assumption that a population contains sub-

populations that can be modelled by a finite number of densities. Thus, these models

lend themselves to clustering and classification problems quite nicely. A random

vector X belongs to finite mixture model if, for all x ⊂ X we can write the density as

f(x|ϑ) =
G∑

g=1

πgfg(x|θg),

where πg > 0 are the mixing proportions such that
∑G

g=1 πg = 1 and fg(x|θg) are

the component densities. Most commonly, these component densities are taken to be

multivariate Gaussian resulting in the following finite mixture model density,

f(x|ϑ) =
G∑

g=1

πg
(2π)p/2|Σg|1/2

exp

{
−1

2
(xi − µg)

′Σ−1
g (xi − µg)

}
.

3
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However, in real application it is uncommon for data to be fully Gaussian. Thus

various asymmetric mixture models have been developed to aid in clustering and clas-

sification when skewness is present, as discussed in Section 2.2. More comprehensive

details on finite mixture models can be found in Everitt and Hand (1981), Tittering-

ton et al. (1985), McLachlan and Basford (1988), McLachlan and Peel (2000), and

Frühwirth-Schnatter (2006).

2.2 Skewed Mixture Models

There are two schools of thought when it comes to dealing with skewness. The

first accounts for skewness directly with the use of flexible, asymmetric distributions.

These include skew-symmetric distributions such as the skew-normal with density

(Pyne et al., 2009):

f(y;µ,Σ, δ) = 2ϕp(y;µ,Σ)Φ1(δ
TΣ−1(y − µ);0,1− δTΣ−1δ),

where ϕp and Φp are the pdf and cdf, respectively, of the standard multivariate nor-

mal; Σ is the covariance matrix; δ is the vector of skewness parameters; and µ is

the location parameter vector. Other common asymmetric distributions include the

family of generalized hyperbolic distributions (Browne and McNicholas, 2015) such

as the normal inverse Gaussian (Karlis and Santourian, 2009), variance-gamma (Mc-

Nicholas et al., 2014), and the shifted asymmetric Laplace (Franczak et al., 2014)

distributions. These distributions are also known as normal variance-mean mixtures.

A p-dimensional random vector X is a normal variance-mean mixture if its density

4
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can be written as

f(x|µ,Σ,α,θ) =
∫ ∞

0

ϕp(x|µ+ yα, yΣ)h(y|θ)dy,

where ϕp(x|µ+ yα, yΣ) is the density of a p-dimensional multivariate normal distri-

bution with mean µ+ yα and covariance yΣ and h(y|θ) is a density function for an

asymmetric random variable Y > 0 (Barndorff-Nielsen et al., 1982). In Section 4.2,

we generate data from a mixture of multivariate variance gamma distributions to com-

pare variable selection methods in the presence of skewness. Data from a multivariate

variance-gamma distribution can be generated via

X = µ+ Yα+
√
YU,

where Y ∼ gamma(λ, ψ/2) and U ∼ Np(0,Σ) to result in X ∼ Vp(λ, ψ,µ,Σ,α)

(McNicholas et al., 2014).

The other school of thought for dealing with skewness utilizes transformations to

near-normality. Two transformation mixture models exist; the first is a t-mixture

model with a Box-Cox transformation (Lo and Gottardo, 2012). This model, how-

ever, would suffer from the shortcomings of the Box-Cox transformation, primarily

its inability to handle left skew (Box and Cox, 1964). Additionally, the Box-Cox

t-mixture assumes a global transformation parameter, thus, transformations do not

vary by variables and components (Lo and Gottardo, 2012). The second transfor-

mation mixture model is a normal mixture model with a Manly transform (Zhu and

Melnykov, 2018a). The Manly can handle both left and right skewed data and can

5
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be applied to any real number. We will use the latter transformation, given by

T (x|λ) =


exp{λx}−1

λ
, if λ ̸= 0

x, otherwise.

By applying the back transform of the Manly, one will arrive at the following transformation-

based density:

fT (x|ϑ) = ϕ(T (x|Λ);µ,Σ)JT (x|Λ).

where x is the original p-dimensional data vector; Λ = (λ1, λ2, ..., λp) is the trans-

formation vector; µ is the location parameter vector and Σ is the covariance matrix,

and the Jacobian of the back transformation can be written as

JT (x|Λ) = exp{Λ′x},

and Zhu and Melnykov (2018a) have utilized this back transformation to obtain a

skewed finite mixture model.

This mixture model contains transformation parameters for each variable-cluster com-

bination. As such, by incorporating the Manly into a model one must introduce G×p

additional transformation parameters, potentially resulting in over-parameterization

the model. To overcome this, Zhu and Melnykov (2018a) recognized that it is unlikely

for all variables to need to be transformed in all components. Thus to avoid over-

parameterization, unnecessary transformation parameters are determined and zeroed

out via a backwards or forwards selection process.

Forwards selection begins with a fully Gaussian mixture model (GMM). The GMM

is then compared to G× p models each with one non-zero transformation parameter.

6
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The value of this non-zero transformation parameter is selected based on the sim-

plex method, where the conditional expectation of the complete-data log-likelihood

is maximized with respect to the skewness parameter in question. For each resulting

model, BIC is obtained as follows:

BIC = p log(n)− 2 log(L̂),

where L̂ is the maximized likelihood estimate (Schwarz, 1978). Among the G × n

candidates, we select the model that minimizes BIC. The algorithm continues until

there are no improvements to BIC, where parameters from the previous step are used

for initializations of the next step.

Backwards selection begins with a fully skewed Manly mixture model, iteratively

one transformation parameter is zeroed out and BIC is obtained and compared.

Again, this process is continued until no more improvements to BIC are observed.

We utilize the work of Zhu and Melnykov (2018a) on the Manly mixture to extend

the VSCC algorithm into the skewed space, this extension is detailed in Section 3.1.

2.3 Variable Selection

The need for dimension reduction algorithms for model-based clustering is evidenced

in Figure 2.1, where we simulate data from a two-component, two-dimensional GMM

and fit a GMM to this data before and after the addition of two noise variables. The

first noise variable is random noise generated from a normal distribution with mean

four and standard deviation two. The second noise variable is correlated to the second

clustering variable, Noise2 = 0.8 ∗ V 2 + 0.2 ∗Z where Z ∼ N(0, 5). We see that with

7
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the addition of just two noise variables, the clustering results begin to break down.

V1

−2 0 2 4 6 8

1
2

3
4

5
6

1 2 3 4 5 6

−
2

2
4

6
8

V2

(a) True clusters from two-component
GMM
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(b) Clustering results from GMM fit to
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(c) Clustering results from GMM fit to simulated data in (a)
plus two noisy variables.

Figure 2.1: Clustering results from GMM on noisy data

One type of dimension reduction method that could be used to overcome the poor

clustering performance seen in Figure 2.1 is variable selection. Variable selection is

8
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the selection of important variables and the de-selection of unimportant variables.

Many such variable selection algorithms for clustering and classification exist to date;

summaries of said algorithms can be found in various papers (Steinley and Brusco,

2008; Adams and Beling, 2019; Fop and Murphy, 2018). The two most commonly

used algorithms, due to both performance and availability, are clustvarsel (Scrucca

and Raftery, 2018; Raftery and Dean, 2006; Maugis et al., 2009) and vscc (Andrews

and McNicholas, 2013).

2.3.1 clustvarsel

The clustvarsel algorithm makes use of three sets of variables to perform variable

selection. The first is the set containing selected variables Xclust, the second is the

variable under consideration for inclusion or exclusion Xi, and the third contains all

remaining variables Xother. The Bayes factor is used to compare two models essential

for variable selection. The first model assumes Xi is unimportant for clustering but

is related to the set, or a subset, of the clustering variables through linear regression.

The integrated likelihood for this model, denoted by f1(Xclust, Xi|M1) whereM1 is the

selected G-component Gaussian mixture model, can be decomposed into the following

f1(Xclust, Xi|M1) = freg(Xclust, Xi)fclust(Xclust|M1),

where freg(Xi|Xclust) is the regression of Xi onto the set, or a subset, of the clustering

variables. This subset is selected through stepwise regression, wherein variables from

the clustering set are selected if they aid in the prediction of Xi. Model one is com-

pared to a second model where Xi is important to clustering and thus the integrated

9
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likelihood becomes

f2(Xclust, Xi|M2) = fclust(Xclust, Xi|M2).

The Bayes factor can then be determined as the following

B12 =
f1(Xclust, Xi|M1)

f2(Xclust, Xi|M2)
.

As integrated likelihoods are difficult to compute, −2 log B12 is approximated by

BICdiff, defined as

BICdiff = BICclust(Xclust, Xi)− BICnot clust(Xclust, Xi)

= BICclust(Xclust, Xi)− BICclust(Xclust)− BICreg(Xi|Xclust),

where BIC = 2 log(L̂) − p log(n), the negative of the BIC formula seen in Schwarz

(1978). Thus, a positive BICdiff corresponds to a small Bayes factor, which would

suggest that we should cluster on both Xi and Xclust. The clustvarsel algorithm

iterates between inclusion and exclusion steps, where one by one the variables not in

Xclust are considered for inclusion and variables in Xclust are considered for exclusion.

Variables that maximize BICdiff are included and variables that minimize BICdiff are

removed. As dimensions increase this algorithm becomes increasingly slow due to its

step-wise nature. Additionally, clustvarsel will perform poorly in the presence of

skewed clusters due to its reliance on Gaussian mixture models.

10
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Wallace et al. (2018) extend clustvarsel into the skewed space with the use of

the multivariate skew-normal distribution (Pyne et al., 2009). The multivariate skew-

normal (MSN) is known to be a restrictive asymmetric distribution and normal-like

in the tails, thus making it less robust to outlying observations. Regardless, Wallace

et al. (2018) select the MSN for the skewed extension of clustvarsel due to its

computational efficiency, robustness to starting values, and the availability of both

regression and mixture model estimation tools, as each are needed in the variable

selection laid out by Maugis et al. (2009) and extended by Scrucca and Raftery

(2018) to implement clustvarsel.

2.3.2 vscc

The vscc algorithm selects variables based on minimization of within-cluster variance

and maximization of between-cluster variance. These goals can be met simultaneously

when the data is scaled prior to implementation of the algorithm. The vscc algorithm

tends to be much faster than clustvarsel as we perform model fitting on only the

original and the final selected variables, rather than at every inclusion/exclusion step.

The algorithm begins by calculation of the within-group variance for each variable.

The variable that minimizes within-group variance the most is automatically selected

into the clustering set. From there, variables are selected into the clustering set

based on their ability to separate clusters and their correlation to the set of selected

variables. A moving selection criterion is used to do so. This criterion begins with a

linear relationship between within-group variance Wj and correlation ρjr and moves

to a quintic relationship. Variable j is selected into the clustering set Vi if for all

11
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r ∈ Vi the following criteria holds

|ρjr| < 1−W i
j .

As i increases, the correlation criteria is loosened to allow more correlation between

the selected variables. A graphical representation of this relationship, similar to

Figure 1 found in Andrews and McNicholas (2013), can be found below in Figure

2.2. The vscc algorithm tests five exponent values i = 1, 2, ..., 5, resulting in five

potential subsets of selected variables. Model-based clustering is carried out on each

subset and the final subset is selected based on minimization of clustering uncertainty.

With the use of the soft classification matrix Andrews and McNicholas (2014) define

uncertainty to be

n−
n∑

i=1

max
g

(ẑig),

where n =
∑n

i=1 ẑig.
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Figure 2.2: Correlation-variance relationship for selection criteria.
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The vscc algorithm is computationally efficient and performs well on Gaussian

clusters. However, as variables are selected based on the minimization of within-

cluster variance this method would suffer substantially when applied to skewed clus-

ters. As such, Chapter 3 discusses how this algorithm could be extended to skewed

data and Chapter 4 compares said extension to the previously discussed algorithms.

13



Chapter 3

Methodology

3.1 Algorithm

We must transform the data to near-normality for minimization of within-cluster

variance to be used as a variable selection criterion for skewed clustering/classification

problems. Thus, we propose an extension to vscc where a Manly mixture is fit to the

data. The transformation parameters are then obtained from the fitted model and

applied to the data prior to conducting the variable selection laid out in vscc. The

skewed clustering extension is detailed below in Algorithm 1 where g = 1, ..., G refers

to the cluster number, i = 1, ..., n is the index of points, j = 1, ..., p is the variable

number, and ẑig is the group membership obtained from clustering,

ẑig =


1, if observation xi belongs to group g

0, otherwise.

14
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Algorithm 1 VSCC Manly

1: Perform model-based clustering, fitting either a full Manly mixture or a Manly
mixture with transformation parameter selection.

2: Use ẑig as initial group memberships.
3: Transform data according to the following,

Yg =

(
eλ1gx1 − 1

λ1g
, · · · , e

λpgxp − 1

λpg

)
4: Scale transformed variables.
5: Calculate within-group variance for each variable,

Ŵj =

∑G
g=1

∑n
i=1 ẑig(yji − µ̂jg)

2

n

6: Sort Ŵj in ascending order.
7: for i in 1 : 5 do
8: Ŵ1 is automatically selected into V(i), j=2

9: if |ρjr| < 1− Ŵ i
j for all r in V(i) then

10: Variable s=j is placed in V(i)
11: else
12: Variable is not placed in V(i)

13: if j < p then
14: set j=j+1 and return to line 9

15: Perform model-based clustering with a Manly mixture on all five variable subsets.
16: Select V(i) such that n−

∑n
i=1maxg(ẑig) is minimized.

Algorithm 1 details the skewed extension of vscc for clustering problems. For this

method to be applied to classification problems transformation parameters and true

group memberships, zig, would need to be supplied in replacement of lines one and

two in Algorithm 1. Transformation parameters can be determined by maximizing

the expectation of the complete-data log likelihood with respect to the transformation

parameters.

We note that studies on traditional skewed methods vs. transformation methods have

15
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found that no one type of method for handling skewness outperforms the other (Gal-

laugher et al., 2020); thus, the use of a transformation-based mixture model is an ap-

propriate choice for dealing with skewness. Additionally, we select a transformation-

based mixture model for extending this algorithm into the skewed space as a direct,

asymmetric distribution would not allow for transformation of clusters.

3.2 Initializations

Both vscc and clustvarsel are dependent on the R package mclust (Scrucca et al.,

2016); as such they use the mclust defaults for model fitting. For model initializa-

tion this is hierarchical clustering. As a result, the same model and selected variables

will be obtained every time the algorithm runs on a given dataset. Both k-means

and hierarchical are possible initialization schemes for vscc-manly. Due to the ran-

domization of initial centres, k-means starts can result in different final models and

selected variables. To control for this behaviour we run vscc-manly five times, once

with a hierarchical start and four times with a k-means start. We then select the

most common result; if multiple results are equally common, then the result that

minimizes clustering uncertainty is selected. To remain consistent with Wallace et al.

(2018), we run the skewvarsel algorithm five times with k-means starts, selecting

the most common method that minimizes uncertainty.

3.3 Performance Assessment

Performance can be easily measured for simulated data as we know the clustering

variables a priori. For real data, there are no true clustering variables; as a result,

16
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measuring performance becomes more difficult. We measure performance in three

ways: adjusted Rand index (ARI), the number of clusters chosen, and visually with

variable plots. As the dimension of the selected set increases, it becomes harder to

assess performance using visuals. Regardless, one can still observe redundancy in the

selected set, and thus, variable plots remain helpful even in such circumstances. We

are operating in the clustering framework; however, true labels exist for all datasets

tested. Therefore, ARI remains a valuable performance measure. Prior to ARI, the

Rand index (RI) was used to compare partitions (Rand, 1971):

RI =
number of agreements

number of agreements + number of disagreements
.

ARI was proposed as to force the index to have expected value of zero under random

assignment (Hubert and Arabie, 1985). The corrected index can be found below

ARI =
RI− Expected RI

Max RI− Expected RI
.

Thus, ARI equals one when there is perfect agreement between partitions and is

negative when the assignment is worse than random.

3.4 Model Fitting

All previously discussed methods will be tested on each dataset. To ensure fair

comparison between vscc-manly and skewvarsel, we fit both a MSN mixture and a

Manly mixture to the variables selected by skewvarsel. An MSN mixture is fitted to

remain consistent with Wallace et al. (2018) and with the skewvarsel algorithm, as

17
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the BIC used for variable selection comes from a MSN mixture. The Manly mixture

is fitted to help ensure that ARI performance is based on the variables selected and

not the appropriateness of the distribution for the data in question.

18



Chapter 4

Analyses

4.1 Real Data Results

The vscc, clustvarsel, vscc-manly, and skewvarsel algorithms are compared on

four datasets under a clustering framework. All methods will test G = 1, ..., 9 and

data is standardized prior to running each method.

4.1.1 Australian Institute of Sport Data

The Australian Institute of Sport (AIS) dataset can be found in the ManlyMix pack-

age (Zhu and Melnykov, 2018b). This dataset contains 11 measurements on 202

individuals. Clustering results are compared to the sex column. From Table 4.1 we

find that the vscc-manly algorithms perform the best in terms of G and ARI. More

significantly, the vscc-manly-forwards algorithm reduces the dimensions more than

all other methods tested. From Figure 4.1, we see that the variables selected by the

vscc-manly algorithms clearly separate the true clusters. All other methods tested

19
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appear to be more susceptible to correlated variables, thus creating redundancy in

the selected set. The vscc-manly-forwards and vscc-manly-backwards algorithms

Table 4.1: Variables selection results for the AIS data.

Model G ARI Variables

vscc 4 0.61 LBM, Bfat, SSF, Wt, Ht
clustvarsel 7 0.27 LBM, Bfat, Wt

vscc-manly-forward 2 0.94 LBM, Bfat
vscc-manly-backward 2 0.96 LBM, Bfat, Hg

vscc-manly-full 2 0.96 LBM, Bfat, Hg
skewvarsel + MSN 3 0.26 LBM, Bfat, SSF, Wt

skewvarsel + Manly forward 4 0.59 LBM, Bfat, SSF, Wt
skewvarsel + Manly backward 4 0.57 LBM, Bfat, SSF, Wt
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(a) Variables selected by vscc.

Figure 4.1: Plots of variables selected from AIS dataset.
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Figure 4.1: Plots of variables selected from AIS dataset.
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Figure 4.1: Plots of variables selected from AIS dataset.

resulted in the selection of a different final set of variables. Just as forwards and

backwards step-wise regression can result in different results, forwards and backwards

transformation parameter selection can result in different transformed spaces. As a

result, it is unsurprising to see a difference in the set of selected variables between

these methods.

4.1.2 Banknote Data

The banknote dataset comes from the mclust package (Scrucca et al., 2016). There

are six measurements, 200 observations, and two types of bills (genuine and counter-

feit) of which clustering results are compared to.
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Variable selection on the banknote dataset produces interesting results as no method

significantly reduces dimensions (Table 4.2). This is surprising because, from Fig-

ure 4.2, it appears as though only two variables would be necessary for separating

clusters. However, when a Manly mixture is fit to either the variables selected by the

skewvarsel or the vscc algorithm, three clusters are found and ARI drops to 0.85.

This suggests that although it may seem like the vscc-manly algorithm is selecting

too many variables, the algorithm may be selecting the number of variables needed

to ensure higher clustering performance.

Table 4.2: Variable selection results for the banknote data.

Model G ARI Variables

vscc 3 0.86 Diagonal, Bottom, Top, Right
clustvarsel 4 0.67 Diagonal, Bottom, Top, Left, Length

vscc-manly-forward 2 0.98 Diagonal, Bottom, Top, Right, Left
vscc-manly-backward 2 0.98 Diagonal, Bottom, Top, Right, Left

vscc-manly-full 2 0.98 Diagonal, Bottom, Top, Right, Left
skewvarsel + MSN 4 0.69 Diagonal, Bottom, Top, Left

skewvarsel + Manly forward 3 0.85 Diagonal, Bottom, Top, Left
skewvarsel + Manly backward 3 0.85 Diagonal, Bottom, Top, Left

4.1.3 Italian Wine Data

The Italian wine dataset can be found in the pgmm package (McNicholas et al., 2022).

It contains 28 variables, 178 observations, and three types of wine of which clustering

results are compared to.

In Table 4.3, we see that vscc performs the best while vscc-manly performs the worst,

in terms of G and ARI. All methods appear to reduce dimensions approximately the

same amount with key variables such as flavanoids and hue being selected nearly
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every time.
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Figure 4.2: Variables in the banknote data.

This would suggest that it is not the minimization of within-cluster variance that is

performing poorly on this dataset but rather the fit of the Manly mixture. This point

is further emphasized when we look at the skewvarsel results in Table 4.3. When

the MSN mixture is fit to the skewvarsel selected variables, a much higher ARI is

obtained than when the backwards Manly mixture is fit to the same variables. These

results suggest that the Manly may be more prone to combining Gaussian clusters

to create skewed clusters. As the MSN distribution is normal-like in the tails, the
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MSN may be less prone to the same behaviour. We illustrate this on simulated data

from a three-component, two-dimensional GMM in Figure 4.4. This behaviour is also

seen in the pairs plots of the Italian wine data selected by vscc-manly-backwards

(Figure 4.3).

Table 4.3: Variable selection results from the Italian wine dataset.

Model G ARI Variables

vscc 3 0.90

Flavanoids, Hue,
OD280/OD315 Diluted Wine,

Proline, Colour Intensity,
Alcohol,Total Phenols

clustvarsel 5 0.67
Flavanoids, Proline,

Colour Intensity, Uronic Acid
Chloride, Malic Acid

vscc-manly-forward 2 0.43
Flavanoids, Hue,

OD280/OD315 Diluted Wine,
OD280/OD315 Flavanoids

vscc-manly-backward 2 0.49
Flavanoids, Hue,

OD280/OD315 Diluted Wine,
Colour Intensity, Uronic Acid

vscc-manly-full 2 0.47

Flavanoids, Hue,
OD280/OD315 Diluted Wine,
Colour Intensity, Uronic Acid,

Total Phenols

skewvarsel + MSN 3 0.78

Flavanoids, Hue, Proline,
Colour Intensity, Alcohol,
Uronic Acid, Malic Acid,

Tartaric Acid

skewvarsel + Manly forward 3 0.73

Flavanoids, Hue, Proline,
Colour Intensity, Alcohol,
Uronic Acid, Malic Acid,

Tartaric Acid

skewvarsel + Manly backward 2 0.46

Flavanoids, Hue, Proline,
Colour Intensity, Alcohol,
Uronic Acid, Malic Acid,

Tartaric Acid
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Figure 4.3: Variable selection and model fitting by vscc-manly-backwards on the
Italian wine dataset.
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Figure 4.4: Clustering results from simulated three-component GMM.

4.1.4 Breast Cancer Wisconsin (Diagnostic)

The breast cancer dataset comes from the UCI Machine Learning Repository (Dua

and Graff, 2019). It contains 30 variables, two tumour types (benign and malignant),

and 569 observations.
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Table 4.4: Variable selection results for the breast cancer data.

Model G ARI Variables

vscc 5 0.26
V8,V9,V10,V13,V18,V19,V20

V22,V26,V28,V29,V30

clustvarsel 4 0.39
V3,V5,V6,V8,V9,V13,V15,V16,V18
V19,V22,V23,V25,V26,V28,V29

vscc-manly-forward 2 0.50 V16
vscc-manly-backward 2 0.63 V30

vscc-manly-full 2 0.41 V5

skewvarsel+ MSN 5 0.33 V3, V6, V13, V16, V23, V26

skewvarsel+ Manly forward 4 0.45 V3, V6, V13, V16, V23, V26

skewvarsel+ Manly backward 3 0.36 V3, V6, V13, V16, V23, V26

From Table 4.4, we see that vscc-manly reduces the dimensions from 30 variables

down to one, while selecting the correct number of clusters and obtaining the highest

ARI of all methods tested. In particular, we see a large jump in performance, on

all three measures, from vscc to its skewed counterpart. We do not see similar

improvement in performance by the skewed extension of clustvarsel. Even upon fitting

a Manly to the variables selected by skewvarsel, the performance in terms of G

and ARI do not reach that of vscc-manly with backwards selection. This jump in

performance from vscc to the vscc-manly is likely due to the strong skewness seen

in some of the variables, as exhibited in Figure 4.5.
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(a) Variables selected by
vscc-manly-forwards.

(b) Variables selected by
vscc-manly-backwards.

Figure 4.5: Breast cancer variables selected by vscc-manly.
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Figure 4.6: Breast cancer variables selected by skewvarsel.
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4.2 Simulated Data Results

We simulated data from a three-component mixture of multivariate variance-gamma

distributions 250 times. An example of this data can be found in Figure 4.7. To

allow us to test for the effect of sample size on method performance, we ran our

simulation at N = 200, 500,&1000. Using a simulation is helpful as we can artificially

create clustering and non-clustering variables to determine how well these methods

select important variables and deselect unimportant ones. The simulation specifics

are detailed in Table 4.5, where information on the clustering variables (V1 and V2),

nonsense variables (V3 and V4) and the noisy variable (V5) can be found. To reduce

the computational time, each model is fit to each simulated dataset only once.

Table 4.5: Simulated data information.

Simulation Data

Clustering Variables
[X1g, X2g] ∼MVG(µg,Σg, αg, λg, ψg)
G = 1 G = 2 G = 3

µ1 = [2, 3] µ2 = [5, 3] µ3 = [5, 15]

Σ1 =

[
1 0
0 1

]
Σ2 =

[
1 0
0 1

]
Σ3 =

[
2 0
0 2

]
α1 = [1, 4] α2 = [4, 4] α3 = [0.1, 0.1]
λ1 = 4 λ2 = 4 λ3 = 3
χ1 = 0 χ2 = 0 χ3 = 0
ψ1 = 8 ψ2 = 8 ψ3 = 6
p1 = 0.4 p2 = 0.4 p3 = 0.2

Nonsense Variables
X3 ∼ GIG(3, 0, 6)
X4 ∼ GIG(1, 0, 2)

Noisy Variables
X5 = 0.6 ∗ V 1 + 0.4 ∗ Z where Z ∼ N(0, 5)

From Table 4.6, we see that the vscc-manly-backwards, vscc-manly-full, and skewvarsel
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algorithms perform the best in terms of G, ARI, and selecting the correct variables

(V1 and V2) when N = 500 and N = 1000. For all three of these methods, perfor-

mance improves as N increases. For both N = 500 and N = 1000, skewvarsel and

vscc-manly-backwards select the correct variables every time. The performance of

skewvarsel breaks down on all measures of performance when N = 200. We see a

considerable standard deviation of ARI when N = 200 for skewvarsel, potentially

suggesting instability at smaller sample sizes. Generally, these results agree with the

real data results in that the skewed methods improve dimension reduction over their

Gaussian counterparts when skewness is present.
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Figure 4.7: Example of simulated data when N = 500.
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Table 4.6: Summary of simulation results.

Method N G ARI V1 V2 V3 V4 V5
vscc 200 3.9 0.82 (0.13) 250 250 5 34 230

500 4.6 0.64 (0.1) 250 250 0 250 250
1000 9 0.43 (0.02) 250 250 194 250 250

clustvarsel 200 4.7 0.62 (0.1) 250 250 0 227 0
500 5.7 0.62 (0.05) 250 250 0 250 0
1000 9 0.37 (0.007) 250 250 194 250 0

vscc-manly-forwards 200 3.3 0.89 (0.1) 246 247 6 4 10
500 3.6 0.90 (0.13) 250 250 0 21 0
1000 3.5 0.82 (0.15) 250 194 0 0 194

vscc-manly-backwards 200 3 0.95 (0.06) 248 250 2 4 5
500 3 0.96 (0.01) 250 250 0 0 0
1000 3 0.95 (0.000) 250 250 0 0 0

vscc-manly-full 200 3 0.94 (0.08) 247 249 5 1 4
500 3 0.96 (0.01) 250 250 0 0 21
1000 3 0.95 (0.002) 250 250 0 0 0

skewvarsel 200 2.6 0.59 (0.46) 155 156 0 95 3
+ MSN 500 3.14 0.92 (0.05) 250 250 0 0 0

1000 3.4 0.92 (0.08) 250 250 0 0 0
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Chapter 5

Discussion & Future Directions

In nearly all instances, we see the skewed extensions of common variable selection

algorithms improving performance in the presence of skewness. This improvement

in performance is seen in the selection of the number of clusters and ARI but more

importantly, in the reduction of dimensions. In the AIS and breast cancer datasets,

we see more effective dimension reduction by vscc-manly than skewvarsel in terms

of the magnitude of dimension reduction and model fitting performance. For the ban-

knote dataset, vscc-manly selects more variables than skewvarsel but also results

in a better fitting model, regardless of the model fit to the skewvarsel results. The

Italian wine dataset highlights the potential importance of utilizing methods designed

for Gaussian clusters when appropriate.

There are instances where vscc-manly may select too many variables to account

for some odd observations. For example, we see this in the AIS dataset when the back-

wards and full Manly extensions select variable Hg. This selection causes some bound-

ary points between groups to switch clusters resulting in one less miss-classification.
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Although adding this variable improves ARI, the goal of these algorithms is dimen-

sion reduction; as such, there may be instances in which smaller ARI is preferred if it

is the result of a smaller selected set. One way to account for odd or hard-to-classify

observations may be mixtures of contaminated transformation distributions. These

component densities contain an inflated secondary component that allows for better

modelling of outliers and heavy tails.

One downside to the skewed extensions is computational overhead. The clustvarsel

and skewvarsel algorithms are naturally more computationally expensive due to

their step-wise nature, with skewvarsel taking longer as more parameters need to

be estimated. The vscc algorithm outperforms all methods on computational time

as model fitting takes place only on the initial full set and the final sets of variables.

This improvement in computational time extends into the skewed space when a full

Manly is fit to the data. However, the algorithm slows down greatly under forward

or backward transformation parameter selection due to the introduction of some in-

clusion/exclusion steps. This increase in computational time is heavily influenced by

the structure of the clusters and the selection process used. For heavily skewed data,

vscc-manly with backwards selection is much faster than its forwards counterpart.

If only a few non-zero transformation parameters are necessary, vscc-manly with

forwards selection would be much faster. Although more time-consuming than vscc

or vscc-manly-full, vscc-manly with transformation parameter selection does tend

to perform better than both in terms of ARI and dimension reduction. Thus, we

suggest one performs some exploratory analysis on their data before selecting any

of these methods to ensure that the algorithm selected is a good fit for their data

and the computational overhead is justified. Additionally, the Manly transformation
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parameter selection is currently programmed in R (R Core Team, 2022) and could be

sped up if programmed in a faster language. Computational time could be further

reduced with parallelization of model fitting within each inclusion/exclusion step.
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