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ABSTRACT

The operation of industrial processes to achieve economic and safety objectives signif-

icantly depends on the use of advanced fault diagnosis and process control strategies.

To design model-based fault diagnosis and control frameworks, developing sufficiently

accurate models is an essential task. With the recent advance in computational power

and data storage technologies, there have been growing interests in the use of machine

learning techniques for process modeling and control. The performance of these tech-

niques, however, depends on the use of a sufficient amount of high-quality data. The

presence of uninformative and redundant data can hinder the model’s ability to ac-

curately predict dynamic behaviors. In this situation, the over-fitting also remains

a challenging problem. As a result, it is necessary to use appropriate pre-processing

tools, data mining techniques, and first-principles knowledge (if applicable) to achieve

a reliable model. Motivated by the above considerations, this thesis focuses on the

problem of hybrid and machine learning based modeling, fault detection, and con-

trol when collected data are not sufficient or there exist correlations between data

samples. The first part of this thesis addresses the problem of system identification

for heating, ventilation, and air conditioning (HVAC) systems when an insufficient

amount of data is available. To this end, a hybrid machine learning based approach is

developed where a pre-trained recurrent neural network (RNN) model (trained on a

large amount of data from a representative zone) is leveraged to build a model for the

zone in question. In the next phase, first-principles knowledge is integrated with data

to develop a fault detection mechanism for HVAC systems using principal component

analysis (PCA). The superior performance of the proposed approach, over the indi-

vidual first-principles and data-driven based methods is shown. Finally, the problem

of handling correlated data for the RNN-based model predictive control (MPC) im-

plementations is addressed. To this end, PCA and autoencoder (AE)-based strategies

are used to recognize the correlations that exist between data samples in both the

input and output spaces. The constrained RNN-based MPC is then formulated by

iii



adding a PCA-based squared prediction error (SPE) constraint. PCA and AE-based

optimization problems are also defined to calculate the achievable set-points. The

efficacy of the proposed approaches over the nominal (standard) RNN-based MPC

is demonstrated using different set-point tracking scenarios for a chemical reactor

example.
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Introduction
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1.1 Background and motivation

The importance of automation in the industries has significantly increased in recent

years. Automated control systems are designed to improve process efficiency and prof-

itability while maintaining safety. The increase in the level of automation, however,

necessitates the use of techniques that not only allow for achieving the optimal con-

trol objectives, but also handling the abnormalities. This has motivated the research

community to develop advanced fault diagnosis and process control (such as model

predictive control (MPC)) techniques. Successful implementations of many of the

proposed approaches require a process model with sufficient predictive ability. In this

regard, different techniques including first-principles and data-driven (and machine

learning) modeling are used. While first-principles models have good extrapolation

capabilities, they are generally difficult to develop and maintain due to uncertainty

in the physical parameters and unmeasured physical states.

With the recent advance in computing power and data storage technology, there have

been growing interests in utilizing data-driven and machine learning based methods

for dynamic modeling. These models, however, require a sufficient amount of high-

quality data (Note that in the area of dynamic modeling, high-quality data refers

to data collected under normal operating conditions that represent the true dynamic

relationships between input and output variables without redundancies and corre-

lations). Several linear statistical-based modeling approaches are developed such as

autoregressive moving average exogenous (ARMAX) models (Mustafaraj et al. (2010);

Shardt and Huang (2011)), principal component analysis (PCA) (Misra et al. (2002);

Yoon and MacGregor (2004)), projection to latent structures (PLS) (MacGregor et al.

(1994); MacGregor and Cinar (2012)), and subspace identification (SubID) (Moonen

et al. (1989); Qin and Ljung (2003); Huang et al. (2005)). The simplicity (linearity)

and predictive ability of these data-driven models make them attractive for a variety
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of fault diagnosis (Chen and Lan (2010); Ferkl and Široký (2010); Li and Wen (2014);

Shahnazari et al. (2018)) and MPC applications (Hale and Qin (2002); Golshan et al.

(2010); Kheradmandi and Mhaskar (2018)). While the linear data-driven models have

shown successful performance when used for fault diagnosis and MPC implementa-

tions, they cannot be used in general due to the complex and nonlinear nature of the

chemical processes.

Among a number of machine learning techniques, artificial neural networks (ANN)

have received significant attention due to their ability to capture nonlinearities. Differ-

ent neural network architectures are developed, such as feedforward neural networks

(FNN), recurrent neural network (RNN), convolutional neural networks (CNN), long

short-term memory (LSTM) neural networks, for being employed in different fault

diagnosis (Wu and Zhao (2018); Zhao et al. (2018); Shahnazari et al. (2019); Ge

et al. (2021); Gravanis et al. (2022)) and MPC algorithms (Nikravesh et al. (2000);

Kittisupakorn et al. (2009); Ferreira et al. (2012); Sadeghassadi et al. (2018); Wong

et al. (2018); Alhajeri et al. (2022)). To develop ANN-based models, a significant

amount of data is required to avoid over-fitting due to the presence of a large num-

ber of parameters. The negative impact of the over-fitting issue can get exacerbated

when the training data are not informative, or they contain redundant information

(this can usually happen when data are collected from a system under closed-loop

conditions). In addition, although the data availability has generally increased, this

is not necessarily the case for many real-world processes because of a general lack of

instrumentation and data cleansing problems (unavailability of clean data). There-

fore, techniques that not only have advantage of ANN to capture nonlinearities, but

also can deal with insufficient and correlated data are sought-after.

Hybrid modeling approaches, those that integrate first-principles knowledge with data

(hybrid first-principles data-driven models) or those that combine different data-

driven techniques (hybrid data-driven models) to enhance the performance of an
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individual approach, have been gaining attention in recent years , and could bring

potential value to the problem of fault diagnosis and control designs. The hybrid

first-principles data-driven models can balance the advantages and disadvantages of

individual first-principles and data-driven based modeling techniques with the aim of

improving prediction accuracy, extrapolation capabilities, and interpretability. The

improved performance of these models (over purely first-principles and data-driven

models) is shown in a number of fault diagnosis and control implementations (Psi-

chogios and Ungar (1992); Anderson et al. (2000); Liang and Du (2007); Hosen et al.

(2011); Ghosh et al. (2019); Bangi and Kwon (2020); Ghosh et al. (2021)). On the

other hand, the hybrid data-driven models are developed to enhance the performance

of individual techniques when data samples are not sufficiently informative (by taking

advantages of individual approaches to extract useful features, recognize correlations,

and capture nonlinearities). The applicability of these techniques is also evaluated

in several fault diagnosis and control schemes (Chen and Liao (2002); Li and Wen

(2014); Zhang et al. (2013); Zhou et al. (2014); Hassanpour et al. (2020)).

Transfer learning-based approaches have shown another promising potential to over-

come challenges associated with limited data availability (see e.g., Pan and Yang

(2009)). The main objective of these approaches is to transfer the knowledge from

source tasks to a target task, where insufficient and uninformative data are available.

Transfer learning is commonly used for training a deep neural network (DNN)-based

model, where a large number of parameters need to be identified. The first step is

to pre-train a model on a large dataset available for a related task. The pre-trained

DNN model is then used (as a starting point) for developing a model for the target

task. All or some parts of the pre-trained model are then fine-tuned using limited

data available for the new task. Transfer learning offers several advantages in the

context of DNN training, such as reducing training time, handling over-fitting, and

improving model performance in the absence of large amounts of data. Examples

of transfer learning algorithms can be found in a variety of applications in process
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modeling, fault diagnosis, and control (Grubinger et al. (2017); Wang et al. (2020);

Wu and Zhao (2020); Gao et al. (2021); Deng and Chen (2021); Lu et al. (2021); Li

and Rangarajan (2022)).

While there exist several approaches to address the problem of modeling, fault diag-

nosis, and MPC designs in the presence of insufficient and uninformative data, there

is still some gap in the literature to find out how to integrate different techniques to

achieve better performance and avoid undesirable effects (such as over-fitting) that

may occur during the training process. This has motivated us to propose some novel

methods to address these issues.

1.2 Thesis objectives and outline

As mentioned earlier, general access to sufficient and informative data may not be

possible in many practical situations due to limitations of measuring instruments and

unavailability of clean data. Therefore, the main focus of the thesis is to address

the problem of handling insufficient and uninformative/correlated data for dynamic

modeling, fault detection, and control by utilizing/integrating appropriate machine

learning-based tools and first-principles knowledge. The thesis is organized as follows:

In Chapter 2, the problem of system identification in the presence of a relatively small

amount of data, for the unit in consideration, is addressed. A hybrid machine learning-

based approach is proposed where a pre-trained RNN model of a representative unit

(developed using a large amount of data) is leveraged to build models for the units

with small amounts of data. This is done by integrating the pre-trained RNN model

with the models built using the SubID technique to predict the residuals, defined

as the differences between the actual outputs and the predictions obtained using

the pre-trained model for the other zones. The efficacy of the proposed approach is
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shown using real data collected from a multi-zone building heating, ventilation, and

air conditioning (HVAC) systems.

In Chapter 3, a hybrid PCA-based approach is proposed by integrating first-principles

knowledge with data to detect faults in HVAC systems. To this end, the temperature

measurements, together with the residuals (first-principles knowledge), defined as the

discrepancies between expected and observed behaviors, are used to develop multi-

ple hybrid PCA models for normal operating conditions. Hotelling’s T 2 and square

prediction error (SPE) statistics corresponding to the new observations are then cal-

culated to monitor the process behavior and detect deviations from the expected

behavior. The efficacy of the proposed approach is compared with the individual

first-principles-based and purely data-driven PCA (developed using raw temperature

measurements) techniques.

In Chapter 4, the problem of handling situations where the training input data are

not sufficiently rich (or they are correlated) for MPC implementations is addressed.

Two approaches are proposed to address this issue. In the first approach, PCA on the

input data is performed to recognize the existing correlation. The scores are then used

to build a model using RNN (PCA-RNN model). This model is used within the MPC

framework to compute the optimal scores (and subsequently manipulated inputs). In

the second approach, an alternative solution is proposed by adding a PCA-based SPE

constraint into the RNN-based MPC that uses a purely RNN model. This is done in

order to make prescribed inputs follow the same correlation as that of the training

input data. Finally, an approach is presented that allows to break the correlation

in the MPC implementation while maintaining model validity (in order to improve

possible economic performance of the MPC controller that can be achieved by using

the full space of movements of the manipulated inputs). The efficacy of the proposed

approaches is shown using a chemical reactor example.

In Chapter 5, the problem of implementing achievable set-points for the RNN-based

6



PhD Thesis - Hesam Hassanpour; McMaster University - Chemical Engineering

MPC, where collected output data contain correlated information (due to control

structures or process itself), is addressed (to ensure that achievable set-points are

prescribed to the MPC). The key idea is to perform PCA on the output data to

recognize the existing correlation. The upper confidence limit of SPE is then deter-

mined to define a constraint in an optimization problem to compute the achievable

set-points. The efficacy of the proposed approach is illustrated via implementations

on a chemical reactor example.

Chapter 6 integrates the approaches, proposed in Chapter 4 and Chapter 5, to ad-

dress the problem of handling correlated (input and output) data for implementing

the RNN-based MPC. In this situation, if the correlation is not properly addressed,

independently calculated manipulated inputs, by the controller, and arbitrarily pre-

scribed set-points may require predictions in regions where the model is not trained.

To address these problems, a PCA-based SPE constraint, developed using training in-

put data, is added to the standard RNN-based MPC (constrained RNN-based MPC).

Next, an optimization problem subject to the PCA-based SPE constraint, developed

using training output data, is formulated to compute the achievable set-points. In

addition, due to the superior ability of autoencoder (AE) to capture nonlinear cor-

relations, an AE-based approach is proposed to compute the achievable set-points

by replacing the PCA-based SPE constraint with the AE-based SPE constraint in

the optimization problem to calculate the achievable set-points. The efficacy of the

proposed approach is compared with the standard RNN-based MPC using different

set-point tracking scenarios.

Finally, the main contributions of the thesis, together with the key findings and rec-

ommendations for future work, are presented in Chapter 7.
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Chapter 2

A hybrid machine learning approach

integrating recurrent neural networks

with subspace identification for

modelling HVAC systems

The contents of this chapter have been published in the Canadian Journal of Chemical

Engineering.

• A hybrid machine learning approach integrating recurrent neural networks with

subspace identification for modelling HVAC systems. Hesam Hassanpour, Prashant

Mhaskar, and Michael J. Risbeck, The Canadian Journal of Chemical Engineer-

ing, 2022. DOI: 10.1002/cjce.24392
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Abstract

This paper addresses the problem of system identification for heating, ven-

tilation, and air conditioning (HVAC) systems using a relatively small amount

of data for the zone in consideration, by leveraging larger datasets for similar

zones. To this end, a hybrid machine learning approach is developed where a

pre-trained recurrent neural network (RNN) model, trained on a large amount

of data from a representative zone, is leveraged to build models for the other

zones using a smaller amount of data. This is achieved by developing a hybrid

model that integrates the pre-trained RNN model with the models built using

the subspace identification (SubID) technique to predict the residuals (differ-

ences between the real outputs and the predicted outputs from the pre-trained

RNN model) in the other zones. The effectiveness of the proposed hybrid ap-

proach is shown using real data collected from a multi-zone fitness centre. The

results demonstrate the superior performance of the hybrid approach over the

cases where individual RNN and SubID models are directly developed using

only the data from the zones in question.

2.1 Introduction

Heating, ventilation, and air conditioning (HVAC) systems are the key components

of modern buildings to maintain thermal comfort and indoor air quality. In recent

decades, there has been a significant increase in the energy consumed by HVAC sys-

tems (Pérez-Lombard et al. (2008)). This has motivated research on energy-saving

control and fault diagnosis strategies for these systems. In this regard, dynamic mod-

elling of HVAC systems has received significant attention due to its application in

model-based optimal control and fault diagnosis designs (Afroz et al. (2018)).

Modelling of HVAC systems can generally be divided into three categories: first-
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principles models, data-driven models, and hybrid modelling techniques, where dif-

ferent methods are integrated to enhance the model performance. In first-principles

models, the governing laws of physics are used to derive a set of mathematical equa-

tions of the system (Tashtoush et al. (2005); Nassif et al. (2008); Satyavada and Baldi

(2016); Baldi et al. (2019)). These models are also utilized in the model-based control

strategies such as model predictive control (MPC) (Ganesh et al. (2021)). Although

first-principles models have good extrapolation capabilities, they are generally diffi-

cult to develop and maintain because of uncertainty in the physical parameters and

unmeasured physical states.

The recent development of data storage and data-acquisition devices, along with

the improvement in the computing technologies, has made data-driven modelling

techniques highly attractive. These methods require the availability of a significant

amount of process data. A number of approaches consider utilizing mathematical tech-

niques such as statistical regression to establish the relationship between input/out-

put variables. In this direction, several statistical-based methods such as Box-Jenkins

(BJ), autoregressive exogenous (ARX), and autoregressive moving average exogenous

(ARMAX) models have been developed and applied to predict different process vari-

ables in HVAC systems (Ríos-Moreno et al. (2007); Mustafaraj et al. (2010)). Latent

variable-based methods such as principal component analysis (PCA) and projection

to latent structures (PLS) have been developed for monitoring, fault diagnosis, and

optimization (Misra et al. (2002); MacGregor and Cinar (2012)). These techniques

have also been used for monitoring and fault diagnosis of HVAC systems (Chen and

Lan (2010); Li and Hu (2019); Hassanpour et al. (2020b)). Subspace identification

(SubID) models have also been used in the area of HVAC modelling and fault di-

agnosis (Ferkl and Široký (2010); Shahnazari et al. (2018)). In addition, machine

learning techniques such as artificial neural networks (ANN) (Du et al. (2014); Huang

et al. (2015); Coccia et al. (2021)) and support vector machines (SVM) (Liang and

Du (2007)) have been utilized for modelling, control, and fault diagnosis of HVAC
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systems.

Among several machine learning techniques, recurrent neural networks (RNN) have

widely been used for the dynamic modelling due to their capabilities to capture non-

linearities (Bhat and McAvoy (1990); Wang et al. (2017); Sadeghassadi et al. (2018);

Hassanpour et al. (2020a); Wu et al. (2020); Khadem and Rey (2021)), in general.

RNN models have also been used for dynamic modelling of HVAC systems, in par-

ticular. In this direction, the nonlinear autoregressive network with exogenous inputs

(NARX) modelling technique is used to develop the predictive models for HVAC

systems in order to minimize energy consumption (Kusiak and Xu (2012)). The

NARX-based models are also developed for being used in the MPC implementations

(Yang et al. (2020)). In addition, other RNN architectures such as long short-term

memory (LSTM) neural networks are developed to predict the power consumed by a

building’s HVAC system (Sendra-Arranz and Gutiérrez (2020)). An encoder-decoder

LSTM-based modelling approach is also developed for the economic model predictive

control (EMPC) design (Ellis and Chinde (2020)). The encoder model is used for

state estimation, providing an initial condition for the decoder model embedded in

the EMPC as the predictive model. RNN-based models are also used to build dy-

namic models and develop fault diagnosis strategies for HVAC systems (Shahnazari

et al. (2019)).

In order to successfully develop a model-based control and fault diagnosis strategies,

developing a model, which can predict the dynamic behaviour of the zone with accept-

able accuracy, is a critical task. A reasonably good model of the zone must predict the

dynamic behaviours within the zone in the presence of different internal and external

loads. In this direction, several ANN-based modelling techniques have been used to

model dynamics of multiple interacting zones (Garnier et al. (2014); Huang et al.

(2015)). NARX neural network models are used to develop a model for a multi-zone

building in order to predict indoor temperature associated with each zone (Huang
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et al. (2015); Kim (2020)). LSTM networks have also been used to model a multi-

zone building (Mtibaa et al. (2020)). In the context of ANN modelling, due to the

presence of a large number of parameters, the availability of a significant amount of

data is required to avoid the over-fitting problem and achieve a model with reasonable

prediction accuracy. While the availability of data has grown in general, this is not

necessarily the case with building systems due to a general lack of instrumentation

and data cleansing issues (to ensure clean data are available for system identification).

Techniques that can harness the ability of RNNs to capture process non-linearities,

but yet work with relatively smaller amounts of data, are therefore particularly sought

after in the area of building control.

In recent years, transfer learning-based approaches have been developed to handle the

data shortage problem for HVAC model training (Gao et al. (2021); Deng and Chen

(2021)). In general, the goal of transfer learning is to transfer the knowledge from

source tasks to a target task, where a limited amount of training data is available (in

the context of HVAC modelling, this can be considered as using an existing model,

trained with a sufficient amount of data from source buildings, to assist in predicting

a target building behaviour). Using the idea of transfer learning, some approaches

have been proposed for cross-building energy prediction (Ribeiro et al. (2018); Fang

et al. (2021)). In addition, some transfer learning-based methods have been proposed

to predict the thermal responses of the building (Grubinger et al. (2017)). In Chen

et al.’s study (Chen et al. (2020)), a transfer learning-based method is developed by

re-training a small number of parameters of a pre-trained deep multilayer perceptron

(MLP) neural network model, trained using a large amount of data associated with

the source room, for prediction of the indoor air temperature and relative humidity

of a target room with an insufficient amount of data. In Lu et al.’s study (Lu et al.

(2021)), a transfer learning-based framework, which uses LSTM networks, is proposed

to achieve the predictive model for thermal load prediction of a regional energy station

under the condition of limited data. To handle the over-fitting problem of the RNN-
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based models using a limited amount of data in transfer learning-based methods,

it becomes useful to utilize the data-driven techniques that allow for more direct

handling of this issue.

Motivated by the above considerations, this work addresses the problem of system

identification for multi-zone building HVAC systems while handling the lack of avail-

ability of large amounts of data by integrating SubID-based models with RNN. The

application of the proposed approach to a multi-zone fitness centre is demonstrated.

The approach leverages an already pre-trained RNN model built using a large amount

of data from a representative zone in order to develop models for the other zones using

a smaller amount of data. In this approach, the residuals, which are the differences

between the real outputs and the predictions obtained using the pre-trained RNN

model, are used to develop models using SubID. These SubID-based residual models

are then integrated with the pre-trained RNN model to predict the outputs of the

other zones. The rest of the manuscript is organized as follows: Section 6.2 describes

the multi-zone fitness centre, followed by a brief overview of the RNN and SubID

techniques. Section 5.3 presents the proposed hybrid modelling approach for multi-

zone HVAC systems. The application of the proposed approach to the fitness centre

data is then presented in Section 5.4. Finally, concluding remarks are presented in

Section 6.5.

2.2 Preliminaries

A brief description of the case study, which is a multi-zone fitness centre, is provided

in this section. Next, a brief overview of the RNN and SubID modelling approaches is

given. In addition, the limitation of using these approaches in the presence of a data

shortage problem is shown to provide the motivation for the proposed approach.
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2.2.1 Case study: Multi-zone fitness centre

The datasets are collected from a fitness centre in an office building in the Midwest US

(provided by Johnson Controls), which has six independently controlled zones (each

dataset corresponding to each individual zone contains information about 35 days

from Jan 26, 2020, to Feb 29, 2020). Separate heating and cooling set-points are used

by the thermostats to maintain the temperature of the zones. The zone will be actively

heated if the zone temperature (T ) is less than the heating set-point (T SP
h ) (T < T SP

h ).

In addition, the zone will be actively cooled if the zone temperature is above the

cooling set-point (T SP
c ) (T > T SP

c ). When the zone temperature is in between T SP
h

and T SP
c (e.g., during unoccupied hours when the set-point range is much larger), the

temperature is free to float based on natural heat transfer, with no active heating

or cooling from the HVAC system (except for minimum flows required for ventilation

during occupied hours). The system has a fairly standard cascaded architecture where

the thermostat determines the airflow set-point based on the current temperature set-

point and measurement. A local controller within each variable air volume (VAV) box

is then responsible for controlling flow (F ) to that set-point. In summary, each zone

has four inputs, including ambient temperature, heating set-point, cooling set-point,

and occupancy mode, and two outputs, which are the zone temperature and flow.

The values corresponding to the process inputs and outputs for a representative zone

are shown in Figure 2.1, for the first week of February. The zone occupancy flags

are a system setting equal to one when the building is considered occupied and zero

when unoccupied. These values are scheduled by the building manager and thus

do not necessarily represent the true occupancy cycle of the space. However, due

to the almost perfect correlation between the occupancy flag and the temperature

set-points, it might not be very useful to consider the occupancy flag as an input

for the models. In addition, the values are sampled every minute at the indicated

timestamps. Note, however, that the data are passed through a COV filter, which
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means that new measurements are only transmitted if the measured value differs by

at least a given amount from the previous measurement. This filtering manifests

similarly to quantization in that the data appear staircase-like rather than smooth.

The overall goal of the dynamic models is to predict the outputs (zone temperature

and zone flow) based on the inputs (heating/cooling set-points, occupancy flag, and

ambient temperature).

(a)

(b)

Figure 2.1: (a) Process inputs: ambient temperature (Tamb), cooling set-point (TSP
c ),

heating set-point (TSP
h ), and occupancy mode, (b) Process outputs: zone temperature (T )

and zone flow (F )
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Remark 1. Note that the inputs are defined in the context of modelling, which can

include the manipulated inputs and measurable disturbances, such as ambient temper-

ature. In addition, there are several unmeasurable disturbances for each zone, such as

internal heat gains (from lighting and plug loads), which are obviously not considered

as the inputs of the model.

2.2.2 Recurrent neural networks (RNN)

An RNN is a class of ANNs that have been commonly used for dynamic modelling of

non-linear systems (Shahnazari et al. (2018); Wu et al. (2019)). The existence of feed-

back loops in the RNN architecture provides the network with a memory that enables

capturing dynamic behaviours in a way similar to non-linear state-space models. Var-

ious types of RNN such as long short-term memory (LSTM) and gated recurrent unit

(GRU) have been developed for different applications such as time series prediction

and natural language processing. A schematic of an RNN, together with its unfolded

structure, is shown in Figure 2.2. As shown in this figure, the previous information

(internal states) derived from preceding inputs is fed back into the network, allow-

ing for storing the information from the previous sampling time. This information is

then utilized to calculate the system outputs at the current time. The mathematical

description of the RNN model can be defined as follows:

xk = fh(Wuuk +Wxxk−1)

yk = fo(Wyxk) (2.1)

where xk, uk, and yk represent the vectors of current states, inputs, and outputs,

respectively. As can be seen in Equation (2.1), the current state depends on the
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current input and previous state (xk−1), and the current output depends on the current

state. In addition, Wu, Wx, and Wy represent the weight matrices connecting the

inputs to the states, connecting the states from the previous time step to the states in

the following time step, and connecting the states to the outputs, respectively. fh(·)

and fo(·) also represent the activation functions associated with hidden and output

layers, respectively.

Figure 2.2: Schematic of a recurrent neural network and its unfolded structure

The existence of a large number of parameters provides neural networks with large

degrees of freedom that can fit a variety of complex non-linear systems. However, a

neural network-based model usually requires a significant amount of high-quality data

in order to get the most adequate training and achieve high generalization ability. A

larger size of data helps handle over-fitting issues. Therefore, in this work, we consider

a representative zone, where a sufficient amount of data is available, and as such, a

well-trained RNN model is available. The effort is to leverage or utilize this model for

another zone where the data availability may be limited. To build a model using a

limited amount of data, other statistical-based modelling methods that allow for more

direct handling of the over-fitting problems are known to be useful. This motivates us

to use the SubID technique to develop the residual models for the other zones where

the training data samples are insufficient. Before proceeding to present the proposed

hybrid approach (and to contrast with the proposed approach), the performance of
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the RNN-based models developed using a limited amount of data is shown in the next

section.

2.2.3 Subspace identification (SubID)

A brief overview of the SubID method is presented in this section (see Huang et al.

(2005); Qin (2006) for more details). In this approach, the objective is to use input-

output data in order to identify a discrete time linear time-invariant state-space model

of the following form:

xk+1 = Axk +Buk

yk = Cxk +Duk (2.2)

where x ∈ Rnx represents the vector of state variables, u ∈ Rnu represents the vector

of inputs, and y ∈ Rny represents the vector of outputs. A ∈ Rnx×nx , B ∈ Rnx×nu ,

C ∈ Rny×nx , and D ∈ Rny×nu are the system matrices (parameters) identified by

this identification technique. The system matrices are directly computed using the

input-output data Hankel matrices without any iteration, compared with the iter-

ative algorithms utilized in the prediction error methods (PEM), which are based

on optimization techniques (similar to how the RNN models are trained). In the

subspace-based identification approaches, matrix decomposition techniques, such as

QR decomposition and singular value decomposition (SVD), are used in order to

identify a model. Identification also consists of two steps, which are finding the state

sequence that captures the time varying dynamics and calculating the system matrices

subsequently using an appropriate regression. Several methods have been developed

for SubID techniques such as canonical variate analysis (CVA) (Larimore (1990)),
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multivariable output error state-space (MOESP) (Verhaegen and Dewilde (1992)),

and the numerical algorithms for subspace state-space system identification (N4SID)

(Van Overschee and De Moor (1994)). In this work, N4SID approach (in MATLAB)

is used to identify the residual models.

2.2.4 RNN and SubID-based models using a limited amount

of data

In this section, the problem of developing RNN and SubID models for the case study,

where a limited amount of data is available, is presented.

RNN model identification

In order to show the RNN modelling performance in the presence of a data shortage

problem, we assume that the data samples corresponding to three days for zones a

and b are available. Two scenarios are considered for each zone: (1) the first scenario

considers using the data of three days in January (Jan 26–28), and (2) the second

scenario uses the data of three days in February (Feb 24–26). These cases are listed

in Table 2.1. Note that, for each case, the number indicates the month from which

the data are used, and the letter represents the zones.

Table 2.1: Different cases which are considered to develop the models using a limited
amount of data

Case Training data Validation data Testing data
1.a Jan 26 Jan 27 Jan 28
2.a Feb 24 Feb 25 Feb 26
1.b Jan 26 Jan 27 Jan 28
2.b Feb 24 Feb 25 Feb 26

In order to train an RNN model for each case, the data samples corresponding to

the input variables (heating set-points, cooling set-points, and ambient temperature)
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and output variables (zone temperature and zone flow) are first divided into training,

validation, and testing data. Therefore, in the first scenario, the data samples of Jan

26, Jan 27, and Jan 28, are used to train, validate, and test the model, respectively (≈

33% of data samples are used in each modelling stage). Similarly, the data samples

of Feb 24, Feb 25, and Feb 26, are, respectively, used for training, validation, and

testing phases in the second scenario. In the next step, the training data samples,

corresponding to each case, are first normalized (mean-centred and scaled to unit

variance), and then fed to an RNN network in MATLAB Machine Learning and Deep

Learning toolbox (layer recurrent network (LRN) which has a standard RNN archi-

tecture). Note that the trained model predicts the normalized values of the outputs in

the validation and testing phases. To calculate the outputs, the normalized values are

re-scaled and shifted based on the standard deviation and mean values of the training

data. In the RNN network, different hyperparameters exist that must be tuned such

as the number of hidden layers, the number of neurons in each hidden layer, activation

function types, and the number of epochs. To this end, different architectures with

1 hidden layer, including different numbers of neurons (2, 3, 4, and 5), are examined

(note that adding more neurons or hidden layers results in the over-fitting problem

due to the use of a small amount of data). In addition, tanh and linear activation

functions are selected for the hidden layers and the output layer, respectively. The

number of epochs is also chosen in a way to avoid over-fitting (the initial value is 20

but is modified as needed). Bayesian regularization backpropagation algorithm that

updates the model parameters (weights and biases) based on Levenberg-Marquardt

optimization is chosen. As mentioned, four RNN models using different numbers of

neurons (RNNn: n represents the number of neurons) are trained for each case men-

tioned above. In order to quantify the prediction error of the models, scaled root

mean square error (RMSE) metric, given by Equation (6.5), is used:
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Scaled RMSE =
l∑

i=1

√∑n
j=1 (yi,j−ŷi,j)2

n

σi

(2.3)

where yi,j and ŷi,j are the jth observation corresponding to the ith output and its pre-

diction, respectively, and σi represents the standard deviation of the ith output. l and

n also represent the number of outputs and observations, respectively. Due to different

initializations of the parameters and non-convex nature of the optimization problem

to calculate the optimal values of theses parameters, the results can be different each

time a neural network model is trained. This also raises two related challenges: (1)

the lack of guarantee of finding a global solution and (2) with the same architecture,

the difficulty of ensuring that the same solution is found in every implementation,

making it difficult to compare a neural network with another implementation. To try

to get the global minima (or at least a good local minima), random initializations of

the parameters can be utilized. While it may promote the achievement of the global

minima, it is not guaranteed. This work specifically addresses the second concern. In

particular, in developing and testing the RNN models for each neural network with

specific architecture, multiple trainings with random re-initializations are performed

(to account for the fact that different local minima may be found in a particular run),

and all comparisons are based on averages over these multiple runs. Thus, the RNN

model, for each specific architecture mentioned above, is trained 50 times for each

case, and then, the scaled RMSE value is calculated in the validation phase. Figures

2.3 and 2.4 summarize the results obtained for the two cases corresponding to zones a

and b, respectively. Based on the scaled RMSE values of the validation data, the best

model for each case (RNN4 for case 1.a, RNN5 for case 2.a, RNN5 for case 1.b, and

RNN4 for case 2.b) is then selected to evaluate prediction performance of the model

on the unseen (testing) data. The results are shown in Figures 2.5 and 2.6 for zones a

and b, respectively (dash-dotted red lines). As can be seen, these models are not able
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to predict the zone outputs well due to the use of a small amount of data for training

the RNN models. The scaled RMSE values obtained for each case in the testing phase

are also listed in the first row of Table 2.3.

Remark 2. Note that a model’s ability to perform multi-step ahead predictions with

reasonable accuracy is critical for being successfully used in different applications such

as MPC. Therefore, the models are developed in this work in a way to predict the zone

behaviour multi-step ahead (for an entire day). It should also be noted that the value

of the scaled RMSE, for each model in the validation or testing phases, is calculated

based on multi-step ahead prediction of the model.

Remark 3. In order to make sure that the trained model is working properly (with rea-

sonable accuracy), it is necessary to evaluate the model performance on unseen (new)

data. Thus, in the process of model building using machine learning or statistical-based

approaches, the dataset should be divided into three categories including training data,

validation or hold-out data, and testing or unseen data. The training data are only

used to train the model (calculating the best set of parameters). The validation data are

then used to assess the progress and draw conclusions in order to improve the model

capability (providing an unbiased assessment of the model fit on the training data while

tuning the model hyperparameters). After analyzing the model performance in the val-

idation step, the best model, obtained based on a specific metric, will be chosen for

being tested on the unseen data. This enables evaluating the prediction performance

of the final model on new data.

SubID model identification

The four cases defined in Section 2.2.4 are used again to build the subspace-based

models. In the SubID approach, the number of states must be determined in order

to develop a model. One of the advantages of this approach is the uniqueness of
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(a) (b)

Figure 2.3: Scaled root mean square error (RMSE) of different recurrent neural network
(RNN)-based models trained for (a) case 1.a and (b) case 2.a, in the validation phase

(a) (b)

Figure 2.4: Scaled root mean square error (RMSE) of different recurrent neural network
(RNN)-based models trained for (a) case 1.b and (b) case 2.b, in the validation phase

solution, unlike the neural network-based modelling methods where the results can

be different in each run due to the different parameters initializations. Thus, the

SubID method does not require multiple models when a certain number of states is

considered. Similar to the RNN modelling, the training data, shown in Table 2.1,

are first normalized and then used to train a model for each case. Since the trained

model predicts the normalized outputs, the standard deviation and mean values of
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(a) (b)

Figure 2.5: Comparison of the prediction results obtained using the best recurrent neural
network (RNN) and subspace identification (SubID)-based models for (a) case 1.a and (b)

case 2.a (in the testing phase): Measured outputs (solid black lines), SubID model
prediction (dashed blue lines), and RNN model prediction (dash-dotted red lines)

the training data are used to calculate the predicted outputs. Different numbers of

states (2–10) are used, and then, the best model is selected based on the lowest scaled

RMSE value in the validation phase. The results show that the best models for cases

1.a, 2.a, and 1.b use 4 states. In addition, for case 2.b, the use of 5 states results

in the best performance of the model on the validation data. The prediction results

obtained using these models in the testing phase are shown in Figures 2.5 and 2.6

for zones a and b, respectively (dashed blue lines). In addition, the scaled RMSE

values obtained by applying the SubID models, in the testing phase, are compared

with those values obtained based on the RNN models and listed in the second row of

Table 2.3. The results reveal the superior performance of the SubID models over the

RNN models when a limited amount of data is available for system identification.
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(a) (b)

Figure 2.6: Comparison of the prediction results obtained using the best recurrent neural
network (RNN) and subspace identification (SubID)-based models for (a) case 1.b and (b)

case 2.b (in the testing phase): Measured outputs (solid black lines), SubID model
prediction (dashed blue lines), and RNN model prediction (dash-dotted red lines)

While the SubID model provides good predictions, the question remains as to whether

a well-trained RNN model that can capture the key characteristics of the unit in

question (or a similar unit elsewhere) can be utilized to improve the overall model.

This is addressed in the next section.

Remark 4. Note that normalized and mean-centred values of the variables are used

in training and prediction. This is consistent with the dynamic model structure (like

SubID), which implies that x = 0 and u = 0 are the steady state of the system. That

property often holds for process data operated near a particular steady state, but is

not necessarily guaranteed for operational data. For instance, in the present case, a

single model is developed to predict the behaviour of each zone in both the occupied

and unoccupied conditions, which naturally have different dynamics, and there is no
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guarantee that mean-centred and scaled values of the variables will represent a steady

state. As such, the efficacy of the modelling approach is primarily verified using

validation/prediction capability.

2.3 Proposed hybrid modelling approach

The proposed approach for system identification is presented in this section. The

main idea is leveraging an existing well-trained model, developed for one problem, in

order to build models for other related problems. This is the key idea of any transfer

learning method, as mentioned in Section 6.1. In the area of transfer learning for

dynamic modelling, usually, a small number of parameters corresponding to a pre-

trained RNN model, built for one problem, are selected to be re-trained on new data

samples related to a different but related problem (Chen et al. (2020)) (available data

from the new problem is usually limited). This not only makes the training process

faster (compared to building a model from scratch) but also enables better handling

of the over-fitting problem in the presence of a small amount of data from the new

case. Recall that, as shown in Section 6.2, using a relatively small amount of data

usually does not result in a model with good accuracy. When a pre-trained model

(already built for a related problem using a large amount of data) is available, it can

be utilized to predict the behaviour of a new problem. The prediction performance

of the pre-trained model would be sufficiently good if the dynamic behaviour of the

new problem is almost the same as the behaviour of the previous problem for which

the pre-trained model exists, otherwise there will be some deviations.

The key idea with the proposed approach is to train a model to predict these deviations

(or residuals, which are differences between the real values and predictions obtained

by applying the pre-trained model), which can be used to correct the pre-trained

model prediction. Since small amount of the residual data are available, this requires
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using approaches allowing for better handling of the over-fitting issue, such as linear

statistical-based methods, as shown in Section 2.2.4. The layout of the model building

steps, along with the idea of the hybrid approach is shown in Figure 2.7. The top left

figure shows the input–output data collected from a new problem. The same input is

then fed to the pre-trained model to predict the behaviour of the new problem based

on this model (yptn ). Finally, the residuals (r = yn − yptn ), together with the inputs,

are used to develop a residual model. The right figure shows the integration of the

pre-trained model and the residual model to predict the behaviour of the new case

(ypn).

Figure 2.7: Schematic illustrating the hybrid modelling method. Left figure shows the
steps for developing the residual model. Right figure shows the integration of the

pre-trained model and the residual model

Consider that a limited amount of data from the new case is available, and it is divided

into training, validation, and testing data. The steps to develop and utilize a residual

model (in the hybrid model) are described below:

1. Training and validation input data are fed to the pre-trained model, and the

prediction is calculated (yptn ).

2. Residuals, differences between the pre-trained model predictions and the real
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values, are then calculated (r = yn − yptn ).

3. Residuals, corresponding to the training part, are normalized (mean-centred and

scaled to unit variance).

4. Normalized training residuals, together with the inputs, are used to build a

residual model (because the residual model predicts the normalized residual,

the standard deviation and mean values corresponding to the training residuals

are used to calculate the predicted residuals)

5. Validation residuals are used to evaluate the residual model performance based

on different hyperparameters, and then, the best model is selected.

6. The residual model is then integrated with the pre-trained model to predict the

behaviour of the new problem. To this end, the input data are fed to both

the pre-trained and residual models, and then, their predictions are added to

make the final prediction (in this stage, the testing data are used to evaluate

the performance of the hybrid model).

Remark 5. Note that the existing model developed using a large amount of data does

not have to be from the same set of zones or even the same building, but the set of

input–output variables utilized to develop this model must contain the input and output

variables that will be used to build the models based on a small amount of data.

Remark 6. Note that the main idea of the proposed approach is to integrate the resid-

ual model, developed in the presence of the data shortage problem for one problem,

with the existing well-trained model of the different but related problem. The choice of

an appropriate modelling strategy, utilized to develop models for the pre-trained model

and the residual model, generally depends on the amount of data and the dynamic

characteristics of the system. Due to the availability of a large amount of data and

non-linear nature of the problem, the RNN modelling approach is utilized to build the

model for the pre-trained model in this work (this will be shown in Section 2.4.1).
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On the other hand, because of the availability of a small amount of residual data, the

SubID approach is selected to build the residual models due to its superior performance

in handling the data shortage problem (as shown in Section 2.2.4). However, in gen-

eral, other modelling techniques can be utilized to develop the pre-trained and residual

models as long as their performance is satisfactory.

Remark 7. Recall that the residuals are the differences between the pre-trained model

prediction and the real value of the outputs for a new system. Thus, in the case where

the new system is similar in structure to the system that was used to train the model,

except that the outputs are simply scaled differently, a direct implementation of the

proposed approach will not be useful. Instead, alternate hybrid modelling approaches

will have to be considered and remain the focus of future work.

2.4 Application of the hybrid approach to the multi-

zone fitness centre

In this section, the proposed hybrid methodology is applied to the case study, multi-

zone building HVAC system. A large amount of data corresponding to a representative

zone is first used to develop a model. This model is then considered as the pre-

trained model, available for the representative zone. Note that the pre-trained model

is developed using both the RNN and SubID techniques. However, due to the superior

performance of the RNN model over the subspace-based model in the case where a

significant amount of data is available (this will be shown in the next section), the

pre-trained RNN model is selected for developing the hybrid approach. Assuming that

a limited amount of data corresponding to the other zones is available, the subspace-

based residual models are then developed. Finally, the pre-trained RNN model is

integrated with the subspace-based residual models to predict the behaviour of the

other zones.
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2.4.1 A representative zone modelling: A pre-trained model

In this section, the RNN and SubID techniques are used to model the representative

zone (zone c), considered as a representative zone in the multi-zone building, using

a large amount of data. The best model is then selected in order to be employed in

the proposed hybrid method. In order to train an RNN model for zone c, a large

amount of data corresponding to 34 days (Jan 26–Feb 28) is used. The data are first

divided into the training data (Jan 26–Feb 22) (≈ 80% of data), validation data (Feb

23–25) (≈ 10% of data), and testing data (Feb 26–28) (≈ 10% of data). The training

data samples are then normalized and used to develop an RNN model. Similar to

the steps used in Section 2.2.4 to develop the RNN models, different architectures are

considered to tune the hyperparameters. It should be mentioned that the presence of

a large amount of training data allows for increasing the number of hidden layers and

neurons in comparison with the previous models developed in Section 2.2.4. Again,

several models with different architectures are trained multiple times, and then, their

performances are evaluated on the validation phase to obtain the best model for zone

c (the details are not presented here, for brevity). The best model, which uses 1

hidden layer with 10 neurons, is used in the testing phase to assess its performance

on the unseen data. The results are shown in Figure 2.8.

Table 2.2: Comparison of the scaled root mean square error (RMSE) values obtained
based on the subspace identification (SubID) and recurrent neural network (RNN)-based

models for zone c (in the testing phase)

Model type Scaled RMSE
SubID 0.77
RNN 0.56

In addition, a subspace-based model is developed for zone c using the same set of

training, validation, and testing datasets to compare its performance with the RNN

model. Several SubID models based on different numbers of states are developed

using the normalized training data. Then, the prediction performance of each model
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Figure 2.8: Comparison of the prediction results obtained using the recurrent neural
network (RNN) and subspace identification (SubID)-based models for zone c (in the testing
phase): Measured outputs (solid black lines), SubID model prediction (dashed blue lines),

and RNN model prediction (dash-dotted red lines)

is evaluated in the validation phase to choose the final model. Based on the scaled

RMSE values, the best result is obtained using a model with 10 states. The prediction

result of this model in the testing phase is shown in Figure 2.8. The scaled RMSE

values obtained based on the SubID and RNN models are also listed in Table 2.2.

The results show the superior performance of the RNN model due to the fact that the

RNN model is able to capture non-linearity more accurately, while not over-fitting,

when a large amount of the training data is available for system identification.

2.4.2 Residual models

Consider that the pre-trained RNN model of zone c is available, which is employed to

predict the behaviour of the four cases as described in Table 2.1. The steps, presented
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in Section 5.3, are then applied to develop a residual model for each case. For example,

for case 1.a, training and validation input data (from Jan 26 and Jan 27) are first

fed to the pre-trained model, and the residuals are calculated. The training residuals,

related to Jan 26, are then normalized and used with the training input to develop a

model using the SubID. The reason for selecting the SubID technique is its superior

performance when a relatively small amount of data is available, as shown in Section

2.2.4. Different numbers of states are used to develop different residual models, and

the final model is chosen based on the lowest scaled RMSE value in the validation

phase. This process is also repeated to build the subspace-based residual models for

the other cases.

2.4.3 Hybrid modelling of the multi-zone building

Having obtained the residual models, these models are integrated with the pre-trained

RNN model of zone c to predict the outputs of the four cases, mentioned in Section

2.2.4. The results obtained by applying the hybrid approach for cases 1.a and 2.a in

the testing phase are shown in Figure 2.9. The results are also compared with the

predictions obtained using only the pre-trained RNN model of zone c. As shown,

although the pre-trained RNN model is able to predict the zone temperature fairly

well in both cases, significant deviations from the real values can be observed for

the zone flow predictions. However, applying the hybrid modelling approach enables

the prediction of the zone behaviour with improved accuracy. This technique is also

used to predict the outputs for cases 1.b and 2.b. Figure 2.10 shows the results

obtained in the testing phase. Unlike the previous cases, applying the pre-trained

RNN model leads to significant differences between the real and predicted values of

the zone temperature. However, the use of the hybrid technique again results in

a considerable improvement in the prediction of the zone temperature. The scaled

RMSE values, obtained by applying the pre-trained and hybrid models, for all four
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cases in the testing phase, are also listed in the third and fourth rows of Table 2.3,

respectively. The results in this table show the superior performance of the hybrid

models over the case where the RNN and SubID models, built using a limited amount

of data, are used for prediction.

(a) (b)

Figure 2.9: Comparison of the prediction results obtained using the pre-trained recurrent
neural network (RNN) model of zone c and the hybrid approach for (a) case 1.a and (b)

case 2.a (in the testing phase): Measured outputs (solid black lines), the pre-trained RNN
model prediction (dashed blue lines), and the hybrid model prediction (dash-dotted red

lines)

Table 2.3: Comparison of the scaled root mean square error (RMSE) values obtained
based on different models for each case (in the testing phase)

Model type (1.a) (2.a) (1.b) (2.b)
RNN (limited data) 1.18 2.03 1.86 1.63
SubID (limited data) 0.65 0.98 1.03 1.40
Pre-trained RNN 1.31 1.49 1.59 2.08
Hybrid 0.52 0.63 0.75 0.83

Remark 8. Note that a key step to evaluate the prediction performance of a state-
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(a) (b)

Figure 2.10: Comparison of the prediction results obtained using the pre-trained
recurrent neural network (RNN) model of zone c and the hybrid approach for (a) case 1.b

and (b) case 2.b (in the testing phase): Measured outputs (solid black lines), the
pre-trained RNN model prediction (dashed blue lines), and the hybrid model prediction

(dash-dotted red lines)

space data-driven model, on the unseen data, is to design an observer (e.g., Luenberger

observer, Kalman filter, and extended versions for the non-linear systems) to estimate

the state values where the process and model outputs are converged. The converged

states are then considered to be the initial states of the identified model for prediction

purposes (Ghosh et al. (2019); Alhajeri et al. (2021)). However, in this work, to

assess the performance of the hybrid approach on the unseen data, a portion of the

validation data (last 1000 validation data samples), in addition to the testing data,

are fed to the model in order to ensure the output convergence (convergence must take

place while using the validation data samples, which are available in advance).

Remark 9. Note that the hybrid approach is developed for a multi-zoned building
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where the different zones follow a similar dynamic behaviour, albeit with different

parameters (internal and external loads). In this situation, when a well-trained data-

driven model of a representative zone is available (like the pre-trained RNN model

in this work), it can be used to generate the residual. The residual model is then

developed with the aim of being used in the hybrid approach to correct the prediction

error between the pre-trained model of the representative zone and the zone in question.

In the situation where the dynamic behaviour of the present unit is very different from

the original pre-trained model, using this model (in both the residual development stage

and integration stage) may lead to adding unnecessary information (non-linearity).

Therefore, in the presence of data shortage problem, developing an individual data-

driven model may outperform the hybrid approach. In addition, in order to decide

when to use the hybrid approach and when to not, one can compare the prediction

performance of the standalone model with the hybrid model, in the testing phase, and

find which one is better.

Remark 10. As shown in Table 2.3, not surprisingly, the scaled RMSE values ob-

tained by applying the RNN and SubID models, developed using the limited data, are

smaller than those obtained using the pre-trained RNN model, for some cases (pre-

trained model was not trained on the data corresponding to the zones in question).

This may raise a question of why not directly apply the SubID-based residual models

to the RNN and SubID models trained with the limited data. Thus, for further anal-

ysis, we did try to use the RNN and SubID models, trained with the limited data, to

develop the residual, and subsequently, hybrid models. However, the results indicate

poorer performance of the hybrid models, developed in this way, compared to the pro-

posed hybrid method. The reason can be explained by evaluating the residual values in

the training phase. These values are close to zero when the RNN and SubID models,

built using the limited data, are used due to the good fit between the model predic-

tions and the training data, and therefore, they do not provide useful information for

developing the residual model.
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Remark 11. The idea of the hybrid modelling approach proposed in this work can be

utilized in advanced control strategies such as MPC implementations. Approaches exist

for utilizing a hybrid model integrating a first-principles model with a neural network-

based residual model (Anderson et al. (2000)). The use of the hybrid models, which

have at least one non-linear component (neural network), in the MPC implementations

results in non-convex optimization problems. Therefore, in situations where control

actions need to be calculated sufficiently fast (in the presence of computing power lim-

itation or complex optimization problem) for real-time applications, it becomes useful

to develop and utilize the linear hybrid model in the MPC framework (Ghosh et al.

(2021)). In the present work, this can be achieved using a linear pre-trained model

such as a subspace-based model of a representative unit instead of the pre-trained RNN

model. However, this depends on the existence of a reliable linear pre-trained model

and its superior performance when used in the hybrid approach, compared to a case

where only a linear model is developed using a limited amount of data.

Remark 12. Note that the main focus of this work is to address the problem of

developing the models when a limited amount of data is available for the other zones

such as zones a and b. However, in the case where a significant amount of data is

available for these zones, one can develop models trained on the full datasets to obtain

better prediction accuracy.

Remark 13. Note that in the neural network-based transfer learning methods, a pre-

trained model, which is usually a deep neural network model, developed for the source

problem, is selected to be re-tuned/re-trained using the data from the new related

problem. This is not being done in the present work. This is for two reasons. First, the

existing pre-trained model of the source problem (representative zone), in this work, is

a shallow neural network. Therefore, the transfer learning method in the sense of re-

training some of the parameters (weights and biases) corresponding to some layers of

the pre-trained model may not be applicable here. Second, due to the previous reason

and the fact that a limited amount of data is available for the zones in question, the

42



PhD Thesis - Hesam Hassanpour; McMaster University - Chemical Engineering

objective of this work is to propose an alternative approach, to the existing transfer-

learning techniques, by integrating the shallow pre-trained RNN model with the residual

models developed based on the subspace techniques. The residual models are developed

in order to correct the predictions of the pre-trained model for the zones in question.

2.5 Conclusion

In this work, a hybrid machine learning approach, integrating a pre-trained (existing)

RNN model with SubID-based residual models, is proposed to handle the case where

a limited amount of data is available for system identification. The application of

the hybrid approach to predict the behaviour of different zones in a multi-zone fitness

centre is shown. To that end, the pre-trained RNN model, built using a large amount

of data for one representative zone, is integrated with the SubID-based residual mod-

els, developed using a significantly smaller amount of data for the other zones. The

key point is to take advantages of both the RNN model (capturing non-linearities

while handling the over-fitting in the presence of a significant amount of data) and

the SubID model (allowing for a more direct handling of the over-fitting issue when

a limited amount of data is available). The effectiveness of the proposed hybrid ap-

proach was illustrated for a multi-zone building HVAC system, where real data are

used to develop the models. The results show the superior performance of the hybrid

modelling approach in handling the data shortage problem over the purely RNN and

subspace-based models.
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Chapter 3

A hybrid modeling approach

integrating first-principles knowledge

with statistical methods for fault

detection in HVAC systems

The contents of this chapter have been published in the Computers & Chemical En-

gineering Journal.

• A hybrid modeling approach integrating first-principles knowledge with statisti-

cal methods for fault detection in HVAC systems. Hesam Hassanpour, Prashant

Mhaskar, John M. House, and Timothy I. Salsbury, Computers & Chemical En-

gineering, 2020, 142, 107022. DOI: 10.1016/j.compchemeng.2020.107022
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Abstract

This work presents a hybrid modeling technique that combines first-principles

knowledge with principal component analysis (PCA) to detect faults in heat-

ing, ventilation, and air conditioning (HVAC) systems. Residuals, defined as

the discrepancies between expected and observed behaviors, along with temper-

ature measurements are used to develop multiple hybrid PCA models. Each

model describes the normal behavior of the system in a particular operating

state of air-handling units (AHUs). Hotelling’s T 2 and square prediction error

(SPE) statistics corresponding to the new observations are calculated using the

hybrid PCA model in order to monitor the process and detect deviations from

the expected behavior. The efficacy of the proposed approach to detect faults

is evaluated and compared with two benchmark approaches: (1) residual anal-

ysis (based on first-principles models) and (2) a data-driven method (based on

PCA) applied to raw temperature measurements. The superior performance of

the proposed methodology, over the benchmarks, is shown via simulation tests

with commonly occurring fault scenarios.

3.1 Introduction

Heating, ventilation and air conditioning (HVAC) systems, which are widely used in

modern buildings to maintain thermal comfort and indoor air quality, account for

more than 40% of total energy consumed in commercial and residential buildings.

These systems contain components such as actuators, sensors, air dampers, valves,

and controllers which are all susceptible to faults. The occurrence of various types

of faults in HVAC systems can cause indoor thermal discomfort and excessive energy

consumption. This has motivated research on the design of fault detection and isola-

tion (FDI) strategies for HVAC systems to ensure efficient operations to save energy

and ensure comfort. Existing studies on building FDI can be divided into three main
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categories: (1) qualitative model-based methods, (2) quantitative model-based meth-

ods, and (3) process history-based methods (see Venkatasubramanian et al. (2003c),

Venkatasubramanian et al. (2003a), and Venkatasubramanian et al. (2003b)).

Qualitative model-based techniques can be used for fault diagnosis when data samples

are not available to develop an appropriate model because of data collection costs. A

priori knowledge of the process (fundamental understanding of the process) is required

to develop these approaches and they can be divided into two categories including rule-

based FDI and qualitative physics-based FDI techniques. A large set of if-then-else

rules and inference mechanism are commonly used in the rule-based approaches to

detect fault symptoms (see e.g., House et al. (2001), Schein et al. (2006), Song et al.

(2008), and Yang et al. (2008)). In the qualitative physics-based methods (see e.g.,

Muller et al. (2013), equations are developed by analyzing the relationships between

variables in the process and fundamental behaviors of the system. The predicted

qualitative values are compared with actual observations to detect faults.

In quantitative model-based methods, an explicit mathematical model of the system,

developed by laws of physics that govern the process behavior, is utilized to create

analytical redundancy. The analytical redundancies enable generation of residuals

that capture the difference between observed and expected behaviors. Faults can be

detected if the residuals breach certain thresholds (see e.g., Zhang et al. (2010) and

Du and Mhaskar (2014)). Robustness of FDI filters can be improved by considering

model uncertainties in computing residuals. In addition, the efficacy of the models

used in these approaches, is required to be validated for both normal and faulty op-

erating conditions. Several studies utilized these techniques in order to design FDI

strategies for HVAC systems (see e.g., Seem and House (2009), Thumati et al. (2011),

Provan (2011), and O’Neill et al. (2014)). In Seem and House (2009), first-principles

knowledge is utilized to derive model-based residuals, assuming that steady-state con-

ditions are imposed by the sequencing control logic. A detailed physics-based model
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is used in Thumati et al. (2011) to diagnose faults in HVAC systems using gener-

ated residuals. Basic thermodynamic principles are used in Provan (2011) to develop

a reduced-order hybrid system for HVAC systems and the model is transformed to

generate a diagnosis model. Because the quantitative model-based FDI approaches

are developed based on knowledge of the physical principles, the physical impacts of

different types of faults can be ascertained. However, developing and maintaining

first-principles models remains challenging. This has led to efforts to devise data-

driven FDI frameworks.

In process history-based methods, only the availability of a considerable amount of

historical data is needed to model the process, in contrast to the qualitative and quan-

titative model-based methods, where a priori knowledge of the process is required.

These methods, known as data-driven or machine learning techniques, have received

significant attention due to the existing challenges for developing and maintaining

first-principles models and increasing the availability of data. The use of these ap-

proaches has also been increasing significantly to design FDI schemes for HVAC sys-

tems. In this direction, several techniques such as subspace identification methods

(see e.g., Qin (2006) and Shahnazari et al. (2018)), multivariate statistical-based ap-

proaches such as principal component analysis (PCA) (see e.g., Du et al. (2007), and

Li and Wen (2014)), artificial neural networks (ANNs) (see e.g., Fan et al. (2010)

and Shahnazari et al. (2019)), and support vector machines (SVM) (see e.g., Liang

and Du (2007) and Ren et al. (2008)) have been used to develop models and FDI

methodologies for HVAC systems.

Among many machine learning approaches, principal component analysis (PCA) has

been widely employed for process monitoring and fault detection and diagnosis (see

e.g., Joe Qin (2003), MacGregor and Cinar (2012), Du and Du (2018), and Qin and

Chiang (2019)). This multivariate statistical technique has also been used to develop

FDI strategies for HVAC systems. In Chen and Lan (2010), PCA is employed to
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extract the correlation of measured variables and reduce the dimension of measured

data in building heating/cooling system. Square prediction error (SPE) statistic is

then used in order to detect sensor faults in the system. In Wang and Xiao (2004b)

and Wang and Xiao (2004a), PCA-based strategies are developed to detect and isolate

sensor faults in air handling units (AHUs) and the SPE statistic and SPE contribution

plot supplemented by expert rules are then used to detect and isolate the faults.

In Wang and Qin (2005), a PCA-based approach is proposed for flow sensor fault

detection and validation of variable air volume (VAV) terminals. Sensor faults are

detected using both the Hotelling’s T 2 and the SPE statistics. PCA-based strategies

have been developed to detect faults in HVAC chiller systems (see e.g., Beghi et al.

(2016) and Li and Hu (2019)). In Du et al. (2017), a combination of subtractive

clustering and PCA is used to assess the reliability of sensor measurements and detect

faults in a vapor compression system.

The idea of hybrid modeling methods, those that combine various modeling techniques

to enhance the performance of an individual approach, has been gaining attention in

recent years (see e.g., Hosen et al. (2011) and Ghosh et al. (2019)). Hybrid-based FDI

strategies have also been developed for HVAC systems to improve diagnostic perfor-

mance. In Wang and Cui (2006), a qualitative model is integrated with a PCA model

to diagnose faults in centrifugal chillers. In Liang and Du (2007), a first-principles

model is combined with a support vector machine (SVM) classifier to diagnose faults

in HVAC systems. The first-principles model is also integrated with the PCA tech-

nique in Wu and Sun (2011) to develop an FDI strategy to detect faults in HVAC

units such as AHU and VAV systems. PCA is employed for dimensionality reduction

and the energy consumption is analyzed to detect faults in VAV systems. In situa-

tions where both the residual information (obtained using first-principles knowledge)

and sufficient process data are available, it becomes useful to synergize the residu-

als directly with measurements through an appropriate data-driven fault detection

mechanism; this idea has not been used for fault detection.

54



PhD Thesis - Hesam Hassanpour; McMaster University - Chemical Engineering

Motivated by the above considerations, the present manuscript addresses the problem

of fault detection in HVAC systems by integrating first-principles knowledge with a

statistical data-driven PCA approach. The rest of the manuscript is organized as fol-

lows: In Section 3.2, a brief description of the simulation test bed, air handling unit

and sequencing control strategy, is presented. The method of the residual analysis

(developed using first-principles knowledge) proposed in Seem and House (2009) is

then reviewed. Note that while the method presents residuals that can be used for

fault detection, the focus in the previous work was not on developing a fault detec-

tion methodology, but on providing qualitative results indicating what residuals were

most affected by each fault. Subsequently, a purely data-driven FDI method using

PCA on measured temperatures in different locations of the AHU is implemented

and considered as a benchmark for comparison. In Section 3.3, the proposed hybrid

approach that integrates first-principles knowledge with principal component analysis

is presented. The efficacy of the proposed method, compared with the residual and

data-driven based techniques, is then illustrated via simulation tests with commonly

occurring fault scenarios. Finally, concluding remarks are presented in Section 6.5.

3.2 Preliminaries

3.2.1 Air handling unit system description

Air-handling units (AHUs) in HVAC systems are used to condition and distribute

air within a building. A schematic diagram of a single duct AHU is shown in Fig.

3.1. Fresh air enters the AHU through the outdoor air damper and is mixed with

recirculated air passing through the recirculation air damper. Mixed air is drawn by

the supply fan through the heating and cooling coils to be conditioned before being

distributed to the building. The recirculated air, drawn from the building by the
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return fan, may be either exhausted or recirculated depending on the position of the

mixing-box dampers (recirculation, exhaust, and outdoor air dampers). The airflow

is also controlled by the supply and return fans. Feedback control is used in variable-

air-volume (VAV) AHUs to manipulate mixing-box dampers, heating coil valve, and

cooling coil valve to satisfy the supply air temperature set-point.

Sequencing control strategy

Sequencing control logic is used in an AHU to choose the proper components in order

to control the supply air temperature at any given time (see Seem et al. (1999)). To

control the supply air temperature, an AHU uses four operating states. The active

operating state is determined by the sequencing control logic which is illustrated by

a state transition diagram in Fig. 3.2. The conditions that must be satisfied to move

from one state to another are specified next to each arrow.

Figure 3.1: Schematic of a single-duct air-handling unit.

In State 1, the heating coil valve is modulated to maintain the supply air temperature

at the set-point for cold outdoor air. The cooling coil valve is closed, and the mixing-
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box dampers are positioned to allow the minimum outdoor air required for ventilation.

The transition to State 2 occurs after the control signal for the heating coil valve

is saturated at the no-heating position. Note that a control signal is considered

saturated at a specific position when it has been at that position continuously for

a predefined length of time. In State 2, the mixing-box dampers are modulated to

satisfy the set-point value for the supply air temperature and both the heating and

cooling coil valves are closed. After the control signal for the dampers is saturated at

the minimum outdoor air position, transition to State 1 occurs. Transition to State 3

occurs after the control signal for the dampers is saturated at the maximum outdoor

air position. In State 3, the chilled water flow rate to the cooling coil is modulated

to achieve the supply air temperature set-point. The heating coil valve is closed, and

the mixing-box dampers are positioned to allow the maximum outdoor air to enter

(outdoor air damper is fully open). The transition to State 2 occurs after the control

signal for the cooling coil valve is saturated at the no-cooling position. In addition,

when the outdoor air temperature is greater than the changeover temperature plus

the deadband temperature, transition to State 4 occurs. In State 4, the operating

condition is the same as State 3, except that the mixing-box dampers are positioned

to provide the minimum outdoor air needed for ventilation. Transition to State 3

occurs when the outdoor air temperature is less than the changeover temperature. As

illustrated in Fig. 3.2, the values of the changeover temperature and deadband must

be specified to define the conditions necessary for transitions between States 3 and 4.

The changeover temperature is usually considered equal to the return air temperature

and the deadband is around 1 ◦F (0.56 ◦C). Note that a deadband is used to avoid

frequent transitions between States 3 and 4 due to noisy sensor readings.

The active operating states of the AHU, determined by the sequencing control logic

and depending on the prevailing weather conditions, are shown in Fig. 3.3 for one

year of normal operation and can be listed as: (1) State 1 (S1), (2) State 2 (S2), (3)

State 3 (S3), (4) State 4 (S4), (5) Transitions from State 1 to State 2 (S1→2), (6)
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Figure 3.2: State transition diagram for the sequencing control strategy to control
air-handling units.

Transitions from State 2 to State 1 (S2→1), (7) Transitions from State 2 to State 3

(S2→3), (8) Transitions from State 3 to State 2 (S3→2), (9) Transitions from State 3

to State 4 (S3→4), and (10) Transitions from State 4 to State 3 (S4→3). An arrow

indicates the transition from one state to another.

In addition, temperatures in different locations of the AHU are shown in Fig. 3.4.

Note that the supply air temperature set-point is fixed at 55 ◦F (12.78 ◦C), for April

1 to October 31, and 60 ◦F (15.56 ◦C) for the remaining months of the year. It should

also be noted that the data in Figs. 3.3 and 3.4 are simulated for Chicago climate

conditions.
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Figure 3.3: Active operating states of the air-handling unit (AHU) in the normal
conditions.

Figure 3.4: Supply air temperature (Tsa) and its set-point (dashed line), return air
temperature (Tra), outdoor air temperature (Toa), and mixed air temperature (Tma) for the

normal operating conditions.
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3.2.2 Review of the model-based residuals (first-principles knowl-

edge)

In this section, we review the methodology presented in Seem and House (2009) for

developing the residuals that can be used for fault detection of AHUs. Note that the

residual information is one of the components of the hybrid approach proposed for

fault detection in Section 3.3. Recall that the supply, return, outdoor, and mixed air

temperatures are measured using sensors as shown in Fig. 3.1. Model-based residuals

are developed assuming that steady-state conditions prevail at specific times and lo-

cations in the system due to well-controlled conditions. Mass and energy balances are

performed over appropriate control volumes, depending on each particular operating

state of the AHU. Finally, 13 residual models are obtained which are all limited to

certain operating states (either within a certain state or at a certain transition) in the

AHU. The summary of all 13 residuals and the conditions (operational states or tran-

sitions) where they are applicable is presented in Table 3.1. To evaluate the approach,

various faults including supply air, return air, mixed air, and outdoor air tempera-

ture sensor faults, stuck or leaking heating and cooling coil valve faults, and stuck or

leaking recirculation damper faults were simulated (see Seem and House (2009) for

further details).

The fault detection results for two illustrative cases are discussed: (1) Return air

temperature sensor offset of 2 ◦C (Fault 1) and (2) Mixed air temperature sensor

offset of 2 ◦C (Fault 2) . These temperature sensor faults are introduced by linearly

increasing the offsets from 0 ◦C to 2 ◦C over a three-month period. A positive offset

causes an artificially low sensor reading. Thus, if the actual temperature is α ◦C and

the value of offset is 2 ◦C, the sensed temperature is (α− 2) ◦C. Note that these are

sensor faults for variables that are applicable in all operating states. The values of

all 13 residuals were calculated. As shown in Seem and House (2009), the residual r9
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Table 3.1: Summary of the residuals and the conditions (states and transitions) when
they are applicable

Residual Conditions when Applicable

r1 = Ts,2→3 − To,2→3 −
ˆ̇Wfan

ˆ̇msĉp
Transitions from State 2 to State 3 (S2→3)

r2 = Ts,3→2 − To,3→2 −
ˆ̇Wfan

ˆ̇msĉp
Transitions from State 3 to State 2 (S3→2)

r3 = fdesign −
Ts,1→2−Tr,1→2−

ˆ̇Wfan
ˆ̇msĉp

To,1→2−Tr,1→2
Transitions from State 1 to State 2 (S1→2)

r4 = fdesign −
Ts,2→1−Tr,2→1−

ˆ̇Wfan
ˆ̇msĉp

To,2→1−Tr,2→1
Transitions from State 2 to State 1 (S2→1)

r5 = fdesign − Tm,1−Tr,1

To,1−Tr,1
State 1 (S1)

r6 = Ts,2 − Tm,2 −
ˆ̇Wfan

ˆ̇msĉp
State 2 (S2)

r7 = 1− Tm,3−Tr,3

To,3−Tr,3
State 3 (S3)

r8 = To,3 − Tm,3 State 3 (S3)

r9 = fdesign − Tm,4−Tr,4

To,4−Tr,4
State 4 (S4)

r10 = Ts,2→3 − Tm,2→3 −
ˆ̇Wfan

ˆ̇msĉp
Transitions from State 2 to State 3 (S2→3)

r11 = To,2→3 − Tm,2→3 Transitions from State 2 to State 3 (S2→3)

r12 = Ts,3→2 − Tm,3→2 −
ˆ̇Wfan

ˆ̇msĉp
Transitions from State 3 to State 2 (S3→2)

r13 = To,3→2 − Tm,3→2 Transitions from State 3 to State 2 (S3→2)

(applicable in S4) is impacted by Fault 1 and the residuals r6 (in S2), r7 and r8 (in

S3), r9 (in S4), r10 and r11 (in S2→3), and r12 and r13 (in S3→2) are impacted by Fault

2. Therefore, Fault 1 is detectable in S4 and Fault 2 is detectable in S2, S3, S4, S2→3,

and S3→2 using the residual analysis (see also, Table 3.3).

In the rest of the manuscript, we will utilize Fault 1 in State 1 and Fault 2 in State 2

for the purpose of comparison. To understand the residual definitions better, consider

the mathematical representation of the residual r5, applicable in State 1 (S1) given

by Eq. (3.1):
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r5 = fdesign −
Tm,1 − Tr,1

To,1 − Tr,1

(3.1)

where Tm,1, Tr,1, and To,1 are mixed, return, and outdoor air temperatures in S1 and

fdesign is the estimated (design) value of outdoor air fraction. In addition, the residual

r6, that can be used in State 2 (S2), is computed using Eq. (3.2):

r6 = Ts,2 − Tm,2 −
ˆ̇Wfan

ˆ̇msĉp
(3.2)

where Ts,2 and Tm,2 are supply and mixed air temperatures in S2, respectively, ˆ̇Wfan

is the design value of supply fan power, ˆ̇ms is the design value of mass flow rate of

supply air, and ĉp is the design value of specific heat of the moist air mixture at

constant pressure. The design values of the parameters in Eq. (3.1) and Eq. (3.2)

were determined through numerical experiments and are listed in Table 3.2.

Table 3.2: Design values of parameters in the model-based residuals

Parameter Value
fdesign 0.3
ˆ̇Wfan 7.14 kW
ˆ̇ms 10.53 kg/s
ĉp 1.02 kJ/(kg ◦C)

Remark 1. Note that the testbed is simulated based on established component and

system models (see Norford and Haves (1997), Haves et al. (1998), and DeSimone

(1995)). Based on idealized flow relationships of a single-duct VAV AHU and the

zones it serves, the models are implemented in HVACSIM+ (see Park et al. (1985)).

Significant changes to the simulation testbed, described in detail by Norford and Haves

(1997), are outlined in Seem and House (2009). All simulations are implemented for

one year of operation under either normal or faulty conditions.
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Figure 3.5: Residuals for the normal (solid blue lines) and faulty (dotted red lines)
operating conditions: Residual r5 when Fault 1 occurs (top) and Residual r6 when Fault 2

occurs (bottom). The vertical gray line separates normal and faulty data.

Application of the model-based residuals

In order to assess the capability of the model-based residuals (r5 and r6) to detect

Faults 1 and 2, respectively in S1 and S2, the values of these residuals are computed

for normal and faulty conditions as shown in Fig. 3.5. It should be noted that the

observations are not contiguous in time because the values are only plotted when the

system is operating in the state where each residual is applicable. For this reason, the

number of observations for the residual r6 (in S2) in the normal condition is greater

than those for the residual r5 (in S1), due to the fact that the AHU was operating

in S2 more than S1 (see, also Fig. 3.3). The expected values for the residuals r5 and

r6 in the normal operations are calculated using Eq.(3.1) and Eq. (3.2), respectively,

and shown in Fig. 3.5. Note that the residual r5 is unitless, while the residual r6 has

units of temperature (◦C in this case).

From Eq. (3.1), the residual r5 is the difference between the design minimum fraction
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of outdoor air, fdesign, and the difference between the mixed air and return air tem-

peratures, Tm,1 − Tr,1, divided by the difference between the outdoor air and return

air temperatures, To,1 − Tr,1. Recall that in S1 the minimum amount of outdoor air

that is needed for ventilation is used (cold outdoor conditions). Given that To,1 < Tr,1,

from an energy balance it can be concluded that Tm,1 < Tr,1. Thus both numerator

and denominator values in the second term of this equation have negative values. In

the presence of Fault 1 (return air temperature sensor offset of 2 ◦C), that results in

the lower sensor reading, Tr,1 − β, where β is the offset value, changing from 0 ◦C to

2 ◦C gradually over time, the value of second term in Eq. (3.1) becomes less than

the nominal value considering that Tm,1 − Tr,1 > To,1 − Tr,1 and β < | To,1 − Tr,1 |.

Subtracting this value from fdesign results in increasing the value of residual r5 in

the presence of Fault 1 (the magnitude of the increase of the residual depending on

the offset value). Similarly, Eq. (3.2) reveals that the difference between the supply

and mixed air temperatures should be equal to the temperature rise caused by heat

from the fan in S2 for the normal conditions. Recall that the mixing-box dampers

are modulated in S2 to control the supply air temperature. In the presence of Fault

2 (mixed air temperature sensor offset of 2 ◦C), the lower sensor reading, Tm,2 − β,

results in increasing the value of the residual r6.

To evaluate the residual ability to detect these faults, the observed values of the

residuals are calculated in the presence of faults and shown in Fig. 3.5. As can be

seen, while there is some increase in the value of r5, this increase is not significant

compared to the normal conditions. In contrast, the difference between the normal

and faulty values of the residual r6 can be readily observed over time. Thus, from a

qualitative standpoint, it can be concluded that Fault 1 is not detectable in S1, but

Fault 2 can be detected in S2 using the residual analysis. A key recognition that must

be emphasized here is that it is possible to change the definition of r5 to make it more

sensitive to Fault 1, and thus be able to detect it. The contribution of the present

manuscript is to show how residuals defined on the basis of first-principles knowledge
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can be supplemented with data-driven approaches to detect faults without having to

re-calibrate the first-principles residuals when, for instance, they become less sensitive

to certain faults due to changes in the operating conditions.

3.2.3 Fault detection with statistical approaches

In this section, the objective is to utilize Hotelling’s T 2 and square prediction error

(SPE) charts to detect and monitor abnormal behaviors of the process (see e.g., Yoon

and MacGregor (2000), Yoon and MacGregor (2001), Kourti (2005), and MacGregor

and Cinar (2012)). Principal component analysis (PCA) is first employed to not

only reduce the dimensionality of the data space, but also address multi-collinearity

among process variables. The PCA technique projects the data samples onto the new

orthogonal variable space of principal components (PCs) or latent variables space,

which are sorted such that the first few explain the highest possible amount of variation

in the original space of real variables. The mathematical formulation of PCA model

is defined as:

X = TP T + E (3.3)

where X is an (N ×K) standardized matrix containing K process variables (columns)

and N observed values (rows), T is an (N × A) matrix of latent variable scores (new

mutually uncorrelated variables), and P is a (K × A) matrix of orthogonal loading

vectors that determines the orientation of the latent space. Note that the loading

vectors are the eigenvectors of the covariance matrix of X (XTX/(N − 1)) relevant

to the A largest eigenvalues (A < K). In Eq. (6.8), the first term (TP T ) explains

the modeled variations of X and the second term (E) defines the residual or the

unmodeled variations of X.

65



PhD Thesis - Hesam Hassanpour; McMaster University - Chemical Engineering

In order to develop a PCA model, the data matrix of N observations on K variables is

first mean centered and scaled to obtain zero mean and unit variance in each column

of preprocessed matrix X. Next, orthogonalization techniques such as singular value

decomposition (SVD) or nonlinear iterative partial least squares (NIPALS) are applied

to calculate the principal component loading vectors (SVD is employed in this work

to calculate principal components). There also exist several criteria for choosing

the number of PCs. To this end, cumulative percent variance (CPV) (see e.g., Li

et al. (2000)) or cross validation techniques (see e.g., Wold (1978) and Eastment

and Krzanowski (1982)) can be performed to determine the number of PCs. After

computing the loading vectors, the score matrix that contains the values of scores

corresponding to each observation is computed as follows:

T = XP (3.4)

Having obtained the PCA model (loading vectors) describing the normal condition

of the process, the Hotelling’s T 2 and SPE statistics can be calculated for any new

observation to detect an abnormal behavior that may occur throughout the process.

The value of Hotelling’s T 2 statistic for the ith observation is calculated by Eq. (3.5):

T 2
i =

A∑
a=1

(
ti,a
sa

)2

(3.5)

where A is the number of PCs, s2a is the variance of the corresponding component (la-

tent variable). Assuming that data samples follow a multivariate normal distribution

(see e.g., Jackson and Mudholkar (1979), Kourti and MacGregor (1996), and Joe Qin

(2003)), the Hotelling’s T 2 statistic is computed using Eq. (3.6):
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T 2
UCL =

(N − 1)(N + 1)A

N(N − A)
Fα(A,N−A) (3.6)

where Fα(A,N−A) denotes the upper 100α% critical point of the F-distribution with

(A,N − A) degrees of freedom. The SPE statistic for ith observation determines the

residual distance between the sample and its projection onto the model plane (PCs

subspace) and is given by:

SPEi = x̃T
i x̃i = xT

i (I − PP T )xi (3.7)

where x̃ is the residual vector (xi − x̂i), and x̂i is the reconstructed vector of the

observation. The upper control limit for the SPE statistic with a significance level α

is calculated as follows (see Jackson and Mudholkar (1979)):

SPEUCL = θ1

(
cα
√

2θ2h2
0

θ1
+

θ2h0(h0 − 1)

θ21
+ 1

)1/h0

(3.8)

where cα is the normal deviate relevant to the upper (1− α) percentile. θi (i = 1, 2,

3) and h0 are given by the following equations:

θi =
K∑

j=A+1

λi
j (3.9)

h0 = 1− 2θ1θ3
3θ22

(3.10)

where λj is the jth eigenvalue corresponding to the covariance matrix in descending

order.
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The Hotelling’s T 2 represents the distance from the center of the model plane to the

projection of a data point onto the model plane, while SPE denotes the perpendic-

ular distance between the data point and its projection onto the model plane. The

possible deviations from the normal correlation existing in the process variables can

be captured by measuring these two variables. Hence, they are commonly used for

fault detection and diagnosis.

Statistical model-based fault detection design

The statistical model-based fault detection strategy is designed in this section. The

PCA models, developed using historical data for normal operating conditions, are

used to detect future faults that may occur in the system. The procedure for fault

detection can be summarized as follows:

1. Standardizing training data and building the PCA model:

(a) The normal data samples (training data) for temperature measurements

in different locations of the AHU, which are supply air temperature (Tsa),

return air temperature (Tra), outdoor air temperature (Toa), and mixed

air temperature (Tma), are first segregated into 8 categories, corresponding

to different operational states or state transitions for which the residual

models are developed. These 8 operating conditions are S1, S2, S3, S4,

S1→2, S2→1, S2→3, and S3→2 (see Table. 3.1).

(b) Each data category is mean-centered and scaled to unit variance to develop

the PCA model for that particular state.

(c) Next, the upper control limits for Hotelling’s T 2 and SPE statistics are

determined with 99% control limits.

2. Monitoring new observations (fault detection):
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(a) A new observation is then measured online and standardized (centered and

scaled). Note that the mean and standard deviation values of the training

data (used to construct PCA model for normal conditions) are used to

standardize test sets.

(b) The mean centered and scaled data are projected onto the existing PCA

model (projection of the new observation onto the principle component and

residual subspaces).

(c) The Hotelling’s T 2 and SPE statistics of the new observation are computed.

(d) Finally, the score plot, Hotelling’s T 2, and SPE values of the new observa-

tion are analyzed to detect an abnormal condition. A fault is indicated if

either the Hotelling’s T 2 or SPE statistic (or both) exceeds its correspond-

ing upper control limit.

A flow chart depicting the steps for the data-driven fault detection approach (without

considering the steps required for the hybrid approach which are colored by blue) is

shown in Fig. 3.6.

Remark 2. Note that choosing the number of principal components (PCs) in a PCA

model is an important issue to retain as much original variance as possible. In this

work, cumulative percent variance (CPV), one of the popularly used methods, is used

in order to determine the number of PCs. In CPV, the number of PCs is chosen such

that the variance, explained by the PCA model, reaches a predetermined percentage

(e.g., 75% in this paper). In addition, in order to determine the number of PCs, it is

considered that the number of PCs (A) does not exceed half of the number of variables

(K/2), but this condition is considered only if the previous condition is satisfied.
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Figure 3.6: Outline of the data-driven and hybrid fault detection strategies.

Application of statistical model-based fault detection design

In this section, the statistical model-based approach described in Section 3.2.3 is ap-

plied to the benchmarks, mentioned earlier, to assess the capability of the data-driven
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method to detect faults. The normal data samples corresponding to the temperature

measurements in different locations of the AHU, as shown in Fig. 3.4, are divided into

8 categories depending on the operating state of the AHU. Then the data category

corresponding to State 1 (S1) is used to build the PCA model. As shown in Fig. 3.7

(left half), when the number of PCs is two, the CPV value exceeds the predetermined

percentage (75%), and therefore, two principal components are considered to build

the PCA model resulting in 82% variance explanation. Note that the data set re-

lated to the S1 contains 4590 observations for one year of normal operation. Having

obtained the PCA model for the normal conditions in S1, the procedure explained

above is applied to the new observations (test set) corresponding to Fault 1. The

test set contains the first 2500 faulty observations in January, February, and March.

Fig. 3.8 compares the score values relevant to normal conditions with those obtained

when Fault 1 occurred. As can be seen, there are many overlaps between normal

and faulty data samples, making it difficult to distinguish between normal and faulty

observations.

Figure 3.7: Plot of the CPV values versus the number of PCs to train the PCA model (in
the data-driven approach) for State 1 (left half) and State 2 (right half) of the AHU.

In addition, the statistics Hotelling’s T 2 and SPE are evaluated in Fig 3.9. Although

the Hotelling’s T 2 values for many observations go beyond the control limit (especially
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Figure 3.8: Comparison of score values for the normal (blue squares) and faulty (green
circles) conditions in the presence of Fault 1 (return air temperature sensor offset) obtained

using the data-driven method (PCA on temperatures).

those that are approximately between the 1000th and 1500th observations after the

fault occurrence), most of them are below the control limit, which makes it difficult

to identify faulty data samples. On the other hand, the SPE values exceed the control

limit at approximately the 1600th observation after the fault occurrence, resulting in

detection of approximately 36.0% of faulty data samples. Recall that the bias faults

are introduced gradually over a three-month period from 0 ◦C to 2 ◦C (final bias

value), but the present analysis focuses on January, February, and March for all the

approaches to evaluate the ability to detect incipient faults.

In order to detect Fault 2 in State 2 (S2), the PCA model is first developed using

the normal data samples related to the second operating state of the AHU. Fig. 3.7

(right half) shows that the CPV value exceeds the predetermined percentage when

the number of PCs is two. Thus, two principal components, resulting in 86% variance

explanation, are considered to construct the PCA model for S2. The steps mentioned

in the previous section are then applied for fault detection. It should be mentioned
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Figure 3.9: Comparison of Hotelling’s T 2 (top) and SPE values (bottom) for the normal
and faulty conditions (in the presence of Fault 1) obtained using the data-driven method:

Training data (solid blue lines) and observations (dotted green lines) corresponding to
Fault 1. The vertical gray line separates normal and faulty data.

that the normal training data used to build the PCA model for AHU in S2 contains

7060 observations in one year of operation and the test set contains the first 2500

faulty observations for the months of January, February, and March. The score values

for the normal and faulty conditions are shown in Fig. 3.10. It is not possible to

distinguish faulty samples from normal ones due to the overlaps in the observations.

Fig. 3.11 shows the Hotelling’s T 2 and SPE values corresponding to the normal and

faulty conditions. As shown in the Hotelling’s T 2 plot, the variation of the projected

values of the faulty observations onto the principal component subspace is masked by

the variation of observations corresponding to the normal conditions (training data),

and therefore, this fault is not detectable using Hotelling’s T 2 statistic. A similar

scenario can be observed in the variability of data samples in the residual subspace

using the SPE statistic.

73



PhD Thesis - Hesam Hassanpour; McMaster University - Chemical Engineering

Figure 3.10: Comparison of score values for the normal (blue squares) and faulty (green
circles) conditions in the presence of Fault 2 (mixed air temperature sensor offset) obtained

using the data-driven method (PCA on temperatures).

Figure 3.11: Comparison of Hotelling’s T 2 (top) and SPE values (bottom) for the normal
and faulty conditions (in the presence of Fault 2) obtained using the data-driven method:

Training data (solid blue lines) and observations (dotted green lines) corresponding to
Fault 2. The vertical gray line separates normal and faulty data.
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3.3 Proposed hybrid approach for fault detection in

HVAC systems

The performance of the model-based residuals and the data-driven method for de-

tecting two faults was assessed in the previous sections. Although it was shown that

the apparent impact of Fault 1 in S1 on the residuals is small, further data analysis

of the residuals may reveal some useful information for fault detection. On the other

hand, it was observed that the purely data-driven method is not able to clearly dis-

tinguish faulty data from normal data. Therefore, in the hybrid approach for fault

detection, the objective is to integrate the first-principles knowledge (model-based

residuals) with a data-driven approach (PCA) to first model the process behavior for

the normal conditions and then employ the hybrid model for fault detection of HVAC

systems. As mentioned in Section 3.2, the first step to develop the PCA model is to

segregate training data into the various categories according to the operating state of

the AHU. In addition, the residual models were developed depending on the operating

state in the AHU (Seem and House (2009)). The key idea in the proposed approach is

to introduce the applicable residual(s) as a new variable(s) (new column or columns)

to the training matrix data corresponding to each particular operating state. Then

the hybrid PCA model can be developed using the temperature measurements and

the new residual data for each state of the AHU. In summary, the hybrid-based fault

detection strategy can be performed using similar steps as outlined in Section 3.2.3 for

the data-driven approach except that the residuals relevant to each operating state

are added to the temperature variables in the first stage to build the PCA model.

The flow chart describing the proposed hybrid fault detection strategy is depicted in

Fig. 3.6.
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3.3.1 Application of hybrid-based fault detection design

The hybrid approach is applied to the benchmarks described above. The observations

corresponding to the residual r5, developed in State 1 and described by Eq. (3.1), are

utilized together with the temperature measurements (Tsa, Tra, Toa, and Tma) to build

the hybrid PCA model for the normal conditions. Fig. 3.12 (left half) shows that

74% of the original data variance is explained using two principal components, which

is deemed sufficiently close to the predetermined percentage of 75% to justify using

two rather than three or more principal components. This model is then employed

to detect Fault 1. Note that the residual r5 is the only residual applicable in State 1.

It should also be noted that the variance explanation using the hybrid PCA model

is less than the variance explained by the PCA model obtained in previous approach

because the same number of principal components (two components) are considered

to explain the variance of the data with more features (the temperature measurements

and the residual). That said, even though the PCA model explains less of the variance

(due to a larger number of variables), it is able to capture the variable relationships

better. In particular, as shown in Fig. 3.13, the differences between the score values

of the normal and faulty conditions can be easily observed. It should be mentioned

that the data samples in the upper right-hand corner of this figure correspond to the

largest sensor offsets. Thus, the presence of the fault becomes more obvious as the

severity of the fault increases. The Hotelling’s T 2 and SPE statistics are illustrated

in Fig. 3.14. As can be seen in this figure, the Hotelling’s T 2 statistic exceeds the

99% control limit at approximately the 470th observation after the fault occurrence

and continues to increase, resulting in the detection of 81.2% of faulty data samples.

The differences between the variation of the projected faulty samples and normal

observations onto the principal component subspace can be readily observed using

this method compared to the purely data-driven approach (see Fig. 3.9). In addition,

the SPE values exceed the limit at approximately the 160th observation after the fault
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occurrence, leading to the detection of 93.6% of faulty data samples. Hence, applying

the hybrid approach not only improves the capability of fault detection (the differences

between normal and faulty behaviors can be readily observed using all indices), but

also reduces the time needed to detect the fault.

Figure 3.12: Plot of the CPV values versus the number of PCs to train the PCA model
(in the hybrid approach) for State 1 (left half) and State 2 (right half) of the AHU.

Figure 3.13: Comparison of score values for the normal (blue squares) and faulty (red
circles) conditions in the presence of Fault 1 (return air temperature sensor offset) obtained

using the hybrid method (PCA on temperatures and residuals).
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Figure 3.14: Comparison of Hotelling’s T 2 (top) and SPE values (bottom) for the normal
and faulty conditions (in the presence of Fault 1) obtained using the hybrid method:

Training data (solid blue lines) and observations (dashed red lines) corresponding to Fault
1. The vertical gray line separates normal and faulty data.

The hybrid PCA model is developed for State 2 using the residual r6, given by Eq.

(3.2), and temperature variables. Note that the residual r6 is the only residual ap-

plicable in State 2. The model uses two principal components which explain 76%

of the original data variance (see Fig. 3.12 (right half)). The hybrid PCA model is

then employed in the fault detection strategy, described above, to identify Fault 2.

As illustrated in Fig 3.15, a significant difference between score values of normal and

faulty observations can be readily observed. In addition, as the severity of the fault

increases, the fault becomes more conspicuous. This can be understood by observing

the data samples in the lower right-hand corner of this figure. Fig. 3.16 shows the

values of Hotelling’s T 2 and SPE statistics for normal and faulty conditions. As can

be seen in this figure, the variation of the projected values of the faulty observations

onto both the principal component and residual subspaces is readily distinguishable

from the observations corresponding to the normal conditions. Both Hotelling’s T 2
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and SPE indices quickly exceed the 99% control limits at approximately the 200th and

140th observations after the fault occurrence, respectively, resulting in the detection

of 92.0% and 94.4% of faulty data samples.

Remark 3. It should be mentioned that it is possible to observe more than one cluster

for each specific normal and faulty data set based on the operating conditions of the

AHU. As shown in Figs. 3.10 and 3.15, there are two distinct clusters for data samples

relevant to the normal conditions. The blue squares in these figures show the normal

data samples corresponding to State 2 for one year of operation. Because there are

two values for the supply air temperature set-point (12.78 ◦C for April 1 to October

31 and 15.56 ◦C for the remaining months) and the fact that State 2 can be active in

both scenarios (see Fig. 3.3), each cluster contains the data samples related to each

set-point value. Furthermore, the faulty data forms one cluster (green circles in Fig.

3.10) because the considered fault is analyzed in January, February, and March when

the set-point value is fixed at 15.56 ◦C. On the other hand, one cluster is observed for

normal data samples corresponding to State 1, as shown in Figs. 3.8 and 3.13 owing

to the fact that when the system operates in this state the set-point value is also fixed

at 15.56 ◦C.

In addition, further analyses are performed that revealed Fault 1 and Fault 2 could

be identified in other operating states and transitions. As before, the residual infor-

mation relevant to each state or transition is used, together with the temperature

measurements to first develop the hybrid PCA model and the fault detection strat-

egy is then applied. Note that for operating states and transitions with more than

one residual such as S3, S2→3, and S2→3 (see Table 3.1), all residual variables can

be integrated with the temperature measurements to build the hybrid PCA model.

For instance, two residuals r7 and r8 are used in State 3 (S3), in addition to the

temperature measurements, to construct the hybrid PCA model for this operating

state. A summary of the fault detection results for Fault 1 and Fault 2 and operation
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Figure 3.15: Comparison of score values for the normal (blue squares) and faulty (red
circles) conditions in the presence of Fault 2 (mixed air temperature sensor offset) obtained

using the hybrid method (PCA on temperatures and residuals).

corresponding to all states and transitions is presented in Table 3.3.

As summarized in Table 3.3, the hybrid method proposed here demonstrates the

best performance of the methods and for the faults considered. As can be seen in

Fig. 3.5, a visual inspection of the residual data for Fault 1 in State 1 (S1) does not

reveal an obvious deviation from operation under the normal conditions. However, the

data-driven approach is able to identify this fault using SPE statistics. In addition,

applying the hybrid method enables us to detect this fault, using all indices (score

plot, Hotelling’s T 2, and SPE statistics), earlier than the data-driven approach. In

addition, the residual analysis is able to detect Fault 2 in State 2 (S2), but this fault

is not detectable using the data-driven approach, while the hybrid-based technique

can detect this fault using all indices. Note in Table 3.3 that an asterisk superscript

denotes a state in which the fault is detectable using one index (SPE, for example)

over a longer time period (similar to Fault 1 in S1). This table also shows the superior

capability of the proposed hybrid approach to detect the considered faults in the other
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Figure 3.16: Comparison of Hotelling’s T 2 (top) and SPE values (bottom) for the normal
and faulty conditions (in the presence of Fault 2) obtained using the hybrid method:

Training data (solid blue lines) and observations (dashed red lines) corresponding to Fault
2. The vertical gray line separates normal and faulty data.

operating states of the AHU compared to the first-principles (residual analysis) and

the data-driven methods. It can be observed that Fault 1 is only detectable in S4

based on the residual analysis. Although this fault is detectable in all operating

states of the AHU using the data-driven and hybrid techniques, quicker detection in

S1 can be achieved using the hybrid method. The ability to detect Fault 2 in all states

is achieved by using the hybrid approach compared to the residual analysis and the

data-driven method, which can detect this fault in only some states as summarized

in the Table 3.3.

Remark 4. Note that the hybrid method uses the residual models developed consid-

ering that steady-state conditions prevail in the AHU. Thus, this method is applicable

while the AHU is operating in steady-state conditions. However, in the cases where

dynamic models of the residuals can be developed, they can be integrated with dynamic
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Table 3.3: Summary of states and state transitions where faults can be detected
with different approaches

Fault Residual Analy-
sis

Data-driven
Method

Hybrid Method

Fault
1

S4 S∗
1 , S2, S3, S4, S1→2,

S2→1, S2→3, S3→2

S1, S2, S3, S4, S1→2,
S2→1, S2→3, S3→2

Fault
2

S2, S3 , S4, S2→3,
S3→2

S∗
4 , S1→2, S2→1,

S∗
2→3, S∗

3→2

S1, S2, S3, S∗
4 , S1→2,

S2→1, S2→3, S3→2

* The fault is detectable using one index.

principal component analysis (DPCA) to develop a dynamic hybrid-based fault detec-

tion methodology.

Remark 5. Note that the residual equations are both linear (Eq. 3.2) and nonlinear

(Eq. 3.1) functions of the temperatures in different locations of the AHU. Although

the principal components are constructed using linear combination of the temperature

variables (in the case of purely data-driven approach), adding the residual r6, which is

the linear function of supply and mixed air temperatures enables the hybrid approach

to improve the fault detection performance as shown for Fault 2 in State 2. This can

be understood as follows: in this instance, use of r6 enables a rescaling of variables in

a fashion that uses the first-principles knowledge, thus making the resultant residuals

more sensitive to faults, resulting in successful fault detection. On the other hand,

improved performance of the hybrid approach in comparison to nonlinear residuals

can be understood as follows: It is possible that a re-definition of the residuals (likely

involving additional temperature measurements) would enable first-principles residuals

to work just as effectively as the hybrid approach. The benefit of the hybrid approach is

that it allows the use of appropriate information available in the data for the purpose

of fault detection.
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3.4 Conclusion

In this study, a hybrid modeling technique, integrating first-principles knowledge with

data-driven modeling approach, is proposed for fault detection in HVAC systems.

The residuals (developed from first-principles models) and temperature variables are

utilized to first develop a hybrid PCA model in each operating state of the AHU.

Then the model is employed to detect faults in operational data corresponding to that

state. The superior capability of the proposed method is demonstrated compared to

two other approaches, the residual analysis and the data-driven method (PCA on

temperatures), through the simulation results for two fault cases (return and mixed

air temperature sensor faults).
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Abstract

This work addresses one aspect of the overparameterization problem in us-

ing artificial/recurrent neural networks (ANN/RNN) based dynamic models for

model predictive control (MPC) implementations. The manuscript presents an

approach to handle situations where the training data may not be sufficiently

rich, and in particular, for handling historical data with correlated inputs. Two

approaches are proposed. The key idea in the first method is perform principal

component analysis (PCA) on input space and then utilize the scores to build a

PCA-RNN model. Next, a PCA-RNN-based MPC is designed to compute the

optimal values of scores and subsequently determined the manipulated inputs.

An alternative solution is proposed in the second approach by proposing a new

constraint on squared prediction error (SPE) statistic in the RNN-based MPC

to make prescribed inputs follow the PCA model constructed for training input

data. Finally, an approach is presented that allows to break the correlation in

the MPC implementation while maintaining model validity. This is done by first

generating richer closed-loop data by implementing the SPE based MPC with

slightly relaxed constraints (thus compromising only slightly on the closed loop

performance). Then the new data is utilized to re-identify the model, and for

use in the MPC. The efficacy of the proposed approaches to handle the problem

of set-point tracking is evaluated using a chemical reactor example. The results

are compared with a nominal MPC design, and the superior performance under

the proposed formulations demonstrated.

4.1 Introduction

Automatic control systems have been widely utilized in industrial processes to improve

operating efficiencies. Existing challenges in process operations such as nonlinearity,

multi-variable interactions, and process constraints make the design of an optimal
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controller an essential task. In this direction, advanced process control strategies and

especially model predictive control have been successfully developed to cope with pro-

cess constraints and achieve economic objectives. Addressing the problem of system

identification, to build and develop a reliable and accurate process model as a part of

an MPC framework, plays an important role in the successful implementation of this

approach.

Given the increased availability of process data, and the challenges associated with

developing and maintaining a first principles model, there is significant interest in

utilizing data driven approaches such as subspace identification, artificial neural net-

work (ANN), principal component analysis (PCA), and projection to latent structures

(PLS) to identify and develop appropriate dynamic models.

Data collection strategy and the operating conditions under which data is collected

can strongly affect the type of models and their performance. Perturbation of in-

puts using generally uncorrelated pseudo random binary sequence (PRBS) or random

Gaussian signals (RGS), to excite the process, is one of the approaches to generate rich

data for model identification (see e.g., Shariff et al. (2013)). However, the standard

uncorrelated input signals sometimes are not applicable due to the necessity for the

satisfaction of other constraints such as output constraints or integral controllability

during identification process. Thus, alternative approaches to uncorrelated inputs

are proposed in the literature to design appropriate input signals for identification of

dynamic models, especially for ill-conditioned systems (see e.g., Darby and Nikolaou

(2009) and Darby and Nikolaou (2014)). In other approaches, considerations such

as unstable open-loop characteristic, production, economic, and safety concerns have

motivated the application of closed-loop identification techniques (see e.g., Forssell

and Ljung (1999), Ljung (1999), Qin and Ljung (2003), and Huang et al. (2005)).

To this end, there are several approaches that address the problem of closed-loop

identification using data obtained without excitation of the reference signals (see e.g.,
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Shardt and Huang (2011a) and Shardt and Huang (2011b)), applicable to processes

with sufficiently large time delay or adequately fast sampling time. Other approaches

consider the minimal required excitation conditions for a reference signal to identify

the process model (see e.g., Shardt et al. (2015)). In essence, these techniques rely

on the inadequacy of the closed-loop controller to tease out the model dynamics from

closed-loop data.

Data driven and machine learning (ML) based techniques have recently received signif-

icant attention to model process dynamics for the purpose of control. In one direction,

subspace identification approaches are utilized to identify process dynamics to be em-

ployed as a part of MPC framework (see e.g., Shi and MacGregor (2001), Hale and

Qin (2002), Corbett and Mhaskar (2016), Kheradmandi and Mhaskar (2018a), and

Kheradmandi and Mhaskar (2018b)). Due to the significant impact of the features

on the performance of the trained model, feature selection strategies are considered

as a common preprocessing step utilized for most practical machine learning-based

applications. In this direction, PCA is one of the popular multivariate statistical

techniques used for dimensionality reduction. A number of PCA-based feature selec-

tion strategies appropriate for building process models are proposed in the literature

(see e.g., Lu et al. (2007), Song et al. (2010), Janakiraman et al. (2013), and Drgoňa

et al. (2018)). In addition, several approaches are proposed to design latent variable

model predictive control algorithms based on PCA models (see e.g., Flores-Cerrillo

and MacGregor (2005), Golshan et al. (2010), and Godoy et al. (2016)). Recently,

other machine learning-based techniques such as artificial neural networks are seeing

increased interest in being deployed to model and design MPC for nonlinear systems

(see e.g., Bhat and McAvoy (1990), Ramchandran and Rhinehart (1995), Nikravesh

et al. (2000), Kittisupakorn et al. (2009), Sadeghassadi et al. (2018), Wu et al. (2019a),

and Wu et al. (2019b)). However, because of the large number of parameters, a signif-

icant amount of data is required to achieve a fairly accurate model, and the problem

of over-fitting remains a challenge, especially in the context of closed-loop implemen-
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tations. The negative implications of the over-fitting problem would get exacerbated

in situations where the data has been generated under closed-loop conditions that

might be inducing co-linearity in certain inputs and outputs- and if data generated

from that model is to be used for model identification, to be in turn utilized in a

model predictive control implementation without the original co-linearity in place.

Note that one solution to the problem is to first redesign the existing control struc-

ture to break the correlation, generate new data, and then identify a model. Where

possible, such a solution is certainly viable. The present manuscript, however, focuses

on the problem where practical limitations (often arising in industrial settings) do not

permit changing the existing control structure, but instead, a model identification and

control strategy is required that is able to use the existing data to build a reasonably

good MPC implementation, and then subsequently improve upon it, if possible.

Motivated by above considerations, the present manuscript addresses the problem

of model identification in the presence of co-linearity in the inputs in the training

data. A base case scenario is used for comparison where the training data is used to

build an input output RNN model, and used directly in the MPC implementation.

As expected, under MPC implementation, breaking of the correlation between the

inputs leads the process to a region where the model is no longer valid, leading to

poor performance. To address this, two approaches are presented. In the first ap-

proach, a combination of PCA and RNN is utilized to model the process dynamics

and employed in MPC implementation in a way that naturally respects the corre-

lation observed in the training data. In the second approach, the base case RNN

model is used in MPC, but a new constraint on squared prediction error (SPE) is

included to ensure that the control moves remain in the same plane as the training

data. Next, an approach is presented to fully exploit the performance enhancement

capabilities of MPC, i.e., allow the MPC to break the input correlation seen in the

training data, while not loosing model validity. To achieve this, the process is first

run under MPC, albeit with slightly relaxed constraints on the SPE, thus generating
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richer data (while only slightly compromising on the performance). A model identi-

fied using this new data is next used in the MPC implementation to achieve superior

performance. The rest of the manuscript is organized as follows: In Section 6.2, a

brief description of a continuous stirred tank reactor (CSTR) simulation test bed is

presented. Then a review of the RNN-based model identification technique, principal

component analysis (PCA), and the RNN-based MPC design is provided. In addition,

the base case RNN-based MPC is implemented to the motivating example to illus-

trate the specific problem being addressed. In Section 5.3, the proposed approach for

model identification, combining PCA and RNN techniques, and the PCA-RNN-based

MPC design is presented. Furthermore, a remedy for the base case RNN-based MPC

approach is proposed. Then the efficacy of the proposed approaches is evaluated by

implementing to the CSTR example. Next, model re-identification methodology is

proposed in Section 4.4 to generalize the model validity and then the effectiveness of

this approach is illustrated through implementation to the CSTR example. Finally,

concluding remarks are presented in Section 6.5.

4.2 Preliminaries

In this section, a Continuous Stirred Tank Reactor (CSTR) example is first described

to provide the motivation for proposed approach. Next, a brief review of the ap-

plication of artificial neural networks, especially RNN, to model process dynamics,

followed by a brief description of principal component analysis is provided. Finally, a

base case RNN model based MPC is implemented to illustrate the key problem being

addressed.
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4.2.1 Motivating Example: Continuous Stirred Tank Reactor

(CSTR)

Consider the CSTR example (Du and Mhaskar (2014)), in which an irreversible ele-

mentary exothermic reaction (A → B) occurs, for which a mathematical model de-

scribing the dynamics takes the following form:

ĊA =
F

V
(CA0 − CA)− k0e

−E/RTRCA

ṪR =
F

V
(T0 − TR) +

(−∆H)

ρcp
k0e

−E/RTRCA − UA

ρcpV
(TR − Tc) (4.1)

Ṫc =
Fc

Vc

(Tcf − Tc) +
UA

ρccpcVc

(TR − Tc)

where CA, TR, and Tc are concentration of reactant A, the temperature in the reactor,

and the temperature in the cooling jacket, respectively. F represents the volumetric

flow rate to the reactor with temperature T0 and concentration CA0 and Fc is the

cooling stream volumetric flow rate to the jacket with temperature Tcf . The values

of process parameters and the steady-state values of the variables are listed in Table

6.1.

Table 4.1: Parameter and steady-state values for the CSTR example

V = 100 L cpc = 4.20 J/(g K)
k0 = 7.20× 1010 min−1 CA0 = 1 mol/L
E/R = 8750 K T0 = 350 K
∆H = −2× 104 J/mol CAs = 0.83 mol/L
ρ = 1000 g/L TRs = 307.14 K
cp = 0.239 J/(g K) Tcs = 303.13 K
UA = 5× 104 J/(min K) Fs = 14.60 L/min
Vc = 20 L Fcs = 4.70 L/min
ρc = 1000 g/L Tcfs = 293 K
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The CSTR example is used to represent one instance of a control structure where

data may be available from process operation with more than one manipulated input

being used to control the same output. Thus, in this example, the reactor and cooling

jacket temperatures are controlled by manipulating feed flow rate to the reactor (F ),

the cooling stream flow rate to the jacket (Fc), and the cooling stream temperature

(Tcf ) by using PI controllers. The feed flow rate (F ) is manipulated to control the

reactor temperature (TR) in the first control loop and the cooling stream flow rate

and its inlet temperature (Fc and Tcf ) are manipulated in the second control loop

to maintain the jacket temperature (Tc), with the control actions being computed as

follows:

U(t) = K

(
KcE(t) +

Kc

TI

∫ t

0

E(t′)dt′
)

(4.2)

where U is the control signal, E is the error between set points s (R) and measured

process variables (Y , thus E = R − Y ), Kc is the proportional gain, and TI is the

integral time constant. Therefore, there are two pairings of controlled and manipu-

lated variables: 1. (F ) with (TR) in the first loop and 2. (Fc and Tcf ) with (Tc) in the

second loop. The values of the tuning parameters for the two PI controllers are listed

in Table 6.3. For the loop with two manipulated inputs and one output, the vector K

= [k1 k2]T in Eq. (6.2) is utilized to apply different degrees of the effectiveness on the

manipulated variables. For the first loop, where one manipulated input is utilized to

control one controlled variable, K is a scalar, and set to one. The values of k1 and k2

are used as -2 and 1, respectively for manipulated inputs (Fc) and (Tcf ) in the second

loop.

Instances of process data are generated by simulating the CSTR example in MATLAB.

Specifically, data for training and validation is generated by applying set-point changes
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Table 4.2: Tuning parameters for PI controllers

Kc1 = 0.66 Kc2 = 0.37
TI1 = 0.24 TI2 = 0.51

in TR and Tc for the process under the PI controllers. The simulation input/output

data relevant for training stage is shown in Fig. 4.1. Note that the over or under

shoots, in the times when the set-points are constant, are due to the fact that a

set-point change for the other output acts as a disturbance for the variable under

consideration. It should also be noted that the output deviation variables, T̄R =

TR−TRs and T̄c = Tc−Tcs , and input deviation variables, F̄ = F −Fs, F̄c = Fc−Fcs ,

and T̄cf = Tcf − Tcfs , are shown here.

4.2.2 System identification using artificial neural networks

The application of artificial neural networks in the area of modeling and identification

of dynamic systems has received significant attention in recent years. One approach

to model dynamics within ANN is to use the recurrent neural networks (RNN). Unlike

feedforward neural networks, the existence of delayed feedback loops in the structure

of RNN provides the network with a dynamic memory. Different types of RNN such

as nonlinear autoregressive network with exogenous inputs (NARX), layer recurrent

network (LRN), long short-term memory (LSTM) and gated recurrent unit (GRU)

have been developed and applied to process control (see e.g., Govindhasamy et al.

(2005), Wang et al. (2017), and Wu and Christofides (2019)), optimization (see e.g.,

Govindhasamy et al. (2005), Kusiak and Xu (2012), and Zhang et al. (2019)), and

fault diagnosis (see e.g.,Shahnazari et al. (2019)).

In this study, a NARX network is utilized to identify a dynamic model of the process

for illustrative purposes. The key idea of the approach remains applicable with other

kinds of dynamic ANN models. The NARX model can be mathematically expressed
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Figure 4.1: Model training data: measured outputs and manipulated variables under PI
controller (solid lines) and set-points (dotted lines).

as follows:

y(τ + Ts) = f [y(τ), y(τ − Ts), ..., y(τ − LyTs), u(τ), u(τ − Ts), ..., u(τ − LuTs)] (4.3)
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where y ∈ Rny and u ∈ Rnu represent the vector of measured outputs and inputs of the

system, respectively. τ , Ly, and Lu represent time, the number of lagged outputs, and

the number of lagged inputs required for prediction. In other words, the next value

of the dependent variables is regressed on past and current values of the dependent

and independent (exogenous) variables by NARX models. A multilayer perceptron

(MLP), a class of feedforward artificial neural networks, with the embedded memory

can be utilized to approximate the nonlinear function ‘f ’ in Eq. (5.3). The resulting

model is referred to as a NARX recurrent dynamic neural network (see e.g., Narendra

and Parthasarathy (1990)). A schematic of a NARX neural network is shown in Fig.

4.2 (left half). In the present manuscript, we use this RNN structure to illustrate the

key idea of the proposed approach.

Figure 4.2: Schematic of a NARX neural network based on: Inputs (left) and Scores
(right).

The data samples are first normalized and then fed to NARX network in MATLAB

Machine Learning and Deep Learning toolbox. The structure of the network (the

number of hidden layers and neurons) is chosen according to existing trial and error

approaches in the literature (see e.g., Zhang et al. (1998)). One hidden layer including

5 neurons with hyperbolic tangent activation function (tanh(x) = 2/(1 + e−2x) − 1)

is utilized. Linear activation function is utilized for the output layers and Bayesian

regularization backpropagation algorithm, updating the bias and weight values based
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on Levenberg-Marquardt optimization, is chosen to determine the value of these pa-

rameters in the model.

The capability of the trained RNN model to capture process dynamics is examined in

the validation stage. The validation data is generated by applying set-point changes

for PI controllers. The data samples for two process outputs, TR, and Tc, are shown

in Fig. 4.3, based on deviation variables. The output and input values are fed

to the trained NARX network to predict the outputs in the first sampling time.

Subsequently, the predicted outputs in this step are utilized to predict the outputs in

the next sampling time. This process is repeated to predict the process outputs in

the next sampling times and the results are shown in Fig. 4.3. As demonstrated, the

RNN model (dashed lines) is able to predict the values of the outputs fairly well.

Figure 4.3: Model validation results: measured outputs (solid lines), RNN model
prediction (dashed lines), PCA-RNN model prediction (dash-dotted lines), and set-points

(dotted lines).

101



PhD Thesis - Hesam Hassanpour; McMaster University - Chemical Engineering

4.2.3 Review of principal component analysis

In this section, some of the fundamental concepts behind principal component analysis

(PCA), one of the most popular latent variable methods, are reviewed. The objective

of PCA is to transform a set of observations of possibly correlated variables into a

latent space, where the new variables or principal components are uncorrelated. The

mathematical representation of PCA method can be stated as follows in Eq. (4.4):

X = TP T + E (4.4)

where X is a matrix with columns and rows containing the process variables and

their observations, respectively. T is a score matrix representing the new mutually

uncorrelated variables (principal components) by columns and projected values of the

observations by rows. P is a loading matrix, containing orthogonal loading vectors,

determining the orientation of the latent space. The principal components are ordered

so that the largest and smallest amount of variation in the data set is described by

the first and the last components, respectively. Note that the first term of Eq. (4.4)

(TP T ) explains the modeled variations of X and the second term (E) denotes the

residual or the unmodeled variations of X.

In order to apply PCA algorithm, the data matrix is first mean centered and scaled to

have zero mean and unity variance. Then, orthogonalization techniques such as singu-

lar value decomposition (SVD) or nonlinear iterative partial least squares (NIPALS)

can be utilized to compute the principal components. Cross validation techniques (see

e.g., Wold (1978) and Eastment and Krzanowski (1982)) can be applied to determine

the number of proper principal components.
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4.2.4 RNN-based model predictive control

Given an appropriate RNN model, the objective is to utilize the model in MPC

implementation. A representative RNN-based MPC formulation can be described as

follows:

minuk,...,uk+P

P∑
j=1

∥ỹk+j − ySPk+j∥2Qyr
+ ∥uk+j − uk+j−1∥2Rdu

s.t. RNN based Predictive Model,

umin ≤ u ≤ umax

(4.5)

where P represents the prediction horizon, ySPk+j is the desired set-point values for the

outputs, ỹk+j is the prediction of output at time (k + j)Ts, Ts = ∆τ is the sampling

time, Qyr and Rdu are penalty matrices corresponding to the output deviations from

the set-points and the rate of change in the inputs, and umin ∈ Rnu and umax ∈ Rnu

represent the lower and upper bounds of the manipulated inputs. It should be noted

that the RNN-based predictive model computes multi-step ahead predictions. Thus,

the initial values of inputs and outputs (lagged data) are fed to the model and then

the values of the outputs are calculated one step ahead. Afterwards, the predicted

outputs, along with candidate future input values are fed to the model to predict the

outputs two steps ahead. Subsequently, this procedure is performed recursively to

predict the outputs multi steps ahead up to the prediction horizon.

Next, the above representative RNN based MPC is implemented on the motivating

example, using the RNN model identified in the earlier section. Specifically, the RNN-

based identified model of the process, along with the constraints on the manipulated

inputs, where F̄ ∈ [0−Fs 60−Fs], F̄c ∈ [0−Fcs 15−Fcs ], and T̄cf ∈ [290.5−Tcfs 299−
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Tcfs ], are included in the RNN-based MPC represented by Eq. (4.5). The optimization

problem for the RNN-based MPC is solved using fmincon solver in MATLAB and the

parameters are chosen as follows: sampling time Ts = 30 s, prediction horizon P = 4,

Qyr = [1000 0; 0 1000], and Rdu = [1 0 0; 0 1 0; 0 0 1]. The output and input profiles

obtained by implementing the RNN-based MPC are shown in Fig. 4.4 (solid lines).

As shown, this approach fails to track the set-point values (dotted lines) of the reactor

and jacket temperature.

The reason why this approach fails can be explained by analyzing the capability of

the RNN model embedded in the RNN-based MPC framework. In particular, the use

of the RNN model in the above formulation leads to a plant-model mismatch due to

the fact that the model was identified using data with the two of the three inputs

being correlated, while in the MPC implementation, the inputs are allowed to take

independent values.
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Figure 4.4: Comparison of the closed-loop trajectories for the measured variables and the
profiles of the manipulated variables obtained from RNN-based MPC (blue solid lines),
PCA-RNN-based MPC (red dashed lines), and constrained RNN-based MPC (green

dash-dotted lines).
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4.3 Proposed approaches for model identification and

MPC design

4.3.1 PCA-RNN-based model identification

In the proposed approach for system identification, PCA is first utilized to eliminate

the correlations existing in the input data samples. Then, the scores (which are by

definition uncorrelated) are used to develop the model for the system using appropriate

machine learning-based techniques. Recall that co-linearity in the input space means

that it is impossible to identify the unique impact of each input variable. As a result,

any data-driven model that uses the raw inputs as manipulated variables without

considering the co-linearity would end up assigning arbitrary effects to the inputs.

By contrast, the scores calculated in a PCA model are inherently independent and

therefore represent directions of variation for which sufficient information is available

to identify the unique impact of this reduced dimensional input space on output

variables. The NARX utilizing the principle components takes the following form:

y(τ + Ts) = f [y(τ), y(τ − Ts), ..., y(τ − LyTs), t(τ), t(τ − Ts), ..., t(τ − LtTs)] (4.6)

where y ∈ Rny and and t ∈ Rnt represent the vector of measured outputs and scores,

respectively, and the current time is indicated by τ . The number of lagged outputs and

scores required for prediction are represented by Ly and Lt, respectively. A schematic

of a NARX neural network, utilizing PCA as a preprocessor, is shown in Fig. 4.2

(right half).

The NARX network is employed, using MATLAB Machine Learning and Deep Learn-
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ing toolbox, to determine the parameters in the function ‘f ’ in Eq. (4.6). To this end,

the data samples are first normalized and then PCA is applied to the input training

data samples shown in Fig. 4.1. Not surprisingly, the R-squared value suggests using

two principal components in the identified model. Next, the two scores and outputs

are utilized to train the RNN model. One hidden layer with 4 neurons is utilized in

the NARX network. The hyperbolic tangent activation function and linear transfer

function are employed in hidden and output layers, respectively. The Bayesian reg-

ularization backpropagation algorithm is chosen to update the values of weights and

biases based on Levenberg-Marquardt optimization. The capability of the PCA-RNN

model to predict outputs is shown in Fig. 4.3. It can be observed that the PCA-

RNN model has nearly the same capability as the RNN model to capture the process

dynamics. This is due to the fact that for the collected data (both for training and

validation) the same correlation between the two inputs (Fc and Tcf ) exists. It should

be noted that the objective of this work is not to show the performance improvement

of the PCA-RNN model over the RNN model for the same training and validation

data, but to readily enable the use of the resultant model in MPC to ultimately

compare the capability of the RNN-based MPC with the PCA-RNN-based MPC to

handle the problem of set-point tracking.

4.3.2 PCA-RNN-based model predictive control

With an appropriate PCA-RNN model being available, this section presents a model

predictive control algorithm utilizing this model, denoted as the PCA-RNN-based

MPC. To this end, the proposed PCA-RNN-based identification technique is first

applied to determine function ‘f ’ in Eq. (4.6). Then the identified PCA-RNN model

is embedded in MPC framework. Therefore, the scores, and subsequently control

actions, at each sample time can be computed as follows:
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mintk,...,tk+P

P∑
j=1

∥ỹk+j − ySPk+j∥2Qyp
+ ∥tk+j − tk+j−1∥2Rdt

s.t. PCA−RNN based Predictive Model,

ūmin ≤ tP T ≤ ūmax

(4.7)

where Qyp and Rdt are penalty matrices correspond to the output deviations from the

set-points and the rate of change in the scores, respectively, ūmin ∈ Rnu and ūmin ∈

Rnu are corresponding mean-centered and scaled values of the lower and upper limits

for the manipulated variables, and the rest of the parameters are as defined earlier.

From Eq. (4.7), we see that the scores are the decision variables of this optimization

problem. Therefore, applying PCA can be thought as a transformation that enables

us to design the controller in the uncorrelated space of scores.

Remark 1. The first objective and benefit of building and utilizing a PCA-RNN based

model is that the MPC computes the scores instead of the inputs- with the inputs being

computed by using the optimal score values. The inputs by design then retain the same

correlation as in the training stage, thus helping maintain validity. The other benefit

is computational. First off, there is dimensionality reduction in building the RNN

model, thus alleviating the computational cost (which admittedly is not a big concern,

given that the identification is off-line). The other compounded benefit though, is that

the number of decision variables in the MPC reduces, and the predictive model in the

MPC itself is slightly easier to compute- both resulting in a reduction in computation

times compared to a classical RNN-MPC implementation (see the simulation results

for a demonstration).
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4.3.3 Constrained RNN-based model predictive control

In this section, a remedy for standard RNN-based MPC approach is proposed. To this

end, a new constraint forcing the manipulated inputs to move in a certain direction is

proposed. In other words, this constraint is posed so as to maintain the correlations

in the manipulated input similar to those existing in training data sample. This is

achieved by first performing a PCA on the input space, and then, in the MPC im-

plementation, still computing the original inputs, but enforcing the values of squared

prediction error (SPE) to not breach a certain threshold.

Recall that the SPE-statistic determines the residual distance between an actual sam-

ple and its projection into the model plane. Therefore, the SPE of the ith vector of

observed variables, xi ∈ Rn, can be expressed as follows:

SPEi = x̃T
i x̃i = xT

i (I − PP T )xi (4.8)

where x̃ is the residual vector (xi− x̂i), and x̂i ∈ Rn is the reconstructed vector of the

observation. SPEi = 0 indicates that the observation is on the model plane.

Given the SPE-statistic, the MPC formulation of Eq. (4.5) can be modified using

Eq. (4.9) as additional constraint on SPE values. The value of εi should be small

enough to confine the movements of decision variables (manipulated inputs) to the

PCA model plane, constructed from the input training data samples. This value can

be determined by calculating the 95%− 99% confidence limit for SPE-statistic in the

PCA model.
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minuk,...,uk+P

P∑
j=1

∥ỹk+j − ySPk+j∥2Qyr
+ ∥uk+j − uk+j−1∥2Rdu

s.t. RNN based Predictive Model,

SPEi ≤ εi,

umin ≤ u ≤ umax

(4.9)

Remark 2. The constrained RNN-based MPC formulation, with the constraint set to

zero, effectively reverts to the PCA-RNN-based MPC formulation. Such a formulation

is invariably more computationally expensive compared to the PCA-RNN-based MPC-

due to reasons outlined in Remark 1. It would also be more computationally expensive

than say the RNN-based MPC (without the constraints), due to the presence of the

additional constraint. The reasons for presenting this formulation are two-fold: 1) To

recognize the existence of one alternative means of achieving what is achieved by the

PCA-RNN-based MPC and 2) set it up so the re-identification based MPC of Section

4.4 can be easily presented.

Remark 3. Note that the present work considers first addressing the problem of model

identification based on input data samples containing co-linearity, and then, using

the identified model in the MPC framework. It should be noted that other kinds of

correlations might exist in real-world data samples such as correlated outputs. In

subsequent research, the method will be generalized to handle other kinds of correlations

in the training and validation data sets.

Remark 4. The efficacy of the proposed PCA-RNN-based and constrained RNN-

based MPCs in the presence of uncertainty and measurement noise can be evaluated

for more complex systems, and remains outside the scope of the present work. For

such implementations, a version of robust MPC or offset-free MPC technique, utilizing

the embedded recurrent neural network-based models, can be utilized to handle plant-

110



PhD Thesis - Hesam Hassanpour; McMaster University - Chemical Engineering

model mismatch. The key recognition is that regardless of the MPC formulation being

utilized, the proposed approach is expected to lead to better outcomes due to inherently

better handling the model identification problem.

4.3.4 Implementation of the PCA-RNN-based MPC to the

motivating example

This section presents the application of the PCA-RNN-based MPC to the chemical

reactor example described in Section 6.2. To this end, the PCA-RNN model is first

identified using the proposed algorithm in Section 5.3. Then the model is employed

in MPC formulation of Eq. (4.7) to compute the optimal values of scores. The values

of parameters are considered as follows: sampling time Ts = 30 s, prediction horizon

P = 4, Qyp = [1000 0; 0 1000], and Rdt = [1 0; 0 1]. The output trajectories and

manipulated inputs (computed by transforming the values of scores) are shown in Fig.

4.4.

In contrast to the RNN-based approach, the PCA-RNN-based MPC can handle the

problem of set-point tracking for jacket temperature, where two correlated inputs (Fc)

and (Tcf ) are manipulated to reach desired set-points. The reason why the RNN-based

MPC approach fails can be explained by analyzing the optimal values of inputs. Fig.

4.5 compares the SPE values obtained using the manipulated inputs in each specific

approach with the SPE values corresponding to the PCA model constructed using

training data. Note that the observations are not contiguous in time. As shown in

Fig. 4.4, the MPC actions are calculated for 100 sampling instants (for each approach).

As a result, the observations from 0 to 300 are the SPE values of the PCA model on

training data and the observations from 300− 400, 400− 500, and 500− 600 are the

SPE values related to the manipulated inputs obtained using the RNN-based MPC,

the PCA-RNN-based MPC, and the constrained RNN-based MPC, respectively. As
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can be seen, the SPE values of the manipulated inputs calculated using the RNN-

based MPC are higher than zero (control limit in this case) for most observations,

while these values are similar to the SPE values of the trained PCA model for the

PCA-RNN-based MPC method. The manipulated inputs in the PCA-RNN-based

MPC follow the trained PCA model plane resulting in fairly accurate prediction and

subsequently good control.

Figure 4.5: Comparison of the SPE values for training data (black circles), manipulated
variables computed by RNN-based MPC (blue circles), manipulated variables computed by

PCA-RNN-based MPC (red circles), and manipulated inputs computed by constrained
RNN-based MPC (green circles).

4.3.5 Implementation of the constrained RNN-based MPC to

the motivating example

The RNN model identified in Section 6.2 is employed in Eq. (4.9), along with the

new constraints on SPE-statistic. The value of εi is chosen to be 10−5 with the

other parameters same as before. The output trajectories and manipulated inputs

are illustrated in Fig. 4.4. It can be observed that this method is successful in

handling the problem of set-point tracking compared to the RNN-based MPC method.

As shown in Fig. 4.5, the SPE values relevant to the manipulated inputs in this
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method are close to zero (nearly similar to the SPE values corresponding to the

trained PCA model). In addition, the performance of the predictive model utilized in

this MPC implementation is evaluated and shown in Fig. 4.6. This figure compares

the predicted values of the outputs (obtained by the models) with the actual process

outputs by applying the manipulated inputs computed by all three MPC approaches

(the manipulated inputs are shown in Fig. 4.4). It can be observed that the RNN

model in the RNN-based MPC approach has poor predictions compared to the other

methods, leading to poor control.

Figure 4.6: Model prediction results based on the MPC actions; measured variables (solid
lines), RNN-based predictive model (blue dotted lines), PCA-RNN-based predictive model
(red dashed lines), and constrained RNN-based predictive model (green dash-dotted lines).

For further analysis, the prediction capabilities of the RNN-model in the RNN-based

MPC and the constrained RNN-based MPC approaches are evaluated, in each sam-

pling instant, and shown in Fig. 4.7. In this figure, the process and predictive model

outputs are compared at the 79th sampling instant of the MPC optimization problem

for the RNN-based MPC and constrained RNN-based MPC. In this direction, the
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sequence of control actions over the prediction horizon (P = 4) are calculated and

then applied to the process and the RNN model. Fig. 4.8 compares the manipulated

inputs computed using the RNN-based MPC and the constrained RNN-based MPC.

Figure 4.7: Comparison of the predicted values and the process output at 79th sampling
instant of the MPC optimization problem: process outputs (cyan solid lines) and the RNN

model outputs (blue dashed lines) by applying the RNN-based MPC actions, process
outputs (green solid lines) and the RNN model outputs (red dashed lines) by applying the

constrained RNN-based MPC actions, and set-points (dotted lines).

Figure 4.8: Comparison of the control actions at 79th sampling instant of the MPC
optimization problem: RNN-based MPC actions (solid lines) and constrained RNN-based

MPC actions (dashed lines).

Recall that the RNN model utilized in both methods is the same. However, the ma-

nipulated inputs obtained using both methods are different due to the SPE constraint

in the constrained RNN-based MPC approach which forced the inputs to move in a
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certain direction. Consequently, as shown in Fig. 4.7, the RNN model in the con-

strained RNN-based MPC is able to predict (red dashed line) the process behavior

(green solid line) with reasonable accuracy. However, the RNN model in the RNN-

based MPC fails to predict (blue dashed line) the process behavior (cyan solid line)

using the inputs calculated without considering the SPE constraint.

4.4 Constrained RNN-based model predictive con-

trol with re-identification

The previous section presented a couple of approaches that manage the plant-model

mismatch issue by effectively making the inputs under the MPC follow the same corre-

lation as the training data. While resulting in good control performance, such imple-

mentations might miss out on possible economic performance enhancements achiev-

able by utilizing the full ‘space’ of movements of the manipulated inputs- which in

turn requires a model that remains valid over the entire range of input moves. This

in turn requires richer training data. Richer training data can be acquired in the

following ways: 1) redesigning the original control structure to generate new data, or

2) to utilize the constrained RNN- based MPC to generate data that is richer, and

yet does not result in significant performance degradation. The present manuscript

addresses this problem by implementing the RNN-based MPC with relaxed SPE con-

straints, i.e., replacing ε with δ in Eq. (4.9), with δ > ε. It is quite obvious that

this causes offset because of poorer prediction of the RNN-based model. However, if

the value of δ is determined appropriately, it not only does not degrade the controller

performance significantly, but also help generate data samples with more variation

that can be utilized in model re-identification stage.
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4.4.1 Re-identification based MPC implementation results

The re-identification algorithm is considered in this section to re-build the new RNN

model of CSTR example. As mentioned earlier, the variable ε is first replaced with

the variable δ in Eq. (4.9). Then the value of δ should be chosen in a way that not

only breaks the existing correlations, but also does not severely degrade the control

performance. A value of δ = 2 is chosen based on trial and error. It should be

noted that one can introduce small changes with different magnitudes in this value,

gradually over time, to generate richer data samples.

Given the new constraints on the value of δ, the constrained RNN-based MPC is

implemented for CSTR example and the set-point tracking results and corresponding

control actions are shown in Fig. 4.9. As expected, the MPC performance is slightly

degraded by applying the new constraints. Recall that the objective is to break the

existing co-linearity to provide richer data samples for model re-identification stage.

Next, these new data samples were utilized to train the new RNN model and the

model validation results are shown in Fig. 4.9. In the next step, the objective is to

utilize the re-identified RNN model in the MPC framework and evaluate the efficacy

of new approach compared to the previous one.

As mentioned earlier, the RNN model can predict fairly well when the manipulated

inputs move in a certain direction, but sometimes they are required to move without

considering a specific correlation to satisfy constraints and accomplish the control

objective. One instance of this situation is considered here to illustrate the significance

of re-identification in the MPC implementation. To this end, the constrained RNN-

based MPC, as presented in Eq. (4.9), is utilized to make the process outputs track

the set point changes as shown in Fig. 4.10. As can be seen, this controller can handle

the problem of set-point tracking until the 30th sampling time. The reason why this

approach fails after the second change in the cooling jacket temperature set-point can
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Figure 4.9: Model training data for re-identification and validation result: measured
outputs and manipulated variables under the constrained RNN-based MPC with relaxed
constraints (solid lines), validation data (black dash-dotted lines), RNN model prediction

(red dashed lines), and set-points (dotted lines).

be explained by analyzing the values of manipulated variables in Fig. 4.10. It can be

observed that the third manipulated input, Tcf , is saturated on the lower bound when

the set-point changes from −1 to −2.5. This causes the second manipulated input,

Fc, to be fixed at the certain value due to the SPE constraints. In this situation, the
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controller is not able to drive the outputs to the set-points. Note that even if the

second input is able to move so as to eliminate the offset, the model prediction will

be degraded because the existing correlation is broken. Consequently, it is necessary

to utilize more generalized model which can predict the system behavior in different

range of inputs. As shown in Fig. 4.10, the MPC with the re-identified model can

readily drive the outputs to the set-points.

Remark 5. The dimensionality reduction achieved under the PCA-RNN based MPC

helps not only the over-fitting issue, but, by virtue of reducing the resultant RNN, also

has computational implications. For the simulation example, the total computation

times required for different MPC implementations using Intel® Core(TM) i7-8700

at 3.20 GHZ and 8.0 GB of RAM, for 100 sampling times are 632 s, 392 s for the

RNN-based and PCA-RNN-based MPCs, respectively (the RNN-based MPC being 61%

more expensive than the PCA-RNN based MPC). The constrained RNN-Based MPC,

on the other hand takes 1950 s, with the potential of improved closed-loop performance

trading off against the increased computational time.
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Figure 4.10: Comparison of the closed-loop trajectories for the measured variables and
the profiles of the manipulated variables obtained from constrained RNN-based MPC (blue
solid lines) and constrained RNN-based MPC using re-identified model (red dash-dotted

lines).

4.5 Conclusion

This work considered the problem of developing the artificial neural network-based

predictive models in the presence of correlated inputs to be employed in the MPC
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implementations. A novel PCA-RNN-based MPC, along with the constrained RNN-

based MPC approaches are developed to address the problem of model prediction and

appropriately designed MPCs. PCA on input data samples is performed in the first

approach and then scores are employed to build the PCA-RNN model. This model

is then utilized in MPC implementation to calculate the optimal values of scores. In

the second approach, new constraint on SPE-statistic is considered to ensure that

input movements are confined to the PCA model plane to guarantee appropriate

performance of the RNN predictive model. Finally, a new method is proposed to break

the existing correlation in the computed MPC actions in order to generate richer data

samples. This is performed by relaxing SPE constraint in the constrained RNN-based

MPC approach. Next, the new data is utilized to re-identify the RNN model and then

it is employed in MPC framework. The implementation of proposed approaches is

illustrated using the chemical reactor example. The results show the effectiveness of

the proposed approaches to handle the problem of set-point tracking compared with

a nominal MPC design and the constrained RNN-based MPC approach.
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Abstract

This paper addresses the problem of determining achievable set-points for

artificial neural network (ANN)-based model predictive control (MPC) designs.

In particular, this work considers a case where a first-principles model may not

be readily available for a nonlinear process, while sufficient closed-loop data

containing possibly correlated outputs is available, such that an ANN-based

model that captures the nonlinear dynamics reasonably well can be identified.

The paper addresses implementation aspects with such an ANN-based MPC

design- specifically that of ensuring that achievable set-points are prescribed to

the MPC. The key idea is to perform principal component analysis (PCA) on the

training data in order to recognize existing collinearity and determine the upper

confidence limit of squared prediction error (SPE) statistic. An optimization

problem subject to the SPE constraint is then defined to calculate the achievable

set-points, that can in turn be provided to an MPC design. The efficacy of

the proposed approach is illustrated via implementations on a chemical reactor

example. The results reveal the superior tracking performance of MPC using

the achievable set-points over the case where arbitrarily prescribed set-points

are used in the MPC implementations.

5.1 Introduction

The problem of control system design for chemical processes faces several challenges

such as nonlinearity, multi-variable interactions, process constraints, and uncertain-

ties. Model predictive control (MPC) is a widely implemented control strategy that

can cope with these challenges (Qin and Badgwell (2003); Rawlings and Mayne

(2009)). For MPC design, developing a model that can predict the process behaviour

with reasonable accuracy is an essential task. In this regard, various modeling tech-

niques such as first-principles models and data-driven modeling approaches have been
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developed and used for MPC implementations.

Due to the challenges that exist in developing and maintaining first-principles models

and with the recent development of computing power and data storage, data-driven

and machine learning techniques have received significant attention. A number of

data-driven methods such as subspace identification (Moonen et al. (1989); Huang

et al. (2005); Qin and Ljung (2003)), artificial neural networks (ANN) (Bhat and

McAvoy (1990); Zhang et al. (1998); Prasad and Bequette (2003); Jalanko et al.

(2021)), and latent variable methods such as principal component analysis (PCA)

and projection to latent structures (PLS) (Kresta et al. (1994)) have been proposed

and used for system identification. Data-driven models have also been utilized for

MPC implementations. Subspace-based identification techniques are used to model

process dynamics for being employed in MPC design (Hale and Qin (2002); Corbett

and Mhaskar (2016)). Latent variable model predictive control (LV-MPC) algorithms

are also developed and successfully used to handle trajectory tracking and disturbance

rejection problems (Golshan et al. (2010); Godoy et al. (2016)).

Machine learning techniques such as ANN have received significant attention in the

context of system identification and process control due to their abilities to capture

nonlinearities (Kittisupakorn et al. (2009); Mohanty (2009); Ferreira et al. (2012);

Wang et al. (2017)) Among several machine learning models, recurrent neural net-

works (RNN) have demonstrated excellent performances in modeling dynamic be-

havior of complex nonlinear systems (Janakiraman et al. (2013); Wong et al. (2018);

Koschwitz et al. (2018); Wu et al. (2019)). In order to develop RNN models with rea-

sonably good prediction performance, a significant amount of data with high quality

is required. However, missing data, high dimensionality, redundancy, and collinearity

in most historical process data lead to difficulties in extracting useful information. To

address these issues, a number of data mining and pre-processing strategies have been

proposed (Han et al. (2011)).
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Data collection strategies and conditions under which data is collected can signifi-

cantly impact the type of data (relationship between features), and therefore, the

performance of the models to be developed. Unstable open-loop systems and eco-

nomic and safety concerns have motivated the use of closed-loop data for system

identification (Forssell and Ljung (1999)). Several methods have also been proposed

based on minimal required excitation of reference signals (Shardt et al. (2015)). In

addition, due to the presence of a large number of features in historical datasets, the

choice of proper features plays a key role in developing a model with high accuracy.

Due to the possible existence of irrelevant and redundant (highly correlated) features

in the historical data, feature selection and extraction strategies have been commonly

used as a pre-processing step for developing most machine learning models (Ayinde

and Zurada (2017); Bellemans et al. (2018)). The use of feature extraction methods

also helps reduce computational complexity, avoid over-fitting, and finally improve

prediction performances of the models.

PCA is one of the widely used tools for extracting useful information and reducing the

dimensionality of data. A number of machine learning models have been developed

that use PCA as a pre-processing tool (Yan et al. (2016); Drgoňa et al. (2018)). In

Zhan and Chong (2021), it is shown that applying PCA for feature extraction and

using principal components for clustering analysis can enhance the performance to

distinguish between the clusters that exist in the datasets. In Janakiraman et al.

(2013), PCA is used for feature extraction to obtain a smaller set of uncorrelated

inputs. These inputs are then used to train the neural network models. It is demon-

strated that doing PCA enables reducing the computational time required to identify

the optimal hyper-parameters. In Kristjanpoller and Minutolo (2018), PCA is used to

calculate the principal components, and then, the components which are uncorrelated,

are used to facilitate the process of training the neural network models.

Recently, there has been increasing interest in the use of RNN-based models in MPC
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implementations (Temeng et al. (1995); Sadeghassadi et al. (2018); Wong et al. (2018);

Hassanpour et al. (2020); Wu et al. (2020)). In order to train an RNN model with

fairly good prediction accuracy, a significant amount of data with sufficient variation

is required due to the existence of a large number of parameters needed to be iden-

tified. In addition, the problem of over-fitting remains a challenging problem in the

context of neural network modeling. The negative effect of the over-fitting problem

may get exacerbated when the training datasets are not informative, or they contain

redundant information. This problem is likely to occur when the datasets are col-

lected under closed-loop operations, where collinearities are induced between some

input and output variables that must be appropriately accounted for in the modeling

stage. Implementation of an MPC, where the inputs are moved independently, may

necessitate predictions by the model in regions where it was not trained, leading to

poor closed-loop performance. In Hassanpour et al. (2020), a method is proposed for

the case where datasets contain correlated inputs. PCA on input space is performed

and the principal components are then used to develop an RNN model. The MPC

is then designed to calculate the optimal scores and associated inputs. Alternative

solution is also proposed in this reference that considers applying a new constraint on

squared prediction error (SPE) in order to force the input movements into following

the same collinearity seen in the training data. The existing results, however, do not

address the situation where the process outputs could be correlated either due to the

control structure or process itself. In this situation, if the collinearity is not properly

addressed, the prescribed set-points assuming the outputs to be independent may not

be achieved by MPC, either due to fundamental process limitations, or the resultant

mismatch when the MPC tries to use the model in regions where it was not identified.

Thus, in the case where the dataset contains correlated outputs, it is essential to first

recognize the collinearity in order to be able to calculate the achievable set-points.

This in turn leads to maintaining model validity, which further results in the successful

implementation of MPC.
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Motivated by these considerations, this manuscript presents a method for extracting

the achievable set-points when the datasets contain correlated outputs. The key idea

is to first apply PCA on the output variables in order to recognize the collinearity.

Next, SPE is calculated and the upper confidence limit for this statistic is determined.

An optimization problem is then defined to minimize the sum of squared error be-

tween the desired and achievable set-points subject to the SPE constraint. This makes

it possible to extract the achievable set-points from the arbitrarily chosen set-points.

The calculated achievable set-points are then used in implementing the RNN-based

MPC. To illustrate the robustness of the proposed approach against plant-model mis-

match, especially in light of the fact that RNNs that give similar behavior during

training/validation/testing could give quite different predictions in a new operating

region, the following scenario is considered: different RNN models, with almost sim-

ilar prediction performance, are used in the MPC implementations to show that the

closed-loop responses can vary if the arbitrarily prescribed set-points are used. How-

ever, the use of the calculated achievable set-points makes all the RNN-based MPC

stabilize the system around the calculated set-points. The rest of the manuscript is

organized as follows: Section 6.2 presents a continuous stirred tank reactor (CSTR)

under cascade control as the motivating example, followed by an overview of recurrent

neural network and principal component analysis. A standard RNN-based MPC for

the motivating example is then implemented to illustrate the specific problem being

addressed. Section 5.3 presents the proposed approach for calculating the achiev-

able set-points. The application of the proposed approach to the motivating example

is then presented in Section 5.4. The use of the achievable set-points in the RNN-

based MPC is seen to address possible oscillatory behaviors resulting from using the

arbitrary desired set-points. Finally, concluding remarks are presented in Section 6.5.
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5.2 Preliminaries

To provide the motivation for proposed approach, a Continuous Stirred Tank Reactor

(CSTR) example, under cascade control, is presented. Then, a brief review of the

application of recurrent neural networks (RNN) for system identification is followed

by a brief description of principal component analysis (PCA).

5.2.1 Motivating Example: Continuous Stirred Tank Reactor

(CSTR)

Consider a nonlinear CSTR example (Du and Mhaskar (2014)), where an irreversible

elementary exothermic reaction (A → B) takes place, the mathematical model de-

scribing the dynamics takes the following form:

ĊA =
F

V
(CA0 − CA)− k0e

−E/RTRCA

ṪR =
F

V
(T0 − TR) +

(−∆H)

ρcp
k0e

−E/RTRCA − UA

ρcpV
(TR − Tc) (5.1)

Ṫc =
Fc

Vc

(Tcf − Tc) +
UA

ρccpcVc

(TR − Tc)

where CA is the concentration of reactant A, and TR and Tc are the temperature in

the reactor and the temperature in the cooling jacket, respectively. F is the volu-

metric flow rate to the reactor with temperature T0 and concentration CA0 and Fc is

the cooling stream flow rate to the jacket with temperature Tcf . The values of the

process parameters and the steady-state values are listed in Table 6.1 and Table 6.2,

respectively.
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Table 5.1: Parameter values for the CSTR example

Parameter Value Unit
F 14.60 L/min
V 100 L
Vc 20 L
k0 7.20× 1010 min−1

∆H −5× 104 J/mol
ρ 1000 g/L
ρc 1000 g/L
cp 0.239 J/(g K)
cpc 4.20 J/(g K)
UA 5× 104 J/(min K)
E/R 8750 K
T0 350 K
Tcf 293 K

Table 5.2: Steady-state values of the manipulated variables and the process outputs

Parameter Value Unit
CA0s 1.00 mol/L
Fcs 4.70 L/min
CAs 0.50 mol/L
TRs 324.82 K
Tcs 315.81 K

In the CSTR example, it is assumed that the data is collected from the operation of

the CSTR where the concentration of species A (CA) is controlled by manipulating

the inlet concentration (CA0) using a PI controller (single-loop). The temperature of

the reactor (TR) is also controlled by manipulating the cooling stream flow rate (Fc)

using a cascade control structure, with two PI controllers in the inner and outer loops.

The outer-loop controller adjusts the set-points of inner loop (T SP
c ). The inner-loop

controller then manipulates the cooling stream flow rate to control reactor tempera-

ture. Note that the manipulated variables and the process outputs are represented

in deviation variable form, i.e. C̄A = CA − CAs , T̄R = TR − TRs , and T̄c = Tc − Tcs

for the output deviation variables and C̄A0 = CA0 −CA0s , F̄c = Fc −Fcs for the input

deviation variables. PI control actions are calculated as follows:
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U(t) = Kc

(
E(t) +

1

TI

∫ t

0

E(t′)dt′
)

(5.2)

where U is the control signal, E is the error between the set-points and measured

outputs, Kc is the proportional gain, and TI is the integral time constant. The tuning

parameters for the PI controllers are listed in Table 6.3.

Table 5.3: Tuning parameters for PI controllers

PI controller Gain Integral time constant
Single-loop 1.09 4.32
Outer-loop 0.11 2.31
Inner-loop -1.95 1.02

To reflect reality, the process outputs are corrupted with measurement noise. The

noise is considered to be Gaussian white noise with mean µ and standard deviation

σ as listed in Table 5.4. A moving average filter is also utilized to smooth the noisy

measurement signal before it is used in the PI controller. Closed-loop data is generated

by simulating the CSTR example. To generate training, validation, and test datasets,

set-point changes in C̄A and T̄R are applied according to the pseudo random binary

sequence (PRBS) signals, shown in Fig. 5.1(a). The generated data corresponding to

the process outputs and the manipulated variables are shown in Fig. 6.1.

Table 5.4: Noise distribution parameters

Output variable µ σ Unit
CA 0 0.003 mol/L
TR 0 0.100 K
Tc 0 0.100 K

Having this data available for training, the next section reviews an RNN-based ap-

proach for model identification.

Remark 1. Note that the closed-loop simulations are performed to generate data in
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(a)

(b)

Figure 5.1: Closed-loop data for system identification: (a) Process outputs (solid black
lines) and set-points (dash-dotted red lines) (b) Manipulated inputs.

this work. However, in situations where there is the flexibility to run open-loop test

where inputs are independently perturbed, the present approach would not be neces-

sary. In general, there are a number of reasons for utilizing (generating) closed-loop
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data in practice such as unstable open-loop systems, economic problems (open-loop

datasets are more expensive to obtain in real plants), and safety concerns. For these

reasons and in order to reflect practical considerations, it was decided to use closed-

loop simulations under PI controllers, which are widely used in industries to maintain

the process outputs at desired set-points, to generate data for system identification.

Note that in this situation (closed-loop conditions), some collinearities between pro-

cess inputs and outputs could be induced. Therefore, an appropriate pre-processing

steps must be utilized to eliminate/recognize the collinearity before doing system iden-

tification and implementing any optimal control strategies such as MPC.

5.2.2 Recurrent neural networks for system identification

Recurrent neural networks (RNN) have been utilized in a number of applications

to model nonlinear dynamic systems for being used in control designs (Hassanpour

et al. (2020); Alhajeri et al. (2021); Wu et al. (2021)), optimization (Kusiak and Xu

(2012)), and fault diagnosis (Han et al. (2020)). Unlike feedforward neural networks,

the presence of delayed feedback loops in the RNN structure provides the network with

a memory, enabling identifying dynamic behaviors of the systems. Different types of

RNN such as nonlinear autoregressive network with exogenous inputs (NARX), long

short-term memory (LSTM), bidirectional RNN, and gated recurrent unit (GRU) have

been developed for different applications such as time series prediction and natural

language processing.

In this work, NARX neural network modeling is used to model dynamic behavior of

the system. The key idea of the proposed method remains applicable with other types

of the RNN models. Mathematically, a NARX model is described as follows:
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y(k) = f [y(k − 1), ..., y(k − ny), u(k − 1), ..., u(k − nu)] (5.3)

where y ∈ Rl and u ∈ Rm represent the vector of measured outputs and manipulated

inputs, respectively. ny and nu represent the number of lagged outputs and inputs

required for prediction. As shown in Eq. (5.3), the next value of the dependent

variables y(k) is regressed on the previous values of the dependent and independent

(exogenous) variables by NARX models. To approximate the nonlinear mapping

function f(·), a multilayer perceptron (MLP), a class of feedforward neural networks,

can be used, resulting in a NARX neural network model (Narendra and Parthasarathy

(1990)). A schematic of a NARX neural network is shown in Fig. 5.2.

Note that the NARX neural network model is trained in order to perform one-step

ahead prediction using past input and output measurements. After training, the

NARX model is used to perform multi-step ahead predictions in the validation and

test stages. To that end, assuming the initial values of the inputs and outputs are

available (as the initial conditions), these values are fed to the trained NARX model

to predict the outputs in the first sampling time. The predicted outputs in this step,

together with the inputs, are then used to predict the outputs in the second sampling

time. Subsequently, these predicted values are used to predict the outputs in the third

sampling time. This process is repeated in order to do multi-step ahead predictions

of the outputs.

RNN based modeling of the motivating example

In this section, NARX-based models are developed for the motivating example. To

this end, the generated data is first divided into the training and test data. The first
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Figure 5.2: Schematic of a NARX neural network.

10000 data samples are considered as the training data and the last 1000 data samples

are used as the test data to evaluate the performance of the trained models on the

unseen data. In addition, a portion of the training data containing the first 8000 data

samples is used to fit the model and the last 2000 data samples are considered as the

validation data in order to provide an unbiased assessment of the model fit on the

training data while tuning the model hyperparameters.

The input and output data samples are first normalized (mean-centered and scaled to

unit variance), and then fed to a NARX network in MATLAB Machine Learning and

Deep Learning toolbox. In the NARX network, different hyperparameters such as the

number of hidden layers, the number of neurons in each layer, activation functions,

and the number of lagged inputs and outputs need to be tuned. To this end, different
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structures with 1 and 2 hidden layers, including different number of neurons, and two

activation functions which are sigmoid and tanh are considered. Different number of

lagged information (1, 2, and 3) is also used. Linear activation function is also used for

the output layers and Bayesian regularization backpropagation algorithm that updates

the model parameters (weights and biases) based on Levenberg-Marquardt optimiza-

tion is selected. Depending on the different initialization of the weights and biases,

the results can be different each time a neural network model is trained. Therefore,

several runs for each case, mentioned above, are conducted to obtain some insights

into the choice of the proper model hyperparameters. In order to quantify the pre-

diction error, scaled root mean square error (SRMSE) metric is used, given by Eq.

(6.5):

SRMSE =
l∑

i=1

√∑n
j=1 (yi,j−ŷi,j)2

n

σi

(5.4)

where yi,j and ŷi,j are the jth observation (real value) corresponding to the ith output

and its prediction, respectively, and σi represents the standard deviation of the ith

output. l and n also represent the number of outputs and the number of observations,

respectively. This metric is used to evaluate the prediction performance of each trained

model using the validation data. The results reveal that the model with 1 hidden layer

including 5 neurons using tanh activation function has the best performance among

all considered structures. In order to further evaluate the model performance based

on this structure, the model is trained 100 times. The values of SRMSE for all these

trained models are shown in Fig. 5.3. As mentioned earlier, different results can

be obtained in each neural network training due to different initializations of the

weights and biases and non-convex nature of the optimization problem that is trying

to calculate the optimal values of these parameters. The asterisks, in Fig. 5.3(b), also
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represent the models with the best prediction performance. The values of SRMSE for

these models in the validation stage are shown in Table 5.5. The performance of these

three models is also evaluated on the unseen data (test data). The SRMSE values

corresponding to these models in the test stage are shown in Table 5.5. In addition,

the predictions obtained using these models using the test data are shown in Fig. 5.4.

As demonstrated, the NARX network models are able to predict the values of the

outputs with reasonable accuracy. These three models are then used in the next step

to implement the RNN-based model predictive control.

Table 5.5: SRMSE of the validation and test stages

Model SRMSE (validation) SRMSE (test)
RNN1 0.8419 1.0670
RNN2 0.8204 1.0091
RNN3 0.7855 0.8021

Remark 2. Note that the key idea in the present work is to use NARX network

modeling technique in order to build a dynamic model of the process, and then, im-

plementing MPC to evaluate its performance based on the arbitrarily prescribed and

achievable set-points. However, other types of RNN modeling such as LSTM models

can be developed and used in the MPC implementations, as long as they are able to

accurately capture the process dynamics.

Remark 3. In practice, it is not easy to realize the trained model is over-fitted. Thus,

it is essential to make sure that the model is working properly before employing that

in production. This can be achieved by analyzing the model performance on unseen

(new) data. Therefore, in the process of developing a neural network model (or any

data-driven models), it is useful to divide the dataset into three categories including

training data, validation (hold-out) data, and test (unseen) data. The model is trained

only using the training data. The validation data is used in order to evaluate the

progress and draw conclusions to improve the model ability. After analyzing the model

performance on the validation data, the best (final) model can be selected for being
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(a)

(b)

Figure 5.3: (a) Histogram of SRMSE values associated with the predictions obtained
based on 100 trained models using validation data, (b) SRMSE plot (asterisks represent

the three models with the smallest SMRSE).

tested on the unseen data. This allows us to assess how well the prediction performance

of the model is on new data.

Remark 4. As mentioned in the previous remark, after training the neural network

models, the validation data is used to provide us with an unbiased opinion on how

well the trained models work in order to choose the final model. Note that, the final

model needs to be selected by analyzing the prediction performance of different trained

models on the validation data (not test data). In this work, the three best models
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Figure 5.4: Model test results: measured outputs (solid black lines), RNN1 prediction
(dashed blue lines), RNN2 prediction (dash-dotted red lines), and RNN3 prediction (dotted

green lines).

(among 100 trained models) are chosen as the representative models of the process.

The three best models are used to implement different MPCs to illustrate a key issue

with RNNs. As shown in Fig. 5.4, the RNN models have almost similar prediction

performance, but as you will see in the next sections, the MPC performance can vary

(stable, oscillatory, and unstable) when the arbitrarily prescribed set-points are used.

However, implementing the achievable set-points makes all the MPCs show almost

similar performance (stabilization around the calculated achievable set-points).
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5.2.3 RNN-based model predictive control of the motivating

example based on the given set-points

In this section, the three best models (RNN1, RNN2, and RNN3), identified in the

previous section, are employed, respectively, to implement the RNN-based MPCs

(MPC1, MPC2, and MPC3). A representative RNN-based MPC formulation can be

defined as follows:

minuk,...,uk+P

P∑
j=1

∥ỹk+j − ySPk+j∥2Qy
+ ∥uk+j − uk+j−1∥2Rdu

s.t. RNN − based predictive model,

umin ≤ u ≤ umax

(5.5)

where P denotes the prediction horizon, ySPk+j and ỹk+j are the desired set-point trajec-

tory for the outputs and the prediction of output at time (k+j)∆t (∆t is the sampling

time), respectively. Qy and Rdu are penalty matrices corresponding to the output de-

viations from the set-points and the rate of change in the inputs, and umin ∈ Rm and

umax ∈ Rm represent the lower and upper bounds of the manipulated variables. Note

that the RNN-based predictive model calculates multi-step ahead predictions. Thus,

the initial values of inputs and outputs are fed to the model, and then one-step ahead

prediction of the outputs are calculated. Next, the predicted outputs, along with

candidate future inputs are fed to the model to perform two-step ahead predictions

of the outputs. This procedure is performed recursively to predict the outputs multi

steps ahead up to the prediction horizon.

Using the best identified models in the earlier section, three MPCs are designed to

handle the problem of set-point tracking for the motivating example. Each MPC
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uses one of the models, along with the constraints on the manipulated inputs, where

C̄A0 ∈ [0 − CA0s , 2 − CA0s ] and F̄c ∈ [0 − Fcs , 15 − Fcs ]. The optimization problem

for the MPC is solved using fmincon solver in MATLAB and the parameters are

chosen as follows: ∆t = 0.5 min, prediction horizon P = 4, Qy = diag([104, 101, 101])

and Rdu = diag([10−1, 10−1]). Several scenarios for the set-point tracking problem

are considered, where arbitrarily prescribed set-points are first applied to evaluate the

performance of the MPCs. For the sake of brevity, the results of two of these scenarios

are discussed. The values of the given set-points (ySPg ) in these scenarios are shown

in the first rows of Tables 6.4 and 6.5.

Note that the measurement noise, similar to that used in the data generation step,

is added to the process outputs (distribution parameters are listed in Table 5.4).

To attenuate the effect of noise, a moving average filter is also employed before the

output signals are used in the MPC controllers. It should also be mentioned that

the same set of noise seeds are used in order to compare the results more readily.

The input and output profiles obtained by implementing different MPCs are shown in

Figs. 5.6-5.11 (dotted black lines). Figs. 5.6, 5.8, and 5.10 show the results obtained

using MPC1, MPC2, and MPC3, respectively, in Scenario 1, and Figs. 5.7, 5.9, and

5.11 show these results in Scenario 2. As can be seen, the given set-points, that are

arbitrarily selected assuming the output moves are independent, are not achieved by

different MPCs. In addition, applying the given set-points in some cases (e.g., MPC2

in Scenario 1 and MPC3 in Scenario 2) causes the occurrence of oscillations in the

manipulated variables, which in turn leads to the oscillatory behavior of the outputs.

This can also result in unstable closed-loop responses, as shown in Fig 5.9 for MPC2

in Scenario 2. The reason for the oscillatory behavior is the MPC attempt to drive the

process outputs to their set-points which are chosen without considering the inherent

correlation between the outputs.
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5.2.4 Principal component analysis (PCA)

A brief overview of principal component analysis (PCA) is presented in this section

(see Wise et al. (1990); Nomikos and MacGregor (1994) for more details). PCA

is one the commonly used latent variable methods designed for transforming a set

of observations of possibly correlated variables into a latent space, where the new

variables (principal components) are uncorrelated. Consider a (n × k) data matrix

(X) of n observations on k variables that is mean-centered and scaled to unit variance,

applying PCA results in a set of principal components calculated as follows:

T = XP (5.6)

where T is the (n×a) principal component (score) matrix (a is the number of principal

components and usually a < k for dimensionality reduction) and P is the (k × a)

loading matrix, containing orthogonal loading vectors, that determines the orientation

of the latent space. The following relationship also holds:

X = TP T + E (5.7)

where TP T explains the modeled variations of X and E is the residual or the un-

modeled variations of X. PCA can be performed via an eigen-decomposition of the

covariance matrix S = XTX/(N − 1) or singular value decomposition (SVD) of the

mean-centered and scaled data matrix (X). Alternatively, nonlinear iterative partial

least squares (NIPALS) algorithm can be applied to calculate the loadings. To deter-

mine the number of principal components, several criteria such as cumulative percent

variance (CPV) (Li et al. (2000)) or cross validation techniques (Wold (1978)) can be

utilized.
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Squared prediction error (SPE) statistic

Having obtained the PCA model, the SPE statistic which is defined as the residual

distance between an actual observation xi and its projection onto the model plane

can be calculated as follows:

SPEi = x̃T
i x̃i = xT

i (I − PP T )xi (5.8)

where x̃ ∈ Rk is the residual vector (xi − x̂i), and x̂ ∈ Rk is the reconstructed vector

of the observation xi (SPEi = 0 if the observation is on the model plane). The upper

confidence limit of the SPE statistic at a significance level α can be estimated as

follows (a weighted Chi-square distribution):

SPEα =
ν

2m
χ(

2m2

ν
) (5.9)

where m and ν represent the sample mean and variance of the SPE sample (Yoon

and MacGregor (2004)).

5.3 Proposed approach to calculate the achievable

set-points

In this section, the proposed method for computing the achievable set-points from

the given set-points is presented. The key idea is to use PCA for recognizing the

collinearity in the process outputs. An optimization problem is then defined where a

constraint on SPE statistic is considered to maintain the collinearity while calculating

the achievable set-points.
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5.3.1 Optimization problem to calculate the achievable set-

points

The optimization problem used to calculate the achievable set-points from the arbi-

trarily prescribed (given) set-points can be formulated as follows:

minySP
a

∥ySPa − ySPg ∥2Qsp

s.t. SPE ≤ ε
(5.10)

where ∥ySPa − ySPg ∥2Qsp
= (ySPa − ySPg )TQsp(y

SP
a − ySPg ) is the cost function that must

be minimized, ya ∈ Rl and yg ∈ Rl represent the achievable and given set-points,

respectively, and Qsp is a positive definite matrix used to penalize the achievable

set-points deviation from the given set-points (note that different penalties (weights)

can be used for each variable based on the importance of that variable). The SPE

constraint is considered in order to ensure that the decision variables (achievable set-

points) are calculated in a way that maintains a similar correlation to that seen in the

training output data. In addition, the SPE value in Eq. (6.6) is calculated as follows:

SPE = (ȳSPa )T (I − PP T )(ȳSPa ) (5.11)

where ȳSPa is the vector of decision variables which is mean-centered and scaled based

on the mean and standard deviation corresponding to the training output data used to

build the PCA model, and P is the loading matrix. The value of ε in Eq. (6.6) should

be small enough to confine the choice of the decision variables to the PCA model,

thus maintaining the same collinearity. To this end, this value can be determined by

computing the upper confidence limit for the SPE statistic.
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5.4 Application to the motivating example

The effectiveness of the proposed approach to calculate the achievable set-points from

arbitrarily prescribed set-points, and then, the problem of set-point tracking by im-

plementing the MPC controllers are shown in this section.

5.4.1 Achievable set-points

Using the proposed approach in Section 5.3.1, an optimization problem is defined

in order to calculate the achievable set-points from the arbitrarily given set-points

defined in the two scenarios in Section 6.2.3. Recall that the given set-points in these

scenarios, assuming the outputs can be independently controlled, are not achieved

by MPC due to the existing collinearity in the output space. Thus, the objective is

to address this issue by first recognizing the correlation between the process outputs

using PCA. To this end, the first 8000 data samples corresponding to three outputs in

deviation forms (C̄A, T̄R, and T̄c), used to fit the models in Section 6.2.2, are utilized

to build the PCA model, and thus, calculating the loading vectors. The result shows

that approximately 98% of the original data variance is explained using two principal

components, and therefore, these two principal components are considered to build

the PCA model.

In the next step, SPE analysis is performed to determine the upper bound for SPE

constraint in the optimization problem. Two cases are considered in order to choose

this value. The first case considers using the value of 95% confidence limit (1.8×10−1)

as the upper bound, and the second case considers applying tighter constraint by

selecting a smaller value (10−3) to ensure that the correlation is maintained when

calculating the achievable set-points. Finally, the optimization problem is solved

using a similar penalty matrix to that used for Qy in the MPC optimization problem
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Figure 5.5: SPE values corresponding to the training data (solid lines) and 95%
confidence limit (dashed line).

(Qsp = diag([104, 101, 101])). The set-points obtained by applying two different values,

1.8×10−1 and 10−3, as the upper bound for the SPE constraint are listed in the second

and third rows of Tables 6.4 and 6.5 as ySPa1
and ySPa2

, respectively. Having obtained

these set-points, the next step is to evaluate the RNN-based MPC performance for

the problem of set-point tracking.

Table 5.6: Given set-points and achievable set-points in Scenario 1

Scenario 1 CSP
A T SP

R T SP
c

ySPg 0.1000 -5.00 3.00
ySPa1

0.0394 -3.14 -0.97
ySPa2

0.0241 -2.67 -1.98

Table 5.7: Given set-points and achievable set-points in Scenario 2

Scenario 2 CSP
A T SP

R T SP
c

ySPg 0.0800 2.00 3.00
ySPa1

0.0570 2.70 1.50
ySPa2

0.0417 3.17 0.49
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5.4.2 RNN-based model predictive control based on the achiev-

able set-points

The performance of the three MPCs (MPC1, MPC2, and MPC3) to stabilize the

system around the given set-points was shown in Section 6.2.3. Various system re-

sponses were observed based on a specific set of the given set-points, although the

RNN models, used in these implementations, have approximately similar prediction

accuracy (see e.g., the performance of the three MPCs in Scenario 2 using the given

set-points). This happened because the existing correlation between the process out-

puts was not accounted for when defining the set-points, resulting in oscillatory or

unstable closed-loop responses. In this section, the performance of these three MPCs

to track the set-points obtained using the optimization problem in the previous sec-

tion is assessed. The input and output profiles achieved by implementing different

MPCs are shown in Figs. 5.6-5.11 (red lines for ySPa1
and blue lines for ySPa2

).

As expected, applying these set-points significantly reduces the output deviations from

the set-points, showing that these set-point are more achievable than the given set-

points used in Section 6.2.3. However, implementing ySPa2
leads to a smaller offset due

to the fact that this set-point is obtained using a tighter constraint on the SPE, thus

maintaining a more accurate correlation between the variables in the output space.

This behavior can be observed by implementing the three MPCs in Scenario 1, shown

in Figs. 5.6, 5.8, and 5.10, using the achievable set-points. An interesting point here

is that applying the achievable set-points eliminates the oscillatory behavior observed

by implementing MPC2 using the given set-point. Finally, as shown in Figs. 5.7, 5.9,

and 5.11 for MPC implementations in Scenario 2, implementing the achievable set-

point ySPa2
enables all MPCs to drive the process outputs to their set-points accurately

enough. However, applying the achievable set-point ySPa1
causes the outputs to have

larger offsets, compared to implementing the achievable set-point ySPa1
in Scenario 1.
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This can also result in oscillations, as illustrated in Fig. 5.9 for MPC2 implementation.

This result, therefore, reveals that using the value corresponding to 95% confidence

limit as the upper bound for the SPE constraint in the optimization problem may not

be sufficient. Thus, it is essential to consider a tighter constraint in order to make

sure that the collinearity between calculated set-points, and subsequently the process

outputs, is preserved.

Remark 5. Note that the main objective of the present work is to show that the arbi-

trarily prescribed set-points, assuming the process outputs can move independently,

may not be achieved while designing data-driven model-based control, when first-

principles knowledge of the process is not available. Therefore, in this case it is not

reasonable to expect the controller to drive the process outputs to the arbitrarily selected

set-points. The key benefit of the PCA-based optimization problem is to calculate the

achievable set-points so that they are as close as possible to the arbitrarily prescribed

set-points by choosing an appropriate penalty matrix Qsp.

Remark 6. Note that the small offsets observed between some of the achievable set-

points and the process outputs, indicate that these set-points are not exactly achievable.

This is due to the linear nature of the PCA-based approach, utilized to recognize the

existing collinearity in the output space. As a result, choosing a method being able to

identify the correlation between the process outputs, while handling the nonlinearity,

such as autoencoder, can lead to more accurate selection of the achievable set-points.

This remains the subject of future work
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(a)

(b)

Figure 5.6: MPC1 in Scenario 1:(a) ySPg (dotted black lines) and the output profiles
based on that (dash-dotted lines), ySPa1 (dotted red lines) and the output profiles based on

that (dashed lines), and ySPa2 (dotted blue lines) and the output profiles based on that
(solid lines), (b) Manipulated input profiles obtained by applying ySPg (dash-dotted lines),

ySPa1 (dashed lines), and ySPa2 (solid lines).
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(a)

(b)

Figure 5.7: MPC1 in Scenario 2:(a) ySPg (dotted black lines) and the output profiles
based on that (dash-dotted lines), ySPa1 (dotted red lines) and the output profiles based on

that (dashed lines), and ySPa2 (dotted blue lines) and the output profiles based on that
(solid lines), (b) Manipulated input profiles obtained by applying ySPg (dash-dotted lines),

ySPa1 (dashed lines), and ySPa2 (solid lines).
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(a)

(b)

Figure 5.8: MPC2 in Scenario 1:(a) ySPg (dotted black lines) and the output profiles
based on that (dash-dotted lines), ySPa1 (dotted red lines) and the output profiles based on

that (dashed lines), and ySPa2 (dotted blue lines) and the output profiles based on that
(solid lines), (b) Manipulated input profiles obtained by applying ySPg (dash-dotted lines),

ySPa1 (dashed lines), and ySPa2 (solid lines).
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(a)

(b)

Figure 5.9: MPC2 in Scenario 2:(a) ySPg (dotted black lines) and the output profiles
based on that (dash-dotted lines), ySPa1 (dotted red lines) and the output profiles based on

that (dashed lines), and ySPa2 (dotted blue lines) and the output profiles based on that
(solid lines), (b) Manipulated input profiles obtained by applying ySPg (dash-dotted lines),

ySPa1 (dashed lines), and ySPa2 (solid lines).
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(a)

(b)

Figure 5.10: MPC3 in Scenario 1:(a) ySPg (dotted black lines) and the output profiles
based on that (dash-dotted lines), ySPa1 (dotted red lines) and the output profiles based on

that (dashed lines), and ySPa2 (dotted blue lines) and the output profiles based on that
(solid lines), (b) Manipulated input profiles obtained by applying ySPg (dash-dotted lines),

ySPa1 (dashed lines), and ySPa2 (solid lines).
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(a)

(b)

Figure 5.11: MPC3 in Scenario 2:(a) ySPg (dotted black lines) and the output profiles
based on that (dash-dotted lines), ySPa1 (dotted red lines) and the output profiles based on

that (dashed lines), and ySPa2 (dotted blue lines) and the output profiles based on that
(solid lines), (b) Manipulated input profiles obtained by applying ySPg (dash-dotted lines),

ySPa1 (dashed lines), and ySPa2 (solid lines).
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5.5 Conclusion

In this work, a novel PCA-based approach is proposed to determine the achievable

set-points using the process data that contains possibly correlated outputs, in the

situation where a first-principles model of the process is not easily available. To this

end, an optimization problem subject to the SPE constraint is defined in order to

ensure that the calculated achievable set-pints follow a similar correlation to that

seen in the output data. Three MPCs that use different RNN models, with almost

the same prediction performance, are then implemented to show the effectiveness

of the proposed approach. The results reveal the superior performance of the MPC

implementations using the calculated achievable set-point compared to the case where

arbitrarily prescribed set-points are directly used in the MPC implementations.
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Abstract

This work addresses the problem of implementing model predictive control

(MPC) in situations where the training data available for modeling contains

possible correlations, and an artificial neural network (ANN)-based model is

being used. In particular, we consider a problem where datasets are collected

from a process that operates under the closed-loop condition in which correla-

tions are induced between several input and output variables. In this situation,

if the correlation problem is not addressed, manipulated inputs (calculated by

MPC without considering the specific correlation in the input space), and in-

dependently prescribed set-points may require predictions in regions where the

model is not trained, resulting in a poor closed-loop performance. To address

this issue, a principal component analysis (PCA)-based strategy is applied to

both the input and output spaces in a way that maintains model validity. To

that end, a new constraint on the squared prediction error (SPE) is incorpo-

rated into the ANN-based MPC optimization problem to make control actions

follow the PCA model built using the training input data. Next, a PCA model

is developed using the training output data, and then an optimization problem

subject to the SPE constraint is defined to calculate the set-points which are

achievable. The effectiveness of the proposed ANN-based MPC to track these

set-points is demonstrated using a chemical reactor example. Finally, a new

autoencoder-based strategy is proposed to compute the achievable set-points.

This is performed by replacing the PCA-based constraint with the autoencoder-

based constraint in the optimization problem to calculate the set-points. The

results indicate that the ANN-based MPC performance is improved when the

autoencoder-based set-points are used.
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6.1 Introduction

Operation of chemical processes to achieve economic and safety objectives has con-

siderably relied on the use of advanced process control strategies. This fact, together

with the need to cope with challenges such as multi-variable interactions and process

input/output constraints has motivated the utilization of model predictive control

(MPC) (Mayne et al. (2000); Qin and Badgwell (2003); Mhaskar et al. (2006); Rawl-

ings and Mayne (2009)). The key step to successfully develop and implement of this

control strategy is the use of a reliable model within the MPC framework. To that

end, several modeling strategies have been utilized such as first-principles (Mayne

et al. (2000); Mhaskar et al. (2006); Ganesh et al. (2021)) and data-driven modeling

techniques (Moonen et al. (1989); Qin and Ljung (2003); Huang et al. (2005); Wu

et al. (2019)).

While first-principles models have good extrapolation capabilities, they are generally

difficult to develop and maintain due to reasons such as uncertainty in the physical

parameters and unmeasured physical states. With the recent advance in computing

and data storage technologies, there has been growing interest in the use of data-

driven and machine learning techniques for system identification. In these methods,

a model structure is first selected, and then, the available historical data is used

to identify the parameters. In this direction, several statistical-based methods have

been developed such as subspace identification (Moonen et al. (1989); Van Overschee

and De Moor (1995); Qin and Ljung (2003); Huang et al. (2005)) and projection

to latent structures (PLS) (Kresta et al. (1994); Hu et al. (2012)). Subspace-based

(Hale and Qin (2002); Kheradmandi and Mhaskar (2018); Patel et al. (2021)) and

latent variable-based models (Golshan et al. (2010); Godoy et al. (2016)) have also

been incorporated in MPC designs for a variety of applications due to their predictive

ability and simplicity (linear characteristic) of these models. In addition, several data-
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driven approaches have been proposed to transform a nonlinear dynamic system into a

higher dimensional space, in which its evolution is almost linear, using Koopman-based

linear predictors (Korda and Mezić (2018); Narasingam and Kwon (2019); Narasingam

et al. (2021)). The linear predictors are then utilized to design MPC for the nonlinear

system.

Machine learning techniques such as artificial neural networks (ANN) have been widely

used due to their abilities to capture process nonlinearity. Recurrent neural networks

(RNN), a class of ANN, have shown excellent performance for dynamic modeling of

complex nonlinear systems (Janakiraman et al. (2013); Wong et al. (2018); Koschwitz

et al. (2018); Aliabadi et al. (2020); Sun et al. (2020); Wu et al. (2021a)). RNN

models have also been utilized to design and implement RNN-based MPC in a wide

range of applications (Temeng et al. (1995); Sadeghassadi et al. (2018); Wong et al.

(2018); Hassanpour et al. (2020a); Wu et al. (2021b,a)). One of the challenges in RNN

modeling is to fine-tune hyperparameters for a given dataset. Although these hyper-

parameters are usually determined heuristically, several tuning approaches have been

used to objectively search different values of hyperparameters and select a subset that

leads to a model with the best performance on the given dataset. More systematic

approaches have also been proposed to optimally configure the network hyperparam-

eters by analyzing the trade-off between the accuracy and over-fitting aspects using

a multi-objective optimization methodology (Miriyala et al. (2016); Miriyala and Mi-

tra (2020); Inapakurthi et al. (2020)). Notwithstanding these advances, a significant

amount of high-quality data is usually required to develop an RNN model due to the

presence of many parameters. However, some challenges that often exist in most his-

torical datasets, such as high dimensionality and redundancy, present some difficulties

for developing RNN models. In addition, the negative impact of the over-fitting issue

can get amplified when datasets contain redundant information. This problem can

happen when datasets are collected from a process that operates under the closed-loop

condition. In this situation, the use of data-mining strategies is a promising way to
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extract useful information for system identification purposes (Han et al. (2011)).

Feature selection and extraction algorithms have been widely used to reduce compu-

tational complexity and avoid over-fitting when developing machine learning-based

models (Ayinde and Zurada (2017); Bellemans et al. (2018)). Principal component

analysis (PCA) is one of the commonly used statistical approaches to reduce the

dimensionality of data and remove redundant (correlated) variables (Yoon and Mac-

Gregor (2004); Song et al. (2010); Hassanpour et al. (2020b)). This approach has

been incorporated in developing several machine learning models (Janakiraman et al.

(2013); Yan et al. (2016); Bellemans et al. (2018); Drgoňa et al. (2018); Kristjanpoller

and Minutolo (2018); Zhan and Chong (2021)). In some applications, it is shown that

the use of PCA can facilitate the neural network model training process (reduce the

computational time required to tune the hyperparameters), and increase the model

accuracy (Janakiraman et al. (2013); Kristjanpoller and Minutolo (2018)). PCA is

also used in the context of clustering analysis to improve the performance of the clus-

tering techniques to identify the existing clusters in the datasets (Zhan and Chong

(2021)).

Recently, autoencoder-based feature extraction strategies have received significant

attention due to their ability to handle the nonlinear relationships that exist in most

process datasets (Hinton and Salakhutdinov (2006)). Similar to PCA, an autoencoder

neural network is an unsupervised learning algorithm that can be used for feature

selection and extraction. Different variations of autoencoders have also been developed

in many applications to perform anomaly detection tasks (Cheng et al. (2019); Li et al.

(2019); Ma and Li (2020); Zheng and Zhao (2020); Nguyen et al. (2021); Belkadi

et al. (2021)). More specifically, autoencoders in conjunction with neural networks

have been used to identify nonlinear state-space models for being used in the model-

based control designs such as MPC (Masti and Bemporad (2021)). These approaches,

however, have not been integrated with the MPC implementations to address the
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problem where correlated data samples are available for system identification. In this

situation, the use of autoencoder neural networks could improve the recognition of the

nonlinear correlation between the variables that must be maintained to successfully

implement the MPC controller.

As mentioned earlier, applying an appropriate pre-processing step is an essential task

for developing any machine learning-based models, such as RNN, when data samples

are correlated. Thus, to design an RNN-based MPC, while using correlated data, the

first step is to recognize the correlation between the variables. Then, this correla-

tion must be properly considered, as a constraint, in the MPC optimization problem.

Otherwise, if the manipulated inputs are moved independently, the MPC controller

may require model predictions in regions where the model is not identified, which in

turn leads to a poor control performance. To address this problem, two methods have

recently been proposed (Hassanpour et al. (2020a)), when training input data sam-

ples are correlated. In the first approach, PCA is performed on the input data, and

then, the calculated principal components (scores) are utilized to construct a model

using RNN. In the next step, the MPC is implemented to compute the optimal scores

(and associated manipulated inputs). An alternative method is also presented by in-

corporating a new squared prediction error (SPE) constraint into the standard MPC

(MPC using the RNN model trained on the original input-output data) to confine the

input movements to the PCA model plane developed using the training input data. In

addition, a PCA-based strategy is presented to calculate the achievable set-points for

the RNN-based MPC, Where data samples related to the process outputs are corre-

lated (Hassanpour et al. (2021)). The objective is to maintain the correlation existing

between the outputs, while calculating the set-points. Otherwise, the independently

given set-points (prescribed without considering the correlation in the output space)

cannot be achieved, either because of the plant–model mismatch (caused when the

MPC controller uses the model for extrapolation), or the fundamental process limita-

tions. As discussed, the existing approaches have focused on developing RNN-based
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MPC where there is a correlation either only between process inputs or only between

process outputs, but not addressed the scenario where both may be existing. These

methods also consider applying PCA-based strategies, assuming the process behaves

linearly, which can lead to poorer control performance when used for nonlinear sys-

tems. Finally, in the previous example (Hassanpour et al. (2021)), the correlation

in the output space was dictated by the process dynamics, not by the fact that the

region of operation resulted in correlation between the outputs.

Motivated by the above considerations, the first objective of this work is to address

the problem of RNN-based MPC design, where the collected data from the process

contains correlation in both the input and output spaces due to the closed-loop con-

trol structure (correlation is due to the closed-loop condition, and the outputs can

in principle be controlled independently). To maintain the model validity, the MPC

optimization problem must be defined in a way that the input and output movements

follow the same correlations as those observed in the training data. Thus, we first

conduct PCA on the training data so as to identify the existing correlations between

the variables in the input and output spaces. The control moves are guaranteed to

remain on the same plane as the PCA model plane (developed using the training

input data) by including a constraint on the SPE statistic. However, implementing

the MPC just by considering the SPE constraint on input moves does not necessar-

ily guarantee that the process outputs are driven to follow the arbitrarily prescribed

(given) set-points due to the existing correlation between the output data samples.

To address this problem, an optimization problem is formulated so as to minimize

the sum of squared error between the given and achievable set-points by applying a

SPE constraint, determined based on the PCA model built using the training out-

put data. Due to the ability of autoencoders to capture nonlinear correlations, an

autoencoder-based optimization problem is also proposed to find the set-points which

are achievable. The results show the RNN-based MPC performance is enhanced when

using the autoencoder-based set-points (compared to the PCA-based set-points).
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The rest of the article is organized as follows: The motivating example, a continuous

stirred-tank reactor (CSTR) under closed-loop control, is presented in Section 6.2.

A brief description of recurrent neural networks, principal component analysis, and

autoencoder neural networks is then provided. Next, the CSTR example is used to

implement a standard RNN-based MPC in order to illustrate the particular prob-

lem being addressed. In Section 6.3, the PCA-based strategies for computing the

achievable set-points and maintaining model validity within the RNN-based MPC

are presented. Applications of these approaches to the motivating example are also

demonstrated. The proposed autoencoder-based technique to calculate the achievable

set-points, together with its application is presented in Section 6.4. Finally, concluding

remarks are made in Section 6.5.

6.2 Preliminaries

6.2.1 Motivating Example

A continuous stirred-tank reactor, where an irreversible first-order reaction (A → B)

occurs, is considered (Du and Mhaskar (2014)). Mass and energy balances lead to

the following first-principles model, describing the evolution of the concentration of

reactant A, CA, the reactor temperature, TR, and the cooling jacket temperature, Tc:

ĊA =
F

V
(CA0 − CA)− k0e

−E/RTRCA

ṪR =
F

V
(T0 − TR) +

(−∆H)

ρcp
k0e

−E/RTRCA − UA

ρcpV
(TR − Tc) (6.1)

Ṫc =
Fc

Vc

(Tcf − Tc) +
UA

ρccpcVc

(TR − Tc)
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where F is the feed flow rate to the reactor with temperature T0 and concentration

CA0 and Fc is the cooling liquid flow rate with temperature Tcf . V and Vc are the

volume of the reactor and the volume of cooling jacket, respectively. k0 is the pre-

exponential constant, E is the activation energy, and R is the ideal gas constant. ∆H

is the enthalpy of the reaction, ρ is the density, and cp is the heat capacity of the fluid

in the reactor. U and A are the overall heat transfer coefficient and the heat transfer

area, respectively. ρc is the density and cpc is the heat capacity of the cooling liquid in

the jacket. The model parameters in nominal conditions and the steady-state values

of the inputs and outputs are reported in Table 6.1 and Table 6.2, respectively.

Table 6.1: Parameters of the CSTR example

Parameter Value Unit
V 100 L
Vc 20 L
k0 7.20× 1010 min−1

∆H −5× 104 J/mol
ρ 1000 g/L
ρc 1000 g/L
cp 0.239 J/(g K)
cpc 4.20 J/(g K)
UA 5× 104 J/(min K)
E/R 8750 K
T0 350 K
Tcf 293 K

Table 6.2: Steady-state values of the process inputs and outputs

Parameter Value Unit
CA0s 1.00 mol/L
Fs 14.60 L/min
Fcs 4.70 L/min
CAs 0.50 mol/L
TRs 324.82 K
Tcs 315.81 K

Closed-loop simulations are carried out to produce data samples for system identifi-

cation. Note that there are several reasons due to which only closed-loop data may

172



PhD Thesis - Hesam Hassanpour; McMaster University - Chemical Engineering

be available in practice, such as unstable open-loop systems, production/economic

reasons, and safety concerns. Thus, to reflect practical considerations, the data sam-

ples are generated from the CSTR operating under the closed-loop condition where

the concentration (CA) is controlled by manipulating the inlet concentration (CA0)

using a PI controller (PI1). In addition, the reactor temperature (TR) is controlled

by manipulating two manipulated variables which are the feed flow rate (F ) and the

cooling stream flow rate (Fc) using two PI controllers (PI2 and PI3, respectively). It

should be mentioned that this implementation is used to illustrate an example of a

control structure where more than one manipulated input is utilized to control one

process output. Note that the deviation forms are used to represent the variables as

follows: C̄A0 = CA0 − CA0s , F̄ = F − Fs, and F̄c = Fc − Fcs (for the manipulated

inputs), and C̄A = CA −CAs , T̄R = TR − TRs , and T̄c = Tc − Tcs (for the outputs). PI

control actions are computed as follows:

U(t) = Kc

(
E(t) +

1

TI

∫ t

0

E(t′)dt′
)

(6.2)

where U is the control action and E is the error between the process output and

the set-point. Kc and TI also represent the proportional gain and the integral time

constant, respectively. The tuning parameters of the controllers are reported in Table

6.3.

Table 6.3: Tuning parameters of the PI controllers

PI controller Kc TI

PI1 4.00 8.00
PI2 1.00 10.00
PI3 -0.50 16.67

To generate data samples, pseudo random binary sequence (PRBS) signals are used

to change the set-point for C̄A and T̄R, as shown in Fig. 6.1(a). The process is
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simulated for 10000 minutes, with a sampling rate of 0.5 minutes. The manipulated

inputs, calculated by the PI controllers, together with the process outputs are shown

in Fig. 6.1. Having obtained the data samples (20000 data samples), an RNN model

is trained in Section 6.2.2.

Remark 1. Note that the present manuscript does not consider the problem of gen-

erating or using sufficiently rich data. Thus, if, say open-loop data were available

where the inputs were moved independently, and as such the data was information

rich, one could readily utilize that data to build a good model to in turn use for con-

trol. The present manuscript addresses the problem where closed-loop, imperfect data

is available, and the above simulation example is simply used to replicate such practical

scenarios.

6.2.2 Recurrent neural networks

Recurrent neural networks (RNN) have been used for an extensive range of system

identification and time-series modeling problems (Cadenas et al. (2016); Boussaada

et al. (2018); Hassanpour et al. (2020a); Han et al. (2020); Wu et al. (2021a)). In

this section, a brief review of a particular class of RNN, nonlinear autoregressive net-

work with exogenous inputs (NARX), is presented. This neural network architecture

is utilized to model the dynamic behaviour of the CSTR example. The open-loop

and closed-loop architectures of the NARX neural network, shown in Fig. 6.2, are

mathematically described via Eqs. (6.3) and (6.4) as follows:

ŷ(k + 1) = f [y(k), ..., y(k − ny), u(k), ..., u(k − nu)] (6.3)

ŷ(k + 1) = f [ŷ(k), ..., ŷ(k − ny), u(k), ..., u(k − nu)] (6.4)
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(a)

(b)

Figure 6.1: Closed-loop data: (a) Measured outputs (solid black lines) and set-points
(dotted red lines) (b) Manipulated inputs.
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Figure 6.2: Schematic of open-loop (left) and closed-loop (right) NARX neural network
architecture.

where f(·) is the nonlinear mapping function of the neural network. y ∈ Rl and ŷ ∈ Rl

represent the vector of the measured outputs and the predicted outputs, respectively,

and u ∈ Rm represents the vector of manipulated inputs. ny and nu are also the

number of output and input delays, respectively. As can be seen in Eq. (6.3) and Fig.

6.2 (left half), the future value of the outputs is predicted using the present and past

values of the inputs, together with the measured values of the present and past outputs

in the open-loop architecture. However, the predicted values of the present and past

outputs, instead of the measured values, are used in the closed-loop architecture to

predict the future value of the outputs, as shown in Eq. (6.4) and Fig. 6.2 (right

half).

Due to the availability of the output measurements during the training process, the

open-loop architecture is utilized to develop a NARX model. The resulting model is a

feedforward neural network that enables us to use the traditional training algorithm

(static backpropagation) during training. This model is able to perform one-step

ahead prediction. After the training process, the NARX neural network is converted

into the closed-loop architecture in order to perform multi-step ahead predictions.
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Model identification using RNN

The data generated as described in Section 6.2.1 is used to develop a NARX model

for the CSTR example. The data samples are first divided into three categories: (1)

Training data (14000 data samples), (2) Validation data (4000 data samples), and

(3) Testing data (2000 data samples). Note that this data segmentation is necessary

to develop a model and evaluate its prediction performance before use in the MPC

implementation. The training data is used to train the NARX networks, and then

the validation data is used to fine-tune the hyperparameters (in order to achieve the

final/best model). Finally, the testing data is used in order to evaluate the model

ability to predict the unseen data.

The optimization problem to calculate the optimal values of the parameters in the

NARX neural network is non-convex due to the use of nonlinear activation functions.

This leads to two challenging problems: (1) Difficulty in finding a global solution and

(2) Difficulty in ensuring that the same solution is found every time a NARX network

is trained with the same architecture. In recognition of these challenges, the NARX

network is trained multiple times with random re-initializations of the parameters in

order to obtain a good local optimum. This can also provide insights into the selection

of the hyperparameters by comparing the results obtained based on multiple runs for

each architecture.

To build a model, the training data samples are first normalized (mean-centered and

scaled to unit variance). The normalized data is then fed to a NARX neural net-

work (Note that the NARX model is trained using Matlab Machine Learning and

Deep Learning toolbox). The NARX neural network has several hyperparameters

that must be tuned, such as the number of hidden layers and neurons, type of acti-

vation functions, the number of input and output delays, and the number of epochs.

As discussed in Section 6.1, several methods have recently been proposed to more
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systematically determine the network hyperparameters using a multi-objective opti-

mization framework (Miriyala et al. (2016); Miriyala and Mitra (2020); Inapakurthi

et al. (2020)). However, in this work, the hyperparameters are tuned by searching in a

subset resulting in a model with higher prediction performance. To that end, different

NARX architectures including 1 and 2 hidden layers with different number of neurons

are used. In addition, tanh and linear activation functions are used for the neurons in

the hidden and output layers, respectively. We also use different number of input and

output delays. The Levenberg-Marquardt backpropagation technique is used to train

the models. The training process stops when the number of epochs reaches a certain

number for each specific architecture. To that end, the number of epochs is initially

set to 100, then modified as needed. To evaluate the prediction performance of the

trained model, scaled root mean square error (RMSE), given by Eq.(6.5), is utilized:

Scaled RMSE =
l∑

i=1

√∑n
j=1 (yi,j−ŷi,j)2

n

σi

(6.5)

where yi,j and ŷi,j are the jth true and predicted values of the ith output, respectively.

σi is the standard deviation of the ith output, l is the number of outputs, and n is the

number of data samples.

To account for the non-uniqueness problem mentioned earlier, the NARX neural net-

work is trained 50 times for each specific architecture. Fig. 6.3 summarizes the re-

sults obtained based on different NARX architectures. Note that (NARX1, NARX2,

NARX3, and NARX4 use 1 hidden layer with 6, 8, 10, and 12 neurons, respectively,

and NARX5, NARX6, NARX7, and NARX8 use 2 hidden layers with (6, 4), (8, 4),

(10, 6), and (12, 6) neurons, respectively). These results, together with the scaled

RMSE mean and variance results obtained based on each architecture, indicate the

NARX model using 1 hidden layer with 10 neurons (NARX3) has the best perfor-
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mance among all considered architectures. Thus, the model with this architecture

and the smallest scaled RMSE is selected as the final model. Having trained the

NARX model, the closed-loop NARX architecture (see Fig. 6.2) is utilized for multi-

steps ahead predictions (in the validation and testing phases). To do this, the initial

input and output data samples are first fed to the trained NARX model to predict the

outputs in the first sampling instant. The predicted values are then used recursively

to predict the outputs in the next sampling instants. The prediction performance of

the model on the testing data is shown in Fig. 6.4. As can be seen, this model can

predict the process outputs with reasonable accuracy. Thus, this model is used in the

MPC implementation.

Figure 6.3: Scaled RMSE of the NARX models with different architectures in the
validation phase.

6.2.3 Standard RNN-based model predictive control

The optimization problem to implement the (standard) RNN-based MPC is formu-

lated as follows:

179



PhD Thesis - Hesam Hassanpour; McMaster University - Chemical Engineering

Figure 6.4: Model testing: Measured outputs (solid blue lines) and predictions
(dash-dotted red lines).

minuk,...,uk+P

P∑
j=1

∥ỹk+j − ySPk+j∥2Qy
+ ∥uk+j − uk+j−1∥2Rdu

s.t. RNN model,

umin ≤ u ≤ umax

(6.6)

where ySPk+j is the set-point, ỹk+j is the predicted output trajectory at the time (k +

j)∆t, ∆t is the sampling time, and P is the prediction horizon. Qy ∈ Rl×l is a

positive definite matrix used to penalize the output deviation from the set-point,

Rdu ∈ Rm×m is a positive semi-definite matrix used to penalize the rate of change in

the manipulated inputs. umin ∈ Rm and umax ∈ Rm are also the lower and upper

bounds of the inputs. It should be noted that the NARX model, with closed-loop

180



PhD Thesis - Hesam Hassanpour; McMaster University - Chemical Engineering

architecture, is used to predict the outputs multi-steps ahead. Thus, the initial input

and output data samples are fed to the NARX model to perform one-step ahead

prediction. The predicted outputs, together with the candidate future inputs are then

used for two-step ahead prediction. This procedure is repeated recursively to calculate

the predicted outputs multi-steps ahead to the end of the prediction horizon. The

RNN-based MPC calculates the optimal input sequence over the prediction horizon

(uk, ..., uk+P ), and then the first control action is sent to the process, and the MPC

implemented in a standard receding horizon fashion.

Standard RNN-based MPC implementation

This section demonstrates the implementation of a representative RNN-based MPC.

Thus, the identified model from Section 6.2.2 is utilized to control the CSTR example.

Two scenarios are also defined to evaluate the RNN-based MPC performance using

the arbitrarily given set-points. The values of the given set-points are listed in the

first row of Tables 6.4 and 6.5. The parameters for the RNN-based MPC are selected

as follows: ∆t = 0.5 min, prediction horizon P = 4, Qy = diag([104, 101, 101]) and

Rdu = diag([10−1, 10−1, 10−1]) (diag(·) refers to a diagonal matrix with the argument

on the diagonal). The manipulated inputs are subject to the following constraints:

C̄A0s ∈ [0−CA0s , 3−CA0s ], F̄ ∈ [0− Fs, 60− Fs], and F̄c ∈ [0− Fcs , 15− Fcs ]. The

MPC optimization problem is solved using fmincon solver in the Matlab Optimization

toolbox, and the results are shown in Figs. 6.5 and 6.6 (solid blue lines), for Scenarios

1 and 2, respectively.

As shown, the given set-points (prescribed assuming the outputs are independent) are

not reached by the MPC. The reasons why the RNN-based MPC fails to drive the

outputs to the set-points are as follows: (1) The use of the given set-points can result

in plant–model mismatch. Recall that the model is developed using the data with

correlated outputs. Thus, correlation being maintained is one indication of the process
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Table 6.4: Scenario 1: Given set-points (ySPg ) and achievable set-points, obtained based
on the PCA (ySPa1 ) and autoencoder (ySPa2 ) approaches.

Scenario 1 C̄SP
A T̄ SP

R T̄ SP
c

ySPg 0.0400 3.00 2.00
ySPa1

0.0321 3.38 1.27
ySPa2

0.0382 3.29 1.07

Table 6.5: Scenario 2: Given set-points (ySPg ) and achievable set-points, obtained based
on the PCA (ySPa1 ) and autoencoder (ySPa2 ) approaches.

Scenario 2 C̄SP
A T̄ SP

R T̄ SP
c

ySPg -0.0500 2.00 3.00
ySPa1

-0.0621 2.58 1.88
ySPa2

-0.0476 3.17 2.02

continuing to evolve in the same region as the training data, and in the absence of that

the RNN model may not remain accurate, leading to MPC performance degradation.

(2) In addition, the model is trained using the training data including the correlated

inputs, while the manipulated inputs are allowed to take independent values in the

MPC implementation. Thus, the use of the model within the MPC framework can

lead to the plant-model mismatch due to not maintaining the correlation between the

manipulated inputs.

To address these problems, it is necessary to recognize the existing correlations be-

tween the variables in the training input and output data. The next two sections

review existing techniques that enable capturing the correlation between variables.

Subsequently, this information is utilized to design and implement MPCs that main-

tain the same correlation as observed in the training input and output data, to in

turn help maintain model validity.
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(a) (b)

Figure 6.5: Standard MPC performance in Scenario 1: (a) the manipulated input profiles
obtained using ySPg (solid blue lines) and ySPa1 (dash-dotted red lines). (b) ySPg (dashed

blue lines), the output profiles based on ySPg (solid blue lines), ySPa1 (dotted red lines), and
the output profiles based on ySPa1 (dash-dotted red lines).

6.2.4 Principal component analysis

Principal component analysis (PCA) is a statistical approach allowing for reducing the

dimensionality of the data, while retaining most of the variation in the original data.

This method is designed to extract uncorrelated components from a set of correlated

variables (Wise et al. (1990); Nomikos and MacGregor (1994)). Consider a mean-

centered and scaled (to unit variance) data matrix X consisting of n observations
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(a) (b)

Figure 6.6: Standard MPC performance in Scenario 2: (a) the manipulated input profiles
obtained using ySPg (solid blue lines) and ySPa1 (dash-dotted red lines). (b) ySPg (dashed

blue lines), the output profiles based on ySPg (solid blue lines), ySPa1 (dotted red lines), and
the output profiles based on ySPa1 (dash-dotted red lines).

on k variables, performing PCA on X leads to a set of principal component scores,

computed as follows:

T = XP (6.7)

where T is the (n× a) score matrix and P is the (k× a) loading matrix that contains

orthogonal loading vectors, determining the orientation of the latent space (Note that
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a is the number of principal components, and a < k for dimensionality reduction).

Having obtained the principal components, the data matrix X is decomposed as

follows:

X = TP T + E (6.8)

where TP T and E represent the modeled and unmodeled variations of X, repectively.

PCA can be performed through an eigen-decomposition of the sample covariance

matrix S = XTX/(N − 1) or a singular value decomposition (SVD) on the data

matrix X. The nonlinear iterative partial least squares (NIPALS) technique can be

applied alternatively to extract the principal components.

After obtaining the PCA model, the SPE statistic, which is defined as the residual

distance between an observation xi and its projection onto the PCA model plane, is

computed as follows:

SPEpca
i = x̃T

i x̃i = xT
i (I − PP T )xi (6.9)

where x̃i ∈ Rk is the residual vector for each observation (x̃i = xi − x̂i), and x̂i ∈ Rk

is the reconstructed vector of the observation xi.

6.2.5 Autoencoder neural networks

Autoencoder is another unsupervised learning technique that leverages ANN capabil-

ity to achieve an alternate representation of the original data. It generally consists of

three layers, as shown in Fig. 6.7: (1) Input layer, (2) Hidden layer, and (3) Output

layer. The objective of training an autoencoder is to copy the inputs to the outputs in

a way that the hidden (latent) representation captures the useful features present in
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the data. This can be achieved by constraining the hidden layer to have a smaller di-

mension (neurons) than the input layer (undercomplete autoencoder). Training such

an undercomplete representation makes the autoencoder to learn the most salient

features of the training data. On the other hand, the autoencoder could easily learn

to memorize the training data if it is permitted to have too much capacity. It is the

reduced dimension of the hidden layer that is served to perform noise elimination

and dimensionality reduction (Hinton and Salakhutdinov (2006); Ramamurthy et al.

(2020); Masti and Bemporad (2021)), and thus safeguard against an overfitted model.

Figure 6.7: Schematic of a three-layer autoencoder neural network.

To train the autoencoder, the data samples x ∈ Rk are compressed into the low-

dimensional latent space Ra by the encoder using a nonlinear function g(·) (z =

g(x) ∈ Ra), where z represents the a-dimensional latent space, and a < k. The

encoded data samples are then decompressed into the output layer by the decoder

using a function h(·) (x̂ = h(z) ∈ Rk). Finally, the encoded-decoded data samples,

from the output layer, are compared with the initial data samples, fed to the input

layer, and then, the error is backpropagated through the network in order to update
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the parameters (weight and bias values). The autoencoder is trained by minimizing

the reconstruction error, defined by the following loss function:

L =
1

2n

n∑
i=1

∥xi − x̂i∥22 (6.10)

where n is the number of input data samples, and x̂i is the reconstruction of the

original input xi. Recall that the key objective of the autoencoder is not to simply copy

the input data samples but to learn latent representation with the aim of extracting

the hidden structure that may exist in the data (i.e. correlations between the input

variables). Indeed, the autoencoder aims to reduce the dimensionality of the data,

while retaining the most information of data structure.

After developing the autoencoder model, the SPE value corresponding to each obser-

vation is calculated as follows:

SPEae
i = x̃T

i x̃i (6.11)

where x̃i ∈ Rk is the residual corresponding to the observation xi (x̃i = xi − x̂i),

x̂i = h(g(xi)) is the reconstructed vector of this observation, and h(g(·)) is the function

describing the trained autoencoder.
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6.3 Proposed PCA-based strategy for RNN-based

MPC implementation

To address the problems discussed in Section 6.2.3, a formulation that integrates the

ideas on handling output correlation (Hassanpour et al. (2021)) and input correlation

(Hassanpour et al. (2020a)) is integrated.

6.3.1 Constrained RNN-based MPC: Implementing achievable

set-points

As shown in Section 6.2.3, the prescribed set-pints are not achieved by MPC due to

the use of model in domains where it is not trained. To maintain model validity, it is

necessary to first recognize the correlation in the input space. Then, the constrained

RNN-based MPC formulation is utilized to force the manipulated inputs to move in a

specific direction so as to maintain the same correlation as that of the training input

data. This is accomplished by adding a constraint on the SPE statistic in the standard

RNN-based MPC formulation. Thus, the control action is computed as follows:

minuk,...,uk+P

P∑
j=1

∥ỹk+j − ySPak+j
∥2Qy

+ ∥uk+j − uk+j−1∥2Rdu

s.t. RNN model,

SPEpca
u ≤ εu,

umin ≤ u ≤ umax

(6.12)

where ySPak+j
is the achievable set-point and εu is an upper bound for the SPE constraint,
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and the rest of the parameters and variables are as defined earlier in Eq. (6.6). Note

that εu must be small enough to restrict the manipulated input moves to the PCA

model plane, constructed using the training input data. The value of this variable is

determined by computing the upper confidence limit of the SPE statistic. The SPE

value in Eq. (6.12) is also calculated as follows:

SPEpca
u = ūT (I − P uP u

T )ū (6.13)

where ū is the vector of the manipulated inputs, mean-centered and scaled using the

mean and standard deviation of the training input data, and Pu is the loading matrix

of the PCA model, built using the training input data.

The achievable set-point is computed using the following optimization problem:

minySP
a

∥ySPa − ySPg ∥2Qsp

s.t. SPEpca
y ≤ εy

(6.14)

where ySPa ∈ Rl is the achievable set-point (decision variables) to be calculated, ySPg ∈

Rl represents the given set-point, and Qsp is a positive definite matrix used to penalize

the deviation of the achievable set-point from the given set-point. The SPE constraint

is used to make sure that a similar correlation to that of the training output data is

obeyed when computing the achievable set-points. To this end, the upper bound of the

SPE constraint, εy, must be sufficiently small so that the selection of the achievable

set-points is limited to the PCA model plane. The SPE value is also computed as

follows:
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SPEpca
y = (ȳSPa )T (I − P yP y

T )(ȳSPa ) (6.15)

where ȳSPa is the vector of the achievable set-points, mean-centered and scaled using

the mean and standard deviation of the training output data, and Py is the loading

matrix of the PCA model developed based on the training output data. A schematic

flowchart illustrating the steps required to implement the constrained MPC is shown

in Fig. 6.8.

Figure 6.8: Schematic flowchart of the proposed constrained MPC.

6.3.2 Application to the motivating example

Consider the given set-points in Scenarios 1 and 2 introduced in Section 6.2.3, the

achievable set-points are first calculated using the optimization problem given by Eq.

(6.14). To define the SPE constraint, a PCA model is developed based on the training

output data, described in Section 6.2.2. The PCA model is able to explain 99.7% of
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the variance in the data using two principal components. The SPE constraint is then

formulated using a sufficiently small value (εy = 10−3) as the upper bound to make

sure that the correlation between the calculated achievable set-points is maintained.

Next, the optimization problem is solved by applying a penalty matrix, similar to Qy,

used in the RNN-based MPC implementation, thus Qsp = diag([104, 101, 101]). It

should be noted that different penalty weights can be used based on the importance

of each variable. The achievable set-points, ySPa1
, obtained by solving the optimization

problem subject to the PCA-based SPE constraint are reported in the second row of

Tables 6.4 and 6.5 for Scenarios 1 and 2, respectively.

In addition, the SPE values of the training output data, the given set-point (ySPg ),

and the achievable set-point (ySPa1
), in Scenario 1, are shown in Fig. 6.9 (note that

the observations are not contiguous in time; thus, observations 1 to 14000 are related

to the training output data, and observations 14001 to 14040 and 14041 to 14080

correspond to the given and achievable set-points, respectively). As can be seen,

the SPE values corresponding to ySPg exceed the 99% confidence limit, resulting in

breaking the correlation that exists between the outputs in the training data, while

applying ySPa1
leads to maintaining the existing correlation.

The achievable set-points are next used to implement the constrained RNN-based

MPC using Eq. (6.12). To define the SPE constraint on the manipulated inputs

in the MPC optimization problem, a PCA model is developed using the training

input data. Using two principal components, 99.3% of the data variance can be

explained. The loading vectors of the PCA model are then utilized to implement

the SPE constraint. In addition, the value corresponding to 99% confidence limit

(εu = 0.19) is considered as the upper bound of the SPE constraint to guarantee

that the calculated manipulated inputs follow a similar correlation to that observed

in the training input data. Finally, the constrained RNN-based MPC is implemented,

and the results are shown in Figs. 6.10 and 6.11 for Scenarios 1 and 2, respectively
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Figure 6.9: Comparison of the SPE values obtained based on the training output data
(gray circles), the given set-points, ySPg , (blue triangles), the achievable set-points obtained
based on PCA-based optimization problem, ySPa1 , (magenta diamonds), and 99% confidence

limit (dashed line), in Scenario 1.

(dash-dotted red lines). As can be seen, the constrained RNN-based MPC is able to

stabilize the outputs around the achievable set-points.

To compare the approach proposed in the present manuscript with the approaches

in Hassanpour et al. (2020a) and Hassanpour et al. (2021), two implementations are

presented. The first is the constrained RNN-based MPC, albeit with arbitrarily given

set-points (Hassanpour et al. (2020a)) and the next is the standard RNN-based MPC

with the achievable set-points (Hassanpour et al. (2021)). As shown by the solid

blue lines in Figs. 6.10 and 6.11, the given set-points (ySPa1
) are not achieved by the

constrained RNN-based MPC due to the use of the set-points which are selected inde-

pendently, although the correlation is maintained in the input space. In addition, as

shown by the dash-dotted red lines in Figs. 6.5 and 6.6, the standard RNN-based MPC

is not able to drive the outputs to their set-points, although the achievable set-points

are implemented. In summary, the simulations show the necessity of accounting for
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correlations in both the input and output spaces, and ensuring that the MPC is given

the achievable set-points. The present section, however, utilizes PCA to compute the

set-points. Possibly improved performance using autoencoders is demonstrated in the

next section.

(a) (b)

Figure 6.10: Constrained MPC performance in Scenario 1: (a) the manipulated input
profiles obtained using ySPg (solid blue lines) and ySPa1 (dash-dotted red lines). (b) ySPg

(dashed blue lines), the output profiles based on ySPg (solid blue lines), ySPa1 (dotted red
lines), and the output profiles based on ySPa1 (dash-dotted red lines).

Fig. 6.12 summarizes the SPE values associated with the training input data and

the control actions obtained based on the standard and constrained RNN-based MPC

implementations using ySPg and ySPa1
in Scenario 1. It should be noted that the obser-

vations are not contiguous in time. Therefore, observations 1 to 14000 are related to
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(a) (b)

Figure 6.11: Constrained MPC performance in Scenario 2: (a) the manipulated input
profiles obtained using ySPg (solid blue lines) and ySPa1 (dash-dotted red lines). (b) ySPg

(dashed blue lines), the output profiles based on ySPg (solid blue lines), ySPa1 (dotted red
lines), and the output profiles based on ySPa1 (dash-dotted red lines).

the training input data, used to build the PCA model. Observations 14001 to 14040

and 14041 to 14080 are related to control actions calculated by the standard RNN-

based MPC using ySPg and ySPa1
, respectively. As shown, these SPE values exceed the

99% confidence limit, indicating that the control actions do not follow the existing

correlation between inputs in the training data. In addition, observations 14081 to

14120 and 14121 to 14160 are related to control actions calculated by the constrained

RNN-based MPC using ySPg and ySPa1
, respectively. These results show the existing

correlation can be maintained by applying the constrained RNN-based MPC. In sum-
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mary, the results show that when the RNN model, developed using the training data

containing correlated inputs and outputs, is utilized to implement MPC, it is neces-

sary to maintain the existing correlations in both the input and output spaces, while

calculating manipulated inputs and prescribing set-points, respectively.

Figure 6.12: Comparison of the SPE values obtained based on the training input data
(gray circles), standard RNN-based MPC control actions using ySPg (blue squares),

standard RNN-based MPC control actions using ySPa1 (magenta diamonds), constrained
RNN-based MPC control actions using ySPg (green circles), constrained RNN-based MPC
control actions using ySPa1 (orange triangles), and 99% confidence limit (dashed line), in

Scenario 1.

Remark 2. As shown, applying the prescribed set-points, selected without considering

the correlation in the output space, may result in a poor performance of the RNN-based

MPC (or any data-driven model-based control strategy). Thus, we use the PCA-based

optimization problem to compute the achievable set-points, as close as possible to the

arbitrarily prescribed ones, while following the same correlation as that of the outputs

in the training data. This can be done by selecting appropriate weights, when defining

the penalty matrix Qsp, according to the importance of each controlled variable.
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6.4 Proposed autoencoder-based approach to calcu-

late the achievable set-points

6.4.1 Autoencoder-based optimization problem to calculate the

achievable set-points

The constrained RNN-based MPC performance to track the achievable set-points,

computed using the PCA-based approach, is shown in the previous section. As seen

in Figs. 6.10 and 6.11, although the MPC controller is able to track these set-points

with reasonable accuracy, small offsets are observed. This indicates that the achiev-

able set-points are not truly achievable, with the error resulting from the linear nature

of the PCA-based technique. Therefore, the use of techniques that allow for handling

nonlinear correlation between the output variables can result in more accurate val-

ues of the set-points. Due to the ability of autoencoder neural networks to capture

nonlinear relationships between the variables, an autoencoder-based technique is pre-

sented to compute the achievable set-points. In this regard, an optimization problem

is defined with the same objective function as in Eq. (6.14), albeit with different SPE

constraint, computed as follows:

minySP
a

∥ySPa − ySPg ∥2Qsp

s.t. SPEae
y ≤ εaey

(6.16)

where SPEae
y is the autoencoder-based SPE constraint calculated using Eq. (6.11),

and εaey is a sufficiently small value, considered as the upper bound for the SPE

constraint.
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6.4.2 Constrained RNN-based MPC using autoencoder-based

achievable set-points

The autoencoder-based optimization problem, given by Eq. (6.16), is used to calculate

the set-points for the motivating example, and then the constrained RNN-based MPC

is implemented using Eqs. (6.12) and (6.13).

To compute the achievable set-points, the training output data is first normalized, and

then used to develop an autoencoder model. Several architectures including 1 and 2

hidden layers with different activation functions are evaluated to tune the autoencoder

hyperparameters. Different autoencoder networks are trained multiple times, and

then their scaled RMSE values are assessed in the validation phase. The results

indicate that the autoencoder with 1 hidden layer containing 2 neurons with sigmoid

activation function, for both the encoder and decoder, has superior performance over

other architectures. This autoencoder network is further trained multiple times, and

the final model is selected based on the lowest value of the scaled RMSE. In the

next step, an optimization problem subject to the autoencoder-based SPE constraint

is formulated with the same penalty matrix (Qsp), used in Section 6.3.1. A similar

small value, εy = 10−3, is also selected so as to maintain the correlation between

the calculated set-points. The achievable set-points, ySPa2
, obtained by solving the

optimization problem are listed in the third row of Tables 6.4 and 6.5 for Scenarios 1

and 2, respectively.

Having obtained the set-point ySPa2
, the constrained RNN-based MPC is implemented.

As can be seen in Figs. 6.13 and 6.14 (for Scenarios 1 and 2), applying these set-points

results in reducing the offsets that are obtained using the PCA-based achievable set-

points (ySPa1
). In addition, in order to quantitatively evaluate the RNN-based MPC

performance based on ySPa1
and ySPa2

, weighted integral absolute error (IAE) is used

and computed as follows:

197



PhD Thesis - Hesam Hassanpour; McMaster University - Chemical Engineering

Weighted IAE =
l∑

i=1

n∑
j=1

Wi|Ei,j|∆t (6.17)

where l is the number of outputs, n is the number of sampled data points for each

output, Wi is the weight associated with each output, Ei,j is the error between the ith

output and its set-point at jth sampling point (ySPi,j −yi,j), and ∆t is the sampling time.

Consider W1 = 50, W2 = 1, and W3 = 1 for the first, second, and third outputs (CA,

TR, Tc), respectively, and ∆t = 0.5 min, the value of the weighted IAE is calculated

based on ySPa1
and ySPa2

, and listed in Table 6.6. The results show the performance

of the RNN-based MPC is improved when the achievable set-points obtained by the

autoencoder-based optimization problem are used.

Table 6.6: Comparison of the weighted IAE values obtained by applying ySPa1 and ySPa2 .

Scenario IAE (ySPa1
) IAE (ySPa2

)

1 9.75 7.72
2 7.68 6.15

Remark 3. Note that while the autoencoder is used in computing the achievable set-

points, only the PCA-based SPE constraint is used in the RNN-based MPC to maintain

the correlation. In principle, one can use an autoencoder-based SPE constraint in the

RNN-based MPC to improve its performance. The autoencoder-based SPE constraint

can lead to more computationally expensive optimization problem for the RNN-based

MPC due to the use of the nonlinear autoencoder model (compared with the PCA-

based SPE constraint that uses the linear PCA model). The use of the autoencoder-

based constraint in the MPC can be used to improve the MPC performance when the

existing correlation between the inputs in the training data is considerably nonlinear.

On the other hand, because the optimization problem to find the achievable set-points

is solved offline, the autoencoder-based constraint can be used with less concern about
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(a) (b)

Figure 6.13: Constrained MPC performance in Scenario 1: (a) the manipulated input
profiles obtained using ySPa1 (solid blue lines) and ySPa2 (dash-dotted red lines). (b) ySPa1
(dashed blue lines), the output profiles based on ySPa1 (solid blue lines), ySPa2 (dotted red

lines), and the output profiles based on ySPa2 (dash-dotted red lines).

the computational complexity.

Remark 4. In this work, a PCA-based SPE constraint on the input space is added

to the MPC optimization problem to effectively handle the plant-model mismatch by

restricting the input moves to the PCA model plane, and thus following the same

correlation as that of the training input data. Although applying this technique results

in an improved control performance, such an implementation may disregard possible

improvements in economic performance that can be obtained by making use of the

entire space of movements of the manipulated inputs. This, however, necessitates
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(a) (b)

Figure 6.14: Constrained MPC performance in Scenario 2: (a) the manipulated input
profiles obtained using ySPa1 (solid blue lines) and ySPa2 (dash-dotted red lines). (b) ySPa1
(dashed blue lines), the output profiles based on ySPa1 (solid blue lines), ySPa2 (dotted red

lines), and the output profiles based on ySPa2 (dash-dotted red lines).

a model capable of predicting the system behavior throughout the whole (or broader)

range of input moves (developing such a model in turn requires richer training data).

To address this issue, we proposed a method in order to produce richer data using

a relaxed SPE constraint in the constrained RNN-based MPC, while not significantly

degrading the controller performance (Hassanpour et al. (2020a)). In addition, several

approaches are developed by integrating the idea of offset-free MPC with existing data-

driven based strategies (Kheradmandi and Mhaskar (2018); Son et al. (2020)).
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6.5 Conclusions

The problem of handling collinearity in inputs and outputs, and possibly nonlinear

correlation in outputs, in RNN-based MPC implementation is addressed in the present

manuscript. To maintain the model validity within the MPC framework, PCA-based

strategies are first utilized to recognize the existing correlations in the input and out-

put spaces. The constrained RNN-based MPC, using the PCA-based SPE constraint,

is then designed to compute the control actions by maintaining a similar correlation to

that of the training input data. An optimization problem subject to the PCA-based

SPE constraint is also formulated to compute the achievable set-points by ensuring

that they follow the same correlation as that of the training output data. Next, a

new autoencoder-based optimization problem is proposed to calculate the achievable

set-points (due to its capability to recognize the nonlinear correlations between the

process outputs). The efficacy of the proposed approach is shown via simulation of

a chemical reactor example. The results show the superior performance of the con-

strained RNN-based MPC over the standard RNN-based MPC to drive the process

outputs to the achievable set-points. Finally, further improvements in closed loop per-

formance are demonstrated with the use of an autoencoder-based strategy to calculate

the achievable set-points.
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The main contributions of the thesis, together with future work opportunities are

summarized in this chapter.

7.1 Conclusions

This work considers addressing the problem of fault diagnosis and MPC implemen-

tations in the presence of limited and uninformative data. In Chapter 2, a hybrid

machine learning approach is proposed by integrating a pre-trained RNN model (built

using a large amount of data for a representative unit) with SubID models (developed

to model residuals for the units in question) to handle unavailability of sufficient data.

The key point is to take advantages of both the RNN and SubID modeling techniques

(to handle over-fitting and achieve better performance while using different amount

of data). The application of the proposed approach to predict the behaviour of dif-

ferent zones in a multi-zone fitness centre is evaluated. The results show the superior

performance of the hybrid RNN-SubID approach in handling data shortage problem

compared with the individual RNN and SubID models.

In Chapter 3, a hybrid PCA technique is proposed by integrating first-principles

knowledge with data in order to detect faults in HVAC systems. The key point is

to utilize the residuals obtained based on the first-principles knowledge to enhance

the performance of purely data-driven based PCA method (when data samples are

not sufficiently informative). The performance of the proposed hybrid approach is

assessed using different examples. The results reveal the superior performance of the

hybrid approach over the purely data-driven (PCA using data) and first-principles

(residuals) based approaches.

In Chapter 4, the problem of handling correlated input data for the RNN-based MPC

is addressed. Two approaches (PCA-RNN-based MPC and Constrained RNN-based
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MPC) are developed to address this issue. In the first approach, PCA is performed

on the input data, and then the scores are used to develop an RNN model. The PCA-

RNN model is then employed within the MPC framework to compute the optimal

scores. In the second approach, an RNN model (developed using the input and output

data) is used in the MPC, but a new PCA-based SPE constraint is added to ensure

that input movements are confined to the PCA model plane. The effectiveness of the

proposed methods (over the standard RNN-based MPC implementation) is illustrated

using different set-point tracking scenarios for a chemical reactor example. Finally,

a new method is proposed to break the existing correlation in the constrained RNN-

based MPC actions in order to generate richer data samples for re-identification to

possibly enhance the economic performance of the RNN-based MPC.

In Chapter 5, the problem of implementing achievable set-points for the RNN-based

MPC implementations, where output data are correlated is addressed. A PCA-based

optimization problem is defined to compute the achievable set-points from arbitrarily

prescribed ones. The results show the superior performance of the MPC performance

using the achievable set-point compared to the case where the arbitrarily prescribed

set-points are directly used.

In Chapter 6, the proposed methods in Chapters 5 and 6 are integrated to address

the problem of handling correlated input and output data for the RNN-based MPC

implementations. In addition, to address the problem of existing nonlinear correlation

in the output space, a new AE-based optimization problem is formulated to compute

achievable set-points. The efficacy of the proposed approach is shown via simulation

of a chemical reactor example. The results reveal the superior performance of the

constrained RNN-based MPC over the standard RNN-based MPC. The results also

show that the closed-loop performance can be improved with the use of the achievable

set-points obtained using the AE-based approach.
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7.2 Future work

The results and contributions of this thesis suggest the following topics for future

work:

1. Investigating transfer learning methods for process modeling in the presence of

insufficient data

2. Implementing MPC using the proposed hybrid machine learning (RNN-SubID)

modeling technique

3. Evaluating the effect of time delay on the prediction performance of the PCA-

RNN models

4. Handling correlated data (with nonlinear relationship in the input space) for

the ANN-based MPC implementations

5. Developing an implementable model-free reinforcement learning (RL) technique

for process control design

In the transfer learning-based approaches, a pre-trained model (which is usually a

DNN), developed for the source problem, is selected to be re-tuned using data from

the target problem (modifying all or some of parameters in different layer). In Chap-

ter 2, we propose an alternative approach to address data shortage problem, where

the existing pre-trained model of the source problem is a shallow neural network.

Further research could be considered on how to extend the idea of transfer learning

to cases where a shallow neural network model is available for the source problem

(how to re-tune weights and biases in this network to capture the dynamics of the

target problem). In addition, MPC implementations using the hybrid (RNN-SubID)

approach, proposed in this chapter, can be considered as future work.
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In Chapter 4, a PCA-RNN modeling approach is proposed for the case where input

data are correlated. This technique is applied assuming two conditions: (1) the inputs

are perfectly correlated and (2) the inputs have the same time delay with the outputs.

Therefore, how time delay is considered when the inputs are compressed by PCA

(for situations where the inputs have different time delays with the outputs) can be

investigated as future research. In addition, in Chapters 4, 5, and 6, we propose

different methods to address the problem of handling correlated input and output

data for MPC implementations. Chapters 4 and 5 consider using PCA to recognize

the correlations that exist between the variables in the input and output spaces. An

AE-based approach is also proposed in Chapter 6 to handle the nonlinear correlation

between the output variables. Another potential future work can investigate the use

of AE to handle the nonlinear correlation between the variables in the input space.

To this end, a new AE-based SPE constraint (obtained using the input data) can be

developed and added to the MPC formulation.

RL-based techniques have shown promising potentials in many process control ap-

plications. However, the training process of an RL controller requires a significant

amount of online data. Safety and economic problems are obstacles to apply on-

line training in many practical situations. Model-based control techniques such as

model-based RL and nonlinear MPC are alternatives to the model-free RL control

designs. However, these techniques require a model to be maintained (this can result

in additional costs). Another future work can consider developing an implementable

model-free RL controller by leveraging offline MPC calculations (this information can

be obtained using a pre-implemented industrial MPC that uses a simple step-response

model). The RL agent is trained using offline MPC calculations, and then further re-

tuned online by interacting with the actual process to continuously learn and improve

its performance.
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